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“All science is either physics or stamp collecting.” 
 

- Ernest Rutherford 

 

Each step of this reasoning is made of discoveries, and the automation process used in this work 

should not hide the human reflection involved. I strived to let every data manipulation be led 

automatically, in order that I do not manually interfere with the logic I intellectually conceived. I justify 

this choice by both rigour and laziness, which are, in my opinion, the two breasts with which 

parsimony nourishes scientific discovery. If I first cited Rutherford allegation, my goal is not here to 

diminish biology. Instead, I want to show that the physical description of a complex subject can end 

in a kind of stamp collection. If we are dwarfs on giant’s shoulders, examples with some well-known 

giants could help the reader to understand the way I personally conceive this work. 

 

In a first time I designed SUCCUBE algorithm to understand how behaviour links different physical 

measurements acquired on animals. The discovery of such rules by SUCCUBE, in particular at the 

independent component analysis stage, is here the equivalent of the discovery of Newtonian laws of 

physics. Every further parts of the present work will still rely on this first discovery. 

In a second time SUCCUBE applies the laws combining physical measurements, and observes the 

different states that the behaviour can take. The behavioural repertoire clustered on a Gaussian 

mixture model basis is here my Mendeleev periodic table of elements. This classification will be used 

in all behavioural analysis led afterward. 

In a third time the application of SUCCUBE allows to describe the behaviour of 13 different strains. 

These results therefore take the form of a kind of extensive catalogue, which could be seen as the 

Linnaeus's Systema Naturæ. Each of those results are here obviously not necessary to answer the final 

question of this work. However, the extracted classification acquires its wideness from the diversity 

of subjects. Although each result can seem contingent, all of them are compiled in the catalogue to 

allow each reader to select the one of its interest. 

 

This process, from physics to stamp collection, was necessary for me to, in a fourth time, achieve my 

final objective. Finding the behavioural affections related to SHANK3 haploinsufficiency is my personal 

dwarf step. What follows is the story of how I did it.  
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Abstract 

Autism spectrum disorders are neurodevelopmental disorders affecting more than 1% of the global 

population. Among that, more than 1% of people with autism and intellectual disabilities carry a 

mutation in the gene coding for the postsynaptic scaffolding protein Shank3. Mouse models of such 

disorders have been studied through knock-out mutation on the homologous gene. Behavioural 

affections were found in homozygous knocked-out animals, but few effects have been reported on 

the heterozygous individuals, in widely used laboratory mouse strains such as C57BL/6J. Still, 

understanding the impact of Shank3 haploinsufficiency is crucial, because human patients are 

heterozygous, and it will open the way to pharmaceutical strategies targeting an increase in Shank3 

expression. 

 

In this optic, we first analysed the behaviour of 12 mouse strains from the Collaborative Cross, a panel 

of a hundred inbred strains emerging from the controlled breeding of eight founder strains. This first 

step was used to grab some of the behavioural diversity present in mice and to select genetic 

backgrounds of interest for their social abilities or activity levels. 

 

In a second time, we generated Shank3 heterozygous mutant mice on those mixed genetic 

backgrounds by crossing C57BL/6J.Shank3+/- mice with the selected CC strains. We analysed their 

behaviour as compared to their wild-type littermates. We used Live Mouse Tracker, a system to track 

mice in social group, to record and investigate the solitary and social behaviour of those mice. 
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We developed a new unsupervised behavioural classification algorithm called SUCCUBE, in order to 

discover new behavioural event categories and extend our investigation of potential behavioural 

affections. Based on independent component analysis followed by Gaussian mixture model based 

clustering, this unsupervised classifier is notably the first one to allow co-occurrences of different 

behavioural event on a same time point. 

 

We here first compile wide descriptions of Collaborative Cross strain behaviour, in term of locomotor 

activity, exploration, stereotyped behaviour, thigmotaxis, neophobia and social interest. Such 

description can be beneficial to further development of other mouse models. We finally report the 

finding of three newly discovered behaviours, affected in their proportions of production, by Shank3 

haploinsufficiency, in a mixed background between C57BL/6J males and CC002 females. Those 

heterozygous mutants spent significantly less time rotating in acceleration, facing a conspecific or 

oriented in the same direction than a conspecific. 

 

Such findings open the way to pharmaceutical trials aiming to restore the affected behaviour of such 

mutant models closer to the levels of wild-type ones. This also makes the demonstration of the 

potential of unsupervised behavioural classification to investigate the behaviour of animal models of 

neurological troubles.  
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Résumé 

Les troubles du spectre autistique sont des troubles du développement neurologique affectant plus 

de 1 % de la population mondiale. Ces troubles se manifestent par une communication sociale 

atypique, des comportements stéréotypés ou répétitifs ainsi que des intérêts restreints. Ils sont 

souvent aussi accompagnés d'autres troubles que l'on appelle de ce fait comorbidités, tels que 

l’hyperactivité, la déficience intellectuelle, la bipolarité, et l’épilepsie. Si les comorbidités peuvent 

souvent être traités, des traitements autres que la thérapie comportementale pour les symptômes 

clefs de l’autisme font pour le moment toujours l’objet de recherches. La majeure partie des causes 

de ces troubles sont génétiques. Cependant, les causes les plus pénétrantes sont des mutations de 

novo, qui ne sont donc pas héritées. Plus de 1 % des personnes avec autisme et retard mental portent 

une mutation du gène codant pour la protéine d'échafaudage postsynaptique Shank3. La mutation 

Shank3 concerne une seule copie du gène. Les personnes portant ces mutations sont donc dites 

hétérozygotes ou haploinsuffisantes pour Shank3. Le fait que cette mutation ne touche qu'une copie 

laisse entrevoir une potentielle voie de restauration au travers d'une surexpression de la copie 

fonctionnelle restante. 

  



9 

Des modèles murins de ces troubles ont été étudiés via une mutation par inactivation (KO) du gène 

homologue. Les modèles les plus étudiés sont les mutants KO homozygotes. Ils ont démontré un 

comportement social affecté, des comportements stéréotypés ainsi qu'une hypoactivité. Les modèles 

mutants hétérozygotes ont quant à eux une meilleure validité structurelle. De la même façon que les 

patients humains, ils disposent toujours d'une copie fonctionnelle du gène Shank3, ce qui laisse 

entrevoir une potentielle voie de restauration du comportement au travers de la surexpression de 

cette copie. Cependant les modèles hétérozygotes ont été le sujet d'un plus petit nombre d'études, 

et celles-ci rapportent des effets plus subtils et moins reproductibles. Il est donc essentiel de 

comprendre l’impact de l’haploinsuffisance de Shank3, car les patients sont hétérozygotes et la 

compréhension de ces mécanismes ouvrira la voie à des stratégies pharmaceutiques visant une 

augmentation de l’expression de Shank3. 

 

La majorité des études portant sur ces modèles ont été menés sur des fonds génétiques communs 

tels que C57BL/6J. Nous supputons néanmoins l'existence de gènes modulateurs qui pourraient 

permettre de mieux percevoir les différences de comportement induites par la mutation sur d'autres 

fonds génétiques. 

  

Les difficultés à percevoir l'impact de l'haploinsuffisance de Shank3 chez la souris peut aussi dépendre 

de notre capacité à distinguer des différences de comportement. Cette dernière est limitée par de 

nombreux facteurs. Les a priori humains restreints ou encore incorrects, comme dans le cas de 

l'anthropomorphisme, ainsi que les limites de nos capacités de perception ou encore d'attention, 

introduisent des biais et des imprécisions et sont autant de faiblesses qui peuvent réduire la puissance 

discriminative d'une analyse du comportement.  
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L'analyse computationnelle du comportement permet de dépasser les limites des méthodes 

traditionnelles. Nous nous sommes particulièrement intéressés à la classification comportementale 

qui permet d'associer des séquences d'observation d'animaux à des catégories de comportement. 

Les classifications comportementales non supervisées ont l'avantage de ne dépendre d'aucun a priori 

pour définir les répertoires comportementaux dans lesquels elle classeront les différentes séquences. 

Cela présente l'avantage majeur de permettre la découverte de nouvelles catégories de 

comportements. Ces méthodes définissent les catégories uniquement en fonction des données. Elles 

permettent donc aussi de se prémunir contre tous les biais liés à l'observation humaine. Cependant, 

toutes les méthodes non supervisées développées par le passé reposaient sur un partitionnement 

unique qui entraîne une seule segmentation temporelle des observations, dont toutes les catégories 

sont alors exclusives entre elles. D'autres méthodes de classification comportementale automatique, 

telles que celles basées sur des règles ou celles basées sur des exemples, permettent quant à elle de 

classifier une même séquence dans plusieurs catégories. 

 

Nous avons donc développé une méthode de classification de comportement non supervisé qui 

permet de gérer des catégories non-exclusives, i.e., les comportements co-occurrent. Ceci est obtenu 

grâce à un partitionnement multiple. Celui-ci est basé sur la projection dans des sous-espaces 

orthogonaux. Une fois le comportement des souris enregistré par un système de suivi, les données 

de trajectoire permettent de calculer des mesures géométriques. Ce jeu de mesures basées sur les 

trajectoires comporte un nombre de particules en mouvements et 226 mesures de distances et 

d'angles. Elles peuvent être calculées en un seul point de temps si elles sont instantanées, ou 

comparer les informations de points de temps successifs pour donner des mesures dynamiques.  
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Ce jeu de mesures est par la suite traité par une analyse en composantes indépendantes. Celle-ci 

permet d'obtenir des dimensions orthogonales, qui serviront chacune de sous-espace pour accueillir 

un partitionnement différent. La fonction de séparation aveugle des sources permet d'obtenir un 

grand nombre de dimensions qui offrent chacune une mesure différente du comportement. 

 

Chacune de ses composantes indépendantes sert enfin d'espace pour un partitionnement basé sur 

un mélange de gaussiennes. La distribution non-gaussienne des composantes indépendantes nous 

permet justement d'attendre un modèle comportant plusieurs gaussiennes, qui permet donc la 

ségrégation de plusieurs catégories de comportements par axe. 

 

De nouvelles méthodes ont aussi été développées afin de définir le nombre de composantes 

indépendantes à extraire lors de l'analyse en composantes indépendantes et le nombre de 

distributions gaussiennes à mélanger lors du partitionnement basé sur un mélange de gaussiennes. 

Ainsi, la méthode ne nécessite aucune intervention humaine entre la collecte des données et les 

analyses statistiques qui seront finalement opérées à partir de la classification du comportement. 

 

Nous avons développé ce nouvel algorithme de classification de comportements non supervisé afin 

de découvrir de nouvelles catégories d'événements comportementaux et d'étendre notre 

investigation des affections comportementales potentielles. Nous l’avons nommé SUCCUBE, pour 

System for Unsupervised Classification of Co-occurrent Underlying Behavioural Events. Cette 

méthode est la première classification comportementale non supervisée à permettre la co-

occurrence d'événements comportementaux différents sur un même point de temps.  
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Nous avons par la suite utilisé Live Mouse Tracker, un système de suivi de souris en groupes sociaux, 

et SUCCUBE, pour enregistrer et étudier le comportement solitaire et social de multiples sujets murins. 

Ceci a été réalisé à partir de deux protocoles expérimentaux. Le premier, l'exploration solitaire d'un 

objet, consiste à suivre un individu isolé dans un environnement de 50 x 50 cm pendant une heure. 

Au milieu, au bout de 30 minutes, une maison rouge translucide est ajoutée à l'environnement pour 

y servir de nouvel objet. Le second protocole, le suivi d'un groupe sur le long terme, consiste à suivre 

un groupe préexistant de 4 individus de même sexe dans ce même environnement pendant 72 heures. 

Ces 72 heures sont marquées par un rythme jour nuit. Les animaux ont accès à la maison rouge 

translucide en guise d'abri, à de l'eau, de la nourriture, et du coton pour faire un nid. 

  

Nous avons tout d’abord analysé le comportement de 12 souches de souris issues du Collaborative 

Cross, un panel d'une centaine de souches consanguines issues du croisement contrôlé de huit 

souches fondatrices. Cette première étape a permis de saisir une partie de la diversité 

comportementale présente chez les souris et de sélectionner des fonds génétiques d'intérêt pour 

leurs capacités sociales ou leurs niveaux d'activité. 

 

Dans un deuxième temps, nous avons généré des souris mutantes hétérozygotes en Shank3 sur des 

fonds génétiques mixtes en croisant des souris C57BL/6J.Shank3+/- avec les souches du Collaborative 

Cross sélectionnées pour leur comportement différent de celui des souris C57BL/6J. Nous avons 

analysé leur comportement par rapport à celui de leurs congénères non-mutants. 
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SUCCUBE a permis la découverte d’un répertoire comportemental de 116 catégories d'événements 

comportementaux à partir des données du protocole d'exploration solitaire d'un objet et d'un autre 

de 112 catégories à partir des données du protocole de suivi d'un groupe sur le long terme. Nous 

détaillons tout d’abord ces répertoires dont nous avons interprété et nommé chaque catégorie. 

 

Nous compilons ensuite de larges descriptions du comportement des souches du Collaborative Cross, 

en termes d'activité locomotrice, d'exploration, de comportements stéréotypés, de thigmotaxie, de 

néophobie et d'intérêt social. Ces profils comportementaux peuvent être bénéfiques pour le 

développement ultérieur d'autres modèles murins. Ils peuvent aussi être les premières pierres à 

l'édifice d'une étude plus globale de la génétique des traits comportementaux. L'obtention d'un plus 

grand nombre de profils de souches du Collaborative Cross permettrait de conduire des analyses de 

Locus de traits quantitatifs. Il serait alors possible de trouver des gènes impliqués dans les différents 

traits comportementaux que notre classification permet de mesurer.  

 

Nous rapportons enfin la découverte de trois nouveaux comportements, affectés dans leurs 

proportions de production, par l'haploinsuffisance en Shank3, dans un fond mixte entre mâles 

C57BL/6J et femelles CC002. Ces mutants hétérozygotes ont passé significativement moins de temps 

à tourner en accélération, à faire face à un congénère ou à être orienté dans la même direction qu’un 

congénère.  
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L'affection du comportement de rotation s'avère particulièrement intéressante dans la mesure où ces 

comportements de rotation ont été identifiés depuis longtemps (1973) comme étant des indices 

sensibles de la stimulation des récepteurs dopaminergiques. Sachant qu'un déséquilibre au niveau 

des récepteurs dopaminergiques D1 et D2 a déjà été observé chez des mutants pour le gène Shank3, 

nous pouvons émettre l'hypothèse que la réduction de la production du comportement de rotation 

en soit un signe extérieur. 

 

Les comportements d'orientation sociale permettent quant à eux de tracer un lien entre une 

différence de comportement solitaire de rotation et une affection du comportement social. De tels 

comportements peuvent être impliqués dans les comportements de contacts nez-à-nez ou de 

reniflements ano-génitaux qui ont été observés en moindre fréquence chez certains modèles mutants 

homozygotes. 

 

Il faut noter que succube a permis la découverte des catégories de comportements sur lesquels nous 

avons pu observer les effets de l'haploinsuffisance en Shank3. Ceux-ci ne consistaient pas en des 

comportements d'intérêt a priori. Nous pouvons même remarquer que le comportement des souris 

est généralement abordé sous l'angle des changements de localisation et des distances entre 

individus. Nous pouvons donc dire que la découverte de ces catégories d'événements 

comportementaux a conditionné l'obtention des résultats finaux de ces recherches. 
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De telles découvertes ouvrent la voie à des essais pharmaceutiques visant à rétablir le comportement 

affecté de ces modèles mutants plus près des niveaux de ceux des non-mutants. Cela permet 

également de démontrer le potentiel de la classification comportementale non supervisée pour 

étudier le comportement de modèles animaux de troubles neurologiques. 

 

Les catégories d'événements comportementaux extraites par SUCCUBE pouvant co-occurrer, celles-

ci sont typiquement des éléments modulaires. Il sera donc par la suite particulièrement intéressant 

d'analyser les patterns d'associations simultanées et successives de ces catégories, afin de 

comprendre la structure temporelle de plus grande échelle du comportement et de pouvoir l'utiliser 

afin de trouver des différences de comportements toujours plus fines. 
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Autism spectrum disorder 

Initial description 

The first mention of Autistic spectrum disorder (ASD) in the literature is the 1943 publication of 

Kanner “Autistic Disturbance of Affective Contact” [1]. This first study relates observations on 11 

children (8 boys, 3 girls) from 1938. The observed subjects are described as displaying “a powerful 

desire for aloneness” and “an obsessive insistence on persistent sameness”. Leo Kanner considered 

such cases as grouped in a new mental condition, and named this condition “early infantile autism”. 

 

In parallel Hans Asperger studied 4 children with similar characteristics, but without intellectual 

disability or language deficit. In his publication of 1944 he described his patients as clumsy, lacking 

empathy and having highly specific centres of interest [2]. 

 

Clinical criteria 

ASD is a neurodevelopmental condition. First symptoms therefore are observed in the early childhood. 

Patients can be consistently diagnosed at three years of age, although it may become clear only later 

in life [3], [4]. 

ASD is characterized by impairments in two areas (table 1): 

- the social-communication domain 

- the behavioural domain, which includes repetitive behaviours and restricted interests. 

ASD is diagnosed on a behavioural basis, following guidelines of the Diagnostic and Statistical Manual 

of Mental Disorders, Fifth Edition (DSM-5) [5]. The DSM-5 also introduced the notion of spectrum in 

order to account for the important diversity of symptoms among the patients.  
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Table 1: Criteria for the diagnosis of autism spectrum disorder from the Diagnostic and Statistical 

Manual of Mental Disorders, Fifth Edition (DSM-5), in 2013. (APA 2013) [5] 

 

A. Persistent deficits in social communication and social interaction across multiple contexts, as 
manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 
1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach 
and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; 
to failure to initiate or respond to social interactions. 
2. Deficits in non-verbal communicative behaviours used for social interaction, ranging, for 
example, from poorly integrated verbal and non-verbal communication; to abnormalities in eye 
contact and body language or deficits in understanding and use of gestures; to a total lack of facial 
expressions and non-verbal communication. 
3. Deficits in developing, maintaining, and understanding relationships, ranging, for example, 
from difficulties adjusting behaviour to suit various social contexts; to difficulties in sharing 
imaginative play or in making friends; to absence of interest in peers. 
 
