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Chapter 1
Introduction

1.1 Motivation
In the era of artificial intelligence, there is a massive amount of imaging data

playing a crucial role in our lives. An image is a combination of pixels produced by
a sensor which is encountered in photographs, videos, medical images, satellite or
physical experiment. In this thesis, we are interested in image edges, a specific image
feature. It encodes valuable information which is useful in many applications, for
instance, in experimental physics to estimate the contact area’s phases helping in the
identification of hydrodynamic regimes (as illustrated in Figure 1.1).

(a) (b) (c)

Figure 1.1: (a) Original image capturing joint gas and liquid flow in confined
environments (b) Preprocessed image (c) Estimated contact interface/contour.

However, images are often corrupted by noise, motion blur or camera misfocus and
valuable image information is lost. The task of image restoration is to "remove"
noise and "undo" faults while still preserving the important features. Image restoration
and edge detection are often treated separately in the image processing literature
and the most standard strategies to solve image restoration task is to consider the
solution of a convex minimization problem under some practical constraints, also
called variational methods. Afterward, to detect image edges, a subsequent step
requires a post-processing edge detection to achieve this outcome.

When considering the joint task of image restoration and edge detection, the
associated minimization problem turns out to be non-convex and thus much more
complex to solve. However, the recent advances in optimization dedicated to non-
convex optimization allow us to provide new efficient numerical schemes for theses
problems. The pioneering works dedicated to the joint task traced back to the 80s
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1.1 Motivation

and statistical mechanic literature. Among these works we can refer to [Geman and
Geman, 1984, Mumford and Shah, 1989] allowing to estimate a piecewise smooth field
and thus to extract contours and a denoised image. Other related work is [Blake and
Zisserman, 1987], another non-convex functional for piecewise smooth approximation
named weak string model for 1D signal and weak membrane energy for images. Part I
of the manuscript will be dedicated to such class of approaches which can be employed
in various imaging joint tasks such as restoration and segmentation, e.g [Storath et al.,
2014, Storath et al., 2015], which proposed to solve the Blake-Zisserman and Potts
models, combining ADMM (the Alternating Direction Method of Multipliers [Beck,
2017]) and dynamic programming. With the same spirit, [Strekalovskiy and Cremers,
2014] proposed to solve the latter problem with primal-dual algorithm. [Foare et al.,
2016] proposed a new approach to solve the Mumford-Shah (MS) problem, which
is able to specify true 1D contour, set in between pixels ensuring sharp edges and
smooth regions.

However, the image restoration problems have been facing an increasing size of
data going from the processing of images with 103 pixels in the 80s to images with 107

pixels twenty years later. All mentioned variational approaches and corresponding
minimization strategies struggle with high dimensional data. It is thus necessary
to develop a method which is able to process these large images in a reasonable
computation time. This gave rise to approaches based on deep learning (DL) techniques
that involve: (i) the design of a Deep Neural Network (DNN), (ii) the training of this
DNN with a large dataset until the model can make decision or return a desired
output from input data. Learning-based methods have offered outstanding results in
a wide range of image processing tasks including of course image restoration or edge
detection.

For several years, there was a gap between standard image processing and neural
network procedures, as the first one was guided by the physics of the data acquisition
and prior knowledge about the object while the second one was considered as a
very efficient prior-free black-box procedure. However a trade-off between flexibility
and performance should be considered. The former can be flexible to deal with
different image restoration tasks by well defining prior, provides better control over
the underlying physics with fewer parameters, and eliminates the need to create a
large database. The latter focuses on the study of a flexible and sophisticated deep
architecture model, which requires a huge and accurate labeled database and a heavy
training procedure.

For many years, the communities dedicated to Deep Learning (DL) and variational
approaches were separate entities. Nowadays, there are many efforts trying to merge
these two branches together in order to combine performance and flexibility. In
2020, with the pioneering work by [Gregor and Le Cun, 2010], in the context of
sparse coding, the authors proposed a feedforward network built on iterative soft-
thresholding algorithm with learnable operators over a fixed number of iterations. In
the recent years, NN architectures based on unrolling proximal algorithms have been
employed for many image processing tasks and proved their advantages such as light
architecture, complexity computation, efficiency and robustness.

As far as we know, no study based on (unfolded) NNs to perform a joint image
restoration and edge detection has been conducted yet. The second part of this thesis
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1.2 Organization of document

will thus be dedicated to this class of approaches.

1.2 Organization of document
This manuscript is composed of three parts.
The first part focuses on variational approaches to perform the joint task of image

restoration and edge detection. Chapter 2 is dedicated to a review of the state-of-the-
art methods in image restoration and edge detection. Chapter 3 introduces a tour
of different minimization algorithms that will be used throughout this manuscript.
Chapter 4 presents a first contribution dedicated to the Discrete Mumford-Shah
functional with Ambrosio-Tortorelli penalization on edges solved with proximal-based
strategies.

The second part focuses on DL-based methods for (joint) image restoration and
edge detection. In Chapter 5, we provide a brief tour on deep learning literature with
a specific focus on unfolded scheme for image restoration and DL for edge detection.
In chapter 6, we introduce the Proximal Neural Networks (PNNs), studying their
flexibility, efficiency, and robustness in the context of image denoising and extension
to other tasks. In Chapter 7, we explore proximal unfolded networks for the task of
joint image restoration and edge detection.

The third part focuses on conclusions and perspectives.

Part1 – Chapter 2: State-of-the-art on joint image restoration and edge
detection using variational methods

In this chapter, we give a brief review of the image restoration task including
Maximum a Posteriori (MAP) formulation and the resulting variational formulation.
More specifically, we focus on how to choose regularization function which addresses
the edge detection task and including Mumford-Shah functional.

Part1 – Chapter 3: Optimization and proximal algorithms

This chapter is dedicated to all principal notations and mathematical tools in
optimization which will be used throughout this thesis. More specifically, we will
introduce proximal operators and associated proximal algorithms dedicated either to
convex optimization or bi-convex optimization as encountered in MS functional.

Part1–Chapter 4: Proximal-based strategies for solving Discrete Mumford-
Shah with Ambrosio-Tortorelli penalization on edges

This chapter focuses on solving the Discrete Mumford-Shah (DMS) functional with
Ambrosio-Tortorelli (AT) penalization on edges. The latter depends on a parameter
𝜀 and the theoretical result ensures the Γ−convergence of the Ambrosio-Tortorelli
approximation of the MS functional as 𝜀 → 0. We derive two algorithms: Proximal
Alternating Linearized Minimisation (PALM) and Semi-Linearized Proximal Alternating
Minimisation (SL-PAM) in this context and associated convergence guarantees. We
also propose a strategy for decreasing 𝜀 when considering the AT penalization. A
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particular attention is paid to the derivation of the involved proximity operators.
Numerous experiments are run in order to evaluate the performance of the proposed
PALM and SL-PAM for minimizing D-MS with AT penalization. A multiresolution
Golden-grid search strategy is proposed to efficiently extract the optimal set of hyperparameters
and to provide fair comparisons with state-of-the-art methods for different types of
degradation.

This chapter is associated to a work published in [Le et al., 2022a].

Part2 – Chapter5: State-of-the-art on deep learning for image restoration
or edge detection

This chapter will be divided into 3 sections aiming to introduce the motivation
of DL-based approaches in computer vision. First, we will discuss briefly about DL
fundamental tools in image processing. Second, we focus on unfolded schemes for
image restoration. Third, we provide a review of DL-based edge detection methods
encountered in the literature.

Part2 – Chapter 6: PNN: From proximal algorithms to robust unfolded
image denoising networks and Plug-and-Play methods

Before going further into dealing with the joint task, we first explore the unrolled
Neural Networks for the single image denoising task. In this context, iterative
proximal algorithms are widely used, enabling to handle non-smooth functions and
linear operators. Recently, these algorithms have been paired with deep learning
strategies, to further improve the estimation quality. The proposed proximal unfolded
neural networks (PNNs) are obtained by unrolling a proximal algorithm as for finding
a MAP estimate, but over a fixed number of iterations, with learned linear operators
and parameters. As PNNs are based on optimization theory, they are very flexible,
and can be adapted to any image restoration task, as soon as a proximal algorithm can
solve it. They further have much lighter architectures than traditional networks. In
this chapter, we introduce a unified framework to build PNNs for Gaussian denoising
task based on both the dual-Forward-Backward and the primal-dual Chambolle-Pock
algorithms. We further show that accelerated inertial versions of these algorithms
enable skip connections in the associated NN layers. We propose different learning
strategies for our PNN framework, and investigate their robustness (Lipschitz property)
and denoising efficiency. Finally, we assess the robustness of our PNNs when plugged
in a forward-backward algorithm for an image deblurring problem and in the context
of texture segmentation.

This chapter is associated to the works published in [Le et al., 2022b], [Le et al.,
2022c] and [Le et al., 2023].

Part2 – Chapter 7: Unfolded neural networks for joint image denoising
and edge detection

This chapter aims to tackle the joint image restoration and edge detection task
using unfolded neural networks. We investigate two approaches for addressing this
joint task, the first one is built upon the adaptation of unrolling the PALM algorithm
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within the framework of the Discrete Mumford-Shah functional, while the second
approach involves the combination of the PNNs proposed in Chapter 6 and an
additional layer for edge detection.
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2.1 Image restoration

The objective of this chapter is to provide an initial overview of inverse problems
and edge detection tasks in image processing with a specific focus on variational
approaches.

2.1 Image restoration

2.1.1 Preliminaries
Many applications and tasks in signal and image processing can be reformulated as

the resolution of an inverse problem. These problems rely on an estimation framework
which aims to estimate parameters of interest from data. Mathematically, an original
object is represented by a vector x ∈ ℝ𝐶𝑁 , measured through an acquisition process
and leading to a degraded version y ∈ ℝ𝐶𝑀 (𝐶 denotes the number of image channels
and 𝑁 is the size of image). The degradation model can be formulated by the following
expression:

y = Ax + n (2.1)
where A ∈ ℝ𝐶𝑀×𝐶𝑁 is a linear degradation which can model, for example, a blur, and
n ∈ ℝ𝐶𝑀 denotes a noise produced during the acquisition. For example, in Figure
2.1, the objective is to find an estimate x̂ ∈ ℝ𝐶𝑁 of the original image x from the
observation y and the knowledge of the blurring kernel a. In this case, the linear
degradation can be modeled by the convolution of a and x (i.e a ∗ x).

The standard approach to find x̂ is to minimize a criterion which is a sum of two
functions:

x̂ ∈ Argmin
x∈ℝ𝐶𝑁

𝑓 (x) + 𝑔(x) (2.2)

where 𝑓 : ℝ𝐶𝑁 → (−∞, +∞] is the data fidelity term which encompasses the information
related to the degradation model, and 𝑔 : ℝ𝐶𝑁 → (−∞, +∞] is the regularization or
penalization term which allows us to impose on the estimate some properties or known
a priori information (e.g. sparsity of the solution, smoothness).

In some cases, the matrix A is unknown and the problem becomes a blind
deconvolution task which forces us to reconstruct x̂ while estimating also A. In
this thesis, we focus on the case where A is known.
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2.1 Image restoration

(a) Blur kernel a (b) x (c) y

Figure 2.1: Example of an image "102061" from the BSDS500 validation dataset
[Arbelaez et al., 2011] degraded by the blur kernel a and an additive white gaussian
noise n ∼N(0, 𝛿2I𝐶𝑀) (𝛿 = 0.03).

2.1.2 Maximum a posteriori (MAP) Estimation
The Bayesian approach provides building blocks to justify a variational approach,

especially helping in the understanding of the construction of a data fidelity function
adapted to a given problem.

First, let set up general setting for a statistical inference problem where we want to
estimate an unknown quantity from observed data. A Bayesian approach considers x
and y as realizations of random vectors X and Y. The objective is to find the estimate
x̂ which maximizes the posterior probability distribution 𝜇X|Y=y. Thanks to Bayes
theorem, 𝜇X|Y=y can be expressed in terms of the likelihood function 𝜇Y|X=x, the prior
distribution 𝜇X and the marginal distribution 𝜇Y, here assumed to be nonzero,

𝜇X|Y=y(x) =
𝜇Y|X=x(y)𝜇X(x)

𝜇Y (y)
. (2.3)

The Maximum A Posteriori (MAP) Estimation of the random vector X given an
observed data Y = y is the realization x that maximizes 𝜇X|Y=y(x) which can be
reformulated as

x̂MAP ∈ Argmax
x∈ℝ𝐶𝑁

𝜇X|Y=y(x). (2.4)

We notice that 𝜇Y (y) does not depend on x. Using Eq. (2.3), problem (2.4) can
be rewritten as

x̂MAP ∈ Argmax
x∈ℝ𝐶𝑁

𝜇Y|X=x(y)𝜇X(x), (2.5)

or equivalently
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2.1 Image restoration

x̂MAP ∈ Argmin
x∈ℝ𝐶𝑁

− ln 𝜇Y|X=x(y) − ln 𝜇X(x). (2.6)

Thus we can define the data fidelity function to the observed data y and regularization
function of problem (2.2) in the sense of the MAP estimation as

(∀x ∈ ℝ𝐶𝑁 )
{
𝑓 (x) ∝ − ln 𝜇Y|X=x(y),
𝑔(x) ∝ − ln 𝜇X(x).

(2.7)

Particular case of Additive White Gaussian Noise (AWGN) – We assume
that n is a realization of an independent, identically distributed and drawn from a
zero-mean normal distribution with variance 𝛿2, that is :

n ∼N(0𝐶𝑀 , 𝛿2Id𝐶𝑀) (2.8)

Using the degradation model (2.1) the likelihood is:

𝜇Y|X=x(y) =
𝐶𝑀∏
𝑖=1

1
√

2𝜋𝛿2
exp

(
− (y𝑖 − (Ax)𝑖)2

2𝛿2

)
. (2.9)

which is equivalent to

𝜇Y|X=x(y) =
1

√
2𝜋𝛿2

exp
(
−∥y −Ax∥2

2𝛿2

)
(2.10)

In this case, from (2.7) the data fidelity function fits the negative log-likelihood and
can be chosen as:

𝑓 (x) ∝ − ln 𝜇Y|X=x(y) ∝
1

2𝛿2 ∥y −Ax∥2. (2.11)

In the remainder of this manuscript, for the reader’s convenience, because the
data fidelity term depends on the operator A and observation y, the function 𝑓 (x)
can be expressed as Ψ(Ax; y) where Ψ : ℝ𝐶𝑀 → (−∞, +∞].

2.1.3 Regularization functions
The regularization function plays a very important role in inverse problem which

allows us to constrain some desired properties of the solution. In general, the function
𝑔 can be expressed as 𝑔(x) = 𝜆Φ(Dx), where Φ : ℝ𝐽𝑁 → (0, +∞], D ∈ ℝ𝐽𝑁×𝐶𝑁 denotes
a linear transform, 𝜆 > 0 is a regularization parameter that plays an important role
in the trade-off between the data fidelity term and the regularization term. The
function Φ and the operator D are chosen according to the type of images to recover.
For instance, we are going to focus on regularization that favors image smoothness
or sparsity.

• Choice of D – The operator D aims to highlight some properties of the images.
A vector x ∈ ℝ𝐶𝑁 is said to be sparse if most of its elements are set to zero.
In signal processing, some signals are sparse intrinsically but most of them are
sparse after a linear transform such as wavelets or finite differences operator
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2.1 Image restoration

as illustrated in Figure 2.2. More generally, D can be chosen as a sparsifying
operator (e.g., wavelet transform, frames or dictionary [Mallat, 1997, Jacques
et al., 2011, Pustelnik et al., 2016a].)

Example 1. We consider a grayscale image x ∈ ℝ𝑁 (𝑁 = 𝑁ℎ × 𝑁𝑣) displayed
in Fig.2.2. Let ℎ = [1 − 1] and 𝑣 = ℎ𝑇 be horizontal and vertical difference
filters corresponding to the finite differences operators Dℎ and D𝑣. In this case,
we say that the object Dx is considered to be sparse difference operator where
D = [D⊤

ℎ
D⊤𝑣 ]⊤ ∈ ℝ2𝑁×𝑁 and (Dℎx)𝑖 𝑗 and (D𝑣x)𝑖 𝑗 are defined as:

(Dℎx)𝑖 𝑗 =
{

x𝑖, 𝑗+1 − x𝑖, 𝑗 if 𝑗 < 𝑁𝑣,
0 otherwise,

(D𝑣x)𝑖 𝑗 =
{

x𝑖+1, 𝑗 − x𝑖, 𝑗 if 𝑖 < 𝑁ℎ,
0 otherwise.

(a) x ∈ ℝ𝐶𝑁 (b)Dℎx (c)D𝑣x

(d) (e) (f)

Figure 2.2: (a) x, (b) Dℎx, (c) D𝑣x, (d),(e) and (f) are respectively histograms of
(a), (b) and (c).

• Choice of Φ – The pioneering choice is ∥ · ∥22 adapted to smooth penalization.
However when focusing on sparsity, other choices of Φ should be considered
starting with the function that best promotes the sparsity which is the "pseudo-
norm" ℓ0 which counts the number of nonzero coefficients of u:

(∀u = (u𝑖)1≤𝑖≤𝑁 ) Φ(u) = ∥u∥0 =

𝑁∑︁
𝑖=1

𝜙(u𝑖), (2.12)

where 𝜙 : ℝ→ {0, 1} is defined by
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2.1 Image restoration

𝜙(u𝑖) =
{

0 if u𝑖 = 0,
1 otherwise.

(2.13)

In practical applications, employing this non-convex function for designing an
optimization algorithm can be challenging. Alternatively, a reasonably effective
approach to promote sparsity involves utilizing the ℓ1 norm:

(∀u = (u𝑖)1≤𝑖≤𝑁 ) Φ(u) = ∥u∥1 =

𝑁∑︁
𝑖=1
|u𝑖 |. (2.14)

The ℓ1−norm addresses the issue of non-convexity, although this function remains
non-differentiable. In various scenarios, the Huber function presents a viable
convex and smooth alternative, characterized as :

(∀u = (u𝑖)1≤𝑖≤𝑁 ) Φ(u) =
𝑁∑︁
𝑖=1

𝜙𝜁 (u𝑖) (2.15)

where

𝜙𝜁 (u𝑖) =
{u2

𝑖

2𝜁 if |u𝑖 | ≤ 𝜁
|u𝑖 | − 𝜁

2 otherwise.
(2.16)

Or we can use the BerHu function which is defined as

𝜙𝜁 (u𝑖) =
{u2

𝑖
+𝛿2

2𝜁 , if |u𝑖 | > 𝜁
|u𝑖 |, if |u𝑖 | ≤ 𝜁 .

(2.17)

Figure 2.3: Comparison between the ℓ0−pseudo-norm, ℓ1−norm, ℓ2
2−norm and

Huber function with 𝛿 = 1, BerHu function with 𝛿 = 1

2.1.3.1 Tikhonov regularization

One of the most popular and simple regularization methods was proposed by
[Tikhonov, 1963], which is defined as:

12



2.2 Edge-preserving regularization functions

𝑔(x) = 𝜆∥Dx∥22, (2.18)
where D is a linear operator. This operator can be chosen as an identity matrix D = I
allowing to impose strong convexity. To impose the smoothness of x and decrease the
irregularity due to the noise in the data, we can choose D as a high-pass operator e.g.
a difference operator D = [D⊤

ℎ
D⊤𝑣 ]⊤.

(a) x (b) y (c) x̂

Figure 2.4: Image restoration using Tikhonov-regularization by minimizing (2.2).
First row: (a) Original image (b) Degraded image (c) Restored. Second row: (a), (b)
(c) display a row of the image to better capture the effect of the restoration including
smoothing effect with Tikhonov regularization.

In Figure 2.4, we observe that Tikhonov regularization smooths out the image
but does not preserve the discontinuities/edges. In the following, we will review some
regularization functions that promote the edge-preserving property.

2.2 Edge-preserving regularization functions

2.2.1 Edges detection
Definition of edges – Edges capture important intensity changes between pixels
and thus represent the boundaries between two different regions within an image.
When defining edges we need to specify its location and its value.

First, we focus on its location. Since an image can be considered as a discrete
surface as illustrated in Figure 2.5-(b) composed of vertices (black dots centered in
the middle of pixel), edges (linking two vertices) and faces (colored in gray and blue)
[Foare, 2017, Foare et al., 2019], the intensity value x𝑖 can be placed on the vertices
𝑣𝑖 which are seen as point mass on the center of pixels. The contours can either be
defined on edges in between two pixels with values living on 𝑠𝑖 (Figure 2.5-(c)) or on
pixels with values attached to the nodes 𝑣𝑖 (Figure 2.5-(d)).
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2.2 Edge-preserving regularization functions

Second, to define edge values 𝑠𝑖, we can use different high pass filters such as
finite difference, Sobel [Sobel and Feldman, 1968], Prewitt [Prewitt, 1970]. In this
manuscript, we focus on the differences operator D = [D⊤

ℎ
D⊤𝑣 ]⊤ to obtain edges

between nodes in the context of discrete calculus (Figure. 2.6).
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Figure 2.5: Examples of two edges definitions in digital image: (a) Extracted patch
(b)Image patch seen as a discrete surface with true contour delineated in black (c)
Contours defined in between pixels with values living on edges 𝑠𝑖 (d) Contours defined
on pixels with values living on vertices 𝑣𝑖
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Figure 2.6: Illustration of D = [D⊤
ℎ

D⊤𝑣 ]⊤ with periodic boundary conditions
corresponding horizontal and vertical pixelwise discrete gradient operators Dℎ and
D𝑣.

The gradient magnitude then serves to measure the edge strength. To capture the
binary nature of edges a thresholding step is required and is expressed as follows:

ê•,𝑖 𝑗 =
{

1, if | (D•x̂)𝑖 𝑗 | > 𝜁,
0, otherwise.

(2.19)

where e•,𝑖 𝑗 can be eℎ,𝑖 𝑗 horizontal edge between two pixels (𝑖, 𝑗) and (𝑖 + 1, 𝑗) or e𝑣,𝑖 𝑗
vertical edge between two pixels (𝑖, 𝑗) and and (𝑖, 𝑗 + 1).

14



2.2 Edge-preserving regularization functions

Considering (2.19), we can obtain the contours living on edges as illustrated in
Figure 2.5-(c-d). And we can convert edges between nodes type to contour living on
pixels by defining a single edge map e as follows:

e = 𝑤ℎeℎ + 𝑤𝑣e𝑣, (2.20)
where 𝑤ℎ = 𝑤𝑣 =

1
2 . A comparison between a pixel-wise edges (as illustrated in red

cells in Figure 2.5-(d)) and edges between nodes (Figure 2.5-(c)) is provided in Figure
2.7.

(a) (b) (c)

Figure 2.7: An example to compare the difference between pixel-wise edges (b) and
edges between nodes (c).

When applying a threshold, the lower the threshold, the more edges will be
detected and the result will be increasingly susceptible to noise. In the contrary,
a high threshold may miss subtle edges.

However, when dealing with degraded images, these methods will need a pre-
processing to reconstruct image beforehand. In this section, we will focus on the
variational approach (2.2) where we focus on the choices of regularization function 𝑔
that favor edge-preserving property.

2.2.2 Total variation and its variations
In [Rudin et al., 1992], a pioneering approach was introduced with the aim of

achieving smoothing with edge-preserving for continuous data. This technique later
came to be recognized as the ROF model.

Definition 2.2.1. Let x = (x1, . . . , x𝐶) ∈ ℝ𝐶𝑁 be a tensor modelling a multichannel
image of size (𝐶 × 𝑁ℎ × 𝑁𝑣) and x𝑐 ∈ ℝ𝑁 is an image channel where 1 ≤ 𝑐 ≤ 𝐶. The
anisotropic total variation of x is given by

TVaniso(x) =
𝐶∑︁
𝑐=1

𝑁ℎ∑︁
𝑖=1

𝑁𝑣∑︁
𝑗=1
| (Dℎx𝑐)𝑖 𝑗 | + |(D𝑣x𝑐)𝑖 𝑗 |, (2.21)

Definition 2.2.2. Let x = (x1, . . . , x𝐶) ∈ ℝ𝐶𝑁 be a tensor modelling a multichannel
image of size (𝐶 × 𝑁ℎ × 𝑁𝑣) and x𝑐 ∈ ℝ𝑁 is an image channel where 1 ≤ 𝑐 ≤ 𝐶. The
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2.2 Edge-preserving regularization functions

isotropic total variation of x is given by

TViso(x) = ∥Dx∥2,1 =

𝐶∑︁
𝑐=1

𝑁ℎ∑︁
𝑖=1

𝑁𝑣∑︁
𝑗=1

√︃
(Dℎx𝑐)2𝑖 𝑗 + (D𝑣x𝑐)2𝑖 𝑗 . (2.22)

Finally, we can define the ROF model as follows:

x̂ROF ∈ Argmin
x∈ℝ𝐶𝑁

Ψ(Ax; y) + 𝜆TV•(x). (2.23)

The objective function (2.23) being convex, but non differentiable, its minimization
requires the use of non-smooth convex optimisation tools which will be described in
detail in Chapter 3, leading to the implementation of proximal algorithms.

(a) Noisy signal (b) x̂TVaniso

Figure 2.8: Staircasing effects when we use TVaniso for 1D signal.

However, TV regularization has limitations when dealing with textures and structured
images that extend beyond the local neighborhood. To overcome this limitation, non-
local total variation (NLTV) was proposed by [Gilboa and Osher, 2009]. NLTV takes
the concept of TV regularization and goes a step further by considering non-local
similarities in image patches. It recognizes that similar patches from different parts
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2.2 Edge-preserving regularization functions

of the image share common characteristics and should influence the regularization
process. If in TV, the neighborhood of the location (𝑖, 𝑗) is the set of {(𝑖−1, 𝑗), (𝑖, 𝑗 −
1)} then for NLTV, the neighborhood at this point depends on the similarity degree.

Another class of penalization was proposed by [Bredies et al., 2010] and named
the total generalized variation (TGV) regularization by incorporating higher-order
gradients into the regularization process. By considering second-order differences in
the image, TGV regularization provides enhanced control over the smoothness and
regularity of the reconstructed image.
Post-processing for edge detection – From Figure 2.8, we can observe that
these methods allow us to keep the abrupt changes or discontinuities set in 1D signal.
Another example is shown in Figure 2.9-(c) for image restoration. To extract the
edges, we need a post processing step for example a threshold on the gradient map
of image (e.g using Equation (2.19)).

2.2.3 Potts model
The variational formulation of the Potts model relies on the penalization

𝑔(x) = 𝜆∥Dx∥0. (2.24)
[Storath et al., 2015] proposed an extended version of (2.24) which adds more direction
in the finite differences operator:

𝑔(x) = 𝜆
𝑆∑︁
𝑠=1

𝑤𝑠∥D𝑎𝑠x∥0, (2.25)

where 𝑤𝑠 are nonnegative weights, D𝑎𝑠 denotes the operator containing finite differences
in axial, diagonal and "knight-moves" direction which was first proposed by [Chambolle,
1999]. Vector 𝑎𝑠 denotes the displacement vector so that D𝑎𝑠x = x(·+𝑎𝑠)−x, where 𝑎𝑠
belongs to the neighborhood system N= {𝑎1, . . . , 𝑎𝑆} = {(1, 0), (0, 1), (1, 1), (1, −1),
(−2, −1), (−2, 1), (2, 1), (2, −1)} (𝑆 = 8). With this kind of discretisation, the author
was able to divide the Potts problem into distinct subproblems, which they tackled
by using dynamic programming and the alternating direction method of multipliers
(ADMM) as suggested in their works [Storath et al., 2014, Storath et al., 2015].

An illustration of such a penalization choice is provided in Figure 2.9-(e).

2.2.4 Blake-Zisserman model
In [Blake and Zisserman, 1987], the authors introduced a novel approach for the

piecewise smooth reconstruction on discrete domain by introducing weak membrane
energy for images. They defined the energy function as follows:

x̂ ∈ Argmin
x∈ℝ𝐶𝑁

Ψ(Ax; y) +
𝐶∑︁
𝑐=1

∑︁
𝑖, 𝑗

min
(
𝛼, 𝛾2 | (Dℎx𝑐)𝑖 𝑗 |2

)
+

𝐶∑︁
𝑐=1

∑︁
𝑖, 𝑗

min
(
𝛼, 𝛾2 | (D𝑣x𝑐)𝑖 𝑗 |2

)
.

