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Abstract

Time-resolved 2D2C PIV (Particle Image Velocimetry) measurements are carried out in
a water tank agitated by four rotating blades. Different blade geometries with rectangu-
lar and fractal-like shapes are tested. In some runs, vertical bars (baffles) on the walls are
used to break the rotation of the flow. This experimental set-up is used to generate and
measure different non-homogeneous turbulent flows with different turbulent properties. The
turbulent energy cascade is analyzed in a framework based on two-point Navier-Stokes equa-
tions which allows transfer rates of energy across scales and through space to be analysed in
non-homogeneous flows without assumptions/approximations. For any length r, the Kármán-
Howarth-Monin-Hill (KHMH) two-point equation is used to describe scales smaller than r

and the Germano two-point equation is used for the first time to describe experimentally
scales larger than r.

In non-homogenous flows where baffles break overall rotation, the Chen and Vassilicos 2022
theory is improved and used to explain theoretically the Kolmogorov-like results measured in
the presence of significant non-homogeneity down to scales smaller than the Taylor length.
This theory predicts that an intermediate range of length-scales exists where the interscale
turbulence transfer rate, the two-point interspace turbulence transport rate and the two-
point pressure gradient velocity correlation term in the two-point KHMH equation are all
proportional to the turbulence dissipation rate and independent of length-scale. The PIV
measurements in these flows support these predictions. The PIV measurements also suggest
that the rate with which scales larger than r lose energy to the scales smaller than r in the
two-point Germano equation behaves in a similar way. This result suggests a strong physical
connection between the KHMH equation (scales smaller than r) and the Germano equation
(scales larger than r) in our flows.

In non-homogeneous flows without baffles where the rotation is significant, structure func-
tion results are qualitatively different. Also, the two-point statistics from the KHMH and
Germano equations are not proportional to the turbulence dissipation rate and not indepen-
dent of length-scale. The assumptions of the Chen and Vassilicos 2022 theory are used in
this case as a reference for identifying which assumptions fail and how under the action of
rotation.

Finally, Germano’s exact subfilter stress equation, which is part of the Germano two-point
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framework used in this thesis to describe the physics at scales larger than a certain r, is
used as the basis of a new Large Eddy Simulation (LES) model. As this model is a sim-
plification/approximation and modeling of two different parts of an exact subfilter stress
equations, it lends itself to controlled future improvements by refining the mathematical ap-
proximations and by implementing future physical findings into a preexisting mathematical
framework. This new model is tested in a simulated Taylor-Green flow both a priori and a
posteriori. It is found to capture well the large local energy transfer between filtered scales
and residual scales including large backscatter and large forward transfer events.
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Chapter 1

Introduction

1.1 Why looking at turbulence ?

Turbulence describes a specific state of the flow when it is moving fast or when it is dis-
turbed by a large or complex geometry. The flow can be the one of any fluid such as air
or water. Turbulent flows are easily identified by their unsteadiness and irregularity. Most
of flows which surround us in our everyday life are turbulent. If air was not transparent,
turbulence would be visible everywhere.

Turbulent flows are also present in many industrial applications: aeronautical (flight me-
chanics, aircraft design, engines design,. . . ), industries (industrial mixers, turbines,. . . ), geo-
physics (weather prediction,. . . ). The behavior of these flows is very difficult to understand
and to predict because of the complexity of their equations. However, their understanding
and prediction is critical for the applications mentioned above.

For example, there is a need for a better understanding of turbulent flow equations in aero-
nautical industry because of the actual trend to design very complex geometries (such as new
rotors or fuselages) while using ’model based design’ process. It requires accurate predictions
of the flow to model the main aerodynamic effects such as lift, drag, thrust, in all situations.

Industries tackle the aerodynamic modeling problem by using numerical methods called
‘Reynolds Averaging Navier Stokes simulation’ or more recently ‘Large Eddies Simulation’,
in collaboration with research, which require large computational resources such as high per-
formance computers. Research goes a step further by using ‘Direct Numerical Simulation’.
This latter numerical method is much more accurate but requires also much larger compu-
tational resources and is limited to low-speed turbulence due to the computational cost or is
used on very small regions of the flow. Neither of these methods are fully satisfactory because

19



CHAPTER 1. INTRODUCTION 20

the numerical methods are complex, require too much computational resources or require a
calibration for each application case. Therefore, long and expensive experiments are needed
before a new design. The solution chosen often contains large simplifications and inaccuracies.

This is why turbulence and more generally aerodynamic understanding and prediction re-
mains an open problem to be resolved.

One of the main directions to solve this problem is to increase the turbulence equations
knowledge and understanding. This should be done in situations close to practical ones: dis-
turbed flows whose properties change in space and where velocity evolves from low to large
speed.

Practically, a better understanding of the turbulence equations, called the Navier-Stokes
equations, should lead to:

• More efficient flow predictions through the use of physical simplifications to reduce the
numerical computations cost

• Better prediction of aerodynamic / hydrodynamic effects through development of new
numerical models

• Design of new geometries more aerodynamically / hydrodynamically efficient

• New applications using turbulent flow energy and properties

1.2 Why studying especially non-homogeneity in turbu-
lence?

A scientific consensus exists about a turbulence theory developed by Kolmogorov in 1941.
This theory was developed for homogeneous, equilibrium turbulence. It is a theoretical state
of the flow which might exist at very high Reynolds number (high speed, large geometry, low
viscosity) when turbulence is fully developed. In that case, the flow properties do not change
in space and in direction: it is homogeneous and isotropic.

The theory remains to be extended for non-equilibrium/ non-homogeneous turbulence. In-
deed, the theoretical framework used to derive Kolmogorov theory is not applicable for most
of complex flows. This is for example the case for non-homogeneous turbulence present in
mixers, rotors, sails, storms,...
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1.3 What was done during this PHD ?

First, turbulence is analyzed with experimental datasets recorded during the PHD project.
The flow is stimulated by four blades rotating inside a mixer full of water.

This set-up generates a rotating or non-rotating flow depending on the experimental con-
figuration. The flows generated are non-homogeneous because of the complex geometry of
the problem.

This experiment reproduces specific turbulent flow properties which exist in practical ap-
plications such as highly developed turbulence or rotating turbulence stimulated by blades.
The turbulence properties understanding in this experiment provides insights about the tur-
bulence existing in practical applications while keeping a relative experimental simplicity.

A recent (two-points) theoretical framework is applied on the experimental dataset and
some physical understanding is captured. Moreover, an extension of this framework is ana-
lyzed with experiments and its physical relevance is confirmed. From a simplified point of
view, this mathematical extension describes mainly the large ’scales’ of turbulent flow.

In the last chapter of this PHD, the theoretical results obtained in the previous chapters are
used in a more practical way. Indeed, the large scale extension of the two points framework
is used to build a simulation model for Large Eddy Simulation. The idea of this part is
to bring some fundamental research knowledge to applicative research through modelling
improvements. A new simulation model with mathematical and physical justifications is
developed from exact equations through simplifications. Doing that way, the previous and
future findings from fundamental research about the two-points framework can be applied to
Large Eddy Simulation through the connection described in this study.



CHAPTER 1. INTRODUCTION 22



Chapter 2

State of the art

2.1 General turbulence results

2.1.1 Navier-Stokes equations

This equation is the result of successive discoveries of researchers from different national-
ities. Euler introduced first a fluid momentum conservation equation in the middle of 18th
century. Navier added the viscous effects into this momentum conservation in 1822 so that
all the physical effects are captured. Finally, Stokes carried out extensive research on this
equation and wrote it in its final form in 1845:

∂u

∂t
+ (u.∇)u + 1

ρ
∇p = ν∇2u (2.1)

for incompressible flows where ∇.u = 0 and ∇ is the gradient operator.

This equation is used in this thesis as a tool to understand turbulent flow behavior. It is
assumed to describe perfectly the flow in real conditions as it has never been disapproved in
extensive previous research over two centuries.

2.1.2 Kolmogorov theory

Kolmogorov theory often called ’K41’ because of the three famous papers (Kolmogorov
1941a, Kolmogorov 1941b and Kolmogorov 1941c) is the most important turbulence theory.
It is derived for ’very large Reynolds number’. The main points of the first paper are re-
minded below with simplifications.

The spatial velocity increment δui = ui(X)− ui(X0) is introduced where X is the spatial
coordinate vector and X0 is fixed. The second moment Bi,j

(
Y 1, Y 2) = δui(Y 1)δuj(Y 2) is

23



CHAPTER 2. STATE OF THE ART 24

also defined where Y k
i = Xk

i −X0
i − ui(X0, t)(t − t0) where the dependence on the random

variable ui implies that Yi is also a random variable. Finally, r = |Y 2 − Y 1|.

Assumptions used

Local homogeneity

The distribution law of δui is independent of X0, t0 and ui(X0).

Local isotropy

The distribution laws of δui are ’invariant with respect to rotations and reflections of the
original system of coordinate axes’.

This later assumption is considered by Kolmogorov as a ’rather far approximation of reality
even for small domains [...] and very large Reynolds numbers’ except for particular cases such
as turbulence generated behind a grid.

First hypothesis of similarity

’For the locally isotropic turbulence the distributions [of δui] are uniquely determined by the
quantities ν and ϵ̄’, where ϵ̄ is the mean turbulence dissipation rate (’dispersion of energy’).

The Kolmogorov length scale is deduced: η = ν3/4

ϵ̄1/4 .

Second hypothesis of similarity

’If the moduli of the vector Y k and of their differences Y k − Y k′ (where k ̸= k′) are large
in comparison with η, then, the distribution laws [of δui] are uniquely determined by the
quantity ϵ̄ and do not depend on ν’.

Main results

The second moment can be expressed as:

Bi,j (Y, Y ) = (Bdd(r)−Bnn(r)) cos(θi)cos(θj) + δi,jBnn(r) (2.2)

where Yi = rcos(θi), Bdd(r) = (δu1(r, 0, 0))2 and Bnn(r) = (δu2(r, 0, 0))2.
For r large compared to η the following very important results are obtained where C is a

dimensionless constant:

Bdd(r) ∼ Cϵ̄2/3r2/3 (2.3)

Bnn(r) ∼ 4
3Bdd(r) (2.4)
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Comments about this theory

These results are commonly related to the energy cascade described by Richardson 1922
in his well known poem ’Big whirls have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity’.

The Kolmogorov theory range of validity is called the inertial range. This range contains
scales small enough (r << L, where L is the integral scale which describes the largest scales
of the flow) so that local homogeneity and isotropy assumptions might be valid but also
large enough so that it is not affected by viscosity as assumed by Kolmogorov. The eddies
present in the inertial range are expected to depend only on their local interactions and to
cascade toward smaller scales at the dissipation rate (Kolmogorov 1941a). This theory is an
important achievement as it provides a universal law to describe energy distribution among
scales of turbulent flows in spite of their irregular behavior.

In most researches, the verification of this theory is done with energy spectrum analysis.
Indeed, the equivalent results of equations 2.3 and 2.4 in Fourier space is the Kolmogorov-
Obukhov k−5/3 evolution of energy spectrum in the inertial range where k is the Fourier
wavenumber.

Over the last 80 years, Kolmogorov prediction for the wavenumber dependence k−5/3 was
verified with experiments in a large variety of flows. These results were already questioned in
Kraichnan 1974: ’Kolmogorov’s 1941 theory has achieved an embarrassment of success. The
‘-5/3’ -spectrum has been found not only where it reasonably could be expected but also at
Reynolds numbers too small for a distinct inertial range to exist and in boundary layers and
shear flows where there are substantial departures from isotropy, and such strong effects from
the mean shearing motion that the stepwise cascade appealed to by Kolmogorov is dubious’.

Nearly 50 years after this quote, there is still no consensus to explain this contradiction.
With Kolmogorov theory, basic research attention has been focusing a long time on homoge-
neous turbulence as reported in Alves Portela 2017, Gomes-Fernandes, Ganapathisubramani,
and Vassilicos 2015 and Alves Portela, Papadakis, and Vassilicos 2017 and might have been
diverted from an important feature of real flows: their non-homogeneity.

Turbulence scales

A common property of turbulent flows is that they contain a large range of scales. The
smallest scales are often less than 1 millimeter while the largest ones can be of the order of
the kilometer for atmospheric flows. Therefore, reference scales are defined and are important
to describe turbulence. The integral scale is characteristic of the largest motions of the flow:
its interpretation is quite straightforward. Its estimation is described directly in the chapters
concerned.

The Kolmogorov scale is defined in Kolmogorov 1941c as ’the scale of the finest pulsa-
tions, whose energy is directly dispersed’. It can be interpreted as the ’smoothness scale’. It
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Figure 2.1: Taylor scale and zero-crossing in a theoretical signal

means the signal is smooth for scales smaller than η so that Taylor series can be applied to
approximate derivatives.

Another important scale is the Taylor 1935 scale: λ. This scale is first defined in relation
with correlation function and is computed as: λ =

√
15ν|u′|2

ϵ . However, Liepmann 1949,
Liepmann and Robinson 1952 and Mazellier and Vassilicos 2008 derived λ = 1

Cπ l̃ where l̃

is the mean zero crossing distance of the signal and C a constant. This latter definition
and the work in Goto and Vassilicos 2009 which relates λ with the stagnation points helps
understanding physically this scale.

Simple periodic signals in one dimension are plotted in figure 2.1. This signal is not rep-
resentative of a turbulent signal but it is a way to have a first intuition of the Taylor scale.
The first signal contains only one harmonic so the mean zero crossing distance is just the
signal half spatial length. The second signal contains two harmonics but the high frequency
harmonic has a small magnitude so it does not affect significantly the mean zero-crossing:
λ2 ≈ λ1. The third signal is dominated by the second harmonic so that the mean zero
crossing is nearly unaffected by the first harmonic: λ3 << λ1.

In this theoretical signal (not turbulence), we understand that Taylor scale is mainly defined
by the dominant structures of the signal. These structures may be called the ’coherent
structures’ as they stand out from the ’background randomness’ to impact significantly the
mean zero crossing distance. In turbulence, a large number of scales can also co-exist without
a clear domination of one with respect to the others. In that case, the mean zero crossing
/ Taylor scale represents the scales average weighted by their energy representation. The
main difference compared to the previous simplified example is the impact of viscosity on the
results which affects the smallest scales and therefore the Taylor scale computation.
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2.1.3 Two-point Navier-Stokes equations

The turbulence framework introduced previously involves dimensional and scale analysis.
On the other hand, the two-point framework, described in this section, allows turbulence
analysis directly from Navier-Stokes equations in real space. This very powerful tool requires
expensive computations to evaluate the different terms from datasets. However, it allows
to quantify mathematically complex physical phenomena such as the energy cascade. This
framework does not require periodicity assumption as is the case in Fourier space. Further-
more, the results are local in space which is not the case for spectral results. Therefore, this
framework is very useful for turbulence analysis in non-homogeneous flows.

Presentation of the equation

This framework requires two points in physical space as for Kolmogorov theory: ζ− = X−r

and ζ+ = X + r (figure 2.2). X is the centroid and 2r is the two-point separation vector.
The velocity half difference δu(X, r, t) = u(ζ+)−u(ζ−)

2 and velocity half sum uX(X, r, t) =
u(ζ+)+u(ζ−)

2 are defined.

X

2r

Figure 2.2: Schematic of fluid velocities at points ζ− = X − r and ζ+ = X + r.

Following Hill 2001 and Hill 2002b, a two-point equation for δu is derived from Navier-
Stokes equation:

∂δu

∂t
+ (uX .∇X) δu + (δu.∇r) δu = −1

ρ
∇Xδp + ν

2 ∇X
2δu + ν

2 ∇r
2δu (2.5)

where incompressibility gives ∇X .δu = ∇r.δu = 0. The mathematical relations: ∂
∂Xk

=
∂

∂ζ+
k

+ ∂
∂ζ−

k

, ∂
∂rk

= ∂
∂ζ+

k

− ∂
∂ζ−

k

and ∂2

∂ζ+
k

2 + ∂2

∂ζ−
k

2 = 1
2

∂2

∂X2
k

+ 1
2

∂2

∂r2
k

are used. ∇X and ∇X
2 are the

gradient and Laplacian in X space; ∇r and ∇r
2 are the gradient and Laplacian in r space;

ν is the kinematic viscosity; δp = p(ζ+)−p(ζ−)
2 and PX = p(ζ+)+p(ζ−)

2 .
Similarly and following Germano 2007b, a two-point equation for uX is derived for the

velocity sum:

∂uX

∂t
+ (uX .∇X) uX + (δu.∇r) uX = −1

ρ
∇XPX + ν

2 ∇X
2uX + ν

2 ∇r
2uX (2.6)
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were incompressibility gives ∇X .uX = ∇r.uX = 0.
Two-point energy equations are now derived and are used in this thesis to quantify the

different physical effects. Equation 2.5 is multiplied by 2δu to obtain the small scale Kármán-
Howarth-Monin-Hill equation as derived in Hill 2001 and Hill 2002a (see also the procedure
in Danaila et al. 2001):

∂|δu|2

∂t
+ ∇X .(uX |δu|2) + ∇r.(δu|δu|2) = −2

ρ
∇X .(δuδp) + ν

2 ∇X
2|δu|2 + ν

2 ∇r
2|δu|2 − ϵ

(2.7)
Where ϵ = 1

2 ϵ+ + 1
2 ϵ−; ϵ+ = ν

∂u+
i

∂ζ+
k

∂u+
i

∂ζ+
k

and ϵ− = ν
∂u−

i

∂ζ−
k

∂u−
i

∂ζ−
k

.
Equation 2.6 is multiplied by 2uX to obtain the Germano 2007b equation:

∂|uX |2

∂t
+∇X .(uX |uX |2)+∇r.(δu|uX |2) = −2

ρ
∇X .(uXPX)+ν

2 ∇X
2|uX |2+ν

2 ∇r
2|uX |2−ϵ

(2.8)
This latter equation is related by Germano to the work of Hill and is described as a large

scale equation. It was derived to study Large Eddy Simulation. In the present work, the
physical analysis of this equation is developed.

Finally, the kinematic equation:

∇r.(δu|uX |2) + ∇r.(δu|δu|2) = 2∇X .(δu(δu.uX)) (2.9)

derived in Germano 2007b relates the small scale and the large scale equations.

Interpretation of the equations

A Reynolds decomposition can be applied to these equations and is used later in this thesis.
However, the equations are presented here without this decomposition to match their initial
derivation and to simplify their understanding. Interpretation refinements associated to the
decomposition are done directly in the chapters concerned.

Equation 2.7 (resp. 2.8) is an energy equation for |δu|2 (resp. |uX |2) written at the
location X and for the separation vector r. The different terms are interpreted separately.

∇X .
(
uX |δu|2

)
: it can also be written as (uX .∇X) |δu|2. It corresponds to the transport

in space of the energy |δu|2.
This term is written as a divergence in X space. Therefore, if the equation is integrated

over a local domain (VX) in X space, it corresponds to a flux on the sides (SX) of the domain
which is consistent with the spatial transport interpretation:

�
VX

∇X .
(
uX |δu|2

)
d3X =

�
SX

(
uX |δu|2

)
.nd2X (2.10)
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Similarly, ∇X .
(
uX |uX |2

)
is the transport in space of the energy |uX |2.

2
ρ ∇X . (δuδp): it corresponds to the pressure contribution to the energy balance. It is also a
divergence in X space so it can be interpreted as the small scale pressure energy contribution
on the sides of a local domain.

Similarly, 2
ρ ∇X . (uXPX) is the large scale pressure energy contribution.

ν
2 ∇X

2|δu|2 + ν
2 ∇r

2|δu|2: These two terms correspond to the viscous diffusion in X space
and in r space of the small-scale energy |δu|2. The viscous diffusion is important at small r

because ν
2 ∇r

2|δu|2 does not vanish when r → 0 (Valente and Vassilicos 2011) as opposed to
the other terms (except the dissipation).

Similarly, ν
2 ∇X

2|uX |2 + ν
2 ∇r

2|uX |2 correspond to the viscous diffusion of the large scale
energy |uX |2.

− 1
2 ϵ+ − 1

2 ϵ− = −ν
2

∂u+
i

∂ζ+
k

∂u+
i

∂ζ+
k

− ν
2

∂u−
i

∂ζ−
k

∂u−
i

∂ζ−
k

: This term is a sink of energy, it corresponds to the
turbulent dissipation rate. It acts similarly both in the small scale and large scale energy
equations.

|δu|2: This term is a three dimensional quantity equal to δuxδux + δuyδuy + δuzδuz.
Therefore, there is a direct connection with the second moments introduced by Kolmogorov.

Moreover, inspired by Nie and Tanveer 1999, Zhou and Vassilicos 2020 and Chen and
Vassilicos 2022 integrate this quantity in r space to provide a physical interpretation of this
term:

Eδu(R) = 1
4
3 πR3

�
|r|<R

|δu|2d3r (2.11)

It can be derived that Eδu(R → 0) → 0 and Eδu(R → ∞) → 1
4 u(ζ+)2 + 1

4 u(ζ−)2. Eδu(R)
is also a monotonically increasing function of R. Therefore, Eδu(R) can be interpreted as an
average kinetic energy at scales smaller than R.

|δu|2 is the density function in r space related to the quantity E(R) so it is related to the
turbulent energy at scale r.

Similarly, a large scale energy quantity can be defined:

EuX
(R) = 1

4
3 πR3

�
|r|<R

|uX |2d3r (2.12)

The sum of the small scale quantity and large scale quantity is related to the total kinetic
energy present in the spatial sphere around X and of radius R:
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Eδu(R) + EuX
(R) = 2

4
3 πR3

�
|r|<R

u(X + r)2

2 d3r (2.13)

Therefore, EuX
is deduced to contain the energy of the scales larger than R which confirms

its interpretation as a large scale quantity. This latter interpretation is consistent with the
analysis of Mouri and Hori 2010.

∇r.
(
δu|δu|2

)
: The interpretation of this term is easier when simplifications are introduced

in equation 2.7. Homogeneity assumption is used so that all spatial derivatives vanish. The
diffusion term is neglected for r >> λ as derived in Valente and Vassilicos 2015. Equation
2.7 is also integrated in r space so that it describes Eδu(R) which has a clear physical
interpretation:

∂

∂t
< Eδu(R) > + 1

4
3 πR3

�
|r|=R

< δu|δu|2 > .nd2r ≈ − < ϵ > (2.14)

where the notation < . > is used to describe spatial averaging (over infinite/periodic space).
Equation 2.14 is a conservative equation in r space where the variation in time of Eδu(R)
balances an energy flux in r space across a closed surface and a sink term < ϵ > which
dissipates energy.

1
4
3 πR3

�
|r|=R

< δu|δu|2 > .nd2r can therefore be interpreted as the energy flux received by
the scales smaller than R. When it is negative in average, the energy cascade is direct from
large scales to small scales. This is consistent with the interpretation of ∇r.

(
δu|δu|2

)
as the

energy interscale transfer rate across scales (Alves Portela, Papadakis, and Vassilicos 2017,
Chen and Vassilicos 2022).

Similarly, ∇r.
(
δu|uX |2

)
can be interpreted as the large scale interscale transfer rate.

When the flow is homogeneous, the small scale and large scale cascades are exactly connected
as derived from equation 2.9:

∇r. < δu|uX |2 >= −∇r. < δu|δu|2 > (2.15)

Indeed, the large scale interscale transfer balances the small scale interscale transfer with
a minus sign consistently with the large scale (resp. small scale) interpretation of these
quantities. When the flow is non-homogeneous, there is permeability (or lack of imperme-
ability) between the two interscale transfer rates described by the term 2∇X .(δu(δu.uX))
in equation 2.9.

Links with Kolmogorov theory

In homogeneous turbulence, the Kolmogorov 1941c theory uses the hypothesis of equilib-
rium for r << L which can be written as:
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∂

∂t
< Eδu(R) > << < ϵ > (2.16)

As explained previously the viscous diffusion can be neglected for λ << r. Therefore, for
λ << r << L, we can derive:

1
4
3 πR3

�
|r|=R

< δu|δu|2 > .nd2r ≈ − < ϵ > (2.17)

This result is the mathematical description of the so called inertial range where the energy
cascades on average towards smaller scales at the turbulence dissipation rate. The range
of validity of this homogeneous result is non-zero if λ << L which requires large Reynolds
number but not necessarily isotropy.

Following Chen and Vassilicos 2022, equation 2.17 supports the first and second similarity
assumption of Kolmogorov. Therefore, the small scale energy behavior in the inertial range
can be derived based on dimensional analysis for λ << r << L:

< |δu|2 >∼< ϵ >2/3 r2/3 (2.18)

This result is very useful as the interscale transfer rate of energy can be evaluated to see if
equation 2.17 is verified or not in real flows. This might helps to understand the Kolmogorov
prediction’s validity in some non-homogeneous flows where the theory is not supposed to
hold.

2.1.4 Recent studies of the cascade in this framework

Recent energy cascade analyses using this mathematical framework give a new picture
of the turbulent cascade. Indeed, Yasuda and Vassilicos 2018 describe very intense energy
transfers across scales with events going both in direct and reverse directions. These events
are much more energetic than the mean value. Once averaged in time, the classical energy
cascade, from large scale to small scale appears where interscale energy transfer rate is close
to turbulence dissipation rate. This is reminiscent of the Richardson 1922 cascade. However,
it is only a time averaged picture which means that it is meaningless to see the turbulence
cascade that way locally at a fixed time and a fixed point in space.

Anisotropy of the time-averaged interscale energy transfer rate was observed in Danaila et
al. 2012 where a simplified expression of this term is derived in axisymmetric turbulence and
whose reduced form is evaluated with PIV measurements in the impact zone of two opposed
jets. This reduced form is measured to be significant in the in-plane direction (perpendicular
to the axisymmetric axis) while it is inhibited in the axisymmetric direction. These measure-
ments prove that non-homogeneous flows can exhibit a strong anisotropy of the cascade. In
this experiment, the sign of the reduced form of the axisymmetric interscale transfer rate is
measured to be negative at small r (direct cascade) and positive at large r which is interpreted
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as the ’signature of large-scale inhomogeneity’. In Danaila et al. 2001, generalized forms of
the Kolmogorov equation were derived where non-homogeneous terms were added. These
terms were measured, with hot-wire measurements, to improve significantly the balance of
the Kolmogorov equation in the central region of a channel flow. This result underlines the
importance of the non-homogeneity in turbulent flows which is not present in the Kolmogorov
theory. The non-homogeneity quantification and the understanding of its impact on energy
cascade is therefore important for the understanding of turbulent flows present in practical
applications.

Also, as opposed to classical energy cascade description, Gomes-Fernandes, Ganapathisub-
ramani, and Vassilicos 2015 and Alves Portela, Papadakis, and Vassilicos 2017 observed
significant interscale transfer rate variations in space even when averaged in time. Gomes-
Fernandes, Ganapathisubramani, and Vassilicos 2015 identified a local inverse cascade in the
near field behind a fractal grid where the energy spectrum has a classical power law slope
close to -5/3. They observed, however, that the energy transfer rate averaged over orientation
remains from large to small scales.

Alves Portela, Papadakis, and Vassilicos 2017 observed also similar results with energy
transfers going backward and forward depending on the direction, coexisting with a −5/3
energy spectrum power law slope. More generally, the scale orientation of the time averaged
energy transfer rate varies significantly depending on the spatial location.

In this latter publication, an even more disturbing result is observed: the flow is non-
homogeneous on average but the time and direction averaged interscale transfer rate bal-
ances exactly dissipation over a significant range of scales. This results can be derived for
time averaged homogeneous flows but it is not supposed to coexist with non-homogeneity
as it requires a complex compensation between the non-homogeneous terms. This result is
observed for the first time with this accuracy but it suggests that non-homogeneous energy
balance laws might exist.

Knutsen et al. 2020 described also very clearly the non-homogeneity and anisotropy of the
interscale energy transfer rate in a Von-Kármán experiment. In this study, the interscale
transfer is also locally backward once averaged over time. The root cause of the locally
inverse cascade that they identified seems to be associated with the mean flow. Therefore,
the mean flow non-homogeneity and its interaction with turbulence plays a direct role in
non-homogeneous cascades.

These papers support the use of the two-point framework as the cascade process is actually
very different compared to the simplified Richardson 1922 picture. This latter picture may
only be valid once averaged in time in specific flows where non-homogeneity does not affect
the results.

More recently, Chen and Vassilicos 2022 started to generalize Kolmogorov’s predictions with
a new theory compatible with non-homogeneous flows. In this paper, the non homogeneous
terms are present but behave similarly once averaged in time through similarity assumptions.
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This theory is described and improved in chapter 4.

2.2 Rotation and non-Kolmogorov cascades

2.2.1 Non-Kolmogorov cascades

Even though most of energy spectrum measured comply with Kolmogorov predictions in
the inertial range, some of them have different shapes. Therefore, different theories exist
to explain these differences observed in very specific flows. Examples of non-Kolmogorov
cascades are provided in the next sections to give an overview of the main research directions.

Helicity cascade

Non-Kolmogorov energy spectra are possible theoretically, based on various type of dimen-
sional analysis. Brissaud et al. 1973 introduced the idea of helicity cascade. Helicity H is an
invariant of inviscid, incompressible flow similarly to the energy:

H =
�

V

u. (∇× u) dV (2.19)

With this concept, there is no energy cascade because the energy distribution in scales is
driven by helicity cascade. Under several assumptions based on this helicity cascade concept,
the energy spectrum scales as k−7/3.

Kessar et al. 2015 suggest, on the basis of a dimensional analysis, that the helicity and the
energy spectra depend both on energy and helicity injection rates, but their slopes can vary
with two free parameters. In that case, there is a combined cascade of helicity and energy.
In this formulation, the -5/3 and -7/3 slopes of the energy spectrum are only two specific
solutions of the general formula:

E(k) ∼ ϵ7/3−aηa−5/3k−a, H(k) ∼ ϵ4/3−bηb−2/3k−b (2.20)

Kurien, Taylor, and Matsumoto 2004 introduce, using Kraichnan like arguments, an
helicity transfer time scale τH and an energy transfer time scale τE . Using these time
scales, they conclude that helicity cascade is dominating at small scales while the energy
cascade is dominating at large scales. These results comply with the energy spectrum slopes
evaluated in a DNS of homogeneous isotropic turbulence where a k−5/3 slope is followed, at
the higher wavenumbers, by a k−4/3 slope which is another possible solution of equation 2.20.

Helicity cascade is therefore a non-Kolmogorov theoretical cascade. In the next section,
we briefly summarize experimental results by Herbert et al. 2012 where a non-Kolmogorov
cascade appears to be measured and is justified by the authors in term of an helicity cascade.
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Rotating flow and helicity

Herbert et al. 2012 measured a non-Kolmogorov spectrums with PIV measurements in a
Von-Kármán tank. A k−1 behavior was identified in the spatial energy spectrum followed by
a steeper logarithmic slope at smaller scales. This steep slope was observed over a large range
of scales. The slope was around k−2 at low Reynolds (∼ 104) and transitions to around k−2.2

at higher Reynolds (∼ 105). The k−1 behavior was identified as an inverse cascade while the
steep logarithmic slope as a direct cascade. In their paper, the results are interpreted using
Beltrami assumption which maximize helicity. The Beltrami assumption means the velocity
is aligned with vorticity so that u× ω ≈ 0.

This argument links experimental results with helicity developments introduced previ-
ously. It leads to an inverse energy cascade (at large scales) and direct helicity cascade
(at small scales). The two energy spectrum slopes obtained with helicity cascade are
derived theoretically with Kraichnan-like arguments assuming local an non-local scenarios.
The non-local scenario predicts k−2 energy spectrum and is associated with relatively low
Reynolds numbers. The local scenario predicts a k−7/3 ≈ k−2.3 energy spectrum and is
associated with high Reynolds numbers.

The helicity cascade and its dimensional analysis prediction are therefore a way to explain
deviations from the Kolmogorov energy spectrum but it requires the Beltrami assumption
to be valid in real flows.

Rotating flow and wave turbulence

Sagaut and Cambon 2018 relate rapidly rotating flow with wave turbulence. To do so,
Navier-Stokes equations are written in a rotating frame and non-dimensionalized by a ref-
erence velocity U , a reference length scale L and a reference time scale 1

Ω characterizing
rotation rate. The equation in the rotating frame is written as:

∂ũ

∂t̃
+ n× ũ− Ro

Re
∇̃2ũ + 1

2ΩU
∇p̃ = −Ro(ũ.∇̃)ũ (2.21)

where Ro = U
2ΩL is the Rossby number and the tilde notation is used for quantities in rotating

axis system.
In the limit Ro→ 0, the geostrophic balance ∇̃p̃ = n×ũ is obtained. Similar simplifications

can be done in the vorticity equation to derive the Proudman theorem. It describes a 2D
state where the velocity does not depend on the axial coordinate (Sagaut and Cambon 2018).

With this analysis, the energy cascade is deduced to be affected by rotation through the sim-
plifications done with the Rossby number which appears during the non-dimensionalization
of the equation. Baroud et al. 2002 measure for example a k−2 energy spectrum in a rapidly
rotating flow and they relate it to quasi two-dimensionalisation of the flow. However, the
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results are observed only for very small Rossby numbers (in the later study Ro ≈ 0.06).

The linearized equation (zero Rossby number) associated to the inviscid assumption can
lead to the existence of wave solutions in rotating axis system. This is the basis of wave
turbulence theory which also predicts non-Kolmogorov spectra in some regions. Some
elements of wave turbulence theory are confirmed with experiments dedicated for that. The
flow in these experiments is far from practical applications as it needs to be very smooth
without any disturbance except the ones introduced to test the theory.

This wave turbulence theory is not studied in the present thesis because the mixer rotation
speed used is not very high and the highly turbulent flow present in the tank suggests
that the non linear term of the Navier-Stokes equation plays a dominant role. Moreover,
the experimental set up used in this project does not allow the camera rotation needed to
measure turbulence in rotating axis system which is required in this theoretical framework.
However, we can keep in mind the possibility that the flow present in the mixer might, in
certain cases, be in an intermediate regime between non rotating flow, possibly described by
Kolmogorov/Kolmogorov-like theory, and rapidly rotating turbulence, possibly described by
wave turbulence theory.

2.2.2 Previous work on the mixer used for the PHD project

A mixer is used in this PHD thesis to produce various turbulent flows. The mixer is not
used to mix the flow but as a scientific tool to generate turbulence. Therefore, we do not
review the wide scientific literature about mixers but we focus on the research previously
done with our mixer tank to describe its flow properties. When mixer knowledge is needed,
the book from Nagata 1975 is used for reference.

The mixer tank experiment used during this PHD research was previously designed and
used at Imperial College by Kostas Steiros to analyse the fractal blades impact on mixing
quality and efficiency. He found that fractal blades reduce significantly the torque during
mixing (Steiros et al. 2017a). This torque decrease is associated with weaker coherent
vortices on the blades’ sides compared to the rectangular blade configuration. The torque
decrease seems to be associated to interactions of these coherent structures with the wall
(Steiros et al. 2017b). A more precise flow understanding was developed in Başbuğ,
Papadakis, and Vassilicos 2018 with a DNS of a similar mixing tank. According to this
study, the fractal blades break the coherent structures. The strength reduction of these
coherent structures is associated to a smaller recirculation region behind the propeller which
can explain the torque decrease.
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Therefore, the turbulence properties in the mixer tank are expected to change with blade
configurations especially with their fractal dimension. This might have an impact on energy
cascade and dissipation so we test fractal and non-fractal blades.

Also, preliminary experiments in the mixer done at Imperial College by K.Steiros suggest
that energy spectra in the frequency domain measured in the bulk of the flow might have a
different shape compared to one predicted by Kolmogorov theory (section 2.1.2). This work
was not published so it should be confirmed with our experiments in collaboration with K.
Steiros.

2.3 Turbulence modeling

There is a strong connection between the large scale two-point Navier-Stokes equations
and Large Eddy simulation as introduced in Germano 2007b. Therefore, a review about
Large Eddy Simulation methods is done in this section to introduce chapter 6. However,
the detailed links between two-point equations and Large Eddy Simulation (LES) is done
directly in the chapter. The following review is mainly based on Moser, Haering, and Yalla
2021 and Pope 2000.

Flow simulations require huge computational resources to be accurate. Indeed, the
turbulent flow smallest scales have non-negligible impact on the largest ones. These accurate
simulations are called Direct Numerical Simulations (DNS). They are so resource-consuming
that the vast majority of existing industrial cases cannot be resolved with such a method
even with high performance computers. This is why industrial companies mainly use
Reynolds Averaged Navier Stokes (RANS) equations resolution where only the mean flow is
resolved and the fluctuating flow is modeled with turbulence models. This resolution method
is much more efficient but some modeling uncertainty is introduced and no information is
provided about non-stationary effects. Moreover, the modeling is complex and not directly
related to the physics so that it is not fully reliable. Another method is the Large Eddy
Simulation where only the largest scales of the flow are resolved and the smallest scales are
modeled. This method allows the simulation of non-stationary effects and is probably a
good way to have physically supported results if the small scale model is based on physics.
Therefore, this method is expected to be more reliable while still having a computational
cost around an order of magnitude less than DNS (Moser, Haering, and Yalla 2021). The
computational resources increase with the years could make this technology available to
various industrial problems in the medium to large term.

The LES description formulated in Reynolds 1990, Pope 2000 and Dairay et al. 2017 is
used to separate the physical modeling error from the numerical error. The Navier-Stokes
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equation is first filtered without approximation:

∂ũ

∂t
+ (ũ.∇)ũ +

[
˜(u.∇)u− (ũ.∇)ũ

]
= −1

ρ
∇p̃ + ν∇2ũ (2.22)

where the filter is defined as:

ũ(x, t) =
�

G(r, x)u(x− r, t)dr (2.23)

Where
�

G(r, x)dr = 1 over the domain and the residual velocity field is defined as u′(x, t) =
u(x, t)− ũ(x, t). The function solved during resolution is the filtered velocity field.

The derivative commutes with the filter when the filter is homogeneous. In this thesis, only
homogeneous filters are used to simplify results. Equation 2.22 is therefore re-written in a
more classical form:

∂ũ

∂t
+ (ũ.∇)ũ = − ∂

∂xj
τij −

1
ρ
∇p̃ + ν∇2ũ (2.24)

where τij = ũiuj − ũiũj . This quantity is called the residual stress.

This quantity is replaced by a model τ̂ij based on resolved quantities to obtain the new
equation:

∂ũ

∂t
+ (ũ.∇)ũ = − ∂

∂xj
τ̂ij −

1
ρ
∇p̃ + ν∇2ũ (2.25)

The difference between these two equations is called the modeling error. The error asso-
ciated to the numerical resolution of equation 2.25 is called the numerical error. It can be
evaluated through mesh convergence for example.

Many LES models have already been developed since the 60’s, for example: Smagorinsky
1963 model, Clark, Ferziger, and Reynolds 1977 model, Bardina, Ferziger, and Reynolds
1980 model, Métais and Lesieur 1992 model and Dairay et al. 2017 model. The most famous
ones are the eddy diffusivity models inspired by RANS modeling. The idea is to model the
small scale effects by a turbulent viscosity as if turbulence was changing the flow viscosity.
This physical justification for LES modeling is however questionable. The Smagorinsky 1963
model is the most famous one from this category as it is easy to implement. The model is
defined as:

τ̂ij = −2νT S̃ij (2.26)

where ∆ is the LES mesh width,

S̃ij = 1
2

(
∂ũi

∂xj
+ ∂ũj

∂xi

)
(2.27)
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is the resolved strain rate tensor and

νT = CS∆2
√

2S̃ijS̃ij . (2.28)

This model predicts rather well the mean dissipation of residual scales but has a very poor
correlation with real subfilter stress when evaluated on real turbulent flows according to
Meneveau and Katz 2000. This model is designed for ’homogeneous’, isotropic turbulence.

The Germano et al. 1991a, Germano et al. 1991b and Lilly 1992 method can be used
to adapt the dissipation introduced depending on local flow properties. This is done by
replacing the global coefficient CS by a dynamic coefficient computed locally. This method
was designed to extend the use of the Smagorinsky model to non-homogeneous flows. It
improves significantly the results in specific situations. For example, it cancels dissipation
near walls where Smagorinsky model produces unwanted dissipation (Germano et al. 1991a).
It is just a correction and it does not solve all problems. This method is famous as it is now
used as a tool to compute dynamic coefficients for many models.

