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RÉSUMÉ SUBSTANTIEL EN FRANÇAIS

Les travaux décrits dans cette thèse se situent à l’interface entre les statistiques, l’infor-
matique et la biologie. Ils sont motivés par l’ambition double de contribuer à la recherche
en statistique tout en répondant à un besoin méthodologique pour l’analyse de données
expérimentales. Une partie importante de ces travaux se sont déroulés au contact de col-
laborateurs biologistes, dans une démarche de compréhension de leurs problématiques et
de leurs données. C’est pendant ces échanges que nous avons identifié la nécessité de dé-
velopper les outils de test et d’exploration de données issues de mesures de séquençage en
cellule unique qui font l’objet de ce manuscrit.

Le développement de technologies de séquençage en cellule unique constitue une ré-
volution pour la recherche en biologie moléculaire, car il permet de mesurer l’activité
spécifique de chaque cellule d’une population. On s’intéresse en particulier à la technolo-
gie de séquençage des ARN transcrits en cellule unique (scRNA-Seq) et marginalement au
séquençage par immunoprécipitation de la Chromatine en cellule unique (scChIP-Seq) qui
nous informent sur deux aspects différents de l’activité cellulaire. Le scRNA-Seq permet
de mesurer précisément le transcriptome de chaque cellule d’une population de cellules,
et le scChIP-Seq permet de mesurer les modifications de la chromatine, ce qui permet
notamment d’étudier la régulation de l’expression des gènes.

En contrepartie de cette précision sans précédent, les données de séquençage en cellule
unique et en séquençage d’ARN, sont des données de comptage massives et en grande
dimension, qui contiennent typiquement plusieurs milliers d’observations (les cellules) et
plusieurs milliers de variables (les gènes). De plus, elles sont sur-dispersées, sporadiques
(elles contiennent beaucoup de zéros), et contiennent de nombreux biais liés aux nom-
breuses étapes nécessaires à une mesure. Des outils d’analyse et algorithmiques adaptés
sont nécessaires afin d’étudier les mécanismes cellulaires liés à un phénotype à partir des
données de scRNA-Seq. Pour développer ce genre d’outils, il est nécessaire de comprendre
les interrogations scientifiques et les problématiques biologiques qui sous tendent l’analyse
de ces données, et de traduire la méthodologie de la recherche en biologie en questions

11



TABLE OF CONTENTS

statistiques pertinentes. Cela n’est possible qu’à travers des collaborations étroites entre
biologistes et statisticiens, à l’instar de ce travail de thèse.

Nous avons donc identifié en collaboration avec des collègues spécialistes de l’analyse de
données transcriptomique, l’absence d’un outil de comparaison globale de transcriptome,
et avons choisi de formuler cette question comme un test statistique de comparaison
de distributions. Pour y répondre, nous nous sommes focalisés sur les méthodes de test
de comparaison de deux échantillons basés sur les méthodes à noyaux [63]. Ces tests
à noyaux, dont le représentant le plus connu est le test Maximum Mean Discrepancy
(MMD) ainsi que le test basé sur l’Analyse Discriminante de Fisher à noyaux (KFDA),
existent depuis les années 2000 [52, 64], leurs performances sont attestées et il s’agit d’un
sujet de recherche en statistique actif sur lequel il existe de nombreuses questions ouvertes.
Aussi, aucune implémentation pratique de ces méthode n’est publiée, donc l’outil que nous
avons proposé rend possible l’accès aux tests à noyau à des non spécialistes. Motivés par
cet objectif pragmatique, nos travaux peuvent être décomposés en quatre contributions
principales.

La première contribution est le développement d’un package nommé ktest dans lequel
sont efficacement implémentés ces test à noyaux, ce qui permet de faire l’analyse complète
d’une comparaison de transcriptomes en seulement quelques lignes de code et quelques
minutes de calculs, avec un large panel d’outils de visualisation et de diagnostic permet-
tant d’interpréter les résultats. L’implémentation pose aussi des questions pratiques en
termes de structuration des données et d’efficacité computationnelle. Le package ktest
est donc implémenté dans les langages R et Python, et compatible avec les frameworks
d’analyse de données en cellule unique existants, tels que Seurat, Single-cell experiment et
Scanpy. Enfin, les méthodes d’approximation de Nyström y sont implémentées de manière
optionnelle pour les échantillons qui contiendraient plusieurs milliers de cellules.

La seconde contribution consiste en la mise en pratique opérationnelle des tests à
noyaux. Nous avons éprouvé leurs performances sur des données simulées et sur des don-
nées de transcriptomique en cellule unique. Sur les données simulées, nous avons démontré
la compétitivité des tests à noyaux par rapport aux méthodes de test habituellement uti-
lisées pour ce type de données. Sur les données de séquençage, nous avons à la fois pu
analyser les différences entre les résultats de notre méthode avec d’autres, et publier des
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résultats originaux obtenus à partir de notre approche. Nous avons grandement appro-
fondi l’interprétation géométrique des tests à noyaux, ce qui nous a permis de proposer
des outils de diagnostic et de visualisation, qui permettent une interprétabilité complète
des résultats. Enfin, nous avons identifié des heuristiques pratiques pour le choix des
hyperparamètres sous-jacents de façon adaptée au problème étudié.

Nous proposons aussi trois contributions théoriques. Tout d’abord, nous appliquons les
méthodes d’approximation de Nyström aux tests à noyaux, ce qui n’avait pas clairement
été décrit dans une publication jusqu’à présent. De plus, nous introduisons un cadre de
modélisation général pour les tests à noyaux. Ce cadre de modélisation nous permet de
proposer un test à noyaux qui généralise les tests de comparaison de deux distributions
à des tests pour les designs quelconques, adaptés à des données issues de protocoles
expérimentaux plus complexes. Ce test est inspiré du test de la trace de Hotelling-Lawley
pour les modèles linéaires multivariés. Ce lien avec les modèles linéaires nous permet de
proposer plusieurs outils de diagnostic qui enrichissent l’interprétation des resultats des
tests à noyaux. Grâce à des outils issus de la théorie de la perturbation des opérateurs, nous
obtenons la distribution nulle asymptotique de la statistique proposée. Notre troisième
contribution théorique est l’application des fonctions d’influence issues du domaine des
statistiques robustes à nos statistiques de test.

13



INTRODUCTION

This work is motivated by the ambition to both contribute to research in statistics and
deliver a practical framework that supports the analysis of high-throughput single-cell
sequencing data. Thus, it lies at the interface between statistics, informatics, and biology.
We identified the need to develop an interpretable tool dedicated to the comparison of
single-cell datasets thanks to several fruitful collaborations. These collaborations were
not all successful but they all contributed to shape a tool highly compatible with our
collaborator’s methodology and issues.

In this Introduction, we first present the main principles of the single-cell technology, the
challenges related to single-cell data analysis and motivate the need for an interpretable
method that compares single-cell datasets globally. Then we introduce the solution we
propose to fill this gap as four main contributions. We conclude by presenting the orga-
nization of the manuscript.

Single-Cell Sequencing

Cell Activity

The cell is considered as the basis of living organisms. In Eukaryotes, the genetic
material is contained in the nucleus in the form of chromosomes, and the cytoplasm
contains other organelles of the cell.

Cell activity is mainly determined by the genes encoded in the nuclear DNA that are
expressed during the cell life. Inside the cell nucleus, coding genes are transcribed from
DNA to messenger RNA (mRNA) molecules. The mRNAs migrate from the nucleus
to the cytoplasm where their information is translated into proteins until the mRNA
degradation. Regulation mechanisms govern this activity. These steps are subject to
random variations and that supports the stochastic nature of cell fate. The field of
molecular biology focuses on the mechanisms underlying gene activity. The development
of single-cell sequencing technologies initiated a revolution in the field, as it allowed to
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observe cell populations at the unprecedented single-cell resolution and study the cell-to-
cell variability, when previous techniques referred as bulk sequencing only accessed to an
averaged information.

Single-Cell Sequencing

Theoretical and technical advances in droplet-based microfluidics in the 2000s allowed
the development of instruments able to encapsulate cells in droplets isolated from each
other. Coupled with techniques from molecular biology, it became possible to uniquely
identify each cell of a sample from a sequencing measurement. These high-throughput
droplet-based techniques allowed to access to the information related to the activity of
hundreds to thousand of cells in a few hours only [45].

Many techniques are based on the single-cell approach. For instance, the single-cell
version of Assay for Transposase Accessible Chromatin using sequencing (scATAC-Seq)
measures the gene accessibility of each cell [23]. The single-cell Chromatin immunoprecip-
itation sequencing (scChIP-Seq) measures protein-DNA interactions in the nucleus, it can
be used to study gene regulation [120, 57]. In addition to an application on scChIP-Seq
data, the methods we developed are mainly motivated by the analysis of single-cell RNA
sequencing (scRNA-Seq) measures, that capture a representative subset of the mRNAs
that are located in the cytoplasm of a cell [68, 89, 152]. Recently, spatial scRNA-Seq was
developed to append the 3D position of each sequenced cell [136].

Single-Cell RNA Sequencing Data Analysis

A scRNA-Seq dataset contains the number of detected mRNAs associated to each tran-
script in each cell. It is encoded as a table where the rows are cells and the columns are
transcripts. From a statistical point of view, cells are called observations and transcripts
are called variables or features. Generally, scRNA-Seq datasets contain hundreds to thou-
sands of observations and up to tens of thousands of variables. A dataset that contains
a lot of observations is considered as large. That raises practical issues in terms of data
storage and computational cost. A dataset that contains a lot of variables is said to be
high-dimensional. There is a theoretical difficulty related to the statistical analysis of
high-dimensional datasets, refered as the curse of dimensionality [49].
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A scRNA-Seq dataset is the output of a succession of many steps among which we have
the sample preparation, the droplet-based single-cell isolation, the PCR signal amplifica-
tion, the mRNA library preparation, the sequencing, the gene identification based on a
reference genome and the quality controls and data filtering. Each of these steps induces
technical biaises [150, 95], that are difficult to distinguish from the biological variabil-
ity related to the uniqueness of each cell and the intrinsic stochasticity of transcription.
Moreover, as a cell does not express every gene and the expressed genes are not expressed
continuously, scRNA-Seq datasets contain a lot of zeros. We say they are sparse [137].

The analysis of the distributions observed in scRNA-Seq dataset is challenging. It re-
quires efficient algorithms able to run on large datasets and accessible to non-specialists.
A large panel of such methods have been developed [87]. For instance, it is possible to
determine cell types [6], differentiation trajectories [80], cell-cell communication [37] or
cell cycles [140] based on a scRNA-Seq dataset. A lot of work has been done to obtain
synthetic visual representations of these high-dimensional datasets, non-linear dimention-
ality reduction methods such as t-SNE [88] or UMAP [96] are the most popular. We are
especially interested in the comparison of scRNA-Seq datasets.

Motivation for a Global Comparison Method

Most experiments in single-cell transcriptomics consist in comparing cell activity in
several conditions of interest in order to determine what affects cell activity and how.
Conditions comparison has been the basis of transcriptomics methodology for a long
time and the historical approach on bulkRNA-Seq data is called Differential Expresssion
Analysis (DEA) [119]. DEA on bulkRNA-Seq data compares the averaged expressions
gene by gene in order to eventually detect a significant difference for some genes, refered
as differentially expressed genes. DEA has been adapted to scRNA-Seq data and is now
used in a large majority of the scRNA-Seq publications [134]. Many new methods were
developed to take advantage of the distributional information available for each gene in
scRNA-Seq datasets to increase the performance of DEA [32]. The application of DEA
to scRNA-Seq data raises issues on the probabilistic distribution underlying scRNA-Seq
data [78].

The DEA paradigm is particularly suited to detect variables of interest taking part in a
response phenotype under specific conditions. The detected differentially expressed genes
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can then be confirmed by cutting them off or inhibiting them in further experiments.
We noticed that the DEA paradigm is also employed in order to identify observations of
interest, such as a sub-population with a specific phenotype hidden in only one of the
two compared populations that contributed to the difference. However, DEA is in general
not able to fulfill this task because it is restricted to compare marginal distributions. For
instance, the sub-population can be characterized by a slight difference in the expression
of many variables, that do not induce significant gene-wise differences between the two
compared datasets. Moreover, if the sub-population is too small compared to the global
population, even a high difference in the expression of some genes could remain unde-
tected and considered as random noise. In both situations, DEA would fail to detect
the difference induced by the sub-population that would remain invisible from the data
analysis.

If such a homogeneous sub-population exists in a dataset, a multivariate comparison
between the two samples would have more chance to detect the existing difference than the
univariate DEA approach. Indeed, several slight marginal differences may lead to a large
joint difference. While such a global comparison tool would be particularly suited to many
experiments in molecular biology, we identified that it did not exist back in 2019. Since,
some methods have been published but they lack of a fundamental feature: interpretability
to identify the sub-population of interest defined as the cells supporting the difference [16,
101]. Thus, we developed this interpretable global comparison approach that we called
Differential Transcriptome Analysis (DTA), complementary to DEA. Our DTA approach
relies on kernel testing. It is promising as the interpretation of the test results allowed
us twice to discover a sub-population of interest conjectured by our collaborators but not
detected with existing techniques such as DEA or clustering algorithms.

Our Contributions

Mathematical Background : Kernel Methods and Kernel Tests

All the contributions developed in this manuscript belong to the field of kernel meth-
ods. Kernel methods are popular, competitive and interpretable methods developed in
the Machine Learning community [125, 129]. The principle of kernel methods is to em-
bed observations in a high-dimensional Reproducing Kernel Hilbert Space (RKHS) called

17



TABLE OF CONTENTS

feature space, and to apply linear statistical methods on the embeddings. When the
embedding function called the feature map is non-linear, the resulting kernel method is
non-linear. While embedding data in high-dimensional spaces could increase the compu-
tational cost of kernel methods, the kernel trick makes the computational cost polynomial
in the number of observations and thus generally affordable. Even when this polynomial
cost is too expensive, as it can be the case for the large datasets encountered in scRNA-
Seq data analysis, matrix approximation methods such as the Nyström approximation
can be coupled to the kernel trick to reduce the computational cost [147].

The principle of embedding observations can be generalized to embedding probability
distributions [100]. This technique allows to define a metric between probability distri-
butions and it is at the basis of several pair-wise comparison methods, refered as kernel
two-sample tests [63]. The most famous kernel two-sample test is the MMD test, based
on the MMD statistic that is defined as the distance between the embeddings of the two
compared probability distributions in the feature space [53]. Several variants exist for this
test, in particular, the kernel Fisher Discriminant Analysis test is very close to the MMD
test as the KFDA statistic is a normalized version of the MMD statistic [64]. The MMD
and KFDA tests do not require any distributional assumption and can theoretically detect
any existing difference between two distributions. The first Chapter of this manuscript
contains a more detailed presentation of kernel methods and kernel testing.

A Package for the Implementation and Interpretation of Kernel
Testing

One of our main contribution is to propose a user-oriented implementation of these
kernel tests in a package called ktest to perform interpretable sample comparisons in a
few lines of code. Indeed, despite the interest of kernel tests, to the best of our knowledge,
there is no such implementation of these tests. ktest is implemented in both Python and R,
it is designed to be compatible with existing single-cell analysis frameworks such as Seurat
[24], SingleCellExperiment [4] and Scanpy [148], and we project to integrate ktest to the
scverse consortium in the future [143]. ktest is not limited to single-cell data and could
be applied on any research data to compare conditions. To deal with the large datasets
encountered in scRNA-Seq data analysis, Nyström approximations are implemented as
optional features, most importantly, all the methods described in this manuscript are
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implemented in the ktest package.

Operational Aspects of Kernel Testing

Our second main contribution is the operational application of kernel testing in real
conditions. For DEA, we compared the performances of kernel two-sample tests to the
large set of existing DEA methods on simulated data and through the systematic analysis
of the detected differentially expressed genes on published data. The protocol on simulated
data was shared with us by the authors of [44], and it was inspired from the four categories
of alternatives for single-cell RNA sequencing data described in [78]. The KFDA test
shows competitive performances compared to other existing DEA methods and is even
the most powerful to detect the most complex alternative, which the MMD test fails to
detect. The systematic analysis of the results on published data deepens and discusses the
analyses made in [134]. These practical applications raised issues on the kernel function
choice and on hyperparameter tuning for the KFDA test. As hyperparameter tuning is
related to statistical issues that are beyond the scope of this manuscript, we discuss how
to choose a heuristic and some perspectives in the Conclusion chapter.

In complement to kernel-testing, we developed a large range of data exploration tools
and diagnostic tools. Our main data exploration tool is called the discriminant axis and
relies on the geometrical concepts underlying the KFDA framework. The discriminant
analysis is basically a non-linear dimension reduction that summarizes the main differ-
ences existing between two compared samples on a one-dimensional axis. The principal
difference of this visualization tool compared to popular scRNA-Seq data visualization
tools is that it is based on discrimination instead of being based on description. The
discriminant axis allowed us to identify sub-populations of interest undetected from pre-
vious analyses on both scRNA-Seq data and scChIP-Seq data. Diagnostic tools aim at
monitoring what led to the test outcome. Diagnostic graphs inspired from tests on multi-
variate linear models allow to assert that the test assumptions are true. Kernelized Cook
distances and influence functions are different ways to identify influential observations
that weighted on the results. Finally, a diagnostic graph describing how the dimension
reduction related to the KFDA test captured the inner variability of both samples can give
some intuition on hyperparameter tuning. To summarize, we enriched kernel testing to
obtain a comprehensive, efficient and interpretable framework suited to give a deep under-
standing of the existing differences between several conditions, as the marginal DEA and
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the joint DTA approaches allow to detect variable-wise differences and observation-wise
differences respectively.

Theoretical Contributions

A first theoretical contribution is to detail the application of the Nyström method to
kernel testing. We also propose a model framework for kernel testing called kernel linear
model, that allows to define a new kernel test that generalizes kernel two-sample tests to
any experimental design. The kernel linear model is inspired from the multivariate linear
model, and it allows to enrich kernel tests with a set of diagnostic tools to interpret the test
outcome. We derive the asymptotic null distribution of our generalized kernel test with
analytic tools from operator perturbation theory inspired from [22]. This contribution
is detailed in Chapter 3 and is a work in progress that has not been the object of a
publication yet. Another work in progress have been initiated on the detection of the
observations that have a strong influence on the test results. We propose to apply on
our test statistics a tool that comes from robust statistics called Gateaux derivatives. It
has already been applied to the KFDA classifier and the Kernel Principal Component
Analysis (KPCA) that is a dimension reduction method, the first steps of this work are
presented in Chapter 4. All these contributions are implemented in our package.

Successful Applications to Transcriptomic Research

Our exploration of kernel testing applied to single-cell data was nourished by several
collaborations with molecular biologists. Each collaboration became the building block
of an aspect of our final methodology. Our first collaboration with the team of Stephane
Minvielle at the Centre de Recherche en Cancerologie et Immunologie Intégrée de Nantes-
Angers (CRCI2NA) on the Multiple Myeloma was fundamental to identify and formulate
the need for a global comparison framework. Our first application of the early implemen-
tation of kernel tests on the Pituitary Adenoma with the team of Philippe Bertolino at the
Centre de Recherche en Cancerologie de Lyon (CRCL) deeply enhanced our understand-
ing of the method and largely motivated the development of diagnostic and visualization
tools. Moreover, their complex experimental design confirmed the need for a generaliza-
tion of kernel two-sample tests. Finally, these two collaborations were very fruitful as
they shaped our approach from a theoretical kernel test to a practical framework able to
give answers to concrete research issues.
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The experience gathered from these exchanges allowed us to apply an advanced version
of our tool on the Reversion dataset from the team of Olivier Gandrion at Ecole Normale
Supérieure de Lyon. As we only pretended to confirm an already published similarity
between two datasets with our method [153], our visualization tool detected the sub-
population of interest they were looking for. Finally, the second detection of a sub-
population of interest on a scChIP-Seq dataset measured on Breast Cancer cells from the
team of Celine Vallot at Institut Curie was somehow easy as we knew exactly how to use
our package ktest. These collaborations correspond to the most practical and exciting
contributions of this work as they had concrete impact on their research and they most
fundamentally participated to build and strenghten a bridge between molecular biology
and statistics.

Organisation of the Manuscript

This introduction presented our motivations from molecular biology and the context of
single-cell data analysis. The following chapter will detail the statistical concepts under-
lying our framework. The first chapter (Chapter 1) is a mathematical introduction to
kernel methods and kernel testing. The second chapter (Chapter 2) is an adapted version
of our manuscript [106] supplemented with a presentation of how to apply the Nyström
method to kernel testing. The third chapter (Chapter 3 is a presentation of the kernel
linear model and the kernel test for general designs with a demonstration of its asymptotic
distribution. It also introduce some diagnostic tools derived from the multivariate linear
model. The fourth chapter (Chapter 4) relates our initiated work on influence functions
for kernel testing. We discuss about the perspectives and hyperparameter tuning in the
Conclusion chapter.
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Chapter 1

INTRODUCTION TO KERNEL METHODS

AND KERNEL TESTING

Kernel methods are popular tools in many areas of Applied Mathematics. Their theo-
retical origin goes back to the seminal work of Mercer [97], and their practical implemen-
tation relies on the work of Aronszajn [9]. However, they became popular in Statistics in
the late 90’s, with the Support Vector Machine algorithm [29].

In statistical learning, the idea of kernel methods is to embed the observations in a
high-dimensional linear space to apply linear methods on the embeddings. The embedding
function is called the feature map. It is often chosen to be non-linear in order to catch
non-linear relationships between the observations that would remain undetected with a
linear approach. The high-dimensional space that contains the embeddings is called the
feature space. The kernel trick allows to avoid the principal difficulty that underlies
this type of approach, that is the explicit computation of the embeddings. Thanks to
the kernel trick, we can even work in an infinite dimensional feature space without any
computational limitation. From a statistical point of view, the interest of kernel methods
also lies in the possibility to use the feature map to embed probability distributions in the
feature space. Then we can characterize a probability distribution by its embedding, and
use this representant as a proxy to study the distribution. The literature on embedding
probability distributions with kernel methods was recently reviewed in [100].

In this chapter, we are particularly interested in applying kernel methods to infer sta-
tistical quantities and then perform hypothesis testing. Many linear statistical methods
have their kernelized version, as the kernel principal component analysis [124], kernel
canonical correlation analysis [11], kernel k-means clustering [10]. It is a simple way to
obtain a non-linear method from a linear method.
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The first section of this chapter is dedicated to the introduction of the general notions
related to kernel methods such as Hilbert spaces and kernel functions (Section 1.1). In the
second Section, we describe how to embed a probability distribution in the feature space,
with a particular focus on the kernel trick used to diagonalize an empirical operator related
to this embedding in practice (Section 1.2). We are especially interested in applying kernel
methods for non-parametric hypothesis testing. This range of applications was initiated
by the seminal work of Gretton [55] who introduced the now famous Maximum Mean
Discrepancy statistic for two-sample testing. The third section of this chapter is dedicated
to the presentation of non-parametric hypothesis testing and kernel testing, with a focus
on the MMD test that is based on the concept of embedding probability distributions in
the feature space (Section 1.3). The fourth Section details the KFDA framework and two
regularized KFDA statistics for two-sample testing (Section 1.4).

1.1 Introduction to Kernel Methods

Let (Y ,Y) a measurable space called the input space. The core idea of kernel methods
is to map the elements of Y into a high-dimensional reproducing kernel Hilbert space H
using a function φ(·) : Y → H. The function φ(·) is called the feature map, and the space
H is called the feature space, it can be of infinite dimension. The image φ(y) ∈ H of
y ∈ Y by the feature map φ(·) is called the embedding of y. Kernel methods are linear
methods applied in the feature space H, that correspond to non-linear methods in the
input space Y when the feature map is non-linear. Thus, these methods are able to catch
non-linear relationships in Y .

1.1.1 Introduction to Hilbert Spaces

A common interpretation of kernel methods is to consider that we embed the observed
data from the input space to a high-dimensional feature space in order to study them.
Most manipulations done on the embeddings in the feature space are possible because
it is a Hilbert space, and the reproducing property allows the practical computation of
the quantities of interest. A Hilbert space is a vector space in which we can easily define
distances, orthogonality and convergence, that are at the root of many statistical methods,
it is thus particularly suited to the development of statistical methods. In this subsection,
we describe some basic notions relative to Hilbert spaces.
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Definition 1 (Hilbert Space). A Hilbert Space H is a vector space endowed with an inner
product 〈·, ·〉H in which any Cauchy sequence has a limit in H.

Let H be a Hilbert space. The existence of an inner product in H allows the definition
of the orthogonality of two elements of H, as h, h′ ∈ H are said to be orthogonal if and
only if 〈h, h′〉H = 0. In addition, the limit of any convergent sequence of H belongs to H,
this is useful for describing the asymptotic properties of empirical estimators constructed
in H. Note that the Hilbert norm of a Hilbert space is defined with respect to the inner
product. Such that for h in H, we have ‖h‖H =

√
〈h, h〉H.

Some kernel tests rely on decompositions on orthonormal bases of the feature space H,
that are well defined for separable Hilbert spaces.

Definition 2 (Separable Hilbert Space). A Hilbert space H is separable if and only if
there exists an orthonormal sequence (es)s≥1 of H such that for any h ∈ H, we have:

‖h‖H =
√∑
s≥1
〈h, es〉2H. (1.1)

When H is separable, any orthonormal sequence (es)s≥1 that fulfills condition (1.1) is
an orthonormal basis of H.

Feature spaces are in general not endowed with a canonical orthonomal basis. In statis-
tical learning, a common approach to work with an orthonormal basis of H is to use the
orthonormal sequence of eigenfunctions of a Hilbert-Schmidt operator. Hilbert-Schmidt
operators are a particular class of linear operators from H to H.

Definition 3 (Hilbert-Schmidt operator). Let H a separable Hilbert space and (es)s≥1 an
orthonormal basis of H. A linear operator L : H → H is a Hilbert-Schmidt operator if
and only if:

∑
s≥1
‖Les‖2

H < +∞.

Then, the sum is independent from the orthonormal basis (es)s≥1, and it is called the
Hilbert-Schmidt norm:

‖L‖2
HS(H) =

∑
s≥1
‖Les‖2

H .
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Hilbert-Schmidt operators form a separable Hilbert space HS(H) endowed with the
inner product 〈·, ·〉HS(H) such that for L,N ∈ HS(H), we have:

〈L,N〉HS(H) =
∑
s≥1
〈Les, Nes〉H .

Hilbert-Schmidt operators are compact and have countable spectra. Every non-zero eigen-
value of a Hilbert-Schmidt operator is associated to an eigenspace of finite dimension.
Every Hilbert-Schmidt operator can be decomposed in an orthonormal basis of its eigen-
functions. Let L a positive Hilbert-Schmidt operator and (fs)s≥1 in H be the sequence
of its orthonormal eigenfunctions associated to the sequence of non-negative and non-
increasing eigenvalues (λs)s≥1 in R, we have:

L =
∑
s≥1

λsfs ⊗ fs,

where ⊗ is the tensor product, that defines a rank-one Hilbert-Schmidt operator, such
that if f, g ∈ H are non-zero and h ∈ H, we have:

(f ⊗ g)h = 〈g, h〉H f.

From the definitions, we can show that:

〈L, f ⊗ g〉HS(H) = 〈f, Lg〉H .

1.1.2 Kernel Functions and Reproducing Kernel Hilbert Spaces

Both the feature map and the feature space are actually defined with respect to a kernel
function, that is basically a measure of the similarity between pairs of observations from
the input space. Kernel methods are named with respect to the central role of the kernel
function.

Definition 4 (Kernel function). Let (Y ,Y) a measurable space. A kernel function k(·, ·)
over Y is a function k(·, ·) : Y × Y → R.

Kernel methods are in fact based on a particular subset of kernel functions called
positive definite (p.d.) kernels.
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Definition 5 (Positive Definite Kernel). A kernel k(·, ·) is positive definite if and
only if for all n ≥ 1 and for all Y = (Y1, . . . , Yn) in Yn, the Gram matrix KY =(
k(Yi, Yj)

)
i,j∈{1,...,n}

∈Mn(R) is symmetric and positive semi-definite.

The use of kernel methods in statistics is due to Aronszajn’s theorem [9] that proposed
a characterization of p.d. kernel with respect to Hilbert spaces.

Theorem 1 (Aronszajn [9]). Let (Y ,Y) a measurable space. A function k(·, ·) : Y×Y →
R is a positive definite kernel if and only if there exists a Hilbert Space (H, 〈·, ·〉H) of
functions from Y to R and a mapping φ(·) from Y to H such that for y, y′ ∈ Y, we have:

k(y, y′) = 〈φ(y), φ(y′)〉H. (1.2)

Aronszajn’s theorem shows that given a p.d. kernel k(·, ·), one can find a function φ(·)
and a Hilbert space H so that the relation (1.2) is verified. Thus, any statistical method
based on inner-product evaluations can be applied on the embeddings in the Hilbert
space H by using kernel evaluations. This is the basis of the kernel trick, as it means that
the kernel function can be seen as a shortcut that avoids the explicit determination of
the embeddings of the observations to compute their inner product in the feature space.
Moreover, when the feature space is infinite dimensional, the explicit determination of the
embeddings is impossible. The popularity of kernel methods relies on the fact that the
algorithms of most statistical methods can be rewritten with inner-product evaluations
only. Then kernelizing a statistical method consists in replacing every inner product of its
algorithm by a kernel evaluation. When the input space Y is not endowed with an inner-
product, it suffices to have a p.d. kernel that measures pair-wise similarities between
elements of Y to be able to run a statistical methods on the embeddings, thus kernel
methods also allow to do statistics on any kind of data [129].

Aronszajn’s theorem does not state the unicity of the Hilbert space and feature map
associated to a p.d. kernel, and indeed, a p.d. kernel may be associated to several Hilbert
spaces. To avoid any risk of confusion, we need to associate each p.d. kernel to a unique
Hilbert space. To do so, we introduce the notion of reproducing kernel Hilbert space
(RKHS). The following definition comes from [125].

Definition 6 (Reproducing Kernel Hilbert Space). Let (Y ,Y) a non-empty space and H
a Hilbert space of functions from Y to R. The space H is a reproducing kernel Hilbert
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space if and only if there exists a function k : Y × Y → R such that for h ∈ H, we have
the reproducing property:

h(y) = 〈h, φ(y)〉H , (1.3)

where φ(y) = k(y, ·), and H is the completion1 of the image of k : y ∈ Y 7→ φ(y), i.e.

H = Span
(
φ(y), y ∈ Y

)
.

It can be easily shown that the kernel associated to a RKHS is unique and it is called
the reproducing kernel. Note that it is sufficient to say that for any y ∈ Y , the linear
operator Ay : h ∈ H 7→ h(y) ∈ R is bounded2 to define a RKHS. Then the feature map
φ(·) is defined thanks to the Riesz representation theorem.

Theorem 2 (Riesz representation theorem). If L : H → R is a bounded linear operator,
then there exists a unique element ` ∈ H such that for all h ∈ H, we have:

Lh = 〈h, `〉H .

Indeed, for any y ∈ Y , the unique element associated to Ay is the feature map φ(y),
and we obtain the reproducing property. For h ∈ H, we have:

Ay(h) = 〈φ(y), h〉H .

The element φ(y) is the unique representer of y inH, this is the reason why it is considered
as the embedding of y in H [100]. Then the kernel function follows from the application
of φ(y) to another element y′ ∈ Y :

φ(y)(y′) = 〈φ(y), φ(y′)〉H = k(y, y′).

The following theorem states that p.d. kernels are reproducing kernels.

1The completion G of a space G is the space obtained by adding all the limits of Cauchy sequences to
G.

2A linear operator L from H to H is said to be bounded if there exist a constant C > 0 such that
forall h ∈ H, we have ‖Lh‖H ≤ C ‖h‖H.

28



1.2. Linking Kernels with Probability Distributions

Theorem 3 (Positive Definite Kernels are Reproducing Kernels). Let (Y ,Y) a measurable
space and k(·, ·) a kernel on Y. The kernel k(·, ·) is a positive definite kernel if and only
if it is a reproducing kernel.

As the reproducing kernel of a RKHS is unique, any p.d. kernel is associated to
a unique RKHS and conversely, any RKHS is associated to a unique p.d. kernel. An
important result in kernel methods that we do not use here is the Representer theorem.

Theorem 4. Let k(·, ·) be a p.d. kernel on a measurable space (Y ,Y) and H the associated
RKHS. Let Y1, . . . , Yn ∈ Y and R : Rn+1 → R a function strictly increasing with respect
to its (n+ 1)th variable. Then the minimum of the following empirical risk:

h? = min
h∈H

R
(
h(Y1), . . . , h(Yn), ‖h‖H

)
,

belongs to Span
(
φ(Y1), . . . , φ(Yn)

)
, the span of the embeddings associtated to Y1, . . . , Yn.

We notify this theorem as it is a central and practical results for kernel methods in
general because it allows to solve any optimization problem as a linear combination of the
embeddings. However we will not need this theorem in this manuscript as every quantity
defined as the solution of an optimization problem can be determined explicitly.

1.2 Linking Kernels with Probability Distributions

Let (Y ,Y) a measurable space and k(·, ·) a p.d. kernel on Y associated to the separable
RKHS H and the feature map φ(·). As there exists a unique representer φ(y) of y ∈ Y
called the embedding of y, we can define a unique representer of any probability distri-
bution P defined on Y . This representer is called the kernel mean embedding of P and
is denoted µ. The kernel mean embedding is defined through the Riesz representation
theorem and is equal to the expectation of φ(Y) ∈ H where Y ∼ P. Following the same
idea, we can also define a unique representer of the probability distribution P in HS(H),
the Hilbert space of Hilbert-Schmidt operators from H to H. This representer is called
the kernel covariance operator and is equal to the covariance operator of φ(Y) under P
and is denoted Σ. Then, for a statistical sample Y1, . . . , Yn ∈ Y from P, we can define
the empirical kernel mean embedding µ̂ and the empirical kernel covariance operator Σ̂.
These quantities allow us to develop statistical methods in the RKHS.
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The first part of this section is dedicated to the embedding of distributions in H and
HS(H), and the second part is dedicated to the definition of their empirical estimators.

1.2.1 Kernel Mean Embedding and Kernel Covariance Operator

The existence and unicity of the kernel mean embedding and kernel covariance operator
rely on the Riesz representation theorem.

Kernel Mean Embedding

The definition of the kernel mean embedding relies on the definition of an appropriate
bounded linear functional to apply the Riesz representation theorem.

Proposition 1. If EP

√
k(Y, Y ) < +∞, then there exists a unique element µ ∈ H such

that for all h ∈ H, we have:

EP

(
h(Y )

)
= 〈h, µ〉H . (1.4)

Proof. Consider the operator:

H −→ R

EP : h 7−→ EP

(
h(Y )

)
,

where EP

(
h(Y )

)
=
∫
y∈Y h(y)dP(y). The function EP is linear by the linearity of the

expectation. The reproducing property and the Cauchi-Schwarz inequality allow to show
that it is bounded, for h ∈ H, we have:

|EP

(
h(Y )

)
| ≤EP

(
| 〈h, φ(Y)〉H |

)
≤EP

(
‖h‖H ‖φ(Y)‖H

)
≤‖h‖H EP

√
k(Y, Y ).

This upper bound is finite by assumption. According to the Riesz representation theorem,
there exists a unique µ ∈ H such that for h ∈ H, we have:

EP

(
h(Y )

)
= 〈h, µ〉H .
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The assumption E
√
k(Y, Y ) < +∞ is needed to ensure the existence of the kernel mean

embedding. It is common to work with a bounded kernel function (supy∈Y k(y, y) < +∞)
in order to have EP

(
k(Y, Y )β

)
< +∞ for any β ≥ 1. Equation (1.4) is a reproducing

property on the evaluation of the expectation, thus the kernel mean embedding µ of P
can be interpreted as the embedding of P in H. Note that the kernel mean embedding is
also the expectation of the embedded random variable φ(Y). Indeed, for h ∈ H, we have:

EP
(
h(Y )

)
= EP

(
〈h, φ(Y)〉H

)
=
〈
h,EP

(
φ(Y)

)〉
H
.

Thus, by unicity of µ, we conclude that µ = EP
(
φ(Y)

)
. Note that this quantity is well

defined as a Bochner integral.

Covariance Operator

Similarly to the kernel mean embedding, the kernel covariance operator is the covariance
operator of the embedded random variable φ(Y).

Proposition 2 (Kernel Covariance Operator). If EP

(
k(Y, Y )

)
< +∞, then there exists

a unique Hilbert-Schmidt operator Σ ∈ HS(H) such that for g, h ∈ H, we have:

Cov
(
g(Y ), h(Y )

)
= 〈g,Σh〉H

Proof. Let g, h ∈ H, observe that:

Cov
(
g(Y ), h(Y )

)
=EP

((
g(Y )− EP

(
g(Y )

))(
h(Y )− EP

(
h(Y )

)))

=EP

(〈
g, φ(Y)− µ

〉
H

〈
h, φ(Y)− µ

〉
H

)

=EP

(〈(
g ⊗ h

)
(φ(Y)− µ), φ(Y)− µ

〉
H

)

Then we define Acov : g ⊗ h ∈ HS(H) 7→ Cov
(
g(Y ), h(Y )

)
∈ R. The operator Acov is
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bilinear by bilinearity of the covariance. We also have:

|Acov(g, h)| =
∣∣∣∣∣∣EP

((
g(Y )− EP

(
g(Y )

))(
h(Y )− EP

(
h(Y )

)))∣∣∣∣∣∣
≤
∣∣∣∣∣EP

(〈
g, φ(Y)− µ

〉
H

〈
h, φ(Y)− µ

〉
H

)∣∣∣∣∣
≤‖g‖H ‖h‖H EP ‖φ(Y)− µ‖2

H

≤‖g‖H ‖h‖H EP ‖φ(Y)‖2
H .

As ‖φ(Y)‖2
H = 〈φ(Y), φ(Y)〉H = k(Y, Y ), the upper-bound is finite by hypothesis and the

operator Acov is bounded. We apply the Riesz representation theorem on the bounded
linear operator Acov, there exists a unique Hilbert-Schmidt operator Σ such that:

Cov
(
g(Y ), h(Y )

)
= 〈Σ, g ⊗ h〉HS(H)

= 〈g,Σh〉H .

The kernel covariance operator has several properties that will be used for the proofs
of this manuscript. It is self-adjoint, thus for any g, h ∈ H:

〈g,Σh〉H = 〈Σg, h〉H .

It is trace-class, as for any orthonormal basis (es)s≥1 of H, ∑s≥1 〈es,Σes〉H < +∞. As
a positive self-adjoint Hilbert-Schmidt operator, the kernel covariance operator can be
diagonalized, i.e. there exists an orthonormal basis (fP

s )s≥1 of eigenfunctions of Σ in H
and a sequence of decreasing and non-negative eigenvalues (λPs )s≥1 with ∑s≥1 λ

P
s < +∞

such that:

Σ =
∑
s≥1

λPs (fP
s ⊗ fP

s ).

The eigenfunctions of Σ associated to the highest eigenvalues can be interpreted as the
directions of the feature space that carry the largest part of the variance of the embedded
random variable φ(Y). Thus, the eigen-decomposition of a covariance operator can be used
to focus on a low dimensional subspace of the feature space that carry a large proportion
of the variability of φ(Y).
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1.2. Linking Kernels with Probability Distributions

1.2.2 Empirical Aspects and Kernel Trick

Assume that Ek(Y, Y ) < +∞. Let Y = (Y1, . . . , Yn) in Y a set of n i.i.d. random
variables from P. All the quantities presented above have their empirical counterparts
with respect to Y. Here, we present the expressions of the empirical estimators µ̂ and
Σ̂ of µ and Σ respectively, with respect to Y. Then, we present how to determine the
eigenvalues (λ̂Ps )s∈{1,...,n} and associated eigenfunctions (f̂P

s )s∈{1,...,n} of Σ̂ with respect to
Y, which are the empirical estimators of (λPs )s≥1 and (fP

s )s≥1 respectively.

Empirical Mean Embedding and Covariance Operator

The empirical kernel mean embedding of P associated to Y is defined such that:

µ̂ = 1
n

n∑
i=1

φ(Yi). (1.5)

This is an unbiased estimator of the kernel mean embedding µ. The empirical kernel
covariance operator of P associated to Y is defined such that:

Σ̂ = 1
n

n∑
i=1

(
φ(Yi)− µ̂

)⊗2
. (1.6)

This is a biased estimator of the kernel covariance operator Σ. An unbiased estimator
would be obtained by replacing the factor n−1 by a factor (n− 1)−1.

