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ABSTRACT

The many challenges posed by the evolution of communication systems often require an interdisciplinary approach.
In particular, discrete mathematics, algebra and number theory play an important role in the design of codes for
wireless communications and security. This thesis focuses on the applications of lattice coding (and to a lesser
extent, of error-correction codes) to multi-antenna wireless communications, physical layer security and post-
quantum cryptography.

First, we consider lattice space-time codes for multiple-antenna systems. We propose new techniques to reduce
their decoding complexity, which is one of the main obstacles to their practical implementation. We also study the
trade-off between rate and reliability in the high signal-to-noise-ratio regime. Finally, we consider a question of
a more fundamental nature, namely the problem of approaching the capacity of multi-antenna channels when the
number of blocks tends to infinity.

The second part of this work focuses on the applications of lattices to information-theoretic security. Borrowing
tools from lattice-based cryptography, we design codes such that the output distributions induced by different
confidential messages are indistinguishable, which achieve semantic security over Gaussian and wireless wiretap
channels. This technique can also be applied to the problem of extracting secret keys from correlated Gaussian
sources. We also propose reconciliation methods for two cryptographic key generation protocols based on lattices.

In the final part of the manuscript, we revisit the problem of approximation of output statistics from a different
angle. We consider a two-node network comprised of an information source and a noisy channel, and we require
the coordination of the signals at the input and at the output of the channel with the source and the reconstruction.
Our objective is to characterize the set of achievable joint behaviors. Furthermore, we develop explicit polar coding
schemes for coordination.
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RÉSUMÉ

Les nombreux défis posés par l’évolution des systèmes de communication demandent souvent une approche in-
terdisciplinaire. En particulier, les mathématiques discrètes, l’algèbre et la théorie de nombres jouent un rôle
primordial dans la conception de codes pour les communications sans fil et la sécurité. Cette thèse porte sur les
applications des réseaux euclidiens (et, en moindre mesure, des codes correcteurs) aux communications sans fil
multi-antennes, à la sécurité au niveau de la couche physique et à la cryptographie post-quantique.

En premier lieu, nous considérons les schémas de codage espace-temps pour les systèmes multi-antennes.
Nous proposons de nouvelles techniques pour réduire leur complexité de décodage. Nous étudions également le
compromis fondamental entre fiabilité et débit dans le régime de fort rapport signal à bruit. Enfin, nous considérons
une question de nature plus fondamentale, c’est-à-dire le problème de s’approcher de la capacité des canaux multi-
antennes quand le nombre de blocs tend vers l’infini.

La deuxième partie de ce mémoire porte sur les applications des réseaux euclidiens à la sécurité en théorie
de l’information. Nous exploitons des outils issus de la cryptographie basée sur les réseaux pour concevoir des
codes tels que les distributions en sortie induites par des messages différents soient indistinguables, qui atteignent
la sécurité sémantique des canaux wiretap gaussiens et sans fil. Cette technique s’applique également au problème
de la génération de clés secrètes à partir de sources gaussiennes corrélées. Nous proposons aussi des méthodes de
réconciliation pour deux protocoles de génération de clés cryptographiques basées sur les réseaux euclidiens.

Dans la partie finale du mémoire, nous revisitons le problème de l’approximation des statistiques en sortie d’un
canal sous un angle différent. Nous considérons un modèle point-à-point composé d’une source d’information,
d’un encodeur, d’un canal bruité, d’un décodeur, d’une information commune et nous cherchons à coordonner les
signaux en entrée et en sortie du canal avec la source et sa reconstruction. Notre objectif est la caractérisation de
l’ensemble des distributions de probabilité conjointes réalisables. De plus, nous développons de nouveaux codes
polaires pour la coordination.

iii





ACKNOWLEDGEMENTS

“Of course, the most rewarding part is the ‘Aha’ moment, the excitement of
discovery and enjoyment of understanding something new – the feeling of
being on top of a hill and having a clear view. But most of the time, doing
mathematics for me is like being on a long hike with no trail and no end in
sight.”

–MARYAM MIRZAKHANI

My first thanks go to all my collaborators, without whom this work would not have been possible - in particular
to Cong Ling for sharing his ideas and intuition, to Roope Vehkalahti for his enthusiasm and sense of humour, and
to Matthieu Bloch for his amazing insight and vision. I am also indebted to my students Giulia Cervia, Charbel
Saliba and Cécile Bouette: it has been a pleasure to see them grow more self-assured and independent during their
PhD. Special thanks go to Maël Le Treust and Ligong Wang for sharing the adventure of co-supervising - we have
quite different styles which hopefully complement each other - and to Inbar Fijalkow for being a mentor to my
students.

I am very grateful to Iryna Andriyanova, Inbar Fijalkow, Caroline Fontaine, Vincent H. Poor, Jean-Pierre
Tillich, Michèle Wigger and Ram Zamir for kindly accepting to participate in my HDR committee, and for their
thought-provoking questions during the defense. I would especially like to thank the three referees for their atten-
tive reading of the manuscript and in-depth reviews, and Inbar for guiding me through the whole process.

The ETIS lab has been a great place to work during these years thanks to many people, including those who left
and whom I really miss - my colleagues and friends from the Information, Communication and Imaging team (Iryna
Andriyanova, Veronica Belmega, Sara Berri, Kévin Carrier, Luan Chen, Arsenia Chorti, Inbar Fijalkow, Maël Le
Treust, Ligong Wang, Claudio Weidmann) and from other teams (Myriam Ariaudo, Emmanuelle Bourdel, Aymeric
Histace, Lilyana Petrova, David Picard, Camille Simon-Chane, Son Vu...) as well as the teaching colleagues at
ENSEA (Christophe Barès, Philippe Bouafia, Matthieu Guerquin-Kern, Nicolas Simond, Antoine Tauvel...) - the
list goes on.

Finally, thanks to Rob for being at my side during all these years and for his unconditional support through
thick and thin (as well as occasional help with some proof!).

v





CONTENTS

1 Activity review 3
1.1 Teaching activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Summary and main research interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Advising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Research projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Scientific responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.6 Scientific visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.7 Invited talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Awards and distinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Introduction 15
2.1 Lattice codes for communications over Gaussian and fading channels . . . . . . . . . . . . . . . 15
2.2 Lattice-based cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Fundamental information-theoretic metrics for secrecy and coordination . . . . . . . . . . . . . . 16
2.4 Main research contributions and organization of this thesis . . . . . . . . . . . . . . . . . . . . . 17
2.5 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Algebraic space-time codes for MIMO systems 21
3.1 MIMO systems and design criteria for lattice space-time codes . . . . . . . . . . . . . . . . . . . 21
3.2 Low-complexity decoding of algebraic space-time codes . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Algebraic reduction for space-time codes based on division algebras . . . . . . . . . . . . 24
3.2.2 Decoding by embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Diversity-multiplexing trade-off of asymmetric space-time codes . . . . . . . . . . . . . . . . . . 31
3.4 Approaching capacity with multi-block space-time codes . . . . . . . . . . . . . . . . . . . . . . 36

4 Lattice codes for physical layer security and cryptography 43
4.1 Semantically secure lattice codes for Gaussian wiretap channels . . . . . . . . . . . . . . . . . . 44
4.2 Almost universal wiretap codes for MIMO wireless channels . . . . . . . . . . . . . . . . . . . . 50
4.3 Secret key generation from Gaussian sources using lattices . . . . . . . . . . . . . . . . . . . . . 55
4.4 Reconciliation for secret key generation protocols based on Learning With Errors . . . . . . . . . 62

5 Coordination of autonomous agents 67
5.1 Polar codes for strong coordination of uniform actions over error-free links . . . . . . . . . . . . 69
5.2 Coordination of signals and actions over noisy channels . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Coordination in two-node networks with two-sided state information . . . . . . . . . . . . . . . . 75

5.3.1 Strong coordination region for special cases . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Coordination of signals and actions with strictly causal encoder . . . . . . . . . . . . . . . . . . . 80

vii



6 Open problems and perspectives 81
6.1 Physical layer security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Post-quantum cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

References 87

Index 101



Laura Luzzi

Date of birth: 26/3/1980
Nationality: Italian and French
Office phone: 01 30 73 62 96
Address: 6, avenue du Ponceau, 95014 Cergy-Pontoise
E-mail: laura.luzzi@ensea.fr
Webpage: https://perso.etis-lab.fr/luzzi/

Research interests

Wireless communications, MIMO systems, information theory, physical layer security, post-quantum cryptography

Professional experience

Sept. 2012 - Assistant professor (Maître de conférences) at ENSEA
present ETIS, UMR 8051, CY Cergy Paris Université, ENSEA, CNRS

Oct. 2011 - Marie Curie Research Fellow, Department of Electrical and Electronic
Aug. 2012 Engineering, Imperial College London

Collaboration: Cong Ling

Oct. 2010 - Postdoctoral fellow at Supélec, Alcatel Lucent Chair in Flexible Radio
Sept. 2011 Co-funded by Georgia-Tech Lorraine

Collaboration: Matthieu Bloch

Oct. 2007 - Postdoctoral researcher at Télécom-ParisTech, Comélec Department
May 2010 Funding: ANR project ORIANA

Collaborations: Jean-Claude Belfiore, Ghaya Rekaya - Ben Othman

Feb. 2007 - Teaching assistant at the University Paris VI, Paris
Dec. 2008 Department of Mathematics

Education

2004 - 2007 Ph.D. in Applied Mathematics, Scuola Normale Superiore, Pisa, Italy
“Continued fractions, coding and wireless channels”, 70/70 cum laude
Advisors: Stefano Marmi, Emanuele Viterbo

1998 - 2003 Degree in Mathematics, University of Pisa, Italy
“Continued fraction expansions and geodesic flows: ergodic properties and symbolic
dynamics ”, 110/110 cum laude
Advisor: Stefano Marmi

Awards and distinctions

2017 “Women and Science” prize of the Paris Seine University
2011 Marie Curie Intra-European Fellowship at Imperial College London, U.K.
2006 - 2007 Exchange scholarship at the Ecole Normale Supérieure, Paris, France
2004 PhD Fellowship in Applied Mathematics, Scuola Normale Superiore, Pisa, Italy

https://perso.etis-lab.fr/luzzi/


2

Advising

PhD students 2 defended (50%, 90%), 1 ongoing (45%)
Postdocs 2

Publications

13 (10*) international journal papers
28 (27*) international conference papers (3 invited)
2 (2*) book chapters
2 (2*) patents
* Post-PhD

Scientific Responsibilities

2023 Jury member, PhD Prize in Signal, Image and Computer Vision (GDR ISIS/Club EEA)

Local Responsibilities

2021 - present Head of the ICI team of ETIS
2020 - 2021 Member of the Scientific Board of ETIS
2016 - 2019 Member of the Scientific Board of ENSEA

Teaching Responsibilities

2014 - 2023 Responsible for the 3rd year Option in Networks and Telecommunications at ENSEA

Workshop Organization

2014 GDR ISIS workshop “Physical layer security in wireless networks”, Paris



1 ACTIVITY REVIEW

This section provides a detailed overview of my teaching and research activities since my PhD, as well as admin-
istrative and scientific responsibilities.

1.1 Teaching activities

Most of my teaching takes place in the Information Processing Department (DTI)1 of ENSEA. In particular, since
2014 I have been responsible for the 3rd year Option in Networks and Telecommunications (RT)2 (approxi-
mately 20 students).

A reform of the 2nd year was set up at ENSEA in 2017-18, with a new teaching organization into majors and
minors. In this context, I have contributed to setting up a new major in Information Theory (with S. Vu). In 2020,
a 2nd year international group was created, with full-immersion teaching in English, to which I participate. I
also contributed to translating the course materials and problem sets of Information Theory as well as the labs of
Random Signal Modelling.

In relation to my new research interest in cryptography, in 2021 I’ve taken the responsibility of the Network
Security module in 3rd year RT. I have also contributed to creating a new course in Physical Layer Security in the
Master I&ISC, option “Signal, Information and Telecommunications”.

My typical teaching charge per year is approximately 230 hours ETD. The years 2018-19 (maternity leave)
and 2019-20 (CRCT) correspond to a half teaching service.

Responsibility of teaching modules

In particular, I have been responsible for the following modules:

1. Advanced Signal Processing (2012 - 2016) - with I. Fijalkow, 3rd year ENSEA, option SyM3

2. Communication Systems / Wireless Communications (2012 - present) - with I. Fijalkow, 3rd year ENSEA,
option RT(S) and SyM

3. Telecommunications (2017 - present) - with V. Belmega, 3rd year ENSEA, option RT(S)

4. Information Theory and Multimedia Compression (2017 - present) - with S. Vu, 2nd year ENSEA

5. Physical Layer Security (2021 - present), M2R I&ISC, CY University / ENSEA

I proposed and supervised 3rd year projects on the following topics: fountain codes, low complexity detection
for MIMO systems, polar codes.

1Formerly Signal and Telecommunications Department (DST).
2Now called Networks, Telecommunications and Security (RTS).
3Now SIA.
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4 CHAPTER 1. ACTIVITY REVIEW

Administrative responsibilities

I have been the coordinator for the 3rd year option “Networks and Telecommunications” (RT) since 20144.
This responsibility is associated to a significant workload and corresponds to a mission of 48 hours ETD. It includes
the creation of the timetables for the whole first semester, finding and helping guest teachers (printing lecture notes,
exam surveillance), the organization of projects, validating the final year internship topics and the curriculums for
our outgoing foreign exchange and dual degree students. Since 2019 we’ve set up a partnership with Nokia with
conferences and résumé workshops, as well as a visit to their labs in Nozay.
In 2018 I coordinated a re-organization of teaching modules to improve readability and coherence of modules,
which in the past were fragmented and often taught by guest teachers. In 2022 we’ve proposed a new reform of the
option into Networks - Telecommunication - Security (RTS) by reinforcing the security modules (cryptography,
network security, cybersecurity and software security).

1.2 Research Activities

1.2.1 Summary and main research interests

My research themes are at the interface between information and coding theory and discrete mathematics. In
particular, they focus on lattice codes and error-correcting codes for wireless communications and security, and
more recently on lattice-based cryptography. In several works, I have considered the application of algebraic tools
such as the theory of Euclidean lattices and their theta series, of division algebras over algebraic number fields,
and the ergodic theory of Lie groups and their arithmetic subgroups, in order to solve problems in coding theory.

After my degree in mathematics at the University of Pisa, Italy, I chose to pursue my PhD in applied mathemat-
ics at the Scuola Normale Superiore, Pisa. My PhD thesis is composed of two distinct sections. The first section,
under the supervision of Stefano Marmi, focuses on the ergodic properties of a family of continued fraction expan-
sions which generalize the Gauss algorithm [J1]. A follow-up work in collaboration with Keio University in Japan
focuses on the same topic [J3].
The second part of the thesis was motivated by the applications of continued fractions to block coding for MIMO
systems, and proposes new coded modulation schemes for slow fading channels [J2]. This work was in collabora-
tion with Emanuele Viterbo during a visit to the Politecnico di Torino.

After this transition from pure mathematics to applications, I decided to focus on research in digital commu-
nications. A postdoctoral fellowship in Télécom-ParisTech with Jean-Claude Belfiore and Ghaya Rekaya-Ben
Othman was the opportunity to acquire a solid background in this area, and to develop a new expertise in the topic
of low-complexity decoding for MIMO systems [J4],[J5], which also led to two patent applications. In particular,
thanks to my background in discrete mathematics, I proposed new techniques to exploit the algebraic properties of
codes based on division algebras in order to simplify decoding.
I then joined the Alcatel-Lucent Chair in Flexible Radio at Supélec for a second postdoctoral fellowship on the topic
of physical layer security (with Mérouane Debbah, in collaboration with Matthieu Bloch from Georgia-Tech Lor-
raine [C5]). At the same time I kept working on low-complexity MIMO decoding in collaboration with Frédérique
Oggier of Nanyang University in Singapore [C6], with Cong Ling (Imperial College) and Damien Stehlé (ENS
Lyon) [C7] and with Télécom-Paris [C4].
My collaboration with Cong Ling led to a successful application for a Marie Curie IEF Fellowship at Imperial Col-
lege, where I worked on lattice coding for physical layer security [J8] and for the interference channel [C10]. I also
started a new collaboration with Roope Vehkalahti at the University of Turku to study the diversity-multiplexing
gain trade-off of division algebra codes [J7].
Finally, in 2012 I joined the Information, Communication and Imaging (ICI) team of the ETIS laboratory (UMR
8051 Cergy Paris University, ENSEA, CNRS) as an assistant professor. From February 2020 to July 2020, I ben-
efited from a 6-month sabbatical (Congé de Recherche et Conversion Thématique) to focus on the new topic of
post-quantum cryptography. Since November 2021, I am the head of the ICI team.
At ETIS, I have co-supervised three PhD students: Giulia Cervia on the topic of coordination of autonomous

4Shared with V. Belmega in 2014-15 and 2018-20, and with A. Chorti in 2022-23.



1.2 RESEARCH ACTIVITIES 5

agents, Charbel Saliba on lattice-based cryptography, and Cécile Bouette (still ongoing) on covert communica-
tions.

In summary, my research post-PhD has focused on the following topics:

• Low-complexity decoding techniques for MIMO systems

Publications: 3 journals: [J4],[J5],[J6], 5 conferences: [C2], [C3], [C4], [C6], [C7]
Collaborators: Jean-Claude Belfiore (Télécom-Paris), Ghaya Rekaya Ben-Othman (Télécom-Paris),
Frédérique Oggier (Nanyang University, Singapore), Cong Ling (Imperial College London), Damien Stehlé
(ENS Lyon)
Students: Asma Mejri (M1)
Supported by: ANR project ORIANA

• Diversity-multiplexing gain trade-off of space-time codes for MIMO systems

Publications: 2 journals: [J7], [J12], 5 conferences: [C13], [C14], [C15], [C18], [C22]
Collaborators: Roope Vehalahti (University of Turku, Aalto University, and University of Jyväskylä, Fin-
land), Hsiao-Feng Lu (National Chiao Tung University, Taiwan), Jean-Claude Belfiore (Télécom-Paris),
Alexander Gorodnik (University of Bristol)
Supported by: ENSEA, Academy of Finland, Finnish Cultural Foundation

• Almost universal codes for MIMO channels with constant gap to capacity based on class field towers

Publications: 1 journal [J9], 2 conferences [C16], [C17], one book chapter [B2]
Collaborators: Roope Vehalahti (University of Turku, Finland)
Supported by: ENSEA, Academy of Finland, Finnish Cultural Foundation

• Semantically secure lattice codes for wiretap channels

Publications: 2 journals [J8], [J10], 2 conferences [C8], [C19]
Collaborators: Cong Ling (Imperial College London), Jean-Claude Belfiore (Télécom-Paris), Damien
Stehlé (ENS Lyon), Roope Vehkalahti (Aalto University, Finland)
Supported by: Marie Curie IEF Fellowship LACONIC, ENSEA

• Secret key generation from correlated Gaussian sources

Publications: 1 conference [C12], 1 journal [J13]
Collaborators: Cong Ling (Imperial College London), Matthieu Bloch (Georgia Tech)
Supported by: Marie Curie IEF Fellowship LACONIC, INEX Ambition PHEBE

• Strong coordination of signals and actions over noisy channels

Publications: 1 journal [J11], 4 conferences [C11], [C20], [C21], [C23], 1 national conference [NC1]
Collaborators: Matthieu Bloch (Georgia Tech), Maël Le Treust (ETIS), Jörg Kliewer (New Mexico State
University)
Students: Giulia Cervia (PhD)
Supported by: ENSEA, INS2I CNRS
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• Error correction and reconciliation for lattice-based post-quantum cryptography

Publications: 2 conferences [C24], [C27]
Collaborators: Cong Ling (Imperial College London)
Students: Charbel Saliba (PhD)
Funded by: INEX project Lattice Hashing

• Covert communications over non-Gaussian noise channels

Publications: 1 conference [C28]
Students: Cécile Bouette (ongoing PhD)
Collaborators: Ligong Wang (formerly at ETIS, now at ETH Zurich)
Funded by: INEX Ambition PHEBE

Other current research interests include short blocklength wiretap code constructions based on polar and Reed–
Muller codes [C26], and low-complexity decoders for non-binary polar codes [C25].

1.2.2 Advising

Defended PhD theses

1. Giulia CERVIA, “Coordination of autonomous devices over noisy channels: capacity results and coding
techniques”

Period: October 1st, 2015 - November 30th, 2018
Advising: 50% (with Maël Le Treust (40%) and Inbar Fijalkow (10%, official PhD advisor)
Funding: Ministry fellowship, “Science and Engineering” Doctoral School, University of Cergy-Pontoise
Career path: Assistant professor at IMT Lille Douai since September 2020, after a postdoctoral fellowship
at KTH Royal Institute of Technology Stockholm in 2019-20.
Publications: 1 journal [J11], 3 conferences [C20], [C21], [C23], 1 national conference [NC1]

2. Charbel SALIBA, “Error correction and reconciliation techniques for lattice-based key generation protocols”

Period: October 1st, 2017 - May 24th, 2022
Advising: 90% (with Inbar Fijalkow (10%), official PhD advisor)
Funding: INEX Paris-Seine project Lattice Hashing
Publications: 2 conferences [C24], [C27]

Ongoing PhD theses

3. Cécile BOUETTE, “Information and coding-theoretic study of covert communication”

Start date: November 1st, 2021
Advising: 45% (with Ligong Wang (45%) and Inbar Fijalkow (10%), official PhD advisor)
Funding: INEX Ambition project PHEBE “Physical-Layer Security for Beyond 5G”
Publications: 1 conference [C28]

Unofficial advising

During my postdoctoral fellowship at Imperial College, I have worked closely with a PhD student, including
unofficial advising:
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- Maria Constanza ESTELA ZAMORA, “Interference management for interference channels: performance
improvement and lattice techniques”
PhD: Imperial College London
Period: October 2011 - July 2012
Collaboration with Cong Ling (Imperial College London)
Publications: 1 conference [C10]

M2R students

- Qi XUAN, “Practical implementation of polar codes”
Master: M2R SIC, University of Cergy-Pontoise
Period: April - September 2015
Advising: 100%

M2R Research Initiation Projects

- Ivonne CHEBIB, “Short packet transmission in 5G MIMO systems”
M2R SIT option, November 2020 - March 2021

- Qi XUAN, “Analysis of Polar Codes for channel coding”
M2R SIC, University of Cergy-Pontoise, November 2014 - March 2015

- Xin YE, “Wireless Network Coding”
Master project at Imperial College, January - June 2012

M1 students

- Kaiyu MU, “Fountain Codes”
Final year project at Imperial College London.
Period: October 2011 - June 2012

- Asma MEJRI, “Diversity gain of MIMO decoders”
Final year project at Télécom-ParisTech.
Period: March - June 2010
Publications: 1 conference [C4]

Postdocs

- Franklin COCHACHIN
Topic: Low-complexity decoders for non-binary polar codes
Period: July 2020 - June 2021
Collaboration with Fakhreddine Ghaffari (ETIS)
Funding: ANR QCSP
Publications: 1 conference [C25]

- Mahdi SHAKIBA-HERFEH
Topic: Secrecy analysis of short blocklength linear codes for the wiretap channel
Period: December 2020 - November 2021
Collaboration with Arsenia Chorti (ETIS)
Publications: 1 conference [C26]

1.2.3 Research projects

- Marie Curie Intra-European Fellowship at Imperial College London
Projet FP7 LACONIC “Lattice Codes for Multiuser Wireless Communications”, budget 192Ke (2011-2012)
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- Principal investigator of the INEX Paris Seine project AAP 2017 (CY Initiative), “Lattice hash functions for
secret key generation”, budget 112.5ke . Funding of Charbel Saliba’s PhD thesis (2017-2021)

- INEX Ambition PHEBE “Physical-Layer Security for Beyond 5G” (CY Initiative), budget 391ke (with L.
Wang, A. Chorti, M. Le Treust, M. Chafii). Funding of Cécile Bouette’s PhD thesis (2020-2024)

- ANR QCSP “Quasi-Cyclic Short Packet” with F. Ghaffari. Participants: Université de Bretagne Sud, IMT
Atlantique, ETIS, IPB/ENSEIRB-MATMECA, Orange Labs, Sequans, CEA-LETI. Budget for ETIS: 80ke.
Funding of the postdoc of F. Cochachin (2019-2023)

- ANR JCJC DECODE “Generic decoding for various metrics - A toolbox for post-quantum cryptography”.
Principal Investigator: K. Carrier, with N. Sendrier of Inria Paris. Budget: 183ke. Funding of Valérian Hatey’s
PhD thesis (2022-2025)

- PEPR 5G Project PC8 E2ESec (End-to-end Security for 5G), with A. Chorti. Budget: 71ke. (2023-2027)

- EU HORIZON project JU-SNS-2023 ROBUST-6G “Smart, Automated, and Reliable Security Service Plat-
form for 6G”, leader: ERICSSON Turkey. ETIS participants: A. Chorti (PI), L. Chen, S. Berri. Total budget for
ETIS: 394ke (provisional) (2023-2026)

I have also led several local projects funded by ENSEA and UCP/CYU for an overall amount of 7.7ke:

- BQR-ENSEA-2013 “Lattice codes for strong secrecy in fading wiretap channels”, 2ke. Funding of a research
visit to Imperial College London.

- BQR-ENSEA-2014 “Algebraic space-time codes for MIMO wireless systems”, 1.5ke. Funding of a research
visit to Turku University, Finland.

- UCP-Invited-Professor-2016, 1.2ke. Invited professor: Roope Vehkalahti, Turku University, Finland.

- SRV-ENSEA-Invited-Professor-2017, 2ke. Invited professor: Matthieu Bloch, Georgia Tech, U.S.A.

- SRV-ENSEA-Invited-Professor-2018, 1ke. Invited professor: Roope Vehkalahti, Aalto University, Finland.

1.2.4 Scientific responsibilities

Local responsibilities

- Head of the ICI team of the ETIS laboratory (Information, Communication and Imaging) since November
2021. The team currently comprises 4 Full Professors, 7 Assistant Professors, 10 PhD students, 1 postdoc.
Duties: managing the team budget for missions and investments; participating to the monthly meetings of the
Steering Group and to the Scientific Board of ETIS; writing the yearly activity report; organizing team meetings;
coordinating outreach activities.

- Elected member of the Scientific Board of ETIS (October 2020 - November 2021)

- Elected member of the Scientific Board of ENSEA (April 2016 - January 2019)

National responsibilities

- Member of the jury of the Best PhD Prize in Signal, Image and Computer Vision awarded jointly by the French
Club EEA, the GdR ISIS and GRETSI, June 2023

Workshop organization

- GdR ISIS workshop “Physical layer security in wireless networks”, Télécom-Paris, May 2014

- Workshop “The arithmetics of wireless communications”, Centro di Ricerca Matematica Ennio de Giorgi, Pisa,
Italy, November 2008
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Selection committees

- Member of the selection committee for the Assistant Professor (MCF) position n. 4046, Section 27/61 at
ENSEA, April-May 2017.

- Member of the selection committee for the Assistant Professor (MCF) position n. 4069, Section 27/61 at
ENSEA, April-May 2022.

- Member of the selection committee for the Assistant Professor (MCF) position n. 4079, Section 61 at ENSEA,
May 2023

- Member of the selection committee for the Tenure-track Assistant Professor (MCF CDD) position in Systems,
Networks and Security, Sections 27/61 at CY Cergy Paris Université, June 2023

Examiner for PhD and mid-term committees

- PhD committee of Hamed Mirghasemi at Télécom-Paris: “Lattice Codes for the Continuous Wiretap Chan-
nels”, October 2014

- Mid-term committee of Sarah Kamel at Télécom-ParisTech: “Secure coding for Cloud-assisted Wireless Net-
works”, July 2015

- Mid-term committee of Aymen Askri at Télécom-Paris: “Space-Time Codes for 5G”, August 2019

Technical Program Committees

- IEEE Information Theory Workshop 2022

- IEEE Globecom Workshop on Enabling Security, Trust, and Privacy in 6G Wireless Systems, 2023

Session chair

- “Security, Privacy and Sharing”, IEEE International Symposium on Information Theory, Istanbul, Turkey, July
2013

- “Reed–Muller codes”, IEEE Information Theory Workshop (online), October 2021

- “Security”, IEEE Information Theory Workshop , Saint-Malo, France, May 2023

Reviewing

- Journals: regular reviewer for IEEE Transactions on Information Theory and IEEE Transactions on Commu-
nications and occasionally for other journals: IEEE Communication Letters, IEEE Journal on Selected Areas
in Information Theory, EURASIP Journal on Wireless Communications and Networking, Entropy, Transactions
on Wireless Communications, Advances in Mathematics of Communications.

- International conferences: regular reviewer for IEEE International Symposium on Information Theory, IEEE
Information Theory Workshop and occasionally for others: GLOBECOM, SPAWC, ICC, PIMRC, ISTC.

- National conferences: GRETSI.

- Research projects: Reviewer for the French ANR Evaluation committee CE-48 “Foundations of digital tech-
nology - information technology, automation, signal processing” in 2019 and 2023
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1.2.5 Collaborations

International Collaborations

- Matthieu Bloch, GeorgiaTech, U.S.A.
Publications: 2 journals, 6 conferences

- Cong Ling, Imperial College London, U.K.
Publications: 4 journals, 7 conferences
Students: Maria Constanza Estela, Charbel Saliba

- Roope Vehkalahti, University of Jyväskylä (previously Turku and Aalto Universities), Finland
Publications: 4 journals, 9 conferences, 1 book chapter

- Alexander Gorodnik, University of Bristol, U.K.
Publications: 1 conference

- Frédérique Oggier, Nanyang University, Singapore
Publications: 1 conference

National Collaborations

- Jean-Claude Belfiore, Télécom-Paris
Publications: 4 journals, 6 conferences

- Ghaya Rekaya-Ben Othman, Télécom-Paris
Publications: 3 journals, 4 conferences

- Damien Stehlé, ENS Lyon (LIP)
Publications: 2 journals, 1 conference

- Mérouane Debbah, Centrale-Supélec
Publications: 1 book chapter

Local Collaborations

- Maël Le Treust
Publications: 1 journal, 3 conferences
Students: Giulia Cervia

- Arsenia Chorti
Publications: 1 conference

- Ligong Wang
Publications: 1 conference
Students: Cécile Bouette

- Fakhreddine Ghaffari
Publications: 1 conference

1.2.6 Scientific visits

- Nanyang University, Singapore
September 2010 (one month)
Collaboration: Frédérique Oggier
Related publication: [C6]
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- Finnish universities
- Aalto University, Helsinki, December 2011 (two weeks, invited by Camilla Hollanti).
- Turku University, March 2013 (one week), June 2014 (one week), April 2015 (one month).
- University of Jyväskylä, July 2022 (one week).
Collaboration: Roope Vehkalahti
Related publications: [J7], [J9], [C9], [C13], [C14], [C15], [C16], [C17], [C19]

- Imperial College London, U.K.
March 2014 (one week), April-May 2016 (one month), February 2020 (one week)
Collaboration: Cong Ling
Related publications: [C19], [J10], [C24]

1.2.7 Invited talks

- “Algebraic reduction for low-complexity lattice decoding”, workshop “Lattice Coding & Crypto Meeting”,
Imperial College London, U.K., September 2018

- “DMT classification of MIMO codes and ergodic theory of Lie groups”, workshop “Interactions between num-
ber theory and wireless communication”, University of York, U.K., July 2016

- “An introduction to algebraic coding for wireless channels”, workshop “Interactions between algebra, coding
theory and cryptography”, University of Durham, U.K., January 2016

- “Secret key generation for Gaussian sources using lattices”, workshop “Mathematical Tools of Information-
Theoretic Security”, Huawei Technologies, Paris, September 2015

- “Semantically secure lattice codes for the Gaussian wiretap channel”, Special Session on Fundamentals and
PHY, IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Lon-
don, U.K., September 2013

1.3 Awards and distinctions

Post PhD

- Women and Science Prize of the Paris Seine University (CY Alliance), March 2017

- Marie Curie Intra-European Fellowship at Imperial College London, U.K., 2011

Before and during the PhD

- Exchange scholarship at the Ecole Normale Supérieure, Paris, France, 2006

- PhD Fellowship in Applied Mathematics, Scuola Normale Superiore, Pisa, Italy (classed 2nd after written and
oral examination)

1.4 Publications
The underlined author names refer to the PhD and post-doc students that I have co-advised officially and unoffi-
cially.