Many other dissipation models exist and good performance is obtained to predict mean
dissipation in homogeneous turbulence. A state of the art dissipation model is for example
the implicit model developed by Dairay et al. 2017. With this method, the dissipation is
introduced through the numerical scheme specifically designed to reproduce some physical
properties during the resolution. This method is ’equivalent to the use of spectral vanishing
viscosity’ with an implementation in real space. This method is based on a Kolmogorov
spectrum so it is also designed for homogeneous turbulence. This methodology converges to
the right solution when the mesh is refined as opposed to Smagorinsky model. Therefore,
the numerical error goes to zero when the resolution is chosen accordingly and the modeling
error understanding is much easier.

One main issue about LES identified by Moser, Haering, and Yalla 2021 is that ’exact
subgrid term determined from NS exhibits variations in the local dissipation (energy transfer
rate) that can be much larger than the mean transfer rate. This necessarily includes large
local transfers of energy from small to large scales, commonly called backscatter.’ This
feature is not captured well by dissipation models in general and more particularly by
Smagorinsky model. This feature is not new as it was already identified in Piomelli et al. 1991.

Other models were introduced to take into account this effect. This is for example the case
of wall adapted LES which are widely developed these years to capture non dissipative effects
close to walls.
However, more universal models were already developed to capture such phenomenon in
general. This is for example the case of the scale similarity model introduced by Bardina,
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Ferziger, and Reynolds 1980. According to Meneveau and Katz 2000, this model correlates
much better than Smagorinsky model with exact subfilter stress once evaluated on real turbu-
lence data. However, the mean dissipation is not well captured which leads to poor simulation
results. This is why this model is often used as a complement to a dissipation model such as
Smagorinsky:

τ̂ij = −2CS∆2
√

2S̃ijS̃ijS̃ij + ˇũiũj − ˇ̃ui
ˇ̃uj (2.29)

where (̌.) is a filter applied on the resolved quantities during LES. The similarity model idea
is to evaluate a subfilter stress with resolved quantities by over-filtering the resolved terms.
Then, these results are extrapolated to smaller scales. This method is expected to give good
results when the filtering cutoff frequency is in the inertial range. Indeed, the inertial range
similarity may legitimate the extrapolation to smaller scales.

More generally the mixed model configuration allows to tune the two parts of the model
separately: one mainly taking into account dissipation and the other energy transfer
fluctuations and backscatter.

A remaining work regarding LES modeling is to improve understanding and modeling of
this energy transfer fluctuations including backscattering. The good understanding of this
phenomenon is important to improve non-homogeneous flow modeling. Indeed, in flows
where strong mean flow gradients exist such as channel flows, backscatter can even prevail
over dissipation (Cimarelli and De Angelis 2014). Therefore, residual scales might locally
provide energy in average to resolved scales.

2.4 Objectives and thesis Outline

The small scale and large scale two-point Navier-Stokes equations are very powerful tools
to analyze non-homogeneous turbulence. The small scale equation is more related to the
small scale physics and therefore to turbulence cascade theories. The large scale equation is
strongly related to the small scale equation and was never analyzed either numerically or
experimentally to our group’s knowledge. Moreover, it is related to Large Eddy Simulation.
Therefore, the experimental analysis of both equations and their relations in different classes
of non-homogeneous steady flows is needed to improve their physical understanding as
well as the turbulence physics itself. Eventually, the links with Large Eddy Simulation are
to be analyzed to see how these fundamental equations can be useful for turbulence modeling.

In chapter 3, we introduce the mixer experiment used to produce different turbulent flows.
The Particles Image Velocimetry measurements methods and settings are described as well
as the main post-processing methods.
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In chapter 4, a first class of non-homogeneity is identified where Kolmogorov-like results
are measured in non-homogeneous turbulence. Theoretical elements are used to analyze
these results.

In chapter 5, non-Kolmogorov turbulence results are measured when the flow is rotating.
More information is obtained through two-point statistics to understand why the chapter 4
theoretical elements do not hold in this flow.

In chapter 6, the links between Large Eddy Simulation and the large scale two-point equa-
tion are analyzed. A new physically supported LES model is derived and tested.



Chapter 3

Experiments and processing
methods

3.1 Mixer presentation

Experiments are carried out with water in the same octagonal shaped, acrylic tank used in
(Steiros et al. 2017a) and refurbished for this project (figure 3.1). The octagonal shape is used
to minimize optical distortion during measurements. The water used during experiments is
highly pure (resistivity of 18 MΩ.cm) to improve measurements quality.

The impeller has a radial four-bladed flat blade turbine, mounted on a stainless steel
shaft at the mid-height of the tank. The impellers are driven by a stepper motor (Motion
Control Products, UK) in microstepping mode (25, 000 steps per rotation), to ensure smooth
movement, which is controlled by a function generator (33600A, Agilent, US). The rotation
speed and torque signal are measured with the Magtrol torquemeter TS 106/011. The torque
accuracy is 0.1 % of the rated torque (5Nm). The dimensions of the mixer are presented in
figure 3.2 where DT is the tank diameter (45cm) and H its height (H = DT ), C is the rotor
height (H/2) and D is the rotor diameter (about DT/2).

3.2 Different experiment configurations

Different configurations are tested to change the turbulence properties. The main geomet-
rical change is the use of the octagonal tank with baffles (figures 3.3b and 3.4) or without
baffles (figure 3.3a). The baffles (four vertical bars on the sides of the tank) are used to break
the flow rotation. These baffles are designed based on Nagata 1975 specifications for close
to fully baffled conditions which maximize power consumption and minimize rotation. For a
circular tank, this condition is achieved with four baffles of width around 0.12DT where DT

is the tank diameter (see DT in figure 3.2). Therefore, four baffles of mixer tank height and

41
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Figure 3.1: Mixing tank installation without baffles
1: Mixer tank, 2: Camera, 3: Stepper motor, 4: Torquemeter, 5: Blades, 6: Stepper motor

controller
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H

(a)

DT

D

(b)

Figure 3.2: Mixer dimensions. Figures modified from Steiros et al. 2017b
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(a) Mixing tank without baffles (b) Mixing tank with baffles

Figure 3.3: Mixer with and without baffles

Baffles

Figure 3.4: Top view of baffles

58mm width are used.
To test the robustness of our results we run experiments with two different types of blade

geometry which stimulate the turbulence differently: rectangular blades of 44mm × 99mm

size (figure 3.5a) and fractal-like/multiscale blades (figure 3.5b) of the exact same frontal
area 44 × 99mm2 but much longer perimeter. This blade difference affects turbulence
properties substantially as the resulting turbulence dissipation rate differs by 30% to 40% at
equal rotation speed (see table 3.3). We use here the two-iteration ’fractal2’ blade described
in Steiros et al. 2017b and shown in figure 3.5b. The blades are machined with laser cutting
machine of 15µm accuracy so the second fractal iteration is the maximal one which can be
manufactured easily.

Eventually, different rotation speeds are tested to evaluate Reynolds number effect. The
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(a) Rectangular blades (b) Fractal blades

Figure 3.5: Mixer blades

rotor speed is limited for practical reasons. First, the rotation torque shall be limited to
not break the 3D printed piece which hold the blades. Then, high rotation speed bring air
bubbles inside the water which can affect PIV measurements quality. For the configurations
without baffles, a vortex appears (figure 3.3a) and brings air bubbles deep inside the mixer
so that it can enter the field of view. For these configurations, the maximal rotation speed
is set to 3Hz for rectangular blades and 2.5Hz for fractal blades to limit the presence of air
bubbles in the field of view. For these configurations, the mixing tank is not filled to the top
to prevent water leaks occurring at high rotation speed with centrifugal forces. There is a
2.5cm space between the lid and water surface when the rotor is at rest.

For the baffled configurations, there is no rotation vortex at the center but the mixing is so
efficient that air at the surface is easily mixed inside water. Therefore, water is filled to the
top of the sealed container to minimize air bubbles. Even with this care, the rotation speed
can not be increased more than 1.5Hz. This is already a high speed for these configurations
because the torque is more than 1 N.m.

The water filling difference between baffled and non-baffled configurations is not a problem
because the baffles are used to break the flow rotation. The drag added by the lid in the
baffled configurations is also a way to reduce rotation. On the other hand, the small air gap
in the non-baffled configurations allows the rotation to develop freely.

3.3 Axis system conventions

All results are computed in non-rotating axis system (figure 3.6).

• The reference point is defined on the mixer centerline at a distance of 0.118m from the
bottom of the mixer (which corresponds to the center of the PIV field of view).

• The z axis is coincident with the centerline and directed toward the top.

• The mixer tank is octagonal so different plans exist. One of them is chosen for reference
and the camera is set parallel to this plan (P1).

• The x axis is defined in the plan P1 and perpendicular to the axis z. x is directed
toward the right side when looking the mixer at the camera point of view.
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0.118m X

Z
Y

Figure 3.6: Axis system (camera view)

• The y axis is deduced to have a direct axis system.

3.4 PIV resolution

The PIV resolution of the experiment (i.e. interrogation window size) is presented in table
3.1. In terms of the Kolmogorov length η = (ν3/⟨ϵ′⟩)1/4, where the angular brackets signify
a space-average over the PIV field of view, the resolution is between 2.3η and 5.1η depending
on the configuration. For those configurations where the interrogation window size is larger
than 3η the turbulence dissipation rate might be underestimated when denoised properly
(Foucaut et al. 2021). However, this underestimation remains acceptable for interrogation
window size smaller than 5η where less than 30 % of uncertainty (filtering effect) is expected
according to Laizet, Nedić, and Vassilicos 2015 and Lavoie et al. 2007.

F (Hz) Mf (µm/px) IW size (mm) IW size/η

Rectangular blades 2 14 0.45 2.3
Rectangular blades 3 14 0.45 3.2
Fractal blades 2 14 0.45 2.8
Fractal blades 2.5 14 0.45 3.1
Rectangular blades with baffles 1 14 0.45 4.1
Rectangular blades with baffles 1.5 14 0.45 5.1
Fractal blades with baffles 1 14 0.45 3.4
Fractal blades with baffles 1.5 14 0.45 4.4

Table 3.1: PIV resolution where Mf is the magnification factor and IW the interrogation
window.
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0.118m

0.45m

C1

C2

Figure 3.7: Measurement plane location

3.5 Presentation of the measurement planes

Two measurement planes are used during experiments. They are located at the same place
(figure 3.7) but their size is not the same as described in table 3.2. All the results presented
in this thesis are computed with the small field of view to have good resolution. The large
field of view was only used for checks but the quality of the measurements is not comparable.
Therefore, the results of this dataset are mentioned for information but are not presented
explicitly in the thesis because of their low quality.

Measurement plan size C1 C2

Small field of view 27mm 28mm

Large field of view 64mm 67mm

Table 3.2: Measurement planes size

The aim of the experiment was to have the field of view center coincident with the reference
point defined in section 3.3. In practice, some positioning uncertainty was introduced when
doing the experiment. Indeed, the mixer tank is not exactly symmetrical by construction
and the set-up is slightly flexible. The measurement plane positioning uncertainty is around
1mm in all directions.

In addition to this small uncertainty, the small field of view measurement plan is offseted
by 3mm in the y direction to be at the same location as preliminary experiments done at
the beginning of the project. Therefore, for the non baffle cases there is a small but non zero
mean flow in the measurement plan associated to this offset. Indeed, for these configurations
there is a close to solid rotation of the flow around the centerline. A small constant mean
flow over the measurement plan is expected through the projections computed in equation
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Mixer tank

Measurement

plan

u( )
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up( ) up( )

up( ) h

Figure 3.8: Measurement plane (top view)

3.1 and presented in figure 3.8. The measured mean flow variation with rotation frequency
is consistent with this analysis.

up(θ) = u(θ)cos(θ) = ωr(θ)cos(θ) = Ω h

cos(θ)cos(θ) = hΩ (3.1)

3.6 Particule Image Velocimetry settings

The PIV set up is composed of a camera, a laser, a set of lenses and mirrors to shape the
laser beam into a thin light sheet (figure 3.9), a Lavision PTU synchronisation unit and a
recording computer with Davis 10 from Lavision.

3.6.1 Camera

The camera used is the Phantom v2640 with full sensor image (2048px×1952px). A Nikon
macro Nikkor 200mm lens is used with f#8. The extremity of the lens is at 93 mm from the
glass. The field of view size is C1×C2 ≈ 27mm× 28mm for the high resolution experiments
(see figure 3.7) with a magnification factor of 14.1µm/px.

The acquisition is done by packets of five time-resolved images. The packet acquisition fre-
quency is 6Hz to ensure decorrelation between successive packets. The acquisition frequency
for the five images within each packet varies from 1.25kHz to 3kHz depending on type of blade
and rotor speed. This parameter is specifically set for each configuration to ensure a turbu-
lent fluctuation displacement between two frames of around 5px (corresponding to about 1
standard deviation) and rarely above 10px (observed with samples during the experiments).
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Mirror 1
Laser

Mirror 2

Spherical lens

Cylindrical lens
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Mirror 2 Waist: 1420mm
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Figure 3.9: PIV set-up

3.6.2 Laser

The laser used is the Blizz 30W high speed frequency laser from InnoLas. The laser
is optimized at 40kHz with 750µJ/pulse at 532nm wavelength and M2 < 1.3. For the
experiments it was set to around 500µJ/pulse because of the smaller frequency used. The
laser frequency is set according to the camera time-resolved recording frequency. The focal
lengths of the spherical and the cylindrical lenses are +800mm and -80mm respectively (beam-
waist set in the centre of field of view). The laser sheet height obtained is around 60mm and
its width is 0.6mm at the waist (which is close to the centerline of the mixer) with a Rayleigh
length of 400 mm. Therefore, the width of the laser is constant over the field of view.

3.6.3 Seeding

Mono-disperse polystyrene particles from Spherotech of diameter 5.33µm are used. They
maximise the concentration in the flow and lead to enough particles within each interrogation
window. The background noise is around 30 counts. There are on average about 10 particles
per interrogation window of 32px × 32px if a threshold of 50 counts is used to select most
particles. This is consistent with the criteria of Keane and Adrian 1991. Among these
particles, there is on average 6.5 particles higher than 100 counts per interrogation window.
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3.6.4 Processing

The calibration is done with LaVision 058-5 plate. The PIV processing is done with the
Matpiv toolbox modified at LMFL. It is a classical multigrid and multipass cross-correlation
algorithm (Willert and Gharib 1991, Soria 1996). Here four passes are used, starting with
64px × 64px then, 48px × 48px and finishing with two 32px × 32px passes. Before the final
pass, image deformation is used to improve the results (Scarano 2001, Lecordier and Trinité
2004). An overlap between IW of 62% is used, leading to vector spacing of about 0.17mm.
The final grid has then 159 points in the horizontal direction and 167 in the vertical one.

3.7 Computation of the turbulence parameters

The following conventions are used to compute the different turbulent parameters.

3.7.1 Viscosity

The temperature is measured before and/or after each experiment. The variation during
an experiment does not exceed 1°C. This is approximately the uncertainty associated to this
measure. The water viscosity is recomputed through a variant of the empirical Guzman
Andrade law which depends on temperature:

µ = A× 10B/(T −C) (3.2)

where T is the temperature in Kelvin, A = 2.415× 10−5Pa.s, B = 247.8K and C = 140K.
The kinematic viscosity is deduced from the equation:

ν = µ

ρ
(3.3)

assuming ρ ≈ 1000Kg/m3.

3.7.2 Dissipation

The axisymmetric dissipation formulation is used (George and Hussein 1991) where the
rotation axis is z:
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∂u′
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∂z

)2
+ 2

(
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∂x

)2
+ 2

(
∂u′

x
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(
∂u′

x

∂x

)2
)

>. (3.4)

The dissipation is averaged both in space and time to obtain a converged estimate over the
field of view. The notation < . > is used for space averaging and (.) for time averaging.

Different estimates are tested to check the robustness of the results with respect to the
choice estimate. One of them inspired by isotropic formula is defined as



CHAPTER 3. EXPERIMENTS AND PROCESSING METHODS 50

< ϵ′
τ >= ν

3 <

(
2× 15∂u′

x

∂x

2
+ 15∂u′

z

∂z
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> (3.5)

and is evaluated in table 3.3 after signal denoising (method explained in the next paragraph).

The results are different by less than 10% but more importantly the evolution from one
configuration to the other is consistent. Therefore, the variation of the results does not
seems to be significantly dependent on the estimate choice so that dissipation scalings can
be evaluated accurately. However, the value itself might contains some uncertainty.

The dissipation computation from experimental data is difficult because PIV introduces
random noise during the measurements. This noise contaminates significantly the dissipation
(Foucaut et al. 2021). Indeed, the turbulent energy is small at small scales so that noise can
dominate at these scales. This result is directly visible on experimental energy spectrum
(see figure 3.10) where a squared cardinal sine function modulation is observed (Foucaut,
Carlier, and Stanislas 2004). In Foucaut et al. 2021, the product of the derivatives used
to compute dissipation is overestimated by 70% before denoising. The best way to denoise
dissipation is to perform the experiment with two different PIV set-ups so that the noise of
both measurements are decorrelated. The product of the derivatives obtained from the two
systems cancel the random noise contribution:
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|s2 >

=<
∂̂u′

∂x
|s1 ×

∂̂u′

∂x
|s2 > + < βs1 ×

∂̂u′

∂x
|s2 > + <

∂̂u′

∂x
|s1 × βs2 > + < βs1 × βs2 >

=<
∂̂u′

∂x
|s1 ×

∂̂u
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(3.6)

where < . > is used for realization averaging here, s1 (resp. s2) refers to system 1 (resp.
system 2), β is the random PIV noise and (̂.) refers to denoised data (i.e. without noise but
with PIV interrogation window filtering effect).

Indeed, the noise is not correlated with the true signal and the noise of the two cameras is
decorrelated so it cancels out once averaged.

This double measurement was not possible for this experiment because of practical lim-
itations. Therefore, a simplified denoising method is used. The idea is to use the high
resolution of the measurements (in space or in time) and shift the two derivatives by a small
offset. This method introduces a small filtering of the true signal but the noise cancels out.
The experimental measurements are highly resolved in time so time denoising is used:
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Figure 3.10: Energy spectrum from experimental results contaminated by PIV noise
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(3.7)

where βt and βt+dt are uncorrelated because the new particles entering the interrogation
window (IW) at t +dt change the peak shape, so the peak fit random noise is then
completely different. This method is valid if dt (the time increment between two velocity
fields) is small enough so that the denoised quantities do not change significantly between
two time steps but not too small (otherwise there would be no new particles inside the
IW). In the experiments carried out, dt is chosen to have time resolved results which
means the particle displacement between two frames is less than 10 pixels: it is between
0.02τ and 0.08τ where τ =

√
ν

<ϵ′>
is the Kolmogorov time scale. The PIV processing

(final pass) is done with a window size of 32 pixels × 32 pixels so that there is already
a spatial filtering of the data. Therefore, the filtering introduced by shifting the two
derivatives by a maximum of 10 pixels is comparable or smaller than the already existing
PIV filtering so that the results should not change significantly. This method can be used
to denoise experimental data without losing too much information of the true signal. This
method might however slightly underestimate the dissipation. The same procedure can
also be used in space by selecting different points in the derivative, i.e. multiplying the



CHAPTER 3. EXPERIMENTS AND PROCESSING METHODS 52

F (Hz) < ϵ′ > (1) <̂ ϵ′ > (2) <̂ ϵ′ > (3) <̂ ϵ′
τ > (4)

Rectangular blades 2 1.4× 10−3 7.4× 10−4 6.0× 10−4 5.7× 10−4

Rectangular blades 3 4.4× 10−3 2.3× 10−3 2.1× 10−3 2.1× 10−3

Fractal blades 2 2.5× 10−3 1.5× 10−3 1.3× 10−3 1.3× 10−3

Fractal blades 2.5 4.7× 10−3 2.6× 10−3 2.3× 10−3 2.3× 10−3

Rectangular blades with baffles 1 5.2× 10−3 3.5× 10−3 3.6× 10−3 3.7× 10−3

Rectangular blades with baffles 1.5 1.7× 10−2 1.1× 10−2 1.2× 10−2 1.3× 10−2

Fractal blades with baffles 1 4.2× 10−3 2.6× 10−3 2.4× 10−3 2.5× 10−3

Fractal blades with baffles 1.5 1.3× 10−2 8.2× 10−3 8.2× 10−3 8.6× 10−3

Table 3.3: Dissipation computation (m2/s3). < ϵ′ > (1) is computed with noise; <̂ ϵ′ > (2) is
computed with spatial denoising process; <̂ ϵ′ > (3) is computed with time denoising process;
and <̂ ϵ′

τ > (4) is also computed with time denoising process.

derivative at x and at x+dx computed with a centred scheme, where dx is the vector
spacing whose value is between 2.3η and 5.1η. As a 62% overlap is used, the three
points used are separated by 36px which corresponds to a second filter which has about the
same filter size as the IW. However, the spatial denoising may filter more than time denoising.

The denoising process is tested both in space and in time to check the results consistency
(table 3.3). The results are close so that the two methods seems to be reliable. There
is a significant decrease of the dissipation associated to the denoising process (around a
factor 2). These results seems to be consistent because the mixer PIV measurements are
expected to be more noisy than typical air experiments. Indeed, this noise is amplified
by the remaining presence of small air bubbles in water and the difficulty to obtain the
optimal particle concentration (of very bright particles) linked to this high magnification
measurement. These results underline also the importance to denoise dissipation. The energy
spectra and two-point statistics do not need to have the same denoising process because the
noise is known to be non-negligible (or even dominant) only at small scales. Therefore, only
the small scale part of the results (large k in Fourier space or small r in two-point space) are
non-negligibly contaminated by this PIV noise.

Finally, the PIV resolution affects significantly the dissipation results and a small under-
estimation is expected in our results as explained in section 3.4.

Overall, the dissipation computation is a difficult problem where resolution, noise and
convergence affect significantly the results. For these experiments, the resolution is accept-
able, the noise impact is removed through denoising process and the convergence is achieved
through an averaging over 100,000 velocity fields (corresponding to 50,000 uncorrelated) and
space averaging over the field of view. The dissipation estimate is expected to slightly un-
derestimate the true one. For simplicity the notation (̂.) is not used in the thesis but all the
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dissipation results are denoised.

3.7.3 Kolmogorov micro scale

The Kolmogorov micro scale is computed from dissipation:

η =
(

ν3

< ϵ′ >

)1/4

(3.8)

This scale represents the smallest pulsation presents in the flow. Indeed, at this scale the
dissipation is dominant so these pulsations dies out with viscosity.

3.7.4 Taylor length scale and Taylor Reynolds number

The following formulation of the Taylor micro-scale is used based on the available data:

λ =
√

15ν

< ϵ′ >

√
< u′2

x + u′2
z >

2 (3.9)

The value of the Taylor scale can vary significantly with the formulation choice. However,
the variation from one configuration to the other should remain consistent whatever the
formulation. The following formulation is also tested:

λ̃ =
√

15ν

< ϵ′ >

√
< 2u′2

x + u′2
z >

3 (3.10)

This formulation overestimates the value by a close to constant proportion between 20%
and 25% compared to 3.9. The plots collapse is nearly unchanged when this later estimate
is used to non-dimensionalize r.

The Reynolds number based on the Taylor length is calculated:

Reλ =
λ

√
< u′2

x + u′2
z >

ν
(3.11)

This number is used to quantify the turbulence development. The following formulation is
also tested:

R̃eλ =
λ̃

√
< 2u′2

x + u′2
z >

ν
(3.12)

This formulation overestimates the value by a close to constant proportion between 45%
and 55% compared to 3.11. This magnitude difference is significant but the main risk is
to overestimate the Taylor Reynolds number. Therefore, the formulation with the smallest
values is retained.
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3.7.5 Rossby number

The Rossby non-dimensional number:

Ro = Uturb

2ΩL
(3.13)

quantifies the rotation effect on turbulence. Ω = 2πF is the rotation speed. L is the integral
scale which is estimated by the rotor radius (L ≈ R = 11.25cm). Uturb is a characteristic tur-
bulence velocity scale. The maximal fluctuating velocity is taken for Uturb following Baroud
et al. 2002. There is no impact of the rotation if Ro > 1 and the flow is said rapidly rotating
for Ro << 1. The Rossby number values are evaluated directly in chapters 4 and 5.

3.8 Error bars computations

For each configuration, 150, 000 velocity fields are recorded in time including around 50, 000
fully uncorrelated velocity field samples for convergence. Averaging over time is not sufficient
for convergence and we therefore also apply averaging over space which greatly improves it.
It corresponds to 150, 000×164×78 ≈ 1.9×109 points for one-point statistics where 164×78
is the number of points associated with the vector spacing. For two-point statistics, some
spatial points are not available depending on the separation vector size and direction. For
zero separation vector, 150, 000 × 164 × 78 ≈ 1.9 × 109 points are available for convergence
but for the largest separation vector in rx direction there are only 150, 000× 164 ≈ 2.4× 107

points available and in rz direction only 150, 000× 78 ≈ 1.2× 107 are available.
The most important results in this paper are reported with error bars quantifying conver-

gence and computed with a bootstrapping method.
The convergence quantification is a classical problem in turbulence and it is usually evalu-

ated with the formula from Benedict and Gould 1996 for a 95% confidence interval:

∆f̄

f̄
= 2√

N

σf

f̄
(3.14)

where N is the number of independent samples.
Regarding the two-point quantities it is not as easy to estimate the convergence because

the quantities are computed at different two-point separations r. Therefore, the number of
independent points is difficult to estimate and depends on r. Moreover, there is a double
averaging in time and in space which make things even more complicated. This is why
a more direct and robust method is used to estimate the convergence: the bootstrapping
method. This method gives more accurate results than formula 3.14 because it does not
need to estimate the number of independent samples.

This method is based on the central limit theorem which states that ’irrespective of a
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random variable’s distribution if large enough samples are drawn from the population then
the sampling distribution of the mean for that random variable will approximate a normal
distribution.’

For each quantity and at every separation value r, 600 sub-groups are defined. Each sub-
group contains 83 successive time steps with at least 167 spatial points. The spatial and
temporal average of these sub-groups are computed and noted (mi(r))i∈[1:N ]. According to
the central limit theorem, (mi(r))i∈[1:N ] has a normal distribution. Therefore, a confidence
interval can be easily defined for this distribution with 95% of reliability:

I95% =
[
m̄− t95

σm√
N

, m̄ + t95
σm√

N

]
(3.15)

where t95% = 1.96, m̄ = limN→∞

∑N

1
mi

N and σm =
√

limN→∞

∑N

1
(mi−m̄)2

N−1

Only a standard deviation estimate of (mi(r))i∈[1:N ] is known because of the limited number
of sub-groups. Therefore, following Neuilly and Fréjacques 1998, the following correction is
used to be more accurate:

I95% =
[
m̄−

(
1 + t95

2N

)
t95

Std((mi(r))i∈[1:N ])√
N

, m̄ +
(

1 + t95

2N

)
t95

Std((mi(r))i∈[1:N ])√
N

]
(3.16)

A test is carried out with a badly converged quantity to check the error bars reliability.
The time derivative estimate is not used in this thesis but it can be evaluated from the
dataset. This quantity can only be computed with 50, 000 different velocity fields out of
150, 000 because of the time differentiation. Therefore, this quantity is much less converged
than others. This quantity should also converge to zero when averaged in time by definition.
Therefore, it is a good test to check the error bars. The results are averaged both in time and
in space. The results of several configurations including the less converged one are presented
in figure 3.11. The error bars are small at small scales and increase with r. This is expected
because there are more samples available at small r than at large r on the spatial domain.
The error bars always include 0 (the expected value) even for the large deviations of the
mean value. Therefore, the error bars are confirmed to be robust and to provide accurate
uncertainty estimate.

The error bars of a third order quantity are then computed (an estimate of the energy
interscale transfer rate) and are presented in figure 3.12. It is a third order quantity so it
is very difficult to converge as its distribution law is highly non-Gaussian. The uncertainty
estimated is non-negligible but acceptable to conclude on the shape and on the value when
r is not too large. It confirms the good results convergence. For the most important results,
the error bars are estimated in the results sections.
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Figure 3.11: Error bars test for time derivative
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Figure 3.12: Error bars used for an estimate of interscale transfer rate
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Figure 3.13: Probability distribution function of the velocity components ux and uz decimal
part

3.9 Peak-locking

When a particle is too small, its correlation peak position fit results are biased towards in-
teger values. Therefore, the displacement between two images is more likely to be an integer
number of pixels. This peak-locking error (as it is called, Raffel et al. 2018) is systematic (bias
error) and is therefore visible on the velocity probability distribution functions (sine modu-
lation) but does not usually impact first order mean quantities of turbulent flow if enough
dynamic is used (here high dynamic is selected of about 5px for one standard deviation, see
Christensen 2004). Peak-locking can be reduced by increasing particles diffraction spot using
camera lens aperture F#. However, an increased F# reduces the brightness of the particles
and therefore the number of visible particles. In this experiment, F#8 is used (diffraction
spot of 1.4px) as a compromise and some peak locking is still visible. The impact on the
results is analyzed in this section.

3.9.1 Peak locking quantification

The experimental PIV measurements introduce a random error which respect a Gaussian
distribution law. This distribution law has a zero mean and usually a standard deviation
around 0.1 - 0.2 px (Raffel et al. 2018). It introduces also the peak locking systematic error as
explained previously. This latter error can be quantified through the probability distribution
function (PDF) of the particle displacement in pixel: upixel−round(upixel). A constant PDF
means there is no peak locking. The results are presented in figure 3.13. Some peak-locking
is observed in the results. This error is similar for all configurations and is more important
in the x direction.
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The peak locking error can be modeled as −a.sin(2π(utrue − round(utrue)) so that
umeasured = utrue−a.sin(2π(utrue−round(utrue))+ϵGaussian, where ϵGaussian is the random
noise and utrue the true displacement with IW filtering effect. However, the peak locking can
only be estimated in the measurements as a.sin(2π(umeasured− round(umeasured)) according
to Cholemari 2007. The coefficient represents the peak-locking magnitude and it can be eval-
uated from experimental data using the previous approximation. A correction is added to the
contaminated data until the PDF of the rounded part of the displacement is nearly flat. The
coefficient a used for this correction gives a good estimate of the peak locking magnitude.
For all configurations, the maximal value of a is estimated to be 0.02px which corresponds
to a weak peak locking.

It means that the peak locking error order of magnitude is around 10 times smaller than
the Gaussian PIV noise. However, this error does not necessarily disappear when averaged
because it is a systematic error. This is why the consequences of this phenomenon on the
results of this study are quantified.

3.9.2 Peak locking impact on spatial energy spectrums

The peak locking impact on spatial energy spectrums is evaluated by introducing artificial
peak locking into Direct Numerical Simulations (DNS).

The DNS dataset was computed by Jean-Philippe Laval from LMFL. It is a 512×512×512
pseudo-spectral periodic simulation with Reλ ≈ 140. The resolution is around 1.6η. The
energy spectrum is computed directly from the simulation results and from the results affected
by a modeled peak locking:

upeaklocking = usimulation − a× sin(2π(usimulation − round(usimulation)) (3.17)

with a = 0.02px.
The results are presented in figure 3.14. The peak-locking does not have any consequence

on the spatial energy spectrum except at the very high wavelengths where in reality it will
be much more polluted by the PIV noise. Therefore, the experimental results can be used to
compute energy spectrums without restrictions.

3.9.3 Peak-locking impact on two-point statistics

The peak locking impact on averaged two-point statistics is quantified by introducing a
peak locking correction in the experimental data. Then, we evaluate the results evolution
after the correction. The correction defined in Cholemari 2007 is used:

ucorrected = umeasured + aestimated × sin(2π(umeasured − round(umeasured)) (3.18)

where a is estimated for each configuration in x and y direction.
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Figure 3.14: Peak locking impact on spatial energy spectrum from DNS.

The results are presented in figure 3.15. No difference is observed between the results with
and without peak locking correction. Therefore, the experimental results can be used to
compute two-point statistics without restrictions. The results presented in the report do not
contain peak locking correction.
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Figure 3.15: Peak-locking impact on an estimate of the interscale energy transfer rate
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Chapter 4

Scale-by-scale non-equilibrium
with Kolmogorov-like scalings in
non-homogeneous stationary
turbulence

Most of the material presented in this chapter is submitted as a publication in the Journal
of Fluid Mechanics.

4.1 Introduction

The Kolmogorov 1941 theory of statistically homogeneous turbulence (see Frisch 1995, Pope
2000) predicts that the interscale transfer rate of turbulent kinetic energy is approximately
balanced by the turbulence dissipation rate across a wide range of length scales in the inertial
range as the Reynolds number tends to infinity. This prediction of scale-by-scale equilibrium
holds for statistically stationary forced homogeneous turbulence (see Frisch 1995) but is also
made for decaying homogeneous turbulence on the basis of a small-scale stationarity hypoth-
esis (see Frisch 1995, Pope 2000 and section 2 of Chen and Vassilicos 2022). A widely held
view is that the turbulence is always statistically homogeneous at small enough length-scales
if the Reynolds number is large enough. But what if the Reynolds number, even if high, is not
high enough for homogeneity to exist at the smallest scales? And if, in such circumstances,
one finds simple scalings and scale-by-scale balances which appear independent of the details
of the non-homogeneity, would these non-homogeneity laws survive as the Reynolds is taken
to infinity? Or would they locally tend to Kolmogorov scale-by-scale equilibrium, in which
case Kolmogorov scale-by-scale equilibrium would, in some sense, be an asymptotic case of
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these non-homogeneity laws?

In this chapter we address statistically stationary non-homogeneous turbulence at mod-
erate to high Reynolds numbers and we attempt to provide some partial answer to the
first one of these questions: can simple scale-by-scale turbulence energy balances exist in
non-homogeneous turbulence? The questions concerning the limit towards infinite Reynolds
numbers cannot be answered at present and may, perhaps, never be answered unless one can
some day answer them by rigorous mathematical analysis of the Navier-Stokes equations.
The problem with claims made for Reynolds numbers tending to infinity is that one can
always argue that the Reynolds number is not large enough if an experiment or simulation
does not confirm the claims.

We chose to study the turbulent flow under the turbulence-generating rotating impellers
in a baffled tank where the baffles break the full rotation of the flow. This is a flow where
the turbulence is statistically stationary, where Taylor length-based Reynolds numbers up
to 650 can be achieved, where different types of impeller can produce significantly different
turbulent flows and where we can use a two-dimensional two-component (2D2C) Particle
Image Velocimetry (PIV) that is highly resolved in space and capable to access estimates
of turbulence dissipation rates as well as parts of various interscale and interspace turbulent
transfer/transport rates. Only full three-dimensional three-component highly resolved PIV
measurements can, in principle, access the turbulence dissipation and these transfer/transport
rates in full, but such an approach is currently beyond our reach over the significant range
of length scales needed to establish scale-by-scale energy balances. The truncated trans-
fer/transport rates obtained by our 2D2C PIV do, nevertheless, exhibit interesting prop-
erties, in particular because they are concordant with a recent non-equilibrium theory of
non-homogeneous turbulence (Chen and Vassilicos 2022) which we also further develop here.

In the following section we present the two-point scale-by-scale equations which form the
basis of this study’s theoretical framework. In section 4.3, we discuss interscale turbulent
energy transfers and the special case of freely decaying statistically homogeneous turbulence
as a point of reference. Section 4.4 presents the main 2D2C PIV measurements’ results. We
use our PIV measurements to assess two-point turbulence production in section 4.5 and linear
transport terms (e.g. mean advection) in section 4.6. In section 4.7 we present intermediate
similarity predictions and PIV measurements of second order structure functions of turbu-
lent fluctuating velocities. Section 4.8 presents theoretical predictions of non-equilibrium
small-scale turbulent energy budgets for non-homogeneous turbulence and related 2D2C PIV
measurements. Finally, section 4.9 presents measurements and a theoretical discussion of
elements of the large-scale turbulent energy budget, section 4.10 proposes a small-scale ho-
mogeneity hypothesis that is extended in a more theoretical way in appendix A.2 and we
conclude about this chapter in section 4.11.
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4.2 Theoretical framework based on two-point Navier-
Stokes equations

Interscale turbulence transfers for incompressible turbulent flows can be studied in the
presence of all other co-existing turbulence transfer/transport mechanisms in terms of two-
point equations exactly derived from the incompressible Navier-Stokes equations (see Hill
2001, Hill 2002b and Germano 2007b) without any hypotheses or assumptions, in particular
no assumptions of homogeneity or periodicity. In chapter 2, the small scale two-point equation
2.7 was introduced without Reynolds decomposition. Here a Reynolds decomposition is used:
δu = δu + δu′, uX = uX + uX

′, δp = δp + δp′ where the overline signifies an average over
time. Under the assumption of statistical stationarity, this general two-point energy equation
leads to the following pair of two-point energy equations:

(uX .∇X + δu.∇r) 1
2 |δu|2 + Pr + P s

Xr + ∂

∂xj
(δuiu′

Xjδu′
i) + ∂

∂rj
(δuiδu′

jδu′
i)

= −∇X .(δuδp) + ν

2 ∇X
2 1

2 |δu|2 + ν

2 ∇r
2 1

2 |δu|2 − ν

4
∂u+

i

∂ζ+
k

∂u+
i

∂ζ+
k

− ν

4
∂u−

i

∂ζ−
k

∂u−
i

∂ζ−
k

(4.1)

(uX .∇X + δu.∇r) 1
2 |δu′|2 − Pr − P s

Xr + ∇X .(uX
′ 1
2 |δu′|2) + ∇r.(δu′ 1

2 |δu′|2)

= −∇X .(δu′δp′) + ν
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2 |δu′|2 + ν
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(4.2)

where Pr = −δu′
jδu′

i
∂δui

∂rj
= −δu′

jδu′
i

1
2 [Σij(X+r)+Σij(X−r)] and P s

Xr = −u′
Xjδu′

i
∂δui

∂Xj
, with

Σij ≡ 1
2 ( ∂ui

∂Xj
+ ∂uj

∂Xi
), are two-point turbulence production rates. Indeed, being proportional to

mean flow gradient terms and to averages of products of fluctuating velocities, they represent
linear turbulence fluctuation processes and they exchange energy between |δu|2 and |δu′|2

because they appear with opposite signs in equations (4.1) and (4.2) as already noted by
Alves Portela, Papadakis, and Vassilicos 2017.

The two-point turbulence production terms Pr and P s
Xr differ. Pr results from the product

of the two-point small-scale Reynolds stress δu′
jδu′

i with the two-point half sum of mean
strain rates 1

2 (Σij(X + r) + Σij(X− r)) both of which are symmetric in (i, j). On the other
hand, P s

Xr results from the product of non-symmetric small/large-scale correlation u′
Xjδu′

i

with the two-point gradient ∂δui

∂Xj
. To better set the context for the two-point turbulence

production rate P s
Xr one needs to consider the evolution equation for the two-point velocity

half sum uX
2(X, r, t).

This equation (2.8) was first obtained by Germano 2007b and was already introduced in
chapter 2. A pair of Reynolds averaged two-point energy equations follows (using pX =
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pX + p′
X):

(uX .∇X + δu.∇r) 1
2 |uX |2 + PX + P l
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where PX = −u′
Xju′

Xi
∂uXi

∂Xj
= −u′

Xju′
Xi

1
2 [Σij(X + r) + Σij(X− r)] and P l

Xr = −δu′
ju′

Xi
∂δui

∂Xj
.

These two-point turbulence production rates represent linear turbulence fluctuation processes
and an exchange of energy between |uX |2 and |u′

X |2 because they appear with opposite signs
in equations (4.3) and (4.4).

