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Étant donné un mur, que se passe-t-il derrière ?
Jean Tardieu
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Résumé
Dans cette thèse, nous étudions le lien entre la connaissance métier sous forme d’une fonc-
tion et la science des données. Considérons le scénario suivant. Soit 𝐷 (𝑦,𝑧1, . . . ,𝑧𝑛) un en-
semble de données, Alice une experte en science des données, Bob un expert du domaine et
𝑦 = 𝑓 (𝑧1, . . . ,𝑧𝑛) une fonction connue de Bob grâce à ses connaissances métier. Dans cette
thèse, nous nous intéressons aux questions suivantes, simples mais cruciales pour Alice.
Comment définir la satisfaction de 𝑓 dans 𝐷 ? Comment mesurer efficacement cette sa-
tisfaction? Comment cette satisfaction est-elle liée à la tâche d’apprentissage supervisé
consistant à apprendre 𝑓 à partir de 𝐷 ? Il s’avère que ces problèmes sont liés à l’étude des
contre-exemples par l’utilisation des dépendances fonctionnelles (DF) et, en particulier, des
mesures permettant de quantifier la satisfaction des DFs dans un ensemble de données telles
que l’indicateur 𝑔3. Plus précisément, nous considérons le cas où l’égalité est remplacée par
des prédicats plus flexibles, une relaxation maintenant courante dans la littérature.

Premièrement, nous examinons la complexité du calcul du 𝑔3. Il est connu que 𝑔3 peut
être calculé en temps polynomial lorsqu’on utilise l’égalité, alors qu’il devient NP-difficile
lorsqu’on utilise des prédicats généraux. Nous proposons d’affiner cette dichotomie en étu-
diant l’impact des propriétés communes suivantes : réflexivité, transitivité, symétrie et an-
tisymétrie. Nous montrons que la symétrie et la transitivité sont suffisantes pour garantir
que l’erreur 𝑔3 puisse être calculée en temps polynomial. Cependant, la suppression de
l’une d’entre elles rend le problème difficile. Deuxièmement, nous étudions le calcul de 𝑔3
dans les cas polynomial et NP-difficile identifiés dans la première partie. Nous proposons
différentes solutions exactes et approximées pour le calcul de 𝑔3 dans les deux cas. Nous
comparons ces solutions dans une étude expérimentale détaillée des performances tempo-
relles et d’approximation. Tous les algorithmes sont également disponibles via FASTG3,
une librairie Python open-source implémentée en C++. Troisièmement, nous connectons
l’étude des contre-exemples et l’indicateur 𝑔3 à l’apprentissage supervisé à l’aide d’une ap-
plication web appelée ADESIT. ADESIT est destinée à faire partie d’un processus itératif de
raffinement des données juste après la sélection des données et juste avant le processus d’ap-
prentissage lui-même. Elle permet d’évaluer la capacité d’un ensemble de données à donner
de bons résultats pour un problème d’apprentissage supervisé par le biais de statistiques et
d’une exploration visuelle. Enfin, nous validons notre approche par une application au pro-
blème industriel de la surveillance de l’entrefer dans les générateurs hydrauliques compacts
et développons une solution pour le traitement automatique des données enregistrées.
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Abstract
In this dissertation, we investigate the link between domain knowledge in the form of func-
tions and data science. Consider the following scenario. Let 𝐷 (𝑦,𝑧1, . . . ,𝑧𝑛) be a dataset,
Alice a data scientist, Bob a domain expert and 𝑦 = 𝑓 (𝑧1, . . . ,𝑧𝑛) a function known to Bob
from his background knowledge. In this dissertation, we are interested in the following
simple yet crucial questions for Alice. How to define the satisfaction of 𝑓 in 𝐷? How to
measure that satisfaction efficiently? How does this satisfaction relate to the supervised
learning task of learning 𝑓 from 𝐷? It turns out that these problems are related to the study
of counterexamples through the use of functional dependencies (FDs) and, in particular,
FD measures used to quantify their satisfaction in a dataset such as the 𝑔3 indicator. More
specifically, we consider the case where the equality is replaced by more flexible predicates,
a relaxation that is now common in the literature.

First, we examine the complexity of computing 𝑔3. It is known that 𝑔3 can be computed
in polynomial time when using equality, while it becomes NP-hard when using general
predicates. Our goal is to refine this dichotomy by studying the impact of the following
common properties: reflexivity, transitivity, symmetry, and antisymmetry. We show that
symmetry and transitivity together are sufficient to guarantee that the 𝑔3 can be computed
in polynomial time. However, removing one of them makes the problem NP-hard. Second,
we study the computation of 𝑔3 in the polynomial and NP-hard cases identified previously.
We propose different exact and approximate solutions for the computation of 𝑔3 in both
cases. We compare these solutions in a detailed experimental study of time performance
and approximation accuracy. All the algorithms are also made available via FASTG3, a fast
open-source Python library with an underlying C++ implementation. Third, we link coun-
terexamples and 𝑔3 to supervised learning with a web application called ADESIT. ADESIT

is intended to be part of an iterative data refinement process right after data selection and
just before the machine learning process itself. It provides a way to evaluate the ability of a
dataset to perform well for a given supervised learning problem through statistical and vi-
sual exploration. Finally, we validate our approach by applying it to the industrial problem
of air gap monitoring in compact hydro-generators, and develop a solution for automatically
processing the recorded data.

v

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



Contents

Acknowledgments ii

Résumé iv

Abstract v

Contents vii

List of Tables viii

List of Figures xi

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The “Compagnie Nationale du Rhône” (CNR) . . . . . . . . . . . . . . . . 2
1.3 Run-of-the-river hydroelectricity, a quick overview . . . . . . . . . . . . . 2
1.4 Assessing the existence of a function in a dataset . . . . . . . . . . . . . . 4
1.5 Manuscript organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10

3 The 𝑔3-error with predicates 12
3.1 The 𝑔3-error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Predicates to relax equality . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Complexity of computing 𝑔3 17
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Extension to the optimization problem . . . . . . . . . . . . . . . . . . . . 23

vi

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Computing 𝑔3 with predicates: exact and approximate algorithms 24
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Polynomial algorithms for transitive and symmetric predicates . . . . . . . 33
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 ADESIT: A web application for interactive counterexample analysis 54
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Technical presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 ADESIT overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Application to air gap monitoring in compact hydro-generators 66
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 The air gap monitoring problem . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Validation with ADESIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Automatic processing of the air gap monitoring data . . . . . . . . . . . . . 76
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Related work, conclusion and perspective 87
8.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Research summary and perspectives . . . . . . . . . . . . . . . . . . . . . 89

List of publications 91

References ix

Appendices xx

Appendix A Proof of Theorem 2 xxi

Appendix B Proof of Theorem 3 xxiv

Appendix C Proof of Theorem 5 xxvii

Appendix D Equivalence between the 𝑔3-error and the Bayes error xxix

vii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



List of Tables

1.1 RELATION 𝑟𝑡𝑜𝑦 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.1 SUMMARY OF THE CEE ALGORITHMS. . . . . . . . . . . . . . . . . . . . 26
5.2 SUMMARY OF 𝑔3 ALGORITHMS IN THE NP-HARD CASE. . . . . . . . . . 26
5.3 SUMMARY OF 𝑔3 ALGORITHMS IN THE POLYNOMIAL CASE. . . . . . . . 33
5.4 ATTRIBUTES OF THE Diamonds DATASET. . . . . . . . . . . . . . . . . . 43
5.5 ATTRIBUTES OF THE Hydroturbine DATASET. SEE SECTION 1.3 FOR A

DETAILED DESCRIPTION OF THE ATTRIBUTES. . . . . . . . . . . . . . . . 43

6.1 TUPLE/NODE COLOR LEGEND OF ADESIT. . . . . . . . . . . . . . . . . . 59

7.1 MAIN SYMBOLS USED IN THIS SECTION. . . . . . . . . . . . . . . . . . . 76

viii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



List of Figures

1.1 Example of a CNR run-of-the-river hydroelectric power plant (location:
Pierre-Bénite, France). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematic of a run-of-the-river hydroelectric power plant with a bulb tur-
bine. This diagram shows one turbine but there are usually several installed
in parallel. This is the most common installation at the CNR. . . . . . . . . 3

1.3 General process motivating the thesis. The data extracted from a physical
system is compared to the function given by a domain expert. Those results
can be used to support the machine learning process. . . . . . . . . . . . . 5

3.1 A relation 𝑟 and the conflict graph CG(𝐴! 𝐵,𝑟 ). An MVC is encircled. . . 14
3.2 Conflict-graph CG(𝜑 𝑓 ,𝑟𝑡𝑜𝑦). An MVC is encircled. . . . . . . . . . . . . . 14
3.3 Conflict-graph CGΦ(𝜑 𝑓 ,𝑟𝑡𝑜𝑦). An MVC is encircled. . . . . . . . . . . . . . 16

4.1 A relation 𝑟 and the conflict graph CGΦ(𝐴𝐵!𝐶,𝑟 ). . . . . . . . . . . . . . 20
4.2 Complexity of the EVPP with respect to the properties of predicates. . . . . 21

5.1 Influence of the number of tuples on the time performance with equality
predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Influence of the number of tuples on the approximation performance with
equality predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Influence of the number of antecedents on the time performance with equal-
ity predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Influence of the number of samples on the approximation performance with
equality predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Influence of Syn parameters on the approximation performance with equal-
ity predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



5.6 Counterexample enumeration on the Diamonds dataset with various levels
of optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Influence of the number of tuples on the time performance. . . . . . . . . . 51
5.8 Influence of the number of tuples on the approximation accuracy. . . . . . . 51
5.9 Influence of the sample size on the approximation accuracy of sublinear

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Place of ADESIT in the data processing pipeline for machine learning. Just
before the model creation step, ADESIT allows the user to understand the
limits of her dataset, thus taking part of an iterative data refinement process
from data acquisition to preprocessing. . . . . . . . . . . . . . . . . . . . 56

6.2 Labeled screenshot of the ADESIT interface. A: Supervised learning prob-
lem settings as a functional dependency with predicates for each attribute.
B: Counterexample indicators. C: Counterexamples exploration (C.1: dataset-
wise ; C.2: tuple-wise). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 View as tabular data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Heat map view of the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Histograms for each attribute. . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 Photo of a turbine undergoing maintenance. The rotor is extracted from the
stator in this operation. Source: CNR. . . . . . . . . . . . . . . . . . . . . 68

7.2 Schematic of an ideal turbine. . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Model of real turbine used in this paper. . . . . . . . . . . . . . . . . . . . 69
7.4 Schematic of the turbine instrumentation. . . . . . . . . . . . . . . . . . . 70
7.5 Geometric model of the generator. 𝛽 (𝑡) is inferred from the two keyphasor

signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.6 The FD 𝛽 (𝑡)! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the low frequency dataset.

Here is shown the scatter plot of 𝑥 (𝑡) vs 𝑦 (𝑡). . . . . . . . . . . . . . . . . 73
7.7 The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡) ! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the low fre-

quency dataset. Here is shown the scatter plot of 𝑥 (𝑡) vs 𝑦 (𝑡). . . . . . . . 74
7.8 The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡) ! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the high fre-

quency dataset. Here is shown the scatter plot of 𝛾 (𝑡) vs 𝛿𝑚 (𝑡). Arrows
highlight the temperature clusters corresponding to each of the aggregated
recordings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.9 The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡),𝛾 (𝑡) ! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the high
frequency dataset. Here is shown the scatter plot of 𝛾 (𝑡) vs 𝛿𝑚 (𝑡). . . . . . 76

7.10 Absolute, relative and critical air gaps for a given point 𝑆 on the stator. . . . 77
7.11 Schematic of the proposed data science pipeline. . . . . . . . . . . . . . . . 78

x

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



7.12 Illustration of synchronous averaging on a sample of air gap data. In gray,
we observe 50 superposed rotor revolutions and in blue their averaged coun-
terpart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.13 Geometric model after synchronous averaging. The objective is to compute
the values of 𝛿𝑎 and 𝛼 to construct the absolute air gap profile 𝛿𝑎 [𝛼]. . . . . 80

7.14 Geometric model after computing the absolute air gap profile. For a known
absolute air gap value 𝛿𝑎 [𝛼], the new objective is to find the rotor center𝑂𝑟
the closest to 𝑆 as possible. This allows to compute 𝛿𝑐 [𝛼], the critical air
gap, i.e. the position where the rotor is the most likely to rub against the
stator at point 𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.15 Rotor center 𝑂𝑟 trajectory. Synchronous standard deviation for the angular
and radial coordinates is displayed in red. . . . . . . . . . . . . . . . . . . 82

7.16 Polar plot of the measured (𝛿𝑚 [𝛽]), absolute (𝛿𝑎 [𝛼]), and critical (𝛿𝑐 [𝛼]) air
gap profiles. Synchronous SD for 𝛿𝑚 [𝛽] is displayed as the blue area. . . . . 83

7.17 3d air gap profile allowing to capture the general trends in stator deforma-
tion. Can be displayed with critical air gap too. . . . . . . . . . . . . . . . 84

7.18 Illustration of the rising edge detection algorithm on a 1000Hz keyphasor
sample recorded at the Péage-de-Roussillon power plant. . . . . . . . . . . 85

A.1 Illustration of the reduction of Theorem 2. In gray, a clique and its associ-
ated subrelation satisfying 𝑋 !𝐴. . . . . . . . . . . . . . . . . . . . . . . xxii

B.1 Illustration of the reduction of Theorem 3. In gray, an independent set and
its associated subrelation satisfying 𝐵!𝐴. . . . . . . . . . . . . . . . . . xxvi

xi

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



Chapter 1
Introduction

1.1. Context

Today’s society is a data society. Vast amounts of information are accessed and stored every
second, ready to be dissected and analyzed [SS13]. It is no wonder that data science is a
fast-growing field of research, even going so far as to call data scientist “the sexiest job of the
21𝑠𝑡 century” [DP12]. Nonetheless, it is widely acknowledged that data science techniques
alone are not sufficient and that domain knowledge is an essential part of successful data
projects [Kit14]. Thus, for the time being, the use of domain knowledge in addition to
data science techniques is a critical area of research for extracting more advanced insights
from data. However, as noted in [Via13], data scientists are not domain experts. Therefore,
for data science projects to be successful, data scientists need to be part of cross-functional
teams and leverage the knowledge of others. The importance of such collaboration has been
stressed many times and several solutions have been proposed to integrate this knowledge
[ASM22, YHPM99, DCH97, BSEK06].

This thesis deals with the problem of domain knowledge integration in the context of
hydroelectricity production. In particular, it is the result of a partnership between the LIRIS
(Laboratoire d’InfoRmatique en Image et Systèmes d’information) computer science re-
search laboratory and the CNR (Compagnie Nationale du Rhône), an important French
producer of renewable energy. This partnership takes place within the CNR chair at the
“INSA Lyon Fondation”. This type of collaboration is an interesting playground for con-
fronting the current state of research with domain experts and industrial problems, in this
case in the field of data science. In particular, our various interactions with the CNR experts
led us to the following question: how can their theoretical models, in the form of functions,
be better verified on the basis of data collected in the field?

In the following, we introduce the CNR and give some elements of hydroelectric pro-
duction that will be used in this thesis. We then present the subject of this thesis in more de-
tail and list our main contributions. Finally, we present the organization of the manuscript.
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1.2. The “Compagnie Nationale du Rhône” (CNR)

Logo of the CNR.

The CNR is one of France’s leading renewable energy
producers. It uses solar and wind power, but its main
production is based on hydroelectricity. The CNR oper-
ates 20 hydroelectric power plants along the French part
of the Rhône river, producing up to 3100 MWh [dR22].
For several decades, the CNR has used a wide range of

sensors on its machines for direct control of the plants by humans or programmable con-
trollers. For more than 10 years, much of this data has also been stored for later use, but
remains largely under-exploited. For this reason, the CNR has invested in several data-
centric projects in recent years, with the aim of extracting new knowledge and developing
new services from its data. These projects are particularly important to better understand
and optimize production, as well as to keep the machines running. The study presented in
this thesis is part of this approach.

1.3. Run-of-the-river hydroelectricity, a quick overview

In this dissertation, we exploit elements of domain knowledge from hydroelectricity pro-
duction. Hence, we now present an overview of the functioning of a run-of-the-river hydro-
electric power plant to facilitate the understanding of the following chapters.

Figure 1.1 – Example of a CNR run-of-the-river hydroelectric power plant (location:
Pierre-Bénite, France).

Run-of-the-river hydroelectric power plants are optimized to operate on rivers with little
or no water storage capacity, such as the Rhône. A photograph of such plant is shown in
Figure 1.1. Their design is radically different from classical hydroelectric projects and in
particular from hydropower plants with pondage [WMCS84]. In particular, we take the
example of a run-of-the-river hydroelectric power plant with bulb turbines which is the
most common type used by the CNR. The scheme of such a plant is shown in Figure 1.2.
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Figure 1.2 – Schematic of a run-of-the-river hydroelectric power plant with a bulb
turbine. This diagram shows one turbine but there are usually several
installed in parallel. This is the most common installation at the CNR.

We now describe the general functioning of such unit. Upstream of the turbine, a fil-
tration grid is used to prevent potentially hazardous objects from entering the water inlet
and damaging the turbine. The flow (𝑚3 · 𝑠−1) is controlled by a valve installed just before
the blades. The hydraulic head (𝑚) is the difference in water level between downstream
and upstream of the unit. Together with the flow, the hydraulic head is the most important
variable determining the potential power generated by a turbine. In particular, a classic
function from hydraulics can be expressed as follows [CC13]:

power = 𝑓𝜂,𝜌 (flow,head) = 𝜂 · 𝜌 ·flow ·head (1.1)

where 𝜌 (𝑘𝑔 ·𝑚−3) is the density of the water and 𝜂 (no unit) is the turbine’s performance
which depends on fixed parameters such as the structure of the water inlets or the design
of the blades. From domain knowledge, we also know that the power produced depends
strongly on the orientation of the blades and the head loss at the filtration grids. In this
thesis, we will study the main following problem:

Given a function describing a physical system and data recorded from that system,
to what extent is the function “verified” in the data?

Hydraulic energy is used to rotate the head of the turbine to produce electricity through
the generator. The generator has two main components: the rotor and the stator. The rotor is
driven by the rotating turbine head, creating a rotating electromagnetic field. The stator uses
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this electromagnetic field to produce an alternating current synchronized to the European
grid frequency: 50Hz. The air gap is the space between the rotor and the stator. In run-of-
the-river installations, compact generators are generally required in order to disturb the flow
of the river as little as possible and to preserve the ecosystem. This compactness is usually
achieved at the cost of a small air gap, which sometimes leads to rotor-stator collisions
due to progressive stator deformation, as happened at the CNR. In this case, the air gap
distance is only a few millimeters for turbines of several meters in diameter. In addition,
due to real constraints, the rotor is not perfectly aligned with its axis of rotation and its
position varies over time. This phenomenon is called dynamic rotor eccentricity. In this
thesis, the following problem will serve as an example of industrial application:

In the case of stator deformation with dynamic rotor eccentricity, how to process air gap
monitoring data so to obtain reliable and operable insights?

1.4. Assessing the existence of a function in a dataset

The CACOH (Centre d’Analyse Comportementale des Ouvrages Hydrauliques) laboratory
at the CNR is responsible for analyzing the behaviour of hydraulic structures. During one of
our meetings with their engineers, the question arose of confronting the theoretical function
presented in function 1.1 with some data recorded on site. This question made sense in the
context of this thesis, as it is a ubiquitous means of confronting domain knowledge with
data. It led our research to the problem we describe in the following.

Leveraging domain knowledge is the key to extracting insightful information from data
about real-world problems. Therefore, when collaborating with domain experts to confront
their knowledge with real-world data, data scientists need an effective way to express and
measure their theoretical model against a dataset. We focus on one of the most ubiquitous
forms of models: functions.

Figure 1.3 highlights the pipeline we intend to follow in this dissertation. Our goal is
to enable the comparison of data extracted from a physical system with a function given
by a domain expert. As described later in Chapter 6, this process also provides insight
into the potential success of a machine learning project where the goal becomes learning a
function, i.e. a model. To illustrate our motivation, we use the following running example
drawn from the CNR.

Example 1. We consider the toy dataset 𝑟𝑡𝑜𝑦 in Table 1.1 presenting three attributes of
a water turbine: the incoming flow, the hydraulic head and the power produced by the
turbine. These attributes have been presented in the previous section. Moreover, we also
know thanks to function 1.1 that the power is dependent on the flow and the head. To
assess the proper functioning of their turbines, and gain insights into potential technical
optimizations, it is crucial to evaluate the veracity of function 1.1 against the data given in
𝑟𝑡𝑜𝑦 .
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Figure 1.3 – General process motivating the thesis. The data extracted from a physi-
cal system is compared to the function given by a domain expert. Those
results can be used to support the machine learning process.

Table 1.1 – RELATION 𝑟𝑡𝑜𝑦 .

𝑟𝑡𝑜𝑦 flow head power
𝑡1 2.5 10.1 22.9
𝑡2 2.7 10.4 23.2
𝑡3 2.6 10.3 23.0
𝑡4 2.5 10.2 23.3
𝑡5 2.6 10.1 23.1
𝑡6 2.6 10.3 22.9

Functions are deterministic by nature: an input has an unique output. Functional de-
pendencies (FDs) precisely capture this intuition and offer a comprehensive framework to
express constraints between sets of attributes. Introduced in [Arm74], FDs have been exten-
sively used to guarantee integrity in databases. However, their role has gradually extended
to many tasks such as data cleaning [BFG+07], data mining [NC01], and query optimization
[NK04], to mention but a few.

In its original definition, a FD 𝜑 is an expression of the form 𝑋 ! 𝐴 where 𝑋 is a set
of attributes and 𝐴 a single attribute. In 𝜑 , 𝑋 is often called the antecedent (a.k.a. features)
and 𝐴 the consequent (a.k.a. target). Such a FD is generally called a classical, exact or
crisp FD. We say that a relation 𝑟 satisfies 𝜑 when, for each two tuples of 𝑟 , their equality
on the antecedent of 𝜑 entails their equality on the consequent. A pair of tuples which does
not satisfy the FD is called a counterexample of 𝜑 in 𝑟 . In other words, 𝜑 models the fact
that, in 𝑟 , the antecedent must completely determine the consequent, just as the inputs of a
function must completely define the outputs.
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Example 2 (Continued). Function 1.1 translates as the following functional dependency:

𝜑 𝑓 : flow,head ! power

Unfortunately, crisp FDs are often too restrictive to portray accurately many real-life
scenarios. As a consequence, extending the satisfaction of FDs has been at the core of
many works during the last decades, as witnessed by recent surveys on the topic [CDP15,
SGHW20]. Those approaches can be classified according to two principles:

(i) measuring how much a FD deviates from the (deterministic) definition of a function

(ii) redefining the comparabilities between tuples

The first principle (i) aims to quantify the partial validity of a FD in data, rather than
assessing its perfect satisfaction. This allows to take into account data quality issues such
as outliers, mismeasurements or mistakes, which should not impact the relevance of a FD
in the data. To this end, a measure of satisfaction (a.k.a. coverage) needs to be chosen
for 𝜑 in 𝑟 . The most common measure is the 𝑔3 indicator, introduced by Kivinen and
Mannila [KM95]. More precisely, 𝑔3(𝜑,𝑟 ) corresponds to the smallest proportion of tuples
to remove from 𝑟 in order to satisfy 𝜑 . In the literature, the 𝑔3 indicator is often called the
𝑔3-error [CDP15] or just the error [HKPT99] while its opposite 1−𝑔3 is often referred to
as confidence [CGF+09, GKK+08, SGHW20]. Furthermore, 𝑔3 is at the core of many FD
mining algorithms [KM95, WSC+17, HKPT99, CDP16] and links to supervised learning
have been established in literature [LPS20, FGPSLG21].

Example 3 (Continued). There may be various errors in sensor recordings, or temporary
perturbations in the turbine such as branches often succeeding to passing upstream filters.
Hence, it is very unlikely that a FD such as 𝜑 𝑓 will be satisfied in 𝑟𝑡𝑜𝑦 despite being almost
valid. In 𝑟toy, the pair (𝑡3, 𝑡6) is the only counterexample to 𝜑 𝑓 . Thus, removing 1 tuple (𝑡3
or 𝑡6) over 6 is sufficient to satisfy 𝜑 𝑓 , which gives a 𝑔3 value of 1

6 . It is now up to the data
scientist to discuss with domain experts the significance of such 𝑔3 value.

The second principle (ii) introduces relaxations on the comparison of attribute values.
Loosening the strict equality of crisp FDs allows to take into account imprecisions and
uncertainties that are inherent to every observation. A classic approach is to replace the
equality by predicates as proposed in [CDP15,CCPP17,SGHW20]. By doing so, we obtain
a more general type of FD, generally called relaxed or non-crisp FD. Such a powerful re-
laxation captures a finer notion of proximity directly related to the problem at hand and the
available domain knowledge. Many well-known examples of non-crisp FDs such as Simi-
larity Dependencies [BKN13], Differential Dependencies [SC11] or Neighborhood Depen-
dencies [BW01] can be found in the literature and generally use an association of metric
predicates (metric associate with a threshold) and equality predicates, see also [CCPP17].
The substitution of equality by predicates considerably enlarges the spectrum of expression
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from string and numerical metrics to ordering constraints and probabilistic proximity. We
illustrate this extension in the following example.

Example 4 (Continued). In 𝑟toy, several FDs are trivially satisfied since all measures are
continuous, and hence, are likely to be unique. In this case, strict equality should be relaxed
by incorporating uncertainties to better capture the subtlety of the data. Thus, we can define
a predicate which returns TRUE if two recorded values are considered similar under the
sensor uncertainty and FALSE otherwise. In this is example, we keep it simple and apply an
absolute uncertainty of 0.1 to each attribute such that:

𝜙𝑝𝑜𝑤𝑒𝑟 (𝑥,𝑦) = 𝜙ℎ𝑒𝑎𝑑 (𝑥,𝑦) = 𝜙 𝑓 𝑙𝑜𝑤 (𝑥,𝑦) =
{

TRUE if |𝑥 −𝑦 | ≤ 0.1
FALSE otherwise.

(1.2)

First, we observe that the previous pair (𝑡3, 𝑡6) is no longer a counterexample. In-
deed, their values on the power attribute are not distant enough to be considered differ-
ent when incorporating the uncertainties. However, several new counterexamples arise:
(𝑡1, 𝑡5), (𝑡1, 𝑡4), (𝑡4, 𝑡5), (𝑡4, 𝑡3)... Thus, integrating these uncertainties showcases the possi-
ble difficulties of real-life data in matching the target function. To validate 𝜑 𝑓 , it is sufficient
to remove 3 tuples (e.g. 𝑡2, 𝑡4 and 𝑡5) over 6 total which gives a 𝑔3 of 3

6 = 0.5. Such a high
error requires discussions with domain experts: what are the possible causes of such devi-
ations from the model?

Nonetheless, if predicates extend FDs in a meaningful way with respect to real world
applications, they also make the computation harder. In fact, contrary to strict equality,
computing the 𝑔3-error with binary predicates becomes NP-complete [FGPS22, SCP13].
In particular, this is the case for metric [KSSV09], matching [Fan08], comparable and
differential dependencies [SCP13]. Still, there is no detailed analysis of what makes the
𝑔3-error hard to compute when dropping equality for more meaningful predicates. As a
consequence, domain experts are left without any insights on which predicates they can use
to be able to estimate the validity of their background knowledge in their data. Moreover,
no detailed analysis for the computation of 𝑔3 can be found in literature, especially for its
scalability with large datasets. Finally, while [LPS20] sketches a link between supervised
learning and the 𝑔3-error, the use of predicates as well as the exploitation of FD counterex-
amples is not found in the literature. To mitigate these absences in the literature, we present
the following contributions:

– Complexity analysis. First, we investigate the following question: which proper-
ties of predicates make the 𝑔3-error easy to compute? Indeed, predicates offer a
convenient framework to study the impact of common properties such as reflexivity,
transitivity, symmetry (the properties of equality), and antisymmetry on the hardness
of computing the 𝑔3-error. In this setting, we make the following contributions. First,
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we show that dropping reflexivity and antisymmetry does not make the 𝑔3-error hard
to compute. When removing transitivity, the problem becomes NP-complete. This
result is intuitive as transitivity plays a crucial role in the computation of the 𝑔3-error
for dependencies based on similarity/distance relations [CDP15, SGHW20]. Second,
we focus on symmetry. Symmetry has attracted less attention, despite its importance
in partial orders and order FDs [DH82, GH83, Ng01]. Even though symmetry seems
to have less impact than transitivity in the computation of the 𝑔3-error, we show that
when it is removed the problem also becomes NP-complete. This result holds in
particular for ordered dependencies.

