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Abstract

As smartphone cameras became more prevalent than traditional camera systems, the

demand for precise measurements increased. This Ph.D. dissertation proposes using deep

learning systems to evaluate image-quality criteria specific to smartphone camera evalua-

tion, and more specifically texture evaluation. This dissertation addresses several limita-

tions in current image-quality assessment methods for smartphone cameras. Deep learning

systems struggle with computational complexity due to high-resolution smartphone images,

and downsizing would lead to information loss for evaluating noise and details preservation.

Consequently, it is essential to find the relevant image regions to assess a camera attribute to

alleviate these problems. Additionally, the lack of suitable datasets hinders the development

of learning-based methods aimed at benchmarking smartphone cameras. Furthermore, when

comparing cameras, it is essential to capture the same content to facilitate direct compari-

son. In standard camera benchmarking protocols, multiple shots are collected from the same

content. This setting deviates from traditional machine learning approaches, where training

and test data are assumed to be independent and identically distributed (iid). However, the

non-independent nature of our data is frequently overlooked in the image-quality assessment

literature.

To overcome these challenges, this research introduces several contributions: (i) A re-

gion selection method is introduced to automatically detect relevant regions for evaluating

specific quality attributes. Adapting the class activation map method for a regression prob-

lem, we outperform traditional chart-based approaches in evaluating texture quality and per-

mitting the usage of deep learning methods on charts shot in laboratory conditions. In this

work, we use texture quality as an illustrative example of camera quality attributes. How-

ever, our methodology is designed to be applicable to other attributes, such as noise, as well.

(ii) A new in-the-wild dataset is created to accurately reflect the complex mixture of defects

commonly found in smartphone camera images and reflect the scenario of camera bench-

marking, where several different scenes are shot by multiple camera devices. This dataset,

annotated through pairwise comparisons, allows us to perform a large evaluation of different

methods in different practical scenarios, setting guidelines for the usage of deep learning

systems for camera quality evaluation. (iii) We introduce a new image quality assessment

setup and method where we go beyond the traditional iid assumption. We consider multiple

images with varying quality of the same content available at test time. We use the specificity

of this camera quality estimation setting to enhance the quality prediction accuracy by intro-

ducing a batch-based pseudo-reference which allows us to use full-reference methods in the

no-reference setting.
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Résumé

Alors que les caméras de smartphones sont devenues plus répandues que les systèmes de

caméras traditionnels, la demande de mesures précises de qualité a augmenté. Cette thèse

de doctorat propose d’utiliser des systèmes d’apprentissage profond pour évaluer de manière

plus approfondie les critères de qualité d’image spécifiques à l’évaluation des caméras de

smartphones, et plus particulièrement l’évaluation de la texture, là où les approches précé-

dentes reposaient sur la photographie de mires en laboratoire ou bien n’évaluaient qu’une

qualité globale de l’image. Cette thèse aborde de manière exhaustive plusieurs limites des

méthodes actuelles d’évaluation de la qualité d’image pour les caméras de smartphones. Les

systèmes d’apprentissage profond se heurtent à une complexité de calcul accrue due à la

haute résolution des images de smartphones, et une réduction de la taille entraînerait in-

évitablement une perte d’informations pour apprécier pleinement la préservation du bruit et

des détails. Par conséquent, il est essentiel de développer des stratégies pour identifier les

régions d’image pertinentes pour évaluer les attributs d’un appareil photo afin d’atténuer ces

problèmes. En outre, le manque d’ensembles de données appropriés constitue un obstacle

majeur qui entrave le développement de méthodes basées sur l’apprentissage visant à évaluer

de manière robuste les appareils photo de smartphones. Par ailleurs, lors de la comparaison

des appareils photo, il est essentiel de photographier le même contenu pour faciliter la com-

paraison directe et garantir une comparaison juste et équitable. Dans les protocoles standard

d’évaluation comparative des appareils photo, plusieurs photos sont prises à partir du même

contenu. Ce cadre méthodologique s’écarte des approches traditionnelles d’apprentissage

automatique, dans lesquelles les données d’apprentissage et de test sont supposées être in-

dépendantes et identiquement distribuées (iid). Cependant, la nature non indépendante de

nos données est souvent négligée dans la littérature sur l’évaluation de la qualité des images.

Pour relever ces défis, cette recherche apporte plusieurs contributions : (i). Une méth-

ode de sélection des régions est introduite pour détecter automatiquement les régions per-

tinentes pour l’évaluation d’attributs de qualité spécifiques. En adaptant la méthode de la

carte d’activation de classe à un problème de régression, nous sommes capable de calculer

en utilisant plusieurs images d’entrainement une index de pertinence pour chaque zone de

l’image. Avec cette nouvel information, nous sommes capable de surpasser les approches

traditionnelles basées sur des mires spécialisées pour évaluer la qualité de la texture et

permettre l’utilisation de méthodes d’apprentissage profond sur des mires photographiées

en laboratoire. Dans ce travail, nous utilisons la qualité de la texture comme un exem-

ple des attributs de qualité de la caméra. Cependant, notre méthodologie est conçue pour
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s’appliquer également à d’autres attributs, tels que le bruit, ce que nous testons expérimen-

talement. (ii) Un nouvel ensemble de données in-the-wild est créé pour refléter avec préci-

sion le mélange complexe de défauts que l’on trouve couramment dans les images d’appareils

photo de smartphones et pour refléter le scénario de l’évaluation comparative des appareils

photo, dans lequel plusieurs scènes différentes sont photographiées par plusieurs appareils

photo. Cet ensemble de données est annoté par des comparaisons deux à deux en maximisant

l’information apporté par une nouvelle comparaison considérant les comparaisons précédem-

ment effectués. Il nous permet d’effectuer une large évaluation de différentes méthodes dans

différents scénarios pratiques, établissant des lignes directrices pour l’utilisation de systèmes

d’apprentissage profond pour l’évaluation de la qualité des appareils photo. (iii) Nous intro-

duisons une nouvelle configuration et une nouvelle méthode d’évaluation de la qualité des

images qui vont au-delà de l’hypothèse iid traditionnelle. Nous considérons plusieurs im-

ages de qualité variable du même contenu disponibles au moment du test. Nous utilisons la

spécificité de ce cadre d’estimation de la qualité de la caméra pour améliorer la précision de

la prédiction de la qualité en introduisant une pseudo-référence calculée à partir des images

présentes dans le batch. Cette méthode nous permet d’utiliser des méthodes full-reference

dans un cadre sans référence. Cette approche novatrice nous permets d’effectuer une adapta-

tion du système d’évaluations à un nouveau domaine, ici une nouvelle scène photographiée,

entièrement au moment du test. Ainsi, cette thèse de doctorat suit une progression vers

l’évaluation automatique sur scènes naturelles. Nous commençons sur des contenus naturels

en laboratoire, et utilisons les méthodes d’apprentissage profond. Ensuite, sur des scènes

naturelles, nous constituons une base de données adaptée à notre problématique et montrons

l’utilité de l’emploi d’une référence de haute qualité. Enfin nous proposons une nouvelle

approche pour pouvoir nous passer de cette référence de haute qualité tout en maintenant de

hautes performances.
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Chapter 1

Introduction

1.1 Scientific and technological context

1.1.1 Rise of Smartphone Photography

Fifteen years ago, most photographers were using either compact or DSLR cameras. To-

day, the vast majority of pictures are taken with smartphones. The transition began around

2011, with over 25% of photographs [4] taken using smartphones. By 2015, over a trillion

photos were being captured annually, mostly on smartphones. The rise of smartphone pho-

tography is evident in their widespread use and increasing market share, outpacing sales of

traditional digital cameras tenfold by 2013. Despite catching many camera manufacturers

off guard, the ease and convenience of using a smartphone for photography quickly became

apparent. Handling photos taken on a traditional digital camera is often a complicated and

time-consuming process that involves several steps, including setup, capture, transfer, pro-

cessing, and publishing. The integration of smartphones into daily life made them available

for users, and the streamlined photo sharing process through cloud connectivity made it the

preferred choice for casual photography. Photographs taken with a smartphone are usually

spontaneous and taken with little or no prior setup, using the camera app’s default settings.

Minimal post-processing is typically required, enabling fast sharing with friends and family.
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The quick gain in popularity of smartphone photography sparked greater interest and

higher demands for high-quality photos, leading smartphone manufacturers to prioritize im-

proving their cameras and image processing capabilities. In many instances, it is now diffi-

cult to distinguish between a photo taken with a smartphone and one captured with a profes-

sional full-frame camera. The traditional tell-tale signs of smartphone photography are no

longer reliable indicators. Smartphone camera performance can be evaluated along several

dimensions and hundreds of attributes, and many image quality problems can be easily cor-

rected through automated processing. This includes fixing lens shading, optical distortion,

poor tonal range, and chromatic aberration. Such correction requires precise measurement

of the camera system’s optic and sensor combination, which smartphone makers can accom-

plish as they provide the complete system including the sensor, optics, and image process-

ing. However traditional cameras still have an edge due to their sensor size compared to

smartphones which suffer both in detail preservation and noise, since the level of noise in an

image is proportional to the amount of light captured.

The camera and its image quality became a critical selling point for a smartphone. As a

result, manufacturers began to invest significantly in reducing this gap. They started by using

larger image sensors with higher resolutions and improving image capture and processing.

From 2000 to 2008, smartphone sensor resolution increased by more than ten times. Sur-

prisingly, the sensors increased resolution and sensitivity alone was only a small part of the

improvement in terms of image quality; the increased processing power of mobile devices,

of around 100 times, along with new algorithms, played a much larger role in this. Indeed,

new denoising algorithms were proposed, such as BM3D [30], WNNM [48] or TWSC [138]

which is tailored for real-world images. Furthermore, to reduce noise in images, smartphone

makers began to stack multiple captures utilizing computational imaging. These improve-

ments led to smartphones overtaking compact cameras for many uses, and even achieving

better performances than older DSLR [51]. Even more surprisingly, smartphones achieve a

wider dynamic range than DSLR, even though the sensor is way smaller. Indeed full-frame

cameras capture scenes in a single frame, which is perfect for well-lit scenes but falls short

in HDR, while smartphones stack multiple images with techniques such as HDR+ [50]. A
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DSLR user would need to shoot multiple images from the HDR scenes in RAW and utilize

post-processing software. Furthermore, manufacturers began to incorporate multiple cam-

era modules on their phones, as each module is fairly small. These multiple cameras mod-

ules have been used by smartphone makers to provide optical zoom, specialized shooting

modes such as black and white photography, and bokeh effects [105, 51]. Nowadays, flag-

ship phones have up to five camera modules, a far cry from the single main camera module

they used to have.

1.1.2 Development of Deep-Learning based Algorithms

Originally proposed by Le Cun in 1998 [75], the now widely used concept of convolutional

neural networks, was first useful for only a few tasks, such as handwritten character recog-

nition. However, due to the democratization of the internet, larger amounts of data became

available, and development in GPU technologies greatly improved processing power. These

evolutions led to more training possibilities and more complex convolutional architecture.

These evolutions allowed for a wider range of applications of deep learning. The ImageNet

image classification challenge [31], has been the first breakthrough of these technologies.

In 2011, the contest was dominated by hand-engineered computer vision features and had a

top-5 error rate of over 25%. However, in 2012, the convolutional neural network AlexNet

[71] won the contest with a significant reduction in the error rate to 16%. In 2023, the top-5

error-rate hovers around only 1% on this benchmark. Classical vision tasks such as semantic

segmentation, object detection [43, 42, 61, 52] and classification, upscaling [76, 133] are

all dominated by deep learning techniques. Deep learning algorithms made possible various

image treatment tasks, such as compression [8], inpainting, style transfer [83], automatic

captioning [103], or text-to-image generation [106]. Furthermore, these advances have im-

plications for various fields, such as medical imaging diagnostic [5], protein folding [64],

financial fraud detection [21] or language translation [100].
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1.2 Context of the thesis

This thesis had the particularity of being an industrial agreement for formation through re-

search (CIFRE). Concretely, I was working with DXOMARK, a medium-sized technologi-

cal company, that specialized in benchmarking smartphones, cameras, or audio devices. For

my academic affiliation, I was integrated in the Multimedia (MM) team of the Laboratoire

de Traitement et Communication de l’Information (LTCI), a laboratory of Télécom Paris,

which is part of the Institut Polytechnique de Paris (IPP).

1.2.1 DXOMARK Activity and Protocol

The area of expertise for my unit was image quality evaluation. DXOMARK aims to pro-

vide user-centered evaluation benchmarks of the real-world performance of cameras, usually

cameras integrated in smartphones. They also offer consulting services to help manufactur-

ers tune and optimize the device throughout the camera development cycle. Indeed, the con-

figuration between different optical systems with various image enhancement software is not

trivial. In order to find the best trade-off in terms of image quality, it requires a thorough

evaluation of the device according to various camera and image quality attributes as well

as a performance breakdown in various situations. Both photo and video modes are tested.

However, in the rest of this protocol presentation, as well as in the rest of the manuscript, we

will focus on the evaluation of still images. In the DXOMARK protocol, the evaluation of

the cameras is broken down into 6 different attributes, which are further broken down into

sub-attributes in various conditions.

• Exposure Evaluation of the camera’s ability to accurately adjust and capture bright-

ness in both the subject and background. This is testing if the exposure value is appro-

priate. For portraits, faces exposure is emphasized. Contrast evaluation is also a part

of this attribute, as well as dynamic range.

• Color Evaluation of the camera’s ability to reproduce color accurately under various

lighting and scenarios, with a focus on pleasing color rendering for viewers, and in
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consequence, there is some tolerance with saturation. For portrait, an emphasis is

added on skin tone rendering (ranging from deep to fair to light). White balance,

which refers to the camera’s ability to adjust its color temperature to match the lighting

conditions and produce accurate colors in the image, is also evaluated.

• Autofocus Evaluation of the camera’s speed and accuracy of focusing on subjects in

different lighting conditions.

• Texture Evaluation of the camera’s ability to capture and preserve small, intricate

details, such as those found on object surfaces. As explained in 1.1, this ability is far

from depending only on the sensor’s resolution.

• Noise Evaluation of noise levels in an image, particularly in low light conditions. Dif-

ferent aspects of the noise in an image are evaluated, such as its spatial correlation, its

chromaticity as well as its frequency (coarse vs fine-grained). Usually, a fine-grained

white noise in luminance is not a drawback of an image if its intensity is not too large.

• Artifacts Evaluation of unintended visual anomalies, such as distortion, halo effects,

color fringing, or loss of sharpness on the image edges, which appear in an image and

are not present in the original object being imaged.

To evaluate the various attributes of a single device, it is necessary to assess it under a

wide range of conditions. This requires a significant amount of data, with over 1500 images

needed to accurately gauge its performance. To ensure consistent and precise results, a large

portion of these tests are conducted in a laboratory setting. This provides a controlled envi-

ronment where conditions can be easily repeated, and specialized lighting equipment can be

used to provide optimal illumination. The subjects of these photos are typically standardized

charts. These charts have been specifically designed to provide a consistent and repeatable

way of measuring the performance of the device under test. While these laboratory tests can

provide evaluations of all attributes necessary to assess the camera quality, it is preferable to

conduct a large portion of the tests in a non-laboratory environment since there are several

limitations to using only lab evaluation. First, the chart used is often industry-wide standards,
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and the manufacturer probably already used them to fine-tune the device on them. It may

in this case not reflect so well the actual capabilities of the camera. Second, as discussed

in 1.1, the final rendering is the result of an imaging pipeline that is heavily reliant on soft-

ware, and often the behavior of these algorithms is non-linear and thus content dependent.

(For traditional cameras, the results of laboratory tests are closer to the actual capabilities of

the device). In this context, it is critical to perform some of these tests on content that are

likely to correspond to content photographed by end-users. However, for these tests, we do

not have the same repeatability as in the laboratory. This problem is usually alleviated by

shooting the device under test along with a previously evaluated camera to capture images

in the same conditions. Furthermore, since the photographed content is not a standardized

chart, it usually requires human evaluation of the different quality attributes.

1.2.2 Limitations of the literature regarding the DXOMARK protocol

Evaluating numerous images based on multiple attributes, which includes multiple camera

quality criteria, is a time-consuming task for qualified image quality analysts. With this

Ph.D. project, DXOMARK aimed to reduce the evaluation time and automate certain crite-

ria evaluation. However, traditional methods are not suitable for this evaluation as the image

content can vary and is not designed for automatic quality assessment. Therefore, consider-

ing the increasing applications of learning-based algorithms, we decided to resort to using

machine learning techniques to evaluate the image quality criteria on these images.

There is a vast amount of literature available on image quality assessment (see Sections

2.3 and 2.4), but it has several limitations when it comes to addressing our specific problem:

• Smartphone image resolutions are generally high, often larger than ten megapixels.

The large size of images presents a challenge for current IQA models, which tend to

have high computational complexities. For example, the SPAQ dataset downsampled

their smartphone photography dataset to images with a shorter dimension of 512 pix-

els. This is adequate for the evaluation of many camera quality attributes, such as ex-

posure or color, but deletes information regarding noise or details preservation. On the
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other hand, not all regions of an image are relevant to the evaluation of image quality

attributes. For example, flat regions are not relevant for details preservation evaluation.

In consequence, in Chapter 3, we design a method that from an annotated set of images

according to an image quality attribute, automatically detect the regions of interest

which are the best suited for the evaluation of this criteria.

