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Résumé détaillé en français

Introduction

Au fil des dernières décennies, les opérateurs mobiles ont mené des batailles acharnées
pour obtenir du spectre cellulaire, cherchant ainsi à améliorer leur qualité de service et à
développer leurs réseaux de communication sans fil. À l’image d’un peintre qui assemble
différentes couleurs pour créer ses plus belles œuvres, un opérateur mobile a besoin
d’une vaste palette de fréquences pour offrir la meilleure qualité de service possible.
Par exemple, les fréquences élevées offrent des débits plus élevés que les fréquences
basses. Cependant, elles transmettent les informations sur des distances plus courtes et
ne traversent pas aussi efficacement les obstacles denses. Ainsi, pour rester compétitif et
garantir une qualité de service optimale, il est crucial pour un opérateur d’avoir accès aux
deux bandes de fréquences.

De nos jours, la plupart des pays attribuent le spectre cellulaire sous forme de licences
via des enchères. Au cours des vingt dernières années, l’enchère ascendante simultanée
(SAA) s’est imposée comme le mécanisme privilégié pour la vente du spectre cellulaire
licencié. Cette enchère a la particularité d’avoir un format dynamique en plusieurs tours,
où les joueurs soumettent simultanément leurs offres sur toutes les licences. L’enchère se
termine lorsqu’aucune nouvelle offre a été soumise durant un tour. Sa popularité repose
sur ses règles relativement simples ainsi que sur la génération de revenus substantiels
pour le régulateur. Elle a notamment été récemment utilisée en Allemagne, au Portugal et
en Italie pour l’attribution des fréquences 5G. De plus, il est très probable que le SAA joue
un rôle central dans l’attribution des fréquences 6G prévue aux alentours de 2030.

Au vu des sommes d’argent mises en jeu, parfois dépassant le milliard d’euros, et des
implications stratégiques déterminées par les résultats de cette enchère, il est fondamental
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pour les opérateurs mobiles d’avoir une bonne stratégie d’enchérissement. Cependant,
en raison de la complexité intrinsèque élevée du jeu associé au SAA, la théorie des
enchères et les méthodes exactes de résolution de jeux ne peuvent pas calculer la stratégie
d’enchérissement optimale. De plus, le SAA engendre divers problèmes stratégiques en
raison de son mécanisme particulier et des caractéristiques spécifiques des opérateurs, tels
que les contraintes budgétaires, ajoutant ainsi une couche de complexité supplémentaire à
son étude.

Dans cette thèse, nous proposons une solution pour enchérir efficacement dans le SAA
fondée sur la recherche arborescente de Monte Carlo (MCTS) ainsi que sur une prédiction
spécifique des prix finaux. Notre algorithme traite simultanément les principaux problèmes
stratégiques du SAA. Afin de concevoir un tel algorithme, nous avons graduellement
augmenté la complexité de notre modèle SAA au fil des chapitres. La thèse est structurée
en six chapitres.

Le chapitre 1 présente les différents mécanismes d’enchère utilisés au fil des ans pour la
vente du spectre cellulaire licencié, mettant en évidence leurs avantages et leurs incon-
vénients. Dans le chapitre 2, nous approfondissons le problème de l’enchérisseur au sein
du SAA, examinons les travaux pertinents visant à résoudre ce problème, et présentons nos
propres contributions. Le chapitre 3 passe en revue les différentes méthodes traditionnelles
de recherche dans les jeux avec des adversaires, en mettant particulièrement l’accent
sur le MCTS. Le chapitre 4 considère un modèle déterministe du SAA au tour par tour
à information parfaite et complète. Nous introduisons un algorithme MCTS performant
nommé MSλ pour enchérir dans ce jeu d’enchères ainsi qu’une nouvelle méthode pour
prédire les prix finaux des objets. Dans le chapitre 5, nous étendons le modèle précédent à
la soumission simultanée des offres, aux contraintes budgétaires et aux règles d’activité,
tout en maintenant le jeu à information complète. Nous adaptons notre méthode de pré-
diction des prix finaux du chapitre précédent et présentons un nouvel algorithme MCTS
performant nommé SMSα. Les expériences numériques sont menées sur des instances
de taille réelle. Dans le chapitre 6, nous considérons le jeu précédent sous sa version à
information incomplète pour modéliser les différentes incertitudes présentes dans la réalité.
Nous présentons alors trois algorithmes performants qui adaptent SMSα à ce nouveau
problème.
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Une introduction aux enchères du spectre licencié

L’attribution du spectre cellulaire aux opérateurs se déroule en deux étapes. Dans un
premier temps, le spectre est associé à des licences, chaque licence étant définie par sa
bande de fréquence, sa couverture géographique, sa période d’utilisation et ses restrictions
d’utilisation. Ensuite, lors de la deuxième étape, les licences sont attribuées aux différentes
entreprises. Trois méthodes sont couramment utilisées à cette fin : les concours de beauté,
où chaque participant soumet une proposition et le régulateur choisit de manière arbitraire
l’allocation des licences, les loteries et les enchères. Actuellement, les licences sont
principalement attribuées par le biais d’enchères, car cette procédure est transparente
et permet généralement d’attribuer les licences aux opérateurs les mieux adaptés pour
développer le réseau. Une enchère a principalement deux objectifs : attribuer les licences
aux opérateurs les mieux adaptés pour développer le réseau et maximiser les revenus du
régulateur. Pour atteindre ces deux objectifs, le régulateur doit choisir judicieusement son
mécanisme d’enchères.

Plusieurs mécanismes ont été utilisés au fil des années pour la vente de licences. On peut
les diviser en deux groupes : les enchères à un tour et les enchères à plusieurs tours.
L’enchère à un tour qui a suscité le plus d’intérêt dans la littérature est l’enchère Vickrey-
Clarke-Groves (VCG). Comparées aux enchères à un tour, les enchères à plusieurs tours
ont l’avantage de révéler graduellement les intentions de chaque participant, permettant
ainsi aux enchérisseurs d’ajuster progressivement leurs stratégies en conséquence. Les
deux mécanismes d’enchères à plusieurs tours les plus populaires pour la vente du spectre
licencié sont l’enchère ascendante simultanée (SAA) et les enchères combinatoires au
cadran (CCA). Bien qu’ayant été largement utilisé pour l’allocation de la 4G, le CCA a été
délaissé pour l’allocation de la 5G au profit du SAA. Pourquoi ce retour soudain à l’utilisation
du SAA ? Malgré certains avantages théoriques du CCA, ses règles sont complexes et
opaques. De nos jours, on constate que les régulateurs préfèrent privilégier la simplicité
des règles plutôt que certaines garanties théoriques. Par conséquent, il semble que le SAA
continuera d’être le mécanisme privilégié pour les enchères de spectre licencié, du moins
dans un avenir proche.

Enchérir dans l’enchère ascendante simultanée (SAA)

Comme décrit dans l’introduction, il est crucial pour les opérateurs mobiles de dévelop-
per une stratégie d’enchérissement efficace, car l’acquisition des licences a un impact
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significatif sur leurs plans d’affaires, et certaines licences représentent des investisse-
ments conséquents. L’objectif de ce chapitre est de décrire formellement le problème de
l’enchérisseur.

Mécanisme

Le SAA est un mécanisme où m objets indivisibles sont vendus simultanément via des
enchères anglaises. L’enchère se déroule en plusieurs tours. À chaque tour, les joueurs
soumettent leurs offres simultanément. Le joueur ayant soumis la plus grande offre sur un
objet le remporte temporairement. Si plusieurs joueurs soumettent la même plus grande
offre sur le même objet, le gagnant temporaire est tiré au sort parmi ces joueurs. Le prix
courant de l’objet j, noté Pj , est ensuite fixé à la plus grande offre soumise pour cet objet.
Le prix courant et le gagnant temporaire de chaque objet sont révélés à la fin de chaque
tour. L’offre minimale admissible qu’un joueur peut soumettre au prochain tour sur un objet j

est égale à Pj + ε, avec ε représentant l’incrément des prix. L’enchère se clôture si aucune
nouvelle offre n’a été soumise pendant un tour. À la fin de l’enchère, les objets sont vendus
à leurs prix courants aux gagnants respectifs.

De plus, une règle d’activité est parfois introduite au sein du SAA pour sanctionner les
joueurs qui ne maintiennent pas un certain niveau d’activité tout au long de l’enchère. Cette
règle s’appuie sur une quantité appelée éligibilité, qui détermine sur quelles combinaisons
d’objets un joueur a le droit de miser. Si un joueur ne respecte pas la règle d’activité, son
éligibilité est réduite, l’empêchant ainsi de miser sur certaines combinaisons d’objets pour
le reste de l’enchère. Au cours de cette thèse, nous choisissons la règle d’activité suivante
fréquemment utilisée dans la littérature au vue de sa simplicité: le nombre d’objets pour
lequel un joueur participe (gagne temporairement ou mise) ne peut jamais augmenter.

Dans les trois modèles du SAA considérés dans cette thèse, le prix de chaque objet au
début de l’enchère est fixé à 0. Nous contraignions les nouvelles mises sur un objet j à
Pj + ε. Cette réduction de l’espace d’action est très courante dans la littérature sur le SAA.
De plus, nous faisons l’hypothèse classique qu’un joueur ne misera pas sur un objet qu’il a
temporairement remporté.
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Caractéristiques des joueurs

Chaque joueur i est défini par trois caractéristiques: sa fonction de valorisation vi, son
budget bi et son éligibilité ei. Les deux premières caractéristiques sont des données privées
et la dernière est publique. Sans perte de généralité, vi et bi sont choisis indépendamment.
Si un joueur i a temporairement remporté un ensemble d’objets Y , a une éligibilité de ei et
que le vecteur des prix courants des objets est P , alors il ne pourra miser sur un ensemble
d’objets X si et seulement si:|X|+ |Y | ≤ ei∑

j∈X(Pj + ε) ≤ bi −
∑

j∈Y Pj

La première contrainte est due à la règle d’activité (contrainte d’éligibilité). La deuxième
contrainte vient du fait que l’on suppose qu’un joueur ne misera jamais au dessus de son
budget (contrainte budgétaire).

À la fin de l’enchère, l’utilité obtenue par le joueur i après avoir remporté l’ensemble d’objets
X au vecteur des prix courants P est égale à:

σi(X, P ) = vi(X)−
∑
j∈X

Pj

Nous supposons que les fonctions de valorisation sont normalisées (vi(∅) = 0), finies et
vérifient la condition de libre disposition, c’est-à-dire que pour deux ensembles d’objets X

et Y si X ⊂ Y alors vi(X) ≤ vi(Y ).

Complexité du jeu induit par SAA

Le jeu induit par SAA a les propriétés générales de jeu suivantes: N-joueurs, à somme non
constante (la somme des utilités des joueurs différent selon le profil de stratégies), simultané
(les joueurs soumettent leurs offres simultanément), non-déterministe (un tirage aléatoire
a lieu en cas d’égalité des plus grandes mises sur un objet), à information imparfaite (les
joueurs ne savent pas ce que leurs adversaires ont joué pendant le même tour d’enchère)
et à information incomplète (les fonctions de valorisations et les budgets des adversaires
ne sont pas connus). Cela en fait un jeu déjà très difficile à étudier. De plus, ce jeu a
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une très grande complexité. Pour mesurer la complexité d’un jeu, nous utilisons deux
métriques dans cette thèse: la complexité de l’espace des ensembles d’information et la
complexité de l’arbre de jeu. Un ensemble d’information est un ensemble d’états du jeu
indiscernable par le joueur à jouer, c’est à dire que le joueur n’a pas l’information nécessaire
pour discerner les états du jeu différents appartenant à un même ensemble d’information.
Sachant qu’une stratégie est une fonction associant à chaque ensemble d’information
une action, la complexité de l’espace des ensembles d’information correspond à la taille
de l’ensemble de départ d’une stratégie. La complexité de l’arbre de jeu correspond au
nombre de séquences d’actions différentes dans le jeu. Pour donner une idée de l’ordre
de grandeur des deux complexités, prenons l’exemple de l’enchère SAA qui a eu lieu
en Italie en 2018 où 12 licences de spectre 5G ont été vendues entre 5 entreprises de
télécommunications après 171 tours. Dans sa version à information complète considérée
au chapitre 5, la complexité de l’espace des ensembles d’informations et la complexité de
l’arbre de jeu sont respectivement supérieurs à 1035 et 102470.

En plus des difficultés liées aux propriétés générales du jeu et à la complexité très élevée
du SAA, plusieurs problèmes stratégiques s’ajoutent en raison de ses règles spécifiques
et de son mécanisme particulier. Les quatre problèmes stratégiques majeures du SAA
sont le problème d’exposition, la montée des prix, les contraintes budgétaires et la gestion
d’éligibilité. Le problème d’exposition survient lorsqu’un joueur tente d’acquérir des objets
complémentaires mais finit par payer trop cher pour ceux qu’il obtient réellement, ce qui
le conduit à une utilité négative. Prenons l’exemple de la vente de 2 objets par SAA entre
2 joueurs. Le premier joueur veut uniquement obtenir l’objet 1 et lui donne une valeur de
30, i.e., v1({1}) = v1({1, 2}) = 30 et v1({2}) = 0. Le second joueur voit les 2 objets comme
des parfaits compléments et leur donne une valeur de 20, i.e., v2({1}) = v2({2}) = 0 et
v2({1, 2}) = 20. Dans ce cas, si le joueur 2 enchérit sur les 2 objets, il finira exposé car
soit il remportera qu’un seul objet soit il devra payer un prix supérieur à 30 pour l’objet 1.
Dans les deux cas, il finira avec une utilité négative. La montée des prix vient du fait que
chaque mise sur un objet j augment son prix courant Pj et donc diminue l’utilité de tous les
joueurs voulant l’acquérir. Tous les joueurs ont donc mutuellement intérêt à garder les prix
bas. Pour éviter cette augmentation des prix, les joueurs peuvent réduire leurs demandes
ou former des coalitions de manière implicite avec les autres joueurs. Les contraintes
budgétaires peuvent empêcher les joueurs de miser sur certaines combinaisons d’objets,
constituant ainsi une source potentielle d’exposition. Gérer efficacement son éligibilité est
un facteur clé pour garantir un résultat favorable. Enchérir sur de nombreux objets permet
de maintenir une éligibilité élevée, mais cela induit une augmentation des prix. Cependant,
réduire son éligibilité pour former des coalitions peut piéger un joueur dans une position
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vulnérable si les autres joueurs ne se comportent pas comme prévu. Il est donc nécessaire
de trouver un compromis.

Indicateurs de performance

La métrique naturelle pour évaluer la performance d’une stratégie est l’utilité espérée.
Cependant, puisqu’une instance spécifique d’une enchère du spectre licencié (mêmes
bandes de fréquences, mêmes opérateurs, etc.) a généralement lieu qu’une seule fois et
qu’un opérateur ne participe qu’à un nombre limité d’instances différentes, la comparaison
des stratégies uniquement sur la base de leur utilité espérée n’est pas suffisante. En raison
des montants d’argent investis, les pertes potentielles dues à l’exposition doivent également
être prises en compte. Pour ce faire, nous introduisons deux métriques: l’exposition espérée,
qui est l’opposé de la somme des pertes d’une stratégie divisée par le nombre de fois
qu’elle a été utilisée, et la fréquence d’exposition, qui est le nombre de fois qu’une stratégie
a été exposée divisé par le nombre de fois qu’elle a été utilisée. Pour augmenter son utilité,
un joueur peut soit essayer d’acquérir un ensemble d’objets de plus grande valeur, soit
diminuer le prix payé par objet remporté. Afin de mettre en évidence l’augmentation de
l’utilité espérée résultant d’une meilleure gestion de la montée des prix, nous examinons le
prix moyen payé par objet remporté. Pour garantir qu’une stratégie répartit efficacement les
objets entre les joueurs et qu’aucun objet ne reste invendu inutilement, nous considérons
le ratio d’objets remportés.

Positionnement de la thèse

Dans la Figure 1, nous présentons comment cette thèse s’insère dans la littérature. Nous
représentons graphiquement les problèmes stratégiques majeures abordés à la fois par
la littérature et par les différents chapitres de cette thèse. La gestion de l’éligibilité n’est
pas incluse dans la représentation, car cette question n’a pas été véritablement traitée
dans la littérature. Cependant, elle sera abordée dans les chapitres 5 et 6 de cette thèse.
Par ailleurs, nous faisons une distinction entre les enchères avec information complète
et celles avec information incomplète. Dans le chapitre 4, nous présentons le premier
algorithme performant qui traite simultanément le problème d’exposition et la montée des
prix dans de petites instances d’une version déterministe de SAA en tour par tour avec
information complète. Le chapitre 5 introduit le premier algorithme performant qui aborde
simultanément les quatre problématiques stratégiques majeures du SAA dans son format
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original à information complète et sur des instances de taille réelle. Enfin, dans le chapitre 6,
nous étendons l’algorithme du chapitre précédent au SAA avec information incomplète.

Exposure
Own price
effect

Budget constraints

[Milgrom, 2000]
[Bykowsky, 2000]

[Milgrom, 2000]
[Riedel, 2006]

Chapter 4

Chapter 5

(a) Information complète

Exposure
Own price
effect

Budget constraints

[Wellman, 2008]
[Zheng, 2012]
[Goeree, 2014]

[Brusco, 2002]
[Wellman, 2008]

Chapter 6

[Bullow, 2009] [Brusco, 2009]

[Milgrom, 2000]

(b) Information incomplète

Fig. 1.: Les problèmes stratégiques du SAA abordés par la littérature et par nos différents chapitres

Une revue de la littérature sur les méthodes de
recherche dans les jeux avec des adversaires

Dans cette thèse, notre objectif est de concevoir une stratégie performante pour enchérir
dans le SAA. Étant donné que le SAA peut être modélisé comme un jeu à plusieurs tours
impliquant de nombreux joueurs aux intérêts potentiellement conflictuels, il est essentiel
d’intégrer la réaction des autres joueurs dans le développement de notre stratégie. Ainsi,
notre attention se porte particulièrement sur les méthodes de recherche dans les jeux avec
des adversaires. Dans le chapitre 3, nous exposons diverses méthodes utilisées au fil
des années, telles que l’algorithme minimax, l’élagage alpha-bêta, et les bandits. Nous
mettons particulièrement l’accent sur le MCTS, qui sera la méthode sur lequel s’appuie
principalement tous les algorithmes de cette thèse.

L’arbre de jeu du SAA étant trop grand, il est impossible de l’explorer intégralement. Nous
ne pouvons explorer qu’une petite partie appelée arbre de recherche. Le MCTS est un
algorithme de parcours en largeur qui construit de manière itérative cet arbre de recherche.
Chaque nœud de l’arbre de recherche correspond à un état du jeu et les arêtes aux
différentes actions pouvant être effectuées par les joueurs. La figure 2 illustre le processus
itératif du MCTS. Chaque itération de recherche est divisée en quatre phases: (1) La phase
de sélection consiste à sélectionner un chemin de la racine à un nœud feuille de l’arbre de
recherche en utilisant une stratégie de sélection. Un nœud feuille de l’arbre de recherche
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est soit un nœud terminal du jeu, soit un nœud dont tous les enfants ne sont pas inclus
dans l’arbre de recherche. (2) La phase d’expansion consiste à ajouter un ou plusieurs
enfants du nœud feuille sélectionné dans l’arbre de recherche. (3) La phase de simulation
simule une partie du jeu jusqu’à sa conclusion à partir du nœud nouvellement ajouté. (4)
La phase de rétropropagation consiste à utiliser les résultats de la simulation pour mettre à
jour les différentes statistiques stockées dans chaque nœud sélectionné.

Selection Expansion Rollout Backpropagation

Search iteration

A selection strategy is
used to select a path
from the root to a leaf
node of the search tree

A new node is
added to the
search tree

A rollout strategy is
used to simulate a
game play

The obtained results
are backpropagated
from the newly added
node to the root

Fig. 2.: Représentation graphique du processus itératif de la recherche arborescente de Monte
Carlo

Enchère ascendante simultanée déterministe au tour par
tour à information complète

Dans ce chapitre, nous considérons une version simplifiée du SAA, que nous appelons
d-SAA. La seule différence par rapport au mécanisme original du SAA réside dans le
fait que les joueurs participent de manière séquentielle. À chaque tour, un joueur unique
soumet une offre qui est immédiatement révélée aux autres participants. Ce joueur
devient temporairement le gagnant des objets pour lesquels son offre est admissible. Ce
changement de mécanisme vise à éliminer la stochasticité et la simultanéité de notre
problème. De plus, étant donné que les joueurs ont une connaissance parfaite de toutes
les actions passées, le jeu est à information parfaite, et donc les ensembles d’information
sont des singletons. Les joueurs ne sont pas soumis à des contraintes budgétaires ni
aux règles d’activité. L’enchère prend fin lorsqu’aucune offre admissible n’a été soumise
pendant n tours. Le jeu induit par d-SAA est un jeu séquentiel déterministe à N joueurs
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avec une information parfaite et complète. Nous représentons sa forme extensive dans le
cadre d’une enchère à trois joueurs et un item dans la figure 3.

1

111

2

3 3

1111

2

3 3

Information sets

pass bid

pass
passbid bid

bidbidbidbidpass
pass

pass
pass

Fig. 3.: Le jeu induit par d-SAA sous forme extensive avec trois joueurs et un item

Prédiction des prix finaux

La phase de simulation de notre MCTS est basée sur une stratégie développée par Wellman
et al. (2008), que l’on appelle PP, et sur une prédiction des prix finaux particulière. La
stratégie PP consiste à enchérir sur un ensemble d’objets qui maximise l’utilité du joueur
selon sa prédiction des prix finaux.

Definition. Avec une prédiction initiale des prix finaux Pinit et un vecteur des prix courants
des objets P , un enchérisseur qui a temporairement gagné un ensemble d’objets Y et qui
applique la stratégie PP a comme prédiction des prix finaux:

∀j ∈ {1, ..., m}, ρj(P init, P, Y ) =
{

max(P init
j , Pj) if j ∈ Y

max(P init
j , Pj + ε) otherwise

Le joueur mise alors sur l’ ensemble d’objets X∗:

X∗ = arg max
X⊂{1,...,m}\Y

σ(X ∪ Y, ρ(P init, P, Y ))
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Dans la littérature, plusieurs méthodes ont été proposées pour calculer une prédiction des
prix finaux. Cependant, aucune de ces méthodes ne semble satisfaire ces trois critères : (1)
Elle doit être applicable à toutes les instances d’enchères. (2) Elle doit prendre en compte
les particularités de chaque enchère. (3) La prédiction finale ne doit pas dépendre d’un
profil de stratégies spécifique. Ainsi, nous présentons ci-dessous une nouvelle méthode de
prédiction des prix finaux qui répond à ces trois propriétés.

Definition. Pour toute instance Γ de d-SAA, on définit fΓ comme la fonction associant
à tout vecteur de prix p ∈ R+

m les prix finaux fΓ(p) obtenus dans Γ lorsque tous les
enchérisseurs jouent la stratégie PP en utilisant comme prédiction initiale des prix finaux p.

Théoriquement, une expression analytique de fΓ peut être calculée pour n’importe quelle
instance Γ de d-SAA. Cependant, en pratique, cela n’est possible que pour de petites
instances. Ainsi, fΓ(p) est généralement calculée numériquement en simulant un d-SAA
où tous les joueurs jouent selon la stratégie PP avec une prédiction initiale p.

Conjecture. Pour toute instance Γ de d-SAA, la suite Pt+1 = 1
t+1fΓ(Pt) + (1− 1

t+1)Pt avec
P0 le vecteur nul des prix courants converge vers un unique élément P ∗.

Nous observons que la suite Pt converge pour toutes les instances de d-SAA que nous
avons considéré au cours de cette thèse et nous utilisons sa limite P ∗ comme prédiction
des prix finaux pour notre MCTS.

Stratégie d’enchérissement MSλ

Nous implémentons une variante de MCTS-maxn, que l’on appelle MSλ. Chaque nœud
x stocke les caractéristiques suivantes: la somme des récompenses rx obtenus dans le
sous-arbre correspondant, le nombre de visites nx, la borne inférieure estimée ax et la
borne supérieure estimée cx du support des récompenses. Les quatre phases du MCTS
sont décrites ci-dessous.

xv



• Sélection: Nous utilisons comme stratégie de sélection un UCT (Upper Confidence
Bounds applied to Trees) avec des pénalités. À partir d’un nœud sélectionné y, la
stratégie de sélection choisit l’enfant x ayant le score qx le plus élevé:

qx = rx

nx
+ max(cx − ax, ε)

√
2 log(ny)

nx
− no_object(x)− risky_move(x)

Les deux pénalités de sélection no_object(x) et risky_move(x) sont introduites pour
réduire le problème d’exposition.

• Expansion: Un enfant du nœud feuille est ajouté aléatoirement à l’arbre. Ses
statistiques sont initialisées de la manière suivante: rx = 0, nx = 0, ax = +∞ et
cx = −∞.

• Simulation: À partir du nœud nouvellement ajouté, une partie de d-SAA est simulée
jusqu’à sa clôture, où tous les joueurs jouent selon la stratégie PP avec une prédiction
initiale P init = P ∗ + η, où η est une variable aléatoire suivant une loi uniforme
U([−ε, ε]).

• Rétropropagation: Soit V le vecteur d’utilité obtenu lors de la phase de simulation.
Soit x un nœud sélectionné, y son nœud parent et i le joueur jouant au nœud y. Les
statistiques stockées au nœud x sont mises à jour de la façon suivante: rx ← rx + Vi,
nx ← nx + 1, ax ← min(ax, Vi) et cx ← max(cx, Vi).

Lorsque toutes les itérations de recherche ont été réalisées, MSλ renvoie l’action con-
duisant à l’enfant x du nœud racine avec le score qx le plus élevé:

qx = rx

nx
− no_object(x)− risky_move(x)

Expériences numériques

Nous évaluons les performances de la stratégie MSλ sur des petites instances (n = 2 et
m = 7) en la comparant à cinq autres stratégies: MSnp, similaire à MSλ mais sans les
pénalités de sélection; un algorithme UCB; la stratégie SB, équivalente à une stratégie PP
avec une prédiction initiale nulle; la stratégie EPE, une stratégie PP avec une prédiction
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initiale particulière; et la stratégie SCPD, très similaire à une stratégie PP mais utilisant une
distribution des prix finaux. Chaque indicateur de performance est calculé pour chaque
profil de stratégies à partir de 1000 instances de d-SAA où les fonctions de valorisation
ont été générées aléatoirement. Pour faciliter l’analyse, nous étudions le jeu sous forme
normale en utilité espérée où un joueur doit choisir entre jouer la stratégie MSλ ou une
autre stratégie A. Les 5 jeux empiriques possibles sont illustrés dans la figure 4. Dans cette
figure, nous voyons que la déviation d’une stratégie A ∈ {UCB, SB, EPE, SCPD,MSnp}
vers MSλ est toujours profitable. De ce fait, le profil de stratégies (MSλ, MSλ) est un
équilibre de Nash du jeu d-SAA avec ces six stratégies. Par ailleurs, nous montrons
à travers les autres indicateurs de performance que la montée des prix et le problème
d’exposition sont significativement mieux traités avec MSλ qu’avec une des cinq autres
stratégies.
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Fig. 4.: Le jeu d-SAA sous forme normale avec six stratégies

Enchère ascendante simultanée à information
complète

Dans ce chapitre, nous considérons le format original du SAA à information complète, que
nous appelons SAA-c. À la différence du chapitre précédent, les joueurs sont désormais
soumis à des règles d’activité et des contraintes budgétaires. Étant donné que les offres
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sont soumises simultanément, chaque joueur ne peut connaître les mises des autres
joueurs pendant le tour en cours. Par conséquent, les états du jeu qui diffèrent uniquement
par les mises effectuées au cours d’un même tour appartiennent au même ensemble
d’information. Le jeu induit par SAA-c est un jeu simultané non-déterministe à N joueurs
à information imparfaite et complète. Sa forme extensive est illustrée dans la figure 5,
avec ses ensembles d’information et ses nœuds chance représentant le tirage aléatoire du
gagnant temporaire en cas d’égalité de la plus grande mise soumise sur un objet.
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Fig. 5.: Le jeu induit par SAA-c avec trois joueurs sous forme extensive avec ses ensembles
d’information et ses nœuds chances

Prédiction des prix finaux

Nous étendons la stratégie PP, définie au chapitre précédent, aux contraintes budgétaires
et d’éligibilité, c’est-à-dire qu’un joueur appliquant la stratégie PP mise sur l’ensemble
d’objets X∗:

X∗ = arg max
X⊂{1,...,m}\Y∑

j∈X∪Y
ρj(P init,P,Y )≤b

|X|+|Y |≤e

σ(X ∪ Y, ρ(P init, P, Y ))

avec Pinit une prédiction initiale des prix finaux, P le vecteur des prix courants, Y l’ensemble
d’objets temporairement gagné par le joueur, e son éligibilité et b son budget.
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Avec cette extension de la stratégie PP, nous adaptons notre méthode de prédiction des
prix finaux du chapitre précédent aux contraintes budgétaires, aux contraintes d’éligibilité
et à la stochasticité du SAA-c. Cette méthode est aussi fondée sur la convergence d’une
suite spécifique qui vise à satisfaire les trois mêmes critères.

Conjecture. Soit Γ une instance du jeu induit par SAA-c. Soit fΓ(P ) la variable aléatoire
renvoyant les prix finaux de Γ lorsque tous les joueurs jouent selon la stratégie PP avec
une prédiction initiale P . La suite pt+1 = 1

t+1 E[fΓ(pt)] + (1− 1
t+1)pt avec p0 le vecteur nul

des prix converge vers un unique point p∗.

Le fait que fΓ soit une variable aléatoire provient du tirage aléatoire en cas d’égalité des
plus grandes mises sur un objet. Dans la pratique, nous procédons à une estimation
Monte-Carlo de E[fΓ(pt)] en simulant l’enchère de nombreuses fois. Cependant, il est
également possible d’obtenir une expression analytique de E[fΓ(pt)] et, à partir de là, de
démontrer la convergence de la suite pt. La limite conjecturée p∗ de cette suite est utilisée
par l’algorithme MCTS décrit dans la section suivante.

Stratégie d’enchérissement SMSα

Dans cette section, nous présentons un nouvel algorithme MCTS, que nous appelons
SMSα, qui s’appuie sur une fonction d’utilité particulière. Nous l’appelons "utilité scalarisée"
et elle a pour objectif de maximiser l’utilité d’un joueur tout en minimisant les risques
d’exposition.

σα(X, P ) = (1 + α1σ(X,P )<0)σ(X, P )

Comparées à l’utilité précédemment définie, les pertes liées au problème d’exposition sont
plus sévèrement pénalisées. L’hyperparamètre α permet d’arbitrer entre utilité et aversion
au risque.

Nous présentons ci-dessous les différentes phases de notre algorithme SMSα:

• Sélection: À chaque étape de sélection, nous choisissons l’action qui maximise
l’indice de sélection pour chaque joueur i. Les actions des joueurs sont ainsi sélec-
tionnées simultanément et indépendamment les unes des autres. Chaque étape de
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sélection correspond donc à un tour entier de SAA-c. Notre indice de sélection est
une application directe de UCT aux utilités scalarisées. Le joueur i choisit de miser
sur l’ensemble d’objets xi avec le score qxi le plus élevé à l’ensemble d’information Ii:

qxi =
rα

xi

nxi

+ max(cα
xi
− aα

xi
, ε)

√√√√2 log(
∑

x′
i
nx′

i
)

nxi

(0.1)

avec rα
xi

la somme des utilités scalarisées obtenues après avoir enchéri sur xi à Ii,
nxi le nombre de fois que le joueur i a misé sur xi à Ii, la borne inférieure estimée
aα

xi
et la borne supérieure estimée cα

xi
du support des utilités scalarisées.

• Expansion: Le facteur de branchement élevé du jeu induit par SAA-c empêche
d’inspecter de manière approfondie les branches prometteuses de l’arbre de recherche
et donc de planifier une stratégie sur de nombreux tours. Par conséquent, il est néces-
saire de réduire l’espace d’actions à chaque ensemble d’information de l’arbre de
recherche. Nous limitons le nombre maximum d’actions pour chaque ensemble
d’information inclus dans l’arbre de recherche à Nact. Miser sur aucun objet est
toujours compris dans les Nact actions. Les Nact − 1 actions restantes correspondent
à celles avec la plus grande utilité selon la stratégie PP avec une prédiction initiale de
p∗.

• Simulation: Au début de chaque phase de simulation, nous fixons, pour chaque
joueur i, p∗

i = p∗ + ηi avec ηi ∼ U([−ε, ε]). Chaque joueur i joue alors selon la
stratégie PP avec sa propre prédiction initiale p∗

i . Nous ajoutons du bruit à notre
prédiction initiale p∗ afin de diversifier les stratégies des joueurs dans la phase de
simulation et améliorer la qualité de l’échantillonnage.

• Rétropropagation: Les différentes statistiques sont mises à jour en utilisant l’utilité
scalarisée de chaque joueur obtenue lors de la phase de simulation.

Lorsque toutes les itérations de recherche ont été réalisées, SMSα renvoie l’action qui
maximise notre estimation de l’utilité scalarisée espérée du joueur racine.

Expériences numériques

Nous évaluons la performance de SMSα sur des instances de taille réelle (n = 4 et
m = 11) en la comparant à quatre stratégies de l’état de l’art: MSλ, EPE, SCPD et SB. Les
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fonctions de valorisation et budgets des joueurs sont générés aléatoirement. Pour faciliter
notre analyse, nous étudions le jeu sous forme normale en utilité espérée, où chaque
joueur doit choisir entre jouer SMSα ou une autre stratégie A. L’utilité espérée de chaque
profil de stratégies est calculée à partir de 1000 instances de SAA-c. Nous représentons
dans la figure 6 les quatre jeux empiriques possibles. Dans chaque jeu empirique, un
joueur a toujours intérêt à jouer SMSα pour augmenter son utilité. Par conséquent, le
profil de stratégies (SMSα, SMSα, SMSα, SMSα) est un équilibre de Nash du jeu SAA-c
avec ces cinq stratégies. De plus, nos autres indicateurs de performance révèlent que le
problème d’exposition et la montée des prix est significativement mieux traité avec SMSα

en présence de contraintes budgétaires et d’éligibilité.
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Fig. 6.: Le jeu SAA-c sous forme normale en utilité espérée avec cinq stratégies

Enchère ascendante simultanée à information
incomplète

Le chapitre précédent présentait une approche pour enchérir dans un jeu d’enchères à
information complète. Dans ce chapitre, nous relâchons cette hypothèse et considérons le
même jeu d’enchères, mais avec une information incomplète. Les joueurs n’ont donc plus
une estimation parfaite des fonctions de valorisation et des budgets de leurs adversaires.
Nous appelons ce modèle SAA-inc.
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Afin de modéliser l’incertitude des joueurs sur l’information privée de leurs adversaires,
nous nous reposons sur la notion de type. Un type est une combinaison possible de
l’information privée d’un joueur, c’est à dire une fonction de valorisation et un budget. Par
exemple, si le joueur 1 a deux fonctions de valorisation possibles, v1 et v2, ainsi que deux
budgets possibles, b1 et b2, du point de vue du joueur 2, alors le joueur 1 présente 4 types
possibles: (v1

1, b1
1), (v1

1, b2
1), (v2

1, b1
1) et (v2

1, b2
1). Chaque joueur a une estimation probabiliste

des types de ses adversaires. Nous supposons que tous les adversaires du joueur i

partagent la même estimation probabiliste de son type. Notons alors Ti la distribution du
type du joueur i. Cette hypothèse est fréquemment utilisée dans la littérature. Chaque
joueur i connaît son type mais pas celui de ses adversaires, c’est à dire qu’il connaît (vi,
bi) et possède une distribution Ti′ du type de chaque adversaire i′. Nous représentons
une version équivalente, appelée "équivalent de Bayes", du jeu induit par SAA-inc sous
forme extensive dans la figure 7. Le nœud chance en haut de l’arbre représente le tirage
des types des joueurs selon leurs distributions respectives. Comparé à SAA-c, la taille des
ensembles d’information augmente car un joueur est incapable de différencier les états du
jeu qui ne différent que par le type de leurs adversaires. Par exemple, dans la figure 7, les
deux nœuds correspondant au joueur 1 avec les types (t1, t2) et (t1, t′

2) appartiennent au
même ensemble d’information.
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Fig. 7.: Représentation sous forme extensive du jeu SAA-inc avec deux joueurs. Le premier nœud
chance correspond au tirage du type de chaque joueur. Par exemple, le couple (t1, t′

2)
signifie que le premier joueur est de type t1 et que le deuxième joueur est de type t′

2.
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Trois approches de déterminisation

La déterminisation est une méthode permettant de prendre des décisions dans les jeux
impliquant de l’information cachée en échantillonnant des instances du jeu équivalent où
cette information serait révélée. Dans cette section, nous présentons trois approches de
déterminisation adaptant SMSα

EXP 3 (un algorithme similaire à SMSα mais où l’indice de
sélection UCT est remplacée par EXP3) au cadre d’information incomplète du jeu SAA-inc.
La première approche, nommée SMSα

EXP 3 et représentée dans la figure 8(a), consiste à
appliquer SMSα

EXP 3 au jeu déterminisé où tous les adversaires jouent selon l’espérance
de leur distribution des types. Pour les deux approches suivantes, nous sélectionnons
préalablement des combinaisons de fonctions de valorisation et de budgets que nous
jugeons pertinentes par rapport à la distribution des types des adversaires. La seconde
approche, nommée DSMSα

EXP 3 et représentée dans la figure 8(c), consiste à générer un
jeu déterminisé pour chaque combinaison et à appliquer SMSα

EXP 3 à chaque instance.
Parmi toutes les instances, l’action ayant été la plus souvent retournée par SMSα

EXP 3
est celle sélectionnée par DSMSα

EXP 3. La troisième approche, nommée SDSMSα
EXP 3

et représentée dans la figure 8(b), consiste à générer un unique arbre de recherche et à
tirer une déterminisation différente à chaque itération de recherche. Seules les actions des
adversaires cohérentes avec la déterminisation tirée sont considérées, c’est-à-dire que les
actions d’un adversaire ne respectant pas son budget tiré ne sont pas prises en compte.

Expériences numériques

Tout d’abord, nous comparons la performance de nos trois approches de déterminisation à
un ensemble, appelé PPB, de quatre stratégies de l’état de l’art: EPE, EDPE (stratégie PP
avec une prédiction initiale particulière), SCPD et SB. Puis, nous les comparons entre elles.
Les expériences sont réalisées pour plusieurs niveaux d’incertitudes sur l’estimation des
types des adversaires. Plus le niveau d’incertitude est grand, plus la distribution des types
des adversaires sera large. Chaque indicateur de performance est calculé à partir de 1000
instances de SAA-inc. Comme dans le chapitre précédent, nous étudions le jeu sous forme
normale en utilité espérée où chaque joueur a le choix entre deux stratégies. Dans chaque
jeu empirique où un joueur peut choisir entre une de nos approches de déterminisation
et l’une des quatre stratégies de PPB, nous constatons qu’un joueur a toujours intérêt
à jouer l’une de nos approches, quel que soit le niveau d’incertitude. De plus, à travers
les autres indicateurs de performance, nous montrons que le problème d’exposition et la
montée des prix sont largement mieux traités par nos approches en présence de contraintes
budgétaires et d’éligibilité. Les différences entre nos trois approches de déterminisation
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Fig. 8.: Représentation des trois approches de déterminisation appliquées à un jeu SAA-inc avec
deux joueurs du point de vue du joueur 1.

sont moins marquées qu’avec les stratégies de PPB. Néanmoins, nous observons que
SDSMSα

EXP 3 surpasse légèrement DSMSα
EXP 3 et SMSα

EXP 3 en termes de maximisation
de l’utilité espérée et de traitement du problème d’exposition. Cependant, si tous les joueurs
jouent la même stratégie, jouer DSMSα

EXP 3 est plus profitable que jouer SDSMSα
EXP 3.

Malgré ces résultats très prometteurs, nous notons que l’incertitude a un impact significatif
sur nos trois approches de déterminisation, augmentant le risque d’exposition et la montée
des prix. Cela se traduit par une diminution de leur utilité espérée respective. De plus,
lorsque tous les joueurs adoptent la même stratégie, l’incertitude affecte également la
coordination, surtout lorsque la distribution des types est très large. Pour atténuer ce
problème, une piste intéressante serait d’utiliser des méthodes d’inférence afin d’affiner la
distribution des types des adversaires au fil des tours de SAA-inc.
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Introduction

For several decades, mobile operators have been battling for cellular spectrum in order
to improve their quality of service and develop better wireless communication networks.
In fact, much like a painter needs several colours to create their finest works, a mobile
operator requires a broad spectrum of frequencies to provide the best possible service
quality. For instance, low-frequency waves can transmit information over longer distances
and penetrate dense obstacles more effectively than high-frequency waves. However, they
provide lower data rates. Hence, to ensure high quality service, it is essential for an operator
to have access to both frequency bands.

Nowadays, most countries decide to allocate their spectrum in the form of licences through
auctions. For example, 5G licences were sold recently through auctions in many countries
such as Austria, Sweden, United Kingdom, Germany, Norway, Denmark, France and the
United States [Dr Gerdis Marquardt, 2021; Arcep, 2020; FCC, 2020]. Over the last 20
years, Simultaneous Ascending Auction (SAA), also known as Simultaneous Multi Round
Auctions (SMRA), has become the privileged mechanism used for the sale of licensed
cellular spectrum. This auction has the particularity of having a dynamic multi-round format
in which bids are submitted simultaneously on all licences. It ends when no new bids have
been submitted during a round. Its popularity is due to its relatively simple rules as well
as the generation of substantial revenue for the regulator. It is believed to play a central
role in the allocation of 6G frequencies which are expected to take place around 2030
[Ministère, 2023].

Considering the fact that sometimes billions of euros are at stake in SAA and that an
operator’s business plan highly relies on the acquired licences, it is crucial for an operator
to have an efficient bidding strategy. However, auction theory or exact game resolution
methods are unable to compute the optimal bidding strategy due to the high complexity of
the induced bidding game [Reeves, 2005]. Moreover, a number of strategical issues add up
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due to the mechanism of SAA and the specific condition of the operators such as budget
constraints.

In this thesis, we propose an efficient bidding algorithm based on Monte Carlo Tree Search
(MCTS) [Browne, 2012] and on the prediction of final auction prices to tackle simultaneously
the main strategical issues of SAA. In order to construct such an algorithm, we decide to
proceed step by step by gradually increasing the complexity of our SAA model throughout
the chapters. For instance, various constraints are added progressively.

This thesis is organised as follows:

• Chapter 1 provides an overview of various auction mechanisms that have been em-
ployed over the years to sell cellular spectrum, highlighting their respective advantages
and drawbacks.

• Chapter 2 presents the bidding problem in SAA, the relevant related work aimed at
trying to solve it and the positioning of this thesis.

• Chapter 3 offers a concise survey of adversarial search methods, ranging from the
minimax search algorithm to MCTS.

• In Chapter 4, we consider a turn-based deterministic model of SAA with no hidden
information. We introduce an efficient bidding algorithm based on MCTS and a novel
method to predicting final auction prices.

• In Chapter 5, we extend this model to simultaneous bidding, budget constraints,
and other specificities pertinent to SAA. Bidders’ characteristics, such as budgets,
are considered common knowledge. In this context, we propose an efficient bidding
algorithm based on MCTS and an adaptation of our price prediction method discussed
in the previous chapter. Realistic-sized instances are used for experimental evaluation.

• In Chapter 6, we consider the scenario where bidders possess private information,
making budgets no longer common knowledge. Here, we present three distinct
approaches that adapt the bidding algorithm from the previous chapter.
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1An introduction to spectrum auctions

Contents

1.1 Assigning spectrum licences . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Spectrum auctions: objectives, properties, issues . . . . . . . . . . . . . 12

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Main strategical problems . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Main families of spectrum auctions . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Single round sealed-bid auctions . . . . . . . . . . . . . . . . . . 16

1.3.2 Multi-round auctions . . . . . . . . . . . . . . . . . . . . . . . . . 20

Handing cellular spectrum to companies is divided into two steps. The first step consists
in associating the spectrum to licenses. Each licence is defined by its frequency band,
its geographic coverage, its period of usage and its restrictions on use. The second step
consists in assigning the licences to the different companies.

1.1 Assigning spectrum licences

According to [Cramton, 2002], there are three main assignation methods:

• The historical approach is often referred to as a beauty contest as each participant
submits a proposal on how it plans to use the spectrum and, then, the regulator
assigns the spectrum licences accordingly to the participants with the most attractive
proposals. However, this process has two downsides. First, the process is extremely
slow. Secondly, as the assignation process is inherently subjective, it can easily be
subject to corruption and, thus, makes it contestable. Nevertheless, it is still used
for the assignation of 5G licences in many countries such as Japan [European 5G
Observatory, 2019] or Singapore [Infocomm, 2020].
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• An alternative is to randomly select licence winners from amongst those that apply.
This approach, known as lotteries, seems to be fairer and faster than beauty contests.
Hence, this is the main reason why the Federal Communication Commission (FCC)
in the United States decided to switch from beauty contests to lotteries in the 1980s.
However, the lotteries, held between 1986 and 1989, offering 643 cellular licences
attracted over 320 000 applicants as they were considered extremely valuable and any
U.S citizen could participate [Hazlett, 1993]. In addition to the calamitous processing
of the high number of applications, the winners were not the best suited for exploiting
the spectrum. It took years for the licences to be transferred to those capable of using
them, often through private auctions. Lotteries were then quickly abandoned by the
FCC.

• A third approach is to rely on auctions. These present many advantages. First, all
participants are well aware of the award criteria which makes them fair. As they are
open and transparent, they can not raise suspicion and be subject to allegation of
corruption. Secondly, the winners are supposed to be the best suited to develop the
network. Indeed, companies with ambitious projects and high values for the licences
should bid higher than other participants and, hence, win the licences. To ensure that
the assigned spectrum is correctly and equally deployed on the territory, regulatory
authorities can ask winners to respect a certain number of obligations. For example, in
France, the Autorité de Régulation des Communications Électroniques, des Postes et
de la Distribution de la Presse (ARCEP) verifies that each 5G licence winner deploys
a minimum number of sites each year. Moreover, operators are constrained to have
an homogeneous deployment across the country, including in rural areas. Hence,
this complementary process is supposed to deter any ill-intentioned bidders. Finally,
competition is no longer a burden for the assignation of licences. On the contrary,
a higher competition leads to higher bids and, hence, to higher auction revenues.
Nowadays, spectrum licences are mainly assigned through auctions.

1.2 Spectrum auctions: objectives, properties, issues

The first question which comes to mind when selling spectrum licences is to who and at what
price. In 1959, Ronald Coase proposed to assign them through auctions [Coase, 1959].
However, it was only thirty years after that the FCC decided to hold its first spectrum auction
in the United States. In this section, we start by stating the two main objectives of an auction.

12 Chapter 1 An introduction to spectrum auctions



Then, we present some interesting properties induced by an auction mechanism. Finally,
we shed light on the main strategical problems that a bidder can face in an auction.

1.2.1 Objectives

Auctions have two objectives. The main one is to assign the licences to those best suited
to provide service and develop the network. This is often referred to as efficiency. The
secondary objective is to maximise the regulator’s revenue. However, this revenue should
not be maximised to the point where it prevents companies to develop their network due to
too high acquisition costs. Moreover, a spectrum cap, i.e. a limit of spectrum that an entity
can hold, is often imposed to bidders to avoid monopoly and encourage competition for the
development of the network. This generally reduces revenue.

To achieve those objectives, the respective authorities need to distribute the spectrum
intelligently between licences and then adopt an efficient auction mechanism for their
assignment.

1.2.2 Properties

An auction can be designed to satisfy some theoretical properties facilitating the achieve-
ment of both objectives, efficiency and revenue maximisation. We present some properties
here below [Nedelec, 2022]. A mechanism is:

• Bayesian Incentive-compatible: If the profile of strategies where all bidders bid
truthfully, i.e. bid their true value, is a Bayesian Nash equilibrium [Myerson, 1978]. This
means that if a bidder’s opponents all bid truthfully, then this bidder’s best response,
i.e. the bidding strategy which maximises its utility, is to bid truthfully.

• Truthful or Dominant Strategy Incentive-Compatible: If bidding truthfully is a
weakly dominant strategy for all bidders. This means that, regardless of what the
other bidders bid, bidding truthfully guarantees a bidder a payoff at least as high as
any other bidding strategy. Hence, a truthful mechanism is a Bayesian Incentive-
compatible mechanism. The converse is not true.

• Standard: If each licence is assigned to the bidder which has submitted the highest
bid.

1.2 Spectrum auctions: objectives, properties, issues 13



• Efficient: If each licence is assigned to the bidder which values it the most.

• Individually-Rational: If a bidder weakly prefers participation in an auction to not
participating, i.e. the bidder should never overpay for what they win (assuming they
bid truthfully) and should, hence, obtain a positive utility (at least in expectation in the
case of incomplete information).

• Fair: If all bidders have a similar probability of winning regardless of their wealth.
This egalitarian social welfare approach is mainly used in recurrent auctions to
reduce the bidder drop problem and maximise revenue in the long run. For instance, if
licences are always allocated to the same bidders, then the rest of the bidders become
unsatisfied and may decide to leave the market. Hence, only the most powerful bidders
remain. There is a high risk that they will decide to create a oligopoly, provoking a
fall in prices that can collapse the market and bankrupt the auctioneer. Moreover,
even if the auctioneer decides to set reservation prices, many licences might not be
sold reducing the efficiency and the revenue of the auctioneer. Maintaining a certain
level of competition also protects the consumers. Indeed, in the specific case of an
oligopoly, companies could all fix high prices and the consumer would have no other
choice but to be ripped off. Many measures of fairness can be used by the auctioneer
for allocating licences such as Jain’s index [Jain, 1984].

These properties have different effects on the auction’s outcome and, hence, on its objec-
tives. For example, by using a truthful mechanism, bidders have an incentive to bid their
true value. Given this, it might be easier to maximise efficiency and revenue.

1.2.3 Main strategical problems

Each mechanism comes with its pros and cons. In this section, we present in detail the
main strategical problems that a mechanism can generate.

• Winner’s curse: It is the fact of overpaying a licence in a competitive auction, i.e.
paying more than its intrinsic value. Hence, the winner ends up with a negative utility.
This is generally due to incomplete information [Bazerman, 1983] where the winner is
the bidder who has overestimated the most the value of a licence. Other reasons such
as pressure or emotions can also cause the winner’s curse [Foreman, 1996]. The
winner’s curse sometimes refers to the disappointment of a winner as its licence is
worth less than expected [Thaler, 1988]. The major difference with the first definition
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is that, according to the second, the winner can still make profit. The profit will just be
less than expected.

• Exposure problem: This issue occurs when a bidder pursues a set of complementary
licences, i.e. a collection of licences which is worth more than the sum of the licences
individually. By bidding more than its individual value on each licence, a bidder faces
the risk of paying too much for the subset of licences it actually wins if the rest of
licences are won by other bidders. Hence, an exposed bidder obtains a negative
utility. Many strategic reasons can explain that some licences are worth more together
than individually. For example, a licence for a low-frequency band and a licence
for a high-frequency band are usually considered as complements. This is due to
the intrinsic characteristics of each radio wave. Low-frequency waves can transmit
information over greater distances and pass through dense obstacles more easily
than high frequency waves. Hence, they are ideal to cover lightly populated zones
in rural environments. However, low-frequencies generally offer smaller data rates.
Hence, to improve quality of service and offer a high-speed connection to its users,
an operator needs to also rely on high-frequency waves. In order to be competitive,
an operator needs both radio waves today. This problem can be eliminated by using
a combinatorial auction which offers the possibility to bidders to bid directly on a
combination of licences rather than bidding on each licence individually.

• Threshold problem: This issue is introduced by the use of a combinatorial auction
[Rothkopf, 1998] and refers to a variant of the free-rider problem [Milgrom, 2000].
More precisely, it corresponds to the situation where an individual bidder is unable to
displace an inefficient package bid without the help of other bidders. This problem
is often due to the fact that bidders which bid on small combination of licences are
unaware of each other’s presence. Hence, given this lack of information, they are
incapable of outbidding a bidder bidding on a large set of licences, even if their
valuation allows them to do so. Most of the literature discusses the impact of the
threshold problem in multi-round combinatorial auctions [Pekeč, 2003; Bykowsky,
2000; Cramton, 2002]. However, its impact is still relevant in single round sealed-bids
combinatorial auctions [Vangerven, 2021].

Example. Suppose a multi-round combinatorial auction with 2 items, A and B, between
3 bidders. No bidders values any asset except as follows: licence A is worth 50$ for
bidder 1, licence B is worth 50$ for bidder 2 and the combination of both licences
is worth 90$ for bidder 3. It is important to note that these valuations are private
information. The efficient allocation is to give licence A to bidder 1 and licence B to
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bidder 2. During the first round, suppose bidder 1 bids 10$ on A, bidder 2 bids 10$
on B and bidder 3 bids 70$ on both licences. Both licences are then temporarily won
by bidder 3. Moreover, neither bidder 1 nor bidder 2 can single handedly overcome
the difference of 50$ between the winning bid and the sum of their bids. This single
handedly insurmountable difference is named the threshold. As none of the bidders
are aware of their opponents’ valuation, there is a fair chance that bidder 1 and bidder
2 are unable to cooperate to overcome the threshold and that bidder 3 ends up by
winning both licences.

The threshold problem and exposure problem are often considered as opposing forces
[Rothkopf, 1998]. The first favours bidders bidding on large combination licences while the
second favours bidder bidding on small combination of licences. However, depending on
their severity, they can both have a big impact on an auction’s efficiency as well as on its
revenue. When synergies between licences are important, it is commonly admitted that
the exposure problem has a bigger impact on the auction’s objectives than the threshold
problem. The winner’s curse can also impact an auction’s outcome as bidders may shade
their bids to avoid it.

1.3 Main families of spectrum auctions

In this section, we present the main families of spectrum auction mechanisms which have
been used until today. We start by presenting mechanisms for single round sealed-bid
auctions and, then, we will present mechanisms for multi-round auctions.

1.3.1 Single round sealed-bid auctions

Single round sealed-bid auctions consist of one single bidding round where all bidders
submit their bids simultaneously. This puts a lot of pressure on bidders as there is no
comeback in case of poor bidding. It is impossible for them to adjust their bids based
on competing bids as it is the case in multi-round auctions. Hence, as a bidder has no
information on its opponents’ bids, it is essentially bidding blindly. However, single round
auctions have the advantage of being an extremely fast assignment process compared
to some multi-round auctions which can drag on for months. For instance, the recent
Portuguese 5G multi-round auction concluded after 200 days and 1727 bidding rounds
[ANACOM, 2021]. There are mainly two types of single round auctions used for the
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assignment of spectrum: first-price auctions and second-price auctions. They differ from
one another by their pricing function.

1.3.1.1 First price sealed-bid auction

In a single-item first price sealed-bid auction, the highest bidder wins the licence and
pays its actual bid. The fact that the winner pays literally its bid and can not adjust it
subsequently can lead to undesired consequences. Indeed, this lack of information can
lead to overbidding, i.e. paying substantially more than what was necessary to acquire a
specific licence. For instance, in the 2G Brazilian spectrum auction, BellSouth ended up
paying 1 billion dollars more than the next highest bidder for the Sao Paulo Metro licence
[GSMA, 2014]. To avoid this issue, bidders have a tendency to shade their bids at the risk
of not winning the licence. Hence, it is highly possible that the winner is not the most suited
for the licence.

1.3.1.2 Sealed-bid second-price auction

In a single-item sealed-bid second-price auction, also known as Vickrey auction [Vickrey,
1961], the highest bidder wins the licence and pays the second highest bid. The fact that
the winner does not pay its bid but the second highest bid encourages each bidder to bid
its true value. Indeed, in a Vickrey auction, truthful bidding, i.e. bidding its true value, is
a weakly dominant strategy. Hence, the licence should be assigned to the bidder with
the highest value. In practice, bidders do not necessarily bid their true value. Firstly, this
can be due to the fact that bidders might have uncertainties about the actual value of a
licence’s worth. Depending on their strategy, they might decide to overbid or underbid
according to this uncertainty. Secondly, as pointed out in [Rothkopf, 1990], bidders might
fear that their true value will be revealed to third parties with which they interact after the
auction. Indeed, such information could indicate to other firms how much a bidder is ready
to spend and, hence, how much they can yield in future negotiations. Thirdly, bidders might
also fear that the auctioneer might cheat by pretending that another bid was received just
under the highest bid [Lucking-Reiley, 2000]. This last issue might not be so important in
spectrum auctions where we imagine the general process is relatively controlled. However,
this is an issue which is intrinsic to Vickrey auctions and can not be excluded in the general
case. Moreover, regarding the regulator, using this auction mechanism is not necessarily a
good choice, especially when there is a huge difference between the values of the bidders.
Indeed, the winner can end up paying only a small fraction of what it was willing to pay for
the licence. For instance, the sealed-bid second-price spectrum auction was the cause
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of national political embarrassment in New Zealand in 1990 as bidders paid far less than
their bids [McMillan, 1994]. In one of the auctions, the winner bidded 100 000$NZ and got
the licence for 6$NZ. In another, a company paid 5000$NZ for a licence and had bidded 7
million $NZ. The National Economic Research Associates, which advised the New Zealand
government to use the Vickrey auction, had predicted initially a revenue of 240 million $NZ
but it only generated 36 million $NZ.

A fundamental question which might be raised is "Which of these two auctions generates
the highest revenue?". If the bidders are risk-neutral, have independent-private-values,
have common beliefs about the other valuations and their payments is a function of their
bids alone, then the first price sealed-bid auction and Vickrey auction generate the same
expected revenue [Vickrey, 1961]. This is known as the revenue equivalence theorem.
However, these conditions are rarely met in practise. Indeed, bidders are generally risk-
averse as they prefer generally lower utilities if they are more certain. In this specific case,
it has been shown that the first price sealed-bid auction generates higher revenue than the
Vickrey auction [Waehrer, 1998].

1.3.1.3 Multi-item auctions

Spectrum auctions usually involve more than one licence. They are two ways of extending
the above single round auctions to multiple licences. Either by running one independent
auction for each licence or by running a combinatorial auction for a set of licences.

A) Running multiple independent auctions

Running m independent auctions for m licences has the following issues. First, identical
licences can be sold at very different prices. For instance, in the Vickrey auction held in
New Zealand in 1990, Totalisator Agency Board bidded 401 000$NZ and obtained a licence
for 100 000$NZ while BCL bidded 255 124$NZ and had to pay 200 000$NZ for an identical
licence. Hence, the company which wanted to pay more was charged two times less for the
same licence [Milgrom, 2004]. A second issue is the exposure problem which has already
been presented in Section 1.2.3.
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B) Combinatorial auctions

Combinatorial auctions, often referred to as package bidding, offer the possibility to bidders
to bid directly on a combination of licences rather than bidding on each licence individually.
By bidding on a combination of licences, the bidder either wins the whole combination or
nothing. Hence, combinatorial auctions do not suffer from the exposure problem. However,
they create two new issues.

The first issue is the threshold problem, presented in Section 1.2.3, which can heavily
impact an auction’s efficiency and revenue.

The second issue introduced by combinatorial auctions concerns the complexity of the
winner determination problem: "Given a set of bids in a combinatorial auction, find an
allocation of items to bidders (the auctioneer can keep some of the items) that maximises
the auctioneer’s revenue" [Cramton, 2007]. As this problem is NP-complete, identifying the
revenue maximising assignment becomes computationally intractable for large instances.
One proposed solution is to restrict the set of combinations on which bidders can bid
[Rothkopf, 1998]. However, this may eliminate desirable combinations and reintroduces the
exposure problem.

According to the report published by GSMA in 2014 [GSMA, 2014], combinatorial first-price
auctions are the most distorted of the main auction approaches and should be avoided.
Indeed, they present a certain number of inefficiencies such as the winner’s curse [Thaler,
1988], increased knock-out risks or price disparities. Nevertheless, they were still used a
decade ago for the allocation of spectrum licences such as 3G in France (2011) or 4G in
Norway (2013) [Kokott, 2017].

C) Vickrey-Clarke-Groves auction

The most famous combinatorial auction is the Vickrey-Clarke- Groves (VCG) auction
[Lucking-Reiley, 2000]. It is a generalisation of the second-price auction. As for any
combinatorial auction, the optimal allocation is computed through the winner determination
problem. Its payment rule relies on the notion of social welfare. Theoretically, social welfare
is defined as the sum of the seller revenue and the bidder payoffs for a given allocation.
However, in VCG, it is commonly used to design the sum of bids of a given allocation.
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Hence, the optimal social welfare corresponds to the sum of bids obtained for the optimal
allocation. At the end of the auction, each bidder must pay its social cost, i.e. the loss
in social welfare incurred by the rest of the bidders due to its presence in the auction.
With this specific payment rule, VCG induces a truthful mechanism. In other words, as it
was the case for the single-item Vickrey auction, bidders are encouraged to bid their true
valuation.

However, this mechanism has many downsides. A first downside is that determining the
optimal allocation is NP-hard in general. A second major downside is that the auctioneer
revenue may be zero even if all bidders place high bids.

Example. Consider a VCG auction with 4 bidders and 3 licences l1, l2 and l3. No bidder
values any licence except as follows: {l1} is worth 100$ for bidder 1, {l2} is worth 100$
for bidder 2, {l3} is worth 100$ for bidder 3 and {l1, l2, l3} is worth 200$ for bidder 4. If
all bidders play their true value, bidder 1 wins l1, bidder 2 wins l2 and bidder 3 wins l3.
However, each bidder pays zero.

In [Rothkopf, 2007], Rothkopf lists 13 other reasons why VCG does not work well in practise.
Nevertheless, it is still used today for the assignment of 5G licences, generally in the case
of small instances with relatively cheap licences. For instance, this mechanism is used in
many French overseas for the assignment of 5G licences such as La Reunion or Mayotte in
2022 [Arcep, 2021].

1.3.2 Multi-round auctions

The main advantage of multi-round auctions is that the bidding process reveals information
about each bidder’s valuation. Hence, by taking it into account and updating their current
likelihood of acquiring different combination of licences, bidders can progressively adapt
their bids. In some situations, this can stimulate competition as it reduces the winner’s
curse, hence bidders can safely bid more aggressively. However, this information can
also be used to facilitate collusions. Indeed, bidders have generally a common interest
in keeping prices low and, therefore, they might take advantage of the bidding process
to implicitly agree on a split of licences. Moreover, it is possible to enforce these tacit
agreements by immediately punishing a bidder that has decided to deviate from the initial
agreement. Such threats are not possible in single-round auctions and, hence, collusion is
reduced. In addition to reducing the auctioneer’s revenue, splitting up the licences through
tacit agreements can also greatly impact an auction’s efficiency as not all licences may be
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acquired by those best suited to fully use them. Nevertheless, it is commonly accepted
that the advantage of revealing more information in the bidding process outweighs the
risk of collusion [Cramton, 2002]. Today, multi-round spectrum auctions generally use
one of the following formats or variations thereof: Simultaneous Ascending Auction (SAA)
or Combinatorial Clock Auction (CCA). We present in detail both of these mechanisms
hereafter.

1.3.2.1 Simultaneous Ascending Auction

A) Mechanism

Simultaneous Ascending Auction (SAA) [Milgrom, 2000; Cramton, 2006], also known as
Simultaneous Multi Round Auction, is a dynamic multi-round auction mechanism where
each licence is sold via a separate and concurrent English auction. At each round, bidders
simultaneously submit their bids for each licence they are interested in. The bid price of
licence j, denoted Pj , corresponds to the highest bid obtained so far for licence j and, thus,
is its current selling price. At the beginning of each round, the bid price and the current
winner of each licence is announced to each bidder. A new bid P new

j for licence j is only
accepted if it is higher than the current bid price Pj plus a small fixed amount ε named bid
increment: P new

j ≥ Pj + ε. Submitting a bid lower than this amount is equivalent to not
bidding. At the end of each round, the temporary winner of each licence is designated as
the bidder who submitted the highest admissible bid and the bid price is updated. As all
bids are submitted simultaneously, ties can occur between bidders having bid the same
amount on a given licence. The usual tie-breaking rule is to select randomly the temporary
winner amongst these bidders. The auction ends when no new admissible bids have been
submitted on any licence during a round [Milgrom, 2000]. Each licence is then sold at its
bid price to its corresponding winner.

B) Activity rules

Activity rules are introduced in SAA to penalise bidders which don’t maintain a certain
level of bidding activity. At the beginning of the auction, each bidder is given a certain
level of eligibility. This level determines on which licences a bidder is allowed to bid on.
The minimum level of eligibility required to bid on a given licence is tightly correlated to
the estimation of its value by the auctioneer [Milgrom, 2000]. Each round a bidder fails
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to match the corresponding activity rules, its eligibility is reduced. Hence, during the
course of an auction, there are sets of licences which a bidder can no longer bid on as
they have exceeded its current eligibility. These activity rules have mainly two functions
[Milgrom, 2000]. First, they put pressure on bidders to bid actively and, hence, fasten up the
pace of the auction. They limit wait-and-see strategies where bidders wait before placing
any serious bids in order to get finer estimates of one’s valuations and take advantage of
competitors who have already committed an important part of their budget in acquiring other
licences. Indeed, if a bidder remains too inactive, it might become ineligible to bid in later
rounds. Therefore, activity rules push bidders to reveal their true intentions early on in the
auction. Secondly, by communicating each one’s eligibility at the beginning of each round,
it increases the amount of information available to bidders to develop their strategy. As
long as there is no collusions, more information should mean higher efficiency and revenue
[Cramton, 2002]. Each bidder is given five "waivers" of the activity rule [Milgrom, 2000]
which, when used, avoids a reduction in its eligibility in a given round. They were initially
introduced in case of a bidder error. However, they can also be used strategically.

C) Popularity

The SAA was first introduced in 1994 by the US Federal Communications Commission
(FCC) for the allocation of wireless spectrum rights and generated a revenue of $617 million.
Since this enormous success, it has become the most privileged mechanism used for
spectrum auctions. For instance, it has been used in many countries for the assignment of
5G licences such as Portugal [ANACOM, 2021], Italy [European 5G Observatory, 2018]
or Germany [Bundesnetzagentur, 2022]. It is also used today as the principal stage of
a two-step spectrum auction. The principal stage consists in determining the amount of
spectrum won by each bidder in each band and the assignment stage step consists in
determining the precise frequencies of lots won in the principal stage. For example, SAA
was used as the principal stage in the 5G UK auction [Ofcom, 2020]. It was initially designed
by Paul Milgrom and Robert Wilson who both received the 2020 Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel, mainly for their contributions to the SAA.
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D) Pros and cons

Here a few reasons which explains SAA popularity in spectrum auctions. First, revenue
in past auctions have been substantial. For instance, revenue in past US auctions have
exceeded the government estimates [Cramton, 2006]. These large revenues can be partially
explained by the open bidding and multi-round nature of SAA. Indeed, bidders can freely
adjust their bids throughout the auction while taking into account the latest information
about the likelihood of acquiring different combination of licences. Hence, bidders can
progressively adapt their strategies during the whole course of the auction. This reduces
the winner’s curse and encourages bidders to bid more aggressively. Secondly, identical
licences are sold for similar prices. Thirdly, it appears that bidders successfully acquire
efficient combinations of licences [Cramton, 2006], i.e. sets of complementary licences.
This is notably due to the two main features of SAA: (1) the use of multiple rounds and (2)
simultaneous sales, rather than sequential. Finally, a very appealing characteristic of SAA
for auctioneers is the simplicity of its rules.