– Algorithms for computing 𝑔3. Second, we examine the computation of 𝑔3 in the
NP-hard and polynomial cases identified above. For both cases, we propose differ-
ent exact and approximate solutions for the computation of 𝑔3. First, for the NP-hard
case, we present a detailed computation pipeline with various computation optimiza-
tions, including approximation algorithms and adaptations of recent developments in
sublinear algorithms for NP-hard problems [ORRR12,YYI09]. Second, for the poly-
nomial case where predicates are constrained to be at least transitive and symmetric,
we propose exact algorithms and approximate ones based on uniform and stratified
random sampling. We also propose an in-depth experimental study of the algorithms
presented in terms of time performance and approximation accuracy. All the algo-
rithms are also made available through FASTG3, an open-source Python library de-
signed to be intuitive and efficient thanks to an underlying C++ implementation.

– Interactive counterexample exploration. Third, we present how our solution can
be used to support the supervised learning process. Notably, we show how to use
counterexamples and the 𝑔3 indicator to assist the upstream process before training a
learning algorithm. Our main contribution is the development of a web application
to interact with a dataset under the scope of counterexamples: ADESIT. ADESIT is
based on the FASTG3 library and proposes interactive visualizations and indicators to
help understand why the learning might fail and in which situations.

We also dedicate a part of this thesis to validate our approach on a real-world problem
from the CNR. More precisely, we show how counterexamples and the 𝑔3 indicator can be
used as a go/no-go step for a data science project. To do this, we take advantage of an
auxiliary project carried out with the CNR’s Industry 4.0 structure, which is working on the
use of data for predictive maintenance. Following a meeting with engineers from this struc-
ture, we decided to study the problem of air gap monitoring in compact hydro-generators
such as those made by CNR. The aim is to propose a faster and more reliable solution with
complementary information on stator deformations and critical air gap distances to support
maintenance. Before developing a data science solution for this problem, we explain how
we used ADESIT to verify some primary hypotheses and assumptions. We then explain our
solution in more detail and apply it to some data from the CNR.
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1.5. Manuscript organization.

The organization of the manuscript reads as follows. In Chapter 2, we give some prelim-
inaries in the fields of graph theory and database theory. Chapter 3 introduces the notions
of counterexample and conflict graph as well as the problem of computing the 𝑔3 indicator
with predicates and its associated semantics. Chapter 4 is devoted to an in-depth analysis
of the complexity of the problem of computing 𝑔3 with respect to a set of properties. In the
light of these results, Chapter 5 offers algorithmic solutions for its exact and approximate
computation: first in in the general case but also when the predicates are restricted to be at
least transitive and symmetric. We also perform experiments on several datasets to analyze
the time performance and the accuracy of the algorithms. In Chapter 6, we present ADESIT,
a web application for analyzing a dataset in view of a function and we illustrate its use with
a running example from the CNR. In Chapter 7, we validate our approach on the problem
of air gap monitoring. We use counterexample analysis as a preliminary go/no-go step for a
CNR project on air gap monitoring in compact hydro-generators, and present a data science
solution for automatically processing such data. Finally, we present some related work,
conclude this thesis and suggest some avenues for future study.
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Chapter 2
Preliminaries

In this chapter, we introduce the main notations used throughout this dissertation. In par-
ticular, we introduce notions of graph and database theory. All the objects we consider are
finite.

Graph. We begin with some definitions on graphs [Ber73] and ordered sets [DP02]. A
graph𝐺 is a pair (𝑉 ,𝐸) where𝑉 is a set of vertices and 𝐸 is a collection of pairs of vertices
called edges. An edge of the form (𝑢,𝑢) is called a loop. The graph 𝐺 is directed if edges
are ordered pairs of elements. Unless otherwise stated, we consider loopless undirected
graphs. Let 𝐺 = (𝑉 ,𝐸) be a graph, and let 𝑉 ′ ⊆ 𝑉 . The graph 𝐺 [𝑉 ′] = (𝑉 ′,𝐸′) with 𝐸′ =
{(𝑢,𝑣) ∈ 𝐸 | {𝑢,𝑣} ⊆ 𝑉 ′} is the graph induced by 𝑉 ′ with respect to 𝐺 . A path in 𝐺 is a
sequence 𝑢1, . . . ,𝑢𝑛 of vertices such that (𝑢𝑖,𝑢𝑖+1) ∈ 𝐸 for each 1 ≤ 𝑖 < 𝑛. The length of a
path is its number of edges. An independent set of 𝐺 is a subset 𝐼 of 𝑉 such that no two
vertices in 𝐼 are connected by an edge of 𝐺 . Dually, a clique of 𝐺 is a subset 𝐾 of 𝑉 such
that every pair of distinct vertices in 𝐾 are connected by an edge of 𝐺 . An independent set
is maximal if it is inclusion-wise maximal among all independent sets. It is maximum if it
is an independent set of maximal cardinality. The size of a maximum independent set in
𝐺 is the independence number of 𝐺 , written 𝛼 (𝐺). The problem of computing 𝛼 (𝐺) is a
well-known NP-complete problem defined as follows:

MAXIMUM INDEPENDENT SET (MIS)
Input: A graph 𝐺 = (𝑉 ,𝐸), 𝑘 ∈ ℕ.
Output: yes if 𝛼 (𝐺) ≥ 𝑘 , no otherwise.

The set complement of an independent set is a vertex cover of𝐺 . The covering number
𝛽 (𝐺) of 𝐺 is the minimum cardinality of a vertex cover of 𝐺 . The problem of computing
𝛽 (𝐺) is the dual of MIS:

10

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



MINIMUM VERTEX COVER (MVC)
Input: A graph 𝐺 = (𝑉 ,𝐸), 𝑘 ∈ ℕ.
Output: yes if 𝛽 (𝐺) ≤ 𝑘 , no otherwise.

A graph𝐺 is a co-graph if it has no induced subgraph equal to a path of length 3 (called
P4). A 2-subdivision of a graph results from inserting 2 new vertices in every edge, that
is from replacing each edge (𝑢,𝑣) with a P4 𝑢,𝑥,𝑦,𝑣 . A graph is a 2-subdivision if it is the
2-subdivision of some graph. A partially ordered set or poset is a pair 𝑃 = (𝑉 ,≤) where 𝑉
is a set and ≤ a reflexive, transitive, and antisymmetric binary relation. The relation ≤ is
called a partial order. If for every 𝑥,𝑦 ∈𝑉 , 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 holds, ≤ is a total order. A poset
𝑃 is associated to a directed graph𝐺 (𝑃) = (𝑉 ,𝐸) where (𝑢𝑖,𝑢 𝑗 ) ∈ 𝐸 exactly when 𝑢𝑖 ≠𝑢 𝑗 and
𝑢𝑖 ≤ 𝑢 𝑗 . An undirected graph 𝐺 = (𝑉 ,𝐸) is a comparability graph if there exists a way to
direct the edges of 𝐺 so that the resulting directed graph corresponds to a poset.

Database. We move to terminology from database theory [LL12]. We use capital first
letters of the alphabet (𝐴, 𝐵, 𝐶, ...) to denote single attributes and capital last letters (..., 𝑋 ,
𝑌 , 𝑍 ) for attribute sets. Let 𝑈 be a universe of attributes with each attribute 𝐴 ∈ 𝑈 taking
value in a domain denoted by dom(𝐴). Let 𝑅 ⊆ 𝑈 be relation schema. The domain of 𝑅
is dom(𝑅) = ⋃

𝐴∈𝑅 dom(𝐴). The active domain of a relation 𝑟 over 𝑅 is the set of constant
values that appear in the tuples of r. Sometimes, especially in examples, we write a set as a
concatenation of its elements (e.g. 𝐴𝐵 corresponds to {𝐴,𝐵}).
A tuple 𝑡 over 𝑅 is a mapping 𝑡 : 𝑅 ! dom(𝑅) such that 𝑡 (𝐴) ∈ dom(𝐴) for every 𝐴 ∈ 𝑅.
The projection of a tuple 𝑡 on a subset 𝑋 of 𝑅 is the restriction of 𝑡 to 𝑋 , written 𝑡 [𝑋 ]. A
relation 𝑟 over 𝑅 is a finite set of tuples over 𝑅. We write 𝑡 [𝐴] as a shortcut for 𝑡 [{𝐴}]. The
size |𝑟 | of 𝑟 is its number of tuples, the cardinality of the set. For convenience, we will often
put |𝑟 | = 𝑛.
A functional dependency over 𝑅 is an expression 𝑋 ! 𝐴 where 𝑋 ∪ {𝐴} ⊆ 𝑅. Given a
relation 𝑟 over 𝑅, we say that 𝑟 satisfies 𝑋 !𝐴, denoted by 𝑟 |= 𝑋 !𝐴, if for every pair of
tuples (𝑡1, 𝑡2) of 𝑟 , 𝑡1 [𝑋 ] = 𝑡2 [𝑋 ] implies 𝑡1 [𝐴] = 𝑡2 [𝐴]. In case 𝑟 does not satisfy 𝑋 ! 𝐴,
we write 𝑟 ̸ |= 𝑋 !𝐴.
Similar to [HKPT99], we denote the equivalence class of a tuple 𝑡 ∈ 𝑟 with respect to
a given set 𝑋 ⊆ 𝑅 by [𝑡]𝑋 such that [𝑡]𝑋 = {𝑢 ∈ 𝑟 | 𝑡 [𝐴] = 𝑢 [𝐴] for all 𝐴 ∈ 𝑋 }. The set
Ω𝑋 (𝑟 ) = {[𝑡]𝑋 | 𝑡 ∈ 𝑟 } of equivalence classes is a partition of 𝑟 under 𝑋 .
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Chapter 3
The 𝑔3-error with predicates

This chapter introduces the 𝑔3 indicator as well as the notions of counterexamples and
conflict-graph. First, we describe its classical version as introduced in [KM95]. Second,
we present our framework for extending the classical equality and show how it applies to
𝑔3. We also present the current knowledge about the hardness of this problem.

3.1. The 𝑔3-error

In this section, we introduce the classical 𝑔3-error, along with its connection with vertex
covers in graphs through counterexamples and conflict-graphs [Ber11].

Let 𝑟 be a relation over 𝑅 and 𝑋 ! 𝐴 a FD. The 𝑔3-error, or simply 𝑔3, quantifies the
degree to which 𝑋 ! 𝐴 holds in 𝑟 . We write it 𝑔3(𝑋 ! 𝐴,𝑟 ). It has been introduced by
Kivinen and Mannila [KM95], and it is frequently used to estimate the partial validity of
a FD in a dataset [CDP15, CGF+09, FGPS22, HKPT99]. It is the minimum proportion of
tuples to remove from 𝑟 to satisfy 𝑋 !𝐴. Formally:

𝑔3(𝑋 !𝐴,𝑟 ) = 1− max({|𝑠 | | 𝑠 ⊆ 𝑟,𝑠 |= 𝑋 !𝐴})
|𝑟 |

In particular, if 𝑟 |=𝑋 !𝐴, we have𝑔3(𝑋 !𝐴,𝑟 ) = 0. For the most part, we will consider the
optimization problem of computing the𝑔3-error where the goal is to compute its exact value.
In some situations and especially hardness analysis, we will rather examine its decision
version. We refer to the decision problem of computing 𝑔3(𝑋 !𝐴,𝑟 ) as the error validation
problem [CDP15, SCP13]. It reads as follows:

ERROR VALIDATION PROBLEM (EVP)
Input: A FD 𝑋 !𝐴 over 𝑅, a relation 𝑟 over 𝑅, 𝑘 ∈ ℝ.
Output: yes if 𝑔3(𝑋 !𝐴,𝑟 ) ≤ 𝑘 , no otherwise.
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It is known that there is a strong relationship between this problem and the task of com-
puting the size of an MVC in a graph [CDP15, FGPS22]. To appreciate the relationship
between the EVP and the MVC, we need to introduce the notions of counterexample and
conflict-graph [Ber11,FGPS22]. A counterexample to 𝑋 !𝐴 in 𝑟 is a pair of tuples (𝑡1, 𝑡2)
such that for all 𝐵 ∈ 𝑋 , we have 𝑡1 [𝐵] = 𝑡2 [𝐵] and 𝑡1 [𝐴] ≠ 𝑡2 [𝐴]. Such pair of tuples is
sometimes called a violating pair [KM95]. In other words, the pair (𝑡1, 𝑡2) is a counterex-
ample if (𝑡1, 𝑡2) ̸|= 𝑋 ! 𝐴. The conflict-graph of 𝑋 ! 𝐴 with respect to 𝑟 is the graph
CG(𝑋 ! 𝐴,𝑟 ) = (𝑟,𝐸) where a pair of tuples (𝑡1, 𝑡2) in 𝑟 belongs to 𝐸 when it is a coun-
terexample to 𝑋 ! 𝐴 in 𝑟 . A vertex cover of CG(𝑋 ! 𝐴,𝑟 ) is precisely the subrelation to
remove from 𝑟 to satisfy 𝑋 !𝐴. Therefore, computing 𝑔3(𝑋 !𝐴,𝑟 ) reduces to finding the
size of a minimum vertex cover in CG(𝑋 ! 𝐴,𝑟 ). More formally, we have the following
proposition:

PROPOSITION 1. Let 𝑅 be a relation schema and 𝜑 a FD. We have:

𝑔3(𝜑,𝑟 ) =
𝛽 (CG(𝜑,𝑟 ))

|𝑟 |

Proof. Let CG(𝜑,𝑟 ) = (𝑉 ,𝐸). Let 𝐶 be an MVC in (𝑉 ,𝐸). By definition, there exists no
edge in 𝐸 such that both endpoints are in 𝑉 \𝐶 and therefore no counterexample in the cor-
responding set of tuples. Moreover, 𝐶 is also the minimum set of vertices/tuples which can
be removed to get rid of all counterexamples. Observing that |𝑉 | = |𝑟 |, the result follows:

𝑔3(𝜑,𝑟 ) =
|𝐶 |
|𝑉 | =

𝛽 (CG(𝜑,𝑟 ))
|𝑟 |

■

However, MVC is an NP-complete problem [GJ79] but computing 𝑔3(𝑋 !𝐴,𝑟 ) takes
polynomial time in the size of 𝑟 and 𝑋 ! 𝐴 [HKPT99]. This is due to the properties of
equality, namely reflexivity, transitivity and symmetry. CG(𝑋 !𝐴,𝑟 ) is a disjoint union of
complete 𝑘-partite graphs, and hence a co-graph [FGPS22]. In this class of graphs, solving
MIS is polynomial [GRT97]. Such graph structures are illustrated in the following two
examples.

Example 5. In the example presented in Figure 3.1, we can observe on the right the conflict
graph corresponding to the table on the left and the FD 𝐴! 𝐵. Two distinct complete k-
partite graphs are visible.

Example 6 (Continued from Example 4). As in Example 3, we use the relation 𝑟𝑡𝑜𝑦 pre-
sented in Table 1.1 and the FD 𝜑 𝑓 : flow,head ! power. In Figure 3.2 is presented the
corresponding conflict graph CG(𝜑 𝑓 ,𝑟𝑡𝑜𝑦). The only counterexample to 𝜑 𝑓 in 𝑟𝑡𝑜𝑦 is (𝑡3, 𝑡6)
and corresponds to the only edge of the graph. One possible MVC of size 1 is encircled
which corresponds to the only tuple to remove to get rid of all counterexamples.
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𝑟 A B C
𝑡1 1 1 1
𝑡2 1 1 2
𝑡3 1 2 3
𝑡4 2 3 4
𝑡5 2 4 5
𝑡6 2 3 6
𝑡7 2 5 7
𝑡8 2 5 8

t1

t6

t8

t4

t2

t3

t7

t5

Figure 3.1 – A relation 𝑟 and the conflict graph CG(𝐴! 𝐵,𝑟 ). An MVC is encircled.

t1 t4

t6

t5

t2

t3

Figure 3.2 – Conflict-graph CG(𝜑 𝑓 ,𝑟𝑡𝑜𝑦). An MVC is encircled.

The observations made in this section led us to look more closely at the impact of
common value comparison properties on the structure of conflict graphs and the resulting
complexity of computing 𝑔3. First, we need to introduce predicates to relax equality, and to
define a more general version of the error validation problem accordingly.

3.2. Predicates to relax equality

In this section, we equip each attribute of a relation schema with a binary predicate. We
define the new 𝑔3-error and the corresponding error validation problem.

Let 𝑅 be a relation schema. For each𝐴 ∈ 𝑅, let 𝜙𝐴 : dom(𝐴)×dom(𝐴)! {TRUE, FALSE}
be a predicate. For instance, the predicate 𝜙𝐴 can be equality, a distance, or a similarity rela-
tion. We assume that predicates are black-box oracles that can be computed in polynomial
time in the size of their input. Let Φ be a set of predicates, one for each attribute in 𝑅.
The pair (𝑅,Φ) is a relation schema with predicates. In a relation schema with predicates,
relations and FDs are unchanged. However, the way a relation satisfies (or not) a FD can
easily be adapted to Φ.

DEFINITION 1 (satisfaction with predicates). Let (𝑅,Φ) be a relation schema with predi-
cates, 𝑟 a relation over 𝑅 and 𝑋 ! 𝐴 a FD over 𝑅. The relation 𝑟 satisfies 𝑋 ! 𝐴 with
respect to Φ, denoted by 𝑟 |=Φ 𝑋 ! 𝐴, if for every pair of tuples (𝑡1, 𝑡2) of 𝑟 , the following
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formula holds: ∧
𝐵∈𝑋

𝜙𝐵 (𝑡1 [𝐵], 𝑡2 [𝐵]) =⇒ 𝜙𝐴 (𝑡1 [𝐴], 𝑡2 [𝐴])

The 𝑔3-error also has to adapt to Φ. The 𝑔3-error with predicates of 𝑋 !𝐴 with respect
to 𝑟 , denoted by 𝑔Φ3 (𝑋 !𝐴,𝑟 ) is defined by:

𝑔Φ3 (𝑋 !𝐴,𝑟 ) = 1− max({|𝑠 | | 𝑠 ⊆ 𝑟,𝑠 |=Φ 𝑋 !𝐴})
|𝑟 |

From the definition of 𝑔Φ3 (𝑋 !𝐴,𝑟 ), we derive the extension of the error validation problem
from equality to predicates:

ERROR VALIDATION PROBLEM WITH PREDICATES (EVPP)
Input: A relation schema with predicates (𝑅,Φ), a FD 𝑋 !𝐴 over

(𝑅,Φ), a relation 𝑟 over (𝑅,Φ), 𝑘 ∈ ℝ.
Output: yes if 𝑔Φ3 (𝑋 !𝐴,𝑟 ) ≤ 𝑘 , no otherwise.

Observe that according to the definition of satisfaction with predicates (Definition 1),
counterexamples and conflict-graphs remain well-defined. However, for a given predicate
𝜙𝐴, 𝜙𝐴 (𝑥,𝑦) = 𝜙𝐴 (𝑦,𝑥) is not required to be true, meaning that we have to consider ordered
pairs of tuples. That is, an ordered pair of tuples (𝑡1, 𝑡2) in 𝑟 is a counterexample to 𝑋 !𝐴

if
∧
𝐵∈𝑋 𝜙𝐵 (𝑡1 [𝐵], 𝑡2 [𝐵]) = TRUE but 𝜙𝐴 (𝑡1 [𝐴], 𝑡2 [𝐴]) ≠ TRUE, denoted (𝑡1, 𝑡2) ̸|=Φ 𝑋 !𝐴.
We call CGΦ(𝑋 ! 𝐴,𝑟 ) the conflict-graph of 𝑋 ! 𝐴 in 𝑟 . In general, CGΦ(𝑋 ! 𝐴,𝑟 )

is directed. It is undirected if the predicates of Φ are symmetric. In particular, computing
𝑔Φ3 (𝑋 ! 𝐴,𝑟 ) still amounts to finding the size of a minimum vertex cover in CGΦ(𝑋 !

𝐴,𝑟 ). The next proposition formally states the correspondence between the 𝑔3-error with
predicates and the size of an MVC in the associated conflict-graph. The proof is similar to
that of Proposition 1 and is omitted.

PROPOSITION 2. Let (𝑅,Φ) be a relation schema with predicates and 𝜑 a FD. We have:

𝑔Φ3 (𝜑,𝑟 ) =
𝛽 (CGΦ(𝜑,𝑟 ))

|𝑟 |

Example 7 (Continued). We now add to the previous example the same predicates as in
Example 4 (absolute uncertainties on each attribute). The new conflict graph CGΦ(𝜑 𝑓 ,𝑟𝑡𝑜𝑦)
is presented in Figure 3.3. Remark that the graph is no longer a co-graph (e.g. 𝑡1, 𝑡4, 𝑡3, 𝑡2).
This is due to the new predicates which are different from the equality. An MVC of size 3 is
encircled for a 𝑔3 of 1

2 as in Example 4.

Thus, there is also a strong relationship between the EVPP and the MVC, similar to
the one between the EVP and the MVC. Nonetheless, unlike the EVP, the problem EVPP
is NP-complete (corollary from [SCP13]).
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t1 t4

t6

t5

t2

t3

Figure 3.3 – Conflict-graph CGΦ(𝜑 𝑓 ,𝑟𝑡𝑜𝑦). An MVC is encircled.

For complexity and algorithmic purposes, we will sometimes restrict the expressiveness
our model by imposing some properties to the predicates. We now describe the main prop-
erties of interest for this thesis. Let (𝑅,Φ) be a relation schema with predicates. Let 𝐴 ∈ 𝑅
and 𝜙𝐴 be the corresponding predicate. For all 𝑥,𝑦,𝑧 ∈ dom(𝐴), we consider the following
properties:

(ref) 𝜙𝐴 (𝑥,𝑥) = TRUE (reflexivity)

(tra) 𝜙𝐴 (𝑥,𝑦) = 𝜙𝐴 (𝑦,𝑧) = TRUE implies 𝜙𝐴 (𝑥,𝑧) = TRUE (transitivity)

(sym) 𝜙𝐴 (𝑥,𝑦) = 𝜙𝐴 (𝑦,𝑥) (symmetry)

(asym) 𝜙𝐴 (𝑥,𝑦) = 𝜙𝐴 (𝑦,𝑥) = TRUE implies 𝑥 = 𝑦 (antisymmetry)

Note that symmetry and antisymmetry together imply transitivity, since in this case, 𝜙𝐴 (𝑥,𝑦) =
TRUE entails 𝑥 = 𝑦. In the next chapter, we study this gap of difficulty between the EVP
and the EVPP in regard to those properties of predicates.
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Chapter 4
Complexity of computing 𝑔3

4.1. Introduction

As mentioned before, although predicates extend FDs in powerful and meaningful ways
with respect to real-world applications, they also make computation more difficult. In fact,
contrary to strict equality, computing the 𝑔3-error with general binary predicates becomes
NP-complete [FGPS22, SCP13]. In particular, it has been proven for metric [KSSV09],
matching [Fan08], comparable and differential dependencies [SCP13]. Still, there is no
detailed analysis of what makes the 𝑔3-error hard to compute when dropping equality for
more flexible predicates. As a result, domain experts are left without any insights on which
predicates they can use to be able to estimate efficiently the validity of their background
knowledge in their data.

This last problem constitutes the motivation for our contribution. In this chapter, we
investigate the following question: which properties of predicates make the 𝑔3-error easy to
compute? Predicates provide a convenient framework for studying the impact of common
properties such as reflexivity, transitivity, symmetry (the properties of equality), and anti-
symmetry on the hardness of computing the 𝑔3-error. In this setting, we make the following
contributions:

– First, we show that dropping reflexivity and antisymmetry does not make the 𝑔3-error
hard to compute. When removing transitivity, the problem becomes NP-complete.
This is intuitive as transitivity plays a crucial role in the computation of the 𝑔3-error
for dependencies based on similarity/distance relations [CDP15,SGHW20], or equiv-
alently on the underlying structure of the conflict graph.

– Second, we focus on symmetry. Symmetry has attracted less attention, despite its
importance in partial orders and order FDs [DH82, GH83, Ng01]. Surprisingly, we
show that when symmetry property is not satisfied the problem also becomes NP-
complete, in particular for ordered dependencies.
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The main results of this chapter have been published in [VFGPS23].

Chapter organization. First, we analyze the impact of dropping some properties of equal-
ity on the hardness of 𝑔3. Second, we relate our results with existing extensions of FDs.
Finally, we conclude with some remarks and open questions for further research.

4.2. Complexity analysis

In this section, we study properties of binary predicates that are commonly used to replace
equality. Those properties –namely reflexivity (ref), transitivity (tra), symmetry (sym) and
antisymmetry (asym)– have been described in Section 3. We show how each of them affects
the error validation problem.

4.2.1. Dropping reflexivity and antisymmetry

We first show that symmetry and transitivity are sufficient to make the EVPP solvable in
polynomial time. In fact, we prove that the resulting conflict-graph is a co-graph, as with
equality.

THEOREM 1. The problem EVPP can be solved in polynomial time if the predicates are
transitive (tra) and symmetric (sym).

Proof. Let (𝑅,Φ) be a relation schema with predicates. Let 𝑟 be relation over 𝑅 and 𝑋 !𝐴

a functional dependency. We assume that each predicate in Φ is transitive and symmetric.
We show how to compute the size of a maximum independent set of CGΦ(𝑟,𝑋 ! 𝐴) in
polynomial time.

As 𝜙𝐴 is not necessarily reflexive, a tuple 𝑡 in 𝑟 can produce a counterexample (𝑡, 𝑡)
to 𝑋 ! 𝐴. Indeed, it may happen that 𝜙𝐵 (𝑡 [𝐵], 𝑡 [𝐵]) = TRUE for each 𝐵 ∈ 𝑋 , but
𝜙𝐴 (𝑡 [𝐴], 𝑡 [𝐴]) = FALSE. However, it follows that 𝑡 never belongs to a subrelation 𝑠 of 𝑟
satisfying 𝑠 |=Φ 𝑋 ! 𝐴. Thus, let 𝑟 ′ = 𝑟 ∖ {𝑡 ∈ 𝑟 | {𝑡} ̸|=Φ 𝑋 ! 𝐴}. Then, a subrelation of 𝑟
satisfies 𝑋 ! 𝐴 if and only if it is an independent set of CGΦ(𝑋 ! 𝐴,𝑟 ) if and only if it is
an independent set of CGΦ(𝑋 ! 𝐴,𝑟 ′). Consequently, computing 𝑔Φ3 (𝑟,𝑋 ! 𝐴) reduces to
solve MIS in CGΦ(𝑋 !𝐴,𝑟 ′).

