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Abstract

Liquid composite molding (LCM) is a popular family of composite manufacturing
processes, in which a liquid resin is injected into a mold where a textile is set
there. The process involves flow in fibrous porous media. Variabilities within
and between textile samples can arise due to fabric intrinsic geometrical defects,
mishandling, misalignment, and other factors. These inconsistencies can result in
marked deviations between the actual and anticipated filling patterns, leading to
variations in the manufactured parts quality. This thesis has two main objectives.
The first is to build an online framework that predicts the possibility of defects,
which helps taking corrective decisions. The second is to improve the characterization
of key material properties before the injection starts. To achieve these tasks, we
use physics-informed neural networks (PINN). PINN is a technique that is based
on merging the data knowledge along with the knowledge of physics, represented
by partial differential equations. To target the first objective, PINN is used to
build metamodels of the process with parameters of interest as the permeability
or inlet boundary conditions. These models are trained offline and can be quickly
employed for online predictions. Towards the second objective, a self-supervised
learning framework was built based on PINN and convolutional neural networks to
identify the permeability tensor field from 2D textile images. The framework shows
promising results through comparing with existing experimental flow front images.
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Introduction

Composite materials are formed by combining two or more materials that have
different properties to gain from the benefits of both. An example of that is fiber-
reinforced composites; they are materials formed by mixing a polymeric resin with
fibers such as glass, flax, or carbon fibers. The resulting materials will have good
strength due to the fibers while being lightweight due to the polymeric matrix
constituent. Due to their enhanced properties, composites are used in the manufac-
turing of many parts of planes, boats, and cars saving a considerable amount of energy.

During the manufacturing of composites, defects can take place leading in certain
cases to part rejection. The reason for the existence of these defects is variabilit-
ies which makes the process less robust and predictable. The variabilities can be
divided into two categories: process variability and material variability. The process
variability has to do with the working conditions of the process such as the working
temperature or pressure which might change from one part to another one. Material
variability occurs due to variability of material properties within the part or from a
part to another, for instance, variability in the areal weight or fiber orientations.

One way to avoid the creation of defects is to have online control over the
process. This can be done by having sensors in specific locations during the process.
These sensors send information to a controlling agent that assesses the data and
makes predictions in real time. According to these predictions, decisions can be
made for example to change the pressure or working temperature. In this work,
Physics-Informed Neural Networks (PINN) is used as the controlling agent, which is
a machine learning technique that can be used in low-data regimes since the known
physics is used along with the few data provided by the sensors. Figure 1 is a diagram
showing the process of online control using PINN as a controlling agent.

Figure 1: Diagram of a process where sensor data is sent to the controlling agent
PINN taking decisions in real-time to change the process parameters accordingly.
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Another way to avoid defects is to have proper material characterization spe-
cifically tailored to the part in hand. This can improve the predictions through
accurate simulations before the process. These predictions can be used to make
modifications before the process to avoid defects. Accurate material characterization
can be achieved through performing several experiments (process) where different
measurable changes are made in each experiment, an example of the changes can be
fiber orientation. Material properties are identified for each experiment using PINN
as shown in figure 2. An empirical law can be drawn from the collected data between
the changed variable and the identified properties. This law can then be used for
future material characterization to perform simulations before the process and tailor
a suitable process command.

Figure 2: Diagram of a using PINN for proper material characterization where data
is transferred from sensors to PINN which then identifies the unknown material
properties. In this case, the process parameters are fixed and known.

In this work, techniques are developed based on PINN and deep learning to im-
prove a common family of composite manufacturing processes called liquid composite
molding (LCM). The objectives of this thesis can be summarized in two main points
which are

1. Improve LCM process robustness through online control,

2. Improve material characterization needed for accurate simulations before the
process.

The thesis is organized in the following manner. Chapter 1 introduces the state
of the art of deep learning and PINN along with recent machine learning applications
in composites manufacturing. Chapter 2 deals with the use of PINN as a solver or
simulation tool for two-phase flow in porous media. Chapter 3 details the development
of surrogate models using PINN, which is a first step towards online control since
such models can be used for predictions in real-time. Chapter 4 offers a methodology
for accurate identification of the local permeability of fibrous materials, which is a
major property that highly affects the manufacturing process. Finally, chapter 5
offers a summary and a conclusion to the work along with perspectives for future
work.

ii



Chapter 1

State of the art

Abstract

The framework of solving forward and inverse problems defined by
partial differential equations using Physics-informed neural networks
(PINN) is introduced in this chapter. The chapter starts by introducing
the basics of feed-forward neural networks in a supervised learning
paradigm followed by an introduction to convolutional neural networks,
which will be used later in the thesis. The chapter continues by introdu-
cing PINN to solve forward and inverse problems defined by a general
time-dependent partial differential equation. The final section of the
chapter will discuss the recent applications of machine learning in the
field of composites manufacturing.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Supervised learning with multilayer perceptrons . . . . . . . . . 4

1.2.1 Optimization Algorithms . . . . . . . . . . . . . . . . . . 6
1.2.2 Automatic differentiation . . . . . . . . . . . . . . . . . . 7
1.2.3 Parameters initialization . . . . . . . . . . . . . . . . . . 8
1.2.4 Overfitting and Underfitting . . . . . . . . . . . . . . . . 9

1.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 11
1.4 Physics-informed neural networks . . . . . . . . . . . . . . . . . 13

1.4.1 Solving Forward problems . . . . . . . . . . . . . . . . . 14
1.4.2 Solving Inverse problems . . . . . . . . . . . . . . . . . . 15
1.4.3 Extension to coupled partial differential equations . . . . 16
1.4.4 Multi-objective optimization . . . . . . . . . . . . . . . . 16

1.5 Applications of Machine Learning on Composites Manufacturing 17
1.5.1 Resin Transfer Molding . . . . . . . . . . . . . . . . . . . 17
1.5.2 Issues during LCM processes . . . . . . . . . . . . . . . . 19
1.5.3 Machine learning applications . . . . . . . . . . . . . . . 21

1



1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



1.1 Introduction

Over the last few decades, the use of machine learning techniques has significantly
increased. Machine learning has proven to be remarkably successful across various
domains, including computer vision [1], natural language processing [2], speech
recognition [3], medical applications [4], and more. While the fundamental ideas
of machine learning were present as early as the mid of the 20th century [5], its
widespread success has been realized mainly in recent years, owing to significant
advancements in computer architectures that have enabled faster processing speeds.
Additionally, the advent of new technologies has made it possible to collect vast
amounts of data, which is crucial for constructing highly effective machine learning
models.

Despite these achievements, machine learning still faces challenges when it comes
to complex physical or engineering applications. One major obstacle is the lack of
robustness or convergence guarantee, primarily due to the scarcity of large datasets.
Conducting numerous experiments or running extensive physical simulations to
gather data for such applications is often impractical or infeasible. However, in
engineering and physical systems, valuable knowledge is available in the form of
partial differential equations (PDE) that describe the underlying physics, which is
not utilized in building machine learning models.

Addressing this disparity between data scarcity and existing physical knowledge,
a new concept known as Physics-Informed Neural Networks (PINN) was introduced
in 2018 [6]. PINN brings together the available data and the domain-specific know-
ledge encoded in physics equations to build efficient physics and data-based machine
learning models.

In this chapter, the state of the art of PINN will be introduced to solve a forward
and an inverse problem governed by a generic PDE. The chapter starts with an
introduction to feedforward neural networks within the context of supervised learning.
Topics such as parameter initialization, overfitting, automatic differentiation, and
optimization algorithms will be thoroughly discussed.

Afterwards, An introduction to convolutional neural networks (CNN), an essential
architecture in deep learning, is presented. Subsequently, PINN is introduced as a
forward PDE solver of a general time-dependent partial differential equation followed
by an example to solve inverse problems using PINN. Topics such as multi-objective
optimization and PINN extension to solve coupled problems will be discussed.

The final part of this chapter will focus on the practical applications of machine
learning in the field of composites manufacturing. A focus will be directed to the use
of machine learning in the context of liquid composite molding (LCM), a family of
composite manufacturing processes, and the potential defects associated with it. The
attempts made in various studies to leverage machine learning for predicting and
preventing these defects in the LCM process will be discussed in brief. Ultimately,
the chapter will conclude with a concise summary.
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1.2 Supervised learning with multilayer
perceptrons

Supervised learning is the most straightforward approach in training machine learning
models. It is a type of learning paradigm in which an algorithm learns from a labeled
dataset ({Xi, Yi}N

i=1), where N is the number of data points and (Xi, Yi) refers
to the i-th data point. It is a labelled dataset since each input data point Xi is
associated with a corresponding output label Yi. The goal of supervised learning is
to build a mapping function Ŷ to make predictions of the output when presented
with new, previously unseen data X.

The mapping function Ŷ has parameters (degrees of freedom) that are chosen
through minimizing an error function, called the loss function L. This function
measures the error between the prediction Ŷ(Xi) and the labels Yi of the existing
dataset. A clear choice of the error function can be the mean squared error which is
defined as:

L = 1
N

N∑
i=1

||Ŷ(Xi) − Yi||
2
. (1.1)

A feed-forward neural network, also referred to as multilayer perceptrons, is a
class of functions that are commonly chosen as the mapping function Ŷ. The main
reason for its wide use is its ability to approximate any function when the proper
weights (parameters of the neural network) are used. This conclusion is derived from
the universal approximation theorem [7].

A graphical representation of a feed-forward neural network is given in figure 1.1.
The structure of such a network is composed of multiple layers; each layer has a
certain number of neurons. Each layer is fully connected to the previous and next
layer. That is why it is referred to as a fully connected neural network.

Figure 1.1: A fully connected neural network composed of 2 hidden layers.

The different layers are referred to as l ∈ {0, 1, ..., L}. In the deep learning
community, the first layer (input layer) is not counted. Therefore, there are 3 layers
(L = 3) in the network given in figure 1.1. Each layer has a different number of
neurons; we refer to the number of neurons in a layer as follows: {m0, m1, ..., mL},
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for example, m2 gives the number of neurons in the layer number 2; m2 = 5 in
figure 1.1.

The first layer is called the input layer x that is composed of m0 neurons, thus
x ∈ Rm0 . The input layer represents the input to the function. The next part of the
network is the hidden layers that take the data from the input layer. There can be
as many hidden layers and neurons as needed for the learning task; in the example
in figure 1.1, the network has 2 hidden layers. Data is moved through the different
hidden layers until it is fed to the last layer: the output layer, which is composed of
mL neurons.

Data is transferred from one layer to another in 2 stages. The first stage is a linear
transformation. The second one adds non-linearity to the approximation through a
non-linear function, the activation function σ. The stages of transformation to move
from the input layer to the next hidden layer in our example are given as:

Z1 = W0 X + b0 (1.2)
A1 = σ1(Z1). (1.3)

As stated before, the first step is a linear transformation that maps the input x
to the neurons of the next layer Z1 ∈ R5. W0 ∈ R5×2 is called the weight matrix
and b0 ∈ R5 is called the bias vector. The result of this transformation is Z1 ∈ R5.
The next step is applying the activation function to add a non-linearity to the
transformation resulting in A1, where σ1 is the activation function of the first hidden
layer. This step is an element-wise application of the non-linear function. The most
commonly used activation functions are the relu, hyperbolic tangent, and sigmoid
functions. Some activation functions are shown in figure 1.2. It should be noted that
different activation functions can be used for different layers.

Figure 1.2: Activation functions σ

Similar transformations are made for the other layers until the output Ŷ is
reached. The full model or approximation for the network in figure 1.1 can be written
as:

Ŷ = σ3(W2(σ2(W1(σ1(W0X + b0)) + b1)) + b2). (1.4)

5



For simpler representation, all the model degrees of freedom (weights and biases
matrices) are stacked in one vector γ. To find the best model parameters that fit the
given data, the loss function defined in equation 1.1 is minimized with respect to γ.
The minimization problem is defined as:

min
γ

L = 1
N

N∑
i=1

||Ŷ(Xi; γ) − Yi||
2
. (1.5)

Several algorithms are used to solve this minimization problem; some of the most
used techniques are discussed in the next section.

1.2.1 Optimization Algorithms
Many existing minimization algorithms for optimizing machine learning models are
based on gradient descent [8]. Gradient descent is a first-order iterative optimization
method used to minimize differentiable functions. The basic idea is to iteratively
update the model parameters in the opposite direction of the gradient of the loss
function at the current point, as it indicates the steepest descent. The gradient
descent step is defined as follows:

γn+1 = γn − λ∇L(γn), (1.6)
where γn is the current point, γn+1 the new point, λ is the learning rate that

defines the size of the step taken in the gradient direction, and ∇L(γn) is the gradient
of the loss function with respect to γ defined at γn.

If the whole dataset is used at once to get the gradient of the loss function
and update the model parameters, this is called Batch minimization or training,
or Batch gradient descent. While if only one data point is used to get the gradi-
ent and update the parameters, the algorithm becomes stochastic gradient descent [9].

Batch gradient descent usually has stable convergence as compared to stochastic
gradient descent which is characterized by noisy convergence and in some cases might
not converge to the global minimum. However, Batch gradient descent suffers from
being computationally expensive and requires high memory storage. To get the best
of the two, mini-batch gradient descent is used [9]. It is based on dividing the dataset
into small batches called mini-batches, and then each batch is used to get the loss
gradient and update the model parameters. This way, the size of the mini-batches is
tuned according to the memory requirement and to make the convergence stable.

The idea of mini-batches gives rise to the term epoch. An epoch refers to the
pass of the minimization algorithm over the whole dataset. It should not be confused
with iterations of the minimization algorithm which refers to updates of the network
parameters. For example, if the training data is divided into 10 mini-batches; one
epoch will be equal to 10 iterations (gradient descent steps).

Mini-batches can also be applied to other minimization algorithms other than
gradient descent. Other more used first-order algorithms which are variants of gradi-
ent descent include Momentum [10], RMS prop [11] or Adam [12] algorithms. These
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algorithms are frequently used and are available in most of the machine learning
libraries.

Second-order minimization algorithms can be a good alternative to gradient-based
algorithms. These algorithms take into account not only the first-order derivative
(gradient) of the loss function with respect to the model parameters but also the
second-order derivatives (Hessian matrix or approximations) to make more informed
updates to the parameters. The Hessian matrix gives information about the shape
of the loss function making the parameters update more informed. This can lead to
faster convergence and improved optimization. Most of the second order algorithms
are based on Newton’s method which is a classic second-order optimization algorithm
that updates the parameters using the inverse of the Hessian matrix. The update
rule can be expressed as follows:

γn+1 = γn − λH−1 · ∇L(γn), (1.7)

where H−1 is the inverse of the Hessian matrix.

Obtaining the inverse of the Hessian matrix is a complex process and is not
practical to obtain exactly for average size or big models. The used algorithms
in practice are based on approximating the inverse of the Hessian matrix such as
BFGS algorithm [13]. Another issue occurs because of the high storage needs of
second order algorithms that is why other methods are based on getting a sparse
approximation to the inverse Hessian matrix or saving several vectors that are used
for the inverse Hessian matrix approximation. An example to such algorithms are
the limited memory version l-BFGS [14].

Despite there better converge compared to first-order optimizes, second order
algorithms are not commonly used due to the higher storage requirements and
computational cost which is not suitable for large scale machine learning tasks.

1.2.2 Automatic differentiation
To perform the training using any optimization algorithm, the derivative of the loss
function with respect to the model parameters is needed in the process. For complex
models, the analytical derivative is complicated to obtain, thus, other ways are used
to get the derivative.

One way of getting the derivative is numerical differentiation. It works by
calculating the loss function at the current point γ0 and at γ0 + ∆γ, where ∆γ is a
small value. Then, the derivative is approximated using finite differences as:

∂L
∂γ

≈ L(γ0 + ∆γ) − L(γ0)
∆γ

(1.8)

There are two main drawbacks to using numerical differentiation. The first is the
possible small round-off errors in the calculation of the gradient which can hinder
the optimization process. The second and main drawback is the slow computation
of the gradient as the number of basic mathematical operations is big, which is the
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case in neural networks. That is why numerical differentiation is not commonly used
in deep learning.

Automatic differentiation (AD) offers a solution to the previously mentioned
drawbacks [15]. It is based on the idea that any complex function can be represented
as a chain of basic arithmetic, trigonometric, or logarithmic operations. The derivat-
ive can be constructed as a computational graph and the chain rule can be used to
accurately and efficiently calculate the derivative.

An example of the computation graph of a simple function is given in figure 1.3.
As we can see, the function is broken down into simpler basic operations in which
the derivative of each operation is stored in the forward step. Then, the derivative
can be calculated with the chain rule using the already saved values.

Figure 1.3: An example of a simple computation graph used in the automatic
differentiation process.

1.2.3 Parameters initialization
Initializing the neural network parameters plays a crucial role in the training and
performance of neural networks. The initial values assigned to these parameters
determine the starting point for the optimization process. If the parameters are
poorly initialized, it can lead to the vanishing or exploding gradients problem, which
occurs when the gradients used to update the network are extremely small or large.
The goal of parameter initialization is to provide a sensible starting point that allows
the network to learn effectively.

One of the simplest initialization methods is random initialization, where the
parameters are initialized with random values drawn from a distribution. This
approach provides randomness and helps break the symmetry among neurons in the
network.
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Another method is called Xavier initialization, also known as Glorot initialization
[16]. This is a widely used technique that aims to address the vanishing and exploding
gradient problems. It initializes the parameters by drawing values from a distribution
with zero mean and variance that depends on the number of incoming and outgoing
connections to a neuron. The distribution is chosen to ensure that the variance of
the activations remains constant across layers.