• To attain an accurate benchmark of smartphone cameras, it is necessary to conduct a

fair comparison by evaluating the cameras on identical content. Synthetic datasets are

built with multiple degradations from pristine images, thus providing multiple samples

of the same content. However, do not accurately reflect the intricate mixture of defects

typically found in images captured by smartphone cameras. Authentic datasets, on

the other hand, do encompass diverse images obtained from the web or from camera

devices and do include the complex mixture of distortions being sought. However,

these datasets have the limitation of presenting only a single content per scene, pre-

senting a challenge for benchmarking purposes that necessitate a precise comparison

of quality across a set of contents. As such, there is currently no available dataset

that fully satisfies the requirements for a camera evaluation setup. To overcome

the shortcomings of existing datasets that are either synthetic or do not have a content

repetition, we rigorously create a new dataset in Chapter 4, tailored to our needs and

the elaboration of camera quality assessment evaluation.

• Finally, existing image quality models do not presuppose the repetition of content

across different samples ie. several images depicting the same scene. While this as-

sumption may not be applicable in numerous real-world scenarios, it is a crucial hy-

pothesis to consider in our particular context for the design of more precise models.

By acknowledging and accounting for the potential repetition of content, we can strive

towards creating models that more accurately reflect the reality of the camera evalua-

tion setup. Our region selection method in Chapter 3 explicitly uses that assumption.

Moreover, in Chapter 5, we design a method in that no reference image is available

for our use case, but while still retaining our repeated content hypothesis. To this aim,
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we propose a novel and original method that leverages several distorted images of the

same content in order to build a pseudo-reference.

Throughout this manuscript, we focus specifically on texture, used interchangeably with

details preservation. It is however most of the time a study case of an image quality attribute

evaluation, and the method designed can also be used for other image quality attributes, as

seen in Sec. 3.5.

1.3 Manuscript’s organization

We start in Chapter 2 with a review of existing industrial standards and methods concerning

the evaluation of texture quality and noise levels for cameras. Then we explore existing

datasets and explain the most common experimental designs for the annotations of these

datasets. Finally, we perform an extensive review of methods aiming to evaluate image

quality.

Chapter 3 proposes a region selection method on a chart to evaluate a set of cameras in

laboratory conditions. Indeed, evaluating the quality of a set of cameras is typically done by

comparing shots of the same visual content, a chart, in a controlled environment. The use of

the same chart allows for direct comparisons and easier subjective evaluations. The Modula-

tion Transfer Function (MTF) is a widely used tool for evaluating sharpness and resolution,

but it has limitations, including the assumption that the norm of the device transfer function

accurately represents texture quality and limitations in evaluating non-linear processing. To

address these limitations, we propose DR2S, a deep regression method with region selection,

which uses a deep convolutional network to estimate quality scores based on expert human

observations. The main novelty is the region selection algorithm which chooses the most

appropriate region of the chart for evaluating texture quality. Our findings indicate that, with

sufficient training data, learning-based methods outperform the MTF-based method. These

results have been published in the International Conference on Pattern Recognition (ICPR)
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2020 under the title of DR2S: "Deep Regression with Region Selection for Camera Quality

Evaluation" [127].

The last section of Chapter 3 focuses on extending these findings made in the context

of texture quality evaluation to the visual noise evaluation. We addressed the challenge

of determining the noise level of a camera as perceived by the user, using its processed

images. Traditional methods for characterizing camera noise use objective metrics based on

charts with uniform patches, but these can result in incorrect characterizations due to the

effectiveness of denoising algorithms in uniform areas versus detailed areas. Therefore, we

present a method to estimate the perceived noise level on the chart through the use of a deep

convolutional network trained on ground-truth quality scores from expert annotators. Our

evaluation shows that our approach closely aligns with human evaluations. This chapter’s

extension was the topic of an article titled "Automatic Noise Analysis on Still Life Chart" [9]

at the industrial conference London Image Meeting (LIM) in the year 2021.

In Chapter 4 we present a new method for assessing camera quality and a corresponding

data collection protocol. The resulting dataset, which is unique in its composition of mul-

tiple shots of various natural scenes, allows us to evaluate a camera’s ability to capture fine

texture details. Reliable image quality annotations are obtained through human comparisons

of images depicting the same content in different natural scenes. First, we detail the data

collection and annotation protocol. A deep neural network is then trained to predict these

human-based quality scores. The chapter concludes with a comprehensive benchmark of

existing image quality measures is also performed across various practical scenarios, which

provides valuable insights into the advantages and limitations of each method and offers

practical recommendations for future research in camera quality assessment. These findings

are ready to be submitted.

In Chapter 5, we propose a new no-reference image quality assessment setup and a corre-

sponding method. Unlike existing methods that evaluate each image separately, our method

considers multiple images that depict the same content and models them jointly to enhance

the accuracy of quality prediction. The idea behind this approach is that multiple distorted
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images can provide information to differentiate between image features related to content

and quality. To achieve this, we extract the feature representations from each image and use

them to create a pseudo-reference, which improves the prediction of quality scores. This

work has been presented at the International Conference on Acoustics, Speech, and Signal

Processing (ICASSP) 2023 in an article named "Test your samples jointly: Pseudo-reference

for image quality evaluation" [126].
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Chapter 2

Image Quality Assessment Background

In this chapter, we conduct an extensive state-of-the-art review of the literature on image

quality assessment. First, considering our focus on cameras, we examine various industrial

methods and norms based on test charts shot in a laboratory environment. Second, we discuss

the characteristics of publicly available datasets for image quality assessment. Finally, we

review existing methods for the two most common settings in the literature: full-reference

and no-reference image quality assessment.

2.1 Chart-Based Camera Quality Assessment

A simple model for a camera consists in a linear system that produces an image y as a con-

volution of the point spread function h and the incoming radiant flux x. In the frequency

domain, Y (f) = H(f)X(f) + N(f), where we also consider additive noise N . The mod-

ulation transfer function is MTF(f) = |H(f)| and it is commonly used to characterize an

optic acquisition device [13].

Acutance is a single-value metric calculated from the device MTF. To compute this value,

a contrast sensitivity function (CSF), modeling the spatial response of the human visual

system, is used to weigh the values of the MTF for the different spatial frequencies. The

CSF depends on a set of parameters named viewing conditions, which describes how an

observer would look at the resulting image. These parameters are usually the printing height
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FIGURE 2.3: Example of a Dead-Leaves pattern [19]

this task is not easily performed on the textured region. As a consequence, noise PSD is

typically estimated on a uniform patch. However, this approach is hindered by the denoising

algorithms integrated into cameras. Not only do these algorithms interfere with the noise

PSD estimation but also they behave differently in uniform and textured regions. In this

context, Kirk et al. [68] propose to compute the MTF using the cross-power spectral density

of the resulting and the reference images. This method assumes an effective registration of

the chart. Sumner et al. [119] then modified Kirk’s computation in order to make it more

robust to slight misregistration.

Concerning noise, its assessment is often done using the signal-to-noise ratio (SNR) as

a metric. However, SNR solely measures the overall amount of noise at a given signal level

and does not accurately depict how it is perceived by human observers. In response, the

visual noise metric has been developed and codified [1, 3, 137]. After a filtering step with

specific CSFs for each of the luminance and chrominance channels in the AC1C2 [154]

color space, the visual noise metric is defined as a weighted sum of the variance in the

luminance and chrominance channels in the CIEL∗a∗b∗ color space. Parameters of the

CSFs and of the final weighted sum are the result of subjective studies. While some standards

exist, improvements are regularly proposed [137, 15], leading to variations between different

practices. The visual noise metric is usually computed on images of chart with patches of

different grey levels as in Figure 2.4.
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2.2.1 Annotation methods

Different methods of annotation are possible for image quality assessment, with two main

families: Mean Opinion Score (MOS) and Pairwise Comparison (PWC) [145]. The goal of

these methods is to convert the quality of an image into a single scalar value.

Rating-based: Mean Opinion Scores

MOS annotation involves asking annotators to individually rate images on a scale from

1 to 5 with integer values. Typically, transformations are applied to the values attributed by

the annotator, such as compensating for rating ranges, normalizing for standard deviation

in the annotators’ ratings, or shifting the value according to the difference between opinion

scores between one or several image scores taken as reference. The obtained values are then

averaged for each image across annotators.

Pairwise Comparisons

In contrast to MOS annotation, PWC does not ask annotators for a rating of an individual

image. Instead, it asks the annotator to choose which of the two images has better quality.

Two main technical choices are important for the success of pairwise comparison annotation:

• Pair proposal: To achieve good annotation quality with a limited annotation resource,

it is important to propose pairs to the annotators that provide information about the

image quality level. For example, images with a large known quality difference are

usually not useful to propose as pairs [90].

• Conversion to scalar scores: Converting a set of comparisons to scalar scores is not

straightforward, and several possibilities are available. A naive method could involve

a championship-like algorithm where the number of wins decides the quality score. In

this example, it is required to test every possible pair. Another option is to use a Swiss

Tournament system [29, 98], in which images accumulate points for each win and are

paired with an image with a similar record, improving the quality of the information

provided by each comparison. Finally, it is possible to use an Elo [35] algorithm or one



16 Chapter 2. Image Quality Assessment Background

of the two closely related Thurstone [12] and Bradley-Terry[54] models. These models

do not require a particular pair proposal system and allow to use of an effective pair

proposal strategy [90]. Used with an efficient pair proposal algorithm, these models

appear to be the most efficient [96, 90].

More details on the pairwise comparison annotation method are available in Chapter 4.

When it comes to evaluating the effectiveness of MOS (Mean Opinion Score) ratings

compared to pairwise comparisons, Mantiuk et al. [86] have concluded that, when applica-

ble, pairwise comparisons with a forced choice are more accurate and time-efficient.

Annotation conditions

Two different environments can be used for annotation experiments. The first option is a

laboratory setting [114], which provides precise control over evaluation conditions such as

screen calibration, viewing distance, and ambient lighting. Annotators in this setting may or

may not be experts in image quality. The second option is crowdsourcing [41], also com-

monly used for image annotation. While these experiments are less expensive to conduct,

each participant views the image on their own screen under varying conditions. The trust-

worthiness of anonymous internet users, as found on platforms such as Amazon Mechanical

Turk, is generally considered lower than that of participants in a laboratory experiment [56].

Additionally, these annotators are typically not experts in image quality. In consequence,

the design of crowdsourced experiments aims to filter annotation results carefully using test

questions with known answers [79, 22] and to offset the lower reliability of individual anno-

tations through a larger quantity of annotations.

2.2.2 Synthetic datasets

Synthetic datasets are generated from a set of natural images considered undistorted or pris-

tine, and a set of distortions applied to these pristine images, with different strengths for each

distortion.
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The LIVE [114] image quality dataset from 2006 is still regularly included in methods

benchmarks. It comprises of only 5 distortions: jpeg, JPEG2000, white noise, gaussian

blur, and fast fading, for a total of 779 images. Due to the low complexity of this dataset,

recent methods all obtain high scores on this dataset and in consequence, it is not suited to

benchmark recent methods.

A higher number of distortions are present in the TIDs [99, 98] datasets with 17 distor-

tions for the 2008 version and 24 for the 2013 version. Distortions correspond to a large

number of scenarios, such as image acquisition, compression, watermarking, digital pho-

tography, registration, denoising, compression, transmission, inpainting, and reconstruction.

Each pristine image is distorted with all the distortions with five levels for each. The resulting

3000 images are rated through a Swiss system.

Compared to the TID2013 [98] dataset, KADID-10k [79] is a considerable size-up

with ten thousand rated images, made from 81 pristine images with 25 distortions and 5

levels. In order to achieve the necessary annotation volume, they conduct a crowdsourced

annotation protocol. Many distortions are different from the TID’s distortions, mainly in-

cluding distortion emulating distortions encountered in the wild. The annotation system is

rating-based.

The PIEApp [101] comprises of around twenty thousand images made from 200 pristine

images. They employ a PWC to annotate samples. Interestingly, they do not provide scores

for images but preference probability for a subset of around eighty thousand pairs.

Used for algorithm evaluation in the challenges of NTIRE workshop of CVPR, the main

contribution of PIPAL [62] is the addition of the result of advanced image processing

algorithms as distortions. It includes various algorithms for superresolution and denoising

[30, 139, 122], including deep learning-based methods [60, 33] and specifically Generative

Adversarial Networks (GANs) [109, 152, 47]. In total, it includes around thirty thousand

pictures and is rated with an Elo system [35], where rating gains and losses are based on the

compared image rating. However, no details on the pair selection process are included by

the authors.
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2.2.3 Authentic datasets

Even though synthetic datasets include distortions corresponding to acquisition and digital

photography use cases, images captured with typical mobile camera devices in real-world

scenarios are often affected by a combination of multiple distortions that are not necessarily

captured by the synthetic distortions present in existing databases.

The LIVE-in-the-Wild [41] dataset was created in 2015 and consists of 1162 images

captured from various mobile devices without any artificially introduced distortions. The

images were subjected to a large-scale online subjective study, where an average of 175

unique subjects rated each image. To our knowledge, this dataset was the first publicly

available to present authentic distortions. Tests of common algorithms on this dataset showed

a significant decrease in performance demonstrating the need for such datasets.

However, the LIVE-in-the-Wild [41] is rather small with 1162 images. In 2018, the

KonIQ-10k [57] dataset is proposed, with over ten thousand images. The images are

sampled from YFCC100M [121] while ensuring diversity with metrics related to brightness,

colorfulness, contrast, sharpness, and content. Each image received at least 120 ratings on a

scale from 1 to 5, obtained through crowdsourced online experiments.

With a similar method for image selection and annotation, PaQ-2-PiQ [142] proposes in

2019 a dataset four times bigger than KonIQ10k [57]. However, the main originality of this

dataset is to also provide annotation for 120 000 patches extracted from the images.

Finally, in 2020 Fang et al.proposed the SPAQ dataset [38], consisting of over 11 thou-

sand pictures taken by 66 mobile devices. Its main quality lies in the annotations: not only

the general image quality is annotated, but also five different image attributes as well as scene

category labels.

2.2.4 Summary of characteristics

We provide in Table 2.1 a summary of the characteristics of the different publicly available

IQA datasets presented.
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Dataset Year Nature Image Source Annotation Method # of rated images Environment

LIVE [114] 2006 Synthetic Degradations MOS 779 laboratory
TID2013 [98] 2015 Synthetic Degradations Swiss-system 3,000 laboratory
PIPAL [62] 2020 Synthetic Degradations Pairwise-Comparison 29,000 crowdsourcing

KADID-10k [79] 2018 Synthetic Degradations MOS 10,125 crowdsourcing
PIEApp [101] 2018 Synthetic Degradations Pairwise-Comparison 20,280 crowdsourcing
LIVE-itW [41] 2015 Authentic Mobile devices MOS 1,162 crowdsourcing

PaQ-2-PiQ [142] 2019 Authentic Internet media MOS 39, 810 crowdsourcing
KonIQ10K [57] 2018 Authentic Internet media MOS 10,073 crowdsourcing

SPAQ [38] 2020 Authentic Mobile devices MOS 11,125 laboratory

TABLE 2.1: Comparison of the characteristics of different IQA datasets

2.3 No-Reference Image Quality Assessment

There are two main categories of image quality assessment (IQA) methods: full-reference

(FR) and no-reference (NR). FR-IQA algorithms utilize a reference image in order to evalu-

ate the quality of a given test image. This is achieved by calculating the difference between

the two images using some form of error metric. As a result, FR-IQA algorithms are widely

considered the most accurate and reliable type of IQA method (see Table 2.2 and 2.3). How-

ever, they do have the limitation that a reference image must be available in order to perform

the assessment. On the other hand, NR-IQA algorithms do not require the availability of

a reference image. Instead, they attempt to automatically measure the perceived quality of

the test image without human judgment for novel images or the use of a reference image.

NR-IQA algorithms can be useful in situations where a reference image is not available or

not practical to use.

2.3.1 Distortion Specific Methods

Before 2010, the vast majority of NR-IQA algorithms [16, 87, 135] limited themselves to

one or more specific types of distortions, such as blur, blockiness from JPEG compression

[135], or ringing arising from JPEG2k compression [87]. As a result, these algorithms have

limited application domains. They usually follow this process [115, 123]:

1. Identifying a relevant and discriminative local feature within the image.
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2. Using this local feature to model a local distortion metric for the image.

3. Averaging the local distortion metric over the entire image to calculate an overall dis-

tortion metric for the image.

4. Using the overall distortion metric to predict an image quality score that aligns with

human perception.

From these earlier methods, we will present two: The first one is a very good example

of the presented process, while the second one introduces the important concept of Natural

Scene Statistics (NSS) As an example of early methods using handcrafted features, we

succinctly present the method from Wang et al.(2002)[135]. The aim of this method is to

evaluate images distorted by JPEG compression. They only consider the grayscale conver-

sion of the images. The first feature is a measure of blockiness B, defined as the average

difference at JPEG block boundaries. A second image attribute to be considered concern-

ing JPEG compression is blurriness. Since blur is difficult to estimate without a reference

image, they opt for measuring image "activity". They use two features to characterize the

image activity: A, the average absolute difference between in-block image samples, and Z,

which corresponds to how often would a line (or a vertical) in the image, considered as a

signal, would have its derivative change sign. These four quality metrics are then combined

into a single quality metric Q, aligned with human perception: Q = α + βBγ1Aγ2Zγ3 with

the 5 parameters fitted to quality scores with a training set.

