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Introduction

The Proper Generalized Decomposition (PGD) has emerged as an alternative approach for
building separated representations which are obtained through the use of a priori unknown
functions of the coordinates of the problem. It represents a successful method for calculating
approximations of solutions of multidimensional problems due to the fact that it involves an
important decrease on the numerical complexity when compared to solving a full-model, as
it reduces considerably the degrees of freedom of the problem.

One of the main advantages of the PGD method, with respect to other model reduction
methods, lies in its adequacy to compute space separated representations in Cartesian-like
domains. For instance, the PGD space separated representation allow calculating 3D high-
fidelity solutions of plate or shells while keeping a computational complexity characteristic
of 2D solvers. It seems appropriate to focus this numerical tool on the development of
new approaches that allow us to improve its performance for more complex geometries. The
main objective of this thesis is to generalize space separated representations to non-Cartesian
domains, by introducing the notion of Global-Local separated representations. Global-Local
separated representations are constructed by carrying out a partition of the domain into
subdomains and can be understood as a multiplicative decomposition in which the local
modes capture the solution at the finer scale, while the global modes solve the coarser scale.
In other words, the solution can be obtained by particularising a generic local solution for
every subdomain of the partition.

Although this thesis is only concerned with the numerical analysis and implementation
of the proposed technique, numerous applications of engineering interest can be devised.
For instance, this space separation scheme could be an interesting alternative method when
addressing multi-scale models defined in fractal geometries, laminates and multi-fibre models
in composite manufacturing, models with local features of interest, or models containing
inclusions or different materials along the domain.

Chapter 1 introduces the basics of Model Order Reduction (MOR) by carrying out a
summarised definition of several well-known techniques. More specifically, after a short
review of a posteriori MOR techniques, the Proper Generalized Decomposition, is described
and discussed.
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Introduction

Once the fundamentals of MOR techniques and more specifically, the PGD, have been
introduced, Chapter 2 is devoted to review the state of the art on the use of MOR to
compute space separated representations. The motivation of the thesis is also presented in
this chapter, stressing the necessity of a new separation scheme. To this aim, two strategies
are proposed.

The first proposal is presented in Chapter 3, which is dedicated to a new Global-Local
PGD procedure for partitioned domains. This methodology is based on the partition of unity
and its objective is to enrich coarse meshed FEM solutions by using the PGD approach.
It builds a separated representation that provides the local enrichment, without neither
the use of a priori knowledge of the solution nor the implementation of auxiliary local
problems to determine the enrichment. To this aim, the construction of the PGD separated
representation is carried out by means of two PGD variables defined over the global and
local levels. The first PGD variable (global) is defined over the coarse mesh described by the
domain partition. The other PGD variable (local) represents the enrichment and is defined
over a fine meshed support. Thus, by satisfying the partition of unity, the coupling of both
discretization levels allows this enrichment to be reproduced along the whole domain.

In order to address the need of incorporating MOR techniques into pre-existing simulation
platforms, a second strategy is introduced in Chapter 4. This proposal is devoted to a less
intrusive Global-Local PGD scheme. The starting point of this PGD is the use of discrete
operators which are assembled by means of standard mesh-based techniques in order to use
the PGD as an algebraic iterative solver. Continuity on the boundaries of the partition
does not need to be imposed explicitly, as it comes as a built-in property of the discrete
operators.

2



Chapter 1

Basics of Model Order
Reduction methods

The use of Model Order Reduction (MOR) methods has emerged from the need of dealing
with new challenges in science and engineering, for which the use of standard mesh-based
methods may fail. MOR methods represent a good alternative for solving multiparametric
and multidimensional problems, in order to decrease the computational burden, mainly due
to the high number of degrees of freedom in such higher dimensional spaces. In this chapter,
a summarised definition of several well-known techniques is carried out in order to describe
the fundamentals of the Model Order Reduction (MOR). More specifically, after a short
review of a posteriori MOR techniques, the Proper Generalized Decomposition, which is the
primary focus of this thesis, is described and discussed.

Contents
1.1 Some limitations of standard discretization techniques . . . . . 4
1.2 Model Order Reduction . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 A posteriori techniques . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 A priori techniques: The Proper Generalized Decomposition (PGD) 8

1.3 Algebraic formulation of the PGD . . . . . . . . . . . . . . . . . 11
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Chapter 1. Basics of Model Order Reduction methods

1.1 Some limitations of standard discretization tech-
niques

Numerical simulation is widely used for solving problems in engineering that involve physics
phenomena, and whose behaviour can be described by means of partial differential equa-
tions (PDE). This kind of engineering problems includes structural analysis, heat transfer,
electromagnetism, fluid flow, mass transport, among many others.

Many numerical methods have been proposed over the last decades. All of them are
based on the notion of discretization, that is, writing a discrete set of equations that solve
the original continuous model approximatively. Generally speaking, the accuracy of the
solution increases as the number of degrees of freedom grows, whether they are mesh-based
methods, meshless methods or particle methods. Therefore, the computational burden can
become in many cases a remarkable limitation. Due to this issue, simulation requires very
often a relatively large amount of computing resources. The impressive progress of high
performance computing platforms represents a good alternative for alleviating this issue
[35, 36, 102]. However, in this thesis we explore MOR as a means of devising more efficient
representations of the solution.

Some of the challenges of numerical simulation with standard discretization techniques
are:

• Solving problems defined over a high-dimensional space or multi-parametric
problems. High-dimensional models, such as models defining quantum chemistry [24,
69] or kinetics of complex fluids [15], suffer the concept of the curse of dimensionality
[11]: the computational complexity increases exponentially as the problem dimensions
do. If we want to solve a problem defined over a space domain of dimension N by
using a mesh-based discretization method with M nodes along each coordinate, the
total number of nodes of the problem reaches MN . The curse of dimensionality also
occurs when addressing multi-parametric models [20, 57, 90], for which the number of
parameters under consideration constitutes a major limitation.

• Problems defined over degenerated geometries, i.e. at least one of the char-
acteristic dimensions of the problem is several orders of magnitude smaller than the
other dimensions. This is the case of bar, plate or shell geometries, commonly used in
structures. Some well-known hypotheses allow the domain to be turned into a lower
dimension problem, which can be solved easily. However, for complex geometries such
simplification cannot be carried out, and therefore, they usually require of extremely
fine meshes that may increase considerably the complexity of the problem.

• Multi-scale problems. Regarding space domains, it is difficult to address different
scales in order to achieve an accurate solution, for instance, in problems consisting

4



1.2. Model Order Reduction

of metamaterials whose structure is defined at the microscale. In order to deal with
these problems, several methods have been implemented, like the homogenization [81].
Moreover, when considering models whose spectrum of characteristic times is extremely
wide, standard incremental discretization techniques can yield very time-consuming
simulations: such as reaction-diffusion models of the degradation of plastic materials
[43], processes involving microwaves [65, 101, 110] or ultrasounds or solid mechanics
models with strongly non-linear and coupled constitutive equations involving many
scales and different characteristic times.

• The need of real-time simulation: applications such as augmented reality [9,
54, 55], haptic surgery applicators [33, 77, 86, 98, 99, 118] control, manufacturing
identification or reconfiguration of malfunctioning systems.

The Finite Element Method (FEM) will be used as a reference method throughout the
entire thesis. This choice is motivated by the fact that FEM has become a de facto standard
for numerical simulation in many industrial sectors. Also, we will consider the question of
intrusiveness, i.e. how to integrate the MOR methods developed in this thesis, into the
existing finite element codes.

1.2 Model Order Reduction

Model Order Reduction (MOR) provides a mathematical basis to reduce the numerical
complexity of the model at hand. It is based on the idea of replacing standard approximation
spaces by appropriate low-dimensional approximations. This approximation should able to
capture the features of interest of a solution obtained with a high-fidelity simulation tool
while satisfying the accuracy requirements and preserving basic properties of the original
systems, such as consistency, stability and convergence.

MORmethods can be classified according to the need to be fed with a simulation database
to build the lower approximation space or not:

• A posteriori methods. The construction of the reduced-order model is carried out
after computing a relatively low amount of solutions obtained by a high-fidelity model.
The Proper Orthogonal Decomposition [26, 71, 93] and the Reduced Basis Methods
[74, 96] are the most representative a posteriori techniques.

• A priori methods. The approximate solution of the full model is not required to
build the reduced model. The Proper Generalized Decomposition [5, 29, 30, 32], which
is largely analysed in this thesis, is included in this class.
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1.2.1 A posteriori techniques

1.2.1.1 The Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) is a MOR technique that constructs an ap-
proximate description of high-dimensional problems which lies in a much lower dimension
with respect to the original problem. It is built by taking advantage of previously computed
samples of the high-fidelity solution, from which a reduced orthogonal basis is extracted.
This method is also known as the Principal Component Analysis (PCA) [58], the Karhunen-
Loève Decomposition (KLM) [72] or the Singular Value Decomposition (SVD), and has been
widely used in problems concerning heat transfer simulation [14], Navier-Stokes flows [21],
chemistry [91], among others.

For instance, we can assume a problem represented by an elliptic PDE and defined over
a parametric domain (for a parameter µ). We can write the usual notation of computa-
tional mechanics for the weak form, based on [1], in order to find u ∈ V (an appropriate
approximation space), such that:

a(µ;u,w) = f(µ;w) (1.1)

for every w ∈ V and the parameter µ ∈ Iµ. Bilinear and linear forms are denoted by
a( · , · ) : V ×V → K and f( · ) : V → K, respectively. The objective of the POD is to obtain
a solution of the parametric problem that can be expressed in a low-dimension separated
representation described as:

u(µ) ≈
M∑
i=1

αi(µ)Φi (1.2)

where αi(µ) is a parameter-dependent coefficient for each mode and {Φi}Mi=1 is a set of
orthogonal basis vectors extracted from a database of pre-computed solutions of the original,
high-fidelity model. The POD forms a subspace S := span {φi}Mi=1 whose dimension is
expected to be considerably smaller than that of the original model.

The starting point of this technique is the sampling, i.e the extraction of the snapshots
representing a certain amount of solutions of the problem [53]. The selection of an appro-
priate set of snapshots determines the capability of reproducing the original solution by
using the orthonormal basis. A collection of m snapshots is denoted as {Ui}mi=1. The scalar
product between elements of V is denoted as 〈 , 〉V . By removing the mean, the snapshot
collection can be written as {Ûi}mi=1, where Ûi = Ui − Umean.

The POD basis is the orthonormal set ΦM = {Φ1 · · ·ΦM} (with M ≤ m � n). The
elements of the basis are ordered as the decreasing sequence of the squared of their corre-
sponding singular values that minimizes the sum of the squared projection errors εPOD over
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all the orthonormal sets [φ1 · · ·φM ] of S (〈φk, φl〉V = δkl):

ΦM = arg min
φ1···φM

m∑
j=1

∥∥∥∥∥∥Ûj −
M∑
j=1

〈
Ûj , φj

〉
V
φj

∥∥∥∥∥∥
2

V

(1.3)

It can be shown that the optimum value of the above functional corresponds to:

εPOD =
m∑

j=M+1
σ2
j , (1.4)

σj being the j-th singular value associated with the singular vectors not included in the
basis. Moreover, the truncation error, i. e. the value used to determine the order of the
orthonormal basis (M ≤ m), can be defined by:

εPOD =

j=m∑
j=M+1

σ2
j

j=m∑
j=1

σ2
j

. (1.5)

It is important to remark the difference between this relative error and the error with
respect to the full model solution. The error committed via truncation represents the amount
of precomputed information that is not taken into consideration by choosing the first M
components of the reduced basis. The error with respect to the full model will depend on
the capability of the snapshots to capture the essential characteristics of the high-fidelity
solution, which reveals the importance of choosing an appropriate sampling technique.

Once the reduced basis ΦM has been extracted, the parameter-dependent coefficients
{αi(µ)}Mi=1 can be easily obtained by using a Galerkin projection of the full problem (Eq.
(1.1)) onto the reduced subspace:

M∑
i=1

a(µ; Φi,Φj)αi(µ) = f(µ; Φj), ∀j. (1.6)

The solution provided by the POD is the best approximation that can be obtained by
using the previously computed information, which means that the main challenge of POD-
based techniques lies in selecting appropriate sampling methods that capture the necessary
information. If the snapshots are not able to capture all the details related to the full-model
solution, the reduced basis will not be accurate enough to reproduce an approximate solution
for the whole required parameter range.

1.2.1.2 The Reduced Basis Method (RBM)

The Reduced Basis Method [75, 96] is a technique that follows the approach of the POD and
addresses the limitations of this method. It introduces a more efficient sampling strategy
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that updates the reduced basis by introducing the concept of the error estimator. In order to
illustrate this technique, we can assume a reduced basis extracted from problem Eq. (1.1),
already consisting of M terms, as follows:

Φ = {Φ1, · · · ,ΦM} . (1.7)

In order to expand the reduced basis, the calculation of the residual obtained with the
approximated solution provided by the basis Φ is carried out:

rM (µ) =
M∑
i=1

a(µ; Φi, w)αi(µ)− f(µ;w), (1.8)

for w ∈ V (with V representing the space of the high-fidelity problem).
The norm of the residual can be defined as the error indicator for this technique, which

will actually guide the sampling process. If both the bilinear form a( , ) and the linear form
f( ) are affine with respect to the parameter µ, it can be shown that the norm of the residual
can be computed at a small computational cost (the operators can be precomputed offline).
Therefore, the residual can be easily calculated for the so-called train points, covering the
whole range of µ. It is important to remark that the residual norm is the simplest error
indicator, but other techniques, such as the Successive Constraint Method (SMC), have
been developed in order to obtain better error estimators in the framework of the RBM.
The interested reader can refer to [27, 60, 61].

Once the residual has been evaluated for the train points, the objective is to identify the
value for which this estimator is maximized, as follows:

µ̃ = arg max
µ∈Ptrain

‖rM (µ)‖2 . (1.9)

Then, the solution is evaluated for µ̃ using the high-fidelity model. This computed solution
u(µ̃) is the new snapshot, which is added to the reduced basis as a new term, usually
orthogonalized with respect to the previous elements of the basis using a Gram-Schmidt
procedure.

1.2.2 A priori techniques: The Proper Generalized Decomposition
(PGD)

The approximate solutions provided by a posteriori model order reduction techniques have
involved an important advance in terms of computational cost and solving parametric prob-
lems. Nevertheless, the need for precomputed data for constructing the reduced basis is
an important impediment to the application of these techniques in problems with a lack of
previous knowledge.

Regarding a priori techniques, low-rank tensor approximations constitute a family of
increasingly popular techniques due to its generality and success in science and technology.
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The interested reader can refer to [51] for a list of applications. This approximation includes
Canonical [25, 56], Tucker [111] and Hierarchical Tucker [52] representations, among others.

Another interesting technique that avoids the knowledge of information concerning the
full-model solution and represents the main focus of this thesis is the Proper Generalized
Decomposition (PGD). This method [5, 29, 30, 32] has emerged as an alternative approach for
building separated representations which are obtained through the use of a priori unknowns
functions of coordinates of the problem.

The PGD is based on previous works developed by Ladevèze [67, 68, 85, 88, 92], who
proposed an approach to build space-time separated representations for transient problems
in the LATIN solver framework (Non-linear Large Time Increment). These separated rep-
resentations can be defined as

u(x, t) ≈
M∑
i=1

Xi(x)Ti(t), (1.10)

where the solution can be approximated by a finite sum of functional products depending
on the geometric coordinates of the problem (Xi(x)) and the time (Ti(t)).

Based on this approach, the PGD authors proposed a separated representation based
on Eq. (1.10), where the approximated solution of the unknown field u(x1, . . . , xd) can be
represented as

u(x1, . . . , xd) ≈
M∑
i=1

F 1
i (x1)× · · · × F di (xd) (1.11)

where now, the functions F 1
i (x1), . . . , F di (xd) are unknown a priori. These functions are

defined over the domains Ωi where each coordinate of the problem is defined (geometric
coordinates, time, material properties, boundary conditions...), building a parametric space
where the solution can be represented and avoiding the exponential complexity with re-
spect to the problem dimensions. The PGD obtains the solution by splitting the full-model
problem into d lower dimension problems defined over each coordinate.

In summary, the main advantages of the PGD are:

• The PGD approximated solution is obtained by constructing a separated representa-
tion from a priori unknown functions.

• The separated representation of the solution is built by the successive addition of new
terms (enrichments) to the finite sum, i.e. the approximation space is enriched in every
step.

• The parameters of the problem can be added as extra coordinates.

• The separated representation of the parametric solution is computed offline, which
means that the online phase only concerns the particularization for the desired set of
parametric values.

9
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• There is an important decrease in the numerical complexity of the PGD when compared
to solving a full-model. Using a standard mesh-based discretization technique for a
problem defined over d dimensions with n nodes for each dimension, the number of
degrees of freedom is nd. For a PGD separated representation consisting of M terms,
the number of unknowns is M × n× d.

1.2.2.1 PGD formulation

The PGD can be applied to a PDE system defined over a multi-dimensional domain con-
sisting of several coordinates. In this illustrative case, and for the sake of clarity, we develop
the PGD formulation for a generic problem with two separated coordinates, denoted by µ1

and µ2. We consider a generic variational formulation, as in Eq. (1.1):

a(u, v) = b(w), (1.12)

where the objective is to find u ∈ V := Vµ1 ⊗Vµ2 (a tensor product space), for every w ∈ V .
The aim of the PGD is to compute an approximation of the solution of the problem

represented by Eq. (1.12), in the form of a separated representation. If we consider that this
approximation is defined as a sum ofM functions products of unknown functions depending
on the coordinates µ1 and µ2 (separated representation of order M), it can be written
following Eq. (1.11):

u(µ1, µ2) ≈
M∑
i=1

uµ1
i u

µ2
i , (1.13)

where uµ1
i and uµ2

i are the pair of functions that the PGD computes in every enrichment
(also called modes). In other words, these modes build the basis in which the approximated
solution is represented. For this purpose, two finite dimensional approximation spaces are
defined from the modes:

Vµ1 := span
{
vµ1
i = uµ1

i

‖uµ1
i ‖

, 1 ≤ i ≤M
}

and Vµ2 := span
{
vµ2
i = uµ2

i

‖uµ2
i ‖

, 1 ≤ i ≤M
}
,

(1.14)
both of dimension M . Thus, we can introduce the following subset of the tensor product
space V := Vµ1 ⊗ Vµ2 :

SM :=
{
v ∈ V : v =

M∑
i=1

αiv
µ1
i vµ2

i , with vµ1
i ∈ Vµ1 , v

µ2
i ∈ Vµ2 αi ∈ K

}
. (1.15)

We can denote uM , the rank-M separated representation of the solution, as an element of
SM . The concept of PGD enrichment lies in the progressive construction of SM , as it is
obtained from the previous approximation subspace, i.e. SM = SM−1 + S1 (for M ≥ 2),
and consequently, the approximation spaces are nested, i.e. SM−1 ⊂ SM . Hence, when a
new pair of functions (uµ1 , uµ2) are computed, their corresponding approximation spaces
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Vµ1 and Vµ2 are updated by normalizing these new functions. The enriched approximation
of the solution, obtained from uM , reads:

uM+1 = uM + uµ1uµ2 =
M+1∑
i=1

αiv
µ1
i vµ2

i . (1.16)

This update is obtained by solving:

a(uµ1uµ2 , w) = r(uM , w) = b(w)− a(uM , w), (1.17)

for every w ∈ V . As the calculation of both uµ1 and uµ2 represents a non-linear prob-
lem, assuming an elliptic problem, Eq. (1.17) can be turned into an equivalent non-linear
optimization problem:

min
us,uµ

J (uµ1 , uµ2) := 1
2a(uµ1uµ2 , uµ1uµ2)− r(uM , uµ1uµ2). (1.18)

The strategy for obtaining the new pair of functions is illustrated in Section 2. Its
convergence has been proven in [42] for different types of problems, as well as the compactness
of the solution, as the PGD generalizes POD in some cases.