Another technique is transfer learning [17]. In this approach, parameters are
initialized with values obtained from a previously trained model on a related task or
dataset. This initialization leverages the knowledge gained from the pre-trained model
and can significantly speed up convergence and improve performance, especially
when training data is limited.

1.2.4 Overfitting and Underfitting
The aim of supervised learning is not just to fit the data used for the training
(optimization process) but also to be able to make good predictions when given
unseen data X. Minimizing the loss function on the training set does not usually
ensure producing a good model. That is why the given dataset is usually split into
3 different sets: a training set used for the optimization, a validation set used for
tuning the model to make sure it can generalize to data that was not directly used to
train the model, and a testing set used to make a final test to the model on unseen
data.

If the model is performing extremely well on the training set but bad on the
validation set, it can be concluded that the model will not perform well on unseen
data and it is said that the model is overfitting. If the model neither performs well
on the training or validation sets, the model is said to be underfitting. If the model
performs well on both the training and validation sets, it is neither underfitting or
overfitting and it can be assessed on the testing set before being deployed in a real
application. Figure 1.4 is an example of overfitting and underfitting on classification
tasks.

Figure 1.4: Example of overfitting and underfitting on a simple classification task.

The underfitting problem can be solved, most of the times, by increasing the
complexity of the used neural network (more hidden layers and neurons). However,
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more complex techniques are used to solve the overfitting issues. The most commonly
used techniques are:

1. More data:

The first way to avoid overfitting is to collect more data which helps make the
model able to generalize and less affected by outliers. This can be performed
by making more experiments or simulations in physical-related processes. Data
augmentation can also be used to increase the dataset [18]. It is achieved by
modifying the already existing dataset. If the data used are images, this can
be achieved by applying random rotations and cropping to the used images.

2. Regularization:

Regularization works by adding a penalty term to the loss function during
training, which discourages the model from becoming too complex or relying
too much on specific features in the training data. This penalty encourages
the model to generalize better to unseen data, improving its ability to make
accurate predictions on new examples. The added term to the loss function
makes sure that some of the model parameters are close to zero or zero making
the model spare, thus, less complex.

One of the most commonly used regularization techniques is the L1 regulariza-
tion [19], where the modified loss function can be written as:

L = 1
N

N∑
i=1

||Ŷ(Xi; γ) − Yi||
2 + ϵ

p∑
j=1

|γj| (1.9)

where ϵ is a regularization hyperparameter to be tuned, γj the components of
γ, and p the length of γ. Another technique is L2 regularization [19] where the
modified loss function can be written as:

L = 1
N

N∑
i=1

||Ŷ(Xi; γ) − Yi||
2 + ϵ

p∑
j=1

γ2
j (1.10)

3. Early stopping:

Early stopping is another technique to avoid overfitting which is based on
stopping the training process once the model starts to overfit [20]. This can
be done by monitoring the loss function on both the training and validation
datasets; once the loss on the validation set starts to deviate and increase while
the training loss keeps decreasing, it means that the model starts to overfit and
it is a good point to stop. Figure 1.5 explains the idea of early stopping. It
shows an example of the loss function evolution with the number of iterations
over the training and validation datasets for an overfitting case and the early
stopping point.
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Figure 1.5: An example of the early stopping technique shows the evolution of the
loss function over the training and validation datasets and the early stopping point.

1.3 Convolutional neural networks
When the input X to the fully connected network is an image (matrix form), one
has to reshape the image into a 1D vector to be able to feed it into the network.
For example, a color image of size 32 × 32 with three channels (RGB) would be
reshaped into a vector of size 1 × 3072 (32 × 32 × 3). The size of the input layer
would be huge leading to a big weight matrix since every neuron connects to every
neuron in the preceding and succeeding layers. Therefore, using fully connected
layers for images would require an immense number of parameters, leading to high
computational complexity, memory requirements, and a heightened risk of overfitting.

CNNs have become popular and commonly used for processing images. Their
key advantage over fully connected neural networks is their ability to exploit local
connectivity and weight sharing. CNNs excel at capturing spatial hierarchies, ex-
tracting meaningful features, and reducing the parameter count compared to fully
connected networks. This makes CNNs ideal for tasks like image recognition, object
detection, and image segmentation.

CNNs are specifically designed to process data with a grid-like structure, such
as images, by leveraging the concept of convolution. At the core of CNNs are
convolutional layers, which perform the convolution operation on the input data.
Convolution is a mathematical operation that combines the input with a set of
learnable filters or kernels, enabling the network to extract local patterns and spatial
relationships from the data.

The operation involves sliding the filter across the input, computing the dot
product between the filter and the overlapped region of the input at each location.
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The resulting values form the feature map after which a nonlinear activation function
is usually applied. The convolution operation is illustrated in figure 1.6.

Figure 1.6: Basic convolution operation [21].

The pooling layer is another important layer that is used to reduce the spatial
dimensions of the feature maps while retaining important information. They achieve
this by downsampling the feature maps through operations like max pooling or
average pooling, which extract the most dominant features within local regions.
It should be noted that these layers have no learnable parameters. The max and
average pooling operations are explained in figure 1.7.

Figure 1.7: Max and average pooling operations [22].

After several convolutional and pooling layers, the resulting features are often
flattened and passed through fully connected layers. These layers resemble traditional
neural networks, where each neuron is connected to every neuron in the previous
layer. The fully connected layers integrate the spatial information captured by earlier
layers and map it to the desired output, such as specific class labels or regression
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values.

Training a CNN involves optimizing its parameters, which include the weights
of the filters and the parameters of the fully connected layers. This optimization
is achieved using backpropagation, where the gradient of a suitable loss function
with respect to the network’s parameters is computed. One of the simplest and
most famous CNN networks is the LeNet-5 architecture introduced in 1998 [23]. The
network is introduced to identify numbers from 0 to 9 from handwritten pictures.
The architecture is shown in figure 1.8.

Figure 1.8: LeNet-5 architecture [23].

Form figure 1.8, we can see that the input image has a shape of (32 × 32). The
first layer is a convolutional layer having 6 filters of size (5 × 5). Average pooling
is, then, applied to the output. Another convolutional layer having 16 filters of
size 5 × 5 is applied, followed by another average pooling layer. Finally, the output
is flattened and fully connected layers are applied ending with 10 neurons for the
output corresponding to the 10 digits from 0 to 9.

1.4 Physics-informed neural networks
To obtain a good model, neural networks are usually supplied with big amounts
of data. In engineering and science applications, such amounts are normally hard
to obtain whether because experiments are hard and time-consuming or computer
simulations are costly and also time-consuming. This is the reason explaining that the
application of neural networks in scientific applications is limited. Physics-Informed
Neural Networks (PINN) offer a way to deal with this low data regime.

PINN is a class of machine learning models that combine the strengths of tra-
ditional neural networks and the governing laws of physics. They leverage the
expressive power of neural networks to represent complex functions while ensuring
that the solutions generated are consistent with the underlying physical principles.
The method was introduced by Raissi et. al [6] to solve forward and inverse problems
represented by partial differential equations.
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1.4.1 Solving Forward problems
PINN is introduced in this section to solve a general nonlinear partial differential
equation that has the form of

ut + N (u) = 0, x ∈ Ω, t ∈ [0, T ],
u(0, x) = ui, x ∈ Ω,

u(t, x) = uD, x ∈ ΓD, t ∈ [0, T ],
B(u(t, x)) = f(x), x ∈ ΓN , t ∈ [0, T ],

(1.11)

where ut is the time derivative and N is a nonlinear differential operator applied
to the solution u(t, x), ui is the initial condition and uD is a Dirichlet boundary con-
dition defined over ΓD. B is an operator defining the Neumann boundary condition
defined over ΓN

The first step in the PINN solution is to choose the approximation space for u as
a feed forward neural network denoted by û.

u ≈ û(t, x; γ) (1.12)
where γ denotes the unknown parameters (weights and biases) of the neural

network.

Afterwards, we define f through automatic differentiation as follows:

f := ût + N (û) (1.13)
The loss function is then defined as:

L = λ0 L0 + λD LD + λN LN + λr Lr (1.14)
where λi are the weights for each loss term which play an important role in the

optimization process and:

L0 = 1
N0

N0∑
i=1

r2
0(ti

0, xi
0) = 1

N0

N0∑
i=1

||û(ti
0, xi

0) − ui
0||2 (1.15)

LD = 1
ND

ND∑
i=1

r2
D(ti

D, xi
D) = 1

ND

ND∑
i=1

||û(ti
D, xi

D) − ui
D||2 (1.16)

LN = 1
NN

NN∑
i=1

r2
N(ti

N , xi
N) = 1

NN

NN∑
i=1

||B(û(ti
N , xi

N)) − f i
N ||2 (1.17)

Lr = 1
Nr

Nr∑
i=1

||r(ti
r, xi

r)||2 = 1
Nr

Nr∑
i=1

||ût + µL(û)||2(ti
r,xi

r) (1.18)

(1.19)

Li respectively are the losses representing the initial condition, Dirichlet, Neumann
boundary conditions, and the PDE residual.
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where {xj
i , tj

i , uj
i }Ni

j=1 denotes points defining the initial condition, {xj
D, tj

D, uj
D}Ni

j=1
the points defining the Dirichlet boundary condition, and {xi

r, ti
r}Nr

i=1 the collocation
(residual) points where the differential equation is to be enforced. That makes the
first term of Eq. 1.14 correspond to the initial condition, the second term refers to
the Dirichlet boundary condition, while, the last term is related to imposing the
differential equation in the domain.

The different terms of the loss function are weighted differently through λi, λD,
and λr. This is done since the different terms can have different scales and weighting
them is important for the minimization process. Finding the appropriate weights is
not an easy task in the process. Some techniques recently introduced in the literature
are discussed in a future section 1.4.4.

A solution to the problem can then be obtained by solving the following minimiz-
ation problem:

γ̂ = min
γ

L (1.20)

1.4.2 Solving Inverse problems
The same problem defined by equations 1.11 is used to define an inverse problem.
In this case, the nonlinear differential operator N depends on a parameter µ whose
value is unknown and homogeneous in space and time, meaning that the unknown is
just one value. The PDE defining the problem can be rewritten as:

ut + µN (u) = 0. (1.21)

In addition to the known initial and boundary conditions, the solution is known
at a few scattered points in space and time, which can represent sensor data in a
real physical process. The aim is to get a solution to the PDE and an estimation of
the unknown µ using the known physics and scattered data.

The strategy of PINN is to add an extra term to the loss function equation 1.14
that represents the mismatch in the scattered data. The term can be written as:

Ldata = 1
Ndata

Ndata∑
i=1

||û(ti
data, xi

data) − ui
data||2 (1.22)

where {xj
data, tj

data, uj
data}Ndata

j=1 denotes points defining the scattered data.

A solution to the PDE u and an estimation of µ can then be obtained by
minimizing the modified loss function after adding the extra term with respect to
the neural network parameters and µ.

γ̂, µ̂ = min
γ,µ

L (1.23)
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1.4.3 Extension to coupled partial differential equations
Using PINN, the extension to solving several coupled partial differential equations is
natural. If several fields need to be approximated, a network with several outputs
can be used, or several separate networks. AD is used to calculate the residuals for
the different equations. Finally, the loss function will be composed of more terms
related to the different residual fields along with the initial and boundary conditions.
This extension will be clear in the next chapter.

1.4.4 Multi-objective optimization
The loss function in PINN is usually composed of several terms representing the
residuals of the differential equations to be solved, the initial and boundary conditions,
or terms representing known data. The terms usually have different magnitudes
which creates a difficulty in the minimization process. Minimizing such composite
loss function is known as multi-objective optimization since the minimization process
has to do several objectives simultaneously while the different terms will be competing.

A naive way to perform such a task is to weigh each term differently so that all
terms have similar magnitude, thus, will be minimized in the same manner. Choosing
the weights can be done using a trial and error technique. One can start with equal
weights and gradually modify them based on the results obtained. Iteratively refining
the weights based on trial and error can help find the desired balance and achieve
the objectives effectively.

Non-dimensionalization of the full system of equations under study can help fix
the issue. It can aid create different terms having to start the minimization with
comparable magnitudes; thus making the training easier. Non-dimensionalization
has shown to be efficient in many studies [24; 25], however, in some cases, non-
dimensionalization may not be enough, and other methods need to be used.

A way to reduce the number of terms in the loss function, thus simplifying the
optimization task, is to use hard enforcement of initial and boundary conditions.
The way PINN is satisfying the initial and boundary condition is called a "soft" way
of enforcing the conditions. This soft enforcement of initial and boundary conditions
has several drawbacks. First, there is no guarantee of the accuracy of the enforcement
of the conditions. Second, the optimization performance is related to the relative
importance of each term which is dependent on the weighting coefficients which is
difficult to choose. Alternatively, the initial and boundary conditions can be satisfied
in a "hard" way by having a particular solution satisfying the conditions exactly
at the boundaries. This method makes sure that the conditions are automatically
satisfied and the optimization performance is enhanced since there is no more an issue
of relative importance between terms of the loss. Several research were conducted
making use of the "hard" way of enforcing the initial and boundary conditions [26–28].
The solution is formulated as follows:

û(x, t) = up(x, t) + D(x, t) uNN(x, t) (1.24)
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where up is a particular solution that satisfies the initial and boundary condi-
tions. D is a globally defined smooth function that takes a value of zero on the
spatio-temporal boundary where conditions are defined and increase away from the
boundary. uNN is the general solution in the domain approximated with a neural
network. For simple geometries, up and D can have analytical forms, however, for
more complicated problems, up and D can be approximated with neural networks
that are pre-trained before solving the problem. This way was used by [26; 27].

Another similar way of using the "hard" enforcement, introduced by [28], is to
use a function H that takes the value 0 at the boundaries and 1 inside the domain,
instead of using the D function. This function is defined as follows:

H(x, t) =
{

1 − cos (d(x, t)π/ϵ) d < ϵ
1 d ≥ ϵ

(1.25)

where d is the distance to the boundary and ϵ is an artificial thickness of the
boundary. Through this definition, the solution will take the form

û(x, t) = up(x, t)(1 − H(x, t)) + H(x, t) uNN(x, t) (1.26)

This means that at the boundaries where H is 0, the solution will only be up

which satisfies the initial and boundary conditions exactly. However, inside the
domain where H is 1, the solution will be only uNN .

The modified loss function will then have only one term related to satisfying
the differential equation in the domain, while the initial/ boundary conditions are
implicitly satisfied because of the previous imposition in the particular solution.

1.5 Applications of Machine Learning on
Composites Manufacturing

1.5.1 Resin Transfer Molding

In this subsection, an introduction to Resin Transfer Molding (RTM), a manufac-
turing process that falls under the category of LCM processes, is introduced. LCM
processes have a common feature of filling a cavity with dry reinforcement then
the liquid resin is injected into the cavity. In this section, the RTM manufacturing
process will be discussed [29].

In general, RTM process can be subdivided into 3 main steps: preforming, resin
injection, and in-mold cure/polymerization. After these steps are done, machining
and finishing can take place for the part. A summary of the RTM process is shown
in figure 1.9.
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Figure 1.9: Resin transfer molding process steps [30].

In the preforming step, the dry reinforcement is tailored to have the shape of
the mold. A preform binder is usually used to make the preform stiff enough to
be stacked and handled before injection and to force the fibers to stay in their
position and orientation during injection. Once this process is finished, the pre-
form is placed into the mold cavity which is then closed. The preform is usually
slightly compressed by the mold. This step is done to speed up the process, im-
prove the quality and reduce part-to-part variations. Several methods can be used
depending on the mold complexity and the required mechanical performance. The
used preforming methods are: cut and paste, spray-up or thermoforming, for instance.

The next step is the resin injection. The resin is injected in the mold under
constant pressure or constant flow rate until the preform is fully impregnated. During
this step, resin pushes the air outside and an interface between the resin and air
exists referred to as the flow front. There are three main strategies for mold filling:
point injection, edge injection, and peripheral injection. In point injection, the resin
is introduced in the center of the part through a port. The resin will flow radially
venting air at the edge of the part. For edge injection, the resin is injected through a
lineal inlet from one edge of the part. The flow will be almost unidirectional venting
the air to the other edge. Finally, the peripheral injection introduces the resin in
a distribution channel around the periphery of the part. The flow will go inward
venting the air at the center of the part. Injection parameters such as: injection
pressure, viscosity, or temperature for example need to be carefully chosen to avoid
problems such as: dry spots or fiber washing.

The last step in the process is the in-mold polymerization or crystallization for
thermosets. The polymerization involves chemical transformation of the resin liquid
into a gel state (therefore an increase of the viscosity) and then to become a hard
solid. Polymerization usually takes place during the injection process and after it,
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however, the polymerization (increasing viscosity) should be slow during injection
to make sure the injection step is done correctly and then, the reaction can become
faster to reach a complete polymerization in a short time.

1.5.2 Issues during LCM processes
During LCM processes, several issues can arise if the process is not well-designed
or lacks proper control. Understanding the reasons behind these issues and their
consequences is crucial for preventing them and determining acceptable tolerances.
Some common defects that can occur during an LCM process are early gelation of
the resin, the formation of dry spots, fiber-wash out, and fiber misalignment.

For instance, one of the issues is early gelation of the resin [31]. Gelation is the
first solidification stage in which the viscosity of the resin highly increases stopping
it from filling the mold. This happens if the mold is heated more than needed. As a
consequence, the polymerization starts earlier than planned and then the injection
process is incomplete because the resin has solidified quicker. Figure 1.10 shows the
viscosity vs. temperature for a thermosetting epoxy resin.

Figure 1.10: Viscosity vs. temperature of a thermosetting epxoy resin [32].