In these earlier works, the concept of Natural Scene Statistics (NSS) is reoccurring

[16, 113, 92, 108], which assume that perceptual distortions can be measured as deviations

of certain statistical properties. More precisely, the image is transformed, commonly with a

Discrete Wavelet Transform (DWT) or a Discrete-Cosine Transform (DCT), and the distribu-

tions of the coefficients are considered. This distribution is fitted to a classic distribution, and

the fit’s parameters are used as features. For example, in Brandao et al.(2008)[16], propose

to use NSS for evaluating the quality of images compressed with JPEG or MPEG. They used

an 8 × 8 blocks DCT transform. For each horizontal/vertical frequency pair, the coefficients
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are modeled with a Laplacian probability density function:

fX(x) =
λ

2
exp(−λ|x|) (2.2)

with x the coefficient value. Each λ is computed through Maximum-Likelihood. With the

help of a training set, they compute the coefficient of a weighted average of λ coefficients

for each possible frequency pair.

2.3.2 General Purpose Methods

While the earlier methods were usually crafted for a specific distortion, from 2010 onward,

IQA methods have the ambition to evaluate any kind of image impairment.

In 2010, Saad et al.[108] proposed the BLIINDS (2010) method, which is not designed

for specific distortions: Every distortion can be evaluated with one model Similarly to

[16], they use NSS features from the DCT coefficients for their algorithm. However, they

consider the kurtosis of the distribution of coefficients. The kurtosis is defined as the fourth

standardized moment of a distribution: E

[(
X−µ

σ

)4
]
. The final quality predictor is crafted

through a probabilistic model, using a training set for this purpose.

Another interesting work has been proposed by Moorthy et al.[94], named the DIIVINE

(2011) framework. In this method, they provide an extensive NSS features set derived

from DWT coefficients. They use in total 88 features, corresponding but not limited to the

variance of subband coefficients, the shape parameter of subband coefficients, the shape

parameter across subband coefficients, spatial correlation across subbands, and correlations

across scales. Their method aims to be multi-distortion, but in reality restricts themselves

to five distortions: JPEG2k, JPEG, White Noise, Gaussian Blur, and Fast Fading. With

the training set, they train a classification module outputting probability estimates for each

distortion. Then, they use different models from the same DWT-based features tailored for

each distortion, whose outputs are combined into a single quality score with the probability

estimates from the classifier.
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Mittal et al. [92] with their BRISQUE (2012) model was the first research using NSS

features from the spatial domain, with better results compared to models using features

from the frequency domain [108, 94]. Let Ii,j be the image pixels’ luminance, they study the

image with a locally normalized contrast.

Î =

(
Ii,j − µ(i, j)

σ(i, j) + C

)

i,j

(2.3)

with µ and σ Gaussian-weighted mean and standard deviation on a pixel neighboring, and

C a constant for numerical stability. Then they fit the distribution of these coefficients and

the distribution of the horizontals, vertical, diagonal, and anti-diagonal pairwise product of

these coefficients with Symmetric and Asymmetric Generalized Gaussian Distribution. The

parameters of the fitted functions are taken as features. For example, the density function of

the Generalized Gaussian Distribution is:

p(x) =
β

2αΓ(1/β)
e−(|x−µ|/α)β

(2.4)

and α0 and β0 corresponding to the best fit to one of the aforementioned distributions are

part of the feature list.

Rather than fitting features to quality scores with a training set, NIQE (2012) [93] use

a set of pristine images NSS to avoid learning. Using the same handcrafted feature as

BRISQUE [92], but instead of training a support vector regression with opinion scores, it

utilizes a distance between the distribution of NSS features from patches of the test image

and the distribution of the NSS features from a collection of natural pristine images. The

distance is directly used as an image quality metric and in consequence, requires no training

to obtain this method. IL-NIQE (2015) [148] enriches the NIQE model with features related

to colors, gradients, and the log-Gabor responses of the image.

Ye et al. [140] took a first step toward data-driven features with their CORNIA (2012)

model. From randomly selected image patches on the image database, normalized and

whitened, which means performing component analysis over image channels in order to
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decorrelate them, they use the k-mean clustering algorithm to select 20 000 centroids as de-

scriptors. Note that image quality scores are not taken into consideration during the feature

elaboration. The method can in consequence be labeled as unsupervised. A Support Vec-

tor Regression (SVR) is then trained using maximum dot-product values over the patches

of each feature in the codebook as inputs. In a later 2013 article [141], authors reduce the

number of features used to 100 through a supervised learning procedure, using quality scores

for the feature selection.

2.3.3 Convolutional Neural Networks-based methods

Following the success of convolutional neural networks in image classification [71], these

were since tested for the image quality assessment task.

In 2014, CNN-IQA [65] has been developed by Kang et al.and used for the first time

a Convolutional Neural Network (CNN) for general-purpose IQA. The goal is to predict

the Mean Opinion Score (MOS) of the images. The CNN takes as input 32 × 32 random

patches whose ground-truth quality scores are set as the same as the source image score. The

proposed architecture is rather small: There is a single convolutional layer comprising 50

kernels. At test time, the prediction for an image is the average of patch-wise predictions.

This work achieves the 2014 state of the art in both the LIVE dataset and TID2008 at the

time of publication. This success sparked further research into using convolutional networks

for IQA.

Later works propose more complex architecture as WaDIQaM-NR [14] by Bosse et al..

WaDIQaM (2017) [14] architecture includes 10 convolutional layers with a max-pooling

layer for every other convolutional layer for feature extraction and 2 fully connected layers

for regression. Similarly to CNN-IQA [65], the inputs are 32 × 32 random patches, even

though the architecture is more complicated. However, an interesting feature of WaDIQaM

is the patch-weighting estimator to provide an estimation of the importance of each zone:

Indeed the quality of an image as perceived in a local region may not necessarily be indicative
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of the overall quality of the image. This can be due to various factors such as spatially non-

uniformly distributed distortion or saliency effects. To address this issue, they propose a

patch-weighting estimator: in parallel to the regression module, with the same feature as

inputs, a second regression module outputs weights to be applied to the patch. Weights from

all patches are normalized to have a unitary sum and used to compute a weighted average of

individual patch scores. Nonetheless, their experiments from the paper show that the gain in

performance due to the patch-weighting estimator is rather small.

Other approaches rather choose to focus on the target quality scores modelization and

adopt a probabilistic representation of scores, modeling the distribution of the quality

scores of each image. An interesting attempt has been done by Zeng et al.[144] with the

PQR (2018) method. Instead of performing a regression to a scalar quality score, they

divide the quality range into small score bins or quality anchors. To this aim, they transform

the ground truth from the training dataset: Instead of a single quality score, the ground

truth is modeled through a probabilistic formulation. The probability at each quality anchor

is derived from considering a Gaussian density function, centered at the real ground truth.

Since their network predicts a vector and not a single quality score as desired, they further

train a linear support vector regression to map the vector of probabilistic representation to

quality scores.

Similarly, Talebi et al.[120] also uses distributions as ground truths for image quality

instead of a single score representation in the NIMA (2017) method. However, to the con-

trary of PQR[144], they have not adopted a probabilistic formulation, but instead used anno-

tations from different annotators into different quality levels directly, using the actual dis-

tribution of annotations. Considering p = [p1, . . . , pN ] the rating’s distribution across N

score buckets, they train the network output p̂ to match p, using a distribution distance as a

loss function. More precisely, they used the Earth’s Mover Distance (EMD):

EMD(p, p̂) =


 1

N

N∑

k=1

∣∣∣CDFp(k) − CDFp̂(k)
∣∣∣
r




1/r

(2.5)
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with r = 2. If a single scalar is needed for a quality score prediction, they propose to simply

use the mean defined as µ =
∑N

i=1 si × p̂i with s the score buckets values.

The premise of the work from Zhang et al.[153] is the observation that different ap-

proaches perform differently regarding the difference in the nature of the data. They claim

that while fine-tuning directly a model trained on ImageNet [107] with an IQA dataset im-

ages performs well for authentic distortions but the performances are not outstanding on syn-

thetic distortions dataset. Conversely, patch-based training fails to handle authentic distor-

tions properly due to their non-homogeneity. With their DBCNN (2019) architecture [153],

they aim to handle better both authentic and synthetic distortions. They propose another

no-reference method that is composed of two different convolutional models: the first one is

trained on synthetic distortion classification and the second is a pre-trained VGG [116] on

ImageNet. This pre-trained model is introduced to better represent the perceptual features of

natural images. The two sets of features are merged into a single representation for a final

quality prediction with a bilinear pooling: Considering representations of the first network

Y1 of size (h · w)× d1 and Y2 of size (h · w)× d2 for the second one, they used the merged

representation B = YT
1 Y2 as input of the quality estimator regression, which is the only

part of the network trained on the image quality dataset.

The authors of HyperIQA (2020) [118], Su et al., observed that currently, existing NR-

IQA models predictions do not take into consideration the vast diversity of images. Once

trained, they used the same predictor to transform features into a quality score. It implies that

the same sort of image quality features is needed for predicting diverse images. They argue

that this is not the case in practice, and use the very telling example from [77] of an image

depicting a clear blue sky: while humans may regard this image as high-quality, models will

tend to evaluate it as a blurry image. They conclude that it is important to understand the

context of the evaluation. In consequence, different rules need to be applied for predicting

the image quality depending on the content. To this aim, they use a hyper-network, taking

as inputs only the semantic features (corresponding to the last convolutional layers of the

network). They train this hyper-network to output adapted weights for the fully convolutional

layers.
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Zhu et al.[157] with the MetaIQA (2020) proposed to apply meta-learning techniques

to the problem of image quality assessment, to better adapt to unknown distortion. From

a training set consisting of various distortions, they seek to provide initialization weights

from which they will be able to train the network highly efficiently with few examples and

a few gradient updates on a new distortion. The algorithm used for this task is a first-order

meta-learning algorithm, inspired by FOMAML [39].

Another popular technique in computer vision is the contrastive learning method. Con-

trastive learning refers to the technique of leveraging a large amount of unlabeled data and

achieve to use this data to pre-train a model in a self-supervised manner, learning useful rep-

resentations for the task at hand. CONTRIQUE (2021) [84], proposed by Madhusudana et

al.applied these Contrastive pretraining techniques to the image quality assessment prob-

lem. For the contrastive pre-training, they use the unlabeled KADIS-700k dataset, which

consists of pristine images and their degraded version with different distortions, and inten-

sity of distortion. Considering degradation × intensity couples, they consider each unique

couple as a different distortion class. The contrastive objective consists of decreasing the

representation distance in the feature space between pairs of the same class. To this aim,

they use the NT-Xent loss [23] for positive pair couples:

LNT−Xent = −
1

N

∑

i,j

log
exp (sim (zi, zj) /τ )

∑2N
k=1 1[k 6=i] exp (sim (zi, zk) /τ )

(2.6)

with sim the cosine-similarity, N the number of positives pairs and τ a temperature param-

eter. However, this first contrastive objective only considers synthetic distortions. In con-

sequence, for authentic distortions, they consider a mix of various datasets, not necessarily

designed for image quality, and consider pairs to be positive if they are quality-preserving

transformations of the same original image. The contrastive pretraining uses at the same time

both sets of images. For the actual training on quality scores of images from an image quality

dataset, they use a ridge regression [55] to map these learned features to quality scores.
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2.3.4 Vision-Transformers for IQA

While previous approaches were based on convolutional networks, MUSIQ (2020) [66] em-

ploys the recent vision-transformer architecture[34]. Their improvement over the standard

ViT architecture consists in ingesting patches interpolated at different scales. The location

token is computed from a look-up table common to every scale.

Another work from Golestaneh et al.[44] proposed the novel TReS (2022) architecture to

tackle the no-reference image quality problem employing both a CNN and a Transformer

encoder. Starting with a CNN-feature extractor at 4 different stages of the network, they

feed these features to a transformer encoder. Interestingly, they also use a self-consistency

loss, ensuring different augmented versions of an image have similar representation both

after the convolutional part and the transformer encoder.

2.3.5 Performances on common datasets

In Table 2.2, we display the performances of the no-reference methods on four of the pre-

sented datasets. Most metrics were taken from [84] and [118], since they used the same

evaluation protocol and had extensive state-of-the-art comparisons. In other cases, perfor-

mances come from the original papers. While for the LIVE [114] dataset, early methods

such as BRISQUE [92] and IL-NIQE [148] achieve comparable performances to learning-

based methods, results on TID2013 [98] and KonIQ-10k[57] show more contrasted perfor-

mances. On the LIVE-in-the-Wild [41] dataset, results of non-deep learning-based methods

this contrast of performances is even more apparent.



28 Chapter 2. Image Quality Assessment Background

Method LIVE LIVE-ITW TID2013 KonIQ-10k

BLIINDS [108] 0.912 0.405 0.536 0.585
DIIVINE [94] [] 0.925 0.508 0.549 0.589
BRISQUE[92] 0.939 0.608 0.604 0.665

NIQE [93] 0.907 0.455 0.315 0.531
IL-NIQE [148] 0.946 0.432 - 0.507
CORNIA [140] 0.947 0.629 0.678 0.780

CNN-IQA [65] 0.956 - - 0.572
WaDIQaM [14] 0.960 0.682 0.835 0.804

PQR [144] 0.965 0.857 0.740 0.880
NIMA [120] - 0.637 0.750 -

DBCNN [153] 0.968 0.851 0.816 0.875
HyperIQA [118] 0.962 0.859 0.840 0.906

CONTRIQUE [84] 0.960 0.845 0.843 0.894

TReS [44] 0.969 0.846 0.883 0.915

TABLE 2.2: Comparison of state-of-the-art NR-IQA algorithms. The SROCC is reported.

2.4 Full-Reference Image Quality Assessment

2.4.1 Traditional Methods

The mean squared error (MSE) and its associated metric, the peak signal-to-noise ratio

(PSNR), are the most basic full-reference image quality metrics. These metrics are favored

due to their ease of calculation, clear physical interpretations, and mathematical simplicity in

the context of optimization. However, they have a limited correlation with perceived visual

quality and therefore may not accurately reflect the human experience of image quality.

Traditional methods share common characteristics [134, 149, 147]: they select a set of

features that can be computed separately for a sub-window of the image. Secondly, for a

feature F evaluated for a sub-window x, they compute the feature for the same sub-window

of two images, F1 and F2. The similarity concerning this feature is calculated as follows:

SF (x) =
2F1(x) · F2(x) + c

F1(x)2 + F2(x)2 + c
(2.7)
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with c a constant to be determined. This similarity can be extended to the case of multiple

features F by considering their product. The importance of each feature can be adjusted by

introducing weighting parameters as exponents [134]. The results for sliding windows are

then pooled across the whole image to create a single value of similarity.

The Structural SIMilarity Index (SSIM, 2004) [134] is intended to measure the simi-

larity between two images by comparing their structural content. Specifically, it consists

of three separate indices related to luminance, contrast, and structural information, all of

which are known to be important for the Human Visual System (HVS). The luminance index

is related to the mean intensity of pixels in both images and is computed on a small window,

typically 11×11. The contrast index is related to the standard deviation of pixel luminance

over both windows, while the structural index uses the covariance of pixel luminance. To

obtain a metric that compares the two full images, the metric is averaged over sliding win-

dows. The Multiscale-SSIM (MS-SSIM) [136] improves upon the SSIM by computing the

SSIM at different scales and weighting them to a single metric. The weights are determined

by the authors through a subjective study.

Using a similar approach to the SSIM [134], the Feature SIMilarity index (FSIM, 2011)

[149] is a composite index of two features known to be important for the HVS. First, they

use the phase congruency [70] feature, which relates to the significance of a local structure.

Specifically, it is defined as how aligned the phases of the Fourier decomposition of the

image are. Second, they use the gradient magnitude as their second feature, which is known

to be important for humans as it carries the contrast information, and the phase congruency

is contrast invariant. The FSIM achieves noticeably better performance than the SSIM.

Zhang et al.[147] proposes to use the concept of saliency maps [58, 17, 112, 146] to

estimate the importance of different regions of an image for the HVS. In their method, the

purpose of Visual Saliency is twofold: first, it provides a feature map that describes the local

quality of the image; second, it serves as a weighting function that determines the relative

importance of a local region in the quality score pooling process. In their Visual Saliency-

induced Index (VSI, 2014), they use the SDSP method [146] to compute the saliency map,
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and combine it with a gradient magnitude feature to account for contrast information, similar

to the FSIM method [149].

Another approach uses Haar wavelets [49] to build their features. Using horizontal and

vertical Haar wavelets filters at three scales, the HaarPsi (2018) [104] measure does not use

any other feature. In addition to being more performant than the VSI [147] and FSIM [149]

on most datasets, it is three to eight times faster to compute than any of those metrics.

2.4.2 Learning-based Methods

Similarly to NR-IQA, the best-performing methods in full-reference IQA gradually shifted

from handcrafted metrics based on the human visual system to learning-based methods. FR-

IQA method based on deep learning is generally based on the following steps:

• Process the reference image and the image to be evaluated with the same backbone

convolutional neural network to produce a set of features for each of the images. This

architecture is commonly described as a siamese network [69].

• Aggregate the two sets of feature to either feed the resulting features to a regressor or

directly uses the feature to compute a distance between the two images.

While the backbone networks used followed the evolution of backbones used in computer

vision, we will focus on the differences in the aggregation of the two sets of features.

The full-reference version of WaDIQaM (2017) [14] (See Section 2.3), concatenates the

features from both images and the difference between these features. They compared it with

the concatenation only and the difference only and concluded that this aggregation provides

better performances.