International journal papers (post-PhD):

[J13] L. Luzzi, C. Ling, M. Bloch, “Optimal rate-limited secret key generation from Gaussian sources using
lattices”, IEEE Transactions on Information Theory, vol. 69, n. 8, pp. 4944-4960, August 2023
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[J12] R. Vehkalahti, L. Luzzi, “The DMT of Real and Quaternionic Lattice Codes and DMT Classification of
Division Algebra Codes”, IEEE Transactions on Information Theory, vol 68, n. 5, pp. 2999-3013, May
2022

[J11] G. Cervia, L. Luzzi, M. Le Treust, M. Bloch, “Strong coordination of signals and actions over noisy
channels with two-sided state information”, IEEE Transactions on Information Theory vol. 66, no 8, pp.
4681–4708, Aug. 2020

[J10] L. Luzzi, R. Vehkalahti, C. Ling, “Almost universal codes for MIMO wiretap channels”, IEEE Transactions
on Information Theory, vol. 64 n. 11, pp. 7218 – 7241, November 2018

[J9] L. Luzzi, R. Vehkalahti, “Almost universal codes achieving ergodic MIMO capacity within a constant gap”,
IEEE Transactions on Information Theory, vol. 63, n. 5, pp. 3224–3241, May 2017

[J8] C. Ling, L. Luzzi, J.-C. Belfiore, D. Stehlé, “Semantically Secure Lattice Codes for the Gaussian Wiretap
Channel”, IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 6399-6416, 2014

[J7] R. Vehkalahti, H-F. Lu, L. Luzzi, “Inverse Determinant Sums and Connections Between Fading Channel
Information Theory and Algebra”, IEEE Transactions on Information Theory, vol 59, n. 9, pp. 6060–6082,
2013

[J6] L. Luzzi, D. Stehlé, C. Ling, “Decoding by embedding: correct decoding radius and DMT-optimality”,
IEEE Transactions on Information Theory, vol. 59, no. 5, pp. 2960–2973, 2013

[J5] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, “Algebraic reduction for the Golden Code”, Advances in
Mathematics of Communications, vol 6 n.1, pp. 1–26, 2012

[J4] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, “Augmented lattice reduction for MIMO decoding”,
IEEE Transactions on Wireless Communications, vol. 9, n.9, pp. 2853–2859, 2010

International journal papers (PhD):

[J3] L. Luzzi, S. Marmi, H. Nakada, R. Natsui, “Generalized Brjuno functions associated to α-continued frac-
tions”, Journal of Approximation Theory, vol. 162, n.1, pp. 24–41, 2010

[J2] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, E. Viterbo, “Golden Space-Time Block Coded Modula-
tion”, IEEE Transactions on Information Theory vol 55 n.2, pp. 584–597, 2009

[J1] L. Luzzi, S. Marmi, “On the entropy of Japanese continued fractions”, Discrete and Continuous Dynamical
Systems Series A, vol 20, n. 3, pp. 673–711, 2008

International conferences (post-PhD):

[C28] C. Bouette, L. Luzzi, L. Wang, “Covert Communication over two types of additive noise channels”, IEEE
Information Theory Workshop, Saint-Malo, France, April 2023

[C27] C. Saliba, L. Luzzi, C. Ling, "Error Correction for FrodoKEM Using the Gosset Lattice", International
Zurich Seminar on Information and Communication, March 2022

[C26] M. Shakiba-Herfeh, L. Luzzi, A. Chorti, "Finite Blocklength Secrecy Analysis of Polar and Reed-Muller
Codes in BEC Semi-Deterministic Wiretap Channels", IEEE Information Theory Workshop, Kanazawa,
Japan, October 2021

[C25] F. Cochachin, L. Luzzi, F. Ghaffari, "Reduced Complexity of a Successive Cancellation Based Decoder
for NB-Polar Codes", International Symposium on Topics in Coding (ISTC), Montreal, Canada, August-
September 2021
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[C24] C. Saliba, L. Luzzi, C. Ling, "A reconciliation approach to key generation based on Module-LWE", IEEE
International Symposium on Information Theory, Melbourne, Australia, July 2021

[C23] G. Cervia, L. Luzzi, M. Le Treust, M. Bloch, “Strong coordination over noisy channels with strictly causal
encoding”, 56th Allerton Conference on Communication, Control, and Computing, Monticello, IL, October
2018

[C22] L. Luzzi, R. Vehkalahti, “The DMT classification of real and quaternionic lattice codes”, IEEE Interna-
tional Symposium on Information Theory, Vail, Colorado, June 2018

[C21] G. Cervia, L. Luzzi, M. Le Treust, M. Bloch, “Strong coordination of signals and actions over noisy
channels”, IEEE International Symposium on Information Theory, Aachen, Germany, June 2017

[C20] G. Cervia, L. Luzzi, M. Bloch, M. Le Treust, “Polar coding for empirical coordination of signals and
actions over noisy channels”, IEEE Information Theory Workshop, Cambridge (UK), September 2016

[C19] L. Luzzi, C. Ling, R. Vehkalahti, “Almost universal codes for fading wiretap channels”, IEEE International
Symposium on Information Theory, Barcelona, Spain, July 2016

[C18] L. Luzzi, R. Vehkalahti, A. Gorodnik, “Towards a complete DMT classification of division algebra codes”,
IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016

[C17] L. Luzzi, R. Vehkalahti, “Division algebra codes achieve MIMO block fading channel capacity within a
constant gap”, IEEE International Symposium on Information Theory, Hong Kong, China, June 2015

[C16] R. Vehkalahti, L. Luzzi, “Number field lattices achieve Gaussian and Rayleigh channel capacity within a
constant gap”, IEEE International Symposium on Information Theory, Hong Kong, China, June 2015

[C15] R. Vehkalahti, L. Luzzi, J.-C. Belfiore, “Shifted inverse determinant sums and new bounds for the DMT of
space-time lattice codes”, IEEE International Symposium on Information Theory, Honolulu, HI, July 2014.

[C14] R. Vehkalahti, L. Luzzi, “Measuring the growth of inverse determinants sums of a family of quasi-orthogonal
codes”, Proc. International Zurich Seminar on communications, invited paper, February 2014

[C13] L. Luzzi, R. Vehkalahti, “A new design criterion for spherically-shaped division algebra-based space-time
codes”, IEEE Information Theory Workshop, Seville, Spain, September 2013

[C12] C. Ling, L. Luzzi, M. Bloch, “Secret key generation from Gaussian sources using lattice hashing”, IEEE
International Symposium on Information Theory, Istanbul, Turkey, July 2013

[C11] M. Bloch, L. Luzzi, J. Kliewer, “Strong coordination with Polar Codes”, 50th Allerton Conference on
Communication, Control, and Computing, Monticello, IL, October 2012

[C10] M. C. Estela, L. Luzzi, C. Ling, J.-C. Belfiore, “Analysis of lattice codes for the many-to-one interference
channel”, IEEE Information Theory Workshop (ITW 2012), Lausanne, Switzerland, September 2012

[C9] R. Vehkalahti, L. Luzzi, “Connecting DMT of Division Algebra Space-Time Codes and Point Counting in
Lie Groups”, IEEE International Symposium on Information Theory, Cambridge (MA), July 2012

[C8] C. Ling, L. Luzzi, J.-C. Belfiore, “Lattice codes achieving strong secrecy over the mod-Λ Gaussian Chan-
nel”, IEEE International Symposium on Information Theory, Cambridge (MA), July 2012

[C7] C. Ling, S. Liu, L. Luzzi, D. Stehlé, “Decoding by embedding: correct decoding radius and DMT-
optimality”, IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 2011

[C6] L. Luzzi, F. Oggier, “A family of fast-decodable MIDO codes from crossed-product algebras over Q”,
IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 2011
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[C5] L. Luzzi, M. Bloch, “Capacity-based random codes cannot achieve strong secrecy over symmetric wire-
tap channels”, 1st International ICST Workshop on Secure Wireless Networks (Securenets 2011), Cachan,
France, invited paper, May 2011

[C4] A. Mejri, L. Luzzi, G. Rekaya-Ben Othman, “On the diversity of the Naive Lattice Decoder”, International
Workshop on Systems, Signal Processing and their Applications, Tipaza, Algeria, invited paper, May 2011

[C3] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, “Augmented lattice reduction for low-complexity MIMO
decoding”, IEEE International Symposium on Personal Indoor and Mobile Radio Communications, Istan-
bul, Turkey, September 2010

[C2] G. Rekaya-Ben Othman, L. Luzzi, J.-C. Belfiore, “Algebraic reduction for the Golden Code”, IEEE Inter-
national Conference on Communications 2009, Dresden, Germany, June 2009

International conference (PhD):

[C1] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, E. Viterbo, “Golden Space-Time Block Coded Modula-
tion”, IEEE Information Theory Workshop 2008, Porto, Portugal, May 2008

National conference (peer-reviewed, with proceedings):

[NC1] G. Cervia, L. Luzzi, M. Le Treust, M. Bloch, “Polar codes for empirical coordination over noisy channels
with strictly causal encoding”, in Colloque GRETSI, Juan-Les-Pins, September 2017

Book chapters:

[B2] R. Vehkalahti, L. Luzzi, “Algebraic Lattice Codes for Linear Fading Channels”, in “Number Theory Meets
Wireless Communications”, Mathematical Engineering, Springer, 2020

[B1] A. Reznik, Y. Shah, L. Luzzi, M. Debbah, “Information-Theoretic Security in Wireless Systems”, in “Se-
curity Technologies for an Ambient Lifestyle - Security, Privacy and Trust in the Wireless World”, Wiley,
2013

Patents:

[P2] G. Rekaya-Ben Othman, J.-C. Belfiore, L. Luzzi, “Procédé de décodage d’un signal ayant subi un codage
espace-temps avant émission, dans un système multi-antennaire, produit programme d’ordinateur et dis-
positif de décodage correspondant”, (Decoding procedure for a space-time encoded signal in a multi-
antenna system, and the corresponding software and decoding device), French patent application filed at
the INPI (National Institute of Industrial Property), September 2, 2008

[P1] L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore, “Méthode de décodage par réseau de points augmenté
pour système multi-source”, (Augmented lattice decoding method for multi-source systems), French patent
application filed at the INPI (National Institute of Industrial Property), December 30, 2009



2 INTRODUCTION: LATTICES AND ERROR-CORRECTING CODES FOR

COMMUNICATIONS AND SECURITY

The many challenges posed by the evolution of communication systems often require an interdisciplinary approach.
In particular, discrete mathematics, algebra and number theory play an important role in the design of codes for
wireless communications and security. This thesis focuses on the applications of lattice coding (and to a lesser
extent, of error-correction codes) to multi-antenna wireless communications, physical layer security and post-
quantum cryptography. In this introduction, I will put the accent on fundamental tools in geometry of numbers and
information theory that are relevant to my work.

2.1 Lattice codes for communications over Gaussian and fading channels
A lattice is a discrete subgroup of Rn. The properties of lattices have been studied in mathematics at least since the
18th century; since the beginning of the 20th century, the field of geometry of numbers [103] was advanced by H.
Minkowski, C. L. Siegel and E. Hlawka, particularly in connection with number theory and Lie algebras. Despite a
century of work on the topic, many questions are still open in this field, such as the problem of finding the densest
sphere packings in any dimension, which has its roots in Hilbert’s 18th problem; the optimality of lattice packings
in dimension 8 and 24 was only settled recently thanks to a breakthrough by M. Viazowska.

In information theory and communications, lattice signal constellations are the natural counterpart of linear
codes for continuous channels, where the Hamming metric is replaced by Euclidean distance. The constructions
of good lattice packings from error-correcting codes have been studied at great length [49]. A series of works
by Poltyrev [188], Loeliger [157] and Erez and Zamir [83] led to the proof that random lattices obtained from
linear codes over finite fields achieve the capacity of the Gaussian channel. The existence of these good families of
lattices can be essentially shown using the Minkowski-Hlawka-Siegel theorem [206], which states that the expected
number of lattice points in a bounded measurable set S over the ensemble of random lattices of unit volume (with
respect to the Haar measure) is equal to the volume of S.
Besides channel coding, lattices are a versatile tool to solve many other information-theoretic problems [236], such
as source coding [82], side information problems [235, 84] and multiterminal settings (distributed source coding,
broadcast, interference alignment [173]).

While the additive white Gaussian noise channel is a good model for deep-space links, modern wireless com-
munications require more general channel models including time or frequency varying fading and multiple trans-
mit and receive antennas. Good lattice “space-time” codes for fading and multiple input multiple-output (MIMO)
channels must harness the diversity and multiplexing gain provided by wireless channels [211]. Due to fading,
the multiplicative structure of the code also plays a role alongside its additive structure. In particular, lattice con-
structions from number fields and division algebras allow to design rotated lattice constellations that are optimal
in terms of diversity and multiplexing gain [179, 178]. These algebraic lattice codes have been included in the
DVB-T2 video broadcasting transmission scheme and in the WiMAX standard for wireless communications.

15
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2.2 Lattice-based cryptography
Lattices also have important applications in computer science and cryptography, which have become especially rel-
evant in the current search for next-generation cryptosystems. Lattice problems such as the shortest vector problem
(SVP), the shortest independent vector problem (SIVP) the closest vector problem (CVP) and the corresponding
approximate versions are believed to be computationally hard even for quantum computers except for very large
approximation factors, and can be used to instantiate cryptographic primitives. Moreover, lattice-based protocols
led to the first example of fully homomorphic encryption, which could revolutionize cloud computing [95].
Lattice problems are easier to solve if a “good” basis of the lattice is available, that is, a nearly orthogonal basis
with relatively short vectors. Lattice reduction algorithms such as LLL [148] or BKZ [203] aim to find an improved
basis when given an arbitrary basis as input, and are widely used for the cryptanalysis of lattice-based protocols,
together with other techniques such as sieving [6] or enumeration [126].
A significant advantage of lattice-based cryptography compared to other cryptographic techniques is that the secu-
rity of most lattice primitives is based on the worst-case hardness of lattice problems. In cryptography a problem is
considered to be hard only if it is hard in the average-case, i.e. it is hard for all but a negligible fraction of instances.
In 1996, a breakthrough paper by Ajtai [5] showed that solving SVP on a random lattice on average involves a
solution for the approximate SVP for any lattice within a polynomial approximation factor. This connection illus-
trates the worst-case to average-case reduction: if the latter problem is hard in some (worst) cases, then the former
is also hard on average.

Many cryptographic primitives were constructed based on this concept; one of the most versatile and widely
used is the Learning With Errors (LWE) problem introduced by Regev [193]. Informally speaking, the (decision)
LWE problem can be stated as follows. Given a secret vector s ∈ Znq and a matrix A ∈ Zm×nq , let b = As + e,
where e is an error term drawn from a rounded Gaussian or discrete Gaussian distribution. The problem is to
distinguish between a finite number of samples (A,b) of the previous form and uniform samples.
Regev’s work builds on the transference theorems developed by Banaszczyk [15] using harmonic analysis tech-
niques, which relate the lengths of the successive minima of a lattice and of its dual. He introduces the smoothing
parameter of a lattice which corresponds to the smallest standard deviation such that a discrete Gaussian distribu-
tion over the lattice behaves like a continuous Gaussian. Equivalently, the distribution of a Gaussian noise modulo
the lattice is close to uniform provided that its variance is larger than the smoothing parameter. Regev showed that
there exists a polynomial-time quantum reduction from approximate SIVP with approximation factor γ to LWE,
provided that γ is small compared to the smoothing parameter of the lattice. The proof is based on an iterative
reduction to the the problem of sampling from a discrete Gaussian over the lattice (Discrete Gaussian Sampling or
DGS). Its connection to SIVP comes from the fact that if the variance of the discrete Gaussian is not too large with
respect to the smoothing parameter, one can obtain short lattice vectors with high probability by sampling.

Later works introduced structured variants of LWE such as RLWE [161] and MLWE [135] which involve ideal
lattices and module lattices respectively. Their cryptographic applications are more efficient compared to LWE.
In particular, the suites of post-quantum key encapsulation mechanisms and digital signatures CRYSTALS-KYBER

[13] and DILITHIUM, selected by NIST for standardization in 2022, are both based on MLWE. However, it is still
an open question whether the additional algebraic structure might make these variants more vulnerable to attacks.

2.3 Fundamental information-theoretic metrics for secrecy and coordina-
tion

In my work I have mostly considered the security applications of lattices at the physical layer. While cryptography
operates at the upper layers assuming that the communication links are error-free and employs pseudorandom
noise, physical layer security aims to exploit the noise inherent in physical channels to guarantee the confidentiality
of communications [149, 30]. Although physical layer security has remained largely theoretical up to now, mostly
due to the difficulty of verifying the required hypotheses about the channel or source models required to obtain a
physical advantage over attackers, the sixth generation of wireless networks will provide some key enablers for its
practical implementation [170, 44]. Unlike cryptography, physical layer security guarantees information-theoretic
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secrecy, which is measured in terms of statistical independence between the confidential message (or secret key)
and the eavesdropper’s observations. Thus, it is secure even against computationally unbounded adversaries, and
consequently, also quantum-secure.

In my work, I have mostly focused on the channel resolvability approach [29] to obtain information-theoretic
security. The resolvability of a channel is defined as the minimum coding rate such that the output of the code
through the channel is asymptotically statistically similar to the output of a given source (in terms of variational
distance or normalized Kullback-Leibler divergence). It was first studied by Han and Verdù [108], who showed
that for a large class of models, the resolvability of a channel is equal to its capacity.
In wiretap coding, the average variational distance between output distributions corresponding to different confi-
dential messages provides a bound for the mutual information between the message and the signal observed by an
eavesdropper, following an approach that can be traced back to Csiszàr [53]. Thus, one technique to design wire-
tap codes is to employ a binning structure where each bin is a resolvability code for the eavesdropper’s channel
[114, 29].
Besides secrecy applications, the notion of resolvability and approximation of output statistics is also the basis
for a new framework in information theory which considers other purposes for communication beyond the trans-
fer of information, namely the problem of coordinating the actions of autonomous agents [56]. In particular, the
degree of coordination towards a specific goal can be measured by the variational distance of the distribution of
the sequence of joint actions of the network nodes to a target distribution. This problem falls within the scope of
goal-oriented communications.

2.4 Main research contributions and organization of this thesis
My main research contributions after the PhD can be grouped into three axes.

Lattice coding and decoding for MIMO systems

The first axis concerns lattice space-time coding and decoding for multiple antenna systems.

In my postdoctoral research work, I considered the problem of reducing the complexity of decoding of space-
time block codes, which is one of the main obstacles to their adoption in communication standards. Note that the
decoding problem essentially corresponds to the closest vector problem (CVP) in the “faded” lattice constellation.
We propose two low-complexity decoding techniques; the first is specialized to lattice codes based on division
algebras and exploits their particular algebraic structure, and in particular the structure of their unit group, in order
to simplify the decoding [J5]. The second technique is more general and consists in embedding the faded lattice
into a higher-dimensional lattice exhibiting a large gap between the first two successive minima, so that lattice
reduction algorithms are guaranteed to solve CVP [J6].

Another interesting question for the design of space-time codes is the characterization of the trade-off between
rate and reliability [238] depending on their algebraic structure. In the high signal-to-noise ratio (SNR) regime, the
question had already been settled in the symmetric setting (i.e. when the number of transmit and receive antennas
are equal) under the non-vanishing determinant condition [80], but remained open for the asymmetric setting.
In collaboration with Roope Vehkalahti, we proposed a general framework to compare the trade-off between
diversity and multiplexing gain (DMT) for asymmetric space-time codes based on division algebras. In
particular, we uncovered a surprising connection with the growth of the size of sets of elements of bounded norm
in arithmetic subgroups of Lie groups [J7],[C18]. More precisely, we showed that the union bound for the pairwise
error probability is essentially determined by the behavior of an inverse determinant sum over the unit group of the
code. Recent results in the ergodic theory of arithmetic subgroups of Lie groups [100], which allow to approximate
a sum over the arithmetic group with an integral over the corresponding Lie group, provide the bridge between
discrete and continuous settings and allow to recover the diversity-multiplexing trade-off. Finally, we were able to
propose a complete classification of the DMT of asymmetric space-time codes [J12].

Another line of research concerns more fundamental questions. In fact, even though the characterization of
the ergodic capacity of multi-antenna systems was well-known [213], there were no known families of explicit
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codes achieving this capacity. We made a first step towards answering this question by analyzing the asymptotic
performance of multi-block algebraic space-time codes when the number of blocks tends to infinity [J9].

For the single antenna Gaussian channel, it was known using sphere packing arguments that the Hermite in-
variant of a family of lattice codes determines its gap to capacity. We showed that the normalized minimum
determinant plays a similar role for space-time codes over MIMO fading channels. Thanks to this design criterion,
we show that there exist families of multi-block space-time codes from division algebras which are approxi-
mately universal [C17], in the sense that they achieve a constant gap to capacity for a general class of fading
models. The universality property guarantees robustness with respect to imperfect estimation of channel statistics
in high-mobility scenarios, or in broadcast mode. This construction is unfortunately not explicit since it requires
the computation of Hilbert class field towers [163] which is still a difficult problem in computational algebra.

These works are presented in Chapter 3.

Lattice coding for physical layer security

Borrowing tools from lattice-based cryptography such as the smoothing parameter of a lattice [166], we propose a
fundamental parameter to design lattice codes that are good for secrecy, the flatness factor, which can be computed
from the theta series of the lattice. We obtain secrecy through channel resolvability [29], by designing a code such
that the output distributions induced by each confidential message are indistinguishable. The flatness factor (based
on the L∞ metric) provides an upper bound for the variational distance of output distributions and, consequently,
for the information leakage. This new figure of merit for lattices allows to define the notion of secrecy-goodness:
a family of lattices is secrecy-good if its flatness factor vanishes asymptotically. Using a Minkowski-Hlawka
type bound on the average behaviour of the theta series, we show the existence of secrecy-good lattices under
suitable volume conditions. We propose a new wiretap coding scheme where each confidential message is encoded
according to a discrete Gaussian distribution over a coset of a secrecy-good lattice. This leads to a construction
of lattice codes which achieve strong secrecy over Gaussian wiretap channels for rates up to 1/2 nat from the
secrecy capacity [J8]. These codes are also semantically secure [22] since no assumption on the distribution of
the confidental messages is required.

The previous approach can be generalized to fading and multiple-antenna channels [J10]. As a consequence
of Banaszczyk’s transference theorems [15], we show that the flatness factor of the faded lattice vanishes if its
dual lattice has good minimum distance. This leads to a simple code design criterion: the product between the
minimum determinants of the lattice and of its dual should be maximized. Moreover, we propose a wiretap code
construction based on ideal lattices from class field towers, which achieves strong secrecy and semantic security up
to a constant gap to secrecy capacity for general fading models under the hypothesis of partial statistical channel
state information at the transmitter as well as some compound channel models. Universality is an important
property in practice, since the statistics of the eavesdropper’s channel are typically unknown.

In the recent work [J13], we propose a lattice-based scheme for secret key generation from Gaussian
sources in the presence of an eavesdropper. This type of protocol could allow the distribution of secret keys
in decentralized networks. Typically, secret key generation consists of two distinct procedures: information rec-
onciliation, in which Alice and Bob exchange public messages to agree on a common sequence, and privacy
amplification to extract a secret key from this shared sequence. The main novelty is the use of the modulo lattice
operation for privacy amplification, which allows to extract the intrinsic randomness of the channel [28]. Our
information reconciliation step follows the outline of lattice Wyner-Ziv coding as in [235], but we introduce a
randomized lattice quantization technique. Furthermore, we introduce two new notions of flatness factors based
on L1 distance and KL divergence, which improve upon the volume-to-noise ratio threshold of the L∞ flatness
factor and may be of independent interest. Consequently, our scheme achieves the strong secret key capacity of
degraded source models, as well as the optimal secret key rate / public communication rate trade-off.

Lattice-based reconciliation techniques can also be applied to secret key generation in lattice cryptography. As
part of Charbel Saliba’s thesis, we considered reconciliation and error-correction techniques for two crypto-
graphic key generation protocols based on LWE, KYBERKEM and FRODOKEM, with the aim to improve their
reliability, secrecy and bandwidth requirements [C24][C27].
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These contributions are presented in Chapter 4.

Strong coordination in point-to-point networks

As part of Giulia Cervia’s PhD thesis, we revisited the problem of approximation of output statistics from a different
angle, namely the coordination of actions of autonomous agents, where the goal is to induce a prescribed output
distribution at the nodes with the least amount of communication. We consider a two-node network comprised of
an information source and a noisy channel, and we require the coordination of the signals at the input and at the
output of the channel with the source and the reconstruction. We assume that the encoder and decoder share a
common source of randomness and we introduce a state capturing the effect of the environment. Our objective is to
characterize the strong coordination region, i.e. the set of achievable joint behaviors and the required minimal
rates of common randomness. We prove general inner and outer bounds for this region, and characterize the exact
coordination region in three particular cases: when the channel is perfect, when the decoder is lossless and when
the random variables of the channel are separated from the random variables of the source. The study of the latter
case allows us to show that the joint source-channel separation principle does not hold for strong coordination. We
also prove that strong coordination offers “free” security guarantees at the physical layer. Furthermore, we develop
explicit polar coding schemes for coordination by exploiting the technique of source polarization.

These results are presented in Chapter 5.

Finally, Chapter 6 illustrates some open problems and research perspectives in the fields of physical layer
security and post-quantum cryptography.

2.5 Notation and definitions
We list here some notations that are used in the remainder of the manuscript.
We use column notation for vectors. We define the integer interval Ja, bK as the set of integers between a and b.
We use the notation Mm,n(F) for the set of m× n matrices with elements in the field F. Given a complex matrix

X ∈Mm,n(C), ‖X‖ =
√∑m

i=1

∑n
j=1 |xi,j |

2 denotes its Frobenius norm. The notation In stands for the identity
matrix of size n.
Given a matrix A, its transpose is denoted by At, and its Hermitian transpose by A†. Given Hermitian matrices A
and B, the notation A < 0 indicates that A is positive semidefinite; the notation A < B means that A−B < 0.
The notation diag(A1, . . . , An) will stand for the block diagonal matrix with diagonal blocks A1, . . . , An.

Given a finite set A, we denote the uniform distribution on A by UA. The variational distance or statistical
distance between two distributions p and q taking values in X is defined as V(p, q) =

∑
x∈X |p(x)− q(x)| in

the discrete case, and V(p, q) =
∫
X |p(x)− q(x)| dx in the continuous case. Their Kullback-Leibler divergence is

D(p||q) =
∑
x∈X p(x) log p(x)

q(x) in the discrete case and D(p||q) =
∫
x∈X p(x) log p(x)

q(x)dx in the continuous case.
The special linear group SLn(F) of degree n over a field F is the set of n× n matrices with determinant 1.

Given an number field F , its ring of integers will be denoted OF and its discriminant will be denoted dF .
We denote by NC(µ, σ2) a circularly symmetric complex Gaussian random variable with mean µ and variance σ2

per complex dimension (equivalently, variance σ2/2 per real dimension).

Lattices. The lattice generated by a basis matrix B is denoted by L(B) = {Bx | x ∈Zn}. For a vector x, the
nearest-neighbor quantizer associated with Λ isQΛ(x) = arg minλ∈Λ ‖λ−x‖. We define the usual modulo lattice
operation by x mod Λ , x − QΛ(x). A measurable set R(Λ) ⊂ Rn is a fundamental region of the lattice Λ

if ∪λ∈Λ(R(Λ) + λ) = Rn and if (R(Λ) + λ) ∩ (R(Λ) + λ′) has measure 0 for any λ 6= λ′ in Λ. The Voronoi
cell of Λ, defined by V(Λ) = {x : QΛ(x) = 0}, specifies the nearest-neighbor decoding region. The Voronoi cell
is one example of the fundamental region of a lattice. Given a fundamental regionR(Λ), the modR(Λ) operation
is defined by x 7→ x̌ where x̌ is the unique element of R(Λ) such that x̌ − x ∈ Λ. Obviously, the usual mod-Λ
operation corresponds to the case whereR(Λ) = V(Λ).

For a (full-rank) sublattice Λ′ ⊂ Λ, the finite group Λ/Λ′ is defined as the group of distinct cosets λ + Λ′ for
λ ∈ Λ. Denote by [Λ/Λ′] a set of coset representatives. The lattices Λ′ and Λ are often said to form a pair of
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nested lattices, in which Λ is referred to as the fine lattice while Λ′ the coarse lattice. The order of the quotient
group Λ/Λ′ is equal to V (Λ′)/V (Λ). The norm of any shortest vector of Λ, often referred to as the minimum
distance, is denoted by λ1(Λ) or λ1(B) when a basis B of Λ is given. The distance of a vector y ∈ Rn to a lattice
Λ ⊂ Rn is dist(y,Λ) = minλ∈Λ ‖y − λ‖.

Definition 2.1 (Hermite constant) The Hermite constant is defined as

γn , sup
Λ

λ2
1(Λ)

det(Λ)2/n
, (2.1)

where the supremum is taken over all lattices Λ of dimension n.

Lattice problems. We now give precise definitions of the lattice problems that are relevant for this work. In
all these problems, the input lattice Λ is described by an arbitrary basis B, and γ = γ(n) is the approximation
factor.

• Closest Vector Problem (CVP):
Given a lattice Λ and a vector y ∈ Rm, find a vector Bx̂ ∈ Λ such that ‖y −Bx̂‖ is minimal.

• γ-Approximate CVP (CVPγ), with γ ≥ 1:
Given a lattice Λ and a vector y ∈ Rm, find a vector Bx̂ ∈ Λ such that ‖y −Bx̂‖ ≤ γdist(y, B).

• η-Bounded Distance Decoding (BDDη) with η ≤ 1/2:
Given a lattice Λ and a vector y such that dist(y, B) < ηλ1, find the lattice vector Bx̂ ∈ L (B) closest to y.

• Shortest Vector Problem (SVP):
Given a lattice Λ, find a vector v ∈ Λ of norm λ1.

• γ-Approximate SVP (SVPγ), with γ ≥ 1:
Given a lattice Λ, find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γλ1.

• γ-Approximate Shortest Independent Vector Problem (SIVPγ), with γ ≥ 1:
Given an n-dimensional lattice Λ, output a set of n linearly independent vectors in Λ of length at most γ ·λn(Λ).

• γ-unique SVP (uSVPγ), with γ ≥ 1:
Given a lattice Λ such that λ2(Λ) > γλ1(Λ), find a vector v ∈ Λ of norm λ1(Λ).



3 ALGEBRAIC SPACE-TIME CODES FOR MIMO SYSTEMS: PERFOR-
MANCE AND DECODING COMPLEXITY

Algebraic number theory is an effective tool to design lattice “space-time” codes which exploit the diversity and
multiplexing gain of multiple input multiple output (MIMO) wireless systems, which are now adopted in modern
standards such as Digital Video Broadcasting and WiMAX.

This chapter presents my research contributions related to algebraic space-time coding for MIMO systems,
focusing on the following problems:

1) Reducing the complexity of decoding, which is one of the main obstacles to the practical implementation of
algebraic space-time codes;

2) Characterizing their diversity-multiplexing gain trade-off in the high signal-to-noise ratio regime;
3) Studying their asymptotic performance and gap to capacity when the number of space-time blocks grows to

infinity.
Before presenting these contributions, we review the main design criteria and algebraic constructions for space
time codes in the next section.

3.1 MIMO systems and design criteria for lattice space-time codes
In a MIMO system with n transmit antennas and m receive antennas, the transmitted signal can be represented in
the form of a matrix or space-time block X = (xi,j) ∈ Mn,T (C), where xi,j represents the signal emitted by the
antenna i ∈ {1, . . . , n} at time j ∈ {1, . . . , T}, and T is the duration of a frame. The received signal is given by

Y =
√
ρHX +W, (3.1)

where H ∈ Mm,n(C) denotes the channel which acts multiplicatively, W ∈ Mm,T (C) is the additive Gaussian
noise, and ρ represents the signal-to-noise ratio (SNR).
In this chapter, we consider a simple i.i.d. Rayleigh flat fading model which ignores channel correlations across
time and antennas, so that H and W have i.i.d. complex Gaussian entries hi,j ∼ NC(0, 1), wi,j ∼ NC(0, 1)1. We
consider an “open-loop” mode where the transmitter has no channel state information (CSI), with the simplified
assumption of perfect CSI at the receiver2. A space-time block code C ⊂ Mn,T (C) is a set of matrices satisfying
the average power constraint3

1

|C|
1

nT

∑
X∈C
‖X‖2 ≤ 1. (3.2)

The rate of the code C is R = 1
T log |C|.

1Admittedly, this model is highly simplified, but it already captures some of the trade-offs of space-time coding. The hypothesis of
independent fading across antennas is reasonable if there is sufficient spacing among them. While the flat fading assumption generally doesn’t
hold for wireless channels, in systems employing orthogonal frequency division multiplexing (OFDM), the wideband channel is divided into
narrowband channels that are approximately flat.