From figure 1.10, one can see that the viscosity decreases as the temperature
increases which allows for a faster flow in the mold, however, at some point, the viscos-
ity sharply increases (gelation point) due to a chemical reaction starts to taking place.

Another common issue is the formation of dry spots during the injection. Dry
spots are air pockets surrounded by resin that happens during injection processes.
This is a critical problem since mechanical properties such as: shear and tensile
strength are degraded with increasing the void content of the part [33; 34]. For this
reason, depending on the application, products with more than 1 to 5% of void
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content can be rejected. This issue could occur when the geometry of the part is
complicated so that the flow pattern is not regular, and thus dry spots are common
in this case [35]. This issue is also common for multiple gates injection strategies.
If the gates are not well-designed in location and to open at the correct times, dry
spots will be created [36]. Several dry sports are shown in figure 1.11

Figure 1.11: Several dry spots appearing in an LCM process [37].

Another main defect that is common in LCM is race tracking. Race tracking
occurs when there is a gap between the preform and the mold wall. This misplacement
leads to faster resin flow in this gap leading to an unexpected filling pattern. As
a consequence, the resin might reach the outlet before completely saturating the
preform, leading to the creation of dry spots. The local permeability in the race
tracking region depends on the size of the gap. Figure 1.12 shows an example of race
tracking.

Figure 1.12: An example of the race tracking defect in resin transfer molding [38]
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Another problem that might take place is fiber-wash out. Fiber-wash out is the
displacement of fibers from their original position during the injection. This issue is
common for high-pressure injection processes; the inlet pressure is so high that the
fibers near the inlet are usually displaced [39]. This leads to localized weak points in
the part where there are almost no fibers and it is usually near the inlet. Figure 1.13
shows deformed tows near the inlet due to high pressure.

Figure 1.13: Fibre-wash out example due to high pressure [39].

Fiber misalignment can also be seen as a type of defect [39]. It happens when
the fibers should be aligned in a specific direction and small angular misalignment
takes place during the performing or placement of the fibers in the mold. This
misalignment can lead to high deterioration of the desired properties in the direction
of interest.

1.5.3 Machine learning applications
Machine learning recently gained considerable attention in the field of composite
manufacturing. Its application in the field can vary from process optimization to
detection of defects in real-time allowing manufacturers to intervene and take correct-
ive actions to material characterization. In this section, we offer a literature review
with the most promising research performed in this area related to resin transfer
molding manufacturing process.

In [40], the authors used feed-forward neural networks to make predictions of
the location of the flow front. The input to the network is the current flow front
location and the flow rate, while the output is the new location of the flow front after
1 second. The data used for the training is collected from numerical models. The
trained network is used in a controller regime to change the flow rate to avoid the
formation of dry spots. The framework is built for a two-dimensional unidirectional
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study case and is shown in figure 1.14˙

Figure 1.14: The framework introduced by [40] to avoid the formation of dry spots.
The ANN-based simulator is a trained neural network taking the current flow front
and the flow rate as inputs and outputs the expected flow front location after 1
second. The predicted output along with the desired flow front location is fed to an
optimizer that changes the flow rate according to the desired front location.

Results from [40] of the predicted flow front location using the neural networks are
shown in figure 1.15. The results show agreement when compared with a numerical
solver.

Figure 1.15: The flow front location predictions of the framework introduced by [40].
The predictions of the neural network are compared to predictions by a numerical
method.

In [41], a framework is developed to detect the location, size, and permeability of
a defect from pressure sensors. Data in the form of 9 pressure sensors are collected
from 3k numerical simulations where the location, size, and permeability of defects
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are varied. The pressure sensor data is stored as an image footprint of the pressure.
A CNN is built to perform the task where the input is the image representing the
pressure data, and the output is the location, size, and defect permeability. A visual
representation of the used CNN is shown in figure 1.16

Figure 1.16: The architecture of the convolutional neural network used by [41] to
predict the location and size of defects using pressure sensor data. The input to
the network is an image representing the pressure sensor data and the output is the
location and size of the defect.

The predictions of the location and size of the defect in [41] show close agreement
with the ground truth when 3×3 pressure sensor grid was used as shown in figure 1.17.

Figure 1.17: The prediction of the location and size of the defect done by a convolu-
tional neural network introduced in [41] as compared to the ground truth. A 3 × 3
pressure sensor grid was used as an input to the network.

The authors of [42] developed a framework based on convolutional neural networks
to predict the existence of dry spots from pressure sensors. The developed network
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is split into two parts: a deconvolutional/convolutional part to generate flow front
images from pressure sensors and a classical convolutional network to predict whether
a dry spot exists or not from the flow front image. The data used for training is
produced using 36k numerical simulations of a two-dimensional central injection
problem with varying local permeabilities representing defects. The used neural
network is shown in figure 1.18.

Figure 1.18: The neural network architecture used by [42] to predict the existence of
dry spots. The first part is a deconvolutional/convolutional network, which takes an
image representing pressure sensor data as an input and outputs a flow front image.
That generated image is fed into a convolutional network for binary classification to
predict whether a dry spot exists or not.

An example of the generated flow front image from the deconvolutional/convolutional
part is shown in figure 1.19.

Figure 1.19: An example of the generated flow front image from the deconvolu-
tional/convolutional part of the network architecture introduced by [42]. The input
to the network is an image representing pressure sensor data.

The authors of [42] obtained 91.7% accuracy using 1140 pressure sensors, 83.7%
using 80 sensors, and 75.22% using 20 sensors. Even though the framework to
generate flow front images from sensors is unique and promising; it is not practical
to have such a high number of sensors in a real process.

1.6 Summary
In this chapter, we have seen:
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• a detailed description of fully connected neural networks in a supervised learning
paradigm.

• important topics in machine learning including optimization algorithms, auto-
matic differentiation, parameters’ initialization, and methods to avoid overfit-
ting.

• basics of convolutional neural networks.

• an introduction and description of PINN to solve forward and inverse problems.

• several applications of machine learning in composites manufacturing.

Transition
We have seen in this chapter, the potential of PINN to merge Physics and
data knowledge in order to solve problems. In the next chapter, we will see
the application of PINN to liquid transfer molding. The injection stage of
the process will be in consideration; the process involves a two-phase flow in
fibrous porous media.
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Chapter 2

Simulating resin injection in
fibrous media using PINN

Abstract

In this chapter, we show the possibility of using PINN to simulate
resin injection in fibrous media. The problem in hand is a two-phase
flow (resin-air) in porous media; the macroscopic Darcy’s law is used
as an approximation to the momentum equation. The volume of fluids
(VOF) technique is used to track the flow front between the two phases.
It will be shown through some examples that having fixed collocation
points lead to high errors in predicting the location of the flow front;
thus an adaptive technique to enrich the collocation points based on
the residuals is developed and tested which resolves the issue. The
developed PINN framework along with adaptivity is tested on 1D and
2D problems.
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2.1 Introduction

Modeling the process of resin injection in fibrous media is essential before the real
process which is useful for process design such as deciding on the gate location or
injection times. Moreover, it can help make predictions of the filling time and the
possibility of defects. This is widely done using mesh-based techniques such as finite
elements [1; 2], finite volumes [3; 4] and mixed finite element-volume formulations
[5; 6].

The problem of resin injection in fibrous media involves a moving discontinuity,
an interface between two fluids (resin and air), usually referred to as flow front.
To capture the flow front movement across the computational grid, mesh-based
techniques are coupled with methods such as level-set [7], the volume of fluids [8], or
phase-field method [9]. Moreover, to accurately predict the location of the flow front,
a very fine mesh is required which is computationally expensive. Another option is to
adapt the mesh every few time steps (to have a denser mesh near the discontinuity)
[10]. This option is cheaper than using one fine mesh, however, it is still costly to
perform interpolation (transfer the data from one mesh to another) and less effective
in 3D problems.

On the other hand, meshless and particle-based methods [11] have been proven to
provide more natural ways of tracking the flow front. Smoothed-particle hydrodynam-
ics can be regarded as the most commonly used meshless method which has great
advantages in terms of ease of implementation, parallelization, and computational
cost [12]. However, meshless methods in general are generally regarded as having
a lower accuracy and reduced stability when compared to grid-based methods [13; 14].

Lately, Physics-informed neural networks (PINN) has gained widespread attention
to solve problems represented by partial differential equations. That is due to the
ease of implementation attributed to the use of automatic differentiation and that
the technique is meshless. Moreover, the use of neural networks as the approxima-
tion space is a powerful choice due to their great approximation capabilities. Also,
performing adaptivity by adding more collocation points in interesting regions is
quite a straightforward and cheap task. PINN has been successfully used to solve
problems in solid mechanics [15], fluid mechanics [16; 17], subsurface flow analysis
[18], magnetic problems [19], and many others [20–27]. PINN showed great potential
and success in these applications; for that, PINN is assessed in this chapter to solve
resin injection in fibrous porous media.

The main objective of this chapter is to assess and develop a framework based
PINN to be used as a meshless solver of resin injection in fibrous porous media (mold
filling problem). In the process, a cheap (almost cost-free) adaptivity algorithm is
developed and tested for 1D and 2D mold filling examples.

This chapter starts with the governing equations used to model two-phase flow in
porous media. Afterwards, the PINN framework to solve the problem is detailed; the
new adaptivity technique is introduced afterwards. Two classical examples (1D and
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central injection) are addressed and the results are compared with existing analytical
solutions. The chapter ends with a discussion and conclusion.

2.2 Two-phase flow in porous media model

To start with, figure 2.1 shows a generic geometry that can represent a mold domain
Ω. The boundary of the domain is represented with the symbol Γ . The boundary
includes an injection Γin and an outlet port Γout. The rest of the boundary is an
impermeable wall Γwall where fluids cannot cross. At t = 0, the domain is completely
filled with air with viscosity µa, then resin is injected under pressure pin(t) or con-
trolled flow rate (velocity) vin(t) displacing the air outside the domain through Γout

at pout(t). An interface (discontinuity) between the two fluid phases will always exist
throughout the mold filling process.

Figure 2.1: Generic mold geometry at time t showing the two fluid phases and the
boundary conditions.

The flow in porous media is modeled using Darcy’s law which is an approximation
to the momentum equation. Darcy’s law is written as:

v = − 1
µ

K · ∇p (2.1)

where v is the volume average Darcy’s velocity, K the permeability tensor which
is a property of the porous media measuring how easily the fluid can flow through
the porous media, µ the dynamic viscosity, and ∇p the pressure gradient.

Both fluids are assumed to be incompressible, therefore, the mass conservation
equation reduces to

∇ · v = 0 (2.2)

Inlet and outlet pressure boundary conditions are assigned as follows:
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p(xinlet, t) = pin(t) on Γin (2.3)
p(xoutlet, t) = pout(t) on Γin (2.4)

Inlet velocity can be assigned instead of the inlet pressure depending on the
injection technique used

v(xinlet, t) = vin(t) on Γin (2.5)

Impermeable boundaries are characterized by zero normal velocity, thus

v · n = 0 (Impermeable wall) (2.6)

To track the interface between the two fluid phases, the volume of fluid (VOF)
method is used [28; 29]. It is based on defining a fraction function c, which is a
scalar function that takes a value of 1 in the domain where resin exists, zero for the
air, and values ranging from 0 to 1 near the interface between the phases. The more
accurate the numerical method is, the smaller the interface region will be leading to
a discontinuous fraction function in the ideal case. Using this definition, the viscosity
µ in equation 2.1 can be rewritten as:

µ = cµr + (1 − c)µa (2.7)

where µr and µa are the viscosities of the resin and air, respectively. c evolves
with time according to the following advection equation

ct + 1
ϕ

v · ∇c = 0 (2.8)

where ct is the time derivative of the fraction function c and ϕ is the porosity of
the porous media.

Initial and boundary conditions need to be defined for the VOF advection equation.
The initial condition is written as:

c(x, t = 0) = c0(x) . (2.9)

The mold is assumed to be completely filled with air at t = 0; thus, c0 = 0 for all
the upcoming examples.

Inlet flow also requires the assignment of boundary conditions for c:

c(xinlet, t) = 1 (Inlet) (2.10)

2.3 PINN structure
To solve this problem, we need, first, to approximate the pressure, fraction function,
and velocity using feedforward neural networks. Several architectures can be used
for this problem. One option is to use one single neural network to approximate all
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the fields. A second option is to use distinct networks for the pressure and fraction
function fields and one network for the different velocity components. Another is to
use distinct networks for all the fields including distinct networks for each velocity
component. We choose to use the third option since it was found by [30] that
using distinct networks for the different fields of interest facilitates the optimization
process. The PINN structure for a general two-phase flow in porous media problem
is summarized in figure 2.2. Each of these networks has space x and time t inputs.
The outputs of these neural networks (v, p and c) are differentiated with respect to
the inputs, using automatic differentiation [31], forming the residuals of the three
differential equations (2.1), (2.2) and (2.8).

x

t

v

p

c

1st NN

2nd NN

3rd NN

f1 := ct + (1/ϕ)v · ∇c

f2 := v + (1/µ) K · ∇p

f3 := ∇ · v

Figure 2.2: PINN structure for a general transient two-phase flow in porous media
problem. The structure is composed of three neural networks, where each one has
inputs of space and time. The networks output the velocity, pressure, and fraction
function which are then used to form the different PDE residuals.

The loss function can, then, be defined as follows:

Loss = λv lossv + λc lossc + λp lossp + λ1 lossf1 + λ2 lossf2 + λ3 lossf3 , (2.11)

where

lossv = 1
Nv

Nv∑
i=1

r2
v(xi

v, ti
v) = 1

Nv

Nv∑
i=1

||v(xi
v, ti

v) · n(xi
v, ti

v)||2, (2.12)

lossc = 1
Nc

Nc∑
i=1

r2
c (xi

c, ti
c) = 1

Nc

Nc∑
i=1

||c(xi
c, ti

c) − ci
b||2, (2.13)

lossp = 1
Np
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r2
p(xi

p, ti
p) = 1

Np

Np∑
i=1

||p(xi
p, ti
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Nf1
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||f1(xi
f1, ti
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Nf1
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lossf2 = 1
Nf2
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f2, ti
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f2), (2.16)
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lossf3 = 1
Nf3
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i=1
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f1, ti
f1}

Nf1
i=1 ,

{xi
f2, ti

f2}
Nf2
i=1 and {xi

f3, ti
f3}

Nf3
i=1 are the collocation points in space and time for the

three residuals, respectively, where the physics are enforced, and λi are the weights of
each term in the loss function. The λi weights are important to make each contribu-
tion to the loss function has comparable magnitudes thus, helping the optimization
process. Finally, a solution for the fields, p, v, and c, is obtained by minimizing the
loss function with respect to the neural networks’ parameters.

Note
It should be noted that choosing the λi weights is an open research topic
in the machine learning community and PINN as well. In this study, non-
dimensionalization is performed before the training process, however, in some
cases, manual tuning of these weights was done.

2.4 Residual-based adaptivity in PINN
Since, the filling problem deals with a moving discontinuity (front between the two
fluid phases), having a fixed number of collocation points in the spatio-temporal
domain might lead to inaccurate solutions and smearing of the discontinuity. Thus,
we chose to adapt the number and location of the collocation points during the
training process; this can be seen as similar to the mesh refinement in mesh-based
techniques, however the degrees of freedom in PINN (weights and biases of the neural
networks) do not change.

Mesh refinement is a basic idea in classical numerical techniques such as finite
element (FEM) and finite volume (FVM) methods [32]. There are three basic tech-
niques to mesh adaptation: h-adaptivity [33], r-adaptivity [34] and p-adaptivity
[35]. H-adaptivity adds more nodes, thus increasing the degrees of freedom and the
mesh connectivity. While r-adaptivity keeps the same number of nodes and degrees
of freedom however the nodes are relocated while keeping the same connectivity.
Finally, p-adaptivity increases the polynomial degrees of elements while keeping the
mesh fixed. Other adaptivity methods exist that combines some of the three basic
techniques together such as: hp-adaptivity [36] and rh-adaptivity [35].

There are mainly three drivers for mesh adaptation: error [37], PDE residual [38]
and solution features [39].

Error-based adaptation adds more degrees of freedom where the solution error is
high. This technique ignores the fact that the error is transported in the domain.
Therefore, adapting where the error is high might ignore the region of the error
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source itself, where adaption is more useful [40].

Residual-based adaptation refines the mesh where the discretized PDE residual
is high. The residual can be seen as the source of error in the solution [41]. Thus,
refining where the residual is high is seen as a way of refining where the error source
is. Therefore, this technique usually performs better than error-based adaptation.

Solution-based adaptation utilizes the solution features such as gradients or
discontinuities for adaptation. The philosophy behind this technique is that by
using more points in these locations, these features can be resolved, thus, leading
to improving the overall accuracy of the solution. However, if multiple features are
present in the same problem, the adaptation results in over-refining some features
while others are ignored. An example of this adaptivity failure can be found in [42].

The adaptation process is usually computationally expensive since certain require-
ments have to be satisfied and the mesh connectivity needs to be updated. Moreover,
parallelization becomes complex for unstructured grids. However, in the case of
PINN, changing the collocation points locations or adding more points are cheap
processes. The main reason is that PINN is a meshless method, thus, there are no
specific element topologies to respect or mesh connectivity to update. Moreover, the
approximation of the derivatives is independent of the collocation point position.
Therefore, there is no discretization error resulting from the distribution of the
collocation points. The only thing to do is identify the location where more points
are needed.

