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Introduction en français

Les équations dérivées de la mécanique des fluides peuvent être utilisées pour modéliser une large variété de

phénomènes physiques intervenant dans des situations très différentes. Au-delà même des études de comporte-

ments de liquides ou de gaz qui viennent immédiatement à l’esprit avec, par exemple, des applications en

météorologie, climatologie ou en aérodynamisme, il est pertinent de noter qu’une très large classe de systèmes

présente un comportement similaire lorsqu’ils sont étudiés à l’échelle macroscopique. L’un de leurs principaux

points communs est certainement que, contrairement à ce que l’on peut observer par exemple avec des modèles

paraboliques en mécanique du solide, ils ne propagent l’information qu’à une vitesse finie. Les exemples incluent

bien sûr la propagation d’ondes électromagnétiques modélisées par les équations de Maxwell, mais également

le cheminement de requêtes http à travers un réseau internet de routeurs interconnectés, ou l’évolution d’une

épidémie entre différentes villes reliées par des routes. L’objectif principal de cette thèse est la simulation

numérique et le contrôle optimal de ce type de système, en utilisant dans un premier temps diverses méthodes

déterministes basées sur le gradient, puis l’apprentissage profond avec des réseaux de neurones pour réduire

efficacement la taille du problème.

La première partie de ce manuscrit s’intéresse à un modèle hydrodynamique de trafic routier qui est une

extension par Coclite et al.[23] du modèle de Lighthill-Whitham-Richards [61, 82] à un graphe représentant

un réseau routier. La gestion des intersections d’un tel réseau constitue un défi autant du point de vue de la

modélisation que du contrôle, à cause notamment du couplage fortement non linéaire qui relie des solutions très

peu régulières (L1). Par ailleurs, pour des raisons de persistance des données ainsi que de reproductibilité des

résultats, le code associé aux simulations numérique est libre. Sa documentation fait l’objet du chapitre 3.

Dans un deuxième temps, nous nous intéresserons à un moyen d’accélérer les calculs, largement utilisé

dans la recherche et l’industrie, les bases réduites [51]. Il s’agit d’une question cruciale, car les algorithmes

d’optimisation et de contrôle peuvent avoir besoin d’usage intensif de simulations non linéaires, et il est impératif

de rendre ces appels rapides tout en conservant une bonne fiabilité des résultats. Nous verrons que l’approche

classique de réduction de modèle se heurte à la forte non-linéarité du système considéré, et proposerons une

approche de réduction robuste utilisant un réseau de neurones pour évaluer le terme fortement non linéaire.

Le manuscrit se conclut par un projet réalisé en colaboration avec Leo Meyers et Florent Noisette sous la

direction de Bastien Polizzi, Sébastian Minjeaud, Olivier Bernard et Thierry Goudon lors d’une école d’été. Ces

travaux traitent eux-aussi de non-linéarité dans un modèle de mécanique des fluides, cette fois-ci appliqué à

la biologie. Il s’agit en effet de simuler de façon précise l’évolution de micro-algues et de leur matrice extra-

cellulaire dans un milieu aqueux. L’apport principal de ce chapitre est le développment d’un prédicteur-correcteur

sur grille décalée permettant de restituer correctement le champ des vitesses malgré des couplages fortement

non linéaires entre les phases ainsi que plusieurs forces et phénomènes biologiques comme la gravitation ou la

9



CONTENTS CONTENTS Strasbourg University

Figure 1: Macroscopic view of Paris’ road network. https://www.data.gouv.fr/fr/reuses/circulation-a-paris/

photosynthèse.

Chapitre 1 : Revue de littérature et modélisation du problème de trafic sur
graphe

Ce chapitre présente les différentes grandes catégories existantes de modèles de trafic routier avant d’introduire

la modélisation macroscopique dont il est question dans cette thèse, avec notamment le couplage non linéaire aux

intersections, et donne une vision générale des outils qui seront déployés par la suite pour formuler et analyser le

problème de contrôle ainsi que son approximation numérique.

Le modèle LWR décrit l’évolution en espace et en temps d’une densité de véhicules ρ sur une route [a, b] ⊂ R
soumise à un flux concave f(ρ), avec une équation de conservation de la forme :

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0, (t, x) ∈ (0, T )× [a, b]. (1)

à laquelle on adjoint des conditions aux limites appropriées faisant intervenir des hypothèses de modélisation

quant à la répartition des flux des véhicules aux jonctions à chaque instant.

Un point important est la régularité et la compacité des solutions à variation bornée, cette notion, illustrée

Figure 2, est prépondérante dans l’existence de solutions ou la convergence d’un algorithme itératif vers un

contrôle minimisant effectivement le critère considéré.

Chapitre 2 : Scénario optimal d’une évacuation de routes dans un environement
urbain

Comment désengorger une route du trafic routier le plus efficacement possible et en un temps donné, afin de

permettre par exemple le passage de véhicules d’urgence ? La Figure 3 nous montre un exemple de situation

10
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(a) Une fonction non continue à variation bornée : la fonction en
escalier, souvent rencontrée lors de la modélisation d’ondes de
choc.

(b) Une fonction continue (par prolongement) qui n’est pas à varia-
tion bornée : y(x) = xcos(1/x), avec des instabilités au voisinage
de zéro.

Figure 2: Exemples de fonctions classiques bv et non bv.

(a) Road network and route to empty in red.

T = 10.0,   J(u) = 55.741
0

max

(b) Density at final time without control.

Figure 3: (Rond-point) Gauche : Configuration du rond-point. Les routes (2, 3, 5, 7) du cercle sont dans le sens inverse des
aiguilles d’une montre, les routes (1, 6) sont entrantes et les routes (4, 8) sont sortantes. Le trajet à vider (1, 2, 3, 5, 8) est
en rouge. A droite : Simulations numériques sans contrôle au temps T = 10.

défavorable dont nous chercherons à nous prémunir. Nous nous intéressons à cette question que nous reformulons

comme un problème de contrôle optimal. Nous considérons un modèle macroscopique de trafic routier sur réseau,

semi-discrétisé en espace et décidons de nous donner la possibilité de contrôler le flux à certaines jonctions.

Notre objectif est de lisser et diminuer le trafic le long d’un chemin donné dans un temps donné. Une contrainte

de parcimonie est imposée sur les contrôles, afin de s’assurer que les stratégies optimales sont réalisables en

pratique.

On est donc ammenés, après discrétisation de (1) avec Nc ∈ N mailles sur chacune des Nr ∈ N routes :

ρ(t) =
(
ρi,j(t)

)
1≤i≤Nr
1≤j≤Nc

=

 1

△xi,j

∫ x
i,j+1

2

x
i,j− 1

2

ρ(t, x) dx


1≤i≤Nr
1≤j≤Nc

, (2)

11
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à minimiser une fonctionnelle du type :

J (u) =
∑
i∈roads

∑
j∈mesh(i)

ρi,j(T ;u), (3)

sous la contrainte dynamique donnée par le schéma aux volumes finis contrôlé suivant :
dρ

dt

(
t
)
= fFV (ρ(t),γ(t)) , t ∈ (0, T )

γ(t) = ϕLP (ρ(t),u(t)) , t ∈ (0, T )

ρ(0) = ρ0,

(4)

où fFV est le flux volumes finis et γ est le flux numérique aux jonctions. La fonction ϕLP introduite par Coclite

et. al est modifiée dans ce manuscrit pour tenir compte du contrôle. On calcule la répartition optimale des flux

aux jonctions à l’aide d’un problème de programmation linéaire sur la somme des traces des flux entrants. À titre

d’exemple, voici son expression pour une jonction très simple ayant une route entrante et une route sortante :

γ1(t) = γ2(t) = min
(
γdemand
1 (t), (1− u2(t))γsupply

2 (t)
)
, (5)

où γ(t) = (γ1(t), γ2(t)) et γdemand
1 (t), γsupply

2 (t) sont respectivement les flux maximaux en entrée et en sortie de

la jonction. Ils sont calculés à partir des densitées à l’instant t.

Remark 1. Il est important de noter ici que la façon de définir la dépendance de ϕLP par rapport au contrôle

u est un choix de modélisation crucial auquel il faut faire attention pour conserver le caractère bien posé du

problème démontré dans [23], en particulier quant à la conservation de la densité de voitures à travers les

jonctions.

Nous effectuons ensuite une analyse du problème de contrôle optimal, prouvant l’existence d’un contrôle

optimal et dérivant des conditions d’optimalité, que nous réécrivons sous la forme d’une unique équation

fonctionnelle. Nous utilisons ensuite cette formulation pour dériver un algorithme mixte que nous interprétons

comme un mélange de deux méthodes : une méthode de descente combinée avec une méthode de point fixe.

Nous vérifions finalement par des expériences numériques l’efficacité de cette méthode sur des exemples de

graphes, d’abord simples, puis plus complexes, avant de mettre en évidence l’efficacité de notre approche en la

comparant aux méthodes standard.

Chapitre 3 : Un code Julia pour le contrôle optimal d’un réseau routier

Dans un souci de reproductibilité des résultats et pour rendre les travaux du précédent chapitre réutilisables, nous

mettons le code source à disposition et présentons son utilisation. Ce programme est codé en Julia et peut être

trouvé en accès libre en suivant ce lien :

https://github.com/mickaelbestard/TRoN.jl

Le chapitre commence par la présentation de la structure générale du code ainsi que l’interface permettant

d’interagir avec, que ce soit pour reproduire les résultats ou le réutiliser pour d’autres problèmes faisant intervenir

12
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Optim

+ model:Model
+ uk:Vector{Vector{Float64}}
+ J:Real
+ ?J:Vector{Vector{Float64}}
+ p_t:Vector{Vector{Float64}
+ redlane:Vector{Integer}
+ diagnostics:Diagnostics
+...

+ ComputeDual!()
+ ComputeCost!()
+ ComputeGradientCost!()
+ self() #Optimisation algorithm

Model

+ net:Network
+ mesh:Mesh

+ ?_t:Vector{Vector{Real}}
+ ?_t:Vector{Vector{Real}}
+ u_t:Vector{Vector{Real}}

+ ?f_FV:Matrix{Real}
+ ?? _LP:Matrix{Real}

- f_FV!(?, ?):Vector{Real}
- ? _LP!(?, u):Vector{Real}

+ ComputePrimal!()
+ AutoJac!():Matrix{Real}

Network

+ graph:SimpleDiGraph
+ Junctions:Vector{Junction}

+ ?max_t:Vector{Real}
+ vmax_t:Vector{Real}

+ adjacencyMatrix:Matrix{Integer}

- flow(?, ?max, vmax):Real
- Fnum(?L, ?R, side):Real

Mesh

+ NumberOfCenters:Integer}
+ centers:Vector{Real}
+ nodes:Vector{Real}

+ dx:Real
+ Length:Real

+ Mesh(Length, 
NumberOfCenters, 
NumberOfNodes)

Junction

+ Jmat:Matrix{Real}
+ priorities:Vector{Real}

- LP(?in, ?out, u):Vector{Real}

SimpleDiGraph.jl

Oriented graph structure 
(topological)

ForwardDiff.jl

Dual Numbers, Automatic 
differentiation

Diagnostics

+ losshistory:Vector{Real}
+ residualhistory:Vector{Real}
+ optimalityhistory:Vector{Real}
+ u_optimal:Vector{Vector{Real}}
+ ?_optimal:Vector{Vector{Real}}
+...

+ diagnostics(opt:Optim):plot

Figure 4: Global structure of the Julia code for optimal control of traffic flow.

une structure similaire. La fin du chapitre entre un peu plus dans les détails propres au langage de programmation

utilisé pour présenter des perspectives d’amélioration du code du point de vue de son empreinte mémoire et de sa

rapidité, deux sujets particulièrement reliés en Julia.

Chapitre 4 : Outils pour les modèles réduits et le machine learning

La décomposition en modes propres permet de capturer la structure sous-jacente à un jeu de données et de

filtrer les informations redondantes. Cette technique de compression est efficace pour reformuler un système

d’équations de grande dimension N >> 1 tel que :

dρ(t)

dt
= F (ρ(t)), ρ(t) ∈ RN , (6)

en un système tronqué de taille réduite m << N :

dρ̂(t)

dt
= F̂ (ρ̂(t)), ρ̂(t) ∈ Rm, (7)

où ρ̂ est obtenu par projection (compression) de ρ sur une base judicieusement choisie pour garantir la fiabilité

des données réduites. Typiquement, nous travaillerons avec N = 800 et m ≤ 20 et noterons Φ ∈ RN×n de sorte

que :

ρ̂ = ΦTρ. (8)

Cette méthode dite d’interpolation empirique (EIM), qui existe aussi dans sa version dynamique (DEIM)

pour les cas faiblement non linéaires, souffre néanmoins grandement de la forte non-linéarité du second membre

du système.

Nous choisissons d’y remédier à l’aide de réseaux de neurones. Après en avoir exposé brièvement les

13
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principaux aspects, nous rappelons une version de la descente de gradient qui permet de calculer de façon efficace

l’erreur de prédiction du réseau par rapport à un grand jeu de données et qui est la base des méthodes utilisées

dans les librairies standards de machine learning comme Adam ou RMS prop [53]: la descente de gradient

stochastique [83].

Chapitre 5 : Approches comparées d’hyper-réduction par apprentissage profond

Nous utilisons les bases réduites pour approcher une famille d’équations différentielles ordinaires non linéaires,

indexée par un paramètre du modèle que l’on notera µ :

dρµ(t)

dt
= F (ρµ(t)), ρµ(t) ∈ RN . (9)

Dans le chapitre 5, nous traiterons spécifiquement du cas où le modèle est donné par (4) sur une route à une entrée

et une sortie, avec pour paramètre la densité maximale de voiture autorisée sur la route sortante. Le comportement

de la solution numérique pour différentes valeurs du paramètre est illustré Figure 5, et l’on remarque que les

basses valeurs du paramètre favorisent l’apparition de chocs tandis que les hautes valeurs génèrent des ondes de

raréfactions.

En supposant que l’on puisse déduire ρµ d’une représentation réduite ρ̂µ ∈ Rm de sorte que ρµ ≈ Φρ̂µ, la

0 100 200 300 400 500 600 700 800
x

0.2

0.4

0.6

0.8

1.0

 H
F

mu = 0.10
mu = 0.64
mu = 0.90

Figure 5: Densités de véhicules au temps final pour différentes valeurs de la densité maximale sur la deuxième route.
Discrétisation spatiale : Nc = 400 cellules par route.

non-linéarité annulerait l’intérêt de l’utilisation d’un modèle réduit. Nous serions en effet ammenés à résoudre :

ΦT
dρµ(t)

dt
=

dρ̂µ(t)

dt
= ΦTF (Φρ̂µ(t)), ρµ(t) ∈ RN , ρ̂µ(t) ∈ Rm, (10)

impliquant une évaluation du flux F en grande dimension.

Nous formons alors un réseau de neurones, paramétré par θ, dont le but sera d’apprendre à évaluer le flux

14
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ρ
F // F (ρ)
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ΦT ◦F◦Φ
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��̂F (ρ), F̂θ(ρ̂)

Figure 6: Objectif schématisé de la méthode d’hyper-réduction par apprentissage profond.

fortement non linéaire en n’utilisant que la base réduite (flèche bleue sur la Figure 6), c’est-à-dire de sorte que le

calcul ne fasse pas intervenir la grande dimension du problème initial (flèche rouge sur la Figure 6).

Les deux approches utilisent le même réseau de neurones F̂θ, un jeu de données ρ̂µ(t) pour certaines valeurs

de (t, µ) et ne diffèrent que par leur fonction de perte. Dans le premier cas, appelé "Neural Closure" (NC),

nous cherchons à minimiser l’erreur entre le second membre prédit par le réseau de neurones F̂θ(ρ̂µ, µ) et la

compression ΦT (·) du second membre provenant du modèle de grande dimension F (ρ̂µ;µ) :

LNC(θ) = error
(
F̂θ(ρ̂µ, µ),Φ

TF (ρ̂µ;µ)
)
. (11)

Dans la seconde approche, appelée "Differentiable Physics" (DP), nous notons :

S1
θ (ρ̂µ(tn)) := ρ̂µ(tn) + ∆tF̂θ(ρ̂µ(tn), µ) (12)

l’intégrateur en temps construit en utilisant le réseau de neurones comme flux d’intégration, et écrivons SKθ les

composées itérées de S1
θ nous transportant l’état réduit d’un instant tn à un instant tn+K .

Nous souhaitons ainsi minimiser l’erreur commise par cet intégrateur sur K pas de temps en le comparant à

la compression de la trajectoire de référence ΦTρµ(tn), · · · ,ΦTρµ(tn+K) :

LDPK (θ) = error(SKθ (ρ̂µ(·)), ρ̂µ(·+K)). (13)

C’est avec cette dernière approche que nous obtenons les résultats les plus prometteurs.

Chapitre 6 : Schémas numériques pour les modèles de théorie des mélanges avec
contrainte de remplissage : application aux écosystèmes de biofilms

Le dernier chapitre traite de l’évolution de micro-algues dans un milieu aqueux, modélisée par un mélange de

trois phases. La complexité du modèle provient de la non-linéarité des termes d’advection, des couplages, ainsi

que des phénomènes physiques (gravitation, pression) et biologiques (photosynthèse) pris en compte. La stratégie

numérique que nous avons utilisée repose sur l’utilisation de grilles décalées pour améliorer l’évaluation des

vitesses aux interfaces des mailles, ainsi que d’un prédicteur-correcteur utilisant le gradient de la pression pour

15
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corriger l’erreur commise sur le calcul des vitesses.

Il s’agit d’une prépublication issue d’un projet réalisé lors du Centre d’Eté Mathématique de Recherche

Avancée en Calcul Scientifique (CEMRACS) en 2022 avec Léo Meyer et Florent Noisette, sous la direction de

Bastien Polizzi, Sébastian Minjeaud, Olivier Bernard et Thierry Goudon. Ce projet s’insère naturellement dans le

contexte général de ce manuscrit, car il vise à trouver des solutions numériques pour résoudre le problème de la

forte non-linéarité dans un modèle fluide.

Figure 7: Vue macroscopique de micro-algues. Azeredo, Joana et al. “Critical review on biofilm methods.” Critical reviews in microbiology vol. 43,3 (2017): 313-351.
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Chapter 1

Tools for traffic modeling and analysis

This chapter first outlines road traffic model categories, then delves into macroscopic modeling, particularly

nonlinear intersection coupling. It also previews the tools for analyzing the control problem and its numerical

approximation. Emphasizing the significance of solutions’ regularity and bounded variation, which plays a vital

role in solution existence and iterative algorithm convergence toward optimal control.

1.1 Overview of existing traffic models

Depending on the specific scenario being studied, various approaches exist for modeling the phenomenon under

consideration. These approaches vary in scale and the level of accuracy they aim to achieve.

At the microscopic scale, the behavior of individual vehicles can be described using Lagrangian microscopic

models. These models focus on the trajectories, including speed and position, of each vehicle. Examples of

such models include car-following models, as referenced in works such as [79, 43, 62], as well as cellular

automaton models, as discussed in [54, 11, 50]. Additionally, kinetic traffic models, introduced in the 1960s, take

a mesoscopic approach, representing vehicles as distributions in position-velocity space. These models have

been explored in works such as [77, 26, 31, 38, 66, 71, 94].

Moving up to a macroscopic scale, the flow of vehicles is treated as a continuous medium. One notable

macroscopic model is the one introduced by Lighthill, Whitham, and Richards (commonly denoted as LWR) in

the 1950s, as documented in [61, 82]. In the subsequent sections of this work, we will primarily use the LWR

model, as its continuous representation of flow lends itself well to formulating dynamic programming problems.

It’s worth noting that the original first-order model from the 1950s has been extended to second-order models

resembling Euler-type systems with viscosity, as discussed in [72, 95, 5, 63]. These extensions provide a more

comprehensive understanding of traffic dynamics.

For a comprehensive introduction to this topic, see [42].

1.2 Macroscopic modeling of road traffic on a network

To study road traffic on a macroscopic scale, we use a continuous model introduced by Lighthill, Whitham, and

Richards in 1955/1956, which describes the evolution of car density. While this model is very well known when

applied to a single road, its generalization to networks raises theoretical and numerical difficulties that have given
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rise to numerous studies. The junction problem is of central importance, since it is necessary to make sense of

solutions that are a priori multivalued, as well as to properly model the distribution of vehicles from one road to

another. This section starts with a formal derivation of the model to give an intuition of the underlying physics.

Then, classical results of the domain are presented.

We write ρ(t, x) the number of cars per unit of length at position x ∈ R and time t ≥ 0. This quantity allows

us to define the mass on any interval I := [a, b] as being:

m(t) =

∫ b

a
ρ(t, x) dx. (1.1)

This is a conserved quantity of the system, which means that:

m′(t) =

∫ b

a
∂tρ(t, x) dx = 0. (1.2)

The flow of vehicles, denoted as f(ρ(t, x)), is the mass of vehicles that can pass through x at time t. Assuming

no source or loss of vehicles, its variations at the boundaries of a road give us the variation of the mass within it,

i.e.

m′(t) =

∫ b

a
∂tρ(t, x) dx = ingoing flux − outoing flux

= f(ρ(t, a))− f(ρ(t, b))

= −
∫ b

a
∂xf(ρ(t, x)) dx.

We therefore obtain for some T ≥ 0 the following scalar conservation law:

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0, (t, x) ∈ (0, T )× [a, b]. (1.3)

In [Lighthill, Whitham, Richards, 1955], the flux is given more specifically by:

f(ρ) = ρv(ρ) = vmaxρ(1−
ρ

ρmax
), (1.4)

with vmax and ρmax the maximum speed and density allowed on the road. This choice is motivated by the fact

that v(0) = vmax and v(ρmax) = 0. We drive indeed faster on an empty road than during a traffic jam, as

illustrated in Figure 1.1.

Since this type of model is well known to produce discontinuous solutions in finite time, even for smooth

initial data, we therefore need to weaken the notion of solution.

Definition 1 (Weak solution on a road). We say that ρ is a weak solution on road I if for any φ : R≥0 × I → R
smooth with compact support on R>0 × I̊ , we have:∫ +∞

0

∫
I
(ρ∂tφ+ f(ρ)∂xφ) dxdt = 0. (1.5)

For the associated Cauchy problem to be well-posed, the search for weak solutions is not yet sufficient to

guarantee uniqueness. The family of functions we need is the weak entropic ones, in other words, those that are
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physically relevant. These considerations are very standard and are discussed in detail in Coclite et al. [41].

On a network

A road network of Nr roads and Nv junctions is modelled by a directed graph G = (V,E) whose edges

E = {Ii := [ai, bi] ⊂ R | 1 ≤ i ≤ Nr},

represent the roads and the vertices

V = {Jk =
(
(ik1, · · · , iknk), (j

k
1 , · · · , jkmk)

)
| 1 ≤ k ≤ Nv},

the junctions, each junction Jk having nk incoming and mk outgoing roads.

The LWR model is straightforwardly extended to describe the behaviour of the vehicles densities (ρi)i on

roads I up to a time T ≥ 0, which readily yields the following Cauchy problem on the network:{
∂tρi(t, x) + ∂xfi(ρi(t, x)) = 0, (t, x) ∈ [0, T ]× [ai, bi],

ρi(0, x) = ρi,0(x), x ∈ [ai, bi],
(1.6)

where flow and speed are given by:

fi(ρi) = ρivi(ρi), vi(ρi) = vmax
i

(
1− ρi

ρmax
i

)
, (1.7)

with vmaxi ≥ 0 the maximum speed allowed by the model on the road i and ρi being bounded by a given

ρmax
i ≥ 0. See Figure 1.1.

Figure 1.1: Local vehicles speed and flow in the LWR model, with ρmax = vmax = 1.

Vehicles distribution at junctions

Defining the coupling of the roads at junctions in an appropriate way is however a non-trivial problem, since

the density becomes multivaluated with as many crossing characteristics as the arity of the intersection. This

has given rise to numerous works [REF], and we will follow the approach of Coclite et al. [23] by linking the

solution at junctions from its flow traces.

We write for each time t ∈ (0, T ) the flow traces γ(t) =
(
γL(t),γR(t)

)
of the flux at boundaries, such that:
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Figure 1.2: Junction with one ingoing and one outoing road.

• γRi (t) := fi
(
ρi(t, b

−
i )
)

is the flow going in the junction from the road i, located at the right1 of the ingoing

road.

• γLj (t) := fj

(
ρj(t, a

+
j )
)

is the flow going from the junction to the road j, located at the left of the outgoing

road.

• (Ψk(t))k denote the flows at the junctions located next to graph’s leaves, using ghost cells convention.

We provide an illustration of these notations in Figure 1.2, on a junction between one ingoing and one outoing

road.

Considering a generic junction with n ingoing and m outgoing roads, Coclite et al. introduce the relation

n∑
i=1

fi(ρi(t, bi)) =
n+m∑
j=n+1

fj(ρj(t, aj)), (1.8)

to ensure the conservation of the flux. This means that the number of cars entering the intersection is the same as

the number leaving it. But it does not determine uniquely where they come from or where they are going at if

there are several incoming or outgoing roads (i.e. for m,n ≥ 2). They therefore add constaints to the model

such as assuming that there is a raw-stochastic distribution matrix A ∈ Rm×n that links the input of a junction

(γRi )1≤i≤n to its output (γLj )n+1≤j≤n+m = A(γRi )1≤i≤n. We then write

A := (αji)n+1≤j≤n+m
1≤i≤n

, 0 < αji < 1,
n+m∑
j=n+1

αji = 1, (1.9)

with αji being the percentage of drivers arriving from the i-th road that take the j-th outgoing road.

Finally, the main modelling assumption made to achieve coupling between roads is that drivers behave in such

a way as to maximize flow, while respecting the intrinsic restrictions imposed, for example, by road size or speed

limits. As a result, the flow at junctions will be an optimal compromise between maximum demand satisfaction

and available supplies. These restrictions are computed as follows: by fi concavity, there indeed exists a unique

σi ∈ [0, ρmax
i ] such that f ′i(σi) = 0. In this point, fi reaches its maximum so we define (γR,max

i )1≤i≤n the

maximum flows that can be obtained on incoming roads, i.e. the demand flux, Figure 1.3a, as:

γR,max
i =

{
fi(ρi(t, bi)), if ρi(t, bi) ∈ [0, σi],

fi(σi), if ρi(t, bi) ∈ [σi, ρ
max
i ],

= fi(min{σi, ρi(t, bi)}). (1.10)

We define the same way the supply flux (γL,max
j )n+1≤j≤n+m for the outgoing roads, see Figure 1.3b:

γL,max
j =

{
fj(σj), if ρj(t, aj) ∈ [0, σj ],

fj(ρj(t, aj)), if ρj(t, aj) ∈ [σj , ρ
max
j ].

= fj(max{σj , ρj(t, aj)}). (1.11)

1the graph being oriented, we define "left" and "right" canonically from the direction of each road.
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(a) demand flux (b) supply flux

Figure 1.3: Demand and supply fluxes for ρmax = vmax = 1.

In order to write the optimal flow repartition, let us introduce the pavements:

Ωi := [0, γR,max
i ], 1 ≤ i ≤ n,

Ωj := [0, γL,max
j ], n+ 1 ≤ j ≤ n+m,

(1.12)

which are used to define the following polytope:

Ω := {γ := (γ1, · · · , γn) ∈ Ω1 × · · · × Ωn | Aγ ∈ Ωn+1 × · · · × Ωn+m}. (1.13)

The optimal trade-off principle stated earlier then leads to solve, at every junction and for each time, the

following linear programming:

max
γ∈Ω

1 · γ, (1.14)

where 1 := (1, · · · , 1) ∈ Rn.

See again Coclite et al. [23] for the definition of weak entropic solutions at junctions.

Having defined the notion of solution on each roads and junctions, we are now able to define the solution on

an entire network.

