
HAL Id: tel-04520763
https://theses.hal.science/tel-04520763v1

Submitted on 25 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cuspidal robots : theoretical study, classification, and
application to commercial robots

Durgesh Haribhau Salunkhe

To cite this version:
Durgesh Haribhau Salunkhe. Cuspidal robots : theoretical study, classification, and application to
commercial robots. Automatic. École centrale de Nantes, 2023. English. �NNT : 2023ECDN0027�.
�tel-04520763�

https://theses.hal.science/tel-04520763v1
https://hal.archives-ouvertes.fr


MEMOIRE DE DOCTORAT DE

L’ÉCOLE CENTRALE DE NANTES

ÉCOLE DOCTORALE NO 602
Sciences de l’Ingénierie et des Systémes
Spécialité : Robotique

Par

Durgesh Haribhau SALUNKHE
Robots cuspidaux : étude théorique, classification et applications
aux robots commerciaux

Projet de recherche doctoral présenté et soutenu à l’École Centrale de Nantes, le 27/11/2023
Unité de recherche : UMR 6004 Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Federico THOMAS Full Professor, Universitat Politécnica de Catalunya, Espagne
Med Amine LARIBI Maître de Conférences HDR , Université de Poitiers

Composition du Jury :

Président : Mohab SAFEY EL DIN Professeur des universités, Sorbonne Université
Examinateurs : Federico THOMAS Full Professor, Universitat Politécnica de Catalunya, Espagne

Med Amine LARIBI Maître de Conférences HDR , Université de Poitiers
Solen CORVEZ-FERTE Professeure agrégée, Académie de Lyon
Michel COSTE Professeur des universités émérite, Université de Rennes 1
Adolfo SUAREZ ROOS Dr, Expert Robotique, IRT Jules Verne, Bouguenais

Directeur de recherches doctorales : Philippe WENGER Directeur de recherche CNRS, École Centrale de Nantes
Co-dir de recherches doctorales : Damien CHABLAT Directeur de recherche CNRS, École Centrale de Nantes





ACKNOWLEDGEMENT

The past three years have been full of good memories, and I heartily thank each person
that crossed my path. Many people have played an important role during my journey of
completing the presented work and I am indebted to each and everyone of them.

My foremost gratitude goes towards my family (Aai, Baba and Didi). They have stood
by me through thick and thin, and their constant support and abundant love has helped
me get through tough times.

I am deeply grateful to Prof. Philippe Wenger who have been a constant guide and a
companion during my doctoral journey. The knowledge gained from him is profound and
the experience of working under his guidance was inspiring. I extend the same intensity of
gratitude towards Prof. Damien Chablat who has always motivated my work, and added
humor in the conversation whenever it was most needed. The results achieved in the thesis
are a direct reflection of their persistent support and encouragement towards my work.
I am thankful to Prof. Federico Thomas, and Prof. Med Amine Laribi for reviewing my
thesis. I also thank the jury members (Prof. Michel Coste, Prof. Mohab Safey El Din,
Dr. Solen Corvez-Ferte, and Dr. Adolofo Suarez Roos) for their supervision over my the-
sis defense. I am deeply grateful to the early works of Prof. Federico, Prof. Michel, Dr.
Solen and Prof. Mohab on cuspidal robots. The results achieved in the presented thesis is
possible because of the strong foundation laid by them.

I thank Dr. Jose Capco, for his strong support and friendly attitude because of which
it was quite easy for me to collaborate with him on topics ranging from chess games to
mathematical proofs. Thanks for all the free tutorials on maths, I have greatly benefited
from those. I thank Prof. Andreas Mueller for his compassionate guidance on various
subjects. His kind gesture helped me get a great head start in the field of kinematics.
I also thank Dr. Shivesh Kumar for his mentorship during all these years. He has been
a great encouragement adding different perspective on the topics related to research as
well as politics. He is someone I always am eager to meet at the conferences. I also thank

3



my friends from the project, Christoforos, Tobias, and Rémi. It was sheer joy to work
with you guys, and I am deeply thankful for your cheerful company. Chris’s meticulous
attitude towards proofs, and Tobias’s ever positive energy of pushing through problems
have encouraged me to push the boundaries myself.

I wish to express my special thanks to Sanket who is like a brother to me. We have
shared conversations of great depth, and the trust developed between us is my great trea-
sure. Thanks to my good old friends, Vipul and Ankit, whom none can replace. I’ll be
there for you like I’ve been there before. Thanks to Ankit for being a friendly guide on
the journey of doctorate together. Your grit and perseverance has no match. Thanks to
Vimalesh, for all the conversations we had over the past three years. They have provided
great insights to my understanding. Thanks Isabel, for being a supportive friend and being
a part of many cherishable moments in Nantes. Thanks to Quan, Hyeryeong, Ivan, and
Abhilash for many joyous memories in Nantes. Thanks to Francesco, Nicola, Alessandra,
and Angelica for your friendship. It is unbelievable to think that 5 years have passed since
I first met you guys. I thank my cousin Om, who has always brought very thoughtful
perspective on myriads of topics.

4



To Aai and Baba,
My first teachers who taught me to love and live





TABLE OF CONTENTS

Introduction 19

1 State of the art, and theoretical background 25
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.1 Cuspidal robots: theoretical analysis . . . . . . . . . . . . . . . . . 26
1.1.2 Cuspidal robots: industrial application . . . . . . . . . . . . . . . . 27
1.1.3 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.1 Concepts related to 3R serial robot . . . . . . . . . . . . . . . . . . 30
1.2.2 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.3 Concepts related to nR serial robots . . . . . . . . . . . . . . . . . 38

2 3R serial robots 49
2.1 Cuspidality analysis of generic 3R serial robots . . . . . . . . . . . . . . . . 49

2.1.1 Sufficient condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.2 Proof for reduced aspects in 3R serial robot . . . . . . . . . . . . . 51
2.1.3 Necessary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Further analysis of 3R serial robots . . . . . . . . . . . . . . . . . . . . . . 66
2.2.1 Geometric analysis of 3R serial robots . . . . . . . . . . . . . . . . 68
2.2.2 Comments on maximum aspects in 3R robots . . . . . . . . . . . . 80

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 6R serial robots 83
3.1 Cuspidality analysis of simplified 6R geometry . . . . . . . . . . . . . . . . 83

3.1.1 Wrist at the end . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Intersecting three axes at the beginning . . . . . . . . . . . . . . . . 85
3.1.3 Wrist in the middle . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.4 Planar 3R subchain in 6R robots . . . . . . . . . . . . . . . . . . . 91

3.2 Cuspidality analysis of generic 6R robots . . . . . . . . . . . . . . . . . . . 92
3.2.1 Number of aspects in 6R robots . . . . . . . . . . . . . . . . . . . . 92

7



TABLE OF CONTENTS

3.2.2 Comment on cuspidality in 6R robots . . . . . . . . . . . . . . . . . 96
3.2.3 Effect of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.4 Algorithm for deciding cuspidality . . . . . . . . . . . . . . . . . . . 99

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Path planning in cuspidal robots 111
4.1 Issues in cuspidal robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.1 Unique configuration identification . . . . . . . . . . . . . . . . . . 111
4.1.2 Issues in trajectory planning in cuspidal robots . . . . . . . . . . . 121
4.1.3 Problems in collaborative applications . . . . . . . . . . . . . . . . 139

4.2 Path planning framework for cuspidal robots . . . . . . . . . . . . . . . . . 144
4.2.1 Types of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.2 Types of scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.3 Path planning framework . . . . . . . . . . . . . . . . . . . . . . . . 148

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Conclusions 153
4.3.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Appendix 161
A.1 IKM of a 3R serial chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Geometric analysis of 3R serial robots . . . . . . . . . . . . . . . . . . . . . 162
A.3 Determinant of Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . 163
A.4 Certified algorithm to decide cuspidality of 6R robots . . . . . . . . . . . . 164
A.5 Simplified architectures with det(J) with three components . . . . . . . . . 166

Bibliography 189

8



LIST OF FIGURES

1.1 Some of the first unconventional designs of industrial robots. Image credits:
[WC22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 The D-H parameter notations as presented in [DH55]. . . . . . . . . . . . . 32
1.3 Examples of generic and non-generic cases of a 3R serial robot . . . . . . . 33
1.4 Intersection of the conic and unit circle in c3s3-plane for robots with dif-

ferent D-H parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5 Types of critical values in the workspace and corresponding tangency in

c3s3-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.6 An example showing the four components of a critical values in the workspace

of a 3R serial robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.7 The eight configurations of a wrist-partitioned arm enumerated in binary

to denote the positions for elbow-shoulder-wrist. . . . . . . . . . . . . . . . 41
1.8 Joint space of a noncuspidal and cuspidal robot. . . . . . . . . . . . . . . . 42
1.9 The two singularity free connected regions, called aspects, in joint space

for a 3R serial robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.10 An example showing a set of reduced aspects present in an aspect of the

joint space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.11 Example of nonsingular change of solutions in the joint space and the

progress of det(J) on the path. . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.12 An example of a nonsingular change of solutions in the joint space and the

workspace, and its corresponding geometrical interpretation in the c3s3-plane. 46

2.1 The step-wise organization of the proof for the necessary and sufficient
condition for a generic 3R serial robot to be cuspidal. . . . . . . . . . . . . 50

2.2 Example showing a non-local nonsingular change of solutions in joint space
and workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Regions separated by the locus of the critical values in the workspace. There
are 3 IKS on AB∗

w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9



LIST OF FIGURES

2.4 An example of the regions separated by the pseudosingularity curve in joint
space and the corresponding images in workspace. . . . . . . . . . . . . . . 52

2.5 The merging of two adjacent points in a conic at a tangent point and
geometrical interpretation of the components of the locus of critical values. 56

2.6 An example of nonsingular change of solutions crossing a pseudosingularity
curve at 2 points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Geometrical interpretation of the cusp point and the adjacent components
of critical values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8 Region Aw in the workspace with 4 IKS and its geometrical interpretation. 62
2.9 The intersections of components of critical values bounding Aw in the

workspace and its geometrical interpretation. . . . . . . . . . . . . . . . . . 62
2.10 An example of the shape of the workspace, where a closed loop path starting

from a point in Aw must cross two distinct components of critical values
bounding region Bw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.11 The closed loop path in the workspace, where the path crosses another
4-solution region and its corresponding interpretation in c3s3-plane. . . . . 65

2.12 The “candy” case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.13 The aspects in the joint space, regions in the workspace and corresponding

conics in the c3s3 - plane for a cuspidal and non-cuspidal generic robot. . . 67
2.14 The bifurcation curve parameterized in α1 and α2. . . . . . . . . . . . . . . 69
2.15 The bifurcation curve parameterized in a2 and d2. . . . . . . . . . . . . . . 69
2.16 Degenerate parabola case: c3s3-plane, joint space and the workspace. . . . 71
2.16 3R serial robot corresponding to a circle in the c3s3-plane. . . . . . . . . . 73
2.17 An example of a binary robot’s representation in c3s3 − plane, the joint

space and the workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.18 An example of an orthogonal quaternary robot corresponding to an hyper-

bola. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.19 An example of quaternary robot. . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Simplified geometry with wrist at the end . . . . . . . . . . . . . . . . . . 84
3.2 Schematic of a 6R serial chain with wrist in the beginning . . . . . . . . . 86
3.3 conic representation of inverse kinematic model (IKM) for a 6R serial robot

with wrist in the beginning. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Geometric explanation for the inverse kinematic model (IKM) with wrist

in the middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10



LIST OF FIGURES

3.5 Simplified examples of 6R robots with wrist in the middle such that the
rank 4 singularities form a 2 dimensional variety. . . . . . . . . . . . . . . . 90

3.6 Singularity plot in θ2, θ3, θ4 for a robot with wrist in the middle, mutually
orthogonal axis with a5 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Singularities for the counterexample to [IPC98], a robot with non-intersecting
singularities with more than two aspects . . . . . . . . . . . . . . . . . . . 93

3.8 Infeasibility of concentric closed r-surfaces as shown in [IPC98] . . . . . . . 94
3.9 The cross section of joint space and workspace in case of two separated

r-surfaces as discussed in [IPC98] . . . . . . . . . . . . . . . . . . . . . . . 94
3.10 r-surfaces that are closed but do not generate 2 subspace independently . . 95
3.11 The only possible case of existence of unique r-surface as per [IPC98]. . . . 95
3.12 The counterexamples showing the possibility of more than two aspects in

the joint space. The red plane is a r-surface whose image is the limit of the
workspace. The r-surface is not necessarily a plane. . . . . . . . . . . . . . 96

3.13 An example 2D slice in θ3θ4 for the case with sheets and bubbles in the
joint space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.14 Nonsingular change of solutions in cuspidal robot with joint limits hiding
the cusp points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.15 Example for considering clockwise and counter clockwise rotations in the
IKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.16 Complete framework for deciding cuspidality for any 6R robot . . . . . . . 107
3.17 Classification of a 6R robot parameterized in specially chosen three D-H

parameters. The rest of the DH parameters match that of FANUC CRX-
10ia/L robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1 Industrial cobot from FANUC, CRX-10ia/L . . . . . . . . . . . . . . . . . 112
4.2 Sixteen solutions for the CRX-10ia/L robot. . . . . . . . . . . . . . . . . . 114
4.3 An example IKS for CRX-10ia/L in UnFlip, Up, Top configuration as clas-

sified by FANUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 An example IKS for CRX-10ia/L in Flip, Down, Bottom configuration as

classified by FANUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5 Sixteen solutions for the CRX-10ia/L robot with their designated configu-

ration in the ROBOGUIDE software. . . . . . . . . . . . . . . . . . . . . . 117
4.6 The det(J) plot to verify nonsingular change of solutions between two IKS

of CRX-10ia/L in the aspect with positive det(J) . . . . . . . . . . . . . . 119

11



LIST OF FIGURES

4.7 The det(J) plot to verify nonsingular change of solutions between two IKS
of CRX-10ia/L in the aspect with negative det(J) . . . . . . . . . . . . . . 120

4.8 Regions with different numbers of IKS in 2D slices (xy-plane) in the workspace
of Jaco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.9 Progress of the det(J) for six nonsingular change of solutions in aspect with
positive determinant value. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Progress of det(J) for six nonsingular change of solutions in aspect with
negative determinant value. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.11 Nonsingular change of solutions: IKS VII → VIII. . . . . . . . . . . . . . . 128
4.12 An example of nonsingular change of solutions . . . . . . . . . . . . . . . . 130
4.13 Same path as shown in Figure 4.12, but without changing solutions . . . . 131
4.14 A closed trajectory crossing multiple connected regions in the workspace

of Jaco robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.15 Value of θ1 along the closed path in fig. 4.14, with regions of 4, 6 and 8 IKS.

Blue and red paths correspond to solutions in an aspect with det(J) > 0
and det(J) < 0 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.16 Plot for θ2...6 of all solutions at discretized points along the path in fig. 4.14.133
4.17 Path in the slice of Jaco that is infeasible no matter the choice of initial IKS134
4.18 The schematic figure of a palindromic robot and the progress of det(J)

along the path in table 4.6 confirming a nonsingular change of solutions. . 136
4.19 Plot for θ1...6 of all solutions at discretized points for a nonsingular change

of solutions that is repeatable. . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.20 Plot for θ1...6 of all solutions at discretized points for a nonsingular change

of solutions that is nonrepeatble. . . . . . . . . . . . . . . . . . . . . . . . 138
4.21 An example infeasible path in 3R robot . . . . . . . . . . . . . . . . . . . . 140
4.22 2-D slice of the workspace for CRX-10ia/L. . . . . . . . . . . . . . . . . . . 141
4.23 Plot for θ1...6 of all solutions at discretized points along the trajectory wi →

wj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.24 Plot for θ1...6 of all solutions at discretized points along the trajectory wk →

wl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.25 Plot for θ1...6 of all solutions at discretized points along the trajectory wa →

wb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.26 The classification of possible open paths in cuspidal robots. . . . . . . . . . 145
4.27 The classification of possible closed paths in cuspidal robots. . . . . . . . . 146

12



LIST OF FIGURES

4.28 The types of path possible in a cuspidal robot . . . . . . . . . . . . . . . . 146
4.29 The classification of possible scenarios of closed paths in cuspidal robots. . 147
4.30 The classification of possible scenarios of open paths in cuspidal robots. . . 147
4.31 The framework for scenarios with open paths in cuspidal robots. . . . . . . 150
4.32 The framework for scenarios with closed loop paths in cuspidal robots. . . 151

13





LIST OF TABLES

3.1 The relation for cuspidality in 6R serial robot with wrist at the end . . . . 85
3.2 The D-H parameters of reduced example of a 6R robot with wrist at the end101
3.3 Classification of some of the existing robots according to cuspidal nature. . 109

4.1 The D-H parameters of the CRX-10ia/L robot . . . . . . . . . . . . . . . . 112
4.2 The CRX solutions from Figure 4.5 with their corresponding det(J) sign

and configurations as assigned by ROBOGUIDE. . . . . . . . . . . . . . . 118
4.3 The DH parameters of the Jaco robot . . . . . . . . . . . . . . . . . . . . . 122
4.4 The 12 IKS of a pose of the Jaco robot for te pose defined below. Orienta-
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INTRODUCTION

Cuspidal robots are robots with at least one singularity free connected region, aspect,
with multiple inverse kinematic solutions (IKS). This allows cuspidal robots to change
solutions without crossing singularities. This doctoral thesis discusses upon the theoretical
study, classification, and application of cuspidal robots. The following sections detail the
scope of the thesis as well as summarizes the architecture and contributions presented in
the thesis.

Scope of the doctoral thesis

Before 1988, it was widely accepted fact in the kinematics community that all the
IKS of a robot lie in distinct connected regions. The belief was founded due to the initial
analysis of simpler robots that provided geometrical insights into different inverse kine-
matic solutions. For example, a 2R robot has two types of IKS commonly called as the
"elbow up" and "elbow down" configurations. A similar separation of IKS is possible for
anthropomorphic architectures with wrist partition at the end. The well known classifica-
tion of the IKS of such robots is wrist(flip/No-flip)-shoulder(Right/left)-elbow(Up/down)
and is often reported as the NRU configuration. The belief was further corroborated by
a proof presented in 1986 [BL86] which went unchallenged as it provided a mathematical
assertion to an already known (rather accepted) fact.

In 1988, Innocenti and Parenti-Castelli presented a numerical analysis of two 6R robots
that broke the accepted norms in the community [PCI88]. These robots followed a solution
changing path and the plot for the determinant of the Jacobian matrix never changed
signs. Since then, robots with similar properties have been analyzed by researchers from
different countries. A detailed analysis on 3R orthogonal robots was presented in 1992
[Wen92], and the term cuspidal was coined in 1995 [EOW95] due to the existence of cusp
in the workspace of the robots exhibiting this "special" property. Algebraic tools were used
to provide a complete analysis of 3R orthogonal robots establishing different classifications
and criterias for cuspidality [BWC04; Wen04]. The algebraic analysis though global and
complete, is computationally expensive and thus is cumbersome to extend to generic 3R
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robots.

There did not exist an algorithm to decide upon cuspidality of a given generic 6R robot.
An identification methodology can help designers decide upon the design parameters of
robot in order to choose a noncuspidal robot. One of the most important limiting factor
to the analysis of 6R cuspidal robots till early 2000’s was the availability of a generic
algorithm to resolve the inverse kinematic solutions of the robots. The wrist partitioned
anthropomorphic architecture has a simplified geometry and thus provides an analytical
solution [Ben91]. The inverse kinematics of generic 6R serial robots on other side was
once termed as the ‘Mount Everest of kinematics’ [Fre73]. Several algorithms with varying
approaches have been proposed since then, and we have algorithms that provide algebraic
solutions for inverse kinematics of generic 6R robots [HPS07].

With the rise of application of robotics in daily life, robots have started moving out
from strictly controlled industrial environment to a collaborative setup. In order to adapt
to these requirements, the industry has implemented unconventional designs exploring ar-
chitectures without a wrist partition. The limitation on a deciding methodology combined
with low awareness on cuspidality have resulted into several existing robots to be cuspidal.
The multiple regions with varying number of IKS in cuspidal robots leads to interesting
properties that can be taken advantage of in certain cases while in other cases proves to
be perilous. As we move towards more physical human-robot interaction, it is important
to study cuspidality, and its implications on trajectory planning of cuspidal robots. Any
accidents caused due to lack of awareness on cuspidality may result in a setback to the
trust in collaboration with robots.

This doctoral thesis first presents theoretical study on cuspidality in generic 3R robots.
Geometric interpretation of the inverse kinematic model (IKM) presented in [Pie68;
Tho15] is revisited to elucidate important observations on the nature of IKS. A com-
parative study of nonsingular change of solutions in the joint space, workspace, and its
geometric interpretation allows to prove the necessary and sufficient condition for a generic
3R robot to be cuspidal. In this process, the existence of reduced aspects (sub-regions of
aspects with unique IKS) in generic 3R robots is proved too. The geometric analysis of
3R robots shed light on a new perspective to classify 3R robots that depends on the
conic related to the kinematic polynomial. In [Pag08], the homotopy analysis presented a
direction for counting the number of aspects in a generic 3R robot. Two of the presented
homotopy classes namely 3(0, 0) and 4(0, 0) were suspected to exist which meant that
the maximum number of aspects for a generic 3R serial robot would be five. A compar-
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ative analysis of singularities in the joint space and conic interpretation confirms that
these classes do not exist for 3R serial robot, thus allowing to close the topic of maximum
number of aspects for a generic 3R robot.

The cuspidality analysis of simplified geometry is important from the point of view
of applications. Almost all industrial robots have simplified geometry, and the analysis
of constrained architectures allow us to analyze the determinant of the Jacobian matrix.
The presented work shows that even though some simplified geometries lead to noncus-
pidal behavior, there exists others whose analysis remains challenging. A classification of
robots with either orthogonal or parallel axes is presented to allow designers to choose
from variety of designs that are noncuspidal. Later, a detailed framework for deciding cus-
pidality is presented that can analyze robots with collision constraints and joint limits.
The thesis highlights a certified algorithm [Cha+22] as well as a numerical approach to
deciding cuspidality. It is shown that almost all generic robots are cuspidal by nature.
Cuspidal robots lead to several issues in path planning. It is suspected that ABB IRB
6400C robot was recalled by the company after facing issues in path planning due to its
cuspidal nature [WC22]. Recently, the issues in path planning of another cuspidal robot,
MICO from Kinova robotics was identified in industry [Ver21]. Such reports of path plan-
ning issues in cuspidal robots have gone unnoticed, and the users generally blame the
motion planning algorithms for a path failure.

The thesis details the issues in a commercial cuspidal robot, JACO Gen2 (non-spherical
wrist), and discusses the implications of crossing multiple regions with varying IKS. It
further points out issues in unique identification of ‘configuration’ of yet another cuspidal
robot in industry, FANUC CRX-10ia/L. Most of the robots that are identified as cuspidal
are sold in the market as cobots (fancy for collaborative robots) . Taking this point
under consideration, the thesis further highlights why cuspidal robots should especially
be avoided in collaborative applications. To utilise existing cuspidal robots in industrial
setup, a detailed study for different types of paths and scenarios possible in path planning
of cuspidal robots is discussed. A path planning framework is proposed that considers
all the cases prior to the execution of the trajectory. An optimised trajectory planning is
presented as an application of cuspidal robots to commercial robots.
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Summary

This doctoral thesis is divided in four chapters and their main objectives are as follows:

1. State of the art and preliminaries

Chapter 1 presents the state of the art of all the topics related to cuspidal robots.
It presents a literature review on the inverse kinematics of 6R robots, and later on the
evolution of analysis of cuspidal robots. Later, the theoretical background for the cuspi-
dality analysis is presented. It discusses the geometric interpretation of the IKM of a 3R
robot as presented by Pieper [Pie68]. Later, certain terminologies developed for 3R robots
in previous works [WEO96; Wen04; EOW95] is defined for ease of understanding of the
proofs to follow. The chapter then presents concepts related to the cuspidal analysis of nR
nonredundant robots. Singularities, and nonsingular change of solutions (its verification)
with their representation in the joint space, workspace and the geometric interpretation
are shown for comparative analysis.

2. Cuspidal analysis of 3R robots

The orthogonal 3R robots have been extensively analyzed in the past [Bur89; WEO96;
Pag08; BWC04]. In [EOW95], it was stated that the cusp point in the workspace of a 3R
orthogonal robot is necessary and sufficient condition for orthogonal 3R robots to be
able to perform nonsingular change of solutions. Later, [Cor05] established that a cusp
point was a sufficient condition for a generic 3R robot to be cuspidal. In chapter 2, a
necessary and sufficient condition for a generic 3R robot to be cuspidal is presented. It
utilises geometric interpretation of IKS, singularities and nonsingular change of solutions
to present a proof by contradiction. As a result, the existence of reduced aspects in a
generic 3R robot is proved by the same analysis too.

Geometric analysis of 3R robots is further extended to present classification of 3R
robots based on the conic represented by the inverse kinematic polynomial. Each conic
representation have interesting cases which allow a completely new perspective on the
classification of 3R robots. Several sufficient criterias for a 3R robot to have maximum
of two or four IKS are elucidated from the analysis. The geometric analysis combined
with interpretation of IKS in the joint space is used to show nonexistence of a previously
suspected homotopy classes 3(0, 0) and 4(0, 0). This allows to conclude upon the maximum
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number of connected regions present in the joint space of a generic 3R robot.

3. Cuspidal analysis of 6R robots

The cuspidal analysis of a 6R robot is not well reported earlier. The only published
work on cuspidality analysis of 6R robots is the anthropomorphic wrist-partitioned archi-
tecture, and UR5 from Universal robots [CSEDS20]. Both these examples are of noncus-
pidal robots with maximum eight IKS and the determinant of Jacobian matrix factoring
into three distinct components. In Chapter 3, the cuspidality analysis of simplified ge-
ometries of 6R robots is presented initially. It discusses cases of robots with wrist located
at the beginning, end, and in the middle of the chain. It further discusses 6R robots with
three consecutive parallel axes present in the serial chain.

The detailed framework for deciding cuspidality of all 6R robots is presented in the
later section. It discusses the building blocks of deciding cuspidality, and revisits the cer-
tified algorithm in [Cha+22] that uses tools from Real Algebraic Geometry and roadmap
algorithms to decide cuspidal nature of the robot. The thesis presents a numerical ap-
proach for deciding cuspidality which is capable of considering collision constraints an
joint limits of the robot. It uses Nelder Mead approach, time-optimal point-to-point tra-
jectory planning to check connectivity of IKS in the joint space. Cuspidality analysis of
3240 robots including almost all the robots present in industry is presented as an applica-
tion of the proposed framework. It is noted through this analysis that almost all generic
robots are cuspidal by nature.

4. Path planning in cuspidal robots

Chapter 4 presents path planning issues in cuspidal robots. It presents two cases of
existing commercial 6R robots that are cuspidal. A detailed kinematic analysis of both
these robots is presented to motivate the reader about the interesting (a.k.a dangerous)
properties of cuspidal robots. The FANUC CRX-10ia/L is used to highlight the issues of
classifying sixteen solutions into eight categories. The misidentification of ‘configurations’
of this robot leads to a lot of confusion for the user. Later, JACO Gen2 (non-spherical
wrist) is used to highlight the consequence of crossing multiple regions of varying IKS. This
chapter discusses the dependence of feasibility as well as repeatability of the trajectory on
the initial choice of IKS. It later motivates the reason to not implement cuspidal robots
in collaborative applications where the trajectory is not pre-planned.
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This chapter later presents a path planning framework for cuspidal robots that con-
siders different types of trajectories possible in cuspidal robots. The different cases of
scenarios arising in cupidal robots are discussed so that a future path planning optimi-
sation algorithm can take cuspidality of a robot into account. Later a time optimised
point-to-point trajectory planning for Jaco robot is presented as an application of the
framework to commercial robots.
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Chapter 1

STATE OF THE ART, AND THEORETICAL

BACKGROUND

This chapter sets a context of cuspidal robots and the evolution of research in this
field. It provides a detailed history of cuspidal robots and the development of its theory to
allow the reader get an overview as well as appreciate the presented work. The literature
review is kept limited to cuspidal robots and inverse kinematics of 6R robots as they are
closely related topics. Later, the theoretical context for the analysis of cuspidal robots
presented in the thesis is put forth. Several definitions that are specific to cuspidality
analysis are revisited and new definitions are put forth at the same time. The mathematical
background utilised to implement different algorithms skipped from this chapter as it can
be found in the initial research thus keeping the preliminaries focused on the contributions
of the thesis. The algorithms wherever needed are mentioned in the Appendix of the
thesis.

1.1 State of the art

Cuspidal robots are robots that have at least one singularity free connected region,
aspect [BL86], with multiple inverse kinematic solutions (IKS). This implies that cuspi-
dal robots can travel from one IKS to another without encountering a singularity. This
property is applicable to parallel robots too [MD99], but it will not be discussed in the
presented thesis (readers are directed to [WC22]). The following literature review de-
tails upon the work on serial cuspidal robots, and inverse kinematic solutions of nR non
redundant robot.
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1.1.1 Cuspidal robots: theoretical analysis

The possibility of changing IKS without crossing a ’special’ configuration was never
considered till the late 80s as it was strongly believed that the IKS always existed in
distinct connected regions. The reason to believe the same was a quick analysis of 2R
robots, and anthropomorphic robots with wrist partition. As these robots were widely
used successfully across the industry, other designs were not analysed in depth. This
made the analysis of nonsingular change of solutions a moot point. To bury the topic
even deeper, a mathematical proof was presented to confirm that the IKS of a nR robot
lie in distinct aspects [BL86].