Diagonalization of the Empirical Kernel Covariance Operator

Assume that the non-zero eigenvalues of Σ̂ are distinct for simplicity. To diagonalize
Σ̂, we define Φ(Y) = (φ(Y1), . . . , φ(Yn))′ ∈ Hn. In this approach, we generalize matrix
algebra and consider elements of H as vectors even if they are infinite dimensional. This
approach is adapted from [62]. By an abuse of notation, we have that:

Φ(Y)′Φ(Y) =
(
φ(Y1) . . . φ(Yn)

)
φ(Y1)′

...
φ(Yn)′

 =
n∑
i=1

φ(Yi)⊗ φ(Yi),
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and that:

Φ(Y)Φ(Y)′ =


φ(Y1)′

...
φ(Yn)′

(φ(Y1) . . . φ(Yn)
)

=


〈φ(Y1), φ(Y1)〉H . . . 〈φ(Y1), φ(Yn)〉H

... . . . ...
〈φ(Yn), φ(Y1)〉H . . . 〈φ(Yn), φ(Yn)〉H


︸ ︷︷ ︸

KY

,

where φ(Y)′ is defined such that φ(Y)′φ(Y) = 〈φ(Y), φ(Y)〉H and φ(Y)φ(Y)′ = φ(Y)⊗φ(Y).
Moreover, for any matrix M = (mi,j)i,j∈{1,...,n} ∈ Mn(R), then MΦ(Y) ∈ Hn and its ith

element is such that
(
MΦ(Y)

)
i

= ∑n
j=1mi,jφ(Yj) ∈ H. The first step of this approach is

to write the operator to diagonalize with respect to Φ(Y). According to Equation (1.6),
we directly have:

Σ̂ = 1
n

(
ΠnΦ(Y)

)′(
ΠnΦ(Y)

)
,

where Πn = In−n−1Jn ∈Mn(R), with In and Jn being the identity matrix and the matrix
full of ones ofMn(R). Let f̂P be an eigenfunction of Σ̂ associated to the eigenvalue λ̂P,
we have:

1
n

(
ΠnΦ(Y)

)′(
ΠnΦ(Y)

)
f̂P = λ̂Pf̂P. (1.7)

Now we force the appearance of KY = Φ(Y)Φ(Y)′ in Equation (1.7). For instance, we
can multiply both sides of the equation by ΠnΦ(Y) on the left to obtain:

1
n

ΠnKYΠn

(
ΠnΦ(Y)f̂P

)
= λ̂P

(
ΠnΦ(Y)f̂P

)
, (1.8)

where:

ΠnΦ(Y)f̂P =


(
φ(Y1)− µ̂

)′
...(

φ(Yn)− µ̂)′

 (f̂P) =


〈
φ(Y1)− µ̂, f̂P

〉
H...〈

φ(Yn)− µ̂, f̂P
〉
H

 ∈ Rn.

The matrix KΣ = n−1ΠnKYΠn ∈ Mn(R) is the matrix to diagonalize and for each
eigenfunction f̂P ∈ H of Σ̂, the vector ΠnΦ(Y)f̂P ∈ Rn is an eigenvector of the matrix
KΣ associated to the same eigenvalue λ̂P. Since this is true for any eigenfunction f̂P

associated to an eigenvalue λ̂P of Σ̂, it shows that the spectrum of Σ̂ is included in the
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spectrum of KΣ.

The second step consists in showing that the spectrum of KΣ is included in the spectrum
of Σ̂ and at the same time obtaining an expression of any eigenfunction f̂P of Σ̂ with
respect to the unit eigenvector u associated to the same eigenvalue. Let u = (u1, . . . , un)′ ∈
Rn an eigenvector of KΣ associated to the eigenvalue λ̂P. We have that:

1
n

(
ΠnΦ(Y)

)(
ΠnΦ(Y)

)′
u = λ̂Pu.

We force the appearance of Σ̂ by multiplying both sides by
(
ΠnΦ(Y)

)′
on the left:

Σ̂
(
ΠnΦ(Y)

)′
u = λ̂P

(
ΠnΦ(Y)

)′
u. (1.9)

Thus for each eigenvector u of KΣ, the function
(
ΠnΦ(Y)

)′
u ∈ H is an eigenfunction

of Σ̂ associated to the same eigenvalue λ̂P. In addition the spectrum of KΣ is included
in the spectrum of Σ̂, thus they both share the same spectrum. We have the following
explicit formulations:

KΣ =
( 1
n

〈
φ(Yi)− µ̂, φ(Yj)− µ̂

〉
H

)
i,j∈{1,...,n}

∈Mn(R),

ΠnΦ(Y)′u =
(
φ(Y1)− µ̂ . . . φ(Yn)− µ̂

)
u1
...
un

 =
n∑
i=1

ui
(
φ(Yi)− µ̂

)
∈ H.

Note that these expressions are written with respect to the embeddings φ(Y) and can
thus be used in further kernel tricks. In practice, we determine the matrix to diagonalize
KΣ to obtain the eigenvalues λ̂P1 , . . . , λ̂Pn ∈ R of both Σ̂ and KΣ, and the eigenvectors
u1, . . . , un ∈ Rn of KΣ. Then we replace every appearance of the eigenfunctions f̂P

1 , . . . , f̂
P
n

of Σ̂ by their expression with respect to the eigenvectors u1, . . . , un.

Although this matrix formalism is justified because the RKHS H is separable, some
argue that an analytic formalism is more suited and rigorous to study elements of an
infinite dimensional Hilbert space [22]. Thus, we confirm the results with the analytic
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formalism. Let f̂P be an eigenfunction of Σ̂ associated to the eigenvalue λ̂P, we have:

Σ̂f̂P = 1
n

n∑
i=1

〈
φ(Yi)− µ̂, f̂P

〉
H

(
φ(Yi)− µ̂

)
= λ̂Pf̂P

We consider u = ΠnΦ(Y)f̂P =
(〈

φ(Y1)− µ̂, f̂P
〉
H
, . . . ,

〈
φ(Yn)− µ̂, f̂P

〉
H

)′
∈ Rn. The

ith coordinate of KΣu is such that:

(KΣu)i =
n∑
j=1

1
n

〈
φ(Yi)− µ̂, φ(Yj)− µ̂

〉
H

〈
φ(Yj)− µ̂, f̂P

〉
H

=
〈
φ(Yi)− µ̂,

1
n

n∑
j=1

〈
φ(Yj)− µ̂, f̂P

〉
H

(
φ(Yj)− µ̂

)〉
H

=
〈
φ(Yi)− µ̂, λ̂Pf̂P

〉
H

= λ̂Pui

It confirms Equation (1.8).

Oppositely, let u = (u1, . . . , un) in Rn an eigenvector of KΣ associated to the eigenvalue
λ̂P and f̂P = ΠnΦ(Y)′u = ∑n

i=1 ui
(
φ(Yi)− µ̂

)
. The eigen-relation KΣu = λ̂Pu gives that

for i ∈ {1, . . . , n} we have the relation:

λ̂Pui = 1
n

n∑
j=1

〈
φ(Yi)− µ̂, φ(Yj)− µ̂

〉
H
uj.

We then have:

Σ̂f̂P = 1
n

n∑
i=1

((
φ(Yi)− µ̂

)
⊗
(
φ(Yi)− µ̂

))( n∑
j=1

uj
(
φ(Yj)− µ̂

))

=
n∑
i=1

(
1
n

n∑
j=1

〈
φ(Yi)− µ̂, φ(Yj)− µ̂

〉
H
uj︸ ︷︷ ︸

=λ̂Pui

)(
φ(Yi)− µ̂

)

=λ̂Pf̂P
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This confirms Equation (1.9). Observe that:

‖ΠnΦ(Y)′u‖2
H =

n∑
i,j=1

uiuj 〈φ(Yi)− µ̂, φ(Yj)− µ̂〉H

=nu′KΣu

=nλ̂P ‖u‖2
2

=nλ̂P.

Thus the function (λ̂Pn)− 1
2 ΠnΦ(Y)′u ∈ H is a unit eigenfunction of Σ̂ associated to the

eigenvalue λ̂P.

The embedding of a probability distribution is at the root of many kernel tests. In par-
ticular, the idea behind the Maximum Mean Discrepancy (MMD) statistic is to consider
the distance between two kernel mean embedding in Hilbert norm as a meaningful mea-
sure of the distance between two probability distribution. The KFDA statistic go even
further by using the kernel covariance operator to compute a normalized distance between
two kernel mean embeddings as another insightful distance between two probability dis-
tributions. This two kernel statistics are used to perform powerful and computationally
efficient non-parametric two-sample tests, as presented in the next section.

1.3 Kernel Testing

Some statistical methods use the kernel mean embedding as a way to study the un-
derlying probability distribution. In particular, for two-sample testing that consists in
comparing two probability distributions, some kernel tests propose to directly compare
the kernel mean embeddings. When the kernel mean embedding is obtained through a
particular type of kernel called characteristic kernel, it characterizes the probability dis-
tribution. This allows to develop non-asymptotic two-sample tests that do not need any
assumption on the probability distribution, which is particularly useful when the analysed
data are too complex and difficult to model with simple distributions, as it is the case for
single-cell data.

The first part of this section is dedicated to the presentation of non-parametric two-
sample tests and it will recall some basic notions about hypothesis testing. In a second
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part, we will present kernel testing and in particular the Maximum Mean Discrepancy
test, that is the most famous kernel test. The third section focuses on a test derived from
the Kernel Fisher Discriminant Analysis (KFDA), the KFDA test, that can be seen as
a studentization of the MMD test. This presentation of the KFDA test constitute the
building block of the next chapter that is focused on the application of the KFDA test in
practice.

In this section, we consider two i.i.d. samples Y1 = (Y1,1, . . . , Y1,n1) and Y2 =
(Y2,1, . . . , Y2,n2) in Y , drawn from probability distributions P1 and P2 respectively. We
have n1 observations in Y1 and n2 observations in Y2, with n = n1 + n2. Let k(·, ·)
a p.d. kernel and H the associated RKHS. For simplicity, we assume that the kernel
k(·, ·) is bounded to ensure the existence of every quantity of interest such as kernel mean
embeddings and kernel covariance operators, however, this assumption will be reminded
when it is necessary. For y ∈ Y we denote φ(y) = k(y, ·) the feature map of y with
respect to the kernel k(·, ·). Let µ1 and µ2 be the kernel mean embedding of P1 and
P2 respectively, and µ̂1 and µ̂2 are their empirical counterparts defined with respect to
Φ(Y1) =

(
φ(Y1,1), . . . , φ(Y1,n1)

)
and Φ(Y2) =

(
φ(Y2,1), . . . , φ(Y2,n2)

)
. Let Σ1 and Σ2 be

the kernel covariance operator associated to P1 and P2 respectively, and Σ̂1 and Σ̂2 be
their respective empirical counterpart.

1.3.1 Hypothesis Testing

The two sample problem consists in assessing if the two observed samples Y1 and Y2

in Y drawn from probability distributions P1 and P2 are different enough to consider that
the underlying distributions are different [82]. This problem is generally adressed with
the framework of hypothesis testing. The null and alternative hypothesis are such that:

H0 : P1 = P2 versus H1 : P1 6= P2.

Existing Two-Sample Tests

The approaches tackling this problem can be separated in two types of approaches. When
assumption are made on the form of the probability distributions P1 and P2, the approach
is parametric.
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The most common assumption in parametric two-sample testing is to consider that the
two distributions are Gaussian. The historical parametric two-sample test are the Student
t-test [135] for univariate observations, and its multivariate generalization, the Hotelling
T 2 test [66]. These are parametric two-sample tests that assume that the two distributions
are univariate Gaussian and multivariate Gaussian resectively, and that share the same
covariance structure. The Hotelling T 2 has recently been generalized to Hilbert spaces
[126, 108].

A non-parametric two-sample test is a general testing framework supposed to be able
to detect a difference between two distributions. The historical univariate non-parametric
test are the Kolmogorov-Smirnov test [132, 93], the Wald-Wolfowitz run test [144], the
Mann-Whitney rank sum test [90], also known as Wilkoxon rank sum test, and the
Cramer-Von Mises test [5]. These tests are still considered as powerful tests to be used in
practice for univariate data. In particular, the Wilkoxon rank sum test is applied in the
vast majority of single-cell differential analysis [134], that is the univariate comparison of
the gene expression of two samples measured through single-cell RNA sequencing.

The multivariate generalization of these classical tests suppose to define a rank on
multidimensional spaces, several such tests have been proposed [146, 21]. Recently, a
test based on a multivariate rank defined using optimal transport has been proposed
[47]. Graph-based tests constitute a popular type of non-parametric multivariate two-
sample tests. The first graph-based test was introduced by [42], and it was the first non-
parametric multivariate two-sample test to be computationally efficient. The literature on
graph-based tests is reviewed in detail in [16] and [74]. Another review of non-parametric
two-sample tests can be found in [1].

Another class of non-parametric multivariate two-sample tests is based on the definition
of a distance or a divergence between two probability distributions. Energy based tests
[17, 138] and kernel tests [63] belong to this category. It has been shown that the former
are a particular case of the later [127].

Performances of a Test

The response of a two-sample test is obtained by comparing the value of a test statistic
computed with respect to the data to strictly positive testing threshold and to reject the
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null hypothesis when the test statistic exceeds this threshold. The outcome of a test is
wrong when the null hypothesis is wrongly rejected, it is called the type I error, and when
the null hypothesis is wrongly accepted, it is called the type II error. The type I error
rate of a test is equal to P (reject H0|H0) and the type II error rate of a test is equal to
P (accept H0|H1). It is not possible to control for both the type I and type II error rate
when constructing a testing procedure. Thus, the convention is to control for the type I
error rate.

For α ∈ [0, 1], a test is a level α test if α is an upper bound on the type one error rate,
such that:

P (reject H0|H0) ≤ α.

A test is said to be conservative when the type I error rate is lower than the chosen
value of α, i.e. P (reject H0|H0) < α. Testing procedures are compared for fixed α only.
Among several testing procedures, the tests with level α can be compared, then lower is
the probability of making type II errors, better is the test procedure. The power of a test
is defined as the probability of a test of not making type II errors:

π = P (reject H0|H1) = 1− P (accept H0|H1).

The level and power of a test may be theoretically studied or numerically estimated.

A test statistic is the evaluation of a random variable, its probability distribution differs
whether H0 is true or not. The p− value of a test statistic is defined as the likelihood of
it being drawn from the distribution under the null hypothesis. This value is often used
to construct a test procedure, by rejecting the null hypothesis when p − value < α and
accepting it otherwise. The second part of this section describes several approaches to
construct a testing procedure based on the MMD test statistic.

1.3.2 Maximum Mean Discrepancy Test

The kernel mean embedding is at the root of many kernel tests. The key point is that for
a particular set of kernel functions called characteristic kernels, the operator A : P 7→ µ

is injective, thus two proability distributions having the same kernel mean embedding

40



1.3. Kernel Testing

are equal. The first methods that benefited from this property are the Maximum Mean
Discrepancy test for two samples testing [55] and the HSIC test for independence testing
[55]. Many variants of the MMD test have been proposed to tackle different issues of
kernel testing. The relation between the MMD test and other families of test has been
highlighted, such as the link with independence tests based on distance correlation [115].

The MMD as a Metric Between Probability Distributions

A standard approach for constructing two-sample test statistics is to define a metric
between distributions. Let F be a space of functions from Y to R in which expectations
with respect to P1 and P2 are well defined. The quantity:

MF(P1,P2) = sup
f∈F
|EP1f(Y )− EP2f(Y )|,

can be a metric in the space of probability measures over Y if it fulfills the separability
property:

P1 = P2 ⇔MF(P1,P2) = 0. (1.10)

When F is too general, it is difficult to compute the metric. The objective if to find a
function space F that both makesMF a metric and where algorithms may be developed
to computeMF . Some well-known metric between distributions are associated to specific
choices of F .

• F = {1(−∞,t]| t ∈ R} gives the Kolmogorov distance between P1 and P2.

• F = {f | supy∈Y |f(y)| ≤ 1} gives the total variation distance between P1 and P2.

• If ρ is a metric and Y is compact, F = {f | supy,y′∈Y |f(y)−f(y′)|
ρ(y,y′) ≤ 1} gives the

Wasserstein distance between P1 and P2.

The MMD is the metric obtained when the space F is constrained to be included in a
RKHS. When F is the unit ball, the metric can be determined explicitely with respect to
the kernel mean embeddings of the two compared distributions:

MMD(P1,P2) = sup
h∈H
‖h‖H=1

|EP1h(Y )− EP2h(Y )|.
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By definition of the kernel mean embedding we have:

MMD(P1,P2) = sup
h∈H
‖h‖H=1

| 〈h, µ1 − µ2〉H |.

Then the suppremum is reached for h colinear to µ1 − µ2, so that:

MMD(P1,P2) =
〈

µ1 − µ2

‖µ1 − µ2‖H
, µ1 − µ2

〉
H

= ‖µ1 − µ2‖H .

The function reaching this supremum is called the MMD witness function [79].

The MMD defines a distance in the space of probability distributions on Y if and only
if the kernel k(·, ·) is a characteristic kernel.

Definition 7 (Characteristic kernel). The p.d. kernel k(·, ·) is characteristic if the oper-
ator Aµ : P 7→ µ is injective.

A famous example of characteristic kernel is the Gaussian kernel, also known as radial
basis function (RBF) kernel. The Gaussian kernel between two observations y, y′ ∈ Y is
defined such that:

kσ2(y, y′) = e−
1
σ2 ‖y−y′‖

2
Y ,

where ‖·‖Y is a norm over Y and σ2 > 0 is the bandwidth parameter to be tuned. The
RKHS associated to the Gaussian kernel is an infinite dimensional separable Hilbert space.
Most of our analyses are done with the Gaussian kernel. When a kernel is characteristic,
the separability property (1.10) of the MMD is ensured by the injectivity of Aµ. An
intuitive reason for the Gaussian kernel to be characteristic is that the Taylor expansion
of the exponential function in the Gaussian kernel makes the kernel mean embedding
an infinite sum of every moment of the original distribution. In general, the key idea
for a kernel to be characteristic is that the associated RKHS is a function space that
contains functions complex enough to be able to represent any probability distribution.
This property is related to the concept of universal kernels, that are beyond the scope of
this manuscript. The relations between characteristic kernels and universal kernels are
detailed in [100].

42



1.3. Kernel Testing

Testing with MMD

The true value of the MMD between P1 and P2 is unknown in general. Thus MMD
tests are defined with respect to the MMD test statistic that is an empirical estimate of
MMD2:

M̂MD
2
b = ‖µ̂1 − µ̂2‖2

H ,

where the subscript b stands for biased MMD. If we replace the empirical mean embeddings
by their value according to Equation (1.5) and correct for the biais, we obtain an unbiased
estimator of MMD2, that is the MMD test statistic:

M̂MD
2

= 1
n1(n1 − 1)

n1∑
i,j=1
i 6=j

k(Y1,i, Y1,j)−
2

n1n2

n1∑
i=1

n2∑
j=1

k(Y1,i, Y2,j) + 1
n2(n2 − 1)

n2∑
i,j=1
i 6=j

k(Y2,i, Y2,j)

The key idea of MMD two-sample testing is to consider that when the null hypothesis
is true, the estimator of the MMD should be close to zero. Given a level α, different
procedures exist in order to determine a testing threshold sα > 0 such that we reject the
null hypothesis when M̂MD

2
> sα.

Such a threshold can be obtained through the quantiles of the asymptotic distribution
of the MMD test statistic under the null hypothesis, presented in [54].

Theorem 5. Under H0, we have P1 = P2 = P. If supy∈Y k(y, y) = Mk < +∞ and
n1
n
−→

n,n1→∞
ρ1 and n2

n
−→

n,n2→∞
ρ2, then:

nM̂MD
2 D−→
n→∞

∑
s≥1

λPs

(
( as√

ρ1
− bs√

ρ2
)2 − 1

ρ1ρ2

)

where (as)s≥1 and (bs)s≥2 are two sequences of i.i.d. standard Gaussian random variables
and (λPs )s≥1 is the sequence of eigenvalues of the kernel covariance operator of P.

Some methods exist to approximate the quantiles of this asymptotic distribution in
order to obtain a testing threshold. The resulting test is called an asymptotic test. The
asymptotic distribution of the MMD test statistic under the null hypothesis is independant
from the p.d. kernel. Typically, a non-characteristic kernel could have this asymptotic
distribution under an alternative hypothesis. The asymptotic distribution may be approx-
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imated with its empirical version where the theoretical eigenvalues (λPs )s≥1 are replaced
by their empirical counterpart (λ̂Ps )s≥1, thanks to the following theorem from [51]:

Theorem 6. Let (as)s≥1 and (bs)s≥1 two sequences of i.i.d standard Gaussian random
variables. Assume that ∑s≥1 λ

P 1
2 < +∞, then for n1

n
−→

n,n1→∞
ρ1 and n2

n
−→

n,n2→∞
ρ2, we

have:

∑
s≥1

λ̂Ps

(
( as√

ρ1
− bs√

ρ2
)2 − 1

ρ1ρ2

)
D−→

n→∞

∑
s≥1

λPs

(
( as√

ρ1
− bs√

ρ2
)2 − 1

ρ1ρ2

)
.

And we also have:

sup
x

∣∣∣∣∣∣P (nM̂MD
2
> x)− P (

∑
s≥1

λ̂Ps

(
( as√

ρ1
− bs√

ρ2
)2 − 1

ρ1ρ2

)
> x)

∣∣∣∣∣∣ −→n→∞ 0

Then it suffices to compute the eigenvalues of the empirical covariance operator as-
sociated to one of the two samples, or a combination of both, and to simulate Gaussian
random variables to be able to simulate random variables following the approximated
asymptotic distribution. This allows to empirically determine the testing threshold sα for
a given level α. This procedure has competitive performances, according to the authors.
Moreover, it costs O(n3) to obtain the empirical eigenvalues. Some algorithms are able
to compute a nice approximation of the eigenvalues for O(n2) operations, it is thus both
fast and competitive. However, in practice, asymptotic testing with MMD is unpopular.

Another approach to determine a testing threshold sα is to use a non-asymptotic large
deviation bound of the MMD test statistic, as presented in [54].

Theorem 7. Under H0, we have P1 = P2 = P. If supy∈Y k(y, y) = Mk < +∞, then we

have with probability greater than 1− e−
ξ2n1n2
2Mkn :

M̂MD ≤
√
Mkn

n1n2
+ ξ

We obtain a testing threshold by choosing ξ such that the result it true with probability
1 − α. This concentration bound refers to the worst possible situation and the resulting
test is thus very conservative. It seems to be the case here according to the simulation
studies performed in [54]. This testing procedure costs O(n2) to compute the MMD test
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statistic, and is then O(1). However, regarding its low performance, it is also unpopular
in practice.

In fact, the computational cost of the MMD test statistic is relatively low, it needs O(n2)
operations to be computed. This advantage makes the permutation testing procedure the
most popular. With this approach, the quantiles of the non-asymptotic distribution of
the MMD test statistic are estimated through a permutation procedure, and the level α is
guaranted from the procedure. The permutation procedure consists in computing B � 1
statistics on the observed data with randomly permuted labels. A dataset with randomly
permuted labels contains two samples following the same distribution that is a mixture of
the two original probability distributions P1 and P2. With this approach the distribution
of the MMD test statistic under the null hypothesis is estimated by B observations. The
testing threshold is then defined as the (1−α) quantile of this empirical distribution. The
permutation procedure is the most popular approach for two-sample testing with MMD.

More generally, the MMD metric between distributions has been used in a wide variety
of machine learning problems. For instance, transfer learning is a method that allows to
adapt an already trained learning algorithm on an application (target domain) close but
different from the task it was trained on (source domain). Transfer learning is promising
as it is less computationally expensive than training algorithms from scratch. This task
can be formulated as an optimization problem aiming to match the distributions of the
source and target domains, thus the quantity to optimize has often be written with respect
to the MMD metric [149, 84, 107].

Motivation for a Normalized MMD Test Statistic

The value of the MMD test statistic depends both on the distance between the true
kernel mean embeddings µ1 and µ2, and on the variability of the embeddings. This is the
reason why the asymptotic null distribution of the MMD test statistic depends on the
variability of the embeddings, through the eigenvalues of the kernel covariance operator
(λPs )s≥1. It can be insightful to consider these two informations separately, by comparing
the two spectra on one hand, and by comparing a normalized test statistic on the other
hand. This issue is well illustrated in [63], where the authors show that the orthonormal
basis of eigenfunctions (fP

s )s≥1 associated to the eigenvalues (λPs )s≥1 of a kernel covariance
operator Σ associated to a probability distribution P is well suited to study and normalize
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a test statistic. Indeed, for s ≥ 1, we have

Var
( 〈
µ̂− µ, fP

s

〉
H

)
= λPs .

Thus the quantity µ̂−µ can be normalized direction by direction on this basis. Moreover,
they argue that it also allows to compare projections on different directions of the feature
space. Then a studentized MMD test statistic under H0 : P1 = P2 = P would have a form
like this:

〈
(µ̂1 − µ̂2), Σ̂−1(µ̂1 − µ̂2)

〉
H

=
∥∥∥Σ̂− 1

2 (µ̂1 − µ̂2)
∥∥∥
H
, (1.11)

leaving aside for the moment the fact that Σ̂ is generally not invertible. Additionally, we
would expect that the asymptotic null distribution of this normalized statistic does not
depend on the variability of the embeddings. In fact, such a normalized test statistic may
be obtained by deriving a test statistic from the KFDA classifier, namely the KFDA test
statistic [64].

1.4 Kernel Fisher Discriminant Analysis for Two-
Sample Testing

Now we present the Kernel Fisher Discriminant Analysis test statistic that was intro-
duced in [64]. It is a normalized distance between the empirical kernel mean embeddings
associated to Y1 and Y2, thus it can be considered as a studentized version of the MMD
test statistic. According to the expression of the KFDA test statistic, it is also considered
as a kernelized Hotelling T 2 test statistic. Despite these interesting links, the KFDA test
statistic is named after the KFDA classifier because of the geometrical ideas underly-
ing its construction. The fact that the KFDA test statistic is derived from a classifier
makes it belong to the family of classifier two-sample tests [41, 85, 75], however, these
approaches generally use the test error as a test statistic, based on the intuitive idea that
a classifier should fail to discriminate a distribution from itself. The KFDA test statistic
is not directly linked to the classification error, as it relies in fact on the definition of the
Fisher Linear Discriminant. It has been shown that the KFDA test can be considered
as an optimal kernel test in some sense [79], in particular, in the minimax sense [60]. A
generalization to the k-sample test have also been proposed [15].

46



1.4. Kernel Fisher Discriminant Analysis for Two-Sample Testing

The Fisher Discriminant Analysis aims at finding the optimal one-dimensional axis of
the space to discriminate between two samples, called the Fisher Linear Discriminant. It
is usually used as a classifier as the observations are then projected on this axis and their
label is predicted according to the position of their projection. The kernelized version
of the FDA was introduced in [99], and it simply consists in applying the FDA to the
embeddings in H, and to derive a kernel trick to compute the quantities of interest. The
interest is that for non-linear kernels, the Fisher Linear Discriminant in the feature space
is a non-linear function of the input space Y .

In this section, we first present the KFDA classifier, then we show how to derive a test
in a second part, with the presentation of the two regularized version of the test statistic.
The third part is dedicated to the kernel trick for the computation of the test statistic
and some numerical analyses.

1.4.1 The Fisher Discriminant Analysis in the Feature Space

The KFDA classifier introduced by [99] was an application of kernel methods to obtain
a non-linear classifier. The first non-linear kernel classifier is known as the Support Vector
Machine (SVM) [29]. Compared to the SVM, the KFDA classifier has the advantage to
take the variability of the embeddings into account to construct the one-dimensional axis
that separates the two groups. Now, we show how to define the Fisher Linear Discriminant
axis in the feature space H associated to two probability distributions P1 and P2. The
Fisher Linear Discriminant axis is defined as the optimal axis to discriminate between
two samples Y1 and Y2 drawn from P1 and P2 respectively. This presentation is strongly
inspired from the tutorial on the FDA and the KFDA proposed in [46].

Let h ∈ H an element ofH that represents a one-dimensional axis inH, in what follows,
we refers to h as an axis. For g ∈ H, the projection gh of g onto the axis supported by h
is such that:

gh = 〈g, h〉H h.

The intuition is that h is a discriminant axis if the two groups of embeddings Φ(Y1) and
Φ(Y2) projected on it are (i) far from each other and (ii) there is no or minimal overlap.
The key idea of the FDA is to propose quantitative definitions for these two criteria.
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Distance Between the Projected Samples

A quantitative measure of the distance between the projected samples can be defined
as the distance between the expected projections of the two samples, that is the distance
between the projected kernel mean embeddings. We have:

∥∥∥EP1

(
φ(Y)h

)
− EP2

(
φ(Y)h

)∥∥∥2

H
=
∥∥∥µh1 − µh2∥∥∥2

H

= 〈〈µ1 − µ2, h〉H h, 〈µ1 − µ2, h〉H h〉H
= 〈µ1 − µ2, h〉2H ‖h‖

2
H

=
〈
(µ1 − µ2)⊗2h, h

〉
H
‖h‖2

H

=
〈
(µ1 − µ2)⊗2, h⊗ h

〉
HS(H)

‖h‖2
H .

When ‖h‖H = 1, we have:

∥∥∥EP1

(
φ(Y)h

)
− EP2

(
φ(Y)h

)∥∥∥2

H
=
〈
(µ1 − µ2)⊗2, h⊗ h

〉
HS(H)

.

We recognize the form of a reproducing property. The distance between the expected
projections of embeddings associated to P1 and P2 is represented by the Hilbert-Schmidt
operator (µ1 − µ2)⊗2. We then define the between-group covariance operator as:

ΣB = n1n2

n2 (µ1 − µ2)⊗2.

Then for h ∈ H such that ‖h‖H = 1, the following expression is a measure of the distance
between the two projected samples:

〈h,ΣBh〉H = n1n2

n2

∥∥∥EP1

(
φ(Y)h

)
− EP2

(
φ(Y)h

)∥∥∥2

H
. (1.12)

Note that we also have the following expression:

〈h,ΣBh〉H = n1n2

n2 〈h, µ1 − µ2〉2H . (1.13)

An illustration of what represents 〈h,ΣBh〉H on a simple example is given in Figure 1.1
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Overlap Between the Projected Samples

A quantitative measure of the overlap may be indirectly defined with respect to the
inertia of the embeddings, that describes the spread of the projected embeddings around
their projected mean embeddings. The inertia of group i ∈ {1, 2} is defined as:

EPi

( ∥∥∥Φ(Y)h − µhi
∥∥∥2

H

)
=EPi

(
〈Φ(Y)− µi, h〉2H

)
‖h‖2

H

=
〈
EPi

(
(Φ(Y)− µi)⊗2

)
, h⊗ h

〉
H
‖h‖2

H

= 〈Σi, h⊗ h〉H ‖h‖
2
H .

When ‖h‖H = 1, we have:

EPi

( ∥∥∥Φ(Y)h − µhi
∥∥∥2

H

)
= 〈Σi, h⊗ h〉H .

Thus, the kernel covariance operator of a sample can describe its inertia. Then the global
inertia of the two groups can be described by a weighted sum of the two kernel covariance
operators, we define the within-group covariance operator as:

ΣW = n1

n
Σ1 + n2

n
Σ2.

Then the following quantity captures the global spread of the projected embeddings
around their respective projected means:

〈h,ΣWh〉H =n1

n
EP1

( ∥∥∥Φ(Y)h − µh1
∥∥∥
H

)
+ n2

n
EP2

( ∥∥∥Φ(Y)h − µh2
∥∥∥
H

)
. (1.14)

As a measure of the spread of the projected embeddings, this quantity is informative
about the overlap between the two projected samples, because the more spread are the
projections, the higher is the probability to observe an overlap. The notion of inertia is
illustrated on a single example in Figure 1.1

An Optimization Problem

Based on the two quantitative measures of Equations (1.12) and (1.14), a discriminant
axis can be defined as an axis that finds a trade off between maximizing 〈h,ΣBh〉H and
minimizing 〈h,ΣWh〉H. In particular the Fisher Linear Discriminant axis h? of the feature
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Figure 1.1: Left : Representation of the distance between the projected mean embeddings
(left) and the inertia (right) on a toy dataset.

space H is defined as the axis that maximizes the Kernel Fisher Discriminant Ratio
(KFDR):

h? = argmax
h∈H

〈h,ΣBh〉H
〈h,ΣWh〉H

.

According to Equation (1.13), we may rewrite this expression as:

h? = argmax
h∈H

n1n2

n2
〈h, µ1 − µ2〉2H
〈h,ΣWh〉H

.

Note that the KFDR is always positive as ΣW is positive definite and the numerator is a
squared quantity. If we assume that ΣW is invertible, h? can be determined explicitely by
substituting h by Σ−

1
2

W g with ‖g‖H = 1. As ΣW is a self-adjoint operator, we then have:

〈h,ΣWh〉H =
〈

Σ
1
2
Wh,Σ

1
2
Wh

〉
H

= ‖g‖2
H

=1.
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Thus, h? is equal to Σ−
1
2

W g? where g? is such that:

g? =argmax
g∈H
‖g‖H=1

n1n2

n2

〈
Σ−

1
2

W g, µ1 − µ2

〉2

H

=argmax
g∈H
‖g‖H=1

n1n2

n2

〈
g,Σ−

1
2

W (µ1 − µ2)
〉2

H
.

The maximum of the inner product is reached for g? =
∥∥∥∥Σ− 1

2
W (µ1 − µ2)

∥∥∥∥−1

H
Σ−

1
2

W (µ1 − µ2).
Thus, the Fisher Linear Discriminant axis is supported by:

h? = Σ−1
W (µ1 − µ2)∥∥∥∥Σ− 1
2

W (µ1 − µ2)
∥∥∥∥
H

. (1.15)

Then, a classifier is obtained by using the projections on the Fisher Linear Discriminant
axis in the feature space to predict the labels of new observations. For a new observation
Y ∈ Y , we have:

predicted label = argmin
i∈{1,2}

∥∥∥φ(Y)h? − µh?i
∥∥∥
H
.

The practical aspects of the implementation of the KFDA classifier are developed in
Chapter 2.

1.4.2 KFDA Two-Sample Tests

The optimization of the KFDR may also be the basis of a two-sample test [64]. To do
so, we focus on its maximal value, that is a measure of the possible discrimination between
the two probability distributions. The highest is this value, the easier it is to discriminate
between the two samples. Similarly to the MMD, when the kernel is characteristic, the
maximal value of the KFDR is equal to zero if and only if the two probability distributions
P1 and P2 are equal. Thus, a non-parametric two-sample test can be obtained by assessing
if the maximal value of the KFDR is null. Thus, the KFDA test statistic is defined as an
empirical estimator of the following rescaled version of the maximal value of the KFDR:

D2
(
P1,P2

)
= n max

h∈H

〈h,ΣBh〉H
〈h,ΣWh〉H

.
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Figure 1.2: Illustration of a metric point of view on the KFDA statistic. From left to
right, raw data are embedded in the input space through the feature map φ(·) where we
can compute the MMD, then we transform the embedding with Σ̂−

1
2

W to normalize them
and then compute the KFDA statistic.

By injecting the Fisher Linear Discriminant axis in the ratio, we obtain the following
expression:

D2
(
P1,P2

)
= n1n2

n

∥∥∥∥Σ− 1
2

W (µ1 − µ2)
∥∥∥∥2

H
.

Note that the Fisher Linear Discriminant axis h? is called the KFDA witness function in
this context. We recognise the form of a normalized MMD of Equation (1.11), indeed,
under H0, the quantity in the norm is the same. We illustrated the succession of trans-
formation applied to the data to obtain the MMD and KFDA statistics from a fictional
dataset on Figure 1.2

The quantity D2 is actually ill-defined. In the previous subsection, we assumed that
ΣW was invertible, which is not the true in general. In the context of kernel testing, two
regularizations have been proposed.

Regularization of the Within-Group Covariance

The ridge regularization consists in substituting ΣW by the ridge within-group covariance
operator:

ΣW,γ = ΣW + γIH,
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where γ > 0 is an regularization hyperparameter and IH is the identity operator from H
to H. The ridge within-group covariance operator is invertible.

As Σ1 and Σ2 are Hilbert-Schmidt operators, ΣW ∈ HS(H). Thus, there exists an
orthonormal basis (ft)t≥1 of eigenfunctions of ΣW associated to the decreasing sequence
of eigenvalues (λt)t≥1. Then the spectral regularization consists in substituting ΣW by the
truncated within-group covariance operator, that is defined with respect to the spectral
decomposition of ΣW :

ΣW,T =
T∑
t=1

λt
(
ft ⊗ ft

)
,

where T is such that λT > 0. The pseudo-inverse of this operator is then defined as
follows:

Σ−1
W,T =

T∑
t=1

λ−1
t

(
ft ⊗ ft

)
.

Regularized Test Statistics

Now we can define two test statistic associated to these two regularizations. The empirical
within-group kernel covariance operator is defined such that:

Σ̂W =n1

n
Σ̂1 + n2

n
Σ̂2.

Then the empirical ridge within-group kernel covariance operator is equal to Σ̂W,γ =
Σ̂W + γIH, and the empirical truncated within-group kernel covariance operator is equal
to:

Σ̂W,T =
T∑
t=1
λ̂t>0

λ̂t
(
f̂t ⊗ f̂t

)
,

where T ≥ 1 is such that λ̂t > 0 and (λ̂t)t∈{1,...,n} are the decreasing non-negative eigenval-
ues of Σ̂W and (f̂t)t∈{1,...,n} are are the associated orthonormal eigenfunctions in H. These
eigenquantities can be determined through a kernel trick similar to (1.2.2) that is devel-
oped at the end of this section. Then the ridge KFDA test statistic and the truncated
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KFDA test statistic are such that:

D̂γ

2 = n1n2

n

∥∥∥∥Σ̂− 1
2

W,γ(µ̂1 − µ̂2)
∥∥∥∥2

H
, (1.16)

D̂T

2 = n1n2

n

∥∥∥∥Σ̂− 1
2

W,T (µ̂1 − µ̂2)
∥∥∥∥2

H
. (1.17)

We have the following theorems about their asymptotic distributions:

Theorem 8 (Asymptotic distribution of the ridge KFDA test statistic [64]). Assume that∑
s≥1 λ

1
2
s < +∞ and that supy∈Y k(y, y) = Mk < +∞. Under H0, we have:

D̂γ

2 D−→
n→∞

1√
2∑t≥1

λ2
t

(λt+γ)2

∑
t≥1

λt
λt + γ

(Z2
t − 1)

where (Zt)t≥1 is a sequence of i.i.d. standard Gaussian random variables.

Theorem 9. Asymptotic distribution of the truncated KFDA test statistic [62] Assume
that ∑s≥1 λ

1
2
s < +∞ and that supy∈Y k(y, y) = Mk < +∞. Under H0, we have:

D̂T

2 D−→
n→∞

T∑
t=1

Z2
t ∼ χ2(T )

where (Zt)t∈{1,...,T} is a set of i.i.d. standard Gaussian random variables and χ2(T ) denote
the chi-squared distribution with T degrees of freedom.

1.4.3 Kernel Trick

The kernel trick for the ridge KFDA test statistic is detailed in [64], contrary to the
kernel trick of the truncated KFDA test statistic that is not detailed in [62]. We take the
occasion to detail it here and to highlight that their formula of the truncated KFDA test
statistic contains an error.

Consider Φ(Y) =
(
Φ(Y1),Φ(Y2)

)
=
(
φ(Y1,1), . . . , φ(Y1,n1), φ(Y2,1), . . . , φ(Y2,n2)

)
of Hn.

We recall that for m ≥ 1, Πm = Im −m−1Jm ∈Mm(R), where Im is the identity matrix
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and Jm is the matrix full of ones. Then we define the bi-centering matrix:

ΠW =
Πn1 0

0 Πn2

 ,
such that we have:

Σ̂W = 1
n

(ΠWΦ(Y))′(ΠWΦ(Y)).

Reproducing the kernel trick of (1.2.2), we can show that Σ̂W has the same eigenvalues
(λ̂t)t≥1 than the matrix:

KW = 1
n

(ΠWΦ(Y))(ΠWΦ(Y))′.