Definition 2 (Admissible solution on a network). Given initial datum ρ̄i : Ii → R and boudary conditions ψi :

[0,+∞[→ R functions of L∞, we say that a collection of functions ρ = (ρ1, · · · , ρNr) with ρi : [0,+∞[×Ii →
R continuous as functions from [0,+∞[ into L1

loc, is an admissible solution if ρi is a weak entropic solution to

(1.6) on Ii, and such that at each junction ρ is a weak solution and is an admissible weak solution in case of

bounded variations.

Note that we’re working in the context of bounded variations. This notion has several implications which

will be discussed in section 1.3. For now, let’s quickly recall the notion of Riemann problem, and how to solve it

in this context of networks. This is interesting both for theoretical reasons with the existence of a solution to the

Cauchy problem on a network by the so-called wavefront tracking algorithm [23], and for numerical reasons

since it allows to construct finite volume schemes.
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1.2.1 Analysis of the Riemann problem

The existence and uniqueness for the Cauchy problem on network are established in [23] using the wavefront

tracking algorithm, which relies on approximating the solution by piecewise constant functions and solving each

local problem using the fact that in hyberbolic dynamics, informations travels at finite speed. We will first recall

Riemann problems on single roads before giving the extensions on junctions and networks.

Riemann problem at roads

We aim to solve for each road the following kind of Cauchy problem, with Heavyside-like initial condition:
∂tρ(t, x) + ∂xf(ρ(t, x)) = 0,

ρ(0, x) = ρ0(x) =

ρL, x < 0

ρR, x > 0

(1.15)

This is a very well known problem, see [13] for instance, and the solution is given in the following theorem.

Theorem 1. If ρL < ρR then f ′(ρL) > f ′(ρR) and we have an entropic shock propagating at the speed σ given

by the Rankine-Hugoniot relation:

σ =
f(ρL)− f(ρR)

ρL − ρR
= vmax

(
1− ρL + ρR

ρmax

)
, (1.16)

ρ(t, x) = r(ξ) =

ρL, ξ < σ,

ρR, ξ > σ.
(1.17)

Conversely, if ρL > ρR then f ′(ρL) < f ′(ρR) and we are in the case of a rarefaction wave, given by:

ρ(t, x) = r(ξ) =


ρL, ξ < f ′(ρL),

g(ξ), f ′ρL < ξ < f ′(ρR),

ρR, f ′(ρR) < ξ,

(1.18)

where g(ξ) = ρmax

2

(
1− ξ

vmax

)
is such that f ′(g(ξ)) = ξ.

Riemann problem at junction

The Riemann problem at a junction J := ((I1, · · · , In), (In+1, · · · , In+m)) is given by Equation 1.6 on each

road (Ik)1≤k≤n+m with respect to the optimal coupling constraints from Equation 1.14, where the initial condition

is a constant density on each road. According to the aformentioned modeling hypothesis, there exists a unique

weak solution of this problem in the sense given by [[23], Theorem 3.1].

1.2.2 Cauchy problem on network

Using the wavefront tracking strategy developed in [29], knowledge of the Riemann problem is sufficient to

obtain unique solutions to generic Cauchy problems. In fact, the idea of the wavefront tracking algorithm is
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Figure 1.4: Rarefaction wave and its spatial discretization on a uniform mesh. T.Liard and E. Zuazua, 2023 [60]

to approximate the solution by a family of piecewise constant functions, solve the Riemann problems at each

interface and then pass to the limit with the appropriate topology. It is important to note that uniqueness is only

given in the following sense:

The solution given by the convergence of the wavefront tracking algorithm does not depend on the choice of the

piecewise constant approximations.

However, there is no guarantee that another type of strategy will give the same solution. As far as we known, the

latter problem remains open.

Definition 3 (Wavefront tracking approximation). The wavefront tracking algorithm reads as follows:

• let ρ̄ be a piecewise constant map defined on the network

• we solve riemann problems on each road at the discontinuity points of ρ̄ as well as the riemann problem at

junctions from the traces of ρ̄

• for each riemann problem,

– if the obtained solution is a shockwave, do nothing

– if the obtained solution is a rarefaction, we spatially discretize it in order to obtain discontinuities

travelling at Rankine-Hugoniot speed. We thus deal with shockwaves only. An illustration of this step

is reproduced Figure 1.4 and comes from [60]

• we obtained a new piecewise constant solution, to wich we apply the sames steps as above.

Theorem 2 (Wavefront tracking approximation property). Let ρν be a wavefront tracking approximation of

Equation 1.3 with grid size given by ν. If this squence converges in L1
loc when ν → 0, then the limit is a weak

entropic solution of Equation 1.3.

Theorem 3 (Coclite, Piccoli 2005). Let f be the flow from the LWR model, and consider a network in which

each junction has at most two ingoing and two outoing roads. Let ρ̄ ∈ L1
loc be an initial datum. Then, for any

time T > 0, we have the following properties:
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• All approximating sequences generated by the wave-front tracking algorithm yields a unique solution ρ to

System (1.15) on [0, T ], such that ρ(0, ·) = ρ̄, obtained as the limit of piecewise-constant solutions whose

flows derivatives never cancel.

• If the initial datum ρ̄ belongs to L1(0, T ) then ρ(t, ·) belongs to L1.

• Let ρ(t, ·), ρ′(t, ·) ∈ L1 for a.e. time t ≥ 0, both obtained by wavefront tracking approximation. Then:

∥∥ρ(t, ·)− ρ′(t, ·)∥∥
L1 ≤

∥∥ρ(0, ·)− ρ′(0, ·)∥∥
L1 .

1.3 About BV spaces

We introduce now the space of functions with bounded variation, which is important both for the existence of the

Cauchy problem for the LWR model and the existence of an optimal control. Given a function f belonging to

L1([0, T ]), its total variation on [0, T ] is defined as

TV(f) = sup

{∫ T

0
f(t)ϕ′(t) dt, ϕ ∈ C1

c ([0, T ]), ∥ϕ∥L∞([0,T ]) ≤ 1

}
.

We denote by BV (0, T ) the space of functions of bounded variations,

BV (0, T ) :=
{
f ∈ L1(0, T ), TV (f) < +∞

}
,

and, endowed with the norm

∥·∥BV (0,T ) = TV (·) + ∥·∥L1(0,T ),

the space
(
BV (0, T ), ∥·∥BV (0,T )

)
is Banach. It possesses the following usefull properties:

• monotonicity: any function f in BV (0, T ) can be rewritten as f = g − h, where g and h are increasing

functions, and conversely. In particular, any monotone function is in BV (0, T ).

• density: BV (0, T ) = C∞
c (0, T ), for the topology associated to the ∥·∥BV (0,T ) norm.

• compactness: This property is a key ingredient of the proof of Theorem 5 in order to obtain convergence

of the control from the convergence of a minimizing sequence of the cost function.

Theorem 4. (Helly selection theorem). for M > 0, the function set {f ∈ BV (0, T ) | ∥f∥BV ≤ M}
is a relatively compact subset of L1(0, T ), i.e. for every sequence (fn)n in BV (0, T ) such that ∃M ∈
R, ∀n, TV (fn) ≤M , then there exists f ∈ L1(0, T ) such that fn

L1

−→ f , up to a subsequence.

• lower semi-continuity: BV (0, T ) ∋ fn
L1
loc−→ f ⇒ lim inf

n→+∞
TV (fn) ≥ TV (f). This property is also used

in the proof mentionned above, to conclude that the limit control from the minimizing sequence solves the

optimal control problem.

From what we’ve stated, BV functions are essentially an algebra of discontinuous functions that are almost

everywhere differentiable. This makes this space very convenient for working with discontinuous solutions of
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(a) A non-continuous function that have bounded variations: the
stairs function, often encountered when modeling shockwaves.

(b) A continuous function (by continuation) which does not have
bounded variations: y(x) = x cos(1/x), with instabilities in the
vicinity of zero.

Figure 1.5: Examples of classical bv and non-bv functions.

PDEs, such as the shocks generated by the nonlinear scalar conservation laws we deal with in this thesis. Not

only does this give us the existence of weak solutions for the Cauchy problem on network with BV initial data,

but regularization properties also help to avoid the so-called "chattering" phenomenon in control theory. Indeed,

having a solution in BV is morally having its gradient bounded for the L1-norm. See chapter 2 for more on this

subject.

We here give the following well known inclusions, true on any compact interval, to provide a global view:

C1 ⊂ Lip ⊂ AC ⊂ BV ⊂ D − a.e.,

where AC and D − a.e. are the sets of absolutely continuous and almost everywhere differentiable functions

respectively.

Discrete framework: while the above considerations are of great help in proving most of the theoretical

guarantees of our work, it is also important to highlight the behavior of the total variation on the discretizations

of our problems. The discretization of a function f : t ∈ [0, T ]→ R on a mesh 0 = t0 < t1 < · · · < tN = T

leads us to consider functions of the type:

fdisc(t) :=

N−1∑
n=0

fn1[tn,tn+1[(t),

where we write fn := f(tn), and a direct computation yields:

TV (fdisc) =
N−1∑
n=0

| fn+1 − fn | .

Since we will often need to manipulate differentiable expressions in order to perform, for instance, a gradient
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Figure 1.6: Smoothing of the absolute value with the function aν .

descent, we introduce for some ν > 0 the regularized total variation, more extensively studied in subsection 2.4.1:

TVν(f
disc) =

N−1∑
n=0

aν(fn+1 − fn).

It uses the following well-known smoothed absolute value, illustrated for different values of ν in Figure 1.6:

aν(x) :=
√
x2 + ν2.

30



Chapter 2

Optimal scenario for road evacuation in an
urban environment

The following chapter relates an article written in collaboration with Emmanuel Franck (INRIA TONUS,

Strasbourg), Laurent Navoret (INRIA TONUS, Strasbourg), and Yannick Privat (IECL, Nancy).

Abstract: How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow

for example the passage of emergency vehicles? We are interested in this question which we reformulate as an

optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space

and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic

along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that

the optimal strategies are feasible in practice.

We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control

and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation

to derive a mixed algorithm interpreting it as a mix between two methods: a descent method combined with a

fixed point method. We verify with numerical experiments the efficiency of this method on examples of graphs,

first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods.

We propose a code implementing this approach in the Julia language, available to any user at the following link:

Keywords: Traffic network, Optimal Control, Fluid model, Hyperbolic PDE, optimization methods

AMS classification: 35Q49, 65M08, 49K15, 49K30.

2.1 Introduction

Road traffic modeling. With the concentration of populations in cities where transport flows are constantly

increasing, road traffic modeling has become a central issue in urban planning. Whether it is to configure

traffic lights, to adapt public transport offers or to manage in an optimal way situations of high congestion. The

knowledge of the behavior of a road network is an important issue for the management of a crisis in an urban

environment. It is indeed necessary to quickly predict traffic, especially traffic jams, in order to organize rescue

operations. Before creating decision support tools for crisis management involving road traffic, a first step is to

develop a method for monitoring road traffic.
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In this work, we will focus on the evacuation of a traffic lane in finite time. It can be, for example, an axis

that we wish to free in order to provide access to first aid. We approach this question in the form of an optimal

control problem of a graph where each edge corresponds to a traffic lane. The main objective of this work is the

determination of a prototype algorithm answering this question.

State of the art. Depending on the situation of interest, several types of approaches co-exist to model this

phenomenon, depending on the scale and the desired accuracy. At the microscopic scale, trajectories (speed

and position) of each vehicle can be described through Lagrangian microscopic models such as car-following

models [43, 79, 62] or cellular automaton models [11, 54, 50]. Kinetic traffic models were also introduced in

the 60’s [26, 31, 38, 66, 71, 77, 94] and deal with vehicles on a mesoscopic scale in the form of distributions in

position-velocity space.

Finally, on a macroscopic scale, the vehicle flow is then considered as a continuous medium. This is the case

of the famous model introduced by Lighthill, Whitham and Richards (denoted LWR in what follows) [61, 82].

We will use it in the rest of this article, since the continuous description of the flow is particularly well adapted to

the writing of a dynamic programming problem. It is notable that this first order model introduced in the 50’s

was later extended to Euler-type systems with viscosity, of second order [72, 95, 5, 63].

In this paper, we introduce and analyze an optimal control problem modeling an evacuation scenario for an

axis belonging to a road network. A close control model has already been introduced in [37], but under restrictive

assumptions about the flow regime in order to avoid congestion phenomena, which is what we want to avoid. It

has been in particular highlighted that the flow may be not invertible with respect to control parameters, meaning

that density at the nodes may not be reconstructed from boundary conditions. In [44], a method to manage variable

speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards

(LWR) network model has been introduced. They consider a "first-discretize-then-optimize" numerical approach

to solve it numerically. Note that the optimal control problem we deal with in the following has some similarities

with the one proposed by the authors of this article, but differs in several respects: our control variables aim to

control not just the ramps metering, but an entire axis. Furthermore, our approach to solving the underlying

optimal control problem is quite different, in particular our use of optimality conditions leading to an efficient

solution algorithm.

In [81], a similar control problem is discussed, which is addressed using a piecewise-linear flux framework

driving to a much simplified adjoint system involving piecewise constant Jacobian matrices in time and space.

This approach enables faster gradient computation, allowing them to tackle real-world simulations related to

ramp-metering configuration. In our study, we opted to use the model introduced in [23] and dealt with the

non-linear flux using automatic differentiation techniques to compute the gradient. This kind of approach has

also been used in [8] for air traffic flow with a modified LWR-based network model.

We also mention several contributions aiming at dealing with concrete or real time cases. The paper [40]

deals with this kind of control problem for simplified nonlinear (essentially without considering congestions) and

linear formulations of the model, considering large scale networks. In [55], an algorithm for real-time traffic state

estimation and short-term prediction is introduced.

Several other close control problems have been investigated in the past: in [46], the authors use switching

controls to deal with traffic lights at an 8×4 junction in a piecewise linear flow framework. The paper [3]

deals with an optimal control problem of the same kind, formulated from the continuous LWR model, solved
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numerically using an heuristic random parameters search. We refer to [2, 7] for a broad view on this topic.

Regarding now controlled microscopic models, let us mention [64] where an approach based on model

predictive control (MPD) is developed and [6] using a reinforcement learning algorithm. In the book [65], the last

chapter is devoted to the modeling of various optimization problems related to road traffic. There has also been

some research into the optimal switching of the traffic lights to maximize the traffic flow using a mixed-integer

model [46]. Other works have looked at traffic regulation by comparing and discussing the use of lights and

circles [17].

Concerning now the control of mesoscopic and macroscopic models, there are software contributions seeking

in particular to bring real time answers and guidance tools in case of accident. Let us also mention [48, 33]

dealing in part with traffic prediction and control problems.

This article uses a controlled model close to the one studied in [37] which is devoted to the control of

the macroscopic LWR model on a directed graph using the framework introduced in [23]. However, we are

interested in taking into account some properties of the model that were not addressed in [37], such as congestion

phenomena.

Hence, we will not focus on individual paths since we are interested in the overall dynamics with a focus

on congestion. Particular attention is paid to the modeling of junctions as they introduce a nonlinear coupling

between roads.

Main objectives. Our goal is to design a numerical method to control the flow of vehicles in all fluid regimes,

including saturated regimes/congestions, using dynamical barriers at each road in the graph.

We thus propose a road traffic model in the form of a controlled graph at each junction. This models an urban

area structured by roads. For practical reasons, even if we wish to take into account possible congestion/shocks

in the system, we position ourselves in a differentiable framework by adding weak diffusion terms in the system,

through a semi-discretization in space. Hence, the resulting problem consists in minimizing the vehicle density at

the final time on a given route under ODE constraint, obtained by finite volume semi-discretization of the LWR

system. We then enrich this problem with a constraint on the number of simultaneously active roadblocks in

order to take into account staffing issues.

Plan of this article. While the macroscopic model describing the flow is very standard (Lighthill-Whitham-

Richards, 1955) the problem of flow distribution at junctions, inspired by more recent works [41],[23], realizes

a nonlinear coupling between the different edges. The distribution of vehicles at junctions is thus modeled by

an optimal allocation process that depends on the maximum possible flows at the junctions, through a linear

programming (LP) problem targeting the maximization of incoming flows. In order to influence the traffic flow,

we introduce control functions that are defined at each road entrance and acts as barriers by weighting the capacity

of a road leaving a junction to admit new vehicles.

After investigating the existence of optimal control, we then derive necessary optimality conditions that we

reformulate in an exploitable way and introduce an optimization algorithm based on a hybrid combination of a

variable step gradient method and a well-chosen fixed point method translating the optimality conditions. We

then illustrate the efficiency of the introduced method using examples of various graphs modeling, in particular, a

traffic circle or a main road surrounded by satellite roads.

Our contribution can be summarized in the form of a computational code allowing to process complex graphs,
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but nevertheless of rather small dimension. This code, written in the Julia language, is available and usable at the

following link:

https://github.com/mickaelbestard/TRoN.jl

Notations. Throughout this article, we will use the following notations:

• For x ∈ Rn, x+ will denote the positive part of x, namely x+ = max{x, 0Rn}, the max being understood

component by component;

• BV(0, T ) denotes the space of all functions of bounded variation on (0, T );

• W 1,∞(0, T ) denotes the space of all functions f in L∞(0, T ) whose gradient in the sense of distributions

also belongs to L∞(0, T );

• ∥ · ∥Rd (resp. ⟨·, ·⟩Rd) stands for the standard Euclidean norm (resp. inner product) in Rd;

• Let F : Rp × Rq → Rm and (x0, y0) ∈ Rp × Rq. We will denote by ∂xF (x0, y0), the Jacobian matrix of

the mapping x 7→ F (x, y0). When no ambiguity is possible, we will simply denote it by ∂xF ;

• Nr: number of roads in the model;

• Nc number of mesh cells per road for the first-order Finite Volumes scheme;

• NT : number of time discretization steps in the numerical schemes;

2.2 A controlled model of trafic flow

In this section, we first present the traffic flow model on a road network and its semi-discretization. Then we

introduce the precise control model: the control at junctions will translates regulation action using traffic signs or

traffic lights.

2.2.1 Traffic dynamics on network without control

The road network is a directed graph of Nr roads, with Nr ∈ N∗, where each edge corresponds to a road and

each vertex to a junction. The roads will all be denoted as real intervals [ai, bi] for some i ∈ J1, NrK. Of course,

this writing does not determine the topology of the graph. It is necessary to define, for each junction, the indices

of the incoming and outgoing roads in order to characterize the directed graph completely.

We are interested in the time evolution of the densities on each road. On the i-th road, the evolution of the

density ρi(t, x) is provided by the so-called LWR model

∂tρi(t, x) + ∂xfi(ρi(t, x)) = 0, (t, x) ∈ (0, T )× [ai, bi],

ρi(0, x) = ρ0i (x), x ∈ [ai, bi],

fi(ρi(t, ai)) = γLi (t), t ∈ (0, T ),

fi(ρi(t, bi)) = γRi (t), t ∈ (0, T ),

(LWR)
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where the flux fi(ρ) is given by

fi(ρ) = ρ vmax
i

(
1− ρ

ρmax
i

)
, (2.1)

where vmax
i and ρmax

i denotes respectively the maximal velocity and density allowed on the i-th road. We will

consider without loss of generality that ρmax
i = vmax

i = 1. The initial density is denoted ρ0i (x) and γLi and γRi
are functions allowing to prescribe the flux at the left and right boundaries of the interval.

The fluxes γ at junctions are determined using the model introduced in [23]. Considering a junction J , the

sets of indices corresponding to the in-going and out-going roads are denoted Jin and Jout. We assume that there

is a statistical behavior matrix AJ defined by

AJ := (αji)(j,i)∈Jout×Jin
, 0 < αji < 1,

∑
j∈Jout

αji = 1,

with αji the proportion of vehicles going to the j-th outgoing road among those coming from the i-th ingoing

road. Outgoing fluxes have to satisfy the relation

(γLj )j∈Jout = AJ(γ
R
i )i∈Jin , (2.2)

and we have the balance between in-going and out-going fluxes:∑
i∈Jin

γRi =
∑
j∈Jout

γLj .

Let us note that we have natural constraints on the fluxes. Indeed the LWR flux function fi reaches its maximum

at ρmax
i /2. Therefore, ingoing fluxes γRi have to be smaller than the following upper bound:

γR,max
i = fi(min{ρi(t, bi), ρmax

i /2}),

which takes into account reduced demands when the density is lower than ρmax
i /2 in the ingoing road. Similarly

outgoing fluxes γLj have to be smaller than the upper bound:

γL,max
j = fj(max{ρj(t, aj), ρmax

j /2}),

which takes into account reduced capacities when the density is larger than ρmax
i /2 in the outgoing road. We

refer to [23] for details. Consequently, the fluxes belong to following set:

ΩJ =

((γRi )j∈Jin , (γ
L
j )i∈Jout

)
∈
∏
i∈Jin

[
0, γR,max

i

] ∏
j∈Jout

[
0, γL,max

j

]
with (γLj )j∈Jout = AJ(γ

R
i )i∈Jin


Then we assume that drivers succeed in maximizing the total flow. Consequently the fluxes are solution to the

following Linear Programming (LP) problem:

max
((γRi )j∈Jin ,(γ

L
j )j∈Jout)∈ΩJ

∑
i∈Jin

γRi , (2.3)
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This definition is valid at any junction of the network. Note that this problem does not have necessarily a unique

solution in the case where there are more incoming roads than outgoing roads. In that case, a priority modeling

assumption should be added to select one solution. We refer to [14] for more details. In the sequel, we suppose

that this linear programming problem have a unique solution solution and we formally write:

γ(t) = ϕLP (ρ(t)),

for the simultaneous resolution of the linear programming problems at all the junctions of the network. Note that

the dependency on ρ(t) results from the definition of the upper bounds involved in the definition of the sets ΩJ .

In the following, we will only consider networks with at most two ingoing roads and two outgoing roads, i.e.

either 1× 1, 1× 2, 2× 1 or 2× 2 junctions. This gives existence and stability of the LWR Cauchy problem [23],

and has the advantage that the function ϕLP can be explicitly provided [98] while it already enables to model a

huge variety of road networks.

2.2.2 Control at junctions

We introduce the vector of controls u = (ui(·))1≤i≤Nr
∈ L∞([0, T ],RNr) at every road entrance. Note that we

implicitly assume that every road junction is controlled, but our model allows without any difficulty to neutralize

some controls in order to model the fact that only some junctions are controlled.

We interpret each control uj as a rate, assuming that at each time t ∈ (0, T ), the maximum flow out a

junction and going into road j is weighted by a coefficient uj(t) ∈ [0, 1]. This allow in particular to keep valid

all well-posedness considerations mentioned in [23]. At junction J , we thus define the following polytope of

constraints

ΩJ(u) =
{(

(γRi )j∈Jin , (γ
L
j )j∈Jout

)
∈
∏
i∈Jin

[
0, γR,max

i

] ∏
j∈Jout

[
0, (1− uj)γL,max

j

]
with (γLj )j∈Jout = AJ(γ

R
i )i∈Jin

}
This initial model is not completely satisfactory since a full control on one outgoing road would result on zero

outgoing fluxes for all the ingoing roads. Indeed relation (2.2) implies that ingoing fluxes are linear combination

of outgoing fluxes with positive weights. This is definitely not the desired behavior as we would expect that the

trafic flow would be deviated to the uncontrolled outgoing roads. To solve this problem, we choose to make the

statistical behavior matrix AJ also dependent on the control u. More precisely, we ask that, as soon as a road

entry is fully controlled and the other are not controlled, the proportion of vehicles entering the roas is set to 0.

To illustrate this point, let us describe the control of 1× 2 junction, i.e. with one incoming and 2 outgoing roads.

Then the traffic distribution matrix A writes:

A(u) =

(
α(u)

1− α(u)

)
,

where α(u) denotes the proportion of vehicles going in the first outgoing road. Then, denoting u = (u1, u2) the

controls of the two outgoing roads, the function α(u1, u2) has to be chosen such that:

(a) if the first outgoing road is fully controlled and the second is not controlled, then α(u) has to vanish, resulting
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in the condition: α(1, 0) = 0, and then the entire vehicle flow goes in the second outgoing road.

(b) inversely, if the second outgoing road is fully controlled and the first one is not controlled, then 1− α(u)
has to vanish, resulting in the condition: 1− α(0, 1) = 0, and then the entire vehicle flow goes in the first

outgoing road.

We also ask for the following additional property:

(c) the parameters are not modified if the outgoing roads are equally controlled, which results in the condition:

∀u ∈ [0, 1], α(u, u) = ᾱ,

where ᾱ is a given distribution coefficient.

In Appendix 2.6, we provide an explicit construction of such a function. We also treat the case of 2× 2 junctions.

Note that junctions with only one outgoing roads (1× 1 and 2× 1) do not require such modification.

Like in the previous section, the simultaneous resolution of the Linear Porgramming problems at each

junctions junction is now denoted:

γ = ϕLP (ρ,u)

The explicit expressions of ϕLP in the set of cases we deal with are provided in Appendix 2.6. Beyond the

explicit expression of ϕLP (ρ,u), what matters is that ϕLP is a Lipschitz function with respect to (ρ,u). In

the following, in order to use tools of differentiable optimization, we will consider a C1 approximation of this

function. This issue is commented at the end of Appendix 2.6. According to these comments, we will assume

from now on:

The function ϕLP is Lipschitz, and C1 with respect to its second variable u. (HϕLP )

2.2.3 Semi-discretized model

For algorithmic efficiency reasons, we prefer to be able to define the sensitivity of the different data of the

problem with respect to the control. Since the model (LWR) is known to generate possible irregularities in the

form of shocks, we have decided to introduce regularity through a semi-discretization of the model in space. The

relevance of this choice will be discussed in the concluding section.

Hence, we discretize the model (LWR) with a first-order Finite Volume (FV) scheme. We consider Nc ∈ N∗

mesh cells per road: the discretization points on the i-th roads are denoted ai = xi,1/2 < xi,3/2 < . . . <

xi,Nc−1/2 = bi and the space steps△xi,j = xi,j+1/2 − xi,j−1/2. Then the discrete densities and the boundary

fluxes are denoted:

ρ(t) =
(
ρi,j(t)

)
1≤i≤Nr
1≤j≤Nc

=

 1

△xi,j

∫ x
i,j+1

2

x
i,j− 1

2

ρ(t, x) dx


1≤i≤Nr
1≤j≤Nc

,

γ(t) =
(
γL1 (t), γ

R
1 (t), . . . , γ

L
Nr

(t), γRNr
(t)
)
.

With a slight abuse of notation, we have written similarly the discrete variable as the continuous one, since

we will essentially work on the semi-discretized model. Then the semi-discretized dynamics is given by the
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differential equation 
dρ

dt

(
t
)
= fFV (ρ(t),γ(t)) , t ∈ (0, T )

γ(t) = ϕLP (ρ(t),u(t))) , t ∈ (0, T )

ρ(0) = ρ0,

(LWR-sd)

where the finite volume flow at the j-th mesh cell of the i-th road reads

fFV (ρ,γ)ij =


−1

△xij

(
Fi(ρi,j , ρi,j+1)− γLi

)
, if j = 1,

−1
△xij (Fi(ρi,j , ρi,j+1)−Fi(ρi,j−1, ρi,j)) , if 2 ≤ j ≤ Nc − 1,

−1
△xij

(
γRi −Fi(ρi,j−1, ρi,j)

)
, if j = Nc,

(2.4)

with Fi(u, v) the so-called local Lax-Friedrich numerical flux given by

Fi(u, v) =
fi(u) + fi(v)

2
−max

{
|f ′i(u)|, |f ′i(v)|

}(v − u)
2

.

We refer to [59] for an introduction to Finite Volume approximations.