B. Restricted, repetitive patterns of behaviour, interests, or activities, as manifested by at least 
two of the following, currently or by history (examples are illustrative, not exhaustive; see text): 
1. Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple motor 
stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases). 
2. Insistence on sameness, inflexible adherence to routines, or ritualized patterns or verbal non-
verbal behaviour (e.g., extreme distress at small changes, difficulties with transitions, rigid thinking 
patterns, greeting rituals, need to take same route or eat food every day). 
3. Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong 
attachment to or preoccupation with unusual objects, excessively circumscribed or perseverative 
interest). 
4. Hyper-or hyporeactivity to sensory input or unusual interests in sensory aspects of the 
environment (e.g., apparent indifference to pain/temperature, adverse response to specific sounds 
or textures, excessive smelling or touching of objects, visual fascination with lights or movement). 
 
C. Symptoms must be present in the early developmental period (but may not become fully 
manifest until social demands exceed limited capacities, or may be masked by learned strategies in 
later life). 
 
D. Symptoms cause clinically significant impairment in social, occupational, or other important 
areas of current functioning. 
 
E. These disturbances are not better explained by intellectual disability (intellectual 
developmental disorder) or global developmental delay. Intellectual disability and autism spectrum 
disorder frequently co-occur; to make comorbid diagnoses of autism spectrum disorder and 
intellectual disability, social communication should be below that expected for general developmental 
level. 
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These clinical and psychological criteria, considered on diagnosis, are evaluated through standardized 

procedures or tools. The most used ones are qualitative assessments: 

- The Autism Diagnostic Interview, Revised (ADI-R) [6], an interview with the patient’s parents, 

allowing to evaluate the evolution and potential deficits. 

- The Autism Diagnostic Observation Schedule (ADOS) [7], an interaction with the patient 

structured with short activities and games, allowing the direct and standardised evaluation of deficits 

in the social communication and behaviour domains. 

ADI-R and ADOS are the international standard evaluations. However, tools for the quantitative 

evaluation of the patient have also been developed. They allow to precise the deficits in particular 

domains, in complement of the ADOS : 

- The Childhood Autism Rating Scale (CARS) [8], a scale evaluating the global deficit, of the 

patient, which can be associated with ASD core symptoms. 

- The Children's Communication Checklist (CCC) [9], a scale evaluating the social communication 

ability of the patient. 

- The Social Responsiveness Scale (SRS) [10], a scale evaluating specifically the social behaviours 

of the patient. 

- The Repetitive Behaviour Scale (RBS) [11], a scale quantifying the repetitive and the 

stereotyped behaviours of the patient. 

ASD can also be associated with  comorbidities (figure 1). 75% of patients are displaying intellectual 

disabilities at different severity levels [12]–[14]. Patients with ASD and an Intellectual Quotient (IQ) of 

more than 70 are considered without intellectual disabilities and display what we call high-functioning 

autism.  
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Figure 1: Core symptoms and frequent comorbidities observed in individuals with ASD, from Huguet 

et al. in 2013 [15]. “Arrows define clinical characteristics of the individuals, and the red line defines the 

level of severity (low at the centre and high at the periphery). Colours represent the combination of 

clinical features.” 

 

Anxiety disorders, which denote increased anxiety and fear, are present in 11 to 84.1% of patients 

according to the type of measure [16], [17], against 3 to 30% in the neurotypical population [18]. 

People with ASD may also present Attention-Deficit with Hyperactivity Disorder (ADHD) in 28.2 to 87 % 

of the cases [17], against 3.4% in neurotypical population [19]. They are also more subjected to mood 

disorder as bipolar disorders and depression, 2 to 57% of cases [17], against 3.8% in the neurotypical 

population [20]. Patients with ASD have also a greater risk to develop epilepsy, in 5 to 38% of cases 

the patients display seizure [21], when the overall lifetime prevalence of epilepsy is 0.76% [22].  
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Epidemiology 

The current prevalence of ASD is estimated between 1 and 2% of the global population. The sex ratio 

of ASD patients is unbalanced, male patients outnumbering females four to one [23]. The prevalence 

is particularly well documented in the United States and was estimated at 18.5 per 1000 children aged 

eight years, in 2016 [23]. However this prevalence is heterogeneous over the United States, varying 

from 13.1 to 31.4 per 1000 children, between states. Most of this variance can be explained by the 

numbers of health centres, psychiatrists and paediatricians in each state [24]. This prevalence has 

been constantly increasing since the 1960's and 1970's when it was comprised between 0.4 and 2 per 

1000 children [25] until the most recent measurements from the United States Centers for Disease 

Control and Prevention (figure 2).  



34 

 

 

 

 

 

élément sous droit, diffusion non autorisée 

 

 

 

 

Figure 2: Estimated prevalence of autism spectrum disorder in the United States of America from 

2004 to 2020 based on Centers for Disease Control and Prevention reports, from Autism Speaks. 

“Analysis of 2016 medical and/or school records of 8-year-olds from 11 monitoring sites across the 

United States.” 

 

Environmental factors could explain a part of this increase as we know that risk factors for ASD exist 

[26]. However, most of this increase is likely to be due to the change in diagnostic criteria and the 

inclusion of outpatient contacts [27]. For example, in Sweden, the real prevalence revealed to be 

stable between 1993 and 2002, but the diagnosis of ASD increased in this period (figure 3) [28].  
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Figure 3: Annual prevalence of autism spectrum disorder in Child and Adolescent Twin Study in 

Sweden (CATSS), national patient register (NPR), and NPR diagnoses in Swedish twins, from 

Lundström et al. in 2015 [28]. “*Prevalence calculated on 19 993 people responding in twin study born 

1993-2002. †Prevalence calculated on all twins, irrespective of response in CATTS (n=26 953). 

Diagnosis in NPR was ascribed before the children’s 10th birthday. ‡Prevalence calculated on all births 

in Sweden 1993-2002 (n=1 078 975). Diagnosis in NPR was ascribed before the children’s 10th birthday. 

Regression lines are depicted within 95% confidence intervals.”  
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“The current treatment options for the core symptoms of autism are limited to psychosocial therapies, 

such as applied behaviour analysis” [29]. Such approaches have shown to be effective in improving 

social skills and communication. Pharmaceutical treatments are more used to treat comorbidities, 

such as risperidone and aripiprazole for irritability. Risperidone has also shown to be beneficial by 

reducing stereotyped behaviours. However those two drugs have limitations because they lead to 

increased appetite, weight gain and somnolence, what causes discontinuations in treatments [30]. 

The difficulties to discover appropriate treatments for ASD symptoms also depend on the patients 

heterogeneity, which itself depends on the diversity of ASD causes. In order to better target 

therapeutic trials and identify new potential therapeutic strategies, it is necessary to better 

understand the causes of ASD. 

 

Genetic causes 

Twin studies have displayed a major genetic contribution to ASD. With concordances ranging from 82 

to 92% in monozygotic twins compared with 10% in dizygotic twins, ASD appeared as the most genetic 

of neuropsychiatric disorders [31], [32]. The heritability of ASD is estimated around 50%. Most of this 

heritability relies on common genetic variants. However, our understanding of the genetics of ASD 

concerns almost exclusively highly penetrant de novo mutations, which are thus not inherited [33]. 

These de novo mutations targeting clinically relevant loci for ASD are carried by 10% of patients, 

particularly those with intellectual disabilities. Such mutations can be Copy Number Variants (CNVs), 

variations in the number of copies of a particular gene, or Single Nucleotide Variants (SNVs), variations 

in a single nucleotide (figure 4). In ASD-associated genes, 61% are expressed in the brain [15].   
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Figure 4: Relative contributions of genetics and environment in ASD, from Huguet and Bourgeron in 

2016 [33]. “Based on twin and familial studies, it is estimated that the genetic and environmental 

contributions to ASD are approximately 50=50%. Most of the inheritable part seems to be due to 

common variants observed in the general population, with a small contribution from rare variants. 

Importantly, de novo mutations are genetic causes of ASD, but they do not contribute to heritability 

because they are present only in the patient. These de novo events are therefore considered 

environmental causes of ASD, but act on the deoxyribonucleic acid molecule.” 

 

These many genes are involved in different cellular functions, such as chromatin remodelling, mRNA 

translation, metabolism, and 14% in synaptic function (Figure 5) [15]. However, the consequences of 

these mutations could converge towards an alteration of neuronal and synaptic homeostasis [34], 

[35].  
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Figure 5: Biological pathways of proteins mutated in ASD or other disorders, from Huguet et al. In 

2013 (Huguet, et al. 2013)15. 

“These proteins are involved in many functions, including the organization of the postsynaptic density, 

cytoskeleton dynamics, cellular signalling cascades, epigenetic regulation of transcription, and release 

of neurotransmitters. Proteins associated with ASD are in red, those associated with other psychiatric 

disorders are in purple, and those associated with intellectual disability are in blue. 

Panel a illustrates the pre- and post-synapse; panel b illustrates the synapse and gene transcription 

regulation in the nucleus.“ 
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SHANK3 gene 

In 2007, Durand and colleagues discovered that a mutation of a single copy of SHANK3 gene on the 

locus q13 of chromosome 22 (22q13) can result in severe cognitive deficits, including language and 

speech disorder and ASD [36]. Mutations in SHANK3 is present in 0.69% of patients with ASD, and in 

2.12% of the patients with co-occurrent ASD and moderate to profound intellectual disability [37]. 

This makes SHANK3 haploinsufficiency one of the more penetrant monogenic causes of ASD [38]. 

SHANK3 is also associated to Phelan-McDermid syndrome, which is caused by the deletion of the 

22q13 locus, intellectual disability, schizophrenia and bipolar disorder [39], [40]. People with SHANK3 

mutations can display severe speech deficits, some individuals are non-verbal, other may use single 

words or phrase speech. Some regression may be observed. Such mutations generally drive people 

to be hypoactive, they may display hypotonia and motor skill deficits. brain abnormalities and mild 

dysmorphic features can be present. Patients may also develop seizures as well as feeding and 

gastrointestinal problems [41]. 

 

Proteins 

SHANK3, also known as ProSAP2, is part of the SH3 and multiple Ankyrin repeat domains (SHANKs) 

gene family, which also includes SHANK1 and SHANK2 also known as ProSAP1. They encode for 

SHANKs which are scaffolding proteins of the postsynaptic density (PSD) of glutamatergic synapses 

[39]. Shank3 have five conserved protein domains (figure 6) [42]: 

- an ankyrin repeat domain (ANK); 

- a Src homology 3 domain (SH3); 

- a PSD-95/Discs large/ZO-1 domain (PDZ); 

- a proline-rich region containing homer-and cortactin-binding sites (Pro) 

- a sterile alpha motif domain (SAM). 
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Figure 6: Some SHANK3 mutations causing autism-related phenotypes, represented on the 

chromosome and in the protein domain by Jiang and Ehlers in 2013 [42]. “SHANK3 is part of a large 

gene cluster associated with deletions in chromosome 22q13.3 deletion syndrome, or Phelan-

McDermid syndrome, associated with autistic behaviors and intellectual disability (select genes are 

shown). The deletion sizes vary from 17 kb within SHANK3 to 10 Mb in 22q13.3. SHANK3 gene 

structure, mutations, and protein domains are shown. Human SHANK3 has 23 exons as deduced from 

cDNA AB569469 deposited in GenBank. Exon 11a is a newly identified exon. The positions of six 

identified promoters are indicated as black arrows. The exons in red are alternatively spliced. The 

positions of point mutations are indicated as blue arrows and the nature of point mutations are as 

described above the arrow. Protein domains are shown and aligned to corresponding exons (ANK, 

ankyrin repeat domain; SH3, Src homology 3 domain; PDZ, PSD-95/Discs large/ZO-1 domain; Pro, a 

proline-rich region containing homer- and cortactin-binding sites; SAM, sterile alpha motif domain). 

CpG islands are sites of differential methylation and are indicated by green bars.”  
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Figure 7: SHANK3 Protein Interactions and Isoform-Specific Domain Structure, from Jiang and Ehlers 

in 2013 [42]. 

“(A) Schematic of the partial Shank protein interactome at the PSD with Shank3 as a model. Protein 

domains in Shank family members are similar. Many interacting proteins interact with all three Shank 

family proteins (Shank1, Shank2, and Shank3) in in vitro assays. The proteins in red font are altered in 

Shank3 mutant mice. (B) Diagram of SHANK3 protein isoforms SHANK3a-f. Protein domain structure 

was deduced from confirmed mRNAs expressed from different promoters in human and mouse brains. 

Polypeptides have not been validated due to the lack of isoform-specific antibodies. Pro, proline-rich 

region.” 

  



43 

SHANK genes have intragenic promoters that condition a complex transcriptional regulation with 

multiple and extensive alternately spliced exons. SHANK3 gene encompasses 22 exons and six 

promoters, that lead to the transcription of at least six mRNA and their translation in six main isoforms 

of SHANK3 protein (figure 7 B) [42], [43]. This diversity of SHANK3 isoforms is likely to play a role in 

synaptic signalling and on the protein composition of the PSD. SHANK3 transcript structure being 

complex, point mutations, intragenic deletions and translocations of SHANK3 carried by patients with 

ASD are isoform-specific. Mutations may have a different impact on the different SHANK3 isoforms 

proportions, and this mix of translated isoforms will be specific to the mutation. 

 

Functions 

SHANK3 “may function as a master scaffolder forming large sheets that may represent the platform 

for the construction of the PSD complex” (figure 7 A) [44], [45]. This PSD complex is formed by the 

binding of SHANK3, with many synaptic proteins it interacts with, as neuroligins and neurexins, at 

glutamatergic synapses. Such binding interactions regulates the structural organization of dendritic 

spines [36]. This structure of the glutamatergic dendritic spines would influence the synapse function 

and homeostasis. 

 

SHANK3 is also known to “have a positive effect on the induction and maturation of dendritic spines” 

[37]. This could explain its role in the formation of synapses [39]. SHANK3 thus have an impact on 

neuronal development, what allows to understand its implication on neurodevelopmental disorders.  
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Shank3 knockout mouse models 

Genetic studies proved the implication of Shank3 and other genes mutations in patients with ASD. 

However the mechanisms by which the mutation impacts the physiology and behaviour remain hard 

to study on human patients. Animal models carrying such mutations therefore may allow to fill this 

gap of understanding and to test innovative candidate ways of treatment. 

Mouse models are the most used ones because: 

- they have a satisfying phylogenetic proximity to human, our lineage diverged between 70 and 

80 millions years ago [46], and thus carry 99 % of genes homologous to human ones, including 

orthologous 80% of genes, as Shank3 [47]; 

- they are easy to manipulate genetically to mimic the human mutations [48]; 

- they share physiological similarity with humans; 

- they have behavioural traits that can be paralleled with some human ones, they can display 

social behaviours and stereotyped behaviours, that we can measure [49]; 

- they have an accelerated lifespan, their entire life cycle can be observed in three years; 

- they are cost-effective and efficient, they are small and can be observed in apparatus fitting in 

animal facilities, they reproduce quickly, they are easy to handle and transport; 

- they have been used as biomedical research models since 1678, so we understand this species 

particularly well; 

- they can be inbred in order to obtain genetically identical strains. Such genetical uniformity 

increases accuracy and reproducibility of experiments, which reduces variance and increases 

statistical power. However, inbreeding may also be a limit of mouse models, as the strain used can 

become too specific and thus lose a part of its ability to mimic the effects observed in human. A 

potential way to avoid this limit is to study the impact of a mutation on different genetic backgrounds, 

in order to benefit from the different sets of modifier genes.  
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Figure 8: Heat-map representation of the clustering of mouse models for ASD carrying mutations in 

synaptic proteins and their phenotypic traits, from Ferhat et al. 2017 [50]. Traits are “as indicated: 

social interest/motivation, social recognition, social communication, stereotypes, synaptic physiology 

and protein composition.” The colour of the cells indicates if each study found: No significant difference 

between wild-type and mutant mice; Significantly higher or lower trait in mutant than in wild-type 

mice; Mixed evidence or if the trait was Not investigated.  
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Researchers thus generated and explored mouse models to accumulate knowledge about the biology 

of autism [51]. We will here focus on the impact of a Shank3 mutation on mouse behaviour, Shank3 

being the most studied genetic cause of ASD. If a Shank3 mutation affects the behaviour of an animal 

in an ASD-like way, we can consider to some extent that it models the disorders. Once a model is 

defined, it could also allow to run pharmaceutical trials, which would again produce knowledge about 

ASD mechanisms. Finally, if a drug allows to restore the affected phenotype closer to the one of non-

mutant individual, it would be a step toward human pharmaceutical rescue strategies. 
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Figure 9: Targeted Mutations in Shank3 Genes in Mice, from Jiang and Ehlers in 2013 [42].  
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“Schematic of the mouse Shank3 gene structure deduced from cDNA AB230103 deposited in GenBank. 

The promoters are shown by arrows and alternatively spliced exons are indicated in red. The exact 

transcription starting site of promoter 3 remains to be determined. The positions of targeted 

mutations in five different lines of Shank3 mutant mice are shown. The transcripts from promoters 

upstream of deleted exons are predicted to be truncated or disrupted (red arrows) and the transcripts 

from promoter downstream of deleted exons are predicted to be intact in each mutant line of mice 

(black arrows). Bottom panels depict predicted isoform-specific expression of Shank3 mRNA and 

proteins in Shank3 mutant mice. The “−” indicates that the isoform is disrupted and “+” indicates the 

isoform remains intact. The full complement of Shank3 mRNA and protein isoforms that derive from 

combinations of alternative promoters and mRNA splicing remains unknown. Therefore, the pattern 

of isoform-specific expression and disruption by specific mutations is likely more complex than 

indicated.” 

 

Shank3 mutant phenotype 

Most studies observed the behaviour of homozygous mutant mice for Shank3, a fewer proportion 

evaluated heterozygous mutants (figure 8). Such mutations are not always targeting the same exon, 

and as in human, Shank3 mutations carried by mouse are isoform-specific. That means that different 

mouse models, with different mutations, are not lacking the same Shank3 isoforms. [42]. For example 

(Figure 9): 

- mice with deletions Δex4-7 [52] and Δex4-7 [53], [54] are only lacking Shank3 isoforms a and 

b; 

- mice with deletion Δex11 [55] are lacking Shank3 isoforms a, b and c; 

- mice with deletion Δex13-16 [52] are lacking Shank3 isoforms a to d.  



48 

Table 2: decrease of activity between different studies and Shank3 mouse models. 