Let UW = (uW,1, . . . , uW,n) ∈ Mn(R) be the matrix of orthonormal eigenvectors of KW

such that for t ∈ {1, . . . , n}, the column uW,t ∈ Rn is an eigenvector associated to the
eigenvalue λ̂t. Then the function f̂t = (nλ̂t)−

1
2 Φ(Y)′ΠWuW,t ∈ H is a unit eigenfunction

of Σ̂W associated to λ̂t. Denote f̂W = (f̂1, . . . , f̂n)′ the vector of Hn containing the
orthonormal eigenfunctions of Σ̂W and ΛW = Diag(λ̂1, . . . , λ̂n) ∈ Mn(R) the diagonal
matrix of eigenvalues of Σ̂W such that:

f̂W = 1√
n

Λ−
1
2

W U′WΠWΦ(Y). (1.18)

Then the spectral decomposition of Σ̂W can be written in matrix form:

Σ̂W =
n∑
t=1

λ̂t
(
f̂t ⊗ f̂t

)
= f̂ ′WΛW f̂W .

Then for T ∈ {1, . . . , n}, the truncated within-group covariance operator Σ̂W,T is such
that Σ̂W,T = f̂ ′W,TΛW,T f̂W,T and its pseudo-inverse is such that:

Σ̂−1
W,T =

T∑
t=1

λ̂−1
t

(
f̂t ⊗ f̂t

)
= f̂ ′W,TΛ−1

W,T f̂W,T , (1.19)

where f̂W,T = (f̂1, . . . , f̂T )′ and ΛW,T = Diag(λ̂1, . . . , λ̂T ). Note that we have f̂W,T =
n−

1
2 Λ−

1
2

W,TU′W,TΠWΦ(Y) with UW,T = (uW,1, . . . , uW,T ). Now let ω = (n−1
1 1′n1 ,−n

−1
2 1′n2)′ ∈
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Rn, such that:

Φ(Y)′ω = µ̂1 − µ̂2. (1.20)

We obtain a formulation of the kernel trick to compute the truncated KFDA test statistic
by using Equations (1.19) and (1.20):

D̂T

2 =n1n2

n

∥∥∥∥Σ̂− 1
2

W,T

(
µ̂1 − µ̂2

)∥∥∥∥2

H

=n1n2

n

〈
µ̂1 − µ̂2, Σ̂−1

W,T

(
µ̂1 − µ̂2

)〉
H

=n1n2

n
ω′Φ(Y)f̂ ′W,TΛ−1

W,T f̂W,TΦ(Y)′ω

=n1n2

n2 ω′KYΠWUW,TΛ−2
W,TU′W,TΠWKYω.

This formula differs from the one proposed in [62] that is:

D̂T

2 =n1n2

n2 ω′KYUW,TΛ−1
W,TU′W,TKYω.

This difference is due to the fact that they did not properly determined a set of or-
thonormal eigenfunctions of Σ̂W with respect to the orthonormal eigenvectors of KW and
considered instead that (Φ(Y)′uW,t)t∈{1,...,n} was an orthonormal set of eigenfunctions of
Σ̂W , which is not true. A limitation of this approach is that a new matrix product has
to be computed for each value of T . In practice, we prefer the following expression based
on the spectral decomposition of Σ̂W,T :

D̂T

2 =n1n2

n

∥∥∥∥∥
T∑
t=1

λ̂
− 1

2
t

(
f̂t ⊗ f̂t

)(
µ̂1 − µ̂2

)∥∥∥∥∥
2

H

=n1n2

n

∥∥∥∥∥
T∑
t=1

λ̂
− 1

2
t

〈
f̂t, µ̂1 − µ̂2

〉
H
f̂t

∥∥∥∥∥
2

H

=n1n2

n

T∑
t,t′=1

λ̂
− 1

2
t λ̂

− 1
2

t′

〈
f̂t, µ̂1 − µ̂2

〉
H

〈
f̂t′ , µ̂1 − µ̂2

〉
H

〈
f̂t, f̂t′

〉
H
.
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As (f̂1, . . . , f̂n) form an orthnormal set of functions, for t 6= t′, we have
〈
f̂t, f̂t′

〉
H

= 0. We
conclude that:

D̂T

2 =
T∑
t=1

n1n2

nλ̂t

〈
f̂t, µ̂1 − µ̂2

〉2

H
. (1.21)

Then for t ∈ {1, . . . , T}, we have the following kernel trick:

n1n2

n
λ̂−1
t

〈
f̂t, µ̂1 − µ̂2

〉2

H
= n1n2

(nλ̂)2

(
u′W,tΠWKYω

)2
.

1.5 Conclusion

1.5.1 Related Work

Other Kernel Tests

In addition to the MMD test and the KFDA test, two other kernel two-sample tests have
been proposed and are reviewed in [63]. The Kernel Density Ratio (KDR) test statistic
follows the idea of estimating a f -divergence such as the Kullback-Leibler divergence
between P1 and P2 using kernels [72]. The kernel change detection test is based on
a MMD-like statistic computed on a weighted version of the kernel mean embeddings
[33]. In [79], they suggest that the MMD witness function is sufficient to define a test
and propose several tests based on witness functions. The authors of [28] apply the
same normalization as KFDA at finite many locations for O(n) operations, this statistic
has worse performances than quadratic-time test procedures such as the permutation
MMD procedure or the asymptotic MMD procedure. However, it can be of interest
when ressource is limited. In this procedure, the location choice is random but it can be
optimized to a proxy of the power while preserving the O(n) complexity [70]. The choice
of the norm can also vary, in [70], they use the Euclidean norm, a variant with the `1 norm
exists [121]. Generalizations from two-sample tests to k-sample tests have been proposed
for the KFDA test [15]. In Chapter 3, we propose a generalization of the KFDA test to
any experimental design.

Kernel Choice

The MMD test remains the most studied kernel test and several variants have been
proposed. One major research area around the MMD test is the kernel choice. The
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most common choice is the Gaussian kernel with the bandwidth set as the median of
the distances between the observations [43]. The authors of [123] propose to aggregate
Gaussian kernels with different bandwidth sizes. Some others define the kernel as the
output of a deep neural network [77]. We did not investigate this issue but it could be of
interest to determine the best kernel for scRNA-Seq data.

Kernel Testing for High-Dimensional Data

Kernel tests are computationally of interest for high-dimensional data, as the computa-
tional complexity of these tests scales in n instead of scaling in the dimension. However,
kernel tests do not tackle the curse of dimensionality [115, 8]. In particular, the power of
a kernel test decreases when the dimension increases when comparing fair alternatives in
the sense of the authors of [115]. It would be of interest to investigate more precisely the
sensibility of kernel testing to the dimension.

1.5.2 The Truncated KFDA Statistic

The ridge KFDA test (Equation (1.16)) has raised more attention than the truncated
KFDA test (Equation (1.17) because it inherits from the same property than the MMD
test to be theoretically able to detect any difference between two distributions with a char-
acteristic kernel. That is not the case for the truncated KFDA test with fixed truncation
parameter. But the truncated KFDA statistic can be more efficiently implemented and
our simulations studies and applications showed that the truncated KFDA asymptotic test
has satisfying performance when at least hundreds of observations are available. More-
over, we consider that it is more suited to practical applications. Indeed, the truncation
regularization can be interpreted as a dimension reduction adapted to the discrimination
problem. Representing the embeddings projected in this finite dimensional space dedi-
cated to the discrimination allows to visualize a possible difference spotted by the test.
Put together, the truncated KFDA test associated to this representation make a complete
framework to test and explore the differences between several datasets. This framework
is presented and applied to biological data in the next Chapter.
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Chapter 2

THE TRUNCATED KERNEL FISHER

DISCRIMINANT ANALYSIS TEST IN

PRACTICE

Despite a tremendous success in the machine learning literature, there is currently no
package or software that provides a dedicated implementation of kernel tests based on
the MMD or on KFDA. The main contribution of this Chapter is to propose a turnkey
solution for pair-wise multivariate comparisons in single-cell data analysis based on the
KFDA framework (for testing and for discrimination). Thus, every method presented
in this chapter is implemented in a package and can be run with a few lines of code.
This package, called ktest1, was implemented in both Python and R and is designed
to correspond to the standards in use in the single-cell community. Future work will be
dedicated to the introduction of the package to the scverse consortium of tools dedicated
to single-cell data analysis. However, ktest is a general implementation of these kernel
methods that may be applied to any type of data.

The methods presented here strongly rely on the KFDA framework. The truncated
KFDA two-sample test is efficiently implemented and the Fisher linear discriminant axis
in the feature space that is a side-product of this implementation is used as a visualiza-
tion tool to explore the cell-wise differences that would be detected by the test. To the
best of our knowledge, our package is the first user-oriented implementation of the KFDA
approach. For completeness, we also implemented the MMD test. Single-cell datasets can
be very large (from hundreds to tens of thousands of observations), which can be compu-
tationally prohibitive for some algorithms. This is the case of our kernel test that can take
hours to compare two datasets with more than 5000 cells. We thus implemented a ma-
trix factorisation method based on a Nyström approximation that is suited to drastically

1The package ktest is available on my Github page https://github.com/AnthoOzier/ktest
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accelerate kernel methods without reducing too much the performance [147].

The first section of this chapter is an adapted version of the article we submitted jointly
with the ktest package that describes how the KFDA framework can be practically
applied on single-cell datasets (Section 2.1). It contains the description of the framework,
our comparisons to other existing methods and our conclusions on the analyses done
in collaboration with biologists from the Laboratoire de Biologie et Modelisation de la
Cellule (LBMC) and the Institut Curie. The second section details the application of the
Nyström method to accelerate the computation of the test statistic and allow the analysis
of large datasets (Section 2.2).

2.1 Kernel-Based Testing for Single-Cell Differential
Analysis

2.1.1 Abstract

Single-cell technologies have provided valuable insights into the distribution of molecular
features, such as gene expression and epigenomic modifications. However, comparing
these complex distributions in a controlled and powerful manner poses methodological
challenges. Here we propose to benefit from the kernel-testing framework to compare
the complex cell-wise distributions of molecular features in a non-linear manner based on
their kernel embedding. Our framework not only allows for feature-wise analyses but also
enables global comparisons of transcriptomes or epigenomes, considering their intricate
dependencies. By using a classifier to discriminate cells based on the variability of their
embedding, our method uncovers heterogeneities in cell populations that would otherwise
go undetected. We show that kernel testing overcomes the limitations of differential
analysis methods dedicated to single-cell. Kernel testing is applied to investigate the
reversion process of differentiating cells, successfully identifying cells in transition between
reversion and differentiation stages. Additionally, we analyze single-cell ChIP-Seq data
and identify a subpopulation of untreated breast cancer cells that exhibit an epigenomic
profile similar to persister cells.
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2.1.2 Introduction

Thanks to the convergence of single-cell biology and massive parallel sequencing, it is now
possible to create high dimensional molecular portraits of cell populations. This technolog-
ical breakthrough allows for the measurement of gene expression [89, 68, 152], chromatin
states [120], and genomic variations [45] at the single-cell resolution. These advances
have resulted in the production of complex high dimensional data and revolutionized our
understanding of the complexity of living tissues, both in normal and pathological states.
Then, the field of single-cell data science has emerged, and new methodological challenges
have arisen to fully exploit the potentialities of single-cell data, among which the statisti-
cal comparison of single-cell RNA sequencing (scRNA-Seq) datasets between conditions
or tissues. This step has remained a prerequisite in the process to discriminate biological
from technical variabilities and to assert meaningful expression differences. While most
differential analysis methods primarily focus on expression data, similar methodological
challenges have arisen in the comparative analysis of single cell epigenomic datasets, based
for example on single cell chromatin accessibility assays (scATAC-Seq [111]) or single cell
histone modifications profiling (e.g single-cell ChIP-Seq (scChIP-seq) [57], scCUT&Tag
[18]). These approaches enable the mapping of chromatin states throughout the genome
and their cell-to-cell variations at an unprecedented resolution [130, 23]. These single-cell
epigenomic assays offer a quantitative perspective on regulatory processes, wherein cellu-
lar heterogeneity could drive cancer progression or the development of drug resistance for
instance [92]. The identification of epigenomic features of interest by differential analysis
in disease and complex eco-systems, will be key to understand regulatory principles of
gene expression and identify potential drivers of tumor progression. Altogether, compar-
ative analysis of single cell data sets, whatever their type, are an essential component
of single cell data science, providing biological insights as well as opening therapeutic
perspectives with the identification of biomarkers and therapeutic targets.

Differential Expression Analysis (DEA) is classically addressed by gene-wise two-
sample tests designed to detect Differentially Expressed Genes (DEG) [32]. The gen-
eralized linear model (GLM) has been a powerful framework for linear parametric testing
based on gene-expression summaries [86, 119, 118]. However, this parametric approach
does not fully utilize the entire distribution of gene-expression that characterizes multiple
transcriptional states. To achieve the full potential of differential analysis of scRNA-
Seq data, DEA has been restated as a comparison between distributions. Distributional
hypotheses were proposed to capture biologically relevant differences in univariate gene-
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expressions [78]. Initially, these tests were performed using Gaussian-based clustering,
that was further challenged by distribution-free methods based on ranks or cumulative dis-
tribution functions [122, 44, 139]. While distribution-free approaches are flexible enough
to capture the numerous complex alternatives encountered in DEA, their fully agnostic
point of view does not benefit from the significant progress made in modeling scRNA-Seq
distributions, which leads to a loss of statistical power. As a trade-off, we propose a
distribution-free test based on a representation of the data that can take advantage of
finely-tuned probabilistic modeling of scRNA-Seq data.

Single-cell technologies provide a unique opportunity to obtain a quantitative snap-
shot of the entire transcriptome, which contains crucial information about between-gene
dependencies and underlying regulatory networks and pathways. Therefore, univariate
DEA only captures a part of the biological differences and is unable to detect complex
global modifications in the joint expression of groups of genes. To fully exploit the com-
plexity of scRNA-Seq data, joint multivariate testing or differential transcriptome analysis
should be performed, allowing for cell-wise comparisons. This strategy can be comple-
mentary to gene-wise approaches, as the detection of DEG should be interpreted in the
context of global differences between conditions. The joint multivariate testing strategy
seems also particularly suited to compare epigenomic data since it is well established that
chromatin conformation can induce complex dependencies between sites occupancy [91].
From a distributional perspective, this involves complementing joint distribution-based
analyses with analyses based on marginals. Another significant advantage of differential
transcriptome analysis is that it can be restricted to targeted GRNs or pathways, allowing
for differential network or pathway analyses [101]. So far, global approaches were mainly
developed for differential abundance testing [27, 31, 25], or for the comparison of cell-type
compositions. Graph-based methods have been proposed to address differential transcrip-
tome analysis [101, 16], but they only derive a global p-value without any representation
or diagnostic tool.

In recent years, there have been significant advancements in statistical hypothesis
testing, alongside the emergence of single-cell technologies. One important breakthrough
in hypothesis testing was achieved by Gretton et al. [52], who combined kernel methods
with statistical testing. Kernel methods are widely used in supervised learning [129] and
are based on the concept of embedding data in a feature space, allowing for non-linear data
analysis in the input space. Popular dimension reduction techniques, such as tSNE and
UMAP [88, 96], also use kernel-based embedding [142]. The distribution of the embedded
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data can be described using classical statistics such as means and variances, which can be
applied in the feature space. Then the central concept of kernel-based testing is to rely
on the Maximum Mean Discrepancy (MMD) test that compares the distance between
mean embeddings of two conditions [100], allowing for non-linear comparison of two gene-
expression distributions. Despite the significant potential of kernel-based testing, this
approach has not yet been developed in single-cell data science.

In this work, we propose a new kernel-based framework for the exploration and
comparison of single-cell data based on Differential Transcriptome/Epigenome Analysis.
Our method relies on the Kernel Fisher Discriminant Analysis (KFDA) approach
introduced by [62]. KFDA is a normalized version of the Maximum Mean Discrepancy
to account for the variability of the datasets. This results in a test statistic that can be
interpreted as the distance between mean embeddings projected onto the kernel-Fisher
discriminant axis. Although KFDA was initially introduced as a non-linear classifier
[99], it is a great example of how classifiers can be used for hypothesis testing [63, 85],
and recent developments have demonstrated its optimality [60]. Here we show that the
KFDA-witness function, which is the Fisher discriminant axis [79], can further be used
for data exploration of scRNA-Seq and scChIP-seq data. Our method is implemented in
a package called ktest2 available in both R and Python, which offers many visualization
tools based on the geometrical concepts from the Fisher Discriminant Analysis (FDA)
to aid comparisons. We show the calibration and the power of our method compared
with others on simulated [44] and multiple scRNA-Seq datasets [134]. Then we illustrate
the power of the classification-based testing approach, that identifies sub-populations of
cells based on expression and epigenomic data, that would not be detected otherwise.
When applied to scRNA-Seq data, ktest reveals the heterogeneity in differentiating
cell populations induced to revert toward an undifferentiated phenotype [153]. Our
method also uncovers the epigenomic heterogeneity of breast cancer cells, revealing
the pre-existence - prior to cancer treatment - of cells epigenomically identical to
drug-persister cells, i.e the rare cells that can survive treatment.

As single-cell datasets grow larger and more complex, traditional testing methods may
fail to capture subtle variations and accurately identify meaningful differences in molecular
patterns. Here we show that kernel testing emerges as a promising approach to overcome
these challenges, offering a robust and flexible framework. Kernel testing techniques are

2https://github.com/AnthoOzier/ktest
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less sensitive to assumptions on data distribution than traditional methods, and can han-
dle complex dependencies within and across cells. This capability is particularly relevant
in the context of single-cell data, where inherent noise, sparsity, and heterogeneity pose
unique challenges to accurate statistical inference. Overall, kernel testing represents a
powerful tool for the differential analysis of single-cell data, enabling to uncover hidden
patterns, and gain deeper insights into the intricate heterogeneities of cell populations.

2.1.3 Results

In the following we denote by Y1 = (Y1,1, . . . , Y1,n1) and Y2 = (Y2,1, . . . , Y2,n2) the gene
expression measurements of G genes with distributions P1 and P2 in conditions 1 and 2
on n1 and n2 cells respectively, n = n1 + n2. In the following, we will derive our method
for expression data, but it can be generalized to any single-cell data. Then we suppose
that

Yi,j ∼ Pi, i = 1, 2 j = 1, . . . ni.

Two-sample testing between distributions consists in challenging the null hypothesis H0 :
P1 = P2 by the alternative hypothesis H1 : P1 6= P2. To construct a non-linear test we
consider the embeddings of the original data denoted by

(
φ(Yi,1), . . . , φ(Yi,ni)

)
(i = 1, 2),

obtained using the feature map φ(·) that maps the data into the so-called feature space H
that is a reproducing kernel Hilbert space. The kernel provides a measure of the similarity
between the observations, that turns out to be the inner product between the embeddings:

k(Yi,j, Yi′,j′) =
〈
φ(Yi,j), φ(Yi′,j′)

〉
H
.

Thanks to this relation, kernel methods are non-linear for the original data, but linear with
respect to the embeddings in the feature space. They provide a non-linear dissimilarity
between cells based either on the whole transcriptome or on univariate gene distributions.
Kernel-based tests consist in the comparison of kernel mean embeddings of distributions
P1 and P2 [100], defined such that:

∀i ∈ {1, 2}, µi = EY∼Pi
(
φ(Y)

)
.

The initial contribution to kernel testing involved calculating the distance between kernel
mean embeddings with the MMD statistic [54]. However, it is difficult to determine its
null distribution, and since the MMD does not account for the variance of embedding, it
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has recently been show to lack optimality [60]. By utilizing a Mahalanobis distance to
standardize the difference between mean embeddings, we can not only obtain an asymp-
totic chi-square distribution for the resulting statistic [63], but we can also take advantage
of the kernel Fisher Discriminant Analysis (KFDA) framework that is typically used for
non-linear classification. Therefore, we present two complementary perspectives on the
KFDA testing framework: one based on a distance-based construction of the statistic and
the other on the kernel FDA, which offers several visualization tools to highlight the main
cell-wise differences between the two tested conditions.

Testing with a Mahalanobis Distance Between Gene-Expression Embeddings

The squared distance between the kernel mean embeddings constitutes the so-called Max-
imum Mean Discrepancy statistic, such that:

MMD2(µ1, µ2) = ‖µ1 − µ2‖2
H

= EY1∼P1,Y ′1∼P1 [k(Y1, Y
′

1)] + EY2∼P2,Y ′2∼P2 [k(Y2, Y
′

2)]
−2EY1∼P1,Y2∼P2 [k(Y1, Y2)] .

This statistic tests the between-class separation by comparing expected pairwise sim-
ilarities between and within conditions 1 and 2. To account for the residual variability,
we introduce the weighted Mahalanobis distance between mean embeddings,

D2(µ1, µ2) = n1n2

n
‖Σ−1/2

W (µ1 − µ2) ‖2
H,

where ΣW is the homogeneous within-group covariance of embeddings:

ΣW = n1

n
Σ1 + n2

n
Σ2,

with:
∀i ∈ {1, 2}, Σi = EY∼Pi

[
(φ(Y )− µi)⊗2

]
,

the covariance operator within each condition (⊗ stands for the tensor product in the
feature space). To avoid the singularity of ΣW , we consider a regularized version of the
kernel-based Mahalanobis distance, by approximating the within-covariance by its first
T principal directions. This resumes to a kernel-PCA dimension-reduction step based
on ΣW,T which catches the residual variability of expression data centered by condition.
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Then the corresponding regularized statistic is based on the estimated mean embeddings
and covariances:

∀i ∈ {1, 2}, µ̂i = 1
ni

ni∑
j=1

φ(Yi,j), Σ̂i = 1
ni

ni∑
j=1

(φ(Yi,j)− µ̂i))⊗2.

The main computational complexity comes from the eigen-decomposition of Σ̂W =
(n1Σ̂1 + n2Σ̂2)/n which requires O(n3) operations and results in the truncated covari-
ance Σ̂W,T = ∑T

t=1 λ̂t(f̂t ⊗ f̂t), where (λ̂t)t=1:T are the decreasing eigenvalues of Σ̂W,T and
(f̂t)t=1:T are the associated eigenfunctions referred by extension in the following as prin-
cipal components. Then the empirical weighted Mahalanobis distance between the two
mean-embeddings is:

D̂2
T (µ̂1, µ̂2) = n1n2

n

∥∥∥∥Σ̂− 1
2

W,T (µ̂2 − µ̂1)
∥∥∥∥2

H
.

This statistic follows a χ2(T ) asymptotically under the null hypothesis [62], which resumes
to the Hotelling’s test in the feature space. Using the asymptotic distribution for testing
seems reasonable for scRNA-Seq data for which n ≥ 100, otherwise, it is possible to test
with a permutation procedure for small sample sizes. Our implementation runs in ∼ 5
minutes for n ∼ 4000, and the package proposes a sampling-based Nyström approximation
for larger sample sizes [147].

The Kernel Fisher Discriminant Analysis, a Powerful Tool for Non-Linear
DEA

A major advantage of using the Mahalanobis distance between distributions is that the
test statistic can be reinterpreted as a classification problem, thanks to its connection
with the Fisher Discriminant Analysis (FDA). This framework induces a powerful cell-
wise visualization tool that allows to explore and understand the nature of the differences
between transcriptomes. FDA is a linear classification method that consists in finding the
linear axis that optimizes the discrimination between the two distributions. Intuitively,
a direction is discriminant if the observations projected on it (i) do not overlap and (ii)
are far from each other. Hence the best discriminant axis is found by maximizing the
Fisher Discriminant Ratio, that models a trade-off between minimizing the overlap while
maximizing the distance between the means of the two groups. By finding this linear
axis in the feature space to classify the embeddings, we obtain a non-linear function that
makes the two distributions linearly separable. Thus, in the feature space we denote by
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h?T the optimal axis that maximizes the truncated Fisher Discriminant Ratio:

h?T = n argmax
h∈H

〈h,ΣBh〉H
〈h,ΣW,Th〉H

.

where ΣB is the between-group covariance capturing the part of the variance of the em-
beddings due to the difference between the two groups:

ΣB = n1n2

n2 (µ1 − µ2)⊗2.

The numerator of the Fisher Discriminant Ratio captures the distance between the two
mean embeddings on a given direction, to be maximized, and the denominator captures
the variability of the embeddings projected on this direction, standing for a measure of
the overlap, to be minimized. The discriminant axis h?T can be found in closed form from
an analytical reasoning. The Mahalanobis distance then appears to be the maximal value
of the ratio, which is the distance between the mean embeddings projected on h?T :

D2
T = n

〈h?T ,ΣBh
?
T 〉H

〈h?T ,ΣW,Th?T 〉H
= n1n2

n
‖Σ−1/2

W,T (µ1 − µ2) ‖2
H,

By relying on both the within-group and the between-group covariances, the FDA ap-
proach encompasses the total variability of the embeddings. We can interpret the projec-
tion of the embeddings on h?T in terms of similarity between the two groups. The extreme
values of projected embeddings on the discriminant axis correspond to cells that contain
the most significant information for distinguishing between conditions. Conversely, the
central values of projected embeddings correspond to cells that do not contribute to the
discrimination and hold less informative value. We will propose an illustration to show
how this representation can be used to identify outliers or sub-populations.

Then non-linear testing turns out to be very powerful to detect complex alternatives,
like the ones proposed in the context of distribution-based DEA [78]. We illustrate the
discriminant axis by representing the four standard alternative hypotheses: differential
mean (DE), differential proportions (DP), differential modality (DM) and differential
both proportion and modality (DB) [78]. The DE, DP and DM alternatives are somehow
easy to discriminate even with summary statistics because the distributions have different
means, projecting the embeddings on the discriminant axis easily discriminates the two
conditions. On the contrary, the DB alternative is the most difficult alternative to detect

67



Partie , Chapter 2 – The Truncated Kernel Fisher Discriminant Analysis Test in Practice

with many DEA approaches, because the two conditions share the same mean expression
[44]. The discriminant axis acts as a powerful non-linear transformation of the expression
data to make the two distributions easily separable (Fig. 2.1).

Kernel Choice

The design of appropriate kernels is an active field of research [13, 123]. In kernel-based
testing, choosing an appropriate kernel has many objectives like capturing important data
characteristics and showing sufficient power to distinguish between different alternatives.
To this extent, the conclusions drawn in the feature space from the mean embeddings
should apply to the initial distributions. In other words, it should be equivalent to test
µ1 = µ2 for P1 = P2 which is not true in general. However, both are equivalent for
a particular class of kernels called universal kernels, which has led to theoretical and
computational developments [131, 56, 123]. Fortunately, the Gaussian kernel fulfills this
universality property. For two cells {(i, j), (i′, j′)} and genes g = 1, . . . , G, our develop-
ments will be based on kGauss defined such that:

kGauss(Yi,j, Yi′,j′) = exp
− 1

2σ2

G∑
g=1

(Y g
i,j − Y

g
i′,j′)2

 .
This kernel can be used in both multivariate and univariate contexts. Once the Gaussian
kernel has been chosen, the remaining question concerns the calibration of its bandwidth
σ, which is done using the median heuristic [56, 123, 43]. We also propose to account for
zero-inflation which is another important characteristic of scRNA-Seq data. This can be
achieved by employing probability product kernels, which adapt kernel methods to specific
probabilistic generative models [69]. Considering a zero-inflated Gaussian distribution
with π the proportion of additional zeros and fµ,σ the Gaussian probability function, we
show that the probability product kernel between two zero-inflated Gaussian distributions
of parameters (µ, σ, π) and (µ′, σ, π′) is (as detailed in the Methods section):

kZI-Gauss(Yi,j, Yi′,j′) = ππ′ + π(1− π′)fµ′,σ(0) + (1− π)π′fµ,σ(0)
+ (1− π)(1− π′)kGauss(Yi,j, Yi′,j′).

68



2.1. Kernel-Based Testing for Single-Cell Differential Analysis

Kernel Testing is Calibrated and Powerful on Simulated Data

Simulations are required to compare the empirical performance of DE methods on con-
trolled designs, to check their type-I error control and compare their power on targeted
alternatives. Thanks to a very fruitful collaboration/data sharing with colleagues having
developed a competing method [44], we challenged our kernel-based test with others on
mixtures of zero-inflated negative binomial data reproducing the four Korthauer’s alter-
natives [44] (as detailed in Material and Methods). Kernel testing was performed on the
raw data using both the Gauss and the ZI-Gauss kernels. The type-I errors of the kernel
test are controlled at the nominal levels α = 5% and the performance increases with n

(the asymptotic regime of the test is reached for n ≥ 100). The kernel test is the best
method for detecting the DB alternative, considered as the most difficult to detect, and
it outperforms every other method in terms of global power excepted SigEMD. This gain
in power can be explained by the non-linear nature of our method: despite the equality
of means, the kernel-based transform of the data onto the discriminant axis allows a clear
separation between distributions (Fig. 2.1). Our method shows its worst performances
on the DP alternative, which is the only alternative for which all the values are covered
by both conditions with different proportions. It shows that our method is particularly
sensitive to alternatives where some values are occupied by one condition only (Fig. 2.2).
Note that the probability product kernel did not improve the global performance, which
indicates that the Gaussian kernel-based test is robust to zero inflation. This could also be
due to the equality of the zero-inflation proportions between conditions. Finally, results
on log-normalized data are similar.

Challenging DEA Methods on Experimental scRNA-Seq Data

Differential analysis methods require validation through experimental data, typically by
using a ground truth list of differentially expressed (DE) genes and an accuracy criterion.
In this study, we examine the framework proposed by Squair et al. [134], which com-
pared 14 DE analysis methods on 18 scRNA-Seq datasets. The authors proposed three
main conclusions: i) replicate variability needs to be corrected, ii) single-cell DE methods
are susceptible to false discoveries, and iii) pseudo-bulk methods are the most powerful.
Pseudo-bulk methods involve applying DEA methods dedicated to bulk-RNA-Seq to av-
eraged scRNA-Seq. However, these conclusions are based on the use of bulk-RNA-Seq
DE genes as the ground truth, which inevitably favors pseudo-bulk methods designed to
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detect significant mean differences only. Hence, the study ignores genes with differen-
tial expression based on other characteristics, as shown in Korthauer’s DB scenario [78].
Therefore, we propose to broaden the scope of this comparative study by comparing the
outputs of different DE methods in a pairwise comparative manner, without relying on
a reference ground truth list of DE genes. Based on pair-wise accuracies, Differential
Analysis methods cluster into three groups of concordant groups that correspond to bulk,
pseudo-bulk and single-cell based methods respectively (Fig. 2.3, top). As expected,
bulk-based methods are separated from others, pseudo-bulk and single-cell methods per-
formed similarly, scRNA-Seq data being more similar. Kernel testing shows performance
close to single-cell methods.

We demonstrate that kernel testing does not show the same bias as other single-cell
DEA methods that tend to over-detect highly-expressed genes as mentioned in the original
study (Fig. 2.3, bottom). By inspecting the distributional changes associated to genes
considered as false-positive in the original study (with bulk-RNA-Seq genes as the ground
truth), we show that they can in fact be interpreted as true positives. Many of them
belong to the DB alternative (difference in both modalities and proportions, [78]), and
were thus undetectable from bulk-RNA-Seq data and pseudo-bulk methods (Fig. 2.7, left).
Their classification in terms of false positives is then questionable, and kernel testing is
clearly powerful to detect those alternatives on experimental data. Others present slight
shifts in distribution and low zero proportions, these genes are correctly detected by the
probability product kernel adapted to zero-inflation (examples of such distribution shapes
are shown in Fig. 2.7, right).

Kernel Testing Reveals the Heterogeneity of Reverting Cells

Single-cell transcriptomics has been widely used to investigate the molecular bases of cell
differentiation, and has highlighted the stochasticity and dynamics of the underlying gene
regulatory networks. The stochasticity of GRNs allows plasticity between cell states, and
is a source of heterogeneity between cells along the differentiation path, which calls for
multivariate differential analysis methods. We focus on the differentiation path of chicken
primary erythroid progenitor cells (T2EC). A first study highlighted the existence of
plasticity, i.e. the ability of cells induced into differentiation to reacquire the phenotypic
characteristics of undifferentiated cells (e.g. starting self-renewing again), until a differen-
tiation point of commitment (around 24 hours after differentiation induction) after which
this phenotype was lost [117]. A second study investigated the molecular mechanisms
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underlying cell differentiation and reversion by measuring cell transcriptomes at four time
points: undifferentiated T2EC maintained in a self-renewal medium (0H), then put in a
differentiation-inducing medium for 24h (24H). The population was then split into a first
population maintained in the same medium for 24h to achieve differentiation (48HDIFF),
the second population was put back in the self-renewal medium to investigate poten-
tial reversion (48HREV) [153]. Cell transcriptomes were measured using scRT-qPCR on
83 genes selected to be involved in the differentiation process, as well as scRNA-Seq to
complement the study by a non-targeted approach. Despite the strong global transcrip-
tomic similarity between 0H and 48HREV cells, four DE genes were identified in the
study (RSFR, HBBA, TBC1D7, HSP90AA1 ), interpreted as either a delay or as traces
of engagement into differentiation of the 48HREV population, before returning to the
self-renewal state. Hence, these first analyses suggested some heterogeneities between
undifferentiated cells and reverted cells.

Our kernel-based test confirmed this heterogeneity by detecting a significant difference
between undifferentiated cells (0H) and reverted cells (48HREV), both in scRT-qPCR and
scRNA-Seq data (p-values 6.15 10−24 and 5.05 10−05 respectively), however considering the
test statistic as a distance also confirmed the close proximity between these two conditions
(Fig. 2.4.b and 2.8.a). We assumed that population 48HREV was heterogeneous and
contained reverted cells and non-reverted cells. A k-means clustering was unable to detect
any particular cell cluster (Fig. 2.9, middle). As the discriminant axis provided by
our framework represents a synthetic summary of the global transcriptomic differences
between two cell populations, it allowed to highlight the existence of a sub-population of
48HREV cells (denoted 48HREV-1) that overlaps the distribution summary of 48HDIFF-
cells (48HREV vs. 48HDIFF, Fig. 2.4.c). Interestingly, these cells also matched the
distribution summary of 24H-cells (48HREV vs. 24H, Fig. 2.4.c), and were separated
from the undifferentiated cells (48HREV vs 0H, Fig. 2.4.c). A similar sub-population was
detected using scRNA-Seq data (48HREV vs. 48HDIFF Fig. 2.8.b). According to our
test, populations 48HDIFF and 48HREV-1 were very slightly different on scRT-qPCR
data and similar on scRNA-Seq data (p-values 2.51 10−3 and 0.88 respectively). This
slight difference may be explained by the targeted approach of scRT-qPCR that was based
on a selection of 83 genes involved in differentiation and on the higher precision of the
scRT-qPCR technology [153]. 48HREV-2 cells (48HREV cells after removing 48HREV-1
cells) were closer but still significantly different from 0H cells in both technologies (p-
values 4.36 10−16 and 3.8 10−05 respectively). To describe these two sub-populations in
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terms of genes, we performed a k-means clustering on the averaged expression of genes
over cells in populations 0H, 24H, 48HDIFF, 48HREV-1, 48HREV-2. We identified three
and five gene clusters on the scRT-qPCR and the scRNA-Seq data respectively. These
clusters can be separated in three groups (Fig 2.4.d and 2.8.c): (i) genes activated during
differentiation (scRT-qPCR cluster 2, scRNA-Seq clusters 0 and 2), e.g. hemoglobin
related genes such as HBA1 and HBAD (shown in Fig. 2.8.d), (ii) genes deactivated
during differentiation (scRT-qPCR cluster 1, scRNA-Seq cluster 3) e.g. genes involved in
metabolism of self-renewing cells such as LDHA and LY6E (shown in Fig. 2.8.d), and
(iii) genes with no clear function pattern for which the expression levels did not change
much during differentiation and reversion (scRT-qPCR cluster 0 and scRNA-Seq clusters
1 and 4). The p-value tables associated to each pair-wise univariate DE analysis with
respect to each gene cluster are available online.3

To conclude, our differential transcriptome framework showed that population
48HREV is composed of two sub-populations, which sheds light on new putative mech-
anisms driving differentiation and reversion processes. Whereas a population is only
slightly different to undifferentiated cells (48HREV-2), a sub-population (48HREV-1) has
remained engaged in differentiation. This difference could be either due to a delay in
engaging the reversion process for some cells, or to cells having crossed the irreversible
point of commitment. Furthermore, our method has identified cellular pathways which
could be important either for cell plasticity or cell differentiation, and can guide design of
further experiments. Overall, it could enhance our comprehension of how gene regulatory
networks react to differentiation and reversion signals.

2.1.4 Towards a New Testing Framework for Differential Bind-
ing Analysis in Single-cell ChIP-Seq Data

There is currently no dedicated method for the comparison of single-cell epigenomic pro-
files, existing studies often use non-parametric testing to compare epigenomic states and
retrieve differentially enriched loci. The joint multivariate testing strategy seems par-
ticularly suited to compare epigenomic data since it is well established that chromatin
conformation and natural spreading of histone modifications (in particular H3K27me3
[91]) can induce complex dependencies between sites occupancy. A recent study [92] has
shown that the repressive histone mark H3K27me3 (trimethylation of histone H3 at ly-

3https://github.com/AnthoOzier/kernel_testsDA.git
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sine 27) is involved in the emergence of drug persistence in breast cancer cells. Drug
persistence occurs when only a subset of cells, known as persister cells, survives the initial
drug treatment, thereby creating a reservoir of cells from which resistant cells will emerge.
The study identified a persister expression program involving genes such as TGFB1 and
FOXQ1, with H3K27me3 as a lock to its activation. Changes in H3K27me3 modifications
at the single-cell level showed a consistent pattern in persister cells compared to untreated
cells, in particular cells display recurrent losses of repressive histone methylation at a sub-
set of genes of the persister expression program. However, this pattern was not necessarily
maintained in cells that developed full resistance, suggesting that part of the epigenomic
features of persister cells might be transient. Moreover, analysis of untreated cells re-
vealed heterogeneity within epigenomic profiles. Part of the population exhibited shared
epigenomic features with persister cells, yet remaining distinguishable from them. This
initial analysis suggested that a pool of untreated cells could contribute to the persister
cell population later upon exposure to chemotherapy. However, unsupervised analyses
were unable to clearly identify this pool of precursor cells.

We compared H3K27me3 scChIP-seq profiles between untreated and persister cells
using kernel testing. Thanks to the discriminative approach, our framework offers a syn-
thetic representation of the distributional differences between cell populations (Fig 2.5).
Projecting cells on the kernelized discriminant axis reveals 3 sub-populations within the
untreated cell population: Persister-Like (109 cells; 5% of untreated cells), Intermedi-
ate (1124 cells; 57%), Naive (744 cells; 38%), with increasing distance to persister cells
(Fig. 2.5). We then performed a differential analysis of H3K27me3 enrichment between
persister cells and the n = 109 untreated cells that were the most similar to persister
cells on the discriminant axis. Over the 6,376 tested regions, only 14 were significantly
differentially enriched (p-value< 10−3, Table 2.1), suggesting that this sub-population of
untreated cells is epigenomically very close to persister cells (with persister cells being
hypo-methylated on these significant regions compared to persister-like cells). We then
studied the differences between the three populations present in the untreated cell popula-
tion, prior to any treatment. We performed differential analysis between the most distant
untreated cells (naive vs intermediate), and between intermediate cells and persister-like
cells. We detected significant changes in repressive epigenomic enrichments, both losses
and gains, that will need further functional testing to understand their potential role in
drug-persistence (Table 2.2). Altogether, our new kernel analytical framework shows that
persister-like cells could exist prior to any treatment, and provides a novel level of appre-
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ciation of epigenomic heterogeneity by revealing three sub-populations within treatment
naive cell population. In addition, our method identifies small quantitative variations
that are not detected by other methods and will need to be related to gene expression
and other molecular features for further interpretation.

2.1.5 Conclusion

In this work we introduced the framework of kernel testing to perform differential analy-
sis in a non-linear setting. This method compares the distribution of gene expression or
epigenomic profiles through global or feature-wise comparisons, but can be extended to
any measured single-cell features. Kernel testing has focused much attention in the ma-
chine learning community since it has the advantage of being non-linear, computationally
tractable, and provides visualization combining dimension reduction and statistical test-
ing. Its application to single-cell data is particularly promising, as it allows distributional
comparisons without any assumptions about their shape. Moreover, using a classifier to
perform discrimination-based testing has become popular [75], and allows powerful de-
tection of population heterogeneities in both expression and epigenomics single-cell data.
Our simulations show the power of this approach on specifically designed alternatives [78].
Furthermore, comparing kernel testing with other methods based on multiple scRNA-Seq
data reveals its superior capability to identify distributional changes that go undetected
by other approaches. Finally, the application of kernel testing to scRNA-Seq and scChIP-
seq data uncovers biologically meaningful heterogeneities in cell populations that were
not identified by standard procedures.