The LPIPS (2018) [150] is an influential full-reference method often used either as a

metric [10] or as a loss in tasks such as image synthesis [36, 106, 91], super-resolution [63]

or view rendering [102, 132]. Using a pre-trained backbone, typically a VGG-16 [116] on

ImageNet, they show that learning only a linear regressor is sufficient for good performance.
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Concerning the feature aggregation, they normalize the activations in the channel dimension,

scale each channel by a learned weight, and then compute the Euclidean distance between

the reference and degraded image. This process is done at several scales across the network

and the distances are then averaged. On aggregation schemes, while DualCNN (2020) [131]

concatenates features from min-, average-, and max-pooling, Varga [130] (2020) obtains

good results with the use of traditional full-reference metrics directly applied on a CNN’s

features maps, such as the SSIM [134] or the HaarPsi [104] metrics. Authors of DISTS

(2020) [32] propose an interesting scheme for feature aggregation. To combine two feature

maps from the reference and the image to be evaluated, they compute both the structure

and luminance part of the SSIM [134] for each channel. These obtained features are then

combined linearly with learnable weights for all the channels for the outputs of 5 convolution

layers corresponding to different resolutions.

Concerning backbones, recently proposed methods from the NTIRE challenge [46] use

hybrid architecture featuring both convolutional networks and transformer encoders.

Lao et al.[72] (2022) uses both a CNN and a Vision-Transformer [34] to process the two

images and then combine features to feed another CNN. Cheon et al.[26] (2021) uses a

transformer encoder to process features from a CNN. Several other works base their method

on this architecture [28, 27].

2.4.3 Performances on common datasets

In Table 2.3, we display the performances of the full-reference methods on four of the pre-

sented datasets. Some metrics were taken from [84] which performed extensive state-of-

the-art comparisons. In other cases, performances come from the original papers. Even

more so than the no-reference results (Table 2.2), results on the LIVE [114] dataset fail to

discriminate methods, while clear performances gains are observed on TID2013 [98] and

KADID-10k [79] over the years of methods improvement.
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Method LIVE TID2013 KADID-10k

PSNR 0.881 0.643 0.677
SSIM [134] 0.948 0.637 0.724

MS-SSIM [136] 0.951 0.787 0.802
FSIM [149] 0.964 0.852 0.854
VSI [147] 0.951 0.902 0.880

HaarPsi [104] - 0.873 0.885
LPIPS [150] 0.932 0.673 0.721
PieAPP [101] 0.915 0.877 0.869
DISTS [32] 0.953 0.942 -

CONTRIQUE-FR [84] 0.966 0.909 0.946

TABLE 2.3: Comparison of state-of-the-art FR-IQA algorithms. The SROCC is reported.
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Chapter 3

Fixed Content Discriminant Region

Selection

3.1 Introduction

A typical way to evaluate the quality of a set of cameras consists of comparing shots of the

same visual content in a controlled environment. The common visual content is usually re-

ferred to as a chart. Chapter 2 displays several charts and details the associated computa-

tions. The motivation for using the same chart when comparing different cameras is twofold.

First, it facilitates the direct comparison of different cameras. In particular, when it comes to

subjective evaluation, humans can more easily provide pairwise preferences than an absolute

quality score. Second, when the common noise-free chart is known, this reference can be

explicitly included in the quality measurement process.

In this context, the Modulation Transfer Function (MTF) is a widely used tool for evalu-

ating the perceived sharpness and resolution [13], which are essential dimensions of texture

quality. First, MTF-based methods suffer from important drawbacks. MTF-based methods

are originally designed for conventional optic systems that can be modeled as linear. Conse-

quently, non-linear processing in the camera processing pipeline, such as multi-image fusion

or deep learning-based image enhancement, may lead to inaccurate quality evaluation [129].
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Second, these methods assume that the norm of the device transfer function is a reliable

measure of texture quality. This assumption fails to account for many nuances of human per-

ception. Some recent works have shown that the magnitude of image transformations does

not always coincide with the perceived impact of the transformations [151]. Consequently,

in this chapter 3 we advocate that human judgment should more explicitly be included in the

texture quality measurement process.

As a consequence, we propose DR2S, a Deep Regression method with Region Selection.

Our contributions are threefold. First, we formulate the problem of assessing the texture

quality of a device as a regression problem and we propose to use a deep convolutional net-

work (ConvNet) for estimating quality scores. We aim to obtain a score that would be close

to a subjective quality judgment: to this end, we use annotations provided by expert human

observers as ground truth at training time. Second, we propose an algorithm to identify the

regions in a chart that are better suited to measure perceptual quality. Finally, we perform an

extensive evaluation study that shows that our learning-based approach performs better than

existing methods for texture quality evaluation and that our region selection algorithm leads

to further improvement in texture quality measurement.

3.2 Related works

Existing methods can be classified into two main categories: MTF-based and learning-based

methods. An extensive review of the MTF-based methods is available in Chapter 2. We sum-

marize here the methods included in our experimental evaluation. The acutance is a single

value metric defined as the weighted integral of the MTF with a contrast sensitivity function

modeling the spatial response of the human visual system. Cao et al. propose a method [19]

using the Dead-Leaves model [88, 45] which is more appropriate than a simple slanted-edge

chart to describe fine detail rendering as it is more challenging for devices. Estimating the

noise power spectral density (PSD) is key to obtaining an accurate acutance evaluation, as

high-frequency should not be mistaken for fine details. This task is not easily performed

on the textured region, as a consequence, noise PSD is estimated on a uniform patch. It
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is important to note that only the PSD of the reference image and not the reference image

itself is needed for the acutance computation. For this reason, this method is referred to as

Reduced-Reference (RR) acutance in the rest of this chapter. However, denoising algorithms

integrated into cameras behave differently in uniform and textured regions. In this context,

Kirk et al. [68] propose to compute the MTF using the cross-power spectral density of the

resulting and the reference images, assuming effective registration of the chart. Sumner et

al. [119] then modified Kirk’s method to improve slight misregistration robustness. Since

this method takes full advantage of the reference image, it is referred to as Full-Reference

(FR) acutance in the rest of this chapter.

In conclusion, state-of-the-art techniques typically allow us to obtain a good estimation

of devices’ MTF and then of the acutance. However, it has been shown that acutance itself

does not always reflect very well the human quality judgment [85]. This observation calls

for learning-based methods that aim at reproducing the score of human experts evaluating

the images.

Concerning learning-based methods exposed in Chapter 2, they tackle a slightly different

problem than ours. They are designed to evaluate image quality attributes for any input

image while we address the problem of evaluating devices using a known common chart.

3.3 Method

3.3.1 DR2S overview

In this section, we detail the proposed method for estimating texture quality. We formulate

this task as a regression problem. We assume that we dispose of a training dataset composed

of N color images (X1, . . . , XN ) of dimensions H × W with the corresponding texture

quality scores (Y1, . . . , YN ) ∈ R
N . Since we are interested in estimating the camera quality,

each score Yn corresponds to a quality score for one device at a specific lighting condition.

Note that, several training images can be taken with the same device. Importantly, we aim
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3.3.2 Initial training

The goal of this first stage is to train a neural network that can be used to identify relevant

image regions. To this end, we propose to train a network to regress the quality score from

an input image patch. This initial network is later used in the second stage of our pipeline

to identify discriminant regions (See Sec.3.3.3). We train this deep convNet on random

crops extracted from the training images {X1, . . . , XN}. These crops are randomly selected

across the images with a uniform distribution. In all our experiments, we use the widely

used Resnet-50 network pre-trained on ImageNet [31] where the final classification layer

is replaced by a linear fully connected layer. Since some patches are not discriminant, this

initial training suffers from instability and optimization issues. Consequently, we use the

Huber loss that reports better performance in the presence of noisy samples [20]:

L(y, ŷ) =





1
2
(y − ŷ)2 for |y − ŷ| ≤ δ

δ|y − ŷ| − 1
2
δ2 otherwise

(3.1)

where y and ŷ denote the annotated and predicted scores, and δ ∈ R
+ is a threshold. At the

end of this stage, we obtain a network that estimates the quality of a device from an input

patch.

3.3.3 Region selection

In the second stage of our pipeline, we use our previously trained network to predict image

regions that are most discriminating for quality measurement. We produce a map M ∈

[0, 1]H×W that indicates the relevance of each location of the chart to estimate texture quality.

This map will allow us to select a suitable region to train our convNet in the last stage of our

pipeline.

In order to estimate a single map M for all the training images, we first register all

the training images. We employ the following algorithm to align the images on the image

with the highest resolution (47 MP). First, we detect points of interest. Then, we extract
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local AKAZE descriptors [6] and, finally, we estimate a homography for every image. Im-

age warping is implemented using bicubic sampling. Note that, while the map computa-

tion requires this warping alignment step that may affect the performance, training and pre-

diction can be performed on the original images. We now assume that the training images

{X1, . . . , XN} are registered.

To estimate the map M , we propose to use the network φ trained in the first stage. Let

Ψ ∈ R
H ′,W ′,C be the feature tensor outputted by the backbone network for a given input

image. In our case, since we employ a ResNet-50 network, Ψ corresponds to the tensor be-

fore the Global Average Pooling (GAP) layer. Since Resnet-50 is a fully convolutional net-

work, the dimension H ′ and W ′ depends on the input image dimensions, while the number

of channels is fixed (i.e., C = 2048). Let A ∈ R
C and b ∈ R be the trained parameters of

the final regression layer obtained in the first stage. The network prediction is given by:

ŷ = σ
(
A⊤ · GAP(Ψ) + b

)
(3.2)

where σ denotes the sigmoid function. While the network returns one single output scalar

per input image, we want to obtain one value per pixel location. In order to adapt the class

activation map framework [156] to our regression setting, we propose to compute a score for

every feature map location (h, w) ∈ [1 : H ′] × [1 : W ′]:

Sh,w = σ
(
A⊤ · Ψ[h, w]) + b

)
(3.3)

where Ψ[h, w] ∈ R
C denotes the feature vector at the location (h, w). Note that, the re-

sulting map S = (Sh,w)(h,w)∈[1:H ′]×[1:W ′] has a dimension H ′ × W ′ that is different from

the initial input image size H × W . This size difference depends on the network architec-

ture. In the case of Resnet-50, we obtain a ratio 32 between the input and the feature map

dimensions. Therefore, we resize the score map S to the dimension H × W using bicubic

sampling. This procedure is applied to every image of the training set. Thus, we obtain the

set of score maps {S̃1, . . . , S̃N}
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We propose to define the confidence score map M as the location-wise variance of the

score maps S̃n over the whole training set. The motivation for this choice is that, discrimi-

nating regions have a higher variance than non-discriminating ones. Indeed, we observe that

the scores produced by the ConvNet φ(·, θ) over non-discriminative regions tend to have

small variance. Conversely, on discriminating patches, the networks predict values with a

wide range leading to high variance.

3.3.4 Final training and prediction

In the last stage of our pipeline, we select the chart region with the highest confidence score

value in M . In our preliminary experiments, we observed that using a region width approx-

imately six times larger than the network input size leads to good performance. In our case,

we use a square region of 1200 × 1200 pixels. In this region, we select random patches

that are used as a training set. We re-train the network φ, starting again from ImageNet

pre-training weights.

At test time, assuming an image with an unknown quality score, we extract patches in

the selected region. The final score is given by the average over the different patches.

3.4 Experiments

In this section, we perform a thorough experimental evaluation of the proposed pipeline.

We implemented our method using Tensorflow and Keras. When training the ConvNets

(stages 1 and 3), we employ Adam optimizer following [74], with a starting learning rate

of 3 · 10−3 with a decay of 0.1 every 40 epochs for a total of 120 epochs. In our model,

we assume that all the images have the same resolution. The reason for this choice is that

we want the image details to be analyzed at the same scale, as a human observer would do.

In practice, the resolution depends on the device. Therefore, we preprocess all the training

images resizing them to the highest resolution of the dataset using bicubic upsampling. This

solution is preferred to downsampling to a common lower resolution since texture quality
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is not invariant to downsampling. In addition, due to possible lens shading, we remove the

sides of the images.3.1: Ablation Study: we measure the impact of region selection com-

3.4.1 Datasets

Charts and devices As there is no well-established reference dataset for our problem, we

collected annotated data using three different charts.

• Still-Life: First, we use the chart displayed in Fig. 3.3a. This dataset is referred to

as Still-Life. The chart is designed to evaluate several image quality attributes and to

present diverse content: Vivid colors for color rendering, fine details, uniform zones,

portraits as well as resolution lines, and a low-quality Dead-Leaves version. Images

are acquired using 140 different smartphones and cameras from different brands com-

monly available in the consumer market. In Fig. 3.2, we provide an example patch

captured using three different cameras. The left image corresponds to a high-quality

device while the two others are obtained with low-quality devices. It illustrates the

nature of distortions that appear in this dataset with different intensities. To obtain a

larger database and predictions robust to lighting conditions, we shoot the chart using

five different lighting conditions: 5 lux tungsten, 20 lux tungsten, 100 lux tungsten,

300 lux TL84, and 1000 lux D65. Note that the process is repeated for every device.

• Gray-DL: Second, we employ the dead-leave chart proposed in [19]. As mentioned

in Sec 3.2, this chart depicts gray-scale circles with random radii and locations. In all

our experiments, we refer to this dataset as Gray-DL. We use the same five lighting

conditions and devices as for the Still-Life chart.

• Color-DL: Finally, we complete our experiment using the dead-leaves chart proposed

in [119]. In opposition to Gray-DL this chart is colored (an image can be found at [2]).

For this chart, we employed a limited number of devices. More precisely, we employ

only 14 devices with the same five lighting conditions as for the other charts. The low

number of devices is especially challenging for learning-based approaches.
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FIGURE 3.2: Patches of high (left) and low-quality (center and right) images from our Still-Life

dataset

(A) Still-Life Chart (B) Gray-DL Chart

FIGURE 3.3: Still-Life Chart used in our experiments. The Still-Life chart contains many
diverse objects with varying colors and textures while the Gray-DL chart depicts random gray-

scale circles.

Annotations In order to train and evaluate the different methods we need to provide ground-

truth annotation for each device. Note that, the annotation must be provided for each pair of

device and lighting conditions. To obtain quality annotations that are a reliable proxy of the

perceived visual quality, annotations are provided by human experts. Images to be evaluated

were inserted among a fixed set of 42 references, and very high-quality prints were provided

to help them judge the authenticity of the details. Annotators were asked to compare the

images using the same field of view for every image, using calibrated high-quality monitors

where images are displayed without applying any down-sampling but with a possible digital

zoom for the lower resolution image. Each position among the set of references is assigned

a score between 0 and 1. In the case of the Dead-Leaves charts, since the charts are unnat-

ural images, human perceptual annotation is problematic. Therefore, we chose to use the

annotations obtained on the Still-Life also for the dead-leaves charts, rather than annotating
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the images. The Still-Life chart contains diverse textures similar to what real images would

contain. In this way, we obtain a subjective device evaluation in a setting more similar to

real-life scenarios.

3.4.2 Metrics

In our problem, relying on standard classification or regression metrics is not straightfor-

ward. Indeed, MTF-based methods predict a quality score that is not directly comparable

to the score provided by human annotators. A straightforward alternative could consist in

computing the correlation between the predictions and the annotation. However, the under-

lying assumption that the predictions of each method correlate linearly with our annotations

may not hold and bias the evaluation. Therefore, we decided to rely on two distinct metrics

based on the correlation of the rank-order. First, we adopt the Spearman Rank-Order Corre-

lation Coefficient (SROCC) defined as the linear correlation coefficient of the ranks of pre-

dictions and annotations. Second, we report the Kendall Rank-Order Correlation Coefficient

(KROCC) defined by the difference between concordant and discordant pairs divided by the

number of possible pairs. The key advantage of this second metric lies in its robustness to

outliers.

For all visual charts, the dataset is split into training and test sets as follows. First, among

the devices we use in our experiments, several are produced by the same brand. So, to avoid

bias between training and test, we impose no brand overlap between training and test sets.

Second, as a consequence of such constrain, a limited number of brands may appear in the

test set. To avoid evaluation biases towards specific brands, we use a k-fold cross-validation

with k = 16.

In order to measure the impact of the number of devices on performance, we perform

experiments with a variable number of devices. For all the experiments on the Gray-DL and

Still-life charts, we report the results obtained using subsets of size 20, 60, 100, and 140

devices. For a given number of devices, each experience is performed over the same device
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Number of devices 20 60 100 140 20 60 100 140

SROCC KROCC

Random Patch 0.626 0.818 0.784 0.806 0.433 0.617 0.588 0.613
Random Region 0.795 0.863 0.866 0.879 0.606 0.680 0.682 0.700

Selected Region (Full model) 0.830 0.912 0.890 0.900 0.638 0.740 0.716 0.728

TABLE 3.1: Ablation Study: we measure the impact of region selection by comparing three
baseline models on the Still-life chart. SROCC and KROCC metrics are reported.

set. Note that, for every method, the complete pipeline is repeated independently for every

subset.

3.4.3 Ablation study

In order to experimentally justify our proposed method, we compare three different versions

of our model:

• Random Patch: In this approach, random patches are selected from the whole chart at

both training and testing time.

• Random Region: We then restrict the random patch extraction to a single zone, chosen

randomly. We report the average over five random regions.

• Selected Region: In this model, we employ our full pipeline as described in Sec. 3.3.

In particular, training and test are performed using the selected region.