1.3 Algebraic formulation of the PGD

For reasons that will be made clear in Chapter 4, we give here also an algebraic formulation
of the PGD method [1]. To this end, we will make use of tensor product spaces to formulate
the problem. Given Vµ1 := span

{
vµ1

1≤i≤m

}
and Vµ2 := span

{
vµ2

1≤j≤n

}
, the tensor product

space defined by both spaces is

V := span
{
vµ1
i vµ2

j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n
}
, (1.19)

and therefore, an element of the space V can be obtained as follows:

u =
m∑
i=1

n∑
j=1

uijv
µ1
i vµ2

j , (1.20)

where uij are the weights. Now, we can apply the Galerkin method to Eq. (1.12), with the
consequent discretization of the problem. Eq. (1.12) can be rewritten as:

〈A(u), w〉 = 〈b, w〉 , (1.21)

where 〈 · , · 〉 denotes an inner product on V , A is a linear operator defined by A : V → V

and b is an element of V . Using a Galerkin approach, where w is approximated in the same
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tensor space as the solution, the terms of Eq. (1.21) are rewritten as:

〈A(u), w〉 =
m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

uij
〈
A(vµ1

i vµ2
j ), vµ1

k vµ2
l

〉
wkl

〈b, w〉 =
m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

bij
〈
vµ1
i vµ2

j , vµ1
k vµ2

l

〉
wkl (1.22)

Example 1.1 (Structure of the problem). W e can consider that A is the laplacian oper-
ator, s represent the space coordinates and the parameter d is the diffusivity coefficient
(A( · ) = λ∆( · )). Then, for 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n we have

〈A(vsi vλj ), vskvλl 〉 = 〈∆vsi , vsk〉s〈λvλj , vλl 〉λ  Ks ⊗Dλ,

〈vsi vλj , vskvλl 〉 = 〈vsi , vsk〉s〈vλj , vλl 〉λ  M s ⊗Mλ,
(1.23)

where Ks, M s are the diffusion (laplacian-like) matrix and the mass matrix in the
physical domain, respectively. Dλ,Mλ are a sort of weighted mass matrix and the mass
matrix itself in the parametric domain, respectively. We denote by “⊗” the Kronecker
product.

Notice that it is possible to write Eq. (1.23) thanks to the fact that the operator A is
linear and admits a separated representation, called an affine decomposition. In general, for
linear problems this requirement is not difficult to satisfy. Moreover, the inner product in
tensor product spaces has the following property: for u = uµ1uµ2 and v = vµ1vµ2 , we have
〈u, v〉 = 〈uµ1 , vµ1〉µ1〈uµ2 , vµ2〉µ2 , where 〈 · , · 〉µ1 and 〈 · , · 〉µ2 are inner products on Vµ1 and
Vµ2 , respectively. The norm inherits the same property.

Thus, (1.21) can be written now in the following algebraic form:

wHAu = wHf , (1.24)

where w and u are vectorizations of their corresponding tensors and wH denotes the
conjugate-transpose of w. In the previous example, A = Ks ⊗Dλ and f = (M s ⊗Mλ)b,
where b is a vectorization of its corresponding tensor.

In general, A, for the separated representation of u based on the coordinates µ1 and µ2

can be rewritten in the following separated form, using T and R terms, respectively:

A =
T∑
i=1

Aµ1
i ⊗A

µ2
i

f =
R∑
i=1

fµ1
i ⊗ f

µ2
i ,

(1.25)
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or, more generally, for D coordinates of the problem:

A =
T∑
i=1
⊗Dj=1A

j
i

f =
R∑
i=1
⊗Dj=1f

j
i

(1.26)

Hence, following this formulation, the rank-M PGD separated form of the approximation
of the solution, based on the coordinates µ1 and µ2 can be written as:

uM =
M∑
i=1

uµ1
i ⊗ u

µ2
i , (1.27)

or, for D coordinates:

uM =
M∑
i=1
⊗Dj=1u

j
i , (1.28)

We can suppose that, afterM successive corrections of the solution (enrichments), a new
rank-one enrichment is computed as follows (C1 representing the set of elementary tensors
of rank one):

uM+1 = uM + u,

with u ∈ vect(C1) ⇔ u = u1 ⊗ · · · ⊗ uD, (1.29)

which satisfies:
Au ≈ f −AuM . (1.30)

Finally, in order to obtain the new enrichment, Eq. (1.30) is turned into the following
non-linear optimization problem [6, 42]:

min
u∈vect(C1)

1
2 〈Au,u〉+ 1

2 〈Au
M ,u〉 − 〈f ,u〉. (1.31)

By solving Eq. (1.31) with an appropriate alternating direction strategy, the PGD con-
structs a separated representation by solving several low-dimensional problems when com-
pared to the full-model problem.
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Chapter 2

Space separated representations:
state of the art

The objective of this chapter is to review MOR techniques for building space separated
representations in Cartesian-like or partitioned domains. Both a posteriori and a priori
MOR approaches are covered. The analysis presented in this chapter provides a better
understanding of the PGD formulation applied to Cartesian domains, when compared to
standard mesh-based techniques. Limitations will also be analysed.

Based on this, the motivation and objectives of this thesis will be given; that is, to
generalize space separated representations to non-Cartesian domains by introducing the
notion of Global-Local separated representation. This objective, inspired by multi-scale
approaches, Domain Decomposition and methods based on the partition of unity, proposes
the use of partitioned domains in order to build separated representations that solve the
limitations of the standard PGD in terms of intrusiveness and geometry constraints.
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2.1. PGD space separated representations in cartesian-like domains

2.1 PGD space separated representations in cartesian-
like domains

The PGD has been presented as a successful technique for calculating approximations of
solutions of multidimensional problems. In particular, it is possible to construct that kind of
approximation by considering the separation (whenever possible) of the coordinates of the
domain in the physical space (i.e. the geometry). The motivation of using space separated
representations is to solve 3D models as a sequence of 1D problems in parallelepiped domains,
or as a sequence of 2D plus 1D problems in extruded domains.

Nevertheless, the space separated representations associated with the PGD approach
present an important limitation: they are built by using variables associated with Cartesian
geometries. This reduces considerably the applicability of this method for capturing solutions
defined over domains consisting of non-Cartesian geometries. Therefore, it seems appropriate
to address this numerical tool to new approaches that allow us to broaden its applicability.

After revisiting some space separation schemes, this chapter is devoted to introducing the
main objective of this thesis: to create a new PGD separation strategy in order to generalize
the space separated representations for solving problems defined over non-Cartesian domains.

To this aim, the first step is the definition of space separated representation. For in-
stance, following Eq. (1.11), a full separated form provided by the Proper Generalized
Decomposition for a 3D domain reads:

u(x, y, z) ≈
M∑
i=1

F xi (x)F yi (y)F zi (z) (2.1)

for the domain Ω = Ωx × Ωy × Ωz. This separated form allows solving the problem defined
over the 3D domain Ω as a sequence of three 1D problems, which reduces the complexity of
the problem and consequently, the computational cost of the solution. This kind of approach
has been applied in some examples shown in [50].

In Fig. 2.1, some domain geometries and their corresponding proposal for separated
representation are plotted. As mentioned before, the full space separated representation is
achieved by splitting a problem defined over a 3D domain (for instance, a cube) in order
to obtain three problems with a 1D complexity. When this separated form is not possible
or it is not interesting in view of the particular geometry of the problem, other separations
can be proposed. One such case is that of degenerated geometries, for which it seems more
interesting to implement separated representations where some of the Cartesian coordinates
are grouped.

2.1.1 Degenerated domains
One of the most employed applications of PGD space separated representations is the cal-
culation of solutions in degenerated geometric domains. In this kind of domains, at least
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Full space separated representation

Extruded geometry

Plate

Space separated representation in degenerated domains

Shell

Figure 2.1: Scheme representing examples of space separated representations.
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one of the characteristic dimensions is much smaller than the others, i.e. several orders of
magnitude of difference between the dimensions. These configurations are extensively found
in industrial research and their computational processing by means of standard mesh-based
discretization techniques can be a difficult issue to resolve.

This is the case, for instance, of plate or shell-like domains, which are typical elements
of structures and materials manufacturing. In this kind of geometries, the thickness is quite
smaller than the rest of the dimensions, but frequently captures an important amount of rel-
evant information in terms of material behaviour. Thus, in order to compute all this relevant
information, these geometries usually require an extremely fine mesh along the thickness,
which considerably increases the degrees of freedom and consequently, the computational
cost of the problem. Therefore, due to the need for development of new techniques for solv-
ing this issue, this kind of geometric configurations became an important research focus for
the application of the PGD.

PGD-based separated representations split the physical space into several lower dimen-
sional domains, where the smaller dimensions are treated separately from the rest of the
dimensions. Thus, problems defined over 3D dimensions can be solved from a sequence of
2D and 1D problems.

One important space separated representation associated with a degenerated geometry is
the so-called in-plane-out-of-plane PGD, where the separated form is constructed by dividing
the 3D domain into two subdomains, concerning the plane and the thickness (Ω = Ωπ ×Ω⊥
with Ωπ ⊂ R2 and Ω⊥ ⊂ R).

Thus, an approximation of the 3D solution can be obtained as described in Eq. (2.2): a
finite sum of products of two functions depending on the coordinates of the plane and the
thickness respectively.

u(x, y, z) ≈
M∑
i=1

Fπi (x, y)F⊥i (z). (2.2)

This separated representation, which is more appropriate for plate or shell domains than
a full space separated representation, has been vastly studied by Bognet et al. in several
studies in the framework of composite materials. In [16], this technique was presented and
applied to thermoelastic problems defined in plate geometries, where the full 3D model can
be solved with 2D characteristic computational complexity. Thus, the PGD was successfully
applied to composite plates and honeycomb composites, and the orientation of the composite
plies was introduced as an extra coordinate without affecting the solvability of the problem.
Moreover, this study reveals the decrease of the computational time that the in-plane-out-
of-plane PGD represents when compared to FEM based 3D discretizations, especially when
the number of degrees of freedom increases along the thickness.

Following the same research line, this approach was applied to shell geometries in [17] and
both previous studies (for plates and shells respectively) were adapted to thermal models,
solid and fluids mechanics and electromagnetic problems in [18]. The same approach was
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extensively considered in structural plate and shell models in [44, 113, 114, 115, 116, 117].
With respect to other structural applications, a parametric 3D elastic solution of beams
involved in frame structures was proposed in [19].

The in-plane-out-of-plane was also extended to many different physics, e.g. squeeze flows
of Newtonian and Non-Newtonian fluids in laminates in [48], flows in stratified porous media
in [28], and non-linear viscoplastic flows in plate domains in [22]. Moreover, this technique
was enriched with discontinuous functions for representing cracks in [49], delamination in
[79] and thermal contact resistances in [31].

2.1.2 Construction of the PGD for space separated representations
In order to illustrate the process of building a separated representation in the framework of
the PGD, we propose a simple example following the in-plane-out-of-plane approach. We
can consider the Poisson equation

∆u(x, y, z) + f(x, y, z) = 0, (2.3)

where the unknown temperature field is defined over a 3D plate domain Ω = Ωπ ×Ω⊥ with
Ωπ ⊂ R2 and Ω⊥ ⊂ R. For the sake of simplicity, the points (x, y, z) ∈ Ω are expressed
as (x, y, z) = (x, z), with x = (x, y) ∈ Ωπ and z ∈ Ω⊥. Homogeneous Dirichlet boundary
conditions are imposed and the constant source term f is applied to the whole domain Ω.

The objective of the PGD is to obtain a separated representation of an approximate
solution of the unknown temperature field u(x, z) as indicated in Eq. (1.11), i.e. as a finite
sum of products of functions depending on coordinates of the plane Ωπ and the thickness
Ω⊥ respectively. This separated representation can be written as

u(x, z) ≈
M∑
i=1

Fπi (x)F⊥i (z) (2.4)

where Fπi and F⊥i represent the functions depending on coordinates x and z respectively
andM is the number of terms of the functional product necessary to reproduce the unknown
field.

The first step for building the separated representation is the description of the weighted
residual form of Eq. (2.3):∫

Ωπ×Ω⊥
u∗
(

∆πu+ ∂2u

∂z2 + f
)
dΩπ dΩ⊥ = 0, (2.5)

where ∆π represents the in-plane Laplace operator.
The fact of constructing the approximate solution by adding new terms (enrichments) to

the previous solution allows writing the separate form for the step M as follows

uM (x, z) = uM−1(x, z) + FπM (x)F⊥M (z) =
M−1∑
i=1

Fπi (x)F⊥i (z) + FπM (x)F⊥M (z) (2.6)
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with uM−1(x, z) =
∑M−1
i=1 Fπi (x)F⊥i (z) representing the approximate solution for the pre-

vious enrichment step and functions FπM and F⊥M being unknown. In order to obtain these
functions, an iterative approach is implemented. uM,p represents the approximation at the
enrichment step M and the iteration p:

uM,p(x, z) = uM−1(x, z) + FπM,p(x)F⊥M,p(z) (2.7)

Thus, the iteration for calculating the functions FπM,p(x) and F⊥M,p(z) can be carried out, fol-
lowing the alternating direction strategy [29]. For this purpose, we can assume that FπM,p(x)
can be calculated from F⊥M,p−1(z) (obtained at the previous iteration p− 1). Now, Eq. (2.7)
reads

uM,p(x, z) = uM−1(x, z) + FπM,p(x)F⊥M,p−1(z) (2.8)

and consequently FπM,p(x) is the only unknown function. If we consider the weight function

u∗(x, z) = Fπ∗M (x)F⊥M,p−1(z) (2.9)

and substitute Eq. (2.8) and Eq. (2.9) into Eq. (2.5), we obtain:∫
Ωπ×Ω⊥

Fπ∗M F⊥M,p−1

(
∆πFπM,pF

⊥
M,p−1 + FπM,p

∂2F⊥M,p−1

∂z2

)
dΩπ dΩ⊥ =

−
∫

Ωπ×Ω⊥
Fπ∗M F⊥M,p−1

M−1∑
i=1

(
∆πFπi F

⊥
i + Fπi

∂2F⊥i
∂z2

)
dΩπ dΩ⊥

−
∫

Ωπ×Ω⊥
FπM ∗ F⊥M,p−1f dΩπ dΩ⊥ (2.10)

As can be observed in Eq. (2.10), all terms integrated over Ω⊥ are known and can be
computed, Eq. (2.10) resulting in a 2D integration over Ωπ:∫

Ωπ
Fπ∗M

(
απ∆πFπM,p + βπFπM,p

)
dΩπ =

−
∫

Ωπ
Fπ∗M

M−1∑
i=1

(
γπi ∆πFπi + δπi F

π
i

)
dΩπ −

∫
Ωπ
Fπ∗M ξπ dΩπ (2.11)

where coefficients απ, βπ, γπi , δπi and ξπ result from the 1D integrations over Ω⊥. Considering
the discretization of the domain Ωπ, Eq. (2.11) can be easily solved, obtaining the function
FπM,p (for more details, the interested reader can refer to [29]).

The same scheme is applied for calculating F⊥M,p from FπM,p , by substituting Eq. (2.7)
and the following weight function

u∗(x, z) = FπM,p(x)F⊥∗M (z) (2.12)
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into Eq. (2.5), resulting in:∫
Ωπ×Ω⊥

FπM,pF
⊥∗
M

(
∆πFπM,pF

⊥
M,p + FπM,p

∂2F⊥M,p

∂z2

)
dΩπ dΩ⊥ =

−
∫

Ωπ×Ω⊥
FπM,pF

⊥∗
M

M−1∑
i=1

(
∆πFπi F

⊥
i + Fπi

∂2F⊥i
∂z2

)
dΩπ dΩ⊥

−
∫

Ωπ×Ω⊥
FπM,pF

⊥∗
M f dΩπ dΩ⊥ (2.13)

Finally, in Eq. (2.13), all terms integrated over Ωπ are known and can be computed, Eq.
(2.13) resulting in a 1D integration over Ω⊥:∫

Ω⊥
F⊥∗M

(
α⊥

∂2F⊥M,p

∂z2 + β⊥F⊥M,p

)
dΩ⊥ =

−
∫

Ω⊥
F⊥∗M

M−1∑
i=1

(
γ⊥i

∂2F⊥i
∂z2 + δ⊥i F

⊥
i

)
dΩ⊥ −

∫
Ω⊥

F⊥∗M ξ⊥ dΩ⊥ (2.14)

with α⊥, β⊥, γ⊥i , δ⊥i and ξ⊥ resulting from the terms associated with the 2D integration
over Ωπ. Thus, F⊥M,p can be obtained with a previous discretization of the domain Ω⊥.

For each step of the iteration, the error is computed by calculating :

εp =
∥∥FπM,p(x)F⊥M,p(z)− FπM,p−1(x)F⊥M,p−1(z)

∥∥2∥∥∥FπM,p−1(x)F⊥M,p−1(z)
∥∥∥2 < ε (2.15)

When the value of εp achieves a suitable tolerance ε, the corresponding enrichment step M
has been fulfilled and the product of the functions FπM (x) and F⊥M (z) is included in the
separated form as a new term.

Finally, by computing an appropriate measure of the error, the end of the enrichment
process is achieved when this error becomes small enough. For instance, the PGD error can
be calculated as the relative weight of the new mode with respect to all the modes obtained
as follows

εPGD =
∥∥FπM (x)F⊥M (z)

∥∥2∥∥∥∥∥
M∑
i=1

Fπi (x)F⊥i (z)

∥∥∥∥∥
2 (2.16)

When the suitable value for εPGD is achieved, the approximation of the solution takes the
form of Eq. (2.4), i.e. a finite sum of functional products depending on the parameters
of the problem (in this case, the coordinates x and z), this separated form being obtained
without computing a priori information associated with the full-model solution.

Moreover, this approximation represents an important gain in terms of computational
cost. For instance, a 3D FEM model corresponding to the 2D (plane) and 1D (thickness)
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meshes employed in this example, i.e. Ωh = Ωhπ×Ωh⊥ (Ωh represents the meshed 3D domain
and Ωhπ and Ωh⊥ are the 2D and 1D meshed domains of the PGD, respectively), would need to
solve a system with n = Nx×Nz unknown values. If a fine mesh is used to solve the problem,
the complexity of the problem increases considerably. Nevertheless, this PGD example solves
a sequence of 2D and 1D uncoupled problems, which means that the number of unknown
values is nPGD = M × (Nx + Nz), i.e. a considerably smaller amount of unknowns when
compared to the FEM model (provided that M is sufficiently small), especially when fine
meshes are required to capture the through-thickness behavior.

2.2 Model Order Reduction techniques in partitioned
domains

In this section, some MOR techniques based on the use of partitioned domains are analysed.