We prove now that CGΦ(𝑋 ! 𝐴,𝑟 ′) is a co-graph. Assume for contradiction that
CGΦ(𝑋 ! 𝐴,𝑟 ′) has an induced path 𝑃 with 4 elements, say 𝑡1, 𝑡2, 𝑡3, 𝑡4 with edges (𝑡1, 𝑡2),
(𝑡2, 𝑡3) and (𝑡3, 𝑡4). Remind that edges of CGΦ(𝑋 ! 𝐴,𝑟 ′) are counterexamples to 𝑋 ! 𝐴

in 𝑟 ′. Hence, by symmetry and transitivity of the predicates of Φ, we deduce that for each
pair (𝑖, 𝑗) in {1,2,3,4}, ∧

𝐵∈𝑋 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡 𝑗 [𝐵]) = TRUE. Let us focus on {𝑡1, 𝑡3, 𝑡4}. Thus,
we have

∧
𝐵∈𝑋 𝜙𝐵 (𝑡3 [𝐵], 𝑡1 [𝐵]) =

∧
𝐵∈𝑋 𝜙𝐵 (𝑡1 [𝐵], 𝑡4 [𝐵]) = TRUE. However, neither (𝑡1, 𝑡3)
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nor (𝑡1, 𝑡4) belong to CGΦ(𝑟 ′,𝑋 ! 𝐴) since 𝑃 is an induced path by assumption. We de-
duce that 𝜙𝐴 (𝑡3 [𝐴], 𝑡1 [𝐴]) = 𝜙𝐴 (𝑡1 [𝐴], 𝑡4 [𝐴]) = TRUE must hold. However, the transitiv-
ity of 𝜙𝐴 implies 𝜙𝐴 (𝑡3 [𝐴], 𝑡4 [𝐴]) = TRUE, a contradiction with (𝑡3, 𝑡4) being an edge of
CGΦ(𝑋 ! 𝐴,𝑟 ′). We deduce that CGΦ(𝑋 ! 𝐴,𝑟 ′) cannot contain an induced 𝑃4, and that
it is indeed a co-graph. As MIS can be solved in polynomial time for co-graphs [GRT97],
the theorem follows. ■

It is possible to encounter non-reflexive predicates when dealing with strict orders or
with binary predicates derived from SQL equality. In the 3-valued logic of SQL, comparing
the null value with itself evaluates to FALSE rather than TRUE. With this regard, it could
be natural for domain experts to use a predicate which is transitive, symmetric and non-
reflexive, or more exactly reflexive almost everywhere but on the null value. This would
allow to take into account missing information without altering the data.

4.2.2. Dropping transitivity

The previous proof heavily makes use of transitivity, which has a strong impact on the
edges belonging to the conflict-graph. Intuitively, conflict-graphs can become much more
complex when transitivity is dropped. Indeed, we prove an intuitive case: when predicates
are not required to be transitive, the EVPP becomes intractable.

THEOREM 2. The problem EVPP is NP-complete even when the predicates are symmetric
(sym) and reflexive (ref).

The proof is a reduction from the problem of finding the size of a maximum clique in
general graphs (dual to MIS). It uses arguments similar to the proof of Song et al. [SCP13]
showing the NP-completeness of the EVPP for comparable dependencies. For complete-
ness, it is given in Appendix A, page xxi.

4.2.3. Dropping symmetry

We turn our attention to the case where symmetry is dropped from the predicates. In this
context, conflict-graphs are directed. Indeed, an ordered pair of tuples (𝑡1, 𝑡2) may be a
counterexample to a FD, but not (𝑡2, 𝑡1). Yet, transitivity still contributes to constraining the
structure of conflict-graphs, as suggested by the following example.

Example 8. We consider the relation on the left of Figure 4.1. We equip 𝐴,𝐵,𝐶,𝐷 with the
following predicates:

– 𝜙𝐶 (𝑥,𝑦) = TRUE if and only if 𝑥 ≤ 𝑦.
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– 𝜙𝐴 (𝑥,𝑦) is defined by

𝜙𝐴 (𝑥,𝑦) =


TRUE if 𝑥 = 𝑦

TRUE if 𝑥 = 1 and 𝑦 ∈ {2,4}
TRUE if 𝑥 = 3 and 𝑦 = 4
FALSE otherwise.

– 𝜙𝐵 and 𝜙𝐷 are the equality.

Let Φ = {𝜙𝐴,𝜙𝐵,𝜙𝐶,𝜙𝐷}. The conflict-graph CGΦ(𝐶 ! 𝐴) is represented on the right of
Figure 4.1. Since 𝜙𝐶 is transitive, we have 𝜙𝐶 (𝑡3 [𝐶], 𝑡 𝑗 [𝐶]) = TRUE for each tuple 𝑡 𝑗 of 𝑟 .
Moreover, 𝜙𝐴 (𝑡3 [𝐴], 𝑡6 [𝐴]) = FALSE since (𝑡3, 𝑡6) is a counterexample to𝐶!𝐴. Therefore,
the transitivity of 𝜙𝐴 implies either 𝜙𝐴 (𝑡3 [𝐴], 𝑡4 [𝐴]) = FALSE or 𝜙𝐴 (𝑡4 [𝐴], 𝑡6 [𝐴]) = FALSE.
Hence, at least one of (𝑡3, 𝑡4) and (𝑡4, 𝑡6) must be a counterexample to 𝐶 ! 𝐴 too. In the
example, this is (𝑡3, 𝑡4).

𝑟 A B C D
𝑡1 1 2 1 5
𝑡2 1 1 2 5
𝑡3 2 1 1 5
𝑡4 3 2 3 5
𝑡5 2 3 4 5
𝑡6 4 4 5 6

t1

t3

t2 t4 t5

t6

Figure 4.1 – A relation 𝑟 and the conflict graph CGΦ(𝐴𝐵!𝐶,𝑟 ).

Nevertheless, if transitivity constrains the complexity of the graph, dropping symmetry
still allows new kinds of graph structures. Indeed, in the presence of symmetry, a conflict-
graph cannot contain induced paths with more than 3 elements because of transitivity. How-
ever, such paths may exist when symmetry is removed.

Example 9. In the previous example, the tuples 𝑡2, 𝑡4, 𝑡5, 𝑡6 form an induced 𝑃4 of the under-
lying undirected graph of CGΦ(𝑟,𝐶 !𝐴), even though 𝜙𝐴 and 𝜙𝐶 enjoy transitivity.

Therefore, we are left with the following intriguing question: can the loss of symmetry
be used to break transitivity, and offer conflict-graphs a structure sufficiently complex to
make the EVPP intractable? The following theorem answers this question affirmatively.
The proof is provided in Appendix B, page xxiv.

THEOREM 3. The problem EVPP is NP-complete even when the predicates are transitive
(tra), reflexive (ref), and antisymmetric (asym).
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Theorem 1, Theorem 2 and Theorem 3 characterize the complexity of the EVPP for
each combination of predicates properties. In the next section, we discuss the granularity of
these, and we use them as a framework to compare the complexity of the EVPP for some
known extensions of FDs.

4.3. Discussions

Replacing equality with various predicates to extend the semantic of classical FDs is fre-
quent [CDP15, SGHW20]. Our approach offers to compare these extensions on the EVPP
within a unifying framework based on the properties of the predicates they use. We can
summarize our results with the hierarchy of classes of predicates given in Figure 4.2.

{ref, sym} {tra, sym}

{ ref, tra, asym} {ref, tra, sym} {tra, asym, sym}

{ref, tra, asym, sym}

polynomial

NP-complete

Figure 4.2 – Complexity of the EVPP with respect to the properties of predicates.

Regarding the computation of the 𝑔3-error, most existing work has focused on similar-
ity/distance predicates, but some extensions of FDs use partial orders as predicates. This is
the case for ordered dependencies [DH82, GH83], ordered FDs [Ng01], and also of some
sequential dependencies [GKK+09] and denial constraints [BBFL05] for example. To our
knowledge, the role of symmetry in the EVPP has received little attention as for sequential
dependencies [GKK+09] where a measure other than the 𝑔3-error has been used.

In this context, our work can be used to obtain almost direct results on some existing
FDs: we now study ordered dependencies as an example. The predicates of Theorem 3 are
reflexive, transitive and antisymmetric. They are therefore partial orders. Consequently, the
FD 𝑋 !𝐴 is an ordered FD as defined by Ng in [Ng01]. We get the following corollary:

THEOREM 4. The problem EVPP is NP-complete for ordered FDs.

Ordered functional dependencies are a restricted case of ordered dependencies [GH83],
sequential dependencies [GKK+09], and denial constraints [BBFL05] (see [SGHW20]).
The hardness of computing the 𝑔3-error for these dependencies follows from Corollary 4.

The hierarchy is a fairly accurate representation of current knowledge about the EVPP
and the distinction between tractable and intractable cases. However, this analysis may
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need further refinement. Indeed, there may be certain types of FDs with predicates for
which the EVPP is tractable in polynomial time, even though their predicates belong to a
class for which the problem is NP-complete. For examples, suppose that each attribute 𝐴
in 𝑅 is equipped with a total order 𝜙𝐴. We show in Proposition 3 and Corollary 1 that in this
case, the EVPP can be solved in polynomial time, even though the predicates are reflexive,
transitive and antisymmetric.

PROPOSITION 3. Let (𝑅,Φ) be a relation schema with predicates. Then, the EVPP can be
solved in polynomial time for a given FD 𝑋 ! 𝐴 if 𝜙𝐵 is transitive for each 𝐵 ∈ 𝑋 and 𝜙𝐴
is a total order.

Proof. Let (𝑅,Φ) be a relation scheme with predicates and 𝑋 !𝐴 a functional dependency.
Assume that 𝜙𝐵 is transitive for each 𝐵 ∈ 𝑋 and that 𝜙𝐴 is a total order. Let 𝑟 be a relation
over 𝑅. Let𝐺 = (𝑟,𝐸) be the undirected graph underlying CGΦ(𝑋 !𝐴,𝑟 ), that is, (𝑡𝑖, 𝑡 𝑗 ) ∈ 𝐸
if and only if (𝑡𝑖, 𝑡 𝑗 ) or (𝑡 𝑗 , 𝑡𝑖) is an edge of CGΦ(𝑋 !𝐴,𝑟 ).

We show that𝐺 is a comparability graph. To do so, we associate the following predicate
≤ to CGΦ(𝑋 ! 𝐴,𝑟 ): for each pair 𝑡𝑖, 𝑡 𝑗 of tuples of 𝑟 , 𝑡𝑖 ≤ 𝑡𝑖 and 𝑡𝑖 ≤ 𝑡 𝑗 if (𝑡𝑖, 𝑡 𝑗 ) is a
counterexample to 𝑋 !𝐴. We show that ≤ is a partial order:

– reflexivity. It follows by definition.

– antisymmetry. We use contrapositive. Let 𝑡𝑖, 𝑡 𝑗 be two distinct tuples of 𝑟 and as-
sume that (𝑡𝑖, 𝑡 𝑗 ) belongs to CGΦ(𝑋 ! 𝐴,𝑟 ). We need to prove that (𝑡 𝑗 , 𝑡𝑖) does
not belong to CGΦ(𝑋 ! 𝐴,𝑟 ), i.e. it is not a counterexample to 𝑋 ! 𝐴. First,
(𝑡𝑖, 𝑡 𝑗 ) ∈ CGΦ(𝑋 ! 𝐴,𝑟 ) implies that 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡 𝑗 [𝐴]) = FALSE. Then, since 𝜙𝐴 is
a total ordering, 𝜙𝐴 (𝑡 𝑗 [𝐴], 𝑡𝑖 [𝐴]) = TRUE. Consequently, (𝑡 𝑗 , 𝑡𝑖) cannot belong to
CGΦ(𝑋 !𝐴,𝑟 ) and ≤ is antisymmetric.

– transitivity. Let 𝑡𝑖, 𝑡 𝑗 , 𝑡𝑘 be tuples of 𝑟 such that (𝑡𝑖, 𝑡 𝑗 ) and (𝑡 𝑗 , 𝑡𝑘) are in CGΦ(𝑋 !

𝐴,𝑟 ). The predicates of 𝑋 being transitive, we have that
∧
𝐵∈𝑋 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡𝑘 [𝐵]) =

TRUE. We show that 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡𝑘 [𝐴]) = FALSE. Since (𝑡𝑖, 𝑡 𝑗 ) is a counterexam-
ple to 𝑋 ! 𝐴, we have 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡 𝑗 [𝐴]) = FALSE. As 𝜙𝐴 is a total order, we de-
duce that 𝜙𝐴 (𝑡 𝑗 [𝐴], 𝑡𝑖 [𝐴]) = TRUE. Similarly, we obtain 𝜙𝐴 (𝑡𝑘 [𝐴], 𝑡 𝑗 [𝐴]) = TRUE.
As 𝜙𝐴 is transitive, we derive 𝜙𝐴 (𝑡𝑘 [𝐴], 𝑡𝑖 [𝐴]) = TRUE. Now assume for contra-
diction that 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡𝑘 [𝐴]) = TRUE. Since, 𝜙𝐴 (𝑡𝑘 [𝐴], 𝑡 𝑗 [𝐴]) = TRUE, we derive
𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡 𝑗 [𝐴]) = TRUE by transitivity of𝜙𝐴, a contradiction. Therefore, 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡𝑘 [𝐴]) =
FALSE. Using the fact that

∧
𝐵∈𝑋 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡𝑘 [𝐵]) = TRUE, we conclude that (𝑡𝑖, 𝑡𝑘) is

also a counterexample to 𝑋 !𝐴. The transitivity of ≤ follows.

Consequently, ≤ is a partial order and 𝐺 is indeed a comparability graph. Since MIS can
be solved in polynomial time for comparability graphs [Gol04], the result follows. ■

We can derive the following corollary for total orders, which can be used for ordered
dependencies.
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COROLLARY 1. Let (𝑅,Φ) be a relation schema with predicates. The problem EVPP can
be solved in polynomial time if each predicate in Φ is a total order.

In particular, this result applies to Golab et al. [GKK+09] where a polynomial-time
algorithm is proposed for a variant of 𝑔3 applied to a restricted type of sequential depen-
dencies using total orders on each attribute.

4.4. Extension to the optimization problem

So far, we have focused solely on the EVPP, the decision version of computing 𝑔3. In the
following chapter, we study algorithms for computing the exact value of 𝑔3 which corre-
sponds to the optimization problem. For the hardness results on the EVPP to hold for its
optimization counterpart, we need to show a polynomial-time self-reduction [Gol10].

Let (𝑅,Φ) be a relation schema with predicates. Consider a relation 𝑟 over (𝑅,Φ), a FD 𝜑

over (𝑅,Φ) and a variable 𝑘 . The goal is to compute 𝑔Φ3 (𝜑,𝑟 ) by calling EVPP((𝑅,Φ),𝜑,𝑟,𝑘)
a polynomial number of times in the size of the input. The number of tuples we can remove
to satisfy the FD is finite. Thus, the number of values of 𝑘 is also finite and corresponds to
𝑚
|𝑟 | with 0 ≤𝑚 ≤ |𝑟 |. Thus, we need to find the first value of 𝑘 such that the EVPP becomes
FALSE. This can be done in log( |𝑟 |) time by using dichotomy.

Therefore, the hardness results summarized in Figure 4.2 are directly transferable to the
optimization problem of computing 𝑔3. The only difference is that the problem is said to be
NP-hard instead of NP-complete.

4.5. Conclusion

In this chapter, we have studied the complexity of computing the 𝑔3-error when equality is
replaced by more general predicates. We studied four common properties of binary predi-
cates: reflexivity, symmetry, transitivity, and antisymmetry. We have shown that when sym-
metry and transitivity are taken together, the 𝑔3-error can be computed in polynomial time.
Transitivity strongly affects the structure of the conflict-graph and it is not surprising that
removing it makes the 𝑔3-error hard to compute. More surprising is that removing symme-
try instead of transitivity leads to the same conclusion. This is because removing symmetry
makes the conflict-graph oriented. In this case, the orientation of the edges weakens the
effect of transitivity, allowing the conflict-graph to be complex enough to make the 𝑔3-error
computation problem intractable.

We believe that our approach sheds new light on the 𝑔3-error computation problem, and
that it is suitable for estimating the complexity of this problem when defining new types of
FDs, by looking at the properties of the predicates used to compare values.
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Chapter 5
Computing 𝑔3 with predicates:
exact and approximate algorithms

5.1. Introduction

In this chapter, we extend the decision problem EVPP to the optimization problem of com-
puting the 𝑔3-error. In this case, the objective becomes to find or estimate the value of 𝑔3.
However, as shown in Section 4.4: if the predicates are not at least transitive and symmetric,
computing 𝑔3 is NP-hard. Thus, our goal is to provide efficient algorithms for computing
𝑔3 exactly and approximately in both the NP-hard and polynomial cases. In summary, we
present the following contributions:

– Computing 𝑔3 with predicates: the general case. To the best of our knowledge,
we present the first complete pipeline for computing the 𝑔3 indicator with predicates,
a case where the problem is NP-hard. We examine its computational scalability
by presenting connections to similar problems in the literature, especially for the
conflict-graph construction process which is the bottleneck of the operation in prac-
tice. We also propose solutions for its exact computation and, for very large datasets,
we adapt approximation algorithms and recent developments in sublinear algorithms
for NP-hard problems [YYI09, ORRR12].

– Computing𝑔3 in polynomial-time with transitive and symmetric predicates. Com-
puting 𝑔3 with classic FDs (equality predicate) is a well-known polynomial problem
[KM95, HKPT99]. We introduce a pre-processing algorithm that allows the use of
known algorithms from the literature and propose practical solutions for its compu-
tational scalability, a topic that has received only little attention in previous research.
We compare the scalability of two exact algorithms that optimize memory and time
complexity respectively. For very large datasets where exact algorithms reach their
limit, we analyze the theoretical guarantees of uniform random sampling and study
advanced sampling schemes to enable computational scalability. In particular, we
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improve the stratified sampling algorithm of Cormode et al. [CGF+09]. This new
algorithm shows excellent results in practice.

– Experiments and open-source library. We conduct extensive experiments through
a study of time performance and approximation accuracy. In particular, we show that
our algorithms and optimizations can be applied to very large datasets with reason-
able computation time, while maintaining a good level of accuracy for the expected
results. We also detail which dataset specificities and problem parameters affect the
computation time. All the algorithms are available through FASTG3, an open-source
Python library for computing 𝑔3 that provides efficient and scalable C++ implemen-
tations [BBC+11] with an intuitive API.

The main results of this chapter have been published in [FGPS22].

Chapter organization. First, we present solutions for computing 𝑔3 in the general NP-
hard case, both exactly and approximately for large datasets. Second, we consider the case
where the predicates are at least transitive and symmetric, a case where efficient polynomial
algorithms can be developed. Finally, we experiment with several datasets to analyze the
time performances and the accuracy of the approximation algorithms. Note that the EVPP
will also be discussed as some algorithmic optimizations can be applied in some cases.
Underlined labels spread throughout the document (e.g. CEE_BruteForce) are be used in
the experiments section (Section 5.4) to refer to specific algorithms.

5.2. The general case

In this section, we propose algorithms for the computation of 𝑔3 in the most general case
which is NP-hard. We give exact algorithms and approximate solutions for large datasets.
As far as exact computation is concerned, the 𝑔3 and the confidence are strictly equivalent.
Henceforth, we will only discuss the former. However, the two problems diverge in terms
of approximation and will be treated separately.

5.2.1. Computation overview

Consider a relation schema with predicates (𝑅,Φ) and an FD 𝜑 . As shown in Proposition 2,
we have:

𝑔Φ3 (𝑟,𝜑) =
𝛽 (CGΦ(𝑟,𝜑))

|𝑟 |
Hence, the 𝑔3-error can be obtained from the composition of two successive operations:

(i) Counterexample enumeration (CEE). First, we need to construct the conflict graph
CGΦ(𝑟,𝜑). If the vertices are simply the tuples, we need to enumerate all counterex-
amples in 𝑟 to create the edges. This latter operation is costly as it is quadratic in the
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number of tuples and optimizations will be examined. In the following, we present
algorithms for the CEE with various levels of optimizations and constraints. They are
summarized in Table 5.1 and will be detailed in Section 5.2.2.

(ii) Computing the covering number. Second, we have to compute/estimate the cover-
ing number 𝛽 (CGΦ(𝑟,𝜑)). The covering number (size of an MVC) can be computed
exactly in a reasonable amount of time for a small number of edges (i.e. a small
number of counterexamples). However, its exponential complexity quickly becomes
overwhelming and approximations must be examined. Two major types of approx-
imations will be considered: approximation algorithms and sublinear algorithms.
The proposed algorithms are summarized in Table 5.2 and will be detailed in Sec-
tion 5.2.3.

Table 5.1 – SUMMARY OF THE CEE ALGORITHMS.

Name Attribute space Predicate type
CEE_BruteForce Any Any

CEE_BlockOpt Any Equality
CEE_CompOpt Any Any

CEE_OrderOpt Totally ordered Monotonic

Table 5.2 – SUMMARY OF 𝑔3 ALGORITHMS IN THE NP-HARD CASE.

Name𝑏 Approx? Complexity𝑎𝑏𝑐𝑑

CEE+EXA_WGYC [HLSS20] · exponential
CEE+HEUR_NuMVC(t) [CSLS13] Yes O(𝑛2)+timeout t

CEE+APPROX_GIC [HR97] Yes O(𝑛2) +O(𝑛 · log(𝑛) + |𝐸 |)
CEE+APPROX_2Approx [PS98] Yes O(𝑛2) +O( |𝐸 | · log(𝑛))

APPROX_Sub09𝑒 [YYI09] Yes O(𝑑4/𝜖2) ·O(𝑛)
APPROX_Sub11𝑒 [ORRR12] Yes O(𝑑2 ·poly(1/𝜖)) ·O(𝑛)

𝑎 𝑛 corresponds to the size of the relation |𝑟 |.
𝑏 CEE+ prefixes algorithm which require to construct the conflict graph CG = (𝑟,𝐸) in O(𝑛2).

𝑐 𝑑 an 𝑑 denote for the maximum and average degree of the conflict graph.
𝑑 𝜖 denotes for the statistical error parameter of the algorithms.

𝑒 APPROX_Sub09 and APPROX_Sub11 use the on-the-fly CEE which has a complexity of O(𝑛) for each
query.

5.2.2. Counterexample enumeration (CEE)

To construct the conflict graph, we need to enumerate all the counterexamples in the rela-
tion, i.e. all pairs of tuples with similar antecedents and dissimilar consequents. We will
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use the fact that for 𝜑 in the form 𝑋 !𝐴, (𝑡1, 𝑡2) ̸|=Φ 𝜑 corresponds to the following:∧
𝐵∈𝑋

𝜙𝐵 (𝑡1 [𝐵], 𝑡2 [𝐵]) ∧¬𝜙𝐴 (𝑡1 [𝐴], 𝑡2 [𝐴])

Brute force (CEE_BruteForce). In the most general scenario, each tuple in 𝑟 must be
compared to all other tuples in a nested loop. This scheme requires 𝑛2 comparisons. A
comparison is the successive pairwise comparison of each attribute of two tuples. This
operation requires computing at most |𝑋 | + 1 predicates for each pair of tuples, i.e. one
predicate for all the antecedents and one for the consequent.

Fortunately, the problem of comparing pairs of records in a dataset has been studied ex-
tensively in several areas, ranging from record linkage to similarity joins [HS03,Chr11]. In
particular, some propositions found in the literature that allow for significant time gains can
be applied and are described below. These potential optimizations depend on the definition
of the predicate and attribute spaces. However, even if all these methods can significantly
speed up the enumeration process, they do not change the theoretical complexity, which is
still bounded by 𝑛2: indeed, it still takes 𝑛2 comparisons if the dataset contains 𝑛2 coun-
terexamples.

Remark 1. Note that storing all resulting counterexamples can also be memory-intensive.
For a dataset of 200,000 tuples, if all of them are in violation with all others and stored as
unsigned ints pairs, approximately 150 gigabytes are required to store them all.

Attributes’ comparison order (CEE_CompOpt). This first optimization requires no as-
sumption about the predicates or the domain structure of the attributes. In this case, our
goal is optimize the order of the attributes inside tuple-to-tuple comparisons. Indeed, the
order in which the attributes are successively checked plays an important role in the com-
plexity of the CEE: we want the attributes to be sorted according to their “selectivity”, i.e.
in an order that produces the fewest false positives. Indeed, if the comparison on the first
attribute is positive, then the second one is checked and so on until it is either identified as
a counterexample or rejected. However, if a pair of tuples is rejected by an attribute, all the
predicates previously computed will have been a waste of resources by generating a false
positive temporary counterexample. This is particulary important for expensive predicates
such as the Levenshtein distance. We should therefore sort the attributes for comparison
from those that generate the fewest counterexamples to those that generate the most. To ef-
ficiently evaluate the number of potential counterexamples of an attribute in 𝑋 , we propose
to perform the CEE for each attribute on a sample of the datasets of predefined size. More
precisely, we isolate each antecedent (e.g. 𝐵0,𝐵1 !𝐴 becomes 𝐵0 !𝐴 to evaluate 𝐵0) and
then perform the CEE on this modified FD. Finally, we sort the attributes in ascending or-
der regarding their computed number of counterexamples and perform the CEE on the full
dataset.
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Blocking (CEE_BlockOpt). The blocking indexing method is widely used in the field of
record linkage as it allows for massive gains in time complexity (see [SVSF14, PSTP20]
for surveys). It consists in grouping together similar values in attributes and performing
a nested loop in each resulting block separately. Processing smaller blocks reduces the
overall quadratic complexity and can easily be combined with parallelization. In our case,
it requires that at least one attribute of 𝑋 has a predicate corresponding to an equivalence
relation ({ref,tra,sym}). In fact, an equivalence relation is necessary to group values into
blocks (corresponding to equivalence classes). In general, most categorical attributes such
as zip codes or phone numbers are usually compared using equality, which is the most
common equivalence relation. Note that the gains of this method depend solely on the
content of the attributes used for grouping as more distinct values lead to smaller blocks
and therefore less processing time. Let𝑋𝑒𝑞 ⊆ 𝑋 be the subset of antecedents with predicates
corresponding to equivalence relations. After blocking into 𝐵 = |𝑟 [𝑋𝑒𝑞] | blocks, the number
of comparisons is bounded by O(𝐵 ·𝑛2

𝑚𝑎𝑥 ), where 𝑛𝑚𝑎𝑥 is the size of the largest block.

Candidate pairs in totally ordered space with monotonic predicate (CEE_OrderOpt).
To further optimize comparisons within a block, we can restrict the expressiveness of a
predicate in𝑋 . The aim is to output a set of candidate pairs by first joining on an attribute for
which the complexity can be optimized. The full pairwise attribute comparison can then be
performed on this restricted set of candidates. In particular, we consider the case where the
domain of an antecedent 𝐵𝑜𝑖 ∈ 𝑋 is equipped of a total order (dom(𝐵𝑜𝑖 ),≤). In addition, we
consider monotonic symmetric predicates w.r.t (dom(𝐵𝑜𝑖 ),≤) such that for elements 𝑥,𝑦,𝑧 ∈
𝑑𝑜𝑚(𝐵𝑜𝑖 ), we have:

𝑥 ≤ 𝑦 ≤ 𝑧 and 𝜙𝑖 (𝑥,𝑧) =⇒ 𝜙𝑖 (𝑥,𝑦)

This property is well-suited for predicates based on a monotone metric and a threshold,
which is common in the literature [SC11, KSSV09]. However, it also applies to our hy-
dropower running example with the predicate presented in Formula 5.2, page 42. Moreover,
many attributes such as ages, incomes and sizes are, most of the time, ordered numerical
attributes.

In this case, it is possible to exploit this property to quickly generate a set of candidate
pairs. To do so, we propose an algorithm inspired by [DGZ03], which runs in log-linear
time in the size of the relation. This algorithm first sorts the data and, for each tuple 𝑡 ,
successively keeps in memory the most distant tuple similar to 𝑡 on the attribute 𝐵𝑜𝑖 un-
der consideration. Such process follows a sliding window strategy where all combinations
of tuples within the window are potential candidate counterexamples. Its pseudo-code is
proposed in Algorithm 1.