In these three models, we employ a ResNet-50 backbone trained using the same optimization

hyper-parameters.

The results obtained on the Still-life chart are reported in Table.3.1. First, when using the

random patches variant, the model trained on 20 devices performs poorly both in terms of

SROCC and KROCC compared to other variants. In this case, we see that it is required to dis-

pose of at least 60 devices to get satisfying performances. Second, we observe that restricting

random patches extraction to a region randomly selected leads to better performance than if
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we do not restrict to this region. The gain is visible for every number of devices and for both

metrics. It may be explained that the decreased diversity in content leads to a ConvNet that is

specialized in a specific region of the chart. In other words, the benefit of a more restrained

input diversity is larger than the benefit of a larger and more diverse training set. Finally, our

full model reaches the best performance for both metrics and for every number of devices.

This better performance independently of the training sub-set demonstrates the robustness

of the proposed method. Interestingly, we obtain performances with 20 devices similar to

the performance of the Random Patch model with 140 devices. Overall, this ablation study

illustrates the benefit of selecting specific regions for texture quality measurement.

3.4.4 Qualitative analysis of our region selection

In order to further study the outcome of our region selection algorithm, we display the re-

sulting map (Fig. 3.4) of relevant zones. We observe in Figure 3.4 that uniform regions are

FIGURE 3.4: Normalized discriminant-region map S (better viewed with digital zoom). For
display, we employ histogram equalization for normalization and obtain values from 0 to 1.

considered by our algorithm as the least discriminant for texture quality assessment. In par-

ticular, this is visible in the bottom-right regions on the black square patch. On the contrary,



3.4. Experiments 45

regions with low contrast and many small details appear to be more discriminant (see around

the banknote region). Results on wooden regions seem to depend on wood grain.

This analysis is performed considering all the images. We now propose to analyze the re-

gions that discriminate devices among only low-quality or only high-quality images. For this

analysis, the test set is split according to the ground-truth score. In this way, we compute two

discriminant maps. Two small crops of these two maps are shown in Fig.3.5. Interestingly,

we observe restricting our analysis to high-quality or lower-quality images leads to differ-

ences in results. For example, we observe that the resolution lines (in the bottom row of 3.5)

discriminate for low-quality images, but not for higher-quality images. Conversely, areas

exhibiting only very fine details are not the most useful for low-quality images. In particu-

lar, the forehead of the man is not discriminant among low-quality images, while this region

is highly discriminant among high-quality images. It shows that the regions with very fine

details are discriminant only among high-quality images since these details are completely

distorted by all the low-quality devices.

Complete maps for several quality ranges are available in the appendix A

(A) Low quality im-
ages

(B) High quality im-
ages

FIGURE 3.5: Comparison of discriminant-region maps for high-quality images and low qual-
ity. We display two patches extracted from the confidence maps obtained when using texture

quality maps only from low (ie. Left) and high (ie. Right) quality images.



46 Chapter 3. Fixed Content Discriminant Region Selection

3.4.5 Comparison with state-of-the-art

Number of devices 20 60 100 140 20 60 100 140

Method Chart SROCC KROCC

RR Acutance [19] Gray-DL 0.704 0.794 0.747 0.788 0.533 0.595 0.592 0.592
ResNet [53] Gray-DL 0.641 0.795 0.792 0.824 0.464 0.598 0.592 0.630

DR2S (Ours) Still-Life 0.830 0.912 0.890 0.900 0.638 0.740 0.716 0.728

TABLE 3.2: Comparison of deep learning systems on different charts to [19]. SROCC and
KROCC metrics are reported.

In this section, we compare the performance of our approach to existing methods. This

comparison is twofold since both the methods and the charts need to be compared. We per-

form two sets of experiments. In the first set of experiments, we compare different methods

on the two large datasets recorded with the Gray-DL and the Still-Life charts and the same

140 devices. The second set of experiments consists of a comparison of the devices on the

Color-DL chart. This second set of experiments is highly challenging for learning-based

methods because of the limited amount of training data.

Large database experiments

First, in our preliminary experiments, we observed that, for this experience, adding a small

amount of Gaussian noise and random change in exposition leads to better performance. This

data augmentation is performed on the fly on every training patch. Our main competitor is the

RR acutance methods proposed in [19]. For the acutance computation, viewing conditions

were set to 120 centimeters printing height and 100 centimeters viewing distance. Note that,

the RR acutance method is intrinsically designed for the Dead-Leaves charts and cannot

be used for the Still-Life chart. We include a second deep learning-based method for the

Gray-DL chart in our comparison. This approach consists of a ResNet-50 [53] where the

classification layer is replaced by 3 additional fully-connected layers and a linear regression

layer. For this approach, we employ the Random patch strategy described in Sec. 3.4.3

inside of the texture region. Importantly, we do not report the performance of DR2S on the
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Gray-DL chart since the chart is designed to be uniformly discriminant for texture quality

assessment.

Quantitative results are reported in Table. 3.2. First, we observe that with a limited num-

ber of devices for training (e.g. 20 devices), RR Acutance performs better than ResNet-

50. However, the proposed approach clearly outperforms the texture-MTF based method

(+0.126 and +0.105 in SROCC and KROCC, respectively). It shows that when few training

samples are available, selecting the appropriate regions is essential for good performance.

ResNet performance increases with the number of devices: with 140 devices, ResNet-50

clearly outperforms RR Acutance according to both metrics showing the potential of learning-

based methods. While comparisons between results obtained using different charts must be

interpreted with care, this result clearly shows that a learning-based approach can be intrin-

sically better than acutance-based methods using the exact same input images. Finally our

DR2S method on the Still-life chart leads to the best results according to both metrics and for

every number of devices.

Small database experiments

Concerning the second set of experiments, we compared the different methods on the Color-

DL chart. Note that the 14 devices of the Color-DL chart are a subset of the devices of

the Gray-DL and Still-Life charts. Consequently, we also performed experiments using only

these 14 devices on these two other charts. Note that this setting is very challenging for the

two learning-based methods (ResNet and DR2S) because of the limited amount of training

data. Therefore, for the two learning methods, we perform two experiments. First, training

and testing are performed using 14-fold cross-validation on the exact same data as the other

methods. Second, we train our model on the complete database (without test devices) and

test on the 14 devices in common with the Color-DL chart. These two variants are referred

to as Restricted and Full. Again, we do not report the performance of DR2S on the Gray-DL

and Color-DL charts since the chart is designed to be uniformly discriminant. Results are

reported in Table 3.3.
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Method Chart SROCC KROCC

FR Acutance [119] Color-DL 0.701 0.544

RR Acutance [19] Gray-DL 0.714 0.552
ResNet - Restricted Gray-DL 0.640 0.463

ResNet - Full Gray-DL 0.780 0.598

DR2S - Restricted Still-Life 0.746 0.569
DR2S - Full Still-Life 0.873 0.702

TABLE 3.3: State of the art comparison: Performance on the 14 devices database. Deep
learning systems on perceptual and Gray-DL are compared to [19] and [119]

First, we observe that the MTF-based methods perform similarly on the color and gray-

scale dead leave charts. It shows that the better performance of the proposed model on

the Still-Life chart is not due to the lack of colors in Gray-DL but to its content. Second,

using the restricted database, the ResNet method under-perform MTF-based predictions.

However, when the amount of training data is sufficient, it outperforms FR Acutance and RR

Acutance. Concerning DR2S used with Still-Life, higher correlations are achieve even under

data restrictions.

3.5 Extension to noise

We compare the measurements performed on the DeadLeaves chart and predictions on the

Still-Life chart on the whole database (293 devices). We chose to benchmark our method to

three different formulas of the visual noise metric:

• The formula standardized by CPIQ [1] (V NCP IQ)

• The formula in discussion in ISO15739 and lastly proposed in [137] (V NISO)

• The formula used by DXOMARK [37] (V NDXOMARK)

As the visual noise metric provides one metric for each patch, we consider for each formula

the one interpolated for CIE − L∗ = 50. Besides this, visual noise takes into account the
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sensitivity of the human eye to different spatial frequencies under various viewing conditions.

Hence the measurement is always dependent on the size of the image (i.e. print or on-screen)

and the viewing distance. The effect of the viewing conditions is to stretch the CSF along the

frequency axis. To evaluate the ability of the visual noise measure to assess the noise level

in our dataset, we use two different conditions:

• Viewing Condition Print: a commonly used viewing condition of a print of 120 cen-

timeters height viewed at 100 centimeters

• Viewing Condition Display: a viewing condition as the one used during the annota-

tion process, involving a display viewed at 40 centimeters with a pixel pitch of 0.27

millimeters

Moreover, our method on the Still-Life chart, gives predictions on two areas of interest for

each image: Woman and Feather. We will therefore evaluate the predictions of Woman and

Feather compared to the ground truth of their respective areas as well as the average of the

two predictions compared to the average of the annotations. Quantitative results are reported

in Table 3.4

Method Viewing Condition SROCC KROCC

V NCP IQ Print -0.640 -0.460
V NCP IQ Display -0.620 -0.445
V NISO Print -0.585 -0.416
V NISO Display -0.576 -0.408

V NDXOMARK Print -0.646 -0.464
V NDXOMARK Display -0.654 -0.470

Ours Zone 1 0.883 0.717
Ours Zone 2 0.862 0.689
Ours Average 0.904 0.734

TABLE 3.4: Performance on the devices database.

First, we observe that our method strongly matches the provided annotations and that

it outperforms other benchmarked methods. These results must be carefully weighed since
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the predictions were made on the same chart as the annotations (ie. the Still-Life chart),

while the visual noise metrics were established on the Dead Leaves chart. We conclude that

measuring the noise on uniformly gray patches does not sufficiently allow us to evaluate the

perceived level of noise of the camera on a natural image.

3.6 Conclusion

In this chapter, we proposed a method that can estimate the perceptual quality of images.

Our learning-based algorithm selects the chart region that is the most suitable for texture

quality assessment. Our results also suggest that, if enough training samples are available,

learning-based methods outperform MTF-based methods. Our method allows an accurate

selection of a relevant region from a perceptual chart for each of these attributes. However,

our method focuses on estimating image quality from a single chart in a laboratory environ-

ment. Consequently, in chapter 4 we focus on evaluating the texture quality for different

scenes on natural images.
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Chapter 4

Camera-quality assessment in real-world

conditions

4.1 Introduction

When evaluating camera quality, several image attributes can be evaluated such as dynamic

range, saturation, white balance, noise, or the presence of various artifacts [18]. This task has

been traditionally addressed using synthetic charts recorded in labs [127, 19]. In particular,

for texture preservation, the acutance metric, derived from the modulation transfer function,

is generally used as described by Phillips et al. [97] and has been standardized by the IEEE

organization [11]. This approach has been shown to be less correlated to human perception

than learning-based methods in [127]. Contrary to these works and the previous chapter

(Chapter 3), we propose to address this problem in real-world conditions on natural content.

The goal of this work is to design a method that can evaluate and compare devices on the

same natural content allowing content-specific ranking.

The camera quality assessment (CQA) problem is closely related to two well-known

Image quality assessment (IQA) problems: full-reference (Figure 4.1a) and no-reference

IQA (Figure 4.1b). In full-reference IQA, the goal is to evaluate an input target image with

the help of a distortion-free version of this image. This task is mainly explored in the context

of telecommunication applications where IQA is used to compare different compression and
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for IQA tasks [65, 14, 131, 153, 66, 142, 127]. The main advantage of learning-based ap-

proaches lies in their ability to predict quality scores that match human judgment. After

collecting human preferences or ratings for a large set of images, a neural network can be

trained to mimic human quality evaluation. Currently, existing public datasets for IQA can

be divided into two categories: the images either present synthetic [114, 99, 98] such as blur

or compression noise, or authentic [142, 143, 57, 38] distortions. On the one hand, synthetic

datasets employ distorted images computed from pristine source images and a set of syn-

thetic degradations. These synthetic datasets do not incorporate the types of complex dis-

tortions seen in authentically distorted images captured by mobile devices. Modern mobile

cameras embed complex optical systems and algorithmic post-processing steps that result in

images with complex distortions that are a mix of multiple distortions [41]. Furthermore,

synthetic distortions classically used mostly refer to compression or transmission scenarios.

Consequently, these datasets are not well-suited for camera quality assessment. On the other

hand, authentic distortions datasets do present real-world distortions from actual devices, but

every content appears only once or very few times in the dataset. This is problematic in the

context of CQA since human annotators have difficulties rating image quality with changing

content [96]. On the contrary, comparing devices on the same content allows content-specific

ranking and more accurate annotation estimation [95].

To address these limitations, we introduce a new data collection protocol specific to the

problem of camera quality assessment. We shoot the same natural scenes with many devices

and estimate quality annotation using a procedure based on pairwise comparisons [95], com-

bined with an efficient pair selection strategy [90]. The proposed protocol can be followed

by any researcher or engineer who needs to learn their own CQA method. The resulting

dataset provides a common test benchmark that can help the scientific community to develop

new machine-learning algorithms with higher prediction accuracy.

In short, the contributions can be summarized as follows:

• We propose to address the problem of camera-quality assessment (CQA) in real-world
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conditions on natural content. More precisely, we specify several variants of this prob-

lem and justify their respective practical advantages and limitations.

• We propose a data collection protocol tailored to evaluate learning-based camera-

quality assessment methods. We collect 10 different scenes with many devices per

scene with the same content. In every scene, a specific region of interest is selected.

After a region alignment step, the images are shown to expert annotators and quality

scores are estimated using a pairwise comparison protocol. Comparing devices on the

same content allows us to obtain accurate quality scores [95]. We also take a photo-

graph of every texture with a digital single-lens reflex (DSLR) camera that provides a

high-quality texture reference for each scene. While a DSLR is not necessarily better

than modern mobile devices concerning noise, color, or dynamic range, this is the case

for texture detail preservation which is the evaluated attribute in this study. We pro-

pose to use this high-quality image both at annotation and evaluation times to improve

the quality of the predicted scores. We refer to this setting as reference-based (Figure

4.1c) quality assessment. Our dataset is publically available 1.

• Finally, we benchmark several methods for the introduced CQA problems including

baselines initially proposed for no-reference and full-reference IQA. This benchmark

explores CQA for authentic distortions and assesses the performances of the algo-

rithms both when the evaluated content is known or unknown. Our experiments al-

low us to extract several practical recommendations to ease the development of future

CQA methods.

4.2 Related Work

While more detailed descriptions of datasets and methods can be found in Chapter 2, we

propose in this section a brief review of datasets for image quality, as well as image quality

1https://corp.dxomark.com/carco-dataset/
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assessment methods, whether full-reference or no-reference relevant to the motivation of this

work or included in our experimental evaluation.

4.2.1 Existing datasets for image quality

Early datasets such as LIVE [114], CSIQ [73] or TIDs [98, 99]) are composed of noise-

free images and subjective preference scores for several artificial distortions. These datasets

mostly correspond to compression and transmission scenarios such as JPEG compression,

sparse sampling, and reconstruction. The PieAPP dataset [101] also considers distortions

from image processing algorithms, like deblurring, superresolution or reconstruction. Other

datasets address the case of authentic distortions. For instance, the LIVE In the Wild [41]

dataset consists of 1161 images shot with various devices with unique content. Similarly, the

KonIQ10k [57] dataset contains images from a large public media database with unknown

distortions. Yu et al. [143] collected a dataset of 12 853 natural photos from Flickr together

with image quality annotations measuring the presence of several defects: exposition, white

balance, color saturation, noise, haze, undesired blur. More recently, PaQ-2-PiQ [142] is a

dataset comprising 40k real-world annotated images collected from social media and 120k

annotated sub-patches. SPAQ [38] is a dataset dedicated to smartphone photography con-

sisting of 11,125 pictures taken by 66 smartphones. While some of the contents are shared

by several smartphones, this approach is not systematic and the information is not given on

which images correspond to the which content.

None of the existing datasets present these two characteristics simultaneously: (1) the

distortions are authentic and (2) the same contents are repeated many times. This justifies

the creation of a novel dataset presenting these two characteristics, tailored for the need of

camera quality assessment.

Most existing datasets are annotated through mean opinion scores. Annotators rate im-

ages and the image scores are averaged for all the annotations [57, 38]. However, Perez-

Ortiz et al. [96] have shown that pairwise comparisons aggregated with a Thurstonian model
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improve annotation quality over mean opinion scores for a given annotation effort time. An-

other advantage of this approach is that the distance between two annotation scores can be

interpreted as a probability that a person will prefer one image over the other. The advantage

of this pairwise annotation strategy has been proved in the case of synthetic distortions as

in the PieAPP dataset [101]. Due to these advantages, we chose to employ the Thurstonian

model to annotate our dataset. Furthermore, in contrast to alternative protocols based on

crowd-sourcing [143, 142], our annotation process was conducted in a controlled environ-

ment with expert annotators to obtain high-quality annotations.

4.2.2 Full-Reference methods

Full-reference methods assume a pristine image used as a reference in order to evaluate a

degraded image. Due to this requirement, this setting is used on datasets obtained by adding

synthetic noise. This setting mostly corresponds to compression or transmission scenarios,

or as a tool for image reconstruction or super-resolution. A simple Peak-Signal-to-Noise

ratio could be considered a full-reference criterion but it poorly reflects human preferences.