Once again, the two-point turbulence production terms PX and P l
Xr differ. PX results

from the product of the two-point large-scale Reynolds stress u′
Xju′

Xi with the two-point half
sum of mean strain rates 1

2 (Σij(X + r) + Σij(X− r)) both of which are symmetric in (i, j).
This is similar to Pr except that the two-point Reynolds stress is now large-scale rather than
small-scale because it is defined in terms of the fluctuating velocity half sum rather than half
difference. On the other hand, P l

Xr results from the product of non-symmetric small/large-
scale correlation u′

Xiδu′
j with the two-point gradient ∂δui

∂Xj
, which is similar to P s

Xr. However,
the sum of both, i.e. PXr ≡ P s

Xr +P l
Xr, results from the product of a symmetric small/large-

scale correlation u′
Xiδu′

j + u′
Xjδu′

i with 1
2 [Σij(X + r) − Σij(X − r)] and contributes to the

linear transfer of energy by total production rate PX + Pr + PXr between 1
2 |u

+|2 + 1
2 |u

−|2

and 1
2 |u′+|2 + 1

2 |u′+|2.

4.3 Interscale turbulent energy transfers

Besides two-point turbulent production terms, the two-point energy equations of the pre-
vious section involve important interscale and interspace transport terms. Germano 2007b
interpreted his equations 2.6 and 2.8 in the context of large eddy simulations (LES). He
showed that the term (δu.∇r) uX in equation 2.6 can be interpreted as the gradient of a
subgrid stress. This term gives rise to the term ∇r.(δu|uX |2) in equation 2.8 which is there-
fore an energy transfer rate between large-scale velocities (velocity half sum) and small-scale
velocities (velocity half difference). Germano 2007b also derived the kinematic equation 2.9
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previously introduced in chapter 2 and reminded here for ease of reading:

∇r.(δu|uX |2) + ∇r.(δu|δu|2) = 2∇X .(δu(δu · uX)) (4.5)

This equation relates ∇r.(δu|uX |2) to ∇r.(δu|δu|2) in equation 2.7 where ∇r.(δu|δu|2)
accounts for non-linear interscale energy transfer and the turbulence cascade, e.g. see Chen
and Vassilicos 2022.

It must be stressed, however, that the term ∇r.(δu|δu|2) in equation 2.7 does not only
include non-linear interscale transfer responsible for the turbulence cascade, it also includes
two-point turbulence production and interscale energy transfer by mean flow differences.
Indeed, it gives rise in equation 4.2 to the two-point turbulence production rate Pr, to the
linear average interscale turbulent energy transfer rate by mean flow differences δu.∇r|δu′|2

and to the non-linear average interscale turbulent energy transfer rate ∇r.(δu′|δu′|2) relating
to the turbulence cascade. The other terms in the energy equation 4.2 arise from the pressure
gradient, the viscous terms and the advection of small-scale velocity δu by the large-scale
velocity uX in equation 2.5. In particular, this advection term gives rise to P s

Xr and to the
interspace turbulent transport rate of smaller-scale turbulence energy, i.e. ∇X .(uX

′|δu′|2).

Similar observations can be made for the large-scale energy equations 2.8 and 4.4 where
∇r.(δu|uX |2) in 2.8 gives rise in 4.4 to the two-point production rate P l

Xr (not PX), to
the linear average turbulent energy transfer rate by mean flow differences δu.∇r|u′

X |2 and
to the fully non-linear average turbulent energy transfer rate ∇r.(δu′|u′

X |2). The other
terms in the energy equation 4.4 arise from the pressure gradient, the viscous terms and the
self-advection of large-scale velocity uX in equation 2.6. In particular, this self-advection
term gives rise to PX (not P l

Xr) and to the interspace turbulent transport rate of larger-scale
turbulence energy, i.e. ∇X .(uX

′|uX
′|2)

Returning to the two-point turbulence production terms, Pr and P s
Xr appear in the small-

scale energy equation 4.2 whereas PX and P l
Xr appear in the large-scale energy equation

4.4. All four terms vanish if the mean flow is homogeneous but Pr represents turbulence
production by mean flow non-homogeneities at small scales whereas PX represents turbulence
production by mean flow non-homogeneities at large scales. It is worth noting that PX

tends to the usual one-point turbulence production rate −u′
ju′

iΣij in the limit r → 0 (u′

is the fluctuating turbulent velocity at one point) whereas Pr tends to zero in that limit.
P l

Xr and P s
Xr also tend to zero in that limit but they represent turbulence production by

mean flow non-homogeneities that is cross-scale as they involve correlations between the
fluctuating velocity half differences and fluctuating velocity half sums. The hypothesis that
large and small scales may be uncorrelated leads to the suggestion that P l

Xr and P s
Xr may be

increasingly negligible for decreasing |r|, as indeed found for P s
Xr in the intermediate layer of

fully developed turbulent channel flow by Apostolidis, Laval, and Vassilicos 2023.
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Applying Reynolds averaging to the kinematic identity 4.5 we obtain

∇r.(δu|δu|2) + ∇r.(δu|δu′|2) + ∇r.(δu′|δu′|2) + 2∇r.(δu′(δu′δu))

+ ∇r.(δu|uX |2) + ∇r.(δu|uX
′|2) + ∇r.(δu′|uX

′|2)− 2P l
Xr

= 2∇X .(δu(δu.uX)) + 2∇X .(δu(δu′.u′
X))

+ 2∇X .(δu′(δu′.u′
X)) + 2∇X .(δu′(δu.u′

X))− 2Pr

(4.6)

which demonstrates that, in general, the average interscale turbulent energy transfer rate
∇r.(δu′|δu′|2) reflecting the turbulence cascade does not trivially relate with the average
turbulent energy transfer ∇r.(δu′|uX

′|2) reflecting work by subgrid stresses (see Germano
2007b).

A notable exception is statistically homogeneous turbulence where δu = 0, Pr = 0, P l
Xr =

0 and derivatives with respect to X of third order fluctuating velocity statistics such as
∇X .(δu′(δu′.u′

X) vanish (we cannot assume that uX .∇X |δu′|2 vanishes), in which case
4.6 reduces to

∇r.δu′|u′
X |2 = −∇r.δu′|δu′|2. (4.7)

Under such statistical homogeneity conditions (note that the terms involving pressure fluc-
tuations in equations 4.2 and 4.4 are derivatives with respect to X of third order fluctuating
velocity statistics given the Poisson equation relating pressure and velocities), and by con-
sidering scales |r| large enough to neglect viscous diffusion, fluctuating energy equations 4.2
and 4.4 become, respectively,

uX .∇X |δu′|2 + ∇r.(δu′|δu′|2) ≈ −ϵ′ (4.8)

and
uX .∇X |u′

X |2 + ∇r.(δu′|uX
′|2) ≈ −ϵ′ (4.9)

where ϵ′ is the average turbulence dissipation rate. Kolmogorov’s small-scale stationarity
hypothesis adapted to these equations states that uX .∇X |δu′|2 is much smaller in magnitude
than ϵ′ at small enough scales |r|. With this hypothesis it follows that

∇r.δu′|δu′|2 ≈ −ϵ′, (4.10)

∇r.δu′|u′
X |2 ≈ ϵ′ (4.11)

and
uX .∇X |u′

X |2 ≈ −2ϵ′ (4.12)

in an intermediate range of scales large enough to neglect viscous diffusion and small enough to
neglect small-scale non-stationarity. Relation 4.10 is Kolmogorov’s scale-by-scale equilibrium
and relation 4.11 was first derived by Germano 2007b. (Hosokawa 2007 assumed isotropy
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and derived the equivalent of 4.11 for homogeneous isotropic turbulence).
Turbulence is rarely homogeneous. Therefore, the natural question to ask is whether energy

transfer balances which may be different from but nevertheless in the same spirit as 4.10 and
4.11 exist in non-homogeneous turbulence. And if they do, how different are they and what
determines the difference?

Various different classes of non-homogeneity exist. Apostolidis, Laval, and Vassilicos 2023
developed a scale-by-scale turbulent kinetic energy balance theory for the intermediate layer
of fully developed turbulent channel flow where interspace turbulent transport rate and two-
point pressure-velocity transport are negligible but small-scale production is not. A theory
of scale-by-scale turbulent kinetic energy for non-homogeneous turbulence was recently pro-
posed by Chen and Vassilicos 2022 who’s approach allowed them to treat equation 4.2 when
small-scale interspace turbulent transport and spatial gradients of two-point pressure-velocity
correlations are not negligible. In the present chapter we study the turbulent flow under the
rotating blades in a baffled container (mixer) where the baffles break the rotation in the flow
and enhance turbulence. We start by assessing two-point production to determine whether
we need to take it into account when applying the theory of Chen and Vassilicos 2022 to equa-
tion 4.2. Even if Pr and P s

Xr are negligible, large-scale two-point production is necessarily
present at some scales if one-point production is present in the flow.

In the following section we present the main experimental measurements’ results which we
use in subsequent sections to estimate various terms in equations 4.2 and 4.4.

4.4 Experimental measurements

The experimental measurements are presented in detail in chapter 3. Only the baffle
configurations results are used in this chapter.

Defining parameters

The defining parameters of the experiment are presented in table 4.1. The rotation fre-
quency F is either 1Hz or 1.5Hz. The global Reynolds number is Re = 2πF R2

ν . where
R = D/2 ≈ 11.25cm is an estimate of the rotor radius. Re is large, higher than 8.104, and
the flow is therefore turbulent.

The Rossby number is estimated as defined in section 3.7.5. Our values of Ro range between
10−1 and 1 and are therefore intermediate between fast rotating and non-rotating turbulence.
However, the rotor rotation speed Ω is not representative of flow rotation because the baffles
break the flow rotation as explained in Nagata 1975. Therefore, the Rossby number is
probably severely underestimated and the rotation is not expected to affect significantly the
turbulence behavior in our experiment.
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Figure 4.1: (a): Schematic of mean flow in a mixer with baffles (Nagata 1975). (b): Mean
flow measurement within the measurement plane shown as a green square in (a).

Basic turbulent flow properties

The main turbulent parameters are presented in table 4.2. They include the turbulence
dissipation rate ⟨ϵ′⟩ averaged over time (overbar) and over space in our field of view (brackets),
the resulting Kolmogorov length-scale η (computed with ⟨ϵ′⟩) and the Taylor length λ. These
parameters are provided as reference and are used in the chapter to non-dimensionalise results.

The Taylor length-based Reynolds number Reλ (see discussion on its estimation in chapter
3) is larger than 480 in all four configurations. All the four flows that we study are therefore
highly turbulent.

In figure 4.1b we plot the mean flow velocity for one of our four configurations but the plot
is representative of all four configurations. The mean flow velocity is oriented vertically from
bottom to top and is not negligible in magnitude. Within our field of view, it is horizontaly
uniform and accelerates by about 7% from bottom to top. These observations are consistent
with the overall mean flow structure identified by Nagata 1975 and shown in figure 4.1a.

F (Hz) Re vel rms (m/s) Ro Mean torque (N.m)
Rectangular blades with baffles 1 9.8× 104 1.0× 10−1 3.6× 10−1 5.3× 10−1

Rectangular blades with baffles 1.5 1.3× 105 1.6× 10−1 4.0× 10−1 1.1
Fractal blades with baffles 1 8.6× 104 9.1× 10−2 3.2× 10−1 4.1× 10−1

Fractal blades with baffles 1.5 1.2× 105 1.4× 10−1 3.4× 10−1 8.1× 10−1

Table 4.1: Main parameters of the experiment: vel rms (m/s) stands for
√

< u′2
x > + < u′2

z >
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F (Hz) ⟨ϵ′⟩ (m2/s3) η(m) λ(m) Reλ

Rectangular blades with baffles 1 3.6× 10−3 1.1× 10−4 4.1× 10−3 5.1× 102

Rectangular blades with baffles 1.5 1.2× 10−2 8.8× 10−5 3.7× 10−3 6.5× 102

Fractal blades with baffles 1 2.4× 10−3 1.3× 10−4 4.9× 10−3 4.8× 102

Fractal blades with baffles 1.5 8.2× 10−3 1.0× 10−4 4.1× 10−3 5.8× 102

Table 4.2: Main turbulence parameters. The Kolmogorov length scale is calculated as η =
(ν3/⟨ϵ′⟩)1/4. The Taylor length and the Reynolds number Reλ are calculated as in chapter
3.

2D2C truncations and estimates of 3D3C statistics

The various terms in the equations of the previous sections require three-component (3C)
velocity fields in three-dimensional (3D) space to be calculated. However, our measurements
are performed with 2D2C PIV. We can therefore only calculate 2D2C truncations of 3D3C
statistics and in a few cases (section 4.5 and section 4.6) we estimate 2D2C surrogates of
3D3C terms.

4.5 Two-point turbulence production rates

We start our data analysis with an assessment of two-point turbulence production rates.
We define our coordinate system such that components i = 1, i = 2 and i = 3 corre-
spond to the x, y and z directions respectively and therefore (r1, r2, r3) = (rx, ry, rz) and
(X1, X2, X3) = (Xx, Xy, Xz). The sums defining Pr = −δu′

jδu′
i

∂δui

∂rj
, P s

Xr = −u′
Xjδu′

i
∂δui

∂Xj
,

PX = −u′
Xju′

Xi
∂uXi

∂Xj
and P l

Xr = −δu′
ju′

Xi
∂δui

∂Xj
are sums of nine terms of which our 2D2C

PIV has access to four. Our data therefore allow only truncations to be calculated directly
and we start with the truncation of Pr:

P̃r = −δu′
xδu′

x

∂δux

∂rx
− δu′

xδu′
z

∂δuz

∂rx
− δu′

zδu′
x

∂δux

∂rz
− δu′

zδu′
z

∂δuz

∂rz
(4.13)

with δu′
yδu′

y
∂δuy

∂ry
+δu′

xδu′
y

∂δuy

∂rx
+δu′

xδu′
y

∂δux

∂ry
+δu′

zδu′
y

∂δuy

∂rz
+δu′

zδu′
y

∂δuz

∂ry
being the difference

between P̃r and Pr. We know from our measurements and from Nagata 1975 that the mean
flow is vertical in our field of view which is small and very close to the centreline of the tank.
Hence, we can readily neglect all the terms making the difference between P̃r and Pr except
δu′

zδu′
y

∂δuz

∂ry
. Making the assumption that δu′

zδu′
y

∂δuz

∂ry
≈ δu′

zδu′
x

∂δuz

∂rx
we form the following

surrogate estimate of Pr:

˜̃
Pr = −δu′

xδu′
x

∂δux

∂rx
− 2δu′

xδu′
z

∂δuz

∂rx
− δu′

zδu′
x

∂δux

∂rz
− δu′

zδu′
z

∂δuz

∂rz
. (4.14)
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Similarly, we have the following truncations and surrogate estimates for the other three two-
point turbulence production rates:

P̃ s
Xr = −u′

Xxδu′
x

∂δux

∂Xx
− u′

Xxδu′
z

∂δuz

∂Xx
− u′

Xzδu′
x

∂δux

∂Xz
− u′

Xzδu′
z

∂δuz

∂Xz
(4.15)

and

˜̃
P s

Xr = −u′
Xxδu′

x

∂δux

∂Xx
− 2u′

Xxδu′
z

∂δuz

∂Xx
− u′

Xzδu′
x

∂δux

∂Xz
− u′

Xzδu′
z

∂δuz

∂Xz
; (4.16)

P̃X = −u′
Xxu′

Xx

∂uXx

∂Xx
− u′

Xxu′
Xz

∂uXz

∂Xx
− u′

Xzu′
Xx

∂uXx

∂Xz
− u′

Xzu′
Xz

∂uXz

∂Xz
(4.17)

and

˜̃
PX = −u′

Xxu′
Xx

∂uXx

∂Xx
− 2u′

Xxu′
Xz

∂uXz

∂Xx
− u′

Xzu′
Xx

∂uXx

∂Xz
− u′

Xzu′
Xz

∂uXz

∂Xz
; (4.18)

P̃ l
Xr = −δu′

xu′
Xx

∂δux

∂rx
− δu′

xu′
Xz

∂δuz

∂rx
− δu′

zu′
Xx

∂δux

∂rz
− δu′

zu′
Xz

∂δuz

∂rz
(4.19)

and

˜̃
P l

Xr = −δu′
xu′

Xx

∂δux

∂rx
− 2δu′

xu′
Xz

∂δuz

∂rx
− δu′

zu′
Xx

∂δux

∂rz
− δu′

zu′
Xz

∂δuz

∂rz
. (4.20)

We calculate space averages over the field of view of the four truncated and the four
surrogate two-point production rates in the eight equations above. In figures 4.2, 4.3, 4.4
and 4.5 we plot, versus r1 ≡ rx and r3 ≡ rz, the four average surrogate two-point production
rates ⟨˜̃Pr⟩, ⟨

˜̃
P l

Xr⟩, ⟨
˜̃
PX⟩ and ⟨

˜̃
P l

Xr⟩ where the brackets signify space-averaging. We plot
them normalised by ⟨ϵ′⟩

2 where ϵ′ ≡ ν
∂u′

i

∂ζj

∂u′
i

∂ζj
is estimated on the basis of our 2D2C PIV

data using its axisymmetric formulation (see chapter 2 where we also report that we did not
find very significant differences in the values of ⟨ϵ′⟩ calculated either on the basis of small-
scale axisymmetry or on the basis of small-scale isotropy). ⟨ϵ′⟩

2 is used to non-dimensionalize
results instead of ⟨ϵ′⟩ because the turbulence dissipation term in equation 4.2, once averaged
in space, is < ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

+ ν
4

∂u′−
i

∂ζ−
k

∂u′−
i

∂ζ−
k

>≈ 1
2 < ϵ′ >.

In the plots in figures 4.2 and 4.3, ⟨˜̃Pr⟩ is relatively small and ⟨˜̃P s
Xr⟩ is negligible, irrespective

of experimental configuration, for most values of rx and rz that our field of view allows us to
access. Plots, not shown here for economy of space, of the corresponding truncations ⟨P̃r⟩ and
⟨P̃ s

Xr⟩ are very similar. The largest absolute values of ⟨˜̃Pr⟩ are obtained at relatively large
scales rz = 5λ ≈ R/5 with values around 0.15 ⟨ϵ′⟩

2 which is not negligible but still relatively
small. These values decrease with decreasing two-point separation lengths as ⟨˜̃Pr⟩ tends
to zero when r tends to zero. Furthermore, the increase of ⟨˜̃Pr⟩ with increasing two-point
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separation is also much smaller than the increase of two-point turbulence production in the
intermediate layer of fully developed turbulent channel flow found by Apostolidis, Laval, and
Vassilicos 2023.

We are therefore encouraged to hypothesise that two-point turbulence production by mean
flow non-homogeneities at small scales and cross-scale two-point turbulence production are
negligible in the small-scale energy equation 4.2 for the present turbulent flows.

Looking at figure 4.5, we can equally hypothesise that cross-scale two-point production is
also negligible in the large-scale energy equation 4.4, and a similar conclusion arises from
respective plots of the average surrogate ⟨P̃ l

Xr⟩ (not shown given the very close resemblance

with figure 4.5). However, unlike ⟨˜̃Pr⟩, ⟨P̃r⟩, ⟨
˜̃
P l

Xr⟩, ⟨P̃ l
Xr⟩, ⟨

˜̃
P l

Xr⟩ and ⟨P̃ l
Xr⟩ which are all

close to zero over a wide range of scales rx and rz for all four experimental configurations,
⟨ ˜̃PX⟩ and ⟨P̃X⟩ do not decrease towards 0 with decreasing two-point separation and can even
be comparable to ⟨ϵ′⟩

2 at the very smallest separations.
Figure 4.4 shows this clearly for ⟨ ˜̃PX⟩ and the corresponding plots (not shown here) for
⟨P̃X⟩ are qualitatively similar but with different quantitative values. In particular, ⟨ ˜̃PX⟩
and ⟨P̃X⟩ do not tend to zero as r tends to 0 in agreement with the point made in section
4.2 that PX tends to −u′

ju′
iΣij in the limit r → 0 and therefore does not tend to zero if

there is non-vanishing one-point turbulence production present in the flow. However, the
ratios 2⟨ ˜̃PX⟩/⟨ϵ′⟩ and 2⟨P̃X⟩/⟨ϵ′⟩ differ between configurations, and in particular for different
types of blade, suggesting that there are non-homogeneity differences between the four
configurations considered here. In spite of these differences, ⟨ ˜̃PX⟩ and ⟨P̃X⟩ are typically
negative in all configurations suggesting that energy is transferred from the fluctuations to
the mean.

Overall, our data support the hypothesis that, for the turbulent flows considered here
and for scales small enough compared to the flow’s large scales, two-point production may
be neglected in the small-scale energy equation 4.2 even if PX cannot be neglected in the
large-scale energy equation 4.4. This is not a trivial hypothesis because Pr was found by
Apostolidis, Laval, and Vassilicos 2023 not to be negligible at scales comparable to and
larger than the Taylor length in the intermediate layer of fully developed turbulent channel
flow where the turbulence is also non-homogeneous.
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Figure 4.2: Production surrogate defined in equation 4.14 along two radial directions
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Figure 4.3: Production surrogate defined in equation 4.16 along two radial directions
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Figure 4.4: Production surrogate defined in equation 4.18 along two radial directions
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Figure 4.5: Production surrogate defined in equation 4.20 along two radial directions
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4.6 Small scale linear transport terms

Given the previous section’s conclusion which encourages us to neglect two-point pro-
duction in the small-scale energy equation 4.2 but not in the large-scale energy equation
4.4, we now focus on equation 4.2 and ask whether we can justify simplifying it further by
neglecting the linear transport rate (uX .∇X + δu.∇r) 1

2 |δu′|2. Once again, with our 2D2C
PIV data, we can only consider a truncation and a surrogate estimate. The truncation
is
(

uXx
∂

∂Xx
+ uXz

∂
∂Xz

+ δux
∂

∂rx
+ δuz

∂
∂rz

)
1
2

(
δu′2

x + δu′2
z

)
and the surrogate estimate is

obtained by making the assumptions δu′2
x = δu′2

y , uXx
∂

∂Xx

1
2 |δu′|2 = uXy

∂
∂Xy

1
2 |δu′|2 and

δux
∂

∂rx

1
2 |δu′|2 = δuy

∂
∂ry

1
2 |δu′|2. Our surrogate estimate of (uX .∇X + δu.∇r) 1

2 |δu′|2 is

therefore
(

2uXx
∂

∂Xx
+ uXz

∂
∂Xz

+ 2δux
∂

∂rx
+ δuz

∂
∂rz

)
1
2

(
2δu′2

x + δu′2
z

)
.

We calculate space-averages of the truncation and the surrogate estimate in two parts:
i.e. ⟨

(
uXx

∂
∂Xx

+ uXz
∂

∂Xz

)
1
2

(
δu′2

x + δu′2
z

)
⟩ and ⟨

(
δux

∂
∂rx

+ δuz
∂

∂rz

)
1
2

(
δu′2

x + δu′2
z

)
⟩ for the

truncation, and for the surrogate estimate ⟨
(

2uXx
∂

∂Xx
+ uXz

∂
∂Xz

)
1
2

(
2δu′2

x + δu′2
z

)
⟩ and

⟨
(

2δux
∂

∂rx
+ δuz

∂
∂rz

)
1
2

(
2δu′2

x + δu′2
z

)
⟩. Both parts of the space-average truncation and of

the space-average surrogate are relatively small compared to ⟨ϵ′⟩/2 over a significant range
of scales in all four configurations, increasing slowly in magnitude with increasing |r| and
reaching at rz = 6.8λ ≈ 0.3R a value of 0.23⟨ϵ′⟩/2 for the conservative surrogate estimate
and of 0.14⟨ϵ′⟩/2 for the truncation. In figures 4.6a, 4.6b, 4.7a and 4.7b we plot the two
space-average surrogate parts normalised by ⟨ϵ′⟩/2 versus rx and rz.

There are therefore grounds to support the additional hypothesis that
(uX .∇X + δu.∇r) 1

2 |δu′|2 might also be neglected from the small-scale energy equa-
tion 4.2 at small enough scales. We therefore consider the following simplified form of this
equation for the turbulent flow region studied here:

∇X .(uX
′|δu′|2) + ∇r.(δu′|δu′|2) + 2∇X .(δu′δp′) ≈ ν

2 (∇X
2 + ∇r

2)|δu′|2 − 1
2

(
ϵ′+ + ϵ′−

)
(4.21)

where ϵ′+ and ϵ′− are ϵ′ at ζ+ and ζ− respectively. Note, however, that this additional
hypothesis concerning (uX .∇X + δu.∇r) 1

2 |δu′|2 is in fact not crucial because the conclu-
sions of the following two sections can also be obtained without it (with the only potential
exception of the last sentence of subsection 4.8.4 which may need to be qualified).

It is worth pointing out that a careful look at all figures 4.2, 4.3, 4.4 and 4.5 as well as
figure 4.6a, 4.6b, 4.7a and 4.7b suggests that the approximation 4.21 does not necessarily
hold for large enough values of rx and/or rz. We chose to normalise rx and rz by λ in all
these figures for comparison with Apostolidis, Laval, and Vassilicos 2023 who found, in a very
different non-homogeneous turbulent flow (namely the intermediate region of fully developed
turbulent channel flow), that equation 4.21 is not a good approximation at scales comparable
to and larger than λ whereas we do assume it to be a good approximation at such scales (if
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Figure 4.6: Surrogate of rate of linear transport in scales in equation 4.2

they are not too large) in the flow region of the non-homogeneous turbulent flows considered
here.

4.7 Second order structure functions

We now adopt the approach of Chen and Vassilicos 2022 which is based on inner and outer
similarity. In effect, we assume that regions of space exist in the flow where the non-linear
and non-local dynamics of the small-scale turbulence are similar at different places within
the region. We therefore start with an hypothesis of inner and outer similarity for the second
order structure function |δu′|2, namely

|δu′|2 = V 2
O2(X)fO2

(
r

lO

)
(4.22)

for |r| ≫ lI and

|δu′|2 = V 2
I2(X)fI2

(
r

lI

)
(4.23)

for |r| ≪ lO, where the inner length-scale lI depends on viscosity and is much smaller than
the outer length-scale lO which does not depend on viscosity, i.e. lI = lI(X)≪ lO = lO(X)
for large enough Reynolds number. The outer length scale can be thought of as an integral
length of the order of the blade size R = D/2 and is assumed to be smaller than the extent of
the similarity region where (4.22) and (4.23) hold. Statistical homogeneity is a special case
of our inner and outer similarity hypotheses where VO2, VI2, lO and lI are independent of X.
In the following section we apply the approach of Chen and Vassilicos 2022 to the small-scale
energy balance 4.21.



CHAPTER 4. SCALE-BY-SCALE NON-EQUILIBRIUM WITH KOLMOGOROV-LIKE
SCALINGS IN NON-HOMOGENEOUS STATIONARY TURBULENCE 76

0 0.5 1 1.5 2 2.5 3 3.5

r
x
/ 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Rect. blades with baffles F=1Hz

Rect. blades with baffles F=1.5Hz

Fract. blades with baffles F=1Hz

Fract. blades with baffles F=1.5Hz

(a) rx direction

0 1 2 3 4 5 6 7

r
z
/ 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Rect. blades with baffles F=1Hz

Rect. blades with baffles F=1.5Hz

Fract. blades with baffles F=1Hz

Fract. blades with baffles F=1.5Hz

(b) rz direction

Figure 4.7: Surrogate of rate of linear transport in space in equation 4.2

It is natural to expect the outer characteristic velocity VO2 to be independent of viscosity
but the inner characteristic velocity VI2 to depend on it. The ratios VI2/VO2 and lI/lO must
therefore be functions of a local Reynolds number ReO = VO2lO/ν and we write VI2/VO2 =
g2(ReO, X), lI/lO = gl(ReO, X), these two functions having to tend to zero as ReO tends to
infinity.

The inner and outer similarity forms overlap in the range lI ≪ |r| ≪ lO, hence

fO2

(
r

lO

)
= g2

2(ReO, X)fI2

(
r

lO
g−1

l

)
(4.24)

in this intermediate range. Given that the left hand side of this equation does not depend
on ReO, the derivative with respect to ReO of the right hand side cancels and we obtain

gl
dg2

2
dReO

fI2(ρ) = g2
2

dgl

dReO
ρj

∂

∂ρj
fI2(ρ) (4.25)

where there is an implicit sum over j = 1, 2, 3 and ρ = (ρ1, ρ2, ρ3) = r/lI . It follows that
ρj

∂
∂ρj

fI2(ρ) is proportional to fI2(ρ). To solve for fI2 we adopt spherical coordinates (ρ, θ, ϕ)
for ρ, where θ varies from 0 to π and vanishes if ρ is aligned with the y axis and where ϕ

varies from 0 to 2π and is equal to 0 or π/2 if ρ is aligned with the x or the z axis respectively.
The proportionality between ρj

∂
∂ρj

fI2(ρ) and fI2(ρ) becomes

nfI2(ρ, θ, ϕ) = ρ
∂

∂ρ
fI2(ρ, θ, ϕ) (4.26)
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in terms of a dimensionless proportionality constant n and the solution to this equation is

fI2 = ρnF (θ, ϕ) (4.27)

where F is an unknown function of angles θ and ϕ. Note that 4.27 holds in the intermediate
range lI ≪ |r| ≪ lO. Returning to 4.24, we get

g2
2(ReO, X)g−n

l (ReO, X) = A1 (4.28)

where the dimensionless coefficient A1 is independent of ReO and X.

At this stage we follow Chen and Vassilicos 2022 and use their hypothesis of inner-outer
equivalence for dissipation according to which there is an inner and an outer way to es-
timate the turbulence dissipation rate: ϵ′ ∼ V 3

O2/lO ∼ V 3
I2/lI where the proportionality

coefficients are independent of ReO but can depend on X. We actually derive this hypoth-
esis in subsection 4.8.3, and our derivation shows clearly that it has nothing to do with
Kolmogorov’s scale-by-scale equilibrium. At this stage, it provides the additional constraint
g3

2(ReO)g−1
l (ReO) = A2 where the coefficient A2 is independent of ReO. Combined with

this additional constraint, 4.28 yields n = 2/3 (and A3 = A3/2, which means that A2 is also
independent of X) and therefore

|δu′|2 = C(ϵ′r)2/3F (θ, ϕ) (4.29)

in the intermediate range lI ≪ r = |r| ≪ lO. Note that, reflecting the dimensionless co-
efficients in ϵ′ ∼ V 3

O2/lO ∼ V 3
I2/lI , the dimensional coefficient C can vary in space but is

independent of Reynolds number. This is an obvious difference from Kolmogorov’s predic-
tion for the second order structure function which is limited to statistically homogeneous
turbulence. This difference highlights the underlying difference in the way that our result
4.29 was obtained compared to Kolmogorov’s derivation of his corresponding prediction which
resembles 4.29 in the scaling (ϵ′r)2/3 but is otherwise different (see Frisch 1995, Pope 2000
and section 2 of Chen and Vassilicos 2022)

We can refine our hypothesis of similarity by replacing it with an hypothesis of isotropic
similarity which is an hypothesis of similarity for each component of δu′, namely

(δu′
j)2 = V 2

O2(X)fO2,j

(
r

lO

)
(4.30)

for |r| ≫ lI and

(δu′
j)2 = V 2

I2(X)fI2,j

(
r

lI

)
(4.31)

for |r| ≪ lO for every j = 1, 2, 3. This is not an assumption of isotropy because neither the
functions fO2,j nor the functions fI2,j are necessarily the same for different j = 1, 2, 3. The
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argument leading to 4.29 can be repeated for every j = 1, 2, 3 yielding

(δu′
j)2 = Cj(ϵ′r)2/3Fj(θ, ϕ) (4.32)

in the intermediate range lI ≪ r = |r| ≪ lO. The dimensionless coefficient Cj may vary with
j and with X and the dimensionless function Fj , which is independent of X and of r ≡ |r|,
may also vary with j.

The determination of the inner length scale lI requires the small-scale energy balance 4.21.
This is done in section 4.8. We complete the present section by confronting prediction 4.32
with our PIV data.

This prediction is similar to Kolmogorov’s prediction for second order structure functions
but it was derived without the homogeneity assumption required by Kolmogorov’s theory
and without Kolmogorov’s scale-by-scale equilibrium which forms the physical basis of Kol-
mogorov’s dimensional analysis.

4.7.1 Second order structure function measurements

We compute the normalised structure functions ⟨(δu′
j)2/ϵ′2/3⟩ for j = 1 (velocity fluctua-

tions along the x-axis) and j = 3 (velocity fluctuations along the z-axis) by averaging over
time, i.e. over our 150, 000 samples (which correspond to 50, 000 uncorrelated samples)
and also averaging over X, i.e. over the planar space of our field of view. The additional
averaging over space is necessary for convergence of our statistics (see Appendix A.1).
The normalised structure functions (δu′

j)2/ϵ′2/3 are therefore calculated by averaging over
available points in the field of view in 150, 000 velocity field samples in this field of view.
For two-point statistics, there are between 1.2 × 107 and 1.9 × 109 points available for
convergence, depending on two-point separation vector, using both space and time averaging
as explained in section 3.8.

Given that 4.32 implies ⟨(δu′
j)2/ϵ′2/3⟩ = ⟨Cj⟩r2/3Fj(θ, ϕ), we plot in figures 4.8a, 4.8b, 4.8c

and 4.8d the compensated structure functions ⟨(δu′
x)2/ϵ′2/3⟩r−2/3 (j = 1) versus rx/D (figure

4.8a) and versus rz/D (figure 4.8b) and ⟨(δu′
z)2/ϵ′2/3⟩r−2/3 (j = 3) versus rx/D (figure 4.8c)

and versus rz/D (figure 4.8d). This is the intermediate range data collapse suggested by 4.32
for all four configurations considered here. The dependence on rx represents the dependence
on r for θ = π/2 and ϕ = 0 whereas the dependence on rz represents the dependence on r

for θ = π/2 and ϕ = π/2. The average turbulence dissipation rate ⟨ϵ′⟩ varying by a factor
larger than 4 across our four different configurations (see Table 4.2), figure 4.8 suggests
that the collapse of the compensated structure functions in figure 4.8 is satisfactory. The
exponent of the power law dependence of these structure functions on rx and rz (in an
expected intermediate range of scales much smaller than R = D/2) appears close to but not
exactly 2/3 and seems to vary a little around 2/3 from plot to plot in figure 4.8. The theory
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Figure 4.8: Compensated structure functions
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Figure 4.9: Compensated structure function (δu′2
x + δu′2

z )

presented above and yielding equations 4.29 and 4.32 may be a leading order theory with
different higher order corrections for different j components. Such corrections are beyond
the scope of the present chapter, but noting from the plots in figure 4.8 that there may be
opposite corrections to the 2/3 scaling, we now consider the rx and rz dependencies of the
normalized structure function ⟨(δu′2

x + δu′2
z )/ϵ′2/3⟩. Equation 4.32 implies

⟨(δu′2
x + δu′2

z )/ϵ′2/3⟩ = r2/3[⟨C1⟩F1(θ, ϕ) + ⟨C3⟩F3(θ, ϕ)]. (4.33)

This compensated normalised structure function is presented in figure 4.9 as a function of
rx/D (i.e. r/D for θ = π/2 and ϕ = 0) in one plot and of rz/D (i.e. r/D for θ = π/2
and ϕ = π/2) in the other. Once again, the resulting collapse of the structure functions for
the four different configurations is acceptable given the wide variation of < ϵ′ > from one
configuration to the other. To look at the power law scaling more finely, we estimate the
logarithmic slopes of S ≡ ⟨(δu′2

x + δu′2
z )/ϵ′2/3⟩ versus both rx and rz, i.e. dlogS

dlogrx
and dlogS

dlogrz
,

which we plot versus rx and rz respectively in figures 4.10a and 4.10b. A well-defined plateau
appears in both directions for rx, rz ≪ R = D/2 which confirms the power-law behavior of
S. The value of the plateau is the power-law exponent and it is slightly different in the two
directions: it lies between 2/3 ≈ 0.66 and 0.7 in the rx direction, which is very close to the
theory’s prediction but between 0.5 and 0.6 in the rz direction which is further away from it.

We must leave it for future study to determine whether the deviation from n = 2/3 that we
observe in the vertical rz direction is a finite Reynolds number effect or whether it results from
deviations from outer and/or inner isotropic similarity of second order structure functions.
The good agreement with n = 2/3 in the rx direction is nevertheless encouraging and so, in
the following section, we use n = 2/3 in conjunction with an analysis of the small-scale energy
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Figure 4.10: Logarithmic slope of S ≡ ⟨(δu′2
x + δu′2

z )/ϵ′2/3⟩

budget to predict the relations between lI and lO and between VI2 and VO2. Perhaps more
importantly, though, this analysis also leads to predictions concerning non-linear interscale
and interspace turbulent energy transfer rates which do not critically depend on the value of
the exponent n and which we also subject to experimental checks.

4.8 Small-scale turbulent energy budgets

Following Chen and Vassilicos 2022 who assume that regions exist in the flow where the
non-linear and non-local dynamics of the small scale turbulence are similar at different places
within the region, we now introduce, for such a region, inner and outer similarity forms for
every term on the left hand side of equation 4.21.

Outer similarity for |r| >> lI :

∇X .(uX
′|δu′|2) = V 3

OX(X)
lO

fOX

(
r

lO

)
(4.34)

∇r.(δu′|δu′|2) = V 3
O3(X)

lO
fO3

(
r

lO

)
(4.35)

2∇X .(δu′δp′) =
V 3

Op(X)
lO

fOp

(
r

lO

)
(4.36)

Inner similarity for |r| << lO:

∇X .(uX
′|δu′|2) = V 3

IX(X)
lI

fIX

(
r

lI

)
(4.37)
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∇r.(δu′|δu′|2) = V 3
I3(X)

lI
fI3

(
r

lI

)
(4.38)

2∇X .(δu′δp′) =
V 3

Ip(X)
lI

fIp

(
r

lI

)
(4.39)

The characteristic velocities VOX , VO3, VOp, VIX , VI3, VIp depend explicitly on X but are
independent of r and fOX , fO3, fOp, fIX , fI3, fIp are dimensionless functions which do not
depend explicitly on X within the similarity region. Statistical homogeneity is the special
case where fOX = fOp = fIX = fIp = 0 and the characteristic velocities are independent of
X.

As in the previous section, we expect the outer characteristic velocities to be independent
of viscosity but the inner characteristic velocities to depend on it. The ratios of outer to
inner characteristic velocities are therefore functions of local Reynolds number ReO, i.e.
VIX/VOX = gX(ReO, X), VI3/VO3 = g3(ReO, X), VIp/VOp = gp(ReO, X), these functions
approaching zero as ReO tends to infinity.

Following the approach we took in section 4.7, we can replace the hypothesis of similarity by
a hypothesis of isotropic similarity for terms on the left hand side of equation 4.21. For the two
terms not involving pressure fluctuations, this refined hypothesis states that u′

Xi
∂

∂Xi
(δu′

j)2

and δu′
i

∂
∂ri

(δu′
j)2 (without summation over i and without summation over j) have an inner

and an outer similarity form for every i, j = 1, 2, 3. Only i, j = 1, 3 are accessible to our
2D2C PIV measurements and we therefore decompose the interscale transfer rate in two
sub-terms, both of which have an inner and an outer similarity form: δu′

x
∂

∂rx
(δu′2

x + δu′2
z ) +

δu′
z

∂
∂rz

(δu′2
x + δu′2

z ) which is accessible to our 2D2C PIV and δu′
x

∂
∂rx

(δu′2
y ) + δu′

z
∂

∂rz
(δu′2

y ) +
δu′

y
∂

∂ry
(δu′2

x + δu′2
y + δu′2

z ) which is not. For example,

δu′
x

∂

∂rx
(δu′2

x + δu′2
z ) + δu′

z

∂

∂rz
(δu′2

x + δu′2
z ) = V 3

O3(X)
lO

FO3

(
r

lO

)
(4.40)

for |r| ≫ lI and

δu′
x

∂

∂rx
(δu′2

x + δu′2
z ) + δu′

z

∂

∂rz
(δu′2

x + δu′2
z ) = V 3

I3(X)
lI

FI3

(
r

lI

)
(4.41)

for |r| ≪ lO. The function FO3 is not the same as the function fO3 and the function FI3 is
not the same as the function fI3.