This would change in 1988 when Innocenti and Parenti-Castelli produced two 6R
robots who were able to travel from one IKS to another without crossing a singularity
[PCI88]. Similar work was simultaneously reported by Burdick [Bur89] at CalTech where
he presented an analysis of 3R regional manipulators. This result too went quite unno-
ticed, and was not given enough attention in the kinematics community. The research on
3R robots capable of changing IKS without crossing singularities was extended further
by Wenger [Wen92]. The work presented the concept of characteristic surfaces after iden-
tifying that the number of IKS did not remain constant over an aspect for such robots.
Later in 1995, Burdick presented a classification of 3R robots based on singularities, and
put forth three conjectures. First two of them were related to the solvability as well as
genericity of 3R robots and were refuted in [WE97].

In 1996, Wenger and El Omri [EOW95] noted that a cusp point in the workspace of
3R robots was a necessary and sufficient condition for a 3R orthogonal robot to be able to
perform a nonsingular change of solutions. This paper coined the word ’cuspidal robots’
due to the results on the analysis of orthogonal 3R robots. In 1998, Wenger presented a
classification of 3R robots using homotopy classes [Wen98] which was extended in 2004
[CR04] that implemented computer algebra tools. Later in 2004, Baili [BWC04] presented
an extensive and finer classification of 3R robots based on number of cusps based on
algebraic analysis. A classification for a family of 3R robots was presented based on the
topology of the workspace. It provided algebraic conditions for the bifurcation of the
parameter space detailing domains for noncuspidal robots. In 2005, a D-H-parameter
based condition for a 3R orthogonal robot to have maximum four IKS was presented
[WCB05]. This provided a condition for designers to choose a robot with maximum two
IKS which is always a noncuspidal case. In the same year, using Whitney’s theorem
[Whi55], Corvez [Cor05] noted that the existence of a cusp in the workspace of a 3R serial
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robot is equivalent to a nonsingular change of solutions in a sufficiently small neighborhood
of the cusp. This established the sufficient condition for a generic 3R robot to be cuspidal.

In 2006-07, Ottaviano presented workspace topologies [OCH07] of 3R robots and
workspace analysis using level sets [OHC06] for 3R robots. An exhaustive study of workspace
topologies for 3R robots with at least one parameter set to zero was presented by Zein
[ZWC06] showing several examples whose workspace was well connected and had 4 IKS.
In 2008, Paganelli presented complete homotopy classification of 3R robots. His work fur-
ther presented two extra possible classes of homotopy namely 3(0, 0) and 4(0, 0). The
later homotopy class if existent, would show that a generic 3R robot has a maximum of
five aspects.

Several studies were presented for analysis of singularity loci of a 3R robot. The initial
algebraic work of Kohli and Spanos [KS85] showed that relation of roots of the inverse
kinematic polynomial with singularity. Later, Smith and Lipkin [SL90; SL93] presented a
geometric interpretation for singularities, nodes and cusps in 3R robot workspace. Catas-
trophe theory was implemented for similar analysis by Thomas and Wenger [TW11].
Later, Thomas presented the analysis of singularity loci of 3R robots using the distance
geometry approach reducing the IKM to analysis of two coplanar ellipses [Tho15]. Benoit
[Ben17] presented a quantitative analysis of robots using topology and interval analysis.
As cuspidality is a property dependent on the D-H parameters, it is important to study
it in adaptable and reconfigurable robots. In 2016, Brandstötter [Bra16] presented cus-
pidality analysis in modular 6R serial robots. Recent studies on metamorphic 3R serial
robots [KPMA19] further emphasize the importance of cuspidality analysis of robots with
adjustable D-H parameters.

1.1.2 Cuspidal robots: industrial application

In industries, cuspidal robots are not well-known for a good reason. Before the intro-
duction of non-redundant ’cobots’, almost all the industrial arms consisted of a simplified
geometry of anthropomorphic wrist-partitioned architecture. This meant that the IKM
had analytical solutions and the IKS were separated by singularities. Not only were they
separated by singularities but also provided a geometric intuition of the ’configurations’
such as elbow up, shoulder right and wrist flip. Some of the robots known to deviate from
the conventional designs were the ABB IRB 6400C, GMF150 and Fanuc P250iB [WC22]
(refer to Figure 1.1). The ABB robot changed the permutation of first two axes that
turned the anthropomorphic architecture to an orthogonal architecture. Due to the link
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lengths chosen, this robot was cuspidal by nature. The robot was later recalled by ABB,
and authors of [WC22] believe that the problems in path planning of cuspidal robots must
have played a role in such decision. It has been noted that just tweaking the lengths of the
robot would have rendered the robot noncuspidal [WC22]. GMF150 and Fanuc P250iB
introduced an offset in the wrist, and were implemented for specific jobs such as painting
jobs. The offset in the wrist alters the kinematic map and the number of IKS is not lim-
ited to eight anymore. Further analysis has shown that both these robots are cuspidal by
nature. The joint limits play an important role limiting the workspace of the robot thus
virtually avoiding the nonsingular change of solutions. The strong joint limits on GMF150
results into the operational space with maximum 2 IKS that are always separated by a
singularity [WC22].

Another well known example of a robot with an offset in the wrist is the UR series
from Universal Robots. The UR5 robot was analysed by Capco [CSEDS20] using computer
algebra and it was shown that the robot has eight connected regions and the eight IKS of
this robot are always separated by singularity. To the best of the author’s knowledge, this
is the only geometric architecture with an offset in the wrist implemented as an industrial
robot and is a noncuspidal arrangement. Most of the cobots that exist in the market which
have introduced the offset in the wrist by keeping the anthropomorphic architecture are
cuspidal by nature (discussed in details in Chapter 3). Some of the analyzed robots include
the widely used Jaco Gen 2 (non-spherical wrist), FANUC CRX-10ia/L, and Yaskawa
HC10DTP. The Jaco robot and CRX series is discussed in details in Chapter 4. The
path planning issues arising from existence of multiple kinematic regions with varying
IKS are presented in [SCW23]. The cuspidality property can proved to be advantageous
if the workspace is analysed completely, the trajectory is pre-planned considering the
option for nonsingular change of solutions. Marauli [Mar+23] recently presented a time
optimal point-to-point trajectories for cuspidal robots that included the consideration of
nonsingular change of solutions for the first time.

1.1.3 Inverse kinematics

The evolution of the algorithms in inverse kinematics of 6R robots is important to have
an idea of the strong correlation between the cuspidality analysis and generic algorithms
for solving inverse kinematics. Kinematic analysis of 6R serial arms started more than
half a century ago. The earliest kinematic analysis can be found in the work of [Pie68] in
which the geometric interpretation of simplified geometries, soluble robots, was presented.
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(a) ABB IRB 6400C robot

(b) GMF 150 robot
(c) FANUC 250ib robot

Figure 1.1 – Some of the first unconventional designs of industrial robots.
Image credits: [WC22].
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The work of Pieper,[Pie68], is well known to be the one of the first contributions towards
6R serial chains. He classified particular geometries of 6R serial chain, termed as soluble
robots, that could be solved by decoupling the position analysis from the orientation. This
work showed the inverse kinematic model (IKM) of a 3R serial chain as an intersection
of a conic with a unit circle. This analysis has further helped in extending the cuspidality
analysis for 3R serial chains [Sal+22b; Tho15; Sal+22a; SL90]. From 1973 to 1985, several
proposals were made regarding the IKM for 6R serial chains [Rag+90; Fre73; Ang85]. In
1986, [Pri86] proved that the 6R serial arm have maximum 16 solutions over C using
projective geometry. An analytical solution to an anthropomorphic architecture with an
offset in the wrist was proposed by [Tri+15] using geometric methods. Inverse kinematics
for similar architecture was proposed by [GL14; ZBSO21] with algebraic methods. One
of the most recent advancement in the inverse kinematics of 6R serial chains was pre-
sented by [HPS07] where the geometric interpretation of the IKM was presented using
dual quaternion representation and Study quadric (S2

6), a six dimensional quadric in P7.
[HPS07] showed that a generic 6R serial chain can be decomposed into two separate 3R
serial chains whose workspace can be interpreted as the intersection of parameterized 3-
space with Study quadric. The intersection of two 3-spaces, derived from four hyperplanes
in P7 each, with the Study quadric gives the inverse kinematic polynomial required to
solve the complete chain. The advantage of this method is that it uses equations linear
in each joint value and thus is fast and accurate. It does not miss any IKS as we always
get 16 solutions in C. This method is extended for serial chains with prismatic joints too
[CM19].

1.2 Preliminaries

1.2.1 Concepts related to 3R serial robot

This section covers the preliminaries necessary for the cuspidality analysis of a 3R
serial robot. It begins by revisiting the geometric interpretation of the IKM proposed
by Pieper [Pie68]. A presentation of several introductory concepts related to conics and
their properties follows, as these hold significant relevance for the subsequent proofs.
The section then introduces established definitions for cuspidal robots as mentioned in
[Wen92; Wen04; BWC04], as well as conventions employed for the geometric description
of the robot. An explanation of relevant definitions and their interpretations in different
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spaces, such as joint space (J ), workspace, and the c3s3 plane (defined later), aims to
provide the necessary background for the proof in Chapter 2. Finally, the section defines
new terms specifically for the cuspidality analysis of generic 3R serial robots.

Concepts related to the inverse kinematics model

Kinematic analysis of 3R serial robots was first published seven decades ago. The
earliest kinematic analysis can be found in the work of [Pie68] in which the geometric
interpretation of simplified geometries, soluble robots, was presented. Later, algebraic tools
were introduced to obtain the inverse kinematic polynomial and solve inverse kinematics
for a generic 3R serial robots [KS85]. In this section, the preliminaries required for the
analysis of IKS of a generic 3R serial robot. In this paper, original Denavit-Hartenberg
parameters (D-H parameters) are used, as shown in Figure 1.2. The four parameters
known as D-H parameters are linked to a specific convention used for connecting reference
frames to the links of a robot manipulator or spatial kinematic robot [DH55]. These four
transformation parameters used to denote the transformation of (i + 1)th frame with
respect to ith frame are defined as:
di: offset along zi to the common normal
θi: angle about zi, from xi to x(i+1)

ai: length of the common normal. This is the radius about zi.
αi: angle about x(i+1) from zi to z(i+1)

Generic 3R serial robot: A property that holds true for "almost all" of the functions
is termed as a generic property of that class of functions. A general square matrix is
invertible, and a generic polynomial does not have a root at zero. A generic property of a
space is a property that holds at "almost all" points of the space (Sard’s theorem). If we
extend the same rationale, a robot qualifies to be a generic robot if there are no constraints
on the geometric shape of the robot. But, the term generic for serial robots was defined
in [PL92] which presented the relation of genericity with the nature of singularities of the
robot. As per the work in [PL92], a generic 3R serial robot is defined as:

Definition 1. A 3R serial robot is generic if there exists only rank-2 singularities, i.e.,
the locus of critical points in J has no self-intersection or does not include any isolated
point singularity.

This definition of generic robots is used in the kinematic community widely since
its inception [Pag08; BWC04] and Figure 1.3 illustrates the singularities for generic and
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Figure 1.2 – The D-H parameter notations as presented in [DH55].
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(a) Orthogonal generic robot (b) Generic robot (c) Non-generic robot

Figure 1.3 – Examples of generic and non-generic cases of a 3R serial robot
Robot parameters (1.3a): d = [0, 1, 0], a = [1, 2, 3

2 ], α = [π2 , π
2 , 0]

Robot parameters (1.3b): d = [0, 1, 0], a = [1, 2, 3
2 ], α = [π3 , π

6 , 0]
Robot parameters (1.3c): d = [0, 1, 0], a = [1, 2, 4], α = [π2 ,π2 ,0].

non generic robots. The issue with this definition is that the orthogonal 3R serial robots,
robots with the constraint: α1, α2 equal to ±π

2 , are generic by the above definition. An
example of the joint space of an orthogonal 3R serial robot with only rank-2 singularities
is presented in Figure 1.3a.

In the presented work, the definition of a generic 3R serial robot is as defined by [PL92].
This definition allows us to classify robots with isolated singularities as non-generic which
is helpful in the analysis discussed in coming chapters.

Inverse kinematic model of 3R serial robot

Solving the inverse kinematics of 3R serial robots was first reported in [Pie68] where
it was noted that the solutions correspond to the intersection of a conic with a circle in
c3s3-plane, where c3 and s3 denote cos θ3 and sin θ3, respectively. The solution is presented
briefly, as it has a key role in the proof to follow.
Let, R = ρ2 + z2, where ρ2 = x2 + y2 = g(θ2, θ3). The terms R and z can be written as

R = (F1 cos θ2 + F2 sin θ2) 2a1 + F3

z = (F1 sin θ2 − F2 cos θ2) sinα1 + F4
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(a) Hyperbola case (b) Parabola case (c) Ellipse case

Figure 1.4 – Intersection of the conic and unit circle in c3s3-plane for robots with different
D-H parameters. Every intersection is an IKS for the given pose.
Robot parameters (1.4a): d = [0, 1, 0], a = [1, 2, 3

2 ], α = [π2 , π
6 , 0], (ρ, z) = (2.46, 0.15)

Robot parameters (1.4b): d = [0, 1, 0], a = [1, 2, 3
2 ], α = [π3 , π

2 , 0], (ρ, z) = (2.33,−0.26)
Robot parameters (1.4c): d = [0, 1, 0], a = [1, 2, 3

2 ], α = [π6 ,π2 ,0], (ρ, z) = (2.4, 0.6).

where Fi = gi(θ3), for i = 1, .., 4. Upon rearrangement, we obtain the general equation of
a conic in c3s3-plane as given in (1.1).

Axx c
2
3 + 2Axy c3s3 + Ayy s

2
3 + 2Bx c3 + 2By s3 + C = 0 (1.1)

The coefficients of the conic are skipped for brevity, but they are functions of the D-H
parameters and of (R, z) as shown in (1.2),

Axx = h1(a1, a2, a3)
Axy = h2(a1, a2, a3, d2, α2)
Ayy = h3(a1, a2, a3, d2, α1, α2)
Bx = h4(a1, a2, a3, d2, α2, R)
By = h5(a1, a2, a3, d2, d3, α1, α2, R, z)
C = h6(a1, a2, a3, d2, d3, α1, α2, R, z)

(1.2)

The inverse kinematic solutions are defined by the intersection points between the conic
(1.1) and the unit circle c2

3 +s2
3 = 1 in c3s3-plane. This conic can be a hyperbola, parabola

or an ellipse depending on the D-H parameters and end-effector pose. An example of each
one is shown in Figure 1.4. Performing the half tangent substitution, t = tan θ3

2 , we get a
quartic inverse kinematic polynomial M(t) = at4 + bt3 + ct2 + dt + e similar to the one
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mentioned in [KS85]. The coefficients of M(t) are functions of the D-H parameters and
of R and z. The solutions to the polynomial equation, M(t) = 0, are the intersection
points between the conic and the circle and are labeled as mψ, where ψ ∈ {i, j, k, l} in
the c3s3-plane.

1.2.2 Singularities

The Jacobian of f at a certain configuration, denoted by J(q), is the Jacobian matrix
of the robot at configuration q:

J(q) = ∂f(q)
∂q

(1.3)

The singularities are the critical points of f in the J and correspond to the set of
all configurations in the joint space where the Jacobian matrix loses rank, i.e. when the
determinant of J is zero. The critical values are the images of the critical points in the
workspace (W). It is known that the roots of the inverse kinematic polynomial have
multiplicity 2 or more at a singularity [KS85]. The algebraic expression of the singularity
condition for an arbitrary 3R manipulator is recalled in Appendix A.1. The singularity in
the workspace, the locus of critical values, is the image of the locus of critical points in
the workspace and can be obtained from the inverse kinematic polynomial. The critical
values in the workspace are those points where the following relation is satisfied:

M(t) = 0
∂M(t)
∂t

= 0

Where, t = tan θ3
2 and M(t) is the quartic inverse kinematic polynomial related to a

3R serial robot. The resulting algebraic expression is very large and is not reported here,
see [KS85] and [TKA93] for more details.

With the conic representation, the geometric interpretation of a singularity associated
with a double root is a point where the conic is tangent to the circle, as shown in Figure
1.5. The geometrical interpretation of a singularity associated with a root multiplicity
higher than 2 is discussed in details in [SL90; SL93].

It is known that the singularities of 3R serial robots are independent of the first joint
angle, θ1 [PL92]. This allows us to reduce the 3-dimensional joint space to T2 parameter-
ized by θ2 and θ3. In this part, the joint space, J , will be used for the reduced joint space
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(a) Point in workspace with root multiplic-
ity 2

(b) Node point - pair of roots with root
multiplicity 2

(c) Cusp point in workspace with root mul-
tiplicity 3

Figure 1.5 – Types of critical values in the workspace and corresponding tangency in
c3s3-plane.
Robot parameters (1.5a): d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0], (ρ, z) = (2.913, 0.1).

Robot parameters (1.5b): d = [0, 1, 0], a = [4, 2, 6], α = [-π2 , π
2 , 0], (ρ, z) = (2.84, 3.79)

Robot parameters (1.5c): d = [0, 1, 0], a = [1, 2, 3
2 ], α = [-π2 , π

2 , 0], (ρ, z) = (2.48, 1.96).
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in T2. Consequently, the workspace is symmetric about the first joint axis. Assuming un-
limited joint travel, it can be described by a half cross-section in the plane (ρ =

√
x2 + y2,

z).

Definition 2. A node is a point in the workspace of a 3R serial robot where the inverse
kinematic polynomial, M(t), admits two distinct roots of multiplicity two.

Definition 3. A cusp is a point in the workspace of a serial robot that satisfies the
following conditions:


M(t) = 0
∂M
∂t

(t) = 0
∂2M
∂t2

(t) = 0

(1.4)

where M(t) is the inverse kinematic polynomial of degree four for a generic 3R serial
robot.

In Figure 1.5c, the robot has four cusps located at the corners of the inner region of
the workspace. The cusp has to satisfy:

∂3M

∂t3
(t) ̸= 0 (1.5)

in order to exclude quadruple roots. However, it was shown in [PL92] that quadruple roots
cannot exist in generic 3R robots, and the condition in (1.5) is thus always satisfied here.
So, in the context of a generic 3R serial robot, the cusp in the workspace relates only with
satisfying condition in (1.4).

A n-solution region in the workspace is always bounded by the locus of critical values
which, for a generic 3R serial robot, can include cusps and/or nodes.

Definition 4. The components of critical values are the connected components of the
locus of critical values, upon excluding all cusps and nodes.

Figure 1.6 shows an example workspace of 3R serial robot with the components of the
critical values formed by the presence of four cusps in the workspace.

Definition 5. A binary robot is a 3R serial robot with maximum 2 inverse kinematic
solutions for any feasible position.

Definition 6. A quaternary robot is a 3R serial robot with at least one reachable position
with 4 inverse kinematic solutions.
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Figure 1.6 – An example showing the four components of a critical values in the workspace
of a 3R serial robot. Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [−π
2 , π

2 , 0].

1.2.3 Concepts related to nR serial robots

In this section, the definitions related to a non redundant nR cuspidal robot are de-
tailed. The previously known definitions of ‘configuration’ are revisited and redefined to
make a distinction arising in cuspidal robots. Few known definitions are presented for
clarity and new definitions relevant to Chapter 3 and Chapter 4 are introduced. The defi-
nition of cuspidal robots is presented at the end of the section. Some of the definitions in
this section are explained with an example of 3R serial robot, but are applicable to any
non redundant nR serial robot.

Definition 7. An IKS that can be uniquely identified, either geometrically or analytically,
is called a configuration of the robot.

Commonly known examples of configurations in the 2R serial robots are the elbow up
and elbow down configurations. These configurations are generally identified because of
the factors of the determinant of the Jacobian. The conventional 6R serial robot such as
KUKA KR5 is known to have maximum eight IKS and are separated into eight different
configurations. If we denote the elbow position, shoulder position, and the wrist position
in binary, then the eight configurations for such a robot are shown in Figure 1.7. The
terms configuration and IKS have been used interchangeably in the past [Wen04; Bra16],
but in this work we mark a distinction between them. Changing from one configuration
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to another necessarily means that the two IKS are separated by a singularity such that
the ’operation mode’ does not change unless we cross the singularity. The main difference
between a configuration and an IKS is that a configuration allows one to identify the
operation mode of the robot without ambiguity. This can act as a type of classification
when the configurations are identified by geometric differences, e.g. elbow up configura-
tion. An IKS on the other side is simply a pre-image of the pose in the workspace. It is to
be noted that a geometric interpretation may not be always possible for configurations.
For example, in a quaternary noncuspidal 3R robot, the four solutions are separated by
singularities but the four IKS do not necessarily hold a geometric meaning. In such case
a given configuration can be checked for the aspect in which it belongs, and it can be
assured that the robot will stay in this configuration unless we have crossed a singularity.
An example of such a robot is shown in Figure 1.8a, where the four IKS are separated by
the singularities allowing one to claim that there are four configurations of the robots. The
Figure 1.8b on the other side is an example of a cuspidal robot with four IKS separated
in 3 aspects. The IKS separated by singularities can be uniquely identified at any given
time, and thus can be termed as configurations. The two IKS in the same aspect in this
figure cannot be uniquely identified, and so do not qualify as a configuration.

Definition 8. If S is the set of critical points in J , the pre-image of the critical values
excluding S is defined as the pseudosingularity curve, PS [TKA93; WEO96]:

S = {q |q ∈ J , det J(q) = 0}
PS = f−1(f(S)) \ S

(1.6)

Definition 9. The aspects are the largest singularity free connected regions in the joint
space of a serial robot [BL86] (refer to Figure 1.9).

Definition 10. A reduced aspect is a region in the joint space that is bounded by the
pseudosingularity curve and/or the locus of critical points and which has a one-to-one
map to a bounded region in the workspace [Wen04].

fr : Ar → Wr|Ar ∈ J ,Wr ∈ W (1.7)

then Ar is a reduced aspect if and only if fr is a bijection. Figure 1.10 illustrates an
example of a set of reduced aspects in an aspect of the joint space for an orthogonal 3R
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(a) Configuration elbow(up)-
shoulder(right)-wrist(unflip)

(b) Configuration elbow(up)-shoulder(left)-
wrist(unflip)

(c) Configuration elbow(up)-
shoulder(right)-wrist(flip)

(d) Configuration elbow(up)-shoulder(left)-
wrist(flip)
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(e) Configuration elbow(down)-
shoulder(right)-wrist(unflip)

(f) Configuration elbow(down)-
shoulder(left)-wrist(unflip)

(g) Configuration elbow(down)-
shoulder(right)-wrist(flip)

(h) Configuration elbow(down)-
shoulder(left)-wrist(flip)

Figure 1.7 – The eight configurations of a wrist-partitioned arm enumerated in binary to
denote the positions for elbow-shoulder-wrist.
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(a) Joint space of a noncuspidal robot with
4 IKS in 4 aspect

(b) Joint space of a cuspidal robot with 4
IKS in 3 aspect

Figure 1.8 – Joint space of a noncuspidal and cuspidal robot. On the left, we have 4 as-
pects and four IKS separated by singularities and thus a ’configuration’ can be uniquely
assigned. On the right a robot has 4 IKS distributed in 3 aspects and no unique classifi-
cation is possible.

Figure 1.9 – The two singularity free connected regions, called aspects, in joint space for
a 3R serial robot. Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0]
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cuspidal robot. The blue lines are the locus of critical points and critical values in the
joint space and the workspace, respectively, while the red lines are the pseudosingularities
present in the joint space. Note that the pink and yellow regions in the joint space map
to the same region in the workspace. This means that there are two IKS in an aspect.

Figure 1.10 – An example showing a set of reduced aspects present in an aspect of the
joint space.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [−π
2 , π

2 , 0].

Denote with
Ix = {q ∈ Tn |x = f(q)} (1.8)

the set of IKS for given EE-pose x. For a non-redundant robot, i.e. dimW = dim im f ≤ n,
the IKS set consists of a finite nx number of IKS Ix = {q1, . . . ,qnx}.

Definition 11. Let q1 and q2 be two points in J and σ(q1,q2, t) where t ∈ [0, 1] is a
parameter such that t = 0, σ = q1 and t = 1, σ = q2, be a path between these two points,
then, σ(q1,q2, t) is defined as a nonsingular change of solutions if and only if:

σ(q1,q2, t) ∩ S = ∅ |q1,q2 ∈ Iz (1.9)

In the workspace, a nonsingular change of solutions defines a loop as we end up at
the same position we started from. It has been noted in [Wen19] that the nonsingular
trajectory in workspace always starts from a point in the workspace with four IKS. The
nature of this trajectory in the workspace will be studied in details in the next chapter.
In the c3s3-plane, the nonsingular change of solutions has an interesting interpretation.
If we have four intersection points, mi, mj, mk and ml, between the conic and the unit
circle in c3s3-plane corresponding to the four IKS at a particular end-effector pose, then
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Figure 1.11 – Example of nonsingular change of solutions in the joint space and the
progress of det(J) on the path.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0], path = (-3, -0.5) to (-0.742,

2.628).

the nonsingular change of solutions between two IKS corresponding to mj and ml is such
that mj switches with ml without vanishing as an intersection point of the conic and the
unit circle. An example of a nonsingular change of solutions is illustrated in Figure 1.12.

The singularities of generic 6R robots depend on θi, i = 2, ..5, and thus lie in a 4-
dimensional space that cannot be visualized. It can be confirmed that a given change of
solutions path is nonsingular if the determinant of the Jacobian matrix does not change
sign along the path. Figure 1.11 shows an example of a nonsingular change of solutions
in a 3R robot. It can be seen that the path in the joint space never crosses the locus
of critical points (shown in blue lines) and, accordingly, the determinant value does not
change signs throughout the path.

Definition 12. Cuspidal robots without collision constraints or joint limits can be defined
as robots that have at least one aspect with more than one IKS. Alternatively, it can be
defined as a robot, R, for which there exists a nonsingular change of solutions.

R : ∃σ(q1,q2, t) ∩ S = ∅ |q1,q2 ∈ Ix (1.10)

Definition 13. A closed path in the workspace is defined as a repeatable path if the path
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(a) Phase 1: Starting from a point in workspace with 4 IKS

(b) Phase 2: Entering a 2 solution region in workspace

(c) Phase 3: intersection point crosses the vertex of the conic

(d) Phase 4: Re-entering the 4-solution region in workspace
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(e) Phase 5: Reaching the same position in workspace

Figure 1.12 – An example of a nonsingular change of solutions in the joint space and the
workspace, and its corresponding geometrical interpretation in the c3s3-plane.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0].

path in the joint space (θ2, θ3): from (-0.742, 2.628) to (-3, -0.5).

can be executed infinite times. A repeatable path can correspond to a nonsingular change
of solutions.

Definition 14. A closed path in the workspace is defined as non-repeatable path if the
path can be executed strictly finite number of times. A non-repeatable path is compulsorily
a nonsingular change of solutions and thus a property of cuspidal robots.

Definition 15. A regular closed path is a repeatable path such that the initial IKS is same
as the final IKS. Such path is a closed loop in the workspace as well as the joint space.

Definition 16. The path defined in the workspace which cannot be traversed starting from
a defined IKS is termed as an infeasible path.

Definition 17. The path defined in the workspace which can be traversed starting from a
defined IKS without discontinuity is termed as a feasible path.

Proposition 1. A non-repeatable path can execute a closed loop for no more than seven
times.

Proof. It has been shown already that a 6R robot has 16 solutions in the complex field. As
there exists a singularity for every robot, the number of aspects for a given a robot is at
least 2. Each IKS has an access to a point on the locus of critical values, and the number
of IKS decreases or increases upon crossing this locus. This suggests that every point on
the locus of critical values is shared by at least two IKS and both of them have different
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signs of det(J). Following this argument, it can be shown that the IKS in aspects with
positive det(J) equal the IKS in aspects with negative det(J). If a given pose, x ∈ W ,
has m(≤ 16) IKS, qi, i ∈ i, ..,m, then

n(qdet(J)>0) = n(qdet(J)<0) = m

2

It follows that there exists maximum eight IKS in an aspect. In order to not be able
to repeat the path continuously, the initial IKS should be different from the final IKS
and there should be no path such that its final IKS corresponds to any of the previously
reached IKS.

Alternatively, consider a graph, G = (V,E, φ), such that the vertices, vi ∈ V, i ∈
{1, 2, .., 8}, are the IKS of a pose in the workspace in an aspect. Each edge of this graph
corresponds to a nonsingular change of solutions and in order for the given path to be
a non-repeatable path, the graph should not have any closed robots. The longest simple
robot of G with v vertices has v− 1 edges and thus the closed path in the workspace can
be repeated maximum 7 times, as (v ≤ 8).
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Chapter 2

3R SERIAL ROBOTS

In this chapter, the kinematic analysis for 3R serial robot is presented. Section 2.1
presents a necessary and sufficient condition for a generic robot to be cuspidal. It utilizes
the geometric interpretation of the IKM and compares the nonsingular change of solutions
in the joint space, workspace and the c3s3-plane. The existence of reduced aspects for a
generic 3R serial robot is proved too. In section 2.2, the geometric analysis is extended
to present special cases of 3R serial robots representing each type of possible conic. The
bifurcation criteria is discussed and special properties related to the conics are presented
in this section. This section further provides sufficient conditions for binary as well as
quaternary 3R serial robots. In section 2.2.2, we prove that the two homotopy classes
suspected in [Pag08] do not exist allowing us to claim that the maximum number of
aspects for a generic 3R serial robot is four. The chapter concludes by summarizing the
results obtained from the work on geometric analysis of generic 3R serial robots.