2.2.1 A posteriori techniques
The Reduced Basis Element Method [74], which represents an important reference for this
study, is based on the combination of a reduced basis discretization and the domain de-
composition method [95, 97]. The basic idea is to split the domain into several subdomains
and construct a reduced basis for these subdomains by considering representative geometric
snapshots. The global solution is obtained by coupling the individual basis solutions via
Lagrange multipliers.

This method was subsequently applied to a thermal fin problem in [75]. The objective is
to take advantage of the repetitive configuration of the problem in order to easily reproduce
the solution of some generic blocks along the whole domain. For this purpose, the domain
is split into subdomains that are similar to several generic domains. The subdomains are
considered as the deformation of one or a few of reference generic domains. These reference
domains are filled with reduced basis functional spaces that are mapped to each subdomain
together with the geometry. The solution of each subdomain is obtained as a linear combi-
nation of the precomputed solution mapped from the reference domain onto each particular
subdomain and the matching between the subdomains solution is carried out by means of
Lagrange multipliers. In [73], this approach was extended to the steady Stokes equation.
The same approach was recently applied in [64] to the thermal simulation of integrated cir-
cuits by using a multiblock POD model and in [80] to the transient thermal simulation of
integrated circuits by means of a POD-based reduced basis element technique.

These interesting studies deal with the challenge of building separated representations
by using partitions of the domain in order to take advantage of the repetitive geometry
or configuration of the problem, which is intimately related to the object of study of this
thesis. Nevertheless, the need for precomputed information for constructing the reduced
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Figure 2.2: Partition of domain Ω: a) disjoint subdomains, b) overlapping subdomains.

basis represents an important limitation in terms of applicability. This situation reveals the
necessity of a priori approaches in order to address this challenge.

2.2.2 A priori techniques

Regarding the construction of space separated representations inspired by the partition
of the domain, the combination of the domain decomposition method (DD) [95, 97] and
the PGD represents an interesting approach. The DD is a technique that can be used in
any discretization method for partial differential equations. It reformulates any boundary-
value problem on a partition of the computational domain into several subdomains. This
allows obtaining a more efficient way to calculate the solution by using parallel computer
platforms, as every subdomain can be solved independently, with the boundary conditions
which represent the interaction between subdomains. It represents a very useful technique
when different kinds of differential equations are applied to each subdomain.

Thus, the basic idea of the DD technique is the partition of the domain into several
parts. Fig. 2.2 represents the two different ways for splitting a generic domain Ω. The
first way a) is obtained by dividing the domain into two disjoint subdomains (Ω1 and Ω2)
with a common boundary Γ. The second way b) consists in a partition of two overlapping
subdomains (Ω1 and Ω2), with a shared region Ω21 and two boundaries (Γ1 and Γ2).

With respect to the objective of this thesis, some interesting techniques have implemented
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the combination of DD and PGD for partitioned domains or repetitive topologies in order
to build a more efficient separation strategy compared to full space PGD techniques.

For instance, a method for coupling FEM and PGD is proposed in [3] for the treatment
of localized behaviour of model solutions. More specifically, the PGD is enriched with finite
elements for describing discontinuities, this technique also being used for the treatment of
boundaries for coupling subdomains in the framework of domain decomposition techniques.

Other interesting work is presented in [59], in which the authors introduced an efficient
combination of DD and PGD for parametrised elliptic problems with complex geometries,
taking advantage of the repetitive configuration of some domains and carrying out an ap-
propriate partition into subdomains. Thus, a PGD approximate solution is obtained in each
subdomain in terms of the solution at the interface. The evaluation of the approximation in
each subdomain is a simple function evaluation given the interface values.

In [83], another combination of PGD and DD is proposed for addressing problems in
complex domains where the PGD full space separated representation or the sequence of 2D
and 1D problems cannot be applied even after the use of mapping techniques to simplify
the geometry. To this aim, this study proposes a DD strategy based on the use of the
PGD and the Arlequin coupling strategy [13], for splitting the physical space and adding
parameters as extra coordinates. Thus, a PGD approximation is applied to calculate the
solution at every subdomain of the partition and the Lagrange multiplayer that enforces the
equality of the solution at every overlapping region. The Arlequin strategy is also used in
[84] for multimodel problems in order to combine PGD reduced models for the simulation
of structures involving localized geometrical details. To this aim, the LATIN algorithm
[67, 68, 85, 88, 92] is introduced to solve the problem in a decoupled manner and the PGD
approach is then used to solve every model.

With respect to other approaches outside the framework of Domain Decomposition, the
concept of partitioning in the framework of the PGD has been used in [10] for the calculation
of a PGD approximation with a constant partition of the time domain, for the case of a
moving source in a transient heat transfer problem. Another interesting approach is based
on the use of wavelets for approximating the functions involved in separated representations
for multi-scale solutions [70]. More recently, the partition of unity has been introduced in
[62, 63] for building PGD separated representations based on different levels of discretization.

2.3 Motivation of the thesis

2.3.1 Partitioned domains: the Global-Local scheme

After the previous summary of MOR techniques based on space separated representations,
it seems necessary to progress on the adaptation of this method to different geometries in
order to properly capture the relevant information of models defined over some particular
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domains.
Some techniques have been introduced in this chapter in order to emphasize the im-

portance of the simplification of the geometry when building separated representations, by
grouping some of the coordinates of the problem in view of its geometry. These approaches
split the problem into lower-dimension problems, the separated representation being con-
structed by following the so-called (in the context of this thesis) standard PGD point of view,
i.e. by using the discretization of each lower-dimension domain. Nevertheless, sometimes the
geometry or the configuration of some problems suggests the necessity of building separated
representations not related to the Cartesian coordinates.

Such is the case of domains consisting of geometric patterns, multi-scale problems, repet-
itive structures or domains consisting of different materials or parts. All these cases, suggest
the need of developing an MOR technique for taking advantage of these configurations. This
issue has already been addressed by using a posteriori MOR techniques but it still remains
a challenge when using a priori approaches.

Taking into consideration the approaches presented in Section 2.2, the aim of this thesis
is to develop a technique that is able to solve problems with a new PGD scheme based on
partitioning, without using an extra technique for coupling the solution of all the subdomains.
For this purpose, the Global-Local PGD is introduced. This approach is based on the idea
that the solution in each subdomain of the partition is obtained by particularising a generic
local solution.

Thus, after splitting the domain into several subdomains, the standard point of view
is substituted by a separation based on the definition of two variables: the local variable,
associated with a fine mesh and the global variable, which represents the partition. This
point of view contributes to the considerable reduction of degrees of freedom that the PGD
approach implies.

2.3.2 The Partition of Unity: coupling discretization levels

When addressing problems applied to domains with particular local features or repetitive
structures with standard mesh-based approaches, FEM approaches based on the partition
of unity such as the Generalized Finite Element Method (GFEM) [38, 40, 89, 105, 106]
seem a good alternative for solving this kind of problems while reducing the number of
degrees of freedom. This technique is based on the combination of global and locals levels
of discretization for capturing the features of interest of the domain.

This combination is carried out by coupling a FEM standard model defined over a coarse
meshed domain with a fine-meshed enrichment defined over a patch. This patch is super-
posed on the zone where the local feature is placed by using the shape functions of the coarse
mesh, which satisfy the partition of unity. Thus, a refinement of the coarse mesh can be
implemented and an accurate solution of local features of interest can be calculated, without
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refining over the whole domain. The local enrichments provide extra degrees of freedom to
the corresponding nodes in the domain, without altering the mesh topology.

The ability of this method to capture the solution locally depends on the adequacy of the
enrichment function. This is usually carried out by introducing some previous knowledge
on the solution, or by setting an auxiliary local problem, whose boundary conditions need
to be iterated [41, 45].

All these concepts are taken into consideration in the Global-Local PGD approach pro-
posed in Chapter 3, where the objective is to develop a PGD technique for enriching FEM
solutions defined over coarse meshes. Also based on the partition of unity, this PGD uses
an appropriate Global-Local scheme that combines local and global levels of discretization,
being able to generate accurate approximation spaces, i.e. to provide the pertinent enrich-
ment without the need of solving extra problems or computing a priori information of the
problem.

2.3.3 PGD for non-Cartesian geometries
One of the most relevant limitations of the PGD is related to the Cartesian framework.
The standard PGD approach when addressing space separated representations is associated
with discretizations defined over Cartesian geometries, the separability of the solution being
unachievable for non-Cartesian domains. This fact represents an important constraint for
the applicability of the PGD to some practical contexts, therefore it seems necessary to
deal with complex non-Cartesian geometries while keeping the computational benefits of the
PGD for building space separated representations.

Some approaches have been proposed to face this issue. In [50], the authors proposed a
generic domain embedded into a Cartesian geometry. Moreover, in [47] the authors intro-
duced a parametrisation map for quadrilateral domains.

In this thesis, in order to avoid this limitation of the PGD, the construction of separated
representations for non-Cartesians domains is achieved by taking advantage of the Global-
Local PGD approach. This is due to the use of a separation scheme based on the partition of
the domain, which implies that this technique could be defined over non-structured meshes,
independently of the coordinates of the nodes of the problem or the chosen partition.

2.3.4 Intrusiveness of the PGD
The concept of intrusiveness of MOR techniques is related to the fact that these methods
involve the manipulation and modification of the operators that reproduce the PDE of inter-
est. These code alterations are sometimes impossible to implement in commercial simulation
tools. Consequently, MOR approaches usually require specific codes.

The discretization of each coordinate taken into consideration in the PGD framework
and the construction of the associated operators for solving the corresponding PDE imply
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that the standard PGD approach is very intrusive. It seems necessary to develop new
methodologies in order to reduce the intrusiveness, allowing us to incorporate the PGD into
commercial simulation platforms, which are massively used for solving engineering problems
of industrial interest

In the PGD framework, some alternatives have been proposed: in [34], the authors
suggested that the non-intrusive PGD scheme is workable for shape optimization problems
with geometrical parameters as extra-coordinates, and in [119] a non-intrusive PGD scheme
with application in biomechanics is introduced.

Regarding other MOR-based techniques, this issue is addressed in [20], where the hierar-
chical collocation is employed to approximate the numerical solution of parametric models,
introducing a non-intrusive approach based on sparse adaptive sampling of the parametric
space, which builds a sparse low-rank approximate tensor representation of the solution.

The Global-Local approach based on the partition of unity presented in Chapter 3 gener-
ates and combines discrete operators at local and global levels, which implies a very intrusive
approach.

In order to avoid this issue, a less intrusive approach based on the Global-Local scheme
is proposed in Chapter 4 for building space separated representations. This technique uses
some discrete operators as a starting point, these operators being obtained from a previous
FEM discretization that can be built by using standard codes. Thus, if the operators are
compatible with the desired partition, the Global-Local PGD scheme can be used as an
algebraic iterative solver and could be implemented within standard simulation codes.
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Chapter 3

Global-Local separated
representations based on the
Partition of Unity

In this chapter, the Global-Local separated representations are introduced. This approach
combines global and local discretization levels based on the partition of unity. It builds a
separated representation that provides the local enrichment, without the need for a priori
knowledge of the solution, nor the implementation of auxiliary local problems to determine
the enrichment.

While in-plane-out-of-plane separated representations achieve a reduction in complexity
by splitting a 3D problem into a sequence of problems of lower dimension (2D or 1D), the
Global-Local scheme uses the separation of the scales instead. Therefore, the numerical
complexity is split into a global problem, defined over a coarse mesh, and a local problem,
defined over a reference support with an arbitrarily fine mesh. Both global and local problems
are defined in the same physical dimension of the original problem (1D, 2D, or 3D).

Moreover, by using a standard (finite element) isoparametric mapping, arbitrary non-
Cartesian domains can be addressed.
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3.1. Introduction

3.1 Introduction

The concept of enriching a finite element formulation with some a priori knowledge on the
solution is essentially based on the Partition of Unity Method [8, 76]. This is the case of
the Generalized Finite Element Method (GFEM) [38, 40, 89, 105, 106] or the Extended
Finite Element Method (XFEM) [12, 82]. These techniques are especially useful for solving
problems defined over domains containing local features like cracks [37, 103, 108], edge
singularities [40], boundary layers [39], inclusions [107], voids [105, 107], microstructures
[104], etc. The main idea is the use of an a priori knowledge about the solution of the
problem for determining enrichment functions that are coupled to a standard FEM model,
in order to capture the solution of local features of interest that would require refined meshes.
The conformity is ensured if the enrichment space satisfies the partition of unity.

In some cases, when no a priori knowledge on the solution is available, we can still set
an auxiliary problem, defined over a subdomain, or patch, to compute the appropriate local
enrichment function. This is usually referred to as a Global-Local GFEM [41, 45].

With respect to the combination of methods based on the partition of unity with MOR
approaches, in [23] the PGD was used in the framework of GFEM. This work builds a
parametric enrichment function that is able to capture changing simulation conditions,
and therefore, to adaptively choose the appropriate enrichment function. The result is a
Vademecum-GFEM formulation (V-GFEM).

Inspired by all these techniques, a new point of view is now proposed: a Global-Local
PGD based on the Partition of Unity. Instead of using the approach of the methods that
combine FEM with the partition of unity for capturing the relevant information of local
features of interest, this PGD approach takes advantage of the concept of ’enrichment’ to
replicate a local solution throughout the whole domain. With this aim, two discretizations
are defined throughout the domain: a coarse mesh, associated with the partition of the
domain, and a fine mesh, associated with the replication of the enrichment. Thus, with the
use of the PGD, the enrichment functions are not previously required: the approximation
space is provided by the modes of the PGD as it solves the problem. This new approach is
also related to the techniques proposed in [62, 63], but those separation forms are associated
with Cartesian geometries.

Thus, this technique represents an adaptation of the point of view of previous methods
based on the Partition of Unity to the Model Order Reduction a priori approaches, as it
does not need previous knowledge of the solution to find an accurate enrichment: the PGD
proposes the best possible enrichment without the need of solving an additional local FEM
problem.

Section 3.2 is devoted to the Global-Local PGD based on the partition of the unity: the
approach is introduced, the combination of global and local levels of discretization is defined
and the PGD methodology is intensively described. In Section 3.3, a comparison of this
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PGD technique with the GFEM approach is carried out. In Section 3.4 a set of numerical
examples is shown and finally, in Section 3.5 the results are discussed and the conclusions
are summarised.

3.2 The Global-Local PGD

3.2.1 The concept of Partition of Unity

The use the Partition of Unity Method [8, 38, 76, 103] while addressing high-fidelity ap-
proaches allows including in the FEM model a priori local knowledge of the PDE being
solved. Methods such as GFEM or XFEM are intimately related to the idea of using the Fi-
nite Element Method applied to overlapping grids, i.e. to create partitions of a domain into
several overlapping regions (the so-called patches) that contain simple generated grids. Thus,
domains consisting of complex geometries can be split into subdomains with independent
meshes whose refinement can be carried out without altering the rest of the subdomains.

The main idea of these methods is the combination of the partition of unity and an
enrichment with local approximation spaces (obtained by taking advantage of the a priori
knowledge about the behaviour of the solution), which can be used to accurately capture the
physics underneath the local features. It results in a simple way to incorporate additional
analytical details of the problem while solving in the finite element space, as the refinement
is carried out only in the local domains.

There are two key properties that this approach must satisfy:

• The first one is the capability of the method to capture the physics of the local features.
To reach this aim, the enrichment functions are accurately built due to the a priori
knowledge of the configuration of the problem.

• The second one corresponds to conformity when using a standard FEM problem cou-
pled with the enrichment functions. The inter-element C0 continuity is ensured without
losing the approximation properties, by using shape functions that satisfy the partition
of unity. For a discretization of a local domain ΩL, a partition of unity is represented
by a collection of global functions Nα whose value sums up to unity at each point of
the discretization xL, which means that the approximation space satisfies the partition
of unity if and only if:

∑
α

Nα(xL) = 1, ∀xL ∈ ΩL (3.1)

where Nα(xL) represents the α-node shape functions and xL are the coordinates of
the discretization of the local domain ΩL.
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Thus, the approximation of the solution field, denoted by u, reads:

u =
∑
i∈I

Ni ui +
∑
i∈Ienr

Ni Lgi, (3.2)

where Ni are the standard shape functions satisfying the partition of unity, ui are standard
finite element degrees of freedom, L is the enrichment or local function defined over the
enrichment patch, and gi are the extra degrees of freedom. Note that only a single enrichment
function per node has been considered. A more general expression could be:

u =
∑
i∈I

Ni ui +
∑
i∈Ienr

Ni
∑
j

Lj g
j
i , (3.3)

where several enrichment functions Lj have been considered.

3.2.2 Definition of the Global-Local approximation
The Global-Local separated representation is based on the following ideas:

• Both the global variable (the extra degrees of freedom) and the local functions are
assumed as unknowns of the problem. Therefore, we will devise a PGD algorithm to
compute both gji and Lj in Eq. (3.3).

• Local functions Lj are defined in the reference support of the enriched node i. The
support of an enriched node is the union of the elements attached to that node. In
practice, the computation of the local function involves the discretization of the sup-
port.

• By using standard isoparametric mapping, local functions can be mapped to arbitrary
non-Cartesian domains. The isoparametric mapping is given by shape functions Ni.

Under this light, Eq. (3.3) can be reinterpreted to define the Global-Local separated
representation over the enriched domain as follows:

uenr =
∑
i∈Ienr

Ni

Nm∑
j=1

Lj g
j
i , by abuse of notation 

Nm∑
j=1

LjGj , (3.4)

where the index j is now understood as the PGD mode j, and Nm stands for the number
of PGD modes to be computed. In Eq. (3.4), Gj stands for the global function. As it is
standard in the PGD framework, the separated representation is computed by adding one
mode at a time. Therefore, the separated representation is built progressively by adding
pairs (Lj , Gj), for j = 1, . . . , Nm.

The separation is established due to the definition of two different discretization levels,
as it is described in Fig. 3.1: the coarse and the fine levels. The global variable is defined
over a coarse mesh compatible with the partition of the domain into several macro-elements.
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Chapter 3. Global-Local separated representations based on the Partition of Unity

In a connection with GFEM and XFEM techniques, the global shape functions (N) should
satisfy the Partition of Unity (see Fig. 3.1).

We denote the discretization of the local functions Lj at the reference support as follows:

Lj =
∑
k∈Iloc

Mkl
k
j , (3.5)

where Mk are standard shape functions at node k of the reference support mesh, and lkj are
the nodal coefficients of the local function. By introducing the above discretization in Eq.
(3.4), we can also write the global-local approximation as follows:

uenr =
∑
i∈Ienr

Ni

Nm∑
j=1

∑
k∈Iloc

Mkl
k
j g

j
i . (3.6)

Thus, instead of using the refinement for capturing the information of local features of
interest as most of the GFEM or XFEM applications do, this technique is used to replicate
the fine mesh throughout the whole domain while reducing the computational cost by using
a PGD technique. This means that a standard fine FEM discretization of the whole problem
is substituted by a coarse mesh that defines the partition and a fine mesh defined over a
small support (when compared to the whole domain).