2In practice, the receiver must estimate the channel using training symbols, and the quality of the estimation will depend on the variability
of the channel with time.

3Practical systems are actually subject to peak power limitations, but characterizing the capacity is more difficult under peak constraints.

21
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Rank and determinant criterion. Maximum likelihood (ML) decoding for this system is given by

X̂ML = argmin
X′∈C

‖Y −√ρHX ′‖2 .

The probability of error under ML decoding can be estimated using the union bound

Pe = P{X̂ 6= X} ≤
∑
X′ 6=X

P{X → X ′},

where P{X → X ′} = P
{∥∥Y −√ρHX ′∥∥ ≤ ∥∥Y −√ρHX∥∥} is the pairwise error probability (PEP).

For a fixed channel realization H , the PEP is bounded by the Chernoff bound on the Q-function:

Pe(H) = P{X̂ 6= X |H} ≤
∑

X′∈C,X′ 6=X

e−ρ‖H(X−X′)‖2 . (3.3)

By averaging the PEP over the MIMO Rayleigh channel, the following bound was derived by Tarokh et al. [211]:

Pe =

∫
Mm,n(C)

Pe(H)p(H)dH ≤
∑

X′∈C,X′ 6=X

1

(det(In + ρ(X −X ′)(X −X ′)†))m
. (3.4)

At high SNR, a good approximation for this bound is given by an inverse determinant sum over nonzero codewords:

Pe ≤
∑

X′∈C,X′ 6=X

1

ρnm(det((X −X ′)(X −X ′)†))m
. (3.5)

For finite constellations carved from linear codes, this bound leads to the following criteria:

- rank criterion: each nonzero codewordX ∈ C should be full-rank in order to achieve the maximum diversity
order mn.

- determinant criterion: the minimum determinant over all nonzero codewords X should be maximized.

Observe that for the rank criterion to hold, the frame length needs to satisfy the minimum delay condition T ≥ n.
Note that even if an (infinite) lattice code satisfies the rank condition, when choosing constellations C of increasing
size in order to transmit more data, the minimum determinant over non-zero codewords might decrease, and might
eventually vanish for the infinite code. It is thus important to choose lattice codes with the so called non-vanishing
determinant (NVD) property .

Diversity-multiplexing gain trade-off. In the high SNR regime with fixed blocklength, the rate-reliability per-
formance of space-time codes is measured by their diversity-multiplexing gain trade-off [238]. The maximum
diversity of the MIMO system (3.1) is equal to mn, the maximum number of independent transmit-receive paths.
In this regime, it is well known [213] that the ergodic channel capacity C = EH

[
log det

(
In + ρHH†

)]
scales

like min(m,n) log ρ; that is, the maximum multiplexing gain is min(m,n). The approach of [238] is to consider
the regime in which the rate R(ρ) of the code is a fraction of the capacity.

Definition 3.1 (Diversity-multiplexing gain trade-off) We will say that a family of codes {C(ρ)} achieves the diversity-
multiplexing gain trade-off (DMT) of spatial multiplexing gain r and diversity gain d(r) if the rate satisfies

lim
ρ→∞

R(ρ)

log ρ
= r, (3.6)

and the average error probability is such that

Pe(ρ)
.
= ρ−d(r),
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where the dotted equality f(M)
.
= g(M) stands for

lim
M→∞

log(f(M))

log(M)
= lim
M→∞

log(g(M))

log(M)
. (3.7)

It was shown in [238, 80] that ∀T ≥ n, the optimal DMT dmax(r) of the MIMO channel model (3.1) is a
piecewise linear curve joining the points

(r, [(n− r)(m− r)]+), r ∈ Z. (3.8)

The intuitive interpretation is that r transmit antennas and r receive antennas are used for multiplexing, leaving
n−r transmit antennas andm−r receive antennas available for diversity. Moreover, Elia et al. [80] proved that in
a MIMO system with n transmit andm receive antennas and minimal delay T = n, the non-vanishing determinant
property is a sufficient condition for a 2n2-dimensional lattice code in Mn(C) to achieve the optimal DMT hen
received with an arbitrary number of antennas m.

Lattice space-time codes from division algebras The rank and determinant criteria show that in fading chan-
nels, the multiplicative structure of the code plays a role in addition to the additive structure. Due to the matrix
form of space-time codewords, the theory of non-commutative algebras is a useful tool to build high performance
codes with the non-vanishing determinant property [178].

We now review how to build such lattice codes from division algebras. We refer the reader to Reiner’s book
[194] for the relevant algebraic concepts.

We consider a number fieldK and a cyclic field extensionE/K of degree nwith Galois group Gal(E/K) = 〈σ〉.
Consider the cyclic algebra

D = (E/K, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E, (3.9)

where u ∈ D is an auxiliary generating element subject to the relations xu = uσ(x) for all x ∈ E and
un = γ ∈ Q∗. Considering D as a right vector space over E, every element x = x0 + ux1 + · · · + un−1xn−1

admits the following left regular representation as a matrix ψ(x) ∈Mn(E):
x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)

x1 σ(x0) γσ2(xn−1) γσn−1(x2)

x2 σ(x1) σ2(x0) γσn−1(x3)
...

...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 . (3.10)

The mapping ψ is an injectiveK-algebra homomorphism that allows us to identifyD with its image inMn(C).
We assume thatD is a division algebra, namely that every nonzero element inD is invertible. Consequently, every
non-zero matrix in the set ψ(D) ⊂ Mn(C) is invertible, but ψ(D) is dense and therefore not directly suitable for
space-time coding. In order to obtain a discrete subset of codewords, one can choose anOE-order Γ in D, namely
a subring of D, having the same identity element as D, such that Γ is a finitely generated module over the ring of
integers OE of E and generates D as a linear space over E.

The determinant of the regular representation X = ψ(x) of an element x ∈ Γ is its reduced norm:

det(ψ(x)) = ND/K(x) ∈ OK .

In particular, if K = Q or K = Q(
√
−d), the ring of integers OK is discrete and |det(ψ(x))| ≥ 1 for all x ∈ Γ.

More generally, we can consider codes which of the form ψ(Γα), where Γα is a principal ideal of the order Γ.
Any finite signal constellation carved from these codes will have the non-vanishing determinant property.

Examples of non-vanishing determinant codes built using the previous construction include the Alamouti Code
[7], the Golden Code [19] and the Perfect Codes [179]. Elia et al. [80] showed that such full-dimensional division
algebra based codes are also DMT optimal, and gave a general construction for DMT-achieving 2n2-dimensional
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lattice codes in Mn(C).

3.2 Low-complexity decoding of algebraic space-time codes
While full-dimensional algebraic space-time codes are optimal in terms of DMT under maximum likelihood de-
coding, their decoding complexity is a significant challenge to their practical implementation.

Decoding MIMO space-time block codes amounts to solving the closest vector problem (CVP) in a finite subset
of the lattice generated by the channel matrix, whose dimension grows with the number of antennas. Maximum
likelihood decoding of these codes can be performed using the sphere decoding algorithm [220], although its
complexity is in general exponential in the lattice dimension [122, 123]. Low-complexity decoding techniques
such as zero-forcing (ZF) and minimum mean square error (MMSE) decoding do not preserve the diversity of
the system. Their performance can be improved by a pre-processing step using lattice reduction algorithms. For
instance, pre-processing using the LLL algorithm [148], which has polynomial complexity, allows to achieve
the optimal receive diversity order [209]. It was also shown that lattice reduction (LR) aided regularized lattice
decoding preserves DMT-optimality [121].

3.2.1 Algebraic reduction for space-time codes based on division algebras

As we have seen in Section 3.1, algebraic space-time codes are endowed with an additional multiplicative structure
through the left regular representation of division algebras. It is natural to ask whether this extra structure can be
exploited to improve closest point search or lattice reduction.

In a joint work with J.-C. Belfiore and G. Rekaya Ben-Othman [J5], we proposed algebraic reduction, a pre-
processing method that exploits the multiplicative structure of the code. The main idea is to absorb part of the
channel into the code, by approximating the channel matrix by a unit in the corresponding division algebra. This
extends the algebraic reduction technique in [195] for lattice constructions based on number fields for single-
antenna fading channels, which was shown to achieve the optimal diversity order together with zero-forcing (ZF)
detection, and to outperform LLL reduction followed by ZF detection in high dimension.

We consider space-time block codes which can be represented in the form ψ(Γα), where Γ is a maximal order
of a division algebra D of index n over K = Q(i), and ψ is the left regular representation (3.10).

Example 3.2 (The Golden code) The Golden code [19] is a full rate, full diversity space-time code for 2× 2 MIMO
systems which was selected as an optional profile in the WiMAX standard. It is based on the left regular repre-
sentation (3.10) of the quaternion division algebra D = (Q(i, θ)/Q(i), σ, i), where θ is the golden number, and
σ : Q(i, θ)→ Q(i, θ) is such that σ(θ) = 1− θ and leaves the elements of Q(i) fixed.
More precisely, the infinite code is given by ψ(Γα), where Γ is a maximal order of D, and α = 1 + iσ(θ). Its
codewords have the form

X =
1√
5

(
α(s1 + s2θ) α(s3 + s4θ)

σ(α)i(s3 + s4σ(θ)) σ(α)(s1 + s2σ(θ))

)
, (3.11)

where s1, s2, s3, s4 ∈ Z[i] are QAM symbols.

The lattice representation of the code can be obtained as follows.

Remark 3.3 (Vectorization of matrices) Let φ be the function Mn(C) → Cn2

that vectorizes matrices column
by column. The left multiplication function Mn(C) → Mn(C) that maps B to AB induces a linear mapping
represented by the block diagonal matrix Al = In ⊗A ∈Mn2(C).

Notation 3.4 (Lattice point representation) Let {w1, w2, . . . , wn2} be a basis of ψ(Γα) as a Z[i]-module. Every
codeword X can be written as

X =

n2∑
i=1

siwi, s = (s1, s2, . . . , sn2)t ∈ (Z[i])n
2

.
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Let Φ be the matrix whose columns are φ(w1), φ(w2), . . . , φ(wn2). Then the lattice point corresponding to X is

x = φ(X) =

n2∑
i=1

siφ(wi) = Φs (3.12)

We denote by Λ the Z[i]-lattice with generator matrix Φ.

Definition 3.5 (Unit group) Let Γ be an order in a division algebra D. The unit group Γ∗ of Γ consists of nonzero
elements x ∈ Γ such that their multiplicative inverse x−1 ∈ Γ.
If the center K of the division algebra D is Q or an imaginary quadratic field, then

Γ∗ = {x ∈ D : |det(ψ(x))| = 1}.

We will consider the subgroup of units of norm 1

Γ1 = {x ∈ D : det(ψ(x)) = 1}.

Remark 3.6 (Units and unimodular transformations) Consider the generator matrix Φ for the representation of
ψ(Γα) as a Z[i]-lattice in (3.12).
If U ∈ ψ(Γ∗), then

UlΦ = ΦTU

where TU ∈Mn2(C) is unimodular (with elements in Z[i]).

Algebraic reduction. Suppose the received signal is of the form

Y = HX +W,

where H has i.i.d. entries hi,j ∼ NC(0, 1) and W has i.i.d. entries wi,j ∼ NC(0, N0).
Assuming perfect CSI at the receiver, the latter can perform the normalization

Y ′ =
Y√

det(H)
= H1X +W ′, (3.13)

where det(H1) = 1. We will approximate H1 with a unit U ∈ ψ(Γ1). More precisely, we want to obtain a
decomposition of the form

H1 = EU, (3.14)

where U ∈ ψ(Γ1) and E ∈ SLn(C) is a suitable approximation error.
Applying the matrix vectorization mapping φ to both sides of equation (3.13), we obtain

y′ = ElUlΦs + w′,

where El = In ⊗ E, Ul = In ⊗ U , Φ is the generator matrix of the code lattice defined in (3.12), and s ∈ Z[i]n
2

is the vector of QAM information symbols. By Remark 3.6,

y′ = ElΦTUs + w′ = ElΦs′ + w′, s′ ∈ Z[i]n
2

.

In order to decode, we can apply ZF detection to estimate s′:

ŝ′ =
⌊
Φ−1E−1y′

⌉
=
⌊
s′ + Φ−1E−1

l w′
⌉

= bs′ + ne .

Finally, we can recover the estimate of the initial signal ŝ = T−1
U ŝ′. Note that the variance σ2

i of the i-th component
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of the noise n is bounded by

σ2
i ≤

n2σ2

|det(H)|
2
n

∥∥Φ−1
∥∥2

F

∥∥E−1
∥∥2 ∀i = 1, . . . , n2.

Consequently, in order to maximize performance, we find the following criterion to chooseU : the norm
∥∥E−1

∥∥
F

=∥∥UH−1
1

∥∥
F

should be minimized. If this norm is bounded by a constant, then this method achieves the optimal
receive diversity order:

Proposition 3.7 Suppose that there exists a reduction algorithm which, given H1 ∈ SLn(C), outputs a decomposi-
tion of the form (3.14) such that ∥∥E−1

∥∥2

F
≤ CΓ. (3.15)

where the constant CΓ depends only on Γ.
Then the algebraic reduction followed by ZF detection achieves the full receive diversity n.

Approximation with a unit in the quaternion case In the quaternion case (i.e. when n = 2, such as in the case
of the Golden Code), we propose an explicit algorithm to find U , by exploiting the fact that Γ1 is a cocompact
discrete subgroup of SL2(C). We consider the action of SL2(C) on the hyperbolic 3-space

H3 = {(z, r) | z ∈ C, r ∈ R+}

with the hyperbolic distance ρ such that cosh ρ(P, P ′) = 1 + d(P,P ′)
2rr′ for P, P ′ ∈ H3, where d(P, P ′)2 =

|z − z′|2 + (r − r′)2 is the squared Euclidean distance. It will be enough to consider the action on the point
J = (0, 0, 1) given by

A =

(
a b

c d

)
7→ A(J) =

(
<(bd̄+ ac̄)

|c|2 + |d|2
,
=(bd̄+ ac̄)

|c|2 + |d|2
,

1

|c|2 + |d|2

)
.

Note that given A ∈ SL2(C), its Frobenius norm is equal to

‖A‖2F = 2 cosh ρ(J,A(J)).

Therefore,
∥∥H1U

−1
∥∥
F

is small if and only if U−1(J) is close to H−1
1 (J) in hyperbolic distance.

By Poincaré’s Polyhedron Theorem [81], a fundamental region for the action of Γ1 on H3 is given by the
Dirichlet fundamental polyhedron of Γ1 (with center J), which is defined as the intersection of all the bisectors
corresponding to non-trivial elements:

P =
⋂
g∈Γ1,
g 6=1

Dg(J) (3.16)

where
Dg(J) = {P ∈ H3 | ρ(J, P ) ≤ ρ(g(J), P )}. (3.17)

The hyperbolic space H3 is tiled by the copies g(P), g ∈ Γ1. The hyperbolic volume of P is given by the
Tamagawa Volume Formula

Vol(PΓ1) =
1

4π2
ζF (2) |dF |

3
2

∏
p|d(Γ/OF )

(Np − 1). (3.18)

In the previous formula, ζK denotes the Dedekind zeta function4 relative to the field K, dK is the discriminant of
K, d(Γ/OK) is the OK-discriminant of Γ, p varies among the primes of OK , and Np = [OK : pOK ], where OK
is the ring of integers of K.

4The Dedekind zeta function is defined as ζK(s) =
∑
I

([OK : I])−s, where I varies among the proper ideals ofOK .
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Figure 3.1: The projection of the polyhedron P on the plane
{r = 0}.

Algorithm 1: The unit search algorithm
input: h1 ∈ SL2(C).

h = h1, ū = 1, i0 = 0
repeat

Compute h−1(J) = (x, y, r)
d0 = 2 cosh ρ(h−1(J), J)
for i = 1, . . . , 2r do

di = 1 + (x−xi)2+(y−yi)2+(r−ri)2

2rri

end

i0 = argmin
i∈{0,1,...,2r}

di.

ū← ūui0 , h← hui0
until i0 = 0
output: û = ū−1 is the chosen unit.
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Figure 3.2: Comparison of algebraic reduction and LLL reduc-
tion using MMSE-GDFE preprocessing combined with ZF or
ZF-DFE decoding with 16-QAM constellations.
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ing point operations of Sphere Decoding, complex LLL-ZF-
DFE decoding and simplified AR-ZF-DFE decoding (both using
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In the case of the Golden code, we are able to obtain a complete characterization of the unit group Γ1: we
compute a set of 8 generators of the group and a complete set of relations between the generators, we characterize
the polyhedron P (see Figure 3.1) and compute its volume explicitly.

Given a normalized channel matrix H1 ∈ SL2(C), we describe an algorithm to find a unit Û such that
H−1

1 (J) ∈ Û(P) (Algorithm 1). Let U1, . . . , Ur be the generators of Γ1 and Ur+1 = U−1
1 , . . . , U2r = U−1

r

their inverses. The neighboring polyhedra of P are all of the form Ui(P), i = 1, . . . , 2r.

The idea is to begin the search from P and the neighboring polyhedra, corresponding to the generators of the group
and their inverses, and choose Ui such that Ui(J) is the closest to H−1

1 (J). Since Ui is an isometry of H3, at the
next step we can apply U−1

i and start again the search of the Ui′ that gives the closest point to Ui−1H−1
1 (J). With

this strategy we only need to perform 2r comparisons at each step of the search.
Figure 3.2 shows the performance of algebraic reduction (AR) followed by ZF and ZF-DFE decoding for the

Golden Code using 16-QAM constellations. With MMSE-GDFE preprocessing [171], algebraic reduction-aided
decoding is within 2.3 dB of the ML using ZF-DFE detection, at the FER of 10−2. A comparison of algebraic
reduction and LLL reduction followed by ZF-DFE detection evidences that the two methods have nearly identical
performance.

Figure 3.3 shows the average complexity in floating point operations of the AR-ZF-DFE decoder using 64-
QAM constellations in an i.i.d. Rayleigh fading channel. As shown in the figure, the sphere decoding complexity
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is very high in the low-to-moderate SNR regime, while the complexity of LLL-ZF-DFE and AR-ZF-DFE doesn’t
depend on the SNR.
Numerical simulations evidence that AR-ZF-DFE provides a complexity saving of about 70% with respect to
LLL-ZF-DFE5. We expect the complexity savings to be higher for slow fading channels:

Remark 3.8 (Advantage of the algebraic reduction in the case of slow fading channels) If the channel varies slowly
from one time block to the next, it is reasonable to expect that the polyhedron Û(P) containing H−1

1 (J) at the
time t will be the same, or will be adjacent, to the polyhedron chosen at the time t− 1. Thus, algebraic reduction
requires only a slight adjustment of the search at each step. On the contrary, classical lattice reduction-aided
decoding techniques require a full lattice reduction at each time block.

Follow-up work and open problems

Generalization to other space-time codes based on quaternion algebras. Both the performance and the com-
plexity of algebraic reduction depend in general on the structure of the unit group, and so it might not be ad-
vantageous in every case. Indeed, the quality of approximation by a unit is related to the diameter Rmax of the
fundamental polyhedron, while the speed of the algorithm depends on the cardinality r of a minimal set of gener-
ators for the group. Unfortunately, the structure of the unit group can be very complex in general [181]. Finding
good space-time codes from quaternion algebras such that r and Rmax are small is an open problem; [10] consid-
ered the problem of finding suitable quaternion algebras so that the volume (3.18) is minimized.

Generalization to higher-dimensional space-time codes. The principle of algebraic reduction as well as the
proof that it achieves the maximal receive diversity order hold in general for space-time codes based on maxi-
mal orders of division algebras of index n over Q(i) provided that the multiplicative approximation error can be
bounded as in (3.15). However, finding the generators of the unit group in an order for general division algebras is
a difficult problem in computational algebra [130].

3.2.2 Decoding by embedding

The algebraic reduction technique presented in the previous section applies only to space-time codes with a special
algebraic structure. Moreover, it does not provide a performance gain over LLL reduction, although it offers
a complexity gain. In this section, we present a more general decoding technique for both coded and uncoded
MIMO systems based on lattice reduction: the embedding technique [J4],[J6]. The core idea is to embed the
basis of the decoding lattice and the received vector into an (n + 1)-dimensional lattice, in order to convert an n-
dimensional instance of the closest vector problem (CVP) is converted into an (n+ 1)-dimensional instance of the
shortest (nonzero) vector problem (SVP). The LLL algorithm can recover the transmitted vector when the norm
of the noise vector is small compared to the minimum distance λ1 of the lattice. This condition corresponds to
a variant of the CVP known as Bounded Distance Decoding (BDD). More precisely, BDDη (with η ≤ 1/2) is a
special instance of CVP where the norm of the noise vector (or, equivalently, the distance from the target vector to
the lattice) is less than R = η · λ1. The radius R is referred to as the (correct) decoding radius of the algorithm.

We consider the n×m flat fading MIMO system model

Y = HX +W,

where the entries of the channel gain matrix H are normalized to unit variance, and the entries of W are i.i.d.
complex Gaussian with variance σ2. The codewords X satisfy the average power constraint E[‖X‖2F/T ] = 1.
Hence, the SNR at each receive antenna is 1/σ2.

When a lattice space-time block code is employed, the QAM information vector s is multiplied by the generator
matrix Φ of the encoding lattice. The n×T codeword matrixX is defined by column-wise stacking of consecutive

5Our simulations refer to the complex version of LLL-ZF-DFE presented in [92], which already obtains a complexity saving of about 50%
with respect to real LLL-ZF-DFE.
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n-tuples of the vector Φs ∈ CnT . By column-by-column vectorization, the received signal can be expressed as

y = (IT ⊗H) Φs + w (3.19)

When T = 1 and Φ = In, equation (3.19) reduces to the model for uncoded MIMO communication y = Hs+w.
After separating real and imaginary parts, we obtain the equivalent N ×M real-valued MIMO system model

y = Bx + n, (3.20)

where N = 2nT , M = 2mT , and where B ∈ RM×N can be interpreted as the basis matrix of the decoding
lattice.

The principle of Kannan’s embedding technique [126] is to embed the basis B and the received vector y into a
higher dimensional lattice. More precisely, we consider the following (M + 1)× (N + 1) basis matrix:

B̃ =

[
B −y

01×N t

]
(3.21)

where t > 0 is a parameter to be determined, which we refer to as the embedding parameter.
The strategy is to reduce CVP to SVP in the following way. For a suitable choice of t and for sufficiently small
noise norm, the vectors v = ±[(Bx − y)T t]T are the shortest vectors in the lattice L(B̃) generated by B.
Thus an SVP algorithm will find v, and the message x can be recovered from the coordinates of this vector in the
basis B̃:

if v = B̃

(
x′

1

)
=

(
Bx′ − y

t

)
, then x̂ = x′. (3.22)

Decoding radius of the embedding technique. In [J4], we showed that the LLL algorithm with parameter α
can be used to find the shortest vector in the lattice L(B̃), and that the correct decoding radius is lower bounded by

1

2
√

2αn−
1
2

λ1 (B) . (3.23)

In [160], it is proven that by choosing t = dist(y,L(B)), the embedding technique allows one to reduce BDD1/(2γ)

to uSVPγ . We show that one can achieve the same correct decoding radius by setting t = 1
2γλ1(B), thus bypassing

the assumption from [160] that dist(y,L(B)) is known.

Theorem 3.9 (Decoding Radius of Embedding) Applying uSVPγ (γ ≥ 1) to the extended lattice (3.21) with param-
eter t (0 < t < λ1(B)/γ) guarantees a correct decoding radius

RuSVP-Emb ≥
√
t

γ
λ1(B)− t2. (3.24)

Setting t = 1
2γλ1(B) maximizes this lower bound. This gives:

RuSVP-Emb ≥
1

2γ
λ1(B). (3.25)

As the LLL algorithm can solve uSVPγ with γ = α
n
2 for the basis (3.21) of dimension N + 1, the correct

decoding radius using LLL satisfies

RuSVP-Emb ≥
1

2α
n
2
λ1(B) (3.26)

by choosing t = 1

2α
n
2
λ1(B). This decoding radius improves the bound (3.23) from [J4]. However, it can still be

improved. The reason is that the estimate γ = α
n
2 is pessimistic for uSVPγ . In fact, the quantity α

n
2 is just the

approximation factor for the approximate SVP achieved by LLL. Any algorithm solving SVPγ necessarily solves
uSVPγ , but the latter might be an easier problem.



30 CHAPTER 3. ALGEBRAIC SPACE-TIME CODES FOR MIMO SYSTEMS

17 18 19 20 21 22 23 24 25
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
it
 E

rr
o

r 
R

a
te

 

 

LR MMSE SIC

ALR MMSE Embedding

Exact MMSE Embedding

List MMSE Embedding

Incremental MMSE Embedding

ML

Figure 3.4: Bit error rate vs. average SNR per bit for the un-
coded 10× 10 system using 64-QAM.
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Figure 3.5: Bit error rate vs. average SNR per bit for the 4× 4
perfect code using 64-QAM.

Lemma 3.10 (Improved bound to solve uSVPγ with LLL) In an n-dimensional lattice, the LLL algorithm can solve
uSVPγ for γ =

√
γ̄n−1α

n
4 , where γ̄n = max1≤i≤n γi. Here γi denotes the Hermite constant (2.1) in dimension i.

DMT-optimality of the embedding technique. On the MIMO communications front, we prove that bounded
distance decoding of the regularized lattice is DMT-optimal over Rayleigh fading channels.

We suppose for the sake of simplicity that M = N . We consider the equivalent normalized channel model
where the noise variance is equal to 1:

y′ = B′x + n′,

whereB′ =
√
ρB, n′i =

√
ρni ∼ NR(0, 1), ∀i = 1, . . . , n. Here ρ = 1

σ2 denotes the SNR. Moreover, we consider
the equivalent regularized system [121]

y1 = Rx + n1, (3.27)

where (
B′

In

)
= QR, y1 = Q†

(
y
′

0n×1

)
.

From the point of view of receiver architecture, this amounts to performing left preprocessing before decoding, by
using a maximum mean square error generalized decision-feedback equalizer (MMSE-GDFE) [79].

Theorem 3.11 For any constant η > 0, any decoding technique which always provides a solution for the regular-
ized BDDη is DMT-optimal.

Remark 3.12 This represents a nontrivial extension of the analysis in [121] for γ-approximation algorithms of
CVP. Indeed, γ-approximate algorithms are a special case of BDD: it is easy to see that any decoding technique
which provides a CVPγ solution x̂ to (3.27) is also able to solve BDD 1

2γ
. In fact, suppose that y1 is such that

dist(y1, R) < 1
2γλ1(R). Then the CVPγ solution x̂ satisfies

‖y1 −Rx̂‖<γ min
x∈Zn

‖y1 −Rx‖ = γdist(y1,L(R)) <
λ1(R)

2
,

so that x̂ is the optimal solution of (3.27). However, the converse is apparently not true, that is, BDD does not
necessarily provide CVPγ solutions for all y1.
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Performance of the embedding technique. Fig. 3.4 shows the bit error rate for an uncoded MIMO system with
nT = nR = 10, 64-QAM. We found that the list versions of the embedding technique achieves near-optimum
performance in this setting; the SNR loss is about 1 dB.

Fig. 3.5 shows the achieved performance of embedding decoding for the 4 × 4 Perfect code [179] using 64-
QAM. The decoding lattices have dimension 32. The list version of embedding enjoys 3.5 dB gain over LLL
reduction followed by successive interference cancellation.

3.3 Diversity-multiplexing trade-off of asymmetric space-time codes

As we have seen in Section 3.1, for full 2n2 dimensional lattice space-time codes in Mn(C), the NVD condition
is a sufficient condition for DMT-optimality. This criterion was generalized by Tavildar and Viswanath [212] who
introduced the notion of approximately universal codes, such that the product of the smallest m singular values of
any non-zero matrix in a 2nm-dimensional lattice L ⊂Mn(C) stays above some fixed constant. They showed that
such codes achieve the optimal DMT curve in the n×m MIMO channel. In the case where n = m, this criterion
coincides with the NVD condition.

When receiving a full 2n2-dimensional space-time lattice code with minimum delay (T = n) with m < n

antennas, the dimension of the receiver space is only 2mT = 2nm and so the image of the infinite lattice is no
longer a lattice, but a dense set of points. Thus the standard sphere decoding algorithm [220] cannot be employed,
although special techniques such as generalized sphere decoding have been proposed [61]. Therefore, when the
number of receive antennas m is smaller than the number of transmit antennas n, it is desirable to use asymmetric
space-time codes that are 2nm-dimensional, which represent the “best fit” for the n × m MIMO channel. One
natural question is whether these codes can be DMT-optimal assuming some conditions, such as NVD. The main
interest in non-full dimensional codes, such as the codes arising from division algebras with center K = Q, is that
such codes are fast-decodable6 [218].

Before our work, the only available general criterion for DMT-optimality was the approximate universality
criterion given in [212], and for m < n no asymmetric codes satisfying this condition were known except in the
case m = 1. It was also known that there are space-time codes that are DMT optimal despite not satisfying the
approximate universality criterion [217]. This motivated our search for a more general and easily applicable DMT
criterion. This work is in collaboration with R. Vehkalahti.

Approach based on point counting in Lie groups [J7],[C18]. The minimum determinant criterion (see Section
3.1) focuses on the worst-case pairwise error probability in the sum (3.5), and does not consider the global distri-
bution of codewords. On the other hand, the DMT takes into account the overall error probability, but is too coarse
for practical code design. For instance, while all full-rate division-algebra codes are DMT-optimal, their actual
performances can be very different.

Our first approach was to study directly the asymptotic behavior of inverse determinant sums of the form (3.5),
which can be seen as an intermediate concept between the former two [J7]. We consider lattice codes arising
from the left regular representation of an order Γ in a division algebra D = (E/K, σ, γ) and its left regular
representation ψ (see Section 3.1). In order to have multiplexing gain r, we take spherical codebooks of the form
C(M) = 1

M (ψ(Γ) ∩ BM ), where BM denotes the ball of radius M in Mn(C) with respect to the Frobenius norm,
and where the radius M grows asymptotically with the SNR as

M = ρ
rn
k , k = dimZΓ.

In the case of minimum delay codes with n = T , the PEP bound (3.5) takes the form

Pe ≤
∑

x∈Γ\{0}
‖ψ(x)‖F≤2M

1

|det(ψ(x))|2m

6For example, over a 2×1 MIMO channel, both the Alamouti code [7] and the Golden Code [19] are DMT-optimal. However the Alamouti
code is fast-decodable, while the Golden Code is hard to decode with one receive antenna, since the image of the code is an 8-dimensional
lattice projected onto a 4-dimensional space.
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We show that the behavior of this inverse determinant sum is essentially determined by the behavior of the sum
over the unit group Γ∗ (see Definition 3.5.) From the ideal theory of orders we have that if xΓ = yΓ, then x and y
must differ by a unit, i.e. y = xu for some u ∈ Γ∗. Therefore we can write

∑
x∈Γ\{0}
‖ψ(x)‖F≤M

1

|det(ψ(x))|2m
=

∑
x∈I(M)

|ψ(xΓ∗) ∩ BM |
|det(ψ(x))|2m

,

where I(M) is a collection of non-zero elements x ∈ Λ, ‖ψ(x)‖F ≤ M , each generating a separate (right) ideal.
In order to make our bound more treatable, we consider the subgroup Γ1 of units of norm 1 (see again Definition
3.5) which is known to have finite index in Γ∗ , i.e. [Γ∗ : Γ1] < ∞ [129]. Thanks to this property, one can show
that

|ψ(xΓ∗) ∩ BM | ≤ K
∣∣ψ(Γ1) ∩ BM

∣∣ .
for some constant K, independent of x and M . Finally, we obtain the bound∑

x∈Γ\{0}
‖ψ(x)‖F≤M

1

|det(ψ(x))|2m
≤ K

∣∣ψ(Γ1) ∩ BM
∣∣ ∑
x∈I(M)

1

|det(ψ(x))|2m
(3.28)

We show that the sum over ideals in (3.28) has logarithmic growth (and is thus negliglible from the point of view
of DMT): there exist constants K1, K2 independent of M such that∑

x∈I(M)

1

|det(ψ(x))|2m
≤

∑
x∈I(M)

[Γ:xΓ]<Mk

1

[Γ : xΓ]s
≤ ζΓ(s,Mk) ≤ K1(logM)K2 .

