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Acknowledgements

Three and a half years of doctoral study is gradually coming to an end. Looking back, everything
I have experienced is vivid in my mind, and it will definitely leave a mark in the book of my
life. Throughout the writing of this dissertation I have received a great deal of support and
assistance.

Thanks to my supervisor Djamal, who not only protected me on the road of scientific research,
but also taught me the principles of dealing with others. You made me realize that I should
not lower my requirements for myself even when I was at a low point; you gave me guidance
when I was anxious and confused; and you never hesitated to share your opinions with me. The
words of you, for me who had just entered the gate of scientific research world, every sentence
was valuable to me and brought me new understanding.

Thank you, my supervisor Rola, for guiding me step by step onto the path of doctoral research.
Despite the pandemic preventing us from meeting face-to-face during my first year, you deeply
understood my anxieties and consistently encouraged me to maintain confidence. In our sub-
sequent collaborations, you never hesitated to praise and comfort me, nor did you shy away from
addressing my shortcomings. Working with you has provided me with a clearer understanding
of the field of research. Through several meaningful conversations, you generously offered me
reassurance and guidance, sharing your own life experiences, which filled me with warmth.

Thanks to the reviewers of my thesis. Thanks for your precious time spent for reading my work
and your suggestions to improve the presentation, as well as your recognition of my work.

I would particularly like to acknowledge Mr. Samir Tohmé, the DIGICOSME project, Labor-
atory SAMOVAR and Télécom SudParis. Who provide the chance and availability for me to
pursue this thesis.

Thanks to all my anonymous papers reviewers, including but not limited to ICC, WiMob,
PIMRC, WCNC, CICOM and Computer Networks. You have made improvements to my papers,
which has broadened my horizons and given me the opportunity to improve my editing and their
quality. In any case, every review brings me new progress.

Thanks to my dear parents, who have given me ample care and understanding since I was a
child, and always give me the confidence to move forward. Thanks to my twin sister, like whom
having one person in life is enough. Thank you to all my family members for making me feel
loved and worthy of love, and for making me realize the infinite possibilities of life’s journey.

Thank you to my boyfriend, Wei Huang. You have taught me how to love myself and understand
how to love others. Love is selfless giving and acceptance, it is understanding and supporting

i



each other. It is enduring change and growth, intimacy and relaxation, and above all, it is the
source of happiness. It is mutual respect, complementing each other’s strengths, it is walking
side by side.

Thanks to my two lovely cats, Cola and Mi, who always bring surprises and warmth to my life.
The three-year bond has made us a family, and we will never leave each other.

I would like to thank my friends who have returned to China to work, those who are studying
for Ph.D.s in foreign countries, those who are working in France, and those who have stayed in
China. Despite our infrequent gatherings in recent years and the vast distances between us, our
hearts remain connected, and our friendship endures.

Thank you to the companions who once shared time with me in France. With your compan-
ionship, I never felt lonely.

Thank you to those who have hurt me in the past, for you have not killed me but made me
stronger. In my twenties, encountering you has taught me not to be reckless anymore.

Graduating a PhD is not the end, but a new beginning. I will take the aura and darkness of
the past with me to the next journey full of hope.

With this thesis, I express my gratitude to all the friends, teachers and relatives who have
appeared in my life!

ii



致谢

2020 年 10 月，我刚满二十四岁，正处于心智幼稚与成熟的分水岭。在这个转折点上，我踏上
了巴黎理工学院的征程，开启了一段全新的人生旅程。随着三年半的博士求学生涯逐渐接近
尾声，回首往事，每一个经历都历历在目，定将在我的人生篇章中留下浓墨重彩的一笔。

首先，我要感谢我的导师 Djamal。你不仅在科研道路上为我提供了指导和支持，还教会了我
待人处事的道理。你让我意识到，即使在低谷时期也不能放弃对自己的要求；在我迷失焦虑
时给予我指引；并且毫不吝啬地与我分享你的见解。对于一个初入科研圈的我来说，导师的
每一句话都是新的启示。

感谢我的导师 Rola，是你一步步引领我走上博士研究之路。尽管由于疫情，我们在博士第一
年从未见过面，但你深深理解我的焦虑，始终鼓励我保持信心。在后续的合作中，你从不吝
赞美与安慰，对我的不足也决不含糊。与你的合作让我对科研领域有了更清晰的认识。在几
次深入的交谈中，你热心地给予我安慰和指导，向我分享你的人生经验，使我倍感温暖。

特别感谢我的论文审稿人。感谢您花费宝贵的时间阅读我的文章，以及提出的改进建议。您
对我的工作的认可，我深表感激。

我还要特别感谢 Samir Tohmé 先生、DIGICOSME 项目、SAMOVAR 实验室和 Télécom
SudParis，南巴黎电信学校。是你们为我提供了这个博士课题和研究环境，让我有机会踏上读
博之路。

同时，感谢所有曾审阅过我投稿论文的审稿人，包括但不限于 ICC、WiMob、PIMRC、WCNC、
CICOM 和 Computer Networks。你们提出的改进建议，无论大小，都拓展了我的视野，让我
对研究课题有了更全面的认识。每一次审稿意见都是我进步的动力。

感谢我最亲爱的父母，你们从小给予我充分的关爱和理解，永远是我向前走的动力。感谢我
的双胞胎姐姐，人生有一人如此，夫复何求？此外，感谢我的所有家人，你们让我感受到自
己是被爱的，也让我认识到人生旅途的无限可能。

感谢我的男友，黄炜，你教会了我如何爱自己和爱别人。爱是付出和包容，爱是理解，爱是
改变。爱是亲密，是放松，是快乐，是相互尊重、各有所长、并肩同行。

还要感谢我的两只可爱的猫，可乐和小咪。你们给我的生活带来了无尽的欢乐和温暖。三年的
相处已经让我们成为了一家人，从选择你们的那一刻开始，我们就注定永远相伴，不离不弃。

感谢我已回国工作的、在异国求学的、在法国工作的、以及一直留在国内的朋友们。即使我
们近年少有相聚，即使相隔遥远的距离，但我们心系彼此，友情依旧。

感谢曾经与我在法国一同度过时光的伙伴们，有了你们的陪伴，我从未感到孤独。

最后，我要感谢曾经伤害过我的人，杀不死我的让我更强大。在二十多岁的年纪里，因为遇
到了你们，我已不再轻率。

iii



博士毕业并不是终点，而是新的起点。我将带着过去的光辉和遗憾，踏上下一段充满希望的
旅程。

最后，我要在此论文中向所有在我生命中出现过的朋友、老师和亲人们表示最诚挚的谢意！

iv



Abstract

Lane change maneuvers are a significant contributor to road accidents, demanding effective solu-
tions within vehicular networks. Current Lane Change Assist (LCA) strategies relying solely
on Deep Reinforcement Learning (DRL) are limited by local vehicle information, overlooking a
global view of traffic conditions. To address this, Unmanned Aerial Vehicles (UAVs), or drones,
present a promising extension to vehicular network services due to their mobility, computa-
tional capabilities, and Line-of-Sight (LoS) communication links with road vehicles. This thesis
focuses on developing a safe and efficient LCA maneuver within the context of Drone-Assisted
Vehicular Networks (DAVN).

In the first step, we conduct a literature review on LCA within DAVN, highlighting the potential
of drones to enhance road safety. Existing LCA approaches predominantly rely on local vehicle
information and fail to consider overall traffic states. To address this limitation, we propose
the GL-DEAR: joint global and local drone-assisted lane change platform based on Deep-Q
Network (DQN) with a dynamic reward function, for LCA with drones’ assistance.

The proposed platform consists of three modules: road with random risks and emergency
vehicles; data file acquisition and processing; and real-time lane change decision-making. The
lane change maneuver is based on a Deep Q-Network with dynamic reward functions. Specific-
ally, we adopt the authentic NGSIM dataset-based lane change models for ordinary road vehicles
to recreate real world lane change behaviors in the simulations. Numerical results demonstrate
the platform’s ability to achieve collision-free trips on risky highways with emergency vehicles.

In the second step, we identify a lack of calibration for the global update frequency in Federated
Learning (FL) algorithms and the absence of thorough drone-level processing delay assessment.
To this end, we propose the drone assisted Federated Reinforcement Learning (FRL)-based
LCA framework, DAFL. This framework enables cooperative learning between ego vehicles 2

by applying FL. It includes a client reputation-based global model aggregation algorithm and a
comprehensive analysis of End-to-End (E2E) delay at the drone. Specifically, the global update
frequency is dynamically adjusted according to road safety measurements and drone energy
consumption, yielding efficient results in simulations.

In the third step, we devise the DOT-P algorithm for optimizing drone trajectories in dynamic
vehicular networks. This algorithm aims to balance drone energy consumption and road safety.

2An ego vehicle is a vehicle implementing the proposed algorithm.

v



We provide a comprehensive state-of-the-art review of the existing drone trajectory planning
techniques. Then, based on the vehicle E2E delay modeling and the drone energy consump-
tion modeling in the second step, we train a Offline Reinforcement Learning (ORL) model to
avoid power-consuming online training. Simulation results demonstrate a significant reduction
in drone energy consumption and vehicle E2E delay using the trained model.

In summary, this thesis offers a comprehensive framework for drone-assisted lane change man-
euvers, federated learning, and drone trajectory optimization in vehicular networks, demon-
strating the potential to improve road safety and traffic efficiency.
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Résumé

Cette thèse porte sur le développement d’une manœuvre d’aide au changement de voie (lane
Change Assistance, LCA) sûre et efficace dans le contexte des réseaux de véhicules assistés
par drones (Drone Assisted Vehicular Network, DAVN). En effet, les changements de voie con-
tribuent de manière significative aux accidents de la route, nécessitant des solutions efficaces au
sein des réseaux routiers. Les LCA stratégies actuelles établies sur l’apprentissage par renforce-
ment profond (Deep Reinforcement Learning, DRL) sont limitées par les informations locales sur
les véhicules, négligeant une vue globale, comme des conditions de circulation. Pour résoudre
ce problème, les véhicules aériens sans pilote (Unmanned Aerial Vehicles, UAVs), ou drones,
présentent une extension prometteuse des services de réseau automobile grâce à leur mobilité,
capacités informatiques et liaisons de communication en visibilité directe (Line-if-Sight, LoS)
avec les véhicules routiers.

Dans un premier temps, nous faisons une étude bibliographique sur LCA au sein du DAVN,
mettant en évidence le potentiel des drones pour améliorer la sécurité routière. Les approches
LCA existantes s’appuient principalement sur des informations locales sur les véhicules et ne
prennent pas en compte l’état global du trafic. Afin de réduire cette limitation, nous proposons
le GL-DEAR : joint global and local drone-assisted lane change platform based on Deep-Q
Network (DQN) with a dynamic reward function, for LCA with drones’ assistance.

La plateforme proposée se compose de trois modules : route à risques aléatoires et véhicules
d’urgence ; acquisition et traitement des données ; prise de décision de changement de voie
en temps réel. La manœuvre de changement de voie est basée sur un Deep Q-Network avec
des fonctions de récompense dynamiques. Plus précisément, nous adoptons les modèles de
changement de voie authentiques basés sur l’ensemble de données NGSIM pour les véhicules
routiers ordinaires afin de recréer les comportements de changement de voie du monde réel dans
les simulations. Les résultats numériques démontrent la capacité de la plateforme à réaliser des
trajets sans collision sur des autoroutes à risque avec des véhicules d’urgence.

Dans un deuxième temps, nous identifions un manque de calibrage de la fréquence de mise
à jour globale des algorithmes d’apprentissage fédéré (Federated Learning, FL) et l’absence
d’évaluation approfondie du délai de traitement au niveau du drone. Nous proposons donc
un cadre d’apprentissage par renforcement fédéré (FRL) assisté par drone, DAFL. Ce cadre
permet un apprentissage coopératif entre les véhicules de l’ego en appliquant FL. Il comprend
un algorithme d’agrégation de modèles global basé sur la réputation du client et une analyse
complète du délai de bout en bout (End-to-End, E2E) au niveau du drone. Plus précisément, la
fréquence globale de mise à jour est ajustée dynamiquement en fonction des mesures de sécurité
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routière et de la consommation énergétique des drones, ce qui donne des résultats efficaces dans
les simulations.

Dans la troisième étape, nous concevons l’algorithme DOP-T pour optimiser les trajectoires
des drones dans les réseaux de véhicules dynamiques. Cet algorithme vise à équilibrer la con-
sommation énergétique des drones et la sécurité routière. Nous fournissons un état de l’art
complet des techniques existantes de planification de trajectoire de drones. Ensuite, sur la base
de la modélisation du délai E2E du véhicule et de la modélisation de la consommation d’énergie
du drone. Dans la seconde étape, nous formons un modèle d’apprentissage par renforcement
hors ligne (Offline-Reinforcement Learning, ORL) pour éviter une formation en ligne consom-
matrice d’énergie. Les résultats de la simulation démontrent une réduction significative de la
consommation d’énergie des drones et du délai E2E du véhicule à l’aide du modèle entraîné.

En résumé, cette thèse propose un cadre global pour les manœuvres de changement de voie
assistées par des drones, l’apprentissage fédéré et l’optimisation de la trajectoire des drones dans
les réseaux véhiculaires, démontrant ainsi le potentiel d’amélioration de la sécurité routière et
de l’efficacité du trafic.
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Chapter 1
Introduction

1.1 Motivations
Autonomous vehicles, or self-driving vehicles are able to perform intelligent driving controls
without a human driver. The intelligent decisions are made in real time owing to the high-
performance sensors such as Radar (Radio Detection and Ranging), LiDAR (Light Detection
and Ranging) and infrared camera on the vehicles. Examples of the existing autonomous driving
techniques are Lane Change Assistance (LCA), adaptive cruise control, auto parking assist,
autonomous emergency braking and traffic jam assistant. These techniques enable to improve
the driving experience.

Among various techniques in autonomous vehicle networks, LCA is an important research direc-
tion to tackle. In fact, changing lanes in an unsafe manner is one of the main causes of accidents.
According to the National Highway Traffic Safety Administration (NHTSA), at least 33% of
all crashes happen when vehicles change lanes or veer off the road [1]. It should be pointed
out that lane change is a time-stringent process where the lane change decision should be made
in 3–5 seconds. This issue yields that the driver should perceive and assess the surrounding
environment, analyze the information and make the appropriate lane change decision in a tight
time window. Otherwise, the safety of the driver or the smooth completion of the trip will be
at risk. Thus, the development of a LCA platform, based on real-time data processing, is of
paramount importance.

This thesis tackles the aforementioned problem using Machine Learning (ML) techniques. In
fact, vehicular networks enable information exchange among vehicles, other end devices and
public networks. This data exchange plays a key role in road safety, infotainment and traffic
management devised for Intelligent Transportation Systems (ITS). Due to the ever-increasing
demand of mobile services and the fast development of self-driving technologies, the data volume
required, generated, collected, and transmitted by vehicular networks has seen an exponential
escalation, which is known as big data. As a matter of fact, the efficient analysis of the generated
vehicular data may reveal insightful patterns and correlations that may be exploited to make
anticipated decisions. Thus, big data can provide valuable insights into vehicular networks,
which can be employed to characterize and evaluate the performance of Vehicular Ad-Hoc
Networks (VANETs), and design new protocols with big data intelligence.

On the other hand, drones or Unmanned Aerial Vehicles (UAVs) are considered as an important
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extension of the vehicular networks. With drone’s Line-of-Sight (LoS) links and their dynamic
deployment ability, various tasks can be realized, such as drone assisted safety message broad-
cast, drone assisted ubiquitous internet access, drone assisted transportation surveillance and
drone assisted additional spectrum provision [2]. In this context, we propose to tackle the
enhancement of road active safety in Drone Assisted Vehicular Network (DAVN)s.

Actually, with Vehicle-to-Vehicle (V2V) communications, On-Board-Units (OBUs) may have
access to a limited number of data observations that reflect a limited number of local kinematic
samples. Hence, local datasets are unable to estimate the lane change maneuver at highway
level. However, the drones can assist in gathering samples over the network at the cost of
additional data exchange overheads through Vehicle-to-Drone (V2D) communications. Thus,
the centralization of ML processing at the drone will yield satisfying results owing to the drones.

Indeed, OBUs may be reluctant to share their individual kinematic parameters and Global Po-
sitioning System (GPS) positions with the drone and other OBUs for security purpose and re-
source optimization; however, excessive data exchange may drain resources available for vehicu-
lar communications. This limitation may be fixed with a collaborative learning model that does
not rely on sharing individual data sets. Therefore, Federated Learning (FL) is proposed as a
decentralized learning technique where training datasets are unevenly distributed over learners,
instead of centralizing all the data [3]. FL is one instance of the more general approach of
“bringing the code to the data, instead of the data to the code”and addresses the fundamental
problems of privacy, latency and locality of data.

In the first step, we are motivated by developing a LCA platform for DAVN, called GL-DEAR:
Joint Global and Local Controlled Deep Q-Network with Dynamic Reward Function. This
platform includes a Reinforcement Learning (RL) agent with a dynamic reward function con-
sidering safety, comfort and efficiency perspectives. Based on large-scale traffic information
and the assistance from drones, the platform is able to detect road anomalies and emergency
vehicles, and reduce the vehicle’s total travel time and road collision rate.

Alternatively, mobility modeling is an important pillar in vehicular networks that plays a vital
role in the performance evaluation. In fact, authentic mobility models reflect the movement
patterns of vehicles on the road. They should derive a movement pattern in such a way that the
generated pattern reflects real-world behaviors of vehicles on the road. This leads us to orient our
efforts towards extracting real mobility models from the authentic Next Generation Simulation
Vehicle Trajectories and Supporting Data (NGSIM) Vehicle Trajectories and Supporting Data
[4] to recreate the vehicle mobility on real highways. Through the analysis of the NGSIM
datasets of vehicle mobility, an amount of valuable information can be obtained, such as the
practical mobility model, network connectivity, spatial and temporal density distribution.

It should be pointed out that, the use of battery-powered UAVs greatly relies on the limited
battery life. To this end, researches have been conducted on this topic. Among them, energy
harvesting provides a promising way to realize self-powered UAVs. According to [5], solar energy
harvesting for UAVs mainly relies on photovoltaic cells and can reach watt-scale output power.
Meanwhile, mechanical energy harvesting for UAVs can be further refined to wind-induced
vibration and flapping wing motion whose output power is in the milliwatt scale. Reference [6]
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proves the possibility of harvesting vibration and solar energy in a mini UAV to increase its
endurance without adding significant mass or the need to increase the size of the fuel system.
Experiments using an remote controlled glider aircraft with a 1.8m wing span show that the
solar panels could charge a 170 mAh battery to 14% capacity and the piezoelectric patches
could charge the EH300 4.6 mJ internal capacitor to 70% capacity during a 13-minute flight.

Moreover, in a DAVN, a huge number of vehicle requests will be sent to drones, leading to
non-negligible queuing delay at the drone side. In this context, reducing the queuing delay for
end users, and energy consumption for drones is a challenging task. Consequently, as the second
contribution, we propose a FL algorithm that dynamically adjusts the global update frequency
of the drone. In fact, higher global update frequency leads to more updated lane change model
at the expense of higher communication overhead; while lower global update frequency leads
to lower communication cost but outdated lane change model. Using dynamic adjustments, we
are able to achieve the best trade-off between communication cost and road safety.

In more detail, we perform an accurate mathematical modeling of the energy consumption for
the drones that play the role of central server. Besides, we also conduct a detailed analysis for the
End-to-End (E2E) V2D communication delay based on a M/G/1 priority queue with preemption
at the drone side. Then, a dynamic frequency adaptation framework is proposed, where the
global update frequency is dynamically adjusted according to drone energy consumption and
vehicle communication delay.

In the previous work, we assumed that the drones are statically located. In an attempt to
generalize the study, we propose a Drone Optimal Trajectory Prediction (DOT-P) algorithm
using Offline Reinforcement Learning (ORL) that dynamically deploys drones over the highway.
The goal is to predict the optimal trajectories for the drone in order to reduce drone’s energy
consumption and the E2E communication delay. Specifically, ORL models avoid online training,
which requires long flight for drones and thus huge energy consumption. Simulation results show
that the trained model achieves the two previous goals.

The objectives and contribution of this thesis are detailed in the following section.

1.2 Objectives and contributions
Our thesis workflow and time allocation are presented in figure 1.1: The objectives and tasks
are detailed as follows:

• Objective 1 Data acquisition using drones and data processing. This objective consists
of 3 tasks.
Task 1 Study of the state of the art of DAVN architecture.
Task 2 Clean acquired datasets.
Task 3 Process datasets using dimension reduction techniques.

• Objective 2 Critical real-time LCA using Federated Reinforcement Learning (FRL)
Task 1 Literature survey of lane change maneuver.
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Figure 1.1: Thesis workflow chart and time allocation

Task 2 Proposition of a ML algorithm that efficiently assists the driver to make the lane
change decision.
Task 3 Extraction of an authentic mobility model from NGSIM dataset.
Task 4 Simulation in order to evaluate the performance of the proposed algorithm.
Task 5 Enhancement of the LCA platform with FL.

• Objective 3 Drone optimal trajectory prediction for energy and delay efficient LCA
Task 1 Study of the state of UAV trajectory planning.
Task 2 Design of an ORL algorithm for drone trajectory planning to improve drone energy
consumption and V2D E2E delay.
Task 3 Simulation in order to evaluate the performance of the proposed algorithm.

Our thesis addresses the improvement of road active safety in drone vehicular networks in the
context of delay-stringent lane change services. More specifically, we achieved the following
contributions:

• Contribution 1 - We propose a LCA platform based on Deep Reinforcement Learning
(DRL) for DAVN, GL-DEAR. The DRL agent possesses an comprehensive reward function
considering road safety, travel efficiency and passenger’s comfort perspectives. Specifically,
a part of the reward is dynamically adjusted according to road safety performance.

• Contribution 2 - We introduce drones to the proposed LCA platform where each drone
plays three important roles in the lane change maneuver: 1) it provides global traffic in-
formation to the lane change agent; 2) it dynamically adjusts the collision reward function
of the lane change agent; 3) it performs global control by sending an Urgent Lane Change
Request (ULCR) to the corresponding vehicle.

• Contribution 3 - We propose a FRL architecture in DAVN for LCA, called DAFL:
Drone Assisted Federated Reinforcement Learning. In addition, we provide an accurate
E2E communication delay modeling between the drone server and vehicle client based on
M/G/1 priority queue with preemption, and the drone’s energy consumption.

• Contribution 4 - A dynamic frequency adaptation framework is proposed to achieve the
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optimal trade-off between the road active safety performance and drone energy consump-
tion, based on the derived models

• in the second step - We devise a drone optimal trajectory prediction algorithm based on
ORL, called DOT-P. The algorithm is able to reduce V2D E2E communication delay and
drone energy consumption by dynamically allocating drones over the highway.

1.3 Thesis context
This work is supported by Labex DigiCosme (project ANR11LABEX0045DIGICOSME) oper-
ated by ANR as part of the program Investissement d’Avenir Idex ParisSaclay (ANR11IDEX000302).

The doctoral project is being prepared, in accordance with the general conditions in force at
Télécom SudParis, as part of enrollment in the doctoral program of the Institut Polytechnique
de Paris for the academic years 2020 - 2024. The registered specialty is Informatique, données,
IA in laboratory SAMOVAR.

Thesis director is Djamal ZEGHLACHE with 35% of the supervision proportion. Co-supervisors
are Rola NAJA with 50% supervision proportion, and Samir TOHME with 15% supervision
proportion.
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1.5 Thesis structure
This thesis is structured as follows. In chapter 2, we present the theoretical basis and state-
of-the-art of machine learning techniques including supervised learning, unsupervised learning,
reinforcement learning and FL. Particularly, we discuss FRL, which combines FL and RL.

Chapter 3 is devoted to LCA in DAVN. We first present the DAVN basis and shed the light
on drone’s potential of improving road active safety for vehicular networks. Then, we review
the existing work of LCA maneuver using DRL and other techniques. Specifically, a detailed
comparison table of different DRL-based LCA maneuvers is given. Afterwards, we study the
related work about FL and FRL for DAVN. Based on the literature study, we are able to propose
our LCA platform, GL-DEAR, in chapter 4, and the enhanced version of GL-DEAR using FL,
DAFL, in chapter 5.

Chapter 4 introduces the three modules of the GL-DEAR platform. Then, the extraction of
an authentic lane change model from the NGSIM dataset is explained. Next, the details of our
GL-DEAR platform, which is a Deep Q-Network (DQN) with a dynamic reward function is
highlighted.

The FRL based DAFL algorithm is detailed in chapter 5. Moreover, we provide an accurate
mathematical modeling of drone energy consumption and V2D E2E communication delay based
on M/G/1 queue. With the two models, we are able to define performance parameters to achieve
the best trade-off between delay and energy consumption by dynamically adjusting the global
update frequency of the DAFL.

Based on the mathematical modeling, in chapter 6, we study the drone optimal trajectory
prediction problem. To this end, we first study the state-of-the-art of drone trajectory planning
techniques. Then, we present our DOT-P model based on ORL in order to reduce drone energy
consumption and the vehicle communication delay.