(2.26)
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2.2 Edge-preserving regularization functions

In [Hohm et al., 2015], the authors proposed a more general discretization of the
Blake-Zisserman model

𝑔(x) = 𝜔𝑠
𝐶∑︁
𝑐=1

∑︁
𝑖, 𝑗

𝑆∑︁
𝑠=1

min
(
𝛼, 𝛾2 |D𝑎𝑠x𝑐 |2𝑖 𝑗

)
, (2.27)

Furthermore, in [Blake and Zisserman, 1987], to circumvent gradient limits effects;
it describes the phenomenon that the first order model penalizes large slopes and
produces spurious extra segments to account for them. They also proposed extensions
to second order smoothness penalties named weak rode and weak plate models. The
discrete formulation is given by

E𝛼,𝛾 = Ψ(Ax; y) +
𝐶∑︁
𝑐=1

∑︁
𝑖 𝑗

min{𝛼, 𝛾2
√︃
(𝑉x𝑐 )𝑖 𝑗 }, (2.28)

where (𝑉x𝑐 )𝑖 𝑗 = | (D2
ℎ
x𝑐)𝑖 𝑗 |2 + |(D2

𝑣x𝑐)𝑖 𝑗 |2 + 2| (DℎD𝑣x𝑐)𝑖 𝑗 |2. We define here D2
ℎ

and D2
𝑣

the second order finite differences in horizontal and vertical directions.
Regarding minimization algorithm, as the objective function (2.26) is not convex,

Blake and Zisserman introduced a graduated non-convexity strategy (GNC) [Thacker
and Cootes, 1996, Blake and Zisserman, 1987]. The central idea is to solve a sequence
of minimization problems which are easier to handle than (2.26). Initially, the non-
convex energy E is approximated by a convex function E∗. Subsequently, a sequence
of energy functions E(𝑝) is generated, where the construction relies on a parameter 0 ≤
𝑝 ≤ 1, ensuring that E(1) corresponds to E∗, E(0) corresponds to E, and E(𝑝) changes
continuously from E(1) to E(0). The approximating energy is E(𝑝) = Ψ(Ax; y) +∑𝐶
𝑐=1

∑
𝑖 𝑗 Φ

(𝑝)
𝛼,𝛾 ( |Dℎx𝑐 |𝑖 𝑗 ) +Φ(𝑝)𝛼,𝛾 ( |D𝑣x𝑐 |𝑖 𝑗 ), where Φ

(𝑝)
𝛼,𝛾 is expressed as

Φ
(𝑝)
𝛼,𝛾 (𝑡) =


𝛾2𝑡2 if |𝑡 | < 𝛾

𝛼2𝑟

𝛼 − 𝑑
2 ( |𝑡 | − 𝑟)

2 if 𝑞 ≤ |𝑡 | < 𝑟
𝛼 if |𝑡 | ≥ 𝑟

(2.29)

with
𝑟2 = 𝛼

(
2
𝑑
+ 1
𝛾2

)
, 𝑑 =

1
4𝑝 .

Each individual subproblem now can then be effectively solved using the gradient
descent method.
Post-processing for edge detection – In this case, we can easily retrieve the
induced edge set by the following thresholding function:

ê•,𝑖 𝑗 =
{

1, if | (D•x̂)𝑖 𝑗 | >
√
𝛼

𝛾
,

0, otherwise,
(2.30)

which corresponds to a truncated quadratic thresholding function.
An illustration of using Blake-Zisserman model is provided in Figure 2.9-(d).
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2.2 Edge-preserving regularization functions

2.2.5 Continuous Mumford-Shah functional and the Ambrosio-
Tortorelli approach

In [Mumford and Shah, 1989], the authors proposed to solve a free-discontinuity
problem which is a problem formulated in term of a pair (𝒙, Γ) where Γ ⊂ Ω is a
closed set of discontinuities and 𝒙 is a function on the domain Ω.

Considering the data image 𝒛 : Ω → ℝ, then the continuous Mumford-Shah
functional is to solve the following variational problem:(

𝒙̂, Γ̂
)
∈ Argmin

x∈𝐶2 (Ω)
Γ⊂Ω

E𝜆𝑆 ,𝜆𝐸 (𝒙, Γ) (2.31)

where

E𝜆𝑆 ,𝜆𝐸 (𝒙, Γ) =
∫
Ω\Γ
|𝒙(𝑡) − 𝒛(𝑡) |2𝑑𝑡 + 𝜆𝑆

∫
Ω\Γ
|∇𝒙(𝑡) |2𝑑𝑡 + 𝜆𝐸H1(Ω ∩ Γ) (2.32)

and 𝜆𝑆, 𝜆𝐸 > 0 are hyperparameters which respectively impose the smoothness everywhere
except on Γ and penalize the term H1(Ω ∩ Γ) which is the Hausdorff measure of
dimension 1 of Γ.

This is a challenging question to handle the curve Γ and the function 𝒙 in the
minimization process. Hence, [Ambrosio and Tortorelli, 1990, Ambrosio, 1989] proposed
to approximate Γ by a smooth function 𝒆 such that 𝒆 ≈ 1 when the contour is detected
and 𝒆 ≈ 0 otherwise. The Ambrosio-Tortorelli (AT) functional is then defined by:

AT𝜆𝑆 ,𝜆𝐸 ,𝜀 (𝒙, 𝒆) =
∫
Ω

|𝒙(𝑡) − 𝒛(𝑡) |2𝑑𝑡 + 𝜆𝑆
∫
Ω

(1 − 𝒆(𝑡))2 |∇𝒙(𝑡) |2𝑑𝑡

+ 𝜆𝐸
∫
Ω

(
𝜀 |∇𝒆(𝑡) |2 + 1

4𝜀 𝒆(𝑡)
2
)
𝑑𝑡. (2.33)

The term ∇𝒙 penalizes the variation on 𝒙 when 𝒆(𝑡) equals 0, while we keep the
discontinuity at these points and energy takes into account the third term instead
of ∇𝒙 when 𝒆(𝑡) equals 1. One more important parameter 𝜀 appears in the above
function. Theoretically, this parameter allows the Γ−convergence of function (2.33)
to MS functional (2.32) when 𝜀 → 0 [Ambrosio and Tortorelli, 1990]. In practice, as
𝜀 tends to 0, the penalization of ∥e∥22 increases and enforces e to become sparser, and
contours become thinner.

Lately, there were many works making efforts to tackle this problem. In [Richardson
and Mitter, 1994], the authors proposed an effective algorithm to solve (2.33) based
on the gradient descent. In [Ambrosio et al., 2001], the authors addressed the second
order model of (2.33). In [Zanetti et al., 2016], the authors also tried to solve this
problem with the minimization of the discrete objective (by means of forward and
central differences) which is approached with a vector-valued block coordinate descent
as the discrete objective is quadratic in each variable when fixing the other. In each
iteration, descent directions for x and e are found by using iterative preconditioned
conjugate gradient (PCG). More recently, in [Foare et al., 2016, Foare, 2017] the
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2.2 Edge-preserving regularization functions

authors propose to formulate AT using the full framework of Discrete Calculus which
is able to sharply represent discontinuities. By rewriting the AT functional with these
tools, the authors treated the minimization problem by solving a linear system.

The solution of the Mumford-Shah model (2.32) is piecewise smooth. In the
case when 𝜆𝑆 → +∞, the gradient ∇𝒙(𝑡) is strongly penalized for all 𝒙(𝑡) ∉ Γ.
Subconsequently, 𝒙 is forced to be piecewise constant, the discontinuity set Γ now
becomes the union of segment boundaries of a partition of the domain Ω. In this
situation, we call the resulting model the Potts model which is given by

argmin
𝒙𝑝 ,P

∑︁
𝑃∈P

∫
|𝒙𝑝 (𝑡) − 𝒛(𝑡) |2𝑑𝑡 + 𝜆2 length(𝜕𝑃), (2.34)

where P is the partitions of the domain Ω and 𝒙𝑝 : Ω → ℝ are constant on each
segment 𝑃 ∈ P. The parameter 𝜆/2 compensates the double counting when we
calculate the sum of all segments boundaries. The discrete formulation was presented
in 2.2.3.

An example of using Potts model is shown in Figure 2.9-(e).

2.2.6 Discrete Mumford-Shah functional
In [Foare et al., 2019], the discrete version of the MS (DMS) functional is defined

as follows

minimize
x∈ℝ𝐶𝑁 ,e∈ℝ𝐽𝑁

EDMS(x, e) := Ψ(Ax; y) + 𝜆𝑆∥(1 − e) ⊙ Dx∥2 + 𝑔𝐸 (e), (2.35)

where the first term is the data fidelity term, the second term imposes the smoothness
everywhere else on edge set e and 𝑔𝐸 (e) is the edge length penalization which has
several choices such as ℓ0-pseudo norm, ℓ1-norm and the quadratic ℓ1 also known as
BerHu function defined in (3.24).

In [Foare et al., 2019], they also proposed two algorithmic strategies:

• the Proximal Alternating Linearized Minimization (PALM),

• Semi-Linearized Proximal Alternating Minimization (SL-PAM) algorithm which
relax the bound associated with the step-size parameter in the updating step
of e

with convergence guarantees presented in details in Chapter 3.
An illustration of the estimation obtained with DMS-ℓ1 is proposed in Figure

2.9-(f).

2.2.7 Relation between Mumford-Shah functional and Blake-
Zisserman model

Recently, in [Pustelnik, 2023], the author establishes a link between the three term
DMS-like formulation and Blake-Zisserman functional.
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The author proposed to focus on :

(x̂, ê) ∈ Argmin
x∈ℝ𝐶𝑁 ,e∈ℝ𝐽𝑁

Ψ(Ax; y) + 𝜍
2

2
∑︁
𝑙

𝜙(D𝑙x) (1 − e𝑙)2 + 𝛼
∑︁
𝑙

𝜑(e𝑖 𝑗 ), (2.36)

where A ∈ ℝ𝐶𝑀×𝐶𝑁 and 𝑙th-row of D is denoted D𝑙 , 𝜍 > 0, 𝛼 > 0. 𝑓 (·) : ℝ𝐶𝑁 →
(−∞, +∞] is a proper, convex, continuous function ; 𝜙 : ℝ → (−∞, +∞], 𝜑 : ℝ →
(−∞, +∞] are proper, lower semi continuous such that inf 𝜑 = 0, 𝜑(0) = 0 and inf 𝜙 =

0. .

When 𝜑 = | · | and 𝜙 = | · |2 which correspond to DMS-ℓ1, the above minimization
problem is equivalent to the following dual minimization problem

x̂ ∈ Argmin
x∈ℝ𝐶𝑁

Ψ(Ax; y) + 𝜍2 ∑
𝑙 𝜙𝛼/𝜍2 (𝜙((D𝑙x))) ,

(∀𝑙) ê =

{
prox 𝛼

𝜍2Φ(D𝑙 x̂)
|·| (1) if 𝜙(D𝑙 x̂) > 0,

0 otherwise,

(2.37)

where

(∀𝜂 ≥ 0) 𝜙𝛼/𝜍2 (𝜂) =


𝛼
𝜍2 (2 − 𝛼

𝜍2𝜂
) if 𝜂 > 𝛼

𝜍2 ,

𝜂 if 0 < 𝜂 ≥ 𝛼
𝜍2 ,

0 if 𝜂 = 0.
(2.38)

More interestingly, the author shows that when 𝜑(𝜂) = 1 if 𝜂 ≠ 0 and 0 if 𝜂 = 0 (ℓ0
norm), the minimization problem (2.35) can be reformulated as

x̂ ∈ Argmin Ψ(Ax; y) + 𝜍2

2
∑
𝑙 min(𝜙(D𝑙x), 2𝛼

𝜍2 ),

(∀𝑙 ∈ 1, . . . , 𝐽) ê𝑙 =


0 if 𝜙(D𝑙 x̂) < 2𝛼

𝜍2 ,

1 if 𝜙(D𝑙 x̂) > 2𝛼
𝜍2 ,

[0, 1] if 𝜙(D𝑙 x̂) = 2𝛼
𝜍2 .

(2.39)

when 𝜙 = | · |2, this formulation can refer to the first-order Blake-Zisserman functional
(2.26).

21



2.3 Conclusion

(a) x (b) y/28.59 dB (c)̂xROF/32.28 dB/∼1 min

(d) x̂BZ/32.28 dB/∼5 min (e) x̂Potts/31.71 dB/∼50 min (f) x̂DMSℓ1 /32.27 dB/48 sec

Figure 2.9: Image restoration using different variational methods: (a) Groundtruth
x (b) degraded image y (c) ROF [Rudin et al., 1992], the induced edges obtained by
thresholding the absolute value of gradient map |Dx| with value 0.5 (d) BZ [Hohm
et al., 2015], the induced egdes obtained by using Eq.(2.30) (e) Potts [Storath et al.,
2015], the induced edge obtained by detecting the jumpset between all segment(f)
DMS-ℓ1 [Foare et al., 2019], the thresholding value for e is 0.5.

2.3 Conclusion
This chapter summarizes the principal variational approaches for performing joint

restoration and contour detection. In Figure 2.9 most of the methods are displayed
except AT for which the computation time with existing methods is not competitive.
In chapter 4, we will focus on this penalization and we will provide new formulation
with associated algorithmic minimization to solve it efficiently.
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3.1 Optimization tools

3.1 Optimization tools
The objective of this section is to recall some fundamental optimization tools that

will be employed throughout this thesis.

3.1.1 Subdifferential of a convex function
In mathematics, concepts such as subgradient, and subdifferential serve as generalizations

of the traditional derivative. They come into play when dealing with convex functions
which are not necessarily differentiable. These ideas find their significance within
convex analysis, a field dedicated to studying convex functions, particularly in their
relationship to convex optimization. Such a powerful tools will be used widely in
this thesis, we will familiarize with this concept in the following. We will work on
H which represents a real Hilbert space endowed with an inner product ⟨· | ·⟩ and
the associated norm ∥x∥ =

√︁
⟨x | x⟩ (e.g. H = ℝ𝑁 denotes real finite 𝑁-dimensional

Euclidean space).

3.1.1.1 Definition and properties

All the following definitions and properties can be found in [Bauschke and Combettes,
2011].

Definition 3.1.1. Let H be a finite Hilbert space. Let 𝑓 : H →] − ∞, +∞]. The
subdifferential of 𝑓 at point x denoted 𝜕 𝑓 (x) is defined such that

𝜕 𝑓 (x) = {w ∈ H | (∀y ∈ dom 𝑓 ) ⟨y − x | w⟩ + 𝑓 (x) ≤ 𝑓 (y)}.

The importance of the subdifferential is made clear through Fermat’s rule, as
defined by the following theorem. In the following, we define here Γ0(H) as the class
of proper, lower semi-continuous, convex functions. The following definition will give
us clue to find a minimizer of a function in Γ0(H).

Theorem 3.1.1. Let 𝑓 ∈ Γ0(H). Then:

Argmin 𝑓 = 𝑧𝑒𝑟 𝜕 𝑓 = {x ∈ H | 0 ∈ 𝜕 𝑓 (x)}. (3.1)

The following lemma will be useful for the next section of the manuscript in the
majority of interesting practical cases such as minimization problem of the formulation
(2.2).

Lemma 3.1.1. Let 𝑓 ∈ Γ0(H), 𝑔 ∈ Γ0(H), dom 𝑓 = H and 𝑔 is continuous in a point
of dom 𝑓 then

𝜕 𝑓 + 𝜕𝑔 = 𝜕 ( 𝑓 + 𝑔). (3.2)
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3.1.1.2 Calculus rules of subdifferential

The following is some essential calculus rules of subdifferential when we deal with
a sum of multiple functions or the function is incorporated with a linear operator.

Lemma 3.1.2. Let 𝑓 : H→ (−∞, +∞] be a convex and differentiable function at x
then

𝜕 𝑓 (x) = {∇ 𝑓 (x)}.

Proposition 3.1.1. Let H and G be two real Hilbert spaces.

• Let 𝑓 : H→]−∞, +∞], 𝑔 : H→]−∞, +∞] and D : H→ G be a linear operator.
If dom𝑔⋂

D(dom 𝑓 ) ≠ ∅, then

(∀x ∈ H) 𝜕 𝑓 (x) +D∗𝜕𝑔(Dx) ⊂ 𝜕 ( 𝑓 + 𝑔 ◦D) (x), (3.3)

where D∗ is the adjoint of D such that ⟨y | Dx⟩G = ⟨D∗y | x⟩H.

• Let 𝑓 ∈ Γ0(H), 𝑔 ∈ Γ0(G) and D : H→ Gbe a linear operator. If int(dom𝑔)⋂ D(dom 𝑓 ) ≠
∅, then

𝜕 𝑓 +D∗𝜕𝑔 ◦D = 𝜕 ( 𝑓 + 𝑔 ◦D). (3.4)

3.1.2 Proximity operator
Jean Jacques Moreau [Moreau, 1962] introduced a valuable extension of the concept

of projection operators, applicable to any convex function, resulting in what is now
known as the proximity operator. In today’s optimization, proximity operators have
gained growing significance as essential components within non-smooth optimization
throughout the class of proximal algorithms. These algorithms belong to a class of
methods used to break down intricate composite convex optimization processes into
more manageable steps. In this section, we will recall the definition of this powerful
tool and some of its important properties that will be used in this manuscript.

3.1.2.1 Definition

Definition 3.1.2. Let H be a real Hilbert space. Let 𝑓 ∈ Γ0(H) and 𝜏 > 0.

• The Moreau envelope of 𝜏 𝑓 at z ∈ H is defined as

M𝜏 𝑓 (z) = inf
x∈H

𝑓 (x) + 1
2𝜏 ∥x − z∥2. (3.5)

• The proximity operator of 𝜏 𝑓 at y ∈ H is defined as:

prox𝜏 𝑓 (y) = argmin
x∈H

𝑓 (x) + 1
2𝜏 ∥x − y∥2. (3.6)
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3.1.2.2 Properties

The proximity operator has many remarkable properties that make it a privileged
tool when minimizing convex functions.

(i) Moreau decomposition formula
Let 𝑓 ∈ Γ0(H) and 𝜏 ∈ (0, +∞]. We have

(∀x ∈ H) x = prox𝜏 𝑓 ∗ (x) + 𝜏 prox𝜏−1 𝑓 (𝜏−1x) (3.7)

where 𝑓 ∗ : H→ (−∞, +∞] is the conjugate of 𝑓 such that

𝑓 ∗(u) = sup
x
(⟨x | u⟩ − 𝑓 (x)) . (3.8)

(ii) Additively separable function:
For every 𝑖 ∈ {1, . . . , 𝑁}, let H𝑖 be a Hilbert space and let 𝑓𝑖 ∈ Γ0(H𝑖). If

(∀x = (x𝑖)1≤𝑖≤𝑁 ∈ H= H𝑖 × · · · ×H𝑛) 𝐹 (x) =
𝑁∑︁
𝑖=1

𝑓𝑖 (x𝑖). (3.9)

then 𝐹 ∈ Γ0(H) is a separable function.
Furthermore,

(∀x ∈ H) prox𝐹 (x) = (prox 𝑓𝑖 (x𝑖))1≤𝑖≤𝑁 (3.10)

Observations:

(i) M 𝑓 (y) is real-valued while prox 𝑓 (y) is H-valued.

(ii) Let H be a Hilbert space and 𝑓 ∈ Γ0(H) then

x = prox 𝑓 (y) ⇔ y − x ∈ 𝜕 𝑓 (x). (3.11)

(iii) It’s important to note that if 𝑓 is not convex, the proximity operator could
exhibit multiple solutions. The convexity of 𝑓 serves as a sufficient criterion for
the existence and uniqueness of the proximity operator but it’s not a necessary
condition.

(iv) Going forward, we will refer to a "proximable" function if there is a closed
form expression of its proximity operator. Many examples are introduced in
the proximity operator repository [Chierchia et al., 2020] and few examples are
provided below.
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3.1.2.3 Examples

In this manuscript, we will focus on some basic examples in the following.

(i) Projection operator:
We recall first the projection operator onto a set 𝑆 ⊂ H

Definition 3.1.3. Let 𝑆 be a subset of H. The projection operator 𝑃𝑆 of x ∈ H
is defined as

P𝑆 (x) = prox𝜄𝑆 (x), (3.12)
where 𝜄𝑆 is the indicator function of set 𝑆 defined as follows

𝜄𝑆 =

{
0, if x ∈ 𝑆,
+∞, otherwise.

(3.13)

(ii) Power 𝑞 function [Chaux et al., 2007]:

(
x = (x𝑖)1≤𝑖≤𝑁 ∈ ℝ𝑁

)
Φ𝑞 =

𝑁∑︁
𝑖=1
|x𝑖 |𝑞 . (3.14)

We observe that Φ𝑞 is additively separable, i.e,

Φ𝑞 =

𝑁∑︁
𝑖=1

𝜙𝑞 (x𝑖), (3.15)

where 𝜙𝑞 : 𝑥 → |𝑥 |𝑞.

• When 𝑞 = 1 we call it soft-thresholding function.

Definition 3.1.4. Let 𝜏 > 0. We define the soft-thresholding function as
follows:

(∀𝑥 ∈ ℝ) soft𝜏 (𝑥) = sign(𝑥)max{|𝑥 | − 𝜏, 0}, (3.16)
equivalent to

(∀𝑥 ∈ ℝ) soft𝜏 (𝑥) =


𝑥 − 𝜏 if 𝑥 > 𝜏,
0 if 𝑥 ∈ [−𝜏, 𝜏],
𝑥 + 𝜏 if 𝑥 < −𝜏.

(3.17)

• When 𝑞 ≥ 1 only some values of 𝑞 lead to a closed form expression of the
proximity operator:

(∀𝑥 ∈ ℝ) prox𝜏 |·|𝑞 (𝑥) =


soft𝜏 (𝑥) if 𝑞 = 1,
𝑥

1+2𝜏 if 𝑞 = 2,

sign(𝑥)
√

1+12𝜏 |𝑥 |−1
6𝜏 if 𝑞 = 3,(

𝑡+𝑥
8𝜏

)1/3 −
(
𝑡−𝑥
8𝜏

)1/3
, 𝑡 =

√︁
𝑥2 + 1/(27𝜏) if 𝑞 = 4,

(3.18)
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(iii) Huber loss:
The Huber function refers to the smooth approximation of the ℓ1−norm parametrized
by 𝛿 > 0, and is defined as

Φ : ℝ𝑁 → ℝ : (x𝑖)1≤𝑖≤𝑁 ↦→
𝑁∑︁
𝑖=1

𝜙𝛿 (x𝑖) (3.19)

where

𝜙𝛿 : 𝑥 ↦→
{
|𝑥 | − 𝛿

2 , if |𝑥 | > 𝛿
|𝑥 |2
2𝛿 , if |𝑥 | ≤ 𝛿.

(3.20)

Then,

𝜕𝜙 = ∇𝜙 : 𝑥 ↦→
{

sign(𝑥), if |𝑥 | > 𝛿
𝑥
𝛿
, if |𝑥 | ≤ 𝛿.

(3.21)

The proximity operator of the Huber function is:

prox𝜏𝜙𝛿 (𝑥)
{
𝑥 − 𝜏sign(𝑥) if |𝑥 | ≥ 𝜏 + 𝛿,
𝛿𝑥
𝜏+𝛿 otherwise.

(3.22)

(iv) BerHu loss:
The Berhu function is defined as

Φ : ℝ𝑁 → ℝ : (x𝑖)1≤𝑖≤𝑁 ↦→
𝑁∑︁
𝑖=1

𝜙𝛿 (x𝑖) (3.23)

where

𝜙𝛿 : 𝑥 ↦→
{
𝑥2+𝛿2

2𝛿 , if |𝑥 | > 𝛿
|𝑥 |, if |𝑥 | ≤ 𝛿.

(3.24)

The proximity operator of the BerHu function is:

prox𝜙𝛿 (𝑥)


𝛿𝑥
𝛿+1 if |𝑥 | > 𝛿 + 1,
𝑥 − sign(𝑥) if 1 < |𝑥 | ≤ 𝛿 + 1
0 otherwise.

(3.25)

3.2 Optimization algorithms
In this section, we will present some optimization methods to approach a solution

of the following problem:

min
x∈H

𝑓 (x) (3.26)

where 𝑓 ∈ Γ0(H).
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3.2.1 Preliminary
When considering Fermat rule and that no closed form solution x̂ is available,

we need to design an algorithm to approximate a solution, i.e. building a sequence
(x[𝑘])𝑘∈ℕ such that

lim
𝑘→+∞

x[𝑘] = x̂

Definition 3.2.1. Let H be a Hilbert space. Let (x[𝑘])𝑘∈ℕ be a sequence in H and
x̂ ∈ H.

• (x[𝑘])𝑘∈ℕ converges strongly to x̂ if

lim
𝑘→+∞

∥x[𝑘] − x̂∥ = 0. (3.27)

• (x[𝑘])𝑘∈ℕ converges weakly to x̂ if

(∀y ∈ H) lim
𝑘→+∞

⟨y | x[𝑘] − x̂⟩ = 0. (3.28)

• In a finite dimensional Hilbert space, strong and weak convergence are equivalent.

Standard approach is to design an operator T : H→ H that verifies the theorem
3.2.1.

Theorem 3.2.1. [Banach-Picard theorem] Let 𝐿 ∈ [0, 1), let T : H→ H be a
𝐿−Lipschitz continuous operator, and let x[0] ∈ H. We define a sequence (x[𝑘])𝑘∈N
as

(∀𝑘 ∈ ℕ) x[𝑘+1] = Tx[𝑘] .
Then, FixT = {x̂} for some x̂ ∈ H and

(∀𝑘 ∈ ℕ) ∥x[𝑘] − x̂∥ ≤ 𝐿𝑘 ∥x[0] − x̂∥.
We say (x[𝑘])𝑘∈ℕ converges strongly to 𝑥̂ with linear convergence rate 𝐿.

The following is some essential definitions that we need to characterize some
important properties of the operator T.

Definition 3.2.2. An operator T : ℝH → ℝH is said to be 𝐿 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 (or 𝐿 −
𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 continuous) if for all (x, y) ∈ (H×H), we have

∥Tx − Ty∥ ≤ 𝐿∥x − y∥.

If 𝑇 is 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 continuous then we say that 𝑇 is non expansive.

Definition 3.2.3. A differentiable function 𝑓 is said to have an 𝐿∇ 𝑓 -Lipschitz continuous
gradient if

(∀x, y) ∥∇ 𝑓 (x) − ∇ 𝑓 (y)∥ ≤ 𝐿∇ 𝑓 ∥x − y∥.

Definition 3.2.4. Let H be Hilbert space. For every 𝐿∇ 𝑓 > 0, we says that 𝑓 : H→ ℝ

belongs to the class 𝐶1,1
𝐿
(H) if 𝑓 satisfies:
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• 𝑓 is Gâteaux differentiable in H.

• ∇ 𝑓 : H→ H is 𝐿∇ 𝑓−Lipschitz continuous.

Definition 3.2.5. An operator T : H→ H is 𝛼−averaged nonexpansive for some
𝛼 ∈ (0, 1] if

(∀(x, y) ∈ H×H) ∥Tx − Ty∥2 ≤ ∥x − y∥2 −
(
1 − 𝛼
𝛼

)
∥(Id − T)x − (Id − T)y∥2.

Theorem 3.2.2. Let 𝛼 ∈ (0, 1], let T : H → H be an 𝛼−averaged nonexpansive
operator such that FixT ≠ ∅, and let x[0] ∈ H. We define a sequence (x[𝑘])𝑘∈ℕ as

(∀𝑘 ∈ ℕ) x[𝑘+1] = Tx[𝑘] .