2.1 Generic 3R serial robots

In this section, we present the necessary and sufficient condition for a given generic
3R serial robot to be cuspidal. The proof discusses several lemmas and propositions,
and utilizes the definitions in Chapter 1.2 to arrive at a conclusion. Figure 2.1 shows a
flowchart of the step-wise organization of the proof. Figure 2.1 should be read as follows:
Proposition 2 is the necessary condition for a 3R serial robot to be cuspidal, which along
with the sufficient condition for the robot to be cuspidal, Theorem 1, makes it possible to
establish the necessary and sufficient condition of cuspidality at the end of this section,
Theorem 3. To prove Proposition 3, Lemmas 1, 2 and 3 are first established, leading to
Theorem 2 which, along with Proposition 2, leads to Lemma 4. Lemmas 4 and Lemma 5
lead to Lemma 6, which makes it possible to prove Proposition 3.
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Figure 2.1 – The step-wise organization of the proof for the necessary and sufficient
condition for a generic 3R serial robot to be cuspidal. The dotted box corresponds to
Proposition 2 and Theorem 1 which are already proven statements.

2.1.1 Sufficient condition

Theorem 1. In a 3R serial robot, the existence of a cusp in the workspace is a sufficient
condition for the robot to be cuspidal.

Proof. Using Whitney’s theorem [Whi55], it has been noted in [Cor05], that the existence
of a cusp in the workspace of a 3R serial robot is equivalent to a nonsingular change of
solutions in a sufficiently small neighborhood of the cusp.

It is important to note that the work in [Cor05] does not establish the necessary and
sufficient cuspidality condition, as the existence of a cusp can be confirmed only if we
have a nonsingular change of solutions in a sufficiently small neighborhood. In Figure 2.2,
the nonsingular change of solutions from q1 to q3 for a point, x, in the workspace is not
local and thus the equivalence in [Cor05] cannot be used to prove that the statement in
Theorem 1 is a necessary condition too.
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Figure 2.2 – Example showing a non-local nonsingular change of solutions in joint space
and workspace.
Robot parameters: d = [0, 1, 0], a = [1, 2, 1], α =

[
π

6 ,
π

2 , 0
]
.

Trajectory in joint space (θ2, θ3): (-3, 0.5) to (2, 3) to (0.2, 2.8).

2.1.2 Proof for reduced aspects in 3R serial robot

The existence of reduced aspects was investigated in the past for 3R orthogonal robots
[Wen04; EOW95]. The existence of reduced aspects in a generic robot was not proven
earlier and remained an open question. In this section we present lemmas related to the
conic interpretation of the IKM of a generic 3R serial robot and later prove the existence
of the reduced aspects in a generic 3R serial robot. This proof is a significant contribution
of the thesis as it answers a long standing question and allows one to analyze the 3R
serial robots with better clarity. The proof of existence of reduced aspects provides a
foundation to establish the necessary and sufficient condition for a generic 3R serial robot
to be cuspidal.

Proposition 2. If A and B are two bounded regions in the same aspect sharing a common
pseudosingularity curve AB∗ and their image in the workspace belongs to regions Aw and
Bw respectively, then the absolute difference between the number of IKS in the region
Aw and region Bw is always two (refer to Figure 2.4). Moreover, the absolute difference
between the number of IKS in region Aw or Bw and at any point on the boundary AB∗

w

between them, is always one (Figure 2.3).

This is a well-known property [KS85] and is commonly interpreted as two inverse
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kinematic solutions merge at a singular configuration. It is important to note that for a
generic 3R robot, the shared boundary does not include isolated finite points.

Figure 2.3 – Regions separated by the locus of the critical values in the workspace. There
are 3 IKS on AB∗

w.Robot parameters: d = [0, 1, 0], a = [4, 2, 6], α = [-π2 , π
2 , 0].

If a pseudosingularity exists in the joint space of a 3R serial robot, then each point on
the pseudosingularity curve has an image on the locus of critical values in the workspace.
Therefore, crossing a pseudosingularity curve in the joint space is similar to crossing the
locus of critical values in the workspace, and thus the images of the regions sharing the
pseudosingularity curve should have absolute difference of two.

Figure 2.4 – An example of the regions separated by the pseudosingularity curve in joint
space and the corresponding images in workspace.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0], (ρ, z) = (2.5, 0.5).
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Lemma 1. The nature of the conic, i.e. ellipse, hyperbola or parabola, related to a par-
ticular set of D-H parameters of a generic 3R serial robot remains the same throughout
the workspace of the robot.

Proof. The determinant of matrix N displayed in (2.1) determines the nature of a given
conic. Since Axx, Axy and Ayy are functions of D-H parameters only as shown in (1.2), the
nature of conic remains same throughout the workspace.

N =
Axx Axy

Axy Ayy

 (2.1)

Lemma 2. The orientation of the principal axes of the conic related to a particular set
of D-H parameters of a generic 3R serial robot is constant throughout the workspace of
the robot.

Proof. The eigenvectors of N determine the orientation of the principal axes and, as
noted in the proof of Lemma 1, N is independent of R and z and the eigenvectors are
thus constant for a given robot.

For a given point p in the workspace of a generic 3R serial robot, let there be n

∈ {1, 2, 3, 4} distinct pre images such that we have n intersection points between the
conic and the circle in c3s3-plane. We will say that an intersection point, mj, in c3s3-
plane is adjacent to another intersection point, mi, if it is the first intersection point
encountered after traveling in either clockwise or counterclockwise direction starting from
mi. It has been illustrated in Figure 1.5 that any path in the workspace starting from p
to any point on the boundary, results in at least 2 intersection points coming together at
the tangent point in the c3s3-plane. Accordingly, the following Lemma is set:

Lemma 3. In a generic 3R serial robot, two intersection points, mi and mj, meet at a
tangent point corresponding to roots of the inverse kinematic polynomial with multiplicity
two, only if they are adjacent to each other in the cyclic ordering of the intersection points
in the c3s3 - plane.

Proof. For two IKS mi,mj to meet together, mi should start traveling towards mj, or
mj should travel towards mi. If there exists an intersection point mk between them, then
mi and mj can meet at a tangent point only after either mi or mj meets mk at a tangent
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point. A graphical illustration of the tangency between the adjacent points is given in
Figure 2.5.

As the critical values represent tangent points in the c3s3-plane, a node in the locus
of critical values is when we have two tangency points. A cusp occurs when three out
of four intersection points merge together at a tangent point. All four solutions cannot
meet together at a tangent point in a generic 3R serial robot [PL92]. Isolated finite points
of critical values cannot exist in a generic 3R robot, and thus this particular case is not
considered in the context of critical values.

Theorem 2. In an arbitrary generic 3R serial robot, the inverse kinematic solutions lie
always in distinct reduced aspects.

Proof. As shown in Lemma 2, the orientation of the conic corresponding to a particular
set of D-H parameters remains constant. Suppose that the inverse kinematic solutions
do not belong to distinct reduced aspects. Then, there should exist a path between two
inverse kinematic solutions without intersecting a pseudosingularity or the locus of critical
points. The interpretation of such a path in the c3s3-plane is that two intersection points
mj and ml switch places and neither mj nor ml becomes a tangent point in the c3s3-
plane.
As the orientation of the principle axes of the conic does not change, the intersection
points, mj and ml, in the c3s3-plane cannot be adjacent in a cyclic ordering since it
would imply mj meeting ml at a tangent point to switch with ml. Let mk lie between
mj and ml while traveling clockwise starting from mj and let mi lie between mj and ml

while traveling counterclockwise starting from mj as shown in Figure 2.5a. As we know
that the conic is not rotating, the only way for mj to switch to ml is to meet either mk

or mi at a tangent point. If not, then ml meets mk or mi at a tangent point. This is a
contradiction of the assumption that the inverse kinematic solutions associated with mj

and ml do not lie in distinct reduced aspects.

2.1.3 Necessary condition

In this section, we establish a proof that the existence of a cusp in the workspace is a
necessary condition for a 3R generic robot to be cuspidal. By using the proof for existence
of reduced aspects in a generic 3R serial robot (Theorem 2), we analyze the nature of
nonsingular change of solutions to present the necessary condition for a 3R serial robot
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(a) Initial configuration with 4 intersections in c3s3 - plane

(b) Tangency between adjacent points on either side of the vertex

(c) Tangency between adjacent points on same side of the vertex
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(d) Tangency between adjacent points on same side of the vertex

Figure 2.5 – The merging of two adjacent points in a conic at a tangent point and geo-
metrical interpretation of the components of the locus of critical values.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α =

[
−π2 ,

π

2 , 0
]
, (ρ, z) = (2.5, 1) and (3,

0).

to be cuspidal. Later, the established sufficient condition is combined with Theore 3, we
present the necessary and sufficient condition for a generic robot to be cuspidal.

Proposition 3. If a generic 3R serial robot is cuspidal, then there exists a cusp in the
workspace of the given robot.

We prove Proposition 3 by contradiction: we consider a hypothetical cuspidal robot
that has no cusps in its workspace and show that this case cannot exist. In order to do
so, we first need to set and prove a series of lemmas.

In a cuspidal robot, at least two inverse kinematic solutions lie in an aspect, let them
be q1 and q2. By using Theorem 2, we know that q1 and q2 lie in two separate reduced
aspects, and thus we cross pseudosingularities during the nonsingular change of solutions.
As pseudosingularities separate the reduced aspects whose image in the workspace lie in
distinct non-connected regions (from Proposition 2), we cross the pseudosingularities at
least twice in a nonsingular change of solutions.

In order to discuss the path corresponding to the nonsingular change of solutions in
the workspace, the concept of components of the locus of critical values is discussed.
The geometrical interpretation of these components in the c3s3-plane allows one to draw
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2.1. Cuspidality analysis of generic 3R serial robots

important conclusions about certain constraints on the nature of nonsingular change of
solutions.

Components of critical values

A n-solution region in the workspace is always bounded by the locus of critical values
which, for a generic 3R serial robot, can include cusps and/or nodes. Upon the exclusion
of the nodes/cusps, we get the components of critical values. In this section, we present
the geometric interpretation of the components of critical values.
A point p in a region of the workspace with four preimages, corresponds to a situation
where the conic intersects the unit circle at four points with in c3s3-plane (Figure 2.5a).
Let the intersection points be mi, mj, mk and ml. There are up to four different pairs
in which the points can merge, viz. mimj, mjmk, mkml and mlmi (Figure 2.5). Thus,
depending upon the type of robot, a 4-solution region in the workspace can be bounded
by a maximum of four distinct components of singularities. A geometrical interpretation
of the component of critical values is associated with the merging of a particular pair of
intersection points in the c3s3 - plane, as shown in Figure 2.5.

Lemma 4. Let q1 and q2 be two inverse kinematic solutions in the same aspect. Consider-
ing a generic nonsingular change of solutions from q1 to q2, the images of the pseudosin-
gularities that the point q1 crosses to go to q2, belong to at least 2 different components
of the critical values in the workspace.

Proof. It is evident from the definition of pseudosingularity curve that if an IKS of a robot
lies on the pseudosingularity curve, then there exists an IKS of the robot on the locus of
critical points as well. An example of nonsingular change of solutions is shown in Figure 2.6
where the path crosses the pseudosingularity curve twice. qj crosses the pseudosingularity
curve twice at ps1 and ps2 in order to switch with ql in a nonsingular way. From Theorem
2, we know that qj and ql lie in two reduced aspects A and, B respectively. The reduced
aspect A is bounded by the locus of critical points and at least by the segment of the
pseudosingularity curve including ps1. The reduced aspect B is bounded by the locus
of critical points and at least by the segment of the pseudosingularity curve including
ps2. By Proposition 2, we assert that in generic 3R serial robots, pseudosingularities
always separate the reduced aspects whose image in the workspace belong to regions
with different number of IKS. So, we know that when qj crosses ps1, ql disappears after
meeting the locus of critical points bounding the reduced aspect B. Clearly, qj crosses
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the pseudosingularity at ps2 in order to enter the reduced aspect B. For each point in
the reduced aspect B, there should be a corresponding point in the reduced aspect, A,
as both of them map to the same bounded region in the workspace as shown in Figure
1.10. Thus, when qj is on ps2, there appears a point corresponding to ql on the locus of
critical points bounding the reduced aspect A.

Let mi,mj,mk,ml be the four intersection points in c3s3-plane corresponding to the
four IKS in the joint space, qi,qj,qk,ql (refer to Figure 2.6). When qj crosses the pseu-
dosingularity curve at ps1, ql meets either qi or qk. In the c3s3-plane, the comparison of
ql meeting qi or qk is similar to ml meeting either mi or mk at the tangent point. Now,
when qj crosses the pseudosingularity curve at ps2, ql enters A. The comparison of ql
emerging on the locus of critical point bounding A is similar to ml merging with mi or
mk in the initial setup. Thus, the images of the critical points bounding A and B belong
to two separate components of critical values. This proves that the images corresponding
to ps1 and ps2 lie on two distinct components of critical values in the workspace.

So a nonsingular change of solutions in the workspace looks like a path that exits
the 4-solution region by crossing a component of critical values and re-entering in the
region by crossing another component of critical values. Figure 1.12 shows an example of
a point crossing two components of critical values in a nonsingular way. The path does
not necessarily enter and exit from the components of critical values that form a cusp
(refer to Figure 2.2), but it is imperative to note that by proving Lemma 4, we know that
the path has to exit and enter by crossing two distinct components of critical value.

Lemma 5. If points mj, ml in the c3s3-plane belong to the same aspect in the joint space,
and there exists a cusp in the workspace, then there exists another intersection point, mk,
in the middle of (in terms of circle ordering) mj and ml such that mj,mk and mk,ml

correspond to the two components of critical values that form a cusp in the workspace (see
Figure 2.7).

Proof. As shown in Figure 1.5, the interpretation of a cusp in the c3s3-plane is such that
3 intersection points come together at a tangent point. A cusp is a merging point of two
separate components of critical value. It has been shown that the components of critical
values relate to merging of a particular pair of intersection points in the c3s3-plane. If
two components are meeting at a cusp in workspace such that mj,mk and ml merge in
the c3s3-plane with mk being in between mj and ml, then the two components of critical
values must belong to the merging of mjmk and mkml.
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2.1. Cuspidality analysis of generic 3R serial robots

(a) Phase 1: Starting from a point in workspace with 4 IKS, qj and ql are in same
aspect.

(b) Phase 2: qj meets ps1 and ql meets qk at singularity curve.

(c) Phase 3: qj enters another reduced aspect and ql disappears.
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(d) Phase 4: qj meets ps2 and ql, qk reappear, but in different reduced aspects.

(e) Phase 5: qj switches with ql without disappearing.

Figure 2.6 – An example of nonsingular change of solutions crossing a pseudosingularity
curve at 2 points.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α = [−π2 , π2 , 0].
path in the joint space (θ2, θ3): from (−0.742, 2.628) to (−3,−0.5).

Lemma 6. For a nonsingular change of solutions starting from a point in a bounded
region Aw in the workspace: there exists a path in the workspace that does not meet any
critical values not bounding region Aw.

Proof. If there exists a cusp, the Lemma is automatically true [WEO96]. We thus consider
only the case in which there is no cusp in the boundary of region Aw. The proof of the
Lemma comes from the simultaneous analysis of the nonsingular change of solutions in the
workspace as well as in the c3s3-plane. Considering a point p in the 4-solution region in
the workspace (refer to Figure 2.8), let the four intersection points corresponding to this
position in c3s3-plane be mi, mj, mk and ml. Let, mi and mk be the solutions in the same
aspects. We know from Lemma 4 that region Aw is bounded by at least 2 components of
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2.1. Cuspidality analysis of generic 3R serial robots

(a) Component of critical value adjacent to a cusp point

(b) Component of critical value adjacent to a cusp point

(c) Cusp point

Figure 2.7 – Geometrical interpretation of the cusp point and the adjacent components
of critical values.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α = [-π2 , π2 , 0].
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Figure 2.8 – Region Aw in the workspace with 4 IKS and its geometrical interpretation.
Robot parameters are imagined to illustrate a particular case. The conic can be a hyper-
bola or an ellipse.

Figure 2.9 – The intersections of components of critical values bounding Aw in the
workspace and its geometrical interpretation. Robot parameters are imagined to illus-
trate a particular case. The conic can be a hyperbola or an ellipse.

critical values. As the boundary of region Aw does not have a cusp, the components of
critical values that bound region Aw in the workspace are related to two cases: merging
of mi, ml and mj, mk (refer to Figure 2.8) or mi, mj and mk, ml. Without loss of
generality, we may assume the first case. As there are only two possible tangent points,
Aw is bounded by only 2 components of critical values.
As region Aw is bounded and there exists no cusps, the two components of critical values

bounding region Aw must intersect. In the c3s3-plane, points (mi,ml) and (mj,mk) either
meet simultaneously at two distinct points (bitangent case) or they meet at a single
point of tangency between the conic and the circle as illustrated in Figure 2.9. Since we
are considering generic robots, we cannot have four equal IKS and we can immediately
conclude that the intersection of the components of critical values corresponds to the
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2.1. Cuspidality analysis of generic 3R serial robots

bitangent case.
Let Bw be an arbitrary region in the workspace that is not Aw. Proceeding by contra-

diction, it is sufficient to show that a path crossing two distinct components of the critical
values bounding region Bw in order to enter and exit Bw, does not correspond to a nonsin-
gular change of solutions. An example of such a workspace is illustrated in Figure 2.10 and
the interpretation of a closed loop path in the workspace is given in Figure 2.11, which
shows that such a path cannot define a nonsingular change of solutions. From Lemma 4,

Figure 2.10 – An example of the shape of the workspace, where a closed loop path starting
from a point in Aw must cross two distinct components of critical values bounding region
Bw.

we already know that the path in workspace corresponding to the nonsingular change of
solutions crosses two different components of critical values of region Aw. If the path exits
Aw by crossing the component corresponding to the merging of mi and ml, then it must
cross the component belonging to the merging of mj and mk while entering the same
region. Now, if the case shown in Figure 2.10 exists, then in order to enter Aw, we will
have to cross another 4-solution region, Bw, bounded by at least 2 different components
of critical value. As we are considering only the case without cusps in the workspace,
Bw is bounded by two components of critical values having no point in common too, i.e.
if one component corresponds to the merging of mi,ml then the other component must
correspond to the merging of mj,mk. While crossing Bw, one needs to cross both com-
ponents. This means that if one tracks the intersection point mi from its initial position,
then this point will have been a tangent point (in c3s3-plane) while crossing either of
the two components of Bw. This leads to a contradiction, as we have assumed that one
of the points we are tracking will not be tangent to the unit circle to qualify as a valid
nonsingular change of solutions. Figure 2.11 illustrates a path where two singularities of

63



Chapter 2 – 3R serial robots

another 4-solution region without any cusp are crossed. We start from an initial point p in
the 4-solution region, Aw, of the workspace that corresponds to State 1 in the c3s3-plane
(refer to Figure 2.11). We assume that the robot corresponding to this case is cuspidal
and the IKS corresponding to mj and ml lie in the same aspect. In State 2, we cross
the component of critical values that belongs to the merging of mi and ml. This already
suggests that for a valid nonsingular change of solutions, mj should switch places with ml

without being a tangent point in the c3s3-plane. The path going from State 3 to State 5
is the entry into another 4-solution region, Bw. As we have entered region Bw by crossing
the component of critical values corresponding to the merging of mi and ml, we need to
exit the region by crossing the component of critical values corresponding to the merging
of mj and, mk as shown in State 6. This proves that such a path is an invalid nonsingular
change of solutions, as we encountered a singular configuration while exiting Bw.

The “candy” case

Proof of Proposition 3. By Lemma 6, the curves corresponding to the critical values are
enclosed by an outer boundary of the workspace and would have a shape as illustrated
in Figure 2.12. We shall refer to this shape as the “candy” case. We arrive at this case
by starting with a point, p, in the workspace with four preimages. Let the points of
intersection in the c3s3-plane corresponding to p be mi, mj, mk and ml. The region, Aw,
in which p exists must be bounded by the locus of critical values. As we are assuming
that there are no cusps, the region will have to be bounded by only two components
corresponding to the merging of (mi,mj and mk,ml) or (mi,ml and mj,mk) as shown in
Figure 2.8. These two components of the critical values intersect at two points, a and b.
The geometrical interpretation of the intersection of the components of critical values is
that both mi,ml and mj,mk merge at tangent points simultaneously. This can happen
in two cases, either all four intersection points merge together or mi,ml and mj,mk meet
together at separate tangent points in the c3s3-plane forming a node point in the workspace
as shown in Figure 2.9. As the case where all four points merge at a single tangent point
belongs to a nongeneric case, we will consider only the case of mi,ml and mj,mk meeting
together at separate tangent points. As at the ends of our candy shape, only two segments
meet without forming a node (see m and n in Figure 2.12), it corresponds to a case of
four solutions merging at a common point. This is a contradiction to the assumption of
a generic 3R robot because points with multiplicity four correspond to a nongeneric 3R
robot [PL92].
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State

State

State

State

State

State

State

State

Figure 2.11 – The closed loop path in the workspace, where the path crosses another 4-
solution region and its corresponding interpretation in c3s3-plane. Robot parameters are
imagined to illustrate a particular case to show that such a path does not correspond to a
nonsingular change of solutions. The figures in red dotted boxes correspond to the steps
in the shown path where the definition of nonsingular change of solutions is violated.

Figure 2.12 – The “candy” case.
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By using the Theorem 1 and Proposition 3, a necessary and sufficient condition can
be derived for a generic 3R cuspidal robot. Formally, the theorem is stated as:

Theorem 3. For a generic 3R serial robot, the existence of a cusp point in the workspace
is a necessary and sufficient condition for the robot to be cuspidal.

Figure 2.13 illustrates an example of non-orthogonal cuspidal and non-cuspidal robots
in the joint space, workspace and the c3s3 - plane.

2.2 Further analysis of 3R serial robots

The cuspidal property can be analyzed by understanding the IKM as well as the sin-
gularities in the joint space and in the workspace. It is well-known that binary 3R robots
(i.e. with at most two IKS) are noncuspidal. In this section, the geometric analysis is
further extended to present classification of robots based on the type of conic in the c3s3-
plane. Algebraic conditions for 3R orthogonal robots to be a binary robot was previously
presented through algebraic analysis. In this section, we revisit the geometrical interpre-
tation of the IKM and present some important observations. The conditions of getting
different conics and their implication on singularities are discussed in the chapter. Further,
a sufficient condition for a 3R robot to be binary robot as well as quaternary (i.e. with
up to 4 IKS) is put forth by analyzing the geometrical interpretation of the IKM. The
possibility to extend this condition of binary and quaternary for generic 3R serial robots
is presented too. Later, we use the geometric analysis to close a conjecture presented in
[Pag08] regarding the maximum aspects present in a generic 3R serial robot.

This section is divided into three parts: Section 2.2.1 discusses the classification of
3R robots based on the geometry of the IKM as well as discusses its implication in the
joint space and the workspace. Section 2.2.1 shows cases of binary and quaternary robots
by analyzing the geometrical properties of the IKM. Section 2.2.2 discusses the results
from Paganelli’s homotopy analysis and answers the question on the maximum number of
aspects present in a 3R serial robot. Section 2.3 concludes the results from the geometric
analysis by discussing the implications of the contribution and addressing a few pointers
to future work.
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(a) An example of generic cuspidal case.
Robot parameters: Robot parameters: d = [0, 1, 0], a = [1, 2, 1], α = [-π

6 , π

2 , 0].

(b) An example of generic non-cuspidal case.
Robot parameters: Robot parameters: d = [0, 1, 0], a = [1, 0.2, 2], α = [-π

3 , 1.745, 0].

Figure 2.13 – The aspects in the joint space, regions in the workspace and corresponding
conics in the c3s3 - plane for a cuspidal and non-cuspidal generic robot.
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2.2.1 Geometric analysis of 3R serial robots

As cuspidal robots have multiple IKS in an aspect, unique identification of a ‘con-
figuration’ is not possible [Wen92], which makes the task of trajectory planning more
challenging [Wen04]. It is known that a 3R robot can have at most four IKS, and it is
generally preferred to choose a robot geometry that maximizes the size of regions with
four IKS. This allows an end-user to choose IKS from different regions to counter the
collision issues in the workspace. Robots that have 4 IKS regions in their workspace are
referred to as quaternary robots, while robots that have at most 2 IKS are referred to
as binary robots [WCB05]. It is important to note that though quaternary robots have
their advantages, they can be cuspidal too, while on the other hand binary robots cannot
be cuspidal [Wen92]. Orthogonal 3R robots have been studied extensively in the past
with a D-H parameter based condition for quaternary orthogonal 3R robots presented
with algebraic analysis [WCB05]. An extension of such an algebraic analysis to generic
3R robots is more challenging, and no conditions for binary or quaternary generic robots
have been studied prior to the presented thesis.

In Chapter 2.1, the cuspidality of generic 3R robots was analyzed by using a geometric
interpretation of the IKM. We show the geometric interpretation of different concepts such
as singularity, and nonsingular change of solutions by analyzing the interaction of the conic
with the unit circle in the c3s3-plane. This section details extended properties of the conic
and its implication on the maximum number of IKS in the workspace. The classification
presented provides a simple and intuitive geometric interpretation for the condition of
binary and quaternary robots.

Classification of robots based on geometric conditions

We present an example of the geometry based classification of 3R serial robots. Figure
2.14 shows the classification in the parameter space of α1 and α2 for an example set of
D-H parameters. The blue colored region corresponds to the D-H parameters with the
IKM representing ellipse in the c3s3-plane. The red colored represents the hyperbolas in
c3s3-plane while the separating curve which is a parabola in c3s3-plane is shown in green.
Figure 2.15 shows the classification of robots on similar criteria but parameterized in
the lengths a2 and d2 while keeping other D-H parameters fixed. The rest of the D-H
parameters are those corresponding to a generic robot.
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Figure 2.14 – The bifurcation curve parameterized in α1 and α2. The red part is a 3R
serial robot corresponding to a hyperbola, the blue part to the ellipse, and the green curve
corresponds to a parabola in the c3s3-plane. The rest of parameters are: d = [0, 1, 0],
a = [1, 2, 3/2], α3 = 0. The bifurcation is symmetrical about the x-axis and y-axis.

Figure 2.15 – The bifurcation curve parameterized in a2 and d2. The red part is a 3R
serial robot corresponding to a hyperbola, the blue part to the ellipse, and the green
curve corresponds to a parabola in the c3s3-plane. The rest of the parameters are a1 =
a3 = 1, d1 = d3 = α3 = 0, α1 = π/3, α2 = π/6.

69



Chapter 2 – 3R serial robots

Degenerate conic

This section recalls the conic equation related to the IKM of 3R serial robot (1.2) and
the lemmas related to the conic nature, Lemma 1 and Lemma 2. The nature of the conic
depends on the sign of the determinant of N, where N is the Hessian of the conic. The
degeneracy of a conic is given by det(D) = 0, where D is the Hessian of the quadratic
form and given as:

D =


Axx Bxy Dx

Bxy Cyy Ey

Dx Ey F

 (2.2)

We know that the hyperbola (det(N) < 0) degenerates into two intersecting lines,
while the ellipse (det(N) > 0) degenerates to a point. The degenerate case of a parabola
(det(N) = 0) is of particular interest as it degenerates into two parallel lines, and they can
be distinct or coincident. The work presented in this thesis related to the degeneration of
the parabola discusses the case of two coincident lines, resulting in two multiple roots. This
case is important to analyze as it is a special degeneracy case, and relates to a peculiar
feature in the workspace. Following are the conditions for a parabola to degenerate into
two coincident lines: 

det(N) = 0

det(D) = 0

B2
x +B2

y − (Axx + Ayy)C = 0

(2.3)

det(N) = a4
3 ((−d2

2 sa
2
2 + a2

1 − a2
2) sa2

1 + (−a2
1 + a2

2) ∗ sa2
2)

(a2
1 sa

2
1)

(2.4)

Solving det(N) = 0 for d2 yields:

d2 = ±

√
(a1 + a2) (a1 − a2) (sa1 − sa2) (sa1 + sa2)

sa1 sa2
(2.5)

We conclude from (2.4) that the parameters a3 and d3 do not play any role to define
a parabola for a generic case (a3 ̸= 0). Upon substituting either value from (2.5) into
det(D) = 0 and solving for R, we obtain the same solution. Solving the last equation
in (2.3) for z, the solutions R and z take the following form, provided that ca2 ̸= 0 and
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sa1 ̸= sa2:
R = f(z)

sa2
1 − sa2

2

z = ca1

ca2
(d3 sa1 sa2 + d2 ca2)

(2.6)

The complete expression for f(z) is presented in Appendix A.2. From (2.6), it is interesting
to note that a robot such that (ca2 ̸= 0, sa1 ̸= sa2) and corresponding to a parabola will
always have a point in the workspace (R, z) such that its geometric interpretation is a
parabola degenerating into a coincident line. When ca2 = 0 (resp. sa1 = sa2), z (resp. R)
is indeterminate.
A point satisfying (2.6) is a tangency point between two loci of critical values, as shown
in Figure 2.16.
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Figure 2.16 – Degenerate parabola case: joint space (center) and workspace (right). The
point shown in red is associated with two coincident lines in the c3s3-plane (left).
Robot parameters: d = [0, 2.828, 0.5], a = [1, 2, 3

2 ], α = [π6 ,
π
3 , 0], (ρ, z) = (1.471, 3.315).