The PGD approximation can be easily replicated by displacing the support throughout
the whole domain, coupling the distribution obtained for the local variable with the partition
of unity applied to the global variable. A scheme representing the combination of both levels
for constructing the whole approximation is presented in Fig. 3.2. For a 1D support located
over two macro-elements, the local variable distribution lkj is multiplied by its shape functions
Mk, providing the generic local solution. At the coarse level, the global variable gji associated
with the shared node between the macro-elements is interpolated by using its corresponding
global shape function Ni (a linear Lagrange shape function, in this example) that satisfy the
partition of unity. The coupling of both levels leads to the PGD approximation. In 3.2.2.1
the process of obtaining the approximation throughout the whole domain is more precisely
described.

In order to illustrate the global-local approximation, let us consider 1D linear elements,
the finite element approximation on a macro-element being defined as follows:

ufem = N1g1 +N2g2 (3.7)

where ufem is the approximation of the solution referred to the coordinates over the element.
N1 and N2 are the shape functions associated with both nodes of the macro-element and g1

and g2 are the values associated with those nodes (global variables).
Now, one can consider that this coarse solution can be enriched by adding a single local

function. Therefore, we are considering here that j = 1. We have at the element level that
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Global 
Shape Functions

Ni

Local Shape
Functions

Mk

Macro-element 1 …

N1 N2 N3
Ni Ni+1

Mk

Partition Macro-element 2 Macro-element i

Figure 3.1: Scheme representing the combination of the discretizations of the global and the
local levels.

i = 1, 2, and the local function, defined over the reference support, is split into its front and
back components: L1 = L(ξ ∈ [−1, 0]), and L2 = L(ξ ∈ [0, 1]):

uenr = N1L1g1 +N2L2g2. (3.8)

In turn, these enrichments are discretized using the fine mesh associated with the local level.
Thus, if 2n− 1 nodes are used in the mesh, the enrichments are rewritten as follows:

L1 = Mnl
n
1 + . . .+M2n−1l

2n−1
1

L2 = M1l
1
2 + . . .+Mnl

n
2

(3.9)

Mk, with 1 ≤ k ≤ 2n− 1 are the shape functions associated with the nodes of every element
on the fine mesh. The local variable is defined as lki . If Eq. (3.9) is introduced in Eq. (3.8),
the Global-Local approximation now reads:

uenr = N1

(2n−1∑
k=n

Mkl
k
1

)
g1 +N2

(
n∑
k=1

Mkl
k
2

)
g2, (3.10)

or, finally, as follows,

uenr =
2∑
i=1

Ni

(2n−1∑
k=1

Mkl
k
i

)
gi. (3.11)
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N1

N2

N3

Mk lk

Mk

Ni gi    g1=0
g2≠0
g3=0

Macro-element 1 Macro-element 2

Uenr

Global level

Local level

Global 
Shape Functions

Global Solution

Local Solution

Local Shape Functions

PGD
approximation

Figure 3.2: Combination of global and local levels to obtain the PGD approximation.

Eq. (3.11) represents the approximation of the solution at every point of the domain,
coupling the local and the global variables by satisfying the Partition of Unity. This approxi-
mation is used in the framework of the PGD in order to construct a separated representation
based on the calculation of the global and the local variable. Nevertheless, before addressing
the computation of this PGD, it seems mandatory to carry out a better description of the
tools that allows us to couple the global and the local levels: the support and the global
shape functions.

3.2.2.1 Replication of the local solution throughout the domain

Once the strategy of the Global-Local PGD approach combined with the partition of unity
has been defined, the process of replication of the fine-meshed approximation throughout
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3.2. The Global-Local PGD

the whole domain is more precisely described. Following the scheme plotted in Fig. 3.2, the
objective now is to describe the approximation of the solution provided by the combination
of the Global and the Local levels.

When considering the combination of both levels of discretization, the starting point is
the concept of support. The support is a generic domain consisting of several fine-meshed
macro-elements that share a unique node, i.e. the set of macro-elements where an entire
global shape function is defined (see Fig. 3.1 and Fig. 3.2). This means that the sup-
port consists of two macro-elements when addressing 1D problems, four macro-elements for
2D problems (when considering squared macro-elements), and eight macro-elements for 3D
problems (when considering cubic macro-elements), i.e. 2d macro-elements, where d is the
number of geometric dimensions. These macro-elements are compatible with those resulting
from the coarse mesh partition. Consequently, when the shared node of the support is suc-
cessively located at every node of the global mesh, the whole domain is covered, permitting
the overlapping of the support at each macro-element of the partition.

a) Whole support b) Half-support c) Quarter-support

Figure 3.3: Configuration of the support while covering the whole domain for global linear
shape functions.

During the process of covering the domain, the support presents several configurations.
For the sake of clarity, Fig. 3.3 represents the three possible configurations of a 2D support
(consisting of four squared macro-elements) when it covers the coarse mesh of a domain
with linear shape functions. When it is located over an inner node, its four macro-elements
cover four macro-elements of the partition. However, when the nodes are located over the
domain boundary, only a half or a quarter of the support is used. When the support domain
is centred over the position of a node of the coarse mesh, the domain Ωloc covered by the
support can be defined as follows:

Ωloc =
⋃
e

Ωe, (3.12)
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Chapter 3. Global-Local separated representations based on the Partition of Unity

where the index e makes reference to the set of macro-elements that share the coarse-mesh
node where the support is centred.

The objective of creating this configuration is the definition of the local variable over the
support and the coupling of the local variable with the global variable and its shape functions.
For instance, for a 2D support consisting of four squared macro-elements, the distribution
of the local enrichment over the support when using linear global shape functions is shown
in Fig. 3.4.

L1L2

L3 L4

Figure 3.4: Distribution of the Local variable throughout the support.

The configuration of the global shape functions for the linear case for squared 2D meshes
is shown in Fig. 3.5. In this case, linear Lagrangian shape functions are applied to a local
support whose centre is located at the position of a node of the coarse mesh, involving
the four macro-elements Ωe that share this node. Thus, each part of the shape function is
associated with its corresponding set of values of the local enrichment Li (Fig. 3.4).

The shape functions allow us to interpolate the values of the global variables defined at
the nodes of the coarse mesh. Even though the values of the global variable are shared by
the macro-elements, reducing the independence of the approximation of each subdomain,
this fact ensures the continuity of the solution.

3.2.3 Global-Local PGD computation

3.2.3.1 Weak form

After the description of the fundamentals of this Global-Local PGD approach and in order to
illustrate this technique, the Poisson equation has been chosen for developing the formulation
of the PGD:

∆u+ f = 0. (3.13)

The aim of this approach is to enrich a FEM solution previously obtained over a coarse
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3.2. The Global-Local PGD

Figure 3.5: Configuration of the global shape functions for the linear case and squared 2D
meshes.

mesh, therefore the solution field is defined as the sum of the known coarse solution ufem

and the enrichment obtained by using the PGD, uenr:

u = ufem + uenr (3.14)

If we introduce Eq. (3.14) into Eq. (3.13), the Poisson equation now reads

∆ufem + ∆uenr + f = 0. (3.15)

When only considering Dirichlet boundary conditions at the boundary of a generic domain
Ω, and for all suitable test functions u∗, the weak form of Eq. (3.15) is defined as follows:∫

Ω
u∗(∆ufem + ∆uenr + f) dΩ = 0, (3.16)

or integrating by parts, ∫
Ω
∇u∗ · (∇ufem +∇uenr) dΩ =

∫
Ω
u∗f dΩ (3.17)

The global-local approximation has already been defined in Eq. (3.6). Let us suppose
that a single mode wants to be computed, i.e. we consider j = 1. This represents the greedy
PGD algorithm, that adds one term at a time to the separated representation. Consequently,
its gradient ∇uenr reads:

∇uenr =
∑
i∈Ienr

∇Ni
∑
k∈Iloc

Mkl
k gi +

∑
i∈Ienr

Ni
∑
k∈Iloc

∇Mkl
k gi. (3.18)
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The expression for ∇uenr of Eq. (3.18) can be introduced into Eq. (3.17):

∫
Ω
∇u∗ ·

[ ∑
i∈Ienr

∇Ni
∑
k∈Iloc

Mkl
k gi +

∑
i∈Ienr

Ni
∑
k∈Iloc

∇Mkl
k gi

]
dΩ =

=

∫
Ω
u∗f dΩ−

∫
Ω
∇u∗ · ∇ufem dΩ (3.19)

where an appropriate choice for the weight function u∗ makes possible the calculation of
the global and the local variables. This is carried out by following the two-step Alternating
Direction Strategy described in Sections 3.2.3.2 and 3.2.3.3 and using a greedy algorithm.

3.2.3.2 Global problem

The definition of uenr and ∇uenr presented above can be rewritten as follows:

uenr =
∑
i∈Ienr

( ∑
k∈Iloc

NiMkl
k

)
gi, (3.20)

and

∇uenr =
∑
i∈Ienr

( ∑
k∈Iloc

∇NiMkl
k

)
gi +

∑
i∈Ienr

( ∑
k∈Iloc

Ni∇Mkl
k

)
gi. (3.21)

Introducing N̂i, B̂IG,i and B̂IIG,i, the equations Eq. (3.20) and Eq. (3.21) can be rewritten
as follows:

uenr =
∑
i∈Ienr

N̂i gi, (3.22)

and
∇uenr =

∑
i∈Ienr

(
B̂IG,i + B̂IIG,i

)
gi (3.23)

where N̂i, B̂IG,i and B̂IIG,i represent a sort of shape functions composed of products of global
shape functions (or their derivatives), local shape functions (or their derivatives) and the
local variable.

Similarly, we can choose an appropriate test function, so that u∗ and ∇u∗ can be defined,
at some node i ∈ Ienr:

u∗i = N̂i g
∗
i , (3.24)

and
∇u∗i =

(
B̂IG,i + B̂IIG,i

)
g∗i . (3.25)
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3.2. The Global-Local PGD

Finally, we can substitute Eq. (3.22), Eq. (3.23), Eq. (3.24) and Eq. (3.25) in Eq.
(3.17), and obtain a new version of Eq. (3.19) for solving the global problem:

∑
i∈Ienr

g∗j

∫
Ω

(
B̂IG,j + B̂IIG,j

)
·
(
B̂IG,i + B̂IIG,i

)
dΩ gi =

= g∗j

∫
Ω
N̂j f dΩ− g∗j

∫
Ω

(
B̂IG,j + B̂IIG,j

)
· ∇ufem dΩ, ∀j ∈ Ienr, (3.26)

where the operators N̂i, B̂IG,i and B̂IIG,i depend on the shape functions and a known value
of the local variable at a given enrichment step and its corresponding fixed point iteration.
The only unknown is the global variable.

In order to integrate the above equations properly, the standard procedure is to integrate
over each macro-element and then assemble the resulting matrices with the global numbering
given by the mesh topology. Here the integration needs to be carried out on the reference
support, therefore using the Gauss quadrature corresponding to the local discretization. If
the Gauss quadrature corresponding to the macro-element discretization were to be used
(the one that integrates Ni shape functions), an integration error would be introduced. Fig.
3.6 depicts the situation. In order to avoid that issue, for the solution of the global and
the local problems we will consider that the integrals are calculated by using the Gauss
quadrature associated with the local discretization, as depicted in Fig. 3.6b.

M
1 M

2

a

u
PGD

N
1

N
2

M
1 M

2

b
u

PGD

N
1

N
2

Figure 3.6: Gaussian quadrature associated with the global (a) and the local (b) discretiza-
tions.

Now, by performing the integration process, Eq. (3.26) can be turned into the following
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set of elemental matrices (here we refer to macro-elements):

KI,e
G ≡

∫
Ωe
B̂IG,i · B̂IG,j dΩe,

KII,e
G ≡

∫
Ωe
B̂IG,i · B̂IIG,j dΩe,

KIII,e
G ≡

∫
Ωe
B̂IIG,i · B̂IG,j dΩe,

KIV,e
G ≡

∫
Ωe
B̂IIG,i · B̂IIG,j dΩe. (3.27)

The elemental Laplacian matrix at the global level is:

Ke
G = KI,e

G +KII,e
G +KIII,e

G +KIV,e
G . (3.28)

Likewise, on the right-hand side of Eq. (3.26), the integration can be carried out on the
initial coarse mesh solution and the source term:

bI,eG ≡
∫

Ωe
N̂j f dΩe,

bII,eG ≡
∫

Ωe

(
B̂IG,i + B̂IIG,j

)
· ∇ufem dΩe,

(3.29)

which delivers the vector of nodal equivalent fluxes:

beG = bI,eG − b
II,e
G . (3.30)

Both the Laplacian matrix and the nodal fluxes vector at the macro-element level can be
brought to the global numbering by following a standard finite element assembling process:

KG g = bG, (3.31)

where g collects the nodal values gi, for i ∈ Ienr, of the global function at the macro-mesh.

3.2.3.3 Local problem

The objective of this section is to obtain the local variable from a previously obtained global
variable at a given enrichment step. We follow the methodology used in 3.2.3.2. We can
write the approximation provided by Eq. (3.6) at the reference support:

uenr =
∑
k∈Iloc

( ∑
i∈Ienr

NiMkgi

)
lk, (3.32)

that can be interpreted as the contribution of all enriched nodes to the reference support.
It can also be written as:

uenr =
∑
k∈Iloc

M̂kl
k. (3.33)
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The gradient is defined as:

∇uenr =
∑
k∈Iloc

(
B̂IL,k + B̂IIL,k

)
lk. (3.34)

The operators M̂k, B̂IL,k and B̂IIL,k are defined as follows:

M̂k =
∑
i∈Ienr

NiMkgi, (3.35)

B̂IL,k =
∑
i∈Ienr

Ni∇Mkgi (3.36)

B̂IIL,k =
∑
i∈Ienr

∇NiMkgi. (3.37)

Both the test function and its gradient are defined as follows, at the reference support
node k:

u∗k = M̂kl
k∗, (3.38)

and
∇u∗k =

(
B̂IL,k + B̂IIL,k

)
lk∗. (3.39)

Thus, we can replace Eq. (3.33), Eq. (3.34), Eq. (3.38) and Eq. (3.39) in Eq. (3.17),
and obtain the weak form for solving the local problem:∑

k∈Iloc

lj∗
∫

Ω

(
B̂IL,j + B̂IIL,j

)
·
(
B̂IL,k + B̂IIL,k

)
dΩ lk =

= lj∗
∫

Ω
M̂j f dΩ− lj∗

∫
Ω

(
B̂IL,j + B̂IIL,j

)
· ∇ufem dΩ, ∀j ∈ Iloc, (3.40)

where the operators M̂k, B̂IL,k and B̂IIL,k depend on the shape functions and a known value
of the global variable.

Now, by performing the integration process, Eq. (3.40) can be turned into the following
set of elemental matrices (here we refer to elements at the reference local support):

KI,e
L ≡

∫
Ωe
B̂IL,j · B̂IL,k dΩe

KII,e
L ≡

∫
Ωe
B̂IL,j · B̂IIL,k dΩe

KIII,e
L ≡

∫
Ωe
B̂IIL,j · B̂IL,k dΩe

KIV,e
L ≡

∫
Ωe
B̂IIL,j · B̂IIL,k dΩe (3.41)

The elemental Laplacian matrix at the local level is:

Ke
L = KI,e

L +KII,e
L +KIII,e

L +KIV,e
L . (3.42)
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Likewise, on the right-hand side, the integration can be carried out:

bI,eL ≡
∫

Ωe
M̂j f dΩe

bII,eL ≡
∫

Ωe

(
B̂IL,j + B̂IIL,j

)
· ∇ufem dΩe

(3.43)

which delivers the vector of nodal equivalent fluxes:

beL = bI,eL − b
II,e
L . (3.44)

Both the Laplacian matrix and the nodal fluxes vector at the support element level can
be brought to the local numbering by following a standard finite element assembly process:

KL l = bL, (3.45)

where l collects the nodal values lk, for k ∈ Iloc, of the local function at the reference support
mesh.

3.3 A GFEM interpretation
The partition of unity is a very useful tool for coupling local enrichments to coarse meshes in
the framework of some FEM-based techniques. The difference between the methods based on
the partition of unity lies in the configuration of the enrichments and how they are obtained.
The accuracy is related to the capability of these enrichments for reproducing the solution of
the local feature. In this section, the enrichment strategy of one of these techniques, GFEM,
is analysed in order to compare it with the Global-Local PGD presented in this work.

3.3.1 Fundamentals of GFEM

In order to describe the enrichment space of GFEM and for the sake of clarity, the scheme of
Fig. 3.7 (taken from [94]) is presented. This figure represents the construction of the GFEM
shape functions for a 2D domain. The GFEM approximation space (i.e a trial space) is built
by means of three components:

• Patch ωα. For GFEM techniques, the patch ωα is defined by the elements of a standard
FEM mesh that share the node α. If we consider that n patches cover the whole local
domain of interest ΩL:

ΩL =
n⋃
α=1

ωα (3.46)

44



3.3. A GFEM interpretation

• Partition of Unity applied to the patches. The shape functions satisfying the Partition
of Unity are applied to each patch. To illustrate this example, the Lagrangian FEM
shape functions Nα are shown in Fig. 3.7 for a patch concerning a generic node α.
These shape functions satisfy Eq. (3.1) for the local domain of interest ΩL, where the
enrichments are going to be coupled.

• Patch approximation spaces χα. For each patch ωα, there is a mα-dimensional space
of functions defined over ωα. These functions Lαi (see Fig. 3.7) are called enrichment
functions. Due to these functions, the GFEM is able to capture the information related
to the special features of the domain. Functions Lαi are calculated in view of the a
priori knowledge of the problem, which means that the appropriate selection of suitable
patch spaces is crucial for obtaining a good GFEM approximation. χα is defined as
follows:

χα = span
{
Lαi, 1 ≤ i ≤ mα, Lαi ∈ H1(ωα)

}
(3.47)

Figure 3.7: Construction of the GFEM shape function φαi [94].

Thus, the GFEM trial space can be defined as:

SGFEM(ΩL) ≡
n∑
α=1

Nαχα = span {φαi := NαLαi, 1 ≤ i ≤ mα, 1 ≤ α ≤ n} (3.48)
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where φαi are the GFEM shape functions.
Using Partition of Unity based shape functions Nα as basis functions in a FEM frame-

work, the approximation of the solution of the scalar field Eq. (3.3) at the nodes x of the
discretization of a domain Ω is now rewritten as:

uGFEM(x) =
∑
α∈I

Nα(x)ûα +
∑

e∈Ienr⊂I
Ne(x)

∑
j

Lej ũej (3.49)

where the two terms represent the standard FEM approximation and the enrichment term.
The field ûα represents the standard or global degrees of freedom, corresponding to global
nodal values related to the basis built by using the shape functions Nα. With respect to the
enrichment, which is located in the nodes corresponding to the local feature of interest, ũej
represents the extra degrees of freedom. ũej is related to the basis constructed by the local
enrichment functions Lej (with 1 ≤ j ≤ mα, j being the number of terms of each enrichment
function.

The expression introduced in Eq. (3.49) can also be rewritten in FEM notation, as
follows:

uGFEM = N û+N Leũ, (3.50)

where uGFEM is a vector of order p over an n-node full-enriched element. N is a p× (p ·n)
matrix representing the standard FEM shape functions. Le is a (p ·n) × (p ·m ·n) matrix
which provides the extra basis constructed by means of the enrichment functions. The
product of N and Le represents the GFEM shape functions. The degrees of freedom are
represented by the standard degrees of freedom vector û of size (p ·n)×1 and the enrichment
degrees of freedom vector ũ of size (p ·m ·n)× 1.