Finally, we conclude the thesis in chapter 7 with future perspectives.
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Chapter 2
Theoretical Basis on Machine Learning

2.1 Introduction
In our thesis, we orient our efforts towards enhancing road active safety by proposing innovative
platforms. These platforms rely on ML techniques. Thus, we found it necessary to dedicate
this chapter to developing ML basic algorithms.

In fact, ML has gained a lot of attention in recent years. It is a branch of Artificial Intelligence
(AI) and computer science which focuses on the use of data and algorithms to imitate the way
that humans learn, gradually improving its accuracy. In this section, some basic ML algorithms
are presented, including supervised learning, unsupervised learning, RL and FL.

Special attention is paid to FL, where an algorithm is trained across multiple decentralized edge
devices without data exchanges. Moreover, we present FRL, where agents cooperate to learn a
global model from the environment, each with their own RL model.

The organisation of this chapter is as follows: section 2.2 and 2.3 present supervised and unsu-
pervised machine learning. Section 2.4 reviews RL, more specifically, DRL. Section 2.5 presents
FL basis, including the original Federated Averaging algorithm, and the two categories of FL.
In addition, we give a brief discussion about FRL in section 2.5.4. Finally, section 2.6 ends the
chapter with a conclusion.

2.2 Supervised Learning
Supervised learning problems can be categorized into regression problems and classification
problems. In a regression problem, the goal is to map continuous input to continuous output,
while a classification problem aims to map discrete input into different categories, which means
a discrete output [7].

A more formal description of supervised learning is: given a training set, learn a hypothesis
function h : X → Y so that h(x) is a “good” predictor for the corresponding value of y.

The accuracy of the hypothesis function is measured by a cost function, averaging the dif-
ference between each pair of prediction h(xi) and actual output yi, as defined in equation 2.1.
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The parameter vector θ of the function hθ(x) is estimated by minimizing the cost so that the
hypothesis function is accurate.

J(θ0, θ1) = 1
2m

m∑
i=1

(ŷi − yi)2 = 1
2m

m∑
i=1

(hθ(xi)− yi)2 (2.1)

The most often used method to estimate the parameters in the hypothesis function is gradient
descent. The algorithm is described as follow:
Repeat until convergence:

θj := θj − α
∂

∂θj

J(θ) (2.2)

where j = 0, 1, ...n represents the feature index number; α is the learning rate.

A second way of minimizing J is called normal equation. It allows us to find the optimal θ

without iteration. The normal equation formula is given in 2.3.
θ = (XT X)−1XT y (2.3)

Some typical supervised learning models are:

• Linear regression: Linear regression is a method that adopts a linear approach to model
the connection between a single numerical response variable and one or more predictor
variables, which are also referred to as dependent and independent variables.

• Polynomial regression: Polynomial regression is a regression analysis technique that mod-
els the non-linear relation between the independent variable, x, and the dependent vari-
able, y [8].

• Logistic Regression (LR): The logistic model, also known as the logit model, is a statist-
ical framework used to represent the likelihood of an event occurring. It is achieved by
expressing the natural logarithm of the odds of the event as a linear combination of one
or more independent variables [9].

• Artificial Neural Network (ANN): ANNs are inspired by the organization of biological
neural networks in animal brains. They consist of interconnected units called artificial
neurons, organized into layers, each capable of specific operations on their inputs. Signals
move from the input layer to the output layer, often passing through multiple intermediary
layers. Typical uses of ANNs are function approximation, regression analysis, classification
and data processing.

• Support Vector Machine (SVM): SVMs find extensive application in both classification
and regression tasks. They demonstrate efficiency in achieving non-linear classification
through a technique known as the kernel trick, which implicitly transforms their inputs
into high-dimensional feature spaces [10].
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2.3 Unsupervised Learning
Unsupervised learning or clustering allows the model to discover undetected patterns and in-
formation on its own. It mainly deals with unlabeled data.

Some typical unsupervised learning models are:

• K-means: K-means clustering is a method of vector quantization aims to partition n
observations into k clusters in which each observation belongs to the cluster with the
nearest cluster centroid, as illustrated in Fig. 2.1. Several use cases for k-means are like
document classifications, delivery store optimization, identifying crime localities, customer
segmentation and insurance fraud detection [11].

Figure 2.1: K-means: clusters and centroids

• Anomaly Detection: Anomaly detection is the process of identifying unexpected items or
events in data sets, which differ from the norm. It is often applied on unlabeled data,
which is known as unsupervised anomaly detection [12].

• Autoencoder: An autoencoder is a type of ANN used to learn efficient data codings in
an unsupervised manner. The aim of an AE is to learn a representation (encoding) for a
set of data, typically for dimension reduction [13]. More concretely, we’ll design a Neural
Network (NN) architecture such that we impose a bottleneck in the network which forces
a compressed knowledge representation of the original input. A simple illustration is in
Fig. 2.2.

2.4 Reinforcement Learning
In this section, we first give a brief introduction of RL. Then, a special attention will be paid
to DQN, which will be used later in designing our proposed lane change maneuver.
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Figure 2.2: Autoencoder architecture. A bottleneck constrains the amount of information that
can traverse the full network, forcing a learned compression of the input data.

RL is a branch of ML, where an agent acts in an environment and tries to learn a policy π to
decide the action a to take, given a state s, while maximizing the cumulative reward function
R.

The RL problem is often modeled as a Markov Decision Process (MDP), which is defined as the
tuple < S, A, T, R, γ >, where S is the set of state, A is the set of actions, T : S×A→ S is the
state transition probability function, R : S × A × S → R is the reward function and γ ∈ [0, 1]
is a discount factor.

In RL, there are two categories of algorithms: value-based and the policy-based. In addition,
there is also an actor-critic algorithm that can be obtained by combining the two.

Among the value-based algorithms, Q-learning is a typical widely-used one. It is also a model-
free algorithm, where the optimal strategy is formulated by selecting the action with the highest
Q value in each state. This strategy maximizes the expected return for all subsequent actions
from the current state. The most important part of Q-learning is the update of Q value.

In more detail, in Q-learning, the agent tries to learn the optimal action value function, Q∗(s, a).
This function is defined as the maximum total reward, also called the Q-value, when being in a
state, s, taking some action, a, and following the optimal policy, π∗.

Q∗(s, a) = R(s, a) + γ max
a

Q(s′, a), (2.4)

If the values of Q(s′, a) are known, the optimal policy is then to select the action a′ that
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maximizes the expected value of Q(s′, a). Further, Q(s′, a) depends on Q(s′′, a) which will then
have a coefficient of γ2. So, the Q-value depends on Q-values of future states as shown here:

Q(s, a)→ γQ(s′, a) + γ2Q(s′′, a) + · · ·+ γnQ(s′···n , a) (2.5)

One can see that γ controls the contribution of rewards in the future.

In practical situations, this is implemented as an update:
Q(St, At)← Q(St, At) + α

[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
, (2.6)

where α is the learning rate.

Mathematically, the state-action value function can be defined as

Qπ(s, a) .= Eπ [Rt|St = s, At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s, At = a

]
(2.7)

In Deep Q-Learning, a NN with weight θ is used as a function approximator of the optimal
value function, i.e. Q(s, a; θ) ≈ Q∗(s, a) is used to approximate the Q-value function. The state
is given as the input and the Q-value of all possible actions is generated as the output [14].

The consists of following steps:

1. Store every past experience in memory

2. The next action is determined by the maximum output of the Q-network

3. The loss function is the mean-squared error of the predicted Q-value and the target Q-
value, Q∗ = Rt+1 + γ max

a
Q(St+1, a) [15].

The network is then trained using Stochastic Gradient Descent (SGD) by minimizing the loss.
The mini-batches with size M of experiences, described by the tuple et = (st, at, rt, st+1), are
drawn from the experience replay memory as indicated in step 1. This is called experience
reply. The loss function at iteration i is defined as,

Li(θi) = EM

[
(r + γ max

a′
Q(s′, a′; θ−

i )−Q(s, a; θi))2
]

(2.8)

Here, θ−
i are the network parameters used to calculate the target at iteration i. In order

to make the learning process more stable, we use two networks with the same architecture
during the training process, one called the prediction network, the other called the target
network. The parameters of the target network are held fixed for a number of iterations and
then periodically updated with the latest version of the trained parameters of the prediction
network. The trade-off between exploration and exploitation is handled by following an ϵ-
greedy policy. This means that a random action is selected with probability ϵ, and otherwise
the action with the highest value is chosen.
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2.5 Federated Learning
The current trend in the usage of ML in vehicular networks focuses on centralized algorithms,
where a powerful learning algorithm, often a NN, is trained on the massive dataset collected
from the edge devices on the vehicles. Once the training is completed, the model parameters
are sent back to the edge devices for prediction purposes, as shown in the left part of Fig. 2.3.

Nevertheless, the size of the generated data is huge when we need to build wider and deeper NN
architectures for successful training. In this case, training a model with data transmission from
the edge devices to the cloud center reliably may be too costly in terms of bandwidth, introduce
unacceptable delays, and infringe user privacy [16]. FL, where each client trains a shared model
with its own data and only communicate the update to a central server, is a promising method
to the raised issues.

Figure 2.3: Left: Model training for ML in a vehicular network; Right: Model training for FL
in a vehicular network

2.5.1 Federated averaging algorithm
The FL algorithm proposed in [17] is a decentralized approach, which consists of training an
algorithm across multiple decentralized edge devices with their local data, without exchanging
them. In other words, it leaves the training data distributed on the mobile devices and learns a
shared model (e.g. a NN) by aggregating locally computed updates, as shown in the right part
in Fig. 2.3. The pseudo code of the algorithm is shown in Algorithm. 1.

One can see that, the main algorithm consists of two parts: the server part and the client part,
as described in Algorithm 1. At the server side, the server initializes the weight w0 of the model
(NN). Then for each communication round, the server chooses some of the clients (at least 1)
with a fraction C and each client chosen will do local update with the ClientUpdate function
simultaneously. Afterwards, clients will send their computation results to the server. Finally,
the server will compute a global updated weight and send it back to clients; At the client side,
for each client, the dataset is split into batches of size B. For each epoch and each batch, the
clients update the local weight once using SGD with learning rate η.

The amount of computation is controlled by three key parameters: C, the fraction of clients that
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Algorithm 1 Federated averaging (FedAvg) algorithm The K clients are indexed by k;
B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:
initialize w0
for each round t = 1, 2, · · · do

m← max(C ·K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k, wt)

end for
wt+1 ←

∑K
k=1

nk

n
wk

t+1
end for

ClientUpdate(k, w): ▷ Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η▽ l(w; b)

end for
end for
return w to server

is chosen to perform computation each round; E, the number of training each client performs
in each round; and B, the local mini-batch size used for the clients’ updates. It can be noticed
that FL is limited by the training time of the slowest participating devices, called stragglers [18].

The authors of [17] show, using experiments, that this approach is robust to the unbalanced
and non-Independent and Identically Distributed (IID) data distribution, which is the common
case in the real world.

2.5.2 Horizontal and vertical federated learning
According to different data features can sample identities, FL and further be divided into two
categories: Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL).

HFL is suitable for situations where the data features of participants overlap more and the
sample identities overlap less, for example, customer data of two banks in different regions.
Since the data features of participants in HFL are aligned, HFL is also called feature-aligned
FL. Figure 2.4 shows the horizontal partition of the data, where multiple rows of samples with
the same characteristics from multiple participants are combined for FL. Consequently, HFL
increases the total number of training samples [19].

VFL is suitable for situations where the participant training sample identities are more over-
lapped while the data features are less overlapped, for example, the common customer data
of banks and e-commerce companies in the same region. As shown in Fig. 2.5 different data
features of common samples from multiple participants are partitioned vertically and combined
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Figure 2.4: Horizontal federated learning [19]

Figure 2.5: Vertical federated learning [19]

for FL. VFL is also called sample-aligned FL since the training samples of participants in VFL
are aligned.

To summarize, the name of HFL comes from the “horizontal division” of training data, that is,
the row (horizontal) division of the data matrix or table. Data in different rows have the same
data characteristics, thus, the data characteristics are aligned; while the name of VFL comes
from the “vertical division” of the training data, that is, the column (vertical) division of the
data matrix or table. Data in different columns have the same sample ID, thus, the training
samples are aligned.

2.5.3 Advantages and disadvantages of federated learning
FL offers several notable advantages and drawbacks in the realm of decentralized machine
learning. On the positive side, it provides an effective data privacy solution by releasing the
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need for client-side data to be transmitted to a central server; thereby addressing user concerns
about data security. Moreover, this approach significantly reduces the computational burden
on the server, as both gradient calculations during the training phase and model inference occur
on the client-side. Additionally, FL results in lower online latency, as model inference happens
locally, eliminating the need for constant server requests and averting delays arising from data
network transfers.

However, there are associated challenges. Unstable client networks can pose difficulties in main-
taining consistent model updates. Furthermore, client data may not be identically distributed,
necessitating server-side techniques like Federated Stochastic Gradient Descent (FederatedSGD)
to address data distribution disparities. Additionally, limited access to real data can make it
challenging to perform accurate offline evaluations of model performance on the server. Lastly,
tuning the model’s architecture, hyperparameters, and data schema must be predefined, making
post-deployment adjustments a complex endeavor.

2.5.4 Federated reinforcement learning
Local models in FRL are trained based on RL models. Consequently, FRL falls into two
categories: Horizontal Federated Reinforcement Learning (HFRL) and Vertical Federated Re-
inforcement Learning (VFRL).

To provide further explanation, a comparison of HFRL and VFRL is shown in Fig. 2.6. In
HFRL, the environment with which each agent interacts is distinct from the others, whereas
the state space and action space of different agents are aligned to address similar issues. Multiple
agents interacting with their own version of the environment can help accelerate training and
improve model performance by sharing experience. Conversely with VFRL, multiple agents
interact with a common global environment, yet each agent is limited in its ability to observe
limited state information within its view. In this particular instance, the vertical arrangement
of observations in VFRL presents a more intricate issue that has not been extensively examined
in the existing literature [20].

2.6 Conclusion
In this chapter, we present a literature review about ML techniques. We start by introducing
common supervised and unsupervised ML techniques. Then, we introduce RL and DRL, where
DQN method is detailed, on which our proposed model is based. Furthermore, we discuss
FL, including the original federated averaging algorithm, different FL categories, as well as the
advantages and disadvantages of FL. Finally, we look into FRL, which is the combination of
RL and FL.

Since our goal is to propose a real-time lane change maneuver, it is necessary to study the state-
of-the-art of the lane change problem in vehicular networks. Thus, in the following chapter, we
provide the bibliographic study on LCA in DAVN.
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Figure 2.6: Comparison of horizontal federated reinforcement learning (HFRL) and vertical
federated reinforcement learning (VFRL)
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Chapter 3
Bibliographic Study for Lane Change As-
sistance in Drone Assisted Vehicular Net-
works

3.1 Introduction
Lane Change Assistance is crucial for road active safety. With drone’s potential to assist
autonomous driving, we believe that DAVN will play a key role in preventing collisions due to
faulty lane change decisions. In this context, the development of a lane change algorithm based
on ML techniques for DAVN is necessary in order to improve the road active safety. Thus, this
chapter sheds the light on the state-of-the-art study performed in LCA related with DAVN.

The rest of this chapter is organised as follows: first, we introduce DAVN architecture, charac-
teristics and services. Then, we review the existing LCA maneuvers based on DRL and other
techniques. Especially, a detailed comparison table of different DRL-based LCA maneuvers are
provided. Afterwards, we exhibit the research studies conducted for FL in DAVN, followed by
a literature study of FRL in vehicular networks. Finally we end this chapter with a conclusion.

3.2 Drone-Assisted Vehicular Network
Drones, or UAVs, equipped with dedicated sensors or communication devices, have been con-
sidered to be an important extension of the vehicular network. This section presents the study
of the DAVN including DAVN architecture, DAVN characteristics, DAVN advantages to the
traditional vehicular networks, and related work.

3.2.1 DAVN architecture
A DAVN consists of vehicles, infrastructures and drones as explained here after [2] and as
illustrated in Fig. 3.1:

• Vehicle Vehicles are embedded with OBUs to communicate with other network elements.
It is to be noted that Vehicle-to-Vehicle (V2V) communication enables data transmission
among vehicles; whereas, Vehicle-to-Infrastructure (V2I) communications handle data
exchange between vehicle and infrastructure.
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• Infrastructure Both RSUs and cellular Base Stations (BSs) are considered as infrastruc-
ture entities in DAVN.

• Drone Two kinds of drones are considered in DAVN: Relying Node (RN) drones and
Remote Radio Access Node (RRAN) drones, as shown in Fig. 3.1. RN drones can be
treated as flying vehicular nodes. They relay data for V2V communications and access
infrastructures in the same way as vehicles. While RRAN drones perform as remote radio
access points that can be dynamically allocated to required positions to assist V2I data
exchanges: vehicles exchange data with drones through the V2D communications and
drones communicate the data to infrastructure through the Drone-to-Infrastructure (D2I)
communications.

Figure 3.1: Drone-Assisted Vehicular Network architecture [2]

3.2.2 Characteristics of DAVN
Drone-Assisted Vehicular Network presents the following characteristics [2]:

1. LoS links Drones flying in the sky have a higher probability to connect ground nodes
and other drones via LoS links, which facilitates highly reliable transmissions. Besides,
drones can adjust their hovering positions to maintain the quality of links.

2. Dynamic deployment ability Drones can also perform as one kind of network infra-
structure allowing ground users to access. They can be dynamically deployed/ re-deployed
according to real-time requirements, which is more cost-efficient than statically fixed cells.

3. Drone swarm networks Benefiting from its high flexibility and rapid provision features,
the drone swarm network is a feasible solution to recover communication, especially for
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scenarios where communication resources are scarce or unavailable, such as post-disaster
environments.

With these characteristics, drones in DAVN can be integrated with classic vehicular network to
improve the connectivity between vehicles, extend coverage of infrastructures, facilitate network
information collection, and provide additional accessing resources for vehicles [21].

3.2.3 DAVN services
By leveraging drones, DAVN provides a portfolio of messages [2]:

• Drone assisted safety message broadcast As flying surveillance nodes, RN drones
keep monitoring traffic conditions through embedded cameras or sensors. When emer-
gency issues are detected or reported by vehicles, the corresponding RN drone directly
broadcasts safety alerts to all vehicles within its coverage, and its neighbor RN drones in
drone swarm networks. By doing so, safety messages can be quickly disseminated over
large areas through fewer hops and more reliable LoS links.

• Drone assisted ubiquitous Internet access RRAN drones provide infrastructures
with mobile extensions to mitigate the dynamic vehicular network topology. The number
and positions of RRAN drones can be computed in such a way that their coverage is
maximised according to dynamic traffic distribution. Shared by multiple infrastructures,
RRAN drones flying among infrastructure coverage gaps can help realize seamless handoff.
Not only to complement coverage issue, drones can also be exploited to adjust capacity
for certain areas on demand, based on the spatial and temporal traffic dynamics.

• Drone assisted transportation surveillance Compared with traditional transporta-
tion surveillance systems consisting of fixed cameras, drone assisted transportation sur-
veillance systems are constituted by both vehicles and drones carrying sensors. Hovering
over roads, drones can collect network information from their unique perspective. Crowd-
sourcing algorithms can be employed to process and combine the data gathered by each
vehicle or drone, then present accurate traffic and network information to vehicular net-
work controllers.

• Drone assisted additional spectrum provision Due to the flexibility and fast de-
ployment features, drone swarm networks are a desirable platform to provide additional
spectrum for vehicular network. When licensed vehicular network spectrum is used up
in a dedicated area, a drone swarm network is dispatched over it, and builds commu-
nications with ubiquitous access points, such as high altitude platforms and satellites.
Vehicles leverage-specific communication interfaces running on additional spectrum to ac-
cess drones, then relay V2V messages, or access ubiquitous access points through drone
swarm networks’ assistance.

3.2.4 Related work
In the literature, different frameworks of drone assisted vehicular networks are proposed. Au-
thors in [2] define the drone assisted vehicular networks, where the key components, the ad-
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vantages and disadvantages are presented. Authors of [22, 23] propose a new framework for
using small UAVs as mobile infrastructure nodes in order to enhance the connectivity between
vehicles. The UAV-vehicles communication simulator, VEINS (Vehicles in Network Simulation),
consisting of the network simulator part and the road traffic model simulator part is presented
in [24]. Different models are executed by an event-based network simulator (OMNeT++) while
interacting with a road traffic simulator, Simulation of Urban MObility (SUMO) [25]. Authors
of [21] tackle the throughput maximization problem with delay constraints in UAV-assisted
VANETs to find the best delivery strategy and select the optimal paths for data delivery, with
consideration of the links transmission rate and the delay constraints for data dissemination.
Authors of [26] propose a software defined space-air-ground integrated network architecture
that supports diverse vehicular services in a seamless, efficient, and cost-effective manner.

3.3 Lane Change Assistance State-of-the-Art
Lane change is among the leading causes of motor vehicle accidents. Thus, it has attracted
attention of road safety stakeholders. Indeed, lane change is a real-time critical maneuver
that requires special treatment from the driver. To be more specific, vehicle driver must pay
careful attention to the leading vehicle on their lane and the surrounding vehicles on the target
lane, and perform proper actions according to the potential adversarial or cooperative reactions
demonstrated by the surrounding vehicles [27]. Therefore, it is of great interest to design and
implement an efficient and safe lane change maneuver for vehicular networks.

For reader’s clarity, “ego vehicle” is an autonomous vehicle that implements the lane change
maneuver, that is to say, the vehicle to be controlled by our designed algorithm. Actually, there
is not necessarily only one ego vehicle. For example, in the case of cooperative learning, several
ego vehicles will work together and implement the designed algorithm.

Among different lane change maneuvers, DRL based ones are widely studied. The reason is
that the lane change scenario is very suitable for DRL, where the agent learns the lane change
behavior by try and trials with the reward feedback. To this end, references [28–36] devoted to
the design of the DRL model with input feature, action space and reward function.

There are also other techniques for lane change maneuver, for example, formulating the lane
change problem as an Optimization Problem (OP) with safety, efficiency and comfort constraints
[40]. References [37–43] aim to achieve a safe and smooth lane change by merging different types
of information. In the following sections, we will analyse the mentioned papers and provide a
comparison table for both lane change decision making using DRL and other techniques.

After study the existing lane change maneuver, we perform a literature study on federated
learning in DAVN in order to couple our drone assisted LCA platform with FL. In fact, references
[44–58] apply FL to the vehicular network to address challenges such as constrained network
coverage, high mobility, and dynamic topology.

In the following sections, we will analyse the mentioned papers in detail.
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3.3.1 Lane change decision making using DRL
It is often the case to model the lane change system as a MDP with different state spaces, action
spaces and reward functions. In [28], a DQN agent is trained with the Deep Deterministic
Policy Gradient (DDPG) algorithm in order to make lane change decisions and avoid collisions.
Moreover, authors take into account the update delay of the remote vehicle. Performance results
show that the agent learns to make successful lane changes with both lateral and longitudinal
control. Nevertheless, the simulation scenario considers a single remote vehicle.

Authors in [30] and [31] train a hierarchical DQN structure to learn both the lane change
decision-making (high-level control) and lane change trajectory planning (low-level control).
The reward function is defined with the ego vehicle’s yaw rate, yaw acceleration and lane
changing time in order to learn a smooth and efficient lane change behavior.

In the architecture proposed in [33], the lane change decision is made by maximizing the ego
car’s acceleration. The input of the trained Convolutional Neural Network (CNN)-based DQN
is a vector of 27 elements, representing the ego vehicle and its 8 neighbors’states. The action
space contains 6 elements: stay in the current lane with 4 different accelerations, or change lane
to the right or to the left.

Authors in [34] propose a DQN based method using grid-form state representation. The longit-
udinal speed is controlled by a low-level rule-based trajectory controller. Whereas, the lateral
lane change decisions are made by a high-level lateral DQN decision-maker. It is noteworthy that
12 interfering vehicles are considered. However, the research study lacks a collision performance
evaluation and a safety guarantee assessment.

Authors in [35] adopt an attention-based DRL to address the interaction with surrounding
vehicles while making lane change decision. The inputs are images extracted from the car’s
front view. The algorithm performance evaluation under different realistic scenarios reveals that
the proposed DRL algorithm is capable of learning both lane change decision and path planning
with 73.5% of successful episodes.

In [36], authors considers the overall traffic efficiency instead of the travel efficiency of an
individual vehicle. A convolutional DQN is trained with the input consisting of the traffic
snapshots.

The following table compares the previous papers according to the following criterion: input
feature (input nature, input size, presence of vehicle velocity and position, information about
road geometry), reward function (consider maximal speed, collision, lane change smoothness
and lane change time), number of surrounding vehicles, model structure, presence of low-level
control, lane change trajectory and simulator used.