2.2.4 Conclusion: an optimal control problem

We are interested in an approximate controllability problem which consists in emptying a given route as much as

possible for a fixed end time T > 0. Let us introduce χpath ⊂ J1, NrK, a set of indices corresponding to the route

we wish to empty in a time T .

We would like to minimize a functional with respect to the control u, representing the sum of all the densities

on this path, in other words

CT (u) =
∑
i∈χpath

Nc∑
j=1

ρi,j(T ;u) = c · ρ(T ;u),

where ρ(t;u) denotes the solution to the controlled system (LWR-sd) and c = (ci)1≤i≤Nr the vector defined by

ci = 1 if i ∈ χpath and ci = 0 else.

Of course, it is necessary to introduce a certain number of constraints on the sought controls, in accordance

with the model under consideration, and to model that the obtained control is feasible in practice. We are thus

driven to consider the following constraints:

(i) 0 ≤ ui(·) ≤ 1, meaning that at each time, the control is a vehicle acceptance rate on a road;

(ii)
∑Nr

i=1 ui(·) ≤ Nmax: we impose at each time a maximum number of active controls in order to take into

account the staff required for roadblocking.

(iii) Regularity: we will assume that u is of bounded variation, and write u ∈ BV([0, T ];RNr). This constraint
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involves the total variation1 of the control and models that the roadblock is supposed not to "blink" over

time. From a control point of view, we aim at avoiding the so-called chattering phenomenon.

The first constraint above will be included in the set of admissible controls. Concerning the other two constraints,

we have chosen to include them as penalty/regularization terms in the functional. Of course, other choices would

be quite possible and relevant.

Let Nmax ∈ N∗ be an integer standing for the maximal number of active controls for this problem and

θ = (θS , θB) ∈ R2 be two non-negative parameters. According to all the considerations above, the optimal

control problem we will investigate reads:

inf
u∈Uad

J (u), (Pθ)

where the admissible set of controls is defined by

Uad = L∞([0, T ], [0, 1]Nr), (2.5)

and the regularized cost functional J writes

J (u) = CT (u) + θSS(u) + θBB(u), (2.6)

where S(u) denotes the regularizing term modeling the limitation on the number of active controls and B(u) is

the total variation of u in time, namely

S(u) =
1

2

∫ T

0

(
Nr∑
i=1

ui(t)−Nmax

)2

+

dt and B(u) =

Nr∑
i=1

TV(ui). (2.7)

2.3 Analysis of the optimal control problem (Pθ)

In this section, we will investigate the well-posedness and derive the optimality conditions of Problem (Pθ).
These conditions will form the basis of the algorithms used in the rest of this study.

2.3.1 Well-posedness of Problem (Pθ)

We follow the so-called direct method of calculus of variations. The key point of the following result is the

establishment of uniform estimates of ρ with respect to the control variable u, in the W 1,∞(0, T ) norm.

Theorem 5. Let us assume that θB is positive. Then, Problem (Pθ) has a solution.

Proof. Let (un)n∈N be a minimizing sequence for Problem (Pθ). Observe first that, by minimality, the sequence

(J (un))n∈N is bounded, and therefore, so is the total variation (B(un))n∈N. We infer that, up to a subsequence,

(un)n∈N converges in L1(0, T ) and almost everywhere toward an element u∗ ∈ BV(0, T ). Since the class Uad
is closed for this convergence, we moreover get that u∗ ∈ L∞([0, T ], [0, 1]Nr).

1Given a function f belonging to L1([0, T ]), the total variation of f in [0, T ] is defined as

TV(f) = sup

{∫ T

0

f(t)ϕ′(t) dt, ϕ ∈ C1
c ([0, T ]), ∥ϕ∥L∞([0,T ]) ≤ 1

}
.
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For the sake of readability, we will denote similarly a sequence and any subsequence with a slight abuse of

notation.

In what follows, it is convenient to introduce the function g : RNc×Nr × [0, 1]Nr defined by g(ρ,u) =

fFV (ρ, ϕLP (ρ,u)), so that ρ solves the ODE system ρ′ = g(ρ,u). Let us set ρn := ρ(· ;un).

Step 1: the function g is continuous. Indeed, note that the function ϕLP is continuous (and even Lipschitz),

according to (HϕLP ). We also refer to the comments of modeling issues at the end of Section 2.2.2. According to

(2.4), fFV has therefore the same regularity as the numerical flow ρ 7→ F(ρ), defined by

F j,j+1
i (ρ) =

f ji + f j+1
i

2
−

max{|df ji |, |df
j+1
i |}

2

(
ρj+1
i − ρji

)
,

with f ji = ρji (1− ρ
j
i ) and df ji = 1− 2ρji , which is obviously continuous.

Step 2: the sequence (ρn)n∈N is uniformly bounded in W 1,∞(0, T ). For u ∈ Uad given, let us introduce

the function L : t 7→ 1
2∥ρ(t)∥

2
RNc×Nr . Up to standard renormalizations, we will suppose in this proof that

vmax
i = ρmax

i = 1 and that ∆xi does not depend on the index i. According to the chain rule, L is differentiable,

and its derivative reads2

L′(t) = ⟨ρ′(t),ρ(t)⟩RNc×Nr = ⟨g(ρ(t),u(t)),ρ(t)⟩RNc×Nr

= − 1

∆x

Nr∑
i=1

Nc∑
j=1

(
F j,j+1
i (ρ)−F j−1,j

i (ρ)
)
ρji

= − 1

∆x

Nr∑
i=1

γRi ρNc
i +

Nc−1∑
j=1

F j,j+1
i (ρ)ρji − γ

L
i ρ

1
i −

Nc∑
j=2

F j−1,j
i (ρ)ρji


=

1

∆x

Nr∑
i=1

γLi ρ1i − γRi ρNc
i +

Nc−1∑
j=1

F j,j+1
i (ρ)

(
ρj+1
i − ρji

) .

For a given i ∈ J1, NrK, and j ∈ J1, Nc − 1K, we have

F j,j+1
i (ρ)

(
ρj+1
i − ρji

)
=

(
f ji + f j+1

i

2
−

max{|df ji |, |df
j+1
i |}

2

(
ρj+1
i − ρji

))(
ρj+1
i − ρji

)
≤
(
fi(σi) + (ρj+1

i − ρji )
)(

ρj+1
i − ρji

)
,

since f ji ≤ fi(σi) = 1/4 according to the explicit expression (2.1) of fi, and |df ji | ≤ vmax
i = 1. Since the local

Lax-Friedrich numerical scheme is monotone, we infer that ρji is lower than ρmax = 1. We then have

F j,j+1
i (ρ)

(
ρj+1
i − ρji

)
≤ 2fi(σi) +

(
ρj+1
i − ρji

)2
=

1

2
+
(
ρj+1
i − ρji

)2
≤ 1

2
+ (ρji )

2 + (ρj+1
i )2 − 2ρjiρ

j+1
i

≤ 1

2
+ (ρji )

2 + (ρj+1
i )2,

2we drop the time dependancy notation for readability.
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by positivity of the ρji . Using the majoration γLi ρ
1
i − γRi ρ

Nc
i ≤ fi(σi)× 2 = 1/2, all the calculations above yield

L′(t) ≤ 1

∆x

Nr∑
i=1

1

2
+

Nc−1∑
j=1

(
1

2
+ (ρji )

2 + (ρj+1
i )2

)
≤ 1

∆x

(
NrNc

2
+ ||ρ(t)||2

)
.

We infer the existence of two positive numbers ᾱ, β̄ that do not depend on u, such that L′(t) ≤ ᾱL(t) + β̄ for

a.e. t ∈ (0, T ). By using a Grönwall-type inequality, we get

L(t) ≤ L(0)eᾱt +
∫ t

0
βeᾱ(t−s) ds =

(
L(0) + β̄

ᾱ
(1− e−ᾱt)

)
eᾱt, (2.8)

Step 3: conclusion. According to (2.8), the sequence (ρn)n∈N is bounded in L∞(0, T ). Since ρ′
n = g(ρn,un)

a.e. in (0, T ) and g is continuous, it follows that (ρn)n∈N is uniformly bounded in W 1,∞(0, T ). Therefore, by

using the Arzela-Ascoli theorem, this sequence converges up to a subsequence in C0([0, T ]) toward an element

ρ∗ ∈W 1,∞(0, T ).

Let us recast System (LWR-sd) as a fixed point equation, as

for every t ∈ (0, T ), ρn(t)− ρ0 =

∫ t

0
g(ρn(s),un(s)) ds,

we obtain by letting n go to +∞,

ρ∗(t)− ρ0 =

∫ t

0
g(ρ∗(s),u∗(s)) ds,

meaning that ρ∗ solves System (LWR-sd) with u∗ as control. Finally, according to the aforementioned conver-

gences and since the functionals S and B are convex, it is standard that one has

lim
n→+∞

CT (un) = CT (u
∗), lim inf

n→+∞
S(un) ≥ S(u∗), lim inf

n→+∞
B(un) ≥ B(u∗).

We get that J (u∗) ≤ lim infn→+∞ J (un), and we infer that u∗ solves Problem (Pθ). ■

2.3.2 Optimality conditions

We have established the existence of an optimal control in Theorem 5. In order to derive a numerical solution

algorithm, we will now state the necessary optimality conditions on which the algorithm we will build is based.

One of the difficulties is that the functional we use involves non-differentiable quantities. We will therefore

first use the notion of subdifferential to write the optimality conditions. In Section 2.4 dedicated to numerical

experiments, we will explain how we approximate these quantities.

Let us first compute the differential of the functional CT . To this aim, we introduce the tangent cone to the

set Uad.

Definition 4. Let u ∈ Uad. A function h in L∞(0, T ) is said to be an admissible perturbation of u in Uad if,

for every sequence of positive real numbers (εn)n∈N decreasing to 0, there exists a sequence of functions hn
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converging to h for the weak-star topology of L∞(0, T ) as n→ +∞, and such that u+ εnh
n ∈ Uad for every

n ∈ N.

Proposition 6. Let u ∈ Uad and (ρ,γ) the associated solution to (LWR-sd). We introduce the two matrices M

and N defined from the Jacobian matrices of fFV and ϕLP as

M(ρ,γ,u) = (∂ρf
FV )(ρ,γ) + (∂γf

FV )(ρ,γ) (∂ρϕ
LP )(ρ,u), (2.9)

N(ρ,γ,u) = (∂γf
FV )(ρ,γ)(∂uϕ

LP )(ρ,u), (2.10)

where we use the notational conventions introduced in Section 2.1.

The functional CT is differentiable in the sense of Gâteaux and its differential reads

dCT (u)h =

∫ T

0
(N(ρ,γ,u)⊤p) · hdt, (2.11)

for every admissible perturbation h, where p is the so-called adjoint state, defined as the unique solution to the

Cauchy system p′ +M(ρ,γ,u)⊤p = 0 in (0, T ),

p(T ) = c.
(2.12)

Remark 2. In Proposition 6 above, the matrices M and N express respectively the way by which ρ interacts

with γ and γ interacts with u.

Proof of Proposition 6. Let u ∈ Uad. The Gâteaux differentiability of CT , Uad ∋ u 7→ ρ and Uad ∋ u 7→ γ is

standard, and follows for instance directly of the proof of the Pontryagin Maximum Principle (PMP, see e.g.

[58]). Although the expression of the differential of CT could also be obtained by using the PMP, we provide a

short proof hereafter to make this article self-contained.

Let h ∈ L∞(0, T,U) be an admissible perturbation of u in Uad. One has

dCT (u)h = c · .
ρ(T ), (2.13)

where
.
ρ = d(u 7→ ρ)h solves the system

ρ̇′ = (∂ρf
FV )(ρ,γ)ρ̇+ (∂γf

FV )(ρ,γ)γ̇,

γ̇ = (∂ρϕ
LP )(ρ,u)ρ̇+ (∂uϕ

LP )(ρ,u)h,

ρ̇(0) = 0.

We infer that ρ̇ solves ρ̇′ =M(ρ,γ,u)ρ̇+N(ρ,γ,u)h,

ρ̇(0) = 0,
(2.14)

with M and N as defined in (2.9). Let us multiply the main equation of (2.12) by ρ̇ in the sense of the inner

product, and integrate over (0, T ). We obtain:∫ T

0
ρ̇ · dp

dt
dt+

∫ T

0
ρ̇ · (M(ρ,γ,u)⊤p) dt = 0.
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Similarly, let us multiply the main equation of (2.14) by p in the sense of the inner product, and integrate over

(0, T ). We obtain: ∫ T

0
p · dρ̇

dt
dt−

∫ T

0
M(ρ,γ,u)ρ̇ · pdt =

∫ T

0
N(ρ,γ,u)h · pdt.

Summing the two last equalities above yields

ρ̇(T ) · p(T )− ρ̇(0) · p(0) =
∫ T

0
h · (N(ρ,γ,u)⊤p) dt.

Using this identity with p(T ) = c and ρ̇(0) = 0 results in Expression (2.11). ■

From this result, we will now state the optimality conditions for Problem (Pθ). Let us first recall that,

according to [36, Proposition I.5.1], the subdifferential of the total variation is well-known, given by

∂ TV(u∗) = {η ∈ C0([0, T ];RNr) | ∥η∥∞ ≤ 1 and
∫

ηdu∗ = TV(u∗)}.

Let us denote by ei the i-th vector of the canonical basis of RNr

Theorem 7. Let u∗ = (u∗i )1≤i≤Nr , denote a solution to Problem (Pθ), (ρ,γ) the associated solution to

(LWR-sd). and let i ∈ J1, NrK. There exists η∗ ∈ ∂ TV(u∗) such that

• on {u∗i = 0}, one has Ψ · ei ≥ 0,

• on {u∗i = 1}, one has Ψ · ei ≤ 0,

• on {0 < u∗i < 1}, one has Ψ · ei = 0,

where the function Ψ : [0, T ]→ RNr is given by

Ψ(t) = N(ρ(t),γ(t),u∗(t))⊤p∗(t) + θS

(
Nr∑
i=1

u∗i (t)−Nmax

)
+

+ θBη
∗(t)

and where p∗ denotes the adjoint state introduced in Proposition 6, associated to the control choice u∗.

Remark 3. Written in this way, the first order optimality conditions are difficult to use. In the next section, we

will introduce an approximation of the total variation of u∗ leading to optimality conditions more easily usable

within an algorithm.

Proof of Theorem 7. To derive the first order optimality conditions for this problem, it is convenient to introduce

the so-called indicator function ιUad
given by

ιUad
(u) =

{
0 if u ∈ Uad
+∞ else.

Observing that the optimization problem we want to deal with can be recast as

min
u∈L∞((0,T );RNr )

Jθ(u) + ιUad
(u),
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it is standard in nonsmooth analysis to write the first order optimality conditions as:

0 ∈ ∂ (Jθ(u∗) + ιUad
(u∗)) ,

or similarly, by using standard computational rules [36],

−∂CT (u∗)− θS∂S(u∗) ∈ θB∂B(u∗) + ∂ιUad
(u∗),

Let u ∈ Uad. The condition above yields the existence of η∗ = (η∗i )1≤i≤Nr ∈ ∂ TV(u∗) such that

dCT (u
∗)(u− u∗) + θSdS(u

∗)(u− u∗) + θB

Nr∑
i=1

⟨η∗i , ui − u∗i ⟩L2(0,T ) ≥ 0.

Since u is arbitrary, we infer that for any admissible perturbation h of u∗ (see Definition 4), one has

dCT (u
∗)h+ θSdS(u

∗)h+ θB

Nr∑
i=1

⟨η∗i , hi⟩L2(0,T ) ≥ 0,

or similarly ∫ T

0
h ·

N(ρ,γ,u)⊤p∗ + θS

(
Nr∑
i=1

u∗i −Nmax

)
+

+ θBη
∗

 dt ≥ 0. (2.15)

To analyze this optimality condition, let us introduce the function Ψ : [0, T ]→ RNr defined by

Ψ(t) = N(ρ,γ,u)⊤p∗(t) + θS

(
Nr∑
i=1

u∗i −Nmax

)
+

+ θBη
∗(t). (2.16)

In what follows, we will write the optimality conditions holding for the i-th component of u∗, where

i ∈ J1, NrK is given.

Let us assume that the set I = {0 < u∗i < 1} is of positive Lebesgue measure. Let x0 be a Lebesgue point of

u∗i in I and let (Gn)n∈N be a sequence of measurable subsets with Gn included in I and containing x0. Let us

consider h = (hj)1≤j≤Nr such that hj = 0 for all j ∈ J1, NrK\{i} and hi = 1Gn . Notice that u∗ ± ηh belongs

to Uad whenever η is small enough. According to (2.15), one has

±
∫
Gn

Ψ(t) · ei dt ≥ 0.

Dividing this inequality by |Gn| and letting Gn shrink to {x0} as n→ +∞ shows that one has

Ψ(t) · ei = 0, a.e. in I.

Let us now assume that the set I1 = {u∗i = 1} is of positive Lebesgue measure. Then, by mimicking the

reasoning above, we consider x1, a Lebesgue point of u∗i in I1, and h = (hj)1≤j≤Nr such that hj = 0 for all

j ∈ J1, NrK\{i} and hi = −1Gn , where (Gn)n∈N is a sequence of measurable subsets with Gn included in I1
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and containing x1. According to (2.15), one has

−
∫
Gn

Ψ(t) · ei dt ≥ 0.

As above, we divide this inequality by |Gn| and let Gn shrink to {x1} as n→ +∞. We recover that Ψ(t) ·ei ≤ 0.

Regarding now the set I0 = {u∗i = 0}, the reasoning is a direct adaptation of the case above, which concludes

the proof. ■

2.4 Towards a numerical algorithm

In this section, we introduce an exploitable approximation of the problem we are dealing with and describe the

algorithm implemented in the numerical part.

2.4.1 An approximate version of Problem (Pθ)

The fact that Problem (Pθ) involves the total variation of control makes the problem non-differentiable. Of

course, dedicated algorithms exist to take into account such a term in the solution, for instance Chambolle’s

projection algorithm [16]. Nevertheless, in order to avoid too costly numerical approaches, we have chosen to

consider a simple differentiable approximation of the term B(u), namely

Bν(u) =

Nr∑
i=1

TVν(ui), (2.17)

where ν > 0 is a small parameter and the total variation TV(ui) is approximated by a differentiable functional

in L2(0, T ), denoted TVν(ui), where ν > 0 stands for a regularization parameter. The concrete choice of the

differentiable approximation of the TV standard will be discussed in the rest of this section. We will also give

some elements on its practical implementation.

We are thus led to consider the following approximate version of Problem (Pθ):

inf
u∈Uad

Jθ,ν(u) . (Pθ,ν)

where Uad is given by (2.5), and Jθ,ν is given by

Jθ,ν(u) = CT (u) + θSS(u) + θBBν(u), (2.18)

We will see that this approximation is in fact well adapted to a practical use. Indeed, the first order optimality

conditions for this approximated problem can be rewritten in a very concise and workable way, unlike the result

stated in Theorem 7. This is the purpose of the following result.

Theorem 8. Let u∗ ∈ Uad denote a local minimizer for Problem (Pθ,ν) and (ρ,γ) the associated solution to

(LWR-sd). Then, u∗ satisfies the first order necessary condition

Λ(·) = 0 a.e. on [0, T ],
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where Λ : [0, T ]→ RNr is defined by

Λ(t) = min {u∗(t),max {u∗(t)− 1,∇uJθ,ν(u∗)(t)}} ,

and

∇uJθ,ν(u∗) : [0, T ] ∋ t 7→ N(ρ(t),γ(t),u(t))⊤p∗(t) + θS

(
Nr∑
i=1

u∗i (t)−Nmax

)
+

+ θB

Nr∑
i=1

∇uTVν(ui)(t),

where p∗ has been introduced in Theorem 7, the min, max operations being understood componentwise, and the

term∇u denoting the gradient with respect to u in L2(0, T ).

Proof. The proof is similar to the proof of Theorem 7. Indeed, let u∗ be a local minimizer for Problem (Pθ,ν).

The first order optimality conditions are given by the so-called Euler inequation and read dJθ,ν(u∗)h ≥ 0, or

similarly ∫ T

0
∇uJθ,ν(u∗) · hdt ≥ 0.

for every admissible perturbation h, as defined in Definition 4. Let us fix i ∈ J1, NrK. By mimicking the

reasoning involving Lebesgue points in the proof of Theorem 7, we get

• on {u∗i = 0}, one has∇uJθ,ν(u∗) · ei ≥ 0,

• on {u∗i = 1}, one has∇uJθ,ν(u∗) · ei ≤ 0,

• on {0 < u∗i < 1}, one has∇uJθ,ν(u∗) · ei = 0.

Note that, on {u∗i = 0}, one has ∇uJθ,ν(u∗) · ei ≥ 0 and then Λ(t) · ei = min{0,max{−1,∇uJθ,ν(u∗)(t) ·
ei}} = 0. On {u∗i = 1}, one has∇uJθ,ν(u∗) · ei ≤ 0 and therefore Λ(t) · ei = min{1,max{0,∇uJθ,ν(u∗)(t) ·
ei}} = 0. On {0 < u∗i < 1}, one has ∇uJθ,ν(u∗) · ei = 0 and therefore Λ(t) · ei = min{u∗i ,max{u∗i (t) −
1, 0}} = 0.

Conversely, let us assume that Λ(·) = 0. On {u∗i = 0}, one has

0 = Λ(t) · ei = min{0,max{−1,∇uJθ,ν(u∗)(t) · ei}},

so that max{−1,∇uJθ,ν(u∗)(t) · ei} ≥ 0 and finally, ∇uJθ,ν(u∗)(t) · ei ≥ 0. A similar reasoning yields the

optimality conditions on {u∗i = 1} and {0 < u∗i < 1}. The conclusion follows. ■

Practical computation of the TV operator gradient in a discrete framework. From a practical point of view,

we discretize the space of controls, which leads us to consider a time discretization denoted (tn)1≤n≤NT
with

NT ∈ N∗ fixed, as well as piecewise constant controls in time, denoted (uni ) 1≤i≤Nr
1≤n≤NT

.

Hence, the term uni corresponds to the control at road i and time n. The simplest discrete version of the TV

semi-norm is given by

TV(u) ≃
Nr∑
i=1

NT∑
n=2

|uni − un−1
i |.
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In order to manipulate differentiable expressions, we introduce for some ν > 0, the smoothed discrete TV

operator is given by

TVν : RNr×NT ∋ (uni ) 1≤i≤Nr
1≤n≤NT

7→
Nr∑
i=1

NT∑
n=2

aν(u
n
i − un−1

i ), (2.19)

where aν : R ∋ x 7→
√
x2 + ν2.

Let (i0, n0) ∈ J1, NrK× J1, NT K. In what follows, we will use a discrete equivalent of Theorem 8, involving

the gradient of TVν , obtained from the expression

∂un0
i0

TVν(u) =


a′ν(u

n0
i0
− un0−1

i0
)− a′ν(u

n0+1
i0

− un0
i0
) if 2 ≤ n0 ≤ NT − 1

a′ν(u
NT
i0
− uNT−1

i0
) if n0 = NT

−a′ν(u2i0 − u
1
i0
) if n0 = 1,

where u = (uni ) 1≤i≤Nr
1≤n≤NT

is given

2.4.2 Numerical solving of the primal and dual problems

The models we use are already discretized in space. We now explain how we discretize them in time. We recall

that, at the end of section 2.4.1, we have already considered that the controls are assimilated to piecewise constant

functions on each cell of the considered mesh and on each time step.

Finite volumes scheme for the primal problem. The main transport equation on network is solved by

integrating for each road the finite volume flow given by (LWR-sd) with an explicit Euler scheme:

ρn+1
i,j = ρni,j −

△tn
△xi,j

(
Fn
i,j+ 1

2

−Fn
i,j− 1

2

)
, 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nc,

using the local-Lax numerical flux

Fn
i,j+ 1

2

= F(ρni,j , ρni,j+1), 2 ≤ j ≤ Nc − 1,

and the Neumann boundary conditions

Fn
i, 1

2

:= γni,L, Fn
i,Nc+

1
2

:= γni,R, 1 ≤ i ≤ Nr,

where γni,L and γni,R are obtained as the solution to the linear programming system

γn = ϕLP(ρn,un).

Euler scheme for adjoint problem. To solve the backward ODE (2.12), it is convenient to introduce Z(t) :=

(M(T − t))T , and q(t) := p(T − t) such that we are now dealing with the Cauchy system:q′(t) = Z(t)q(t), t ∈ (0, T ),

q(0) = c,
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that we integrate with a classical explicit Euler scheme:

q1 = c, qn+1 = (I +△tn Zn)qn, n = 1, · · · , NT − 1.

The solution is finally recovered using that pn = qNT−n+1.

2.4.3 Optimization algorithms

The starting point of the algorithm we implement is based on a standard primal-dual approach, in which the state

and the adjoint are computed in order to deduce the gradient of the considered functional. We combine it with a

projection method in order to guarantee the respect of the L∞ constraints on the control. This method has the

advantage of being robust, as it generally allows a significant decrease of the cost functional. On the other hand,

it often has the disadvantage of being very local, which results in an important dependence on the initialization.

Moreover, one can expect that there are many local minima, since the targeted problem is intrinsically of infinite

dimension, which makes the search difficult.

We will propose a modification of this well-known method, using a fixed point method inspired by the

optimality condition stated in Theorem 8.

Projected gradient descent

A direct approach is to consider the gradient algorithm, in which we deal with the condition 0 ≤ uki ≤ 1 by

projection, according to Algorithm 1. The specific difficulty of this approach is to find a suitable descent-step δk,

which must be small enough to ensure descent but large enough for the algorithm to converge in a reasonable

number of iterations. We hereby combine this algorithm with a scheduler Equation 2.20 inspired from classical

learning rate scheduler in deep-learning [97] to select an acceptable descent step, where δ0 and decay are given

real numbers.

δk :=
δ0

1 + decay×k
. (2.20)

Algorithm 1 Optimal control by projected gradient descent method (GD)

Require: ρ0,u0, tol > 0, itermax > 0
Initialization: k = 0
while ||uk+1 − uk|| > tol and k ≤ itermax do

(ρ,γ)← solution to


ρ′ = fFV(ρ,γ)

γ = ϕLP(ρ,uk)

ρ(0) = ρ0

p← solution to

{
p′ +M(ρ,γ,uk)Tp = 0

p(T ) = c

uk+1 ← proj[0,1](u
k − δk∇Jθ,ν(uk)), with δk > 0 such that Jθ,ν(uk+1) ≤ Jθ,ν(uk)

k ← k + 1
end while
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Fixed point method A fixed-point (FP) algorithm is derived using the first-order optimality conditions stated

in Theorems 7 and 8, by rewriting them in a fixed-point formulation. We have seen that they write under the form

ui ∈ Iµ ⇒ ∂uiJθ,ν(u) ∈ Eµ,

where µ ∈ {0, ∗, 1}, I0 = {0}, I∗ = (0, 1), I1 = {1}, E0 = R+, E∗ = {0}, E1 = R−. This rewrites as

ui ∈ Iµ ⇒ ui ∈ Fµ := {ui|∂uiJθ,ν(u) ∈ Eµ}.

This leads us to compute ui by using the following fixed-point relationship

uk+1
i = 1× 1{∂uiJθ,ν(uk)<−κ} + uki 1{−κ≤∂uiJθ,ν(uk)≤κ} + 0× 1{∂uiJθ,ν(uk)>κ}, (2.21)

where κ > 0 is a small threshold preventing too small gradients from modifying the control. This finally leads us

to Algorithm 2.