However, as SAA is not a combinatorial auction, it suffers from the exposure problem. This
can impact the efficiency and revenue of an auction as risk-averse bidders may prefer
bidding safe than incurring the risk of being exposed in pursuing complementary licences.
Moreover, efficiency and revenue are also impacted by demand reduction and collusive
bidding. Indeed, it is sometimes more profitable for a bidder to reduce its demand to
guarantee buying licences at a low price. These tactics to avoid price rise are facilitated by
the open bidding process where public information can be used to communicate, especially
in early rounds. The most clear example is surely the second–generation GSM spectrum
auction which took place in Germany in 1999 [Grimm, 2003]. In this auction, ten licences
were sold (9 identical ones with bandwidth 2×1 and a larger one with bandwidth 2×1.4 MHz)
between four incumbent operators. In the first round, Mannesmann performed surprisingly
high jump bids by bidding DM 36.36 million on the first five smaller licences, DM 40 million
on the four next smaller licences and DM 56 million on the larger frequency band. This
is a typical example of how jump bidding can be used for signalling. This suggests to the
other stronger incumbent, T-Mobile, to only bid on the first five licences so they can each
buy the small licences at DM 40 million. To ensure that T-Mobile does not feel ripped off for
not obtaining the larger frequency band, Mannesmann bidded DM 56 million on it which is
the same price paid by T-Mobil by MHz for the five smaller licences. In the second round,
T-Mobile bidded slightly more than the bid increment on the five first licences. The two other
incumbents decided to drop out. In the third round, no bids were submitted and the auction
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closed. The bid price of each licence as well as their corresponding temporary winner for
each bidding round are summed up in Table 1.1.

Licences 1 2 3 4 5 6 7 8 9 10
R1

Bid price 36.36 36.36 36.36 36.36 36.36 40 40 40 40 56
Winner M M M M M M M M M M

R2
Bid price 40.01 40.01 40.01 40.01 40.01 40 40 40 40 56
Winner T T T T T M M M M M

R3
Bid price 40.01 40.01 40.01 40.01 40.01 40 40 40 40 56
Winner T T T T T M M M M M

Tab. 1.1.: The GSM spectrum auction in Germany in 1999. Licences 1 to 9 correspond to
bandwidth 2× 1 and licence 10 to 2× 1.4 MHz. Winners are either Mannesmann (M) or

T-Mobile (T).

Bidders can also exploit the trailing digits to coordinate themselves and specify which
licences they want. This is known as code bidding. As bids are usually in millions of dollars,
using the last three digits is considered as a minimal cost to communicate [Cramton, 2001].
For instance, in the GSM Spectrum Auction in Germany in 1999, the bid of DM 36.36 million
of the five first smaller licences with the repetition of number 36 can easily be interpreted as
a proposal of splitting up the licences into two.

Additional rules are sometimes imposed in SAA to reduce the above issues. For instance,
click-box bidding is often used in SAA nowadays. At each round, bidders no longer
submit whatever value of bid they like but have to indicate in a click-box the number of bid
increments (often from 1-9 [Cramton, 2002]) they wish to bid above the current bid price of
a licence. This prevents code bidding. Moreover, by reducing the maximum number of bid
increments than one can place above a licence’s bid price, signalling through jump bidding
can also be eliminated. However, click-box bidding increases the number of tie bids. It is
generally considered by the auctioneers as a smaller issue as, even if ties happen relatively
often at the beginning of the auction, it is unlikely that the final bid on a licence involves a
tie.
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1.3.2.2 Combinatorial Clock Auction

A) Mechanism

Combinatorial Clock Auction (CCA) is a two-stage dynamic bidding process which was first
proposed by Ausubel et al. [Ausubel, 2006a] in 2006. The first stage is known as the clock
rounds and the second stage as the supplementary round.

• Clock rounds: It is a multiple round clock auction. At each round, the bid prices
are announced and bidders state their demands for each licence. In other words,
each bidder submits a unique package bid each round. If the sum of demands of all
bidders exceeds supply for a given licence, then the auctioneer increases its bid price.
Otherwise, the bid price stays the same. This bidding process ends when it reaches a
round with no excess demand.

• Supplementary round: It corresponds to the auction final round. After the clock rounds
have ended, bidders are asked to participate in a single-round combinatorial auction
to submit additional package bids. In order to be admissible, these package bids need
to be greater than their corresponding price obtained at the end of the clock rounds.

Throughout the two stages, all bids are treated as all-or-nothing package bids. As it was the
case for single-round combinatorial auctions, the licences are assigned according to the
allocation which maximises the auctioneer’s revenue. This allocation is computed through
the winner determination problem by taking all package bids submitted during the clock
rounds and the supplementary round. Hence, it is possible that the supplementary round
has no impact on the assignment of licences. Moreover, the package bids of a specific
bidder are mutually exclusive, i.e. only one package bid of a specific bidder can be part of
the revenue maximising assignment. Depending on the final allocation, each bidder needs
to pay a certain amount. Different payment rules have been proposed in the literature and
are discussed in the next section.

Today, an extra stage is often added to the two initial stages of CCA [Ausubel, 2017]. In
this case, licences are grouped in categories of equal values. In the clock rounds and
supplementary round, bidders compete for a number of licences in each category. The third
stage is known as assignment stage.
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• Assignment stage: This stage consists in mapping the number of generic licences
obtained in each category during the two first stages to specific physical frequencies.
To do so, a single-round sealed-bid auction is usually performed.

B) Payment rule

Surprisingly, the choice of payment rule to be used after the two first stages of CCA is
still being discussed today. One solution would be to apply VCG prices as it is done for
second-price sealed-bid auctions. By doing so, it should create an incentive for bidders to
bid their true values, hence maximising the auction’s efficiency. However, as it has already
been discussed, this payment rule can generate low revenue for the auctioneer even with
high competition. More precisely, when licences exhibit complementarities, VCG often
produces a price vector outside of the core [Ausubel, 2006b], i.e. there exists a coalition of
bidders willing to pay more than the total price paid by the current winners to the auctioneer.
For this reason, CCA generally relies on a core-selecting payment rule.

Many different core-selecting payment rules have been proposed [Bünz, 2022]. The one
which is most used in practise for spectrum auctions and has generated over $20 billion
revenue is known as the Quadratic rule [Day, 2012]. The final price determination works as
follows: (1) Consider only price vectors which are in the core (2) Among these price vectors,
consider only the ones which minimises the auctioneer’s revenue (3) Finally, among the
remaining price vectors, select one which minimises the Euclidean distance with the VCG
price vector.

C) Objectives

The clock phase has as main objective to produce highly useable price discovery. At each
round, a bidder gets a finer estimate of the final price of each licence and can then focus on
bidding on the package which maximises its valuation. This improves the auction’s efficiency.
Moreover, bidders have only access to aggregate information and not to individual bids.
Hence, it is impossible to communicate with one another using bid signalling. Collusive
strategies are also eliminated as one can not know if a bidder has deviated or not from
the initial agreement. However, in the last rounds of the clock phase, bidders may benefit
from demand reduction to avoid price rise. This reduces revenue and efficiency. The role of
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the supplementary stage is to eliminate this inefficiency by inciting bidders to bid their true
value. Moreover, as the last round is a single-round sealed-bid auction, each bidder has
interest in betraying their collusion as no punishment can then be inflicted. Finally, CCA
completely eliminates the exposure problem as package bids are used in all stages.

D) Activity rules

Without any additional rules, bidders may have interest in underbidding or sabotaging the
clock phase. Indeed, by concealing their true interests from their opponents, they can easily
submit surprise bids in the supplementary round. This is often referred as bid snipping.
Moreover, a bidder may have interest in sabotaging the clock phase and increasing its
opponents’ payments by overbidding on licences it does not want to have. To avoid these
issues and ensure sincere bidding, activity rules are needed in two places of the CCA
[Ausubel, 2017]:

• Clock round activity rule: To ensure consistent bidding through out the clock phase.
Bidding in later rounds need to be coherent with previous bids.

• Supplementary round activity rule: To prevent bidders from deviating drastically from
their clock phase bids and, hence, ensure sincere bidding during the clock phase.

Eligibility-Point Monotonicity is often used as a clock round activity rule. It follows the same
principle as the activity rule described in SAA with different eligibility points attributed to
each licence. However, this activity rule has a few downsides. One of them is that bidders
may bid on undesired cheap licences just to maintain their eligibility level. This is known as
"parking" [Ausubel, 2006a] and compromises price discovery. Another issue is that it can
prevent a bidder from pursuing the package that maximises its utility whenever this package
exceeds its eligibility, even though this bidder has always bidded sincerely [Ausubel, 2011].
For instance, suppose licences A and B are substitutes for a given bidder and that licence
B requires more eligibility points than A. If this specific bidder decides to pursue A at the
beginning of the auction, its eligibility is reduced. However, if the bid price of licence A
skyrockets, then this bidder is unable to pursue licence B as it now exceeds its eligibility
level. To avoid such issues and ensure coherent sincere bidding, the following clock round
activity rule was proposed in [Ausubel, 2006a].

1.3 Main families of spectrum auctions 27



Definition 1.1. Revealed preference activity rule (RP): Suppose two different rounds, s

and t, with s < t. Let ps and pt be the price vector at these rounds. Let xs and xt be the
associate demands of a given bidder. Let v(x) be the value given to package x by this
specific bidder. For a sincere bidder, preferring xs to xt when prices are ps means:

v(xs)− ps.xs ≥ v(xt)− ps.xt

and preferring xt to xs when prices are pt means:

v(xt)− pt.xt ≥ v(xs)− pt.xs

By summing up these inequalities, if a bidder bids sincerely then:

(pt − ps).(xt − xs) ≤ 0

The above inequality corresponds to the revealed preference activity rule and, to ensure a
bidder’s sincerity, a bidder’s demand xt must satisfy this inequality for all rounds s < t.

In practise, the revealed preference activity rule was rarely used in the clock phase. However,
recent approaches tend to take in account eligibility as well as revealed preferences
[Ausubel, 2017].

Concerning the supplementary round activity rule, Ausubel et al. [Ausubel, 2006a] initially
proposed a relaxed revealed-preference activity rule (RRP):

α(pt.xs − ps.xs) ≤ pt.xt − ps.xt with s < t and α > 1

This inequality is applied to every round s in the clock phase and round t corresponds to the
supplementary round. Using directly (RP) as the supplementary round activity rule would
have been too strict and would have prevented bidders from bidding on the packages which
maximise their utility. Indeed, to avoid the bid prices to rise too much, bidders often rely
on demand reduction. However, the aim of the supplementary round is to eliminate this
inefficiency and, hence, it is important to allow bidders to expand their demands to a certain
extent. In practise, the supplementary round activity rule used in spectrum auctions is often
a combination of (RP) and eligibility points [Ausubel, 2017]. The main difference between
the below rules is the choice of the clock rounds used for the application of (RP).
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• Relative cap: A bidder can only bid on a package x in the supplementary round if it
satisfies (RP) with respect to the last clock round where it had bidded on a package
having at least the same level of eligibility as x.

• Intermediate cap: A bidder can only bid on package x in the supplementary round if it
satisfies (RP) with respect to all rounds where it reduced its eligibility starting from the
last clock round where it had bidded on a package having at least the same level of
eligibility as x.

• Final cap: A bidder can only bid on package x in the supplementary round if it satisfies
(RP) with respect to the final clock round.

For instance, the supplementary round activity rule in the 4G UK Auction (2013) was
relative cap, in Ireland Multi-Band Spectrum Auction (2012) was relative cap+final cap and
in Canada 700 MHz Spectrum Auction (2014) was intermediate cap+final cap [Ausubel,
2017].

E) Comparison with SAA

CCA has two main advantages over SAA. First, it considerably reduces collusive bidding
and demand reduction. Hence, it is supposed to ensure a competitive outcome which
increases the auction’s efficiency and revenue. Secondly, it completely eliminates the
exposure problem. Thus, CCA seems to have the potential of replacing SAA and becoming
the new standard mechanism design for spectrum auctions. However, after having been
massively used for the assignment of 4G licences, most countries have decided to switch
back to SAA for the assignment of 5G licences [Dr Gerdis Marquardt, 2021]. For example,
the UK, after having used CCA as its 4G spectrum auction, had initially announced a CCA
for assigning its 5G licences in December 2018 but finally decided to hold an SAA. Why
is this the case? This is mainly due to the fact that CCA is too complex. Even though it
might lead to higher efficiency, complex mechanisms seem to be on the way out in favour of
simplicity. Another important downside of CCA is the difference in price paid by companies
for relatively similar spectrum. For instance, in the Swiss spectrum auction in 2012, Orange
and Sunrise both bought 160 MHz but Sunrise paid 3 times more. Moreover, Sunrise paid
120 million Swiss francs more than Swisscom which had obtained more spectrum (225
MHz) [ComCom, 2012]. Hence, it seems that SAA will continue to be the most privileged
mechanism used in spectrum auctions, at least in the near future. Nevertheless, some

1.3 Main families of spectrum auctions 29



countries such as Ireland [ComReg, 2021] or Israel [Blumrosen, 2023] still decided to use
CCA for assigning their 5G licences.
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In this thesis, we focus on how to bid efficiently in the Simultaneous Ascending Auction
(SAA). This is an important issue for operators. The two main reasons are that:

• Licences are expensive: Purchasing licences through spectrum auction is a heavy
investment for operators. Indeed, operators sometimes end up spending a few billions
of euros to acquire licences, e.g. Deutsche Telekom spent 2.17 billion euros in the 5G
German SAA [Bundesnetzagentur, 2022].
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• Acquired licences highly impact an operator’s business strategy: For telecom-
munication operators, frequencies represent the sinews of war. Geographic coverage
and data rates fully depend on the acquired licences. Therefore, an operator’s busi-
ness strategy highly depends on the spectrum auctions’ outcomes. For example, in
an extreme case, if an operator has no frequencies, then it cannot offer any coverage
and, hence, will have no clients.

As presented in Section 1.3.2.1, SAA has a dynamic multi-round auction mechanism where
bidders submit their bids simultaneously on all licences each round. This multi-round
process enables bidders to adjust their bids while taking into account the latest information
about the likelihood of winning different sets of licences. Hence, at each round of the
auction, a bidder can adapt its initial bidding strategy to the current market. This leaves
room to a wide range of bidding strategies. Unfortunately, selecting the most efficient one
is a difficult task which has not been solved yet due to the high complexity of the game
induced by SAA [Reeves, 2005].

The aim of this section is to present how the bidding problem in SAA has been addressed in
the literature until now. We start by defining the different features which characterise each
bidder in SAA. Then, we present the complexities induced by the bidding game in SAA. We
then introduce different metrics used throughout this thesis to evaluate the performance of
a bidding strategy. We then present state-of-the-art bidding algorithms in SAA which are
mainly used for benchmarking in this thesis. Finally, we discuss other relevant research on
bidding in SAA and explain how our thesis contributes to the existing literature.

2.1 Bidder’s characteristics

In SAA, a bidder is defined by three features: its value function, its budget and its eligibility.
The two first are independent of the auction’s mechanism and generally correspond to
private information. The last is defined by the specific activity rules introduced in SAA. As
the most common implementation of SAA is full transparency [Cramton, 2006], eligibility is
generally public information. In all this thesis, we design by n the number of bidders and by
m the number of items in a SAA. From now on, we will generally use the word item or good
to design a licence as what follows only depends on the SAA mechanism and not on the
exact nature of the items sold.
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2.1.1 Utility and value function

Let L = {1, ..., m} be a set of indivisible goods. Let P(L) be the power set of L. The
value function vi : P(L)→ R of bidder i is defined as a function which maps each subset
X ⊂ L to its monetised value vi(X) for bidder i. For each set of items X, the utility
σi(X, P ) : P(L)× Rm

+ → R of bidder i is defined as the value vi(X) minus the price of each
item in X. For instance, at the end of the auction, if bidder i wins the set of items X and
the bid price vector is P , then bidder i obtains a utility of:

σi(X, P ) = vi(X)−
∑
j∈X

Pj (2.1)

Value functions are assumed to be normalised (vi(∅) = 0), finite and verify the free disposal
condition, i.e, for any two sets of items X and Y such that X ⊂ Y , then v(X) ≤ v(Y )
[Lehmann, 2006; Milgrom, 2000]. The free disposal condition means that obtaining extra
items does not generate any cost. They can be disposed for free. This implies that the
value v(X) of a set X is necessarily positive. In practice, acquiring spectrum licences
generally comes with a certain number of requirements such as deployment, coverage or
speed obligations. Hence, due to these requirements, acquiring extra licences generates
costs. However, the selling price and the intrinsic value of spectrum licences generally
far outweighs such costs. Hence, the free disposal condition seems to be a reasonable
assumption in the case of spectrum auctions. We define hereafter some widely used
classes of value functions.

2.1.1.1 Superadditive value functions

Definition 2.1. Superadditive value functions: A value function v : P(L)→ R+ is said to
be superadditive if for any set of items X, Y ∈ P(L) with X∩Y = ∅, v(X∪Y ) ≥ v(X)+v(Y ).

This class of value functions is generally used to study the effect of complementarities on
the outcome of an auction. A bidder with a superadditive value function means that any
set of items X exhibit complementarities with any other disjoint set of items Y . In other
words, the value obtained by acquiring both disjoint sets of items X ∪ Y is equal to the sum
of values of each set plus a complementarity surplus for having obtained both sets. An
extreme case is when each item in a set is worthless without the others. These items are
known as perfect complements.
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2.1.1.2 Subadditive value functions

Definition 2.2. Subadditive value functions: A value function v : P(L)→ R+ is said to be
subadditive if for any set of items X, Y ∈ P(L) with X ∩ Y = ∅, v(X ∪ Y ) ≤ v(X) + v(Y ).

Subadditivity is the opposite of superadditivity in the sense that obtaining both disjoint sets
of items is worth less than the sum of values of both sets. Hence, all sets are considered
complement free. There exist different types of subadditivity. One of them is known as
substitutability. The main idea behind substitutability is that raising the price of some items
should not affect the demand on the other items. We present two classes of value functions
exhibiting substitutability which are often used in auctions (and specifically in SAA) to obtain
theoretical guarantees.

The first is a class of value functions which verifies the gross substitutes property [Lehmann,
2006]. It is based on the concept of preferred set at price P , i.e. a set X such that
σ(X, P ) = maxY ∈P(L) σ(Y, P ). The demand set at prices P is defined as the set of all
preferred sets D(P ) = {X|σ(X, P ) = maxY ∈P(L) σ(Y, P )}.

Definition 2.3. Gross substitutes property [Lehmann, 2006]: A valuation v : P(L)→ R+

is said to satisfy the gross substitutes property if for any item j, any price vector P and any
price vector P ′ ≥ P component-wise with P ′

j = Pj , the following implication is always true:

j ∈ X s.t X ∈ D(P ) =⇒ ∃Y ∈ D(P ′) s.t j ∈ Y (2.2)

The second is a class of value functions which verifies the mutual substitutes property. It
was defined by Milgrom in [Milgrom, 2000]. It generalises the gross substitutes property
in the sense that raising the prices of items not belonging to a set X does not reduce the
demand of items in X. Hence, if items are mutual substitutes, then they are also gross
substitutes.

Definition 2.4. Mutual substitutes property [Milgrom, 2000]: A valuation v : P(L)→ R+

is said to satisfy the mutual substitutes property if for any set of items X ∈ P(L), for every
pair of price vectors P ′ ≥ P component-wise with ∀j ∈ X, P ′

j = Pj , the following implication
is true:

X ⊂ Y ∈ D(P ) =⇒ ∃Y ′ ∈ D(P ′) s.t X ⊂ Y ′ (2.3)
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An extreme case of substitutability is perfect substitutes or single-unit demand [Gul, 1999]
where ∀X ∈ P(L), v(X) = maxj∈X v({j}). In other words, items are perfect substitutes for
a bidder if it is only interested in the item with the highest utility in a set and disregards the
rest.

2.1.1.3 Additive value functions

Definition 2.5. Additive value functions: A value function v : P(L) → R+ is said to be
additive if for any set of items X, Y ∈ P(L) with X ∩ Y = ∅, v(X ∪ Y ) = v(X) + v(Y ).

In other words, a bidder admits an additive value function if it values any set of items as
the sum of values of each item. Such value functions exhibit no complementarity and no
substitutability. Items are considered as independent from the perspective of the bidder.

2.1.2 Budgets

The budget bi of a bidder i defines the maximal amount that bidder i can spend in an auction.
The final payment of bidder i can not exceed its budget bi. In spectrum auctions, the budget
is usually fixed by an operator’s corporate management. Without loss of generality, budget
bi is chosen independently from the value function vi. We make the classical assumption
throughout this thesis that a bidder never bids above its budget bi. Hence, if the current
bid price vector is P in a SAA with bid increment ε, a bidder i temporarily winning a set of
items Y can bid on a set X containing different items if and only if

∑
j∈X

(Pj + ε) ≤ bi −
∑
j∈Y

Pj (2.4)

This assumption eliminates any bidding strategy which includes budget bluffing [Porter,
2006]. This consists in bidding above one’s budget to fool opponents into believing its
budget is greater than it really is. This tactic is employed in the specific case where one
is convinced that it will likely be outbid on some of the items. However, it is unclear what
happens if one ends up by having to pay more than its budget and cannot afford to. Hence,
such tactics are not considered in this thesis.
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2.1.3 Eligibility

In addition to value functions and budgets, bidders also present eligibility points in SAA.
These are introduced through its specific activity rules. In practise, the most common
activity rules are monotonicity rules [Bichler, 2017] where, as the bid prices rise, a bidder’s
eligibility cannot increase. In this thesis, we decide to focus on the following monotonicity
rule: the number of items temporarily won plus the number of new bids by a bidder, which
corresponds to its eligibility, can never rise. This activity rule is often used in the literature
due to its simplicity [Goeree, 2014; Milgrom, 2004].

More formally, if a bidder i is temporarily winning a set of items Y and bids on a set of
different items X (X ∩ Y = ∅) at a given round, its eligibility ei is defined as the number of
items contained in each set, i.e. ei = |X|+ |Y |. In the next round, if bidder i is temporarily
winning a set of items Y ′, it can only bid on a set of different items X ′ (X ′ ∩ Y ′ = ∅) such
that

|X ′| ≤ ei − |Y ′| (2.5)

Its eligibility is then set to e′
i = |X ′| + |Y ′| ≤ ei (monotonicity). In addition to the bids

submitted on X ′, bidder i can also submit bids on items it is temporarily winning, i.e. it can
continue bidding on any item in Y ′.

In practise, the initial eligibility of a bidder is determined by the deposit it makes before the
auction starts [Milgrom, 2000]. In spectrum auctions, this deposit represents the quantity
of spectrum (in our case, the number of licences) it wishes to be eligible. To keep things
simple, we set the initial eligibility of each bidder to the maximal number of items sold in the
auction, i.e. ∀i ∈ {1, ..., n}, ei = m.

2.2 Complexities induced by the bidding game in SAA

Unlike truthful auctions, where bidding its value is known to be a weakly dominant strategy,
no such results have been provided in Simultaneous Ascending Auctions in the general
case. Presently, auction theory and exact game resolutions methods are unable to compute
the optimal bidding strategy as the bidding game induced by SAA is too complex [Reeves,
2005]. Bidding in SAA presents three different types of complexities. The first are inherent
to the class of game it belongs to, i.e. general characteristics of the game that defines it
such as n-player games. We will refer to those as general game properties. The second
known as game complexity defines the complexity of the game through different metrics.
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We focus mainly on two metrics which are: information set space complexity and game
tree complexity. Finally, strategical complexities which are caused by specific rules and the
mechanism of SAA.

2.2.1 General game properties

Here are some of the general features describing the bidding game induced by SAA.

• n-player game: n-player games are games which are well defined for any number
of players. In a SAA, any number of bidders can participate. The main difficulty
compared to single player games, such as the card game Solitaire, is that defining
optimality is not as straightforward. In single player games, one’s expected utility only
depends on the strategy played. No external constraints need to be taken in account
in the maximisation process of one’s expected utility. However, in n-player games,
the expected utility returned by one’s strategy also depends on the strategies played
by its opponents. For instance, in Rock Paper Scissors, playing rock maximises my
utility if my opponent is playing scissors but minimises it if my opponent plays paper.
To overcome this issue, we will often rely on the concept of best response and Nash
equilibrium [Myerson, 1978].

• Non zero-sum game: Unlike Poker or Chess, our bidding game is not a zero-sum
game, i.e. a game in which for any strategy profile the sum of the players’ utilities is
equal to zero. Zero-sum games imply that if a player increases its utility by changing
its strategy, then the utility of another player will decrease. As we assume throughout
all this thesis that a bidder’s utility only depends on the items won and their respective
bid price, SAA induces a non-zero sum game. For example, in a SAA with only one
item sold, if a bidder acquires the item at a bid price of 1 instead of 10, the sum of
players’ utilities increases by 9.

• Simultaneous move: During each round of a SAA, all bidders submit their bids
simultaneously. This leads potentially to ties between bidders having bid the same
amount on the same item. This would not have occurred in a sequential bidding game
where bidders take turns bidding.

• Stochasticity: This is introduced by the random tie breaking rule which selects
randomly a temporary winner amongst the players having bid the highest same
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amount on a item. This implies that a same configuration of bids does not necessarily
lead to the same next state.

• Imperfect information: Perfect information games are games where all players are
aware of all their opponent’s past moves. According to [Cramton, 2002], it is commonly
accepted to reveal a maximum of information to favour competition. Hence, in this
thesis, all bids and their holders are revealed at the end of each round. However, as
bidding in SAA is a simultaneous move game, bidders bid without knowing the move
played by their opponents during the same round. Hence, this induces a game with
imperfect information. Moreover, one can imagine an SAA where each new bid is
announced but not the identity of the bidder having submitted it. For example, the first
trial of SAA did not announce bidder identities [Milgrom, 2000]. In this specific case,
for any past bid leading to a temporary win of a licence, a bidder does not know which
of its opponents has submitted it. Nevertheless, it is admitted that bidders are usually
able to infer bidder identities anyway [Milgrom, 2000].

• Incomplete information: In a complete information game, all the game specificities
such as rules, strategies, payoffs or budgets are common knowledge. Hence, as
bidders do not know the exact value function and budget of their opponents in SAA,
the induced bidding game is with incomplete information. We design by the term
"type" a possible combination of one’s private information. For instance, in a game
with complete information, each player has only one type. However, if from the point of
view of its opponents, a bidder i has either value function v1

i or v2
i and either budget b1

i

or b2
i , then bidder i presents four types which are: (v1

i , b1
i ), (v1

i , b2
i ), (v2

i , b1
i ) and (v2

i , b2
i ).

In this thesis, we will start by supposing that the game is with complete information.
This is motivated by the fact that, in spectrum auctions, large bidders have usually
a relatively precise estimation of the value function of other large bidders as well as
their budgets. We will then add later on uncertainty to the bidder’s estimation of its
opponents’ value function and budget.

Most research has focused on 2-player zero-sum turn-based deterministic games with
perfect and complete information such as Go, Chess or Shogi [Silver, 2017; Silver, 2016].
These games admit special and restrictive properties which makes them simpler to analyse
mathematically [Maschler, 2020]. For instance, the form of the optimal strategy is given
by Von Neumann’s minimax theorem [Neumann, 1947]. What made these games so
challenging to study is their gigantic size. For instance, the number of possible different
states which can be legally reached in the game Go is 10172 [Allis, 1994]. We describe,
in the next chapter, some classical algorithms for solving such games. These algorithms
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are a source of inspiration for the algorithms used in this thesis. It is important to note that
a direct application of algorithms specific to 2-player zero-sum deterministic games with
perfect and complete information is doomed to fail in our considered bidding game.

2.2.2 Game complexities

To measure the complexity of the bidding game, we focus essentially on two different
metrics:

• Information set space complexity: This refers to the number of possible information
sets which can legally be reached from the initial position of the game. An information
set is a set of states which are indistinguishable for the concerned player at the current
position of the game [Cowling, 2012a]. In imperfect information games, a player, given
its current information, does not necessarily know at which exact state it is playing. It
only knows that it is in one of the states belonging to the corresponding information
set. This incertitude does not occur in perfect information games where information
sets are all singletons and, hence, only correspond to one state [Świechowski, 2023].
Thus, in perfect information games, information set space complexity is equal to state
space complexity. Otherwise, information set space complexity acts as a lower bound
of state space complexity. In this thesis, we denote the information set space by I
and the state space by S.

It is common to represent simultaneous move games as sequential games where the
actions of all players during a given round are only revealed at the end of this round
[Browne, 2012]. Therefore, a state in a SAA game is defined by seven features: the
identity of the next bidder to bid (we name it the "concerned bidder"), the eligibility
of each bidder, the bid price of each item, the temporary winner of each item, the
type of the concerned bidder, the types of the concerned bidder’s opponents and
bids already submitted during a given round but not yet revealed. The first five are
common knowledge and the last two are hidden information for the concerned bidder
at the given state. Thus, all states which only differ by the last two features belong to
the same information set.

• Game tree complexity: This originally refers to the number of leaf nodes in the
solution search tree of the game’s initial state in a 2-player zero sum game [Allis,
1994]. The solution search tree of a node J is the full-width search tree of minimal
depth needed to compute the game-theoretic value of node J , i.e. the utility vector
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obtained at node J when both players play optimally. In many games such as Chess,
computing exactly the game tree complexity is hardly feasible as, in addition to the
high state complexity of the game, the number of legal moves and the depth needed to
compute the game-theoretic value of a node J can vary drastically between different
states. A common approximation is to raise the average number of moves per state
to the power of the average game length. For instance, in chess, the average number
of moves per state is 35 and the average game length is 80. Hence, its game tree
complexity is considered to be 10123 [Allis, 1994]. In one sense, the game tree
complexity can be understood as the number of different paths in the full-width search
tree starting from the initial state of the game with a maximal depth equal to the
average game length. Hence, in this thesis, we will refer to the game tree complexity
of our bidding game as the number of different possible scenarios ending after a given
number of rounds.

The information set space complexity and game tree complexity of the game induced by
SAA is huge. To give an idea of the order of magnitude of both complexities, lets take the
SAA which took place in Italy in 2018 where 12 5G spectrum licences were sold between
5 telecommunication companies after 171 rounds [European 5G Observatory, 2018]. In
the most simplified version of SAA game considered in this thesis (also named d-SAA, see
Chapter 4), the information set space complexity and the game tree complexity for such
values are respectively greater than 1035 and 10491.

Today, no generic algorithm is known to solve n-player non zero-sum simultaneous move
games with incomplete information with high information set space and game tree complex-
ities [Russell, 2021].

2.2.3 Strategical complexities

To the difficulties generated by the general game properties and game complexities of SAA,
a number of strategical issues adds up due to its specific rules and mechanism. The main
strategical challenges are the exposure problem, own price effect, budget constraints and
eligibility management. We detail these four issues below:

• Exposure problem: As already explained in Section 1.2.3, the exposure problem
refers to the possibility that, by bidding on a set of complementary items, a bidder ends
up paying more than its valuation for the subset it actually wins as the competition
was tougher than expected. Hence, the exposed bidder obtains a negative utility. This
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is highlighted by the following example, referred to as Example 1, which will be used
repeatedly throughout the thesis.

Example 1: We consider a SAA with two items between two bidders with no binding
budgets. Its bid increment ε is equal to 1. The first bidder considers both items as
perfect substitutes, i.e. obtaining both items gives the same utility as just obtaining
one of them. The second bidder considers both items as perfect complements, i.e.
each item is considered worthless without the other. The values of each combination
of items for each bidder are presented in Table 2.1.

v({1}) v({2}) v({1, 2})
Bidder 1 12 12 12
Bidder 2 0 0 20

Tab. 2.1.: Example of exposure (ε = 1), also referred to as Example 1

Example 1 is a famous example of exposure [Wellman, 2008]. Even though it seems
relatively simple, it is considered as a challenging problem as most existing algorithms
fail to return the optimal bidding strategy for the second bidder. To compute it, we
need to anticipate how the first bidder is going to bid. The objective of the first bidder
is to obtain one of the two items for a price lower than 12. Hence, a rational strategy
for bidder 1 is:

– If temporarily winning no items and the cheapest item has a price weaker than
12-ε, to bid ε on the cheapest item.

– Otherwise, to not bid.

Given the fact that the first bidder plays rationally, the second bidder should imme-
diately drop out of the auction. Indeed, if the second bidder decides to bid on both
items during the first round, then it will end up temporarily winning one item at the end
of the round. The first bidder will continue bidding until the second bidder decides to
give away an item or both items have a price greater than 12-ε. In both cases, the
second bidder ends up with a negative utility.

• Own price effect: Each new bid on a item increases its bid price and, hence,
decreases the utility of all bidders wishing to acquire it. As bidders have a mutual
interest of keeping bid prices low, they can form collusions [Brusco, 2002] and divide
the items among themselves. Explicit communication between bidders is illegal.
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Nevertheless, bidders can still anticipate their opponents’ bidding strategy from their
valuation estimates. From this prior, they can coordinate themselves on how to divide
the items. Moreover, a bidder can decide to reduce unilaterally the number of items
on which it bids in spite that its opponents will not raise the bid price of the items it
is temporarily winning. This strategy where one concedes items to its opponents to
avoid a rise in price is called demand reduction [Ausubel, 2014; Weber, 1997].

Example 2: We consider an SAA between two bidders with two items. Its bid
increment ε is equal to 1. Both bidders have additive value functions, i.e. the value
given to a package of items is equal to the sum of values of each individual item in the
package. They value each item at 10.5. The bidders’ value functions are presented in
Table 2.2.

v({1}) v({2}) v({1, 2})
Bidder 1 10.5 10.5 21
Bidder 2 10.5 10.5 21

Tab. 2.2.: Example of own price effect (ε = 1)

Example 2 is a simple example where tackling own price effect has a huge impact on
the auction’s final outcome. We present below the two different outcomes in case of
collusions or without colluding:

– Collusion: If both players decide to collude, then they both bid on one item
during the first round. If they bid on two different items, then they both acquire an
item for a price of ε = 1. If they bid on the same item, then the temporary loser
bids on the other item during the second round. In both cases, both bidders
obtain an item for a price ε = 1 and a utility of 9.5.

– Without collusion: Both bidders try to obtain both items without never conceding
one item to their opponent. Hence, the bid price of each item rises. Bidders stop
bidding when both items have a bid price of 10. Hence, both bidders obtain an
expected utility of 0.5.

By colluding, each bidder increases its expected utility by 9. In other words, the
expected utility obtained by colluding of each bidder is 19 times greater than if they
had not colluded. This example highlights the fact that tackling the own price effect is
essential in order to maximise one’s utility.
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• Budget constraints: In practice, no bidder has unlimited funds. Hence, the maximum
amount that a bidder can spend during an auction is capped by a fixed budget. These
caps can highly impact the auction’s final outcome. For instance, they can prevent
bidders from bidding on certain packages of items and be a source of exposure.

Example. A simple example where a bidder can end up exposed due to budget
constraints is presented in Table 2.3. It is a SAA with 2 items between 2 bidders and
a bid increment ε equal to 1. Similarly to Example 1, the first bidder considers both
items as perfect substitutes while the second bidder considers both items as perfect
complements. In the case of unlimited budgets, the second bidder should win both
items and end up with a strictly positive utility. However, suppose now that bidder
1’s budget b1 and bidder 2’s budget b2 are both equal to 10. As already explained in
Example 1, a rational strategy for bidder 1 is:

– If temporarily winning no items and the cheapest item has a price weaker than
7-ε, to bid ε on the cheapest item.

– Otherwise, to not bid.

Given the fact that bidder 1 plays rationally, if bidder 2 decides to acquire both items,
then it will end up exposed. Indeed, after the bid price of each item has reached a
value of 5, bidder 2 can no longer bid on both items as its budget is too low. Hence, it
ends up with only one item for a price of 5 and, therefore, obtains a utility of −5.

v({1}) v({2}) v({1, 2})
Bidder 1 7 7 7
Bidder 2 0 0 20

Tab. 2.3.: Example of exposure due to budget constraints (ε = 1, b1 = 10, b2 = 10).

Foreseeing such issues, a bidder can drastically change its bidding strategy depending
on its budget as well as on its estimation of its opponents’ budgets.

Moreover, in order to obtain less competition on the items one wants, a bidder can bind
its opponents’ budgets by driving up the bid price of other items they are interested in.
Hence, as its opponents are temporarily winning items with high bid price, they might
no longer be able to afford bidding on the items that actually interests this specific
bidder. This is known as budget binding [Bichler, 2017].
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• Eligibility management: Efficient management of its own eligibility is a key factor to
ensure a favourable outcome. By decreasing its eligibility too quickly, one might end
up trapped in a vulnerable position where it can no longer bid on certain packages
and, thus, no longer follow the bidding pace of the auction. However, if all bidders
maintain a certain level of eligibility, then the bid price of each item increases each
round. Hence, tackling the own price effect and maintaining a high eligibility are in
opposition. In order to maximise one’s utility, a tradeoff must be found between both
strategical issues.

2.3 Performance indicators

In games, the most common and natural metric to measure the performance of a strategy is
its expected utility. In 2 player zero-sum games, this is often referred to as the winning rate
[Silver, 2016]. Other metrics which derive from it are also sometimes used such as the Elo
rating [Coulom, 2008], initially used for chess ranking. Up until now, the expected utility has
been the only performance indicator used to compare strategies in SAA [Wellman, 2008;
Goeree, 2014]. This intrinsically supposes that bidders are risk-neutral, i.e. their only
objective is to maximise their expected utility, and that they participate in a high number of
auctions. However, a specific instance of a spectrum auction (i.e. same frequency bands,
same operators, etc ...) is generally only held once and an operator just participates to a
few different instances. Hence, comparing strategies only on the basis of their expected
utility is not sufficient. Indeed, for example, taking into account the potential losses due to
exposure is also relevant, especially considering the huge amount of money involved. In
this thesis, we propose other indicators to measure the performance of bidding algorithms.
In addition to the expected utility, we also focus on four other indicators (expected exposure,
exposure frequency, average price paid per item won, ratio of items won) which quantifies
the impact of exposure and the own price effect.

• Expected utility: The expected utility of a policy π depends on the strategies played
by the other players. This is why game-theoretically the expected utility of a player
is generally defined as a function of a profile of strategies. If the strategies of all
opponents are fixed, the policy π∗ which maximises the player’s expected utility is
named best-response. A profile of strategies where each player’s strategy is a best
response to the other players’ strategies is known as a Nash equilibrium [Osborne,
2004]. These fixed points are of particular interest in auction theory (and in game
theory in general) as none of the players can improve its expected utility by unilaterally
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changing its strategy. Hence, the concepts of best-response and Nash-equilibrium are
widely used in this thesis. However, it is important to note that a strategy belonging to
a Nash equilibrium is only optimal if all the other players decide to play their respective
strategy in the Nash equilibrium. Otherwise, playing such a strategy can perform
poorly. Therefore, to partially avoid this issue, we also employ an empirical game
analysis approach developed by Wellman et al. in [Wellman, 2008]. We compare
two bidding algorithms by considering the normal form SAA game in expected utility
where each bidder has the choice between either playing the strategy suggested by
the first algorithm or the strategy suggested by the second. We then look at whether
the strategy proposed by one of the two algorithms always strictly dominates the
strategy proposed by the other, i.e. if a player has always interest in playing the
strategy proposed by the same algorithm regardless of what the other plays.

• Expected exposure: It is based on the following decomposition of the expected
utility:

E(Rπ) = IP(Rπ ≥ 0) E(Rπ|Rπ ≥ 0) + IP(Rπ < 0) E(Rπ|Rπ < 0)︸ ︷︷ ︸
Exposure

(2.6)

where π is a policy and Rπ is a random variable corresponding to the utility (generally
named reward in reinforcement learning [Roijers, 2013]) obtained by playing π in
a SAA. The second term in Equation 2.6 corresponds to the losses incurred when
playing π. Hence, we define the expected exposure as −IP(Rπ < 0) E(Rπ|Rπ < 0).
In our extensive numerical experiments, the expected exposure is estimated by the
opposite of all losses incurred by a strategy divided by the number of plays. For
instance, if a bidder has played π in N auctions and has obtained the following utilities
Rπ

1 ,...,Rπ
N , then the expected exposure of playing π is estimated by:

−
N∑

k=1

1Rπ
k

<0Rπ
k

N
(2.7)

• Exposure frequency: It is defined as IP(Rπ < 0). It corresponds to the probability
of ending up exposed when playing a certain strategy π. In our extensive numerical
experiments, we estimate it by the number of times a strategy incurs a loss divided
by the number of times it is played. For instance, if a bidder has played strategy π
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in N auctions and has obtained the following utilities Rπ
1 ,...,Rπ

N , then the exposure
frequency of playing π is estimated by:

N∑
k=1

1Rπ
k

<0

N
(2.8)

In order to tackle efficiently the exposure problem, both risk indicators, i.e. expected
exposure and exposure frequency, should be minimised.

• Average price paid per item won: This is a relevant indicator to measure the impact
of the own price effect as obtaining a low average price paid per item won means that
the bid price of the purchased items rarely rises. In our extensive numerical experi-
ments, we estimate it by the sum of expenses divided by the number of purchases
induced by a strategy.

• Ratio of items won: To ensure that a strategy divides efficiently items between
bidders and that no item is returned to the auctioneer unnecessarily, we consider the
ratio of items won. Thus, the ratio of items won complements the preceding indicator
for the measurement of the own price effect. In our extensive numerical experiments,
we estimate it by the number of items won by a strategy divided by the number of
items for sale in all auctions where it is played.

2.4 Benchmarking: perceived-price bidding strategies

Throughout this thesis, we are going to compare our bidding algorithms to state-of-the-art
bidding strategies in SAA. More precisely, we are going to compare our bidding algorithm to
a specific family of bidding strategies named perceived-price bidding strategies developed
by Wellman et al. [Wellman, 2008]. This family of bidding strategies obtained very promising
results but experiments were only undertaken with bidders having super-additive value
functions, unlimited budgets and in SAA with no activity rules. Hence, it is difficult to
conclude on how these bidding strategies perform when extended to more generic settings.
We can define two types of perceived-price bidding strategies. The first type only depends
on the current information set of the game. For example, this is the case of the well studied
straightforward bidding strategy [Milgrom, 2000]. The second type also uses a prediction of
closing prices, i.e., an estimation of the price of each item at the end of the auction. This
prediction can be computed through different methods detailed hereafter.
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In this subsection, we consider an SAA with n bidders, m items, a bid increment of ε and
no activity rules. Bidders have unlimited budgets.

Definition 2.1. [Wellman, 2008] A perceived-price bidder is parameterised by a function
ρ : I → Rm

+ , named perceived-price function, which maps an information set I ∈ I to a
perceived-price vector. When temporarily winning a set of items Y at current information
set I with bid price vector P , it computes the subset of goods

X∗ = arg max
X⊂{1,...,m}\Y

σ(X ∪ Y, ρ(I)) (2.9)

breaking ties in favour of smaller subsets and lower-numbered goods. The perceived-price
bidder then bids Pj + ε on all items j ∈ X∗.

For example, a perceived-price bidder i is temporarily winning no item at information set I

in a SAA with 2 items. If σi({1}, ρi(I)) = σi({2}, ρi(I)) = σi({1, 2}, ρi(I)) > 0, then bidder
i bids P1 + ε on item 1 as it is the smaller subset and the lower-numbered good which
maximises its perceived utility.

This family of bidding strategies is motivated by the following statement: if a bidder knew
the closing prices of an auction and these prices are independent of its bidding strategy,
i.e. these closing prices stay the same whatever the bidder decides to play, then playing as
above using the actual closing prices as perceived-price vector is optimal [Wellman, 2008].
However, in practise, closing prices are generally tightly correlated to one’s bidding strategy,
especially regarding incumbents in spectrum auctions. Nevertheless, it is important to bear
in mind that if the actual closing prices of a SAA can accurately be predicted, then a bidder
will face no exposure problem, no problems allocating its limited budget and no eligibility
management problem [Bulow, 2009].

2.4.1 Straightforward bidding

Straightforward bidding (SB) is surely the most studied bidding strategy in SAA. This name
was given by Milgrom in [Milgrom, 2000]. The same solution concept is also referred to
through other names in the literature such as "myopic best response" [Reeves, 2005].
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Definition 2.2. A straightforward bidder temporarily winning a set of items Y at current
information set I with bid price vector P is a perceived-price bidder with the following
perceived-price function:

ρj(I) =
{

Pj if j ∈ Y

Pj + ε otherwise
(2.10)

In other words, a straightforward bidder maximises directly its utility given the items it is
temporarily winning as if the auction ended immediately after its bid. It never takes into
account the fact that other bidders are playing.

Even though this bidding strategy is naive, it has been proven to be optimal in a number of
different situations. For instance, in a SAA with m = 1, SB is a weakly dominant strategy
[Bikhchandani, 1997]. This can be easily understood by seeing that an SAA with m = 1
is strategically equivalent to a sealed-bid second-price auction. Hence, SB in SAA with
m = 1 is similar to bidding truthfully in a sealed-bid second-price auction [Wellman, 2008].
Moreover, in a SAA where all bidders have a single-unit demand and value each item
equally, i.e. v({1}) = ... = v({m}), SB is a Bayes-Nash equilibrium [Wellman, 2008;
Peters, 2006]. In the case of mutual substitutes, Milgrom shows in [Milgrom, 2000] that,
if all bidders play SB, the final allocation approximately maximises the total value and
every bidder acquires a set of items which is close to optimal with respect to the closing
prices. Hence, the final allocation and closing prices represent an approximate competitive
equilibrium.

In the general case, playing SB is far from optimal. For instance, in Example 1 (see Section
2.2.3), playing SB for bidder 2 leads to exposure. Moreover, even in the case of additive
value functions, SB is no longer a weakly dominant strategy due to the own price effect.
For instance, in Example 2 (see Section 2.2.3), consider the threat strategy where a bidder
follows the collusion instruction the two first rounds and plays SB if its opponents deviates
from these instructions. If both bidders play the threat strategy, they both obtain a utility of
9.5. If one of them decides to play SB, then they end up with a maximal utility of 1 depending
on the outcome of the tie-breaking rule in the first round.

Nevertheless, in practise, playing SB can sometimes be a reasonable strategy. For instance,
in the 3G UK SAA held in 2000 [Binmore, 2002], five licences, two bigger ones and three
others, were sold with no bidders being allowed to buy more than one. Given these specific
rules, according to [Bulow, 2009], playing SB is a good strategy and each licence will be
allocated to the bidder willing to pay the most for it.
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2.4.2 Point-price prediction strategy

Definition 2.3. [Wellman, 2008] A point-price prediction bidder temporarily winning a set
of items Y at current information set I with bid price vector P is a perceived-price bidder
whose perceived-price function uses an initial prediction of closing prices P init:

ρj(I) =
{

max(P init
j , Pj) if j ∈ Y

max(P init
j , Pj + ε) otherwise

(2.11)

We denote this strategy throughout the thesis by PP.

As stated before, playing a perceived-price bidding strategy with the perceived-price vector
initially equal to the actual closing prices of the auction is optimal. Hence, playing PP with
P init equal to the actual closing prices is optimal. Playing PP with P init = 0 is equivalent to
playing SB. Hence, one can easily see that the efficiency of playing PP highly depends on
the accuracy of one’s initial prediction of closing prices P init. For instance, if P init largely
underestimates the actual closing prices of the auction, then playing PP becomes equivalent
to playing SB when P ≥ P init component wise. However, if P init largely overestimates the
closing prices of the auction, then a bidder playing PP might drop out prematurely of the
auction as it erroneously anticipates exposure.

An easy way to compute an initial prediction of closing prices is to use the average final
prices obtained when simulating a high number of times a fixed profile of strategies. In
the case of incomplete information where the opponents’ value function are unknown,
one can sample their valuations from the underlying type distribution at each simulation
[Wellman, 2008]. For instance, by sampling from the type distributions, one could use as
initial prediction of closing prices the average final prices obtained when all bidders play SB.
This would generally lead to an overestimation of the actual closing prices of the auction.
Hence, playing PP with this initial prediction of closing prices would generally cause bidders
to drop out early. A very popular prediction of closing prices often used to enable optimal
allocation is the Walrasian equilibrium [Gul, 1999].
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2.4.2.1 Walrasian equilibrium

Definition 2.4. [Blumrosen, 2007] A Walrasian equilibrium in an auction with n bidders is a
price vector P and an allocation X1,...,Xn such that

∀i ∈ {1, ..., n}, σi(Xi, P ) = max
Y ∈P(L)

σi(Y, P ) (2.12)

For any unallocated item j, i.e. j /∈ ∪n
i=1Xi, Pj = 0 (market-clearing).

In the case of budget constraints, a Walrasian equilibrium (P, X) needs also to verify that
∀i ∈ {1, ..., n},

∑
j∈Xi

Pj ≤ bi.

Theorem 2.1. [Blumrosen, 2007] If the vector of prices P and the allocation X1,...,Xn is
a Walrasian equilibrium, then the allocation X1,...,Xn maximises social welfare. This is a
direct application of The First Welfare theorem to an auction with indivisible goods.

It is important to note that the concept of Walrasian equilibrium does not take into account
the auction mechanism. Therefore, given the above theorem, a Walrasian equilibrium
(P, X) gives the optimal allocation in all auctions, i.e. it maximises

∑n
i=1 vi(Xi), and in

particularly in SAA. However, depending on the bidders’ valuations, this equilibrium does
not necessarily exist.

Theorem 2.2. [Kelso Jr, 1982] An SAA where all bidders have their value function which
verify the gross substitutes property admits a Walrasian equilibrium.

Theorem 2.3. [Gul, 1999] If a value function v1 does not satisfy the gross substitutes
property, then there exist value functions v2,...,vn which satisfy the gross substitutes property
such that no Walrasian equilibrium exist in SAA.

It is highly plausible that no Walrasian equilibrium exist in SAA if not all value functions
satisfy the gross substitute property as stated in Theorem 2.3. For example, in Example 1
(see Section 2.2.3), v1 satisfies the gross substitutes property but v2 does not as it exhibits
complementarities. In this example, there exist no price vector such that each bidder
maximises its utility and the market clears. Hence, the SAA in Example 1 does not admit a
Walrasian equilibrium. Examples of auctions with two goods between two bidders where
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one exhibit complementarities and the other substitutabilities are often used to show the
absence of a Walrasian equilibrium [Wellman, 2008]. Hence, this solution concept can not
be used generally in SAA.

Nevertheless, based on the idea of Walrasian equilibrium, Wellman et al. [Wellman, 2008]
propose two methods for the initial prediction of closing prices: expected price equilibrium
and expected demand price equilibrium.

2.4.2.2 Expected price equilibrium

The aim of the expected price equilibrium is to compute the expectation (over opponents’
type distribution) of the Walrasian equilibrium price vector. The algorithm works as follows:

1. Sample a value function for each opponent from their type distribution.

2. From these sampled value functions compute the demand function x : Rm
+ → Nm

which maps for each item j a price vector P to the number of bidders willing to acquire
it.

3. Let p(t) be the price vector at step t and α(t) be an adjustment parameter which
decays with t. For example, in [Cheng, 2003], an exponential decay is chosen for
α(t). Initially, p(0) is equal to the null vector of prices. Then, apply the standard
tâtonnement process [Arrow, 1971] to SAA with one unit of each good available:

p(t + 1) = p(t) + α(t)(x(p(t))− 1) (2.13)

4. Repeat the sampling of the value functions and the application of the standard
tâtonnement process to obtain an average vector of final prices.

At each iteration, value functions are sampled from the opponents’ type distributions and
then the tâtonnement process in Equation 2.13 is applied. This tâtonnement procedure is
guaranteed to converge to a Walrasian equilibrium if the sampled value functions satisfy
the gross substitutes property [Cheng, 2003].

It is important to note that this method does not depend on the auction mechanism. It only
depends on the type distributions and adjustment parameter α(t). Hence, in a SAA with
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complete information, if all bidders compute the expected price equilibrium using the same
adjustment parameter α(t), then they obtain the same initial prediction of final prices.

We denote by EPE the bidding strategy PP using as initial prediction of final prices the
expected price equilibrium.

2.4.2.3 Expected-demand price equilibrium

Expected-demand price equilibrium is an alternative to expected-price equilibrium which
might be preferred for computational reasons. Instead of sampling from the type distribution
and applying the tâtonnement process many times, one could compute the expected
demand function and then apply once and for all the tâtonnement process. In other
words, the expected-demand price equilibrium is the simple application of the standard
tâtonnement process in Equation 2.13 using the expected aggregate demand. The demand
function no longer returns in Nm but in Rm

+ .

We denote by EDPE the bidding strategy PP using as initial prediction of final prices the
expected-demand price equilibrium. It is important to note that, in a complete information
game, the expected-demand price equilibrium returns the same price vector as the expected
price equilibrium if computed with the same adjustment parameter α(t). Hence, in a
complete information game, playing EPE or EDPE is equivalent.

2.4.3 Distribution price prediction strategy

Instead of just having a point estimate of the final prices of an auction, one could decide to
use an entire distribution. Let D be a distribution predictor of the final prices of the auction.
Let IP(p|I) be the probability according to D that the final prices of the auction will be p

given that the current information set is I. Let I0 be the initial information set of the game.
Before the auction starts, given our initial prediction, the probability that the closing prices
of the auction are equal to p is IP(p|I0). Then, at information set I with current bid price
vector P , the probability that the closing prices of the auction are equal to p is:

IP(p|I) =


IP(p|I0)∑

q≥P
IP(q|I0) if p ≥ P

0 otherwise
(2.14)
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where p ≥ P means that ∀j ∈ {1, ..., m}, pj ≥ Pj . This is well defined for all possible P if
only ∃p ≥ P, IP(p|I0) > 0. Therefore, it is common [Wellman, 2008] to put a small probability
weight on a upper-bound of P to ensure that Equation 2.14 is always well defined. Let P̄ be
an upper-bound of P . This can easily be computed by using the type distributions or the
budget distributions.

Final prices between different items are generally correlated. However, for sake of simplicity,
a common approach is to consider them as independent and, thus, use the vector of
marginal distributions (D1, ...,Dm). Moreover, Wellman et al. [Wellman, 2008] assume that
the bidder is fully sunk aware, i.e. that the perceived-price of temporarily won items that
it expects to win at the current bid price is equal to zero. They introduce the concept of
expected incremental price for an item j at information set I that we denote by ∆j(I). It
corresponds to the expected sunk cost of winning item j. To compute ∆j , two disjoint cases
must be studied, depending on whether a bidder is temporarily winning item j or not.

If a bidder is not winning an item j at information set I with current bid price P , then the
lowest price at which it can buy item j is Pj + ε. Hence, its expected incremental price for
item j is:

∆L
j (I) = ED(pj |pj ≥ Pj + ε) =

∑
qj≥Pj+ε

IP(qj |pj ≥ Pj + ε)qj (2.15)

If a bidder is temporarily winning an item j at information set I with current bid price P , we
need to consider two cases to compute its expected incremental price. If the final price of
item j ends up by being Pj , then the full price is sunk as the item is already committed.
Otherwise, there is 1− IP(Pj |pj = Pj) chance that the bid price rises. In this case and with
the additional assumption that a bidder never bids on the items it is temporarily winning,
the current winner will have to bid at least Pj + 2ε to win back item j. Hence, its expected
incremental price for item j is:

∆W
j (I) = (1− IP(Pj |pj = Pj))

∑
qj≥Pj+2ε

IP(qj |pj ≥ Pj + 2ε)qj (2.16)

A distribution price prediction bidder then plays a perceived-price bidding strategy at
information set I using as perceived-price function:

ρj(I) =
{

∆W
j (I) if winning item j

∆L
j (I) otherwise

(2.17)
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2.4.3.1 Self-confirming price distribution

The concept of self-confirming price distribution was originally introduced for SAA [Wellman,
2008]. It has then been used in other auctions such as simultaneous one-shot sealed bids
auctions [Wellman, 2012].

Definition 2.5. [Wellman, 2008] Let Γ be an instance of a SAA game. A distribution of
prices D is said to be self-confirming if D is the distribution of final prices resulting when all
bidders play the distribution price prediction strategy using D as price distribution predictor
in Γ.

As it was the case for the distribution price prediction strategy, even though there are
generally dependencies across prices, we consider the marginal price distributions as if
goods were independent.

Definition 2.6. [Wellman, 2008] Let Γ be an instance of a SAA game. The vector of
marginal price distribution (D1, ...,Dm) is said to be self-confirmed if ∀j ∈ {1, ..., m}, Dj is
the marginal distribution of final prices of item j when all bidders play the distribution price
prediction strategy using D as price distribution predictor in Γ.

To compute a self-confirming vector of marginal price distributions, Wellman et al. [Wellman,
2008] propose to use a fixed-point iteration method:

1. Let Dt be the vector of marginal price distributions at step t (for D0 the uniform
distribution is generally chosen between 0 and the bid price upper bound P̄ ).

2. Run many game instances and record their resulting final prices. For each instance,
sample the value distributions from their type distribution and then simulate a SAA
game where all bidders play the distribution price prediction strategy using Dt as price
distribution predictor.

3. For each item j, Dt+1
j is set such that the probability that p is the final price of j is

equal to the number of times p ended up as the final price of j divided by the number
of simulations.

No guarantees are provided for the convergence of this process. Self-confirming price
distribution do not always exist as it is the case in Example 1 (see Section 2.2.3). When an
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approximate fixed point is not found, a solution which is proposed by [Osepayshvili, 2012]
is to average the distributions obtained over the last few steps.

We denote by SCPD the distribution price prediction bidding strategy which uses the above
fixed-point iteration method to derive its marginal price distribution predictor. In case of
non-convergence of the method, we average the distributions obtained in the last ten
iterations as in [Osepayshvili, 2012].

2.5 Other related works

The majority of studies on SAA, such as [Cramton, 2006; Cramton, 2002; Milgrom, 2000],
focuses on its mechanism design, efficiency and the revenue it generates for the regulator.
Only a few works in the literature have focused on the strategic bidding problem in SAA.
At first glance, this can seem very surprising, especially considering the fact that SAA is
the most popular mechanism used for spectrum auctions and sometimes billions of euros
are at stake. This may be due to the fact that such expertise is very valuable and, hence,
operators or auction consulting firms have no interest in sharing their own private research
on the subject.

Until now, published works on the bidding problem have mainly focused on trying to resolve
one of the four strategical issues (exposure, own price effect, budget constraints and
eligibility management problem) in specific simplified versions of SAA. These strategical
issues are generally studied separately. For example, to the best of our knowledge, no
efficient bidding algorithm had been proposed before our contributions [Pacaud, 2022]
to tackle simultaneously the own price effect and the exposure problem. Moreover, most
solutions can often only be applied to small instances and, therefore, can generally not be
used in practise. In this subsection, we propose an overview of the different methods used
in the literature to tackle each strategical issue.

2.5.1 Exposure

Exposure is considered as the most problematic strategical issue in SAA. It has essentially
been studied in two formats of SAA: its original format [Cramton, 2006] described in Section
1.3.2.1 (this is the format considered in this thesis) and its corresponding clock format
defined hereafter.
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In the original format of SAA, from the regulator’s point of view, the fact that the exposure
problem reduces the auction’s efficiency and revenue has been highlighted by Milgrom
[Milgrom, 2000] and by Bykowsky et al. [Bykowsky, 2000] in small examples of SAA with
complete information. From the bidder’s point of view, an interesting approach, which has
already been presented in the last section, is perceived-price bidding strategies [Wellman,
2008]. By using a prediction of final prices, bidding strategies such as EPE, EDPE or SCPD
can improve one’s expected utility by tackling efficiently the exposure problem. Experimental
results suggest that these methods are very promising. However, they were only obtained
in the case of unlimited budgets, no activity rules and for a specific class of super-additive
value functions. No theoretical guarantees were provided with these methods. Hence, it is
difficult to conclude on the effectiveness of these algorithms in more generic settings.

The original format of SAA is generally considered too complex to draw theoretical guaran-
tees. Hence, a simplified clock format of SAA [Goeree, 2014] is often considered. Under
some specific conditions, it presents the advantage of being a tractable model where bid-
ders have continuous and differentiable expected utilities. Standard optimisation methods
can then be applied to derive an equilibrium.

The clock format of SAA presents two types of bidders: local and global. Local bidders
only compete in one of the English separate auctions while global bidders participate in
all auctions. Local bidders play straightforwardly, i.e. bid up to their value, as it is a weakly
dominant strategy. Global bidders have super-additive value functions and, therefore, are
prone to exposure. In this specific format, the price of each item is modelled by a clock that
ticks upward at equal and constant pace if, at least, two bidders accept the current price
level. If only one bidder accepts the current bid price of an item, the price clock pauses and
the bidder becomes its temporary winner. It employs the same activity rule as the one used
in this thesis, i.e. the number of items temporarily won plus the number of new bids by a
bidder can never rise.

In this format, Goeree and Lien [Goeree, 2014] use a Bayesian framework to compute
the global bidder’s optimal drop-out level in homogeneous-good environments. The fact
that all items are identical is essential for tractability as it enables a one-dimensional type
approach, i.e. the value function of a bidder only depends on the number of items won
and no longer on specific packages. They extend their work to two specific cases. The
first case is a clock-format SAA with two global bidders with regional complementarities, i.e.
global bidders are only interested in a fixed number of identical items. The second case
authorises local bidders to switch from one English auction to another. In this case, local
bidders consider all items as perfect substitutes. This will cause bid prices to even out.
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Zheng proposes in [Zheng, 2012] to modify the initial clock format of SAA by integrating a
pause system that enables jump bidding. Jump bidding is the practise of bidding consid-
erably more than the minimal admissible bid. They then build a continuation equilibrium
that fully eliminates the exposure problem in the specific case of an SAA with two items
and one global bidder. More precisely, let’s suppose there are two auctions: auction 1 and
auction 2. If all local bidders drop out of auction 1, the global bidder is given the opportunity
to jump bid in auction 2 to see if it can obtain the second item at a profitable price. If some
local bidders decide still to stay in auction 2 after the jump bid, the global bidder can then
decide to quit both auctions to avoid exposure. It then concedes item 1 to the local bidder
who triggered the pause. The global bidder can also decide to just to drop out of auction 2
if winning item 1 is profitable. Otherwise, the global bidder wins both items. It pays item 2
the same amount as its jump bid. By modifying the initial SAA mechanism as above, it is
possible to build a continuation equilibrium that completely eliminates the exposure problem
in very small instances.

2.5.2 Own price effect

Own price effect has mainly been studied in the original format of SAA. In [Milgrom, 2000],
Milgrom describes a collusive equilibria in a 2-object SAA with complete information between
two bidders having additive value functions. The analysis is similar to the one given in
Example 2 (see Section 2.2.3).

Milgrom’s work was then pursued by Brusco and Lopomo [Brusco, 2002] who build a
collusive equilibrium in a 2-object SAA with incomplete information between two bidders
in the case of additive value functions through signalling of the most valuable item. More
precisely, during the first round, each bidder bids on its most valuable item. If bidders
bid on different items, then they both obtain their most valuable item at the minimal price.
Otherwise, each round, the temporary loser of the item bids the minimal admissible amount
on the item which maximises its utility until one of them bids on the other item. Obviously,
this collusive equilibria only holds if, given their opponent’s value distribution, bidders are
better off colluding than competing for the items in expectation. They then show that the
probability of building such equilibria where bidders collude through signalling decreases
when the number of bidder increases. In other words, the scope of collusion narrows when
the ratio between the number of bidders and the number of object increases. They then
extend their work to the case of a 2-object SAA between two bidders with superadditive
value functions. They show that high complementarities is not the main factor that impacts
collusion. For instance, in the complete information case where both bidders have the same
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value function, bidders should collude. However, if the value for both items is sufficiently
different between both bidders, then collusion may no longer be attractive.

Riedel and Wolfstetter [Riedel, 2006] show, given a certain number of constraining as-
sumptions, that the only Nash equilibrium that survives iterated elimination of dominated
strategies is the profile of strategies where bidders immediately reduce their demand to
the efficient allocation. Thus, the auction ends after the first round. More precisely, they
consider a clock-format of SAA with complete information, no budgets, no activity rules
and identical goods. At each round, bidders state simultaneously the number of items they
would like. The auction ends when the sum of demanded items is inferior to the total number
of items. Bidders have strictly decreasing marginal valuations and all marginal valuations
must be distinct between bidders. For instance, this implies that the marginal valuation of
obtaining a third item for bidder 1 must be distinct from the marginal valuation of obtaining a
second item for bidder 2. In this specific case, if the efficient allocation assigns at least one
item to each player and the bid increment is sufficiently small, then the unique equilibrium
that survives iterated elimination of dominated strategies is the one where bidders reduce
their demand in the first round according to the efficient allocation.

Weber analyses in [Weber, 1997] how mutual reduction between bidders can be arranged
to tackle the own price effect in the FCC spectral auction of 1994 even if bidders can not
communicate between each other directly. For instance, an implicit agreement can be found
by threatening to raise the prices of the licences held by the violator. Such threats to deter
aggressive bidding and encourage collusions are often used in the literature, especially in
game theory, to form collusive equilibria.

Using a similar approach than for the exposure problem with perceived-price bidding
strategies and predictions of final prices, Wellman et al. [Wellman, 2008] build a simple
bidding algorithm in a homogeneous-good environment where all players have subadditive
value function. However, experimental results were unsatisfactory as they are significantly
inferior to ones obtained with a simple demand reduction strategy.

2.5.3 Budget

In [Brusco, 2009], Brusco and Lopomo focus on "noncollusive" equilibria in a 2-object clock-
format of SAA between two global bidders with super-additive value functions. Noncollusive
equilibria are defined as equilibria where bidders decide to split items only when their
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budgets are binding. Hence, the collusion is directly caused by the budget constraints.
Value functions are private but budgets are common knowledge.

Brusco and Lopomo consider a clock-format of SAA with a pause-system which presents
some important differences with the one proposed by Zheng [Zheng, 2012]. Each bidder
pushes initially two buttons corresponding to the two items. When a button is released, it
can not be pushed again. Unlike [Zheng, 2012], they have a single price and buttons are
not object-specific, i.e. both items will be sold at the end of the auction at the same price.
Their pause-system is triggered the first time one of the two bidders releases a button.
More precisely, suppose bidder 1 releases two buttons. Then, the price stops raising and
bidder 2 has either the choice between releasing its two buttons or winning both items
at the current price. If it releases both buttons, then the entire package of two items are
assigned to one of the bidders randomly. If bidder 1 releases just one button, then bidder 2
has the choice between releasing two buttons, one button or zero buttons. If it releases
both buttons, bidder 1 wins both items. If it releases one button, each bidder wins one item.
If it decides to release zero buttons, the price clock resumes. In this case, the price will
raise until bidder 1 releases its last button which means bidder 2 wins both items or bidder
2 releases a button which means each bidder wins an item.