In this section, we show the development of a residual-based algorithm by enriching
the locations where the residual is high with more collocation points. We build the
algorithm based on the work of [43] in which the authors developed the residual-based
adaptive refinement method (RAR). In their work, the authors used a dense set of
randomly drawn points in the space-time domain, where residuals are evaluated.
Points corresponding to the largest residual values are then added to the training
set of collocation points. The progressive refinement of the training set allows for
residual control. However, when residual is showing high values in very narrow regions,
this sampling strategy tends to produce excessively clustered points ignoring other
solution features if existing and leading to unnecessary over-refinement. This behavior
appears to be related to solutions exhibiting moving sharp fronts or discontinuities,
as in our model. An example of that is seen in figure 2.3 where the added points are
focused in a very small region.

Note
It should be noted that the dense set of collocation points is only used for
obtaining the residuals (forward pass). This process is only done few times
during the full training process; thus, it is computationally cheap to add extra
points in the training set.
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Figure 2.3: Left: log of the absolute residual field f1, right: the chosen points
according to RAR.

To avoid this collocation point clustering that might lead to over-fitting of the
model, we designed a probability density function based on the residual field to
control the spread of the added points. The density function is, then, used to draw
points from the dense set and these points are added to the training set. By doing
this, collocation points will be more evenly spread in the domain; more points will
be added where the probability is high (high residual) and fewer points where the
probability is lower (low residual). Figure 2.4 explains the procedure used for the
adaptivity technique developed.

Figure 2.4: Left: log of the absolute residual field f1, middle: the probability density
function built from the residual, right: the chosen points drawn from the density
function.

The algorithm is extended for coupled differential equations so that each PDE
residual will have different collocation points. Moreover, data points are also enriched
using a similar strategy to better capture the initial/boundary conditions. The
algorithm is as follows:
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Algorithm 1: Residual-based adaptivity
Inputs: Number of adaptivity steps M , number of iterations n, tolerances ϵi,
ϵv, ϵc and ϵp;

while m < M & (µi > ϵi || µv > ϵv || µc > ϵc || µp > ϵp) do
- Calculate fi (3 PDE residuals), rv, rc and rp using dense sets;
- Build the probability functions pi, pv, pc and pp using dense sets

Eq: 2.18;
- Draw points from the dense sets using the probabilities and add it to the

training sets;
- Use minimization algorithm for n fixed iterations;
- Calculate the residuals’ mean using the dense sets;

µi = 1
Ni

∑
|fi|,

µv = 1
Nv

∑
|v(xi

v, ti
v) · n(xi

v, ti
v)|,

µc = 1
Nc

∑
|c(xi

c, ti
c) − ci

b|,

µp = 1
Np

∑
|p(xi

p, ti
p) − pi

b|,

end

The probability functions used have the form of

p(X) = max(log |r(X)/ϵ|, 0)∫
Ω max(log |r(X)/ϵ|, 0) dX

, (2.18)

where X is the random vector [x, t]T , r the considered residual, Ω the spatio-
temporal domain and ϵ a small tolerance to filter small residual values. In practice,
the choice of the value of ϵ is chosen to control the spread of the point distributions.
The function is designed in a way to ensure that its integral over the space-time
domain is 1, hence, the presence of the term in the denominator which is calculated
using Monte Carlo integration over the dense set of points.

2.5 Numerical examples

In this section, we provide numerical examples to assess the ability of PINN to
simulate the resin injection process and also to assess the developed adaptivity
algorithm. Two classical examples are provided: a 1D injection and a 2D central
injection with an orthotropic permeability tensor.

The system of equations to be solved is initially non-dimensionalized so that
the different terms of the loss function will have comparable magnitudes, thus, the
training process will be simpler.
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2.5.1 One dimensional injection

Physical model and scenarios

We consider a one-dimensional problem shown in figure 2.5. At t = 0, the domain
is completely filled with air. The inlet is located at the left end where resin is
being injected at constant pressure pin. The outlet is located at the right end, at a
distance l from the inlet, where the pressure is kept constant at pout, which usually
corresponds to atmospheric pressure. The permeability of the domain k is assumed
to be homogeneous and constant in time.

pin
pout

Flow front

Resin Air

Figure 2.5: One-dimensional porous domain (filling problem)

Since the domain is initially filled with air, the fraction function c is 0 at t = 0
(c(x, 0) = 0). Moreover, at x = 0 the resin is being injected continuously over time,
thus, c(0, t) = 1. These two conditions create a discontinuity at t = x = 0; this
discontinuity is advected with the flow velocity.

To simplify the process of minimizing the combined loss function, the problem is
nondimensionalized. This allowed us to weigh the different terms in the loss function
in Eq 3.1 similarly. Therefore, λc = λp = λ1 = λ2 = λ3 = 1. It should be noted that
there are no conditions on the velocity field, thus the term lossv is not included in
the full loss function definition. The parameters used in the nondimensionalized 1D
problem are shown in table 2.1.

Table 2.1: Parameters used for the nondimensionalized 1D two-phase flow.

Parameter Symbol Value
Length l 1

Full time T 0.5
Permeability k 1

Resin viscosity µr 1
Air viscosity µa 10−5

Inlet pressure pin 1
Outlet pressure pout 0

Porosity ϕ 1

In this example, three distinct neural networks are used to approximate the
pressure, fraction function, and velocity fields. Each network has two inputs x and t
and one output corresponding to the field being approximated. Each network has 5
hidden layers and 20 neurons. The hyperbolic tangent activation function is used in
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all the hidden layers since it was found that it provides good results according to
[18; 25; 30]. However, for the output layer, the sigmoid activation function is used
for the pressure and fraction function networks since their values go from 0 to 1.
While the linear activation function is used for the output layer of the velocity network.

The optimization strategy of using Adam optimizer followed by a second order
optimize as BFGS is followed by [17; 43; 44]. The reason is that second-order methods
like BFGS are prone to fall into local minima, therefore, Adam is firstly used to reach
the zone of the global minimum, afterwards, BFGS is used to reach the minimum
more easily since it iteratively builds an approximation of the inverse Hessian matrix
which is used to reach the minimum. The details of the neural network architecture
used and optimization details are shown in table 2.2.

Table 2.2: Neural Network architecture and optimization method used for the
nondimensionalized 1D two-phase flow.

Parameter Value
no. of hidden layers 5

no. neurons per hidden layer 20
Activation function of hidden layers tanh

Optimization 1000 Adam iteration then 500 BFGS
Adam learning rate 0.001

Three numerical experiments are performed and compared to assess the developed
adaptivity technique. In the first experiment, a fixed number and location of
collocation points are used (2500 points organized in 50×50 grid) for the whole
training phase. For the second experiment, RAR technique is assessed starting with
1600 collocation points organized as 40×40 grid points during the Adam training
phase. Afterwards, point enrichments are performed 3 times every during the BFGS
minimization stage till the stopping criteria are satisfied (at 2500 points as well).
The final experiment using the provided adaptivity algorithm starting with 1600
points organized as 40×40 grid points during the Adam training phase. Similar
enrichments are done as in the RAR experiment. Table 2.3 summarizes the three
scenarios. All cases took nearly 200 seconds to converge using a laptop with Intel
core i7-6700HQ CPU @ 2.60 GHz 2.59 GHz with 8 Go RAM.

Table 2.3: Summary of the collocation points evolution in the 3 numerical experiments
for the nondimensionalized 1D two-phase flow.

Starting points Adaptation Final points
Fixed PINN 2500 (50 × 50 grid) No 2500

PINN with RAR 1600 (40 × 40 grid) 3 enrichments 2500
New Adaptive PINN 1600 (40 × 40 grid) 3 enrichments 2500

For testing the generality of the solution, a fixed 1000 points randomly distributed
over the domain are used to evaluate the loss function. This test set will provide a
sense of the generalization error committed during the training phase. It should be
noted that these points are only used for testing but are not used in the training
phase.
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Flow front position

The analytical solution for the flow front xf as a function of time is obtained and is
written as:

xf =
−µal +

√
µ2

al2 + 2(µr − µa)k(pin − pout)t
µr − µa

. (2.19)

The flow front position in the three numerical experiments is extracted as the 0.5
level set of the fraction function. The front positions from the numerical tests are
plotted along with the analytical solution in figure 2.6.

Figure 2.6: Front position with time for the fixed, RAR, and new adaptivity cases
along with the analytical front position for the 1D filling example and a zoomed
image to differentiate.

It can be seen from figure 2.6 that the proposed adaptivity technique provided
the best results (closer to the analytical solution) among the three scenarios. PINN
with RAR did not provide a significant improvement to using fixed points; that is
probably due to the focusing of the enrichments in a small spatiotemporal region
leading to harder optimization, and higher generalization error, thus leading to
minimal improvement. However, the newly developed adaptivity method provided
a greater improvement probably due to the widespread of the enrichment points
leading to better generalization.

Pressure profiles

The pressure profiles as a function of x at different times are shown in figure 2.7 for
the three scenarios and compared to the existing analytical solution. The analytical
solution for pressure can be written as
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p(x, t) =



−µr(pin − pout)
(µr − µa)xf (t) + µal

x + pin x < xf (t)

−µa(pin − pout)
(µr − µa)xf (t) + µal

x + µa(pin − pout)
(µr − µa)xf (t) + µal

l + pout x ≥ xf (t)
.

(2.20)
The new adaptive case provided a pressure solution closer to the analytical

solution than both of the fixed PINN and PINN with RAR cases. PINN with RAR
shows a prediction far from the analytical solution near t = 0.

Figure 2.7: Pressure profiles at different times (t = 0, t = 0.15, t = 0.25 and t = 0.5)
for the adaptive and fixed collocations cases for the 1D filling example.

As can be seen from figure , the pressure is initially almost zero in the whole
domain since it is fully filled with air. However, at x = 0, the pressure should be 1
since the domain is being filled under constant pressure. This condition creates a
discontinuity at t = 0. At further times, the pressure has a linear profile with a kink
at the flow front.

Evolution of the collocation points distribution

The distribution of the collocation points for the different PDEs is shown in the
case of new adaptive PINN in figure 2.8. The figure shows the evolution of these
distributions at different stages of using the adaptivity algorithm.
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Figure 2.8: Evolution of collocation points with new adaptivity (from left to right:
collocations for f1, collocations for f2 and collocations for f3) for the 1D filling
example. New collocation points after each adaptation step are shown in red.

From figure 2.8, it can be seen for the collocation points of f1 that the points
seem to be dense near the location of the front, where the residual is higher. This
helped in capturing the interface location accurately. While for the other collocation
points (f2 and f3), they were distributed almost randomly in the domain. That
is because the residual field is spread all over the domain since there are no sharp
solution features to capture.

Loss function and generalization

The loss function is compared in the three scenarios by plotting the loss vs. iteration
graph for both cases. The loss using the training set is compared to that using
the testing set for all cases as shown in figure 2.9. It should be noted that there
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is a deviation between the training and testing loss in the fixed collocations case,
meaning that the generalization error is high. This deviation is marginally decreased
in the PINN with RAR case. For the new adaptive PINN case, the deviation
significantly decreases meaning that less generalization error is committed using
the newly-developed adaptive technique. From a deep learning perspective, using
adaptive collocation points can be seen as a form of regularization of the neural
network solution; adaptivity prevents overfitting, thus making the solution more
accurate for unseen points (points not used in the training process).

Figure 2.9: Loss vs. Iteration graphs for fixed PINN (left plot), new adaptive PINN
(middle plot), and PINN with RAR (right plot) for the 1D filling example.

The different terms in the loss function are plotted for the new adaptive case
against the number of iterations in figure 2.10. This is done to assure the convergence
of all the terms.

Figure 2.10: Different loss terms versus iterations for the new adaptivity case for the
1D filling example.
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All the loss terms have more or less a similar trend in convergence. We can note
that the loss corresponding to the initial and boundary conditions of the fraction
function c has the highest values (harder convergence) that is due to the discontinuity
in the initial/boundary condition values at t = 0.

2.5.2 Two dimensional central injection

Physical model and scenarios

The next example is a two-dimensional central injection problem. The domain is
a square of a unity area with an elliptic injection port placed at the center with
constant pressure (p = 1). The four outer sides are outlets where the pressure is set
to zero. The problem domain is plotted in figure 2.11. The analytical solution to
this problem exists in [45].

Γout

Γout

Γout Γout

Γin

Figure 2.11: Domain of the 2D central injection problem. Γout is the outlet boundary
where the pressure is set to 0, while Γin is the boundary of the inlet where pressure
is set to 1.

The material properties are the same as in the first example (table 2.1) except
for the permeability of the domain. The permeability is assumed to be homogeneous,
constant in time, and orthotopic, where the permeability tensor can be written as

K =
[
1.5 0
0 1

]
. (2.21)

All training parameters, that were used in the 1D filling example (section 2.5.1),
are used for the 2D example except for the network architecture. In this case, 4 neural
networks are used to approximate the fraction function, pressure and two velocity
components; each network is composed of 5 hidden layers and 20 neurons. The 3
scenarios (Fixed PINN, PINN with RAR and new adaptive PINN) are compared in
the 2D filling example, as well.

Flow front position and pressure fields

The fraction function and pressure fields are plotted at different times for the adaptive
case to visualize the evolution of the flow front and pressure with time in figure 2.12.
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Figure 2.12: Left: Fraction function field. Right: pressure field. The plots are shown
at times 0, 0.039 and 0.078 from top to bottom for the 2D filling example.

The positions of the flow front along the x and y directions are extracted as a
function of time and plotted in figures 2.13 and 2.14. The results are shown for the
3 numerical experiments along with the existing analytical solution for comparison.
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Figure 2.13: Front (fluid 1/fluid 2 interface) position in the x-direction with time for
the fixed and adaptive cases along with analytical front position for the 2D filling
example.

Figure 2.14: Front (fluid 1/fluid 2 interface) position in the y-direction with time for
the fixed and adaptive cases along with analytical front position for the 2D filling
example.

It can be seen that the new adaptive algorithm provided a better prediction
(closer to the analytical solution) of the flow front position.
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Loss function and generalization

The loss function is plotted for the 3 cases in figure 2.15. 10,000 points in the
space-time domain are chosen randomly to assess the testing loss, while they are not
used in the training.

Figure 2.15: Loss vs. Iteration graphs for fixed PINN (left plot), PINN with RAR
(middle plot), and new adaptive PINN (right plot).

Using the new adaptivity algorithm, the discrepancy between the training and
testing loss is greatly reduced. That means that it offers a mean to reduce the
generalization error thus provides better accuracy to the approximated fields.

2.6 Summary and conclusion
In this chapter, we have seen:

• the system of equations used to model the resin injection in porous media,

• the used PINN framework to solve the problem,

• the new adaptivity technique that was developed to better capture the flow
front,

• and two numerical examples (1D and 2D) to validate the developed techniques.

It can be concluded from this chapter, that PINN has the ability to simulate
the process of resin injection in porous media. Performing adaptivity with PINN
improves the accuracy of the results while being computationally cheap as compared
to performing adaptivity in mesh-based techniques. The main originalities in this
chapter are:

• building a 1D and 2D solver for mold filling in porous media.

• developing a general residual-based adaptive algorithm.
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Transition
Online control or process design requires changing several parameters such
as the injection location or material parameters. This leads to the need
of doing many simulations in which the number of simulations can easily
grow exponentially with the number of parameters to change. To avoid that,
metamodels are built offline and can be used really quickly online without the
need for retraining. Building metamodels using PINN will be the subject of
the next chapter.
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Chapter 3

Building Metamodels with PINN

Abstract

In this chapter, we show the ability of PINN to build metamodels
related to resin injection in a fibrous media process. The method
involves adding new inputs to the network representing parameters of
interest. Collocation points are, then, sampled in space-time-parameters
space. The resulting metamodel can be used for quick predictions,
process design, or control.

An efficient method to build metamodels for sensitivity analysis is
developed. It overcomes the need for sampling points in the parametric
space, thus, overcoming the curse of dimensionality. Numerical examples
in 1D and 2D are presented to show the effectiveness of the method.
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3.1 Introduction

The design process for engineering systems typically involves conducting experiments
and extensive simulations. These simulations involve solving complex systems of
equations, which can vary in duration from a few minutes to several months, de-
pending on the complexity of the system being analyzed. As the design parameters
change, these simulations need to be repeated multiple times to evaluate different
design configurations. With an increase in the number of design parameters, the
number of simulations required can quickly grow exponentially. This significant
computational burden poses a challenge and adds complexity to the design process,
potentially impeding its efficiency.

To solve this burden, surrogate or metamodels are used instead of performing
full-system simulations. Metamodels are approximate models that are built offline
from data generated from experiments or simulations. Statistical methods are used
to choose the number and value of the design parameters at which the system will
be evaluated. This hugely reduces the computational burden since the number of
system evaluations could be small yet approximating the whole parameter space.
Evaluating the metamodel for a given design configuration is much cheaper than
performing the full-scale simulation, which makes it attractive to be used quickly for
the design of systems and process control.

In recent years model order reduction techniques have been developed to build
surrogate models taming this curse of dimensionality [1; 2]. These rely on the
fundamental assumption that the solution to the parametric problem lies in a low-
dimensional manifold of the original subspace where the solution approximation is
sought. Learning the structure of this manifold is done through an offline training
procedure minimizing the L2 distance from existing data, usually collected from
multiple runs of a high-fidelity solver, and produces a low-rank basis that can be
reused to represent the solution of new problems for unseen choices of the parameters.
In practice, the choice of reduced-basis representation is equivalent to assuming a
tensor format for the problem solution. Among the different choices the Canonical
Polyadic (CP), Tucker, and Tensor Train (TT) are the most commonly used, as they
provide a compact representation of the parametric solution as well as a reduced
complexity of the model [3–5].