Remark 4. The advantage of the fixed-point formulation can be illustrated by the fact that some common control

configurations can lead to a flat gradient while optimisation is still possible, i.e. gradient descent is too local to

detect certain appropriate (and existing) descent direction. Let’s construct such a case where the fixed-point

algorithm has a major advantage over gradient descent. We recall the constraints of the linear programming for

the 2× 2 case:

0 ≤ γR1 ≤ γ
R,max
1 , (2.22)

0 ≤ γR2 ≤ γ
R,max
2 , (2.23)

0 ≤ αuγ
R
1 + βuγ

R
2 ≤ (1− u3)γL,max

3 , (2.24)

0 ≤ (1− αu)γ
R
1 + (1− βu)γR2 ≤ (1− u4)γL,max

4 . (2.25)

Considering for instance a case where u3 = 1, then Equation 2.24 yields αuγ
R
1 + βuγ

R
2 = 0. By positivity,

this implies that αuγ
R
1 = βuγ

R
2 = 0. If furthermore u4 > 0, then it follows that αu = P ᾱε (1 − u4) ̸= 0 and

βu = P β̄ε (1− u4) ̸= 0 (see (2.28) in Appendix for the definition of these functions). It remains that necessarly,

γR1 = γR2 = 0 and the junction is blocked. The point here is that the only way to influence the network – therefore

acting on the value of Jθ,ν – is by having a control such that γR1 or γR2 becomes positive, and this can be obtained

only when u4 is set to 0. Indeed, we would now have αu = P ᾱε (1) = P β̄ε (1) = βu = 0, releasing the constraint

given by Equation 2.24 on the values of γR1 , γ
R
2 .

However, if the algorithm finds a perturbation δu4 > 0 small enough such that u4 − δu4 ̸= 0, it would

yields Jθ,ν(u) = Jθ,ν(u− δu4e4), thus ∂u4Jθ,ν(u) = 0. As a result, the gradient descent step is stationnary

for u4 even though the perturbation δu4 was in the good direction in order to decrease Jθ,ν after several more

iterations.

With the fixed-point algorithm instead, we find the suitable control u4 in one iteration from the previous

configuration thanks to the indicator functions, since the sign of the gradient contains all the information that we

needed. This allows us to circumvent the threshold phenomenon of the gradient described above.
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Algorithm 2 Optimal control with Fixed Point method (FP)

Require: ρ0,u0, tol > 0, itermax > 0

Initialization: k = 0

while ||uk+1 − uk|| > tol and k ≤ itermax do

(ρ,γ)← solution to


ρ′ = fFV(ρ,γ)

γ = ϕLP(ρ,uk)

ρ(0) = ρ0

p← solution to

p′ +M(ρ,γ,uk)Tp = 0

p(T ) = c

uk+1 ← 1{∇Jθ,ν(uk)<−κ} + uk1{−κ≤∇Jθ,ν(uk)≤κ} + 0× 1{∂uiJθ,ν(uk)>κ}

k ← k + 1

end while

Hybrid GDFP methods

Since gradient descent theoretically always guarantees a direction of descent (provided we choose a small enough

step) but can be slow and/or remain trapped in a local extremum (see Remark 4), and since the fixed point appears

more exploratory but does not guarantee descent, it seems worthwhile to investigate the hybridization of both

methods.

The chosen algorithm is implemented by computing most of the iterations by gradient descent and using the

fixed point method every K ∈ N iterations in the expectation of escaping from possible basins of attraction of

local minimizers. Note that K is a hyper-parameter of the method. This is summarized in Algorithm 3.

Instead of performing FP steps regularly, we can choose to space them in order to have more more iterations

for the gradient descent to converge. This second version is given in Algorithm 4 where the time between two FP

steps increases by a factor of τ .

Algorithm 3 Optimal control with hybrid GD & FP algorithm (GDFP)

Require: ρ0,u0, tol > 0, itermax > 0
Initialization: k = 0
while ||uk+1 − uk|| > tol and k ≤ itermax do

(ρ,γ)← solution to


ρ′ = fFV(ρ,γ)

γ = ϕLP(ρ,uk)

ρ(0) = ρ0

p← solution to

{
p′ +M(ρ,γ,uk)Tp = 0

p(T ) = c

if k%K == 0 then
uk+1 ← 1{∇Jθ,ν(uk)<−κ} + uk1{−κ≤∇Jθ,ν(uk)≤κ} + 0× 1{∂uiJθ,ν(uk)>κ}

else
uk+1 ← proj[0,1](u

k − δk∇Jθ,ν(uk)), with δk > 0 such that Jθ,ν(uk+1) ≤ Jθ,ν(uk)
end if
k ← k + 1

end while
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Algorithm 4 Optimal control with GDFP with spaced FP steps

Require: ρ0,u0, tol > 0, itermax > 0, K0, τ
Initialization: k = 0, K = K0

while ||uk+1 − uk|| > tol and k ≤ itermax do

(ρ,γ)← solution of


ρ′ = fFV(ρ,γ)

γ = ϕLP(ρ,uk)

ρ(0) = ρ0

p← solution of

{
p′(t) +MTp = 0

p(T ) = c

if k%K == 0 then
uk+1 ← 1{∇J (uk)<−κ} + uk1{−κ≤∇J (uk)≤κ} + 0× 1{∂uiJθ,ν(uk)>κ}
K ← τK

else
uk+1 ← proj[0,1](u

k − δk∇J (uk)), with δk > 0 such that J (uk+1) ≤ J (uk)
end if
k ← k + 1

end while

2.5 Numerical Results

This section presents some results obtained in various situations using the methods presented above. In all that

follows, we assume that ρmax = 1, vmax = 1 and L = 1. We will first validate our approach on single junctions

before studying more complex road networks. These are namely: a traffic circle and a three lanes network of

intermediate size with a configuration unfavorable to our objective.

2.5.1 Single junctions

We start by considering single junctions of type 1×1, 1×2, 2×1 and 2×2 as they will be the building blocks of

the more complex networks.

We consider 50 mesh cells per road and the initial density equals 0.66. The route to empty is always composed

of an incoming and an outgoing road. The time interval of the simulations is adjusted in order to allow the route

to be completely emptied: the final time T thus equals respectively 6, 3.5, 10 and 5 for the four junctions. We

start the optimization algorithms with initial controls equal to 0 and set the convergence threshold to having ∥Λ∥
less than 10−1, with a prescribed maximum of 100 iterations. Neither constraints on the number of controls

(θS = 0) nor BV regularization (θB = 0) are considered for these test cases.

Figure 2.1 shows us the comparison between the cost functional history when using the gradient descent

(GD), the fixed-point (FP) and the hybrid (GDFP) methods. Specific numerical parameters of the algorithm are

given in Table 2.1. We observe fundamental differences in behaviour between the cost functionals obtained by

GD and the one obtained by FP. Indeed, GD allows a regular descent whereas FP generates jumps and oscillations,

which allows a better exploration of the parameters and avoids certain unsatisfactory local minima. On Figure 2.2,

we also plotted the evolution of the optimality conditions Λ for all methods: as expected, we observe that this

quantity reaches values close to 0 at the optimal point.

The obtained controls are shown in Figure 2.3 and seem relevant. For instance, in the 2×1 case, the control

of the outgoing road 3 is fully activated only after time t ≈ 8 to enable the emptying of the incoming road 1 first.
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We further note that the controls are essentially sparse and non-oscillating. They are almost bang-bang, i.e. take

only values 0 and 1.

These results seem to suggest that the hybrid method is the most likely to generalize to larger graphs because

of its ability to explore and find critical points while still being able to provide convergence. It is therefore the

one we will use in the following.

Symbol Name 1x1 1x2 2x1 2x2

K FP trigger in GDFP 3 5 10 2

κ vanishing gradient threshold in FP 0 10−10 0 10−1

δ0 initial descent step 1 5× 10−2 2× 10−1 10−1

decay decay in scheduler 10−2 10−1 10−1 10−1

Table 2.1: Numerical parameters for single junctions.

(a) 1x1 (b) 1x2

(c) 2x1 (d) 2x2

Figure 2.1: (Single junctions) Cost functional as function of iterations for the gradient descent (GD), the fixed point (FP)
and the hybrid (GDFP) methods.
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(a) 1x1 (b) 1x2

(c) 2x1 (d) 2x2

Figure 2.2: (Single junctions) Iterations of the convergence criterion ||Λ||.

(a) 1x1 (b) 1x2

(c) 2x1 (d) 2x2

Figure 2.3: (Single junctions) Optimal controls obtained with the GDFP method. The routes to empty are respectively
(1, 2), (1, 3), (1, 3), (1, 3).
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(a) Road network and route to empty in red.

T = 10.0,   J(u) = 55.741
0

max

(b) Density at final time without control.

Figure 2.4: (Traffic circle) Left: Traffic circle configuration. The roads (2, 3, 5, 7) in the circle are counter-clockwise, roads
(1, 6) are incoming and roads (4, 8) are outgoing. The route to empty (1, 2, 3, 5, 8) is in red. Right: Numerical simulations
without control at time T = 10.

2.5.2 Traffic circle

We consider the traffic circle test case as proposed in [78]. It is composed of 8 roads as depicted in Fig. ??
including 2 incoming roads, 2 outgoing roads and the 4 circle roads. The roads (2, 3, 5, 7) in the circle are

counter-clockwise, roads (1, 6) are incoming and roads (4, 8) are outgoing. Initial density is taken constant equal

to 0.66 on each road and, in Fig. 2.4, we observe that congestion appears if no control is applied.

The route to evacuate is chosen to be (1, 2, 3, 5, 8) (see Figure 2.4a) and there is no constraints on the maximal

number of controls (θS = 0) or BV regularization (θB = 0). The parameters are given in Table 2.2.

Results are gathered on Figure 2.5. On the upper left panel, the cost functional history is depicted. The

first four iterations of the gradient descent make the cost functional decrease very slowly, except for the second

iteration, and then a FP step triggers the jump seen at iteration 5. A few GD steps are then observed and then

another FP step results in a second jump at iteration 10. Then the gradient descent is able to reach a satisfactory

local minimum by the 12th iteration. We note that the optimality function Λ (Fig. 2.5) follows essentially the

same behaviour and reaches a small value at the final iteration.

The control obtained by the algorithm is given in Figure 2.5c, bottom left. We observe first that roads 1 and 6

are allways controlled since they are entry roads on the network and would add new vehicles, and then that road

3 entrance is always controlled to drive the flow to the outgoing road 4. Furthermore, while road 5 entrance is

mostly controlled after time t = 8 to let cars from road 3 leave the route before, control on road 7 entrance is

quite the opposite: up to time t = 8, it is activated to let the flow circulate as road 8 entrance is open, then from

time t = 8 to t = 10, it is deactivated as outgoing road 8 entrance is now closed. Finally, on Figure 2.5d, we can

check that the route is effectively empty at final time.

Parameters ρ0 u0 Nc κ tol K0 τ T δ0 decay

Traffic circle 0.66 1 20 10−6 10−2 5 2 10 5× 10−2 10−1

Three lanes network 0.66 1 5 10−3 10−2 5 3 30 1 10−2

Table 2.2: Numerical parameters for the traffic circle and the three lanes networks.
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0.0 2.5 5.0 7.5 10.0
iterations

0

10

20

30

40

50
lo

ss
loss
min: 0.0 iter: 12

(a) Cost functional history (b) ||Λ||2 history

(c) Control (d) Density at final time

Figure 2.5: (Traffic circle). Results obtained with GDFP algorithm with spaced FP steps.

2.5.3 Three lanes network

We consider the three lanes network composed of 23 roads as shown in Fig. 2.6: all the roads are directed from

left to right, with road 1 and road 11 being respectively the incoming and outgoig leaves. Initial density is sill

constant equal to 0.66 and a corresponding incoming flux is imposed at the entrance of the network on road

1. Neumann boundary conditions are used at the end of the outgoing road 11. The traffic distribution at each

junction are uniform: there are no preferred trajectories. Fig. ?? depicts the result of the simulation without

control: the density in the central lane tends to be saturated as several roads lead onto it.

In the sequel, we would like to determine an optimal control in order to empty the central lane, made of roads

(4, 6, 7, 8, 9) (see Figure 2.6a), with Nmax = 5. Note that, contrary to the previous test cases, controlling this

route may not prevent the flow to circulate from the ingoing to the outgoing road.

First we consider the optimal problem with essentially no limitation on the number of active controls

(θS = 10−8) nor BV regularization (θB = 10−8). When ||Λ||2 becomes lower than 1 we consider that we are

close to a basin of attraction, and we give increased effect to regularization by setting θS = 10−4 and θB = 10−6.

We use the numerical parameters of Table 2.2: in particular the FP steps are used at iterations 5 and 15.

Figure 2.7a represents the cost functional history during the optimization process. We observe first a rapid

decrease of the cost functional during the gradient descent steps, which reaches a basin of attraction at iteration

9 with J = 0.23 and ||Λ||2 = 1.001× 10−2. Figure 2.7c shows the control provided by the algorithm for this

iteration. The time evolution of the road densities with this control is represented in Figure 2.9a. The control

performs rather well regarding the final cost functional and the final road densities on the central line. However,

as might be expected, this remains rather unsatisfactory given the relatively high number of active controls and
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(a) Road network and route to empty in red.
T = 30.0,   J(u) = 22.459

0

max

(b) Density at final time without control.

Figure 2.6: (Three lanes network) Left: Three lanes network configuration. Road 1 is incoming and road 11 is outgoing
and all the others are directed from left to right. The route to empty (4, 6, 7, 8, 9) is in red. Right: Numerical simulations
without control at time T = 30.

the redundancies. For instance, it should be useless to block the entrance of roads 18, 20 and 22 if roads 19, 21

and 23 are controlled.

We then observe a slight increasing of the loss J when the regularization coefficients θS and θB are increased,

mainly due to the high values of S(u) and Bν(u). After the fixed-point step at iteration 15, all the coefficients of

the loss are decreasing and reach the convergence tolerance by the 17-th iteration, as shown in Figure 2.7b. A

zoom on this phenomena is given Figure 2.8.

The cost CT (u) remains equal to 0.23 whereas the FP step at iteration 15 clearly reduced the staffing

constraint S(u) by more than an order of magnitude, at the cost of a slight increase in the total variation. Note

that the GD steps were stationnary and that only the FP step led to convergence.
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min: 0.23 iter: 9

(a) Cost functional. (b) ||Λ||2 history.

(c) Control (low constraints). (d) Control (increased constraints).

Figure 2.7: (Three lanes network with scheduled constraints) Controls obtained with the GDFP algorithm.
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(a) Without weights.
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(b) With weights.

Figure 2.8: Cost functional between iterations 9 and 17.
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(a) Mean density (low constraints).

T = 30.0,   J(u) = 0.234
0

max

(b) Final time snapshot (low constraints).

(c) Mean density (increased constraints).

T = 30.0,   J(u) = 0.238
0

max

(d) Final time snapshot (increased constraints).

Figure 2.9: (Three lanes network with scheduled constraints) Densities obtained with the GDFP algorithm.

The penalization algorithm has clearly solved the two issues: the number of active controls is now less than

7, which is still higher than 5 but far preferable than the earlier 16 in a approached control point of view, and

there is no time oscillations of the controls even if it would have been a mathematically correct way to reduce the

staffing constraint.

Symbol Name Value

Nmax maximum number of simultaneous blockages allowed 5

θ0S initial coefficient for the staffing constraint 10−8

θS scheduled coefficient for the staffing constraint 10−4

θ0B initial coefficient for the BV constraint 10−8

θB scheduled coefficient for the BV constraint 10−6

ν smoothed absolute value coefficient 10−10

Table 2.3: Numerical parameters for the full model.

2.6 Conclusion

This article has therefore introduced a new network traffic control problem where the control acts not only on

the flux constraints at the entrance of the road but also on the statistical behaviour matrices at the junctions.

The theoretical analysis of the optimal control problem led to an original numerical method combining the

gradient descent method and a fixed-point strategy. The numerical results obtained on the traffic circle and on the
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three-lane network have shown that the method is relatively effective in providing relevant controls. It is also

possible to impose constraints on the number of active controls.

This work can be pursued in several directions. Firstly, it would be interesting to show theoretically

that the optimal controls are indeed bang-bang, as suggested by the numerical results. This could provide

new improvements of the optimization algorithm. Secondly, the indicator and projection functions make our

algorithms very sensitive to threshold or scaling effects. Further analysis could be of great help in determining

hyperparameters such as θ or κ generically, since they are set by hand for the time being. Finally, the problem

has been tackled here using a discretize (in space) then optimize strategy. Another possibility would have been to

first optimize and then discretize. Such strategy may result in another kind of algorithms.

Obviously, it would be interesting to test the algorithm on larger road networks. For this, it might be

interesting to couple this method with interesting initialisation methods where an initial control would be

obtained with a macroscopic graph. Such an approach has, for example, been developed in a different context in

epidemiology [27].

Appendix

Expression of the function ϕLP

We provide hereafter the explicit expression of ϕLP for junctions with at most 2 ingoing and 2 outgoing roads.

We will write (γR,γL) = ϕLP (ρ,u).

One ingoing and one outgoing roads (n = m = 1). In that case, the solution of the LP problem (2.3) is given

by

γR1 = γL2 = min
(
γR,max
1 , (1− u2)γL,max

2

)
.

One ingoing and two outgoing roads (n = 1, m = 2). Setting α = α21, we obtain

γR1 = min

(
γR,max
1 ,min

(
(1− u2)

γL,max
2

α
, (1− u3)

γL,max
3

1− α

))
,

γL2 = αγR1 , γ
L
3 = (1− α)γR1 .

However, this formulation raises a modeling problem. Indeed, this solution does not distinguish between a

blocked road (γR,max
j = 0) and a controlled road (1− uj = 0). Indeed, the first case corresponds to a congestion

involving cars on both sides of the intersection, preventing vehicles from entering the second -potentially empty-

road, while in the second case, drivers will not try to enter the controlled road and we revert to the 1 × 1

configuration with the remaining roads.

To capture this difference in driver behavior, we will adjust the parameter α with respect to the control u.

Therefore, α will be considered as a function of (u2, u3). More precisely, we introduce a function denoted P

of the variable x = u2 − u3, taking the constant value ᾱ ∈ (0, 1) at x = 0 and yielding the relevant 1× 1 case

whenever one road is fully controlled. For the sake of simplicity, we look for a function (u2, u3) 7→ P (u2 − u3),
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where P is a polynomial of degree at most 2, that satisfies

P (−1) = α(0, 1) = 1, P (0) = α(u, u) = ᾱ, P (1) = α(1, 0) = 0.

The standard Lagrange interpolation formula yields

P (x) =
x(x− 1)

2
+ ᾱ(1− x2). (2.26)

However, due to the division by α in the expression of γR1 , the case α(u2 = 1, u3 = 0) = 1 − u2 = 0 is

degenerate. To overcome this definition problem, we introduce a small perturbation parameter ε > 0 and a

modification of the polynomial P denoted Pε, such that αε := Pε(u2 − u3) and

Pε(−1) = 1− ε2, Pε(0) = α, Pε(1) = ε2.

The same reasoning as above yields Pε(x) = P (x) + ε2x. Since the interpolation procedure does not guarantee

that the range of the function be contained in [ε2, 1− ε2], we compose the obtained expression with a projection

onto the set of admissible values, to get at the end

αε(u2, u3) := proj[ε2,1−ε2] (Pε(u2 − u3)) . (2.27)

Similarly, we also replace the expression (1−uj) by (1−uj+ε) to avoid the case where (1−u2) = α(u2, u3) = 0.

We finally obtain the following regularized solution at 1× 2 junctions

γR1 = min

(
γR,max
1 ,min

(
(1− u2 + ε)

γL,max
2

αε(u2, u3)
, (1− u3 + ε)

γL,max
3

1− αε(u2, u3)

))
,

γL2 = αεγ
R
1 , γ

L
3 = (1− αε)γR1 .

Two ingoing and one outgoing roads (n = 2, m = 1). The ingoing roads are indexed by 1, 2 and the outgoing

one is indexed by 3. In any case, we have γL3 = γR1 + γR2 , and γR1 , γ
R
2 are computed as follows:

• we set γL,max
3,u := (1− u3) γL,max

3 ;

• if γR,max
1 + γR,max

2 ≤ γL,max
3,u , then γR1 = γR,max

1 and γR2 = γR,max
2 ;

• else,

– if γR,max
1 ≥ q γL,max

3 and γR,max
2 ≥ (1− q)γL,max

3,u , then γR1 = q γL,max
3,u and γR2 = (1− q) γL,max

3,u .

– if γR,max
1 < qγL,max

3,u and γR,max
2 ≥ (1− q)γL,max

3,u , then γR1 = γR,max
1 and γR2 = γL,max

3 − γR,max
1 .

– if γR,max
1 ≥ qγL,max

3,u and γR,max
2 < (1− q)γL,max

3,u , then γR1 = γL,max
3,u − γR,max

2 and γR2 = γR,max
2 .

Two ingoing and two outgoing roads (n = m = 2). The ingoing roads are indexed by 1, 2 and the outgoing

ones are indexed by 3, 4. We have

(
γ3 γ4

)⊤
= A(u)

(
γ1 γ2

)⊤
with A(u) =

(
α(u) β(u)

1− α(u) 1− β(u)

)
,
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where, given two real number ᾱ, β̄ in (0, 1), the coefficients are defined in the same way as in the case 1× 2, as

αε(u) = proj[ε2,1−ε2]
(
P ᾱε (u3 − u4)

)
, βε(u) = proj[ε2,1−ε2]

(
P β̄ε (u3 − u4)

)
.

Here, P ξε is defined by

P ξε (x) =
x(x− 1)

2
+ ξ(1− x2) + ε2x, ξ ∈ {ᾱ, β̄}. (2.28)

Let us set γL,max
i,u := (1− ui) γL,max

i , for i = 3, 4.

To solve the LP 2×2 problem, we first analyze the simplex standing for the polytope of constraints, represented

on Figure 2.10: the constraints related on the incoming routes form the rectangle Ωin := [0, γR,max
1 ]× [0, γR,max

2 ]

while those related on the outgoing roads correspond to the regions below the curves C3 and C4, respective graphs

of the functions

γ1 7→
(1− u3)γL,max

3 − αuγ1
βu

and γ1 7→
(1− u4)γL,max

4 − (1− αu)γ1
1− βu

.

A convexity argument, standard in linear optimization, yields that the exists (at least) a solution lying on a vertex

of the set of constraints. To discuss on optimality of each vertex, we first compute Γu, the intersection of C3 and

C4.

0000 γ1

γ2

C3

C4

Γu

Figure 2.10: Polytope of constraints for the 2x2 LP. The constraints on the input flow are represented by the colored area.

The point Γu = (Γ1u,Γ2u) is the intersection point of the lines with cartesian equations αuγ1+βuγ2 = γmax
3,u

and (1− αu)γ1 + (1− βu)γ2 = γmax
4,u . We obtainsΓ1u =

(
(1− βu)γmax

3,u − βuγmax
4,u

)
/△u,

Γ2u =
(
−(1− αu)γ

max
3,u − αuγ

max
4,u

)
/△u,

(2.29)

with △u = αu(1 − βu) − βu(1 − αu). A standard graphical easoning shows that the solution is realized at

Γu if Γu belongs to Ωin, as in Figure 2.10. Otherwise, we have to intersect the constraint of highest slope (in

absolute value) with Ωin. It is this disjunction that is performed in what follows.
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• First case: Γ1u ≤ γmax
1 and Γ2u ≤ γmax

2 ;

– if Γ1u >= 0 and Γ2u < 0, then γ2 = 0;

* if αu < βu, then γ1 = γmax
3,u /αu;

* else, γ1 = γmax
4,u /(1− αu).

– if Γ1u < 0 and Γ2u ≥ 0, then γ1 = 0;

* if αu < βu, then γ2 = γmax
3u /βu;

* else, γ2 = γmax
4u /(1− βu).

– if Γ1u < 0 and Γ2u < 0, then γ1 = γ2 = 0;

– else, (γ1, γ2) = (Γ1u,Γ2u).

• Second case: Γ1u > γmax
1 and Γ2u > γmax

2 . Then, (γ1, γ2) = (γmax
1 , γmax

2 ).

• Third case: Γ1u > γmax
1 and Γ2u ≤ γmax

2 ;

– if αu < βu, then

γ2 = proj[0,γmax
2 ]

(
γmax
3u − αuγ

max
1

βu

)
, γ1 =

{
γmax
3 /αu if γ2 = 0

γmax
1 if γ2 ∈ (0, γmax

2 ];

– else,

γ2 = proj[0,γmax
2 ]

(
γmax
4u − (1− αu)γ

max
1

1− βu

)
, γ1 =

{
γmax
4 /(1− αu) if γ2 = 0

γmax
1 if γ2 ∈ (0, γmax

2 ];

• Fourth case: Γ1u ≤ γmax
1 and Γ2u > γmax

2 ;

– if αu > βu, then

γ1 = proj[0,γmax
1 ]

(
γmax
3u − βuγmax

1

αu

)
, γ2 =

{
γmax
3 /βuif γ1 = 0

γmax
2 if γ1 ∈ (0, γmax

1 ];

– else,

γ1 = proj[0,γmax
1 ]

(
γmax
4u − (1− βu)γmax

1

1− αu

)
, γ2 =

{
γmax
4 /(1− βu) if γ1 = 0

γmax
2 if γ1 ∈ (0, γmax

1 ].

Regular approximation of ϕLP . In the following, in order to use differentiable optimization techniques,

we will replace the function ϕLP , which is only Lipschitz, by an approximation C1, replacing all operations

consisting in taking the minimum or the maximum of two quantities by regular approximations:

min{x, y} ←
x+ y −

√
(x+ y)2 + η2

2
and max{x, y} ←

x+ y +
√
(x+ y)2 + η2

2

for a given η > 0.
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Remark 5 (Some remarks on the LP problem). It is notable that In [78], a close LP problem has been

solved. However, we found that a case corresponding to a particular constraint configuration was forgotten

in their analysis. This error could lead to erroneous vertices provifding negative values to some flows. The

configuration that was not taken into account in this publication is illustrated on Figure 2.11, for parameter

choices from Table 2.4.

Parameter γmax
1 γmax

2 γmax
3 γmax

4 u3 u4 α β

Value 0.25 0.25 0.2244 0.2244 0 0.96 0.45 0.50

Table 2.4: Parameters for the 2x2 LP problem in Figure 2.11.

0

Γu

S

F

C3

C4

levelset = 0.23

S

F

Figure 2.11: Graphical resolution of the 2 × 2 LP problem. polytope of constraint (left) and a zoom (right). F is the
erroneous solution and S is the correct one.
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Chapter 3

A Julia code for optimal control of a road
network

This chapter aims at valorizing and making exploitable the code used for the numerical simulations of the our

article presented in chapter 2, that can be found at https://github.com/mickaelbestard/TRoN.jl,

as well as retracing some programming notions learned during this thesis. To do so, we will first present the

programming interface allowing to reproduce identically the results presented previously, as well as to create new

test cases from the existing graphs (front-end: familiarization with the interface and customization of existing

function calls). In a second more technical part, we will go into more detail on the design of the interface

itself in order to give the interested reader the possibility to tailor the code to his needs, with for example the

customization of the cost function, the optimization algorithm or the graph representing the road network. The

final part will deal with the limitations and the ways to improve the code in a perspective of scaling up on large

problems, like for example on a whole city. (back-end: reappropriation of the code while being aware of some

key aspects of the Julia language).

1 Why Julia? Overview of the code

An efficient implementation of the algorithms presented above implies two objectives that may be contradictory

at first sight. First, we need a language that is sufficiently advanced to allow us to easily build our model, such

as the graph structure or the automatic gradient calculations. On the other hand, the complexity of our model

requires high numerical performance, especially on larger graphs. While the usual workflow is often to first write

a small proof of concept in Python or Matlab before rewriting and optimizing it in a compiled language such

as C/C++/Fortran, we chose to develop and optimize (in the numerical sense) in the same language. Julia

seems indeed well suited to this purpose.