Using this specific clock-format, Brusco and Lopomo show the effect of budgets constraints
on the structure of noncollusive equilibria. Moreover, they present various inefficiencies
due to the combined effect of the exposure problem and budget constraints. One of these
inefficiencies may appear surprising. Suppose bidder 1 has a lower budget and a lower
value for the package than bidder 2. They exhibit some situations where bidder 1 ends up
by winning both items as bidder 2 is afraid that bidder 1 is going to continue to bid on a
single object. Hence, to avoid potential exposure, bidder 2 drops out of the auction.

In [Bulow, 2009], Bulow et al. propose a similar approach to avoid exposure than the
perceived-price bidding strategies defined by Wellman et al. [Wellman, 2008] in the case of
binding budget constraints. More precisely, their main motive is that the exposure problem
and the issues linked to budget constraints could be eliminated if one could predict accurate
final auction prices. However, unlike [Wellman, 2008] and traditional auction theory, their
forecasting approach does not focus on bidders’ values but on bidders’ budgets. They define
the bid exposure as the sum of all bids placed by a bidder during a given round, including
its temporary winning bids from the prior round. By tracking a bidder’s bid exposure, one
will get a finer estimate of a bidder’s real budget and eventually, after a few rounds, the
bidder’s bid exposure will approximately correspond to its real budget. More precisely, if
all bidders have a binding budget constraint and start by bidding on many items, then one
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could get a pretty precise estimate of the sum of all budgets quite early on in the auction.
Then, at a certain point in the auction, the bid exposure of each bidder should stay relatively
the same and bidder should start bidding on smaller subset of items. Combining the bid
exposure of a bidder with the smaller subset of items on which it is bidding should give a
relatively good idea of the final price of each item in the auction. Hence, if final prices are
forecast sufficiently early, one can easily avoid exposure.

2.5.4 Eligibility management problem

Even if some simplified versions of the SAA present activity rules, little work has been
done regarding the eligibility management problem, especially in the original format of
SAA. However, it is commonly accepted that one should gradually reduce its eligibility to
avoid being trapped in a vulnerable position if other bidders do not behave as expected
[Weber, 1997]. Hence, to maintain high eligibility and avoid rising the price of the items
one is interested in, a bidder can decide to bid on highly demanded items it does not
want. Moreover, this can also fool other bidders which now think one desires these highly
demanded items. This practise is known as parking [Porter, 2006].

2.6 Positioning of the thesis

We present in Figure 2.1 how our thesis fits in the literature. More precisely, we focus on
which strategical issues are covered in the different chapters of this thesis as well as in the
related works. We only consider the three following strategical issues: exposure problem,
own price effect and budget constraints in Figure 2.1 as the eligibility management problem
has not really been addressed in the literature. Nevertheless, this last issue will be tackled
in Chapter 5 and Chapter 6 of our thesis. Moreover, we make the distinction between
bidding with complete information and bidding with incomplete information. Related works
and chapters of our thesis represented in Figure 2.1(a) only address an SAA with complete
information. However, all related works and Chapter 6 represented in Figure 2.1(b) can of
course be applied to an SAA with complete information as it is a specific case of incomplete
information. Moreover, we like to emphasise on the fact that typical examples taken from
the literature are often with complete information as it is easier to determine if the proposed
strategy tackles correctly the targeted strategical issue.

In Chapter 4, we propose the first algorithm that tackles efficiently and simultaneously the
exposure problem and own price effect in small instances of a deterministic turn-based
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version of SAA with complete information. In Chapter 5, we propose the first algorithm that
tackles efficiently the four main strategical issues of SAA in its original format with complete
information and on instances of realistic size. In Chapter 6, we relax the assumption that the
induced bidding game is with complete information and generalise the algorithm presented
in the preceding chapter to the incomplete information framework.

Exposure
Own price
effect

Budget constraints

[Milgrom, 2000]
[Bykowsky, 2000]

[Milgrom, 2000]
[Riedel, 2006]

Chapter 4

Chapter 5

(a) Complete information

Exposure
Own price
effect

Budget constraints

[Wellman, 2008]
[Zheng, 2012]
[Goeree, 2014]

[Brusco, 2002]
[Wellman, 2008]

Chapter 6

[Bullow, 2009] [Brusco, 2009]

[Milgrom, 2000]

(b) Incomplete information

Fig. 2.1.: Strategical issues addressed by related works and by the different chapters of our thesis
in SAA.
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In this thesis, our aim is to compute an efficient bidding strategy in SAA. Given the fact
that SAA can be modelled as a multi-round game between many players with potentially
conflicting goals, we need to be able to plan a bidding strategy over many rounds while
taking into account how the other players are going to react. Hence, a natural approach is
to focus on adversarial search methods.

Adversarial searches correspond to different search methods used in sequential games
where two or more players have conflicting goals. Their aim is to compute the best possible
move at a given state by exploring the state space.

In this chapter, we first start by defining theoretically a game in extensive form. We then
define two important notions which arise from this representation: game tree and search
tree. These are used as the basis of all adversarial search methods presented in this thesis.
We then give an overview of different adversarial searches addressed in the literature
depending on general game properties and game complexities. We start by presenting
famous adversarial search methods used in two player zero-sum games which are by far
the most studied class of game in the literature. We then present some possible extensions
of these methods to n-player games. We address the problem of efficient adversarial
searches in games with large state space and game tree complexity. We introduce the multi-
armed bandit problem, considered as one of the most fundamental reinforcement learning
problems, and present the famous UCB1 and EXP3 algorithms. We finally introduce Monte
Carlo Tree Search (MCTS), a breadth-first search method, on which are based our solutions
throughout this thesis. We then focus on different versions of MCTS presented in the
literature, especially those applied to games sharing similar general game properties than
our SAA game. Some of these algorithms present enhancements that we incorporate in
our solution. Moreover, we specifically detail one common search enhancement named
transposition tables.

3.1 Extensive form

In this subsection, we define formally a game in extensive form. This representation is
based on the notion of tree.

Definition 3.1. [Lasaulce, 2011] A tree is a triplet (Z, z0, θ) where:
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• Z is a set of nodes.

• z0 is the root of Z

• θ is the predecessor function. All nodes are linked to the root z0, i.e. ∀z ∈ Z,∃k ∈
N, θ(k)(z) = z0. There is no cycle.

Terminal nodes of a tree are nodes which do not have any successors. We design by ZT

the terminal nodes of a tree. More formally,

zt ∈ ZT =⇒ ∀z ∈ Z,∄k ∈ N∗, θ(k)(z) = zt (3.1)

In Figure 3.1, we plot an example of a tree of depth 3.

Fig. 3.1.: An example of a tree

Definition 3.2. A game in extensive form is defined by:

• A finite number of players n

• A tree (Z, z0, θ)

• A partition {Zi, i ∈ {1, ..., n}}∪ZNature of Z\ZT . If z ∈ Zi, then it is player i who plays
at node z. If z ∈ ZNature, then it is a player named Nature who plays at node z. The
player Nature is introduced to model chance events.

• ∀z ∈ Z\ZT , a set of actions A(z).
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• ∀z ∈ ZNature, a probability distribution D(z) is defined over A(z).

• Each player set Zi is partitioned into subsets named information sets (already defined
in the previous chapter). If z and z′ belong to the same information set I, then
A(z) = A(z′).

• A utility function σ : ZT → Rn

Each node of a game’s extensive form represents a state of the game and each edge a
possible action (either played by a player or drawn by Nature). We represent in Figure
3.2 a game in extensive form between two players using the same tree as in Figure 3.1.
The game works as follows. Two players are standing on the same side of a wall. A coin
is tossed and lands on the other side of the wall. None of the players know the outcome.
There is 50% chance that the outcome is heads and 50% that the outcome is tails. Each
player needs to guess the outcome. They write their answers on a sheet of paper without
letting the other player know what they have written. Then, they both climb the wall to check
the coin. If a player guesses correctly, then it wins and obtains a utility of 1. Otherwise, it
obtains a utility of 0.

H T

H T H T

H T HH HT T T

Nature Player 1 Player 2

Information set

0.5 0.5

H Action Heads T Action Tails

Fig. 3.2.: An example of a game in extensive form

This representation is often used as a starting point by adversarial search methods, such
as minimax search presented hereafter, to compute an efficient strategy for the root player.
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Although in the rest of the thesis we do not redefine each quantity systematically, this
representation underlies our methods and is quite representative of the structure of our
code.

3.2 Game tree and search tree

In order to compute the best possible move at a given state, adversarial search methods are
based on the exploration of the game’s state space. One possible approach is to consider
the game’s extensive form and compare the outcomes obtained in all different sequences
of moves, i.e. all different paths of the tree. However, exploring the whole state space is
practically impossible in games such as chess. Thus, we define the two following notions:
game tree and search tree.

Definition 3.1. The game tree represents the actual game rooted at the current state of
the game. More precisely, it is the tree associated to the subgame starting from the current
state of the game. Thus, the sequence of moves leading to the current state of the game is
not represented in the game tree. Each path from the root node corresponds to a possible
sequence of actions of the game and ends at a terminal state. At each move played in the
real game, we redefine the game tree as the subtree of the old game tree starting at the
new current state.

Remark. The game tree rooted at the initial state of the game is the same tree as the one
in the game’s extensive form representation.

Exploring the whole game tree in games with huge state space (or information state space)
is practically impossible. Hence, adversarial search methods generally focus only on a
small portion of the game tree named search tree.

Definition 3.2. A search tree is the portion of the game tree on which the adversarial
search is performed. Different statistics are saved for each node of the search tree. It
shares the same root as the game tree.

A search tree is either constructed by a set of deterministic rules such as cutting off the
game tree at a certain depth or it can be constructed dynamically by an adaptive process as
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it is the case in Monte Carlo Tree Search presented in Subsection 3.7. Each leaf node of the
search tree is given a value by either an evaluation function or by Monte Carlo Evaluation.
The adversarial search method is then performed on this search tree to choose the best
move.

3.3 Adversarial search in two player zero-sum games

Many algorithms have been created for adversarial search in two player games, especially
in zero-sum games. Zero-sum games correspond to games where the sum of payoffs of
the players at the end of the game is equal to zero [Lasaulce, 2011]. In a two player game,
this means that a player’s gain is equivalent to its opponent’s loss. The basic approach
for such games is to use the minimax algorithm presented in Subsection 3.3.1. However,
this algorithm naively explores all the nodes of the game tree. It is possible to limit the
exploration to fewer nodes using αβ pruning which we present in Subsection 3.3.2. The
above algorithms are guaranteed to compute the optimal strategy in two player deterministic
zero-sum games with perfect and complete information. According to Zermelo theorem
[Zermelo, 1913], in this specific class of games, either one of the players has a winning
strategy regardless of what its opponent plays or both players can guarantee themselves a
draw. However, many games also present chance events or hidden events. For such games,
a variant using chance nodes can be applied called expectimax described in Subsection
3.3.3.

3.3.1 Minimax search

Minimax search is the classical depth-first search method for sequential two-player zero-
sum games. It is based on Von Neumann’s minimax theorem [Neumann, 1947] and, hence,
guaranteed to return the optimal move if applied to the whole game tree in a two player
zero-sum deterministic game with perfect information. The two players are called Max and
Min. Max player is the player playing at the current state of the game while Min player is
its opponent. For games having a small state space such as Tic-Tac-Toe, the search tree
used at each step is generally the whole game tree. However, if the state space is too big,
it is practically impossible to explore the whole game tree. Thus, only a small portion of
the game tree is used as the search tree. A common approach is to consider the subtree
containing all nodes of the game tree until a certain depth d. The algorithm performs a
depth-first exploration of the search tree to find the optimal move for Max player to play.
The time complexity of such an algorithm is O(bd) and space complexity is O(bd) with b the
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average branching factor of the game, i.e. the average number of moves per state. A value
will be assigned to the terminal nodes of the search tree corresponding to the Max player’s
payoff. For example, a win for the Max player could be rewarded by 1, a loss by −1, a draw
by 0 and an undetermined issue (if the terminal node in the search tree is not a terminal
node in the game tree) by 0.

The principle of this method is the following: Max player tries to maximise its payoff and
the Min player tries to minimise it. We recall that, as we are studying a two player zero-
sum game, the fact that Min tries to minimise Max payoff is equivalent to Min trying to
maximise its own payoff. A node corresponding to Max player’s turn will be assigned the
maximum value amongst its children whereas a node corresponding to Min player’s turn
will be assigned the minimum value amongst its children. The minimax algorithm backtracks
these values from the terminal nodes of the search tree to its root using recursion. The
algorithm then returns the move leading to the root node’s child with the highest value. An
example is provided in Figure 3.3 for the game Tic-Tac-Toe.
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Fig. 3.3.: An example of a minimax search in Tic-Tac-Toe

In this example, the Max player is represented by the crosses and the Min player by
the draughts in the Tic-Tac-Toe game. Values for move a1, a6 and a10 are backtracked
recursively from the terminal nodes of the game. As action a6 and a10 leads to a loss
while action a1 leads to a draw for Max player, the minimax algorithm returns action a1.
These actions are not named randomly but are named after their order of passage in this
depth-first search method.
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3.3.2 αβ search

Exploring every node in the minimax search tree to compute the value of the root node and
return the best move is unnecessary. Some branches of the search tree can be completely
disregarded if they are determined as suboptimal early on. This method of eliminating
branches to avoid exploring uselessly is called pruning. αβ pruning [Knuth, 1975] is one of
the most commonly pruning techniques applied in minimax trees.

αβ pruning is a technique that keeps in memory two bounds α and β for each explored node
for which the algorithm hasn’t yet determined its value. At any node, α corresponds to the
minimal value and β to the maximal value that Max player can obtain from this node given
the search performed so far. The real value of the node is in the interval [α, β]. Thus, from
these bounds, it is possible to identify if a branch is suboptimal without fully exploring it and,
hence, eliminate it. The effectiveness of such a technique is highly dependent on the order
in which the states are examined. Therefore, an ordering function is often implemented to
guide the exploration of nodes. An optimal ordering function enables the αβ algorithm to
examine the best successors first. In this best case, the time complexity is dropped to O(b

d
2 )

whereas it was O(bd) for minimax. For example in chess, the simple ordering function that
tries to capture first, then tries to avoid threats, then tries to forward moves and finally tries
backward moves gets close to O(b

d
2 ) [Russell, 2021]. If a random move ordering to the αβ

is applied then the time complexity of the algorithm is dropped to O(b
3d
4 ).

Figure 3.4 shows a simple example of how the αβ algorithm proceeds with no ordering
function, i.e. nodes are explored in the same order as the minimax algorithm. At the
beginning of the game, no guarantees are given on the value of root A. Thus, the real value
of A is between αA = −∞ and βA = +∞. The algorithm then explores node B. As B isn’t a
terminal node, then αB = −∞ and βB = +∞. The next node is a terminal node which has
for value 5. This value is backtracked recursively to node B. As B is a Min node, then 5 is
assigned to βB which means that the maximum value that Max player can get given the
current information if it moves to the B node is 5. The two other children of B are explored.
Therefore, as all nodes of subtree with root B have been examined, the real value of B is
known and is equal to the minimum value of its children which is 5. Knowing that if Max

player plays B, its payoff will be of 5, 5 is assigned to αA. The next node C is explored and
its first child has value 0 so βC = 0. Max player knows that, if it moves to C, its maximum
payoff will be 0 whereas if it moves to B its payoff will be 5 (βC ≤ αA). Therefore, there is
no point in exploring subtree with root C anymore and pruning is applied on the rest of the
branches of this subtree. The last node D highlights the fact that the move ordering function
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is not optimal as αβ is obliged to explore all its children before concluding that moving to D
is suboptimal for Max player.
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Fig. 3.4.: An example of a αβ pruning

3.3.3 Expectimax search

The minimax and αβ algorithms described as above can not deal with games where luck is
an integral part. These are games such as backgammon where rolling a dice determines
the actions of a player at each round or poker where a dealer deals cards. In the game’s
extensive form, these events are represented by the actions drawn by Nature according to
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a certain probability distribution. If ∀z ∈ ZNature, the probability distribution D(z) is known,
then these events can be represented in the search tree by chance nodes. The value of a
chance node will then be defined as the weighted average of the value of its children.

Vc∗ =
∑

c∈C∗
IP(c)Vc (3.2)

where c∗ is a chance node, C∗ is the set of children of c∗, IP(c) is the probability that child c

will be chosen according to the corresponding distribution D(c∗) and Vc is the value of node
c.

Thus, by adding chance nodes to the search tree, two player games presenting chance
events with known probabilities can be dealt with using the same process as the minimax
algorithm. This new algorithm is named expectimax [Michie, 1966]. However, α and β can’t
be computed at chance nodes. There exist other pruning techniques to avoid exploring the
whole expectimax search tree [Schadd, 2009].

3.4 Adversarial search in n-player games

The above algorithms can only be applied in two player zero-sum games. However, many
games are played by more than two players. We refer to these games as n-player games.
In this section, we briefly describe basic adversarial search methods applied in n-player
games. Games considered hereafter are no longer necessarily zero-sum games.

3.4.1 Maxn search

Maxn [Luckhart, 1986] is probably the most popular technique used in n-player games.
The outcome obtained at each leaf node of the search tree is a vector of size n, equal to
the number of players. The values are backtracked recursively to the root node. At each
node, the vector which is backpropagated is the vector that maximises the score of the
player playing at this specific node. Thus, in a two player zero-sum game, maxn search is
equivalent to minimax search.

Figure 3.5 illustrates the backpropagation process of maxn search in a three player non-
zero sum game. Moreover, this example highlights an important problem concerning the
backpropagation in case of ties. Indeed, player B has the choice between backpropagating
(2, 6, 4) and (3, 6, 3). Depending on the tie breaking rule, maxn may return a different
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solution. A common tie breaking rule is to choose to backpropagate the vector which has
the lowest value for the root player. If ties still remain, then the vector is selected randomly
amongst the remaining vectors. This is the tie breaking rule used in Figure 3.5. αβ pruning
can not be applied with maxn but other pruning methods exist [Sturtevant, 2000]. This
algorithm is easily extended to n-player games presenting moves by Nature with known
probabilities by introducing chance nodes.

(2,6,4) (4,2,1) (3,6,3) (2,1,1) (2,3,2) (5,1,4) (4,4,4) (1,2,3)

(4,4,4)(5,1,4)(3,6,3)(2,6,4)

(2,6,4) (4,4,4)

(4,4,4)

A

C

B

A

Fig. 3.5.: An example of maxn search

3.4.2 Other classical adversarial search methods

Two other interesting adversarial search methods in n-player games are Paranoid search
and Best reply search as they both use a minimax search tree. This enables them to use
αβ pruning and, hence, spend less time exploring the search tree.

Paranoid search [Sturtevant, 2000] is based on the assumption that all opponents team up
against the root player. Thus, under this assumption, the search tree can be represented as
a minimax search tree where the Max player corresponds to the root player and the Min

player to its opponents.

In Figure 3.6, we have plotted the paranoid search in the same game displayed in Figure 3.5.
The game is reduced in a two player zero sum game using the utility of the root player as
only outcome at the leaf nodes of the search tree. The value of the game, defined in Section
2.2.2, at the root node is then backtracked recursively using the minimax algorithm.
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Fig. 3.6.: An example of paranoid search

One of the main disadvantages of paranoid search is that, as the assumption that all
opponents form a coalition against the root player is usually false, the player tends to play
too defensively. Indeed, as paranoid search tries to find the best solution in the worst-case
scenario, more optimistic search algorithms usually compute better strategies.

To overcome this, Best-Reply search [Schadd, 2011] provides a less pessimistic view by
allowing only one opponent to make a move instead of all opponents. This algorithm also
reduces the n-player game in a two player zero-sum game using the utility of the root player
as only outcome at the leaf nodes of the search tree. For each possible move of the root
player in the search tree, the best counter amongst its opponents is selected. Thus, any
sequence of moves in the search tree alternates between a decision taken by the root
player and the best counter played by one of its opponents. The minimax algorithm is then
applied to this minimax search tree. This adversarial search method gives the opportunity
to explore more Max nodes and, hence, is able to compute longer term strategies than
maxn search and Paranoid search. However, the best counter selected can sometimes lead
to illegal or unreachable states from the current state of the game. This can considerably
reduce the relevance of the best move proposed by Best-reply search.

3.5 Adversarial search in games with large state space

One of the biggest issues when dealing with games with large state space is that the leaf
nodes of the search tree are rarely terminal nodes of the game. This is problematic for the
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backpropagation process of the aforementioned algorithms as the game-theoretic values for
such states are generally unknown. To overcome such an issue, two standard methods are
generally used: heuristic evaluation functions and Monte Carlo evaluation. These methods
assign values to non-terminal nodes of the game in order to enable the backpropagation
process and the use of adversarial search methods.

3.5.1 Heuristic evaluation functions

Heuristic evaluation functions are estimators of the expected final outcome of a game
given its current state. Most evaluation functions consist in calculating various features
of a state and return a linear combination of these features as estimation of the final
outcome of the game. For example, a common heuristic evaluation function in chess is to
calculate the number of different pieces of each colour, i.e. the number of white pawns, the
number of black pawns, the number of white rooks, etc. The algorithm then returns a linear
combination of these features. The different feature weights of the linear combination are
generally either tuned by hand or by using different gradient methods. The choice of the
features is purely empirical. The combination of αβ search and complex heuristic evaluation
function achieved great success in the late 90s. For instance, the chess machine Deep
Blue, developed by IBM, defeated the World Chess Champion Gary Kasparov in 1997. Its
evaluation function is based on the recognition of 8000 patterns. A specific value is assigned
to each pattern. These patterns and their corresponding value were nearly all created/tuned
by hand, requiring a ton of expertise. Given a board’s position, the evaluation function
essentially returns the sum of values of the recognised patterns [Campbell, 2002].

To avoid such biased choices, neural networks taking the whole game state can be used as
evaluation functions. These neural networks can be trained by using different reinforcement
learning or supervised learning methods. One of the most famous adversarial search
algorithm which uses a neural network as evaluation function is AlphaZero [Silver, 2017]. It
is an improvement of author’s preceding algorithm AlphaGo [Silver, 2016] which defeated
one of the best Go players in the world, Lee Sedol, in 2016. By updating its weights through
self-play, AlphaZero has mastered games such as Go, Chess or Shogi.

It is important to note that the performance of an adversarial search method strongly
depends on the quality of its evaluation function. Indeed, as the values backpropagated to
the root node of the search tree are principally computed by the evaluation function, the
final selected best move by the adversarial search method highly depends on the evaluation
function.
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3.5.2 Monte Carlo evaluation

Constructing an efficient evaluation function can be complex. An alternative to estimate the
expected utility of a non-terminal state is to return the averaged outcome of several random
game plays from this state. This method is called Monte Carlo evaluation [Abramson, 1990].
More precisely, each simulation, also known as rollout, starts from the non-terminal state
which is being evaluated. During the rollout, each player plays a random move. When
the rollout reaches a terminal state, the final utility obtained by all players is computed
and saved. After a certain number of rollouts, the Monte Carlo evaluation returns the
average utility obtained by each player as estimation of the expected final outcome of the
non-terminal state it is evaluating.

Monte Carlo evaluation achieved great success in deterministic games such as Go. Indeed,
applying such a method with a minimax tree of depth 1 gave promising results in [Bouzy,
2004]. Moreover, Monte Carlo evaluation can also be applied to non-deterministic games
such as backgammon [Tesauro, 1996].

The main drawback of Monte Carlo evaluation is that it is time-consuming. Indeed, to have
sufficiently precise statistics at each leaf nodes of the search tree, many rollouts need to be
performed. Thus, to apply Monte Carlo evaluation, the search tree needs to be of relatively
small depth.

3.6 Bandits

Performing the same number of rollouts for each leaf node of the search tree is one of the
major source of inefficiencies in adversarial search methods using Monte Carlo evaluation.
Indeed, each evaluation is time-consuming and not all leaf nodes need to have a high
number of rollouts before concluding that the action leading to it is suboptimal. A solution to
this issue was provided by the multi-armed bandit problem [Lattimore, 2020]. This problem
can be formulated as follows. Suppose there is a set of K slot machines and, thus, K arms
to pull. An unknown distribution Rk of mean µk is attributed to each slot machine k. The
player decides to pull an arm k each turn and obtains a reward drawn from the unknown
distribution Rk. Its aim is to maximise its cumulative reward and, thus, to figure out as
quickly as possible which slot machine has the highest mean µk.
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In its simplest form, rewards are assumed to be independent and identically distributed.
Each reward distribution is stationary. This is known as stationary stochastic multi-armed
bandit problem.

As all multi-armed bandit problems, it introduces an important issue known as the exploration-
exploitation dilemma. Exploitation consists in selecting the arm which seems to have the
highest mean given the data observed so far. By doing so, the player tries to ensure itself a
certain reward level. However, such a decision can prevent the player from finding better
options. Exploration consists in selecting another arm by assuming that the data collected
so far is not sufficient to identify the arm with the highest mean. Selecting such an arm
and obtaining a bad reward will just reinforce the assumption that this arm is suboptimal.
This will also result in a cost for the player. However, if this arm obtains a high reward, this
could potentially mean that it is a better solution that the current arm used for exploitation.
Thus, by potentially discovering a better solution through exploration, the player might
considerably increase its future cumulative reward than if it had just sticked to pulling the
arm proposed by the prior exploitation phase.

One of the most popular ways to solve the stationary stochastic multi-armed bandit problem
is to use the Upper Confidence Bound algorithm (UCB) [Lattimore, 2020]. This method
computes an upper confidence bound of each arm’s mean. UCB is described in Algo-
rithm 1.

Algorithm 1 UCB
Input: The exploration factor C
for n = 1, 2, ... do

• If an arm hasn’t yet been selected then pull this arm.

• Otherwise pull arm k that maximises

x̄k + C

√
log(n)

nk

with x̄k the average reward obtained for arm k and nk the number of times arm k
has been pulled.

• Update x̄k with the obtained reward xk.

end for

The term x̄k encourages the algorithm to select arms with high empirical mean while the
term

√
log(n)

nk
encourages the algorithm to select arms which have not been pulled often. The
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tradeoff between exploitation and exploration is controlled by the coefficient C. One way of
selecting the exploration factor C is to choose one which satisfies Hoeffding’s inequality.

Definition 3.1. Hoeffding’s Inequality [Lattimore, 2020]: If Z1,...,ZN are independent ran-
dom variables almost surely in [a, b] then for all δ ∈ [0, 1], we have:

P

 N∑
t=1

Zt − E(
N∑

t=1
Zt) ≥ (b− a)

√
N

2 log(1
δ

)

 ≤ δ (3.3)

Under the assumption that the rewards are in [0, 1], it can be shown that the Hoeffding’s
inequality gives us C =

√
2 for an optimal tradeoff. This specific UCB algorithm is called

UCB1 [Auer, 2002a].

One famous extreme variant of the multi-armed bandit problem is the adversarial multi-
armed bandit problem [Auer, 1995]. No statistical assumptions are made about the genera-
tion of rewards as it was the case for the stationary stochastic multi-armed bandit problem.
At each turn, an adversary selects a reward function which maps each arm k to a specific
value rk. Simultaneously, the player pulls an arm k and receives reward rk. The adversary is
considered adaptive in the sense that it can learn a player’s strategy. Given its knowledge of
a player’s strategy, it selects the worst-case reward function. Hence, having a deterministic
strategy as it is the case with the UCB1 algorithm can easily lead to poor performances.
Thus, in order to maximise its cumulative reward, a player must maintain a probability
distribution over the arms. Then, each turn, the player samples an arm according to this
distribution and pulls it.

One of the most popular and simplest approaches to solve the adversarial multi-armed
bandit problem is to use the EXP3 algorithm [Auer, 1995], which stands for “exponential-
weight algorithm for exploration and exploitation". It is based on mixing two different
distributions: a uniform distribution and a Gibbs distribution. The first distribution is used for
exploration and the second for exploitation. EXP3 is fully described in in Algorithm 2:

By dividing reward xk by the probability of selecting arm k, sk acts as an estimate of
the sum of rewards for arm k over all iterations n and not just over the iterations where
arm k is selected. The tradeoff between exploitation and exploration is controlled by two
hyperparameters: γ and η. According to [Auer, 2002b], a good tradeoff between exploitation

and exploration can be found for γ = min(1,

√
K ln(K)
(e −1)n ) and η = γ

K where e is the base of

the natural logarithm.
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Algorithm 2 EXP3
Inputs: Hyperparameters γ and η
Initialisation: Set sk = 0 for k = 1, ..., K
for n = 1, 2, ... do

• Select arm k with probability pk:

pk = γ

K
+ (1− γ) eηsk∑K

l=1 eηsl

• Receive reward xk

• Update sk = sk + xk
pk

for selected arm k

end for

A game can easily be modelled as an multi-armed bandit problem by representing the
different moves of a player as arms. Each time an arm is pulled, a reward is drawn through
a simulation exactly the same way as in Monte Carlo evaluation rollout, i.e. players play
randomly from the corresponding state until a terminal state is reached. The obtained
utility of the player is then used as reward. After a certain number of iterations, the bandit
algorithm returns the move with the highest average reward.

3.7 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an algorithm which combines tree-search and Monte
Carlo evaluations without separating the min-max phase (or maxn if the game isn’t a two
player zero-sum game) from the Monte Carlo phase [Coulom, 2006]. More precisely, MCTS
is a breadth-first search method which builds iteratively a search tree and runs Monte-
Carlo rollouts at its leaf nodes. Each node represents a possible future state of the game
and diverse statistics are stored such as the average score found in the corresponding
subtree or the number of visits. The directed links between nodes and their children
correspond to the actions leading to the next states. MCTS repeats a process named
search iteration generally divided into four phases until some predefined computational
budget (time, memory, iteration constraint) is reached. (1) The selection phase selects a
path from the root to a leaf node of the search tree. (2) The expansion phase chooses one
or more children to be added to the search tree from the selected leaf node according to
the available actions (3) The rollout phase simulates the outcome of the game from the
newly added node. (4) The backpropagation phase propagates backwards the outcome of
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the game from the newly added node to the root in order to update the diverse statistics
stored in each selected node. The different steps of MCTS are displayed in Figure 3.7.

Selection Expansion Rollout Backpropagation

Search iteration

A selection strategy is
used to select a path
from the root to a leaf
node of the search tree

A new node is
added to the
search tree

A rollout strategy is
used to simulate a
game play

The obtained results
are backpropagated
from the newly added
node to the root

Fig. 3.7.: Monte Carlo Tree Search scheme

3.7.1 Selection

The selection phase consists in selecting a path from the root to a leaf node of the search
tree. A leaf node of the search tree is either a terminal node of the game or a node which
has not got all of its children yet included in the search tree. The choice of the selected child
throughout the path is done by using a selection strategy which balances exploration and
exploitation. As the selection of a child can be seen as a multi-arm bandit problem, bandit
algorithms are often used as the selection strategy. The most popular bandit algorithm used
for MCTS is the Upper Confidence bounds applied to Trees (UCT) proposed by Kocsis and
Szepesvári [Kocsis, 2006]. It is a direct application of the UCB algorithm seen in Subsection
3.6. From a selected node y, the selection strategy UCT chooses the child x with the
highest score qx:

qx = rx

nx
+ C

√
log(ny)

nx
(3.4)

where rx is the sum of rewards found in the subtree with root x, nx is the number of visits of
child node x, ny is the number of visits of parent node y and C the exploration factor.

Other bandit-based selection strategies have also been used in the literature such as
UCB1-Tuned [Auer, 2002a] or Exp3 [Auer, 1995].
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Many tree-policy enhancements have been proposed throughout the years [Browne, 2012;
Świechowski, 2023]. The most famous are probably All moves as first (AMAF) [Gelly, 2011]
and Rapid action value estimation (RAVE) [Gelly, 2007] initially created for the game Go.
Both methods aim to share knowledge between related nodes in the search tree. The major
assumption behind these methods is that a move will generate similar value if played later
on. Hence, one can share statistics between actions played at different states. This results
in fast but biased estimates of the action values.

In this thesis, we especially focus on methods which incorporate domain knowledge into
the selection strategy. For instance, one could add small rewards or penalties to moves
matching some criteria. This biases the selection strategy in favour of moves considered as
good according to some expertise. In the game Catan, Szita et al. [Szita, 2009] considerably
increase the performance of their MCTS by adding virtual wins to their selection strategy
for settlement-building actions and city-building actions.

3.7.2 Expansion

The expansion phase consists in choosing which children of the leaf node obtained in the
selection phase are expanded to the search tree. One or more children can be added
at each expansion step. A common expansion strategy is to select randomly only one
non-expanded child of the selected leaf node and add it to the search tree [Coulom, 2006].

Choosing wisely which node to add to the search tree can significantly enhance an MCTS
performance. Indeed, expanding nodes related to favourable actions first can be source of
improvement. This is generally performed by using a move ordering function. Moreover, in
games with a high branching factor, the search tree grows sideways which prevents in-depth
inspection of promising branches. The aim of action reduction methods is to reduce this
effect by adding a limited number of children for each node. For instance, one could prune
non-expanded nodes which are related to bad actions according to some expertise or
heuristic knowledge. This can enhance an MCTS performance as it reduces the search
space and avoids useless exploration. In the game Diplomacy, expanding nodes using the
most promising actions first and pruning non-expanded nodes which don’t reach a minimal
value according to a certain metric considerably improves the quality of the MCTS used
for the strategic component of this game [Theodoridis, 2020]. Furthermore, an interesting
approach considering tight time constraints is progressive unpruning [Chaslot, 2008a]. At
first, only a limited number of children are added to the search tree. For instance, in Mango
(a famous MCTS applied to Go), only a maximum of 5 nodes are initially expanded for
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each parent node in the search tree [Chaslot, 2008a]. Then, each time the number of visits
of a parent node reaches a certain level, new children are added to the search tree. By
progressively unpruning children, one can obtain a good compromise between in-depth
inspection and exploration given tight time constraints.

3.7.3 Rollout

In the rollout phase, moves are played starting from the newly added node using a rollout
strategy until the game ends in order to simulate the outcome of the game from this
particular node. In n-player games, the outcome is a vector of size n where each index
corresponds to the utility obtained by each player at the end of the playout. As it was the
case for the minimax algorithm, in a two-player zero sum game, a single value is sufficient.

To simulate a game, the default rollout strategy used in MCTS is usually to play randomly.
Applying search techniques or incorporating domain knowledge in rollout strategies can
significantly improve the quality of the simulations by making them more realistic and, hence,
improve the overall performance of the algorithm. For instance, using a minimax algorithm
at search depth 2 as rollout strategy considerably increases the win rate of MCTS in the
game Connect-4 [Baier, 2014]. More specifically, this minimax algorithm could find forced
wins and avoid forced losses by seeing two steps ahead. If neither were found, it returns
a random move. Domain knowledge can also be easily integrated in the rollout strategy
through patterns. More precisely, if a pattern is detected by a player during the rollout
phase, then it will play a specific move. For example, MoHex [Arneson, 2010] uses bridge
patterns in its rollout strategy in the game Hex.

Given a certain time budget, using too sophisticated rollout strategies may be unproduc-
tive. Indeed, if computing each move in the rollout is too expensive, this will drastically
diminish the number of search iterations performed by the MCTS and, hence, impact its
performance. Thus, it is important to achieve good sampling by computing realistic playouts
without consuming too much time. Moreover, if the rollout strategy is too deterministic, the
exploration of the search space will be too selective and, hence, the quality of the sampling
will suffer [Szita, 2009].

Another issue which is worth pointing out is that, when a player needs to play an action
quickly, running a rollout until the game ends might not be very effective, especially if the
terminal nodes of the corresponding game have great depth. One possible alternative is
to terminate the rollout early at an arbitrary depth and apply an evaluation function to the
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last state encountered. It has been shown in [Lorentz, 2016] that even a weak evaluation
function can sometimes outperform long random rollouts in certain board games.

3.7.4 Backpropagation

The backpropagation phase consists in propagating backwards the outcome of the game
obtained in the rollout phase from the newly added node to the root node to update the
statistics stored in each selected node. The most popular backpropagation strategy is to
save, for each node of the search tree, the average utilities of all rollouts performed through
this node.

3.8 Related works on MCTS

In this subsection, we give an overview of previous applications of MCTS in many classes
of games. We especially focus on games which share similar general game properties with
our bidding game in SAA.

3.8.1 Application of MCTS to two-player deterministic zero-sum
games with perfect and complete information

As Artificial Intelligence (AI) research on games has mainly focused on two-player zero-sum
deterministic games with discrete action spaces, perfect and complete information, MCTS
has especially been applied to such games [Browne, 2012]. This tree-search algorithm
is mostly known for its application to connection games such as Hex [Arneson, 2010]
or Havannah [Teytaud, 2009] and combinatorial games such as Go [Lee, 2009; Coulom,
2006] or Othello [Robles, 2011] where it achieved state-of-the-art performance. As already
mentioned in Subsection 3.7.1, the most popular variant of MCTS is UCT. Its popularity is
especially due to the contributions of Kocsis and Szepesvári [Kocsis, 2006] who proved
that the probability of playing a suboptimal action with UCT converges to zero at polynomial
rate as the number of search iterations grows to infinity. In other words, the search tree of
UCT converges to the minimax tree and, therefore, the selected action is optimal. However,
such guarantees only hold for two-player zero sum games with perfect and complete
information.
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3.8.2 Application of MCTS to n-player games

In n-player zero-sum games, a common approach is to use MCTS-maxn [Nijssen, 2013].
This algorithm uses a maxn tree structure. Its UCT variant achieves promising results
in games such as Chinese Checkers [Sturtevant, 2008]. Other variants are proposed in
[Nijssen, 2012a] using Paranoid and Best-reply tree structure in n-player games such as
Chinese Checkers, Blokus, Focus and Rolit. However, using such tree structure seems to
lead generally to weaker MCTS algorithms than its maxn variant.

Little work has been done regarding applications of MCTS to n-player non zero-sum games.
This is due to the fact that the majority of adversarial games have only two possible
outcomes: either there is one winner and the rest of the players lose or it is a draw.

3.8.3 Application of MCTS to non-deterministic games with chance
events

In non-deterministic games presenting chance events, two approaches are generally
privileged to apply MCTS. The first consists in adding explicit chance nodes to the tree
structure of the MCTS [Veness, 2011]. As it was also the case for expectimax search, this is
only possible if the probabilities of each decision taken by Nature are known. An alternative
approach is to use an open-loop variant of MCTS where the nodes in its search tree no
longer represent the different states of the game but a sequence of actions leading to them
from the root node. This results in a considerably smaller search tree than if chance nodes
were explicitly added as each sequence of actions corresponds to only one path in the
search tree. This open loop MCTS approach ended up becoming very successful and even
won the 2014 General Video Game Playing Competition (GVG-AI) [Perez-Liebana, 2015].
Given an infinite amount of time, the first approach will obviously perform better as decisions
will be taken in the search tree knowing exactly in which state it is while in the second
approach the same sequence of actions could lead to completely different states. However,
if the thinking time is relatively small, the second approach can perform better than the first
as it handles a smaller search tree.

3.8.4 Application of MCTS to simultaneous move games

Until now, we have essentially focused on adversarial search methods initially designed
for turn-based games. In simultaneous move games, an interesting approach is to use

84 Chapter 3 A survey on adversarial search



a Simultaneous Move MCTS (SM-MCTS). The main difference with the standard tree
structure of MCTS is that a joint move is selected at each node of the search tree in the
selection phase [Tak, 2014]. This introduces the indeterminism caused by the opponents in
changing the game state while a player takes an action into the tree structure of the MCTS.
Thus, the tree structure of SM-MCTS is more representative of the actual game as players
select their moves independently from one another. The most popular variant of SM-MCTS
uses UCT as selection index and is named Decoupled UCT (DUCT). However, DUCT has
been shown not to converge to the Nash equilibrium in two-player zero-sum simultaneous
move games even in one shot single state games [Schaeffer, 2009]. Nevertheless, DUCT
has been successful in general game playing. Another approach that achieves surprisingly
good performance in many simultaneous move games is to use the standard Sequential
UCT (SUCT) [Schaeffer, 2009]. However, as, in the selection phase, the move selected by
the root player is revealed before the end of the turn to its opponents, they can adjust their
actions given this extra information. Thus, SUCT tends to play defensively which can be a
handicap in some games.

It is known that the optimal policy at a simultaneous move node can be mixed [Cowling,
2012a]. Hence, Teytaud and Flory suggest in [Teytaud, 2011] to use EXP3 which returns
a mixed policy rather than UCB at simultaneous move nodes in the selection phase.
Furthermore, although MCTS is not explicitly designed to return a mixed policy, it usually
does in the sense that it can return different actions when applied to a same state. This
comes from the random nature of the rollout phase. Hence, MCTS applied to simultaneous
move games are usually not deterministic. For instance, an MCTS applied to the game
Rock Paper Scissors will usually return with the same probability one of the three actions.

3.8.5 Application of MCTS to imperfect information games

In the literature, we identify three types of MCTS which are applied to imperfect information
games: Determinized MCTS, Information-State MCTS and Belief-State MCTS.

• Determinization is one of the most popular approach to compute a good strategy in
imperfect information games. It generates an instance of the equivalent deterministic
game of perfect information where all hidden and random information is assumed
known to all players. For example, a determinization of the game Phantom Go (a
variant of Go where a player can not see their opponent’s stones) is an instance of
the actual game Go starting from a particular state. This state is generated such
that it is compatible with the player’s observations of the Phantom Go game played
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until now. From this state onwards, all stones played are visible. Many determinized
games are generated and a standard MCTS is applied to each different instance. The
results obtained in each independent search tree are then combined. This is known
as separate-tree determinization and is similar to root parallelisation [Chaslot, 2008b].
Different combinations are possible. For example, the Ensemble UCT method [Fern,
2011] sums for each pair of state-action the utilities obtained in all the different search
trees and divides them by the total number of visits. The action at the root which
maximises the preceding score is then selected. Another possible combination is to
play the action which has been the most selected across the different search trees.
This was used to combine the results of many UCT in the card game Dou Di Zhu
[Whitehouse, 2011]. However, determinization faces three main issues:

– It is memory consuming. This roughly implies that, for a same fixed memory
budget, if we build N determinized MCTS trees, each search tree must perform
N times less search iterations than if it was built on its own.

– Strategy fusion [Frank, 1998]: In different determinizations, a search algorithm
might select different actions in states belonging to a same information set.
However, theoretically, a player is supposed to play the same way in states
belonging to a same information set. Hence, this constraint imposed on a player’s
strategy is broken when one combines strategies computed in deterministic
games with perfect and complete information.

– Non-locality [Frank, 1998]: This issue is raised by the fact that search algorithms
determine the best play at an internal node by only considering the subtree
starting from this specific internal node. However, in imperfect information
games, values of nodes may be impacted by decisions higher up the tree where
opponents steer the game towards certain states and away from others which are
indistinguishable for the concerned player (they belong to the same information
state) [Cowling, 2012b]. Hence, a move may appear optimal at an internal node
by only considering its subtree but not optimal if considering the whole search
tree. This issue does not happen in perfect and complete information games.

• To reduce the impact of the two first main issues of determinization, one approach
is to consider an MCTS search tree with nodes which no longer represent states,
as it was the case for the Determinized MCTS, but information sets. This is known
as Information Set Monte Carlo Tree Search (ISMCTS). By using ISMCTS, it is no
longer necessary to build many trees for each determinization. This partially solves
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the issue of managing one’s computational budget. Search iterations are divided
into five steps: determinization, selection, expansion, rollout and backpropagation.
The determinization phase consists in sampling a state from the current information
state and then only use nodes/actions in the search tree compatible with the selected
determinization. Some variants of ISMCTS completely eliminate strategy fusion. For
instance, Single-Observer ISMCTS with Partially Observable Moves (SO-ISMCTS
POM) and Multiple-Observer ISMCTS (MO-ISMCTS) [Cowling, 2012a] both eliminate
the strategy fusion issue. However, none of these algorithms is capable of eliminating
the non-locality issue. This is mainly due to the fact that these algorithms do not
model belief distributions and sample determinizations uniformly at random. In the
game with imperfect information Lord of the Rings: The Confrontation, Cowling et al.
show in [Cowling, 2012a] that ISMCTS methods largely outperforms determinized
UCT because they devote their entire computational budget to a single tree.

• In order to reduce the impact of non-locality, a solution is to integrate opponent
modelling and calculation of belief distributions to the MCTS. This is the aim of
Belief-State MCTS (BS-MCTS) [Wang, 2015]. The nodes of its search tree represent
belief-states, i.e. each node represents a vector of states with their respective
estimated probability that the game is actually in that state. These probabilities, or
beliefs, are learned online using two methods known as Opponent Guessing and
Opponent Predicting. The algorithm has a sampling stage where a state is selected
according to the belief distributions. After the sampling stage, all hidden and random
information is revealed to the players. This method outperformed Determinized UCT,
SO-ISMCTS, MO-ISMCTS in Phantom Go [Cowling, 2012a]. Moreover, in Phantom
Go, this method completely eliminates strategy fusion and partially solves non-locality.

It is important to note that we have only focused here on how one could reduce the impact
of the three main issues induced by determinization. We insist on the fact that it does
not imply that one approach is generally better than the other. Indeed, depending on the
game, other issues may also impact each approach differently. For instance, in the game
Phantom (4,4,4) (a m,n,k-game with imperfect information), combining many Determinized
MCTS largely outperforms SO-ISMCTS and MO-ISMCTS given enough CPU time [Cowling,
2012a].
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3.8.6 Application of MCTS to games with incomplete information

Methods relying on a determinization process can easily be applied to games with incom-
plete information as hidden information is then assumed to be known by all players. Hence,
the same MCTS methods presented for games with imperfect information can be applied to
games with incomplete information. For instance, combining multiple determinized MCTS
trees is used in the game Magic: The Gathering [Cowling, 2012b]. MCTS has also been
applied successfully in Poker by integrating opponent modelling [Van den Broeck, 2009;
Ponsen, 2010].

3.8.7 Applications of MCTS to auction games

In 2018, Chowdhury et al. combined machine learning methods for the prediction of clearing
prices and MCTS to plan a bidding strategy across multiple time periods in Periodic Double
Auction [Chowdhury, 2018]. However, with exception of our work, MCTS has never been
applied to SAA.

3.9 Transposition table

As different sequences of actions can lead to a same game state, different nodes throughout
the MCTS search tree may represent the same game state. Reevaluating these nodes
each time from scratch and storing their statistics independently can become a major
source of inefficiency. Through the use of transposition tables [Childs, 2008], one can
store information about a game state once and then share it between its corresponding
nodes. Thus, any update about the statistics of a node will update the statistics of all
nodes representing the same game state. A transposition table is a hash table which
maps a game state (or information set) to information related to it. This information can
be diverse statistics such as the sum of rewards of a player or the number of times nodes
corresponding to this game state has been visited. This information can generally be
retrieved in two steps.
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The first step consists in converting a game state in a nearly unique integer through a
hash function. The integer assigned by the hash function to a game state is named hash
value. The best would be to use an injection between the state space and the set of natural
integers as hash function. However, in practise, due to memory constraints, only a limited
number of natural integers can be computed. This makes impossible the use of an injection
as hash function for games with a huge state space and, hence, there is a risk of collision
(type-1 error), i.e. a risk that two game states are assigned the same hash value. Zobrist
[Zobrist, 1990] proposes an hash function with an arbitrary small probability of collision.
This hash function was primarily made for board games but the idea can easily be extended
to other games. Suppose the game can be represented as a board of size l and the game
presents w different types of pieces. For example, in Chess, the board is of size l = 64 and
the game has w = 12 different types of game piece (white pawns, black pawns, white queen,
...). There are l×w different couples which can be formed by taking a location on the board
and a specific type of game piece. For each of these couples, a pseudo-random number is
generated and stored. The Zobrist hash function consists in applying the XOR operator to
all the pseudo-random numbers of the couples present in a game state. Depending on the
game, these pseudo-random numbers are 32-bit or 64-bit long. If the transposition table is
of size 2k, the k first bits of the generated hash value are used to find the location of the
game state in the transposition table. This is called the hash index. The remaining bits
are used to differentiate game states which have the same hash index in order to avoid
collisions (type-2 error). This is called the hash key. The hash key is saved in the entry of
the transposition table. The first step consists in computing the index of the transposition
table associated to a game state. The second step is just using this index to directly access
the desired information stored in the transposition table. Transposition tables considerably
reduce the search space and, hence, are a major enhancement for search algorithms.
However, they can be the source of two different errors: type-1 errors and type-2 errors.
Type-1 error occurs when two different game states share the same hash value. As the
hash indices and hash keys are the same, it is difficult to detect such an error. These two
different game states will then share the same entry in the transposition table. This will lead
to inaccurate information on each game state, especially in the case of stored statistics.
Type-2 error occurs if the hash index are the same for two different game states. However,
compared to type-1 error, this can be easily detected as the hash keys are different. Thus,
by a simple check of the hash keys, sharing the same information between two different
game states can easily be avoided in the case of type-2 errors.
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3.10 Conclusion

As a multi-round auction can easily be represented as a game in extensive form, using
adversarial search methods to compute an efficient bidding strategy in SAA seems to be
an appropriate research direction. However, not all aforementioned adversarial search
methods are suitable for our problem. Indeed, as SAA is an n-player game, minimax search
and αβ pruning are not applicable. Moreover, using search techniques which transform a
n-player game in a minimax game such as Paranoid search or Best-reply search seems
meaningless. Indeed, as these search methods assume that the aim of the opponents is to
diminish at all cost the root player’s utility, the value of the game backtracked at the root
node will either be zero or negative as the root player will either end up with no items or
exposed. Thus, the root player will be encouraged to drop out of the auction. Hence, the
most pertinent tree structure appears to be maxn where each opponent tries to maximise
their own utility.

SAA admits a huge information set space. It is practically impossible to explore the whole
game tree. Thus, as already explained in Subsection 3.5, we can use either heuristic
evaluation functions or Monte Carlo evaluation to overcome this issue and assign values
to non-terminal nodes of a search tree. As constructing an efficient heuristic evaluation
function is very complex, we decide to use Monte Carlo evaluation in this thesis. More
precisely, we decide to use MCTS which combines tree-search and Monte Carlo evaluation.
The tree structure of the search tree will obviously be maxn given what was stated previously.
Our aim throughout the thesis is to build an MCTS capable of bidding efficiently in SAA
by tackling simultaneously its four main strategical issues: the exposure problem, the own
price effect, the budget constraints and the eligibility management problem.

In the following chapters, we are going to introduce different MCTS approaches depending
on the general game properties of the bidding game considered as well as on the strategical
issues being addressed. All considered bidding games are n-player non zero-sum games.
We sum up these algorithms in Table 3.1.
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Introduced Name General game properties Strategical issues Selection strategy Small presentation

Chapter 4
(Section 4.4)

MSλ

Turn-based
Deterministic

Perfect information,
Complete information

Exposure
Own price effect

UCT with
selection penalties

Standard MCTS based on
two risk-aversion

hyperparameters λr and λo

Chapter 5
(Section 5.4)

SMSα

Simultaneous moves
Stochastic

Imperfect information,
Complete information

Exposure
Own price effect

Budget constraints
Activity rules

UCT with
scalarised rewards

SM-MCTS based on
risk-aversion

hyperparameter α

Chapter 6
(Section 6.3)

SMSα
EXP 3

Simultaneous moves
Stochastic

Imperfect information,
Complete information

Exposure
Own price effect

Budget constraints
Activity rules

EXP3 with
scalarised rewards

Replacing UCT in
SMSα by EXP3

Chapter 6
(Section 6.4.1)

SMSα
EXP 3

Simultaneous moves
Stochastic

Imperfect information,
Incomplete information

Exposure
Own price effect

Budget constraints
Activity rules

EXP3 with
scalarised rewards

Using expectation as
determinization and
applying SMSα

EXP 3
to the resulting game

Chapter 6
(Section 6.4.2)

DSMSα
EXP 3

Simultaneous moves
Stochastic

Imperfect information,
Incomplete information

Exposure
Own price effect

Budget constraints
Activity rules

EXP3 with
scalarised rewards

Generates separate trees
for each determinization on
which SMSα

EXP 3 is applied

Chapter 6
(Section 6.4.3)

SDSMSα
EXP 3

Simultaneous moves
Stochastic

Imperfect information,
Incomplete information

Exposure
Own price effect

Budget constraints
Activity rules

EXP3 with
scalarised rewards

Single-tree determinization
(as ISMCTS) with the use
of a variant of SMSα

EXP 3

Tab. 3.1.: Summary of all MCTS algorithms introduced in this thesis
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In this chapter, we present the first efficient algorithm which tackles simultaneously the
exposure problem and the own price effect. It is based on an MCTS which uses a new
prediction method of final prices for its rollout strategy.

We start by introducing a simplified model of SAA which is turn-based, deterministic, with
complete and perfect information. This model does not present any activity rules and
bidders are assumed to have unlimited budgets. This enables us to focus only on two
of the four main strategical issues in SAA. We name this simplified version d-SAA. We
then present the different complexities induced by the bidding game in d-SAA. We then
introduce a new concept for the prediction of final prices named frontier prediction of final
prices. We show that, in simple environments, the frontier prediction of final prices can be
computed in d-SAA through the convergence of a specific sequence. We then present our
bidding strategy based on MCTS. We name it MSλ. Its rollout strategy relies on our new
prediction method of final prices. Finally, we show through extensive numerical experiments
on typical examples of the literature and a large number of random instances that MSλ

significantly outperforms state-of-the-art algorithms in SAA presented in Section 2.4 and
achieves higher expected utility by taking less risks.

Most of the results presented in this chapter have been published in our article Monte Carlo
Tree Search Bidding Strategy for Simultaneous Ascending Auctions [Pacaud, 2022].

4.1 Deterministic model with complete and perfect
information of SAA (d-SAA)

4.1.1 Mechanism

In this chapter, we focus on a deterministic turn-based model with perfect information of
SAA [Milgrom, 2000; Cramton, 2006; Wellman, 2008] which we refer to as d-SAA. In this
specific auction, m indivisible goods are sold via separate and concurrent English auctions
between n players. Bidding occurs in multiple rounds. Players take turns bidding such
that, at each round, only the designated player is allowed to bid. The bid price of item j,
denoted by Pj , corresponds to the highest bid obtained so far for item j and, thus, is its
current selling price. At the beginning of each round, the bid price and the current winner
of each item is announced to each player. Hence, players are aware of all past actions
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taken by their opponents and the induced bidding game is with perfect information. All
bid prices are initialised to zero. As in the original SAA [Milgrom, 2000], the auction ends
when none of the players have submitted an admissible bid during their last round. This is
equivalent in our model to saying that the bid price of each item has not increased during n

consecutive rounds. After the auction closes, the items are sold at their current bid price to
their corresponding temporary winners. No activity rules are considered in this chapter.

4.1.2 Bidders’ modelling

As we do not consider activity rules or budget constraints in this chapter, a bidder i is only
defined by its value function vi and its utility function σi. A first reasonable assumption is to
consider both features as common knowledge [Szentes, 2003a; Szentes, 2003b]. Hence,
the bidding game induced by d-SAA is a complete information game. This assumption will
be relaxed in Chapter 6.

Moreover, in our model, a bidder can only submit on item j a bid P new
j equal to its current

bid price Pj plus the fixed bid increment ε: P new
j = Pj + ε. This simplification of the bidding

space is common in the literature on ascending auctions [Goeree, 2014; Wellman, 2008].
We make the classical assumption that a bidder will not continue bidding on an item that
it has temporarily won [Wellman, 2008]. Hence, in our model, a winner will always pay a
price for an item at most ε above the highest opponent bid.

4.1.3 Representation of the d-SAA game in extensive form

As many sequential turn-based games, the bidding game induced by d-SAA can be
represented in extensive form. Each node corresponds to a different state of the game
and each edge represents a different feasible bid. In a d-SAA game, a state is defined by
three features: the next player to bid, the bid price and the temporary winner of each item.
These three features are common knowledge. As a d-SAA game is a game with perfect
information, each player knows exactly which moves have been taken in the past by its
opponents and, thus, each information set is a singleton. In other words, an information
set corresponds to only one state. An example of a d-SAA game in extensive form with 3
players and one item (a player can either bid or pass) is displayed in Figure 4.1 with its
information sets. In this example, when three players pass consecutively, the auction closes
and each bidder i obtains its respective utility σi.
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Fig. 4.1.: A d-SAA game in extensive form with three players and one item

4.1.4 Comparing d-SAA and SAA

The only difference between the mechanism used in d-SAA and the one originally used
in SAA presented in Section 1.3.2.1 is that players take turns bidding. By this change, we
eliminate stochasticity and simultaneity from our problem. Indeed, ties between players
having bid the same amount on a given item can not occur in d-SAA. Hence, the temporary
winner is no longer selected randomly amongst these players. This facilitates future studies
and the conception of a simpler tree-search algorithm with no chance nodes [Veness, 2011]
and with a closed-loop implementation [Perez Liebana, 2015]. From the bidder’s point of
view, both mechanisms are strategically equivalent if the bid increment is small.

4.2 Complexities induced by the d-SAA game

4.2.1 General game properties

The game induced by d-SAA has the following general game properties:

• n-player game

• Non-zero sum game
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• Sequential: Players take turns bidding.

• Deterministic: As ties do not occur, an action played by a bidder always leads to the
same next state.

• Perfect information

• Complete information

4.2.2 Game complexities

We compute below the information set space complexity and the game tree complexity of a
d-SAA game. It is important to recall that, as the bidding game is with perfect information,
the information set space complexity is equal to the state space complexity (see Section
2.2.2). With the assumption of finite valuations, the auction finishes after a finite number of
rounds. Thus, we restrict our analysis on both complexities to a given number of rounds
R.

Theorem 4.1. Let Γ be an instance of the d-SAA game. Let n, m and R be respectively
the number of players, the number of items and the number of rounds. The state space
complexity of Γ is:

n−1∑
i′=0

(1 +
n−1∑
i=0

(R− i− i′)+)m1{R≥i′} (4.1)

where 1{z≥w} is the indicator function, equal to 1 if z ≥ w and 0 otherwise.

Proof. Let Γ be an instance of a d-SAA game. Let n, m and R be respectively the number
of players, the number of objects and the number of rounds in Γ.

In d-SAA, the index of each player corresponds to the first round where the player is given
the opportunity to bid. For example, player i can only submit its first bid at round i. Without
loss of generality, let’s reindex the players such that player 1 corresponds to the player
bidding at round R, player 2 corresponds to the player bidding at round R− 1 and so on.

Let’s calculate the number of different states that can take an item j given that the next
bidder to bid is bidder i′ = 1. After R rounds, item j remains either unsold or a bidder i

acquires it. A bidder i can acquire item j at different prices depending on its position in
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the game. Indeed, if i < R, the last opportunity to submit a bid for player i is at round
R− i + 1. Thus, the number of different prices that can take item j is R− i + 1 as the price
of an item can only be raised by ε each round. If i ≥ R, then player i will never have the
opportunity to bid and acquire item j. Thus, given that the next bidder to bid is bidder 1, the
number of different states that item j can take if won by bidder i in Γ is (R − i + 1)+ with
z+ = max(0, z). The number of different states that can take any item j, given that the next
bidder to bid is bidder 1, is then:

n∑
i=1

(R− i + 1)+ + 1 (4.2)

As all items are mutually independent, the number of different states given that the next
bidder to bid is bidder 1 is:

(
n∑

i=1
(R− i + 1)+ + 1)m (4.3)

The number of different states given that the next bidder to bid is i′ can easily be computed
by noticing that the last opportunity to submit a bid for bidder i′ is R − i′ + 1. Thus, we
apply the same reasoning as above for R− i′ + 1 rounds. This gives us that the number of
different states given that the next bidder to bid is bidder i′ and R− i′ + 1 ≥ 0 is:

(
n∑

i=1
(R− i− i′ + 2)+ + 1)m (4.4)

Thus, the state space complexity of Γ is:

n∑
i′=1

(
n∑

i=1
(R− i− i′ + 2)+ + 1)m1{R−i′+1≥0} (4.5)

where 1{z>w} is the indicator function, equal to 1 if z > w and 0 otherwise. This can be
rewritten as:

n−1∑
i′=0

(1 +
n−1∑
i=0

(R− i− i′)+)m1{R≥i′} (4.6)

Theorem 4.2. Let Γ be an instance of the d-SAA game. Let n, m and R be respectively the
number of players, the number of items and the number of rounds in Γ. A lower bound of
the game tree complexity of Γ is:

2m(n−1)⌊R
n ⌋ (4.7)
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Proof. It is important to remember that only one player bids per round of the d-SAA game
whereas all players bid during a round of the SAA game. To compute a lower bound of
the game tree complexity of the d-SAA game, we only need to notice that more branches
are created in n rounds of the d-SAA game than in one round of the SAA game with a
deterministic tie-breaking rule and with the assumption that no players bid on temporary
won items. Each time a player bids on an item in the d-SAA game, it directly becomes the
temporary winner of this item and, hence, increases the number of bidding possibilities of
its opponents. However, in the SAA game, as bids are simultaneous, the bid submission of
one doesn’t impact the bidding possibilities of the others. Hence, the number of bidding
scenarios is inferior in one round of the SAA game with deterministic tie-breaking rule than
in n rounds of the d-SAA game. Let’s compute a lower bound of the game tree complexity
of the SAA game with deterministic tie-breaking rule.

Let Γ′ be an instance of a SAA game with deterministic tie-breaking rule. Let n, m, R

and k be respectively the number of players, the number of objects, the number of rounds
and the number of admissible bids per object in Γ′. There are k + 1 ways of bidding on a
temporary lost item as each player has the choice between not bidding on it or submitting
an admissible bid.

Let’s first calculate a lower bound of the number of different branches created in the game
tree of Γ′ during a round.

Suppose player i is the temporary winner of mi objects. Thus, player i has (k + 1)m−mi

different ways of bidding. As this is the case for all players, there are (k + 1)n×m−
∑n

i=1 mi

different bidding scenarios and, hence, (k + 1)n×m−
∑n

i=1 mi − 1 new branches. Moreover,
as
∑n

i=1 mi ≤ m, the number of different branches created during a round is lower bounded
by (k + 1)m(n−1) − 1.

From this, a lower bound of the number of possible different paths can easily be calculated
by induction. Indeed, any non-terminal node starting a bidding round of the game tree of Γ′

induces at least (k + 1)m(n−1) − 1 new branches during a round and, hence, the game tree
complexity of Γ′ is lower bounded by:

R∑
l=0

((k + 1)m(n−1) − 1)l = ((k + 1)m(n−1) − 1)R+1 − 1
(k + 1)m(n−1) (4.8)

Thus, a lower bound of the game tree complexity of a SAA game with deterministic tie-
breaking rule Γ′ is O((k + 1)m(n−1)R).
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Hence, as k = 1 for a d-SAA game, a lower bound of the game tree complexity of d-SAA
game Γ is O(2m(n−1)⌊R

n ⌋).

Remark. The state space and game tree complexity grow respectively polynomially and
exponentially with the number of rounds R for a d-SAA game. In the case of homogeneous
environments (when all items are identical), both complexities are considerably reduced as
the number of different allocations per player is no longer 2m but m + 1. This simplification
is often used in the literature [Goeree, 2014; Wellman, 2008].

Example. The SAA, which took place in Italy in 2018, had 12 5G spectrum licences sold
between 5 telecommunication companies after 171 rounds [European 5G Observatory,
2018]. For such values, the state space and game tree complexities of the corresponding
d-SAA game are respectively greater than 1035 and 10491.

4.2.3 Strategical complexities

In addition to the difficulties generated by the high state space and game tree complexities
of the d-SAA game, we focus on its two main strategical issues: the exposure problem and
the own price effect. Both issues have already been fully detailed and illustrated in Section
2.2.3. As d-SAA does not present any activity rule and bidders have unlimited budgets, the
eligibility and budget management problems are not covered in this chapter.

4.3 A new prediction method: frontier prediction of final
prices

There is actually a gap in literature regarding the prediction of closing prices of an auction
as no current methods meet the three following desirable properties:

1. The concept exists in all auctions

2. It takes into account auctions’ particularities
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3. The final prediction is independent of a single specific strategy profile.

For example, concepts such as Walrasian price equilibrium [Arrow, 1971] or self-confirming
price prediction [Wellman, 2008] don’t always exist when preferences exhibit complemen-
tarities as it is the case in Example 1 (see Section 2.2.3). Standard tâtonnement processes,
such as the one used to compute the expected price equilibrium described in Section
2.4.2.2, return the same price vector regardless of the auction’s specificities (e.g., bid
increment ε). The final prediction is then completely independent of the auction mechanism
of d-SAA which is problematic. Computing an initial prediction by using only the outcomes
of a single strategy profile is relevant only if bidders actually play according to this strategy
profile. For instance, simulating SAA-c games where all bidders play SB and using the
average closing prices as initial prediction is relevant if the actual bidders play SB.

Thus, we introduce in this section a new concept for the prediction of final prices in d-SAA
named frontier prediction of final prices which meets the three above criteria. This concept
relies on the bidding strategy PP which is developed in Section 2.4.2. It is based on the set
of overestimation of final prices which we introduce for the first time in this thesis. We then
present a simple method based on a specific sequence which converges to the frontier
prediction of final prices. We prove this convergence in simple environments. We conjecture
that this result stands in more complex environments.

4.3.1 Overestimation of final prices

Definition 4.1. Let Γ be an instance of the d-SAA game. The function fΓ : R+
m 7→ εNm

is defined as the final prices obtained in Γ when all players play PP with initial prediction
p ∈ R+

m.

Remark. Due to the discrete nature of bidding in an instance Γ of the d-SAA game because
of the price increment ε, fΓ is a deterministic piece-wise constant bounded function. Each
region where fΓ is constant is delimited by a set of linear inequalities on the initial prediction
p of the form: e.p ≤ b with b ∈ R, p ∈ Rm

+ , e ∈ {−1, 0, 1}m. Thus, each region is convex as
they are defined as an intersection of hyperplanes.

Remark. Theoretically, a closed-form expression of fΓ can be computed for any instance Γ
of the d-SAA game. However, in practice, this can only be done for small instances. Thus,
fΓ(p) is usually computed numerically by simulating a d-SAA where all players play PP
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with initial prediction p. In Example 1 (see Section 2.2.3), for p = (11, 11), fΓ(p) = (1, 0) as
player 1 bids on the item of lowest index and player 2 does not bid as it predicts that the
price for both items is 22.

Definition 4.2. Let Γ be an instance of the d-SAA game. A price p is said to be an
overestimation of final prices in Γ if p ≥ fΓ(p) component-wise. Let OΓ be the set of
overestimated final prices in Γ, i.e., OΓ = {p ∈ Rm

+ , p ≥ fΓ(p)}. Conversely, a price p is said
to be an underestimation of final prices in Γ if p ≤ fΓ(p) component-wise.