3.3.2 Lane change decision making using other techniques
Besides DRL, various research studies use different techniques to achieve safe and efficient lane
change maneuver. Authors of [37] apply Model Predictive Control (MPC), authors of [38]
combine a Kalman filter with rule-based lane change process, while authors of [39] introduce
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Table 3.1: Comparison of the papers on lane change decision making using DRL

Reference [28] [29] [30] [31] [32] [33] [34] [35] [36]

Input feature

Input nature image image vector vector vector vector matrix image matrix
Input size 8 4 6 8 13 27 135 76800 138
Velocity √ √ √ √ √ √ √ √ √

Position/ distance √
×

√ √ √ √ √ √ √

Road × × ×
√

× × ×
√

×

Reward function

Maximized speed √
×

√
×

√ √ √ √ √

Safety/ collision √
× × × ×

√ √ √
×

lane change smoothness ×
√

× × ×
√ √ √ √

lane change time √ √ √
× × × × ×

√

Road geometry Straight Straight Straight Straight Arbitrary Straight Straight Arbitrary Straight
Surrounding vehicle number 1 Arbitrary Arbitrary Arbitrary 6 8 12 Arbitrary Arbitrary

NN used DNN LSTM DNN DNN DNN CNN CNN CNN CNN
Low-level control (angle/ acceleration) × × × × ×

√
×

√
×

lane change trajectory visulization √ √ √
× × × × ×

√

Simulator Airsim highD dataset
Self-built
platform

Self-built
platform

Unknown Unknown
Private
platform

TORCS
Self-built
platform

the noval Graphic Convolution Q-network (GCQ) model. In addition, by integrating different
information, such as vehicle states, road constraints, and human demonstrations, the lane change
performance is further enhanced.

Reference [40] studies the lane change problem in a scenario mixing Connected Autonomous
Vehicles (CAVs) and ordinary vehicles on a highway. The problem is formulated as a Quadratic-
Constrained Quadratic Programming (QCQP) problem that takes into account safety, efficiency,
and comfort. However, the vehicle state is considered stationary while solving the OP. In [37],
a lane change manoeuvre is proposed for lateral and longitudinal control. Firstly, the lane
change decision is derived using a series of conditional judgments, based on the presence of
obstacles ahead, the relative velocity and distance with surrounding vehicles. Afterwards, the
lane change path is generated by an adaptive MPC. According to the simulation results, the
mentioned scheme achieves a satisfactory real-time performance.

Authors of [41] propose an offline risk sensitive control by introducing a subjective risk per-
ception module to the lane change maneuver. In this way, the lane change behaviors are
personalised for different drivers with different driving styles. In [38], the authors propose a
risk assessment prediction for lane change. Specifically, vehicle state is predicted by a Kalman
filter. In additions, the vehicle’s cooperativeness is estimated from the relative deceleration and
the predicted distance between objective vehicle and ego vehicle. As a result, the lane change
time is reduced.

Reference [39] considers the lane change decision-making for ordinary vehicles as a multi-agent
MDP. The authors train a centralised sharing model based on GCQ for all CAVs in order to
maximise the system’s total reward by adopting graph representation of the input feature.
The output of the model is an action set for all CAVs. The lane change agent proposed in [42]
involves human demonstration to train a Double Dueling DQN (D3QN) in order to make the
lane change decision more accurate. The proposed agent is tested on a highway with a ramp
where ego vehicle performs lane changes to go off the ramp. Simulation results show that the
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proposed strategy achieves good safety performance, and exhibits a good target achievement
ability.

In [43], an Observation Adversarial Reinforcement Learning (OARL) approach for robust lane
change decision making is introduced. The authors present the lane change behaviors as a
constrained observation-robust MDP. Meanwhile, a black-box attack based on Bayesian optim-
ization is modeled and implemented in order to simulate the natural observation uncertainties
from sensing and perception system. The experiment results demonstrate that the proposed
scheme can make lane change decisions robustly under observation uncertainties.

The previous mentioned papers are summarized in Table. 3.2. With this analysis, we propose
our LCA platform coordinated with drones in the next chapter. The proposed platform make
lane change decisions based not only on ego vehicle’s local information, but also road’s global
information provided by drones. In addition, the drones hover over the highway will also perform
global lane change control to enhance road safety. More details will be discussed in chapter 4.2.

Table 3.2: Comparison of the papers on lane change decision making using other techniques

Reference Mtehod Simulator Observations
[37] Adaptive MPC Carsim-Simulink Real-time performance

[38]
Kalman filter and rule-

based lane change process
Carsim-Simulink

Risk assement by cooperation
intention

[39]
Graphic Convolution
Q-network (GCQ)

SUMO
The output is an action set for

all CAVs

[40]
QCQP problem with safety,

efficiency & comfort
constraints

MATLAB
The vehicle state is considered
stationary while solving the OP

[41]
Risk Sensitive Control &

Subjective Risk Perception
Real drivers

CARLA

Personalizaed driving style;
vehicle motion controlled by
the expanded bicycle model

[42]
D3QN human
demonstrations

CARLA Tested in an off-ramp scenario

[43] OARL SUMO

Black-box attack with Bayesian
optimization to find the optimal

adversarial observation
perturbations

3.3.3 Our research direction
With the analysis in the previous two sections, we may draw the following conclusions:
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1. The previous cited papers manage the lane change based on local information related to
instantaneous speeds, accelerations and distances. In other words, the literature studies
disregard the global traffic state, i.e. the road vehicular density which highly impacts the
lane change decision-making.

2. The reward function is static and not dynamically adapted to the performance results and
collision ratios.

3. The research studies are established with rule-based models that perform well under pre-
defined operating conditions. These works, however, can fail with presence of risky roads
and emergency vehicles, which requires special consideration in unexpected situations.

Thus, we propose our GL-DEAR platform which addresses the aforementioned issues by co-
operating with drones, which provide global traffic information to the lane change agent and
dynamically adjust lane change agent’s reward function. In addition, the drones further enhance
the road safety by performing global lane change control, where the corresponding drone will
send an ULCR to the vehicle. The details of GL-DEAR platform is presented in chapter 4.

3.4 Federated Learning for Drone Assisted Lane Change
Maneuver

3.4.1 Federated learning related work
Federated machine learning has attracted various research studies. The main problems for
applying FL to vehicular networks are the communication cost and the model accuracy. Au-
thors in [44–48] strive at achieving reliable federated learning with low communication latency.
Papers [45, 48–50] focus on avoiding inefficient local updates that reduce global model’s accur-
acy. Authors in [50–53] apply block-chain method for the security issue in communications.
Papers [54–58] tackle the optimization of the energy consumption in vehicular networks.

In [45], the concept of reputation is introduced as a metric to prevent unreliable clients from per-
forming the data poisoning attack, or unintentionally low-quality data due to energy constraints
or high-quality data. A reliable worker selection scheme is proposed for federated learning tasks
based on this metric. Reference [46] proposes the Communication-Mitigated Federated Learning
(CMFL) algorithm, which excludes irrelevant client-side updates, in order to reduce the commu-
nication overhead and guarantee learning convergence. It provides clients with feedback on the
global trend of model updating. Each client checks to ensure that their update aligns with this
global trend and is relevant enough to model improvement. The simulation result confirms that
CMFL results in a significantly smaller network footprint in comparison to the most advanced
solutions, such as vanilla FL, Gaia, and Federated Multi-Task Learning. In [47], the authors
propose a FedVANET algorithm that incorporates a recursive inner-cluster federated learning
and an inter-cluster update algorithm to reduce communication load, enhance model perform-
ance, accelerate the convergence of the model, and enhance its robustness. Authors of [48]
propose a customized partial flexible federated learning algorithm for vehicular edge comput-
ing. Only a part of the clients are allowed to participate in the updating based on their local
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dataset size. Especially, the central server limits the local upload time in order to aggregate
the asynchronous updates at the same time. The proposed algorithm improves the federated
algorithm by reducing the communication costs and updating in vehicular edge computing.
The authors of [49] propose a selective model aggregation approach based on image quality
and computation capability. A greedy algorithm is used to solve the two-dimensional image-
computation-reward contract-theoretic problem. In [52], the authors propose an asynchronous
advantage actor-critic-based asynchronous federated learning algorithm. This algorithm se-
lects a subset of devices, designs UAVs locations, manages subchannels, and transmits power
resources in order to minimize the FL model execution time and learning accuracy loss.

Reference [58] proposes a joint UAV-coalition and Drone-to-Vehicle (D2V)-cell-distribution
framework. The UAVs serve as a relay node between the vehicles and the FL server. The
introduction of UAVs enhances communication efficiency by reducing communication links and
node failures, while simultaneously safeguarding user data privacy as data is still distributed loc-
ally on local clients. In [59], the knowledge distillation and dynamic weight adjustment methods
are proposed. Knowledge distillation addresses the convergence issue arising from non-identical
distributed data, whereas dynamic weight adjustment addresses the performance decay issue
arising from imbalanced datasets. Furthermore, the clients have different model structures,
and the global model updates only the common part of the model. A blockchain-based de-
centralized federated learning architecture is presented in [60]. To safeguard data training and
contribution verification among UAVs, user privacy protection functions are combined. The
scenario comprises numerous UAVs, task publishers, MEC nodes, base stations, and a consor-
tium blockchain. Specifically, the decentralized network is restricted to only authorized nodes
registered with the certification authority. The optimal strategies of both task publisher and
worker UAVs in the dynamic environment are obtained through a reinforcement learning-based
algorithm, albeit without a comprehensive understanding of precise network parameters.

3.4.2 Federated reinforcement learning related work
In order to cooperate FL with DRL-based lane change maneuver, it is necessary to review related
work on FRL. In our scenario, the lane change agents will be the local clients to learning from
a same environment using their own data, while the drone is the central server to aggregate
a global model. Moreover, the local models and the global model are DQNs with the same
structure.

Indeed, the combination of deep reinforcement learning with federated learning yields federated
deep reinforcement learning as a new computing paradigm, where each user trains a local DQN
and the center trains a general DQN. In each learning iteration, the center sends a policy to
each user. By following this policy, each user performs an action and receives a reward. Each
user then updates her local DQN using the received reward. Also, each user sends her reward
signal back to the center, which updates the general DQN based on these reward signals [61].

In the literature, federated reinforcement learning is widely applied for optimal resource alloca-
tion in edge computing [61–64]. Another application, that is, the huge task processing delay in
edge computing, is tackled [63, 65, 68].
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Reference [61] addresses the trade-off between the optimal resource allocation strategy and
privacy for Internet-of-Things (IoT) edge computing. The authors propose the CFRL-based
resource allocation framework, where each edge host develops a local resource allocation strategy
and shares it with the server. The server formulates a resource division strategy and reserve
resources for each edge host accordingly. Reference [62] considers the situation where bandwidth
of V2I and V2V link and the total amount of edge cloud caches are limited. Then, the bandwidth
and cache joint allocation strategy to minimize the weighted average delay of data acquisition
is studied. An edge cooperative cache algorithm based on DDPG is further developed. In [63],
authors propose a vehicle computing network architecture based on cloud-edge-end collaborative
computing, in which cloud servers, edge servers, service vehicles, and task vehicles themselves
can provide computing services. The computational offloading strategy is found by the M-TSA
algorithm. In addition, task prioritization and computational offloading node prediction are
also considered.

In [64], the authors tackle the task processing efficiency; delay-sensitive and computation-
intensive tasks by the joint optimization of Computation Offloading and Resource Allocation
(CORA) with the objective of minimizing the system cost of processing tasks subject to the
processing delay and transmission rate constraints

In order to meet the computation tasks execution delay constraint, reference [65] proposes an
optimal task partition ratio of three tasks: the local execution, V2V offloading, and multi-vehicle
collaboration. Then, a Multi-Vehicle Intelligent Collaborative Computing strategy (MV-ICCS)
is devised to minimize the total system delay. On the other hand, reference [66] formulates the
multi task allocation problem as a game, where the goal is to achieve higher allocation utility.
To be more specific, the utility consists of task latency, overhead, task transmission model, task
priority and edge node’s capacity.

Reference [67] introduces the Attention Transformer to more effectively address the fusion of
local updates, this approach exhibits significant improvements compared to FedAvg and non-
federated Soft Actor-Critic single-agent methods, including higher episodic rewards. Further-
more, as the number of participating agents increases, the proposed model in this paper demon-
strates greater efficiency in the Meta-World environment, a benefit not observed in traditional
federated learning methods.

Paper [68] proposes the Federated Deep Reinforcement Learning (FDRL) framework, known
as FADE, as a solution to leverage the latency concern due to the dynamic nature of IoT
networks. The proposed approach enables the system to autonomously adapt to changing
network conditions, improving caching efficiency, which proves the potential of applying FRL
for optimizing edge caching in decentralized IoT environments, for improved content delivery
and reduced latency.

Authors of [69] claim that existing literature exhibits limitations such as high energy con-
sumption, communication costs, and latency, particularly when dealing with substantial data
uploads to computational servers. To resolve these issues, the authors propose an innovative
solution that integrates UAVs and introduces a Multiagent Federated Reinforcement Learn-
ing (MAFRL)-based resource allocation framework. This approach formulates the connectivity
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problem as an optimization challenge, transforming it into a MDP and solving it through a
Multi-Agent Reinforcement Learning (MARL)-based resource allocation algorithm. Import-
antly, their approach incorporates a FL model within the context of Multi-UAV-enabled IoMT.
The proposed solution’s effectiveness is evaluated through simulations using the heartbeat data-
set, offering promise for enhancing healthcare systems and patient safety in challenging network
environments.

3.4.3 Our research direction
The majority of the previous mentioned papers pertain to a singular application, namely data
dissemination. Moreover, they tackle the federated machine learning without taking into con-
sideration the calibration of the global update frequency. Another major drawback is the delay
processing assessment at the drone level.

Contrarily, our work brings the focus to three use cases [70]:

1. Lane change assistance: where the lane change maneuver makes efficient and safe lane
change decisions for the ego vehicle in order to surpass a slow vehicle in front or continue
the trip.

2. Emergency vehicles: where the leading vehicles should change lane to give way to the
emergency vehicle.

3. Random road risk prevention: where the ego vehicle should change lane to prevent driving
on the road with potential risks.

When considering real-time lane change assistance use case, decisions should be performed in a
tight time window. The emergency vehicle’s use case induces deployment of vehicle processes
that facilitate the passage of an emergency vehicle and reduces its blocking time. Risk prevention
use case prevents the vehicle from driving in the proximity of a random road risk. The three
cases induce timely dissemination of time-critical safety signals.

Furthermore, we address the time stringent requirement of road safety services by integrating
UAVs’ assistance, i.e. in the context of UAV assisted vehicular networks. In fact, UAV assisted
vehicular networks combine the benefits of drones and vehicular networks to deal with challenges
such as constrained network coverage, high mobility, and dynamic topology. As a result, two
important concerns are raised. Firstly, drone’s energy consumption is a crucial issue that should
be optimized efficiently. More specifically, drone battery life is limited (e.g. 40 minutes [71]) and
should be considered while processing vehicular data. Secondly, the fine tuning of the global
update frequency is essential to the FL.

We propose an dynamic update frequency adaptation framework which learns to achieve the
best trade-off between road active safety provisioning and drone energy consumption. By in-
vestigating road safety performance (i.e. collision rate, the risky and impolite driving time on
the road) and drone energy consumption with different global update frequencies, we are able
to define the thresholds of the update frequency. The details of the proposed DAFL platform
are presented in chapter 5.
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3.5 Conclusion
In this chapter, we exhibit a literature review about lane change in DAVN. First of all, we
introduce the DAVN architecture, the characteristics of DAVN and DAVN services, as well
as related work in DAVN. Then, we conduct a comprehensive state-of-the-art study of LCA
maneuvers and provide a detailed analysis of the papers. To be more specific, we compare LCA
maneuvers using DRL and other techniques. In addition, we study the FRL for drone assisted
lane change maneuver.

Based on these understandings, we found it necessary to propose a LCA maneuver in DAVN,
where drones can provide global information and thus enhance the LCA. As a result, we devise
the GL-DEAR platform, which will be discussed in the next chapter.

Moreover, when applying FL, it is important to consider the global update frequency, which is
essential to the trade-off between drone energy consumption and road safety performance. This
is achieved by our proposed DAFL framework. The aim is to dynamically adjust the global
update frequency to find the best trade-off between drone energy consumption and road safety
performance. The details of DAFL framework will be detailed in chapter 5.
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Chapter 4
Proposed GL-DEAR Platform

4.1 Introduction
Based on the comprehensive literature study in chapter 3, we propose our LCA platform using
DRL approach, called GL-DEAR, which is a joint global and local drone-assisted lane change
platform based on deep-Q network with a dynamic reward function.

In order to achieve a satisfactory lane change performance, the reward function is designed from
safety, comfort and efficiency perspectives. In particular, the weights of the three rewards are
adjusted according to the surrounding traffic condition.

The drones hovering over the highway provide global information (i.e. road vehicular density)
to the ego vehicle and perform global control by 1) computing and sending a dynamic collision
reward to the ego vehicle; 2) sending an ULCR to the ego vehicle when a road risk exists ahead,
or an emergency vehicle behind the ego vehicle is detected.

The proposed lane change platform is tested with the authentic NGSIM dataset. Simulation
results prove that the platform is able to perform safe and efficient lane change on a road prone
to risks and emergency vehicles.

In particular, our study involves risky lanes and emergency vehicles that require a higher priority
level than other vehicles. Consequently, the ego vehicle can acquire an intelligent lane change
behavior even under unexpected scenarios. Moreover, the proposed LCA platform takes into
account the road vehicular density and achieves a dynamic reward function that adapts to the
fluctuating collision ratio. It should be pointed out that the dynamic reward function and the
vehicular density are computed in real-time by the drones hovering over the highway.

Compared to the existing literature, our contributions are four-fold:

1. We provide timely and accurate acquisition of traffic flow information of the overall high-
way with drones’ assistance.

2. We devise a lane change decision-making module that integrates global control by drones
and local control by DEAR RL agent, which guarantees a safe and efficient lane change
with the presence of road risks and emergency vehicles.

3. We design two driving modes for the ego vehicle: speed mode and safety mode, depending
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on the traffic condition around the ego vehicle with the purpose of reducing total travel
time while avoiding collisions [72].

4. We evaluate the performance of the proposed LCA platform, denoted as GL-DEAR with
an authentic dataset, NGSIM, generated on a highway in California [4].

The rest of this chapter is organized as follows: In the second section, we shed the light on our
GL-DEAR LCA platform along with its three modules: Road with emergency vehicles and risks;
Data file acquisition and processing and Real time lane change decision-making. Specifically, in
the data processing module, we compare the model using Principal Component Analysis (PCA)
for input feature dimension reduction and without using PCA. In the third section, we present
our simulation scenario along with numerical results, as well as a detailed performance analysis.
Finally, section four concludes the chapter.

4.2 LCA Platform

4.2.1 LCA modules
Our research strives to achieve an efficient and safe lane change maneuver with three main
modules that operate in tandem, as illustrated in Fig. 4.1.

Figure 4.1: Proposed GL-DEAR LCA platform with three modules: Road with emergency
vehicles and risks; Data file acquisition and processing and Real time lane change decision-
making. The PCA in the dashed box in the data processing module means two data processing
methods: one with PCA for input feature dimension reduction, the other without using PCA
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Module 1 Road with emergency vehicles and risks

We consider a highway prone to road risks and emergency vehicles. Three kinds of vehicles,
namely ego, ordinary, and emergency vehicle move on the highway. Our proposed platform
helps the ego vehicle to learn a safe and efficient lane change maneuver, as shown in Fig.4.1.

• It should be noted that ego vehicle adopts two driving modes: speed mode and safety
mode. Moreover, it switches between both modes according to its neighbor’s number,
nneighbor:

– If nneighbor ≤ nsafe (predefined threshold), enter speed mode.

– If nneighbor > nsafe, enter safety mode.

• Emergency vehicles are ambulances and police cars that have a higher priority than or-
dinary vehicles. More specifically, an ego vehicle should change lane to give way to a
following emergency vehicle.

• Ordinary vehicles move according to the NGSIM dataset. In fact, we consider a real world
scenario that lies on the NGSIM lane change model, trained from the authentic dataset
NGSIM. The training of the NGSIM lane change model is detailed in 4.2.2.

Drones hovering over the highway assist the lane change decision making with the global control
by the following steps:

• At the end of every training epoch, the drone updates and sends the dynamic collision
reward r, as well as the road vehicular density to the ego vehicle.

• As long as the drone detects a road risk ahead (i.e. construction work or car accident),
or an emergency vehicle behind the ego vehicle, it sends an ULCR to the ego vehicle to
force it to change lane. After receiving the ULCR from the drone, the ego vehicle will try
to change lane as soon as possible during the valid time of the ULCR, tULCQ.

Module 2 Data file acquisition and processing

In the pre-lane change phase, data is acquired and collected by the ego vehicle. The collected
data file stores kinematic parameters, i.e. GPS coordinates, velocity and acceleration that are
retrieved by vehicle sensors in addition to the road vehicular density, retrieved by the drones.
Afterwards, data files are trimmed in the pre-training phase, as they may contain some irrelevant
information for lane change decision.

In this module, we propose two data processing functions: one without data feature dimension
reduction, the other with data dimension reduction using PCA and a regression algorithm in
order to remove irrelevant and inefficient data. In fact, PCA is a data reduction ML algorithm
by finding k vectors on which to project the data while minimizing the projection error [73].

The data reduction process in our work contains following steps:

1. Scale the features using Equation. (4.1). In this way, each feature is scaled and translated
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individually such that it is between zero and one, without breaking the sparsity of the
dataset [74].

xstd = (x− xmin)/(xmax − xmin)
xscaled = xstd · (xmax − xmin) + xmin

(4.1)

2. Reduce feature dimension using PCA. The reduced dimension depends on the number of
principle components, n, that we choose. n is chosen by using the explained variance
v, a measure that maps the variance in the original data to the low-dimensional model,
expressed by the eigenvalues λ, i.e.,

vi = λi/
n∑

j=1
λj

Fig. 4.2, 4.3 and 4.4 show the explained variance ratio of each feature accounted for the
whole dataset with 90%, 95% and 99% explained variance. One can see that in order to
keep 99% of the variance of the dataset, the first 39 components should be chosen; to keep
95% (respectively 90%,) of the explained variance, 28 (resp. 19,) components should be
chosen [73]. In the rest of the work, we keep 99% of the explained variance, which leads
to a reduced dimension equals 39, in order to achieve the most accurate learning.

Finally, processed data is fed into the real-time lane change decision-making module. It should
be noticed that both data processing mehods (using PCA and without using PCA) are evaluated
in the simulation results section. More specifically, the performance results without using PCA
is presented in section 4.3.2, while the performance results with PCA is presented in section
4.3.3

Module 3 Real time lane change decision-making

This module integrates the drone’s global control and DEAR’s local control in order to assist
the driver to take the real-time lane change decision at the optimal instant of time. The local
control based on DEAR agent is described in section 4.2.3.

The overall algorithm of GL-DEAR platform is described in Algorithm 2.

4.2.2 Real-world scenario based on NGSIM dataset
As explained previously, we trained a NGSIM lane change model from the authentic dataset
NGSIM for ordinary vehicles. The NGSIM dataset, retrieved by the National Highway Traffic
Safety Administration, includes detailed vehicle trajectory data from 4 different neighborhoods
[4]. In this chapter, we adopt the trajectories on a US101 highway to train the NGSIM lane
change model. These trajectories are spread over a 6-lane highway without crossings, traffic
lights and pedestrians; the lane 6 is a ramp with vehicles coming in and out from the highway.
Our study investigates the trajectories on lanes 1 to 5 for the purpose of preventing the exit
navigation issue.

For readers’ clarity, NGSIM lane change model refers to the authentic model trained from the
NGSIM dataset. On the other hand, DEAR is the DRL-based lane change agent implemented
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Figure 4.2: Explained variance ratio of the features with 90% explained variance

Figure 4.3: Explained variance ratio of the features with 95% explained variance

Figure 4.4: Explained variance ratio of the features with 99% explained variance
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Algorithm 2 Algorithm for GL-DEAR platform
1: Input: E is the number of training epochs, S is the number of steps per epoch, N is the

number of ordinary vehicles on the road, tULCR is the valid time of the ULCR sent by drone,
ag is the global lane change action, al is the local lane change action, and a is the final lane
change decision

2: Initialize t = 0, ag = 0
3: for epoch← 0 to E do
4: for step← 0 to S do
5: for i← 0 to N do
6: Ordinary vehicle i predicts its lane change action ai by NGSIM lane change model
7: end for
8: Ego vehicle computes nneighbor

9: if nneighbor ≥ nsafe then
10: Enter safety mode
11: else
12: Enter speed mode
13: end if
14: Ego vehicle predicts al by DEAR ▷ Local control
15: if risk or emergency vehicle detected by the drone then ▷ Global control
16: t = t + 1
17: if t ≤ tULCR then
18: ag = {1, 2} according to ego vehicle’s current lane
19: else
20: t = 0
21: ag = 0
22: end if
23: end if
24: if ag == al then
25: a = ag

26: else
27: a = max(ag, al)
28: end if
29: Perform lane change for all vehicles
30: end for
31: end for
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in the ego vehicle. Both models will be detailed in the following sections. This subsection is
dedicated to the lane change model for ordinary vehicles.