Special classes of robots

In this section, we present a sufficient condition for a 3R robot to be binary and
quaternary, respectively. The motivation for the search of binary robots comes from the
well-known property that two circles have at most two distinct intersections. Section 2.2.1
discusses the neighborhood of such binary robots. We claim that the parameters corre-
sponding to all the ellipses that are in a sufficiently small neighborhood of the parameters
corresponding to a circle, result in binary robots too. Section 2.2.1 discusses a condition for
a hyperbola to compulsorily have four intersections with the unit circle in the c3s3-plane,
thus resulting in a quaternary robot.
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Binary robots

Trivial case: Circle
A trivial case of a binary robot is when the associated conic is a circle. The condition for
a conic to be circle is: 

Axy = 0

Axx = Ayy

det(N) > 0

(2.7)

Here,

Axy = 2a2 a
2
3 d2 sa2

a2
1

Axx − Ayy = −a2
3 + a2

2 a
2
3

a2
1
− a2

3 d
2
2 sa

2
2

a2
1

− a2
3 ca

2
1 sa

2
2

sa2
1

+ a2
3 ca

2
2

Analyzing Axy, (2.7) has 4 cases of solutions:

1. a2 = 0

2. a3 = 0

3. α2 = 0

4. d2 = 0

Solving, Axx − Ayy = 0 for sinα1 gives two solutions:

sinα1 = ± sinα2 a1√
−d2

2 sinα2
2 + a2

2

(2.8)

Out of these four cases presented, the first three do not lead to good solutions. The case
of a2 = 0 results in negative square root in (2.8), a3 = 0 represents a circle centered at
(0, 0) and thus we have either zero or infinite solutions. If α2 = 0, then α1 = 0 is the
only solution leading to three parallel axis resulting into a 3R planar robot which is a
degenerate case. So, the only case leading to multiple solutions is d2 = 0. Upon setting
d2 = 0, we have the following conditions:


sinα1 = ±sinα2 a1

a2

(a1 − a2) (sinα1 − sinα2) > 0

a1 ̸= 0, a2 ̸= 0, a3 ̸= 0, α2 ̸= 0

(2.9)
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(a) c3s3-plane (b) workspace (c) joint space

Figure 2.16 – 3R serial robot corresponding to a circle in the c3s3-plane.
Robot parameters: d = [0, 0, 1], a = [1, 2, 1], α = [π6 , π

2 , 0].

An example of a 3R serial robot with conic as circle is illustrated in Figure 2.16:
Non trivial case: binary ellipses

We now consider a robot such that its associated conic is an ellipse. We prove that it is
possible to find a binary robot whose IKM corresponds to an ellipse in the c3s3 plane if
the eccentricity of the conic is close to 0. We consider a Lemma in geometry:

Lemma 7. Consider the unit circle S1 and a number, e ∈ (0, 1)

(i) There is an ellipse C with eccentricity e such that #C ∩ S1 = 4

(ii) As e→ 0 the ellipses with eccentricity e with property (i) will have centers that ap-
proach the origin (center of S1) and have minor and major semi-axes that approach
length 1.

Proof. (i) Given an ellipse with arbitrary eccentricity, we can place its center at the
center of S1 and scale it proportionally so that it lies entirely in S1 and similarly so that
it completely contains S1. Eccentricity is invariant under scaling and scaling is continuous,
so there is a scale for which the ellipse intersects S1 transversally, at finite points (S1 and
the ellipse are different algebraic curves) and symmetrically.

(ii) Without loss of generality, we may assume that the principal axes of the ellipse are
parallel with the coordinate axes. One can then look at the analytic equation of an ellipse
in normal form and apply continuity argument on the aspect ratio (which is an easier
invariant to work with than the eccentricity for this proof) to prove the result (note that
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one can replace ‘the circle and the ellipse has four intersection points’ with ‘the circle and
ellipse are bitangent’ and arrive to the origin as the limit).

Lemma 8. The eccentricity of the conic corresponding to the IKM is strictly dependent
on the D-H parameters only and is independent of the position in the workspace (R, z).

Proof. The eccentricity is dependent on the entries of N (refer to Chapter 2.1), and these
entries only depend on the D-H parameters of the robot and not on the position of the
end-effector, as shown in (1.2).

By combining Lemma 8 and Lemma 7, we can put forth the following theorem:

Theorem 4. There are infinitely many binary robots whose associated conic is an ellipse
(that is not a circle).

Proof. We claim that it suffices to have one binary generic robot with this condition. The
associated ellipse for such a robot will never degenerate, and so the minor and major axes
must achieve their (non-zero) minimum values. By the previous Lemma, these lengths
must lie in an interval I ⊂ R centered at 1 (radius of an ellipse) for the ellipse to intersect
the unit circle four times and for a fixed sufficiently small eccentricity e. If a generic binary
robot is given with an associated ellipse of eccentricity e, then the minimum major (or
minor) axes (recall the axes’ length now depends on the end-effector position) is outside
I. This minimum value is not in the boundary of I and is continuously dependent on
the D-H parameters. One parameter that does not affect the eccentricity but does affect
the minimum major/minor axes’ length is d3. So the robot obtained upon perturbing
the length corresponding to d3 within a small interval of the given binary robot still
corresponds to a binary robot.

To conclude the proof, we give an example of a binary robot (refer to Figure 2.17)
whose associated conic is an ellipse.

Following this proof, we present a conjecture:

Conjecture 1. As the eccentricity of the associated ellipse approaches 0 (the ellipse be-
comes more like a circle), we will get more such binary robots however we will always be
able to find a robot that is quaternery for such an eccentricity (as long as it is not 0).
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Figure 2.17 – An example of a binary robot’s representation in c3s3 − plane, the joint
space and the workspace. Robot parameters: d = [0, 0, 3], a = [−1503

1879 ,−1,−1], α =

[−2.21, −π2 , 0].

Quaternary robots

In this subsection, we discuss the case of a 3R robot such that the hyperbola degener-
ates and the center of the conic is inside the circle. It is straightforward to argue why such
a robot is compulsorily quaternary. If the intersecting lines have their intersection point
inside a circle, then each line will intersect the circle twice, thus yielding four intersection
points in total. If cx, cy is the center of the conic in the c3s3-plane, then the sufficient
condition for a quaternary robot is:


det(N) < 0

det(Q) = 0√
c2
x + c2

y < 1

(2.10)

To illustrate the simplicity of the derivation of the sufficient condition, we present a case
of orthogonal 3R robots (see an example in 2.18).

det(N) = −a
4
3 d

2
2

a2
1

det(Q) = a4
3 d

2
2 (d2

3 − z2)
a2

1

c2
x + c2

y = aR2 + bR + c

4 d2
2 a

2
3

(2.11)
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In (2.11), a and b are functions of the D-H parameters only and are not expressed fully
for brevity. It is clear from (2.11) that an orthogonal 3R robot always corresponds to a
hyperbola in the c3s3-plane, the condition for degeneracy depends only on d3 and z while
the condition for the center of the conic to lie inside the circle is a quadratic in R. It is
important to note that the degeneracy depends only on z and not on R and thus, for
z = d3, the conic is always degenerate. This property further leads to some interesting
observations about the hyperbolas corresponding to an orthogonal 3R serial robots but
are not discussed here to limit the scope of the presented work.
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Figure 2.18 – An example of an orthogonal quaternary robot corresponding to an hyper-
bola.
Robot parameters : d = [0, 1, 2], a = [1, 2, 3], α = [−π

2 ,
π
2 , 0], (ρ, z) = (2, 2).

Quaternary 3R robots corresponding to ellipse in c3s3-plane

In this section, we present the working proof for a conjecture:

Conjecture 2. For a quaternary 3R robot to be cuspidal, it is sufficient that the conic
equation related to the inverse kinematic model corresponds to an ellipse.

Proof. In order to prove the above theorem, we recall the properties discussed in section
1.2 and section 2.1. Given a quaternary 3R robot with mi, mj, mk and ml as the IKS for
a pose in the 4 IKS region (refer to Figure 2.19), we know that a cusp in the workspace
corresponds to the intersection of 3 intersection points in the c3s3-plane. Let the solutions
be in circular order of mi, mj, mk and ml. Let us consider mk in the c3s3-plane. We know
for certain that there exists a point such that the ellipse is tangential to the unit circle
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2.2. Further analysis of 3R serial robots

Figure 2.19 – An example of quaternary robot. Robot parameters: a = [1, 2, 3
2 ], d = [0,

1, 0], α = [pi6 ,
pi
2 , 0]. Point in joint space (θ2, θ3) = [-0.97 rads, 2.32 rads].

and mk is one of the points that merged at the tangent. This is attributed to the reason
that every IKS in the joint space is bounded by the locus of critical points. We assume
that mk meets mj without loss of generality as the case is similar to assuming mk meets
ml.
Starting from the given point in Figure 2.19, if we can shift the ellipse in horizontal
direction without changing the size of the ellipse then we can claim that mk meets ml

and thus there exists a cusp in the workspace such that mk,mj,ml meet together at
the tangent point between the ellipse and the circle. By lemma 8, we know that the
eccentricity of the given ellipse is constant. We proceed by showing that the center and
the minor axis of the ellipse is a function of R and z.
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From (2.12), it can be concluded that the center of the ellipse can be controlled by R
and z. Moving the center of the ellipse in a desired direction is not enough to prove that
mk meets ml as the size of ellipse can shrink or enlarge while keeping the eccentricity
constant. This means that the ellipse may shrink faster than the horizontal shift assuring
mk always meets mj at a tangent point. As the eccentricity is constant, if the length of
major or minor axis is a dependent on R or z, then we can shift the ellipse by keeping
the size of the ellipse in check forcing mk to meet ml at a tangent point.
For an ellipse in standard form in c3s3-plane centered at (h, k) given as:

(c3 − h)2

a2 + (s3 − k)2

b2 = 1

the length of the minor axis is 2a or 2b, depending upon the orientation of the conic. A
general equation of a conic is a transformation of the standard form (1.1), and can be
written as:

A′
xx c

2
3 + A′

yy s
2
3 + 2B′

x c3 + 2B′
y s3 + C ′ = 0 (2.13)
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such that
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We can split C into three parts C1, C2 and C3 such that it is possible to write the equation
as:

(c2
3 + B′

x

A′
xx

+ C1
A′

xx
)

−C3

A′
xx

+
(s2

3 + B′
y

A′
yy

+ C2
A′

yy
)

−C3

A′
yy

= 1

C1 + C2 + C3 = C

C1 = B′2
x

4A′
xx

C2 =
B′2
y

4A′
yy

(2.15)

From (2.15), it is seen that the length of major axis and minor axis is dependent on R

and z. From this result it can be confirmed that any 2 of the four entities viz., the x
coordinate, y coordinate of the center, the length of minor axis, and the length of the
major axis of the ellipse can be defined by varying R and z. This allows us to fix the
vertical position of the center of the ellipse and increase the length of the minor axis. As
we increase the length of minor axis the intersection point mk will meet ml, or mj will
meet mi. Both scenarios will lead to the conclusion of existence of cusp in the workspace
as we will have either mj,mk,ml meeting together or mi,mj,mk meeting together at a
tangent point.

This result combined with the Theorem 3 proves that a quaternary 3R serial robot
whose IKM corresponds to an ellipse in the c3s3-plane is a cuspidal robot.
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2.2.2 Comments on maximum aspects in 3R robots

In this section, we discuss the existence of two homotopy classes presented by [Pag08] in
his dissertation. In his work, he extends the homotopy classes presented for singularities
of 3R robots in [Wen98]. As the singularities of a 3R robot are functions of θ2 and θ3

only, the joint space of 3R robot can be considered as T2 for singularity analysis. The
homotopy classification of singularity curves is discussed in details in [Wen98; Pag08], and
the following work uses the definition mentioned in previous articles. A homotopy class
of a generic 3R robot can be characterized by a series of couples (l1, l2). l1(resp. l2) = 1
signifies a branch of the locus of critical points encircling the θ2(resp. θ3)-generator of T2.
There exist four types of singularity curves (branches) in the joint space of a 3R robot
viz., (1, 0), (0, 1), (1, 1), and (0, 0), depending upon the encirclement of the torus along
the θ2 generator only, θ3 only, both θ2, θ3, and no encirclement [Wen98]. The homotopy
analysis in [Pag08] showed that there might exist 3R robots belonging to the homotopy
class of 3(0, 0) and 4(0, 0).

Conjecture 3. There does not exist a 3R robot belonging to the homotopy class of n(0,
0), with n > 2.

Proof. The above conjecture can be proved by contradiction. We consider the following
proposition:

Proposition 4. The 3R robot belonging to n(0, 0) homotopy class has to be a quarternary
robot for n > 1.

Proof. This statement can be easily proved by checking the case when the robot is binary.
Let us consider a binary robot with 2(0, 0) homotopy class and let A and B be the two
(0, 0) branches. By definition, a (0, 0) branch is a loop on T2. Let an IKS lie in the region
defined by the (0, 0) branch, A, while the other outside the regions associated to the two
(0, 0) branches. This implies that there can be no path in joint space starting from the
IKS outside the (0, 0) branches to the (0, 0) branch, B. This cannot happen as there
should always exist a path in joint space between any two points.

As it is shown from the above proposition, the robots belonging to 3(0, 0) and 4(0, 0)
must be necessarily quaternary. Now we consider a robot belonging to 3(0, 0) class, and
start from a pose with four IKS. Let the aspects bounded by each (0, 0) branch be A, B
and C, and the aspect exterior to A,B,C be D. As the number of IKS with det(J) > 0
must be equal to IKS with det(J) < 0, let solutions mi,mj belong to D and mk,ml belong
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to A and B respectively. Now, we consider a path in joint space from mi to the boundary
of C. In order to meet a point on the boundary of C, we need to necessarily cross at least
two pseudosingularities. When the first pseudosingularity is crossed, mj meets mk or ml

at the boundary of A or B respectively. The next pseudosingularity is crossed by mi, and
at this point mj and mk or ml must appear at either side of the boundary of C. In this
case both mi and mj will exist in the same reduced aspect and this contradicts Theorem
2. If 3(0, 0) cannot exist, then by the same argument no robot can exist corresponding to
n(0, 0) homotopy class with n > 2.

2.3 Conclusions

In this chapter, the proof for the necessary and sufficient condition for a generic 3R
serial robot to be cuspidal was presented. The proof studied the geometric interpretation
of the IKM of a 3R serial robot and presented observations about the constant nature
and orientation of the conic corresponding to a given set of D-H parameters. It is for the
first time that a mathematical proof has been presented for the necessary and sufficient
condition for cuspidality of generic 3R serial robots. The existence of reduced aspects in
a generic serial robot was proved by using geometric analysis of the IKM. These results
mark the closure of the conjecture presented after noting the cusp in the workspace and
its relation with nonsingular change of solutions. In the second part of the chapter, we
have revisited the geometric interpretation of the inverse kinematic model of 3R robots to
extend the geometric analysis of 3R robots. The special case of a parabola degenerating
into two coincident lines was presented along with its interpretation in the workspace.
The work presented a sufficient condition for a 3R serial robot to be binary (circle and
ellipse case) and quaternary (hyperbola case) by using geometric observations. The ad-
vantages of the geometry based analysis is that the conditions for binary or quaternary
robots can be extended to more generic cases of 3R robots without resorting to complex
algebraic derivations. This advantage was motivated by presenting the conjecture that all
quaternary robots associated with ellipse are cuspidal. In the future, we aim to present a
necessary and sufficient condition for a generic 3R robot to be binary or quaternary. This
will allow the designer to include the condition while optimizing for a workspace with 4
IKS. Later, using the geometric interpretation, the work commented upon a conjecture
provided by Paganelli in his thesis [Pag08] regarding the maximum number of aspects in
a 3R serial robot.
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Chapter 3

6R SERIAL ROBOTS

In this chapter, the results on cuspidality analysis on 6R serial robots is presented.
The first section details the simplified geometries and analyses the role of geometric archi-
tecture and the form of determinant in the number of aspects as well as the cuspidality of
the robot. Later, the chapter discusses the generic architecture of 6R serial chain. In this
section, the designs by Parenti-Castelli [IPC98] are discussed and the claim on generic 6R
serial robots is reverified. A certified algorithm to decide upon the cuspidality of a generic
nR non-redundant serial manipulator is further presented to allow a designer to choose a
design as per requirements. Owing to the computational complexity of this algorithm, the
section proposes a simplified methodology to check the cuspidality of the robots. Finally,
the chapter concludes with a proposal of a framework for deciding the cuspidality of a
generic 6R serial robot.

3.1 Simplified 6R geometry

In this section, we present simplified geometries of 6R serial chains. A simplified ge-
ometry is one where the inverse kinematics may simplify due to special arrangement of
joints and links in the serial chain. Some of the examples are: 1. Existence of a three
intersecting axes forming a wrist, 2. Three parallel joint axes forming a 3R sub chain in
the 6R serial chain. Most of the industrial robots are simplified geometries due to the
ease in conceptualizing and straightforward kinematic relations. This makes the analysis
of such simplified geometries important from the industrial applications point of view.

3.1.1 Wrist at the end

The most widely known geometry of a 6R serial chain is an anthropomorphic archi-
tecture with the wrist at the end. The last three axes intersecting at a point forms a
wrist which allows the decoupling of position analysis from the orientation analysis of
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(a) Example of anthropomorphic
robot with wrist at the end

(b) Schematic representation of a
robot with wrist at the end

Figure 3.1 – Simplified geometry with wrist at the end

the robot. The orientation of the robot is strictly controlled by the last three axes only
while the pose of the origin of the wrist (the intersection point of the last three axes) is a
function of first three joints only. This decoupling in the 6R serial manipulators simplifies
the kinematics to a great extent alleviating many complex calculations to a point that we
have an analytical solutions to a specific architectures of 6R serial robot with the wrist at
the end. These architectures have perpendicular and parallel arrangements between the
joints and due to their resemblance with a human arm, are termed as anthropomorphic
6R serial robots. Figure 3.1 shows an example of the industrial 6R serial robot with an-
thropomorphic architecture and an example architecture of 6R serial robot with wrist at
the end.

Theorem 5. For a wrist-partitioned 6R serial chain, i.e, three intersecting consecutive
axes, at the end of the chain, the existence of a cusp in the workspace of the 3R serial
chain formed by first three axes is a necessary and sufficient condition for the robot to be
cuspidal.

Proof. As the inverse kinematics model of a robot with wrist at the end is decoupled, it is
possible to decouple the cuspidality analysis too. This is attributed to the reason that any
change of IKS can be studied as change of IKS in the 3R sub chain responsible for position
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3.1. Cuspidality analysis of simplified 6R geometry

and change of IKS in the 3R sub chain responsible for the orientation (wrist). The IKM of
the wrist is well known, and there exists two aspects in the joint space with two IKS for any
given orientation. These IKS are always separated by the wrist singularity, a configuration
where the first and last axes of the wrist coincide. This makes the wrist architecture a
non-cuspidal sub chain. So if the sub chain responsible for position is cuspidal in nature,
we can change the position without crossing a singularity and as there exists a solution
for any orientation, the new orientation is guaranteed to be reached without encountering
the wrist singularity. From this known result, it is clear that the cuspidality of a 6R serial
chain with wrist at the end solely depends on the cuspidal nature of the positional 3R
sub-chain as shown in table 3.1. This suggests that all the theorems proved for a generic
3R serial chain can be extended to wrist-partitioned 6R serial chains with wrist at the
end as well. The presence of a cusp being a necessary and sufficient condition for a generic
3R serial chain has been proved [Sal+22b] (refer to section 2.1). The presented theorem
is simply an extension of theorem 3.

Position 3R chain Wrist 6R serial chain
Cuspidal Non-Cuspidal Cuspidal

Non-Cuspidal Non-Cuspidal Non-Cuspidal

Table 3.1 – The relation for cuspidality in 6R serial robot with wrist at the end

3.1.2 Intersecting three axes at the beginning

Another interesting geometry of 6R serial robots is with the first three axes intersecting
to form a wrist. The inverse kinematics of this robot is can be interpreted in similar fashion
that of the 6R serial robot with wrist at the end. If we apply the transformation of frames
and switch the end-effector frame as the base and the frame of first joint as the end-effector
frame, the inverse kinematics for position and orientation is decoupled as discussed earlier.
This allows one to extend the results obtained in section 3.1.1 to this class of robots. It
has been verified that the analysis of conic in c3s3-plane holds true for the 6R serial chains
with first three axes forming a wrist. It can be readily shown that the analysis done in
the c3s3-plane in chapter 2.1 can be done in c4s4-plane for the robots with wrist in the
beginning where c3, c4 stands for cos θ3, cos θ4 and s3, s4 denote sin θ3, sin θ4. This allows
us to put forth the following theorem:

Theorem 6. For a wrist-partitioned 6R serial chain, i.e, three intersecting consecutive
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Figure 3.2 – Schematic of a 6R serial chain with wrist in the beginning

axes, at the beginning of the chain, the existence of a cusp in the workspace of the 3R
serial chain formed by last three axes is a necessary and sufficient condition for the robot
to be cuspidal.

Figure 3.2 shows a schematic of a generic 6R serial chain with first three axes inter-
secting forming a wrist and Figure 3.3 shows the conic representation of the IKM of such
robot at a given instance.

In both the cases when the wrist is formed at the extreme of the 6R serial chain, the
determinant factors in the form:

det(J) = C1 sin θw f(θp1, θp2) (3.1)

where, C1 is a constant, θw is the second axis of the wrist, and θp1, θp2 are the axes of the
positional sub chain with θp1, θp2 /∈ θ1, θ6.
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3.1. Cuspidality analysis of simplified 6R geometry

Figure 3.3 – conic representation of IKM for a 6R serial robot with wrist in the beginning.
The DH parameters of the robot are:
θ = [0, 0, 0, π2 ,

π
6 ,

π
4 ],d = [1, 0, 1, 1, 0, 0], a = [0, 0, 1, 1, 1, 0], α = [π2 ,−

π
2 ,

π
9 ,−

π
3 ,

π
6 , 0].

87



Chapter 3 – 6R serial robots

Figure 3.4 – Geometric explanation for the IKM with wrist in the middle

3.1.3 Wrist in the middle

The last subclass of 6R robots with wrist as a subchain is when the second, third, fourth
or third, fourth, and fifth axes intersect to form a wrist. We note these cases as the wrist in
middle case. This case is particularly interesting as even though it is a simplified geometry,
nature of positional subchain is different from the previously discussed examples. The IKM
of this robot was discussed by using analytic [Pie68] as well as algebraic tools [Ben91] in
the past. We discuss a simple geometric interpretation of the IKM to provide a visual
intuition for the IKS. As the wrist is in the middle, any orientation can be achieved for
the frame with origin at the intersection point of the wrist. Assuming d3 = 0 for simplifying
analysis, the intersection point lies on a circle centered at (0, 0, d1) with radius

√
a2

1 + d2
2.

If the end-effector frame is fixed, then the manifold generated by the 2R chain formed by
the fifth and sixth axes is a torus with center of axis coinciding with the axes of the sixth
joint. As the origin of the wrist is connected with the fifth joint, the intersection between
the circle and the torus gives the position of the wrist. Figure 3.4 illustrates the idea, with
the star points denoting the possible positions of the wrist. As a circle intersects a torus
in maximum four points, the origin of the wrist can be placed in four different positions.
As every orientation of the wrist has two solutions, we conclude (as shown in the past
[Pie68; Ben91]) that this robot has a maximum of eight solutions. We can immediately
conclude that four solutions correspond to a positive value of det(J) as the wrist solutions
are separated by a singularity. The geometric explanation allows a visualization of a path
in the joint space for change of the inverse kinematic solutions. A trivial method to see
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3.1. Cuspidality analysis of simplified 6R geometry

this change of IKS in the joint space is as following:

1. rotate θ1 to displace the origin of the wrist to the second intersection point

2. move from the current orientation of the wrist to a desired frame

3. this automatically places the fifth joint in the required position, displace θ5 to align
z6 with the end-effector’s z-axis.

4. rotate θ6 to align the frame with the desired pose

The main difference of the wrist in the middle from other two sub cases is that even though
the IKM is decoupled in two different subchains, the end-effector pose cannot be analyzed
by decoupling the position and the orientation. It would be ideal if the orientation and
position of the end-effector were independent in order to conclude upon the cuspidal
nature of the robot, but the form of determinant for wrist in the middle is different from
(3.1), and is in the form of:

det(J) = C1 sin θw f(θ2, θ3, θ4, θ5) (3.2)

A simple sufficient condition for such a robot to be noncuspidal is when the D-H pa-
rameters are designed such that the circle intersects the torus maximum twice which will
limit the number of IKS to four and are always separated by singularity. As all the four
joints apart from θ1 and θ6 contribute to the determinant of the Jacobian, and there are
no distinct components, the analysis for distribution of IKS is not straightforward. This
example allows to highlight that the cuspidality analysis of ’simplified’ geometries is not
easy either. The separation of IKS into different components is only clear in few cases
where the determinant factors into distinct components with independent solutions simi-
lar to (3.1). We illustrate further two examples of 6R robots with three consecutive axes
intersecting in the middle to highlight the possibility of extending geometric analysis for
considering noncuspidal cases of 6R serial chains.

Two dimensional singularities

The singularities of a generic 6R serial robot depend on the non-extreme joints only.
This is attributed to the reason that the workspace of the robot is symmetrical about
the first joint and the last joint of the robot is only responsible for the orientation of the
end-effector about its own axis. It is hard to visualize the rank 5 singularities as they
are a 3-dimensional manifold in a four dimensional joint space. A simplified case helps us
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(a) Singularities for an example robot with
wrist in the middle. D-H parameters are :
d = [0, 0, 0, 1, 2, 0], a = [1, 0, 0, 1, 1, 0],
α = [π/2, π/2, π/2, π/2, π/2, 0].

(b) Singularities for an example robot with
wrist in the middle. D-H parameters are :
d = [0, 0, 0, 1, 2, 0], a = [1, 0, 0, 2, 3, 0],
α = [π/2, π/2, π/2, π/2, π/2, 0].

Figure 3.5 – Simplified examples of 6R robots with wrist in the middle such that the rank
4 singularities form a 2 dimensional variety.

in visualizing the joint space with singularities and provides an intuition of the effect of
DH parameters on the singularities. One such case with wrist in the middle is when we
set d2 = 0 as an additional constraint. The determinant for these parameters is detailed
in Appendix A.3. The singularities can be visualized and few examples are illustrated in
Figure 3.5.

det(J) with three components

When the D-H parameters are further constrained such that all the axes are mutually
orthogonal and a5 = 0, the det(J) factors into three components as follows:

det(J) = s3 (s5d4 + a4c5) (s4c3c2d2d5 + c4c3c2a4d2 + s2s4a4d2 − s2c4d2d5

−s3s4a1d5 − s3c4a1a4 + s3c2d2d4 + c3a1d4)
(3.3)

The three components confirm that there are at least eight aspects in the joint space. As
the det(J) factors, the IKS can be analyzed according to the factors too. Such a robot
can be declared non-cuspidal by studying the sign of each component of det(J). The plot
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3.1. Cuspidality analysis of simplified 6R geometry

Figure 3.6 – Singularity plot in θ2, θ3, θ4 for a robot with wrist in the middle, mutually
orthogonal axis with a5 = 0. The component (2s5 + c5) is not plotted. D-H parameters
are: d = [0, 1, 0, 1, 2, d6], a = [1, 0, 0, 2, 0, a6], α = [π/2, π/2, π/2, π/2, π/2, 0].

of the equation (3.3) in θ2, θ3, and θ4 is shown in Figure 3.6. The plot is further divided
into 2 parts due to the component (s5d4 + a4c5) along the θ5 axis.

3.1.4 Planar 3R subchain in 6R robots

Another simplified geometry of 6R robot is when the consecutive three axes are aligned,
i.e αi = αi+1 = 0, i ̸= 6. An existing commercial robot of this geometry is the UR series
from Universal Robots. It has been analyzed in [CSEDS20], and shown that this robot
has eight connected regions in the joint space with maximum eight IKS that are always
separated by singularity. The determinant of the UR robots take the following form:

s3s5 (c2s3c4d5 + c2s4c3d5 − s2s3s4d5 + s2c4c3d5 + c2c3a3 − s2s3a3 + a2c2 + a1)a2a3 (3.4)

The geometric analysis of this robot is straightforward, and analyzing each component
of the det(J), it is clear that all IKS correspond to different regions of the aspect. There
are two solutions for sin θ3, two for sin θ5 and (at least) two for the third component,
thus verifying that there exist at least eight connected regions in the joint space as each
component of the det(J) cuts the other transversally.
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3.2 Cuspidality analysis of generic 6R robots

Deciding cuspidality for a given serial arm allows a designer to take better decisions
based on the advantages of the designs and challenges in the path planning of cuspidal
robots. Deciding cuspidality in orthogonal 3R serial robots was completely presented in
[EOW95] from which the necessary and sufficient condition for a 3R serial orthogonal
robot to be cuspidal was put forth. Later, the necessary and sufficient condition for cuspi-
dality in generic 3R serial arms was proven using geometric analysis of the IKM [Sal+22b].
These works allowed a designer to integrate a mathematical check for the cuspidality of a
robot which can be used in an optimization method during the design process. Recently,
a certified algorithm was presented for deciding cuspidality for non redundant nR robots
[Cha+22]. It implements various algorithms in computer algebra using methods on real
algebraic sets and critical loci of polynomial maps. It uses tools from Real Algebraic Ge-
ometry, zero-dimensional parameterizations, to get the sample points in W such that we
have at least a point in each connected region of W . It then investigates the connectivity
of the preimages of each of the sample points by implementing one-dimensional param-
eterizations, roadmap algorithms, which reduce the four dimensional jointspace, J , to a
one dimensional graph without the loss of information on connectivity. Though certified,
this algorithm is very hard to implement presently and cannot be used with collision
constraints.