Remark. If price p is an underestimation of final prices in game Γ and all players play
PP with initial prediction p, then there exists a round in Γ where, from this point, all
players play straightforwardly. The special case where p = fΓ(p) is referred to as a self-
confirming price prediction. Note that under certain conditions, the price vectors belonging
to Walrasian equilibria are included in the set of overestimated final prices. To be more
precise, a sufficient condition is that pj is greater than ε for all items and that the demand
set argmaxX σ(X, p) of each player is a singleton.

Remark. It is easy to exhibit an instance Γ of a d-SAA game such that OΓ isn’t a closed set.
Therefore, for practical issues, we consider the closure ŌΓ of OΓ.

4.3.2 Frontier prediction of final prices

It is based on a simple approach which uses the smallest overestimated final price as a
prediction for any d-SAA game instance Γ. Such a prediction has the merit of existing in all
auctions. Thus, the property (1) presented in introduction of this section is fulfilled.

However, the smallest overestimated final price may not be unique and, if so, we should
select the ones which are the most relevant to the instance Γ specificities. An effective
procedure would be to select the ones which are closest in average to their initial prediction
when applied to fΓ with a slight underestimation. A slight underestimation of a smallest
overestimated final price gives relevant information through fΓ on the strength of the bond
that ties the initial prediction to Γ. Indeed, players with high values will participate actively in
the auction and the resulting closing prices of some goods will exceed their initial prediction
by definition.
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However, slightly overestimating a smallest overestimated final price will generally give no
information through fΓ on whether the prediction and Γ are closely related. Indeed, nearly
all players will drop out of the auction instantly and, hence, the resulting closing price of
each good will rarely exceed ε. This is also generally the case without any modification of
the initial prediction if the smallest overestimated price isn’t a self-confirming price prediction.
The smallest overestimated prices which are the most relevant regarding Γ specificities are
referred to as the frontier prediction of final prices. Thus, property (2) is fulfilled.

As, by construction, our approach doesn’t rely on the results of a single specific strategy
profile, property (3) is fulfilled. Thus, the frontier prediction of final prices verifies the three
above requirements.

Definition 4.3. Let Γ be an instance of the d-SAA game. The set of smallest overestimated
final prices Omin

Γ is defined as Omin
Γ = argminp∈ŌΓ

||p||1.

Remark. We choose the Manhattan distance given the fact that the closed-form expression
of fΓ is defined by a set of linear inequalities on its initial prediction.

Remark. For any instance Γ of the d-SAA game, Omin
Γ is well defined as the closed set

ŌΓ contains the vector of prices maxi=1,...,n vi({1, ..., m}) × (1, ..., 1) and ∀p ∈ ŌΓ, ∀j ∈
{1, ..., m}, pj ≥ 0.

Definition 4.4. Let Γ be an instance of the d-SAA game. We define

gΓ : R+
m → R+

p 7→ lim
η→0+

1
ηm

∫
Ω=[0,η]m

||fΓ(p− z)− p||22dz.
(4.9)

For any Γ, we conjecture that the lower gΓ(p) is, the more the prediction of closing prices p

is relevant regarding Γ specificities.

Remark. It is important to note that, as fΓ is a piece-wise constant function, gΓ is a
piece-wise continuous function. Thus, gΓ doesn’t necessarily admit a minimum on Rm

+ .

Definition 4.5. Let Γ be an instance of the d-SAA game. Let l∗Γ = inf{gΓ(p)|p ∈ Omin
Γ }

be the lower-bound of gΓ on the set of smallest overestimated final prices. Let B(q, r) be
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the ball of radius r and centre q. For all γ > 0, we define Omin,∗
Γ,γ as the set of smallest

overestimated final prices which are γ close to the infimum.

Omin∗
Γ,γ = {p ∈ Omin

Γ , inf
{

gΓ(q)|q ∈ B(p, γ) ∩Omin
Γ

}
= l∗Γ} (4.10)

Definition 4.6. Let Γ be an instance of the d-SAA game. The frontier prediction of final
prices is defined as:

Omin∗
Γ = ∩γ>0Omin∗

Γ,γ (4.11)

The frontier prediction of final prices is the set of smallest overestimated final prices which
are γ close to the infimum of gΓ|Omin

Γ
, the restriction of gΓ to Omin

Γ , for any γ > 0.

Remark. If gΓ admits a minimum on Omin
Γ , then Omin∗

Γ ⊇ argminp∈Omin
Γ

gΓ(p).

Example. In Example 1 (see Section 2.2.3), it is easy to show that the set of overestimated
prices is OΓ = {p ∈ R2

+, p1 + p2 ≥ 20}. Thus, the set of smallest overestimated prices is
Omin

Γ = {(α, 20− α), α ∈ [0, 20]}. Given fΓ (see Appendix A), we have 7 different cases to
evaluate depending on the values of α:

• For α ∈ [0, 8[, gΓ((α, 20− α)) = (12− α)2 + (20− α− 1)2 so
inf{gΓ((α, 20− α))|α ∈ [0, 8[} = 137.

• For α = 8, gΓ((8, 12)) = 1
2(42 + 112) + 1

2(42 + 12) = 77

• For α ∈]8, 10[, gΓ((α, 20− α)) = (12− α)2 + (20− α− 11)2 > 5 and
limα→8+ gΓ((α, 20− α)) = 17

• For α = 10, gΓ((10, 10)) = 1
2((12− 10)2 + (11− 10)2) + 1

2((11− 10)2 + (12− 10)2) = 5

• For α ∈]10, 12[, gΓ((α, 20− α)) = (11− α)2 + (20− α− 12)2 > 5 and
limα→12− gΓ((α, 20− α)) = 17

• For α = 8, gΓ((12, 8)) = 77

• For α ∈]12, 20], gΓ((α, 20− α)) = (α− 1)2 + (20− α− 12)2 so
inf{gΓ((α, 20− α))|α ∈]12, 20]} = 137.
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Thus, the frontier prediction of final prices for Example 1 is {(10, 10)}.

Remark. Walrasian price equilibrium or self-confirming price predictions don’t exist in
Example 1, see Section 2.4.2.1 and Section 2.4.3.1 [Wellman, 2008].

Even when a Walrasian equilibrium exists, the frontier prediction of final prices seems to be
a more accurate prediction of final prices as it takes into account the mechanism of d-SAA.
For instance, consider the following simple example.

Example. Consider a d-SAA game with three players, one item and a bid increment ε = 1.
The first player values the item at 4.5, the second player at 4.7 and the third player at 4.9.

In this game, all Walrasian equilibria can be described with a price vector p ∈ [4.7, 4.9] and
an allocation vector returning the item to the third player. However, the set of overestimated
prices is OΓ = [4, +∞[ and, thus, the frontier prediction of final prices is the singleton
{4}. If the first player decides to play PP using as initial prediction the price vector of a
Walrasian equilibrium, then it immediately drops out of the auction. However, if the first
player decides to play PP using as initial prediction the frontier prediction of final prices
and all other players play SB, then it obtains the item for a price of 4 and has a utility of 0.5.
Thus, in this example, using a price vector of the frontier prediction of final prices instead
of the Walrasian equilibrium increases one’s utility. Moreover, the price returned by the
frontier prediction of final prices in this specific example is the unique self-confirming price
prediction of the bidding game as fΓ(4) = 4.

We list hereafter a few properties which have been proven for the frontier prediction of final
prices, mostly in simple environments.

Property 4.1. The frontier prediction of final prices exists in any instance Γ of the d-SAA
game.

Proof. Existence guaranteed by its construction.

Property 4.2. Let Γ be an instance of the d-SAA game. If m = 2, n = 2, infinitesimal ε and
both players have super-additive value functions, then Omin∗

Γ is a singleton.
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Proof. See Appendix B.

Property 4.3. Let Γ be an instance of the d-SAA game. If m = 2, n = 2, infinitesimal ε and
both players have super-additive value functions, then the sequence Pt+1 = 1

t+1fΓ(Pt) +
(1− 1

t+1)Pt with P0 the null vector of prices converges to the unique element of Omin∗
Γ .

Proof. See Appendix B.

Conjecture 4.1. Let Γ be an instance of the d-SAA game. The sequence Pt+1 = 1
t+1fΓ(Pt)+

(1− 1
t+1)Pt with P0 the null vector of prices converges to an element of Omin∗

Γ .

The convergence of the sequence Pt+1 = 1
t+1fΓ(Pt) + (1− 1

t+1)Pt to the unique element
of Omin∗

Γ = {(10, 10)} in Example 1 (see Section 2.2.3) is proved in Appendix A.2 with its
convergence rates. Moreover, in our numerical experiments, we observe that sequence Pt

converges in all undertaken d-SAA instances. However, we are unable to tell for complex
environments if its limit belongs to the frontier prediction of final prices. In the following
remark, we provide a proof direction that we consider promising to show that sequence Pt

converges in all d-SAA instances.

Remark. To prove the convergence of sequence Pt in all d-SAA instances, we believe that
one should rely on the same spatial representation for fΓ than the one displayed in Figure
A.1. More precisely, as seen in Section 4.3.1, the input space of fΓ can be divided into
convex regions for which fΓ is constant (each region is delimited by linear inequalities).
Thus, the trajectory of sequence Pt+1 = 1

t+1fΓ(Pt) + (1− 1
t+1)Pt will always follow a straight

path in these regions. Moreover, it can be shown that sequence Pt is confined to a bounded
space for all iterations t. From this representation, we think that the general proof can be
obtained in two steps: (1) Prove that any sequence with the above spatial representation
converges if it does not admit any "cycle" and (2) Prove that, for all d-SAA instances Γ,
the spatial representation of fΓ does not admit any cycle. In Figure 4.2, we provide an
example of a "cycle". Each coloured region corresponds to a region for which fΓ is constant.
For example, in the yellow region, fΓ(P ) = (1, 1). The arrows represent the dynamic of
sequence Pt. In this example, due to the cycle in the spatial representation, Pt does not
converge and goes round the polygon represented in red.
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Fig. 4.2.: A fictitious example of a cycle in the spatial representation of fΓ

4.4 MCTS bidding strategy

In this section, we present a closed-loop variant of MCTS-maxn [Nijssen, 2013] which
tackles simultaneously the own price effect and the exposure problem. We name it MSλ.
Each node of its search tree x stores the following statistics: the sum of rewards rx obtained
when selecting node x, the number of visits nx, the estimated lower bound ax and the
estimated higher bound bx of the reward support. Before running MSλ, we compute the
conjectured limit P ∗ ∈ Omin∗

Γ of sequence Pt+1 = 1
t+1fΓ(Pt) + (1 − 1

t+1)Pt. We use this
prediction of final prices P ∗ for the rollout strategy of MSλ. The four different phases of a
search iteration are described below.

4.4.1 Selection

The selection phase consists in selecting a path from the root to a leaf node of the search
tree. We propose a new version of selection index UCT [Kocsis, 2006] based on Hoeffding
inequality [Hoeffding, 1994] and an online estimation of the size of the reward support.
From a selected node y, the selection strategy chooses the child x with the highest score
qx:

qx = rx

nx
+ max(cx − ax, ε)

√
2 log(ny)

nx
− no_object(x)− risky_move(x) (4.12)

where rx is the sum of rewards obtained when selecting child node x, nx is the number of
visits of child node x, ny is the number of visits of parent node y, ε is the bid increment, ax
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is the estimated lower bound and cx is the estimated higher bound of the reward support
found in the subtree with root x. We fully detail each term of our selection strategy below:

• The two first terms come directly from the Hoeffding’s Inequality and give an upper
confidence bound on the average reward rx

nx
when selecting child node x using

max(cx − ax, ε) as an estimation of the size of the reward support.

• The third term no_object(x) is a penalty term which has been introduced to avoid
players from passing their turn if they have got nothing to lose by bidding on an
additional item and, thus, emulate rational behaviour. For instance, if a player is
currently winning a set of undesired goods and can increase its utility by directly
acquiring another item, it should continue to bid even though its chances of obtaining
any other item might be slim. We define no_object(x) as the maximum surplus a player
could obtain by just acquiring another item under the assumption that the auction
ends after its turn. More formally, let S−j be the set containing all goods except item
j. A player i′ will no longer bid on item j if ∀X ⊂ S−j , Pj + ε > vi′(X + {j})− vi′(X).
In other words, player i′ will no longer bid on item j if the maximum surplus it can
obtain by winning j is lower than the minimal admissible bid it needs to submit on j.
We define Πi

j = maxi′∈{1,...,n}\{i} maxX⊂S−j vi′(X + {j})− vi′(X)− ε as the minimal
price from which item j is considered as undesired by all opponents of i. If P x is the
price vector at child node x, i is the player bidding at parent node y and Xi

x the set of
goods temporarily won by player i at x, the penalty term is defined as

no_object(x) =


maxj∈{1,...,m}\Xi

x
(vi(Xi

x + {j})− vi(Xi
x)− Pj − ε)+

if {j′ ∈ Xi
x, P j′

x ≤ Πi
j′} = ∅

0 otherwise

(4.13)

The penalty no_object(x) reduces the risk of exposure of the root player. To illustrate
this, suppose that player 1 is currently winning both items at vector price P = (5, 5)
in Example 1 (see Section 2.2.3). It is player 2’s turn to bid. Player 2 knows that
player 1 will never bid on an item which bid price is strictly greater than 11. Hence,
player 2 knows, that by bidding aggressively on both items, it will acquire them in
the worst-case scenario for a price of 24. If player 2 decides to bid on both items,
then player 1 has the choice between passing, bidding on only one of the two items
or bidding on both items. Bidding on both items is unreasonable for player 1 as, if
player 2 passes, player 1 ends up with a utility of -2. Thus, the remaining choices for
player 1 are to bid on a single item or to pass its turn. Given the fact that player 2 is
better off by obtaining both items in the worst-case scenario than by just acquiring
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an item at the current bid price, player 2 will outbid player 1 if it decides to bid on a
single item. Thus, the three remaining moves for player 1 are equivalent as they all
lead to a utility of 0. Hence, it is highly possible that player 1 passes its turn if player
2 bids on both items. Believing that, player 2 might consider bidding on both items
to obtain a utility of 8 which is very risky. Thus, by introducing penalty no_object(x)
in our selection strategy, we favour the selection of actions where player 1 bids on
a single item and does not pass its turn. Hence, this decreases the average reward
of the action where player 2 bids on both items and ensures that it stays negative.
Ultimately, this discourages player 2 from bidding. Hence, player 2 passes its turn
and avoids obvious exposure.

• The fourth term risky_move(x) is a penalty term which has been introduced to deter
players from bidding on sets of goods which might lead to exposure. These are sets
that contain a subset of goods which, if acquired by the player i bidding at parent
node y, will result in a negative utility. In other words, if player i decides to pass all its
turns until the auction ends after just having bid on a set of items which might lead to
exposure, then there is a possibility that i ends up with a negative utility. The actions
leading to such sets are penalised by λivi({1, ..., m}) with λi ∈ [0, 1] a risk-aversion
hyperparameter. Depending on whether i is the root player r or not, λi either takes
the value λr or λo. The term vi({1, ..., m}) acts as a scaling factor. More formally, if
P x is the price vector at child node x, r is the root player, i is the player bidding at
parent node y and Xi

x the set of goods temporarily won by player i at node x, then Xi
x

is said to lead to exposure if ∃Y ⊆ Xi
x, σi(Y, P x) < 0 and the penalty term is defined

as

risky_move(x) =


λrvi({1, ..., m}) if Xi

x can lead to exposure for i = r at price P x

λovi({1, ..., m}) if Xi
x can lead to exposure for i ̸= r at price P x

0 otherwise
(4.14)

The following example illustrates how the penalty risky_move(x) reduces the risk
of exposure of the root player. Suppose that P = (0, 0) and it is player 2’s turn to
bid in Example 1 (see Section 2.2.3). Player 2 has the choice between passing its
turn, bidding on item 1, bidding on item 2 or bidding on both items. These moves
lead respectively to node x0, x1, x2 and x1,2 in the search tree. As σ2({1}, P x1) =
σ2({2}, P x2) = σ2({1}, P x1,2) = −1 < 0, then each bidding move is penalised by
λrv2({1, 2}). This deters player 2 from bidding and reduces its risk of exposure.
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This selection strategy is adapted to any scale and underlying distribution of rewards.

4.4.2 Expansion

The expansion phase consists in choosing which children of the leaf node obtained in the
selection phase are expanded to the search tree. In our MCTS, a node is chosen randomly
amongst the non-expanded children of the selected leaf node and added to the search tree.
The different statistics of this newly added node x are set the following way:

∗ rx = 0

∗ nx = 0

∗ ax = +∞

∗ cx = −∞

4.4.3 Rollout strategy

In the rollout phase, moves are played starting from the newly added node using a rollout
strategy until the game ends in order to simulate the outcome of the game from this
particular node. As the game considered is a n-player game, the outcome is a vector of
size n where each index corresponds to the utility obtained by each player at the end of
the simulation. To simulate a game, the default rollout strategy used in MCTS is usually to
play randomly. However, in the considered game, playing randomly will lead to poor quality
sampling. Indeed, unlike in Chess or Go, each action can drastically change the outcome of
the game. For example, a player who does not wish to buy any items can bid on all of them
by playing randomly and end up with an absurd negative payoff. Moreover, the probability
that everybody passes their turn is inferior to 1

2(n−1)m which leads to extreme high prices
and exposure of all players in expectation. Therefore, to guarantee good sampling, we
propose a new rollout strategy which is based on our prediction of final prices P ∗.

At the beginning of each rollout phase, we set P init = P ∗ + η where η is a random variable
which follows a bounded uniform distribution U([−ε, ε]m). During the simulation, each bidder
plays PP with initial prediction P init. Ties are still broken in favour of smaller subsets but no
longer by selecting the goods with the lowest indices. Instead, they are chosen randomly.
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The simulation ends when a terminal state of the d-SAA game is reached. By applying
noise to the initial prediction and by breaking ties randomly, players bidding behaviours are
diversified at each new simulation which improves the quality of sampling of MSλ.

4.4.4 Backpropagation

The backpropagation phase consists in propagating backwards the outcome of the game
obtained in the rollout phase from the newly added node to the root node to update the
statistics stored in each selected node. Let V be the vector of utility obtained in the rollout
phase. Let x be a selected node which has y as parent node. Let i be the player playing at
node y. The statistics at node x are updated as follows:

∗ rx ← rx + Vi

∗ nx ← nx + 1

∗ ax ← min(ax, Vi)

∗ cx ← max(cx, Vi)

4.4.5 Final move selection

The four above steps run until a computational criteria (time, memory, iteration constraint)
is reached. A final move selection is then performed to choose which action to play. We
decide to select the move leading to the child with the highest penalised average. More
formally, our final move selection chooses to play the action which leads to child x with the
highest quantity qx.

qx = rx

nx
− no_object(x)− risky_move(x) (4.15)

4.4.6 Transposition table

In order to share statistics between nodes of the search tree representing the same states,
we decide to use a transposition table. The hash function is described in Algorithm 3 and
uses information about the instance of the d-SAA game, the state represented at the root
node of the search tree x0 and the state being hashed represented at node x. As a state
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in a d-SAA game is defined by the player i to bid, the current bid price Pj and the current
winner Aj of each item j, using these as only inputs of our hash function regarding the
state being hashed is sufficient. Our hash function depends on a hyperparameter dmax

which corresponds to a strict upper-bound of the maximal depth of the final search tree.
In practise, setting dmax to 10 is more than enough. Let P 0 be the bid price vector at root
node x0 and P x be the bid price vector at node x. As a player can only raise the bid price of
an item by the bid increment ε each round,

P x
j −P 0

j

ε < dmax if the depth of node x is strictly
lower than dmax.

Algorithm 3 Hash function for d-SAA
Inputs Game: n number of players, m number of goods, ε bid increment
Inputs Root: Bid price P 0 at root node x0
Inputs Node: Bid price P x, current allocations Ax and i player bidding at node x
Hyperparameter: dmax a strict upper-bound of the maximal depth of the final search tree
step = dmax × n
h = i× stepm

for j = 1, 2, ..., m do
if Ax

j > 0 then h+ = (dmax × (Ax
j − 1) + P x

j −P 0
j

ε )stepj−1

end if
end for
return h

If the depth of every node x in the search tree is strictly lower than dmax, then our hash
function assigns a unique value to every different state represented in the search tree. This
value is then remapped to correspond to an index of the transposition table. If this value
has never been encountered, a new entry is created in our transposition table. By doing
so, given the fact that the maximal depth of the final search tree is strictly lower than dmax,
our hash function is a perfect hash function as no type-1 error or type-2 error occurs. In
practise, this will always be the case.

4.4.7 Interpretation of MSλ

Through the different Monte-Carlo simulations, MSλ is able to perform a cost-benefit
analysis of bidding on each set of goods. More precisely, MSλ judges if it is worthy to
form a collusion with the other bidders to keep prices low and, if so, separates the items
fairly according to the value functions of each bidder. This tradeoff between competition
and collusion is done by comparing the utility obtained by the different possible collusions
between bidders, which correspond to the shallow terminal nodes in the search tree, and
the estimated utility obtained by competing through the rollout phase of MSλ. Moreover,
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MSλ also uses the results obtained in the rollout phase to estimate the possible exposure
of each bidder. This is especially pronounced when bidders use an underestimation of
the frontier prediction of final prices as initial prediction of their playout strategy due to the
discrete uniform distribution as they bid more aggressively.

MSλ uses two hyperparameters λr and λo presented in (4.14) having both opposite effects
on the algorithm’s risk-aversion. Indeed, the higher λr is, the less the root player is likely
to bid on sets of goods which might lead to exposure whereas the higher λo is, the higher
the root player’s opponents are perceived as risk-averse and the more risky bids seem
beneficial.

The penalty no_object is introduced to reduce the selection of the unlikely favourable
scenario where the root player’s opponents pass their turn and potentially end the auction
with only undesired objects while the prices are still low. By doing so, our algorithm MSλ is
more robust regarding exposure and is encouraged to collude with others in order to keep
prices low.

4.5 Experiments

We now analyse the performance of our MCTS bidding strategy MSλ in a variety of d-SAA
games by comparing it to five other strategies:

• An MCTS which is similar to MSλ but without the penalties in its selection phase. We
name it MSnp for MSλ with no penalties.

• A UCB algorithm [Lattimore, 2020] using the same simulations and selection index as
our MCTS but without the penalties.

• Straightforward bidding (SB) [Milgrom, 2000] described in Section 2.4.1.

• The EPE algorithm [Wellman, 2008] described in Section 2.4.2.2. It is equivalent to
EDPE strategy as the game is with complete information.

• The SCPD algorithm [Wellman, 2008] described in Section 2.4.3.1.
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It is important to note that, in the upcoming results, none of the players are aware of their
opponents’ strategy.

The hyperparameters used for MSλ are λr = 0.1 and λo = 0.1. They are obtained by
grid-search. The experiments were run on a server consisting of Intel®Xeon®E5-2699 v4
2.2GHz processors. All algorithms were given a maximum of 30 seconds CPU thinking
time.

4.5.1 Test cases

One of the biggest advantages of MSλ compared to other existing methods is that it is able
to judge pertinently whether it is more beneficial to adopt a demand reduction strategy to
keep prices low or to bid straightforwardly on a set of goods. To highlight this capacity, we
use an experiment from [Brusco, 2002] in which two players participate in a 2-item auction
with additive value functions. The first player values each object as h and the second values
each one as 0 < ℓ ≤ h. For an infinitesimal bid increment ε,

• If h < 2(h− ℓ), it is more worthwhile for the first player to bid straightforwardly on both
goods. It will then obtain a utility of 2(h− ℓ).

• If h > 2(h− ℓ), the first player is better off by forming a collusion and conceding an
item to its opponent. It will then obtain a utility of h.

The four algorithms UCB, EPE, SCPD and SB always suggest to bid straightforwardly even
if h > 2(h − ℓ) and, thus, never propose demand reduction even in situations where it is
highly beneficial. However, MSλ always adopts the appropriate strategy. We plot in Figure
4.3 the payoff σ1 obtained by player 1 for each strategy given that player 2 plays optimally,
i.e., continues to bid on the cheapest item while its bid price is inferior to ℓ and player 1
has not conceded an item to player 2. This example shows that MSλ chooses the most
beneficial strategy, at least in simple environments.

Moreover, MSλ is capable of avoiding obvious exposure. For instance, in Example 1 (see
Section 2.2.3), MSλ suggests to player 2 not to bid. EPE and UCB also prevent player 2
from bidding. However, this is not the case for SCPD and SB which expose player 2 by
inciting player 2 to bid aggressively.
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Fig. 4.3.: Evolution of player 1’s utility σ1 depending on strategy versus player 2’s valuation ℓ in Test
experiment [Brusco, 2002] (h = 10, ε = 0.1) given that player 2 plays optimally

4.5.2 Extensive experiments

We study the performance of each algorithm mainly through our performance indicators.
Each experimental result has been run on 1000 different d-SAA instances. We will focus
on d-SAA with n = 2, m = 7 and ε = 1. With the exception of our work, all experimental
results in the literature are obtained for specific settings of SAA, i.e., using value functions
with some specific property such as superadditivity [Goeree, 2014; Wellman, 2008; Reeves,
2005]. Moreover, according to [Goeree, 2014], assigning values to each item and set of
items separately has only been undertaken in SAA instances with two items [Zheng, 2012;
Brusco, 2002; Brusco, 2009]. Most works prefer to use a one-dimensional type assumption
for tractability. For instance, in the case of super-additive value functions, synergies are
captured either by adding a known constant to the sum of individual item values or by
multiplying this sum by a known multiplier greater than 1. Hence, due generally to the
high specificity of settings in experimental results for SAA, it is difficult to conclude on the
effectiveness of a method in more generic settings. Therefore, we propose a more general
approach to generate value functions by making no additional assumption on its form.
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Setting 1. Let Γ be an instance of d-SAA with n ≥ 2 players, m ≥ 1 goods, bid increment ε

and maximum stand-alone value V > 0. Each player i has a general value function vi such
that vi(∅) = 0 and, for any set of goods X, we have

vi(X) ∼ U([max
j∈X

vi(X\{j}), V + max
j∈X

vi(X\{j}) + vi({j})]) (4.16)

where U is the uniform distribution.

Drawing value functions through a uniform distribution is widely used for creating auction
instances [Wellman, 2008; Reeves, 2005]. In our setting, the lower-bound ensures that vi

respects the free disposal [Milgrom, 2000] condition. The upper-bound caps the maximum
surplus of complementarity possibly gained by adding an item j to the set of goods X\{j}
by V . As valuations are always finite, any value function can be represented by our setting
for a sufficiently large V . For V = 0, only subadditive functions are considered. For V > 0,
goods can either be complements or substitutes. In our experimental results, value functions
are generated for each instance as above with V = 5.

Remark. The range of every value function in Setting 1 is contained within [0, V (2m− 1)].

As value functions are generated randomly and are associated to a bidder’s position, it
might be advantageous to play first on average for the 1000 different d-SAA instances.
Indeed, as players do not have the opportunity to play at the same bid price, the order in
which players submit their bids may have an impact on the auction’s outcome. To eliminate
such variance and guarantee a fair comparison between two strategies A and B, for each
d-SAA instance, a game will be run with the first bidder playing A and the second playing B

and another with the first bidder playing B and the second playing A.

4.5.2.1 Expected utility

We first analyse the performance of MSλ through the same empirical game analysis
approach as Wellman et al. [Wellman, 2008] which maps strategy profiles to the average
payoff obtained in the 1000 different d-SAA instances for each player. More precisely, we
study the symmetric normal form game in expected payoff where each player has the
choice between playing our MCTS bidding strategy MSλ or another specified strategy A.
The resulting empirical games for each possible strategy A are given in Figure 4.4.
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Fig. 4.4.: Normal-form payoffs for a d-SAA game with six strategies

It is clear that, in each empirical game, the deviation from UCB, EPE, SCPD, SB or MSnp

to MSλ is always profitable. Thus, the strategy profile (MSλ, MSλ) is the only Nash
equilibrium of the normal-form d-SAA game in expected payoffs with strategy set {MSλ,
UCB, EPE, SCPD, SB, MSnp}. It is also important to note the significant increase in
average payoffs between the strategy profile (MSλ,MSλ) and the other strategy profiles
where all bidders play the same strategy. For instance, in Figure 4.4, the profile (MSλ,MSλ)
has an increase of 108%, 247%, 108% and 175% compared respectively to (MSnp,MSnp),
(UCB,UCB), (EPE,EPE) and (SCPD,SCPD) in average payoffs. Complete information of
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d-SAA enables EPE bidders to share the same expected competitive equilibrium if their
tâtonnement process uses the same initial price vector and adjustment parameter. This
explains that (EPE,EPE) obtains an expected utility nearly as high as (MSnp,MSnp). Due
to exposure, the profile (SB,SB) obtains a negative expected utility. Hence, both players
would have preferred not to participate in the d-SAA initially.

The relative high performance of MSλ can be explained by three factors: (i) its ability
to judge in which situations it is more beneficial to perform demand reduction or to bid
competitively as seen in Section 4.5.1; (ii) its ability to perform demand reduction to keep
prices low and (iii) its ability to stop bidding on specific sets of goods early on to avoid
exposure.

4.5.2.2 Own price effect
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Fig. 4.5.: Own price effect analysis of a d-SAA game with six strategies

Our algorithm MSλ has the capacity of conceding items to its opponents in order to keep
prices low. We highlight this feature in Figure 4.5(a) where we plot the average price
paid per item won by each strategy against every strategy displayed on the x-axis. MSλ

obtains the lowest average price paid per item won against every strategy except against
EPE. Indeed, each item won is bought at ε when both bidders play EPE as they share
the same expected competitive equilibrium. This explains the slight underperformance of
our algorithm. Nevertheless, MSλ spends 43.2%, 50%, 55.9%, 24.5% and 12.1% less per
item won than EPE against MSλ, MSnp, UCB, SCPD and SB respectively. Moreover, MSλ

is competitive and does not just purchase undesired items at relatively low prices. This
is highlighted in Figure 4.5(b) where we plot the average number of items won by each
strategy against every strategy displayed on the x-axis. MSλ wins at least 3 items out of

118 Chapter 4 Turn-based deterministic Simultaneous Ascending Auction with complete information



7 against every strategy except SB. In comparison, EPE never wins more than 2.5 items
on average against any strategy. Regarding strategy profiles where all bidders play the
same strategy, 98.3% of all items are allocated for MSλ whereas only 71.4% and 70.3%
respectively for EPE and SCPD which partially explains their underperformance. The fact
that nearly all goods are allocated and are acquired at a small price explains the high
performance of the strategy profile (MSλ,MSλ) compared to the other strategy profiles.
Through smart usage of demand reduction, our MCTS bidding strategy MSλ tackles the
own price effect and still remains fairly competitive.

4.5.2.3 Reduction of exposure

As already previously explained, minimising exposure is extremely important in d-SAA.
In Figure 4.6(a), we have plotted the exposure frequency of each strategy against every
strategy displayed on the x-axis. MSλ has at most 1.2% of chance of getting exposed
against every strategy except SB against which it obtains a similar exposure frequency to
SCPD. Moreover, the strategy profile (MSλ,MSλ) has the remarkable property of never
suffering from exposure. It is important to highlight the significant enhancement due to
our selection penalties as it is exposed 95.6%, 62.7% and 39.8% less than MSnp against
respectively EPE, SCPD and SB. In Figure 4.6(b), we have plotted the expected exposure
of each strategy against every strategy displayed on the x-axis. MSλ expected exposure is
at least one order of magnitude below the corresponding SCPD one against MSλ, MSnp,
UCB and EPE. They are about the same order against SCPD and SB. Moreover, MSλ

generates 78.6%, 66.7%, 61.2% and 37.3% less losses than MSnp against respectively
UCB, EPE, SCPD and SB. Thus, in addition to being profitable against all strategies, MSλ

considerably minimises exposure notably through its selection penalties.
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Fig. 4.6.: Exposure analysis of a d-SAA game with six strategies
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4.6 Conclusion

This chapter introduces the first efficient algorithm that tackles simultaneously the exposure
problem and the own price effect in a simplified version of SAA (d-SAA). Experimental
results support the fact that MSλ largely outperforms state-of-the-art algorithms in d-SAA
by obtaining greater expected utility and taking less risks against all other strategies. Its
rollout strategy relies on a new concept of solution for the prediction of closing prices named
frontier prediction of final prices. To the best of our knowledge, it is the first concept that
verifies the three following important conditions (1) The concept exists in all auctions (2) It
takes into account auctions’ particularities (3) The final prediction is independent of a single
specific strategy profile. We have shown that such a solution can be easily computed in
two-player auctions with two goods when preferences exhibit complementarities through
the convergence of a specific sequence. We emit the conjecture that this sequence still
converges to one of its solutions for larger auctions. The proof is left for future research.

Contrary to what one might think, MSλ performs better using a point price prediction rather
than a distribution prediction [Wellman, 2008]. This is due to the fact that our MCTS needs
to perform a relatively high number of search iterations to be efficient as the action space
grows exponentially with the number of goods. However, simulations with distribution price
predictors are 10 times more computationally expensive than with point price predictors.
Given the relative short CPU thinking time budget, the possibly better sampling quality
obtained with distribution predictors doesn’t outweigh its relatively poor number of search
iterations and, thus, decreases the overall performance of MSλ.

We believe that the biggest field of improvement for MSλ is related to its selection phase.
Indeed, although the selection penalties have greatly contributed to the reduction of ex-
posure by our algorithm and are adapted to any scale, we think that introducing a more
formal statistic of risk-aversion may be more beneficial. However, using quantities such
as mean-variance [Liu, 2020] didn’t enhance our algorithm’s performance. In the next
chapter, we propose a new solution that replaces these selection penalties more formally
and improves the overall performance of our algorithm.
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In the last chapter, we focused on a turn-based deterministic model of SAA with no activity
rules or budget constraints. We presented an algorithm MSλ which obtained very good
results on small instances of this model. In this chapter, we consider the original format
of SAA presented in Section 1.3.2.1. We extend the work done in the previous chapter
to simultaneous moves, random tie-breaking rules, budget constraints, activity rules and
larger instances. Nevertheless, we maintain the assumption that the induced bidding game
is with complete information. This will be relaxed in the next chapter.

We present the first efficient bidding strategy, named SMSα, that tackles simultaneously
the four main strategical issues of SAA: the exposure problem, the own price effect, budget
constraints and the eligibility management problem. SMSα is based on Simultaneous
Move Monte Carlo Tree Search (SM-MCTS) and uses a hyperparameter α that allows
one to arbitrate between expected utility and risk-aversion. As MSλ, SMSα relies on a
new method based on the convergence of a specific sequence for the prediction of closing
prices. This is used to enhance its expansion and rollout phase.

We start by modelling the mechanism of SAA as well as the bidding behaviour of the players
by taking into account the new features introduced in this chapter such as simultaneity,
random tie-breaking rules, eligibility or budget constraints. We name this model SAA-c.
We then present the different complexities induced by the bidding game in SAA-c. We
introduce a new method for the prediction of closing prices based on the convergence of a
specific sequence and on an extension of strategy PP to constrained environments. We
then present our bidding algorithm SMSα. Finally, through typical examples taken from
the literature and extensive numerical experiments on instances of realistic size, we show
that SMSα outperforms state-of-the-art algorithms by achieving higher expected utility
and better tackling the exposure problem and the own price effect in budget and eligibility
constrained environments.

A large majority of the results presented in this chapter comes from the following article
Bidding efficiently in Simultaneous Ascending Auctions with budget and eligibility constraints
using Simultaneous Move Monte Carlo Tree Search [Pacaud, 2023] which is currently
reviewed by the journal IEEE Transactions on Games.
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5.1 Simultaneous Ascending Auction model with
constraints and complete information (SAA-c)

5.1.1 Mechanism

In this chapter, we focus on the original mechanism design of SAA presented in Section
1.3.2.1 where m indivisible goods are sold via separate and concurrent English auctions
between n players. Bidding occurs in multiple rounds. At the beginning of the auction,
the bid price of each item j, noted Pj , is set to 0. At each round, players submit their
bids simultaneously. Hence, the induced bidding game is with imperfect information. The
player having submitted the highest bid on an item j becomes its temporary winner. If
several players have submitted the same highest bid on item j, then the temporary winner
is uniformly chosen at random amongst them. The bid price Pj of item j is then set to the
highest bid placed on it. The new temporary winners and bid prices are revealed to all
players at the end of each round. The auction closes if no new bids have been submitted
during a round. The items are then sold at their current bid price to their corresponding
temporary winners.

Bidders which do not maintain a certain level of bidding activity are penalised by the activity
rule presented in Section 2.1.3, i.e., the number of items temporarily won plus the number
of new bids by a bidder can never rise [Goeree, 2014; Milgrom, 2004]. The initial eligibility
of each bidder is set to m.

5.1.2 Bidders’ modelling

Bidders possess the same characteristics as presented in Section 2.1. Thus, each bidder i

is defined by the three following quantities:

• Value function vi (or utility function σi)

• Budget bi

• Eligibility ei
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We assume that these are public knowledge [Szentes, 2003a; Szentes, 2003b; Pacaud,
2022]. Hence, the induced bidding game is with complete information. This assumption will
be relaxed in the next chapter.

As it was the case in the last chapter, new bids are constrained to Pj + ε where ε is a
fixed bid increment. This reduction of the bidding space is common in the literature on
SAA [Goeree, 2014; Wellman, 2008; Pacaud, 2022]. We make the classical assumption
that players won’t bid on items that they are currently temporarily winning [Wellman, 2008;
Pacaud, 2022]. Hence, in our model, a winner will always pay a price for an item at most ε

above the highest opponent bid.

We recall that bidders are not allowed to bid on sets of items which exceed either their
eligibility or their budget. More formally, if the current bid price vector is P , a bidder i

temporarily winning a set of items Y with current eligibility ei can bid on a set of items X if
and only if |X|+ |Y | ≤ ei∑

j∈X(Pj + ε) ≤ bi −
∑

j∈Y Pj

(5.1)

At the end of the auction, the utility obtained by player i after winning the set of items X at
bid price vector P is:

σi(X, P ) = vi(X)−
∑
j∈X

Pj (5.2)

We name this simplified version of SAA with the above bidders’ modelling SAA-c.

5.1.3 Representation of the SAA-c game in extensive form

For multi-round games, the standard representation is the extensive form representation.
We distinguish two types of nodes in the extensive form representation of an SAA-c game:
decision nodes and chance nodes. Decision nodes correspond to nodes where the actions
are selected by a player and chance nodes where actions are drawn by Nature. More
precisely, the decision nodes represent the different states of the game and the chance
nodes represent the random draws of temporary winners in case of ties. At each decision
node, an outgoing edge represents a feasible bid that can be placed on a set of items
satisfying the eligibility and budget constraints by the player bidding at that node. Each
decision node or state is defined by five features:
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• the identity of the player submitting its bids (we name it the "concerned player")

• the eligibility vector revealed at the end of the last round

• the temporary winner of each item

• the current bid price of each item

• the bids already submitted during the current round

The four first features are common knowledge and the last feature is hidden information
for the concerned player. Therefore, all decision nodes which differ only by the last feature
belong to the same information set. Thus, unlike the extensive form of a d-SAA game,
information sets in the extensive form of a SAA-c game are not all singletons. In Figure 5.1,
we represent an SAA-c game between three players with their information sets and chance
nodes.

1

CCCC

2

3 3

CCCC

2

3 3

1 1... ...

Information sets

C Chance nodes

... ...

...

Fig. 5.1.: Extensive form of a three player SAA-c game with information sets and chance nodes
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5.2 Complexities induced by the SAA-c game

5.2.1 General game properties

The game induced by SAA-c has the following general game properties:

• n-player game

• Non-zero sum game

• Simultaneous move: Players submit their bids at the same time.

• Stochasticity: This is due to the random tie-breaking rule which selects randomly a
temporary winner amongst the players having bid the highest same amount on an
item. Hence, a same configuration of bids during a round does not necessarily lead
to the same state.

• Imperfect information: This is due to the fact that players bid simultaneously.

• Complete information: All game specificities such as the SAA-c mechanism or the
bidders’ characteristics are public knowledge.

5.2.2 Game complexities

For the sake of simplicity, we compute the information set space complexity and a lower
bound of the game tree complexity of an SAA-c game with a given number of rounds R,
unlimited budgets and without any activity rule.

Theorem 5.1. Let Γ be an instance of the SAA-c game with no activity rule. Let n, m and
R be respectively the number of players, the number of items and the number of rounds in
Γ. Suppose that all players have unlimited budgets. The number of possible information
sets in Γ is:

n(Rn + 1)m (5.3)
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Proof. Each information set is defined by three components: the player to bid, the temporary
winner and bid price of each item. If no player has bidded on an item, then it remains unsold
and is handed back to the auctioneer. Otherwise, its bid price is included in {ε, 2ε, ..., Rε}
and the item is allocated to one of the n players. Therefore, the number of different
allocations and bid prices of an item in Γ is Rn + 1. Under the unlimited budget assumption,
all items are mutually independent. Thus, the number of different allocations and bid prices
for all items is (Rn + 1)m. As there are n different players who can bid, the number of
possible information sets is:

n(Rn + 1)m

As the game is with imperfect information, the above information set space complexity acts
as a lower bound of the state space complexity.

Theorem 5.2. Let Γ be an instance of the SAA-c game with no activity rule. Let n, m and
R be respectively the number of players, the number of items, and the number of rounds
in Γ. Suppose that all players have unlimited budgets. A lower bound of the game tree
complexity of Γ is:

Ω(2m(n−1)R) (5.4)

Proof. To prove the above result, we just need to notice that, if we replace the random
tie-breaking rule of Γ by a deterministic tie-breaking rule, it reduces its game tree complexity.
Indeed, it eliminates chance nodes and reduces the number of paths in its extensive form.
Thus, according to the proof of Theorem 4.2, a lower bound of the game tree complexity
of Γ with a deterministic tie-breaking rule is Ω(2m(n−1)R). Therefore, a lower bound of the
game tree complexity of Γ with its original random tie-breaking rule is Ω(2m(n−1)R).

Example. An SAA for 12 spectrum licences (5G) between 5 telecommunication companies
was held in Italy in 2018 and ended after 171 rounds [European 5G Observatory, 2018]. The
number of possible information sets as well as a lower bound of the game tree complexity of
the corresponding SAA-c game with no activity rule and unlimited budgets are respectively
1035 and 102470.
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Adding budget constraints reduces the information set space complexity and the game tree
complexity as some actions can no longer be played and, therefore, some information sets
can no longer be reached.

Adding activity rules decreases the game tree complexity as a bidder can no longer bid on
a set of items which exceeds its eligibility. However, it increases the information set space
complexity as a new feature (eligibility) is added to every information set.

5.2.3 Strategical complexities

In addition to the difficulties generated by the high information set space and game tree
complexities, the bidding game induced by SAA-c also admits four important strategical
issues: the exposure problem, the own price effect, budget constraints and the eligibility
management problem. All of these issues are fully detailed in Section 2.2.3. In the last
chapter, we created an algorithm which only dealt with the two first issues.

5.3 Predicting closing prices

SMSα is based on a SM-MCTS whose expansion and rollout phases rely on the following
bidding strategy and prediction of closing prices, i.e., an estimation of the price of each item
at the end of the auction.

5.3.1 Constrained point-price prediction bidding

We start by extending the definition of strategy PP defined in Section 2.4.2 to budget and
eligibility constrained environments.

Definition 5.1. In a SAA-c game with m objects and a current bid price vector P , a point-
price prediction bidder with budget b, a current eligibility e, an initial prediction of closing
prices P init and a set of temporarily won items Y computes the subset of goods

X∗ = arg max
X⊂{1,...,m}\Y∑

j∈X∪Y
ρj(P init,P,Y )≤b

|X|+|Y |≤e

σ(X ∪ Y, ρ(P init, P, Y )) (5.5)
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breaking ties in favour of smaller subsets and lower-numbered goods. It then bids Pj + ε

on all items j belonging to X∗. The function ρ : (P init, P, Y ) → R+
m maps an initial

prediction of closing prices, a current bid price vector and a set of items temporarily won to
an estimation of closing prices. For any item j, it follows the below update rule:

ρj(P init, P, Y ) =
{

max(P init
j , Pj) if j ∈ Y

max(P init
j , Pj + ε) otherwise

(5.6)

A point-price prediction bidder only considers sets of items within budget b given its
prediction of closing prices ρ(P init, P, Y ), i.e., only sets of items X such that∑

j∈X∪Y ρj(P init, P, Y ) ≤ b. Moreover, it can only bid on sets of items which do not exceed
its eligibility e.

The above extension of PP (which we refer to as PP from now on) to budget and eligibility
constrained environments does not change its original properties discussed in Section
2.4.2. For instance, if the initial closing prices are correctly estimated and independent of
the bidding strategy, then playing our extension of PP in SAA-c is optimal. Moreover, the
accuracy of the initial prediction of closing prices P init still highly impacts the efficiency of
this bidding strategy. For example, it can cause a bidder to bid straightforwardly or to drop
out prematurely.

5.3.2 Computing an initial prediction of closing prices

As already explained in Section 4.3, several methods exist in the literature for computing
an initial prediction of closing prices but they all seem to present some limitations. We
especially highlighted three shortcomings. We then presented a simple prediction method
based on the convergence of a specific sequence which aims at tackling these three issues.
However, the auction considered in the last chapter was deterministic as bidders took turns
bidding and did not present any constraints. Thus, we adapt our preceding prediction
method to budget constraints, eligibility constraints and stochasticity of SAA-c.

Conjecture 5.1. Let Γ be an instance of an SAA-c game. Let fΓ(P ) be a random variable
returning the closing prices of Γ when all bidders play PP with initial prediction P . The
sequence pt+1 = 1

t+1 E[fΓ(pt)] + (1− 1
t+1)pt with p0 the null vector of prices converges to a

unique element p∗.
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The fact that fΓ is a random variable comes from the tie-breaking rule which introduces
stochasticity in Γ. By taking its expectation E[fΓ(pt)] at each iteration t, we ensure our
deterministic sequence pt to always converge to the same fixed point p∗. Hence, all players
using our method share the same prediction of closing prices p∗. In practice, we perform a
Monte-Carlo estimation of E[fΓ(pt)] by simulating many SAA-c games. In small instances,
it is possible to obtain a closed-form expression of E[fΓ(pt)] and, from that, prove the
convergence of sequence pt.

Example. Suppose that both players play PP with P init = p0 in Example 1 (see Section
2.2.3) . During the first round, player 1 bids on item 1 and player 2 bids on both items.
There is 50% chance that player 1 temporarily wins item 1 and 50% chance that player 2
temporarily wins item 1. If player 1 wins item 1 during the first round, player 2 bids on item
1 during the second round while player 1 passes. In the third round, player 1 bids on item 2
while player 2 passes. In the fourth round, player 2 bids on item 2 while player 1 passes.
Hence, the bid price of item 1 (respectively item 2) is odd (respectively even) if temporarily
won by player 1. When the bid price P = (12, 11) and both items are temporarily won by
player 2, player 1 drops out of the auction as, by definition of PP, it prefers smaller subsets
of items for a same predicted utility. If player 2 wins item 1 during the first round, the bid
price of item 1 (respectively item 2) is even (respectively even) if temporarily won by player
1. The closing price are then P = (11, 11). Therefore, fΓ(p0) has 50% chance of returning
(12, 11) and 50% chance of returning (11, 11). Hence, E[fΓ(p0)] = (11.5, 11). By performing
a similar analysis, we can show that ∀p ∈ R2, E[fΓ(p)] ∈ [0, 11.5]2 and obtain the following
closed-form expression for any p ∈ [0, 11.5]2:

E[fΓ(p)] =


(1, 0) if p1 + p2 ≥ 20 and p1 ≤ p2

(0, 1) if p1 + p2 ≥ 20 and p1 > p2

(11.5, 11) if p1 + p2 < 20 and p1 ≤ p2

(11, 11.5) if p1 + p2 < 20 and p1 > p2

(5.7)

From there, it is easy to show that sequence pt converges to p∗ = (10, 10) in Example 1.
The full proof of the convergence of pt to p∗ = (10, 10) with its convergence rates is given in
Appendix C.

The general proof of the conjecture is left for future work.

Remark. To prove Conjecture 5.1, we think a promising direction is to follow the same
direction as in the remark following Conjecture 4.1. However, instead of fΓ, one should

130 Chapter 5 Simultaneous Ascending Auction with complete information



show that, for all SAA-c instances Γ, the spatial representation of E[fΓ] does not admit any
cycle.

The following simple example shows one of the main advantages of this new prediction
method of final prices compared to the Walrasian price equilibrium or expected price
equilibrium.

Example. Consider an SAA-c game with three players, one item and a bid increment ε = 1.
The first player values the item at 4.5, the second player values it at 4.5 and the third player
values it at 4.6. All three players have a budget of 5.

All Walrasian equilibria can be described with a price vector p ∈ [4.5, 4.6] and an allocation
vector returning the item to the third player. The tâtonnement processes used to compute
the expected price equilibrium converges to an element of [4.5, 4.6] which depends on its
adjustment parameter. However, our sequence pt converges to the final price of 4. If the
first or second player decides to play PP using as initial prediction P init ≥ 4.5, then it drops
out immediately of the auction and obtains a utility of 0. However, if it decides to play PP
with P init = 4, then depending on the outcomes of the tie-breaking rule, it either obtains
the item for a price smaller than 4 or it does not win the item. Hence, its expected utility
is greater than 0. Moreover, in this specific example, playing SB is the optimal strategy.
Indeed, if a player is losing temporarily the item and has an eligibility of 1, then it has the
choice between either bidding on the item or dropping out definitely of the auction (as its
eligibility will be reduced to 0). Hence, if the bid price of the item is less than 4, one should
bid if it is temporally losing the item in order to maximise its expected utility. Moreover, there
is no risk of exposure. Thus, playing PP with P init < 4.5 is optimal. By taking into account
the auction’s mechanism, our prediction method of final prices returns a more accurate
initial prediction. Furthermore, as fΓ(4) = 4, our prediction method also returns the unique
self-confirming price prediction of this SAA-c game.

We can discern three main advantages of computing an initial prediction of closing prices
through our method than through other methods in the literature. (1) We observe that
sequence pt converges in all undertaken SAA-c game instances. (2) This method takes
into account the auction’s mechanism through fΓ. (3) This prediction of closing price is
not based only on the outcomes of a single specific strategy profile. Indeed, depending on
the value of pt, different strategy profiles are used across iterations. At a fixed iteration t,
a single strategy profile is used to compute E[fΓ(pt)] as the strategy returned by PP only
depends on its initial prediction P init = pt.
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5.4 SM-MCTS bidding strategy

In this section, we present our algorithm SMSα which is based on Simultaneous Move
Monte Carlo Tree Search (SM-MCTS) [Tak, 2014]. It uses a hyperparameter α which allows
a bidder to arbitrate between expected utility and risk-aversion. Before running SMSα, we
compute our initial prediction of closing prices p∗ as presented in Section 5.3.2. It is used
to enhance the expansion and rollout phase of SMSα.

5.4.1 Scalarised rewards

Maximising the expected utility while minimising the risk of exposure can be antithetical.
Indeed, taking risks can either be highly beneficial or lead to exposure depending on how
the other players react. To do so, we introduce a new scalarised reward incorporating both
targets. Notations used in this part have already been introducted in Section 2.3. For any
strategy π, we define:

Rπ
α = (1 + α1Rπ<0)Rπ (5.8)

where α is a hyperparameter which controls the risk aversion of SMSα. Note that

E(Rπ
α) = E(Rπ) + αIP(Rπ < 0) E(Rπ|Rπ < 0) (5.9)

where IP(Rπ < 0) E(Rπ|Rπ < 0) is the term corresponding to the losses induced by
exposure in Equation 2.6. Moreover, we define for any vector of price P and any set of
items X, σα(X, P ) = (1 + α1σ(X,P )<0)σ(X, P ) which is a modified utility taking into account
both of our objectives.

The use of a linear scalarization function is a classical approach in multi-objective optimisa-
tion, multi-objective reinforcement learning [Barrett, 2008], constrained MDP [Lee, 2018b]
or POMDP [Lee, 2018a].

5.4.2 Search tree structure

In order to maintain the simultaneous nature of SAA-c in the selection phase of SMSα, we
use a Simultaneous Move MCTS (SM-MCTS) [Tak, 2014] (Figure 5.2). At each selection
step, we select an n-tuple where each index i corresponds to the action maximising the
selection index of player i given only its information set. By doing so, bids are selected
simultaneously and independently. Each selection step corresponds to a complete bidding
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round of SAA-c. Hence, the depth of our search tree corresponds to how many rounds
ahead SMSα can foresee. The search tree nodes are defined by the eligibility of each
bidder, the temporary winner and current bid price of each item. The vertices correspond
to players’ joint actions. Chance nodes are explicitly included in the search tree to break
ties.
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Fig. 5.2.: SM-MCTS tree structure with explicit chance nodes for a SAA-c game with 3 players

There are three main advantages of using an SM-MCTS instead of an MCTS applied
to a serialised game tree, i.e. turning SAA-c into a purely sequential game with perfect
information. To simplify our statements, we name Sequential MCTS the MCTS applied to a
serialised game tree.

The first advantage is that it maintains the simultaneous move nature of SAA-c.

The second advantage is that it does not increase the number of information sets making
our learning process more efficient. Thus, less search iterations need to be performed to
obtain the same quality of sampling in a SM-MCTS than in a Sequential MCTS as statistics
are more often updated. Given the fact that it is generally the rollout phase which is the
more time consuming, this results in a higher precision for the statistics of SM-MCTS and,
thus, in an increase in performance, especially if the algorithm is only allowed a short period
of thinking time.

The third advantage is that the number of selection steps to complete a bidding round of
SAA-c is reduced from n to 1. Thus, the number of players n is no longer a burden for
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planning a bidding strategy over many rounds. However, one may argue that, by reducing
the depth of the search tree, we consequently increase its width. Indeed, as the number of
joint actions in a bidding round of SAA-c is the same regardless of the search tree structure,
it is obvious that performing a bidding round of SAA-c in one step produces a search tree
larger than performing a bidding round in n steps. However, as each index of the n-tuple is
computed independently, this does not result in more basic operations for one selection step
of SM-MCTS than for n steps of Sequential MCTS as shown in the following example.

Example. Consider a bidding round of SAA-c between 3 bidders. The first bidders can
submit K1 different bids, the second bidder can submit K2 different bids and the third bidder
can submit K3 different bids. The number of joint actions is then K1 ×K2 ×K3. However,
for each index of the triplet, an independent selection strategy is run for SM-MCTS. This
leads to the same number of basic operations than a Sequential MCTS for 3 selection
steps which is roughly K1 + K2 + K3 operations. If the indexes of the joint actions were
not selected independently and we had to compute a selection index for each joint action
separately, this would have led to roughly K1 ×K2 ×K3 operations and would have indeed
been problematic.

5.4.3 Selection

At each selection step, players are asked to bid on the set of items which maximises their
selection index. The selection phases ends when a terminal state of the SAA-c game or
a non-expanded node, i.e. configuration of temporary winners, bid prices and eligibilities
not yet added to the search tree, is reached. Our selection index is a direct application of
the Upper Confidence bound applied to Trees (UCT) [Kocsis, 2006] to scalarised rewards.
Unlike usual applications of UCT, the size of the scalarised reward support is unknown so
we proceed to an online estimation of it as it was the case for MSλ in the last chapter. Each
player i chooses to bid on the set of items xi with highest score qxi at information set Ii:

qxi =
rα

xi

nxi

+ max(cα
xi
− aα

xi
, ε)

√√√√2 log(
∑

x′
i
nx′

i
)

nxi

(5.10)

where rα
xi

is the sum of scalarised rewards obtained after bidding on xi at Ii, nxi is the
number of times player i has bidded on xi at Ii, ε is the bid increment, aα

xi
is the estimated

lower bound and cα
xi

is the estimated higher bound of the scalarised reward support when
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bidding on xi at Ii. Thus, max(cα
xi
− aα

xi
, ε) acts like the size of scalarised reward support

when bidding on xi at Ii.

5.4.4 Expansion

Compared to the last chapter where MSλ was only applied on small instances, our aim
is to apply SMSα on instances of realistic size. However, the exponential growth of the
game tree’s width with the number of items m induces a high branching factor and, hence,
prevents in-depth inspection of promising branches. Thus, it is necessary to reduce the
action space at each information set of the search tree [Świechowski, 2023]. To do so, each
time a non-expanded node is added to the search tree, we select a maximum number Nact

of promising actions per information set. Passing its turn without bidding on any item is
always included in the Nact selected actions. This enables SMSα to obtain shallow terminal
nodes in its search tree which correspond to collusions between bidders and, thus, reduces
the own price effect. The remaining Nact − 1 actions correspond to the moves leading to
the Nact − 1 highest predicted utilities in strategy PP with initial prediction p∗. More formally,
for each player i at information set Ii temporarily winning set of items Yi with eligibility ei,
the action of bidding on set of items Xi is selected if σα

i (Yi ∪Xi, ρ(p∗, P, Yi)) is one of the
Nact − 1 highest values with P the current bid price. Only sets of items Xi verifying|Xi|+ |Yi| ≤ ei∑

j∈Xi∪Yi
ρj(p∗, P, Yi) ≤ bi

(5.11)

are considered. Statistics for each action are then initialised as follows:

∗ rα
xi
← 0

∗ nxi ← 0

∗ aα
xi
← +∞

∗ cα
xi
← −∞
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5.4.5 Rollout

From the newly added node, an SAA-c game is simulated until the game ends. Players are
asked to bid at each round of the rollout. As already explained in Section 4.4.3, playing
randomly in the rollouts generally leads to absurd outcomes. Hence, we propose a similar
approach to the one used for the rollout phase of MSλ.

At the beginning of each rollout phase, we set p∗
i = p∗+ηi with ηi ∼ U([−ε, ε]m). Each player

i then plays PP with initial prediction of closing prices p∗
i during the entire rollout. Noise is

added to our initial prediction p∗ to diversify players’ bidding strategy and, hence, improve
the quality of our sampling. At the end of the rollout, an n-tuple is returned corresponding
to the scalarised utility obtained by each player.

5.4.6 Backpropagation

The results obtained during the rollout phase are propagated backwards to update the
statistics of the selected nodes. Let V α

i be the scalarised utility obtained by player i at the
end of the rollout. Let xi be the set of items on which player i bidded at information state Ii

for one of the selected nodes. The statistics stored for Ii are updated as follows:

∗ rα
xi
← rα

xi
+ V α

i

∗ nxi ← nxi + 1

∗ aα
xi
← min(aα

xi
, V α

i )

∗ cα
xi
← max(cα

xi
, V α

i )

5.4.7 Transposition table

Transposition tables are a common search enhancement, already presented in Section 3.9,
used to considerably reduce the size of the search tree and improve performance of MCTS
within the same computational budget [Childs, 2008]. By using such tables, we prevent the
expansion of redundant nodes in our search tree and share the same statistics between
transposed information states. This results in a significant improvement in performance of
SMSα for the same amount of thinking time.
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To identify each information set in the search tree, our hash function is based on two
functions h1 and h2. The first returns a different integer for each combination of bid
prices and allocations. The second returns a different integer for each eligibility vector.
Hence, our hash function assigns a unique value to each information set in the search tree.
More precisely, due to computational constraints, we can only assign a unique value for
every node in the search tree with a depth lower than Rmax. Rmax is a hyperparameter
corresponding to an upper bound of the maximal depth (or rounds) in the final search tree.
An example of function h1 assigning a different integer for each combination of bid prices
and allocations in a search tree of maximal depth Rmax is given in Algorithm 4. It uses as
inputs the bid price vector P 0 at the root of the search tree, the bid price vector P and the
temporary winner Aj of each item j at a given node. If Aj = 0, then item j is temporarily
allocated to the auctioneer.

Algorithm 4 Example of function h1
Inputs Game: n, m, ε
Inputs Root Node: Bid price vector P 0

Inputs Node: Bid price vector P , Allocation vector A
Hyperparameter: Rmax

h = 0
step = Rmax × n
for j = 1, 2, ..., m do

if Aj > 0 then h+ = (Rmax × (Aj − 1) + Pj−P 0
j

ε )stepj−1

end if
end for
return h

In Section 4.4.6, as players took turns bidding, it was necessary to take into account the next
player to bid to identify a node in the search tree. However, as players bid simultaneously in
SAA-c and given the SM-MCTS search tree structure of SMSα, adding this extra information
to determine a search tree node is pointless.

In practice, given the thinking time constraints in our experimental results, choosing Rmax =
10 is more than sufficient to guarantee a final search tree with maximal depth lower than
Rmax. Hence, our hash function acts as a perfect hash function as no type-1 error or type-2
error occurs [Zobrist, 1990].
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5.4.8 Final move selection

The final move which is returned by SMSα is the action which maximises the player’s
expected scalarised reward at the root node. More formally, SMSα returns arg max

xi

rα
xi

nxi
for

player i.

5.5 Experiments

In this section, we start by analysing the convergence rates of sequence pt, notably through
Example 1 (see Section 2.2.3). Then, we show that our algorithm SMSα largely outperforms
state-of-the-art existing bidding algorithms presented in Section 2.4 in SAA-c, mainly by
tackling own price effect and exposure more efficiently. This is first shown through typical
examples taken from the literature and, then, through extensive experiments on instances
of realistic size. We compare SMSα to the following four strategies:

• Our MCTS bidding algorithm MSλ presented in the last chapter which relies on two
risk-aversion hyperparameters λr and λo.

• The EPE algorithm [Wellman, 2008] described in Section 2.4.2.2. It returns the same
strategy as EDPE as the game is with complete information.

• The SCPD algorithm [Wellman, 2008] described in Section 2.4.3.1.

• Strategy SB [Milgrom, 2000] described in Section 2.4.1.

The four strategies MSλ, EPE, SCPD and SB (equivalent to PP with P init = 0) initially rely
on the definition of perceived-price bidding strategy for unconstrained environments (see
Definition 2.1). We extend them to budget and eligibility constrained environments in the
same way as it is done in Definition 5.1. In all experiments, none of the bidders are aware
of their opponents’ strategy.

Each algorithm is given respectively 150 seconds of thinking time. Initial predictions of
closing prices are done offline before the auction starts and, therefore, are excluded from
the thinking time. This step usually takes a few minutes. All experiments are run on a server
consisting of Intel®Xeon®E5-2699 v4 2.2GHz processors. In all upcoming experiments,
the hyperparameter α of SMSα takes the value 7 and the risk-aversion hyperparameters

138 Chapter 5 Simultaneous Ascending Auction with complete information



λr and λo of MSλ both take the value 0.025. These hyperparameters are obtained by
grid-search. The maximum number of expanded actions per information set Nact of SMSα

is set to 20.

5.5.1 Convergence of sequence pt

One of the main advantages of using our method to compute an initial prediction is the
convergence of sequence pt. Even though, this convergence has only been observed
and not proven in general cases, it is possible to derive rates of convergence in small
instances. For instance, in Example 1, it is proved in Appendix C that ∀t ≥ 1, pt belongs
to the diamond defined by the points (10− 10

t , 10− 9
t ), (10− 9

t , 10− 10
t ), (10 + 7

4t , 10 + 3
4t)

and (10 + 3
4t , 10 + 7

4t) which converges to p∗ = (10, 10). We represent in Figure 5.3 both
sequences p1

t and p2
t with their respective lower bound and upper bound.
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Fig. 5.3.: Convergence of sequence p1
t and p2

t with their respective upper bound g(t) and lower
bound h(t) in the SAA-c game of Example 1.

In larger instances, we observe similar rates of convergence. However, computing such
bounds seems unrealistic as obtaining a closed-form expression of E[fΓ(pt)] seems un-
tractable. In Figure 5.4, we plot the value of pj

t for every item j in one of the SAA-c games
undertaken in our extensive experiments with n = 4 and m = 11. We can see that pj

t con-
verges after a few hundred iterations for every item j. It is representative of our observations
of sequence pt in more complex environments.

Remark. As a Monte-Carlo estimator of E[fΓ(pt)] is used for the computation of pt+1 in
practice, if sampling is insufficient, it is possible that the sequence pt does not always
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converge to the same limit p∗ due to the stochasticity of the SAA-c bidding game. Hence,
to minimise the risk that SMSα players do not share the same limit, it is recommended to
sample at least a few thousand games per iteration in complex environments.
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Fig. 5.4.: Convergence of sequence pj
t for every item j in an SAA-c game generated from our

extensive experiments (n = 4, m = 11 and ε = 1)

5.5.2 Test experiments

One of the greatest advantages that MCTS methods have over other bidding algorithms is
the capacity to judge pertinently in which situations adopting a demand reduction strategy
is more beneficial. Indeed, through the use of its search tree, an MCTS method is capable
of determining if it is more profitable to concede items to its opponents to keep prices low
or to bid greedily. To highlight this feature, we propose the following experiment in a 2-item
auction between two players with additive value functions. Each player values each item
at l = 10. Player 1 has a budget b1 ≥ 20. Given that, the optimal strategy for player 2 is
to bid on the cheapest item if it is not temporarily winning any item. Otherwise, it should
pass. The optimal strategy for player 1 fully depends on its opponent’s budget b2. For an
infinitesimal bid increment ε,

• If b2 ≤ l
2 , player 1’s optimal strategy is to play straightforwardly and it obtains an

expected utility of l − 2b2.

• If b2 ≥ l
2 , player 1’s should adopt a demand reduction strategy and it obtains an

expected utility of l.
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We plot in Figure 5.5 the expected utility E(σ1) of player 1 for each strategy given player 2’s
budget b2. The three algorithms SB, EPE, SCPD always suggest to player 1 to bid greedily
and never propose a demand reduction strategy even when it is highly profitable (b2 > l

2 ).
However, both MCTS methods perfectly adopt the appropriate strategy. This experiment
highlights the fact that SMSα selects the most profitable strategy and tackles own price
effect, at least in simple budget and eligibility constrained environments.
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Fig. 5.5.: Evolution of player 1’s expected utility E(σ1) depending on strategy versus player 2’s
budget b2 given that player 2 plays optimally (ε = 0.1).

Furthermore, SMSα is capable of avoiding obvious exposure. To highlight this feature,
we use the SAA-c game presented in Example 1 (see Section 2.2.3) where player 2’s
budget b2 = 16. The optimal strategy for player 1 is to play straightforwardly. Similarly to
the preceding experiment, the optimal strategy for player 2 fully depends on its opponent’s
budget b1.

• If b1 < 8, player 2’s optimal strategy is to play straightforwardly.

• If b1 ≥ 8, player 2’s optimal strategy is to drop out of the auction to avoid exposure.

We plot in Figure 5.6 the expected utility E(σ2) of player 2 for each strategy given player 1’s
budget b1. The two algorithms SCPD and SB always suggest to player 2 to bid straightfor-
wardly leading player 2 to exposure when b1 ≥ 8. MSλ never leads player 2 to exposure.
However, it suggests to drop out prematurely of the auction in some situations with no risk
of exposure due to its selection penalty risky_move and, hence, incurs a loss of easy profit
(b1 = 7). SMSα and EPE perfectly adopt the optimal strategy. This experiment highlights
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the fact that SMSα perfectly adopts the most profitable strategy and tackles efficiently
exposure, at least in simple budget and eligibility constrained environments.
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Fig. 5.6.: Evolution of player 2’s expected utility E(σ2) depending on strategy versus player 1’s
budget b1 given that player 1 plays optimally in Example 1 (ε = 1).