The presence of a moving flow front in multi-phase flow introduces an additional
difficulty to get effective model representations. Tensor formats are generally re-
garded as unfit to represent solutions exhibiting a moving discontinuity because, due
to the dual-scale nature of the problem, there is a need for a large number of basis
vectors to obtain a good approximation of the solution. For instance, applying a
standard CP space-time decomposition to a simple 1D moving Heaviside function
cannot provide an accurate approximation unless a high number of modes is used.
In practice, the rank needed to obtain reasonably accurate results is not offering
any computational advantage compared to full-order representations. This issue is
well documented in the community of model order reduction and it affects not only
hyperbolic equations that are likely to give rise to shocks or discontinuities but also
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to other problems in which the physics involved produces localized effects in the
solutions. The issue was tackled by [6–8] who proposed ways to fix the problem,
however, it is still a pressing difficulty that requires attention.

PINN can offer an interesting way to build metamodels since neural networks have
a great approximation capability. The main objective of this chapter is to use PINN
to build metamodels of the resin injection process introduced in 2.2. We call the
classical framework of using PINN to build metamodels META-PINN throughout the
chapter. Another strategy is developed to build metamodels for sensitivity analysis
problems; we call it SA-PINN (SA stands for sensitivity analysis). The proposed
methodology is data-free, meaning that no simulation or experimental data is used
in the process of building the model.

This chapter is divided into two main parts. The first one discusses the framework
of META-PINN followed by numerical examples. The next part discusses building
metamodels for sensitivity analysis problems and introduces SA-PINN. Numerical
examples are shown for the second part as well. The chapter ends with a summary
and conclusion.

3.2 META-PINN

3.2.1 Framework
To build metamodels in PINN, extra parameters of interest (λ) are added as inputs
to the neural network along with the spatial (X) and temporal (t) inputs. The
collocation points are then sampled in space-time and parameter of interest space.
The rest of the methodology is exactly the same as in training PINN for solving
forward problems. The PINN architecture, shown in figure 2.2, is modified so as to
include the parameter of interest λ and can be seen in blue color in figure 3.1.

x

t

v

p

c

1st NN

2nd NN

3rd NN

f1 := ct + (1/ϕ)v · ∇c

f2 := v + (1/µ) K · ∇p

f3 := ∇ · vλ

Figure 3.1: META-PINN structure for a general metamodel of a transient two-phase
flow in porous media problem.

The loss function can, then, be defined as follows:

Loss = λv lossv + λc lossc + λp lossp + λ1 lossf1 + λ2 lossf2 + λ3 lossf3 (3.1)

where
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where the initial/boundary conditions are defined for v, c and p, respectively. While
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in space, time, and parameter of interest domain for the three residuals, respectively,
where the physics are enforced, and λi are the weights of each term in the loss
function.

3.2.2 Numerical examples

One-dimensional injection

We consider the one-dimensional injection problem introduced in section 2.5.1. The
same parameters introduced in table 2.1 are used except for the total simulation
time, T , which is set to 1 in this example. The permeability, k, is chosen as the
parameter of interest in this example. k is chosen to lie between 0.5 and 2 (k ∈ [0.5, 2]).

The proposed adaptivity algorithm (section 2.4) is extended for metamodeling
problems and will be used for all the following examples. The results from using the
adaptivity algorithm along with PINN will be simply referred to as "PINN" in this
chapter.

For training, Adam optimizer is used in the beginning following with BFGS. This
optimization strategy will be followed in all the following examples in this chapter.
In this example, 1000 Adam iterations were performed followed by around a 1000
BFGS iterations. The loss function contributions vs. the number of iterations is
shown in figure 3.2.
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Figure 3.2: Loss function contribution for the 1D filling example vs. the number of
iterations.

As can be seen from figure 3.2, all the loss contributions are converging with
a higher convergence rate during BFGS phase of training. The kinks in the loss
function are due to adaptation of collocation points during the training. The flow
front position is, then, extracted from the fraction function field for different values of
k which are 0.5, 0.75, 1.0, 1.5, and 2.0. Figure 3.3 shows the results of the metamodel
(PINN) along with the analytical solution.

Figure 3.3: Front position with time for k = 0.5, 0.75, 1, 1.5, 2 using META-PINN
along with the analytical solution.

58



We can see from figure 3.3 that the built metamodel is able to predict the flow
front position but with lower accuracy for some cases such as at k = 2. The reason
for this reduced accuracy might be due to the reduced number of collocation points
used at the start of the training process.

Two-dimensional central injection

The next studied example is the two-dimensional central injection problem introduced
in section 2.5.2. The same parameters are used as in section 2.5.2. The principal
permeability in the x direction, kxx, is chosen as the parameter of interest in this
example. Its values are chosen to lie between 1 and 2 (kxx ∈ [1, 2]).

The fraction function is plotted for 3 scenarios, (kxx = 1, kxx = 1.5, and kxx = 2).
The results are shown in figure 3.4.

Figure 3.4: Fraction function for the central injection example at three different
instants (vertically) for kxx = 1, 1.5, and 2, from left to right respectively.

2D injection problem with defect

This example deals with injection in a square mold with side unity. The upper and
lower boundaries are impermeable (velocity in the y-direction is zero corresponding
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to v · n = 0). The left edge acts as an inlet with a pressure set to unity and the right
edge is an outlet with zero pressure. The full domain has an isotropic permeability
k1 equal to 1 except for a square in the center of side length 0.3 with permeability k2
ranging from 0.1 to 1. The problem description and domain are shown in figure 3.5.

v.n = 0

v.n = 0

OutletInlet

k1

k2

Figure 3.5: Domain and problem description of the 2D injection example with a
defect represented by different permeability in a square in the center.

The fraction function is plotted for values of k2 0.1, 0.5, and 1 in figure 3.6.

Figure 3.6: Fraction function at three different instants for k2 = 0.1, 0.5, and 1.
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Variable inlet gate location

In this example, we study the injection in a square mold with a side length of unity.
The problem domain and description are shown in figure 3.7. The upper and lower
edges are impermeable (velocity in the y-direction is zero). The right edge is an
outlet with pressure set to zero. The left edge includes an inlet of size 0.2 where
pressure is fixed to unity. The location of the inlet center yin is chosen to be a
parameter of interest, meaning that it can move along the left edge. The rest of the
edge is impermeable (velocity in the x-direction is zero). The rest of the problem
parameters are chosen as in table 2.1.

Injection gate

v.n = 0

v.n = 0

Outlet

v.
n

=
0

v.
n

=
0

yin

Figure 3.7: Domain and problem description of the 2D injection example with
variable inlet location.

In this test, the boundary conditions related to the upper and lower boundaries are
treated by hard enforcement. This is done by choosing the following approximation
to y component of the velocity:

vy = (y + 0.5)(y − 0.5)vNN , (3.8)

where vNN is a neural network. Through this approximation, the upper and
lower boundary conditions are enforced by construction and there is no need to add
the related terms in the loss function. The rest of the conditions are treated as
classical PINN by adding the related terms to the loss function. By this enforcement,
the number of terms in the combined loss function is reduced, leading to an easier
minimization task for the optimizer.

The fraction function is plotted for yin values of 0, 0.2, and 0.4 at several instants
to show the evolution of the flow and the effect of the location of the injection gate.
This can be seen in figure 3.8.
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Figure 3.8: Fraction function at three different instants vertically and horizontally
for yin = 0, 0.25, and 0.4, respectively.

This example can be applied to process design by studying the effect of the inlet
gate location on a function of interest such as the filling time. By that, we can choose
the best gate location that reduces mold filling time.

We have seen from the previous examples the ability of PINN to build metamodels
in resin injection in fibrous media. Even though the results of the fraction function
are not accurate as in figure 3.8; this can be improved by adding more collocation
points.

This problem offers challenges when being faced with classical model order
reduction techniques or the adjoint method [9]. That is mainly due to the existence
of a moving discontinuity. However, PINN did not face those challenges in dealing
with such discontinuity.
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3.3 Sensitivity Analysis with PINN (SA-PINN)
The main objective of PINN is to find a solution that minimizes the residual of
the PDE within the spatiotemporal domain that is represented by the collocation
points while respecting the initial and boundary conditions. The result is a solution
û(t, x; µ̂) to the PDE at a specific value µ̂. To build a metamodel, which is useful for
performing sensitivity analysis or optimizing a process, the structure of the neural
network is changed to accommodate for another input which is the parameter of
interest µ. Then, one adds collocation points in the spatiotemporal-parametric space
as described in section 3.2.

The main issue of building such models is that the number of collocation points
grows exponentially with the number of parameters of interest. The problem can,
then, easily become computationally intractable if there are several parameters of
interest, which is common in most engineering applications.

To address this challenge, an alternative approach is proposed. Similarly to
building parametric models, the structure of the network is modified to incorporate
extra inputs representing the input parameters of interest. The collocation points are
kept in the spatio-temporal domain and no points are added in the parametric space.
Instead of solely minimizing the loss function, representing the residual of the PDE
and the conditions, the derivative of the loss function with respect to the parameter
of interest is also minimized. The modified loss function will then be formulated
as the sum of the residual, the derivative of the residual with respect to µ, and
terms related to satisfying the initial and boundary conditions. By employing this
technique, the solution can be accurately determined within a small neighborhood of
µ̂.

3.3.1 Formulation
The technique can be summarized in steps as follows:

1. Choose the neural network to have inputs related to space, time, and parameters
of interest.

2. Sample the collocation points only in space and time, no need to add points in
the parametric space.

3. Create the loss function having terms related to PDE residual, the residual
derivative with respect to the parameter of interest, and the terms related to
the initial and boundary conditions.

The general example introduced in section 1.4 is taken into consideration to
explain the technique. The loss function to solve the problem will be modified for
SA-PINN to become

Loss = LossP INN + LossSA−P INN , (3.9)
where
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LossP INN = λ0 loss0 + λD lossD + λN lossN + λr lossr, (3.10)

λi the weights for each loss term which play an important role in the optimization
process,

loss0 = 1
N0

N0∑
i=1

r2
0(ti

0, xi
0, µ̂) = 1

N0

N0∑
i=1

||u(ti
0, xi

0, µ̂) − ui
0||2, (3.11)

lossD = 1
ND

ND∑
i=1

r2
D(ti

D, xi
D, µ̂) = 1

ND

ND∑
i=1

||u(ti
D, xi

D, µ̂) − ui
D||2, (3.12)

lossN = 1
NN

NN∑
i=1

r2
N(ti

N , xi
N , µ̂) = 1

NN

NN∑
i=1

||B(u(ti
N , xi

N , µ̂)) − f i
N ||2, (3.13)

lossr = 1
Nr

Nr∑
i=1

||r(ti
r, xi

r, µ̂)||2 = 1
Nr

Nr∑
i=1

||ut + µ̂L(u)||2(ti
r,xi

r). (3.14)

The indices stand for initial conditions (0), Dirichlet boundary conditions (D),
Neumann Boundary conditions (N), and the PDE residual (r).

While

LossSA−P INN = λ0µ loss0µ + λDµ lossDµ + λNµ lossNµ + λrµ lossrµ, (3.15)

where
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Figure 3.9 shows a diagram that summarizes the methodology of SA-PINN. The
parts in orange are the added parts from classical PINN. The u − û term represents
the mismatch of the solution from the initial and boundary conditions. It must be
noted that we sample the collocation points only in space and time, but the points
have another coordinate µ and all have a nominal value µ̂.
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Figure 3.9: Diagram explaining the methodology of SA-PINN.

3.3.2 Numerical examples

3.3.2.1 1D diffusion-advection equation

The first example is a steady one-dimensional diffusion-advection equation where we
would like to study the effect of perturbations in the diffusion term ϵ on the solution.
The strong form of the problem can be written as follows:

ϵ uxx − ux + 1 = 0, x ∈ [0, 1],
u(0) = 1, u(1) = 3

(3.20)

The chosen nominal value for ϵ is 0.1. uxx and ux are respectively the second and
first-order derivatives of the solution u. The loss function is written as:

Loss = λf lossf + λb lossb + λfϵ lossfϵ + λbϵ lossbϵ , (3.21)

where
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The weights for the different terms in the loss function are set to 1 for the original
PINN terms (λf and λb) and 0.1 for the added sensitivity terms (λfϵ and λbϵ).
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For training, 1000 Adam iterations are performed followed by 250 BFGS iterations.
The loss function contributions vs. the number of iterations is shown in figure 3.10.
In the figure, lossf represents the loss due to the PDE residual, lossb the loss due
to the boundary conditions, while lossfϵ and lossbϵ represents the added terms for
SA-PINN.

Figure 3.10: Loss function contribution for the 1D diffusion-advection example vs.
the number of iterations.

The solution u using PINN and SA-PINN is shown in figure 3.11 along with the
analytical solution for ϵ = 0.1.

Figure 3.11: Solution u at ϵ = 0.1 using PINN and SA-PINN along with the analytical
solution of the 1D advection-diffusion problem.
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From figure 3.11, we can see that PINN and SA-PINN accurately capture the
analytical solution of the problem. The derivative of the solution with respect to ϵ,
∂u/∂ϵ, at ϵ = 0.1 is shown in figure 3.12.

Figure 3.12: ∂u
∂ϵ

at ϵ = 0.1 using PINN and SA-PINN along with the finite difference
solution of the 1D advection-diffusion problem.

The reference finite difference solution in figure 3.12 is obtained by obtaining
three different PINN solutions near ϵ = 0.1 and then calculating the derivative using
central finite difference. We can see that classical PINN fails to predict the derivative,
while, SA-PINN accurately predicts the derivative due to the added regularization
term in the loss function. The loss function for different values of ϵ is plotted in
figure 3.13 for PINN and SA-PINN.

Figure 3.13: Loss function for different ϵ values using PINN and SA-PINN of the 1D
advection-diffusion problem.
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As seen in figure 3.13, SA-PINN has the effect of greatly flattening the loss curve
in a neighborhood near the nominal value of ϵ = 0.1. This leads to better solutions
than PINN in the neighborhood and accurate derivative calculation at ϵ = 0.1.

3.3.2.2 2D Poisson’s problem

The next example is a 2-dimensional Poisson’s problem where we have multiple
parameters to study their effect on the solution. The domain Ω is shown in figure 3.14
where there exists 9 subdomains each having different diffusivity value.

k1 k3k2

k4

k9

k6k5

k8k7

Figure 3.14: 2D Poisson’s problem domain Ω with 9 subdomains of different diffusivity
values k.

The strong form of the problem can be written as:

k ∆u = −1, in Ω,

u = 0, on ∂Ω
(3.26)

where Ω is a square with unit sides and k is the diffusivity. The 9 subdomains
have equal areas. The diffusivity parameters have the same nominal value which is
1; k̂1 = k̂2 = ... = k̂9 = 1.

The approximation space is chosen such that the boundary conditions are satisfied
automatically. The approximation reads as follows:

û = xy(x − 1)(y − 1) uNN(x, y, k1, ..., k9) (3.27)

where uNN is a neural network with inputs x and y and the diffusivity parameters.
The full loss function will then reads as:

Loss = λf lossf +
9∑

i=1
λi lossfki

, (3.28)

where λf = 1, all values of λi are set to 0.1,
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and
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The different loss terms are plotted against the iterations in figure 3.15.

Figure 3.15: Loss function contribution for the 2D Poisson’s example vs. the number
of iterations.

The PINN solution of the boundary value problem is shown in figure 3.16. The
solution appears to be accurate and agrees with the analytical solution of the problem.

Figure 3.16: PINN solution of the 2D Poisson’s boundary value problem.
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The sensitivity terms ∂u
∂ki

can then be plotted to see the effect of the diffusivity
on the solution.

Figure 3.17: Different derivatives ∂u
∂ki

of the solution with respect to ki of the 2D
Poisson’s problem.

The computational time is plotted versus the number of parameters with respect
to which sensitivity terms are added in figure 3.18.

Figure 3.18: Computational time vs. number of sensitivity parameters.
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It can be seen from figure 3.18 that the computational time grows linearly when
increasing the number of parameters the sensitivity is calculated with respect to.
This happens because the number of collocation points is the same when adding a
new term to the loss function; as a consequence, the added cost is the same when
adding new sensitivity terms. This is a great advantage of the proposed approach
because if someone adds a parameter to study the sensitivity with META-PINN, the
collocation points number can grow exponentially and so as the computational time.

3.3.2.3 1D transient two-phase flow in porous media

We consider the one-dimensional injection problem introduced in section 2.5.1. The
parameter of interest in this case is the permeability, k. The chosen nominal value
of the study is k̂ = 1.

The loss function terms are plotted against the iterations in figure 3.19. In
the figure, l1, l2, l3, lp, and lc refer to the loss functions referring to the advection
of fraction function, Darcy’s equation, mass conservation residuals, pressure, and
fraction function boundary conditions. The rest of the terms with the added g refer
to the corresponding terms added by SA-PINN.

Figure 3.19: Loss function contributions vs. the number of iterations for the 1D
two-phase flow in porous media example.

First, we plot the front location for three different values of k (k = 1, 0.50, and
2) by taking the 0.5 level set of the fraction function c. This is plotted in figure 3.20.
In each figure, SA-PINN results are plotted against classical PINN along with the
analytical solution for comparison.
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Figure 3.20: Flow front location vs. time for three different values of k (k = 1, 0.5
and 2, respectively on the left, center, and right) of the transient two-phase 1D flow
in porous media problem.

We can notice that SA-PINN provides good results for values of k away from the
nominal value k = 1. Classical PINN accurately predicts the solution only at the
nominal value (k = 1), however, away from that value, inaccurate solutions were
obtained which is clear from the two red lines.

In figure 3.21, we plot the time the flow front reaches the position x = 0.5 vs. k.
We compare the solution from SA-PINN with the analytical solution.

Figure 3.21: Time at which the flow front reaches x = 0.5 vs. k for the transient
two-phase flow in porous media problem.