Other learning-free methods such as Structural Similarity Index (SSIM) [134], Multi-Scale

SSIM (MS-SSIM) [136], and HaarPsi [104] are more complex and often correlate better

with human preferences. The SSIM [134] is widely used albeit imperfect as a performance

metric for reconstruction tasks and super-resolution [76]. It considers image degradations as

perceived changes in its structural information. Concretely, the SSIM is a composite index

comparing the luminance, contrast, and structure of the reference image and the degraded

image through sliding windows. As an alternative, the Feature Similarity index (FSIM)

[149] is an influential full-reference metric that combines two feature maps derived from the

phase congruence measure and the local gradients of the reference with the degraded image

to assess local similarities. HaarPsi metric [104] also compares images via an intermediate

feature space but it uses simple Haar-Wavelet filters as a feature extractor. This approach is

faster to compute than the FSIM.
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In the last decade, we have witnessed the emergence of learning-based methods such

as WaDIQaM-FR [14] or DualCNN [131]. Learning-based methods for full-reference IQA

mostly rely on Siamese architectures. More precisely, a common backbone is used to process

a reference image and the image under evaluation. Assuming a given backbone network,

the main technical choice lies in the choice of the aggregation operation that is used to

compare the feature maps resulting from the two images [130]. The aggregated feature map

is then fed to a regression module which outputs an estimation of the perceptual quality of

the input image under evaluation. For example, in the full-reference version of WaDIQaM

[14], features of a Siamese network are aggregated with the difference and concatenation of

features from the reference and degraded image. DualCNN [131] uses features from min-,

average-, and max-pooling, of the two images, as well as differences between these two sets

of features. Alternatively, LPIPS [150] normalizes the activations in the channel dimension,

scales each channel by a learned weight, and then computes the Euclidean distance between

the reference and degraded image. This process is done at several scales across the network

and the distances are then averaged.

In general, these methods are not used for camera quality assessment as we lack a pristine

image in existing datasets. However, we propose in this chapter a dataset with registered

images and a high-quality sample for each content. We test these full-reference methods

on our dataset even though a high-quality image is not a perfectly accurate reference. We

also extensively evaluate different aggregation strategies for Siamese networks in the case of

camera quality assessment.

4.2.3 No-Reference methods

Earlier methods for no-reference IQA are often referred to under the umbrella term Nat-

ural Scene Statistics (NSS), which assume that perceptual distortions can be measured as

deviations of certain statistical properties. Until 2012 such features were extracted in the

Wavelet domain or Discrete-Cosine Transform domain. Mittal et al. [92] then proposed
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the BRISQUE model using features from the spatial domain, with better results. More pre-

cisely, these features are the horizontal, vertical, diagonal, and anti-diagonal products of the

mean subtracted and contrast normalized pixels. Assuming Gaussian and anti-Gaussian dis-

tributions, the parameters of these distributions are then fed into a support vector regression.

NIQE [93] uses the same handcrafted feature as BRISQUE, but instead of training a support

vector regression compares the distribution of the patches of the test image to the distribu-

tion from a collection of natural pristine images. IL-NIQE [148] enriches the NIQE model

with features related to colors, gradients, and the log-Gabor responses of the image. NIQE

[93] and IL-NIQE [148] methods also are classified as NSS methods. While these methods

predate the deep learning revolution, they are still used in benchmarks [38]. Moreover, we

include these methods since their performance gap with deep-learning-based approaches is

indicative of the non-triviality of the task and the dataset.

In 2014, Kang et al. [65] uses for the first time a convolutional network (CNN) for image

quality assessment instead of handcrafted features. The proposed architecture is rather small:

it takes as input 32x32 patches and the network depth is one single layer. Later works propose

more complex architecture as WaDIQaM-NR [14]. WaDIQaM [14] proposes a convolutional

network equipped with a patch weighting estimator. PaQ-2-PiQ [142] uses in addition to a

convolutional network a Region-of-Interest pooling layer similar to the one employed in

Fast-RCNN [42]. The question of the region of interest selection and weighting is indeed

prevalent in the image quality literature [124, 25, 127]. Some works adopt probabilistic

formulations modeling the distribution of the quality scores of each image. For example,

a ConvNet is trained to predict opinion score histograms in [120] or Gaussian modeling is

employed in [144] to capture the uncertainty of the annotated scores. Zhang et al., with their

DBCNN architecture [153], propose another no-reference method that is composed of two

different convolutional models: the first one trained on synthetic distortion classification and

the second is a pre-trained VGG [116] on ImageNet. This pre-trained model is introduced to

better represent the perceptual features of natural images. The two sets of features are merged

into a single representation for a final quality prediction with a bilinear pooling. Finally,

while previous approaches were based on convolutional networks, MUSIQ [66] employs
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the recent vision-transformer architecture. Their architecture ingests patches interpolated

at different scales. The location token is computed from a look-up table common to every

scale. The high architectural diversity of these methods motivates our thorough experimental

evaluation where all these methods originally designed for IQA are compared in the context

of CQA.

4.3 Dataset Collection

In this section, we describe our procedure to collect the proposed dataset for CQA. We

refer to our dataset as Camera quality Assessment in Real-world COnditions dataset (or

CARCO):

Image collection and pre-processing. The first step of the data-collection process consists

in shooting different scenes, each taken by different cameras with different quality levels. In

total, we shoot D = 10 different textures. The ten textures are selected from different scenes,

except for one scene where we selected two regions since this particular scene contains di-

verse low-level details. On average, each scene is shot with 68 different devices. We em-

ploy camera devices with various qualities that are commonly embedded in standard smart-

phones, from various brands including but not limited to Apple, Google, Huawei, Xiaomi,

Asus, OnePlus, Oppo, Sony, Vivo. To mimic real scenarios where devices can be added

sequentially to the benchmark, we shoot the different textures at different dates and times of

the day. Capturing images for multiple devices on a single day would indeed heavily bias

the database toward very particular meteorological conditions. Consequently, the accuracy

of the estimated scores would suffer from this data bias if a new test device is evaluated with

different weather conditions. Capturing images on different days with varying conditions is

a simple solution to mitigate this problem. Every picture from mobile devices is shot with

default automatic settings. For each scene, we capture the reference image using a DSLR

camera that produces images of superior quality. These images will be given to the anno-

tators so that they can judge the authenticity of the details presented by the other images

of each scene. We used a Panasonic DCS1R for all of our scenes. While DSLRs cannot
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guarantee superior quality in terms of attributes such as noise or dynamic range, the large

resolution of the sensor ensures better preservation of detail, which is our main focus in this

study.

We choose scenes of various natures to capture the diversity of textures that may appear

in pictures taken by camera users. Natural images usually contain various textures and we

need to specify the image region of interest. Blurry backgrounds and uniform regions are

not relevant for camera evaluation since every device would perform similarly. Thus, we

select image regions with fine details so that the region is discriminative for texture rendering

evaluation. The selected region sizes vary from 400 × 400 to 600 × 600 pixels on the DSLR

image, while the original resolution of the DSLR camera is 8386 × 5584. Note that, this

manual selection of the region of interest corresponds to a common evaluation procedure:

the human annotator selects a region of interest to obtain a device evaluation that is not

global but specific to the selected texture.

Collecting reliable quality scores calls for certain requirements. First of all, the content

in the images shown to the annotators must be the same. To this aim, align every image with

a reference crop. Note that, we only align the selected region of interest, and not the full im-

ages, since a global alignment of the entire content would lead to inferior registration accu-

racy on the regions of interest. To guarantee accurate alignment, we successively test several

alignment approaches and visually inspect the result. This procedure is more cumbersome

but it allows much greater alignment than a fully automatic pipeline. To achieve a satisfying

trade-off between long manual labor and alignment quality, the choice of these alternatives

is done once for all the images of each scene. More precisely, we proceed as follows.

• For some scenes, we estimate depth maps from the input images and identify the im-

age regions with an object-to-camera distance that matches the distance estimated in

the reference patch taken with the DSLR. We use publicly available pre-trained con-

volutional depth map monocular estimation networks [7]. We then select with manual

thresholds on standardized depth maps to select for our reference shot containing our
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region of interest. We observed that this initial cropping stage is useful in cases where

the input scene is multi-planar.

• We extract AKAZE [6] descriptors helped by a scene-specific model constituted by

manually selecting several remarkable points in a few images and then estimate the

optimal homography using the SCRAMSAC [110] model selection algorithm.

• For some scenes, the AKAZE descriptors do not perform well. In these cases, we

employ the template matching technique described in [24].

A quantitative evaluation of our registration pipeline is highly difficult since ground-truth

registration parameters are not available for real-world images. To illustrate the quality of

our registration pipeline, in Figure 4.2, we display ten random patches of the same content.

Overall, this visual inspection confirms that the patches are well-aligned.

FIGURE 4.2: Images samples from one of the scenes. It illustrates the accuracy of the image
registration pipeline.

As a second requirement, the content must be presented at the same scale for the anno-

tator to judge with the same visibility. Images are rendered at different resolutions ranging

from 10 to 46 megapixels for the DSLR. Most mobile devices render images at about 12

megapixels. We interpolate the content to the largest image size for each scene, as down-

scaling any image would result in a loss of information. In this step, we preferred the bicubic

interpolation to nearest-neighbor and bilinear interpolations since it produces fewer artifacts.

Annotation.
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Once the images are aligned and scaled, we proceed to their annotation. Our annotation

process is based on pairwise comparisons. Indeed, pairwise comparisons are easier for a

human annotator than estimating absolute values by observing an image alone [96]. To

obtain a satisfying trade-off between annotation time and reliability of the resulting scores,

we chose to compare few image pairs and estimate quality scores for every image from these

sparse comparisons. The annotators were instructed to select the image with the highest

level of detail, regardless of other impairments. The process for the 10 scenes takes about

one hour per annotator. We employ 22 annotators and combine a total of 29297 pairwise

comparisons using the algorithm proposed by Perez-Ortiz et al.[96]. This algorithm employs

a Thurstonian model [12] to estimate continuous scores with scale homogeneity in terms

of perceptible difference. Using a Bradley-Terry model is an alternative, where a logistic

function is used instead of a Gaussian in order to be more computationally effective. We

did not investigate this alternative as this leads to similar solutions [95]. In this model, the

scores are modeled as random variables with r the vector of samples scores described as

ri ∼ N
(
µi, σ2

i

)
with i ∈ [1...N ], where N denotes the number of samples. Thus, the

probability that an annotator choose an image i better as the image j is Φ

(
µi−µj√

2σij

)
with

Φ the cumulative distribution function of the normal function, with σ2
ij = σ2

i + σ2
j + β2,

with β = 1 describing the annotator noise. The scores r can be computed from the set of

comparisons using this statistical model with a maximum likelihood estimation as detailed

in [111]. To robustly estimate quality scores from a pairwise annotation experiment, image

pairs to be compared have to be chosen wisely. Indeed, proposing trivial pairs to an annotator

brings little information on the respective quality of each image. On the contrary, annotating

pairs with similar qualities leads to more accurate scores with fewer comparisons. In order to

ask the annotator his preference for pairs that are the most useful to the annotation process,

we compute the information gain for each sample pair following [90]. We compute the

Kullback-Leibler divergence between the current and posterior distributions of r for every

pair possible of image samples, summed for each of the two outcomes of the comparison

weighted by the event probability. The pair with the highest value is then selected. For better

computational efficiency, the approach of [78] is employed to produce the next comparisons
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4.4.1 Scenarios and settings

In our experiments, we adopt two different scenarios where the content of the test image is

either known or unknown.

Known content. In this first Scenario, we allow semantic overlap between train and test

sets. This scenario can be considered easier since test images depict content that has been

seen at training time. However, the camera device evaluated at test time is still unknown.

This scenario corresponds to the use case where pictures of the scene were taken and

annotated, but we wish to evaluate new devices on these contents. 70% of images from all

scenes are designated as train scenes for each run. The metrics are then obtained on the

remainder 30%.

Unknown content. In this second scenario, we impose no semantic overlap between the

train and test set. This corresponds to the use case where we wish to evaluate camera quality

on new scenes unseen during training and where no annotations have been done for this new

content. Thus, the training set corresponds to all scenes but one used as a test set. This

scenario is particularly useful to the generalization ability of the different models. Note that,

the unknown content scenario is more classic in the IQA literature. Existing datasets either

present images with unique content or consist of distorted images which render the known

content scenario irrelevant and trivial. However, since our goal is to evaluate the camera

itself, it is practically relevant to assume that the experimenter can evaluate the test device

on the same content as the training images.

Settings. In both scenarios, we conduct experiments in two settings: with the help of a

high-quality image and without. These two settings are referred to as reference-based and

no-reference CQA, respectively. Reference-based CQA is closely related to full-reference

image quality assessment. However, in our case, the reference image is not a distortion-free

image but an example of an image taken by a high-quality device.

In short, we have two scenarios and two settings, leading to four possible combinations.

We now describe the different requirements and practical use cases for an end-user in every

possible case:
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• Unknown content and no-reference: this is the least constraining case for a user. Our

dataset can be used directly: the user can simply take a single picture of any new

content with the test device. The image can then be given to a model trained on our

dataset to obtain the estimated score. Note that, we also release pre-trained models to

facilitate experiments.

• Unknown content and reference-based: compared to the previous case, a high-quality

image of the texture must be added as an input to a Reference-based model. This setup

also requires little effort, as a user can still use our pre-trained models.

• Known content and no-reference: in this case, the user has to repeat the data collection

and annotation process using multiple devices on the content of interest. Then, this

newly collected content can be added to our dataset in order to train a model. The

model can then be used in the future to evaluate any new device. It requires more effort

for this use-case compared to previous ones, but having an understanding of the content

help a more accurate quality estimation. Nevertheless, we argue that this setting is less

practically relevant than the others since, the effort of including a DSLR among the set

of devices is negligible compared to the total data-collection process. In this scenario,

the reference-based case is much more practically relevant and consequently, we retain

this combination in our experimental evaluation only for the sake of comparison.

• Known content and reference-based: Similarly to the previous case, the user also needs

to collect images of the new content with multiple devices. The only difference is

that the content must also be shot with a DSLR camera to obtain a reference image.

Therefore, this use-case is not significantly more constraining than the previous one

but offers a more accurate evaluation of quality, as seen in Section 4.5.
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4.4.2 Metrics

Mean absolute error is not classically used in the image quality literature [66, 142]. It does

not allow the comparison of methods whose outputs are in different value ranges. Further-

more, as in our case, the scenes are not cross-content calibrated, we are more interested in

correlations between ground truths and prediction. Following previous works [92, 93], we

use the linear correlation coefficient (LCC), also known as Pearson’s linear correlation co-

efficient between annotations and predictions. Additionally, we rely on two distinct metrics

based on the correlation of the rank order. First, we adopt the Spearman Rank-Order Corre-

lation Coefficient (SROCC) defined as the linear correlation coefficient of the ranks of pre-

dictions and annotations. Second, we report the Kendall Rank-Order Correlation Coefficient

(KROCC) defined by the difference between concordant and discordant pairs divided by the

number of possible pairs. The three metrics are estimated independently for each scene since

the annotations are not calibrated across scenes. Every experiment is run five times and we

report the results averaged over the 10 scenes and these five runs. To evaluate the impact of

stochasticity at training time, we also report the standard deviation over the five runs of the

average score.

4.4.3 Evaluated baselines

In addition to the existing IQA approaches described in section 4.2, we propose to add several

other experiments for the referenced-based setting. A siamese architecture uses a common

backbone to process the reference image and the image to be evaluated. The backbone

outputs a feature representation for each image, which is aggregated to perform the task with

information from both images. Since the main technical point referring to the use of siamese

networks is the aggregation operation between features of the two images, we propose in this

chapter to look at the performances of several aggregation schemes. The features obtained

after the aggregation are then fed in a two-layer regression head. Figure 4.5 represents the

siamese architecture and the role of the aggregation layer. Both the reference patch and

the evaluated images are fed into a convolutional network utilized as a feature extractor.
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to z. To compare the two tensors, we treat separately each channel and consider that the two

feature maps provide H ′ × W ′ samples of two random variables.

We note respectively z and z̄ zijc and z̄ijc, ∀(i, j, c) ∈ H ′ × W ′ × C. We will also note

zc and z̄c these tensor at channel indice c, and zc and z̄c their mean.

L1. Classically, the L1 distance can be used as aggregation. In this case, the output vector

α =
(
αc

)
1≤c≤C

is expressed as

αc = GAP(|zc − z̄c|) (4.1)

Concatenation. The concatenation aggregation is defined as

αc = GAP(zc) · GAP(z̄c) (4.2)

where GAP is the global average pooling layer. Note that in this case, the dimension of α is

2C. Concatenating is a very natural way to combine information and is widely used in the

literature with siamese networks

Both the concatenation aggregation and the L1 aggregation do not exploit the spatial

structure of the feature map. While the L1 explicitly computes a distance between the image

to evaluate and the high-quality image, the concatenation relies on the regression head to

process and aggregate the information.