However, if one of the main ambitions of Julia is to offer the syntactic simplicity of Python with the

performance of C, it can be very helpful to understand the internal mechanisms of Julia, and in particular the

management of memory allocations, in order to take full advantage of this language and manage to write code

that is efficient, generic and easily readable. This is why we have grouped most of the code complexity in a

simplified user interface that we will explain in the first sections.
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Files organization: We use a common project organization, with a separation of folders into ‘sources‘, ‘tests-

cases‘ and ‘unit-tests‘. Packages are managed via a ‘Pkg‘ environment which allows to create a local module,

which we call TRON (TRaffic On Networks). This also avoids compatibility problems between different possible

versions of the libraries, making the project easier to maintain.

The informations about the problem are distributed along different data structures1:

• Junction, containing the local data of the nodes such as the adjacent routes, static and dynamic

distribution matrices, priorities parameters...

• Network, which centralizes all data relating to the network, i.e. the directed graph with local metadata

such as maximum local speed and density, the set of junctions, the LWR model flow and its discretization

to a numerical flow, ...

• Mesh, the spatial discretization of a road, i.e. the cells with their area, the lengths of each road2, ...

• Model, that unifies all previously introduced physical quantities and stores the computations related to the

direct problem as well as the jacobians of fFV and ϕLP .

• The structure Optim connects the road graph with our optimizers in order to perform the optimal control

algorithm.

• Finally, Diagnostics is a placeholder that concisely gathers all the data to be saved/plotted.

which interact with the following keys external libraries:

• Graph.jl which implements for instance the directed graph structure with useful functions to easily

manipulate it (vertices(graph::SimpleDiGraph), edges(graph::SimpleDiGraph), source or destination of an

edge, ...)

• ForwardDiff.jl which is used for automatic differentiation in the structure Model.

The arborescence is summarized in the UML diagram Figure 3.1. The convention used is that custom

structures are in bold, existing libraries are in italics, and the "+" and "-" signs denote public and private fields,

respectively.

2 Presentation of the interface

This part serves as a general presentation of the code and gives the necessary indications for its use as a standalone

tool.

You must have cloned the following git directory

https://github.com/mickaelbestard/TRoN.jl

and launched the Tron module (cf readme.md).

Pre-configured test cases are located in the folder Tron/example, containing the subfolders:
1Julia does not use objects, but structures. We present as "methods" functions that call and modify or use the attributes of such

structures.
2In this version of the code all roads are assumed to have the same lengths, but it is possible to generalize the implementation readily.
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Optim

+ model:Model
+ uk:Vector{Vector{Float64}}
+ J:Real
+ ?J:Vector{Vector{Float64}}
+ p_t:Vector{Vector{Float64}
+ redlane:Vector{Integer}
+ diagnostics:Diagnostics
+...

+ ComputeDual!()
+ ComputeCost!()
+ ComputeGradientCost!()
+ self() #Optimisation algorithm

Model

+ net:Network
+ mesh:Mesh

+ ?_t:Vector{Vector{Real}}
+ ?_t:Vector{Vector{Real}}
+ u_t:Vector{Vector{Real}}

+ ?f_FV:Matrix{Real}
+ ?? _LP:Matrix{Real}

- f_FV!(?, ?):Vector{Real}
- ? _LP!(?, u):Vector{Real}

+ ComputePrimal!()
+ AutoJac!():Matrix{Real}

Network

+ graph:SimpleDiGraph
+ Junctions:Vector{Junction}

+ ?max_t:Vector{Real}
+ vmax_t:Vector{Real}

+ adjacencyMatrix:Matrix{Integer}

- flow(?, ?max, vmax):Real
- Fnum(?L, ?R, side):Real

Mesh

+ NumberOfCenters:Integer}
+ centers:Vector{Real}
+ nodes:Vector{Real}

+ dx:Real
+ Length:Real

+ Mesh(Length, 
NumberOfCenters, 
NumberOfNodes)

Junction

+ Jmat:Matrix{Real}
+ priorities:Vector{Real}

- LP(?in, ?out, u):Vector{Real}

SimpleDiGraph.jl

Oriented graph structure 
(topological)

ForwardDiff.jl

Dual Numbers, Automatic 
differentiation

Diagnostics

+ losshistory:Vector{Real}
+ residualhistory:Vector{Real}
+ optimalityhistory:Vector{Real}
+ u_optimal:Vector{Vector{Real}}
+ ?_optimal:Vector{Vector{Real}}
+...

+ diagnostics(opt:Optim):plot

Figure 3.1: UML diagram of main code structures.
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• junctions : 1x1, 1x2, 2x1, 2x2

• circle

• threeways

As an example, let us consider the test case of a junction with one input and one output, located in the folder

junctions/1x1/. This folder contains the file Test_1x1.jl, which we import via

� �
1 include("Test_1x1.jl")� �

In order to trigger the compilation, it is usual to run the code a first time with small parameters. This can be

done here by using the default ones with the following function call3:

� �
1 test_Optimizer();� �

Once this is done, we launch the proper optimization loop and store the result afterwards:

� �
1 opt = test_Optimizer(final_time=6, Nc=50, algo="GD")� �

The possible values of the parameter algo, corresponding to the different choices of optimization algorithms in

chapter 2 are:

• "GD" : projected gradient descent

• "FP" : fixed point algorithm

• "GDFP" : hybridization of GD and FP algorithms

Notice that other parameters such as penalized constraints and convergence accuracy can also be prescribed, but

the default values are those of the paper and can be left unchanged for now.

We then retrieve the results via

� �
1 diagnostics(opt, test_case="junction")� �

which produces the convergence graphs as well as the optimal snapshots and places them in a sub-folder

diagnostics of the current folder. The test_case parameter is optional, and is used to obtain a heatmap

instead of a standard 1D graphs, see Figure 3.2. The value "junction" is common to the four test cases of the

junction folder, and can be replaced respectively by "circle" or "threeways" in the corresponding test

cases.

3The semicolon is used to prevent the returned object from being displayed, and is not necessary as it would be in C, for example.
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(a) Density at initial time on road 1 (local coordinates) (b) Density at initial time on road 2 (local coordinates)

(c) Density at initial time on the 1x1 network.

Figure 3.2: Standard 1D graphics and heatmap display of the 1x1 junction. Plotted density: 0.3(sin(5x)+1), for 0 ≤ x ≤ 2
and ∆x = 1/50.
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3 Editing an existing test case

Let’s now dig a little deeper into the code to modify the test parameters. To do this, let’s first unpack the function

test_Optimizer.

� �
1 function test_Optimizer(;final_time=0.3, Nc=5, Nmax=2, coef_pen=0, coef_reg=0,

2 itermax=3, CV_tol=1e-2, algo="GD", lane=Bool.([1,1]), u_init=0.0,

3 initstate=Constant(value=0.66), fp_tol=0.0, fp_trigger=10, delay_factor=1.0,

4 ismaskcontrol=false, network = graph_1x1(1.0), lr_init=1e-1, decay=1e-1

5 )

6

7 model = Model(network, Nc, Tf=final_time)

8 init(model)

9

10 optim = Optim(model, Nmax, coef_pen, coef_reg)

11 set_scheduler(optim, lr_init=lr_init, decay=decay)

12 set_redlane!(optim, lane)

13 optim.fp_tol = fp_tol

14 optim.trigger = fp_trigger

15 optim.delay_factor = delay_factor

16 optim.ismaskcontrol = ismaskcontrol

17 [u .= u_init for u in optim.ukm]

18 [u .= u_init for u in optim.uk]

19 [u .= u_init for u in optim.ukp]

20

21 optim(itermax=itermax, CV_tol=CV_tol, algo=algo, initstate=initstate)

22

23 return optim

24 end� �
Line by line:

lines 1-4: Function call parameters, cf Table 3.1.

lines 7-8: A controlled model is initialized from the network. The latter can be chosen among the other pre-configured

ones (1x2, circle, ...) or modified via the parameters (given here with their default values) rmax_t=[

1., 1.], vmax_t=[1., 1.], density_at_leaves_t=[0.66, 0.]. These parameters are vectors

whose i-th coordinate applies to the i-th route.

line 10: Creation of a structure containing the data of the control problem

lines 11-19: Assigning parameters in the optimization structure

line 21: The structure is also callable as a function. Launching the optimization loop.

The structure optim is returned to the user and contains all the data of the problem.
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symbol meaning type

final_time Final time (dimensionless) for the direct problem Float

Nc Number of cells per route Int

Nmax Maximum number of simultaneous controls allowed Int

coef_pen Penalization coefficient θS of the constraint
∑

i ui(t) ≤ Nmax Float

coef_reg Penalization coefficient θB of the BV regularization Float

itermax Maximum number of iterations for the optimization algorithm Int

lane "One-hot vector" indicating the routes to be evacuated Vector{Bool}

u_init Control initial value Float

initialstate Initial condition of the direct problem InitFunction (custom)

fp_tol Tolerance on the sign of the gradient for the fixed point algorithm Float

fp_trigger FP triggering delay in GDFP Int

delay_factor spacing of fp_trigger in GDFP Float

CV_tol Convergence tolerance for the optimization algo Float

ismaskcontrol Indicates if we restraint some roads to be controlled Bool

network Road network to optimize Network (custom)

lr_init Initial learning rate (can be scheduled) Float

decay Decay in the lr scheduler Float

Table 3.1: Call parameters of the function test_Optimizer.

4 Customize the code

The purpose of this section is to show what to modify in the code to solve other similar problems.

Create a graph: Let’s first study how to implement its own graph through the example of the design of the 1x1

graph, whose code is given by

� �
1 function graph1x1(;rmax_t=[1.,1.], vmax_t=[1.,1.], density_at_leaves_t=[0.66,0])

2

3 Nr = 2

4 Nv = 3

5 Nl = 2

6

7 Net = Network(Nr, Nv, Nl, rmax_t, vmax_t)

8

9 # graph topology

10 add_edge!(Net.graph, 1,2)

11 add_edge!(Net.graph, 2,3)

12

13 # placement of "leafs" nodes and corresponding density values

14 # Graph is: 1 (enter node) --> 2 (junction) --> 3 (exit node)

15 set_list_leaves(Net, [1,3])

16 set_ρ_leaves_t(Net, density_at_leaves_t)

17

18 init_Network(Net)
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19

20 # setting repartition matrices

21 J1x1 = ones((1,1))

22 set_Jmat(Net.Junctions[1], J1x1)

23 set_Jmat(Net.Junctions[2], J1x1)

24 set_Jmat(Net.Junctions[3], J1x1)

25

26 return Net

27 end� �
Lines 3 to 7 are used to create the structure Network which contains the macroscopic LWR model as well

as what could be called a topological directed graph, the nodes having no coordinates.

The graph structure is coded via the library Graph.jl which allows, once a graph is initialized, to link

node i to node j via add_edge!(graph, i, j).

We then indicate the nodes of the network for which we will have to impose conditions on the edges, i.e. the

leaves of the graph. Note that for now this code assumes constant boundary conditions at leaves, it has to be

modified to make them time-dependant.

Lines 21 to 24 are used to create and assign the default distribution matrix at each junction. It is given with

constant values but will later depend on the value of the control, see chapter 2 for more explanations on the

mathematical model.

It is important to note that the size of each route is assumed to be constant equal to 1 throughout the code,

and the same is true for the number of cells per route.

Edit optimizer: If we now want to change the way the descent direction is calculated, we need to implement a

function with the following signature:

� �
1 function my_descent(opt::Optim)

2 # some julia code

3 end� �
The Optim structure opt::Optim notably contains the following data:

• control at the current iteration Optim.uk = uk and at the previous iteration Optim.ukm = uk−1

• the gradient of the cost function to be minimized, at the current iteration: Optim.dJ =∇J(uk)

• tolerance threshold for gradient cancellation Optim.κ = κ (in the fixed-point algo, a gradient coordinate is

considered as null if its absolute value is below this threshold)

The only constraint that this function must respect is to return a descent direction ∆uk, so that the iteration of the

control loop is always written in the form :

uk+1 ← proj(uk −∆uk),

where proj is the projection of the coordinates between 0 and 1. This translates in particular for the fixed-point

algorithm by the following expression:
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� �
1 function fixed(opt::Optim)

2 return opt.uk .-

3 (1. * map.(x -> x < -opt.κ, opt.dJ)

4 + myprod(opt.uk, 1. * map.(x -> -opt.κ <= x <= opt.κ, opt.dJ) )

5 )

6 end� �
where the returned value is ∆uk := uk − FP = uk − (1∇J(uk)<−κ + uk1|∇J(uk)|≤κ) so that we have

uk+1 ← proj(uk −∆uk) = uk − (uk − FP ) = FP,

with all the coordinates of FP being in [0, 1] by construction.

Minimize another functional: Our optimal control software can easily address other problems by modifying

the cost functional. We may want to minimize the average speed on some roads, the pollution, etc...

The function to be called to calculate the cost function is noted ComputeCost!, and can be very generic

under the only conditions that it :

• takes opt::Optim as input

• modifies the attribute opt.J

• returns opt.J, given the current implementation of the linear search algorithm (see line 6):

� �
1 ### linesearch

2 iter=0

3 while J1 >= J0 && iter < maxiter

4 descent_step *= decay_coef

5 ukp_guess = proj.(opt.uk .- descent_step*opt.dJ)

6 J1 = ComputeCost!(opt, u=ukp_guess)

7 iter += 1

8 end� �
As an example, here is the implementation of the cost function used in the article4 :

� �
1 function ComputeCost!(opt::Optim; u=opt.model.u_t,

2 initialfunc=Constant(value=0.66))

3

4 θs, θb = opt.regularizations

5 set_control!(opt.model, u)

6 ComputePrimal!(opt.model, initialfunc)

7 Nmax_deviation = 0.

8 TVU = 0.

9 if opt.ispenalized

10 for n in eachindex(u)

11 Nmax_deviation += max(0, sum(u[n]) - opt.Nmax)ˆ2 * opt.model.∆t_t[n]

4IMPORTANT: in Julia, the last computed value is automatically returned by the function, hence the absence here of the return
instruction.
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12 end

13 end

14 if opt.isregularized

15 TVU = TotalVariations(u)

16 end

17 ρT_sum = dot(opt.redlane, opt.model.ρ_t[end])

18

19 opt.J = ρT_sum + θs * Nmax_deviation + θb * TVU

20 end� �

5 Limitations of the code and perspectives

Although this code is somewhat efficient, a huge bottleneck still needs to be adressed for the gradient computation.

Indeed, we chose to be the most generic possible and use automatic differentiation in order to quickly be able to

use a new model and/or a new control problem, but derivating through the junctions operators is graph-dependant

which makes this task more complex.

While this approach works well on our test-cases, it still relies too much on the hardward capacity of the user

with several GiB allocated through the process. The main reason is the way Julia and automatic differentiation

work, and more specifically the conflict between generic user code and specialised (and therefore fast) machine

code. This is the topic of the next paragraph.

5.1 Compiler v/s Interpreter

It is important to understand the concepts of compilation and interpretation. A compiler translates human-readable

code, the source code, into machine-readable code (assembler/binary) that can be executed later without having

to re-read the source code. The interpreter does this translation line-by-line during the execution of the program,

which allows greater flexibility since the types can depend on runtime values, but is much slower because less

optimisation is possible. There are actually intermediate methods of compilation/interpretation, and Julia uses

one of them, called Just-In-Time (JIT) compilation. It is a kind of compromise between the first two methods:

the source is dynamically compiled into optimised machine code while the program is running.

Specifically, Julia uses LLVM (Low Level Virtual Machine), a compilation platform designed for compile-

time and run-time optimization. It first translates the source code into an intermediate representation (LLVM-IR)

that is language-independent and statically typed. After a series of analyses and optimizations, LLVM generates

native machine code that is hardware-optimized and efficient because it runs without further interpretation.

Because each function call is specialized with respect to its signature, it is possible to write generic callers

that are then statically typed at runtime. This is a key feature of the language, called Multiple Dispatch. Source

code written in a way that allows LLVM to generate this kind of optimized code is said to be Type Stable and

ensures high performance. Let us illustrate this with some examples.

� �
1 function unstable(x)

2 if x<rand()

3 return "negative x"

4 end
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5 return x

6 end� �
This function illustrates a typical case of type instability. In fact, the return type of the function is a number

or a string depending on the sign of x-rand(), which is only known at runtime. This prevents the compiler from

writing specialized code, resulting in a more complicated intermediate representation (LLVM-IR). We see in the

llvm code that some instructions are needed to convert the output to the correct type during execution.

� �
1 julia> @code_llvm unstable(-1)

2 ; @ REPL[11]:1 within `unstable`
3 define { {}*, i8 } @julia_unstable_544([8 x i8]* noalias nocapture align 8

dereferenceable(8) %0, i64 signext %1) #0 {

4 top:

5 %thread_ptr = call i8* asm "movq %fs:0, $0", "=r"() #4

6 %ppgcstack_i8 = getelementptr i8, i8* %thread_ptr, i64 -8

7 %ppgcstack = bitcast i8* %ppgcstack_i8 to {}****
8 %pgcstack = load {}***, {}**** %ppgcstack, align 8

9 ; @ REPL[11]:2 within `unstable`
10 ; @ /cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 within `rand` @ /cache/build/

default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1

.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/julialang/julia

-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/Xoshiro.jl:210 @ /

cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/

julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/

Xoshiro.jl:127

11 ; @ task.jl:181 within `getproperty`
12 %2 = getelementptr inbounds {}**, {}*** %pgcstack, i64 -5

13 %3 = bitcast {}*** %2 to i64*
14 %4 = load i64, i64* %3, align 8

15 %5 = getelementptr inbounds {}**, {}*** %pgcstack, i64 -4

16 %6 = bitcast {}*** %5 to i64*
17 %7 = load i64, i64* %6, align 8

18 %8 = getelementptr inbounds {}**, {}*** %pgcstack, i64 -3

19 %9 = bitcast {}*** %8 to i64*
20 %10 = load i64, i64* %9, align 8

21 %11 = getelementptr inbounds {}**, {}*** %pgcstack, i64 -2

22 %12 = bitcast {}*** %11 to i64*
23 %13 = load i64, i64* %12, align 8

24 ;

25 ; @ /cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 within `rand` @ /cache/build/

default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1

.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/julialang/julia

-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/Xoshiro.jl:210 @ /

cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/

julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/

Xoshiro.jl:128

26 ; @ int.jl:87 within `+`
27 %14 = add i64 %13, %4

28 ;

29 ; @ /cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 within `rand` @ /cache/build/
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default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1

.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/julialang/julia

-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/Xoshiro.jl:210 @ /

cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/

julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/

Xoshiro.jl:129

30 ; @ int.jl:365 within `|`
31 %15 = call i64 @llvm.fshl.i64(i64 %14, i64 %14, i64 23)

32 ;

33 ; @ int.jl:87 within `+`
34 %16 = add i64 %15, %4

35 ;

36 ; @ /cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 within `rand` @ /cache/build/

default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1

.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/julialang/julia

-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/Xoshiro.jl:210 @ /

cache/build/default-amdci4-3/julialang/julia-release-1-dot-8/usr/share/

julia/stdlib/v1.8/Random/src/Random.jl:257 @ /cache/build/default-amdci4-3/

julialang/julia-release-1-dot-8/usr/share/julia/stdlib/v1.8/Random/src/

Xoshiro.jl:130

37 ; @ int.jl:503 within `<<` @ int.jl:496

38 %17 = shl i64 %7, 17

39 ;

40

41 #=

42

43

44

45 [+ 100 lines...]

46

47

48

49 =#

50

51 ; @ float.jl:310 within `unsafe_trunc`
52 %31 = fptosi double %27 to i64

53 %32 = freeze i64 %31

54 ;

55 ; @ float.jl:454 within `<` @ int.jl:83

56 %33 = icmp sgt i64 %32, %1

57 ; @ float.jl:454 within `<`
58 ; @ bool.jl:39 within `|`
59 %34 = or i1 %30, %33

60 ;

61 ; @ bool.jl:38 within `&`
62 %35 = and i1 %34, %29

63 ;

64 ; @ bool.jl:39 within `|`
65 %36 = or i1 %28, %35

66 ;

67 br i1 %36, label %common.ret, label %L56

68

69 common.ret: ; preds = %L56, %top

70 %common.ret.op = phi { {}*, i8 } [ { {}* null, i8 1 }, %L56 ], [ { {}*
inttoptr (i64 139965076172720 to {}*), i8 -128 }, %top ]

71 ; @ REPL[11] within `unstable`
72 ret { {}*, i8 } %common.ret.op

76



A Julia code for optimal control of a road network Strasbourg University

73

74 L56: ; preds = %top

75 ; @ REPL[11]:5 within `unstable`
76 %.0..sroa_cast = bitcast [8 x i8]* %0 to i64*
77 store i64 %1, i64* %.0..sroa_cast, align 8

78 br label %common.ret

79 }� �
The following is a stable variant of this function, where zero(x) returns 0 of the same type as x.

� �
1 function stable(x)

2 if x<0

3 return "negative x"

4 end

5 return x

6 end� �
A look at the llvm code, for example for stable(-1), shows that there are fewer instructions and most

importantly that the type is now a compilation constant.

� �
1 julia> @code_llvm stable(-1)

2 ; @ REPL[17]:1 within `stable`
3 define { {}*, i8 } @julia_stable_546([8 x i8]* noalias nocapture align 8

dereferenceable(8) %0, i64 signext %1) #0 {

4 top:

5 ; @ REPL[17]:2 within `stable`
6 ; @ int.jl:83 within `<`
7 %2 = icmp sgt i64 %1, -1

8 ;

9 br i1 %2, label %L4, label %common.ret

10

11 common.ret: ; preds = %L4, %top

12 %common.ret.op = phi { {}*, i8 } [ { {}* null, i8 1 }, %L4 ], [ { {}* inttoptr

(i64 139965083192880 to {}*), i8 -128 }, %top ]

13 ; @ REPL[17] within `stable`
14 ret { {}*, i8 } %common.ret.op

15

16 L4: ; preds = %top

17 ; @ REPL[17]:5 within `stable`
18 %.0..sroa_cast = bitcast [8 x i8]* %0 to i64*
19 store i64 %1, i64* %.0..sroa_cast, align 8

20 br label %common.ret

21 }� �
Actually, this code is still inconvenient because the function’s return type is Union{Int64, String},

which is a data type that can contain two primitive types. By setting a single primitive return type for the function,

the following code solves this problem.

� �
1 function stable(x)

2 if x<0
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3 return zero(x)

4 end

5 return x

6 end� �
The corresponding LLVM translation is now really short and also fairly human readable:

� �
1 julia> @code_llvm stable(-1)

2 ; @ REPL[10]:1 within `stable`
3 define i64 @julia_stable_532(i64 signext %0) #0 {

4 top:

5 %1 = icmp sgt i64 %0, 0

6 %. = select i1 %1, i64 %0, i64 0

7 ; @ REPL[10] within `stable`
8 ret i64 %.

9 }� �
Essentially, it means that:

1. The register %1 stores the value of the comparison between the register %0 of type i64 (integer on 64 bits)

and 0.

2. Then, the register %. is filled with the value stored in %0 or 0, both of type i64, depending on the value of

%1.

3. The last line shows that the returned value is of type i64.

The key point to remember herewith is that it is advantageous to have type-stable code in order to reduce the

size of the LLVM code and hence its execution time.

5.2 Accurate numerical differentiation within floating-point numbers arithmetic

Before actually talking about automatic differentiation, it is primordial to explain the drawbacks of the floating-

points arithmetic when it comes to compute accurate local growth rate of a function.

The first approach that comes to mind is, for a function x 7→ f(x), to consider its derivative in some x0 to be:

f(x0 + ε)− f(x0)
ε

,

for a small ε > 0. A Taylor expansion tells us that this expression yields f ′(x0) + O(ε) wherever f is C1, so

we want ε to be as small as possible, especially since errors add up when composing the derivatives. But if this

reasonning is relevant in a mathematical framework, it simply causes the derivative to vanish at some point,

because there is no guarantee that x0 + ε and x0 will be encoded as two differents numbers.

Floating-points arithmetic. The fact that there are infinitely many numbers and only a finite number of

transistors implies that not all real numbers can be represented, and that only a certain number of decimals are
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significant. For instance, a number like 0.1 is expressed internally in the following way:

0.1⇝ +︸︷︷︸
sign

1.00000000︸ ︷︷ ︸
mantissa

× 10−1︸︷︷︸
exponent

,

and inaccuracy occurs when an operation is performed between two numbers of very different orders of magnitude,

as illustrated Table 3.2, where we write the successive operations used to compute 105 + 0.066567896.

Operation Remark
1.00000000× 105 + 0.066567896
= 1.00000000× 105 + 0.00000066× 105 Convertion to the same exponent
= 1.00000066× 105 Loss of information

Table 3.2: Loss of information using floating-points arithmetic.

The consequence on differentiation is that, for ε equal to the machine precision,

x0 + ε− x0 =

0, Float,

ε, Maths.

The solution of the forward automatic differentiation implemented in the Julia package ForwardDiff is to

separate x0 and ε along two dimensions, using the so-called dual Numbers.

Dual Numbers. The dual numbers are a two-dimensional commutative unitary associative algebra over the real

numbers, arising from the reals by addition of a new element ε with the property ε2 = 0 (ε is a nilpotent element).

They were introduced by William Clifford in 1873. Such a number writes uniquely as z = a + εb =: (a, b),

for some a, b ∈ R. Their use in automatic differentiation is straightforward, because for these numbers Taylor

expansions yields:

f(x0 + εh) = f(x0) + f ′(x0)hε+O(ε2) = f(x0) + f ′(x0)hε =
(
f(x0), f

′(x0)h
)
,

meaning that we compute both the value and the derivative of the function in one evaluation, in an exact way.

This framework readily extends in higher dimensions into multi-duals:

∀i, j εiεj = 0,

f(x0 + ε) = f(x0) +∇f(a) · ε =
(
f(x0),∇f(x0)

)
We can again compute∇f in a single (vector) evaluation instead of computing ∂if separately.

5.3 Towards type-stable automatic differentiation in Julia, conclusion and perspectives

The use of ForwardDiff has many advantages in terms of implementation (one line only to compute a Jacobian of

composed vector functions) but introduces a high execution cost, as we are in a case where type-stability and

thus pre-allocations are more difficult to obtain simultaneously. We gain in simplicity of use but the optimization

of the code requires a real understanding of some internal mechanisms of Julia.
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Although the current version of the code is satisfactory from a research point of view (a few minutes to run

test cases of one or two dozens of roads), it is still very insufficient if we envisage a scale-up to an industrial

environment, with test cases of an entire city with several hundred or even thousands of roads to simulate.

After profiling the code, it is clear that most of the computation time is spent computing the gradient of the

linear programming problem, which is not surprising since the graph structure is used extensively.

Beyond the necessary considerations of parallelization, it seems that large gains in execution time and

memory are achievable in a first step by reaching a suitable mix between static pre-allocations and dynamic

allocations. In the first case the initial launch cost is increased for the benefit of a faster execution, contrary to

the second case where the initial cost is lower at the cost of an overload of the execution time. In this case, it is

not guaranteed that the hardware supports too many simultaneous allocations, but a too slow execution of the

optimization algorithm is also undesirable, more specifically in a crisis management context.

The natural perspective that emerges from this is to achieve real-time optimal control over large networks,

such as thousands of edges for a city like Paris. Amongst all tools that can be used to achieve this, graph reduction

and reduced order models seems to be of great interest and the later is investigated in chapter 5 which is devoted

to the hyper-reduction of the finite volumes scheme on a network.
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Chapter 4

Tools for ROMs and ML

Eigenmode decomposition simplifies data by preserving the essential structure and removing redundancies.

This allows complex equations to be transformed into a compact, reliable system by means of a well-chosen

projection. However, in the presence of strong non-linearity, conventional methods such as EIM and DEIM run

into difficulties. We propose to address this issue using neural networks. After a brief introduction to the latter, the

chapter ends with a presentation of stochastic gradient descent. This is an efficient approach to high-dimensional

optimization that lies behind methods such as Adam and RMS prop, which are commonly found in standard

machine learning libraries.