We can see a good estimation of the filling time at different values of k using
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SA-PINN. This result can be useful in applications of injection processes to estimate
the filling time as a function of a parameter of interest.

3.3.3 Discussion
From the examples shown in this chapter, we can see the ability of PINN to build
metamodels for problems involving discontinuities (a moving flow front in our case).
This is a complicated problem if addressed using widely used methods to build
metamodels such as model order reduction techniques. Metamodels can in turn be
further used to address online control problems to identify possible process defects
or to quickly solve inverse problems.

The issue of computational cost was tackled by the newly developed technique
SA-PINN. Through the combined minimization of the residual and its derivative
with respect to parameters of interest, we ensure the validity of the solution within a
neighborhood of the nominal values of the parameters which allow accurate sensitivity
estimation. In figure 3.22, we show the effect of the method by plotting the contours
of the term lossf in equation 3.28 for different ki values. The plot is done for only 2
parameters for illustration purposes.

Figure 3.22: The log contours of lossf for different k1 and k2 values ranging from
0.5 to 2 are plotted for the 2D Poisson’s example. On the left, the SA-PINN and on
the right the PINN solution.

We can see from figure 3.22 that the SA-PINN technique has the effect of
greatly reducing the main loss function contribution in a neighborhood near the
nominal values of the parameters of interest, thus obtaining good solutions in this
neighborhood. On the contrary, PINN has an accurate solution only at the nominal
values of the parameters. We showed also that the technique does not face problems
in dealing with discontinuities as shown in section 3.3.2.3 which could be useful for
several applications involving discontinuities.

3.4 Summary and conclusion
In this chapter, we have seen:
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• the need to build metamodels for process optimization and control,

• a framework to build metamodels using PINN for mold filling in fibrous media,

• a new technique to build metamodels to perform sensitivity analysis.

To conclude, PINN has the ability to build metamodels in injection molding
in fibrous media. It must be noted that building such models is quite a challenge
using model order reduction techniques due to the existence of discontinuities in the
solution; however, PINN does not suffer these issues.

The newly developed technique, SA-PINN, to perform sensitivity analysis is
efficient in building metamodels in which the computational time grows linearly with
the number of parameters of interest. This is done by adding regularization terms
representing the derivatives of the loss contribution with respect to the parameters
of interest. The main originalities in this chapter are:

• building metamodels for injection in fibrous media problems using PINN.

• developing an efficient technique to perform sensitivity analysis using PINN.

Transition
Building metamodels for homogeneous material parameters or boundary con-
ditions is possible using PINN framework. However, some of the material
parameters are not homogenous and it is harder to build metamodels for. This
inhomogeneity can create issues in the process if it is not well characterized.
For example, in LCM processes, this parameter is the permeability where local
features can lead to defects in the process. Characterizing the inhomogeneous
permeability field is the main goal of the next chapter.
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Chapter 4

Permeability field identification
from textile images

Abstract

In this chapter, we provide a self-supervised learning framework
to approximate the permeability field of 2D fibrous media from
textile images. The final aim is to make this approximation process
online, in real time. The framework is based on merging physics-
informed and convolutional neural networks. Data from 34 central
injection experiments are used including flow front images and data
from pressure sensor located at the inlet. The provided framework
is geometry agnostic since the input to the convolutional network
is crops of the textile image which have the same characteristics
as crops from any 2D geometry image. To validate the model,
permeability field predictions are performed for left-out experiments,
then the permeability is used to solve a forward problem (central
injection) and compared to experimental results. The simulation
results using the predicted permeability field show great match
with the experiments as opposed to using an average value of the
permeability.
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4.1 Introduction
In fibrous media, local variations in the media can take place during the preform
manufacturing and handling. These variations lead to variations in permeability. The
variations take place within the same part and also from one part to another. To be
able to perform accurate realistic mold injection simulations tailored to each part, the
permeability tensor has to be treated as a field varying in space, and this field should
be different from one part to another according to the local variations within the part.

However, many existing techniques for determining permeability provide only
average approximations over the entire domain, disregarding local effects. Alternat-
ively, some methods focus on identifying permeability at the microstructure level,
which is impractical for macro-scale porous media due to computational limitations.
Therefore, there is a need for approaches that can capture the local variations in
permeability within the porous media while still being applicable at a macroscopic
scale.

Empirical models exist to estimate the permeability based on the geometry of
the reinforcement. One of the most famous models is the Kozeny-Carmen model
[1; 2]. The permeability tensor is estimated as follows:

K = R2

4k

(1 − Vf )3

V 2
f

I, (4.1)

where Vf is the fibre-volume fraction, R is the fiber radius, k is called Kozeny
constant and I is the identity tensor. The predicted permeability is isotropic which
is obviously false for most fibrous structures. A modification was proposed by [3]
where different k constants are chosen for different directions adding the anisotropy
into the model.

The previously mentioned models only have the fiber radius as a geometry para-
meter and the rest of the geometrical parameters are lumped into the constants in
the model which need to be identified using experiments. This issue was dealt with
by [4] where they developed a more inclusive model for unidirectional reinforcement.
The issue still prevails for other types of fibrous media since the geometry of the me-
dia is quite complex and it is hard to build models taking into account such geometry.

The empirical laws suffer from not being tailored to the specificity of each rein-
forcement and do not offer an estimation of the permeability as a field. Experimental
methods can are commonly employed to identify the permeability for each specific
reinforcement [5]. These methods typically involve controlling either the pressure
or velocity and measuring the corresponding parameter. Average values are then
calculated, and the permeability is evaluated using Darcy’s law. In the context of
resin transfer molding, two main categories of experiments are typically conducted:
unidirectional flow experiments [6; 7] and radial (central injection) experiments
[8; 9]. However, these experimental techniques have limitations, including being
time-consuming and challenging to perform. Furthermore, the resulting permeability
values obtained from these experiments represent average values over the entire
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domain, disregarding local effects within the fibrous media as in the case of empirical
laws.

Numerical methods offer an interesting alternative to experimental techniques, as
they are typically less complicated and time-consuming. These methods aim to replic-
ate the experimental setup by fixing either the pressure or velocity and measuring the
other parameter. Averaging is performed, followed by the application of Darcy’s law
to determine the permeability. Numerical solvers, based on the continuum approach,
are commonly used and involve solving either the Navier-Stokes equations [4; 10] or
simplified versions such as the Stokes equations [11; 12]. However, these techniques
are more applicable to identifying the permeability of microstructures and become
computationally complex when dealing with macroscale fibrous media. Additionally,
obtaining knowledge of the porous media domain is crucial, which can be acquired
through imaging techniques like tomography. Alternatively, a virtual reconstruction
of the porous media can be employed to establish the relationship between the porous
media properties and permeability.

Mesoscopic numerical methods, such as the Lattice Boltzmann Method (LBM),
are also widely used for determining the permeability of microstructures [13; 14].
These methods are better suited for simulating fluid flow in complex geometries.
LBM exhibits significant improvements in computational efficiency compared to
conventional Computational Fluid Dynamics (CFD) methods, making it suitable for
conducting three-dimensional simulations. Utilizing LBM can be advantageous in
extracting the relationship between porous media parameters and permeability by
conducting multiple cost-effective numerical experiments and studying the effects of
these parameters on permeability. However, it is important to note that although
LBM has been extensively used in various studies to establish such relationships, the
method is primarily effective in identifying permeability on a microscale level and is
impractical for macroscale fibrous media.

Some novel research work has a similar framework to the one adopted in our
method. In [15], the authors show the capability of feedforward neural networks
and convolutional neural networks (CNN) to directly calculate permeability where
the inputs to the feedforward neural network are geometric properties of the porous
media and the input to the CNN is porous media images. The authors of [16] offer a
framework to predict porosity, permeability, and tortuosity of microstructure porous
media from images using a CNN. They built 100,000 virtual porous media generated
by random deposition. LBM simulations are then performed on all the images to
provide an estimation of the porosity, permeability, and tortuosity. A CNN is finally
used for the supervised learning task. In this sense the CNN learns to map images to
the simulation results in a way that is computationally inexpensive and much faster
than the original model used to generate the dataset.

In [17], a similar framework is presented but is applied to predict the diffusivity
of porous media. They generate a big dataset of virtual porous media images, then
perform LBM simulations to calculate the diffusivity. Finally, they trained a CNN
using the generated dataset.
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In [18], the authors developed a physics-informed CNN to predict the permeability
from microstructure porous media images. The framework is similar to that of [16]
where porous media images are generated using the Voronoi tessellation algorithm.
This is followed by LBM simulations of the porous media images. Finally, a physics-
informed CNN is used for the supervised learning task. This is done by including
porosity and specific surface area as inputs to the neural network along with the
images. It was shown that this modification to the CNN provided better results than
applying a regular CNN.

The same methodology of using a high-fidelity simulation applied to many porous
media images to build an image-permeability dataset, then training a CNN was
adopted in many applications involving porous media. The methodology was ap-
plied for gas diffusion layer materials [19], rock mechanics [20–22], and to fibrous
porous media [23]. It must be noted that all the previously mentioned work deal
with microscopic scale porous media images, whereas, in this paper, we develop our
methodology for macroscale fibrous porous media images.

The previously mentioned techniques either offer an average of the permeability
over the full macroscale domain or can do predictions on microstructures. Few
research offers local permeability predictions on macrostructures such as the work of
[24; 25]. In these works, airflow is used to flow in the porous media, in which the
pressure profile is measured with sensors. The permeability related to the airflow
is measured and correlated to the resin permeability. The research provides good
results but will still need experimental work to get the data and to measure the
correlation between air and resin permeability in new molds.

In this chapter, we provide a self-supervised learning framework to directly
identify the permeability field of macro fibrous media based on 2D textile images,
which can then be used to provide realistic accurate mold injection simulation. The
framework is based on merging PINN and CNN together using data from central
injection experiments. The developed technique is tested on unseen experiments and
is seen to provide accurate results when comparing forward simulation based on the
predicted permeability and existing experimental data.

The rest of the chapter is organized as follows: the framework of the central
injection experiments and available data are presented in section 4.2. In section 4.3,
the full computational methodology is explained which involves permeability labels
generation using PINN, training a CNN, and the model evaluation methods. Sec-
tion 4.4 provides testing results on unseen flow cases to assess the accuracy of the
model. Section 4.5 offers a view of the possible future usage of the method which
involves using it to make prediction for arbitrary 2D geometry and possibility of
application to different fibrous media. Finally, section 4.6 offers a summary and a
conclusion to the chapter.
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4.2 Available data

4.2.1 Foreword

The present data were produced through 2D central injection experiments that were
performed by Comas-Cardona at CACM (Centre for Advanced Composite Materials)
at the University of Auckland (NZ).

4.2.2 Materials of the study

4.2.2.1 Liquid

The liquid used in this study is a mineral oil whose viscosity is 0.15 Pa.s at 20oC
and has been measured on a Brookfield viscometer 4.1.

Figure 4.1: Viscosity measurements of the testing fluid [26].

4.2.2.2 Textile

The textile of interest is a glass fiber plain weave (PW) whose areal weight has been
measured and is 822 g/m2. It should be noted that the same fabric was used to
produce the textile samples of all the experiments.

The average permeability of the textile was measured on 34 samples (single plies)
following the procedure given by Swery et al. [26] and is shown in table 4.1.
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Table 4.1: Average and standard deviation of the permeability of the plain weave
fibrous media used in the central injection experiments. This average is calculated
experimentally from 34 single ply samples.

kxx (10−10 m2) kyy (10−10 m2) kxy (10−10 m2)
Average 0.69 3.28 0.077

Standard deviation 0.12 0.57 0.054

Before the injection starts, a lightbox image is taken of the dry fabric (2D plain
weave) [27]. An example of the image is shown in figure 4.2. In the lightbox, light is
transmitted through the textile. Light intensity is proportional to the areal weight
of the textile. Two images are taken, the first one corresponds to the transmitted
light without the textile and the second one corresponds to the transmitted light
with the textile sample. Then, a difference is made pixel-wise between both images.
Therefore, in white one can see the fiber tows at 0o and 90o of the weave, and in
black the holes (opened areas) between the tows. The liquid resin will flow in the
darker areas.

Figure 4.2: Lighbox image of a 2D plain weave textile sample used in one test.

The porosity of the tested textile is calculated for each sample using the mass
of the ply m, the area of the ply A, the thickness of the ply h (measured as the
cavity height between the compression platens), and glass density ρf = 2.6 g/cm3.
According to the calculations, the samples have an average porosity of 0.45.

4.2.3 Injection Bench
The apparatus for the experiments is shown in figure 4.3 [26]. The apparatus consists
of a fixed bottom transparent glass plate, a top moving stainless steel platen, a
textile fabric, a tilted mirror, a camera, a pressure bucked, and an injection gate.
The top and bottom platens are mounted into a universal testing machine. After
closing the top platen on the textile fabric at a given thickness, the resin inlet valve
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at the pressure bucket is opened. The resin will flow from the central injection point
into the textile as the time goes on. For more details on the injection bench, the
reader can refer to the work by Swery et al. [26].

Figure 4.3: Apparatus used for the central injection experiments [26].

4.2.4 Monitoring and acquisition
The camera is used to take images of the flow at specified times to identify the
location of the flow front. These raw images are saved and treated to produce black
and white images which can then be used to extract the location of the interface
that will be used for later analysis. An example of the raw images showing the flow
front evolution is shown in figure 4.4. The calibration of the images has been done
and is 0.3225 mm/px.

Figure 4.4: Raw flow front images at 3 different time instants of one of the central
injection experiments. As time goes on, the liquid (grey central ellipse) flows into
the porosity of the textile.

The treated segmented images are shown in figure 4.5.
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Figure 4.5: Treated flow front images at 3 different time instants of one of the central
injection experiments, where the white part referred to resin impregnated textile and
the black refers to dry textile.

A pressure sensor is located at the inlet that is used to measure the inlet pressure
profile as a function of time. This data will also be used in the algorithm for permeab-
ility predictions. An example of the measured pressure vs. time is shown in figure 4.6.

Figure 4.6: Data from pressure sensor showing pressure vs. time of one of the central
injection experiments.

To summarize, we have data from 34 central injection experiments that includes

• flow front images with time,

• inlet pressure as a function of time,

• porosity and resin viscosity data,

• and a high-quality lightbox image of the dry textile (2D plain weave) taken
prior to the injection.
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4.3 Methodology

4.3.1 Neural network approximation of fields
The velocity v, pressure p and resin volume fraction c fields for each experiments are
approximated by feed forward neural networks having 5 hidden layers each with 20
units.

v(j) ≈ v̂(j)(x, y, t; θ(j)
v ) ; p(j) ≈ p̂(j)(x, y, t; θ(j)

p ) ; c(j) ≈ ĉ(j)(x, y, t; θ(j)
c ) (4.2)

where j denotes the experiment index, while θ(j)
v , θ(j)

p and θ(j)
c are the trainable

parameters of the networks. We use tanh as activation function in all our networks.
The output layer of v̂(j) has two units since the velocity field is a 2D vector field.
Moreover, since the resin volume fraction c is naturally bounded between 0 and 1,
we apply a sigmoid activation following the output layer of ĉ(j).

The permeability tensor is approximated using a CNN architecture:

K ≈ K̂(I; θK) (4.3)

Contrarily to velocity, pressure and resin fraction, the permeability model receives
an s × s grayscale image I ∈ Rs×s of the local textile configuration as an input and
all the experiments share the same permeability model. The images I are obtained
by cropping the original textile image T ∈ RS×S at centers specified by collocation
points. In our experiments s = 50 px and S = 1150 px. The model outputs the
three independent components of the 2D second order symmetric permeability tensor.

The CNN consists of convolutional, pooling, and fully-connected layers ending
by the output, which is the permeability in our case. Batch normalization layers
can also ensure that the inputs are well-normalized which improves the network
performance. The trainable parameteres of the network are denoted by θK . The
following CNN architecture is adopted:

• Input layer of images having a size of 50 × 50 pixels,

• A convolutional layer with 8 filters of size 3 × 3,

• A Batch Normalization layer,

• An Average pooling layer of size 2 × 2,

• A convolutional layer with 16 filters of size 5 × 5,

• An Average pooling layer of size 2 × 2,

• A fully connected layer with 64 neurons and tanh activation function,

• An output layer with 3 neurons corresponding to kxx, kyy, and kxy.
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4.3.2 Choice of the collocation points
Since the flow data come as a sequence of images, it is natural to select collocation
points for residual evaluation of the PDEs at the centers of each pixel and at time
frames given in the sequence. Therefore, we adopt the following notation:

xl = (l − S/2) · ∆x ; ym = (m − S/2) · ∆y ; tn = n · ∆t ; (4.4)
where ∆x = ∆y = 0.23mm, ∆t = 2s, l, m = 0, 1, . . . , S − 1 and n = 0, 1, L − 1

(L = 30). We also introduce the global collocation index:

i = l + m × S + n × L . (4.5)
Note that given a set (l, m, n) there is a unique corresponding global collocation

index and vice versa, any i can be mapped back to a unique set (l, m, n). Using i
allows to introduce the following naming convention:

xi , yi , ti = xl , ym , tn , (4.6)
leading to a simplification in our notation, as we can write:

v̂j
i = v̂(j)(xi, yi, ti, θ(j)

v ) = v̂(j)(xl, ym, tn, θ(j)
v ) . (4.7)

Similarly, we can simplify the notation for p̂j
i and ĉj

i , indicating the evaluation of
the pressure and resin fraction models at collocation point i for the j-th experiment.