Here ζΓ(s,Mk) denotes the truncated Hey zeta function of Γ

ζΓ(s) =
∑
I∈IΓ

1

[Γ : I]s
,

where <(s) > 1 and IΓ is the set of right ideals of Γ [34], and the exponent s = m
n if K = Q(

√
−d), s = m

2n if
K = Q.

The final step in order to characterize the behaviour of the inverse determinant sum (3.28) is to study the term∣∣ψ(Γ1) ∩ BM
∣∣, i.e. to count the units inside the ball BM . Fortunately, this is a well-known problem in the ergodic

theory of Lie groups. In fact, the group of units Γ1 can be seen as a subgroup of a suitable Lie group.
Before stating this result, we need a technical definition to distinguish two types of Q-central division algebras.

Definition 3.13 (Ramification of Q-central division algebras) Let D be a Q-central division algebra of index n. We
say that D is ramified at the infinite place if D⊗QR 'Mn/2(H). If it is not, then D⊗QR 'Mn(R).

Then, ψ(Γ1) is a discrete cocompact subgroup of the Lie group G, where

G =


SLn(C) if K = Q(

√
−d)

SLn(R) if K = Q, D not ramified at ∞
SLn/2(H) if K = Q, D ramified at ∞.

(3.29)

In this case, it follows by a general result by Gorodnik and Nevo [100, Corollary 1.11 and Remark 1.12] that
the number of units inside the ball is close to the Haar volume of the ball:

lim
M→∞

∣∣ψ(Γ1) ∩ BM
∣∣

VolG(BM )
= CL

where CL is some nonzero constant independent of M . The previous theorem transforms the point counting
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problem into an integration problem. It has been shown by Gorodnik and Weiss that [99, Theorem 7.4] the Haar
volume of the ball scales like

VolG(BM )
.
= MT ,

where the constant T can be computed by determining some invariants of the Lie group G. The value of T is
well known in the case G = SLn(R) [71]. The corresponding results for SLn(H) and SLn(C), although probably
well-known to specialists, were not readily available in the literature, but can be computed by determining some
invariants of Lie algebras, related to the Lie groups under consideration (see the Appendix of [J7]):

T =


2n2 − 2n for SLn(C)

n2 − n for SLn(R)

n2 − 2n for SLn/2(H).

With this technique we can bound the DMT for multiplexing gain r ∈ [0, 1] for all division algebra codes with
K = Q or Q(

√
−d). However, it turns out to be suboptimal for higher multiplexing gains. This is due to the fact

that the bound (3.5) is too loose to capture the DMT.
We refine this approach in [C18] by going back to the channel-dependent pairwise error probability (3.3),

before averaging:
Pe(H) ≤

∑
X∈C\{0}

e−ρ‖HX‖
2

=
∑

X∈ψ(Γ)∩BM\{0}

e−c‖HX‖
2

.

where c = ρ1− 2rn
k .

Similarly to the previous approach, by considering a finite set {a1, . . . , aj} of coset leaders of Γ1 in Γ∗, we
can obtain a bound of the form

Pe(H) ≤
∑

x∈I(M)

j∑
i=1

∑
u∈Γ1

e−c‖Hψ(xaiu)‖2

in terms of a sum over the unit group Γ1 and over ideals I(M). Using a simplified argument inspired by the Strong
Wavefront Lemma in [101], we show that the previous sum can be bounded by an integral over the corresponding
ball in G: ∑

u∈Γ1,
‖ψ(u)‖F≤M

e−c‖Hψ(au)‖2 ≤ 1

VolG(F)

∫
BMRF

e
− c

R2
F
‖Hψ(a)g‖2

dµ(g)

where RF is such that the fundamental domain F of Γ1 in G is contained in BRF , and µ is the Haar measure of
G. As before, the sum over I(M) only contributes a term ∼ O(logM) and does not affect the DMT.

After averaging over the channel H and recalling that [211]∫
Mm,n(C)

e−c‖HX‖
2

p(H)dH =
1

(det(I + cXX†))m
,

the problem is reduced to computing integrals of the form∫
BMRF

1

det (I + cgg∗)
m dµ(g) (3.30)

over the Lie group G in (3.29). This can be done using the Cartan decomposition of G (see [C18] for details).
In [C18], we were able to bound this integral explicitly and recover a lower bound for the DMT of general

families of lattice codes derived from division algebras with center Q, for a larger range of multiplexing gains (see
Table 3.1).

Approach based on equivalent channels. More recently [J12], we were able to confirm that the lower bounds
in Table 3.1 indeed give the DMT curves of different types of asymmetric space-time codes for every multiplexing
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Lie group piecewise linear function condition

SLn(C) (r, [(n− r)(m− r)]+), r ∈ Z m ≥ 2 dre − 1 known

SLn(R) (r, [(n− 2r)(m− r)]+), 2r ∈ Z m ≥ d2re − 1
2 new

SLn/2(H) (r, (n− 2r)(m− r)]+), r ∈ Z m ≥ 2 dre − 1 new

Table 3.1: Lower bounds for the DMT of division algebra-based space-time codes using the Strong Wavefront Lemma approach.
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Figure 3.6: DMT upper bounds for n = 4, m = 2 for codewords restricted to Mn(C) (green), Mn/2(H) (blue), and Mn(R) (red).

gain. The approach used in this work is quite different and more general, and applies to a large class of asymmetric
codes. In fact, we are not just considering division algebra codes, but all space-time codes whose codewords are
restricted to the real and quaternionic matrices Mn(R) or Mn/2(H) respectively.

We prove that if the codewords of the space-time scheme belong to these restricted sets of matrices, its DMT
is automatically upper bounded by a limit that is tighter than the general DMT bound. The proof is based on
re-deriving the bounds by Zheng and Tse [238] for an equivalent real or quaternionic channel model.

Diversity-multiplexing gain trade-off of real and quaternionic lattice codes. Using this approach we establish
a general upper bound for the DMT of real and quaternionic codes, as illustrated in Figure 3.6.

Theorem 3.14
1) Suppose that ∀ρ, C(ρ) ⊂ Mn(R). Then the DMT of the code C is upper bounded by the piecewise linear

function d1(r) connecting the points (r, [(m− r)(n− 2r)]+) where 2r ∈ Z.
2) Suppose that ∀ρ, C(ρ) ⊂ Mn/2(H). Then the DMT of the code C is upper bounded by the piecewise linear

function d2(r) connecting the points (r, [(m− r)(n− 2r)]+) for r ∈ Z.

Then, we show that real and quaternionic spherically shaped lattice codes with the NVD property achieve the
DMT upper bounds of Theorem 3.14. This result extends Propositions 4.2 and 4.3 in [C18] (obtained using the
Lie group approach presented in the previous subsection) to all multiplexing gains.

Theorem 3.15
1) Let L be an n2-dimensional lattice in Mn(R), and consider the code C(ρ) = ρ−

r
nL(ρ

r
n ). If L has the NVD

property, then the DMT of the code C(ρ) under ML decoding is the function d1(r).



3.3 DIVERSITY-MULTIPLEXING TRADE-OFF OF ASYMMETRIC SPACE-TIME CODES 35

2) LetL be an n2-dimensional lattice inMn/2(H) with the NVD property. Then the DMT of the code C(ρ) = ρ−
r
nL(ρ

r
n )

under ML decoding is d2(r).

These results can be extended to obtain the DMT of multi-block space-time codes; see [J12] for details.

Remark 3.16 We note that the proofs of Theorem 3.14 and Theorem 3.15 also implicitly rely on the theory of
Lie groups. In fact, to establish our bounds for equivalent real and quaternionic MIMO channels, we use the joint
eigenvalue distributions of real and quaternionic Wishart matrices which were derived in [76] using Lie group
methods. More details can be found in [J12].

Theorem 3.15 states that n2-dimensional NVD lattices in Mn(R) and Mn/2(H) do achieve the respective
DMT upper bounds of Theorem 3.14. The following Lemma, proven in [218], shows that for every n there exists
an n2-dimensional NVD lattice L ⊂ Mn(R), and for every even n there exists an n2-dimensional NVD lattice
L ⊂Mn/2(H).

Lemma 3.17 Let Λ be an order in an index n Q-central division algebra D. Then the following statements hold:
1) If the infinite prime is ramified in the algebra D, then there exists an embedding ψabs : D →Mn/2(H) such

that ψabs(Λ) is an n2-dimensional NVD lattice.
2) If D is not ramified at the infinite place, then there exists an embedding ψabs : D → Mn(R) such that

ψabs(Λ) is an n2-dimensional NVD lattice.
3) For every n there exists an index n Q-central division algebra that is ramified at the infinite place and one

which is not.

As a Corollary, we obtain a complete DMT characterization of Q-central division algebra codes.

Corollary 3.18 Let Γ be an order in an index n Q-central division algebra D.
1) If D is not ramified at the infinite place, then the DMT of the code ψabs(Λ) ⊂ Mn(R) achieves the first

upper bound of Theorem 3.14.

2) If D is ramified at the infinite place, then the code ψabs(Γ) ⊂Mn/2(H) achieves the second upper bound of
Theorem 3.14.

The previous result refers to lattice codes constructed using the abstract embedding of Lemma 3.17. In contrast,
explicit codes are typically built using regular representations as in (3.10). Note that if Γ is a Z-order in an index
n Q-central division algebra D, then ψreg(Γ) is an n2-dimensional NVD lattice in Mn(C) [194].

Unfortunately, in general, while these lattices have the correct dimension and the NVD property, there is
no guarantee that they are always contained in Mn(R) or in Mn/2(H) and we can not directly apply Theorem
3.15. However, the following result from [J7] shows that all the lattices produced by regular representations are
conjugated versions of lattices whose DMT we know:

Lemma 3.19 Let D be an index n Q-central division algebra and Γ ⊂ D an order. If the infinite prime is ramified
in the algebra D, then there exists an invertible matrix A ∈Mn(C) such that

Aψreg(Γ)A−1 = ψabs(Γ) ⊂Mn/2(H).

If D is not ramified at the infinite place, then there exists an invertible matrix B ∈Mn(C) such that

Bψreg(Γ)B−1 = ψabs(Γ) ⊂Mn(R).

The following conjecture then seems to be plausible, but its proof has eluded us.

Conjecture 3.20 Let D be an index n Q-central division algebra and Γ ⊂ D an order. If D is not ramified at the
infinite prime, then the DMT of ψreg(Γ) under ML decoding is equal to the first upper bound of Theorem 3.14.
If D is ramified at the infinite prime, then the DMT of ψreg(Γ) under ML decoding is equal to the second upper
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bound of Theorem 3.14.

Open problems and perspectives Based on the finite-blocklength bounds by Polyanskiy, Poor and Verdù [189],
Durisi et al. studied finite blocklength, finite SNR rate bounds for multiple-antenna communications [72], which
can be seen as generalizing ergodic capacity and the diversity-multiplexing gain trade-off at the same time. Their
work reveals a new trade-off between the rate gain achieved by exploiting the available space-time diversity re-
sources and the rate loss caused by the channel estimation overhead, which becomes significant for short packets.
In particular, they derive tight upper and lower rate bounds for the Alamouti code. An interesting question is
whether this analysis can be extended to more general space-time codes.

3.4 Approaching capacity with multi-block space-time codes
In the previous section, we have studied the performance of algebraic lattice space-time codes over MIMO wireless
channels at fixed block length in the asymptotic regime where the SNR tends to infinity. In this section, we consider
another asymptotic scenario, where the SNR is fixed, and the blocklength tends to infinity, and study the gap to
capacity of multi-block algebraic space-time codes [J9].

This work, in collaboration with R. Vehkalahti, was motivated by the fact that, although the capacity of multi-
antenna fading channels was well-known [213], at that time there were no known families of explicit codes achiev-
ing this capacity. However, it was known that with simple modulation and strong outer codes such as turbo or
LDPC codes, one can operate at rates close to capacity with small error probability [119, 198]. Moreover, in the
slow-fading scenario, it was shown that linear precoding and perfect space-time codes achieve a constant gap to
capacity [180].

In contrast, for the classical complex Gaussian single antenna channel, it was known that several lattice code
constructions achieve log SNR−C rates for some constant gap C. These constructions are based on sphere pack-
ing arguments showing that the performance of a lattice code in the classical Gaussian channel can be roughly
estimated by the size of a geometrical invariant of the lattice, the Hermite invariant. This connection has led to the
outstanding work of Conway and Sloane connecting algebra, geometry and information theory [49].

In the case of fading channels, it was well-known that the minimum determinant criterion allows to improve the
worst-case pairwise error probability in the high-SNR regime, when coding over a single fading block (see Section
3.1). However, no design criterion had been suggested to approach the MIMO capacity with explicit lattice codes.
In [J9] we addressed this problem and showed that when we are allowed to encode and decode over a growing
number of fading blocks, the normalized minimum determinant plays a similar role to the Hermite constant in
Gaussian channels. In particular it can be used to measure how close to capacity a given family of lattice codes
can get.

Multi-block space-time codes. We consider a MIMO system with n transmit and m receive antennas, where
transmission takes place over k quasi-static fading blocks of delay T = n. A multi-block codewordX ∈Mn×nk(C)

has the form [X1, X2, . . . , Xk], where the submatrix Xi ∈Mn(C) is sent during the i-th block. The received sig-
nals are given by

Yi = HiXi +Wi, i ∈ {1, . . . , k} (3.31)

where Hi ∈Mm×n(C) and Wi ∈Mm×n(C) are the channel and noise matrices. The coefficients of Wi are mod-
eled as circular symmetric complex Gaussian with zero mean and unit variance per complex dimension. Perfect
channel state information is available at the receiver but not at the transmitter, and decoding is performed after all
k blocks have been received. We will call such a channel an (n,m, k)-multi-block channel.
For the sake of simplicity, we will suppose that m ≥ n unless explicitly stated. We also assume that for all i ≥ 1,
Hi is full-rank with probability 1, and that the random variable

∑k
i=1

1
k log det(H†iHi) converges in probability to

some constant when the number of blocks k tends to infinity. This model covers several standard MIMO channels
such as the Rayleigh block fading channel and the Gaussian MIMO channel.

A multi-block code C in a (n,m, k)-channel is a set of matrices in Mn×nk(C). In particular we will concen-
trate on finite codes that are drawn from lattices. Let R denote the code rate in bits per complex channel use;
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equivalently, |C| = 2Rkn. We assume that every matrix X in a finite code C ⊂ Mn×nk(C) satisfies the average
power constraint

1

nk
E[‖X‖2] ≤ P. (3.32)

We denote by B(r) the set of matrices in Mn×nk(C) with Frobenius norm smaller or equal to r. Given a family
of lattices Ln,k ⊆Mn×nk(C) and R > 0, we want to design spherically shaped multi-block codes C of the form

CL = B(
√
Pkn) ∩ (XR + αLn,k), (3.33)

having rate greater or equal to R, and satisfying the average power constraint (3.32). In the above formula, α
is a suitable energy normalization constant, and XR is a suitable shift. One can show [103] that we can choose
XR ∈Mn×nk(C) such that

2Rnk = |CL| ≥
Vol(B(

√
Pkn))

Vol(αLn,k)
=

Cn,kP
n2k

α2n2k Vol(Ln,k)
,

where Cn,k = (πnk)n
2k

(n2k)! . We then find the following condition for the scaling constant:

α2 =
C

1
n2k

n,k P

2
R
n Vol(Ln,k)

1
n2k

(3.34)

Given a matrix X = [X1, . . . , Xk] ∈Mn×nk(C), we define its product determinant

pdet(X) =

k∏
i=1

det(Xi). (3.35)

The minimum determinant of the lattice L ⊆Mn×nk(C) is defined as

detmin (L) := inf
X∈L\{0}

|pdet(X)| .

We can now define the normalized minimum determinant δ(L), which is obtained by first scaling the lattice
L to have a unit size fundamental parallelotope and then taking the minimum determinant of the resulting scaled
lattice. A simple computation shows that

δ(L) =
detmin (L)

(Vol(L))1/2n
. (3.36)

Reduced Hermite invariant and “incompressible” lattices. We define the following notation for component-
wise multiplication of multi-block matrices: given X = [X1, . . . , Xk] and H = [H1, . . . ,Hk] ∈Mn×nk(C),

H ∗X + [H1X1, . . . ,HkXk]. (3.37)

With this notation, the channel output Y = [Y1, . . . , Yk] can be written as

Y = H ∗X +W, (3.38)

where W = [W1, . . . ,Wk] is the multi-block noise. From the receiver’s point of view, this is equivalent to an
additive white Gaussian noise channel where the lattice code is

H ∗ CL = {H ∗X | X ∈ CL}.

Even if the lattice Ln,k (and therefore the code CL) has good minimum distance, there is no guarantee that the same
can be said about the lattice H ∗ CL after transmission over the channel. This leads us to consider the following
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design criterion: the lattice should be “incompressible”, in the sense that it should still have good minimum distance
after fading.

First, we recall the classical definition of the Hermite constant, which characterizes the density of a lattice
packing:

Definition 3.21 The Hermite constant of a d-dimensional lattice L ⊂Mn×nk(C) can be defined as

h(L) =
inf{ ||X||2 | X ∈ L,X 6= 0}

Vol(L)2/d
.

For convenience we introduce the group of matrices

H =

{
H ∈Mn×nk(C)

∣∣∣∣∣
k∏
i=1

det(Hi) = 1

}
. (3.39)

Definition 3.22 The reduced Hermite constant of an m-dimensional lattice L ⊂ Mn×nk(C) with respect to the
groupH is defined as

rhH(L) = inf
H∈H
{h(H ∗ L)}.

For any lattice L, the Hermite constant h(L) > 0. The same is not true for the reduced Hermite invariant. Let
us now describe the set of lattices L for which rhH(L) > 0.

The normalized minimum determinant (3.36) provides an alternative characterization of the reduced Hermite
invariant:

Proposition 3.23 If L ⊂Mn×nk(C) is a 2n2k-dimensional lattice, then

rhH(L) = nk (δ(L))
2/nk

.

Consequently, in order to maximize the reduced Hermite constant, we should maximize the normalized mini-
mum determinant.

Algebraic constructions of multi-block space-time codes. We have seen in Section 3.1 how cyclic division
algebras can be used to design single block space-time codes through the left regular representation ψ in equation
(3.10). A generalization of the embedding ψ to the multi-block case was proposed in [229, 158] for division alge-
bras whose center K contains an imaginary quadratic field. In this work we consider a more general multi-block
construction developed in [153], which applies to any totally complex center K.
Assume that E/K is a cyclic Galois extension of degree n with Galois group Gal(E/K) = 〈σ〉, and that
D = (E/K, σ, γ) is a cyclic division algebra.

Recall that a totally complex field K has 2k distinct Q-embeddings βi : K ↪→ C in complex conjugate pairs.
We will denote by βi the embedding given by x 7→ βi(x). We can extend each βi to an embedding αi : E ↪→ C
such that αi|K = βi and αi|K = βi. We order the embeddings {α1, . . . , α2k} so that αi = αi+k, for 1 ≤ i ≤ k.
Let a be an element of D and A = φ(a). Consider the mapping ϕ : D 7→Mn×nk(C) given by

a 7→ (α1(A), . . . , αk(A)), (3.40)

where each αi is extended to an embedding αi : Mn(E) ↪→Mn(C).
If Γ is an OK-order in D, then Ln,k = ϕ(Γ) is a 2kn2-dimensional multi-block lattice in Mn×nk(C) with the
non-vanishing (multiblock) determinant property: for X ∈ ϕ(Γ), X 6= 0,

k∏
i=1

|det(Xi)|2 =

2k∏
i=1

det(αi(A)) =

2k∏
i=1

αi(det(A)) = NK/Q(ND/K(a)) = ND/Q(a) ≥ 1, (3.41)
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and therefore detmin(Ln,k) = infX 6=0

∏k
i=1 |det(Xi)| = 1. Moreover, we have the volume formula

Vol(ϕ(Γ)) =
1

2kn2

√
NK/Q(d(Γ/OK))

√
|dK |n

2

, (3.42)

where d(Γ/OK) is the OK-discriminant of the order Γ, and dK is the discriminant of the field K. We refer the
reader to [194] for the relevant definitions. In order to maximize the normalized minimum determinant, this volume
should be minimized.

In the case of fixed center K, [216] addressed the problem of finding the division algebras with the smallest
OK-discriminant, yielding the densest MIMO lattices. The main construction is based on the following result
(Theorem 6.14 in [216]):

Theorem 3.24 Let K be a number field of degree 2k and P1 and P2 be two prime ideals of K. Then there exists a
degree n division algebra D having an OK-order Γ with discriminant

d(Γ/OK) = (P1P2)n(n−1) (3.43)

The volume formula (3.42) and Theorem 3.24 suggest that in order to build families of (n, n, k) multi-block
codes with the largest normalized minimum determinant, we should proceed in two steps:

a) choose a sequence of center fields K of degree 2k such that their discriminants dK grow as slowly as
possible;

b) given the center K, choose an algebra D and an order Γ satisfying (3.43), where P1 and P2 are the prime
ideals in K with the smallest norms7.

We now discuss the choice of a suitable sequence of center fields. The following theorem by Martinet [163] proves
the existence of infinite sequences of totally complex number fields K with small discriminants dK .

Theorem 3.25 (Martinet) There exists an infinite tower of totally complex number fields {Kk} of degree 2k, where
2k = 5 · 22+t, such that

|dKk |
1
2k = G, (3.44)

for G ≈ 92.368.

In particular for the fields Kk we can choose primes P1 and P2 such that

NK/Q(P1) ≤ 23k/10 and NK/Q(P2) ≤ 23k/10. (3.45)

Taking into account the volume formula (3.42), Theorem 3.25 and the bound (3.45), we have shown the existence
of a family of multiblock lattices Ln,k ⊂Mn×nk(C) such that

Vol(Ln,k) ≤ 23
kn(n−1)

10

(
G

2

)n2k

. (3.46)

Unfortunately, Martinet’s theorem is not constructive, being based on Golod and Shafarevich’s result [98] on the
existence of infinite Hilbert class field towers. For fixed degree, the required number fields can be found using
computational algebra software, but this process is computationally taxing [78].

Remark 3.26 The number field towers in Theorem 3.25 are not the best known possible. It was shown in [107] that
one can construct a family of totally complex fields such that G < 82.2, but this choice would add some notational
complications. The optimal value of G is still not known.

Algebraic codes achieving constant gap to capacity Suppose that an infinite family of lattices Lk ∈ Ck has
Hermite invariants satisfying h(Lk)

k ≥ c, for some positive constant c. Then a classical result in information theory

7However, we note [153] that a priori there may be a trade-off between these two choices, so that minimizing the two terms in (3.42)
separately may be suboptimal.
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states that with this family of lattices, all rates satisfying

R < logP − log

(
4

πe

)
+ log c,

are achievable in the additive complex Gaussian channel [49, Chapter 3].
We want to establish an analogue of this result for fading channels. To this end, we will study the performance

of the spherical codes CL of the form (3.33) built using the algebraic multiblock construction in the previous section
over a general class of fading channels.
We consider both ML decoding and “naive lattice decoding” [208], namely the closest point search in the infinite
lattice Ln,k.

Theorem 3.27 Suppose that m ≥ n, and let {Hi}i∈Z be a fading process such that Hi ∈ Mm×n is full-rank with
probability 1, and such that the weak law of large numbers holds for the random variables {log det(H†iHi)}, i.e.
∃µ > 0 such that ∀ε > 0,

lim
k→∞

P

{∣∣∣∣∣1k
k∑
i=1

log det(H†iHi)− µ

∣∣∣∣∣ > ε

}
= 0. (3.47)

Let Ln,k ⊂Mn×nk(C) be a family of 2n2k-dimensional multi-block lattice codes such that

detmin (Ln,k) = 1, and Vol(Ln,k)
1
n2k ≤ CL (3.48)

for some constant CL > 0. Then, any rate

R < µ+ n

(
logP − log

4n2

πe
− logCL

)
(3.49)

is achievable using the codes Ln,k both with ML decoding and naive lattice decoding.

The proof of Theorem 3.27 is based on the sphere bound for the error probability, which holds for both ML
decoding and naive lattice decoding:

Pe ≤ P

{
‖W‖2 ≥

(
dH
2

)2
}
,

where dH is the minimum distance in the received constellation (see Figure 3.7). A lower bound for dH is given
by

d2
H = min

X 6=X

k∑
i=1

∥∥Hi(Xi −Xi)
∥∥2 (a)

≥ α2nkmin
X 6=0

k∏
i=1

|det(HiXi)|
2
nk

(b)

≥ α2nk

k∏
i=1

|det(Hi)|
2
nk .

where (a) follows from the arithmetic - geometric mean inequality and (b) follows from the NVD property (3.41).
We then find sufficient conditions in order to have Pe → 0 by using the weak law of large numbers (3.47). The
rate conditions follow from the volume bound (3.46) and the choice of a suitable normalization as in (3.34). See
[J9] for details.

Remark 3.28 For the ML decoder we can prove an analogue of Theorem 3.27 also in the case m < n, although
the bound on achievable rates is more involved [J9].

Remark 3.29 We note that existence of a family of lattices with CL ≤ 23
(n−1)
10n G/2, was shown in the previous

section.

We now consider a deterministic model, where Hi = H is constant. If the channel is known at the receiver but
not at the transmitter, the transmitter cannot use optimal power allocation and waterfilling, and can only achieve
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the white-input capacity corresponding to uniform power allocation CWI = log det
(
Inr + P/nHH†

)
. This is for

example the case for an open-loop broadcast channel where the transmitter cannot perform rate adaptation for all
the users. The following corollary then shows that a constant gap to white-input capacity is achievable:

Corollary 3.30 (Deterministic channel) Consider a deterministic channel with m ≥ n such that Hi = H for
all i ≥ 1, and let Ln,k ⊂ Mn×nk(C) be a family of 2n2k-dimensional multi-block lattice codes such that
detmin (Ln,k) = 1 and Vol(Ln,k)

1
n2k ≤ CL. Then, this coding scheme can achieve any rate

R < log det
P

n
H†H − n logCL − n log

4n

πe
.

Another class of channels satisfying the hypotheses of Theorem 3.27 is the set of ergodic and stationary fading
processes {Hi}. If we suppose that the channel is isotropically invariant, i.e. the distribution of H is invariant
under right multiplication by unitary matrices, then under the assumption of no CSI at the transmitter, the optimal
input allocation is uniform [213] and the capacity is C = EH

[
log det

(
Inr + P/nHH†

)]
.

Corollary 3.31 (Stationary ergodic channels) Suppose that nr ≥ n and that the fading process {Hi} is ergodic,
stationary and isotropically invariant. Moreover, suppose that E

[∣∣log detH†H
∣∣] < ∞. Let Ln,k ⊂ Mn×nk(C)

be a family of 2n2k-dimensional multi-block lattice codes such that detmin (Ln,k) = 1 and Vol(Ln,k)
1
n2k ≤ CL.

Then, any rate

R < EH
[
log det

P

n
H†H

]
− n logCL − n log

4n

πe

is achievable using the codes Ln,k both with ML decoding and naive lattice decoding.

Remark 3.32 We can actually show that the achievable rate is within a constant gap from capacity, although this
constant will depend on the channel statistics.

In the case of an i.i.d Rayleigh fading MIMO channel, the achievable rate can be computed explicitly (see
Figures 3.9 and 3.10), and the error probability vanishes exponentially fast. See [J9] for details.

Open questions and follow-up work In this work we proved the existence of lattice codes achieving constant
gap to capacity in ergodic fading channels. Unlike existence results based on random coding, our codes are always
built from the same family of lattices, irrespective of the SNR and even of the fading statistics. Hence, using the
minimum determinant as a design principle leads to approximately universal codes which guarantee robustness
with respect to imperfect channel estimation. This property can be useful in open loop mode for high-mobility
users, or for broadcast channels when the transmitter cannot adapt their rate to all the receivers.

However, our codes still have a considerable gap to capacity and further research is needed. We note that this
gap depends on several factors:

- First of all, the normalized minimum determinant affects the value of the gap. One could try to find fam-
ilies of lattices with larger normalized minimum determinant, for instance by replacing the centers in our
constructions with families of number fields having smaller discriminants. This is a hard problem in num-
ber theory, since the optimal value of the constant G for number fields is not known. For finite degrees,
Odlyzko’s bounds [176] may give much better discriminants. One can also consider more general examples
of lattices than those arising from orders in division algebras, such as ideals of orders.

•
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Figure 3.7: An illustration of the sphere upper bound.
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Figure 3.8: Achievable rate on a single-antenna AWGN channel.
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Figure 3.9: Achievable rate and channel capacity for the single
antenna i.i.d. Rayleigh fading channel.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

SNR, dB

B
its

 / 
ch

an
ne

l u
se

Gap to capacity for the i.i.d Rayleigh fading 2x2 MIMO channel

 

 

Ergodic capacity
Achievable rate

Figure 3.10: Achievable rate and channel capacity for the 2 × 2
MIMO i.i.d. Rayleigh fading channel.

- Second, our bound for the error probability is based on sphere packing and might be suboptimal, since it
bounds the performance of ML decoding with bounded distance decoding.

- Finally, in this work we have not considered the issue of shaping. On one hand, improving the shaping
properties of our lattices might lead to a better error probability bound; one interesting question is under
which hypotheses the canonical embedding of a number field yields a lattice whose fundamental region is
close to a sphere. Moreover, we have assumed that the codewords are chosen uniformly inside a spherical
lattice code; replacing the uniform distribution with a discrete Gaussian distribution would compensate the
loss of “+1” in the capacity expression.

Finally, we note that while the family of codes in question is well-defined and deterministic, the best known
algorithms to compute Hilbert class fields of arbitrary number fields have high computational complexity [78], and
thus our construction cannot be made explicit at present.

Follow-up work Since the submission of this work, there have been several advances on the topic. In [221,
Section 4.5], S. Vituri gave a proof of existence of lattice codes achieving a constant gap to capacity for ergodic
SISO channels. It appears that with minor modifications this proof implies the existence of capacity-achieving
lattices. In [156] the authors prove that polar lattices achieve capacity in i.i.d fading channels. This is not only an
existence result, but provides an explicit low-complexity code construction as well. In [36] the authors prove the
existence of lattice codes achieving capacity in the compound SISO channel, where the fading is random during
the first s time units, but then gets repeated in blocks of length s.



4 LATTICE CODES FOR PHYSICAL LAYER SECURITY AND CRYPTOG-
RAPHY

Physical layer security aims to exploit the random nature of noisy channels in order to offer an additional level of
protection. The notion of cryptographic security, which is based on the computational complexity of mathematical
primitives which are hard to invert, is replaced by information-theoretic security, which is measured in terms of
statistical independence between the confidential message M and the channel output Zn, and implies that even
a computationally unlimited adversary cannot extract any useful information from the signal. This notion was
first introduced by Shannon [205], who required perfect secrecy, i.e. I(M;Zn) = 0. However, perfect secrecy is
impractical, since in Shannon’s noise-free setting, it entails the use of a one-time-pad.

In the context of noisy wiretap channels, Wyner [228] proved that both error correction and data confiden-
tiality can be achieved by channel coding without any secret key. He replaced Shannon’s perfect secrecy with
the asymptotic weak secrecy condition limn→∞

1
n I(M;Zn) = 0 as the number of channel uses tends to infinity.

However, this notion is too weak for many practical applications, since the total amount of leaked data can still
tend to infinity, and now it is widely accepted that a physical-layer security scheme should be secure in the sense
of Csiszár’s strong secrecy limn→∞ I(M;Zn) = 0 [53]. In information theory, plaintexts are often assumed to be
uniformly distributed. This assumption is deemed problematic from a cryptographic perspective, since real-life
messages are often not uniformly random, and might have low entropy. This issue can be resolved by using the
standard notion of semantic security [97] which requires that the probability that the eavesdropper can guess any
function of the message given the ciphertext should not be significantly higher than the probability of guessing it
using a simulator that does not have access to the ciphertext. The relation between strong secrecy and semantic
security was revealed in [22] for discrete wiretap channels, namely, achieving strong secrecy for all distributions
of the plaintext messages is equivalent to achieving semantic security.

It can be shown that stochastic encoding is necessary to ensure information-theoretic security over wiretap
channels [30, Section 3.4.1]. Each confidential message m is then associated to a subcodebook or “bin” rather
than to a single codeword.

Fundamental mechanisms for secrecy and relation to channel resolvability Our approach to achieve strong
secrecy is based on the notion of channel resolvability, which was introduced by Han and Verdù [108]. We review
here its simplest formulation in the case of discrete memoryless channels.