Machine learning model applied to NGSIM dataset

In this thesis, we assume that ordinary vehicles adopt the NGSIM lane change model: these
vehicles are denoted as NGSIM vehicles in the NGSIM training. In this context, two questions
arise: which kinematic parameters in the dataset are most relevant to lane change decision-
making, and which model structure should be adopted. Existing literature has addressed these
highlighted issues.

In [75], authors take 40 observation frames of each trajectory as the input for the decision
stage. Then, detailed data processing is performed in order to achieve better classification
accuracy. In [76], the start of a lane change execution process is defined as the time when the
vehicle’s lateral position starts to change continuously in one direction. Then, the authors adopt
the Symmetric Exponential Moving Average algorithm to smooth the peak values during the
processing phase. Authors in [77] provide a comprehensive data analysis, based on the velocity
differences between the vehicle to change lane and its surrounding vehicles, as well as the gap
between them. Afterwards, four lane change models are trained based on the new dataset,
namely Logistic Regression, Adaptive Boosting, Extreme Gradient Boosting (XGBoost) and
Advanced XGBoost. According to the performance results, the advanced version of the XGBoost
model achieved the highest accuracy of 98.9%.

Based on this survey study, we adopt the XGBoost machine learning model that tackles two
main features: the surrounding vehicles’ velocity and the vehicles’ separating distance.

NGSIM dataset features

We extract 9 features from the dataset, (v0, v1, v2, v3, v4, y1, y2, y3, y4), where:

• v0 is the current velocity of the NGSIM vehicle.

• vi; i = 1,2,3,4 refers to the current velocity of the current lane leading vehicle (respectively
the current lane following vehicle, resp. the target lane leading vehicle, resp. the target
lane following vehicle).

• yi; i = 1,2,3,4 denotes the distance between the NGSIM vehicle and the 4 neighbors (the
leaders and followers in the current and target lanes).

Training and testing for the NGSIM lane change model

We adopt a classifier based on the XGBoost algorithm that is trained with previously obtained
training set and labels [77]. XGBoost is an ensemble learning algorithm meaning that it com-
bines the results of many models, called base learners (i.e. Decision Trees) to make a prediction.
We apply the grid-search method with the aim of finding the optimal parameters for the XG-
Boost model. As a result, the optimal classifier achieves the testing accuracy of 98%, which is
adopted by ordinary vehicles to produce realistic lane change behaviors.
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4.2.3 DEAR for the ego vehicle
This subsection is dedicated to the DQN lane change agent implemented on the ego vehicle.

State space

The agent to be trained is a three-layer DQN with 64, 128, 64 hidden nodes on the first, second,
and the third hidden layer. The output is the lane change decision. The state space at time step
j consists of 48 kinematic parameters of ego vehicle and its 6 possible neighbors, namely the
leader, left leader, right leader, follower, left follower and right leader, as illustrated in Fig. 4.5.
The observation can be expressed as

o[j] = {oego[j], o1[j], · · · , o6[j]} , where:

• oego[j] = {lrisk[j], xego[j], yego[j], vego[j], aego[j], lego[j]} is the set of ego vehicle parameters.
This set consists of the risk label of current lane lrisk, (0 refers to no risk detection, 1
refers to risk detection), horizontal position x, vertical position y, longitudinal speed v,
acceleration a, and current lane id l at time j.

• oi[j] = {xi[j], yi[j], vi[j], ai[j], li[j], di[j], pi[j]; i ∈ [0, 6]} consists of 7 parameters of the i-th
neighbor, representing the horizontal position x, vertical position y, longitudinal speed v,
acceleration a, current lane id l, distance to the ego vehicle d, and vehicle priority p (0 for
normal vehicles and 1 for emergency vehicles such as ambulance and police car) at time
j.

Figure 4.5: Ego vehicle surrounded by six neighbors, trying to change lane to the desired
position.

Action space

The action space is defined as a = {0, 1, 2} where 0 refers to staying in the current lane, 1
indicates performing a lane change to the right and 2 denotes performing a lane change to the
left.
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Reward function

The reward function is designed from three different perspectives: comfort (avoid hard brakes
and sharp accelerations), efficiency (reduce travel time), and safety (avoid collisions and poten-
tial risks) [78]. Consequently, the total reward is the weighted sum of the three rewards:

R = wcomfRcomf + weffReff + wsafeRsafe (4.2)

where Rcomf is the comfort reward, Reff the efficiency reward, and Rsafe the safety reward,
wcomf (, resp weff , wsafe) is the coefficient controlling the comfort weight (, resp efficiency
weight, safety weight).

• Comfort reward: The comfort reward is negatively correlated to the fluctuation of accel-
eration, as shown in (4.3).

Rcomf = −ȧ2
x (4.3)

ȧx is the acceleration jitter computed from two adjacent steps.

• Efficiency reward: The efficiency reward consists of two rewards, speed reward Rv and
lane change reward Rchange, as indicated in the following equation.

Reff = Rv + Rchange (4.4)

The speed reward, Rv is defined as Rv = −|vmax− v| such that the closer the speed to the
maximum allowed speed is, the higher the reward is. The lane change reward, Rchange is
defined as (4.5), where α is a constant, so as to penalize the lane change agent each time
a lane change occurs.

Rchange =

 −α, if change lane
α, if stay in lane

(4.5)

• Safety reward: The safety reward is the sum of collision reward Rcolli, vehicular density
reward Rden, risky reward Rrisk, and blocking reward Rblock as follows:

Rsafe = Rcolli + Rden + Rrisk + Rblock (4.6)

The collision reward Rcolli = r is a dynamic value computed by the drone processor
and sent to the ego vehicle periodically. At the end of an epoch, the drone calibrates r

according to the following process.

– Whenever a collision occurs, r is decreased aiming to penalize the collision.

– In case no collision occurs during a certain time window, r is increased with the aim
of encouraging the agent performing lane change.

The density reward Rden, is negatively related to the number of vehicles on the road:
Rden = −nv, where nv is the number of vehicles. In fact, the higher the vehicular density
is, the higher the risk of collision is at lane change and the lower the reward function is. It
is noteworthy that the traffic density is computed by the drone when collecting the Hello
packets sent by vehicles.
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Figure 4.6: 4-km circular highway with V2D and D2E communications. Ego vehicle in yellow,
ordinary vehicles in green.

The risky reward Rrisk, (respectively the blocking reward Rblock) is inversely associated
with the total time of the ego vehicle driving on the risky lane (respectively in front of an
emergency vehicle).

4.3 Simulation and Performance Results

4.3.1 Simulation setup
We conduct extensive simulation batches with SUMO [25] in order to test the performance of
our proposed LCA platform. The RL agent is implemented by the Gym module in Python [79].
As shown in Fig. 4.6, a 4 km circular highway where ego vehicle tries to perform a collision-
less lane change is considered. Ordinary vehicles adopt the NGSIM lane change model, which
has been detailed in section 4.2.2. Four drones are positioned above the highway, each with
a communication range of 1km [2]. They communicate with vehicles over V2D links and are
responsible to calculate the traffic density in their vicinity. Additionally, they compute an
adaptive parameter r and disseminate it to the ego vehicle over the Drone-to-Ego (D2E) link.

Vehicle mobility model Vehicles move according to the Krauss mobility model [80] with the
maximum velocity of 100 km/h. In order to make the scenario more realistic, a small number
of vehicles are set to be aggressive with rude behaviors, such as staying in the leftmost lane for
a long time or exceeding the speed limit. Furthermore, some other vehicles are considered as
emergency vehicles that force in front vehicles to trigger lane change.
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Risk model At the start of each epoch, a random risk, such as a car accident or construction
works in front of the ego vehicle is detected. The risk is evenly distributed between the three
lanes and occurs one at a time. When a risk is detected, the corresponding lane is deemed
“risky” and the ego vehicle should consider changing lanes to avoid driving on the risky lane.

In each simulation step, the agent predicts the next action with ego vehicle’s current state
retrieved by the Traffic Control Interface (TraCI) of SUMO [93]. Then, the ego vehicle updates
its state and computes the reward according to (4.2). The tuple (action, state, reward) is stored
in the replay buffer. The details of the performance analysis are provided in the following
section.

4.3.2 Performance of GL-DEAR platform without using PCA in
Module 2

Baseline models

We compare our GL-DEAR platform to the following baseline models:

• K-Nearest Neighbors (KNN): KNN is a non-parametric supervised machine learning model
that uses proximity to classify or predict grouping of individual data points.

• Deep Neural Network (DNN): DNN is an artificial neural network with multiple layers
between the input and output layers. It that can model complex non-linear relationships.

• LC2013: LC2013 is the default lane change model in SUMO which discriminates 4 kinds
of lane change: (1) strategic lane change to continue the trip, (2) cooperative lane change
to allow others to change, (3) speed gain lane change which allows for faster speed, and
(4) obligation to drive on the right for emergency such as when an ambulance or police
car pass by [25].

• Policy Gradient (PG): PG is a reinforcement learning algorithm. It increases or decreases
the probability of taking an action based on the reward obtained. The reward function is
described in (4.2).

• DEAR: It is a version of GL-DEAR that does not incorporate global control nor the two
driving modes [72].

It is to be noted that the KNN model adopts the default structure by scikit-learn, and the DNN
model consists of three hidden layers of size 64, 128, 64 [74]. In addition, the two models are
trained with a dataset generated with the same settings as GL-DEAR. As a result, the testing
accuracy of the KNN and DNN classifier is 94.2%, 93.1%.

Performance analysis

We compute several performance parameters, namely: collision number, average speed, number
of lane change requests (LC requests), time spent in risky lanes (Risky time, tr), and time
spent in front of an emergency vehicle and thus impairing its passage (Blocking time, tb) during
simulation. Table 4.1, 4.2 and 4.3 show the performance of the 5 models tested with sparse (50
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vehicles), medium (150 vehicles) and dense (250 vehicles) traffic density. Detailed analysis will
be provided in the following paragraphs.

Collision number The primary objective for this research is to reduce fatalities caused by
accident-related lane changes, which makes the collision number the most critical performance
parameter. According to Tables 4.1, 4.2 and 4.3, all of the models succeed to avoid collisions
in sparse, medium, and dense traffic scenarios. But one can see that KNN, DNN and LC2013
induce much lower average lane change numbers than PG, GL-DEAR and DEAR in sparse and
medium scenarios. Given this, we found it important to investigate the number of LC requests.

Number of lane change requests The number of LC requests indicates how differently
machine learning and reinforcement learning agents behave. The fact that KNN and DNN
achieve fewer LC requests than PG, GL-DEAR and DEAR implies that KNN and DNN are less
likely to allow lane changes, even when there is a risk or an emergency vehicle around. On the
contrary, PG and GL-DEAR reinforcement learning agents attempt to achieve higher reward by
interacting with the risky lanes, ambulances, and surrounding vehicles; which leads the agents
to take more lane changes.

One can see that the LC requests number of LC2013 has increased dramatically in the dense
scenario. This is expected because the LC2013 model implements cooperative lane change,
which forces the ego vehicle to change lane and give way to other vehicles, thus larger LC
requests number in dense traffic.

Average speed One of the reasons for lane change is overtaking a slow vehicle in front so as
to obtain higher speed and reduce the total travel time. This leads us to compute the average
speed of the ego vehicle during each test episode. As it can be noticed from Tables 4.1, 4.2,
and 4.3, GL-DEAR achieves higher average speed than KNN and DNN in sparse, medium, and
dense scenarios. When compared with DEAR, LC2013 and PG, although the average speed
of GL-DEAR is lower than the three models, the performance from the safe perspective, i.e.
the risky time and blocking time is greatly improved. The reason is that, in GL-DEAR, the
frequent change between safety mode and speed mode tunes the trade-off between safety and
travel efficiency. The agent learns to increase the speed under the premise of ensuring safety. It
should be pointed out that the average speed of GL-DEAR has a decrease of 9.8%, 26.6% and
24% when compared to DEAR in sparse, medium and dense traffic scenarios, while the risky
time and blocking time are reduced by 16.1%, 27.1%; 29.4%, 28.4%; and 59.3%, 28.8% for the
three scenarios.

Risky time (tr) We introduce risky time in order to evaluate the agent’s performance with
road prone to risks. According to Tables 4.1, 4.2, and 4.3, GL-DEAR achieves the shortest risky
time compared to the other models in sparse, medium, and dense traffic. Indeed, our model
takes into consideration the risky time in the reward function. Consequently, the agent will
adapt its behavior in the presence of a risky lane and thus forces the driver to change the lane
near an accident or construction works. However, even trained with the same reward function,
PG agent has much longer risky time than GL-DEAR while achieving higher average speed.

Proposed GL-DEAR Platform 40



The reason is that GL-DEAR changes between the two driving modes, trying to optimise the
trade-off between safety and efficiency. However, PG agent decides to make more effort to gain
higher average speed to increase the total reward.

Blocking time (tb) The time spent in front of an emergency vehicle is correlated with the
driver’s cooperation willingness. The higher the cooperation willingness is, the sooner the driver
will change lane to give way. As pointed out by Tables 4.1, 4.2, and 4.3, GL-DEAR outperforms
KNN, LC2013 and DEAR in the three scenarios owing to Rblock included in the reward function.
Consequently, the agent learns to adjust its behavior when confronted with ambulances, and
thus gives way to emergency vehicles, regardless of traffic density. Since KNN and DNN tends to
stay in one lane during the whole trajectory, the blocking time will increase dramatically when
the traffic density increases, as there will be more emergency vehicles behind the ego vehicle.

Table 4.1: Models performance tested with sparse traffic

Model KNN DNN LC2013 PG DEAR GL-DEAR
Collision Number 0 0 0 0 0 0

LC Request 0.6 23 31.5 544 353.3 477
Avg Speed (km/h) 29.9 46.3 60.9 60.8 65 58.6

tr (s) 26.1 22.8 14.4 19 5.6 4.7
tb (s) 83.3 22.8 66.4 100.4 68.7 50.1

Table 4.2: Models performance tested with medium traffic

Model KNN DNN LC2013 PG DEAR GL-DEAR
Collision Number 0 0 0 0 0 0

LC Request 69 34.7 44.2 782.5 284.3 516
Avg Speed (km/h) 33.8 47.3 60 61.6 67.1 53

tr (s) 29.1 29.6 25.1 46 10.9 7.7
tb (s) 131.6 66 166.8 172 116 83

Table 4.3: Models performance tested with dense traffic

Model KNN DNN LC2013 PG DEAR GL-DEAR
Collision Number 0 0 0 0 0 0

LC Request 44.3 65.5 202.2 717 296.8 466
Avg Speed (km/h) 44 47.1 56.5 55.4 65 49.4

tr (s) 46.2 38.7 20.7 26.4 19.9 8.1
tb (s) 248.2 178.3 82 315.6 106.5 75.8

Impact of simulation parameters

In this section, we compare the performance with different parameter settings, namely nsafe,
wcomf , weff and wsafe. Fig. 4.7 shows the evaluation of wsafe when ego vehicle changes between
the safety mode and the speed mode. In the simulation, wcomf , weff , and wsafe are set to 1,
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1, 3 in the safety mode, and 1, 1, 1 in the speed mode. It can be observed that, with larger
nsafe, wsafe less becomes 3. On the other hand, with higher traffic density, wsafe becomes 3
more often.

As a matter of fact, these three weights are tuned by nsafe so as to recognize the trade off
between the travel efficiency and safety. A higher wsafe than wcomf and weff means higher
penalties for collisions. Consequently, the model learns to adopt very conservative behavior
even at the risk of being unable to achieve the desired speed. On the other hand, When wcomf

and weff are tuned as the same importance as wsafe, all of the three rewards dominate. This
setting will encourage the vehicle to make lane changes to reach destination as fast as possible
while considering safety [39].

Figure 4.7: Evaluation of wsafe with different values of nsafe

Table. 4.4 shows the performance of GL-DEAR platform with different nsafe in different traffic
densities. As one can find out that the best trade-off between travel efficiency and safety is
achieved when nsafe = 3.

Table 4.4: Performance of GL-DEAR with different nsafe

Vehicle Density Sparse Medium Dense
nsafe 1 3 5 1 3 5 1 3 5

Avg Speed (km/h) 56 58.6 60.7 52.5 53 55.3 45.9 49.4 49.6
tr (s) 5.2 4.7 18.5 41.7 7.7 13.8 5.6 8.1 9.2
tb (s) 47.3 50.1 64.4 65.6 83 90.9 94.4 75.8 85.9
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4.3.3 Performance of GL-DEAR platform with PCA in Module 2

Baseline models

Baseline models are the same as described in section 4.3.2 with Logistic Regression (LR), a
supervised machine learning algorithm. It uses a logistic function to model the dependent vari-
ables. The LR model is also built with the scikit-learn package and the classification accuracy
is 96%.

Performance analysis

We compute several performance parameters, namely: collision number, average speed, number
of lane change requests (LC requests), time driving in risky lanes (Risky time, tr), and time
spent in front of an emergency vehicle (Blocking time, tb) during simulation. Table 4.5, 4.6
and 4.7 show the performance of the 6 models tested with sparse (50 vehicles), medium (150
vehicles) and dense (250 vehicles) traffic densities [72].

Collision number The primary objective for this research is to reduce fatalities caused by
accident-related lane changes, which makes the collision number the most important perform-
ance parameter. According to Tables. 4.5, 4.6 and 4.7, GL-DEAR, PG, KNN and DNN succeed
to avoid collisions in sparse, medium, and dense traffic scenarios. But one can see that KNN
and DNN induce much lower average lane change numbers than GL-DEAR in all of the three
scenarios. It should be pointed out that a collision-less agent is solely important when lane
changes occur. Given this, we found it crucial to investigate the number of LC requests.

Number of lane change requests As a matter of fact, the number of LC requests indicates
how differently machine learning and reinforcement learning agents behave. The fact that KNN,
DNN and LR agents achieve fewer LC requests than GL-DEAR, DEAR and PG implies that
KNN, DNN and LR agents are less likely to allow lane changes, even when there is a risky
lane or an emergency vehicle behind. On the contrary, GL-DEAR reinforcement learning agent
attempts to learn a safe and efficient lane change maneuver by interacting with the complex
environment with its surrounding neighbors, risky lanes and emergency vehicles; which leads to
a high number of lane changes.

Average speed The most common reason for changing lanes is to overtake a slower vehicle
in order to increase speed and reduce total travel time. Thus, we compute the average speed
of the ego vehicle during each testing simulation. As it can be noticed from Tables. 4.5, 4.6,
and 4.7, GL-DEAR achieves higher average speed than KNN and LR in sparse, and medium
scenarios. When compared with DEAR and PG, although the average speed of GL-DEAR is
lower than the two models, the performance from the safe perspective, i.e. the risky time and
blocking time is greatly improved. The reason is that the frequent change between safety mode
and speed mode tunes the trade-off between safety and travel efficiency. The agent learns to
increase the speed under the premise of ensuring safety.
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Risky time (tr) We introduce risky time in order to evaluate the agent’s performance with
roads prone to risks. According to Tables. 4.5, 4.6, and 4.7, GL-DEAR achieves the shortest
risky time compared to the other models in all of the three traffic scenarios. In fact, the reward
function of GL-DEAR includes a reward related to the risky time. Consequently, the agent will
learn to perform timely lane change in the presence of potential road risks.

Blocking time (tb) As a matter of fact, the blocking time reflects the driver’s cooperation
willingness with other vehicles, specifically emergency vehicles. A driver with high cooperation
willingness will give way at once when an urgent lane change demand from the following vehicles
arises. As shown in Tables. 4.5, 4.6, and 4.7, GL-DEAR outperforms DEAR, PG, KNN and
DNN in the three scenarios owing to Rblock included in the reward function. As a result, the
agent can adapt its behavior and gives way when confronted with emergency vehicles, regardless
of traffic density.

Table 4.5: Models performance tested with sparse traffic

Model KNN DNN LR PG DEAR GL-DEAR
Collision Number 0 0 2 0 0 0

LC Request 2.25 0.8 5 581.3 75 604
Avg Speed (km/h) 56.6 64.9 48.6 61.3 76 57.7

tr (s) 82.6 34.9 74.5 19.1 46 13
tb (s) 248.6 768.3 0.4 191.9 267.8 91.2

Table 4.6: Models performance tested with medium traffic

Model KNN DNN LR PG DEAR GL-DEAR
Collision Number 0 0 4 0 3 0

LC Request 0.6 1 7 858.6 88 534.5
Avg Speed (km/h) 48.7 57.6 46 61.1 67.9 54

tr (s) 51.5 85.4 44.3 87.3 11.1 8.3
tb (s) 483.4 895.5 71.1 332.1 569.2 83.2

Table 4.7: Models performance tested with dense traffic

Model KNN DNN LR PG DEAR GL-DEAR
Collision Number 0 4 8 0 8 0

LC Request 1.5 22 67 749 158.8 641.6
Avg Speed (km/h) 50.5 54 42.8 55.9 61.1 49.3

tr (s) 44 59.5 116 13.2 74.3 7.12
tb (s) 620.4 670 5.6 443.4 492 229.5

Compared with GL-DEAR without using PCA

With previous performance results, we found that compared with using PCA technique, the
GL-DEAR performs better without using PCA. In fact, dimension reduction is applied when
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the original high-dimensional space is filled with redundant and noisy information, leading to er-
rors in practical applications and hindering accuracy. In this case, dimension reduction extracts
the core data structure, reducing errors stemming from redundancy and noise. This not only
enhances accuracy but also simplifies calculations and aids visualization, while fundamentally
separating valuable information from the superfluous. However, in our case, the input con-
sists of vehicle kinematic parameters collected by the ego vehicle, which is less redundant and
noised. Consequently, applying PCA leads to losing informative training data and thus reduced
performance.

4.3.4 Conclusion for the performance analysis
At this stage, we may draw the following conclusions for the GL-DEAR platform:

• According to the previous analysis, the drone-assisted GL-DEAR platform achieves satis-
factory performance under testing scenarios with the authentic NGSIM dataset. Indeed,
the vehicle density computed by drones highly impacts the reward function, assigning a
negative penalty for sparse, medium, and heavy traffic distributions. This fact is demon-
strated by the higher performance of GL-DEAR compared to other models. GL-DEAR
successfully avoids collisions while taking into account the perspectives of safety, comfort,
and efficiency.

• When compared to PG and DEAR, the integration of the global control and the two
driving modes achieves huge improvement in the safety perspective.

• Despite the presence of potential risks and emergency vehicles, GL-DEAR agent can learn
and adapt to the complex environment and achieve collision-less lane changes.

4.4 Conclusion
In this chapter, we present our proposed GL-DEAR, a drone-assisted collision-less LCA platform
based on DRL approach. Specifically, GL-DEAR incorporates drones to collect and process
vehicular traffic data. Further, GL-DEAR assists the driver in taking the lane change decision at
the optimal instant of time with a comprehensive reward function that takes into consideration
road safety, travel efficiency, and passenger’s comfort. The performance is further enhanced
by the global control of the drones and the two driving modes possessed by ego vehicle. In
addition, we evaluate GL-DEAR’s performance in a real-world scenario with an authentic
dataset, NGSIM. The simulation results prove that GL-DEAR successfully achieve collision-less
trips on a highway prone to risks and emergency vehicles.

In the next chapter, we apply FL to address the real-time stringent requirements of the lane
change problem: drones will play the role of a central server that aggregates local parameters
and road vehicles are clients that train local models. Particularly, each local model is based on
the GL-DEAR model.
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Chapter 5
Proposed DAFL Algorithm

5.1 Introduction
Based on the literature study in section 3.4, this chapter sheds the light on road active safety
measurements using FL implemented in UAV assisted vehicular networks. Despite the great
potential of deploying high-performance drones, drone battery life is a major concern, on one
hand. On the other hand, road active safety is a critical real-time process that should be tackled
in a tight time window in vehicular networks. To meet the mentioned issues, we adopt FL on
the local vehicles, sending local updates to drone servers.

In order to select efficient clients, we introduce the concept of “reputation” for each client. To
be more specific, we compute the reputation by client’s local training reward, and the cosine
similarity between its local update and the global update.

Moreover, a dynamic frequency adaptation framework is proposed to achieve the optimal trade-
off between the road safety performance and drone energy consumption. The thresholds for
the update frequency are calibrated according to road safety measurements (i.e., collision rate,
risky and impolite driving time on the road) and drone energy consumption. Additionally,
an accurate mathematical modeling based on M/G/1 multi-class preemptive queuing model is
conducted in order to access the queuing time at the drone.

Compared to the existing work, our contributions are three-fold :

• We propose a drone-assisted federated deep reinforcement learning framework, DAFL, for
vehicular network that takes into account road random risks and emergency vehicles.

• We propose a global model aggregation algorithm based on client’s reputation. The latter
is computed from the client’s local training reward and the cosine similarity between the
local update and the global update.

• We orient our efforts towards the communication delay analysis for three use cases (LCA,
emergency vehicles, random road risk prevention) in vehicular networks. We perform a
mathematical analysis using M/G/1 queue that evaluates vehicles delay and drone energy
consumption.