When comparing this enrichment definition with the methodology introduced in this
chapter, it can be deduced that the concept of patch is equivalent to the local support
presented in 3.2.2.1. In GFEM the union of patches represents the local domain whereas, in
the Global-Local PGD approach, the replication of the support over the coarse mesh covers
the whole domain. Moreover, the enrichments defined over each patch Lαi coincide with
the definition of local variable of the Global-Local PGD, but in the PGD approach, these
enrichment functions are the same for all the patches.

3.3.2 The enrichment functions

After the definition of the combination of the Partition of the Unity and the enrichments, the
main challenge of GFEM is the selection of the enrichment functions, since the accuracy of
the method depends on the suitability of the approximation spaces to reproduce the solution.
For this purpose, taking advantage of the a priori knowledge about the behaviour of the
solution, polynomial, exponential, and even discontinuous functions have been employed as
enrichments in order to model the local features of interest.
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Some analytical approaches have been proposed in [78, 82]. Nevertheless, the use of
analytical enrichments has some limitations in terms of applicability as they are not easily
available for most of the cases. Model Order Reduction techniques have also been used to
face this challenge. More specifically, the modes obtained by using a posteriori methods like
the POD can be employed as enrichment functions [7]. Nevertheless, this technique presents
some limitations, as the GFEM approach does not reproduce the relevant information of
the solution when the problem of interest is not very related to the model from which the
snapshots were obtained.

One interesting methodology for obtaining enrichment spaces in the framework of GFEM
is presented in [37, 41, 45]: GFEM with Global-Local enrichment functions. Among the dif-
ferent techniques for solving detailed FEM models while reducing the numerical complexity
without increasing considerably the computational effort required to maintain the accuracy
of the results, the Global-Local iterative approach (see [2, 87, 100, 109]) represents a good
alternative and has been widely applied to the development of multiple numerical analysis
methodologies.

This concept may include a wide amount of techniques, but it basically represents itself
a sort of multi-scale method, a hierarchical technique. It is based on the idea that a domain
can be globally analysed by means of a coarse mesh in order to obtain suitable boundary
conditions that are imposed to a local region of the domain, this local region being re-
analysed with a more refined mesh. With respect to GFEM, the enrichments can be obtained
by solving a fine local problem with boundary conditions provided by a coarse global solution,
implying an iterative problem.

Therefore, this strategy is intimately related to an inheritance concept, since the be-
haviour of the local fine mesh is governed by the data provided by the global coarse mesh.
For the sake of clarity, a scheme representing both discretizations is shown in Fig. 3.8.
In order to properly describe the Global-Local approach it is important to carry out the
following stages:

1. The accurate characterisation of the Global model is crucial, in order to provide the
appropriate information to the Local model.

2. The hierarchical interface: if the data obtained from the coarse mesh (boundary con-
ditions for the Local model) do not exactly match with the fine mesh, it is necessary
to establish an interpolation region.

3. The proper Local analysis: the use of a much more refined mesh in order to capture
the detailed information of the special features located in the domain.

The process of construction of enrichment functions by using this iterative scheme ac-
counts for possible interactions of local and global behaviours, which represents a consid-
erable improvement with respect to standard Global-Local FEM techniques. Moreover, all
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Figure 3.8: Discretization of the Global and Local domains Ω and ΩL

local problems of the domain can be solved by means of parallel computing, as a domain de-
composition technique. However, when addressing time-dependant problems, the iterations
must be carried out for each time step.

With respect to a priori MOR techniques, the PGD has been employed in [23] to create
a computational vademecum in the frame of GFEM (V-GFEM). Parametric solutions com-
puted off-line by means of the PGD are used as enrichment functions, which are employed
in the simulation of thermal models related to welding processes.

As it was commented in Chapter 1, considering the variational formulation of a paramet-
ric problem Eq. (1.12), the approximation provided by the PGD is expressed as a finite sum
of functional products depending on the parameters of the problem (Eq. (1.13)). For the
approach presented in [23], the enrichments of the GFEM are obtained by using the PGD,
Eq. (3.49) being rewritten as follows:

uGFEM =
∑
α∈I

Nαûα +
∑

ε∈Ienr⊂I
Ne φ(µ1, µ2, ..., µn)ũe (3.51)

where µ1, µ2, ..., µn are the parameters of the solution, and φ is the enrichment function that
is computed by using the PGD approach. Thus, φ(µ1, µ2, ..., µn) reads:

φ(µ1, µ2, ..., µn) =
K∑
k=1

n∏
i=1

F ki (µi). (3.52)

In connection with these methods, the PGD presented in this chapter represents an alter-
native for enriching standard FEM solutions defined over coarse discretizations. Neverthe-
less, the Global-Local PGD provides the most appropriate enrichment approximation space
without a priori information of the solution and without solving additional problems, which
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represents an important advantage when compared to GFEM approaches. The methodology
proposed in this work provides the enrichment as it builds the separated representation of
the solution.

3.4 Numerical Examples

3.4.1 One-dimensional cases

3.4.1.1 The steady heat conduction equation

The first example concerns the steady heat conduction equation Eq. (3.13), applied to a 1D
domain (with a length lx = 2), with f = −1 and homogeneous Dirichlet boundary conditions
at x = 0 and x = lx. The whole domain is initially partitioned into 2 macro-elements.

The FEM approximation of a coarse mesh described by the partition of the domain,
ufem, is defined as the starting point of the method. The mesh size of the support of the
local variable corresponds to the size of the elements of the desired fine discretization, which
consist in a mesh of 21 nodes per macro-element. Thus, following the formulation described
in Section 3.2.3 for the Poisson equation, the Global-Local PGD approach can be applied in
order to enrich the initial FEM solution.

The global variable is defined over the coarse discretization (3 nodes) and the local
variable is defined over a support domain or patch consisting of 2 macro-elements. This
simple example is very particular, as the 1D domain and the support of the local variable
match. Due to this fact, the solution can be easily replicated by using Eq. (3.12), imposing
the Dirichlet Boundary conditions to the global problem (G(x = 0) = G(x = lx) = 0) and
placing the support of the local variable over the domain.

Fig. 3.9, represents the initial coarse FEM solution and the enriched PGD approximation.
Thus, by considering one mode, the nodal relative error of the PGD when compared with
the FEM approximation (which, in turn, matches the exact solution) is around 10−14.

With regard to the configuration of the PGD solution, the coupling of the local variable
and the global shape functions defined over the support is shown in Fig. 3.10, resulting in
two similar parabolic distributions. As can be deduced from Fig. 3.9, this configuration is
zero for the position of the coarse mesh nodes, resulting in a sort of bubble enrichments, since
the initial coarse FEM nodal solution is exact (no enrichment is required at the nodes).

This simple configuration where the solution is obtained without overlapping of the sup-
port (by making G = 0 for the appropriate values of the Global variable) is also maintained
when the partition of the domain consists of an ever number of macro-elements, which im-
plies that the solution can be obtained with one mode. Nevertheless, the configuration of
the problem, with bubble enrichments, makes it impossible to obtain the solution with just
one mode for an odd number of macro-elements.
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Figure 3.9: PGD approximation of the example 3.4.1.1 for two macro-elements.

Figure 3.10: Coupling of the local variable and the global shape functions for the example
3.4.1.1 and two macro-elements.

For instance, the same problem is solved with a partition consisting of 3 macro-elements
(with a length lx = 3), with the same mesh size of the previous problem (i.e. 21 nodes
per subdomain). As can be observed in Fig. 3.11 for one mode, the solution is accurately
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obtained for the first and the third macro-elements (0 ≤ x ≤ 1 and 2 ≤ x ≤ 3 respectively)
but the overlapping of local supports produced in the second subdomain (1 ≤ x ≤ 2) due to
non-zero values of the Global variable (G2 and G3) makes impossible to obtain the solution
for this subdomain. Therefore, a second mode is necessary.

Figure 3.11: PGD approximation of the example 3.4.1.1 for three macro-elements (1 mode).

Fig. 3.12 represents (for two modes), the nodal error when compared to the FEM so-
lution and the coupling of the local variable and the global shape over the local support,
respectively. As can be observed, the solution over the second subdomain is corrected by
the second mode.

3.4.1.2 The steady reaction-diffusion equation

Another interesting example is related to the steady reaction-diffusion equation, represented
as follows:

∆u− λu+ λf = 0, (3.53)

where the parameter λ can be modified in order to generate the different cases under con-
sideration.

This equation can be easily applied to a 1D domain, by implementing the approach
described in 3.2. For more details, the reader can refer to the formulation of the 1D steady
reaction-diffusion equation described in Appendix A.

For instance, this formulation can be applied to a domain consisting of 4 macro-elements
with lx = 4 and 26 nodes per subdomain (hx = 0.04). The parameter λ is set to 100. Fig.
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Figure 3.12: Nodal relative error of the PGD when compared with FEM and coupling of
the local variable and the global shape functions for the example 3.4.1.1 and three macro-
elements.

3.13 represents the coarse and fine FEM solutions of this problem and the PGD approxima-
tion when considering the following boundary conditions: u = 0 at x = 0 and x = lx for the
first case, and u = 0 at x = 0 and du

dx = 0 at x = lx for the second case; these cases proving
the suitability of the method for different types of boundary conditions.
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Figure 3.13: Coarse and fine FEM solutions of problem 3.4.1.2 and the PGD approximation
for different boundary conditions (Ns = 4, λ = 100 and hx = 0.04).

It is can be easily remarked that, contrary to the examples shown in Section 3.4.1.1,
the values of the coarse and the fine FEM solutions do not match the exact solution. Both
PGD approximations shown in Fig. 3.13 reveal the potential of this technique for solv-
ing fine-meshed problems, with a decrease on the degrees of freedom and consequently, on
the computational cost, this decrease becoming more significant as the numbers of macro-
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Figure 3.14: Relative L2-norm error of the PGD when compared with an overkill solution
and coupling of the local variable with the global shape functions for the first case shown in
Fig. 3.13.

elements of the partition increases. In order to illustrate the performance of the method, in
Fig. 3.14 the evolution of the relative L2-norm error of the PGD when compared with an
overkill solution is plotted for the first case. The corresponding coupling of the local variable
with the global shape functions is also represented. For this example, the best error is found
to be in the order of 10−3, 4 PGD modes being necessary to achieve this value.

In the same way, this technique can be also reproduced for a set of values of the parameter
λ. Fig. 3.15 represents the solution of Eq. (3.53) for λ = 1, 10, 100, 1000, applied to the
same domain, partition, and discretization presented in Fig. 3.13 and homogeneous Dirichlet
boundary conditions at both sides of the boundary.

As can be observed in Fig. 3.15, this PGD approach reproduces an appropriate approxi-
mation of the solution for the set of values of λ, starting from the corresponding coarse mesh
FEM solution. As the value of λ increases, the solution is more difficult to approximate, as
a higher number of nodes is needed to capture the temperature gradients, as can be deduced
from the λ = 1000 distribution.

Thus, the relative L2-norm error decreases as λ does, as can be observed in Fig. 3.16 for
λ = 10: the smallest error achieved is now found to be in the order of 10−4, but the method
needs a higher number of modes to achieve the best result in terms of relative L2-norm error
when compared to the case λ = 100.

In order to evaluate and visualise the performance of this approach with regard to the
error committed when using the combination of the global and local levels, we propose an
analysis of the evolution of the relative L2-norm error when refining the mesh. The number of
nodes per subdomain corresponds to 26, 51, 101, 251 and 501 (hx=4 · 10−2, 2 · 10−2, 1 · 10−2,
4 · 10−3 and 2 · 10−3). The objective is to compare this PGD error with that obtained when
using a standard FEM approximation with a similar mesh size, both errors being calculated
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Figure 3.15: Coarse and fine FEM solutions of problem 3.4.1.2 and the PGD approximation
for homogeneous Dirichlet boundary conditions (Ns = 4, λ = 1, 10, 100, 1000 and hx = 0.04).

with respect to an overkill solution.
This analysis is plotted in Fig. 3.17 and Fig. 3.18 for λ = 10 and λ = 1000 respectively

and a partition of the domain consisting of 4 macro-elements. As can be observed, the
error is smaller for λ = 10, as its value achieves 3.33 · 10−7 for hx = 0.002 (501 nodes per
subdomain), in contrast with the case λ = 1000, where the error is found to be 7.773 · 10−6.

Regarding the comparison with standard FEM approximations, the evolution of the error
of the Global-Local PGD when refining the mesh remains under the results obtained for the
FEM solution, which is calculated for the same set of mesh sizes employed for the PGD. The
difference between both convergence curves is due to the coupling of both levels of shape
functions, which results in a sort of improved FEM operators for solving the global and the
local problems (already shown in Eq. (3.31) and Eq. (3.45)). The Global-Local PGD also
achieves the FEM optimal convergence, as the slope of the PGD convergence matches with
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Figure 3.16: Relative L2-norm error of the PGD when compared with an overkill solution
for the problem 3.4.1.2 (Ns = 4, λ = 10 and hx = 0.04)

that of FEM for linear shape functions (i.e. 2).

Figure 3.17: Convergence of the relative L2-norm error of the PGD and FEM when compared
to an overkill solution for the problem 3.4.1.2 (Ns = 4, λ = 10)
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Figure 3.18: Convergence of the relative L2-norm error of the PGD and FEM when compared
to an overkill solution for the problem 3.4.1.2 (Ns = 4, λ = 1000)

As commented before, the relative L2-norm error corresponding to the Global-Local
approach increases as the value of λ does, as the approximation needs a refinement in order
to capture the gradient of temperature produced for high values of λ (see λ = 1000 in Fig.
3.15). This refinement can be carried out without the need of adding more nodes to the
discretization, by choosing a pertinent distribution of the macro-elements of the partition.
For all the previous examples, the partition resulted in macro-elements that have the same
length. But when observing the example λ = 1000 represented in Fig. 3.15, it seems
appropriate to redistribute the configuration of the partition, in order to create two short
domains associated with the zone where strong gradients are located. Thus, by using the
same number of nodes per subdomain, the approach is able to capture the feature of interest.

This situation is represented in Fig. 3.19, where two of the four macro-elements are
made smaller in order to capture the gradients of temperature located at both sides of the
domain. The number of nodes is the same that in the case represented in Fig. 3.15, but the
configuration of the macro-elements provokes a refinement of the mesh. Moreover, the initial
coarse mesh FEM solution is also closer to the reference solution. All these considerations
involve a smaller error, as can be observed in Fig. 3.20, where both configurations are
compared (Fig. 3.15 and Fig. 3.19). The redistribution of the macro-elements produces
a reduction in the error rate by an order of magnitude while maintaining the number of
degrees of freedom.
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Figure 3.19: Coarse and fine FEM solutions of problem 3.4.1.2 and the PGD approximation
for homogeneous Dirichlet boundary conditions (Ns = 4, λ = 1000, and different size meshes
throughout the domain).

Figure 3.20: Comparison of the relative L2-norm error of the PGD with respect to an overkill
solution for the problem 3.4.1.2 (Ns = 4, λ = 1000) and for hx = 0.04 and different size
meshes throughout the domain.
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3.4.2 Two-dimensional cases
3.4.2.1 The steady reaction-diffusion equation

The Global-Local approach can be also implemented in 2D geometries for enriching FEM
solutions defined over a coarse mesh. The first step corresponds to the partition of the domain
into several macro-elements, all macro-elements containing the same number of nodes. For
the sake of simplicity, the partitions of the first examples consist of squared macro-elements.
The nodes associated with this 2D partition define the coarse mesh where an initial FEM
solution is obtained.

In order to enrich this solution, now the coupling of the global level and the local level
is carried out by using a 2D support or patch consisting in four subdomains that share a
unique node of the coarse mesh. As commented in 3.4.1 the mesh size of the local support
is defined by the desired fine mesh configuration of the PGD approximation.

Taking all this into consideration, the steady reaction-diffusion equation (Eq. (3.53)) can
be applied to a 2D domain partitioned into 9 squared macro-elements, this configuration
being represented in Fig. 3.21.

In addition to the coarse mesh associated with the partition, the approximation is im-
plemented in a fine mesh (h = 1.33 · 10−2) which is also represented in Fig. 3.21, this
approximation being obtained by replicating the shared node of the patch throughout the
coarse mesh.

Figure 3.21: Coarse and fine meshes associated with a domain partition into 9 squared
macro-elements.

The side length of the squared domain taken into consideration is l = 1, and homogeneous
Dirichlet boundary conditions are applied at the whole boundary. These boundary conditions
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are applied to the Global variable associated with the coarse mesh nodes of the boundary.
Fig. 3.22 represents the PGD approximation of Eq. (3.53) for a set of values of λ (λ =
1, 10, 100, 1000). The partition of the domain is also plotted over the solution in order to
visualise the approximation that has to be built at every subdomain.

Figure 3.22: PGD approximation of the example associated with Fig. 3.21, Eq. (3.53) with
homogeneous Dirichlet boundary conditions at the whole boundary.

As can be observed in Fig. 3.22, while the approximation of the solution does not change
remarkably from a qualitative point of view for λ = 1, 10, as the value of λ increases, a
considerable variation of the temperature appears near the boundary of the domain (λ =
100, 1000). As commented in 3.4.1.2, this gradient is more difficult to be captured and would
require a refinement of the mesh of the macro-elements adjacent to the boundary. The regular
partition employed in Fig. 3.22 consists in 9 similar macro-elements and, consequently, the
relative L2-norm error is expected to increase as the parameter λ does.

This can be verified by comparing the evolution of the error for all the λ cases under
consideration. This comparison is shown in Fig. 3.23. Indeed, the evolution of the relative
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Figure 3.23: Relative L2-norm error of the PGD when compared with an overkill solution
for the examples shown in Fig. 3.22.

L2-norm error calculated with respect to an overkill solution reveals that the error level
decreases as λ does, but a higher number of modes is needed to achieve that error level (as
the slope of the convergence is very similar for all the λ cases.

The same strategy employed in 3.4.1.2 is now carried out in order to analyse the per-
formance of the combination of the global and local levels of this PGD in terms of the
error convergence when refining. The relative L2-norm error with respect to an overkill
solution is calculated for a fine mesh consisting of squared elements of size h = 6.67 · 10−2,
3.33 · 10−2, 1.67 · 10−2, and 8.33 · 10−3. Thus, the performance of the PGD with 9 squared
macro-elements is compared with a standard FEM approximation with a similar mesh size.

Fig. 3.24 and Fig. 3.25 represent this convergence for λ = 10 and λ = 1000 respectively.
As could be expected, the error is considerably smaller for λ = 10 (by an order of magnitude):
it achieves 3.178 · 10−5 for h = 8.33 · 10−3, whereas for λ = 1000 the error is found to
be 3.614 · 10−4. The convergence of the PGD is similar to the FEM results (the slope
is approximately 2). Nevertheless, the combination of the use of global and local shape
functions makes the error of the PGD smaller than that obtained with FEM for similar
mesh sizes. This fact confirms the results obtained for 1D, as the formulation of the problem
by using the global and the local levels represents a sort of improved FEM method.

With respect to the refinement needed to capture the gradient of temperature produced
for instance, for the case λ = 100 (see Fig. 3.22), as commented in 3.4.1.2 for 1D domains,
a pertinent redistribution of the macro-elements of the partition can be carried out in order
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Figure 3.24: Convergence of the relative L2-norm error of the PGD and FEM when compared
to an overkill solution for the problem represented in Fig. 3.22 (Ns = 9, λ = 10).

to obtain a better approximation of the solution. In this case, we can modify the partition
for obtaining smaller macro-elements adjacent to the boundary.