5.5.3 Extensive experiments

In this section, we study instances of realistic size with n = 4 and m = 11. Each experimen-
tal result has been run on 1000 different SAA-c instances. As explained in Section 4.5.2, all
experimental results in the literature are obtained for specific settings and, thus, it is difficult
to conclude on the effectiveness of a method in more generic settings. Hence, to overcome
this issue, we adopt the same general approach as in the last chapter to generate value
functions. Budgets are drawn randomly.

Setting 2. Let Γ be an instance of SAA-c with n bidders, m items and bid increment
ε. Each player i has a budget bi ∼ U([bmin, bmax]). Let V be the maximum surplus of
complementarity gained by obtaining an extra item. Its value function vi is built as follows:
vi(∅) = 0 and, for any set of goods X,

vi(X) ∼ U([max
j∈X

vi(X\{j}), V + max
j∈X

vi(X\{j}) + vi({j})]) (5.12)

with U the uniform distribution.
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In our experimental results, value functions and budgets are generated for each instance
as above with ε = 1, bmin = 10, bmax = 40 and V = 5.

In the upcoming analysis, the average price paid per item won, the ratio of items won, the
expected exposure and the exposure frequency are obtained by confronting a strategy A to
a strategy B. To facilitate our study, each measure of A against B is obtained by averaging
the results obtained for the three following strategy profiles: (A,B,B,B), (A,A,B,B) and
(A,A,A,B). For instance, if A = SMSα and B = SB, the average price paid per item won
by SMSα in these three strategy profiles is respectively: 5.96, 5.46 and 4.62. Hence, the
average price paid per item won by SMSα against SB is 5.35.

5.5.3.1 Expected utility

To facilitate our analysis, we study the normal form game in expected utility where each
player has the choice between playing SMSα or another strategy A. The same empirical
game analysis approach was employed by Wellman et al. in [Wellman, 2008]. More
precisely, we map each strategy profile to the estimated expected utility obtained by each
player in the 1000 SAA-c instances. The four resulting empirical games for each possible
strategy A are given in Figure 5.7.

For example, in Figure 5.7(b), if all bidders play EPE, each bidder obtains an expected utility
of 10.8. In the case of three EPE bidders and one SMSα bidder, the SMSα bidder obtains
an expected utility of 21.5. Hence, if all bidders play EPE, a bidder can double its expected
utility by switching to SMSα. Therefore, deviating to SMSα is profitable if all bidders play
EPE. This is also the case for the three other possible deviations in Figure 5.7(b). Hence, in
the empirical game where bidders have the choice between playing SMSα or EPE, each
bidder has interest in playing SMSα. We can clearly see that all deviations to SMSα are
also strictly profitable in the three other empirical games. Hence, in each empirical game, a
bidder should play SMSα to maximise its expected utility. Therefore, the strategy profile
(SMSα, SMSα, SMSα, SMSα) is a Nash equilibrium of the normal-form SAA-c game in
expected utility with strategy set {SMSα, MSλ, EPE, SCPD, SB}.

Moreover, the strategy profile where all bidders play SMSα has a significantly higher
expected utility than any other strategy profile where all bidders play the same strategy. This
is mainly due to the fact that SMSα tackles efficiently the own price effect. For instance,
in Figure 5.7, the expected utility of the strategy profile where all bidders play SMSα is
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respectively 1.13, 1.68 and 3.94 times higher than the ones where all bidders play EPE,
MSλ and SCPD.

The fact that the expected utility obtained by the strategy profile where all bidders play EPE
is relatively close to the one where all bidders play SMSα can be explained as follows.
To compute their expected price equilibrium as initial prediction of closing prices, all EPE
bidders in our experiments share the same initial price vector and adjustment parameter
in their tâtonnement process. This tâtonnement process is independent of the auction’s
mechanism and only relies on the estimated valuations of the players. Hence, as SAA-c
is a game with complete information, all EPE bidders share the same initial prediction of
closing prices and can therefore split up the items between them more or less efficiently.

Not all algorithms have the ability of achieving good coordination between bidders. For
instance, the strategy profile where all bidders play SB leads to a negative expected
utility. Hence, in this specific case, bidders would have preferred not to participate in the
auction. This highlights the fact that playing SB is a very risky strategy and mainly leads to
exposure.

The high performance of SMSα is mostly due to the three following factors:

• its ability to judge if performing demand reduction or bidding greedily is more beneficial
given each bidder’s budget and eligibility.

• its ability to tackle the own price effect without putting itself in a vulnerable position
because of eligibility constraints.

• its ability to avoid exposure in a budget and eligibility constrained environment.

5.5.3.2 Own price effect

To analyse own price effect, we plot in Figure 5.8(a) the average price paid per item won
by each strategy A against every strategy B displayed on the x-axis. For instance, if
A = SMSα and B = EPE, the average price paid per item won by SMSα against EPE is
1.53. It corresponds to the orange bar above index EPE on the x-axis. If A = EPE and
B = SMSα, then the average price paid per item won by EPE against SMSα is 2.53. It
corresponds to the pink bar above index SMSα on the x-axis.
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Fig. 5.7.: Normal-form expected utility for a SAA-c game with five strategies

In Figure 5.8(a), we can clearly see that SMSα acquires items at a lower price in average
than the other strategies against SMSα, SCPD and SB. For instance, SMSα spends 13.3%,
17.1%, 44.9% and 49.8% less per item won against SCPD than MSλ, EPE, SCPD and SB
respectively. Moreover, against MSλ and EPE, only EPE spends slightly less than SMSα

per item won.

To ensure that SMSα bidders do not obtain low average prices by only purchasing undesired
items, we plot in Figure 5.8(b) the ratio of items won by playing each strategy A against
every strategy B on the x-axis. For instance, if A = SMSα and B = EPE, the ratio of items
won by SMSα against EPE is 0.31. It corresponds to the orange bar above index EPE on
the x-axis in Figure 5.8(b). If A = EPE and B = SMSα, the ratio of items won by EPE
against SMSα is 0.18. It corresponds to the pink bar above index SMSα on the x-axis in
Figure 5.8(b). We see that each SMSα bidder obtains at least one fifth of the items in
average against every strategy except against SB. Hence, SMSα is competitive.
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Regarding strategy profiles where all bidders play the same strategy, the one corresponding
to SMSα has an average price paid per item won 1.70, 2.35 and 2.98 times lower than
MSλ, SCPD and SB respectively. Moreover, by looking at Figure 5.8(b), we can see that
all items are allocated when all bidders play SMSα. Being capable of splitting up all items
at a relatively low price explains why the expected utility of the strategy profile where all
bidders play SMSα is significantly higher than the ones where all bidders play a same other
strategy. Only obtaining items at a low price is not sufficient. For instance, when all bidders
play EPE, the average price paid per item won is 1.6 times lower than when all bidders play
SMSα. However, only 72% of all items are allocated. Hence, this strategy profile achieves
a lower expected utility than if all bidders had played SMSα.

Moreover, the fact that the average price per item won when all bidders play EPE is relatively
close to ε raises an important strategical issue. Indeed, to obtain such a low price, EPE
bidders drastically reduce their eligibility during the first round without considering the fact
that they might end up in a vulnerable position. Hence, an EPE bidder can easily be
deceived. This explains why a bidder doubles its expected utility if it decides to play SMSα

instead of EPE when all its opponents are playing EPE in Figure 5.7(b). After the first
round, SMSα easily takes advantage of the weak position of its opponents. By gradually
decreasing its eligibility, a SMSα bidder tackles efficiently the own price effect and avoids
putting itself in vulnerable positions.
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Fig. 5.8.: Own price effect analysis for a SAA-c game with five strategies

5.5.3.3 Exposure

To analyse exposure, we plot in Figure 5.9(a) the expected exposure of each strategy A

against every strategy B displayed on the x-axis. Similarly, we plot in Figure 5.9(b) the
exposure frequency of each strategy A against every strategy B displayed on the x-axis.
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For instance, if A = SMSα and B = SB, the expected exposure and exposure frequency
of SMSα against SB are respectively 0.07 and 4.4%. They both correspond respectively to
the orange bar above index SB on the x-axis in Figure 5.9(a) and Figure 5.9(b).

Firstly, in the situation where all bidders decide to play the same strategy, SMSα has the
remarkable property of never leading to exposure. This is not the case for the four other
strategies. Secondly, SMSα is the only strategy which never suffers from exposure against
MSλ and EPE. Thirdly, even against SCDP and SB, SMSα is rarely exposed. It has the
lowest expected exposure and exposure frequency. For instance, SMSα induces 9.3, 4.5,
34 and 90 times less expected exposure against SCPD than MSλ, EPE, SCPD and SB
respectively. Moreover, regarding exposure frequency, by playing SMSα a bidder has 6.6,
4, 27.6 and 58.1 times less chance of ending up exposed against SCPD than MSλ, EPE,
SCPD and SB respectively.
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Fig. 5.9.: Exposure analysis for a SAA-c game with five strategies

Hence, not only does SMSα achieve higher expected utility than state-of-the-art algorithms
but it also takes less risks.

5.5.4 Influence of α

Our strategy SMSα is based on a risk-aversion hyperparameter α. To show its impact on
SMSα’s performance, we compare SMSα for the following values of α: 0, 3, 7 and 12.

Our first experiment is to study the impact of α on the expected utility of SMSα. We plot in
Figure 5.10(a) the relative difference in expected utility between playing SMS0 and SMSα

when all other bidders are playing SMSα. We observe that switching from SMS0 to SMSα
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leads to a loss in expected utility for any value α > 0. Moreover, this loss is an increasing
function of α. Similar results are obtained for the other three deviations in the empirical
game where a bidder has the choice between either playing SMS0 or SMSα. The fact
that deviating to the risk-neutral strategy SMS0 is always profitable and that the relative
expected loss incurred by switching to SMSα increases with α is far from surprising. Indeed,
by increasing α, a SMSα bidder prefers bidding on sets of items which generate less utility
but with less chance of leading to exposure.

To highlight the fact that increasing α leads to less exposure, we plot the exposure frequency
of SMSα against SB for different values of α in Figure 5.10(b). We clearly see that the
exposure frequency decreases when α grows. Indeed, an SMS0 bidder has respectively
1.8, 2.1 and 2.7 more chance of being exposed against SB than SMS3, SMS7 and SMS12.
It is worth pointing out that the exposure frequency seems to converge to 0 for higher values
of α.
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Fig. 5.10.: Impact of α on SMSα

Through both of these experiments, we highlight the fact that, when playing SMSα, increas-
ing α reduces the risk of exposure but also decreases one’s expected utility. Hence, the
hyperparameter α allows the bidder to arbitrate between expected utility and risk-aversion.

In Table 5.1, we highlight another complementary phenomenon tied to risk-aversion when
α increases. Although we have stated above that the expected utility of a bidder playing
SMSα decreases when α increases and all other bidders play the same fixed strategy, it
is no longer the case if all bidders play SMSα (opponents no longer play a fixed strategy
as α increases for every player). Indeed, in Table 5.1, we show that, when all bidders play
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SMSα and that α increases, their expected utility first steadily increases before reaching a
ceiling and then decreases before converging to a certain value. This dynamic can easily
be explained through two features: the average price per item won and the ratio of allocated
items.

During the first part of the dynamic (α ∈ [0, 12]), the average price per item won drastically
decreases while the ratio of allocated items remains constant. Hence, the expected utility
of the players increases. The fact that increasing α enables better tackling of the own price
effect is a natural effect of risk-aversion where bidders tend to avoid a rise in price.

During the second part of the dynamic (α ∈ [12, 500]), the average price per item won
continues to decrease. However, it does not compensate the decrease in the ratio of
items won by a player (many items remain unsold at the end of the auction) and, thus, the
expected utility decreases up to a certain value. The fact that the proportion of unsold items
increases is also tied to risk-aversion where players no longer take the risk of bidding on
sets of items which might get them exposed in later rounds.

α 0 3 7 12 500
Expected utility 9.25 11.1 12.2 12.6 8.5

Average price per item won 3.11 2.49 2.21 2.01 1.25
Ratio of allocated items 100% 100% 100% 99.7% 53.2%

Tab. 5.1.: Evolution of the expected utility, the average price per item won and the ratio of allocated
items when all bidders play SMSα and α increases

We can conclude that, by increasing α, SMSα tackles more efficiently the exposure problem
and own price effect. Thus, it minimises the risk of incurring a loss if bidders do not behave
as expected. However, the main drawback is that it decreases one’s expected utility, notably
by decreasing its ratio of items won. The hyperparameter α thus allows the bidder to
arbitrate between expected utility and risk-aversion.

5.6 Conclusion

In this chapter, we introduce the first efficient bidding strategy that tackles simultaneously the
exposure problem, the own price effect, budget constraints and the eligibility management
problem in a simplified version of SAA (SAA-c). Our solution SMSα largely outperforms
state-of-the-art algorithms on instances of realistic size in generic settings.
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It is a SM-MCTS whose expansion and rollout phase relies on a new method for the
prediction of closing prices. This method is based on a specific sequence that has the
advantage of converging in practice in all undertaken SAA-c instances, taking into account
the auction’s mechanism and not relying solely on the outcomes of a single specific strategy
profile. We introduce scalarised rewards in SMSα through a hyperparameter α giving the
freedom to bidders to arbitrate between expected utility and risk-aversion. Increasing α

reduces exposure and own price effect but decreases one’s expected utility.

In the next chapter, we relax the assumption that the induced bidding game is with complete
information. Thus, bidders are no longer aware of the value functions and budgets of their
opponents. We propose three different determinization approaches which heavily rely on
SMSα to address this issue.
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In the last chapter, we presented the first efficient bidding strategy SMSα that tackles simul-
taneously the four main strategical issues of SAA on instances of realistic size. However,
the induced bidding game was with complete information. In this chapter, we relax this
assumption and consider the same bidding game but with incomplete information. Bidders
are no longer aware of the value functions or budgets of their opponents. We propose three
different determinization approaches highly inspired by SMSα in order to compute efficient
bidding strategies in the resulting game.

We start by modelling the bidding behaviour of the players as well as its characteristics by
introducing the notion of types. The mechanism is the same as in the last chapter. We name
this model SAA-inc. We then propose a representation of the SAA-inc game in extensive
form and present the different complexities induced by the bidding game. We improve the
algorithm SMSα of the last chapter by replacing the UCT selection phase with the EXP3
algorithm introduced in Section 3.6. We name the resulting algorithm SMSα

EXP 3. We then
present three different determinization approaches to adapt SMSα

EXP 3 to the incomplete
information framework. For two of these determinization approaches, it is necessary to pick
multiple types. Given the fact that we can only pick a few because of time constraints, we
propose an easy method to sample value functions and budgets which are representative
of one’s type distribution. Furthermore, we propose a simple inference method to update
one’s belief about an opponent’s budget through bid exposure. We then present a general
experimental framework for generating types for a certain level of certainty. Finally, through
extensive experiments, we show that our three determinization approaches significantly
outperform state-of-the-art methods by notably better tackling the exposure problem and
the own price effect in budget and eligibility constrained environments with incomplete
information. Moreover, we propose an analysis of the impact of uncertainty on our three
determinization approaches.

6.1 Simultaneous Ascending Auction with constraints
and incomplete information (SAA-inc)
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6.1.1 Mechanism

In this chapter, we use the same mechanism as in the last chapter presented in Section
5.1.1.

6.1.2 Bidders’ modelling

Bidders possess the same characteristics as in the last chapter, i.e., each bidder i is defined
by the three following quantities:

• Value function vi (or utility function σi)

• Budget bi

• Eligibility ei

However, the two first characteristics are no longer public knowledge. Hence, the induced
bidding game is with incomplete information. Incomplete information games are often
referred to as Bayesian Games [Harsanyi, 1968].

In this chapter, we decide to use a similar Bayesian setting than in [Nedelec, 2022] to
model the incertitude on one’s value function and budget. Thus, players no longer have a
point-wise estimate of the value function or budget of their opponents, as it was the case for
complete information, but a probability distribution. A widely made assumption is that these
distributions are common knowledge between bidders [Nedelec, 2022]. Thus, we denote
by Fi and by Bi, the value distribution and budget distribution of bidder i. We design by
F−i (respectively B−i) the product distribution of all value distributions (respectively budget
distributions) of all bidders except i. As budgets and value functions are assumed to be
independent in this thesis, we assume that both distributions are independent. We define
in this chapter the type distribution Ti of player i as the joint probability that player i has a
value function of v and a budget of b, i.e.,

Ti(v, b) = Fi(v)Bi(b) (6.1)

We define T−i as the joint distribution of all type distributions of all players except i.
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We differentiate three types of Bayesian games depending on the information available to
bidders. Those are known as ex-ante, interim and ex-post properties [Nedelec, 2022].

• Ex-ante properties: Bidders do not know their type and their opponents’ types.
Hence, each bidder i only knows Ti and T−i.

• Interim properties: Each bidder i knows its own type but does not know its opponents’
types, i.e., a bidder i only knows vi, bi and T−i.

• Ex-post properties: Bidders know their own type and their opponents’ types. This
implies that the induced bidding game is with complete information.

In this chapter, we consider the Bayesian game with interim properties.

As it was the case in the two last chapters, we make the two following common assumptions
which reduce the bidding space:

• Bids on an item j are constrained to Pj + ε where ε is a fixed bid increment.

• Players won’t bid on items that they are currently temporarily winning. Hence, in
our model, a winner will always pay a price for an item at most ε above the highest
opponent bid.

We name this simplified version of SAA with the above bidders’ modelling SAA-inc.

6.1.3 Representation of SAA-inc in extensive form

According to [Harsanyi, 1967], a Bayesian game can be seen as a game with complete
but imperfect information. Indeed, an equivalent representation of a Bayesian game is a
game where Nature first draws each player’s type in accordance with their type distribution
and, then, the players play in the resulting sub-game with complete information. This
representation is called the Bayes-equivalent of the original game. Given that our induced
bidding game in SAA-inc is with interim properties, each player after Nature’s draw receives
partial information concerning its exact budget and value function. However, it does not
know the budget or value function of its opponents but just their type distribution Ti. Thus, a
state of the corresponding SAA-inc game is defined by seven features:
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• the identity of the player submitting its bids (we name it the "concerned player")

• the eligibility vector revealed at the end of the last round

• the temporary winner of each item

• the current bid price of each item

• the concerned player’s type

• the bids already submitted during the current round

• the types of the concerned player’s opponents

The five first features are common knowledge and the two last features are hidden infor-
mation for the concerned player. Thus, all states which differ only by the last two features
belong to the same information set.

In order to theoretically represent the Bayes-equivalent of the SAA-inc game in extensive
form, it is necessary that the type distributions are not continuous but discrete. In practice,
this will always be the case as the value functions and budgets correspond to monetised
values. From now on, we implicitly identify the SAA-inc game with its Bayes-equivalent and
use both interchangeably.

An example of SAA-inc game between two players is represented in Figure 6.1. At the
beginning of the game, Nature draws a type ti for each player i. Each player knows its type
but not its opponent’s type. Hence, each player does not know exactly in which sub-game it
is playing and, thus, different states across sub-games can belong to a same information
state. For instance, all states corresponding to the first round of the auction which share
the same concerned player and the same concerned player’s type belong to the same
information set. Thus, in Figure 6.1, the two nodes corresponding to player 1 with types
(t1, t2) and (t1, t′

2) belong to the same information set.
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2) means the first player is type t1 and the second player is type

t′
2.

6.2 Complexities induced by the SAA-inc game

6.2.1 General game properties

The game induced by SAA-inc has the following general game properties:

• n-player game

• Non-zero sum game

• Simultaneous move

• Stochasticity

• Imperfect information

• Incomplete information
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6.2.2 Game complexities

For the sake of simplicity, we compute the information set space complexity and a lower
bound of the game tree complexity of an SAA-inc game with a given number of rounds R,
unlimited budgets and without any activity rule.

Theorem 6.1. Let Γ be an instance of the SAA-inc game with no activity rule. Let n, m and
R be respectively the number of players, the number of items and the number of rounds in
Γ. Suppose that all players have unlimited budgets. The number of possible information
sets in Γ is:

n∑
i=1
|supp(Ti)|(Rn + 1)m (6.2)

where |supp(Ti)| is the cardinal of the support of the discrete type distribution of player i.

Proof. Each information set is defined by four components: the concerned player, its type
(which only corresponds to its value function as all bidders have unlimited budgets), the
temporary winner and bid price of each item. Each bidder i has |supp(Ti)| = |supp(Fi)|
different types. It has been shown in proof of Theorem 5.1 that the number of different
allocations and bid prices for all items in Γ is (Rn+1)m. Hence, there are |supp(Ti)|(Rn+1)m

different information sets corresponding to bidder i. Thus, the total number of possible
information sets in Γ is:

n∑
i=1
|supp(Ti)|(Rn + 1)m

Remark. In the specific case that an instance Γ of SAA-inc game is with complete informa-
tion, then ∀i{1, ..., n}, |supp(Ti)| = 1. Thus, the number of possible information sets in Γ is
n(Rn + 1)m which corresponds to Theorem 5.1.

Theorem 6.2. Let Γ be an instance of the SAA-inc game with no activity rule. Let n, m and
R be respectively the number of players, the number of items, and the number of rounds
in Γ. Suppose that all players have unlimited budgets. A lower bound of the game tree
complexity of Γ is:

Ω(2m(n−1)R
n∏

i=1
|supp(Ti)|) (6.3)

where |supp(Ti)| is the cardinal of the support of the discrete type distribution of player i.
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Proof. We notice that there are
∏n

i=1 |supp(Ti)| different type profiles in Γ. Hence, there
are

∏n
i=1 |supp(Ti)| different sub-games which can initially be drawn by Nature. In each of

these sub-games, we can lower-bound the game tree complexity by Ω(2m(n−1)R) as done
in the proof of Theorem 5.2. Hence, a lower bound of the game tree complexity of Γ is:

Ω(2m(n−1)R
n∏

i=1
|supp(Ti)|)

6.2.3 Strategical complexities

In addition to the difficulties generated by uncertainty as well as the high information set
space and game tree complexities, the bidding game induced by SAA-inc also presents the
four main strategical issues of SAA: the exposure problem, the own price effect, budget
constraints and the eligibility management problem. All of these issues are fully detailed in
Section 2.2.3. In the last chapter, we created an efficient algorithm which dealt with these
four issues in the specific case of complete information.

6.3 Integrating EXP3 in SMSα

Although SMSα obtains very good results, we have noticed that these could be improved by
replacing the UCT selection phase of SMSα with the EXP3 algorithm introduced in Section
3.6. This choice of EXP3 is motivated by the fact that the optimal policy at a simultaneous
move node is often mixed [Cowling, 2012a]. Thus, using a selection strategy which returns
a mixed policy rather than one which returns a deterministic policy can sometimes lead to a
significant improvement of the overall algorithm’s performance.

We present hereafter the modifications in the selection phase, the backpropagation phase
and the final move selection of SMSα to integrate the EXP3 algorithm. The expansion phase
and the rollout phase remain unchanged. We name the resulting algorithm SMSα

EXP 3.
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6.3.1 Selection

During the selection phase, each player i chooses to bid on the set of items xi with
probability IPi(xi) at information set Ii:

IPi(xi) = γIi

KIi

+ (1− γIi)∑
x′

i
e

ηIi
(sα

x′
i

−sα
xi

) (6.4)

where sα
xi

is an estimate of the sum of scalarised rewards obtained after bidding on xi at Ii

over all search iterations where Ii is encountered in the selection phase, KIi is the number
of possible different actions which can be selected at Ii (it is upper-bounded by Nact, the
maximum number of promising actions expanded per information set), γIi corresponds to
the probability of exploring (choosing an action randomly) and ηIi is a hyperparameter of
the Gibbs distribution. This equation is slightly different from the one presented in Section
3.6 but is equivalent and more numerically stable [Cowling, 2012a]. We decide to use the
same hyperparameters suggested by Auer et al. in [Auer, 2002b],

γIi = min(1,

√
KIi

ln(KIi
)

(e −1)
∑

x′
i

nx′
i

)

ηIi = γIi
KIi

(6.5)

where nxi is the number of times player i bidded on xi at Ii and e is the base of the natural
logarithm.

6.3.2 Backpropagation

During the backpropagation phase, we update the statistics of the different selected nodes.
Let V α

i be the scalarised utility obtained by player i at the end of the rollout. Let xi be the
set of items on which player i bidded at information state Ii for one of the selected nodes.
The statistics stored for Ii are updated as follows:

∗ sα
xi
← sα

xi
+ V α

i
IPi(xi)

∗ nxi ← nxi + 1
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By dividing V α
i by IPi(xi), sα

xi
acts like an estimate of the sum of scalarised rewards after

bidding on xi at Ii for all search iterations where Ii is encountered in the selection phase
and not just over the search iterations where xi is selected.

6.3.3 Final move selection

When all search iterations have been performed, the algorithm returns a mixed strategy
based on the frequencies of visit counts of the expanded moves at the root’s information
set for the concerned player i. According to [Teytaud, 2011], before computing these
frequencies, withdrawing visits caused by exploration can enhance the overall performance
of the algorithm. The average number of visits caused by exploration at information set Ii

can be approximated by

N ′
Ii∑

n=1

γIi

KIi

≈
N ′

Ii∑
n=1

1
KIi

√
KIi ln(KIi)

(e−1)n

≈
∫ N ′

Ii

n=1

√
ln(KIi)

KIi(e−1)n

≈ 2
√

N ′
Ii

√
ln(KIi)

KIi(e−1)

(6.6)

with N ′
Ii

=
∑

x′
i
nx′

i
.

Thus, the visit count corresponding to bidding on set of items xi at information set Ii is reset
to:

n′
xi
← max

(
0, nxi − 2

√
N ′

Ii

√
ln(KIi)

KIi(e−1)

)
(6.7)

Player i then bids on set of items xi with probability
n′

xi∑
x′

i
n′

x′
i

.

It is important to note that, in SMSα, withdrawing visits caused by exploration was unneeded
as the final move selection was based on maximising the expected scalarised reward.
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6.4 Three determinization approaches

As already explained in Section 3.8.5, determinization consists in generating an instance of
the equivalent game where all hidden information is assumed known to all players. In this
section, we present three different determinization approaches in order to adapt SMSα

EXP 3
to the incomplete information framework of the SAA-inc game. The first approach consists
in using the expected value of the opponents’ type distribution and apply SMSα

EXP 3 to the
resulting determinized SAA-inc game with complete information. The second approach
consists in generating many determinized games and apply SMSα

EXP 3 to each different
instance. The results obtained for each instance are then combined and a final move
is selected. The third approach consists in generating a unique search tree and draw a
different determinization at each search iteration. Only the opponents’ moves consistent
with the drawn determinization are considered, i.e. only the moves within the opponents’
drawn budgets are considered.

For the two last approaches, it is necessary to pick multiple types for the root player’s
opponents. Although these could be sampled randomly from the type distribution, given
the fact that computing an initial prediction of closing prices for each combination of types
is a relatively long process, we only select a few types for each opponent. More precisely,
we do not exactly select types but profiles. The selection of these profiles is described in
Section 6.5.

Definition 6.1. A profile in SAA-inc is a pair (v, b) where v corresponds to a value function
and b to a budget. The value function v only needs to be normalised (v(∅) = 0), finite and
verify the free disposal condition as described in Section 2.1. The budget b only needs to
be positive and finite.

Thus, a profile (v, b) does not necessarily belong to the support of a type distribution.
However, any type (vi, bi) ∈ supp(Ti) of player i is a profile.

In Figure 6.2, we represent the three determinization approaches applied to a SAA-inc
game with two players from the point of view of player 1. The first chance node in each
approach corresponds to the random draw by Nature of the opponent’s type, i.e. player 2.
The vertices in each search tree correspond to the players’ joint actions. For better legibility,
we set T = |supp(T2)|. In Figure 6.2(a), we represent our first simple determinization
approach. It computes the expected value of the type distribution of player 2 and then
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applies SMSα
EXP 3 to the resulting game. In Figure 6.2(b), we represent the single-tree

determinization approach. It computes a set of different profiles L for player 2 and, then,
generates a single search tree where, at each search iteration, a profile l is drawn uniformly
from L. Only moves consistent with profile l are considered. Vertices with dashed lines
represent parts of the search tree which are not consistent with l. In Figure 6.2(c), we
represent the separate-tree determinization approach. It computes the set of different
profiles L for player 2 and then, for each profile, generates a separate search tree on which
is applied SMSα

EXP 3.

C

Expected value

C

CC CC

C

CC CC

C Chance nodes

Search tree nodes

(a) Determinization through expectation

C

Set of different combinations of profiles

C

CC CC

C

CC CC

C

with

C Chance nodes

Search tree nodes

(b) Single-tree determinization

C

Set of different combinations of profiles

C C C C C C

C Chance nodes

Search tree nodes

(c) Separate-tree determinization

Fig. 6.2.: Representation of the three different determinization approaches applied to a SAA-inc
game with two players from the point of view of player 1.

6.4.1 Determinization through expectation

A first simple approach to apply SMSα
EXP 3 to SAA-inc is to consider the corresponding

bidding game with complete information where opponents play according to their expected
value of their type distribution. More formally, we suppose that an opponent i with value
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distribution Fi and budget distribution Bi plays with value function vi and budget bi defined
hereafter: ∀X ∈ P({1, ..., m}), vi(X) = Ev∼Fi(v(X))

bi = Eb∼Bi
(b)

(6.8)

It is important to notice that, as all value functions vi sampled from the value distribution
Fi respect the free disposal condition, vi respects the free disposal condition and, hence,
is a valid value function. However, it is possible that (vi, bi) /∈ supp(Ti). Therefore, the
considered bidding game with complete information on which is applied SMSα

EXP 3 might
not be one of the possible sub-games with complete information of the Bayes-equivalent of
the initial SAA-inc game.

Example. Let’s consider a SAA-inc game with one item and two bidders. The second bidder
has one of the four following types with b1

2 ̸= b2
2 and v1

2 ̸= v2
2: (v1

2, b1
2), (v1

2, b2
2), (v2

2, b1
2) and

(v2
2, b2

2). Thus, v2 = v1
2+v2

2
2 /∈ supp(Fi) and b2 = b1

2+b2
2

2 /∈ supp(Bi).

As we see in the above example, using expected values can lead to a bidding game that
cannot appear in the reality given the type distributions. The expected values could even
lead to unfeasible combinations of types. Considering this expected game does not pose
however an issue in our specific case of auctions. We name this determinization approach
SMSα

EXP 3. In the case of complete information, playing SMSα
EXP 3 is equivalent to playing

SMSα
EXP 3. The initial prediction of closing prices p∗ is computed the same way as in SMSα

on the corresponding determinized game.

6.4.2 Separate-tree determinization

One of the main issues of computing a bidding strategy by just using the expected value
of the opponents’ type distributions is that we only use one feature of the distribution.
For instance, SMSα

EXP 3 returns the same mixed policy regardless of the variance of
the type distributions. Thus, a simple approach to better exploit the type distribution is
to generate separate trees for different determinizations and then combine the results
[Cowling, 2012a].

One way of selecting a determinization would be to sample randomly from the opponents’
type distribution T−i. However, due to computational reasons, we cannot sample many
determinizations as computing an initial prediction of closing prices and running SMSα

EXP 3
on each separate tree is too long. Thus, as we are forced to select only a few, we decide to
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design determinized profiles of opponents which are representative of the type distribution.
The selection of these profiles is detailed in Section 6.5.

They are mainly two aspects of the algorithm that we detail here. The first aspect is which
actions are expanded at the root node for the concerned player. The second aspect is the
final selection move of the overall algorithm given the results obtained in each separate
tree.

6.4.2.1 Expansion phase at the root

As expanding all actions at the root of a separate tree prevents in-depth inspection of
promising branches, we need to choose a relatively small set of actions to expand. We
could expand a different set of actions at the root for the concerned player depending on
each determinization (or combination of profiles) and their resulting prediction of closing
prices. However, as the aim is to combine the final results obtained in each separate tree to
select a final action, it seems fairer to use the same set of actions at the root node for the
concerned player (only for the concerned player, not for the opponents) in each separate
tree. We select these actions as follows.

Suppose there is a set of different combinations of profiles L. In each of these combinations,
the concerned player has the same profile, i.e. we assume that every player is aware of the
concerned player’s real value function and budget. For each combination of profiles l ∈ L,
we compute an initial prediction of closing prices p∗(l) and generate a separate tree. For the
concerned player at the root, we select a maximum of Nact actions. For the same reasons
than in SMSα, passing its turn is included in the Nact selected actions. The remaining
Nact − 1 actions correspond to the moves leading to the Nact − 1 highest predicted utilities
in strategy PP with initial prediction 1

|L|
∑

l∈L p∗(l). It is important to note that this is not
equivalent to selecting the Nact − 1 highest average predicted utility according to strategy
PP for each combination of profiles l ∈ L. Indeed, if a player i at information set Ii is
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temporarily winning set of items Yi and bids on set of items Xi with P the current bid price,
we have

1
|L|

∑
l∈L

σi(Yi ∪Xi, ρ(p∗(l), P, Yi)) = 1
|L|

∑
l∈L

vi(Yi ∪Xi)−
∑

j∈Yi∪Xi

ρj(p∗(l), P, Yi)

= vi(Yi ∪Xi)−
∑

j∈Yi∪Xi

∑
l∈L

1
|L|

ρj(p∗(l), P, Yi)

≤ vi(Yi ∪Xi)−
∑

j∈Yi∪Xi

ρj(
∑
l∈L

p∗(l)
L

, P, Yi)

= σi(Yi ∪Xi, ρ( 1
|L|

∑
l∈L

p∗(l), P, Yi))

(6.9)

The term on the left corresponds to the average predicted utility according to strategy PP
over all combinations of profiles while the last term on the right corresponds to the predicted
utility in strategy PP with initial prediction 1

|L|
∑

l∈L p∗(l). The inequality comes from the fact
that, for any current bid price P , p→ max(p, P ) is a convex function. Thus, the perceived
price function ρ(., P, Yi) is also convex.

Remark. In the specific case where, for each combination of profile l ∈ L, p∗
j (l) ≥ Pj for

each item j ∈ Yi and p∗
j (l) ≥ Pj + ε otherwise, the two approaches are equivalent.

For all other information sets in the separate tree with combination of profiles l ∈ L, the
expanded set of actions is chosen according to the highest predicted utilities in strategy PP
with initial prediction p∗(l) as it is the case in SMSα.

6.4.2.2 Final move selection

We apply SMSα
EXP 3 on each separate tree with the above expansion phase for the root’s

information set of the concerned player. Thus, for each combination of profiles l, we obtain
a mixed strategy. Our final move selection is based on a variant of majority voting [Nijssen,
2012b]. For each separate tree, an action is drawn from its final mixed strategy. The action
which has been drawn the more often (and, thus, has gathered the most votes) across all
separate trees is selected as the best move. If two or more moves accumulate the same
highest number of votes, then the move with the highest number of visits over all trees
amongst the tied moves is selected.
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We name the resulting algorithm DSMSα
EXP 3 for Determinized SMSα

EXP 3. We provide
succinct pseudo-code in Algorithm 5. In the case of complete information, the set of different
combinations of profiles L is of size 1. Hence, playing DSMSα

EXP 3 is equivalent to playing
SMSα

EXP 3.

Algorithm 5 DSMSα
EXP 3

Hyperparameters: The risk-aversion hyperparameter α and the maximum number of
expanded actions Narms

Inputs computed offline: A set of combinations of profiles L and the initial prediction of
closing prices p∗(l) for each combination of profiles l ∈ L

// Selecting an expanded action set for the concerned player at the root node
Selection of the action set A0 for the concerned player at the root’s information set given
Narms and 1

|L|
∑

l∈L p∗(l)

// Initialisation
For each action a ∈ A0, we set the total number of visits na and the total number of votes
va to 0

// Generating and running separate trees
for l ∈ L do

• Generate a tree with expanded set of actions A0 at the root’s information set for the
concerned player

• Run SMSα
EXP 3 starting from the initialised tree using determinization l (the SAA-inc

game considered is with complete information)

• When all search iterations have been performed, withdraw the visits due to explo-
ration and update the total number of visits na of each action a ∈ A0 with the number
of visits n′

a,l obtained in the tree with determinization l: na ← na + n′
a,l

• Draw an action a ∈ A0 with probability n′
a,l∑

a′∈A0
n′

a′,l
and update its total number of

votes: va ← va + 1
end for

// Final selection move
return Action a ∈ A0 with the maximal number of votes va or, in case of ties, with the
maximal number of visits na amongst the tied moves

6.4.3 Single-tree determinization

In DSMSα
EXP 3, we generate |L| separate trees depending on the size of the set of com-

binations of profiles L. Another approach is to consider only one tree and to share the
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information between different combinations of profiles. More precisely, at each search
iteration, a combination of profiles l is drawn and only the opponents’ moves consistent with
l are considered. Single-tree determinization [Pepels, 2016] is also named Single-Observer
Information Set MCTS (SO-ISMCTS) [Cowling, 2012a] as nodes in the tree correspond to
information sets from the root player’s point of view. Indeed, we assume that all players
know the real value function and budget of the concerned player. To combine different
determinizations in a same tree, we need to modify the selection phase, expansion phase,
rollout phase and backpropagation phase of SMSα

EXP 3 accordingly.

6.4.3.1 Selection

Depending on the combination of profiles l ∈ L, the set of actions available at a particular
node might vary. Indeed, only opponents’ moves consistent with l are considered, i.e. only
moves withing their determinized budget. This issue can be seen as a multi-armed bandit
problem where only a subset of the arms is available at each trial. This problem is referred
to as subset-armed bandit [Cowling, 2012a]. This problem is easily solved for greedy
selection methods such as UCT where the selected moves only depends on the current
statistics. Indeed, each UCT value can be computed independently for each arm. It only
depends on the number of trials where an arm could have been pulled, the number of times
an arm was pulled and its sum of rewards. However, the EXP3 algorithm returns a mixed
policy by mixing two distributions that both depend on the statistics of all arms considered.
Thus, extending EXP3 to the subset-armed bandit problem seems less straightforward. We
propose the following modifications.

During the selection phase, each opponent i with profile li chooses to bid on the set of
items xi with probability IPi(xi) at information state Ii:

IPi(xi) =
γli

Ii

K li
Ii

+
(1− γli

Ii
)

∑
x′

i
e

η
li
Ii

(
nIi
N

x′
i

sα
x′

i

−
nIi
Nxi

sα
xi

)
(6.10)

where K li
Ii

corresponds to the number of legal moves which can be played by player i at Ii

with profile li, nIi the total number of times Ii has been visited and Nxi the total number of
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times a player i could have bidded on xi at Ii (number of times this move was considered
legal). Both hyperparameters are modified accordingly:


γli

Ii
= min(1,

√
K

li
Ii

ln(Kli
Ii

)
(e −1)nIi

)

ηli
Ii

=
γ

li
Ii

K
li
Ii

(6.11)

As sα
xi

acts as an estimate of the sum of scalarised rewards after bidding on xi at Ii over
all search iterations where Ii is encountered in the selection phase and bidding on xi is
legal, then nIi

Nxi
sα

xi
acts as an estimate over all search iterations where Ii is encountered.

This enables fair comparison between the different moves in the Gibbs distribution. Without
this rescale, moves which can not be played with low budget profiles would be disfavoured
when high budget profiles are drawn. The following example highlights the importance of
this rescale.

Example. Suppose that a player has the choice between 2 moves: a1 and a2. The player
can either have profile l1 or l2. Profiles are drawn randomly. In profile l1, only action a1 is
legal whereas, in profile l2, both moves are legal. Both moves return the same deterministic
reward r = 1. For each trial, we first draw a profile li, then an action is drawn from the
conditional probability IP(.|li) and we receive a reward r. Given the fact that both moves
lead to the same reward r, they should have the same expected probability of getting
selected when l2 is drawn. However, the estimate s3N

a1 of the sum of rewards of bidding on
a1 after 3N trials theoretically gives in expectation

E(s3N
a1 ) = 3N(IP(l1)IP(a1|l1) r

IP(a1|l1) + IP(l2)IP(a1|l2) r

IP(a1|l2))

= 3N(0.5× 1× 1
1 + 0.5× 0.5× 1

0.5)

= 3N

(6.12)

while the estimate s3N
a2 of the sum of rewards of bidding on a2 after 3N trials gives

E(s3N
a2 ) = 3N(IP(l2)IP(a2|l2) r

IP(a2|l2))

= 3N(0.5× 0.5× 1
0.5)

= 3
2N

(6.13)
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Thus, if no rescale is done, when l2 is drawn, a1 has far more chances of getting selected
by the EXP3 algorithm than a2. Moreover, the probability of selecting a2 when l2 is drawn
converges to 0. However, by using our rescale, we have that 1

IP(a1 is legal) E(s3N
a1 ) = E(s3N

a1 ) =
2× E(s3N

a2 ) = 1
IP(a2 is legal) E(s3N

a2 ) and, thus, both moves have the same expected probability
of getting selected by our modified EXP3 algorithm when l2 is drawn.

At the end of each selection step, for all sets of items xi of Ii within the budget of player i

according to li, we set Nxi ← Nxi + 1.

One slight issue with this approach is that the uniform distribution decreases in 1√
nIi

regardless of profile li. Thus, moves which can not be played with low budget profiles have
less chance of being explored than the others. Nevertheless, given the fact that the number
of different profiles li for an opponent i is low, this should not be too problematic.

During the selection phase, we apply the above modified EXP3 algorithm to the information
sets of the concerned player’s opponents. For the concerned player, the usual EXP3
algorithm is used as selection strategy as its profile never changes during the search
iterations.

6.4.3.2 Expansion phase

As it is the case for SMSα
EXP 3, only a maximum number of actions Narm can be expanded

per information set. Passing its turn is always included in the Narm actions. At each search
iteration, a combination of profiles l is drawn. For each player i at information state Ii

temporarily winning set of items Yi with eligibility ei, the action of bidding on set of items
xi is expanded if σα

i (Yi ∪ xi, ρ(p∗(l), P, Yi)) has the highest value between the remaining
legal unexpanded actions. Only sets of items xi which respect the eligibility and budget
constraints given by ei and profile li are considered. Statistics for each action are initialised
as follows:

∗ sα
xi
← 0

∗ nxi ← 0

∗ Nxi ← 1
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Unlike SMSα
EXP 3 where there is a clear division between the selection phase and the

expansion phase, this is not the case here. Both are intertwined. This is due to the fact that
actions are added one by one in each information set and depend on the combination of
profiles drawn. We can divide these in two separate phases:

• Selection of expanded nodes: If the node is already expanded, i.e. a same
configuration of temporary winners, bid prices and eligibilities has already been added
to the search tree, then we check for each information state Ii the two following cases:

– If the maximum number of actions Narm has already been reached or all le-
gal actions have already been added to the search tree, then we apply the
selection strategy described in the last subsection and draw an action from the
corresponding mixed policy.

– Otherwise, a new action is added to the information set as described above.

Each player then plays its corresponding action. This process continues until a
non-expanded node is reached.

• Adding a non-expanded node: If a non-expanded node is reached, then, for each
information set Ii, an action is expanded as detailed above and NIi ← 0.

6.4.3.3 Rollout

Similarly to SMSα
EXP 3, at the beginning of each rollout phase, we set p∗

i = p∗(l) + ηi with
ηi ∼ U([−ε, ε]m) and l the combination of profiles drawn at this search iteration. Each
player i then plays PP with initial prediction of closing prices p∗

i during the entire rollout.

6.4.3.4 Backpropagation

Let V α
i be the scalarised utility obtained by player i at the end of the rollout. Let xi be the

set of items on which player i bidded at information state Ii for one of the selected nodes.
The statistics stored for Ii are updated as follows:

∗ sα
xi
← sα

xi
+ V α

i
IPi(xi)

∗ nxi ← nxi + 1
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∗ NIi ← NIi + 1

In the specific case where it is the first time that xi is selected (nxi = 0 before the backprop-
agation phase), we set sα

xi
← V α

i .

We name the resulting algorithm SDSMSα
EXP 3 for Single-tree Determinization SMSα

EXP 3.
We provide succinct pseudo-code in Algorithm 6. It uses the same transposition table
as SMSα described in Section 5.4.7. It is important to note that, in case of complete
information, playing SDSMSα

EXP 3 is equivalent to playing SMSα
EXP 3.

Algorithm 6 SDSMSα
EXP 3

Hyperparameters: The risk-aversion hyperparameter α and the maximum number of
expanded actions Narms

Inputs computed offline: A set of combinations of profiles L and the initial prediction of
closing prices p∗(l) for each combination of profiles l ∈ L

for t search iterations do
// Select combination of profiles
l ∼ U(L) where U is the uniform distribution

// Selection of expanded nodes
Select a path consistent with l until a non-expanded node is reached using the
Selection of expanded nodes process with Narms and p∗(l) described in
Section 6.4.3.2

// Adding a non-expanded node
Add the non-expanded node using l and p∗(l)

// Rollout
Simulate a SAA-inc game where each bidder i plays a PP strategy with initial
prediction of closing prices p∗

i = p∗(l) + ηi (ηi ∼ U([−ε, ε]m))

// Backpropagation
Update statistics of the selected actions using the results of the rollout phase

end for

// Final selection move
Withdraw the visits due to exploration and then compute the mixed policy for the con-
cerned player i at the root’s information state Ii by setting the probability IPi(xi) of bidding

on set of items xi to
n′

xi∑
x′

i
n′

x′
i

.

return An action drawn from the mixed policy
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6.5 Generating combinations of profiles

Due to time constraints, we can only sample a few determinizations as computing an
initial prediction of closing prices or running a separate tree for each determinization is
relatively long (a few minutes). One approach would be to sample them randomly from
the type distribution. However, given the restrictive number of determinizations we allow
ourselves, there is fair chance that the sampling is not representative of the opponents’
type distributions. As the performance of SDSMSα

EXP 3 and DSMSα
EXP 3 highly rely on the

quality of the sampling, this could lead to poor results. Thus, we decide to design profiles of
opponents which are representative of the type distribution.

Each profile is parametrised by a unique parameter δ. An opponent i with profile δ plays
with value function vδ

i and budget bδ
i defined as:

∀X ∈ P({1, ..., m}), vδ
i (X) = Ev∼Fi(v(X)) + δ

√
Vv∼Fi(v(X))

bδ
i = Eb∼Bi

(b) + δ
√

Vb∼Bi
(b)

(6.14)

It is plausible that a profile (vδ
i , bδ

i ) /∈ supp(Ti). Nevertheless, we believe that by selecting
different symmetric profiles, i.e. if profile δ is selected then profile −δ is selected, our
sampling method is far more representative of the type distributions than just sampling
randomly a few determinizations from the type distribution.

Example. Consider an SAA-inc game between 4 players. A possible combination of profiles
is to assign to each opponent a profile (vδ

i , bδ
i ) with δ ∈ {−1, 0, 1}. Thus, each opponent

can have one of the three profiles. Therefore, the set of combinations of profiles L has 27
elements.

The higher δ is, the higher are the value function and budget of an opponent playing with
profile δ and, thus, the more aggressive this opponent will be in the determinized game.
If only strong profiles (high value functions and high budgets) are sampled, then both
algorithms SDSMSα

EXP 3 and DSMSα
EXP 3 are more risk-averse as they try to reduce the

risk of exposure and the own price effect. Symmetrically, the lower δ is, the more risk-averse
the opponent will be in the determinized game. If only weak profiles (low value functions
and low budgets) are sampled, then both algorithms SDSMSα

EXP 3 and DSMSα
EXP 3 bid

more aggressively as they take advantage of the weak position of their opponents. Thus,
to represent appropriately one’s type distribution, we select symmetric values δ and −δ in
order to obtain as many strong profiles as weak profiles for each opponent.
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6.6 Tracking bid exposure

Until now, we have never used the history of past moves to enhance our algorithms. We
have only always focused on the current information set. Past bids submitted by a bidder
can be seen as an important source of information as one might give away information
about its preferences or budget. This could be used to narrow down an opponent’s possible
types. Ideally, one would like to end up in a game with complete information with a correct
estimation of all its opponents’ types. However, such inference is complicated in practice
as a bidder could eventually use bluff in order to fool others if it knew its moves are being
tracked. Moreover, even though we believe that inferring a bidder’s value function from its
past moves given a certain prior is possible, this remains a very difficult task and is not
considered in this thesis.

We propose an easy inference method to update one’s belief about its opponents’ budget
distribution in a SAA-inc game. It is based on tracking one’s bid exposure [Bulow, 2009], i.e.
the sum of all bids placed by a bidder during a given round, including its temporary winning
bids from the prior round. As bidders are not authorised to bid over their budget in this
thesis, the bid exposure is a perfect estimate of the lower bound of one’s budget. Therefore,
by tracking an opponent’s bid exposure, one can update its belief of its opponent’s budget
distribution and, thus, narrow down its types. This is described formally in Definition 6.1.

Definition 6.1. Budget inference through tracking bid exposure: Let Bi be the initial
budget distribution of player i and B̂i be the inferred budget distribution of player i using
its bid exposure b̂i. Let IPBi be the probability associated to Bi and IPB̂i

be the probability
associated to B̂i. Thus, for all b ∈ supp(Bi), B̂i is defined as follows:

If b < b̂i, IPB̂i
(b) = 0

Otherwise, IPB̂i
(b) = IPBi

(b)∑
b′∈supp(Bi)

b′≥b̂i

IPBi
(b′) (6.15)

Thus, we replace Bi by B̂i in SMSα
EXP 3, DSMSα

EXP 3 and SDSMSα
EXP 3. This enables

us to have more precise estimate of our opponents’ budget distribution. All profiles in
DSMSα

EXP 3 and SDSMSα
EXP 3 are also generated by using B̂i instead of Bi. Thus, some

profiles might change throughout the auction. Ideally, one should recompute the initial
prediction of closing prices p∗(l) each time a combination of profiles l changes. However,
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as the predictions are computed offline as it is time-consuming, we conserve the same
initial prediction of closing price for a combination of profiles even if the determinized budget
of an opponent is slightly modified.

6.7 Type generation

In this section, we describe a general framework to generate type distributions for an
SAA-inc bidding game with a predetermined level of uncertainty. As we assume throughout
this thesis that one’s budget is chosen independently from its value function, budget
distributions and value distributions can be generated separately. Thus, we first present a
general framework for generating value functions and, then, we present a general framework
for generating budgets.

For simplicity, we present hereafter each framework with continuous distributions. In
practice, once the value distributions or budget distributions obtained, we discretize them
with a small step (a step of 10−2 is chosen in our numerical experiments).

6.7.1 Value generation

Most works in the literature consider that the value distribution Fi of player i is Uniform
or Log-Normal [Nedelec, 2022; Yuan, 2014]. For instance, Goeree et al. [Goeree, 2003]
use Uniform distributions to model the values and costs of each bidder in single-object
first-price, second-price or English auctions. However, very few works have considered
value distributions for multi-item auctions, especially in SAA. One exception is Reeves et
al [Reeves, 2005] which uses an SAA for a scheduling problem. They initialise each slot
with a value drawn uniformly from [0, 50]. Then, they apply pruning on the slots that violate
monotonicity in order to obtain super-additive value functions. This setting is also used by
Wellman et al [Wellman, 2008]. In this subsection, we propose a new framework to generate
general value distributions which extends Settings 1 and 2 to incomplete information.
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6.7.1.1 Complementarity distributions

In order to build the value distribution Fi of player i, we introduce a new distribution Gηv
i

that we name complementarity distribution. It is based on a parameter ηv ∈ [0, 1] which
determines the level of certainty that bidders have on the value function of their opponents.
In order to match with Settings 1 and 2, we consider two disjoint cases when building Gηv

i

depending on whether X is a singleton or not. The formal construction of Gηv
i is described

below:

Definition 6.1. Let Γ be an instance of an SAA-inc game with n bidders, m items, a bid
increment ε and with a level of certainty on the values of ηv ∈ [0, 1]. Let V be the maximum
surplus of complementarity gained by obtaining an extra item (as defined in Settings 1 and
2). For each player i, the complementarity distribution Gηv

i is built as follows:

• If the set of items X is a singleton, then we draw cX ∼ U([0, ηvV ]) and define
Gηv

i,X = U([cX , cX + (1− ηv)V ]). Hence, the size of the support of Gηv

i,X is (1− ηv)V .

• If the set of items X is not a singleton, then we draw cX ∼ U([0, 2ηvV ]) and define
Gηv

i,X = U([cX , cX + 2(1− ηv)V ]). Hence, the size of the support of Gηv

i,X is 2(1− ηv)V .

where U is the uniform distribution.

We sample cX uniformly from [0, ηvV ] or [0, 2ηvV ], depending on whether or not the set
of items X is a singleton, so that our framework extends Settings 1 and 2 to incomplete
information. If ηv = 1, then the complementarity distributions are dirac delta distributions
and the value functions are common knowledge. If ηv = 0, then for every bidder i, Gηv

i,X =
U([0, V ]) if X is a singleton and Gηv

i,X = U([0, 2V ]) otherwise.

6.7.1.2 Value distributions

From the complementarity distributions, we are able to draw the private value functions
through the following process.
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Setting 3. Let Γ be an instance of an SAA-inc game with n bidders, m items, a bid increment
ε and with a level of certainty on the values of ηv ∈ [0, 1]. Let Gηv

i be the complementarity
distribution of player i. Gηv

i is common knowledge. From this known distribution, we draw a
unique vector of size 2m, Ci ∼ Gηv

i , which is then used to build the private valuation vi as
follows:

vi(X) = max
j∈X

vi(X\{j}) + Ci,X (6.16)

Similarly to the private value functions, the value distribution Fi is obtained empirically
through the same process for every player i. Equation 6.16 ensures that all value distribu-
tions vi ∼ Fi respect the free disposal condition. Moreover, Ci,X ∼ Gηv

i,X can be interpreted
as the complementarity surplus obtained when purchasing a set of items X instead of
purchasing the set X\{j} (with j ∈ X) which maximises vi. In Settings 1 and 2, this
complementarity surplus was in [0, V ] if X was a singleton and in [0, 2V ] otherwise. This
explains our disjunction of cases when generating the complementarity distribution Gηv

i .

6.7.1.3 Numerical examples

Although it is relatively straightforward how the level of certainty on the values ηv affects
the complementarity distribution Gηv

i of a player i, it is less obvious how it impacts its value
distribution Fi. Thus, we represent in Figure 6.3, the empirical value distribution of obtaining
different sets of items X for different levels of certainty by drawing thousands of vi ∼ Fi.
Whereas the complementarity distributions are based on uniform distributions, we notice
that the empirical value distribution of obtaining a set of items X seems to approach a
Gaussian distribution through our process when |X| increases. Moreover, as expected,
the support of the empirical distributions widens when ηv decreases. For instance, for
X = {1, ..., m}, the size of the support of the empirical distribution is approximately 8 when
ηv = 0.8 and 20 when ηv = 0.

We represent in Figure 6.4 the evolution of the standard deviation for each empirical value
distribution for obtaining a set of items X versus ηv. We notice that the standard deviation
of the empirical distribution increases linearly when ηv decreases.
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Fig. 6.3.: Empirical value distributions for obtaining sets {1, 2}, {1, 2, 3, 4} and {1, ..., m} for level of
certainty ηv ∈ {0, 0.5, 0.8} by sampling 104 value functions vi from the value distribution
Fi of player i. The complementarity distribution Gηv

i and value distribution Fi are built with
V = 5 and m = 9.
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Fig. 6.4.: Evolution of the standard deviation of the empirical value distributions for obtaining sets
{1, 2}, {1, 2, 3, 4} and {1, ..., m} depending on the level of certainty ηv. We sample 104

value functions vi from the value distribution Fi of player i. The complementarity
distribution Gηv

i and value distribution Fi are built with V = 5 and m = 9.

6.7.2 Budget generation

For the generation of budget distributions, we use a similar process than for the generation
of value distributions. We extend the generation of budgets in Setting 2 to incomplete
information.

Setting 4. Let Γ be an instance of an SAA-inc game with n bidders, m items, a bid increment
ε and with a level of certainty on the budgets of ηb ∈ [0, 1]. For each player i, we define the
size of the support of their budget distribution as dηb

= (1 − ηb)(bmax − bmin) where bmin

and bmax are respectively the minimal and maximal budget that a player can have. The
budget distribution Bi is built as follows:

• We draw Bi ∼ U([bmin, bmax − dηb
])

• We define Bi = U([Bi, Bi + dηb
])

where U is the uniform distribution. The private budget bi of bidder i is then drawn from Bi.

If ηb = 1, then the budgets are common knowledge. Moreover if ηv = 1, then the induced
SAA-inc bidding game is with complete information. If ηb = 0, then a bidder only knows that
the budget of its opponents is between bmin and bmax.
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6.8 Extensive experiments

6.8.1 Benchmark

In this section, we measure the performance of our three determinization approaches for
different levels of certainty by notably comparing them to the bidding strategies developed
in Section 2.4. More precisely, we consider the following 8 bidding algorithms:

• SMSα
EXP 3 described in Section 6.4.1 which uses the expected value of the oppo-

nents’ type distributions and applies SMSα
EXP 3 to the resulting game with complete

information.

• DSMSα
EXP 3 described in Section 6.4.2 which generates a separate determinized

tree for each combination of profiles on which SMSα
EXP 3 is applied. The final move is

selected through a variant of majority voting.

• SDSMSα
EXP 3 described in Section 6.4.3 which is a single-tree determinization ap-

proach which uses a variant of SMSα
EXP 3 to share the information between different

combinations of profiles. At each search iteration, a combination of profiles is drawn
and only the opponents’ moves consistent with this combination of profiles are consid-
ered.

• CSMSα
EXP 3 (or Cheating SMSα

EXP 3) is a direct application of SMSα
EXP 3 on the SAA-

inc game with complete information and is mainly used as benchmark to highlight
the impact of uncertainty on our three determinization approaches. It "cheats" by
observing the real state of the game before submitting a bid. Hence, an CSMSα

EXP 3
bidder has no uncertainty regarding the types of its opponents.

• Strategy SB [Milgrom, 2000] described in Section 2.4.1.

• The EPE algorithm [Wellman, 2008] described in Section 2.4.2.2.

• The EDPE algorithm [Wellman, 2008] described in Section 2.4.2.3.

• The SCPD algorithm [Wellman, 2008] described in Section 2.4.3.1.

6.8 Extensive experiments 179



As it was done in the last chapter, we extend the four strategies EDPE, EPE, SCPD and
SB (equivalent to PP with P init = 0) to budget and eligibility constrained environments in
the same way as it is done in Definition 5.1. We denote by SSMSα

EXP 3
={SDSMSα

EXP 3,
DSMSα

EXP 3, SMSα
EXP 3, CSMSα

EXP 3} the set of approaches based on SMSα
EXP 3 and by

SP P B ={SB,EPE,EDPE,SCPD} the set of perceived-price bidding strategies (that we name
PPB from now on). In all experiments, none of the bidders are aware of their opponents’
strategy.

We first describe our experimental setting by presenting the instances on which the above
strategies are confronted and the specificities of each algorithm such as the generation of
combinations of profiles or hyperparameters for our determinization approaches. We then
compare the different approaches.

As done in the last chapter, our analysis is divided into three parts: expected utility, own price
effect and exposure. Each part is divided into three portions. The first portion consists in
showing that our determinization approach significantly outperforms any strategy B ∈ SP P B .
The second portion consists in comparing our three determinization approaches. The last
portion consists in analysing the impact of uncertainty on the considered performance
indicators for our three determinization approaches. For each portion, we will generally
consider two types of scenarios: either bidders play different strategies or they all play the
same strategy.

As done in the last chapter, measures on performance indicators such as the average price
paid per item won are obtained by confronting a strategy A to a strategy B and averaging
the results over the two possible strategy profiles: (A,B,B) and (A,A,B). For instance, if
A = SDSMSα

EXP 3 and B = SB, the average price paid per item won by SDSMSα
EXP 3 in

these two strategy profiles is respectively: 5.88 and 4.94. Hence, the average price payer
per item won by SDSMSα

EXP 3 against SB is 5.41.

6.8.2 Experimental setting

We study SAA-inc instances with n = 3, m = 9 and ε = 1. Each experimental result has
been run on 1000 different SAA-inc instances. Value distributions and budget distributions
are generated separately through setting 3 and setting 4 with V = 5, bmin = 10 and
bmax = 40. We consider three levels of certainty with ηv ∈ {0, 0.5, 0.8} and ηb = ηv. During
our analysis, we will mainly focus on ηv = 0.5. Moreover, we never merge results between
different levels of certainty. A recap of the features used for the different instances in our
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extensive experiments is given in Table 6.1. Considering vastly different levels of certainty
(from no information to a relatively precise estimation of opponents’ value functions and
budgets) enables us to highlight the impact of uncertainty on our three determinization
approaches. All experiments are run on a server consisting of Intel®Xeon®E5-2699 v4
2.2GHz processors.

SAA-inc instance features Notation Value
Number of players n 3
Number of objects m 9

Bid increment ε 1
Maximum surplus of complementarity V 5

Level of certainty on the values ηv ηv ∈ {0, 0.5, 0.8}
Minimal budget per bidder bmin 10
Maximal budget per bidder bmax 40

Level of certainty on the budgets ηb ηb = ηv

Tab. 6.1.: Summary of the features of the SAA-inc instances employed for our extensive
experiments

In the two following subsections, we specify how the combinations of profiles are generated
for DSMSα

EXP 3 and SDSMSα
EXP 3 as well as our choice of hyperparameters. It is important

to note that we have chosen different risk-aversion hyperparameters α based on the level
of certainty.

6.8.2.1 Generating combinations of profiles

DSMSα
EXP 3 and SDSMSα

EXP 3 both rely on a set of combinations of profiles L in order to
choose on which set of items to bid. Even though it is done offline, computing an initial
prediction of final prices for each combination of profiles is time-consuming. Thus, we
decide to assign to each opponent i a profile (vδ

i , bδ
i ) with δ ∈ {−1, 0, 1}. Hence, as there

are only two opponents, the number of different combinations of profiles in L is 9.

6.8.2.2 Hyperparameters and thinking time

For each different level of certainty, we select a different hyperparameter α for each
approach based on SMSα

EXP 3 that we display in Table 6.2. These are selected through
grid-search (more details are given in the Remark of Section 6.8.3.1).

Moreover, the maximum number of expanded actions per information set Nact of all MCTS
approach except DSMSα

EXP 3 is set to 20. For DSMSα
EXP 3, Nact is set to 10. This is

6.8 Extensive experiments 181



ηv 0 0.5 0.8
CSMSα

EXP 3 0.8 0.8 0.8
SMSα

EXP 3 0.2 0.8 0.8
DSMSα

EXP 3 0.1 0.2 0.2
SDSMSα

EXP 3 0.7 0.5 0

Tab. 6.2.: Hyperparameter α used for each approach based on SMSα
EXP 3 and each level of

certainty ηv = ηb in a SAA-inc game (n = 3, m = 9, ε = 1)

due to the fact that DSMSα
EXP 3 generates 9 separate trees instead of one for the other

approaches and, thus, in order to obtain satisfactory results given thinking time constraints,
it must create smaller search trees.

Each algorithm is given respectively 100 seconds of thinking time except DSMSα
EXP 3

where we give 50 seconds per tree. Initial prediction of closing prices for each algorithm are
done offline.

6.8.3 Expected utility

To analyse a strategy’s expected utility, we apply the same pairwise comparison as in
Section 5.5.3.1 by considering the normal form game in expected utility where each player
has the choice between playing either a strategy A or a strategy B. We map each strategy
profile to the estimated expected utility obtained by each player in 1000 SAA-inc instances.

6.8.3.1 Comparing approaches based on SMSα
EXP 3 with PPB approaches

In Figure 6.5, we represent all empirical games for a level of certainty of (ηv, ηb) = (0.5, 0.5)
where a strategy A ∈ SSMSα

EXP 3
is confronted to a strategy B ∈ SP P B (with the exception

of EDPE which is strictly dominated by all strategies for every level of certainty). This figure
shows us two important points:

• The first point is that deviating from B ∈ SP P B to A ∈ SSMSα
EXP 3

in each empirical
game is always profitable. Hence, for any strategy A ∈ SSMSα

EXP 3
, the profiles

of strategies (A, A, A) is a Nash equilibrium of the normal-form SAA-inc game in
expected utility with set of strategies {A,SB,EPE,EDPE,SCPD} and level of certainty
(ηv, ηb) = (0.5, 0.5). Moreover, we observe that deviating from B ∈ SP P B to A ∈
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SSMSα
EXP 3

is also always profitable for the empirical games with level of certainty (0, 0)
and (0.8, 0.8). Thus, we can also draw the same conclusions for both of these settings.
More generally, it seems that this holds for any level of certainty with ηv ∈ [0, 1] and
ηv = ηb.

• The second point is that, although the level of certainty is relatively high, we can
notice a lot of similarity between empirical games played by a strategy A ∈ SSMSα

EXP 3

against a same strategy B ∈ SP P B . For instance, the empirical games represented in
Figure 6.5(a), 6.5(d), 6.5(g) and 6.5(j) are very similar. This highlights the fact that all
algorithms in SSMSα

EXP 3
heavily rely on SMSα

EXP 3 and, thus, we suspect that similar
bidding strategies are computed. This resemblance is even more drastic when the
level of certainty is (0.8, 0.8). However, when the level of certainty decreases and
reaches (0, 0), the differences are accentuated, especially with CSMSα

EXP 3.

Remark. It is important to note that, for every strategy A ∈ SSMSα
EXP 3

, the hyperparameter
α is chosen such that all deviations from a strategy B ∈ SP P B to A are always profitable.
Decreasing α generally increases the profitability of the deviations and, thus, by taking an α

inferior to the ones proposed in Table 6.2 the same results should be observed. However,
by increasing α, the profitability of some deviations might no longer hold.

Regarding strategy profiles where all bidders play the same strategy, the expected utility
when all bidders play the same strategy A ∈ SSMSα

EXP 3
is always greater than the expected

utility when all bidders play the same strategy B ∈ SP P B. This has been observed for
all levels of certainty. For instance, for (ηv, ηb) = (0.5, 0.5), SDSMSα

EXP 3, which obtains
the lowest expected utility amongst strategies in SSMSα

EXP 3
when all bidder play the same

strategy, has an expected utility 1.17, 1.19 and 2.45 times higher than the expected utility
obtained when all bidders play respectively EDPE, EPE and SCPD. If all players decide to
play SB, then the resulting expected utility is negative. This highlights the risks undertaken
when playing SB as there is fair chance of ending up exposed.