Convolution. We provide an additional baseline where feature maps are concatenated and

processed by an additional convolutional layer, which seems natural for a convolutional net-

work, equipped with an activation layer and batch normalization. The resulting features can

be expressed as

αc = GAP(Conv(z · z̄)) (4.3)

Image quality metrics as aggregation. Following [130], we propose to use full-reference
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quality metrics in order to aggregate feature maps from the reference and the image to eval-

uate. Using previously introduced notations, we have α =
(
αc

)
1≤c≤C

with

αc = IQM(zc, z̄c) (4.4)

with IQM an image quality metric, in this chapter, we tested SSIM [134] and HaarPsi

[104] metrics. These methods have the advantage of exploiting the spatial relationship be-

tween different features of the feature map

Correlation. We propose to measure the linear dependence between the two random vari-

ables by computing their correlation. The output vector α of our correlation aggregation

layer is given by:

αc =
1

H ′W ′

H ′∑

i=1

W ′∑

j=1

(zc − zc) (z̄c − z̄c)

σcσ̄c + ǫ
(4.5)

where ǫ is set to 10−5 for numerical stability and zc and z̄c denote the mean value for the

channel c:

zc =
1

H ′W ′

H ′∑

i=1

W ′∑

j=1

zijc and z̄c =
1

H ′W ′

H ′∑

i=1

W ′∑

j=1

z̄ijc.

where σc and σ̄c denote the standard deviation for the channel c:

σc =

√√√√√
1

H ′W ′

H ′∑

i=1

W ′∑

j=1

(zijc − zc)2 (4.6)

and

σ̄c =

√√√√√
1

H ′W ′

H ′∑

i=1

W ′∑

j=1

(zijc − z̄c)2. (4.7)

This method does not exploit the spatial aspect of the feature map, though it computes a

second-order moment between the two variables.
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4.4.4 Implementation details

We implemented our framework using the Pytorch library. We employ the Adam opti-

mizer [67] using the default parameters. For every experiment, the models are trained for 60

iterations. We use the Huber loss with a 0.3 threshold. For models using a standard vision

backbone, the regression head is composed of two fully connected layers, with the hidden

layer having 256 neurons.

4.5 Experiments

We now present the results of our experimental benchmark starting with reference-based

CQA methods. Then, we evaluate the different methods for no-reference CQA.

4.5.1 Reference-based CQA

This set of experiments is organized in three sections. First, we evaluate non-learning-based

approaches that address both scenarios (known and unknown content) identically. Then, we

compare learning-based approaches in the known and unknown content scenarios.

Non-learning based Methods

First, we evaluate off-the-shelf methods, that either do not require any training SSIM [134],

MS-SSIM [136], FSIM [149], and HaarPsi or are pre-retrained on an external dataset (LPIPS

[150]). To compare these methods with learning-based methods, we consider a simple base-

line based on ResNet-18 equipped with a correlation aggregation layer. We provide two vari-

ants of this baseline: in the known content scenario, images of the test scenes are included

in the training set (but the device are different between training and test), while in the un-

known content scenario, we assume no scene-overlap between training and test. As detailed

in Table 4.1, non-learning-based methods perform rather poorly: the best performance is
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Method LCC SROCC KROCC

SSIM [134] 0.484 0.315 0.228
MS-SSIM [136] 0.396 0.231 0.168

FSIM [149] 0.533 0.358 0.264
HaarPsi [104] 0.644 0.474 0.345
LPIPS* [150] 0.807 0.763 0.608

Correlation Agg. Unknown content † 0.918 0.898 0.755
Correlation Agg. Known content † 0.943 0.917 0.803

TABLE 4.1: Experiment in the Reference-based setting with off-the-shelf methods. *uses a
pretrained model. †uses a ResNet-18 backbone.

achieved by the HaarPsi [104] method, which only achieves 0.644 for the linear correlation,

followed by the FSIM [149]. Interestingly, the MS-SSIM [136] performances are worse than

the vanilla SSIM [134] on our CQA dataset. However, LPIPS [150], even with no retrain-

ing on our CQA dataset, vastly outperforms non-learning-based methods. We can conclude

from Table 4.1 that learning-based methods clearly outperform classical IQA metrics. These

IQA metrics perform worse than a vanilla learning-based method with a ResNet-18 architec-

ture, whether on known or unknown content. Interestingly, we can also notice that the three

adopted metrics consistently lead to the same method ranking.

Known content Scenario

In Table 4.2, we compare the different methods in the reference-based setting in the known

content scenario. In all these experiments we adopt a ResNet-18 backbone. This choice is

later evaluated in a dedicated ablation study. To measure the gain brought by the availability

of the High-quality image, we also include a vanilla no-reference ResNet-18 that takes a

single image as input.

First, we observe that all the methods outperform the non-learning-based approaches

compared in Table 4.1. This confirms the superiority of learning-based approaches for CQA.

We also observe that in the known content scenario, it is possible to achieve very high per-

formance compared to off-the-shelf methods.
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Method LCC SROCC KROCC

WaDIQaM-FR [14] 0.869 ± 0.019 0.846 ± 0.023 0.698 ± 0.025
LPIPS [150] 0.863 ± 0.033 0.806 ± 0.029 0.673 ± 0.025

DualCNN [131] 0.935 ± 0.007 0.927 ± 0.012 0.817 ± 0.020

Backbone Aggregation LCC SROCC KROCC

ResNet-18 L1 0.894 ± 0.049 0.876 ± 0.024 0.762 ± 0.020
ResNet-18 Convolution 0.789 ± 0.040 0.748 ± 0.020 0.606 ± 0.024
ResNet-18 Concatenation 0.936 ± 0.008 0.912 ± 0.016 0.801 ± 0.021
ResNet-18 Correlation 0.943 ± 0.008 0.917 ± 0.009 0.803 ± 0.010
ResNet-18 SSIM 0.945 ± 0.006 0.913 ± 0.021 0.796 ± 0.025
ResNet-18 HaarPsi 0.939 ± 0.009 0.915 ± 0.018 0.804 ± 0.020
ResNet-18 LPIPS-Like 0.924 ± 0.024 0.892 ± 0.016 0.762 ± 0.025
ResNet-18 No-reference 0.925 ± 0.006 0.899 ± 0.023 0.783 ± 0.028

TABLE 4.2: Reference-based experiments on known content.

We can also notice that the no-reference baseline outperforms several methods that were

trained in the known content scenario. For instance ResNet-18 in no-reference setting out-

performs L1, convolution, and LPIPS in terms of LCC. This shows that the choice of the

aggregation layer is crucial to benefit from the availability of the reference.

These experiments also show that it is possible to achieve satisfactory performances with-

out a high-quality image as a reference, even though improvements are seen in the case of

the SSIM (+0.014 in SROCC), HaarPsi (+0.016 in SROCC), and Correlation aggregation

(+0.018 in SROCC). The SSIM aggregation provides the best performance in terms of LCC

while the best SROCC and KROCC is obtained by the Correlation aggregation.

Unknown content Scenario

Main Results. We now evaluate the different methods in the unknown content scenario.

We evaluate four learning-based full-reference methods from the literature: DualCNN, a re-

cent method, WaDIQaM, a classic image quality metric, and LPIPS, which is commonly

used as an evaluation metric or as reconstruction loss. We also include PieAPP, a method
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Method LCC SROCC KROCC

WaDIQaM-FR [14] 0.854 ± 0.025 0.799 ± 0.035 0.634 ± 0.044
PieAPP [101] 0.728 0.645 0.490
LPIPS [150] 0.908 ± 0.009 0.882 ± 0.015 0.729 ± 0.020

DualCNN [131] 0.891 ± 0.009 0.875 ± 0.006 0.720 ± 0.007

ResNet-18 L1 0.855 ± 0.011 0.816 ± 0.011 0.650 ± 0.011
ResNet-18 Convolution 0.745 ± 0.014 0.654 ± 0.012 0.492 ± 0.012
ResNet-18 Concatenation 0.904 ± 0.006 0.881 ± 0.006 0.730 ± 0.008
ResNet-18 Correlation 0.918 ± 0.004 0.898 ± 0.003 0.755 ± 0.005
ResNet-18 SSIM 0.912 ± 0.005 0.893 ± 0.005 0.745 ± 0.007
ResNet-18 HaarPsi 0.906 ± 0.006 0.878 ± 0.09 0.724 ± 0.10
ResNet-18 LPIPS-like 0.887 ± 0.006 0.865 ± 0.005 0.705 ± 0.006
ResNet18 No-reference 0.870 ± 0.007 0.851 ± 0.007 0.694 ± 0.008

TABLE 4.3: Reference-based experiments on unknown content.

trained using pairwise preferences. However, the source code for their specific training pro-

cedure was not available, and therefore, we report the performance of the model trained on

their IQA dataset. We also evaluate different variants of the siamese architecture equipped

with the different aggregation described in 4.4.3. Results are reported in Table 4.3. In this

more challenging scenario, the siamese architecture that receives the high-quality reference

as second input improves significantly the performance on our dataset with respect to the

no-reference baseline (+0.048 in LCC for the correlation aggregation). Conversely, with the

known content setting, correlation aggregation obtains the best performance according to

the three metrics while SSIM also consistently outperforms the HaarPsi aggregation method

that was performing well in the known content scenario 2. As in the known content scenario,

the L1 and convolution aggregations do not perform well. The reference-based version of

WaDIQaM and DualCNN obtain results better than non-learning approaches (see Table 4.1)

but under-performs most ResNet-18 based methods. The DualCNN method obtains perfor-

mances close to the ResNet-18 baselines but still performs slightly worse. The PieAPP base-

line, trained on synthetic distortions performs poorly. It shows that their synthetic distortions

2A pre-trained model of the ResNet-18 equipped with the correlation aggregation model trained on all scene
of our dataset will be released upon acceptance
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While this approach increases computation time and the number of parameters of the net-

work, his approach is commonly used in IQA methods [66, 130]. We conduct an experi-

ment to measure the importance of this multi-scale design. We adopt a siamese architecture

with a ResNet-18 backbone. In Table 4.4, we measure the impact of the pyramid of features

improvement with two different aggregations: Correlation and SSIM. We observe that the

pyramid substantially improves the performance in the case of the correlation aggregation

(+0.028 SROCC) and dramatically in the case of the SSIM (+0.113 SROCC) aggregation.

Interestingly, while roughly equivalent in the case of a feature pyramid, the correlation aggre-

gation vastly outperforms the SSIM aggregation in the no-pyramid case. Consequently, we

strongly recommend the use of a pyramid architecture, especially since it increases training

time by 20 % only.

Aggregation Pyramid LCC SROCC KROCC

Correlation
✗ 0.901 ± 0.011 0.871 ± 0.009 0.717 ± 0.009
✓ 0.918 ± 0.004 0.898 ± 0.003 0.755 ± 0.005

SSIM
✗ 0.813 ± 0.009 0.780 ± 0.008 0.614 ± 0.013
✓ 0.912 ± 0.005 0.893 ± 0.005 0.745 ± 0.007

TABLE 4.4: Impact of the pyramid aggregation scheme on unknown content Scenario in the
Reference-based setting. The ResNet-18 architecture is used.

Impact of the number of training scenes. We propose here a further analysis of the

dataset and the performances of our method in a lower data regime. For this experiment, we

choose the architecture with a ResNet backbone and a correlation aggregation scheme. For

each scene taken as the target scene, we sample randomly a fixed number of training scenes.

This process is repeated five times. As seen in Figure 4.7, steady improvements can be seen

when training scenes are added for the result on the remaining scene. This is explained by

additional data as well as additional diversity in the dataset.

Scene by scene detailed results We now report the detailed results of the four best-

performing architectures providing SROCC scores for every scene. While HaarPsi performs

best in the known content scenario, it underperforms SSIM in the unknown content scenario
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Model LCC SROCC KROCC

BRISQUE [92] 0.151 0.221 0.156
NIQE [93] 0.111 0.061 0.034

IL-NIQE [148] 0.622 0.499 0.361
CNNIQA [65] 0.740 ± 0.058 0.648 ± 0.044 0.486 ± 0.042

WaDIQaM-NR [14] 0.492 ± 0.021 0.421 ± 0.027 0.313 ± 0.021
DBCNN [153] 0.827 ± 0.024 0.746 ± 0.046 0.576 ± 0.051

PaQ-2-PiQ [142] 0.861 ± 0.040 0.823 ± 0.078 0.660 ± 0.084
MUSIQ [66] 0.851 ± 0.058 0.799 ± 0.120 0.636 ± 0.119

VGG-16 0.864 ± 0.009 0.832 ± 0.016 0.669 ± 0.015
ResNet-18 0.870 ± 0.007 0.851 ± 0.007 0.694 ± 0.008
ResNet-50 0.875 ± 0.009 0.851 ± 0.007 0.690 ± 0.004

MobileNet-V2 0.872 ± 0.005 0.858 ± 0.012 0.696 ± 0.014

TABLE 4.6: No-Reference experiments evaluated on unknown content.

performances of a vanilla ResNet-18 on known content can be found in Table 4.2 and is

discussed in Section 4.5.1 In this comparison, we include several IQA methods described in

Sec.4.2. Since NIQE and IL-NIQE do not require any training, they can be directly evalu-

ated on our dataset. In the case of BRISQUE, we report the performance obtained without

retraining the SVR model. Other methods were finetuned on our training dataset starting

from the publicly available pre-trained weights. In the particular case of WaDIQaM-NR, we

train the network from scratch since pre-trained weights are not available.

Quantitative results are reported in Table 4.6. We observe that classical methods such as

BRISQUE and NIQE are not effective on our dataset. BRISQUE, NIQE performances are

extremely poor (about 0.1 of LCC). IL-NIQE improvement shows a higher correlation but

remains far from satisfactory. The very simple one-layer deep CNNIQA shows performance

above these methods, while WaDIQaM-NR performances are under expectations. This can

be explained by the limited size of our dataset compared to the dataset used in their original

paper.

DBCNN and PaQ-2-PiQ performances are close to non-IQA-specific backbones. Finally,

MUSIQ reaches performance slightly lower than deep CNN-based methods(-0.020 of LCC
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compared to best performing method). This can be probably explained by the relatively

small size of our dataset compared to the transformer architecture requirements. Regarding

the deep CNN approaches, except VGG-16 backbone, every tested backbone provides a

similar level of performance.

4.5.3 Experimental conclusions and recommendations

We have performed several empirical evaluations of the introduced practical settings and

scenarios. From the analysis of these experiments, we are able to provide practical recom-

mendations:

• Siamese architectures with vanilla backbone networks can outperform literature ap-

proaches initially designed for full-reference IQA.

• In the known content scenario, while a simple vanilla ResNet-18 will provide excel-

lent results, performances can be improved using a siamese network if a reference im-

age is available. In this case, we recommend either the HaarPsi, SSIM or correlation

aggregation to combine the features coming from each network branch.

• For the more challenging scenario where the evaluated content is unknown, we recom-

mend either a feature-map-wise correlation or SSIM if a reference image is available.

• We recommend applying the aggregation layer at different scales following the feature

pyramid strategy.

• Regarding no-reference CQA, we also observe that recent methods from the IQA lit-

erature underperform vanilla CNNs.



80 Chapter 4. Camera-quality assessment in real-world conditions

4.6 Conclusion

In this chapter, we study for the first time the problem of Camera Quality Assessment from

real-world images with natural distortions. To this aim, we collected a large dataset com-

posed of images taken with multiple cameras. The proposed dataset can be distinguished

from existing datasets since every scene is shot with multiple devices allowing robust anno-

tation and content-specific evaluation. We have introduced different practical settings and

scenarios for learning-based camera-quality assessment. From this empirical evaluation, we

provided several practical recommendations. We believe that our novel dataset for CQA and

the methods proposed in this chapter will be helpful to design more effective algorithms spe-

cific to camera quality assessment. Therefore, this dataset is used in the next chapter (Chap-

ter 5) for a use case on authentic camera distortions for a method that uses multiple samples

from the same scenes.
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Chapter 5

Test your samples jointly:

Pseudo-reference for image quality

evaluation

5.1 Introduction

As seen in Chapters 2 and 4, Image quality assessment (IQA) can be addressed in two differ-

ent settings: no-reference IQA, which consists in estimating the quality of an image without

additional information, and full-reference IQA, where we assume that we have at our dis-

posal a high-quality or pristine image that is used to predict the quality of a degraded image.

In this chapter, we explore a variant of no-reference IQA where we assume that at test time

the goal is to estimate the quality score of different images depicting the same content. In

this setting, we can take advantage of the multiple distorted images by modeling the variabil-

ity over the different test samples. This allows us to provide content context to the evaluated

samples as would a reference, without requiring a reference for the scene.

This new setting is motivated by several use cases. It is especially relevant to the case of

image quality assessment for camera evaluation. In this task, different cameras are usually

compared on the same content [127] [128]. The reference image is not available when it

comes to an evaluation in in-the-wild conditions on natural content. Another example is the
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case of image enhancement where the reference image is unknown and more accurate quality

evaluation algorithms could lead to better enhancement.

To address this new setting, we introduce a new network architecture and its correspond-

ing training strategy. Our architecture allows information exchange across samples of the

input batch. More precisely, we train our network to compute a pseudo-reference that de-

scribes the evaluated scene. At test time, our method, Pseudo-Reference for Image Qual-

ity (PRIQ), is given registered samples of a new scene. The pseudo-reference is predicted

by a sub-network that combines features from the different test samples. We perform ex-

tensive ablations experiments and compare the performances of the proposed method with

state-of-the-art approaches on three different datasets.

5.2 Related Work

We briefly review in this section the methods tested in our state-of-the-art comparison and

methods using some kind of pseudo-reference. For a more detailed state-of-the-art, refer to

Chapter 2. While earlier no-reference methods used handcrafted features such as Natural

Scene Statistics [92, 148], or handbook of features [140], the best-performing methods in

image quality assessment are nowadays learning-based. Even though standard vision archi-

tectures provide solid baselines, several domain-specific methods have been proposed: Bosse

et al.propose to equip their convolutional neural network with a patch weighting estimator.