Mutant models publications 
Effect in homozygous 

mutant 

Effect in heterozygous 

mutant 

Shank3∆4-9B 
M. Yang et al., 2012[56] reduced not significant 

Drapeau et al., 2014[57] not significant reduced 

Shank3∆4-7 Peça et al., 2011[52] reduced not investigated 

Shank3∆4-9P Jaramillo et al., 2016[58] not significant not significant 

Shank3∆4-9J Kabitzke et al., 2018[59] not significant not investigated 

Shank3∆4-22J 
X. Wang et al., 2016[60] reduced not significant 

Bey et al., 2018[61] reduced not investigated 

Shank3∆4-22B Drapeau et al., 2018[62] reduced reduced 

Shank3∆9 Lee et al., 2015[63] not significant not investigated 

Shank3∆11 Vicidomini et al., 2017[64] not significant not investigated 

Shank3∆13-16 Kabitzke et al., 2018[59] reduced not investigated 

Shank3∆21P 
Duffney et al., 2015[65] not investigated not significant 

kouser et al., 2013[66] reduced not investigated 

Shank3InsG3680 
Zhou et al., 2016[67] 

reduced reduced 

Shank3R1117X reduced not significant 

Shank3InsGex21 Speed et al., 2015[68] reduced not significant 

Shank3cKI Mei et al., 2016[69] reduced not investigated 

 

Over 21 publications form the literature, the behaviour of 15 mouse models with different Shank3 

mutation was measured, for a total of 24 independent behavioural characterizations of Shank3 

mutant mice. In 17 of the 24 behavioural characterizations of shank3 mutants, researchers have 

evaluated the locomotor activity of mice. On the 16 testing homozygous mutants, 11 concluded in a 

reduction of the activity associated to the homozygous mutation. On the 9 testing heterozygous 

mutants, 3 concluded in a reduction of the activity associated to the heterozygous mutation (Table 2).  
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Table 3: decrease of social interest between different studies and Shank3 mouse models. 

Mutant models publications 
Effect in homozygous 

mutant 

Effect in heterozygous 

mutant 

Shank3∆4-9B 

M. Yang et al., 2012[56] reduced reduced 

Bozdagi et al., 2010[53] not investigated reduced 

Drapeau et al., 2014[57] not significant not significant 

Shank3∆4-7 Peça et al., 2011[52] reduced not investigated 

Shank3∆4-9P Jaramillo et al., 2016[58] reduced not significant 

Shank3∆4-9J 
X. Wang et al., 2011[54] reduced not investigated 

Kabitzke et al., 2018[59] not significant not investigated 

Shank3∆4-22J Bey et al., 2018[61] reduced not investigated 

Shank3∆4-22B Drapeau et al., 2018[62] reduced not significant 

Shank3∆9 Lee et al., 2015[63] not significant not investigated 

Shank3∆11 Vicidomini et al., 2017[64] reduced not investigated 

Shank3∆13 Jaramillo et al., 2017[70] reduced reduced 

Shank3∆13-16 

Peça et al., 2011[52] not significant not investigated 

 J. Luo et al., 2017[71] reduced not investigated 

Kabitzke et al., 2018[59] reduced not investigated 

Shank3∆21P 

Duffney et al., 2015[65] not investigated reduced 

Qin et al., 2018[72] not investigated reduced 

kouser et al., 2013[66] not significant not investigated 

Bidinosti et al., 2016[73] reduced not investigated 

Shank3InsG3680 
Zhou et al., 2016[67] 

reduced not significant 

Shank3R1117X reduced reduced 

Shank3InsGex21 Speed et al., 2015[68] not significant not significant 

 

In 22 of the 24 behavioural characterizations of Shank3 mutants, researchers have evaluated the 

social interest of mice. On the 19 testing homozygous mutants, 13 concluded in a reduction of the 

social interest associated to the homozygous mutation. On the 11 testing heterozygous mutants, 6 

concluded in a reduction of the social interest associated to the heterozygous mutation (Table 3).  
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Table 4: reduction of interest in social novelty between different studies and Shank3 mouse models. 

Mutant models publications 
Effect in homozygous 

mutant 

Effect in heterozygous 

mutant 

Shank3∆4-9B 
M. Yang et al., 2012[56] not significant not significant 

Drapeau et al., 2014[57] reduced reduced 

Shank3∆4-7 Peça et al., 2011[52] reduced not investigated 

Shank3∆4-9J Kabitzke et al., 2018[59] not significant not investigated 

Shank3∆9 Lee et al., 2015[63] not significant not investigated 

Shank3∆11 Vicidomini et al., 2017[64] reduced not investigated 

Shank3∆13 Jaramillo et al., 2017[70] reduced reduced 

Shank3∆13-16 

Peça et al., 2011[52] reduced not investigated 

 J. Luo et al., 2017[71] reduced not investigated 

Kabitzke et al., 2018[59] not significant not investigated 

Shank3∆21P 

Duffney et al., 2015[65] not investigated not significant 

kouser et al., 2013[66] not significant not investigated 

Bidinosti et al., 2016[73] not significant not investigated 

Shank3InsG3680 
Zhou et al., 2016[67] 

reduced not significant 

Shank3R1117X reduced reduced 

Shank3InsGex21 Speed et al., 2015[68] not significant not significant 

 

In 16 of the 24 behavioural characterizations of Shank3 mutants, researchers have evaluated the 

interest in social novelty of mice. On the 15 testing homozygous mutants, 8 concluded in a reduction 

of the interest in social novelty associated to the homozygous mutation. On the 7 testing 

heterozygous mutants, 3 concluded in a reduction of the interest in social novelty associated to the 

heterozygous mutation (Table 4).  
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Table 5: decrease in ultrasonic vocalisation emissions between different studies and Shank3 mouse 

models. 

Mutant models publications 
Effect in homozygous 

mutant 

Effect in heterozygous 

mutant 

Shank3∆4-9B Bozdagi et al., 2010[53] not investigated reduced 

Shank3∆4-9J 
X. Wang et al., 2011[54] reduced not investigated 

Kabitzke et al., 2018[59] reduced not investigated 

Shank3∆4-22J 
X. Wang et al., 2016[60] reduced not significant 

Bey et al., 2018[61] reduced not investigated 

Shank3∆9 Lee et al., 2015[63] not significant not investigated 

Shank3∆13-16 Kabitzke et al., 2018[59] reduced not investigated 

Shank3∆21P kouser et al., 2013[66] not significant not investigated 

 

In 8 of the 24 behavioural characterizations of Shank3 mutants, researchers have evaluated the 

ultrasonic vocalisation emissions of mice. On the 7 testing homozygous mutants, 5 concluded in a 

reduction of the ultrasonic vocalisation emissions associated to the homozygous mutation. On the 2 

testing heterozygous mutants, 1 concluded in a reduction of the ultrasonic vocalisation emissions 

associated to the heterozygous mutation (Table 5).  
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Table 6: increase of stereotyped behaviours between different studies and Shank3 mouse models. 

Mutant models publications 
Effect in homozygous 

mutant 

Effect in heterozygous 

mutant 

Shank3∆4-9B 
M. Yang et al., 2012[56] increased increased 

Drapeau et al., 2014[57] not significant not significant 

Shank3∆4-7 Peça et al., 2011[52] increased not investigated 

Shank3∆4-9P Jaramillo et al., 2016[58] increased not significant 

Shank3∆4-9J 
X. Wang et al., 2011[54] increased not investigated 

Kabitzke et al., 2018[59] not significant not investigated 

Shank3∆4-22J 
X. Wang et al., 2016[60] increased not significant 

Bey et al., 2018[61] increased not investigated 

Shank3∆4-22B Drapeau et al., 2018[62] increased not significant 

Shank3∆9 Lee et al., 2015[63] not significant not investigated 

Shank3∆11 Vicidomini et al., 2017[64] increased not investigated 

Shank3∆13 Jaramillo et al., 2017[70] increased increased 

Shank3∆13-16 Kabitzke et al., 2018[59] increased not investigated 

Shank3∆21P 

Duffney et al., 2015[65] not investigated increased 

Qin et al., 2018[72] not investigated increased 

kouser et al., 2013[66] increased not investigated 

Bidinosti et al., 2016[73] increased not investigated 

Shank3InsG3680 
Zhou et al., 2016[67] 

increased not significant 

Shank3R1117X not significant not significant 

Shank3InsGex21 Speed et al., 2015[68] increased not significant 

Shank3cKI Mei et al., 2016[69] increased not investigated 

 

In 21 of the 24 behavioural characterizations of Shank3 mutants, researchers have evaluated the 

stereotyped behaviours of mice. On the 19 testing homozygous mutants, 15 concluded in an increase 

of the stereotyped behaviours associated to the homozygous mutation. On the 11 testing 

heterozygous mutants, 4 concluded in an increase of the stereotyped behaviours associated to the 

heterozygous mutation (Table 6).  
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We can notice an important variability between studies, that may be imputable to differences in 

isoforms expressed, in number of individuals taken into account or to laboratory specific effects. 

Despite this, most findings about Shank3 mutant mice can be considered as reminiscent to the 

observations in patients, or ASD-like. 

 

Over the 25 behavioural characterizations of Shank3 mutant we considered, homozygous mutant 

were more studied than heterozygous mutants. We took 5 categories of behavioural trait into account: 

activity; social interest; interest in social novelty, ultrasonic vocalisation emission and stereotyped 

behaviour. For each of those categories, the majority of the behavioural characterizations, evaluating 

this trait on homozygous mutants, concluded in a significant effect of the mutation. In contrast, the 

rate of significant findings on the impact of the heterozygous mutation, never exceeded 50%, for any 

of the trait. 

 

In 2016, Mei and colleagues led a study on a novel mouse model with Shank3 conditional knock-in 

mutation. Their mice, which were not expressing Shank3, displayed a social interaction deficit and 

repetitive grooming behaviours. But they showed that, re-expression of the Shank3 gene, once mice 

were grown adult, could rescue certain behavioural abnormalities including social deficit and 

stereotyped grooming behaviour. Such results reveal the potential of post-developmental activation 

of Shank3 to restore neural functions and behaviour [69].  
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The potential of Shank3 heterozygous mutant models 

The majority of the mutations implied in ASD, including Shank3, affect a single allele. This suggests “a 

key role for gene dosage in susceptibility to ASD” [35]. Most patients affected by Shank3 mutation are 

thus heterozygous, as the mutation disrupts only one copy of the gene. In 2007, when the implication 

of Shank3 in ASD was discovered, Durand and her collaborators stated that this gene highlighted the 

importance of a “gene dosage–sensitive synaptic pathway” in ASD. [36] If the behaviour of mouse 

models can be partially restored through Shank3 activation after development [69], the same could 

be possible for human patients, then increasing the transcription of their remaining Shank3 allele 

would be a promising potential treatment pathway. 

 

However, the restoration of behaviour through the increased translation of non mutated allele is not 

possible in homozygous mutant. Such therapeutic option can only be studied on a heterozygous 

Shank3 mutant model. We noticed the imbalanced ratio of studies studying heterozygous mutant 

compared to the ones describing homozygous models. In the 2018 Drapeau et al. study, homozygous 

mutant mice were displaying more grooming than wildtype. However, no significant effects were 

found on heterozygous mice. This shows a major reason for the minor use of heterozygous models 

for Shank3. The deficits are typically more pronounced in homozygotes, and heterozygotes often 

display an intermediate phenotype [62].  
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In another publication of Drapeau and her collaborators, from 2014, an interesting way to valorise 

heterozygous model study is attempted: the use of new genetic backgrounds. It is frequent that the 

phenotypic impact of a single locus mutation can be modulated by other loci [57]. Such modulation 

should thus be maximal between two entirely different genetic backgrounds. In laboratory mice each 

strain corresponds to a distinct genetic background. A mutation impact on the phenotype is therefore 

often different across strains. Changing the strain in which we study a mutation is thus a way to 

identify modifier loci. In this particular study, strains C57BL/6, 129SVE and FVB/Ntac have been used 

to investigate potential genetic background modulations on the phenotypes of Shank3 heterozygous 

and homozygous models and wild-type mice. However, the authors conclude in the absence of strong 

strain effects in the large battery of behavioural analyses led on these Shank3 mutants. 

  

In this work we will pursue in this way of background investigation to obtain a clear model of 

behavioural affection caused by Shank3 haploinsufficiency. However, in order to increase our ability 

to detect behavioural consequences of Shank3 heterozygous mutations, we will also rethink our way 

to measure and evaluate the behaviour.  
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Traditional behavioural analysis 

The field of biology tackling animal behaviour, or ethology, preceded computer sciences. The 

methodologies previously developed in this field were therefore not dependent of any heavy 

computational resolution. In this thesis, we will use the term “traditional behavioural analysis” [74] 

to refer to these practices that are not based on computer processing. 

 

Collected data have always been analysed from a mathematical point of view. However, without the 

help of modern technology, the collection of behavioural data meets natural limitations. Indeed, 

performing calculations while observing a behaviour is made difficult by the high rate of animal 

behaviour occurrence. For example, mice have been estimated to perform on average three blocks of 

different posture behaviours per second when they are active [75]. 

 

To face this difficulty, researchers have traditionally been constrained to choose rather to lead 

measurements which did not imply any computation or to rely on mental complex analytic resolution. 

This limitation therefore separates the two only possible ways left for traditional behavioural protocols 

[74]:  

- Capturing simple aspects of the behaviour through a particular assay specifically designed to 

collect this precise kind of data (i.e. tube test [76], light dark box test [77], three chamber test [78]…) 

- Leading wide observations of the behaviour, reported through manual descriptions by the 

human observer, which relies on their individual and natural understanding and conceptualisation of 

the behaviour. These two methods will allow us to introduce the traditional limitations found in pre-

computational behavioural analysis.  
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Behavioural assay limits 

Simplicity and rapidity of implementation made behavioural assays efficient and well standardized. 

The principal limitation of such methods comes from their extremely low dimensionality. They indeed 

capture few measurements, often only one [76], which can be linked to several behavioural traits. As 

a result, behavioural assays may miss aspects of the behaviour and even the ones of interest. 

 

For example, as pointed by Egnor and Branson [74], the tube test was first described and used in 1961 

by Lindzey and colleagues to evaluate mouse dominance behaviour [76]. But in 1966, these same 

researchers tried to use this tube test to predict two other dominance measurements, success in 

fights and priority in access to food, which are more directly linked to fitness [79]. They counter-

intuitively discovered an anti-correlation between such food and fight related dominance traits and 

results in the tube test. These different tests measure indeed different aspects of mouse aggression. 

 

The three chamber test presented by Nadler et al. In 2004 [78] can also be discussed in such way. This 

test includes two steps. The first one evaluates social interest by comparing the time spent by the 

tested animal in a chamber containing another individual with the time spent in a chamber with no 

other animal. The second one evaluates the preference for social novelty by comparing the time spent 

by the tested animal in the chamber containing still the first other individual with the time spent in 

the other chamber where a second conspecific has been introduced. C57BL6/J mice significantly 

preferred the social chamber in first step and the novel individual chamber in second step.  
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However in 2010 Pearson et al. replicated the experiment with a change in step two [80]. The novel 

individual being introduced in the chamber were the first conspecific was installed during phase 1, 

this primarily encountered animal being then installed in the chamber which was empty of any 

conspecific during phase one. This experiment failed to demonstrate any preference for social novelty 

in C57BL6/J mice, proving that this second step of the experiment, was not only testing the preference 

for a novel individual. The interest of the test mouse could be simply driven by the changes in the 

environment between the two steps. In this case, if both chamber changes, and that both contain a 

conspecific, no preference would be expected. 

 

Behavioural assays are highly limited in term of output diversity. Due to behavioural mechanistic 

complexity, or high dimensionality, such output may inform us on a completely different trait than 

expected a priori. Such example also shows how easily a priori opinions and language can shape our 

interpretation of a behavioural measurement.  

 

This low dimensionality comes with a second burden, the impossibility to discover effects which were 

not precisely hypothesized by researchers. Assays are thus limited by the a priori of researchers on 

which aspects of behaviour should be affected by the conditions they study. 

 

Manual annotation limits 

The manual annotation of behaviours, giving a wider description, seems to overcome such limitations. 

But while these defaults are still present in less sensible proportions, such methodology brings new 

limitations.  



59 

Observer subjectivity 

Subjectivity is a major burden of manual annotation. The observations and their report are biased 

depending on the observer. The classifications used by two observers can differ leading to significant 

variations in data annotated [81], [82]. Even the classification produced by one unique observer has 

been reported to be variable or not consistent along time [83]. A part of this problem can be imputed 

to the fact that manual annotations are limited by human language. “The identification or 

classification of actions and activities by human observers cannot always be captured by formal verbal 

definitions” [84]. The imprecision in subsequent descriptions makes criteria of human classifications 

hard to be shared and reproducibility between laboratories hard to be reached. 

 

Human capacities 

Sensitive and cognitive capacities of the observers also limit deeply human observations. For example, 

the precision offered by the human visual system limits the perceptual abilities of an observer. 

Therefore, the visual description of an animal posture cannot benefit from the information present in 

too small spatial scales. Recognition of rapid movement patterns is also more and more difficult as 

we get close to human limits in short time scales. Attentional capacities also play a major role in 

human behavioural classification. For example, at a same time point, it is harder to recognise a social 

behaviour happening between two individuals which are spread in space. This shows that big spatial 

scales also constitute complex contexts for human observation. More generally, recording several 

behaviours of different types at the same time undermines the attentional abilities of an observer. 

“The number of different behaviours that can be measured concurrently is relatively small” [82], and 

subsequent annotations offer also a low dimensionality.  
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Attentional capacities also evolve along time and limit the length of an annotation of stable quality 

[81]. This means that behavioural sequences implicating a long temporal scale are harder to study 

with precision. Finally, from a statistical point of view, the shorter the observation durations, the less 

reliable the rates of production of behaviours ultimately computed. 