Definition 4.1 (Resolvability code and resolution rate) Consider a discrete memoryless channel W : X → Z with
transition probability pZ|X, whose input is an i.i.d. source distributed according to qX; the output of the channel is
then an i.i.d. process distributed according to qZ. The aim is to construct a sequence of codes {Cn}n≥1 of rate R
and increasing block length n, such that the output distribution pZn induced by a uniform choice of the codewords
in {Cn} approaches the distribution qZn ∼

∏n
i=1 qZ in variational distance, i.e.

lim
n→∞

V(pZn , qZn) = 0. (4.1)

In this case, the sequence {Cn}n≥1 is called a sequence of resolvability codes achieving resolution rate R for the
channel W . The channel resolvability of W is then defined as the minimum resolution rate such that resolvability
codes exist for any input source.

43
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This definition can be extended to a very general class of channels using information spectrum methods; it can
be shown that the resolvability is equal to the channel capacity as long as the channel satisfies the strong converse
[108].

The relation between resolvability and secrecy was investigated in [53, 114, 29], and in my own work in
collaboration with M. Bloch [C5]. The key idea is that each bin corresponding to a confidential message should
be a resolvability code for the eavesdropper’s channel, i.e. the output distributions pZn|M=m corresponding to
different bins should be indistinguishable in variational distance. In the case of random wiretap codes for discrete
memoryless channels, the following Lemma holds [57]:

Lemma 4.2 (Cloud mixing) For a memoryless channel pZ|X, an input distribution qX and the corresponding output
qZ, if the random codebook sequence {Cn} has rate R′ > I(qX; qZ), then ∃β > 0 such that

∀n, ECn
[
V(pZn|Cn , qZn)

]
≤ e−βn,

where the expectation is computed over the random code ensemble.

Applying this result to the wiretap channel, we find that in order to have strong secrecy, the bin rate R′ should
be greater than the capacity Ce of the eavesdropper’s channel.

4.1 Semantically secure lattice codes for Gaussian wiretap channels
Wireless systems are particularly vulnerable to eavesdropping since every transmission can potentially be over-
heard by all the neighboring nodes in the network. Moreover, the wireless medium is inherently a source of
randomness, which can be harnessed to provide security. Therefore, the design of wiretap codes over continuous
channels such as Gaussian and fading channels is of particular interest for the practical integration of physical layer
security into future communication systems.

Previous works For continuous wiretap channels such as the Gaussian channel, the earliest code designs focused
on the maximization of the eavesdropper’s error probability [131]. In particular, [21, 177] considered nested lattice
codes for the Gaussian wiretap channel, introduced the notion of secrecy gain and showed the existence of families
of even unimodular lattices such that the eavesdropper’s error probability tends to 1 when the lattice dimension
tends to∞. These lattices were also investigated in [85]. In [43] it was shown that there exist families of lattice
codes achieving the weak secret key capacity. Lattice codes were also used to provide weak / strong secrecy in the
settings of cooperative jamming and interference channels [116–118].

In this section, I review our main contributions on the design of strongly and semantically secure lattice codes
for the Gaussian wiretap channel [J8].

Strong secrecy and semantic security in continuous channels Extending the results of [22, Section 3], we
showed that semantic security and strong secrecy for all message distributions are equivalent for continuous chan-
nels. Details can be found in Section II.B of [J8].

The following continuous channel adaptation of Csiszár’s Lemma [53, Lemma 1] shows how to bound the
leakage for arbitrary message distributions pM using the variational distance of output distributions. The lower
bound is a consequence of Pinsker’s inequality [54]. The proof of the upper bound is similar to the discrete case.

Lemma 4.3 Let Zn be a random variable defined on Rn and M be a random variable taking values in the finite set
Mn such that |Mn| ≥ 4. Then

1

2
d2

av ≤ I(M;Zn) ≤ dav log
|Mn|
dav

,

where
dav =

∑
m∈Mn

pM(m)V(pZn|M=m, pZn)

is the average variational distance of the conditional output distributions from the global output distribution.
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Note that for any distribution qZn on Rn, we have [53]

dav ≤ 2
∑

m∈Mn

pM(m)V(pZn|M=m, qZn). (4.2)

Together with Lemma 4.3, this leads to an upper bound on the mutual information, in case we can approxi-
mate pZn|M=m by a density that is independent of m.

Lemma 4.4 Suppose that ∀n there exists some density qZn in Rn such that V(pZn|M=m, qZn) ≤ εn, for all
m ∈Mn. Then we have dav ≤ 2εn and so

I(M;Zn) ≤ 2εnnR− 2εn log(2εn). (4.3)

Discrete Gaussian distributions and the flatness factor. For σ > 0 and c ∈ Rn, we define the Gaussian
distribution of variance σ2 centered at c ∈ Rn as

fσ,c(x) =
1

(
√

2πσ)n
e−
‖x−c‖2

2σ2 ,

for all x ∈ Rn. For convenience, we write fσ(x) = fσ,0(x).
Let Λ be an n-dimensional lattice in Rn. To study the effect of Gaussian noise on lattice signalling, we consider

the Λ-periodic function
fσ,Λ(x) =

∑
λ∈Λ

fσ,λ(x) (4.4)

for all x ∈ Rn. We denote by fσ,R(Λ) = fσ,Λ|R(Λ) its restriction to the fundamental region R(Λ). Note that
fσ,R(Λ) is the probability density of X̄n = [Xn] modR(Λ), where Xn ∼ N (0, σ2In).

We define the discrete Gaussian distribution over Λ centered at c ∈ Rn as the following discrete distribution
taking values in λ ∈ Λ [15, 166]:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
∀λ ∈ Λ,

where fσ,c(Λ) :=
∑
λ∈Λ fσ,c(λ). Again for convenience, we write DΛ,σ = DΛ,σ,0.

It will be useful to define the discrete Gaussian distribution over a coset of Λ, i.e., the shifted lattice Λ− c:

DΛ−c,σ(λ− c) =
fσ(λ− c)

fσ,c(Λ)
∀λ ∈ Λ.

Note the relation DΛ−c,σ(λ− c) = DΛ,σ,c(λ), namely, they are a shifted version of each other.
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Figure 4.1: The discrete Gaussian distribution over the Z2 lattice.
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Remark 4.5 Finding efficient algorithms to sample lattice Gaussians is an important problem in lattice-based
cryptography. In particular, it was proven in [96] that Klein’s algorithm [128] samples from a distribution which is
close to a discrete Gaussian when σ is large enough.

The flatness factor [20] of a lattice Λ measures the L∞ distance of fσ,Λ from the uniform distribution on the
fundamental regionR(Λ):

Definition 4.6 (Flatness factor) For a lattice Λ with fundamental region R(Λ) and for standard deviation σ, the
flatness factor is defined by:

εΛ(σ) := max
x∈R(Λ)

|fσ,Λ(x)− 1/V (Λ)|
1/V (Λ)

.

The flatness factor can be computed from the theta series ΘΛ(τ) of the lattice Λ [49], which is defined as

ΘΛ(τ) =
∑
λ∈Λ

e−πτ‖λ‖
2

, τ > 0. (4.5)

Proposition 4.7 (Expression of εΛ(σ)) We have:

εΛ(σ) =

(
γΛ(σ)

2π

)n
2

ΘΛ

(
1

2πσ2

)
− 1

where γΛ(σ) = V (Λ)
2
n

σ2 is the volume-to-noise ratio (VNR).

Alternatively, the flatness factor can be expressed in terms of the theta series of the dual lattice Λ∗ as follows:

εΛ(σ) = ΘΛ∗(2πσ
2)− 1 (4.6)

Remark 4.8 One can show that the maxima of both fσ,Λ(x) and |fσ,Λ(x)− 1/V (Λ)| are reached when x ∈ Λ.

We note that the flatness factor is equivalent to the notion of smoothing parameter1 that is commonly used in
lattice-based cryptography [166].

Definition 4.9 (Smoothing parameter) For a lattice Λ and for ε > 0, the smoothing parameter ηε(Λ) is the smallest
σ > 0 such that

∑
λ∗∈Λ∗\{0} e

−2π2σ2‖λ∗‖2 ≤ ε.

Lemma 4.10 If σ = ηε(Λ), then εΛ(σ) = ε.

Remark 4.11 The flatness factor is a monotonically decreasing function of σ, i.e., if σ < σ′, then εΛ(σ′) ≤ εΛ(σ).

Figure 4.3 illustrates the flatness factor and lattice Gaussian distribution at different VNRs for the Z2 lattice.
When the VNR is high (Figure 4.3(a)), εΛ(σ) is large and the Gaussians are well separated, implying reliable
decoding is possible; this scenario is desired in communications. When the VNR is low (Figure 4.3(b)), εΛ(σ) is
small and the distribution is nearly uniform, implying reliable decoding is impossible; this scenario is desired in
security and will be pursued in following sections.

The next result, which slightly improves upon Lemma 4.3 in [166], shows that the variance per dimension of
the discrete Gaussian DΛ,σ,c is not far from σ2 when the flatness factor is small.

Lemma 4.12 (Variance of discrete Gaussian) Let L be sampled from the Gaussian distribution DΛ,σ,c.

If ε := εΛ

(
σ/
√

π
π−1/e

)
< 1, then

∣∣∣E [‖L− c‖2
]
− nσ2

∣∣∣ ≤ 2πε

1− ε
σ2. (4.7)

1This definition differs slightly from the one in [166], where σ is scaled by a constant factor
√

2π (i.e., s =
√

2πσ).
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(a) γΛ(σ) = 8π, εΛ(σ) = 3. (b) γΛ(σ) = π, εΛ(σ) = 0.0075.

Figure 4.3: Lattice Gaussian distribution and flatness factor for Z2 (a) at high VNR where εΛ(σ) is large and the Gaussians are well separated,
and (b) at low VNR where εΛ(σ) is small and the distribution is nearly uniform.

From the maximum-entropy principle [50, Chap. 11], it follows that the discrete Gaussian distribution maxi-
mizes the entropy given the average energy and given the same support over a lattice. The following lemma further
shows that if the flatness factor is small, the entropy of a discrete GaussianDΛ,σ,c is almost equal to the differential
entropy of a continuous Gaussian vector of variance σ2 per dimension, minus log V (Λ), which corresponds to the
entropy of a uniform distribution over the fundamental region of Λ.

Lemma 4.13 (Entropy of discrete Gaussian) Let L ∼ DΛ,σ,c. If ε , εΛ

(
σ/
√

π
π−1/e

)
< 1, then the entropy of L

satisfies ∣∣∣H(L)−
[
n log(

√
2πeσ)− log V (Λ)

]∣∣∣ ≤ ε′,
where ε′ = −log(1− ε) + πε

1−ε .

The following lemma by Regev [193, Claim 3.9] shows that if the flatness factor is small, the sum of a discrete
Gaussian and a continuous Gaussian is very close to a continuous Gaussian (see figure 4.4).

Lemma 4.14 (Regev’s Lemma) Let c ∈ Rn be any vector, and σ0, σ > 0. Consider the continuous distribution g
on Rn obtained by adding a continuous Gaussian of variance σ2 to a discrete Gaussian DΛ−c,σ0 :

g(x) =
1

fσ,Λ(c)

∑
t∈Λ−c

fσ0
(t)fσ(x− t).

If ε := εΛ

(
σ0σ√
σ2

0+σ2

)
< 1

2 , then g(x)
f√

σ2
0+σ2

(x) is uniformly close to 1:

∀x ∈ Rn,

∣∣∣∣∣ g(x)

f√
σ2

0+σ2(x)
− 1

∣∣∣∣∣ ≤ 4ε. (4.8)

In particular, the distribution g(x) is close to the continuous Gaussian density f√
σ2

0+σ2 in L1 distance:

V (g, f
√
σ2

0+σ2) ≤ 4ε.

Secrecy-good lattices Now, we introduce the notion of secrecy-good lattices. Roughly speaking, a lattice is good
for secrecy if its flatness factor is small.
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Figure 4.4: An illustration of Regev’s Lemma for σ = 4 and σ0 = 0.4. The Gaussian distribution f√
σ2

0+σ2
is plotted in dark blue, and the

distribution g in light blue.

Definition 4.15 (Secrecy-good lattices) A sequence of lattices Λ(n) is secrecy-good if for all fixed γΛ(n)(σ) < 2π,

∀c > 0,

εΛ(n)(σ) = o

(
1

nc

)
, (4.9)

i.e. the flatness factor vanishes super-polynomially.

The following result guarantees the existence of sequences of lattices whose flatness factor vanish exponentially
as the dimension n→∞, provided that the VNR < 2π.

Theorem 4.16 (Existence of secrecy-good lattices) For any σ > 0 and δ > 0, for fixed VNR γΛ(n)(σ) < 2π, there
exists a sequence of lattices Λ(n) such that

εΛ(n)(σ) ≤ (1 + δ) ·
(
γΛ(n)(σ)

2π

)n
2

. (4.10)

The proof of this result is based on an average bound for the theta series on Loeliger’s ensemble of mod-p
lattices built from linear codes over finite fields using Construction A [157].

Remark 4.17 In fact, we can show a concentration result: ∀η > 0 there exists a lattice ensemble such that lattice
sequences from this ensemble are secrecy-good with probability greater than 1− η.

It is worth mentioning that as soon as the VNR exceeds 2π, the L∞ flatness factor increases exponentially, as
can be seen from Proposition 4.7, since ΘΛ(τ) > 1 ∀τ > 0.

Lattice Gaussian codes achieving strong secrecy and semantic security over the Gaussian wiretap channel
We consider the Gaussian wiretap channel depicted in Fig. 4.5, whose outputs Yn and Zn at Bob and Eve’s end
respectively are given by {

Yn = Xn + Wn
b ,

Zn = Xn + Wn
e ,

(4.11)

where Wn
b , Wn

e are n-dimensional Gaussian vectors with zero mean and variance σ2
b , σ2

e respectively. We suppose
that σe > σb, i.e., Eve’s channel is degraded with respect to Bob’s channel (since otherwise the secrecy capacity
would be zero). The transmitted codebook C must satisfy the average power constraint

1

n
E [‖Xn‖] ≤ P. (4.12)

We denote this wiretap channel by W (σb, σe, P ).

Lattice Gaussian Coding We consider a chain of nested lattices Λe ⊂ Λb such that Λb is AWGN-good [83],
and Λe is secrecy good, with nesting ratio |Λb/Λe| = eRn. The existence of this chain is proven in Appendix II of
[J8].
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Figure 4.5: The Gaussian wiretap channel.

We consider a message set Mn = {1, . . . , enR}, and a one-to-one function which associates each message
m ∈ Mn to a coset λm ∈ Λb/Λe. We can identify the quotient group Λb/Λe with a set of coset representatives
Λb∩R(Λe) for any fundamental regionR(Λe). Good choices of fundamental regionR(Λe) (e.g., the fundamental
parallelepiped) can result in low-complexity implementation of the encoder and decoder. Note that we make no a
priori assumption on the distribution of the message M.

In order to encode the message m ∈ Mn, Alice samples Xnm from DΛe+λm,σs ; equivalently, Alice transmits
λ + λm where λ ∼ DΛe,σs,−λm . It is worth mentioning that the distribution DΛe+λm,σs is always centered at 0

for all bins (see 4.2). This is key for the conditional output distributions corresponding to different m to converge
to the same distribution.

We choose σ2
s = P in order to satisfy the average power constraint (3.32) asymptotically, thanks to Lemma

4.12, provided that εΛe

(
σs/
√

π
π−1/e

)
→ 0.

Theorem 4.18 On the wiretap channel W (σb, σe, P ), the proposed wiretap coding scheme with σ2
s = P achieves

strong secrecy for any message distribution pM (and thus semantic security) for any secrecy rate (in nats)

R <
1

2
log

σ2
e

σ2
b

− 1

2
.

That is, the achievable rates are 1/2 nat from the secrecy capacity.
The proof of Theorem 4.18 can be found in Section V of [J8]. We summarize the main ideas here. First, we

show that Bob can reliably decode the confidential message using MMSE lattice decoding. Note that since the
lattice points are not equally probable a priori in the lattice Gaussian coding, MAP decoding is not the same as
standard ML decoding. One can show that MAP decoding is equivalent to Euclidean lattice decoding of Λb using
a renormalized metric that is asymptotically close to the MMSE metric. Under this metric, the equivalent noise in
Bob’s channel can be written as the sum of discrete Gaussian variable and Gaussian noise. By Regev’s Lemma
4.14, the distribution of this equivalent noise is close in L1 distance to a Gaussian distribution. Since the fine lattice
Λb is AWGN good, we have reliability as long as γΛb(σ̃b) > 2πe [83], where σ̃b = σsσb√

σ2
s+σ2

b

. Note that no dither

is required to ensure that the equivalent noise is almost independent of the transmitted vector.
Next, we bound the leakage to the eavesdropper. Lemma 4.14 implies that the conditional output distributions

pZn|M=m are close to the continuous Gaussian distribution f√
σ2
s+σ2

e
in variational distance if εn = εΛe (σ̃e) is

small, where σ̃e = σsσe/
√
σ2
s + σ2

e . An upper bound on the amount of leaked information then follows directly
from Lemma 4.4. In order for εn to vanish, a sufficient condition is γΛe (σ̃e) < 2π. Lemma 4.13 guarantees that
the bin rate is above Eve’s channel capacity, in order to obtain a resolvability scheme.

Follow-up work. Lattice Gaussian signalling can also be used for transmission over Gaussian channels without
secrecy constraints; in this setting, a follow-up work by Ling and Belfiore [152] showed that it achieves capacity
for SNR > e. This SNR condition can be removed using a dither [35].
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For Gaussian wiretap channels, we conjecture that the 1/2 nat gap in Theorem 4.18 can be removed by using
the L1 version of the flatness factor, which will be introduced in Section 4.3.

After our paper was submitted, other works have proposed wiretap code constructions for Gaussian channels.
Tyagi and Vardy’s approach [215] achieves the strong secrecy capacity of the Gaussian wiretap channel using 2-
universal hash functions. The polar lattice construction built from polar codes using Construction D in [155] also
achieves the secrecy capacity.

The flatness factor criterion can be extended to more general fading and MIMO channel models, as will be
shown in the next Section.

4.2 Almost universal wiretap codes for MIMO wireless channels
In the follow-up work [J10] in collaboration with Cong Ling and Roope Vehkalahti, we considered the design of
lattice codes for fading and multi-antenna wiretap channels, and proposed a new construction of wiretap codes
from ideal lattices which builds upon our universal code construction in [J9] (see Section 3.4). Note that ideal
lattices from number fields had already been considered for fading wiretap channels under an error probability
criterion [18, 127].

In order to tackle the MIMO wiretap channel, we need to extend the definition of flatness factor to the multi-
variate case, which is related to the extended notion of smoothing parameter in [182].

Let f√Σ,c(z) denote the k-dimensional circularly symmetric complex normal distribution with mean c and
covariance matrix Σ:

f√Σ,c(z) =
1

πk det(Σ)
e−(z−c)†Σ−1(z−c) ∀z ∈ Ck.

We consider lattices of even dimension n = 2k in the Euclidean space R2k, which is identified with the complex
space Ck. Given a lattice Λ ⊂ Ck, we consider the Λ-periodic function

f√Σ,Λ(z) =
∑
λ∈Λ

f√Σ,λ(z), ∀z ∈ Ck.

Given a positive definite matrix Σ ∈Mk(C), the flatness factor εΛ(
√

Σ) is defined as

εΛ(
√

Σ) = max
z∈R(Λ)

∣∣∣V (Λ)f√Σ,Λ(z)− 1
∣∣∣ .

We have the following corollary of a result by Banaszczyk [15], which implies that the smoothing parameter
is upper bounded by the minimum distance of the dual lattice [166]. In terms of flatness factor, we can state it as
follows.

Lemma 4.19 Suppose that Λ is an n-dimensional lattice, and let c > 1√
2π

,C = c
√

2πee−πc
2

< 1. If τ ≥
√
nc√

πλ1(Λ)
,

then
εΛ∗(τ) ≤ Cn

1− Cn
. (4.13)

Regev’s lemma [193, Claim 3.9] (see Lemma 4.14) generalizes to the multivariate case as follows:

Lemma 4.20 Let X1 be sampled according to the discrete Gaussian distribution DΛ+c,
√

Σ1
and X2 be sampled

according to the continuous Gaussian f√Σ2
. Let Σ0 = Σ1 + Σ2 and Σ−1 = Σ−1

1 + Σ−1
2 . Denote by g(x) the

density of the random variable X = X1 +X2. If

εΛ(
√

Σ) ≤ ε ≤ 1

2
, (4.14)

then
V(g, f√Σ0

) ≤ 4ε.
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Figure 4.6: The fading wiretap channel.

Lattice codes for fading wiretap channels For simplicity, we first present our results in the single antenna case.
We consider the channel model illustrated in Figure 4.6, where the outputs y, z ∈ Ck over k channel uses at Bob
and Eve’s end respectively are given by{

yi = hb,ixi + wb,i,

zi = he,ixi + we,i,
i = 1, . . . , k (4.15)

and wb,i, we,i are i.i.d. complex Gaussian vectors with zero mean and variance σ2
b , σ2

e per complex dimension.
A confidential message M and an auxiliary message M′ with rate R and R′ respectively are encoded into x.
We denote by M̂ the estimate of the confidential message at Bob’s end. We define He = diag(he,1, . . . , he,k),
Hb = diag(hb,1, . . . , hb,k). The input x satisfies the average power constraint

1

k

k∑
i=1

|xi|2 ≤ P. (4.16)

We suppose that hb,i, he,i are isotropically invariant and that Bob and Eve’s channel capacities Cb and Ce are
well-defined. All rates are expressed in nats per complex channel use.

We assume that the weak law of large numbers (LLN) holds for Bob’s channel: ∀δ > 0

lim
k→∞

P

{∣∣∣∣∣1k
k∑
i=1

ln

(
1 +

P |hb,i|2

σ2
b

)
− Cb

∣∣∣∣∣ > δ

}
= 0, (4.17)

This general setting includes the Gaussian channel, i.i.d. block fading channels where the size of the blocks is
fixed and the number of blocks tends to infinity as well as all ergodic fading channels.

Moreover, we require a stricter condition for Eve’s channel2:, i.e. the asymptotic rate of convergence in the
LLN should be faster than o

(
1
k

)
: ∀δ′ > 0,

lim
k→∞

k P

{∣∣∣∣∣1k
k∑
i=1

ln

(
1 +

P |he,i|2

σ2
e

)
− Ce

∣∣∣∣∣> δ′

}
= 0 (4.18)

This condition is satisfied for static channels, i.i.d. fading channels and i.i.d. block fading channels, and ergodic
channels whose decay of large deviations is vanishing with rate o

(
1
k

)
. We suppose that Bob has perfect CSI of

his own channel, and Eve has perfect CSI of both channels. Alice has no instantaneous CSI, apart from partial
knowledge of channel statistics. More precisely, the knowledge of Cb and Ce and of the properties (4.17) and
(4.18) is sufficient for Alice.

2Although a rate of convergence of the order o
(

1
k

)
in the law of large numbers for Eve’s channel seems to be necessary for strong secrecy,

any rate of convergence is enough to guarantee weak secrecy, see Proposition 3.9 in [J10].
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Lattice wiretap coding Let Λ
(k)
e ⊂ Λ

(k)
b be a pair of nested lattices in Ck with nesting ratio |Λb/Λe| = ekR, and

volumes

V (Λe) =
(πeP )k

ekR′
, V (Λb) =

(πeP )k

ek(R+R′)
, (4.19)

where R′ > 0. Let R(Λe) be a fundamental region of Λe. We consider the secrecy scheme in Section 4.1, where
each confidential message m ∈M = {1, . . . , ekR} is associated to a coset leader λm ∈ Λb ∩R(Λe). To transmit
the message m, Alice samples x ∈ Λb from the discrete Gaussian DΛe+λm,σs with σ2

s = P . We denote this lattice
coding scheme by C(Λb,Λe). It follows from Lemma 4.12 and Remark 6 in [J8] that the power constraint (4.16)
is verified under suitable conditions on the flatness factor. Similarly, using Lemma 4.13, we can show that the
entropy rate H(M′) of the auxiliary message tends to R′ as k → ∞ under suitable flatness factor conditions. We
omit details, which can be found in [J10].

We will show that the gap to capacity of our codes is essentially determined by the normalized product distance
of the lattices Λb and Λ∗e , which is a special case of the normalized minimum determinant defined in (3.36).

Definition 4.21 (Normalized product distance) Given a complex lattice Λ ⊂ Ck, its normalized product distance is
given by

Np(Λ) =
infx∈Λ\{0}

∏k
i=1 |xi|√

V (Λ)
.

Theorem 4.22 Consider the wiretap scheme C(Λb,Λe), and suppose that there exist positive constants tb, te such
that

lim inf
k→∞

Np(Λb)
2/k ≥ tb, lim inf

k→∞
Np(Λ∗e)

2/k ≥ te. (4.20)

If the main channel and the eavesdropper’s channel verify the conditions (4.17) and (4.18), then the codes C(Λb,Λe)
achieve strong secrecy for any message distribution pM, and thus they achieve semantic security, if

R′ > Ce + ln
( e
π

)
− ln te, R+R′ < Cb − ln

(
4

πe

)
+ ln tb. (4.21)

Thus, any strong secrecy rate

R < Cb − Ce − 2 ln

(
2

π

)
+ ln tbte

is achievable with the proposed lattice codes.

Therefore, we established a simple design criterion where the normalized product distance of the lattice and its
dual should be maximized simultaneously; in the special case of the Gaussian wiretap channel, the packing density
of the lattice and its dual should be maximized (Proposition 3.19 in [J10]).

The key ideas of the proof of Theorem 4.22 are as follows. We focus on the secrecy condition, since the
reliability condition can be proven with similar techniques as in [J9]. With CSI at the eavesdropper, the leakage
can be expressed as

I(M; z, He) = I(M;He) + I(M; z|He) = I(M; z|He) = EHe
[
I(pM|He ; pz|He)

]
= EHe

[
I(pM; pz|He)

]
.

We want to show that the average leakage with respect to the fading is small. First, we consider a fixed channel
sequence He = diag(he,1, . . . , he,k). As in Section 4.1, we bound the leakage through the average variational
distance of output distributions corresponding to different confidential messages to a continuous Gaussian.

Using Lemma 4.20 with Σ1 = HeH
†
eP , Σ2 = σ2

eI , we have

V(pz|He,M=m, f√Σ0
) ≤ 4εk

provided that

εHeΛe(
√

Σ) = ε√
Σ
−1
HeΛe

(1) ≤ εk ≤
1

2
, (4.22)
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where we define Σ0 = HeH
†
eP + σ2

eI , Σ−1 =
(HeH

†
e )−1

P + I
σ2
e
. That is, the flatness factor of the faded lattice

should be small.
The upper bound (4.13) in Lemma 4.19 allows us to bound the flatness factor of the faded lattice in terms of

the minimum distance of its dual, which should not be too small. This minimum distance can be lower bounded in
terms of the product distance as follows:

dmin((
√

Σ
−1
HeΛe)

∗) = dmin(
√

Σ(H†e )−1Λ∗e) = min
x∈Λ∗e\{0}

∥∥∥√Σ(H†e )−1x
∥∥∥

≥
√
k
√
P∏k

i=1

(
1 + P

σ2
e
|he,i|2

) 1
2k

k∏
i=1

|xi|
1
k

where the last step follows from the arithmetic mean - geometric mean inequality.
For a random channel sequence He = diag(he,1, . . . , he,k), the conclusion follows from the bound (4.13) by

invoking the law of large numbers (4.18). More details can be found in [J10].

MIMO wiretap channel Our results can be generalized to a MIMO fading channel model where Alice is
equipped with n antennas, while Bob and Eve have nb and ne antennas respectively. For simplicity, we assume
that nb ≥ n and ne ≥ n. Transmission takes place over k quasi-static fading blocks of delay T = n, and the
transmitted codeword is of the form X = (X1, . . . , Xk), where the matrix Xi ∈ Mn(C) is sent during the i-th
block.

The outputs Y and Z at Bob and Eve’s end respectively are given by{
Y = HbX +Wb,

Z = HeX +We,
(4.23)

where Hb = diag(Hb,1, . . . ,Hb,k) ∈ Mnbk×nk(C), He = diag(He,1, . . . ,He,k) ∈ Mnek×nk(C). The coeffi-
cients of the noise matrices Wb and We are i.i.d. circularly symmetric complex Gaussian with zero mean and
variance σ2

b , σ2
e per complex dimension. The input X satisfies the average power constraint (per channel use)

1

nk

k∑
i=1

‖Xi‖2 ≤ P. (4.24)

The average power per symbol is σ2
s = P

n . We denote by ρb =
σ2
s

σ2
b

and ρe =
σ2
s

σ2
e

the signal-to-noise ratios for Bob
and Eve respectively. We suppose that {Hb,i}, {He,i} are isotropically invariant channels such that the channel
capacities Cb and Ce are well-defined and ∀γ, γ′ > 0,

lim
k→∞

P

{∣∣∣∣∣1k
k∑
i=1

ln det
(
Inb+ρbH

†
b,iHb,i

)
−Cb

∣∣∣∣∣> γ

}
= 0 (4.25)

lim
k→∞

k P

{∣∣∣∣∣1k
k∑
i=1

ln det
(
Ine+ρeH

†
e,iHe,i

)
−Ce

∣∣∣∣∣>γ′
}

=0 (4.26)

As before, we suppose that Alice has statistical CSI only, Bob has perfect CSI of his own channel, and Eve has
perfect CSI of her channel and of Bob’s.

A confidential message M and an auxiliary message M′ with rate R and R′ respectively are encoded into the
multi-block codeword X .

Remark 4.23 For general channels the strong secrecy capacity still appears to be unknown in this setting. In [150]
it was shown that the weak secrecy capacity

Cws = Cb − Ce
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for i.i.d. fading wiretap channels such that Bob and Eve’s fadings are independent.

Multiblock lattice wiretap coding. Let Λe ⊂ Λb be a pair of nested multiblock matrix lattices in Mnk×n(C)

such that Λe ⊂ Λb and |Λb/Λe| = enkR, with volumes scaling as follows:

V (Λe) =
(πeσ2

s)n
2k

enkR′
, V (Λb) =

(πeσ2
s)n

2k

enk(R+R′)
, (4.27)

where R′ > 0. Each message m ∈ M = {1, . . . , enkR} is mapped to a coset leader X(m) ∈ Λb ∩ R(Λe), where
R(Λe) is a fundamental region of Λe. In order to transmit the message m, Alice samples X from the discrete
Gaussian DΛe+X(m),σs where σ2

s = P
n . We denote this coding scheme by C(Λb,Λe).

Let {Λ(n,k)} be a sequence of n2k-dimensional multi-block matrix lattices in Mnk×n(C) (see Section 3.4).
We consider scaled versions Λb = αbΛ

(n,k), Λe = αeΛ
(n,k) such that Λe ⊂ Λb and |Λb/Λe| = enkR. Given rates

R,R′, we denote the corresponding multi-block lattice coding scheme by C(Λ(n,k), R,R′).
Given a lattice Λ, let δ(Λ) denote its normalized minimum determinant defined in (3.36). Then we have the
following multi-antenna extension of Theorem 4.22, where the normalized product distance is replaced by the
normalized minimum determinant.

Theorem 4.24 Consider the multi-block wiretap coding scheme C(Λb,Λe) defined previously, and suppose that

lim inf
k→∞

δ(Λ∗e)
2
k ≥ de, lim inf

k→∞
δ(Λb)

2
k ≥ db (4.28)

for some positive constants de, db. If the main channel and the eavesdropper’s channel verify the conditions (4.25)
and (4.26) respectively, then C(Λb,Λe) achieves strong secrecy and semantic security for all rates

R < Cb − Ce − 2n ln

(
2n

π

)
+ ln dbde. (4.29)

Coding scheme based on division algebras with constant root discriminant Recall that in Section 3.4 we
have established the existence of multiblock lattices {Ln,k} arising from the left regular representation of division
algebras over Hilbert class fields, satisfying the volume condition (3.46). Taking two scaled copies of such a lattice
for Λb and Λe, we obtain the following.

Corollary 4.25 If the main channel and the eavesdropper’s channel verify the conditions (4.25) and (4.26), then
the multi-block wiretap coding scheme C(Ln,k, R,R′) achieves strong secrecy and semantic security for all rates

R < Cb − Ce − 2n ln

(
nGβ

n−1
n

π

)
,

where G ≈ 92.368 and β = 231/10.

In conclusion, we have proposed an algebraic construction of lattices which achieve strong secrecy and seman-
tic security for all rates R < Cb − Ce − κ, where Cb and Ce are Bob and Eve’s channel capacities respectively,
and κ is an explicit constant gap which depends on the geometric invariants of the chosen lattices. Our codes are
almost universal in the sense that given Cb and Ce, the same code is good for secrecy for a wide range of fading
models. Since for many of the channel models we consider we don’t know the actual strong secrecy capacity, the
achievable rate Cb − Ce − κ provides a lower bound.