Then (x[𝑘])𝑘∈ℕ converges weakly to a point in FixT

3.2.2 General principal of descent method (Explicit scheme)
A descent algorithm seeks to generate an iterative sequence (x[𝑘])𝑘∈ℕ starting from

an initial point x[0] ∈ H defined as

x[𝑘+1] = x[𝑘] + 𝛾𝑘𝑑 [𝑘] , (3.29)
which verifies

(∀𝑘 ∈ ℕ) 𝑓 (x[𝑘+1]) ≤ 𝑓 (x[𝑘]), (3.30)
where 𝑑 [𝑘] ∈ ℝ𝑁 is the choice of a descent direction defined in Definition 3.2.6 and
𝛾𝑘 > 0 is the step-size.

Definition 3.2.6. [Descent direction] Let 𝑓 ∈ Γ0(H) be continuously differentiable,
d ∈ H is a descent direction at point x ∈ H if

⟨∇ 𝑓 (x) | 𝑑⟩ < 0.

Considering 𝑑 = −∇𝐹, the resulting scheme is known as the steepest descent
algorithm whose iteratons are provided by Algorithm 1.

Algorithm 3.1: Gradient descent algorithm
Initialisation : x[0] ∈ H, 𝛾 ∈ (0, 2

𝐿
)

For 𝑘 = 0, 1, . . .⌊
x[𝑘+1] = x[𝑘] − 𝛾∇ 𝑓

(
x[𝑘]

)
.

We can denote here operator T : H→ H as follows

Tx = (Id − 𝛾∇ 𝑓 ) (x),
and the sequence (x[𝑘]) now can be simply defined as x[𝑘+1] = Tx[𝑘] .

In order to ensure the convergence, the step-size should be carefully selected.
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Proposition 3.2.1. Let 𝑓 ∈ Γ0(H) with 𝑓 ∈ 𝐶1,1
𝐿∇ 𝑓

. For some 𝛾 > 0, we define
T := Id − 𝛾∇ 𝑓 . For all x[0] ∈ H, if 0 < 𝛾 < 2

𝐿∇ 𝑓
then the sequence x[𝑘+1] = Tx[𝑘]

converges to a minimizer of 𝑓 .

When 𝑓 is no longer differentiable, we can still choose a descent direction at
x[𝑘] by using the subdifferential at this point. The descent algorithm is now called
subgradient descent algorithm and reads

x[𝑘+1] = x[𝑘] − 𝛾𝑑 [𝑘] ,

where 𝑑 [𝑘] ∈ 𝜕 𝑓 (x[𝑘]) but it requires some conditions over 𝛾 to ensure the convergence.

3.2.3 Implicit schemes
Implicit gradient descent refers to a variant of the gradient descent optimization

algorithm that incorporates an implicit update rule instead of the explicit update rule.
This raises a challenge as it requires solving an implicit equation at each iteration.

We consider 𝛾 > 0 and x[0] ∈ H. The implicit gradient descent update at x[𝑘] is:

x[𝑘+1] = x[𝑘] − 𝛾𝜕 𝑓
(
x[𝑘+1]

)
. (3.31)

Considering (3.11) the implicit scheme can be rewritten :

x[𝑘+1] = prox𝛾 𝑓 (x[𝑘]),

For such a scheme, we can define the operator

T := prox𝛾 𝑓 .
The advantage of implicit subgradient descent method is the flexibility in the

choice of the descent step size but at the price to compute the proximity operator, for
which an exhaustive list is provided by the proximity operator repository [Chierchia
et al., 2020].

The proximal point algorithm [Rockafellar, 1976] reads

Algorithm 3.2: Proximal point method
Initialisation : x[0] ∈ H, ∀𝑘 ∈ ℕ, 𝛾𝑘 ∈ (0, +∞)
For 𝑘 = 0, 1, . . .⌊
x[𝑘+1] ∈ prox𝛾𝑘 𝑓 (x[𝑘]).

Proposition 3.2.2. Let 𝑓 ∈ Γ0(H). We set T := prox𝛾 𝑓 for some 𝛾 > 0 and define
sequence (x[𝑘])𝑘∈ℕ as x[𝑘+1] = Tx[𝑘], then

• (∀𝛾 > 0), FixT = zer𝜕 𝑓 .

• (∀𝛾 > 0) and any 𝑓 ∈ Γ0(H), T is firmly nonexpansive. [Bauschke and
Combettes, 2011]

• The sequence (x[𝑘])𝑘∈ℕ converges to a point in zer𝜕 𝑓 .
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3.2.4 Sum of (Non)-differentiable convex functions
In the previous section, we introduced some algorithms allowing us to minimize

a convex function, differentiable or not. In this section, we focus on the scenario
of non-smooth convex optimization problems. A particularly challenging case arises
when we encounter a problem involving the sum of two convex functions, where one
of the functions is not necessarily smooth, given by

x̂ ∈ Argmin
x∈H

𝑓 (x) + 𝑔(x), (3.32)

where 𝑓 ∈ Γ0(H) is differentiable with 𝐿∇ 𝑓−Lipschitz gradient, 𝑔 ∈ Γ0(H).
Some algorithms are capable of minimizing this kind of optimization problem by

alternating sub-operation of each function separately, called splitting algorithms such
as Forward-Backward.
Forward-backward (FB) algorithm – The Forward-Backward algorithm is an
algorithm that is used to solve (3.32). The algorithm consists of two alternating
steps, one is an explicit gradient descent on 𝑓 , while the other is a proximal point
iteration on 𝑔 (explicit-implicit algorithm). By starting with an initial point x[0] ∈ H
and step-size 𝜏 > 0, the algorithm reads:

Algorithm 3.3: Forward-Backward algorithm
Initialisation : x[0] ∈ H, ∀𝑘 ∈ ℕ, 𝜏 ∈ (0, +∞).
For 𝑘 = 0, 1, . . .⌊
x[𝑘+1] = prox𝜏𝑔

(
x[𝑘] − 𝜏∇ 𝑓 (x[𝑘])

)
Theorem 3.2.3. Let 𝑓 + 𝑔 be a sum of two convex, coercive, lower semicontinuous
functions that are bounded from below. We suppose that 𝑓 is differentiable with an
𝐿∇ 𝑓−Lipschitz gradient. Let 𝜏 < 2

𝐿∇ 𝑓
, x[0] ∈ H be an initial guess and let (x[𝑘])𝑘∈𝑁

be the sequence defined by

x[𝑘+1] = prox𝜏𝑔 (Id − 𝜏∇ 𝑓 ) (x[𝑘]). (3.33)

Then the sequence (x[𝑘])𝑘∈𝑁 converges to a minimizer of 𝑓 + 𝑔.

Fast Iterative Shrinkage thresholding Algorithm (FISTA) – To improve the
convergence of the algorithm, a popular technique is to use inertial-type methods
[Nesterov, 1983, Moudafi and Oliny, 2003, Attouch and Peypouquet, 2016]. Starting
with v[0] = v[1] ∈ H and x[0] ∈ H, for 𝑘 ≥ 1, the inertial forward-backward method
reads: {

v[𝑘+1] = prox𝜏𝑘𝑔 (x[𝑘] − 𝜏𝑘∇ 𝑓 (x[𝑘])),
x[𝑘] = v[𝑘] + 𝜌𝑘 (v[𝑘] − v[𝑘−1]),

(3.34)

where 𝜏𝑘 > 0, 𝜌𝑘 ≥ 0 is the inertial parameter.
In [Beck and Teboulle, 2009], the authors proposed a fast iterative shrinkage-

threshold algorithm method ( FISTA) when choosing 𝜏𝑘 = 1
𝐿∇ 𝑓

and
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𝜌𝑘 =
𝑡𝑘 − 1
𝑡𝑘+1

, where 𝑡𝑘+1 =
1 +

√︃
1 + 4𝑡2

𝑘

2 and 𝑡0 = 1.

In [Chambolle and Dossal, 2015], the author proposed another way to define the
sequence (𝜌𝑘 )𝑘∈ℕ allowing to ensure the convergence of the iterates. Their FISTA
version reads:

Algorithm 3.4: FISTA [Chambolle and Dossal, 2015]
Initialisation : x[0] , y[0] ∈ H, ∀𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, +∞) and 𝑎 > 2
For 𝑘 = 0, 1, 2 . . .

x[𝑘+1] = prox𝜏𝑘𝑔
(
x[𝑘] − 𝜏𝑘∇ 𝑓 (e[𝑘])

)
,

e[𝑘+1] = (1 + 𝜌𝑘 )x[𝑘+1] − 𝜌𝑘x[𝑘] ,
𝜌𝑘 =

𝑡𝑘−1
𝑡𝑘+1

with 𝑡𝑘 = 𝑘+𝑎−1
𝑎

.

3.2.4.1 Dealing with constraints

We can also generalize (3.32) as a sum of many functions (non necessary differentiable).
For example, the variational minimization problem can take into account constraints.
The minimization problem (3.32) now becomes

x̂ ∈ Argmin
x∈H

𝑓 (x) + 𝑔(x) + 𝜄𝑆 (x), (3.35)

where 𝑆 is a closed, non-empty, convex set. In the remainder of this manuscript, for
the convenience for the reader, the problem (3.35) will be expressed as:

x̂ ∈ Argmin
x∈H

𝑓 (x) + 𝜆Φ(Dx) + 𝜄𝑆 (x) (3.36)

or equivalently
x̂ ∈ Argmin

x∈𝑆
𝑓 (x) + 𝜆Φ(Dx). (3.37)

3.2.4.2 Chambolle-Pock algorithm

This section is based on a part of work in [Chambolle and Pock, 2011]. The idea
of Chambolle-Pock algorithm is to facilitate the computation of proxΦ◦D which has
rarely a closed form expression.

Theorem 3.2.4. Let 𝑓 ∈ Γ0(H), Φ ∈ Γ0(G) and D : H→ G is a linear operator
and 𝑆 a closed, non-empty convex subset of H. We choose 𝜏𝑘 ∈]0, +∞], 𝜇𝑘 ∈]0, +∞]
such that 𝜏𝑘𝜇𝑘 ∥D∥2𝑠𝑝 < 1 1 for every 𝑘 ∈ ℕ. Let (x[0] , y[0]) ∈ H× G and v[0] = x[0].
We define the sequences (x[𝑘])𝑘∈ℕ, (y[𝑘])𝑘∈ℕ and (v[𝑘])𝑘∈ℕby

1∥D∥𝑠𝑝 is the spectral norm of D.
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Algorithm 3.5: CP algorithm
Initialisation : x[0] , y[0] ∈ H,∀𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, +∞)
For𝑘 = 0, 1, . . .

x[𝑘+1] = prox𝜇( 𝑓 +𝜄𝑆)
(
x[𝑘] − 𝜇D∗v[𝑘]

)
y[𝑘] = 2x[𝑘+1] − x[𝑘]

v[𝑘+1] = prox𝜏(𝜆Φ)∗
(
v[𝑘] + 𝜏Dy[𝑘]

)
Then the sequence (x[𝑘] , y[𝑘])𝑘∈𝑁 converges to a critcal point (x∗, y∗) of (3.35).
When 𝑓 is 𝜉−strongly convex (the definition is provided in Def. 3.2.8 or Def.

3.2.7), the Strongly Convex CP algorithm reads:
Algorithm 3.6: Strongly convex CP algorithm

Initialisation : x[0] , y[0] ∈ H,∀𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, +∞)
For 𝑘 = 0, 1, . . .

x[𝑘+1] = prox𝜇𝑘 ( 𝑓 +𝜄𝑆)
(
x[𝑘] − 𝜇𝑘D∗v[𝑘]

)
u[𝑘+1] = prox𝜏𝑘 (𝜆Φ)∗

(
v[𝑘] + 𝜏𝑘D

(
(1 + 𝛼𝑘 )x[𝑘+1] − 𝛼𝑘x[𝑘]

))
𝛼𝑘 = (1 + 2𝜇𝑘 )−1/2

𝜏𝑘+1 = 𝜏𝑘𝛼
−1
𝑘

𝜇𝑘+1 = 𝛼𝑘𝜇𝑘

where for every 𝑘 ∈ ℕ, 𝜇0𝜏0∥D∥2𝑠𝑝 ≤ 1.

Definition 3.2.7. 𝑓 : H→ (−∞, +∞] is a strongly convex function with constant
𝜇𝑘 > 0 if(
∀(x, y) ∈ (dom 𝑓 )2

)
,∀𝜆 ∈ (0, 1), 𝑓 (y) ≥ 𝑓 (x) + ∇ 𝑓 (x)𝑇 (y − x) +

𝜉 𝑓

2 ∥y − x∥22.

Definition 3.2.8. Let 𝑓 : H → (−∞, +∞]. 𝑓 is a strongly convex function with
constant 𝜉 > 0 if(
∀(x, y) ∈ (dom 𝑓 )2

)
,∀𝜆 ∈ (0, 1), 𝑓 (𝜆x+(1−𝜆)y) ≤ 𝜆 𝑓 (x)+(1−𝜆) 𝑓 (y)−𝜆(1 − 𝜆)𝜉2 ∥x−y∥22.

(3.38)

The following convergence result applies.
Theorem 3.2.5 ([Chambolle and Pock, 2011]). Let (u[𝑘] , x[𝑘])𝑘∈ℕ be sequences generated
by Algorithm 6. Assume that (𝜏𝑘 )𝑘∈ℕ and (𝜇𝑘 )𝑘∈ℕ are positive sequences, and that one
of the following conditions is satisfied.

1. For every 𝑘 ∈ ℕ, 𝜏𝑘𝜇𝑘 ∥D∥2𝑠𝑝 < 1, and 𝛼𝑘 = 1.

2. For every 𝑘 ∈ ℕ, 𝛼𝑘 = (1 + 2𝜇𝑘 )−1/2, 𝜇𝑘+1 = 𝛼𝑘𝜇𝑘 , and 𝜏𝑘+1 = 𝜏𝑘𝛼
−1
𝑘

with
𝜇0𝜏0∥D∥2𝑠𝑝 ≤ 1.

Then we have
x̂ = lim

𝑘→∞
x[𝑘] , (3.39)

where x̂ is defined in (3.35).
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3.2.4.3 FB and FISTA in the dual

Function (3.36) can be minimized efficiently using proximal splitting methods
[Bauschke and Combettes, 2017a, Combettes and Pesquet, 2011a, Chambolle and
Pock, 2016]. The choice of the most appropriate algorithm will depend on the
properties of 𝑓 , Φ, D and 𝑆. For instance, when Φ◦D is proximable, Douglas-Rachford
(DR) scheme [Combettes and Pesquet, 2007] can be considered, alternating, at each
iteration, between a proximity step on the sum of 𝑓 and the indicator function, and
a proximity step on the penalization function Φ ◦ D. However, when Φ ◦ D is not
proximable nor differentiable (e.g., TV penalization, or when D is a redundant wavelet
transform), more advanced algorithms, relying on duality, must be used.

Such methods usually rely on the Fenchel-Rockafellar duality [Komodakis and
Pesquet, 2015, Bauschke and Combettes, 2017a]. On the one hand, some algorithms
can evolve fully in the dual space, such as, e.g., ADMM [Gabay and Mercier, 1976,
Fortin and Glowinski, 1983, Boyd et al., 2011] or the dual-Forward-Backward (FB)
[Combettes et al., 2009, Combettes et al., 2010]). Note however that ADMM requires
the inversion of D⊤D. On the other hand, other algorithms can alternate between
the primal and the dual spaces, namely primal-dual algorithms [Chambolle and Pock,
2011, Condat, 2013, Vũ, 2013, Combettes and Pesquet, 2012]).

The following definitions introduce the notion of conjugate of a function, some
fundamentals of Fenchel’s duality theorem which will help to the understanding of
many primal-dual optimization algorithm.

(i) Conjugate and duality:

Definition 3.2.9. Let 𝑓 ∈ Γ0(H), 𝑔 ∈ Γ0(G) and D : H→ G is a bounded
linear operator where H, G are two real Hilbert spaces. The primal problem is
a minimization problem defined as

minimize
x∈H

𝑓 (x) + 𝑔(Dx) (3.40)

and the corresponding dual problem is defined as

minimize
u∈G

𝑓 ∗(−D∗u) + 𝑔∗(u) (3.41)

(ii) Duality theorem:

Theorem 3.2.6. Let Hand Gbe real Hilbert spaces. Let 𝑓 ∈ Γ0(H), 𝑔 ∈ Γ0(G),
D ∈ B(H, G). We have

zer(𝜕 𝑓 +D𝜕𝑔D⊤) ≠ ∅ ⇔ zer
(
(−D)𝜕 𝑓 ∗(−D⊤) + 𝜕𝑔∗

)
≠ ∅. (3.42)

(iii) Karush-Kuhn-Tucker condition:

Theorem 3.2.7. Let Hand Gbe real Hilbert spaces. Let 𝑓 ∈ Γ0(H), 𝑔 ∈ Γ0(G),
D ∈ B(H, G).

• If ∃x̂ ∈ H s.t 0 ∈ 𝜕 𝑓 (x̂) + D⊤𝜕𝑔(Dx̂), then x̂ is a solution of the primal
problem (3.35). Moreover, there exists a solution û of the dual problem s.t
−D∗û ∈ 𝜕 𝑓 (x̂) and Dx̂ ∈ 𝜕𝑔∗(û).
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3.2 Optimization algorithms

• If ∃(x̂, û) ∈ H× G such that −D∗û ∈ 𝜕 𝑓 (x̂) and Dx̂ ∈ 𝜕𝑔∗(û) then ∃(x̂, û)
is called a Kuhn-Tucker point.

Dual formulation in denoising case – When A = Id, the degradation model (2.1)
boils down to the Gaussian denoising problem

z = x + n, (3.43)

where n ∈ ℝ𝐶𝑁 models an additive white Gaussian noise with standard deviation
𝛿 > 0.

Thus, the standard method to denoise the image is to minimize the general
formulation (3.35) where 𝑓 (x) = 1

2 ∥x−z∥22 and 𝑔(x) = 𝜆Φ(Dx), the primal formulation
of (3.35) reads:

x̂ ∈ Argmin
x∈ℝ𝑁

1
2 ∥x − z∥22 + 𝜆Φ(Dx) + 𝜄𝑆 (x), (3.44)

Based on Lemma 2.5 in [Combettes et al., 2010], set 𝜑 : x ↦→ 𝜓(x) + ∥x − w∥22. Then
the conjugate 𝜑∗ : y ↦→ M𝜓∗ (y+w) − 1

2 ∥w∥
2 where M𝜓∗ and M𝜓 are Moreau envelopes

(see definition (3.5)) of 𝜓∗ and 𝜓. The dual formulation of problem (3.35) then reads:

û ∈ Argmin
u∈ℝ𝑀

Ẽ := M𝜄∗
𝑆
(−D⊤u + z) − 1

2 ∥z∥
2
2 + (𝜆Φ)∗(u) (3.45)

and x̂ = P𝑆 (z −D⊤û).
Based on (iii) and (iv) in Lemma 2.3 in [Combettes et al., 2010]:

∇M𝜓∗ = prox𝜓 = Id − prox𝜓∗ . (3.46)
Applying the lemma in the case of 𝜓 = 𝜄𝑆, we can write

∇u

(
M𝜄∗

𝑆
(−D⊤u + z) − 1

2 ∥z∥
2
2

)
= P𝑆

(
z −D⊤u

)
. (3.47)

3.2.4.4 Dual (i)FB

A first strategy to solve (3.44) consists in applying (i)FB to its dual formulation (3.45).
The resulting iterations are presented in Algorithm 7.

Algorithm 3.7: Dual Forward-Backward
Initialisation : u[0] , v[0] ∈ G,∀𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, +∞), 𝑎 > 2
For 𝑘 = 0, 1, . . .⌊

u[𝑘+1] = prox𝜏𝑘 (𝜆Φ)∗
(
v[𝑘] + 𝜏𝑘D P𝑆 (z −D⊤v𝑘 )

)
,

v[𝑘+1] = (1 + 𝜌𝑘 )u𝑘+1 − 𝜌𝑘u[𝑘] ,

Note that when, for every 𝑘 ∈ ℕ, 𝜌𝑘 = 0, then algorithm 7 reduces to FB.
The following convergence result applies.

Theorem 3.2.8. [Combettes et al., 2010, Chambolle and Dossal, 2015] Let (u[𝑘] , v[𝑘])𝑘∈ℕ
be sequences generated by Algorithm 7. Assume that one of the following conditions
is satisfied.
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1. For every 𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, 2/∥D∥2𝑠𝑝), and 𝜌𝑘 = 0.

2. For every 𝑘 ∈ ℕ, 𝜏𝑘 ∈ (0, 1/∥D∥2𝑠𝑝), and 𝜌𝑘 = 𝑡𝑘−1
𝑡𝑘+1

with 𝑡𝑘 = 𝑘+𝑎−1
𝑎

and 𝑎 > 2.

Then we have
x̂ = lim

𝑘→∞
P𝑆 (z −D⊤u[𝑘]), (3.48)

where x̂ is defined in (3.44).

3.2.5 Bi-convex function
In this section, we consider the following generic minimization problem:

min
x,e

E(x, e) := 𝑓 (x) + 𝑔𝑆 (x, e) + 𝑔𝐸 (e) (3.49)

where 𝑓 : H → (−∞, +∞], 𝑔𝐸 : G→ (−∞, +∞] are proper lower semicontinuous,
𝑔𝑆 : H× G→ (−∞, +∞] a 𝐶1 function and ∇𝑔𝑆 is Lipschitz continous on bounded
subsets of H× G. This function can cover many applications in image processing
such as image restoration, sparse approximation of images, compressed sensing and
blind decomposition, etc. Such a model can be also adapted in the context of Discrete
Mumford-Shah functional that we presented (2.35).

The standard approach to solve (3.49) is a Gauss-Seidel scheme or alternating
minimization, presented in Algorithm 8, in which we generate a sequence of (x[𝑘] , e[𝑘]).

Algorithm 3.8: Gauss-Seidel
For 𝑘 = 0, 1, . . .

x[𝑘+1] ∈ Argmin
x

E(x, e[𝑘])

e[𝑘+1] ∈ Argmin
e

E(x[𝑘+1] , e)

The convergence results for the Gauss-Seidel method is ensured under restricted
conditions such as strict convexity w.r.t each variable. In the convex setting, if E

is a continuously differentiable function, and assuming that E is strictly convex on
each variable while the other is fixed then the sequence {x[𝑘] , e[𝑘]}𝑘∈ℕ generated by
Algorithm 8 minimizes E.

To relax these assumptions, the above algorithm can be tackled in a different way
by adding a quadratic term or can be seen as a proximal regularization of the two
block Gauss-Seidel method:

Algorithm 3.9: Proximal Alternating Minimization algorithm
For 𝑘 = 0, 1, . . .

x[𝑘+1] ∈ Argmin
x

E(x, e[𝑘]) + 1
2𝜇𝑘 ∥x − x[𝑘] ∥2

e[𝑘+1] ∈ Argmin
e

E(x[𝑘+1] , e) + 1
2𝜅𝑘 ∥e − e[𝑘] ∥2,

where 𝜇𝑘 and 𝜅𝑘 are real positive. This approach was also proposed by [Auslender,
1971]. In the non-convex and nonsmooth setting, one of the first works was established
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by [Attouch et al., 2010]. The idea relies on assuming that the objective function E

satisfies the Kurdyka-Łojasiewicz property.
However, each step in this scheme can be reformulated as calculating a proximity

operator of the sum of 2 functions which does not always have a closed form or can
be easily computed. Thus this give rise to an idea that for each step, we perform one
gradient descent step on the smooth function 𝑔𝑆 (x, e) then a proximal step activate
on the (non)-smooth function 𝑓 (x) or 𝑔𝐸 (e). This yield to the Proximal Alternating
Linearized Minimization (PALM) algorithm described in Algorithm 10.

Algorithm 3.10: Proximal Alternating Linearized Minimization algorithm
For 𝑘 = 0, 1, . . .

x[𝑘+1] ∈ prox𝜇𝑘 𝑓
(
x[𝑘] − 𝜇𝑘∇x𝑔𝑆 (x[𝑘] , e[𝑘])

)
e[𝑘+1] ∈ prox𝜅𝑘𝑔𝐸

(
e[𝑘] − 𝜅𝑘∇e𝑔𝑆 (x[𝑘+1] , e[𝑘])

)
,

Under Proposition 3.2.3 , the PALM algorithm described in Algorithm 10 fits the
requirements for convergence in [Bolte et al., 2014][Assumptions A-B, Thm. 3.1].

Proposition 3.2.3. The sequence
(
x[𝑘] , e[𝑘]

)
𝑘∈ℕ

generated by Algorithm 10 converges
to a critical point of Problem (2.35) if

1. the updating steps of x[𝑘] and e[𝑘] have closed from expression;

2. the sequence
(
x[𝑘] , e[𝑘]

)
𝑘∈ℕ

generated by Algorithm 10 is bounded;

3. 𝑓 , 𝑔𝐸 and E(·, ·) are bounded below;

4. E is a Kurdyka-Łojasiewicz function;

5. ∇x𝑔𝑆 and ∇e𝑔𝐸 are globally Lipschitz continuous with moduli 𝜋(e) and 𝜛(x)
respectively, and for all 𝑘 ∈ ℕ, 𝜋(e[𝑘]), 𝜛(x[𝑘]) are bounded by positive constants.

In [Foare et al., 2019], the authors proposed an alternative to PALM to deal
with the DMS functional where the update e relies on the proximity operator of the
function {𝑔𝑆 (x, e) + 𝑔𝐸 (e)} whose iterations are provided in Algorithm 11.

Algorithm 3.11: Semi-Linearized Proximal Alternating Minimization
Algorithm

For 𝑘 = 0, 1, . . .
x[𝑘+1] = prox𝜇𝑘 𝑓

(
x[𝑘] − 𝜇𝑘∇𝑥𝑔𝑆 (x[𝑘] , e[𝑘])

)
e[𝑘+1] = prox𝜅𝑘 (𝑔𝐸 (·)+𝑔𝑆 (x[𝑘+1] ,·))

(
e[𝑘]

)
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Assumption 1. 1. The updating steps of x[𝑘+1] and e[𝑘+1] have closed form expression;

2. E is a Kurdyka-Łojasiewicz function;

3. ∇x𝑔𝑆 is globally Lipschitz continuous with moduli 𝜋(e[𝑘]), 𝑘 ∈ ℕ and there exists
𝜋−, 𝜋+ > 0 such that 𝜋− ≤ 𝜋(e[𝑘]) ≤ 𝜋+;

4. (𝜅𝑘 )𝑘∈ℕ is a positive sequence such that the stepsize 𝜅𝑘 belong to (𝜅−, 𝜅+) for
some 𝜅− ≤ 𝜅+.

Under Assumption 1, based on the proof in [Bolte et al., 2014], in [Foare et al.,
2019] the authors show that the sequence

(
x[𝑘] , e[𝑘]

)
𝑘∈N

generated by Algorithm 11
converges to a critical point (x∗, e∗) of E. This approach allows us to choose a larger
𝜅𝑘 which accelerates the convergence of the algorithm to the critical point (x̂, ê) of
(2.35). The leveraged difficulty is that the computation of the proximity operator of
the function 𝑔𝑆 (x, e) + 𝑔𝐸 (e) is not simple in all cases.

3.3 Conclusion
In Chapter 2, we see that standard approaches for solving inverse problems is

to frame them as variational problems, seeking a solution that minimizes a sum of
data fidelity function and regularization functions. Throughout this chapter, we had
observed that the objective functions to be minimized may have diverse mathematical
characteristics. Consequently, devising algorithms that capitalize on these distinct
properties becomes imperative. In Chapter 3, we thus introduced some algorithms
capable of minimizing these different functions.