 

A priori knowledge 

On another side, the necessary presence of a priori knowledge when using manual annotation is 

heavily bounding its outcomes. An observer can only annotate behaviours which are previously 

considered as being of interest and which are expected. Researchers are thus considering behaviours 

annotated by others previously, or ones they noticed themselves. In this way all behaviours used were 

first described by a human. But as we expressed earlier, human capacities to detect behaviours are 

limited. As we will see afterward, humans are less good at discovering new behaviours than 

computers can be [82]. Above this, as for behavioural assays, the choice of the behaviours to annotate 

in the context of the study of some particular conditions can be unjustified or suboptimal. Some 

demanding work may be done to annotate behaviours which does not respond to the studied variable 

when another one would have. If a researcher does not have such a priori information, which tells 

which are the behaviours of interest, he needs to acquire them through trials. The intuitions driving 

such choices can thus be some false a priori knowledge, as language can carry for example. Whatever 

if the a priori opinions turn out to be true or false, such information would not be necessary if the 

data collection produced results of higher dimensions, and that the researchers did not need to select 

the behaviours to be measured. We can also argue that Human a priori, in the case of animal 

behaviour studies, can be anthropomorphic and therefore consider the structure of the behaviour in 

a suboptimal way.  
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Human effort 

Finally, we can discuss some other aspects of manual annotation which do not lead to theoretical 

limits in data collection but to practical ones. Direct observation of animals is capital for researchers 

to have a spontaneous and intuitive understanding of the behaviour of an animal. Although, human 

observation-based measurements of behaviour are extremely time consuming. Even assisted by 

computer, annotation takes typically three times the length of the video [82]. This issue limits 

throughput of such method for financial and delay reasons. Less or shorter experiments including 

fewer sampled individuals lead to less statistical power and result reliability [85]. Such method has 

also been described as dull [82]. The boring aspect of manual annotation is not only a matter of 

comfort. The mental discomfort comes with an increase of error-rates diminishing the quality of 

acquired data, and inattention which limits the discovery of key behaviours of interest. It is obvious 

that if nowadays technology can complete such tasks, the working time saved this way for researchers 

allows way more creative work and more efficient use of human brain doing what it is skilled for. 
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Computational analysis of behaviour or computational ethology 

In a lot of fields of modern biology, science is shifting toward an interdisciplinary activity thanks to the 

beneficial interaction with mathematics, computer science and engineering. This is driving changes 

in the way we measure and model biological objects. The complexity of the analysis of freely moving 

animals makes this problematic particularly prone to such methodological revolution [82]. We can 

now expect to overcome a lot of the past limits in our understanding of behaviour by the use of 

modern tools, in both recording and analysing behavioural data. 

 

New tools to record the behaviour 

In the study of animal behaviour, the first research activity we can revolutionize through technological 

advances is the process of data collection. New techniques of measurements include coils [86], touch 

screens [87], infrared sensors [88], laser Doppler vibrometry [89], accelerometers [90], frustrated 

Total Internal Reflection [91], microphone arrays [92]. The more commonly used method stays 

behavioural recording through video data, as it is relatively inexpensive, non-invasive and capturing a 

pretty general representation of what happens in an experiment. Transforming such videos into 

behaviourally relevant data require the use of computer-vision techniques [74]. In the present work, 

we used Live Mouse Tracker [93] a tracking computer-vision method which combines detection with 

infrared depth-sensing, Radio Frequency Identification of each animal and estimation of animal 

orientation by machine learning. In the case multiple mice are tracked simultaneously, it also monitors 

the quality of tracking through radio-frequency identification of each individual.  
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Tracking as a data acquisition tool 

Researchers use tracking systems to study the behaviour of animals on the basis of their postures and 

positions [74]. Tracking allows to follow points corresponding to animals or more precisely to some 

of their body-parts. We call trajectory data the list of coordinates of such points over time. On the 

one hand, tracking can be considered as an evolution from the manual annotation method, in the 

sense that it also allows the study of freely behaving animals. The behaviour of animals which are not 

restricted to a specific task permits to evaluate more different traits, it can then be said high-

dimensional. Behavioural assays are way more reductionist and low-dimensional. But on the other 

hand, one of the major advantages of assays is that they offer precise measurements. An advantage 

that it shares with tracking procedures. Indeed, coordinates of trajectory data allow all kind of 

geometric measurements, from basic distances and angles to speed and acceleration by derivatives, 

and way more. By combining the best of those two traditional techniques, tracking data offers a wide 

range of possibilities to deepen. 

 

First tracking processes have been led manually from video data [94]–[96]. This highly demanding 

work has the advantage not to suffer from the subjectivity of definitions of behavioural categories 

used in human annotation. The use of tracked points allows precise further geometric measurements, 

frame by frame. Such measurements avoid an important part of human perceptual and attentional 

limits, bringing more precision than direct observation of a video.  
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This considerable advantage is balanced by the fact that trajectory reliability can depend on the 

observer. Indeed, manual tracking produced by two different human observers can differ and the 

precision of the tracking can also suffer from attentional decreases. Finally, the choice of which points 

to track consists in an a priori, but any measurements from those points stay possible. This makes that 

such trajectory data can serve in processes allowing the discovery of behavioural traits of interest. 

 

Through the technological evolutions of computer-vision techniques, tracking procedures have been 

progressively automated. Semi-automatic tools, as Mice Profiler [97], which still required human 

corrections on parts of the timeline, were a first increase in the reliability and efficiency. Finally, fully-

automatic tracking systems arose [93], [98]–[105], freeing the process from any correction or control 

by a human observer. For example, Live Mouse Tracker [93] does not need any human intervention, 

from the disposition of animals in the tracking arena, to the production of the output database of 

trajectories. 

 

Such automation conserves all the advantages brought by manual tracking. Trajectories extracted 

from automated tracking are no more depending on any human agent, what makes it way more 

reliable [98] and fully reproducible between different laboratories. Automatic methods also allow to 

benefit as much as possible from the precision of the video data, when human actions could still 

introduce imprecisions. Finally, such automation increases drastically the throughput of tracking, 

which can allow more experiments, bigger sample sizes and higher subsequent statistical power [82].  
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Live Mouse Tracker specificities 

The particular tracking system that we used in this work, Live Mouse Tracker [93], adds particular 

advantages compared to other automated tracking methods. The depth sensing which replaces basic 

video recording offers a tridimensional capture of what happens in the environment. It is more than 

obvious to tell that tracking points in three dimensions rather than two is increasing the 

dimensionality of acquired data. More than that, the animal-background segmentation of individuals 

is based on an altitude threshold, rather than a colour contrast one as used in most tracking 

algorithms [98]. This particularity opens the possibility of environmental enrichment. On one side 

food, bedding, nest building material and shelter allow sufficiently comfortable conditions for long 

experiments, here 72 hours, without impacting (negatively) the animal well-being. 

 

Long experiments make possible more reliable behavioural traits measurements what increases 

ultimately the statistical power. On the other side such enrichment permits to the animals to express 

wider range of their behaviour, what also adds some richness to the data collected in such context. 

 

The pose estimation through machine learning allows us to record the head and basis of the tail in 

supplement to the mass centre. This last one being the only point considered by most tracking 

systems [98]. Three points to track one individual thus also consist in an increase in data 

dimensionality. 
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This tracking is designed for social contexts and tracks accurately four mice simultaneously. Their 

identities are constantly verified by the RFID chip detections. Tracking three points in three 

dimensions for each of four mice at 30 time points by second for 72 hours in an enriched environment 

represent an unusually rich data collection for one behavioural experiment. 

 

From trajectories to quantitative measurement 

Tracking and more even automated one allows to reduce drastically the limitations encountered on 

data collection. The trajectory data it produces are rich. Nevertheless, they are generally not 

statistically exploitable in this form, to evaluate any trait or its response to any condition [74]. No 

statistical test can compare two trajectories in their raw form of point succession, and such 

comparison would lack of sense. The common procedure to obtain a statistically relevant material is 

to treat trajectory data through behavioural classification. Such classified material is then 

understandable in the same way than the output of the traditional manual annotation.  
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The behavioural classification approach 

Behavioural classification is the process affecting parts of the experimental timeline to some 

categories of behaviour. Such categories can describe any action of one or several animal(s). We refer 

to the complete set of categories by the name of behavioural repertoire. The distribution of such 

categories over the timeline is then easy to be compared between animal groups or conditions. For 

example, the most basic information we can measure is the part of the timeline affected to a 

particular behavioural category. This informs us on the proportion of time during which an individual 

produces the particular action described by the category. 

The traditional manual annotation of behaviour is integrating a manual behavioural classification. 

Behavioural classification thus can suffer from all limitation listed earlier. Our data collection system, 

Live Mouse Tracker [93], allows us to avoid an important part of such limitations. This gives the 

opportunity to continue avoiding such limitations while completing the analysis. As for tracking 

methods, new behavioural classification methods have progressively been developed to be more 

automatic, and avoid some limitations. 

 

In order to make the better use of Live Mouse Tracker data, we thus aim at using a behavioural 

classification method which is: 

- Free from observer subjectivity, to be more reliable and reproducible. 

- Free from human capacities, to be more precise, reliable and to take into account more 

dimensions. 

- Free from a priori knowledge, to take into account more dimensions and be able to discover 

new behavioural categories through a data-oriented process. 

- Free from human effort, to be more feasible in term of human, financial and time resources. 
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Methods to automatize the behavioural classification can be of three types, depending on the way 

their behavioural repertoire and the criteria separating their behavioural categories are defined [74] : 

- Rule-based classifiers, designed through the definition of rules describing the behavioural 

structure. 

- Example-based Classifiers, trained through supervised machine learning on examples 

annotated by a human observer. 

- Unsupervised classifiers, discovering the behavioural structure through unsupervised 

machine learning. 

We will now describe these three ways to automatize behavioural classification in order to understand 

their impact on the limitations of classification, and which method would thus be the most 

appropriate to classify Live Mouse Tracker data. 

 

Rule-based classifiers 

The simplest automatic system to classify behaviours are the rule-based classifiers [74]. In such 

systems, the behavioural repertoire is defined on the basis of thresholds set manually by humans [93], 

[97], [101], [106]–[109]. These algorithms divide the timeline between behavioural event categories 

by applying these thresholds on measurements extracted from the outputs of the tracking or other 

data collection system (Figure 10).  
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Figure 10: Example of some rule-based behavioural event category definitions, given by Martin in 

2004 [106]. “A: Schematic drawing of the arena used to quantify the spontaneous locomotor activity 

of a single fly. The square arena of 4 cm and 3.5 mm high is covered by a glass plate to reduce the fly 

vertical movement. The central “virtual” zone of 2 cm diameter is depicted (dotted line) and serves to 

quantify the spatial distribution of walking. The path trajectory shown represents the first minute of 

recording. We easily note that the fly follows mainly the border of the arena. B: Graphic representation 

of the parameters used to determine a fly’s movement. To smooth the jerky movement and removed 

the wobbling of the fly that occurs at the recording resolution (5 Hz), we established that a movement 

will be determined when the fly has moved a minimum of 4 mm/s. Conversely, to define a stop, we 

established that the walking speed is inferior to 2 mm/s. The range between 4 and 2 mm represents 

the buffer zone.”  
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Once a rule-based classifier is developed, this last one does not need any human input to classify the 

behaviours. This method being fully automated it is obvious that it allows to avoid any human effort 

from researchers using it. As rules designed for this classification applies always in the same way, such 

methods are free from observer subjectivity. Their results are thus more reliable and reproducible 

between laboratories than manual ones. Nevertheless, rule-based classifiers depend on the 

subjectivity of the rule designer. This means that two classifiers can define with different rules a 

behaviour with the same name. 

 

The applications of rules also do not depend on human senses, categories defined by thresholds on 

recorded measurement are thus more precise and reliable. However, even if no observer needs to 

annotate any behaviour along the timeline, the definition of the rules describing the behavioural 

repertoire generally results from human observation of the behaviour. It is therefore unlikely that a 

human would encode a behaviour when its perceptual or attentional capacities do not allow to 

discriminate it. Such limitations upcoming from the design of rule-based classifiers shows that this 

method is restricted by a priori. This method is thus unable to discover and annotate behavioural 

event categories which would not have been known previously. This makes rule-based classifiers able 

to manage fewer dimensions than if they could discover new categories. 
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We also can add to the advantages of rule-based classifiers that they allow to describe behavioural 

events occurring simultaneously. Two rules can be independent from each other, what means that 

the respect of one rule does not imply the respect of another one. In such case, each rule leads to an 

independent clustering, and the behaviour is thus described through multiple clusterings. An animal 

could then be described as performing two behaviours, each one defined by one rule, at the same 

time point. This is the case in the classifiers implemented in Mice Profiler [97] and Live Mouse Tracker 

[93]. The behavioural co-occurrences diversify the states in which animals can be described at each 

time point. We thus can say that this particularity gives a potential to manage dimensions. 

 

Example-based classifiers 

More complex systems can be developed in order to let computers determine more optimal 

segmentations than humans would set manually [74]. A researcher may have a hypothesis about the 

behavioural categories of interest, without knowing which measurement could allow to discriminate 

it or the exact threshold to use. In this case, supervised machine learning can be used, rather than 

setting parameters of the classification manually [100], [107], [110]–[117]. In such method, the 

researcher only needs to manually annotate a restricted set of frames for the behaviours of interest. 

The supervised machine learning is then fed with this set of examples, in order to extract the 

parameters of the classification function. The parameters resulting from this machine learning finally 

permits to extend the manual classification led on examples by replicating automatically annotations 

on the entire dataset.  
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Example-based classifiers need annotation examples, as a human input, to classify the behaviours. 

Such methods therefore require a certain human effort from researchers training it. The amount of 

manually labelled frames is generally correlated with the quality of the subsequent automated 

classifier. However, once trained, the classifier can extend the annotations without any human effort. 

As the parameters of this classification are extracted from manual annotations, such methods are 

limited by the training observer subjectivity. Results stay more reliable than fully manual annotations, 

because the parameters extracted are rigorously defined, stable and directly applied on recorded 

measurement. They are also more reproducible between laboratories in the case the same training 

examples are used. 
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Figure 11: Example of a supervised learning pipeline, from Kabra et al. in 2013  - JAABA overview [114]. 

“Input trajectory (top left): the x, y position of a fly over 1,000 s of video is plotted in black (cyan portion 

corresponds to other plots). This video and trajectory are input to JAABA. JAABA interface (bottom): 

the users interact with the JAABA interface to encode their definition of the behaviour (for example, 

touching). Users are shown video of the animal (image) overlaid with its tracked position (bold triangle) 

and its future and past trajectory (bold line). They encode their definition by labelling frames (top 

timeline) in which they are certain the animal is (red) or is not (blue) performing the behaviour. 

Unlabelled frames are indicated in black. These labels are passed to the JAABA machinery, which 

creates a new behaviour detector. Visualizations of this behaviour detector are returned in the middle 

and bottom timelines, which show the detector's predictions (colour) and confidence (saturation). 

JAABA machinery (grey shading): the underlying JAABA machinery inputs the animals' trajectories. 

'Per-frame' feature time series are computed from the input trajectories (examples in first row). Each 

plot corresponds to an example per-frame feature. The pink line indicates the frame shown. 'Window'-

feature time series are computed from the inter-animal distance per-frame feature (second row). This 

window feature–based representation and the manual behaviour labels are input into the learning 

algorithm (green), which finds the automatic behaviour detector (orange) that inputs the window 

features and best predicts the input labels.” 
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However, an observer needs to annotate some behaviours along part of the timeline. It is thus likely 

that a human would only annotate behaviours that its perceptual and attentional capacities allow to 

discriminate. Such limitations upcoming from the use of supervised machine learning in example-

based classifiers shows that this method is restricted by a priori. As for the rule-based one, this 

method is unable to discover and annotate behavioural event categories which would not have been 

known previously. This makes example-based classifiers able to manage fewer dimensions than if they 

could discover new categories. 

 

Example-based classifiers also present the advantage to allow the description of behavioural events 

occurring simultaneously. An observer can annotate a part of the timeline with two labels and other 

parts independently with one or the other, what means that belonging to one category does not imply 

belonging to another one. In such case each category of annotation leads to the training of an 

independent clustering, and the behaviour is thus described through multiple clusterings. An animal 

could then be described as performing two behaviours, each one defined by the parameters extracted 

by learning on different example annotations, at the same time point. This is the case in the classifiers 

implemented in JAABA [114] (Figure 11). The fact that such algorithm considers animals producing 

multiple behaviours simultaneously increases the diversity of states they can describe at each time 

point. Such ability of example-based classifiers therefore offers a higher dimensionality.  
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Unsupervised classifiers 

Previously mentioned methods of behavioural classification assume that the behavioural categories 

of interest are known a priori. As explained earlier, such necessity of a priori prevents the discovery 

of unpredicted category and therefore limits the number of behaviours which can be considered. In 

the case of animal studies, we can also question the legitimacy of a human observer to define the 

categories clustering the behaviour of an animal; anthropomorphic biases can limit our understanding. 

The behaviour of a human is also potentially conceived differently between its producer and an 

exterior human observer. We are not even sure that the category we conceive consciously are an 

appropriate description of the neuronal activity encoding our own behaviour.  
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Figure 12. Example of an unsupervised learning pipeline, from Berman et al. in 2014  - Overview of 

the data analysis pipeline [118]. “Raw images of the D. melanogaster are segmented from the 

background, rescaled to a reference size and then aligned, creating a stack of images in the co-moving 

and co-rotating frame of the fly. These images are then decomposed via PCA into a relatively low-

dimensional set of time series. A Morlet wavelet transform is subsequently applied to these time series, 

creating a spectrogram for each postural mode separately. After normalization, each point in time is 

mapped into a two-dimensional plane via t-SNE (Maaten and Hinton et al., 2008). Lastly, a watershed 

transform is applied to a Gaussian-smoothed density over these points, isolating individual peaks from 

one another.”  
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“How do we know that our definitions of behaviour correspond to behavioural distinctions that are 

meaningful to the animal or relevant for neurobiological control?”1 

 

The alternative consists in avoiding the use of any a priori knowledge by using unsupervised machine 

learning approaches on acquired data. Such method mines the inherent structure of behaviour by 

clustering parts of the timeline into behavioural categories depending on their similarity or 

differences [75], [118], [120]–[129] (figure 12). 

 

Unsupervised classifiers do not need any human observation to train the machine learning, and do 

not need that any human set rules delimiting the categories. Such method therefore avoids all human 

effort to define the behavioural repertoire, from both user and developer. As humans do not interfere 

between the acquired measurements and the classification extracted, unsupervised classifiers are 

free from observer subjectivity. Their results are therefore more reliable and reproducible between 

laboratories than ones affected by observer biases. Nevertheless, unsupervised classifier categories 

are dependent on the data set that they cluster to extract it. This means that two classifiers, which 

have learned from different datasets, can define with different parameters a behaviour with the same 

name.  
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Such classifiers do not depend on human senses, the categories defined by thresholds on recorded 

measurement are thus more precise and reliable. Moreover, even the choice of the categories 

composing the behavioural repertoire do not result from human observation of the behaviour. It is 

therefore possible for an unsupervised classifier to segregate a behavioural category that human 

perceptual or attentional capacities would have not allow to discriminate it. Such ability of 

unsupervised classifiers shows that such method is not restricted by a priori. They are thus able to 

discover and annotate behavioural event categories which would not have been known previously. 