Remark 4.26 (Compound channel model) We also considered a compound channel model with the standard defini-
tion of compound capacity, and proved that if we consider a more restrictive uncertainty set, then we can guarantee
uniform bounds for the error probability and the leaked information, and our codes achieve a constant gap κ to the
standard compound capacity. Details can be found in Section VI of [J10].
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Open problems and related works Our model assumes perfect CSI of the legitimate channel at the receiver.
This assumption is not realistic for a fast fading channel, since in practice most of the available time slots would
have to be used to transmit training symbols for channel estimation. However, our channel model is not limited to
fast fading, but only assumes the weak law of large numbers for the channel statistics. This includes for example
a block fading model, where some fraction of each block can be used for channel estimation and the rest is left
for data transmission. We have also provided some results for the arbitrarily varying fading model in Section VI
of [J10], where Bob’s channel oscillates most of the time above a certain threshold and Eve’s channel oscillates
mostly below another threshold, without necessarily converging in mean.

Several technical improvements are needed before our lattice code construction can be implemented in practice.
As mentioned in Section 3.4, although the proposed families of lattices are deterministic, their construction is not
efficient. Moreover, our construction incurs a large gap to the secrecy capacity. This gap might be reduced by
taking suitable ideals of the ring of integers in the number field case, or ideals of orders in the division algebra
case.

After this paper was first submitted, the Generalized Construction A was extended to a MIMO wiretap setting
[37]. The problem of finding well-performing lattice codes for fading wiretap channels in fixed dimension is con-
sidered in [62], where it is shown that one can restrict the search to the set of well-rounded lattices, i.e. lattices
such that all the successive minima are equal to the first minimum. Constructions of ideal lattices from number
fields with small average flatness factor are also provided in [62].
It is interesting to note that the same lattices built from Hilbert class field towers have been considered in cryp-
tography [183]. This connection warrants further analysis in view of the recent developments in lattice-based
post-quantum cryptography.
The connection between secrecy and the channel coding goodness of dual codes also calls for further investigation.
For example, dual codes play a role in the design of LDPC codes for binary erasure wiretap channels [214, 207].

4.3 Secret key generation from Gaussian sources using lattices
Wireless channels in a rich scattering environment provide a high-entropy source of physical randomness which is
time-varying, location-dependent and hard to predict. Moreover, it is well-known that the forward and backward
channels between a pair of antennas are reciprocal, especially in the time-division duplex (TDD) mode. Thus, the
simultaneous measure of a reference signal sent in both directions between Alice and Bob results in highly similar
observations3. In contrast, an eavesdropper located at a distance of several wavelengths from Alice and Bob will
experience an almost uncorrelated realization of the channel. This source of randomness could be used to generate
session keys from mobile terminals in a decentralized manner.

The works by Maurer [165] and Ahlswede and Csiszár [4] in information theory have shown that two legitimate
users can exploit correlated observations of noisy channels to generate a shared secret key, even in the presence of
an adversary who has access to a third sequence of observations and can intercept all the messages exchanged by
the users over a public channel. Their analysis relies on the assumption of discrete random sources over countable
alphabets. The extension of this framework to continuous sources was considered in [225, 226, 154]. In [174], the
authors consider a multiterminal scenario for secret key generation from correlated Gaussian sources in the special
case where the eavesdropper has only access to the public channel, and show that the optimal strong secret key rate
can be achieved using lattice codes.

In a collaboration with Cong Ling and Matthieu Bloch [C12],[J13], we consider the problem of key generation
between two terminals, Alice and Bob, who observe correlated Gaussian sequences Xn and Yn. Unlike [174], we
assume that the eavesdropper, besides observing the exchanges over the public channel, also obtains a correlated
sequence Zn. For simplicity, we suppose that a single round of unidirectional public communication takes place
from Alice to Bob.

We consider the source model illustrated in Figure 4.7, in which Xn, Yn, Zn are generated by an i.i.d. memo-
ryless source pXYZ whose components are jointly Gaussian with zero mean. The distribution is fully described by

3In practice, though, reciprocity is not complete because of thermal noise and imperfect synchronization of the reference signals.
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Figure 4.7: Secret key generation in the presence of an eavesdropper with communication over a public channel.

the variances σ2
x, σ2

y , σ2
z and the correlation coefficients ρxy , ρxz , ρyz . We can write [225, Eq. (6)]:

Xn = ρxy
σx
σy

Yn + Wn
1 ,

Xn = ρxz
σx
σz

Zn + Wn
2 ,

(4.30)

where Wn
1 and Wn

2 are i.i.d. zero-mean Gaussian noise vectors of variances

σ2
1 = σ2

x(1− ρ2
xy), σ2

2 = σ2
x(1− ρ2

xz), (4.31)

respectively, such that σ2 > σ1, i.e., the source model is degraded. Further, Wn
1 is independent of Yn, and Wn

2 is
independent of Zn.

Alice computes a public message S and a secret key K from her observation Xn; she then transmits S over the
public channel. From this message and his own observation Yn, Bob reconstructs a key K̂.

Let Kn and Sn be the sets of secret keys and public messages respectively. A secret key rate - public rate pair
(RK , RP ) is achievable if there exists a sequence of protocols with

lim inf
n→∞

1

n
log |Kn| ≥ RK , lim sup

n→∞

1

n
log |Sn| ≤ RP ,

such that the following properties hold:

lim
n→∞

log |Kn| −H(K) = 0 (uniformity)

lim
n→∞

P
{
K 6= K̂

}
= 0 (reliability)

lim
n→∞

I(K;S,Zn) = 0 (strong secrecy).

Following [225], we denote

R(X,Y,Z) = {(RP , RK) : (RP , RK) is achievable}.

The optimal trade-off between secret key rate and public rate was derived in [225]. For the source model (4.30),
given public rate RP , the secret key rate is upper bounded by

RK ≤ R̄K(RP ) =
1

2
log

(
e−2RP +

σ2
2

σ2
1

(1− e−2RP )

)
. (4.32)

The secret key capacity of the Gaussian source model (4.30) is defined as the maximum achievable secret key rate
with unlimited public communication and is given by [225]

Cs = sup {RK such that ∃RP ≥ 0 : (RP , RK) ∈ R(X,Y,Z)} =
1

2
log

σ2
2

σ2
1

. (4.33)
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Additional notation. To simplify notation, we define Ŷn = ρxy
σx
σy

Yn and Ẑn = ρxz
σx
σz

Zn, so that{
Xn = Ŷn + Wn

1 ,

Xn = Ẑn + Wn
2 ,

(4.34)

where Ŷn and Wn
1 are independent, and Ẑn and Wn

2 are independent. We denote the variances of Ŷn and Ẑn by
σ̂y = ρxyσx =

√
σ2
x − σ2

1 and σ̂z = ρxzσx =
√
σ2
x − σ2

2 respectively.

Main contributions and related works. Our main contribution is to show that, in the case of a degraded source
model, the optimal secret key rate can be achieved by a complete lattice-coding scheme considerably different
from and much simpler than [174], which also verifies the optimal trade-off in [225].

Typically, secret key generation is composed of two distinct procedures:

- information reconciliation: Alice and Bob locate the similarities in their sequences by exchanging error-
correction bits. In the case of unidirectional communication, information reconciliation can be seen as a
lossy source coding problem with side information (Wyner-Ziv problem) [227].

- privacy amplification: Alice and Bob extract from the common sequence a secret key which is independent
of Eve’s observations.

Information reconciliation and Wyner-Ziv coding. Our strategy for information reconciliation follows the out-
line of [225, 174]: first, the source Xn is quantized; then, a public message is generated in the manner of Wyner-Ziv
coding, so that Bob can decode the quantized variable using the sequence Yn as side information. The existence
of sequences of good nested lattices for Wyner-Ziv coding has been established in [235].

Privacy amplification and randomness extraction. Our privacy amplification strategy is based on the concept of
channel intrinsic randomness, or the maximum bit rate that can be extracted from a channel output independently
of its input [28, 112]. We propose a new technique to extract the randomness, by reducing the source modulo
a suitable secrecy-good lattice. We note that nearest-neighbor quantization is not needed, and we only need to
implement the mod R(Λ) operation, which can be performed in polynomial time for many fundamental regions
R(Λ). In particular, we can choose the fundamental parallelepiped.

The L1 flatness factor. In the first version of this work [C12], we proposed a simple lattice-based key generation
scheme which does not require dithering, and achieves a secret key rate up to half a nat from the optimal. In
this scheme, quantization is performed through nearest-neighbor decoding, and privacy amplification is done by
reducing modulo a secrecy-good lattice with respect to the L∞ flatness factor.

In the recent follow-up work [J13], we improve this scheme to achieve the optimal secret key rate and the
optimal public rate / secret key rate trade-off. To do so, we introduce an extended notion of flatness factor in
which the L∞ distance is replaced by the L1 distance. This L1 flatness condition is satisfied by a wider range of
variance parameters, resulting in improved volume conditions for the chain of lattices under consideration, which
allows us to achieve the secret key capacity. We prove the existence of lattices with vanishing L1 flatness factor by
leveraging an existence result for resolvability codes for regular channels [113].

We note that the L1 smoothing parameter was already considered in [48, 60], while L1 and KL flatness factors
were used implicitly earlier in [155, p. 1656]. An upper bound on the L1 flatness factor based on the Cauchy-
Schwarz inequality was given in [168]. The independent work [65] studied the L1 smoothing parameters both
for lattices and for codes. In the case of Gaussian distributions modulo lattices, [65] obtains the same bound on
the L1 smoothing parameter as in our paper, but by a different approach, by decomposing the discrete Gaussian
distribution into a convex combination of uniform ball distributions.

Randomized quantization technique. Furthermore, we replace nearest-neighbor decoding by randomized quan-
tization [182] with dithering. Essentially, this technique allows to round a continuous Gaussian into a discrete
Gaussian distribution with slightly larger variance, provided that the flatness factor of the lattice is small. We
partially extend the result of [182] under an L1 flatness factor criterion. We show that randomized quantization
with uniform dithering (where the dither is known by all parties, including the eavesdropper) achieves the optimal
trade-off between public communication rate and secret key rate established in [225]. Since the L1 flatness factor
is only an average condition, dithering is required in order to obtain almost uniform keys.
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Before describing our key generation protocol, we introduce the new technical tools that will be needed.

The L1 flatness factor First, we introduce a weaker notion of flatness based on the L1 distance. We will denote
by fσ,R(Λ) = fσ,Λ|R(Λ) the restriction of fσ,Λ to the fundamental regionR(Λ). Note that fσ,R(Λ) is the probability
density of X̄n = [Xn] modR(Λ).

Definition 4.27 (L1 flatness factor) Given a lattice Λ, a fundamental region R(Λ) and σ > 0, we define the L1

flatness factor as follows:

ε1Λ(σ) =

∫
R(Λ)

∣∣∣∣fσ,Λ(x)− 1

V (Λ)

∣∣∣∣ dx = V(fσ,R(Λ),UR(Λ)). (4.35)

Remark 4.28 For any lattice Λ, ∀σ > 0, we have ε1Λ(σ) ≤ εΛ(σ).

The L1 flatness factor is related to the L1 smoothing parameter, which was discussed in [48, 60].
The following Lemma confirms the intuition that folded additive Gaussian noise with larger variance looks

more uniform:

Lemma 4.29 The L1 flatness factor is monotonic, i.e. for any lattice Λ, ∀σ′ > σ,

ε1Λ(σ′) ≤ ε1Λ(σ).

Definition 4.30 (L1 secrecy-good lattices) A sequence of lattices {Λ(n)} is L1 secrecy-good if for all fixed VNR
γΛ(n)(σ) < 2πe, ∀c > 0, ε1

Λ(n)(σ) = o
(

1
nc

)
, i.e., the L1 flatness factor vanishes super-polynomially.

First, we show that sequences of L1-secrecy good lattices exist under a less stringent volume condition than
the one for L∞-secrecy goodness in Theorem 4.16.

Theorem 4.31 If γΛ(σ) < 2πe is fixed, then there exists a sequence {Λ(n)} of lattices which are L1-secrecy good.

The proof of Theorem 4.31 can be found in Appendix C of [J13]. In order to show the existence of a sequence
of lattices Λ(n) such that ε1

Λ(n)(σ) = V(fσ,R(Λ(n)),UR(Λ(n))) → 0, we actually prove a stronger result, namely
that D(fσ,R(Λ(n))||UR(Λ(n)))→ 0. We build the required lattices using Construction A, and their existence follows
from the existence of linear resolvability codes in [113].

Randomized rounding Following Peikert [182, Section 4.1], we introduce the notion of randomized rounding
with respect to a lattice Λ:4

Definition 4.32 (Randomized rounding) Given an input vector x ∈ Rn, we define the random variable

bxeΛ,σ ∼ DΛ,σ,x. (4.36)

Note that bxeΛ,σ is a discrete random variable taking values in Λ.
It was shown in [182] that when Xn is i.i.d. Gaussian with variance σ2, the randomly rounded variable

bXneΛ,σQ is close in variational distance to the discrete Gaussian DΛ,σ̃ , where σ̃2 = σ2 + σ2
Q, provided that

the L∞ flatness factor εΛ(σQ) is small:

Proposition 4.33 (Adapted from Theorem 3.1 of [182]) Let Xn ∼ N (0, σ2In) and µ ∈ Rn, and consider the rounded
variable XQ = bXn + µeΛ,σQ . If εΛ(σQ) < 1/2, then

V(pXQ , DΛ,σ̃,µ)) ≤ 4εΛ(σQ),

4In essence, randomized rounding consists in sampling from a lattice Gaussian distribution centered at x. There exist several algorithms
for this task. In particular, it was proven in [96] that Klein’s algorithm [128] samples from a distribution very close to DΛ,σ,x when σ is
sufficiently large. A new algorithm was given in [224] which overcomes the restriction on σ.
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where σ̃2 = σ2 + σ2
Q.

We show a partial generalization of this result under an L1 flatness factor condition, for randomized rounding
with uniform dithering, which may be of independent interest.

Lemma 4.34 Given a Gaussian random vector Xn ∼ N (0, σ2In), a dither U ∼ UR(Λ) uniform over a fundamental
regionR(Λ) and independent of Xn, and a constant µ ∈ Rn, let XQ = bXn + U + µeΛ,σQ . Then

EU

[
V
(
pXQ|U, DΛ,σ̃,U+µ

)]
≤ 2ε1Λ(σQ).

Another useful property of discrete Gaussian distributions is that a sample DΛ,σ,c is distributed almost uni-
formly modulo a sublattice Λ′ ⊂ Λ provided that εΛ′(σ) is small [96, Corollary 2.8]:

Proposition 4.35 Let Λ′ ⊂ Λ. Then if εΛ′(σ) < 1,∥∥DΛ,σ,c mod Λ′ − UΛ/Λ′
∥∥
∞ ≤ 4εΛ′(σ)

In the statement above, with slight abuse of notation, DΛ,σ,c mod Λ′ denotes the probability density of the
random variable XD mod Λ′, where XD ∼ DΛ,σ,c.

We can partially generalize this statement in an average sense under an L1-flatness factor condition:

Lemma 4.36 Let Λ′ ⊂ Λ. Then

EU

[
V
(
DΛ,σ,U mod Λ′,UΛ/Λ′

)]
≤ 2ε1Λ′(σ)

From Lemma 4.34 and Lemma 4.36, we can immediately deduce the following:

Corollary 4.37 Consider two nested lattices Λ′ ⊂ Λ. Given a Gaussian random vector Xn ∼ N (0, σ2In), a
dither U ∼ UR(Λ) uniform over a fundamental region R(Λ) and independent of Xn, and a constant µ ∈ Rn, let
XQ = bXn + U + µeΛ,σQ . Then

EU

[
V
(
pXQ|U mod Λ′,UΛ/Λ′

)]
≤ 2ε1Λ(σQ) + 2ε1Λ′(σ̃),

where σ̃2 = σ2 + σ2
Q.

Secret key generation protocol To define our key generation scheme, we use the lattice chain Λ1 ⊇ Λ2 ⊇ Λ3,
where

- Λ1 is L1-secrecy good with respect to σQ, and serves as the “source-code" component of Wyner-Ziv coding;

- Λ2 is AWGN-good [83] with respect to σ̃1 =
√
σ2

1 + σ2
Q, and serves as the “channel-code" component in

Wyner-Ziv coding;
- Λ3 is L1-secrecy-good with respect to σ̃2 =

√
σ2

2 + σ2
Q, and serves as the extractor of randomness.

The parameter σQ controls the quantization rate.
In addition, we assume that U is a uniform dither over a fundamental regionR(Λ1), which is known by Alice, Bob
and Eve5.

The procedure of secret key generation is described as follows:

• Alice quantizes Xn to
XQ = bXn + UeΛ1,σQ

, (4.37)

according to the randomized rounding operation defined in (4.36). That is, XQ ∼ DΛ1,σQ,x+u if Xn = x,

5If Alice and Bob already share a secret source of randomness, there is no need for secret key generation. Hence, Eve should know U to
avoid trivializing the problem.
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Figure 4.8: A schematic representation of the chain of nested lattices Λ1 ⊃ Λ2 ⊃ Λ3. The fundamental regions of Λ1, Λ2 and Λ3 are
pictured in blue, red and green respectively. The quotient groups Λ1/Λ2 and Λ2/Λ3 are represented by the blue and red points respectively.

U = u, or equivalently

pXQ|Xn,U(xQ|x,u) =
fσQ(xQ − x− u)

fσQ(Λ1 − x− u)
. (4.38)

She then computes the public message

S = XnQ modV(Λ2), (4.39)

which belongs to a set of coset leaders of Λ1/Λ2 in V(Λ2), and transmits its index to Bob as the public
message. Furthermore, Alice computes the key

K = QΛ2
(XnQ) modR(Λ3), (4.40)

which belongs to a set of coset leaders of Λ2/Λ3 inR(Λ3). Note that

Xn = EnQ + S + K + λ3 (4.41)

for some λ3 ∈ Λ3, where EnQ = Xn − XnQ ∈ V(Λ1) is the quantization error.

• Bob receives S and reconstructs

X̂nQ = S +QΛ2

(
ρxy

σx
σy

Yn − S

)
.

He then computes his version of the key

K̂ = QΛ2(X̂nQ) modR(Λ3).

Let X̄Q = XQ modR(Λ3) ∈ Λ1/Λ3, where the quotient Λ1/Λ3 is identified with the set of coset representa-
tives Λ1 ∩R(Λ3). By definition, X̄Q = S + K.

We now state our main result:

Theorem 4.38 For the Gaussian source model (4.30), there exists a sequence of nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1

such that for any public rate RP > 0, the previous secret key generation protocol asymptotically achieves the
optimal secret key rate R̄K(RP ) in (4.32). In particular, any secret key rate RK < Cs = 1

2 log
σ2

2

σ2
1

is achievable.

We summarize here the key steps of the proof. More details can be found in [J13].

Reliability: To show that Bob can decode the key with high probability, we note that a sufficient condition to
have K = K̂ is that X̂Q = XQ, or equivalently, QΛ2

(Ŷn + U − XQ) = 0, i.e. Ŷn ∈ XQ − U + V(Λ2). We show
that P{X̂Q 6= XQ} vanishes provided that Λ1 is L1 secrecy-good, Λ2 is AWGN-good and the following volume
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conditions hold:

V (Λ1)2/n

σ2
Q

< 2πe, (4.42)

V (Λ2)2/n

σ̃2
1

> 2πe. (4.43)

Uniformity: We want to show that the key is asymptotically uniform when n→∞. Let σ̃2
x = σ2

x + σ2
Q. First, we

show that the distribution of the key is close to the uniform distribution UK over K = Λ2/Λ3 since

V(pK,UK) = V(pX̄Q ,UΛ1/Λ3
) ≤ EU

[
V
(
pXQ|U mod Λ3,UΛ1/Λ3

)] (a)

≤ 2ε1Λ1
(σQ) + 2ε1Λ3

(σ̃2) (4.44)

where (a) follows from Corollary 4.37 and Lemma 4.29, since σ̃2
2 ≤ σ̃2

x. The term (4.44) vanishes as o
(

1
n

)
if both

Λ1 and Λ3 are L1-secrecy good and satisfy the volume conditions (4.42) and

V (Λ3)2/n

σ̃2
2

< 2πe. (4.45)

Using [54, Lemma 2.7], we have that if V(pK,UK) ≤ 1
2 ,

|H(pK)−H(UK)| ≤ −V(pK,UK) log
V(pK,UK)

|K|
.

This vanishes as long as V(pK,UK) ∼ o
(

1
n

)
, which is indeed the case.

Strong secrecy: Using [53, Lemma 1], we can bound the leakage as follows:

I(K;S,Zn,U) = I(K;S, Ẑn,U) ≤ dav log
|K|
dav

, (4.46)

where

dav =
∑
k∈K

pK(k)V(pSẐnU|K=k, pSẐnU) (4.47)

We want to show that dav vanishes as o
(

1
n

)
assuming the conditions (4.42) and (4.45). The proof is rather technical

and requires splitting the bound into several terms; a key observation is that on average over the dither and over
the eavesdropper’s received signal,∫

Rn
pẐn(z)EU

[
V
(
pXQ|Ẑn=z,U mod Λ3,UΛ1/Λ3

)]
dz ≤ 2ε1Λ1

(σQ) + 2ε1Λ3
(σ̃2),

where σ̃2
2 = σ2

2+σ2
Q. This follows by noticing that pXQ|Ẑn,U(xQ|z,u) is the distribution of bWn

2 + z + ueΛ1,σQ

and by applying Corollary 4.37.
Achievable strong secrecy rate and optimal trade-off: In the previous sections we have imposed the conditions

(4.42), (4.43) and (4.45) on the volumes of Λ1, Λ2 and Λ3 respectively, i.e.

V (Λ1)2/n

σ2
Q

< 2πe,
V (Λ2)2/n

σ̃2
1

> 2πe,
V (Λ3)2/n

σ̃2
2

< 2πe.

Therefore, the achievable secret key rate is upper bounded by

RK =
1

n
log

V (Λ3)

V (Λ2)
<

1

2
log

σ̃2
2

σ̃2
1

=
1

2
log

σ2
2 + σ2

Q

σ2
1 + σ2

Q

(4.48)
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As σQ → 0,

RK →
1

2
log

σ2
2

σ2
1

,

which is the optimal secret key rate.
The public communication rate is lower bounded by

RP =
1

n
log

V (Λ2)

V (Λ1)
>

1

2
log

σ2
1 + σ2

Q

σ2
Q

.

Equivalently, we have σ2
Q >

σ2
1

e2RP−1
. Replacing this expression in the bound (4.48) for RK , and observing that

(4.48) is a decreasing function of σ2
Q, we find

RK <
1

2
log

(
e−2RP +

σ2
2

σ2
1

(1− e−2RP )

)
.

which corresponds to the optimal public rate / secret key rate trade-off (4.32).

Remark 4.39 The optimal scaling of the lattice Λ3 requires the noise variance σ2 to be known by Alice; if only a
lower bound for σ2 is available, positive secret key rates can still be attained.

Some open problems and perspectives related to this work will be presented in Chapter 6.

4.4 Reconciliation for secret key generation protocols based on Learning
With Errors

As seen in the previous sections, in our work on wiretap coding and secret key generation using lattices we have
borrowed some technical tools from lattice-based cryptography, such as the flatness factor, which is an equivalent
formulation of the smoothing parameter. As part of Charbel Saliba’s PhD thesis [197], we investigated reconcilia-
tion and error-correction techniques for secret-key generation cryptographic protocols based on lattices.

Currently, lattice-based cryptographic primitives are among the most promising candidates for the new gener-
ation of post-quantum secure cryptographic protocols. In particular, many of the key-establishment protocols and
digital signature methods submitted to the post-quantum cryptography challenge launched by the U.S. National
Institute of Standards and Technology (NIST) since 2016 are based on lattices.
One of the most widely used lattice-based cryptographic primitives is the Learning With Errors (LWE) problem
introduced by Regev [193]. The decision version of the LWE problem is stated informally as follows:

Definition 4.40 (LWEq,χ) Let q = poly(n) be an integer and χ a Gaussian-like distribution over Z. Letm = poly(n),
referred sometimes as the number of samples. For a secret vector s ∈ Znq and anm×n dimensional matrix A sam-
pled uniformly from Zm×nq , consider an error term e drawn from the χm distribution and denote b = As+e. The
problem asks to distinguish between the two samples (A,b) and (A′,b′), where A′ and b′ are uniform samples
from Zm×nq and Znq respectively.

The LWE problem admits a worst-case quantum reduction from the shortest independent vector problem (SIVP)
to within a polynomial approximation factor for generic lattices. Informally speaking, Regev’s result can be sum-
marized as follows: given an n-dimensional lattice L and a rounded Gaussian error distribution χ with parameter
αq ≥ 2

√
n for α = α(n) ∈ (0, 1), there exists a polynomial-time quantum reduction from SIVPL,γ to LWEq,χ,

where γ ≤ 2
√

2n
α ηε(L) depends on the smoothing parameter ηε(L) (see Definition 4.9), and ε is a negligible func-

tion of n.
The LWE problem can be used to build a variety of cryptographic algorithms and provides guarantees in terms
of IND-CPA (indistinguishability under chosen-plaintext attack) [193] and IND-CCA (indistinguishability under
chosen-ciphertext attack) security [184]. Other applications of LWE include fully homomorphic encryption [33].
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Although the theoretical results in [193] were proven under the assumption that χ is a rounded Gaussian dis-
tribution, sampling rounded Gaussians or discrete Gaussians requires a significant algorithmic effort, and many
cryptosystems employ other distributions that are easier to implement, such as the centered binomial distribution
[9]. This modification does not significantly degrade the secrecy performance as long as the two distributions are
close in Rényi divergence.
The public key size for LWE-based encryption is of the order O(n2), which renders this method impractical com-
pared to RSA. Two structured variants of LWE, the decision Ring Learning With Errors (RLWE) and Module
Learning With Errors (MLWE) were proposed in [161] and [135] respectively to allow for more compact represen-
tations and shorter keys of size O(n). Given the ring of integers R of an algebraic number field and its quotient
ring Rq = R/qR, the M− LWE problem consists in distinguishing uniform samples (~ai,bi) ← Rdq × Rq from
samples (~ai,bi) ← Rdq × Rq where ~ai ← Rdq is uniform, bi = 〈~ai,~s〉 + ei with ei generated from a “Gaussian-
like” distribution Ψ on Rq , and ~s← Ψd. Solving MLWE was shown to be at least as hard as solving approximate
SIVP on module lattices, i.e., lattices corresponding to modules over the ring R.

We present a common setting for LWE-based key encapsulation mechanisms (KEM) in Table 4.1. More pre-
cisely, this is a common setting for an LWE-based Public Key Encryption (PKE) scheme. The Fujisaki-Okamoto
transform is then used to obtain an IND-CCA secure KEM from an IND-CPA secure PKE [120]. We consider two

Parameters: m,n, q and error distribution χ on Zq
Alice (Server) Bob (Client)
A

$←− Zm×nq S′
$←− χm̄×m,E′ $←− χm̄×n

S
$←− χn×n̄, E

$←− χm×n̄ E′′
$←− χm̄×n̄

B = AS + E ∈ Zm×n̄q

(A,B)−−−−→ U = S′A + E′

V′ = US
U←− V = S′B + E′′

Table 4.1: Common setting for LWE-based KEMs.

terminals, Alice and Bob (Server and Client), whose aim is to generate the same private key. We note that while
in physical layer security the randomness inherent in the physical channel can be used to generate secret keys (see
Section 4.3), in cryptographic protocols the pseudo-random noise is generated at the legitimate terminals.

Given integer parameters m,n and the modulus q, Alice chooses a uniformly random matrix A ∈ Zm×nq as
well as two random ‘small’ error matrices S,E such that each component is generated from the Gaussian-like error
distribution χ, and sends the LWE sample pair (A,B) as a public key to Bob. Bob generates S′,E′ and E′′ and
computes the LWE samples

U = S′A + E′mod q, V = S′B + E′′mod q.

The term U is sent back to Alice who uses it to compute V′ = US with her secret key S. Note that

V −V′ = S′E + E′′ −E′S mod q. (4.49)

When the distribution χ is chosen appropriately, the term (S′E + E′′ −E′S) is small with high probability, and
therefore the values V and V′ are close to S′AS and can be used to generate a common key through an addi-
tional exchange of information, as explained in the next sections. For this kind of scheme, IND-CPA security
follows from the hardness of decision-LWE [151]. Informally speaking, one should prove that all the informa-
tion exchanged on the public channel is indistinguishable from uniformly random from the point of view of an
adversary. In fact, as seen from Table 4.1, since B was constructed as an LWE sample, the public key (A,B) is
computationally indistinguishable from uniform (A,B∗) assuming the hardness of decision-LWE (see Definition
4.40). For the same reason, the matrices U and V are also indistinguishable from uniformly random. We note that
if additional reconciliation messages are exchanged, these should also be provably pseudo-random.

The structure of the protocol brings to mind the Diffie-Hellman protocol [66] where the public parameter
A ∈ Zm×nq corresponds to the generator of the group and the noise-free product is analogous to exponentiation.
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The presence of noise due to error terms leads to so-called “Noisy Diffie-Hellman” protocols [3, 151]. If the
random noise terms are large, an error will occur during the recovery of the private key, affecting the reliability of
the scheme. As a result, it is necessary to choose the error distribution in such a way that the failure probability is
guaranteed to be exponentially small. This is important not only for reliability, but also for the security parameters
when an IND-CPA secure PKE is transformed into an IND-CCA secure KEM. For instance, an insufficiently
small error probability can cause a leakage of information due to decryption failure attacks [63] where a failure
boosting technique is used to increase the failure rate. To keep the error probability small, one can use either error
correction or reconciliation approaches. These techniques make it possible to agree on an exact shared private key
by providing Bob with some additional information.

Encryption-based approach. This first approach is used in many LWE-based encryption schemes, such as [151,
172, 13]. Table 4.2 illustrates this approach. As shown, Bob unilaterally generates a uniform message m ∈ {0, 1}`

Parameters: m,n, m̄, n̄, q and error distribution χ on Zq
Alice (Server) Bob (Client)
A

$←− Zm×nq S′
$←− χm̄×m,E′ $←− χm̄×n

S
$←− χn×n̄, E $←− χm×n̄ E′′

$←− χm̄×n̄

B = AS + E ∈ Zm×n̄q
(A,B)−−−−→ m

$←− {0, 1}`
U = S′A + E′

V = S′B + E′′

V′ = US
(U,C)←−−−− C = V + ENCODE(m)

m′ = DECODE(C−V′)

Table 4.2: Encryption-based KEM.

and encodes it using some well defined injective function ENCODE that maps {0, 1}` into Zm̄×n̄q . He then sends
the cyphertext C = V + ENCODE(m) to Alice so that she can recover m′ by applying the decoding function
DECODE(C−US).

Reconciliation-based approach. The reconciliation method [67] allows two parties who have obtained noisy
observations to come to an exact agreement about the value of the key, and consists in sending an auxiliary mes-
sage R from Bob to Alice in order to help her recover the private key from her noisy observation V′. As shown

Parameters: m,n, m̄, n̄, q and error distribution χ on Zq
Alice (Server) Bob (Client)
A

$←− Zm×nq S′
$←− χm̄×m,E′ $←− χm̄×n

S
$←− χn×n̄, E $←− χm×n̄ E′′

$←− χm̄×n̄

B = AS + E ∈ Zm×n̄q
(A,B)−−−−→

U = S′A + E′

V = S′B + E′′

V′ = US
(U,R)←−−−− R = HELPREC(V)

µ′ = REC(V′,R) µ = REC(V,R)

Table 4.3: Reconciliation-based KEM.

in Table 4.3, Bob produces a reconciliation message R using the function HELPREC and uses it to generate the
private key µ by applying the function REC that computes a private key µ given a noisy observation and the recon-
ciliation information. He then sends the message R to Alice. This information aims to correct the bias that exists
between V and V′. Alice can now use the function REC to compute the private key µ′.
One example of this technique is the proof-of-concept in [185], which uses the one dimensional lattice Z in order
to agree on one bit of private key, with the priority of keeping a low bandwidth. Other works proposed reconcili-
ation with higher-dimensional lattices; for instance the NIST first-round protocol New Hope based on RLWE [9]
considers the four dimensional lattice D̃4.
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We observe that the lattice-based reconciliation steps mentioned previously are essentially of the same form6

as in our information-theoretic key generation protocol described in Section 4.37. Namely, given a lattice partition
chain Λ3 ⊆ Λ2 ⊆ Λ1, Bob computes the reconciliation message R as R = QΛ1

(V) mod Λ2 and transmits it to
Alice. Furthermore, Bob computes the private key as µ = QΛ2(V,R) mod Λ3. These equations correspond to
(4.39) and (4.40).