When applying these algorithms, there are three crucial aspects that demand
attention: performance, the convergence and the computational speed for large scale
data. The subsequent chapter aims to explore deeper into these aspects, focusing
on the case of PALM and SL-PAM algorithms within the framework of the Discrete
Mumford-Shah functional.
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4.1 Discrete Ambrosio-Tortorelli approximation

This chapter focuses on a special instance of (2.35), when 𝑔𝐸 models the AT
penalization over e [Ambrosio and Tortorelli, 1990]. We derive two proximal alternating
schemes PALM and SL-PAM in this context, leading to algorithmic schemes with
convergence guarantees to a critical point of (2.35). A particular attention is paid
to the definition of the involved linear operators and the derivation of the associated
proximity operators. Numerous experiments are run in order to evaluate the performance
of the proposed PALM and SL-PAM for minimizing D-MS with AT penalization over
e. A multiresolution Golden-grid search strategy is proposed to efficiency extract
the optimal set of hyperparameters (𝜆𝑆, 𝜆𝐸 ) and to provide fair comparisons with
state-of-the-art methods for different types of degradation.

This chapter is based on the publication [Le et al., 2022a].

4.1 Discrete Ambrosio-Tortorelli approximation

4.1.1 Motivation
As we thoroughly discussed in Chapter 2, when dealing with the joint image

restoration and edge detection task, there are three main variational approaches:
(i) convex objective function such as ROF model which requires a post-processing
step to retrieve edge map, (ii) non-convex function such as Blake-Zisserman (BZ)
functional or (iii) Mumford-Shah (MS) functional allowing to reconstruct degraded
image and estimate edges. Even though relying on a single minimization process,
the BZ functional is a non-convex two-term minimization problem and the D-MS
[Foare et al., 2019] is a bi-convex three-term minimization problem leading to more
challenging algorithms.

In Chapter 2, we have become familiar with the original continuous Mumford-Shah
functional (2.32) for which we wanted to find a pair (𝒙, Γ) where Γ ⊂ Ω denotes the
discontinuities and 𝒙 is a smooth reconstructed field. In the continuous setting, the
edge length penalization is defined by the term H(Γ ∩Ω). Such a concept is difficult
to model in the discrete setting. In [Foare et al., 2019], the authors proposed different
types of penalizations on edges involving either the ℓ1 norm or BerHu penalization
(cf. Section 2.1.3). As shown in [Pustelnik, 2023], there is a link between these BZ
functional and DMS under appropriate choices of penalization on edges. For this
reason, in this chapter we only focus on DMS formalism. However, in practice, when
dealing with discrete setting, the latter penalization on edges leads to some false
edges. For instance, in Figure (4.1)(c) we observe a good denoising performance, but
missing edges. One possibility to recover more edges is to choose a smaller value 𝜆𝐸
(Figure (4.1) (d)). However, the resulting edges are not more satisfying, with a lot of
outliers detected, leading to poor denoising performance.

A challenging question is then how to design a better regularizer 𝑔𝐸 so that the
DMS model is able to detect relevant edges (e.g Figure (4.1) (e)). To achieve this
goal we will focus on Ambrosio-Tortorelli formalism (AT) [Ambrosio and Tortorelli,
1990] since it has an interesting Γ−convergence properties in this continuous setting.
In [Foare et al., 2016], the authors propose to reformulate AT using the framework of
Discrete Calculus (DC) expressed as
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4.1 Discrete Ambrosio-Tortorelli approximation

minimize
x∈ℝ𝐶𝑁 ,e∈ℝ2𝑁

EAT(x, e) := 1
2 ∥Ax − y∥22 + 𝜆𝑆∥(1 − e) ⊙ Dx∥2 + 𝜆𝐸

(
1
4𝜀 ∥e∥

2
2 + 𝜀∥D1e∥22

)
,

(4.1)
where 𝜀 > 0 denotes the Γ-convergence parameter, D1 is a derivative operator that
will be thoroughly discussed in section 4.1.3. Theoretically, large values of 𝜀 lead
to thick contours but help to detect the set of discontinuities. As 𝜀 tends to 0, the
penalization of ∥e∥22 increases and enforces e to become sparser, and contours become
thinner. However the numerical scheme proposed in [Foare et al., 2016, Foare, 2017]
got a huge price in computational time. In this chapter, we focus on minimizing the
Discrete Mumford-Shah functional with the approximating AT penalization on edges
and the design of algorithmic schemes to minimize such a functional. Inspired from
[Foare, 2017] we modify the definition of D and D1 originally proposed to make it
numerically efficient and to allow us to obtain results as displayed in Figure 4.1 (e).

(a) Original image x (b) Degraded image y

(c)Estimated x∗, e∗) with
DMS-ℓ1 for large value 𝜆𝐸

(d) Estimated x∗, e∗) with
DMS-ℓ1 for small value 𝜆𝐸

(e)Estimated x∗, e∗) with
AT-𝜀 0.025↘ 0.009

Figure 4.1: (a) Original image (b) Degraded image with 𝛿 = 0.05 according to
(2.1)-(2.8) with A = Id (c) Estimated images and edges obtained with DMS-ℓ1 (2.35)
solved by SL-PAM algorithm for 𝜆𝑆 = 5.7 and 𝜆𝐸 = 0.006, (d) Estimated images and
edges obtained with DMS-ℓ1 (2.35) solved by SL-PAM algorithm for 𝜆𝑆 = 5.7 and
𝜆𝐸 = 0.01, 𝜆𝐸 = 0.01 (e) AT (4.1) solved by SL-PAM with decreasing at each stage of
𝜀 = 0.2↘ 0.02 and (𝜆𝑆, 𝜆𝐸 ) = (5.7, 0.008).

4.1.2 Discrete exterior calculus
When going from continuous formulation of (2.33) to numerical schemes, we need

to reformulate the objective function in a discrete setting. Following [Foare et al.,
2016, Foare, 2017] we will focus on a discretization relying on discrete exterior calculus
(DEC). We will recall some fundamental definitions and important tools in discrete
differential geometry that are essential in this chapter.
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4.1 Discrete Ambrosio-Tortorelli approximation

Definition 4.1.1. A discrete surface or 2-dimensional cubical complex is composed
of:

• a set of vertices 𝑉 = {𝑣𝑖} (0−cells),

• a set of edges 𝑆 = {𝑠𝑖} such that each edge connect two distinct vertices (1−cells),

• a set of faces 𝐹 = { 𝑓𝑖} such that face 𝑓 denotes 𝑓 = (𝑣1 . . . 𝑣𝑛), where (𝑣𝑖𝑣𝑖+1) ∈
𝐸 ∀𝑖 = 1, . . . , 𝑛 and 𝑣𝑛+1 = 𝑣1 (2−cells).

In [Foare et al., 2016], the authors proposed two options to discretize the image
domain on a 2-dimensional cell complex or discrete surface: (i) we set x to live on
the faces and e to live on the vertices and edges or (ii) we set x on the vertices and e
on the edges then the intensity value of x is the point on the center of pixels.

In this work, we focus on the option where pixel value x lies on vertices and the
edges e are defined to locate in between them (as illustrated in Figure 2.5-(c)).
Discrete differential form of degree 𝑘 – In differential geometry, a differential
𝑘−forms is a unified approach to define integrands over curves, surfaces or higher-
dimensional manifolds. A discrete differential 𝑘−form is a quantity that associates a
scalar value to a 𝑘−cell. In our case when the intensity value of pixels lives on vertices
and edges live between pixels, image x is a 0−form and the edges e is a 1−form.
Derivative of 𝑘−forms – The exterior derivative is an operation on differential
forms that, given a 𝑘−form 𝜔, produces a (𝑘+1)−form 𝑑𝜔. For instance, the derivative
of x produces a 1−form attached to the edges. This operation extends the differential
of a function, and it is summarized in the following theorem.

Theorem 4.1.1. (Stokes’ theorem). The integral of a differential form 𝜔 over the
boundary 𝜕Ω of some orientable manifold Ω is equal to the integral of its exterior
derivative 𝑑𝜔 over the whole Ω, i.e.,∫

𝜕Ω

𝜔 =

∫
Ω

𝑑𝜔. (4.2)

4.1.3 Design of the linear operator D and D1

In this section, we focus on the design of the discrete operators D and D1.
Differential operator D of vertices – Let 𝒙 be a 0−form (that is, scalar living
on vertices) in ℝ defined on an oriented grid (e.g. Figure 4.2). Based on the Stoke’s
theorem, on the oriented edge 𝑠1 = (𝑣1𝑣4), there exists a 1−form 𝑑𝒙 that verifies

𝑑𝒙(𝑠1) =
∫
𝑠1

𝑑𝒙 =

∫
𝜕𝑠1

𝒙 = 𝒙(𝑣4) − 𝒙(𝑣1). (4.3)

We define then

𝑑 :𝑉 → 𝑆 (4.4)
𝒙 ↦→ 𝑑𝒙 (4.5)
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4.1 Discrete Ambrosio-Tortorelli approximation

which is equivalent to the finite difference operator and the differential value between
two vertices associated with an edge.

Under matrix form, we can rewrite 𝑑 as:

𝑑𝒙 ∼ Dx, (4.6)
where D is the matrix of operator 𝑑 and x is the associated vector to the 0−form 𝒙.
We can refer to the illustration in the Figure 4.2 where D = [D⊤

ℎ
D⊤𝑣 ]⊤ is a vertice-

to-edge oriented incident matrix of the discrete surface where Dℎ and D𝑣 are defined
in Figure (4.2)-(b).

Differential operator D1 of edges – Let 𝒆 be a 1−form in ℝ defined on a discrete
surface. We rewrite the Stoke’s theorem on the face 𝑓1 = (𝑣1, 𝑣4, 𝑣5, 𝑣2) of G (Figure
4.2), there exists a 2−form noted 𝑑1𝒆 that verifies:

𝑑1𝒆( 𝑓1) =
∫
𝑓1

𝑑1𝒆 =

∫
𝜕 𝑓1

𝒆 = −𝒆(𝑠1) + 𝒆(𝑠2) + 𝒆(𝑠7) − 𝒆(𝑠9). (4.7)

Under matrix form, we can rewrite:

𝑑1𝒆 = D1e,
where for any faces 𝑓 surrounding by vectorized edges 𝑠, D1 ∈ ℝ|𝔽 |×2𝑁 is defined
as the edge-to-face oriented incidence matrix. By computing a kind of curl on the
faces, it acts as a differential operator on edges. We can observe that it results in a
combination of the vertical derivatives of horizontal edges. By observation, we can
simply rewrite D1 as D1 =

[
D𝑣 −Dℎ

]
. (4.8)
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Figure 4.2: Left: example of a discrete image complex for illustrating D = [D⊤
ℎ

D⊤𝑣 ]⊤
. Right: corresponding horizontal and vertical pixelwise discrete gradient operators
Dℎ and D𝑣.
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4.2 Minimization algorithm
The minimization of (4.1) appears to be a bi-convex minimization problem. In

[Foare et al., 2016], the authors propose to alternate the resolution of two linear
systems, derived from the optimality conditions. Mimicking the Γ-convergence process,
they decrease 𝜀 during the optimization process. It allows them to better capture
thin structures. This numerical scheme converges to a stationary point, but at the
price of a huge computational time.

We propose to derive two proximal alternating schemes (following [Attouch et al.,
2010, Bolte et al., 2014, Foare et al., 2019]) relying on proximal steps.

The first scheme, referred as PALM-AT, is presented in Algorithm 4.1, while
the second one, called SL-PAM-AT, is presented in Algorithm 4.2. The benefit of
considering a full proximal step in the update of e[𝑘+1] in Algorithm 4.2 is to relax
the bound associated with the step-size parameter, computed from the Lipschitz
constant of the gradient of the linearized coupling term. The sequence {(x[𝑘] , e[𝑘])}𝑘∈ℕ
generated in Algorithm 4.1 (resp. Algorithm 4.2) to a critical point of (4.1) following
similar arguments than those in [Bolte et al., 2014, Ass. A-B, Theorem 3.1] (resp.
[Foare et al., 2019]). However the involved proximal step-sizes require specific attention
in our context.

4.2.1 Proximal Alternating Linearized Minimization
Using the generic PALM iterations defined in Algorithm 10, the PALM-AT iterations

reads:

Algorithm 4.1: PALM-AT
Input: Degraded image y
Output: Restored image x∗, contour e∗
Set: 𝑔𝑆 = 𝜆𝑆∥(1 − e) ⊙ Dx∥2, 𝑔𝐸 = 𝜆𝐸

( 1
4𝜀 ∥e∥

2
2 + 𝜀∥D1e∥22

)
𝐿
[𝑘]
∇x𝑔𝑆

and 𝐿
[𝑘]
∇e𝑔𝑆

the
Lipschitz constants of ∇x𝑔𝑆 (·, e[𝑘]) and ∇e𝑔𝑆 (x[𝑘+1] , ·)

Initialization: x[0] ∈ ℝ𝐶𝑁 , e[0] ∈ ℝ𝐽𝑁

while E[𝑘+1]−E[𝑘 ]
E[𝑘 ]

< 𝜁 and 𝑘 ∈ ℕ do
Choose 𝜇𝑘 < 1/(𝐿 [𝑘]∇x𝑔𝑆

)

x[𝑘+1] = prox 𝜇𝑘
2 ∥A·−y∥22

(
x[𝑘] − 𝜇𝑘∇x𝑔𝑆 (x[𝑘] , e[𝑘])

)
Choose 𝜅𝑘 < 1/(𝐿 [𝑘]∇e𝑔𝑆

)

e[𝑘+1] = prox𝜅𝑘𝑔𝐸
(
e[𝑘] − 𝜅𝑘∇e𝑔𝑆 (x[𝑘+1] , e[𝑘])

)
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In Algorihm 4.1, there are two essential steps:

• The computation of prox 𝜇𝑘
2 ∥A·−y∥22

which can be efficiently computed when matrix
A is block-circulant with circulant blocks, thus diagonalized by the 2-D DFT.
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Figure 4.3: Left: example of a discrete image complex for illustrating D =

[D⊤
ℎ𝑝

D⊤𝑣𝑝]⊤ . Right: corresponding horizontal and vertical pixelwise discrete gradient
operators Dℎ and D𝑣.

• The computation of prox𝜅𝑘𝑔𝐸 takes a closed form under Proposition 4.2.1.

Proposition 4.2.1. The update of the edge variable in Algorithm 4.1 takes a closed
form expression that is:

e[𝑘+1] =
[
2𝜅𝑘𝜆𝐸𝜀D∗1D1 +

(
1 + 𝜅𝑘𝜆𝐸2𝜀

)
Id

]−1
e[𝑘] . (4.9)

Proof. Using the definition of proximity operator (3.6) for 𝑔𝐸 , we obtain:

prox𝜅𝑘𝑔𝐸 (e
[𝑘]) = argmin

e∈ℝ2𝑁
𝜆𝐸𝜀𝜅𝑘 ∥D1e∥22 +

𝜆𝐸 𝜅𝑘

4𝜀 ∥e∥
2
2 +

1
2 ∥e − e[𝑘] ∥22. (4.10)
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Applying the Fermat’s rule, we have:

e − e[𝑘] + 2𝜅𝑘𝜆𝐸𝜀D∗1D1 +
2𝜆𝐸 𝜅𝑘

4𝜀 e = 0. (4.11)

Leading to (4.9),

prox𝜅𝑘𝑔𝐸 (e
[𝑘]) =

[
2𝜅𝑘𝜆𝐸𝜀D∗1D1 +

(
1 + 2𝜅𝑘𝜆𝐸

4𝜀

)
Id

]−1
e[𝑘] (4.12)

In terms of implementation, the major limitation relies on the inversions involved
in Proposition 4.2.1. When D1 is defined by D1 =

[
D𝑣 −Dℎ

]
, the update of e[𝑘+1]

can be efficiently obtained by using inversion lemma leading to

e[𝑘+1] =
[
F +GQM GQ

QM Q

]
e[𝑘] (4.13)

where 

𝜂1 = (1 + 𝜅𝑘𝜆𝐸
2𝜀 )

𝜂2 = 2𝜆𝐸𝜀𝜅𝑘
F = (𝜂2D∗𝑣D𝑣 + 𝜂1Id)−1

G = F(𝜂2D∗𝑣Dℎ)
M = (𝜂2D∗

ℎ
D𝑣)F

Q = (𝜂2D∗
ℎ
Dℎ + 𝜂1Id − (𝜂2D∗

ℎ
D𝑣)F(𝜂2D∗𝑣Dℎ))−1

,

where inversion is a cheap operation in the Fourier domain requiring to build the
discrete gradient operators with boundary effect (as illustrated in Figure 4.3). An
auxilary proof for equation (4.13) is provided in Section A.1.

Convergence of PALM under KL condition – Under Proposition 3.2.3 , the
PALM algorithm described in Algorithm 4.1 fits the requirements for convergence in
[Bolte et al., 2014][Assumptions A-B, Thm. 3.1].
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4.2.2 Semi-Linearized Proximal Alternating Minimization
Using the SL-PAM iterations defined in Algo. 11, the SL-PAM algorithm for the

DMS with Ambrosio-Tortorelli penalization on edges reads:
Algorithm 4.2: SL-PAM-AT

Input: Degraded image y
Output: Restored image x∗, contour e∗
Set: 𝑔𝑆 = 𝜆𝑆∥(1 − e) ⊙ Dx∥2, 𝑔𝐸 = 𝜆𝐸

( 1
4𝜀 ∥e∥

2
2 + 𝜀∥D1e∥22

)
and 𝐿

[𝑘]
∇x𝑔𝑆

is the
Lipschitz constant of ∇x𝑔𝑆 (·, e[𝑘])

Initialization: x[0] ∈ ℝ𝐶𝑁 , e[0] ∈ ℝ𝐽𝑁

while E[𝑘+1]−E[𝑘 ]
E[𝑘 ]

< 𝜁 and 𝑘 ∈ ℕ do
Choose 𝜇𝑘 > 𝐿 [𝑘]∇x𝑔𝑆

x[𝑘+1] = prox 𝜇𝑘
2 ∥A·−y∥22

(
x[𝑘] − 𝜇𝑘∇x𝑔𝑆 (x[𝑘] , e[𝑘])

)
Choose 𝜅𝑘 > 0
e[𝑘+1] = prox𝜅𝑘 (𝑔𝑆 (x[𝑘+1] ,·)+𝑔𝐸 )

(
e[𝑘]

)
In Algorithm 4.2, there are two essential updates:

• The computation of prox 𝜇𝑘
2 ∥A·−y∥22

which is similar to Algorithm 4.1.

• The computation of prox𝜅𝑘 (𝑔𝑆 (·,x[𝑘+1] )+𝑔𝐸 )
(
e[𝑘]

)
that will be detailed in Proposition

4.2.2.

Proposition 4.2.2. The update of the edge variable in Algorithm 4.2 takes a closed
form that is:

e[𝑘+1] =
[
2𝜅𝑘𝜆𝐸𝜀D∗1D1 + 2𝜅𝑘𝜆𝑆diag

(
(Dx[𝑘+1])2

)
+ . . .(

𝜆𝐸 𝜅𝑘

2𝜀 + 1
)

Id
]−1 (

2𝜅𝑘𝜆𝑆 (Dx[𝑘+1])2 + e[𝑘]
)
. (4.14)

Proof. Using the definition of proximity of operator (3.6), the update of the edge
variable e in Algorithm 4.2 reads:

prox𝜅𝑘 (𝑔𝑆 (·,x[𝑘+1] )+𝑔𝐸) (e
[𝑘]) = argmin

e∈ℝ2𝑁
𝜆𝐸𝜀𝜅𝐾 ∥D1e∥22 +

𝜆𝐸 𝜅𝑘

4𝜀 ∥e∥
2
2 + . . .

𝜆𝑆𝜅𝐾 ∥Dx[𝑘+1] ⊙ (1 − e)∥22 +
1
2 ∥e − e[𝑘] ∥22. (4.15)

Applying the Fermat rule, we obtain:

2𝜆𝐸𝜀𝜅𝑘D∗1D1e + 𝜆𝐸 𝜅𝑘2𝜀 e + 2𝜆𝑆𝜅𝐾 (Dx[𝑘+1])2 ⊙ (e − 1) + e − e[𝑘] = 0. (4.16)
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Or equivalently

2𝜆𝐸𝜀𝜅𝑘D∗1D1e + 𝜆𝐸 𝜅𝑘2𝜀 e + 2𝜆𝑆𝜅𝑘
(
(Dx[𝑘+1])2

)
⊙ (e − 1) + e − e[𝑘] = 0. (4.17)

Leading to

prox𝜅𝑘 (𝑔𝑆 (·,x[𝑘+1] )+𝑔𝐸) (e
[𝑘]) =

[
2𝜅𝑘𝜆𝐸𝜀D∗1D1 + 2𝜅𝑘𝜆𝑆

(
(Dx[𝑘+1])2

)
+ . . .(

𝜆𝐸 𝜅𝑘

2𝜀 + 1
)

Id
]−1 (

2𝜅𝑘𝜆𝑆 (Dx[𝑘+1])2 + e[𝑘]
)
. (4.18)

Contrary to the inversion involved in Algorithm 4.1, the inversion problem (4.18)
is more challenging. To accelerate the inversion of 2𝜆𝐸𝜀𝜅𝑘D∗1D1 + 2𝜆𝑆𝜅𝑘

[
(Dx[𝑘+1])2

]
+
(𝜆𝐸 𝜅𝑘

2𝜀 +1
)
Id, we can consider it as a sparse matrix and use sparse linear system solver

such as GMRES [Baker et al., 2005].
Convergence of PALM under KL condition – Under Assumption 1, based on
the proof in [Bolte et al., 2014], SL-PAM-AT also allows us to choose a larger 𝜅𝑘 which
accelerates the convergence of the algorithm to the critical point (x∗, e∗) of (4.1).

4.2.3 Choice of 𝜀
AT-𝜀 ↘ – The length penalization 𝑔𝐸 (e) is controlled by the parameter 𝜆𝐸 and
also crucially depends on another parameter 𝜀. It determines the scale at which the
penalization operates; when 𝜀 has big value, the AT term will have less influence on
the length penalization due to 1

4𝜀 ∥e∥
2
2 which help us to detect as much as possible the

set of potential significant edges (discontinuities). When 𝜀 tends to 0, the penalization
of ∥e∥22 increases and enforces e to become sparser and contours become thinner.

The idea of the proposed algorithm AT with decreasing 𝜀 relies always on solving
the (4.1) with PALM or SL-PAM at fixed 𝜀 but the initialisation of image reconstructed
and edges detected are chosen as the solution of the previous 𝜀 as described by
Algorithm 4.3. We also observe in Figure 4.4, at each decreasing stage, the energy
(4.1) has a jump. This can be explained from the fact that after updating a new
smaller 𝜀, the term 1

4𝜀 ∥e∥
2 will increase suddenly while the others are kept unchanged

leading to the jump in the energy.

Algorithm 4.3: AT-𝜀 ↘
Input: Degraded image y
Output: Restored image x∗, contour e∗
Set: 0 < 𝜀̃ < 𝜀0 and decreasing factor 𝜚 > 1
Initialization: x[0] ∈ ℝ𝐶𝑁 , e[0] ∈ ℝ𝐽𝑁

while 𝜀 > 𝜀̃ do
Solve (4.1) with 𝜀, using Algorithm 4.1 or Algorithm 4.2
𝜀 := 𝜀/𝜚
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Figure 4.4: AT-𝜀 ↘ energy associated to the estimate displayed in Figure 4.1 when
𝜀 = 0.025 ↘ 0.009 and (𝜆𝑆, 𝜆𝐸 ) = (5.2, 0.009) solved by PALM (top) and SL-PAM
(bottom) for each decreasing 𝜀 stage with 𝜚 = 1.5.

In Figure 4.5, we display the estimation result at each stage of decreasing 𝜀, we
observe that the PSNR score decreases but the edges got clearer. In addition, from
Figure 4.5, we can see that as 𝜀 decreases, the values of e converge closer to either
0 or 1. These values correspond to the essential edges and result in a better quality
in the sharpness of the edges in some areas with a gradual transition in intensity. At
this point, the selection of 𝜆𝑆, 𝜆𝐸 , 𝜀 and the decreasing factor 𝜚 remains a question
to enable a better reconstruction and edge detection.
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Estimation Histogram of ê

(x, e) (x∗, e∗)𝜀 36.49 dB

y 30.47 dB (x∗, e∗) 𝜀
𝜚

36.19 dB

)x∗, e∗) 𝜀
𝜚2

35.67 dB

(x∗, e∗) 𝜀
𝜚3

34.96 dB

Figure 4.5: 1st column: (Top) original image and groundtruth edge, (Bottom)
degraded image with 𝛿 = 0.03. 2nd column: Denoised image and edges estimated
by SL-PAM-AT-𝜀 = 0.2 ↘ 0.02 with deacreasing factor 𝜚 = 1.5 and (𝜆𝑆 = 5.2, 𝜆𝐸 =

0.006). 3rd column: Histogram of eℎ (purple) and e𝑣 (green) or both (gray blue) for
each stage.
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4.3 Choice of the hyperparameters

4.3 Choice of the hyperparameters
In the AT functional (4.1), there are two crucial hyperparameters 𝜆𝑆 and 𝜆𝐸 .

The first one controls the smoothness of the image while the second one controls
the total edge length or total length of discontinuities. If the 𝜆𝑆 is too big we
will over smooth out the image, whereas too small values of 𝜆𝑆 keep some noise in
the reconstructed image. Similarly, 𝜆𝐸 controls the penalization on edges where big
values of 𝜆𝐸 penalize strongly the edge length and vice versa. The selection of these
hyperparameters for DMS or AT functional became crucial for whatever the choice
𝑔𝐸 . In the following, we propose a strategy for a better hyperparameter selection
procedure, namely, Multiresolution Golden-grid-search.

Algorithm 4.4: Multiresolution Golden-grid search
for ℓ = 0, 1, . . . do

1- Run the Alg.4.1 or Alg.4.2 on a 5 × 5-equally spaced grid with
(𝜆𝑆, 𝜆𝐸 ) ∈ [(𝜆𝑆)L,ℓ, (𝜆𝑆)R,ℓ] × [(𝜆𝐸 )L,ℓ, (𝜆𝐸 )R,ℓ].

2- Identify the pair
(
(𝜆𝑆)∗ℓ , (𝜆𝐸 )

∗
ℓ

)
maximizing the score (e.g. PSNR or

Jaccard index).
3- The grid bounds (𝜆𝑆)L,ℓ+1, (𝜆𝑆)R,ℓ+1, (𝜆𝐸 )L,ℓ+1, and (𝜆𝐸 )R,ℓ+1 are
updated in order to be centered in

(
(𝜆𝑆)∗ℓ , 𝜆𝐸 )

∗
ℓ

)
and with a twice smaller

width.

The performance of PALM-AT using a standard grid search strategy and the
proposed multiresolution Golden-grid search are provided in Fig. 4.6. We can observe
that the proposed hyperparameter selection procedure allows us to reach better
scores. We also observe that maximizing the Jaccard index leads to better contour
estimation than maximizing PSNR. We then focus on maximizing Jaccard index using
multiresolution Golden-grid strategy in order to provide fair comparisons between the
different penalizations and algorithmic strategies.
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Original (x, e) Degraded y

PSNR = 26.08 dB
Grid search Golden grid search

Maximizing Jaccard Maximizing Jaccard Maximizing PSNR

(x∗,e∗)
Jaccard 0.840 0.860 0.800
PSNR 27.8 dB 30.1 dB 34.8 dB

Figure 4.6: Original and degraded data are displayed on the top. Comparison
between grid search (1st column) and the proposed Golden-grid search (2nd column)
for (𝜆𝑆,𝜆𝐸 )–hyperparameters with PALM-AT-𝜀 = 0.2 when maximizing Jaccard index
and when maximizing the PSNR. The grid search (resp. Golden-grid search) map is
composed with 121 (resp.125) values.

4.4 Comparisons with state-of-the-art methods
Considering Algorithm 4.3 with SL-PAM-AT or PALM-AT iterations and multiresolution

Golden-Grid search, we are able to perform more systematic experiments.
Simulation settings – Our experiments are first performed on a toy example of
size 𝑁 = 125 × 125 displayed in Fig. 4.6 (top-left), which allows us to have access to
the ground truth both in terms of image to restore and contour to extract, and to
study carefully the impact of the different algorithmic strategies and penalizations.
We consider two degradation models (2.1): (i) a Gaussian noise of variance 𝛿2 without
linear degradation (i.e. 𝐴 = 𝕀) in Fig. 4.7, and (ii) a degradation combining a linear
Gaussian blur with standard deviation of 1.1 and Gaussian noise of variance 𝛿2,
provided in Fig. 4.8, for several realisations of noise.