This makes unsupervised classifiers able to manage more dimensions than previously described 

methods. “Unsupervised learning software has a major benefit over supervised learning: it allows for 

the discovery of novel movements and recognition of deviations from usual movements that are not 

visible to human eye. It provides an unbiased reflection of the behaving animal” [130]. 

 

Several unsupervised behavioural classifiers have been developed since 2001 [75], [116]–[118], 

[120]–[126]. All of them were based on a single global clustering taking all features in account. This 

allows that the classification benefit from all dimensions collected to map the diversity of behaviour. 

However, the drawback is that such classification does not allow the description of behavioural events 

occurring simultaneously. One clustering divides the timeline with a certain number of labels, that 

are all mutually exclusive, what means that belonging to one category implies not to belong to 

another one. Such methods therefore describe animals performing only one behaviour at a time. This 

can be seen as a limitation on the diversity of states in which an animal can be described at each time 

point. Such limitation of those unsupervised algorithms therefore restrains the dimensionality they 

can manage.  
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SUCCUBE  - the targeted behavioural classifier 

The unsupervised classifiers allow to avoid all limitations cited previously, but all past algorithms were 

based on single clusterings and thus did not allow behavioural categories to co-occur. Even if multiple 

clustering has always been used in supervised classifiers as rule-based and example-based ones, no 

technical limitation prevents its use in an unsupervised algorithm. In order to combine all advantages, 

we designed the first unsupervised behavioural classifier based on multiple clustering. SUCCUBE 

stands for System for Unsupervised Classification of Co-occurrent Underlying Behavioural Events. 

 

The problem of event co-occurrence  - the need for multiple clustering 

Animals can perform several independent actions simultaneously. For instance, they can be walking 

or stopped and at the same time they can be sniffing or not. Assuming that only one behavioural 

event category is produced at a given time is not adapted to the complexity of behaviour. Only 

multiple clustering approaches can manage such event co-occurrences. 
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Figure 13. Example of a behavioural event category co-occurrence, from Datta et al. in 2019 – 

Challenges in Computational Ethology [131]. “A key challenge facing any segmentation of continuous 

behaviour into components is illustrated.  When the mouse is sniffing and walking at the same time, 

is that a compositional behaviour whose basis set includes ‘‘walk’’ and ‘‘sniff,’’ or is ‘‘walking+sniffing’’ 

a fundamentally new behaviour?” Such question can not be assessed if the first observation that the 

animal is “sniffing and walking at the same time” is not available. 

 

Approaches of multiple clustering 

Our strategy requires the development of a multiple clustering displaying more than two non-

redundant clusterings from one global high-dimensional tracking database. The method being 

unsupervised, we do not possess any given clustering to start with and the number of clusterings to 

be detected is not specified by the user. We target a simultaneous computation of multiple clustering 

solutions, in order to avoid any a priori distinction in term of importance of the different behavioural 

event categories. For example, we do not want “walking” category to take the advantage on the 

“sniffing” one in the clustering process (figure 13-14). We thus investigated the kind of procedures 

generally applied in such multiple clustering contexts [132].  
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Figure 14. Example of a multiple clustering which accounts for behavioural event category co-

occurrences. Here the behaviour is clustered in two different ways, to walk or not to walk in red for 

the first clustering and to sniff or not to sniff in blue for the second one. The situation in which the 

animal is “sniffing and walking at the same time” is classified in walking as when the mouse is only 

walking and in sniffing as when the mouse is only sniffing. A fourth situation thus need to be 

considered, in which the animal is neither sniffing nor walking. This last is classified in both not walking 

as when the mouse is only sniffing and not sniffing as when the mouse is only walking. 

 

One way to obtain multiple clustering solutions from one space is the orthogonal subspace 

projections [133] (figure 15). After a first clustering of data in the complete space, the dimensions 

segregating the clusters are identified. Then data are projected in a subspace orthogonal to these 

dimensions and a new clustering is ran in this new subspace. This process continues iteratively 

displaying a new clustering at each iteration. As orthogonal dimensions are decorrelated, we expect 

the segregations of clusters in orthogonal spaces to be different. It is said that “Orthogonal concepts 

share no or only few common attributes”. Such method is particularly adapted to high dimensional 

datasets, because the more successive subspaces are used, the higher number of different clusterings 

we obtain. However the iterative process of such method is not desirable as we do not hypothesize 

any hierarchy between clusterings.  
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Figure 15. Examples of orthogonal subspace projections, from Müller et al. [132]. Two 3D graphs 

representing data points clustered in three groups (blue, green and red points) in a first subspace 

represented in black (A: axis; B: surface). The orthogonal subspace in which data can then be projected 

for next clustering are represented in orange (A: surface; B: axis). 

 

Some orthogonal subspace projection algorithms use Principle Component Analysis (PCA) to select 

the strongest principle components of cluster means [132]. This dimension reduction technique 

allows to determine a set of dimensions or subspaces which is the most implied in the segregation of 

the previous clustering. The afterward projection of data in the orthogonal subspace can then easily 

be done by selecting all principal components that explain few of the variance between the means of 

previous clusters. This notably helps with losing less dimensionality at each projection iteration. We 

can mention that PCA is particularly adapted to the research of orthogonal subspaces because of its 

orthogonality criterion. 
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Another method for multiple clustering is multiple spectral clustering which enforces different 

subspaces [134]. Here clustering does not precede the selection of subspaces, but cluster quality and 

subspace difference are both optimized through a simultaneous objective function [135].  

The easiest way to measure the redundancy between two variables through their correlation 

coefficient. However, this aspect of redundancies is known to be limited to the capture of linear 

dependencies among random variables. More complex approaches are based on mutual information. 

In 2005, Gretton et al. proposed the Hilbert-Schmidt Independence Criterion [136] to measure the 

statistical dependence between subspaces. This allows to search for independent subspaces, in each 

of which the algorithm can then proceed to a clustering. The authors also showed that this criterion 

also allows to realize an Independent Component Analysis (ICA). 

 

Machine learning pipelines in animal behaviour studies 

In behavioural biology, a number of technological breakthroughs allowed to collect progressively 

larger and more detailed datasets. At some point, the new diversity, complexity and high 

dimensionality of such datasets outstripped the analytical capacities of researchers. Some of those 

researchers made use of machine learning methodologies in order fill the gap and extract knowledge 

in this new context. 

 

In their review “Applications of machine learning in animal behaviour studies”, Valletta et al. described 

how such methods are applied in the field [137]. In the case of unsupervised learnings, which are the 

methods we can use in our case, they present the two processes, dimensionality reduction and 

clustering.  
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Dimensionality reduction techniques are used to perform feature extraction. They allow to reduce 

the number of dimensions considered while focusing on a smaller number of more informative ones. 

Such process permits to unravel the structure linking the different variables measured. PCA is the 

most used method of this kind as it allows to reorganize dimensions in a set of orthogonal axes 

ordered from the more informative to the less informative one. ICA is another dimensionality 

reduction technique which can display a set of orthogonal dimensions in a potentially fewer number 

than in the original set. 

 

Clustering is used to unravel the structure linking the different data points on the basis of the variables 

which have been measured for each of them. The K-means is the most used algorithm of this kind as 

its simplicity makes it easy to understand and to compute. The Hierarchical Agglomerative Clustering 

(HAC) is also widely used because it presents the advantage not to need any a priori number of cluster 

and to display the exhaustive list of points grouping. However this last method is particularly 

computationally expensive on large data-sets. Finally “Gaussian mixture model is a simple but 

powerful model that perform clustering via density estimation”. In this algorithm the distribution of 

data is modelled as the sum of several Gaussian distributions. Each data point is then affected to a 

cluster depending on which of the Gaussian distributions give the highest probability at its 

coordinates. 

 

These two unsupervised machine learning approaches can be used together. In this case, 

dimensionality reduction is generally used before clustering, which will then be based on the 

previously reduced set of dimensions. It is the case in the application of unsupervised machine 

learning developed in Valletta et al. [137] (Figure 16). 
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Figure 16. Example of an unsupervised learning pipeline from Valletta et al. in 2016  - Pheasant eggs 

case study analysis pipeline [137]. In this case study the authors first used PCA as a dimension 

reduction technique in order to perform feature extraction. They followed with some k-means and 

hierarchical clusterings on the previously extracted feature set.  
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SUCCUBE pipeline 

Live Mouse Tracker [93] provides us with rich trajectory data, which can be turned into a large set of 

trajectory-based features [74] through simple geometric measurements at each frame or between 

consecutive ones, as in JAABA algorithm [114]. Machine learning then allows to both reduce 

dimension and finally cluster frames [137]. The dimension reduction used to extract a new feature 

set could ideally allow to select a set of subspaces, in order to cluster frames independently for each 

subspace and reach multiple clustering. PCA and ICA both rely on an orthogonality criterion which is 

suited for orthogonal subspace projections [132]. 

 

The PCA would aim at the maximal dimensionality reduction. This is not our objective; we here 

consider high dimensionality as a richness. The more subspaces we select, the more behaviours can 

be discriminated at a single frame. We can also add that the distribution of the mixed components 

would likely be more normal as the sum of random distributions converge toward a Gaussian one 

[138]. Such normal distributions are not particularly prone to segregate in multiple clusters. 

 

In the opposite, the second ICA criterion, non-Gaussianity, ensure to obtain components which are 

the least normally distributed [139]. Also the consideration of mutual information as in the Hilbert-

Schmidt Independence Criterion [136] provides dimensions sharing less information which are 

supposed to lead to more different clusterings. In order to maximise the number of co-occurrent 

behavioural category at a single frame, the complete data space needs to be projected into a maximal 

number of orthogonal subspaces. On the basis of ICA, this can be achieved by projecting data into 

each Independent Component (IC) separately for a unidimensional clustering.  
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Figure 17: Examples of the different methods of behavioural classification of a same dataset of time-

points.  
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A: Rule based classifier defining « walking » events as ones were the speed of the head of the individual 

is superior to an arbitrary threshold of 1 centimetre per second. Under this threshold the animal is 

considered as « stopped ». 

 

B: Example based classifier trained for the three behavioural event categories « stopped », « walking » 

and « running ». The supervised learning is here trained on the basis of six example frames manually 

annotated by an expert for each category. This training set is represented by the special points (      ) 

and the classification is automatically extended to the other time-points (      ). 

 

C: Unsupervised classifier discovering four clusters of behavioural events, named afterwards « does 

not move », « walks forward », « turns » and « turns while walking ». Clustering techniques could be 

for instance: K means, K medioids, hierarchical clusterings, DBSCAN, OPTICS or expectation 

maximisation techniques. Such techniques need the number of cluster, here four, to be specified. 

 

D: SUCCUBE classifier discovering two independent dimensions named afterwards « global forward 

speed » and « global rotation speed ». Each dimension led to the extraction of one threshold 

segregating two behavioural event categories. The « global forward speed » allows to segregate the 

« moves forward » and « does not move forward » categories. The « global rotation speed » allows to 

segregate the « turns » (      ) and « does not turn » (      ) categories. The number of dimensions and 

clusters used is optimally selected by SUCCUBE algorithm, without any user specification. 
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Such unidimensional clustering also ensures the subsequent segregation to be expressed in the 

simplest way, one unidimensional threshold between each cluster. Gaussian mixture model based 

clustering is particularly suited to produce such clustering on one dimension distributed in a non-

Gaussian way. One non-Gaussian distribution requires very probably a mixture of at least two 

Gaussian distributions in order to be satisfyingly modelled. The use of GMM based clustering thus 

ensures that most of the ICs will lead to a clustering segregating at least two behavioural event 

categories. 

 

This complete process, called SUCCUBE, therefore allows to extract multiple clustering of behavioural 

events from tracking data (figure 18). The behavioural event categories extracted from different 

clustering are independent, in the sense that they can happen at the same frame or not (figure 17). 

In order that this process can be considered and used without any human supervision, all parts of the 

analysis need to be parametrized depending on data. An important part of the present work therefore 

resides in the design of the criteria for the number of ICs extracted through ICA and for the number 

of Gaussian distributions used in GMM based clustering. These criteria are developed in the material 

and method chapter. As it is acquired without supervision, the richness of the obtained behavioural 

repertoire is dependent on the diversity of tracking data used as input. 
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Figure 18. The unsupervised learning pipeline of SUCCUBE algorithm. We first used ICA as a dimension 

reduction technique in order to perform feature extraction. We followed with some GMM based 

clusterings on each previously extracted feature set. The division of arrows represent the fact that 

each IC obtained from the ICA is then treated separately in a particular GMM based clustering in order 

to achieve multiple clustering.  

i 

i 

i 
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A step toward Behavioural building blocks 

The discipline of behavioural classification aims to segment a more and more precise behavioural 

repertoire. Such tendency to optimise the training of behavioural classifiers thus made the link with 

another fundamental question of behavioural biology, the research of fundamental units of behaviour. 

All complex behaviours would then be interpretable as a construction made from the association of 

those behavioural building blocks [74]. More than providing an efficient and compact description of 

behaviour, such building blocks would allow to better understand the higher structure of behaviour. 

The more we decompose the behaviour toward those elementary blocks, the more we can unravel 

the structure of the behaviour they compose (figure 19). 

 

Fentress and Stilwell first mentioned behavioural components in 1973 in their article “Grammar of a 

Movement Sequence in Inbred Mice” [140]. They discovered “hierarchical principles of organization 

by describing in detail the sequences of face grooming components in mice”. They introduced this 

novel approach of the behaviour being built by association of simpler components, with the idea that 

such building blocks are associated successively. 

 

In Gris et al. 2017 [130], the behaviour is hierarchically broken into parts. The complete potential of 

behaviour, the ethome, is first restricted to a sub-ethome depending on the environment. This sub 

ethome is then dissected into easily interpretable units of behaviour, the ethograms. Such complete 

actions, that we can observe in a reproducible way, are then understood as a sequence of different 

movements. Those movements are themselves made of a succession of poses, which can finally be 

sampled as instantaneous snapshots.  
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Figure 19. Structure of behaviour from Gris et al. In 2017 [130]. “Ethome of an animal consists of 

numerous sub-ethomes (a complete set of ethograms in a specified environment), which consist of 

ethograms (sets of repeatable, predefined, trainable, or innate movements), which consist of 

movements (the smallest complete motion). Movements are built from poses (postural snapshots in 

time). Examples of mouse behaviour are presented in the pyramid.” 

 

This highly practical vision allows to match the behaviour with our photographic way of acquiring data. 

But if we can see a movement as a succession of postures, we could see postures emerging from an 

assemblage of elementary movements. In the end, the behaviour is made of muscular activity, 

orchestrated by the brain to coordinate it. The concept of motor primitives inherited from 

microstimulation field seems to account for a different conception of building block association. 

“Complex movements are often described as the summation of simpler motor primitives” [141]. The 

summation operator as the concept of “muscle synergies” both seem to represent an idea of 
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simultaneous interaction of multiple motor primitives. This functional approach of how the behaviour 

is generated demonstrates that some behavioural components can be produced simultaneously in a 

coordinated way and thus co-occur. We could thus say that the behaviour deserves to be dissected in 

behavioural building blocks that can be associated both successively and simultaneously. Such units 

can take two forms, postures for the ones characterized through the position of the animal and its 

parts and movemes [142] for the ones characterized through the motion of the animal and its parts. 

 

SUCCUBE presents four advantages in the research of such behavioural building blocks: 

- First this automated method allows to treat tracking data acquired at a fast frame rate, 30 per 

second for Live Mouse Tracker[93]. This reduces the time scale of elements, multiplies the number of 

successive postures observed and divides motions in shorter movemes. 

- The ability to classify co-occurrent behaviours allows their simultaneous association. 

- The unsupervised character of the method allows to free the classification from human 

perceptual limits. From their high dimensionality to their small scales in both space and time, 

behavioural elements can lack sense in the usual interpretation we are used to conceive behaviour 

through. A human observer characterizes the behaviour depending on its understanding. SUCCUBE 

does not know such limitations and treats all dimensions available at the smaller scales sampled. 

- Building the behavioural repertoire on the basis of a big data-set makes classified elements 

more reproducible and statistically relevant. Gomez_Martin and colleagues argued that “the biggest 

service of big behavioural data would be to promote the development of new unifying frameworks 

for animal behaviour. This may even lead to the identification of fundamental behavioural units (let 

us call them ethons).” [143]  
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The need for genetic background diversity 

SUCCUBE is a machine learning algorithm, and thus needs to learn from a tracking dataset in order to 

propose a classification of behavioural categories. The quality of the classification depends on the 

training dataset. It depends on its size. The long experiments offering numerous frames and the 

numerous replications of the experiments on a large population of individuals are major factors of 

the resulting classification quality. But it also depends on its diversity. The long experiments offering 

multiple phases of behavioural activity, the enrichment of the environment and the presence of both 

sexes in the sample panel all contribute to the collection of a more diverse training dataset. A last 

diversity can be taken in account, the diversity of the genetic background. The use of multiple mouse 

strains will participate to make our classification more complete and accurate. 

 

The use of several strains presents also another advantage, more specific to our Shank3 

haploinsufficiency question. In human, SHANK3 haploinsufficiency is a highly penetrant cause of 

neurodevelopmental disorder [38]. In C57BL/6J mice, Shank3 homozygous knock-out causes 

remarkable behavioural alterations when behavioural differences caused by Shank3 heterozygous 

knock-out are scarce [50]. The severity of Shank3 haploinsufficiency could be modulated by other 

genes from the genetic background [57]. Such background effects have been found on other models 

as, for example, heterozygous deletion of the 16p11.2 BP4-BP5 locus. Deleted C57BL/6N mice did not 

display any social interaction alterations, when some can be found on a F1 C57BL/6N × C3B hybrid 

genetic background [144]. The study of Shank3 haploinsufficiency effect on the behaviour of animals 

with a different genetic background than C57BL/6J could potentially unravel such effects. Analysing 

the behaviour of multiple mouse strains thus can allow us to select candidate backgrounds to study 

Shank3 haploinsufficiency.  
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The Collaborative Cross 

In order to base our behavioural classification on diverse genetic backgrounds and to test the impact 

of Shank3 haploinsufficiency on other backgrounds than C57BL/6J we thus need to use a panel of 

strains. We chose to use strains from the Collaborative Cross. 