As can be observed in Fig. 3.26, a redistribution of the 9 macro-elements can be carried
out. This figure represents the partition obtained from the coarse mesh redistribution and
the consequent refinement (as all macro-elements have the same number of nodes). In the
center of the domain, where no considerable alterations of the solution are expected, a big
subdomain is created. The error committed by using this new partition is considerably lower
when compared with that obtained with the initial partition (Fig. 3.21). This new partition
also needs a smaller number of modes to achieve this level of error, as can be observed in
Fig. 3.27.

3.4.3 Non-Cartesian geometry

Once different mesh sizes throughout the same domain have been proposed by changing the
distribution of the macro-elements, another interesting example can be implemented con-
cerning non-Cartesian domains. We can assume a quarter annulus and its corresponding
coarse discretization consisting of isosceles trapezoid elements. This mesh is represented in
Fig. 3.28, with a partition composed of 10 macro-elements. The fine mesh has been ob-
tained by splitting every subdomain into 16 smaller isosceles trapezoids. The objective is to
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Figure 3.25: Convergence of the relative L2-norm error of the PGD and FEM when compared
to an overkill solution for the problem represented in Fig. 3.22 (Ns = 9, λ = 1000).

Figure 3.26: Coarse and fine meshes associated with a domain partition into 9 squared
macro-elements and different size meshes throughout the domain.
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Figure 3.27: Comparison of the relative L2-norm error of the PGD with respect to an overkill
solution for the meshes represented in Fig. 3.21 and Fig. 3.26 (Ns = 9, λ = 100).

obtain the PGD approximation throughout this fine mesh composed of isosceles trapezoidal
elements with a different size.

The steady reaction-diffusion equation (Eq. (3.53)) is applied to this domain configura-
tion, for λ = 100 and homogeneous Dirichlet boundary conditions at x = 1 and y = 0 as
can be seen in Fig. 3.29. The PGD, supported by the combination of different discretization
levels and the use of a standard isoparametric mapping of the global shape functions, is able
to solve this non-Cartesian example, whose solution is plotted in Fig. 3.29. The error of this
approximation evaluated as a comparison with the first mode is represented in Fig. 3.30.

3.5 Discussion, Conclusions and Future Works
The implementation of a PGD method based on the partition of unity has been proposed
in this work as an alternative technique for building space separated representations with
a Global-Local approach. Inspired by Domain Decomposition and multi-scale approaches,
this technique has been constructed by using partitioned domains in order to address a new
space separation scheme, not based on the geometric coordinates of the problem. To this
aim, this approach is built by carrying out a separation of the scales. It combines different
levels of discretization for enriching coarse mesh FEM solutions with a Global-Local PGD
scheme.

The main idea of the methodology presented in this chapter is to take advantage of a
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Figure 3.28: Coarse and fine meshes associated with a quarter annulus partitioned into 10
macro-elements.

partition of the domain in order to calculate the approximation as a particularization of a
generic solution over each subdomain. More specifically, following the concept of partition
of unity, a Global variable is associated with a coarse mesh (defined by the partition into
subdomains). This implies that every subdomain is influenced by as many Global variable as
nodes of the coarse mesh associated with the subdomain. The enrichment is provided by a
Local variable, defined over a fine mesh at the set of macro-elements that share a global node,
the so-called local support. This support coincides with the concept of patch presented in
other methods based on the partition of unity, such as GFEM. Thus, this local variable and
the shape functions associated with the fine mesh can be coupled with the global variable
and its shape functions. The approximation of the solution defined over the whole domain
is finally obtained by replicating the coupling for every node of the global mesh.

This scheme has allowed addressing the main challenge of the methods based on the
partition of unity: the calculation of appropriate enrichment functions for a given problem.
The Global-Local PGD provides the enrichment as the separated representation is built.
Hence, it proposes the most adapted enrichment to the physics under consideration without
the need of previous knowledge of the solution or solving auxiliary problems. Regarding the
definition of enrichment proposed by other methods such as GFEM, the main difference lies
in the use of the same Local variable for replicating the solution throughout the domain,
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Figure 3.29: PGD approximation of the example associated with Fig. 3.28, Eq. (3.53) with
homogeneous Dirichlet boundary conditions at x = 1 and y = 0 (Ns = 9, λ = 100).

whereas GFEM uses different enrichments at every patch.
For the examples presented in this work for problems defined over 1D and 2D domains,

the PGD has been employed to enrich a previously obtained coarse FEM solution over
the whole domain, but the scheme can be applied directly in the absence of this coarse
approximation or for enriching only a part of the domain in order to capture local features.

Contrary to previous PGD space separated representations, for which the reduction of the
complexity was achieved by splitting a problem into a sequence of lower dimension problems,
this technique is based on a separation of scales. The global and the local problems are
defined in the same physical dimension of the original problem. Due to the fact that the
separation is not associated with the coordinates of the domain, a problem defined over an
arbitrary non-Cartesian domain has been addressed by using a standard (finite element)
isoparametric mapping. This paves the way for future developments of space separated
representations for non-Cartesian geometries

Regarding the accuracy of the method, the PGD provides an approximation of the so-
lution with an appropriate error level for the numerical examples proposed in this chapter.
Moreover, it has been proved that the convergence of the method is similar to standard FEM
schemes for an equivalent fine mesh approximation. When solving the Global and the Local
problems, the combination of both levels of shape functions represents a sort of improved
FEM problems, the error staying below the FEM error when compared to an overkill FEM
solution.
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Figure 3.30: Error of the PGD for the example shown in Fig. 3.29.

Furthermore, the use of this technique involves an important reduction in the number of
degrees of freedom of the problem. We can consider, for instance, 2D examples defined over
a squared domain partitioned into regular squared subdomains, as those presented in Section
3.4.2.1. By increasing the number of subdomains and the number of degrees of freedom of
the Local support, we can represent a comparison of the PGD with its corresponding FEM
approximation. This comparison is shown in Fig. 3.31.

In view of Fig. 3.31, for a given fine mesh size, the reduction of degrees of freedom
is more significant as the number of subdomains increases. This fact reveals the potential
application of this approach for solving problems defined over domains containing a big
amount of repetitive structures.

Nevertheless, this combination of shape functions defined over global and local levels
still represents a very intrusive approach, as standard PGD approximations. This reveals
the necessity of taking advantage of the Global-Local scheme for developing a non-intrusive
technique. Regarding other future applications of this method, it seems necessary to extend
the approach to other physics and time-dependent problems. Moreover, the Global-Local
point of view could alleviate the limitations of the PGD when addressing equations with
non-symmetric operators (in progress). Finally, with respect to the capability of the method
for capturing complex solutions and reducing the number of modes, the use of higher-order
global shape functions could improve considerably the performance of this PGD approach
(in progress).
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Figure 3.31: Comparison of the number of degrees of freedom of the Globa-Local PGD and
its corresponding FEM 2D mesh.
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Chapter 4

Towards a non-intrusive
Global-Local PGD solver

The Global-Local scheme has been presented in Chapter 3 as a method to build separated
representations in arbitrary non-Cartesian domains, where the numerical complexity is split
into a global problem, defined over a coarse mesh, and a local problem, defined over a
reference support that captures the local scale. However, the approach presented in Chapter
3 is quite intrusive in terms of software implementation, meaning that substantial changes
would need to be introduced in a standard simulation platform, based on FEM codes.

In this Chapter, considering a partitioned domain and using its FEM operators as a
starting point, the PGD is employed as an algebraic solver that builds global-local separated
representations from standard FEM operators. Therefore, standard FEM pre-processing
and assembly routines remain unchanged; only the solver is altered. This represents a
less intrusive way of building global-local separated representations. Continuity on the
boundaries of the domain partition does not need to be imposed explicitly, as it comes as a
built-in property of the FEM operators.
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4.2. Introduction

4.1 Introduction

The Global-Local PGD described in Chapter 3 represents a new application when addressing
space separations in partitioned domains. It was inspired by the methods based on the
partition of unity, combining different discretization levels in order to enrich FEM solutions
defined over a coarse mesh. This Global-Local separation scheme allowed us to define a
different point of view not based on the Cartesian framework of the standard PGD.

This chapter follows the approach introduced in Chapter 3 in order to build space sep-
arated representations: the domain is partitioned in several subdomains and the solution is
obtained by particularising a generic local solution for each subdomain. The new approach
is also based on the separation of scales, but instead of coupling different discretization
levels, this technique uses FEM operators as a starting point, not requiring a specific code
and therefore, reducing the algorithmic intrusiveness. Thus, the PGD is presented in this
chapter as an iterative algebraic solver.

The main idea is the adaptation of the concept of domain partitioning to the discrete
operators that collect the physics applied to the domain. This also allows suppressing
the geometrical constraints associated with the use of a standard PGD point of view, and
consequently, the approach can be applied to non-Cartesian domains without the need for
an isoparametric mapping.

In Section 4.2, the algebraic tensor structure of the standard PGD separated represen-
tation is introduced and discussed, using the in-plane-out-of-plane case to illustrate this
technique and clarify the aim of this chapter. Section 4.3 is devoted to describing the Non-
Intrusive Global-Local PGD approach and its formulation. In Section 4.4, some examples
are shown in order to highlight the versatility of this method. Finally, the discussion and
conclusions are presented in Section 4.5.

4.2 Algebraic tensor structure for separated represen-
tations

Let us start this Chapter by reviewing the formulation of the PGD as an algebraic solver.
This section is in close connection with Chapter 1, where, starting from a generic weak form,
we arrived to formulate the algebraic tensor structure of the problem.

Tensor methods like the PGD build a low-rank tensor subspace for solving multidimen-
sional and multi-parametric models. Thus, the weak form of the model is regarded as an
optimization problem where the set of admissible solutions is constrained to a low-rank ten-
sor subspace. The efficiency of tensor methods relies on the tensorization of the model, as
it allows dividing a multi-dimensional problem into a series of lower-dimensional ones.
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4.2.1 Optimization problem for tensor subspace construction
Consider a multi-dimensional, linear, steady-state model. After discretization (see Chapter
1), it can be written as follows:

Au+ f = 0, (4.1)

where u ∈ RNT is a full tensor representation. On the other hand, A ∈ RNT×NT represents
a linear operator and f ∈ RNT is the independent term. Both A and f are assumed to
possess tensor structure, as described in Chapter 1. Tensor methods are designed to build
a tensor subspace by turning Eq. (4.1) into an optimization problem. In particular, PGD
allows building a tensor subspace progressively by computing rank-one corrections, i.e. by
building a series of nested subspaces:

T1 ⊂ T2 ⊂ · · · ⊂ TM where TM := TM−1 + T1. (4.2)

In practice, the actual rank is driven by some error estimate [4, 66] able to determine when
the solution subspace is accurate enough. Assuming that a rank-M tensor approximation
of the solution is known, uM ∈ TM , we seek a rank-one correction δu ∈ T1 such that:

uM+1 := uM + δu where

uM =
D⊙
d=0

W dα with α ∈RM , W d ∈ RNd×M and δu =
D⊗
d=0

wd.
(4.3)

Assuming that the operator A is symmetric positive definite (specific formulations of PGD
exist for non-symmetric problems), Eq. (4.1) can be regarded as an optimization problem
where the set of admissible solutions is constrained to T1:

δu := arg min
v∈T1

1
2 〈Av,v〉+ 〈AuM ,v〉+ 〈f ,v〉, (4.4)

where 〈•, •〉 stands for the scalar product in RNT . Eq. (4.4) constitutes a non-linear opti-
mization problem due to the tensor multiplicative structure of the subspace. For the efficient
solution of Eq. (4.4), tensorization of A and f is essential. Let us suppose that the following
tensor representations are known:

A =
R∑
r=1

D⊗
d=0

Ar
d with Ar

d ∈ RNd×Nd and

f =
D⊙
d=0

V d γ with γ ∈ RS , V d ∈ RNd×S .

(4.5)

By inserting Eq. (4.5) into Eq. (4.4), and after some tedious but conceptually simple
manipulations, we see that the scalar product in RN can in fact be computed as the product
of lower-dimensional scalar products. For instance, the first term in Eq. (4.4) reads:

〈Av,v〉 ≡
R∑
r=1

D∏
d=0
〈Ar

dvd,vd〉d, (4.6)
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where 〈•, •〉d stands for the scalar product in RNd . Eq. (4.6) defines the separation property
of the scalar product. This property suggests applying an alternating directions algorithm
in order to optimize each direction wd alternatively [30]. This can be achieved by simply
projecting alternatively the functional in Eq. (4.4) onto each direction. Thus, let w∗ the
current direction to be optimized, implying that wd, ∀d 6= ∗, are frozen at their most current
update. The restriction of Eq. (4.4) onto the current direction yields:

w∗ := arg min
v∗∈RN∗

R∑
r=1

{1
2 〈β

r
∗A

r
∗v∗,v∗〉∗ + 〈Ar

∗W ∗α̃
r
∗,v∗〉∗

}
+ 〈V ∗γ̃∗,v∗〉∗, (4.7)

where βr∗ ∈ R, α̃r∗ ∈ RM and γ̃∗ ∈ RS are coefficients carrying the result of the scalar
products in all directions except the current one. See Appendix B for the definition of these
coefficients as well as for a detailed solution of Eq. (4.7). In summary, the correction δu can
be computed by optimizing alternatively each one of its separated factors, using Eq. (4.7),
until stagnation [4, 112]. In this way, the algorithm splits a multi-dimensional problem into
a series of low-dimensional ones. This has been possible thanks to the tensorization of the
problem, introduced in Eq. (4.5). In many cases, tensorization of linear problems can be
achieved quite easily. However, when dealing with non-linear models, tensorization is in
general lost, thus compromising the overall efficiency of tensor methods.

4.2.2 Cartesian domains

The approach employed in Section 4.2.1, the construction of the tensor structure, can be
illustrated for Cartesian geometries. In this case, the in-plane-out-of-plane separated rep-
resentation has been chosen due to its use for addressing problems defined in laminates for
composite manufacturing. Fig. 4.1 represents a scheme of a generic model defined in a plate
geometry domain Ω. The domain Ω can be decomposed as follows,

Ω = Ωπ × Ω⊥ with Ωπ ⊂ R2

Ω⊥ ⊂ R
(4.8)

where Ωπ and Ω⊥ represent the domains of the plane and the thickness respectively. For
the sake of simplicity, the points (x, y, z) ∈ Ω are expressed as (x, y, z) = (x, z), with
x = (x, y) ∈ Ωπ and z ∈ Ω⊥.

Once the geometry of the model has been described, we consider the steady state heat
conduction equation,

∇ · (k · ∇u) + f = 0 (4.9)

where the conductivity is assumed to be constant throughout the domain, k = 1, Eq. (4.9)
being rewritten as:

∆u+ f = 0 (4.10)

73



Chapter 4. Towards a non-intrusive Global-Local PGD solver

x
z

y
Ω
Π

Ω┴

Ω

Figure 4.1: Scheme of a plate geometry domain for the in-plane-out-of-plane separated
representation.

The weak form of Eq. (4.10), when assuming Dirichlet boundary conditions, reads:

〈∇u∗,∇u〉+ 〈u∗,f〉 = 0 (4.11)

or
〈∇xu

∗,∇xu〉+ 〈∇zu∗,∇zu〉+ 〈u∗,f〉 = 0 (4.12)

Thus, following the approach described in Section 4.2.1, Eq. (4.5) can be particularised for
the problem defined by Eq. (4.12) as follows,

Au = b with
A = Kx ⊗Mz +Mx ⊗Kz

b = bx ⊗ bz
(4.13)

where system Au = b is calculated in order to solve the problem using the PGD approach,
by means of a greedy algorithm. Kx,Mx,Kz, andMz represent the conductivity and mass
matrices related to the plane domain Ωπ and the thickness domain Ω⊥ respectively. The
alternating direction strategy needed for the implementation of the PGD for the in-plane-
out-of-plane decomposition is widely described in [16]. As a result, the in-plane-out-of-plane
PGD separated representation can be written as:

u(x, z) ≈
N∑
j=1

Xj(x)⊗Zj(z) (4.14)

where N is the number of enrichments needed to achieve convergence and Xj and Zj the
values of the variables associated with the separated domains Ωπ and Ω⊥ respectively, for
each enrichment step j. Therefore, we can reproduce the solution as a sum of products of
functions that depend on the space coordinates of the problem (x and z). Thus, the 3D
Poisson equation, Eq. (4.10), defined over the domain Ω has been divided within the PGD
framework into two decoupled 2D and 1D problems formulated in Ωπ and Ω⊥.

4.2.3 Arbitrary domains
The integration of the weak form associated with the thermal problem represented by Eq.
(4.9) can be separated in lower-dimensional integrals since the parametric space associated
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with the standard PGD framework is assumed to be Cartesian. Therefore, the PGD is
suitable for solving problems concerning Cartesian-like geometries mostly, like the mesh
shown in Fig. 4.2a, where an X-Y separated representation of problem Eq. (4.10) can be
easily carried out.

x
y

x
y

a b

Figure 4.2: (a) Cartesian and (b) Non-Cartesian meshed domains

Nevertheless, when the PGD domain consists of arbitrary geometry, like the domain
sketched in Fig. 4.2b, the standard PGD approach described in Section 4.2.2 cannot be
used. In order to face this issue, following the Global-Local scheme presented in Chapter
3, a non-intrusive PGD approach is proposed in Section 4.3, using the FEM operators
associated with the meshed domain as a starting point.

4.3 Non-Intrusive Global-Local PGD
Compared to the global-local approach presented in Chapter 3, the non-intrusive approach
presented here features the following differences:

• The starting point is the algebraic system of equations, which is assembled using
completely standard FEM techniques.

• The resulting degrees of freedom (DOFs) are partitioned in what can be identified
as subdomains. Note that speaking of partitions is an abuse of language, as standard
domain partitioning groups elements, whereas we group degrees of freedom. Moreover,
our partition is merely algebraic (a renumbering indeed), and therefore, arbitrary (i.e.
does not need to be defined at the geometry nor mesh level).

• The local variable is intrinsically discrete and has the size of the reference partition.
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• The global variable, also discrete, can be understood as a piece-wise discontinuous
variable that replicates and weights the local variable in each subdomain.

• Because we work directly with assembled variables (including equivalent nodal fluxes),
there is no need to address continuity at the partition boundaries; it comes as a built-in
property of the FEM operators.

4.3.1 Standard 3D finite element discretization and partition of the
domain

Although it will be shown that the partition step is merely algebraic and therefore arbitrary,
it is useful to start with a physical partition of a generic non-Cartesian domain to fix ideas.
Fig. 4.3 depicts the situation.

Ωh
i

Ω
x

y

Ωh

Ωh
1 Ωh

2

Ωh
3

Ωh
s

a) Domain b) Mesh c) Partition

Figure 4.3: Scheme of the DOF (or node) partition of the domain Ω.

We can define a generic domain Ω with arbitrary geometry, Fig. 4.3a. The objective of
the partition is to eliminate the geometrical constraints associated with the standard PGD
framework and thus, to create a new PGD approach, able to be applied to Non-Cartesian
geometries. Note that, instead of using the local support presented in Chapter 3, the local
domain is fictitious, and it only comprises a collection of degrees of freedom.