1 Reduced Order Modeling

The numerical solution of optimal control problems involves a large number of calls to the solver of the physical

system under consideration, as with the direct adjoint looping (DAL) method [49] presented in chapter 2. In order

to reduce the computation time associated with these methods, we are interested in the possibility of capturing

most of the dynamics with as few degrees of freedom as possible. A common approach to achieving this goal is

to use the Reduced Order Model (ROM) framework. This framework is designed to create a compact yet precise

model capable of accurately representing a range of parameter variations. The ultimate goal is to enable real-time

simulation of parameterized models. This approach is rooted in the recognition that natural phenomena typically

exhibit an inherent structure that allows them to be effectively characterized by the superimposition of their

most significant patterns. Our approach is based on a priori data from full-order models (FOMs), such as finite

elements or finite volumes, which we use to construct an appropriate low-rank subspace onto which we project

the dynamics. However, this method quickly runs into difficulties due to significant nonlinearities. To solve this

problem, we will develop an adapted closure mechanism to efficiently handle projection errors. Our approach is

to exploit the remarkable approximation capabilities of a neural network through a data-driven strategy.

See [1, 89] for a comprehensive review of this topic. We’re now going to introduce some of the tools that we

will need in the following.

1.1 Best low-rank approximation

Any matrix A ∈Mn,m(R) admits a proper orthogonal decomposition given via singular values decomposition

(SVD) due to the fact that we can always apply the spectral theorem to the symetric positive definite matrices
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ATA and AAT . This yields the following theorem:

Theorem 9. (SVD) Let A ∈ Mn,m(R) of rank p ≤ min {n,m}. Then there exists positive real numbers

σ1 ≥ · · · ≥ σp > 0, and orthogonal matrices U ∈ On(R), V ∈ Om(R), such that:

A = UΣV T , Σ =

(
D 0

0 0

)
, D = diag(σ1, · · · , σp). (4.1)

Moreover, this theorem is immediately related to our compression concern, since it allows us to approximate

any matrix by one of lower rank:

Theorem 10. Eckart-Young (1936) Let A ∈Mn,m(R) of rank p. Then, for any r ≤ p:

min
rg(X)=r

∥A−X∥F = ∥A−Ar∥F , (4.2)

where Ar = UrΣrV
T
r , with Ur,Σr and V T

r being the r-th firsts columns of U,Σ and V T respectively.

1.2 POD based Reduced Order Modeling (POD-ROM)

Let us consider a system of ODEs in high dimension Nx >> 1, obtained for instance from the discretization of a

PDE and indexed by a family of parameters µ ∈ R:

dx

dt
(t;µ) = F (x(t;µ);µ), x(t;µ) ∈ RNx . (4.3)

In order to reduce the dimension, we make the fundamental hypothesis that the high dimensionnal trajectory

x(t;µ) can be represented by a trajectory x̂(t;µ) that lies on a low-dimensionnal hyperplane, i.e. there exists a

vectorial subspace V := span{ϕj}rj=1 with r << Nx, and xref ∈ RNx such that:

x(t;µ) ≈ xref +Φx̂(t;µ), Φ =

 | |
ϕ1 · · · ϕr

| |

 ∈ RNx×r. (4.4)

We will also call Φ a decoder since it maps a low-rank solution x̂ ∈ Rr onto the full dimensional space RNx .

From now on, we will suppose without loss of generality that xref ≡ 0, for the sake of readability.

Remark 6. Note that the fundamental hypothesis above assumes some linearity in the behavior of the solution,

thus will not hold in non-linear cases. This is the topic of subsection 1.3.

We apply the SVD, which is named the proper orthogonal decomposition (POD) in this context, on snapshots

of the full model (4.3) to find an orthogonal basis on which to express the solution, such that most of the

useful information is stored in the first low-frequency coefficients. The snapshots are data considered to be of

high-fidelity since they are computed using the full order model on a fine mesh.

The purpose of the POD is then to determinate a low-rank approximation basis, a decoder, Φ from the datum

x(t;µ). To this end, we use the approach of [47] that is to form the snapshots matrix:

X :=
(
x(t1, µ1), · · · , x(tNt , µ1), · · · , x(t1, µNµ), · · · , x(tNt , µNµ)

)
,
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which is of size Nx ×NµNt. We then look for any K ≤ r for a decoder ΦK that solves:

min
ΦT

KΦK=id

∥∥X − ΦKΦTKX
∥∥
F
.

By Theorem 10, the solution is given by the K firsts columns of the eigen vectors of the SVD decomposition:

ΦK := (U1 · · ·UK), X = UΣV T . (4.5)

Remark 7. The numbers σi, called the singular values of X , are equal to the eigenvalues of both X TX and

XX T , and are ordered in decreasing order: σ1 ≥ · · · ≥ σp ≥ 0. To make an analogy with Fourier series,

note that the eigenvectors associated with the first eigenvalues are called low-frequency modes. Ignoring the

information provided by the smallest eigenvalues is then similar to using a low-pass filter.

With this construction we now are able to project (4.3) on the hyperplane generated by the snapshots. Writing

x̂ := ΦTx, we now consider:
dx̂

dt
(t;µ) = ΦTF (x(t;µ);µ), (4.6)

that is approximated, using our fundamental hypothesis, by:

dx̂

dt
(t;µ) = ΦTF (Φx̂(t;µ);µ). (4.7)

In the case where F is linear, we are then led to solve:

dx̂

dt
(t;µ) =

(
ΦTFΦ

)
(x̂(t;µ);µ). (4.8)

We perform a single off-line calculation of the full-dimensional matrix, denoted as L := ΦTFΦ. Subsequent

numerical integration exclusively operates within the reduced dimension. During the online phase, for example

using explicit Euler integration on a regular grid (tn)1≤n≤Nt and writing x̂nµ := x̂(tn;µ), we compute:

x̂n+1
µ = x̂nµ +∆tLx̂nµ = (I +∆tL)x̂nµ, 1 ≤ n ≤ Nt − 1. (4.9)

A nonlinear function F leads to the obligation to compute the high dimensional expression F (Φx̂nµ) at each

time step. This is obviously not efficient in a reduction framework. An approach to deal with this case is presented

in the next section.

1.3 Nonlinear case: DEIM

The nonlinarity of the flux makes the reduced basis from snapshots inneficient to compress the trajectory of the

system because the evaluation of the nonlinearity costs as mush as the resolution of the high fidelity model. The

construction of an actual low rank evaluation of the non linear flux that we present here is inspired by what is

often known as sparse sampling [35] and relies on the statement that meaningful data are sparse in the set of

all possibles data, i.e. natural data are compressible. From that, one can infer that a suitable configuration of

sparse interpolations points (sometimes refered to as sensors) allows an accurate reconstruction of the signal

without needing the entier sampling of the high fidelity data of reference. This principle has a lot of applications
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[67, 68, 96] and we use it here to sparsely sample the nonlinarity in the ODE. This is achieved thanks to the

low-rank structure of the flux that we capture via a second SVD. We first reduce the flux separately, which is

called hyper-reduction [85]. We build the flux snapshots:

N :=
(
F (x(t1, µ1);µ1), · · · , F (x(tNt , µ1);µ1), · · · , F (x(t1, µNµ);µNµ), · · · , F (x(tNt , µNµ);µNµ)

)
,

that we also decompose using SVD:

N = ΞΛW T ,

where Ξ = (ξi) and W = (wj) are orthogonal, and Λ = (λk) the matrix of corresponding singular values. The

information given by this new modal basis allows us to construct a sparse sampling matrix P ∈ Rp×Nx thanks

to a greedy algorithm that selects the p sampling locations such as maximizing recursively the projection error

between ξk and [ξ1, · · · , ξk−1], for k ≤ p. More details about the construction of P and further considerations

can be found in the work of [56]. The sparse sampling matrix P is then used to construct the oblic projector of

rank p << Nx:

Πob := Ξp
(
P TΞp

)−1
P T ,

such that we now replace the costly resolution of Equation 4.7 by:

dx̂

dt
(t;µ) = ΦTΠobF (Φx̂(t;µ)). (4.10)

The advantage of this formulation is that the flow evaluation now requires only p << Nx evaluation of the

nonlinarity, at the coordinates selected by the projector.

2 Deep learning tools

The last section of this chapter introduces classical considerations in deep learning, which is a tool that is more

and more mixed with usual numerical analysis [69] and is now extensively used in various fields such as image

processing, language analysis or fast PDE resolution. We first introduce the overall context of neural networks

with a focus on multilinear perceptrons (MLP). Then, we give some insights about the backbone of the numerical

feasibility of those methods, the so-called stochastic gradient descent (SGD).

2.1 Neural Networks

A neural network is a parametric non-linear function, that is obtained as the composition of linear weighted

functions with nonlinear (activation) functions denoted σ. The classic way of representing this is by stacking

layers together:

Input layer z0,

Hidden layers zk = σ
(
W kzk−1 + bk

)
, 1 ≤ k ≤ l − 1

Output layer zl =W lzl−1 + bl,
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where we call θ := {W k, bk}1≤k≤l the trainable parameters, and activation functions σ(·) are usually choosen

amongst tanh, ReLU, softmax, ...

Neural networks provide a very effective tool for approximating functions, and its use can be justified

theoretically by numerous universal approximation theorems of which we give here one of the first formulations

by Cybenko:

Theorem 11. Universal approximation, [28, Cybenko, 1989]. The set of feed-forward neural networks is dense

in the set of functions that are continuous on a given compact, for the uniform topology:

Writing K a compact subset of Rn and defining

NN = {x 7→ C · (σ ◦ (W · x+ b)); A ∈Mk,n(R), b ∈ Rk, C ∈Mm,k(R)},

then

NN = C(K;Rm), for ∥·∥∞,K .

There are refinements of this theorem which give the same kind of results for less regular functions, such as

Bochner-Lebesgue integrable functions, and for bounded networks with a control of the dimension, see [39] for a

review. Although other architectures have proved highly effective for certain classes of problems (CNN in image

processing, RNN for time series, transformers for language processing, ...), we will restrict ourselves to the class

introduced above.

To find the optimal trainable parameters θ = {W k, bk}, we perform a gradient-based optimization of a loss

function L that mainly quantifies the data attachment of the parameterized model, as well as regularization

criteria. A prototypical example of such methods is explained in the next subsection.

2.2 Stochastic Gradient Decent

A central element in the implementation of neural networks is the ability to automatically and accurately compute

high-dimensional gradients. Automatic differentiation being the subject of subsection 5.2, we introduce here the

essential tool for the practical feasibility of high-dimensional computations: the stochastic gradient descent [84].

We begin by discussing its theoretical construction before presenting the algorithms that enable it to be used in

practice.

Continuous problem: Let (Ω,A,P) be a probability space, (U , < ·, · >) be a Hilbert space whose norm

is denoted by ∥·∥, and Uad ⊂ U be a closed convex subset. Let W : Ω → W be a random variable, and

j : U ×W → R a function that is differentiable in its first variable and integrable in the second:

∀w ∈ W, j(·, w) is differentiable,

∀u ∈ Uad, j(u, ·) ∈ L1 (Ω,A,P) .

The generic problem of interest is the following minimization problem:

(P) : inf
u∈Uad

J(u), where J : Uad → R
u 7→ EW (j(u,W ))

. (4.11)
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Writting µ := P ◦W−1 the pushforward measure of P by W , we have:

EW (j(u,W )) =

∫
Ω
j(u,W (ω)) dP(ω) =

∫
W
j(u,w) dµ(w).

By differentiability of j and derivation under the integral sign, we also have :

∀u ∈ Uad, ∇J(u) = EW (∇uj(u,W )). (4.12)

Approximated problem: The numerical approximation of the previous problem leads us to consider the

following approximate Monte-Carlo problem:

(Papp) : inf
u∈Uad

Japp, where Japp : Uad → R
u 7→ 1

N

∑N
i=1 j(u,w

i)

, (4.13)

where
(
w1, · · · , wm

)
is the realization of an i.i.d. m-sample of W , i.e. an i.i.d. sequence

(
W 1, · · · ,Wm

)
where

∀i, W i has the same distribution as W .

We therefore obtain the following estimate:

∇J(u) ≃ ∇Japp(u) =
1

N

N∑
i=1

∇uj(u,wi). (4.14)

This formulation is not numerically advantageous, as it involves calculating a large number of gradients at each

step, N being in machine learning the size of the dataset. It is indeed conventional [25] to consider a projected

gradient descent algorithm:

u0 given, uk+1 ← ΠUad

(
uk − δk∇Japp(u)

)
, (4.15)

involving the calculation of m gradients, possibly in high dimension, at each iteration k.

To address this problem, we will avoid calculating the expectation along W by randomly picking a sample

following the law of W at each iteration, forming a sequence of estimators converging to the solution of the

problem:

STOCHASTIC GRADIENT DESCENT ALGORITHM (SGD)

1. Initialization.
k = 0 : chose u0 ∈ U and ρ0 ∈ R∗

+.

2. Iteration k. Pick a sample wk+1 from the random variable W and

update:

uk+1 = ΠUad

(
uk − δk∇uj(uk, wk+1)

)
.

We notice that the stochastic gradient ∇uj(uk, w) is an unbiased estimator of the deterministic gradient ∇J(u)
according to (4.12).

To improve convergence, we use the stochastic gradient "minibatch", which consists of randomly drawing a

"batch", i.e. an n-arrangement in J1, NKn, calculating the gradient using the n corresponding realizations of the
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wi, and repeating until all the training data have been run through. Then start again.

SGD MINI-BATCH

1. Initialization.
k = 0 : chose u0 ∈ U and δ0 ∈ R∗

+.

2. Iteration k.

• We draw wk+1 from W , which we partition into N/n batches (bt)t
of size n.

• batches iterations:

ut+1 ← ut − δt
1

|bt|
∑
i∈bt

∇uj(ut, i).
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Chapter 5

Comparative approaches to hyper-reduction
using deep learning

1 General framework

In order to use large-scale modeling tools, for example in a control context where the resolution of a large

nonlinear system is repeatedly required, it is relevant to consider order reduction. Such methods aim to simulate

complex models in real time by appropriately compressing their degrees of freedom. Morally, the approach is

close to what is classically done with Fourier series, where the unknown is decomposed on a modal basis so as to

preserve the essential dynamics once the high frequencies have been cut off:

ρ(t) ≈
Nm∑
k=0

ak(t)ϕk.

In our work, the expansion basis will be created from data generated by the model, called snapshots.

For our purpose, we want to solve congestion problems in a large city, involving solving the LWR model

several times on a large road network in order to use the optimal control tools introduced in chapter 2. The

system can be parameterized with respect to quantities such as maximum velocities (vmax
i )i, maximum densities

Figure 5.1: By Slevin48an209 - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=95887101
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(ρmax
i )i, or initial data (ρi,0)i. For the sake of generality, we will refer to such parameters as µ in all that follows.

For more details on this model, please refer to chapter 2.∂tρi(t, x;µ) + ∂xfi(ρi(t, x;µ);µ) = 0, (t, x) ∈ (0, T )× [ai, bi],

ρi(0, x;µ) = ρi,0(x;µ), x ∈ [ai, bi],
, 1 ≤ i ≤ Nr.

After a spatial discretization using Nc cells per road, thus writing Nx := NrNc the total degrees of freedom

of the parameterized numerical unknown ρ(· ;µ) ∈ RNx on the network, we obtain the following system of

ODEs: 
dρ
dt

(
t;µ
)
= F (ρ(t;µ);µ) , t ∈ (0, T ),

ρ(t = 0;µ) = ρ0
µ ∈ RNx .

(5.1)

Remark 8. We need a fairly large number of cells per route to obtain a high-fidelity model, which will serve as a

baseline in our investigations.

The goal now is to build a surrogate model with an approached solution ρ̂ ∈ RNm associated to a low rank

flux F̂(ρ̂), with Nm << Nx, on the form:

dρ̂

dt
= F̂(ρ̂), dist(ρ̂,ρ) is small. (5.2)

We aim to identify an appropriate low-rank subspace that can provide an accurate solution representation.

In line with the POD-ROM framework, our goal is to develop an algorithm that divides the process into offline

and online phases. During the offline phase, we create this subspace using prior data, while the online phase

exclusively involves low-dimensional computations.

To achieve this, we employ the snapshot approach, wherein we calculate the full-order solution for a set

comprising Nµ parameters Pµ := {µk, 1 ≤ k ≤ Nµ} and Nt time steps Pt := {tn, 1 ≤ n ≤ Nt} to generate

the snapshot matrix S ∈MNx,NµNt(R). WritingNs := Nµ×Nt the number of snapshots and ρj,nµk = ρj(tn;µk),

we have:

S :=



ρ1,1µ1 · · · ρ1,Nt
µ1 · · · · · · · · · ρ1,1µNµ

· · · ρ1,Nt
µNµ

...
...

...
...

...
...

ρNx,1
µ1 · · · ρNx,Nt

µ1 · · · · · · · · · ρNx,1
µNµ

· · · ρNx,Nt
µNµ


, (5.3)

to which we apply a Proper Orthogonal Decomposition (POD):

S = UΣV T ,

with U ∈ ONx(R), V ∈ ONs(R) and Σ ∈MNx,Ns(R) of rank p such that:

∀1 ≤ i ≤ p : Σi,i = σi ≥ 0, ∀i > p : Σi,i = 0, ∀i ̸= j : Σi,j = 0.
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The reduced basis with Nm modes is given by the first Nm columns of the matrix U , i.e.

Φ =
(
ϕ1 · · · ϕNm

)
:=
(
U1 · · · UNm

)
. (5.4)

We use it to apply a Galerkin projection on the high-fidelity system, which yields the following reduced ODE:ΦT dρdt
(
t;µ
)
= ΦTF (ρ(t;µ);µ) , t ∈ (0, T ),

ΦTρ(t = 0;µ) = ΦTρ0
µ ∈ RNm ,

(5.5)

that we rewrite, using the approximation from the fundamental hypothesis Φρ̂ ≈ ρ:
dρ̂
dt

(
t;µ
)
= ΦTF (Φρ̂(t;µ);µ) , t ∈ (0, T ),

ρ̂(t = 0;µ) = ρ̂0
µ ∈ RNm .

(5.6)

However, the non-linearity of F raises important questions. Indeed, we can see that evaluating ΦTF(Φ ·) has

essentially the same cost as F and moreover needs to be done at each time step, thus obliterating any gain in

order reduction. A classical way to deal with this problem is to add an hyper-reduction such as the Dynamic

Empirical Interpolation Method (DEIM) presented in subsection 1.3:

dρ̂

dt
(t;µ) = F̂DEIM (ρ̂(t;µ);µ). (5.7)

However, strong nonlinearity in the flux F makes it necessary to use an increasing number of modes to get an

accurate dynamic. Therefore, we usually add a closure term, which amounts to consider:

dρ̂

dt
(t;µ) = F̂DEIM (ρ̂(t;µ);µ) + Cµ(ρ̂(t;µ)), (5.8)

and determine an appropriate Cµ that corrects out of the retained modes the error made on the truncated modes.

This point of view is widely discussed in [1, 89].

We highlight the limitations of the DEIM approach for genuine nonlinear flow scenarios in Figure 5.2. In this

context, we employ the LWR model on two roads as the governing equation, with specific parameters and model

details provided in subsection 3.1.

We chose to simultaneously compute a hyper-reduction flux and a closure term to ensure both reliability and

stability of the reduction, all within a model-agnostic framework that derives the flux solely from low-dimensional

information, as schematically illustrated Figure 5.3. In the following section, we describe our approach to address

this challenge.

2 Presentation of our strategy

The approach that we propose in this work is to use a neural network to learn the hyper-reduction and the closure

in a same function. This leads us to consider the system:

dρ̂

dt
(t;µ) = F̂θ(ρ̂(t;µ),µ), (5.9)

93



Comparative approaches to hyper-reduction using deep learning Strasbourg University

0 3 6 9 12 15 18
15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5
Reduced

Ref sol
DEIM

0 100 200 300 400 500

10 1

100

Errors in time (log scale)
DEIM

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1.0

Full
Ref sol
DEIM

0 100 200 300 400 500

10 3

10 2

Errors in time (log scale)
DEIM

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1.0
FV

Ref sol
DEIM

0 100 200 300 400 500

10 3

10 2

Errors in time (log scale)
DEIM

Figure 5.2: Reference solution (Finite Volumes) and DEIM reconstruction.
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Figure 5.3: Objective of the deep hyper-reduction method.
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where F̂θ is a neural network with weights θ = (θ1, · · · , θp) that takes (ρ̂(tn;µ),µ) as input and returns a

prediction of the compressed flux F̂θ(ρ̂(tn;µ),µ) ≈ ΦTF(ρ(tn;µ);µ). We see that this network is precisely

designed to recover the benefits of a reduction, since the online stage uses the reduced dimension only, see

Figure 5.3. Note that learning the hyper-reduction only would amount to learn ΦtF(Φρ̂) instead, where ρ̂ is the

compression of the full order trajectories.

Remark 9. To simplify the notations in what follows, we will always consider a constant time step ∆t such that,

for each integer n, we write tn = (n− 1)∆t. Moreover, we write ρnµ := ρ(tn;µ) for all (n,µ).

In everything that follows, we consider an Euler explicit time integration of Equation 5.9:ρ̂n+1
µ = ρ̂nµ +∆t F̂θ(ρ̂

n
µ,µ),

ρ̂1
µ = ρ̂init ∈ RNm ,

(5.10)

i.e. the neural network’s objective is to calculate a time integrator for a single iteration.

We will compare two approaches that produce the same type of network, but differ in their training strategies.

In either case, the network will be a multi-linear perceptron (MLP), with hyper-parameters described in detail

below.

The dataset is assembled as follows:

• Snapshot construction: For each µ ∈ Pµ we solve the high-fidelity Equation 5.1 from which we save the

pairs {(
ρµ,F (ρµ;µ)

)
; µ ∈ Pµ

}
. (5.11)

• Construction of the reduced space: An SVD is performed on the snapshots to form and store the encoding

matrix ΦT as well as the projections of the states and the fluxes

ρ̂projµ := ΦTρµ, F̂projµ := ΦTF (ρµ;µ) . (5.12)

• Neural network I/O: The network will therefore have inputs
(
ρ̂projµ ,µ

)
to predict the targets F̂projµ .

Our neural network is specifically designed to acquire knowledge about an integration flux, which in other

words means it grasps the underlying physics of our problem or the model. During training, we employ two

well-established methods commonly used in this field: model fitting and trajectory fitting [1]. The former involves

straightforward computation based on the neural network’s output, while the latter is conceptually more intuitive

as it remains independent of the model and directly compares solutions.

2.1 Neural closure (NC):

Our first approach of the deep-hyper-reduction strategy is to compare directly the output of the neural network to

its prediction target, which leads to consider the minimization of the model error:

LNC(θ) = MSE
(
F̂NCθ (ρ̂projµ ;µ), F̂projµ

)
=

1

NµNt

∑
µ∈Pµ
tn∈Pt

∥∥∥F̂NCθ (ρ̂projµ (tn);µ)− F̂projµ (tn)
∥∥∥2. (5.13)
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2.2 Differentiable programming (DP):

In the second approach, we attempt to learn the whole integrator over a given number K ∈ N of time steps. More

precisely, writing the explicit time discretization of Equation 5.9 as:

ρ̂n+1
µ = ρ̂nµ + F̂DPθ (ρ̂nµ;µ)∆t =: S1

θ (ρ̂
n
µ), (5.14)

we define by induction the integrator SKθ yielding the reduced state ρ̂n+Kµ :

ρ̂n+2
µ = ρ̂n+1

µ + F̂DPθ (ρ̂n+1
µ ,µ)∆t

= S1
θ (ρ̂

n
µ) + F̂DPθ (S1

θ (ρ̂
n
µ),µ)∆t

=: S2
θ (ρ̂

n
µ),

ρ̂n+3
µ = · · · ,

ρ̂n+Kµ =: SKθ (ρ̂nµ).

We will hereafter denote the reduced state at time tn+k predicted by the neural network from a low-dimension

state ρ̂nµ at time tn by:

ρ̂DP,n+kµ,θ := Skθ (ρ̂
n
µ). (5.15)

Our baseline will be the compression of the high-fidelity state ρ̂projµ := ΦTρµ, thus we search for optimal

parameters θopt such that:

SKθopt(ρ̂
proj,n
µ ) = ρ̂DP,n+Kµ,θopt

≈ ρ̂proj,n+Kµ . (5.16)

We therefore minimize the following loss:

LDPK (θ) = MSE(ρ̂DPµ,θ , ρ̂
proj
µ ) =

1

Nµ

1

Nt −K
∑

1≤n≤N−K
µ∈Pµ

∥∥∥ρ̂DP,n+Kµ,θ − ρ̂proj,n+Kµ

∥∥∥2. (5.17)

Another loss that we will consider is the time average of the previous one:

LDPK,int(θ) =
1

Nµ

1

Nt −K
∑

1≤n≤N−K
µ∈Pµ

 1

K

∑
1≤k≤K

∥∥∥ρ̂DP,n+kµ,θ − ρ̂proj,n+Kµ

∥∥∥2
 . (5.18)

This formulation has the advantage of using information not only from ρ̂n+Kµ but also from the entire trajectory

{ρ̂n+kµ , 0 ≤ k ≤ K}. In this way, we hope to obtain a more generalizable neural network.

We observe that for K = 1, this approach boils down to the model learning introduced before, indeed:

ρ̂DP,n+1
µ,θ − ρ̂proj,n+1

µ = ρ̂nµ + F̂DPθ (ρ̂nµ;µ)∆t− ΦT
(
ρnµ + F(ρµ)∆t

)
(5.19)

= (ρ̂nµ − ρ̂nµ) +
(
F̂DPθ (ρ̂nµ;µ)− F̂projµ

)
∆t, (5.20)

=
(
F̂DPθ (ρ̂nµ;µ)− F̂projµ

)
∆t, (5.21)

with the difference that the flow discrepancy is now rescaled by the time step. This form of renormalization

is not trivial, as it’s widely recognized that neural networks tend to benefit from techniques such as batch
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Figure 5.4: Vehicle densities at final time for different values of maximum density on the second road.

normalization [86]. We will therefore conduct a comparison between model training without this renormalization

and trajectory learning specifically for the case when K equals 1. This comparison will help emphasize the

impact of time rescaling.

3 Numerical results

3.1 Test-case presentation

We want to describe different types of dynamics in the two-road model presented in Figure 1.2, which are

influenced by the maximum density allowed on each road and denoted by µ := ρmax ∈ R2. We initialize the

road network with constant values that are respectively 0.6 on the road going in the junction and 0.1 for the

outgoing one. We impose constant density of 0.6 at the network entrance and a free exit condition. Setting

µ1 = 1, and varying µ2 = ρmax2 between 0.1 and 0.9 results in different congestion phenomena, as shown

in Figure 5.4. Low values of µ2 result in the most congested intersection, with a large shock wave propagating

towards the left. Conversely, higher values of µ2 lead to smaller shock waves, as vehicles are permitted to cross

the intersection, resulting in a rarefaction wave propagating in the right direction.
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Symbol Name Values

T Final time 0.7

Nt Number of time steps 562

Nx Total number of cells on the network 800

Nm Number of modes {5, 20}
Nµ Number of values taken by µ 300

µ Model parameter (ρmax) {1} × [0.1, 0.9]Nµ

Table 5.1: Full and reduced model parameters.

Architecture and hyperparameters: All approaches are trained on the same fully connected neural network

of 4 layers with 32 neurons each and tanh activation functions. We trained the networks with Adam optimizer,

batches of size 16 and a 30% dropout rate. The learning rate was scheduled as follows:

iterations 1-10 : lr = 10−3,

iterations k>10 : lrk = lrk−1 × e−0.1.