In this section, the conjecture presented in [IPC98] about two aspects in 6R robots is
investigated. Later, the limitations of existing methods to decide cuspidality are discussed,
and a generic method that can be applied to all 6R serial robots and incorporate the
constraints is proposed. This method is easy to implement and is faster than the certified
algorithm in case of a cuspidal robot. Later, we propose a complete framework that
can be used for deciding cuspidality of a 6R serial robot. It combines all the previously
known results as well as considers the analysis of determinant of the Jacobian in order to
accelerate the process.

3.2.1 Number of aspects in 6R robots

In [IPC98], it is claimed that for any 6R robot, the locus of critical points results in
only one r-surface and thus the maximum aspects are limited to two. The r-surface is
defined as a closed surface formed by the locus of critical points. The argument was based
on the analysis of degree of each joint angle in the det(J) and presented the infeasibility
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3.2. Cuspidality analysis of generic 6R robots

of multiple r-surfaces. The thesis shows that this statement is incomplete. The following
discussion presents a counter example of a 6R robot with more than two aspects formed
by non-intersecting locus of critical points.

Counter example to the conjecture

Without motivating the choice of D-H parameters, we simply show a case of generic
6R robot with four aspects in figure 3.7. The term generic is used in the sense that there
are no intersections between the singularity manifolds, or isolated singular points in the
joint space of the presented robot.

Figure 3.7 – Singularities for the counterexample to [IPC98], a robot with non-intersecting
singularities with more than two aspects. D-H parameters are : d = [0, 0, 0, 1, 2, 0], a =
[1, 0, 0, 2, 3, 0], α = [π/2, π/2, π/2, π/2, π/2, 0].

Error in the proof

In the proof the r-surfaces refer to the connected components of singularities in the
joint space. The analysis of det(J) is presented to study possible cross sections in the joint
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space. It is shown that the det(J) is a function of joint angles as follows:

det(J) = f(t22, t43, t44, t25) (3.5)

where ti = tan θi

2 . This is correct, and the proof further discusses the cross section of the
singularities in θ2θ5-slice. It argues that the two r-surfaces cannot exist by presenting two
cases in which two r-surfaces are present in the joint space. In the first case, it is presented
that there cannot be a r-surface enclosed in another as then there will exist a parallel line
along θ5 that intersects the r-surfaces four times which is not possible as the degree of t5
in det(J) is two (refer to figure 3.8). The other case where two r-surfaces exist presents a
contradiction about which r-surface has an image of the limit of the workspace (refer to
figure 3.9).

Figure 3.8 – Infeasibility of concentric closed r-surfaces as shown in [IPC98]

Figure 3.9 – The cross section of joint space and workspace in case of two separated r-
surfaces as discussed in [IPC98]
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3.2. Cuspidality analysis of generic 6R robots

The argument of figure 3.8 is straightforward to verify by studying the form of det(J)
as mentioned in [IPC98]. The second argument has an error that is an outcome of misin-
terpreting the joint space. In [IPC98], it is discussed that the r-surfaces should be closed
in joint space, Q ∈ [0, 2π[. The issue in this argument is that the r-surfaces do not have
to form bounded regions in Q to formed closed surfaces as the joint space is a T4 (refer to
figure 3.10). The joint space was not treated as a T4 in the previous work. This is evident
from the argument proposed by the paper presenting the only possible case of existence
of ’unique’ r-surface as shown in figure 3.11.

Figure 3.10 – r-surfaces that are closed but do not generate 2 subspace independently

Figure 3.11 – The only possible case of existence of unique r-surface as per [IPC98].

Thus, the assumption that the cross sections shown in figure 3.9 is not possible is
erroneous. In fact, neither Σ1 nor Σ2 need to be the preimage of the limit of the workspace
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as there can exist another r-surface that may correspond to the limit of the workspace
and not violate the form of det(J). Two counterexamples are presented with the possible
r-surface that may map to the limit of the workspace of the robot in figure 3.12. Apart
from this, both the r-surfaces can contribute partially to form the limit of the workspace
as is the case in 3R robots belonging to the 2(0, 0) homotopy class (refer to [Wen98]).

(a) The spheres can exist in same plane.
(b) The spheres can exist in different
planes.

Figure 3.12 – The counterexamples showing the possibility of more than two aspects in
the joint space. The red plane is a r-surface whose image is the limit of the workspace.
The r-surface is not necessarily a plane.

3.2.2 Comment on cuspidality in 6R robots

Conjecture 4. A generic 6R robot with more than 4 IKS is a cuspidal robot.

Proof. The proof (in progress) for the presented conjecture uses following two arguments:

1. The form of the determinant of Jacobian matrix of a 6R robot is given as, det(J) =
f(t22, t43, t44, t25).

2. For a non critical pose in the workspace, the number of IKS with det(J) > 0 is equal
to IKS with det(J) < 0.

We define following two terms to elucidate the proof:
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Definition 18. Bubble: The singularity manifold that do not encircle the T4 torus along
any generator of the torus is defined as a bubble. A bubble generates an open ball bounded
by the bubble only.

Definition 19. Sheet: The singularity manifold that is not a bubble is defined as a sheet.
A sheet cannot bound any open ball independently.

Lemma 9. A single sheet cannot exist in the joint space of a 6R robot.

Proof. As a sheet cannot enclose any open ball, this type of singularity manifold cannot
separate two aspects on its own. A bubble cannot define an aspect with a sheet either as
the exterior of bubble is not bound by a bubble and cannot be bound by a single sheet.
The only possibility is that two sheets or more than two sheets exist in the joint space.
This theorem can be thought as an extension of the Theorem 7 presented in [Wen98].

Lemma 10. There can exist at most four sheets in a joint space of a 6R robot.

Proof. Upon studying the det(J) for a 6R robot, we already know that the maximum
degree for any joint angle is four. So there can exist maximum four sheets such that any
path parallel to any joint angle θi intersects the singularities at maximum four points.

From Lemma 9 and Lemma 10, it is clear that we have four cases of singularity
manifolds depending upon the number of sheets present in the joint space.
Case I : Four sheets exist in the joint space of a 6R robot: In this case, no bubble can
co-exist as it will lead to a path parallel to one of the joint angles that will lead to at least
six intersections (one from each sheet and at least two from each bubble). The number of
aspects present in this case is 4. An example joint space is presented in figure 3.12. So,
for a pose in the workspace with more than four IKS, there will be at least one aspect
with multiple IKS and thus the robot is cuspidal.
Case II : Three sheets exist in the joint space: In this case, no bubble can co-exist as it will
lead to a path parallel to one of the joint angles that will lead to at least five intersections
(one from each sheet and at least two from each bubble). The number of aspects present
in this case is 3. So if there exist a pose with at least four IKS, then at least one of the
three aspects have multiple IKS. This by definition qualifies the robot to be cuspidal.
Case III : No sheets exist in the joint space: In this case n bubbles can exist resulting in
n + 1 aspects. If an IKS in each bubble correspond to det(J) > 0, then in this case the
(n + 1)th aspect that is external to all bubbles is the only aspect with det(J) < 0. So if
the number of IKS is greater than or equal to four, then at least two IKS will exist in the
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(a) Hypothetical distribu-
tion of six IKS such that the
aspects external to bubbles
are unique.

(b) The unique solution
meets the IKS in bubble 1

(c) Questionable situation as
the solution in the bubble 2
has no IKS to meet at singu-
larity.

(n+ 1)th aspect. This by definition qualifies the robot to be cuspidal.
Case IV : Two sheets exist in the joint space: In this case we have two aspects generated by
the two sheets and n aspects generated by each bubble present in the joint space. In this
case, if a pose has more than four IKS then the aspects that are external to the bubbles
necessarily contain multiple IKS. This is attributed to the reason that if only one IKS
existed in the aspect external to bubbles, then this IKS can meet a singularity boundary
associated to one of the bubble and vanish leaving the other IKS belonging to the second
bubble without a pair. This is not possible as each IKS is bounded by a singularity and
can meet a singularity curve starting from any instance. An illustration of the problem
is shown in the figure 3.13. If there are no bubbles then there are upto two aspects and
thus a robot with more than 2 IKS will be cuspidal. This suggests that a robot with more
than 4 IKS is cuspidal if there exists 2 sheets and n bubbles in the joint space.

3.2.3 Effect of constraints

The definition for cuspidality as well as the necessary and sufficient condition for cus-
pidality in a 3R serial robot is valid without the consideration of joint limits and collision
constraints. Figure 3.14 shows an example of a 3R serial robot where we implement joint
limits such that the cusp points in the workspace are inaccessible and yet there exists a
nonsingular change of solutions. This qualifies the robot as cuspidal without encircling a
cusp point. Even though such joint limits are virtual in the aforementioned example, it
is helpful to note that the cuspidality analysis should extend beyond checking the nec-
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(d) The unique solution
meets the IKS from other as-
pect at a sheet.

(e) Questionable situation as
the solutions in all bubbles
have no IKS to meet at sin-
gularity.

Figure 3.13 – An example 2D slice in θ3θ4 for the case with sheets and bubbles in the
joint space.

essary and sufficient condition only. The certified algorithm proposed in [Cha+22] can
incorporate the joint limits as long as the constraints are expressed algebraically. Another
important constraint that affects the workspace and cuspidal behavior of a 6R robot is
the internal link collisions. The internal collision between links limits the workspace of a
robot to a great extent and this impacts the cuspidality analysis. The necessary and suffi-
cient condition as well as the certified algorithm proposed fail to incorporate the collision
constraint. The constraints are neither smooth nor algebraically expressible which makes
them hard to incorporate in the certified algorithm.

3.2.4 Algorithm for deciding cuspidality

In the next section, we propose an algorithm that is capable of deciding cuspidality of
a robot by incorporating both, joint limits as well as internal link collision, constraints. It
utilises the known results as well as the determinant analysis of robots to accelerate the
process.

Known results on cuspidality

Theorem 7. For a wrist-partitioned 6R serial robot, i.e, three intersecting consecutive
axes, at the beginning or at the end of the robot, the existence of a cusp in the workspace
of the 3R serial robot formed by neglecting the wrist is a necessary and sufficient condition
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Figure 3.14 – Nonsingular change of solutions in cuspidal robot with joint limits hiding
the cusp points. Robot parameters: d = [0, 1, 0], a = [0.8, 1.7, 1.8], α = [π6 ,

π

3 , 0].

for the robot to be cuspidal.

Proof. The results for cuspidality from 3R serial robot can be extended to the 6R serial
robots with wrist partition at the end. It is attributed to the reason that the position
and orientation for such robots is decoupled. The wrist singularity in such serial robots is
well known and the solutions for the orientation are always separated by wrist singularity.
This makes the wrist a non-cuspidal robot and so the cuspidal nature of the complete
6R serial robot depends on the cuspidal nature of the 3R serial robot formed by the first
three axes only. The necessary and sufficient condition derived for a generic 3R serial robot
used the geometric interpretation of the IKM for the proof. It is shown in [Pie68] that this
geometric interpretation holds true even for the 6R serial robots with wrist partition in the
beginning. It can be readily shown that the analysis done in the c3s3-plane in [Sal+22b]
can be done in c4s4-plane for the robots with wrist in the beginning where c3, c4 stands
for cos θ3, cos θ4 and s3, s4 denote sin θ3, sin θ4. This suggests that all the theorems proved
for a generic 3R serial robot and extended to 6R serial robots with wrist partition at the
end can be extended to all 6R serial robots with wrist partition in the beginning as well.
The presence of a cusp being a necessary and sufficient condition for a generic 3R serial
robot has been already proved [Sal+22b]. The presented theorem is simply an extension
of the same.
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Apart from these results, it is also known that UR5 robot is a non-cuspidal robot
[CSEDS20] with eight solutions in eight aspects. As it was shown earlier that a generic
6R robot with more than four IKS is cuspidal, it is important to study nongeneric robots
whose determinant factors into components. In the next section, we present the impor-
tance of analysing the determinant of the Jacobian matrix and present new conditions for
a robot to have at least eight aspects.

Determinant analysis

As the number of aspects are governed by the singularities in the joint space, it is
of high importance that we study the determinant of the Jacobian matrix of a generic
6R serial robot. A symbolic determinant for a 6R serial robot can be derived by using
the preferential Jacobian as mentioned in [KD04]. The analysis of the factors of the
determinant of the Jacobian played a fundamental role in orthogonal 3R serial robots.
After assigning the D-H parameters in table 3.2, the determinant of a reduced example
of wrist partitioned 6R robot with anthropomorphic 3R robot looks like:

det(J) = cos θ3 sin θ5 (f(θ2, θ3))

.

Table 3.2 – The D-H parameters of reduced example of a 6R robot with wrist at the end

i di (mm) ai (mm) αi (rad) θi (rad)

1 d1 a1 π/2 θ1

2 0 a2 0 θ2

3 0 0 π/2 θ3

4 d4 0 π/2 θ4

5 0 0 π/2 θ5

6 d6 a6 0 θ6

As the determinant factors in three components it is readily seen that there exists at
least eight aspects in the joint space of such robot as cos θ3 and sin θ5 intersects the other
component which produces two aspects. The geometric analysis of IKM further shows
that the IKS are separated by the singularities. The determinant of the UR5 architecture
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can be obtained in similar fashion. Upon substituting d2 = d3 = d4 = a5 = 0, and
α1 = α5 = π

2 , α2 = α3 = 0, takes the form,

det(J) =− sin θ3 sin θ5 (sinα4 sin θ4 cos θ3 cos θ2 d5+
sin θ3 sinα4 cos θ4 cos θ2 d5 + sin θ2 sinα4 cos θ4 cos θ3 d5−

sin θ2 sin θ3 sinα4 sin θ4 d5 + cos θ4 cos θ3 cos θ2 a4−

sin θ3 sin θ4 cos θ2 a4 − sin θ2 sin θ4 cos θ3 a4−

sin θ2 sin θ3 cos θ4 a4 + cos θ3 cos θ2 a3 − sin θ2 sin θ3 a3+
a2 cos θ2 + a1) a2 a3 sinα4

It can be observed that the determinant is separated in three factors viz, sin θ3, sin θ5

and the rest of the component, g(θ2, θ3, θ4). These factors divide jointspace in at least
eight aspects which already suggests that the robot is nongeneric. Upon analysis of the
IKM, it is verified that such a robot is noncuspidal. As it has been shown in the pre-
vious sections, if the determinant factors into at least three components, the number of
aspects is at least eight and the geometric analysis of IKM may be able to conclude on
cuspidality. This leads to the following question: can we identify 6R robots with simpli-
fied architectures such that the det(J) is factored? The det(J) is a function of 14 D-H
parameters in total that defines the architecture of the robot. These 14 parameters are
d2..5, a1..5, α1..5, and the classification space is huge. The identification was simplified by
providing two values for each parameters. If the parameter is a length parameter, i.e d
or a, then it can be either 0 or a symbolic value. For alpha, only π

2 and 0 values were
considered. This analysis investigates the number of components of the det(J) obtained
from the preferential Jacobian. The total number of robots investigated are 214, and 832
robots were found to be of simplified architecture. The D-H parameters of such robots
are mentioned in Appendix A.5. It is to be emphasized that the thesis reports 832 types
of robots that are noncuspidal. The symbolic values of the length parameters can take
any non zero value and the robot preserves the factored form of det(J). This result is a
doorway to designers for investigating new designs that are non-cuspidal and may have
advantages in specific cases. The orthogonal robots have been shown to exhibit better
dynamic properties compared with the anthropomorphic architectures [NBW12], and it
will be interesting to explore different non-cuspidal designs with simplified IKM.
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Generic case of 6R serial robot

Certified algorithm :
Recently, a certified algorithm was presented for deciding cuspidality for non redundant
nR robots [Cha+22]. It implements various algorithms in computer algebra using methods
on real algebraic sets and critical loci of polynomial maps. It uses tools from Real Alge-
braic Geometry, zero-dimensional parameterizations, to get the sample points in W such
that we have at least a point in each connected region of W . It then investigates the con-
nectivity of the preimages of each of the sample points by implementing one-dimensional
parameterizations, roadmap algorithms, which reduce the four dimensional jointspace, J ,
to a one dimensional graph without the loss of information on connectivity. Though cer-
tified, this algorithm is presently hard to generalize to 6R robots and collision constraints
have not been implemented yet. The certified algorithm is presented in Appendix A.4.

Non-certified approach :
As discussed beforehand, the certified algorithm presented in [Cha+22] is hard to imple-
ment and is currently not implemented for 6R robots. Furthermore, incorporating collision
avoidance is only limited to algebraically expressible constraints. Thus, a different decid-
ing algorithm, similar to [Mar+23], based on solving an optimal-path-planning (OPP)
problem is proposed. In order to decide cuspidality, the OPP problem has to be solved
for the whole workspace until a connection of at least two IKS is found. The workspace
is discretized into a finite nW points xk ∈ W , k ∈ {1..nW}.

The connectivity problem consists of finding a nonsingular path between two different
IKS (qi,qj) ∈ Ix. Therefore, a measure of distance to the singularity is required. In the
literature various methods to measure the distance exist, such as the kinematic manipu-
lability [Dot+95], condition number, smallest eigenvalue or determinant of the Jacobian
to name a few. We use det(J), since it plays an important role in cuspidality analysis.

Optimal-Path-Planning problem: Given an initial IKS q0 ∈ Ix to an arbitrary EE-pose
x. Find a non-singular path q(t) connecting q0 with a valid IKS q1 ∈ Rq0,x. The idea is
to find a path with the largest distance to the singularity. Therefore, the smallest value
of the determinant along the path

inf
t

sign(det J(q0)) det J(q(t)) (3.6)

is maximized. The multiplication with the sign of the initial determinant enables the use
of the function inf also for negative values i.e. det J(q0) < 0. A negative value of (3.6)
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results in an invalid solution since condition (1.9) is not met. As smooth joint paths q(t)
are desirable, an integrator chain represented by z′ = f(z,u, t), with states

zT =
[
qT , (q′)T , (q′′)T

]
and input u = q′′′ are used to receive a three times differentiable path. The OPP problem
is then written as a non-linear optimization problem:

max
z,u

(
inf
t

sign(det J(q0)) det J(q(t))
)
,

s.t. z′ = f(z,u, t), q(0) = q0, q(1) = q1,

z ≤ z(t) ≤ z, u ≤ u(t) ≤ u,

for t ∈ [0, 1]. (3.7)

The geometric lower and upper bounds are denoted by () and (). These bounds can be used
to incorporate joint limits and influence the geometric derivatives. The OPP problem is
solved with a multiple shooting approach [BP84] implemented in Matlab using CasADi
[And+19] and Ipopt [WB06] as solver. It is worth noting that the value of the objective
function can be negative at the optimal point.

The Algorithm: The OPP problem is solved for all discrete EE-pose xk, k ∈ {1..nW},
until a connection between two distinct IKS is found. To this end, the optimization prob-
lem (3.7) is solved for a given initial and terminal IKS q0 ∈ Ix, q1 ∈ Rq0,x of a chosen
EE-pose e.g. x0. If a feasible solution is found (i.e. positive value of the objective) the con-
nectivity problem is solved and the robot is cuspidal. If the optimization is unsuccessful,
a different terminal IKS q1 ∈ Rq0,x of the same EE-pose x0 is chosen and the problem is
solved again. If no connection could be found for e.g. x0, then a different EE-pose xk,k ̸= 0
, is picked and the procedure is repeated. In the case that all grid points xk are checked
unsuccessfully no assertion about cuspidality can be made. It is worth noting, that a grid
refinement of the workspace (or a different grid) can lead to a proof of cuspidality, since
only a finite number of points in the workspace are considered in the procedure. Algorithm
1 details the implementation.
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Algorithm 1 Proposed cuspidality deciding algorithm.
Require: Discretized workspace EE-pose xk, k ∈ {1..nW}

for all k ∈ {1..nW} do
- compute IKS and pick initial q0 ∈ Ixk

i = 1
while qi ∈ Rq0,xk

and connectivity_found=False do
- solve OPP problem (3.7)
if successful then

- connectivity_found = True
end if
i = i + 1

end while
end for
if connectivity_found then

- robot is cuspidal
else

- no assertion about cuspidality possible
end if

Numerical subtleties: Algorithm 1 takes care of numerical difficulties encountered by
the fact that different revolute joint angles are equal modulo 2π. Since these joints can
rotate freely, clockwise as well as counter clockwise rotations must be taken into account.
The joint coordinates are defined by a n-torus Tn. Therefore, adding ±2kπ with k ∈
N0 does not change the IKS i.e. x = f(q) = f(q ± 2kπ). For practical applications only
solutions within the interval q ∈ [−2π, 2π] have to be considered. Consider planning
singularity-free trajectories for a 3R robot connecting the IKS in one aspect, as shown
in figure 3.15a. A non-singular trajectory between q1 and q2 is readily found. On the
other hand, planning a trajectory between q3 and q4 without crossing a singularity is
not possible, since the OPP problem (3.7) does not consider the periodicity of the joint
coordinates. Therefore, adding ±2π element-wise to the solution q4 is extended to the
interval [−2π, 2π] as shown in figure 3.15b. Thus, the IKS q3 and q4 can be connected
by a non-singular trajectory, with a counter clockwise rotation of the third joint.
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(a) singular connection between IKS q3 and
q4

(b) singularity-free connection between IKS
q3 and q4

Figure 3.15 – Example for considering clockwise and counter clockwise rotations in the
IKS.
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Figure 3.16 – Complete framework for deciding cuspidality for any 6R robot

The self-intersection of singularity manifold accrues more aspects thus leading to a
higher possibility of a noncuspidal robot. Such robots are of non-generic type and it
has been noted [PL92] that given a class of manipulators, almost all direct kinematic
maps, f : J → W , are generic and the nongeneric maps form a thin set of the class.
Upon observation of the parameter space for 3R robots, it is not hard to expect that
the neighborhood of a nongeneric design almost always leads to a cuspidal robot. This
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makes the practical framework very useful as the nongeneric cases are identified with the
determinant analysis, and the generic cases are analysed by using the algorithm 1. As the
algorithm is fast and conclusive if the robot is cuspidal, the framework presented in figure
3.16 can be automated to decide cuspidality of almost all 6R robots. We have analyzed
10000 robots with varying parameters for cuspidality, and the framework presented in
figure 3.16 was able to decide the cuspidal nature of each robot.

Application of the deciding framework We present the results obtained by implement-
ing the deciding framework for cuspidality. The algorithm 1 terminates with few iterations
in case of a cuspidal robot. The framework was able to decide upon cuspidal nature of
every 6R robot that was given as an input. We have a 14 dimensional parameter space for
cuspidality analysis which is not only huge but also impossible to visualize. We choose a
specific 3 dimensional parameter space that includes the architecture of almost all types of
known commercial robots, to highlight the importance of cuspidality analysis. Figure 3.17
shows the the parameter space with d5, α3 and α4 as the basis. All other D-H parameters
for the robot are similar to that of FANUC CRX-10ia/L robot. The cube was discretized
into 3240 points and the robot corresponding to each point was analyzed for cuspidality.
It was noted that every point inside the cube, i.e. not lying on the faces, correspond to
D-H parameters of a cuspidal robot. The robots belonging to the face ABFE are degener-
ate robots as the det(J) is always zero. The face ADHE correspond to anthropomorphic
architectures with wrist at end as d5 = 0. It is a known result that the robots on cor-
responding to the points on the face ADHE except the one at A are noncuspidal. The
edge GH corresponds to the robots having anthropomorphic architecture with offset in
the wrist. Every robot belonging to edge GH except the point H is a cuspidal robot, sug-
gesting that the addition of an offset to the anthropomorphic architecture almost always
leads to a cuspidal robot. The robots corresponding to face ABCD have a 3R subchain as
α3 = 0. The edge CD corresponds to UR5 like architecture for a non zero a3 as α4 = π

2 .
For a3 ̸= 0, every robot belonging to the face ABCD except those lying on the edge AB
are noncuspidal as the det(J) have three factors and the robot has a simplified IKM that
can be analyzed geometrically. The face FGHE upon excluding edges GH,HE and EF

corresponds to robots with an offset and a non-orthogonal arrangement of the last three
joints. One such example of commercial robot is the Jaco robot Gen2 (non-spherical wrist)
though in this robot the offset in wrist is generated by non zero a5 instead of d5 length.
These robots are found to be cuspidal by using the framework proposed in figure 3.16.
It is concluded from these results that a robot with generic geometry is almost always a
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D C (d5, 0, π
2 )

GH (0, π
2 , π

2 )

A (0, 0, 0) B (d5, 0, 0)

FE

d5

α3

α4

Figure 3.17 – Classification of a 6R robot parameterized in specially chosen three D-H
parameters. The rest of the DH parameters match that of FANUC CRX-10ia/L robot.

Table 3.3 – Classification of some of the existing robots according to cuspidal nature.

Robot Max IKS Nature
ABB IRB 140, KUKA KR5 8 non cuspidal

UR5, UR10 8 non cuspidal
FANUC CRX-10ia/L 16 cuspidal

Kinova Link6 16 cuspidal
JACO Gen2 (6R version) 12 1 cuspidal

cuspidal robot. Extending the framework, some of the existing commercial robots 1 are
presented in table 3.3 with the details on maximum IKS present in the workspace, and
their cuspidal nature.

3.3 Conclusions

In this chapter, the cuspidality analysis for 6R serial robots is detailed. Considering the
majority of designs that exist in industries today, simplified architectures are analysed in
the beginning. It is shown that the results for 3R robots can be extended to 6R robots with
wrist at the beginning or at the end of the architecture. This is attributed to the reason
that the position and orienattion of the end-effector is decoupled in such architectures.
The case for wrist in the middle is investigated further highlighting that the rsults of 3R
robots are not applicable in this case. Using the geometric interpretation of the kinematic

1. The maximum number of IKS for Jaco Gen2 robot is reported upon searching the workspace with
100,000 points generated by a low discrepancy sequence.
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model, a sufficient condition is provided for such architectures to result in noncuspidal
robots. A discussion on number of aspects in a generic 6R robot is presented, presenting
a counterexample to an existing conjecture. It is further proposed that a generic 6R robot
with more than 4 IKS is a cuspidal robot. This conjecture is fundamental to the design
of 6R robots to avoid designing cuspidal robots. Given the increasing use of the UR5
architecture, the case of 6R robots with 3R planar subchain is investigated. It is shown that
the presence of 3R planar subchain simplifies the det(J), thus simplifying the cuspidality
analysis. Considering the importance of deciding cuspidality for designing 6R robots, a
certified algorithm is presented. Later, a practical framework is presented to decide upon
the cuspidal nature of 6R robots. This framework utilizes all the known results, exploits
the form of det(J), and uses numerical approaches to decide upon cuspidality of a generic
6R robot. The chapter concludes by presenting results of implementing this framework on
thousands of generic architectures to further highlight that a generic design most likely
leads to a cuspidal robot.
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Chapter 4

PATH PLANNING IN CUSPIDAL ROBOTS

In this chapter, we discuss the issues and solutions to the path planning of cuspidal
robots. Path planning considering cuspidality is not well-studied as the knowledge about
cuspidal robots is limited in industries. Section 4.1 discusses the different issues that
can arise in cuspidal robots such as the feasibility as well as repeatability of the path
depending on the given path and choice of initial IKS. Later, section 4.2 outlines the
different cases that can occur in the path planning problem of cuspidal robots. A path
planning framework for 6R cuspidal robots is proposed to address the problems arising in
existing commercial/industrial 6R robots. The presented framework allows to utilize the
cuspidal robots to their fullest extent while avoiding the dangers of unexpected failure.

4.1 Issues in cuspidal robots

This section focuses on certain issues arising in cuspidal robots due to their geometric
properties. The section starts with the definition of configurations, and explains the dif-
ference between IKS and configurations. The issues in classifying robots with more than
8 IKS into conventional 8 classes has been highlighted by using a commercially sold robot
software. Later, we present a commercial robot widely used in various applications, and
the trajectory planning issues occurring with this robot. The feasibility of a path depends
on the initial choice of IKS, and some feasible paths are not repeatable. The aim of this
section is to motivate the claim that cuspidal robots are not suitable for collaborative
tasks and can lead to unexpected behavior if neglected.

4.1.1 Unique configuration identification

A configuration is defined in section 1.2.3 as an IKS that can be uniquely identified
geometrically or analytically. This definition was specifically introduced to discuss the
problems of unique identification of configurations in a cuspidal robot. A cuspidal robot
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by definition has at least one aspect with multiple IKS, and thus at least 2 IKS cannot
be uniquely identified at a given time. The issue is exacerbated as the number of aspects
decreases as more number of IKS lose the ability to be uniquely identified. As discussed
in section 3.2, the offset in the wrist of a 6R serial robot almost always leads to a cuspidal
robot. The industrial robots that have an anthropomorphic architecture with an offset in
the wrist are almost always cuspidal in nature. We investigate a specific case of such a
robot, the CRX-10ia/L robot from FANUC industries (refer to Figure 4.1).

Figure 4.1 – Industrial cobot from FANUC, CRX-10ia/L

The D-H parameters of this robot are: The inverse kinematics of this robot is solved

Table 4.1 – The D-H parameters of the CRX-10ia/L robot

i di (mm) ai (mm) αi (rad) θi (rad)

1 245 0 π/2 θ1
2 260 710 0 θ2
3 -260 0 π/2 θ3
4 540 0 π/2 θ4
5 150 0 π/2 θ5
6 160 0 0 θ6

by using HuPf algorithm presented in [HPS07], which provides an algebraic sixteen degree
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polynomial for any given generic D-H parameters. It is concluded that this robot has up
to sixteen IKS, and an example of these solutions is presented in Figure 4.2.