Second, we evaluate the performance on several images extracted from the BSD
database [Meer et al., 1991] degraded with a Gaussian noise and for which contours
are provided. As it can be observed on the first column of Figure 4.9, the definition of
a contour for complex images is a tedious task and often user-dependent. Among the
5 different contours proposed in the dataset, we considered the one that appears to us
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4.4 Comparisons with state-of-the-art methods

the most realistic. We evaluate the results both in terms of Jaccard index and PSNR,
to quantify respectively the contour detection and the image restoration performance.
Algorithm settings – The stopping criterion for all the algorithms is set to 𝜁 = 10−4,
𝜇𝑘 = 1/(2.01𝜆𝑆), 𝜅𝑘 = 104 (for SL-PAM) and 𝜅𝑘 = 1.01

𝜆𝑆𝐿
[𝑘 ]
∇e𝑔𝑆

(for PALM) where the

Lipschitz constant is computed with the power method. 𝜀 can be either selected fixed
or decreasing 𝜀𝑚𝑎𝑥 ↘ 𝜀𝑚𝑖𝑛.
Comparison with state-of-the-art methods – In Fig. 4.7, we display the optimal
results in terms of Jaccard index using a multiresolution Golden-grid search strategy
for PALM and SL-PAM with different choices of 𝑔𝐸 . The choice 𝑔𝐸 = ∥ · ∥1 refers
to the method presented in [Foare et al., 2019] while AT penalization refers to the
strategies presented in this chapter.

We observe that the proposed algorithms PALM and SL-PAM with decreasing
𝜀 lead to the best performance both in terms of contour detection and restoration.
However, SL-PAM-AT is limited by its huge computational cost due to the inversion
in (4.14). For this reason, PALM-AT with decreasing 𝜀 leads to the best compromise
between performance and computational time among the proposed strategies.

T-ROF
[Rudin
et al.,
1992]

Hohm et
al.

[Hohm
et al.,
2015]

PALM-
ℓ1

SL-
PAM-ℓ1

PALM-
AT
𝜀=0.2

SL-
PAM-AT
𝜀=0.2

PALM-
AT 𝜀=

2↘0.02

(x∗,e∗)

Jaccard 0.599 0.869 0.860 0.872 0.860 0.860 0.873
PSNR 30.5 dB 30.7 dB 27.5 dB 31.4 dB 30.1 dB 27.5 dB 34.2 dB

CT ∼ 10 sec. ∼ 10 sec. ∼ 10 sec. ∼10 sec. ∼ 1 min. ∼ 1 h. ∼ 10
min.

Figure 4.7: Comparison between different schemes using observation y provided
in Fig. 4.6 (top-left). All the results are obtained with a multiresolution golden-grid
search strategy (even for T-ROF and Hohm et al. [Hohm et al., 2015]) maximizing the
Jaccard index. The second row displays the optimal solution for each methods. The
optimum Jaccard index, the associated PSNR and the overall-running time (including
the search for the optimal parameters relying on the multiresolution grid-search) are
also provided.

Image restoration and edge detection – In the context of image restoration
and edge detection, comparisons between T-ROF [Cai and Steidl, 2013], Hohm et al.
[Hohm et al., 2015], PALM-ℓ1 [Foare et al., 2019], and the proposed PALM-AT with
decreasing 𝜀 are provided in Fig. 4.8 (blur and noisy data for 15 realisations of noise)
and Fig. 4.9 (noisy case on more complex data). We focus on PALM strategies to
highlight the impact of the penalization, regardless of the algorithm. The performance
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4.4 Comparisons with state-of-the-art methods

of PALM-AT with decreasing 𝜀 are systematically better in terms of Jaccard index
and most of the time in PSNR.

𝛿=0.02 𝛿=0.08 𝛿=0.1 𝛿=0.2

(a) 0.864 (b) 0.659 (c) 0.572 (d) 0.362

2 · 10−2 5 · 10−2 8 · 10−2 0.11 0.14 0.17 0.2

0.2

0.4

0.6

0.8
PALM-AT (ε↘)
PALM-`1
Hohm et al.
T-ROF

2 · 10−2 5 · 10−2 8 · 10−2 0.11 0.14 0.17 0.2

15

20

25

30

35
PALM-AT (ε↘)
PALM-`1
Hohm et al.
T-ROF

Jaccard PSNR

Figure 4.8: (Top) 1𝑠𝑡 row: observation degraded by both an additive white Gaussian
noise and a Gaussian blur. 2𝑛𝑑 row: Best estimated image x̂ and contours ê
(delineated in red) using PALM-AT with 𝜀 = 2↘0.02 maximizing the Jaccard index,
provided below. (Bottom) Comparisons between T-ROF, Hohm et al., PALM-ℓ1,
and PALM-AT with 𝜀 = 2 ↘ 0.02 obtained with multiresolution Golden-grid search
strategy maximizing the Jaccard index. For each method, we display the mean (min
and max) of Jaccard index (middle) and PSNR (right) for 15 realizations of noise.
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4.5 Conclusion

Ground Truth Data T-ROF BZ DMS-ℓ1 Proposed
PSNR / Jaccard 26.0 dB / ND 20.5 dB / 0.068 21.9 dB / 0.073 29.7 dB / 0.063 24.0 dB / 0.074

PSNR / Jaccard 14.0 dB / ND 21.8 dB / 0.104 21.0 dB / 0.101 23.7 dB / 0.094 23.4 dB / 0.121

PSNR / Jaccard 26.0 dB / ND 34.3 dB / 0.068 33.1 dB / 0.084 30.3 dB / 0.081 34.2 dB / 0.101

Figure 4.9: Performance obtained with T-ROF, Blake-Zisserman [Blake and
Zisserman, 1987], DMS-ℓ1 [Foare et al., 2019], and the proposed AT-𝜀 ↘, with
associated PSNR/Jaccard.

4.5 Conclusion
In this work, we derive two iterative schemes to solve the AT functional, relying

on PALM and SL-PAM. We also introduce a multiresolution Golden-grid search for
hyperparameters selection to compare their performances on contour detection and
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4.5 Conclusion

restoration. From numerical experiments, SL-PAM gives a faster convergence rate
than PALM for AT regularization but at the price of larger computational time.
Extensive experiments illustrate the benefit of AT-𝜀 = 2 ↘ 0.02 compared to other
state-of-the-art methods such as T-ROF, Blake-Zisserman or DMS-ℓ1.
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Part II

Deep learning methods for joint
image restoration and edge

detection
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Chapter 5
State-of-the-art on deep learning for image
restoration or edge detection
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5.1 Preliminaries

5.1 Preliminaries
In the past twenty years, there has been remarkable progress in both the management

of massive data and the computational power available for complex calculations.
This has paved the way for innovative approaches known as deep learning, which are
increasingly applied to various tasks in the field of image processing including image
denoising, image restoration, edge detection. This section is dedicated to introducing
essential concepts and tools that will be utilized throughout the remainder of this
manuscript.

5.1.1 Objectives
Deep learning methods arise as powerful approach in the era of artificial intelligence

to overcome the limitations of variational approaches in term of computation time.
Learning-based methods consist of building a prediction function 𝑓Θ depending on
hyperparameters Θ. For example, in the context of image restoration, the reconstructed
image x̂ can be the output of the prediction function 𝑓Θ(y) where y is the degraded
image.

In the context of joint image reconstruction and edges detection, the prediction
function acts as (x̂, ê) = 𝑓Θ(y) where x̂ and ê are respectively the image reconstructed
and edge detected from the degraded image.

We discuss here about supervised learning strategies where the learning parameters
Θ are inferred from a training database (x𝑠, y𝑠)𝑠∈𝕀 of size |𝕀| for image restoration task
or in the joint task of image denoising and edge detection where the training set
become (x𝑠, z𝑠, e𝑠)𝑠∈𝕀.

In the following, we start discussing some pioneering structures of 𝑓Θ such as
classical Neural Networks and Deep Convolutional Networks.

5.1.2 Classical Neural Networks
Neural networks (NNs) form a particular class of prediction functions 𝑓Θ composed

of several layers or neural nodes. Let 𝑓 𝐾
Θ

be a feedforward NN, with 𝐾 layers and
learnable parameters Θ, 𝑓 𝐾

Θ
can be written as a composition of operators (i.e., layers)

𝑓Θ = TΘ𝐾 ◦ · · · ◦TΘ1 , where, for every 𝑘 ∈ {1, . . . , 𝐾}, Θ𝑘 are the learnable parameters
of the 𝑘-th layer TΘ𝑘 . The 𝑘-th layer is defined as

TΘ𝑘 : u[𝑘] ∈ ℝ𝑁𝑘 ↦→ 𝜂𝑘 (W𝑘u[𝑘] + b𝑘 ) ∈ ℝ𝑁𝑘+1 , (5.1)

where 𝜂𝑘 is a (non-linear) activation function, W𝑘 is a linear operator, and b𝑘 is a
bias.
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Figure 5.1: The 𝑘−th layer of a Feed Forward Neural Network.

Figure 5.1 illustrates the 𝑘 − 𝑡ℎ layer of a fully feedforward neural network.

5.1.3 Deep Convolutional Neural Networks
A feedforward neural network (Figure 5.1) is usually a fully connected network,

every node in one layer is connected to every nodes in the next layer. It makes
them easy to overfit the data. Such a neural network is not flexible and cumbersome
when dealing with high dimensional image. This gives rise to Deep convolutional
neural networks (DnCNNs) which have proved their success in many image processing
problem such as image denoising, edge detection, segmentation, etc. In the following,
we introduce step by step how to build a standard DnCNNs.

When dealing with an image processing task, we are already familiarized with
different operators (or kernels) such as mean filter in image denoising or Laplacian
operator in edge detection. These operators generally rely on a kernel h ∈ ℝ𝑚×𝑛 which
is convolved with the image x to give output u:

u = h ∗ x⇔ (∀𝑖, 𝑗) u𝑖, 𝑗 =

⌊𝑛⌋
2∑︁

𝑚̃=− ⌊𝑛⌋2

⌊𝑚⌋
2∑︁

𝑛=− ⌊𝑚⌋2

h𝑚̃,𝑛 · x𝑖−𝑚̃, 𝑗−𝑛 (5.2)

Definition 5.1.1. (2D convolutional layer)For 𝑘 ∈ {1, . . . , 𝐾}, a convolutional layer
with convolutional operator denoted as (d𝑘, 𝑗 )1≤ 𝑗≤𝐽 can be defined as

u[𝑘+1] = 𝜂𝑘

(
𝐽∑︁
𝑗=1

d𝑘, 𝑗 ∗ u[𝑘]
𝑗
+ b𝑘, 𝑗

)
. (5.3)

Definition 5.1.2. (Standard Convolutional Neural Network) A Convolutional Neural
Networks refers to several layers of the form (5.3).
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5.2 Preliminaries

In the literature, there is a range of CNNs whose number grows very fast in
computer vision. The most famous and standard CNN is DnCNN which proved its
efficiency for several tasks like edge detection, image denoising or image classification.
In recent years, more and more innovative techniques and design elements such as
skip-connections or average pooling have been employed to enable them to extract
context-rich features. For example, UNet proposed by [Ronneberger et al., 2015]
features a U-shaped architecture with both downsampling and upsampling paths,
skip-connections between corresponding layers in these paths allow the network to
capture fine details and contextual information. Recently, it was modified to more
powerful architecture such as DRUnet [Zhang et al., 2021]. Resnet proposed by [He
et al., 2016] introduces the concept of residual connections, which enable the network
to learn residual functions, making it easier to train extremely deep networks without
vanishing gradient problems.

5.1.4 Learning process
In order to estimate the parameters Θ of the network, the supervised framework

relies on a training database (x𝑠, z𝑠)𝑠∈𝕀. The learning relies on a loss function Lwhich
measures the performance of the estimator function 𝑓Θ(z). The goal is to minimize
this function with respect to Θ to determine the best estimator of 𝑓

Θ̂
. Formally, we

seek to solve the following minimization problem:

Θ̂ ∈ Argmin
Θ

1
|𝕀|

|𝕀|∑︁
𝑠=0

L (x𝑠, z𝑠;Θ) (5.4)

In the literature there are various designs of loss function which is adapted to the
structure of the neural networks and the image processing task. After selecting an
appropriate loss function, the most simple way to solve the minimization problem
(5.4) is to perform a gradient descent algorithm, the update of the parameter Θ at
the 𝑘−th iteration reads:

Θ[𝑘+1] = Θ[𝑘] − 𝛾 1
|𝕀|

|𝕀|∑︁
𝑠=0
∇ΘL (x𝑠, z𝑠;Θ) (5.5)

where 𝛾 > 0 is the step-size, ∇ΘL denotes the gradient of the loss function. In
practice, the gradient is performed by using the backpropagation procedure, the error
or loss obtained from NNs after the forward step is backpropagated through the
same layer from the last layer of NNs. However, the computation is more complex
and numerically expensive in practice. First, the "size" of the minimization problem
depends on the scale of data and the architecture of the designed neural network
which is usually very large in order to provide an efficient estimator. To address this
problem, there are many minimization algorithms relying on stochastic optimization
dedicated to this large scale problem such as Adam [Kingma and Ba, 2014], SGD
[Milanfar, 2012] or Adagrad [Duchi et al., 2011], to name the most commonly used
optimizers.
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5.2 Plug-and-Play and Proximal Neural Networks
for image restoration

As we discussed in Chapter 2, from the Bayesian perspective, an estimate solution
x̂ of (2.1) can be obtained by solving a Maximum A Posteriori (MAP) estimation
problem. To deal with the inverse problem (2.1), we recall the general minimization
problem

x̂MAP = argmin
x∈ℝ𝐶𝑁

Ψ(Ax; y) + 𝜆Φ(Dx) + 𝜄𝑆 (x), (5.6)

where 𝑆 ⊂ ℝ𝐶𝑁 is a closed, convex, non-empty constraint set, 𝛾 > 0 is a regularization
parameter, D : ℝ𝐶𝑁 → ℝ𝐽𝑁 is a linear operator mapping an image from ℝ𝐶𝑁 to a
feature space ℝ𝐽𝑁 , Φ : ℝ𝐽𝑁 → (−∞, +∞] and Ψ(·, y) : ℝ𝐶𝑀 → (−∞, +∞] denotes a
proper, lower-semicontinous, convex function.
Plug-and-Play – First, standard approach to solve (5.6) is the use of iterative
optimization algorithms. For instance, Forward-Backward algorithm (described in
Chapter 3) is specified to this context:

Let x0 ∈ ℝ𝐶𝑁
For 𝑘 = 0, 1, . . .⌊

x[𝑘+1] = prox𝛾(𝜆Φ(D·)+𝜄𝑆 (·))
(
x[𝑘] − 𝛾∇Ψ(Ax[𝑘] ; y)

) (5.7)

During the recent years, the performance of these methods have been pushed
to the next level by replacing the proximity operator by a NNs to benefit both
respective merits of model-based method and learning-based method. The integration
has resulted in the Plug-and-Play (PnP) formalism as described in algorithm (5.8)
which was initially introduced in [Venkatakrishnan et al., 2013].

Let x0 ∈ ℝ𝐶𝑁
For 𝑘 = 0, 1, . . .⌊

x[𝑘+1] = 𝑓Θ

(
x[𝑘] − 𝛾∇Ψ(Ax[𝑘] ; y)

) (5.8)

While early approaches primarily depend on variational denoising techniques,
like BM3D, the subsequent advancements in neural networks for denoising have
significantly enhanced the reconstructive potential of PnP algorithms. Lately, there
has been a growing focus on investigating the convergence and stability characteristics
of PnP algorithms.
Building a denoiser – To understand the above replacement, we first recall the
image denoising task which aims to find an estimate of an unknown image x ∈ ℝ𝐶𝑁 ,
from noisy measurements z ∈ ℝ𝐶𝑁 . In this part, we focus on the Gaussian denoising
problem

z = x + n, (5.9)
where n ∈ ℝ𝐶𝑁 models an additive white Gaussian noise with standard deviation 𝛿 >
0. Thus, the common method to denoise z is to rely on a maximum a posteriori (MAP)
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approach, and to define the estimate x̂MAP ∈ ℝ𝐶𝑁 as a minimizer of a penalized least-
squares objective function. A general formulation of this problem is to find

x̂MAP = argmin
x∈ℝ𝐶𝑁

1
2 ∥x − z∥22 + 𝜈Φ(Dx) + 𝜄𝑆 (x), (5.10)

which can be traced back to the formulation of prox𝜈𝜆Φ(D·)+𝜄𝑆 .
As we discussed in section 5.1.3, beside sophisticated hand-crafted denoisers, there

are more and more learning-based denoisers relying on the prediction function 𝑓 𝐾
Θ

where the parameters Θ are learned by minimizing the ℓ2 empirical loss between
noisy and ground-truth images:

L(x𝑠, z𝑠;Θ) := 1
2 ∥x𝑠 − 𝑓

𝐾
Θ (z𝑠) ∥

2, (5.11)

In [Zhang et al., 2017], the authors proposed a simple architecture of a Deep
CNN by integrating batch normalization into the residual learning framework which
outperforms the state-of-the-art traditional denoisers such as BM3D. Due to these
remarkable performance a large number of studies were dedicated to build more
powerful DNN such as in [Zhang et al., 2017]. However, we still have a little comprehension
about insight of these black-box models. Additionally, these DL models are not easy
to control and sometime require an updating of the training dataset to adapt the
DNN to a different context. Furthermore, many DL architecture nowadays become
more and more complex and have a huge number of parameters to learn which require
an expensive training phase. Finally, as we know, one of the most important factor
impacting the performance of a DNN architecture relies on creating or collecting a
training dataset which is not always available or time consuming to have a precise
annotation. Motivated by these facts, can we build an architecture which is lighter
in term of complexity and number of learnable parameters with has high stability
properties? Some answers will be provided in Chapter 6 where we focus on the
design of a robust denoiser based on unfolding a proximal algorithms that we will
called Proximal unfolded Neural Networks (PNNs).
Unfolded neural networks – During the last decade, the performances of proximal
algorithms have been pushed to the next level by mixing them with deep learning
approaches [Venkatakrishnan et al., 2013, LeCun et al., 2015, Ongie et al., 2020]
leading to unfolded neural networks that consist in unrolling optimisation algorithms
over a fixed number of iterations [Adler and Öktem, 2018, Jiu and Pustelnik, 2021].

The most simple example of unfolded neural nework relies on forward backward
iteration (5.7). It consists of fixing the number of iterations 𝐾 to a small value
(typically ∼ 20) then the learned parameters are either the step-sizes and the linear
operators (LLO) or the proximal operator via 𝑓Θ (LPO-Learned proximity operator).
LISTA and DeepPDNet belongs to the class of LLO strategy while the work by [Adler
and Öktem, 2018] or IRCNN belongs to the class of LPO.

A huge number of references in image restoration is now related to this field of
unfolded neural network see for instance [Adler and Öktem, 2018, Bertocchi et al.,
2020, Jiu and Pustelnik, 2021, Repetti et al., 2022, Malézieux et al., 2023, Tan et al.,
2023, Nguyen et al., 2023].
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In chapter 6, in the context of unfolded LLO scheme, we will study the impact of
different algorithmic architectures to solve the same problem. The relying question:
does a faster algorithm lead to a better architecture?

5.3 Edge detection for degraded image
Nowadays, benefiting from the power of Convolution Neural Network, many architectures

have been developed to tackle edge detection. In the following, we will provide a tour
on DL-based edge detectors including 3 principal ingredients:

• Accurate pixel-level annotation – All DNN architectures rely on pixel-
wise edges (cf Figure 2.7-(c)) as the datasets were built like that. Among
the datasets, we can first refer to BSDS500 [Arbelaez et al., 2011] and NYUD
[Nathan Silberman and Fergus, 2012]. These datasets seem to be dedicated
for other higher-level tasks such as object contour detection and semantic edge
detection where the objective is to retrieve the boundary of the object of interest.
Many other datasets were designed to better adapt for the comparison such as
the multi-cue boundary detection where the annotators label different levels of
edges: one for the object boundaries and the other for "lower-level" edges.

• Loss function – The most standard choice is the binary cross-entropy defined
as:

L(e𝑠, z𝑠;Θ) := − ( 𝑓Θ(z𝑠) log(e𝑠) + (1 − e𝑠) log(1 − 𝑓Θ(z𝑠))) . (5.12)

• A well-designed model – Recently, various DNNs architecture were born
to push up the cutting edge in this domain. The design of architecture become
more complex, for instance DeepEdge [Bertasius et al., 2015] and DeepContour
[Shen et al., 2015] are based on image patches and associated features to identify
the edges. HED proposed by [Xie and Tu, 2015] relies on a VGGnet which
combines edges obtained from different stage into a final fuse edge map. More
recent methods such as BDCN calculate the loss between the edge map from
different layers and the fuse edge with their associated groundtruth edges at
different scales. In [Su et al., 2021], a lightweight model integrates traditional
edge detection filter is proposed to enhance the performance. A transformer-
based edge detector (EDTER) is proposed by [Pu et al., 2022] which split images
into two sequences of 16×16 and 8×8 patches then passing through a transformer
encoder for detecting global and local feature to predict object boundaries and
local boundaries respectively.

On the one hand, DNN-based architecture for edge detection provide very impressive
performance but at the cost of complicated architecture and large dataset. Additionally,
the task is always performed in the ideal context of undegraded data.

On the other hand, DMS based procedure relying on standard optimization are
adapted to degraded data but at the price of high computational time.

Considering the framework of unfolded neural networks, we will explore several
possibilities in the context of edge detection for degraded data in Chapter 7.
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6.1 Denoising (accelerated) proximal schemes

We investigate the design of an unfolded NNs for denoising purpose. The proposed
unfolded NNs build a MAP estimate of a denoising problem, that is equivalent to
computing a proximity operator. Precisely, we introduce a generic framework to
build such denoisers derived from two proximal algorithms: the dual-FB iterations
and the primal-dual Chambolle-Pock (CP) iterations as introduced in Chapter 3. The
proposed global architectures also includes skip connections either on the primal or
on the dual domains, corresponding to inertial parameters for acceleration purpose.
We investigate the robustness and the denoising performances of the proposed NNs,
for different training strategies. To evaluate the robustness of our NNs, we evaluate
their Lipchitz constants. Further, we inject the resulting denoising unfolded networks
in a FB algorithm for solving an image deblurring problem, to obtain a plug-and-play
algorithm. We analyse how the performance and stability of the proposed denoising
unfolded NNs link with those of the PnP method for solving a restoration problem.
Finally, we evaluate the performance of the proposed unfolded schemes for a side
image processing task that is texture segmentation, that can be formulated as a
denoising problem on the local regularity descriptor. The results presented in this
chapter gather the contribution presented in [Le et al., 2022b, Le et al., 2022a, Le
et al., 2023].
Outline – The remainder of this chapter is organized as follows. Section 6.1 focuses
on MAP denoising estimates, with a recall of the considered iterative schemes. Section 6.2
is dedicated to the design of unfolded NNs relying on algorithmic schemes presented
in Section 6.1. In Section 6.3, we first compare the denoising performances of the
proposed unfolded NNs with state-of-the-art denoisers. In Section 6.4, we compare
the resulting FB-PnP methods for solving a deblurring problem when considering
different denoisers. This section also focuses on robustness consideration and its
impact on both denoising and restoration. Finally, Section 6.5 is dedicated to the
evaluation of the proposed unfolded NNs in the context of texture segmentation.

6.1 Denoising (accelerated) proximal schemes
Let 𝑓 (x) = 1

2 ∥x − z∥22 and 𝑔(x) = 𝜈Φ(Dx) (for the convenience for the reader,
we denotes 𝜈 is the regularization parameter in denoising case (A = Id) and 𝜆 is the
regularisation in other cases (A ≠ Id)), we recall that the primal formulation of (3.35)
reads:

x̂ ∈ Argmin
x∈ℝ𝐶𝑁

1
2 ∥x − z∥22 + 𝜈Φ(Dx) + 𝜄𝑆 (x), (6.1)

We can observe that problem (6.1) does not have a closed form solution in general,
iterative methods can be used to approximate it. Multiple proximal algorithms can
be used to solve (6.1) as detailed in the Chapter 3. In this section, we describe two
schemes enabling minimizing (6.1): the FB algorithm applied to its dual problem, and
the primal-dual CP algorithm directly applied to (6.1). In addition, for both schemes
we also investigate their accelerated versions, namely DiFB (i.e., Dual inertial Forward
Backward, also known as FISTA [Beck and Teboulle, 2009, Chambolle and Dossal,
2015]), and ScCP (i.e., CP for strongly convex functions [Chambolle and Pock, 2011]).
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6.2 Proposed unfolded denoising NNs

For sake of simplicity, in the remainder of the paper we refer to these schemes as FB,
CP, DiFB, and ScCP, respectively.

Dual (i)FB – A first strategy to solve (6.1) is to solve the dual formulation (3.45)
consisting in applying (i)FB to the dual formulation of problem (6.1):

for 𝑘 = 0, 1, . . .⌊
u[𝑘+1] = prox𝜏𝑘 (𝜈Φ)∗

(
v[𝑘] + 𝜏𝑘D P𝑆 (z −D⊤v[𝑘])

)
,

v[𝑘+1] = (1 + 𝜌𝑘 )u[𝑘+1] − 𝜌𝑘u[𝑘] ,
(6.2)

where (u[0] , v[0]) ∈ ℝ𝐽𝑁 × ℝ𝐽𝑁 and the step-size parameters, for every 𝑘 ∈ ℕ, 𝜏𝑘 > 0
and 𝜌𝑘 ≥ 0. Note that when, for every 𝑘 ∈ ℕ, 𝜌𝑘 = 0, then Algorithm (6.2) reduces
to Dual FB.

(Sc)CP – A second strategy to solve (6.1) is to solve the dual formulation (3.45)
consisting in applying the (Sc)CP algorithm to problem (6.1). The data-term being
𝜁 -strongly convex with parameter 𝜁 = 1, the accelerated CP [Chambolle and Pock,
2011], dubbed ScCP, can be employed. This algorithm reads

for 𝑘 = 0, 1, . . .
x[𝑘+1] = P𝑆

(
𝜇𝑘

1+𝜇𝑘 (z −D⊤u[𝑘]) + 1
1+𝜇𝑘 x

[𝑘]
)
,

u[𝑘+1] = prox𝜏𝑘 (𝜈Φ)∗
(
u[𝑘] + 𝜏𝑘D

(
(1 + 𝛼𝑘 )x[𝑘+1] − 𝛼𝑘x[𝑘]

))
,

(6.3)

where x[0] ∈ ℝ𝐶𝑁 and u[0] ∈ ℝ𝐽𝑁 . Note that when, for every 𝑘 ∈ ℕ, 𝛼𝑘 = 1,
then Algorithm (6.3) reduces to standard iterations of the primal-dual CP algorithm
[Chambolle and Pock, 2011], while when 𝛼𝑘 = 0, its leads to the classical Arrow-
Hurwicz algorithm [Arrow et al., 1958].

6.2 Proposed unfolded denoising NNs
The objective of this section is to design unfolded NNs 𝑓Θ such that

x̂ ≈ 𝑓Θ(z), (6.4)

where x̂ ∈ ℝ𝐶𝑁 is an estimate of x. As discussed in the introduction, such an estimate
can correspond to the penalized least-squares estimate of x, defined as in (6.1)-(3.45).

6.2.1 Primal-dual building block iteration
The iterations described previously in (6.2) and (6.3) share a similar framework

which yields:

for 𝑘 = 0, 1, . . .
u[𝑘+1] = prox𝜏𝑘 (𝜈Φ)∗

(
u[𝑘] + 𝜏𝑘Dx[𝑘]

)
x[𝑘+1] = P𝑆

(
𝜇𝑘

1+𝜇𝑘 (z −D⊤u[𝑘+1]) + 1
1+𝜇𝑘 x

[𝑘]
)
.