Remark. One possible explanation for the relatively good performance of our three deter-
minization approaches is that the value distribution of obtaining a set of items X in our
settings progressively resembles a symmetrical unimodal distribution when |X| increases.
For such distributions, the expected value is also the median. Hence, SMSα

EXP 3 seems
to be a relevant approach. Moreover, selecting symmetric values δ and −δ for generating
different combinations of profiles for SDSMSα

EXP 3 or DSMSα
EXP 3 seems also particularly

adapted to this type of distributions. These approaches might be less relevant if we consider
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Fig. 6.5.: Comparing approaches based on SMSα
EXP 3 with PPB approaches through normal-form

SAA-inc games (n = 3, m = 9, ε = 1) in expected utility with a level of certainty of
(ηv, ηb) = (0.5, 0.5).
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bimodal distributions with a significant spread between modes such that the probability of
drawing the expected value is zero. This form of distribution could, for example, occur if
we believed than an opponent either really desired a set of items X or not at all (but no
in-between). In this specific case, it might be more adapted to select δ profiles for each
mode separately. Nevertheless, nothing suggests that PPB approaches would be more
adapted as they solely rely on the prediction of closing prices which are often computed
through expectation methods.

6.8.3.2 Comparing our three determinization approaches

In Figure 6.6, we represent all empirical games for a level of certainty of (ηv, ηb) = (0.5, 0.5)
between our three determinization approaches. We can see that deviating from SMSα

EXP 3
to either SDSMSα

EXP 3 or DSMSα
EXP 3 is always profitable. This is also the case for the

other two levels of certainty. The fact that these deviations are profitable is not surprising as
SMSα

EXP 3 is our simplest determinization approach which only focuses on the expectation
of the opponents’ type distribution. Nevertheless, we remain quite surprised that a deviation
to the other two determinization approaches never leads to more than a 6% increase in
expected utility regardless of the level of certainty. We guess that this could be due to two
different factors. First, as mentioned in our last remark, the value distribution of obtaining a
set of items X seems to tend to a symmetrical unimodal distribution when |X| increases.
This may favour methods which only use the expected value of the distribution to make a
decision such as SMSα

EXP 3. Secondly, the number of different combinations of profiles
used in SDSMSα

EXP 3 and DSMSα
EXP 3 is quite low which might also explain why these

algorithms do not significantly outperform SMSα
EXP 3. We would like to investigate these

two points in future works.

In Figure 6.6(c), we also see that all deviations from DSMSα
EXP 3 to SDSMSα

EXP 3 are
profitable. This is also the case for the two other levels of certainty. Thus, the profile
of strategy (SDSMSα

EXP 3, SDSMSα
EXP 3, SDSMSα

EXP 3) is a Nash equilibrium of the
normal-form SAA-inc game in expected utility with strategy set {SDSMSα

EXP 3, DSMSα
EXP 3,

SMSα
EXP 3, SB, EPE, EDPE, SCPD} for levels of certainty (0, 0), (0.5, 0.5) and (0.8, 0.8).

Owing to complementary simulations not shown here, we are relatively confident that this is
also the case for all other levels of certainty.

When all bidders play the same strategy, DSMSα
EXP 3 always achieves a higher expected

utility than SDSMSα
EXP 3 or SMSα

EXP 3 for all levels of certainty. For instance, when
(ηv, ηb) = (0.5, 0.5), the expected utility when all players play DSMSα

EXP 3 is 1.18 and 1.10
times higher than the expected utility when all players play respectively SDSMSα

EXP 3 and
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SMSα
EXP 3. Hence, even though deviating from DSMSα

EXP 3 to SDSMSα
EXP 3 is always

profitable, better coordination between bidders playing the same strategy is obtained with
DSMSα

EXP 3 than SDSMSα
EXP 3.
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Fig. 6.6.: Comparing our three determinization approaches through normal-form SAA-inc games
(n = 3, m = 9, ε = 1) in expected utility with a level of certainty of (ηv, ηb) = (0.5, 0.5).

6.8.3.3 Impact of uncertainty on our three determinization approaches

In Figure 6.7, we represent the confrontation of each one of our three determinization
approaches against CSMSα

EXP 3 in a normal-form SAA-inc game in expected utility with
(ηv, ηb) = (0.5, 0.5). As expected, in each empirical game, deviating to CSMSα

EXP 3 is
always profitable. Similar results are observed for the other two levels of certainty. This is
due to the fact that a CSMSα

EXP 3 bidder knows the exact type of its opponents. Hence,
for each level of certainty, the strategy profile (CSMSα

EXP 3, CSMSα
EXP 3, CSMSα

EXP 3)
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is a Nash equilibrium of the normal-form SAA-inc game in expected utility with strategy
set {CSMSα

EXP 3, SDSMSα
EXP 3, DSMSα

EXP 3, SMSα
EXP 3, SB, EPE, EDPE, SCPD}. This

highlights the fact that having a precise estimate of the opponents’ types increases one’s
performance.
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Fig. 6.7.: Comparing our three determinization approaches to CSMSα
EXP 3 through normal-form

SAA-inc games (n = 3, m = 9, ε = 1) in expected utility with a level of certainty of
(ηv, ηb) = (0.5, 0.5).

Moreover, uncertainty also highly impacts coordination between bidders playing the same
strategy. For instance, we represent in Figure 6.8 the decrease in expected utility (%) when
all bidders play the same strategy between CSMSα

EXP 3 and a strategy A ∈ {SDSMSα
EXP 3,

DSMSα
EXP 3, SMSα

EXP 3} for different levels of certainty. As already mentioned in Section
6.4, when ηv = ηb = 1, the bidding game is with complete information and, hence, our three
determinization approaches are equivalent to CSMSα

EXP 3 (we recall that, for complete
information, the set of different combinations of profiles L is of size 1). In Figure 6.8 we
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notice that, the higher the uncertainty is, the more complicated it seems for bidders playing
the same determinization approach to coordinate themselves.

Uncertainty impacts our determinization approaches through the outcomes of the rollout
phase but also through the initial prediction of closing prices. Whereas CSMSα

EXP 3
bidders share the same initial prediction of closing prices, these significantly vary between
bidders playing the same strategy A with A ∈ {SDSMSα

EXP 3, DSMSα
EXP 3, SMSα

EXP 3},
especially for low levels of certainty. This explains the difficulty for bidders playing the same
determinization approach to coordinate themselves when uncertainty increases. Moreover,
in Figure 6.8, we can see that uncertainty does not impact each determinization approach
in the same way. For instance, the decrease in expected utility when all players play
SDSMSα

EXP 3 compared to when all players play CSMSα
EXP 3 seems to be linear with the

level of certainty whereas the one corresponding DSMSα
EXP 3 seems to be less affected

by uncertainty at first but finally ends up at nearly the same point as SDSMSα
EXP 3 when

ηv = 0.
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Fig. 6.8.: Comparing the decrease in expected utility (%) obtained when all players play
CSMSα

EXP 3 and when all players play the same strategy A with A ∈ {SDSMSα
EXP 3,

DSMSα
EXP 3, SMSα

EXP 3} for SAA-inc games (n = 3, m = 9, ε = 1) with different levels of
certainty (ηv = ηb).

6.8.4 Own price effect

Our analysis on own price effect is based on the same performance indicators as in Section
5.5.3.2, i.e. the average price paid per item won and the ratio of items won for each
empirical game.
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6.8.4.1 Comparing SMSα
EXP 3 with PPB approaches

In this part, we compare SMSα
EXP 3 to the other four PPB approaches. This is due to the

fact that SMSα
EXP 3 has the highest price paid per item won amongst the four approaches

based on SMSα
EXP 3 against PPB approaches. Hence, the average price paid per item won

by SMSα
EXP 3 against a strategy B ∈ SP P B can be seen as an upper-bound of the average

price paid paid per item won by the other two determinization approaches against B.

In Figure 6.9(a), we plot the average price paid per item won by each strategy A ∈
SP P B ∪{SMSα

EXP 3} against every strategy B displayed on the x-axis for a level of certainty
of (0.5, 0.5). For instance, if A = SMSα

EXP 3 and B = EPE, the average price paid per item
won by SMSα

EXP 3 against EPE is 2.03. It corresponds to the purple bar above index EPE
on the x-axis. If A = EPE and B = SMSα

EXP 3, then the average price paid per item won by
EPE against SMSα

EXP 3 is 3.92. It corresponds to the pink bar above index SMSα
EXP 3 on

the x-axis.

In Figure 6.9(a), we can clearly see that SMSα
EXP 3 acquires items at a lower price in

average than the four PPB approaches against any strategy B ∈ SP P B ∪ {SMSα
EXP 3}. For

instance, SMSα
EXP 3 spends 29%, 38.4%, 25.3% and 60.4% less per item won against EPE

than respectively EDPE, EPE, SCPD and SB. Similar results are also observed for levels
of certainty (0, 0) and (0.8, 0.8). Hence, we can conclude that our three determinization
approaches pay significantly less per item won than the four PPB approaches regardless of
the level of certainty.

To ensure that SMSα
EXP 3 bidders do not obtain low average prices by only purchasing

undesired items, we plot in Figure 6.9(b) the ratio of items won by playing each strategy
A ∈ SP P B ∪ {SMSα

EXP 3} against every strategy B displayed on the x-axis for a level of
certainty of (0.5, 0.5). For instance, if A = SMSα

EXP 3 and B = EDPE, the ratio of items won
by SMSα

EXP 3 against EDPE is 0.44. It corresponds to the purple bar above index EDPE
on the x-axis in Figure 6.9(b). If A = EDPE and B = SMSα

EXP 3, the ratio of items won by
EDPE against SMSα

EXP 3 is 0.22. It corresponds to the grey bar above index SMSα
EXP 3 on

the x-axis in Figure 6.9(b). We can see that each SMSα
EXP 3 bidder obtains at least 28%

of the items against every strategy B ∈ SP P B ∪ {SMSα
EXP 3} except SB. This shows that

SMSα
EXP 3 computes a competitive strategy.

Regarding strategy profiles where all bidders play the same strategy, SMSα
EXP 3 has a lower

average price paid per item won than EPE, SCPD and SB. Moreover, all items are allocated
when all players play SMSα

EXP 3 whereas only 60.6% of items are allocated when all players
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play EDPE. The fact that all items are allocated at a relatively small price explains why the
expected utility when all players play SMSα

EXP 3 is significantly higher than the expected
utility when all players play the same PPB strategy. This conclusion can also be drawn for
the other two determinization approaches and for the other levels of certainty.
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Fig. 6.9.: Comparing own price effect of SMSα
EXP 3 with PPB approaches for SAA-inc games

(n = 3, m = 9, ε = 1) with a level of certainty (ηv, ηb) = (0.5, 0.5) through two
performance indicators: the average price paid per item won and the ratio of items won

6.8.4.2 Comparing our three determinization approaches

In Figure 6.10, we represent the average price paid per item won and the ratio of items
won of each strategy A ∈ SSMSα

EXP 3
∪ {SCPD} against every strategy B displayed on the

x-axis for a level of certainty of (0.5, 0.5). As the results obtained for our determinization
approaches against EPE and SCPD are representative of the performance gap between
the three determinization approaches against PPB approaches, we do not represent SB
and EDPE on the x-axis. To highlight the performance gap between approaches based on
SMSα

EXP 3 and PPB approaches (which have already been mentioned in the first part of
our analysis on own price effect), we display the results obtained for SCPD (SCPD is used
as a representative of PPB approaches).

In order to compare the average price paid per item won by our three determinization
approaches displayed in Figure 6.10(a), two different cases need to be considered:

• Against PPB approaches, SMSα
EXP 3 has the highest average price paid per item won

amongst our three determinization approaches.
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• Against our three determinization approaches, SDSMSα
EXP 3 has the highest average

price paid per item won amongst our three determinization approaches.

In both cases, it is always DSMSα
EXP 3 which has the lowest average price paid per item

won. However, the relative difference between the average price paid per item won never
exceeds 7% between two different determinization approaches regardless of the other
strategy played.

Regarding the ratio of items won in Figure 6.10(b), it is always SDSMSα
EXP 3 which obtains

the highest ratio and DSMSα
EXP 3 which obtains the lowest ratio. This partially explains

why the deviations to SDSMSα
EXP 3 from the other determinization approaches are always

profitable even though the average price paid per item won is higher.

Regarding strategy profiles where all bidders play the same strategy, DSMSα
EXP 3 has an

average price paid per item won 8.8% and 15.2% less than respectively SMSα
EXP 3 and

SDSMSα
EXP 3. Moreover, when all bidders play the same determinization approach, all

items are allocated. Similar results are observed for the other levels of certainty. This
partially explains why DSMSα

EXP 3 has the highest expected utility when all players play the
same strategy amongst our three determinization approaches for all levels of certainty.
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Fig. 6.10.: Comparing own price effect of approaches based on SMSα
EXP 3 for SAA-inc games

(n = 3, m = 9, ε = 1) with a level of certainty (ηv, ηb) = (0.5, 0.5) through two
performance indicators: the average price paid per item won and the ratio of items won

6.8.4.3 Impact of uncertainty on our three determinization approaches

In Figure 6.10(a), we can see that CSMSα
EXP 3 always pays less in average per item won

than our three determinization approaches. For instance, CSMSα
EXP 3 spends 10.2%, 6.4%
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and 6.4% less against SDSMSα
EXP 3 than respectively SDSMSα

EXP 3, DSMSα
EXP 3 and

SMSα
EXP 3. The fact that CSMSα

EXP 3 spends less in average per item won is also the case
for the other two levels of certainty. Hence, uncertainty causes a rise in average price paid
per item won for our three determinization approaches.

Regarding the ratio of items won in Figure 6.10(b), we do not see any obvious impact of
uncertainty on our three determinization approaches.

Uncertainty highly impacts the coordination between bidders playing the same strategy.
This is highlighted in Figure 6.11 where we plot the rise in average price paid per item
won (%) when all bidders decide to play the same determinization approach instead of
CSMSα

EXP 3 for different levels of certainty. We see that the average price paid per item
won rises when uncertainty increases for our three determinization approaches. Given
the fact that for each level of certainty all items are allocated when bidders play the same
determinization approach, the rise in average price paid per item won seems to be the
principal cause of the decrease in expected utility when uncertainty increases. Indeed, the
similarity between Figure 6.11 and Figure 6.8 suggest that the impact of uncertainty on
both performance indicators is highly correlated. For instance, in Figure 6.8, the expected
utility when all players play SDSMSα

EXP 3 increases linearly with the level of certainty while,
in Figure 6.11, the average price paid per item won when all players play SDSMSα

EXP 3
decreases linearly with the level of certainty.
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Fig. 6.11.: Comparing the rise in average price paid per item won (%) when all players play
CSMSα

EXP 3 and when all players play the same strategy A with A ∈ {SDSMSα
EXP 3,

DSMSα
EXP 3, SMSα

EXP 3} for SAA-inc games (n = 3, m = 9, ε = 1) with different levels
of certainty (ηv = ηb).

192 Chapter 6 Simultaneous Ascending Auction with incomplete information



6.8.5 Exposure

As in Section 5.5.3.3, we analyse the exposure problem through two performance indicators:
the exposure frequency and the expected exposure.

6.8.5.1 Comparing DSMSα
EXP 3 with PPB approaches

In this part, we compare DSMSα
EXP 3 to the other four PPB approaches. This is due to

the fact that DSMSα
EXP 3 has the highest expected exposure (not necessarily the highest

exposure frequency) amongst our determinization approaches against PPB approaches.
Hence, the expected exposure suffered by DSMSα

EXP 3 against a strategy B ∈ SP P B can
be seen as an upper-bound of the expected exposure suffered by SDSMSα

EXP 3 and by
SMSα

EXP 3 against B.

We plot in Figure 6.12(a) the expected exposure of each strategy A ∈ SP P B∪{DSMSα
EXP 3}

against every strategy B displayed on the x-axis. Similarly, we plot in Figure 6.12(b) the
exposure frequency of each strategy A ∈ SP P B ∪ {DSMSα

EXP 3} against every strategy
B displayed on the x-axis. For instance, if A = DSMSα

EXP 3 and B = SB, the expected
exposure and exposure frequency are respectively 0.21 and 13.3%. They both correspond
respectively to the green bar above SB index on the x-axis in Figure 6.12(a) and in Figure
6.12(b). All these results are obtained for a level of certainty of (ηv, ηb) = (0.5, 0.5)

We can see in Figure 6.12 that DSMSα
EXP 3 has the lowest expected exposure and exposure

frequency against every strategy displayed on the x-axis. For instance, DSMSα
EXP 3 has

2.1, 4.7, 7.6 and 20.8 times less expected exposure against EPE than respectively EDPE,
EPE, SCPD and SB. Moreover, DSMSα

EXP 3 has 2, 3.9, 5.8 and 13.8 less chance of
ending up exposed against EPE than respectively EDPE, EPE, SCPD and SB. Hence, we
can conclude that our determinization approaches suffer less from exposure than PPB
approaches.

Regarding strategy profiles when all bidders play the same strategy, the one correspond-
ing to DSMSα

EXP 3 induces the lowest expected exposure and exposure frequency. For
instance, when all bidders play DSMSα

EXP 3 there is 1.2% chance that a bidder suffers from
exposure whereas, if they all play EPE, there is 10.9% chance. Moreover, in Section 5.5.3.3,
we had seen that, in the case of complete information, when all bidders play EPE there is
0.1% chance that a bidder suffers from exposure. This was partially due to the fact that EPE
bidders shared the same initial prediction of closing price if the induced bidding game is
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with complete information. However, in the case of incomplete information, this is no longer
the case. Hence, the expected exposure and exposure frequency when all bidders play
EPE increase drastically. This highlights the fact that solely relying on an initial prediction of
closing prices such as EPE (or other PPB approaches) is risky, especially in the case of
high uncertainty.
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Fig. 6.12.: Comparing the exposure suffered by DSMSα
EXP 3 with the exposure suffered by PPB

approaches for SAA-inc games (n = 3, m = 9, ε = 1) with a level of certainty
(ηv, ηb) = (0.5, 0.5) through two performance indicators: the expected exposure and the

exposure frequency

6.8.5.2 Comparing our three determinization approaches

In Figure 6.13, we represent the expected exposure and the exposure frequency of each
strategy A ∈ SSMSα

EXP 3
∪ {EPE} against every strategy B displayed on the x-axis for a

level of certainty of (0.5, 0.5). As the results obtained for our determinization approaches
against EPE and SCPD are representative of the performance gap between the three
determinization approaches against PPB approaches, we do not represent SB and EDPE
on the x-axis. To highlight the performance gap regarding exposure between approaches
based on SMSα

EXP 3 and PPB approaches, we also display the results for EPE.

Although DSMSα
EXP 3 is the strategy amongst our determinization approaches with the

lowest average price paid per item won, it is also the most risky strategy amongst our
determinization approaches against PPB approaches as it incurs the highest expected
exposure. However, it does not necessarily obtains the highest exposure frequency as we
can see against EPE and SCPD.

Nothing particular can be said against approaches based on SMSα
EXP 3 as no systematic

ordering between our determinization approaches can be observed.
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When all bidders play the same strategy, SDSMSα
EXP 3 obtains the lowest expected expo-

sure and exposure frequency amongst our three determinization approaches. It is important
to note that the highest exposure frequency is only of 1.2% and obtained when all bidders
play DSMSα

EXP 3.
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Fig. 6.13.: Comparing the expected exposure and exposure frequency of our approaches based on
SMSα

EXP 3 for SAA-inc games (n = 3, m = 9, ε = 1) with a level of certainty
(ηv, ηb) = (0.5, 0.5)

6.8.5.3 Impact of uncertainty on our three determinization approaches

In Figure 6.13, we can see that CSMSα
EXP 3 suffers far less exposure against any strategy B

on the x-axis than our three determinization approaches. For instance, CSMSα
EXP 3 incurs

5.8, 7.5 and 6.6 times less expected exposure and has 50%, 54% and 57% less chance
of ending up exposed against EPE than respectively SDSMSα

EXP 3, DSMSα
EXP 3 and

SMSα
EXP 3. Moreover, when all bidders play the same strategy, CSMSα

EXP 3 never leads
to exposure. Hence, uncertainty rises the risk of exposure for our three determinization
approaches.

In Figure 6.14, we plot the exposure frequency of our three determinization approaches
when all bidders play the same strategy for different levels of certainty. We remark that our
three determinization approaches are impacted by uncertainty in nearly the same way in the
sense that the exposure frequency drastically drops from ηv = 0 to ηv = 0.5 and then slowly
decreases to 0 between ηv = 0.5 and ηv = 1. Hence, the coordination between bidders
playing the same strategy becomes more risky when uncertainty increases. Moreover, it is
interesting to highlight that, even though DSMSα

EXP 3 obtains higher expected utility than
SDSMSα

EXP 3 when all bidders play the same strategy as bidders acquire items at a lower
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price in average, it also leads to more exposure.
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Fig. 6.14.: Exposure frequency (%) of our three determinization approaches when all players play
the same strategy for SAA-inc games (n = 3, m = 9, ε = 1) with different levels of

certainty (ηv = ηb).

6.8.6 Lessons learned from the experiments

Through these extensive experiments, we have seen that:

• Our three determinization approaches significantly outperform PPB approaches for
all levels of certainty, notably by better tackling the own price effect and the exposure
problem in budget and eligibility constrained environments.

• Differences between our three determinization approaches are less notable than with
PPB approaches. We observe that SDSMSα

EXP 3 slightly outperforms DSMSα
EXP 3

and SMSα
EXP 3 for all levels of certainty. However, if all players decide to play

the same strategy, then playing DSMSα
EXP 3 achieves higher expected utility than

SDSMSα
EXP 3.

• Uncertainty impacts our three determinization approaches by increasing their average
price paid per item won as well as their risk of exposure. This causes a decrease
in their respective expected utility. Moreover, when all bidders are playing the same
strategy, uncertainty highly impacts their coordination, especially in the case of wide
type distributions.
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6.9 Conclusion

In this chapter, we introduce three determinization approaches based on SMSα
EXP 3 that

tackles simultaneously the exposure problem, the own price effect, budget constraints, the
eligibility management problem for a simplified version of SAA (SAA-inc) with incomplete
information. Each approach updates its belief about opponents’ budgets by tracking bid
exposure. Experiments are run on instances generated by our new framework which
extends the experimental settings of the last two chapters to incomplete information. On
these instances, we show that each determinization approach largely outperforms state-of-
the-art algorithms. Even though smaller instances are considered in this chapter compared
to the last chapter, our determinization approaches can easily be applied to instances of
realistic size as they essentially rely on SMSα

EXP 3.

Amongst our three determinization approaches, SDSMSα
EXP 3 seems slightly better than

the two others by achieving higher expected utility. However, better coordination between
bidders is obtained for DSMSα

EXP 3. Moreover, only considering the expected value of
each type distribution and applying SMSα

EXP 3 to the resulting determinized SAA-inc game
gives surprisingly good results which are comparable with the other two determinization ap-
proaches. Although we think that these determinization approaches can easily be improved
by increasing the number of generated profiles or by modifying their selection phase with
an even better selection strategy, we believe that the greatest area for improvement lies in
inference methods in order to obtain narrower type distributions.

In future works, we would also like to investigate why SDSMSα
EXP 3 has weaker coordination

than DSMSα
EXP 3 when all bidders play the same strategy. In the short term, our aim would

be to achieve at least the same coordination as DSMSα
EXP 3 while conserving the other

results obtained for SDSMSα
EXP 3.
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7.1 Summary of achievements

In this thesis, we have focused on adversarial search methods to solve the bidding prob-
lem in SAA. By pursuing this research direction, we were able to propose an efficient
bidding algorithm for the original format of SAA with incomplete information that tackles
simultaneously its four main strategical issues: the exposure problem, the own price effect,
budget constraints and the eligibility management problem. Our solution is based on an
MCTS which relies on a new method of prediction of closing prices. Through the use of
scalarised rewards, our algorithm allows a bidder to arbitrate between expected-utility and
risk-aversion. Moreover, through typical examples taken from the literature and extensive
numerical experiments on instances of realistic size, we have shown that our solution
significantly outperforms state-of-the-art bidding strategies. Unlike preceding related works,
no specific assumption is made on the form of the value functions such as super-additivity,
making our approach more generic.

To achieve such results, we have proceeded step-by-step by increasing progressively the
complexity of the induced bidding game. Throughout this thesis, we have introduced three
different simplified SAA models: d-SAA, SAA-c and SAA-inc. We summarize hereafter our
various contributions to the existing literature for each one of these models.

• In d-SAA,

– We compute the information set space complexity as well as the game tree
complexity of the induced bidding game.
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– We introduce a new concept for the prediction of final auction prices named
frontier prediction of final prices. Unlike preceding prediction methods, it meets
the three following desirable properties: (1) it exists in all auctions, (2) it takes
into account auctions’ particularities and (3) the final prediction is independent
of single specific strategy profile.

– We present a simple method based on a specific sequence which converges
to the frontier prediction of final prices. We prove its convergence in simple
environments (Property 4.3) and we conjecture this result in more complex
environments (Conjecture 4.1).

– We present the first efficient bidding algorithm MSλ that tackles simultaneously
the own price effect and the exposure problem.

– We propose a general framework to generate value functions without making
any specific assumption on its form.

– We show that MSλ significantly outperforms state-of-the-art bidding strategies
on instances with two players.

• In SAA-c,

– We compute the information set space complexity as well as the game tree
complexity of the induced bidding game with no activity rules and unlimited
budgets.

– We extend PP strategy to budget and eligibility constrained environments.

– We adapt our preceding prediction method for final auction prices based on a
specific sequence to budget constraints, eligibility constraints and stochasticity.
We prove its convergence in Example 1 (see Section 2.2.3) and conjecture this
result in the general case (Conjecture 5.1).

– We present the first efficient bidding strategy SMSα that tackles simultaneously
the four main strategical issues of SAA. Moreover, we introduce a hyperparame-
ter α that allows a bidder to arbitrate between expected-utility and risk-aversion.

– We extend our preceding general framework to the generation of budgets.
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– Through typical examples taken from the literature and extensive numerical
experiments on instances of realistic size, we show that SMSα outperforms
state-of-the-art bidding strategies by better tackling the exposure problem and
the own price effect in budget and eligibility constrained environments.

– We provide an analysis of the impact of α on SMSα.

• In SAA-inc,

– We compute the information set space complexity as well as the game tree
complexity of the induced bidding game with no activity rules and unlimited
budgets.

– We improve our preceding algorithm SMSα by replacing the UCT selection
phase with the EXP3 algorithm.

– We propose three different determinization approaches based on SMSα
EXP 3:

SMSα
EXP 3, DSMSα

EXP 3 and SDSMSα
EXP 3. These are the first efficient bidding

algorithms that tackle simultaneously the four main strategical issues of SAA in
an environment with incomplete information.

– We propose a simple inference method based on tracking bid exposure for
updating one’s belief about an opponent’s budget.

– We propose a general experimental framework for generating types with a certain
level of certainty that extends our preceding framework to incomplete information.

– Through extensive experiments, we show that our three determinization ap-
proaches significantly outperform state-of-the-art bidding strategies by better
tackling the own price effect and the exposure problem in budget and eligibility
constrained environments with incomplete information. Moreover, we notice that,
by playing SDSMSα

EXP 3, a player obtains a slightly higher expected utility than
with the other two determinization approaches. However, better coordination
between bidders is obtained with DSMSα

EXP 3. Furthermore, we show that un-
certainty impacts our three determinization approaches by notably reducing their
expected utility.
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7.2 Short-term prospects

With a little more time, we would have liked to investigate some results obtained in SAA-inc,
including examining the factors that lead DSMSα

EXP 3 to achieve a higher expected utility
than SDSMSα

EXP 3 when all bidders play the same strategy. Furthermore, we had intended
to analyse the impact of increasing the number of different combinations of profiles for both
of these determinization approaches. For example, to what extent the performance can
been improved by adding more profiles to the set of different combinations of profiles L.
Furthermore, although we are pretty confident that the results would be similar to the ones
already obtained, we would have preferred to apply our determinization approaches to
larger instances.

Another perspective for future works would be to improve our algorithms by modifying some
of its MCTS search iteration phases. For instance, other selection strategies than UCT or
the EXP3 algorithm can be considered such as Regret Matching [Tak, 2014].

Concerning our method for predicting final auction prices, as it is relatively time-consuming
and prevents us from considering many combinations of types, it could be interesting to
see if a relation can be found between types and our final prediction. For instance, to what
extent our prediction of final prices is impacted when a player’s value function or budget is
slightly modified. Moreover, anticipating how our prediction of final prices evolves when,
for example, a player’s budget increases or decreases may help one to build a meaningful
interpolation model. If such an interpolation model can be developed, we could compute an
initial prediction of final prices for a few representative types that span the entire distribution
of types, and then use our interpolation model to estimate final prices for all types. From
there on, instead of having a small set of combinations of profiles, SDSMSα

EXP 3 could
sample randomly from the whole types’ distribution at each search iteration.

Although we have obtained very good results by combining MCTS with our method for
predicting final prices, one of the biggest motivations for using this method has yet to be
proven. Indeed, we have only proven the convergence of our method on small instances
and not in the general case. This remains an open issue. A proof direction that we find
promising is provided below Conjecture 4.1.

More complex SAA models can also be considered with additional constraints. For example,
one could model spectral caps in SAA-inc by imposing a maximal number of items a bidder
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can get. One big advantage with our determinization approaches is that integrating such
constraints is fairly easy. Moreover, another relevant extension of our SAA-inc model would
be to integrate the items won and the price paid by other bidders in a player’s utility. By
doing so, one can model situations in which a player prefers one bidder to obtain a specific
item over another at the same price. Furthermore, in this thesis, a bidder never has any
interest in decreasing their opponents’ utility. In this extension, however, driving up the
prices of items won by opponents increases a bidder’s utility. Hence, a new strategic
behaviour emerges.

7.3 Long-term prospects

Although we have already discussed some potential enhancements of our algorithms in
the short-term prospects, we firmly believe that the most significant area of improvement
concerns inference methods. Indeed, as seen in our extensive experimental results, uncer-
tainty highly impacts our algorithms as well as PPB approaches. Hence, we believe that
narrowing the type distributions would potentially lead to a greater increase in performance
than just improving one of our MCTS search iteration phases. However, inferring one’s
value functions by just observing its bids seems a difficult or even a nearly impossible task
in complex environments, especially if we consider the possibility that one is allowed to
bluff. Hence, one may need to consider a set of hypothesis on one’s bidding behaviour as
well as some exogenous variables in order to have a chance to narrow its type distribution.
Moreover, with the assumption that players bid sincerely, we think that a good starting point
for an inference method on value functions is to use the inequality given by the revealed
preference activity rule in Definition 1.1.

One interesting approach for future work would be to collect data on real passed SAA and
try to replay the auctions with our algorithms. Since our algorithms take either point-wise
estimations of types or type distributions as inputs, a pressing question arises about how
to generate these inputs from the gathered data. Moreover, if such inputs are somehow
created, one could try to analyse which strategy the real bidders follow. For instance, do
real bidders play generally straightforwardly? Would there be an increase in their utility if
they had bidded according to the strategy computed by one of our algorithms? If answers
are found, this could be quite valuable information for mobile operators regarding future
auctions.
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Finally, one could extend our algorithms to other multi-round auction mechanism. For
instance, an intriguing problem would be to consider multiple SAA that are held sequentially
where bidders have a fixed budget for all auctions. This could model real-life situations
where groups of licenses are auctioned successively based on their bandwidth, involving
the same set of bidders in each auction. Hence, bidders need to plan how to allocate their
budget in each different auction. Indeed, spending all its budget in the first auction or saving
up all its budget for the last auction might not be strategically optimal. Moreover, these
decisions can be made dynamically at each round of an auction depending on the actual
bid prices of the considered licences and the budget already spent by the other bidders.
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Jacek Mańdziuk. “Monte Carlo tree search: A review of re-
cent modifications and applications”. In: Artificial Intelligence
Review 56.3 (2023), pp. 2497–2562 (cit. on pp. 39, 81, 135).

216 Bibliography



[Szentes, 2003a] Balazs Szentes and Robert W Rosenthal. “Beyond chopsticks:
Symmetric equilibria in majority auction games”. In: Games
and Economic Behavior 45.2 (2003), pp. 278–295 (cit. on
pp. 95, 124).

[Szentes, 2003b] Balázs Szentes and Robert W Rosenthal. “Three-object two-
bidder simultaneous auctions: chopsticks and tetrahedra”. In:
Games and Economic Behavior 44.1 (2003), pp. 114–133
(cit. on pp. 95, 124).

[Szita, 2009] István Szita, Guillaume Chaslot, and Pieter Spronck. “Monte-
carlo tree search in settlers of catan”. In: Advances in Com-
puter Games. Springer. 2009, pp. 21–32 (cit. on pp. 81, 82).

[Tak, 2014] Mandy JW Tak, Marc Lanctot, and Mark HM Winands. “Monte
Carlo tree search variants for simultaneous move games”. In:
2014 IEEE Conference on Computational Intelligence and
Games. IEEE. 2014, pp. 1–8 (cit. on pp. 85, 132, 202).

[Tesauro, 1996] Gerald Tesauro and Gregory Galperin. “On-line policy improve-
ment using Monte-Carlo search”. In: Advances in Neural Infor-
mation Processing Systems 9 (1996) (cit. on p. 76).

[Teytaud, 2009] Fabien Teytaud and Olivier Teytaud. “Creating an upper-confidence-
tree program for Havannah”. In: Advances in Computer Games.
Springer. 2009, pp. 65–74 (cit. on p. 83).

[Teytaud, 2011] Olivier Teytaud and Sébastien Flory. “Upper confidence trees
with short term partial information”. In: European Conference
on the Applications of Evolutionary Computation. Springer.
2011, pp. 153–162 (cit. on pp. 85, 160).

[Thaler, 1988] Richard H Thaler. “Anomalies: The winner’s curse”. In: Journal
of economic perspectives 2.1 (1988), pp. 191–202 (cit. on
pp. 14, 19).

[Theodoridis, 2020] Alexios Theodoridis and Georgios Chalkiadakis. “Monte carlo
tree search for the game of diplomacy”. In: 11th Hellenic Con-
ference on Artificial Intelligence. 2020, pp. 16–25 (cit. on p. 81).

[Van den Broeck, 2009] Guy Van den Broeck, Kurt Driessens, and Jan Ramon. “Monte-
Carlo tree search in poker using expected reward distributions”.
In: Advances in Machine Learning: First Asian Conference on
Machine Learning, ACML 2009, Nanjing, China, November
2-4, 2009. Proceedings 1. Springer. 2009, pp. 367–381 (cit. on
p. 88).

Bibliography 217



[Vangerven, 2021] Bart Vangerven, Dries R Goossens, and Frits CR Spieksma.
“Using feedback to mitigate coordination and threshold prob-
lems in iterative combinatorial auctions”. In: Business & Infor-
mation Systems Engineering 63 (2021), pp. 113–127 (cit. on
p. 15).

[Veness, 2011] Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and
David Silver. “A monte-carlo aixi approximation”. In: Journal of
Artificial Intelligence Research 40 (2011), pp. 95–142 (cit. on
pp. 84, 96).

[Vickrey, 1961] William Vickrey. “Counterspeculation, auctions, and compet-
itive sealed tenders”. In: The Journal of finance 16.1 (1961),
pp. 8–37 (cit. on pp. 17, 18).

[Waehrer, 1998] Keith Waehrer, Ronald M Harstad, and Michael H Rothkopf.
“Auction form preferences of risk-averse bid takers”. In: The
RAND Journal of Economics (1998), pp. 179–192 (cit. on
p. 18).

[Wang, 2015] Jiao Wang, Tan Zhu, Hongye Li, Chu-Hsuan Hsueh, and I-
Chen Wu. “Belief-state Monte-Carlo tree search for Phantom
games”. In: 2015 IEEE conference on computational intelli-
gence and games (CIG). IEEE. 2015, pp. 267–274 (cit. on
p. 87).

[Weber, 1997] Robert J Weber. “Making more from less: Strategic demand
reduction in the FCC spectrum auctions”. In: Journal of Eco-
nomics & Management Strategy 6.3 (1997), pp. 529–548 (cit.
on pp. 42, 58, 60).

[Wellman, 2008] Michael P Wellman, Anna Osepayshvilli, Jeffrey K MacKie-
Mason, and Daniel Reeves. Bidding strategies for simultane-
ous ascending auctions. B.E. J. Theoret. Econom, 2008 (cit.
on pp. 41, 44–49, 51, 53, 54, 56, 58, 59, 94, 95, 100, 101, 105,
113, 115, 116, 120, 124, 138, 143, 174, 179).

[Wellman, 2012] Michael P Wellman, Eric Sodomka, and Amy Greenwald. “Self-
confirming price prediction strategies for simultaneous one-
shot auctions”. In: arXiv preprint arXiv:1210.4915 (2012) (cit.
on p. 54).

[Whitehouse, 2011] Daniel Whitehouse, Edward J Powley, and Peter I Cowling.
“Determinization and information set Monte Carlo tree search
for the card game Dou Di Zhu”. In: 2011 IEEE Conference on
Computational Intelligence and Games (CIG’11). IEEE. 2011,
pp. 87–94 (cit. on p. 86).

218 Bibliography



[Yuan, 2014] Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and Sam
Seljan. “An empirical study of reserve price optimisation in
real-time bidding”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining. 2014, pp. 1897–1906 (cit. on p. 174).

[Zermelo, 1913] Ernst Zermelo. “Über eine Anwendung der Mengenlehre auf
die Theorie des Schachspiels”. In: Proceedings of the fifth
international congress of mathematicians. Vol. 2. II, Cambridge
UP, Cambridge. 1913, pp. 501–504 (cit. on p. 68).

[Zheng, 2012] Charles Z Zheng. “Jump bidding and overconcentration in
decentralized simultaneous ascending auctions”. In: Games
and Economic Behavior 76.2 (2012), pp. 648–664 (cit. on
pp. 57, 59, 115).

[Zobrist, 1990] Albert L Zobrist. “A new hashing method with application for
game playing”. In: ICGA Journal 13.2 (1990), pp. 69–73 (cit.
on pp. 89, 137).

Bibliography 219





AAppendix: Example 1 in d-SAA game

Let Γ be the instance of the d-SAA game in Example 1 (see Section 2.2.3) which is recalled
below.

v({1}) v({2}) v({1, 2})
Player 1 12 12 12
Player 2 0 0 20

Tab. A.1.: Example 1

A.1 Function fΓ

Let p = (p1, p2) be the initial prediction. Let fΓ(p) = (f1
Γ(p), f2

Γ(p)). We have:

fΓ(p) =



(1, 0) if p1 + p2 ≥ 20, p1 ≤ p2 and p1 < 12 (Rgreen)
(0, 1) if p1 + p2 ≥ 20, p1 > p2 and p2 < 12 (Rpurple)
(11, 12) if p1 + p2 < 20 and 12 > p1 > p2 (Rred)
(12, 11) if p1 + p2 < 20 and p1 ≤ p2 < 12 (Rorange)
(12, 1) if p1 + p2 < 20 and p2 ≥ 12 (Rcyan)
(1, 12) if p1 + p2 < 20 and p1 ≥ 12 (Ryellow)
(0, 0) if p1 + p2 ≥ 20 and p1 ≥ 12 and p2 ≥ 12 (Rmagenta)

fΓ is represented in Figure A.1. The arrows correspond to the direction that the sequence
Pt+1 = 1

t+1fΓ(Pt) + (1− 1
t+1)Pt will take in each coloured region. Each coloured region in

Figure A.1 will be referred to as Rcolour. For example, Rred = {(p1, p2)|p1 + p2 < 20, p2 <

p1 < 12}.
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Fig. A.1.: Spatial representation of fΓ and sequence dynamic in the d-SAA game of Example 1

A.2 Convergence of sequence Pt in the d-SAA game of
Example 1

Let’s show that the sequence Pt+1 = 1
t+1fΓ(Pt) + (1− 1

t+1)Pt with P0 = (0, 0) converges to
the frontier prediction of final prices Omin∗

Γ = {(10, 10)}.

The proof is divided into three parts with each a geometrical interpretation:

1. The sequence Pt is never in Rmagenta.

2. The sequence P 1
t − P 2

t converges to zero and, thus from a certain iteration onwards,
Pt is never in Rcyan and Ryellow.

3. The sequence P 1
t + P 2

t converges to 20 and conclude that Pt −−−−→
t→+∞

(10, 10).
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A.2.1 Pt is never in Rmagenta

Proof. Notice that maxp∈R+2 f1
Γ(p) = maxp∈R+2 f2

Γ(p) = 12. Then, ∀p ∈ R+
2, f1

Γ(p) = 12⇒
f2

Γ(p) ≤ 11 and f2
Γ(p) = 12⇒ f1

Γ(p) ≤ 11.

Suppose P 1
t > 11.5.

As P 1
t = 1

t

∑t−1
τ=0 f1

Γ(Pτ ) + 1
t P 1

0 and P 1
0 = 0, this implies that there is at least ⌈ t

2⌉ values in
{0, ..., t− 1} such that f1

Γ(Pτ ) = 12. Therefore, there is at least ⌈ t
2⌉ values in {0, ..., t− 1},

such that f2
Γ(Pτ ) ≤ 11. Thus, we have:

P 2
t = 1

t

t−1∑
τ=0

f2
Γ(Pτ ) ≤ 1

t
(
⌈ t

2 ⌉−1∑
τ=0

11 +
t−1∑

τ=⌈ t
2 ⌉

12) ≤ 11.5 (A.1)

Symmetrically, if P 2
t > 11.5 then P 1

t ≤ 11.5.

This proves that ∀t ∈ N, either P 1
t ≤ 11.5 or P 2

t ≤ 11.5. Thus, the sequence Pt is never in
Rmagenta.

A.2.2 Convergence of P 1
t − P 2

t to zero

Proof. Let’s prove that Ut = P 1
t − P 2

t converges to zero.

According to the previous result, ∀t ∈ N either P 1
t < 12 or P 2

t < 12 which means that Pt

is never in Rmagenta. Therefore, if P 1
t > P 2

t then f1
Γ(Pt) + 12 ≥ f2

Γ(Pt) ≥ f1
Γ(Pt) + 1 and if

P 1
t ≤ P 2

t then f2
Γ(Pt) + 12 ≥ f1

Γ(Pt) ≥ f2
Γ(Pt) + 1.

We define the sequence Ut as Ut = P 1
t −P 2

t with U0 = 0. Thus, Ut+1 = t
t+1Ut+ 1

t+1(f1
Γ(Pt)−

f2
Γ(Pt)). Therefore, we have:

• if Ut > 0: t
t+1Ut − 12

t+1 ≤ Ut+1 ≤ t
t+1Ut − 1

t+1

• if Ut ≤ 0: t
t+1Ut + 1

t+1 ≤ Ut+1 ≤ t
t+1Ut + 12

t+1
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Let’s show by induction that ∀t ∈ N, Ut ∈ [−12
t , 12

t ].

1. U1 = −1 so U1 ∈ [−12, 12]

2. Suppose Ut ∈ [−12
t , 12

t ].

If Ut > 0, then Ut ∈]0, 12
t ] and so, following the inequalities on Ut+1, we have:

−12
t + 1 ≤ Ut+1 ≤

12
t + 1 −

1
t + 1 ≤

12
t + 1 (A.2)

Thus, if Ut > 0, then Ut+1 ∈ [−12
t+1 , 12

t+1 ]

If Ut ≤ 0, then Ut ∈ [−12
t , 0] and so, following the inequalities on Ut+1, we have:

−12
t + 1 ≤

−12
t + 1 + 1

t + 1 ≤ Ut+1 ≤
12

t + 1 (A.3)

Thus, if Ut ≤ 0, then Ut+1 ∈ [−12
t+1 , 12

t+1 ]

Therefore, this proves by induction that ∀t ∈ N, Ut ∈ [−12
t , 12

t ].

From this result, it trivially follows that Ut −−−−→
t→+∞

0.

From now on, we will write P 2
t = P 1

t + ηt with ηt −−−−→
t→+∞

0. In this part, we have proved that
the sequence converges to the diagonal p1 = p2. Moreover, combining this result with the
result that ∀t ∈ N either P 1

t ≤ 11.5 or P 2
t ≤ 11.5, we have that ∀ϵ > 0,∃T ∈ N, ∀t ≥ T, P 1

t ≤
11.5 + ϵ and P 2

t ≤ 11.5 + ϵ. Therefore, from a certain iteration T onwards, Pt can only be in
the regions Rgreen, Rpurple, Rred and Rorange. Thus, we have ∀t ≥ T :

Ut+1 =
{

tUt
t+1 −

1
t+1 if Ut > 0 (Pt ∈ {Rred, Rpurple})

tUt
t+1 + 1

t+1 if Ut ≤ 0 (Pt ∈ {Rorange, Rgreen})
(A.4)
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We can then show that ∃t0 ≥ T, ∀t ≥ t0, Ut ∈ [−1
t , 1

t ] and, hence, ηt ∈ [−1
t , 1

t ]. We omit for
simplicity the proof of existence of such a t0 as it is very similar to the following proof.

A.2.3 Convergence of Pt to (10,10) and geometrical interpretation

Proof. As shown previously, ∃T ∈ N,∀t ≥ T, Pt ∈ {Rgreen, Rpurple, Rred, Rorange}.

Let fix such a T . For t ≥ T , we define Wt = P 1
t + P 2

t − 20. We have:

Wt+1 = P 1
t+1 + P 2

t+1 − 20

= f1
Γ(Pt) + f2

Γ(Pt)
t + 1 + t(P 1

t + P 2
t )

t + 1 − 20

= f1
Γ(Pt) + f2

Γ(Pt)
t + 1 + tWt

t + 1 + 20t

t + 1 − 20

= f1
Γ(Pt) + f2

Γ(Pt)
t + 1 + tWt

t + 1 −
20

t + 1

(A.5)

Thus,

Wt+1 =
{

tWt
t+1 + 3

t+1 if Wt < 0 (Pt ∈ {Rred, Rorange})
tWt
t+1 −

19
t+1 if Wt ≥ 0 (Pt ∈ {Rpurple, Rgreen})

(A.6)

It is now clear that Wt −−−−→
t→+∞

0. Thus, P 1
t −−−−→t→+∞

10 and P 2
t −−−−→t→+∞

10.

Now, let’s show that, from a certain iteration t2 ≥ T , Pt belongs to the diamond defined by
the points (10− 10

t , 10− 9
t ), (10− 9

t , 10− 10
t ), (10 + 2

t , 10 + 1
t ) and (10 + 1

t , 10 + 2
t ) which

progressively converges to the point (10, 10).

Let’s first show that ∃t1 ≥ T such that ∀t ≥ t1, Wt ∈ [−19
t , 3

t ]

1. First let’s show that ∃t1 ≥ T, Wt1 ∈ [−19
t1

, 4
t1

]. We need to look at three different cases.
Either WT ∈ [−19

T , 3
T ], WT < −19

T or WT > 3
T .

a) If WT ∈ [−19
T , 3

T ], then the statement is trivially verified.
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b) If WT < −19
T < 0, let’s show that ∃t1 ≥ T +1, Wt1 ∈ [−19

t1
, 3

t1
] and Wt1−1 < − 19

t1−1 .

First, let’s show by contradiction that ∃t1 ≥ T + 1, Wt1 ≥ −19
t1

.

Suppose that ∀t ≥ T, Wt < −19
t < 0.

Then, we have have that:

∀t ≥ T, Wt+1 −Wt = 3
t + 1 −

Wt

t + 1 ≥
3

t + 1 (A.7)

Therefore, ∀t ≥ T, Wt+1 −WT ≥
∑t

i=T
3

i+1 .

As
∑t

i=T
3

i+1 −−−−→t→+∞
+∞, this contradicts the fact that ∀t ≥ T , Wt < −19

t .

Therefore, ∃t1 ≥ T + 1, Wt1 ≥ −19
t1

and Wt1−1 < − 19
t1−1 .

Let’s fix such a t1.

Let’s show by contradiction that Wt1 ∈ [−19
t1

, 3
t1

].

Suppose Wt1 /∈ [−19
t1

, 3
t1

]. Then, Wt1 > 3
t1

. As Wt1−1 < −19
t1−1 , this implies that

Wt1 −Wt1−1 > 3
t1

+ 19
t1−1 > 22

t1
.

As Wt1−1 < 0, Wt1 −Wt1−1 = 3
t1
− Wt1−1

t1
.

Hence, Wt1−1 ≤ −19. However,

∀W ≤ −19,
W (t1 − 1)

t1
+ 3

t1
≤ −19(t1 − 1)

t1
+ 3

t1

≤ −19 + 22
t1

≤ 3
t1

(as t1 ≥ 1)

(A.8)

Therefore, if Wt1−1 ≤ −19, then Wt1 ≤ 3
t1

. This contradicts the fact that Wt1 > 3
t1

so ∃t1 ≥ T + 1, Wt1 ∈ [−19
t1

, 3
t1

] and Wt1−1 < − 19
t1−1 . The statement is verified.
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c) Similarly to the upper proof, if WT > 4
T ≥ 0, ∃t1 ≥ T + 1, Wt1 ∈ [−19

t1
, 3

t1
] and

Wt1−1 > 3
t1−1 .

We have shown that ∃t1 ≥ T, Wt1 ∈ [−19
t1

, 3
t1

].

2. Let’s show that if Wt ∈ [−19
t , 3

t ] then Wt+1 ∈ [− 19
t+1 , 3

t+1 ].

Suppose Wt ∈ [−19
t , 3

t ].

If −19
t ≤Wt < 0, we have:

− 19
t + 1 ≤

3
t + 1 −

19
t + 1 ≤Wt+1 ≤

3
t + 1 (A.9)

So Wt+1 ∈ [− 19
t+1 , 3

t+1 ].

If 0 ≤Wt ≤ 3
t , we have:

− 19
t + 1 ≤Wt+1 ≤ −

19
t + 1 + 3

t + 1 ≤
3

t + 1 (A.10)

So Wt+1 ∈ [− 19
t+1 , 3

t+1 ].

We have shown by induction that ∃t1 ≥ T, ∀t ≥ t1, Wt ∈ [−19
t , 3

t ]. Moreover, we have
shown that there exist ∃t0 ≥ T, ∀t ≥ t0, Ut ∈ [−1

t , 1
t ].

Let fix such a t0 and t1. Let t2 = max(t0, t1). ∀t ≥ t2, we have:

− 19
t
≤Wt ≤

3
t

⇔− 19
t
≤ 2P 1

t + ηt − 20 ≤ 3
t

⇔− 19
2t

+ 10− ηt

2 ≤ P 1
t ≤

3
2t

+ 10− ηt

2

(A.11)
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As ηt ∈ [−1
t , 1

t ], we have that:

∀t ≥ t2, 10− 10
t
≤ P 1

t ≤ 10 + 2
t

and 10− 10
t
≤ P 2

t ≤ 10 + 2
t

(A.12)

The sequence P 1
t and P 2

t along with their upper-bound g(t) = 10 + 2
t and lower-bound

h(t) = 10− 10
t from a certain iteration i0 are illustrated in Figure A.2.

1000 2000 3000 4000 5000 6000
t

9.980

9.985

9.990

9.995

10.000

10.005

p1 t

g(t) = 10 + 2
t

h(t) = 10 10
t

1000 2000 3000 4000 5000 6000
t

9.980

9.985

9.990

9.995

10.000

10.005

p2 t
g(t) = 10 + 2

t

h(t) = 10 10
t

Fig. A.2.: Convergence rate of P 1
t and P 2

t in the d-SAA game of Example 1.

Geometrically, we have first shown, through Ut ∈ [−1
t , 1

t ], that Pt was between the line
p1 − p2 = −1

t and p1 − p2 = 1
t which are parallel to the line p1 = p2. Then, in this last part,

through Wt ∈ [−19
t , 3

t ], we showed that Pt from a certain iteration i0 is also between the
lines p1 +p2 = 20− 19

t and p1 +p2 = 20+ 3
t which are parallel to the line p1 +p2 = 20. Using

both of these information, we know that Pt belongs to the diamond defined by the points
(10− 10

t , 10− 9
t ), (10− 9

t , 10− 10
t ), (10 + 2

t , 10 + 1
t ) and (10 + 1

t , 10 + 2
t ) which progressively

converges to the point (10, 10).
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BAppendix: Proof of properties 4.2
and 4.3

In this part, we are going to prove Property 4.2 and 4.3. More precisely, to prove Property
4.2, we will show that, for any scenario which might occur in a d-SAA game with two goods
between 2 players with super-additive value functions, the frontier prediction of final prices
is reduced to a singleton. To prove Property 4.3, we will show in parallel that sequence Pt

converges for each scenario to the only element of the frontier prediction of final prices. All
scenarios are covered below.

We will omit the cases where ∃i ∈ {1, 2}, ∃j ∈ {1, 2}, vi(xj) = 0.

1. First disposition:


v1(x1) ≤ v2(x1)
v1(x2) ≤ v2(x2)
v1(x1 + x2) ≤ v2(x1 + x2)

(B.1)

Proof. Set of smallest overestimated final prices:

The following result is shared amongst all cases of the first disposition. In this proof,
we are going to calculate the set of smallest overestimated final prices Omin

Γ . To do
so, we will first start by calculating the set of overestimated prices OΓ.

We will show that OΓ = {p, v1(x1 + x2) ≤ p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2} in two
steps:

• If p ∈ OΓ =⇒ p1 ≥ v1(x1), p2 ≥ v1(x2), p1 + p2 ≥ v1(x1 + x2)

• If p1 ≥ v1(x1), p2 ≥ v1(x2), p1 + p2 ≥ v1(x1 + x2) =⇒ p ∈ OΓ
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As v1(x1) ≤ v2(x1), ∀p ∈ R2
+ such that p1 < v1(x1), then f1

Γ(p) ≥ v1(x1) as the
acquisition of item 1 for a price below v1(x1) will always benefit both players regardless
of the price of item 2. Symmetrically, as v1(x2) ≤ v2(x2), ∀p ∈ R2

+ such that p2 <

v1(x2), then f2
Γ(p) ≥ v1(x2). Thus, p ∈ OΓ =⇒ p1 ≥ v1(x1) and p2 ≥ v1(x2).

Moreover, ∀p ∈ R2
+ such that p1 + p2 < v1(x1 + x2), p1 ≥ v1(x1) and p2 ≥ v1(x2),

we have f1
Γ(p) > p1 or f2

Γ(p) > p2. Player 1 will necessarily bid on both items until
either player 2 stops bidding or the entirety of her complementarity surplus has been
consumed. As v1(x1 + x2) ≤ v2(x1 + x2), player 2 will either bid on both items until
the entirety of her complementarity surplus has been consumed and, thus, the final
price of item 1 (respectively item 2) will be greater than p1 (respectively p2) or will
decide to only bid on one item and the final price of this item will be greater than its
initial prediction. Thus, p ∈ OΓ =⇒ p1 ≥ v1(x1), p2 ≥ v1(x2), p1 + p2 ≥ v1(x1 + x2).

The first step is verified

Conversely, ∀p ∈ R2
+ such that p1 ≥ v1(x1), p2 ≥ v1(x2), p1 + p2 ≥ v1(x1 + x2), we

have f1
Γ(p) = f2

Γ(p) = 0 as player 1 predicts getting a negative utility if he eventually
acquires any object and, hence, drops out of the auction immediately. Thus, p ∈ OΓ.

The second step is verified.

Therefore,

OΓ = {p, v1(x1 + x2) ≤ p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2} (B.2)

As Omin
Γ = argminp∈ŌΓ

||p||1, we have:

Omin
Γ = {p, v1(x1 + x2) = p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2} (B.3)

a) First case:

∗ v1(x1+x2)
2 ≤ v2(x1 + x2)− v2(x1)

∗ v1(x1+x2)
2 ≤ v2(x1 + x2)− v2(x2)
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i. First sub-case:

∗ v1(x1) > v1(x1+x2)
2 (or respectively v1(x2) > v1(x1+x2)

2 )

Proof. Frontier prediction of final prices:

In this proof, we are going to calculate the frontier prediction of final prices
and, thus, calculate the set of smallest overestimated final prices which are
γ close to the infimum of gΓ|Omin

Γ
, the restriction of gΓ to Omin

Γ , for any γ > 0.

We can rewrite Omin
Γ as Iα = {(v1(x1 + x2) − α, α), α ∈ [v1(x2); v1(x1 +

x2) − v1(x1)]}. From there, we are going to calculate the set of smallest
overestimated final prices which are γ close to the infimum of gΓ|Omin

Γ
for

any γ > 0. To do so, we need to obtain the closed-form of fΓ for every slight
underestimation of elements in Iα. We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); A)}

• I2
α = {(v1(x1 + x2)− α, α), α ∈ [A, v1(x1 + x2)− v1(x1))}

• I3
α = {(v1(x1), v1(x1 + x2)− v1(x1))}

with A = max(v1(x2), v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) such that Iα =
I1

α ∪ I2
α ∪ I3

α. We will calculate the infimum of gΓ on each of these three sets
and, then, determine the frontier prediction of final prices Omin∗

Γ . We have:

• If v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) ≤ v1(x2), i.e., A = v1(x2), then
I1

α = ∅. Otherwise, we have v1(x1 +x2)− (v2(x1 +x2)−v2(x2)) > v1(x2).
Let’s calculate the final prices of Γ if both players play the point price
prediction bidding strategy using as initial prediction (p1 − η1, p2 − η2)
a slight underestimation of p ∈ I1

α with η1 > 0, η2 > 0. η1 is chosen
such that p1 − η1 > v2(x1 + x2) − v2(x2) and, thus, player 2 won’t
bid on item 1. The final price of item 1 is then 0. However, player 1
predicts that item 1 will be sold for p1 − η1 > v1(x1) and, hence, she
thinks that she is exposed of p1 − η1 − v1(x1). It is then beneficial for
player 1 to acquire item 2 if its price is below (v1(x1 + x2)− (p1 − η1)) +
(p1 − η1 − v1(x1)). The first term comes from the surplus of acquiring
item 2 given player 1 has acquired item 1 and the second term comes
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from its actual predicted exposure. Player 2 will however continue to
bid on item 2 until its price reaches v2(x2). Thus, if player 1 stops
bidding on item 2 first, then its final price is v1(x1 + x2) − v1(x1). If
player 2 stops bidding on item 2 first, then its final price is v2(x2). We
set R2 = min(v2(x2), v1(x1 + x2) − v1(x1)) and, thus, the final price
of item 2 is R2. More formally, we have ∀p ∈ I1

α, ∃η > 0 such that
∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = 0 and f2
Γ(p1−η1, p2−η2) = R2 with

R2 = min(v2(x2), v1(x1 +x2)−v1(x1)). Thus, for p = (v1(x1 +x2)−α, α)
with α ∈ [v1(x2); v1(x1 + x2)− (v2(x1 + x2)− v2(x2))),

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1)2 + (R2 − p2)2

= (v1(x1 + x2)− α)2 + (R2 − α)2
(B.4)

Thus, ∀p ∈ I1
α, gΓ(p) ≥ (v2(x1 + x2)− v2(x2))2 > 0.

• Suppose p ∈ I2
α. Let’s calculate the final prices of Γ if both players

play the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is
chosen such that p1 − η1 > v1(x1). As v1(x1+x2)

2 ≤ v2(x1 + x2)− v2(x1),
v1(x1+x2)

2 ≤ v2(x1 + x2) − v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2), player
2 will always bid on both items if their price is below v1(x1+x2)

2 . As
p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1) and
p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 also always bids on both items.
Thus, the price of each item rises symmetrically. As p2+η1 < v1(x1+x2)

2 <

p1−η1, the complementarity surplus of player 1 will be entirely consumed
when the price of item 2 reaches p2 + η1. Player 1 will then drop out
of the auction and the final price of each item will be p2 + η1. More
formally, ∀p ∈ I2

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1
Γ(p1 − η1, p2 − η2) =

f2
Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, for p = (v1(x1 + x2) − α, α) with

α ∈ [A; v1(x1 + x2)− v1(x1)), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.5)

Thus, ∀p ∈ I2
α, gΓ(p) > 0.

• Suppose p ∈ I3
α and, thus, p = (v1(x1), v1(x1 + x2) − v1(x1)). Let’s

calculate the final prices of Γ if both players play the point price prediction
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bidding strategy using as initial prediction (p1 − η1, p2 − η2) a slight
underestimation of p with η1 > 0, η2 > 0. As v1(x1+x2)

2 ≤ v2(x1 + x2) −
v2(x1), v1(x1+x2)

2 ≤ v2(x1 + x2) − v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2),
player 2 will always bid on both items if their price is below v1(x1+x2)

2 . As
p1−η1 < v1(x1) and p2−η2 < v1(x1 + x2)−v1(x1) < v1(x1+x2)

2 < v1(x1),
player 1 will bid on both items until her complementarity surplus has
been entirely consumed by the rise in price of item 2. This happens
when the price of item 2 reaches p2. Thus, player 2 acquires item 2 at
price p2. Then, player 1 will only bid on item 1 until its price reaches
her stand-alone value p1 = v1(x1). As v1(x1) ≤ v2(x1), player 2 will
also continue to bid on item 1 and, then, acquire it for a final price of p1.
More formally, for p = (v1(x1), v1(x1 + x2) − v1(x1)), ∃η > 0 such that
∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = p1 and f2
Γ(p1 − η1, p2 − η2) = p2.

Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.6)

Thus, gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0.

We have shown that:

• If I1
α ̸= ∅, gΓ|Omin

Γ
is lower-bounded by a strictly positive term on I1

α.

• ∀p ∈ I2
α = {(v1(x1 +x2)−α, α), α ∈ [A, v1(x1 +x2)−v1(x1))}, gΓ(p) > 0.

• gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1), v1(x1 + x2)− v1(x1))}.

Proof. Sequence convergence:
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Let’s first show that:

p ∈ [0, v1(x1))× [0, v1(x1 + x2)− v1(x1))

=⇒ fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1))
(B.7)

Suppose p ∈ [0, v1(x1)) × [0, v1(x1 + x2) − v1(x1)). As p1 < v2(x1), p2 <

v1(x1 +x2)−v1(x1) ≤ v2(x1 +x2)−v2(x1) and v1(x1 +x2)−v1(x1) < v2(x1),
player 2 will bid on both items if their price is below v1(x1 + x2) − v1(x1).
As p1 < v1(x1) and p2 < v1(x1 + x2)− v1(x1) < v1(x1), player 1 will bid on
both items until her complementarity surplus is entirely consumed by item 2.
Thus, the price of each item rises symmetrically. Player 1 will stop bidding
on item 2 when its price reaches v1(x1 + x2) − v1(x1) and will continue to
bid on item 1 until its price reaches v1(x1). Player 2 will then acquire item
2 for v1(x1 + x2)− v1(x1) and will continue bidding on item 1 until its price
reaches v2(x1 + x2) − v2(x2). As v1(x1) ≤ v2(x1 + x2) − v2(x2), player 2
acquires item 1 for v1(x1). Thus, fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1)).

As P0 = (0, 0) < (v1(x1), v1(x1 + x2)− v1(x1)) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈

[0, v1(x1))×[0, v1(x1+x2)−v1(x1)) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1), v1(x1+
x2)− v1(x1)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1), v1(x1 + x2)− v1(x1))
and, thus, the sequence Pt converges to the unique element of Omin∗

Γ .

ii. Second sub-case:

∗ v1(x1) ≤ v1(x1+x2)
2 and v1(x2) ≤ v1(x1+x2)

2

Proof. Frontier prediction of final prices:

We decompose Iα in 5 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); A)}
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• I2
α = {(v1(x1 + x2)− α, α), α ∈ [A, v1(x1+x2)

2 )}

• I3
α = {(v1(x1+x2)

2 , v1(x1+x2)
2 )}

• I4
α = {(v1(x1 + x2)− α, α), α ∈ (v1(x1+x2)

2 , B]}

• I5
α = {(v1(x1 + x2)− α, α), α ∈ (B, v1(x1 + x2)− v1(x1)]}

with A = max(v1(x2), v1(x1+x2)−(v2(x1+x2)−v2(x2)) and B = min(v2(x1+
x2)−v2(x1), v1(x1 +x2)−v1(x1)) such that Iα = I1

α∪I2
α∪I3

α∪I4
α∪I5

α. We will
calculate the infimum of gΓ on each of these five sets and, then, determine
the frontier prediction of final prices Omin∗

Γ . We have:

• If v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) ≤ v1(x2), i.e., A = v1(x2), then
I1

α = ∅. Otherwise, we have v1(x1 +x2)− (v2(x1 +x2)−v2(x2)) > v1(x2).
Let’s calculate the final prices of Γ if both players play the point price
prediction bidding strategy using as initial prediction (p1 − η1, p2 − η2) a
slight underestimation of p ∈ I1

α with η1 > 0, η2 > 0. η1 is chosen such
that p1−η1 > v2(x1 +x2)−v2(x2) and, thus, player 2 won’t bid on item 1.
The final price of item 1 is then 0. However, player 1 predicts that item 1
will be sold for p1−η1 > v1(x1) and, hence, she thinks that she is exposed
of p1− η1− v1(x1). It is then beneficial for player 1 to acquire item 2 if its
price is below (v1(x1 +x2)− (p1−η1))+(p1−η1−v1(x1)). The first term
comes from the surplus of acquiring item 2 given player 1 has acquired
item 1 and the second term comes from its actual predicted exposure.
Player 2 will however continue to bid on item 2 until its price reaches
v2(x2). Thus, if player 1 stops bidding on item 2 first, then its final price is
v1(x1 + x2)− v1(x1). If player 2 stops bidding on item 2 first, then its final
price is v2(x2). We set R2 = min(v2(x2), v1(x1 + x2)− v1(x1)) and, thus,
the final price of item 2 is R2. More formally, we have ∀p ∈ I1

α, ∃η > 0
such ∀(η1, η2) ∈ (0, η], f1

Γ(p1− η1, p2− η2) = 0 and f2
Γ(p1− η1, p2− η2) =

R2 with R2 = min(v2(x2), v1(x1 + x2) − v1(x1)). Thus, for p = (v1(x1 +
x2)− α, α) with α ∈ [v1(x2); v1(x1 + x2)− (v2(x1 + x2)− v2(x2))),

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1)2 + (R2 − p2)2

= (v1(x1 + x2)− α)2 + (R2 − α)2
(B.8)

Thus, ∀p ∈ I1
α, gΓ(p) ≥ (v2(x1 + x2)− v2(x2))2 > 0.
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• Suppose p ∈ I2
α. Let’s calculate the final prices of Γ if both players

play the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is
chosen such that p1−η1 > v1(x1+x2)

2 . As v1(x1+x2)
2 ≤ v2(x1 +x2)−v2(x1),

v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2), player

2 will always bid on both items if their price is below v1(x1+x2)
2 . As

p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1) and
p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 also always bids on both items.
Thus, the price of each item rises symmetrically. As p2 + η1 < v1(x1+x2)

2
and p1 − η1 > v1(x1+x2)

2 , the complementarity surplus of player 1 will
be entirely consumed when the price of item 2 reaches p2 + η1. Player
1 will then drop out of the auction and the final price of each item will
be p2 + η1. More formally, ∀p ∈ I2

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, for p =

(v1(x1 + x2)− α, α) with α ∈ [A; v1(x1+x2)
2 ), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.9)

Thus, ∀p ∈ I2
α, gΓ(p) > 0.