Remark 2. Note that there may be other optimizations specific to some attributes and pred-
icates for a faster CEE. The optimizations proposed in this section are meant to be generic
and to provide leads for adapting the process to the specific cases one might encounter.
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Algorithm 1 Window sliding algorithm for generating a set of candidate pairs for mono-
tonic predicates in totally ordered space (CEE_CompOpt)

Require:
a relation 𝑟
𝐵𝑜𝑖 an attribute defined on a total order (dom(𝐴𝑖),≤)
𝜙𝑖 a monotonic predicate associated to 𝐴𝑖

1: Let 𝑥1,𝑥2, ...,𝑥𝑛 be the elements of 𝑟𝐵
𝑜
𝑖 sorted in increasing order with their indexes

𝑖𝑑1, 𝑖𝑑2, .., 𝑖𝑑𝑛
2: 𝑢𝑏⇐ 0
3: 𝐶 ⇐ {}
4: for 𝑖 = 1,2, ...,𝑛 do
5: 𝑢𝑏⇐ by dichotomy, the highest index 𝑘 (𝑢𝑏 ≤ 𝑘 ≤ 𝑛) such that 𝜙𝑖 (𝑥𝑖,𝑥𝑘) is TRUE

6: for 𝑗 = 𝑖, ...,𝑢𝑏 do
7: 𝐶 =𝐶 ∪ {(𝑖𝑑𝑖, 𝑖𝑑 𝑗 )}
8: end for
9: end for

10: return 𝐶

5.2.3. Computing the covering number

Once the conflict graph CGΦ(𝑟,𝜑) = (𝑟,𝐸) resulting from the CEE is constructed, the 𝑔3-
error can be evaluated by computing the covering number 𝛽 (CGΦ(𝑟,𝜑)). There are two
main types of algorithms for solving the MVC [CSLS13]: exact algorithms and heuristic
algorithms. Exact algorithms guarantee the optimality of their solution, but may take an
unreasonable amount of time for large graphs. In contrast, heuristic algorithms, such as
local-search algorithms, do not provide a guarantee, but are known in practice to propose
near-optimal solutions within a reasonable time (usually set by the user) without being con-
strained by the size of the graph. We use the exact solver WeGotYouCovered [HLSS20]
(EXA_WGYC), winner of PACE 2019, and the local search algorithm NuMVC [CSLS13]
(HEUR_NuMVC(𝑡) where 𝑡 is the running time), which runs for a given time specified by the
user and returns the best solution found.

What about the decision problem? For the decision problem (EVPP), it is possible
to optimize the search space by using a fixed-parameter tractable (FPT) algorithm for the
MVC. The problem is therefore not to find an MVC but to answer the question: is there
an MVC of size smaller than k? For example, [CKX06] makes it possible to solve it in
O(𝑘 ·𝑛 +1.2738𝑘) with 𝑘 = 𝑛 ·𝜂𝑒 . However, this algorithm has a Klam value [DF12] of 190
(maximum value of k for which the algorithm is expected to be practical) which makes
it suitable only for small thresholds 𝜂𝑒 . To the best of our knowledge, the MIS does not
have any FPT algorithm and the confidence validation problem is still intractable after this
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relaxation [DF12].

5.2.4. Approximation algorithms for the covering number

When datasets become very large, exact algorithms become unusable (see experiments in
Section 5.4). Thus, we can use approximation algorithms to obtain estimates of the target
value, along with some theoretical guarantees. In this case, a clear distinction must be
made between the 𝑔3-error and the confidence, since their associated graph problems (the
MVC and MIS respectively) do not share the same approximation guarantees. If the MVC
cannot be approximated with a better factor than 1.3606 [DS05], its dual the MIS is even
harder and cannot be approximated within a constant factor [GJ79]. Nevertheless, the many
studies on hard problems have proposed solutions which are explored in this section.

Approximation algorithms generally express their guarantees in terms of a ratio, which
can be constant or dependent on the problem parameters. This ratio is expressed differ-
ently if we consider a minimization problem (e.g. MVC) or a maximization problem (e.g.
MIS). Consider 𝛽 and 𝛼 , the covering number and the independence number of CGΦ(𝑟,𝜑)
respectively. Let 𝛽 and 𝛼 be their approximation obtained with an approximation algorithm.
Given a 𝑘-approximation algorithm for these problems, where 𝑘 is the approximation ratio,
we get:

𝛽 ≤ 𝛽 ≤ 𝑘 · 𝛽,

𝑘−1 ·𝛼 ≤ 𝛼 ≤ 𝛼,

or equivalently
𝑔3 ≤ 𝑔3 ≤ 𝑘 ·𝑔3,

𝑘−1 · conf ≤ ˆconf ≤ conf.

The best constant-factor approximation algorithm for the MVC is that of the algorithm
of Gavril and Yannakakis. Their procedure (described in [PS98]) greedily computes the
size of a maximal matching in a graph. This 2-approximation algorithm has been imple-
mented as APPROX_2Approx in this thesis. A more complex algorithm [Kar09] achieves a

better factor of 2−Θ

(
1√

log( |𝑉 |)

)
but depends on the problem parameters. However, an al-

gorithm with a lower approximation factor is not guaranteed to provide the best results in
practice. This is why Delbot and Laforest propose an experimental comparison of 6 ap-
proximation algorithms which confirms this gap between theory and practice [DL10]. In
particular, the Greedy Independent Cover (GIC) algorithm [HR97] emerges as the clear
winner of this benchmark and is implemented as APPROX_GIC. While it only provides an

approximation ratio of at least
√
𝑑

2 (where 𝑑 is the maximum degree of the graph), it often
provides near-perfect approximations on a wide variety of graphs in log-linear time. In this
case, these algorithms are very fast to run and the CEE becomes the bottleneck of the op-
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eration. Therefore, computing multiple approximations and taking the smallest is a viable
option as it only requires the CEE to be performed once. For example, APPROX_2Approx can
still be useful in cases where APPROX_GIC might not perform well.

For the MIS, there is currently no known constant-factor approximation algorithm.
However, a well-known algorithm with parameterized approximation factor for this prob-
lem is the minimum greedy algorithm. It is presented in [HR97] and serves as an inspi-
ration for the GIC algorithm presented above. Its guarantee is an approximation factor of
𝑑+2

3 . More generally, any upper bound on the MVC acts as a lower bound on the MIS, but
without the same approximation guarantees.

It is also often useful to express lower bounds and upper bounds for the MVC and
the MIS respectively. First, a maximal matching 𝑀 can be found in linear time [PS98].
In this case, |𝑀 | serves as a lower-bound for 𝛽 and 1− |𝑀 | is an upper-bound for 𝛼 . A
maximum matching can even be found in O(

√
𝑛 · |𝐸 |) with the MV Matching algorithm

[MV80], tightening the previous result. Several upper and lower bounds are examined in
[Wil11]. We do not implement or experiment with lower bounds in the experiments in
Section 5.4.

5.2.5. Mitigating counterexample enumeration thanks to sublinear algorithms

As mentioned earlier, there are very efficient approximation algorithms in the literature for
estimating an MVC in linear or log-linear time while the CEE is inevitably quadratic. This
is why in practice, the bottleneck in the computation of 𝑔3 comes from the CEE rather than
the computation of the MVC itself. This will be confirmed later in our experiments. In
this case, sublinear algorithms provide an efficient alternative: they are able to estimate
the size of the MVC without looking at the whole graph. They only need to construct the
part of the graph that the algorithm explores, thus reducing the complexity of the CEE.
In this section, we propose an on-the-fly adaptation of the CEE to benefit from sublinear
algorithms. Then, we present two state-of-the-art sublinear algorithms and briefly describe
their implementation in this thesis.

The on-the-fly CEE. As explained in [PR07], common sublinear algorithms for the MVC
have only two ways of exploring a graph, they can (1) ask for the degree of a given vertex
and (2) ask for the 𝑖𝑡ℎ neighbor of a vertex. To take advantage of this exploration strategy,
the CEE must be performed on-the-fly by fetching all tuples that form a counterexample
with a given one only on demand. More formally, the tuples that form a counterexample
with a tuple 𝑡 ∈ 𝑟 correspond to the neighbors of 𝑡 in CGΦ(𝑟,𝜑). The previous approach to
finding these neighbors was to compute the whole conflict-graph using the CEE. However,
we have shown that this is particularly expensive, and now explain a way to avoid this
operation by computing the neighborhoods of the required tuples one at a time. For a given
tuple 𝑡 , consider the list of tuples that form a counterexample with 𝑡 . The options (1) and (2)
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correspond respectively to the length and the 𝑖𝑡ℎ element of this list. From an algorithmic
point of view, asking for the degree is equivalent to listing all counterexamples and thus
listing the complete neighborhood of 𝑡 . Once this is done, asking for the neighbor of 𝑖𝑡ℎ is
completely free, since it has already been found. In the case where the algorithm asks for
the 𝑖𝑡ℎ neighbor of 𝑡 before asking for its degree, the operation can be optimized by stopping
the enumeration as soon as the 𝑖𝑡ℎ neighbor is found.

Furthermore, the enumeration process can benefit from all the optimizations proposed in
Section 5.2.2 by keeping all relevant information in memory (blocking, ordered attributes,
type of join, etc.). The complexity of the on-the-fly CEE to retrie all the neighbors of a tuple
𝑡 ∈ 𝑟 ranges from the size of the neighborhood to the total number of tuples in 𝑟 depending
on the optimizations available. It is therefore possible to propose a graph proxy hiding an
on-the-fly CEE procedure to any sublinear graph algorithm, saving time and memory in
comparison to complete the CEE.

Process overview and implementation. Let A(𝐺) be an algorithm for computing an
approximate MVC of graph 𝐺 . As initially proposed in [PR07], most sublinear algorithms
for the MVC work as follows:

(i) Sample a set of vertices from the graph.

(ii) Decide for each vertex if it belongs to A(𝐺).
(iii) Generalize the result to estimate the size of the MVC on the full graph.

We understand from this process that the quality of the result depends on the approxima-
tion performances of A, knowing that not all algorithms can be made sublinear. Currently,
most of the literature focused on adapting the 2-approximation algorithm APPROX_2Approx
presented in the previous section as it is the best known constant-factor approximation.
Thus, these sublinear algorithms propose an estimate of the result of a 2-approximation
algorithm. Notably, they should provide results equal to or worse than APPROX_2Approx.
In particular, we implement [YYI09] (APPROX_Sub09) and [ORRR12] (APPROX_Sub11) with

respective query complexities of O(𝑑4

𝜖2 ) and O(𝑑2 · poly( 1
𝜖
))1 (where 𝑑 and 𝑑 are the max-

imum and average degrees of the graph). Following Hoeffding’s inequality, by sampling
𝑚 = min(𝑛,

⌈
1

2𝜖2 ln( 2
1−𝛿 )

⌉
) nodes, those algorithms provide an approximation 𝛽 of 𝛽 such

that:
𝑝 (𝛽 −𝑛 ·𝜖 ≤ 𝛽 ≤ 2 · 𝛽 +𝑛 ·𝜖) ≥ 𝛿,

or
𝑝 (𝑔3 −𝜖 ≤ 𝑔3 ≤ 2 ·𝑔3 +𝜖) ≥ 𝛿.

These sublinear algorithms are implemented for testing in the experiments of Sec-
tion 5.4.4. To the best of our knowledge, this is the first implementation of those algorithms.

1Corrected from original paper following discussion with the authors.
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5.3. Polynomial algorithms for transitive and symmetric predicates

In this section, we restrict the predicates to be at least transitive and symmetric, a case where
the 𝑔3-error can be computed in polynomial time as shown in Chapter 4. We explain how
to benefit from previous literature and give efficient exact and approximation algorithms to
take advantage of these new constraints.

An important difference with Section 5.2 is that we can process the relation directly
without creating the conflict graph. This can be seen as an optimization as we could still
use the previous method of creating the conflict graph and then solving the MVC. In fact,
as explained in Section 4.2, the use of transitive and symmetric predicates constrains the
conflict graph to a certain class in which an MVC can be found in polynomial time. Hence,
both this polynomial algorithm for the MVC and the polynomial algorithm for solving
𝑔3 directly are actually closely related. Naturally, due to the ubiquity of classical equality,
processing the relation directly is also the first proposition in the literature as it is the easiest
way to compute 𝑔3 in this case.

First, we propose a pre-processing step to convert all polynomial cases to a single case
for which solutions to compute the 𝑔3 error are known from the literature. Then, we anal-
yse two exact algorithms which optimize time and memory respectively. Finally, we study
approximation algorithms for very large datasets. In particular, after analyzing the guar-
antees of uniform sampling, we propose an improvement of an existing stratified sampling
approach [CGF+09]. We also mention the analysis proposed by [KM95] for the EVPP,
the corresponding decision problem. A summary of all proposed algorithms is presented in
Table 5.3 and will be detailed in the following sections.

Table 5.3 – SUMMARY OF 𝑔3 ALGORITHMS IN THE POLYNOMIAL CASE.

Name Approx? Complexity𝑎

EXA_MemOpt · O(𝑛 · log(𝑛))
EXA_TimeOpt · O(𝑛)

APPROX_URS(A) Yes 𝑇A(𝑚)𝑏
APPROX_SRS[CGF+09] Yes O(𝑛)

APPROX_SRSI Yes O(𝑛)
𝑎 𝑛 corresponds to the size of the relation |𝑟 |.

𝑏 𝑇A (𝑚) corresponds to the complexity of algorithm A for a random sample of 𝑟 of size𝑚.

5.3.1. Computation overview

Let (𝑅,Φ) be a relation schema with predicates at least transitive (tra) and symmetric (sym),
𝑟 a relation over 𝑅 and 𝜑 : 𝑋 ! 𝐴 a FD. As shown in Section 4.2, in this case the compu-
tation of 𝑔Φ3 (𝜑,𝑟 ) can be done in polynomial time. To solve all polynomial cases shown in
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Figure 4.2, we propose to pre-process the relation to make the predicates artificially reflex-
ive (ref) by restricting the active domain. In this case, predicates have all the properties
of an equivalence relation (e.g. classical equality) which allows to obtain the equivalence
classes described in the preliminaries (Chapter 2). In this case, the strategy for solving 𝑔3
in polynomial time is known from literature [HKPT99, CGF+09, LPS20]. Indeed, previ-
ous works have studied the equality, i.e. a case where predicates enjoy all the properties.
However, anti-symmetry (asym) is not exploited in the algorithms and only the equivalence
relation conferred by transitivity, symmetry and reflexivity is used.

We now describe the process for artificially adding the reflexive property to the at-
tributes’ predicates. To do this, we simply need to remove all tuples which do not respect
reflexivity. Those are the tuples which are not similar to themselves on at least one attribute
of 𝜑 w.r.t. the predicates. Thus, predicates become artificially reflexive on the remaining set
of tuples. In other words, by restricting the active domain of the relation, we constrain the
graph to respect the exact same structures as if the predicates were indeed transitive, sym-
metric and reflexive. This allows us to apply the same polynomial algorithms which can be
found in the literature. Nonetheless, those deleted tuples must be accounted for in the final
computation of the 𝑔3-error. Interestingly, as stated in Proposition 4, the role of those tuples
differs if their lack of reflexivity emerges from the antecedents or the consequents.

PROPOSITION 4. Let (𝑅,Φ) be a relation schema with predicates where each predicate in
Φ is at least symmetric and transitive. Let 𝑟 be a relation over 𝑅, and 𝑋 ! 𝐴 a functional
dependency over 𝑅. The following properties hold for every tuple 𝑡 in 𝑟 :

(i)
∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 [𝐵]) = FALSE implies (𝑡, 𝑡 ′) |= 𝑋 !𝐴 for every other 𝑡 ′ in 𝑟

(ii) (𝑡, 𝑡) ̸|= 𝑋 ! 𝐴 implies (𝑡, 𝑡 ′) ̸|= 𝑋 ! 𝐴 for every other 𝑡 ′ in 𝑟 such that∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 ′[𝐵]) = TRUE

Proof. We prove the properties in order :

(i) Assume for contradiction that there exists 𝑡 ′ in 𝑟 such that
∧
𝐵∈𝑋

𝜙𝐵 (𝑡 ′[𝐵], 𝑡 [𝐵]) = TRUE.

As
∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 [𝐵]) = FALSE, we also have
∧
𝐵∈𝑋

𝜙𝐵 (𝑡 ′[𝐵], 𝑡 [𝐵]) = FALSE due to the

transitivity of the predicates. A contradiction. Hence, (𝑡, 𝑡 ′) |= 𝑋 !𝐴 must hold.

(ii) Assume for contradiction that there exists 𝑡 ′ in 𝑟 such that
∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 ′[𝐵]) = TRUE

and 𝜙𝐴 (𝑡 ′[𝐴], 𝑡 [𝐴]) = TRUE. As (𝑡, 𝑡) ̸|= 𝑋 ! 𝐴, we must have 𝜙𝐴 (𝑡 [𝐴], 𝑡 [𝐴]) =
FALSE. Due to the transitivity of the predicates, we should also have𝜙𝐴 (𝑡 ′[𝐴], 𝑡 [𝐴]) =
FALSE. A contradiction. Hence, (𝑡, 𝑡 ′) ̸|= 𝑋 ! 𝐴 must hold for every 𝑡 ′ ∈ 𝑟 such that∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 ′[𝐵]) = TRUE.

■

From Proposition 4, we can design the pre-processing procedure presented in Algo-
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rithm 2. This procedure takes each tuple one by one: if a value of the tuple on one attribute
of the FD is not similar to itself, the tuple is non-reflexive and is removed from the relation.
More precisely, if one attribute in the antecedents is non-reflexive, we remove the tuple
and increment a counter (case (i)). If all the attributes in the antecedents are reflexive but
the consequent 𝐴 is non-reflexive, we just remove the tuple (case (ii)). Otherwise, we do
nothing. This algorithm returns the new relation and the counter. This pre-processing step
is quite light and only requires a linear pass over the data.

Algorithm 2 Relation pre-processing for artificially adding reflexivity to predi-
cates (RefPreproc)

Require:
a relation schema with predicates satisfying tra and sym (𝑅,Φ)
a relation 𝑟 over (𝑅,Φ)
a functional dependency 𝑋 !𝐴 over (𝑅,Φ)

1: 𝐶 ⇐ 0
2: for tuple 𝑡 ∈ 𝑟 do
3: if

∧
𝐵∈𝑋

𝜙𝐵 (𝑡 [𝐵], 𝑡 [𝐵]) = FALSE then

4: 𝐶 ++
5: 𝑟 ⇐ 𝑟 ∖ {𝑡}
6: else if 𝜙𝐴 (𝑡 ′[𝐴], 𝑡 [𝐴]) = FALSE then
7: 𝑟 ⇐ 𝑟 ∖ {𝑡}
8: end if
9: end for

10: return 𝐶, 𝑟

We now show how to use this pre-processing step by introducing Algorithm 3. This
algorithm can compute 𝑔3 with predicates satisfying transitivity and symmetry by using
an algorithm for predicates satisfying reflexivity, transitivity and symmetry, a well-studied
case in the literature. A formal description of this algorithm is proposed in Proposition 5.

PROPOSITION 5. Let (𝑅,Φ) be a relation schema with predicates satisfying tra and sym.
Let 𝑟 be a relation and 𝜑 a functional dependency over (𝑅,Φ). Let A be an algorithm for
computing 𝑔3 with predicates satisfying ref, tra and sym. We have TraSym((𝑅,Φ),𝜑,𝑟,A) =
𝑔Φ3 (𝜑,𝑟 ).

Proof. Let (𝑅,Φ) be a relation schema with predicates satisfying transitivity and symmetry.
Let 𝑟 be a relation and 𝜑 a functional dependency over (𝑅,Φ). Let A be an algorithm for
computing 𝑔3 with predicates satisfying reflexivity, transitivity, and symmetry. Let 𝐶𝑡𝑚𝑝

and 𝑟 ′ be the outputs of RefPreproc((𝑅,Φ),𝑟 ,𝜑). From Proposition 4, we know that 𝑟 ′ does
not contain any “non-reflexive” tuple, i.e. tuples which are not similar to themselves on at
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least one attribute w.r.t. Φ. Thus, the predicates from Φ also respect reflexivity on the active
domain of 𝑟 ′ and we have A((𝑅,Φ),𝜑,𝑟 ′) = 𝑔Φ3 (𝜑,𝑟

′). Adapting this result to the size of 𝑟
w.r.t. 𝐶𝑡𝑚𝑝 , we obtain 𝑔Φ3 (𝜑,𝑟 ). ■

Algorithm 3 𝑔3 computation with predicates at least transitive and symmetric
(TraSym)

Require:
a relation schema with predicates satisfying tra and sym (𝑅,Φ)
a functional dependency 𝜑 over (𝑅,Φ)
a relation 𝑟 over (𝑅,Φ)
an algorithm A for computing 𝑔3 with predicates satisfying ref, tra and sym

1: 𝐶𝑡𝑚𝑝,𝑟 ′ ⇐ RefPreproc((𝑅,Φ),𝑟 ,𝜑)
2: 𝐶 ⇐𝐶𝑡𝑚𝑝 + |𝑟 ′| · (1−A((𝑅,Φ),𝜑,𝑟 ′)) ⊲ multiplying by |𝑟 ′| to denormalize 𝑔3
3: return 1− 𝐶

|𝑟 |

Once the problem is restricted to the classical 𝑔3 with predicates satisfying reflexivity,
transitivity and symmetry, i.e. corresponding to equivalence relations, 𝑔3 can be computed
according to the following steps:

(i) find the equivalence classes of Ω𝑋 (𝑟 ),
(ii) for each equivalence class, find the most frequent 𝐴 value and count its number of

occurrences.

Indeed, finding the most frequent 𝐴 value in a class allows to discard a minimum number
of tuples in the corresponding class.

5.3.2. Exact computation

To find the equivalence classes, it is necessary to perform a GROUP-BY operation on 𝑋 .
GROUP-BY operations are generally sort- or hash-based with sorting optimizing memory
and hashing time complexity [MSL+15]. We study both strategies. The approach for find-
ing the most frequent element in each equivalence class also depends on the GROUP-BY
strategy.

Sorting (EXA_MemOpt). After sorting the data, we can compute 𝑔3 in one pass over the
data. If the data is also sorted externally and then read in a streaming fashion to find each
equivalence class, this method allows for low memory consumption. In particular, the
memory required can be adjusted depending on the chunks used for external sorting, with
memory consumption ranging from O(1) to O(𝑛). The total time complexity is O(𝑛 · log(𝑛))
and corresponds to the sorting operation. The pseudo-code is presented in Algorithm 4.
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Algorithm 4 Memory optimized 𝑔3 (EXA_MemOpt)

Require:
a relation schema with predicates satisfying ref, tra and sym (𝑅,Φ)
a functional dependency 𝑋 !𝐴 over (𝑅,Φ)
a relation 𝑟 over (𝑅,Φ)

1: Sort 𝑟 on 𝑋 then 𝐴
2: 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ ∅,∅
3: 𝐶 ⇐ 0
4: 𝑐𝑚𝑎𝑥 ,𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 0,0
5: for all tuple 𝑡 ∈ 𝑟 do
6: if 𝑡 [𝑋 ] ≠ 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
7: 𝐶 ⇐𝐶 +𝑐𝑚𝑎𝑥
8: 𝑐𝑚𝑎𝑥 ,𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 0,0
9: 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 𝑡 [𝑋 ]

10: 𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 𝑡 [𝐴]
11: end if
12: if 𝑡 [𝐴] =𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
13: 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +1
14: else
15: 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 1
16: 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⇐ 𝑡 [𝐴]
17: end if
18: if 𝑐𝑚𝑎𝑥 < 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
19: 𝑐𝑚𝑎𝑥 = 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡
20: end if
21: end for
22: 𝐶 ⇐𝐶 +𝑐𝑚𝑎𝑥
23: return 1− 𝐶

|𝑟 |

Hashing (EXA_TimeOpt). In this case, we can compute 𝑔3 in one pass over the data by
storing each equivalence class in a hash table. Hashing is less memory efficient, but al-
lows a lower theoretical time complexity of O(𝑛). The theoretical memory requirement
is |Ω𝑋 (𝑟 ) | +

∑
𝑟𝑖∈Ω𝑋 (𝑟 ) |𝑟𝑖 [𝐴] | = O(𝑛). However, depending on the hashing algorithm, sig-

nificant memory and time overheads may be required. The pseudo-code is presented in
Algorithm 5.
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Algorithm 5 Time optimized 𝑔3 (EXA_TimeOpt)

Require:
a relation schema with predicates satisfying ref, tra and sym (𝑅,Φ)
a functional dependency 𝑋 !𝐴 over (𝑅,Φ)
a relation r over (𝑅,Φ)

1: 𝐶 ⇐ 0
2: 𝑚𝑎𝑝 ⇐ {}
3: for all tuples 𝑡 ∈ 𝑟 do
4: if 𝑡 [𝑋 ] ∉𝑚𝑎𝑝 then
5: 𝑚𝑎𝑝 [𝑡 [𝑋 ]] ⇐ {}
6: end if
7: if 𝑡 [𝐴] ∉𝑚𝑎𝑝 [𝑡 [𝑋 ]] then
8: 𝑚𝑎𝑝 [𝑡 [𝑋 ]] [𝑡 [𝐴]] ⇐ 0
9: end if

10: 𝑚𝑎𝑝 [𝑡 [𝑋 ]] [𝑡 [𝐴]] ++
11: end for
12: for all key 𝑘𝑋 ∈ map do
13: 𝐶 ⇐𝐶 +max𝑘𝐴∈𝑚𝑎𝑝 [𝑘𝑋 ] (𝑚𝑎𝑝 [𝑘𝑋 ] [𝑘𝐴])
14: end for
15: return 1− 𝐶

|𝑟 |

5.3.3. Random sampling

For very large datasets, the computation of 𝑔3 can become overwhelming in terms of time
complexity and memory management. We present techniques for its scalability based on
random sampling.

Uniform random sampling (APPROX_URS)

We first consider the attractive approach of URS proposed in Algorithm 6. This simple
approach is easy to implement, allows for massive gains in computation time and proposes
good theoretical guarantees presented in Theorem 5.
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Algorithm 6 Uniform sampling 𝑔3 (APPROX_URS)

Require:
a relation schema with predicates satisfying ref, tra and sym (𝑅,Φ)
a functional dependency 𝜑 over (𝑅,Φ)
a relation 𝑟 over (𝑅,Φ)
an algorithm A for computing 𝑔3 with predicates satisfying ref, tra and sym

1: 𝑚⇐ min
(
|𝑟 |,

⌈
1

2𝜖2 ln( 2
1−𝛿 )

⌉)
2: 𝑠 ⇐ uniform random sample of size𝑚 drawn from 𝑟

3: return A((𝑅,Φ),𝜑,𝑠)

THEOREM 5. Let (𝑅,Φ) be a relation schema with predicates satisfying ref, tra, sym and
asym. Let 𝑟 be a relation and 𝜑 a functional dependency over (𝑅,Φ). Let A((𝑅,Φ),𝜑,𝑟 ) be
an algorithm for computing 𝑔Φ3 (𝜑,𝑟 ) in 𝑇A( |𝑟 |) time. For an error 𝜖 and a confidence 𝛿 ,
APPROX_URS((𝑅,Φ),𝜑,𝑟,A,𝜖,𝛿) computes an estimate 𝑔Φ3 of 𝑔Φ3 (𝜑,𝑟 ) such that 𝑝 ( |𝑔Φ3 −𝑔Φ3 | ≤
𝜖) ≥ 𝛿 . Its time complexity is O(𝑇s(𝑚, |𝑟 |) +𝑇A(𝑚)) with𝑚 = min

(
|𝑟 |,

⌈
1

2·𝜖2 · ln( 2
1−𝛿 )

⌉)
and

𝑇s(𝑚, |𝑟 |) is the complexity of sampling𝑚 tuples in 𝑟 .

The proof is presented in Appendix C. Despite its simplicity, this approach often per-
forms badly owing to the many specificities of real datasets such very small equivalence
classes, too many different consequents, etc. (see Section 5.4 for experiments).

Advanced sampling schemes

To obtain a more efficient algorithm in practice, we also examine the advanced sampling
schemes presented by Cormode et al. to compute the confidence of the CFDs [CGF+09].
These strategies can be applied almost directly to our use case, since the CFDs only require
a filtering phase before processing [CGF+09]. They propose a variety of solutions, includ-
ing a 2-pass stratified random sampling, which gives the best results in their experiments.
Consequently, we implement this algorithm (APPROX_SRS) in this thesis. In particular, we
use [Li94] instead of the classical reservoir sampling approach [Vit85]. This strategy speeds
up the first pass considerably if the size of the dataset is known. We now describe this al-
gorithm and propose a way to improve it.

For a sample 𝑠 of 𝑟 , we obtain two partitions Ω𝑋 (𝑠) = {𝑠1,𝑠2, ...,𝑠ℓ } and Ω𝑋 (𝑟 ) =
{𝑟1,𝑟2, ...,𝑟𝑚} with ℓ ≤ 𝑚. Observe that, since 𝑠 ⊆ 𝑟 , each 𝑠𝑖 is contained in a unique 𝑟 𝑗 .
For clarity, we assume 𝑠𝑖 ⊆ 𝑟𝑖 . The APPROX_SRS algorithm proposes an estimate of the 𝑔3-
error in two passes over 𝑟 :

(i) In a first pass, it builds a sample 𝑠 by reservoir sampling 𝑝1 =
2
𝜖2

1
·𝑙𝑜𝑔( 2

𝛿1
) tuples from 𝑟 .