(6.5)
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On the one hand, this scheme is a reformulation of the Arrow-Hurwicz (AH) iterations,
i.e., Algorithm (6.3) with 𝛼𝑘 = 0. On the other hand, for the limit case when 𝜇𝑘 →
+∞, the DFB (6.2) iterations are recovered. Further, the inertia step is activated
either on the dual variable for DiFB

u[𝑘+1] ← (1 + 𝜌𝑘 )u[𝑘+1] − 𝜌𝑘u[𝑘] (6.6)

or on the primal variable for ScCP

x[𝑘+1] ← (1 + 𝛼𝑘 )x[𝑘+1] − 𝛼𝑘x[𝑘] . (6.7)

Based on these observations, we propose a strategy to unroll D(i)FB and (Sc)CP
algorithms using a primal-dual perspective. This perspective will subsequently be
used to build denoising NNs as defined satisfying (6.4).

The result provided below aims to emphasize that each iteration of the primal-
building block (6.5) can be viewed as the composition of two layers of feedforward
networks, acting either on the image domain (i.e., primal domain ℝ𝐶𝑁) or in the
features domain (i.e., dual domain ℝ𝐽𝑁). DFB, DiFB, CP, and ScCP, hold the same
structure, with extra steps that can be assimilated to skip connections in the specific
case of DiFB and ScCP, enabling to keep track of previous layer’s outputs (see (6.6)
and (6.7)).

Proposition 6.2.1. Let z ∈ ℝ𝐶𝑁 , x ∈ ℝ𝐶𝑁 , u ∈ ℝ𝐽𝑁 , and 𝑘 ∈ ℕ.
Let T𝜈,Θ𝑘,D,D : ℝ𝐶𝑁×ℝ𝐽𝑁 → ℝ𝐽𝑁 , defined as

T𝜈,Θ𝑘,D,D(x, u) = 𝜂𝜈,𝑘,D
(
W𝑘,Dx + V𝑘,Du + b𝑘,D

)
, (6.8)

be a sub-layer acting on both the primal variable x and the dual variable u and
returning a dual (D) variable. In (6.8) 𝜂𝜈,𝑘,D : ℝ𝐽𝑁 → ℝ𝐽𝑁 is a fixed activation
function with parameter 𝜈 > 0, and Θ𝑘,D is a linear parametrization of the learnable
parameters including W𝑘,D : ℝ𝐶𝑁 → ℝ𝐽𝑁 , V𝑘,D : ℝ𝐽𝑁 → ℝ𝐽𝑁 and b𝑘,D ∈ ℝ𝐽𝑁 .
Let Tz,Θ𝑘,P,P : ℝ𝐶𝑁 ×ℝ𝐽𝑁 → ℝ𝐶𝑁 , defined as

Tz,Θ𝑘,P,P(x, u) = 𝜂𝑘,P
(
W𝑘,Px + V𝑘,Pu + b𝑘,P

)
, (6.9)

be a sub-layer acting on both the primal variable x and the dual variable u and
returning a primal (P) variable. In (6.9) 𝜂𝑘,P : ℝ𝐶𝑁 → ℝ𝐶𝑁 is a fixed activation
functions, and Θ𝑘,P is a linear parametrization of the learnable parameters including
W𝑘,P : ℝ𝑁 → ℝ𝐶𝑁 , V𝑘,P : ℝ𝐽𝑁 → ℝ𝐶𝑁 and b𝑘,P ∈ ℝ𝐶𝑁 .

Then, the 𝑘-th iteration of the joint formulation (6.5) can be written as a composition
of two layers of the form of (5.1):

Tz,Θ𝑘 :ℝ𝐶𝑁 ×ℝ𝐽𝑁→ℝ𝐶𝑁

(x[𝑘] , u[𝑘]) ↦→Tz,Θ𝑘,P,P(x,TΘ𝑘,D,D(x[𝑘] , u[𝑘])),
(6.10)

where Θ𝑘 is the combination of Θ𝑘,P and Θ𝑘,D, i.e., the linear parametrization of all
learnable parameters for layer 𝑘.

Proof. This result is obtained by noticing that, for every 𝑘 ∈ ℕ, the 𝑘-th iteration (6.5)
can be rewritten as (6.10), where the primal (P) operators are given by W𝑘,P = 1

1+𝜇𝑘 ,
V𝑘,P = − 𝜇𝑘

1+𝜇𝑘D
⊤, b𝑘,P =

𝜇𝑘
1+𝜇𝑘 z, and 𝜂𝑘,P = P𝑆, and the dual (D) operators are given

by W𝑘,D = 𝜏𝑘D, V𝑘,D = Id, b𝑘,D = 0, 𝜂𝜈,𝑘,D = prox𝜏𝑘 (𝜈Φ)∗ .
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6.2 Proposed unfolded denoising NNs

Figure 6.1: Top: Architecture of the proposed DAH-Unified block for the
𝑘-th layer. Linearities, biases, and activation functions are shown
in blue, green and red, respectively. Bottom: Inertial step for
DScCP(top) and DDiFB (bottom), for the 𝑘-th layer.

6.2.2 Arrow-Hurwicz unfolded building block
Our unrolled architectures rely on layer structures introduced in Proposition 6.2.1

where we allow the linear operator D to be different for each layer. For more
flexibility, we also introduce, for every 𝑘 ∈ {1, . . . , 𝐾}, operators D𝑘,D : ℝ𝐶𝑁 → ℝ𝐽𝑁

and D𝑘,P : ℝ𝐽𝑁 → ℝ𝐶𝑁 , to replace operators D and D⊤, respectively, to allow a
possible mismatch between operator D and its adjoint D⊤. The resulting unfolding
Deep Arrow-Hurwicz (DAH) building block is then given below:

𝑓
𝐾,DAH
z,Θ (x[0] , u[0]) = TDAH

z,𝜈,Θ𝐾 ◦ · · · ◦ TDAH
z,𝜈,Θ1

(x[0] , u[0]), (6.11)
where, for every 𝑘 ∈ {1, . . . , 𝐾},

u[𝑘] = T𝜈,Θ𝑘,D,D(x[𝑘−1] , u[𝑘−1])
x[𝑘] = Tz,Θ𝑘,P,P(x[𝑘−1] , u[𝑘])
TDAH

z,𝜈,Θ𝑘 (x
[𝑘−1] , u[𝑘−1]) = (x[𝑘] , u[𝑘]).
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with 
W𝑘,D = 𝜏𝑘D𝑘,D,

V𝑘,D = Id,
b𝑘,D = 0,
𝜂𝜈,𝑘,D = prox𝜏𝑘 (𝜈Φ)∗ ,

and


W𝑘,P = 1

1+𝜇𝑘 ,

V𝑘,P = − 𝜇𝑘
1+𝜇𝑘D𝑘,P,

bz,𝑘,P =
𝜇𝑘

1+𝜇𝑘 z,
𝜂𝑘,P = P𝑆 .

6.2.3 Proposed unfolded strategies
In this section we describe four unfolded strategies for building denoising NNs as

defined in (6.4). All strategies rely on Arrow-Hurwicz building block presented in
Section 6.2.2.

• DDFB stands for Deep Dual Forward-Backward and it fits DAH when 𝜇𝑘 →
+∞.

𝑓
𝐾,DDFB
z,𝜈,Θ (x[0] , u[0]) = TDDFB

z,𝜈,Θ𝐾 ◦ · · · ◦ TDDFB
z,𝜈,Θ1

(x[0] , u[0]), (6.12)
where, for every 𝑘 ∈ {1, . . . , 𝐾},

u[𝑘] = T𝜈,Θ𝑘,D,D(x[𝑘−1] , u[𝑘−1])
x[𝑘] = Tz,Θ𝑘,P,P(x[𝑘−1] , u[𝑘])
(x[𝑘] , u[𝑘]) = TDDFB

z,𝜈,Θ𝑘 (x
[𝑘−1] , u[𝑘−1]).

with 
W𝑘,D = 𝜏𝑘D𝑘,D,

V𝑘,D = Id,
b𝑘,D = 0,
𝜂𝜈,𝑘,D = prox𝜏𝑘 (𝜈Φ)∗ ,

and


W𝑘,P = 0,
V𝑘,P = −D𝑘,P,

bz,𝑘,P = z,
𝜂𝑘,P = P𝑆 .

• DDiFB: stands for Deep Dual inertial Forward-Backward interpreted as a
DDFB with skip connections and defined as:

𝑓
𝐾,DDiFB
z,𝜈,Θ (x[0] , u[0]) = (x[𝑘] , u[𝑘]) (6.13)

where, for every 𝑘 ∈ {1, . . . , 𝐾},

(x[𝑘] , ũ[𝑘]) = TDDFB
z,𝜈,Θ𝑘 (x

[𝑘−1] , u[𝑘−1])
u[𝑘] = (1 + 𝜌𝑘 )ũ[𝑘] − 𝜌𝑘u[𝑘−1] .

• DCP stands for Deep Chambolle-Pock relying on DAH with a special update
of the primal variable leading to:

𝑓
𝐾,DCP
z,𝜈,Θ (x[0] , u[0]) = (x[𝑘] , u[𝐾]) (6.14)

where, for every 𝑘 ∈ {1, . . . , 𝐾},

(x̃[𝑘] , u[𝑘]) = TDAH
z,𝜈,Θ𝑘 (x

[𝑘−1] , u[𝑘−1])
x[𝑘] = 2x̃[𝑘] − x[𝑘−1] .
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• DScCP stands for Deep Strong convexity Chambolle-Pock interpreted as a
DAH with skip connections on the primal variable:

𝑓
𝐾,DScCP
z,𝜈,Θ (x[0] , u[0]) = (x[𝑘] , u[𝐾]) (6.15)

where, for every 𝑘 ∈ {1, . . . , 𝐾},

(x̃[𝑘] , u[𝑘]) = TDAH
z,𝜈,Θ𝑘 (x

[𝑘−1] , u[𝑘−1])
x[𝑘] = (1 + 𝛼𝑘 )x̃[𝑘] − 𝛼𝑘x[𝑘−1] .

Illustration of a single layer of the resulting DD(i)FB and D(Sc)CP architectures
are provided in Figure 6.1.

Since these architectures are reminiscent of D(i)FB and (Sc)CP, given in Section 6.1,
we can deduce limit cases for the proposed unfolded strategies, when 𝐾 → +∞ and
linear operators are fixed over the layers.

Corollary 1 (Limit case for deep unfolded NNs). We consider the NNs DD(i)FB and
D(Sc)CP defined in Section 6.2.3. Assume that, for every 𝑘 ∈ {1, . . . , 𝐾}, D𝑘,D = D
and D𝑘,P = D⊤, for D : ℝ𝐶𝑁 → ℝ𝐽𝑁 . In addition, for each architecture, we further
assume that, for every 𝑘 ∈ {1, . . . , 𝐾},

• DDFB: 𝜏𝑘 ∈ (0, 2/∥D∥2𝑠𝑝).

• DDiFB: 𝜏𝑘 ∈ (0, 1/∥D∥2𝑠𝑝) and 𝜌𝑘 = 𝑡𝑘−1
𝑡𝑘+1

with 𝑡𝑘 = 𝑘+𝑎−1
𝑎

and 𝑎 > 2.

• DCP: (𝜏𝑘 , 𝜇𝑘 ) ∈ (0, +∞)2 such that 𝜏𝑘𝜇𝑘 ∥D∥2𝑠𝑝 < 1.

• DScCP: 𝛼𝑘 = (1 + 2𝜇𝑘 )−1/2, 𝜇𝑘+1 = 𝛼𝑘𝜇𝑘 , and 𝜏𝑘+1 = 𝜏𝑘𝛼
−1
𝑘

with 𝜏0𝜇0∥D∥2𝑠𝑝 ≤ 1.

Then, we have x[𝐾] → x̂ when 𝐾 → +∞, where x[𝑘] is the output of either of the
unfolded NNs DD(i)FB or D(Sc)CP, and x̂ is a solution to (6.1)

6.2.4 Proposed learning strategies
The proposed DD(i)FB and D(Sc)CP allow for flexibility in the learned parameters.

In this work, we propose two learning strategies, either satisfying conditions described
in Corollary 1 (LNO), or giving flexibility to the parameters (LFO). These two
strategies are described below.

1. Learned Normalized Operators (LNO): This strategy aims to use theoretical
conditions ensuring convergence of D(i)FB and (Sc)CP, i.e., choosing the stepsizes
appearing in deep-D(i)FB and deep-(Sc)CP according to the conditions given
in Corollary 1. In this context, for every 𝑘 ∈ {1, . . . , 𝐾}, we choose D𝑘,P to be
equal to the adjoint D⊤

𝑘,D
of D𝑘,D. However, unlike in Corollary 1, we allow

D𝑘,D to vary for the different layers 𝑘 ∈ {1, . . . , 𝐾}.

2. Learned Flexible Operator (LFO): This strategy, introduced in [Le et al.,
2022a], consists in learning the stepsizes appearing in deep-D(i)FB and deep-
(Sc)CP without constraints, as well as allowing a mismatch in learning the
adjoint operator D⊤ of D, i.e., learning D𝑘,D and D𝑘,P independently.
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The learnable parameters are summarized in Table 6.1.

Table 6.1: Learnable paramaters of each unfolded scheme

Θ𝑘 Comments
DDFB-LFO D𝑘,P, D𝑘,D absorb 𝜏𝑘 in D𝑘,D

DDiFB-LFO D𝑘,P, D𝑘,D, 𝛼𝑘 fix 𝛼𝑘 , and absorb 𝜏𝑘 in D𝑘,D

DDFB-LNO D𝑘,P = D⊤
𝑘,D

define 𝜏𝑘 = 1.99∥D𝑘 ∥−2

DDiFB-LNO D𝑘,P = D⊤
𝑘,D

fix 𝛼𝑘 = 𝑡𝑘−1
𝑡𝑘+1

, 𝑡𝑘+1 = 𝑘+𝑎−1
𝑎

,
𝑎 > 2, and 𝜏𝑘 = 0.99∥D𝑘 ∥−2

DCP-LFO D𝑘,P, D𝑘,D, 𝜇 learn 𝜇 = 𝜇0 = · · · = 𝜇𝐾 ,
and absorb 𝜏𝑘 in D𝑘,D

DScCP-LFO D𝑘,P, D𝑘,D, 𝜇0 learn 𝜇0, absorb 𝜏𝑘 in D𝑘,D,
and fix 𝛼𝑘 = (1 + 2𝜇𝑘 )−1/2,
and 𝜇𝑘+1 = 𝛼𝑘𝜇𝑘

DCP-LNO D𝑘,P = D⊤
𝑘,D

, 𝜇 learn 𝜇 = 𝜇0 = · · · = 𝜇𝐾 ,
and fix 𝜏𝑘 = 0.99𝜇−1∥D𝑘 ∥−2

DScCP-LNO D𝑘,P = D⊤
𝑘,D

, 𝜇𝑘 learn 𝜇𝑘 , and fix 𝛼𝑘 = (1 + 2𝜇𝑘 )−1/2,
and 𝜏𝑘 = 0.99𝜇−1

𝑘
∥D𝑘 ∥−2

6.3 Experiments

6.3.1 Denoising training setting
Training dataset – We consider two sets of images: the training set (x𝑠, z𝑠)𝑠∈𝕀 of size
|𝕀| and the test set (x𝑠, z𝑠)𝑠∈𝕁 of size |𝕁|. For both sets, each couple (x𝑠, z𝑠) consists of
a clean multichannel image x𝑠 of size 𝐶𝑁𝑠 (where 𝐶 denotes the number of channels,
and 𝑁𝑠 the number of pixels in each channel), and a noisy version of this image given
by z𝑠 = x𝑠 + n𝑠 with n𝑠 ∼N(0, 𝛿2Id) for 𝛿 > 0.
Training strategy for unfolded denoising networks – The network parameters
are optimized by minimizing the ℓ2 empirical loss between noisy and ground-truth
images:

Θ̂ ∈ Argmin
Θ

1
|𝕀|

∑︁
𝑠∈𝕀

L(x𝑠, z𝑠;Θ) (6.16)

where
L(x𝑠, z𝑠;Θ) := 1

2 ∥x𝑠 − 𝑓
𝐾
z𝑠 ,𝛿2,Θ

(
z𝑠,D𝐾,D(z𝑠)

)
∥2,

and 𝑓 𝐾z𝑠 ,𝛿2,Θ
is either of the unfolded networks described in Section 6.2.3. The loss (6.16)

will be optimized in Pytorch with Adam algorithm [Kingma and Ba, 2014]. For the
sake of simplicity, in the following we drop the indices in the notation of the network
𝑓 𝐾z𝑠 ,𝛿2,Θ

and use the notation 𝑓Θ.
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Architectures – We will compare the different architectures introduced in Section 6.2.3,
namely DDFB, DDiFB, DDCP, and DScCP, considering both LNO and LFO learning
strategies (see Table 6.1 for details). For each architecture and every layer 𝑘 ∈
{1, . . . , 𝐾}, the weight operator D𝑘,D consists of 𝐽 convolution filters (features),
mapping an image in ℝ𝐶𝑁𝑠 to features in ℝ𝐽𝑁 . For LFO strategies, weight operator
D𝑘,P consists of 𝐽 convolution filters mapping from ℝ𝐽𝑁𝑠 to ℝ𝐶𝑁𝑠 . All convolution
filters considered in our work have the same kernel size of 3 × 3.

We evaluate the performance of the different proposed models, varying the numbers
of layers 𝐾 and the number of convolution filters 𝐽. In our experiments we consider
Φ = ∥ · ∥1 leading to HardTanh activation function and recalled below.

Proposition 6.3.1. The proximity operator of the conjugate of the ℓ1-norm scaled
by parameter 𝜈 > 0 is equivalent to the HardTanh activation function, i.e., for every
x = (x𝑖)1≤𝑖≤𝑁 :

(p𝑖)1≤𝑖≤𝑁 = prox(𝜈∥·∥1)∗ (x) = P∥·∥∞≤𝜈 (x)
= HardTanh𝜈 (x)

where

p𝑖 =


−𝜈 if x𝑖 < −𝜈,
𝜈 if x𝑖 > 𝜈,
x𝑖 otherwise.

Figure 6.2: Hardtanh function with 𝜈 = 0.5

Experimental settings – To evaluate and compare the proposed unfolded architectures,
we consider 2 training settings. In both cases, we consider RGB images (i.e., 𝐶 = 3).

• Training Setting 1 – Fixed noise level: The NNs are trained with |𝕀| = 200
images extracted from BSDS500 dataset [Arbelaez et al., 2011], with a fixed
noise level 𝛿 = 0.08. The learning rate for ADAM is set to 8 × 10−5 (all other
parameters set as default), we use batches of size of 10 and patches of size 50×50
randomly selected.
We train the proposed unfolded NNs considering multiple sizes of convolution
filters 𝐽 ∈ {8, 16, 32, 64} and for multiple numbers of layers 𝐾 ∈ {5, 10, 15, 20, 25}.
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• Training Setting 2 – Variable noise level: The NNs are trained using the
test dataset of ImageNet [Russakovsky et al., 2015] (|𝕀| = 5×104), with learning
rate for ADAM is set to 1 × 10−3(all other parameters set as default), a batch
size of 200, and patches of size 50× 50 randomly selected. Further, we consider
a variable noise level, i.e., the images are degraded by a Gaussian noise with
standard deviation 𝛿𝑖, for 𝑖 ∈ 𝕀, selected randomly with uniform distribution
in [0, 0.1].
All unfolded NNs are trained with the same configuration (𝐽, 𝐾) = (64, 20),
leading to ∼ 34.5 × 103 parameters for each model.

In our experiments, we aim to compare the proposed unfolded NNs for three
metrics: (i) architecture complexity, (ii) robustness, and (iii) denoising performance.
For sake of completeness, these metrics will also be provided for a state-of-the-art
denoising network, namely DRUnet [Zhang et al., 2021].

For both Settings 1 and 2, our test set 𝕁 corresponds to randomly selected subsets
of images from the BSDS500 validation set. The size of the test set |𝕁| will vary
depending on the experiments, hence will be specified for each case.

6.3.2 Architecture comparison
We first compare the proposed unfolded NNs (for both LNO and LFO learning

strategies) in terms of runtime, FLOPs and number of learnable parameters (i.e.,
|Θ|). These values, for (𝐾, 𝐽) = (20, 64) are summarized in Table 6.2, also including
the metrics for DRUnet. The experiments are conducted in PyTorch, using an Nvidia
Tesla V100 PCIe 16GB.

From the table, it is obvious that the unfolded NNs have much lighter architectures
than DRUnet.

Table 6.2: Architecture comparison. Runtime (in sec.), number of parameters
|Θ| and FLOPs (in G) of the denoisers when used on 100 images of size 3×481×321.
Values for the DUNNs are given for fixed (𝐾, 𝐽) = (20, 64).

average (std) |Θ| FLOPs
(msec) (×103 G)

BM3D 13×103 ± 317 – –
DRUnet 96 ± 21 32, 640, 960 137.24

LN
O

DDFB 3 ± 1.5 34, 560

2.26DDiFB 3 ± 0.5 34, 560
DDCP 6 ± 1 34, 561
DDScCP 7 ± 1 34, 580

LF
O

DDFB 4 ± 17 69, 120

2.26DDiFB 5 ± 15 69, 121
DDCP 7 ± 14 69, 121
DDScCP 9 ± 15 69, 160
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6.3.3 Robustness comparison
Multiple works in the literature investigated NN robustness against perturbations

[Jakubovitz and Giryes, 2018, Hoffman et al., 2019, Pesquet et al., 2021]. Formally,
given an input z and a perturbation 𝜖 , the error on the output can be upper bounded
via the inequality

∥ 𝑓Θ(z + 𝜖) − 𝑓Θ(z)∥ ≤ 𝜒∥𝜖 ∥. (6.17)
The parameter 𝜒 > 0 can then be used as a certificate of the robustness for the
network. This analysis is important and complementary to quality recovery performance
to choose a reliable model. According to [Combettes and Pesquet, 2020], in the
context of feedforward NNs as those proposed in this work and described in Section 6.2,
𝜒 can be upper bounded by looking at the norms of each linear operator, i.e.,

𝜒 ≤
𝐾∏
𝑘=1

(
∥𝑊𝑘,P∥𝑆 × ∥𝑊𝑘,D∥𝑆

)
. (6.18)

Unfortunately, as shown in [Le et al., 2022a], this bound can be very pessimistic and
not ideal to conclude on the robustness of the network. Instead, a tighter bound can
be computed using the definition of Lipschitz continuity. Indeed, by definition the
parameter 𝜒 in (6.17) is a Lipschitz constant of 𝑓Θ. This Lipschitz constant can be
computed by noticing that it corresponds to the maximum of ∥ J 𝑓Θ(z)∥𝑠𝑝 over all
possible images z ∈ ℝ𝐶𝑁 , where J denotes the Jacobian operator. Since such a value
is impossible to compute for all images of ℝ𝐶𝑁 , we can restrict our study on images
similar to those used for training the network, i.e.,

𝜒 ≈ max
(z𝑠)𝑠∈𝕀

∥ J 𝑓Θ(z𝑠)∥𝑠𝑝 . (6.19)

Such an approach has been proposed in [Pesquet et al., 2021] for constraining the
value of 𝜒 during the training process. In practice, the norm is computed using power
iterations coupled with automatic differentiation in Pytorch.

Motivated by these facts, we evaluate the robustness of our models by computing
an approximation of 𝜒, as described in (6.19), considering images in the test set 𝕁

instead of the training set 𝕀.
Here, 𝕁 corresponds to 100 images randomly selected from BSD500 validation set,

and for every 𝑠 ∈ 𝕁, z𝑠 = x𝑠 + w𝑠, where w𝑠 ∼N(0, 𝛿𝑠Id).
Training Setting 1 – Fixed noise level: For this setting we fix 𝛿𝑠 ≡ 0.08.
Corresponding values of 𝜒 for DD(i)FB and D(Sc)CP, with both LNO and LFO
learning strategies, are reported in Figure 6.3. For this setting, we show the evolution
of the value of 𝜒 for 𝐾 ∈ {5, 10, 15, 20, 25} and 𝐽 ∈ {8, 16, 32, 64}. We observe that
the value of 𝜒 for LFO schemes are higher than their LNO counterparts, i.e., LFO
schemes are less robust than LNO according to (6.17). In addition, DDFB-LNO and
D(Sc)CP-LNO seems to be the most robust schemes. Their 𝜒 value decreases slightly
when 𝐾 increases, and increases slighly when 𝐽 increases.
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DDFB-LNO DDiFB-LNO DCP-LNO DScCP-LNO

DDFB-LFO DDiFB-LFO DCP-LFO DScCP-LFO

Figure 6.3: Training Setting 1: Robustness. Values 𝜒 = max𝑠∈𝕁 ∥ J 𝑓Θ(z𝑠)∥𝑠𝑝
(log2 scale) for the proposed DUNNs, with 𝐽 ∈ {8, 16, 32, 64} and 𝐾 ∈
{5, 10, 15, 20, 25}. Top row: LNO settings. Bottom row: LFO settings.

Training Setting 2 – Variable noise level: For this setting, Figure 6.4 gives
the box plots showing the distribution of the 100 values of (∥ J 𝑓Θ(z𝑠)∥𝑠𝑝)𝑠∈𝕁, with
𝛿𝑠 ∼ U( [0, 0.01]). For the sake of completeness, the norms are also computed for
DRUnet[Zhang et al., 2021]. Results are similar to the ones obtained with Training
Setting 1. Starting from the more robust schemes and moving to the less robust
ones, we observe that DDFB-LNO and DScCP-LNO have the smallest values of
(∥ J 𝑓Θ(z𝑠)∥𝑠𝑝)𝑠∈𝕁. D(Sc)CP-LFO have similar values to DDFB-LNO and DScCP-
LNO, slightly larger and more spread out. Then DCP-LNO and DDiFB-LFO are
comparable, with larger values than the previously mentioned schemes, with a few
outliers. Finally DDFB-LFO and DRUnet are comparable, with more outliers and
higher median, Q1 and Q3 values, followed by DDiFB-LNO that may have very high
norm values, depending on the image (although Q3 is smaller than the Q1 value of
DRUnet). Note that, overall DRUnet has the worst median, Q1 and Q3 values.

6.3.4 Denoising performance comparison
Training Setting 1 – Fixed noise level: We evaluate the denoising performance of
the four proposed architectures considering either the LNO or LFO learning strategy,
varying 𝐾 and 𝐽, on |𝕁| = 100 noisy images obtained from the test set, with noise
standard deviation 𝛿 = 0.08. The average PSNR value for these test noisy images is
21.88 dB.

In Figure 6.5, we show the averaged PSNR values obtained with the proposed
unfolded networks. We observe a strong improvement of the denoising performances
of all the NNs when increasing the size 𝐽 of convolution filters, as well as a moderate
improvement when increasing the depth 𝐾 of the NNs. All methods have very similar
performances, with the exception of ScCP (both LNO and LFO) which has much
higher denoising power.
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Figure 6.4: Training Setting 2: Robustness. Distribution of (∥ J 𝑓Θ(z𝑠)∥𝑆)𝑠∈𝕁
for 100 images extracted from BSDS500 validation dataset 𝕁, for the proposed DUNNs
and DRUnet.

DDFB-LNO DDiFB-LNO DCP-LNO DScCP-LNO

DDFB-LFO DDiFB-LFO DCP-LFO DScCP-LFO

Figure 6.5: Training Setting 1: Denoising performance. Average PSNR
obtained with the proposed DUNNs, on 100 images from BSD500 degraded with noise
level 𝛿 = 0.08. Results are shown for 𝐽 ∈ {8, 16, 32, 64} and 𝐾 ∈ {5, 10, 15, 20, 25}.
Top row: LNO settings. Bottom row: LFO settings.