 

What is the Collaborative Cross? 

The Collaborative Cross (CC) is a large panel of recombinant inbred lines. Such strains being inbred, 

they allow to produce unlimited number of genetically identical individuals [145]. As in most widely 

used strains, C57BL/6J for example, a long inbreeding leads to a high phenotypic homogeneity. Such 

similarity of individuals is an important factor of the high statistical power of laboratory animal studies. 

CC are not simply inbred, but recombinant inbred lines. Recombinant strains are obtained by crossing 

several parental inbred strains. Their chromosomes incorporate a permanent set of recombination 

events, between chromosomes inherited from the parental strains. In the case of CC strains, they are 

derived from eight parental inbred strains: A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, NZO/H1LtJ, PWK/PhJ, 

WSB/EiJ and CAST/EiJ. 

 

Genetic analysis showed that this diverse set of founder strains allow to capture almost 90% of the 

genetic variation known in the Mus musculus derived laboratory mouse genome. Such genetic 

diversity is significantly superior to what any other resource captures. The distribution of this diversity 

is also more uniform and has no blind spot. [146] With over 300 pre-CC strains [147] and around a 

hundred, today 84, of fixed fully inbred CC strains, derived from eight different founder strains, the 

CC is nowadays both the largest panel of recombinant inbred lines and the one which covers the 

largest genetic diversity. The CC thus serves as a genetic reference population.  
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In order to lead genetic analysis, the scientific community needs to genotype the CC strains. The fact 

that each strain needs to be genotyped only once is advantageously cheap in relation to the extensive 

number of studies destined to use it [145]. As each of their segment belongs to one of the eight 

founder strains, which are all already genotyped, the CC genome reconstructions are easy. Crossing 

genomic and phenomic information is the base of quantitative trait locus analyses which permit to 

find loci implied in the traits of interest [148]. 

 

The CC has been “designed specifically for complex trait analysis”. The goal was to provide researchers 

with a mammalian model resource matching our actual computational, statistical and genomics 

resources. The vast potential phenotypic diversity hidden in the common inbred strains is expressed 

by mixing them in many different combinations. The high number of strains allows to compute reliable 

statistics that can support genetic effect and phenotypic correlations. The controlled randomization 

of genetic factors between strains allows causal inference and thus permits to use particular statistic 

methods as quantitative trait locus [145]. 
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The generation of the Collaborative Cross 

The Collaborative Cross is a panel of eight-way recombinant inbred lines. The eight founder strains 

have been selected to capture a high level of genetic diversity, higher than any previous resource 

[146]. Five of them are classical laboratory inbred strains: A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ and 

NZO/H1LtJ. The three others are wild-derived inbred strains representing the three major Mus 

musculus subspecies: PWK/PhJ for M. m. musculus, WSB/EiJ for M. m. domesticus and CAST/EiJ for M. 

m. castaneus (figure 20) [149], [150]. 
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Figure 20: Eight mice belonging each to a different founder strain of the Collaborative Cross, from 

UNC computational Genetics.  
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Figure 21: Crossing scheme that led to the inbred lines of the CC, from Panthier and Montagutelli in 

2012 [147]. “The crosses realized in first generation determine the parental origin of chromosomes X 

and Y and of mitochondrial DNA in the produced line.” 

 

The panel of eight-way RI strains, is made of new strains, crossed independently from each other. In 

order to obtain strains derived from the eight progenitor strains, with balanced genomic contributions, 

a particular breeding scheme, the eight-way funnel, is needed (Figure 21).  
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The individuals of the founder strains are considered as part of the G0 generation. The hybrids 

progeny of their intercrosses constitutes the G1 generation. The eight G0 founder strains allow 

theoretically 56 different combinations in G1 generation. Then, G1 individuals which do not share any 

G0 parental strains are crossed in order to obtain the four-way G2 generation. In the same way than 

previously, G2 individuals which do not share any G0 parental strains are crossed in order to obtain 

the eight-way G2:F1 generation [151]. 

 

All genes of the future CC strain are present in this G2:F1 generation. The contribution of the eight 

founder strains to G2:F1 are theoretically balanced. The following steps consist only in sib-mating in 

order to complete inbreeding and increase the homozygosity [150]. We will refer to each successive 

generation by G2:Fn, n being the number of generations, starting at 1 on G2:F1 [151]. 

 

Eight-way RI strains are expected to achieve 99% inbreeding by generation 23 [145]. In practice we 

consider the strain fully inbred at approximately G2:F22 [152]. Each CC strain is generated by a 

different eight-way breeding funnel. Each resulting CC strain genome is thus made of a unique random 

and independent combination of the eight founder strains genetics [151]. 
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Figure 22: Example of the genetic composition of a pre-CC line, from Panthier and Montagutelli in 

2012 [147]. “It capture in average 143 chromosomic segments originating each of one of the eight 

parental lines. Some segments are here still not fixed at the homozygous state.” 

 

This theoretical mating scheme hides an unanticipated challenge. On all independent eight-way 

funnels initiated to generate a CC strain, a majority became extinct [149]. The mating scheme is thus 

progressively optimized to minimize unpredictable genomic interactions between strains [145]. In 

order to avoid mixing strains known to have an unproductive or even infertile cross, “The current 

design avoids (NZO × CAST) and (NZO × PWK) hybrids, which are reproductively incompatible, and 

(PWK × 129) males, which are infertile”[151]. The CC, which was originally planned to include a 

thousand of strains [145], concretely struggle with accumulating more than a hundred of them.  
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Insights on the Collaborative Cross 

Genome-wide analysis of the incipient strains have shown the high genetic diversity between them 

[150]. Depending on the breeding scheme producing them, CC strains are theoretically supposed to 

capture an average of 135 unique recombination events [145]. It has been shown that, in practice, 

the genome of a CC line is made of an average of 143 chromosomic segments, each inherited of one 

of the height concurring parental strains (Figure 22) [150]. And even if those recombination sites are 

dense, they are homogeneously distributed on the complete genome. The same study controlled that, 

as in theory, each of the parental line contribute in a balanced way, around 12.5 %, to the origin of 

such segments. The inheritance of founder haplotypes respects the expected frequencies [149]. A 

panel of numerous and genetically diverse recombinant inbred lines, with dense and homogeneously 

distributed recombination sites, delimiting segments with balanced allele frequencies, has all 

qualities required for a resource of system genetics. All of those characteristics are increasing the 

statistical power “to map causative loci and understand complex disease-related traits” [150]. 
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Our advantages in the use of the Collaborative Cross strains 

In 2018, Molenhuis et al. used 63 lines of the CC in order to study the variation of autism related 

behaviors between those strains [153]. Their work gives a first idea of the locomotor activity, social 

interest, grooming frequency and tendency to display stereotyped behavior of all those CC lines. They 

even found a locus potentially implied in route tracing stereotypy on the basis of quantitative trait 

locus analysis. We will preferentially use CC lines that have been studied in this article in order to be 

able to compare our results with the one previously published by this team. 

 

In 2005, Zou et al. described the new approach of Recombinant Inbred intercross (RIX) [154]. RIX are 

produced by crossing the different recombinant inbred line of a same panel together (figure 23). They 

are the diallel crosses from this panel. Threadgill and Churchill announced in 2012 that “future 

applications of the CC will exploit this strategy of recombinant inbred intercrosses”. Such approach 

adds a new generation of diversity, with the square of the original number of CC lines. But RIX crosses 

also theoretically present statistically lower phenotypic variances. This means that analysis led on RIX 

individuals will have more statistical power. 

 

In this work we want to study Shank3 haploinsufficiency on new background. But, in our facilities, we 

maintain the mutation on C57BL/6J background. The easiest way to obtain mutant mice on new 

backgrounds using the collaborative cross is thus to realize intercrosses between CC lines and mutant 

C57BL/6J mice. C57BL/6J being one of the parental strain of the CC, their genetic distance to CC strains 

is in average the same than the distance between CC strains. We can thus hypothesize that our 

C57BL/6J X CC crosses will have similar characteristics with RIX populations, including the lower 

phenotypic variances which offers better statistical power.  
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Figure 23: scheme of the production of RIX hybrids, from Zou et al. In 2005 [154].  “The relationship 

between the parental strains and the derivative RIs along with the relationships between RIXs is shown.” 

 

In 2012, Sun et al. led a study on mouse brain transcriptome with the idea that it “may play a critical 

role in behavioral phenotypes”. They evaluated the transcriptional differences between the whole 

brain and specific regions and between two strains, which count as part of the CC founders, C57BL/6J 

and NOD/ShiLtJ. They discovered that inter-strain transcriptional differences are greater in discrete 

brain regions than what is detected when the whole brain is compared [155]. We could hypothesize 

that the behavioral phenotype, which depends on those different transcriptional rates, follow the 

same tendency, and that the separation of the behavioural phenotype in more sub-parts allow to 

discover even more variations between strains.   
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Objectives and hypothesis 

We investigate mouse behaviour in order to understand the impact of mutation on genetic models of 

neuropsychiatric disorders. Here the mutation of Shank3 gene provides us with a mouse model of 

autism spectrum disorder. Technological breakthroughs allow behavioural analysis progresses 

through new data collection methods. Such methods gather more data of greater precision with less 

biases and effort. In our case we investigate mouse behaviour with Live Mouse Tracker[93]. 

 

Our main and theoretical goal is to empower our behavioural analysis capacities by identifying new 

behavioural categories which would have not be seen by a human. In order to do so, we chose to 

develop a new behavioural classifier. If the way of collecting behavioural data has evolved, the way to 

measure and understand the behaviour needs to match the high quantity of data and absence of bias. 

We thus target the development of a classifier both unsupervised and able to classify each time-point 

in several behavioural event categories. We hypothesize that such classifier, SUCCUBE, would allow 

to discriminate categories which would have not been considered without this one. But the algorithm 

needs to be confronted to real mouse data in order to proof its capacity to bring a new point of view 

on behaviour and shed light on new behaviours of interest. 

 

We then applied SUCCUBE algorithm to two practical goals: 

- Identifying genetic backgrounds of interest for the study of autism spectrum disorder models. 

- Finding a new heterozygous model for Shank3 haploinsufficiency.  
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In a first time, in order to study the genetic background, we chose to train SUCCUBE algorithm on a 

large dataset including 13 different mouse strains. This would allow us to gather behavioural profiles 

of 12 Collaborative Cross strains compared to C57BL/6J. We hypothesis that some of those strains 

would differ from the reference C57BL/6J. Such differences will allow us to select strains to cross with 

C57BL/6J heterozygous for Shank3 in order to study this haploinsufficiency on mixed genetic 

background. This behavioural profile and the differences it displays will also be usable for future 

studies or model development requiring to select some Collaborative Cross strains for their behaviour. 

 

In a second time, in order to study Shank3 haploinsufficiency effect, we chose to apply the previously 

trained SUCCUBE algorithm on the crosses determined on the bases of first results. This would allow 

us to gather behavioural profiles of Shank3 heterozygous mice from mixed genetic backgrounds 

compared to their wild-type littermates. We hypothesise that, in some of those crosses, heterozygous 

mice would differ from wild-type ones in term of solitary and social behaviour. Such differences will 

allow us to select one or several genetic background(s) which can be used as models for behavioural 

differences caused by Shank3 haploinsufficiency. This behavioural profile and the differences it 

displays will be usable for future studies on Shank3 haploinsufficiency effects and potential 

treatments targeting behavioural restoration. 
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mouse cohorts 

First cohort  - Collaborative Cross strains 

We experimented with mice from C57BL/6J strain, and 12 Collaborative Cross strains. Those strains 

were CC001, CC002, CC012, CC018, CC024, CC037, CC040, CC041, CC042, CC051, CC059 and CC061. 

We used 3 groups of 4 females and 3 groups of 4 males for C57BL/6J strain, and 2 groups of 4 females 

and 2 groups of 4 males for each Collaborative Cross strain. This cohort was thus made of 54 groups 

of 4 animals, i.e. 208 individuals. We received mice at age between one and two months old. We 

formed groups of 4 individuals on their arrival, if they did not arrive already grouped. From their arrival 

to the end of the experimental protocols, we kept those mice in a room at temperature between 20 

and 23 °C. This room was enlightened on a 13/11 day/night rhythm, with light from 7h to 20h and no 

light from 20h to 7h. Mice had access to food and water ad libitum, and to some cylindrical 

compressed cottons to build nests. 

 

Second cohort  - F1 crosses between the Collaborative Cross and Shank3+/-: 

We crossed mice from 3 CC strains with Shank3+/- mice on C57BL/6J background [55]. These crosses 

differed in the strain of the CC parent and in the sex of each parent. It resulted in five different types 

of crosses (trios with one male and two females): 

- A CC002 male with two Shank3+/- females. 

- A Shank3+/- male with two CC002 females. 

- A CC012 male with two Shank3+/- females. 

- A Shank3+/- male with two CC012 females. 

- A Shank3+/- male with two CC059 females.  



108 

Weaning 

We performed weaning between 28 and 42 days of age. After weaning, we genotyped mice, to know 

if they are wild-type (Shank3+/+) or heterozygous for Shank3 (Shank3+/-). We identified each mouse 

through ear punches. We used the ear punch to genotype them. Once we got genotyping results, we 

formed groups of 4 individuals, 2 CCXXX.Shank3+/+ and 2 CCXXX.Shank3+/-, of the same sex and each 

individual coming from a different litter. 

 

From reproduction to the end of the experimental protocols, we kept these mice in a room at 

temperature between 20 and 23 °C. This room was enlightened on a 13/11 day/night rhythm, with 

light from 7h to 20h and no light from 20h to 7h. Mice had access to food and water ad libitum, and 

to some cylindrical compressed cottons to build nests. We provided a cardboard shelter in each cage. 

 

The experimental protocol 

RFId tagging  

After a minimum of one week of habituation to the experimental facility, each individual was 

equipped with a Radio Frequency Identification (RFId) transponder (134 kHz glass probe ISO 

11784/11785 2 × 12 mm). We performed the surgery under gas anaesthesia with isoflurane and 

subcutaneous local analgesia with lidocaine. After another week of recovery and when the animals 

were at least two months old, we performed first the single object exploration test and later on the 

long-term group monitoring. 
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Experimental setup 

We used as environment a squared plexiglass arena with 50-centimetre-long sides and 40 cm high 

walls, which is part of Live Mouse Tracker set-up. Between each experiment, we cleaned the cage 

with soap water and dried it using paper towels. Then we added approximately 1 cm layer of fresh 

wooden bedding on the floor of the arena. We then placed this arena on a RFId antenna floor and 

under a Kinect to complete the Live Mouse Tracker set-up [93]. We kept room temperature between 

20 and 23 °C. 

 

Single object exploration 

Each individual was first submitted to a solitary recording. The goal of this recording was to 

characterise the behaviour of the tested individual in a context of spatial exploration of a novel 

environment and in a context of exploration of a novel object which can also serve as a shelter. 

 

Setting 

We performed all single object exploration experiments between 10h and 18h. The tracking 

environment was exposed to a light between 60 and 90 lux. 

 

We first transported the subject's home-cage in the experimental room, at least 30 minutes prior 

starting the recording, to allow acclimation to the observation conditions. Then, the experimenter 

introduced one animal into the Tracking environment, placed in the centre, launched the recording 

with Live Mouse Tracker [93] on ICY platform [156], and left the room with the shortest delay possible. 

The experiment was then constituted of two 30 minutes long successive tracking phases. 
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Phase 1 

We tracked the mouse for a first period of 30 minutes in this new environment. The behaviour 

observed in this phase is expected to be similar to the one traditionally observed in open-field test. 

As in this widely used protocol, we aimed at measuring locomotor activity, exploratory behaviour and 

emotionality including anxiety [157]. 

 

This first recording phase was longer than the traditional open-field test, which often last between 2 

and 10 minutes [157]. This extended time period should allow to observe more diverse facets of 

behaviour. Early activity can measure exploratory behaviour and response to novelty and anxiety. We 

should then obtain a more accurate proxy for baseline or spontaneous activity later on. 

 

The light level, 60 to 90 lux, was also 2 to 3 times higher than the 30 lux used in most open-field tests 

[157]. This setting should increase thigmotaxis and decrease locomotion, and would thus give more 

information about the animal anxiety. The large-size environment we used is believed to provide more 

accurate data on other behavioural aspects than locomotor activity. As it allows a wider range of 

distance to the walls, this environment makes thigmotaxis easier to discriminate. The addition of 

bedding prevented us to observe fecal boli or urine, which could have informed us on the animal’s 

anxiety level. But it allowed to observe digging, which diversified the exploration and could also be 

implied in stereotyped behaviours. 
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Phase 2 

Then, after the 30 minutes of the first phase, the experimenter added a red translucent house to the 

tracking environment, which marked the start of the second 30 minutes long phase. This house was 

rectangular with 5 cm high walls and two opposed 9 cm long open sides, and two 7.5 cm long close 

ones. The house was made of a tainted red plexiglass, which allowed human vision through red light 

and kinect depth sensing through infrared light, but which was opaque to the wavelengths visible by 

mice. Thanks to this colour, the house was a darker place for mice than the rest of the environment, 

while we could continue tracking under it. In order not to mix the particularities of corners or of the 

centre of the arena with the impact of the house, we disposed it at equal distance between a corner 

and the centre. 

 

The mouse was tracked for a second period of 30 minutes in the environment which then contained 

the house. The behaviour observed in this phase was expected to contain some similar aspects to the 

one in the popular novel object exploration test [158]. It mostly differed from this last by the fact that 

the object was alone, presented only once, but for a longer period of observation of the animal in 

presence of the object what could allow a habituation. We thus expected that this recording could 

inform us on the reaction of individuals to novelty, neophobia. But we did not plan any evaluation of 

memory through this phase. 

 

The object being a house, its physical particularities had to be taken into account. It has been proven 

that mice tend to explore longer object they can climb on than object they can only touch [158]. In 

the case of the object we use, mice could touch it, climb on it, and even get under it. As the range of 

interaction was again higher, we could expect a priori that mice would explore it even longer.  
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We can add that as this object is opaque to mouse vision, they were in a shadier environment when 

they sheltered under the house. The animal could reduce its exposition to light by going under the 

house. This particularity of the object introduced gave to this experiment a similar aspect to the 

light/dark box test[77]. We could thus gather information relative to mouse anxiety through their 

tendency to escape open spaces by sheltering under the house. 