We uniformly sampled 9 values of µ2 between 0.1 and 0.9 as validation data for both approaches.

3.2 Results

We base our comparisons on the DEIM method. Figure 5.2 shows the limitations of this approach for our problem,

since the state is not well captured at all with oscillations instead of shock, and no useful information about its

height. The DEIM state is essentially equal to the initial condition.

Training: In Figure 5.5, Figure 5.6, and Figure 5.7, the left side displays learning processes for NC and DP

approaches with 5 and 20 modes, both with and without time averaging. On the right side, the figures depict the

corresponding MSE errors at various time points, calculated for 12 equidistant values of µ2 within the range of

[0.1, 0.9]. We observe that even though the training loss is always decreasing, the validation loss is constant for

NC. We thus stop the training early, after 500 epochs. However, the validation losses for DP are decreasing with

the training, hence we continue the learning for 2000 epochs. It seems from the MSEs that the worst predictions

are generally made for long times and small parameters, i.e. the prediction of the final times of shock wave

propagation. The higher values of µ2 that correspond to rarefactions are, conversely, more successfully learned.

But, except for perhaps the NC MSE, the MSE is neither linear nor convex. This highlights the nonlinearity of

the effect of the parameters on the predictions.

Predictions: Figure 5.8 shows the comparison of NC and DP with 5 modes and without time averaging.

It displays time errors on the right side, and corresponding states at time iteration 400 on the left side. The

DEIM modes are unsurprisingly distant from the references, resulting in incorrect density. The NC approach

enhances the outcome by providing a reasonable shock height with fewer oscillations. However, the location of

the front is poorly anticipated by a wavefront positioned approximately halfway from the reference wavefront.

In contrast, the DP method shows great reconstruction properties since the modes are well learned, allowing
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Figure 5.5: Loss convergence over 500 epochs for the Neural Closure strategy.

accurate reconstruction of the full state. With only 5 modes, the FV state is somewhat diffuse, but increasing the

number of modes allows the FV wavefront to be tracked very well, with a few spurious oscillations due to modal

decomposition.

The same comparison with the 20 modes is made in Figure 5.9. We see more oscillations in the reduced

solution of reference, and a lot of small oscillations for the DEIM state. The NC yields a too small amplitude and

the same wavefront as before, whereas the DP’s amplitude is truly above the reference but still with a reasonable

wavefront location.

Figure 5.10 and Figure 5.11, demonstrate that successively adding time iterations (K = 50) and time

averaging greatly improves the results. Indeed, the full solution is very well fitted both with respect to amplitude

and wavefront locations. Furthermore, the error in time is flattened, suggesting a better stability.

4 Conclusion and perspectives

In this work, we have introduced a new way to compute a closed hyper-reduction based on a deep learning

approach. Two methods are investigated, inspired from the trajectory fitting and the model fitting frameworks.

The numerical results obtained on the single-junction network have shown that the trajectory fitting method

seems effective in providing an accurate reduced dynamics for all kind of flows, even the most congested ones.
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(b) 5 modes 50 iterations
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(c) 5 modes 50 iterations with time integration

Figure 5.6: Loss convergence over 2000 epochs for the Differentiable Physics strategy using 5 modes.
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(a) 20 modes 1 iteration
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(b) 20 modes 50 iterations
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(c) 20 modes 50 iterations with time integration

Figure 5.7: Loss convergence over 2000 epochs for the Differentiable Physics strategy using 20 modes.
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Figure 5.8: Compare 5 modes 1 iter
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Figure 5.9: Compare 20 modes 1 iter
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Figure 5.10: Compare 5 modes 50 iter with time integration
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Figure 5.11: Compare 20 modes 50 iter with time integration
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This work is still preliminary and can be pursued in several directions. Firstly, it would be interesting to

extend the method for more complex networks as those introduced in chapter 2. A suitable interface to the

optimal control algorithm would enable the problem to be extended to larger networks, which could lead to real

applications using standard computers, and therefore more easily deployable.

Secondly, the training process can be improved with better architecture and/or parameters. It would be

interesting to use reccurent neural networks or long-short-term memory, as they are suited for time evolving

problems. Investigations on suitable activation functions and normalizations should help improve the overall

process.

It would also be interesting to test numerically the conjecture made by Noack et al. [70] and mentioned in [1]

that the network trained with model regression (Neural Closure) extrapolates better outside the training interval

than the one trained with trajectory regression (Differentiable Physics). However, the latter is claimed to be more

accurate in the reconstructive regime, i.e. inside the training interval.
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Chapter 6

Numerical schemes for mixture theory models
with filling constraint: application to biofilm
ecosystems.

This chapter is a proceedings written during the CEMRACS summer school in 2022 in collaboration with Leo

Meyers and Florent Noisette under the supervision of Bastien Polizzi, Sébastian Minjeaud, Olivier Bernard and

Thierry Goudon. It is currently being reviewed for the journal ESAIM: Proceedings and Surveys.

1 Introduction

There are many physical cases of flows composed of different gas or liquids interacting together. For example,

tissue bodies and tumors can be described as a set of interacting viscoelastic materials. Powder-snow avalanches

can be described as a mixture of fluid phases. Similarly, the rheology of the gut microbiota and its interactions

with chyme (a mixture of partially digested food and water) and the host can be modeled using mixture theory

[57]. Complex flows can also be found in many engineering applications involving multiphase systems such as

boiling water in nuclear reactors. Therefore, the framework of mixture theory is a common tool to model and

study complex flows.

Mathematical models based on mixture theory take the form of systems of partial derivative equations,

coupled with algebraic constraints. The theoretical analysis of such systems and the characterization of the

qualitative properties of the solutions are extremely complicated [9, 45, 52, 88]. Thus, it is important to develop

efficient numerical methods able to accurately capture the solutions [15, 21, 22, 34].

In this article, we are interested in applying mixture models to describe biofilm dynamics. Indeed, mixture

theory revealed a powerful approach to represent microbial biofilms where a consortium of cells is embedded in

a polymeric structure [22, 74, 75].

In mixture theory, the unknowns of the model are requested to satisfy certain constraints. As far as the

continuous equations are considered, several equivalent formulations of these constraints can be derived and

used to bring out the properties of the model. However, the preservation of these constraints by a numerical

scheme is a challenge and, once a discretization setup has been adopted, it is not clear that all the formulations

of the constraints remain equivalent. This issue can induce a loss of stability and accuracy, and eventually a
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dramatic loss of key physical properties of the simulated flows. Thus, we adapt and extend the numerical scheme

proposed in [10] in order to preserve these constraints. The numerical scheme will be tested and illustrated with

a multiphasic model representing the development of a photosynthetic biofilm, with the application for biofuel,

protein, or drug production.

The paper is organized as follows. The first section is dedicated to the mixture theory framework with a

presentation of the simplified model used to test our numerical scheme. The second section details the numerical

scheme and its properties. The third section presents the results and comparison with standard numerical schemes.

2 Mixture theory framework: application to biofilms

2.1 Mixture theory framework

The mixture theory framework [80], also known as mixture mechanics or continuum mechanics for fluid

dynamics, enables describing multi-phasic systems at the mesoscopic scale which is an intermediary scale

between microscopic and macroscopic scales. It was introduced in the 1960s by Truesdell [91, 93, 92] and

generalizes Navier-Stokes equations to multi-phasic systems. The mixture theory framework assumes that each

component of the mixture might be present at every point in space and at any time. Moreover, the system’s

physical properties (ex. viscosity, incompressibility, ...) are naturally included.

Consider a mixture of k components indexed by α ∈ J1, kK. Each component is locally described by its

volumetric mass density ρα, its volume fraction ϕα, and its local velocity vα. The volume fraction represents the

relative volume occupied by a component in an elementary normalized piece of volume. Thus, assuming that

there is no vacuum they satisfy the algebraic constraint

k∑
α=1

ϕα = 1. (6.1)

The mixture dynamic depends on mass transfers which are modeled through mass balance equations (6.2a) and

the local forces applied to the system which are accounted for through momentum balance equations (6.2b).

Thus, for each component the state variables satisfy the equations:

∂t(ραϕα) +∇x · (ραϕαvα) = Γα, (6.2a)

∂t(ραϕαvα) +∇x · (ραϕαvα ⊗ vα) +∇xπα + ϕα∇xP = ∇x · (ϕατα) + Fα + ϕαραg + Γαvα, (6.2b)

where Γi is the mass exchange term, πα is the elastic tensor, P is the common pressure, τα the viscous stress

tensor, Fα the friction forces, and g the gravity force. Depending on the considered application some forces can

be neglected and some others might be added.

Depending on the targeted application one can add for each component an extra equation for the evolution

of the density ρα. Nevertheless, liquids are weakly compressible, especially when pressure variations are

small. Therefore, in most cases, for liquids the component densities ρα can be assumed constant. When

all the component volumetric mass densities are assumed constant, the mass balance equations (6.2a) are

equivalent to ∂t(ϕα) +∇x · (ϕαvα) = Γα/ρα. Then summing these equations for each phase leads to the pseudo
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incompressibility constraint:

∇x ·

(∑
α

ϕαvα

)
=
∑
α

Γα
ρα
. (6.3)

This means that the local divergence of the averaged mixture velocity is equal to the local volume variation

induced by mass exchanges.

The elastic tensor πα can be interpreted as the internal pressure of the component. There are several ways

to model this term depending on the nature of the component. When the component α represents particles, as

in [10], there is a close-packing limit. This property can be enforced by using an appropriate expression for πα as

πα = γα
ϕβαα

ϕ⋆α − ϕα
, with γα > 0, and βα > 1, (6.4)

where 0 < ϕ⋆α < 1 is the so-called close-packing volume fraction limit. When the component α represents softer

material like living tissues it can take the form of standard pressure law:

πα = γα

(
ϕα
ϕ⋆α

)βα
, with γα > 0, and βα ⩾ 1, (6.5)

where 0 < ϕ⋆α < 1 is a threshold, see [22, 76]. More complex laws, based on the Flory–Huggins theory:

πα = −γα
(
ln(1− ϕα) + ϕα + ϕ2α

)
, with γα > 0, (6.6)

enable accounting for colligative properties at low concentrations, see [24].

The viscous stress tensor τα is defined by

τα = µαϕα
(
∇vα + t∇vα − 2

3(∇ · vα)Id
)
, (6.7)

where the constant µ > 0 stands for the component dynamic viscosity and t∇vα stands for the transpose of the

velocity differential matrix.

The friction force Fα is induced by the difference in the relative speed of the mixture components:

Fα =
∑
α′ ̸=α

fα,α′(vα′ − vα) (6.8)

with fα,α′ the friction force law between the components pair α and α′. As a first approximation, it can be

assumed that fα,α′ is a strictly positive constant. However, the friction between two components should vanish

when one of them disappears. Thus, a more realistic alternative is to consider that friction depends on the

local composition and use instead fα,α′(ϕαϕα′)rα,α′ . Nevertheless, the total momentum conservation principle

enforces that ∑
α

Fα = 0.

Dissolved components, like substrate, can be included. A dissolved component pwithin a phase α is described

through its concentration θp. In addition to the transport by the phase, it can also diffuse within the phase at a
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rate Dp. Thus, the mass balance equations for a dissolved component within the phase α writes:

∂t(ραϕαθp) +∇x · (ραϕαθpvα)−∇x · (ραϕαDp∇xθp) = Γp. (6.9)

where again the source term Γp represents the mass exchange associated to component p.

2.2 Mixture model for biofilm

We focus on a simplified 1D model for biofilms. Biofilms are made of microorganisms A (microalgae, bacteria,

or a consortium of both) and an extra-cellular matrix E . The biofilm is usually immersed in water L. Therefore,

according to mixture theory framework, see section 2.1, each component α ∈ {A, E ,L} is described through

three macroscopic variables: the mass density ρα, the volume fraction ϕα, and the velocity vα. By definition,

the volume fractions satisfy at any time the algebraic volume-filling constraint (6.1) which reads in this case:

ϕA + ϕE + ϕL = 1. In the one-dimensional case, the mass balance equations (6.2a) writes:

∂t(ραϕα) + ∂x(ραϕαvα) = Γα, α ∈ {A, E ,L}. (6.10)

In this context, the volumetric mass densities ρα can be assumed to be constant. Thus, the mixture averaged

velocity satisfies the pseudo incompressibility constraint (6.11) which writes here:

∂x
(
ϕAvA + ϕEvE + ϕLvL

)
=

ΓA
ρA

+
ΓE
ρE

+
ΓL
ρL
. (6.11)

For biofilms, there are various biological processes to be taken into account. The main processes are growth,

extra-cellular matrix excretion, and death. These reactions are schematically represented in Table 6.1. The

parameters ηα are pseudo-stoichiometric coefficients that quantify how much a reactant (ex. liquid, algae,

substrate, ...) or a product (ex. algae, extra-cellular matrix, ...) is consumed or produced when a reaction occurs.

The functions ψi are the reaction rates. They describe the speed at which reactions take place as a function of the

local composition of the mixture. The source terms read as follows:

ΓA = ψg − ψe − ψd, ΓE = ψe + ηEψd, ΓL = (1− ηE)ψd − ηLψg.

Biological reaction representation

Name Reactant(s) Rate Product(s)

Growth ηLL+ ηSS
ψg−−−−−→ A

Excretion A ψe−−−−−→ E
Death A ψd−−−−−→ ηEE + (1− ηE)L

Table 6.1: Schematic representation of the biochemical reactions considered in the model.

The growth is mainly induced by substrate (S) assimilation and liquid (L) absorption. However, as a

first approximation, we assume that the substrate is in excess. Thus, the growth rate ψg takes the form ψg =

µgρAϕAϕL, where µg is the maximal growth rate. The extra-cellular matrix excretion ψe and the death rate ψd
are assumed to be proportional to the quantity of microalgae, thus ψe = µeρAϕA and ψd = µdρAϕA respectively.
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Nevertheless, biofilms are very complex ecosystems and the biological processes are very simplified here. Thus,

a model extension accounting for substrate and oxygen is presented in section 5.3.

In the one-dimensional case and neglecting the gravity, for α ∈ {A, E ,L} the momentum balance equations

simplify into:

∂t(ραϕαvα) + ∂x
(
ραϕαv

2
α

)
+ ∂xπα = −ϕα∂xP +

4

3
∂x(µαϕα∂xvα) + Fα + Γαvα.

To keep the model as simple as possible, let us assume that the elastic tensor takes the form of a pressure law, see

equation (6.5), for the tissues (ie. algae and extra-cellular matrix). Since the liquid phase is not elastic this term

is null for the liquid, namely πL = 0. Similarly, let us assume that the friction forces are constant and symmetric.

Thus, in the expression (6.8) for Fα, the term fα,α′ for (α, α′) ∈ {A, E ,L}2 and α ̸= α′ are constant and such

that fα,α′ = fα′,α.

The model is supplemented by boundary conditions. Let Ω = [0, L] be the domain and ∂Ω its boundary.

In 1D, the domain should correspond to a biofilm core drilling in the orthogonal axis of the support where the

biofilm develops. The velocities at the bottom of the domain, which corresponds to the surface on which the

biofilm develops, vanish vα(0) = 0, α ∈ {A, E ,L}. However, the velocity on the top must satisfy a constraint

induced by the incompressibility constraint (6.3). Indeed, the integration over the whole domain of equation (6.3)

combined with the null velocity at the bottom leads to

(
ϕAvA + ϕEvE + ϕLvL

)
(x = L) =

∫ L

0

(
ΓA
ρA

+
ΓE
ρE

+
ΓL
ρL

)
dx

To enforce this condition, let assume that on the top, the velocities are given by vx=L =
∫ L
0

(
ΓA
ρA

+ ΓE
ρE

+ ΓL
ρL

)
dx.

Remark 10. Although there is no biophysical reason to impose the equality between the top velocities, this

assumption remains acceptable in this context. Indeed, our focus concerns the biofilm development and the final

time considered prevents the biofilm to reach the top of the domain. Therefore, in our context, the hypothesis that

all top velocity are equals should not affect the dynamics of the biofilm growth.

2.3 Synthesis of model equations

According to the previous section the PDE system under consideration writes:

ϕA + ϕE + ϕL = 1, (6.12a)

∂tϕA + ∂x(ϕAvA) =
ΓA
ρA

, (6.12b)

∂tϕE + ∂x(ϕEvE) =
ΓE
ρE
, (6.12c)

∂tϕL + ∂x(ϕLvL) =
ΓL
ρL
, (6.12d)

∂t(ρAϕAvA) + ∂x
(
ρAϕAv

2
A
)
+ ∂xπA = −ϕA∂xP +

4

3
∂x

(
µAϕA∂xvA

)
+ FA + ΓAvA, (6.12e)

∂t(ρEϕEvE) + ∂x
(
ρEϕEv

2
E
)
+ ∂xπE = −ϕE∂xP +

4

3
∂x

(
µEϕE∂xvE

)
+ FE + ΓEvE , (6.12f)
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∂t(ρLϕLvL) + ∂x
(
ρLϕLv

2
L
)
= −ϕL∂xP +

4

3
∂x

(
µLϕL∂xvL

)
+ FL + ΓLvL, (6.12g)

where the sources terms (Γα)α, the elastic tensors (πα)α and the drag forces (Fα)α are given by:

ΓA = ψg − ψe − ψd, ΓE = ψe + ηEψd, ΓL = (1− ηE)ψd − ηLψg, (6.13a)

ψg = µgρAϕAϕL, ψe = µeρAϕA, ψd = µdρAϕA, (6.13b)

πα = γα

(
ϕα
ϕ⋆α

)βα
, α ∈ {A, E}, (6.13c)

Fα =
∑
α′ ̸=α

fα,α′(vα′ − vα), fα,α′ = fα′,α α ∈ {A, E ,L}. (6.13d)

The system (6.12) is supplemented with the boundary conditions

vα(x = 0) = 0, and vα(x = L) =

∫ L

0

(
ΓA
ρA

+
ΓE
ρE

+
ΓL
ρL

)
dx,

for all α ∈ {A, E ,L}.

The initial data for the volume faction can be chosen arbitrarily provided they are biologically relevant.

However, to enforce the algebraic constraint on the sum over all the volume fractions (6.1), the velocities

have to satisfy the incompressibility constraint (6.11) at all times and therefore the initial velocities must

verify this constraint as well. Thus, the initial velocities are defined through a pressure P computed using the

incompressibility constraint, see section 3.3, by v0α = ṽ0α − ∂xP
ρα

where ṽ0α is the initial desired velocity. Here, the

system is assumed to be initially at rest so ṽ0α = 0 for all the phases.

Most of the parameters come from [10] or [74, 75]. The viscosity coefficient for microalgae and the

extra-cellular-matrix are taken from [73]. All the parameter values are gathered in table 6.2.

3 Numerical scheme

In this section, we are interested in the numerical approximation of the PDE system (6.12). Nevertheless, the

general principles and in particular the treatment of the pseudo incompressibility constraint remain valid in a

more general context. In such PDE systems, the pressure is defined through the volume filling constraint (6.1),

namely ϕA + ϕE + ϕL = 1 for the considered model. The treatment of this constraint and thus the definition of

the pressure is always an issue and requires specific treatment. To this end, the momentum equations are treated

using a projection correction method inspired by the numerical method introduced by Chorin [18, 19, 20] and

Temam [90] for incompressible viscous flows. In a nutshell, the momentum equation is decomposed using a time

splitting to separate the contribution of the pressure as follows:

∂t(ραϕαvα) + ∂x
(
ραϕαv

2
α

)
+ ∂xπα = frac43∂x

(
µαϕα∂xvα

)
+ Fα + Γαvα, (6.14a)

∂t(ραϕαvα) + ϕα∂xP = 0. (6.14b)

for α ∈ {A, E ,L}.
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Symbol Name Value Unit

µg Microalgae maximal growth rate 2 1/day
µe Microalgae maximal ECM excretion rate 0.4 1/day
µd Microalgae maximal death rate rate 0.2 1/day
µr Microalgae maximal respiration rate rate 0.2 1/day

ηA Microalgae pseudo-stoichiometric coefficient 1.0 ∅
ηL Liquid pseudo-stoichiometric coefficient 0.96 ∅
ηS Substrate pseudo-stoichiometric coefficient 8.67 · 10−2 ∅
ηC Inorganic carbon pseudo-stoichiometric coefficient 0.146 ∅
ηO Oxygen pseudo-stoichiometric coefficient 0.106 ∅

ηE Liquid pseudo-stoichiometric coefficient for death 0.90 ∅

KI Light parameter 0.1 ∅
τ Light absorption coefficient for the biofilm 2.5 · 104 m−1

Isurf Light intensity at the surface 100 µmol m−2s−1

Iopt Optimal light intensity 100 µmol m−2s−1

KS Substrate half saturation coefficient 6.2 · 10−8 kg/L
KC Inorganic carbon half saturation coefficient 4.4 · 10−6 kg/L
KO Oxygen threshold for growth 3.2 · 10−5 kg/L
nO Oxygen exponent for growth 14 ∅
KI Light coefficient for Haldane law 0.1 ∅
Kr Oxygen half saturation coefficient 1.0 · 10−6 kg/L

θin,S Input concentration for substrate 4 · 10−5 kg/L
θin,C Input concentration for inorganic carbon 10 · 10−5 kg/L
θin,O Input concentration for oxygen 7.2 · 10−6 kg/L

DS Diffusion coefficient for substrate 1.47 · 10−4 m2/day
DC Diffusion coefficient for inorganic carbon 1.80 · 10−4 m2/day
DO Diffusion coefficient for oxygen 1.98 · 10−4 m2/day

ρA Microalgae volumetric mass density 1050 kg/m3

ρA Extra-cellular matrix volumetric mass density 1050 kg/m3

ρL Liquid volumetric mass density 1025 kg/m3

ϕ⋆A Microalgae close packing threshold 0.75 ∅
γA Microalgae viscoelastic tensor coefficient 1.2 · 10−9 kg m−1day−1

βA Microalgae viscoelastic tensor exponent 1 ∅
ϕ⋆E Extra-cellular matrix close packing threshold 0.75 ∅
γE Extra-cellular matrix viscoelastic tensor coefficient 1.2 · 10−9 kg m−1day−1

βE Extra-cellular matrix viscoelastic tensor exponent 1 ∅

µL Liquid viscosity 10−3 Pa s
µA Microalgae viscosity 0.25 Pa s
µE Extra-cellular matrix viscosity 0.75 Pa s

fA,E Friction coefficient between A and E 20 kg m−3day−1

fA,L Friction coefficient between A and L 20 kg m−3day−1

fE,L Friction coefficient between E and L 20 kg m−3day−1

Table 6.2: Model parameters. The parameters come from [10, 74, 73].
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3.1 Projection correction method

Let us start with the presentation of the time discretization. Let T ∈ R+ be the final time and (tn)n⩾0 a

subdivision of [0, T ] such that tn =
∑n

k=0∆tk. Consider α ∈ {A, E ,L} a phase and its associated volume

fraction ϕα and velocity vα. Then, ϕnα(x) and vnα(x) denote, respectively, their approximation at time tn. To

shorten the notations, let us drop the space variable x and denote δt = ∆tn+1. Assuming that all the quantities

are known at time tn, the approximated solution at time tn+1 = tn + δt is computed using the following steps:

1. Update the volume fractions according to the mass balance equations (6.12b)-(6.12d):

ϕn+1
α = ϕnα −

δt

ρα
∂x(ϕ

n
αv

n
α) +

δt

ρα
Γα.

2. Update the momentum equations without the contribution of the pressure term by solving the following

system:

ϕn+1
α v

n+ 1
2

α −ϕnαvnα

=
δt

ρα

(
−∂x

(
ϕnα(v

n
α)

2
)
− ∂xπnα +

4

3
∂x

(
µαϕ

n+1
α ∂xv

n+ 1
2

α

)
+ Fα

(
ϕn+1, vn+

1
2

)
+ Γnαv

n
α

)
.

(6.15)

3. Compute the pressure using the incompressibility constraint (6.3). This step is detailed in subsection 3.3.

4. Update the velocity using the pressure with:

vn+1
α = v

n+ 1
2

α − δt

ρα
∂xP

n+1.

3.2 1D space discretization

Following [10], the space is discretized using staggered grids. This enables avoidance of any odd/even decoupling

in the stencil of the discrete version of the system. Moreover, the use of staggered grids also allows to have

or deduce naturally the quantity of interest (e. g. deduce the pressure gradient on the velocity mesh grid). Let

(xi)i∈J0,IK be a regular subdivision of the domain Ω such that xi = i∆x with ∆x = L
I the mesh step. Let also

define the mesh cell centers: xi+ 1
2
=
(
i+ 1

2

)
∆x for i ∈ J0, I − 1K. The model variables are located:

• at the mesh cell centers for the volume fraction and the pressure: ϕα,i+ 1
2
, Pi+ 1

2
for 0 ⩽ i ⩽ I − 1

• at the mesh cell edges for the velocities: vα,i for 0 ⩽ i ⩽ I .

Figure 6.1 gives an example of the staggered grids with the localization of model variables.

Model unknowns are discretized using a finite volume scheme. The transport terms in the mass balance

equations (6.12b)-(6.12d) are written:

ϕn+1
α,i+ 1

2

= ϕn
α,i+ 1

2

− δt

ρα∆x

(
Fi+1(ϕ

n
α, v

n
α)−Fi(ϕnα, vnα)

)
+
δt

ρα
Γα,i+ 1

2
(6.16)

where Fi represents the numerical mass flux at the interface xi, which is a function of the neighboring cells.

There are multiple relevant choices for the definition of the numerical flux. For the sake of simplicity, to ensure
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Figure 6.1: Regular staggered grid in one dimension for 5 mesh cells with the volume fractions and the velocities locations.
The pressure P and the phase volume fractions (ϕα)α are located at the mesh cell centers

(
xi+ 1

2

)
0⩽i⩽4

.

stability and since it is well adapted to staggered grids, it is convenient to use upwind numerical flux. Thus, the

discrete mass flux is defined by Fi(ϕ, v) = F+
(
ϕi− 1

2
, vi

)
+ F−

i

(
ϕi+ 1

2
, vi

)
with

F+(ϕ, v) =

0 if v ⩽ 0,

ϕv if v > 0,
and F−(ϕ, v) =

ϕv if v < 0,

0 if v ⩾ 0.

All the volume fractions are updated using equation (6.16). Thus, the volume-filling constraint enforcement is

not guaranteed and depends on the strategy used to compute the pressure, see sections 3.3 and 4.2.

Remark 11. To update the volume fractions and ensure volume-filling constraint enforcement another strategy

consists to use equation (6.16) for all the components except one (usually the liquid) which is computed using the

algebraic volume-filling constraint (6.1): ϕα′ = 1−
∑

α ̸=α′ ϕα as done in [21, 22, 74, 75].

For the momentum balance equation, following [10], the transport term is also discretized using an upwind

strategy based on the material velocity v, that is the momentum flux is defined by

Gi+ 1
2
=
vnα,i
2

(
F+
(
ϕi− 1

2
, vi

)
+ F+

(
ϕi+ 1

2
, vi+1

))
+
vnα,i+1

2

(
F−
(
ϕi+ 1

2
, vi

)
+ F−

(
ϕi+ 3

2
, vi+1

))
.

The other terms of equation (6.15) are discretized using standard approximations. Remark that interpolation on

the dual mesh is required only for the zeroth order terms like the momentum supply induced by mass exchanges

or friction forces. For these terms, the approximation of the volume fraction on the dual mesh is obtained by

approximating the volume fractions using the values in the neighboring cells: ϕi = 1
2

(
ϕi− 1

2
+ ϕi+ 1

2

)
. Therefore,

dropping the α for readability, equation (6.15) is discretized as follows:

ϕn+1
i v

n+ 1
2

i − 4δt

3∆x2
µ

(
ϕn+1
i+ 1

2

v
n+ 1

2
i+1 −

(
ϕn+1
i+ 1

2

+ ϕn+1
i− 1

2

)
v
n+ 1

2
i + ϕn+1

i− 1
2

v
n+ 1

2
i−1

)
− δtF

(
ϕn+1
i , v

n+ 1
2

i

)
= ϕni v

n
i −

δt

∆xρ

(
Gi+ 1

2
+ π

(
ϕn
i+ 1

2

)
− Gi− 1

2
− π

(
ϕn
i− 1

2

))
+ δtΓ(ϕni )v

n
i .