Main contributions. The aim of Charbel Saliba’s thesis [197] was to improve some of the key encapsulation
mechanisms proposed for the NIST challenge in terms of security, reliability and bandwidth by introducing new
error correction or reconciliation techniques.
The main challenges in this setting are due to the fact that the target error probability is far beyond the range of
numerical simulations, and moreover the components of the error distribution are not independent. Some works
which use error correcting codes to improve the performance [159, 146] compute the error probability under an
independence assumption which does not hold in practice. However, this has been shown to lead to underestimating
the error probability by a very large exponential factor [75]. In this thesis, we choose instead to derive rigorous
error probability bounds following the example of [9]. Our main inspiration comes from the nested lattice chain
method of [C12], but we focus on reconciliation/error correction using a sublattice Λ2 of small dimensional in
order to keep a low complexity.

Error-correction for FrodoKEM [C27]. We first consider the alternative NIST candidate FrodoKEM [172],
which is an LWE-based KEM, and propose a modification at the level of the encoding function. We define a new
encoder which maps the private key block-wise into the 8-dimensional Gosset lattice E8. We choose E8 since
it gives the densest 8-dimensional packing, resulting in a more efficient decoding, and admits a low-complexity
quantization. We propose three sets of parameters for our modified implementation. Thanks to the improved error
correction, the first implementation allows to reduce the bandwidth by 7% by halving the modulus q; the second
outperforms FrodoKEM in terms of plausible security by 10 to 13 bits by increasing the error variance, and the
third one aims to increase the key size by approximately 50%. In all cases, our scheme can ensure a smaller
decryption failure probability compared to the original FrodoKEM.

Reconciliation for KyberKEM [C24]. Next, we focus on the KyberKEM protocol8 [13]. We propose a modifi-
cation of KyberKEM featuring a reconciliation mechanism based on E8. The main technical contribution of this
work is a rigorous bound for the decryption failure probability using a polynomial splitting and a union bound over
Voronoi-relevant vectors in the Gosset lattice. The final computation of the bound requires extensive numerical
simulations. More details can be found in [197, Section 4.4.3].
Similarly to KyberKEM, our scheme generates 256 bits of key and requires 5 or 6 bits of reconciliation per dimen-
sion. We show that it can outperform KyberKEM in terms of the modulus q with comparable error probability and
similar requirements in terms of bandwidth. For instance, our construction guarantees a smaller error probability
than KyberKEM-768’s, i.e. Pe ≤ 2−174 < 2−164, with a smaller modulus q = 211 < 3329, using 5 bits of rec-
onciliation per dimension. For this choice of q, our scheme achieves 176 bits of post-quantum security compared
to 164 bits9. A similar improvement can be obtained for KyberKEM-512. Note that unlike KyberKEM, where the
modulus q is prime and the Number Theoretic Transform is used for fast polynomial multiplication, we choose q to
be a power of two. In this case, efficient polynomial multiplication is still possible using Karatsuba / Toom-Cook
algorithms. Moreover, unlike [185, 9], we don’t need dithering to obtain a uniform key thanks to the fact that q is
even.

6For instance, in [9] the functions HELPREC and REC can be written as the above form by considering the product lattices
Λ1 = (qD̃4/2p)256, Λ2 = (qD̃4)256 and Λ3 = qZ1024.

7Note that the roles of Alice and Bob are exchanged.
8We note that after our work was completed, KyberKEM was officially selected by NIST for standardization.
9After our work was published, the security estimates for KyberKEM (as well as for other NIST candidates such as SABER) have been

questioned due to improved lattice attacks in [104, 164]. However, there is no full consensus in the community about the validity of these
attacks which are based on some heuristics [69]. The result quoted above does not take into account these recent developments.
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Open problems and perspectives

As part of Charbel Saliba’s thesis [197] we also investigated the use of higher-dimensional lattices, such as Barnes-
Wall lattices, for reconciliation. However, our results are inconclusive and we were unable to obtain an error
probability bound in the range required for post-quantum cryptography applications. In part, this is due to the fact
that it is difficult to obtain rigorous and tight bounds for the error probability for high-dimensional lattices. A rather
counter-intuitive conclusion is that the use of higher-dimensional lattices does not necessarily bring a gain in terms
of minimum distance due to the scaling constraints imposed by the modulo-q integer arithmetic of LWE protocols.
After our work was published, [167] revisited the error correction framework by focusing on the limits of this type
of protocol in terms of rate (i.e. the ratio of plaintext size to ciphertext size), and showed that compression of the
ciphertext is required in order to approach rate 1 asymptotically. One important application for error correction is
fully homomorphic encryption based on LWE or RLWE [32, 33], where noise amplification is the main limiting
factor for the number of homomorphic operations.



5 COORDINATION OF AUTONOMOUS AGENTS - INFORMATION THEO-
RETIC BOUNDS AND CODING SCHEMES

The fifth generation of wireless networks (5G) introduced machine to machine communication and the Internet
of Things: a unified network of connected objects including embedded sensors, medical devices, smart meters,
and autonomous vehicles. In addition to faster communications, it also supports the next wave of technological
innovation, from connected cars to factory automation, smart cities, robot-assisted surgery, virtual reality and edge
computing.

Future smart decentralized networks must be able to cooperate, to take decisions in a distributed fashion and to
reconfigure dynamically by reacting to changes in their environment. In order to achieve such behavior, one must
develop efficient techniques to coordinate the actions of different nodes. This problem is of an interdisciplinary
nature and brings together various research fields, such as network information theory, distributed control, game
theory, and parallel processing. Among the challenges that must be addressed to develop distributed systems, a
key aspect is to reach a better understanding of the interplay between coordination and communication.

State of the art A promising framework in network information theory, which analyzes new purposes for com-
munication beyond the traditional transfer of information under a reliability constraint, has been proposed by Cuff,
Permuter and Cover [56], related to earlier work on “Shannon’s reverse coding theorem” [23] and the compression
of probability distributions [134]. This framework also relates to the game-theoretic perspective on coordina-
tion [102] which has applications, for example, to power control [137]. In this chapter, we mostly adopt the
viewpoint of [56]. The key idea is to model the actions performed by agents in the network by discrete random
variables, and to measure the level of coordination by the distance of their joint probability distribution from a
target distribution; information enters the network in the form of actions which are assigned to certain nodes by
external constraints. The goal is to characterize the minimal communication rate among the nodes that is asymptot-
ically necessary to establish coordination. In particular, it can be shown that the naïve approach of sending explicit
messages describing the actions is inefficient in general. In contrast, by exploiting common randomness available
at the nodes, the communication rates required to coordinate correlated actions can be significantly reduced. In
some settings, common randomness (provided for example by a GPS timestamp) may be less expensive to get than
communication.

In this chapter, we mostly focus on the simplified scenario of a two-node network. As we will see, even this
simple case gives rise to non-trivial problems in information theory.

Consider the setting in Figure 5.1 where two nodes are connected by a one-directional error-free link of rate R.
We will assume that a common source of uniform randomness C, of rate R0, is available at the nodes.

Figure 5.1: Coordination of actions for a two-node network with an error-free link.
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At time i = 1, . . . , n, the nodes perform the actionsUi and Vi respectively. The source sequenceUn is assigned
by nature1 according to the fixed distribution P̄Un . The encoder generates a message M as a stochastic function of
Un and the common randomness C. The message is sent through the error-free link and the sequence of actions
V n is generated at the second node as a function of M and C.

In [56], two different notions of coordination are proposed, empirical and strong coordination, depending on
the choice of metric on the space of joint distributions.

Empirical coordination measures an average behavior over time, requiring that the two sequences of actions
be statistically indistinguishable on average, i.e. have the same histogram or type:

Definition 5.1 (Empirical coordination) A joint distribution P̄UV and a rate of communication R are achievable for
empirical coordination if there exists a sequence (fn, gn) of encoders-decoders such that ∀ε > 0, ∃n̄ such that
∀n ≥ n̄,

P
{
V
(
TUnV n , P̄UV

)
> ε
}
< ε,

where

TUnV n(u, v) =
1

n

n∑
i=1

1 {(ui, vi) = (u, v)}

is the joint histogram of the actions induced by the code (fn, gn).

Namely, the distance between the joint histogram and the target distribution converges to zero in probability as
n→∞.

Definition 5.2 (Empirical coordination region) The empirical coordination region Re is the closure of the set of
achievable pairs (P̄UV , R)2.

In contrast, strong coordination requires the distribution of the sequence of joint actions to converge to the
target in total variational distance when the sequence length tends to infinity.

Definition 5.3 (Strong coordination) A sequence (P̄UV , R,R0) is achievable for strong coordination if there exists
a sequence (fn, gn) of encoders-decoders with rate of common randomness R0, such that

lim
n→∞

V
(
PUnV n , P̄

⊗n
UV

)
= 0,

where PUnV n is the joint distribution induced by the code (fn, gn).

Definition 5.4 (Strong coordination region) The strong coordination region R is the closure of the set of achievable
(P̄UV , R,R0).

Empirical coordination turns out to have a close connection to rate-distortion theory. For instance, one can
show that any good code for lossy source coding is good for empirical coordination and vice-versa. On the other
side, strong coordination is related to a different mechanism, namely channel resolvability [108] (see Chapter 4).

Remark 5.5 We note that strong coordination is to be preferred form a security standpoint. For example, it might
be useful to make the sequence of actions appear unpredictable to an adversary who observes the actions of the
nodes and tries to anticipate and exploit patterns. Suppose that the adversary performs a statistical test to decide if
the distribution P induced by the code is indistinguishable in total variational distance from the i.i.d. distribution
P̄ (hypothesis H0). We denote α the probability of Type I error (rejecting H0 when true) and β the probability of
Type II error (accepting H0 when false). In [147] it is proved that it is possible for the adversary to design blind
tests (ignoring his channel observations) that achieve any pair (α, β) such that α+ β = 1, and that the adversary’s

1Without the assumption that some actions are assigned by nature, the problem becomes trivial. If the two nodes can choose their actions
and common randomness is available, no communication is required between the nodes and, if the nodes can agree ahead of time on how they
will behave in the presence of common randomness, any conditional distribution P̄V n|Un can be generated [57].

2This definition allows to avoid boundary complications, see [56].
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optimal test satisfies α+ β ≥ 1−V(P, P̄ ). By minimizing the variational distance between the two distributions,
we ensure that the adversary’s best statistical test is not much better than that of a blind test.

Of course, in the setting of Figure 5.1, a trivial solution to the coordination problem would be to have the first
node communicate its randomized actions to the second node using the error-free link, which would require a rate
of at least H(U) bits per action. Then, the second node would just have to simulate a discrete memoryless channel
PV |U using local randomness. However, it turns out that this strategy is an excessive use of communication. The
empirical and strong coordination regions were characterized in [56]:

RCuff,e =
{

(P̄UV , R) | P̄UV = P̄V P̄V |U , R ≥ I(U ;V )
}
, (5.1)

RCuff =

(P̄UV , R,R0)

∣∣∣∣∣∣∣∣
P̄UV = P̄V P̄V |U

∃W taking values inW, |W| ≤ |U × V|+ 1, P̄UWV = P̄U P̄W |U P̄V |W

R ≥ I(U ;W ), R+R0 ≥ I(UV ;W )


(5.2)

This result characterizes the trade-off between the rate R0 of available common randomness and the required
description rate R for simulating a discrete memoryless channel for a fixed input distribution.

Coding schemes for coordination An important question is how to design practical codes to achieve the coor-
dination regions above. One of the hurdles faced for code design is that the metric to optimize is not a probability
of error but a variational distance between distributions. Polar codes [11] prove themselves to be particularly well
suited to translate information theoretic properties such as coordination.

A first construction using polar codes for empirical coordination in two-node and three-node cascade networks
was proposed in [27], exploiting the connection with rate-distortion theory.

In a collaboration with M. Bloch and J. Kliewer [C11], presented in the next section, we showed that polar
codes can achieve strong coordination in a two-node system in the special case when the action imposed by nature
is binary and uniform.

5.1 Polar codes for strong coordination of uniform actions over error-free
links

Polar codes First, we briefly review the concepts and notation related to polar codes [11] that will be used in the
sequel. The key element in the polar coding construction is the decomposition of n = 2m independent copies of a
given binary-input discrete-memoryless channel W : {0, 1} → V into n bit-channels which are essentially either
error-free or pure noise channels. Specifically, consider the transformation Gn = G⊗n2 Pn where

G2 =

(
1 0

1 1

)
is the kernel matrix of polar codes, ⊗ is the Kronecker product and Pn is the bit-reversal permutation matrix. The
general polarization transform for length n = 2m proceeds in two steps:

1) Channel combining: define a vector channel

Wn(v|u) = Wn(v|x), x = Gnu.

2) Channel splitting: define the bit channels W (i)
n : {0, 1} → Vn × {0, 1}i−1, i = 1, . . . , n with transition

probabilities

W (i)
n (v, (u1, . . . , ui−1)|ui) =

∑
ui+1,...,un

1

2n−1
Wn(v|u).
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Polar codes for channel resolvability. We now design a simple polar coding scheme for channel resolvability
(see Definition 4.1) for uniform binary sources and symmetric channels. Instead of considering Arikan’s standard
notion of good and bad bit channels [11], which is based on the Bhattacharyya parameter, we adopt Mahdavifar
and Vardy’s notion of “poor bit-channels” which was introduced in the context of wiretap polar codes [162]. More
precisely, given 0 < β < 1/2, we define

Pn =
{
i ∈ J1, nK : C(W (i)

n ) < 2−n
β
}
,

Gn =
{
i ∈ J1, nK : C(W (i)

n ) ≥ 2−n
β
}
.

Let r = |Gn|. Then, it was shown in [162, Proposition 20] that

lim
n→∞

r

n
= C(W ), (5.3)

where the limit is approached from above. Given two vectors xr ∈ {0, 1}r and sn−r ∈ {0, 1}n−r, we let
(xr||sn−r) denote the vector un ∈ {0, 1}n such that u|Gn = xr and u|Pn = sn−r.

Our strategy to simulate the i.i.d. output process distributed according to P̄V is to send random uniform bits
on the “good bits” Gn, and fixed bits (for instance, zeros) on the poor bits Pn. We denote by Cn the corresponding
coset code, of rate r/n. The codewords in Cn will be of the form x = Gn(xr||0n−r)T .

Intuitively, the uniform bits will be preserved by the noiseless bit-channels, while the pure noise bit-channels
will produce almost-uniform bits for any input.

Proposition 5.6 If the channel W : U = {0, 1} → V is symmetric and P̄U ∼ B( 1
2 ), then {Cn}n≥1 is a sequence of

resolvability codes of resolution rate C(W ) for (W, P̄U ).

Proof. The condition for the resolution rate is verified due to (5.3). Following [162], we consider the composite
channel Qn : {0, 1}n−r → Vn, which includes the polar code and the random bits sent on the good bits Gn as
follows:

Qn(vn|sn−r) =
1

2r

∑
xr∈{0,1}r

Wn
(
vn
∣∣∣Gn(xr||sn−r)T

)
.

It was shown in [162, Proposition 13] that Qn is symmetric and that

C(Qn) ≤
∑
i∈Pn

C(W (i)
n ) ≤ (n− r)2−n

β

. (5.4)

We now show that this last inequality implies that {Cn}n≥1 form a sequence of resolvability codes.
The output distribution PV n induced by the code Cn coincides with the output distribution Qn(·||0n−r) of the

constant input sn−r = 0n−r. Moreover, since Qn is symmetric and Gn is full-rank, the output of the channel Qn
for a uniformly distributed input on {0, 1}n−r has the desired distribution P̄⊗nV , where P̄V ∼ B

(
1
2

)
. We recall the

following property of symmetric channels [91]:

Lemma 5.7 If W : X → Y is a memoryless symmetric channel and if P̄Y is the output distribution corresponding
to the uniform input distribution P̄X on X , then

∀x ∈ X , C(W ) = D(WY|X=x||P̄Y ).

Applying Lemma 5.7 to the channel Qn, we find that

D(PV n ||P̄⊗nV ) = D(Qn(·|0n−r)||P̄⊗nV ) = C(Qn),

so that limn→∞D
(
PV n ||P̄⊗nV

)
= 0. Pinsker’s inequality then ensures that limn→∞V(PV n , P̄

⊗n
V ) = 0.

Remark 5.8 The choice of frozen bits set at 0n−r is arbitrary. The choice of a different coset code characterized
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F3

PUV |Z GUV |Z

GU |ZPU |Z

F1 F2

Figure 5.2: Illustration of partition sets F1, F2, F3 (after reordering of indices).

by uF in place of 0n−r does not alter the reasoning. In particular, the symmetry of the channel Qn and (5.7) still
hold.

Coding scheme for strong coordination We now get back to the two-node coordination setting illustrated in
Figure 5.1. We will restrict our attention to the case where U = {0, 1}, P̄U ∼ B(1/2), and the conditional
distribution of actions P̄V |U is symmetric.

Let Z be an auxiliary binary random variable satisfying the following conditions:
a) U − Z − V forms a Markov chain, i.e. P̄UZV = P̄U P̄Z|U P̄V |Z ;
b) the transition probabilities P̄U |Z and P̄V |Z correspond to symmetric channels.

We first construct polar codes of length n = 2m for the channel with transition probabilities W̄ = P̄UV |Z as
follows.

- For the symmetric channel W̄ , and for i ∈ J1, nK, we let W̄ (i)
n be the corresponding set of bit channels. We

define the sets

GUV |Z =
{
i ∈ J1, nK : C(W̄ (i)

n ) ≥ 2−n
β
}
,

PUV |Z = J1, nK \ GUV |Z . (5.5)

- For the symmetric channel W̃ = P̄U |Z , and for i ∈ J1, nK, we let W̃ (i)
n be the corresponding set of bit

channels. We define the sets

GU |Z =
{
i ∈ J1, nK : C(W̃ (i)

n ) ≥ 2−n
β
}
,

PU |Z = J1, nK \ GU |Z . (5.6)

One can show that these sets satisfy the following property:

PU |Z ⊂ PUV |Z , BUV |Z ⊂ BU |Z . (5.7)

Consequently, the sets F1, F2 and F3 defined as

F1 = PUV |Z , F2 = GUV |Z ∩ PU |Z , F3 = GUV |Z ∩ GU |Z .

form a partition of J1, nK, which is illustrated in Figure 5.2.
We now exploit these sets to construct a coordination code, by leveraging results on lossy source coding with

polar codes [133]. The bits in positions F1 are frozen bits with values uF1
= 0F1

fixed at all times. The encoding
and decoding procedures are then the following.

Operation at Node 1: To encode a sequence of binary actions x ∈ {0, 1}n provided by nature, Node 1
performs successive-cancellation (SC) encoding [133] to determine the value of the bits uF3

in F3, using the bits
uF2 from the common randomness in positions F2 and the frozen bits uF1 in position F1.

The bits in F3 are then transmitted to Node 2. Note that the encoding complexity is that of SC encoding, which
is O(n log n).

Operation at Node 2: To create a sequence of coordinated actions v ∈ Vn, Node 2 creates a vector u with
frozen bits uF1 , common randomness bits uF2 , and received bits uF3 in positions F1, F2, F3, respectively. It then
computes the vector Gnu, and simulates its transmission over a memoryless channel with transition probabilities
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P̄V |W . The resulting vector v is used as the sequence of coordinated actions. The encoding complexity is again
O(n log n).

The scheme operates at communication rate R = |F3|
n and requires a rate R0 = |F2|

n of common randomness.
Our main result is the following.

Proposition 5.9 For any random variable Z satisfying the conditions a) and b), (P̄UV , R,R0) is achievable for
strong coordination if

R+R0 > I(UV ;Z) and R > I(U ;Z).

Sketch of proof. One can show that the joint distribution P̃ (x,v) induced by the encoding/decoding procedures
is asymptotically close to the target distribution P̄⊗nUV (x,v). By recalling that F2 ∪ F3 = GUV |Z and that the
bits in positions F2 and F3 are i.i.d B(1/2) random bits, Proposition 5.6 guarantees that the coding scheme is a
resolvability code for W̄ with a resolution rate R + R0 satisfying limn→∞

1
n

∣∣GUV |Z∣∣ = C(W̄ ) = I(UV ;Z).
Moreover, since F3 = GU |Z and since the bits in position F3 are i.i.d. B(1/2) random bits, Proposition 5.6 and
Remark 5.8 ensure that limn→∞

1
n

∣∣GU |W ∣∣ = C(W̃ ) = I(U ;Z).

In general, the achievable coordination region with polar codes given in Proposition 5.9 is strictly smaller than
the coordination capacity regionRCuff because of the constraints on the random variable Z.

Follow-up work. Our polar coding scheme was restricted to the case where the action P̄U imposed by nature is
binary and uniform, and the action to coordinate is obtained via a symmetric discrete memoryless channel P̄V |U .
It was extended to general actions in [47] using a block-Markov encoding scheme.

5.2 Coordination of signals and actions over noisy channels
Up to now, we have studied the problem of coordination assuming that an error-free line of communication is
available between the agents. In Giulia Cervia’s PhD thesis [40], [J11], we considered a more realistic scenario
where the two agents communicate through a noisy channel.

In this setting, the signals that are transmitted and received over the physical channel become a part of what
can be observed. One may therefore wish to coordinate both behaviors and communication, so that the sequence
of both signals and actions follows a prescribed joint distribution [59]. This is particularly interesting if security
is required: if for example we require the actions of the agents to appear independent of the communication, a
malicious eavesdropper who observes the channel cannot infer anything about the source and the reconstruction
without having access to the source of common randomness [201].

This scenario presents two conflicting goals: the encoder needs to convey a message to the decoder to coordi-
nate the actions, while simultaneously coordinating the signals coding the message.

Figure 5.3: Coordination of signals and actions for a two-node network with a noisy channel with non-causal encoder and decoder.

Figure 5.3 illustrates the coordination of signals and actions in a two-node network over a noisy channel. We
assume that encoder and decoder are non-causal, and that they have access to a shared source of uniform random-
ness C ∈ [1, 2nR0 ]. The encoder observes an i.i.d. source Un ∈ Un with distribution P̄U , and selects a signal
Xn = fn(Un, C). The signal Xn is transmitted over a discrete memoryless channel parametrized by the condi-
tional distribution P̄Y |X . Upon observing Yn and C, the stochastic decoder selects an action V n = gn(Y n, C).

The definitions of empirical and strong coordination can be extended to this setting as follows:
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Definition 5.10 (Empirical coordination of signals and actions) A distribution P̄UXY V is achievable for empirical
coordination if ∀ε > 0 there exists a sequence {(fn, gn)} of encoders-decoders, and ∃n0 such that ∀n ≥ n0,

P
{
V
(
TUnXnY nV n , P̄UXY V

)
> ε
}
< ε,

where TUnXnY nV n is the joint histogram of signals and actions induced by the code. The empirical coordination
regionRe is the closure of the set of achievable distributions P̄UXY V .

Definition 5.11 (Strong coordination of signals and actions) A pair (P̄UXY V , R0) is achievable for strong coordina-
tion if there exists a sequence {(fn, gn)} of encoders-decoders with rate of common randomness R0, such that

lim
n→∞

V
(
PUnXnY nV n , P̄

⊗n
UXY V

)
= 0

where PUnXnY nV n is the joint distribution induced by the code. The strong coordination region R is the closure
of the set of achievable pairs (P̄UXY V , R0).

An outer and inner bound for the empirical coordination region for the setting of Figure 5.3 were characterized
in [59].

Bounds for the strong coordination region In [J11], as part of Giulia Cervia’s thesis [40], we focused on the
problem of achieving strong coordination for the same setting. We derive an inner and an outer bound for the
strong coordination region by developing a joint source-channel scheme in which an auxiliary codebook allows us
to satisfy simultaneously the coordination of signals and of actions.

Theorem 5.12 Let P̄U and P̄Y |X be the given source and channel parameters, thenR′in ⊆ R ⊆ R′out where:

R′in :=


(P̄UXY V , R0) such that:

P̄UXY V = P̄U P̄X|U P̄Y |X P̄V |UXY

∃W taking values inW, P̄UXYWV = P̄U P̄W |U P̄X|UW P̄Y |X P̄V |WY

I(W ;U) ≤ I(W ;Y ), R0 ≥ I(W ;UXV |Y )

 (5.8)

R′out :=



(P̄UXY V , R0) such that:

P̄UXY V = P̄U P̄X|U P̄Y |X P̄V |UXY

∃W taking values inW, P̄UXYWV = P̄U P̄W |U P̄X|UW P̄Y |X P̄V |WY

I(W ;U) ≤ I(X;Y ), R0 ≥ I(W ;UXV |Y )

|W| ≤ |U × X × Y × V|+ 4


. (5.9)

Remark 5.13 The decomposition of the joint distributions P̄UXY V and P̄UWXY V is equivalently characterized in
terms of Markov chains:

Y −X − U,

{
Y −X − (U,W )

V − (Y,W )− (X,U)
. (5.10)

Note that the information constraint I(W ;U) ≤ I(W ;Y ) and the decomposition of the joint probability distri-
bution are the same as for empirical coordination [59, Theorem 1]. The main difference is that strong coordination
requires a positive rate of common randomness R0 > I(W ;UXV |Y ).

We design an achievability proof for the inner bound by developing a joint source-channel scheme in which
an auxiliary codebook allows us to simultaneously coordinate signals and actions. More precisely, we use the
random binning method introduced by [232]: to prove the existence of coding schemes which induce a certain
target joint distribution, we proceed in two steps. First, we define a random binning scheme for the n-letter target
i.i.d. distribution. Then, we define a random coding scheme such that the joint distributions induced by the
random binning and the random coding scheme are close in variational distance. We first show how to coordinate
(Un, Xn, Y n, V n,Wn) using common randomness C and extra randomness F , and then prove that we can fix



74 CHAPTER 5. COORDINATION OF AUTONOMOUS AGENTS

the value of the extra randomness if we only require (Un, Xn, Y n, V n) to be coordinated. More details about this
proof and the proof of the outer bound can be found in [J11].

Polar code construction A second contribution of Giulia Cervia’s thesis for this setting is an explicit polar code
construction achieving the inner bound of Theorem 5.12, provided that an error-free channel of negligible rate is
available between the encoder and decoder.

For the sake of simplicity, as in Section 5.1, we only focus on the set of achievable distributions in R′in for
which the auxiliary variable W is binary. The scheme can be extended to the case of a non-binary random variable
W using non-binary polar codes [200].

Theorem 5.14 The subset of the region R′in defined in (5.8) for which the auxiliary random variable W is binary
is achievable using polar codes, provided there exists an error-free channel of negligible rate between the encoder
and decoder.

To convert the information-theoretic achievability proof of Theorem 5.12 into a polar coding proof, we use
source polarization [12] (rather than channel polarization as in Section 5.1) to induce the desired joint distribution.
Inspired by [45], we want to translate the random binning scheme into a polar coding scheme. The key idea is
that the information contraints and rate conditions found in the random binning proof directly convert into the
definition of the polarization sets. In the random binning scheme we reduced the amount of common randomness
F by having the nodes to agree on an instance of F , here we recycle some common randomness using a chaining
construction as in [111, 169].

For n = 2m, we note Gn = G⊗n2 the polarization transform defined in Section 5.1. Let Rn := GnW
n be the

polarization of the auxiliary variable Wn. For some 0 < β < 1/2, let δn = 2−n
β

and define the very high entropy
and high entropy sets:

VW :=
{
j ∈ J1, nK : H(Rj |Rj−1) > 1− δn

}
,

VW |Y :=
{
j ∈ J1, nK : H(Rj |Rj−1Y n) > 1− δn

}
,

HW |Y :=
{
j ∈ J1, nK : H(Rj |Rj−1Y n) > δn

}
. (5.11)

One consequence of source polarization is the fact that it is possible to compress the source Wn using Y n as
side information by selecting the high entropy bits Rn[HX|Y ]. The reconstruction can be done using successive
cancellation encoding [133], with error probability smaller than δn. Now define the following disjoint sets:

A1 := VW |U ∩HW |Y , A2 := VW |U ∩HcW |Y ,

A3 := VcW |U ∩HW |Y , A4 := VcW |U ∩H
c
W |Y .

We have:

• VW |Y ⊂ HW |Y and limn→∞
|HW |Y \VW |Y |

n = 0 [12],

• limn→∞
|VW |U |
n = H(W |U) [46],

• limn→∞
|HW |Y |

n = H(W |Y ) [12].

Since H(W |U)−H(W |Y ) = I(W ;Y )− I(W ;U), for sufficiently large n, the assumption I(W ;Y ) ≥ I(W ;U)

directly implies that |A2| ≥ |A3|.
We give a high-level view of the encoder / decoder structure, which is pictured in Figure 5.2.
The key idea is that at the encoder, the bits in A1 and A2 are almost uniform given Un, while the bits in A3 and

A4 are almost deterministic given Un and can be generated according to PRj |Rj−1Un using successive cancellation
encoding.

On the other hand, at the decoder, the bits in A1 and A3 can be chosen almost uniformly given Y n, while
the bits in A2 and A4 are almost deterministic given Y n and can be generated according to PRj |Rj−1Y n using
successive cancellation encoding.
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Special care is needed to handle the set A3 of bits which are almost deterministic for the encoder but cannot
be recovered reliably at the decoder. The solution is to use a chaining construction as in [47, 169], in order to send
the set A3 for block k in advance in the previous block k − 1, using a one-time pad.

Figure 5.4: Chaining construction for block Markov encoding

5.3 Coordination in two-node networks with two-sided state information
Up to now, we have assumed that the source and the channel follow distributions which are fixed ahead of time
and known by the agents. However, this prevents us from modeling situations in which the agent reacts to an
external stimulus, and in which the channel statistics depend on the environment. For instance, the actions of an
agent might be constrained by obstacles that prevent it from making certain choices. In this case the probability
distributions given by nature could change with time and might be partially or completely unknown to some of the
agents. To include such situations in the coordination framework, as part of Giulia Cervia’s thesis we extended the
model to take into account the uncertainty about the source and channel distribution. This setting has already been
taken into consideration in [140, 138, 139, 142] for empirical coordination.

We consider the model depicted in Figure 5.5, where we introduce a state in the description of the behavior.
It consists of a state-dependent i.i.d. source (Un, Sn, Zn) generated according to P̄USZ and a state-dependent
discrete memoryless channel P̄Y |XS . The encoder selects a signal Xn = fn(Un, C), and transmits it over the
channel. The decoder then selects an action V n = gn(Y n, Zn, C).

Figure 5.5: Coordination of signals and actions for a two-node network with a noisy channel with state and side information at the decoder.

The channel state information and side information at the decoder are represented by the random variables
Sn and Zn respectively, and we make no assumptions on the correlation of (Un, Sn, Zn). This includes sce-
narios where the encoder has access to partial, perfect or noisy channel state information, since the variables Un

and Sn are possibly correlated. Moreover, the decoder side information Zn can contain partial, perfect or noisy
information on the channel state, on the source, or on both of them.

In the case of non-causal encoder and decoder, the problem of characterizing the strong coordination region
Rstate for the model in Figure 5.5 is still open, but we establish the following inner and outer bounds [J11].
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Theorem 5.15 Let P̄USZ and P̄Y |XS be the given source and channel parameters. ThenRin ⊆ R ⊆ Rout where:

Rin :=


(P̄USZXY V , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XSP̄V |UXY SZ

∃W taking values inW, P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XSP̄V |WYZ

I(W ;U) ≤ I(W ;Y Z), R0 ≥ I(W ;USXV |Y Z)

, (5.12)

Rout :=



(P̄USZXY V , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XSP̄V |UXY SZ

∃W taking values inW, P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XSP̄V |WYZ

I(W ;U) ≤ min{I(XUS;Y Z), I(XS;Y ) + I(U ;Z)}
R0 ≥ I(W ;USXV |Y Z)

|W| ≤ |U × S × Z × X × Y × V|+ 5


. (5.13)

Remark 5.16 Observe that the decomposition of the joint distributions P̄USZXY V and P̄USZWXY V is equivalently
characterized in terms of Markov chains:

{
Z − (U, S)− (X,Y )

Y − (X,S)− U
,


Z − (U, S)− (X,Y,W )

Y − (X,S)− (U,W )

V − (Y,Z,W )− (X,S,U)

. (5.14)

5.3.1 Strong coordination region for special cases

Although the inner and outer bounds of Theorem 5.15 do not match in general, we are able to characterize the
strong coordination region for some special cases: perfect channel, lossless decoding and separation between
the channel and the source. In all these cases, the achievability proof is merely a consequence of the general
achievability proof of Theorem 5.15. The converse proofs, on the other hand, rely of the specifics of each setting,
and need to be proven separately.