 

The long term group monitoring experiment 

Each group of 4 individuals was then submitted to a long term group recording. The goal of this 

recording was to characterise the behaviour of the tested individuals in a context of reciprocal social 

interaction with multiple conspecifics on an extended period and in an enriched environment. 

 

Setting 

We used the same squared plexiglass arena with 50 cm long sides and 40 cm high walls as in the 

solitary test, washed it the same way with soap water and covered the floor with 1 cm layer of the 

same wooden bedding. We disposed a translucent red house, opaque to wavelength visible for mice 

but clear to infrared light of the kinect, between a corner and the centre of the arena. We let a handful 

of rodent food pellets between the opposite corner and the centre, and six cylindrical compressed 

cottons between a third corner and the centre. We then placed this arena on a RFId antenna floor 

and under a Kinect to complete the Live Mouse Tracker set-up. In the last corner, we disposed a water 

bottle, the end of the nipple passing through the wall of the arena by an adjusted hole. We kept room 

temperature between 20 and 23 °C all along the experiment. We exposed the environment to light 

on 13/11 day/night rhythm, of 75 lux from 7h to 20h and 0 lux from 20h to 7h. All long-term group 

monitorings were initiated between 18h and 19h and each lasted at least 70 hours.  
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We first transported the subject's home-cage in the experimental room, at least 30 minutes prior start 

of the recording, to allow acclimation to the observation conditions. Then, the experimenter 

introduced the four animals into the Tracking environment, placed in the centre, launched the Live 

Mouse Tracker [93] recording on the ICY platform [156], and left the room with the shortest delay 

possible. The experiment was then constituted of 1 to 2 hours of daylight, followed by three night 

phases of 11 hours, separated by two day phases of 13 hours and concluded on a final shorter day 

phase. 

 

Recording 

We tracked the group of 4 mice for 70 hours, including 3 full night phases of 11 hours. We can see 

this test as an extension of social reciprocal interaction test to a longer period. Therefore, we also 

conducted the test in an enriched environment, which was expected to enhance the behavioural 

expression diversity of the subjects [159]. 

 

As on social testing individuals already completed the solitary test, they were not naive any-more to 

the red house. As a consequence, we could consider that this structure lost its status of novel object, 

and stayed mostly enrichment, which could serve as a hiding place and for climbing. 
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SUCCUBE, the proposed classifier 

The System for Unsupervised Clustering of Co-occurrent Underlying Behavioural Events (SUCCUBE) 

algorithm is an unsupervised behavioural classifier. A classifier aims to separate the behaviour of 

animals between several categories. We developed an unsupervised one, meaning that it segregates 

categories without a priori. The goal of this tool is to cluster frames of the experiment depending on 

the behaviour of animals. The threshold to separate those frames clusters are thus only based on the 

data. Extracted clusters group frames which are similar on some particular behavioural aspects. Inside 

one cluster, all frames contain thus a similar behavioural event. We thus called those clusters 

Behavioural Event Category (BEC). The algorithm defines those categories at the rate of one frame i.e. 

1/30 of a second. Such part of the behaviour is shorter in time than most actions defined as 

behaviours. Those categories thus refer to more elementary components of the behaviour. Those 

elements can be associated successively along time to create more complex patterns. Most classifiers 

classify the behaviour at each frame, therefore a frame correspond to one global behaviour [93], [97], 

[114]. The main advantage of this algorithm is to allow the co-occurrence of BEC. For instance, others 

classifiers would label “mouse is rearing on the house” or “mouse is rearing on the field” whereas 

SUCCUBE would create 3 categories that can co-occur: “rearing”, “on the house”, “in the field” 

providing all possible combination. The BEC can thus also be associated simultaneously. This means 

it classifies each frames in several BEC, that is possible because it relies on multiple clusterings. This 

method is unsupervised, and it only builds categories depending on the data. It can thus permit to 

unravel categories which would not be known a priori. 
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Algorithm 

Tracking data 

This classifier relies on the tracking outputs which are trajectories. A trajectory is the location of a 

point that we follow at each time-point. Those locations are quantitative data and the classification 

will result on qualitative information. We aim to know if an animal is or is not performing a behaviour 

at each time-point. 

 

Live Mouse Tracker[93] provides tracks with their identities. It provides the animal orientation and 

the positions (x,y,z) of three points per mouse, the head (H), the centre of mass (M) and the tail basis 

(T). We follow those points at a constant frame rate of 30 time-points per seconds. 

 

Trajectory based features extraction 

The obtention of categories depends on variables permitting to distinguish between each. We do not 

want only to classify the different locations where an animal can be. We thus need to compute other 

variables than locations, allowing to segregate categories. Those intermediate variables are low-level 

representations of behaviour. They can be measurements relative to the shape or dynamic of the 

animals, or on its position relative to other points in the environment. They are "features extracted 

from the tracked positions of the animals and/or their parts over time" [74]. We thus called them 

trajectory-based features. 
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The computation of those features is an enrichment of the trajectory dataset. The goal is here to 

extract a maximum of information. We do not care for the partial redundancy in it. The JAABA 

algorithm [114] inspired us for the choice of some trajectory-based features. These features are 

geometric measurements relying on the tracked points locations. We extract them from locations of 

the three points H, M and T detected on the mice. Each of those can be expressed as a distance or an 

angle. 

 

SUCCUBE extracts static features from point positions at a given frame. These ones describe the 

posture of the animal. In contrast, dynamic features rely on comparisons with the previous and 

successive frames. These ones describe the movement of the animal. No feature exceeds this three 

frames time-window. Behaviours exceeding this time scale will be described by the successive 

addition of those short units in the follow-up of this work (see discussion). 

 

The tracking needs to recognize an individual to affect it with an identity. It also needs to find the 

animal orientation to provide the positions (x,y,z) of the basis of the tail, centre of mass and head. 

SUCCUBE thus compute features for frames f, for which frames f-1, f and f+1 fulfil those two 

conditions of identification and orientation, for each animal recorded. We do not extract information 

from other frames. If an animal is not identified or oriented, the frame contains a fewer amount of 

information.  
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This partial information could also carry biases: the tracker can miss animals, mix identities, fuse 

detection in a common shape, as explained in the validation section of Live Mouse Tracker[93]. 

Therefore, part of the information processed to create the feature could be wrong if an individual is 

not identified. This is why SUCCUBE only considers frames at which all individuals are identified. 

Individual features take into account only one animal considered as the Emitter (E). Social features 

consider two individuals in a dyadic oriented interaction. We called the other individual implied than 

the emitter the Receiver (R). More information is provided on the emitter than on the receiver. We 

did this in order to describe the behaviour of the emitter rather than the one of the receiver, while 

allowing descriptions of their interactions. The receiver of a dyad is the emitter of the dyad of opposed 

orientation and vice versa. 

 

The complete feature list can be found in (Table annexe 1). We classified those features depending 

on the objects they consider: 

- Body features (B), which describe the relative positions and movements of the emitter's body 

parts. 

- Arena features (A), which describe the positions and movements of the emitter's body parts 

in relation to the arena walls, corners and centre. 

- Object features (O), which describe the positions and movements of the emitter's body parts 

in relation to the house walls, open sides and corners. Those features were only used for the second 

phase of the single object exploration experiments. We could not consider the position of the house 

to be stable during the long-term group monitoring experiment. In consequence we did not use these 

features for the analysis of those recordings. 

- Social features (S), which consider dyadic oriented interactions. They describe the positions 

and movements of the emitter's body parts in relation to the receiver's body parts positions or 

movements. SUCCUBE compute these features for each oriented pair of emitting and receiving 

individuals. These features were only used for the long-term group monitoring experiments.  
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Figure 24: Example of three trajectory based features measurements on a filmed frame. A: 

Representation of the segment giving the distances between the heads of two animals (Table annex 1: 

N°159 distance HHr). B: Representation of the segments head-tail of two animals and of the angle 

between these segments. This angle gives the angle between the two mouse axes (Table annex 1: 

N°179 angle HT HTr). C: Representation of the head positions in previous and successive frames which 

gives the instant speed of the head (Table annex 1: N°25 speed H). 

 

Particles number feature 

Live Mouse Tracker tracks any object moving in the cage. Then, if a moving object is not recognized 

as a mouse in a two seconds delay (60 frames), the track is interrupted. Live Mouse Tracker does not 

provide all the tracks of non-mouse movement in the cage, but it provides for each frame the number 

of object(s) detected as non-mouse. This number typically corresponds to the number of sawdust 

particles moving in the cage. It reflects the action of digging, fighting, or running which create 

different signature of appearance of sawdust. SUCCUBE takes this particle feature (P) into account 

and adds it with the trajectory based ones. 
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Sub-sampling 

By computing all features considered for all experiments, we obtain a large dataset which would be 

too heavy for computation. SUCCUBE thus proceeds to some subsampling in order to conceive several 

datasets which do not exceed computational capacities. The second goal of this subsampling is to 

divide data in order to run the following part of the analysis multiple times. Such multiple parallel 

runs will permit to target the more robust results. We built 100 of those subsamples. 

 

We do not want the classification to be more specific to some individuals or some phases of the 

experiments. This could be the case if the subsamples contained more data-point from some parts of 

some experiment than from others. In order to avoid such bias, SUCCUBE proceeds to this sampling 

in a balanced way in consideration of several aspects. 

 

For the single object exploration experiments, we sampled the same number of frames for each 

individual. We also considered as many frames before and after the addition of the house. For one 

experiment, we extracted 200 frames per phase per subsample. It means we used more than 11 min 

for each phase, more than 22 min in total, for each experiment, over all subsamples. 

 

For the long-term group monitoring experiments, we did the same for each oriented animal dyads. 

We sampled equal numbers of frames in each night of the experiments. For one experiment, we 

extracted 300 frames per oriented dyad per night per subsample. It means we used 16 min 40 sec for 

each night, 50 min in total, per long-term group monitoring, over all subsamples. 

  



120 

We chose frame numbers to sample depending on the usable frame amount in the experiment phases. 

Most recordings presented more frames in which all features are computable than necessary. For 

these databases, we sampled at random without replacements over all subsamples. In a minor part 

of experiment phases, frames were insufficient. We still use these databases if they contained at least 

a fifth of the number of frames to sample. In this case, we proceeded to a random subsampling with 

replacements. This replacement has a risk to make the analysis of different subsamples more similar 

than it would be without. This means it could favour over-fitting and it is why we limited it. 

 

More generally, frames which are not usable can depend on the behaviour of individuals. For example, 

when mice are grouped in close contact for a long time, LMT generally cannot segment them correctly. 

It means that the more mice exhibit behaviours which prevent us to use frames, the smaller is the 

part of their behaviour that we consider. This bias could make us think that rare events happened 

more frequently. 

 

Standardization 

SUCCUBE scales features to be able to compare them with the ICA. We apply a global scaling of all 

data treated in this further analysis. We also want to balance this process between experiments, 

subjects and phases. For this reason, we standardize each feature over the whole set of subsamples. 

We first centre them by substracting their global mean over all subsamples. Then we scale them by 

dividing them by the global standard deviation over all subsamples. We keep those balanced means 

and standard deviations, to be able to extend this scaling to other data points. As this we can 

afterward take any frame even not sampled one and apply the same standardization.  
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Feature sets 

Behavioural event categories considering more elements of the environment may hide the one which 

would consider less elements. For example, moving toward different locations of the area could hide 

the simpler category of moving forward. In order not to miss the simpler categories we divided further 

parts of the algorithm in several features set as in JAABA algorithm [114]. It also allows to express 

categories with a parsimonious amount of features. 

These feature sets depend on the classification of feature and are the following: 

- BP set is composed of body and particle features. It thus only considers one mouse and the 

bedding. 

- BAP set is composed of body, arena and particle features. It thus considers one mouse in a 

recording arena with bedding. 

- BAOP set is composed of body, arena, object and particle features. It thus considers one 

mouse in a recording arena with bedding, including a red house. We only analysed this set for the 

second phase of the single object exploration. 

- BASP set is composed of body, arena, social and particle features. It considers an emitting 

mouse in a recording arena with bedding, including a receiving mouse. We only analysed this set in 

the long-term group monitoring. 
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Independent component analysis 

SUCCUBE then treats each subsample for each feature set in a separated way. It treats them through 

ICA. This process returns a new subspace made of orthogonal dimensions, which are the least 

normally distributed possible. In this way, these axes should each allow a different classification. These 

classifications will thus permit categories discriminated on different axes to co-occur. 

 

We repeated those ICA for all numbers of extracted ICs from 2 to 60 or the maximum possible if lower. 

We cannot extract more IC than features in the feature set used. This will allow a further decision on 

the number of axis to extract (see hereafter “Independent component numbers criterion”). The ICA 

were conducted through the FastICA algorithm [160] with icafast function from ica package in R 

software [161]. 

 

Independent component numbers criterion 

The ICA needs a number of ICs to extract to be executed. We cannot keep independent components 

extracted with different numbers of ICs because they would not be independent between them. 

SUCCUBE thus need to choose a number of ICs to extract. 

 

We here present the criterion we used to define an optimal number of IC to extract. For each number 

of IC to extract, we run the ICA on several subsamples (here 100) of the dataset. Each ICA returns an 

unmixing matrix. We can separate each unmixing matrix in contribution vectors. One exists for each 

IC extracted. Each contains the coefficients to apply to each feature in the linear mix to compute an 

IC. 
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For one number of ICs to extract, we get one unmixing matrix per subsample. SUCCUBE clusters all 

the contribution vectors extracted from all subsamples. It groups those vectors via an HAC. This 

clustering is based on average absolute Pearson’s correlations. We keep grouping them while we do 

not group two vectors extracted from the same subsample. To select robust outputs, SUCCUBE keeps 

only clusters constituted by vectors extracted in at least half of subsamples. We call them level 1 

clusters. 

 

While we increase the number of ICs extracted, we aim at axes which fulfil three conditions: 

- We do not limit to a minimum the number of axes in order to understand the biggest part of 

the behaviour possible. 

- We conserve as much as we can the information present in axes extracted in fewer numbers. 

These ones would appear as the most evident axes to consider. 

- We avoid to extract too many axes. The quality of the ICA would decrease if the axis follows 

less the ICA criteria. Axes could be more correlated between them or even more normally distributed. 

 

SUCCUBE thus computes iteratively a score for each number N of extracted ICs. At each step, we take 

into account the contribution vectors of all numbers of ICs extracted from 2 to N. We agglomerate 

the level 1 clusters of contribution vectors with a second level of the same HAC. In the same way as 

before, the clustering goes on until it would merge two level 1 clusters from the same number of ICs. 

This allows to avoid grouping any pair of vectors generated from the same subsample. We call them 

level 2 clusters. 
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The score relies on a value that we will name the retention. We consider a level 2 cluster as a 

conserved cluster if it contains a level 1 cluster extracted when asking N ICs. The retention for N 

extracted ICs is the ratio of the level 1 clusters, which are part of conserved level 2 clusters. The score 

is the product of the number of level 1 clusters extracted when asking N ICs multiplied by the 

retention for N extracted ICs. 

 

SUCCUBE stops scores computation if three conditions are fulfilled: 

- The score is inferior to the one computed with fewer ICs. This is because we want to keep the 

number of ICs maximizing the score. 

- The increase of N has divided some level 2 clusters grouped when there were fewer axes. This 

shows that the new axes contain some ICs too correlated. This division of cluster would also lose the 

information on axis origins from fewer ICs. 

- No higher number of ICs offers a complete retention of 1. Complete retention would be a sign 

of quality of extracted ICs. We want to verify that complete retention will not come back in higher 

number of ICs. That is why we extracted ICs until at least 60 or the maximum possible if lower. 

Once SUCCUBE computed all scores until the stop, it keeps the number of ICs to extract giving the 

highest score. 

 

Behavioural descriptors 

Our goal is to get axes describing the behaviour over all subsamples. We need to define common 

dimensions on which we can project all data. We thus extract a single axis of each level 1 cluster 

obtained when asking for the kept number of IC. For this purpose, SUCCUBE selects the centroids of 

each of those clusters. It chooses the axis with the highest average correlation to other axes from the 

same cluster. We named those axes behavioural descriptors. 

  



125 

multi-set duplicates exclusion 

For each experiment, we ran the ICA, on different feature-sets. For one experiment, all sets are 

imbricated. A bigger set contains at least all features of a smaller one. This allows to find behavioural 

descriptors that the presence of all features would hide. 

 

At the same time, the addition of features does not hide all axes extracted from smaller features sets. 

We found similar behavioural descriptors in several feature-sets. In those cases, we did not analyse 

both behavioural descriptors. 

 

To identify these duplicates, we applied a selection on behavioural descriptors. We compared the axes 

extracted with different features-set two by two using Pearson’s absolute correlation. We computed 

the distance between behavioural descriptors over all subsamples. 

 

We did not analyse further the axes extracted from more features if it correlated too much with an 

axis extracted from a simpler set. This choice allows us to be more parsimonious in two aspects. We 

get rid of kind of useless duplicates, and we keep the one constituted of the fewer number of features. 

The threshold of Pearson’s correlation we chose here was an absolute coefficient of more than 75%. 

This selection does not change the conserved or the discarded behavioural descriptors. Discarded 

data remain available if needed later. 
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Gaussian mixture model based clustering 

To describe qualitative behavioural expressions at each frame, SUCCUBE clusters time points based 

on the Behavioural Descriptors (BD). We treat each BD independently, to get one independent 

classification per axis. In this way, categories extracted from two different BD will be able to co-occur 

at a same time point. 

 

For one BD SUCCUBE gathers its values at all frames, over all subsamples. Then, on the basis of this 

distribution it segregates frames into classes. For this purpose, it uses a Gaussian Mixture Model 

(GMM) based clustering, that allows the definition of thresholds. These ones distribute all frames in 

several Behavioural Event Categories (BEC) along a BD. 

 

In order to model a distribution through a GMM, we need to choose a number of Gaussian 

Distributions (GD) to mix (see hereafter “Gaussian distributions numbers criterion”). Thanks to ICA 

which produced them, BD should be the least normally distributed possible. One unique Gaussian 

distribution cannot provide a good model for such distribution. SUCCUBE uses at least two GD to 

model each behavioural descriptor. This choice gives good chances that most BD allow the 

segregation of at least two BEC. 