We do the same for the interspace transfer rate ∇X .(uX
′|δu′|2) which we also decompose

in two sub-terms, both of which have an inner and an outer similarity form. For the sub-term
which is accessible to our 2D2C PIV, for example, we therefore write

u′
Xx

∂

∂Xx
(δu′2

x + δu′2
z ) + u′

Xz

∂

∂Xz
(δu′2

x + δu′2
z ) = V 3

OX(X)
lO

FOX

(
r

lO

)
(4.42)
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for |r| ≫ lI and

u′
Xx

∂

∂Xx
(δu′2

x + δu′2
z ) + u′

Xz

∂

∂Xz
(δu′2

x + δu′2
z ) = V 3

IX(X)
lI

FIX

(
r

lI

)
(4.43)

for |r| ≪ lO. Again, the function FOX is not the same as the function fOX and the function
FIX is not the same as the function fIX .

4.8.1 Outer balance

Using the outer similarity forms 4.34, 4.35 and 4.36, Chen and Vassilicos 2022 have shown
that the outer form of the small-scale energy balance 4.21 for |r| ≫ lI tends to

V 3
OX

V 3
O2

fOX(r/lO) + V 3
O3

V 3
O2

fO3(r/lO) +
V 3

Op

V 3
O2

fOp(r/lO) = −Cϵ (4.44)

as ReO → ∞, where the dissipation coefficient Cϵ is defined on the basis of the turbulence
dissipation scaling ϵ′ ∼ V 3

O2/lO. This scaling follows from the hypothesis (often refered to as
zeroth law of turbulence) that the turbulence dissipation rate is independent of the fluid’s
viscosity at large enough Reynolds number, hence ϵ′ = CϵV

3
O2/lO where Cϵ is independent

of Reynolds number but can depend on X and boundary/forcing conditions. It follows from
4.44 that

VOX ∼ VO3 ∼ VOp ∼ C1/3
ϵ VO2 (4.45)

which means that all three velocities VOX , VO3 and VOp are the same function of X as
C

1/3
ϵ VO2. The independence of Cϵ on r which is required to go from (4.44) to (4.45) is valid

without any restriction on spatial gradients of turbulent dissipation: the only requirement is
that the second order spatial derivative of turbulent dissipation should be small compared to
ϵ′/l2

O.

4.8.2 Inner balance

Using the inner similarity forms 4.37, 4.38 and 4.39, Chen and Vassilicos 2022 have shown
that the inner form of the small-scale energy balance 4.21 for |r| ≪ lO tends to

g3
Xg−1

l fIX(r/lI) + g3
3g−1

l fI3(r/lI) + g3
pg−1

l fIp(r/lI) = −1 + C−1
ϵ Re−1

O g2
2g−2

l ∇2
r/lI

fI2(r/lI)
(4.46)

as ReO → ∞, where ∇2
r/lI

is the Laplacian with respect to r/lI and where Re−1
O g2

2g−2
l is

independent of Reynolds number. They obtained this result without considering the possi-
bility of explicit dependencies of the functions gX , g3, gp, gl on X but it can be checked that
their result remains intact if such dependencies are taken into account. Writing

g2
2(ReO, X)g−2

l (ReO, X) = A3(X)ReO (4.47)
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in terms of a dimensionless coefficient A3 which can depend on X (but not on r and vis-
cosity), we note that equation 4.46 is viable only if g3

Xg−1
l , g3

3g−1
l , g3

pg−1
l and A3/Cϵ are

all independent of X. Incidentally, the explicit X-dependence of the functions g2 and gl

and the constraint A3/Cϵ = Const independent of X cancel the need for the theoretical
readjustments in the Appendix of Chen and Vassilicos 2022.

With 4.28 and the exponent n = 2/3 obtained theoretically in section 4.7, equation 4.47
implies gl ∼ Re

−3/4
O , therefore

lI ∼ lORe
−3/4
O (4.48)

where the coefficient of proportionality can, in principle, be a function of X. Using equation
4.47 once again leads to

VI2 ∼ VO2Re
−1/4
O (4.49)

where the coefficient of proportionality is also, in principle, a function of X. One notes
the resemblance of lI and VI2 with the Kolmogorov length and velocity scales. However,
these forms of lI and VI2 have been obtained in an explicitely non-homogeneous context with
hypotheses which, unlike those of Kolmogorov (see Frisch 1995, Pope 2000 and section 2
of Chen and Vassilicos 2022), are adapted to non-homogeneous non-equilibrium turbulence.
Note that we use the value 2/3 of the exponent n only to derive 4.48 and 4.49, nothing else
in this chapter, and that 4.48 and 4.49 are not used to derive anything in the chapter either.

4.8.3 Intermediate scalings

The turbulence dissipation scaling ϵ′ = CϵV
3

O2/lO and 4.45 imply

ϵ′ ∼ V 3
O3/lO ∼ V 3

OX/lO ∼ V 3
Op/lO (4.50)

where the proportionality coefficients are independent of X (and of course also independent
of ReO). One expects the non-linear terms to be part of the small-scale energy balance
4.46 which means that g3

Xg−1
l , g3

3g−1
l and g3

pg−1
l should be independent of ReO in the limit

ReO → ∞ and so we write, in this limit, g3
Xg−1

l = BX , g3
3g−1

l = B3 and g3
pg−1

l = Bp where
the dimensionless constants BX , B3, Bp are independent of X, r and ReO. With 4.50, the
implication is

ϵ′ ∼ V 3
I3/lI ∼ V 3

IX/lI ∼ V 3
Ip/lI (4.51)

where, once again, the porportionality coefficients are independent of X and ReO. Hence, in
the intermediate range lI ≪ |r| ≪ lO where equation 4.34 matches equation 4.37, equation
4.35 matches equation 4.38 and equation 4.36 matches equation 4.39, we get fOX(r/lO) =
BXfIX(r/lI), fO3(r/lO) = B3fI3(r/lI) and fOp(r/lO) = BpfIp(r/lI). These functions are
therefore asymptotic constants in the intermediate range lI ≪ |r| ≪ lO as ReO → ∞, and
therefore:
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∇X .(uX
′|δu′|2) ∼ ϵ′, (4.52)

∇r.(δu′|δu′|2) ∼ ϵ′ (4.53)

and
2∇X .(δu′δp′) ∼ ϵ′ (4.54)

in that range.

The dimensionless coefficients of proportionality in 4.52, 4.53 and 4.54 are independent of
r, independent of Reynolds number and independent of X in the similarity region of the flow
considered, and add up to −1 asymptotically as ReO →∞.

The same procedure applied to equations 4.40 and 4.41 on the one hand and equations 4.42
and 4.43 on the other yields

˜∇X .(uX
′|δu′|2) ≡ u′

Xx

∂

∂Xx
(δu′2

x + δu′2
z ) + u′

Xz

∂

∂Xz
(δu′2

x + δu′2
z ) ∼ ϵ′ (4.55)

and
˜∇r.(δu′|δu′|2) ≡ δu′

x

∂

∂rx
(δu′2

x + δu′2
z ) + δu′

z

∂

∂rz
(δu′2

x + δu′2
z ) ∼ ϵ′ (4.56)

in the intermediate range lI ≪ |r| ≪ lO as ReO → ∞. The dimensionless coefficients of
proportionality in these two relations are also independent of r, Reynolds number and X.

Note that our analysis does not reveal the signs of the various constants of proportionality
in the five proportionality relations above. These signs are important, in particular for the
interscale transfer rate as its sign can discriminate between transfer from small to large scales
(forward cascade) or from large to small scales (inverse cascade). The last two proportion-
alities are the ones which are accessible to our 2D2C PIV measurements. For them, our
measurements can establish whether the proportionality constants are well defined and, if
they are, whether they are negative or positive.

Before moving to our energy transfer measurements, we note that the hypothesis of inner-
outer equivalence for turbulence dissipation introduced by Chen and Vassilicos 2022 and used
in section 4.7 can now be seen to be a consequence of Reynolds number-independence of tur-
bulence dissipation, outer and inner similarities and the natural assumption VI3 = CI(X)VI2

where the dimensionless coefficient CI(X) is independent of ReO and r. Using ϵ′ =
Cϵ(X)V 3

O2/lO and the first proportionality in 4.51 (which follows from inner and outer similar-
ities), one then obtains the inner-outer equivalence in the form Cϵ(X)V 3

O2/lO ∼ C3
I (X)V 3

I2/lI

with a proportionality coefficient that is independent of X and ReO. (It also follows that
Cϵ(X)/C3

I (X) is independent of X.
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4.8.4 Energy transfer rate measurements

The quantities obtained from our 2D2C PIV and presented in this sub-section require high
spatial resolution, in particular for the estimation of the turbulence dissipation rate, and a
high number of samples for convergence of third order statistics.

Averaging over time is not enough for such convergence (see Appendix A.1). We therefore
calculate spatial averages of both sides of proportionalities 4.55 and 4.56 given that they
are the consequences of our theory that can be tested by our 2D2C PIV. In figures 4.11

and 4.12 we plot the normalised interscale transfer rate term ⟨ ˜∇r.(δu′|δu′|2)⟩/⟨ϵ′⟩ and

the normalised interspace transfer rate term ⟨ ˜∇X .(uX
′|δu′|2)⟩/⟨ϵ′⟩ (we recall that the

brackets ⟨...⟩ are averages over X in the plane of our field of view). Our theory predicts
that an intermediate range of scales exists where these two normalised terms are about
constant, this constant being the same for different Reynolds numbers. The spread of
Taylor length-based Reynolds numbers across our four experimental configurations is from
480 to 650, and the average turbulence dissipation rate varies by a factor of 4 across these
configurations. The Taylor length λ depends on the turbulence dissipation rate and in
chapter 3 we explain how we calculate both of them and how we denoise the PIV data
for this purpose. The value of the average turbulence dissipation rate is probably slightly
underestimated and this uncertainty is not taken into account in the error bars shown
in figures 4.11 and 4.12. The spatial resolutions for all four configurations are given in Table 1.

The normalised energy transfer terms are plotted versus rx/λ in figures 4.11a and 4.12a
and versus rz/λ in figures 4.11b and 4.12b. We normalise the components rx and rz of the
vector r by λ because of the important role that λ has been shown to play in the separation
length scale dependence of the interscale transfer rate in decaying homogeneous turbulence
(Obligado and Vassilicos 2019, Meldi and Vassilicos 2021) and in fully developed turbulent
channel flow (Apostolidis, Laval, and Vassilicos 2023). We find (figure 4.11) that the inter-
scale transfer rate is negative for all observed scales in both directions rx and rz and all four
configurations. This suggests a non-linear interscale turbulent energy transfer that is per-
dominantly from large to small scales, i.e. that the turbulence cascade is forward on average.
The 2D2C PIV measurements also appear to support our theory’s prediction that a range of
scales exists where the interscale transfer rate is proportional to the turbulence dissipation
rate and independent of two-point separation length. Indeed, for the four configurations,

⟨ ˜∇r.(δu′|δu′|2)⟩/⟨ϵ′⟩ appear to collapse within error bars around a constant value between
0.35 and 0.45 in the range λ/2 ≤ rx ≤ 2λ and around a constant value between 0.4 and 0.5
in the range λ/2 ≤ rz ≤ 5λ. Beyond these values of rx and rz statistical convergence visibly
weakens. The Taylor length takes values between 3.7mm and 4.9mm across our four config-
urations and the field of view of our PIV is 27mm× 28mm, hence we cannot access values
of rx/λ and rz/λ larger than those in the plots of figure 4.11 and 4.12 (to avoid symmetry
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problems, we only used the right half of our field of view in the x-direction).
Whilst the negative sign of the average interscale transfer rate and its proportionality with

the average turbulence dissipation rate over a range of scales are similar to Kolmogorov’s pre-
diction for the average interscale transfer rate in high Reynolds number statistically homoge-
neous stationary turbulence (Frisch 1995, Pope 2000, section 2 of Chen and Vassilicos 2022),
the constant of proportionality is not Kolmogorov equilibrium’s −1 but significantly smaller.

This difference may of course be accounted for by the difference between ⟨ ˜∇r.(δu′|δu′|2)⟩/⟨ϵ′⟩
and ∇r.(⟨δu′|δu′|2⟩)/⟨ϵ′⟩ and/or the Reynolds number not being large enough in case that
this constant of proportionality has finite Reynolds number corrections. However, the re-
sults in figures 4.12a and 4.12b make it clear that the turbulence studied here is significantly

non-homogeneous at the scales where ⟨ ˜∇r.(δu′|δu′|2)⟩/⟨ϵ′⟩ is about constant. Indeed, these

figures show that the normalised interspace transfer rate term ⟨ ˜∇X .(uX
′|δu′|2)⟩/⟨ϵ′⟩ is very

significantly non-zero and in fact positive over all accessible length-scales in both directions
rx and rz for all four configurations. These consistent positive values mean that there is
a leaving average turbulent flux which takes small-scale turbulent kinetic energy out of the
field of view at all accessible length scales. In fact, ⟨u′

Xx
∂

∂Xx
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩ dominates

this interspace transfer rate (see figure 4.13) and ⟨u′
Xz

∂
∂Xz

(δu′2
x + δu′2

z )⟩/⟨ϵ′⟩ is negligible if
slightly negative. The small-scale turbulence energy is therefore transported out of the field
of view by the turbulence predominantly in the horizontal direction.

For all four configurations, ⟨ ˜∇X .(uX
′|δu′|2)⟩/⟨ϵ′⟩, and ⟨u′

Xx
∂

∂Xx
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩ which

dominates it, appear to collapse within error bars around a constant value between about
0.05 and 0.15 in the range λ/2 ≤ rx ≤ 2λ and around a similar constant value in the range
λ/2 ≤ rz ≤ 5λ (see figures 4.12a and 4.12b and 4.13). We stress once again, that larger
two-point separation scales are not accessible to our PIV and statistical convergence weakens
at the larger values of rx and rz that we can access. Nevertheless, the results in figures 4.12a
and 4.12b and figure 4.13 do not invalidate and may even arguably offer some support to
our theory’s prediction 4.55 for the interspace turbulence transfer rate.

To summarise, the parts of the interscale and of the interspace average turbulent transfer
rates that we can access appear to be independent of two-point separation scale and are
proportional to the average turbulence dissipation rate over a more or less overlapping range
of scales. The average turbulence dissipation rate and the Taylor length-scale collapse the
two-point separation scale dependence of the accessible parts of the energy transfer rates for
all four configurations tried here.

The average interscale transfer rate is negative, suggesting forward cascade, and the
average interspace transfer rate is positive, suggesting outward turbulent transport of
small-scale turbulence. This outward spatial turbulent flux is overwhelmingly in the
x-direction. The non-homogeneity that it represents is present even at the smallest scales
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Figure 4.11: Interscale transfer rate estimate

of the turbulence, in particular scales between λ/2 and 5λ. It is therefore not possible to
apply the Kolmogorov equilibrium theory to the small scales of the present turbulent flows.
However our non-equilibrium theory of non-homogeneous small-scale turbulence is able to
account for some of our observations.

One can also analyse sub-terms of the part of the average interscale transfer rate that we
measure. In figure 4.14, we plot ⟨δu′

x
∂

∂rx
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩ and ⟨δu′

z
∂

∂rz
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩

separately and see that they are both constant over the range of scales where their sum is
constant and that they both contribute significantly to that sum but that the latter term is
also significantly larger in magnitude than the former.

The magnitude of the accessible average interscale transfer rate is roughly 4 times larger
than the magnitude of the accessible average interspace transfer rate. Considering our mea-
surements, our theory (in particular equation 4.54) and the small-scale energy balance 4.21
averaged over the field of view of our PIV, it is highly likely that the pressure-velocity term
in that balance plays a dominant role at scales |r| larger than λ/2.

4.9 Large-scale turbulent energy budget

We do not apply the previous section’s theoretical approach to the large-scale turbulent
energy budget, equation 4.4, given that the two-point turbulence production rate PX tends
to the one-point turbulence production rate in the limit r → 0 and given the PIV evidence
of section 4.5 suggesting that it is significantly non-zero at the smallest scales and does not
collapse with the average turbulence dissipation rate. Indeed, figure 4.4 shows that ⟨ ˜̃PX⟩/⟨ϵ′⟩
differs substantially for the regular and the fractal-like blades.
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Figure 4.12: Interspace transport rate estimate

Furthermore, the spatio-temporal average of the part of the interspace turbulent trans-
port rate of large-scale turbulence energy that is accessible to our 2D2C PIV, i.e.
⟨u′

Xx
∂

∂Xx
(u′2

Xx + u′2
Xz)⟩ + ⟨u′

Xz
∂

∂Xz
(u′2

Xx + u′2
Xz)⟩, does not collapse with the average turbu-

lence dissipation rate ⟨ϵ′⟩. This is clear in figures 4.15a and 4.15b which also show that the
normalised spatio-temporal average ⟨u′

Xx
∂

∂Xx
(u′2

Xx + u′2
Xz)⟩/⟨ϵ′⟩+⟨u′

Xz
∂

∂Xz
(u′2

Xx + u′2
Xz)⟩/⟨ϵ′⟩

may depend linearly on rz for rz ≥ λ/2 and may be constant or linear with rx for rx ≥ λ/2
depending on type of blade. This is very different behaviour from the average interspace
turbulent transport rate of small-scale energy in figure 4.12.

Another important difference is the non vanishing value when r → 0 of the average inter-
space turbulent transport rate of large-scale energy (see figure 4.15). Indeed, when r → 0,
this term converges to the space-time averaged one-point turbulent energy transport rate
< ∇.u′|u′|2 >. This one-point turbulence transport rate reflects the non-homogeneity of
each particular configuration and there is no reason to expect it to collapse when normalised
by dissipation. There is therefore no reason either to expect such a collapse for the average
two-point interspace turbulent transport rate of large-scale energy at the smallest two-point
separations. Consistently, the measurements suggest that such a collapse is in fact absent at
all two-point separations tested (figure 4.15).

The indications are, therefore, that the large-scale turbulent energy budget 4.4 is very
different from the small-scale turbulent energy budget and that a theory of the type developed
in the previous section for the small-scale turbulent energy budget cannot be developed for
the large-scale turbulent energy budget. Nevertheless, there is a kinematic relation between
the rate with which large scales gain or lose turbulent energy to the small scales via non-linear
turbulence interactions and the rate with which small scales gain or lose turbulent energy
via such interactions. This is equation 4.6. Neglecting mean flow velocity differences and
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Figure 4.13: Interspace transport rate
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Figure 4.14: Interscale transfer rate
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Figure 4.15: Interspace transfer estimate of uX
2

two-point turbulence production rates Pr and P l
Xr, as appears to be possible in our PIV’s

field of view for small two-point separation lengths, equation 4.6 becomes

∇r · (δu′|δu′|2) + ∇r · (δu′|uX
′|2) = 2∇X · (δu′(δu′ · u′

X)) (4.57)

where ∇r · (δu′|uX
′|2) represents the rate with which large scales lose or gain turbulent

energy to or from the small scales and ∇r · (δu′|δu′|2) represents the rate with which small-
scales gain or lose turbulent energy by the non-linear turbulence interactions (see also the
complementary description of these transfer rates under equation 4.6). In general, and in
the present flow in particular, the passage of turbulent energy from large to small scales (or
vice versa) is not necessarily “impermeable” as energy can leak out of this cascade process
because of non-homogeneities, in the present case by the spatial gradient term on the right
hand side of 4.57.

In figures 4.16a and 4.16b we plot the spatio-temporal average of the part of ∇r ·(δu′|uX
′|2)

that is accessible to our 2D2C PIV, namely ⟨δu′
x

∂
∂rx

(u′2
Xx + u′2

Xz)⟩ + ⟨δu′
z

∂
∂rz

(u′2
Xx + u′2

Xz)⟩.
We plot it normalised by ⟨ϵ′⟩ versus both rx/λ and rz/λ and we note that it collapses well
for the four different configurations. Furthermore, it appears to have a constant value across
the same ranges λ/2 ≤ rx ≤ 2λ and λ/2 ≤ rz ≤ 5λ where the part of the spatio-temporal
average of ∇r · (δu′|δu′|2) that is accessible to our PIV has an approximately collapsed
constant value (figure 4.11). This suggests a strong link between these two turbulent energy
transfer rates.

The positive constant value of ⟨δu′
x

∂
∂rx

(u′2
Xx + u′2

Xz)⟩/⟨ϵ′⟩ + ⟨δu′
z

∂
∂rz

(u′2
Xx + u′2

Xz)⟩/⟨ϵ′⟩
(see figure 4.16) is slightly lower than the magnitude of the negative constant value of
⟨δu′

x
∂

∂rx
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩+ ⟨δu′

z
∂

∂rz
(δu′2

x + δu′2
z )⟩/⟨ϵ′⟩ (see figure 4.11). If this experimental
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Figure 4.16: Interscale transfer estimate of uX
2

observation reflects a similar difference between ∇r.(δu′|uX
′|2) and ∇r.(δu′|δu′|2) then

the interpretation will have to be that large scales lose energy to small scales but that
the small scales receive more of the energy lost by the large ones because some energy
is transported from elsewhere in physical space without changing scale. In the kinematic
equation 4.57, this energy leak away from the interscale turbulent energy transfer process is
accounted for by 2∇X .(δu′(δu′.u′

X)) which can be non-zero in non-homogeneous turbulence
(or, more generally, by all the other terms present in equation 4.6 if they cannot be neglected).

The experimental results presented in figures 4.16a and 4.16b may be reflecting a propor-
tionality

∇r· < δu′|uX
′|2 >∼< ϵ′ > (4.58)

which cannot be confirmed or invalidated with our 2D2C PIV. This proportionality concerns
interscale energy transfer within the large-scale turbulent energy budget and is additional to
the proportionalities 4.52, 4.53, 4.54 obtained in the previous section on the basis of the small-
scale turbulent energy budget. The previous section’s theory does not give the proportionality
coefficients of these relations. In the following section we present an hypothesis which has
the power, if and when valid, to determine some such proportionality coefficients.

4.10 A local small-scale homogeneity hypothesis

We consider statistically stationary non-homogeneous turbulence by comparison to the
case of statistically homogeneous non-stationary turbulence which we addressed in section
4.3 (equations 4.7 to 4.12). Statistical stationarity is meant in the Lagrangian sense of
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following the mean flow, i.e. uX .∇X
1
2 |δu′|2 = 0 = uX .∇X

1
2 |u

′
X |2. This is indeed the case

in the present flows because the mean flow velocity is vertical (i.e. in the z direction) and the
turbulence varies mainly in the horizontal direction. With this statistical stationarity and by
considering scales |r| large enough to neglect viscous diffusion, fluctuating energy equations
4.2 and 4.4 become, respectively,

δu.∇r
1
2 |δu′|2 − Pr − P s

Xr + ∇X ·
(

uX
′ 1
2 |δu′|2 + δu′δp′

)
≈ −∇r.(δu′ 1

2 |δu′|2)− ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

(4.59)

and

δu.∇r
1
2 |u

′
X |2 − PX − P l

Xr + ∇X ·
(

uX
′ 1
2 |uX

′|2 + uX
′p′

X

)
≈ −∇r.(δu′ 1

2 |uX
′|2)− ν

4
∂u′+
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∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

(4.60)

We formulate an hypothesis of local homogeneity as a parallel to Kolmogorov’s small-scale
stationarity hypothesis (see section 3). Whereas most terms on the left hand side of equation
4.60 do not tend to 0 as r tends to 0, the left hand side of 4.59 does tend to 0 in that
limit. The local small-scale homogeneity hypothesis that we make is the hypothesis that
in the limit of increasing Reynolds number, the magnitude of δu.∇r

1
2 |δu′|2 − Pr − P s

Xr +
∇X ·

(
uX

′ 1
2 |δu′|2 + δu′δp′

)
is increasingly smaller than the local time-averaged turbulence

dissipation rate at small enough scales |r|. With this hypothesis, and with the approximation
ν
4

∂u′+
i

∂ζ+
k

∂u′+
i

∂ζ+
k

+ ν
4

∂u′−
i

∂ζ−
k

∂u′−
i

∂ζ−
k

≈ ϵ′ which is acceptable at small enough |r|, the small-scale turbulent
energy balance 4.59 simplifies to

∇r.(δu′|δu′|2) ≈ −ϵ′ (4.61)

in an intermediate range of scales large enough to neglect viscous diffusion but small enough
to neglect small-scale non-homogeneity. This balance incorporates the proportionality 4.53
but also sets the proportionality constant to −1. The similarity hypotheses required to
obtain 4.53 are weaker than the local small-scale homogeneity hypothesis introduced here.
A priori, they can be valid even if and when the local small-scale homogeneity hypothesis
is not. When δu, Pr and P s

Xr are negligible at small enough |r|, as appears to be the
case in the flow regions considered here, the local small-scale homogeneity hypothesis implies
that the magnitude of ∇X ·

(
uX

′ 1
2 |δu′|2 + δu′δp′

)
is increasingly small compared to ϵ′

with increasing Reynolds number for small enough values of |r|. It may be that, as the
Reynolds number tends to infinity, 4.53 tends to 4.61 thereby recovering Kolmogorov’s scale-
by-scale equilibrium for homogeneous turbulence at small enough scales and implying that
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this Kolmogorov equilibrium is a very particular case of 4.53. However, it is not clear how
such a statement could be established at the current time and the foreseeable future.

We now use the kinematic relation 4.57, but we could also use its more general form 4.6 if
we did not want to neglect δu, Pr and P l

Xr from the outset. From 4.57 and 4.61 follows

∇r.δu′|u′
X |2 ≈ ϵ′ + 2∇X · (δu′(δu′ · u′

X)) (4.62)

which is the analogue for stationary non-homogeneous turbulence of the Germano-Hosokawa
relation 4.11 for homogeneous non-stationary (in fact freely decaying) turbulence.

Finally, the analogue of 4.12 for stationary non-homogeneous turbulence is obtained from
4.62 and 4.60 and it is

−PX − P l
Xr + ∇X ·

(
uX

′ 1
2 |uX

′|2 + uX
′p′

X + δu′(δu′ · u′
X)
)
≈ −ϵ′. (4.63)

Like equation 4.61, equations 4.62 and 4.63 hold in an intermediate range of scales large
enough to neglect viscous diffusion and small enough to neglect small-scale non-homogeneity.
Note that equation 4.63 identifies a statistic characterising non-homogeneity which is pro-
portional to ϵ′ with proportionality coefficient −1. This statistic is not captured by the non-
equilibrium theory of non-homogeneous turbulence of section 4.8. In this case, the hypothesis
of local small-scale homogeneity makes a prediction concerning turbulence non-homogeneity
which is not accessible to the theory of section 4.8.

In appendix A.2, a detailed picture of Kolmogorov-like turbulence in non-homogeneous
flows is derived in a more theoretical framework (without Reynolds decomposition) to relate
the physical understanding of these new results with the theoretical introduction in chapter
2. These side results are not part of the submitted publication.

4.11 Chapter conclusion

We have studied a turbulent flow region under rotating blades in a baffled container where
the baffles break the rotation in the flow. The evidence from our 2D2C PIV supports the view
that, within our PIV’s field of view, two-point production makes a negligible contribution to
the small-scale energy equation 4.2 over a range of small two-point separation lengths. In
the absence of such production, we may assume the non-linear and non-local dynamics of
the small-scale turbulence to be effectively the same at different places. We have therefore
made the similarity hypothesis that every term in the non-homogeneous but statistically
stationary scale-by-scale (two-point) small-scale energy balance 4.21 has the same dependence
on two-point separation at different positions X if rescaled by X-local velocity and length
scales. Following the theory of Chen and Vassilicos 2022 we have introduced such similarity
hypotheses for both inner and outer scales and have considered intermediate matchings. We
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have also improved the theory (i) by deriving the inner-outer equivalence hypothesis of Chen
and Vassilicos 2022 for turbulence dissipation from a more intuitively natural hypothesis
and (ii) by taking explicit account of non-homogeneity in the inner to outer velocity ratios,
thereby extending the theory’s applicability range and removing the need for the theoretical
adjustments in the Appendix of Chen and Vassilicos 2022.

This non-equilibrium theory of non-homogeneous small-scale turbulence predicts that an
intermediate range of length-scales exists where the interscale turbulence transfer rate, the
two-point interspace turbulence transport rate and the two-point pressure gradient veloc-
ity correlation term in equation 4.21 are all proportional to the turbulence dissipation rate.
Given the limitations of 2D2C PIV we have been able to measure only parts (truncations)
of the interscale turbulence transfer rate and the two-point interspace turbulence transport
rate in equation 4.21. This has forced us to introduce inner and outer hypotheses of isotropic
similarity applicable to the truncations accessible to our measurements. With these hypothe-
ses (which should not be confused with hypotheses of isotropy) the theory leads to the same
predictions for the 2D2C PIV-truncated interscale turbulence transfer rate and two-point
interspace turbulence transport rate in equation 4.21. Our 2D2C PIV measurements suggest
that these truncations may indeed be independent of two-point separation scale and be pro-
portional to the average turbulence dissipation rate over a more or less overlapping range
of scales as predicted by the theory. The PIV-truncated two-point interspace turbulence
transport rate is significantly non-zero, thereby reflecting both the presence of small-scale
non-homogeneity and the absence of Kolmogorov scale-by-scale equilibrium. Its proportion-
ality with the turbulence dissipation rate is evidence that small-scale non-homogeneity and
non-equilibrium do actually obey general rules.

The PIV-truncated average interscale transfer rate of small-scale turbulent energy is nega-
tive, suggesting forward cascade if the corresponding full (non-truncated) average interscale
transfer rate has the same sign, and the PIV-truncated average interspace turbulent transfer
rate of small-scale turbulence energy is positive, suggesting outward turbulent transport of
small-scale turbulence if the corresponding full (non-truncated) average interspace turbulent
transfer rate is also positive.

We have also applied hypotheses of inner and outer similarity as well as inner and outer
isotropic similarity to second order structure functions of turbulent fluctuating velocities.
Inner-outer intermediate matching has led to the prediction of power law dependencies on
turbulence dissipation rate and two-point separation length with power law exponent n = 2/3.
The 2D2C PIV has provided support for this Kolmogorov-like value of the exponent in the
rx direction but not in the rz direction where the PIV suggests an exponent n between 0.5
and 0.6. Future studies should investigate whether rotation, even if effectively faint within
our field of view because of the rotation-breaking effect of the baffles, may require similarity
forms in terms of more than one outer length scale lO and more than one inner length scale
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lI , depending on direction. The value of the exponent n impacts only the Reynolds number
dependencies of lI/lO and VI/VO and has no direct impact on the other predictions of the
theory. The exponent n = 2/3 implies the Kolmogorov-like scalings 4.48 and 4.49.

The large-scale turbulent energy budget 4.4 is very different from the small-scale turbulent
energy budget 4.2 both in terms of production and interspace turbulence transport which
are both non-zero in the limit of zero two-point separation lengths when the turbulence
is inhomogeneous. We have therefore not applied to 4.4 the similarity approach that we
applied to 4.2. However, we have taken advantage of the kinematic relation which exists
between the rate with which large scales gain or lose turbulent energy to the small scales via
non-linear turbulence interactions (present in 4.4) and the rate with which small scales gain
or lose turbulent energy via such interactions (present in 4.2). The PIV-truncated part of
the rate with which large scales gain or lose turbulent energy to the small scales has turned
out to be approximately independent of two-point separation scale and proportional to the
average turbulence dissipation rate over the same range of scales where the PIV-truncated
interscale transfer rate in 4.2) exhibites the same behaviour. However, these two transfer
rates do not balance, which suggests that the transfer of turbulent energy from large to
small scales (or vice versa) may not be “impermeable” in the sense that energy may be
leaking out of this cascade process because of non-homogeneities, in the present case by the
spatial gradient term on the right hand side of 4.57.

Our non-equilibrium theory of non-homogeneous turbulence does not give the proportion-
ality coefficients in 4.52, 4.53 and 4.54. We have therefore introduced a local small-scale
homogeneity hypothesis in section 4.10 as a space analogue of Kolmogorov’s small-scale sta-
tionarity hypothesis but do not have criteria, at this stage, for the validity of this small-scale
homogeneity hypothesis. If and when this new hypothesis may hold (perhaps in the limit of
infinite Reynolds numbers?) the coefficient of proportionality in 4.53 will be −1.



CHAPTER 4. SCALE-BY-SCALE NON-EQUILIBRIUM WITH KOLMOGOROV-LIKE
SCALINGS IN NON-HOMOGENEOUS STATIONARY TURBULENCE 98



Chapter 5

Non-Kolmogorov turbulence in
non-homogeneous rotating flow

5.1 Introduction

In chapter 4, the Chen and Vassilicos 2022 theory is improved and used to explain the
Kolmogorov-like results measured in non-homogeneous (non-rotating) turbulence inside a
mixer where Kolmogorov theory is not expected to hold. This theory provides predictions for
the structure functions and for the energy terms present in the two-point Kármán-Howarth-
Monin-Hill equation. In the following chapter, a rotating flow inside the same mixer is
analyzed experimentally. The rotation effect is evaluated in comparison with the results
and theory of chapter 4. First, the structure functions are characterized and the differences
between rotating and non-rotating results are analyzed in light of the Chen and Vassilicos
2022 theory assumptions when possible. Then, the two-point statistics of the two-point
equations are presented to characterize the rotation effect on the energy cascade and more
generally on all the energy terms measured.

5.2 Experimental measurements

The experimental set-up and measurements are presented in detail in chapter 3. Both baffle
and non-baffle configurations results are used in this chapter.

Defining parameters

The defining parameters of the experiment are presented in table 5.1. The rotation fre-
quency F is between 1Hz and 3Hz. The global Reynolds number is Re = 2πF R2

ν . where
R = D/2 ≈ 11.25cm is an estimate of the rotor radius. Re is large, higher than 8.104 in all

99
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cases, and the flow is therefore turbulent.
The Rossby number is defined in section 3.7.5. Our values of Ro range between 0.12 and 0.15

for non-baffled configurations and between 0.32 and 0.4 for baffled configurations. The smaller
Rossby number for the non-baffled cases means that the rotation affects the turbulence more
for these configurations than for the baffled configurations. Moreover, the rotor rotation speed
Ω is not representative of the flow rotation in the case of the baffled configurations because
the baffles break the flow rotation as explained in Nagata 1975. Therefore, the nominal
Rossby number is most probably significantly underestimated for these configurations. The
difference between baffled and non-baffled configurations is therefore much greater than the
nominal Rossby number values suggest.

Basic turbulent flow properties

The main turbulent parameters are presented in table 5.2. They include the turbulence
dissipation rate ⟨ϵ′⟩ averaged over time (overbar) and over the space in our field of view
(brackets), the resulting Kolmogorov length-scale η and the Taylor length λ. These parame-
ters are provided as reference and are used in this chapter to non-dimensionalise results.

The Taylor length-based Reynolds number Reλ is higher than 410 in all configurations.
All the eight flows that we study are therefore highly turbulent. Reλ values are comparable
between most baffled and non-baffled configurations, so no significant Reynolds effect is
expected in the comparison between baffled and non-baffled results.

In figure 5.2a, we plot the mean flow velocity for one of our four non-baffled configurations
but the plot is representative of the four configurations. The mean flow velocity is oriented
horizontally from right to left and is very small in magnitude. These observations evidence
the solid body rotation identified in Nagata 1975 and shown schematically in figure 5.1a. The
solid body rotation appears in the measurement domain because of the small measurement
offset in y direction previously described in section 3.5. In figure 5.2b, we plot the mean
flow velocity of one representative baffled configuration. The mean flow velocity is oriented
vertically from bottom to top and is significant. This observation is consistent with the mean

F (Hz) Re vel rms (m/s) Ro Mean torque (N.m)
Rectangular blades 2 1.6× 105 6.0× 10−2 0.12 0.42
Rectangular blades 3 2.5× 105 9.2× 10−2 0.12 0.74
Fractal blades 2 1.6× 105 7.8× 10−2 0.15 0.40
Fractal blades 2.5 2.0× 105 9.6× 10−2 0.15 0.54
Rectangular blades with baffles 1 9.8× 104 1.0× 10−1 0.36 0.53
Rectangular blades with baffles 1.5 1.3× 105 1.6× 10−1 0.40 1.1
Fractal blades with baffles 1 8.6× 104 9.1× 10−2 0.32 0.41
Fractal blades with baffles 1.5 1.2× 105 1.4× 10−1 0.34 0.81

Table 5.1: Main parameters of the experiment: vel rms (m/s) stands for
√

< u′2
x > + < u′2

z >
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(a) Flow without baffles (b) Flow with baffles

Figure 5.1: Schematic of mean flow in a mixer with and without baffles (Nagata 1975). The
measurement plane is shown as a green square.
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Figure 5.2: Mean flow measurement within the measurement planes shown in figure 5.1

flow structure described in Nagata 1975 and shown in figure 5.1b.

5.3 Results

5.3.1 Second order structure functions: measurements

We start with the analysis of the structure functions to compare the turbulence properties
of the flow with baffles (non-rotating flow) and without baffles (rotating flow). We compute
the normalized structure functions ⟨(δu′

j)2/ϵ′2/3⟩ for j = 1 (velocity fluctuations along the
x-axis) and j = 3 (velocity fluctuations along the z-axis) by averaging over time, i.e. over
our 150, 000 samples (which correspond to 50, 000 uncorrelated samples) and also averaging
over X, i.e. over the planar space of our field of view. The additional averaging over space
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F (Hz) ⟨ϵ′⟩ (m2/s3) η(m) λ(m) Reλ

Rectangular blades 2 6.0× 10−4 2.0× 10−4 6.6× 10−3 4.1× 102

Rectangular blades 3 2.1× 10−3 1.4× 10−4 5.3× 10−3 5.2× 102

Fractal blades 2 1.3× 10−3 1.6× 10−4 5.8× 10−3 4.6× 102

Fractal blades 2.5 2.3× 10−3 1.5× 10−4 5.5× 10−3 5.3× 102

Rectangular blades with baffles 1 3.6× 10−3 1.1× 10−4 4.1× 10−3 5.1× 102

Rectangular blades with baffles 1.5 1.2× 10−2 8.8× 10−5 3.7× 10−3 6.5× 102

Fractal blades with baffles 1 2.4× 10−3 1.3× 10−4 4.9× 10−3 4.8× 102

Fractal blades with baffles 1.5 8.2× 10−3 1.0× 10−4 4.1× 10−3 5.8× 102

Table 5.2: Main turbulence parameters. The Kolmogorov length scale is calculated as η ≡
(ν3/⟨ϵ′⟩)1/4.

is necessary for very good convergence of our statistics but these statistics are also computed
without space averaging in this section.

In figure 5.3 we plot the compensated structure functions ⟨(δu′
x)2/ϵ′2/3⟩ (j = 1) versus

rx/D (figure 5.3a) and versus rz/D (figure 5.3b) and ⟨(δu′
z)2/ϵ′2/3⟩ (j = 3) versus rx/D

(figure 5.3c) and versus rz/D (figure 5.3d). The average turbulence dissipation rate ⟨ϵ′⟩
varies by a factor larger than 4 across our four different baffled configurations and by a factor
larger than 3 across the four non-baffled configurations (see table 5.2). Therefore, figure 5.3
suggests some tendency toward a collapse of the compensated structure functions in both
groups but it is more visible for the baffled configurations. However, the collapse is not very
sensitive to the exponent of ϵ′ so the exact value of the exponent cannot be estimated with
certainty just with these results.

A significantly different evolution with r is observed in figure 5.3 between configurations
with and without baffles. A close to r2/3 power-law behavior is identified for the baffled
configurations results with a close to plateau or a slowly varying linear slope measured for
⟨(δu′

x)2/ϵ′2/3⟩.r−2/3 and ⟨(δu′
z)2/ϵ′2/3⟩.r−2/3 in both rx and rz directions. This behavior

is described in more detail in chapter 4. The non-baffled configuration normalized struc-
ture functions have a very different behavior, clearly far from a r2/3 power-law. Indeed, a
significantly non-constant and non linear behavior is detected for ⟨(δu′

x)2/ϵ′2/3⟩.r−2/3 and
⟨(δu′

z)2/ϵ′2/3⟩.r−2/3 in the rx and rz directions (see figure 5.3). Therefore, the flow rotation
seems to affect significantly the turbulence properties. This is not a Reynolds number effect
as Reλ values are comparable between baffled and non-baffled configurations (see table 5.2).
The same results are obtained for ⟨(δu′

j)2⟩/⟨ϵ′2/3⟩ where the spatial averaging is applied to
the individual terms (not shown for economy of space) which means the r dependence is the
same for ⟨(δu′

j)2⟩/⟨ϵ′2/3⟩ and ⟨(δu′
j)2/ϵ′2/3⟩.