Training Setting 2 – Variable noise level: We evaluate the denoising performances
of the proposed unfolded NNs on images degraded by a Gaussian noise with standard
deviation 𝛿 = 0.05. Figure 6.6 gives the PSNR values obtained from the proposed
unfolded NNs, when applied to a random subset of |𝕁| = 20 images of BSDS500
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validation set. Furthermore, Table 6.3 presents the average PSNR values computed
for a separate subset of |𝕁| = 100 images from the BDSD500 validation set. In this
table, we further give the average PSNR value for DRUnet. These results show
that for all unfolding strategy, the LNO learning strategy improves the denoising
performance over LFO. We further observe that D(Sc)CP outperforms DD(i)FB.
DRUnet however outperforms the unfolded NNs on this experiments for PSNR values.
For completeness, we give examples of a denoised image in Figure 6.7 obtained with
DRUnet, DDFB and DScCP. On visual inspection, results from DDFB may appear
still slightly noisy compared with DRUnet and DScCP. However results from DRUnet
and DScCP are very comparable, and DScCP might reproduce slightly better some
textures (e.g., the water around the castle is slightly over-smoothed with DRUnet).

Figure 6.6: Training Setting 2: Denoising performance. PSNR values
obtained with the proposed DUNNs (with (𝐾, 𝐽) = (20, 64)), for 20 images of
BSDS500 validation set, degraded with noise level 𝛿 = 0.05.

Table 6.3: Training Setting 2: Denoising performance. Average PSNR (and
standard deviation) values (in dB) obtained with the proposed PNNs with (𝐾, 𝐽) =
(20, 64) and with DRUnet, for 100 noisy images of BSDS500 validation set (𝛿 = 0.05,
input PSNR= 25.94dB).

DRUnet DDFB DDiFB DCP DScCP
LNO

34.7 ±1.89 32.42 ±0.86 33.12 ±1.27 33.53 ±1.46 33.57 ±1.53
LFO

32.09 ±0.91 32.84 ±1.12 33.32 ±1.35 33.27 ±1.32

6.3.5 Denoising performance versus robustness
In this section, we assess the denoising performances of the proposed DUNNs and

DRUnet when evaluated on denoising tasks that are different from those used during
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the training process. All networks have been trained as Gaussian denoisers. And we
have seen in the previous section that DRUnet, with nearly 100 times more parameters
than the proposed DUNNs, demonstrates impressive performance in terms of PSNR
for Gaussian denoising. However, we also shown that DRUnet has a higher Lipschitz
constant than the proposed DUNNs. Hence we aim to evaluate the performances
of the networks when denoising Laplace and Poisson noises (i.e., on different noise
settings than the training Gaussian setting).

The evaluation includes both visual and quantitative analysis, presented in Figures 6.8
and 6.9 and Tables 6.4 and 6.5, respectively. Remarkably, the proposed DUNNs lead
to higher denoising performances in these scenarios, validating their higher robustness
compared to DRUnet.

Noisy – 26.03dB DRUnet – 35.81dB DDFB-LNO – 32.81dB DScCP-LNO – 34.74dB

Figure 6.7: Training Setting 2: Denoising performance on Gaussian noise.
Example of denoised images (and PSNR values) for Gaussian noise 𝛿 = 0.05 obtained
with DRUnet and the proposed DDFB-LNO and DScCP-LNO, with (𝐾, 𝐽) = (20, 64).

Table 6.4: Training Setting 2: Denoising performance on Poisson noise.
Average PSNR (and standard deviation) values (in dB) obtained with the proposed
DUNNs with (𝐾, 𝐽) = (20, 64) and with DRUnet, for 12 noisy images of BSDS500
validation set degraded with Poisson noise level 50/255.

DRUnet DDFB DDiFB DCP DScCP
LNO

21.59 ±1.69 23.83 ±1.80 24.97 ±1.49 24.57 ±1.68 25.44 ±1.25
LFO

23.62 ±1.70 23.83 ±1.71 24.74 ±1.56 24.43 ±1.63

Table 6.5: Training Setting 2: Denoising performance on Laplace noise.
Average PSNR (and standard deviation) values (in dB) obtained with the proposed
DUNNs with (𝐾, 𝐽) = (20, 64) and with DRUnet, for 12 noisy images of BSDS500
validation set degraded with Laplacian noise level 0.05.

DRUnet DDFB DDiFB DCP DScCP
LNO

19.55 ±0.83 26.26 ±0.51 27.73 ±0.48 27.74 ±0.47 28.42 ±1.07
LFO

26.04 ±0.43 26.43 ±0.39 27.49 ±0.54 27.20 ±0.50
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Noisy – 23.01dB DRUnet – 25.39dB DDFB-LNO – 25.63dB DScCP-LNO – 26.89dB

Figure 6.8: Training Setting 2: Denoising performance on Poisson noise.
Example of denoised images (and PSNR values) for Poisson noise level 50/255
obtained with DRUnet and the proposed DDFB-LNO and DScCP-LNO, with (𝐾, 𝐽) =
(20, 64).

Noisy – 20.23dB DRUnet – 22.62dB DDFB-LNO – 26.80dB DScCP-LNO – 28.28dB

Figure 6.9: Training Setting 2: Denoising performance on Laplace noise.
Example of denoised images (and PSNR values) for Laplace noise level 0.05 obtained
with DRUnet and the proposed DDFB-LNO and DScCP-LNO, with (𝐾, 𝐽) = (20, 64).

6.4 Image restoration with Plug-and-Play method

6.4.1 Restoration problem
Another measure to assess the proposed unfolded NNs is to use them in a plug-

and-play framework, for image deblurring. In this context, the objective is to find an
estimate x̂ ∈ ℝ𝐶𝑁 of an original unknown image x ∈ ℝ𝐶𝑁 , from degraded measurements
y ∈ ℝ𝐶𝑀 obtained through

y = Ax + n, (6.20)
where A : ℝ𝐶𝑁 → ℝ𝐶𝑀 is a linear blurring operator, and n ∈ ℝ𝐶𝑀 models an additive
white Gaussian noise, with standard deviation 𝜎 > 0. A common method to solve
this inverse problem is then to find the MAP estimate x̂ of x, defined as a minimizer
of a penalized least-squares objective function. A general formulation is given by

find x̂ ∈ Argmin
x∈𝑆

1
2 ∥Ax − y∥2 + 𝜆Φ(D𝑥), (6.21)
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where 𝑆 ⊂ ℝ𝐶𝑁 , D : ℝ𝐶𝑁 → ℝ𝐽𝑁 and Φ : ℝ𝐽𝑁 → (−∞, +∞], and 𝜆 ∝ 𝜎2 (i.e., there
exists 𝛽 > 0 such that 𝜆 = (𝛽𝜎)2) is a regularization parameter.

6.4.2 PnP-FB algorithm
The idea of PnP algorithms is to replace the penalization term (often handled by

a proximity operator) by a powerful denoiser. There are multiple choices of denoisers,
that can be classified into two main categories: hand-crafted denoisers (e.g. BM3D
[Dabov et al., 2007]) and learning-based denoisers (e.g., DnCNN [Zhang et al., 2017]
and UNet [Ronneberger et al., 2015]). PnP methods with NNs have recently been
extensively studied in the literature, and widely used for image restoration (see, e.g.,
[Pesquet et al., 2021, Kamilov et al., 2023, Hurault et al., 2021, Repetti et al., 2022]).

In this section, as proposed in [Repetti et al., 2022], we plug the proposed unfolded
NNs in a FB algorithm to solve (6.20). The objective is to further assess the robustness
of the proposed unfolded strategies. Following the approach proposed in [Repetti
et al., 2022], the PnP-FB algorithm is given by

Let x[0] ∈ ℝ𝐶𝑁 , u0 ∈ ℝ𝐽𝑁

For 𝑡 = 0, 1, . . .⌊
z[𝑡] = x[𝑡] − 𝛾A⊤

(
Ax[𝑡] − y

)
,

(x[𝑡+1] , u[𝑡+1]) = 𝑓 𝐾z[𝑡 ] ,𝜆𝛾,Θ(z
[𝑡] , u[𝑡]),

(6.22)

where, for every 𝑡 ∈ ℕ, 𝑓 𝐾z[𝑡 ] ,𝜆𝛾,Θ is either DD(i)FB or D(Sc)CP. In Algorithm (6.22),
parameters (𝜆, 𝛾) are given as inputs of 𝑓 𝐾z[𝑡 ] ,𝜆𝛾,Θ. Precisely, the regularization parameter
𝜈 for the denoising problem (6.1) is chosen to be the product between the regularization
parameter 𝜆 for the restoration problem (6.21) and the stepsize of the algorithm 𝛾,
i.e., 𝜈 = 𝜆𝛾.

The following result is a direct consequence of Corollary 1 combined with convergence
results of the FB algorithm [Combettes and Wajs, 2005].

Theorem 6.4.1. Let (x[𝑡])𝑡∈ℕ be a sequence generated by (6.22), with 𝑓 𝐾z[𝑡 ] ,𝜆𝛾,Θ being
D(i)FB-LNO or D(Sc)CP-LNO. Assume that 𝛾 ∈ (0, 2/∥A∥2𝑠𝑝) and that, for every
𝑘 ∈ {1, . . . , 𝐾}, D𝑘,D = D and D𝑘,P = D⊤ for D : ℝ𝐶𝑁 → ℝ𝐽𝑁 . Under the same
conditions as Corollary 1, if 𝐾 → ∞, then (x[𝑡])𝑡∈ℕ converges to a solution x∗ to
problem (6.21), and

(∀𝑡 ∈ ℕ∗) ∥x[𝑡+1] − x[𝑡] ∥ ≤ ∥x[𝑡] − x[𝑡−1] ∥. (6.23)

A few comments can be made on Theorem 6.4.1. First, [Repetti et al., 2022, Prop.
2] is a particular case of Theorem 6.4.1 for DDFB-LNO. Second, in practice, only a
fixed number of layers 𝐾 are used in the unfolded NNs, although Theorem 6.4.1 holds
for 𝐾 → +∞. In [Repetti et al., 2022] the authors studied the behavior of (6.22), using
DDFB-LNO. They empirically emphasized that using warm restart for the network
(i.e., using both primal and dual outputs from the network of the previous iteration)
could add robustness to the PnP-FB algorithm, even when the number of layers 𝐾 is
fixed, due to the monotonic behaviour of the FB algorithm on the dual variable.
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In the remainder of the section, we will focus on unfolded NNs trained using
Training setting 2 described in Section 6.3.1 (i.e., with variable noise level) to
better fit the noise level of the inverse problem (6.20).

6.4.3 Robustness comparison
In the context of PnP methods, robustness can be measured in terms of convergence

of the global algorithm. In this context, it is well known that the PnP-FB algorithm
converges if the NN is firmly non-expansive (see, e.g., [Pesquet et al., 2021] for details).
According to [Pesquet et al., 2021, Prop. 2.1], an operator 𝑓Θ is firmly non-expansive
if and only if ℎΘ = 2 𝑓Θ − Id is a 1-Lipschitz operator, i.e., 𝜒ℎ = maxz ∥ J ℎΘ(z)∥𝑆 < 1.
In the same paper, the authors used this result to develop a training strategy to
obtain firmly non-expansive NNs.

Here we propose to use this result as a measure of robustness of the proposed
unfolded NNs. Similarly to Section 6.3.3, we approximate 𝜒ℎ by computing 𝜒ℎ ≈
max𝑠∈𝕁 ∥ J ℎΘ(z𝑠)∥𝑠𝑝, where 𝕁 corresponds to 100 images randomly selected from
BSD500 validation set, and z𝑠 are noisy images with standard deviation uniformly
distributed in [0, 0.01]. Then, the closer this value is to 1, and the closer the associated
NN 𝑓Θ is to be firmly non-expansive. Figure 6.10 gives the box plots showing the
distribution of (∥ J ℎΘ(z𝑠)∥𝑆)𝑠∈𝕁. Conclusions on these results are very similar to those
in Figure 6.4, in particular that DDFB-LNO and DScCP-LNO have the smallest 𝜒ℎ
values.

Figure 6.10: Deblurring (Training Setting 2): Robustness. Distribution of
∥ J ℎΘ(z𝑠)∥𝑆, where ℎΘ = 2 𝑓Θ − Id for 100 images extracted from BSDS500 validation
dataset 𝕁, for the proposed DUNNs and DRUnet.
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DDFB-LNO DDFB-LFO

DDiFB-LNO DDiFB-LFO

DCP-LNO DCP-LFO

DScCP-LNO DScCP-LFO

DRUnet BM3D

Figure 6.11: Deblurring (Training Setting 2): Parameter choice (𝛾).
Convergence behavior (PSNR and relative error norm) of the PnP-FB algorithms
for fixed 𝛽 = 1, and varying 𝛾 ∈ {1.2, 1.4, 1.6, 1.8, 1.99, 2.1}.

84



6.4 Image restoration with Plug-and-Play method

PSNR with optimal 𝛽

𝛽 distribution

Figure 6.12: Deblurring (Training Setting 2): Parameter choice (𝛽). Top:
Best PSNR values obtained with DDFB-LNO, DScCP-LNO, DRUnet and BM3D, on
12 images from BSDS500 validation set degraded according to (6.20), with 𝜎 = 0.03.
Bottom: Box plots for the distribution of 𝛽 associated with the best PSNR values
for DDFB-LNO, DScCP-LNO, DRUnet and BM3D.

Parameter choices
As emphasized previously, the denoising NNs in PnP-FB algorithm (6.22) depend on
two parameters: the step-size 𝛾 and the regularization parameter 𝜆 = 𝛽2𝜎2. In this
section we investigate the impact of each of these parameters on the results.

Impact of 𝛾. To ensure the convergence of the PnP-FB algorithm, the stepsize
must satisfy 𝛾 ∈]0, 2/∥A∥2𝑠𝑝 [. Figure 6.11 aims to evaluate the stability of the
proposed unfolded NNs by looking at the convergence of the associated PnP-FB
iterations, varying 𝛾 ∈ {1.2, 1.4, 1.6, 1.8, 1.99, 2.1} (where ∥A∥𝑠𝑝 = 1). For this
experiment, we fix 𝜆 = 𝜎2 (i.e., 𝛽 = 1). Further, we compare the PnP iterations with
the proposed unfolded NNs to PnP methods with DRUnet and BM3D. The plots show
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the convergence profiles for the deblurring of one image in terms of PSNR values and
relative error norm of consecutive iterates ∥x[𝑡+1] − x[𝑡] ∥/∥x[0] ∥, with respect to the
iterations 𝑡 ∈ {1, . . . , 103}. In particular, theory ensures that (∥x[𝑡+1] − x[𝑡] ∥) should
decrease monotonically. Interestingly, we can draw similar conclusions from the curves
in Figure 6.11 as for Figures 6.10 and 6.4. Looking at the relative error norms, the
most robust NNs are DDFB-LNO and DScCP-LNO, both converging monotonically
for any choice of 𝛾 ≤ 1.99. DCP-LNO seems to have similar convergence profile, with
a slower convergence rate. None of the other PnP schemes seems to be stable for
𝛾 = 1.99. For 𝛾 ≤ 1.8, DRUnet shows an interesting convergence profile, however
the error norm is not decreasing monotonically. The remaining PnP schemes do not
seem to converge in iterates, as the error norms seem to reach a plateau. In terms of
PSNR values, DScCP-LNO and BM3D seem to have the best performances, followed
by DDFB-LNO and DRUnet. For these four schemes, 𝛾 = 1.99 leads to the best
PSNR values.

Impact of 𝛽. The regularization parameter 𝜆 = 𝛽2𝜎2 aims to balance the data-
fidelity term and the NN denoising power [Repetti et al., 2022]. The proposed
unfolded NNs take as an input a parameter 𝜈 > 0 that has similar interpretation
for the denoising problem (3.45). In the PnP algorithm, we have 𝜈 = 𝜆𝛾, hence
𝛿2 = 𝛽2𝜎2𝛾, where 𝛿2 is the training noise level, 𝜎2 is the noise level of the deblurring
problem (6.20). Then 𝛽2 allows for flexibility in the choice of 𝜆, to possibly improve
the reconstruction quality.

In Figure 6.12, we provide best PSNR values obtained with DDFB-LNO, DScCP-
LNO, DRUnet and BM3D, on 12 images from BSDS500 validation set degraded
according to (6.20), with 𝜎 = 0.03. In this figure we also give the distribution of 𝛽,
associated with the best PSNR values.

6.4.4 Restoration performance comparison
In this section, we perform further comparisons of the different PnP schemes on 12

random images selected from BSDS500 validation set, degraded as per model (6.20).
In particular, we will run experiments for three different noise levels 𝜎 ∈ {0.015, 0.03, 0.05}.
Since in the previous sections we observed that DDFB-LNO and DScCP-LNO are the
more robust unfolded strategies, in this section we only focus on these two schemes,
comparing them to BM3D and DRUnet. For each denoiser, we choose 𝛿 = 𝜆𝛾, with
𝛾 = 1.99 and 𝜆 = 𝛽2𝜎2, with 𝛽 chosen according to results displayed in Figure 6.12.

The averaged PSNR values obtained with the four different schemes are given in
Table 6.6. It can be observed that, regardless the noise level 𝜎, DDFB-LNO and
BM3D always have the highest PSNR values, outperforming DRUnet and DScCP-
LNO. However, DDFB-LNO has a much cheaper computation time than BM3D (see
Table 6.2 for details). For low noise level 𝜎 = 0.015, DScCP-LNO also outperforms
DRUnet. For highest noise levels 𝜎 ∈ {0.03, 0.05}, DScCP-LNO and DRUnet have
similar performances.

For visual inspection, we also provide in Figures 6.14, and 6.15 examples of three
different images, for noise levels 𝜎 = 0.015, 𝜎 = 0.03 and 𝜎 = 0.05, respectively. We
observe that DRUnet and DScCP-LNO tend to better eliminate noise, compared to
BM3D and DDFB-LNO. This is consistent with the denoising performance results
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observed in Section 6.3.4. However, when integrated in a PnP for the restoration
problem, DRUnet seems to smooth out high-frequency details, sometimes resembling
an AI generator and generate unrealistic patterns. On the contrary, DDFB-LLNO
retains more high-frequency details. DScCP-LNO produces images much smoother
that DDFB-LNO, but without unrealistic patterns. Hence, if an image contains
a significant amount of high-frequency details compared to piecewise smooth or
piecewise constant patterns, unfolded NN denoisers like DScCP-LNO or DDFB-LNO
are more suitable choices than DRUnet.

Table 6.6: Deblurring (Training Setting 2): Restoration performance.
Average PSNR values over 12 images from BSDS500 validation set, obtained with
different PnP-FB schemes. For each NN, 𝛽 was chosen to obtain the highest PSNR.

𝜎 Noisy BM3D DRUnet DDFB-LNO DScCP-LNO
0.015 20.80 28.33 26.47 28.16 27.81
0.03 20.43 25.82 25.14 26.00 25.31
0.05 19.68 24.27 23.98 24.37 23.87

Ground truth Noisy – 20.11 dB BM3D – 27.10 dB

DRUnet – 25.09 dB DDFB-LNO –27.23 dB DScCP-LNO – 26.48 dB

Figure 6.13: Deblurring (Training Setting 2): Restoration performance.
Restoration example for 𝜎 = 0.015 with parameters 𝛾 = 1.99 and 𝛽 chosen optimally
for each scheme.
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Ground truth Noisy – 23.06 dB BM3D – 26.83 dB

DRUnet – 26.44 dB DDFB-LNO –27.09 dB DScCP-LNO – 26.43 dB

Figure 6.14: Deblurring (Training Setting 2): Restoration performance.
Restoration example for 𝜎 = 0.03 with parameters 𝛾 = 1.99 and 𝛽 chosen optimally
for each scheme.

Ground truth Noisy (𝜎 = 0.05)–20.65 dB BM3D – 24.62 dB

DRUnet – 24.25 dB DDFB-LNO – 24.94 dB DScCP-LNO – 24.45 dB

Figure 6.15: Deblurring (Training Setting 2): Restoration performance.
Restoration example for 𝜎 = 0.05, with parameters 𝛾 = 1.99 and 𝛽 chosen optimally
for each scheme.
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6.5 Application in Piecewise Homogeneous Fractal
Image Analysis

In this section, we want to evaluate the performance of the proposed DScCP for
the challenging question of estimating local regularity in textured images allowing to
identify texture changes in an image.

6.5.1 State-of-the-Art.
Textured images serve as natural representations suitable for a wide range of

diverse real-world applications. Frequently, these applications utilize fractal characteristics
to effectively describe such textures found in fields such as biological tissues, pathology
diagnosis through tomography, art painting analysis, microfluidics, among others. In
many of these practical contexts, the task of texture segmentation, which involves
dividing images into regions with similar characteristics, remains an ongoing and
significant challenge. In the realm of computer vision and scene analysis, there
are numerous well-established and efficient methods for image segmentation that
primarily rely on the geometric properties of the image. However, when dealing
with textured images, segmentation becomes more intricate, as capturing geometric
attributes becomes more challenging, and the focus shifts primarily to the statistical
properties of the texture features. Typically, traditional approaches to texture segmentation
follow a two-step procedure. First, they involve the computation of pre-selected
texture features, and second, they group these features into regions with similar
statistical characteristics.

To improve this local estimation, one approach involves combining the regression
procedure of local multiscale quantities against scales, minimizing least squares,
with the introduction of priors on the spatial behavior of these descriptors (e.g.,
piecewise constancy or linearity), leading to the minimization of a strongly convex
non-smooth criterion, effectively solved using proximal algorithms [Nafornita et al.,
2014, Pustelnik et al., 2016a]. These can be combined with a SUGAR-type procedure
for regularization hyperparameter estimation [Deledalle et al., 2014, Pascal et al.,
2021b]. Other approaches rely on Bayesian regularization strategies [Wendt et al.,
2018]. It has also been considered to create a learning database close to the a priori
model and then learn a deep neural network, referred to as a "black-box," with no
guidance from the model’s knowledge [Pascal et al., 2021a].

For the segmentation of textured images, assuming that textures are characterized
solely by their small-scale statistical properties, a comparison between variational
approaches, based on local regularity [Pascal et al., 2020], and deep learning, constructed
from the Fully Convolutional Neural Network (FCNN) network, was conducted in
[Pascal et al., 2021a]. It highlights that the supervised FCNN network compares
favorably to a more classical unsupervised variational approach, but with less robustness
and lower-quality interface detection.

In this part, we propose to explore PNN for the task of texture segmentation
considering a two-step procedure where fractal descriptor (local regularity) are extracted
and then PNN is built to perform denoising/segmentation task.

89



6.5 Application in Piecewise Homogeneous Fractal Image Analysis

In this study, we propose to focus on the task of texture analysis through the
estimation of local regularity when it is piecewise constant across an image. We
propose to adapt two unrolled deep networks that we have recently developed in the
context of image denoising [Le et al., 2022c] to the estimation of local regularity. The
two proposed networks are DFH (Deep Fista Hloc) and DSH (Deep Strong Convexity
Chambolle-Pock Hloc). These networks are based on an unrolled version of the FISTA
and Chambolle-Pock algorithms with acceleration strategies which aslo have similar
architecture with DDiFB and DScCP presented in previous section. The performance
achieved with these networks will be compared to a competitive black-box deep neural
network approach. We also compare the performance with results obtained using a
more standard unsupervised variational approach.

6.5.2 Local Estimation of Self-Similarity
Local regularity. Local regularity is a mathematical quantity that can be estimated
through regression of multiscale quantities (e.g., the logarithm of the absolute values
of wavelet coefficients or dominant coefficients [Wendt et al., 2007, Pustelnik et al.,
2016a, Pascal et al., 2021b]). Local regularity around position 𝑛 is measured by the
so-called Hölder exponent ℎ𝑛, such that if ℎ𝑛 is close to 0 (resp. 1), the image is locally
very irregular (resp. locally smooth). Formally, if we denote x = (𝑥𝑛)1≤𝑛≤𝑁 ∈ ℝ𝑁 the
image we aim to analyze, and if we denote L𝑗 ,𝑛 a multiscale quantity associated with
the image x defined for scales 𝑗 ∈ {1, . . . , 𝐽} and position 𝑛, the local regularity is
related to this quantity by the following relation:

L𝑗 ,𝑛 ≃ 𝜂𝑛2 𝑗 ℎ𝑛 , (6.24)

as 2 𝑗 → 0, where 𝜂𝑛 is proportional to the local variance of x at position 𝑛. The local
estimation of ℎ𝑛 can be obtained through linear regression across scales:

ℎ̂
(RL)
𝑛 =

∑︁
𝑗

𝑤 𝑗 ,𝑛 log2 L𝑗 ,𝑛 (6.25)

where (𝑤 𝑗 ,𝑛) 𝑗 ,𝑛 model the regression weights at scale 𝑗 and position 𝑛. Unbiased
estimation occurs when ∑

𝑗 𝑤 𝑗 ,𝑛 ≡ 0 and ∑
𝑗 𝑗𝑤 𝑗 ,𝑛 ≡ 1 [Wendt et al., 2007].

Estimation with piecewise constant spatial prior In studies dedicated to local
regularity estimation, it is customary to consider a homogeneous field. The estimation
is then obtained by averaging the values of the estimates ℎ̂(RL)

𝑛 obtained at each
position 𝑛 in the image. To achieve local estimation while reducing estimation
variance, [Nafornita et al., 2014, Pustelnik et al., 2016b] proposed imposing a piecewise
constant spatial prior, leading to the following minimization problem:

ĥ(TV) = arg min
h

1
2




h − ĥ(RL)



2

2
+ 𝜈Φ(Dh). (6.26)

where D models the finite difference operator and Φ models a norm imposing a
sparsity prior, usually Φ = ∥ · ∥1,2 for total variation-type penalization. This is a
strongly convex non-smooth optimization problem, efficiently solved to estimate ĥ(TV)

using proximal approaches [Combettes and Pesquet, 2011b, Bauschke and Combettes,
2017b].
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Objectives – Our study focuses on two fast algorithmic schemes (convergence in
𝑂 (1/𝑘2) on the functional) presented in [Pascal et al., 2018] for local regularity
analysis: the Fast Iterative Soft Thresholding Algorithm (FISTA) and Chambolle
Pock with strong convexity (ScCP). A sequence of 𝐾 iterations of these algorithmic
schemes is respectively denoted as

• 𝑓 FISTA(z; D,D⊤, 𝜈, ∥.∥•, 𝜏, 𝛼, 𝐾)
and

• 𝑓 ScCP(z; D,D⊤, 𝜈, ∥.∥•, 𝜏, 𝜎, 𝛼, 𝐾)

highlighting the dependence of iterations on the problem parameters in (6.26) and
the descent steps of the algorithmic strategies (𝜏, 𝛼 for FISTA and 𝜏, 𝜎, 𝛼 for ScCP).

6.5.3 Experiments
Learning strategy – Starting from a training set (x𝑠, h̄𝑠)𝑠∈𝕀 where x𝑠 represents
the image to analyze providing ĥ(RL)

𝑠 obtained by linear regression (6.25) from the
multiscale transform of the textured image h𝑠, our goal is to learn the parameters Θ

of a network 𝑓Θ in order to minimize the empirical error:

minimize
Θ

L(h𝑠, x̂𝑠;Θ) := 1
𝕀

𝕀∑︁
𝑠=1
∥h𝑠 − 𝑓Θ(ĥ(RL)

𝑠 )∥22. (6.27)

Datasets – To evaluate the performance of DFH and DSH, we create a database of
textured images x𝑠 generated from a piecewise homogeneous fractal process described
in [Pascal et al., 2021b], allowing the assembly of 𝑄 fractal textures. Each texture is
a stationary Gaussian field whose covariance structure is fully defined by its variance
Σ and its fractal parameter 𝐻. An illustration of a generated texture x𝑠 and the
associated true local regularity values h𝑠 are shown in Figure 6.16. Following the
procedure described in [Pascal et al., 2021a], three databases are generated: a training
dataset consisting of 2000 images with 𝑄 = 2 regions, 𝐻1 = 0.5, Σ2

1 = 0.6, 𝐻2 = 0.8,
Σ2

2 = 1.1 (config I), a test dataset consisting of 100 images with the same parameters,
and a test dataset of 100 images with 𝐻1 = 0.5, Σ2

1 = 0.33, 𝐻2 = 0.65, Σ2
2 = 1 (config

II).
Learning parameters – DFH and DSH are trained using PyTorch with the ADAM
optimizer [Kingma and Ba, 2014] for 500 iterations, a batch size of 10, and a learning
rate of 1𝑒−4. Two network configurations are considered, varying the number of
filters 𝐽 and the number of layers, allowing the construction of networks with 5× 103

coefficients (resp. 3 × 104) corresponding to 𝐾 = 13 and 𝐽 = 21 (resp. 𝐾 = 45 and
𝐽 = 37)
Comparisons – We compare the performance of DFH and DSH having the same
structure asDDiFB-LFO and DScCP-LFO with a standard unsupervised variational
method that minimizes (6.26) when Φ = ∥ · ∥1,2, and 𝜆 is automatically chosen
using a SUGAR strategy described in [Pascal et al., 2021b]. We also provide a
comparison with the reference method DnCNN [Zhang et al., 2017], which proves
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6.5 Application in Piecewise Homogeneous Fractal Image Analysis
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-4

-2

0

2

0

0.5

1

1.5
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Figure 6.16: Estimation and segmentation results on a texture image from Config I.
This configuration involves supervised methods (DnCNN, DFH, and DSH with 3×104

weights) trained on Config I and evaluated on Config I. The segmentation is obtained
by applying k-means clustering to the estimated values ℎ̂.