• We elaborate an adaptive framework that tunes federated machine learning global up-
date frequency according to road active safety performance parameters. This leads to an
optimal trade-off between safety parameters and energy consumption.
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Figure 5.1: DAFL framework

The rest of the chapter is organized as followed: section 5.2 introduces the proposed algorithm,
DAFL; section 5.3 presents the mathematical analysis of the E2E communication delay based
on queuing theory; section 5.4 details the modeling of the drone energy consumption; section
5.5 shows the simulation results. Section 5.6 concludes the chapter with a discussion.

5.2 DAFL framework
Our proposed innovative DAFL framework trains a global lane change model that is aggregated
from local vehicles in order to make safe and efficient lane change decisions. It is an enhanced
version of GL-DEAR depicted in chapter 4. In fact, it integrates FL for the real time requirement
and security issues.

The DAFL framework consists of 3 modules as illustrated in Fig. 5.1 and is explained in the
following sections.

5.2.1 Module 1 Road with random risk and emergency vehicles
The first module of DAFL framework consists of three types of vehicles, i.e. ego vehicles,
ordinary vehicles and emergency vehicles, where the ego vehicles are FL local clients and train
local DRL models based on their own observations. In addition, drones play the role of central
server in FL in addition to the global control by sending ULCRs, denoted by the red arrow from
module 1 to module 3.
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Figure 5.2: Step 1 of the DAFL algorithm: the local model training and uploading step

5.2.2 Module 2 DAFL module
Module 2 consists of the DAFL algorithm that manipulate the drone (central server) and selected
vehicles (clients). Both the local model and the global model are DQNs with the same structure.
The Federated Learning Global Update (FLGU) is the global model weights sent to clients at
the end of each communication round. In the following sections, the DAFL algorithm, and the
training for local DQNs will be detailed.

DAFL algorithm for drone server

As illustrated in Fig. 5.2 and 5.3, the DAFL consists of two main steps for each communication
round: local model training and uploading, and global model aggregation and broadcasting.

At the beginning of every training simulation, the drone server first initializes the global model
with w0. Then, it selects a subset St from K clients to perform local training. Each selected
client performs a number of local updates before sending the tuple (wt

k, rt
k) to the server; Where

wt
k and rt

k denote the local update and the learning reward of the k − th client at the t −
th communication round, respectively. Once the drone receives all the local updates, it will
aggregate the local updates to a global update according to the following equation:

wt
g =

n∑
k=1

pk∑n
j=1 pj

wt
k (5.1)

where n is the number of local updates, pk is the client reputation defined as in (5.3), which
will be detailed afterwards. After the aggregation, the global update, wt

g (i.e. FLGU), will be
broadcasted to all the vehicle clients. The vehicle clients will update their model parameters
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Figure 5.3: Step 2 of the DAFL algorithm: the global model aggregation and broadcasting step

with the new global model. Then, a new communication round begins with local vehicle clients
performing local updates. The overall algorithm is formulated in Algorithm 3.

Deep reinforcement learning for vehicle clients

The considered scenario is presented in Fig. 5.4. On a 4-km circular highway, four drones hover
over the highway with 1 km communication range [2]. Consequently, we divide the highway into
four segments, each covered by one drone. Each drone hovers at different altitude to prevent
collisions, and communicates only with vehicles located in its segment, as well as with other
drones.

It is noteworthy that the drones send two types of messages:

• Urgent lane change request with high priority, denoted by ULCR.

• Federated learning global update with low priority, denoted by FLGU.

Our goal is to obtain a global lane change model that achieves the optimal trade-off between
road active safety and drone’s power consumption. It should be mentioned that both global
model and local models are based on a DQN with the same structure. At the beginning of
each communication round, the drone server selects a subset of vehicle clients to perform local
update using their own observations. We adopt the same input feature as detailed in section 4.2.3
State space: the observation consists of 48 kinematic parameters consisting of the kinematic
parameters of the vehicle client and its neighbors, the risk label of the current lane lrisk, (0
refers to no risk detection, 1 refers to risk detection), which is detected by vehicle sensors, in
addition to the road vehicular density, which is calculated and provided by the drones.
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Algorithm 3 DAFL algorithm
1: Input: Number of epoch per communication round, f .
2: Output: The trained global model
3: Drone server initializes the global model with w0

4: Drone server selects a subset St of K clients to perform local updates
5: for each client k ∈ St in parallel do
6: for t← 0 to T do
7: if client k receives a new global model from the drone then
8: Client k updates local model with the new global model
9: end if
10: if t%f ̸= 0 then
11: Perform f local training epoch
12: else
13: Sends local update to the drone server
14: end if
15: if Drone server receives K local updates then
16: Drone server aggregates the K local updates by (5.1)
17: Drone server updates client reputation pk according to (5.3)
18: Drone server broadcasts the global update to the clients
19: end if
20: end for
21: end for

Figure 5.4: DAFL scenario
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The action space is defined as the lane change behavior, denoted as At
i = (−1, 0, 1), representing

respectively lane changing to the left, staying in lane and lane changing to the right.

The reward function is the weighted sun of three parts: safety, efficiency and comfort, which
are computed as in (4.2) and the following.

Rt
i = wsafeRsafe + weffReff + wcomfRcomf

where wsafe, weff , wcomf are the weights, Rsafe, Reff and Rcomf are safety reward, efficiency
reward and comfort reward during the DQN training. The safety reward considers four features:
road vehicular density, collisions, road risk and emergency vehicles. The efficiency reward aims
to increase speed and penalize frequent lane changes. And the comfort reward is designed to
avoid hard brakes and hard accelerations. The computation of each reward is detailed in section
4.2.3 Reward function [70, 72].

At each step t ∈ [0, T ], each vehicle client vi, i ∈ [1, Nv] predicts the next movement with its local
observation and local model, and performs the movement. Then, the tuple (observation, action,
reward), i.e.

(
Oi

t, At
i, Rt

i

)
will be stored in its local memory buffer. After f local training epochs,

the selected vehicle clients send their local model weights to the drone server. After receiving
all the local weights, the server aggregates the local weights according to clients’ reputations,
p, defined as (5.3).

pk = wrϵ
r
k + wcϵ

c
k (5.2)

= wr
rk∑K
i=1 ri

+ wc
ck∑K
i=1 ci

(5.3)

where k is client index, ϵr
k is the local update efficiency of client k, computed by the reward of

client k at current epoch, rk. ϵc
k is the contribution to the global update, computed by the cosine

similarity, ck between the local update and the global update. The cosine similarity between
two vectors, u and v are defined in (5.4). wr and wc are the weights of the two terms.

c(u, v) =
∑

ukvk√∑
k u2

k

√∑
k v2

k

(5.4)

5.2.3 Module 3 Real-time lane change decision making
Module 3 is the real-time lane change decision making module based on local DQN. At each
step, vehicle makes its lane change decision based on its local observation and local model.
Noted that the local model is updated by the global model sent by drone server at the end of
each communication round.

5.3 End-to-end delay modeling based on M/G/1 queue
This section provides an accurate mathematical modeling of the M/G/1 multi class preemptive
queue. As previously mentioned, the drone tackles downlink messages that fall into two classes:
ULCR, referred as class 1, and FLGU, referred as class 2.
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Fig. 5.5 illustrates the queuing model for a single-drone assisted vehicular network. The D2V
communications are represented by the grey dashed lines. Meanwhile, the queues of both of the
two classes are shown at the drone side.

Figure 5.5: Illustration of the E2E delay analysis in DAVN.

The total E2E D2V delay of a class i message, denoted as E[Wi], consists of two parts:

• Queuing delay at the drone side, W s
i .

• D2V propagation delay, W V 2D
i .

Thus, we have
E[Wi] = E[W s

i ] + E[W D2V
i ] ≤ T ∗

i (5.5)

where T ∗
i is the optimal maximum waiting time for request class i, whose value is to work with.

The computation delays at both the vehicle and the UAV side are neglected since these values
are very small compared to the propagation delays. It should be noted that if a class i request
is not processed by the UAV after Ti, it will be considered as expired.

In the following sections, we will derive the queuing delay and the propagation delay in detail.

5.3.1 Queuing delay at the drone side
As explained previously, we consider two types of message that can be transmit by the drone
to vehicles: one is safety-related message with high priority, the other is vehicle state-related
message with low priority. On the other hand, selected vehicle clients will send their local
update weights to the drone after each f training epochs.

At the drone side, the service of a low priority request can be interrupted by the arrival of a
high priority request. Thus, the queuing model is a priority queuing with preemption. In this
case, the waiting time of the high priority requests, denoted as W1, are not affected by the
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low priority requests, and are only related to the arriving process and service process of class 1
request.

On the contrary, the waiting time of low priority requests, denoted as W2, are affected by high
priority requests, with an additional waiting time due to the arrival and interruption from a
high priority request [81, 82].

We model the queuing delay of the safety message at the drones with a M/G/1 queue. The
arriving process follows a Poisson process while the service time follows an exponential dis-
tribution. What is more, the service times for different safety messages are independent and
identically distributed.

We define the following variables for the drone:

• ρi: the occupation rate of a class i message,

• λi: the arrival rate of a class i request,

• E[Bi]: the mean service time at the drone of a class i request,

• E[Wi]: the mean waiting time in the queue of a class i request,

• E[Ri]: the mean residual service time of a class i message,

• E[Si]: the mean sojourn time of a class i request (E[Si] = E[Bi] + E[Wi]),

• E[Li]: the average number of requests of class i waiting in the queue.

Thus, for the total incoming traffic at the drone side, we have the following:

λ =
n∑

i=1
λi (5.6)

E[B] =
n∑

i=1

λi

λ
· E[Bi] (5.7)

ρ = λ · E[B] (5.8)

Mean waiting time of high priority requests

The average of W1 can be expressed as followed:
E[W1] = E[L1]E[B1] + ρ1E[R1] (5.9)

where L1 denote the number of high priority request waiting in the queue. According to Little’s
law we have

E[L1] = λ1E[W1] (5.10)

Combining the two equations yields

E[W1] = ρ1E[R1]
1− ρ1

(5.11)
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Since we have
E[R1] = E[B2

1 ]
2E[B1]

(5.12)

Equation (5.11) becomes

E[W1] = ρ1

2(1− ρ1)
· E[B2

1 ]
E[B1]

(5.13)

The sojourn time is then

E[S1] = E[W1] + E[B1] = ρ1

2(1− ρ1)
· E[B2

1 ]
E[B1]

+ E[B1] (5.14)

Mean waiting time of low priority requests

As explained before, the waiting time of low priority requests can be expressed as
E[W2] = E[B2] + E[W+]

The request has to wait for the sum of the service times of all previous requests with the same
or higher priority as well as the remaining service time of the request in service. Consequently,

E[B2] =
2∑

j=1
E[Lj]E[Bj] +

2∑
j=1

ρjE[Rj] (5.15)

On the other hand, the W+ is related to all the higher priority requests arriving during its
waiting time and service time. This leads to

E[W+] = λ1E[W1]E[B1] (5.16)

Applying Little’s law
E[L2] = λ2E[W2]

we have
E[W2] =

∑2
j=1 ρjE[Rj]

(1− (ρ1 + ρ2)) (1− ρ1)
(5.17)

The mean sojourn time E[S2] of a class i customer follows from E[S2] = E[W2]+E[B2], yielding

E[S2] =
∑2

j=1 ρjE[Rj]
(1− (ρ1 + ρ2)) (1− ρ1)

+ E[B2] (5.18)

Since we have
E[Ri] = E[B2

i ]
2E[Bi]

, (5.19)

Equation (5.20) finally becomes

E[S2] = 1
(1− (ρ1 + ρ2)) (1− ρ1)

·
2∑

j=1
ρj

E[B2
i ]

2E[Bi]
+ E[B2] (5.20)
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5.3.2 D2V propagation delay
The D2V propagation delay of a class i request is calculated as follows:

E[W D2V
i ] = di

ri

(5.21)

where di is the euclidean distance between the UAV and the vehicle, and ri is the achievable
propagation rate.

5.4 Drone Energy Consumption Model
The energy consumed by the UAV i in order to perform a complete data transfer is composed
of three components as shown in equation (6.4):

• the communication energy that is used for the data transfer from the UAV to vehicles
clients and other UAVs, Et

i ,

• the computing energy for global model aggregation, Ec
i ,

• the propulsion energy of the UAV to hover over the highway, Em
i .

Ei = Et
i + Ec

i + Em
i

=
∑
j∈V

ED2V
i,j + Ec

i + Em (5.22)

where V is the set of all vehicle clients in the communication range of the UAV i that participate
in the federated learning, U denotes the set of all UAVs. One can see that we only consider the
downlink D2V communication. In the following sections, each of the elements will be analysed.

5.4.1 Communication energy
In order to model the communication energy consumption of our scenario, we first look at a
simple scenario where the UAV i is communicating with vehicle j, as illustrated in Fig. 5.6. hi

is the height of the UAV i, R is the communication range of the UAVs. deuc
i,j and dhor

i,j denote the
Euclidean distance and the horizontal distance between the UAV i and vehicle j, respectively.
The D2V path loss is also known as air-to-ground path loss. In [83], the probability of having
a line-of-sight link between the UAV i and vehicle j is formulated as followed:

P D2V
i,j (LoS) = 1

1 + a exp (−b (θi,j − a))
(5.23)

where a and b are environmental constant depending on rural or urban areas; θ is the elevation
angle between UAV i and vehicle j, and it is equal to arctan( hi

dhor
i,j

); hi is the height of UAV i

from ground level; dhor
i,j is the horizontal distant between the UAV i and the vehicle j.

Thus, the probability of non-line-of-sight loss is calculated as:
P D2V

i,j (NLoS) = 1− P D2V
i,j (LoS) (5.24)
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Figure 5.6: Scenario where the UAV i is communicating with vehicle j

According to [84], the path losses with LoS and No- LoS links between UAV i and vehicle j can
be formulated as:

PLD2V
i,j (LoS) = 20 log10

(
4πfcd

euc
i,j

c

)
+ ηLoS (5.25)

PLD2V
i,j (NLoS) = 20 log10

(
4πfcd

euc
i,j

c

)
+ ηNLoS (5.26)

where ηLoS and ηNLoS are the mean additional losses for LoS and No Line-of-Sight (NLoS) links,
c is the speed of light, and deuc

i,j =
√

h2
i +

(
dhor

i,j

)2
is the euclidean distance between the UAV i

and vehicle j.
As a result, the average path loss of the D2V communication between UAV i and vehicle j can
be computed as followed:

PLD2V (i, j)
= P D2V

i,j (LoS)PLD2V
i,j (LoS)

+ P D2V
i,j (NLoS)PLD2V

i,j (NLoS)

= 20 1
1 + a exp (−b (θi,j − a))

[
log10

(
4πfcd

euc
i,j

c

)
+ ηLoS

]

+ 20 (1− Pi,j(LoS))
[
log10

(
4πfcd

euc
i,j

c

)
+ ηNLoS

]

= ηLoS − ηNLoS

1 + a exp (−b (θi,j − a))

+ 20 log10

(
deuc

i,j sec(θi,j)
)

+ 20 log10

(
4πfc

c

)
+ ηNLoS
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And the channel gain is given by
GD2V (i, j) = 1

PLD2V (i, j)
(5.27)

Consequently, the Signal-to-Noise Ratio, SNRi,j and the achievable data rate Ci,j in bits per
second (bps) of the D2V communication are presented in Equation. (5.28) and (5.29) [85–87]:

SNRD2V
i,j =

ptrans
i GD2V

i,j∑
n∈Nint ptrans

n GD2V
n,j + N0

(5.28)

where ptrans
i is the transmit power of UAV i, Nint is the set of possible interfering UAVs, N0 is

the noise power.
According to Shannon’s theorem, the achievable rate of the D2V communication is:

CD2V
i,j = B ∗ log2

(
1 + SNRD2V

i,j

)
(5.29)

where B is the bandwidth for the D2V communication. The energy consumption of the UAV
transmitting the message is [88]:

ED2V
i,j = Si

CD2V
i,j

ptrans
i (5.30)

where Si is the size of the message that UAV i is going to send.

5.4.2 Computation energy
The energy for computation refers to the energy for the global model aggregation, denoted as
Ec. It is calculated as (5.31) in [54].

Ec = kCϕ2
I∑

i=1
S(wi) (5.31)

where k is the energy consumption coefficient related to the computing system; C is the com-
puting cycles needed for each data bit; ϕ is the frequency of drone’s CPU clock; and S(wi) is
the packet size of weight wi sent to client i.

5.4.3 Mobility energy
According to [89, 90], the motion power model Pi of UAV i of speed Vi is represented in the
following equations.

Pi = P0

(
1 + 3V 2

i

U2
tip

)
+ P1


√√√√1 + V 4

i

4v4
0
− V 2

i

2v2
0

1/2

(5.32)

+ 1
2

d0ρsAV 3
i (5.33)

P0 = δ

8
ρsAΩ3R3 (5.34)

P1 = (1 + k) W 3/2
√

2ρA
(5.35)
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In fact, P0 and P1 are two power constants representing the blade profile and the induced power
levels in hovering status, respectively. Utip denotes the tip speed of the rotor blade, v0 is known
as the mean rotor induced velocity in hovering, d0 and s are the fuselage drag ratio and rotor
solidity, respectively, ρ and A denote the air density and rotor disc area, respectively, δ is the
profile drag coefficient, and V is the forward speed [89,90]. The parameter values are defined in
Table. 1 in [89]. Thus, the energy consumption to move from location M(x1, y1, z1) to location
M ′(x2, y2, z2) can be calculated by Equation. (5.37):

Ei(M, M ′) = dMM ′

Vi

Pi (5.36)

=

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Vi

Pi (5.37)

In the case of stationary hovering, Vi is zero and the drone remains stationary. Hence, Pi =
P0 + P1. The hovering energy is

Ehov = ThovPhov = Thov(P0 + P1), (5.38)

where Thov is the hovering time.

5.5 Performance Evaluation of the DAFL Framework

5.5.1 Simulation scenario
Extensive simulation batches are conducted with SUMO [25]. The simulation parameters are
depicted in Table 5.1.

Table 5.1: Simulation parameters

Parameter Value Reference Parameter Value Reference
λ1 2.5 [91] a 14.39 [85]
λ2 Vehicle client number [91] b 0.13 [85]

E[B1] 4.763 ×10−7 [92] fc 2.4GHz [2]
E[B2

1 ] 2.269 ×10−13 [92] ηLoS 1dB [85]
E[B2] 2.977 ×10−8 [92] ηNLoS 20dB [85]
E[B2

2 ] 0 [92] ptrans
i 280mW [2]

B 100MHz [2] N0 -174dB/Hz [87]

We trained global models on a 4-km circular highway that consists of three lanes. It’s note-
worthy that the considered highway includes random road risks: construction works and vehicle
collisions. Furthermore, we assume that 20% of the vehicles are emergency vehicles (ambu-
lances and police cars). In addition, 3% of the vehicles are set with aggressive behaviors such
as exceeding the speed limit and occupying the left-most lane for a long time. The same as our
previous work, the training and testing are performed with Gym module in Python interfaced
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with TraCI module in SUMO [93]. In the simulation, the vehicles’ states are updated every 0.4
second, the lane change time is set to 2 seconds. However, while performing lane changing, the
new lane change decisions are ignored to prevent conflict.

It should be pointed out that, in our designed platform, we consider that there are two states for
the vehicles: completely autonomous and partial autonomous. Vehicle switches between these
two states according to environment and traffic density. In urban scenarios, the vehicle adopts
the human-driven mode where humans can interfere with the lane change decision. In highway
scenarios, the vehicle adopts the autonomous mode where the machine learning model makes
the lane change decision. In case of conflicts between human and machine learning lane change
recommendation, the human decision is adopted since he/she is responsible for the road active
safety.

In order to investigate the impact of global model update frequency, we train the global models
with different model update frequencies, from 10 to 100 epochs per communication round with
500 epochs and 64 steps per epoch. Local and the global models are DQNs with the same
structure consisting of 64 (resp. 128, resp. 64) nodes on the first (resp. second, resp. third)
hidden layer.

At the drone level, the computation of the global weights relies on the weighted weights method
as described in Equation. (5.1). The conducted simulations were performed with four, six
and eight local clients, denoted by ww4, ww6 and ww8. For each of the trained models, we
considered three different traffic densities: sparse traffic with 50 vehicles, medium traffic with
150 vehicles and dense traffic with 250 vehicles on the road.

The average training reward using 4 agents are shown in Fig. 5.7. In more detail, the rewards
are the moving average of 500 epochs of each agent [94]. One can see that the training passes
through an exploitation phase before converging to a stable training phase. The same behavior
is observed for six agents and eight agents. It should be noticed that the maximum average
reward is reached at around 1700 training epochs with 32000 simulation steps.

The performance parameters are road collision rate, the number of lane changes, vehicle average
speed, mean risky time and mean blocking time, which are the same as described in chapter 4,
in addition to the average total delay of vehicle clients and drone energy consumption. Recall
that risky time and blocking time in second are the total time that the vehicle drive near a road
risk and in front of an emergency vehicle without giving way.

It should be noted that each model is trained and tested with 32000 epochs with a laptop with
Intel(R) Core(TM) i7-1185G7. The training, executed by drones and based on federated deep
reinforcement learning, aims at storing local policies on vehicular agents. The drones perform
the training once when needed.

5.5.2 Performance analysis
The performance of the three models are depicted in figures 5.8 to 5.28.
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Figure 5.7: Moving average reward of agents

In the figures, we denote by nv the road vehicular density, and by epoch per communication
round the local training epoch number before uploading the weights and rewards to the server.

Fig. 5.8 to 5.11 illustrate the lane change number, average speed, risky time and blocking
time obtained with the ww4 model. One can see that with the same number of epoch per
communication round, the average lane change number, risky time and blocking time increase
when the traffic density increases. On the contrary, the average speed is decreased. This is
expected since the more vehicles on the road, the more lane changes the vehicle should perform
to continue the trip, the lower the average speed is and the longer the vehicle drives on risky
lane. Furthermore, in dense traffic, there will be more emergency vehicles drive on the road,
thus leads to longer blocking time.

On the other hand, with the increase of the number of epoch per communication round, it can
be found that the lane change number, average speed, risky time and blocking time increase.
Indeed, the higher the epoch number is, the fewer the global aggregation number is. This will
incur fewer global updates that will lead to outdated global weights, which degrades the model
performance (i.e. more inefficient lane changes, higher risky time and blocking time). Further,
as a result of the lane changes, the vehicle is able to get higher speed during the trip.

Fig. 5.12 to 5.19 exhibit the performance parameters obtained with the ww6 model and ww8
model. The reader can notice that the risky time and blocking time increase as the number of
epoch per communication round increases. However, the lane change number decreases when
the number of epoch per communication round is 100 compared to 75 epochs. One possible
reason is that with few global updates, which aggregates information from clients, the model is
not able to learn the environment clearly. In other word, the global model is not well trained
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Figure 5.8: Lane change number of global model with 4 clients (ww4)

Figure 5.9: Average speed of global model with 4 clients (ww4)
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Figure 5.10: Risky time of global model with 4 clients (ww4)

Figure 5.11: Blocking time of global model with 4 clients (ww4)
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when local updates number is small. Consequently, it tends to be less active, leading to few
lane changes. This further harms the model performance, which can be proven from the longer
risky time and blocking time.

Figure 5.12: Lane change number of global model with 6 clients (ww6)

Figure 5.13: Average speed of global model with 6 clients (ww6)

On the other hand, we compare the performance of the three model, as shown in Fig. 5.20
to 5.23. Generally, we can find that the lane change number, average speed, risky time and
blocking time increase as the number of epoch per communication round increases. As a matter
of fact, when the number of epoch per communication round is small, there will be more global
updates, which leads to a more efficient global model. Contrarily, as previously analysed, when
the number of epoch per communication round is high, there will be few global updates, leading
to an outdated global model and performance fluctuations.
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Figure 5.14: Risky time of global model with 6 clients (ww6)

Figure 5.15: Blocking time of global model with 6 clients (ww6)
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Figure 5.16: Lane change number of global model with 8 clients (ww8)

Figure 5.17: Average speed of global model with 8 clients (ww8)
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Figure 5.18: Risky time of global model with 8 clients (ww8)

Figure 5.19: Blocking time of global model with 8 clients (ww8)
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Figure 5.20: Comparison of lane change number of ww4, ww6 and ww8 in medium traffic

Figure 5.21: Comparison of average speed of ww4, ww6 and ww8 in medium traffic
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Figure 5.22: Comparison of risky time of ww4, ww6 and ww8 in medium traffic

Figure 5.23: Comparison of blocking time of ww4, ww6 and ww8 in medium traffic
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Fig. 5.24 depicts the average E2E delay and the total drone power consumption. It is noteworthy
that the delay consists of the queuing delay at the drone and the propagation delay from the
drone to the local client. One can see that the average total delay of each client is bounded by
0.7 second, which is acceptable for the critical real-time lane change use case. In addition, the
total drone power consumption is lower than 0.62 kWh, which is a quite satisfying result. In
fact, to support this energy consumption constraint for the whole mission, the required battery
capacity BC for a LiPo battery of 40V Voltage is computed as followed:

BC = 0.64kWh

40V × 32000× 0.4second
= 640Wh

40V × 3.56h
(5.39)

≈ 4.49Ah = 4490mAh. (5.40)

The existing commercial drone batteries, such as DJI’s Intelligent Flight Battery TB65 [95],
meet the requirements for this battery. Thus, for the drone training mission duration, there
can be enough electricity drawn from battery storage to provide 0.62 kWh power consumption.
This value shows the potential for achieving sustained mission duration within certain energy
constraints. Moreover, as an enhancement of our protocol, one can define an energy consumption
threshold for the whole drone mission. When energy consumption surpasses the predefined
threshold, it is imperative for the drone to adapt the flight speed and communication frequency.
Such adaptive mechanisms serve to harmonize operational requirements with energy efficiency,
thereby enhancing the overall performance and longevity of the system.