To look at the power law scaling in more detail, we estimate the logarithmic slopes q of
⟨(δu′

x)2⟩ and ⟨(δu′
z)2⟩ versus both rx and rz, i.e. dlog⟨(δu′

x)2⟩
dlogrx

, dlog⟨(δu′
x)2⟩

dlogrz
, dlog⟨(δu′

z)2⟩
dlogrx

and
dlog⟨(δu′

z)2⟩
dlogrz

, which we plot versus rx and rz respectively in figures 5.4 and 5.5. For the baffled
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Figure 5.3: Normalized structure functions < δu′2
x > and < δu′2

z > compensated by r−2/3

versus rx/D in (a) and (c) and versus rz/D in (b) and (d)
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configurations, a well-defined plateau appears in both directions for rx, rz ≪ D with an
exponent q between 0.5 and 0.8 (close to the theoretical value 2/3). More details about
the baffled configurations are provided in chapter 4. For the configurations without baffles
and with either fractal blades at 2Hz and 3Hz or rectangular blades at 3Hz, a plateau is
observed for the logarithmic slopes of ⟨(δu′

x)2⟩ in the ranges 0.026 ≤ rx/D ≤ 0.05 and
0.02 ≤ rz/D ≤ 0.06 with a value of q close to 1 (between 0.9 and 1.1). Therefore, for these
non-baffled configurations, a significantly clear power-law behavior is identified for ⟨(δu′

x)2⟩
but with a significantly steeper slope than for the baffled configurations. For the configuration
without baffles and with rectangular blades at 2Hz, it is hard to detect the presence of a
constant exponent q over a significant range of scales either in rx or rz directions. This
difference from the other configurations is not clearly understood as neither are several other
results in this chapter for this peculiar configuration. This configuration has the smallest
Reλ (see table 5.2) but not to much small to explain why it is so different. More practically,
a more significant experimental noise may be present in the results for this configuration as
the turbulence signal is weaker than in other configurations (the turbulence dissipation rate
signal for example is much weaker).

The logarithmic slopes of ⟨(δu′
z)2⟩ for the non-baffled configurations have significant vari-

ations between 0.7 and 0.9 in both rx and rz directions and therefore no range of constant q

value. These results mean these structure functions cannot be approximated by a power law
as opposed to the results for ⟨(δu′

x)2⟩ which can (with the exception of the rectangular blades
with F = 2Hz configuration). A r1 behavior of the structure functions ⟨(δu′

x)2⟩ is equivalent
to a k−2 power-law behavior of the energy spectrum. Therefore, our results are consistent
with the k−2 energy spectrum slope identified in Herbert et al. 2012 at ’low Reynolds’ in the
azimutal direction of the rotation plane in a Von-Kármán tank (Re = 2πfR2

ν ≈ 104, where
f is the rotation frequency of the Von-Kármán flow and R the cylinder radius). No clear
scaling is observed in their results for the vertical component similarly to our measurements
results.

The identification of a power-law behavior questions the non-dimensionalisation previously
used. Indeed, ⟨(δu′

x)2/ϵ′2/3⟩ ∼ rq
j or ⟨(δu′

x)2⟩/⟨ϵ′⟩2/3 ∼ rq
j is not dimensionally correct for

q ̸= 2/3 so another variable with independent dimension should be introduced. The rotation
frequency is likely to affect the turbulence properties as previously introduced so it is used to
build a relation based on dimensional analysis which is consistent with a power-law behavior
in rotating turbulence:

⟨(δu′
i)2.(ϵ′)−1+q/2⟩F 1−3q/2 ∼ rq

j (5.1)

The results are presented in figures 5.6 and 5.7 where q ≈ 1 and an acceptable collapse of
the results is obtained for ⟨(δu′

x)2/ϵ′1/2⟩F −1/2 in figures 5.6a and 5.6b in both rx and rz direc-
tions. The linear behavior is also clearly visible in figure 5.6. The plots of ⟨(δu′

z)2/ϵ′1/2⟩F −1/2
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Figure 5.4: Logaritmic slope q of the structure function < δu′2
x > along two radial directions

computed as ∂log(<δu′2
x >)

∂log(rj) = f(rj). < δu′2
x >= f(rj) is obtained by averaging δu′2

x over 150,000
samples in time corresponding to 50,000 uncorrelated and averaging over the spatial domain.
The derivative is estimated with a centered scheme log(<δu′2

x (rj+drj)>)−log(<δu′2
x (rj−drj)>)

log(rj+drj)−log(rj−drj) .
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Figure 5.5: Logaritmic slope q of the structure function < δu′2
z > along two radial directions

computed as ∂log(<δu′2
z >)

∂log(rj) = f(rj). < δu′2
z >= f(rj) is obtained by averaging δu′2

z over 150,000
samples in time corresponding to 50,000 uncorrelated and averaging over the spatial domain.
The derivative is estimated with a centered scheme log(<δu′2

z (rj+drj)>)−log(<δu′2
z (rj−drj)>)

log(rj+drj)−log(rj−drj) .
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Figure 5.6: Structure function < δu′2
x > normalized by

(
Fϵ′
)1/2 along two radial directions.

in figures 5.7a and 5.7b do not show a good collapse of the fractal and the rectangular blades
results. Moreover, the shape is not perfectly linear (particularly for rectangular blades) as
anticipated with the previous (δu′

z)2 logarithmic slope results. This explains also why this
normalization does not collapse the (δu′

z)2 results as it is only adapted for linear structure
functions where q ≈ 1.

Overall, a clear difference of structure function behaviors is identified and quantified
between baffled and non-baffled configurations and it can be associated to flow rotation.
The baffled results are explained in chapter 4 with a theory initially introduced in Chen and
Vassilicos 2022 and improved here. Therefore, in the next section, the main steps of this
theory are revisited to see which assumption is broken by the rotation effect causing the
structure functions not to have the r2/3 power law behavior that is present in the baffled
configuration.

5.3.2 Second order structure functions: Chen and Vassilicos 2022
theory

For the baffled configurations, we have assumed that the non-linear and non-local dynam-
ics of the small-scale turbulence are similar at different places within a local region. The
approach of Chen and Vassilicos 2022 has been adopted which is based on inner and outer
self-similarity. This theory (and our improvement of it) is described in section 4.7 of chapter
4. The derivation assumes inner/outer similarity of the structure functions and inner outer
equivalence for dissipation (which we actually derived from a more basic hypothesis in section
4.8.3). The following second order structure functions behavior is derived without assuming
homogeneity:
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Figure 5.7: Structure function < δu′2
z > normalized by

(
Fϵ′
)1/2 along two radial directions.

(δu′
j)2 = Cj(ϵ′r)2/3Fj(θ, ϕ) (5.2)

in the intermediate range lI ≪ r = |r| ≪ lO. The dimensionless coefficient Cj may vary
with j and with X and the dimensionless function Fj , which is independent of X and of
r ≡ |r|, may also vary with j.

The structure function results obtained in non-baffled configurations are different from
equation 5.2 so the question is to know at which step the theory is no longer applicable in
the non-baffled cases? First, are inner and outer similarity in equations 4.22 and 4.23 valid
in rotating turbulence? Second, does the inner-outer equivalence for dissipation hold?

The inner and outer similarity equations 4.22 and 4.23 cannot be used without modification
in the non-baffled configurations as the flow is highly anisotropic so that we expect to
have two inner (resp. outer) scales: lIz (resp. lOz) in the vertical direction and lIxy (resp.
lOxy) in the equivalent rotation plane directions. Therefore, equation 4.27 cannot a priori
be derived for non-baffled configurations in the same way as for baffled configurations.
In the next paragraph, we test the inner similarity of the structure function components
to see if inner/outer similarity assumptions can be applied to (δu′

j)2 for each direction
so that an equivalent equation to 4.27 may be re-derived for each component in each direction.

The field of view is of limited size in order to have a good spatial resolution so the outer
region is not expected to be accessible with our dataset. We expect to see in our measurements
the inner range and the inner-outer asymptotic overlap range which is classically observed
for r > λ (Alves Portela, Papadakis, and Vassilicos 2017) so we focus on the inner region.
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The time averaged structure functions at different space locations of one baffled and one non-
baffled configuration are plotted in figures 5.8, 5.9 and 5.10. These results are representative
of all configurations which are plotted in appendix B.2. The two-point separation vector is
limited in size depending on the spatial location so that all the plots do not end at the same
point. The largest error bar of all spatial locations is evaluated and assigned to the mean
value in red to show an estimate of statistical convergence.

Inspired by the theory in chapter 4, we use the inner scales lI = D.Re
−3/4
O and VI =√

u′2
x + u′2

z .Re
−1/4
O where ReO =

√
u′2

x +u′2
z D

ν to non-dimensionalize results. For these con-
figurations, the results collapse within error bars for different space locations in our PIV
field of view as δu′2

x /V 2
I = f(rx/lI) in figure 5.8a, δu′2

x /V 2
I = f(rz/lI) in figure 5.8b and

δu′2
z /V 2

I = f(rx/lI) in figure 5.9a. Only the baffled results collapse acceptably well for
δu′2

z /V 2
I = f(rz/lI) in figure 5.9b. For these results, the spatial dependence remains small or

negligible (variation of lI and VI between 1% and 8%). This means that these second order
structure functions are close to homogeneous in the inner region but this might not be the
case in the outer region. Moreover, the quasi-homogeneity of these results does not mean
that the turbulent flow is homogeneous as some non-negligible non-homogeneity is measured
for other statistics in sections 5.5, 5.6, 5.7 and 5.8. On the other hand, the scales lI and VI

do not return a particularly good collapse δu′2
z /V 2

I = f(rz/lI) for the non-baffled configura-
tions. Another spatially dependent normalization is tested for these results: l̃I = D.R̃eO

−3/4

and ṼI =
√

u′2
z .R̃eO

−1/4
where R̃eO =

√
u′2

z D

ν . The results of δu′2
z /ṼI

2
= f(rz/l̃I) collapse

very well for the non-baffled configurations, see figure 5.10 and appendix B.2. Therefore, it
is possible to assume that inner similarity holds for each separate contribution δu′2

i in each
separate direction rj for baffled and non-baffled configurations:

δu′2
i (rj) = V 2

I2ij(X)fI2ij

(
rj

lIij

)
(5.3)

for |r| ≪ lO where VI2ij , fI2ij and lIij are defined for each component and each direction.
This assumption is not very restrictive as it allows for the presence of non-homogeneity
such as the one measured for δu′2

z in the rz direction (e.g. figure 5.9b). We can also define a
similar outer similarity of the structure function even though we cannot verify this assumption
experimentally because of the restricted size of the field of view. We introduce therefore VO2ij ,
fO2ij and lOij so that:

δu′2
i (rj) = V 2

O2ij(X)fO2ij

(
rj

lOij

)
(5.4)

for |r| ≫ lI .

We define ReOij = VO2ij lOij/ν, VI2ij/VO2ij = g2ij(ReOij , Roij , X) and lIij/lOij =
glij(ReOij , Roij , X) where the dependence on the Rossby number Roij = VI2ij/(4πF lOij) is
new compared to chapter 4 and takes into account rotation effects. Note that we assume



109
CHAPTER 5. NON-KOLMOGOROV TURBULENCE IN NON-HOMOGENEOUS

ROTATING FLOW

that fIij and fOij do not depend on ReOij and Roij explicitly. This assumption might not
be true in all situations and can lead to some uncertainty in the predictions.

Assuming that the outer similarity holds and following our baffled configuration derivation
in equations 4.24, 4.25 and 4.27, we can write the inner outer matching in the inner outer
region (lI ≪ |r| ≪ lO):

fO2ij

(
rj

lOij

)
= g2

2ijfI2ij

(
rj

lOij
g−1

lij

)
(5.5)

and differentiate with respect to ReOij to find:

nijfI2ij (ρij) = ρij
∂

∂ρij
fI2ij (ρij) (5.6)

(without implicit summation) where ρij = rj

lOij
g−1

lij and where nij is a dimensionless exponent
which can be different for each contribution in each direction. Therefore, a power-law behavior
can be derived for fI2ij :

fI2ij = r
nij

j (5.7)

Note that differentiating with respect to Roij gives the same results so nij is not constrained
at that point. We identified a power law behavior for δu′2

x in both rx and rz directions, so we
may expect outer similarity to hold for this component in both rx and rz directions which
could explain the non-Kolmogorov power-law behavior identified experimentally as resulting
from an inner/outer asymptotic matching. This is less clear for δu′2

z as a power law behavior
is not clearly identified for it. We expect therefore, the outer similarity assumption 5.4 to
describe only approximately the behavior of δu′2

z which would explain why a non-power law
behavior is evidenced in the expected inner/outer matching region for this component. The
non-verification of equation 5.4 might be related to a non-negligible Reynolds or Rossby
dependence of fOij . The confirmation of these conjectures is left for future work.

The theory can be derived until equation 5.7 for δu′2
x . However, the inner-outer equivalence

for dissipation: ϵ′ ∼ V 3
O2ij/LOij ∼ V 3

I2ij/LIij , where i = 1, cannot hold for the non-baffle
configurations because it can implies nij = 2/3 which is not measured in the non-baffled
results. This inner/outer equivalence for dissipation is derived in chapter 4 based on the scale
by scale analysis of the small scale two-points Navier-Stokes equations 4.2. Therefore, we
investigate the possible causes which can explain why the inner-outer equivalence hypothesis
can break.
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Figure 5.8: Time averaged structure function δu′2
x at different space locations in two radial

directions and normalized by lI , V 2
I = (u′2

x + u′2
z ).Re

−1/2
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z D

ν .
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Figure 5.9: Time averaged structure function δu′2
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2
= (u′2

z ).R̃eO

−1/2
where R̃eO =

√
u′2

z D

ν .

5.4 Inner-outer dissipation equivalence

The inner-outer dissipation equivalence hypothesis is derived in chapter 4 but the main
steps (i, ii, iii and iV ) of this derivation are reminded to identify the reason why it can fail
in non-baffled configurations. This hypothesis is derived based on the small scale fluctuating
two-point equation introduced in chapter 4 and recalled here:

(uX .∇X + δu.∇r) 1
2 |δu′|2 − Pr − P s

Xr + ∇X .(uX
′ 1
2 |δu′|2) + ∇r.(δu′ 1

2 |δu′|2)

= −2∇X .(δu′δp′) + ν

2 ∇X
2 1

2 |δu′|2 + ν

2 ∇r
2 1

2 |δu′|2 − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

(5.8)

where Pr = −δu′
jδu′

i
∂δui

∂rj
and P s

Xr = −u′
Xjδu′

i
∂δui

∂Xj
are small scale two-point production

terms.

(i) In Chen and Vassilicos 2022 and chapter 4, inner similarity is assumed for r << lO and
outer similarity is assumed for r >> lI for the terms: ∇X .(uX

′|δu′|2), ∇r.(δu′|δu′|2) and
2∇X .(δu′δp′) (equations 4.34, 4.35, 4.36, 4.37, 4.38 and 4.39).

The inner similarity of the structure functions was confirmed previously in this chapter but
the third order statistics similarity cannot be evaluated because of lack of convergence. The
inner and/or the outer similarity of the third order statistics can conceptually fail in flows
with significant rotation which would explain why the inner-outer dissipation hypothesis
fails in non-baffled configurations. This is therefore, the first possible cause of failure of this
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hypothesis in rotating flows.

(ii) It is assumed that VI3 = CI(X)VI2 where the dimensionless coefficient CI(X) is
independent of ReO and r. This assumption relates the second order structure function
scaling velocity with the interscale energy transfer rate scaling velocity and cannot be tested
accurately because of the low convergence of third order quantities without space averaging.

(iii) It is also assumed that ϵ′ = Cϵ(X)V 3
O2/lO where Cϵ is independent of viscosity. This

scaling follows from the hypothesis (often referred to as zeroth law of turbulence) that the
turbulence dissipation rate is independent of the fluid’s viscosity at large enough Reynolds
number. This assumption is questionable in rotating flow according to Favier 2020. Indeed,
rotating flow in the limit of zero Rossby number may be associated with two-dimensional
turbulence where the zeroth-law does not hold. In our case, the Rossby number values
are between 0.12 and 0.15 for the rotating configurations which is an intermediate regime
between infinitely fast rotating turbulence and non-rotating turbulence. Therefore, the
zeroth law of turbulence might not hold in our flow which can also explain the breakdown
of the inner-outer dissipation equivalence hypothesis.

(iV ) The inner and outer balance of equation 5.8 is used to derive Cϵ(X)V 3
O2/lO ∼

C3
I (X)V 3

I2/lI with a proportionality coefficient that is independent of X and ReO. The
inner (resp. outer) balance results from injecting the inner (resp. outer) similarity forms of
the energy terms into equation 5.8 and this then leads to a space and scale matching between
the different terms in the equation.

This inner and outer balance are derived for turbulence where there is no two-point
production at small scales (Chen and Vassilicos 2022). The production term can be seen as
an internal turbulent energy injection rate, which interacts with the interscale /interspace
turbulent energy transfers. Therefore, this term is not expected to follow turbulence
universal laws but instead impose more strongly non-homogeneity specificities which might
break or modify the inner and the outer balances. More generally, the Corrsin length
lC = ϵ3/2/S3/2 has been used previously in Corrsin 1958 to distinguish between scales above
lC where the mean shear S is significant, and scales below lC where it may not be (but can
nevertheless be significant in term of two-point production). This estimate gives a rough
idea about the scales where there is significant one point production. This scale is a way to
detect mean flow non-homogeneity as opposed to turbulence non-homogeneity which will be
also evaluated later in this chapter.

Linear transport terms can also be affected by mean flow non-homogeneity when it survives
at small scales and is strong enough to impact the scale dependence. Indeed, the linear
transport terms: (uX .∇X + δu.∇r) |δu′|2 can be affected, for example, by the mean flow
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non-homogeneity when uX and/or δu affect significantly the scale dependence so that it
can break the inner/outer balance. This term can also transport in space/scale the quantity
|δu′|2 from a flow region affected by production at small scale into a region without mean flow
non-homogeneity so that it can contaminates this new region. Therefore, both production
and linear transport terms should be analyzed because they can break or at least modify the
inner and outer balances.

5.5 Mean flow non-homogeneity

First, estimates of the Corrsin length are presented in table 5.3 to have an overview of
the mean flow non-homogeneity. As introduced previously, this estimate is used to estimate
the scale of the mean flow non-homogeneity which may give some hints about the one point
production scale. We define the surrogate estimate: l̃C =< ϵ′ >1/2 / < S >3/2, where

< S >=

√
2
(

∂ux

∂x

)2
+ 2

(
∂ux

∂z

)2
+ 2

(
∂uz

∂x

)2
+
(

∂uz

∂z

)2
; (5.9)

the assumptions
(

∂ux

∂x

)
≈
(

∂uy

∂y

)
,
(

∂ux

∂z

)2 ≈
(

∂uy

∂z

)2
,
(

∂uz

∂x

)2 ≈
(

∂uz

∂y

)2
are used; and the

missing terms
(

∂ux

∂y

)2
and

(
∂uy

∂x

)2
are neglected. l̃C is expected to be overestimated because

of the missing contributions but this estimate should be robust enough to compare baffled
and non-baffled results. The estimates of l̃C are presented normalized by λ similarly to the
two-point results in the previous chapter and by lI to compare with previous plots. The
Corrsin length scale is very small for the non-baffled configurations: between 3λ and 6λ (or
between 130lI and 240lI) even though the results are overestimated which suggests the mean
flow non-homogeneity exists at very small scales when the flow is rotating (as expected).

This small scale mean flow non-homogeneity might break the inner and the outer scale by
scale balance of equation 5.8 described in Chen and Vassilicos 2022 and chapter 4. Indeed,
the mean flow non-homogeneity scale is of the order of magnitude of λ where one often finds a
Kolmogorov-like approximate scale-by-scale equilibrium balance (Meldi and Vassilicos 2021,
Apostolidis, Laval, and Vassilicos 2023). The Corrsin length scale estimates are much larger
for the baffled configuration, in fact higher than 26λ (or 1000lI), which suggests that the
mean flow non-homogeneity is only contained at large scales for these configurations allowing
inner and outer balances of the type of Chen and Vassilicos 2022 to exist for a large range of
scales smaller than lC . Another non-homogeneity scale ratio based on Chen and Vassilicos
2022 theory can be derived, namely:

lCV 22,O/lO = ( ϵ

V 2
O2S

)3/2 (5.10)

where the ratio should be large so that the mean flow non-homogeneity does not affect
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F (Hz) l̃C/λ l̃C/lI ˜lCV 22,O/λ

Rectangular blades 2 3.5 133 1.1
Rectangular blades 3 5.1 217 1.5
Fractal blades 2 5.2 207 1.7
Fractal blades 2.5 5.5 239 1.6
Rectangular blades with baffles 1 26.4 1037 9.3
Rectangular blades with baffles 1.5 39.5 1816 13.4
Fractal blades with baffles 1 25.8 1017 8.3
Fractal blades with baffles 1.5 38.6 1673 13.3

Table 5.3: Corrsin length scale estimate l̃C =< ϵ >1/2 / < S >3/2 with < S > defined in 5.9

the inner-outer balance. The estimate: ˜lCV 22,O

λ = lO

λ

(
<ϵ>

<VO2>2<S>

)3/2
is evaluated where

VO2 =
√

2u′2
x + u′2

z and lO is approximated by D. These results are presented in table 5.3.

The values of ˜lCV 22,O

λ are different to the Corrsin values because of the change of definition
and the approximation lO = D but the variation between baffled and non baffled results is of
the same order of magnitude which confirms the previous results. As opposed to the results
of Chen and Vassilicos 2022 where the Corrsin length scale does not seem to predict well
where the theory holds and where it does not, our results are very explicit. This might be
due to the fact that the Corrsin length should be compared to the Taylor scale or to the
inner scale instead of the integral scale to know if the mean flow non-homogeneity is present
at scales small enough to affect the inner-outer matching region as it is done this chapter.

In the next sections, we present the production and linear transport estimates to see if it can
explain the breakdown of the inner/outer balance forms of (5.8), possibly related to mean flow
non-homogeneity at small scales. Then, the other two-point statistics are compared between
baffled and non-baffled configurations to have an exhaustive description of the rotation effect
on two-point statistics.

5.6 Two-point turbulence production rates

We start our data analysis with an assessment of the two-point turbulence production rates.
The sums defining Pr = −δu′

jδu′
i

∂δui

∂rj
and P s

Xr = −u′
Xjδu′

i
∂δui

∂Xj
are sums of nine terms of

which our 2D2C PIV has access to four. Our data therefore allow only truncations to be
calculated directly (defined in section 4.5).

We calculate space averages over the field of view of the two truncated two-point production
rates (⟨P̃r⟩ and ⟨P̃ l

Xr⟩ and we plot them in figures 5.11 and 5.12 versus r1 ≡ rx and r3 ≡ rz.
We plot them normalised by ⟨ϵ′⟩/2 where ϵ′ ≡ ∂u′

i

∂ζj

∂u′
i

∂ζj
is estimated on the basis of our 2D2C

PIV data using its axisymmetric formulation (see chapter 3).
We can see from the plots in figures 5.11 and 5.12 that for baffled configurations, ⟨P̃r⟩ and
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⟨P̃ s
Xr⟩ collapse and are relatively small for most values of rx and rz that our field of view allows

us to access. The non-baffled configurations results are different and non negligible values
are obtained, in particular for the configurations with rectangular blades (see figure 5.12).
For example, the values of ⟨P̃ s

Xr⟩ are significant in rz direction for the configurations with
rectangular blades at 2Hz, 3Hz and fractal blades at 2Hz. No collapse of the results is found
for the non-baffled individual production terms so the results depend on the non-homogeneity
specificity of each configuration.

However, the results collapse reasonably well for the non-baffled configurations of specific
blades when we sum both small scale production terms (⟨P̃r⟩+ ⟨P̃ s

Xr⟩) as function of rx and
rz given the large dissipation variation (see figure 5.13). The total small scale production’s
contribution is negligible for the non-baffled fractal blades configurations in rx and rz

direction and significant for the non-baffled rectangular blades configurations. The difference
between these results might be associated with the break of the coherent structures expected
with fractal blades (Başbuğ, Papadakis, and Vassilicos 2018). Therefore, if the missing
production contributions behave in a similar way as the measured contributions, the small
scale production in equation 5.8 cannot explain alone the breakdown of the inner/outer
balance through mean flow non-homogeneity at small scale. In particular, not for the fractal
blade configurations where the configurations without baffles have similar total production
results as configurations with baffles while their structure functions do not follow a r2/3

power-law. Therefore, either the missing production contributions are non-negligible or the
mean flow non-homogeneity at small scale disturbs the inner and/or outer balances with
another term than the production so that the dissipation hypothesis fails and the structure
functions behave differently.

Overall, our results suggest that the two-point productions in the small-scale energy equa-
tion 5.8 are significantly affected by the mean flow non-homogeneity but this cannot explain
on its own the structure function behavior differences identified in previous sections of this
chapter between baffled and non-baffled configurations.
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Figure 5.11: Production truncate estimate P̃r introduced in equation 5.8, normalized by
dissipation and along two radial directions.
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Figure 5.12: Production truncate estimate P̃ S
Xr introduced in equation 5.8, normalized by

dissipation and along two radial directions.
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Figure 5.13: Total production truncate estimate P̃r + P̃ S
Xr introduced in equation 5.8, nor-

malized by dissipation and along two radial directions.

5.7 Small scale linear transport

We now focus on the linear transport (uX .∇X + δu.∇r) 1
2 |δu′|2 to see if the results differ

between baffled and non-baffled configurations and check if it can explain the break of the
inner-outer dissipation equivalence hypothesis. Once again, with our 2D2C PIV data, we
can only consider a truncation estimate. The truncation averaged over the field of view is
<
(

uXx
∂

∂Xx
+ uXz

∂
∂Xz

+ δux
∂

∂rx
+ δuz

∂
∂rz

)
1
2

(
δu′2

x + δu′2
z

)
>.

We calculate space-averages of the truncation estimate in two parts: i.e.
⟨
(

uXx
∂

∂Xx
+ uXz

∂
∂Xz

)
1
2

(
δu′2

x + δu′2
z

)
⟩ which represents the spatial linear transport

and ⟨
(

δux
∂

∂rx
+ δuz

∂
∂rz

)
1
2

(
δu′2

x + δu′2
z

)
⟩ which represents the scale linear transport. In

figures 5.15 and 5.14, we plot the space-average truncated parts normalized by ⟨ϵ′⟩/2 versus
rx and rz. The baffled results of the spatial and scale linear transport are relatively small
compared to ⟨ϵ′⟩/2 in rx and rz direction as described in chapter 4 with a very small
dependence to the two-point separation length. Regarding the non-baffled configurations,
the results do not collapse and depend of the non-homogeneity of each configuration. For
the non-baffled configurations with fractal blades at 2Hz, 2.5Hz and rectangular blades
at 2Hz, the spatial linear transport (figures 5.14a and 5.14b) return values significantly
larger than the baffled configurations in both rx and rz directions with significantly non
constant dependencies on two-point separation length. The same results are obtained for
the non-baffled configuration with rectangular blades at 3Hz in the rx direction but not in
rz direction where they are comparable to baffled results. However, for this configuration
in the rz direction, the scale linear transport (figures 5.15a and 5.15b) has a non constant
dependance on rz. Therefore, for all non-baffled configurations, the spatial linear transport
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Figure 5.14: Truncation estimate of the linear transport (uX .∇X) 1
2 |δu′|2 introduced in

equation 5.8, normalized by dissipation and along two radial directions.

estimate and/or the scale linear transport estimate have a non-constant evolution with r and
values are significantly larger than for the baffled configurations. Practically, the non-zero
linear transport at small scales means some energy ( 1

2 |δu′|2) enters or leaves the domain
at small scales with the mean flow. This energy may come from highly non-homogeneous
regions with high production at small scales so that the turbulence results inside the field of
view are contaminated through the linear transport terms.

In Chen and Vassilicos 2022, the advection term is derived to be negligible in the inner
balance when the Reynolds number is large on the basis of the inner similarity hypotheses
and this is needed for the inner/outer dissipation equivalence hypothesis to hold. We observe
experimentally that the rotation in the non-baffled configurations can produce a flow with
large Reynolds number but non-negligible advection at small scales with significant depen-
dence on two-point separation length. This rotation effect breaks the inner and outer balance
of the small scale equation 5.8 in Chen and Vassilicos 2022. This significant difference can
explain the breakdown of the inner-outer dissipation equivalence, so that the measured struc-
ture functions do not follow a r2/3 power law behavior. In the following sections we continue
to characterize the turbulence properties of the non-baffled configurations in comparison to
the baffled ones by studying the other energy terms of equation 5.8.

5.8 Energy transfer rate measurements

The theory in chapter 4 predicts, for the baffled configurations, that an intermediate range
of scales exists (lI ≪ |r| ≪ lO) where, for ReO →∞:
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Figure 5.15: Truncation estimate of the linear transport (δu.∇r) 1
2 |δu′|2 introduced in equa-

tion 5.8, normalized by dissipation and along two radial directions.

∇r.(δu′|δu′|2) ∼ ϵ′, (5.11)

∇X .(uX
′|δu′|2) ∼ ϵ′ (5.12)

and
2∇X .(δu′δp′) ∼ ϵ′. (5.13)

These results were derived assuming inner/outer similarity of these energy terms as intro-
duced in Chen and Vassilicos 2022 and inner-outer equivalence for dissipation. The dimen-
sionless coefficients of proportionality in 5.11, 5.12 and 5.13 are independent of r, independent
of Reynolds number and independent of X but add up to −1 asymptotically for large enough
Reynolds numbers. These results are also generalized in chapter 4 to truncated estimates of
the two-point quantities based on isotropic similarity assumptions (which is not an isotropic
assumption):

δu′
x

∂

∂rx
(δu′2

x + δu′2
z ) + δu′

z

∂

∂rz
(δu′2

x + δu′2
z ) ∼ ϵ′ (5.14)

and
u′

Xx

∂

∂Xx
(δu′2

x + δu′2
z ) + u′

Xz

∂

∂Xz
(δu′2

x + δu′2
z ) ∼ ϵ′. (5.15)

In this chapter, we focus on the non-baffled results but the baffled results are also plotted
for comparison. The breakdown of the inner/outer balances of equation 5.8 identified
previously in non-baffled configurations should be visible in the energy transfer results by
the invalidity of equations 5.14 and 5.15.
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The spread of Taylor length-based Reynolds numbers across our four non-baffled configu-
rations is from 410 to 530. The Taylor length-based Reynolds number of the baffled config-
urations is from 480 to 650 and several values are comparable to the ones of the non-baffled
configurations allowing comparison for similar Reynolds number. The spatial resolutions for
all eight configurations are given in table 3.1. We normalise the two-point separation length
components rx and rz by λ similarly to chapter 4. The Taylor length takes values between
5.3mm and 6.6mm across our four non-baffled configurations and the field of view of our PIV
is 27mm× 28mm, hence we cannot access values of rx/λ and rz/λ larger than those in the
plots of figures 5.16a and 5.16b for non-baffled configurations. The convergence is analyzed
in appendix B.1 and seems to be acceptable for rx < 1.3λ and rz < 3λ for non-baffled con-
figurations. Beyond these values of rx and rz statistical convergence visibly weakens. The
baffled results are better converged for the same rx/λ and rz/λ ratio because of the smaller
Taylor scale for these configurations. These results are acceptably converged over the ranges
rx and rz presented in figures 5.16a and 5.16b.

In figures 5.16 and 5.17, we plot the normalised truncated interscale transfer rate

term ⟨ ˜∇r.(δu′|δu′|2)⟩/⟨ϵ′⟩ and the normalised truncated interspace transfer rate term

⟨ ˜∇X .(uX
′|δu′|2)⟩/⟨ϵ′⟩.

The interscale transfer rate estimate is found to be negative for all baffled configurations for
the scales observed in both rx and rz directions. The same sign is found for the non-baffled
configurations in the range of scales measured. These results suggest a non-linear interscale
turbulent energy transfer that is predominantly from large to small scales, i.e. that the
turbulence cascade is forward on average. This result cannot be confirmed definitively with
our dataset for the non-baffled configurations because several interscale transfer contributions
cannot be computed and the turbulence is strongly anisotropic for these configurations.

For the baffled configurations, the interscale transfer estimate is found to be proportional
to the turbulence dissipation rate and independent of the two-point separation length for
λ
2 ≤ rx ≤ 2λ and λ

2 ≤ rz ≤ 5λ as predicted in equation 5.14. Non-constant interscale transfer
rates are observed for the non-baffled configurations with a slow decrease in the rx direction
and a significant linearly decreasing variation in the rz direction (see figure 5.16). Also, the
results do not collapse well for these non-baffled configurations as particularly visible in rz

direction (see figure 5.16). These experimental results contradict the prediction (5.14) and
are in agreement with the breakdown of the inner and outer balances of equation 5.8 as
already suggested. These results are obtained for comparable Reλ so the root cause for the
difference is the flow rotation.

The interspace transport estimates, presented in figures 5.17a and 5.17b, are also signif-
icantly different between baffled and non-baffled configurations. These contributions are
positive on average and nearly independent of the two-point separation length for the baffled
configurations as predicted by equation 5.15. The sign suggests that there is an average
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Figure 5.16: Space and time averaged truncation estimate of the small scale interscale transfer
∇r.(δu′|δu′|2) introduced in equation 5.8, normalized by dissipation and along two radial
directions.

turbulent flux which takes small-scale turbulent kinetic energy out of the field of view. The
non-baffled interspace transport estimates do not collapse well with mean dissipation. This
is particularly visible in the rz direction where the fractal blade results are close to zero while
the rectangular blade results are decreasing and negative. Therefore, the non-homogeneity
contributions differ among different non-baffled configurations. For these configurations, a
significant dependence with two-point separation length is found and is particularly visible
in the rx direction. Therefore, equation 5.15 is not valid for non-baffled configurations which
confirms once again the breakdown of the inner and outer balances Chen and Vassilicos 2022.
There is a change of sign of the interspace transport rate estimate at rx/λ ≈ 1 for the non-
baffled configurations with fractal blade results at 2Hz and 2.5Hz and rectangular blades at
2Hz (see figure 5.17a). This change of sign suggests the non-homogeneity does not behave
similarly at all scales and in all directions: outgoing flux of energy for positive values and
incoming flux for negative ones.

The change of behavior between baffled and non-baffled configurations for the interspace
energy transfer rates might be related to the mean flow non-homogeneity previously identified
with the small Corrsin length scale (resp. Chen and Vassilicos 2022 length scale) for the non-
baffled cases. Indeed, this mean flow non-homogeneity scale has values between 3λ and 6λ,
for the non-baffle configurations, even after overestimation (resp. between 1λ and 1.7λ for
the Chen and Vassilicos 2022 length scale). Therefore, the mean flow non-homogeneity may
affect the turbulence in the range of scales presented in figures 5.17a and 5.17b.
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Figure 5.17: Space and time averaged truncation estimate of the small scale interspace trans-
port ∇X .(uX

′|δu′|2) introduced in equation 5.8, normalized by dissipation and along two
radial directions.

5.9 Large-scale turbulent energy budget

A RANS decomposition is applied to the Germano 2007b equation as introduced in chapter
4 to obtain the large scale fluctuating equation reproduced here:

(uX .∇X + δu.∇r) 1
2 |u

′
X |2 − PX − P l

Xr + ∇X .(uX
′ 1
2 |uX

′|2) + ∇r.(δu′ 1
2 |uX

′|2)

= −2∇X .(uX
′p′

X) + ν

2 ∇X
2 1

2 |u
′
X |2 + ν

2 ∇r
2 1

2 |u
′
X |2 −

ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

(5.16)

where PX = −u′
Xju′

Xi
∂uXi

∂Xj
and P l

Xr = −δu′
ju′

Xi
∂δui

∂Xj
are large scale production terms.

As mentioned in chapters 2 and 4, this equation describes the large scale velocity energy
(uX

′2) evolution as opposed to equation 5.8 which describes the small scale velocity energy
(δu′2) evolution.

We also remind the reader that the small scale interscale transfer rate ∇r.(δu′|δu′|2) is
related to the large scale interscale transfer rate ∇r.(δu|uX

′|2) through the equation:

∇r.(δu|δu|2) + ∇r.(δu|δu′|2) + ∇r.(δu′|δu′|2) + 2∇r.(δu′(δu′δu))

+ ∇r.(δu|uX |2) + ∇r.(δu|uX
′|2) + ∇r.(δu′|uX

′|2)− 2P l
Xr

= 2∇X .(δu(δu.uX)) + 2∇X .(δu(δu′.u′
X))

+ 2∇X .(δu′(δu′.u′
X)) + 2∇X .(δu′(δu.u′

X))− 2Pr

(5.17)
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In this section we present the results of the large scale equation to see how the small scale
results are related to the large scale results and to characterize the flow rotation through this
framework.

In figures 5.18a and 5.18b we plot the spatio-temporal average of the truncated estimate
of ∇r · (δu′|uX

′|2) that is accessible to our 2D2C PIV, namely ⟨δu′
x

∂
∂rx

(u′2
Xx + u′2

Xz)⟩ +
⟨δu′

z
∂

∂rz
(u′2

Xx + u′2
Xz)⟩. We plot it normalised by ⟨ϵ′⟩ versus both rx/λ and rz/λ and we note

a significant difference between baffled and non-baffled configurations. The results collapse
relatively well for the four different baffled configurations (where the mean dissipation changes
by a ratio of four). This is definitively not the case for non-baffled configurations in the rz

direction where the fractal blade results and the rectangular blade results are significantly
different. This difference can be attributed to a different non-homogeneity type related to
the type of blade which would explain why the results differ for different blades but collapse
a little better for same blades results at different rotation speeds. The fractal blade are
expected for example to break the coherent structures of the flow compared to rectangular
blades (Başbuğ, Papadakis, and Vassilicos 2018) which may explain the difference in the
results.

Furthermore, the baffled configuration results appear to have a constant value across the
same ranges λ/2 ≤ rx ≤ 2λ and λ/2 ≤ rz ≤ 5λ where the parts of the spatio-temporal aver-
age of ∇r.(δu′|δu′|2) that is accessible to our PIV has an approximately collapsed constant
value. For the non baffle configurations, there is a significant dependence to the two-point
separation length which is particularly visible in rz direction and plotted in figure 5.18b.
This linear dependence is comparable to the one already observed for the truncate estimate
of ∇r.(δu′|δu′|2) in figure 5.16b. There is a link between the small scale and large scale inter-
scale transfer derived mathematically in equation 5.17 but it involves many non-homogeneous
terms. These non homogeneous terms affect significantly the relation between these two terms
but some behavior similarity remains regarding the two-point separation length dependence.

The large scale interscale energy transfer estimates are positive for baffled configurations
but a significant change of sign is observed for non-baffled configurations with rectangular
blades for rz > 2λ. The sign of the full quantity ∇r.(δu′|uX

′|2) cannot be inferred from the
truncated estimate results because of the strong anisotropy of the flow but we cannot exclude
the presence of an inverse large scale interscale transfer rate (∇r.(δu′|uX

′|2)<0, Germano
2007b) while having a direct small scale interscale transfer rate (∇r.(δu′|δu′|2)<0) over a
non-negligible range of scales for these configurations. The distinction between small scale
interscale transfer and large scale interscale transfer is interesting in non-homogeneous flows
as it allows the co-existence of both direct small scale interscale transfer rate and inverse
large scale interscale transfer rate through the injection of energy with non-homogeneous
terms in 5.17. It might be the case for the non-baffled configurations with rectangular
blades but more generally it would be interesting to check this results in future work in
non-homogeneous flows where for example Pr and P l

Xr are large compared to < ϵ′ >.
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Figure 5.18: Space and time averaged truncation estimate of the large scale interscale transfer
∇r.(δu′|uX

′|2) introduced in equation 5.16, normalized by dissipation and along two radial
directions.