Thanks to the size of each equivalence class 𝑠𝑖 in Ω𝑋 (𝑠) = {𝑠1,𝑠2, ...,𝑠ℓ }, it provides an
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estimate |̂𝑟𝑖 | = |𝑠𝑖 |
|𝑠 | · |𝑟 | of the size of each equivalence class 𝑟𝑖 in Ω𝑋 (𝑟 ) = {𝑟1,𝑟2, ...,𝑟𝑚}

with error 𝜖1 and confidence 𝛿1.

(ii) In a second pass, for each 𝑠𝑖 ∈ Ω𝑋 (𝑠), it builds a sample 𝑢𝑖 of 𝑝2 tuples chosen
in 𝑟𝑖 with reservoir sampling. Then, the sample 𝑢𝑖 is used to compute an estimate
𝑔Φ3 (𝜑,𝑟𝑖) = 𝑔

Φ
3 (𝜑,𝑠𝑖) of 𝑔Φ3 (𝜑,𝑟𝑖).

Finally, based on 𝑠, it computes a weighted average to provide an estimate of 𝑔3 for the full
relation such that:

𝑔Φ3 (𝑋 !𝐴,𝑟 ) = 1−
∑︁

𝑠𝑖∈Ω𝑋 (𝑠)

|𝑠𝑖 |
|𝑠 | ·𝑔

Φ
3 (𝜑,𝑠𝑖).

Note that we have not specified the size of the reservoir 𝑝2 in the second pass. In fact,
two methods are proposed by Cormode et al. for sampling in the second pass [CGF+09]:
reservoir sampling and the space-saving algorithm [MAEA05]. In both cases, the value
chosen for 𝑝2 does not take into account the size of the individual equivalence classes, which
can lead to extremely over/underestimated sample sizes. In their experiments, the authors
use a constant value of 𝑝2 = 20. However, while 20 can give a good estimate for small
equivalence class sizes, it is not able to correctly estimate 𝑔3 for very large ones (e.g. 50,000
tuples). On the contrary, choosing a large value such as 5000 performs better for large
equivalence classes, but also samples every element of smaller ones, leading to a decrease in
performance. Therefore, we observe that it is not possible to estimate a good constant value
for 𝑝2, since small and large groups can coexist in the same dataset. Therefore, we propose
to use a variable reservoir size 𝑝𝑖 for each equivalence class 𝑟𝑖 ∈ Ω𝑋 (𝑟 ), depending on its
size |𝑟𝑖 | (improvement implemented in APPROX_SRSI). In particular, we use the estimate
|̂𝑟𝑖 | made in the first pass for the size of each equivalence class 𝑟𝑖 and then use Hoeffding’s
inequality with finite population correction [Ser74] to provide an adaptive sample size 𝑝𝑖
such that:

𝑝𝑖 =


©«

2 ·𝜖2
2

ln
(

2
1−𝛿2

) + |𝑠 |
|𝑠𝑖 | · |𝑟 |

ª®®¬
−1 (5.1)

where 𝜖2 and 𝛿2 are the error and confidence.
This solution offers two major improvements: there is no need to assume anything

about the data beforehand to manually choose 𝑝2 and each reservoir size 𝑝𝑖 is chosen to
give good guarantees on the approximation while sampling just enough tuples. To illustrate
this improvement, consider three equivalence classes of sizes 2, 300 and 5000. For 𝛿2 = 0.95
and 𝜖2 = 0.05, the original method would have required a constant number of samples, such
as 𝑝2 = 20. With our proposal, and taking into account accurate estimates of the true sizes in
the first pass, these groups would require 2, 214 and 643 respectively. We will see that this
approach (APPROX_SRSI) works very well in practice and always outperforms APPROX_SRS.
The pseudo-code for APPROX_SRSI is given in algorithm 7.
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Algorithm 7 Improved stratified random sampling 𝑔3 (APPROX_SRSI) - derived
from [CGF+09]
Require:

a relation schema with predicates satisfying ref, tra, sym and asym (𝑅,Φ)
a relation r over (𝑅,Φ)
a functional dependency 𝜑 : 𝑋 !𝐴 over (𝑅,Φ)
error 𝜖1 and confidence 𝛿1 to use for the first pass
error 𝜖2 and confidence 𝛿2 to use for the second pass

1: 𝐶 ⇐ 0
2: 𝑠 ⇐ ∅
3: 𝑝1 =

2
𝜖2

1
· 𝑙𝑜𝑔( 2

𝛿1
)

4: for all tuple 𝑡 ∈ 𝑟 do ⊲ First pass
5: reservoir sample 𝑡 in 𝑠 of size 𝑝1
6: end for
7: for all 𝑠𝑖 ∈ Ω𝑋 (𝑠) do

8: 𝑝𝑖 ⇐

(

2·𝜖2
2

ln
(

2
1−𝛿2

) + |𝑠 |
|𝑠𝑖 |·|𝑟 |

)−1
9: 𝑠𝑖 ⇐ ∅

10: end for
11: for all tuple 𝑡 ∈ 𝑟 do ⊲ Second pass
12: reservoir sample 𝑡 in 𝑠𝑖 of size 𝑝𝑖
13: end for
14: for all stored 𝑠𝑖 do
15: 𝐶 ⇐𝐶 + |𝑠𝑖 |

|𝑠 | · |𝑟 | ·max𝑥∈𝑠𝑖 [𝐴] |{𝑡 | 𝑡 [𝐴] = 𝑥,𝑡 ∈ 𝑠𝑖}|
16: end for
17: return 1− 𝐶

|𝑟 |

What about the decision problem? The decision problem (EVPP) with random sam-
pling is treated in the original paper introducing 𝑔3 [KM95]. Notably, it is proven that a
uniform sample of size at least O(

√
𝑛

𝑘
· log 1

𝛿
) is required to solve it with probability 𝛿 with 𝑘

the EVPP threshold parameter. This result also holds for the confidence validation problem.
Note that this number is generally pretty high in regard to the size of 𝑟 .

5.4. Experiments

In this section, we present extensive experiments with the algorithms proposed in this chap-
ter. We study their time performance as well as their approximation accuracy on real and
synthetic datasets. First, we introduce FASTG3, the Python library we developed to per-
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form the experiments. Second, we present our datasets and the context of the experiments.
Finally, we present and discuss our results.

5.4.1. The FASTG3 Python library

fasl g3
Logo of FASTG3.

FASTG3 is an open-source library for computing the 𝑔3
indicator. This library is proposed as a Python module
and achieves very good performance thanks to an under-
lying C++ implementation based on Cython. In its cur-
rent version, FASTG3 supports predicates in the form of
relative and absolute uncertainties. Such predicates are
especially useful when comparing measured values such

as sensors values, common in industrial instrumentations and especially at the CNR. Let
𝜏abs and 𝜏rel be respectively the absolute and relative uncertainties of some attribute, such
predicate can be defined as follows:

𝜙𝑢 (𝑥,𝑦;𝜏abs,𝜏rel) =
{

TRUE if |𝑥 −𝑦 | ≤ 𝜏abs +𝜏rel ·max( |𝑥 |, |𝑦 |)
FALSE otherwise.

(5.2)

Those predicates correspond to the NP-hard case of computing 𝑔3 and support all op-
timizations mentioned in Section 5.2.2 for CEE. FASTG3 also implements the classical
equality of crisp FDs.

All algorithms implemented and tested are summarized in Tables 5.2 and 5.3. Multiple
optimizations are also proposed and are summarized in Table 5.1. The source code of
FASTG3 is available publicly on GitHub (github.com/datavalor/fastg3) and it is composed
of about 4500 lines of code. All benchmarks (also available on the repository) are run on
the following configuration: Ubuntu 22.04, Python 3.10, i7-7700k, 32GB of memory. All
given running times are based on an average of ten runs.

5.4.2. Datasets

Two real-life datasets and a synthetic one are used for the experiments:

– Diamonds. This public dataset is composed of 53,940 tuples with 9 categorical and
numerical attributes describing various properties of a set of diamonds (see Table 5.4).
The price of the diamonds is the target value which depends on the other attributes.

– Hydroturbine. Composed of 511,017 tuples, this dataset is similar to our running
example with 6 numerical attributes describing various properties of a water turbine
(see Table 5.5). The power produced by the turbine is the target value which depends
on the other attributes. This dataset is given by the CNR, the funder of this thesis,
and cannot be made public.
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Table 5.4 – ATTRIBUTES OF THE Diamonds DATASET.

Name Type Description
price

numerical

price in US dollars
carat weight

x length in𝑚𝑚
y width in𝑚𝑚
z depth in𝑚𝑚

depth total depth percentage ( 2·𝑧
𝑥+𝑦 )

table width of top of diamond relative to its widest point
cur

categorical
quality of the cut

color diamond color
clarity a measurement of how clear the diamond is

Table 5.5 – ATTRIBUTES OF THE Hydroturbine DATASET. SEE SECTION 1.3 FOR

A DETAILED DESCRIPTION OF THE ATTRIBUTES.

Name Type Description
power

numerical

power produced by the turbine (Megawatts)
flow flow inside the turbine in𝑚3 · 𝑠−1

head water height difference between upstream and downstream in𝑚
opening percentage of upstream valve opening

– Syn. We also use a generator of synthetic datasets making it possible to choose mul-
tiple parameters related to the computation of 𝑔3 with equality predicates (crisp FDs).
It is defined as Syn(𝑔 = 0.5,𝑛 = 1𝑀,𝑒 = 300,𝑎 = 2,𝑐 = 1,𝑢 = 0) with known 𝑔3 value
(𝑔) as well as variable numbers of tuples (𝑛), equivalence classes (𝑒), antecedents (𝑎),
and consequents (𝑐) and percentage of unique consequents in each equivalence class
while keeping the target 𝑔3 achievable (𝑢). We use the default values in the following
experiments when parameters are not defined. 𝑥 means that the parameter is currently
being tested (e.g. Syn(𝑔 = 𝑥,𝑛 = 100)).

Remark 3. As long as the number of antecedents or consequents is not changed in the exper-
iments, the default FDs presented in the following sections are used. The predicates used in
Section 5.4.4 correspond to uncertainties devised with domain experts for Hydroturbine
and are estimated for Diamonds as it is a public dataset. The FDs themselves correspond to
potential functions one may encounter, for example, in a prediction problem.

5.4.3. Classical equality (polynomial case)

In this first series of experiments, we explore the case where equality is used, i.e. crisp FDs.
This is the simplest and most classical solution for comparing values. More precisely, it
falls in the polynomial case of our complexity analysis (see Figure 4.2) and in particular in
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the {ref, tra, asym, sym} group. Hence, the preprocessing phase presented in Section 5.3.1
is unnecessary and thus not studied. Either way, this preprocessing algorithm is linear and
its examination would not be particularly interesting in our case. This case corresponds to
the computation of 𝑔3 with crisp FDs.

Settings

The FDs used in this section for Diamonds and Hydroturbine are respectively:

– carat, cut, color, clarity, depth ! price

◦ 41,350 equivalence classes, 𝑔3 = 0.20

– flow, opening, position ! power

◦ 354,867 equivalence classes, 𝑔3 = 0.13

Unless otherwise indicated, sampling algorithms use confidence 𝛿 = 0.95 and error 𝜖 =
0.01. This corresponds to min(18445,𝑛) tuples sampled in the first pass of APPROX_SRS
and APPROX_SRSI as well as the sample size used by APPROX_URS. APPROX_URS is used in
conjunction with EXA_TimeOpt. If APPROX_SRSI chooses the reservoir size in the second
pass using formula 5.1 (with 𝛿 = 0.95 and 𝜖 = 0.05 in our experiments), a value needs to be
chosen for APPROX_SRS. We use 𝑝2 = 100 which is greater than the original value of 20 used
in [CGF+09] but it seemed fairer regarding the variety of our datasets.

Results

Figures 5.1 and 5.2 present the effect of the number of tuples on the time and approximation
performances. We observe that for small datasets such as Diamonds, the sorting operation is
not an issue and that EXA_TimeOpt is not better than EXA_MemOpt. Interestingly, they achieve
the same performance on the larger dataset Hydroturbine and we see that EXA_TimeOpt
largely beats EXA_MemOpt on Syn(𝑛 = 100𝑀). The reasons for this is the presence of large
equivalence classes and the small number of unique consequents of Syn which allow the
hashing algorithm to reallocate memory less often. The results for the Syn dataset show
the linear scalability of our solutions for very large datasets (tests up until 𝑛 = 100𝑀). As
shown in Figure 5.3, the number of antecedents has an important effect on the running
time. Indeed, the tuple-to-tuple equality check used in every algorithm (hashing, sorting,
etc.) becomes longer as the number of attributes’ values to be compared grows (≈ linear
effect).

For random sampling, we observe that APPROX_SRSI and APPROX_SRS have approxi-
mately the same running times. They are generally not faster than exact algorithms for
small datasets such as Diamonds owing to their computation overheads (notably reservoir
sampling) but become efficient for large ones. We see that APPROX_SRSI is always at least
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EXA_MemOpt EXA_TimeOpt

APPROX_SRSI APPROX_SRS APPROX_URS

Diamonds

Syn(n=x)

Hydroturbine

Figure 5.1 – Influence of the number of tuples on the time performance with equality
predicates.

as accurate as APPROX_SRS and often proposes near-optimal approximations. In the results
of the Syn dataset, we notably observe one of the drawbacks of the original APPROX_SRS:
with only 300 equivalence classes, the reservoir size of 100 becomes insufficient which
considerably deteriorates the approximation quality. In general, APPROX_URS is really fast
but is only usable with large equivalence classes. Indeed, when the size of the equivalence
classes grows (i.e. their number decreases), the proportion of tuples sampled in each one
increases, leading to greater accuracy.

Finally, Figure 5.5 presents the effect of the various parameters of the Syn dataset on
the approximation accuracy of random sampling algorithms. It confirms that APPROX_URS
provides poor approximations for datasets with small equivalence classes and therefore
requires a large number of samples. However, APPROX_SRS and APPROX_SRSI work really
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APPROX_SRSI APPROX_SRS APPROX_URS

Diamonds Hydroturbine

Syn(n=x)

Figure 5.2 – Influence of the number of tuples on the approximation performance with
equality predicates.

well with a small number of sampled tuples. When varying the parameter 𝑔3, we also
observe that algorithms tend to give a worse approximation for 𝑔3 above 0.5. Indeed, at this
point, the most frequent element in each equivalence class is not in strict majority which
is known to be a hard case in frequent elements problems (for example, this is the limit of
exact heavy hitters approaches). Finally, we can see that having very few distinct elements
in each equivalence class also degrades the approximation as the most frequent element
becomes harder to distinguish from the others.

To summarize, EXA_MemOpt and EXA_TimeOpt boh perform well with a slight advantage
for EXA_MemOpt when there are few equivalence classes or unique consequents. For random
sampling, APPROX_SRSI is preferable in most cases and its confidence and error in both
passes could be further reduced to improve its execution time. Finally, 𝑔3 values under 0.5
and with more unique consequents are better approximated.
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Diamonds Hydroturbine

Syn(a=x)

EXA_MemOpt EXA_TimeOpt

APPROX_SRSI APPROX_SRS APPROX_URS

Figure 5.3 – Influence of the number of antecedents on the time performance with
equality predicates.

5.4.4. Extension to uncertainties (NP-hard case)

As mentioned earlier, strict equality is often too restrictive to be meaningful for real-world
comparisons. This is particularly true for continuous attributes such as the sensor ones
found in the Diamonds and Hydroturbine datasets. In this case, it is preferable to incor-
porate the notion of uncertainty using predicates such as those presented in the formula 5.2.
This is exactly what we propose in this section. We extend the equivalence to uncertainties
that fall into the NP-hard case of our dichotomy.

Settings

The FDs used in this section for Diamonds and Hydroturbine are respectively:
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APPROX_SRSI APPROX_SRS APPROX_URS

Diamonds Hydroturbine

Syn()

Figure 5.4 – Influence of the number of samples on the approximation performance
with equality predicates.

– carat, x, y, z, depth, cut, color, clarity ! price

◦ Predicates:

* 𝜙𝑐𝑎𝑟𝑎𝑡 (𝑥,𝑦) = 𝜙𝑥 (𝑥,𝑦) = 𝜙𝑦 (𝑥,𝑦) = 𝜙𝑧 (𝑥,𝑦) = 𝜙𝑑𝑒𝑝𝑡ℎ (𝑥,𝑦) = 𝜙𝑢 (𝑥,𝑦;0.05,0)
* 𝜙𝑝𝑟𝑖𝑐𝑒 (𝑥,𝑦) = 𝜙𝑢 (𝑥,𝑦;0.1,0)
* Attributes cut, color and clarity use regular equality.

◦ 21,182 counterexamples, 𝑔3 = 0.22

– flow, opening, elevation ! power

◦ Predicates:

* 𝜙 𝑓 𝑙𝑜𝑤 (𝑥,𝑦) = 𝜙𝑝𝑜𝑤𝑒𝑟 (𝑥,𝑦) = 𝜙𝑢 (𝑥,𝑦;0.05,0)
* 𝜙𝑜𝑝𝑒𝑛𝑖𝑛𝑔 (𝑥,𝑦) = 𝜙𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝑥,𝑦) = 𝜙𝑢 (𝑥,𝑦;0.03,0)
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Syn(u=x)

Syn(g=x) Syn(e=x)

APPROX_SRSI APPROX_SRS APPROX_URS

Figure 5.5 – Influence of Syn parameters on the approximation performance with
equality predicates.

◦ 2,972,255 counterexamples, 𝑔3 = 0.31

NuMVC is used with a constant running time of 1 second (HEUR_NuMVC(1s)) and is therefore
not shown on the time performance graphs. Unless otherwise indicated, 2000 tuples/nodes
are sampled for the two sublinear algorithms APPROX_Sub09 and APPROX_Sub11.

Results

Counterexample enumeration. Figure 5.6 presents the execution time of the CEE with
different levels of optimization for the Diamonds dataset. All these levels are achievable
because the FD considered contains categorical antecedents with the equality predicate (cut,
color and clarity) as well as at least one totally ordered antecedent with monotonic pred-
icate (one of carat, x, y, z, depth or depth). If blocking is so effective, it is because the
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CEE_BruteForce
CEE_CompOpt

CEE_BlockOpt

CEE_OrderOpt

All optimizations

Diamonds

Figure 5.6 – Counterexample enumeration on the Diamonds dataset with various lev-
els of optimizations.

projection of Diamonds on {cut, color, clarity} generates very small blocks which can be
processed efficiently. With all optimizations combined, very reasonable computation times
are achieved. On the other hand, only CEE_CompOpt and CEE_OrderOpt can be used for
Hydroturbine and the high number of rows and especially the high number of counterex-
amples make the process still more time consuming with ≈ 30𝑠 total for processing the 200k
rows (graph not shown here).

To summarize, the number of counterexamples is by far the most limiting factor. In
addition to more counterexamples meaning more required comparisons, this is also likely
to generate more potential false positives (pairs of tuples which are compared to finally
conclude that they are not a counterexample) and therefore predicates computed in vain.
Therefore, it is possible to perform an optimized CEE on very large datasets with very few
counterexamples but it may also be very long with medium datasets which contain a lot of
them.

Computing the 𝑔3-error. Figures 5.7 and 5.8 present the time and approximation perfor-
mances of the computation of the 𝑔3-error. We observe that APPROX_GIC offers excellent
approximation accuracy. HEUR_NuMVC(1s) provides perfect results in constant 1s time which
is especially useful for very large graphs with many edges where EXA_WGYC takes too much
time. In all our tests, there is no case where APPROX_2Approx is preferred and it is, in
general, closer to its 2-approximation ratio guarantee than the exact value.

We can also observe that sublinear algorithms offer significant time performance ben-
efits by replacing the full CEE by an on-the-fly CEE. We can see that both are almost
equivalent with Diamonds when APPROX_Sub11 performs better than APPROX_Sub09. In fact,
the cubic guarantees of APPROX_Sub11 are likely to perform better that the quadratic guar-
antees of APPROX_Sub09. It is also reassuring to see that their approximation is always very

50

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



close to APPROX_2Approx of which they initially propose an estimate. In Figure 5.9, we can
observe the approximation accuracy of the two sublinear algorithms dependending on the
sample size. We can see that they do not need a large sample size to work well.

To summarize, EXA_WGYC performs well but becomes limited when the dataset contains
numerous counterexamples. Nonetheless, APPROX_GIC proposes a fast and accurate estimate
of the error almost as competitive as HEUR_NuMVC. If the CEE becomes too long, sublinear
algorithms propose a good estimate of APPROX_2Approx in reasonable time, even with a
small sample size. In general, APPROX_Sub11 is preferred over APPROX_Sub09.

CEE+EXA_WGYC CEE+APPROX_GIC CEE+APPROX_2Approx

APPROX_Sub09 APPROX_Sub11

Diamonds Hydroturbine

Figure 5.7 – Influence of the number of tuples on the time performance.

Diamonds

CEE+HEUR_NuMVC(1s) CEE+APPROX_GIC CEE+APPROX_2Approx

APPROX_Sub09 APPROX_Sub11

Hydroturbine

Figure 5.8 – Influence of the number of tuples on the approximation accuracy.
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Diamonds

APPROX_Sub09 APPROX_Sub11

Hydroturbine

Figure 5.9 – Influence of the sample size on the approximation accuracy of sublinear
algorithms.

5.4.5. Summary of experiments

Polynomial case. When predicates are constrained to equality in the case of crisp FDs,
the computation of 𝑔3 depends on the number of tuples and is highly scalable up to millions
of tuples. However, approximation algorithms can be used to avoid iterating over each tu-
ple and thus speed up the computation. APPROX_URS appeared to be inadequate but stratified
approaches provide an efficient alternative (APPROX_SRS), especially when used with a dy-
namic reservoir size in the second size (APPROX_SRSI) to account for different equivalence
class sizes. These approximation algorithms are particularly effective for smaller 𝑔3 values.

NP-hard case. In the more general case such as uncertainty predicates, building the con-
flict graph via the CEE depends on the number of tuples while computing the 𝑔3-error by
finding an MVC rather depends on the number of counterexamples. If the CEE can be
achieved in reasonable time (e.g. many optimizations can be applied), EXA_WGYC can be
used to compute the error exactly for a small number of counterexamples and APPROX_GIC
or HEUR_NuMVC(t) propose efficient approximation alternatives. When the CEE becomes
too long, sublinear algorithms (especially APPROX_Sub11) offer a faster alternative at the
expense approximation quality.

5.5. Conclusion

In this chapter, we studied scalable techniques to compute the 𝑔3 indicator with (i) general
predicates (known to be NP-hard) and (ii) with transitive and symmetric predicates (proven
to be polynomial). For the first case (i), two subproblems were identified. First, for the
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enumeration of the counterexamples which is quadratic in the size of the dataset, blocking
techniques, attribute ordering and ordered spaces were studied. Second, an analysis of
available approximation algorithms and recent developments in sublinear algorithms were
examined for solving the MVC. For the second case (ii), uniform and stratified sampling
schemes were proposed and their theoretical guarantees analyzed.

We implemented all the algorithms presented in Section 5. We tested them through
extensive experiments. For crisp FDs with classical equality, the propositions were shown
to be fairly scalable while keeping a good approximation accuracy for sampling approaches.
When incorporating uncertainties with non-crisp FDs, we observed that the bottleneck of
the computation lies in the counterexample enumeration process. Sublinear algorithms offer
important time savings but they all adapt an 2-approximation algorithm which is known to
provide average approximations in practice.
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Chapter 6
ADESIT: A web application for interactive
counterexample analysis

6.1. Introduction

The previous chapters where devoted to the study of the computation of the 𝑔3-error. We
now explore further how such process can be used in practice, mainly to better understand
the interplay between a dataset and a function (possibly a machine learning model) repre-
sented by a FD. Indeed, if the 𝑔3-error itself provides a degree of satisfaction of a function
in a dataset, it is not always sufficient to understand why and where it does or does not be-
have well. We now present our proposition for using counterexamples in conjunction with
indicators in the frame of supervised learning, where the goal is to learn a function.

Consider a supervised learning (SL) problem where the task is to predict a continuous
or categorical target 𝐴 from a set of features 𝑋 using a set of examples. The goal is to find
a function 𝑓 (a.k.a. model) such that 𝑓 (𝑋 ) ≃ 𝐴. This function must balance between error
minimization on the examples and its ability to generalize well on unseen instances to avoid
overfitting. To do so, a set of training examples is sent to a learning algorithm to infer such a
function which can be evaluated afterwards against a testing dataset. Suppose the resulting
accuracy is below expectations: what should be questioned? One might be tempted to try
different training parameters or even change the learning algorithm. If this approach makes
sense in some cases, challenging the very existence of 𝑓 should also be one of the primary
concerns to prevent an unsuccessful SL process or, conversely, to help the practitioners trust
the computed model. In practice, the quality and completeness of the learning examples is
well-known to be one of the primary factors of success in SL [JPN+20]. Noisy, inaccurate,
or incomplete data can lead to poor models, and it is sometimes even difficult to understand
that the learning dataset itself is to blame. If the examples given for training contradict each
other or do not contain enough information, even the most advanced algorithm will fail to
understand the functioning of the phenomenon it is trying to predict.
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In response to these concerns, multiple methods and metrics have been developed in the
past allowing to evaluate, improve, and better understand the data and its predictive power.
In particular, we focus on the recent studies proposing the use of functional dependencies
(FDs) and specifically the analysis of counterexamples to find contradictions in the dataset
[CIP13, LPS20]. For the specific case of SL, we understand intuitively that learning exam-
ples with equal causes (𝑋 ) and different outcomes (𝐴) are likely to cause problems during
the learning process. As a function, 𝑓 needs to give a unique answer for a given input. This
type of contradiction can be due to noise in the data of 𝐴 (sensor precision, input error...)
but it might also reveal missing or redundant features of 𝑋 or just the unpredictable nature
of the phenomenon. Therefore, finding “regions” with high densities of counterexamples is
of great interest for data preprocessing, to gain insight into the intrinsic limitations of the
raw dataset and the problem statement itself. Our aim is to guide interactions with domain
experts so to build with them the “intimate conviction" that a function exists in the data
and that, if applicable, an ML model can be built. If the limits given by counterexample
analysis are not suitable for the problem at hand, the process must be refined by working
on data acquisition or processing. Thus, these questions are intimately linked to data and
feature selection and it highlights the interweaving of these concepts between the database
and ML communities.

Logo of ADESIT.

As our main proposition, we present ADESIT (Ad-
vanced Data Exploration and Selection Interactive Tool),
a web-based intuitive graphical user interface to evaluate
the limits of a dataset for a given SL problem. This evalu-
ation is made through statistical measures based on coun-
terexamples and an interactive visual exploration permits
the user to see the variations of this measure on different
regions of the data: given a dataset, a set of features 𝑋
and a prediction target 𝐴, ADESIT helps the user to un-

derstand the predictive power of the data but also potential refinements and improvements
in her features or data selection. We propose various statistics on the dataset up to tuple
granularity along with an interactive representation of the data and found counterexamples.
As illustrated in Figure 6.1, we thought ADESIT as being part of an iterative refinement
process. Given a new SL problem, we want the user to quickly be able to evaluate what
performances cannot be exceeded and what steps should be taken before approaching the
learning process itself.

Due to a technical gap between data scientists and experts, domain knowledge is often
underused in the conception of prediction models. However, it is often the domain experts
themselves who know the intrinsic theoretical parameters of the prediction problem but
want a more practical model closer to reality. To do so, we propose to use counterexamples
as a “means of mediation” between data experts and domain experts. As a consequence,

55

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



selected 
data

raw data

preprocessed
data

learning
algorithm

transformed
data

ADESIT

f

real-life
phenomenon

domain
constraints

Figure 6.1 – Place of ADESIT in the data processing pipeline for machine learning.
Just before the model creation step, ADESIT allows the user to under-
stand the limits of her dataset, thus taking part of an iterative data re-
finement process from data acquisition to preprocessing.

one of our primary concerns while designing ADESIT was to involve domain experts in the
process: the intuitive visualization of counterexamples proposed by ADESIT allows a quick
understanding and explanation of the potential issues which may arise, promoting dialogue
within all the actors of the data chain.