Figure 5.24: Drone power consumption and vehicle’s delay

Specifically, the power for mobility, computation and communication are further compared in
Fig. 5.25. One can see that the computation power and communication power are much less
than the mobility power. Actually, drone’s mobility is the most power-consuming part in the
total power consumption of a drone. According to the numerical results, 99.97% of the energy
is used for mobility.
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Figure 5.25: Drone’s power consumption, including mobility power, communication power and
computation power

In figures 5.26 to 5.28, we sheds the light on the trade-off between safety parameters (risky time
and blocking time) and total power consumption. From the three figures, one can obtain the
best trade-off safety and power consumption by the intersection point of risky time and power
consumption, as well as the intersection point of blocking time and power consumption. For
all of the three models, the best trade-off is achieved with 30 epochs per communication round
for risky time. With this understanding, the drone server can dynamically adapt local training
epoch number according to the road safety and its battery life.

Inspired by the DAFL performance analysis, we can draw the following conclusions:

• The best safety parameters were retrieved with four local clients as compared to six clients
and eight clients.

• Road active safety stakeholders should tune the epoch per communication round according
to the balance between risky time (or blocking time) and the total power consumption.

• The federated machine learning succeeds to respect the stringent delay requirements of the
critical real-time lane change. In fact, the distribution of the local model at the learners
help to take the lane change decision in a tight time window.

• The drone energy consumption is quite acceptable and will encourage road stakeholders
to integrate UAVs in the vehicular networks due to the high drone autonomy. It is to
be noted that the majority of the energy consumption is related to the drone mobility as
compared to the computation and communication.
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Figure 5.26: Safety performance (risky time and blocking time) vs drone power consumption of
ww4 model in medium traffic

Figure 5.27: Safety performance (risky time and blocking time) vs drone power consumption of
ww6 model in medium traffic
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Figure 5.28: Safety performance (risky time and blocking time) vs drone power consumption of
ww8 model in medium traffic

5.6 Conclusion
This chapter presents our proposed DAFL drone assisted federated deep reinforcement learning
framework. This framework enables the drivers to achieve safe and real-time lane changes. A
special concern is dedicated to the computation of the communication delay and drone power
consumption which has been proven to be bounded.

In more detail, we first propose a global model aggregation algorithm based on client’s reputation
for the FL server. Notably, the client’s reputation is computed from its local training reward
and the cosine similarity between its local update and the global update.

Then, we perform a detailed mathematical analysis of the E2E delay at the drone consisting
of the queuing delay and the D2V propagation delay. The queuing delay is formed based on
M/G/1 multi-class preemptive queuing model. Moreover, we provide an accurate modeling of
the total power consumption of the drone, including computation, communication and mobility.

Afterwards, we propose a dynamic adjustment threshold for the FL global update frequency.
The goal is to achieve the best trade-off between safety and power consumption. Consequently,
the drone server can dynamically adapt the global model update frequency according to the
road safety and its battery life.

Finally, the framework is tested with in-depth simulations. With the simulation results, we are
able to determine the adjustment threshold for the FL.

In the next chapter, we further tackle the drone optimal trajectory planning problem in order
to enhance the trade-off between drone energy consumption and road safety (i.e. V2D E2E
delay).
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Chapter 6
Proposed Drone Optimal Placement Al-
gorithm

6.1 Introduction
In this chapter, we propose an optimal drone trajectory prediction algorithm based on ORL in
order to reduce the drone energy consumption and V2D E2E delay in the LCA platform. It
should be noted that this research work is done with master student Ali Zibara for his 6-month
master internship.

In fact, the objective of ORL is to acquire a policy from a static dataset without any additional
interactions with the environment. This approach is becoming increasingly crucial for practical
applications of reinforcement learning, particularly in fields like robotics, where data collection
is time-consuming and potentially risky. Traditional off-policy algorithms tend to struggle when
working with fixed datasets, mainly because they make extrapolation errors when dealing with
actions that fall outside the dataset’s known distribution. This challenge underscores the need
to restrict the policy during training to select actions that are within the dataset’s known
action space. In this case, the Policy in the Latent Action Space (PLAS) method, offers a
straightforward way to address this issue, ensuring that this requirement is inherently met [96].

It should be noticed that, in order to train the ORL model, a large dataset is pre-collected.
The data features consists of drones’ GPS positions, drone energy consumption, and vehicle-
to-drone E2E delay, the last two have been detailed in section 5.3 and 5.4. Then, the offline
reinforcement model is trained and evaluated in real time simulations.

The rest of this chapter is organised as followed: section 6.2 presents the state-of-the-art of the
drone optimal placement algorithms. Section 6.3 and 6.4 explain the E2E delay analysis and
the drone energy consumption modeling. Specifically, we highlight the difference between the
model in this chapter and in chapter 5. Then, we detail the generation details of the two UAV
trajectories: elliptical trajectory and random walk trajectory in section 6.5.2 and 6.5.3. Section
6.6 presents the proposed ORL algorithm with the performance evaluation results. Section 6.6.6
introduce another trajectory prediction approach based on a 3rd-degree polynomial. Finally,
section 6.7 ends this chapter with a conclusion.
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6.2 State-of-the-Art of Drone Optimal Placement Algorithm
In order to assist the driver in making the optimal lane change decision while optimize battery
life, it is necessary to design an optimal trajectory prediction algorithm for the drone. Nev-
ertheless, UAV path planning is a challenging problem that involves finding an efficient and
collision-free trajectory for a UAV in a complex and dynamic environment. Many methods
have been proposed to solve this problem, such as classical methods, heuristics, meta-heuristics,
machine learning, and hybrid algorithms [97]. Each method has its advantages and limitations,
depending on the objectives, constraints, and environment of the path planning problem.

6.2.1 Classical methods
Classical methods for UAV path planning involve various techniques to determine a feasible and
optimal trajectory for a UAV to navigate through a given environment while avoiding obstacles
and reaching a predefined goal [98]. Here’s an overview of the three classical methods for UAV
path planning:

Grid-based methods

Grid-based methods discretize the environment into a grid or a set of cells. Each cell is labelled
as either free (no obstacle) or blocked (occupied by an obstacle). The UAV’s path is then planned
by searching through this grid. Common algorithms used in grid-based methods include:

• Dijkstra’s algorithm: This algorithm computes the shortest path from the UAV’s initial
position to the goal by expanding nodes in a breadth-first manner. It can be adapted for
grid-based path planning by assigning costs to each cell [99].

• A* algorithm: A* algorithm is an extension of Dijkstra’s algorithm that incorporates
heuristics to guide the search towards the goal more efficiently [100]. It considers both
the cost to reach a cell and an estimate of the cost to reach the goal from that cell.

Graph-based methods

Graph-based methods represent the environment as a graph, where nodes represent positions or
states, and edges represent possible transitions between states. The UAV’s path is then planned
by searching through this graph. Common graph-based algorithms include:

• Visibility graphs: This method constructs a graph by connecting visible points in the
environment [101]. It reduces the problem of finding an obstacle-free path to finding a
path on this graph

• Probabilistic roadmaps (PRMs): PRMs randomly sample the environment to create a
graph of connected nodes. Shortest paths can be found by using graph search algorithms
on the PRM [102].
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Figure 6.1: Voronoi diagram with the indicated graph branch nodes and optimal point-connected
trajectory [104]

Geometric methods

Geometric methods often focus on capturing the geometry of the environment and obstacles to
plan UAV paths. Some techniques in this category include:

• Voronoi diagrams: Voronoi diagrams partition space based on the closest obstacle [103,
104]. UAV paths can be planned along the edges of these partitions to ensure clearance
from obstacles, as illustrated in Fig. 6.1.

• Potential fields: This method models the environment as a field of attractive and repulsive
forces [105]. The UAV is guided towards the goal while being repelled from obstacles.

6.2.2 Optimal control methods
Optimal control methods seek to find the optimal trajectory by considering the dynamic con-
straints of the UAV and the objective function, which could be minimizing travel time, energy
consumption, or another criterion. Common optimal control techniques include:

• Dynamic programming: Dynamic programming breaks down the path planning problem
into smaller sub-problems and uses a recursive approach to find the optimal path [106].

• Model Predictive Control (MPC): MPC predicts the future trajectory of the UAV and
optimizes control inputs over a finite time horizon to minimize a cost function [107].

• Linear Quadratic Regulator (LQR): LQR is a control technique that optimally controls
linear dynamic systems by minimizing a quadratic cost function [108].

Each of these classical methods has its strengths and weaknesses, depending on the specific
scenario, environment complexity, UAV dynamics, and planning objectives. Researchers often
choose the most appropriate method based on the problem’s requirements and constraints.
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6.2.3 Heuristic methods
Heuristic methods for UAV path planning leverage various rule-based or learning-based tech-
niques to navigate through an environment while avoiding obstacles and reaching a goal. These
methods use heuristics, which are simplified strategies or rules, to guide the UAV’s trajectory.
We present after an overview of the heuristic methods:

Potential field methods

Potential field methods are based on modeling the environment as a field of attractive and
repulsive forces. A UAV is treated as a point mass that moves under the influence of these
forces [109]. The goal generates an attractive force, while obstacles create repulsive forces.
The UAV follows the gradient of the combined potential field to reach the goal while avoiding
obstacles.

• Advantages: Simple to implement, can handle dynamic environments, and can generate
smooth trajectories.

• Challenges: Local minima issues (are points in the error surface of a NN where the gradient
is zero, but the error is not at its lowest possible value) can cause the UAV to get stuck;
difficult to achieve global optimal [110].

Artificial potential field methods

Artificial potential field methods extend the basic potential field concept by incorporating ad-
ditional features such as tuning parameters, obstacle avoidance strategies, and ways to handle
local minima. These methods aim to address some of the shortcomings of simple potential field
methods [111].

• Advantages: improved obstacle avoidance, greater flexibility in handling different scenarios
[110].

• Challenges: Still susceptible to local minima issues, tuning parameters can be challenging.

Fuzzy logic methods

Fuzzy logic methods involve using fuzzy sets and rules to make decisions in a complex and
uncertain environment [112]. These methods allow for reasoning under uncertainty and vague-
ness by using linguistic variables (e.g., “close”, “far”, “safe” and “dangerous”) instead of strict
numerical values.

• Advantages: Can handle imprecise and uncertain information, suitable for situations with
qualitative descriptions [113].

• Challenges: Designing appropriate fuzzy rules and membership functions can be complex;
might not achieve optimal paths.
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Neural network methods

Involve training artificial NNs to learn complex mappings from input (environment information)
to output (UAV control signals or path). They can be used to approximate optimal paths or
control policies based on training data [114].

• Advantages: Can capture intricate relationships and patterns in data, potentially achiev-
ing high accuracy [114].

• Challenges: Requires substantial training data, training can be computationally intensive,
and NNs might not provide interpretability [115].

It is worth noting that while these heuristic methods can work well in certain scenarios, they
may have limitations when facing highly dynamic or complex environments. Hybrid approaches
that combine multiple heuristic methods [116], or combine heuristics with classical methods,
are also explored to harness the strengths of different techniques. Additionally, the field of UAV
path planning continues to evolve, and researchers are increasingly integrating machine learning
and AI techniques to improve the adaptability and performance of heuristic methods.

6.2.4 Meta-heuristic methods
Meta-heuristic methods for UAV path planning are advanced optimization techniques that draw
inspiration from various natural phenomena [116], such as evolution, swarm behaviour, and
physical principles. These methods are designed to explore complex solution spaces and find
near-optimal or optimal paths for UAVs in challenging environments. Here’s an overview of
some meta-heuristic methods:

Evolutionary algorithms

Evolutionary algorithms are inspired by the process of natural evolution. They operate on a
population of potential solutions (individuals), applying selection, crossover (recombination),
and mutation operations to iteratively generate better solutions. Genetic algorithms (GAs)
and genetic programming (GP) are common evolutionary techniques applied to UAV path
planning [117].

• Advantages: Can handle non-convex and multi-modal optimization problems, suitable for
complex and large solution spaces.

• Challenges: Convergence to a good solution may be slow; parameter tuning can be crucial.

Swarm intelligence algorithms

Swarm intelligence algorithms are inspired by the collective behaviours of social organisms
like ants, bees, and birds. These algorithms involve multiple agents (particles or individuals)
interacting with each other and their environment to collectively find solutions [118]. Particle
Swarm Optimization (PSO) is a popular example in this category.
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• Advantages: capable of exploring the solution space efficiently, good for problems with
high-dimensional spaces or multiple objectives

• Challenges: sensitivity to parameter settings, potential for premature convergence.

Physics-based algorithms

Physics-based algorithms simulate physical processes, often inspired by real-world phenomena
such as gravity, electromagnetism, and fluid dynamics. They can be applied to optimize UAV
paths by treating the problem as a dynamic system where the UAV follows laws of motion [116].

• Advantages: Can produce physically feasible trajectories, suitable for scenarios where
dynamics are critical.

• Challenges: Complex modelling of physical interactions, convergence may be affected by
simulation accuracy

Other nature-inspired algorithms

There are various other nature-inspired algorithms that draw inspiration from diverse sources,
these algorithms often offer innovative ways to explore and exploit solution spaces efficiently:

• Firefly algorithm: Mimics the flashing behaviour of fireflies to optimize solutions in a
search space [119].

• Bat algorithm: Inspired by the echolocation and hunting behaviour of bats to optimize
paths [120].

• Cuckoo search: Emulates the behaviour of cuckoo birds in searching for hosts’ nests [121]
as illustrated in Fig. 6.2.

• Artificial bee colony: Simulates the foraging behaviour of honeybees in searching for food
sources [122] as illustrated in Fig. 6.3.

• Whale optimization algorithm: Inspired by the social behaviours of humpback whales
during bubble-net feeding [123] as illustrated in Fig. 6.4.

Meta-heuristic methods provide a way to tackle complex optimization problems that classical
methods might struggle with. However, they often require careful parameter tuning and might
not guarantee finding the global optimum. Researchers often experiment with different meta-
heuristic methods, hybridize them, and adapt them to specific UAV path planning scenarios to
achieve better performance.

6.2.5 Machine learning methods
Machine learning methods have gained significant attention in the field of UAV path planning
due to their ability to learn complex behaviours and adapt to various environments. Here’s an
overview of some machine learning methods applied to UAV path planning:
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Figure 6.2: Cuckoo search algorithm [121]

Figure 6.3: Artificial bee colony algorithm [122]
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Figure 6.4: Whale optimization algorithm [123]
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Reinforcement learning (RL)

RL involves training an agent (UAV) to take actions in an environment to maximize a cumulative
reward signal. The agent learns through trial and error, exploring different actions and observing
their outcomes [124]. RL algorithms include Q-learning, DQN, and more advanced methods
like Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO).

• Advantages: Can learn optimal policies in complex environments without explicit know-
ledge of the environment dynamics.

• Challenges: Requires significant training time, exploration challenges, and potential safety
concerns during learning.

Deep learning

Deep learning involves training NNs with multiple layers to approximate complex functions. In
the context of UAV path planning, deep learning techniques can be applied to learn mappings
from sensor data to control actions or paths.

• CNNs: CNNs used for processing sensor inputs like images or LiDAR data to extract
features relevant for path planning

• Recurrent Neural Network (RNNs): RNNs suitable for sequential decision-making in dy-
namic environments [118].

• DRL: DRL combines deep learning and RL to learn policies directly from raw sensor
data [125].

• Imitation learning: Imitation learning involves training an agent by mimicking the beha-
viour of an expert. This is useful when expert demonstrations of desired UAV trajectories
are available.

Behavioural cloning

Behavioural cloning trains a model to replicate expert actions based on demonstration data [126]

• Inverse Reinforcement Learning (IRL): IRL infers the underlying reward function that
explains the expert’s behaviour and then optimizes UAV trajectories based on this learned
reward function. It addresses the problem of learning a reward function from observed
behaviour [127]. This can be applied to UAV path planning by inferring the preferences
or goals of an expert from their trajectories.

– Advantages: Can capture human intent and preferences, useful for situations where
explicit reward functions are hard to define

– Challenges: Requires careful modelling of the expert’s behaviour, can be computa-
tionally intensive

• Imitation learning: Imitation learning can help generate safe and reliable paths based on
demonstrated human expertise.
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Offline reinforcement learning (ORL)

ORL for UAV path planning involves training a RL agent in an environment where interactions
with the actual UAV are not required during the training phase [128, 129]. Instead, the agent
learns from a per-collected dataset of state-action pairs that simulate UAV behaviour in various
scenarios as illustrated in Fig. 6.5 and Fig. 6.6. This approach is particularly useful when
direct online interaction with the real UAV might be costly, time-consuming, energy-consuming
or potentially risky.

Figure 6.5: Reinforcement learning Vs. offline reinforcement learning [129]

Figure 6.6: Illustration of the different RL paradigms, including (a) online RL, (b) off-policy
RL, and (c) ORL. In online RL new experiences must becollected with the latest policy before
making an update. In off-policy RL, we reuse previous experiences but still rely on a continuous
collection of new experiences. In contrast, ORL only uses previous experiences collected with
a behavior policy πβ and stored in a static dataset D to learn a policy πoff .After learning �off,
one can opt to fine-tune it using online or off-policy RL methods [130]

A high-level overview of the process of ORL for UAV path planning is listed below:

1. Data collection: In the ORL setting, a dataset of state-action pairs is collected beforehand.
Each pair consists of the observed state of the environment (such as UAV’s position,
velocity, sensor data, etc.) and the corresponding action taken by the expert or an existing
controller. This data can come from expert demonstrations, historical flight data, or
simulations
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2. Algorithm selection: This process chooses an ORL algorithm suitable for the problem.
Common algorithms include Batch Q-learning, Batch Constrained Q-learning, and Con-
servative Q-learning. These algorithms are designed to work with fixed datasets and learn
policies based on the collected data.

3. Reward function: This process is to define the reward function that reflects the goals and
objectives of the UAV path planning problem. This can involve shaping the rewards to
guide the agent toward desired behaviours, such as obstacle avoidance, reaching a goal,
or energy efficiency.

4. Policy learning: This process aims to use the collected dataset and the chosen RL al-
gorithm to train a policy that maps states to actions [130]. The algorithm will learn a
policy that aims to maximize the cumulative reward over the dataset trajectories.

5. Evaluation and fine-tuning: After training, evaluate the learned policy using metrics
relevant to the UAV path planning problem. If the performance is not satisfactory, we
might need to fine-tune hyper-parameters, modify the reward function, or retrain the
policy with additional data.

Benefits of ORL for UAV path planning:

• Safety: Since the learning process occurs offline, there is no risk of causing harm to the
actual UAV during training.

• Efficiency: Training can be computationally intensive, and ORL avoids the need for real-
time interactions.

• Expert guidance: ORL can incorporate expert behaviour, leveraging human knowledge to
guide the learning process.

• Data re-usability: Once trained, the learned policy can be reused in various scenarios
without retraining.

Challenges of ORL for UAV path planning:

• Data quality: The quality and diversity of the training dataset can significantly impact
the learned policy’s performance.

• Generalization: The learned policy might not generalize well to unseen environments or
conditions.

• Sample efficiency: ORL methods often require large datasets for effective learning.

Machine learning methods offer the advantage of adaptability and learning from data, enabling
UAVs to navigate in complex and dynamic environments. However, these methods often require
substantial amounts of data, significant computational resources, and careful consideration of
safety and generalization to new scenarios. Researchers are actively exploring ways to combine
machine learning techniques with traditional methods to achieve robust and efficient UAV path
planning solutions. It’s important to carefully design the experiment, choose the appropriate
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algorithm, and consider the practical implications of applying ORL to UAV path planning,
such as the potential for over-fitting to the training data and limitations in adapting to new
situations.

6.2.6 Hybrid algorithms
Hybrid algorithms for UAV path planning combine two or more different methods from various
categories, such as classical methods, heuristic methods, meta-heuristic methods, and machine
learning methods [131]. These combinations are aimed at leveraging the strengths of each
individual method to achieve better performance, robustness, and adaptability in challenging
UAV path planning scenarios. Here are some common types of hybrid algorithms:

Classical-heuristic hybrids

These hybrids combine classical methods with heuristic approaches to balance computational
efficiency with improved obstacle avoidance or path smoothness. For example, combining a
grid-based A* search with potential field methods can enable the UAV to navigate complex
environments while maintaining a smooth trajectory.

Heuristic-meta-heuristic hybrids

These hybrids integrate heuristic methods with meta-heuristic techniques to enhance exploration
and exploitation of the solution space. For instance, combining particle swarm optimization
(meta-heuristic) with artificial potential fields (heuristic) can improve the ability to find optimal
paths while avoiding local minima.

Machine learning-heuristic hybrids

These hybrids use machine learning techniques to fine-tune or guide heuristic methods. For
instance, a machine learning model could predict the effectiveness of a potential field in different
regions of the environment, allowing the heuristic algorithm to adjust its behaviour accordingly.

Machine learning-meta-heuristic hybrids

These hybrids incorporate machine learning methods with meta-heuristic approaches to improve
efficiency and solution quality. A NN could be used to guide the exploration of a particle swarm
optimization algorithm, providing more informed search directions.

Adaptive hybrids

Dynamically switch between different methods based on the current state of the environment
or the UAV. For example, a UAV might use classical methods for path planning in known areas
and switch to a RL-based approach in unfamiliar or changing environments.
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Multi-objective hybrids

In multi-objective path planning scenarios, hybrid algorithms can combine methods to optimize
conflicting objectives simultaneously. This might involve combining a genetic algorithm with a
Pareto-based optimization technique to find a trade-off between objectives like minimizing path
length and maximizing safety.

Benefits of hybrid algorithms for UAV path planning

• Improved performance: By combining complementary methods, hybrid algorithms can
achieve better performance than using individual methods alone.

• Robustness: Hybrids can handle a wider range of scenarios, including complex and dy-
namic environments, by adapting to different challenges.

• Solution quality: Combining methods can result in higher-quality paths, overcoming lim-
itations of individual methods.

Challenges of hybrid algorithms for UAV path planning

• Complexity: Designing effective hybrid algorithms requires careful consideration of method
integration, parameter tuning, and possible interactions.

• Trade-offs: Combining methods may introduce trade-offs between competing goals, such
as optimization speed versus solution quality.

• Generalization: Ensuring that hybrid algorithms generalize well to various scenarios can
be challenging.

Hybrid algorithms are a flexible approach to addressing the complexities of UAV path planning
and are often tailored to specific application requirements. They are an active area of research,
with efforts focused on designing and testing novel combinations to achieve optimal performance
and adaptability.

6.2.7 Conclusion
In the previous sections, we have surveyed the state-of-the-art methods and challenges for UAV
path planning, which is the problem of finding optimal and collision-free trajectories for UAVs
in complex and dynamic environments [114]. We have classified the existing methods into five
main categories: classical methods, heuristics, meta-heuristics, machine learning, and hybrid
algorithms. The comparison between different methods are provided in Table. 6.1.

Furthermore, we have also analysed the advantages and limitations of each category based on
the objectives, constraints, and environments of the path planning problem. Furthermore, we
have identified some future research directions for enhancing the performance and robustness
of UAV path planning methods. This section can provide a comprehensive and up-to-date
overview of the UAV path planning field and inspire further research and development in this
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area. In the next sections, the motivation to choose ORL, the implementation and the results
achieved will be discussed in detail.

Table 6.1: Comparison table of UAV path planning methods

Method Description Advantages Disadvantages

Grid-
Based

Discretize the environment
into a grid or a set of cells.
Search through the grid
using algorithms like
Dijkstra’s or A*.

Simple and easy
to implement. Can
handle complex
environments.

Computationally expensive.
Resolution dependent

Graph-
Based

Represent the environment
as a graph, where nodes
represent positions or

states, and edges represent
possible transitions. Search
through the graph using
algorithms like Visibility

Graphs or PRMs

Flexible and scalable.
Can handle high-
dimensional spaces.

May not capture all the
details of the environment.
May require preprocessing.

Geometric

Capture the geometry of
the environment and
obstacles to plan UAV
paths. Use techniques
like Voronoi Diagrams
or Potential Fields.

Can handle non-convex
obstacles. Can ensure
safe distances from

obstacles

May not be optimal. May
have local minima.

Optimal
Control

Find the optimal trajectory
by considering the dynamic
constraints of the UAV

and the objective function.
Use techniques like Dynamic
Programming, MPC, or LQR.

Can handle complex
dynamics and objectives.
Can guarantee optimality

and stability

Computationally intensive.
May require accurate

models and measurements.