Finally, we indicate with

K̂j
i = K̂(Cs(T j, xl, ym), θK) (4.8)

the permeability values obtained by evaluating the CNN model at collocation point
i for the j-th experiment, where Cs(T j, xl, ym) is the s × s cropping operator acting
on the j-th textile image and centered at (xl, ym). It should be noted that a smaller
random subset of the collocation points was used in practice.

4.3.3 Loss function
The loss function we seek to minimize includes both the physics loss from the
governing equations and the data loss evaluated at a subset of Ntc collocation points
across a number Nte of selected experiments for model training. A special treatment
is due for the pressure boundary conditions as they must be enforced on a separate
set of Nbc collocation points (xī, xī, t̄i) located on the domain boundaries. The loss
can be formulated as follows:

L(θ(j)
v , θ(j)

p , θ(j)
c , θK) = 1

Nte

Nte−1∑
j=0

(λc Lj
c(θ(j)

c ) + λp Lj
p(θ(j)

p ) + λ1 Lj
f1(θ(j)

v , θ(j)
p , θK)

+λ2 Lj
f2(θ(j)

v ) + λ3 Lj
f3(θ(j)

c , θ(j)
v ))

(4.9)

where
Lj

c(θ(j)
c ) = 1

Ntc

Ntc−1∑
i=0

(
cj

i − ĉj
i

)2
(4.10)
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is the training mean squared error (mse) of the j-th resin volume fraction model;

Lj
p(θ(j)

p ) = 1
Nbc

Nbc−1∑
ī=0

(
pj

ī
− p̂(j)(xī, yī, t̄i; θ(j)

p )
)2

(4.11)

is the training mse of the j-th pressure model;

Lj
f1(θ(j)

v , θ(j)
p , θK) = 1

Ntc

Ntc−1∑
i=0

(
v̂j

i + 1
µ

K̂j
i · ∇p̂j

i

)2

(4.12)

is the training mean squared residual (msr) associated to the Darcy’s law applied
to the j-th model;

Lj
f2(θ(j)

v ) = 1
Ntc

Ntc−1∑
i=0

(
∇ · v̂j

i

)2
(4.13)

is the training msr associated with mass conservation of the j-th model and

Lj
f3(θ(j)

c , θ(j)
v ) = 1

Ntc

Ntc−1∑
i=0

(
∂ĉj

i

∂t
+ v̂j

i · ∇ĉj
i v̂

j
i

)2

(4.14)

is the training msr associated with the VOF transport equation applied to the
j-th model. In our experiments we observed that any attempt to minimize the loss
function in a monolithic way was leading to poor convergence regardless of the choice
of the weighting coefficients λ. Therefore, we devised a segregated sequential training
strategy detailed in the next subsection.

4.3.4 Sequential training
The point of departure of our training strategy is to replace the permeability model
evaluations K̂j

i with as many trainable parameters K̃j
i . As a consequence of this

choice, the loss function introduced in the previous section can be minimized over each
experiment separately. Segregating flow experiments and training the corresponding
networks separately leads to a remarkably superior convergence. Namely, for the
j-th experiment, we denote the set of K̃j

i , i = 0, 1, . . . , Ñtc trainable permeabilities
as Kj . In doing so, we consider only a fraction of the original collocation points
(i.e. the pixel centers) in order to avoid overfitting due to introducing too many new
trainable parameters. The modified loss functions can be rewritten as :

Lj(θ(j)
v , θ(j)

p , θ(j)
c , Kj) = λc Lj

c(θ(j)
c ) + λp Lj

p(θ(j)
p ) + λ1 L̃j

f1(θ(j)
v , θ(j)

p , Kj)
+λ2 Lj

f2(θ(j)
v ) + λ3 Lj

f3(θ(j)
c , θ(j)

v ) (4.15)

with the modified Darcy loss

L̃j
f1(θ(j)

v , θ(j)
p , Kj) = 1

Ñtc

Ntc−1∑
i=0

(
v̂j

i + 1
µ

K̃j
i · ∇p̂j

i

)2

. (4.16)

Minimizing the loss function in equation (4.15) over the parameters θ(j)
v , θ(j)

p , θ(j)
c

and Kj is equivalent to solving an inverse problem using PINN to determine the
permeability values. We can therefore gather these values from all the experiments
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to create a data set consisting of image-label pairs (Ij
i ; K̃j

i ) and use this to train the
CNN model to predict permeabilities from local textile structures. A second and
most important advantage offered by the sequential training strategy is that that
we can apply proper filtering and augmentation techniques to this database leading
to improved accuracy and generalization of the CNN model. Ultimately, the model
is evaluated using an unseen flow experiment left out of the training set. For this
new case, the permeability is predicted based from the evaluation of CNN model on
the dry textile image, then PINN is used as a forward solver to compute the flow
variables and finally the predicted filling pattern is compared to the experiments
using the metrics defined in section 4.4. To summarize, the training strategy consists
of the following steps:

1. Solving PINN for the identification inverse problem followed by data filtering
and augmentation.

2. Training a CNN model to learn the mapping from the porous media images to
the identified permeability.

3. Assessing model accuracy through comparison of predicted and experimental
filling patterns for new test data.

The full methodology is summarized in figure 4.7.

Figure 4.7: The full sequential training methodology to predict the permeability
tensor field from textile images.

4.3.5 Identifying permeabilties using PINN
To solve the identification problem problem using PINN, different feedforward neural
networks are used to approximate the pressure, fraction function, and the velocity.
The computational domain is split into a grid of size 25×25, in which each subdomain
will have an unknown permeability tensor, hence in this case Ñtc = 625. These
unknown permeabilities are treated similarly to the network parameters: after
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initialization, values are updated using the minimization algorithm. The collocation
points will have different permeabilities according to the subdomain they belong to.
Adam optimizer is used for 5000 iterations which is followed by 500 BFGS iterations.
Figure 4.8 shows the full PINN framework to solve the inverse problem.

Figure 4.8: The framework to identify the permeability field by solving an inverse
problem with PINN. The trainable parameters are identified in red.

An example of the identified permeability map is shown in figure 4.9 for one of
the experiments.

Figure 4.9: Example of the identified permeability field obtained by solving an inverse
problem with PINN. The permeability component kxx, kyy, and kxy are plotted from
left to right, respectively. The x and y axes have been normalized; the real material
size is 27 × 27cm2

It is important to note that only a portion of the permeability field is utilized
in generating these flow-front predictions, and there are certain regions within the
field that cannot be considered trustworthy. Hence, a process of data cleaning is
conducted, which will be elaborated upon and discussed in the subsequent section.

4.3.5.1 Permeability data cleaning

To enhance the reliability of the permeability data, a data cleaning procedure is
implemented to eliminate information in which we have less confidence. One such
type of data is associated with the porous media locations where the resin did not
reach during the experiment. Consequently, the inferred permeability data in these
regions cannot be considered valid. After excluding these unreliable data points, the
resulting trustworthy areas are displayed in figure 4.10.
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Figure 4.10: Example of the identified permeability field after trimming the regions
where the resin did not reach. The permeability component kxx, kyy, and kxy are
plotted from left to right, respectively.

There is another category of data that is deemed untrustworthy, which pertains
to the locations along the x and y axes. Specifically, in the case of kxx, the data along
the y-axis is considered unreliable since kxx does not play a role in determining the
flow in that direction. Similarly, for kyy, the values along the x-axis are not trusted.
The resulting version of the data that is considered trustworthy, after removing these
unreliable values, is presented in figure 4.11.

Figure 4.11: Example of the identified permeability field after all the trimming of
the untrusted data. The permeability component kxx, kyy, and kxy are plotted from
left to right, respectively.

It should be noted that even though the data of kxx along the x-axis and kyy

along the y-axis are trustworthy, in fact the most trustworthy in the data, they were
removed so that each location have full permeability tensor information; so that we
can use one convolutional neural network for the permeability tensor prediction.

4.3.5.2 Permeability data augmentation

The data that will be used in training the convolutional network is the lightbox
images as in figure 4.2 and the cleaned permeability data as in figure 4.11. The
lightbox images are cropped in 50 × 50 pixels images, where each crop corresponds
to a permeability region. The data is, then, organized as a list of image crops and
corresponding permeability tensors.

Data augmentation is used in order to increase the amount and variety of data
used in the training. We mainly performed rotation of 90o and 180o on the cropped
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images and obtained the corresponding rotated permeability tensor. The rotated
permeability is obtained through the following equation:

Krot = RTKR, (4.17)

where R is a rotation tensor that reads as:

R =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(4.18)

and θ is the angle of rotation.

The original dataset form along with the augmented data is shown in figure 4.12.

Figure 4.12: A sample of the data to be used for the convolutional neural network
training which includes a lightbox cropped image and the corresponding permeability
tensor labels. On top, one can find the cropped image and corresponding permeability
tensor labels, and at the bottom, the augmented data through applying rotation of
90o and 180o along with rotated permeability tensor data.

4.3.6 Training the CNN permeability model

The CNN is trained from scratch on the cleaned and augmented dataset obtained
from the previous stage. The dataset size obtained from 33 experiments (one exper-
iment is left out for testing purposes) is about 18, 000. This is split into training
and validation sets with a ratio of 9 : 1. Mean absolute error is used as the loss
function to be minimized. Adam minimization algorithm is used for 1000 epochs
with an initial stepsize of 0.001, with batch size of 128. In the training process,
convergence is determined upon observing a divergence between the training and
validation errors for over 100 consecutive iterations. The model associated with the
minimal validation error is subsequently retained for testing.

The loss function over the training and validation sets are shown in figure 4.13.
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Figure 4.13: Loss function evolution vs. the number of epochs for the training and
the validation data sets without applying regularization.

As can be seen from figure 4.13, the model tends to overfit the training data
which is shown in the validation loss which tends to increase with the number of
epochs. L2 regularization is used to solve this issue. The weight of the regularization
term is set to 0.001. The loss function is plotted after the regularization in figure 4.14
which shows that L2 regularization solved the overfitting problem.

Figure 4.14: Loss function evolution vs. the number of epochs for the training and
the validation data sets.

4.3.7 Model evaluation
In order to perform testing on unseen data we use cross-validation. Each one of
the 34 experiments is left out each time and the training procedure is started using
the remaining 33 experiments. After the model is trained, it is used to predict the
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permeability of the left-out test. The predicted permeability is used to perform
forward simulation and the results are compared to the existing experimental flow
front images. This process is repeated for all 34 tests, where the CNN is retrained
from scratch. The results of the simulation using the CNN-predicted permeability
field are also compared with the simulation using an average experimental measure
of the permeability.

Two different error measures are used to assess the performance of the model.
The first is the absolute difference between the experimental flow front image at
the final time step and the simulation results which measures the percentage of the
mispredicted pixels, referred to as ep and defined as:

ep =
∫

Ω 2|c − cexp| dX∫
Ω c dX +

∫
Ω cexp dX

, (4.19)

where c is the fraction function solution using the permeability prediction method
and cexp is the fraction function from the experiment.

The second error uses the Hausdorff distance [28] which is a measure of the
distance between two shapes (set of points), in our case the predicted flow front
shape compared to the experimental flow front shape. The Hausdorff distance
between two sets X and Y is defined as:

dH(X, Y ) = max
{

sup
x∈X

( inf
y∈Y

d(x, y)), sup
y∈Y

( inf
x∈X

d(x, y))
}

, (4.20)

where sup represents the supremum, inf the infimum, and where d(x, y) quantifies
the distance from a point x ∈ X to a point y ∈ Y . Figure 4.15 can help to visually
understand the two error definitions given two curves (flow front shapes), X and Y .

Figure 4.15: [a] A graphical representational of the error ep, where the shaded area
between the two flow front shapes, X and Y , represents the mispredicted pixels. [b]
The Hausdorff distance between two curves, X and Y [28].
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Following the definition of the Hausdorff distance, the second error measure,
referred to as ed, can be defined as:

ed = Hd

H0
(4.21)

where Hd is the Hausdorff distance between the model and experimental flow
front, and H0 is the Hausdorff distance from the experimental flow front shape to its
center of mass which is used for normalization.

4.4 Results
The two error metrics distributions are plotted for all 34 tests in histograms (fig-
ures 4.16 and 4.17). The y-axis represents the number of occurrences and the x-axis
represents the error in percentage.

Figure 4.16: Histogram plot showing the number of occurrences in the y-axis and the
mispredicted pixels error ep measure in percentage in the x-axis for the simulation
using CNN-predicted permeability and the simulation using the average permeability.

Figure 4.17: Histogram plot showing the number of occurrences in the y-axis and
the shape error ed measure in percentage in the x-axis for the simulation using
CNN-predicted permeability and the simulation using the average permeability.
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It can be generally seen from figures 4.16 and 4.17 that using CNN-predicted
permeability field produces less error than using an average approximation to the
permeability. That is seen as the bars related to the CNN are more shifted to the
left towards the low error region. From figure 4.16, 11 tests using CNN predictions
produced near 5% error, while only 2 tests using the average permeability values
produced this level of accuracy. Moreover, using average values, some tests produced
error near 30% and 35%. However, none of the tests using CNN produced such high
errors. For the second error measure in figure 4.17, all the tests using the CNN are
near the 10% error range except for 2 tests near the 20% range. However, results
using the average permeability values are more scattered with 7 tests near the 20%
range and some tests in the range of 30 − 40% error range.

In general, the central injection of plain-weave fabrics results in an anisotropic
elliptical flow behavior according to experiments. In some of the test cases, the
experimental injection front has a shape close to an ellipse, meaning that there are
low local defects or variability. In that case, both the CNN-predicted permeability
and the average permeability produced comparable results as in test case number
21 plotted in figure 4.18. In this test, the CNN produced an error of 6.6%, while
the average permeability produced an error of 12.1% using the mispredicted pixels
error. Using the shape error, the CNN produced an error of 5.8%, while the average
permeability produced an error of 9.0%.

Figure 4.18: Flow front positions at three different time instants for the experimental,
simulation using the CNN-predicted permeability, and simulation using average
permeability for test number 21.

If there is high local variability or local defects in the textile sample, it is expected
that the flow will not follow an elliptical shape. We show two test cases where the
experimental flow front is has more of a circular behaviour (less anisotropic). It could
be due to local effects such as gaps or misorientation between tows in the samples
of fabric used. The two tests, numbers 24 and 26, are plotted in figures 4.19 and
4.20, simultaneously. The CNN managed to accurately capture these effects from
the images producing a good prediction for the local permeability which was proven
by the accurate flow simulation that matched the experimental flow front shape. As
opposed to the results using an average permeability which, by essence, could not
capture this effect.
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Figure 4.19: Flow front location at 3 different time instants of experiments number
24. The figures show the experimental flow front along with the simulated flow front
using the CNN predicted permeability and the measured average permeability value.

For test number 24 (figure 4.19), the CNN produced an error of 5.3%, while
the average permeability produced an error of 20.5% using the mispredicted pixels
error. Using the shape error, the CNN produced an error of 7.4%, while the average
permeability produced an error of 16.0%.

Figure 4.20: Flow front location at 3 different time instants of experiments number
26. The figures show the experimental flow front along with the simulated flow front
using the CNN predicted permeability and the measured average permeability value.

For test number 26 (figure 4.20), the CNN produced an error of 6.9%, while
the average permeability produced an error of 26.2% using the mispredicted pixels
error. Using the shape error, the CNN produced an error of 9.2%, while the average
permeability produced an error of 24.2%.

4.5 Perspectives
The presented method offers a way to obtain an approximation of the permeability
field from textile images directly. There are two main points to discuss about the
limitations and possibilities of the method. The first is the possibility of generalizing
the technique to predict the permeability for any 2D geometry and problem other
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than the central injection experiment. The second is applying the technique to a
different fibrous structure other than the plain weave structure which was used in
the data generation and model training.

4.5.1 Prediction for arbitrary geometries

The primary advantage and strength of our technique lie in establishing a connec-
tion between the macroscopic geometry image and the localized small image crops.
Through training the CNN on these image crops, our model gains the ability to
predict the permeability field for any 2D geometry.

The image crops, irrespective of the macroscopic geometry, exhibit consistent
characteristics. This consistency enables the prediction of the permeability field for
an arbitrary 2D planar geometry, making it independent of the specific geometric
configuration. In essence, our method is local and therefore "geometry agnostic,"
meaning it can potentially handle diverse geometries without requiring specific ad-
aptations or modifications. This consideration deserves further investigation to find
definitive confirmation.

The method presented in this work might also be extended with some due
adaptations to 3D geometries. For thin shell-like structures the method could be
applicable as it is, provided that the 2D flow images can be mapped back to the 3D
geometry. As for bulk 3D parts, flow and dry fibers imaging only offer a view that is
limited to the external surfaces, while data for the inner part is not available.

4.5.2 Generalization for different fibrous media

The training of the CNN involved utilizing data obtained from experiments conducted
on a plain weave matrix structure. To enhance the dataset and improve the model’s
ability to generalize, data augmentation techniques were employed. However, a
crucial question remains regarding the model’s performance when applied to different
fibrous media structures such as twill or honeycomb weaves. Answering this question
conclusively necessitates conducting experiments specifically designed to test the
model’s capabilities.

Although it is challenging to provide a definitive answer without experimental
validation, preliminary tests suggest that the model may possess a certain level of
generalization, at least qualitatively, to different fibrous structures. However, it is
important to note that the model’s predictions may not necessarily be quantitatively
accurate for these structures.

It would be valuable in the future to expand the training set by incorporating
data from various fibrous structures. By training the model on different fibrous media
structures, the generalizability of the model can be enhanced. This broader training
approach would allow the model to learn and adapt to the unique behaviors and
features present in different fibrous structures, potentially improving its predictive
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performance.

Moreover, it should be noted that the transmitted light images, as the ones used
in this work, only work for transparent (glass) fibers, and will not work for carbon
or natural fibers which are opaque to visible light.