• Suppose p ∈ I3
α and, thus, p = (v1(x1+x2)

2 , v1(x1+x2)
2 ). Let’s calculate the

final prices of Γ if both players play the point price prediction bidding
strategy using as initial prediction (p1 − η1, p2 − η2) a slight underesti-
mation of p with η1 > 0, η2 > 0. As v1(x1+x2)

2 ≤ v2(x1 + x2) − v2(x1),
v1(x1+x2)

2 ≤ v2(x1 + x2) − v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2), player
2 will always bid on both items if their price is below v1(x1+x2)

2 . As
v1(x1 + x2) − v1(x1) ≥ v1(x1+x2)

2 and v1(x1 + x2) − v1(x2) ≥ v1(x1+x2)
2 ,

player 1 will always bid on both items if their price is below v1(x1+x2)
2 . As

p1−η1 < v1(x1+x2)
2 and p2−η2 < v1(x1+x2)

2 , both players will always bid on
both items and, thus, the price of each item will rise symmetrically until it
reaches v1(x1+x2)

2 . Then, player 1 will drop out of the auction. Player 2
acquires each item at a price p1 = p2 = v1(x1+x2)

2 . More formally, ∃η > 0
such ∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = f2
Γ(p1−η1, p2−η2) = p1 = p2.

Thus, we have

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.10)
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Thus, gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0.

• Suppose p ∈ I4
α. Let’s calculate the final prices of Γ if both players

play the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η2 is
chosen such that p2−η2 > v1(x1+x2)

2 . As v1(x1+x2)
2 ≤ v2(x1 +x2)−v2(x1),

v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2), player

2 will always bid on both items if their price is below v1(x1+x2)
2 . As

p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1) and
p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 also always bids on both items.
Thus, the price of each item rises symmetrically. As p1 + η2 < v1(x1+x2)

2
and p2 − η2 > v1(x1+x2)

2 , the complementarity surplus of player 1 will
be entirely consumed when the price of item 1 reaches p1 + η2. Player
1 will then drop out of the auction and the final price of each item will
be p1 + η2. More formally, ∀p ∈ I4

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p1 + η2. Thus, for p =

(v1(x1 + x2)− α, α) with α ∈ (v1(x1+x2)
2 , B], we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1 + η2 − p1)2 + (p1 + η2 − p2)2

= (v1(x1 + x2)− 2α + η2)2 + η2
2

(B.11)

Thus, ∀p ∈ I4
α, gΓ(p) > 0.

• If v2(x1+x2)−v2(x1) ≥ v1(x1+x2)−v1(x1), i.e., B = v1(x1+x2)−v1(x1),
then I5

α = ∅. Otherwise, we have v2(x1 + x2)− v2(x1) < v1(x1 + x2)−
v1(x1). Let’s calculate the final prices of Γ if both players play the point
price prediction bidding strategy using as initial prediction (p1−η1, p2−η2)
a slight underestimation of p ∈ I5

α with η1 > 0, η2 > 0. η2 is chosen such
that p2 − η2 > v2(x1 + x2)− v2(x1) and, thus, player 2 won’t bid on item
2. The final price of item 2 is then 0. However, player 1 predicts that
item 2 will be sold for p2 − η2 > v1(x2) and, hence, she thinks that she is
exposed of p2 − η2 − v1(x2). It is then beneficial for player 1 to acquire
item 1 if its price is below (v1(x1 + x2)− (p2 − η2)) + (p2 − η2 − v1(x2)).
The first term comes from the surplus of acquiring item 1 given player 1
has acquired item 2 and the second term comes from its actual predicted
exposure. Player 2 will however continue to bid on item 1 until its price
reaches v2(x1). Thus, if player 1 stops bidding on item 1 first, then its
final price is v1(x1 + x2)− v1(x2). If player 2 stops bidding on item 1 first,
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then its final price is v2(x1). We set R1 = min(v2(x1), v1(x1+x2)−v1(x2))
and, thus, the final price of item 1 is R1. More formally, we have ∀p ∈ I5

α,
∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = R1 and f2
Γ(p1 −

η1, p2 − η2) = 0 with R1 = min(v2(x1), v1(x1 + x2) − v1(x2)). Thus, for
p = (v1(x1+x2)−α, α) with α ∈ (v2(x1+x2)−v2(x1), v1(x1+x2)−v1(x1)],
we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + (α)2
(B.12)

Thus, ∀p ∈ I5
α, gΓ(p) ≥ (v2(x1 + x2)− v2(x1))2 > 0.

We have shown that:

• If I1
α ̸= ∅, gΓ|Omin

Γ
is lower-bounded by a strictly positive term on I1

α.

• ∀p ∈ I2
α = {(v1(x1 + x2)− α, α), α ∈ [A, v1(x1+x2)

2 )}, gΓ(p) > 0.

• gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0

• ∀p ∈ I4
α = {(v1(x1 + x2)− α, α), α ∈ (v1(x1+x2)

2 , B]}, gΓ(p) > 0.

• If I5
α ̸= ∅, gΓ|Omin

Γ
is lower-bounded by a strictly positive term on I5

α.

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1+x2)
2 , v1(x1+x2)

2 )}.

Proof. Sequence convergence:

Let’s first show that:

p ∈ [0,
v1(x1 + x2)

2 )× [0,
v1(x1 + x2)

2 )

=⇒ fΓ(p1, p2) = (v1(x1 + x2)
2 ,

v1(x1 + x2)
2 )

(B.13)

Suppose p ∈ [0, v1(x1+x2)
2 ) × [0, v1(x1+x2)

2 ). As p1 < v1(x1+x2)
2 ≤ v2(x1 + x2) −

v2(x2), p2 < v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1) and p1 + p2 < v1(x1 + x2) ≤
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v2(x1 + x2), player 2 will bid on both items if their price is below v1(x1+x2)
2 . As

p1 < v1(x1+x2)
2 ≤ v1(x1 + x2)− v1(x2) and p2 < v1(x1+x2)

2 ≤ v1(x1 + x2)− v1(x1),
player 1 will bid on both items until her complementarity surplus is entirely
consumed. Thus, the price of each item rises symmetrically. Player 1 will stop
bidding on both items when their price reaches v1(x1+x2)

2 . Player 2 will then
acquire each item for v1(x1+x2)

2 . Thus, fΓ(p1, p2) = (v1(x1+x2)
2 , v1(x1+x2)

2 ).

As P0 = (0, 0) < (v1(x1+x2)
2 , v1(x1+x2)

2 ) component-wise and Pt+1 = 1
t+1fΓ(Pt) +

(1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈ [0, v1(x1+x2)

2 ) ×
[0, v1(x1+x2)

2 ) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1+x2)
2 , v1(x1+x2)

2 ).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1+x2)
2 , v1(x1+x2)

2 ) and, thus,

the sequence Pt converges to the unique element of Omin∗
Γ .

b) Second case:

∗ v1(x1+x2)
2 > v2(x1+x2)−v2(x1) (respectively v1(x1+x2)

2 > v2(x1+x2)−v2(x2))

i. First sub-case:

∗ v2(x1 + x2)−v2(x1) ≥ v1(x1 + x2)−v1(x1) (or respectively v2(x1 + x2)−
v2(x2) ≥ v1(x1 + x2)− v1(x2))

Proof. Frontier prediction of final prices:

We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); A)}

• I2
α = {(v1(x1 + x2)− α, α), α ∈ [A, v1(x1 + x2)− v1(x1))}

• I3
α = {(v1(x1), v1(x1 + x2)− v1(x1))}
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with A = max(v1(x2), v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) such that Iα =
I1

α ∪ I2
α ∪ I3

α. We will calculate the infimum of gΓ on each of these three sets
and, then, determine the frontier prediction of final prices Omin∗

Γ . We have:

• If v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) ≤ v1(x2), i.e., A = v1(x2), then
I1

α = ∅. Otherwise, we have v1(x1 +x2)− (v2(x1 +x2)−v2(x2)) > v1(x2).
Let’s calculate the final prices of Γ if both players play the point price
prediction bidding strategy using as initial prediction (p1 − η1, p2 − η2) a
slight underestimation of p ∈ I1

α with η1 > 0, η2 > 0. η1 is chosen such
that p1−η1 > v2(x1 +x2)−v2(x2) and, thus, player 2 won’t bid on item 1.
The final price of item 1 is then 0. However, player 1 predicts that item 1
will be sold for p1−η1 > v1(x1) and, hence, she thinks that she is exposed
of p1− η1− v1(x1). It is then beneficial for player 1 to acquire item 2 if its
price is below (v1(x1 +x2)− (p1−η1))+(p1−η1−v1(x1)). The first term
comes from the surplus of acquiring item 2 given player 1 has acquired
item 1 and the second term comes from its actual predicted exposure.
Player 2 will however continue to bid on item 2 until its price reaches
v2(x2). Thus, if player 1 stops bidding on item 2 first, then its final price is
v1(x1 + x2)− v1(x1). If player 2 stops bidding on item 2 first, then its final
price is v2(x2). We set R2 = min(v2(x2), v1(x1 + x2)− v1(x1)) and, thus,
the final price of item 2 is R2. More formally, we have ∀p ∈ I1

α, ∃η > 0
such ∀(η1, η2) ∈ (0, η], f1

Γ(p1− η1, p2− η2) = 0 and f2
Γ(p1− η1, p2− η2) =

R2 with R2 = min(v2(x2), v1(x1 + x2) − v1(x1)). Thus, for p = (v1(x1 +
x2)− α, α) with α ∈ [v1(x2); v1(x1 + x2)− (v2(x1 + x2)− v2(x2))),

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1)2 + (R2 − p2)2

= (v1(x1 + x2)− α)2 + (R2 − α)2
(B.14)

Thus, ∀p ∈ I1
α, gΓ(p) ≥ (v2(x1 + x2)− v2(x2))2 > 0.

• Suppose p ∈ I2
α. Let’s calculate the final prices of Γ if both players

play the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η1 is chosen such that p1 − η1 > v1(x1). As v1(x1 + x2) − v1(x1) ≤
v2(x1 + x2)− v2(x1), v1(x1 + x2)− v1(x1) ≤ v2(x1), player 2 will always
bid on both items if their price is below v1(x1 +x2)−v1(x1). As p1−η1 <

v1(x1 +x2)−v1(x2), p2−η2 < v1(x1 +x2)−v1(x1) and p1 +p2−η1−η2 <

v1(x1 + x2), player 1 also always bids on both items. Thus, the price
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of each item rises symmetrically. As p2 + η1 < v1(x1 + x2) − v1(x1)
and p1 − η1 > v1(x1 + x2) − v1(x1), the complementarity surplus of
player 1 will be entirely consumed when the price of item 2 reaches
p2 + η1. Player 1 will then drop out of the auction and the final price
of each item will be p2 + η1. More formally, ∀p ∈ I2

α, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p2 + η1.

Thus, for p = (v1(x1 + x2)− α, α) with α ∈ [A; v1(x1 + x2)− v1(x1)), we
have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.15)

Thus, ∀p ∈ I2
α, gΓ(p) > 0.

• Suppose p ∈ I3
α and, thus, p = (v1(x1), v1(x1 + x2) − v1(x1)). Let’s

calculate the final prices of Γ if both players play the point price prediction
bidding strategy using as initial prediction (p1 − η1, p2 − η2) a slight
underestimation of p with η1 > 0, η2 > 0. As v1(x1 + x2) − v1(x1) ≤
v2(x1 + x2)− v2(x1), v1(x1 + x2)− v1(x1) ≤ v2(x1), player 2 will always
bid on both items if their price is below v1(x1 +x2)−v1(x1). As p1−η1 <

v1(x1) and p2 − η2 < v1(x1 + x2)− v1(x1) < v1(x1+x2)
2 < v1(x1), player 1

will bid on both items until her complementarity surplus has been entirely
consumed by the rise in price of item 2. This happens when the price
of item 2 reaches p2. Thus, player 2 acquires item 2 at price p2. Then,
player 1 will only bid on item 1 until its price reaches her stand-alone
value p1 = v1(x1). As v1(x1) ≤ v2(x1), player 2 will also continue to bid
on item 1 and, then, acquire it for a final price of p1. More formally, for
p = (v1(x1), v1(x1 + x2) − v1(x1)), ∃η > 0 such that ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = p1 and f2
Γ(p1 − η1, p2 − η2) = p2. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.16)

Thus, gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0.

We have shown that:

• If I1
α ̸= ∅, gΓ|Omin

Γ
is lower-bounded by a strictly positive term on I1

α.
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• ∀p ∈ I2
α = {(v1(x1 +x2)−α, α), α ∈ [A, v1(x1 +x2)−v1(x1))}, gΓ(p) > 0.

• gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1), v1(x1 + x2)− v1(x1))}.

Proof. Sequence convergence:

Let’s first show that:

p ∈ [0, v1(x1))× [0, v1(x1 + x2)− v1(x1))

=⇒ fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1))
(B.17)

Suppose p ∈ [0, v1(x1)) × [0, v1(x1 + x2) − v1(x1)). As p1 < v2(x1), p2 <

v1(x1 +x2)−v1(x1) ≤ v2(x1 +x2)−v2(x1) and v1(x1 +x2)−v1(x1) < v2(x1),
player 2 will bid on both items if their price is below v1(x1 + x2) − v1(x1).
As p1 < v1(x1) and p2 < v1(x1 + x2)− v1(x1) < v1(x1), player 1 will bid on
both items until her complementarity surplus is entirely consumed by item 2.
Thus, the price of each item rises symmetrically. Player 1 will stop bidding
on item 2 when its price reaches v1(x1 + x2) − v1(x1) and will continue to
bid on item 1 until its price reaches v1(x1). Player 2 will then acquire item
2 for v1(x1 + x2)− v1(x1) and will continue bidding on item 1 until its price
reaches v2(x1 + x2) − v2(x2). As v1(x1) ≤ v2(x1 + x2) − v2(x2), player 2
acquires item 1 for v1(x1). Thus, fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1)).

As P0 = (0, 0) < (v1(x1), v1(x1 + x2)− v1(x1)) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈

[0, v1(x1))×[0, v1(x1+x2)−v1(x1)) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1), v1(x1+
x2)− v1(x1)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1), v1(x1 + x2)− v1(x1))
and, thus, the sequence Pt converges to the unique element of Omin∗

Γ .
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ii. Second sub-case:

∗ v2(x1 + x2)−v2(x1) < v1(x1 + x2)−v1(x1) (or respectively v2(x1 + x2)−
v2(x2) < v1(x1 + x2)− v1(x2))

Proof. Frontier prediction of final prices:

We decompose Iα in 4 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); A)}

• I2
α = {(v1(x1 + x2)− α, α), α ∈ [A, v2(x1 + x2)− v2(x1))}

• I3
α = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1))}

• I4
α = {(v1(x1+x2)−α, α), α ∈ (v2(x1+x2)−v2(x1), v1(x1+x2)−v1(x1)]}

with A = max(v1(x2), v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) such that Iα =
I1

α ∪ I2
α ∪ I3

α ∪ I4
α. We will calculate the infimum of gΓ on each of these four

sets and, then, determine the frontier prediction of final prices Omin∗
Γ . We

have:

• If v1(x1 + x2) − (v2(x1 + x2) − v2(x2)) ≤ v1(x2), i.e., A = v1(x2), then
I1

α = ∅. Otherwise, we have v1(x1 +x2)− (v2(x1 +x2)−v2(x2)) > v1(x2).
Let’s calculate the final prices of Γ if both players play the point price
prediction bidding strategy using as initial prediction (p1 − η1, p2 − η2) a
slight underestimation of p ∈ I1

α with η1 > 0, η2 > 0. η1 is chosen such
that p1−η1 > v2(x1 +x2)−v2(x2) and, thus, player 2 won’t bid on item 1.
The final price of item 1 is then 0. However, player 1 predicts that item 1
will be sold for p1−η1 > v1(x1) and, hence, she thinks that she is exposed
of p1− η1− v1(x1). It is then beneficial for player 1 to acquire item 2 if its
price is below (v1(x1 +x2)− (p1−η1))+(p1−η1−v1(x1)). The first term
comes from the surplus of acquiring item 2 given player 1 has acquired
item 1 and the second term comes from its actual predicted exposure.
Player 2 will however continue to bid on item 2 until its price reaches
v2(x2). Thus, if player 1 stops bidding on item 2 first, then its final price is
v1(x1 + x2)− v1(x1). If player 2 stops bidding on item 2 first, then its final
price is v2(x2). We set R2 = min(v2(x2), v1(x1 + x2)− v1(x1)) and, thus,
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the final price of item 2 is R2. More formally, we have ∀p ∈ I1
α, ∃η > 0

such ∀(η1, η2) ∈ (0, η], f1
Γ(p1− η1, p2− η2) = 0 and f2

Γ(p1− η1, p2− η2) =
R2 with R2 = min(v2(x2), v1(x1 + x2) − v1(x1)). Thus, for p = (v1(x1 +
x2) − α, α) with α ∈ [v1(x2); v1(x1 + x2) − (v2(x1 + x2) − v2(x2))), we
have

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1)2 + (R2 − p2)2

= (v1(x1 + x2)− α)2 + (R2 − α)2
(B.18)

The above function is minimised for α = R2+v1(x1+x2)
2 ≥ v1(x1+x2)

2 >

v1(x1 +x2)−(v2(x1 +x2)−v2(x2)). Thus, ∀[v1(x2), v1(x1 +x2)−(v2(x1 +
x2)− v2(x2))) with p = (v1(x1 + x2)− α, α), a lower bound of the above
function is:

(v2(x1 + x2)− v2(x2))2 + (v1(x1 + x2)− (v2(x1 + x2)− v2(x2))−R2)2

≥ (v2(x1 + x2)− v2(x2))2

≥ (v1(x1 + x2)
2 )2

(B.19)

∀p ∈ I1
α, gΓ(p) ≥ (v1(x1+x2)

2 )2

• Suppose p ∈ I2
α. Let’s calculate the final prices of Γ if both players

play the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η1 is chosen such that p2 + η1 < v2(x1 + x2) − v2(x1). As v2(x1 +
x2) − v2(x1) < v2(x1), player 2 will always bid on both items if their
price is below v2(x1 + x2) − v2(x1). As p1 − η1 < v1(x1 + x2) − v1(x2),
p2 − η2 < v1(x1 + x2) − v1(x1) and p1 + p2 − η1 − η2 < v1(x1 + x2),
player 1 also always bids on both items. Thus, the price of each item
rises symmetrically. As p2 + η1 < v1(x1+x2)

2 and p1 − η1 > v1(x1+x2)
2 , the

complementarity surplus of player 1 will be entirely consumed when the
price of item 2 reaches p2 + η1. Player 1 will then drop out of the auction
and the final price of each item will be p2 + η1. More formally, ∃η > 0
such ∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = f2
Γ(p1−η1, p2−η2) = p2 +η1.
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Thus, for p = (v1(x1 + x2)− α, α) with α ∈ [A, v2(x1 + x2)− v2(x1)), we
have

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.20)

The function α→ limη→0+
1
η2
∫

Ω=[0,η]2(2α−v1(x1 +x2)+η1)2 +η2
1dη1dη2

admits a minimum for α = v1(x1+x2)
2 ≥ v2(x1 + x2)− v2(x1).

Thus, the only possible candidate given by the study of I2
α as an element

of the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

• Suppose p ∈ I3
α and, thus, p = (v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+

x2) − v2(x1)). Let’s calculate the final prices of Γ if both players play
the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is
chosen such that p1−η1 > v2(x1+x2)−v2(x1). As v2(x1+x2)−v2(x1) <

v2(x1), player 2 will always bid on both items if their price is below
v2(x1 + x2) − v2(x1). As v2(x1 + x2) − v2(x1) < v1(x1 + x2) − v1(x2),
v2(x1 + x2) − v2(x1) < v1(x1 + x2) − v1(x1) and p1 + p2 − η1 − η2 <

v1(x1 + x2), player 1 also always bids on both items if their price is below
v2(x1 + x2) − v2(x1). Thus, the price of each item rises symmetrically.
As p2 = v2(x1 + x2) − v2(x1) and p1 − η1 > v2(x1 + x2) − v2(x1), the
complementarity surplus of player 2 will be entirely consumed when the
price of item 2 reaches p2. Player 1 will then acquire item 2 at price p2.
Player 1 is then currently exposed of p2 − v1(x2). It is then beneficial
for player 1 to acquire item 1 if its price is below v1(x1 + x2) − v1(x2).
Player 2 will continue bidding on item 1 if its price is below v2(x1).
Thus, if player 1 stops bidding first on item 1, then its final price is
v1(x1 + x2) − v1(x2). If player 2 stops bidding first on item 1, then its
final price is v2(x1). We set R1 = min(v2(x1), v1(x1 + x2) − v1(x2))
and, thus, the final price of item 1 is R1. More formally, ∃η > 0 such

245



∀(η1, η2) ∈ (0, η], f2
Γ(p1 − η1, p2 − η2) = p2 and f1

Γ(p1 − η1, p2 − η2) = R1.
Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22
= (R1 − p1)2

= min(v2(x1 + x2)− v1(x1 + x2), v2(x1 + x2)− v1(x2)− v2(x1))2

≤ (v2(x1 + x2)− v1(x2)− v2(x1))2

< (v1(x1 + x2)
2 )2

(B.21)

Thus, gΓ(v1(x1 + x2) − (v2(x1 + x2) − v2(x1)), v2(x1 + x2) − v2(x1)) <

(v1(x1+x2)
2 )2.

• Suppose p ∈ I4
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction (p1−
η1, p2−η2) a slight underestimation of p with η1 > 0, η2 > 0. η2 is chosen
such that p2 − η2 > v2(x1 + x2)− v2(x1) and, thus, player 2 won’t bid on
item 2. The final price of item 2 is then 0. However, player 1 predicts that
item 2 will be sold for p2 − η2 > v1(x2) and, hence, she thinks that she is
exposed of p2 − η2 − v1(x2). It is then beneficial for player 1 to acquire
item 1 if its price is below (v1(x1 + x2)− (p2 − η2)) + (p2 − η2 − v1(x2)).
The first term comes from the surplus of acquiring item 1 given player 1
has acquired item 2 and the second term comes from its actual predicted
exposure. Player 2 will however continue to bid on item 1 until its price
reaches v2(x1). Thus, if player 1 stops bidding on item 1 first, then its
final price is v1(x1 + x2)− v1(x2). If player 2 stops bidding on item 1 first,
then its final price is v2(x1). We set R1 = min(v2(x1), v1(x1+x2)−v1(x2))
and, thus, the final price of item 1 is R1. More formally, we have ∀p ∈ I4

α,
∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = R1 and f2
Γ(p1 −

η1, p2 − η2) = 0 with R1 = min(v2(x1), v1(x1 + x2) − v1(x2)). Thus, for
p = (v1(x1+x2)−α, α) with α ∈ (v2(x1+x2)−v2(x1), v1(x1+x2)−v1(x1)],
we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + (α)2
(B.22)

The above function is minimised for α = 1
2 min(v1(x2), v1(x1 + x2) −

v2(x1)) ≤ v2(x1 + x2)− v2(x1).
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Thus, the only possible candidate given by the study of I4
α as an element

of the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

We have shown that:

• gΓ(v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+x2)−v2(x1)) < (v1(x1+x2)
2 )2

• The only possible candidate given by the study of I2
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2) − (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

• The only possible candidate given by the study of I4
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2) − (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

• If I1
α ̸= ∅, ∀p ∈ I1

α, gΓ(p) ≥ (v1(x1+x2)
2 )2

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1))}.

Proof. Sequence convergence:

Let’s set V1 = v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), V2 = v2(x1 + x2)− v2(x1)
and R1 = min(v2(x1), v1(x1 + x2)− v1(x2)).

Let’s define:

• S1 = {p ∈ R2
+, p1 ≤ V1, p2 < V2}

• S2 = {p ∈ R2
+, V1 < p1 < R1, p1 + p2 < v1(x1 + x2)}

• S3 = {p ∈ R2
+, V1 < p1 < R1, p2 < V2, p1 + p2 ≥ v1(x1 + x2)}

Let’s show the three following points:
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• ∀p ∈ S1, f1
Γ(p) = R1 ≥ V1, f2

Γ(p) = V2

• ∀p ∈ S2, f1
Γ(p) = f2

Γ(p) = v1(x1 + x2)− p1 ≤ V2 < V1

• ∀p ∈ S3, f1
Γ(p) = f2

Γ(p) = 0 < V2 < V1

Suppose p ∈ S1. As V2 < V1 ≤ v2(x1), player 2 will always bid on both items
if their price is below V2. As V2 < v1(x1 + x2) − v1(x1), V2 < V1 < v1(x1 +
x2) − v1(x2) and V2 < v1(x1+x2)

2 , player 1 also always bids on both items
if their price is below V2. Thus, the price of each item rises symmetrically.
As V2 < v2(x1), the complementarity surplus of player 2 will be entirely
consumed when the price of item 2 reaches V2. Player 1 will then acquire
item 2 at price V2. Player 1 is then currently exposed of V2−v1(x2). It is then
beneficial for player 1 to acquire item 1 if its price is below v1(x1+x2)−v1(x2).
Player 2 will continue bidding on item 1 if its price is below v2(x1). Thus, if
player 1 stops bidding first on item 1, then its final price is v1(x1+x2)−v1(x2).
If player 2 stops bidding first on item 1, then its final price is v2(x1). The final
price of item 1 is then R1. Thus, we have f1

Γ(p) = R1 ≥ V1, f2
Γ(p) = V2.

This proves the first point.

Suppose p ∈ S2. As p2 < V2, p1 < v2(x1 + x2) − v2(x2) and p1 + p2 <

v2(x1+x2), player 2 will bid on both items until her complementarity surplus is
consumed entirely. As p2 < v1(x1+x2)−v1(x1), p1 < v1(x1+x2)−v1(x2) and
p1+p2 < v1(x1+x2), player 1 will bid on both items until her complementarity
surplus is consumed entirely. As p2 < v1(x1 + x2) − p1 < V2 < V1 < p1,
player 1 complementarity surplus will be entirely consumed when the price
of item 2 reaches v1(x1 + x2)− p1. Player 1 will then drop out of the auction
and player 2 will acquire each item for v1(x1 + x2) − p1. Thus, we have
f1

Γ(p) = f2
Γ(p) = v1(x1 + x2)− p1 < V2 < V1.

This proves the second point.

Suppose p ∈ S3. As p1 + p2 ≥ v1(x1 + x2), v1(x1) < V1 < p1 and v1(x2) ≤
v1(x1 + x2)−R1 < p2, player 1 won’t bid on any items. Thus, player 2 will
acquire both items for zero. Thus, f1

Γ(p) = f2
Γ(p) = 0 < V2 < V1.

This proves the third point.
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Regarding sequence Pt+1 = 1
t+1fΓ(Pt) + (1− 1

t+1)Pt, the three points above
directly imply that:

• If Pt ∈ S1, then, as f1
Γ(Pt) = R1 and f2

Γ(Pt) = V2, Pt+1 ∈ S1 ∪ S2 ∪ S3.

• If Pt ∈ S2, then, as f1
Γ(Pt) = f2

Γ(Pt) = v1(x1 + x2) − p1 ≤ V2 < V1,
Pt+1 ∈ S1 ∪ S2.

• If Pt ∈ S3, then, as f1
Γ(p) = f2

Γ(p) = 0, Pt+1 ∈ S1 ∪ S2 ∪ S3.

As P0 = (0, 0) ∈ S1, we have by induction that ∀t ∈ R+, Pt ∈ S1 ∪ S2 ∪ S3.

Moreover,

{
If P 1

t ≤ V1, P 1
t ∈ S1 and, thus, f1

Γ(Pt) > V1

If P 1
t > V1, P 1

t ∈ S2 ∪ S3 and, thus, f1
Γ(Pt) < V1

(B.23)

This directly implies that P 1
t −−−−→t→+∞

V1.

Let’s show that P 2
t −−−−→t→+∞

V2, i.e., ∀η > 0, ∃t0 ∈ R+, ∀t ≥ t0, P 2
t ∈ [V2 −

η, V2).

Let’s fix η > 0.

Let’s fix t1 = ⌈2(V2
η − 1)⌉.

As P 1
t −−−−→t→+∞

V1, ∃t2 ∈ R+,∀t ≥ t2, P 1
t ∈ [V1 − η

2 , V1 + η
2 ]. Let’s fix such a t2.

Suppose t ≥ max(t1, t2). If P 2
t < V2 − η

2 , then Pt ∈ S1 ∪ S2 and, thus,
f2

Γ(Pt) ≥ V2 − η
2 . Hence, ∃t3 > max(t1, t2), P 2

t ∈ [V2 − η, V2).

Let’s fix such a t3.

We will show by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2) and, hence,

P 2
t −−−−→t→+∞

V2.
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Suppose t > t3 and P 2
t ∈ [V2 − η, V2). Three cases can occur.

• If Pt ∈ S1, then f2
Γ(Pt) = V2 and, thus, P 2

t+1 ∈ [V2 − η, V2).

• If Pt ∈ S2, then f2
Γ(Pt) ≥ V2 − η

2 and, thus, P 2
t+1 ∈ [V2 − η, V2).

• If Pt ∈ S3, then P 2
t ≥ V2 − η

2 and f2
Γ(Pt) = 0. We have:

P 2
t+1 = t

t + 1P 2
t ≥

t

t + 1(V2 −
η

2)

≥
2(V2

η − 1)
2(V2

η − 1) + 1
(V2 −

η

2) (as t > t3 > t1 = ⌈2(V2
η
− 1)⌉)

≥
(V2

η − 1)
1
η (2V2 − η)

(2V2 − η)

≥ V2 − η

(B.24)

Thus, P 2
t+1 ∈ [V2 − η, V2).

We have shown by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2). Hence,

P 2
t −−−−→t→+∞

V2.

We have shown that Pt −−−−→
t→+∞

(V1, V2) and, thus, the sequence Pt con-

verges to the unique element of Omin∗
Γ .

2. Second disposition:


v1(x1) ≤ v2(x1)
v1(x2) ≥ v2(x2)
v1(x1 + x2) ≤ v2(x1 + x2)

(B.25)

a) First case:

∗ v2(x1) ≥ v1(x1 + x2)− v1(x2)
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∗ v1(x2) ≥ v2(x1 + x2)− v2(x1)

Proof. Frontier prediction of final prices:

In this proof, we are going to calculate the frontier prediction of final prices and,
thus, calculate the set of smallest overestimated final prices which are γ close to
the infimum of gΓ|Omin

Γ
for any γ > 0. Lets define:

• O1
Γ = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1))}

• O2
Γ = {(v1(x1 + x2)−α, α), α ∈ [v2(x1 + x2)− v2(x1), v1(x1 + x2)− v1(x1)]}

• O3
Γ = {(v2(x1 +x2)−α, α), α ∈ [v2(x2), v2(x1 +x2)− (v1(x1 +x2)−v1(x2))]}

Lets show that:

• If v1(x2) > v2(x1 + x2)− v2(x1), then Omin
Γ = O1

Γ.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) > v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ ∪O2

Γ.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) = v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ ∪O2

Γ ∪O3
Γ.

This will be shown in 3 steps:

• O1
Γ ⊂ OΓ, O2

Γ ⊂ OΓ and O3
Γ ⊂ OΓ

• ∀p ∈ R2
+ such that p1 + p2 < v1(x1 + x2)− v1(x2) + v2(x1 + x2)− v2(x1), then

p /∈ OΓ.

• ∀p ∈ R2
+ such that p1 + p2 = v1(x1 + x2), we will see at which conditions

p ∈ OΓ.

If p ∈ O1
Γ, player 1 won’t bid on item 1 and player 2 won’t bid on item 2 as

p1 ≥ v1(x1 +x2)−v1(x2) and p2 ≥ v2(x1 +x2)−v2(x1). Thus, f1
Γ(p) = f2

Γ(p) = 0
and p ∈ OΓ.
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If p ∈ O2
Γ, player 2 won’t bid on item 2 as p2 ≥ v2(x1 + x2) − v2(x1). Thus,

f2
Γ(p) = 0. As p1 + p2 ≥ v1(x1 + x2) and p1 ≥ v1(x1), player 1 won’t bid on item

1. Thus, f1
Γ(p) = 0 and p ∈ OΓ.

If p ∈ O3
Γ, player 1 won’t bid on item 1 as p1 ≥ v1(x1 + x2) − v1(x2) and

player 2 won’t bid on item 2 as p1 + p2 ≥ v2(x1 + x2) and p2 ≥ v2(x2). Thus,
f1

Γ(p) = f2
Γ(p) = 0 and p ∈ OΓ.

The first step is verified.

Suppose p ∈ R2
+ such that p1 +p2 < v1(x1 +x2)−v1(x2)+v2(x1 +x2)−v2(x1) ≤

v1(x1 + x2) ≤ v2(x1 + x2). Then, we have:

• If p1 ∈ [0, v1(x1)), then, regardless of p2, f1
Γ(p) ≥ v1(x1) as p1 < v1(x1) ≤

v2(x1) and, thus, p /∈ OΓ.

• If p1 ∈ [v1(x1), v1(x1 + x2) − v1(x2)), as p1 < v1(x1 + x2) − v1(x2), p2 <

v1(x2) and p1 + p2 < v1(x1 + x2), player 1 will bid on both items until her
complementarity surplus is entirely consumed by item 1 as player 2 will
never play above v2(x1 + x2) − v2(x1) ≤ v1(x2) on item 2. As p1 < v2(x1),
player 2 will always bid on item 1 until its price reaches v2(x1) regardless of
p2. Thus, f1

Γ(p) = v1(x1 + x2)− v1(x2) and p /∈ OΓ.

• If p1 ∈ [v1(x1 + x2) − v1(x2), v2(x1)), then player 1 won’t bid on item 1 as
p1 ≥ v1(x1 + x2)− v1(x2) and player 2 will acquire it without consuming any
of her complementarity surplus as p1 < v2(x1). As p2 < v2(x1 + x2)− v2(x1),
player 2 will bid on item 2 until its price reaches v2(x1 + x2) − v2(x1). As
v2(x1 + x2)− v2(x1) ≤ v1(x2), f2

Γ(p) = v2(x1 + x2)− v2(x1) > p2 and, thus,
p /∈ OΓ.

• If p1 ∈ [v2(x1), A) with A = min(v1(x1 + x2) − v1(x2) + v2(x1 + x2) −
v2(x1), v2(x1 + x2)− v2(x2)), then player 2 will acquire item 1 for a price of
0. Thinking that she is exposed if she doesn’t obtain both items, player 2
will bid up to v2(x1 + x2)− v2(x1) on item 2. As p2 < v1(x2), player 1 will bid
up to v1(x2) on item 2. Thus, f2

Γ(p) = v2(x1 + x2) − v2(x1) > p2 and, thus,
p /∈ OΓ.
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• If v2(x1 + x2) − v2(x2) < v1(x1 + x2) − v1(x2) + v2(x1 + x2) − v2(x1) and
p1 ∈ [v2(x1 + x2)− v2(x2), v1(x1 + x2)− v1(x2) + v2(x1 + x2)− v2(x1)), then,
regardless of p1, f2

Γ(p) ≥ v2(x2) as p2 < v2(x2) ≤ v1(x2) and, thus, p /∈ OΓ.

The second step is verified.

Suppose p ∈ R2
+ such that p1 +p2 = v1(x1 +x2)−v1(x2)+v2(x1 +x2)−v2(x1) ≤

v1(x1 + x2) ≤ v2(x1 + x2). Then, we have:

• If p2 ∈ [0, v2(x2)), then, regardless of p1, f2
Γ(p) ≥ v2(x2) as p2 < v2(x2) ≤

v1(x2) and, thus, p /∈ OΓ.

• If p2 ∈ [v2(x2), v2(x1 + x2) − v2(x1)), then we need to study two different
cases:

– If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) = v1(x1 + x2) − v1(x2), as
p1 + p2 = v2(x1 + x2), p2 ≥ v2(x2) and p1 ≥ v1(x1 + x2) − v1(x2), we
have p ∈ O3

Γ ⊂ OΓ.

– Otherwise, as p1 ≥ v1(x1 + x2) − v1(x2), player 1 won’t bid on item 1.
As p1 + p2 < v2(x1 + x2), p2 < v2(x1 + x2) − v2(x1) and p1 < v2(x1 +
x2) − v2(x2), player 2 will bid on both items until her complementarity
surplus is entirely consumed. As player 2 acquires item 1 at a price of
zero, she will bid on item 2 until its price reaches v2(x1 +x2)−v2(x1). As
p2 < v1(x2), player 1 will bid on item 2 if its price is below v1(x2). Thus,
f2

Γ(p) = v2(x1 + x2)− v2(x1) > p2 and p /∈ OΓ.

• If p2 = v2(x1 + x2)− v2(x1), then p ∈ O1
Γ ⊂ OΓ.

• If p2 ∈ (v2(x1 + x2) − v2(x1), v1(x1 + x2) − v1(x1)], then we need to study
two different cases:

– If v1(x2) = v2(x1 + x2)− v2(x1), as p1 + p2 = v1(x1 + x2), p2 ≥ v2(x1 +
x2)− v2(x1) and p1 ≥ v1(x1), we have p ∈ O2

Γ ⊂ OΓ.

– Otherwise, as p2 > v2(x1 + x2) − v2(x1), player 2 won’t bid on item 2.
As p1 + p2 < v1(x1 + x2), p2 < v1(x1 + x2) − v1(x1) and p1 < v1(x1 +
x2) − v1(x2), player 1 will bid on both items until her complementarity
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surplus is entirely consumed. As player 1 acquires item 2 at a price of
zero, she will bid on item 1 until its price reaches v1(x1 +x2)−v1(x2). As
p1 < v2(x1), player 2 will bid on item 1 if its price is below v2(x1). Thus,
f1

Γ(p) = v1(x1 + x2)− v1(x2) > p1 and p /∈ OΓ.

• If p2 ∈ (v1(x1 +x2)−v1(x1), v1(x1 +x2)−v1(x2)+v2(x1 +x2)−v2(x1)], then,
as p1 < v1(x1), we have f1

Γ(p) ≥ v1(x1) regardless of p2 and, thus, p /∈ OΓ.

The third step is verified.

We have shown that:

• If v1(x2) > v2(x1 + x2)− v2(x1), then Omin
Γ = O1

Γ.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) > v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ ∪O2

Γ.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) = v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ ∪O2

Γ ∪O3
Γ.

Lets determine for the three above cases the frontier prediction of final prices.

• If v1(x2) > v2(x1 + x2) − v2(x1), then Omin
Γ = O1

Γ = {(v1(x1 + x2) −
v1(x2), v2(x1 + x2)− v2(x1))}. Thus, Omin∗

Γ = {(v1(x1 + x2)− v1(x2), v2(x1 +
x2)− v2(x1))}.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) > v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ ∪ O2

Γ. We can rewrite Omin
Γ as Iα = {(v1(x1 + x2) − α, α), α ∈

[v2(x1 + x2) − v2(x1), v1(x1 + x2) − v1(x1)]}. From there, we are going to
calculate the set of smallest overestimated final prices which are γ close
to the infimum of gΓ|Omin

Γ
for any γ > 0. To do so, we need to obtain the

closed-form of fΓ for every slight underestimation of elements in Iα. We
decompose Iα in 2 disjoints sets

– I1
α = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1))}

– I2
α = {(v1(x1+x2)−α, α), α ∈ (v2(x1+x2)−v2(x1), v1(x1+x2)−v1(x1)]}
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such that Iα = I1
α ∪ I2

α. We will calculate the infimum of gΓ on each of these
two sets and, then, determine the frontier prediction of final prices Omin∗

Γ .
We have:

– Suppose p ∈ I1
α and, thus, p = (v1(x1 +x2)−v1(x2), v2(x1 +x2)−v2(x1)).

Lets calculate the final prices of Γ if both players play the point prediction
bidding strategy using as initial prediction (p1 − η1, p2 − η2) a slight
underestimation of p with η1 > 0, η2 > 0. As p1 − η1 < v1(x1 + x2) −
v1(x2) < v2(x1) and p2−η2 < v2(x1 +x2)−v2(x1) < v1(x2), player 1 and
player 2 will bid on item 1 until its price reaches v1(x1 + x2)− v1(x2) and
on item 2 until its price reaches v2(x1 + x2)− v2(x1). Then, player 1 will
stop bidding on the first item and player 2 will stop bidding on the second
item. Thus, player 2 acquires item 1 for v1(x1 + x2)− v1(x2) and player
1 acquires item 2 for v2(x1 + x2) − v2(x1). More formally, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = p1 and f2
Γ(p1 − η1, p2 − η2) = p2.

Thus, we have

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.26)

Thus, gΓ(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1)) = 0.

– Suppose p ∈ I2
α. Lets calculate the final prices of Γ if both players

play the point prediction bidding strategy using as initial prediction (p1 −
η1, p2−η2) a slight underestimation of p with η1 > 0, η2 > 0. η2 is chosen
such that p2−η2 > v2(x1 +x2)−v2(x1). As p2−η2 > v2(x1 +x2)−v2(x1),
player 2 won’t bid on item 2 and will only bid on item 1 if its price is
below v2(x1) ≥ v1(x1 + x2)− v1(x2). As p2 − η2 < v1(x1 + x2)− v1(x1),
p1− η1 < v1(x1 + x2)− v1(x2) and p1 + p2− η1− η2 < v1(x1 + x2), player
1 bids on both items and acquires item 2 for a price of zero. However,
player 1 thinks she is exposed of p2− η2− v1(x2) > 0. Thus, player 1 will
bid on item 1 until its price reaches v1(x1 + x2)− v1(x2) and, then, stops
bidding. Player 2 acquires item 1 for v1(x1 + x2)− v1(x2). More formally,
∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1− η1, p2− η2) = v1(x1 + x2)− v1(x2)
and f2

Γ(p1 − η1, p2 − η2) = 0. Thus, we have

||fΓ(p1 − η1, p2 − η2)− p||22 = (v1(x1 + x2)− v1(x2)− p1)2 + (p2)2

(B.27)

255



Thus, ∀p ∈ I2
α, gΓ(p) > 0.

We have shown that:

– gΓ(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1)) = 0

– ∀p ∈ I2
α = {(v1(x1 + x2)−α, α), α ∈ (v2(x1 + x2)− v2(x1), v1(x1 + x2)−

v1(x1)]}, gΓ(p) > 0

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1))}.

• If v1(x2) = v2(x1 + x2) − v2(x1) and v2(x1) = v1(x1 + x2) − v1(x2), then
Omin

Γ = O1
Γ∪O2

Γ∪O3
Γ. We can rewrite Omin

Γ as Iα = {(v1(x1+x2)−α, α), α ∈
[v2(x2), v1(x1 + x2)− v1(x1)]}. From there, we are going to calculate the set
of smallest overestimated final prices which are γ close to the infimum of
gΓ|Omin

Γ
for any γ > 0. To do so, we need to obtain the closed-form of fΓ

for every slight underestimation of elements in Iα. We decompose Iα in 3
disjoints sets

– I1
α = {(v1(x1 + x2)− α, α), α ∈ [v2(x2), v2(x1 + x2)− v2(x1))}

– I2
α = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1))}

– I3
α = {(v1(x1+x2)−α, α), α ∈ (v2(x1+x2)−v2(x1), v1(x1+x2)−v1(x1)]}

such that Iα = I1
α ∪ I2

α ∪ I3
α. We will calculate the infimum of gΓ on each of

these three sets and, then, determine the frontier prediction of final prices
Omin∗

Γ . We have:

– Suppose p ∈ I1
α. Lets calculate the final prices of Γ if both players

play the point prediction bidding strategy using as initial prediction (p1 −
η1, p2−η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is chosen
such that p1 − η1 > v2(x1). As p1 − η1 > v1(x1 + x2) − v1(x2), player
1 won’t bid on item 1. As p1 − η1 < v2(x1 + x2) − v2(x2), p2 − η2 <

v2(x1 + x2)− v2(x1) and p1 + p2− η1− η2 < v2(x1 + x2), player 2 will bid
on both items and acquire item 1 for a price of zero. However, player 2
thinks she is exposed of p1−η1−v2(x1) > 0 if she doesn’t acquire item 2.
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Thus, player 2 will bid on item 2 until its price reaches v2(x1+x2)−v2(x1).
Player 1 will bid also on item 2 until its price reaches v2(x1 + x2)− v2(x1)
as p2 − η2 < v1(x2) = v2(x1 + x2)− v2(x1). Thus, the final price of item
2 is v2(x1 + x2) − v2(x1). More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = 0 and f2
Γ(p1 − η1, p2 − η2) = v2(x1 + x2)− v2(x1).

Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1)2 + (v2(x1 + x2)− v2(x1)− p2)2

(B.28)

Thus, ∀p ∈ I1
α, gΓ(p) > 0

– Suppose p ∈ I2
α. Then, according to the proof in the second case,

gΓ(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1)) = 0.

– Suppose p ∈ I3
α. Then, according to the proof in the second case,

gΓ(p) > 0.

We have shown that:

– ∀p ∈ I1
α = {(v1(x1+x2)−α, α), α ∈ [v2(x2), v2(x1+x2)−v2(x1))}, gΓ(p) >

0

– gΓ(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1)) = 0

– ∀p ∈ I3
α = {(v1(x1 + x2)−α, α), α ∈ (v2(x1 + x2)− v2(x1), v1(x1 + x2)−

v1(x1)]}, gΓ(p) > 0

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)− v2(x1))}.

We have shown for all cases that Omin∗
Γ = {(v1(x1 + x2)− v1(x2), v2(x1 + x2)−

v2(x1))}.

Proof. Sequence convergence:
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Let’s set V1 = v1(x1 + x2)− v1(x2) and V2 = v2(x1 + x2)− v2(x1).

Let’s first show that:

p ∈ [0, V1)× [0, V2) =⇒ fΓ(p) = (V1, V2) (B.29)

Suppose p ∈ [0, V1)× [0, V2). Without any loss of generality, let’s suppose that
V1 ≤ V2. As p1 < V1 ≤ v2(x1), p2 < V2 and V1 ≤ V2, player 2 will bid on both
items if their price is below V1. As p1 < V1, p2 < V2 ≤ v1(x2) and V1 ≤ V2, player
1 will bid on both items until her complementarity surplus has been entirely
consumed by item 1. Thus, the price of each item rises symmetrically. Player
1 stops bidding on item 1 when its price reaches V1 and will continue to bid on
item 2 until its price reaches v1(x2). Thus, player 2 acquires item 1 for V1 and
will continue to bid on item 2 until its price reaches V2. As v1(x2) ≥ V2, item 2
will be acquired by player 1 for v1(x2). Thus, fΓ(p) = (V1, V2).

As P0 = (0, 0) < (V1, V2) component-wise and Pt+1 = 1
t+1fΓ(Pt) + (1 − 1

t+1)Pt,
by a simple induction we have that ∀t ∈ R+, Pt ∈ [0, V1) × [0, V2) and, thus,
∀t ∈ R+, fΓ(Pt) = (V1, V2).

The above results directly imply that Pt −−−−→
t→+∞

(V1, V2) and, thus, the sequence

Pt converges to the unique element of Omin∗
Γ .

b) Second case:

∗ v2(x1 + x2)− v2(x1) ≥ v1(x2)

Proof. Set of smallest overestimated final prices:

The following result is shared amongst all the sub-cases of the second case of
the second disposition. In this proof, we are going to calculate the set of smallest
overestimated final prices Omin

Γ .

Lets set O1
Γ = {p, v1(x1 + x2) = p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2}. Lets show

that Omin
Γ = O1

Γ in three steps:
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• O1
Γ ⊂ OΓ

• ∀p ∈ R2
+ such that p1 + p2 < v1(x1 + x2), then p /∈ OΓ. Thus, O1

Γ ⊂ Omin
Γ .

• ∀p ∈ R2
+ such that p1 + p2 = v1(x1 + x2), if p1 < v1(x1) or p2 < v1(x2) then

p /∈ OΓ. Thus, O1
Γ = Omin

Γ .

If p ∈ O1
Γ, then f1

Γ(p) = f2
Γ(p) = 0 as player 1 predicts that she will get a negative

payoff if she acquires any item. Thus, p ∈ OΓ. This verifies the first step.

Suppose p ∈ R2
+ such that p1 + p2 < v1(x1 + x2). Then, we have:

• If p1 ∈ [0, v1(x1)), then, regardless of price p2, f1
Γ(p) ≥ v1(x1) as both

players has their stand-alone value for item 1 greater or equal to v1(x1).
Thus, p /∈ OΓ.

• If p1 ∈ [v1(x1), v1(x1 + x2) − v1(x2)), as p1 < v1(x1 + x2) − v1(x2), p2 <

v1(x1 + x2) − v1(x1) and p1 + p2 < v1(x1 + x2), player 1 will bid on both
items until her complementarity surplus is entirely consumed. Two different
scenarios can occur.

– If v2(x1+x2)−v2(x1) > p2, then, as p1 < v2(x1+x2)−v2(x2) and p1+p2 <

v2(x1 + x2), player 2 will bid on both items until her complementarity
surplus is consumed. As v1(x1) < p1 < v1(x1 + x2)− v1(x2) ≤ v2(x1 +
x2)−v2(x2) and v1(x2) < p2 < v2(x1+x2)−v2(x1) ≤ v1(x1+x2)−v1(x1),
player 1 will either entirely consume her complementarity surplus without
acquiring any items or player 1 will acquire item 2 for v2(x1 + x2)−v2(x1)
and will then bid up to v1(x1+x2)−v1(x2) on item 1 because of exposure.
Either way, f1

Γ(p) + f2
Γ(p) ≥ v1(x1 + x2) > p1 + p2 and, thus, p /∈ OΓ.

– If v2(x1 + x2) − v2(x1) ≤ p2, player won’t bid on item 2. Player 1 will
then acquire item 2 for a price of zero. However, thinking that she is
exposed of p2 − v1(x2) > 0, she will bid on item 1 until its price reaches
v1(x1 + x2) − v1(x2) > p1. Player 2 will bid on item 1 until its price
reaches v2(x1) > p1. Thus, f1

Γ(p) > p1 and p /∈ OΓ.

• If p1 ∈ [v1(x1+x2)−v1(x2), A) with A = min(v1(x1+x2), v2(x1+x2)−v2(x2)),
then player 1 won’t bid on item 1 and only bid on item 2 if its price is below
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v1(x2) > p2. As p1 < v2(x1 + x2) − v2(x2), p2 < v2(x1 + x2) − v2(x1) and
p1 + p2 < v2(x1 + x2), then player 2 will bid on both items and acquire
item 1 for a price of zero. Player 2 will then bid on item 2 until its price
reaches v2(x1 +x2)−v2(x1) whether she thinks she is exposed or not. Thus,
f2

Γ(p) > p2 and p /∈ OΓ.

• If p1 ∈ [A, v1(x1 + x2)) with A = min(v1(x1 + x2), v2(x1 + x2)− v2(x2)), then,
regardless of p1, as p2 < v2(x2), we have f2

Γ(p) > p2 and p /∈ OΓ.

This verifies the second step.

Suppose p ∈ R2
+ such that p1 + p2 = v1(x1 + x2). Then, we have:

• If p1 ∈ [0, v1(x1)), then, regardless of price p2, f1
Γ(p) ≥ v1(x1) as both

players has their stand-alone value for item 1 greater or equal to v1(x1).
Thus, p /∈ OΓ.

• If p1 ∈ [v1(x1), v1(x1 + x2)− v1(x2)], then p ∈ O1
Γ ⊂ OΓ.

• If p1 ∈ (v1(x1+x2)−v1(x2), A) with A = min(v1(x1+x2), v2(x1+x2)−v2(x2)),
then player 1 won’t bid on item 1 and will bid on item 2 until its price reaches
v1(x2) > p2. As p1 < v2(x1 + x2) − v2(x2), p2 < v2(x1 + x2) − v2(x1) and
p1 + p2 < v2(x1 + x2), then player 2 will bid on both items and acquire item
1 for a price of zero. Player 2 will then bid on item 2 until its price reaches
v2(x1 + x2) − v2(x1) whether she thinks she is exposed or not. Player 2
will then acquire item 2 for v1(x2) as v1(x2) ≤ v2(x1 + x2) − v2(x1). Thus,
f2

Γ(p) = v1(x2) > p2 and p /∈ OΓ.

• If p1 ∈ [A, v1(x1 + x2)) with A = min(v1(x1 + x2), v2(x1 + x2)− v2(x2)), then,
regardless of p1, as p2 < v2(x2), we have f2

Γ(p) > p2 and p /∈ OΓ.

This verifies the third step.

Thus, we have shown that:

Omin
Γ = O1

Γ = {p, v1(x1 + x2) = p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2} (B.30)
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i. First sub-case:

∗ v1(x2) > v1(x1 + x2)− v1(x2)

Proof. Frontier prediction of final prices:

In this proof, we are going to calculate the frontier prediction of final prices
and, thus, calculate the set of smallest overestimated final prices which are
γ close to the infimum of gΓ|Omin

Γ
for any γ > 0.

We can rewrite Omin
Γ as Iα = {(v1(x1 + x2) − α, α), α ∈ [v1(x2); v1(x1 +

x2) − v1(x1)]}. From there, we are going to calculate the set of smallest
overestimated final prices which are γ close to the infimum of gΓ|Omin

Γ
for

any γ > 0. To do so, we need to obtain the closed-form of fΓ for every slight
underestimation of elements in Iα. We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− v1(x2), v1(x2))}

• I2
α = {(v1(x1 + x2)− α, α), α ∈ (v1(x2), B]}

• I3
α = {(v1(x1 + x2)− α, α), α ∈ (B, v1(x1 + x2)− v1(x1)]}

with B = min(v1(x1 + x2) − v1(x1), v2(x1 + x2) − v2(x1)) such that Iα =
I1

α ∪ I2
α ∪ I3

α. We will calculate the infimum of gΓ on each of these three sets
and, then, determine the frontier prediction of final prices Omin∗

Γ . We have:

• Suppose p ∈ I1
α and, thus, p = (v1(x1 + x2) − v1(x2), v1(x2)). Let’s

calculate the final prices of Γ if both players play the point price prediction
bidding strategy using as initial prediction (p1 − η1, p2 − η2) a slight
underestimation of p with η1 > 0, η2 > 0. As p2 − η2 < v1(x2) ≤
v2(x1 +x2)−v2(x1), p1−η1 < v1(x1 +x2)−v1(x2) ≤ v2(x1 +x2)−v2(x2)
and p1 + p2 − η1 − η2 < v2(x1 + x2), player 2 will bid on both items until
her complementarity surplus is entirely consumed. As p2 − η2 < v1(x2)
and p1 − η1 < v1(x1 + x2) − v1(x2) < v1(x2), player 1 will bid on both
items until her complementarity surplus is entirely consumed by item
1. Thus, player 2 acquires item 1 at v1(x1 + x2)− v1(x2). Player 1 will
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then bid on item 2 until its price reaches v1(x2). Given that player 2
has acquired item 1, she will then bid on item 2 until its price reaches
v2(x1 + x2) − v2(x1) ≥ v1(x2). Thus, the final price of item 2 is v1(x2).
More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = p1

and f2
Γ(p1 − η1, p2 − η2) = p2. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.31)

Thus, gΓ(v1(x1 + x2)− v1(x2), v1(x2)) = 0.

• If v1(x2) = v2(x1 + x2) − v2(x1), then I2
α = ∅. Otherwise, we have

v1(x2) < v2(x1 + x2) − v2(x1). Let’s calculate the final prices of Γ if
both players play the point price prediction bidding strategy using as
initial prediction (p1 − η1, p2 − η2) a slight underestimation of p ∈ I2

α

with η1 > 0, η2 > 0. η2 is chosen such that p2 − η2 > v1(x2). As
p2 − η2 < v2(x1 + x2) − v2(x1), p1 − η1 < v2(x1 + x2) − v2(x2) and
p1 + p2 − η1 − η2 < v2(x1 + x2), player 2 will bid on both items until her
complementarity surplus is entirely consumed. As p2−η2 < v1(x1+x2)−
v1(x1), p1−η1 < v1(x1 +x2)−v1(x2) and p1 +p2−η1−η2 < v1(x1 +x2),
player 1 will bid on both items until her complementarity surplus is entirely
consumed. Prices will rise symmetrically. As v1(x1+x2)−v1(x2) < p2−η2

and v1(x1 +x2)−v1(x2) > p1 +η2, the complementarity surplus of player
1 will be entirely consumed when the price of item 1 reaches p1 + η2.
Player 1 will then drop out of the auction and the final price of each
item will be p1 + η2. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p1 + η2. Thus, ∀p ∈ I2

α with
p = (v1(x1 + x2)− α, α), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1 + η2 − p1)2 + (p1 + η2 − p2)2

= (v1(x1 + x2)− 2α + η2)2 + η2
2

(B.32)

Thus, ∀p ∈ I2
α, gΓ(p) > 0.

• If v2(x1+x2)−v2(x1) ≥ v1(x1+x2)−v1(x1), i.e., B = v1(x1+x2)−v1(x1),
then I3

α = ∅. Otherwise, we have v2(x1 + x2)− v2(x1) < v1(x1 + x2)−
v1(x1). Let’s calculate the final prices of Γ if both players play the point
price prediction bidding strategy using as initial prediction (p1−η1, p2−η2)
a slight underestimation of p ∈ I3

α with η1 > 0, η2 > 0. η2 is chosen such
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that p2 − η2 > v2(x1 + x2) − v2(x1). As p2 − η2 > v2(x1 + x2) − v2(x1)
and p1 − η1 < v2(x1), player 2 won’t bid on item 2 and will bid on
item 1 until its price reaches v2(x1). As p2 − η2 < v1(x1 + x2)− v1(x1),
p1−η1 < v1(x1 +x2)−v1(x2) and p1 +p2−η1−η2 < v1(x1 +x2), player 1
will bid on both items and will acquire item 2 for a price of zero. However,
player 1 thinks that she is exposed of p2−η1−v1(x2) > 0 and will continue
to bid on item 1 until its price reaches v1(x1 + x2)− v1(x2). If player 2
stops bidding first on item 1, then its final price will be v2(x1). If player 1
stops bidding first on item 1, then its final price will v1(x1 + x2)− v1(x2).
The final price of item 1 will be R1 = min(v2(x1), v1(x1 + x2)− v1(x2)).
More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = R1

and f2
Γ(p1− η1, p2− η2) = 0 with R1 = min(v2(x1), v1(x1 + x2)− v1(x2)).

Thus, ∀p ∈ I3
α with p = (v1(x1 + x2)− α, α), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + α2
(B.33)

The above function is minimised for α = 1
2 min(v1(x2), v1(x1 + x2) −

v2(x1)) ≤ v2(x1 + x2)− v2(x1) and, thus, ∀p ∈ I3
α, gΓ(p) ≥ (v2(x1 + x2)−

v2(x1))2 > 0

We have shown that:

• gΓ(v1(x1 + x2)− v1(x2), v1(x2)) = 0

• If I2
α ̸= ∅, ∀p ∈ I2

α = {(v1(x1 + x2)− α, α), α ∈ (v1(x2), B]}, gΓ(p) > 0

• If I3
α ̸= ∅, ∀p ∈ I3

α, gΓ(p) ≥ (v2(x1 + x2)− v2(x1))2 > 0

From these results, the frontier prediction of final prices is easily determined
as Omin∗

Γ = {(v1(x1 + x2)− v1(x2), v1(x2))}.

Proof. Sequence convergence:

263



Let’s first show that:

p ∈ [0, v1(x1 + x2)− v1(x2))× [0, v1(x2))

=⇒ fΓ(p1, p2) = (v1(x1 + x2)− v1(x2), v1(x2))
(B.34)

Suppose p ∈ [0, v1(x1 +x2)−v1(x2))× [0, v1(x2)). As v1(x1 +x2)−v1(x2) <

v1(x2) ≤ v2(x1 + x2) − v2(x1), v1(x1 + x2) − v1(x2) ≤ v2(x1 + x2) − v2(x2)
and v1(x1 + x2)− v1(x2) ≤ v2(x1+x2)

2 , player 2 will bid on both items if their
price is below v1(x1 + x2)− v1(x2). As p2 < v1(x2) and p1 < v1(x1 + x2)−
v1(x2) < v1(x2), player 1 will bid on both items until her complementarity
surplus is entirely consumed by item 1. Thus, the price of each item rises
symmetrically. Player 1 will stop bidding on item 1 when its price reaches
v1(x1 + x2)− v1(x2) and will continue to bid on item 2 until its price reaches
v1(x2). Player 2 will then acquire item 1 for v1(x1 + x2) − v1(x2) and will
continue bidding on item 2 until its price reaches v2(x1 + x2)− v2(x1). As
v1(x2) ≤ v2(x1 + x2) − v2(x1), player 2 acquires item 2 for v1(x2). Thus,
fΓ(p1, p2) = (v1(x1 + x2)− v1(x2), v1(x2)).

As P0 = (0, 0) < (v1(x1 + x2)− v1(x2), v1(x2)) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈

[0, v1(x1 + x2) − v1(x2)) × [0, v1(x2)) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1 +
x2)− v1(x2), v1(x2)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1 + x2)− v1(x2), v1(x2))
and, thus, the sequence Pt converges to the unique element of Omin∗

Γ

ii. Second sub-case:

∗ v1(x2) ≤ v1(x1 + x2)− v1(x2)

A. First sub-sub-case:

∗ v1(x1) ≤ v1(x1+x2)
2

First sub-sub-sub-case:
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∗ v2(x1 + x2)− v2(x1) ≥ v1(x1+x2)
2

Proof. Frontier prediction of final prices:

We decompose Iα in 4 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2), v1(x1+x2)

2 )}

• I2
α = {(v1(x1+x2)

2 , v1(x1+x2)
2 )}

• I3
α = {(v1(x1 + x2)− α, α), α ∈ (v1(x1+x2)

2 , B]}

• I4
α = {(v1(x1 + x2)− α, α), α ∈ (B, v1(x1 + x2)− v1(x1)]}

with B = min(v1(x1 + x2)− v1(x1), v2(x1 + x2)− v2(x1)) such that Iα =
I1

α∪I2
α∪I3

α∪I4
α. We will calculate the infimum of gΓ on each of these four

sets and, then, determine the frontier prediction of final prices Omin∗
Γ .

We have:

• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1

is chosen such that p1 − η1 > v1(x1+x2)
2 . As v2(x1 + x2) − v2(x1) ≥

v1(x1+x2)
2 > p2 − η2, v2(x1 + x2) − v2(x2) > p1 − η1 > v1(x1+x2)

2 and
p1 + p2− η1− η2 < v1(x1 + x2) ≤ v2(x1 + x2), player 2 will bid on both
items if their price is below p2 + η1. As v1(x1 + x2)− v1(x1) > p2 − η2,
v1(x1 + x2) − v1(x2) > p1 − η1 and p1 + p2 − η1 − η2 < v1(x1 + x2),
player 1 will bid on both items. Prices will then rise symmetrically. As
p1−η1 > v1(x1+x2)

2 > p2 +η1, player 1 will drop out of the auction when
the price of each item reaches p2 + η1. Thus, player 2 will acquire
each item for p2 + η1. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
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f1
Γ(p1 − η1, p2 − η2) = f2

Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, ∀p ∈ I1
α

with p = (v1(x1 + x2)− α, α), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.35)

The function α→ limη→0+
1
η2
∫

Ω=[0,η]2(2α−v1(x1+x2)+η1)2+η2
1dη1dη2

admits a minimum for α = v1(x1+x2)
2 .

Thus, the only possible candidate given by the study of I1
α as an ele-

ment of the frontier prediction of final prices would be (v1(x1+x2)
2 , v1(x1+x2)

2 ).

• Suppose p ∈ I2
α and, thus, p = (v1(x1+x2)

2 , v1(x1+x2)
2 ). Let’s calculate

the final prices of Γ if both players play the point price prediction
bidding strategy using as initial prediction (p1 − η1, p2 − η2) a slight
underestimation of p with η1 > 0, η2 > 0. As v2(x1 + x2) − v2(x1) ≥
v1(x1+x2)

2 > p2 − η2, v2(x1 + x2) − v2(x2) ≥ v1(x1+x2)
2 > p1 − η1 and

v2(x1 + x2) ≥ v1(x1 + x2) > p1 + p2 − η1 − η2, player 2 will bid on
both items if their price is below v1(x1+x2)

2 . As p1 − η1 < v1(x1+x2)
2 ≤

v1(x1+x2)−v1(x2) and p2−η2 < v1(x1+x2)
2 ≤ v1(x1+x2)−v1(x1), player

1 will bid on both items until her complementarity surplus is entirely
consumed. Thus, both prices rise symmetrically and player 1 drops
out of the auction when they reach v1(x1+x2)

2 . Player 2 will acquire
each item for v1(x1+x2)

2 . More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p1 = p2. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.36)

Thus, gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0.

• If v1(x1+x2)
2 = v2(x1 +x2)−v2(x1), then I3

α = ∅. Otherwise, v1(x1+x2)
2 <

v2(x1 + x2)− v2(x1). Let’s calculate the final prices of Γ if both players
play the point price prediction bidding strategy using as initial predic-
tion (p1−η1, p2−η2) a slight underestimation of p ∈ I3

α with η1 > 0, η2 >

0. η2 is chosen such that p2−η2 > v1(x1+x2)
2 . As v2(x1 +x2)−v2(x2) ≥

v1(x1+x2)
2 > p1 − η1, v2(x1 + x2) − v2(x1) > p2 − η2 > v1(x1+x2)

2 and
p1 + p2− η1− η2 < v1(x1 + x2) ≤ v2(x1 + x2), player 2 will bid on both
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items if their price is below p1 + η2. As v1(x1 + x2)− v1(x1) > p2 − η2,
v1(x1 + x2) − v1(x2) > p1 − η1 and p1 + p2 − η1 − η2 < v1(x1 + x2),
player 1 will bid on both items. Prices will then rise symmetrically. As
p2−η2 > v1(x1+x2)

2 > p1 +η2, player 1 will drop out of the auction when
the price of each item reaches p1 + η2. Thus, player 2 will acquire
each item for p1 + η2. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p1 + η2. Thus, ∀p ∈ I3

α

with p = (v1(x1 + x2)− α, α), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1 + η2 − p1)2 + (p1 + η2 − p2)2

= (v1(x1 + x2)− 2α + η2)2 + η2
2

(B.37)

The function α→ limη→0+
1
η2
∫

Ω=[0,η]2(v1(x1+x2)−2α+η2)2+η2
2dη1dη2

admits a minimum for α = v1(x1+x2)
2 .

Thus, the only possible candidate given by the study of I3
α as an ele-

ment of the frontier prediction of final prices would be (v1(x1+x2)
2 , v1(x1+x2)

2 ).