Potential
Field

Model the environment as
a field of attractive and
repulsive forces. The

UAV follows the gradient
of the combined potential
field to reach the goal

while avoiding obstacles.

Simple to implement,
can handle dynamic
environments, can
generate smooth

trajectories.

Local minima issues can
cause the UAV to get stuck,
difficult to achieve global

optimality.

Artificial
Potential
Field

Extend the basic potential
field concept by incorporating
a dditional features such as
tuning parameters, obstacle
avoidance strategies, and

ways to handle local minima.

Improved obstacle
avoidance, greater

flexibility in handling
different scenarios.

Still susceptible to local
minima issues, tuning
parameters can be

challenging.
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Table 6.1 continued from previous page
Method Description Advantages Disadvantages

Fuzzy
Logic

Use fuzzy sets and rules
to make decisions in a
complex and uncertain

environment. Use linguistic
variables instead of strict

numerical values

Can handle imprecise
and uncertain

information, suitable
for situations with

qualitative descriptions.

Designing appropriate
fuzzy rules and membership
functions can be complex;
might not achieve optimal

paths.

Neural
Network

Train artificial neural
networks to learn complex

mappings from input
(environment information)
to output (UAV control

signals or path).
Approximate optimal

paths or control policies
based on training data.

Can capture intricate
relationships and patterns

in data, potentially
achieving high accuracy

Requires substantial training
data, training can be

computationally intensive,
and NNs might

not provide interpretability

Evolutionary

Inspired by the process
of natural evolution.

Operate on a population
of potential solutions,
applying selection,

crossover, and mutation
operations to iteratively
generate better solutions.

Can handle non-convex
and multi modal

optimization problems,
suitable for complex

and large solution spaces.

Convergence to a good
solution may be slow;

parameter tuning can be
crucial.

Swarm
Intelligence

Inspired by the collective
behaviours of social

organisms like ants, bees,
and birds. Involve multiple
agents interacting with
each other and their

environment to collectively
find solutions.

Capable of exploring
the solution space
efficiently, good for
problems with high-
dimensional spaces or
multiple objectives.

Sensitivity to parameter
settings, potential for
premature convergence

Physics-
Based

Simulate physical processes,
often inspired by real-
world phenomena such

as gravity, electromagnetism,
and fluid dynamics. Treat
the problem as a dynamic
system where the UAV
follows laws of motion.

Can produce physically
feasible trajectories,
suitable for scenarios
where dynamics are

critical.

Complex modelling
of physical interactions,
convergence may be
affected by simulation

accuracy.
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Table 6.1 continued from previous page
Method Description Advantages Disadvantages

Other
Nature-
Inspired

Draw inspiration from
diverse sources such

as fireflies, bats, cuckoos,
bees, and whales. Offer

innovative ways to
explore and exploit

solution spaces efficiently.

Can handle complex
and dynamic

environments, can
adapt to different

scenarios

Require careful parameter
tuning, might not

guarantee finding the
global optimum.

Reinforcement
Learning

Train an agent to take
actions in an environment
to maximize a cumulative
reward signal. The agent

learnd through trial
and error, exploring
different actions and

observing their outcomes.

Can learn optimal
policies in complex

environments without
explicit knowledge
of the environment

dynamics.

Requires significant
training time, exploration
challenges, and potential
safety concerns during

learning.

Deep Learning

Train NNs
with multiple layers to
approximate complex

functions. Learn mappings
from sensor data to

control actions or paths.

Can capture intricate
relationships and
patterns in data,

potentially achieving
high accuracy and

adaptability.

Requires substantial
training data, training
can be computationally
intensive, and neural
networks might not

provide interpretability

Behavioural
Cloning

Train a model to replicate
expert actions based

on demonstration data.

Can help generate safe
and reliable paths based
on demonstrated human

expertise

Might not generalize
well to unseen situations,

might suffer from
compounding errors

Inverse
Reinforcement

Learning

Learn a reward function
from observed behaviour.

Infer the preferences
or goals of an expert
from their trajectories

Can capture human intent
and preferences, useful
for situations where

explicit reward functions
are hard to define.

Requires careful modelling
of the expert’s behaviour,
can be computationally

intensive

Offline
Reinforcement

Learning

Train a reinforcement
learning agent in an
environment where
interactions with the
actual UAV are not
required during the

training phase. Use a pre
collected dataset of

state-action pairs that
simulate UAV behaviour
in various scenarios.

No risk of causing harm
to the actual UAV during
training, avoids the need
for real-time interactions,

incorporates expert
behaviour, reuses learned
policy in various scenarios.

Requires large and diverse
datasets, might not

generalize well to unseen
environments or conditions,

training can be
computationally intensive.
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6.3 End to End Delay Analysis
This section analyzes the V2D communication delay with the help of queuing theory, as illus-
trated in Fig. 6.7. It should be noticed that in this section, the total V2D delay of a class i

request from a vehicle j, denoted as E[Wi,j], consists of three parts, which is different from the
scenario presented in Fig. 5.5:

• V2D propagation delay, W V 2D
i,j ,

• queuing delay at the drone side, W s
i,j,

• and drone-to-vehicle (D2V) propagation delay, W D2V
i,j .

Thus, instead of (5.5), now we have
E[Wi,j] = E[W V 2D

i,j ] + E[W s
i,j] + E[W D2V

i,j ] ≤ Ti, ∀j ∈ V, (6.1)

where the parameters have the same physical meanings as (5.5).

Figure 6.7: Illustration of the E2E delay analysis with both D2V and V2D communications in
DAVN.

In fact, the total delay of a class i request is (5.5) plus the V2D propagation delay. As we have

E[W V 2D
i,j ] =

d
′
i,j

ri

, (6.2)

where d
′
i,j is the distances between the UAV and the vehicle j from which the request is sent

during the V2D communication, the total delay can be calculated as

E[Wi,j] =


di,j

ri
+ d

′
i,j

ri
+ ρ1

2(1−ρ1) ·
E[B2

1 ]
E[B1] + E[B1], for class 1 requests

di,j

ri
+ d

′
i,j

ri
+ 1

(1−(ρ1+ρ2))(1−ρ1) ·
∑2

j=1 ρj
E[B2

i ]
2E[Bi] + E[B2], for class 2 requests

(6.3)
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6.4 Energy Consumption Model
In this section, the drone energy consumption of UAV i consists of three parts: the communic-
ation energy that is used for the data transfer from the UAV i to vehicle j, ED2V

i,j , and to other
UAVs, ED2D

i,j , and the propulsion energy of the UAV to adjust its location for data transfer,
Em

i , as in the following equations:
Ei =

∑
j∈V

ED2V
i,j +

∑
m∈U

ED2D
i,m + Em, (6.4)

where V is the set of all vehicles in the communication range of the UAV i, U denotes the
set of all UAVs. One can see that we consider both the D2V and the Drone-to-Drone (D2D)
communications. In the following sections, each of the components will be analysed. With the
same analysis as in section 5.4, we can derive the D2D communication energy as in the following
paragraph:

Drone-to-drone path loss The D2D path loss is also known as air-to-air path loss. Con-
trary to the D2V scenario, the D2D path loss is dominated by the free-space LoS propagation.
Thus the D2D LoS path loss between UAV n and UAV m is given as the same as the D2V
communication, as described in Equation. (6.5) [132]:

PLD2D
n,m = 20log10

(
4πfcd

euc
n,m

c

)
+ ηD2D

LoS , (6.5)

where ηD2D
LoS is the mean additional loss of the D2D communication link, c is the speed of light,

and deuc
n,m =

√
(xn − xm)2 + (yn − ym)2 is the euclidean distance between UAV n and UAV m.

Consequently, the channel gain GD2D
n,m , SNRD2D

n,m , achievable data rate CD2D
n,m and energy con-

sumption ED2D
n,m for transmitting a message of size Sn are calculated as followed:

GD2D
n,m = 1

PLD2D
n,m

(6.6)

SNRD2D
n,m =

pnGD2D
n,m∑

i∈Nint piGD2D
i,j + N0

(6.7)

CD2D
n,m = B ∗ log2

(
1 + SNRD2D

n,m

)
(6.8)

ED2D
n,m = Sn

CD2D
n,m

ptrans
n (6.9)
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As for the mobility energy model, it is the same as in section 5.4. Thus, the total drone energy
consumption can be modeled as (6.10):
Ei =

∑
j∈V

ED2V
i,j +

∑
m∈U

ED2D
i,m + Em

=
∑
j∈V

Si

CD2V
i,j

ptrans
i +

∑
m∈U

Sn

CD2D
n,m

ptrans
n +

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Vi

P0

(
1 + 3V 2

i

U2
tip

)

+ P1


√√√√1 + V 4

i

4v4
0
− V 2

i

2v2
0

1/2

+ 1
2

d0ρsAV 3
i ,

(6.10)

where the corresponding parameters are defined in previous sections.

6.5 Dataset Generation

6.5.1 Simulation setup
We consider the same highway scenario as our previous work, illustrated in Fig. 5.4. We adopt
two types of trajectories for the drones: elliptical trajectory and random walk trajectory. Both
trajectories will be detailed in the following sections. The maximum horizontal speed of UAVs
is 30 km/h, the maximum vertical speed is 10 km/h, the limited flying height is between 100
meters and 150 meters [2, 133].

On the other hand, vehicle trajectories are retrieved by the TraCI interface of SUMO [25, 93].
Vehicles move according to the Krauss mobility model and LC2013 lane change model. The
maximum allowed velocity is 100 km/h. For a more authentic scenario, some vehicles are set to
be “aggressive”with impolite behaviors such as low intention to cooperate with others, stay
in the leftmost lane for a long time and exceed the speed limit, represented by the yellow cars.
Moreover, some vehicles are ambulances that have higher priority to pass and lead the in front
vehicles to initiate lane change, represented by the red cars [72].

6.5.2 Elliptical trajectory

Horizontal trajectory for x and y

We adopt elliptical trajectory for the four UAVs as illustrated in Fig. 6.9. The UAVs move
according to the elliptic curve. The initial mathematical expression is shown in Equation.
(6.11):

x2

a2 + y2

b2 = 1, (6.11)

where 2a is the width of the ellipse and 2b is the height of the ellipse.

In our simulation scenario, the four ellipses are distributed on a circle centered on (0, 0) with
a radius of 637 meters, representing the circular highway, as shown in Fig. 6.8. Consequently,
2a = 637 × 2 = 1274, 2b = 637. The horizontal speed and vertical speed of the drones are
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liimited to 30km/h (≈ 8.33m/s) and 10km/h (≈ 2.78m/s). The traffic state is updated every
0.4 second. Thus, x and y positions are functions of simulation step, s, where vhor and vvrt are
the horizontal speed and vertical speed in meter per second:

x = vhor × 0.4s

y = vvrt × 0.4s

It should be noted that the speed of the four drones are set to 5, 10, 20, 30 km/h. On the other
hand, the center coordinates of the four UAVs are

(Cx1, Cy1) = (0, 637)
(Cx2, Cy2) = (637, 0)
(Cx3, Cy3) = (0,−637)
(Cx4, Cy4) = (−637, 0)

Finally, the trajectories with expression in the form of
(x− Cxi)2

a2 + (y − Cyi)2

b2 = 1

for the four UAVs can be represented as in the following equations:
x2

a2 + (y − 637)2

b2 = 1

(x− 637)2

a2 + y2

b2 = 1

x2

a2 + (y + 637)2

b2 = 1

(x + 637)2

a2 + y2

b2 = 1

Vertical trajectory for z

We adopt a random walk trajectory to determine zi, i ∈ [1, 4]. It should be noticed that at each
step, the UAV moves up or down according to the predefined probability array p = (p1, 1− p1),
where p1 is the probability to moving up, and p2 is the probability to moving down. In the
simulation, we set p = (0.5, 0.5). The random walk algorithm is detailed in Algorithm. 4.

Final trajectories

Examples of the generated trajectories of the UAVs are shown in Fig. 6.10.
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Figure 6.8: Details of the ellipses

Algorithm 4 Vertical trajectory generation
1: Input: S is the number of simulation steps, Z is the vertical action range, p and 1− p are

the probabilities to go up and down at each step, ∆z is the vertical step length
2: Initialize vertical trajectory as an all-zero array z of length S
3: for i← 0 to S do
4: Randomly choose a vertical direction, 1 for up, −1 for down, according to p
5: for the chosen direction j, j ∈ {−1, 1} do
6: if z[i] + j ∗∆z ∈ Z then
7: Perform the movement
8: end if
9: end for
10: end for
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Figure 6.9: Examples of the generated elliptical trajectories of UAVs at time t1, t2, t3 and t4
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Figure 6.10: Elliptical trajectories of UAVs
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6.5.3 Random walk trajectory

Trajectory generation algorithm

In this section, we introduce the random walk trajectories for drones. At each step, the drone
move a random step in the sens of random step length and random direction. The maximum
speeds for x, y and z are defined as 20km/h, 20km/h and 10 km/h in order to meet the UAV
speed constraints. As illustrated in Fig. 5.4, the trajectory of each drone is limited in its
communication range. The trajectory generation algorithm is presented in Algo. 5.

Algorithm 5 Random walk trajectory generation
1: Input: S is the number of simulation steps, Rx is the horizontal range on x axis, Ry is

the horizontal range on y axis, Rz is the vertical range, ∆y, ∆z are the step lengths of the
three directions, p and 1 − p are the probabilities to move forward and backward for each
direction

2: for i← 0 to S do
3: for each axis a, a ∈ {x, y, z} do
4: Randomly choose a moving direction ja, ja ∈ {−1, 1} according to p
5: Randomly choose a step length la, la ∈ [0, ∆a]
6: end for
7: if a[i] + ja ∗ la ∈ Ra then ▷ The moving range constraint
8: Perform the movement
9: else
10: Repeat step 3-8 until moving range constraint is meet
11: end if
12: end for

Final Trajectories

The generated trajectories for the four drones are illustrated in Fig. 6.11.

6.5.4 Dataset parameters
The dataset will be generated through a branch of simulations with different vehicular density
ρ. The samples (i.e. the vehicles and drones kinematic parameters) are retrieved, computed and
stored every 0.4s. The parameters used for simulation are shown in Table. 6.2. Each sample
consists of the observations of each of the 4 UAVs, as well as the overall collision rate on the
highway, as represented by the following:

o = {o1, o2, o3, o4, r̄} (6.12)

where o1, o2, o3, and o4 are the observations of UAV1,UAV2,UAV3 and UAV4, respectively. r̄ is
the total collision number on the highway.
An observation of UAV i at step t is expressed as

oi[t] =
{
xi[t], yi[t], zi[t], θi[t], ρi, W̄i, Ēi, t̄ri, t̄bi

}
, (6.13)
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Figure 6.11: Random walk trajectories generated for the four drones

Proposed Drone Optimal Placement Algorithm 97



where xi[t] is the longitudinal position of UAV i at step t, yi[t] denotes the lateral position at
step t, zi[t] is the height at step t, θi[t] is the heading direction at step t (θi[t] = 1 means moving
up, θi[t]=-1 means moving down), ρi is the number of vehiculars in the communication range of
UAV i, W̄i the mean waiting time of the vehicle requests in the communication range of UAV i,
Ēi the average energy consumption of UAV i, t̄ri and t̄bi the mean risky time and mean blocking
time of the vehicles in the communication range of the UAV i. The algorithm for generating
the dataset is presented in Algorithm. 6

Algorithm 6 Algorithm for dataset generation
1: Input: S is the number of simulation steps, V is the set of vehicles on the road
2: Initialize
3: for t← 0 to S do
4: for every vehicle j, j ∈ V do
5: Determine the corresponding UAV of the vehicle according to the vehicle’s GPS

position and UAV’s coverage, denote the corresponding UAV as UAV i
6: Compute W j

i , Ej
i according to Equation. (6.1) and Equation. (6.4)

7: Retrieve tj
ri, tj

bi from vehicle state information
8: Store W j

i , Ej
i , tj

ri and tj
bi in the UAV i’s buffer

9: end for
10: for every UAV i, i ∈ [1, 4] do
11: Compute the average W̄i, Ēi, t̄ri, t̄bi

12: Store current position xi[t], yi[t], zi[t], current heading direction θi[t], current vehicu-
lar density ρi, and W̄i, Ēi, t̄ri, t̄bi as current observation of UAV i

13: end for
14: Store r̄, number of collisions happen at the current step
15: end for

6.5.5 Notations and terminologies
The notations and terminologies used in this report are summarized in Table 6.2.
The drones are equipped with system-on-chip (SoC) semiconductors: Snapdragon 821 with
Quad-core up to 2.15GHz [92]. The mean service time for the two types of messages are
calculated as followed:

• The length of safety message is exponentially distributed with parameter λ′
1 = 2.15GHz×4

512×8bits ≈
2.1× 106. Thus, E[B1] = 1

λ′
1

= 4.763× 10−7 s, E[B2
1 ] = 1

(λ′
1)2 ≈ 2.269× 10−13.

• On the other hand, the length of vehicle state information is a constant and equals to 32
bytes. Thus, E[B2] = 32×8

2.15GHz×4 = 2.977× 10−8 s, E[B2
2 ] = 0.

Table 6.2: Main notations and terminologies

Section Parameter Meaning Value Reference

E[W D2V
i,j ] The D2V propagation delays d

′
i,j

ri

E[W V 2D
i,j ] The V2D propagation delays di,j

ri
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Table 6.2 continued from previous page
Section Parameter Meaning Value Reference

V2D and D2V

Propagation

Delay

di,j and
d

′

i,j

The distances between
the UAV and the vehicle j

from which the request is
sent during the V2D

and D2V communication

√
(xi − xj)2 − (yi − yj)2

ri,j

The achievable
propagation rate of

the communication lnk
B ∗ log2 (1 + SNRi,j)

λi

The arrival rate of a
class i request

λ1 = 20% of vehicle number
λ2 = 2.5

[91]

E[Bi]
The mean service time

at the drone of a
class i request

E[B1] = 4.763× 10−7,
E[B2

1 ] = 2.269× 10−13

E[B2] = 2.977× 10−8,
E[B2

2 ] = 0

[92]

Queuing E[Wi]
The mean waiting time

in the queue of a
class i request

Delay E[Ri]
The mean residual service
time of a class i request

at the E[Si]
The mean sojourn time

of a class i request
E[Si] = E[Bi] + E[Wi]

Drone’s E[Li]
The average number of

requests of class i

waiting in the queue

Side E[Wi,j ]
The total V2D delay of a

class i request from
a vehicle j

W V 2D
i,j V2D propagation delay

W D2V
i,j

Drone-to-vehicle (D2V)
propagation delay

W s
i,j

Queuing delay at
the drone side

Ti

The maximum waiting
time for request class i

0.2 s [82]

a and b

Environmental constant
depending on rural

or urban area

14.39
0.13

[85]

hi

The height of UAV i

from ground level
[100,150] [2]

θi,j

Elevation angle between
UAV i and vehicle j

arctan( hi

dhor
i,j

)

Proposed Drone Optimal Placement Algorithm 99



Table 6.2 continued from previous page
Section Parameter Meaning Value Reference

dhor
i,j

The horizontal distance
between the UAVi

and the vehiclej

√
(x1 − x2)2 + (y1 − y2)2

deuc
i,j

The euclidean distance
between the UAV i

and vehicle j

√
h2

i +
(
dhor

i,j

)2

Pi,j(LoS)
The probability of
line-of-sight link

Pi,j(LoS) = 1
1+a exp(−b(θi,j−a))

Pi,j(NLoS)
The probability of

non-line-of-sight link
1− Pi,j(LoS)

Energy PLi,j(LoS) Path loss with LoS link 20 log
(

4πfcdeuc
i,j

c

)
+ ηLoS

for D2V PLi,j(NLoS) Path loss with NLoS link 20 log
(

4πfcdeuc
i,j

c

)
+ ηNLoS

Communi-

cations
fc

Transmit frequency for
uplink and downlink of
the D2V communication

2.4GHz [2]

ηLoS and
ηNLoS

Additional losses for
LoS and NLoS links

1 dB
20 dB

[85]

c The speed of light 3× 108 m/s

G(i, j)
The channel gain of the

communication link between
the UAV i and vehicle j

G(i, j) = 1
P L(i,j)

SNRi,j The signal-to-noise ratio piGi,j∑
n∈Nint

pnGn,j+N0

Ci,j

The achievable data rate
in bits per second (bps)

B · log2 (1 + SNRi,j)

ptrans
i

The transmit power
of UAV i

280 mW [2]

N0 The noise power -174 dB/Hz [87]

B
The bandwidth for the
D2V communication

100 MHz [2]

Si

The size of the message that
UAV i is going to send

512 bytes [2]

PLD2D
n,m

The D2D LoS path loss
between UAV n

and UAV m

20log
(

4πfcdeuc
n,m

c

)
+ ηD2D

LoS

ηD2D
LoS

The mean additional
loss of the D2D

communication link
Energy

for D2D
deuc

n,m

The euclidean distance
between UAV n

and UAV m

√
(xn − xm)2 + (yn − ym)2

Communi- GD2D
n,m The channel gain 1

P LD2D
n,m
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Table 6.2 continued from previous page
Section Parameter Meaning Value Reference
cations SNRD2D

n,m The signal-to-noise ratio pnGD2D
n,m∑

i∈Nint
piGD2D

i,j
+N0

CD2D
n,m Achievable data rate B · log2

(
1 + SNRD2D

n,m

)
ED2D

n,m

Energy consumption for
transmitting a message

of size Sn

Sn

CD2D
n,m

ptrans
n

Sn The transmitted message size 512 bytes [2]

Vi

Horizontal speed of UAV i

Vertical speed of UAV i

30 km/h
10 km/h

P0
Power constant representing

the blade profile
84.14 N [89]

Energy P1

Power constant representing
the induced power levels

in hovering status
88.63 N [89]

for Utip The tip speed of the rotor blade 120 m/s [89]

Mobility v0
The mean rotor induced

velocity in hover
4.03 [89]

d0 The fuselage drag ratio 0.6 [89]
s Rotor solidity 0.05 [89]
ρ Air density 1.225 kg/m3 [89]
A Rotor disc area 0.503 m2 [89]

6.6 Proposed Drone Optimal Trajectory Prediction (DOT-
P) framework

We proposed an algorithm based on ORL. Thanks to the offline training process, we alleviate the
drones from hovering for a long time during training which leads to a huge energy consumption.
Fig. 6.12 illustrates the working modules of proposed algorithm, which consists of the offline
training model and the online prediction module. In order to obtain an efficient and accurate
training, it is necessary to perform data preprocessing to the collected dataset. The processed
data will then be fed into the RL model for training.

6.6.1 Data preprocessing
The observation dataset undergoes a rigorous data preprocessing and cleansing process before
analysis and modelling. This process ensures that the data is in a suitable state for the task.

1. The first step is to check the missing values to identify abnormal columns that need more
attention due to missing data.

2. The second step is to check for infinite values. This allows to identify columns with
problematic infinite values.
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Figure 6.12: Proposed drone optimal trajectory prediction (DOT-P) framework modules

3. After these initial checks, the code proceeds with data imputation. It fills in the miss-
ing values with the mean value of their respective columns. This provides a reasonable
estimate for missing data and avoids bias in the analysis. It also replaces the infinite
values with the maximum non-infinite value in each column. This avoids potential errors
or outliers caused by infinite values while retaining valuable data, as illustrated in Fig.
6.13.

4. Finally, it drops the z-axis and unrelated colums for all drones of the observation dataset.
This comprehensive data preprocessing and cleansing process improves data quality and
prepares the dataset for further analysis, ultimately leading to more accurate and reliable
results in data-driven tasks.

Figure 6.13: Data cleaning process

6.6.2 Input feature
As detailed in section 6.5.4, the collected dataset consists of drones’ kinematic parameters and
road traffic information, as represented in (6.12) and (6.13). Thus, we define a function that
takes the observations dataset and a list of movement column names as inputs. The function’s
purpose aims to compute and return the differences between consecutive values in these columns,
which represent the displacement between successive data points. The function works as follows:
it computes the differences for each pair of coordinates (e.g., dx1, dy1, dx2, dy2, etc.) and adds
them as new columns to the action dataset. Then it sets the index of the action dataset to
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match the index of the observation dataset. This ensures that the resulting action dataset is
aligned with the original data. This methodology provides a convenient way to calculate and
extract actions or changes in coordinates from the observation dataset, which is crucial for our
application to track the movements and analyse the changes in spatial data over time.

6.6.3 Reward function
We define the function for drones based on specific input states. The function takes the obser-
vation dataset as input and an array of weight coefficients that control the reward calculation.
The function performs various computations on the observation dataset to derive the rewards.
It first calculates the sum of the connected vehicles for each drone, ρ. Then it computes the
mean values of the vehicles’ waiting time, W , the drone energy consumption, E, the risky time,
tr, and the blocking time, tb, for all drones. Moreover, it extracts r, the number of collisions
from the observation dataset. The goal is to maximize the vehicular density while minimizing
the other parameters (i.e. W , E, tr, tb). The total reward R is then computed as in (6.14):

R = wρRρ − (wW RW + wERE + wtrRtr + wtb
Rtb

+ wrRr), (6.14)

where Rρ = ρ, RW = W , RE = E, Rtr = tr, Rtb
= tb, Rr = r. And wρ, wW , wE, wtr , wtb

, wr

are the weights of each reward, which can be specified and adjusted to customize the reward
function. In our work, we set wρ = 3, wW = wE = wtr = wtb

= 1.5, and wr = 5. These values
are selected from various configurations. Given that road safety is the paramount concern, the
highest weight is assigned to the collision reward, Rr. Regarding the weight of the density
reward, wρ, as this study focuses on three traffic densities (i.e. sparse, medium and dense),
we allocate the second-highest value to wρ to underscore the difference. Subsequently, the
remaining weights are assigned equal values. It should be noted that in the data preprocessing
module, the input data are normalised, leading to normalised reward in (6.14). The reward
values are further scaled using the min-max scaler, ranging from 0 to 1.