Perspectives of this work are numerous: we will first generalize the approach beyond
the two-sample case and extend it to multiple sample comparisons. In particular, this
will make it possible to have more general design that considers multiple factors such as
batch effects. The adaptability of kernel methods makes them particularly well-suited for
spatial data, so we plan to extend the framework to include spatial data analysis. To
bridge the gap between global and feature-wise approaches, we are actively developing
sensitivity analysis methods. These methods will help us identify influential features that
contribute to the rejection of the global hypothesis. By combining these findings, we can
create a joint approach that considers the complex dependencies inherent in single-cell
data, while still providing interpretable outputs based on feature-wise information.

More than ever, single-cell data science appears at the convergence of many cutting-
edge methodological developments in machine learning. As a result, these advancements

74



2.1. Kernel-Based Testing for Single-Cell Differential Analysis

will have significant implications for the old-tale of differential analysis, offering new
avenues for progress and improvement.

2.1.6 Materials and Methods

Simulation Settings

The comparison study on data simulated was performed on data following different mix-
tures of zero inflated negative binomial (ZINB) distributions [44]. The distribution pa-
rameters were chosen to reproduce the four Korthauer alternatives and two types of H0

distributions. The performances were computed on 500 repetitions of a dataset com-
posed of 1000 DE genes and 9000 non-DE genes. The DE genes are equaly separated
in the four alternatives DE,DM, DP and DB. The non-DE genes are equally separated
into a unimodal ZINB and a bimodal mixture of ZINB. The DE methods were applied
on the raw data, type-I errors and powers were computed on the raw p-values while false
discovery and true discovery rates were computed on the adjusted p-values, with the
Benjamini-Hochberg correction [19]. The authors also shared their p-values tables with
us for their methods (cicdf-asymp and citcdf-perm) [44], MAST [38], scDD [78], SigEMD
[145], DESingle [98] and SCDE [73].

Comparison of Methods on Published scRNA-Seq Datasets

The eighteen comparison datasets were downloaded from the Zenodo repository (https:
//doi.org/10.5281/zenodo.5048449) compiled by Squair and coauthors [134]. They
consists of six comparisons of bone marrow mononuclear phagocytes from mouse, rat, pig
and rabbit in different conditions [59], eight comparisons of naive and memory T cells
in different conditions [26] and four comparisons of alveolar macrophages and type II
pneumocytes between young and old mouses [7] and between patients with pulmonary
fibrosis and control individuals [116]. More details on the datasets are in [134] or in
the original studies. The preprocessing step consisted in filtering genes present in less
than three cells and normalizing data with the Seurat function NormalizeData, as in the
original comparative study [134]. This not very restrictive preprocessing was chosen in
order to not introduce biaises in the analyses, and many genes would have been ignored
form the analysis in real conditions. The Area Under the Concordance Curves (AUCC)
scores were computed with the original scripts [134].
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Probability Product Kernel for Zero-Inflated Data

To derive the zero-inflated kernel, we consider a zero-inflated Gaussian distribution with
π the proportion of additional zeros:

Y ∼ πδ0(•) + (1− π)fµ,σ(•).

with fµ,σ the Gaussian probability density function. This distribution has a mixture
representation, with Z standing for the binary variable of distribution B(π), such that:

fµ,σ,π(x) = P(Z = 1)δ0(y) + P(Z = 0)fµ,σ(y).

We know the probability kernels for the Gaussian distributions:

kGauss(µ, µ′) = 1
4πσ2 exp(−(µ− µ′)2/4σ2),

and for the Bernoulli distribution:

kB

(
π, π′

)
= ππ′ + (1− π)(1− π′).

To get the ZI-Gauss kernel, we compute the probability kernel fµ,σ,π and fµ′,σ,π′ :

kZI-Gauss

(
fµ,σ,π, fµ′,σ,π′

)
=

∫
y
fµ,σ,π(y)fµ′,σ,π′(y)dy

= ππ′ + π(1− π′)fµ′,σ(0) + (1− π)π′fµ,σ(0)
+(1− π)(1− π′)KGauss(µ, µ′).

In the simulations, the probability product kernel was computed using the parameters
of the Binomial distributions used to determine the drop-out rates of the simulated data
(drawn uniformly in [0.7, 0.9]), the variance parameter σ was set as the median distance
between the non-zero observations and the Gaussian means µ were set as the observed
values.

Reversion Data

Details on the experiment and on the data can be found in the original paper [153]. The
kernel-based testing framework was performed on the log(x + 1) normalized RT-qPCR
data and on the Pearson residuals of the 2000 most variable genes of the scRNA-Seq data
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Figure 2.1: Top: Examples of distributions of the simulated data, DE: classical difference
in expression, DM: difference in modalities, DP: difference in proportions, DB: difference
in both modalities and proportions with equal means. Bottom: projection of cells on
the discriminant axis (T = 4) for each alternative. The non-linear transform allows the
separation of distributions on the discriminant axis.

obtained through the R package sctransform [58]. The truncation parameter of the
multivariate comparisons (T = 10 for both technologies) was chosen to be large enough
for the discriminant analysis to capture enough of the multivariate information and to
maximize the discriminant ratio. The truncation parameter retained for univariate testing
(T = 4) was chosen according to the simulation study.
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Figure 2.2: Comparison of DEA methods with respect to type-I errors and power. Top:
Type-I errors are computed on raw p-values under H0. False discovery Rate computed on
Benjamini-Hochberg adjusted p-values. Power computed on raw p-values under H1. True
Discovery Rate computed on Benjamini-Hochberg adjusted p-values. Simulated data
consists of 100 cells, 10000 genes (1000 DE, 9000 non-DE). Alternatives are simulated
using DE: classical difference in expression (250 genes), DM: difference in modalities (250
genes), DP: difference in proportions (250 genes), DB: difference in both modalities and
proportions with equal means (250 genes). Error rates are computed over 500 replicates.

78



2.1. Kernel-Based Testing for Single-Cell Differential Analysis

bu
lk-

lim
ma-v

oo
m

bu
lk-

lim
ma-t

ren
d

bu
lk-

DES
eq

2-W
ald

bu
lk-

DES
eq

2-L
RT

bu
lk-

ed
ge

R-Q
LF

bu
lk-

ed
ge

R-L
RT

lim
ma-v

oo
m

lim
ma-t

ren
d

ed
ge

R-Q
LF

ed
ge

R-L
RT

DES
eq

2-W
ald

DES
eq

2-L
RT

kte
st

kte
st-

ZI-k
ern

el
MAST

bim
od

wilco
x LR t

po
iss

on

ne
gb

ino
m

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
average gene expression

ktest
ktest-ZI-kernel

MAST
wilcox

poisson
bimod

negbinom
LR

t
limma-voom
limma-trend

DESeq2-Wald
edgeR-QLF
edgeR-LRT

DESeq2-LRT

ktest
ktest-ZI-kernel

MAST
wilcox

poisson
bimod

negbinom
LR

t
limma-voom
limma-trend

DESeq2-Wald
edgeR-QLF
edgeR-LRT

DESeq2-LRT

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
proportion of zeros
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Figure 2.4: a: Summarized distance graphs between conditions before (left) and after
(right) splitting condition 48HREV into populations 48HREV-1 and 48HREV-2. b: Trees
from pairwise distances using our test statistic between conditions before (left) and after
(right) splitting condition 48HREV into populations 48HREV-1 and 48HREV-2. c: Cell
densities of compared conditions projected on the discriminant axis between conditions
48HREV and 48HDIFF (left), 48HREV and 0H (middle) and 48HREV and 24H (right)
with highlighted population 48HREV-1. d: Boxplots of the mean expressions of the five
populations 0H, 24H, 48HDIFF, 48HREV-1 and 48HREV-2 for the three genes clusters.
a,b,c and d are obtained from scRT-qPCR data.
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Figure 2.5: Differential analysis of scChIP-seq data on breast cancer cells. a. Cell densities
of persister cells vs. untreated cells. Sub-populations of untreated cells were identified
using 3-component mixture model, that revealed persister-like cells, intermediate and
naive cells. b-c-d: boxplots of the top-10 differentially enriched H3K27me3 loci between
the 3 sub-populations. Features are designated by the genomic coordinates of the ChIP-
seq peaks. Corresponding overlapping genes are provided in Table 2.1.
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2.1.8 Supplementary Material

Tuning the Truncation Hyperparameter

We use the simulation data to calibrate the hyperparameter of our method, i.e. the
number T of principal directions of the within-covariance operator to retain to regularize
the kernel-based Mahalanobis distance. The theoretical calibration of this hyperparameter
still requires heavy mathematical developments, as shown by recent work [60]. However,
these simulations provide a simple rule of thumb to choose it. Indeed, since T can be
interpreted as the quantity of within-variance information used to describe the residual
expression, increasing T will increase power in the detection of complex alternatives, at
the price of increased type-I errors. In the simulations, Type-I errors of the kernel test
remains at the nominal level α = 5% until T ≤ 6. with maximal power for T = 4 (Fig
2.6). Interestingly, the test was completely unable to detect the DB alternative when
T = 1. These results confirm that the truncation hyperparameter should be chosen as a
trade-off between maximizing testing power while keeping the type-I errors controlled at
the nominal level to ensure calibration. This motivates the choice of T = 4 for all the
univariate DE analyses in the paper.

For multivariate analyses, we assumed that the meaningful information was contained
in more than four principal directions of the within-covariance operator and chose to
take a larger truncation parameter in order to take into account more of the multivariate
information available. We then chose the truncation parameter T = 10 that maximized
the discriminant ratio while being not too large to still ensure the calibration.

Kernel Trick for the Effective Computation of the Test Statistic

In this section, we describe how to compute the test statistic D̂2
T (µ̂1, µ̂2) and the vector

of projections of the embeddings onto the discriminant axis V , with i ∈ {1, 2}, j ∈
{1, . . . , ni}, and V = (〈h?T , φ(Yi,j)〉H)i,j for T ∈ {1, . . . , n}. This computation relies on
the kernel trick that consists in expressing every quantity of interest with respect to
the gram matrix KY containing every pair-wise evaluation of the kernel function, such
that for i, i′ ∈ {1, 2}, KY = (KYi,i′)i,i′ , where for j ∈ {1, . . . , ni}, j′ ∈ {1, . . . , ni′},
KYi,i′ = (k(Yi,j, Yi′,j′))j,j′ . The computation has two steps. First, we determine a matrix
KW that has the same eigenvalues as the operator Σ̂W , then we compute the quantities of
interest with respect to KY, the T first eigenvalues (λ̂t), t ∈ {1, . . . , T} and the associated
unit eigenvectors (ut)t of KW . Let’s denote by In the identity matrix of size n, Jn the
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Figure 2.6: Calibration of the truncation with respect to type-I errors and power. Top:
Type-I errors are computed on raw p-values under H0. False discovery Rate computed
on Benjamini-Hochberg adjusted p-values. Power computed on raw p-values under H1.
True Discovery Rate computed on Benjamini-Hochberg adjusted p-values. Simulated data
consists of 10000 genes (1000 DE, 9000 non-DE). Alternatives are simulated using DE:
classical difference in expression (250 genes), DM: difference in modalities (250 genes), DP:
difference in proportions (250 genes), DB: difference in both modalities and proportions
with equal means (250 genes). Error rates are computed over 500 replicates.

matrix of size n full of 1, and 1n the vector of size n full of 1. Then for i ∈ {1, 2}, let
Πni = Ini − n−1

i Jni , ΠW = diag(Πn1 ,Πn2) and ω = (n−1
1 1n1 ,−n−1

2 1n2)′ ∈ Rn. We can
show that the matrix KW is equal to KW = n−1ΠWKYΠW . Then we have:

D̂2
T (µ̂1, µ̂2) = n1n2

n2

T∑
t=1

λ̂−2
t (u′tΠWKYω)2, and V = n1n2

n2

T∑
t=1

λ̂−2
t (u′tΠWKYω)KYΠWut.
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Figure 2.7: Expression densities of the two compared conditions for genes considered
as DE by ktest-ZI-kernel and the other single-cell DE methods and considered as non-
DE by pseudo-bulk methods. Left: stimulated memory Th0 cells (blue, 4766 cells) vs
control memory Th0 cells (orange, 3110 cells) from [26]. Right: pig cells stimulated with
lipopolysaccharide (blue, 6605 cells) vs control pig cells (orange, 6148 cells) from [59].

chr start - end D̂2
T average average gene

Persist. / Persist.-Like log2FC
chr9 133489001 - 133751000 123.60 0.77 / 1.25 -0.51 ADAMTSL2, DBH, SARDH
chr5 1832001 - 2740000 104.70 2.45 / 2.80 -0.43 IRX4
chr9 135509001 - 135802000 79.40 0.83 / 1.22 -0.43 PAEP, LCN1, OBP2A,

SOHLH1, KCNT1, LCN9
chr9 134445001 - 135458000 72.50 1.67 / 2.12 -0.49 OLFM1, FCN2, FCN1,

COL5A1
chr9 76400001 - 77173000 51.00 1.21 / 1.59 -0.41 GCNT1
chr14 23331001 - 23355000 50.20 0.05 / 0.12 -0.09 SLC22A17
chr9 136123001 - 136206000 49.10 0.22 / 0.42 -0.22 LHX3
chr12 129982001 - 130786000 48.10 1.05 / 1.41 -0.37 RIMBP2, PIWIL1
chr3 123287001 - 123483000 45.20 0.69 / 0.91 -0.26 ADCY5
chr22 47950001 - 49760000 43.30 2.48 / 2.78 -0.38 FAM19A5

Table 2.1: Differential analysis of sc-chIPseq data: top-10 differential regions for pairwise
comparisons between persister cells and persister-like cells. Adjusted p-values are < 10−3

(Bonferroni correction). The last Gene column corresponds to the genes overlapping the
regions.

84



2.1. Kernel-Based Testing for Single-Cell Differential Analysis

48HREV vs 48HDIFF 48HREV vs 0H 48HREV vs 24H

0
H

2
4

H

4
8

H
D

IF
F

4
8

H
R

E
V
-1

4
8

H
R

E
V
-20
H

2
4

H

4
8

H
D

IF
F0.75

0.25

0.25

0.75

1.25

m
e
a
n
 e

x
p

re
ss

io
n

cluster 0 

0
H

2
4

H

4
8

H
D

IF
F

4
8

H
R

E
V
-1

4
8

H
R

E
V
-20
H

2
4

H

4
8

H
D

IF
F1.0

0.6

0.2

0.2

0.6

1.0
cluster 1 

0
H

2
4

H

4
8

H
D

IF
F

4
8

H
R

E
V
-1

4
8

H
R

E
V
-20
H

2
4

H

4
8

H
D

IF
F3

1

1

3

cluster 2 

0
H

2
4

H

4
8

H
D

IF
F

4
8

H
R

E
V
-1

4
8

H
R

E
V
-20
H

2
4

H

4
8

H
D

IF
F2

1

0

1

2
cluster 3 

0
H

2
4

H

4
8

H
D

IF
F

4
8

H
R

E
V
-1

4
8

H
R

E
V
-20
H

2
4

H

4
8

H
D

IF
F1.25

0.75

0.25

0.25

0.75

cluster 4 

4 2 0 2 4 6
gene expression

HBA1

6 4 2 0 2 4
gene expression

HBAD

4 2 0 2 4 6
gene expression

LDHA

2 0 2 4
gene expression

LY6E

48HDIFF 24H 0H 48HREV 0H 48HREV-2 24H 48HDIFF 48HREV-1

a.

b.

c.

d.

Figure 2.8: a: Trees from pairwise distances using our test statistic between conditions
before (left) and after (right) splitting condition 48HREV into populations 48HREV-1
and 48HREV-2. b: Cell densities of compared conditions projected on the discriminant
axis between conditions 48HREV and 48HDIFF (left), 48HREV and 0H (middle) and
48HREV and 24H (right) with highlighted population 48HREV-1. c: Boxplots of the
mean expressions of the five populations 0H, 24H, 48HDIFF, 48HREV-1 and 48HREV-2
for the five identified genes clusters. d: Examples of gene expression distributions in
populations 48HREV-1 (turquoise) and 48HREV-2 (pink) compared to populations 0H
(blue) and 48HDIFF (red). a,b,c and d are obtained from scRNA-Seq data
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chr start - end D̂2
T average average gene

Persist.-Like / Interm. log2FC
chr9 76400001 - 77173000 151.10 1.59 / 0.93 -0.64 GCNT1
chr11 44629001 - 44924000 107.70 1.19 / 0.65 -0.50 TSPAN18
chr1 71395001 - 73235000 102.10 1.94 / 1.37 -0.51 NEGR1
chr2 120687001 - 121071000 99.80 1.31 / 0.76 -0.48 GLI2
chr3 123287001 - 123483000 94.80 0.91 / 0.47 -0.43 ADCY5
chr6 33863001 - 34155000 90.30 1.24 / 0.72 -0.48 GRM4
chr11 43933001 - 44065000 79.80 1.04 / 0.61 -0.40 ACCSL
chr9 133489001 - 133751000 78.50 1.25 / 0.79 -0.41 SARDH, DBH, ADAMTSL2
chr5 7615001 - 7856000 78.20 1.20 / 0.69 -0.42 C5orf49
chr1 44365001 - 44624000 73.70 1.20 / 0.77 -0.40 RNF220
chr start - end D̂2

T average average gene
Interm. / Naive log2FC

chr16 85810001 - 86527000 466.50 2.52 / 2.95 0.50 FOXF1-IRF8
chr17 73382001 - 74743000 337.20 3.03 / 3.38 0.41 GPRC5C,CD300A,TTYH2,

DNAI2, SDK2, RPL38,
GPR142, CD300C, CD300LD,
CD300LB, RAB37, KIF19,
BTBD17, CD300LF, CD300E

chr2 236192001 - 237072000 314.50 1.99 / 2.41 0.48 IQCA1,ASB18
chr1 195633001 - 196663000 249.90 0.92 / 0.47 -0.51 KCNT2,CFH
chr1 189337001 - 190666000 235.80 1.03 / 0.58 -0.49 BRINP3
chr11 97578001 - 99922000 229.30 1.65 / 1.18 -0.55 CNTN5
chr1 215645001 - 217423000 221.10 1.79 / 1.30 -0.59 ESRRG,USH2A
chr1 71395001 - 73235000 215.20 1.37 / 0.91 -0.52 NEGR1
chr20 59052001 - 59846000 213.30 2.05 / 2.36 0.35 EDN3,PHACTR3
chr7 14654001 - 15126000 209.30 0.70 / 0.34 -0.37 DGKB
chr start - end D̂2

T average average gene
Persist.-Like / Naive log2FC

chr1 71395001 - 73235000 292.20 1.94 / 0.91 -1.05 NEGR1
chr7 15136001 - 16070000 250.40 1.65 / 0.70 -0.95 MEOX2,AGMO
chr2 192142001 - 193818000 237.00 1.64 / 0.74 -0.90 TMEFF2
chr11 97578001 - 99922000 230.30 2.04 / 1.18 -0.86 CNTN5
chr11 44629001 - 44924000 217.10 1.19 / 0.39 -0.77 TSPAN18
chr7 14654001 - 15126000 203.80 1.09 / 0.34 -0.72 DGKB
chr1 195633001 - 196663000 201.50 1.31 / 0.47 -0.83 KCNT2,CFH
chr9 76400001 - 77173000 199.90 1.59 / 0.68 -0.91 GCNT1
chr16 85810001 - 86527000 199.30 2.29 / 2.95 0.93 FOXF1,IRF8
chr5 7615001 - 7856000 188.20 1.20 / 0.43 -0.73 C5orf49

Table 2.2: Differential analysis of sc-chIPseq data: top-10 differential regions for pairwise
comparisons between the three sub-populations of untreated cells. Adjusted p-values
are < 10−3 (Bonferroni correction). The last Gene column corresponds to the genes
overlapping the regions.
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Figure 2.9: Left: Umap representation of the four conditions from scRNA-Seq data (0H
(blue), 24H (green) 48HDIFF (red) and 48HREV (purple)). Middle: highlight of the
2 groups of 48HREV identified through a k-means algorithm. Right: The two groups
48HREV-1 (turquoise) and 48HREV-2 (pink) identified on the discriminant axis associ-
ated to the truncation parameter t = 10.

2.2 The Nyström Method

The computational cost of most kernel methods is polynomial in the number of observa-
tions n. When the degree of the polynomial is high, the computational cost may become
prohibitive with n increasing. The computational cost of the KFDA statistic is O(n3),
essentially because of the diagonalization of the within-group covariance operator. When
datasets have more than 5000 observations, this diagonalization can take hours. The need
for low-rank approximations that drastically reduces the computational burden is appar-
ent. Nyström methods are one way of performing it. There exists others approaches, such
as spectral clustering, as in [40] and [110], incomplete Cholesky decompositions [39], [11],
[12] or random Fourier features-based approximations in the specific case of translation
invariant kernels [113] [114] [81]. We will focus on Nyström methods since it has been
demonstrated that they show very good performances in [83], [50] and [141].

The Nyström method applied to kernel methods is due to [147] who adapted the Nys-
tröm method introduced in [14] to compute integrals. The idea of the Nyström method
consists in approximating the Gram matrix of Mn(R) by a product of three matrices
of size n × r, r × r and r × n respectively. Theoretically, it resumes to approximating
the embeddings of the observations in the feature space H by their projection in an r-
dimensional subspace of interest. The functions that form an orthonormal basis of this
subspace are called the anchors. The anchors are determined through a subset of q ob-
servations called the landmarks. By working in the subspace spanned by the anchors, the
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n-dimensional observations become r-dimensional and it reduces the computational cost
of the KFDA statistic from O(n3) to O(n2)+O(r3). The landmarks are generally selected
with a random sampling.

2.2.1 The Nyström Landmarks

Let (Y ,Y) be a measurable space and k(·, ·) : Y × Y → R a p.d. kernel associ-
ated to the RKHS H and the feature map φ(·). We describe the Nyström method for
two-sample testing. Let Y1 = (Y1,1, . . . , Y1,n1) and Y2 = (Y2,1, . . . , Y2,n2) two sets of
n1 and n2 observations from Y respectively, with n1 + n2 = n and Y = (Y1,Y2) =
(Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2). Their embeddings in H through the feature map φ(·) are
denoted Φ(Y1) = (φ(Y1,1), . . . , φ(Y1,n1)) and Φ(Y2) = (φ(Y2,1), . . . , φ(Y2,n2)) respectively,
with Φ(Y) = (Φ(Y1),Φ(Y2)).

Let Z = (Z1, . . . , Zq) be a set of q < n landmarks in Y . Let Φ(Z) = (φ(Z1), . . . , φ(Zn))
be the embeddings of the landmarks in H, KZ = (k(Zi, Zj))i,j∈{1,...,q} their associated
Gram matrix, and HZ the subspace of H spanned by the landmarks. The landmarks
should be chosen to be representative of the whole sample Y. Common approaches
are to define the landmarks Z as the centroids of a k-means algorithm, or to sample the
landmarks in Y, through a score-based sampling or a random sampling. In the case of two-
sample testing, we propose to obtain a balanced set of landmarks by selecting q1 =

⌊
n1
n

⌋
q

landmarks Z1 = (Z1,1, . . . , Z1,q1) in Y1 and q2 = q − q1 landmarks Z2 = (Z2,1, . . . , Z2,q2)
in Y2.

2.2.2 The Nyström Anchors

Our objective is to determine an r-dimensional subspace Ha of HZ and an orthonormal
basis a = (a1, . . . , ar)′ of Ha composed by the anchors. The space Ha should be defined
so that the embeddings of Y are well approximated by their orthogonal projections in
Ha. Note that when r = q, then Ha = HZ and it resumes to the determination of an
orthonormal basis of HZ.

The anchors are often defined as the r eigenfunctions associated to the r highest eigen-
values (λ̂Z

1 , . . . , λ̂
Z
r ) of the empirical kernel covariance operator Σ̂Z of Z. Recall that Σ̂Z
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is defined by:

Σ̂Z = 1
q

q∑
j=1

(
φ(Zj)− µ̂Z

)⊗2
,

where µ̂Z = q−1∑q
j=1 φ(Zj) is the empirical kernel mean embedding associated to Z.

According to the kernel trick of the previous chapter (Section 1.2.2), we know that for
i ∈ {1, . . . , r} the ith anchor is such that:

ai = 1√
qλ̂Z

i

uZ
i
′ΠqΦ(Z),

where uZ
i is the eigenvector of KZ = ΠqKZΠq associated to the eigenvalue λ̂Z

i and Πq =
Im − q−1Jq. We also have a matrix formulation for the vector of anchors a ∈ Hr:

a = 1
q
Λ̂Z
r

− 1
2 UZ

r
′ΠqΦ(Z),

where Λ̂Z
r = Diag(λ̂Z

1 , . . . , λ̂
Z
r ) ∈ Mr(R) and UZ

r = (uZ
1 , . . . , u

Z
r ) ∈ Mq,r(R) are the

diagonal matrix containing the r highest eigenvalues of Σ̂Z in decreasing order and the
matrix containing the r associated eigenvectors of KZ as its columns respectively.

In the case of two samples, the embeddings of each group may be better approximated
if the anchors are defined to be the orthonormal eigenfunctions associated to the r high-
est eigenvalues (λ̂Z

W,1, . . . , λ̂
Z
W,r) of the empirical within group covariance operator Σ̂Z

W of
(Z1,Z2) defined such that:

Σ̂Z
W = q1

q
Σ̂Z1 + q2

q
Σ̂Z2 ,

where for i ∈ {1, 2}, Σ̂Zi = q−1
i

∑qi
j=1

(
φ(Zi,j)− µ̂Zi

)⊗2
and µ̂Zi = q−1

i

∑qi
j=1 φ(Zi,j) are the

empirical kernel covariance operator and the empirical kernel mean embedding associated
to Zi respectively. We know from the diagonalization of the empirical within-group kernel
covariance operator of the previous chapter (Section 1.4.3, Equation (1.18)), that for
i ∈ {1, . . . , r}, the ith anchor is such that:

ai = 1√
qλ̂Z

W,i

uZ
W,i
′Πq

WΦ(Z),
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where Πq
W =

Πq1 0
0 Πq2

 and uZ
W,i is the eigenvector of KZ

W = Πq
WKZΠq

W associated

to the eigenvalue λ̂Z
W,i. Then the matrix formulation of the resulting vector of anchors

a ∈ Hr is such that:

a = 1
q

(
Λ̂

Z
W,r

)− 1
2 UZ

W,r
′Πq

WΦ(Z),

where Λ̂
Z
W,r = Diag(λ̂Z

W,1, . . . , λ̂
Z
W,r) ∈ Mr(R) and UZ

W,r = (uZ
W,1, . . . , u

Z
W,r) ∈ Mq,r(R) are

the diagonal matrix containing the r highest eigenvalues of Σ̂Z
W in decreasing order and

the matrix containing the r associated eigenvectors of KZ
W as its columns respectively.

Observe that in the two proposed definitions of the anchors, the vector a is defined with
respect to a r × q matrix, so that:

a = Ar Φ(Z) ∈ Hr, (2.1)

where Ar is either defined with respect to the diagonalization of Σ̂Z or Σ̂Z
W . As we

only consider anchors defined like this, we use the notation Ar ∈ Mr,q(R) as a generic
notation to write the anchors with respect to the landmarks as in Equation (2.1). Thus,
an orthogonal projector Πa on Ha = Span

(
a1, . . . , ar

)
has the following expressions:

Πa =
r∑
i=1

ai ⊗ ai = a′ a = (Ar Φ(Z))′(Ar Φ(Z)).

Moreover, as a1, . . . , ar ∈ H is an orthonormal set of functions, we have:

a a′ = (Ar Φ(Z))(Ar Φ(Z))′ = Ir.

For h ∈ H, we denote ha the orthogonal projection of h in Ha such that:

ha = Πah =
r∑
j=1
〈h, aj〉H aj.

For y ∈ Y , we denote φa(y) = Πaφ(y) = ∑r
j=1 〈φ(y), aj〉H aj the orthogonal projection of

φ(y) on Ha. In the context of the Nyström method, φa(y) is considered as the Nyström
approximation of φ(y). Then for i ∈ {1, 2}, the ni × r matrix of coordinates of the
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projected embeddings Φa(Yi) in Ha is such that:

Φ(Yi) a′ =
(
〈φ(Yi,j), aj′〉H

)
j∈{1,...,ni},j′∈{1,...,r}

∈Mni,r(R).

When we substitute a by its expression with respect to the landmarks Φ(Z), we obtain:

Φ(Yi) a′ =Φ(Yi)Φ(Z)′A′r
=KY,Z A′r,

where KYi,Z =
(
〈φ(Yi,j), φ(Zj′)〉H

)
j∈{1,...,ni},j′∈{1,...,q}

∈ Mni,q(R). Then, the vector of

approximated embeddings Φa(Yi) =
(
φa(Yi,1), . . . , φa(Yi,ni)

)
∈ Hni may be expressed in

matrix form as:

Φa(Yi) =Φ(Yi) a′ a = KYi,Z A′r Ar Φ(Z).

Then the vector containing the Nyström approximations of both groups is such that:

Φa(Y) = Φ(Y) a′ a = KY,Z A′r Ar Φ(Z),

where KY,Z =
KY1,Z

KY2,Z

 ∈ Mn,q(R). We also define KZ,Y = K′Y,Z. These two formula-

tions highlight that the Nyström approximations of the embeddings can be seen both as
linear combinations of the landmarks and linear combinations of the anchors.

2.2.3 Low-Rank Approximations of the MMD and the KFDA
Statistics

Let a = (a1, . . . , ar)′ ∈ Hr be an orthonormal set of r anchors defined with respect
to Z through a = Ar Φ(Z), where Ar ∈ Mr,q(R). Let Ha = Span(a1, . . . , ar) and
Πa : H → H the orthogonal projector on Ha such that Πa = a′ a = ∑r

i=1 ai ⊗ ai. Let
Φa(Y) = Φ(Y) a′ a = KY,Z A′r Ar Φ(Z) ∈ Hn the vector of Nyström approximations of
the embeddings.
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The Nyström MMD Statistic

The biased Nyström MMD statistic M̂MD
2
a is defined such that:

M̂MD
2
a = ‖µ̂a

1 − µ̂a
2‖

2
H ,

where for i ∈ {1, 2}, the Nyström approximations of the ith empirical kernel mean em-
bedding is such that µ̂a

i = n−1
i

∑ni
j=1 φa(Yi,j).

Lemma 1. The biased Nyström MMD statistic has the following expression:

M̂MD
2
a =ω′KY,Z A′r Ar KZ A′r Ar KZ,Yω, (2.2)

where ω = (n−1
1 1′n1 ,−n

−1
2 1′n2)′ ∈ Rn.

Proof. Observe that we have Φa(Y)′ω = µ̂a
1 − µ̂a

2, thus we deduce that:

M̂MD
2
a =ω′Φa(Y)Φa(Y)′ω

=ω′KY,Z A′r Ar Φ(Z)Φ(Z)′A′r Ar KZ,Yω

=ω′KY,Z A′r Ar KZ A′r Ar KZ,Yω.

Note that we also have Φ(Y)′ω = µ̂1 − µ̂2 and the biased MMD statistic can also be
computed as the matrix product:

M̂MD
2
b = ‖µ̂1 − µ̂2‖2

H

=ω′Φ(Y)Φ(Y)′ω
=ω′KYω.

Whereas this product seems simpler than the Nyström MMD statistic of Equation (2.2),
it necessitates exactly n2 + n operations. Oppositely, the Nyström MMD statistic is such
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that:

M̂MD
2
a =ω′KY,ZA′r Ar KZA′r Ar KZ,Yω.︸ ︷︷ ︸

q×n︸ ︷︷ ︸
+r×q︸ ︷︷ ︸

+q×r︸ ︷︷ ︸
+q2︸ ︷︷ ︸

+r×q︸ ︷︷ ︸
+q×r︸ ︷︷ ︸

+n×q︸ ︷︷ ︸
+n

Thus the Nyström MMD statistic necessitates exactly n + q(q + 2n + 4r) operations to
be computed, to which we have to add the O(q3) operations needed to determine a set of
orthonormal anchors defined as the eigenvectors of an operator of interest. We see that
the computation of the MMD statistic is quadratic in the number of observations n while
the computation of the Nyström MMD statistic is linear in the number of observations
n and cubic in the number of landmarks q (or quadratic if we ignore the determination
of the anchors). When q � n, the Nyström MMD statistic M̂MD

2
a is computationally

cheaper than the MMD statistic M̂MD.

Diagonalization of the Nyström Approximation of the Within-Group Covari-
ance Operator

To compute the Nyström truncated KFDA statistic, we need to diagonalize the Nyström
within-group covariance operator Σ̂a

W defined with respect to the Nyström approximations
of the embeddings, such that:

Σ̂a
W = 1

n

(
ΠWΦa(Y)

)′(
ΠWΦa(Y)

)
.

Lemma 2. The Nyström within-group covariance operator Σ̂a
W has the same spectrum

than the following matrix:

Ka
W = 1

n

(
Ar KZ,YΠW

)(
Ar KZ,YΠW

)′
∈Mr(R).

Moreover, if the columns of Ua =
(
ua

1, . . . , u
a
r

)
are an orthonormal set of eigenvectors of
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Ka
W associated to the eigenvalues λ̂a

1, . . . , λ̂
a
r, then fa =

(
a′ ua

1, . . . , a′ ua
r

)
is an orthonormal

set of eigenfunctions of Σ̂a
W .

Proof. We know from the previous chapter (Section 1.4.3) that the operator Σ̂a
W has the

same spectrum than the matrix K̃a
W ∈Mn(R) defined such that:

K̃a
W = 1

n

(
ΠWΦa(Y)

)(
ΠWΦa(Y)

)′
.

= 1
n

ΠWΦ(Y) a′ a a′︸︷︷︸
Ir

a Φ(Y)′ΠW

= 1
n

ΠWΦ(Y) a′ a Φ(Y)′ΠW

= 1
n

(
a Φ(Y)′ΠW

)′(
a Φ(Y)′ΠW

)
.

Then trivial matrix algebra shows us that this matrix has the same spectrum than the
matrix:

Ka
W = 1

n

(
a Φ(Y)′ΠW

)(
a Φ(Y)′ΠW

)′
= 1
n

(
Ar KZ,YΠW

)(
Ar KZ,YΠW

)′
∈Mr(R).

Thus the operator Σ̂a
W ∈ HS(H) and the matrix Ka

W ∈Mr(R) share the same spectrum.
Moreover, we deduce that Σ̂a

W has a maximal rank r that corresponds to the maximal
rank of an operator defined on Ha that has dimension r. We now determine the relation
between the eigenfunctions of Σ̂a

W and the eigenvectors of Ka
W . Let ua an eigenvector of

Ka
W associated to the eigenvalue λ̂a, we have:

Ka
Wu

a = λ̂aua.

As we have a a′ = Ir, we show that:

a a′Ka
W a a′ ua = λ̂a a a′ ua

⇔ 1
n

a
(

a′ a Φ(Y)′ΠW

)(
a′ a Φ(Y)′ΠW

)′
a′ ua = λ̂a a a′ ua

⇔ a Σ̂a
W a′ ua = λ̂a a a′ ua
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Then we multiply both sides of the equation by n−1
(

a′ a Φ(Y)′ΠW

)(
a Φ(Y)′ΠW

)′
:

1
n

(
a′ a Φ(Y)′ΠW

)(
a Φ(Y)′ΠW

)′
a Σ̂a

W a′ ua = λ̂a 1
n

(
a′ a Φ(Y)′ΠW

)(
a Φ(Y)′ΠW

)′
a a′ ua

⇔Σ̂a
W Σ̂a

W a′ ua = λ̂aΣ̂a
W a′ ua

We conclude by multiplying both sides of the equation on the left by the pseudo-inverse

Σ̂a
W
−1 =

r∑
t=1
λ̂a
t>0

1
λ̂a
t

(
f̂ a
t ⊗ f̂ a

t

)

of Σ̂a
W , where f̂ a

1 , . . . , f̂
a
r is an orthonormal set of eigenfunctions of Σ̂a

W associated to the
eigenvalues λ̂a

1, . . . , λ̂
a
r . We then conclude that:

Σ̂a
W a′ ua = λ̂a a′ ua.

Note that ‖a′ ua‖H = 1. Thus, if the columns of Ua =
(
ua

1, . . . , u
a
r

)
are an orthonormal set

of eigenvectors of Ka
W associated to the eigenvalues λ̂a

1, . . . , λ̂
a
r , then fa =

(
a′ ua

1, . . . , a′ ua
r

)
is an orthonormal set of eigenfunctions of Σ̂a

W .

The Nyström Truncated KFDA Statistic

To define the Nyström truncated KFDA statistic D̂a
T

2
for T ≤ r, we consider the sum

formulation of the truncated KFDA statistic of Equation (1.21):

D̂T

2 =
T∑
t=1

n1n2

nλ̂t

〈
f̂t, µ̂1 − µ̂2

〉2

H
,

where f̂1, . . . , f̂T are the orthonormal eigenfunctions of Σ̂W associated to the decreasing
eigenvalues λ̂1, . . . , λ̂T . The Nyström truncated KFDA statistic is obtained by substitut-
ing f̂1, . . . , f̂T and λ̂1, . . . , λ̂T by f̂ a

1 , . . . , f̂
a
T and λ̂a

1, . . . , λ̂
a
T respectively. Note that it is
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unnecessary to replace µ̂1 − µ̂2 by µ̂a
1 − µ̂a

2 as for t ∈ {1, . . . , T}, we have:
〈
f̂ a
t , µ̂1 − µ̂2

〉
H

=ua
t
′ a Φ(Y)′ω

=ua
t
′ a a′ a Φ(Y)′ω

=ua
t
′ a Φa(Y)′ω

=
〈
f̂ a
t , µ̂

a
1 − µ̂a

2

〉
H
.

This result is explained by the fact that it is equivalent to project µ̂1 − µ̂2 ∈ H onto Ha

to obtain µ̂a
1 − µ̂a

2 ∈ Ha, and then to project it on the axis supported by f̂t ∈ Ha, then to
directly project µ̂1 − µ̂2 ∈ H onto the same axis.

Lemma 3. The Nyström approximation of the truncated KFDA statistic is defined such
that:

D̂a
T

2
=

T∑
t=1

n1n2

nλ̂a
t

〈
f̂ a
t , µ̂1 − µ̂2

〉2

H
.

Moreover, we have the following kernel trick:

D̂a
T

2
=

T∑
t=1

n1n2

nλ̂a
t

(
ua
t ′Ar KZ,Yω

)2
.

Proof. We have:
〈
f̂ a, µ̂1 − µ̂2

〉
H

=ua
t ′ a Φ(Y)′ω

=ua
t ′Ar KZ,Yω.

Computational Cost of the Nyström Truncated KFDA Statistic

To determine the computational cost of the procedure, we need to determine both the
computational cost of determining Ka

W and of the test statistic. We find that the com-
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putation of Ka
W can be done for r(n2 + 2qn+ qr) = O(n2r) operations:

Σ̂a
W = 1

n
Ar KZ,YΠWKY,Z A′r .︸ ︷︷ ︸

nqr︸ ︷︷ ︸
+n2r︸ ︷︷ ︸

+qnr︸ ︷︷ ︸
+rqr

A similar approach shows that the computation of D̂a
T

2
may be done for T (nq+ r(q+ 1)),

that is linear in every parameter. We then add the cost of the determination of the
anchors (O(q3) operations) and the diagonalization of Ka

W ∈ Mr(R) (O(r3) operations),
to obtain the total cost of the procedure that is O(q3 + r3 + n2r). As r ≤ q, when
q � n, this procedure that is quadratic in the number of observations n is cheaper than
the computation of the truncated KFDA statistic D̂T

2 that is cubic in the number of
observations because the diagonalization of KW ∈Mn(R) necessitates O(n3) operations.