When considering a standard Finite Element approximation and discretization on a mesh
compatible with the partition of the domain, the resulting matrix form of the model related
to the steady state heat conduction equation, Eq. (4.9), reads

Ku = f (4.15)
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where vector u represents the nodal temperatures, matrix K is the conductivity matrix
related to a Finite Element model of the domain and f contains the essential boundary con-
ditions. By simply employing an adequate nodal re-numbering, Eq. (4.15) can be rewritten
as 

K11 K12 . . . K1s

K21 K22 . . . K2s

...
...

. . .
...

Ks1 Ks2 . . . Kss



u1

u2
...
us

 =


f1

f2
...
fs

 (4.16)

where the partition of K into submatrices represents the base for the construction of
this Global-Local PGD algorithm, allowing a less-intrusive approach when compared with
the standard PGD.

The solution of each subdomain will be provided by replicating the local solution on
every subdomain (weighted by the appropriate global function). It is important to remark
that the partition does not have to represent a continuous subdomain; in order to use
this approach, this partition must satisfy the following requirements: 1) a standard Finite
Element discretization of the domain, and 2) the same numbers of degrees of freedom for
each subdomain (although this limitation could be overcome).

4.3.2 Separated representation constructor
We simply state that the solution at a given DOF partition can be obtained as:

ui = L1 g1,i +L2 g2,i + . . . (4.17)

where the local variable L collects the local solution at the DOFs of a generic fictitious par-
tition, with the same number of degrees of freedom as the real subdomains of the partition.
This local variable is scaled at the subdomains by gi, the i-component of G (the global
variable). The separated representation can be expressed as

u = G⊗L, (4.18)

that is the form generally considered in the framework of tensor product formats. Thus,
if we assume that N terms are required in the separated representation, the Global-Local
PGD structure can be rewritten as

u =
N∑
j=1

Gj ⊗Lj . (4.19)

Fig. 4.4 represents a scheme of the replication of the solution throughout the whole domain,
following Eq. (4.19).
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Figure 4.4: Scheme of the replication of the solution throughout the whole domain, using
the Global-Local approach.

Following the same approach employed for the in-plane-out-of-plane PGD and consider-
ing the particularities of the Global-Local technique, the structure shown in Eq. (4.13) is
now expressed as:

Au = b with
A =

s∑
m=1

s∑
n=1

AG
mn ⊗A

L
mn

b =
s∑

m=1
bGm ⊗ b

L
m

(4.20)

where AG
mn is the canonical basis in Rs×s, and AL

mn can be identified with the Kmn re-
sultant submatrices of the partition of K shown in Eq. (4.16). It is important to remark
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that these submatrices, which represent the base of the Global-Local approach, are directly
taken from the FEM system, ensuring a less intrusive approach that does not require a spe-
cific code and the continuity of the solution across the interfaces between the subdomains.
With regard to the right-hand side, bGm is the canonical basis in Rs and bLm represents the
equivalent nodal fluxes, again, taken from the standard FEM system.

Thus, imposing a test function u∗ = (G⊗L)∗, Eq. (4.20) can be rewritten as

u∗T

(
s∑

m=1

s∑
n=1

AG
mn ⊗A

L
mn

)
u = u∗T

(
s∑

m=1
bGm ⊗ b

L
m

)
(4.21)

or, by considering a single term (j = 1) in Eq. (4.19):

(G⊗L)∗T
(

s∑
m=1

s∑
n=1

AG
mn ⊗A

L
mn

)
(G⊗L) = (G⊗L)∗T

(
s∑

m=1
bGm ⊗ b

L
m

)
. (4.22)

The expression resulted in Eq. (4.22) allows calculating the PGD variables by using a greedy
algorithm. This algorithm consists in the two-step Alternating Direction Strategy that is
detailed as follows:

4.3.2.1 The Global problem

The particularisation of Eq. (4.19) for the enrichment step N allows obtaining the Global
variable G from the value of the Local variable at the previous iteration, L:

u =
N−1∑
j=1

Gj ⊗Lj +G⊗L, (4.23)

where everything is known except the value of the Global variable G. Then, introducing
Eq. (4.23) and the test function u∗ = G∗ ⊗L into Eq. (4.21), we obtain:

(G∗ ⊗L)T
(

s∑
m,n=1

AG
mn ⊗A

L
mn

)
(G⊗L) =

= −(G∗ ⊗L)T
N−1∑
j=1

s∑
m,n=1

(AG
mn ⊗A

L
mn)

 (Gj ⊗Lj)+

+(G∗ ⊗L)T
(

s∑
m=1

bGm ⊗ b
L
m

)
. (4.24)
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Grouping local and global terms:

s∑
m,n=1

(
G∗TAG

mnG
) (

LTAL
mnL

)
=

= −
N−1∑
j=1

s∑
m,n=1

(
G∗TAG

mnGj

) (
LTAL

mnLj

)
+

+
s∑

m=1

(
G∗T bGm

)(
LT bLm

)
. (4.25)

Thus, we can obtain the Global variable G as follows:

G = A−1
G · bG, (4.26)

where

AG =
s∑

m,n=1
αmnA

G
mn (4.27)

and

bG = −
N−1∑
j=1

s∑
m,n=1

βjmnA
G
mnGj +

s∑
m=1

γmb
G
m. (4.28)

The following constants have been introduced:

αmn = LTAL
mnL, βjmn = LTAL

mnLj , γm = LT bLm.

4.3.2.2 The Local problem

Conversely, by applying the same process (with u∗ = G⊗ L∗), we arrive at the solution of
the local problem under the form:

L = A−1
L · bL, (4.29)

where

AL =
s∑

m,n=1
δmnA

L
mn (4.30)

and

bL = −
N−1∑
j=1

s∑
m,n=1

εjmnA
L
mnLj +

s∑
m=1

κmb
L
m. (4.31)

The following constants have been introduced:

δmn = GTAG
mnG, εjmn = GTAG

mnGj , κm = GT bGm.
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4.3.3 Local permutations

With respect to the basic formulation of the Global-Local technique represented in Eq.
(4.20), the application to partitioned domains can be very susceptible (in terms of the
number of modes to be computed) to the boundary conditions and its location. This is due
to the fact that the solution of every subdomain is calculated with the values of the Local
variable associated with the list of nodes of the fictitious subdomain, which are particularised
by multiplying by the corresponding value of the Global variable.

In order to alleviate the dependence of the current Global-Local approach on the place-
ment of the boundary conditions, this issue can be solved by adding the use of permutation
matrices to the formulation. Thus, Eq. (4.20) can be particularised for the squared subdo-
mains problems as follows

Au = b with
A =

s∑
m,n=1

M∑
p,q=1

AG
mn ⊗ (P T

pA
L
mnP q)

b =
s∑

m=1

M∑
p=1

bGm ⊗ (P T
p b

L
m)

(4.32)

where P represents the appropriate permutation matrices and M represents the desirable
number of permutations for each problem.

4.3.4 Global-Local approach versus standard PGD techniques

In some cases, the use of standard PGD techniques for solving problems defined over Carte-
sian domains with an evident repetitive structure can be impractical or inefficient. It seems
necessary to use a different approach more adapted to this kind of geometries, in order
to take advantage of their particularities. The development of the Global-Local separated
representation offers not only a new technique for solving non-Cartesian geometries with a
PGD-based approach but also a good alternative to the standard PGD for problems con-
sisting of partitioning and regular structures or periodic patterns.

For instance, the use of the PGD for solving 2D thermal problems defined over domains
containing regular inclusions (with a different thermal conductivity with respect to the rest
of the domain) can be a difficult issue if we want to build a separated representation based on
functions depending on both dimensions. This situation is illustrated in Fig. 4.5, where the
geometry plotted in Fig. 4.5a represents an eight-inclusion domain, the thermal conductivity
at the inclusions being 100 times higher than in the rest of the domain. Then, we can apply
Eq. (4.9) to the domain using the PGD and obtain the solution (Fig. 4.5b), which presents
a repetitive structure due to the inclusions. The difficulties of the separability when we
consider two different values of the thermal conductivity of the domain are confirmed by Fig.
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4.6, as the convergence of the PGD when compared to FEM is achieved for an important
number of modes (number of terms required to reproduce the solution).

Considering that the domain could be partitioned into eight subdomains containing each
inclusion and the solution is the same for all the subdomains, the use of the Global-Local
technique seems especially appropriate for obtaining more compact solutions while address-
ing repetitive structures.

x
y

a b
U

y x

Figure 4.5: Application of the standard PGD to a domain containing regular inclusions.

Figure 4.6: Error of the standard PGD when compared to FEM for the example shown in
Fig. 4.5.
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4.4 Numerical examples

4.4.1 Layered domain

In a connection with the in-plane-out-of-plane separated representation, the first academic
example consists in a domain representing a 10-ply laminate, in which the plies are associated
with subdomains. For the sake of simplicity, a 2D model has been employed, as can be
observed in Fig. 4.7, where coordinate x represents the plane and coordinate z is associated
with the laminate thickness. As explained in Section 4.3, a standard 2D discretization has
been implemented. Thus, by using an adequate nodal re-numbering, the Finite Element
equations can be rewritten and the Global-Local PGD formulation can be applied.

x
z

u=0 u=0

Lx

Lz

Figure 4.7: Layered domain Ω with s = 10 and homogeneous Dirichlet boundary conditions
at x = 0 a and x = Lx.

The steady heat conduction equation, Eq. (4.10), is applied to the domain, particularly
considering that the independent term is set to f = 1 and defining homogeneous Dirichlet
boundary conditions at x = 0 a and x = Lx, these boundary conditions ensuring that
all the subdomains consist of the same number of degrees of freedom. Taking all these
considerations into account, in Fig. 4.8 the FEM solution is plotted for this first example.

Once the example has been described and the FEM solution has been obtained, the
Global-Local PGD technique can be applied, solved, and compared with the FEM results,
as it can be also observed in Fig. 4.8, where the PGD temperature distribution is represented,
also plotting the nodal temperature corresponding to each of the 10 plies.

For all the examples of this study, the nodal relative error has been computed with
respect to the FEM solution, and the stop criterion is set to make the procedure ends when
an appropriate measure of the error becomes small enough (in this case, 10−5). For this
problem, only one enrichment step is necessary for the Global-Local approach to converge
to the FEM solution; the relative error is found to be in the order of 10−8. The solution of the
Global and Local variables are represented in Fig. 4.9; this Local solution L is particularised
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in each subdomain by multiplying the nodal temperatures by its corresponding value of the
Global variable G(i).

U U

UFEM UPGD

Figure 4.8: FEM and Global-Local PGD solutions of the example 4.4.1 for the layered
domain Ω with s = 10.

-3

xz

L1

L

i

G1

G

Figure 4.9: Representation of the Local variable L and the values of the Global variable G
for the example 4.4.1.

4.4.2 L-shaped domain
With regard to the configuration of domains consisting of squared subdomains, a new ex-
ample is proposed. The second example represents an ’L-shaped’ domain with s = 3. A
representation of this example is plotted in Fig. 4.10. Eq. (4.10) is also applied, considering
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f = 1 and homogeneous Dirichlet boundary conditions at x = 0, x = Lx, y = 0 and y = Ly

(all the subdomains having the same number of degrees of freedom).

x
y

Ly

Lx

u=0

u=0

u=0

u=0

Figure 4.10: ’L-shaped’ domain Ω divided into s = 3 squared subdomains and homogeneous
Dirichlet boundary conditions at x = 0, x = Lx, y = 0 a and y = Ly.

Fig. 4.11 represents the discretization employed and the solution obtained by using the
Global-Local PGD. When observing the error made with reference to the FEM solution (Fig.
4.12) we can remark that, with reference to the example presented in 4.4.1, the number of
modes obtained is considerably higher (about 60) due to the different configurations of the
orientations of the subdomains and their corresponding boundary conditions. After the post-
compression techniques the number of modes corresponds to the number of subdomains of
the partition (Fig. 4.12).

4.4.3 Squared subdomains

The third academic example consists in a domain Ω containing four squared subdomains
(s = 4); the heat conduction equation Eq. (4.10) is applied, considering that the source
term is set to f = 1 and the thermal conductivity tensor is constant through the whole
domain (k = 1). For this example, the current configuration of the partition allows the
homogeneous Dirichlet boundary conditions to be applied at the whole boundary, i.e. x = 0,
x = Lx, y = 0, and y = Ly. A scheme representing the partition employed and the boundary
conditions is shown in Fig. 4.13.

Fig. 4.14 shows the FEM and the Global-Local PGD results and Fig. 4.15 represents
the evolution of the error made by using the Global-Local separated representation with
respect to the FEM results, both figures corresponding to the example of the four squared
subdomains. As observed in 4.4.2, the increase in the complexity of the distribution of the
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Figure 4.11: Meshed ’L shaped’ domain and Global-Local PGD solution of 4.4.2.

Figure 4.12: Evolution of the Global-Local PGD error with reference to the FEM solution
of 4.4.2 for s = 3 squared subdomains.

boundary conditions with respect to the configuration of the partition involves an increase
in the number of enrichments needed to achieve convergence (about 90), as can be observed
in Fig. 4.15. This issue is due to the fact that the Local solution, calculated at a generic
fictitious subdomain, is common to all the subdomains, whereas the boundary conditions
are applied in different sides of the squares for each subdomain (x = 0, x = Lx, y = 0 and
y = Ly).

Nevertheless, this fact is solved by using a post-compression technique as can be observed
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in Fig. 4.15; we can obtain a four-mode separated representation as could be expected in view
of the double symmetry of the temperature distribution obtained with FEM. The Local and
Global variables obtained with these four enrichments are represented in Fig. 4.16 and Fig.
4.17 respectively. The first mode is common to all the subdomains, as the values of Global
variable are equal, whereas for the rest of the modes the Global variable reaches different
values, in order to obtain the solution of each subdomain, depending on the orientation of
the subdomain with respect to the boundary conditions.

x
y

Ly

Lx u=0

u=0u=0

u=0

Figure 4.13: Domain Ω divided into s = 4 squared subdomains and homogeneous Dirichlet
boundary conditions at x = 0, x = Lx, y = 0 a and y = Ly.

z x y x

U U

y x

UFEM UPGD

Figure 4.14: FEM and Global-Local PGD solutions of 4.4.3 for s = 4 squared subdomains.

As can be observed, the use of the Global-Local PGD approach for this example is not
as efficient as its application for the example presented in 4.4.1 (layered domain). In the
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Figure 4.15: Evolution of the Global-Local PGD error with reference to the FEM solution
of 4.4.3 for s = 4 squared subdomains.

squared subdomains case, all the subdomains achieve the same temperature distribution, as
in 4.4.1. However, in this example, we cannot reach the convergence with just one enrich-
ment. This situation reveals the dependence of the Global-Local approach on the placement
of the boundary conditions. This issue is alleviated by adding permutation matrices to the
formulation, as it was explained in Eq. (4.32). For instance, in view of the configuration
of this problem, four permutations are expected in order to make the Local variable fit
for reproducing the solution of the four subdomains. Thus, the corresponding boundary
conditions could be satisfied for each subdomain by using a rotation of the temperature
distribution obtained for the Local variable. Indeed, following this approach the solution
can be obtained with just one enrichment, as can be observed in Fig. 4.18, where the Local
distribution and the values of the Global variables are shown.

4.4.4 Randomly selected subdomains

With regard to the selection and distribution of the subdomains, the Non-Intrusive Global-
Local formulation allows a wide variety of configurations to be implemented. The only
requirement is to establish the same numbers of degrees of freedom for all subdomains. It
could be possible, for example, to solve Eq. (4.10) (with f = 1) applied with homogeneous
Dirichlet boundary conditions at the whole domain boundary of a squared domain by using
randomly selected subdomains, i.e. the nodes associated with the degrees of freedom are
randomly assigned to the subdomains, all these subdomains consisting of the same number
of nodes.
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Figure 4.16: Representation of the Local variable Lj for 4.4.3 (j = 1, . . . , 4).

This example makes no sense from the physical point of view, but it reveals the versatility
of the Global-Local approach and its possible application to Non-Cartesian domains, which
represents an important contribution with respect to the standard PGD techniques. Fig.
4.19 shows this situation: the nodes of the discretization of a Cartesian domain with four
randomly assigned subdomains (Non-Cartesian partition, represented in different colours)
and the representation of the randomly selected subdomains on its corresponding FEM
solution.

The errors made by the Global-Local PGD method and the post-compression approach
for this example, are plotted in Fig. 4.20. The randomly selected subdomains involve a
considerably greater number of modes than the examples shown in the previous sections.
Nevertheless, the post-compression approaches obtain a similar decrease in the number of
modes as the example shown in 4.4.3, confirming that this reduction is related to the number
of subdomains established.
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Figure 4.17: Values of the Global variable for each subdomain Gj for 4.4.3 (j = 1, . . . , 4).
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Figure 4.18: Representation of the Local variable Lj and the values of the Global variable
for each subdomain Gj for 4.4.3 (j = 1), by using permutation matrices.

4.4.5 Non-Cartesian domain

In order to verify the versatility of the Global-Local PGD, we can implement this approach
to a Non-Cartesian geometry. The example is defined over the domain shown in Fig. 4.21,
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Figure 4.19: Randomly selected partition and Global-Local PGD solution of 4.4.4.

Figure 4.20: Evolution of the Global-Local PGD error with reference to the FEM solution
of 4.4.4.

where Eq. (4.10) is also applied (with f = 1) and the homogeneous Dirichlet boundary
conditions are applied at the whole boundary of a triangle meshed Non-Cartesian domain.
The nodes of the discretization are grouped into four subdomains, as can be observed in Fig.
4.22.

As can be observed in Fig. 4.23, the PGD solution can also be reproduced for a Non-
Cartesian configuration. The evolution of the error, when compared with the FEM solution,
is also plotted in Fig. 4.23. The Global-Local separated representation needs an important
number of enrichments to achieve convergence, but the use of post-compression techniques
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Figure 4.21: Non-Cartesian meshed domain.

Figure 4.22: Partition of the non-Cartesian domain into s = 4 subdomains.

reveals that we can just obtain four modes to build the accurate solution (the number of
subdomains of the partition).
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Figure 4.23: Global-Local PGD solution and evolution of the Global-Local PGD error with
reference to the FEM solution of 4.4.5 for s = 4 subdomains.

4.4.6 Regular-inclusions domain
Finally, in order to illustrate the most appropriate application for the Non-Intrusive Global-
Local PGD, a new example concerning a regular-inclusions domain is presented. A scheme
representing this example is shown in Fig. 4.24. It represents a squared subdomains partition
consisting of eight squared inclusions, where the thermal conductivity is 100 times higher
than in the rest of the domain, the thermal conductivity being k = 1 out of the inclusions.

x
y

Figure 4.24: 8-inclusion domain.

In order to apply the Global-Local approach to this problem, a FEM manufactured so-
lution is imposed. This manufactured solution has been obtained by solving Eq. (4.10) for
a two-inclusion domain as can be observed in Fig. 4.25a. Homogeneous Dirichlet Boundary
Conditions are imposed at y = 0 and y = Ly. The FEM solution of this two-inclusion prob-
lem is replicated in order to obtain an eight-inclusion manufactured solution (Fig. 4.25b).
Thus, by using this solution and the matrix K associated with the eight-inclusion partition
(Fig. 4.24), Eq. (4.15) allows us to obtain f , the vector that contains the essential bound-
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ary conditions. Finally, the partition associated with the eight-subdomain problem can be
carried out, following Eq. (4.16).

x
y

a b

y x y x

Figure 4.25: (a)Two-inclusion FEM solution and (b) Eight-inclusion manufactured solution
for 4.4.6.