(a) First IKS:
θ(rad) = [2.7,
0.87, 2.28,
2.57, 3.14,
0.13]

(b) Second
IKS: θ(rad) =
[-2.88, -0.85,
1.03, 0.03,
-0.18, -2.85]

(c) Third
IKS: θ(rad) =
[-2.94, -0.86,
0.87, -0.54,
0.01, 2.8]

(d) Fourth
IKS: θ(rad)
= [-0.51, 2.3,
1.02, -0.02,
2.95, -0.49]

(e) Fifth IKS:
θ(rad) =
[0.26, -2.3,
2.11, -3.11,
-0.18, -2.85]

(f) Sixth IKS:
θ(rad) =
[-2.88, 0.85,
2.12, 0.03,
-2.96, -2.91]

(g) Seventh
IKS: θ(rad) =
[-2.95, 0.86,
2.28, 0.56,
-3.13, 2.78]

(h) Eight IKS:
θ(rad) = [0.2,
-2.28, 2.28,
2.6, 0.01, 2.8]

(i) Ninth
IKS: θ(rad) =
[-0.44, 2.28,
0.86, -0.57,
3.14, 0.13]

(j) Tenth
IKS: θ(rad) =
[-0.45, -2.28,
2.27, 0.53,
-0.0, 0.08]

(k) Eleventh
IKS: θ(rad) =
[2.64, -0.85,
1.03, 3.12,
0.17, -0.52]

(l) Twelfth
IKS: θ(rad)
= [2.64, 0.85,
2.12, 3.13,
2.95, -0.49]

In this software, the choice of configurations are provided for the user to choose from.
These are binary options between Flip or UnFlip, Up or Down, and Top or Bottom, The
user can choose one configuration for each three arrangements. An example configuration
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(m) Thir-
teenth IKS:
θ(rad) =
[2.69, -0.86,
0.87, -2.61,
0.0, 0.08]

(n) Four-
teenth IKS:
θ(rad) =
[0.26, 2.3,
1.02, -3.11,
-2.96, -2.91]

(o) Fifteenth
IKS: θ(rad)
= [0.2, 2.28,
0.86, -2.58,
-3.13, 2.78]

(p) Sixteenth
IKS: θ(rad)
= [-0.51, -2.3,
2.11, -0.02,
0.17, -0.52]

Figure 4.2 – Sixteen solutions for the CRX-10ia/L robot.

could be N, U, T which can be interpreted as configuration UnFlip-Up-Top, and an
example of an IKS in such configuration is provided in Figure 4.3.

Figure 4.3 – An example IKS for CRX-10ia/L in UnFlip, Up, Top configuration as clas-
sified by FANUC

There exists two major problems with such a classification:

1. A maximum eight out of available sixteen solutions are provided by the software

2. sixteen solutions are attempted to be classified into eight categories

The first problem with the IKM implemented in ROBOGUIDE is that it does not provide
the complete set of solutions. The user can only choose from up to eight IKS for a given
pose of the end-effector. In the example illustrated in Figure 4.2, all the sixteen IKS
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respect the joint limits of the robot as well as the collision constraints, but only eight
of them are accessible by choosing the three binary choices (23). This limits the robot
to a great extent and thus fails to motivate the choice of IKS provided to the user.
The second problem naturally occurs from trying to fit sixteen solutions in eight unique
categories. Moreover, the classification provided by the software is different from the
conventional Flip-UnFlip, Right-Left, Up-Down classification. This makes it even harder
to interpret the classification and example of such a confusing annotation is illustrated in
Figure 4.4. The given configuration is classified as Flip, Down, Bottom configuration, and
clearly the classification is counter-intuitive leading to problems for the user to choose the
configurations from available limited choices. When the sixteen solutions obtained from
the algebraic derivation were input, the configurations defined by the software turned out
to be erratic. Among the sixteen solutions the ’configurations’ do not repeat uniformly,
i.e, the configurations FUT, NDT, FDB, and NUB are unique, while the rest of the
configurations have three IKS. All the IKS of an instance with sixteen solutions along
with their configuration are presented in Figure 4.5. The solutions can be matched with
those in Figure 4.2 for reference, and the underlined captions are the IKS obtained from
the ROBOGUIDE software while the IKS without an underline are the solutions missed
in the software.

Figure 4.4 – An example IKS for CRX-10ia/L in Flip, Down, Bottom configuration as
classified by FANUC
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(a) First IKS, configuration: F, U, T (b) Second IKS, configuration: F, D, T

(c) Third IKS, configuration: F, D, T (d) Fourth IKS, configuration: N, U, T

(e) Fifth IKS, configuration: F, D, T (f) Sixth IKS, configuration: N, U, T

(g) Seventh IKS, configuration: N, U,
T

(h) Eight IKS, configuration: N, D, T
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(i) Ninth IKS, configuration: F, D, B (j) Tenth IKS, configuration: F, U, B

(k) Eleventh IKS, configuration: F, U,
B

(l) Twelfth IKS, configuration: N, D,
B

(m) Thirteenth IKS, configuration: F,
U, B

(n) Fourteenth IKS, configuration: N,
D, B

(o) Fifteenth IKS, configuration: N, D,
B

(p) Sixteenth IKS, configuration: N,
U, B

Figure 4.5 – Sixteen solutions for the CRX-10ia/L robot with their designated configura-
tion in the ROBOGUIDE software.

The configurations associated with multiple IKS lead to another problem which is
specific to the cuspidal property of a robot. To elaborate this issue, the IKS and their
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corresponding det(J) value is given in table 4.2.

IKS det(J) configuration IKS det(J) configuration
First positive F, U, T Ninth positive F, D, B

Second negative F, D, T Tenth negative F, U, B
Third positive F, D, T Eleventh positive F, U, B
Fourth negative N, U, T Twelfth negative N, D, B
Fifth negative F, D, T Thirteenth negative F, U, B
Sixth positive N, U, T Fourteenth positive N, D, B

Seventh negative N, U, T Fifteenth negative N, D, B
Eight positive N, D, T Sixteenth positive N, U, B

Table 4.2 – The CRX solutions from Figure 4.5 with their corresponding det(J) sign and
configurations as assigned by ROBOGUIDE.

From table 4.2, it can be noted that if the two IKS annotated by the same configuration
belong to a single aspect, then a nonsingular change of IKS is possible and the program
will not even detect this change of IKS. This shortcoming has major consequences on
the overall performance as well as safety of the robot. The change of IKS is investigated
to prove that indeed the sixteen solutions in Figure 4.5 are present in only two aspects,
and thus every IKS with positive det(J) can be connected in a nonsingular fashion to an
IKS with similar sign of the determinant. As discussed in section 1.2, Figure 4.6 shows
the nonsingular paths between IKS in an aspect with positive det(J). The given plots
are enough to conclude that all the eight IKS whose determinant value is positive can
be interconnected, and thus lie in the same aspect. Similar analysis is done for the IKS
with negative det(J), and plots are illustrated in 4.7. From Figure 4.6 and Figure 4.7,
it is concluded that the sixteen solutions presented in Figure 4.2 are separated into two
aspects only.
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(a) IKS 1 → IKS 6 (Minimum
value = 6.43)

(b) IKS 6 to IKS 8 (Minimum
value = 4.08)

(c) IKS 8 → IKS 9 (Minimum
value = 0.006)

(d) IKS 9 → IKS 11 (Minimum
value = 4.3)

(e) IKS 11 → IKS 14 (Minimum
value = 6.43)

(f) IKS 14 → IKS 16 (Minimum
value = 6.46)

(g) IKS 1 → IKS 3 (Minimum
value = 1.09)

Figure 4.6 – The det(J) plot to verify nonsingular change of solutions between two IKS
of CRX-10ia/L in the aspect with positive det(J)
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(a) IKS 2 → IKS 5 (Maximum
value = -17.19)

(b) IKS 5 → IKS 10 (Maximum
value = -3.67)

(c) IKS 10→ IKS 12 (Maximum
value = -0.668)

(d) IKS 12 → IKS 13(Maximum
value = -17.19)

(e) IKS 13→ IKS 15 (Maximum
value = -0.216)

(f) IKS 15 → IKS 7 (Maximum
value = -4.43)

(g) IKS 7 → IKS 10 (Maximum
value = -1.81)

Figure 4.7 – The det(J) plot to verify nonsingular change of solutions between two IKS
of CRX-10ia/L in the aspect with negative det(J)
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The issue with this is that if the trajectory starts with the fourth solution (refer to Fig-
ure 4.2 and table 4.2), there exists a nonsingular path to reach the seventh solution. Both
of the IKS are annotated as N, U, T configuration. The consequence of such inaccurate
and ambiguous classification is that neither the collision constraints can be guaranteed
nor the repeatability of the path is assured. Such errors cause confusion for the user, and
further are not safe for operations especially in a collaborative environment. Two solutions
are proposed to mitigate the issue discussed in this section:

1. remove the classification of configurations

2. record the pose as well as the joint values to avoid the nonsingular change of solutions
going undetected

The first solution is applicable to all cuspidal robots. Not only is it hard to classify IKS
for robots whose det(J) do not factor into distinct components, but also is impossible
for cuspidal robots. This section provides enough motivation for avoiding configuration
classification for cuspidal robots. The second solution is an alternative to conventional
classification of IKS by configurations. Currently, the program records the end-effector
pose and the configuration in which the robot is operating. By remembering the joint
values, we circumnavigate the troubles of classification, and the collision constraints can
be guaranteed independent of the trajectory information. Though, recording the joint
values will not avoid the robot from changing reduced aspects (crossing critical values in
the workspace), the robot can at least have an information of its current configuration so
that new algorithms can be developed to check collision with environment in real time.
The next section discusses the feasibility of a given trajectory depending on the initial
choice of IKS for cuspidal robots.

4.1.2 Issues in trajectory planning in cuspidal robots

As shown in previous section, cuspidal robots ask for extra care and caution in trajec-
tory planning, as identifying an aspect related to one unique inverse kinematic solution is
not possible. The issues related to path following in cuspidal robots are not only related
to the algorithms used for trajectory planning, but also due to the inherent property
arising from the geometric design of the manipulator. As designers move away from the
conventionally implemented wrist-partitioned anthropomorphic architecture, there is a
high chance that such robots have completely different kinematic properties. The cuspi-
dality property seems to have been slipped from the consideration of the current designers
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around the world [Ver21]. Recently, several industrial 6R robots with a non-spherical wrist
have appeared. To the best of our knowledge, the only 6R robots with a non-spherical
wrist that have been analyzed for the cuspidal property, are the UR-series robots from
Universal Robots. Computer algebraic tools were used to show that these robots have
eight aspects with no more than one IKS per aspect [CSEDS20], leading to a conclusion
that such robots are non-cuspidal. This is because UR robots have three parallel joint
axes, a geometric simplification that was identified by Pieper as a solvability criterion
[Pie68]. In the absence of 3 parallel joint axes, 6R robots with a non-spherical wrist are
very likely to be cuspidal. In this section, cuspidality is illustrated with the Jaco robot
(gen 2, non-spherical wrist) from Kinova robotics, which is used in various applications.
The Jaco robot was mainly designed for rehabilitation [Kin] and thus is employed near
persons with disability and interacts with them. Multiple IKS that belong to the same
aspect are presented, and the implication of cuspidality on path planning is presented in
this subsection to highlight the importance of considering cuspidality while designing a
robot as well as while implementing such robots in real life. Problems in choosing the
initial solution of the path in cuspidal robots, and its consequence, is illustrated with an
example path in the workspace of the Jaco robot. The dangers of neglecting the cuspidal-
ity are detailed and the rationale behind limiting their use in collaborative environments
is motivated too.

Inverse kinematics of Jaco robot

Table 4.3 shows the DH parameter table for the Jaco robot. The parameter d6 does
not affect the inverse kinematic solution, and for the purpose of analysing specifically Jaco
robot, d6 = 160 mm. The Jaco robot has an offset in the wrist, and thus a direct decoupled
analysis cannot be implemented. Inverse kinematics for such robots with an offset in the

Table 4.3 – The DH parameters of the Jaco robot

i di (mm) ai (mm) αi (deg) θi (rad)

1 275.5 0 90 θ1
2 0 410 0 θ2
3 13.3 207.3 -90 θ3
4 103.8 0 55 θ4
5 0 103.8 -55 θ5
6 160 0 0 θ6
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wrist can be obtained by previously established algorithms for generic 6R robot [RR93;
HPS07] or with methods applicable specifically to offset in the wrist [Tri+15; GL14]. In
this paper, the results are presented by using the methodology detailed in [GL14] as it
is specific to the Jaco design and is easy to implement. Using this method, a 16-degree-
polynomial in tan θ1

2 is obtained by eliminating the other joint variables. This polynomial
with rational parameters is solved with the Isolate function [Rou99] in RootFinding library
available in Maple 2020. Then, straightforward backpropagation is used to obtain the rest
of the joint variables.

Number of IKS in the Jaco robot

It is a well-known result that a wrist-partitioned 6R robot has at most eight solu-
tions. This is attributed to the decoupling between the positions and orientation of the
end-effector and thus can be solved independently. The first 3R chain forms a regional
manipulator and its inverse kinematics can be solved with a four degree inverse kinemat-
ics polynomial or two quadratics in cascade. The wrist provides two solutions for each
orientation and thus, yields up to eight (4 × 2) solutions for a wrist-partitioned 6R robot.
This does not hold true for robots with an offset in the wrist such as the Jaco robot. A
case of end-effector pose with twelve IKS was exhibited in [GL14]. While, in the absence
of joint limits and collisions, a pose in a nonsingular configuration of a wrist-partitioned
6R robot has either eight IKS or four IKS, it is shown that the Jaco robot can have
two, four, six, eight, ten, or twelve IKS. It can be concluded from this finding that the
workspace of the Jaco robot is divided into multiple regions of varying numbers of IKS
and thus the trajectory planning for such a robot is a non-trivial problem. This is because
a desired path can cross internal boundaries associated with singularities in the workspace
and switch between multiple connected regions in the workspace with varying numbers
of IKS. Figure 4.8 shows two different 2D slices in the workspace of the Jaco robot with
a fixed orientation and z-coordinate. The blue, yellow, dark orchid, green, magenta, and
turquoise colors represent the end-effector pose with two, four, six, eight, ten, and twelve
solutions, respectively. The slice in fig. 4.8a has regions with two, four, six, and eight solu-
tions. It is worth noting that two voids appear in this slice which is absent in Puma-type
robots. The slice in fig. 4.8b has four, six, eight, ten, and twelve solution regions.
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(a) Slice 1. The holes in the workspace cor-
respond to areas with no IKS. (b) Zoomed section of Slice 2

Figure 4.8 – Regions with different number of IKS in 2D slice (xy-plane) in the workspace
of Jaco. The fixed orientation has a quaternion (h) and z-coordinate for the slices:
Slice 1: h = 0.2565 + 0.033̂i + 0.812ĵ + 0.582k̂, z = 560.56 mm
Slice 2: h = 0.984 + 0.004̂i + 0.103ĵ + 0.147k̂, z = 257.94 mm

Investigating connectivity

The solutions for a particular pose of the end-effector is given in table 4.4 along with
the sign of det(J) at the corresponding joint configuration. To search for a nonsingular
change of solutions, a linear interpolation between two IKS with the same determinant
value was evaluated. If the determinant value changed sign along the linear interpolation,
then the path was divided into three parts and the two non-extreme points of the path were
recalculated by using the Nelder-Mead approach [NM65], to find the possible nonsingular
change of solutions. This is a working algorithm to determine cuspidality of any robot and
is faster to implement when compared to a more robust certified algorithm in [Cha+22].
The advantage of using Nelder-Mead approach to determine the connectivity of the given
IKS is that the method is versatile and can adapt to constraints easily. This implies that
the working algorithm can be extended to find a nonsingular change of solutions with
joint limits and collision constraints of the robot too. Figure 4.9 & 4.10 show the progress
of det(J) along the joint paths obtained from the algorithm. It is apparent that there are
six solutions in aspect det(J) > 0 and six solutions in aspect det(J) < 0.
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IKS θ1 θ2 θ3 θ4 θ5 θ6
(sign(det(J))) (rad) (rad) (rad) (rad) (rad) (rad)

I (+) 3.0675 1.0545 1.3090 2.4283 -1.2305 -2.3002
II (+) 2.4335 0.0936 1.5741 1.4311 2.3452 0.5391
III (+) -0.8579 3.0408 1.5721 -1.5912 2.1625 0.5390
IV (+) 2.9132 0.2824 1.9297 -2.1648 -2.9685 -2.7165
V (+) -0.2812 2.0346 1.8631 -0.5833 -1.0917 -2.4130
VI (+) -0.2456 2.8156 1.3090 0.4882 -2.8301 -2.3003
VII (-) -3.1201 0.7082 1.4904 2.62 -1.9637 -1.8817
VIII (-) 2.4730 0.0943 2.0281 -1.4916 -2.4244 2.4362
IX (-) -0.1583 2.7025 1.4699 -0.0656 -2.5402 -1.9078
X (-) -0.7501 1.9399 2.0268 -1.4270 0.6212 2.6291
XI (-) -0.8046 3.0466 1.1135 1.5103 -2.2697 2.4394
XII (-) 2.5338 1.2022 1.1149 1.5839 0.6030 2.6322

Table 4.4 – The 12 IKS of a pose of the Jaco robot for te pose defined below.
Orientation: h = 0.549 + 0.497̂i + 0.423ĵ + 0.522k̂, position(x, y, z)(mm) = (140.49, 47.13,
324.876).

(a) IKS I → II (b) IKS II → III

(c) III → IV (d) IKS IV → V
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(e) IKS V → VI (f) IKS VI → I

Figure 4.9 – Progress of the det(J) for six nonsingular change of solutions in aspect with
positive determinant value.

(a) IKS VII → VIII (b) IKS VIII → IX

(c) IKS IX → X (d) IKS X → XI
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(e) IKS XI → XII (f) IKS XII → VII

Figure 4.10 – Progress of det(J) for six nonsingular change of solutions in aspect with
negative determinant value.

Nonsingular change of solutions

The nonsingular change of solutions in 3R robots is well understood and can be antici-
pated [Wen04]. The nonsingular change of solutions in 3R robots takes place strictly after
crossing the locus of critical values (a workspace boundary associated to a singularity)
and thus the trajectory passes through regions with different numbers of IKS [Sal+22b].
The existence of reduced aspects in 6R robots is not proven, and thus it is unclear whether
a nonsingular change of solutions implies a path that passes through different connected
regions in the workspace. The visualization of a nonsingular change of solutions is pre-
sented in this subsection to emphasize the impact of the choice of initial IKS on the
robot’s interaction with the environment. Figure 4.11 shows the end-effector path corre-
sponding to the nonsingular change of solution from VII to VIII (refer to Figure 4.10a).
The end-effector path is a closed path. It is straightforward to conclude from Figure 4.11
and Figure 4.10a that the kinematic properties along the desired path are a direct result
of the choice of initial IKS.
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(c) Intermediate path (d) Final solution

Figure 4.11 – Nonsingular change of solutions: IKS VII → VIII.

(a) Initial solution (b) Intermediate path

Feasibility depending on choice of initial IKS

As shown in fig. 4.8, it is known that there are multiple connected regions with varying
numbers of IKS. It is well established that when a workspace boundary associated with
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a singularity is crossed, at least two solutions disappear (resp. appear) if the robot move
toward a region with less IKS (resp. with more IKS) [KS85]. In classical path planning
algorithms, a change of solution only occurs when det(J) changes sign. Thus, an end-
effector path can be declared infeasible if det(J) changes sign. In the case of cuspidal
robots, a jump to another IKS in the same aspect can take place without detection, and
this jump results into going off the planned end-effector path. Such a behavior has been
recorded in the MICO robot earlier but lacks a detailed explanation of the error [Ver21].
It is surprising to note that the issue in path planning of the Jaco Gen 2 robot has not
been widely reported. The authors’ best guess is that either most of the planning done
using this robot is done in the joint space or the solutions are just declared infeasible if
a critical value is encountered. The issues in planning were discussed with the company
that manufactures the robot, but unfortunately did not culminate into a meaningful con-
versation.

In order to better explain the issue of choosing a suitable initial IKS, the case of a
3R robot is presented in detail . The workspace and singularities of 3R robots have been
extensively presented in [Wen04; Sal+22b], and are revisited briefly here. Figure 1.12
illustrates a closed path path that starts from a pose with four IKS and passes through
two connected regions in the workspace. The level set representation [HOC08] of a cross
section of the workspace in (ρ, z, cos θ2) corresponding to the two aspects are shown in
fig. 4.12b & 4.13b respectively. The dotted line represents the pose of the end-effector
and the intersection of this line with the level set representation corresponds to one IKS.
qi is the IKS in the joint space of the robot and the corresponding point on the level
set representation is given as pi. Depending upon the initial IKS, qi, the path is either
feasible or infeasible. It can be deduced from fig. 1.11, fig. 4.12 and fig. 4.13 that if the
trajectory starts from initial IKS q2 or q3, the closed path path is infeasible. The path is
feasible only if the initial IKS is either q1 or q4.

In 3R robots, the transition between regions with 0, 2 and 4 IKS allows one to visualize
the level set representation making the analysis easier than for 6R robots. For the Jaco
robot, there exists multiple accessibility regions with 6 possible numbers of IKS. This leads
to many complicated possibilities and the planned path may include sudden jumps in the
joint values. This sudden jump cannot be avoided with a generic planner that is unaware
of the cuspidal property of the robot. An example trajectory is shown in Figure 4.14 that
crosses regions with 4, 6 and 8 IKS. The trajectory is in the Slice 1 (refer to Figure 4.8a)
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(a) Closed path starting from IKS
q1

(b) Closed path as seen in the level set representation
of one aspect

Figure 4.12 – An example of nonsingular change of solutions

and starts from point a(−280, 0) and passes through point b(−280, 200), c(−120, 200)
and d(−120, 0) and returns to a. Figures 4.15 and 4.16 show the time histories of the
joint angles along the path. The dotted lines divide the path into four parts and represent
the instances when the path crosses a region with a given number of IKS in the workspace.
They are labeled as (i → j) denoting the change from a region with i solutions to the
region with j solutions. The first and the fourth regions correspond to the path in a
eight-solution region while the second and third regions correspond to the path in six-
and four-solution regions, respectively. The blue color paths in each plot are the solutions
in an aspect with det(J) > 0 while the red paths correspond to det(J) < 0. In Figure
4.15, Ti, i = 1..8 is a trajectory corresponding to each initial IKS. It can be seen that
if the robot starts the path from IKS corresponding to T3, T4, T7 or T8, it soon meets
a singularity. If the cuspidality of the robot is not taken into account, a sudden jump
will take place to a solution available in the same aspect at the next discrete instance.
For example, if the path is initiated from T4 (resp. from T3), after the first dotted line,
(8 → 6), there will be a sudden jump to T1, T5 or T8 (resp. to T2, T6 or T7). In case of
trajectory T7 and T8, there will be a sudden jump after (6 → 4) to T2 or T6 and T1 or
T5, respectively. Some of these jumps are shown by green color lines in Figure 4.15. It is
apparent that T3, T4, T7 and T8 are infeasible.
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(a) Closed path starting from IKS
q4

(b) Closed path as seen in the level set representation
of another aspect

Figure 4.13 – Same path as shown in Figure 4.12, but without changing solutions

Figure 4.14 – A closed trajectory crossing multiple connected regions in the workspace of
Jaco robot
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Figure 4.15 – Value of θ1 along the closed path in fig. 4.14, with regions of 4, 6 and 8 IKS.
Blue and red paths correspond to solutions in an aspect with det(J) > 0 and det(J) < 0
respectively.

(a) Value of θ2 along the path (b) Value of θ3 along the path
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(c) Value of θ4 along the path (d) Value of θ5 along the path

(e) Value of θ6 along the path

Figure 4.16 – Plot for θ2...6 of all solutions at discretized points along the path in fig. 4.14.

A closed path trajectory in the slice shown in 4.17 that starts from point a(−90, 200)
and passes through b(−150, 200), c(−150, 375), d(75, 375) and e(75, 200) is bound to sud-
den jumps and getting off the expected path no matter which initial IKS is chosen. The
two examples discussed in this section demonstrate the challenges in path planning for a
cuspidal robot. These examples are not related to any special poses, the only condition
used to demonstrate the issues in path planning is that it travels through multiple con-
nected regions in the workspace. It suffices to say that the cuspidality analysis is essential
particularly in the present scenario when designers choose unconventional designs.

Repeatability depending on choice of initial IKS

Closed paths that do not result in a change of IKS can be repeated infinitely many
times, but this is not the case for nonsingular solution changing paths. This dependency
of path feasibility and repeatability on the initial IKS pose several challenges in planning
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Figure 4.17 – Path in the slice of Jaco that is infeasible no matter the choice of initial
IKS

trajectories of 3R and 6R cuspidal robots. In 3R serial robots, a following theorem can be
stated:

Theorem 8. A nonsingular change of solutions in a generic 3R robot is a nonrepeatable
path.

Proof. The proof of this theorem uses theorem 2, and the fact that the number of IKS
with det(J) > 0 is the same as the number of IKS with det(J) < 0. As it is proved in
theorem 2, every IKS of a generic 3R robot lies in a distinct connected region. It has
been established in chapter 2.1 that an IKS crosses pseudosingularities while changing
solutions in nonsingular fashion. As the maximum number of IKS for a 3R robot is four
(refer to M(t) from chapter 2.1), there are at most 2 IKS in an aspect of such a robot.
As the preimage of the image of every point on pseudosingularity consists of a critical
point too, it is necessary that while crossing the pseudosingularity, the second IKS in the
aspect meets the locus of critical points. This implies that if we were to repeat the path
starting from the second solution in an aspect, the path would meet a singularity while
crossing the component of critical value and thus is an infeasible path.
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Repeatability of a nonsingular change of solutions for 6R robots is different. The
dependence of repeatability on initial choice of IKS in Jaco robot is shown by discussing
the same path as depicted in Figure 4.14. The repeatability of a path can be studied
from Figure 4.15 by following a particular path from the beginning to the end. As the
discussed trajectory is a closed path, the initial set of IKS should match the final set of
IKS. Path feasibility is a pre-requisite to analyze path repeatability, and for this reason
we will consider only the trajectories T1, T2, T5 and T6. Upon following the continuous
path starting from the trajectory T1 (resp. T5) whose initial IKS belongs to an aspect
with det(J) < 0, it is clear that it ends up on the initial IKS corresponding to trajectory
T8 (resp. T4). This signifies a nonsingular change of solutions. It is further noted that
this change of solutions will result into a non-repeatable path as trajectory T8 as well as
T4 are the initial IKS corresponding to infeasible paths. Upon following the trajectory
T2 (resp. T6), it is noted that they end up on the IKS corresponding to its own path,
i.e, IKS corresponding to T2 (resp. T6). This path corresponds to a regular path and is
thus repeatable. To conclude on the given path in Figure 4.14, trajectories T2 and T6 are
the only two trajectories out of the eight possibilities that lead to a feasible as well as
repeatable path. It is important to highlight that trajectories T1 and T5 can qualify as
acceptable choices of initial IKS depending upon the tasks requirements on repeatability.

Palindromic robots

As shown in the above example, a nonsingular change of solutions affects the repeata-
bility of the given path. The nonsingular change of solutions in 3R robots is necessarily a
nonrepeatable path, but there exists few 6R robots where this is not true. The first robot
to exhibit repeatable nonsingular change of solutions was presented in [PCI88]. This robot
is a special arrangement of the joints such that the relative joint orientations in subchain
formed by first three joints is similar to that of a subchain formed by last three joints
(refer to Figure 4.18). Because of the mirrored architecture that resembles palindromes,
such a robot is defined as a palindromic robot in the scope of presented work. The D-H
parameters for one such robot are given in 4.5. The values for all the joint angles along
the path mentioned in table 4.6 is shown Figure 4.19.
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i di (mm) ai (mm) αi (deg) θi (rad)

1 0 0 90 θ1
2 0 4 0 θ2
3 0 1 270 θ3
4 0 0.8 0 θ4
5 0 0 90 θ5
6 0 0 0 θ6

Table 4.5 – The D-H parameters of a robot with palindromic architecture

via point θ1(deg) θ2(deg) θ3(deg) θ4(deg) θ5(deg) θ6(deg)
a 20 40 10 -70 30 0
b 20 36 36 -72 36 0
c 20 72 36 -126 72 0
d 20 72 36 -180 180 0
e 20 72 36 -342 486 0
f 20 108 36 -342 522 0
g -160 140 -10 -290 510 180

Table 4.6 – The joint values for the via points of nonsingular change of solutions

Figure 4.18 – The schematic figure of a palindromic robot and the progress of det(J) along
the path in table 4.6 confirming a nonsingular change of solutions.
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(a) Value of θ1 along the path (b) Value of θ2 along the path

(c) Value of θ3 along the path (d) Value of θ4 along the path

(e) Value of θ5 along the path (f) Value of θ6 along the path

Figure 4.19 – Plot for θ1...6 of all solutions at discretized points for a nonsingular change
of solutions that is repeatable.

The property of repeatable nonsingular change of solutions is not applicable to all
palindromic robots.