2.2.4 Data Simulations

Simulation Procedure

We aim at assessing the quality of the Chi-square approximation on the Nyström truncated
KFDA statistic by computing the empirical level of the testing procedure on simulated
data. We simulate couples of samples following the same Gaussian distribution. To
mimic a typical high-dimensional problem, we simulate data in a high dimensional space
of dimension d with only p < d informative features, so that the data actually lie in a
lower dimensional space than the ambiant space. We refer to d as the global dimension
and to p as the intrinsic dimension. To do so, we consider a distribution Pd,p such that:

Pd,p = N
 0p

0d−p

 ,
(1 + σ)Ip 0

0 σId−p

 ,
where (1 + σ)Ip represents the covariance of the data in the lower dimensional space and
σ ∈ R is an isotropic noise present in the whole space. Let (Y1

1,Y1
2), . . . , (YC

1 ,YC
2 ) be

C ≥ 1 couples of i.i.d samples of size n1 and n2 following the same distribution Pd,p with
n1 +n2 = n. The false positive rate or type I error rate for a given level α of an asymptotic
testing procedure based on a Nyström truncated KFDA statistic D̂a

T

2
for T ≥ 1 is obtained
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through the followin expression:

FPa
asymp(T,C) = 1

C

C∑
c=1

1
D̂a
T

2
(Yc

1,Y
c
2)>qχ2(T )(α)

,

where qχ2(T )(α) is the α quantile of the χ2(T ) distribution with T degrees of freedom.

For every simulation σ = 0.001, the two samples have the same number of observations
and we use the Gaussian kernel with median bandwidth. The level α is set to 5%

Results

We first assess the influence of n, d and p on the testing procedure with the non-
Nyström truncated KFDA test. The results are shown in Figure 2.10. We observe that
the quality of the asymptotic approximation increases when n increases. The results show
that the type I error rate depends on the truncation parameter choice. However, when the
truncation parameter is lower than the intrinsic dimension and the number of observations
is large enough, we observe that the test is well calibrated.

The False positive rate increases until T = p and then starts to decrease. Precisely, the
nominal level of α seems to be reached for truncation parameters close to the intrinsic
dimension (T ' p). Investigating the spectrum of the within-group covariance operator
shows that the eigenvalues of the within-group covariance associated to t > T are a few
orders smaller than the eigenvalues associated to t ≤ T , suggesting that eigendirections
associated to T ≥ p catch random noise and/or are difficult to estimate. Thus the change
in the type-I error rates when T reaches p is expected. We have no explanation for the
pattern observed with pics and falls after T ≥ p. We assume that it is highly related to
numerical precision issues as the associated eigenvalues are very close to zero. We observe
that the False Positive rate explodes when T is too large. This confirms that T should not
be chosen too large and that the number of observations should be large enough (hundreds
of cells), which is compatible with single-cell datasets.

Then, we compare the performances of randomly sampled landmarks with kmeans
centroids landmarks, using the same anchor definition for both. We compared the per-
formances to a reference standard truncated KFDA statistic. Interestingly, when T ≤ p,
the false positive rates of the two Nyström approximations are not differentiable from the
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standard truncated KFDA statistic. When T > p, a difference appears and the random
sampling seems to be slightly closer to the reference. It motivates the random sampling
choice as the default landmark choice in our package. The results are shown in Figure
2.11. Note that for the Nyström approximations, the number of anchors upper-bounds the
possible truncation parameters. We also studied the effect of the number of landmarks on
the test procedure. When the number of landmarks is large enough (≥ 200), using more
landmarks has negligeable effect on the test performances. The results are not shown.

To conclude this simulation studies, we compared the False Positive rates of the test-
ing procedure when the anchors are defined as the normalized eigenfunctions of the total
covariance of the landmarks with the procedure when the anchors are defined as the nor-
malized eigenfunctions of the within-group covariance of the landmarks. The results are
shown in Figure 2.12. It seems that the anchors definition has no effect when the intrinsic
dimension p is small. We observe that when p = 30, the anchors defined as the normalized
eigenfunctions of the within-group covariance of the landmarks, the performances of the
Nyström approximation are closer to the performance of the reference. It suggests that
the sub-space of the feature space defined by these landmarks is closer to the sub-space
spanned by the eigenfunctions of the empirical within-group covariance operator of the
observations that the Nyström procedure is approximating. Then we studied the effect of
the anchor definition and the number of anchors. According to the results in Figure 2.13,
increasing the number of anchors increases the test performances.

Finally, this simulation studies show that the truncation parameter should not be chosen
too large in general, and that the Nyström approximation is efficient and does not impact
the performances too much. Moreover, it suggests to randomly sample the landmarks
and to define the anchors as the eigenfunctions of the within-group covariance operator
of the landmarks for the Nyström KFDA procedure.

2.2.5 Discussion

Improvements on the Nyström Methods

An important part of the research on the Nyström approach is focused on improving
the choice of the landmarks. The greedy approaches select each new landmark in order
to minimize a criterion, typically an error, as in [133] and [105]. One may also draw the
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Figure 2.10: Asymptotic distribution-based empirical type-I error w.r.t. T for n ∈
{100, 500, 1000} (green, sky blue and deep blue respectively), d = 50 and p ∈ {5, 10, 30}.

Figure 2.11: Asymptotic distribution-based empirical type-I error w.r.t. T for the trun-
cated KFDA statistic and two Nyström approximations based on random sampled land-
marks and kmeans centroïds landmarks (black, blue, purple respectively). Simulations
are done for n = 2000 observations, q = 200 landmarks, r = 50 anchors and C = 6000
repetitions, d = 50 and p ∈ {5, 10, 30}.
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Figure 2.12: Asymptotic distribution-based empirical type-I error w.r.t. T for the trun-
cated KFDA statistic and two Nyström approximations based on within-group covariance
based anchors and total covariance base anchors (black, blue, purple respectively). Sim-
ulations are done for n = 2000 observations, q = 200 landmarks, r = 50 anchors and
C = 6000 repetitions, d = 50 and p ∈ {5, 10, 30}.

Figure 2.13: Asymptotic distribution-based empirical type-I error w.r.t. T for the trun-
cated KFDA statistic and three Nyström approximations based on different number of
anchors r ∈ {20, 50, 100}. Simulations are done for n = 2000 observations, q = 200
landmarks, r = 50 anchors and C = 6000 repetitions, d = 50 and p ∈ {5, 10, 30}.

landmarks according to a non-uniform distribution, in [35]. The distribution is based
on the column norms. This technique takes roots in general low-rank approximation of
matrices, hence it comes with bounds on the approximation error. When the observations
are clusterized, it may be efficient to choose the landmarks as the centroids of a k-means
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algorithm, as presented in [151] and improved in [103] with the k-means ++ algorithm.
The leverage score based approaches have guaranties in terms of error approximation and
statistical performances. These approaches take roots in the work of Mahoney and its
collaborators [35, 50, 3]. They were at first only theoretical, too expensive to be imple-
mented without strong hypotheses on K. The recursive algorithm proposed in [102] is
low-cost and still has good performances according to the authors. It recursively approx-
imate the sub-matrix by drawing approximatively half of the observations based on their
ridge leverage score.

2.3 Conclusion

The comparison framework implemented in our package ktest and exploiting kernel test-
ing shows promising results on several single-cell datasets and allows to detect the sub-
populations that explain a difference between two conditions. The implementation of the
Nyström method allows the analysis of large datasets. In the next Chapter, we propose
a generalized test adapted to complex designs that allows to generalize from pair-wise
comparisons to the global comparisons of several conditions.
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Chapter 3

GENERAL HYPOTHESIS TESTING IN THE

FEATURE SPACE

The KFDA framework may be applied to a wide variety of single-cell datasets in order to
perform two-sample testing and discriminant-wise data exploration. However, it suffers
from two main limitations. The first limitation is that it is restricted to two-sample
comparisons. For more than two samples, one should perform pair-wise or one versus all
analysis, and deal with multiple testing issues. This limitation has been overcome with a
generalized KFDA k-sample testing framework [15]. The second limitation occurs when
several explanatory variables may explain the data, and the others need to be "corrected"
when testing for the influence of one particular variable. For instance, it may be of interest
to compare more than two conditions, while taking into account other effects such as cell-
types, donor or batch-effect. This issue may not always be dealt with a k-sample approach,
as some explanatory variables may be non-categorical. In non-kernel contexts, these two
limitations are usually tackled by linear models. Linear models naturally connect with
the Fisher Discriminant Analysis because they both rely on the same quantities for simple
designs.

In this chapter, we propose a statistical framework to generalize the KFDA approach
to any general design. This framework is inspired from the multivariate linear model,
we call it the kernel linear model. We basically fit a linear model on the embeddings in
the feature space with respect to the explanatory factors. By doing so, the estimated
model parameters are functions of the feature space that represent the contribution of
each explanatory variable to the global kernel mean embedding of the observed sample.
Then the linear model allows to test for any linear combination of the model parameters
that are functions of the RKHS. Moreover, by stressing out the relation between the
KFDA framework and the kernel linear model, we generalize the concept of discriminant
directions to allow any hypothesis-based data exploration.
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The first section of this chapter introduces or recalls some notations (Section 3.1). The
second section introduces the kernel linear model as a generalization of the multivariate
linear model (Section 3.2). Then, hypothesis testing based on the kernel linear model
is introduced and we discuss some interpretations of the model (Section 3.3). We then
propose a data exploration tool inspired by the kernel Fisher Discriminant direction and
some diagnostic tools inspired from diagnostic tools on the multivariate linear model
(Section 3.4). The kernel tricks to compute every introduced quantity are gathered in the
next Section (Section 3.5), followed by some discussions (Section 3.6) and the proofs of
our theorems (Section 3.7).

3.1 Notations

Norms in Rn

Let a = (a1, . . . , an) ∈ Rn. The `1-norm ‖a‖1 and the euclidian norm ‖a‖ of a are such
that:

‖a‖1 =
n∑
i=1
|ai|,

‖a‖ =
(

n∑
i=1

a2
i

) 1
2

.

Hilbert-Schmidt Operators

To introduce the mathematical concepts we use in this chapter, we follow Section 2.1
The Hilbert space of Hilbert-Schmidt operators from [22]. Let H be a separable Hilbert
space provided with an inner product 〈·, ·〉H and the associated norm ‖·‖H. Let (es)s≥1

be an orthonormal basis of H. A Hilbert-Schmidt operator L from H to H is such that:
∑
s≥1
‖Les‖2

H < +∞.

The sum is independant from the orthonormal basis. The Hilbert-Schmidt operators form
a separable Hilbert space HS(H) endowed with the inner product 〈·, ·〉HS(H) such that for
L,N ∈ HS(H), we have:

〈L,N〉HS(H) =
∑
s≥1
〈Les, Nes〉H .
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Hilbert-Schmidt operators are compact and have countable spectra. Every non-zero eigen-
value of a Hilbert-Schmidt operator is associated to an eigenspace of finite dimension. An
operator L is called trace-class if ∑s≥1 〈es, Les〉H is a convergent series. The sum is inde-
pendant from the orthonormal basis and is called trace of L. For a self-adjoint operator,
we have tr(L) = ∑

s≥1 λs(L). Note that if L,N ∈ HS(H), then the trace of their compo-
sition is equal to their inner product:

tr(LN) = 〈L,N〉HS(H) . (3.1)

We use the notation tr to refer to traces of trace-class operators from H to H and trace
to refer to traces of matrices. If f, g ∈ H are non-zero, the tensor product f ⊗ g defines
a rank one Hilbert-Schmidt operator. For h ∈ H, we have:

(
f ⊗ g

)
h = 〈g, h〉H f.

We have the following identities:

‖f ⊗ g‖HS(H) = ‖f‖H ‖g‖H , (3.2)

〈L, f ⊗ g〉HS(H) = 〈f, Lg〉H . (3.3)

Elements of Hn

Let f = (f1, . . . , fn) ∈ Hn, we define a norm on Hn by:

‖f‖Hn =
(

n∑
i=1
‖fi‖2

H

) 1
2

.

If a = (a1, . . . , an) ∈ Rn and f = (f1, . . . , fn) ∈ Hn, then f � a ∈ H stands for the linear
combination of the elements of f with weights a:

f � a =
n∑
i=1

aifi ∈ H.
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Then we can use the triangular inequality to immediatly get:

‖f � a‖H ≤ ‖a‖1 max
i∈{1,...,n}

‖fi‖H (3.4)

Let B = (b1, . . . , bp)′ ∈ Mp,n(R) a p × n matrix and bj ∈ Rn is the jth row of B. We
classically consider B as the matrix of the linear operator from Rn to Rp. Here, B is also
used to represent the operator from Hn to Hp, such that:

Bf =


f � b1

...
f � bp

 =


∑n
i=1 b1,ifi

...∑n
i=1 bp,ifi

 ∈ Hp.

By an abuse of notation, if B is an n×n matrix, we denote by f ′Bf the Hilbert-Schmidt
operator defined such that:

f ′Bf =
n∑
i=1

fi ⊗ (f � bi) ∈ HS(H). (3.5)

The operator f ′Bf is a Hilbert-Schmidt operator as a linear combination of rank one
operators fi ⊗ fj:

f ′Bf =
n∑

i,j=1
bi,jfi ⊗ fj.

3.2 The kernel Linear Model: a Linear Model in the
Feature Space

In this section, we introduce a kernel generalization of the multivariate linear model
and propose to perform kernel-based hypothesis testing on this model. Before introducing
our model, we recall some generalities on the classical multivariate linear model.

Let Y = (Y1, . . . , Yn) a set of n observations from a measurable space (Y ,Y). Each Yi
is associated to a set of p explanatory variables xi = (xi,1, . . . , xi,p)′ ∈ Rp, i ∈ {1, . . . , n}.
We define the design matrix as X = (x1, . . . , xn)′ ∈ Mn,p(R). We assume that X is full
rank, i.e. dim(Im(X)) = p. We consider the case where the explanatory variables are
deterministic and the observations are random and follow a probability distribution P.
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3.2.1 The Multivariate Linear Model

We adopt the definitions proposed in [104] for the classical multivariate linear model.
Assume that Y = Rm with m ≥ 1. We denote by Y 1, . . . , Y m in Rn the response variables
such that Y = (Y1, . . . , Yn)′ = (Y 1, . . . , Y m) ∈Mn,m(R).

Definition of the Multivariate Linear Model

The multivariate linear model is a general approach to quantify the influence of the
explanatory variables on the response variables. For i ∈ {1, . . . , n}, the multivariate
linear model is defined by:

Yi = xi,1β1 + · · ·+ xi,pβp + εi ∈ Rm,

where β1, . . . , βp ∈ Rm are the model parameters and εi is the error of the model. The
errors ε1, . . . , εn ∈ Rm are supposed to be n i.i.d. random variables with null expectations
Eε1 = 0Rm and covariance matrix Cov(ε1) = Σε ∈ Mm(R). The model parameters
β1, . . . , βp and the error covariance matrix Σε are unknown and need to be inferred. Let
β = (β1, . . . , βp)′ ∈ Mp,m(R) and ε = (ε1, . . . , εn)′ ∈ Mn,m(R), then the model can be
expressed in matrix form as:

Y = Xβ + ε. (3.6)

An usual convention is to set the first column X1 of X as 1Rn , the vector full of ones.
This explanatory variable is then called the trivial predictor and it is associated to the
model parameter β0. The multivariate linear model is a general framework that englobes
different models. In models with a trivial predictor, if m = 1 and p = 2, the model
belongs to the simple linear models. If m = 1 and p ≥ 3, the model belongs to the
multiple linear models. When m ≥ 2 and p ≥ 2, the model belongs to the multivariate
linear models. If all the explanatory variables are categorical variables, the model is an
ANalysis Of Variance (ANOVA) model when m = 1 and a Multivariate ANalysis Of
Variance (MANOVA) otherwise. The models are summarized in Table 3.2.1.
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Inference of the Model Parameters of the Multivariate Linear Model

We infer the model parameters β1, . . . , βp by fitting m independent multiple linear
models with a least square estimator. Let β1, . . . , βm in Rp and ε1, . . . , εm in Rn such that
β = (β1, . . . , βm) and ε = (ε1, . . . , εm). Let s ∈ {1, . . . ,m}, the sth multiple linear model
is such that:

Y s = Xβs + εs.

The least square estimator β̂s is the vector of Rp that minimizes the Mean Square Error:

β̂s = argmin
βs

‖Y s −Xβs‖2
2 .

If X is assumed to be full rank, the gradient of the MSE is equal to zero when:

β̂s = (X′X)−1X′Y s ∈ Rp.

By aggregating the m estimated parameters, we obtain β̂ the least square estimator of β:

β̂ = (X′X)−1X′Y ∈Mp,m(R).

Let j ∈ {1, . . . , p} and let wj = (wj,1, . . . , wj,n)′ ∈ Rn be the jth column of X(X′X)−1.
We have β̂j = Y′wj. The predicted responses are such that:

Ŷ = Xβ̂ ∈Mn,m(R).

We define Π = X(X′X)−1X′ : Rn → Rn, the matrix of the orthogonal projection on
Im(X) ⊂ Rn. For i ∈ {1, . . . , n}, πi = (πi,1, . . . , πi,n)′ is the ith column of Π. We have
Ŷ = ΠY and Ŷi = Y′πi ∈ Rm. The residual matrix is such that:

ε̂ = Y − Ŷ ∈Mn,m(R).

Then we determine the empirical covariance matrix:

Σ̂ε = 1
n
ε̂′ε̂ ∈Mm(R).
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any explanatory variables categorical explanatory variables only
p = 2 p > 2 p = 2 p = 3 p ≥ 2

m = 1 simple linear model multiple linear model One-way ANOVA Two-way ANOVA ANOVA
m ≥ 2 multivariate linear model One-way MANOVA Two-way MANOVA MANOVA

Table 3.1: Summary of the different linear models.

3.2.2 The Kernel Linear Model

Now we propose a kernel generalization of the multivariate linear model for the relation
between the embeddings φ(Yi) and the corresponding vector of explanatory variables xi,
in order to perform hypothesis testing in this model. We call this model the kernel linear
model.

Let k(·, ·) : Y ×Y → R a positive definite kernel associated to the Reproducing Kernel
Hilbert Space (RKHS) H. For i ∈ {1, . . . , n}, φ(Yi) = k(Yi, ·) is the embedding of
Yi in H. The vector of Hn containing the embeddings of the observations is denoted
Φ(Y) = (φ(Y1), . . . , φ(Yn)).

Definition of the Kernel Linear Model

Let Θ = (θ1, . . . , θp) in Hp the model coefficients and ε = (ε1, . . . , εn) in Hn a set of n
i.i.d. random elements of H called errors. We assume that the errors have null expecta-
tions E(ε1) = 0H and Hilbert-Schmidt covariance operator Cov(ε1) = Σε ∈ HS(H). For
i ∈ {1, . . . , n}, the kernel linear model on φ(Yi) is such that:

φ(Yi) = Θ� xi + εi.

The kernel linear model can also be written in matrix form as:

Φ(Y) = XΘ + ε. (3.7)

This model can be interpreted as a multivariate linear model of infinite dimension. The
main difference with the multivariate linear model is that the explanatory variables are
used to explain the embeddings of the observations instead of the observations. Moreover,
the errors and the model parameters are elements of H. With this model, the kernel mean
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embedding of the probability distribution underlying the data is expressed with respect
to the explanatory variables, as we have E

(
Φ(Y)

)
= XΘ.

The feature space is a function space. Thus the kernel linear model is actually a
functional linear model. Precisely, it belongs to the class of functional response models,
that refers to the regression of functional responses with scalar explanatory variables and
functional model parameters [65]. Our approach is nevertheless original as we restrict
to functions of the feature space, and the observed functions are only convenient repre-
sentations of our vectorial observations due to the RKHS embedding. The motivation to
define this kernel linear model is that it allows to generalize the kernel two-sample tests in
more general designs. We aim at performing hypothesis testing on the model parameters
associated to the explanatory variables. Most situations we have in mind are models with
categorical explanatory variables only. However, we develop the theoretical aspects of
our asymptotic testing framework for general designs, allowing to test for the influence of
non-categorical explanatory variables.

Inference of the Model Parameters of the Kernel Linear Model

As in the multivariate linear model, the estimation of the model parameters θ1, . . . , θp

is done through coordinate-wise least square estimation. To do so, we consider (es)s≥1

an orthonormal basis of H. Let s ≥ 1, for h ∈ H, we define hs = 〈h, es〉H such that
h = ∑

s≥1 h
ses. We obtain a multiple linear model by projecting the kernel linear model

(3.7) onto span(es):

Φ(Y)s = XΘs + εs,

where Φ(Y)s = (φ(Y1)s, . . . , φ(Yn)s)′ ∈ Rn, Θs = (θs1, . . . , θsp)′ ∈ Rp and εs =
(εs1, . . . , εsn)′ ∈ Rn. As X is assumed to be full rank, the least square estimator of the
model parameters of this multiple linear model is such that:

Θ̂s = (X′X)−1X′Φ(Y)s.
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Note that for j ∈ {1, . . . , p}, θ̂j = ∑
s≥1 θ̂

s
jes. Then the least square estimator of Θ ∈ Hp

is given by:

Θ̂ = (X′X)−1X′Φ(Y). (3.8)

If wj = (wj,1, . . . , wj,n)′ ∈ Rn is the jth column of X(X′X)−1 ∈ Mn,p(R), then θ̂j =
Φ(Y)� wj. We have Θ̂ = (θ̂1, . . . , θ̂p) in Hp. We can use Θ̂ to predict Φ(Y):

Φ̂(Y) = XΘ̂.

Now we consider Π = X(X′X)−1X′ the matrix of the orthogonal projection on the image
space of X denoted Im(X), also seen as an operator from Hn to Hn. We have Φ̂(Y) =
ΠΦ(Y) and φ̂(Yi) = Φ(Y) � πi. The design X is full rank, meaning that rank(X) = p,
let (v1, . . . , vp) be the p eigenvectors of Π such that:

Π =
p∑
s=1

vsv
′
s. (3.9)

The vector of residuals is defined by:

ε̂ = Φ(Y)− Φ̂(Y).

We denote by In the identity matrix of Rn, let Π⊥ = (In−Π) be the matrix of the orthog-
onal projection on Im(X)⊥ ⊂ Rn. For i ∈ {1, . . . , n}, we denote by π⊥i = (π⊥i,1, . . . , π⊥i,n)′ ∈
Rn its ith column and we have that ε̂i = Φ(Y)� π⊥i , summarized in:

ε̂ = Π⊥Φ(Y).

The residual covariance operator is defined such that:

Σ̂ε = 1
n

n∑
i=1

ε̂i ⊗ ε̂i.

Note that in the case of a kernel function k(·, ·) associated to an infinite dimensional
RKHS, the objects of H and HS(H) discussed here are not tractable. These are only
defined theoretically and their expressions will be used further in this chapter to compute
quantities of interest thanks to kernel tricks.

111



Partie , Chapter 3 – General Hypothesis Testing in the Feature Space

3.3 Testing Hypotheses

3.3.1 Testing Hypotheses on the Multivariate Linear Model

Let’s go back to the multivariate linear model of Equation (3.6):

Y = Xβ + ε.

Our objective is to perform hypothesis testing on the model parameters β1, . . . , βp. A gen-
eral way to formulate the hypothesis test is to consider a surjective matrix L ∈ML,p(R)
such that the null and alternative hypotheses are:

H0 : Lβ = 0RL , and H1 : Lβ 6= 0RL .

It is usual to start by testing a model, i.e. choosing L ∈ Rp such that the hypotheses are:

H0 : E(Y) = µ and H1 : E(Y) = Xβ.

Then, if a the null hypothesis is rejected, we can test a contrast on the model parameters
on the centered data by choosing a vector L ∈ Rp such that L1p = 0.

Definition of Several Test Statistics

There are several common tests for this kind of hypothesis, and most of them are defined
with respect to the two matrices ofMm(R) (see [104]):

ĤL =(Lβ̂)′(L(X′X)−1L′)−1(Lβ̂)

Σ̂ε = 1
n

n∑
i=1

ε̂iε̂
′
i.

The matrix ĤL can be interpreted as the norm of Lβ̂ normalized with respect to the
design, that is the variance it would have if the covariance matrix of the error was identity.
The matrix nΣ̂ε ∈ Mp(R) is called the residual sum of squares and it quantifies the
empirical variance of the errors. These are different ways to take the observed residual
covariance into account in the computation of the norm of the normalized Lβ̂. This leads
to four popular hypothesis tests:
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- The Roy’s test statistic: Roy(L) = max
v∈Rm,‖v‖2=1

∥∥∥n−1Σ̂−1
ε ĤLv

∥∥∥
2
.

- The Wilk’s Lambda statistic: Λ(L) = |(ĤL + nΣ̂ε)−1ĤL|.

- The Pillai’s trace statistic: Pillai(L) = trace((ĤL + nΣ̂ε)−1ĤL).

- The Hotelling-Lawley trace statistic: F(L) = trace(n−1Σ̂−1
ε ĤL).

Asymptotic Distribution of the Hotelling-Lawley Trace Statistic

When the errors are assumed to follow a Gaussian distribution, these statistics have
different χ2 distributions. These results are considered as robust since they hold asymp-
totically when the Gaussian assumption is relaxed. Here is a set of relaxed hypotheses
used to prove the asymptotic distribution of the Hotelling-Lawley trace statistic, see for
instance Theorems 12.7 and 12.8 in [104]:

B1 The i.i.d. errors of the model ε1, . . . , εn have a fourth order moment: E ‖ε1‖4 < +∞.

B2 We have maxi πi,i −→
n→∞

0, where for i ∈ {1, . . . , n}, πi,i is the ith diagonal element of
Π = X(X′X)−1X′.

B3 The sampling gives a convergent design: n(X′X)−1 →
n→∞

W ∈ Rp×p.

The asymptotic distribution of the Hotelling-Lawley trace statistic is given by the fol-
lowing theorem.

Theorem 10 (Theorem 12.8 from [104]). Under Assumptions B1, B2 and B3, if H0 is
true, then the Hotelling-Lawley trace statistic asymptotically follows a χ2 distribution
with L ×m degrees of freedom:

nF(L) D−→
n→∞

χ2
Lm

We choose to focus on the Hotelling-Lawley trace statistic for its connections with
the Kernel Fisher Discriminant Analysis developed in Chapter 2, but similar results exist
for the other test statistics in the multivariate setting and could be generalized to our
kernelized linear model, see [104] and references cited therein.
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3.3.2 Testing Hypotheses on the Kernelized Linear Model

The main contribution of this chapter is to generalize the Hotelling-Lawley trace statis-
tic in the feature space. To do so, we define hypotheses on the model parameters of
the kernel linear model and use the definition of the trace of Hilbert-Schmidt operators
to define a kernel Hotelling-Lawley trace statistic. Then we determine the asymptotic
distribution of a truncated regularization of this statistic.

Definition of the Truncated Kernel Hotelling-Lawley Trace Statistic

Let L = (l`,j)`∈{1,...,L},j∈{1,...,p} ∈ RL×p a surjective matrix such that each line encodes a
linear combination of (θ1, . . . , θp) to be tested. We can formulate the null and alternative
hypotheses as:

H0 : LΘ = 0 vs. H1 : LΘ 6= 0.

We can generalize the Hotelling-Lawley trace statistic with a kernel Hotelling-Lawley
trace statistic:

F = tr(n−1Σ̂−1
ε ĤL),

where ĤL = (LΘ̂)′(L(X′X)−1L′)−1(LΘ̂) ∈ HS(H) is referred as the test operator in the
following. However, the residual covariance operator Σ̂ε may be singular and its inverse
may not exist. To deal with this issue, we propose a truncated kernel Hotelling-Lawley
trace statistic, inspired from the truncated Kernel Fisher Discriminant Analysis (KFDA)
test statistic proposed by Harchaoui and coauthors for two-samples testing [62]. Let Σ̂ε,T

be the spectral truncation of Σ̂ε, defined by:

Σ̂ε,T =
T∑
t=1

λ̂t
(
f̂t ⊗ f̂t

)
, (3.10)

where (λ̂t)t≥1 are the eigenvalues of Σ̂ε in non-increasing order and (f̂t)t≥1 are the associ-
ated eigenfunctions in H. The pseudo-inverse of Σ̂ε,T is defined such that:

Σ̂−1
ε,T =

T∑
t=1
λ̂t>0

1
λ̂t

(
f̂t ⊗ f̂t

)
.
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Then the truncated kernel Hotelling-Lawley trace statistic is such that:

FT = tr(n−1Σ̂−1
ε,T ĤL),

There also exists a ridge regularization of the KFDA test statistic [64], thus we could
also study a ridge regularized kernel Hotelling-Lawley trace statistic. Here we focus
on the spectral truncation regularization because it has the main advantage of having a
tractable χ2 asymptotic distribution and the geometric interpretation of the eigenfunctions
of Σ̂−1

ε,T ĤL are useful to develop data exploration tools.

Asymptotic Distribution of the Truncated Kernel Hotelling-Lawley Trace
Statistic

As for the Hotelling-Lawley trace statistic, the truncated kernel Hotelling-Lawley trace
statistic has a χ2 asymptotic distribution. To establish this result, we make the following
assumptions:

A1 The kernel is bounded: ‖k(·, ·)‖∞ = Mk < +∞.

A2 There existMx ∈ R such that for all n ≥ 1, the design matrix X = X(n) ∈Mn,p(R)
is such that ‖X‖∞ ≤Mx, where:

‖X‖∞ = sup
i∈{1,...,n}
j∈{1,...,p}

|xi,j|.

A3 There exist Mπ ∈ R such that for all n ≥ p, the vectors v1, . . . , vp ∈ Rn of an
orthonormal basis of Im(X) are such that:

sup
s∈{1,...,p}
i∈{1,...,n}

|vs,i| ≤Mπ/
√
n.

A4 The sampling gives a convergent design: n(X′X)−1 →
n→∞

W ∈ Rp×p.

The assumptions are discussed after the asymptotic result:

Theorem 11. Under Assumptions A1, A2, A3 and A4, if H0 is true and λT > 0, then:

nFT
D−→

n→∞
χ2
LT .
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The advantage of this asymptotic distribution is that it is tractable and computation
free. Thus performing hypothesis testing on the kernel linear model resumes to being
able to compute the statistic. The computation of the statistic is detailed in the section
dedicated to the kernel trick.

Note that the asymptotic distribution of the Hotelling-Lawley trace statistic derived
from a multivariate linear model on m-dimensional observations follows a χ2 distribution
with L×m degrees of freedom. Then the truncated kernel Hotelling-Lawley trace statistic
that follows a χ2 distribution with L×T degrees of freedom seems to have the asymptotic
distribution of the Hotelling-Lawley trace statistic from a T -dimensional problem. Indeed,
using the truncated residual covariance in the statistic is equivalent to projecting the data
in a random subspace of H of dimension T in order to perform the analysis. This property
is one of the key points on which the proof is based.

Sketch of the proof. We define an alternative Hotelling-Lawley trace with the "true" er-
ror covariance operator Σε instead of Σ̂ε, such that F̃T = tr(Σ−1

ε,T ĤL), where Σ−1
ε,T =∑T

t=1 λ
−1
t

(
ft ⊗ ft

)
is well defined by assumption that λT > 0. We have:

|FT − F̃T | =
∣∣∣∣tr( 1

n

(
Σ̂−1
ε,T − Σ−1

ε,T

)
ĤL

)∣∣∣∣
=
∣∣∣∣∣
〈(

Σ̂−1
ε,T − Σ−1

ε,T

)
,

1
n
ĤL

〉
HS(H)

∣∣∣∣∣
≤
∥∥∥Σ̂−1

ε,T − Σ−1
ε,T

∥∥∥
HS(H)

∥∥∥∥ 1
n
ĤL

∥∥∥∥
HS(H)

,

where we used the linearity of the trace, Equation (3.1) and the Cauchy-Schwarz in-
equality. Then, in Proposition 3, we adapt the proofs of [128] and [154] by applying a
bounded differences theorem to

∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

that outputs an exponential bound under
Assumptions A1, A2 and A3. Then we make use of results from operator perturbation the-
ory developed in [154] to derive an exponential bound on

∥∥∥Σ̂−1
ε,T − Σ−1

ε,T

∥∥∥
HS(H)

in Lemma
11. As Lemma 9 shows that n−1ĤL is bounded under Assumptions A1 and A2, we can
conclude that FT P−→ F̃T . We now need to derive the asymptotic distribution of F̃T . The
derivation of the asymptotic distribution of F̃T under Assumptions A1, A2, A3 and A4 is
detailed in Lemma 10, where we show that it reduces to a standard Lawley-Hotelling test
in RT . We then invoke a result from the literature (see for instance Theorem 12.8 from
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[104]) to obtain its asymptotic distribution:

nF̃T
D−→

n→∞
χ2
LT .

About Assumption A1 The proof of Theorem 11 essentially relies on the convergence
in probability of Σ̂ε towards Σε. We prove this convergence through a bounded difference
theorem, adapting the approach of [128] and [154] on the covariance operator appearing
in the Kernel Principal Component Analysis (KPCA) to the residual covariance operator.
Assumption A1 is a strong but standard hypothesis for this type of result. We need this
assumption to show that the errors are bounded and that their fourth order moment is
finite.

About Assumption A2 The covariance operator of the KPCA may be considered as
a special case of the residual covariance operator. It is the residual covariance operator
obtained for a kernel linear model with a design reduced to the trivial explanatory variable
only X = 1n, we call this model the KPCA linear model. For this model, the errors can
be expressed explicitely with respect to the embeddings, thus Assumption A1 is sufficient
to obtain that the errors are bounded and that their fourth order moment is finite. How-
ever, in more general models, the errors also depend on the design X and on the model
parameters θ1, . . . , θp. For our general models, Assumption A2 is used in addition to A1 to
obtain a bound on the errors and to show that their fourth moment is finite, as detailed
in Lemma 4. Note that the fourth moment of the errors are also assumed to be finite in
the linear Hotelling-Lawley test (Assumption B1) as it is used in Theorem 10. Thus, we
do not need to reformulate this assumption under Assumptions A1 and A2.

About Assumption A3 The orthogonal projector Π associated to the KPCA lin-
ear model is Π = n−1Jn, where Jn ∈ Mn(R) is the matrix full of ones. This pro-
jector is characterized by its only norm 1 eigenvector v = n−

1
21 which is such that

∀i ∈ {1, . . . , n}, vi = n−
1
2 −→

n→∞
0. This convergence is explicit and it is used by the

authors of [22] to prove the convergence of the empirical kernel covariance operator to-
ward its population counterpart in the context of the KPCA. For a kernel linear model
more complex than the KPCA linear model, we propose Assumption A3 as a possible
generalization of the convergence property of the associated orthogonal projector. This
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property is trivially verified for simple models such as the design matrix associated to
a m-samples problem. Indeed, let X be the design matrix of a m-sample problem with
asymptotically balanced effectives n1, . . . , nm such that:

X = (w1, . . . , wm) =



1 0 . . . 0
... ... . . .

...
1 0 . . . 0
0 1 . . . 0
... ... . . .

...
0 1 . . . 0
0 0 . . . 1
... ... . . .

...
0 0 . . . 1



∈Mn,m(R).

Then for s ∈ {1, . . . ,m}, the vector vs = ‖ws‖−1ws = n
− 1

2
s ws is an eigenvector of the

orthogonal projector associated to X and we have for i ∈ {1, . . . , n} that vs,i −→
n→∞

0.
Assumption A3 is stronger than Assumption B2 used to derive the asymptotic distribution
of the linear Hotelling-Lawley statistic. We show how to derive Assumption B2 from
Assumption A3 in Lemma 5.

About Assumption A4 Assumption A4 is exactly the same than Assumption B3.

About simplifying Assumption A2 and A3 We propose the following assumption:

A2′ There exists Mx ∈ R such that for all n ≥ 1, X = X(n) ∈ Mn,p(R) is such that
‖X‖∞ ≤

Mx√
n
.

This assumption can not replace assumption A2 and A3 in general. However, it can replace
them when the columns of X have norm 1. First, note that A2 is a direct consequence of A′2.
Then, we show that an orthonormal basis (v1, . . . , vp) of Im(X) obtained through a Gram-
Schmidt orthogonalization of the columns of X verifies A3. Consider that the columns of
X are ordered so that the first p columns (x1, . . . , xp) form a free set of vectors. The
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Gram-Scmidt orthonormal basis (v1, . . . , vp) obtained from them is defined by:

v1 =x1,

for s ∈ {1, . . . , p− 1}, vs+1 =xs+1 +
s∑
j=1
〈xs+1, vj〉 vj.

Assumption A3 is verified for v1 as for i ∈ {1, . . . , n}, we have |v1,i| = |x1,i| ≤ Mx/
√
n.

Then, if for s ∈ {1, . . . , p− 1} and i ∈ {1, . . . , n}, we have |vs,i| ≤ 2s−1Mx/
√
n, we deduce

that:

|vs+1,i| =
∣∣∣∣∣∣xs+1,i +

s∑
j=1
〈xs+1, vj〉 vj,i

∣∣∣∣∣∣
≤|xs+1,i|+

s∑
j=1
‖vs‖ ‖xs+1,j‖ |vj,i|

≤Mx√
n

1 +
s∑
j=1

2s−1


≤Mx√

n
2s

By induction, we conclude that for s ∈ {1, . . . , p} and i ∈ {1, . . . , n}:

|vs,i| ≤
2s−1Mx√

n
≤ 2p−1Mx√

n

Then, we obtain Assumption A3:

sup
s∈{1,...,p}
i∈{1,...,n}

|vs,i| ≤
2p−1Mx√

n
.

3.3.3 Interpretations of the Model

Application to the Two-Ways MANOVA

A typical application of our kernel linear model would be a model with two additive
effects, called two-way MANOVA Here is an example.

Consider a single-cell experiment where we expose cells to Treatment 1, Treatment 2
and Control (3). Each cell comes from patient 1 and patient 2, Let Yi,j,k be the measure of
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the kth cell of patient j treated with treatment i. A possible kernel linear model associated
to this experiment could be:

φ(Yi,j,k) = θ0 + θtreatment i + θpatient j + εi,j,k,

where θ0 is the trivial predictor, θtreatment 1, θtreatment 2, θtreatment 3 ∈ H are associ-
ated to treatment 1, treatment 2 and control 3 respectively, and θpatient 1, θpatient 2

stand for the effects of patients 1 and 2 respectively. The model parameter Θ =
(θ0, θtreatment 1, θtreatment 2, θtreatment 3, θpatient 1, θpatient 2) ∈ H6. A vector of explanatory
variables xi,j,k ∈ R6 associated to an observation Yi,j,k from Patient 1 treated with
Treatment 2 would be (1, 1, 0, 0, 1, 0). For instance, in the example discussed above
with three treatments and two patients, the vector of model parameters was Θ =
(θ0, θtreatment 1, θtreatment 2, θtreatment 3, θpatient 1, θpatient 2) ∈ H6. A matrix L that would test
if there is a difference between the treatments would be such that:

L =
0 1 0 −1 0 0

0 0 1 −1 0 0

 .
This matrix encodes for the hypotheses:

H0 : θtreatment 1 = θtreatment 2 = θtreatment 3 vs. H1 : ∃i, i′ ∈ {1, 2, 3}, θtreatment i 6= θtreatment i′ .

Explicitly, the first line of L encodes for the discrimination between Treatment 1 and
Control, and the second line encodes for the discrimination between Treatment 2 and
Control.

Links with the KFDA Test Statistic for the Two-Sample Test

Consider the setting of Chapter 2. We consider the measures of n1 observations Y1 =
(Y1,1, . . . , Y1,n1) from condition 1 and n2 observations Y2 = (Y2,1, . . . , Y2,n2) from condition
2, with n1+n2 = n. We associate each observation Yi,j to a vector of explanatory variables
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xi,j = (xi,j,1, xi,j,2)′ ∈ R2 defined such that:

xi,j =



(1
0

)
if i = 1

(0
1

)
otherwise.

We have Y = (Y1,Y2) = (Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2) in Yn and X =
(x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2) ∈Mn,2(R). More specifically, we have:

X =
1n1 0n1

0n2 1n2

 ,
where 1n ∈ Rn is the vector full of 1 and 0n ∈ Rn is the vector full of zeros. For i ∈ {1, 2}
and j ∈ {1, . . . , ni}, the linear model on the embedded observation φ(Yi,j) is such that:

φ(Yi,j) = xi,j,1θ1 + xi,j,2θ2 + εi,j,

where εi,j is the jth error of condition i. The errors are assumed to be i.i.d. with Eε1,1 = 0
and Cov(ε1,1) = Σε. Let Θ = (θ1, θ2) in H2 and ε = (ε1,1, . . . , ε1,n1 , ε2,1, . . . , ε2,n2) in Hn,
the model in matrix form is such that:

Φ(Y) = XΘ + ε.