In summary, for a given dataset and a specific SL problem, ADESIT proposes the fol-
lowing contributions:

– We offer statistics derived from counterexamples analysis to characterize the ability
of the dataset to perform well for the given problem. In particular, we propose the
𝑔1, 𝑔2 and 𝑔3 indicators [KM95] with predicates for domain knowledge integration
and use the efficient implementations of the FASTG3 library presented in Section 5.
Notably, the 𝑔3-error serves as an upper bound on the maximum accuracy obtainable
with any model on a given dataset [LPS20].

– We propose several ways to visualize counterexamples in the dataset to better under-
stand their distribution: table, scatter plot, heat map, attribute histograms. Notably,
it allows to find and identify so-called “data regions” with good learning potential,
but also subsets that could need refinement. It is also possible to select and analyze
tuples individually by visualizing the conflict graph locally.

– Our objective is also to propose new visualizations to facilitate the dialogue between
domain experts and data scientists. Thus, we worked on proposing an intuitive inter-
face based on visualization with detailed explanations for each component.
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The main results of this chapter have been published in [FGPSLG21].
It is important to emphasize that we are upstream from the model creation itself. The

𝑔3 indicator acts as an upper-bound on the target accuracy but will not necessarily be the
desired one as it might result in a lack of generalization. However, by making informed
choices for the similarity measures (thresholds) and therefore assuming imperfections in the
accuracy of the attributes, we produce a better reflection of the real-life phenomenon behind
the data and therefore reduce the overall variance. ADESIT is used to identify contexts where
creating a good model will be difficult or promising and provides the user with knowledge
to explain why to potentially refine your data from acquisition (e.g. Should we get new
sensors or more precise ones?) to preprocessing. Also note that ADESIT proposes intuitive
indicators in view of a given dataset and is not meant to analyze the unpredictability of the
underlying phenomenon itself which is notably linked to the Bayes error [Fuk13].

Chapter organization. First, we present the technical details behind ADESIT and its con-
nection to FASTG3. Second, we introduce the three main areas of ADESIT along with a
running example to motivate its real-life utility. Finally, we conclude and detail some of the
current limitations.

6.2. Technical presentation

The computation in ADESIT is based on the FASTG3 library presented in Chapter 5. Thus,
it incorporates both the classical equality and predicates with relative and absolute uncer-
tainties as presented in formula 5.2.

In addition to the 𝑔3-error, ADESIT also proposes two other indicators introduced by
Kivinen and Mannila [KM95]: the 𝑔1 and 𝑔2 indicators. As for the 𝑔3, those indicators
are initially proposed for crisp FDs with classical equality. Nonetheless, they remain well-
defined with the use of predicates. Let (𝑅,Φ) be a relation scheme with predicates, 𝑟 a
relation over 𝑅 and 𝜑 a FD. We consider the conflict graph CG(𝜑,𝑟 ) = (𝑟,𝐸). The 𝑔1 and 𝑔2
indicators can be formulated as follows:

– 𝑔1 is the proportion of counterexamples among all possible counterexamples, or:

𝑔Φ1 (𝜑,𝑟 ) =
|{(𝑡, 𝑡 ′) | 𝑡, 𝑡 ′ ∈ 𝑟, (𝑡, 𝑡 ′) ̸|=Φ 𝜑}|

|𝑟 |2
=

|𝐸 |
|𝑟 |2

– 𝑔2 is the proportion of tuples involved in at least one counterexample, or:

𝑔Φ2 (𝜑,𝑟 ) =
|{𝑡 | 𝑡 ∈ 𝑟,∃𝑡 ′ ∈ 𝑟 s.t. (𝑡, 𝑡 ′) ̸|=Φ 𝜑}|

|𝑟 | =
|{𝑡 | 𝑡 ∈ 𝑟,∃𝑒 ∈ 𝐸 s.t. 𝑡 ∈ 𝑒}|

|𝑟 |

For the computation of 𝑔3, EXA_MemOpt (Algorithm 5, page 38) is used if only equality is
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defined for the attributes. If the user chooses to define uncertainties, it is then possible
to choose between exact and approximate computation with the EXA_WGYC and APPROX_GIC
algorithms respectively (see Section 5.2).

ADESIT is an open-source web-application under BSD 3-Clause License. Its source
code is available publicly on GitHub (github.com/datavalor/ADESIT) and it is composed
of about 4000 lines of code. It is implemented in Python using the Dash framework. We
also use Pandas and Numpy. A beta version of ADESIT hosted on the LIRIS laboratory
servers is available at adesit.liris.cnrs.fr.

6.3. ADESIT overview

In this section, we present the interface and various features of ADESIT. As a running ex-
ample, we use the 20,000 randomly sampled rows of the Hydroturbine dataset presented
in Chapter 5, Section 5.4.2 and explain how ADESIT can be used to assist the SL process.
As shown in the screenshot available in Figure 6.2, the interface of ADESIT is divided into
three main areas described in the following sections.

6.3.1. Supervised learning problem settings (area A)

This area is used to define the SL problem by setting the features and the target as well
as their associated uncertainties. After uploading a dataset in csv or excel format, the user
can then select attributes to define the features 𝑋 and the target 𝐴 of the prediction problem
𝑓 (𝑋 ) ≃ 𝐴. It is then possible to define the absolute and relative uncertainties for each
attribute. If both are left at zero, equality is used for that attribute. If no uncertainty is
defined on all implied attributes, polynomial algorithms will be applied to compute 𝑔3.
Finally, the user can choose the type of computation for 𝑔3 (approximate or exact) and
start analysis (counterexample enumeration and indicators computation). At the present
time, unknown values are not explicitly handled by ADESIT and the corresponding tuples
are simply removed as soon as the dataset is uploaded. Nonetheless, approaches such as
[WL19] could be implemented in the future.

Example 10. In the screenshot in Figure 6.2, the FD “opening, position, elevation !

power” is defined. It corresponds to the problem of predicting the power from the 3 other
attributes. The opening and position attributes have an absolute uncertainty of 0.05, the el-
evation an absolute uncertainty of 0.01 and the power a relative uncertainty of 0.01. These
uncertainties have been chosen in interaction with domain experts from CNR.

6.3.2. Counterexample indicators (area B)

In this second area, ADESIT displays the number of tuples involved in a counterexample
(unnormalized 𝑔2) along with the 𝑔1, 𝑔2 and 𝑔3 indicators. Those indicators are inverted
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versions of the raw measures (e.g. 𝑔1 becomes 1−𝑔1) for readability: the higher the bet-
ter. If the performances are not appropriate for the domain experts, we can intervene on
the data collection process by exploring solutions such as increasing data accuracy to influ-
ence similarity measures (e.g. using better sensors), adding new features or refine the data
processing pipeline (acquisition, denoising, gap filling...).

Example 11 (continued). In the screenshot in Figure 6.2, we have a very low value of 𝑔1
(1−𝑔1 greater than 99.99%) and an average value of 𝑔2 (1−𝑔2 is 66.54%). It means that a
good amount of tuples are involved in a counterexample but that they are quite spread out
through the dataset. The 84.7% corresponds to 1−𝑔3. This value indicates that the function
is quite verified in the data and thus seems likely to be learnable.

6.3.3. Counterexamples exploration (area C)

This area allows to interactively explore the dataset in view of counterexamples. It can be
divided in two main areas: C.1 gives an overview of the counterexample distribution at the
dataset level while C.2 allows to obtain informations at the tuple granularity. These two
areas follow the same color scheme presented in Table 6.1. All these colors along their
meaning are reminded in legend visible in the upper part of in area C.1 of Figure 6.2. We
now describe areas C.1 and C.2 independently.

Table 6.1 – TUPLE/NODE COLOR LEGEND OF ADESIT.

Color Involved it at least on counterexample Selected
blue · ·

green · ✓
red ✓ ·

yellow ✓ ✓

Global dataset visualization (area C.1) This area is used to get a global vision of the
dataset in the perspective of counterexample analysis. These visualizations are meant to
detect areas with high densities of counterexamples and to help to decide if the process of
data selection for SL can continue or if new or better data is needed. It is divided in three
tabs that we describe in the following:

– Tabular view. The tabular view shown in Figure 6.3 is one of the most ubiquitous
way to browse tabular data. Columns are sorted by their role in the studied function
(feature, target or not included) as well as their data type (numerical or categorical)
and can be hidden for visualization convenience. Columns which are not included in
the function are left with white background. If a tuple 𝑡 is selected, tuples which form
a counterexample with 𝑡 are framed in bold. It can be also be used to select a tuple
and export the current selection (square tool in 2D View).
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– 2D View. The 2D view presents the data along two attributes. By keeping the tar-
get on the ordinate, it is possible switch between the various features two understand
their individual impact on the counterexample distribution w.r.t the target. The results
of dimensionality reduction techniques such as PCA (principal component analysis)
applied to the features 𝑋 can also be used as an alternative axis. This is especially
useful to compensate for the restrictions of 2D views and to get an overview of how
well counterexamples are spread in the dataset. Associated with each axis, stacked
histogram is also proposed to show the distributions of the data and counterexamples.
The number of bins can be defined with a slider. In addition to zooming and panning,
the user can also use the lasso or square tools to select a part of the dataset and display
its statistics or export it as a table.
In this setting, the first view is the usual scatter plot (shown in area C.1 of Figure
6.2). Each point on the graph represents a tuple, and counterexamples are highlighted
according to the chosen parameters. By hovering over a point, it is possible to display
its specific information. It is possible to select a tuple by clicking on it. If a tuple 𝑡
is selected, tuples which form a counterexample with 𝑡 are made bigger a framed in
bold.
It is also possible to display the heat map of the dataset (shown in Figure 6.4). This
view is particularly useful for finding specific areas where the function will be diffi-
cult to learn and where the resulting model may be therefore less reliable.

– Attributes histograms. In this view, each attribute has its own stacked histogram
to understand the distribution of data and counterexamples (shown in Figure 6.5).
The currently selected tuple and its associated counterexamples appear as vertical
lines in each attribute. Such view is particularly useful for understanding which at-
tribute might be missing in the current FD in order to remove some counterexamples.
Indeed, while a tuple is selected, it is possible to visually distinguish new potential
feature attributes which may play a discriminative role regarding the target. These are
characterized by a spreading of the vertical lines, meaning that the counterexamples
are dissimilar to the selected tuple on the considered attribute. This view can also be
used to filter the data using a range slider associated with each attribute.

In each tab, the user can choose to filter all tuples, counterexamples, or free tuples only
thanks to the filter visible in Figure 6.2.

Tuple-wise analysis (area C.2) This last area displays information about the currently
selected tuple. It shows the local conflict graph around the tuple with a customizable depth.
Nodes can be hovered over to get more information about the corresponding tuples and
clicked to be selected. A table summarizing the selected tuple and its direct neighborhood
is also available.

Example 12 (continued). In the screenshots in Figures 6.2-6.5, we get different perspectives
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on the dataset and the selected tuple number 12,734. As visible in the histogram section,
tuples with low flow have been filtered as they correspond to different production regimes.
The vertical lines in the 2D View correspond to the discrete opening position (they corre-
spond to an integer percentage). Points between line correspond to transitional opening
states. We now make some observations.

We can see on Figure 6.4 that a great proportion a counterexamples lies in the 65-70%
opening range. This means that a SL model would propose less reliable results in that range
unless a discriminative feature is added. Such feature can be found in the conflict graph in
which we observe that the selected tuple and its neighborhood form a clique. We can see
by highlighting other tuples or looking at the table below that the counterexamples have
significantly different values on the grid_pressure_drop attribute than the selected one. This
is also visible on the histogram of grid_pressure_drop in Figure 6.5 where the red vertical
lines are quite spread out around the selected yellow lines.

6.4. Conclusion

In this chapter, we introduced ADESIT, a tool for analyzing a dataset in view of counterex-
amples in the frame of SL. The various views (table, scatter plot, heat map, histograms, con-
flict graph) allow to get a comprehensive picture of how counterexamples are distributed in
the dataset and how they might impact the learning process. Furthermore, the computation
is fast thanks to the optimizations presented in Chapter 5.
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area A

area B

area C

C.1
C.2

Figure 6.2 – Labeled screenshot of the ADESIT interface. A: Supervised learning
problem settings as a functional dependency with predicates for each at-
tribute. B: Counterexample indicators. C: Counterexamples exploration
(C.1: dataset-wise ; C.2: tuple-wise).
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Chapter 7
Application to air gap monitoring in
compact hydro-generators

7.1. Introduction

As mentioned in the introduction (Chapter 1), most of the production from the CNR comes
from the exploitation of 19 hydroelectric power plants along the French side of the Rhône
river. Most of these are run-of-the-river facilities with almost no reservoir. This means that
the water turbines must disturb the natural flow of the river as little as possible, so as not to
upset the balance of the ecosystem. This is why, when the first power plants were designed
in the 1960s and given the novelty of the problem, the CNR commissioned the design of
new, more compact turbines.

To ensure the compactness of the generating units, it was decided to significantly reduce
the air gap value (distance between the rotor and the stator of the generator, see Figure 7.2).
This air gap was originally designed to be about 7mm under normal operating conditions
for turbines of several meters in diameter. About a decade after the first generators were
installed, a collision occurred in one of the generators, resulting in significant damage and
repair costs. It was concluded from the incident that it was the stator that underwent a
progressive deformation up to the collision and not the rotor, as it is usually the case in such
turbines. These deformations are caused by the electromagnetic forces within the turbine,
amplified by the smallness of the air gap.

Although it is possible to slow down the deformation of the stator, it cannot be com-
pletely avoided. However, it is possible to compensate for the reduction in air gap by
tightening the stator mountings or removing of pole plates. The aim is therefore to an-
ticipate such collisions in order to correct the machine before they occur. However, these
operations involve significant maintenance costs and should ideally be carried out as late
as possible. For this reason, the CNR started to develop predictive maintenance techniques
by monitoring the air gap value. Due to the novelty of the problem, they experimented
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with several solutions and finally settled on a set of rotating remote sensors mounted on the
rotor. In addition, a pair of proximity sensors is used to track the displacement of the rotor
shaft to monitor its eccentricity. Currently, the sensor data is processed manually in a long
and tedious process. In addition, the uncertainty of the result cannot be quantified and the
assessment of its quality is left to the discretion of the analyst.

In this work, we benefit from a close collaboration between the CNR experts and data
science researchers to design a tailored solution for this industrial data-centric problem.
Our study is twofold:

– First, we validate the approach developed in this thesis to verify assumptions about
this problem. In particular, we use ADESIT to check that the measured air gap is
indeed a function of the rotor angle and that adding the rotor eccentricity improves
the accuracy. We also verify that the temperature plays a significant role in the value
of the air gap.

– Second, we propose an automatic solution for analyzing air gap data in the special
case of stator deformation. The aim is to improve the quality and usability of the data,
while remaining aware of its limitations. It also facilitates data storage by reducing its
memory size. Our solution starts with angular resampling followed by synchronous
averaging, two well-known signal processing techniques. In particular, synchronous
averaging allows us to extract the meaningful part of the signal by reducing the noise.
Moreover, we can also evaluate the strength of the resulting signal by computing
higher synchronous moments. Then, we propose to geometrically correct the rotor
eccentricity and to compute the critical air gap which is the actual closest distance
between the rotor and the stator when the generator is operating. Finally, we propose
appropriate visualizations designed to be understood by domain experts, even when
they are not familiar with the processing techniques used.

The main results of this chapter have been published in [FGTS23].

Chapter organization. First, we describe the problem and state our assumptions. Sec-
ond, we present the sensor sensor instrumentation and the resulting time series as well as
the recorded data used in this chapter. Third, we show how to use counterexample analysis
with ADESIT as a preliminary step to prepare the data science project. Then, we describe
our solution, experiment with some sample of data from the CNR and discuss some param-
eters of the acquisition strategy. Finally, we conclude this study and present some future
work.
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7.2. The air gap monitoring problem

7.2.1. Problem description

A classical generator consists of an excited rotor rotating inside a stator. CNR’s turbines
have generators several meters in diameter as shown in the illustration in Figure 7.1. As
their rotation speed is synchronized with the European grid (≈ 50Hz), a typical CNR gen-
erator consisting of 32 pairs of poles rotates at approximately 1.56Hz.

Figure 7.1 – Photo of a turbine undergoing maintenance. The rotor is extracted from
the stator in this operation. Source: CNR.

As shown in the schematic presented in Figure 7.2, the air gap is the area of air separat-
ing the rotor from the stator. Due to the compact design of CNR run-of-river turbines, this
air gap of about 7mm is quite thin compared to the diameter of the generator. As explained
in the introduction, a progressive decrease of the air gap distance has been observed on
some turbines, leading to rotor-stator collisions.

The cause of such collision is the local reduction of the air gap distance at some point
of the stator. This reduction is due to multiple factors. The main causes considered in this
study are:

– Stator deformation. The electromagnetic interactions with the rotor gradually de-
form the various parts of the stator.

– Rotor eccentricity. Due to imperfect rotor mass distribution, stator deformation and
electromagnetic interactions, the rotor center may not be aligned with the geometrical
stator center (axis of rotation). This phenomenon is called rotor eccentricity. In
particular, the rotor center is not only off-center but it also periodically moves with
time: this is dynamic eccentricity (e.g. see [FEAT09]).

– Turbine state parameters. The various instantaneous characteristics of the generator
(temperature, tension...) influence the value of the air gap. For example, the rise in
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stator

rotor

air gap

rotor
shaft

Figure 7.2 – Schematic of an ideal turbine.

temperature causes the expansion of the metal parts and the rise in voltage intensifies
the electromagnetic interactions. These parameters have a great influence on the
rotor eccentricity. It is therefore important to compare air gap values under fixed
parameters.

These various factors are illustrated in Figure 7.3. A detailed analysis of the factors influ-
encing the air gap value is proposed in [Nik02].

Following discussions with domain experts from CNR, this work is made under the
following assumptions:

Assumption 1. The rotor shaft is non-deformable.

Assumption 2. The rotor shaft and the rotor body have uniform diameters.

stator center
(rotation axis)

eccentric
rotor center

ideal rotor
rotor center
trajectory

Figure 7.3 – Model of real turbine used in this paper.
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7.2.2. Sensor Instrumentation

rotor
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displacement

sensors

stator
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(a) Front view

static
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rotor shaft
displacement

sensors

rotating
target

stator
keyphasor

acquisition
card

y

x

upstream median downstream

air gap
sensors

(b) Section view

Figure 7.4 – Schematic of the turbine instrumentation.

A schematic of the instrumentation is presented in Figure 7.4. The sensors can be
divided into two main categories:

– Rotating sensors. The air gap is measured by 3 rotating capacitive sensors attached
along the rotor (upstream, median, downstream) to get a comprehensive depth profile.
Those 3 sensors are associated to a unique rotating keyphasor. This keyphasor uses a
metallic target attached to the stator to detect full rotor revolutions. The data collected
by those 4 sensors is transmitted wirelessly to the acquisition card.

– Static sensors. The displacement of the rotor shaft is measured by 2 proximity sen-
sors. These sensors are associated to a static keyphasor with a rotating target attached
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to the rotor. The data is finally transmitted to the acquisition card by wire.

As the rotor data is transmitted wirelessly, its synchronicity with wired stator data can not
be guaranteed. This is why two keyphasors are required.

7.2.3. Presentation of the time series

This chapter mainly uses 5 sensor time series. As we want the air gap to be constant
at recording scale, the time series are required to be first-order cyclo-stationary (CS1)
[GNP06]. This implies that the state parameters of the machine change negligibly during
the recording as they affect the air gap value (see Section 7.2).

First, we consider an air gap sensor (e.g. median sensor) and its associated keyphasor,
two rotating sensors:

– 𝛿𝑚 (𝑡): measured air gap distance
model: MC-monitoring AGT-212 M4

– 𝑘𝑟 (𝑡): keyphasor signal associated to 𝛿𝑚 (𝑡)
model: CONTRINEX DW-AS-603-M30-002

Second, we consider the rotor shaft displacement measured by static sensors. It is mea-
sured in Cartesian coordinates (𝑥 (𝑡),𝑦 (𝑡)) by two proximity sensors (model: MEGGITT TQ
402) and we convert it to polar coordinates to facilitate the analysis. These measures are
associated to a keyphasor:

– 𝑒 (𝑡): radial coordinate of the rotor shaft (radial eccentricity)

– 𝜃 (𝑡): angular coordinate of the rotor shaft

– 𝑘𝑠 (𝑡): keyphasor signal associated to 𝑒 (𝑡) and 𝜃 (𝑡)
model: CONTRINEX DW-AS-623-M12-120

The keyphasor signals will be used to recover the instantaneous rotor angle 𝛽 (𝑡) thanks
to an order tracking procedure that will be described in more detail in Section 7.4. These
various time series are modeled geometrically in Figure 7.5.

Finally, a 6𝑡ℎ time series will be used occasionally. It corresponds to the temperature or
the stator and is it is noted 𝛾 (𝑡) in degree Celsius.

7.2.4. Presentation of the recordings

Two distinct sets of recordings of the time series presented above will be used in this chap-
ter:

– Low frequency. This first time series was recorded with the acquisition card cur-
rently used in CNR turbines. It comes from one of the turbines of the Avignon hydro-
electric power plant and its frequency is 50Hz. It lasts approximately 1 minute and
30 seconds.
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Figure 7.5 – Geometric model of the generator. 𝛽 (𝑡) is inferred from the two keypha-
sor signals.

– High frequency. This second set was recorded with an external acquisition card at
2000Hz at the Péage-de-Roussillon hydroelectric power plant. It consists of 5 record-
ings between 1 and 2 minutes, taken at regular intervals during the during the start-up
of a turbine. Each recording is therefore accompanied by an increasing temperature,
which is considered to be stable over the scale of the recording.

Remark 4. Currently, CNR records samples of 1 minute at 50Hz every several hours such
as the low frequency one. The recordings are then stored in a remote server to be manually
exploited by an industry expert. Depending on their work load and due to the length and
tediousness of the process, the analysis is generally done once a year or less for each turbine.

7.3. Validation with ADESIT

In this section we verify several assumptions that will form the basis of our forthcoming
solution in the next section. First, we check that the rotor angle does indeed define the
measured air gap, i.e. we measure in the dataset the veracity of the following FD:

𝛽 (𝑡) ! 𝛿𝑚 (𝑡)

To define the associated predicates, we use the absolute/relative uncertainty predicate de-
fined in formula 5.2, page 42. We know from the sensor’s datasheet that the measured
air gap 𝛿𝑚 has a relative uncertainty of 2%. We can define the following predicate:
Φ𝛿𝑚 (𝑥,𝑦) = Φ𝑢 (𝑥,𝑦;0,0.02). The absolute uncertainty of the instant rotor angle 𝛽 can also
be calculated according to the following formula:

360 ·50 (network frequency)
32 (number of poles) · 𝑓 (recording frequency)
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For this test, we use the low frequency recording at 50Hz. Thus, we have an absolute
uncertainty of 11◦ and can use the following predicate: Φ𝛽 (𝑥,𝑦) = Φ𝑢 (𝑥,𝑦;11,0). Through
ADESIT, we obtain that 𝑔3 is about 86% which is quite high and gives confidence in the
construction of the model. In Figure 7.6, we can visualize the rotor eccentricity by setting
the 𝑥 (𝑡) and 𝑦 (𝑡) axis on the scatter plot. After selecting a tuple involved in at least one
counterexample and by looking at the histogram of the displacement on the 𝑥 coordinate
(on top of the scatter plot), the spreading of the red vertical line seems to confirm that it
would be a discriminative feature. We also observe regions of data with a higher density of
counterexamples. If we were to ignore the rotor eccentricity completely, our model might
be less accurate in these regions.

regions with 
many counterexamples

Figure 7.6 – The FD 𝛽 (𝑡) ! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the low frequency
dataset. Here is shown the scatter plot of 𝑥 (𝑡) vs 𝑦 (𝑡).

To go further, we can restart the computation with ADESIT to verify the following FD:

𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡) ! 𝛿𝑚 (𝑡) (7.1)

We use the displacement in Cartesian coordinates (𝑥 (𝑡),𝑦 (𝑡)) to directly use the uncertain-
ties from the datasheet. The two sensors have an absolute uncertainty of 0.005mm and a
relative uncertainty of 5%. We can define the following predicates: Φ𝑥 (𝑥,𝑦) = Φ𝑦 (𝑥,𝑦) =
Φ𝑢 (𝑥,𝑦;0.005,0.05). The 𝑔3 has improved considerably by exceeding 95%, confirming the
usefulness of incorporating the rotor eccentricity. In Figure 7.6, we also see that most
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counterexamples have disappeared, except for the upper right region. Some hypotheses
have been put forward by experts from CNR. Does the placement of the receiving an-
tenna cause higher noise in this position? Could the deformation of the stator cause more
vibrations in this area?

a region that is more 
difficult to model

with current parameters

Figure 7.7 – The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡) ! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the low fre-
quency dataset. Here is shown the scatter plot of 𝑥 (𝑡) vs 𝑦 (𝑡).

To summarize, we confirmed that the measured value was a function of the rotor angle
concluded that it is safe to assume that the rotor displacement was also a determining factor
for the measured air gap.

Before presenting our solution for processing such data, it is also important to verify
that temperature does affect the measured air gap. This would confirm that comparing
recordings made at similar temperatures is a prerequisite for consistency. To do this, we use
the high frequency set of recordings, as it consists of several recordings made at different
temperatures. For this test, we aggregate all the recordings to obtain a single recording
where several temperatures are mixed. Since the recordings were made at 50Hz, we need
to redefine the uncertainty for the instantaneous angle: Φ𝛽 (𝑥,𝑦) = Φ𝑢 (𝑥,𝑦;0.30,0). In a first
test, we do not include the temperature and analyze the FD 7.1 again. In Figure 7.8 we can
observe about 6 temperature clusters corresponding to each of the aggregated recordings.
In particular, we see that the selected tuple mainly forms counterexamples with tuples from
other clusters. This strongly supports the hypothesis that the temperature feature is discrim-
inative with respect to the air gap values. The lack of the temperature feature is supported
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by the low 𝑔3 value of about 44% and the overwhelming presence of red tuples.

Figure 7.8 – The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡)! 𝛿𝑚 (𝑡) is analyzed in ADESIT with the high fre-
quency dataset. Here is shown the scatter plot of 𝛾 (𝑡) vs 𝛿𝑚 (𝑡). Arrows
highlight the temperature clusters corresponding to each of the aggre-
gated recordings.

To confirm the importance of the temperature, we can add its corresponding attribute
and analyze the following FD:

𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡),𝛾 (𝑡) ! 𝛿𝑚 (𝑡)

We know that the temperature sensor has an absolute uncertainty of 0.5◦𝐶. We can there-
fore define the following predicate: Φ𝛾 (𝑥,𝑦) = Φ𝑢 (𝑥,𝑦;0.5,0). The resulting scatter plot is
presented in Figure 7.9. For the selected tuple, we observe that all counterexamples coming
from other clusters have disappeared, confirming that the temperature was a discriminative
feature. The 𝑔3 value has also risen significantly to reach 77%. The remaining counterex-
amples are due to the limitations of the data itself: signal noise, sensor precision, missing
feature, need of a more complex model....
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Figure 7.9 – The FD 𝛽 (𝑡),𝑥 (𝑡),𝑦 (𝑡),𝛾 (𝑡)!𝛿𝑚 (𝑡) is analyzed in ADESIT with the high
frequency dataset. Here is shown the scatter plot of 𝛾 (𝑡) vs 𝛿𝑚 (𝑡).

7.4. Automatic processing of the air gap monitoring data

In this chapter, we describe our solution to exploit the sensor data from the instrumentation
presented in Section 7.2.2. After providing an overview of our solution, we present the
time series and describe each operation in turn. If we describe the solution for one air gap
sensor, it can easily be applied to all sensors. In a second stage, we apply our solution to
the low frequency recording and present our results. The main symbols used in this paper
are presented in Table 7.1.

Table 7.1 – MAIN SYMBOLS USED IN THIS SECTION.