In figures 5.19a and 5.19b, we plot the spatio-temporal average of the large scale interspace
transport truncate estimate ⟨u′

Xx
∂

∂Xx
(u′2

Xx + u′2
Xz)⟩ + ⟨u′

Xz
∂

∂Xz
(u′2

Xx + u′2
Xz)⟩ normalized by

⟨ϵ′⟩ versus both rx/λ and rz/λ. Non-negligible values are obtained which do not vanish when
r → 0. The results do not collapse with mean dissipation for both baffle and non-baffle
configurations. Therefore, the large scale interspace transport seems to mainly depend on
the non-homogeneity properties of each configuration. The spread of the non-baffle results is
even more important than for baffle results which can be explained by larger non-homogeneity
differences between these configurations. The dependence with rx and rz is small for the baffle
configurations and more important for non-baffle configurations as observed in figures 5.19a
and 5.19b.

Overall, no significant qualitative difference is observed between baffled and non-baffled
configurations regarding large scale interspace transport except the stronger dependence with
rx and rz for non-baffle configurations. This quantity seems to be mainly driven by large
scale non-homogeneity and does not seems to be related to small scale quantities.
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Figure 5.19: Space and time averaged truncation estimate of the large scale interspace trans-
port ∇X .(uX

′|uX
′|2) introduced in equation 5.16, normalized by dissipation and along two

radial directions.

5.10 Chapter conclusions

Kolmogorov-like structure functions are measured in a turbulent flow generated by a mixer
with baffles (vertical bars which break the global rotation) where the flow is non-homogeneous
but not rotating. These results are presented and explained in chapter 4 through an improved
Chen and Vassilicos 2022 theory. In this chapter, rotating turbulence generated by the same
mixer without baffles is analyzed in comparison to the previous results. Non-Kolmogorov
structure functions are measured for these configurations. These results mean that rotation
breaks one or more assumptions of the Chen and Vassilicos 2022 theory. A power law/
linear behavior of δu′2

x is however identified with an exponent q ≈ 1 > 2/3. This behavior
suggests that the beginning of the Chen and Vassilicos 2022 theory remains applicable once
modified to take into account the anisotropy of the inner and outer length scales expected
with rotation. We identified different Chen and Vassilicos 2022 theory hypotheses which
might fail in rotating turbulence but the root cause might be the mean flow non-homogeneity
present at small scales ([3λ, 6λ]) in the non-baffled configurations while it is at much larger
scales ([29λ, 39λ]) in baffled configurations. As a result, the production and linear transport
terms break the inner and outer scale-by-scale two-point energy balances which Chen and
Vassilicos 2022 derived from the small scale fluctuating two-point energy equation 5.8. These
results break in turn the inner-outer dissipation hypothesis needed to derive the r2/3 structure
function behavior.

The other two-point energy statistics of the small scale equation are quantified for non-
baffled configurations and non constant evolutions with two-point separation length r are
observed as well as an absence of collapse of interscale/interspace transfer rate with dissi-
pation. These results are different from the baffled configurations results which follow the
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predictions of Chen and Vassilicos 2022 theory. This difference confirms, once again, the
breakdown of the inner and outer scale-by-scale balance of the small scale two-point energy
equation. Eventually, large scale statistics introduced in chapter 4 are measured suggest-
ing the existence of an inverse large scale interscale transfer rate coexisting with a direct
small scale interscale transfer rate for non-baffled configurations with rectangular blades.
This result cannot be confirmed definitively with our dataset but is allowed mathematically
through the injection of non-homogeneous energy at small scales: for example with the non-
homogeneous mean flow identified previously. The confirmation of these results is left for
future work with experiments where all the contributions of the two-point statistics may be
measured while ensuring a good convergence.



Chapter 6

Application to Large Eddy
Simulation

6.1 Introduction

Large Eddy Simulations are simulations where only the ’large scales’ or more precisely, the
low-pass filtered velocity field is resolved. It reduces significantly the number of mesh points
as long as a representative model predicts well the effect of the residual scales on the filtered
scales. A lot of research has been carried out to find a representative model for different flows
(for example: Smagorinsky 1963, Clark, Ferziger, and Reynolds 1977, Bardina, Ferziger, and
Reynolds 1980, Métais and Lesieur 1992 and Dairay et al. 2017).

One model based on the concept of turbulent viscosity was defined by Smagorinsky (in
Smagorinsky 1963). This rather simple model captures unexpectedly well the small scale
dissipation so that simulations in ’homogeneous turbulence’ reproduce partly the dissipation
existing at high wavenumbers despite important limitations having been identified (Dairay
et al. 2017, Vicente Cruz and Lamballais 2023). However, this model, when evaluated on real
turbulent flows, is known not to be representative of local physical effects (Meneveau and
Katz 2000). The fact that part of turbulence dissipation can be captured without capturing
the local physical effects outlines the complexity of LES modeling where physical relevance
seems to be dissociated, at first glance, from model accuracy.

However, the Germano 2007b equation might give an avenue towards some potential reso-
lution of this contradiction. This exact equation 2.8 in chapter 2 describes exactly the larger
scale behavior. To our knowledge, this equation was not analyzed physically by other re-
searchers than Germano before the work of our group. However, various studies exist (Hill
2002a, Hill 2002b, Danaila et al. 2012, Alves Portela, Papadakis, and Vassilicos 2017, Chen
and Vassilicos 2022, Knutsen et al. 2020) of its complementary small scale equation: the
Kármán-Howarth-Monin-Hill (KHMH) equation introduced in chapter 2. The KHMH equa-
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tion is very useful to understand and quantify turbulence in non-homogeneous flows without
assumptions. In the recently submitted publication Yao et al. 2023, the authors analyze
the relations between the interscale energy transfer rate of the KHMH equation (integrated
in scale) and the rate of energy transferred between LES filtered scales and residual scales.
This analysis is based on numerical computations in a DNS of isotropic turbulence at high
Taylor Reynolds number (Reλ = 1250). The analysis shows that both quantities share many
properties but are not identical. The use of the larger scale Germano equation 2.8 in our
study instead of the KHMH equation 2.7 may allow to explain these common and different
properties. This equation is also likely to be a powerful tool for understanding some physical
constraints in subfilter scale models for use in LES. In this chapter, a new LES model is
developed which shows that the research in the previous chapters can be applied to simula-
tion and modeling. The two-point equations research has the potential for direct, practical,
applications for engineering flow simulations.

6.2 Two-point statistics theory

The two-point statistics theory is introduced in chapter 2. In chapter 4, the small scale
and large scale interscale transfer rates averaged in space and time have been found to
collapse with dissipation over a significant range of scales. However, Yasuda and Vassilicos
2018 quantified the small scale interscale transfer spatio-temporal fluctuations in a Direct
Numerical Simulation of homogeneous turbulence. These fluctuations are very large with rare
extreme events much larger than the mean dissipation value. These results are reminiscent
of the backscatter already described in Piomelli et al. 1991, Domaradzki and Saiki 1997,
Cerutti and Meneveau 1998, Aoyama et al. 2005 Goto 2008, Ishihara, Gotoh, and Kaneda
2009. Moreover, in Yasuda and Vassilicos 2018, these rare event contributions cannot be
neglected as they contribute significantly to the mean interscale transfer rate value (50% of
the mean value is contributed by events of less than 4.10−2Pmax, where Pmax is the maximal
probability density value of the PDF for |r| ≈ λ in one of their cases).

Similar results are obtained in our experiments as observed with the probability distri-
bution function of the truncated estimate of the small scale interscale transfer normalized
by dissipation in figure 6.1a. Very large tails of the PDF are measured, with positive and
negative events much larger than dissipation (larger than 1000⟨ϵ′⟩ for rz > λ). The local
behavior is therefore very different from its mean value which is of the order of magnitude
of the mean dissipation (see chapter 4). These results confirm that, locally, the turbulence
behavior is far from the Kolmogorov picture with both direct and backward energy trans-
fers across scales much larger than dissipation. The spatio-temporal probability distribution
function of the large scale interscale transfer rate is also measured and plotted in figure 6.1b.
The fluctuations of this term are similar and even larger than for the small scale interscale
transfer rate with very large tails and values larger than 1500⟨ϵ′⟩ for the various separation
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Figure 6.1: Spatio-temporal probability distribution function of the normalized small scale
and large scale interscale transfer rate truncate estimates at different separation length rz.
These results are measured in the experiment with baffles, with rectangular blades and with
a rotation frequency of 1Hz as presented in chapter 4. The red dashed line corresponds to
the theoretical mean value in homogeneous turbulence: −1 in figure (a) and +1 in figure (b).

lengths plotted. In this chapter, we study the close link between the large scale interscale
transfer and Large Eddy Simulation. The very large fluctuations of the large scale interscale
transfer, both direct and backward, needs to be reproduced by a model which captures some
turbulence physics that really happen locally.

6.3 Statement of the Large Eddy Simulation problem

In the Large Eddy Simulation concept described in Reynolds 1990, Pope 2000 and Dairay
et al. 2017, model design and numerical resolution are two distinct problems. LES is seen
as a numerical resolution of a filtered equation 2.24 whose residual terms are replaced by
a model (2.25). This means that the modelling errors are associated with the difference
between exact filtered equation 2.24 and modelled filtered equation 2.25. On the other hand,
the numerical error comes from the numerical resolution of the modelled filtered equation
2.25. It can be evaluated through mesh convergence for example. In this study we focus
mainly on the modelling error.

An energy equation for the filtered velocity can be derived from equation 2.24:
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∂

∂t

(
|ũi|2

2

)
+ ũj

∂

∂xj

(
|ũi|2

2

)
= −ũi

∂τij

∂xj
− 1

ρ

∂(ũip̃)
∂xi

+ νũi∇2
xũi (6.1)

where −ũi
∂τij

∂xj
is the rate of energy exchange between filtered scales and residual scales and

represents a subfilter stress energy contribution to equation 6.1. The subfilter stress gradient
∂τij

∂xj
is modelled by ∂̂τij

∂xj
so that equation 6.1 is approximated by

∂

∂t

(
|ũi|2

2

)
+ ũj .

∂

∂xj

(
|ũi|2

2

)
≈ −ũi

∂̂τij

∂xj
− 1

ρ

∂(ũip̃)
∂xi

+ νũi∇2
xũi. (6.2)

where −ũi
∂̂τij

∂xj
is the modelled subfilter stress energy contribution to the equation 6.2. In

this chapter, we compare the rate of energy term −ũi
∂τij

∂xj
with −ũi

∂̂τij

∂xj
to know how close the

modelled subfilter stress gradient contribution to (6.2) is to the exact subfilter stress gradient
contribution to (6.1).

6.4 Links between two-point equations and LES mod-
elling

In the next section, the mathematical links between the two-point equations framework
and Large Eddy Simulation are derived following Germano 2007a.

6.4.1 Derivation of an exact form of the subfilter stress following
Germano 2007a

The notations of uX and δu, defined in section 2.1.3, are slightly different to the ones
used in Germano 2007a. Therefore, all the Germano’s results are converted into our set of
notation to be consistent with the previous chapters of this thesis.

Subfilter stress derived from uX equation

The large scale two-point equation introduced in chapter 2 is used:

∂uX

∂t
+ (uX .∇X)uX + (δu.∇r)uX = −1

ρ
∇XPX + ν

2∇
2
XuX + ν

2∇
2
ruX (6.3)

and is rewritten as equation:

∂uX

∂t
+ (uX .∇X)uX + (δu.∇r)uX = −1

ρ
∇XPX + ν∇2

XuX (6.4)

using the fourth of the following relations (see Germano 2007b) :
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∂δui

∂rk
= ∂uXi

∂Xk

∂δui

∂Xk
= ∂uXi

∂rk

∂2δui

∂X2
k

= ∂2δui

∂r2
k

∂2uXi

∂X2
k

= ∂2uXi

∂r2
k

(6.5)

The term (δu.∇r)uX can also be rewritten as ∂(δuiδuj)
∂Xj

using the second of the relations
6.5 to derive:

∂uXi

∂t
+ uXj

∂uXi

∂Xj
= −∂ (δuiδuj)

∂Xj
− 1

ρ

∂PX

∂Xi
+ ν

∂2uXi

∂Xk∂Xk
(6.6)

According to Germano 2007c, −∂(δuiδuj)
∂Xj

represents the subfilter stress gradient associated
to the two-point filter:

uX = u(X + r) + u(X − r)
2 =

�
G0(X − ξ)u(ξ)dξ (6.7)

where
G0(X − ξ) = 0.5δ(X + r − ξ) + 0.5δ(X − r − ξ), (6.8)

and δ is the Dirac delta function δ(x− ξ) = Π3
k=1δ(xk − ξk).

Therefore, for this basic filter, an exact form of the subfilter stress (which can, however,
not be used as a subfilter stress model) is derived from the two-point large scale equation 6.6.

This subfilter stress formulation is directly related to

τij = δuiδuj (6.9)

which is the basis of second-order structure functions. This basic filter is local in real space
and non-local in Fourier space. It cannot be used directly for Large Eddy Simulation because
it does not filter out all the energy at high wave numbers. Therefore, the results of this
paragraph are generalized to more general filters.

Subfilter stress derived by Germano

A more practically useful equation for the subfilter stress is derived in Germano 2007a and
Germano 2007c. The derivation is done directly from the Reynolds stress formulation. The
subfilter stress explicit form is now written in the form obtained by Germano 2007a and
Germano 2007c:
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τij = ũiuj − ũiũj

=
�

G(x− ξ)ui(ξ)uj(ξ)dξ −
� ∞

−∞
G(x− ξ)ui(ξ)dξ

� ∞

−∞
G(x− ξ′)uj(ξ′)dξ′

= 2
� ∞

−∞

� ∞

−∞
G(x− ξ)G(x− ξ′)dij(ξ, ξ′)dξdξ′

(6.10)

where, dij(ξ, ξ′) = ( ui(ξ)−ui(ξ′)
2 )( uj(ξ)−uj(ξ′)

2 ) and where the discrete weight function

G(x− ξ) = Σαgαδ(x + rα − ξ) (6.11)

is used, with the weights gα such that Σαgα = 1. Hence
�

G(r)dr = 1. The filtered velocity
ũ is obtained by

ũi =
� ∞

−∞
G(x− ξ)ui(ξ)dξ. (6.12)

Following Germano 2007c (with change of notations), the change of variables r = ξ−ξ′

2 and
s = ξ+ξ′

2 is used to derive the exact subfilter stress formula:

τij(x) =
� ∞

−∞

� ∞

−∞
G(x− s− r)G(x− s + r)dij(r, s)drds. (6.13)

The associated subfilter force is also derived (see Germano 2007b)

∂τij

∂xj
(x) =

� ∞

−∞

� ∞

−∞
G(x− s− r)G(x− s + r)∂dij

∂sj
(r, s)drds. (6.14)

Eventually, equation 6.14 can be rewritten, using equation 6.5, as:

∂τij

∂xj
=
� ∞

−∞

� ∞

−∞
G(x− s− r)G(x− s + r)∇r.(uXiδu)drds (6.15)

so that the term ∇r.(uXiδu) which is at the origin of the large scale interscale transfer
rate ∇r.(δu|uX |2) introduced in the previous chapters appears explicitly.

Observations from this formulations

The exact result (6.13) is very meaningful to understand the properties of the subfilter
stress of LES equations. The main points are summarized below:

• The subfilter stress has a direct link with the structure functions which are analyzed in
many flows and for which the K41 theory is developed. It can therefore have a direct
connection with turbulence physical understanding and some of its significant results.
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• The term ∇r.(uXiδu) present in the exact subfilter stress gradient formulation 6.15 is
closely related to the large scale interscale transfer rate as already mentioned. Again,
the physical understanding developed with the small scale δu2 two-point equation and
large scale uX

2 two-point equation are directly related to the subfilter stress and link
the study of this chapter with the studies in the previous chapters 4 and 5.

• If compact filtering is used (gaussian filtering for example), then gα > 0. It can then
be deduced from 6.10 that, τii ≥ 0 (without implicit summation) ∀x, t. This result is
obtained for the discrete filter used to obtain 6.10 and is not obvious when looking at
the relation τii = ũiui − ũiũi.

A second exact formulation is derived in appendix C.3 which details more precisely the
links between equation 6.4 and the subfilter stress gradient. This new formulation questions
the contribution of the spatial transport term (uX .∇X)uX to the subfilter stress gradient.

6.4.2 Existing LES models close to Germano exact subfilter stress
equation

Some models exist which are close to the Germano formulation 6.13 and can be used for
comparison. For instance, the following increment model was introduced by Brun, Friedrich,
and Da Silva 2006:

∂τij

∂xj
∼

∂
(

ˇδui
ˇδuj

)
∂xj

(6.16)

where
ˇδui =

∑
k∈J1,3K

(
ũi(x + 1

2rk)− ũi(x−
1
2rk)

)
, (6.17)

rk = 2m∆kek (in our case ∆k = ∆ for all k), m is an integer number and ek is the unit
vector in direction k.

This large eddy simulation model is not explicitly inspired by Germano 2007c as it was
published earlier but it has a striking similarity with the exact Germano equation 6.13. A
dynamic procedure was defined by the authors to compute the model coefficient in 6.16.
The model was applied to a channel flow and tested both a priori and a posteriori. Very
good prediction of the probability distribution function of τijS̃ij (S̃ij is defined in (2.27)),
including backscatter, is observed in a priori analyses in the buffer layer of a channel flow
where Reτ = 180. However, the filtering was weak compared to classical LES resolution
(top hat filter of 4∆DNS , where ∆DNS is the mesh resolution size of the simulation). In
a posteriori results, the model led to good predictions of mean quantities such as mean
velocity profile and mean RMS profile.
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A similar model was defined by Fang et al. 2009 with a slightly different formulation:

∂τij

∂xj
∼ ∂Q̃ij

∂xj
(6.18)

where:

Q̃ij(x, ∆) =
1
2 [(ũi(x + ∆ei)− ũi(x)) (ũj(x + ∆ej)− ũj(x)) + (ũi(x)− ũi(x−∆ei)) (ũj(x)− ũj(x−∆ej))]

(6.19)

A model coefficient was derived for the model 6.18 under several assumptions but a dynamic
procedure was also tested. The model predictions a posteriori in a channel flow about mean
velocity, mean turbulent kinetic energy and mean Reynolds stress were in agreement with
DNS predictions. Moreover, the non-dimensionalized subfilter dissipation tensor components

Υij = < Q̃ij ’S̃ij ’ >

RMS(Q̃ij ’)RMS(S̃ij ’)
(6.20)

computed a priori are in agreement with a posteriori results, where Q̃ij is defined in 6.19,
S̃ij in 2.27 and the notation: ’ signifies the mean is removed for the computation of these
quantities. The LES results contain mean backscatter in some specific directions and regions
of the flow where it is supposed to exist according to the DNS results from Härtel et al.
1994. This is a promising result as mean backscatter is expected in specific flow regions or
directions of non-homogeneous flows but classical dissipative models do not capture it.

More recently, Cimarelli and De Angelis 2014 introduced the mixed model:

τij = C∆
−−
δui

−−
δuj −2νT S̃ij (6.21)

This model was inspired by the model of Brun, Friedrich, and Da Silva 2006 and the small
scale KHMH energy equation. The first difference with the model of Brun, Friedrich, and
Da Silva 2006 is the definition of

−−
δui=

(
ũi(x + 1

2rk)− ũi(x−
1
2rk)

)
, (6.22)

where rk = 2m∆kek (in our case ∆k = ∆ for all k) and m is an integer number, instead of
ˇδui defined in 6.17. The second difference is the combination with the Smagorinsky model in

(6.21). The exact subfilter stress formulation (equation 6.10) which involves dij was also used
to justify the first term of the right hand side of the model (6.21) but only as an inspiration:
it was not derived from (6.13). The increment model is expected to capture backscatter
events and the Smagorinsky model, the dissipative effects.

A dynamic procedure was set to compute C∆ (and the Germano et al. 1991a, Germano et
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al. 1991b, Lilly 1992 dynamic procedure is used for CS). Very good results were obtained for
the averaged subfilter dissipation in a channel flow compared to filtered DNS results. Again,
some regions of the flow contain mean bakscatter and this is well predicted by the model. In
this publication, the Smagorinsky model added to the modified Brun, Friedrich, and Da Silva
2006 model seems to be important to capture the right energy transfer values. The proposed
model gives better results than classical mixed models such as the Bardina, Ferziger, and
Reynolds 1980 similarity model used in combination with the Smagorinsky model. This is
especially true for backscatter predictions. The model 6.21 is also close to but not exactly
the same as the Clark, Ferziger, and Reynolds 1977 model, analyzed in Vreman, Geurts, and
Kuerten 1995 and also called the mixed gradient model:

τij = ∆2
k

12
∂ũi

∂xk

∂ũj

∂xk
− 2νT S̃ij (6.23)

where ∆k is the mesh size in direction k. This model is derived based on a Taylor expansion
of the subfilter stress (which may be valid only for very small ∆k) and is also known to allow
backscatter through the gradient term.

Subfilter stress models based on dij seem to be promising for large eddy simulation because
they can capture backscatter events both statistically (probability distribution function) and
on average. The Brun, Friedrich, and Da Silva 2006, Fang et al. 2009 and Cimarelli and
De Angelis 2014 models are also very interesting as they are close to the exact equation 6.14.
However, the physical and mathematical links with two-point equations can be developed
further to support physically the model and bring all the physical understanding of the
two-point equations into LES modelling. Such analysis requires to use the large scale two-
point equations introduced by Germano 2007b and analyzed in the previous chapters instead
of the small scale KHMH equation. The models (6.16), (6.18) and (6.21) have only been
tested extensively in channel flows (with subfilter stress analysis) and without local analysis.
Therefore, future improvements might be needed when testing such type of model in other
flows or differently. If there is no clear connection with the physics, these improvements will
have to be adapted for each situation meaning that the model cannot be used as an universal
model. The main goal of this study is to develop possibilities for links between LES modelling
and physics so that future improvements can be done based on physical findings rather than
adapted for each flow and each specific simulations.

A LES model based on 6.13 is developed here and tested in a Taylor Green turbulent flow.
This flow is composed of unsteady turbulent eddies at many scales. Therefore, the flow is
highly irregular and the turbulent model used during LES has a significant importance for
reproducing the effect of the missing small scales on the filtered scales. In this study, results
are also obtained locally to see how close the predictions are to real events happening locally
and instantaneously. Such analysis was not done in the studies of Brun, Friedrich, and Da
Silva 2006, Fang et al. 2009 and Cimarelli and De Angelis 2014 and is a very accurate method
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to test LES models as it can be observed with the different models presented in Meneveau and
Katz 2000. In this later publication, the analysis of the different models locally discriminates
very explicitly their representativeness.

6.4.3 Simplification of the exact subfilter stress formulation

In the present subsection, the Germano exact subfilter stress gradient formulation 6.14 is
used.

Usually, the subfilter stress is analyzed rather than its gradient. Indeed, it is usual to
analyze the subfilter stress because of the intuitive view developed with the Smaorinsky model
where turbulence is associated to a stress. The new association of the subfilter contribution
with the interscale transfer rate suggests to model directly the gradient.

The change of variable s ←− x − s is used in equation 6.15 (which follows directly from
6.14) to simplify computations:

∂τij

∂xj
=
� ∞

−∞

� ∞

−∞
G(s− r)G(s + r)∇r.(uXi(x− s, r)δu(x− s, r))drds. (6.24)

The cube top hat filter is used to simplify computations:

G : R3 −→ R

x 7−→

{
1: if |x|∞ ≤ ∆ with |x|∞ = max{|x1|, |x2|, |x3|}

0: otherwise

(6.25)

With this filter, equation 6.24 can be re-writen as:

∂τij

∂xj
= 1

Vref

�

Vref

∇r.(uXi(x− s, r)δu(x− s, r))drds (6.26)

where:

Vref :
{
−∆ ≤ si − ri ≤ ∆

−∆ ≤ si + ri ≤ ∆.
(6.27)

We define the 6-dimensional volume regions V1 and V2

V1 :


− ∆

2 ≤ si ≤
∆
2

− ∆
2 ≤ ri ≤

∆
2

(6.28)

V2 :
{
−∆ ≤ si ≤ ∆

−∆ ≤ ri ≤ ∆
(6.29)

so that V1 ∈ Vref ∈ V2. This can be derived mathematically or deduced from figure 6.2.
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r1

s1

-

Figure 6.2: Volume representation of V1, V2 and Vref in one dimension

Vref is approximated by V2 here which leads to an over-filtering compared to the initial
top hat filter, and so we compute

∂τij

∂xj
≈ 1

V2

�

V2

∇r.(uXi(x− s, r)δu(x− s, r))d3rd3s ≡ Γi (6.30)

The purpose of this approximation is the decoupling of the space filtering (s space) and
the scale filtering (r space):

Γi = 1
(2∆)3

�
V (∆)

(
1

(2∆)3

�
V (∆)

∇r.(uXi(x− s, r)δu(x− s, r))d3r

)
d3s (6.31)

where
�

V (∆)(.)d
3s =

�∆
−∆
�∆

−∆
�∆

−∆(.)d3s.
This first approximation 6.30 is quantified later in this chapter (in subsection 6.5.2). The

decoupling that is introduced is useful because the divergence theorem can now be used in r

space:

Γi = 1
(2∆)3

�
V (∆)

1
(2∆)3

[�
|r|∞=∆

(uXi(x− s, r)δu(x− s, r)).nd2r

]
d3s (6.32)

where n is the outward pointing unit normal at each point on the closed surface of integration.
Therefore, after this point, during the closed surface integration in 6.32, for all j, in the
direction nj , the value of the component of r in this direction is: rj = ∆. This is interesting
as only quantities with a separation distance of ∆ or larger (in multiples of ∆) can be
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evaluated on the LES resolution mesh. However, the values of the other components of
r, ri ≤ ∆ where i ̸= j (nj is the direction of projection) are still needed during the surface
integration in 6.32 but are neglected later in the derivation. The integration in physical space
(d3s) of equation 6.34 should also be analyzed because it requires values not available during
LES computations. The filtered quantities available with cube top hat filter LES resolution
are:

ũXi(x, r) = 1
(2∆)3

�
V (∆)

uXi(x− s, r)d3s

δũ(x, r) = 1
(2∆)3

�
V (∆)

δu(x− s, r)d3s

(6.33)

which suggests to rewrite equation 6.32 as follows:

Γi = 1
(2∆)3

�
|r|∞=∆

(ũXi(x, r)δũ(x, r)).nd2r

+ 1
(2∆)3

[�
|r|∞=∆

(
1

(2∆)3

�
V (∆)

uXi(x− s, r)δu(x− s, r)d3s− ũXi(x, r)δũ(x, r)
)

.nd2r

]
.

(6.34)

Equation 6.34 can also be written as:

Γi = 1
(2∆)3

�
|r|∞=∆

(ũXi(x, r)δũ(x, r)).nd2r

+ 1
(2∆)3

[�
|r|∞=∆

(
1

(2∆)3

�
V (∆)

u′
Xi(x− s, r)δu′(x− s, r)d3s

)
.nd2r

] (6.35)

where u′
Xi(x−s, r) = uXi(x−s, r)− ũXi(x, r) and δu′(x−s, r) = δu(x−s, r)− δ̃u(x, r).

The first part is the resolved part because it is computed with the resolved velocity field.
The second part of the equation cannot be evaluated during LES resolution. Later in this
chapter (subsection 6.5.2), it is found that the second part of the equation is much smaller
than the first part in our flow but it should not be neglected as it probably contains important
turbulent behavior properties. Indeed, this term is associated to small scale behavior so it is
expected to be related to dissipation: we call it the residual term.

6.4.4 Interpretation of (6.35) and formulation of a new LES model

Justification of mixed model configuration

The small scale interscale transfer rates discussed in the previous chapters have highly
non-gaussian PDFs with heavy tails which correspond to large / extreme events (see section
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6.2). These events are by definition extremely energetic. On the other hand, the mean
interscale transfer balances dissipation in very high Reynolds number, statistically stationary
and homogeneous turbulence for r >> λ (also observed sometimes in non-homogeneous
flows as in Alves Portela, Papadakis, and Vassilicos 2017). The mean interscale transfer is
very small compared to the large local fluctuations and is mostly associated to small scales
through dissipative effects. The same behavior is expected for energy transfers between
filtered and residual scales in LES because of the strong connection between interscale transfer
and subfilter stress energy transfer introduced at the beginning of this chapter. This results
is observed for a long time (Piomelli et al. 1991) but it is now related to the interscale transfer
rate used in Physics.

The resolved term is expected to capture the local behavior of the energy transfer with large
fluctuations mainly driven by the resolved scales but it probably does not capture the average
dissipation associated to small scales. As mentioned previously, the dissipation is likely to be
related to the residual term of equation 6.35. This interpretation may only be valid when the
filtering width ∆ >> η so that the dissipative scales are present in the residual term. This
latter term can be modelled with existing dissipative models such as the Smagorinsky model
or more accurately, with a spectral vanishing viscosity model which can be implemented in
physical space as in Dairay et al. 2017. In this study, the Smagorinsky model is used to model
dissipation for simplicity. Some limitations of this model are well known but the dissipative
model is not the main object of the present study. The conclusions about the resolved part
are not expected to be significantly dependent on the choice of dissipation model.

The separation of the LES model into two terms, one taking into account the local
dynamics and a second term modeling the dissipation has been argued here with physical
arguments. However, the result is equivalent to existing mixed models derived and commonly
used in LES modelling. This is for example the case of the similarity model (Bardina,
Ferziger, and Reynolds 1980) which is often used in combination with a dissipative model
such as Smagorinsky or of the Cimarelli and De Angelis 2014 model described in subsection
6.4.2.

Definition of the model used in this study

We introduce and use the following LES model in our study:

∂τij

∂xj
= C1

(2∆)3

�
|r|∞=∆

(ũXi(x, r)δũ(x, r)).nd2r +
∂
(
−2Cs∆2|S̃|S̃ij

)
∂xj

(6.36)

where C1 is a dimensionless model constant which may depend on ∆ and is introduced
to rescale the resolved part of the model if needed after the approximations done. This
coefficient is evaluated by a priori DNS tests (see Appendix C.1) and CS = 1

π

(
2

3Ck

)3/4

following Lilly 1967 so that CS ≈ 0.18 for Ck = 1.4. This coefficient is used in our mixed
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model assuming the resolved part of our model does not produce any dissipation.

The first part is an approximation and the second part a model which should partly re-
produce neglected physical effects. The first part is called the resolved term/model and the
second the dissipative model.

Galilean invariance

The resolved term has the same form as the exact term (δu.∇r)uX in equation 6.4 once
integrated in scale space. Therefore, the invariance properties of the Navier-Stokes equation
are expected to be also applicable for the resolved term. However, the Galilean invariance
property is derived here for clarity. Note that the Smagorinsky model is Galilean (Oberlack
1997).

We introduce a new reference system moving at a constant speed U compared to our
previous reference system: t′ = t, x′ = x−U t and u′ = u−U and we evaluate the model

�
|r|∞=∆

(ũXi(x, r)δũ(x, r)).nd2r (6.37)

in that system. We start with the two-point velocity quantities:

{
δũ(x, r, t)→ δũ(x′, r′, t′) = δũ(x−U t, r, t)

ũX(x, r, t)→ ũX(x′, r′, t′) = ũX(x−U t, r, t)−U
(6.38)

Using (6.38) and the property that ∇r.δũ = 0 so that the closed surface integral of δũ

vanishes, the resolved term (6.37) can be written as follows in the reference frame moving
with velocity U relative to the original frame.

�
|r|∞=∆

(ũXi(x′, r′, t′)δũ(x′, r′, t′).nd2r′

=
�

|r|∞=∆
(ũXi(x−U t, r, t)δũ(x−U t, r, t)).nd2r − Ui

�
|r|∞=∆

δũ(x−U t, r, t).nd2r

=
�

|r|∞=∆
(ũXi(x−U t, r, t)δũ(x−U t, r, t)).nd2r

(6.39)

Therefore, the resolved model is Galilean invariant as expected.
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6.4.5 Implementation of the model

Discrete form of the model

The resolved term in equation 6.36 is written with a closed surface integral over a mesh
cell. However, all the points are not available with LES resolution so the implementation is
an approximation of equation 6.36. In this chapter, the simplest option is used where only
the available points are taken into account:

We define the list: I∆ = {−∆, 0, ∆}.

C1

(2∆)3

�
|r|∞=∆

(ũXi(x, r)δũ(x, r)).nd2r

≈ C1

(2∆)3
6(2∆)2

6× 9

[ ∑
ry∈I∆

∑
rz∈I∆

ũXi(x, rx = ∆, ry, rz)δũx(x, rx = ∆, ry, rz)

−
∑

ry∈I∆

∑
rz∈I∆

ũXi(x, rx = −∆, ry, rz)δũx(x, rx = −∆, ry, rz)

+
∑

rx∈I∆

∑
rz∈I∆

ũXi(x, rx, ry = ∆, rz)δũy(x, rx, ry = ∆, rz)

−
∑

rx∈I∆

∑
rz∈I∆

ũXi(x, rx, ry = −∆, rz)δũy(x, rx, ry = −∆, rz)

+
∑

rx∈I∆

∑
ry∈I∆

ũXi(x, rx, ry, rz = ∆)δũz(x, rx, ry, rz = ∆)

−
∑

rx∈I∆

∑
ry∈I∆

ũXi(x, rx, ry, rz = −∆)δũz(x, rx, ry, rz = −∆)
]
≡ Ψ

(6.40)

The available points are plotted in figure 6.3 where the black arrows represent the projec-
tions of ũXi(x, r)δũ(x, r) used during surface integration of 6.37.

The error introduced by replacing equation 6.32 with equation 6.40 is quantified later in this
chapter (in subsection 6.5.2). The uncertainty introduced during this step is the discretization
of the left hand side of equation 6.36 and the missing residual term. Interpolation might
improve the results and could be used in future work. For simplicity, the mesh is considered
here to be isotropic but the results can in principle be generalized if necessary (the uncertainty
introduced might change).

Extrapolation to Large Eddy Simulation

Referring to the Large Eddy Simulation concept introduced at the start of section 6.3,
the Smagorinsky model does to not converge to the right solution with mesh convergence
as shown by Dairay et al. 2017. Other models such as vanishing spectral viscosity methods
(and associated models) give better results. This is why the Smagorinsky model, used in this
study for simplicity, is to be replaced in the future by a better dissipation model.
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Figure 6.3: Integration points available in r space over a coarse LES mesh. Each arrow
describes a point used during surface integration over the coarse mesh with the projection
direction.

The resolved part is approximated from the exact subfilter stress based on a top hat filter.
It might be possible to generalize the derivation for other compact filters. However, following
the LES interpretation defined previously, any filter satisfying the right LES properties can
be used to derive a LES subfilter scale model as long as the simulation’s resolution is chosen
accordingly. When, the mesh resolution size ∆ approaches zero, the following properties are
derived: lim∆→0 ũXi = uXi and lim∆→0 δũ = δu so that when ∆ is small enough, we may
approximate

�
|r|∞=∆(ũXi(x, r)δũ(x, r)).nd2r by

�
|r|∞=∆(uXi(x, r)δu(x, r)).nd2r.

Therefore, as the filtering in physical space in equation 6.15 is expected to vanish when
∆ → 0, we conjecture that the resolved part of the equation converges toward the exact
solution when the mesh is refined. This result is not derived mathematically and may not
hold when it is combined with the Smagorinsky model which does not converge toward the
right solution according to Dairay et al. 2017.

6.5 Evaluation of the model

6.5.1 Presentation of the simulation

Presentation of the simulation code

An in-house pseudo-spectral code is used to solve the Navier-Stokes equations with Direct
Numerical Simulation. The non-linear term ω × u is computed in real space which allows
the implementation of the LES models in real space even though the simulation is in Fourier
space. A 2/3 truncation de-aliasing is used and a second order Runge-Kutta time step
scheme is implemented. Periodic boundary conditions are used in all three dimensions. More
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information about this code can be found in the paper of Vincent and Meneguzzi 1991.

Presentation of the Taylor-Green Direct Numerical Simulation

The Taylor-Green simulation is described in Brachet et al. 1983 Dairay et al. 2017.
Kolmogorov-like results for the energy spectrum are usually observed for Reλ large enough.

A 512 × 512 × 512 forced Direct Numerical Simulation is carried out with periodicity
conditions until energy is converged. The simulation parameters are described in table 6.1
where ktrunck is the de-aliasing truncation and where L, evaluated here as

�
E(k)/kdk�

E(k)dk
, is the

integral scale. The simulation is highly resolved (the mesh resolution, ∆x = 2π
2kmax

≈ 0.7η)
and Reλ has a moderate value. We do not expect to observe a large inertial range with
this moderate Reynolds number. It is not a problem for the model evaluation because no
Kolmogorov or inertial range similarity assumption is used during the resolved part derivation.
The CFL is initialized at 0.016 and then the simulation time step is modified dynamically to
reach a CFL of 0.5.

Number of points Size of the domain Reλ ktrunckη kmaxη ν

512× 512× 512 7.1L× 7.1L× 7.1L 91 3 4.5 2× 10−3

Table 6.1: DNS parameters

The flow is initialized with a random velocity field. A Taylor-Green flow is defined as
follows:

ux(x, y, z) = sin(x)cos(y)cos(z)

uy(x, y, z) = −cos(x)sin(y)cos(z)

uz = 0

(6.41)

During the simulation, the Fourier modes associated to equation 6.41 are injected on the
corresponding simulation wavenumbers at each time step to force the flow.

The energy evolution in time and energy spectrum at the final time (33τ , where τ =
L√

(u−u)2
is the final turnover time) are presented in figure 6.4a and 6.4b. The simulation

is long enough so that the turbulent kinetic energy fluctuates around a constant. A small
inertial range with a slope close to k−5/3 may be identified in the energy spectrum. The flow
contains a wide range of scales so it is turbulent enough to be an acceptable test for LES
modeling.

6.5.2 Presentation of the model’s a priori results

A good LES model according to a priori analysis should succeed by at least the following
two criteria. Firstly, it should inject dissipation and backscatter at the right space location
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Figure 6.4: DNS simulation results

at the right time. Secondly, it should inject the right distribution of values of dissipation and
backscatter. These two steps are processed differently during the design of our model. The
a priori analysis is carried out first only qualitatively to check that the LES model predicts
well the sign and the locations of the energy transfers between residual and filtered scales.
Then, the analysis of the model coefficient is carried out based on the values predicted by
the model and compared to exact values.

Qualitative comparison

The resolved part, defined in equation 6.40, is evaluated a priori on the DNS velocity field.
The Smagorinsky model

∂τij

∂xj
=

∂
(
−2Cs∆2|S̃|S̃ij

)
∂xj

(6.42)

where CS = 0.18 and the model (6.16) introduced in Brun, Friedrich, and Da Silva 2006
are used for comparison. A 12× 12× 12 points top-hat filter is used for filtering (6.12) which
corresponds to around 8η×8η×8η (∆ ≈ 8η). The quantity: −ũi

∂τij

∂xj
, introduced in equation

6.1, is evaluated as function of space and time. It describes the full energy transfer between
the residual scales and the filtered scales. In this work, negative values reduce the energy of
ũiũi so they can be seen as dissipative values while positive values represent backscatter.

This definition is slightly different to the common one τijS̃ij which does not take into
account the full energy transfer. Indeed the total energy transfer is sometimes divided into
a spatial term and a ’local energy flux of the turbulence energy cascade’ (Vela-Martín 2022):

−ũi
∂τij

∂xj
= −∂(ũiτij)

∂xj
+ τijS̃ij (6.43)
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The author of this latter publication shows that τij can be chosen so that τijS̃ij does not
produce backscatter. However, this does not mean that the sign of the full contribution of
the subfilter stress to equation 6.1: −ũi

∂τij

∂xj
, is negative. Indeed, positive and negative values

are produced by the transport term −∂(ũiτij)
∂xj

so that the full term −ũi
∂τij

∂xj
has positive and

negative contributions to (6.1) even when τijS̃ij does not produce backscatter. Therefore,
the backscatter defined in this chapter describes positive events of the full term: −ũi

∂τij

∂xj
.