Note that for i ∈ {1, 2}, the model gives for j ∈ {1, . . . , ni}, Eφ(Y1,j) = θi. Thus θi
is actually the kernel mean embedding of the distribution underlying the observations
in Yi. The least square estimator of Θ is Θ̂ = (X′X)−1X′Φ(Y). It can be computed
explicitely and we obtain θ̂1 = n−1

1
∑n1
j=1 φ(Y1,j) and θ̂2 = n−1

2
∑n2
j=1 φ(Y2,j). We recognize

the empirical kernel mean embeddings associated to Y1 and Y2 respectively. The pre-
dicted observation are φ̂(Yi,j) = θ̂i and the residuals are ε̂i,j = φ(Yi,j) − θ̂i. The residual
covariance operator is then equal to:

Σ̂ε =n1

n
Σ̂1 + n2

n
Σ̂2,

where Σ̂i = n−1
i

∑ni
j=1(φ(Yi,j) − θ̂i)⊗2 for i ∈ {1, 2}. If we define L = (−1, 1) ∈ M1,2(R),

then the hypotheses H0 : LΘ = 0 and H1 : LΘ 6= 0 resumes to hypotheses H0 : θ1 = θ2
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and H1 : θ1 6= θ2. Then the test operator ĤL is such that:

ĤL =n1n2

n
(θ̂2 − θ̂1)⊗2.

Note that we recognize the within-group covariance operator and the between group
covariance operator defined in chapter 2 for the two sample case in Σ̂ε and n−1ĤL respec-
tively. Finally, the spectral regularization of the Hotelling-Lawley test statistic associated
to this hypothesis is such that:

FT = tr( 1
n

Σ−1
ε,T ĤL)

= 1
n

〈
Σ−1
ε,T , ĤL

〉
HS(H)

=n1n2

n2

〈
Σ−1
ε,T , (θ̂2 − θ̂1)⊗2

〉
HS(H)

.

Then we apply Equation (3.3) and use the fact that Σε,T is self-adjoint:

=n1n2

n2

〈
Σ−1
ε,T (θ̂2 − θ̂1), (θ̂2 − θ̂1)

〉
H

=n1n2

n2

〈
Σ−

1
2

ε,T (θ̂2 − θ̂1),Σ−
1
2

ε,T (θ̂2 − θ̂1)
〉
H

=n1n2

n2

∥∥∥∥Σ− 1
2

ε,T (θ̂2 − θ̂1)
∥∥∥∥2

H
.

Here, we recognize the truncated KFDA two-sample test statistic presented in Chapter
2. In fact we have FT = n−1D̂T

2. Thus, the truncated KFDA statistic is a special case
of the truncated Hotelling-Lawley test statistic on our general kernel linear model. We
can indeed consider hypothesis testing on the kernel linear model as a generalization of
KFDA two-sample testing. It is then easy to apply the framework to problems with k > 2
samples or more general designs. Moreover, it also motivates the generalization of the
discriminant directions used for hypothesis-based data exploration.
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3.4 Data Exploration and Diagnostics

3.4.1 Projection on the Discriminant Directions

The Kernel Fisher Discriminant Analysis (KFDA) was introduced in [99]. It is a clas-
sifier based on the determination of the discriminant directions in the feature space. It is
usually used to discriminate between p ≥ 2 groups of observations. Here we highlight the
link between the KFDA approach for p ≥ 2 groups and the kernel Hotelling-trace statistic
in order to motivate the generalization of discriminant directions to general designs.

We consider p groups. For i ∈ {1, . . . , p}, let Yi,1, . . . , Yi,ni the ni observations of group
i, with n = ∑p

i=1 ni. Each observation belong to one group only, for i ∈ {1, . . . , p} and
j ∈ {1, . . . , ni}, the vector of explanatory variables xi,j ∈ Rp is the vector full of zeros
except in position i where it is one and let X be the associated design matrix. Let
Θ = (θ1, . . . , θp). Here the kernel linear model takes the form:

φ(Yi,j) = θi + εi,j,

where (εi,j)i∈{1,...,p},{1,...,ni} are i.i.d. with null expectation and common covariance operator
Σε. The least square estimator of the model parameters is such that for i ∈ {1, . . . , p}, θ̂i =
n−1
i

∑ni
j=1 φ(Yi,j). We recognize the empirical kernel mean embedding of the distribution

underlying group i. Let µ = n−1∑p
i=1 niθi and µ̂ = n−1∑p

i=1 niθ̂i be the global kernel
mean embedding and its empirical estimator respectively. For the KFDA, the within
group covariance operator ΣW and the between group covariance operator ΣB are defined
such that:

Σ̂W = 1
n

p∑
i=1

ni∑
j=1

(φ(Yi,j)− θ̂i)⊗2,

Σ̂B = 1
n

p∑
i=1

ni(θ̂i − µ̂)⊗2.

The discriminant directions computed in the KFDA approach are the eigenfunctions of
the operator Σ̂−1

W Σ̂B, that has a maximal rank of p− 1.

In Chapter 2, we discussed how Harchaoui and coauthors [62] highlighted the link
between the KFDA for two groups and the Hotelling T 2 test statistic in the feature space.
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Actually, for any number of groups p, the kernelized Hotelling-Lawley test statistic has a
link with the KFDA. Indeed, the matrix

L =


1− n1

n
−n2

n
· · · −np

n

−n1
n

1− n2
n

· · · −np
n... . . . . . . ...

−n1
n

· · · 1− np−1
n
−np

n

 ∈Mp−1,p(R), (3.11)

encodes for the hypothesesH0 : θ1 = θ2 = · · · = θp = µ versusH1 : ∃j ∈ {1, . . . , p}, θj 6= µ.
The test operator ĤL obtained from the matrix L is colinear to the empirical between-
group covariance operator Σ̂B and the residual covariance operator Σ̂ε obtained from the
mean square estimation of the model parameters is equal to the within-group covariance
operator Σ̂W . Thus, the KFDA discriminant directions that can be used to discriminate
the p groups are in fact the eigenfunctions of the Hilbert-Schmidt operator in the kernel
Hotelling-Lawley trace statistic Σ−1

ε ĤL.

We propose to generalize this approach by considering the eigenfunctions of the operator
Σ−1
ε ĤL with respect to any kernel linear model and to any matrix L as directions of interest

for the problem. These directions can be used to explain the response of the test or be
used as exploratory tools in order to detect cell populations of interest.

3.4.2 Diagnostic Plots

A multivariate linear model or a kernel linear model both rely on assumptions on the
model parameters and the errors. The response plot and the residual plot are two plots
that allow to visually assess the veracity of the hypotheses, and to eventually detect
outliers or model errors in the multivariate linear model [71, 104]. Here we extend these
diagnostic plots to the kernel linear model.

Consider the m dimensional multivariate linear model of Equation (3.6). Let s ∈
{1, . . . ,m}, the sth response plot represents the sth coordinate of observed data with
respect to the sth predicted responses, i.e. the couples ((Y s

1 , Ŷ
s

1 ), . . . , (Y s
n , Ŷ

s
n )). The

sth residual plot represents the sth coordinate of the residuals with respect to the sth

coordinate of the predicted responses, i.e. the couples ((ε̂s1, Ŷ s
1 ), . . . , (ε̂sn, Ŷ s

n )). If the
heteroscedasticity assumption is true, then the points in the response plot should be
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uniformly spread around the identity line, and they should be uniformly spread around
the zero horizontal axis in the residual plot. Some visual outlier may be detected in the
response plot as observations placed far from the identity line compared to the others. We
can detect a dependency between the predictions and the residuals in the residual plot,
that would suggest that an effect has not been taken into account in the model. We can
also detect heteroscedasticity if the vertical spread is not uniform along the horizontal
axis in the residual plot. Heteroscedasticity may be overcome with data normalization.

Now we consider the kernel linear model of Equation (3.7). For i ∈
{1, . . . , n}, the embeddings φ(Yi), predictions φ̂(Yi) and residuals ε̂i, are elements of
Span(φ(Y1), . . . , φ(Yn)) ⊂ H that is an n-dimensional subspace of H. As n-dimensional
objects, we would need n diagnostic plots to draw an exhaustive picture of the diagnos-
tics. Instead, we propose to select a few directions of interest of H in order to compute
informative but non-exhaustive diagnostic plots. Let h ∈ H be a direction of interest,
we propose to represent the diagnostic plots with respect to 〈φ(Yi), h〉H,

〈
φ̂(Yi), h

〉
H
and

〈ε̂i, h〉H respectively. For T such that λ̂T > 0, where f̂1, . . . , f̂T are the first T eigenfunc-
tions of the residual covariance operator Σ̂ε associated to the eigenvalues λ̂1, . . . , λ̂T , we
propose to use these directions as directions of interest to compute the diagnostic plots.
We define the following matrices:

D(Φ(Y), Σ̂ε, T ) =(
〈
φ(Yi), f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},

D(Φ̂(Y), Σ̂ε, T ) =(
〈
φ̂(Yi), f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},

D(ε̂, Σ̂ε, T ) =(
〈
ε̂i, f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},

to be explicitely computed in the kernel trick section. As the eigenfunctions f̂1, . . . , f̂T

are ordered with respect to decreasing variability of the residuals, these are especially
suitable for the diagnostic plots. In fact, it is more important that the model hypotheses
are true on directions with high variability. Oppositely, it should not have a huge impact
on the results if model assumptions are not verified on weakly variable directions, namely
f̂T+1, . . . , f̂n. It would also be possible to use the eigenfunctions of Σ̂−1

ε,T ĤL as directions
of interest for the diagnostic plots. These directions also depend on the choice of T and
they are directly associated to the testing hypotheses used to construct ĤL. According to
the relation between the KFDA test and the kernel linear model, these diagnostic plots
could also be applied for KFDA testing.
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3.4.3 Influence of the Observations

We are interested in the detection of outliers in our kernel linear model. The n diag-
onal elements (πi,i)i∈{1,...,n} of Π are usually called leverage. A large leverage on the ith

observation compared to the other may be a clue of observation i having a large influence
on the estimated model parameters.

Another way to study the influence of individuals or group of observations is to compute
the Cook’s distance. Several multivariate generalizations of the Cook’s distance have been
proposed, see for instance [36] and references therein. These Cook’s distances have trace
formulations. The Cook’s distance for the ith observation associated to the multivariate
linear model of Equation (3.6) is such that:

DCook = 1
p

trace
(
(β̂ − β̂(i)) Cov(β̂)−1(β̂ − β̂(i))

)
,

where β̂(i) is the vector of model parameters obtained when the observation i is ignored.
Using a matrix inversion lemma, the authors also show that:

β̂ − β̂(i) = (X′X)−1Xiε̂
′
i

1− πi,i
∈Mp,m(R).

In order to generalize the Cook’s distance to our kernel linear model, we need to define
the expectation and covariance of vectors of Hp in order to compute E(Θ̂) and Cov(Θ̂).
Let h = (h1, . . . , hp) a random vector of Hp. We define the expectation of h as E(h) =
(E(h1), . . . ,E(hp)) ∈ Hp. We define the covariance of h as a p × p matrix where the
coordinates are elements of HS(H), such that for i, j ∈ {1, . . . , p}, we have Cov(h)i,j =
Cov(hi, hj) = E ((hi − E(hi))⊗ (hj − E(hj))). Now we compute the expectation EΘ̂ and
covariance Cov(Θ̂) of Θ̂. Note that the combination of Equations (3.8) and (3.7) gives
Θ̂ = Θ + (X′X)−1X′ε. Let j ∈ {1, . . . , p}, we have θ̂j = θj + ε � wj, where wj ∈ Rn is
the jth column of X(X′X)−1. Then we have Eθ̂j = θj and EΘ̂ = (θ1, . . . , θp) ∈ Hp. Let
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i, j ∈ {1, . . . , p}, we have:

Cov(θ̂i, θ̂j) =E
(
(θ̂i − θi)⊗ (θ̂j − θj)

)
=E (ε� wi ⊗ εwj)

=
n∑

k,l=1
wi,kwj,lE (εk ⊗ εl)

=
n∑
k=1

wi,kwj,kΣε

=(X′X)−1
i,j Σε.

Thus we have Cov(Θ̂) =
(
(X′X)−1

i,j Σε

)
i,j∈{1,...,p}

. We use the notation �, such that Σε �

(X′X)−1 represents the matrix where the element (i, j) is (X′X)−1
i,j ∈ R multiplied with

the Hilbert-Schmidt operator Σε. Then we have Cov(Θ) = Σε� (X′X)−1. We use Σ̂ε,T �

(X′X)−1 as an empirical estimator of Cov(Θ). Let Θ̂(i) be the estimated model parameters
obtained when ignoring the ith observation, we have the kernel Cook’s distance:

DCook = 1
p

tr
(
(Θ̂− Θ̂(i)) Cov(Θ̂)−1(Θ̂− Θ̂(i))

)
.

It is possible to extend the definition of the kernel Cook distance to any linear combination
of Θ [36]:

DCook,L = 1
L

tr
(
(L(Θ̂− Θ̂(i)))′Cov(LΘ̂)−1(L(Θ̂− Θ̂(i)))

)
,

where we can show that Cov(LΘ) = Σε � L(X′X)−1L′. The computation of the kernel
Cook distance is developed in the next section dedicated to the kernel trick.

3.4.4 Application to the Reversion Dataset

We propose to illustrate the data exploration and diagnostic tools of this section on
the Reversion RTqPCR dataset presented in Chapter 2 and first published in [153]. The
Reversion RTqPCR dataset contains four conditions 0H, 24H, 48HDIFF and 48HREV
and each conditions is divided in eight batches corresponding to manipulation repeti-
tions. In Chapter 2, we compared the four comparisons in a pair-wise approach using the
truncated KFDA two-sample test. Here we propose to model the condition and batch
effect with a kernel linear model and then to apply the kernel Hotelling-Lawley test to
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test if there is an effect of the condition and if there is an effect of the batch. The main
differences between these two approaches are that we do not test for the same hypoth-
esis, the noise is better estimated with the Hotelling-Lawley test, and the batch effect
is automatically corrected. We represent each observation of the dataset as Yi,j,k where
i ∈ {0H,24H,48HDIFF,48HREV} stands for the condition, j ∈ {1, . . . , 8} stands for the
batch effect and k ∈ {1, . . . , ni,j} represents the kth cell of condition i in batch j. We
propose the following kernel linear model:

φ(Yi,j,k) = θi + θj + εi,j,k,

where θ0H , θ24H , θ48HDIFF , θ48HREV ∈ H are the model parameters associated to the con-
dition and θ1, . . . , θ8 ∈ H are the model parameters associated to the batch effect. The
design matrix associated to this model is inMnrev ,12(R), where nrev is the total number
of observed cells.

The kernelized response plots and the kernelized residual plots give a general idea on
the relevance of our model. We represented these diagnostic plots with respect to the first
three eigendirections of the residual covariance operator in Figure (3.1). As expected, the
response plots follows the identity line and the residual plots follow the horizontal null
axis. We also observe that the effect of the condition (different colors) is very important
compared to the effect of the batch (eight parallel lines per color).

Then, we apply twice the Hotelling-Lawley test. First, we assess the presence of a
significant batch effect with a one-versus-all test matrix similar to the matrix of Equation
(3.11). The test does not reject the null hypothesis, meaning that the experience is
reproducible and there is no biais induced by the batch. Then we test for an effect of
the condition with a one-versus-all approach and reject the null hypothesis, that confirms
the results of Chapter 2 about the existence of significant differences for at least one
condition compared to the others. As we have four conditions, the matrix L encoding
for the one-versus-all hypothesis has three rows and the resulting test operator Σ−1

ε,T ĤL

has rank 3 when T ≥ 3. Thus, there are three generalized discriminant directions. The
densities of the four conditions projected on each generalized discriminant direction are
represented in Figure 3.2. we observe that the first generalized discriminant direction,
to interpret as encoding the most meaningful differences, orders the four conditions as
48HDIFF, 48HREV, 0H, 24H. It seems consistent with the analyses of Chapter 2, where
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Figure 3.1: Diagnostic plots associated to the densities of the four conditions of the Rever-
sion dataset projected on the first (left), second (middle) and third (right) eigendirections
of the residual covariance operator.

we showed that the population 48HREV contained a sub-population close to condition
48HDIFF and the remaining cells were close to condition 0H. We thus focus on the first
generalized discriminant direction and observe the Cook influence of the observations on
the model with respect to their position on this axis on Figure (3.3). Interestingly, the
most influential observations are in condition 48HREV.

This application highlights how starting the comparative analysis of a complex dataset
with several meta-information (here, batch effect and condition) can be very visual and
intuitive with our approach, as each test response comes with a range of representations.
Further analyses would be needed to complete the data analysis of the Reversion RTqPCR
dataset and eventually enhance the conclusions we reached with the first analyses per-
formed with the truncated KFDA framework.

3.5 Kernel Trick : the Effective Computation of the
Statistic

All the quantities presented in this chapter are implemented in our package ktest. In
this section, we apply kernel tricks to obtain the explicit expressions associated to them.
We start with the diagonalization of the residual covariance operator. The obtained quan-
tites are used to compute the truncated kernel Hotelling-Lawley trace, the informative
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Figure 3.2: Densities of the four conditions of the Reversion dataset projected on the first
(left), second (middle) and third (right) generalized discriminant directions associated to
the Hotelling-Lawley operator used to test the effect of the condition with T = 12.
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Figure 3.3: Influence of the observations with respect to the position of their projection on
the first generalized discriminant directions associated to the Hotelling-Lawley operator
used to test the effect of the condition with T = 12.
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directions for data exploration, the quantities needed to obtain the diagnostic plots, and
the Cook distance.

Diagonalization of the Residual Covariance Operator

Theorem 12. The Hilbert-Schmidt operator Σ̂ε has the same spectrum than the matrix
Kε defined such that:

Kε = 1
n

Π⊥KYΠ⊥

where KY = (k(Yi, Yj))i,j∈{1,...,n} is the Gram matrix of Y with respect to k(·, ·).
Moreover, if u is a unit eigenvector of Kε associated to the eigenvalue λ̂, then a unit

eigenfunction f̂ of Σ̂ε associated to λ̂ is obtained by:

f̂ = 1√
nλ̂
ε̂� u (3.12)

Sketch of proof. We first show that for each eigenfunction f̂ of the Hilbert-Schmidt op-
erator Σ̂ε associated to the eigenvalue λ̂, the vector

(〈
f̂ , ε̂1

〉
H
, . . . ,

〈
f̂ , ε̂n

〉
H

)
of Rn is an

eigenvector of Kε ∈Mn(R) associated to the eigenvalue λ̂. It shows that the spectrum of
Σ̂ε is a subset of the spectrum of Kε. Then, we show that for each eigenvector u of Kε,
the function ε̂ � u ∈ H is an eigenfunction of Σ̂ε. It shows that the spectrum of Kε is a
subset of the spectrum of Σ̂ε. We then conclude that Kε and Σ̂ε have the same spectrum.
Then we consider u, a unit eigenvector of Kε associated to the eigenvalue λ̂. We know
that ε̂ � u is an eigenfunction of Σ̂ε associated to the eigenvalue λ̂. We can determine
that ‖ε̂� u‖H =

√
nλ̂, thus the vector f̂ = (nλ̂)− 1

2 ε̂� u is a unit eigenfunction of Σ̂ε.

Computation of the Truncated Kernel Hotelling-Lawley Trace Statistic

To compute the test statistic FT in practice we need to rewrite it with respect to some
tractable quantities. Let A = L′(L(X′X)−1L′)−1L = (αi,j)i,j∈{1,...,p} ∈ Mp(R). The
matrix A is related to the model as it is defined with respect to L and X, we compute it
for O(p3 + L3). Then, according Equation (3.5), we have:

ĤL =Θ̂′L′(L(X′X)−1L′)−1LΘ̂

=
p∑

i,j=1
αi,j θ̂i ⊗ θ̂j.
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Applying Equation (3.1) and replacing the residual covariance operator by its spectral
decomposition in the truncated kernel Hotelling-Lawley trace, we have:

FT = tr(Σ̂−1
ε,T ĤL)

=
〈
Σ̂−1
ε,T , ĤL

〉
HS(H)

=
p∑

i,j=1

T∑
t=1

αi,jλ̂
−1
t

〈
f̂t ⊗ f̂t, θ̂i ⊗ θ̂j

〉
HS(H)

=
p∑

i,j=1

T∑
t=1

αi,jλ̂
−1
t

〈
f̂t, θ̂i

〉
H

〈
f̂t, θ̂j

〉
H
.

The kernel trick to compute this expression is to rewrite it with respect to UT and Λ̂T ,
the matrices of eigenvectors and eigenfunctions of Kε. Let KΘ̂ be such that:

KΘ̂ =
 1√

λ̂t

〈
θ̂j, f̂t

〉
H


t∈{1,...,T},j∈{1,...,p}

.

Theorem 13. We have:

KΘ̂ =
 1√

λ̂t

〈
θ̂j, f̂t

〉
H


j∈{1,...,p},t∈{1,...,T}

= 1√
n

(X′X)−1X′KYΠ⊥U′T Λ̂
−1
T ,

where UT = (u1, . . . , uT ) ∈Mn,T (R) and Λ̂T = diag(λ̂1, . . . , λ̂T ) ∈MT (R) are the matrix
containing the T first eigenvectors and eigenvalues of Kε respectively.

Proof. Let f̂ε,T = (f̂1, . . . , f̂T ) in HT be the vector of HT containing the T eigenfunctions
of Σ̂ε associated to the eigenvalues λ̂1, . . . , λ̂T . From Equation (3.12), we have that:

f̂ε,T = 1√
n

Λ̂
− 1

2
T UT ε̂.

As ε̂ = Π⊥Φ(Y), we have:

f̂ε,T = 1√
n

Λ̂
− 1

2
T UTΠ⊥Φ(Y).

Note that Λ̂
− 1

2
T f̂ε,T = (λ̂−

1
2

1 f̂1, . . . , λ
− 1

2
T f̂T ). Let ŨT = 1√

n
Λ̂
−1
T UTΠ⊥ ∈ MT,n(R) and let

ũ1, . . . , ũT be the T columns of Ũ′T , such that Λ̂
− 1

2
T f̂ε,T = ŨTΦ(Y) and for t ∈ {1, . . . , T},
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λ̂
− 1

2
t f̂t = Φ(Y) � ũt. Let j ∈ {1, . . . , p}, we recall that wj = (wj,1, . . . , wj,n) in Rn is the
jth column of X(X′X)−1 and that θ̂j = Φ(Y)� wj. Then we have:

1√
λ̂t

〈
θ̂j, f̂t

〉
H

=
n∑

i,i′=1
wj,iũt,i′ 〈φ(Yi), φ(Yi′)〉H

=
n∑

i,i′=1
wj,iũt,i′k(Yi, Yi′)

=w′jKYũt.

Hence, we replace w′j by (X′X)−1X′ and ũt by ŨT to obtain KΘ̂:

KΘ̂ = 1√
n

(X′X)−1X′KYΠ⊥U′T Λ̂
−1
T ,

The truncated kernel Hotelling-Lawley test statistic is simply obtained by computing:

FT = trace(K′Θ̂AKΘ̂)

Computation of the Informative Directions

Now we determine the informative directions defined as the eigenfunctions of Σ̂−1
ε,T ĤL

of rank κ ≤ L ∧ T .

Theorem 14. Let ŨT = 1√
n
Λ̂
−1
T UTΠ⊥ ∈ MT,n(R), Ψ = Ũ′T ŨT and R =

X(X′X)−1L′(L(X′X)−1L)−1L(X′X)−1X′ in Mn(R). Let ĝ1, . . . , ĝκ the κ eigenfunctions
of Σ̂−1

ε,T ĤL associated to the eigenvalues ξ1 ≥ ξ2 ≥ · · · ≥ ξκ. Then the matrix Kε,L,T

defined by:

Kε,L,T = KYΨKYR,

has the same eigenvalues than Σ̂−1
ε,T ĤL. Moreover, for k ∈ {1, . . . , κ}, if vk is an eigen-

vector of Kε,L,T associated to the eigenvalue ξk, then we have:

ĝk = 1√
ξkv′kRKYΨvk

Φ(Y)� (ΨKYRvk).

133



Partie , Chapter 3 – General Hypothesis Testing in the Feature Space

Sketch of proof. As for Theorem 12, the proof consists in showing that Kε,L,T and Σ̂−1
ε,T ĤL

have the same spectrums. To do so, we show that for an eigenfunction ĝ of Σ̂−1
ε,T ĤL associ-

ated to the eigenvalue ξ, the vector (〈φ(Y1), ĝ〉H , . . . , 〈φ(Yn), ĝ〉H) of Rn is an eigenvector
of Kε,L,T associated to the eigenvalue ξ. Also, for an eigenvector v of Kε,L,T associated
to the eigenvalue ξ, the function Φ(Y) � ΨKYRv ∈ H is an eigenfunction of Σ̂−1

ε,T ĤL

associated to the eigenvalue ξ. Then we determine that the function Φ(Y)�ΨKYRv has
norm

√
ξv′RKYΨv and normalize it.

The exploration of the data with respect to the hypothesis is done by comput-
ing the orthogonal projections of the embeddings on ĝ1, . . . , ĝκ. The matrix D =
(〈φ(Yi), ĝk〉H)i∈{1,...,n},k∈{1,...,κ} of coordinates of the embbedings in span(ĝ1, . . . , ĝκ) is such
that:

D = KYΨKYRVΛ̃ξ,

where the columns of V are the eigenvectors of Kε,L,T and Λ̃ξ =
diag( 1√

ξ1v′1RKYΨv1
, . . . , 1√

ξκv′κRKYΨvκ
)

All these quantities may vary with respect to the truncation parameter T . We discuss
the choice of T in the Conclusion chapter but the dependance on T of these quantities
can be used as a heuristic to choose the value of T in practice.

How to Obtain the Diagnostic Plots

The diagnostic plot relies on the following quantities:

D(Φ(Y), Σ̂ε, T ) =(
〈
φ(Yi), f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},

D(Φ̂(Y), Σ̂ε, T ) =(
〈
φ̂(Yi), f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},

D(ε̂, Σ̂ε, T ) =(
〈
ε̂i, f̂t

〉
H

)i∈{1,...,n},t∈{1,...,T},
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The determination of these matrix is similar to the determination of the matrix KΘ̂, we
obtain:

D(Φ(Y), Σ̂ε, T ) = 1√
n

KYΠUT Λ̂
− 1

2
T ,

D(Φ̂(Y), Σ̂ε, T ) = 1√
n

ΠKYΠUT Λ̂
− 1

2
T ,

D(ε̂, Σ̂ε, T ) = 1√
n

Π⊥KYΠUT Λ̂
− 1

2
T .

Computation of the Cook Distance

Let i ∈ {1, . . . , n}, the RKHS version of the expression expression of (Θ̂ − Θ̂(i)) is such
that (see [36] for the multivariate version):

Θ̂− Θ̂(i) =


w1,i

1−πi,i ε̂i...
wp,i

1−πi,i ε̂i

 ∈ Hp

Then we have that:

DCook =1
p

tr
 p∑
j,k=1

wj,i
1− πi,i

wk,i
1− πi,i

(X′X)j,kε̂i ⊗ Σ̂εε̂i


=1
p

p∑
j,k=1

wj,i
1− πi,i

wk,i
1− πi,i

(X′X)j,k tr
(
ε̂i ⊗ Σ̂εε̂i

)

We remark that:
p∑

j,k=1

wj,i
1− πi,i

wk,i
1− πi,i

(X′X)j,k = w′iX′Xwi
(1− πi,i)2

And we have:

tr
(
ε̂i ⊗ Σ̂εε̂i

)
=

T∑
t=1

λ̂−1
t

〈
f̂t, ε̂i

〉2

H
.
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We recognize the elements of the ith line of D(ε̂, Σ̂ε, T ), thus we have:

tr
(
ε̂i ⊗ Σ̂εε̂i

)
=(D(ε̂, Σ̂ε, T )Λ̂−1D(ε̂, Σ̂ε, T )′)i,i

= 1
n

(Π⊥KYΠUT Λ̂
−2
T U′TΠKYΠ⊥)i,i

Finally, we have an expression for the Cook distance DCook associated to the ith observa-
tion:

w′iX′Xwi
pn(1− πi,i)2 (Π⊥KYΠUT Λ̂

−2
T U′TΠKYΠ⊥)i,i.

3.6 Discussions

In this Chapter, we introduced a framework to model the embeddings in the feature
space with a linear model, this approach has never been done as far as we know. We
conjecture that this absence is due to the very bad performance such a model would have
for a prediction task. However, in the context of testing, this is a natural generalization
of kernel two-sample tests. With this connection between kernel testing and multivariate
linear models, kernel testing is enriched with well established diagnostic tools, and the
exploration tools derived from the discriminant analysis are generalized to any design.

Computational Aspects

As for kernel two-sample testing, testing with the kernel linear model simplifies the
analysis of high-dimensional data, as the more expensive operation is the diagonalisation
of the residual covariance operator that depends on the number of observations and not on
the number of variables. Moreover, a Nyström approximation of the residual covariance
operator can drastically reduce the computational cost of the statistic. Such a Nyström
approximation raises issues on balanced landmark sampling adapted to the design, and on
the anchors definition, probably as the eigenfunctions of the residual covariance defined
with respect to the landmarks.

Variants of the Kernel Hotelling-Lawley Test

We could also define a ridge kernel Hotelling-Lawley statistic through a ridge regulariza-
tion of the residual covariance operator. Similarly to the KFDA test, the ridge approach
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has theoretically more power than the truncated approach, but lacks of interpretability
and practicality. The truncated approach relies on the choice of a truncation hyperpa-
rameter. The issues associated to this choice discussed in the Conclusion chapter for the
truncated KFDA test can be generalized to the truncated kernel Hotelling-Lawley test.

The kernel linear model encompasses kernelization of the ANOVA model for univariate
data and a MANOVA model for multivariate data as particular cases.

Our approach on the kernel linear model could also enhance the set of approches for
the multivariate linear model. More precisely, the truncated kernel Hotelling-Lawley
test is not the exact counterpart of the linear Hotelling-Lawley test as no truncation
regularization is needed for the later. It would be possible to define a spectral truncation
of the residual covariance matrix in the linear case, that would correspond to a dimension
reduction based on the residual variability, and obtain a truncated linear Hotelling-Lawley
statistic.

3.7 Proofs

3.7.1 Non-Asymptotic Results on the Residual Covariance Op-
erator.

Proposition 3. If Assumptions A1, A2 and A3 are verified, then we have with probability
1− e−ξ:

∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

≤ ζ(n, ξ), (3.13)

where

ζ(n, ξ) = 1
n

(
2M4

ε p+ (n− p)
(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

))1/2

+ p

n
‖Σε‖HS(H) +

√
2ξ
n
M2

ε (5 + 2p+ 2p2),

and Mε = M
1
2
k +Mx max

j∈{1,...,p}
‖θj‖H.
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Proof. We observe that:
∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

=
∥∥∥Σ̂ε − EΣ̂ε + EΣ̂ε − Σε

∥∥∥
HS(H)

≤
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

+
∥∥∥EΣ̂ε − Σε

∥∥∥
HS(H)

.

We know from Lemma 6 that:
∥∥∥EΣ̂ε − Σε

∥∥∥
HS(H)

=
∥∥∥∥n− pn Σε − Σε

∥∥∥∥
HS(H)

=p

n
‖Σε‖HS(H) .

Now we apply the McDiarmid inequality 16 to the function:

Hn −→ R

f : ε 7−→
∥∥∥Σ̂ε − E(Σ̂ε)

∥∥∥
HS(H)

.

Let i0 ∈ {1, . . . , n}, ε = (ε1, . . . , εn) and ε̃ = (ε̃1, . . . , ε̃n) in Hn such that εi0 6= ε̃i0 and
∀i 6= i0, εi = ε̃i. Lemma 7 gives us that:

|f(ε)− f(ε̃)| ≤ 2M2
ε

n
(5 + 2p+ 2p2).

We use this bound to apply the McDiarmid inequality to f . We have with probability
1− e−ξ:

∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

≤ E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

+
√

2ξ
n
M2

ε (5 + 2p+ 2p2).

By Lemma 8, we bound the expectation term to obtain that with probability 1− e−ξ:

∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

≤ 1
n

(
2M4

ε p+ (n− p)
(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

))1/2

+
√

2ξ
n
M2

ε (5 + 2p+ 2p2).

A direct consequence of Proposition 3 is the convergence in probability of Σ̂ε towards
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Σε:

Σ̂ε
p−→

n→∞
Σε.

According to the exponential bound obtained, we also deduce that the rate of convergence
is equal to

√
n.

Lemma 4. If Assumption A1 and A2 are verified, then there exists Mε ∈ R such that:

∀i ∈ {1, . . . , n}, ‖εi‖H < Mε.

Moreover, we have Mε = M
1
2
k + pMx max

j∈{1,...,p}
‖θj‖H

Proof. We have:

‖εi‖H = ‖φ(Yi)− (XΘ)i‖H
≤‖φ(Yi)‖H + ‖(XΘ)i‖H
≤‖φ(Yi)‖H + ‖Θ� xi‖H .

From Assumption A1, we know that ‖φ(Yi)‖H ≤M
1
2
k . We apply Equation (3.4) to obtain

‖Θ� xi‖H ≤ ‖xi‖1 max
j∈{1,...,p}

‖θj‖H, then Assumption A2 gives ‖xi‖1 = ∑p
j=1 |xi,j| ≤ pMx.

Thus ‖Θ� xi‖H ≤ pMx max
j∈{1,...,p}

‖θj‖H. The sum of the two bounds gives the result.

Lemma 5. Under Assumption A3, we have for i ∈ {1, . . . , n}:

πi,i −→
n→∞

0

Proof. For i, j ∈ {1, . . . , n}, we know that πi,j = ∑p
s=1 vs,ivs,j from Lemma 16. Thus we

have:

|πi,i| ≤
p∑
s=1

v2
s,i

From Assumption A3, vs,i ≤ Mπ/
√
n, thus |πi,i| ≤ pM2

π

n
. As pM2

π

n
−→
n→∞

0, we have that
πi,i −→

n→∞
0.
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Lemma 6. We have that:

E(Σ̂ε) = n− p
n

Σε.

Proof. Denote Π⊥ = (IH −Π) and π⊥i = (π⊥i,1, . . . , π⊥i,n)′ ∈ Rn the ith column of Π⊥. We
have:

ε̂i = ε� π⊥i =
n∑
j=1

π⊥i,jεj.

Consequently, the expectation is such that:

E(Σ̂ε) = 1
n
E(

n∑
i=1

ε̂i ⊗ ε̂i)

= 1
n

n∑
i=1

n∑
j=1

n∑
k=1

π⊥i,jπ
⊥
i,kE(εj ⊗ εk)

= 1
n

n∑
i=1

 n∑
j=1

π⊥i,j
2E(εj ⊗ εj) +

∑
j 6=k

π⊥i,jπ
⊥
i,kE(εj)⊗ E(εk)


= 1
n

(
n∑

i,j=1
π⊥i,j

2)Σε

(?)=n− p
n

Σε,

where we applied Lemma 14 on Π⊥ with rank(Π⊥) = n− p to obtain (?).

Lemma 7. Assume that Assumptions A1, A2 and A3 are true. Let f(ε) =∥∥∥Σ̂ε − E(Σ̂ε)
∥∥∥

HS(H)
=
∥∥∥Σ̂ε − (n− p)/nΣε

∥∥∥
HS(H)

. Let ε = (ε1, . . . , εn) and ε̃ = (ε̃1, . . . , ε̃n)
in Hn such that εi0 6= ε̃i0 and ∀i 6= i0, εi = ε̃i. We have:

|f(ε)− f(ε̃)| ≤ 2M2
ε

n
(1 + p(1 +Mπ +M2

π)),

where p is the rank of the design matrix X, Mε is defined in Lemma 4, and Mπ comes
from Assumption A3.
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Proof. Denote Σ̃ε = 1
n

∑n
i=1 ε̃i ⊗ ε̃i, we have:

|f(ε)− f(ε̃)| =
∣∣∣∣∥∥∥Σ̂ε − E(Σ̂ε)

∥∥∥
HS(H)

−
∥∥∥Σ̃ε − E(Σ̂ε)

∥∥∥
HS(H)

∣∣∣∣
≤
∥∥∥Σ̂ε − E(Σ̂ε)− (Σ̃ε − E(Σ̂ε))

∥∥∥
HS(H)

≤
∥∥∥Σ̂ε − Σ̃ε

∥∥∥
HS(H)

.

As ε̂i = εi − ε� πi, we have:

Σ̂ε = 1
n

n∑
i=1

εi ⊗ εi −
1
n

n∑
i=1

εi ⊗ (ε� πi)−
1
n

n∑
i=1

(ε� πi)⊗ εi + 1
n

n∑
i=1

(ε� πi)⊗ (ε� πi).

As Π is an orthogonal projector, we have that Π = Π′ = Π2. Thus for i, j ∈ {1, . . . , n},
we have πi,j = πj,i and

∑n
k=1 πi,kπj,k = πi,j. Then by developing each ε� πi = ∑n

j=1 πi,jεj,
we obtain that:

1
n

n∑
i=1

εi ⊗ (ε� πi) = 1
n

n∑
i=1

(ε� πi)⊗ εi = 1
n

n∑
i=1

(ε� πi)⊗ (ε� πi).

It leads to:

Σ̂ε = 1
n

n∑
i=1

εi ⊗ εi −
1
n

n∑
i=1

εi ⊗ (ε� πi).

We replace Σ̂ε and Σ̃ε by this expression and use the triangular inequality to obtain:

|f(ε)− f(ε̃)| ≤ 1
n

∥∥∥∥∥
n∑
i=1

εi ⊗ εi − ε̃i ⊗ ε̃i
∥∥∥∥∥

HS(H)

+ 1
n

∥∥∥∥∥
n∑
i=1

ε̃i ⊗ (ε̃� πi)− εi ⊗ (ε� πi)
∥∥∥∥∥

HS(H)︸ ︷︷ ︸
=A

,

The first term is such that:

1
n

∥∥∥∥∥
n∑
i=1

εi ⊗ εi − ε̃i ⊗ ε̃i
∥∥∥∥∥

HS(H)
= 1
n
‖εi0 ⊗ εi0 − ε̃i0 ⊗ ε̃i0‖HS(H)

≤ 1
n
‖εi0‖

2
H + ‖ε̃i0‖

2
H

≤2M2
ε

n
.
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The second term can be decomposed as:

A = 1
n

∥∥∥∥∥∥
n∑

i=1,i 6=i0
εi ⊗

(
(ε̃− ε)� πi

)
+ ε̃i0 ⊗ (ε̃� πi0)− εi0 ⊗ (ε� πi0)

∥∥∥∥∥∥
HS(H)

= 1
n

∥∥∥∥∥∥
n∑

i=1,i 6=i0
εi ⊗

(
(ε̃− ε)� πi

)
+ ε̃i0 ⊗

(
(ε̃− ε)� πi0

)
+ (ε̃− ε)i0 ⊗ (ε� πi0)

∥∥∥∥∥∥
HS(H)

≤ 1
n

∥∥∥∥∥∥
n∑

i=1,i 6=i0
εi ⊗

(
(ε̃− ε)� πi

)∥∥∥∥∥∥
HS(H)︸ ︷︷ ︸

A1

+ 1
n

∥∥∥∥ε̃i0 ⊗ ((ε̃− ε)� πi0
)∥∥∥∥

HS(H)︸ ︷︷ ︸
A2

+ 1
n
‖(ε̃− ε)i0 ⊗ (ε� πi0)‖HS(H)︸ ︷︷ ︸

A3

.

We now bound each term. Remark that according to Lemma 16, for h ∈ Hn and i ∈
{1, . . . , n}, we have

h� πi =
p∑
s=1

vs,ih� vs

=
p∑
s=1

n∑
j=1

vs,ivs,jhj.

In particular, we have:

(ε̃− ε)� πi =
p∑
s=1

vs,ivs,i0(ε̃i0 − εi0).
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Thus:

A1 ≤
1
n

n∑
i=1,i 6=i0

‖εi ⊗ (ε̃− ε)� πi‖HS(H)

≤Mε

n

n∑
i=1,i 6=i0

‖(ε̃− ε)� πi‖H

≤Mε

n

n∑
i=1,i 6=i0

p∑
s=1
|vs,i||vs,i0| ‖(ε̃i0 − εi0)‖H

≤2M2
ε

n

M2
π

n

n∑
i=1,i 6=i0

p∑
s=1

1

≤2M2
ε

n
M2

πp.