137



Chapter 4 – Path planning in cuspidal robots

(a) Value of θ1 along the path (b) Value of θ2 along the path

(c) Value of θ3 along the path (d) Value of θ4 along the path

(e) Value of θ5 along the path (f) Value of θ6 along the path

Figure 4.20 – Plot for θ1...6 of all solutions at discretized points for a nonsingular change
of solutions that is nonrepeatble.
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4.1.3 Problems in collaborative applications

Being aware of the cuspidal property of a robot, the choice of initial IKS may not be a
problem if the complete trajectory to be followed and the repeatability condition for the
path are known prior to execution. Thus, it is of great importance that such robots are
strictly used in environments with pre-planned trajectories. If deployed in collaborative
areas (as is the present case for the Jaco robot), such robots are bound to error and
can lead to unexpected behavior and unforeseen scenarios. In this section we revisit the
infeasible paths in 3R cuspidal robots discussed in [Wen04]. Later, we show that the same
issues exist in the 6R robots by showing common trajectories (straight lines with fixed
orientation) involved in collaborative task. The aim of this section is to strongly motivate
the reason to desist from implementing cuspidal robots in collaborative applications.

Infeasible paths in 3R robots

As discussed in chapter 2.1, the components of critical values have a geometrical
interpretation of specific IKS coming together at a tangent point. This implies that if we
begin from a particular IKS, then there are certain components of critical values that
cannot be crossed. In [Wen04], the different regions of feasible path for a particular 3R
robot were presented. It was readily concluded that for such a 3R robot, the trajectory
starting from wi to wj (refer to Figure 4.21) is infeasible no matter the initial choice of
IKS (refer to figures 2.5b and 2.5d). If we deploy such a robot in collaborative task where
the robot reacts according to the user, this robot will not be able to comply to certain
movements. The multiple connected regions with varying number of IKS is a common
observation in cuspidal robots, and thus it is impossible to guarantee that a robot will
comply to a user as needed.

Infeasible paths in 6R commercial robots

In section 4.1.2, the infeasibility of certain paths was shown in the Jaco robot. Figures
4.14 and 4.15 clearly present feasible and infeasible paths. In this section, we present
an infeasible path in the CRX-10ia/L workspace (see Figure 4.22). The feasibility of the
trajectories, wi → wj and wa → wb is dependent on the initial choice of IKS. This
is because a region with 4 IKS must be crossed, while the path starts from a region
with 8 IKS and thus 4 IKS are lost. Interestingly, the trajectory wk → wl is a feasible
trajectory no matter the initial choice of IKS. This is attributed to the reason that in
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Figure 4.21 – An example infeasible path in 3R robot.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2 ], α = [-π2 , π
2 , 0].

trajectory wk → wl, we start from an instance with 8 IKS and cross boundaries to enter
region with 12 IKS. This implies that upon crossing the boundary, we gain more IKS
and thus the continuity of the path is not disturbed upon this. The plots of thetas for
all trajectory wi → wj (respectively wk → wl and wa → wb) is given in Figure 4.23
(respectively Figure 4.24 and Figure 4.25). The most complicated trajectory of the above
three examples is the trajectory wa → wb which passes through regions with 16, 12,
8 and 4 IKS. It is clear from the analysis of the trajectory that at most 4 out of the
initial 16 IKS qualify for continuous paths. The eligible 4 IKS are completely dependent
on the path followed and the components of critical values crossed. If the trajectory
is known beforehand, then one can analyze and decide a trajectory planning algorithm
that considers a nonsingular change of solutions too. To the author’s knowledge the only
work that incorporates nonsingular change of solutions in a time optimal point to point
trajectories was recently reported [Mar+23].
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Figure 4.22 – 2-D slice in (xz - plane) of the workspace for CRX-10ia/L with y = 0.05m
and orientation as equivalent angle axis representation = 0.195400(0.816̂i -0.011ĵ +
0.014k̂).

(a) Value of θ1 along the path (b) Value of θ2 along the path

(c) Value of θ3 along the path (d) Value of θ4 along the path

141



Chapter 4 – Path planning in cuspidal robots

(e) Value of θ5 along the path (f) Value of θ6 along the path

Figure 4.23 – Plot for θ1...6 of all solutions at discretized points along the trajectory
wi → wj.

(a) Value of θ1 along the path (b) Value of θ2 along the path

(c) Value of θ3 along the path (d) Value of θ4 along the path
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(e) Value of θ5 along the path (f) Value of θ6 along the path

Figure 4.24 – Plot for θ1...6 of all solutions at discretized points along the trajectory
wk → wl.

(a) Value of θ1 along the path (b) Value of θ2 along the path

(c) Value of θ3 along the path (d) Value of θ4 along the path
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(e) Value of θ5 along the path (f) Value of θ6 along the path

Figure 4.25 – Plot for θ1...6 of all solutions at discretized points along the trajectory
wa → wb.

4.2 Path planning framework for cuspidal robots

In this section, we present the different types of paths occuring due to the presence
of multiple regions of IKS in the workspace of a cuspidal robot. Different scenarios are
put forth to highlight the classification of these path. The path planning framework for
cuspidal robots is then presented at the end of the section. The proposed framework can
be implemented on existing commercial cuspidal robots to mitigate any issues in path
planning.

4.2.1 Types of paths

In a wrist-partitioned 6R serial robot, a given path is either feasible or infeasible
depending upon the constraints provided. A path can be declared infeasible due to multiple
reasons such as unreachable poses in the path, joint limits and internal collisions. It
is important to note that if a path is infeasible for such a robot, it is not possible to
change the IKS that can execute the desired path without crossing a singularity. A feasible
path for these robots is always repeatable as even in the case of a closed loop path,
the robots do not undergo nonsingular change of solutions, and thus path feasibility
implies path repeatability. This is not true for cuspidal robots, and the path feasibility
is dependent upon the initial IKS as discussed in section 4.1. As cuspidal robots can
undergo a nonsingular change of solutions while performing a closed loop path, a feasible
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Figure 4.26 – The classification of possible open paths in cuspidal robots.

path may not be necessarily repeatable. An example of a feasible but non-repeatable
path in a commercial cuspidal robot was discussed in [SCW23] and other examples are
detailed in previous section. If the path in the workspace is an open path such as a point-
to-point path, the given path is either feasible or infeasible. The feasibility of a given
open path is dependent on the initial IKS and the possibility of changing the IKS before
executing the path. The case of changing IKS making an infeasible path feasible is of
prime importance in commercial cuspidal robots that are used in collaborative tasks. The
complete classification of possible paths for a cuspidal robot is presented in Figure 4.26
and Figure 4.27.

Infeasible path: The path defined in the workspace which cannot be traversed starting
from a defined IKS is termed as an infeasible path.
Feasible path: The path defined in the workspace which can be traversed starting from a
defined IKS is termed as a feasible path.

If the path is a closed loop in workspace, then we have further classification of feasible
paths depending on their repeatability. The definitions for repeatable and non-repeatable
paths is given in section 1.2. The repeatable paths can either correspond to a regular
path (see section 1.2) or a nonsingular change of solutions. An example of each type of
the mentioned paths are illustrated in Figure 4.28.
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Figure 4.27 – The classification of possible closed paths in cuspidal robots.

(a) Regular path (b) Nonsingular change of solutions path
that is non-repeatable

(c) An infeasible path (d) The nonsingular change of solution that
is repeatable path

Figure 4.28 – The types of path possible in a cuspidal robot
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Figure 4.29 – The classification of possible scenarios of closed paths in cuspidal robots.

Figure 4.30 – The classification of possible scenarios of open paths in cuspidal robots.

4.2.2 Types of scenarios

As discussed in previous section, there exists more types of path in a cuspidal robot
than a noncuspidal robot. The direct implication of this fact is that we encounter different
scenarios in the path planning as well. The scenarios familiar with the industrial applica-
tions are pick and place operations, repetitive tasks forming a closed path (e.g. welding,
surface inspection) or point-to-point trajectories. We will discuss path planning in the
workspace only as the paths in the joint space are simpler and can cross singularities. The
different scenarios in cuspidal robots are illustrated in Figure 4.29 and 4.30.

Scenarios in closed paths: These scenarios are often encountered in welding or inspec-
tion application. The robot is expected to follow a given path in the workspace and return
to its initial pose. Such paths can be repetitive in nature such as welding in an assem-
bly line or can be one time tasks such as inspecting a unique part. In the case of non
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repetitive tasks, a path leading to a nonsingular change of solutions is acceptable while
the repetitive tasks should be regular paths to be declared as feasible. In special cases
where the nonsingular change of solutions is repeatable, such paths can be declared fit
for repetitive tasks but may face issues such as collisions with the environment. For this
reason, a path specified in the workspace has to be analyzed for the intersection with
critical values. If the path exists in a connected region of a workspace, it is a regular path.
In case the path intersects the critical values, it is important to verify the initial IKS as
well as compare it with the final IKS. An example of a closed loop path crossing critical
values is shown in Figure 4.14. It can be observed that in order to complete the closed
loop path, it is important to start the path from the IKS corresponding to either T1, T2, T5

or T6. Furthermore, if the task is repetitive then IKS belonging to T1 and T5 are to be
discarded. It is clear from this illustration that for a given path to be declared as feasible,
the choice of initial IKS plays a crucial role in cuspidal robots.

Scenarios in open paths: These scenarios are simpler than the closed loop paths. A
typical example of this scenario is an open path of a welding that starts at a point and
terminates at another point. In such case the robot is not expected to return to its initial
pose. In case the path belongs to a connected region in the workspace, it is always feasible
and the feasibility of the paths that cross the critical values depends on the choice of
initial IKS. A continuous path in the workspace of a cuspidal robot is not guaranteed if
it crosses two distinct components of critical values [Wen04].

4.2.3 Path planning framework

Based on the types of paths and scenarios in cuspidal robots as shown in previous
subsections, we propose a path planning framework for cuspidal robots. This framework
addresses all the scenarios discussed in previous subsection. The framework proposed can
be implemented to existing commercial cuspidal robots such as JACO Gen2 robot from
Kinova robotics, CRX series from FANUC and many others. The framework is divided
into two parts; the first part deals with the open paths in the workspace and the second
part with the scenarios related to closed loop paths in the workspace.
Framework for open paths: The flowchart in Figure 4.31 explains the framework to be
adapted in case of open paths for a cuspidal robot. The main consideration in such cases
is the intersection of the path with the critical values. In case the path intersects the
critical values, we can check the connectivity of the path starting of every IKS of the
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initial pose of the path. As we know that the number of IKS either increase or decreases
upon crossing a critical value and traveling from a region with lower number of IKS is
never a problem as we gain extra IKS. This fact is used to accelerate the connectivity
check for the feasibility of different initial IKS. We propose to choose an instance along
the path that corresponds to a region with the least IKS. The connectivity of every IKS
at this instance with the initial IKS is investigated and in case a connected path exists
the forward connectivity of the IKS at this instance with the final IKS is investigated.
If the IKS is connected to both initial as well as final IKS then such path is declared
feasible. After repeating this for every IKS of the instance, we optimise the feasible paths
to choose the one for execution. Framework for closed paths: The flowchart in Figure 4.32
explains the framework to be adapted in case of closed paths for a cuspidal robot. This
case presents more scenarios and the choices are complicated. As already shown, a given
closed path can be feasible and yet not repeatable. The main consideration in such cases is
whether a nonsingular change of solutions is acceptable for declaring a path feasible. The
feasibility of a path can be checked in the same manner as discussed in the framework for
open paths. A connected path is not enough to declare the feasibility and the type of task
should be known beforehand in order to optimise and execute a given closed path in the
workspace. This framework proposes all the cases that can occur in commercial robots
and as highlighted in [SCW23], it is important to consider cuspidality in path planning
to avoid dangerous situations.
The types of paths, the different scenarios and the framework proposed for path planning
in cuspidal robots clearly suggests that the complete path to be followed should be known
prior to execution. This implies that cuspidal robots are NOT suitable for compliance
tasks where the path to be followed depends on the agent acting on the robot and thus is
calculated in real time. This is an important observation and a contribution of the paper
as all the commercial cuspidal robots that exist in the industry exist under the category
of collaborative robots or ’cobots’.
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Figure 4.31 – The framework for scenarios with open paths in cuspidal robots.
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Figure 4.32 – The framework for scenarios with closed loop paths in cuspidal robots.
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4.3 Conclusions

In this chapter, the issues in path planning pertinent to cuspidal robots are discussed.
The issues such as mislabeling of ’configurations’, incorrect calculations of IKS due to
numerical methods are highlighted using existing commercial cuspidal robots as exam-
ple. Later, the major issues such as the dependence of a path feasibility as well as path
repeatability on the choice of initial IKS are discussed. All of the above issues prove to
be dangerous in collaborative application and the discontinuity in paths while crossing
internal locus of critical values is discussed with examples of linear paths in the workspace
of an existing commercial robot. Different cases occuring in the path planning of cuspi-
dal robots are presented highlighting the importance of special care while designing path
planning algorithms for cuspidal robots. Though cuspidal robots can be used in industrial
applications in a controlled environment, such robots are clearly dangerous and cannot
predict the feasibility of a path without knowledge about the complete path to be exe-
cuted. Considering all the problems in 6R cuspidal robot, we propose a framework for path
planning in cuspidal robots. This framework considers different cases arising in cuspidal
robots and takes into account a possible nonsingular change of solution to be executed in
order to make a given path feasible and repeatable. The results discussed in this chapter
clearly prove that the cuspidality should be seriously considered while executing tasks in
cuspidal robots, and such robots should be completely avoided for the tasks that require
executing path online or reacting to an external agents.
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CONCLUSIONS

Synopsis

The presented doctoral thesis investigated on the cuspidality analysis of 3R and 6R
serial robots. Geometric interpretation of the IKM for 3R serial robots provided a geo-
metric interpretation of IKS in 3R robots. A comparative analysis of singularities and
nonsingular change of solutions in the joint space, workspace and the c3s3- plane led the
proof for necessary and sufficient condition for a generic 3R robot to be cuspidal. The exis-
tence of reduced aspects for generic 3R robot was shown to be true using similar analysis.
The geometric analysis further proposed new classification criteria that are intuitive and
easy to calculate. This allowed multiple sufficient conditions for cuspidal and noncuspidal
robots. The geometric analysis was further used to answer on the non-existence of 3(0, 0)
and 4(0, 0) homotopy classes thus confirming that the maximum number of aspects for a
generic 3R robot is four.

The analysis of 6R robots was done in two phases. Simplified geometries involving
either a wrist or a 3R planar subchain were investigated using geometric methods and
analysis of the determinant of the Jacobian matrix. The analysis further showed that the
theorems proved for generic 3R serial robots apply for 6R robots with wrist at the either
of the extreme positions as well. It was shown with an example of wrist in the middle that
not all simplified geometries lead to easy analysis of cuspidality. It was further proved that
the presence of a 3R planar chain always results into the determinant having three distinct
factors. In second phase of analysis, the claim of two aspects in a generic 6R robot was
refuted by showing examples of 2-dimensional non-intersecting varieties that separate the
joint space in more than two regions. Later, the building blocks of deciding cuspidality were
explained and both, certified as well as numerical, approaches were presented to decide
upon cuspidality of nR nonredundant robots. A complete framework for this purpose
was presented that utilizes the known results, simpler analysis coupled with numerical
and certified algorithms to make the identification process implementable. It was shown
through this analysis that almost all of the generic robots are cuspidal in nature.

Later, cuspidal robots existing in industries were analyzed to highlight major issues
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in cuspidal robots that remain unattended. The issues in misidentification of configura-
tions in cuspidal robots were shown with an industrial robot FANUC CRX-10ia/L. The
problems in annotating sixteen solutions into eight categories was illustrated through an
example to further motivate the problem existing in the industrial software. The existence
of multiple regions with varying IKS was shown to be a typical case for cupidal robots.
The consequence of crossing these regions on path planning of cuspidal robots was high-
lighted through a known commercial robot, Kinova Jaco Gen2 (non-spherical wrist). The
dependence of feasibility as well as repeatability on the choice of initial IKS in cuspidal
robots was presented, and different types of scenarios specific to path planning in cuspi-
dal robots were discussed. An extensive path planning framework for cuspidal robots was
proposed that considers cuspidality as well as all the possible scenarios related to cuspidal
robots. A time optimal point-to-point trajectory was planned for an industrial robot to
motivate the application of the proposed path planning framework.

The contributions of this doctoral thesis are summarized as follows:

Contributions

1. Proof of reduced aspects in generic 3R robots

The existence of reduced aspects in generic 3R robot was proved by using the geometric
interpretation of the IKM. It was proved that every IKS in 3R robot lies in distinct region
bounded by singularities and pseudosingularities. The proof of this statement was helpful
in the proof of necessary and sufficient condition for a 3R robot to be cuspidal. The
existence of reduced aspects was utilised to comment upon the maximum aspects in 3R
robot too.

2. Proof of necessary and sufficient condition for a generic 3R robot to be
cuspidal

The existence of a cusp in the locus of critical values of IKM of a 3R robot was
shown to be a necessary and sufficient condition for a 3R robot to be cuspidal. It uses the
geometric interpretation of IKM, the existence of reduced aspects as well as the sufficient
condition already proven for generic 3R robots. This result is one of the most fundamental
contributions of the thesis as we closed the conjecture for the condition of 3R robot to be
cuspidal.
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3. Multiple sufficient conditions for a robot to be cuspidal or noncuspidal

Extending further the geometric interpretation of IKM for 3R robot, the thesis pre-
sented various cases for a 3R robot to be either cuspidal or noncuspidal. The conditions
derived are simple and intuitive. A clear advantage of classification based on geometry is
that the analysis is generic and is applicable the greater number of classes of robot as com-
pared to analytic conditions whose efficiency is challenged as we deviate from orthogonal
architecture.

4. The maximum number of aspects in a generic 3R robot is four

The homotopy based classification of 3R robots presented in [Pag08] suspected the
existence of 3(0, 0) and 4(0, 0) type of robots. The existence of 4(0, 0) robot suggested
that it was possible for a generic 3R robot to have up to 5 aspects. The thesis presented a
brief comment on the nonexistence of both, 3(0, 0) and 4(0, 0), classes of robot by using
the geometric interpretation as well as the existence of reduced aspects. This concluded
that the maximum number of aspects in generic 3R robot is four.

5. Cuspidality analysis of simplified 6r geometries

The thesis presented cuspidality analysis of simplified architectures of 6R robot. These
robots are widely used in industries due to their simple architecture and simplifications
in their kinematic analysis. The thesis extended the known results for robot with wrist at
end to 6R robots with wrist at the beginning as well as in the middle of the architecture.
It was shown that the cuspidality analysis of the architecture with wrist in middle is
not straightforward and requires careful consideration. It was further shown by analysing
det(J) that the presence of a 3R subchain in the architecture further simplifies the IKM
and certain architectures of this class can result into noncuspidal robots.

6. Certified as well as numerical algorithms for deciding cuspidality of a nR
non redundant robot

The thesis presented a certified algorithm for deciding cuspidality in 6R robots. Con-
sidering the issues in implementation, the thesis presented a numerical approach that
considers the known results combined with det(J) analysis to accelerate the process. The
numerical approach used discretization of the workspace and used HuPf algorithm to get
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all the IKS of the end-effector instance. These IKS were then checked for connectivity by
implementing an optimization methodology.

7. Issues in path planning of commercial cuspidal robots

The cuspidal robots have multiple regions with varying number of IKS in the workspace.
Crossing these regions results into various cases that need consideration for a 6R robot.
The dependence of feasibility as well as repeatability of a path on the choice of start-
ing IKS was emphasized by showing an example from an existing commercial cuspidal
robot. The thesis highlighted issues related to unique identification of ’configurations’ in
a commercial robot software. The thesis presented an important remark regarding the
unsuitability of cuuspidal robots in collaborative applications.

8. Path planning framework for cuspidal robots

Considering the issues in 6R cuspidal robots, the thesis proposed a path planning
framework for a 6R cuspidal robots. The framework considers all the cases arising in
a cuspidal robot and is capable of suggesting a choice of IKS leading to a feasible and
repeatable path. The framework can be used to utilise the existing commercial cuspidal
robots to the best of their ability by avoiding unexpected behavior arising due to the
cuspidality of a robot.

4.3.1 Future works

The work presented in the thesis closed some conjectures, and at the same time opened
many questions related to cuspidality in nonredundant robots. Some of the possible ex-
tensions of the work are presented as follows:

Complete classification of generic 3R robots

The geometric interpretation of the IKM of 3R robot allows greater insights into
cuspidality analysis of 3R robots. Many sufficient conditions were derived for a robot to be
a binary or a quaternary robot through this analysis. A complete geometric classification
of 3R robots can be done in the future.
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Further study of palindromic robots

The robots discussed in chapter 4 with palindromic arrangement of motors resulted
into a repeatable paths that was a nonsingular change of solutions as well. This is an
interesting result and the properties of such robots can be studied in depth to understand
the relation between the arrangement the nonsingular change of solutions.

Designing simplified architectures

In section 3.2, the thesis presented various robot classes whose det(J) factors into
at least three components. This implies that there exists at least eight aspects in such
robots. The robots analysed had either an orthogonal or parallel axes arrangement. As
industries tend to have an offset in the wrist at the end for cobots, the future work can
consider designs that are noncuspidal and an offset at the end of the architecture. Generic
conditions on D-H parameters can be found by using the symbolic expression of det(J)
such that factors into three components. The analysis of IKM using Study parameters
might lead to insights on the nature of distribution of IKS depending on the architecture
of the robot.

Identification of a noncuspidal 6R generic robot

In chapter 3, the thesis presented Conjecture 4 which stated that a generic 6R robot
with more than 4 IKS is a cuspidal robot. The future work can study the 6R robots that
are binary and generic. This work requires deeper analysis into theoretical kinematics
and tools from algebraic geometry, geometric algebra and homotopy are envisaged in the
study. It will be of great interest to the designers of robot architectures to have a necessary
condition for a 6R robot to be noncuspidal. This will allow the designers with a reduced
catalog of parameters to choose from leading to easier kinematic analysis and noncuspidal
designs. This is important as the robots are collaborating more than ever with humans,
and it is important that the next cobot we design is noncuspidal. One direction to be
followed can be to prove that there does not exist a generic 6R robots will less than or
equal to 4 IKS. This will imply that nongenericity in 6R robots is a necessary condition
for cuspidality.
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Appendix A

APPENDIX

A.1 IKM of a 3R serial chain

The symbolic conic equation for the inverse kinematic polynomial of a 3R serial chain
is:
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(A.1)
Here, sa1 and sa2 stands for sinα1 and sinα2, and ca1 and ca2 stands for cosα1 and
cosα2. a1..3, d1..3 are the D-H parameters for the 3R serial robot. Let x, y, z be the x, y
and z-coordinates of the end-effector position, R = x2 + y2 + z2. c3 stands for cos θ3 and
s3 stands for sin θ3.
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If (A.1) is rearranged as:
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A.2 Geometric analysis of 3R serial robots
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Here, sa1 and sa2 stands for sinα1 and sinα2, and ca1 and ca2 stands for cosα1 and cosα2.
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a1..3, d1..3 are the D-H parameters for the 3R serial robot. z is emboldened to highlight
the function is dependent on z, and does not mean that z is a vector.

A.3 Determinant of Jacobian matrix

The symbolic expression for the determinant of the Jacobian with the wrist in the
middle and d2 = 0:
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A.4 Certified algorithm to decide cuspidality of 6R
robots

Problem statement Let f = (f1, . . . , fs) be a sequence of polynomials in Q[x1, . . . , xn]
and V = V (f) ⊂ Cn be the algebraic set it defines (i.e. the set of common complex
solutions to the fi’s). We denote by VR = V ∩Rn the real trace of V . Let R = (r1, . . . , rd)
be a sequence of polynomials in Q[x1, . . . , xn]. By a slight abuse of notation, we still denote
by R the map

R : y ∈ Cn 7→ (r1(y), . . . , rd(y)) ∈ Cd.

In the following algorithm, we make the following assumption:

(A) the ideal generated by f , which we denote by ⟨f⟩, is radical and equidimensional of
dimension d and VR is not contained in the singular set of V .

We denote by crit(R, V ) the union of the set of critical points of the restriction of R to
V and the set of singular points of V (see e.g. [SEDS17, Appendix A.2.] for a definition of
these objects). Further, we denote by sval(R, V ) the set of singular values of the restriction
of R to V , i.e. the image by R of the set crit(R, V ):

sval(R, V ) = R(crit(R, V )).

Under assumption (A), the set crit(R, V ) is the set of common complex solutions to
the polynomials in f and the set of minors of size n of the Jacobian matrix Jac[f ,R]
associated to f ,R (see e.g. [SEDS17, Lemma A.2.]).

The restriction of the map R to V is said to be proper at a point y ∈ Cd if there exists
a ball B ⊂ Cd containing y such that R−1(B)∩ V is closed and bounded. The restriction
of R to V is said to be proper if it is proper at every point of Cd.

We denote by nprop(R, V ) be the set of points of Cd at which R is not proper.
According to [Jel99, Theorem 3.8.] it is contained in a proper algebraic set of Cd.

Finally we denote by atyp(R, V ) the set of atypical values of the restriction of R to
V , that is the union sval(R, V ) ∪ nprop(R, V ), and let

R, V ) = R−1(atyp(R, V )) ∩ V

the set of special points of the restriction of R to V that map to atypical values. We
denote by atyp(R, V )z the Zariski closure in Cd of the set of atypical values.
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Following the formalism introduced in [Wen92], we say that the restriction of the map
R to VR is cuspidal if there exist two distinct points y and y′ in VR such that the following
holds:

(i) R(y) = R(y′);

(ii) there exists a connected componentC of VR− crit(R, V ) which contains both y and
y′.

If two such points y and y′ exist, we say that they form a cuspidal couple of the restriction
of R to VR. Note that such a couple is not unique in general. The following algorithm 2
takes as input f and R, satisfying (A) and which decides the cuspidality of the restriction
of R to the real solution set VR = V ∩ Rn where V = V (f).

It proceeds by computing a zero-dimensional parametrization P of a set of points
that provides cuspidal couples of the restriction of R to VR whenever such a couple exists.
In other words, if no cuspidal couple can be found among Z(P), then the restriction of
R to VR is not cuspidal.

Hence, to solve our cuspidality problem, it suffices to compute a graph which is isotopy
equivalent to a roadmap of VR− crit(R, V ) connecting the points of Z(P) that lie in the
same connected componentof VR − crit(R, V ).

In addition to the high-level procedures presented in the previous section, we use here
some basic subroutines to manipulate rational parametrizations, polynomials and graphs.
In the following, P∅ will denote a zero-dimensional parametrization of Rn encoding the
empty set, and () will denote the empty sequence. Besides, given a polynomial sequence
h = (hi)1≤i≤ι we will note ±h = (±hi)1≤i≤ι.

The procedure Union takes as input two zero-dimensional parametrizations P and
P ′ of degree δP and δP′ and returns a zero-dimensional parametrization of Z(P)∪Z(P ′)
of degree δP + δP′ . See [SEDS17, Lemma J.3.] for a description of this procedure.

The procedures Crit and AtypicalValues take as input a polynomial map R and
a finite sequence of polynomials h. Assuming that h satisfies assumption (A), these two
procedures output finite sequences of polynomials whose complex zero-sets are respectively
crit(R,V (h)) and a proper subset of Cd containing atyp(R,V (h))z. We refer to [SEDS17,
Lemma A.2] for a description of Crit.

Let G = (V , E) be a graph and let v, v′ ∈ V be two vertices. We say that v and v′ are
connected in G if there exists a sequence (v1, . . . , vm) of vertices in V such that for all
1 ≤ i < m,

v1 = v, v2 = v′ and {vi, vi+1} ∈ E .
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The procedure GraphConnected takes as input G = (V , E) and (v, v′) and outputs
True if and only if v and v′ are connected in G . Else it outputs False. This subroutine is
classic among graph problems, and can be done using well-know algorithms such as the
breadth-first search algorithm [Cor+09, Section 22.2].

Algorithm 2 Cuspidality algorithm
Require: Two sequences f = (f1, . . . , fs) and R = (r1, . . . , rd) of polynomials in

Q[x1, . . . , xn] that satisfy assumption (A).
Ensure: A decision, True or False, on the cuspidality of the restriction of R to VR =

V ∩ Rn where V = V (f).
1: g ←AtypicalValues(R,f);
2: Q ←SamplePointsRational(g);
3: P ←P∅;
4: for q = (q1, . . . , qd) ∈ Q do
5: Rq ← (r1 − q1, . . . , rd − qd);
6: Pq ←SamplePoints((f ,Rq), ());
7: P ←Union(P,Pq);
8: end for
9: ∆← Crit(R,f);

10: R ←Roadmap(f ,±∆,P);
11:

(
G = (V , E),VertG

)
←GraphIsotop(R,±∆,P);

12: for q ∈ Q do
13: Vq ←VertG (Pq);
14: for (v1,v2) ∈ V2

q do
15: if GraphConnected((v1,v2),G ) and v1 ̸= v2 then
16: return True;
17: end if
18: end for
19: end for
20: return False.