Remark 12. In this projection step, the viscosity and the friction are treated implicitly. For the viscosity, this

treatment enables the relaxation of the CFL constraint and avoids numerical instabilities.

Remark 13. Like in [22, 74, 75] the computation of friction forces requires a specific treatment. Indeed, the

friction forces depend on the difference between the phase velocities, and when a phase vanishes the velocity

can not be deduced from the momentum (ie. ϕv). In the considered applications, areas of pure liquid or biofilm

are important so the adaptation of the initial data to avoid phase vanishing is irrelevant. To overcome this
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difficulty, a strategy consists to treat these terms implicitly so the velocity can be directly computed using the

above equation. However, this is costly because it imposes to solve at each time step a linear system of size:

number of phases×mesh grid size.

Finally, the space discretization of the correction step is given by: vn+1
α = v

n+ 1
2

α − δt
ρα∆x

(
Pn+1
i+ 1

2

− Pn+1
i− 1

2

)

3.3 Pressure approximation

Let us detail the third step of the projection correction method. This is the key step to enforce the algebraic

constraint on the sum over all the volume fractions (6.1). The standard strategy consists in plugging the time

discrete version of equation (6.14b): ϕn+1
α vn+1

α = ϕn+1
α v

n+ 1
2

α − δt
ρα
ϕn+1
α ∂xP

n+1 into the incompressibility

constraint (6.11) to obtain the following equation on the pressure:

∂x

(∑
α

ϕn+1
α v

n+ 1
2

α − δt

ρα
ϕn+1
α ∂xP

n+1

)
=
∑
α

Γα
ρα

(6.17)

Thus the pressure can be obtained by solving a non-linear and inhomogeneous Poisson equation. As mentioned

above, this strategy relies on the use of the continuous version of the incompressibility constraint. Therefore,

there is no guarantee that the algebraic volume-filling constraint will be fulfilled at the discrete level.

To enforce the algebraic volume filling constraint, we adapt the strategy proposed in [10], which consists in

using the fully discretized mass balance equations to deduce the appropriate discrete incompressibility constraint.

To this end, let us assume that the constraint
∑

α ϕ
n
α,i+ 1

2

= 1 is satisfied for all times (tn)n⩾0 and in all the grid

mesh cells. Thus, the sum of the equations (6.16) over the phases leads to

∑
α

1

ρα

(
Fi+1(ϕ

n
α, v

n
α)−Fi(ϕnα, vnα)

)
= ∆x

∑
α

Γα,i+ 1
2

ρα
. (6.18)

Then, as in the standard strategy, an equation on the pressure or its gradient can be deduced by using the time

discrete version of equation (6.14b). Since in the correction step, the volume fractions remain unchanged, the

time discrete version of equation (6.14b) simplifies into vn+1
α = v

n+ 1
2

α − δt
ρα
∂xP

n+1. Injecting this relation into

equation (6.18) gives:

∑
α

1

ρα

(
Fi+1

(
ϕnα, v

n+ 1
2

α − δt

ρα
∂xP

n+1

)
−Fi

(
ϕnα, v

n+ 1
2

α − δt

ρα
∂xP

n+1

))
= ∆x

∑
α

Γα,i+ 1
2

ρα
. (6.19)

Consequently, to ensure that the algebraic volume-filling constraint is met, the pressure must be the solution of

the non-linear equation (6.19). The solution can be approximated using Newton’s methods. In practice, although

this method is more expensive than the standard approach its cost remains reasonable. Indeed, the Jacobian

matrix is explicitly known and the solution at the previous time step reveals to be a good initial guess so only

very few iterations are necessary to converge. Both strategies are compared in subsection 4.2.
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4 Numerical results

The aim of the paper is to present and test a numerical method able to simulate mixture models for biofilms by

guaranteeing the preservation of the algebraic volume filling constraint. Another challenge when one wants to go

towards the applications, relies on the difficulty to calibrate the parameters of the model. Many parameters are,

up to our knowledge, not available in the current literature and very difficult to extrapolate from experimental

data. For example, in [21, 22, 74, 75] the elastic tensor (ie. πα) settings are calibrated so that the biofilm front

velocity matches observations. Consequently, any modification of the model requires recalibration. To avoid such

difficulties, subsection 4.1 presents numerical simulations based on the numerical scheme presented in section 3,

but assumes that the viscosity can be neglected, which enables reusing parameters from [21, 22, 74, 75] for the

elastic tensors. Secondly, subsection 4.2 presents comparisons between the two strategies to approximate the

pressure, still neglecting the viscosity. Finally, subsection 5.1 presents the dynamic of the full model including

viscosity and recalibration of the elastic tensors.

Initially, the mixture is only made of microalgae and liquid and the volume fractions are set by

ϕ0A(x) = max{0, 0.05(x− 0.1)(x+ 0.1)}, ϕ0E = 0, and ϕ0L = 1− ϕA. (6.20)

As mentioned in subsection 2.3, the system is assumed to be at rest. Thus, the initial velocities are defined by

v0α = − 1
ρα
∂xP where the pressure P is determined according to the strategy presented in subsection 3.3 to

enforce the algebraic constraint on the sum over all the volume fractions (6.1).

4.1 Biofilm dynamic without viscosity

Figure 6.2 presents the numerical results for different times of system (6.12) where the viscous terms are

neglected, namely µα = 0 for α ∈ {A, E ,L}. The simulation is made using the numerical scheme presented

in section 3 and using the strategy based on the adaptation of [10] for the computation of the pressure, see

subsection 3.3. In these figures, the left side corresponds to the surface where the biofilm sticks and develops and

the right side corresponds to the side covered by the liquid, where nutrients are brought.

According to Figures 6.2a, 6.2b and 6.2c, there is front propagation corresponding to the biofilm (dashed

orange curve) development within the liquid. As in [74], two areas can be distinguished within the biofilm. For

example in Figure 6.2c, on the left side, namely for x ∈ [0,∼ 6]µm, the biofilm is mainly made of extra-cellular

matrix (ie. E), whereas on the biofilm front, namely for x ∈ [∼ 6, 7.6]µm, the biofilm is mainly made of

microalgae. On the opposite, the right side, namely for x > 7.6, is made of pure water.

For the biofilm components, the velocities are positive near the front, which is expected and explains the

biofilm expansion. Otherwise, the liquid velocity is negative in the biofilm region, which means that the liquid is

drained into the biofilm due to its consumption for the biofilm growth.

4.2 Volume filling constraint validation

Let us compare the two strategies presented in subsection 3.3 to enforce the algebraic volume-filling constraint,

that is computing the pressure P either as the solution of discretization the linear equation (6.17) (standard

strategy), or as the solution of the non-linear equation (6.19) (adapted strategy). To this aim, as in subsection 4.1,

the system (6.12) without the viscous terms is simulated, but using the standard strategy to enforce the volume
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(a) Volume fractions at t = 120h (b) Volume fractions at t = 240h (c) Volume fractions at t = 360h

(d) Velocities at t = 120h (e) Velocities at t = 240h (f) Velocities at t = 360h

Figure 6.2: Mixture components volume fractions (first row) and velocities (second row) for different times.

filling constraint. The results for the mixture components volume fractions at t = 360h are presented in

Figure 6.3a and can be compared to Figure 6.2c. According to these plots, the results are comparable. Similarly,

the shape of the pressure gradients curves are also similar, see Figure 6.3b. Nevertheless, according to the dotted

purple curve in Figure 6.3b, there is a significant discrepancy close to the biofilm front (ie. at x = 7.6mm)

in the pressure gradients between the two correction strategies. Note that the front is the active part of the

biofilm. Namely, it is in this area that the source terms are the largest and lead to significant changes in mixture

composition. Therefore, it is expected that the effect of the pressure gradient is observable notably there.

Besides, the pressure can be interpreted as the Lagrange multiplier associated with the volume-filling

constraint. Thus, it is important to compare how these strategies enable enforcing at the discrete level the

volume filling constraint (6.1). To this end, Figure 6.3c represents the sum of the volume fractions within the

domain a time t = 360h. According to this plot, the strategy adapted from [10] enables ensuring the volume

filling constraint, whereas the standard strategy does not. Numerically, the maximal error on the volume-filling

constraint for the standard strategy is 1.007 · 10−3, whereas with the adapted strategy, it is 5.107 · 10−15, namely

the order of magnitude of the precision used in Newton’s method. Moreover, with this adapted method, the

error remains negligible throughout the simulation whereas, with the standard strategy, it varies over time, see

Figure 6.7 in Appendix 6.

5 Model extensions

Following insights coming from [74], this section presents various relevant extensions of the model and their

numerical simulations.
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(a) Phases volume fraction (b) Pressure gradients (c) Sum of volume fractions

Figure 6.3: Mixture components volume fractions (left), pressure gradients (center) and the sum of the volume fractions
(right) at time t = 360h. In figures 6.3b and 6.3c the blue curve represents correspond to a simulation made using the
standard strategy for the pressure gradient computation (ie. solving a Poisson equation) and the dashed orange curve
represents the results obtained using the strategy adapted from [10] which require the resolution of a non-linear equation (ie.
Newthon’s method).

5.1 Including the viscosity

Adding the viscous terms for the components requires recalibrating the model parameters. Indeed, the viscosity

is a measure of the component’s resistance to deformation. Therefore, when accounting for the viscosity, the

parameters associated with the component’s ability to deform must be adapted. In particular, the elastic tensors

for the microalgae and the extra-cellular matrix must be recalibrated. Moreover, up to our knowledge, there is

no direct measurement of the parameters and they are calibrated, see [21, 22, 74], such that the biofilm front

velocity matches experimental measurements, see [87]. However, such calibration is extremely complex because

the biofilm front velocity depends also on many other parameters like the growth or death rate. Nevertheless, to

get the right order of magnitude of the biofilm front velocity the elastic tensor coefficients must be significantly

increased: multiplied by 9 · 107 so is set to γA = γE = 4.5 · 10−3kg/m/day.

Figure 6.4 represents the time dynamic of mixture components when accounting for the contribution of

viscosity. The global dynamic remains comparable to the dynamic observed in Figure 6.2. In particular, there

is still a biofilm traveling front. Again, there are two areas within the biofilm: the back which is mainly made

of an extra-cellular matrix (for x ∈ [0, 5] in subfigure 6.4c), and the front which is mainly made of microalgae

(for x ∈ [3.97, 6.7]µm in subfigure 6.6c). Nevertheless, a major discrepancy is that the microalgae remain

more located at the front when including the viscosity. This is particularly visible at t = 240h when comparing

Figure 6.2b and Figure 6.4b. In addition, at t = 240h, the velocities order of magnitude close to the front is

larger when including the viscosity. However, the interpretation of this observation is tricky. Indeed, the shift

in the elastic tensors for the biological phases imposes the use of very refined mesh grids to properly capture

the biofilm dynamic. Thus, it would be of particular interest to design and use well-balanced numerical scheme

able to preserve the biofilm front structure. For more details about the numerical convergence of the scheme, see

appendix 6.

5.2 Including light intensity

A microalga is a photosynthetic organism. Thus, microalgae require light to grow. When microalgae develop

within a biofilm, the upper layers overshadow the lower layers. Following [21, 22, 74] to account for these

mechanisms, the microalgae growth rate becomes ψg = µgρAϕAϕLfI , where fI accounts for the effect of light
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(a) Volume fractions at t = 120h (b) Volume fractions at t = 240h (c) Volume fractions at t = 360h

(d) Velocities at t = 120h (e) Velocities at t = 240h (f) Velocities at t = 360h

Figure 6.4: Mixture components volume fractions (first row) and velocities (second row) for different times. In this
simulation, the viscosity is included and the elastic tensors for the biological phases are multiplied 9 · 107 so the biofilm
front velocity matches experimental measurements. The simulation is made using 2048 mesh cells for the space grid.

on growth. This term depends on the rescaled received light intensity I and takes the form of the Haldane law:

fI =
2(1 +KI)I
I2 + 2KII + 1

. (6.21)

The rescaled light intensity is the ratio between the received light and the optimal light intensity Iopt, namely:

I(t, x) = Isurf

Iopt
exp

(
−
∫ L

x
τ
(
1− ϕL(t, y)

)
dy

)
, (6.22)

where Isurf is the light intensity at the surface of the tank (ie. x = L) and τ the attenuation coefficient of the

biofilm, assuming that microalgae and extra-cellular matrix have the same attenuation rate. The parameter values

associated to the light are gathered in Table 6.2.

Figure 6.5 represents the time dynamic of mixture components when accounting for the contribution of light.

The global dynamic is comparable to the dynamic observed in Figure 6.2. In particular, the biofilm front position

travels at the same speed, and, again, there are two areas within the biofilm: the back which is mainly made of

an extra-cellular matrix (for x ∈ [0, 6] in subfigure 6.5c) and the front which is mainly made of microalgae (for

x ∈ [6, 7.6]µm in subfigure 6.5c). However, as expected, the volume fraction of biofilm is lower. Indeed, taking

into account the effect of light reduces the growth in the shadowed areas and thus the biomass of microalgae.

The extra-cellular matrix is also reduced since it is made from microalgae excretion and dead organisms.
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(a) Volume fractions at t = 120h (b) Volume fractions at t = 240h (c) Volume fractions at t = 360h

Figure 6.5: Mixture components volume fractions for different times. In this simulation, the effective microalgae growth
rate (ie. ψg) accounts for the contribution of light intensity through Haldane’s law (6.21) and light attenuation induced by
biofilm layers, see equation (6.22)

5.3 Including light intensity and solutes

Following [74], let us now include three dissolved components: the substrate (S), the inorganic carbon (C), and

the oxygen (O). As mentioned in subsection 2.1, the dynamic for dissolved components is modeled using a

convection-diffusion reaction equation (6.9).

In a nutshell, the substrate represents the nitrate which is a nutrient of primary importance for the growth of

autotrophic organisms like microalgae. Besides, roughly speaking, photosynthesis is the assimilation of inorganic

carbon using light energy by autotrophic organisms. Photosynthesis releases oxygen. Thus, including these

components is of primary interest. Taking into account these compounds also allows us to include the process of

respiration. Basically, respiration is the opposite mechanism of photosynthesis and its consideration allows us to

better describe the dynamic of thick biofilms. Indeed, the process of respiration becomes non-negligible in the

absence of light, namely in the biofilm’s inner layers.

As for the light, the contributions of the dissolved components to the photosynthesis process are accounted

for in the growth through the multiplication by functions fp, p ∈ {S, C,O} which represent how the growth

is modified by the local concentration of these components. On the one hand, limited contribution in high

concentration regimes of the substrate and the inorganic carbon is modeled using Monod’s law: fp =
θp

Kp+θp
.

On the other hand, the inhibition induced by high oxygen concentration is modeled by the sigmoidal function

fO = 1

1+
(

θO
KO

)nO . Thus, including the contribution of the dissolved components and the light intensity, the algae

growth rate becomes: ψg = µgρAϕAϕLfIfSfCfO.

The respiration process is modeled by ψr = µrϕA
θO

Kr+θO
where µr is the maximal respiration rate and Kr

the half-saturation constant for the oxygen.

The modification of the microalgae growth rate and the inclusion of the respiration process requires to adapt

the source terms for the phases as follows:

ΓA = ψg − ψe − ψd − ψr, ΓE = ψe + ηEψd, ΓL = (1− ηE)ψd + ηL(ψr − ψg).

As for a phase, the source terms for a dissolved component is the sum of the pseudo-stoichiometric coefficients

multiplied by the reaction rates. Thus, for the dissolved components, the source terms are

ΓS = −ηSψg, ΓC = −ηCgψg + ηCrψr, ΓO = ηOg ψg − ηOr ψr.
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The external supply for the dissolved components is modeled through Dirichlet boundary conditions at the

top of the bioreactor, namely at x = L. Otherwise, the no flux boundary condition at the bottom of the bioreactor

is modeled using the Neumann boundary condition: ∂xθp|x=0 = 0 for p ∈ {S, C,O}.

(a) Volume fractions at t = 120h (b) Volume fractions at t = 240h (c) Volume fractions at t = 360h

(d) Solutes concentration at t = 120h (e) Solutes concentration at t = 240h (f) Solutes concentration at t = 360h

Figure 6.6: Mixture components volume fractions (first row) and velocities (second row) for different times.

The parameter values associated with the inclusion of the dissolved components are gathered in Table 6.2.

Numerically, the transport and reaction terms in the mass balance equations for the solutes are treated similarly

to the other components. The diffusion terms are treated implicitly to ensure stability without constraining the

CFL condition.

Figure 6.6 represents the time dynamic of mixture components when accounting for the contribution of light

and solutes. The global dynamic is comparable to the dynamic observed in Figure 6.5. In particular, the biofilm

front position travels at a comparable speed. Again there are two areas within the biofilm: the back which is

mainly made of an extra-cellular matrix (for x ∈ [0, 6.5] in subfigure 6.6c), and the front which is mainly made

of microalgae (for x ∈ [5.5, 6.6]µm in subfigure 6.6c). However, the biofilm front velocity is slightly slower

here. This can be explained by the fact that the lack or excess of solutes in the active part of the biofilm slightly

reduces its growth. Indeed, for example, at t = 360h, within the biofilm area, the concentration of substrate is

reduced by 12.4% and the concentration of inorganic carbon is reduced by 5.1% relatively to the input values

(ie. θin). Besides, the concentration of oxygen is increased by 46.3% relatively to θin,C . These discrepancies

are larger at the beginning and tend to decrease over time, see Figure 6.9 in the supplementary material. These

results are in good agreement with the results presented in [74, 75].
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6 Conclusions and perspectives

This article proposes an adaptation of the numerical scheme presented in [10] able to enforce the volume filling

constraint in mixture models including mass exchanges. As in [10] the strategy consists in deducing the discrete

version of the incompressibility constraint from the discretized mass balance equations. Numerical simulations

show that this method enables the enforcement of the total volume filling constraint at the discrete level.

In addition, on the modeling side, previous models from the literature are enriched by the inclusion of viscous

terms. These terms are essential to properly model biofilms in their fluidic environment especially when there is a

mixing of the surrounding fluid. In this context, this work has allowed us to highlight the importance of designing

well-balanced numerical scheme able to efficiently capture the biofilm dynamic when including the viscosity.

Indeed, including the viscosity requires to recalibrate model parameters; in particular the elastic tensors need to

be strongly rescaled in order to recover realistic front features. However, with these parameters, the numerical set

up is more demanding to reach convergence. This difficulty leads to consider further the design of a specific

well-balanced scheme for the problem. To this end, the use of well-balanced numerical schemes able to preserve

the equilibrium at the biofilm front can be considered.

Finally, in further works, it would be interesting to include additional biological features. Among others,

biofilms are generally multi-species. The framework of mixture theory is well adapted to incorporate different

species and such extensions are affordable if the interaction between the species and their metabolisms is known.

To make the model even more realistic and predictive its calibration on experimental data is also particularly

interesting. In conclusion, real-life biofilms are 3D and therefore the extension and implementation of the

numerical method in 2D and 3D should be considered.
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Appendix

Spatiotemporal equilibrium

The spatiotemporal equilibrium states for the system (6.12) correspond to the state solution where the source

terms of all phases vanish, namely: Γi = 0 for i ∈ {A, E ,L}. In particular, ΓE = 0 induces ψe + ηEψd = 0

which lead to ϕA = 0. Thus, the only spatiotemporal stationary state is the null state, namely ϕi = 0 for

i ∈ {A, E ,L}.

Time dynamic of the volume fraction sum

Numerical convergence analysis for the model including viscosity

Numerical experiments have shown that numerical parameters need to be significantly reduced to reach conver-

gence when the viscosity is included, and re-estimating the elastic tensor accordingly. Indeed, as mentioned in

section 5.1, when including the viscosity, the elastic tensor coefficients must be rescaled and multiplied by 9 · 107
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Figure 6.7: Time evolution for the maximal error within the domain on the sum of volume fractions: E =
maxx |

∑
α ϕα − 1|.

to obtain realistic front velocities for the biofilm. Figure 6.8 shows the convergences of the numerical scheme in

both cases: with and without the viscous term. As expected, numerical convergence is obtained in both cases.

Nevertheless, as presented in Figure 6.8 the convergences rate is lower when the viscous term is included. This

explains at least partially why the numerical parameters need to be significantly reduced to reach acceptable

precision for the application considered when the viscosity is included

(a) Numerical convergence for the model with-
out the viscous term.

(b) Numerical convergence for the model inclug-
ing the viscous term.

Figure 6.8: Numerical analysis of the convergence of the scheme. The left side correspond to the case without the viscous
term, namely µα = 0 for α ∈ {A, E ,L} and the right side correspond to the case with the viscous term and using very
large values for the elastic tensor coefficients.

Relative variation of solutes concentration

Figure 6.9 shows the relative variation of solutes concentration for different times associated to the simulation

presented in subsection 5.3. In this figure, we observe that the variations relatively to the input concentration are

larger at the beginning (ie. t = 120h) than at the end (ie. t = 360h).

122



Numerical schemes for mixture theory models Strasbourg University

(a) t = 120h (b) t = 240h (c) t = 360h

Figure 6.9: Solutes relative concentration for different times
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Conclusion

What about the continuous problem?

Our control problem is formulated as a spatially discretized model, which is classically called a "discretize then

optimize" approach. It would be interesting to compare it with the "optimize then discretize" approach, which

consists in using a continuous optimization algorithm that is then applied to a discretized model. This would

raise the question of the existence and uniqueness of optimal control, as well as its regularity, and it would also

be interesting to study first-order optimality conditions in this framework. Furthermore, we have shown that for

any spatial discretization step ∆x, the associated optimal control problem P∆x has a solution u∆x. This leads to

the following natural questions, related to what happens when this step shrinks to zero:

• Does u∆x converge to some u0 when ∆x→ 0?

• What is the nature of this convergence?

• Is there a topological dependence of the control on ∆x?

A more general question concerns the Γ-convergence of solutions (see e.g. [4, 12]), which would imply at the

same time the convergence of minimizers as ∆x→ 0, and the one of the value function. This question would

help justify the use of a discrete model as a good approximation to the continuous model derived from Coclite et.

al. [23]. It is also expected that a better understanding of the continuous problem will not only provide the basis

for new algorithms, but also guarantee the convergence and stability of solutions.

Scaling the problem up

An intriguing research objective lies in the exploration of strategies for optimizing traffic flow within sprawling

metropolitan road networks. However, a formidable obstacle currently looms large, primarily related to the

substantial computational resources demanded by the control algorithm discussed in chapter 2 when dealing with

extensive network configurations.

Starting with the extension of the deep hyper-reduction approach to 1x2, 2x1 and 2x2 junctions, the synthesis

of the main elements of this thesis into a coherent methodology could be an interesting way to tackle this

numerical challenge. In this approach, we would construct a simplified model tailored to accommodate the

inherent complexities of significantly larger networks, thereby mitigating the computational demands. Within the

framework of this lightweight but robust model, we would conduct controlled experiments to discern effective

traffic control strategies.
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Figure 6.10: Example of graph reduction using the Markov clustering algorithm in the thesis of S. V. Dongen (2000).

Afterwards, we hope that the findings and lessons learned from these controlled experiments using the

scaled-down model can potentially be extended and used to address the practical issues of traffic management in

metropolitan areas. This approach aims to bridge the gap between theoretical research and real-world applications,

potentially leading to enhanced efficiency in managing complex urban traffic networks.

It is paramount to emphasize that the successful implementation of this methodology relies on a thorough

exploration of computational methodologies, modeling techniques and validation protocols, guaranteeing both its

feasibility and its effectiveness in the field of real-world metropolitan traffic optimization.

A complementary way of scaling would be to design a meta-graph of a complex network to reduce the

number of paths to be considered in the control loop. We can imagine considering a precise network only in a

neighborhood of the axis to be evacuated and factorizing the rest of the graph to obtain non-physical meta-routes,

but computing the appropriate boundary conditions to solve the control problem. This type of partitioning

was studied in particular in S. V. Dongen’s thesis [32], where he introduced the Markov Clustering Process

(MCL process). This consists of empirically averaging random flows traversing a graph and grouping the most

frequently connected nodes into a single class. In fact, such classes appear to be sufficiently isolated from the

rest of the graph that they can be treated as hypersummits, which would greatly reduce the size of the problem.

The Figure 6.10 show us the reduction of a 150-node graph to 14 simple subgraphs, which we could imagine

treating as meta-summits or independent subgraphs, at least with greatly reduced coupling to allow efficient

parallelization of computations.
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Beyond road traffic

As pointed out by Ciro D’Apice, Rosanna Manzo, and B. Piccoli in [30], the way we model traffic on road

networks shares similarities with how we model telecommunication networks or logistical supply chains.

Therefore, it could be worthwhile to explore the possibility of applying the tools developed in this thesis to

these contexts. This could help in investigating issues related to network congestion and finding optimal ways to

efficiently utilize the network links, all within a resource-efficient approach that minimizes the resources needed

for their operation.
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Comment optimiser l’évacuation en cas de crise et l’intervention des services d’urgence sur les réseaux
routiers ? Comment simuler rapidement la dynamique du trafic routier avec des modèles réduits ? Cette
thèse aborde ces questions en utilisant des approches de contrôle optimal et d’intelligence artificielle.
Nous modélisons la première question à l’aide d’un problème de contrôle visant à libérer un axe routier de
façon optimale, en utilisant la signalisation et des barrages. Notre méthode utilise une semi-discrétisation
de l’équation de Lighthill, Whitham et Richards (LWR) sur un graphe de réseau routier. Nous introduisons
des fonctions de commande à chaque jonctions pour traduire une action de délestage de l’axe de
circulation. Dans un souci d’implémentation pratique, nous prenons également en compte la contrainte
d’obtenir des contrôles parcimonieux. De façon pratique, un tel problème est complexe à mettre en
œuvre numériquement, en raison de sa dimension, du caractère fortement non-linéaire du critère et du
nombre important de minima locaux. Nous introduisons et testons un algorithme numérique reposant sur
l’analyse des conditions d’optimalité d’optimalité de ce problème. Un code de résolution dans le langage
Julia est mis à disposition en open source. Dans une seconde partie, nous cherchons à proposer des
modèles réduits de trafic afin de faciliter les simulations numériques de réseaux routiers. Nous cherchons
à préserver la fiabilité du modèle tout en réduisant son ordre en utilisant des bases réduites associées à
des techniques d’apprentissage profond.

How to optimize crisis evacuation and emergency service response on road networks? How can
road traffic dynamics be rapidly simulated using scale models? This thesis addresses these questions
using optimal control and artificial intelligence approaches. We model the first question using a control
problem aimed at optimally clearing a road axis, using signalling and barricades. Our method uses a
semi-discretization of the Lighthill, Whitham and Richards (LWR) equation on a road network graph.
We introduce control functions at each junction to reflect a relieving action on the traffic axis. For the
sake of practical implementation, we also take into account the constraint of obtaining sparse controls.
In practice, such a problem is difficult to implement numerically, due to its size, the highly non-linear
nature of the criterion and the large number of local minima. We introduce and test a numerical algorithm
based on the analysis of optimality conditions for this problem. A solver code in the Julia language is
made available as open source. In a second part, we propose reduced traffic models to ease numerical
simulations of road networks. We aim to preserve the reliability of the model while reducing its order by
using reduced bases associated with deep learning techniques.
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