TV-SUGAR DnCNN 5.103 DnCNN 3.104 DFH 5.103 DFH 3.104 DSH 5.103 DSH 3.104

Estimation error
Test config I 0.339+/-0.048 0.113+/-0.011 0.104+/-0.010 0.073+/-0.008 0.069+/-0.007 0.072+/-0.007 0.069+/-0.007
Test config II 0.306+/-0.029 0.145+/-0.014 0.130+/-0.012 0.115+/-0.011 0.120+/-0.012 0.116+/-0.012 0.119+/-0.012

Classification score
Test config I 83.7+/-2.68 81.0+/-1.73 86.2+/-1.29 94.8+/-0.45 95.2+/-0.41 94.8+/-0.42 95.3+/-0.41
Test config II 73.2+/-2.51 68.4+/-1.36 67.9+/-1.45 70.7+/-2.65 70.9+/-2.67 68.3+/-2.74 70.6+/-2.71

Table 6.7: Comparison in terms of normalized error or segmentation accuracy
between different methods.

to be competitive with the proposed networks DDiFB-LFO and DScCP-LFO but
considered in the context of image denoising [Le et al., 2022c]. The number of
layers and parameters in the DnCNN network is chosen to achieve an equivalent total
number of parameters as considered with the proposed strategies DFH and DSH (i.e.,
𝐾 = 9 or 𝐾 = 10).

Estimation and segmentation performance – Figure 6.17 illustrates the superior
performance of our architectures in terms of both training and testing errors compared
to the standard DnCNN approach. Moreover, the proposed networks exhibit greater
stability (as evidenced by the reduced oscillations in the testing error curve). Table 6.7
(row 1) confirms the improvement of DFH and DSH over an unsupervised TV approach
in a scenario where training and testing are performed on a database with the same
characteristics (Config I), as well as in comparison to DnCNN. When testing is
conducted on a different configuration from the training, the supervised approaches
still outperform (see Table 6.7 - row 2). Although the proposed network is designed
for estimation tasks, we also evaluate its segmentation performance after applying k-
means clustering to the estimates. The results consistently outperform DnCNN, but
when the network is evaluated on Config II, the unsupervised procedure yields better
results. Illustrations of estimation and segmentation performance are presented in
Figures 6.16.

92



6.6 Conclusion

0 50 100 150 200 250 300 350 400 450 500

Epochs

10-2

10-1

DnCNN

DFH
DSH

0 50 100 150 200 250 300 350 400 450 500

Epochs

10-2

10-1

(i) (ii)
Figure 6.17: (i)Training error as a function of the number of iterations on Config I
(ii) Estimation error as a function of the number of iterations on the test dataset of
Config I

6.6 Conclusion
In this chapter we have introduced the concept of proximal unfolded neural networks

refering to unfolded schemes where the activation function is a proximity operator.
Several PNNs have been proposed with different degrees of flexibility and relying on
different algorithmic schemes.

All PNNs provide good numerical performance but some of them appear more
stable such as DDFB-LNO and DScCP-LNO. Its good behavior observed for denoising
task is also true when plugged into a FB as PnP strategy or for texture segmentation.
For all these image processing tasks, PNNs were able to achieve similar or best
formances with 100 less parameters.
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7.1 Proposed unrolled DMS with PALM iterations

Traditionally, image restoration and edge detection were treated separately where
the former process is needed to enhance image quality and give a better input for
the later process which is considered as a post-processing step. As we discussed in
Part I, there are many hand-crafted methods that help us to tackle this joint task
simultaneously by minimizing an energy function whose estimated solution is the
denoised image and estimated edges. In [Blake and Zisserman, 1987], the induced
edges can be retrieved easily by using a truncated quadratic function on the gradient
of denoised image. In [Le et al., 2022a], both image variable and edges variable are
simultaneously estimated, and can both improve the image restoration performance
and edge detection as illustrated in chapter 4 with the discrete AT functional. The
main drawbacks of the method includes the limitation to handle with large scale data.
The method faces an issue of time consumption and necessitates a meticulous tuning
of hyperparameters to achieve optimal performance.

In this chapter, we explore unfolded NN strategies in the context of joint restoration
and edge detection. We first proposed to unfold the Discrete Mumford-Shah functional
where each sub-iteration relies on PALM. Then we tackle this joint task with an
approach similar to BZ formalism in which the learning-based model containing two
blocks: (i) a PNNs denoiser, (ii) a convolutional layer for edge detection. The
efficiency of the proposed unrolled schemes is illustrated on several examples and
compared with the state-of-the-art variational methods.

7.1 Proposed unrolled DMS with PALM iterations
Giving the Gaussian degraded model

z = x + n, (7.1)

where n ∈ ℝ𝐶𝑁 models an additive white Gaussian noise with standard deviation
𝛿 > 0. The objective of this chapter is to design unfolded NNs 𝑓Θ such that

(x̂, ê) ≈ 𝑓Θ(z), (7.2)
where z is the noisy image, x̂ ∈ ℝ𝐶𝑁 is an estimate of x and ê ∈ ℝ𝐽𝑁 is an estimate
of e.

In this section we describe unfolded strategy for building denoising-edge detection
NNs relying on PALM iterations presented in Algorithm 10.

Proposition 7.1.1. Let z ∈ ℝ𝐶𝑁 , x ∈ ℝ𝐶𝑁 , e ∈ ℝ𝐽𝑁 and 𝑘 ∈ ℕ.
Let Tz,Θ𝑘,E,E : ℝ𝐶𝑁 ×ℝ𝐽𝑁 → ℝ𝐽𝑁 , defined as

Tz,Θ𝑘,E,E = 𝜂𝑘 (W𝑘 (x, e) + b𝑘 ) , (7.3)

be a sub-layer acting on both image variable x and the edge variable e and returning
an edge map. In (7.3) 𝜂𝑘 : ℝ𝐽𝑁 → ℝ𝐽𝑁 is a fixed activation function, Θ𝑘,E denotes
learnable parameters of the non-linear operator W𝑘 : ℝ𝐽𝑁 × ℝ𝐶𝑁 → ℝ𝐽𝑁 , bz,𝑘 is the
bias.

Let Tz,Θ𝑘,I,I : ℝ𝐶𝑁 ×ℝ𝐽𝑁 → ℝ𝐶𝑁 , defined as

Tz,Θ𝑘,I,I = 𝜂𝑘

(
V𝑘 (x, e) + b̃𝑘

)
, (7.4)
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7.1 Proposed unrolled DMS with PALM iterations

be a sub-layer acting on both image variable x and the edge variable e and returning
image variable. In (7.3) 𝜂𝑘 : ℝ𝐶𝑁 → ℝ𝐶𝑁 is a fixed activation function, Θ𝑘,I denotes
learnable parameters of the non-linear operator V𝑘 : ℝ𝐶𝑁 × ℝ𝐽𝑁 → ℝ𝐶𝑁 , b̃𝑘 is the
bias.

Then, the k-th iteration of the joint formulation can be written as a composition
of two layers of the form of the feedforward NN:

TDPMS
z,Θ𝑘 : ℝ𝐶𝑁 ×ℝ𝐽𝑁 → ℝ𝐶𝑁 : (x[𝑘] , e[𝑘]) ↦→ TΘ𝑘 ,I ◦ TΘ𝑘 ,E(x[𝑘] , e[𝑘]) (7.5)

where Θ𝑘 is the combination of Θ𝑘,I and Θ𝑘,E, i.e, the linear parametrization of all
learneable parameters for layer 𝑘.

Proof. This result is obtained by noticing that, for every 𝑘 ∈ ℕ, the 𝑘-th iteration in
the PALM algorithm can be rewritten as (7.5), where the image variable I operators
are given by W𝑘 =

𝜇𝑘
𝜇𝑘+1

(
Id − 2𝜇𝑘𝜆𝑆D⊤

(
(1 − e)2 ⊙ D•

) )
, b𝑘 =

𝜇𝑘
𝜇𝑘+1

z, 𝜂𝑘 = Id and the
edge E operators are given by V𝑘 = Id + 2𝜅𝑘𝜆𝑆

(
(Dx)2 ⊙ (1 − •)

)
, b̃𝑘 = 0 and 𝜂𝑘 =

prox𝜅𝑘𝑔𝐸 .

The resulting unfolding Deep PALM on Mumford-Shah functional bulding block
is then given below:

𝑓
𝐾,DPMS
z,Θ (x[0] , e[0]) = TDPMS

z,Θ𝐾 ◦ · · · ◦ TDPMS
z,Θ1

(x[0] , e[0]), (7.6)
where for every 𝑘 ∈ {1, . . . , 𝐾},

e[𝑘+1] = TDPMS
z,Θ𝑘,E (x

[𝑘] , e[𝑘]),

x[𝑘+1] = TDPMS
z,Θ𝑘,I (x

[𝑘] , e[𝑘+1]),
(x[𝑘+1] , e[𝑘+1]) = TDPMS

z,Θ𝑘 (x
[𝑘] , e[𝑘])

From this, we propose two options to unroll PALM iterations:

• DPMS-LH: stands for Deep PALM on Mumford-Shah functional with Learned
Hyperparameters.
This architecture is nothing else but the PALM iterations for which we fix a
number of iterations 𝐾 and the linear operators D and D⊤. The objective is to
learn the hyperparameters 𝜆𝑆 and 𝜆𝐸 .

• DPMS-LNO: stands for Deep PALM on Mumford-Shah functional with Learned
Normalized Operator described as follows:
Our unrolled architecture relies on layer structures introduced in Proposition
7.1.1 where we let the linear operator D to be different for each layer. In this
chapter, we will focus on the Learned Normalized Operator strategies presented
in the previous chapter.
Edge pixel approach is the most standard in the DNN literature, we say that e
is the edge map of image x and we let e to live on pixels and the edge map e is
in ℝ𝑁 (𝐽 = 1). DPMS-LNO architecture relies on:
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7.3 Edge detector based on DScCP denoiser



Vx,𝑘 (x[𝑘] , e[𝑘]) = Id + 2𝜅𝑘𝜆𝑆
(

1
𝐽

∑𝐽
𝑗=1(1 − e[𝑘]) ⊙ (D𝑘x[𝑘])2𝑗

)
b𝑘 = 0,
𝜂𝑘,E = prox𝜆𝐸𝑔𝐸 ,
W𝑘 (x[𝑘] , e[𝑘+1]) = 𝜇𝑘

𝜇𝑘+1

(
Id − 2𝜇𝑘𝜆𝑆D𝑘

(
1
𝐽

∑𝐽
𝑗=1(1 − e[𝑘+1])2 ⊙ (D𝑘x[𝑘]) 𝑗

))
b̃𝑘 = 𝜇𝑘

𝜇𝑘+1
z,

𝜂𝑘,I = Id.
(7.7)

7.2 Edge detector based on DScCP denoiser
Using variational approaches like ROF or Blake-Zisserman model require to select

the edges by thresholding. This strategy is more convenient for learning-based approaches
as we can combine these two step as two consecutive black boxes: (i) denoising
building block, (ii) edge detector block. To validate this idea, we propose a simple
approach where we attach an edge detector block to a stable and powerful PNNs
denoiser such as DScCP-LNO proposed in Chapter 6.

• DScCP-LNO-ED stands for Deep Strong convexity Chambolle-Pock - with
Edge Detection which is defined as follow{

(x[𝐾] , u[𝐾]) = 𝑓
𝐾,DScCP
z,𝜈,Θ (x[0] , u[0])

e[𝐾] = 𝜂𝐾,E
(
F𝐾x[𝐾]

)
,

(7.8)

where F𝐾 ∈ ℝ𝐽𝑁×𝐶𝑁 and 𝜂𝐾,E(𝑒) = HardTanh(𝑒2).

Remark 1. The choice of 𝜂𝐾 (𝑒) = HardTanh(𝑒2) is motivated by the truncated
quadratic function that is used in Blake-Zisserman functional.

Table 7.1: Learnable parameters of each unfolded scheme

Θ𝑘 Comments
DPMS-LNO 𝜇𝑘 ,𝜅𝑘 ,D𝑘,I = D𝑇

𝑘,E

DScCP-LNO-ED D𝑘,P = D𝑇
𝑘,D

, F𝐾 absorb 𝜏𝑘 in D𝑘,D

7.3 Experiments

7.3.1 Training strategy for joint task
Training dataset – We consider two sets of images: the training set (e𝑠, x𝑠, z𝑠)𝑠∈𝕀 of
size |𝕀| and the test set (e𝑠, x𝑠, z𝑠)𝑠∈𝕁 of size |𝕁|. For both sets, e𝑠 are the exact edges
and each couple (x𝑠, z𝑠) consists of a clean multichannel image x𝑠 of size 𝐶𝑁𝑠 (where
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7.3 Experiments

𝐶 denotes the number of channels, and 𝑁𝑠 the number of pixels in each channel), and
a noisy version of this image given by z𝑠 = x𝑠 + n𝑠 with n𝑠 ∼N(0, 𝛿2Id) for 𝛿 > 0.
Choice of loss function – In the context of DL-based approaches, when dealing
with the joint task of image denoising and edge detection, before going into designing
a model we need to define the loss function. The proposed method is to minimize the
following loss:

Θ̂ ∈ Argmin
Θ

1
|𝕀|

∑︁
𝑠∈𝕀
∥x𝑠 − x̂𝑠∥22 + 𝜆𝐶𝐸BCE(e𝑠 − ê𝑠) (7.9)

where (x̂𝑠, ê𝑠) = 𝑓 𝐾
Θ
(z𝑠), BCE is defined in (5.12) and 𝜆𝐶𝐸 is the parameter balancing

the two losses. The loss (7.9) will be optimized in Pytorch with Adam algorithm
[Kingma and Ba, 2014].

This loss has been selected to combine performance in restoration and edge detection.
Architectures – We will compare the two different architectures, namely DPMS-
LNO and DScCP-LNO-ED and for every layer 𝑘 ∈ {1, .., 𝐾} the weight operator D𝑘

consists of 𝐽 convolution filters (features), mapping an image ℝ𝐶𝑁 to feautres in ℝ𝐽𝑁 .
Experimental settings – To evaluate and compare the proposed unfolded architectures,
we consider RGB images (i.e, C=3). The unfolded NNs are trained with |𝕀| = 15
images extracted from BSDS500 dataset, with a fixed noised level 𝛿 = 0.05. The
learning rate for ADAM is set to 3𝑒 − 2 (all other parameters set as default), 𝜆𝐶𝐸 =

0.005, we use batches of size of 5 and patches of full size image. Unfolded Denoising-
edge detector NNs is trained with (𝐽, 𝐾) = (64, 20) and unfolded DPMS NNs is trained
with (𝐽, 𝐾) = (24, 10).

In our experiments, we aim to compare the proposed unfolded NNs for different
metrics: (i) runtime , (ii) denoising and edge detection performance. For sake of
completeness, these metrics will also be provided for the variational method proposed
in chapter 4, DMS-ℓ1 with 𝜆𝑆 = 4 and 𝜆𝐸 = 8 × 10−3, AT-𝜖 ↘ solved with SL-PAM
algorithm with 𝜖 goes from 0.08 to 0.015, 𝜆𝑆 = 4 and 𝜆𝐸 = 8 × 10−3.

7.3.2 Experimental results

Architecture comparison – We first compare the proposed unfolded DPMS and
DScCP-LNO-ED in terms of runtime and number of learnable parameters (i.e, |Θ|).
The experiments are conducted in PyTorch, using an Nvidia Tesla V100 PCIe 16GB.
The results are presented in Table 7.2
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Table 7.2: Architecture comparison. Runtime (in sec.), number of parameters
|Θ| of the denoisers when used on 10 images of size 3×481×321. Values for the NNs
are given for fixed (𝐾, 𝐽) = (20, 64) in case of DScCP-LNO-ED and (𝐽, 𝐾) = (24, 10)
in case of DPMS-LNO.

average |Θ|
(msec)

DMS-ℓ1 300 × 103

AT-𝜀 ↘ 1102 × 103

DScCP-LNO-ED 15 ± 3 34, 607
DPMS-LNO 11 ± 3 6482

Denoising and edge detection performance – In Figure 7.1, the DScCP-LNO-
ED results provide the best PSNR values on most of testing images with 𝛿 = 0.05.
For visual inspection, we observe that DScCP-LNO-ED tends to estimate closer to
the original and preserving more details than DMS-ℓ1 and AT-𝜀 ↘, hence, the later
methods require to smooth the image to eliminate the noise then some high frequencies
pattern is hard to keep when the noise level goes up. The DPMS-LNO also tends to
keep image high frequency details but denoising performance is not well achived.

On the contrary, the edge map quality of the state-of-the art methods tend to
be more clear. In Figure 4.5, we can observe that the histogram of e obtained by
AT-𝜀 ↘ lies between interval [0, 1], the methods also give some low level edges and
less outlier points compared to DMS-ℓ1. The preliminary results on edge detection of
unfolded NNs is not bad but still have some limitations. DPMS-LNO tends to give a
clearer edge map compared to DScCP-LNO-ED but the contrast is lower. The edge
width of both methods is also thicker than the state of the art methods.

From Table 7.2, we can see that DScCP-LNO-ED offers a good compromise
between runtime, and the denoising problem. We also emphasize that the training
phase for unfolded NNs still was performed on a small dataset.
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7.4 Conclusion

7.4 Conclusion
In this chapter, we have presented two frameworks for building a denoising NNs

with the capability of edge detection whose architecture are based on PALM applied
on DMS functional or DScCP-LNO. We show through numerical experiments that
DPMS-LNO does not work as expected and this is left for a deeper study in the
future. Beside, the proposed DScCP-LNO-ED is an effective denoiser and also an
edge detector which ensures more about its robustness for many tasks by injecting
the network in PnP algorithms for deblurring and edge detection task.
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7.4

This thesis focused mainly on two problems. In the first part, we investigated the
problem of the Discrete Mumford-Shah function with the approximating Ambrosio-
Tortorelli penalization on edges. In the second part, we proposed several strategies
based on the Proximal unfolded Neural Networks deployed for several image processing
tasks including its application to edges detection for degraded images. Both approaches
can be seen as facets of joint image restoration and edges detection in the future.

Conclusions
In Part I – Chapter 4, we studied the Ambrosio-Tortorelli penalization on edges

with the proposed Gold-Grid Search in order to prove the effectiveness of such a
choice of 𝑔𝐸 for the DMS function (2.35). We described in details how to construct
the approximating AT regularizer under the framework of Discrete Exterior Calculus.
We also proposed a strategy to favor the Γ−convergence when solving the DMS-AT
for many stages for which we restart the initialization and gradually decrease the
value of 𝜀. Numerically, we show that this method provides better estimates than
the ones obtained with a ℓ1 norm penalization on edges when including suitable
hyperparameters choice. The proposed approach obtains stable results with different
noise levels, solves the problem of presenting outlier dots when 𝑔𝐸 = ℓ1 and high noise
level and still preserves important features in the recovered image. Regarding the
minimization algorithms to solve Discrete AT, we provide both PALM and SL-PAM
strategies with convergence guarantees to a critical point. SL-PAM converges faster
but relies on a tedious proximal step that requires a careful processing to ensure that
the algorithm stays efficient in running time.

In Part II, we investigate the deep unfolding NNs strategy to design a joint
denoising and edge detection architecture. For the first step toward the objective,
we placed ourself in the simpler context of denoising. The proposed PNNs are
based on the standard convex optimization problem (6.1). Minimization algorithms
(FB, CP and inertial versions) were considered through an unified Proximal Neural
Network architecture. Various unrolling techniques were proposed lying in the design
of the linear operator D (LNO and LFO). These architectures lead to many variants
of denoising PNNs. These architectures appear to be 100 times lighter than the
state-of-the-art DNNs (such as DRUnet) encountered in the literature. To train our
architecture we also consider a smaller dataset (200 images) compare with ∼ 4000
images used in DRUnet but our models were capable to produce competitive results.
To guarantee the stability of these models, we also provided a deeper study on
their robustness by calculating a tight bound of the norm of Lipschitz constant.
Furthermore, along with these advantages, we also investigate their performance
in the context of deblurring images and texture segmentation considering a fractal
homogeneous data analysis. Both cases prove that proposed unfolded architectures
keep being consistent and have effective results compared to state-of-the-art methods.

In Part II – Chapter 7, we proposed two approaches to address the edges detection
task for degraded images. One relies on the PALM iterations with the ℓ1 norm
penalization on edges, the second one is based on the denoising PNNs designed in
Chapter 6. For both schemes, we proposed to tackle the problem with the loss

103



7.4

function combining the MSE and BCE on a very small dataset. We observe that
both architectures work correctly, however these preliminary results have to be deeper
studied.

Perspectives
Future studies, following on the findings presented in this thesis, may be considered.

Convergence of PALM and SL-PAM in solving discrete AT functional –
In this manuscript, we did not provide the study on the convergence rate of PALM
and SL-PAM solving the problem (4.1). However, based on the assumptions of strong
convexity of data term and edge length penalization term, the convergence rates could
be established in order to highlight theoretically the better performance of SL-PAM.

Choice of D – The operator D plays a crucial role to highlight the properties of
the images, both in the variational image processing and DL studies. In the context
of this thesis, we did not make any further study on other suitable choice of D for
DMS-AT functional. Some interesting perspectives are :

• to combine hand-designed linear operator with learned-linear operator in unfolded
NNs.

• to investigate the relation between constraints on the linear operator and robustness
of unfolded NNs.

Unfolding SL-PAM and choice of activator prox𝜅𝐾𝜆Φ – In Chapter 6, we
highlight that a faster minimization algorithm somehow conducted to a better unfolded
architecture. Hence, to improve the DPMS-LNO, we could consider

• to unfold the DMS based on SL-PAM iterations.

• to choose the penalization on edges Φ to be ℓ1 norm or Ambrosio-Tortorelli
functional. For instance, we could learn Ambrosio-Tortorelli approximation:
through the operator D1 in AT regularization. This operator can be generalized
and learned in the NNs architecture.

From pixel edge to edge between nodes for unfolded NNs – In the comparison
(Figure 7.1), we observe that the Discrete Mumford Shah functional with Ambrosio-
Tortorelli penalization on edges tends to better identify the thinner edges of images
compared to DL-based method. This can be explained from the fact that edge map
and modern edge detector are based on pixel edge rather the edges between pixels.
There are many studies focusing on finding a crisp boundary but it remains a challenge
in the DL community. In this works, we proposed two frameworks based on unfolded
denoising NNs with injected edge detecting sublayer (DPMS-SF and DScCP-SF) but
we still use the pixel edge map in the training dataset, it allows us to initially detect
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the edges in degraded images but the width of edges are still thick and some places are
not well detected. Our objective is to bring these two branches closer in the context
of edge detection in degraded images. This could be a path worth looking forward to
in the future.

From edges to closed contour – In experimental physics, closed contour refers
to a continuous path that forms a closed shape with no breaks. This definition
plays an important rules in some application, e.g. to estimate the contact area’s
phase, aiding in the identification of hydrodynamic regimes or in magnetic resonance
imaging measurement of perimeter of the interface is a very useful information. As
we observed, functional like MS is not suitable for detecting closed contours but
there exist other relaxed variant of MS such as Chan-Vese model that could be
considered to design unrolling architecture. Another challenge could be realized on the
hydrodynamic regimes dataset in order to develop an architectures that can precisely
detect a closed contour and measure interface perimeter.

Light weights but smart unfolded NNs – Intuitively, when combining on one
side includes the standard variational approach (where we well understood the context
and there exists many efficient well-developed methods), and on the other side the
deep learning based approaches (where we less understood the insight of the model),
we have shown that such an architecture is robust in simple task of denoising image
and even more in edge detection for noisy image. But there are still many questions
left behind:

• the study of the theoretical guarantees of PNNs,

• a deeper analysis of improvements of PNNs when using accelerated optimization
strategies such as inertia, preconditioning, etc.
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Appendix A
Auxiliary proofs

A.1 Auxilarry proof for Proposition (4.2.1)
Recall: Let 𝐴, 𝐵, 𝐶 and 𝐷 be matrix of arbitrary size.[

A B
C D

]−1
=

[
A−1 0

0 0

]
+

[
−A−1B

Id

]
(D − CA−1B)−1 [

−CA−1 Id
]

(A.1)

where A and D − CA−1B are supposed to be invertible.
We first rewrite the updating on e[𝑘] in Algorithm 4.1 where D1 is defined by

(4.8).

e[𝑘+1] =
[
2𝜅𝑘𝜆𝐸𝜀D∗1D1 +

(
1 + 2𝜅𝑘𝜆𝐸

4𝜀

)
Id

]−1
e[𝑘]

= (𝜂1Id + 𝜂2D∗1D1)−1e[𝑘]

=

(
𝜂1Id + 𝜂2

[
D∗𝑣D𝑣 −D∗𝑣Dℎ

−D∗
ℎ
D𝑣 D∗

ℎ
Dℎ

] )
e[𝑘]

=


A︷             ︸︸             ︷

𝜂1Id + 𝜂2D∗𝑣D𝑣

B︷     ︸︸     ︷
−𝜂2D∗𝑣Dℎ

C︷     ︸︸     ︷
−𝜂2D∗ℎD𝑣

D︷             ︸︸             ︷
𝜂1Id + 𝜂2D∗ℎDℎ


−1

e[𝑘]

where 𝜂1 = 1 + 2𝜅𝑘𝜆𝐸
4𝜀 and 𝜂2 = 2𝜅𝑘𝜆𝐸𝜀.

In (A.1), we can rewrite the above formulation as:
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A.1 Auxilarry proof for Proposition (4.2.1)

[
A B
C D

]−1
=


F︷︸︸︷

A−1 +

G︷     ︸︸     ︷
(−A−1B)

Q︷              ︸︸              ︷
(D − CA−1B)−1

M︷     ︸︸     ︷
(−CA−1)

𝐺︷     ︸︸     ︷
(−A−1B)

Q︷              ︸︸              ︷
(D − CA−1B)−1

(D − CA−1B)−1

M︷     ︸︸     ︷
(−CA−1)

Q︷              ︸︸              ︷
(D − CA−1B)−1


(A.2)

=

[
F +GQM GQ

QM Q

]
(A.3)

where 

𝜂1 = (1 + 𝜅𝑘𝜆𝐸
2𝜀 )

𝜂2 = 2𝜆𝐸𝜀𝜅𝑘
𝐹 = (𝜂2D∗𝑣D𝑣 + 𝜂1Id)−1

𝐺 = 𝐹 (𝜂2D∗𝑣Dℎ)
𝑀 = (𝜂2D∗

ℎ
D𝑣)𝐹

𝑄 = (𝜂2D∗
ℎ
Dℎ + 𝜂1Id − (𝜂2D∗

ℎ
D𝑣)𝐹 (𝜂2D∗𝑣Dℎ))−1

(A.4)
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