A.5 Simplified architectures with det(J) with three
components
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d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 d3 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6

Table A.1 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 d4 0 d6 a1 a2 0 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 d4 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 d3 d4 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 d3 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 d3 d4 0 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 d3 d4 0 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

Table A.2 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 d3 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

Table A.3 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π

2
π
2

π
2 0 α6

d1 d2 d3 0 d5 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 d3 0 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

Table A.4 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 d3 0 0 d6 a1 0 a3 0 0 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

Table A.5 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 0 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π

2 0 0 π
2 α6

d1 d2 0 d4 d5 d6 a1 0 a3 a4 0 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 d2 0 d4 d5 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 d4 d5 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 d5 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6

Table A.6 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 0 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 d4 0 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 a2 0 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 d4 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 0 d4 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 d2 0 d4 0 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 d2 0 d4 0 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 d4 0 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 d4 0 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6

Table A.7 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 0 0 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 d5 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 0 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 d2 0 0 d5 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 0 d5 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6

Table A.8 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 d2 0 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 d2 0 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 d2 0 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

Table A.9 – The D-H parameter values of robots whose det(J) factors into three compo-
nents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6

π
2

π
2

π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 d2 0 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 d2 0 0 0 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 d2 0 0 0 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

Table A.10 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 d4 d5 d6 a1 0 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 0 d6 a1 a2 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 d4 0 d6 a1 a2 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

Table A.11 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 d4 0 d6 a1 0 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 d4 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 d4 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 d4 0 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 d4 0 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 d3 0 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

Table A.12 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

Table A.13 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π

2
π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

Table A.14 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π

2
π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 d5 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 d5 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

Table A.15 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6

π
2

π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 d3 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 d3 0 0 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 d3 0 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6

Table A.16 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 d3 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

Table A.17 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 d4 d5 d6 a1 a2 0 0 a5 a6 0 0 π

2
π
2 0 α6

d1 0 0 d4 d5 d6 a1 a2 0 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 d4 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 0 0 d4 d5 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 d4 d5 d6 a1 0 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 d5 d6 a1 0 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

Table A.18 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 d4 0 d6 a1 a2 a3 0 0 a6 0 π

2 0 π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 a5 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 a2 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 d4 0 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 d4 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 d4 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 0 d4 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 0 d4 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 0 d4 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 0 0 d4 0 d6 a1 0 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 d4 0 d6 a1 0 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 d4 0 d6 a1 0 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

Table A.19 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 0 0 d5 d6 a1 a2 a3 0 0 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6
π
2 0 π

2
π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 a2 0 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 a2 0 0 0 a6 0 π
2

π
2

π
2

π
2 α6

Table A.20 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 0 d5 d6 a1 a2 0 0 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 0 d5 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 d5 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 0 d5 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 0 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 0 d5 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 0 α6

d1 0 0 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 0 0 d5 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 0 0 0 d5 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 π

2 0 0 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 0 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 0 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 a3 0 a5 a6

π
2 0 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 a5 a6
π
2 0 0 π

2 0 α6
d1 0 0 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 0 a6
π
2 0 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 a2 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

Table A.21 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



d1 d2 d3 d4 d5 d6 a1 a2 a3 a4 a5 a6 α1 α2 α3 α4 α5 α6
d1 0 0 0 0 d6 a1 a2 a3 0 0 a6 0 π

2 0 π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6
π
2 0 π

2 0 0 α6
d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 a2 0 a4 a5 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 0 a4 0 a6 0 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 a4 0 a6 0 0 π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 a2 0 0 a5 a6

π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6
π
2 0 π

2
π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6
π
2 0 π

2
π
2 0 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 a2 0 0 a5 a6 0 0 π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2

π
2 0 0 α6

d1 0 0 0 0 d6 a1 0 a3 a4 a5 a6
π
2

π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 0 a3 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 0 d6 a1 0 a3 a4 a5 a6 0 π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 0 a3 a4 0 a6

π
2

π
2 0 0 π

2 α6
d1 0 0 0 0 d6 a1 0 a3 a4 0 a6 0 π

2 0 0 π
2 α6

d1 0 0 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 a3 0 0 a6
π
2

π
2 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 0 a3 0 0 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 a3 0 0 a6 0 π
2 0 π

2
π
2 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 0 0 a4 a5 a6

π
2

π
2

π
2 0 0 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2

π
2 0 α6

d1 0 0 0 0 d6 a1 0 0 a4 a5 a6 0 π
2

π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 0 0 a4 a5 a6 0 π

2
π
2 0 0 α6

d1 0 0 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 0 a4 0 a6
π
2

π
2

π
2 0 π

2 α6
d1 0 0 0 0 d6 a1 0 0 a4 0 a6 0 π

2
π
2

π
2

π
2 α6

d1 0 0 0 0 d6 a1 0 0 a4 0 a6 0 π
2

π
2 0 π

2 α6

Table A.22 – The D-H parameter values of robots whose det(J) factors into three com-
ponents.



BIBLIOGRAPHY

[And+19] Joel A E Andersson et al. « CasADi – A software framework for nonlinear
optimization and optimal control ». In: Mathematical Programming Compu-
tation (2019).

[Ang85] Jorge Angeles. « On the Numerical Solution of the Inverse Kinematic Prob-
lem ». In: The International Journal of Robotics Research 4.2 (1985), pp. 21–
37. doi: 10.1177/027836498500400203. url: https://doi.org/10.1177
/027836498500400203.

[Ben17] Romain Benoit. « Qualitative analysis of robots ». French. PhD thesis. Angers:
University of Angers, Nov. 2017.

[Ben91] Fouad Bennis. « Contribution a la modelisation geometrique et dynamique
des robots a structure simple et complexe ». PhD thesis. Ecole Centrale de
Nantes, 1991, 252 p. url: http://www.theses.fr/1991NANT2008.

[BL86] Paul Borrel and Alain Liegeois. « A study of multiple manipulator inverse
kinematic solutions with applications to trajectory planning and workspace
determination ». In: Proceedings. 1986 IEEE International Conference on
Robotics and Automation. Vol. 3. San Francisco, CA, USA: Institute of Elec-
trical and Electronics Engineers, 1986, pp. 1180–1185.

[BP84] H.G. Bock and K.J. Plitt. « A Multiple Shooting Algorithm for Direct Solu-
tion of Optimal Control Problems* ». In: IFAC Proceedings Volumes (1984).

[Bra16] Mathias Brandstötter. « Adaptable Serial Manipulators in Modular De-
sign ». PhD thesis. University of Innsbruck, Nov. 2016. doi: 10.13140/RG.2
.2.16537.62565.

[Bur89] Joel W Burdick. « On the Inverse Kinematics of Redundant Manipulators:
Characterization of the Self-Motion Manifolds ». en. In: 1989 International
Conference on Advanced Robotics. Vol. 4. Ohio, 1989, p. 10.

189

https://doi.org/10.1177/027836498500400203
https://doi.org/10.1177/027836498500400203
https://doi.org/10.1177/027836498500400203
http://www.theses.fr/1991NANT2008
https://doi.org/10.13140/RG.2.2.16537.62565
https://doi.org/10.13140/RG.2.2.16537.62565


[BWC04] Maher Baili, Philippe Wenger, and Damien Chablat. « A classification of 3R
orthogonal manipulators by the topology of their workspace ». en. In: IEEE
International Conference on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004. New Orleans, LA, USA: IEEE, 2004, 1933–1938 Vol.2.
(Visited on June 2, 2020).

[Cha+22] Damien Chablat et al. « Deciding Cuspidality of Manipulators through Com-
puter Algebra and Algorithms in Real Algebraic Geometry ». In: Proceedings
of the 2022 International Symposium on Symbolic and Algebraic Computa-
tion. ISSAC ’22. Villeneuve-d’Ascq, France: Association for Computing Ma-
chinery, 2022, 439–448. isbn: 9781450386883. doi: 10.1145/3476446.3535
477.

[CM19] Jose Capco and Saraleen Mae Manongsong. « Implementing HuPf Algorithm
for the Inverse Kinematics of General 6R/P Manipulators ». In: Computer
Algebra in Scientific Computing. Ed. by Matthew England et al. Cham:
Springer International Publishing, 2019, pp. 78–90. isbn: 978-3-030-26831-
2.

[Cor05] Solen Corvez. « Study of polynomial system: contribution to the classifica-
tion of a family of manipulators and calculating the intersection of A-spline
curve ». fr. PhD thesis. Rennes, France: University of Rennes, May 2005.

[Cor+09] Thomas H Cormen et al. Introduction to algorithms. Third. MIT press, 2009.

[CR04] Solen Corvez and Fabrice Rouillier. « Using Computer Algebra Tools to
Classify Serial Manipulators ». en. In: Automated Deduction in Geometry.
Ed. by Gerhard Goos et al. Vol. 2930. Series Title: Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 31–
43. isbn: 978-3-540-20927-0 978-3-540-24616-9. doi: 10.1007/978-3-540-
24616-9_3. (Visited on Jan. 28, 2021).

[CSEDS20] Jose Capco, Mohab Safey El Din, and Josef Schicho. « Robots, computer al-
gebra and eight connected components ». In: ISSAC ’20: International Sym-
posium on Symbolic and Algebraic Computation. ISSAC’20: Proceedings of
the 45th International Symposium on Symbolic and Algebraic Computation.
Kalamata / Virtual, Greece: ACM, July 2020, pp. 62–69.

190

https://doi.org/10.1145/3476446.3535477
https://doi.org/10.1145/3476446.3535477
https://doi.org/10.1007/978-3-540-24616-9_3
https://doi.org/10.1007/978-3-540-24616-9_3


[DH55] Jacques Denavit and Richard Scheunemann Hartenberg. « A Kinematic No-
tation for Lower-Pair Mechanisms Based on Matrices ». In: Journal of Ap-
plied Mechanics 22.2 (June 1955), pp. 215–221. issn: 0021-8936. doi: 10.1
115/1.4011045. url: https://doi.org/10.1115/1.4011045.

[Dot+95] Keith L Doty et al. « Robot manipulability ». In: IEEE Transactions on
Robotics and Automation (1995).

[EOW95] Jouad El Omri and Philippe Wenger. « How to recognize simply a non-
singular posture changing 3-DOF manipulator ». In: Proc. 7th Int. Conf. on
Advanced Robotics. 1995, pp. 215–222.

[Fre73] Ferdinand Freudenstein. « Kinematics: Past, present and future ». In: Mech-
anism and Machine Theory 8.2 (1973), pp. 151–160. issn: 0094-114X. doi:
https://doi.org/10.1016/0094-114X(73)90049-9. url: https://www
.sciencedirect.com/science/article/pii/0094114X73900499.

[GL14] Polynomial Inverse Kinematic Solution of the Jaco Robot. Vol. Volume 5B:
38th Mechanisms and Robotics Conference. International Design Engineer-
ing Technical Conferences and Computers and Information in Engineering
Conference. Aug. 2014, V05BT08A055. doi: 10.1115/DETC2014- 34152.
url: https://doi.org/10.1115/DETC2014-34152.

[HOC08] Manfred Husty, Erika Ottaviano, and Marco Ceccarelli. « A Geometrical
Characterization of Workspace Singularities in 3R Manipulators ». In: Ad-
vances in Robot Kinematics: Analysis and Design. Ed. by Jadran Lenarčič
and Philippe Wenger. Dordrecht: Springer Netherlands, 2008, pp. 411–418.

[HPS07] Manfred L. Husty, Martin Pfurner, and Hans-Peter Schröcker. « A new and
efficient algorithm for the inverse kinematics of a general serial 6R manipu-
lator ». en. In: Mechanism and Machine Theory 42.1 (Jan. 2007), pp. 66–81.
issn: 0094114X. doi: 10.1016/j.mechmachtheory.2006.02.001. url:
https://linkinghub.elsevier.com/retrieve/pii/S0094114X06000310
(visited on Dec. 19, 2019).

[IPC98] Carlo Innocenti and Vincenzo Parenti-Castelli. « Singularity-free evolution
from one configuration to another in serial and fully-parallel manipulators ».
In: ASME J. Mechanical Design 120 (1998), pp. 73–99.

191

https://doi.org/10.1115/1.4011045
https://doi.org/10.1115/1.4011045
https://doi.org/10.1115/1.4011045
https://doi.org/https://doi.org/10.1016/0094-114X(73)90049-9
https://www.sciencedirect.com/science/article/pii/0094114X73900499
https://www.sciencedirect.com/science/article/pii/0094114X73900499
https://doi.org/10.1115/DETC2014-34152
https://doi.org/10.1115/DETC2014-34152
https://doi.org/10.1016/j.mechmachtheory.2006.02.001
https://linkinghub.elsevier.com/retrieve/pii/S0094114X06000310


[Jel99] Zbigniew Jelonek. « Testing sets for properness of polynomial mappings ».
In: Mathematische Annalen 315.1 (1999), pp. 1–35.

[KD04] Wissama Khalil and Etienne Dombre. Modeling, Identification and Control
of Robots. New York: Springer, 2004. doi: https://doi.org/10.1016/B97
8-1-903996-66-9.X5000-3.

[Kin] url: http://kinovarobotics.com.

[KPMA19] C. K. Koukos-Papagiannis, V. C. Moulianitis, and N. A. Aspragathos. « Cus-
pidality Investigation of a Metamorphic Serial Manipulator. » en. In: Ad-
vances in Mechanism and Machine Science. Ed. by Tadeusz Uhl. Vol. 73.
Series Title: Mechanisms and Machine Science. Cham: Springer International
Publishing, 2019, pp. 2491–2500. isbn: 978-3-030-20130-2 978-3-030-20131-
9. doi: 10.1007/978-3-030-20131-9_246. (Visited on July 21, 2023).

[KS85] Dilip Kohli and J. Spanos. « Workspace Analysis of Mechanical Manipu-
lators Using Polynomial Discriminants ». en. In: Journal of Mechanisms,
Transmissions, and Automation in Design 107.2 (June 1985), pp. 209–215.
issn: 0738-0666. doi: 10.1115/1.3258710. (Visited on Nov. 4, 2020).

[Mar+23] Tobias Marauli et al. « Optimal Motion Planning for Cuspidal Manipula-
tors: Application to Commercial Robots ». In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Detroit, USA. 2023.

[MD99] P. R. McAree and R. W. Daniel. « An Explanation of Never-Special Assem-
bly Changing Motions for 3–3 Parallel Manipulators ». In: The International
Journal of Robotics Research 18.6 (1999), pp. 556–574. doi: 10.1177/0278
3649922066394. url: https://doi.org/10.1177/02783649922066394.

[NBW12] Dinh Quan Nguyen, Sebastien Briot, and Philippe Wenger. « Analysis of the
Dynamic Performance of Serial 3R Orthogonal Manipulators ». In: vol. Vol-
ume 3: Advanced Composite Materials and Processing; Robotics; Informa-
tion Management and PLM; Design Engineering. Engineering Systems De-
sign and Analysis. July 2012, pp. 175–184. doi: 10.1115/ESDA2012-82208.

[NM65] J. A. Nelder and R. Mead. « A Simplex Method for Function Minimization ».
In: The Computer Journal 7.4 (Jan. 1965), pp. 308–313.

192

https://doi.org/https://doi.org/10.1016/B978-1-903996-66-9.X5000-3
https://doi.org/https://doi.org/10.1016/B978-1-903996-66-9.X5000-3
http://kinovarobotics.com
https://doi.org/10.1007/978-3-030-20131-9_246
https://doi.org/10.1115/1.3258710
https://doi.org/10.1177/02783649922066394
https://doi.org/10.1177/02783649922066394
https://doi.org/10.1177/02783649922066394
https://doi.org/10.1115/ESDA2012-82208


[OCH07] Erika Ottaviano, Marco Ceccarelli, and Manfred Husty. « Workspace Topolo-
gies of Industrial 3R Manipulators ». en. In: International Journal of Ad-
vanced Robotic Systems 4.3 (Sept. 2007), p. 38. issn: 1729-8814, 1729-8814.
doi: 10.5772/5679. url: http://journals.sagepub.com/doi/10.5772
/5679 (visited on July 21, 2023).

[OHC06] Erika Ottaviano, Manfred L. Husty, and Marco Ceccarelli. « Level-set method
for workspace analysis of serial manipulators ». In: Advances in Robot Kine-
matics. 2006.

[Pag08] Davide Paganelli. « Topological Analysis of Singularity Loci for Serial and
Parallel Manipulators ». en. PhD thesis. Bologna, Italy: Universita di Bologna,
2008.

[PCI88] Vincenzo Parenti-Castelli and Carlo Innocenti. « Position analysis of robot
manipulators: Regions and subregions ». en. In: Proceedings of 1988 con-
ference on Advances in Robot Kinematics. Ljubljana, Sept. 1988, pp. 151–
158.

[Pie68] Donald Lee Pieper. « The Kinematics of Manipulators Under Computer
Control ». en. PhD thesis. USA: Stanford University, Oct. 1968.

[PL92] Dinesh K. Pai and Ming C. Leu. « Genericity and singularities of robot ma-
nipulators ». In: IEEE Transactions on Robotics and Automation 8.5 (Oct.
1992), pp. 545–559. (Visited on Apr. 19, 2021).

[Pri86] Eric John Fyfe Primrose. « On the input-output equation of the general 7R-
mechanism ». In: Mechanism and Machine Theory 21.6 (1986), pp. 509–510.
issn: 0094-114X. doi: https://doi.org/10.1016/0094-114X(86)90134-
5.

[Rag+90] Madhusudan Raghavan et al. « A General Solution for the Inverse Kinemat-
ics of all Series Chains, 8th Symposium on theory and practice of robots and
manipulators ». In: RoManSy 8, ROMANSY -CONFERENCE-, 8th Sym-
posium on theory and practice of robots and manipulators, RoManSy 8. 8.
Warsaw University of Technology; 1990, pp. 24–31. isbn: 8390050129. url:
https://www.tib.eu/de/suchen/id/BLCP%3ACN004610702.

193

https://doi.org/10.5772/5679
http://journals.sagepub.com/doi/10.5772/5679
http://journals.sagepub.com/doi/10.5772/5679
https://doi.org/https://doi.org/10.1016/0094-114X(86)90134-5
https://doi.org/https://doi.org/10.1016/0094-114X(86)90134-5
https://www.tib.eu/de/suchen/id/BLCP%3ACN004610702


[Rou99] Fabrice Rouillier. « Solving Zero-Dimensional Systems Through the Rational
Univariate Representation ». In: Journal of Applicable Algebra in Engineer-
ing, Communication and Computing 9 (May 1999), pp. 433–461.

[RR93] M. Raghavan and B. Roth. « Inverse Kinematics of the General 6R Ma-
nipulator and Related Linkages ». In: ASME Journal of Mechanical Design
115.3 (Sept. 1993), pp. 502–508. doi: 10.1115/1.2919218.

[Sal+22a] Durgesh Salunkhe et al. « Geometry Based Analysis of 3R Serial Robots ».
In: Advances in Robot Kinematics 2022. Ed. by Oscar Altuzarra and Andrés
Kecskeméthy. Cham: Springer International Publishing, 2022, pp. 65–72.
isbn: 978-3-031-08140-8.

[Sal+22b] Durgesh Haribhau Salunkhe et al. « Necessary and sufficient condition for a
generic 3R serial manipulator to be cuspidal ». In: Mechanism and Machine
Theory 171 (Jan. 2022), p. 104729. issn: 0094-114X.

[SCW23] Durgesh Haribhau Salunkhe, Damien Chablat, and Philippe Wenger. « Tra-
jectory planning issues in cuspidal commercial robots ». In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). 2023, pp. 7426–
7432. doi: 10.1109/ICRA48891.2023.10161444.

[SEDS17] Mohab Safey El Din and Éric Schost. « A nearly optimal algorithm for
deciding connectivity queries in smooth and bounded real algebraic sets ».
In: Journal of the ACM (JACM) 63.6 (2017), pp. 1–37.

[SL90] David Rowland. Smith and Harvey Lipkin. « Analysis of fourth order ma-
nipulator kinematics using conic sections ». en. In: Proceedings., IEEE In-
ternational Conference on Robotics and Automation. Cincinnati, OH, USA:
IEEE Comput. Soc. Press, 1990, pp. 274–278. isbn: 978-0-8186-9061-7. doi:
10.1109/ROBOT.1990.125986. (Visited on Apr. 28, 2021).

[SL93] David Rowland. Smith and Harvey Lipkin. « Higher order singularities of re-
gional manipulators ». In: [1993] Proceedings IEEE International Conference
on Robotics and Automation. 1993, 194–199 vol.1. doi: 10.1109/ROBOT.19
93.291982.

[Tho15] Federico Thomas. « A Distance Geometry Approach to the Singularity Anal-
ysis of 3R Robots ». In: Journal of Mechanisms and Robotics 8.1 (Aug. 2015),

194

https://doi.org/10.1115/1.2919218
https://doi.org/10.1109/ICRA48891.2023.10161444
https://doi.org/10.1109/ROBOT.1990.125986
https://doi.org/10.1109/ROBOT.1993.291982
https://doi.org/10.1109/ROBOT.1993.291982


p. 011001. issn: 1942-4302. doi: 10.1115/1.4029500. url: https://doi
.org/10.1115/1.4029500.

[TKA93] Kao-Yueh Tsai, Dilip Kohli, and J. Arnold. « Trajectory Planning in Joint
Space for Mechanical Manipulators ». In: Journal of Mechanical Design
115.4 (Dec. 1993), pp. 909–914. issn: 1050-0472. doi: 10.1115/1.2919286.
url: https://doi.org/10.1115/1.2919286.

[Tri+15] A Geometrical Approach to the Inverse Kinematics of 6R Serial Robots With
Offset Wrists. Vol. Volume 5C: 39th Mechanisms and Robotics Conference.
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Aug. 2015, V05CT08A016.

[TW11] Federico Thomas and Philippe Wenger. « On the topological characteriza-
tion of robot singularity loci. a catastrophe-theoretic approach ». en. In:
2011 IEEE International Conference on Robotics and Automation. Shang-
hai, China: IEEE, May 2011, pp. 3940–3945. isbn: 978-1-61284-386-5. doi:
10.1109/ICRA.2011.5979573. url: http://ieeexplore.ieee.org/docum
ent/5979573/ (visited on July 21, 2023).

[Ver21] Achille Verheye. Why hasn’t anyone heard of cuspidal robots?, http://achille0.medium.com/why-
has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b. 2021. url: http://achil
le0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa6
0ffe9b (visited on Sept. 10, 2022).

[WB06] Andreas Wächter and Lorenz T Biegler. « On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming ». In: Mathematical programming (2006).

[WC22] Philippe Wenger and Damien Chablat. « A Review of Cuspidal Serial and
Parallel Manipulators ». In: Journal of Mechanisms and Robotics 15.4 (Nov.
2022), p. 040801. issn: 1942-4302. doi: 10.1115/1.4055677. url: https:
//doi.org/10.1115/1.4055677.

[WCB05] Philippe Wenger, Damien Chablat, and Maher Baili. « A DH-parameter
based condition for 3R orthogonal manipulators to have 4 distinct inverse
kinematic solutions ». en. In: Journal of Mechanical Design 127 (2005),
pp. 150–155.

195

https://doi.org/10.1115/1.4029500
https://doi.org/10.1115/1.4029500
https://doi.org/10.1115/1.4029500
https://doi.org/10.1115/1.2919286
https://doi.org/10.1115/1.2919286
https://doi.org/10.1109/ICRA.2011.5979573
http://ieeexplore.ieee.org/document/5979573/
http://ieeexplore.ieee.org/document/5979573/
http://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b
http://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b
http://achille0.medium.com/why-has-no-one-heard-of-cuspidal-robots-fa2fa60ffe9b
https://doi.org/10.1115/1.4055677
https://doi.org/10.1115/1.4055677
https://doi.org/10.1115/1.4055677


[WE97] Phillippe Wenger and Jouad El Omri. « Comments on “A classification of
3R regional manipulator geometries and singularities” ». In: Mechanism and
Machine Theory 32.4 (1997), pp. 529–532. issn: 0094-114X. doi: https://d
oi.org/10.1016/S0094-114X(96)00061-4. url: https://www.scienced
irect.com/science/article/pii/S0094114X96000614.

[Wen04] Philippe Wenger. « Uniqueness Domains and Regions of Feasible Paths for
Cuspidal Manipulators ». en. In: IEEE Transactions on Robotics 20.4 (Aug.
2004), pp. 745–750. (Visited on June 2, 2020).

[Wen19] Philippe Wenger. « Cuspidal Robots ». In: Singular Configurations of Mech-
anisms and Manipulators. Ed. by Andreas Müller and Dimiter Zlatanov.
Cham: Springer, 2019, pp. 67–99.

[Wen92] Philippe Wenger. « A New General Formalism for the Kinematic Analysis
of All Non-redundant Manipulators ». en. In: Proceedings of the 1992 IEEE
International Conference on Robotics and Automation. Nice, France, May
1992, pp. 442–447.

[Wen98] Philippe Wenger. « Classification of 3R Positioning Manipulators ». en. In:
Journal of Mechanical Design 120.2 (June 1998), pp. 327–332. issn: 1050-
0472, 1528-9001. doi: 10.1115/1.2826976. url: https://asmedigital
collection.asme.org/mechanicaldesign/article/120/2/327/429674
/Classification-of-3R-Positioning-Manipulators (visited on July 21,
2023).

[WEO96] Philippe Wenger and Jouad El Omri. « Changing posture for cuspidal robot
manipulators ». en. In: Proceedings of IEEE International Conference on
Robotics and Automation. Vol. 4. Minneapolis, MN, USA: IEEE, 1996, pp. 3173–
3178. (Visited on Oct. 30, 2020).

[Whi55] Hassler Whitney. « On Singularities of Mappings of Euclidean Spaces. I.
Mappings of the Plane into the Plane ». In: Annals of Mathematics 62.3
(Nov. 1955).

[ZBSO21] Hamed Montazer Zohour, Bruno Belzile, and David St-Onge. « Kinova Gen3-
Lite manipulator inverse kinematics: optimal polynomial solution ». In: ArXiv
abs/2102.01217 (2021).

196

https://doi.org/https://doi.org/10.1016/S0094-114X(96)00061-4
https://doi.org/https://doi.org/10.1016/S0094-114X(96)00061-4
https://www.sciencedirect.com/science/article/pii/S0094114X96000614
https://www.sciencedirect.com/science/article/pii/S0094114X96000614
https://doi.org/10.1115/1.2826976
https://asmedigitalcollection.asme.org/mechanicaldesign/article/120/2/327/429674/Classification-of-3R-Positioning-Manipulators
https://asmedigitalcollection.asme.org/mechanicaldesign/article/120/2/327/429674/Classification-of-3R-Positioning-Manipulators
https://asmedigitalcollection.asme.org/mechanicaldesign/article/120/2/327/429674/Classification-of-3R-Positioning-Manipulators


[ZWC06] Mazen Zein, Philippe Wenger, and Damien Chablat. « An exhaustive study
of the workspace topologies of all 3R orthogonal manipulators with geometric
simplifications ». en. In: Mechanism and Machine Theory 41.8 (Aug. 2006),
pp. 971–986. issn: 0094114X. doi: 10.1016/j.mechmachtheory.2006.03
.013. url: https://linkinghub.elsevier.com/retrieve/pii/S0094114
X06000711 (visited on Feb. 4, 2021).

197

https://doi.org/10.1016/j.mechmachtheory.2006.03.013
https://doi.org/10.1016/j.mechmachtheory.2006.03.013
https://linkinghub.elsevier.com/retrieve/pii/S0094114X06000711
https://linkinghub.elsevier.com/retrieve/pii/S0094114X06000711






Titre : Robots cuspidaux : étude théorique, classification et application aux robots commer-
ciaux

Mot clés : cinématique, design, planification de trajectoire, robots cuspidaux, optimisation.

Résumé : Les robots cuspidaux sont des
robots qui possèdent au moins une région
connectée avec de multiples solutions ciné-
matiques inverses. Cela permet aux robots
cuspidaux de changer de solutions sans tra-
verser de singularités.
Cette thèse doctorale présente une étude
théorique sur l’analyse cuspidale des robots
sériels à 3 articulations rotatives (3R). La
thèse présente également des algorithmes
d’identification pour déterminer la cuspidalité
des robots génériques à 6R. Ensuite, l’ap-
plication de la cuspidalité est présentée en
abordant les problèmes et en développant un
cadre de planification de trajectoire pour les
robots commerciaux cuspidaux. Une conclu-

sion est apportée à la conjecture sur les ro-
bots cuspidaux à 3R à la suite du travail pré-
senté, et la question du nombre d’aspects
dans un robot générique à 3R est éclaircie.
Une preuve de l’existence d’aspects réduits
pour un robot générique à 3R est également
présentée. La preuve présentée sur la cuspi-
dalité des robots à 6R est réexaminée, et la
nécessité de prêter attention au sujet de la
cuspidalité dans la planification de trajectoire
est d’autant plus motivée. Les problèmes cri-
tiques existant dans les robots commerciaux
à 6R, largement ignorés, sont exposés, et un
cadre de planification de trajectoire pour leur
atténuation est présenté.

Title: Cuspidal robots: theoretical study, classification, and application to commercial robots.

Keywords: kinematics, design, path planning, cuspidal robots, optimisation.

Abstract: Cuspidal robots are robots that
have at least one connected region with mul-
tiple inverse kinematic solutions. This allows
cuspidal robots to change solutions without
crossing singularites.
This doctoral thesis presents theoretical study
on the cuspidal analysis of 3 revolute jointed
(3R) serial robots. The thesis also presents
identification algorithms to decide cuspidality
of generic 6R robots. Later, the application of
cuspidality is presented by discussing issues
and developing a trajectory planning frame-
work of cuspidal commercial robots. A closure

to the conjecture in 3R cuspidal robots is pro-
vided as a result of the presented work, and
the question on number of aspects in generic
3R robot is concluded. A proof for the exis-
tence of reduced aspects for a generic 3R
robot is presented too. A presented proof on
cuspidality in 6R robots is reinvestigated, and
the need of attention to the topic of cuspidality
in path planning is further motivated. The crit-
ical issues existing in commercial 6R robots
that are largely ignored are shown, and a path
planning framework for their mitigation is pre-
sented.
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