Symbol Definition
𝑂𝑟 (𝜃,𝑒) rotor center

𝑟 rotor radius
𝛽 rotor angle

𝑂𝑠 (0,0) stator center
𝑆 a point on the stator
𝛿𝑚 measured air gap
𝛿𝑎 absolute air gap
𝛿𝑐 critical air gap
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7.4.1. Solution overview

To help the domain experts anticipate maintenance, the objective of our monitoring solution
is two-fold: we want to obtain a clean stator profile to locate deformations but also to know
the current smallest air gap. To this end, multiple operations are carried out on the raw
sensor data.

First, we use order tracking to resample the time series with respect to the rotor angle, a
more natural way to handle rotating machine data [Ran21]. Second, we apply synchronous
averaging to extract the periodic component of the data. Notably, this helps to reduce
noise which can be particularly important in such intense electromagnetic fields and with
wireless transmission. Third, we geometrically correct the rotor eccentricity to reconstruct
the absolute air gap value. This is to the distance between the rotor and the stator in the
absence of eccentricity. The word absolute emphasizes the difference with the raw values
measured by the air gap sensors which are relative to the rotor angle and eccentricity at
the time of recording. Finally, the critical air gap is calculated by comparing the rotor
movement with the absolute stator profile. This is crucial as the sensors can underestimate
the critical air gap by an error of up to 2 times the maximum eccentricity amplitude [PF20].
The concepts of measured, absolute and critical air gaps are illustrated in Figure 7.10.

absolute

criticalmeasured

closest position
of the rotor to   

Figure 7.10 – Absolute, relative and critical air gaps for a given point 𝑆 on the stator.

We describe each step in the following sections and the overall pipeline of our solution
is schematized in Figure 7.11.

7.4.2. Detailed solution

In this section, we detail the full processing pipeline presented in Figure 7.11.
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Rotor shaft displacement
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visualization
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synchronous
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Figure 7.11 – Schematic of the proposed data science pipeline.

Order tracking

When dealing with rotating machines, it is common to use data in the angular domain
instead of time domain as it is a natural model of the shaft rotation. When the series are
not natively recorded indexed on angle (e.g. with an encoder), it is nevertheless possible
to resample them using a method such as computed order tracking (survey in [FM97]). To
perform such resampling, we keep track of full rotor revolutions by using a rising edge
detection algorithm on the keyphasor series. As the position of the keyphasor target is

78

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



known, it is thus possible to interpolate the missing angles.
After computed order tracking, all the series are thus index on discrete 𝛽 increments

thanks to their respective keyphasor series. We get: 𝛿𝑚 [𝛽], 𝜃 [𝛽] and 𝑒 [𝛽]. Note that we
use brackets [] instead of parentheses () to highlight the discrete nature of the result. In
this work, we use spline interpolation at order 1 and an angular resolution of 𝜋

16 (32 points
total).

Synchronous averaging

Synchronous averaging is a common technique for separating the periodic part of some
data (the CS1 component) from its background noise (electrical noise, asynchronous sensor
vibrations...) [Ran21, BK09, Bon04]. It is done by averaging together a series of segments,
each measuring one period. In our case, a period corresponds to a full rotor revolution or a
𝛽 increment of 2𝜋 . Thus, for a signal 𝑥 [𝛽] and 𝐾 the total number of revolutions in 𝑥 , its
averaged counterpart 𝑥 [𝛽] can be expressed as 𝑥 [𝛽] = 1

𝐾

∑𝐾
𝑘=0𝑥 [𝛽 + 2𝜋𝑘]. An illustration

of such process is proposed in Figure 7.12.
Before exploiting 𝑥 [𝛽], it is important to verify if the extracted CS1 component is

prevalent enough and/or reliable. I.e. is there too much sensor noise? could the study
of other asynchronous components bring interesting information? We propose to esti-
mate the importance of the noise by computing the synchronous standard deviation (SD)
[BAZEBG03, BK09]. If it is high, it means that the noise is important and that further in-
vestigation should be conducted to understand its source. It it is due to electrical noise for
instance, using a longer recording could improve the results.

Figure 7.12 – Illustration of synchronous averaging on a sample of air gap data. In
gray, we observe 50 superposed rotor revolutions and in blue their av-
eraged counterpart.

79

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0093/these.pdf 
© [P. Faure--Giovagnoli], [2023], INSA Lyon, tous droits réservés



All in all, this method is particularly interesting because it allows not only to extract
the measurement of the denoised signal, but also to evaluate its reliability. It also allows to
drastically reduce the storage size of the data, from thousands of points for each time series
to a few tens of points after synchronous averaging, as shown in Figure 7.12. It is also quite
a cheap operation. We keep an angular resolution of 𝜋

16 and obtain the following signals:
𝛿𝑚 [𝛽], 𝜃 [𝛽] and 𝑒 [𝛽].

Rotor eccentricity correction

Now that the signals are resampled in the angular domain and denoised, the next step is to
correct rotor eccentricity. Indeed, the values measured by the air gap sensors are biased by
the rotor displacement as shown in Figure 7.10 and the objective is to recover the absolute
air gap values. As proposed in Figure 7.13, the geometric model can be refined: the series
are now indexed on rotor angle and the model is augmented by two new variables (𝛿𝑎 and
𝛼) designating the position of 𝑆 from the stator center. Thus, 𝛿𝑎 corresponds to the air gap
in the case of an ideal rotor with no eccentricity: the absolute air gap.

𝑥

𝑦

𝑂𝑟

𝑂𝑠

𝑆

𝛽

𝛼 [𝛽]
𝜃 [𝛽]𝑒 [𝛽]

𝑟

𝑟

𝛿𝑎 [𝛽]

𝛿𝑚 [𝛽]

Figure 7.13 – Geometric model after synchronous averaging. The objective is to com-
pute the values of 𝛿𝑎 and 𝛼 to construct the absolute air gap profile
𝛿𝑎 [𝛼].

It is possible to derive the formulas for 𝛿𝑎 and 𝛼 from known values as follows:

𝛿𝑎 [𝛽] =

√√√
𝑒 [𝛽]2 + (𝑟 +𝛿𝑚 [𝛽])2

+2 ·𝑒 [𝛽] · (𝑟 +𝛿𝑚 [𝛽]) · cos(𝛽 −𝜃 [𝛽])
−𝑟

𝛼 [𝛽] = 𝛽 + arccos

(
(𝑟 +𝛿𝑚 [𝛽])2 + (𝑟 +𝛿𝑎 [𝛽])2 −𝑒 [𝛽]2

2 · (𝑟 +𝛿𝑚 [𝛽]) · (𝑟 +𝛿𝑎 [𝛽])

)
These are consistent as in the absence of eccentricity (𝑒 [𝛽] = 0), we have 𝛿𝑚 [𝛽] = 𝛿𝑎 [𝛽] and
𝛼 [𝛽] = 𝛽. Once this process is applied for all 𝛽 values, we obtain a set of (𝛿𝑎,𝛼) pairs. This
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corresponds to 𝛿𝑎 [𝛼], the angular series describing the absolute air gap values.

Critical air gap computation

Finally, once the absolute air gap profile is computed, it is crucial to evaluate the influence
of rotor eccentricity on the air gap distance. To do so, for a fixed point 𝑆 (𝛼,𝑟 +𝛿𝑎 [𝛼]) on
the stator, the objective is to find the position of the rotor the closest to 𝑆 . This corresponds
to the position where the rotor is the most likely to rub against the stator at point 𝑆 . As the
trajectory of the rotor is known (𝑂𝑟 (𝜃 [𝛽],𝑒 [𝛽])), the critical air gap 𝛿𝑐 [𝛼] can be expressed
as follows:

𝛿𝑐 [𝛼] = min𝛽
(𝑂𝑟 (𝜃 [𝛽],𝑒 [𝛽]) −𝑆 (𝛼,𝑟 +𝛿𝑎 [𝛼])

2

)
−𝑟

where ∥∥2 is the 𝑙2 norm. This distance is modeled in Figure 7.14.

𝑥

𝑦

∥𝑂𝑟 −𝑆 ∥2

𝑂𝑟

𝑂𝑠

𝑆

𝛼
𝜃 [𝛽]𝑒 [𝛽]

𝑟

𝑟

𝛿𝑎 [𝛼]𝛿𝑐 [𝛼]

Figure 7.14 – Geometric model after computing the absolute air gap profile. For a
known absolute air gap value 𝛿𝑎 [𝛼], the new objective is to find the
rotor center 𝑂𝑟 the closest to 𝑆 as possible. This allows to compute
𝛿𝑐 [𝛼], the critical air gap, i.e. the position where the rotor is the most
likely to rub against the stator at point 𝑆 .

7.4.3. Experiments and visualization

In this section, we apply our solution to a 1 minute recording made in one of the generators
from CNR. First, we describe the data and give some technical details. Then, we discuss the
plotting of the rotor center trajectory. Afterwards, we propose visualizations for the mea-
sured, absolute and critical air gap profiles. Finally, we use the 3 air gap sensors altogether
to provide a 3D representation of the absolute air gap showing the stator deformation.

Data description and implementation

In this chapter, we apply our solution to the low frequency recording described in Sec-
tion 7.2.4. As the stator deformation evolves slowly, a single but sufficiently long record-
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ing is sufficient to build a faithful picture of the stator in the medium term. Nonetheless,
comparing different recordings under the same state parameters could help detecting stator
deformation evolutions but it is not within the current scope of this study.

All our analysis is made using Python. We use Pandas and Numpy for data processing
and Scipy for usual signal processing operations. Plots are made using Matplotlib. All the
operations described in this paper can be conducted in a few milliseconds on an average
personal computer. Preliminary studies have been made with GeoGebra.

Rotor center trajectory

The rotor center trajectory after synchronous averaging is shown in Figure 7.15. This plot
helps the domain expert analyze the eccentricity evolutions and amplitude. In that case, it
has a maximum amplitude of roughly 0.28mm, leading to errors in air gap estimation up to
0.56mm. This range of error is quite important and should be taken into account to better
anticipate future maintenance.

In addition, we can display the synchronous standard deviation for both the angular
(𝜃 ) and radial (e) components with two perpendicular lines (in red in Figure 7.15). These
lines are quite small in that plot, meaning that sensor noise is quite low and that the CS1
component contains supposedly reliable information.

Figure 7.15 – Rotor center 𝑂𝑟 trajectory. Synchronous standard deviation for the
angular and radial coordinates is displayed in red.
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Air gap profiles

In Figure 7.16, we display the measured (𝛿𝑚 [𝛽]), absolute (𝛿𝑎 [𝛼]) and critical (𝛿𝑐 [𝛼]) air
gap profiles in a polar plot. The polar plot is particularly suitable because it provides a
visual similar to a cross-sectional view of the stator.
For the air gap profile, we display the synchronous standard deviation as a colored area
around the main plot. The presence of points with a larger standard deviation has led to
interesting hypothesis with domain experts: wireless cards positioning? local stator at-
tachment vibrations? Nonetheless, the standard deviation is quite reasonable and solutions
for improving the results will be discussed in Section 7.4.3. In addition, the absolute air
gap presents the closest representation of the stator sectional view (by definition). It al-
ready shows some interesting deviations from the the raw measured air gap. Finally, the
critical air gap displays the closest distance between the stator and the rotor and accounts
for the eccentricity: those are the most important values to monitor to prevent collisions.
By comparing the measured and critical air gaps, we observe zones with differences up to
about 0.6mm. This confirms that the theoretical worst case explained before may happen
in practice.

Figure 7.16 – Polar plot of the measured (𝛿𝑚 [𝛽]), absolute (𝛿𝑎 [𝛼]), and critical
(𝛿𝑐 [𝛼]) air gap profiles. Synchronous SD for 𝛿𝑚 [𝛽] is displayed as
the blue area.

3D profile

In Figure 7.17, we apply our solution to the 3 air gap sensors (upstream, median and down-
stream) and obtain a 3D profile of the absolute air gap. This can be seen as an unfolding
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of the stator surface which easier to visualize than its tubular form on a 2D format. This
allows to capture trends in the stator deformation to understand where maintenance should
be carried out. In that case, we observe a tendency of the stator to contract in its upstream
part with a quite low minimum absolute air gap. It is also possible to display the critical
air gap instead but the representation becomes a less intuitive representation of the stator
surface.

Figure 7.17 – 3d air gap profile allowing to capture the general trends in stator de-
formation. Can be displayed with critical air gap too.

Discussion on data acquisition

Today, only a part of CNR’s generators is equipped with this monitoring solution and CNR
is willing to extend this instrumentation to the others. However, this operation is really
expensive, and a trade-off between costs and quality must be found. On this purpose, CNR
would like to refine its data acquisition strategy. In this section, we discuss two important
parameters controlling data acquisition and having an impact on data quality: the frequency
and the length of the recordings.

Recording frequency. As recording at higher frequencies is expensive, finding the op-
timum balance to meet domain requirements is critical to optimizing costs. According
to domain experts, 32 spatial points are sufficient to obtain a meaningful stator profile.
As the rotor rotates at a maximum frequency of 1.5625Hz (see Section 1.3), recording at
1.5625 · 32 = 50Hz is the absolute minimum and leaves no room for variations in the rota-
tion frequency.
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Another operation depends on the recording frequency: order tracking. Indeed, order track-
ing uses the keyphasor to detect full rotor revolutions with a rising edge detection algorithm.
As shown in Figure 7.18, the keyphasor produces a peak whose beginning is identified as a
rising edge when it exceeds a given threshold. This rising edge is then associated with the
known reference angle of the target. For such an algorithm to work, at least one point must
be recorded at each peak summit. In addition, the more points that are recorded for each
peak, the more accurately we can identify the position of the reference angle (see [FM97]
for more). With the data used in the experiments at 50Hz, we can barely see all the peaks,
requiring a more complex rising edge detection algorithm. Thus, further experiments con-
ducted with the high frequency recordings together with geometrical considerations have
shown that sampling at 2000Hz allows to record approximately 14 points on the considered
generator. This is why in order to obtain 2 or 3 points for each peak, sampling at 300Hz
should be sufficient.
All in all, we propose to use a recording frequency of at least 300Hz but it would be bene-
ficial to conduct additional tests on different generators.

Remark 5. Note that we cannot use an alternative method based frequency analysis [FM97]
(e.g. Fourier or Hilbert transforms) instead of the keyphasors. Indeed, we need to be able
to get an angular reference, especially for spatially matching the wired and wireless data.

Figure 7.18 – Illustration of the rising edge detection algorithm on a 1000Hz keypha-
sor sample recorded at the Péage-de-Roussillon power plant.

Recording length. Using our solution, the data can be processed either after or before
storage. In this latter case, the memory usage can be drastically reduced by only storing the
air gap profiles (this data is sufficient to answer the given problem). Indeed, as explained in
Section 7.4.2, synchronous averaging produces a short summary of the original data whose
size depends on the chosen angular resolution (32 points in the experiments). If we also
store the synchronous SD and the absolute and critical air gaps, it is still radically cheaper
than storing all the initial sensor time series (117 times less in our experiments). In that case,
we can even record longer time series which will strengthen the result of the synchronous
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averaging process by condensing more rotor revolutions. As these series would only be
stored temporarily, they would not increase storage costs.

7.5. Conclusion

In this chapter, we studied the automatic processing of air gap monitoring data in compact
hydro-generators, more specifically in the case of stator deformation with rotating remote
sensors and dynamic rotor eccentricity. We used counterexample analysis as a preliminary
step to show how the various attributes affected the air gap and verify our primary assump-
tions. Then, we presented a data science pipeline to automatize and improve the analysis of
air gap monitoring data at the CNR.

Our method allows to improve the quality and interpretability of the raw data by ex-
tracting the periodic component and removing the uninformative noise. In addition to sig-
nificantly reducing the memory size of the data, it also allows to evaluate the strength of
the extracted information, thus detecting cases were data is not exploitable. Moreover, we
also show how to recover the stator profile and the critical air gap values by correcting rotor
eccentricity. Paired with the visualizations presented in Section 5.4, the results provided by
this study provided a basis for the improvement of the air gap monitoring system of CNR.
Notably, it assists the development of a more effective predictive maintenance system.

In the future, it would be useful to verify that the sensor data streams are CS1 at the order
of the shaft, i.e. that the air gap and rotor eccentricity does not change during the recording.
While visualization can provide reliable insights into this question, more robust statistical
tests could be performed [BAZEBG03, AB19]. An other future challenge would be to
exploit historical data to not only analyze the current air gap values, but also predict future
stator deformation. Such information would considerably help optimizing maintenance
costs and agenda.
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Chapter 8
Related work, conclusion and perspective

This chapter concludes the manuscript. First, we mention some related literature. We
question our choice to study the 𝑔3-error as opposed to other coverage measures. We also
review the current knowledge about the complexity of computing 𝑔3 and mention previous
algorithmic studies for its computation. We also compare our data science solution for
processing air gap monitoring data with previous solutions from the literature. Second, we
wrap up this dissertation and mention some research perspectives.

8.1. Related work

First, it is interesting to mention alternatives to 𝑔3 and justify its use in this work. Indeed,
the 𝑔3 indicator is not the only known coverage measure. For example, purity dependen-
cies [SCC02] are based on an impurity measure, soft FDs [IMH+04] and probabilistic FDs
[WDS+09] use a probabilistic approach when the alternative of a compression-based mea-
sure is preferred in partial determinations [PK95]. An overview of various coverage mea-
sures is presented by Caruccio et al. [CDP15]. Nonetheless, the 𝑔3 indicator is undoubtedly
among the most widely used coverage measures: Approximate FDs [KM95], approximate
DDs [SC11] or approximate comparable dependencies [SCP13] are examples of FDs using
the 𝑔3 indicator as their coverage measure and many mining algorithms also use the 𝑔3 indi-
cator to find FDs which almost hold in a relation [KM95,WSC+17,HKPT99,CDP16]. This
ubiquity of the 𝑔3 indicator is notably due to its intuitive interpretation and its flexibility.
When the 𝑔3 only requires the definition of FD satisfiability (which is at the core of any FD
definition), the equality relaxation generalized by FDs with predicates is harder to capture
with coverage measures such as the probabilistic ones mentioned above where the need to
group values together struggles with the loss of transitivity.

We now mention previous complexity results for the computation of 𝑔3 for crisp FDs
and their extension to predicates. First, it is known that the 𝑔3-error can be computed in
polynomial time for crisp FDs [HKPT98]. Then, Song et al. show that the EVPP is NP-
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complete for comparable dependencies [SCP13] but do not study predicate properties as
we do in this work. However, comparable dependencies happen to be reflexive (ref) and
symmetric (sym) predicates, which coincides with Theorem 2. This allows to determine
the hardness of the EVPP for differential [SC11], matching [Fan08], metric [KSSV09],
neighborhood [BW01], and comparable dependencies [SCP13]. For some of these depen-
dencies, predicates can be defined over sets of attributes. Using one predicate per attribute
and taking their conjunction is a particular case of predicate on attribute sets.

In the following, we mention previous studies of algorithmic solutions for the compu-
tation of 𝑔3. Kivinen and Mannila introduce the 𝑔3-error for crisp FDs for the first time in
the literature [KM95] but only the computation process is described and no detailed algo-
rithm for its exact computation is considered. Huhtala et al. present a simple algorithm to
compute the 𝑔3-error [HKPT99]. Concerning random sampling, an approach is proposed
in [KM95] for the EVPP and is mentioned in Section 5.3.3. Cormode et al. explore the
computation of the confidence of conditional FDs by proposing streaming algorithms based
on advanced sampling schemes [CGF+09]. One of their propositions has been implemented
(APPROX_SRS), improved (APPROX_SRSI) and compared to other alternatives.
𝑔3 has been used extensively in the context of FD mining, but little work has been done on
algorithms for it extension to general predicates. Sond and Chen established for the first
time an equivalence between the error (or confidence) and the MVC (or MIS) in the case of
DDs [SC11]. A well-known 2-approximation algorithm [PS98] is used to solve the MVC in
both [SC11] and [CDP16]. This algorithm corresponds to APPROX_2Approx in this paper and
has been shown to give average results in practice. The alternative of sublinear algorithms
has been slightly studied and a simple algorithm by Parnas and Ron is proposed [PR07].
Significant improvements in terms of complexity and approximation guarantees have been
proposed in this area and [NO08, YYI09, ORRR12] (we study [YYI09, ORRR12] in this
thesis).

We now focus on the construction of conflict-graphs and the CEE. Despite some studies
on algorithms for computing 𝑔3 with predicates, the problem of converting the input from
a relation to a graph problem is not considered by [SC11] or [CDP16]. However, this is a
computationally intensive process, which in our experiments proved to be a bottleneck for
some of the very efficient approximation algorithms used to solve the MVC/MIS. The CEE
approach used to achieve this conversion is a very interesting problem at the intersection of
record linkage and similarity joins. While we have tried to cover most of the relevant litera-
ture, the case of unordered metric space has been deliberately omitted for brevity, although
it is often useful for comparing strings with metrics such as the Levenshtein distance. This
operation is similar to a range self-similarity join in a metric space and has been extensively
studied [ZADB06] through the use of indexing such as tree data structures (see [HS03] for
a survey) or divide-and-conquer algorithms such as QuickJoin [JS08]. In any case, pairwise
tuple enumeration is known to be a hard problem with no silver bullet. Similarly, although
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efficient approximation algorithms exist, solving MVC exactly in the most general case
remains a major computational challenge.

Finally, we mention some previous literature on air gap monitoring solution. Talas and
Toom exploit a fiber-optic instrumentation attached to the rotor to monitor the air gap of
large hydro-generators [TT83]. In a study by Pollock and Tyles, the sensors are mounted
on the stator to monitor the rotor, the opposite of our study [PL92]. Nikhil uses capaci-
tive sensors attached to the stator and propose a detailed flow chart before data treatment
[Nik02]. A study by Xuan et al. presents a new approach based on measurement coils in-
stead of capacitive sensors for a cheaper instrumentation [XSWK06]. Finally, Adamowski
et al. offer a new alternative by attaching ultrasonic sensors to the stator [ASP+13]. While
these works propose extensive studies on sensor instrumentation and data acquisition, often
in the case of static air gap sensors attached to the stator, they offer little or no discussion of
the data processing pipeline. To summarize, to the best of our knowledge, no data science
study specific to the exploitation of air gap monitoring data can be found in the literature.
Our contribution is a first step in this direction. Furthermore, the data science tools used
in this dissertation are common which makes our pipeline easily accessible. We redirect
the reader to [Ran21, Blo03, Ant09, Bon04] for more details on the analysis of rotating ma-
chinery and cyclostationary processes. More details on order tracking and synchronous
averaging are also available in [FM97, BLAT05] and [BK09] respectively.

8.2. Research summary and perspectives

In this dissertation, we investigated several aspects of counterexample analysis of FDs with
predicates, focusing in particular on the 𝑔3-error. First, we studied the impact of four com-
mon properties (reflexivity, transitivity, antisymmetry, and symmetry) on the computational
complexity of 𝑔3 and produced the hierarchy proposed in Figure 4.2. Second, we studied the
algorithmic pipeline to compute the 𝑔3-error accurately and approximately. All algorithms
are proposed in an open-source Python library: FASTG3. In the general NP-hard case,
efficient approximation algorithms can be used to reduce the complexity of computing an
exact MVC. In this case, the construction of the conflict-graph using the CEE becomes
the bottleneck of the operation, and sublinear algorithms offer a good alternative. In the
polynomial case, where the predicates are restricted to be at least transitive and symmetric,
the algorithms have proved to be quite scalable. The problem can also be approximated
quite accurately by stratified sampling approaches. We also present ADESIT, a web appli-
cation for performing a counterexample analysis of a dataset with respect to a function. We
have described the various features of ADESIT and given an example of its use. Finally,
we applied counterexample analysis to the problem of air gap monitoring as a go/no-go
step before constructing the processing pipeline itself. We now highlight some research
directions for future work.
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In a recent work [LKR20], Livshits et al. study the problem of computing optimal
repairs in a relation with respect to a set of FDs. A repair is a collection of tuples that does
not violate a given set of FDs. It is optimal if it is of maximal size among all possible
repairs. Henceforth, there is a strong connection between the problem of computing repairs
and computing the 𝑔3-error with respect to a collection of FDs. In their work, the authors
give a dichotomy between tractable and intractable cases based on the structure of the FDs.
In particular, they use previous results from Gribkoff et al. [GVdBS14] to show that the
problem is already NP-complete for 2 FDs in general. In the case where computing an
optimal repair can be done in polynomial time, it would be interesting to use our approach
and relax equality with predicates in order to study the tractability of computing the 𝑔3-error
on a collection of FDs with relaxed equality.

Despite the optimizations proposed in Chapter 5, the computation of the 𝑔3-error is still
expensive on large datasets, especially in the general NP-hard case. First, for approxi-
mation algorithms, progressive sampling techniques could be considered to speed up the
algorithms. Instead of sampling a fixed number of tuples, one would sample tuples pro-
gressively until the 𝑔3 estimate stabilizes. Second, we observed that the bottleneck of the
computation lies in the construction of the conflict-graph using the CEE. Sublinear algo-
rithms offer significant time savings, but they all simulate APPROX_2Approx, which is known
to provide average approximations in practice. So it might be interesting as future work to
adapt a practically better approximation algorithm (e.g. degree-based heuristics) which
should give better results. It already seems to us that some algorithms such as APPROX_GIC
[HR97] have an approach that we consider to be too global with respect to the graph to
allow for local decisions. However, the Sorted List Right (SLR) algorithm [DL08] offers
very good practical performance [DL10] and seems to be adaptable in sublinear time. This
dichotomy between adaptable and non-adaptable algorithms as well as this adaptation of
the algorithm SLR itself seems interesting.

Finally, the link between the 𝑔3-error and the Bayes error rate could be examined in
more detail. Indeed, in the context of supervised learning, the former describes the error
associated with a dataset [LPS20], while the latter is associated with the error of the process
itself [JWHT13]. In Appendix D, page xxix, we prove that if the data set is i.i.d. (indepen-
dent and identically distributed), then the classical 𝑔3-error with crisp FDs corresponds to
the Bayes error rate when the number of tuples to tends to infinity. However, this connection
is not well identified when using predicates instead of equality. Is it possible to approximate
the Bayes error rate by incorporating domain knowledge? Such a connection could be of
interest to the community.
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Publications

The results of this thesis have led to multiple publications in conferences. First, here is a
list of the international conference publications accepted at the time of writing:

– Functional Dependencies with Predicates:
What Makes the 𝑔3-error Easy to Compute?
Simon Vilmin, Pierre Faure--Giovagnoli, Jean-Marc Petit, Vasile-Marian Scuturici
International Conference on Conceptual Structures, 2023, 14 pages

– Assessing the Existence of a Function in your Dataset with the 𝑔3 Indicator
Pierre Faure--Giovagnoli, Jean-Marc Petit, Vasile-Marian Scuturici
IEEE International Conference on Data Engineering, 2022, 14 pages

– ADESIT: Visualize the Limits of your Data in a Machine Learning Process
Pierre Faure--Giovagnoli, Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici
International Conference on Very Large Data Bases, 2021, 4 pages

One other publication accepted on abstract in a international domain conference:

– Automatic Processing of Air Gap Monitoring Signals in Hydro-Generators
Pierre Faure--Giovagnoli, Christophe Turbidi and Vasile-Marian Scuturici
SURVISHNO (SURveillance, VIbration SHocks and NOise), 2023, 3 pages

Two softwares were also registered:

– Fastg3 - A Python library for computing the 𝑔3 indicator efficiently
Pierre Faure--Giovagnoli, Jean-Marc Petit, Vasile-Marian Scuturici
2023

– ADESIT - An application for visualizing the limits of a dataset in supervised
learning
Pierre Faure--Giovagnoli, Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici
2023

Finally, a journal publication named “Assessing the Existence of a Function in a Dataset:
Complexity and Algorithmics” written in conjunction with Simon Vilmin, Jean-Marc Pe-
tit and Vasile-Marian Scuturici is currently under preparation.
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Appendix A
Proof of Theorem 2

THEOREM (2). The problem EVPP is NP-complete even when the predicates are symmet-
ric (sym) and reflexive (ref).