The empirical coordination region for these three settings was derived in [142, 141]. For strong coordination
we recover the same information constraints, but we show that a positive rate of common randomness is required.
This corroborates the conjecture that, given enough common randomness, the strong coordination capacity region
is the same as the empirical coordination capacity region for any network setting [56].

Figure 5.6: Coordination of signals and actions for a two-node network with a perfect channel with side information at the decoder.

Perfect channel The first special setting corresponds to the case of a perfect channel as in Figure 5.6. In this
case Xn = Y n and Zn plays the role of side information at the decoder.

Theorem 5.17 In the setting of Theorem 5.15, suppose that P̄Y |XS(y|x, s) = 1X=Y {x = y}. Then the strong



5.3 COORDINATION IN TWO-NODE NETWORKS WITH TWO-SIDED STATE INFORMATION 77

coordination region is

RPC :=



(P̄UZXV , R0) such that:

P̄UZXV = P̄UZ P̄X|U P̄V |UXZ

∃W taking values inW, P̄UZWXV = P̄UZ P̄W |U P̄X|UW P̄V |WXZ

I(WX;U) ≤ H(X) + I(W ;Z|X)

R0 ≥ I(W ;UV |XZ)

|W| ≤ |U × Z × X × V|+ 4


(5.15)

Lossless decoding Here, we investigate a special case where the decoder wants to reconstruct the source loss-
lessly, i.e., V = U as in Figure 5.7.

Figure 5.7: Coordination of signals and actions for a two-node network with a noisy channel and a lossless decoder.

The following theorem characterizes the strong coordination regionRLD.

Theorem 5.18 Consider the setting of Theorem 5.15 and suppose that P̄V |USXY Z(v|u, s,x,y, z) = 1V=U{u = v}.
Then the strong coordination region is

RLD :=



(P̄USZXY , R0) such that:

P̄USZXY V = P̄USZ P̄X|U P̄Y |XS1V=U

∃W taking values inW, P̄USZWXY V = P̄USZ P̄W |U P̄X|UW P̄Y |XS1V=U

I(W ;U) ≤ I(W ;Y Z)

R0 ≥ I(W ;USX|Y Z)

|W| ≤ |U × S × Z × X × Y|+ 3


(5.16)

Remark 5.19 An equivalent characterization of the region is:

RLD :=



(P̄USZXY , R0) such that:

P̄USZXY = P̄USZ P̄X|U P̄Y |XS

∃W taking values inW , P̄USZWXY = P̄USZ P̄W |U P̄X|UW P̄Y |XS

H(U) ≤ I(WU ;Y Z)

R0 ≥ I(W ;USX|Y Z) +H(U |WY Z)

|W| ≤ |U × S × Z × X × Y|+ 1


(5.17)

The constraint for the mutual information in (5.17) is the same as for the empirical coordination region [142,
Section IV.B].

Independence between source and channel Suppose that the channel state PSn is independent of the source
and side information PUnZn , and that the target joint distribution is of the form P̄⊗nUZV P̄

⊗n
SXY . For simplicity, we

will suppose that the encoder has perfect state information (see Figure 5.8).
In this case the coordination requirements are three-fold: the random variables (Un, Zn, V n) should be coordi-

nated, the random variables (Sn, Xn, Y n) should be coordinated and finally (Un, Zn, V n) should be independent
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of (Sn, Xn, Y n). We introduce two auxiliary random variables W1 and W2, where W2 is used to accomplish the
coordination of (Un, Zn, V n), while W1 has the double role of ensuring the independence of source and state as
well as coordinating (Sn, Xn, Y n).

Figure 5.8: Coordination of signals and actions for a two-node network with a noisy channel where the source is separated from the channel.

Theorem 5.20 Consider the setting of Theorem 5.15 and suppose that P̄USXY ZV = P̄UZV P̄SXY . Then, the strong
coordination region is

RIND :=



(P̄USZXY , R0) such that:

P̄USZXY V = P̄UZ P̄V |UZ P̄SP̄X|SP̄Y |XS

∃ (W1,W2) taking values inW1 ×W2

P̄USZW1W2XY V = P̄UZ P̄W2|U P̄V |ZW2
P̄SP̄X|SP̄W1|SX P̄Y |XS

I(W1;S) + I(W2;U) ≤ I(W1;Y ) + I(W2;Z)

R0 ≥ I(W1;SX|Y ) + I(W2;UV |Z)

(|W1|, |W2|) ≤ |U × S × Z × X × Y × V|+ 4.


(5.18)

Coordination under secrecy constraints It turns out that in the separation setting of the previous section, strong
coordination offers additional security guarantees “for free”. In this context, the common randomness is not only
useful to coordinate signals and actions of the nodes but plays the role of a secret key shared between the two
legitimate users.

To simplify the notation, we do not consider channel state and side information at the decoder (however, one
can show that the result holds more generally). Suppose that an eavesdropper observes the signals sent over the
channel (see Figure 5.9). We will show that not knowing the common randomness, the eavesdropper cannot infer
any information about the actions.

Figure 5.9: Wiretap channel: strong coordination implies secrecy.

Lemma 5.21 In the setting of Theorem 5.20, without state and side information at the decoder, suppose that there is
an eavesdropper that receives the same sequence Y n as the decoder but has no knowledge of the common random-
ness. Then there exists a sequence (fn, gn) of strong coordination codes achieving the pair (P̄UV P̄XY , R0) ∈ RIND

such that the induced joint distribution P RC
UnV nXnY n satisfies the strong secrecy condition

lim
n→∞

D(P RC
UnV nY n‖P RC

UnV nP
RC
Y n) = lim

n→∞
I(UnV n;Y n) = 0. (5.19)



5.3 COORDINATION IN TWO-NODE NETWORKS WITH TWO-SIDED STATE INFORMATION 79

Figure 5.10: Comparison of the joint coordination regionRUV⊗X withRCuff [58, 55]: boundaries of the regions for a binary erasure channel
with erasure probability pe = 0.75 and a Bernoulli-half input.

Validity of the separation principle When extending the analysis of coordination from error-free to noisy chan-
nels, it is natural to ask whether some form of joint source-channel coordination version of Shannon’s source-
channel separation theorem [204] holds. In this section, we show that unlike the case of empirical coordination
[143], separation does not hold for strong coordination.

If the separation principle is still valid for strong coordination, by concatenating the strong coordination of the
source and its reconstruction with the strong coordination of the input and output of the channel we should retrieve
the same mutual information and rate constraints. We will show that this is not the case.

As a counterexample, we compare the optimal region for strong coordination of actions with our result on joint
coordination of signals and actions in the case in which the channel is perfect and the target joint distribution is
of the form P̄⊗nUV P̄

⊗n
X . The choice of a perfect channel might appear counterintuitive; as a matter of fact, if the

separation principle holds for any noisy link, it should in particular hold for a perfect one. We consider the two-
node network with fixed source P̄U and an error-free link of rate R in Figure 5.1, and the corresponding optimal
regionRCuff in (5.2) for strong coordination of actions.

We compare this region to our results when the requirement to coordinate the signals Xn and Y n in addition
to the actions Un and V n is relaxed. We consider, in the simpler scenario with no state and no side information,
the intersectionRUV⊗X := RPC ∩RIND.

Figure 5.10 shows the difference of the two regions in the case of a Bernoulli(1/2) source U , where V is the
output of a binary erasure channel with input U .

Observe that, while the information constraint is the same in the two regions RUV⊗X and RCuff, the rate of
common randomness R0 required in RUV⊗X is larger than the rate of common randomness in RCuff. In fact, in
the setting of Figure 5.1 both Xn and the pair (Un, V n) achieve coordination separately (i.e. PnX is close to P̄⊗nX
and PUnV n is close to P̄⊗nUV in total variation distance), but there is no extra constraint on the joint distribution
PUnXnV n . On the other hand, the setting in RUV⊗X requires the control of the joint distribution PUnXnV n ,
which requires more common randomness.

Moreover, note that as R = H(X) tends to infinity, similarly to [136] the minimum rate of common random-
ness R0 needed for strong coordination is Wyner’s common information C(U ;V ). In particular to achieve joint
strong coordination of (U,X, V ) a positive rate of common randomness is required. More details can be found in
[J11].
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5.4 Coordination of signals and actions with strictly causal encoder
Until now we have considered joint source-channel coordination in the presence of a non-causal encoder and
non-causal decoder. In [C23], we also examined the case in which the encoder is strictly causal, which has the
benefit of shortening the transmission delay. For simplicity, we considered the setting without state and side
information. For empirical coordination, [59] provides a complete characterization of the region. Although the
strong coordination region is still unknown, we provide an inner and an outer bound that differ only in the amount
of common randomness needed to strongly coordinate signals and actions. The achievability proof relies on a
random binning argument, but the nature of this setting presents some extra difficulties. In fact, the information
about the source at time i is needed for the reconstruction, but is observed by the encoder only at time i + 1.
So this information must be recovered by the decoder at a later time. In order to ensure coordination, we use a
block-Markov scheme and a one-time pad. Finally, in Giulia Cervia’s thesis [40, Chapter 6] we also proved that
polar codes provide a constructive alternative to random binning proofs and we described an explicit scheme for
strong coordination.

Open problems and follow-up work Despite the fact that we have fully characterized the region of strong co-
ordination for signals and actions in some special cases, inner and outer bound differ in general on the information
constraint. Closing this gap is left for future study.

Though we provided an explicit polar coding construction, our scheme relies on chaining over several blocks,
which is not practical for delay-constrained applications. This is another issue that may be studied further.

One of the most interesting consequences of strong coordination is the fact that under particular circumstances
it offers security “for free”: by coordinating signals and actions, the synthesized sequences would appear to be
statistically indistinguishable from i.i.d. to an outside observer. The related problem of secure strong coordination
was studied by Cervia, Bassi and Skoglund in [41].

Moreover, our results could be extended to a strategic coordination setting. This represents a scenario where
the objectives of the two agents are not necessarily aligned, and has been investigated for empirical coordination
in [144].



6 OPEN PROBLEMS AND PERSPECTIVES

This section presents some open problems and perspectives for future work in the areas of coding for physical
layer security and lattice and code-based post-quantum cryptography. Despite the diversity of the applications, it is
interesting to note that similar tools (the smoothing parameter, which characterizes the performance of average-case
to worst-case reductions, and has recently been extended to codes [65]) can be used to provide both computational
security and information-theoretic secrecy1. These connections are still largely unexplored and call for a deeper
understanding that would bring together the cryptography and information theory communities.

6.1 Physical layer security
Physical layer security techniques are seriously being envisaged for future 6G networks [170, 44] as a first line
of defense with low latency and low computational cost. A key requirement for their practical implementation is
the guarantee of an asymmetry in the signal quality between legitimate terminals and attackers. New technolo-
gies, such as sharp beamforming using massive MIMO as well as distributed MIMO, channel engineering using
Reconfigurable Intelligent Surfaces, as well as transmission in the THz range with high directivity for short range
scenarios, could provide such security advantages, allowing in particular to make the case for wiretap coding.
In the short term, I plan to address some open questions related to wiretap coding, covert communication and
key generation / fuzzy extractors. This research will be led in part in the context of national (PEPR 5G) and
international (EU HORIZON-SNS) projects on security for 6G, both in collaboration with Arsenia Chorti.

Design of short packet wiretap codes

The potential use cases for wiretap codes include Internet of things (IoT) networks featuring short packet payloads,
and ultra-reliable low latency communications (URLLC). In this context, the development of short blocklength
wiretap codes could have high practical impact.

It is therefore important to obtain precise bounds for the information leakage of wiretap codes in finite block-
length. The first non-asymptotic bounds for the leakage in wiretap channels were obtained by Hayashi [114].
Building on the theoretical breakthrough by Polyanskiy, Poor and Verdù in the analysis of finite-length channel
coding rates [189], Yang, Schaefer and Poor [230] proved tight bounds on the second-order coding rate for dis-
crete memoryless and Gaussian wiretap channels. In place of the mutual information, they consider the average
total variation distance S(M|Zn) = V(pMZn ,UMpZn) as a measure of leakage2, where M denotes the message
belonging to a finite set M, and Zn the eavesdropper’s observation. For degraded discrete memoryless wiretap
channels and Gaussian wiretap channels, they show that the maximal secrecy rate R∗(n, ε, δ) for block length n,

1In particular, it was already noted in [161, Chapter 4] that when the noise variance is too large compared to the smoothing parameter, the
LWE problem becomes information-theoretically intractable.

2An alternative metric considered in [230] is the maximum total variation distance, which is related to distinguishing security and semantic
security.

81
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Figure 6.1: Comparison of the lower bound on achievable secrecy rates of Reed-Muller and polar codes for p = 0.4 and δ = 0.001, with the
second order approximation secrecy rate in (6.2) [C26]. Bound 1 is computed by Monte-Carlo simulations and bound 2 is obtained using the
closed form expression for the bit-channel capacity.

error probability ε and under the constraint S(M|Zn) ≤ δ is bounded by

Cs −
√
V1

n
Q−1(ε)−

√
V2

n
Q−1(δ) +O

(
log n

n

)
≤ R∗(n, ε, δ) ≤ Cs −

√
V3

n
Q−1(ε+ δ) +O

(
log n

n

)
,

(6.1)

whereCs is the secrecy capacity,Q denotes the Q-function, and the constants V1, V2, V3 depend on the distributions
of the main channel and eavesdropper’s channel. A simpler expression can be obtained for semi-deterministic
wiretap channels, where the output of the main channel is a deterministic function of the input. In this case,
assuming that ε+ δ < 1, the maximal secrecy rate is

R∗(n, ε, δ) = Cs −
√
VS
n
Q−1

(
δ

1− ε

)
+O

(
log n

n

)
, (6.2)

where VS is the conditional variance of the information density of pXZ. In particular, equation (6.2) evidences a
trade off between reliability and secrecy.

In spite of these theoretical advances, few works have considered practical wiretap code constructions in finite
blocklength. In [187], Monte-Carlo simulations were used to evaluate the equivocation of short wiretap codes
over a BEC. Algebraic criteria to compute exact equivocation expressions have been found in [109]. In [175]
randomized Reed-Muller code constructions were considered for Gaussian wiretap channels under a mutual infor-
mation criterion for extremely short blocklengths (n = 16). This limitation is due to the complexity of providing
a tight estimate of the leakage, which is done using neural networks. Other recent works [88, 25, 191] have used
deep learning to design wiretap codes. However, the complexity of estimating the leakage remains a significant
challenge, which currently limits their use to very short blocklengths or low rates.

For the polar wiretap code construction of Mahdavifar and Vardy [162], finite-length bounds for the leakage
can be obtained directly in terms of the sum of the capacities of the “poor” bit-channels, as in equation (5.4).
However, ensuring reliability is not straightforward [199].

In a collaboration with Arsenia Chorti and Mahdi Shakiba-Herfeh at ETIS [C26], we derived lower bounds on
the secrecy performance of polar and Reed-Muller codes over a wiretap channel where where the main channel
Wb is noiseless and the eavesdropper’s channel We is a binary erasure channel, and compared them to the second-
order coding rate (6.2) in the semi-deterministic case. A recent study by Abbe and Ye [1] has evidenced that
Reed-Muller codes also have polarization properties, although this mechanism is still not well-understood. This
allows to estimate their leakage through Mahdavifar and Vardy’s bound.
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As seen in Figure 6.1, in this simple wiretap channel model there is a significant gap between the lower bounds
on the achievable secrecy rates of polar codes and the second order approximation secrecy rate. On the other hand,
Reed-Muller codes show a promising performance. At blocklength 256 and for δ = 0.001, the lower bound on
achievable secrecy rate of Reed-Muller codes is less than 3% away from the second order approximation secrecy
rate. This difference might be due to the speed of polarization of Reed-Muller codes, which is apparently faster
than for polar codes [1]3.

Reed-Muller codes have very recently been shown to achieve capacity4 on any DMC [192, 2] relying on
the weight enumerator bounds in [202]. On the BEC and BSC, it is also known that they have optimal finite-
length scaling [110]. However, they still suffer from the absence of an efficient decoding algorithm, in spite of
recent advances; a new type of decoder, the recursive projection-aggregation decoder [233], seems to have good
performance in the low and high rate regimes.

The evaluation of the achievable secrecy rate (or good approximations) for other codes and more general
wiretap models is a timely open problem. I plan to pursue this topic in collaboration with Charles Pillet (École de
Technologie Supérieure, Montreal) and Valerio Bioglio (Università di Torino).

In the case of polar codes, some methods providing good approximations of the bit-channels for other channel
models are available in the literature [210]. One possible extension of our work could be the secrecy analysis
of polar codes with large kernels, which achieve optimal scaling for the BEC [86]. A new polynomial formal-
ism introduced by Bardet, Dragoi, Otmani and Tillich [16] shows that both polar and Reed-Muller codes can be
viewed as decreasing monomial codes, whose properties are related to the size of their permutation groups. This
new framework allowed Yao, Fazeli and Vardy to develop an efficient algorithm to compute the complete weight
distribution of all decreasing monomial codes [231], which could be a useful tool to derive bounds for the average
total variation distance metric in finite length.

Covert communication

As part of the INEX Ambition project PHEBE “Physical Layer Security for Beyond-5G”, I am co-supervising the
PhD thesis of Cécile Bouette in collaboration with Ligong Wang (formerly at ETIS, now with ETH Zurich) on the
topic of covert communication or “communication with low probability of detection”.
This term refers to a scenario where the legitimate transmitter and receiver want to hide from a potential eaves-
dropper the very fact that communication is taking place. Indeed, in some cases, even if the content of the message
is not disclosed, just knowing meta-data such as who the communicating parties are, and at what time and where
the communication is happening, might leak sensitive information.
Covert communication has a wide range of applications, and has been previously studied in the context of steganog-
raphy and spread-spectrum techniques. The approach considered by the information theory community differs
from the former in terms of the metrics being considered. It was first introduced by Bash, Goeckel and Towsley
[17], who assumed that the eavesdropper or “warden” performs an optimal statistical test (such as the Neyman-
Pearson test) to detect whether a transmission is ongoing (hypothesis H0) or not (alternative H1). The sum of the
probabilities α and β of Type I and Type II errors for the optimal test is α+β = 1−V(Q0, Q1), where Q0 and Q1

are the output distributions of the eavesdropper’s observation without / with communication respectively. Thus,
in order for the communication to be almost undetectable, the variational distance V(Q0, Q1) should be small. In
alternative, one can choose the stronger requirement that the Kullback-Leibler divergence D(Q0||Q1) should be
small. It is assumed that the legitimate parties share a secret key to help with the transmission.
In [17, 42], it was observed that the maximum amount of information that can be transmitted under these re-
quirements scales like the square root of the blocklength, both for Gaussian channels and for binary symmetric
channels. Namely, the capacity in this setting is equal to zero. Wang, Wornell and Zheng [223] further showed
that the “square root law” holds for a wide class of DMCs and for the Gaussian channel, and characterized its
fundamental scaling constant

L = lim
ε→0

lim
n→∞

Kn(δ, ε)√
nδ

, (6.3)

3For polar codes, [196] shows that the rates of polarization of good and bad channels must be the same, so that the secrecy performance and
error correction performance are linked.

4Note that this also implies that they achieve strong secrecy over the BSC [196].
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where Kn(δ, ε) is the maximum of ln |C| for which there exists a code C of length n satisfying the covertness
condition

D(Q0||Q1) ≤ δ,

and whose average probability of decoding error for the legitimate receiver is at most ε. Independently, Bloch [31]
studied this problem from a resolvability perspective, and characterized the minimum length of the key.

Channels with memory and non-Gaussian noise channels As part of Cécile Bouette’s PhD thesis, our goal
is to extend the results of [223] and to investigate whether the square root law holds for more general continuous
channels, including non-Gaussian additive noise channels and channels with memory.
Some preliminary results are presented in our conference paper [C28]. The first scenario we consider is the Gaus-
sian channel with memory, where the noise sequence is a Gaussian vector with an arbitrary invertible covariance
matrix. We show that the fundamental limit for covert communication over such a channel is the same as in the
memoryless case, that is, L = 1.
The second type of channel we consider is one with memoryless generalized Gaussian noise. For this family of
noise distributions with shape parameter p [74], we prove the general upper bound L ≤

√
2/p for covert com-

munication over n channel uses. When p ∈ (0, 1], we also prove a matching lower bound. The key property that
we use to establish this lower bound is the self-decomposability of generalized Gaussian distributions in this range
[73], which guarantees the existence of a suitable input distribution such that the output of the channel is a scaled
version of the noise.

We are currently working on the characterization of the scaling constant L for a wide class of additive noise
channels under mild integrability conditions. An interesting question is whether the square-root law still holds for
heavy-tailed noise distributions such as α-stable distributions [77] and for general channels with memory.

We also plan to bound the size of the secret key shared between the legitimate users which gives the receiver
the required advantage in order to decode the message reliably. This key size was characterized in [31] for covert
communication over continuous channels when the covertness constraint is based on the variational distance; we
plan to adapt this technique to the KL divergence metric.

Coding for covert communication. Codes for covert communication differ inherently from traditional error-
correcting codes. For example, it is known that linear codes are strictly suboptimal for discrete-input channels
[125]. While there has been progress on coding for discrete channels [237, 125], few works have considered the
Gaussian channel, which is arguably more relevant in practice. The recent work [124] proposes a sparse signalling
scheme combining pulse position modulation and multilevel coding, which is not entirely explicit. However, [222]
showed that binary phase-shift keying (BPSK) with amplitude scaling asO(n−1/4) is first-order optimal for covert
communication, which allows the use of linear binary codes. The challenge for the Gaussian channel is that the
rate of the code must tend to zero as the block-length tends to infinity, which is not the case for traditional linear
codes. Thus, one needs to find new methods to analyse linear binary codes in the regime where the rate of the
code vanishes. In the case of discrete memoryless channels, polar codes do not work well for covertness [87]
essentially due to their suboptimal finite-length scaling [106], and we believe that a similar issue would occur over
Gaussian channels. An intriguing question is whether Reed-Muller codes could be adapted to provide covertness
and reliability thanks to their polarization properties [1] and whether they could be efficiently decoded in this
zero-rate regime.

Secret key generation and fuzzy extractors

The distillation of symmetric keys from correlated observations of wireless channels is a promising technique
for forthcoming 6G applications that require lightweight key agreement protocols, as a standalone solution or to
complement existing cryptographic algorithms. In this context, I plan to continue investigating lattice-based secret
key generation protocols, following the framework described in Section 4.3, in collaboration with Cong Ling at
Imperial College London.
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Practical coding schemes. An immediate step for future work is to turn our approach in [J13], which is based on
the notion of flatness factor of a lattice, into a practical key generation scheme. A promising option is to instantiate
the lattices using polar codes. Polar lattices [156] have been shown to be good for quantization, channel coding
and secrecy. Their encoding and decoding complexity is quasi-linear in the blocklength n. In particular, they
achieve the secrecy capacity of Gaussian wiretap channels [155] and exhibit a vanishing L1 flatness factor. One
open problem is how to implement the randomized rounding algorithm over a polar lattice.

More general models. Other aspects we may investigate include identifying whether is is possible to remove
dithering and/or randomized quantization, characterizing the second-order asymptotics of our scheme [115], ex-
tending it to multi-terminal systems and vector Gaussian sources [226, 154], as well as considering its performance
under bidirectional interactive communication. Another open problem is the generalization to other continuous
source distributions, which is far from immediate since the flatness factor relies on the properties of Gaussian
distributions.

Relation to fuzzy extractors. A related question is whether our secret key generation scheme can be modified
to yield a fuzzy extractor, which would require redesigning the lattices with respect to other entropy measures. The
notion of fuzzy extractor [68] was proposed to solve the problem of converting noisy physical measurements into
uniformly random strings which can be reproduced reliably. Given a measurement, the fuzzy extractor outputs a
secret key and public helper data. Instead of storing the key, a server can just store the public data, which is safe
since the key remains close to uniform even given the helper data. Upon receiving another noisy measurement
from the same source, the extractor can use the helper data to recover the key.

In the case of fuzzy extractors for continuous sources, which is our focus, the measurement needs to be dis-
cretized first, in such a way as to extract most of the entropy while reducing the noise. Note that in contrast to
the discrete case, there exist no universal fuzzy extractors for continuous sources [219]. Nevertheless, we plan to
investigate whether lattice-based techniques could be used to extract randomness from general continuous random
variables that exhibit certain properties, such as circular symmetry or small tails.

Another aspect to consider is the robustness of the fuzzy extractors with respect to imperfect estimation of
the source. In fact, in practice the source distribution has to be estimated empirically, and it is usually infeasible
to build an accurate model of a high-entropy distribution just by sampling from it. In the discrete case, [90]
defined a new notion of fuzzy min-entropy that corresponds to the maximal key size which can be extracted with
perfect knowledge of the source, but also showed that when the distribution is uncertain, there exist families of
distributions with positive fuzzy min-entropy such that no fuzzy extractor is secure for most distributions in the
family. A similar negative result holds in the continuous case [89]. An open problem is to find suitable conditions
for a family of distributions to admit a fuzzy extractor.

Variants of the smoothing parameter and their application to physical layer security and
cryptography

As we have seen in Section 4.3, the notion of secrecy-good lattices based on the L1 version of the flatness factor /
smoothing parameter [48, 155, 65] results in optimal rates for secret key generation, and merits further investiga-
tion. As an immediate application, it should be possible to use L1-secrecy good wiretap codes to remove the 1

2 -nat
gap to the secrecy capacity in Theorem 4.18, which is associated to the use of the L∞ flatness factor, and possibly
achieve optimal error exponents.

In collaboration with Cong Ling, we are also studying other variants of the flatness factor based on Rényi
divergence, which seem to have an interesting algebraic characterization. Rényi divergence has been used in
lattice-based cryptography to obtain tighter security reductions and smaller parameters [190, 14]. In information
theory, leakage measures based on Rényi divergence have been considered in [234].
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6.2 Post-quantum cryptography
As shown in this manuscript, lattice-theoretic tools lie at the crossroads of communications and cryptography:
the smoothing parameter can provide both computational hardness and information-theoretic security; discrete
Gaussian sampling can be used to generate error distributions in cryptography, but also to achieve capacity over
Gaussian channels; embedding techniques can be employed to solve the closest vector problem for MIMO decod-
ing but also to attack lattice-based cryptosystems; the structure of unit groups can be exploited to decode algebraic
space-time codes, but also for the cryptanalysis of structured lattices.

As a long-term perspective, I plan to explore these connections in view of the rise of post-quantum cryptog-
raphy, which is of critical importance in order to face the disruptive consequences of quantum computing. While
I’m relatively new to this area, I have gained some familiarity with lattice-based cryptosystems in the context of
Charbel Saliba’s thesis.

In the short term, I will pursue this study through the collaboration with Kévin Carrier at ETIS, by co-
supervising Valérian Hatey’s PhD thesis as part of the ANR JCJC DECODE project. This project aims to contribute
to the cryptanalysis and calibration of post-quantum cryptosystems, and in particular of digital signature schemes5.
It has the wider objective of transposing techniques for generic decoding and near collision search from codes to
lattices and vice-versa. Such connections have proven fruitful in recent works: for instance, the smoothing param-
eter can be extended from lattices to codes [65]; statistical decoding can be seen as the code-based counterpart of
dual lattice attacks [38]; LLL reduction can be adapted to codes [64]; a lattice version of the McEliece scheme,
based on the “lattice isomorphism problem”, has been proposed [70].

Analysis of dual lattice attacks The concrete security of lattice-based cryptosystems is measured by their re-
sistence to known attacks. Typically, the strategies to solve the (decision or search) LWE problem fall into two
general categories. Given LWE samples (A,b = As + e), primal attacks aim at recovering (s, e) directly by
constructing a uSVP instance from the LWE problem, by embedding the lattice spanned by A into a higher-
dimensional lattice (similarly to the embedding technique described in Section 3.2.2). The uSVP solution can then
be found using an efficient lattice reduction algorithm such as BKZ. On the other hand, dual attacks aim at solving
the decision version of LWE by finding many dual vectors v such that vTA = 0 mod q, or, more generally, such
that vTA is “short”, and using them as distinguishers by running a hypothesis test on the distribution of 〈v,b〉,
which should be uniformly distributed if (A,b) is a uniform sample, and approximately Gaussian-like if (A,b)

is an LWE sample. Such lists of short vectors can be generated using the BKZ algorithm with an enumeration or
sieving [6] subroutine.

In July 2022, NIST announced the first candidates for standardization6, which include the KYBERKEM key
encapsulation protocol. Currently, the concrete security estimates for KYBERKEM and other related cryptosys-
tems such as SABER are being called into question due to improved dual lattice attacks in [104, 164], which
employ faster distinguishers based on batching together many samples using a Fast Fourier Transform. However,
there is no full consensus in the community about the scope of these dual attacks, which rely on some unproven
heuristics, requiring further analysis [69]. We note that coding-theoretic techniques can be used in dual attacks to
find short vectors: inspired by the coded-BKW method to find collisions [105], Carrier et al. [39] proposed to use
non-binary polar codes for lossy source-coding to efficiently reduce the dimension of the search space.

Provably secure lattice-based protocols It must be mentioned that designing lattice-based protocols which are
at the same time efficient and provably secure is still an open problem. In fact, the parameters chosen for the current
lattice-based cryptosystems, which were selected mainly for efficiency purposes, do not satisfy the hypotheses of
the worst-case to average-case reduction theorems, although they are heuristically assumed to be secure. This
problem was studied in [94, 93] for the FRODOKEM protocol based on plain LWE, but the proposed parameters
lead to an inefficient cryptosystem.

5A new call for signatures has been started by NIST in 2023, in order to bring more diversity to the existing candidates for standardization.
6https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
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Computational hardness of lattice problems for structured lattices KYBERKEM and its companion lattice
signature scheme DILITHIUM are based on MLWE, a structured variant of the LWE problem based on module
lattices which enjoys a reduction to a worst-case instance of Module-SIVP, i.e. approximate SIVP on module
lattices (see Section 4.4). Compared to plain LWE, MLWE allows for a more efficient implementation and shorter
key sizes, which are deemed essential by NIST to achieve acceptable performance for widely used applications,
such as the TLS Internet protocol.

However, in principle the additional algebraic structure of MLWE (and RLWE) might make these variants more
vulnerable to attacks. Although currently there are no specific attacks directly targeting RLWE or MLWE, a recent
series of works seems to suggest that some problems in algebraic number theory can be efficiently solved with
quantum computers, calling into question the computational hardness of SIVP in ideal lattices.
Biasse and Song [26] exhibited a quantum algorithm for computing class groups and solving the principal ideal
problem in number fields. Building on this result and exploiting the structure of the log-unit lattice, Cramer et al.
showed that given an ideal lattice in a cyclotomic ring, there is a quantum algorithm which finds a short generator
of the ideal in polynomial time [51, 52]. Nevertheless, these results do not immediately threaten the security of
RLWE as they require additional hypotheses, such as the existence of an unusually short vector, or are limited to
large approximation factors.

In [186], Pellet-Mary, Hanrot and Stehlé introduced the PHS algorithm, which solves SVPγ on ideal lattices
with γ = 2O(

√
n) in quantum polynomial time, or for polynomial γ in time 2O(

√
n), at the cost of an exponential

(offline) preprocessing phase. A “twisted” version of the PHS algorithm [24] seems to have much better approxi-
mation factors in practice. The main idea is that SIVP can be reduced to CVP in the log-S-unit lattice, which can be
computed once and for all for each number field. However, both [186] and [24] rely on some unproven heuristics,
and numerical simulations are feasible only for relatively small cyclotomic number fields.
These results seem to suggest that approx-SVP for ideal lattices may be easier to solve than RLWE7 , since there
are reductions from MLWE to RLWE [8]; on the other hand the reductions from Module-SIVP to MLWE are sharp
for modules of rank greater than 2.

Other works have focused on efficiently retrieving short vectors in module lattices. In this direction, there has
been progress in developing variants of the LLL algorithm for module lattices [145]. Like the previous works, this
also relies on heuristics about the log-unit lattice which are difficult to prove. The results of this work seem to
indicate that finding short vectors in module lattices of rank 2 could be easier than in general lattices of the same
dimension, pointing out a potential weakness of cryptosystems based on module lattices.

7We also note that the recent work [132] argues that the worst-case to average-case reduction of Ideal-SVP to RLWE is not tight in finite
dimension, since large constant factors are hidden in the proof of [161].
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