We also have:

A2 ≤
Mε

n
‖(ε̃− ε)� πi0‖H

≤Mε

n

p∑
s=1
|vs,i0||vs,i0| ‖(ε̃i0 − εi0)‖H

≤2M2
ε

n

p∑
s=1
|vs,i0|2

≤2M2
ε

n
p,

where we used that for i ∈ {1, . . . , n} and s ∈ {1, . . . , p},|vs,i0| ≤ 1. We also have:

A3 ≤
2Mε

n
‖ε� πi0‖H

≤2Mε

n

p∑
s=1

n∑
i=1
|vs,i0||vs,i| ‖εi‖H

≤2M2
ε

n

p∑
s=1
|vs,i0|

n∑
i=1
|vs,i|.

Note that∑n
i=1 |vs,i| = ‖vs‖1 ≤

√
n ‖vs‖ ≤

√
n and that∑p

s=1 |vs,i0| ≤ pMπ√
n
. Injecting these

two results in the bound on A3 leads to:

A3 ≤
2M2

ε

n
pMπ.
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Finally, we have that:

|f(ε)− f(ε̃)| ≤2M2
ε

n
+ 2M2

ε

n
M2

πp+ 2M2
ε

n
p+ 2M2

ε

n
pMπ

≤2M2
ε

n
(1 + p(1 +Mπ +M2

π)).

Lemma 8. Under Assumptions A1 and A2, we have:

E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

≤ 1
n

(
2M4

ε p+ (n− p)
(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

))1/2
,

where Mε is defined in Lemma 4.

Proof. Note that:

E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥2

HS(H)
=E

∥∥∥Σ̂ε

∥∥∥2

HS(H)
− 2E

〈
Σ̂ε,EΣ̂ε

〉
HS(H)

+
∥∥∥EΣ̂ε

∥∥∥2

HS(H)

=E
∥∥∥Σ̂ε

∥∥∥2

HS(H)
− 2

〈
EΣ̂ε,EΣ̂ε

〉
HS(H)

+
∥∥∥EΣ̂ε

∥∥∥2

HS(H)

=E
∥∥∥Σ̂ε

∥∥∥2

HS(H)
−
∥∥∥EΣ̂ε

∥∥∥2

HS(H)

By Jensen’s inequality, we have that:

E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

≤
[
E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥2

HS(H)

] 1
2

≤
[
E
∥∥∥Σ̂ε

∥∥∥2

HS(H)
−
∥∥∥EΣ̂ε

∥∥∥2

HS(H)

] 1
2
.

We can develop Σ̂ε to obtain that:

Σ̂ε = 1
n

n∑
i=1

(1− πi,i)εi ⊗ εi + 1
n

n∑
i,j=1,i 6=j

πi,jεi ⊗ εj. (3.14)

Thus:

∥∥∥Σ̂ε

∥∥∥2

HS(H)
= A− 2B + C,
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where

A = 1
n2

n∑
i=1

n∑
j=1

(1− πi,i)(1− πj,j) 〈εi ⊗ εi, εj ⊗ εj〉HS(H) ,

B = 1
n2

n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

(1− πi,i)πj,k 〈εi ⊗ εi, εj ⊗ εk〉HS(H) ,

C = 1
n2

n∑
i=1

n∑
j=1,j 6=i

n∑
k=1

n∑
l=1,l 6=k

πi,jπk,l 〈εi ⊗ εj, εk ⊗ εl〉HS(H) .

We now compute the expectation of each term:

E(A) = 1
n2

n∑
i=1

(1− πi,i)2E
(
〈εi ⊗ εi, εi ⊗ εi〉HS(H)

)
+ 1
n2

n∑
i=1

n∑
j=1,j 6=i

(1− πi,i)(1− πj,j) 〈E (εi ⊗ εi) ,E (εj ⊗ εj)〉HS(H)

= 1
n2

n∑
i=1

(1− πi,i)2E
(
‖ε1‖4

H

)
+ 1
n2

n∑
i=1

n∑
j=1,j 6=i

(1− πi,i)(1− πj,j) ‖Σε‖2
HS(H) .

We can directly see that every term of B contains at least one indice j or k different
from the others, involving that the expectation of each term of B is null, which give that
E(B) = 0. The same happens for every term of C where indices k and l are different from
indices i and j. Consequently we have:

E(C) = 1
n2

n∑
i=1

n∑
j=1,j 6=i

πi,j
2
(
E 〈εi ⊗ εj, εi ⊗ εj〉HS(H) + E 〈εi ⊗ εj, εj ⊗ εi〉HS(H)

)

= 2
n2

n∑
i=1

n∑
j=1,j 6=i

πi,j
2E ‖εi‖2

H E ‖εj‖2
H .

According to Equation (3.14), EΣ̂ε is such that:

EΣ̂ε = 1
n

n∑
i=1

(1− πi,i)E(εi ⊗ εi) + 1
n

n∑
i,j=1,i 6=j

n∑
j=1,j 6=i

πi,jEεi ⊗ Eεj

= 1
n

n∑
i=1

(1− πi,i)Σε.
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Then:

∥∥∥EΣ̂ε

∥∥∥2

HS(H)
= 1
n2

n∑
i=1

n∑
j=1

(1− πi,i)(1− πj,j) ‖Σε‖2
HS(H)

= 1
n2

n∑
i=1

(1− πi,i)2 ‖Σε‖2
HS(H) +

n∑
i=1

n∑
j=1,j 6=i

(1− πi,i)(1− πj,j) ‖Σε‖2
HS(H) .

Now we can sum E(A),E(C) and
∥∥∥EΣ̂ε

∥∥∥2

HS(H)
:

E
∥∥∥Σ̂ε

∥∥∥2

HS(H)
−
∥∥∥EΣ̂ε

∥∥∥2

HS(H)
=E(A) + E(C)−

∥∥∥EΣ̂ε

∥∥∥2

HS(H)

= 1
n2

n∑
i=1

(1− πi,i)2E ‖ε1‖4
H + 2

n2

n∑
i,j=1,i 6=j

πi,j
2E ‖εi‖2

H E ‖εj‖2
H

− 1
n2

n∑
i=1

(1− πi,i)2 ‖Σε‖2
HS(H)

= 1
n2

n∑
i=1

(1− πi,i)2
(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

)
+ 2
n2

n∑
i,j=1,i 6=j

πi,j
2E ‖εi‖2

H E ‖εj‖2
H

≤n− p
n2

(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

)
+ 2M4

ε p

n2 .

where the bound comes from applying Lemma 14. Finally:

E
∥∥∥Σ̂ε − EΣ̂ε

∥∥∥
HS(H)

≤ 1
n

(
2M4

ε p+ (n− p)
(
E ‖ε1‖4

H − ‖Σε‖2
HS(H)

))1/2
.

3.7.2 Proof of the Asymptotic Distribution of the Hotelling-
Lawley Trace Test Statistic.

In this section, we give the details that were not given on the sketch of the proof of
Theorem 11.

Lemma 9. Under Assumptions A1 and A2, if H0 is true, then we have:∥∥∥∥ 1
n
ĤL

∥∥∥∥
HS(H)

≤M2
ε ,
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where Mε is defined in Lemma 4.

Proof. We inject the expression of Θ̂ in the expression of ĤL:

ĤL = (L(X′X)−1X′Φ(Y))′(L(X′X)−1L′)−1(L(X′X)−1X′Φ(Y))

According to the linear model on the embeddings, we have

(L(X′X)−1X′Φ(Y)) = (LΘ + L(X′X)−1X′ε).

The term LΘ is null under H0. Then we can write:

ĤL = εRε

where R = X(X′X)−1L′(L(X′X)−1L′)−1L(X′X)−1X′ ∈ Mn(R) is an orthogonal pro-
jector, as R′ = R and R2 = R. Since L and X are both full rank, we have that
rank(R) ≤ min(p,L). Let Ri = (ri,1, . . . , ri,n) ∈ Rn be the ith column of R. We have:

∥∥∥ĤL

∥∥∥
HS(H)

= ‖(Rε)′(Rε)‖HS(H)

=
n∑
i=1
‖(Rε)i ⊗ (Rε)i‖HS(H)

=
n∑
i=1
‖(Rε)i‖2

H

= ‖Rε‖2
Hn .

By Lemma 15, we have ‖Rε‖Hn ≤ ‖ε‖Hn , thus:∥∥∥ĤL

∥∥∥
HS(H)

≤‖ε‖2
Hn

≤
n∑
i=1
‖εi‖2

H

≤nM2
ε

Thus we have
∥∥∥n−1ĤL

∥∥∥
HS(H)

≤M2
ε .
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Lemma 10. Under Assumptions A1, A2, A3 and A4, we have:

nF̃T = tr(Σ−1
ε,T ĤL) D−→

n→∞
χ2
LT .

Proof. We recall that the ith equation of the kernel linear model on Φ(Y) is:

φ(Yi) = Θ� xi + εi.

We know that the eigenfunctions (fs)s≥1 of Σε form an orthonormal basis of H. For s ≥ 1
and h ∈ H, we define hs = 〈h, fs〉H, such that h = ∑

s≥1 h
sfs. For i ∈ {1, . . . , n}, let

Zi = (φ(Yi)1, . . . , φ(Yi)T ) in RT , βi = (θ1
i , . . . , θ

T
i ) in RT and β = (β1, . . . , βp)′ ∈Mp,T (R).

We also define ε̃i = (ε1
i , . . . , ε

T
i ) in RT . The projection of the ith equation of the kernel

linear model on Span(f1, . . . , fT ) ⊂ H is:

Zi = β′xi + ε̃i.

We recognize a multivariate linear model in RT that has the matrix form:

Z = Xβ + ε̃,

where Z = (Z1, . . . , Zn) ∈ Mn,T (R) and ε̃ = (ε̃1, . . . , ε̃n)′ ∈ Mn,T (R). Remark that the
errors ε̃1, . . . , ε̃n are i.i.d. with Eε̃1 = 0 and covariance matrix ΣT = (σs,s′)s,s′∈{1,...,T} ∈
MT (R). For s, s′ ∈ {1, . . . , T}, we have:

σs,s′ =E(εs1εs
′

1 )
=E 〈ε1, fs〉H 〈ε1, fs′〉H
= 〈fs,E(ε1 ⊗ ε1)fs′〉H
= 〈fs,Σεfs′〉H
=
∑
t≥1

λt 〈fs, (ft ⊗ ft)fs′〉H

=
∑
t≥1

λt 〈fs, ft〉H 〈fs′ , ft〉H .

=
 λs if s = s′

0 otherwise.
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Thus, we have ΣT = diag(λ1, . . . , λT ).

The Hotelling-Lawley trace associated to hypotheses H̃0 : Lβ = 0RL versus H̃1 : Lβ 6=
0RL is equal to:

Gn = trace
( 1
n

Σ̂−1
T ĤLT

)
,

where Σ̂T = diag(λ̂1, . . . , λ̂T ), ĤLT = (Lβ̂)′(L(X′X)−1L′)−1(Lβ̂), and β̂ = (β̂1, . . . , β̂p)′ ∈
Mp,T (R) is the least square estimator of β, defined such that:

β̂ = (X′X)−1X′Z.

We can develop Z in this equation to show that for i ∈ {1, . . . , p}, β̂i = (θ̂1
i , . . . , θ̂

T
i )′ ∈

RT . According to Theorem 12.8 from [104], if Assumptions B1, B2 and B3 (implied by
assumptions A1, A2 , A3 and A4), we have that:

nGn
D−→

n→∞
χ2
LT .

In particular, in the proof of the above result, they also show that:

nG̃n = trace(Σ−1
T ĤLT ) D−→

n→∞
χ2
LT .

Now we show that F̃T = G̃n to conclude the proof. We denote L′(L(X′X)−1L′)−1L =
(αi,j)i,j∈{1,...,p} ∈ Mp(R). Then, with a computation similar from Equation (3.5), we
have:

ĤLT =
p∑

i,j=1
αi,jβ̂iβ̂

′
j.

Note that for i, j ∈ {1, . . . , p}, we have:

Σ−1
T β̂iβ̂

′
j =


λ−1

1 θ̂1
i θ̂

1
j . . . λ−1

1 θ̂1
i θ̂
T
j

... . . . ...
λ−1
T θ̂Ti θ̂

1
j . . . λ−1

T θ̂Ti θ̂
T
j
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Then,

nG̃n = trace
(
Σ−1
T ĤLT

)
=

p∑
i,j=1

αi,j
T∑
t=1

λ−1
t θ̂ti θ̂

t
j.

On the other hand, we have:

nF̃T = tr
(
Σ−1
ε,T ĤL

)
=
〈
Σ−1
ε,T , ĤL

〉
HS(H)

=
p∑

i,j=1

T∑
t=1

αi,jλ
−1
t

〈
ft ⊗ ft, θ̂i ⊗ θ̂j

〉
HS(H)

=
p∑

i,j=1

T∑
t=1

αi,jλ
−1
t

〈
ft, θ̂i

〉
H

〈
ft, θ̂j

〉
H

=
p∑

i,j=1

T∑
t=1

αi,jλ
−1
t θ̂ti θ̂

t
j

=nG̃n.

Finally we conclude that:

nF̃T = D−→
n→∞

χ2
LT .

3.7.3 Results from Operator Perturbations Theory

In this section, we invoke some results from operator perturbations theory to obtain an
exponential bound on

∥∥∥Σ̂−1
ε − Σ−1

ε

∥∥∥
HS(H)

, that is used in the proof of Theorem 11.
We want to apply Theorem 2 from Zwald and Blanchard [154].

Theorem 15 (Theorem 2 from [154]). Let A ∈ HS(H) be a symmetric positive operator
with eigenvalues λ1 > λ2 > . . . . For an integer r such that λr > 0, let δr = (λr − λr+1)/2
and δ̃r = δr ∧ δr−1.

Let B ∈ HS(H) a symmetric operator such that A + B is a positive operator with
simple non-zero eigenvalues and ‖B‖HS(H) ≤ δ̃r/2.
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Let Πr(A) denote the orthogonal projector onto the one-dimentionnal subspace of H
spanned by the rth eigenfunction of A. Then we have:

‖Πr(A)− Πr(A+B)‖HS(H) ≤
2 ‖B‖HS(H)

δ̃r
.

This theorem allows us to obtain the following result.

Lemma 11. Assume that A1, A2 and A3 are verified and that λ1, . . . , λT and λ̂1, . . . , λ̂T

are simple non-zero eigenvalues of Σε (resp. Σ̂ε). There exist η̃T such that for n ≥ η̃T ,
we have with probability 1− e−ξ:

∥∥∥Σ̂−1
ε − Σ−1

ε

∥∥∥
HS(H)

≤ ζ(n, ξ)
λT − ζ(n, ξ)

(
T∑
t=1

2
δ̃t

+ T

λT

)

Proof. We can use the spectral decomposition of the inverse operators and apply the
triangular inequality to obtain:

∥∥∥Σ̂−1
ε − Σ−1

ε

∥∥∥
HS(H)

=
∥∥∥∥∥
T∑
t=1

λ̂−1
t f̂t ⊗ f̂t − λ−1

t ft ⊗ ft
∥∥∥∥∥

HS(H)

=
∥∥∥∥∥
T∑
t=1

λ̂−1
t Π

f̂t
− λ−1

t Πft

∥∥∥∥∥
HS(H)

=
∥∥∥∥∥
T∑
t=1

λ̂−1
t (Π

f̂t
− Πft) + (λ̂−1

t − λ−1
t )Πft

∥∥∥∥∥
HS(H)

≤
T∑
t=1

λ̂−1
t

∥∥∥Π
f̂t
− Πft

∥∥∥
HS(H)

+
T∑
t=1
|λ̂−1
t − λ−1

t | ‖Πft‖HS(H)

According to Lemma 13, we have |λ̂t − λt| ≤ ζ(n, ξ). Thus (λT − ζ(n, ξ)) ≤ λ̂T ≤ (λT +
ζ(n, ξ)) with probability 1 − e−ξ. As ζ(n, ξ) −→

n→∞
0, there exists an integer N(ξ, λT ) ≥ 1

such that for n ≥ N(ξ, λT ), we have λT−ζ(n, ξ) > 0. For such n, we have with probability
1− e−ξ:

1
λ̂T
≤ 1
λT − ζ(n, ξ) .
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Then, note that for t ∈ {1, . . . , T} we have:

|λ̂−1
t − λ−1

t | =λ̂−1
t λ−1

t |λ̂t − λt|

≤λ−1
T λ̂−1

T ζ(n, ξ),

≤ 1
λT

ζ(n, ξ)
λT − ζ(n, ξ) .

As we have:

‖Πft‖HS(H) = ‖ft‖2
H = 1,

we obtain that:

T∑
t=1
|λ̂−1
t − λ−1

t | ‖Πft‖HS(H) ≤
T

λT

ζ(n, ξ)
λT − ζ(n, ξ)

By applying Lemma 12, for n ≥ ηT and with probability 1− e−ξ, we have:

T∑
t=1

λ̂−1
t

∥∥∥Π
f̂t
− Πft

∥∥∥
HS(H)

≤ζ(n, ξ)
λ̂T

T∑
t=1

2
δ̃t

≤ ζ(n, ξ)
λT − ζ(n, ξ)

T∑
t=1

2
δ̃t

(3.15)

Thus, for n ≥ N(ξ, λT ) ∨ ηT , we have with probability 1− e−ξ:

∥∥∥Σ̂−1
ε − Σ−1

ε

∥∥∥
HS(H)

≤ ζ(n, ξ)
λT − ζ(n, ξ)

(
T∑
t=1

2
δ̃t

+ T

λT

)

Lemma 12. Assume that A1, A2 and A3 are verified and that λ1, . . . , λT and λ̂1, . . . , λ̂T

are simple non-zero eigenvalues of Σε (resp. Σ̂ε). Let t ∈ {1, . . . , T}, denote δt = (λt −
λt+1)/2, δ̃t = min(δt, δt−1). Let Πft = ft ⊗ ft and Π

f̂t
= f̂t ⊗ f̂t the orthogonal projector

on the axis spanned by ft (resp. f̂t). Then there exists ηt > 0 such that for n ≥ ηt, we
have with probability 1− e−ξ:

∥∥∥Πft − Π
f̂t

∥∥∥
HS(H)

≤ 2ζ(n, ξ)
δ̃t

.
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Proof. Let t ∈ {1, . . . , T}. As ζ(n, ξ) −→
n→∞

0, according to Proposition 3, there exists ηt
such that for n ≥ ηt, we have with probability 1− e−ξ:

∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

≤ δ̃T
2 .

Then, every hypothesis of Theorem 15 is verified, and for n ≥ ηt, we have with probability
1− e−ξ:

∥∥∥Πft − Π
f̂t

∥∥∥
HS(H)

≤
2
∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

δ̃t
≤ 2ζ(n, ξ)

δ̃t

Lemma 13. If Assumptions A1, A2 and A3 are verified, for t ∈ {1, . . . , T}, we have with
probability 1− e−ξ:

|λ̂t − λt| ≤ ζ(n, ξ).

This lemma is an intermediate result in the proof of Theorem 3 from [154].

Proof. The result is a direct application of the Hoffman-Wielandt inequality in infinite
dimensional setting [20] and Theorem 3. Let t ∈ {1, . . . , T}, according to the Hoffman-
Wielandt inequality, we have:

|λ̂t − λt| ≤
∥∥∥Σ̂ε − Σε

∥∥∥
HS(H)

.

We conclude the proof by applying Theorem 3.

3.7.4 Proofs for the Kernel Trick

Proof of Theorem 12. We define the matrix:

Kε = 1
n


〈ε̂1, ε̂1〉H . . . 〈ε̂1, ε̂n〉H

... . . . ...
〈ε̂n, ε̂1〉H . . . 〈ε̂n, ε̂n〉H
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Let i, j ∈ {1, . . . , n}, remind that ε̂i = Φ(Y) � π⊥i , where π⊥i is the ith column of Π⊥ =
In −Π we have that:

〈ε̂i, ε̂j〉H =
〈
Φ(Y)� π⊥i ,Φ(Y)� π⊥j

〉
H

=
n∑

k,l=1
π⊥i,kπ

⊥
j,l 〈φ(Yk), φ(Yl)〉H

=π⊥i ′KYπ
⊥
j .

Thus we have:

Kε = 1
n

Π⊥KYΠ⊥.

Let f̂ be an eigenfunction of Σ̂ε associated to the non-zero eigenvalue λ̂ ∈ R+. We have
the eigen relation:

Σ̂εf̂ = λ̂f̂

Let j ∈ {1, . . . , n}, we compute the inner product of both side of the eigen equation with
ε̂j:

1
n

∑n
i=1

〈
ε̂i ⊗ ε̂if̂ , ε̂j

〉
H

= λ̂
〈
f̂ , ε̂j

〉
H

⇐⇒ 1
n

∑n
i=1 〈ε̂i, ε̂j〉H

〈
ε̂i, f̂

〉
H

= λ̂
〈
f̂ , ε̂j

〉
H

Let u =
(〈
f̂ , ε̂1

〉
H
, . . . ,

〈
f̂ , ε̂n

〉
H

)
in Rn, we have uj =

〈
f̂ , ε̂j

〉
H
. We remark that:

(Kεu)j = 1
n

n∑
i=1
〈ε̂i, ε̂j〉H

〈
ε̂i, f̂

〉
H
.

Thus, we have:

Kεu = λ̂u.

It proves that each eigenvalue of Kε is an eigenvalue of Σ̂ε.

On the other hand, let u = (u1, . . . , un) ∈ Rn be a unit eigenvector of Kε associated
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to the non-zero eigenvalue ν ∈ R+, we know that:

Kεu = νu,

and we deduce from this equality that for i ∈ {1, . . . , n}, we have:

ui = 1
nν

n∑
j=1
〈ε̂i, ε̂j〉H uj

= 1
nν
〈ε̂i, ε̂� u〉H .

Then we observe that:

ε̂� u =
n∑
i=1

1
nν
〈ε̂i, ε̂� u〉H ε̂i

= 1
nν

n∑
i=1

ε̂i ⊗ ε̂i(ε̂� u)

ε̂� u =1
ν

Σ̂ε(ε̂� u).

This equality shows that each eigenvalue ν of Kε is an eigenvalue of Σ̂ε. We can conclude
that Σ̂ε and Kε have the same spectra.

Now we consider ε̂ � u ∈ H, an eigenfunction of Σ̂ε associated to the eigenvalue λ̂.
Then a unit eigenfunction f̂ of Σ̂ε is such that:

f̂ = 1
‖ε̂� u‖H

ε̂� u,

where:

‖ε̂� u‖2
H =

〈
n∑
i=1

uiε̂i,
n∑
j=1

uj ε̂j

〉
H

=
n∑
i=1

ui

 n∑
j=1
〈ε̂i, ε̂j〉H uj


=

n∑
i=1

ui[nλ̂ui]

=nλ̂
n∑
i=1

u2
i

=nλ̂
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Proof of Theorem 14. Note that:

ψ =Ũ′T ŨT

=
T∑
t=1

ũtũ
′
t

=
(

T∑
t=1

ũt,iũt,j

)
i,j∈{1,...,n}

Thus we have:

ΨKY =
 T∑
t=1

n∑
j=1

ũt,iũt,j 〈φ(Yj), φ(Yk)〉H


i,k∈{1,...,n}

=
 T∑
t=1

ũt,i

〈
n∑
j=1

ũt,jφ(Yj), φ(Yk)
〉
H


i,k∈{1,...,n}

=
(

T∑
t=1

ũt,i 〈(Φ(Y)� ũt), φ(Yk)〉H
)
i,k∈{1,...,n}

=
(

T∑
t=1

λ̂
− 1

2
t ũt,i

〈
f̂t, φ(Yk)

〉
H

)
i,k∈{1,...,n}

.

We also have:

KYΨKY =
(

T∑
t=1

λ̂−1
t

〈
f̂t, φ(Yi)

〉
H

〈
f̂t, φ(Yj)

〉
H

)
i,j∈{1,...,n}

∈Mn(R).

If we denote R = (ri,j)i,j∈{1,...,n}, we have:

KYΨKYR =
 T∑
t=1

n∑
j=1

rj,kλ̂
−1
t

〈
f̂t, φ(Yi)

〉
H

〈
f̂t, φ(Yj)

〉
H


i,k∈{1,...,n}

∈Mn(R).

If v is an eigenvector of Kε,L,T associated to the eigenvalue ξ, we have:

KYΨKYRv=ξv.
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Thus, for i ∈ {1, . . . , n}, we have the relation:

T∑
t=1

n∑
j,k=1

rj,kλ̂
−1
t

〈
f̂t, φ(Yi)

〉
H

〈
f̂t, φ(Yj)

〉
H
vk = ξvi

Now we show that Φ(Y)�ΨKYRv is an eigenfunction of Σ̂−1
ε ĤL. Note that:

ΨKYRv =


∑T
t=1

∑n
j=1

∑n
k=1 λ̂

− 1
2

t ũt,1
〈
f̂t, φ(Yj)

〉
H
rj,kvk

...∑T
t=1

∑n
j=1

∑n
k=1 λ̂

− 1
2

t ũt,n
〈
f̂t, φ(Yj)

〉
H
rj,kvk

 .

Thus,

Φ(Y)�ΨKYRv =
n∑
i=1

T∑
t=1

n∑
j=1

n∑
k=1

λ̂
− 1

2
t ũt,i

〈
f̂t, φ(Yj)

〉
H
rj,kvkφ(Yi)

=
T∑
t=1

n∑
j=1

n∑
k=1

λ̂
− 1

2
t

〈
f̂t, φ(Yj)

〉
H
rj,kvk

n∑
i=1

ũt,iφ(Yi)

=
T∑
t=1

n∑
j,k=1

〈
f̂t, φ(Yj)

〉
H
rj,k

λ̂t
vkf̂t.

Remark that for h ∈ H, t ∈ {1, . . . , T} and i, j ∈ {1, . . . , n}, we have:

f̂t ⊗ f̂tφ(Yi)⊗ φ(Yj)h = 〈h, φ(Yi)〉H
〈
f̂t, φ(Yj)

〉
H
f̂t.

Then,

Σ̂−1
ε ĤL(Φ(Y)�ΨKYRv) =

T∑
t=1

n∑
i,j=1

ri,j

λ̂t
f̂t ⊗ f̂tφ(Yi)⊗ φ(Yj)

T∑
s=1

n∑
k,`=1

〈
f̂s, φ(Yk)

〉
H
rk,`

λ̂s
v`f̂s

=
T∑
t=1

n∑
i,j=1

ri,j

λ̂t

〈
f̂t, φ(Yj)

〉
H

T∑
s=1

n∑
k,`=1

〈
f̂s, φ(Yk)

〉
H
rk,`

λ̂s

〈
f̂s, φ(Yi)

〉
H
v`︸ ︷︷ ︸

=ξvi

f̂t

=
T∑
t=1

n∑
i,j=1

λ̂−1
t ri,j

〈
f̂t, φ(Yj)

〉
H
ξvif̂t

=ξ(Φ(Y)�ΨKYRv)

157



Partie , Chapter 3 – General Hypothesis Testing in the Feature Space

Thus, Φ(Y)�ΨKYRv is an eigenvector of Σ̂−1
ε ĤL associated to the eigenvalue ξ. We can

conclude that every eigenvalue of Kε,L,T is an eigenvalue of Σ̂−1
ε ĤL. Now we consider ĝ,

an eigenvector of Σ̂−1
ε ĤL associated to the eigenvalue ξ. We have:

Σ̂−1
ε ĤLĝ = ξĝ.

We also have that:

Σ̂−1
ε ĤLĝ =

T∑
t=1

n∑
i,j=1

λ̂−1
t ri,j

〈
f̂t, φ(Yi)

〉
H
〈φ(Yj), ĝ〉H f̂t

We show that the vector v = (〈φ(Y1), ĝ〉H , . . . , 〈φ(Yn), ĝ〉H) in Rn is an eigenvector of
Kε,L,T associated to the eigenvalue ξ:

Kε,L,Tv =KYΨKYRv

=
 T∑
t=1

n∑
j,k=1

rj,kλ̂
−1
t

〈
f̂t, φ(Yi)

〉
H

〈
f̂t, φ(Yj)

〉
H
〈φ(Yi), ĝ〉H


i∈{1,...,n}

=


〈

T∑
t=1

n∑
i,j=1

λ̂−1
t ri,j

〈
f̂t, φ(Yi)

〉
H
〈φ(Yj), ĝ〉H f̂t︸ ︷︷ ︸

=ξĝ

, φ(Yi)
〉

H


i∈{1,...,n}

=ξv.

We conclude that every eigenvalue of Σ̂−1
ε ĤL is an eigenvalue of Kε,L,T . As a result,

the operator Σ̂−1
ε ĤL and the matrix Kε,L,T share the same spectrum. Let v be a unit

eigenvector of Kε,L,T , we know that Φ(Y) � ΨKYRv ∈ H is an eigenfunction of Σ̂−1
ε ĤL

and we have:

‖Φ(Y)�ΨKYRv‖2
H =v′RKYΨ(KYΨKYRv)

=ξv′RKYΨv.

Thus, ĝ = 1√
ξv′RKYΨv

Φ(Y)�ΨKYRv is a unit eigenfunction of Σ̂−1
ε ĤL.
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3.7.5 Results on Orthogonal Projectors

Lemma 14. Let Π = (πi,j)i,j∈{1,...,n} ∈ Mn(R) be the matrix of an orthogonal projector
of rank p, then we have:

n∑
i=1

n∑
j=1

πi,j
2 = p,

n∑
i=1

πi,i
2 ≤ p,

n∑
i=1

(1− πi,i)2 ≤ n− p.

Proof. As Π2 = Π, we directly have ∑n
j=1 πi,j

2 = πi,i and by computing the trace we find
that:

n∑
i=1

n∑
j=1

πi,j
2 = p.

Then:
n∑
i=1

πi,i
2 ≤

n∑
i=1

n∑
j=1

πi,j
2

≤p,
n∑
i=1

(1− πi,i)2 =
n∑
i=1

(1− 2πi,i + πi,i
2)

≤n− p.

Lemma 15. If Π = (πi,j)i,j∈{1,...,n} ∈Mn(R) is the matrix of an orthogonal projector and
f = (f1, . . . , fn) ∈ Hn, then we have that:

‖Πf‖Hn ≤ ‖f‖Hn .

Proof. Let (ei)i≥1 an orthonormal basis of H. For s ≥ 1, let f s = (f s1 , . . . , f sn) in Rn

where for i ∈ {1, . . . , n}, f si = 〈fi, es〉H. Note that fi = ∑
s≥1 f

s
i es, ‖fi‖

2
H = ∑

s≥1 f
s
i

2 and
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‖f s‖2 = ∑n
j=1 f

s
j

2. Then we have:

‖f‖2
Hn =

n∑
i=1

∑
s≥1

f si
2

=
∑
s≥1

n∑
i=1

f si
2

=
∑
s≥1
‖f s‖2 .

Considering Π as a projector from Rn to Rn, we have (Πf s)i = ∑n
j=1 πi,jf

s
j and ‖Πf s‖2 =∑n

i=1(∑n
j=1 πi,jf

s
j )2. By property of an orthogonal projector, we have ‖Πf s‖ ≤ ‖f s‖. Now

we compute ‖Πf‖H:

‖Πf‖H =
n∑
i=1

∥∥∥∥∥∥
n∑
j=1

πi,jfj

∥∥∥∥∥∥
2

H

=
n∑
i=1

∥∥∥∥∥∥
∑
s≥1

n∑
j=1

πi,jf
s
j es

∥∥∥∥∥∥
2

H

=
n∑
i=1

∑
s≥1

 n∑
j=1

πi,jf
s
j

2

=
∑
s≥1
‖Πf s‖2

≤
∑
s≥1
‖f s‖2

≤‖f‖2
Hn .

Lemma 16. Let Π = (πi,j)i,j∈{1,...,n} ∈ Mn(R) be the matrix of an orthogonal projector
of rank p, and let v1, . . . , vp ∈ Rn be an orthonormal basis of Im(Π) ⊂ Rn. Then, for
i ∈ {1, . . . , n}, the column πi = (πi,j)j∈{1,...,n} is such that:

πi =
p∑
s=1

vs,ivs,
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and for i, j ∈ {1, . . . , n}, we have:

πi,j =
p∑
s=1

vs,ivs,j.

Proof. The results are direct from Equation (3.9).

3.7.6 McDiarmid Inequality

Theorem 16 (McDiarmid inequality [94]). If Y1, . . . , Yn are n i.i.d. random variables in
a measurable space Y and the function

Yn −→ R

f : y1, . . . , yn 7−→ f(y1, . . . , yn)

is such that for all i ∈ {1, . . . , n}, we have:

sup
y1,...,yn,yi′∈Y

∣∣∣f(y1, . . . , yi, . . . , yn)− f(y1, . . . , yi′ , . . . , yn)
∣∣∣ ≤ ci,

then we have with probability lower than e−ξ that:

f(y1, . . . , yn)− E
(
f(y1, . . . , yn)

)
≥

√√√√ξ

2

n∑
i=1

c2
i ,

and we also have with probability lower than e−ξ that:

E
(
f(y1, . . . , yn)

)
− f(y1, . . . , yn) ≥

√√√√ξ

2

n∑
i=1

c2
i .
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Chapter 4

INFLUENCE FUNCTIONS FOR THE KFDA
STATISTIC

Identifying the sub-population driving a significant difference between several condi-
tions is a recurrent task of single-cell data analysis but there is no dedicated tool yet. In
Chapter 2, we suggested that our visualization tool based on the Kernel Fisher Discrim-
inant Axis could allow to identify a sub-population of interest that supports a detected
global difference. While efficient in practice, this approach is only qualitative, and the def-
inition of such a detected sub-population yet remains subjective. A possible quantitative
measure of the participation of a cell or a group of cell to the rejection of the null hy-
pothesis could be handled by robust statistics. The field of robust statistics aims to avoid
misleading results due to overly influential outlier observations when analysing a dataset.
To this aim, influence functions are defined to quantify the influence of an observation on
a statistic, and Gateaux derivatives are generalized influence functions to quantify the in-
fluence of a group of observations [61]. Thus, Gateaux derivatives and influence functions
have the potential to quantify the influence of a cell or of a group of cells on the outcome
of the test. In general, Gateaux derivatives are used as a way to solve an optimization
problem by identifying the zeros of the Gateaux derivative of the statistical functional
associated to the loss [2, 76]. Influence functions may be defined as a particular case of
Gateaux derivative and are often used to assess the robustness of a statistic [34, 67] and
to detect influential outliers, that has strong links with influences measured through Cook
distances [30]. In the context of single-cell data analysis, isolated cells are often considered
as outliers, and sub-populations may be considered as biologically significant, thus we are
also interested in the influence of groups of observations and consider Gateaux derivatives
as a practical tool, which is not usual. Gateaux derivatives and influence functions have
been applied to various kernel methods, and to test procedures [48], but not to kernel
tests yet. Beyond single-cell sub-population detection, studying the robustness of kernel
tests in general is as such a question of interest. This chapter presents a work initiated
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on Gateaux derivatives for kernel testing that still needs to be pursued.

In this chapter, we introduce Gateaux derivatives and influence functions (Section 4.1).
In particular, we introduce partial Gateaux derivatives and partial influence functions to
study statistics that are functions of two probability distributions. The second section
deals with the application of these concepts on kernel tests (Section 4.2).

4.1 Gateaux Derivatives and Influence Functions

In this section, we introduce Gateaux derivatives and influence functions in Hilbert spaces.
This introduction relies on the presentation proposed in [2], where they derive the Gateaux
derivative and influence function of the kernel canonical correlation analysis. We consider
a general measurable Hilbert space (Y ,Y) endowed with the inner product 〈·, ·〉Y . Let
P(Y) be the set of all the probability distributions on Y and P̃(Y) be a convex subset of
P(Y). For i ≥ 1, we also denote P̃i(Y) the subspace of P̃(Y) containing all the probability
distributions having a finite ith-order moment.

4.1.1 Introduction to Gateaux Derivatives and Influence Func-
tions

Statistical Functionals

Gateaux derivatives and influence functions are defined as the generalization of the con-
cept of derivation to statistics considered as functions of probability distributions. These
functions taking probability distributions as inputs are called statistical functionals be-
cause they output statistics when applied to empirical probability distributions.

Definition 8 (Statistical Functional). A statistical functional is a function T (}) from
P(Y) to any convenient space F.

The notation } is used to highlight that the arguments of statistical functionals are
probability distributions. For instance, the statistical functional of the mean m(}) is such
that for P ∈ P̃1(Y), we have:

m(P) =
∫
Y
y dP(y) = EP(d y).
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Similarly, the statistical functional of the covariance S(}) is such that for P ∈ P̃2(Y), we
have:

S(P) = EP(Y ⊗ Y )−m(P)⊗m(P).

Contaminated Distributions

To define the Gateaux derivative of a statistical functional, we first recall the definition
of the derivative of a linear operator f of a normed space F. Let u, v ∈ F, when it exists,
the derivative of f at u in the direction of v is defined as the following limit:

lim
ε→0
ε>0

f(u+ εv)− f(u)
ε

.

This definition relies on the fact that the function ε ∈ R 7→ u + εv ∈ F is continuous at
0. This is not the case in P(Y) where the function ε 7→ P + εQ is not continuous at 0 in
general. To define the derivative of a statistical functional, the idea of Gateaux is to use
contaminated distributions

Definition 9 (Contaminated distribution). Let P,Q ∈ P̃(Y) and ε > 0. The probability
distribution P contaminated by Q at the level ε, denoted P(Q,ε) is defined by:

P(Q,ε) = P + ε(Q− P).

When P,Q are in P̃(Y), the convexity of P̃(Y) ensures that the mapping ε 7→ P(Q,ε)

is continuous at 0. For ε ∈ [0, 1], the quantity P(Q,ε) is a mixture of P and Q weighted by
(1− ε) and ε. It can be interpreted as the probability distribution P where a portion ε of
its mass has been ’contaminated’ by Q.

Let P,Q ∈ P̃2(Y) and ε > 0, the statistical functional of the mean m(}) and of the
covariance S(}) at the contaminated distribution P(Q,ε) are such that:

m(P(Q,ε)) =m(P) + ε
(
m(Q)−m(P)

)
, (4.1)

S(P(Q,ε)) =S(P) + ε
(
S(Q)− S(P) +

(
m(Q)−m(P)

)⊗2
)

+ ε2
(
m(Q)−m(P)

)⊗2
. (4.2)
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Proof. For the statistical functional of the mean m(}), we have:

m(P(Q,ε)) =
∫
Y
y d

(
P + ε(Q− P)

)
(y)

=
∫
Y
y dP(y) + ε

(∫
Y
ydQ(y)−

∫
Y
y dP(y)

)
=m(P) + ε

(
m(Q)−m(P)

)
.

For the statistical functional of the covariance S(}), we have:

S(P(Q,ε)) =EP(Q,ε)(Y ⊗ Y )−m(P(Q,ε))⊗m(P(Q,ε)),

where:

EP(Q,ε)(Y ⊗ Y ) =EP(Y ⊗ Y ) + ε
(
EQ(Y ⊗ Y )− EP(Y ⊗ Y )

)
=S(P) +m(P)⊗2 + ε

(
S(Q)− S(P) +m(Q)⊗2 −m(P)⊗2

)
,

and

m(P(Q,ε))⊗m(P(Q,ε)) =
(
m(P) + ε

(
m(Q)−m(P)

))⊗2

=m(P)⊗2 + ε
(
m(P)⊗

(
m(Q)−m(P)

)
+
(
m(Q)−m(P)

)
⊗m(P)

)
+ ε2

(
m(Q)−m(P)

)⊗2

=m(P)⊗2 + ε
(
m(P)⊗m(Q) +m(Q)⊗m(P)− 2m(P)⊗2

)
+ ε2

(
m(Q)−m(P)

)⊗2

We sum the two terms and focus on the terms multiplied by ε, that are equal to:

(
S(Q)− S(P) +m(Q)⊗2 −m(P)⊗2

)
−
(
m(P)⊗m(Q) +m(Q)⊗m(P)− 2m(P)⊗2

)
=S(Q)− S(P) +

(
m(Q)−m(P)

)⊗2
.
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Gateaux Derivatives

The Gateaux derivative measures the impact of an infinitesimal contamination of a prob-
ability distribution on a statistical functional.

Definition 10 (Gateaux derivative). Let P,Q ∈ P̃(Y). When it exists, the Gateaux
derivative of a statistical functional T (}) at P in the direction of Q is denoted T ′

(
P,Q

)
and is defined as the following limit:

T ′
(
P,Q

)
= lim

ε→0
ε>0

T
(
P(Q,ε)

)
− T (P)

ε
.