• If v1(x1 + x2) − v1(x1) = v2(x1 + x2) − v2(x1), i.e., B = v1(x1 +
x2)− v1(x1), then I4

α = ∅. Otherwise, v1(x1 + x2)− v1(x1) > v2(x1 +
x2) − v2(x1). Let’s calculate the final prices of Γ if both players play
the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p ∈ I4

α with η1 > 0, η2 > 0.
η2 is chosen such that p2 − η2 > v2(x1 + x2) − v2(x1). Thus, as
p1 − η1 < v2(x1), player 2 will only bid on item 1 until its price reaches
v2(x1). As v1(x1 +x2)−v1(x1) > p2−η2, v1(x1 +x2)−v1(x2) > p1−η1

and p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 will bid on both items.
Player 1 will acquire item 2 for a price of zero. Given that player 1
has acquired item 2, she will bid on item 1 until its price has reached
v1(x1 + x2) − v1(x2). Thus, if player 2 stops bidding first, the final
price of item 1 is v2(x1). If player 1 stops bidding first, the final price
of item 1 is v1(x1 + x2) − v1(x2). The final price of item 1 is then
R1 = min(v2(x1), v1(x1 + x2) − v1(x2)). More formally, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = R1 and f2
Γ(p1−η1, p2−η2) = 0
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with R1 = min(v2(x1), v1(x1 + x2) − v1(x2)). Thus, ∀p ∈ I4
α with

p = (v1(x1 + x2)− α, α), we have:

||f(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + α2
(B.38)

Thus, ∀p ∈ I4
α, gΓ(p) ≥ (v2(x1 + x2)− v2(x1))2 > 0.

We have shown that:

• gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0

• The only possible candidate given by the study of I1
α as an element of

the frontier prediction of final prices would be (v1(x1+x2)
2 , v1(x1+x2)

2 )

• If I3
α ̸= ∅, the only possible candidate given by the study of I3

α

as an element of the frontier prediction of final prices would be
(v1(x1+x2)

2 , v1(x1+x2)
2 )

• If I4
α ̸= ∅, ∀p ∈ I4

α, gΓ(p) ≥ (v2(x1 + x2)− v2(x1))2 > 0

From these results, the frontier prediction of final prices is easily deter-
mined as Omin∗

Γ = {(v1(x1+x2)
2 , v1(x1+x2)

2 )}.

Proof. Sequence convergence:

Let’s first show that:

p ∈ [0,
v1(x1 + x2)

2 )× [0,
v1(x1 + x2)

2 )

=⇒ fΓ(p1, p2) = (v1(x1 + x2)
2 ,

v1(x1 + x2)
2 )

(B.39)

Suppose p ∈ [0, v1(x1+x2)
2 ) × [0, v1(x1+x2)

2 ). As p1 < v1(x1+x2)
2 ≤ v2(x1 +

x2) − v2(x2), p2 < v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1) and p1 + p2 <
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v1(x1 + x2) ≤ v2(x1 + x2), player 2 will bid on both items if their price
is below v1(x1+x2)

2 . As p1 < v1(x1+x2)
2 ≤ v1(x1 + x2) − v1(x2) and p2 <

v1(x1+x2)
2 ≤ v1(x1 + x2)− v1(x1), player 1 will bid on both items until her

complementarity surplus is entirely consumed. Thus, the price of each
item rises symmetrically. Player 1 will stop bidding on both items when
their price reaches v1(x1+x2)

2 . Player 2 will then acquire each item for
v1(x1+x2)

2 . Thus, fΓ(p1, p2) = (v1(x1+x2)
2 , v1(x1+x2)

2 ).

As P0 = (0, 0) < (v1(x1+x2)
2 , v1(x1+x2)

2 ) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈

R+, Pt ∈ [0, v1(x1+x2)
2 ) × [0, v1(x1+x2)

2 ) and, thus, ∀t ∈ R+, fΓ(Pt) =
(v1(x1+x2)

2 , v1(x1+x2)
2 ).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1+x2)
2 , v1(x1+x2)

2 ) and,

thus, the sequence Pt converges to the unique element of Omin∗
Γ .

Second sub-sub-sub-case:

∗ v2(x1 + x2)− v2(x1) < v1(x1+x2)
2

Proof. Frontier prediction of final prices:

We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2), v2(x1 + x2)− v2(x1))}

• I2
α = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1))}

• I3
α = {(v1(x1 + x2) − α, α), α ∈ (v2(x1 + x2) − v2(x1), v1(x1 + x2) −

v1(x1)]}

such that Iα = I1
α ∪ I2

α ∪ I3
α. We will calculate the infimum of gΓ on each

of these three sets and, then, determine the frontier prediction of final
prices Omin∗

Γ . We have:
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• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η1 is chosen such that p1 − η1 > v2(x1 + x2) − v2(x1). As v2(x1 +
x2) − v2(x2) > p1 − η1 > v2(x1 + x2) − v2(x1) > p2 + η1 and p1 +
p2 − η1 − η2 < v1(x1 + x2) ≤ v2(x1 + x2), player 2 will bid on both
items if their price is below p2 + η1. As v1(x1 + x2)− v1(x1) > p2 − η2,
v1(x1 + x2) − v1(x2) > p1 − η1 and p1 + p2 − η1 − η2 < v1(x1 + x2),
player 1 will bid on both items. Prices will then rise symmetrically.
As p1 − η1 > v2(x1 + x2) − v2(x1) > p2 + η1, player 1 will drop out
of the auction when the price of each item reaches p2 + η1. Thus,
player 2 will acquire each item for p2 + η1. More formally, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p2 + η1.

Thus, ∀p ∈ I1
α with p = (v1(x1 + x2)− α, α), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.40)

The function α→ limη→0+
1
η2
∫

Ω=[0,η]2(2α−v1(x1+x2)+η1)2+η2
1dη1dη2

admits a minimum for α = v1(x1+x2)
2 ≥ v2(x1 + x2)− v2(x1).

Thus, the only possible candidate given by the study of I1
α as an

element of the frontier prediction of final prices would be (v1(x1 +
x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1))

• Suppose p ∈ I2
α and, thus, p = (v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+

x2)− v2(x1)). Let’s calculate the final prices of Γ if both players play
the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1

is chosen such that p1 − η1 > v2(x1 + x2)− v2(x1). As v2(x1 + x2)−
v2(x1) < v2(x1), player 2 will always bid on both items if their price is
below v2(x1+x2)−v2(x1). As v2(x1+x2)−v2(x1) < v1(x1+x2)−v1(x2),
v2(x1 + x2) − v2(x1) < v1(x1 + x2) − v1(x1) and p1 + p2 − η1 − η2 <

v1(x1 + x2), player 1 also always bids on both items if their price is
below v2(x1+x2)−v2(x1). Thus, the price of each item rises symmetri-
cally. As p2 = v2(x1+x2)−v2(x1) and p1−η1 > v2(x1+x2)−v2(x1), the
complementarity surplus of player 2 will be entirely consumed when
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the price of item 2 reaches p2. Player 1 will then acquire item 2 at price
p2. Player 1 is then currently exposed of p2−v1(x2). It is then beneficial
for player 1 to acquire item 1 if its price is below v1(x1 + x2)− v1(x2).
Player 2 will continue bidding on item 1 if its price is below v2(x1).
Thus, if player 1 stops bidding first on item 1, then its final price is
v1(x1 + x2)− v1(x2). If player 2 stops bidding first on item 1, then its
final price is v2(x1). We set R1 = min(v2(x1), v1(x1 + x2) − v1(x2))
and, thus, the final price of item 1 is R1. More formally, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = R1 and f2
Γ(p1−η1, p2−η2) = p2

with R1 = min(v2(x1), v1(x1 + x2)− v1(x2)). Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2 − p2)2

= (R1 − p1)2
(B.41)

Thus, gΓ(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1)) =
(R1 − p1)2

• Suppose p ∈ I3
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η2 is chosen such that p2 − η2 > v2(x1 + x2) − v2(x1) and, thus,
player 2 won’t bid on item 2. The final price of item 2 is then 0.
However, player 1 predicts that item 2 will be sold for p2 − η2 > v1(x2)
and, hence, she thinks that she is exposed of p2 − η2 − v1(x2). It
is then beneficial for player 1 to acquire item 1 if its price is below
v1(x1 + x2) − v1(x2). Player 2 will however continue to bid on item
1 until its price reaches v2(x1). Thus, if player 1 stops bidding on
item 1 first, then its final price is v1(x1 + x2) − v1(x2). If player 2
stops bidding on item 1 first, then its final price is v2(x1). We set
R1 = min(v2(x1), v1(x1 +x2)−v1(x2)) and, thus, the final price of item
1 is R1. More formally, we have ∀p ∈ I3

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = R1 and f2
Γ(p1 − η1, p2 − η2) = 0 with R1 =

min(v2(x1), v1(x1 + x2) − v1(x2)). Thus, for p = (v1(x1 + x2) − α, α)
with α ∈ (v2(x1 + x2)− v2(x1), v1(x1 + x2)− v1(x1)], we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + (α)2
(B.42)
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The above function is minimised for α = 1
2 min(v1(x2), v1(x1 + x2)−

v2(x1)) ≤ v2(x1 + x2)− v2(x1).

Thus, the only possible candidate given by the study of I3
α as an

element of the frontier prediction of final prices would be (v1(x1 +
x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

We have shown that:

• gΓ(v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+x2)−v2(x1)) = (R1−p1)2

• The only possible candidate given by the study of I1
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

• The only possible candidate given by the study of I3
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

From these results, the frontier prediction of final prices is easily deter-
mined as Omin∗

Γ = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)−
v2(x1))}.

Proof. Sequence convergence:

Let’s set V1 = v1(x1+x2)−(v2(x1+x2)−v2(x1)), V2 = v2(x1+x2)−v2(x1)
and R1 = min(v2(x1), v1(x1 + x2)− v1(x2)).

Let’s define:

• S1 = {p ∈ R2
+, p1 ≤ V1, p2 < V2}

• S2 = {p ∈ R2
+, V1 < p1 < R1, p1 + p2 < v1(x1 + x2)}

• S3 = {p ∈ R2
+, V1 < p1 < R1, p2 < V2, p1 + p2 ≥ v1(x1 + x2)}
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Let’s show the three following points:

• ∀p ∈ S1, f1
Γ(p) = R1 ≥ V1, f2

Γ(p) = V2

• ∀p ∈ S2, f1
Γ(p) = f2

Γ(p) = v1(x1 + x2)− p1 ≤ V2 < V1

• ∀p ∈ S3, f1
Γ(p) = f2

Γ(p) = 0 < V2 < V1

Suppose p ∈ S1. As V2 < V1 ≤ v2(x1), player 2 will always bid on
both items if their price is below V2. As V2 < v1(x1 + x2) − v1(x1),
V2 < V1 < v1(x1 + x2)− v1(x2) and V2 < v1(x1+x2)

2 , player 1 also always
bids on both items if their price is below V2. Thus, the price of each
item rises symmetrically. As V2 < v2(x1), the complementarity surplus of
player 2 will be entirely consumed when the price of item 2 reaches V2.
Player 1 will then acquire item 2 at price V2. Player 1 is then currently
exposed of V2 − v1(x2). It is then beneficial for player 1 to acquire item 1
if its price is below v1(x1 + x2)− v1(x2). Player 2 will continue bidding
on item 1 if its price is below v2(x1). Thus, if player 1 stops bidding first
on item 1, then its final price is v1(x1 + x2) − v1(x2). If player 2 stops
bidding first on item 1, then its final price is v2(x1). The final price of item
1 is then R1. Thus, we have f1

Γ(p) = R1 ≥ V1, f2
Γ(p) = V2.

This proves the first point.

Suppose p ∈ S2. As p2 < V2, p1 < v2(x1 + x2) − v2(x2) and p1 + p2 <

v2(x1 + x2), player 2 will bid on both items until her complementarity
surplus is consumed entirely. As p2 < v1(x1 + x2)− v1(x1), p1 < v1(x1 +
x2)−v1(x2) and p1 +p2 < v1(x1 +x2), player 1 will bid on both items until
her complementarity surplus is consumed entirely. As p2 < v1(x1 +x2)−
p1 < V2 < V1 < p1, player 1 complementarity surplus will be entirely
consumed when the price of item 2 reaches v1(x1 + x2) − p1. Player
1 will then drop out of the auction and player 2 will acquire each item
for v1(x1 + x2)− p1. Thus, we have f1

Γ(p) = f2
Γ(p) = v1(x1 + x2)− p1 <

V2 < V1.

This proves the second point.
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Suppose p ∈ S3. As p1+p2 ≥ v1(x1+x2), v1(x1) < V1 < p1 and v1(x2) ≤
v1(x1 + x2)−R1 < p2, player 1 won’t bid on any items. Thus, player 2
will acquire both items for zero. Thus, f1

Γ(p) = f2
Γ(p) = 0 < V2 < V1.

This proves the third point.

Regarding sequence Pt+1 = 1
t+1fΓ(Pt) + (1 − 1

t+1)Pt, the three points
above directly imply that:

• If Pt ∈ S1, then, as f1
Γ(Pt) = R1 and f2

Γ(Pt) = V2, Pt+1 ∈ S1 ∪ S2 ∪ S3.

• If Pt ∈ S2, then, as f1
Γ(Pt) = f2

Γ(Pt) = v1(x1 + x2) − p1 ≤ V2 < V1,
Pt+1 ∈ S1 ∪ S2.

• If Pt ∈ S3, then, as f1
Γ(p) = f2

Γ(p) = 0, Pt+1 ∈ S1 ∪ S2 ∪ S3.

As P0 = (0, 0) ∈ S1, we have by induction that ∀t ∈ R+, Pt ∈ S1 ∪S2 ∪S3.

Moreover,

{
If P 1

t ≤ V1, P 1
t ∈ S1 and, thus, f1

Γ(Pt) > V1

If P 1
t > V1, P 1

t ∈ S2 ∪ S3 and, thus, f1
Γ(Pt) < V1

(B.43)

This directly implies that P 1
t −−−−→t→+∞

V1.

Let’s show that P 2
t −−−−→t→+∞

V2, i.e., ∀η > 0, ∃t0 ∈ R+,∀t ≥ t0, P 2
t ∈

[V2 − η, V2).

Let’s fix η > 0.

Let’s fix t1 = ⌈2(V2
η − 1)⌉.

As P 1
t −−−−→t→+∞

V1, ∃t2 ∈ R+,∀t ≥ t2, P 1
t ∈ [V1 − η

2 , V1 + η
2 ]. Let’s fix such

a t2.
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Suppose t ≥ max(t1, t2). If P 2
t < V2 − η

2 , then Pt ∈ S1 ∪ S2 and, thus,
f2

Γ(Pt) ≥ V2 − η
2 . Hence, ∃t3 > max(t1, t2), P 2

t ∈ [V2 − η, V2).

Let’s fix such a t3.

We will show by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2) and, hence,

P 2
t −−−−→t→+∞

V2.

Suppose t > t3 and P 2
t ∈ [V2 − η, V2). Three cases can occur.

• If Pt ∈ S1, then f2
Γ(Pt) = V2 and, thus, P 2

t+1 ∈ [V2 − η, V2).

• If Pt ∈ S2, then f2
Γ(Pt) ≥ V2 − η

2 and, thus, P 2
t+1 ∈ [V2 − η, V2).

• If Pt ∈ S3, then P 2
t ≥ V2 − η

2 and f2
Γ(Pt) = 0. We have:

P 2
t+1 = t

t + 1P 2
t ≥

t

t + 1(V2 −
η

2)

≥
2(V2

η − 1)
2(V2

η − 1) + 1
(V2 −

η

2) (as t > t3 > t1 = ⌈2(V2
η
− 1)⌉)

≥
(V2

η − 1)
1
η (2V2 − η)

(2V2 − η)

≥ V2 − η

(B.44)

Thus, P 2
t+1 ∈ [V2 − η, V2).

We have shown by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2). Hence,

P 2
t −−−−→t→+∞

V2.

We have shown that Pt −−−−→
t→+∞

(V1, V2) and, thus, the sequence Pt

converges to the unique element of Omin∗
Γ .

B. Second sub-sub-case:
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∗ v1(x1) > v1(x1+x2)
2

First sub-sub-sub-case:

∗ v2(x1 + x2)− v2(x1) ≥ v1(x1 + x2)− v1(x1)

Proof. Frontier prediction of final prices:

We decompose Iα in 2 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2), v1(x1 + x2)− v1(x1))}

• I2
α = {(v1(x1), v1(x1 + x2)− v1(x1))}

such that Iα = I1
α ∪ I2

α. We will calculate the infimum of gΓ on each of
these two sets and, then, determine the frontier prediction of final prices
Omin∗

Γ . We have:

• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η1 is chosen such that p1 − η1 > v1(x1 + x2) − v1(x1). As v2(x1 +
x2)− v2(x2) > p1 − η1 > v1(x1 + x2)− v1(x1), v2(x1 + x2)− v2(x1) ≥
v1(x1 + x2) − v1(x1) > p2 + η1 and p1 + p2 − η1 − η2 < v2(x1 + x2),
player 2 will bid on both items if their price is below p2 + η1. As
p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1) and
p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 will bid on both items until
her complementarity surplus is consumed. As p1 − η1 > v1(x1 +
x2) − v1(x1) > p2 + η1, player 1 will drop out of the auction when
the price of each item reaches p2 + η1. Thus, player 2 will acquire
each item for p2 + η1. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.45)
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Thus, ∀p ∈ I1
α, gΓ(p) > 0.

• Suppose p ∈ I2
α and, thus, p = (v1(x1), v1(x1 + x2) − v1(x1)). Let’s

calculate the final prices of Γ if both players play the point price
prediction bidding strategy using as initial prediction (p1 − η1, p2 − η2)
a slight underestimation of p with η1 > 0, η2 > 0. As p1 − η1 < v2(x1)
and p2− η2 < v2(x1 + x2)− v2(x1), player 2 will bid on both items until
her complementarity surplus is consumed. As p1 − η1 < v1(x1) and
p2 − η2 < v1(x1 + x2) − v1(x1), player 1 will bid on both items until
her complementarity surplus is consumed. Thus, the price of each
item rises symmetrically. As v1(x1 + x2) − v1(x1) ≤ v1(x1), player 1
complementarity surplus is entirely consumed by item 2. Thus, player
2 acquires item 2 for v1(x1+x2)−v1(x1). Both players continue bidding
on item 1. As v1(x1) ≤ v2(x1), player 2 acquires item 1 for v1(x1).
More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1 − η1, p2 − η2) = p1

and f2
Γ(p1 − η1, p2 − η2) = p2. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.46)

Thus, gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0.

We have shown that:

• ∀p ∈ I1
α = {(v1(x1+x2)−α, α), α ∈ [v1(x2), v1(x1+x2)−v1(x1))}, gΓ(p) >

0

• gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0

From these results, the frontier prediction of final prices is easily deter-
mined as Omin∗

Γ = {(v1(x1), v1(x1 + x2)− v1(x1))}.

Proof. Sequence convergence:
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Let’s first show that:

p ∈ [0, v1(x1))× [0, v1(x1 + x2)− v1(x1))

=⇒ fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1))
(B.47)

Suppose p ∈ [0, v1(x1)) × [0, v1(x1 + x2) − v1(x1)). As v1(x1 + x2) −
v1(x1) < v1(x1) ≤ v2(x1 + x2) − v2(x2), v1(x1 + x2) − v1(x1) ≤ v2(x1 +
x2) − v2(x1) and v1(x1 + x2) − v1(x1) ≤ v2(x1+x2)

2 , player 2 will bid on
both items if their price is below v1(x1 + x2) − v1(x1). As p1 < v1(x1)
and p2 < v1(x1 + x2)− v1(x1) < v1(x1), player 1 will bid on both items
until her complementarity surplus is entirely consumed by item 2. Thus,
the price of each item rises symmetrically. Player 1 will stop bidding on
item 2 when its price reaches v1(x1 + x2)− v1(x1) and will continue to
bid on item 1 until its price reaches v1(x1). Player 2 will then acquire
item 2 for v1(x1 + x2)− v1(x1) and will continue bidding on item 1 until
its price reaches v2(x1 + x2)− v2(x2). As v1(x1) ≤ v2(x1 + x2)− v2(x2),
player 2 acquires item 1 for v1(x1). Thus, fΓ(p1, p2) = (v1(x1), v1(x1 +
x2)− v1(x1)).

As P0 = (0, 0) < (v1(x1), v1(x1 + x2) − v1(x1)) component-wise and
Pt+1 = 1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that

∀t ∈ R+, Pt ∈ [0, v1(x1)) × [0, v1(x1 + x2) − v1(x1)) and, thus, ∀t ∈
R+, fΓ(Pt) = (v1(x1), v1(x1 + x2)− v1(x1)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1), v1(x1 + x2) −
v1(x1)) and, thus, the sequence Pt converges to the unique element of
Omin∗

Γ .

Second sub-sub-sub-case:

∗ v2(x1 + x2)− v2(x1) < v1(x1 + x2)− v1(x1)

Proof. Frontier prediction of final prices:
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We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2), v2(x1 + x2)− v2(x1))}

• I2
α = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1))}

• I3
α = {(v1(x1 + x2) − α, α), α ∈ (v2(x1 + x2) − v2(x1), v1(x1 + x2) −

v1(x1)]}

such that Iα = I1
α ∪ I2

α ∪ I3
α. We will calculate the infimum of gΓ on each

of these three sets and, then, determine the frontier prediction of final
prices Omin∗

Γ . We have:

• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1

is chosen such that p1 − η1 > v2(x1 + x2)− v2(x1). As v2(x1 + x2)−
v2(x2) > p1−η1 > v2(x1+x2)−v2(x1) > p2+η1 and p1+p2−η1−η2 <

v2(x1 +x2), player 2 will bid on both items if their price is below p2 +η1.
As p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1)
and p1 + p2 − η1 − η2 < v1(x1 + x2), player 1 will bid on both items
until her complementarity surplus is consumed. As p1 − η1 > v2(x1 +
x2) − v2(x1) > p2 + η1, player 1 will drop out of the auction when
the price of each item reaches p2 + η1. Thus, player 2 will acquire
each item for p2 + η1. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.48)

The function α→ limη→0+
1
η2
∫

Ω=[0,η]2(2α−v1(x1+x2)+η1)2+η2
1dη1dη2

admits a minimum for α = v1(x1+x2)
2 ≥ v2(x1 + x2)− v2(x1).

Thus, the only possible candidate given by the study of I1
α as an

element of the frontier prediction of final prices would be (v1(x1 +
x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1)).
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• Suppose p ∈ I2
α and, thus, p = (v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+

x2)− v2(x1)). Let’s calculate the final prices of Γ if both players play
the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1

is chosen such that p1 − η1 > v2(x1 + x2)− v2(x1). As v2(x1 + x2)−
v2(x1) < v2(x1), player 2 will always bid on both items if their price is
below v2(x1+x2)−v2(x1). As v2(x1+x2)−v2(x1) < v1(x1+x2)−v1(x2),
v2(x1 + x2) − v2(x1) < v1(x1 + x2) − v1(x1) and p1 + p2 − η1 − η2 <

v1(x1 + x2), player 1 also always bids on both items if their price is
below v2(x1+x2)−v2(x1). Thus, the price of each item rises symmetri-
cally. As p2 = v2(x1+x2)−v2(x1) and p1−η1 > v2(x1+x2)−v2(x1), the
complementarity surplus of player 2 will be entirely consumed when
the price of item 2 reaches p2. Player 1 will then acquire item 2 at price
p2. Player 1 is then currently exposed of p2−v1(x2). It is then beneficial
for player 1 to acquire item 1 if its price is below v1(x1 + x2)− v1(x2).
Player 2 will continue bidding on item 1 if its price is below v2(x1).
Thus, if player 1 stops bidding first on item 1, then its final price is
v1(x1 + x2)− v1(x2). If player 2 stops bidding first on item 1, then its
final price is v2(x1). We set R1 = min(v2(x1), v1(x1 + x2) − v1(x2))
and, thus, the final price of item 1 is R1. More formally, ∃η > 0 such
∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) = R1 and f2
Γ(p1−η1, p2−η2) = p2

with R1 = min(v2(x1), v1(x1 + x2)− v1(x2)). Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2 − p2)2

= (R1 − p1)2
(B.49)

Thus,

gΓ(v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+x2)−v2(x1)) = (R1−p1)2

• Suppose p ∈ I3
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction
(p1 − η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0.
η2 is chosen such that p2 − η2 > v2(x1 + x2) − v2(x1) and, thus,
player 2 won’t bid on item 2. The final price of item 2 is then 0.
However, player 1 predicts that item 2 will be sold for p2 − η2 > v1(x2)
and, hence, she thinks that she is exposed of p2 − η2 − v1(x2). It
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is then beneficial for player 1 to acquire item 1 if its price is below
v1(x1 + x2) − v1(x2). Player 2 will however continue to bid on item
1 until its price reaches v2(x1). Thus, if player 1 stops bidding on
item 1 first, then its final price is v1(x1 + x2) − v1(x2). If player 2
stops bidding on item 1 first, then its final price is v2(x1). We set
R1 = min(v2(x1), v1(x1 +x2)−v1(x2)) and, thus, the final price of item
1 is R1. More formally, we have ∀p ∈ I3

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η],
f1

Γ(p1 − η1, p2 − η2) = R1 and f2
Γ(p1 − η1, p2 − η2) = 0 with R1 =

min(v2(x1), v1(x1 + x2) − v1(x2)). Thus, for p = (v1(x1 + x2) − α, α)
with α ∈ (v2(x1 + x2)− v2(x1), v1(x1 + x2)− v1(x1)], we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (R1 − p1)2 + (p2)2

= (R1 + α− v1(x1 + x2))2 + (α)2
(B.50)

The above function is minimised for α = 1
2 min(v1(x2), v1(x1 + x2)−

v2(x1)) ≤ v2(x1 + x2)− v2(x1).

Thus, the only possible candidate given by the study of I3
α as an

element of the frontier prediction of final prices would be (v1(x1 +
x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

We have shown that:

• gΓ(v1(x1+x2)−(v2(x1+x2)−v2(x1)), v2(x1+x2)−v2(x1)) = (R1−p1)2

• The only possible candidate given by the study of I1
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

• The only possible candidate given by the study of I3
α as an element of

the frontier prediction of final prices would be (v1(x1 + x2)− (v2(x1 +
x2)− v2(x1)), v2(x1 + x2)− v2(x1)).

From these results, the frontier prediction of final prices is easily deter-
mined as Omin∗

Γ = {(v1(x1 + x2)− (v2(x1 + x2)− v2(x1)), v2(x1 + x2)−
v2(x1))}.
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Proof. Sequence convergence:

Let’s set V1 = v1(x1+x2)−(v2(x1+x2)−v2(x1)), V2 = v2(x1+x2)−v2(x1)
and R1 = min(v2(x1), v1(x1 + x2)− v1(x2)).

Let’s define:

• S1 = {p ∈ R2
+, p1 ≤ V1, p2 < V2}

• S2 = {p ∈ R2
+, V1 < p1 < R1, p1 + p2 < v1(x1 + x2)}

• S3 = {p ∈ R2
+, V1 < p1 < R1, p2 < V2, p1 + p2 ≥ v1(x1 + x2)}

Let’s show the three following points:

• ∀p ∈ S1, f1
Γ(p) = R1 ≥ V1, f2

Γ(p) = V2

• ∀p ∈ S2, f1
Γ(p) = f2

Γ(p) = v1(x1 + x2)− p1 ≤ V2 < V1

• ∀p ∈ S3, f1
Γ(p) = f2

Γ(p) = 0 < V2 < V1

Suppose p ∈ S1. As V2 < V1 ≤ v2(x1), player 2 will always bid on
both items if their price is below V2. As V2 < v1(x1 + x2) − v1(x1),
V2 < V1 < v1(x1 + x2)− v1(x2) and V2 < v1(x1+x2)

2 , player 1 also always
bids on both items if their price is below V2. Thus, the price of each
item rises symmetrically. As V2 < v2(x1), the complementarity surplus of
player 2 will be entirely consumed when the price of item 2 reaches V2.
Player 1 will then acquire item 2 at price V2. Player 1 is then currently
exposed of V2 − v1(x2). It is then beneficial for player 1 to acquire item 1
if its price is below v1(x1 + x2)− v1(x2). Player 2 will continue bidding
on item 1 if its price is below v2(x1). Thus, if player 1 stops bidding first
on item 1, then its final price is v1(x1 + x2) − v1(x2). If player 2 stops
bidding first on item 1, then its final price is v2(x1). The final price of item
1 is then R1. Thus, we have f1

Γ(p) = R1 ≥ V1, f2
Γ(p) = V2.
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This proves the first point.

Suppose p ∈ S2. As p2 < V2, p1 < v2(x1 + x2) − v2(x2) and p1 + p2 <

v2(x1 + x2), player 2 will bid on both items until her complementarity
surplus is consumed entirely. As p2 < v1(x1 + x2)− v1(x1), p1 < v1(x1 +
x2)−v1(x2) and p1 +p2 < v1(x1 +x2), player 1 will bid on both items until
her complementarity surplus is consumed entirely. As p2 < v1(x1 +x2)−
p1 < V2 < V1 < p1, player 1 complementarity surplus will be entirely
consumed when the price of item 2 reaches v1(x1 + x2) − p1. Player
1 will then drop out of the auction and player 2 will acquire each item
for v1(x1 + x2)− p1. Thus, we have f1

Γ(p) = f2
Γ(p) = v1(x1 + x2)− p1 <

V2 < V1.

This proves the second point.

Suppose p ∈ S3. As p1+p2 ≥ v1(x1+x2), v1(x1) < V1 < p1 and v1(x2) ≤
v1(x1 + x2)−R1 < p2, player 1 won’t bid on any items. Thus, player 2
will acquire both items for zero. Thus, f1

Γ(p) = f2
Γ(p) = 0 < V2 < V1.

This proves the third point.

Regarding sequence Pt+1 = 1
t+1fΓ(Pt) + (1 − 1

t+1)Pt, the three points
above directly imply that:

• If Pt ∈ S1, then, as f1
Γ(Pt) = R1 and f2

Γ(Pt) = V2, Pt+1 ∈ S1 ∪ S2 ∪ S3.

• If Pt ∈ S2, then, as f1
Γ(Pt) = f2

Γ(Pt) = v1(x1 + x2) − p1 ≤ V2 < V1,
Pt+1 ∈ S1 ∪ S2.

• If Pt ∈ S3, then, as f1
Γ(p) = f2

Γ(p) = 0, Pt+1 ∈ S1 ∪ S2 ∪ S3.

As P0 = (0, 0) ∈ S1, we have by induction that ∀t ∈ R+, Pt ∈ S1 ∪S2 ∪S3.

Moreover,{
If P 1

t ≤ V1, P 1
t ∈ S1 and, thus, f1

Γ(Pt) > V1

If P 1
t > V1, P 1

t ∈ S2 ∪ S3 and, thus, f1
Γ(Pt) < V1

(B.51)
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This directly implies that P 1
t −−−−→t→+∞

V1.

Let’s show that P 2
t −−−−→t→+∞

V2, i.e., ∀η > 0, ∃t0 ∈ R+,∀t ≥ t0, P 2
t ∈

[V2 − η, V2).

Let’s fix η > 0.

Let’s fix t1 = ⌈2(V2
η − 1)⌉.

As P 1
t −−−−→t→+∞

V1, ∃t2 ∈ R+,∀t ≥ t2, P 1
t ∈ [V1 − η

2 , V1 + η
2 ]. Let’s fix such

a t2.

Suppose t ≥ max(t1, t2). If P 2
t < V2 − η

2 , then Pt ∈ S1 ∪ S2 and, thus,
f2

Γ(Pt) ≥ V2 − η
2 . Hence, ∃t3 > max(t1, t2), P 2

t ∈ [V2 − η, V2).

Let’s fix such a t3.

We will show by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2) and, hence,

P 2
t −−−−→t→+∞

V2.

Suppose t > t3 and P 2
t ∈ [V2 − η, V2). Three cases can occur.

• If Pt ∈ S1, then f2
Γ(Pt) = V2 and, thus, P 2

t+1 ∈ [V2 − η, V2).

• If Pt ∈ S2, then f2
Γ(Pt) ≥ V2 − η

2 and, thus, P 2
t+1 ∈ [V2 − η, V2).

• If Pt ∈ S3, then P 2
t ≥ V2 − η

2 and f2
Γ(Pt) = 0. We have:

P 2
t+1 = t

t + 1P 2
t ≥

t

t + 1(V2 −
η

2)

≥
2(V2

η − 1)
2(V2

η − 1) + 1
(V2 −

η

2) (as t > t1 = ⌈2(V2
η
− 1)⌉)

≥
(V2

η − 1)
1
η (2V2 − η)

(2V2 − η)

≥ V2 − η

(B.52)
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Thus, P 2
t+1 ∈ [V2 − η, V2).

We have shown by induction that ∀t ≥ t3, P 2
t ∈ [V2 − η, V2). Hence,

P 2
t −−−−→t→+∞

V2.

We have shown that Pt −−−−→
t→+∞

(V1, V2) and, thus, the sequence Pt

converges to the unique element of Omin∗
Γ .

3. Third disposition:


v1(x1) ≥ v2(x1)
v1(x2) ≥ v2(x2)
v1(x1 + x2) ≤ v2(x1 + x2)

(B.53)

Proof. Set of smallest overestimated final prices:

The following result is shared amongst all the cases of the third disposition. In this
proof, we are going to calculate the set of smallest overestimated final prices Omin

Γ .

Let’s set O1
Γ = {p, v1(x1 + x2) = p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2}. Let’s show that

Omin
Γ = O1

Γ in three steps:

• O1
Γ ⊂ OΓ

• ∀p ∈ R2
+ such that p1 + p2 < v1(x1 + x2), then p /∈ OΓ. Thus, O1

Γ ⊂ Omin
Γ .

• ∀p ∈ R2
+ such that p1 + p2 = v1(x1 + x2), if p1 < v1(x1) or p2 < v1(x2) then

p /∈ OΓ. Thus, O1
Γ = Omin

Γ .

If p ∈ O1
Γ, then f1

Γ(p) = f2
Γ(p) = 0 as player 1 predicts that she will get a negative

payoff if she acquires any item. Thus, p ∈ OΓ. This verifies the first step.

Suppose p ∈ R2
+ such that p1 + p2 < v1(x1 + x2). Then, we have:
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• If p1 ∈ [0, v2(x1)), then, regardless of price p2, f1
Γ(p) ≥ v2(x1) as both players

has their stand-alone value for item 1 greater or equal to v2(x1). Thus, p /∈ OΓ.

• If p1 ∈ [v2(x1), v1(x1)), we have two different cases to study.

– If p2 ≥ v1(x1 + x2)− v1(x1), then player 1 will bid only on item 1 until its price
is v1(x1). As p2 < v2(x1 + x2) − v2(x1), p1 < v1(x1) ≤ v2(x1 + x2) − v2(x2)
and p1 + p2 < v2(x1 + x2), player 2 will bid on both items. Given that player
2 has acquired item 2 and doesn’t want to be exposed, she will bid on item
1 if its price is below v2(x1 + x2) − v2(x2). Thus, f1

Γ(p) = v1(x1) > p1 and
p /∈ OΓ.

– Otherwise p2 < v1(x1 + x2)−v1(x1), player 1 will then bid on both items until
consuming entirely her complementarity surplus. As p2 < v2(x1+x2)−v2(x1),
p1 < v1(x1) ≤ v2(x1 + x2)− v2(x2) and p1 + p2 < v2(x1 + x2), player 2 will
also bid on both items. As v1(x1 + x2) ≤ v2(x1 + x2), the auction will end
with f1

Γ(p) + f2
Γ(p) = v1(x1 + x2) > p1 + p2. Thus, p /∈ OΓ.

• If p1 ∈ [v1(x1), v1(x1 + x2) − v1(x2)), player 1 will then bid on both items until
consuming entirely her complementarity surplus. As p2 < v2(x1 + x2)− v2(x1),
p1 < v1(x1 + x2) − v1(x2) ≤ v2(x1 + x2) − v2(x2) and p1 + p2 < v2(x1 + x2),
player 2 will also bid on both items. The auction will end with f1

Γ(p) + f2
Γ(p) =

v1(x1 + x2) ≤ v2(x1 + x2). Thus, p /∈ OΓ.

• If p1 ∈ [v1(x1 + x2)− v1(x2), v1(x1 + x2)), then player 1 will only bid on item 2. If
v2(x1 +x2)−v2(x2) < v1(x1 +x2) and p1 ≥ v2(x1 +x2)−v2(x2), then p2 < v2(x2)
and f2

Γ(p) = v2(x2). Thus, p /∈ OΓ. Otherwise, p1 < min(v1(x1 + x2), v2(x1 +
x2) − v2(x2)) and player 2 will bid on item 2 until it has consumed entirely her
complementarity surplus. Thus, f2

Γ(p) > p2 and p /∈ OΓ.

This verifies the second step.

Suppose p ∈ R2
+ such that p1 + p2 = v1(x1 + x2) and p1 < v1(x1). As p2 > v1(x1 +

x2)− v1(x1), player 1 will only bid on item 1. If v2(x1 + x2)− v2(x1) < v1(x1 + x2) and
p2 ≥ v2(x1 + x2) − v2(x1), then p1 < v2(x1) and f1

Γ(p) = v2(x1) > p1. Thus, p /∈ OΓ.
Otherwise, p2 < min(v1(x1 + x2), v2(x1 + x2)− v2(x1)). As p1 < v2(x1 + x2)− v2(x2),
p2 < v2(x1 + x2)− v2(x1) and p1 + p2 < v2(x1 + x2), player 2 will bid on both items.
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She will acquire item 2 for a price of zero and, then, bid on item 1 until she has
consumed entirely her complementarity surplus. Thus, f1

Γ(p) > p1 and p /∈ OΓ.

Symmetrically, we obtain the same result if p2 < v1(x2).

This verifies the third step.

Thus, we have shown that:

Omin
Γ = {p, v1(x1 + x2) = p1 + p2, v1(x1) ≤ p1, v1(x2) ≤ p2} (B.54)

a) First case:

∗ v1(x1) ≤ v1(x1+x2)
2 and v1(x2) ≤ v1(x1+x2)

2

Proof. Frontier prediction of final prices:

In this proof, we are going to calculate the frontier prediction of final prices and,
thus, calculate the set of smallest overestimated final prices which are γ close to
the infimum of gΓ|Omin

Γ
for any γ > 0.

We can rewrite Omin
Γ as Iα = {(v1(x1 + x2) − α, α), α ∈ [v1(x2); v1(x1 + x2) −

v1(x1)]}. From there, we are going to calculate the set of smallest overestimated
final prices which are γ close to the infimum of gΓ|Omin

Γ
for any γ > 0. To do

so, we need to obtain the closed-form of fΓ for every slight underestimation of
elements in Iα. We decompose Iα in 3 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); v1(x1+x2)

2 )}

• I2
α = {(v1(x1+x2)

2 , v1(x1+x2)
2 )}

• I3
α = {(v1(x1 + x2)− α, α), α ∈ (v1(x1+x2)

2 , v1(x1 + x2)− v1(x1)]}
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such that Iα = I1
α ∪ I2

α ∪ I3
α. We will calculate the infimum of gΓ on each of these

three sets and, then, determine the frontier prediction of final prices Omin∗
Γ . We

have:

• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play the

point price prediction bidding strategy using as initial prediction (p1−η1, p2−
η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is chosen such
that p1 − η1 > v1(x1+x2)

2 . As v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1), v1(x1+x2)

2 ≤
v2(x1 +x2)−v2(x2) and v1(x1 +x2) ≤ v2(x1 +x2), player 2 will always bid on
both items if their price is below v1(x1+x2)

2 . As p1− η1 < v1(x1 + x2)− v1(x2),
p2−η2 < v1(x1+x2)−v1(x1) and p1+p2−η1−η2 < v1(x1+x2), player 1 also
always bids on both items. Thus, the price of each item rises symmetrically.
As p2 + η1 < v1(x1+x2)

2 and p1 − η1 > v1(x1+x2)
2 , the complementarity surplus

of player 1 will be entirely consumed when the price of item 2 reaches p2 +η1.
Player 1 will then drop out of the auction and the final price of each item will
be p2 +η1. More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1

Γ(p1−η1, p2−η2) =
f2

Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, for p = (v1(x1 + x2) − α, α) with
α ∈ [v1(x2), v1(x1+x2)

2 ), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.55)

Thus, ∀p ∈ I1
α, gΓ(p) > 0.

• Suppose p ∈ I2
α and, thus, p = (v1(x1+x2)

2 , v1(x1+x2)
2 ). Let’s calculate the final

prices of Γ if both players play the point price prediction bidding strategy
using as initial prediction (p1 − η1, p2 − η2) a slight underestimation of p

with η1 > 0, η2 > 0. As v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1), v1(x1+x2)

2 ≤
v2(x1 + x2)− v2(x2) and v1(x1 + x2) ≤ v2(x1 + x2), player 2 will always bid
on both items if their price is below v1(x1+x2)

2 . As v1(x1 + x2) − v1(x1) ≥
v1(x1+x2)

2 and v1(x1 + x2) − v1(x2) ≥ v1(x1+x2)
2 , player 1 will always bid on

both items if their price is below v1(x1+x2)
2 . As p1 − η1 < v1(x1+x2)

2 and
p2 − η2 < v1(x1+x2)

2 , both players will always bid on both items and, thus, the
price of each item will rise symmetrically until it reaches v1(x1+x2)

2 . Then,
player 1 will drop out of the auction. Player 2 acquires each item at a
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price p1 = p2 = v1(x1+x2)
2 . More formally, ∃η > 0 such ∀(η1, η2) ∈ (0, η],

f1
Γ(p1 − η1, p2 − η2) = f2

Γ(p1 − η1, p2 − η2) = p1 = p2. Thus, we have

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.56)

Thus, gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0.

• Suppose p ∈ I3
α. Let’s calculate the final prices of Γ if both players play the

point price prediction bidding strategy using as initial prediction (p1−η1, p2−
η2) a slight underestimation of p with η1 > 0, η2 > 0. η2 is chosen such
that p2 − η2 > v1(x1+x2)

2 . As v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1), v1(x1+x2)

2 ≤
v2(x1 +x2)−v2(x2) and v1(x1 +x2) ≤ v2(x1 +x2), player 2 will always bid on
both items if their price is below v1(x1+x2)

2 . As p1− η1 < v1(x1 + x2)− v1(x2),
p2−η2 < v1(x1+x2)−v1(x1) and p1+p2−η1−η2 < v1(x1+x2), player 1 also
always bids on both items. Thus, the price of each item rises symmetrically.
As p1 + η2 < v1(x1+x2)

2 and p2 − η2 > v1(x1+x2)
2 , the complementarity surplus

of player 1 will be entirely consumed when the price of item 1 reaches
p1 + η2. Player 1 will then drop out of the auction and the final price of
each item will be p1 + η2. More formally, ∀p ∈ I3

α, ∃η > 0 such ∀(η1, η2) ∈
(0, η], f1

Γ(p1 − η1, p2 − η2) = f2
Γ(p1 − η1, p2 − η2) = p1 + η2. Thus, for

p = (v1(x1 + x2)− α, α) with α ∈ (v1(x1+x2)
2 , v1(x1 + x2)− v1(x1)], we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p1 + η2 − p1)2 + (p1 + η2 − p2)2

= (v1(x1 + x2)− 2α + η2)2 + η2
2

(B.57)

Thus, ∀p ∈ I3
α, gΓ(p) > 0.

We have shown that:

• ∀p ∈ I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2), v1(x1+x2)

2 )}, gΓ(p) > 0.

• gΓ(v1(x1+x2)
2 , v1(x1+x2)

2 ) = 0

• ∀p ∈ I3
α = {(v1(x1 + x2) − α, α), α ∈ (v1(x1+x2)

2 , v1(x1 + x2) − v1(x1)]},
gΓ(p) > 0.

From these results, the frontier prediction of final prices is easily determined as
Omin∗

Γ = {(v1(x1+x2)
2 , v1(x1+x2)

2 )}.
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Proof. Sequence convergence:

Let’s first show that:

p ∈ [0,
v1(x1 + x2)

2 )× [0,
v1(x1 + x2)

2 )

=⇒ fΓ(p1, p2) = (v1(x1 + x2)
2 ,

v1(x1 + x2)
2 )

(B.58)

Suppose p ∈ [0, v1(x1+x2)
2 ) × [0, v1(x1+x2)

2 ). As p1 < v1(x1+x2)
2 ≤ v2(x1 + x2) −

v2(x2), p2 < v1(x1+x2)
2 ≤ v2(x1 + x2) − v2(x1) and p1 + p2 < v1(x1 + x2) ≤

v2(x1 + x2), player 2 will bid on both items if their price is below v1(x1+x2)
2 . As

p1 < v1(x1+x2)
2 ≤ v1(x1 + x2)− v1(x2) and p2 < v1(x1+x2)

2 ≤ v1(x1 + x2)− v1(x1),
player 1 will bid on both items until her complementarity surplus is entirely
consumed. Thus, the price of each item rises symmetrically. Player 1 will stop
bidding on both items when their price reaches v1(x1+x2)

2 . Player 2 will then
acquire each item for v1(x1+x2)

2 . Thus, fΓ(p1, p2) = (v1(x1+x2)
2 , v1(x1+x2)

2 ).

As P0 = (0, 0) < (v1(x1+x2)
2 , v1(x1+x2)

2 ) component-wise and Pt+1 = 1
t+1fΓ(Pt) +

(1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈ [0, v1(x1+x2)

2 ) ×
[0, v1(x1+x2)

2 ) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1+x2)
2 , v1(x1+x2)

2 ).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1+x2)
2 , v1(x1+x2)

2 ) and, thus,

the sequence Pt converges to the unique element of Omin∗
Γ .

b) Second case:

∗ v1(x1) > v1(x1+x2)
2

Proof. Frontier prediction of final prices:

We decompose Iα in 2 disjoints sets

• I1
α = {(v1(x1 + x2)− α, α), α ∈ [v1(x2); v1(x1 + x2)− v1(x1))}

• I2
α = {(v1(x1), v1(x1 + x2)− v1(x1))}

290 Chapter B Appendix: Proof of properties 4.2 and 4.3



such that Iα = I1
α ∪ I2

α. We will calculate the infimum of gΓ on each of these two
sets and, then, determine the frontier prediction of final prices Omin∗

Γ . We have:

• Suppose p ∈ I1
α. Let’s calculate the final prices of Γ if both players play

the point price prediction bidding strategy using as initial prediction (p1 −
η1, p2 − η2) a slight underestimation of p with η1 > 0, η2 > 0. η1 is chosen
such that p1 − η1 > v1(x1). As v1(x1 + x2)− v1(x1) ≤ v2(x1 + x2)− v2(x1),
v1(x1+x2)−v1(x1) ≤ v2(x1+x2)−v2(x2) and v1(x1+x2)−v1(x1) ≤ v2(x1+x2)

2 ,
player 2 will always bid on both items if their price is below v1(x1+x2)−v1(x1).
As p1 − η1 < v1(x1 + x2) − v1(x2), p2 − η2 < v1(x1 + x2) − v1(x1) and
p1 +p2−η1−η2 < v1(x1 +x2), player 1 also always bids on both items. Thus,
the price of each item rises symmetrically. As p2 + η1 < v1(x1 + x2)− v1(x1)
and p1 − η1 > v1(x1 + x2)− v1(x1), the complementarity surplus of player 1
will be entirely consumed when the price of item 2 reaches p2 + η1. Player 1
will then drop out of the auction and the final price of each item will be p2 +η1.
More formally, ∀p ∈ I1

α, ∃η > 0 such ∀(η1, η2) ∈ (0, η], f1
Γ(p1 − η1, p2 − η2) =

f2
Γ(p1 − η1, p2 − η2) = p2 + η1. Thus, for p = (v1(x1 + x2) − α, α) with

α ∈ [v1(x2); v1(x1 + x2)− v1(x1)), we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = (p2 + η1 − p1)2 + (p2 + η1 − p2)2

= (2α− v1(x1 + x2) + η1)2 + η2
1

(B.59)

Thus, ∀p ∈ I1
α, gΓ(p) > 0.

• Suppose p ∈ I2
α and, thus, p = (v1(x1), v1(x1 + x2)− v1(x1)). Let’s calculate

the final prices of Γ if both players play the point price prediction bidding
strategy using as initial prediction (p1 − η1, p2 − η2) a slight underestimation
of p with η1 > 0, η2 > 0. As v1(x1 + x2) − v1(x1) ≤ v2(x1 + x2) − v2(x1),
v1(x1+x2)−v1(x1) ≤ v2(x1+x2)−v2(x2) and v1(x1+x2)−v1(x1) ≤ v2(x1+x2)

2 ,
player 2 will always bid on both items if their price is below v1(x1+x2)−v1(x1).
As p1− η1 < v1(x1) and p2− η2 < v1(x1 + x2)− v1(x1) < v1(x1+x2)

2 < v1(x1),
player 1 will bid on both items until her complementarity surplus has been
entirely consumed by the rise in price of item 2. This happens when the
price of item 2 reaches p2. Thus, player 2 acquires item 2 at price p2. Then,
player 1 will only bid on item 1 until its price reaches her stand-alone value
p1 = v1(x1). As v1(x1) ≤ v2(x1 + x2) − v2(x2) and player 2 has already
acquired item 2, player 2 will also continue to bid on item 1 and, then,
acquire it for a final price of p1. More formally, for p = (v1(x1), v1(x1 + x2)−
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v1(x1)), ∃η > 0 such that ∀(η1, η2) ∈ (0, η], f1
Γ(p1 − η1, p2 − η2) = p1 and

f2
Γ(p1 − η1, p2 − η2) = p2. Thus, we have:

||fΓ(p1 − η1, p2 − η2)− p||22 = 0 (B.60)

Thus, gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0.

We have shown that:

• ∀p ∈ I1
α = {(v1(x1 +x2)−α, α), α ∈ [v1(x2), v1(x1 +x2)−v1(x1))}, gΓ(p) > 0.

• gΓ(v1(x1), v1(x1 + x2)− v1(x1)) = 0

From these results, the frontier prediction of final prices is easily determined as
Omin∗

Γ = {(v1(x1), v1(x1 + x2)− v1(x1))}.

Proof. Sequence convergence:

Let’s first show that:

p ∈ [0, v1(x1))× [0, v1(x1 + x2)− v1(x1))

=⇒ fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1))
(B.61)

Suppose p ∈ [0, v1(x1)) × [0, v1(x1 + x2) − v1(x1)). As v1(x1 + x2) − v1(x1) <

v1(x1) ≤ v2(x1 + x2) − v2(x2), v1(x1 + x2) − v1(x1) ≤ v2(x1 + x2) − v2(x1) and
v1(x1 + x2) − v1(x1) ≤ v2(x1+x2)

2 , player 2 will bid on both items if their price is
below v1(x1+x2)−v1(x1). As p1 < v1(x1) and p2 < v1(x1+x2)−v1(x1) < v1(x1),
player 1 will bid on both items until her complementarity surplus is entirely
consumed by item 2. Thus, the price of each item rises symmetrically. Player 1
will stop bidding on item 2 when its price reaches v1(x1 + x2)− v1(x1) and will
continue to bid on item 1 until its price reaches v1(x1). Player 2 will then acquire
item 2 for v1(x1 + x2)− v1(x1) and will continue bidding on item 1 until its price
reaches v2(x1 + x2)− v2(x2). As v1(x1) ≤ v2(x1 + x2)− v2(x2), player 2 acquires
item 1 for v1(x1). Thus, fΓ(p1, p2) = (v1(x1), v1(x1 + x2)− v1(x1)).
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As P0 = (0, 0) < (v1(x1), v1(x1 + x2) − v1(x1)) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈

[0, v1(x1))× [0, v1(x1 +x2)−v1(x1)) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1), v1(x1 +
x2)− v1(x1)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1), v1(x1 + x2)− v1(x1)) and,

thus, the sequence Pt converges to the unique element of Omin∗
Γ .

c) Third case:

∗ v1(x2) > v1(x1+x2)
2

Proof. Frontier prediction of final prices:

It is exactly the symmetric case of the second case of disposition 3. Thus, we
have Omin∗

Γ = {(v1(x1 + x2)− v1(x2), v1(x2))}.

Proof. Sequence convergence:

Let’s first show that:

p ∈ [0, v1(x1 + x2)− v1(x2))× [0, v1(x2))

=⇒ fΓ(p1, p2) = (v1(x1 + x2)− v1(x2), v1(x2))
(B.62)

Suppose p ∈ [0, v1(x1 + x2) − v1(x2)) × [0, v1(x2)). As v1(x1 + x2) − v1(x2) <

v1(x2) ≤ v2(x1 + x2) − v2(x1), v1(x1 + x2) − v1(x2) ≤ v2(x1 + x2) − v2(x2) and
v1(x1 + x2) − v1(x2) ≤ v2(x1+x2)

2 , player 2 will bid on both items if their price is
below v1(x1+x2)−v1(x2). As p2 < v1(x2) and p1 < v1(x1+x2)−v1(x2) < v1(x2),
player 1 will bid on both items until her complementarity surplus is entirely
consumed by item 1. Thus, the price of each item rises symmetrically. Player 1
will stop bidding on item 1 when its price reaches v1(x1 + x2)− v1(x2) and will
continue to bid on item 2 until its price reaches v1(x2). Player 2 will then acquire
item 1 for v1(x1 + x2)− v1(x2) and will continue bidding on item 2 until its price
reaches v2(x1 + x2)− v2(x1). As v1(x2) ≤ v2(x1 + x2)− v2(x1), player 2 acquires
item 2 for v1(x2). Thus, fΓ(p1, p2) = (v1(x1 + x2)− v1(x2), v1(x2)).
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As P0 = (0, 0) < (v1(x1 + x2) − v1(x2), v1(x2)) component-wise and Pt+1 =
1

t+1fΓ(Pt) + (1 − 1
t+1)Pt, by a simple induction we have that ∀t ∈ R+, Pt ∈

[0, v1(x1 + x2)− v1(x2))× [0, v1(x2)) and, thus, ∀t ∈ R+, fΓ(Pt) = (v1(x1 + x2)−
v1(x2), v1(x2)).

The above results directly imply that Pt −−−−→
t→+∞

(v1(x1 + x2)− v1(x2), v1(x2)) and,

thus, the sequence Pt converges to the unique element of Omin∗
Γ .
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CAppendix: Example 1 in SAA-c game

Let Γ be the instance of the SAA-c game in Example 1 (see Section 2.2.3) which is recalled
below.

v({1}) v({2}) v({1, 2})
Agent 1 12 12 12
Agent 2 0 0 20

Tab. C.1.: Example 1

C.1 Function fΓ

Let p = (p1, p2) be the initial prediction. Let fΓ(p) = (f1
Γ(p), f2

Γ(p)). We have:

E[fΓ(p)] =



(1, 0) if p1 + p2 ≥ 20, p1 ≤ p2 and p1 < 12 (Rgreen)
(0, 1) if p1 + p2 ≥ 20, p1 > p2 and p2 < 12 (Rpurple)
(11, 11.5) if p1 + p2 < 20 and 12 > p1 > p2 (Rred)
(11.5, 11) if p1 + p2 < 20 and p1 ≤ p2 < 12 (Rorange)
(11.5, 1) if p1 + p2 < 20 and p2 ≥ 12 (Rcyan)
(1, 11.5) if p1 + p2 < 20 and p1 ≥ 12 (Ryellow)
(0, 0) if p1 + p2 ≥ 20 and p1 ≥ 12 and p2 ≥ 12 (Rmagenta)

E[fΓ] is represented in Figure C.1. The arrows correspond to the direction that the sequence
pt+1 = 1

t+1 E[fΓ(pt)] + (1− 1
t+1)pt will take in each coloured region. Each coloured region

in Figure C.1 will be referred to as Rcolour. For example, Rred = {(p1, p2)|p1 + p2 < 20, p2 <

p1 < 12}.
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Fig. C.1.: Spatial representation of fΓ in the SAA-c game of Example 1.

C.2 Convergence of sequence pt in the SAA-c game of
Example 1

Let’s show that the sequence pt+1 = 1
t+1 E[fΓ(pt)] + (1− 1

t+1)pt with P0 = (0, 0) converges
to p∗ = {(10, 10)}.

The proof is divided into three parts with each a geometrical interpretation:

1. The sequence pt is never in Rmagenta, Rcyan and Ryellow.

2. The sequence p1
t − p2

t converges to zero.

3. The sequence p1
t + p2

t converges to 20 and conclude that pt −−−−→
t→+∞

(10, 10).
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C.2.1 pt is never in Rmagenta, Rcyan and Ryellow

Proof. Notice that maxp∈R+2 E[f1
Γ(p)] = maxp∈R+2 E[f2

Γ(p)] = 11.5. Hence, ∀t ∈ N, p1
t ≤

11.5 and p2
t ≤ 11.5. Thus, the sequence pt is never in Rmagenta, Rcyan and Ryellow.

C.2.2 Convergence of p1
t − p2

t to zero

Proof. Let’s prove that Ut = p1
t − p2

t converges to zero.

According to the previous result, ∀t ∈ N, p1
t ≤ 11.5 and p2

t ≤ 11.5. This means that pt is
never in Rmagenta, Rcyan and Ryellow. Thus, pt is only in Rorange, Rred, Rpurple and Rgreen.
Therefore,

• If p1
t > p2

t , E[f1
Γ(pt)] + 0.5 ≤ E[f2

Γ(pt)] ≤ E[f1
Γ(pt)] + 1

• If p1
t ≤ p2

t , E[f2
Γ(pt)] + 0.5 ≤ E[f1

Γ(pt)] ≤ E[f2
Γ(pt)] + 1

We define the sequence Ut as Ut = p1
t−p2

t with U0 = 0. Thus, Ut+1 = t
t+1Ut+ 1

t+1(E[f1
Γ(pt)]−

E[f2
Γ(pt)]). Therefore, we have:

• if Ut > 0: t
t+1Ut − 1

t+1 ≤ Ut+1 ≤ t
t+1Ut − 0.5

t+1

• if Ut ≤ 0: t
t+1Ut + 0.5

t+1 ≤ Ut+1 ≤ t
t+1Ut + 1

t+1

Let’s show by induction that ∀t ∈ N, Ut ∈ [−1
t , 1

t ].

1. U1 = 0.5 so U1 ∈ [−1, 1]

2. Suppose Ut ∈ [−1
t , 1

t ].

If Ut > 0, then Ut ∈]0, 1
t ] and so, following the inequalities on Ut+1, we have:

− 1
t + 1 ≤ Ut+1 ≤

1
t + 1 −

0.5
t + 1 ≤

1
t + 1 (C.1)
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Thus, if Ut > 0, then Ut+1 ∈ [− 1
t+1 , 1

t+1 ]

If Ut ≤ 0, then Ut ∈ [−1
t , 0] and so, following the inequalities on Ut+1, we have:

− 1
t + 1 ≤ −

1
t + 1 + 0.5

t + 1 ≤ Ut+1 ≤
1

t + 1 (C.2)

Thus, if Ut ≤ 0, then Ut+1 ∈ [− 1
t+1 , 1

t+1 ]

Therefore, this proves by induction that ∀t ≥ 1, Ut ∈ [−1
t , 1

t ].

From this result, it trivially follows that Ut −−−−→
t→+∞

0.

From now on, we will write p2
t = p1

t + ηt with ηt −−−−→
t→+∞

0. In this part, we have proved that

the sequence converges to the diagonal p1 = p2. Thus, given the fact that ∀t ∈ N, pt is
either in Rorange, Rred, Rpurple and Rgreen, we have ∀t ≥ 1:

Ut+1 =
{

tUt
t+1 −

1
t+1 if Ut > 0 (pt ∈ {Rred, Rpurple})

tUt
t+1 + 1

t+1 if Ut ≤ 0 (pt ∈ {Rorange, Rgreen})
(C.3)

As ∀t ≥ 1, Ut ∈ [−1
t , 1

t ], ηt ∈ [−1
t , 1

t ].

C.2.3 Convergence of pt to (10,10) and geometrical interpretation

Proof. ∀t, pt ∈ {Rgreen, Rpurple, Rred, Rorange}. We define Wt = p1
t + p1

t − 20. We have:

Wt+1 = p1
t+1 + p2

t+1 − 20

= E[f1
Γ(pt)] + E[f2

Γ(pt)]
t + 1 + t(p1

t + p2
t )

t + 1 − 20

= E[f1
Γ(pt)] + E[f2

Γ(pt)]
t + 1 + tWt

t + 1 + 20t

t + 1 − 20

= E[f1
Γ(pt)] + E[f2

Γ(pt)]
t + 1 + tWt

t + 1 −
20

t + 1

(C.4)
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Thus,

Wt+1 =


tWt
t+1 + 5

2(t+1) if Wt < 0 (pt ∈ {Rred, Rorange})
tWt
t+1 −

19
t+1 if Wt ≥ 0 (pt ∈ {Rpurple, Rgreen})

(C.5)

Similarly to the preceding proof, we can show by induction that ∀t ≥ 1, Wt ∈ [−19
t , 5

2t ] as
W1 = 5

2 . Hence, Wt −−−−→
t→+∞

0. Thus, p1
t −−−−→t→+∞

10 and p2
t −−−−→t→+∞

10.

Now, let’s show that pt belongs to the diamond defined by the points (10 − 10
t , 10 − 9

t ),
(10− 9

t , 10− 10
t ), (10 + 7

4t , 10 + 3
4t) and (10 + 3

4t , 10 + 7
4t) when t ≥ 1.

∀t ≥ 1, we have:

− 19
t
≤Wt ≤

5
2t

⇔− 19
t
≤ 2p1

t + ηt − 20 ≤ 5
2t

⇔− 19
2t

+ 10− ηt

2 ≤ p1
t ≤

5
4t

+ 10− ηt

2

(C.6)

As ηt ∈ [−1
t , 1

t ], we have that:

∀t ≥ 1, 10− 10
t
≤ p1

t ≤ 10 + 7
4t

and 10− 10
t
≤ p2

t ≤ 10 + 7
4t

(C.7)

The sequence p1
t and p2

t along with their upper-bound g(t) = 10 + 7
4t and lower-bound

h(t) = 10− 10
t are illustrated in Figure C.2.

Geometrically, we have first shown, through Ut ∈ [−1
t , 1

t ], that pt was between the line
p1 − p2 = −1

t and p1 − p2 = 1
t which are parallel to the line p1 = p2. Then, in this last

part, through Wt ∈ [−19
t , 5

2t ], we showed that pt is also between the lines p1 + p2 = 20− 19
t

and p1 + p2 = 20 + 5
2t which are parallel to the line p1 + p2 = 20. Using both of these

information, we know that pt belongs to the diamond defined by the points (10− 10
t , 10− 9

t ),
(10− 9

t , 10− 10
t ), (10 + 7

4t , 10 + 3
4t) and (10 + 3

4t , 10 + 7
4t) which progressively converges to

the point (10, 10).
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Fig. C.2.: Convergence rate of p1
t and p2

t in the SAA-c game of Example 1.
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Titre : Enchérir efficacement dans l’enchère ascendante simultanée en utilisant la recherche arborescente
Monte Carlo

Mots clés : Recherche arborescente Monte Carlo, Enchère ascendante simultanée, information incomplète,
aversion au risque, théorie des jeux

Résumé : Depuis son introduction en 1994 aux
États-Unis, l’enchère ascendante simultanée (SAA)
est devenue le mécanisme privilégié pour les
enchères du spectre licencié. Avec des investis-
sements dépassant parfois le milliard d’euros, une
stratégie d’enchérissement performante devient cru-
ciale pour les opérateurs mobiles.
Malgré son importance, il existe un manque de
recherche dédiée à la création d’une stratégie
d’enchérissement performante dans le cadre du
SAA. La complexité intrinsèque du jeu associé à
l’enchère SAA rend son analyse ardue pour la
théorie des enchères et les méthodes exactes de
résolution de jeux. De plus, ce mécanisme engendre
des problèmes stratégiques tels que le problème
d’exposition, ajoutant une couche de complexité
supplémentaire à son étude.
Cette thèse propose l’utilisation de la recherche
arborescente de Monte Carlo (MCTS) pour cal-
culer une stratégie d’enchérissement performante
au sein du SAA. Les six chapitres de la thèse
sont structurés comme suit. Le premier chapitre
présente les mécanismes d’enchères du spectre li-
cencié, soulignant leurs avantages et inconvénients.

Le deuxième chapitre détaille le problème spécifique
de l’enchérisseur dans le SAA, ainsi que certains tra-
vaux connexes. Le troisième chapitre propose une
synthèse concise des méthodes traditionnelles de re-
cherche dans les jeux avec des adversaires, en met-
tant particulièrement l’accent sur le MCTS. Les cha-
pitres quatre à six sont dédiés à la création de l’al-
gorithme MCTS pour calculer une stratégie perfor-
mante. Le quatrième chapitre modélise l’enchère SAA
comme un jeu au tour par tour à N-joueurs à infor-
mation parfaite et complète, avec des expériences
numériques sur des instances de petite taille. Le cin-
quième chapitre modélise l’enchère comme un jeu si-
multané à N-joueurs à information complète, avec des
contraintes budgétaires et d’éligibilité, et les résultats
sont obtenus sur des instances de taille réelle. Le
sixième chapitre considère le jeu à information in-
complète pour modéliser les incertitudes de la réalité.
Pour chaque modèle, un algorithme surpassant large-
ment ceux de la littérature est proposé, traitant notam-
ment le problème d’exposition. De plus, une méthode
de prédiction des prix finaux est développée tout au
long des chapitres, sur laquelle chaque algorithme
MCTS s’appuie.

Title : Bidding efficiently in Simultaneous Ascending Auctions using Monte Carlo Tree Search

Keywords : Monte Carlo Tree Search, Simultaenous Ascending Auction, incomplete information, risk-
aversion, game theory

Abstract : Since its introduction in 1994 in the United
States, the Simultaneous Ascending Auction (SAA)
has become the privileged mechanism for spectrum
auctions. As sometimes billions of euros are at stake
in an SAA, and a mobile operator’s business plan
highly depends on the auction outcome, establishing
an efficient bidding strategy is crucial.
Despite the importance of this problem, there is a lack
of research dedicated to developing an efficient bid-
ding strategy for the SAA. The intrinsic complexity of
the SAA makes its analysis very challenging for auc-
tion theory and exact game resolution methods. Addi-
tionally, the mechanism introduces strategical issues
such as the exposure problem, adding an extra layer
of complexity to its study.
This thesis proposes the use of Monte Carlo Tree
Search (MCTS) to compute an efficient bidding stra-
tegy for the SAA. The six chapters of the thesis are
structured as follows. The first chapter introduces
spectrum auction mechanisms, highlighting their pros

and cons. The second chapter details the bidding pro-
blem in the SAA, along with relevant related research.
The third chapter provides a summary of adversa-
rial search methods, with a specific focus on MCTS.
Chapters four to six are dedicated to developing an ef-
ficient MCTS bidding strategy for the SAA. The fourth
chapter considers a turn-based deterministic model of
the SAA with perfect and complete information. Nu-
merical experiments are only undertaken on small ins-
tances. The fifth chapter considers a n-player simul-
taneous move model of SAA with incomplete infor-
mation. Extensive numerical experiments are under-
taken on instances of realistic size. The sixth chapter
extends the preceding game to incomplete informa-
tion to introduce uncertainties. For each model, an al-
gorithm that significantly outperforms state-of-the-art
bidding strategies is proposed, notably by better ta-
ckling the exposure problem. Moreover, a final price
prediction method is developed throughout the chap-
ters, upon which each MCTS algorithm relies.
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