4.6 Summary and Conclusion
This chapter offers a methodology to perform accurate realistic flow simulation in
fibrous porous media through having image-based estimation of the permeability field
produced by a trained convolutional neural network. The chapter can be summarized
in the following points:

• Variations in fibrous porous media take place from one sample to another and
also spatially within the same sample. These variations can lead to unpredicated
flow behaviour or defects in some cases. To consider these variations and have
accurate predictions from simulations, it is essential to treat the permeability
as a field not a single average value, and this field should be different from one
sample to another.

• To this end, we built a framework using PINN and CNN to obtain the per-
meability field from macroscale fibrous media images. The method starts with
permeability field data collection by solving an inverse problem with PINN
utilizing experimental flow front images. This framework allowed us to collect
data of the permeability fields from 34 central injection experiments.

• We developed a CNN model to directly predict the permeability field from
macroscale images of fibrous media. The model was trained using crops of the
macroscale image correlating the crops to the corresponding local permeability.
By performing the training on image crops, the method possesses the ability
to be used for any 2D geometry. Through cross-validation, we demonstrated
that the CNN model possesses generalizability and can provide a reliable
approximation of the permeability tensor for any 2D plain weave lightbox
image. It should be emphasized that once the model is trained, the model
predictions are made only from a dry textile image without the need for any
injection data.

The work presented in this chapter is novel in the sense that it relates a macroscale
image to the corresponding permeability field. To the best of my knowledge, there is
no published work that offers a similar strategy that can be applied to fibrous media
images.

To conclude, PINN was successfully used to solve an inverse problem to identify
the permeability field using data from flow front images and an inlet pressure sensor.
This framework is used to collect data on the permeability fields of 34 central injection
experiments.
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The collected data and the corresponding lightbox images are used to train a
CNN to learn the relationship between the image crops of the macroscale fibrous
media image and the permeability tensor field. Cross-validation showed that the
CNN model is general and can be used for performing accurate flow simulations
using PINN or any existing solver which is a step towards realistic flow simulation in
fibrous porous media.

The main originalities in this chapter are

• the PINN framework to solve an inverse problem to identify the permeability
field,

• and correlating crops of macroscale fibrous media to the corresponding per-
meability tensor.
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Chapter 5

Summary, Conclusion, and
Perspectives

Abstract

The final chapter of the thesis is dedicated to summarizing the
main contributions and drawing conclusions. A section discussing the
perspectives and recommended future work is added at the end of the
chapter. The perspectives are split into future work related to PINN
and future work related to composite manufacturing.
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5.1 Summary

Three main contributions were presented in this thesis which are

• building a PDE solver for two-phase flow problems in porous media using
PINN,

• assessing the use of PINN to build metamodels in such problems,

• building a framework to identify the permeability field of 2D fibrous media
from images.

A quick summary of each contribution is summarized in the next sections.

5.1.1 PINN as a PDE solver

Chapter 2 of the thesis focuses on the application PINN to solve forward problems
associated with two-phase flow in porous media. The method has been effectively
employed to solve problems in both one-dimensional (1D) and two-dimensional (2D)
settings. Importantly, the framework developed in this chapter can be easily adapted
to address any 2D problem by modifying the collocation points, as well as the initial
and boundary conditions.

To enhance the accuracy of the solutions provided by PINN, an adaptivity
technique has been introduced. This technique is particularly crucial for addressing
the presence of a moving discontinuity, such as a flow front, within the solved problems.
The adaptivity algorithm developed in the study is not limited to specific scenarios
but is instead applicable to solve a wide range of partial differential equations (PDEs)
of interest.

5.1.2 Building Metamodels with PINN

Chapter 3 of the thesis examines the utilization of PINN for constructing metamod-
els to applied two-phase flow in porous media problems. The chapter presents a
range of examples, both in 1D and 2D scenarios. PINN proves to be a promising
approach for such metamodeling tasks, particularly when compared to traditional
methods and model order reduction techniques that struggle to handle the presence
of discontinuities in the solution [1–3].

Furthermore, the chapter introduces a more cost-effective method for building
metamodels, specifically designed for sensitivity analysis applications. This novel
approach is referred to as "SA-PINN," which stands for Sensitivity Analysis-PINN. By
leveraging the SA-PINN method, the process of constructing metamodels becomes
more affordable, addressing the economic constraints associated with sensitivity
analysis tasks.
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5.1.3 Permeability field identification from images
In Chapter 4, a comprehensive framework was developed to tackle the challenging
task of identifying the permeability field from 2D macroscale fibrous media images.
The methodology devised for this purpose begins by solving an inverse problem using
PINN and incorporating experimental data to collect permeability field information.
This combination of PINN and experimental data serves as the basis for generating
a dataset.

To leverage the collected permeability data and corresponding fibrous media
images, a supervised learning approach employing CNN is used. The objective is
to train the CNN to learn a function that effectively maps an input image to its
corresponding permeability tensor, thus establishing a relationship between the visual
characteristics of the fibrous media and the permeability properties.

To validate the accuracy and performance of the CNN predictions, unseen test
cases are utilized. The CNN predicts the permeability based on the input image, which
is then utilized in forward simulations. The output of these simulations is subsequently
compared to existing experimental data, allowing for a quantitative assessment of
the CNN’s performance and the reliability of the permeability predictions.

5.2 Conclusion
The main goals of the thesis as discussed in the introduction are to improve the:

1. robustness of LCM processes through online control.

2. material characterization before the process.

To serve the first end, steps have been taken to assess the use of PINN to build
surrogate models which is a first step towards online control. It has been shown that
PINN is able to build such models even for our complicated model with a moving
discontinuity which is quite a complicated task using other methods such as model
order reduction. However, more work is still needed in the future to build such
models for large-scale applications and to include a control agent which can be done
using reinforcement learning for example.

For the second goal, a technique to accurately predict the permeability field, an
important property of the porous media which is highly variable from one part to
another, tailored to each specific part is developed. The developed technique showed
great results in its ability to make accurate simulations matching the experimental
results whereas classical methods that offer an average of the permeability over
the whole domain cannot accurately make such predictions. The new technique is
geometry agnostic since it can be applied to different 2D geometries.

Throughout the thesis, developments in PINN have been made to improve its
approximation capabilities. For example, a new technique to adapt the collocation
points based on the residual field was developed and tested on 1D and 2D problems.
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This shows that PINN can be used accurately as a PDE solver for two-phase flow in
porous media problems.

In summary, this thesis has showcased the versatility and efficacy of PINN in
solving forward problems, developing metamodels, and identifying permeability fields.
The introduction of an adaptivity technique, the flexibility of the framework, and
the successful integration with CNNs underscore the potential of PINN as a powerful
tool in the field of two-phase flow in porous media. These findings pave the way for
further advancements and applications of PINN in solving complex problems across
various scientific and engineering domains.

5.3 Perspectives and Future Work
Numerous avenues can be explored in future research to enhance the hyperparameter
tuning, accuracy, and computational efficiency of Physics-Informed Neural Networks
(PINN). Additionally, there are specific directions that hold direct relevance to
the field of composites manufacturing. This section is further divided into two
categories: future work pertaining to PINN and future work pertaining to composites
manufacturing.

5.3.1 PINN related future work
Various aspects of PINN need attention in future investigations. Improvements can be
made in hyperparameter tuning techniques to optimize the network architecture and
training parameters for enhanced performance. We will focus on three main aspects
which are the multi-objective optimization process, the minimization algorithm, and
parallelization of the algorithms.

5.3.1.1 Multi-objective optimization

The training process of PINN involves minimizing a loss function using an optimiza-
tion algorithm. This loss function comprises multiple terms, each with different scales,
which compete with each other to be minimized. This process can be categorized
as multi-objective optimization, as there are several objectives to be simultaneously
minimized.

These terms in the loss function represent the residual of the partial differential
equation (PDE), the enforcement of initial and boundary conditions, and the incor-
poration of available data. In the case of coupled problems, such as those addressed
in this thesis, multiple PDEs and conditions must be considered. Consequently, the
number of terms in the loss function can be substantial, as demonstrated in Chapter
4, where we encounter 9 terms in the loss function. This increased number of terms
adds complexity to the optimization process, posing additional challenges.

The first recommended step, which was carried out in this thesis, involved non-
dimensionalizing the entire system of equations [4]. This process ensures that all terms
in the equations have comparable magnitudes, reducing the disparity between them
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and simplifying the optimization process. However, even with non-dimensionalization,
further adjustments may be required since different terms may have different accept-
able error thresholds. Thus, weighting the terms becomes necessary.

In the thesis, most of the examples involved the weighting of different terms. This
weighting process was primarily accomplished through trial and error, which can be
a tedious and laborious task to determine the optimal weights for a specific problem.

Although various methods from the literature were explored to automate the
weight-tuning process, they proved effective only for simpler problems with two or
three objectives [5–7]. When applied to the complex coupled problem addressed in
the thesis, these methods did not yield satisfactory results.

However, there is a promising strategy that shows potential for resolving this
issue: the strict enforcement of initial and boundary conditions. Several research
papers have addressed this strategy, which involves selecting an approximate solution,
denoted as û, that automatically satisfies the imposed conditions [8; 9]. An example
of this approximation is given as follows:

û(x, t) = uNN(x, t)D(x, t) + up, (5.1)

where uNN is a neural network approximation, D is a distance function that takes
a value of 0 on the boundaries and grows in the domain, and up is a function that
exactly satisfies the conditions to be enforced.

By utilizing this approximation, the enforcement of conditions becomes exact, as
û(x, t) = up at the boundary. However, a significant challenge arises when dealing
with the exact distance function D, as it can introduce instabilities and complicate
the optimization process. Furthermore, obtaining an accurate distance function can
be challenging for complex geometries and conditions.

To overcome these challenges, an alternative approach is to find a suitable
approximation for the distance function D. This research direction has gained
attention in some promising papers and presents a potential solution for future
investigations [10; 11]. Developing an effective approximation for the distance
function would address the issues associated with instabilities and the complexity
of getting an exact D, while also enabling the application of this methodology to
complex geometries.

5.3.1.2 Minimization algorithm

In the PINN community, it has become common practice to use a powerful first-order
minimization algorithm, typically Adam, initially in the training process to reach
the general vicinity of the global minimum followed by a second-order minimization
algorithm, such as BFGS or l-BFGS, to quickly approach the minimum more closely.
However, this two-step minimization process is not optimal due to certain drawbacks.
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One issue with the BFGS optimizer is its computational expense and inefficient
memory usage, as it requires constructing an approximation of the inverse of the
Hessian matrix. Although l-BFGS addresses the memory problem and is faster than
BFGS, it does not achieve the same level of minimization as BFGS.

Furthermore, using BFGS and l-BFGS directly in TensorFlow is not straight-
forward, requiring the use of another library like TensorFlow Probability. This
implementation is not efficient and may contain bugs, such as producing a non-
positive definite approximation of the Hessian matrix, which is theoretically incorrect.
In contrast, PyTorch offers a simple and user-friendly l-BFGS implementation but
lacks support for BFGS.

An alternative algorithm that shows promise is the Levenberg-Marquardt al-
gorithm, which has been found to be more efficient and robust than BFGS or l-BFGS
while achieving similar accuracy as BFGS [12; 13]. However, direct implementations
of this algorithm in TensorFlow or PyTorch do not currently exist, but other libraries
can be explored and tested.

Overall, further research is necessary to explore advanced optimization algorithms
specifically tailored for PINN which could lead to more efficient and effective training
processes. It is also crucial to understand the specific requirements of each problem
to choose the most appropriate algorithm.

5.3.1.3 Parallelization

In this context, it is important to note that all the algorithms discussed were ori-
ginally designed to run on either a single CPU or GPU. The choice of algorithm
does not depend on whether a CPU or GPU machine is used. However, the as-
pect of parallelization was not considered during the development of these algorithms.

For future advancements, it is worth modifying the code to leverage multiple
GPUs. By utilizing parallel processing, it is possible to significantly accelerate the
training process beyond its current speed.

5.3.2 Composite manufacturing future work
Several topics can be addressed as future research related to the manufacturing
process of study in this thesis, resin transfer molding. One topic can be the extension
to 3D and thin structures. Another is adding heat transfer and polymerization
physics to the coupled system of equations.

5.3.2.1 3D and thin structures extension

Extending the algorithms to 3D problems is a straightforward process, requiring no
additional concepts or difficulties beyond the increased computational cost. Although
the thesis did not specifically address the 3D extension, there are no new scientific
concepts to explore; however, there is significant industrial interest in this area.
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When dealing with 3D model’s training, there is a need for 3D injection experi-
mental data. Significant experimental work remains to be developed and performed
so as to extract valuable data. Several non destructive techniques (X-ray tomography
or dielectric for instance can provide bulk steady or transient information but are
not easy to build and will require investigation to provide data.

Of greater interest and potential impact is the reshaping of the equations and
codes to handle 3D thin structures, which are commonly encountered in LCM pro-
cesses. Since most LCM-manufactured parts consist of thin structures, commercial
finite element codes typically employ shell elements. Therefore, adapting the equa-
tions and codes to accommodate such structures would be a valuable contribution,
particularly within the composite manufacturing community.

To initiate this extension, a paper discussing the application of PINN to thin
structures in the context of solid mechanics applications can serve as a starting
point. By adopting similar concepts and methodologies, the equations pertinent to
the current research can be adapted to handle 3D thin structures, presenting an
intriguing and potentially impactful research direction.

5.3.2.2 Multi-Physics extension

LCM processes involve the simultaneous occurrence of flow in porous media, poly-
merization, and heat transfer within the mold. Consequently, there is a need for a
simulation tool capable of solving this complex multi-physics system as a whole.

In the future, it would be beneficial to explore the application of PINN to tackle
this intricate multi-physics problem in LCM. The main challenge lies in dealing with
the optimization of multiple objectives. Even with an approach to enforce conditions
the hard way, there will still be the task of minimizing residuals from multiple PDEs
simultaneously. Consequently, the development of an automated weight-choosing
algorithm becomes crucial in such cases.
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Titre : Modélisation de l'écoulement diphasique dans les milieux poreux à l'aide de réseaux neuronaux 

informés par la physique pour des applications dans le  moulage de composites par injection de résine 

Mots clés : métamodèles, prédiction de la perméabilité à partir d'images, réseaux neuronaux convolutionnels, 

apprentissage auto-supervisé 

Résumé : Le moulage de composites liquides 

(LCM) est une famille populaire de procédés de 

fabrication de composites, dans lesquels une résine 

liquide est injectée dans un moule où un textile est 

positionné. Le procédé implique un écoulement dans 

un milieu poreux fibreux. Les variations au sein des 

échantillons textiles et entre eux peuvent être dues à 

des défauts géométriques intrinsèques du tissu, à une 

mauvaise manipulation, à un mauvais alignement et à 

d'autres facteurs. Ces incohérences peuvent entraîner 

des écarts marqués entre les modèles de remplissage 

réels et prédits, ce qui entraîne des variations dans la 

qualité des pièces fabriquées. Cette thèse a deux 

objectifs principaux. Le premier est de construire un 

cadre qui prédit la possibilité d'apparition de défauts 

d'injection, ce qui peut faciliter le processus de prise 

de décisions correctives. Le second est d'améliorer la 

caractérisation des propriétés clés des matériaux 

avant le début de l'injection. 

Pour réaliser ces tâches, nous utilisons des réseaux 

neuronaux informés par la physique (PINN). PINN 

repose sur la fusion de la connaissance des données 

et la physique, représentée par des équations aux 

dérivées partielles. Pour atteindre le premier 

objectif, PINN est utilisé pour construire des 

métamodèles du processus avec des paramètres 

d'intérêt tels que la perméabilité ou les conditions 

limites d'entrée. Ces modèles sont formés hors ligne 

et peuvent être rapidement utilisés pour les 

prédictions en ligne. Pour atteindre le deuxième 

objectif, un cadre d'apprentissage auto-supervisé a 

été construit sur la base de PINN et de réseaux 

neuronaux convolutionnels pour identifier le champ 

tensoriel de perméabilité à partir d'images textiles en 

2D. Le cadre montre des résultats prometteurs en les 

comparant aux images expérimentales existantes du 

front d'écoulement. 

 

Title :  Modeling two-phase flow in porous media using physics-informed neural networks for applications in 

liquid composite molding 

Keywords : metamodels, Image-based permeability prediction, convolutional neural networks, self-

supervised learning 

Abstract: Liquid composite molding (LCM) is a 

popular family of composite manufacturing 

processes, in which a liquid resin is injected in a 

mold where a textile is set there. The process 

involves flow in fibrous porous media. Variabilities 

within and between textile samples can arise due to 

fabric intrinsic geometrical defects, mishandling, 

misalignment, and other factors. These 

inconsistencies can result in marked deviations 

between the actual and anticipated filling patterns, 

leading to variations in the manufactured parts 

quality. This thesis has two main objectives. The first 

is to build an online framework that predicts the 

possibility of defects, which helps taking corrective 

decisions. The second is to improve the 

characterization of key material properties before the 

injection starts.  

 

To achieve these tasks, we use physics-informed 

neural networks (PINN). PINN is a technique that is 

based on merging the data knowledge along with 

the knowledge of physics, represented by partial 

differential equations. To target the first objective, 

PINN is used to build metamodels of the process 

with parameters of interest as the permeability or 

inlet boundary conditions. These models are trained 

offline and can be quickly employed for online 

predictions. Towards the second objective, a self-

supervised learning framework was built based on 

PINN and convolutional neural networks to identify 

the permeability tensor field from 2D textile 

images. The framework shows promising results 

through comparing with existing experimental flow 

front images. 
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