6.6.4 Agent model based on PLAS (Policy in the Latent Action
Space)

To build the drone trajectory prediction model based on Policy in the Latent Action Space
(PLAS), we adopt the d3rlpy module, which is a Python library for deep RL that supports
various offline algorithms, both discrete and continuous [134]. We compare the various Q-value
function supported in d3rlpy in Table. 6.3 in order to choose the most suitable one.

To asses the performance of our proposed algorithm, we evaluate the model with a testing set
with the same settings as the training scenario. The testing set consists of the trajectories of
each vehicle on the road, their indexes and priorities, as well as the trajectories of each of the
four drones. After data preprocessing, the vehicle and drone trajectories will be used to compute
the drone energy consumption and vehicle-to-drone E2E delay using predicted trajectory. And
one can compare the new values with the original values from the testing set. The testing
workflow is shown in Fig. 6.14.

After conducting numerous trials on the training dataset, we identified the optimal configura-
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Table 6.3: Supported Q-value algorithms in d3rlpy.

Algorithm
Support Discrete

Control
Support Continous

Control

Support Offline
Reinforcement

Learning
Behavior Cloning

(supervised learning)
✓ ✓

Neural Fitted
Q Iteration (NFQ)

✓ x ✓

Deep Q-Network
(DQN)

✓ x

Double DQN ✓ x
Deep Deterministic
Policy Gradients

(DDPG)
x ✓ ✓

Twin Delayed Deep
Deterministic

Policy Gradients (TD3)
x ✓ ✓

Soft Actor-Critic (SAC) ✓ ✓ ✓
Batch Constrained
Q-learning (BCQ)

✓ ✓ ✓

Bootstrapping Error
Accumulation

Reduction (BEAR)
x ✓ ✓

Conservative
Q-Learning (CQL)

✓ ✓ ✓

Advantage Weighted
Actor-Critic (AWAC)

x ✓ ✓

Critic Reguralized
Regression (CRR)

x ✓ ✓

Policy in Latent
Action Space (PLAS)

x ✓ ✓

TD3+BC x ✓ ✓
Implicit Q-Learning

(IQL)
x ✓ ✓

Decision Transformer
Under

development
✓ ✓
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Figure 6.14: Testing workflow for drone position prediction

tions for PLAS with Perturbation, which consists of 30 epochs with 5000 steps per epoch, and
for PLAS, which entails 60 epochs with 5000 steps per epoch. The resulting predicted trajectory
are visualized in Fig. 6.15 and Fig. 6.16. It should be noted that PLAS stands for Policy in the
Latent Action Space. It is a method that learns a policy in a low-dimensional latent space that
is mapped to the original action space by a decoder network. PLAS with Perturbation would
introduce a small amount of noise or randomness to the latent action space, so that the policy
can explore slightly different actions than those in the dataset.

The predicted movement of each drone dx and dy are shown in Fig. 6.17 and Fig. 6.18 it is
almost the same between -4 meters and +4 meters.

We employ an unsupervised machine learning algorithm, specifically the K-means algorithm,
to determine the predominant areas where each drone self locates the majority of its time.
This analysis results in the partitioning of the predicted trajectory into three distinct zones, as
illustrated in Fig. 6.19 and Fig. 6.20.

6.6.5 Performance evaluation
We focus on three performance metrics: drone path length, drone energy consumption and
V2D E2E delay. To compute these values, we first generate and collect a testing set with
the trajectories of all the vehicles on the road, as well as the trajectories of the four drones.
Then, the V2D E2E delay and drone energy consumption can be calculated by (6.3) and (6.4).
Algorithm. 7 shows the pseudo-code of the parameter computation. The original values and the
values using PLAS model with perturbation, and PLAS model are shown in Table. 6.4, 6.5 and
6.6. One can see that PLAS with perturbation yields superior results in terms of path length,
average delay, and energy consumption. Moreover, the performance improvement of the three
performance metrics averaged from the four drones using PLAS with perturbation compared
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Figure 6.15: The original and the predicted trajectories using PLAS with perturbation

Figure 6.16: The original and the predicted trajectories using PLAS
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Figure 6.17: The movement of each drone dx and dy using PLAS with perturbation

Figure 6.18: The movement of each drone dx and dy using PLAS
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Figure 6.19: K-means clustering applied on the predicted trajectories using the PLAS with
perturbation

Figure 6.20: K-means clustering applied on the predicted trajectories using the PLAS
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Algorithm 7 Delay and energy consumption evaluation
1: Input: Vehicle trajectories and drone trajectories
2: Output: Average E2E delay and energy consumption for each drone
3: for each simulation step do
4: for each drone i, i ∈ [1, 4] do
5: Update the list of vehicles in its communication range, lv[i]
6: for each vehicle j ∈ lv[i] do
7: Compute delay d with function total_delay()
8: delay[i] += d
9: Compute energy consumption e with function total_energy()
10: energy[i] += e
11: end for
12: tot_delay[i].append(delay[i]/len( lv[i]))
13: tot_energy[i].append(energy[i]/len( lv[i]))
14: end for
15: end for

with the original values is 58.23%, 49.22% , and 19.7%. And the average improvement using
PLAS compared with the original values is 54.64%, 46.22% and 0.81%. These results proves
the the fact that the proposed model based on PLAS reduces V2D E2E delay and drone energy
consumption.

According to Fig. 6.19 and 6.20, each of the four drones occupies one road segment, which
enhances the fact that the drone learns to monitor the road under its coverage.

Table 6.4: Path length comparison between the original values and trained models

Drone Index Original (m) PLAS with Perturbation (m) PLAS (m)
1 6547.4 2789.44 2808.4
2 7959.47 3274.82 3795.5
3 6547.4 2782 2757.36
4 7959.47 3273.5 3798.18

Table 6.5: Average drone energy consumption comparison between the original values and
trained models

Drone Index Original (w) PLAS with Perturbation (w) PLAS (w)
1 127.962856 68.39249 70.884233
2 133.527065 65.798664 78.134046
3 120.749584 63.341451 64.175147
4 133.193975 60.886852 64.02225
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Table 6.6: Average delay comparison between the original values and trained models

Drone Index Original (ms) PLAS with Perturbation (ms) PLAS (ms)
1 35.334 26.69 28.833
2 32.586 20.868 33.557
3 32.085 30.283 32.923
4 28.39 25.258 32.048

6.6.6 Polynomial-based approach
We also explored an alternative approach focused on identifying optimal points that exhibit the
highest responsiveness while offering the most significant rewards. To achieve this, we applied
the same reward function as described in section 6.6.3 and (6.14). However, it is important to
note that this method is specifically designed for random trajectories with a substantial number
of points, as the 100,000-point example illustrated in Fig. 6.21. Subsequently, we pinpointed
the most responsive points with the highest rewards. In our case, we selected the top 1% of
these points for further analysis, as depicted in Fig. 6.22.

We apply polynomial regression with a 3rd-degree polynomial to effectively fit a curve to the
input of the best locations of the drones. Subsequently, we derive a polynomial equation using
these coefficients. Afterward, we enhance the data representation by creating a more refined set
of points through linear interpolation between the minimum and maximum values of the input
locations. This process is crucial for optimizing the trajectories for each drone, as visualized in
Fig. 6.23

Performance analysis

Finally, we employ this fitted curve to estimate the approximate length of the path represented
by the collection of x and y coordinates. As envisioned in Table. 6.7, we notice that the
travelling distance has been reduced by more than 300 times, which implies a reduction in
energy consumption.

Table 6.7: Comparison of the paths travelled by each drone

Original path
length (m)

Original coverage
length (m)

Approximate length of
the predicted path (m0

Drone 1 124973.11 753 381.02
Drone 2 124721.48 2499.06 479.88
Drone 3 124448.89 725.9 344.76
Drone 4 125096.67 2144.23 302.02
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Figure 6.21: Random walk trajectory of the 4 drones

Figure 6.22: Random trajectory of drones and the highest responsive points
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Figure 6.23: Best drone trajectories approximated by a 3rd-degree polynomial

6.7 Conclusion
In this chapter, we present our DOT-P algorithm for optimizing drone trajectories in a dynamic
vehicular network. We first conduct an extensive literature study on existing path planning
algorithms. Then, we present the details of DOT-P, including the input, output and reward
function. Specifically, we base our algorithm on PLAS, an ORL model to prevent time and
energy-consuming online training.

Numerical results demonstrate that our method can reduce the travelled path length, the average
vehicle communication delay, and the average drone energy consumption by adjusting drones’
positions according to the traffic conditions. Moreover, the proposed method provides a novel
and efficient solution for enhancing the drone mobility and reliability in complex scenarios.

Furthermore, we extend our efforts to devising a method for calculating the optimal path,
and can strategically guide drones through areas with the highest reward points in a random
walk scenario. This approach is geared towards identifying the most responsive locations and
crafting bespoke trajectories for each drone. In this way, we have successfully contributed to the
dominant goal of reducing the overall distance travelled by each drone, ultimately optimizing
their operational efficiency.

In the next chapter, we will conclude the thesis work and provide future research directions.
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Chapter 7
Conclusion

7.1 Thesis work summary
Lane change, as one of the main reasons of road accident, is an important issue to tackle in
vehicular networks. Nevertheless, existing LCA maneuvers based on DRL rely basically on
vehicle local information, lacking a global view of the overall traffic. In this context, drones,
or UAVs provide a promising extension to the vehicular network services thanks to their high
mobility, computing ability and LoS communication links with road vehicles. Consequently, in
this thesis, we devote our efforts in devising a safe and efficient LCA maneuver in DAVN.

Chapter 2 is devoted to the introduction of ML basis, including supervised learning, unsuper-
vised learning, RL and FL. In addition, we paid special attention to FRL which combines RL
and FL.

Chapter 3 is the literature study of LCA in DAVN. We first present the DAVN basis and shed
the light on drone’s potential of improving road active safety for vehicular networks.

Then, we review the existing work of LCA maneuver using DRL and other techniques. Spe-
cifically, we found that existing work rely solely on local vehicle information (i.e. instantaneous
speeds, accelerations, distances) to make lane change decisions, without taking into account
the overall traffic state (i.e. the road vehicular density). Moreover, the reward function is not
dynamically adapted to the fluctuating traffic conditions.

Besides, after studying the related work about FL and FRL for DAVN, we found that the
majority of the papers do not perform the calibration of the global update frequency of the
FL algorithm. In addition, the delay processing assessment at the drone level is not well
investigated.

Based on these understandings, we found it necessary to devise a LCA maneuver with global
information sent by drones. As a result, we propose our GL-DEAR platform. Moreover, we take
into consideration the dynamic adjustment of the global update frequency for the FL algorithm,
and the non-negligible processing delay at the drone with our proposed DAFL framework.

Chapter 4 introduces the proposed drone assisted LCA platform, GL-DEAR. Firstly, the three
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main modules of GL-DEAR is detailed, including Road with emergency vehicles and risks; Data
file acquisition and processing and Real time lane change decision-making modules.

Particularly, in the second module, we implement the feature dimension reduction technique,
PCA, and compare the performance with the GL-DEAR without using PCA. In fact, our
input features consists of vehicle kinematic parameters and road traffic information. In this
case, the dimension reduction of input feature will lead to information loss, and hence reduced
performance.

Then, the extraction of an authentic lane change model from the authentic NGSIM dataset is
explained. With a literature survey, we based the NGSIM lane change model on the XGBoost
model. This trained model is applied for ordinary vehicles on the road to recreate the real-world
lane change behavior.

Next, we tackle the details of our GL-DEAR platform, which is a DQN with a dynamic reward
function that takes into consideration road safety, travel efficiency, and passenger’s comfort.
The performance is further enhanced by the global control of the drones and the two driving
modes possessed by ego vehicle. The simulation scenario includes emergency vehicles and ran-
dom road risks. Numerical results prove that GL-DEAR successfully achieve collision-less trips
on a highway prone to risks and emergency vehicles.

Chapter 5 presents our proposed DAFL drone assisted federated deep reinforcement learning
framework. This framework enables the cooperative learning between several ego vehicles of a
global lane change model. The learned model helps drivers to achieve safe and real-time lane
changes.

In more detail, we first propose a global model aggregation algorithm based on client’s reputation
for the FL central server. In fact, the client’s reputation is computed from its local training
reward and the cosine similarity between the local update and the global update.

Then, we perform a detailed mathematical analysis of the E2E delay at the drone consisting of
the queuing delay and the D2V propagation delay. The former is formed based on a M/G/1
multi-class preemptive queue. Moreover, we provide an accurate modeling of the total power
consumption of the drone, including computation, communication and mobility.

Afterwards, we propose a dynamic adjustment threshold for the FL global update frequency.
The thresholds for the update frequency are calibrated according to road safety measurements
(i.e., collision rate, risky and impolite driving time on the road) and drone energy consumption.
The goal is to achieve the best trade-off between safety and power consumption. Consequently,
the drone server can dynamically adapt the global model update frequency according to the
road safety and its battery life.

Simulation results prove the efficiency of the proposed DAFL framework.

Chapter 6 presents our DOT-P algorithm for optimizing drone trajectories in a dynamic vehicu-
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lar network. The goal is to tackle the drone optimal trajectory planning problem and to enhance
the trade-off between drone energy consumption and road safety (i.e. V2D E2E delay).

First, we conduct a comprehensive study of the state-of-the-art of drone trajectory planning
techniques. Then, we detail the vehicle E2E delay analysis and drone energy consumption
modeling.

Afterwards, a big dataset is pre-collected, including drone’s kinematic parameters and road
traffic information for the model training. Specifically, we propose two kinds of trajectories for
the drone: elliptical trajectory and random walk trajectory.

Then, we adopt the PLAS model for the ORL DOT-P to avoid power-consuming online training.
Simulation results show great reduction of the drone energy consumption and vehicle E2E delay
using the trained model.

7.2 Future Perspectives
This thesis opens the road to various research axes. Our future perspectives are listed below:

• Generalisation of the framework to more complex and realistic scenarios: We
study lane change maneuvers in a uniform environment, which allows us to draw several in-
teresting conclusions. In the future, the presence of intersections, pedestrians, and ramps
where vehicles coming in and out can be considered. This expansion to more complex
scenarios introduces additional challenges such as varying traffic densities, unpredictable
pedestrian movements, and the need for efficient navigation through intersections. How-
ever, our model’s robustness and adaptability enable seamless transferability to these
realistic scenarios with the assistance of drones. By incorporating real-time data from
drone observations, our model can dynamically adjust lane change strategies to account
for changing environmental factors and ensure safe and efficient navigation through com-
plex urban landscapes. Thus, our research not only provides insights into lane change
maneuvers in controlled environments but also lays the foundation for the development of
intelligent systems capable of operating effectively in dynamic and challenging real-world
conditions.

• Inter-drone handover using game theory: In [2], it has been established that drones
operating within vehicular networks have a notable limitation, with a maximum capacity
to connect to 25 vehicles simultaneously. As the number of vehicles within the network
exceeds this predetermined threshold, it becomes evident that inter-drone handover will
be of paramount importance. This transition of communication responsibility between
drones becomes imperative to ensure the uninterrupted flow of data and services, especially
in scenarios where vehicular populations are large and dynamic. Looking ahead, it is
evident that the issue of inter-drone handover within the domain of DAVN deserves further
research and exploration. Understanding and developing efficient strategies for seamless
inter-drone handover is essential to get profit from the full potential of drones in enhancing
vehicular connectivity. This area should be a focal point for future investigations in the
field of DAVN.
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• Federated learning for resource allocation: Another research axes in vehicular net-
works is the exploration of vehicle traffic prediction through the adoption of FL. This
area of research focuses on the issue of resource allocation within vehicular networks, with
a particular emphasis on anticipating traffic patterns and optimizing network resources
in accordance with them. With FL’s unique ability to leverage local data from various
vehicles while preserving privacy, this approach holds the potential to enhance the effi-
ciency of traffic management, improve congestion mitigation strategies, and contribute to
a safer and more streamlined vehicular ecosystem [144].

An example is to apply FRL for resource allocation in vehicular networks during a han-
dover. The goal is to optimize the transmission power of vehicles to ensure seamless con-
nectivity throughout the handover process. By dynamically adjusting transmission power
levels, vehicles can maintain stable communication links with roadside units (RSUs) or
other vehicles despite transitioning between network coverage areas. FRL offers signific-
ant advantages in this context by harnessing the wealth of local data collected by RSUs
and vehicles themselves. This decentralized approach allows RSUs to anticipate handover
events and allocate resources in real-time within a narrow time window, ensuring uninter-
rupted connectivity for vehicles as they move through the network. By leveraging FRL,
vehicular networks can achieve efficient resource allocation, minimize communication dis-
ruptions during handovers, and ultimately enhance the overall reliability and performance
of the network.

• Deploying Graph Convolutional Neural Networks (GCNs) in vehicular net-
works: Deploying Graph Convolutional Neural Networks (GCNs) in vehicular network
research represents a transformative step towards enhancing the efficiency and safety of
modern transportation systems. Vehicular networks are inherently complex, dynamic, and
interconnected, making them ideal candidates for GCN applications. By treating vehicles
as nodes and their communication interactions as edges in a graph, GCNs can extract
valuable insights into traffic patterns, congestion, and even predictive maintenance. This
advanced approach allows for real-time analysis of vehicular data, enabling intelligent
traffic management, accident prevention, and efficient routing [145]. Furthermore, the
deployment of GCNs can contribute to the development of autonomous driving systems
and intelligent transportation infrastructure, improving the road safety, sustainability,
and ultimately improving the overall driving experience.
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Titre : APPRENTISSAGE POUR LA SURETÉ DANS LES RÉSEAUX VÉHICULAIRES

Mots clés : Apprentissage machine, changement de voie, réseaux vehiculaires, apprentissage fédéré, ana-
lyse des délais, contrôle

Résumé : Cette thèse porte sur le développement
d’une manœuvre d’aide au changement de voie
(lane Change Assistance, LCA) sûre et efficace
dans le contexte des réseaux de véhicules as-
sistés par drones (Drone Assisted Vehicular Net-
work, DAVN). En effet, les changements de voie
contribuent de manière significative aux accidents
de la route, nécessitant des solutions efficaces au
sein des réseaux routiers. Les LCA stratégies ac-
tuelles établies sur l’apprentissage par renforce-
ment profond (Deep Reinforcement Learning, DRL)
sont limitées par les informations locales sur les
véhicules, négligeant une vue globale, comme des
conditions de circulation. Pour résoudre ce problème,
les véhicules aériens sans pilote (Unmanned Aerial
Vehicles, UAVs), ou drones, présentent une exten-
sion prometteuse des services de réseau automobile
grâce à leur mobilité, capacités informatiques et liai-
sons de communication en visibilité directe (Line-if-
Sight, LoS) avec les véhicules routiers.
Dans un premier temps, nous faisons une étude bi-
bliographique sur LCA au sein du DAVN, mettant en
évidence le potentiel des drones pour améliorer la
sécurité routière. Les approches LCA existantes s’ap-
puient principalement sur des informations locales sur
les véhicules et ne prennent pas en compte l’état glo-
bal du trafic. Afin de réduire cette limitation, nous pro-
posons le GL-DEAR : joint global and local drone-
assisted lane change platform based on Deep-Q Net-
work (DQN) with a dynamic reward function, for LCA
with drones’ assistance.
La plateforme proposée se compose de trois mo-
dules : route à risques aléatoires et véhicules d’ur-
gence ; acquisition et traitement des données; prise
de décision de changement de voie en temps réel. La
manœuvre de changement de voie est basée sur un
Deep Q-Network avec des fonctions de récompense
dynamiques. Plus précisément, nous adoptons les
modèles de changement de voie authentiques basés
sur l’ensemble de données NGSIM pour les véhicules

routiers ordinaires afin de recréer les comportements
de changement de voie du monde réel dans les simu-
lations. Les résultats numériques démontrent la capa-
cité de la plateforme à réaliser des trajets sans colli-
sion sur des autoroutes à risque avec des véhicules
d’urgence.
Dans un deuxième temps, nous identifions un
manque de calibrage de la fréquence de mise à jour
globale des algorithmes d’apprentissage fédéré (Fe-
derated Learning, FL) et l’absence d’évaluation ap-
profondie du délai de traitement au niveau du drone.
Nous proposons donc un cadre d’apprentissage par
renforcement fédéré (FRL) assisté par drone, DAFL.
Ce cadre permet un apprentissage coopératif entre
les véhicules de l’ego en appliquant FL. Il comprend
un algorithme d’agrégation de modèles global basé
sur la réputation du client et une analyse complète
du délai de bout en bout (End-to-End, E2E) au ni-
veau du drone. Plus précisément, la fréquence glo-
bale de mise à jour est ajustée dynamiquement en
fonction des mesures de sécurité routière et de la
consommation énergétique des drones, ce qui donne
des résultats efficaces dans les simulations.
Dans la troisième étape, nous concevons l’algorithme
DOP-T pour optimiser les trajectoires des drones
dans les réseaux de véhicules dynamiques. Cet algo-
rithme vise à équilibrer la consommation énergétique
des drones et la sécurité routière. Nous fournissons
un état de l’art complet des techniques existantes de
planification de trajectoire de drones. Ensuite, sur la
base de la modélisation du délai E2E du véhicule
et de la modélisation de la consommation d’énergie
du drone. Dans la seconde étape, nous formons un
modèle d’apprentissage par renforcement hors ligne
(Offline-Reinforcement Learning, ORL) pour éviter
une formation en ligne consommatrice d’énergie. Les
résultats de la simulation démontrent une réduction si-
gnificative de la consommation d’énergie des drones
et du délai E2E du véhicule à l’aide du modèle en-
traı̂né.



Title : MACHINE LEARNING FOR ROAD ACTIVE SAFETY IN VEHICULAR NETWORKS

Keywords : Machine learning, lane change, vehicular networks, federated learning, delay analysis, control

Abstract : This thesis focuses on the development of
a safe and efficient LCA maneuver in the context of
drone-assisted vehicle networks (DAVN). In fact, lane
change maneuvers contribute significantly to road ac-
cidents, requiring effective solutions within road net-
works. Current lane change assistance (LCA) stra-
tegies relying solely on deep reinforcement learning
(DRL) are limited by local vehicle information, neglec-
ting a global view of traffic conditions. To address this
problem, unmanned aerial vehicles (UAVs), or drones,
present a promising extension of automotive network
services due to their mobility, computing capabilities,
and line-of-sight (LoS) communications links with road
vehicles.
In the first step, we conduct a literature review on LCA
within DAVN, highlighting the potential of drones to
enhance road safety. Existing LCA approaches pre-
dominantly rely on local vehicle information and fail to
consider overall traffic states. To address this limita-
tion, we propose the GL-DEAR: joint global and local
drone-assisted lane change platform based on Deep-
Q Network (DQN) with a dynamic reward function, for
LCA with drones’ assistance.
The proposed platform consists of three modules:
road with random risks and emergency vehicles; data
file acquisition and processing; and real-time lane
change decision-making. The lane change maneuver
is based on a Deep Q-Network with dynamic reward
functions. Specifically, we adopt the authentic NGSIM
dataset-based lane change models for ordinary road
vehicles to recreate real world lane change behaviors

in the simulations. Numerical results demonstrate the
platform’s ability to achieve collision-free trips on risky
highways with emergency vehicles.
In the second step, we identify a lack of calibration for
the global update frequency in FL algorithms and the
absence of thorough drone-level processing delay as-
sessment. To this end, we propose the drone assisted
Federated Reinforcement Learning (FRL)-based LCA
framework, DAFL. This framework enables coopera-
tive learning between ego vehicles by applying Fe-
derated Learning (FL). It includes a client reputation-
based global model aggregation algorithm and a com-
prehensive analysis of End-to-End (E2E) delay at the
drone. Specifically, the global update frequency is dy-
namically adjusted according to road safety measu-
rements and drone energy consumption, yielding effi-
cient results in simulations.
In the third step, we devise the DOP-T algorithm for
optimizing drone trajectories in dynamic vehicular net-
works. This algorithm aims to balance drone energy
consumption and road safety. We provide a compre-
hensive state-of-the-art review of the existing drone
trajectory planning techniques. Then, based on the
vehicle E2E delay modeling and the drone energy
consumption modeling in the second step, we train a
Offline Reinforcement Learning (ORL) model to avoid
power-consuming online training. Simulation results
demonstrate a significant reduction in drone energy
consumption and vehicle E2E delay using the trained
model.
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