Observe that according to this definition, every classical formula on the derivative
of products, quotients and compositions hold for Gateaux derivatives. The Gateaux
derivative of the statistical functionals of the mean m(}) and covariance S follow directly
from Equations (4.1) and (4.2):

m′
(
P,Q

)
= m(Q)−m(P),

S ′
(
P,Q

)
= S(Q)− S(P) +

(
m(Q)−m(P)

)⊗2
.

Influence Functions

Influence functions are a particular case of Gateaux derivatives where the contaminating
probability distribution Q is reduced to a Dirac δy, y ∈ Y . The influence function of
a statistical functional with respect to δy aims at capturing the influence of a single
observation y of the input space Y on the statistical functional.

Definition 11 (Influence function). Let P ∈ P̃(Y) and y ∈ Y. When it exists, the
influence of y on a statistical functional T (}) at P, denoted IT (P, y) is defined such that:

IT (P, y) = T ′
(
P, δy

)
.

According to [112], the influence function of a statistical functional T (}) can be in-
terpreted as the first term of a power series expansion of T (}) at P(δy ,ε):

T (P(δy ,ε)) = T + ε IT (P, y) + εψ(ε),
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where lim
ε→0
ε>0

ψ(ε) = 0. Let P ∈ P̃2(Y) and y ∈ Y . The influence of y on the statistical

functionals of the mean and covariance at P is such that:

Im(P, y) = y −m(P),

IS(P, y) =
(
y −m(P)

)⊗2
− S(P).

Influence of a Sub-Group of Points and Gateaux Derivatives

Influence functions provide the influence of a single observation and are used to assess
the robustness of an estimator. In single-cell applications, we may be interested in the
measure of the influence of a group of observations. That can be done with empirical
Gateaux derivatives.

Let Y = (Y1, . . . , Yn) be a n-sample of i.i.d. observations such that Y1 ∼ P ∈ P̃(Y).
We assume that P̃(Y) is defined so that the empirical distribution Pn associated to Y
is in P̃(Y) almost-surely. Let Z = (Z1, . . . , Zq) be a sub-sample of Y. We would like
to assess the influence of Z on a statistical functional computed with respect to Pn. Let
Pn,q be the discrete distribution associated to the points in Z and T (}) be a statistical
functional. The influence of the group of observations Z on T (}) can be evaluated through
the Gateaux derivative T ′

(
Pn,Pn,q

)
of T (}) at Pn in the direction of Pn,q. Note that when

Z is reduced to a single point y of Y, this quantity corresponds to the influence function
IT (P, y).

4.1.2 Advanced Concepts for Gateaux Derivative and Influence
Function Adapted to Kernel Testing

Two generalizations of Gateaux derivatives and influence function are needed to define
those of the kernel test approaches of the previous chapters. The first generalization is
to define the Gateaux derivatives and influence functions of statistical functionals that
output elements of a RKHS H associated to a p.d. kernel k(·, ·), or Hilbert-Schmidt
operators from H to H. To do so, we define P̃H(Y) = {P ∈ P̃(Y)| EP

(
k(Y, Y )

)
< ∞},

the subset of P̃(Y) that contains all the probability distributions for which the kernel co-
variance operators are well defined. Since kernel testing is inherently based on quantities
defined over several probability distributions to compare, the second generalization is to
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define statistical functional defined on joint distributions. Here, we only focus on statis-
tical functionals defined on two probability distribution, but the generalization to more
than two probability distribution would be needed for the Gateaux derivative and influ-
ence function of the truncated Hotelling-Lawley trace statistic. The Gateaux derivatives
and influence functions defined on such statistical functionals are called partial Gateaux
derivatives and partial influence function and were introduced in [109]. A last tool of in-
terest is the derivation of the Gateaux derivatives and influence functions of the statistical
functionals associated to the eigenfunctions and eigenvalues of a statistical functional that
outputs a self-adjoint Hilbert-Schmidt operator. This tool has been developed to detect
the influential observations of the Kernel Principal Component Analysis [34, 67].

Let (Y ,Y) be a measurable space and k(·, ·) a p.d. kernel associated to the separable
RKHS H and the feature map φ(·). The statistical functional of the kernel mean embed-
ding µ(}) and the kernel covariance operator Σ(}) are defined such that for P ∈ P̃H(Y),
we have µ(P) = µ and Σ(P) = Σ, where µ and Σ are defined in Chapter 1. The Gateaux
derivatives and influence functions of µ(}) and Σ(}) are similar to those of m(}) and
S(}) respectively. Let P,Q ∈ P̃H(Y) and y ∈ Y , we have the following Gateaux deriva-
tives and influence functions:

µ′
(
P,Q

)
= µ(Q)− µ(P),

Σ′
(
P,Q

)
= Σ(Q)− Σ(P) +

(
µ(Q)− µ(P)

)⊗2
,

Iµ(P, y) = φ(y)− µ(P),

IΣ(P, y) =
(
φ(y)− µ(P)

)⊗2
− Σ(P).

Let Y = (Y1, . . . , Yn) be a n-sample of i.i.d. observations such that Y1 ∼ P and Z =
(Z1, . . . , Zq) be a sub-sample of Y. Let Pn be the empirical distribution associated to Y
and Pn,q the discrete distribution associated to the points in Z. The influence of Z on the
statistical functionals of the kernel mean embedding and the kernel covariance operator
are such that:

µ′
(
Pn,Pn,q

)
= µ̂Z − µ̂,

Σ′
(
Pn,Pn,q

)
= Σ̂Z − Σ̂ + (µ̂Z − µ̂)⊗2
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where µ̂ = n−1∑n
j=1 φ(Yj) and µ̂Z = q−1∑q

j=1 φ(Zj) are the empirical kernel co-
variance associated to Y and Z respectively, and Σ̂ = n−1∑n

j=1

(
φ(Yj) − µ̂

)⊗2
and

Σ̂Z = q−1∑q
j=1

(
φ(Zj) − µ̂Z

)⊗2
are the empirical kernel covariance operators associated

to Y and Z respectively.

Diagonalization of Symmetric Operators

Let A(}) a statistical functional such that for P ∈ P̃H(Y), A(P) is a self-adjoint Hilbert-
Schmidt operator with an orthonormal set of eigenvectors (fA(P)

t )t≥1 associated to the
distinct non-increasing eigenvalues (λA(P)

t )t≥1. Let (fAt (}))t≥1 and (λAt (}))t≥1 the statis-
tical functionals such that for t ≥ 1, we have fAt (P) = f

A(P)
t and fAt (P) = λ

A(P)
t . The

influence functions of fAt (}) and λAt (}) have been simultaneously proposed in [34, 67].
We generalize these results by proposing their Gateaux derivatives:

Theorem 17. Let P,Q ∈ P̃H(Y). For t ≥ 1, the Gateaux derivatives of fAt (}) and λAt (})
at P in the direction of Q are such that:

λAt
′(P,Q) =

〈
A′
(
P,Q

)
fAt (P), fAt (P)

〉
H
,

fAt
′(P,Q) =

∑
t′≥1
t′ 6=t

〈
A′
(
P,Q

)
fAt (P), fAt′ (P)

〉
H

λAt (P)− λAt′ (P) fAt′ (P).

The previous theorem generalizes the influence functions defined in [34] given in the
following corollary.

Corollary 1. Let P ∈ P̃H(Y) and y ∈ Y. The influence of y on fAt (}) and λAt (}) at P
are such that:

IλAt (P, y) =
〈

IA(P, y)fAt (P), fAt (P)
〉
H
,

IfAt (P, y) =
∑
t′≥1
t′ 6=t

〈
IA(P, y)fAt (P), fAt′ (P)

〉
H

λAt (P)− λAt′ (P) fAt (P).

Proof. We adapt the proof of [34] for the influence functions to the Gateaux derivatives.
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Note that for any statistical functional T (}), we have the following power serie expansion:

T (P(Q,ε)) = T (P) + εT ′
(
P,Q

)
+ εψ(ε),

where lim
ε→0
ε>0

ψ(ε) = 0. Thus, we have:

A
(
P(Q,ε)

)
= A(P) + εA′

(
P,Q

)
+ εψHS(H)(ε),

fAt

(
P(Q,ε)

)
= fAt (P) + εfAt

′(P,Q)+ εψH(ε),

λAt

(
P(Q,ε)

)
= λAt (P) + ελAt

′(P,Q)+ εψR(ε),

(4.3)

where ψHS(H)(ε) ∈ HS(H), ψH(ε) ∈ H and ψR(ε) ∈ R with lim
ε→0
ε>0

∥∥∥ψHS(H)(ε)
∥∥∥

HS(H)
= 0,

lim
ε→0
ε>0
‖ψH(ε)‖H = 0 and lim

ε→0
ε>0

ψR(ε) = 0. Let t ≥ 1. We have the following eigen-equation for

the statistical functionals:

A(})fAt (}) = λAt (})fAt (}).

If we substitute every element of this eigen-equation applied on P(Q,ε) by the associated
power serie expansion of Equations (4.3), we obtain:

(
A(P) + εA′

(
P,Q

)
+ εψHS(H)(ε)

)(
fAt (P) + εfAt

′(P,Q)+ εψH(ε)
)

=
(
λAt (P) + ελAt

′(P,Q)+ εψR(ε)
)(
fAt (P) + εfAt

′(P,Q)+ εψH(ε)
)
.

From now, we omit the probability distribution P on which are evaluated the statistical
functional so that A(P) is denoted A and we omit the probability distributions P and Q
on which are evaluated the Gateaux derivatives so that A′

(
P,Q

)
becomes A′, so that the

previous equation becomes:
(
A+ εA′ + εψHS(H)(ε)

)(
fAt + εfAt

′ + εψH(ε)
)

=
(
λAt + ελAt

′ + εψR(ε)
)(
fAt + εfAt

′ + εψH(ε)
)
.

Then we develop this equation and use that AfAt = λAt f
A
t to obtain a power serie
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expansion on each side of the equation. By identifying the ε-terms, we find that:

A′fAt + AfAt
′ = λAt

′
fAt + λAt f

A
t

′
. (4.4)

Now consider the norm of fAt (}), we have:
∥∥∥fAt (P(Q,ε))

∥∥∥2

H
=
∥∥∥fAt + εfAt

′ + εψH(ε)
∥∥∥2

H

=
∥∥∥fAt ∥∥∥2

H
+ 2ε

〈
fAt , f

A
t

′ + ψH(ε)
〉
H

+ ε2
∥∥∥fAt ′ + ψH(ε)

∥∥∥2

H
.

That leads to:

N ′ = 2
〈
fAt , f

A
t

′
〉
H
,

where N(}) is the statistical functional defined such that N(P) =
∥∥∥fAt (P)

∥∥∥
H
. As we know

that
(
fAt
)
t≥1

is an orthonormal set of eigenfunctions, we also know that N(}) is actually
a constant equal to 1, and its Gateaux derivative is thus equal to 0. We deduce that:

〈
fAt , f

A
t

′
〉
H

= 0.

We take advantage of this orthogonality by computing the inner product between the
terms of Equation (4.4) and fAt (P) on a first hand, and fAt′ , for t′ 6= t on a second hand.
First, we have:

〈
A′fAt + AfAt

′
, fAt

〉
H

=
〈
λAt
′
fAt + λAt f

A
t

′
, fAt

〉
H
.

As A is self-adjoint and
〈
fAt
′
, AfAt

〉
H

= λAt
〈
fAt
′
, fAt

〉
H
, we have:

〈
A′fAt , f

A
t

〉
H

+
〈
fAt
′
, AfAt

〉
H︸ ︷︷ ︸

=0

= λAt
′
〈
fAt , f

A
t

〉
H︸ ︷︷ ︸

=1

+ λAt

〈
fAt
′
, fAt

〉
H︸ ︷︷ ︸

=0

.

⇐⇒
〈
A′fAt , f

A
t

〉
H

= λAt
′
.

That proves the expression of the Gateaux derivative of λAt (}). Secondly, for t′ 6= t, we
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have: 〈
A′fAt + AfAt

′
, fAt′

〉
H

=
〈
λAt
′
fAt + λAt f

A
t

′
, fAt′

〉
H

⇐⇒
〈
A′fAt , f

A
t′

〉
H

+ λAt′

〈
fAt
′
, fAt′

〉
H

= λAt
′
〈
fAt , f

A
t′

〉
H︸ ︷︷ ︸

=0

+ λAt

〈
fAt
′
, fAt′

〉
H
.

By reordering the equation, we obtain that:

〈
fAt
′
, fAt′

〉
H

=

〈
A′fAt , f

A
t′

〉
H

λAt − λAt′
.

Since (fAt )t≥1 is an orthonormal basis of H and
〈
fAt , f

A
t
′〉
H

= 0, we conclude that:

fAt
′ =

∑
t′≥1
t′ 6=t

〈
A′fAt , f

A
t′

〉
H

λAt − λAt′
fAt′ .

Partial Gateaux Derivatives and Partial Influence Functions

When a statistic is defined with respect to several samples, the associated statistical
functional should be defined accordingly. For instance, let P1,P2 ∈ P(Y), the statistical
functional associated to the within-group covariance ΣW (},}) and the between-group
covariance ΣB(},}) are such that:

ΣW (P1,P2) = n1

n
Σ(P1) + n2

n
Σ(P2),

ΣB(P1,P2) = n1n2

n2

(
µ(P1)− µ(P2)

)⊗2
,

where n1, n2 ≥ 1 and n1+n2 = n. To properly define the Gateaux derivative and influence
function of such statistical functionals, the partial Gateaux derivative and partial influence
function have been introduced [109]. The partial Gateaux derivative and partial influence
function rely on the generalization of contaminated distribution to joint distributions.

Definition 12 (Joint contaminated distribution). Let P1,P2,Q1,Q2 ∈ P̃(Y), and ε > 0.
The joint probability distribution (P1,P2) contaminated by (Q1,Q2) at the level ε, denoted
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(P1,P2)(Q1,Q2),ε, is defined such that:

(P1,P2)(Q1,Q2),ε =
(
P(Q1,ε)

1 ,P(Q2,ε)
2

)

Then the partial Gateaux derivative and partial influence function are defined similarly
to the Gateaux derivative and influence function.

Definition 13 (Partial Gateaux derivative). Let P1,P2,Q1,Q2 ∈ P̃(Y). When it exists,
the partial Gateaux derivative of a statistical functional T (},}) at (P1,P2) in the direction
of (Q1,Q2) is denoted T ′

(
(P1,P2), (Q1,Q2)

)
and is defined as the following limit:

T ′
(
(P1,P2), (Q1,Q2)

)
= lim

ε→0
ε>0

T
(

(P1,P2)(Q1,Q2),ε
)
− T (P1,P2)

ε
.

Definition 14 (Partial influence function). Let P1,P2 ∈ P̃(Y) and y ∈ Y. When it
exists, the partial influence of y contaminating P1 and letting P2 unchanged on a statistical
functional T (},}), denoted IT,P2(P1, y), is defined such that:

IT,P2(P1, y) = T ′
(
(P1,P2), (δy,P2)

)
.

Similarly, the partial influence of y contaminating P2 and letting P1 unchanged on a
statistical functional T (},}), denoted IT,P1(P2, y), is defined such that:

IT,P1(P2, y) = T ′
(
(P1,P2), (P1, δy)

)
.

Let Q1,Q2 ∈ P̃2(Y), we find the following results:

ΣB
′
(
(P1,P2), (Q1,Q2)

)
= n1n2

n

((
µ(P1)− µ(P2)

)
⊗
(
µ′
(
P1,Q1

)
− µ′

(
P2,Q2

))
+
(
µ′
(
P1,Q1

)
− µ′

(
P2,Q2

))
⊗
(
µ(P1)− µ(P2)

))
,

ΣW
′
(
(P1,P2), (Q1,Q2)

)
= n1

n
Σ′
(
P1,Q1

)
+ n2

n
Σ′
(
P2,Q2

)
.

Let (fΣW
t (},}))t≥1 be the statistical functionals of the orthonormal eigenfunctions of

ΣW (},}) and (λΣW
t (},}))t≥1 be the sequence of statistical functionals of associated
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eigenvalues. A direct application of Theorem 17 gives that:

λΣW
t

′((P1,P2), (Q1,Q2)
)

=
〈

ΣW
′
(
(P1,P2), (Q1,Q2)

)
fΣW
t (P1,P2), fΣW

t (P1,P2)
〉
H
,

fΣW
t

′((P1,P2), (Q1,Q2)
)

=
∑
t′≥1
t′ 6=t

〈
ΣW

′
(
(P1,P2), (Q1,Q2)

)
fΣW
t (P1,P2), fΣW

t′ (P1,P2)
〉
H

λΣW
t (P1,P2)− λΣW

t′ (P1,P2)
fΣW
t′ (P1,P2).

4.2 Application of Gateaux Derivative and Influence
Function to Kernel Tests

4.2.1 Gateaux Derivatives of Kernel Tests Statistics

Gateaux Derivative of the MMD Statistic

Let MMD2(},}) be the statistical functional of the biased squared MMD statistic such
that for P1,P2 ∈ P̃H(Y), we have:

MMD2(},}) = ‖∆(},})‖2
H ,

where ∆(},}) is such that for P1,P2 ∈ P̃H(Y) we have ∆(P1,P2) = µ(P1) − µ(P2).
According to the expression of ∆(},}), for P1,P2,Q1,Q2 ∈ P̃H(Y), we have the following
Gateaux derivative:

∆′
(
(P1,P2), (Q1,Q2)

)
=∆(Q1,Q2)−∆(P1,P2)

=µ(Q1)− µ(Q2)−
(
µ(P1)− µ(P2)

)
.

Then, the following theorem introduces the Gateaux derivative of MMD2(},}).

Theorem 18. Let P1,P2,Q1,Q2 ∈ P̃H(Y), the Gateaux derivative of MMD2(},}) at
(P1,P2) in the direction of (Q1,Q2) is such that:

MMD2′ = 2
〈

∆′,∆
〉
H
,

where we omitted to mention (P1,P2) for the statistical functionals and
(
(P1,P2), (Q1,Q2)

)
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for the partial Gateaux derivative to have a readable expression.

Proof. The result follows directly as the Gateaux derivative of a composition of statistical
functionals follows the same formula than the composition of classical derivatives.

Gateaux Derivative of the Truncated KFDA Statistic

Let T ≥ 1 and D2
T (},}) be the statistical functional of the truncated KFDA statistic

defined in Chapter 1. We assume that T is chosen so that for P1,P2 ∈ P̃H(Y), D2
T (P1,P2)

is well defined. The statistical functional D2
T (},}) can be expressed as:

D2
T (},}) =

T∑
t=1

n1n2

nλΣW
t (},})

〈
fΣW
t (},}),∆(},})

〉2

H
,

The next theorem presents the Gateaux derivative of D2
T (},}).

Theorem 19. Let P1,P2,Q1,Q2 ∈ P̃H(Y), the Gateaux derivative of D2
T (},}) at (P1,P2)

in the direction of (Q1,Q2) is such that:

D2
T

′((P1,P2), (Q1,Q2)
)

=
T∑
t=1

n1n2
〈
fΣW
t ,∆

〉
H

nλΣW
t

(
2
〈
fΣW
t ,∆′

〉
H

+ 2
〈
fΣW
t

′
,∆
〉
H
− λΣW

t

′

λΣW
t

〈
fΣW
t ,∆

〉
H

)
,

where we omitted to mention (P1,P2) for the statistical functionals and
(
(P1,P2), (Q1,Q2)

)
for the partial Gateaux derivative to have a readable expression.

Proof. The result follows directly from applying classical operations to obtain the Gateaux
derivatives of products, compositions and quotients.

4.2.2 Kernel Tricks

The kernel trick has been applied several times in the previous chapters. As there is
no originality in the derivation of the explicit formulas for the Gateaux derivatives of the
kernel tests, we directly give their expressions.

Let Y1 = (Y1,1, . . . , Y1,n1) Y2 = (Y2,1, . . . , Y2,n2) two i.i.d. samples drawn from P1

and P2 with Y = (Y1,Y2) and n = n1 + n2. We consider the general situation of the
influence of a sub-sample Z = (Z1,Z2) that contains observations from Y1 and Y2 such
that Z1 = (Z1,1, . . . , Z1,q1) is a sub-sample of Y1 and Z2 = (Z2,1, . . . , Z2,q2) is a sub-sample
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of Y2, with q = q1 + q2. We denote Pn1 and Pn2 the empirical probability distributions
associated to Y1 and Y2 respectively and Pn1,q1 and Pn2,q2 the discreted distribution
associated to the points in Z1 and Z2 respectively. The embeddings of these samples and
sub-samples are denoted Φ(Y),Φ(Z),Φ(Y1),Φ(Y2),Φ(Z1) and Φ(Z2) respectively. The
Gram matrix of samples with themself are denoted as KY,KZ and for i ∈ {1, 2}, KYi

,KZi .
The rectangular Gram matrices associated to two samples are denoted with two subscripts,
for instance KY,Z =

(
k(Yi, Zj)

)
i∈{1,...,n},j∈{1,...,q}

. Let ω = (n−1
1 1′n1 ,−n

−1
2 1′n2)′ ∈ Rn and

ωZ = (q−1
1 1′q1 ,−q

−1
2 1′q2)′ ∈ Rq.

Computation of the Gateaux Derivative of the MMD Statistic

We have:

MMD2′
(
(Pn1 ,Pn2), (Pn1,q1 ,Pn2,q2)

)
= 2

(
ω′ZKZ,Yω − ω′KYω

)

Computation of the Gateaux Derivative of the Truncated KFDA Statistic

For t ∈ {1, . . . , n} the statistical functionals fΣW
t (},}) and λΣW

t (},}) evaluated on
(Pn1 ,Pn2) are equal to the tth eigenvector and eigenvalue of the empirical within group
covariance operator Σ̂W = ΣW (Pn1 ,Pn2). Thus, we define KW = ΠWKYΠW , where
ΠW is the bi-centering matrix, and denote λ̂1, . . . , λ̂n and uW,1, . . . , uW,n the eigenval-
ues and associated orthonormal eigenvectors of KW . We then have λΣW

t (Pn1 ,Pn2) = λ̂t

and fΣW
t (Pn1 ,Pn2) = (nλ̂t)−

1
2u′W,tΠWΦ(Y). For T ∈ {1, . . . , n}, we denote UW,T =(

uW,1, . . . , uW,T
)
∈ Mn,T (R) and ΛW,T = Diag

(
λ̂1, . . . , λ̂T

)
∈ MT (R), such that

ŨW,T = n−
1
2 Λ−

1
2

W,TU′W,TΠW .
For i ∈ {1, 2}, we define the Gram Gateaux matrix of sample i such that:

Gi = 1
qi

KY,ZiΠqiKZi,Y −
1
n

KY,Yi
ΠniKYi,Y

− 1
q2
i

KY,ZiJqiKZi,Y + 1
nq

KY,Yi
Jni,qiKZi,Y + 1

nq
KY,ZiJqi,niKYi,Y −

1
n2 KY,Yi

JniKYi,Y,

where Jn,m ∈Mn,m(R) is the matrix full of ones and Jn,n is denoted Jn. Then, we have:
(〈

Σ′
(
Pni ,Pni,qi

)
fΣW
t (Pn1 ,Pn2), fΣW

t′ (Pn1 ,Pn2)
〉
H

)
t,t′∈{1,...,T}

= Ũ′W,TGiŨW,T ∈MT (R).
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Therefore, we define GW = n1
n

G1 + n2
n

G2, such that:
(〈

ΣW
′
(
(Pn1 ,Pn2), (Pn1,q1 ,Pn2,q2)

)
fΣW
t (Pn1 ,Pn2), fΣW

t′ (Pn1 ,Pn2)
〉
H

)
t,t′∈{1,...,T}

= Ũ′W,TGW ŨW,T ∈MT (R),

and ∆ΛW,T
∈MT (R) such that for t, t′ ∈ {1, . . . , T}:

(
∆ΛW,T

)
t,t′

=
 0 if t = t′,

1
λ̂t−λ̂t′

otherwise.

Then, for t ∈ {1, . . . , T}, we have:

λΣW
t

′((Pn1 ,Pn2), (Pn1,q1 ,Pn2,q2)
)

=
(
Ũ′W,TGW ŨW,T

)
t,t〈

fΣW
t (Pn1 ,Pn2),∆′

(
(Pn1 ,Pn2), (Pn1,q1 ,Pn2,q2)

)〉
H

=
(
Ũ′W,T (KY,ZωZ −KYω)

)
t〈

fΣW
t

′((Pn1 ,Pn2), (Pn1,q1 ,Pn2,q2)
)
,∆(Pn1 ,Pn2)

〉
H

=
(
Ũ′W,TGW ŨW,T∆ΛW,T

Ũ′W,TKYω
)
t
.

We then use these quantities to compute the vector of partial Gateaux derivatives asso-
ciated to each contribution of the KFDA statistic according to the formula in Theorem
19.

4.2.3 Illustration on the Reversion Dataset

We illustrate an application of influence functions by computing the influence of each
observation to the pairwise comparisons of the Reversion dataset described in Chap-
ters 2 and 3. Recall that the Reversion RTqPCR dataset contains four conditions 0H,
24H, 48HDIFF and 48HREV and that each conditions is divided in eight batches corre-
sponding to manipulation repetitions. For a pair-wise comparison and a given value of
the truncation parameter, we propose to visualize the influence of the observations on the
contribution of the associated eigendirection of the within-group covariance operator with
respect to their position on the discriminant axis associated to this truncation value. The
results are shown in Figure 4.1.

We observe that important drops of the log p-value are associated to directions on which
many observations have a large influence on the statistic. Oppositely, when the influence
of all the cells is very low, the p-value tends to increase. The influence is a measure of
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Figure 4.1: Pairwise comparison of conditions 48HDIFF versus 24H (top) and conditions
24H versus 0H (bottom). Left: log p-values with respect to T . Right: Influence of the
observations on the contribution of the T th eigendirection with respect to the position
of their projection on the discriminant axis associated to a truncation parameter T for
T ∈ {1, 2, 3, 4}, the null horizontal axis is represented in black.

how the absence of an observation would modify a statistic. Thus, if the influence of
an observation on the test statistic is negative, it means that this observation advocates
for a difference between the two samples, oppositely, if the influence of an observation is
positive, it means that this observation participates to the similarity of the two datasets.

4.3 Conclusion

Interpretation of the Results on Kernel Testing

Applied to a kernel testing, Gateaux derivatives and influence functions can be used to
identify the observations that advocate for the similarity of the two samples and those that
advocate for a difference between the two samples. To do so, we propose to compute the
influence of each observation on the value of the test statistic. As the MMD and KFDA
statistics are based on the distance between both mean embeddings, each observation can
influence the test to increase or decrease this distance. As single-cell data analysis often
focuses on sub-groups of observations called sub-populations, we developed the concept of
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Gateaux derivative in order to allow the investigation of the influence of a sub-population
that could have been detected through an independant statistical analysis.

Future Work

Future work should be dedicated to the analysis of the level and power influence function
and Gateaux derivative associated to kernel tests. These concepts have been introduced
in [61] and recently applied for Wald-type tests in [48]. Another aspect that could be
explored is the possible definitions of contaminating distributions for Gateaux derivative
with a biological signification, such as the absence or presence of some sub-population, or
different positions in a differentiation trajectory.
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CONCLUSION

The work presented in this manuscript is mainly motivated by the advanced application
of kernel testing to single-cell data science. We presented and implemented a complete
framework for KFDA-based hypothesis testing, and proposed practical solutions to is-
sues encountered, like reducing the computational cost of the procedure, interpreting the
results or generalizing the test. This work opens many exciting research directions to
deepen our understanding of unanswered questions, such as the asymptotic properties of
the Nyström approximations or the interpretation of the model parameters in the kernel
linear model. We propose a discussion in this last chapter on a selection of subjects that
we consider as being future research directions.

Before discussing possible improvements, we introduce a discussion on a central aspect
of kernel testing based on spectral regularizations of Hilbert-Schmidt operators that we
only hinted so far: the theoretical importance of the truncation parameter and practical
results or heuristics to fix its value.

Tuning the Truncation Parameter

We observed from numerical simulations shared in Chapter 2 that the asymptotic regime
is reached for hundreds of observations, that is suited for applications on single-cell data.
However, we also observed that the level of the test depends on the truncation parameter.
One issue is to describe the expected risk of the test in general. The issues raised by the
mathematical formulation of the task of choosing a truncation parameter that optimize
the test performances can be formulated in terms of optimizing a trade-off between level
and power. Some work has been done to describe the performances of the ridge regularized
KFDA test performances in [60] but it remains to be done for the truncated KFDA test.
Such an exploration could answer to the issue of having a controled type I error delivers
an algorithm for the data-driven calibration of the truncation parameter.
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Until then, a preliminary heuristic can be derived from some geometrical intuition on the
effect of the truncation parameter. Here, we propose a geometrical interpretation of the
difference captured by the kernel Fisher Discriminant axis with respect to the truncation
parameter used to regularize the within-group covariance operator in the two-sample case.
This description motivates the introduction of a last diagnostic tool that describes the
geometry of the discrimination problem with respect to the truncation parameter that
can be used to choose the truncation parameter in practice. While being focused on
the two-sample case, this approach could be generalized to the Hotelling-Lawley test for
general designs.

Geometric Considerations to Define Proper Alternatives

In truncated KFDA testing, the choice of the truncation parameter T in the regular-
ization of the within-group covariance is critical since it underlie the definition of what
we consider as a meaningful difference in complex situations. This parameter is repre-
sentative of the complexity allowed to the non-linear transformation of the kernel Fisher
Discriminant, as it stands for a delimitation between signal against noise.

First, it is clear that too large truncations may result in badly calibrated tests. By
restricting the truncation to moderate values (less than 15 in the context of sinlge-cell
data analysis), we can guarantee that the test is well calibrated, according to the several
simulation studies performed in Chapter 2. Then, we observed that the evolution of the
p-value with respect to the truncation parameter is not monotonous, as it highly depends
on the geometry of the problem.

The kernel Fisher discriminant axis associated to the truncation parameter T ≥ 1 is
a sum of the contributions of the first T eigendirections of the empirical within-group
covariance operator. Each contribution is colinear to the inner product between the
eigenvector and the direction supported by the difference of the two empirical kernel
mean embedding µ̂1 − µ̂2. In other words, eigendirections that are close to the direction
of interest µ̂1− µ̂2 contribute more to the discrimination. This geometrical interpretation
with respect to the direction of interest µ̂1 − µ̂2 highlight the existence of at least two
types of alternative that act as two blind spots of the discriminant axis associated to a
truncation parameter T , that we call the orthogonal case and the parallel case.
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• Orthogonal case : when the directions supporting the variability of each group
are orthogonal to each other, each eigendirection of the within-group covariance is
dedicated to the variability of one of the two conditions only. Thus, the resulting
discriminant axis is not oriented in a direction able to spot the difference and fails
to reject the null hypothesis until the truncation parameter is large enough to allow
for a non-linear transformation that captures this orthogonality. This example is
illustrated in Figure 4.2 with a cross dataset (two orthogonal bivariate Gaussians,
forming a cross).

• Parallel case : when the two conditions share the same covariance stucture, but the
difference between them is supported by a direction capturing little variance from
the embeddings. The test fails to reject the null hypothesis until the truncation
parameter T is large enough for the kernel Fisher Discriminant to consider this low
variability direction. This situation is ambiguous, since it may also be interpreted
as a not so important difference on a direction supporting little variance of the
data. We illustrate this situation in Figure 4.3 with two parallel lines (two parallel
bivariate Gaussians).

A Diagnostic Graph to Monitor the Effects of the Truncation
Parameter

These two types of geometry can be detected by some quantities that can be monitored
with respect to T . For instance, each eigendirection of the within-group covariance sup-
ports a part of the total difference µ̂1 − µ̂2 that can be quantified and allow to detect for
a parallel case. Also, each eigendirection captures a part of the variability of each group,
quantifying this captured variability can allow to detect an orthogonal case. Finally,
as the Fisher Discriminant Analysis is defined as the optimization of the ratio between
the captured difference and the captured variability, a discrimination score can be mea-
sured for each eigendirection as the ratio between the capture difference and the captured
within-group variability. Thus, we propose a diagnostic graph to lead the data exploration
by giving insights on the directions containing meaningful differences to look at and to
ensure that the comparison is well interpreted. This diagnostic graph allows to monitor
the captured variability of each group, the captured within-group variability, the captured
difference, and the discrimination score with respect to T . We also add the p-value of
the test statistic associated to each truncation parameter. We show the diagnostic graphs
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associated to the two examples of geometric situations in Figures 4.2 and 4.3. Note that
we split the diagnostics into several graphs for readability, but they can be gathered in
one graph, as all the diagnostics have values comprised between 0 and 1.

General Perspectives on Kernel Testing

Kernel testing has proved to be particularly suited for the analysis of single-cell data. The
underlying geometric properties and the diagnostics derived from the kernel linear model
allow a wide range of insightful interpretations. However, a lot of work remains to be
done.

Approximations of Kernel Test Statistics

The reduction of the computational cost of the kernel test statistics is a central concern
of practical kernel testing. We focused on one version of the Nyström approximation to
reduce the computational cost of the test statistic. It would be of interest to assess the
performances of the test obtained through different approximations such as the alternative
Nyström landmark choices or other approaches such as the Random Fourier Features [113].
In addition, kernel testing is a playground suited for the systematic comparison of these
different approaches. From a theoretical point of view, it would be of interest to ensure
that these approximation do not modify the asymptotic distributions of the kernel test
statistics. To go further, if the asymptotic distribution is conserved, it would be possible
to precisely study the asymptotic properties when both the number of observations and
the number of landmarks increase.

Computational Aspects

The package ktest we implemented aims at giving a handy implementation of kernel
testing. Several features could be enhanced to facilitate its use, and the range of available
tests and approximation methods could be completed with existing alternatives. More-
over, the release of several tutorial notebooks and the schedule of courses are planned to
reach an audience of non-statisticians. A nice evolution for the package ktest would be
allow exterior contributors that are developing insightful tools for kernel methods.
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Figure 4.2: Comparison of two orthogonal bivariate Gaussians forming a cross. Upper-
left : simulated data. Upper-right : diagnostic plots. Bottom: distributions of the
embeddings on the first four eigendirections associated to the within-group covariance.
Interpretation: observe on the diagnostic graphs that the truncation t = 1 captures almost
all the variability of the second sample (captured Y2 variability) and almost none of the
variability of the first sample (captured Y1 variability), and the truncation t = 2 captures
the opposite. These directions have a low discrimination score as they do not allow to
discriminate between the two positions, and we see on the graph of the contributions of
directions 1 and 2 that these directions kind of reconstructed the cross. The direction
having the highest discrimination score is associated to t = 4 and we see that this is for
this value of t that the p-value falls below the α = 0.05 threshold. We can see on the
graph of contributions 3 and 4 that the direction associated to t = 4 is the first direction
on which the two projected mean embeddings are separated.
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Figure 4.3: Comparison of two parallel bivariate Gaussians. Upper-left : simulated data.
Upper-right : diagnostic plots. Bottom: distributions of the embeddings on the first four
eigendirections associated to the within-group covariance. Interpretation: The direction
associated to t = 1 captures almost all the variability of the samples but none of their
difference and has thus a low discrimination score. The direction associated to t = 2
as a higher discrination score and it suffice to reject the null hypothesis, we see on its
contribution that it is a non-linear square-like transformation of the direction t = 1. The
direction associated to t = 3 confirms the difference with an even higher discrimination
score.
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Theoretical Enhancements

So far we only introduced the kernel linear model and an associated test. The test
performances of the test on simulated data should be assessed in a near future. This model
broadens the possible approaches to compare dataset and could be used complementary
to the pair-wise comparisons allowed by the KFDA framework. The kernel linear model
we defined is a favorable framework to introduce modelling aspects in kernel methods. In
particular, the interpretation of the kernel linear model could be related to the notion of
conditional embedding of distributions.

The kernel linear model associates each explanatory variable used in the model to an
element of the RKHS that is the associated model parameter. These model parameters
can be considered as the embeddings of the associated explanatory variables, and could
be used in further analyses.

Influence of Observations and Variables

We introduced influence functions, that are a promising tool to understand the contri-
bution of each observation to the results of a data analysis. The practical use of influence
functions will necessitate to precisely define the notion of influential sub-populations and
cells and the biological interpretations of the results. Especially when applied to kernel
testing.

A drawback of kernel methods is that the dependance to the variables in lost with the
embedding. It would be interesting to have a direct measure of which variables support
a detected difference. Thus, complementary to influence functions, sensitivity analysis
tools could be applied to kernel testing to measure the contribution of local differences to
the global difference.

Specific Aspects of Single-Cell Data Analysis

Some issues specific to single-cell data analysis have not been examinated yet. For
instance, kernel testing is non-parametric, but some probabilistic models have been pro-
posed for single-cell data and could be used to improve the test performances. A way to
introduce model priors on kernel testing consist in using kernels adapted to the model,
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such as Fisher kernels that can be defined for any probability distribution. The Zero-
Inflated Negative Binomial distribution is considered to be suited to model single-cell
datasets, and it would be possible to determine a Fisher kernel adapted to this model.

We proposed kernel testing to perform global comparisons of single-cell datasets on
the basis of all the variables. Transcriptomic activity is known to be related to Gene
Regulatory Networks (GRN). As GRNs are groups of genes considered to have related
acitvity, our approach allows to investigate the GRN-wise differences between conditions.

Spatial single-cell RNA sequencing datasets have the position of the cell in a tissue in
addition to the transcriptomic information [136]. The position of a cell could be encoded
in a kernel function or modeled in the kernel linear model to allow the analysis of such
datasets with our comparison framework.
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Titre : Tests à noyaux, et leurs applications aux données de séquençage en cellule unique

Mot clés : tests à noyaux, séquençage en cellule unique, modèle linéaire à noyaux, Nyström,

fonctions d’influence

Résumé : Les technologies de sequençage
en cellule unique mesurent des informations à
l’échelle de chaque cellule d’une population.
Les données issues de ces technologies pré-
sentent de nombreux défis : beaucoup d’ob-
servations en grande dimension et souvent
parcimonieuses. De nombreuses expériences
de biologie consistent à comparer des condi-
tions. L’objet de la thèse est de développer
un ensemble d’outils qui compare des échan-
tillons de données issues des technologies de
séquençage en cellule unique afin de détec-
ter et décrire les différences qui existent. Pour
cela, nous proposons d’appliquer les tests de
comparaison de deux échantillons basés sur
les méthodes à noyaux existants. Nous propo-
sons de généraliser ces tests à noyaux pour

les designs expérimentaux quelconques, ce
test s’inspire du test de la trace de Hotelling-
Lawley. Nous implémentons pour la première
fois ces tests à noyaux dans un package
R et Python nommé ktest, et nos applica-
tions sur données simulées et issues d’expé-
riences démontrent leurs performances. L’ap-
plication de ces méthodes à des données ex-
périmentales permet d’identifier les observa-
tions qui expliquent les différences détectées.
Enfin, nous proposons une implémentation ef-
ficace de ces tests basée sur des factorisa-
tions matricielles de type Nyström, ainsi qu’un
ensemble d’outils de diagnostic et d’interpré-
tation des résultats pour rendre ces méthodes
accessibles et compréhensibles par des non-
spécialistes.

Title: Kernel-based testing and their applications to single-cell data

Keywords: kernel testing, single-cell, kernel linear model, Nyström, influence functions

Abstract: Single-cell technologies gener-
ate data at the single-cell level. They are
coumposed of hundreds to thousands of ob-
servations (i.e. cells) and tens of thousands
of variables (i.e. genes). New methodological
challenges arose to fully exploit the potentiali-
ties of these complex data. A major statistical
challenge is to distinguish biological informa-
tion from technical noise in order to compare
conditions or tissues. This thesis explores
the application of kernel testing on single-cell
datasets in order to detect and describe the
potential differences between compared con-
ditions. To overcome the limitations of exist-

ing kernel two-sample tests, we propose a ker-
nel test inspired from the Hotelling-Lawley test
that can apply to any experimental design. We
implemented these tests in a R and Python
package called ktest that is their first user-
oriented implementation. We demonstrate the
performances of kernel testing on simulated
datasets and on various experimental single-
cell datasets. The geometrical interpretations
of these methods allows to identify the obser-
vations leading a detected difference. Finally,
we propose a Nyström-based efficient imple-
mentation of these kernel tests as well as a
range of diagnostic and interpretation tools.
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