Note that, in a different framework, the mathematically exact equation C.6 derived in
appendix C.3 suggests that spatial contribution to the subfilter stress cannot be dissociated
from the energy transfer between filtered and residual scales in the same framework which
questions the role of the spatial term in this energy transfer.

The PDF of the exact subfilter stress contribution to (6.1), noted −ũi
∂τij

∂xj
, is presented in

figure 6.5. The model constants C1 for (6.36) and C2 for (6.16) are optimized based on the
PDF of −ũi

∂( ˇδui
ˇδuj)

∂xj
and −ũiΨ (where Ψ is defined in 6.40) evaluated a priori on DNS results

and compared to the PDF of −ũi
∂τij

∂xj
for the same dataset. The numerical optimisation is

described in appendix C.1. The mean values corresponding to these PDFs correspond to
the mean contribution of the subfilter stress −ũi

∂̂τij

∂xj
(expected to be negative). The tails

correspond to the rare, very intense events.

The PDF of the Smagorinsky model subfilter stress contribution to (6.2) (i.e.

−ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

) has a significantly different shape compared to the PDF of −ũi
∂τij

∂xj

obtained directly from the DNS with a skewness that is too negative. This is consistent with
the known over-dissipative behavior of this model. There are only a few backscatter events
and their values are relatively small.

The Brun, Friedrich, and Da Silva 2006 model contribution (−ũi
∂( ˇδui

ˇδuj)
∂xj

) has a more
realistic shape with both dissipative and backscatter events but it doesn’t fit very well the
exact results −ũi

∂τij

∂xj
even after optimization of the coefficient C2 (see appendix C.1).

The subfilter stress resolved part contribution (−ũiΨ, Ψ defined in 6.40) has distribution
values closer to exact results once the coefficient C1 is well adjusted (see appendix C.1 where
the coefficient C1 is optimized and a value of 0.97 is obtained for the present filtering width).
This may be expected as this model is derived from the exact subfilter stress but it confirms
that the approximations done during the derivation process, and evaluated later in this
chapter, do not introduce too much uncertainty. The results of the resolved part with the
coefficient C1 used for figure 6.5 combined with the Smagorinsky model are also presented
in figure 6.6. The results are over dissipative with skewnesses of the probability distribution
functions that are too negative compared to exact results. However, this part of the model
does capture the large range of variation of the energy transfer rate and contains backscatter.
Therefore, this model can in principle be used in large eddy simulation but there is also a
need for future work to design a new dissipation model which would better complement the
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Figure 6.5: PDF of the subfilter stress contribution (exact: −ũi
∂τij

∂xj
or modelled: −ũi

∂̂τij

∂xj
)

evaluated a priori on DNS results with a 12 × 12 × 12 top hat filter. In blue: exact results

(−ũi
∂τij

∂xj
); red: Smagorinsky model (−ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

); yellow: Brun, Friedrich, and Da

Silva 2006 model (6.16) (−ũi
∂( ˇδui

ˇδuj)
∂xj

); purple: Present model with the resolved part only
(−ũiΨ, where Ψ is defined in 6.40).

resolved part.

The subfilter stress contributions (−ũi
∂τij

∂xj
, −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

, −ũi
∂( ˇδui

ˇδuj)
∂xj

and −ũiΨ)
are now analyzed in space (figures 6.7a, 6.7b, 6.7c and 6.7d) to check the spatial correlation
between exact and modeled values. The same adjusted constants as for the PDFs in figure
6.5 and 6.6 are used. In figure 6.7a, clear structures are identified in the exact subfilter stress
contribution (−ũi

∂τij

∂xj
) with well identified large events and filaments in the background.

Large dissipative events are often observed to be close to large backscatter events which is
consistent with the theoretical analysis of interscale flux energy transfer in Chen and Vassilicos
2022. In figure 6.7b, the missing backscatter events when the Smagorinsky model is used are
clearly visible in comparison to the exact results in figure 6.7a. Some correlation seems to
exist for the large events and the filaments compared to exact ones but the sign is often wrong
and large backscatter events are even sometimes replaced by large dissipative events. The
results of the model Brun, Friedrich, and Da Silva 2006 in figure 6.7c contain both dissipative
and backscatter events as wanted. The background filaments are comparable to the exact
ones but the large events do not correlate well with exact ones except at specific locations.
The best correlation with real values is observed with the subfilter stress resolved part (6.40)
of our model (6.36) in figure 6.7d where most of large events predicted are representative of
real events. The background filaments are also well representative of real ones. However, the
exact large event locations and magnitudes can differ between predicted and exact values.
This analysis is restricted to one snapshot in space so the correlation over the full domain is
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Figure 6.6: PDF of the subfilter stress contribution (exact: −ũi
∂τij

∂xj
or modelled: −ũi

∂̂τij

∂xj
)

evaluated a priori on DNS results with a 12 × 12 × 12 top hat filter. In blue: exact results
(−ũi

∂τij

∂xj
); red: Present model with the resolved part only (−ũiΨ, where Ψ is defined in 6.40);

yellow: Present model including its Smagorinsky model part (i.e. −ũi(Ψ+
∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

)).

now analyzed for a more reliable conclusion.

The joint PDFs of the modelled subfilter stress contribution (Smagorinsky model:

−ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

, Brun, Friedrich, and Da Silva 2006 model (6.16): −ũi
∂( ˇδui

ˇδuj)
∂xj

and
resolved part of our model: −ũiΨ, where Ψ is defined in 6.40) with the exact contribution:
−ũi

∂τij

∂xj
are presented in figures 6.8a, 6.8b and 6.8c.

There is a good correlation if a linear shape is observed. This test is more sensitive than
spatial map visualizations because a small position uncertainty of a well predicted structure
(shape and magnitude) can lead to non linear shapes in figure 6.8.

The Smagorinsky model in figure 6.8a has nearly no local correlation with the exact values
which confirms the impressions given in figures 6.7a, 6.7b. The Brun, Friedrich, and Da Silva
2006 model (6.16) in figure 6.8b has a small correlation but the values around the axes suggest
also strong anti-correlation. These results are probably affected by the small position shift
of the structures as a correlation seems to be observed when looking directly at the map in
figure 6.7c. The resolved subfilter part (6.40), with C1 optimized as explained in appendix
C.1, in figure 6.8c has a better correlation compared to the other models. The results are
not fully satisfactory and can probably be improved in future work. However, compared to
existing LES models, this is a rather good result. Our approach being based on a progressive
simplification of Germano’s exact subfilter stress equation, it is possible to know where the
errors are introduced by checking the main steps where approximations are introduced. For
the a priori analysis, ∆ ≈ 8η is used. This value has been selected in order to use the same
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(a) −ũi
∂τij

∂xj (b) −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

(c) −ũi
∂( ˇδui

ˇδuj)
∂xj

(d) −ũiΨ (where Ψ is defined in 6.40)

Figure 6.7: Subfilter stress contribution −ũi
∂̂τij

∂xj
, defined in (6.2): (a) exact contribution, (b)

Smagorinsky contribution, (c) Brun, Friedrich, and Da Silva 2006 model (6.16) contribution,
(d) present model (with the resolved part only) contribution. The results are plotted in space
on a slice of the DNS dataset.
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(a) Horizontal axis: exact subfilter contribution
to (6.1): −ũi

∂τij

∂xj
. Vertical axis: Smagorinsky

model contribution to (6.2): −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj
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(b) Horizontal axis: exact subfilter stress
contribution to (6.1): −ũi

∂τij

∂xj
. Vertical axis:

Brun, Friedrich, and Da Silva 2006 model
contribution to (6.2): −ũi

∂( ˇδui
ˇδuj)

∂xj
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(c) Horizontal axis: exact subfilter stress
contribution to (6.1): −ũi

∂τij

∂xj
. Vertical axis:

Resolved part of the present model contribution
to (6.2): −ũiΨ, where Ψ is defined in 6.40.

Figure 6.8: Joint PDFs of modelled subfilter stress contributions to (6.2): −ũi
∂̂τij

∂xj
with exact

subfilter stress energy contribution to (6.1): −ũi
∂τij

∂xj
evaluated in the Taylor-Green DNS

simulation with ∆ ≈ 8η and with scaling coefficient.
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value of ∆ in all the steps of the validation process. Indeed, the evaluation of the uncertainty
(introduced when approximating (6.15)) done in the next section requires a lot of memory
and computational resources. The size of ∆ is the limiting parameter of this analysis because
it is involved in the complex Germano filtering used in 6.15. ∆ ≈ 8η is maximized here to
compute (6.15) over the domain with one node in a reasonable time. However, the analysis
of the modelled subfilter stress contribution in (6.2) computed in this section is also done in
appendix C.2 for ∆ ≈ 16η and the conclusions remain similar to the ones of this section.

Errors introduced with the different approximations

In this section, the errors introduced at each approximation step in our simplification
procedure of subsections 6.4.3 and 6.4.5 are analyzed. This is the main advantage of
this mathematically supported model: the numerical error introduced can be quantified.
Therefore, some future improvements can be done and checked easily by refining the
approximations done during the derivation process.

The analysis is only done with the first component of the subfilter stress gradient for sim-
plicity. The joint PDF of the exact subfilter stress component ( ∂τ1j

∂Xj
) with the corresponding

approximated subfilter stress component at different steps of the derivation (exact equation:
6.24 with i = 1, first approximation: 6.30 with i = 1 and second approximation: 6.40 with
i = 1) are evaluated a priori on the DNS dataset. Note that equations 6.24 and 6.30 are
discretized to be evaluated over our DNS dataset as opposed to equation 6.40 which is already
discrete. For the numerical implementation of the continuous terms, all the points of the DNS
are used without interpolation and discrete centered scheme are used to compute derivatives.
However, our DNS is highly resolved (∆x = 0.7η) so that the uncertainty introduced during
the discretization of 6.24 and 6.30 may be negligible. When a linear shape is observed, there
is a good correlation between the approximation and exact values. The results in figure 6.9a
are presented to check the implementation of the exact equation 6.24 where the terms ∂τ1j

∂Xj

and
�∞

−∞
�∞

−∞ G(s − r)G(s + r)∇r.(uX1δu)d3rd3s are discretized separately to evaluate
the numerical uncertainty of the implementation. The results are very good with a linear
shape as expected because the equation is exact.

The results in figure 6.9b are there to test the first approximation of equation 6.30. This
approximation consists of a decoupling of space and scale coordinates and some uncertainty
is introduced in the results as observed with the elliptical shape of the joint PDF. However,
the correlation remains high as observed with the joint PDF results where the shape remains
close to linear. This means the space-scale decoupling does not introduce significant error
in the present case (Taylor-Green flow, Reλ ≈ 91 and ∆ ≈ 8η). According to the results
in figure 6.9c, where a large ellipse is observed, most of the numerical error is introduced
when moving from equation 6.30 to equation 6.40 where the equation is discretized over
the LES mesh and where the residual term is neglected. If a good dissipation model is
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designed to reproduce the residual term behavior, the uncertainty will be reduced. Moreover,
the numerical uncertainty might be reduced with a better numerical implementation of the
resolved term: using interpolation for example. However, the correlation observed is already
better than with other models tested and some large events are probably just slightly shifted
in space. This shift in space can explain part of the uncertainty observed in figure 6.9c, while
having the encouraging results of figure 6.7d.

Scaling coefficient analysis

The results of the Smagorinsky model and subfilter stress resolved part of the present
model are presented in figure 6.10 with CS = 0.18 and C1 = 1 to check the accuracy of
the predicted scaling coefficients (without correction). The Smagorinsky model coefficient is

realistic because the left side of the PDF of −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

evaluated with the coefficient
Cs = 0.18, is close to the one of the exact subfilter stress contribution −ũi

∂τij

∂xj
. It is not

possible to be more accurate on the Smagorinsky scaling coefficient as this model is too far
from reality (see right side of the PDF in figure 6.10) to better adjust the coefficient based on
the PDFs. The resolved subfilter stress coefficient is slightly underestimated according to the
PDF results of −ũiΨ (Ψ defined in 6.40) compared to exact results −ũi

∂τij

∂xj
as observed with

the tails which are too small. However, the shape of the PDF of −ũiΨ is close to the one of
−ũi

∂τij

∂xj
. Therefore, it is possible to estimate accurately the coefficient C1 for this simulation

based on PDFs. The model is tested in the Taylor-Green simulation with the coefficient C1

evaluated a priori in appendix C.1. This coefficient cannot be used in other simulations than
the one tested here so future work is needed to check the coefficient variation in other flows
and implement a dynamic method if needed. The variation of this coefficient with mesh
resolution is also analyzed in appendix C.1 and a linear dependence of C1 on ∆ is obtained
for ∆ > 4η.

6.5.3 Presentation of the model’s a posteriori results (LES)

Large Eddy Simulations of a Taylor-Green flow are carried out with the same forcing as
the one of the DNS. A 64× 64× 64 discretization is used over the domain 7.1L× 7.1L× 7.1L

for the LES, with periodic conditions, which is 8 times coarser than the DNS. Similarly to
the DNS simulation, ν = 2 × 10−3. The time step is initialized for a CFL smaller than 0.1
and then it is adapted dynamically to reach a CFL of 0.5. The 12 × 12 × 12 top hat filter
used during the a priori analysis gives a -3dB cutoff wavenumber: kcutoff ≈ 19. In the LES,
the truncation frequency is close to this value: ktrunck = 2

3 kmax ≈ 21. Therefore, the LES is
equivalent to the a priori analysis where a top hat filter is used so that we can compare the
results.

The simulation is initialized with the DNS velocity field sub-sampled on a 64 × 64 × 64
mesh. These initial conditions are selected so that the coefficients evaluated for the model
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(a) Exact subfilter stress gradient computations.
Horizontal axis: ∂τ1j

∂Xj
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(b) Dissociation of scale and space integration.
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(c) Implementation over a LES mesh. Horizontal
axis: ∂τ1j

∂Xj
. Vertical axis: Equation 6.40 with

i = 1.

Figure 6.9: Two-dimensional probability distribution function of one component of the sub-
filter stress gradient with its different approximations evaluated in the Taylor-Green DNS
simulation with ∆ ≈ 8η.



153 CHAPTER 6. APPLICATION TO LARGE EDDY SIMULATION

-4 -2 0 2 4

Values of subfilter energy transfer

10-4

10-2

100

102

P
d
f 
o
f 
s
u
b
fi
lt
e
r 

e
n
e
rg

y
 t
ra

n
s
fe

r

Figure 6.10: PDF of the subfilter stress contribution (exact: −ũi
∂τij

∂xj
or modelled: −ũi

∂̂τij

∂xj
)

evaluated a priori on DNS results with a 12 × 12 × 12 top hat filter. In blue: exact sub-
filter stress energy contribution (−ũi

∂τij

∂xj
), red: Smagorinsky model energy contribution

(−ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

with CS = 0.18), purple: resolved model energy contribution (−ũiΨ,
where Ψ is defined in 6.40 and C1 = 1 for this plot only).

(6.16) and the resolved part of our model in appendix C.1 remain valid.

Models used

• The Smagorinsky model implemented is the classical one defined in equation 6.42 where
CS = 0.18. A second order central difference scheme is used for the derivatives so that
the model is fully implemented in physical space.

• The model (6.16) implemented is the same as in Brun, Friedrich, and Da Silva 2006:

∂τij

∂xj
≈ C2

∂
(

ˇδui
ˇδuj

)
∂xj

(6.44)

where C2 = 0.152 is evaluated a priori in this study for the Taylor-Green flow at the
present resolution in appendix C.1. This model is tested alone and in combination with
the Smagorinsky model with CS = 0.18.

• The subfilter stress contribution resolved part is:

∂τij

∂xj
≈ C1

(2∆)3

�
|r|∞=∆

(ũXi(x, r)δũ(x, r))nd2r (6.45)
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where C1 = 0.97 for the present resolution as computed in appendix C.1. The numerical
implementation of this term is described in equation 6.40. The resolved part is tested
alone and in association with the Smagorinsky model.

Large Eddy Simulations results

First, Large Eddy Simulations are carried out with the model (6.16) and the resolved part
of our model but without dissipation model. The results are averaged in time over 24 turnover
times and are compared to the DNS results and Large Eddy Simulations with Smagorinsky
model alone.

The spatial energy spectrum averaged over 24 turnover times of the different simulations
(DNS, LES without model, LES with Smagorinsky model, LES with model (6.16) and LES
with resolved part of our model) are presented in figure 6.11a. It suggests that the model
(6.16) and the resolved part of our model introduces little dissipation for this resolution
as observed with the energy at high wavenumbers (k/kη > 0.2 with kη = π/η) that is too
high and close to the simulation without model. This confirms the idea of Cimarelli and
De Angelis 2014 to use a version of the model (6.16) in combination with a dissipation
model and our strategy to combine the resolved part of our model with a dissipation
model as anticipated in section 6.4.4. However, some small scale dissipation is nevertheless
introduced by the resolved part of our model (and by model 6.16) as observed in figure
6.11a where the energy at high wavenumbers (k/kη > 0.2) is slightly smaller than for the
simulation without model. This suggests that the results of the resolved model associated
to the Smagorinsky model will be over-dissipative compared to the Smagorinsky model alone.

The energy spectrum results of the different simulations with dissipation models are pre-
sented in figure 6.11b (Smagorinsky model 6.42, model 6.44 combined with Smagorinsky
model 6.42 and resolved model 6.40 combined with Smagorinsky model 6.42). These results
are compared to the results of DNS and LES without model. These results are highly depen-
dent on the Smagorinsky coefficient Cs = 0.18 and the resolved model coefficient C1 = 0.97
evaluated a priori. Indeed, a small variation affects significantly the results so the analysis
is more qualitative than quantitative. All the large eddy simulations with a model are over-
dissipative compared to the DNS results as observed with the too large drop of energy at
high wavenumbers (k/kη > 0.2) for the simulations with model in figure 6.11b. Among the
different models, the resolved model with Smagorinsky is the most over-dissipative one as
observed with the lowest energy at high wavenumbers compared to other simulations. This
behavior is likely to come from the resolved scales. Indeed, the conceptual separation of the
model into a dissipative and non-dissipative part is meaningful only if the filtered scales do
not dissipate energy at all. This assumption depends on the filter but is obviously not fully
respected in classical large eddy simulation especially when a top hat filter is used to design
the model. Indeed, a top hat filter does not filter out all the energy at high wavenumbers
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Figure 6.11: Comparison of large eddy simulation results with different models. kη = π/η
and η

∆ ≈ 0.13.

so that some small scale effect is expected to remain in the resolved model. Moreover, some
dissipation can be present at low wavenumbers which will be captured by the resolved model.
Therefore, the resolved part of the model adds some dissipation. It explains why this model
is more dissipative than the Smagorinsky model alone. This over-dissipative behavior might
be reduced by tuning the Smagorinsky model coefficient Cs but we do not focus on this point
as we already know the strong limitations of this model (Dairay et al. 2017) so that this
point is left for future work when a better dissipation model may be used. The shape of the
energy spectrum seems to be mainly driven by the dissipation model as observed with the
similar shapes between the three simulations with models (Smagorinsky model, model (6.16)
combined with Smagorinsky model and resolved model combined with Smagorisnky model
(6.36)). Therefore, large, local, backscatter and dissipative events do not play a significant
role for the shape of the energy spectrum in periodic/homogeneous turbulence.

However, energy spectrum introduces a spatial averaging which can hide interesting flow
properties. Indeed, the Fourier transform is non-local in space so that the energy computed
at one wavenumber is only representative of the spatially averaged energy of the associated
scale. This might explain why the effect of local backscatter is not seen in the a posteriori
results. Indeed, the non-homogeneity does not contribute to the energy balance in Fourier
space (see Lin equation) so that the impact of the resolved model might only be visible in
non-homogeneous turbulence or locally in homogeneous turbulence. Therefore, the PDFs
of the subfilter stress contribution in (6.2) for the different models, sampled in space and
time during the LES simulations, are now analyzed to describe the local properties of the
simulated turbulence.
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These probability distribution functions are presented in figure 6.12. The events are sam-
pled in space and time for all the time steps where the simulation is converged (24 turnover
times) to improve convergence. The PDF of −ũi

∂τij

∂Xj
computed during the a priori analy-

sis is used for reference. The Smagorinsky model alone produces mainly dissipation during
the simulation similarly to the previous a priori results as observed with the highly nega-
tively skewed PDF with small tails compared to the reference results. It means that most
events of energy transfer are dissipative and that, the rare, and energetic events are not well
predicted. The model 6.16 and the resolved model combined with the Smagorinsky model
improve significantly the results by introducing rare energetic events (large backscatter and
dissipative events) as observed with the near superposition of the PDFs of these simulations
with the exact results −ũi

∂τij

∂Xj
computed during a priori analysis. These results also confirm

the relevance of the a priori evaluation of the coefficient C1 (see appendix C.1).
Therefore, as opposed to the conclusions from the energy spectrum where the results do

not depend so much on the model 6.16 and the resolved part of our model, the local results
of the different simulations are significantly affected by these models. Indeed, the physics of
the energy transfer, between filtered and residual scales, happening locally in the simulations
with the model 6.16 combined with Smagorinsky or with our model is completely different
to the physics present in the simulation with the Smagorinsky model alone. These models
capture the local non-homogeneity of the flow with large energy transfers between filtered
and residual scales both positive and negative which do not seem to affect significantly global
homogeneous quantities such as the energy spectrum in periodic/homogeneous turbulence.

However, the 6.16 model is found to affect global quantities such as mean flow or velocity
RMS in non-homogeneous flows as observed in channel flows in Brun, Friedrich, and Da Silva
2006 and the other variants of this model in Fang et al. 2009 and Cimarelli and De Angelis
2014. Therefore, our model is to be tested in non-homogeneous turbulence in future work to
see if the physics captured about local energy transfers between resolved and filtered scales,
both a priori and a posteriori, improves the predictions of global quantities in Large Eddy
Simulations of non-homogeneous turbulent flows.

6.6 Conclusion

The small scale Kármán-Howarth-Monin-Hill 2002b two-point equation and large scale
Germano 2007b equation are used in fundamental research to develop turbulence physical
knowledge and understanding. This mathematically exact framework allows the analysis
of the turbulent energy cascade in non-homogeneous turbulent flows and in the dynamics
of homogeneous turbulence. An exact formulation of the Large Eddy Simulation subfilter
stress by Germano 2007c is used (6.14) related to this framework (Germano 2007b). This
formulation depends on subfilter quantities which are unknown with LES resolution.

In this chapter, a new LES model is proposed based on approximations of the exact subfilter
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Figure 6.12: PDF of the modelled subfilter stress contribution (−ũi
∂̂τij

∂xj
) during large eddy

simulation. In blue: a priori results plotted for reference (−ũi
∂τij

∂xj
), yellow: Smagorinsky

model contribution (−ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

), purple: structure model and Smagorinsky model

contribution (−ũi
∂( ˇδui

ˇδuj)
∂xj

− ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

), green: resolved model and Smagorinsky

model contribution (−ũiΨ− ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

, where Ψ is defined in 6.40).

stress formulation (6.14). The small scale and large scale interscale energy transfer rate
knowledge (used in fundamental research) where large fluctuations are measured with both
direct and backward energy transfers in scales, is used to justify the expected behavior of
the Large Eddy Simulation model with large dissipative and backscatter events. A mixed
configuration is proposed with a resolved part combined with a dissipation model. The
resolved part of the model is compared to the Brun, Friedrich, and Da Silva 2006 LES model
which is not far from the exact formulation (6.14).

A priori analysis of the resolved part of our model is carried out in a forced Taylor-Green
flow and compared to exact results, Smagorinsky model results and Brun, Friedrich, and Da
Silva 2006 model results. Rather good correlation with DNS of local energy transfers between
filtered and residual scales is obtained with the resolved part of our model. Particularly,
backscatter events are well predicted which is usually not the case with classical models such
as the Smagorinsky one. The correlation of the exact subfilter stress contribution −ũi

∂τij

∂xj

(see equation 6.1) with the modelled one −ũi
∂̂τij

∂xj
(see equation 6.2) is better with the resolved

part of our model than with the Brun, Friedrich, and Da Silva 2006 model in our flow.

In a posteriori simulations, the resolved part of our model does not capture well the mean
dissipation (very small value compared to energy transfer fluctuations). This result was
anticipated during the formulation of the model and this is why the resolved part is used
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combined with a dissipation model in a mixed configuration. The Smagorinsky model used for
this combination affects the a priori results which suggests the results can be improved with
a more relevant dissipation model. This mixed model captures well, a posteriori, the PDF of
the local energy transfers between filtered and residual scales, and particularly backscatter
events. The good prediction of these results, which are related to real physical effects, does
not affect significantly spatially averaged quantities such as the energy spectrum. The energy
spectrum of the LES with the resolved part of our model combined with the Smagorinsky
model is over dissipative compared to exact results suggesting again that the dissipative
model used in combination with the resolved part should be modified in future work.

This mixed model is to be evaluated in other flows because it is expected to affect signifi-
cantly the results in non-homogeneous turbulence and especially in regions of the flow where
mean backscatter is measured such as regions with high mean flow gradients (for example
channel flow as in Cimarelli and De Angelis 2014). This model should also be tested in
flows at higher Reynolds number to test the Reynolds dependence of the resolved part of our
model. Overall, this study is used as a proof of concept that new LES models can be approx-
imated from exact equations which ensure the physical relevance of the models. The present
model can be improved by refining the approximations done during the derivation process
and also by using present and future physical results related to the Germano 2007b equation.
It supports therefore, the need for more research on the large scale Germano equation both
experimentally and numerically.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

The experimental set-up used during this thesis, with a water tank agitated by four rotating
blades with or without baffles, is used to generate various non-homogeneous turbulent flows
with or without rotation where Reλ is between 410 and 580. Time resolved 2D2C PIV
measurements, with interrogation window size between 2.3η and 5.1η (in order to have a good
accuracy on velocity derivative terms), are carried out in different experimental configurations
with high number of statistics (150, 000 velocity fields per configuration corresponding to
around 50, 000 decorrelated velocity fields).

Truncated estimates of terms in the Kármán-Howarth-Monin-Hill (KHMH) two-point equa-
tion are used to describe the small scale behavior. Moreover, larger scale quantities from the
Germano two-point equation are evaluated for the first time to describe the larger scale be-
havior. Kolmogorov-like results of the two-point statistics are measured for the non-rotating
results with r2/3 power law behavior of the second order structure functions. Moreover, a
collapse of the interscale transfer rate of energy with dissipation is measured without depen-
dence on two-point separation length r. These results are not the consequences of the Kol-
mogorov theory which cannot be applied in these flows where non-negligible non-homogeneity
is quantified. Indeed, a non-negligible interspace transport rate of energy is measured which
corresponds to a non-zero spatial flux of energy.

The Chen and Vassilicos 2022 theory is improved and used to justify the Kolmogorov-
like results in our non-homogeneous turbulent flows where the two-point production and
linear transport are measured and found to be relatively small. This theory is based on
the matching of an inner scale region with an outer scale region where a space and scale
variable separation is assumed for the different time-averaged two-point energy quantities.
In the matching region, called the inner-outer intermediate region, the truncated estimates
of the main terms of the KHMH equation are predicted to collapse with dissipation without

159
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dependence on two-point separation length r. These results are confirmed experimentally
for the interscale transfer but also for the interspace transport which is a non-homogeneous
quantity and whose collapse is not trivial. This later result strongly supports the validity of
the predictions of the Chen and Vassilicos 2022 theory for these non-rotating flows.

Truncated estimates of the large scale Germano equation are also measured for the non-
rotating configurations and the large scale interscale transfer defined in this equation is
measured and found to behave similarly to the small scale interscale transfer defined in the
KHMH equation. Indeed, it is found to collapse with dissipation and is independent of the
two-point separation length in the inertial range. This result is not yet predicted theoretically
but it suggests that the large scale interscale transfer rate remains connected to the already
known small scale interscale transfer rate even in the non-homogeneous flows of our baffled
experiments. The non-homogeneous terms of the large scale equation do not collapse with
dissipation which underlines the peculiarity of the large scale interscale transfer rate in this
equation. An analogue of the Kolmogorov homogeneity assumption is defined where the
small scale non-homogeneous terms are individually non-zero but whose the sum is negligible
compared to the dissipation. With this assumption, whose criteria of validity remain to be
defined, a −1 coefficient is predicted between the interscale transfer rate and dissipation.

Non-Kolmogorov structure functions are measured for the configurations without baffles
where the flow is strongly rotating. The structure function for δu2

x is measured to have a
linear behavior with r which change with rotation frequency. These results do not follow the
Chen and Vassilicos 2022 theory similarly to the small scale two-point energy terms which do
not obey the theory’s predictions. In these flows, the mean flow non-homogeneity at small
scales (at the order of magnitude of λ) seems to break some assumptions of the theory. The
analysis of the different terms of the KHMH equation suggests that the inner-outer dissipation
equivalence introduced in Chen and Vassilicos 2022 fails in these flows which explains why
the predictions do not hold.

Finally, the large scale two-point framework introduced by Germano is used to develop
a new Large Eddy Simulation (LES) model in chapter 6. This model is composed of a
resolved part combined with a dissipation model. The resolved part is approximated from
exact equations so that the uncertainty introduced at each step is quantified in the case of
a numerically integrated Taylor-Green flow. The connection of this model with the large
scale equation, analyzed experimentally in chapters 4 and 5, is used to justify the physics
captured by the model with very intense dissipative and backscatter events. Generally, the
physical understanding obtained with the two-point equations can in principle be transferred
to LES through this connection. We use a mixed model consistently with recent LES models
where the first term (the resolved part) captures the large local energy transfer between
filtered and residual scales while the second term is there to capture the mean dissipation.
The resolved part of our model is found to capture well the local energy transfer, including
large backscatter events, in an a priori analysis of a Taylor-Green turbulent flow. These
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results are significantly better than the ones obtained with the Brun, Friedrich, and Da
Silva 2006 model which is a model designed to capture the local and global backscatter in
a channel flow. The Smagorinsky model is used for the second term of the mixed model
configuration for ease of implementation. The present mixed model captures well the local
energy transfer in a posteriori simulations of the same Taylor-Green flow with a coarse
mesh. However, no improvement is observed for second order homogeneous quantities such
as energy spectra which are classically used to evaluate LES models. Following the results
of Brun, Friedrich, and Da Silva 2006 and Cimarelli and De Angelis 2014, the prediction
of the energy transfer fluctuations and particularly backscatter may be of great interest in
non-homogeneous turbulence where mean backscatter is expected in some specific regions
or directions of the flow. Our model remains therefore to be tested in non-homogeneous
turbulence.

7.2 Perspectives

The PIV measurements carried out during this thesis were done in two dimensions with
two components instead of three dimensions with three components as needed to evaluate
the full terms of the KHMH and Germano equations. These experiments would require
to use Particules Tracking Velocimetry (4D PTV) and then convert the Lagrangian results
into Eulerian results. The current technology does not allow the measurements of the same
number of statistics as in the experiments presented in this thesis because of the huge amount
of data to process. However, time resolved results are already of great interest especially in
the case of the large scale equation. Indeed, it allows the local analysis of the large scale
interscale transfer which is strongly related to LES modelling as developed in the last chapter
of this thesis. The 4D PTV experiment datatset recorded during a collaboration between
LMFL and CEA (Chaabo 2022, Debue 2019, Geneste 2023 and Cheminet et al. 2022) in a
large Von-Kármán tank might be a good datatset for this analysis and it is already available
(Reλ between 150 and 1000 with Lagrangian resolution between 0.3η and 5η and measurement
window size between 20η and 300η). 4D PTV experiments can also be conducted in a new
mixing tank made of glass. These experiments may also be useful to better quantify the
mean flow non-homogeneity in the non-baffled (rotating) configurations and maybe relate it
explicitly to the rotation.

The evaluation of the Chen and Vassilicos 2022 theory in other locations of the mixer
tank and more generally in other flows may be useful to test it in different classes of non-
homogeneous turbulent flows. These tests are needed to classify better the differences between
non-homogeneous turbulent flows and identify clearly the flow properties needed to apply the
theory. The theory is to be tested extensively in turbulent flow regions of high production
where it is not expected to hold to understand how the mean flow non-homogeneity may be
included in the theory.
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The main perspective emerging from the thesis is the crucial need for more information
about the Germano energy equation. This equation should be evaluated in many flows
both experimentally and numerically even with simplifications if needed. Particularly, the
time-averaged large scale interscale transfer should be quantified and compared to the time-
averaged small scale interscale transfer in different classes of non-homogeneous flows to iden-
tify when the connection between the large scale and small scale interscale transfer rate holds
or when it is contaminated by non-homogeneity. This physical understanding is needed to
go further in the direction of physically relevant Large Eddy Simulation modelling. This
analysis should also be done about the fluctuations of the energy terms (equation 2.8) as
well as for the momentum terms (equation 2.6) in the same spirit as the work of Yasuda and
Vassilicos 2018 and Larssen and Vassilicos 2023. This analysis is directly relevant for LES
modelling because the models should be designed to reproduce these fluctuations.

The entanglement of space and scale momentum terms identified for LES in section 6.4.1
might be related to the energy results in section A.2.2 where the Lamb decomposition shows
that the energy exchanged between the large scale equation and the small scale equation
is composed of a spatial term and a scale term. This entanglement should be analyzed to
understand the role of the spatial transport term in the cascade process itself. The Lamb
decomposition used to derive this results seems to capture important physical features of
the equations so this decomposition should be analyzed in more details to understand better
its role. Some mathematical research exists about Beltrami flows where the Lamb term is
by definition zero. The analysis of the Lamb term energy contribution should provide the
physical meaning of its importance and why turbulent flows are different to Beltrami flows.
This research direction is also strongly related to the physical links between the small scale
and the large scale equations which seems to be crucial as a physical point of view.

The implementation of the resolved part of the LES model designed in chapter 6 can be
improved to reduce the uncertainty introduced. The impact of the filtering on the modelling
results can also be investigated to check the robustness of the results to a stronger filtering.
The derivation of the resolved term may also be generalized, if possible, to other filters
than the top hat filter which would provide more efficient model formulation. This model
remains also to be tested in non-homogeneous turbulence to see if it captures well the
expected mean backscatter in some regions/ directions of the flow. The new model can
be evaluated, for example, in a channel flow were it can be easily compared to the Brun,
Friedrich, and Da Silva 2006, Fang et al. 2009 and Cimarelli and De Angelis 2014 results.
The dissipation model should also be replaced by a better model than the Smagorinsky one
for example with the Dairay et al. 2017 model. Practically, this can be done by implementing
the resolved part of our model into the code Xcompact3d where the Dairay et al. 2017
model is already implemented. In that way, the model can be tested on existing simulation
cases pre-implemented in Xcompact3d such as Taylor-Green flow to test the impact of the
dissipation model on our results and in a channel flow to test the mean backscatter in
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specific directions. In addition, the coefficient used in front of the resolved part of our model
should be analyzed to see if a general formulation can be used or if a dynamic method
should be implemented in the same spirit as in Brun, Friedrich, and Da Silva 2006, Fang
et al. 2009 and Cimarelli and De Angelis 2014. Eventually, having in mind the practical use
of this model, its numerical cost should also be investigated.

Finally, beyond the scope of this thesis, I think there is a need for more research to develop
the transfer of knowledge in turbulence from theoretical world toward the practical world
through the different disciplines at stake in the order: Mathematics → Physics → Numerical
simulation → Engineering applications. Indeed, turbulence research has the potential to
change the way we predict and understand our surrounding fluid world with direct and
practical applications in weather/climate forecast, transport and energy sectors. This is a
highly topical issue, and the new mantra of the CNRS is precisely defined by Antoine Petit
as: ’Fundamental research at the service of society’.
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Appendix A

Chapter 4 appendices

A.1 Space averaging impact on results

Structure functions are averaged in space to improve convergence as the results collapse
is very sensitive to convergence. Therefore, the results are plotted in figure A.1a, A.1b,
A.1c and A.1d without space averaging to check if the results are affected. Only one
configuration is presented but it is representative of the four configurations. VI = VO.R

−1/4
O

and lI = lO.R
−3/4
O are defined arbitrarily where lO = D and VO =

√
u′2

x + u′2
z . However, it is

important to note that VI and lI are nearly constant over the spatial domain with a variation
of less than 3% for the two quantities. The error bars for these results are computed with
classical convergence formula. The largest error bar of all positions is used and centered
on the spatially averaged structure function (in red). The results collapse within error
bars for δu′2

x /V 2
I = f(rx), δu′2

x /V 2
I = f(rz), δu′2

z /V 2
I = f(rx) and δu′2

z /V 2
I = f(rz), which

confirms that space averaging does not distort the results and can be therefore used to
improve convergence. These results are also consistent with the inner region structure func-
tions’ similarity assumed in equation 4.23. The outer region is not accessible with our dataset.

Third order statistics are even more difficult to converge than second order statistics. There-
fore, space averaging is mandatory to converge results. The most critical quantity is the
interspace transport as it is computed with space derivatives which can be affected by space
averaging. The interspace transport averaged in time and space is compared to the same
quantity averaged in time and in space in only one direction (z) but at different x locations
(figure A.2). The results are not well converged due to the reduction of the number of points.
The shape of the non-converged functions at the different x positions seems to be consistent
with the converged results averaged in space. Therefore, spatial averaging can be used to
improve the results convergence without loss of information and without significant distortion
of the results.
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Figure A.1: Time averaged structure functions at different spatial locations
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Figure A.2: Interspace transport truncate estimate at different x positions averaged over
time and z direction. In red the same estimate averaged over time and all directions.

A.2 Large scale / small scale Kolmogorov-like turbulent
picture

In this part, Kolmogorov-like assumptions are used to improve the understanding of the
large scale equation and its contribution to the global turbulent picture. This part is not in
the submitted publication but the results are close to the ones in the last section of chapter
4. In this section, Reynolds average decomposition is not used in the computations to keep
it as simple as possible and simplify the discussion about the mean flow contribution. This
work relates therefore the results of chapter 4 with the theoretical ones of chapter 2 where
there is no Reynolds average decomposition.

A.2.1 Homogeneous turbulence

Most of the materials in this subsection are based on the turbulence lectures of Christos
Vassilicos.

The small scale and large scale equations are first analyzed in theoretical homogeneous
turbulence. This kind of turbulence is unlikely to exist in real world but it is a first step to
give a simplified turbulent picture which will help for the understanding of non-homogeneous
turbulence analyzed in the next section. Equations 2.7, 2.8 and 2.9 are averaged in space
over a periodic domain to obtain equations:

∂ < |δu| >2

∂t
+ ∇r. < δu|δu|2 >≈ − < ϵ > (A.1)
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∂ < |uX |2 >

∂t
+ ∇r. < δu|uX |2 >≈ − < ϵ > (A.2)

∇r. < δu|uX |2 >= −∇r. < δu|δu|2 > (A.3)

where diffusion is neglected for r >> λ (Valente and Vassilicos 2015).
As already mentioned, equation A.3 describes an exact connection between the small and

large scale interscale transfer in homogeneous turbulence. Therefore, the energy provided by
larger scales is received and cascaded at smaller scales.