The application of the Global-Local PGD approach to the partition of the domain into
eight subdomains containing inclusions, along with the use of two permutation matrices
(Eq. (4.32)), allows us to obtain the PGD approximation of the solution with just one
mode, (Fig. 4.26) as the same solution is replicated throughout each subdomain, with
two different orientations. As we can see, the error achieved is around 10−8 with respect
to the manufactured solution. This result is considerably better than the approximation
provided by a standard PGD X-Y separated representation, as the solution is obtained by
adding about 30 modes due to the presence of the inclusions (see Fig. 4.26). The use of
post-compression techniques allows us to obtain a recompacted solution consisting of four
modes. Consequently, we can confirm that the use of a Global-Local approach is especially
appropriate for solving problems related to repetitive configurations concerning inclusions.

A more complex problem is presented in Fig. 4.27, it represents a squared domain
partitioned into 16 squared subdomains containing the same kind of inclusions taken into
consideration in Fig. 4.24. The same strategy of Fig. 4.25 for obtaining the manufactured
solution from Eq. (4.10) has been used. Homogeneous Dirichlet boundary bonditions are
also imposed at y = 0 and y = Ly.

In this case, as shown in Fig. 4.28 the approximation of the solution is achieved by
adding around six modes (for an error around 10−5) using two permutation matrices. This
number of modes is much lower than in the standard PGD case (around 32), but higher than
the number of different solutions that are observed in Fig. 4.27 for each subdomain (two
different solutions are replicated throughout the subdomains with two different orientations).
This fact suggests a need for improvement of the Global-Local PGD in terms of versatility
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Figure 4.26: Evolution of the Global-Local PGD error and the Standard PGD error with
reference to the FEM solution of 4.4.6 for s = 8 subdomains.

and efficiency.

x
y y x

Figure 4.27: Sixteen-inclusion domain and manufactured solution.
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Figure 4.28: Evolution of the Global-Local PGD error and the Standard PGD error with
reference to the FEM solution of 4.4.6 for s = 16 subdomains.

4.5 Discussion and Conclusions

The methodology introduced in this chapter follows the Global-Local concept explained in
Chapter 2, in the framework of PGD-based space separated representations: a separation
scheme not based on the geometric coordinates of the problem, but built from a partition of
the domain that takes advantage of the particularities of the problem (repetitive structures
of patterns).

In order to alleviate the intrusiveness of the PGD, the approach is constructed by using
previously obtained discrete operators as a starting point, these operators being compatible
with the partition of the domain. After the algebraic description of the PGD in Section
1.3, this implementation of the PGD as an iterative algebraic solver allows obtaining the
approximation of the solution over each subdomain by particularising a unique Local solution
for all the subdomains, multiplying the Local variable by the Global variable (a constant
value for each subdomain).

This procedure deserves the following important comments:

• The partition of K and f is obtained with any FEM code using any type of finite
element. In this sense, the just-described technique is much less intrusive than the
separated representation described in Section 2 for standard PGD procedures. The
application of other physics only affects the contents of the discrete operators.
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• The proposed strategy could be viewed as an iterative linear solver able to produce a
separated representation of the nodal solution.

• The Global-Local PGD only involves matrix products and linear systems solutions
of reduced sizes that can be efficiently performed using massively parallel computing
architectures.

• The solution procedure can also be viewed as a domain decomposition technique where
continuity conditions are implicitly enforced by the use of the discrete operators and
in which the information spreads all along the whole domain at each iteration.

• In contrast to the standard PGD approaches, this technique is not restricted to Carte-
sian geometries, it can be used in any partition of the vector containing the nodal
unknowns with the only restriction that all subdomains consist of the same number
of nodes. Thus, the Global-Local PGD eliminates the geometrical constraints of the
standard PGD scheme.

• This technique is very sensitive to the relative location of the boundary conditions
for each subdomain. Besides this issue, the fact of using FEM operators in order
to minimize the intrusiveness of the approach could result in continuity problems, as
the non-intrusive approach makes it impossible to split the nodal components of the
FEM matrices, not permitting the presence of shared nodes between the subdomains.
Moreover, the boundary conditions are imposed in the Local solution, which involves
that all the subdomains of the partition have the same numbers of degrees of freedom.

In conclusion, this new study is particularly attractive when addressing regular geome-
tries, as they can be easily solved, replacing the complexity of full models. Moreover, the
Global-Local PGD allows facing two important challenges of the standard PGD techniques:
the algorithm intrusiveness and the geometrical limitations.
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The use of MOR techniques such as the PGD has involved a relevant advance for building
space separated representations. Nevertheless, there is an important need for new approaches
in terms of adaptation of these techniques to complex geometries in order to extend the
application of a priori MOR to problems defined over any physical domain.

These cases include problems for which a full separated representation is not possible or
is not the most appropriate because of the geometry of the domain or the physics applied.
Some advances have been previously proposed for degenerated domains, for which some of
the coordinates of the problem are clustered for building the separated representation. One
example is the in-plane-out-of-plane PGD, which has been extensively analysed.

In this thesis, a new space separation scheme has been presented: the Global-Local PGD.
This separated representation is not built according to the space coordinates of the problem;
it is based on a partition of the domain, and it represents a first step for applying the PGD
to non-Cartesians geometries. The main idea is the construction of the PGD based on
two variables: the local variable, a fine-mesh solution defined over a generic domain (much
smaller than the original one), and the global variable, which represents the particularization
of that solution over the subdomains of the partition.

With regard to this new point of view, two different approaches are proposed in this work:

The Global-Local PGD based on the Partition of Unity. This PGD approach,
presented in Chapter 3, is based on the application of the Global-Local scheme to the PGD
by combining two levels of discretization: a coarse mesh and a fine mesh. The method is
used to enrich an initial coarse-meshed FEM solution. For this chapter, the main concepts
and remarks are summarised next:

• The construction of the Global-Local scheme. The global variable is defined over the
coarse mesh associated with the partition of the domain into several subdomains. The
local variable is defined over a fine-meshed set of subdomains that share a unique global
node. This set is called support and, when it is centred over a node of the coarse mesh,
its position coincides with the entire global shape function associated with that node.
As this shape function satisfy the partition of unity, the global variable, the local
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variable and their corresponding shape functions are coupled. When the local variable
support is replicated over each node of the coarse mesh, the solution is obtained along
the whole domain.

• Comparison with other methods based on the partition of unity. The use of the partition
of unity is similar to other methods such as GFEM. The main idea of GFEM is to
enrich the coarse solution over a part of the domain. To this aim, this local domain is
covered by a set of patches that is equivalent to our concept of support. However, the
GFEM enrichment is different for each patch whereas the local variable is the same
for every position of the support. The principal advantage of the Global-Local PGD
is that, using this MOR approach, the enrichment is proposed by the PGD as the
problem is solved, without a priori knowledge of the solution or solving additional
problems, as GFEM requires.

• Errors and rate of convergence. The combination of both discretization levels achieves
the optimal convergence rate of FEM when using linear shape functions. The error
committed is slightly smaller than that of FEM when compared to an overkill solution.

The Non-Intrusive Global-Local PGD. This approach is presented in Chapter 4
and it emerges at an alternative for reducing the intrusiveness of the PGD. The partition
of the domain of the Global-Local approach is also applied to previously obtained discrete
operators that will be used as the starting point of the technique. Thus, the technique can
be considered as a non-intrusive algebraic solver. Its main characteristics are summarised
next:

• Adaptation of the Global-Local scheme. In this case, the PGD is also built by con-
sidering two variables. The local variable now is defined over a generic subdomain
with the same number of degrees of freedom than all the subdomains of the partition.
The global variable is a constant value per subdomain. The particularization of the
solution for every subdomain is obtained by multiplying the local solution for each
corresponding global variable.

• Non-intrusive algebraic solver. When considering the aforementioned scheme of vari-
ables, and taking previously obtained discrete operators, no modifications of these
operators are needed (except the partition of the operators according to the set of
subdomains). Since this technique does not implement any discretization over the ge-
ometric coordinates, the PGD is used as an iterative algebraic solver. This could allow
incorporating the PGD to pre-existing simulation platforms. Moreover, the use of the
operators ensures the continuity of the solution on the internal boundaries between
subdomains without imposing extra boundary conditions.

• A new approach for non-Cartesian domains. The fact of using this separation based
on the partition involves that this technique can be implemented over non-Cartesian
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domains, without any restriction concerning the form of the subdomains or the mesh
employed.

In summary, both techniques involve a relevant advance on the implementation of new
space separated representations and its application in science and engineering. They repre-
sent two different interpretations of the Global-Local point of view, but share the concept of
constructing the PGD approximation based on the partition of the domain. This produces
a considerable reduction of the degrees of freedom of the problem and consequently, of the
computational cost. This reduction becomes more important when increasing the number
of subdomains and decreasing the nodes of the local support. Moreover, the configuration of
the partition can be chosen in order to take advantage of the geometry and its particularities
or the physics applied.

Regarding the numerical results, the approach presented in Chapter 3 achieved better
results in terms of applicability and performance when compared to the results obtained in
Chapter 4. This technique based on the partition of unity is less sensitive to the configuration
and distribution of the boundary conditions, and therefore, easier to adapt to other cases.
Nevertheless, it is very intrusive and includes the calculation of an important amount on
operators with respect to the non-intrusive PGD. Moreover, the results shown in Chapter 4
involve a more evident reduction of the geometric limitations. Consequently, the advantages
of each technique will depend on the requirements of the problem to be solved.

With respect to the future perspectives of this thesis, it paves the way for new advances
based on non-Cartesian geometries. The concept of mapping used on recent studies in
space separated representations for hardly separated geometries [46] could be very useful for
the development of Global-Local PGD approaches applied to more complex geometries or
problems. The implementation of the Global-Local scheme to other physics, especially for
the problems where the standard PGD approaches fail, is also another major challenge to
be addressed, as well as the adaptation of this scheme to time-dependent and parametric
problems.
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Appendix A

Formulation for the 1D steady
reaction-diffusion equation

We can consider the equation:
∆u− λu+ λf = 0 (A.1)

The aim is to enrich a FEM solution obtained over a coarse FEM mesh, therefore the
temperature field is defined as the sum of the coarse solution ufem and the enrichment
obtained by using the PGD, uenr:

u = ufem + uenr (A.2)

If we introduce Eq. (A.2) into Eq. (A.1), the steady reaction-diffusion equation equation
now reads

∆ufem + ∆uenr − λufem − λuenr + λf = 0. (A.3)

When only considering Dirichlet boundary conditions at a 1D generic domain Ω and for all
suitable test functions u∗, the weak form of Eq. (3.15) is defined as follows:∫

Ω
u∗(∆ufem + ∆uenr − λufem − λuenr + λf) dΩ = 0, (A.4)

or more specifically,∫
Ω
∇u∗ · (∇ufem +∇uenr) dΩ +

∫
Ω
u∗(λufem + λuenr) dΩ =

∫
Ω
u∗λf dΩ (A.5)

A.1 Global problem
When considering the definition of uenr and ∇uenr used in Eq. (3.20) and Eq. (3.21), their
simplification Eq. (3.22) and Eq. (3.23) (after introducing the operators N̂i, B̂IG,i and B̂IIG,i)
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and the expressions concerning the test function u∗ (Eq. (3.24)) and ∇u∗ (Eq. (3.25)), the
weak form Eq. (3.19) now reads:

∑
i∈Ienr

g∗j

∫
Ω

(
B̂IG,j + B̂IIG,j

)
·
(
B̂IG,i + B̂IIG,i

)
dΩ gi + λ

∑
i∈Ienr

g∗j

∫
Ω
N̂j N̂i dΩ gi =

= λ g∗j

∫
Ω
N̂j (f − ufem) dΩ− g∗j

∫
Ω

(
B̂IG,j + B̂IIG,j

)
· ∇ufem dΩ, ∀j ∈ Ienr, (A.6)

where the operators N̂i, B̂IG,i and B̂IIG,i depend on the shape functions and a known value
of the local variable at a given enrichment step and its corresponding fixed point iteration.
The only unknown is the global variable.

Now, by performing the integration process and considering that the integrals are calcu-
lated by using the Gauss quadrature associated with the local discretization (as commented
in Section 3.2.3.2), Eq. (A.6) can be turned into the following set of elemental matrices
(here we refer to macro-elements):

KI,e
G ≡

∫
Ωe
B̂IG,i · B̂IG,j dΩe,

KII,e
G ≡

∫
Ωe
B̂IG,i · B̂IIG,j dΩe,

KIII,e
G ≡

∫
Ωe
B̂IIG,i · B̂IG,j dΩe,

KIV,e
G ≡

∫
Ωe
B̂IIG,i · B̂IIG,j dΩe

KV,e
G ≡

∫
Ωe
N̂i N̂j dΩe. (A.7)

The elemental Laplacian matrix at the global level is:

Ke
G = KI,e

G +KII,e
G +KIII,e

G +KIV,e
G + λKV,e

G . (A.8)

Likewise, for the right hand side term, the following operators are introduced, including
the computation of the initial coarse mesh solution and the source term:

bI,eG ≡
∫

Ωe
N̂j (f − ufem) dΩe,

bII,eG ≡
∫

Ωe

(
B̂IG,j + B̂IIG,j

)
· ∇ufem dΩe,

(A.9)

which delivers the vector of nodal equivalent fluxes:

beG = λ bI,eG − b
II,e
G . (A.10)
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Both the Laplacian matrix and the nodal fluxes vector at the macro-element level can be
brought to the global numbering by following a standard finite element assembling process.
Finally, the global problem can be solved by following Eq. (3.31) where g collects the nodal
values gi, for i ∈ Ienr, of the global function at the macro-mesh.

A.2 Local problem
Likewise, now the objective is to obtain the local variable from a previously obtained global
variable at a given enrichment step and its corresponding fixed point iteration. When consid-
ering the expressions of uenr and ∇uenr used in Eq. (3.33) and Eq. (3.34) (after introducing
the operators M̂k, B̂IL,k and B̂IIL,k) and the expressions concerning the test function u∗ (Eq.
(3.38)) and ∇u∗ (Eq. (3.39)), the weak form Eq. (3.19) now reads:

∑
k∈Iloc

lj∗
∫

Ω

(
B̂IL,j + B̂IIL,j

)
·
(
B̂IL,k + B̂IIL,k

)
dΩ lk + λ

∑
k∈Iloc

lj∗
∫

Ω
M̂j M̂k dΩ lk =

= lj∗
∫

Ω
M̂j (f − ufem) dΩ− lj∗

∫
Ω

(
B̂IL,j + B̂IIL,j

)
· ∇ufem dΩ, ∀j ∈ Iloc, (A.11)

where the operators M̂k, B̂IL,k and B̂IIL,k depend on the shape functions and a known
value of the global variable.

Now, by performing the integration process, Eq. (A.11) can be turned into the following
set of elemental matrices (here we refer to elements at the reference local support):

KI,e
L ≡

∫
Ωe
B̂IL,j · B̂IL,k dΩe

KII,e
L ≡

∫
Ωe
B̂IL,j · B̂IIL,k dΩe

KIII,e
L ≡

∫
Ωe
B̂IIL,j · B̂IL,k dΩe

KIV,e
L ≡

∫
Ωe
B̂IIL,j · B̂IIL,k dΩe

KV,e
L ≡

∫
Ωe
M̂j M̂k dΩe. (A.12)

The elemental Laplacian matrix at the local level is:

Ke
L = KI,e

L +KII,e
L +KIII,e

L +KIV,e
L + λKV,e

L . (A.13)

Likewise on the right-hand side, integration can be carried out:

bI,eL ≡
∫

Ωe
M̂j (f − ufem) dΩe

bII,eL ≡
∫

Ωe

(
B̂IL,j + B̂IIL,j

)
· ∇ufem dΩe

(A.14)
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which delivers the vector of nodal equivalent fluxes:

beL = λ bI,eL − b
II,e
L . (A.15)

Both the Laplacian matrix and the nodal fluxes vector at the support element level can
be brought to the local numbering by following a standard finite element assembly process.
Finally, the local problem can be solved following 3.45, where l collects the nodal values lk,
for k ∈ Iloc, of the local function at the reference support mesh.
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Appendix B

Coefficients definition for
alternating directions
optimization

Coefficients βr∗ ∈ R, α̃r∗ ∈ RM and γ̃∗ ∈ RS in Eq. (4.7) are defined as follows:

βr∗ :=
D∏

d=0,d6=∗
〈Ar
∗v∗,v∗〉∗ ,

α̃r∗ := α ◦

 D⊙
d=0,d 6=∗

〈Ar
∗W ∗,v∗〉∗

T

and

γ̃∗ := γ ◦

 D⊙
d=0,d6=∗

〈V ∗,v∗〉∗

T

,

where “•T ” denotes the transpose and “◦” stands for the Hadamard (component-wise) prod-
uct. Recall that α contains the representation coefficients of the rank-M approximation of
the solution, while γ are the representation coefficients of the rank-S representation of the
non-linear term. See Eq. (4.3) and Eq. (4.5), respectively.

Using the coefficients defined above, we can define the following quantities:

Ã∗ :=
R∑
r=1

βr∗A
r
∗ and b̃∗ := −

R∑
r=1

Ar
∗W ∗α̃

r
∗ − V ∗γ̃∗,

that can be introduced in Eq. (4.7), leading to the following minimization problem:

w∗ = arg min
v∗∈RN∗

1
2 〈Ã∗v∗,v∗〉∗ + 〈b̃∗,v∗〉∗, (B.1)
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whose solution is w∗ = Ã
−1
∗ b̃∗.
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Cette approche construit une représentation 
séparée qui fournit l'enrichissement local, sans qu'il 
soit nécessaire de connaître a priori la solution, ni 
de mettre en œuvre des problèmes locaux 
auxiliaires pour déterminer l'enrichissement. 
  La deuxième stratégie est consacrée à la 
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global-local de manière moins intrusive, compatible 
avec le standard des éléments finis. 
Par conséquent, nous nous basons sur 
l’assemblage FEM standard des opérateurs et 
utilisons la PGD comme résolveur algébrique 
itératif. La continuité sur les limites de la partition du 
domaine n'a pas besoin d'être imposée 
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Abstract :   One of the main advantages of the 
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compared to other model reduction methods, lies in 
its adequacy to compute space separated 
representations in Cartesian-like degenerated 
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representations to non-Cartesian domains, by 
introducing the notion of Global-Local separated 
representations. Global-Local separated 
representations can be understood as a multiplicative 
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To this aim, two strategies are proposed. The first 

proposal is based on the partition of unity, and 
combines the global and local discretization levels, 
based on a partition of the domain.  

It builds a separated representation that provides 
the local enrichment, without the need for a priori 
knowledge of the solution, nor the implementation of 
auxiliary local problems to determine the 
enrichment. 
  The second strategy is devoted to the construction 
of Global-Local separated representations in a less 
intrusive manner, compatible with the finite element 
standard. Therefore, we rely on standard FEM 
assembly of the operators and use the PGD as an 
algebraic iterative solver. Continuity on the 
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