Proof. We first show that the EVPPbelongs to NP. Let (𝑅,Φ) be a relation scheme with
predicates, 𝑟 a relation over 𝑅, 𝑋 !𝐴 a functional dependency over 𝑅 and 𝑘 ∈ ℝ. We have
that 𝑔Φ3 (𝑋 ! 𝐴,𝑟 ) ≤ 𝑘 if and only if there exists a subrelation 𝑠 in 𝑟 satisfying 𝑠 |=Φ 𝑋 ! 𝐴

and 1− |𝑠 |
|𝑟 | ≤ 𝑘 , or |𝑠 | ≥ (1−𝑘) · |𝑟 | equivalently. Therefore, a certificate for the EVPP is a

subrelation 𝑠 containing at least (1−𝑘) · |𝑟 | tuples and satisfying 𝑋 !𝐴 (with respect to Φ).
Since predicates can be computed in polynomial time by assumption, it takes polynomial
time to check that 𝑠 |=Φ 𝑋 !𝐴. Thus, the EVPP belongs to NP.

To show NP-completeness, it is convenient to use a reduction from Maximum Clique
(MC) rather than the MIS, even though the problems are polynomially equivalent:

MAXIMUM CLIQUE (MC)
Input: A graph 𝐺 = (𝑉 ,𝐸), 𝑘 ∈ ℕ.
Output: yes if 𝐺 has a clique with at least 𝑘 vertices, no otherwise.

Let 𝐺 = (𝑉 ,𝐸) be a graph with 𝑉 = {𝑢1, . . . ,𝑢𝑛} for some 𝑛 ∈ ℕ, and 𝐸 = {𝑒1, . . . ,𝑒𝑚}
for some 𝑚 ∈ ℕ. Let 𝑘 be an integer such that 𝑘 ≤ |𝑉 |. We construct an instance of the
EVPP. We begin with a relation scheme with predicates (𝑅,Φ) where 𝑅 = {𝐵1, . . . ,𝐵𝑚,𝐴},
Φ = {𝜙1, . . . ,𝜙𝑚,𝜙𝐴} , and:

– for each 1 ≤ 𝑖 ≤𝑚, dom(𝐵𝑖) = {0,1,2} and 𝜙𝑖 is defined as follows:

𝜙𝑖 (𝑥,𝑦) =
{

TRUE if 𝑥 = 𝑦 or 𝑥 +𝑦 < 3
FALSE otherwise.

Observe that 𝜙𝑖 is reflexive and symmetric.
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– dom(𝐴) = {1, . . . ,𝑛}, and the predicate 𝜙𝐴 for 𝐴 is defined by 𝜙𝐴 (𝑥,𝑦) = true if and
only if 𝑥 = 𝑦. Thus, 𝜙𝐴 is reflexive and symmetric.

Observe that the predicates can be computed in polynomial time in the size of their input.
Now, we build a relation 𝑟 = {𝑡1, . . . , 𝑡𝑛} (one tuple per vertex in𝐺) over 𝑅. For each 1 ≤ 𝑖 ≤ 𝑛,
we put 𝑡𝑖 [𝐴] = 𝑖 and for each 1 ≤ 𝑗 ≤𝑚:

𝑡𝑖 [𝐵 𝑗 ] =


0 if 𝑢𝑖 ∉ 𝑒 𝑗
1 if 𝑒 𝑗 = (𝑢𝑖,𝑢ℓ) and 𝑖 < ℓ

2 if 𝑒 𝑗 = (𝑢ℓ ,𝑢𝑖) and ℓ < 𝑖

Finally, let 𝑘′ = 1 − 𝑘
𝑛

, and consider the functional dependency 𝑋 ! 𝐴 where 𝑋 =

{𝐵1, . . . ,𝐵𝑚}. We obtain an instance of the EVPP which can be constructed in polynomial
time in the size of 𝐺 . The reduction is illustrated on an example in Figure A.1.
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Figure A.1 – Illustration of the reduction of Theorem 2. In gray, a clique and its
associated subrelation satisfying 𝑋 !𝐴.

To conclude the proof, we have to prove that 𝐺 contains a clique 𝐾 such that |𝐾 | ≥ 𝑘 if
and only if 𝑔Φ3 (𝑋 ! 𝐴,𝑟 ) ≤ 𝑘′. To do so, we show that for every distinct tuples 𝑡𝑖, 𝑡 𝑗 of 𝑟 ,∧

1≤ℓ≤𝑚𝜙ℓ (𝑡𝑖 [𝐵ℓ], 𝑡 𝑗 [𝐵ℓ]) = TRUE if and only if (𝑢𝑖,𝑢 𝑗 ) is not an edge of 𝐺 .
We begin with the only if part. Hence, assume that for each 1 ≤ ℓ ≤ 𝑚, we have

𝜙ℓ (𝑡𝑖 [𝐵ℓ], 𝑡 𝑗 [𝐵ℓ]) = TRUE. By definition of 𝜙ℓ , we have two cases:

– 𝑡𝑖 [𝐵ℓ] = 𝑡 𝑗 [𝐵ℓ]. By construction of 𝑟 , it follows that 𝑡𝑖 [𝐵ℓ] = 0. Hence, neither 𝑢𝑖 nor
𝑢 𝑗 belongs to 𝑒ℓ .

– 𝑡𝑖 [𝐵ℓ] + 𝑡 𝑗 [𝐵ℓ] < 3. It follows that either 𝑡𝑖 [𝐵ℓ] = 0 or 𝑡 𝑗 [𝐵ℓ] = 0. Without loss of
generality, assume that 𝑡𝑖 [𝐵ℓ] = 0. Then, again by construction of 𝑟 , we deduce that
𝑢𝑖 ∉ 𝑒ℓ .

Thus, (𝑢𝑖,𝑢 𝑗 ) is not an edge of 𝐺 .
We move to the if part. We use contrapositive. Hence, assume there exists some 𝐵ℓ ,

1 ≤ ℓ ≤𝑚, such that 𝜙ℓ (𝑡𝑖 [𝐵ℓ], 𝑡 𝑗 [𝐵ℓ]) = FALSE. By definition of 𝜙ℓ , we deduce that 𝑡𝑖 [𝐵ℓ] ≠
𝑡 𝑗 [𝐵ℓ] and 𝑡𝑖 [𝐵ℓ] +𝑡 𝑗 [𝐵ℓ] ≥ 3. Without loss of generality, we obtain 𝑡𝑖 [𝐵ℓ] = 1 and 𝑡 𝑗 [𝐵ℓ] = 2.
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Therefore, by construction of 𝑟 , 𝑢𝑖 ∈ 𝑒ℓ and 𝑢 𝑗 ∈ 𝑒ℓ must hold. As 𝑡𝑖 [𝐵ℓ] ≠ 𝑡 𝑗 [𝐵ℓ], we deduce
that (𝑢𝑖,𝑢 𝑗 ) = 𝑒ℓ , concluding this part of the proof.

Consequently, a subset 𝐾 of 𝑉 is a clique in 𝐺 if and only if the corresponding set of
tuples 𝑠 (𝐾) is a subrelation of 𝑟 which satisfies 𝑋 ! 𝐴. Therefore, 𝐺 contains a clique 𝐾
such that |𝐾 | ≥ 𝑘 if and only if 𝑔Φ3 (𝑋 !𝐴,𝑟 ) ≤ 𝑘′ holds, which concludes the proof. ■
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Appendix B
Proof of Theorem 3

THEOREM (3). The problem EVPP is NP-complete even when the predicates are transitive
(tra), reflexive (ref), and antisymmetric (asym).

Proof. The fact that the EVPP belongs to NPhas been shown in Theorem 2.
To show NP-completeness, we use a reduction from MIS in 2-subdivision graphs, in

which MIS remains NP-complete [Pol74]. Let 𝐺 = (𝑉 ,𝐸) be an (undirected) graph where
𝑉 = {𝑢1, . . . ,𝑢𝑛} and 𝐸 = {𝑒1, . . . ,𝑒𝑚}. Without loss of generality, we assume that𝐺 is loopless
and that each vertex belongs to at least one edge. Let 𝑉2 = 𝑉 ∪ {𝑣𝑖

𝑘
| 1 ≤ 𝑘 ≤ 𝑚,1 ≤ 𝑖 ≤

𝑛 and 𝑢𝑖 ∈ 𝑒𝑘} be a new set of vertices. We construct a set 𝐸2 of edges. It is obtained from 𝐸

by replacing each edge 𝑒𝑘 = (𝑢𝑖,𝑢 𝑗 ) by a path made of three edges {(𝑢𝑖, 𝑣𝑖𝑘), (𝑣
𝑖
𝑘
, 𝑣
𝑗

𝑘
), (𝑣 𝑗

𝑘
,𝑢 𝑗 )}.

The graph 𝐺2 = (𝑉2,𝐸2) is the 2-subdivision of 𝐺 . Every 2-subdivision graph is the 2-
subdivision of some graph.

Now we construct an instance of the EVPP. Let {𝑎1, . . . ,𝑎𝑛} be a set of characters. We
build a relation scheme with predicates (𝑅,Φ) where 𝑅 = {𝐵,𝐴}, Φ = {𝜙𝐵,𝜙𝐴}, and:

– dom(𝐵) is the set of pairs of symbols associated to {𝑎1, . . . ,𝑎𝑛} · {𝑎1, . . . ,𝑎𝑛}. We add
a predicate 𝜙𝐵 as follows:

𝜙𝐵 (𝑥,𝑦) =


TRUE if 𝑥 = 𝑦

TRUE if 𝑥 ≠ 𝑦 and 𝑥 [1] = 𝑥 [2] and 𝑥 [1] ∈ {𝑦 [1],𝑦 [2]}
FALSE otherwise.

The predicate is reflexive by definition. We prove that it is transitive. Let 𝑥,𝑦,𝑧 ∈
dom(𝐵) and assume that 𝜙𝐵 (𝑥,𝑦) = 𝜙𝐵 (𝑦,𝑧) = TRUE. If 𝑥 = 𝑦 = 𝑧, we readily have
𝜙𝐵 (𝑥,𝑧) = TRUE. Since 𝑥 ≠ 𝑧 implies 𝑥 ≠ 𝑦 or 𝑦 ≠ 𝑧, it is sufficient to show that
𝜙 (𝑥,𝑧) = TRUE in these two cases. Assume first that 𝑥 ≠ 𝑦. Then 𝜙𝐵 (𝑥,𝑦) = TRUE

if and only if 𝑥 = 𝑎𝑖𝑎𝑖 and 𝑦 ∈ {𝑎𝑖𝑎 𝑗 ,𝑎 𝑗𝑎𝑖} for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . It follows that
𝜙𝐵 (𝑦,𝑧) holds if and only if 𝑧 = 𝑦. Thus, 𝜙𝐵 (𝑥,𝑧) = 𝜙𝐵 (𝑥,𝑦) = TRUE. Let us assume
now that 𝑦 ≠ 𝑧. Then, 𝜙𝐵 (𝑦,𝑧) = TRUE implies that 𝑦 = 𝑎𝑖𝑎𝑖 for some 1 ≤ 𝑖 ≤ 𝑛,
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by definition of 𝜙𝐵. Therefore, 𝜙𝐵 (𝑥,𝑦) = TRUE entails 𝑥 = 𝑦. We deduce 𝜙𝐵 (𝑥,𝑧) =
TRUE. Consequently, 𝜙𝐵 is transitive. At last, assume that 𝜙𝐵 (𝑥,𝑦) = TRUE with 𝑥 ≠𝑦.
Hence, 𝑦 [1] ≠ 𝑦 [2] and 𝜙𝐵 (𝑦,𝑥) cannot be TRUE. Therefore, 𝜙𝐵 (𝑥,𝑦) = 𝜙𝐵 (𝑦,𝑥) =
TRUE entails 𝑥 = 𝑦. Thus, 𝜙𝐵 is also antisymmetric.

– dom(𝐴) = {1, . . . ,𝑛} and 𝜙𝐴 (𝑥,𝑦) = TRUE if and only if 𝑥 = 𝑦. In other words, 𝜙𝐴 is
the usual equality. Hence, it enjoys both reflexivity, transitivity and antisymmetry.

Observe that all predicates can be computed in polynomial time in the size of their input.
Now we construct a relation 𝑟 = {𝑡1, . . . , 𝑡𝑛} ∪ {𝑡 𝑖

𝑘
| 1 ≤ 𝑘 ≤ 𝑚,1 ≤ 𝑖 ≤ 𝑛,𝑣𝑖

𝑘
∈ 𝑉2} (one

tuple per vertex in 𝐺2) over 𝑅:

– for each 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 [𝐵] = 𝑎𝑖𝑎𝑖 and 𝑡𝑖 [𝐴] = 𝑖,
– for each 1 ≤ 𝑘 ≤𝑚 and each 1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖

𝑘
∈𝑉2, let 𝑒𝑘 = (𝑢𝑖,𝑢 𝑗 ), 1 ≤ 𝑗 ≤ 𝑛, be

the corresponding edge of 𝐺 . Then, we put 𝑡 𝑖
𝑘
[𝐵] = 𝑎𝑖𝑎 𝑗 if 𝑖 < 𝑗 and 𝑎 𝑗𝑎𝑖 otherwise.

As for 𝐴, we define 𝑡 𝑖
𝑘
[𝐴] = 𝑗 .

Finally, we consider the functional dependency 𝐵 ! 𝐴. The whole reduction can be com-
puted in polynomial time in the size of 𝐺 . It is illustrated on an example in Figure B.1.
Intuitively, 𝜙𝐵 guarantees that two tuples representing adjacent vertices of 𝐺2 will agree on
𝐵 in (𝑅,Φ). However, the transitivity of 𝜙𝐵 will produce pairs of tuples which agree on 𝐵
even though they are not adjacent in 𝐺2. More precisely, 𝜙𝐵 returns TRUE in two cases:

– when it compares 𝑡𝑖 to 𝑡 𝑖
𝑘

and 𝑡 𝑗
𝑘

for each edge 𝑒𝑘 of 𝐺 to which 𝑢𝑖 belongs, and

– when it compares 𝑡 𝑖
𝑘

to 𝑡 𝑗
𝑘

for each edge 𝑒𝑘 of 𝐺 .

The role of Φ𝐴 is then to assert that non-adjacent tuples cannot produce counterexamples.
We show that two tuples of 𝑟 do not satisfy 𝐵!𝐴 if and only if the associated vertices

of 𝑉2 are connected in 𝐺2.
We begin with the if part. Consider two (distinct) vertices of 𝑉2 that are adjacent in 𝐺2.

Because 𝐺2 is the 2-subdivision of 𝐺 , we have the following cases:

– 𝑢𝑖, 𝑣
𝑖
𝑘

for some 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤𝑚. For 𝐵, we have 𝑡𝑖 [𝐵] = 𝑎𝑖𝑎𝑖 and 𝑡 𝑖
𝑘
[𝐵] = 𝑎𝑖𝑎 𝑗

(or 𝑎 𝑗𝑎𝑖) for some 1 ≤ 𝑗 ≤ 𝑛. Therefore, 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡 𝑖𝑘 [𝐵]) = TRUE holds. However,
𝑡𝑖 [𝐴] ≠ 𝑡 𝑖𝑘 [𝐴] also by definition of 𝑟 . Thus, {𝑡𝑖, 𝑡 𝑖𝑘} ̸|=Φ 𝐵!𝐴.

– 𝑣𝑖
𝑘
, 𝑣
𝑗

𝑘
for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (without loss of generality) and 1 ≤ 𝑘 ≤𝑚. Then, 𝑡 𝑖

𝑘
[𝐵] =

𝑡
𝑗

𝑘
[𝐵], 𝑡 𝑖

𝑘
[𝐴] = 𝑗 , and 𝑡 𝑗

𝑘
[𝐴] = 𝑖. It follows that {𝑡 𝑗

𝑘
, 𝑡 𝑖
𝑘
} ̸|=Φ 𝐵! 𝐴, by definition of 𝜙𝐵

and 𝜙𝐴.

Thus, if two vertices are connected in𝐺2, the corresponding tuples in 𝑟 does not satisfy the
functional dependency 𝐵!𝐴, concluding this part of the proof.

We show the only if part using contrapositive. Consider two (distinct) vertices of𝑉2 that
are not connected in 𝐺2. We have four cases:
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Figure B.1 – Illustration of the reduction of Theorem 3. In gray, an independent set
and its associated subrelation satisfying 𝐵!𝐴.

– 𝑢𝑖,𝑢 𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. By definition of 𝑟 , we have 𝑡𝑖 [𝐵] = 𝑎𝑖𝑎𝑖 and 𝑡 𝑗 [𝐵] = 𝑎 𝑗𝑎 𝑗 .
Thus, 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡 𝑗 [𝐵]) = 𝜙𝐵 (𝑡 𝑗 [𝐵], 𝑡𝑖 [𝐵]) = FALSE, and {𝑡𝑖, 𝑡 𝑗 } |=Φ 𝐵!𝐴 holds.

– 𝑣𝑖
𝑘
, 𝑣
𝑗

ℓ
for some 1 ≤ 𝑘, ℓ ≤ 𝑚 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then, 𝑡 𝑖

𝑘
[𝐵] [1] ≠ 𝑡 𝑖

𝑘
[𝐵] [2] and

𝑡
𝑗

ℓ
[𝐵] [1] ≠ 𝑡 𝑗

ℓ
[𝐵] [2]. According to 𝐺2, 𝑣𝑖

𝑘
and 𝑣 𝑗

ℓ
are not connected if and only if

𝑘 ≠ ℓ . Consequently, 𝑡 𝑖
𝑘
[𝐵] ≠ 𝑡 𝑗

ℓ
[𝐵] by definition of 𝑟 . Hence, 𝜙𝐵 (𝑡 𝑖𝑘 [𝐵], 𝑡

𝑗

ℓ
[𝐵]) =

𝜙𝐵 (𝑡 𝑗ℓ [𝐵], 𝑡 𝑖𝑘 [𝐵]) = FALSE. We deduce that {𝑡 𝑖
𝑘
, 𝑡
𝑗

ℓ
} |=Φ 𝐵!𝐴.

– 𝑢𝑖, 𝑣
𝑗

𝑘
for some 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤𝑚 and 𝑢𝑖 ∉ 𝑒𝑘 in 𝐺 . Then, 𝑡𝑖 [𝐵] = 𝑎𝑖𝑎𝑖 and since

𝑢𝑖 ∉ 𝑒𝑘 , we have 𝑡 𝑗
𝑘
[𝐵] = 𝑎 𝑗𝑎ℓ (or 𝑎ℓ𝑎 𝑗 ) for some 1 ≤ ℓ ≤ 𝑛 and 𝑖 ≠ 𝑗, ℓ . By definition of

𝜙𝐵, we deduce that 𝜙𝐵 (𝑡𝑖 [𝐵], 𝑡 𝑗𝑘 [𝐵]) = 𝜙𝐵 (𝑡
𝑗

𝑘
[𝐵], 𝑡𝑖 [𝐵]) = FALSE must hold. Therefore,

{𝑡𝑖, 𝑡𝑘𝑗 } |=Φ 𝐵!𝐴 is TRUE too.

– 𝑢𝑖, 𝑣
𝑗

𝑘
for some 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤𝑚 and 𝑢𝑖 ∈ 𝑒𝑘 in 𝐺 . Then, necessarily 𝑖 ≠ 𝑗 by

construction of 𝐺2. Consequently, we must have 𝑡𝑖 [𝐴] = 𝑡𝑘𝑗 [𝐴] = 𝑖 by definition of 𝑟 .
Therefore, 𝜙𝐴 (𝑡𝑖 [𝐴], 𝑡 𝑗𝑘 [𝐴]) = TRUE and {𝑡𝑖, 𝑡 𝑗𝑘} |=Φ 𝐵!𝐴 holds.

Thus, whenever two vertices of 𝐺2 are disconnected, the corresponding set of tuples of 𝑟
satisfies 𝐵!𝐴. This concludes the proof of the equivalence.

Consequently,𝐺2 has an independent set of size 𝑘 if and only if there exists a subrelation
𝑠 of 𝑟 of size 𝑘 which satisfies 𝐵!𝐴, concluding the proof. ■
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Appendix C
Proof of Theorem 5

THEOREM (5). Let (𝑅,Φ) be a relation scheme with predicates satisfying ref, tra, sym and
asym. Let 𝑟 be a relation and 𝜑 a functional dependency over (𝑅,Φ). Let A((𝑅,Φ),𝜑,𝑟 ) be
an algorithm for computing 𝑔Φ3 (𝜑,𝑟 ) in 𝑇A( |𝑟 |) time. For an error 𝜖 and a confidence 𝛿 ,
APPROX_URS((𝑅,Φ),𝜑,𝑟,A,𝜖,𝛿) computes an estimate 𝑔Φ3 of 𝑔Φ3 (𝜑,𝑟 ) such that 𝑝 ( |𝑔Φ3 −𝑔Φ3 | ≤
𝜖) ≥ 𝛿 . Its time complexity is O(𝑇s(𝑚, |𝑟 |) +𝑇A(𝑚)) with𝑚 = min

(
|𝑟 |,

⌈
1

2·𝜖2 · ln( 2
1−𝛿 )

⌉)
and

𝑇s(𝑚, |𝑟 |) is the complexity of sampling𝑚 tuples in 𝑟 .

Proof. Let (𝑅,Φ) be a relation scheme with predicates satisfying ref, tra, sym and asym.
Let 𝑟 be a relation and 𝜑 :𝑋 !𝐴 a functional dependency over (𝑅,Φ). Let A((𝑅,Φ),𝜑,𝑟 ) be
an algorithm for computing 𝑔Φ3 (𝜑,𝑟 ).

The 𝑔Φ3 (𝜑,𝑟𝑖) indicator of a given equivalence class 𝑟𝑖 ∈ Ω𝑋 (𝑟 ) is the sum of the frequen-
cies of all elements in the domain of 𝐴 (a.k.a. dom(𝐴)) except the most frequent one:

𝑔Φ3 (𝜑,𝑟𝑖) = 1−
max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑟𝑖) |)

|𝑟𝑖 |
(C.1)

By doing a weighted average of all the 𝑔Φ3 (𝜑,𝑟𝑖) values for each 𝑟𝑖 ∈ Ω𝑋 (𝑟 ), we can
compute compute the total 𝑔3 for 𝑟 :

𝑔Φ3 (𝜑,𝑟 ) =
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )

|𝑟𝑖 |
|𝑟 | ·𝑔

Φ
3 (𝜑,𝑟𝑖)

Remark 6. Note that in formula C.1, the domain of attribute A (a.k.a. dom(𝐴)) could
be replaced by the active domain (a.k.a. adom(𝐴)) or more restrictively the projection of
the equivalence class on 𝐴 (a.k.a. 𝑟𝑖 [𝐴]). We keep the domain for the genericity of the
notations.

Let 𝑠 ⊂ 𝑟 be a sample of 𝑟 of size 𝑚 = min
(
|𝑟 |,

⌈
1

2·𝜖2 · ln( 2
1−𝛿 )

⌉)
drawn uniformly and

without replacement. Observe that, since 𝑠 ⊆ 𝑟 , each 𝑠𝑖 is contained in a unique 𝑟 𝑗 . For
clarity, we assume 𝑠𝑖 ⊆ 𝑟𝑖 . In each equivalence class 𝑠𝑖 ∈ Ω𝑋 (𝑠) and for each tuple 𝑡𝑖, 𝑗 ∈ 𝑠𝑖 ,
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we associate a Bernoulli random variable 𝑋𝑖, 𝑗 equal to 0 when 𝑡𝑖, 𝑗 [𝐴] is the most frequent
element in 𝑠𝑖 and 1 otherwise, or more formally:

𝑋𝑖, 𝑗 =

{
0 if 𝑡𝑖, 𝑗 [𝐴] = argmax𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑟𝑖) |),
1 otherwise

We consider the following estimator 𝑔Φ3 of 𝑔Φ3 , result of algorithm A:

𝑔Φ3 (𝜑,𝑟 ) =
1
|𝑠 |

∑︁
𝑠𝑖∈Ω𝑋 (𝑠)

∑︁
𝑡𝑖, 𝑗∈𝑠𝑖

𝑋𝑖, 𝑗

=
∑︁

𝑠𝑖∈Ω𝑋 (𝑠)

|𝑠𝑖 |
|𝑠 | ·

(
1−

max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑠𝑖) |)
|𝑠𝑖 |

)
=

∑︁
𝑠𝑖∈Ω𝑋 (𝑠)

|𝑠𝑖 |
|𝑠 | ·𝑔

Φ
3 (𝜑,𝑠𝑖) = 𝑔

Φ
3 (𝜑,𝑠) = A(𝑠)

We prove that 𝑔Φ3 is an unbiased estimator of 𝑔Φ3 :

𝔼(𝑔Φ3 (𝜑,𝑟 )) = 𝔼
©«

∑︁
𝑠𝑖∈Ω𝑋 (𝑠)

|𝑠𝑖 |
|𝑠 | ·𝑔

Φ
3 (𝜑,𝑠𝑖)

ª®¬
=

∑︁
𝑟𝑖∈Ω𝑋 (𝑟 )

|𝑟𝑖 |
|𝑟 | ·𝔼(𝑔

Φ
3 (𝜑,𝑠𝑖))

=
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )

|𝑟𝑖 |
|𝑟 | ·𝑔

Φ
3 (𝜑,𝑟𝑖) = 𝑔

Φ
3 (𝜑,𝑟 )

with

𝔼(𝑔Φ3 (𝜑,𝑠𝑖)) = 1−𝔼

(
max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑠𝑖) |)

|𝑠𝑖 |

)
= 1−max𝑎∈dom(𝐴) (𝑃 (𝑎 ∈ 𝑠𝑖 [𝐴]))

= 1−
max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑟𝑖) |)

|𝑟𝑖 |
= 𝑔Φ3 (𝜑,𝑟𝑖)

By applying the Hoeffding’s inequality, we obtain: 𝑝 ( |𝑔Φ3 −𝑔
Φ
3 | ≤ 𝜖) ≥ 2 ·𝑒−2𝑚𝜖2

= 𝛿 ■
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Appendix D
Equivalence between the 𝑔3-error and the
Bayes error

Consider a target 𝐴 and a set of feature 𝑋 . The Bayes error rate (or irreducible error) is the
lowest possible error rate for any classifier predicting 𝐴 from 𝑋 . We use the form presented
in [JWHT13], it corresponds to:

𝐵𝐸 = 1−𝔼(max𝑎∈dom(𝐴) (𝑃 (𝐴 = 𝑎 | 𝑋 )))

Classic relational algebra operators are considered to be known by the reader [LL12].
Consider a relation r defined over a schema R such that 𝑋 ∪𝐴 ⊆ 𝑅. The tuples from this
relation are i.i.d.. In the following, we prove that 𝑔3(𝑋 !𝐴,𝑟 ) with crisp equality is equiv-
alent to the Bayes error when the size of 𝑟 tends to infinity. For completeness, we recall the
formula for 𝑔3(𝑋 !𝐴,𝑟 ) [KM95]:

𝑔3(𝑋 !𝐴,𝑟 ) = 1− max{|𝑠 | | 𝑠 ⊆ 𝑟,𝑠 |= 𝑋 !𝐴}
|𝑟 |

First, we have:

max{|𝑠 | | 𝑠 ⊆ 𝑟,𝑠 |= 𝑋 !𝐴} =
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )
max{|𝑠 | | 𝑠 ⊆ 𝑟𝑖,𝑠 |= 𝑋 !𝐴}

=
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )
max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑟𝑖) |)
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Thus we have:

𝑔3(𝑋 !𝐴,𝑟 ) = 1−
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )

max𝑎∈dom(𝐴) ( |𝜎𝐴=𝑎 (𝑟𝑖) |)
|𝑟 |

= 1−
∑︁

𝑟𝑖∈Ω𝑋 (𝑟 )

|𝑟𝑖 |
|𝑟 | ·max𝑎∈dom(𝐴)

(
|𝜎𝐴=𝑎 (𝑟𝑖) |

|𝑟𝑖 |

)
= 1−

∑︁
𝑟𝑖∈Ω𝑋 (𝑟 )

𝑃 (𝑋 = 𝑥) ·max𝑎∈dom(𝐴) (𝑃 (𝐴 = 𝑎 | 𝑋 = 𝑥))

= 1−𝔼(max𝑎∈dom(𝐴) (𝑃 (𝐴 = 𝑎 | 𝑋 )))
= 𝐵𝐸
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