Zeng et al.[144] use annotations as a Gaussian distribution around the ground truth instead of

a single value score. The DBCNN architecture [153] proposed by Zhang et al.is composed of

two different convolutional models: the first one is trained on the classification of synthetic

distortions while the second one is a pre-trained VGG [117] on ImageNet [31], represent-

ing perceptual features of natural images. Su et al.[118] proposed to disambiguate content

features and quality features with the help of a content understanding hypernetwork. Tech-

niques from the computer vision literature have been applied to the image quality assessment

task: Meta-learning techniques have been applied by Zhu et al.[157] in order to improve the

performances to unknown distortions. CONTRIQUE [84], proposed by by Madhusudana et
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5.3 Method

In this chapter, we assume that we have at our disposal D different scenes {S1, ..., SD} with

each scene containing Nd samples of different qualities depicting the same content. Our goal

is to estimate image quality scores on novel scenes. While existing methods individually test

each sample, our method jointly predicts the score of several samples. We design our ap-

proach to enable a joint prediction at test time: while each image will be mapped to a differ-

ent quality score, its prediction depends on all images in the set. The underlying idea is that,

since the samples correspond to different unknown distortions, they can provide contextual

information and allow the network to differentiate image features related to content from

features related to quality.

To achieve this objective, we introduce the architecture illustrated in Fig. 5.1 where

predictions depend on other images in the input set. More specifically, after projecting the

images into feature maps, these images are combined into a single pseudo-reference, of the

same shape as the feature maps of one image. For each image, these pseudo-reference feature

maps are aggregated with each image of the set with using methods inspired by the full-

reference literature[40, 128, 130]. These features are then fed into a single-layer regression

head which predicts the image quality scores.

5.3.1 Pseudo-Reference computation

Let us assume a convolutional backbone network and a set of N images xd
i , i ∈ [1; N ],

d ∈ [1; D] from the dth scene. At training time, this set is randomly sampled from the Nd

training images of the corresponding scene. At test time, the user can use all the images

available. At an intermediary layer of the convolutional network, this set is represented by a

tensor z = (zickl), of dimension N × C × H × W , where C denotes the number of channels

per image at this specific network layer, and H and W are the height and width of the tensor.

We aim to compute a tensor z̄, of dimension C × H × W , acting as a pseudo-reference for

this set of images.
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We propose to estimate the pseudo reference with a weighted mean from the feature maps

of each image in the set. In this aim, we compute the weights w measuring the relevance the

network should give to each image. More precisely, we perform this computation for every

image and location to obtain a pseudo-reference that fully benefits from all the images in the

set. Therefore, z is given by:

z =
N∑

i=1

wi ⊙ zi, (5.1)

with ⊙ being the element-wise multiplication in the H × W dimensions. The weights w are

predicted by a sub-network with the feature maps z as inputs through an attention mecha-

nism. More precisely, they are computed with a one-by-one convolutional layer with one

kernel in order to output one channel. The weights need to sum to one over the set dimen-

sion to implement the weighted mean operation. Therefore, we follow common practices in

attention models and employ the softmax activation:

w = Softmax(Conv(z))) (5.2)

Note that this pseudo-reference is computed once with every image in the set, and the same

pseudo-reference is used to evaluate every image in the set.

5.3.2 Aggregation

After describing the pseudo-reference computation, we can now detail the aggregation scheme

that we employ to compare every input image to the pseudo-reference. The aggregation layer

receives as inputs the features maps zi for an image i in the set and the pseudo-reference fea-

ture maps z̄ and outputs a feature vector for each input image people. Inspired by the full-

reference literature [40, 128, 130], we chose to apply the channel-wise Structural Similarity

Index Measure (SSIM).

To compare the two tensors, we treat separately each channel and consider the two feature

maps as C samples of two random variables. Assuming that zic and z̄c ∈ R
H×W respectively

denote the values in zi and z̄, the output vector α =
(
αc

)
1≤c≤C

for the i-th sample of the
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SSIM aggregation layer is given by:

αc = SSIM(zic, z̄c) (5.3)

5.3.3 Feature pyramid and prediction

Selecting the right scale for comparing the images with the pseudo-reference is not straight-

forward. We propose to employ a feature pyramid strategy [81, 66, 128] which provides a set

of features that are used to evaluate image quality at different scales. The pseudo-reference

computation and the aggregation are applied to the output of 5 different intermediate layers

of the backbone network at different resolutions. The extracted features at each resolution

are then concatenated and fed to a regression head for the image quality prediction.

5.4 Experiments

5.4.1 Evaluation Protocol

Datasets. To evaluate the proposed method, we perform experiments on three datasets:

• TID2013 [98] consists of 25 different contents and 24 distortions with 5 levels each,

for a total of 3000 images

• KADID10k [79] consists of 81 different contents and 25 distortions with 5 levels each,

for a total of 10125 images

• CARCO dataset [128] presents distortions from numerous camera devices. It differs

from other in-the-wild datasets which do not present the same content with varying

qualities [57, 41] or lack of region selection and registration [38].

The images of these three datasets are registered. Registration is exact by design for

TID2013 and KADID10k while the input images were approximately registered by a pre-

possessing algorithm for CARCO.
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Metrics. Regarding evaluation metrics, we follow previous works [92, 93] and use the Lin-

ear Correlation Coefficient (LCC) between the annotations and predictions. Additionally,

we report the Spearman Rank-Order Correlation Coefficient (SROCC) defined as the linear

correlation coefficient of the ranks of predictions and annotations. We report the median of

these metrics across the different runs as in [44, 84].

Protocol. In the TID2013 and KADID10k experiments, we select randomly 80% of the

datasets’ scenes for training and 20% for testing. This protocol ensures there is no content

overlap between the training and testing sets. We repeat this process five times and we report

the median. The split is fixed over multiple experiments, ensuring different experiments are

compared with the same split configuration. For the experiments on CARCO, the dataset

size allows us to effectively test the ten scenes independently as the test scene in a ten-fold

cross-validation. This process is also repeated five times for more robust results and we also

report the median.

At test-time, we simulate different scenarios for a user based on the number of images

T available. The number of images T is analogous to the set size N at training time. To

simulate these conditions, we randomly split our test dataset into multiple sets of size T . To

ensure a fair comparison, we employ the same random sets for every method. The reported

correlation metrics are computed for all the samples of the test dataset jointly. Note that set

size T at test-time does not correspond to the size of our test dataset.

5.4.2 Implementation Details.

We employ a ResNet-18[53] backbone, pre-trained on ImageNet [31]. The chosen five pyra-

mid stages are placed after the initial 7 × 7 convolution and after each residual block. We use

the Huber loss and train for 60 epochs, with a weight decay of 3 × 10−3 every ten epochs.

We used a training batch of 30 images, composed of 6 sets of N = 5 images per batch. The

images are randomly cropped to a 224 · 224 size and randomly flipped. All the images of a

set are augmented in the same manner in order to preserve alignment.
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Module
Weights dimension

T LCC SROCC

N C H × W

(i) ✗ ✗ ✗

5

0.890 0.850
(ii) ✓ ✗ ✗ 0.873 0.849
(iii) ✓ ✓ ✗ 0.899 0.847
(iv) ✓ ✗ ✓ 0.899 0.861

(v) ✓ ✓ ✓ 0.897 0.856

(i) ✗ ✗ ✗

20

0.904 0.879
(ii) ✓ ✗ ✗ 0.893 0.872
(iii) ✓ ✓ ✗ 0.911 0.870
(iv) ✓ ✗ ✓ 0.918 0.883

(v) ✓ ✓ ✓ 0.908 0.879

(i) ✗ ✗ ✗

100

0.906 0.887
(ii) ✓ ✗ ✗ 0.913 0.883
(iii) ✓ ✓ ✗ 0.909 0.881
(iv) ✓ ✗ ✓ 0.926 0.899

(v) ✓ ✓ ✓ 0.908 0.886

TABLE 5.1: Analysis of performances of various modules producing a pseudo-reference. T

represents the set size at test time. The median correlations over 5 runs are reported.

5.4.3 Analysis: Pseudo-Reference Computation.

We now evaluate different approaches to compute the pseudo-reference feature maps. We

explore different solutions regarding the dimensionality of the weights used in the weighted

average used to estimate the pseudo-reference.

In section 5.3, the pseudo-reference is computed following equation (5.1). In this analy-

sis, we evaluate this design choice and consider the following variants:

(i) A first naive approach is to compute the mean along the set axis: z̄ = 1
N

∑N
i=1 zi.

(ii) We consider a slightly more complex solution based on a weighted average: z̄ =
∑N

i=1 wizi, with w ∈ [0, 1]N . The weights are computed through a linear layer: w =

Softmax(A(GAP(z) + b)), with A and b being the parameters of a linear layer with
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an output size of one, and GAP designating the Global Average Pooling operation,

with a Softmax computed along the set axis.

(iii) We modify the previous approach to allow different weights for channels of the set

images. Here, the output size of the linear layer is C, and w is of size N × C.

(iv) Instead of weighting the channels, we weigh in this module the feature maps’ loca-

tions. This corresponds to our proposed model as described in Sec. 5.3.

(v) It is also possible to weigh the locations and channels simultaneously. Thus, the con-

volutional layer from (iv) has now C different kernels instead of one and thus outputs

feature maps with C channel for each image. In this case, w is of size N × C × H × W .

The results are reported in Table 5.1. We observe that the setting with the weights w in

R
N×H×W provides the best result for every value of T (eg. 0.013 SROCC increase for 20

samples compared to the second best performing module). Adding the channel dimension

to the set of weights generally degrades performances. A simple mean provides good results

and is the second or third-best-performing module depending on the set size.

In Fig.5.2, we provide more values for the set size at test time T to compare these five

different modules. These experiments confirm our analysis for intermediary values. Even

though our model is trained with a set size of 5, we observe that performances are consis-

tently increasing with the set size at test time. We observe rapid improvements from 2 sam-

ples to 10 samples, then a steady rise in performance up to 50 samples, and the results at 100

samples show slight amelioration over the results at 50 samples.

5.4.4 Ablation Study

We now validate the positive impact of each component of the proposed approach. We

consider several variants of our approach. First, we train a vanilla ResNet-18 on our datasets,

with no pseudo-reference method. Then, we test our method without the feature’s pyramid.

Instead, a single pseudo-reference is estimated after the last convolutional block. Finally, we
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improvements on the synthetic datasets (TID2013 and KADID10k), the results are still con-

sistently better with the pyramid and its effect on CARCO is important. The clear superi-

ority of SSIM over concatenation on the synthetic dataset can be explained by the fact that

SSIM is originally a full-reference metric, based on the assumption that the input images

are aligned. This assumption is not strictly respected in the case of the CARCO dataset that

contains natural content. In consequence, SSIM may suffer more from this misalignment

than concatenation.

5.4.5 Cross-Database Experiment

Cross dataset experiment We test the ResNet-18 baseline and the optimal method deduced

from 5.1 and 5.2 in a cross-database experiment: For both methods, we train on CARCO and

test on TID2013, and vice-versa. We report the results of the experiment in Tab. 5.3 Even

though we observe a drop in performance with respect to the standard setting, we observe

that our method outperforms the ResNet-18 baseline in all cases.

Method Train Test LCC SROCC

ResNet-18
TID CARCO

0.315 0.262
PRIQ 0.344 0.322

ResNet-18
CARCO TID

0.382 0.207
PRIQ 0.564 0.400

TABLE 5.3: Cross-dataset study of the baseline and the full method for T = 20

5.4.6 Edge-case

We consider the extreme case where all the images but one have low-quality scores and

check whether the bad images could obtain high scores because they would be more similar

to the pseudo-reference. We obtain the result shown in Fig. 5.3. We observe that the only

high-quality image still obtains a high score. It demonstrates the robustness of our approach

even in such an extreme case. By looking at the weights maps, we observe that the high-

quality image is associated with higher weights than the other images when estimating the





5.5. Conclusion 93

CONTRIQUE is performing similarly on KADID. The variant without the SSIM aggrega-

tion is still slightly the best-performing method on TID with the TReS method coming close,

while on KADID it is only outperformed by CONTRIQUE. On the CARCO dataset, the

no-SSIM performs similarly to the best state-of-the-art method while the no-pyramid variant

slightly underperforms the 3 best-performing methods in terms of SROCC.

TID2013 KADID10k CARCO
Method LCC SROCC LCC SROCC LCC SROCC

BRISQUE [92] 0.571 0.626 0.567 0.528 0.151 0.221
IL-NIQE [148] 0.648 0.521 0.558 0.534 0.622 0.499

ResNet-18 [53] 0.815 0.782 0.825 0.839 0.883 0.853
PQR [144] 0.798 0.740 - - - -

WaDIQaM [14] 0.855 0.835 0.752 0.739 - -
DBCNN [153] 0.865 0.816 0.856 0.851 0.827 0.746

Meta-IQA [157] 0.868 0.856 0.775 0.762 - -
HyperIQA [118] 0.858 0.840 0.845 0.852 0.889 0.881

TReS [44] 0.883 0.863 0.858 0.859 0.904 0.869
CONTRIQUE [84] 0.857 0.843 0.937 0.934 0.900 0.875

PRIQ, T=2 0.857 0.841 0.874 0.869 0.899 0.861
PRIQ, T=5 0.916 0.894 0.933 0.934 0.911 0.879

PRIQ, T=20 0.929 0.911 0.937 0.936 0.918 0.883
PRIQ, T=100 0.930 0.911 0.937 0.935 0.926 0.899

TABLE 5.4: Comparison to the state-of-the-art. The median correlations over 5 runs are re-
ported. Some results are borrowed from [44] and [84]

5.5 Conclusion

We introduced a setting where images are jointly evaluated that effectively uses several

different images of the same content in order to provide semantic contextual information.

The proposed design estimates a pseudo-reference at the feature level and employs a fea-

ture pyramid aggregation. We conducted an ablation experiment to determine the optimal

pseudo-reference computation module and another ablation to understand the contribution
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of each part of our method. We performed extensive evaluations across several image qual-

ity datasets to validate the efficiency of the proposed method and found that we achieve

competitive or better performances than state-of-the-art no-reference image quality methods

whether on synthetic or in-the-wild datasets. We encourage IQA researchers to explore this

new setting due to the large possibilities for taking advantage of the multiple inputs and the

possible applications.
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Chapter 6

Conclusion

In conclusion, this Ph.D. dissertation addresses the limitations of current image quality as-

sessment methods for smartphone cameras and proposes innovative solutions using deep

learning systems. With the rapid growth of smartphone camera usage, there is a need for ac-

curate measurement and evaluation of image quality criteria specific to smartphone cameras.

First, our study focuses on a case in a laboratory environment. Our method enables the

automatic detection of relevant regions given an annotated image quality attribute. This

method allows the use of deep learning architectures when dealing with high-resolution

smartphone images for the evaluation of local attributes. This approach outperforms tra-

ditional chart-based methods.

Second, a new in-the-wild dataset is created to accurately represent the complex mixture

of defects commonly found in smartphone camera images, as well as repeated contents that

permit the adaptation of the full-reference method. This dataset enables a comprehensive

evaluation of different methods in various practical scenarios, providing valuable guidelines

for using deep learning systems in camera quality assessment.

Finally, we designed a method that incorporates the assumption in which we have our

disposal several samples from the same scenes to enhance the design of more accurate mod-

els. A pseudo-reference is computed from available distorted images, bypassing the need

for a high-quality reference. This method addresses a hypothesis rarely explored in research

datasets, presenting potential applications beyond camera quality assessment.
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Overall, this research contributes to advancing the field of smartphone camera image

quality assessment by addressing existing limitations and proposing innovative deep learning-

based solutions. The findings have practical implications and can be applied to various cam-

era quality attributes, providing valuable insights for researchers and practitioners working

in the field of image quality assessment. For the computer vision community, we recommend

paying particular attention to the last method presented, combining several samples of the

same scene to compute a reference model of the scene. Applications in object detection or

instance segmentations are a possibility, in the case of non-moving cameras. Despite the lack

of repeated content in the research dataset, many vision solutions are industrially deployed

on fixed optic systems.

We recommend several future works following the different findings. First, a thor-

ough study would be interesting in the context of Chapter 4 to determine the behavior

of Reference-based methods under controlled registration mistakes. Second, the attention

mechanism in Chapter 5 used to compute the pseudo-reference is a highly effective but rather

naïve scheme. It would deserve to be further investigated. Furthermore, applying this idea

to the Vision Transformer architecture would certainly allow for further performance gain.

Finally, we would like to test this method on object detection problems, provided we access

appropriate data in which the same cameras are providing data with the same field of view.
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Appendix A

Discriminant Maps

In this first appendix, we present the discriminant maps obtained with the method presented

in Chapter 3. For both texture and noise, we display maps from 3 groups of devices cor-

responding to the whole device range and then separately for high-quality and low-quality

devices.



98 Appendix A. Discriminant Maps

FIGURE A.1: Whole range of devices quality discriminant map for texture evaluation
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FIGURE A.2: Low-quality devices discriminant map for texture evaluation
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FIGURE A.3: High-quality devices discriminant map for texture evaluation
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FIGURE A.4: Whole range of devices quality discriminant map for noise evaluation
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FIGURE A.5: Low-quality devices discriminant map for noise evaluation
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FIGURE A.6: High-quality devices discriminant map for noise evaluation
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Appendix B

CARCO details

In this second appendix we provide more details about the CARCO dataset presented in

chapter 4. For each dataset’s scene, we provide these four elements:

• The reference image of the scene.

• A visualization of the comparison map from the annotations experiment.

• The scores and the associated uncertainties.

• The distribution density in the form of a histogram.
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