Using A.1, A.2 and A.3, a decay law is derived:

∂ < |δu|2 >

∂t
+ ∂ < |uX |2 >

∂t
≈ −2 < ϵ > (A.4)

This two-point equation is actually the sum of two one point turbulent kinetic energy decay
laws:

1
2

∂ < u+2 >

∂t
+ 1

2
∂ < u−2 >

∂t
= ∂ < u2 >

∂t
≈ −2 < ϵ > (A.5)

where u+ = u(ζ+) and u− = u(ζ−). These decay laws are easily understood as there is
no forcing.
|δu|2 is a small scale quantity and |uX |2 is a large scale quantity, so for r << L, the small

scale unsteadiness is assumed to be much smaller than the large scale unsteadiness. With
this assumption, the Kolmogorov steady assumption at small scale is re-derived:

∂ < |δu| >2

∂t
≈ 0 (A.6)

but the large scale remains non-stationary with a decay law because there is no forcing:

∂ < |uX |2 >

∂t
≈ −2 < ϵ > (A.7)

Again, the flow cannot be both homogeneous and steady at large scale. It can also be
derived that small scale steadiness assumption A.6 associated to equation A.5 implies a
correlation decay at the dissipation rate:

1
2

∂ < u+.u− >

∂t
≈ − < ϵ > (A.8)

This results means that, without forcing, the flow becomes more and more chaotic (less
coherent) with time. This is probably due to the break of the large scale structures into
smaller scale structures through the turbulent cascade. These results supports that the
’steadiness’ assumption in decaying homogeneous flows: ∂<|δu|>2

∂t ≈ 0 represents actually
a balance of time derivative terms ∂<|δu|>2

∂t = 1
2

∂<u+2>
∂t + 1

2
∂<u−2>

∂t − ∂<u+.u−>
∂t ≈ −2 <

ϵ > +2 < ϵ >≈ 0. From these results the Kolmogorov cascade is derived where the energy
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transfer across scale is constant and balances dissipation:

∇r. < δu|uX |2 >= −∇r. < δu|δu|2 >≈< ϵ > (A.9)

This situation remains theoretical but some analogy to these results is used in the next
section for time averaged non-homogeneous flow which really exist.

A.2.2 Steady non-homogeneous turbulence

One point spatial balance equation

Steady turbulence is obtained by averaging equations in time. We start with the Navier-
Stokes energy equation without forcing at one point:

∇.u(p

ρ
+ 1

2u2) = ν∇.
∇u2

2 − ϵ (A.10)

This equation is averaged in space over a finite domain Ω:

1
ρ

�
∂Ω

(
u(p + 1

2ρu2)− ν
∇u2

2

)
ndS = −

�
Ω

ϵdV (A.11)

Equation A.11 is reminiscent of the Bernoulli equation once converted into energy equation
(even more visible when diffusion is neglected). However, this equation is valid for time
averaged turbulent flows without assumption. This equation describes a balance of spatial
terms with dissipation. The spatial fluxes on the sides of the spatial domain bring the energy
needed inside were it is consumed by dissipation. This fluxes balance sustain turbulence and
prevents it to decay (because it is a steady flow without forcing).

It means also that a non-local law exist where non-homogeneous terms balance with dissi-
pation so this idea is applied to two-point energy equations.

Time averaged two-point equations

The two-point small scale equation 2.7 and the two-point large scale equation 2.8 are
rewritten in this section with time averaging:

∇r.(δu|δu|2) + ∇X .

[
(uX |δu|2) + 2

ρ
(δuδp)− ν

2 ∇Xδu2
]

= ν

2 ∇r
2|δu|2 − ϵ (A.12)

and

∇r.(δu|uX |2) + ∇X .

[
(uX |uX |2) + 2

ρ
(uXPX)− ν

2 ∇XuX
2
]

= ν

2 ∇r
2|uX |2 − ϵ. (A.13)
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This latter equation can also be rewritten as:

−∇r.(δu|δu|2) + ∇X .

[
(uX |uX |2) + 2

ρ
(uXPX) + 2(δu(δu.uX))− ν

2 ∇XuX
2
]

= ν

2 ∇r
2|uX |2 − ϵ

(A.14)

where, equation A.3 is used so that the small scale interscale transfer appears explicitly
in the large scale equation and ϵ = 1

2 (ϵ+ + ϵ−). These equations will be used later in this
section.

Two-point spatial balance equation from lamb decomposition

In this section, the lamb decomposition is applied to the two-point equation.

The Lamb decomposition corresponds to the advection term decomposition: (u.∇)u =
ω × u + 1

2 ∇u2. With this decomposition, the Navier-Stokes equation can be re-written:

∂u

∂t
+ ω × u + 1

2∇u2 = −∇P

ρ
+ ν∇2u (A.15)

The ω×u term is often associated to the complexity of the Navier-Stokes equations (through
the non-linear interactions) and therefore to the energy cascade (Speziale 1987). This term is
not present in the one point kinetic energy equation because u.(ω×u) = 0 which complicates
its analysis. However, it is derived in appendices A.3 and A.4 that the lamb term energy
contribution is present in the two-point energy equations which explains why these equations
are so meaningful for the turbulence energy cascade analysis. The |δu|2 and |uX |2 equations
can be decomposed between the lamb and the gradient part of the advection contribution to
the energy budget:

∂|δu|2

∂t
+
[
∇X .(uX |δu|2)−∇r.(δu|uX|2)

]
+ 2

ρ
∇X .(δuδp∗) = Dδu2 − ϵ (A.16)

∂|uX |2

∂t
−
[
∇X .(uX |δu|2)−∇r.(δu|uX|2)

]
+ 2

ρ
∇X .(uXP ∗

X) = DuX
2 − ϵ (A.17)

Where
[
∇X .(uX |δu|2)−∇r.(δu|uX|2)

]
is the lamb energy contribution to both small

scale and large scale two-point energy equations; Dδu2 = ν
2 ∇X

2|δu|2 + ν
2 ∇r

2|δu|2; DuX
2 =

ν
2 ∇X

2|uX |2 + ν
2 ∇r

2|uX |2; ϵ = 1
2 ϵ+ + 1

2 ϵ− and the change of variable p∗ ← p+ 1
2 ρu2 is used.

The derivations of these equations is done in appendices A.3 and A.4.
We can notice from these computations that the lamb contribution represents the energy
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exchanged between the large scale two-point equation A.16 /A.12 and small scale two-point
equation A.17 /A.13. Indeed, it is the same term appearing in both equations with a minus
sign in the large scale equation and a positive sign in the small scale equation. The gradient
contribution is a non-homogeneous term in both equations and can be hidden in the pressure
term. The lamb part of the equation represents the two-point energy interactions because it
is not present in the one point energy equation.

Note: the lamb contribution can also be written as:

[
∇X .(uX |δu|2) + ∇r.(δu|δu|2)− 2∇X .(δu(δu.uX))

]
(A.18)

where the small scale interscale transfer rate appears explicitly.

When the sum of both time averaged equations is done, the lamb contribution vanishes and
we come back to the sum of the one point equations A.10 written for u2(ζ+) and u2(ζ−):

2
ρ

∇X .(δuδp∗) + 2
ρ

∇X .(uXP ∗
X) = ν∇X .∇X(uX

2 + δu2)− 2ϵ (A.19)

This exact spatial balance with dissipation (which can be derived without assumption)
supports that non-local laws exist which relate non-homogeneous energy with dissipation.
These non-local laws might explain why universal results seems to be measured for turbulence
in numerous flows even though the non-homogeneity is non-zero.

As we noticed that equation A.19 is just the sum of the small scale equation A.12 and the
large scale equation A.13 where the lamb term contribution vanishes, it is natural to rewrite
equation A.19 as:

∇X .

[
(uX |δu|2) + 2

ρ
(δuδp)− ν

2 ∇Xδu2
]

+ ∇X .

[
(uX |uX |2) + 2

ρ
(uXPX) + 2(δu(δu.uX))− ν

2 ∇XuX
2
]

≈ −2ϵ

(A.20)

where the non-homogeneous parts of the small scale and large scale equations appear explic-
itly. The diffusion in r space is neglected for r >> λ (Valente and Vassilicos 2015).

Local homogeneity

Similarly to the argumentation in section A.2.1, it is assumed for r << L that the small
scale spatial non-homogeneity is negligible compared to the large scale one:
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∇X .

[
(uX |δu|2) + 2

ρ
(δuδp)− ν

2 ∇Xδu2
]

<< ∇X .

[
(uX |uX |2) + 2

ρ
(uXPX) + 2(δu(δu.uX))− ν

2 ∇XuX
2
] (A.21)

This assumption is similar to Kolmogorov idea of local homogeneity. However, the local
homogeneity is not applied to each terms individually but for the sum. This assumption is
consistent with a significantly non-zero small scale transport term as it is for example the
case in our measurements. It is also analog to the non-zero sub-terms of the steady term
∂<|δu|>2

∂t ≈ 0 in section A.2.1.
Using equation A.20, the assumption A.21 can be rewritten for λ << r << L as:

∇X .

[
(uX |δu|2) + 2

ρ
(δuδp)− ν

2 ∇Xδu2
]
≈ 0

∇X .

[
(uX |uX |2) + 2

ρ
(uXPX) + 2(δu(δu.uX))− ν

2 ∇XuX
2
]
≈ −2ϵ

(A.22)

These assumptions are integrated over a finite spatial domain to interpret it:


�

∂Ω

(
(uX |δu|2) + 2

ρ
(δuδp)− ν

2 ∇Xδu2
)

ndS ≈ 0
�

∂Ω

(
(uX |uX |2) + 2

ρ
(uXPX) + 2(δu(δu.uX))− ν

2 ∇XuX
2
)

ndS ≈ −2
�

Ω
ϵdV

(A.23)
The small scale assumption describes a spatial volume which does not receive or provide

energy in average to its neighborhood. On the other side, the large scale assumption describes
spatial flux which provides in average the amount of energy consumed by dissipation inside
the spatial domain. The large scale non-homogeneity is therefore mandatory to sustain
turbulence.

This global picture is valid if no energy is produced inside the domain at small scale. Indeed,
a production of energy directly at small scale would bypass the need to sustain turbulence
with spatial flux as it is produced locally. In other world it is not possible to have small scale
production or small scale mean flow non-homogeneity in this simplified picture.

Interscale transfer results

Using the local homogeneity defined previously, in a similar way to chapter 4, we can
re-derive for λ << r << L:

∇r.(δu|δu|2) ≈ −ϵ (A.24)
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∇r.(δu|uX |2) ≈ ϵ + 2∇X .(δu(δu.uX)). (A.25)

Note that the separation of the small scale and large scale non-homogeneity in A.23 is am-
biguous for the term: 2∇X .(δu(δu.uX)) which is related to both small scale and large scale
equations. Other assumptions can lead to ∇r.(δu|uX |2) ≈ ϵ or even 2∇r.(δu(u+.u−) ≈ ϵ.

Overall, the results derived in this section support that Kolmogorov-like turbulence can
exist when the local homogeneity defined previously holds but:

• It does not require that the small scale non-homogeneous terms are individually zero.

• The large scale non-homogeneity should be non-zero to sustain turbulence if there is
no forcing.

A.3 Lamb decomposition of the δu2 equation

∂u

∂t
+ ω × u + 1

2∇u2 = −∇P

ρ
+ ν∇2u (A.26)

The equation is written at ζ+ = X + r and ζ− = X − r and the half difference is done to
obtain:

∂δu

∂t
+ 1

2
[
ω+ × u+ − ω− × u−]+∇X(uX .δu) = −∇Xδp

ρ
+ ν

2 ∇X
2δu+ ν

2 ∇r
2δu (A.27)

After multiplication by 2δu, we obtain:

∂|δu|2

∂t
+ δu

[
ω+ × u+ − ω− × u−]+ 2∇X .(δu(uX .δu)) =

− 2∇X .(δuδp)
ρ

+ ν

2 ∇X
2|δu|2 + ν

2 ∇r
2|δu|2 − 1

2ϵ+ − 1
2ϵ−

(A.28)

Which can also be written as:

∂|δu|2

∂t
+ δu

[
ω+ × u+ − ω− × u−]+ ∇r.(δu|δu|2) + ∇r.(δu|uX |2) =

− 2∇X .(δuδp)
ρ

+ ν

2 ∇X
2|δu|2 + ν

2 ∇r
2|δu|2 − 1

2ϵ+ − 1
2ϵ−

(A.29)
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The difference between these two equations is derived below using the relations ∂uXi

∂Xj
= ∂δui

∂rj

and ∂uXi

∂rj
= ∂δui

∂Xj
introduced in Germano 2007b:

2∇X .(δu(uX .δu))

2δuj
∂(uXiδui)

∂Xj

= 2δujδui
∂uXi

∂Xj
+ 2δujuXi

∂δui

∂Xj

= 2δujδui
∂δui

∂rj
+ 2δujuXi

∂uXi

∂rj

= δuj
∂δu2

i

∂rj
+ δuj

∂u2
Xi

∂rj

= ∇r.(δu|δu|2) + ∇r.(δu|uX |2)

(A.30)

The term δu
[
ω+ × u+ − ω− × u−] is difficult to simplify directly but it can be obtained

through identification with the results of the global KHMH equation 2.7:

δu
[
ω+ × u+ − ω− × u−] = ∇X .(uX |δu|2)−∇r.(δu|uX |2) (A.31)

Therefore the KHMH equation can be decomposed between the lamb and gradient part of
the advection contribution to energy budget:

∂|δu|2

∂t
+ ∇X .(uX |δu|2)−∇r.(δu|uX|2) + 2∇X .(δu(uX .δu))

= −2
ρ

∇X .(δuδp) + ν

2 ∇X
2|δu|2 + ν

2 ∇r
2|δu|2 − ϵ

(A.32)

This equation can also be written in a reduced form:

∂|δu|2

∂t
+
[
∇X .(uX |δu|2)−∇r.(δu|uX|2)

]
+ 2

ρ
∇X .(δuδp∗) = Dδu2 − ϵ (A.33)

where p∗ = p + 1
2 ρu2 and Dδu2 = ν

2 ∇X
2|δu|2 + ν

2 ∇r
2|δu|2.

A.4 Lamb decomposition of the u2
X equation

∂u

∂t
+ ω × u + 1

2∇u2 = −∇P

ρ
+ ν∇2u (A.34)

The equation is written at ζ+ = X + r and ζ− = X − r and the sum is done to obtain:
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∂uX

∂t
+ 1

2
[
ω+ × u+ + ω− × u−]+ 1

2∇X(uX
2 +δu2) = −∇XPX

ρ
+ ν

2 ∇X
2uX + ν

2 ∇r
2uX

(A.35)
After multiplication by 2uX , we obtain:

∂|uX |2

∂t
+ uX

[
ω+ × u+ + ω− × u−]+ ∇X .(uX(uX

2 + δu2)) =

− 2∇X .(uXPX)
ρ

+ ν

2 ∇X
2|uX |2 + ν

2 ∇r
2|uX |2 −

1
2ϵ+ − 1

2ϵ−
(A.36)

The term uX

[
ω+ × u+ + ω− × u−] is obtained by identification to equation 2.8:

uX

[
ω+ × u+ + ω− × u−] = ∇r.(δu|uX |2)−∇X .(uX |δu|2) (A.37)

Therefore the KHMH equation can be decomposed between the lamb and gradient part of
the advection contribution to energy budget:

∂|uX |2

∂t
−∇X .(uX |δu|2) + ∇r.(δu|uX|2) + ∇X .(uX(uX

2 + δu2))

= −2
ρ

∇X .(uXPX) + ν

2 ∇X
2|uX |2 + ν

2 ∇r
2|uX |2 −

1
2ϵ+ − 1

2ϵ−
(A.38)

∂|uX |2

∂t
−
[
∇X .(uX |δu|2)−∇r.(δu|uX|2)

]
+ 2

ρ
∇X .(uXP ∗

X) = DuX
2 − ϵ (A.39)

where p∗ = p + 1
2 ρu2 and DuX

2 = ν
2 ∇X

2|uX |2 + ν
2 ∇r

2|uX |2.
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Appendix B

Chapter 5 appendices

B.1 Third order statistics convergence

The third order statistics convergence is evaluated on truncate estimates of the interscale
transfer in figure B.1 and interspace transport in figure B.2. Only one baffle configuration and
one non-baffle configuration are presented for clarity but the results of all other configurations
are similar. Error bars are computed with a bootstrapping method. For both interscale and
interspace energy transfer, the convergence is better in the rz direction because of the more
important number of spatial points available in this direction. The baffle results are also
better converged than non-baffle results for the same r/λ because the values of λ are smaller.
The baffle configurations results are well converged for all the separation length values used
in the figures B.1 and B.2 i.e. rx < 2.5λ and rz < 5.5λ. The convergence of the non-baffle
configurations is acceptable for rx < 1.3λ and rz < 3λ. For larger separation lengths, the
results are significantly contaminated by convergence uncertainty and might have erratic
behavior.

B.2 Structure functions at different space locations

In chapter 5, the inner similarity hypothesis 5.3 is evaluated. Only one baffled and one
non-baffled configurations were plotted in the chapter so this appendix contains the results
of all the other configurations. The reader can refer to chapter 5 for the comments about the
results.
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Figure B.1: Interscale transfer truncate estimate convergence
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Figure B.2: Interspace transport truncate estimate convergence
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Appendix C

Chapter 6 appendix

C.1 Coefficient evaluation

The coefficient used in front of the resolved part of our model is not straightforward so
a basic analysis is done with an priori test to evaluate it. This coefficient may be needed
to rescale the resolved part of our model because of the uncertainty introduced during the
approximations of the exact equation 6.10. The formulation tested is the equation 6.40 where
the multiplying factor takes the form C1

(2∆)3
6(2∆)2

6×9 = C1
18∆ where C1 is defined in equation

6.40 and is evaluated at different filtering widths: ∆. The coefficient is adjusted with an
optimization to fit the model subfilter stress energy contribution PDF with exact results.
The optimization is based on the following process:

• C1 is initialized to 1

• The PDF of the modelled subfilter stress energy contribution −ũiΨ (where Ψ is defined
in 6.40) is evaluated on the Taylor-Green DNS dataset. We use the notation Qm =
−ũiΨ to simplify notation. The PDF of the exact subfilter stress contribution −ũi

∂τij

∂xj

is evaluated on the same dataset and we use the notation Qr = −ũi
∂τij

∂xj
.

• The coefficient C1 is updated: C1 ← C1⟨Qm∗P DF (Qm)
Qr∗P DF (Qr) ⟩

−1 where (∗) represents the term
by term multiplication (x ∗ y = (x(i) ∗ y(i))i) and < . > spatial averaging. This process
tends to superimpose the PDF of Qr over the one of Qm (see figure C.1).

• We iterate on the process (without the initialization of C1) until convergence.

The same optimization is carried out for the increment model coefficient C2 defined in 6.44.
The optimization results are presented in figure C.1 with linear axes and in C.2 with

logarithmic axes for one value of ∆ ≈ 8η: the most probable events are well fitted, as
observed in figure C.1, because of their dominant representation but the rare events are
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Figure C.1: PDF of the subfilter stress contribution with linear axes (exact: −ũi
∂τij

∂xj
or

modelled: −ũi
∂̂τij

∂xj
) evaluated a priori on DNS results with a 12× 12× 12 top hat filter. The

results are superimposed. In blue: the exact contribution (−ũi
∂τij

∂xj
), in red: Brun, Friedrich,

and Da Silva 2006 model contribution (−ũi
∂( ˇδui

ˇδuj)
∂xj

) and in yellow: resolved part of the
present model contribution (−ũiΨ, where Ψ is defined in 6.40)

overestimated with the model 6.44 and underestimated with resolved model as seen in figure
C.2,. The resolved model coefficient results are presented in figure C.3 where a linear evolution
is observed for ∆ > 4η. For a filtering over 12 × 12 × 12 points (∆ ≈ 8η) which correspond
to a LES simulation in 64 × 64 × 64 domain, the value of C1 is 0.97 and the value of C2

is 0.152. Future work is needed to have a better computation method of this coefficient for
general turbulence but the results obtained are sufficient to test the model in Taylor-Green
simulations.
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C.2 A priori analysis with ∆ ≈ 16η

In subsection 6.5.2, the two-dimensional PDFs of the subfilter stress contributions

(Smagorinsky model: −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

, Brun, Friedrich, and Da Silva 2006 model (6.16):

−ũi
∂( ˇδui

ˇδuj)
∂xj

and resolved part of our model: −ũiΨ (where Ψ is defined in 6.40) with the
exact contribution: −ũi

∂τij

∂xj
are presented for a filtering width ∆ ≈ 8η. In this appendix,

a wider filtering is used (∆ ≈ 16η) to check the results remain valid for larger filtering.
The Smagorinsky results in figure C.4a are close to the results in figure 6.8a with nearly no

correlation between −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

and −ũi
∂τij

∂xj
. The larger filtering does not improve

the Smagorinsky model results as expected. The Brun, Friedrich, and Da Silva 2006 model
results in figure C.4b are also close to the results at smaller filtering in figure 6.8b with a
small correlation but also strong anti-correlation values around the axes. The main result of
this appendix is the figure C.4c where we can observe that the correlation of −ũiΨ (where
C1 ≈ 1.57 accordingly to appendix C.1) with −ũi

∂τij

∂xj
does not evolve significantly with the

filtering width as the results at larger filtering (∆ ≈ 16η) are close to the results at smaller
filtering (∆ ≈ 8η) in figure 6.8c. We can therefore conclude that the results of the a priori
analysis done in chapter 6 does not depend significantly on the filter width at least until
∆ ≈ 16η.
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(a) Horizontal axis: exact subfilter contribution
to (6.1): −ũi

∂τij

∂xj
. Vertical axis: Smagorinsky

model contribution to (6.2): −ũi

∂
(

−2Cs∆2|S̃|S̃ij

)
∂xj

.

(b) Horizontal axis: exact subfilter stress
contribution to (6.1): −ũi

∂τij

∂xj
. Vertical axis:

Brun, Friedrich, and Da Silva 2006 model
contribution to (6.2): −ũi

∂( ˇδui
ˇδuj)

∂xj
.

(c) Horizontal axis: exact subfilter stress
contribution to (6.1): −ũi

∂τij

∂xj
. Vertical axis:

Resolved part of the present model contribution
to (6.2): −ũiΨ, where Ψ is defined in 6.40.

Figure C.4: Two-dimensional PDFs of modelled subfilter stress contributions to (6.2): −ũi
∂̂τij

∂xj

with exact subfilter stress energy contribution to (6.1): −ũi
∂τij

∂xj
, with scaling coefficient,

evaluated in the Taylor-Green DNS simulation with ∆ ≈ 16η.
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C.3 Derivation of a second exact form of the subfilter
stress

A first exact subfilter stress exact equation 6.10 is derived in subsection 6.4.1. In this
appendix a second exact form of the subfilter stress is derived and compared to the equation
6.10.

The basic filtering 6.8 does not filter enough to obtain a practically useful subfilter stress
formula so a filter is applied to uX . Before applying a general discrete filtering to uX ,
a simple example is used in continuous form. uX is averaged in r space over a volume
V (∆) = (2∆)3 (where ∆ is the LES mesh width) similarly to two-point energy equations in
chapter 2. This filtering is equivalent to a continuous top hat filter applied to the velocity
field u:

ũ = 1
V (∆)

�
V (∆)

uXd3r = 1
V (∆)

� ∆

−∆

� ∆

−∆

� ∆

−∆

u(X − r) + u(X + r)
2 dr3dr2dr1

= 1
(2∆)3

� ∆

−∆

� ∆

−∆

� ∆

−∆
u(X − r)dr3dr2dr1

(C.1)

The integration in scale space leads to an efficient filtering as opposed to the basic filtering
defined in equation 6.8. Now, the filtering is generalized to any discrete filter with the
discrete weight function 6.11, G, used in order to match the filtering used in Germano 2007a
and subsection 6.4.1. This filter allows to filter in a different way than the continuous top
hat filtering used in (C.1). A discrete filter is used for practical reasons of implementation
but the same results can be derived for a continuous filter if the weight function defined is
continuous. For example, C.1 is a specific case of a continuous filtering.

The filtered velocity ũ is obtained by

ũ =
�

G(r)uXd3r (C.2)

and is exactly equivalent to (6.12) when G(−r) = G(r). We assume from now that it is the
case.

We restrict the filtering to compact filtering over V (∆) to stay close to (C.1) formulation
and obtain

ũ =
�

V (∆)
G(r)uXd3r (C.3)

A possible example among many is discrete Gaussian filtering where G has a discretized
gaussian shape. The residual velocity field is:
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u′
X = uX − ũ (C.4)

The integration (C.3) in r space is applied to equation 6.4 to derive an exact equation for
the filtered velocity ũ

∂ũ

∂t
+ (ũ.∇X)ũ +

�
V (∆)

G(r)(u′
X .∇X)u′

Xdr3 +
�

V (∆)
G(r)(δu.∇r)uXdr3

= −1
ρ
∇X p̃ + ν∇2

X ũ

(C.5)

For this derivation we have used the property:
�

V (∆) G(r)u′
Xd3r = 0 so that�

V (∆) G(r)(uX .∇X)uXd3r = (ũ.∇X)ũ +
�

V (∆) G(r)(u′
X .∇X)u′

Xd3r. Note that we
consider functions G which are independent of X.

The terms
�

V (∆) G(r)(u′
X .∇X)u′

Xd3r and
�

V (∆) G(r)(δu.∇r)uXd3r in equation C.5 are
the exact subfilter stress contributions that need to be modeled. This exact equation
links explicitly the two-point equations used in fundamental research for physical under-
standing (equations (6.4) and (2.8)) with LES modeling. Indeed, the term (δu.∇r)uX

once multiplied by uX is called the large scale interscale transfer rate ∇r.δu|uX |2. This
quantity is interpreted and measured experimentally in chapters 2, 4 and 5. Therefore,�

V (∆) G(r)(δu.∇r)uXd3r can be interpreted as the scale contribution to the subfilter stress
gradient.

Similarly, the term (u′
X .∇X)u′

X once multiplied by uX looks similar to the large scale
interspace transport which is also measured and analyzed in chapters 2, 4 and 5. There-
fore,

�
V (∆) G(r)(u′

X .∇X)u′
Xd3r can be interpreted as the space contribution to the subfilter

stress gradient. This specific formulation of the subfilter stress is derived for the first time.
However, another formulation was previously derived in Germano 2007a and Germano 2007c.
This formulation, presented in subsection 6.4.1, is more useful for large eddy simulation but
the matching between the two formulations provides additional understanding about the con-
tribution of the spatial term to the subfilter stress gradient. Moreover, the derivation steps of
this appendix help understanding the links between the exact equation C.5 and the subfilter
stress gradient.

Using both the Germano 2007c subfilter stress exact formulation 6.10 and the one derived
in this appendix, the following result is derived from C.5 and 6.15.

∂τij

∂xj
=
� ∞

−∞

� ∞

−∞
G(x− s− r)G(x− s + r)∇r.(uXiδu)drds

=
�

V (∆)
G(r)∇X .(u′

Xiu
′
X)dr +

�
V (∆)

G(r)∇r.(uXiδu)dr

(C.6)
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Figure C.5: Entanglement of space and scale contributions observed with filtering in 1 di-
mension. These results are evaluated with one velocity component from a DNS dataset of ho-
mogeneous turbulence (8L×8L×8L, where L is the integral scale, Reλ = 140, kmaxη = 1.3).
blue: 1D space subfilter stress gradient contribution, black: 1D scale subfilter stress gradient
contribution, red: 1D total subfilter stress gradient contribution

where G, is defined in equation 6.11.
In equation C.6, the total subfilter stress gradient is expected to be much smoother than the

scale subfilter stress gradient contribution. Indeed, it is the same quantity filtered differently.
The first term is filtered both in scale and space while the second is only filtered in space.
Therefore, the contribution in equation C.6 of the fluctuating space subfilter stress gradient
is to cancel out some fluctuations of scale subfilter stress gradient contribution so that the
sum is a smooth quantity. This result is reminiscent of the work of Larssen and Vassilicos
2023 where some strong correlations/anti-correlations of KHMH energy terms are quantified
in a DNS of homogeneous turbulence.

This result is confirmed experimentally with simple tests in one dimension (figure C.5).
The total 1D subfilter stress (in red) is much smoother than the 1D scale subfilter stress
gradient contribution (in black) because some fluctuations are canceled by fluctuations of
the 1D space subfilter stress gradient contribution (in blue). This cancellation underlines the
strong entanglement of the space and scale contributions. The analysis of the consequences of
this effect on the associated energy terms, interspace energy transport and interscale energy
transfer, would be a very interesting direction of future research. The physical understanding
of these relations would improve both turbulence knowledge and modelling methods.
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Résumé vulgarisé en Français

Pourquoi étudier la turbulence ?

La turbulence décrit un comportement particulier d’un écoulement lorsqu’il se déplace rapi-
dement ou qu’il est contraint par une grande ou complexe forme géométrique. L’écoulement
peut être celui de n’importe quel fluide comme l’air ou l’eau. Les écoulements turbulents
sont facilement identifiables par leur instationnarité et leur irrégularité. La plupart des
écoulements qui nous entourent dans notre vie quotidienne sont turbulents. Si l’air n’était
pas transparent, la turbulence serait visible partout.

Les écoulements turbulents sont aussi présents dans beaucoup d’applications industrielles
: aéronautique (mécanique du vol, conception des aéronefs, conception des réacteurs, ...),
industrie (mélangeurs industriels, turbines, ...), géophysique (prévisions météo, ...). Le
comportement de ces écoulements est très difficile à comprendre et à prévoir à cause de
la complexité de leurs équations. Cependant, leur compréhension et leur simulation sont
critiques pour les applications mentionnées précédemment.

Par exemple, il y a un besoin d’une meilleure compréhension des équations des écoule-
ments turbulents dans l’industrie aéronautique en raison de la tendance actuelle de créer des
géométries très complexes (comme des nouveaux rotors ou fuselages) tout en utilisant un
processus "model-based design". Cela nécessite des simulations fiables des écoulements pour
modéliser les principaux effets aérodynamiques tels que la portance, la traînée, la poussée,
en toutes circonstances.

L’industrie s’attaque aux problèmes de modélisation aérodynamique en utilisant des
méthodes numériques appelées "Reynolds Averaging Navier Stokes simulation" ou plus
récemment "Large Eddies Simulation" en collaboration avec la recherche. La recherche va
encore plus loin en utilisant la méthode "Direct Numerical Simulation". Cette dernière
approche numérique est beaucoup plus précise mais nécessite aussi beaucoup plus de
puissance de calcul. Elle est limitée aux écoulements basse vitesse en raison de leur coût en
calcul ou est réduite à des petites régions de l’écoulement. Aucune de ces méthodes n’est
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pleinement satisfaisante car les méthodes numériques sont complexes, nécessitent trop de
puissance de calcul ou nécessitent des processus de calibration pour chaque cas d’application.
C’est pourquoi, des mesures expérimentales longues et coûteuses sont nécessaires avant de
concevoir une nouvelle géométrie. La solution choisie contient souvent des simplifications
importantes et des incertitudes.

C’est pourquoi la turbulence et ses conséquences sur les phénomènes aérodynamiques reste
un problème non résolu à ce jour.

Une des principales directions pour résoudre ce problème est d’augmenter la connaissance
et la compréhension des équations de la turbulence. Cela doit être fait dans des situations
proches des situations pratiques : des écoulements perturbés dont les propriétés changent
dans l’espace et où la vitesse évolue de faible à grande vitesse.

En pratique, une meilleure compréhension des équations de la turbulence, appelées les
équations de Navier-Stokes, devrait conduire à :

• Des simulations plus efficaces des écoulements grâce à l’utilisation de simplifications
basées sur la physique pour réduire le coût des calculs numériques

• De meilleures prédictions des effets aérodynamiques / hydrodynamiques grâce au
développement de nouveaux modèles

• La conception de nouvelles géométries plus efficaces aérodynamiquement / hydrody-
namiquement

• De nouvelles applications qui utilisent l’énergie et les propriétés des écoulements tur-
bulents

Pourquoi étudier particulièrement la non-homogénéité
dans la turbulence ?

Un consensus scientifique existe à propos d’une théorie autour de la turbulence développée
par Kolmogorov en 1941. Cette théorie a été développée pour de la turbulence homogène
en équilibre. C’est un état théorique des écoulements qui existe peut-être à très grand
nombre de Reynolds (haute vitesse, grande géométrie, faible viscosité) quand la turbulence
est complètement développée. Dans ce cas, les propriétés de l’écoulement ne varient pas en
espace et en direction : c’est un écoulement homogène isotrope.

Cette théorie, doit encore être étendue pour les écoulements turbulents hors équilibre /
non-homogènes. En effet, le cadre théorique utilisé pour démontrer la théorie de Kolmogorov
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n’est pas applicable pour la plupart des écoulements complexes. C’est le cas par exemple
pour les écoulements non-homogènes présents dans les mélangeurs, rotors, voiles, tempêtes, ...

Qu’est ce qui a été fait pendant ce doctorat ?

Premièrement, la turbulence est analysée avec un jeu de données expérimentales mesurées
pendant le doctorat. Un écoulement est stimulé par quatre pales qui tournent dans un
mélangeur rempli d’eau.

Ce montage expérimental génère un écoulement rotatif ou non-rotatif selon les configura-
tions expérimentales. Ces écoulements générés sont non-homogènes en raison de la géométrie
complexe du problème.

Cette expérience reproduit les propriétés spécifiques des écoulements turbulents qui exis-
tent dans les applications pratiques comme la turbulence très développée ou la turbulence
en rotation stimulée par des pales. La compréhension des propriétés turbulentes dans cette
expérience fournit des informations concernant la turbulence qui existe dans les applications
pratiques tout en gardant une relative simplicité expérimentale.

Un récent cadre d’étude théorique (à deux points) est utilisé avec le jeu de données
expérimentales et de nouveaux éléments de compréhension physique sont découverts. De
plus, une extension de ce cadre d’étude théorique est analysée grâce aux expériences pour
confirmer son intérêt physique. De manière simplifié, cette extension mathématique décrit
principalement les grandes "échelles" des écoulements turbulents.

Dans ce dernier chapitre, les résultats théoriques obtenus dans les chapitres précédents
sont utilisés d’une manière plus pratique. En effet, l’extension du cadre d’étude à deux
points aux grandes échelles est utilisée pour construire un modèle de simulation "Large
Eddy Simulation". Le but de cette partie est d’amener des connaissances de recherche
fondamentale vers la recherche appliquée en améliorant la modélisation. Un nouveau
modèle de simulation, justifié physiquement et mathématiquement, est développé à partir
d’équations exactes grâce à des simplifications. Cette démarche permet que les précédentes
et futures découvertes de recherche fondamentale concernant le cadre d’étude à deux points
soit appliqué à la "Large Eddy Simulation" grâce à la connexion décrite dans cette étude.



Experimental analysis of two-point Navier-Stokes equations in non-homogeneous turbulence and appli-
cation to Large Eddy Simulation
Time-resolved 2D2C PIV (Particle Image Velocimetry) measurements are carried out in a water tank agitated by four
rotating blades. Different blade geometries with rectangular and fractal-like shapes are tested. In some runs, vertical
bars (baffles) on the walls are used to break the rotation of the flow. This experimental set-up is used to generate and
measure different non-homogeneous turbulent flows with different turbulent properties. The turbulent energy cascade is
analyzed in a framework based on two-point Navier-Stokes equations which allows transfer rates of energy across scales
and through space to be analysed in non-homogeneous flows without assumptions/approximations. For any length r,
the Kármán-Howarth-Monin-Hill (KHMH) two-point equation is used to describe scales smaller than r and the Germano
two-point equation is used for the first time to describe experimentally scales larger than r. In non-homogenous flows
where baffles break overall rotation, the Chen and Vassilicos 2022 theory is improved and used to explain theoretically the
Kolmogorov-like results measured in the presence of significant non-homogeneity down to scales smaller than the Taylor
length. This theory predicts that an intermediate range of length-scales exists where the interscale turbulence transfer
rate, the two-point interspace turbulence transport rate and the two-point pressure gradient velocity correlation term in
the two-point KHMH equation are all proportional to the turbulence dissipation rate and independent of length-scale. The
PIV measurements in these flows support these predictions. The PIV measurements also suggest that the rate with which
scales larger than r lose energy to the scales smaller than r in the two-point Germano equation behaves in a similar way.
This result suggests a strong physical connection between the KHMH equation (scales smaller than r) and the Germano
equation (scales larger than r) in our flows. In non-homogeneous flows without baffles where the rotation is significant,
structure function results are qualitatively different. Also, the two-point statistics from the KHMH and Germano equations
are not proportional to the turbulence dissipation rate and not independent of length-scale. The assumptions of the Chen
and Vassilicos 2022 theory are used in this case as a reference for identifying which assumptions fail and how under the
action of rotation. Finally, Germano’s exact subfilter stress equation, which is part of the Germano two-point framework
used in this thesis to describe the physics at scales larger than a certain r, is used as the basis of a new Large Eddy
Simulation (LES) model. As this model is a simplification/approximation and modeling of two different parts of an exact
subfilter stress equations, it lends itself to controlled future improvements by refining the mathematical approximations
and by implementing future physical findings into a preexisting mathematical framework. This new model is tested in
a simulated Taylor-Green flow both a priori and a posteriori. It is found to capture well the large local energy transfer
between filtered scales and residual scales including large backscatter and large forward transfer events.
Keywords: Turbulence, Non-homogeneous, Particle Image Velocimetry, Large Eddy Simulation

Analyse expérimentale des équations de Navier-Stokes à deux points dans la turbulence non homogène
et application à la simulation numérique grandes échelles
Des expériences PIV (Particle Image Velocimetry) résolues en temps sont réalisées dans un réservoir mélangeur avec de l’eau
agitée par quatre pales en rotation. Différents types de pales sont utilisés avec des formes rectangulaires ou fractales. Dans
certains cas, des barres verticales sont fixées aux parois pour casser la rotation de l’écoulement. Ce montage expérimental
est utilisé pour générer et mesurer différents écoulements non homogènes avec des propriétés turbulentes différentes. La
cascade d’énergie turbulente est analysée grâce aux équations de Navier-Stokes à deux points qui permettent d’analyser
sans approximation le taux d’énergie échangé entre les échelles et dans l’espace dans des écoulements non homogènes.
Pour tout r, l’équation à deux points de Kármán-Howarth-Monin-Hill (KHMH) est utilisée pour décrire le comportement
de la turbulence des échelles plus petites que r et l’équation à deux points de Germano est utilisée expérimentalement
pour la première fois pour décrire le comportement des échelles plus grandes que r. Dans les écoulements non homogènes
où des barres verticales stoppent la rotation globale, la théorie de Chen et Vassilicos 2022 est améliorée et utilisée pour
justifier théoriquement les résultats de type Kolmogorov mesurés malgré la non-homogénéité présente jusqu’à des échelles
plus petites que l’échelle de Taylor. Cette théorie prédit un intervalle d’échelles où le transfert interéchelles turbulent, le
transport spatial à deux points et le terme de pression à deux points sont proportionnels à la dissipation. Les mesures PIV
dans ces écoulements vont dans le sens de ces prédictions. Ces mesures suggèrent aussi que le taux d’énergie perdu aux
échelles plus grandes que r vers les échelles plus petites que r dans l’équation de Germano ont un comportement similaire.
Ce résultat suggère un lien physique fort entre l’équation de KHMH (échelles plus petites que r) et l’équation de Germano
(échelles plus grandes que r) dans notre écoulement. Dans les écoulements non homogènes sans barre verticale et où la
rotation est importante, les fonctions de structures ont des résultats qualitatifs différents. Par ailleurs, les statistiques à
deux points des équations de KHMH et de Germano ne sont pas proportionnelles à la dissipation et pas indépendantes de
l’échelle r. Les hypothèses de Chen et Vassilicos 2022 sont utilisées comme référence pour ces écoulements pour identifier
les hypothèses qui ne sont pas valides et dans quelle mesure en raison de la rotation. Enfin, l’équation exacte du tenseur
de sous-maille de Germano est utilisée. Cette équation fait partie du cadre théorique général de Germano utilisé dans cette
thèse pour décrire physiquement les échelles plus grandes que r et est utilisé comme référence pour construire un nouveau
modèle LES. Ce modèle est composé d’une simplification/approximation et d’une modélisation de deux différentes parties
d’une équation exacte du tenseur de sous-maille. C’est pourquoi, il se prête aux améliorations en raffinant les approximations
mathématiques faites et en incorporant les futurs résultats physiques dans ce cadre mathématique préexistant. Ce nouveau
modèle est testé dans un écoulement simulé de Taylor-Green à la fois a priori et a posteriori. On observe que ce modèle
reproduit bien les larges transferts d’énergie entre les échelles filtrées et les échelles résiduelles : ce qui inclut les événements
de larges dissipations positives et négatives.
Mots-clés : Turbulence, non homogène, PIV, Simulation grandes échelles