We fit the GMM maximizing the likelihood                                                              

Here, T is the number of data-points, N is the number of GD and  the weighted 

probability density of𝑥𝑖 in the j-th GD. SUCCUBE performs this computation through expectation 

maximization algorithm. The GMM based clustering were conducted with Mclust function from 

mclust package [162] in R software [161].  
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Gaussian distributions numbers criterion 

By computing those models, we here aim at getting a reliable clustering. We need to restrain the 

number of GDs mixed in the model for several reasons: 

- In order to prevent over-fitting to the data-set. The more GD we add to a model, the more 

parameters we use and the more likely they can be specific to sampled frames against non-sampled 

ones. The goal of this classification is to be informative for frames that we did not sample, or even for 

further recordings. 

- In order to limit GD overlapping, which statistically increases with the number of mixed GD, 

and makes the clustering less robust. Frames measured at values for which two GD overlap more 

would be classified with less confidence. 

- In order to separate a fewer amount of BEC along each axis. The more BEC are described along 

an axis, the more complex is the interpretation of categories which end closer to each other. Limiting 

BEC number allows to reduce nuances to use while naming and interpreting the categories. Those 

nuances could make the interpreted data less informative. This approach needs to be parsimonious. 

 

We select the number of GD which fits the best to the data while the mixed GD overlap the least 

possible. The criterion SUCCUBE uses to select GD number is the same than in Bauer et al., 2017 [163]: 

“Several GMM are fitted with an increasing number of GDs, beginning with 2. We select the processed 

model by maximizing the function.                                                             , where k(i) denotes the number 

of the GD which gives the highest density probability for 

the frame𝑥𝑖. This penalizes the models with respect to the overlapping of these GDs, and constrains 

the number of GDs. For each BD, the GMM producing the first local maximum of this criterion will be 

used.”  
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SUCCUBE defines equality points of the probability of two GD as thresholds to segment frames along 

a BD. If some thresholds separate two clusters of at least 2.5% of sampled frames each, we only keep 

those thresholds. We do this to focus on the most representative categories of the axis, and for the 

number of categories to stay parsimonious. If all thresholds separate only extreme clusters of less 

than 2.5% of sampled frames, the BD is segregating rarer events. We here keep only the first threshold 

on each side, starting from the mean. These thresholds allow the classification of BEC. 

 

Behavioural event categories 

For each BD, we cluster all time points in a certain number of BEC. An animal will thus produce as 

many BEC at each time point as the selected number of BD. As this clustering classified frames, the 

time scale of those categories is 1/30 of a second. We thus cannot expect those BEC to correspond 

to behaviours made of a sequence. Those BEC are closer to some behavioural building blocks [74]. 

Nevertheless, we could create sequences of behavioural building blocks by successions and potential 

co-occurrences of BEC. We separated two types of BEC. Posture events inform us on the configuration 

of the mouse’s body and/or its body parts. Movemes [142] events inform us on the movements of 

the mouse and/or its body parts. Those BEC make sense at the scale of the individual or describe its 

interaction with the environment, including the arena, the house or a conspecific. 

 

The first result we get from SUCCUBE is a behavioural repertoire. It is a list of behavioural event 

categories, which can append or that animals can produce. Those categories are exclusive between 

them when we classified them from the same BD. They can co-occur if they are extracted from 

different BD. And thus one BEC is active for each BD at each time point. Some BEC are thus general or 

common and just play the opposite role of more particular and rarer BEC from the same BD.  
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Behavioural event categories interpretation 

Once the classifier separated all BEC, we named them in a humanly readable way. As we got these 

categories without supervision, we did not know what they represented a priori. We provided names 

for each BEC using the following information: 

- The contributions of features to the BD which segregate these BEC. We represent relative 

contributions exceeding 1, the mean relative contribution, on a bar-plot. This first graph allows us to 

interpret the direction of differences along the BD, in the features space (figure 25A). 

- The distribution over all subsamples of the BD which segregate those BEC. We represent it on 

a histogram, on which we superpose the probability densities of the GMM and of each of its GD. We 

then represent the thresholds of the clustering. This second graph allows to locate BEC along BD and 

to see their relative proportions (figure 25B). 

- The spatial repartition of the BEC. On an x,y spatial map of the environment, we represent 

each frame of an example experiments by a dot of colour. The colour of each dot depends on the 

active BEC at this frame. This third graph allows to examine if BEC appears more in some parts of the 

environment. It also shows the length of trajectories in each BEC, and the frequency of switches 

between those (figure 25C). 
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Figure 25: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BP features-

set in the single object exploration. 

A: Bar-plot representing major features contributions to the BD. 

B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 

C: Spatial repartition of the BEC of the BD. 

We named: 

- the BEC on the left of B and blue in C: “moves forward” 

- the BEC on the right of B and orange in C: “does not move forward” 

 

Cluster use for performance 

This algorithm has been adapted to the Institut Pasteur’s cluster in order to fasten the computation 

and enhance the live memory. The computation has been parallelized at several steps: 

- On trajectory based features extraction, parallelized between each experiment. 

- On subsample building, computation of the mean and standard deviation and on ICA, 

parallelized between each subsample. 

- On GMM based clustering, parallelized between each BD. 
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Comparative statistics 

Behavioural event exhibition time 

Behavioural classification is a tool to turn trajectories into quantifiable behavioural categories. The 

quantification of the segmented behaviour is a measurement of a behavioural trait. On the basis of 

the classified frames, the easiest measurement is to count the number of frames in each category. 

We cannot classify all frames because features are not extractable at each of those. The number of 

frames at which we can compute features differs between experiments. We do not want to compare 

tracking quality between experiments, but animal behaviour. We thus need to base this enumeration 

on the same frame number for each animal. The simpler behavioural trait to compute is then the 

timeshare proportions of each category. 

We need an exploitable frame sample of equal length for each individual or dyad. The subsamples we 

created earlier for SUCCUBE algorithm fit exactly this purpose. They are balanced between individuals 

or dyads, and between each phase of experiments. We thus chose to use all frames over all 

subsamples to compute those proportions. We could then give the proportion depending on the 

emitter, on the phase, and on the receiver if one is present. 

The information which interests us is those proportions. But time proportions do not distribute 

normally while real durations do. Parametric statistical tests deal better with normally distributed 

measurements. We thus avoided to divide those numbers of frames, in which an animal produces a 

BEC, by the complete duration. This means that we compared animals on the basis of the times spent 

exhibiting BEC, from an equal total time, in the goal to compare their proportions of BEC exhibition. 

This is exactly equivalent to say that we transformed all proportion data by multiplying all by the 

number of frames sampled by individual.  
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Screening specific statistical considerations 

The tracking automation provided by Live Mouse Tracker allowed sufficient efficiency in data 

collection to proceed to the screening of the behaviour of several strains in different contexts. The 

behavioural segmentation provided by SUCCUBE allowed the screening of a large number of 

behaviours for each strain and context. The goal of such screenings is to identify some strains 

presenting some amount of behavioural differences from C57BL/6J mice. This permitted the selection 

of strains of interest to cross with C57BL/6J Shank3+/-. This goal can be seen as a global question in 

which no particular strain or behavioural category is necessary or interesting a priori. This explorative 

screening procedure is used to discover differences when we do not know which variable they would 

affect. 

 

This screening procedure thus makes the global null hypothesis, telling that: “all behaviours of all 

strains do not differ significantly from C57BL/6J behaviours”, of capital importance. We could not 

conclude that a particular strain differs significantly from C57BL/6J in the expression of a particular 

category if overall screening results suggest that no differences exist and that this particular one could 

have been found by chance. This means that we need to be cautious with the inflation of the family-

wise error rate caused by multiple testing. If this problem is not considered, the extension of the 

screening to more behavioural categories or strains could be a way to artificially increase the 

probability to observe some behavioural differences. 

 

We thus needed to apply corrections on the statistical test P values we obtained. Those corrections 

depend on the number of comparisons tested between independent variables. We thus needed to 

reduce the number of comparisons by avoiding useless ones between highly correlated variables or 

which would not serve to identify a strain of interest.  
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The number of collaborative cross strains being a particular richness of this study we compared each 

strain to C57BL/6J. But as our goal was to find interesting strains to use as models instead of C57BL/6J, 

we did not lead any comparison between collaborative cross strains. 

 

The different experiments and their different phases were all a priori interesting. We thus did not 

exclude any from comparisons. But the information given by a particular behavioural event category 

proportion can be redundant and thus dependent between different phases. This is why we selected 

phases in which we compared measured proportions. Inter-phase difference tests were avoided. 

 

Finally, behavioural event categories are independent from each other at the frame time scale. But 

their production proportions over the time of an experimental phase can correlate. This can be due 

to their potential association in patterns of succession. We can also see those correlations as the 

expression of more general behavioural syndromes [164]. Such syndromes would drive over-

expression or under-expression of groups of behavioural event categories. In order to avoid useless 

statistics on highly correlated signals we needed to select the behavioural event category 

measurements to compare. 

 

We thus proceeded to the comparison of the twelve Collaborative Cross strains to C57BL/6J. Each 

Collaborative Cross strain comparison was led on the same set of phase-specific behavioural event 

category measurements. The selection of this set of measurements needed to be based on the 

correlations between all measurements over all strains. These comparisons resulted in the 

conceptions of behavioural profiles which are homologous between each Collaborative Cross strains 

as they consider the same measurement set.  
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Variable selection 

SUCCUBE algorithm extracts a lot of different BEC. We measured exhibition time for each BEC in each 

experimental phase. This created a lot of measurements or behavioural traits. In order to avoid 

useless statistics on highly correlated signals, we needed to reduce the number of variables to study. 

A PCA could allow an interesting reduction of the number of dimensions. But this method has here 

two major defaults: 

- The principal components condense too much the information. They could mix traits which 

would appear independent. This would reduce the amount of information we can extract about 

differences between individuals. 

- The linear mixes of proportions of BEC would end up on new signals. These new signals, and 

the traits they define, would rely on different BEC expressed in different phases. This means that we 

would need a new level of interpretation to give a name to the principal components. This 

interpretation would be difficult as such signals are not used in the literature. And the resulting axes 

would be hard to link with understandable traits. 

 

We thus preferred to use a clustering on the different BEC proportions measured in all phases. The 

goal was then to select one measurement per cluster as being representative of the cluster. It allowed 

us to work with variables easier to interpret, but in fewer number. 

 

We thus clustered the BEC proportions depending on the exhibition times measured for each 

individual or dyad. We used a HAC based on the average absolute Pearson's correlations. We selected 

the number of clusters to segregate which gave the maximum product of number of category times 

the gap of correlation to the next cluster division. 
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We chose the measurements representative of clusters depending on three factors: 

- We selected preferably measurements which aggregate early, in the sense that, along HAC, 

they group with other categories before some others. 

- We selected measurements of behavioural event categories which seemed linked to the other 

categories of the cluster. 

- We selected measurements lead on the same period (with/without object or night 1, 2 or 3) 

of the experiments as the majority of other measurements of the cluster. 

 

Strains profile 

We used the selected time proportion measurements in order to build a behavioural profile of each 

CC strain recorded. We did this profile in comparison to the C57BL/6J strain which served as a 

reference. The important use of this strain in neuroscience and behavioural biology makes it a relevant 

point of comparison. Such profiles allowed afterward selection of strains of interest to study specific 

behaviours. 
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Matching goals and test procedures 

For the first cohort, when comparing collaborative cross strains to the C57BL/6J reference strain, our 

goal was to evaluate which strains differ more from the widely used reference strain in terms of 

behaviour. With four groups of four individuals per strain and five for the C57BL/6J for each sex, we 

could expect a decent discriminative power. At this step we were thus not lacking discriminative power. 

This is why the important Bonferroni correction applied for the product of the number of strains 

compared to C57BL/6J by the number of traits compared between these last is adequate. In the same 

way, as finding significant effects should be easy, we could do it separately on males and females even 

if it reduces our sample size. 

 

We could afford to proceed to more comparisons with less animals. Finally, as a lot of trait 

measurements risked to be non-Gaussian or non-homosedastic between strains, we directly applied 

non-parametric tests to all traits in order to compare each trait in the same way. The reduced p-values 

resulting from such tests were here not a concern. 

 

For the second cohort, when comparing heterozygous and wild-type mice on mixed backgrounds, our 

goal was to find at least one background for which some behavioural traits differ significantly 

depending on Shank3 haploinsufficiency. With 2 to 6 groups of four individuals per background and 

sex, including each two wild-type and two heterozygous animals, we could predict lower 

discriminative powers than for the first cohort. 
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At the same time, finding behavioural differences between individuals differing only in one copy of a 

gene was more challenging than the strain comparison of the first cohort. This is why we only applied 

Bonferroni correction for the number of trait compared between genotypes. In this way, we avoided 

the family-wise type 1 error-rate inflation with the extension of trait screening. We did not correct 

over all crosses in order to avoid inflation of the type 2 error-rate, more than it would be when testing 

only one genetic background. This result thus can be compared to the one that would be obtained if 

we already selected one genetic background to study Shank3 mutation. 

 

In the same way, as finding significant effects is here challenging we could not do it separately on 

males and females because it would reduce our sample size. We could not afford to proceed to more 

comparisons with less animals. This is why we compared all means by performing ANOVA with the 

genotype of the emitter, of the receiver in the case of social behaviour and the sex as factors and 

considering interactions between these factors. As such test is parametric, its discriminative power is 

better. And if some significant differences were obtained on measurements violating the Gaussianity 

or homoscedasticity hypothesis on the basis of Shapiro’s and Levene's tests on residuals, we 

investigated further to prove such significance without such bias. 
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ISBI: IEEE International Symposium on Biomedical Imaging, 2017 

In this first article [163], we presented the basis of SUCCUBE. We used tracking data obtained through 

Mice Profiler [97] to compute trajectory-based features. We ran an ICA on these last and Gaussian 

mixture model based clusterings on the subsequent ICs. We showed, by cross-validation, that the 

behavioural event categories, obtained this way, correspond to the ones extracted by Mice Profiler 

[97]. We finally used the newly classified behavioural event categories to find back markers of 

hyperactivity and lack of social interest in Shank2-/- mice, another mouse model of autism spectrum 

disorder.  
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ISBI: IEEE International Symposium on Biomedical Imaging, 2018 

In this second article [165], we adapted the embryo of SUCCUBE algorithm to the tracking data 

extracted by the newly developed Live Mouse Tracker [93]. In order to benefit from the richer 

trajectory data of this new tracking method, we increased drastically the number of trajectory-based 

features computed. We also started to extract behavioural descriptors by selecting ICs conserved 

between several ICA ran on different subsamples of data. Such innovations allowed us to deepen the 

understanding of the link between hyperactivity and lack off social interest in Shank2-/- mice.  
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Application to the Collaborative Cross 

Behavioural event categories extracted 

The results are organized in chronological order. The data gathered by tracking the first cohort, black 

6 and CC strains, have first been used as a basis for SUCCUBE to discover a wide behavioural repertoire. 

This one will first be presented here in tables 7 to 12. 

 

We generated a behavioural repertoire separately for the single object exploration and for the long-

term group monitoring experiments. Some categories are close between the two protocols, in this 

case we gave the same name to both categories. But we need to describe them separately for each 

protocol. The changes in the experimental protocol affect the characteristics of those categories. The 

same name does not refer to the exact same behaviour in different contexts. The mix of features 

contributing to the BD, as the threshold segregating each BEC on this one, can differ. 

 

The single object exploration 

The single object exploration protocol’s data led to the clustering of 116 BEC. 

 

The BP feature set 

In the single object exploration data, on the set grouping body and particle features, SUCCUBE 

extracted 24 BD. Those 24 BD allowed to segregate 63 BEC.  
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Table 7: Experimenter given names for the BEC segregated on BD extracted from the BP features-set 

in the single object exploration experiment. 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BEC 1 BEC 2 BEC 3 BEC 4 

BD 1 does not rotate in deceleration rotates decelerating 

BD 2 does not rotate in acceleration rotates accelerating 

BD 3 moves forward does not move forward 

BD 4 contracts stable extension extends 

BD 5 is short on x-y axis normal extension is extended 

BD 6 does not move backward moves backward 

BD 7 does not move the anterior part sideways moves the anterior part sideways 

BD 8 is posterior deviating is not posterior deviating 

BD 9 decelerates stable speed accelerates 

BD 10 moves the posterior part sideways does not move the posterior part sideways 

BD 11 is reared is not reared 

BD 12 
moves without 

agitating the bedding 

does not agitate 

bedding 
agitates bedding digs 

BD 13 unbends stable bending bends 
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BD 14 is not bent is bent 

BD 15 rears down stable altitude rears up 

BD 16 
centre of mass pushed 

forward 

centre of mass synchronized with other body 

parts 

centre of mass pushed 

back 

BD 17 tail base pushed back tail base synchronized with other body parts 
tail base pushed 

forward 

BD 18 head pushed forward head synchronized with other body parts head pushed back 

BD 19 

orients the 

movements of the 

head forward 

does not orients the movements of any body 

part forward 

orients the 

movements of the tail 

forward 

BD 20 

orients the 

movements of the 

head away from 

forward orientation 

does not orients the movements of any body 

part away from forward orientation 

orients the 

movements of the tail 

away from forward 

orientation 

BD 21 head-tail inversion on rearing no head-tail inversion on rearing 

BD 22 lowers the head stable head altitude raises the head 

BD 23 anterior acceleration anterior stable speed anterior deceleration 

BD 24 lowers the tail stable tail altitude raises the tail 

 

BD 1 to BD 24 refer to the behavioural descriptors axes and BEC 1, BEC 2, BEC 3 and BEC 4 refer to the 

behavioural event categories segregated on those axes. 
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The BEC “head-tail inversion on rearing” extracted from the 21st BD is describing events at which the 

animal has the head down and the basis of the tail high. This behaviour has not been observed, but 

this category is activated when features describe such inverted standing posture. This happens mostly 

when an animal retracts from a rearing on the wall. At those frames the high backward speed fools 

the tracking which inverses head and tail basis points. This results in an unusual tail basis altitude 

superior to the one of the head. BEC extracted from the 21st BD thus describe an event mixing a 

behaviour of an individual and an error of the tracking system. 

 

The BAP feature set 

In the single object exploration data, on the set grouping body, arena and particle features, SUCCUBE 

extracted 31 BD. We kept 9 of those which did not correlate at more than 75% with BD extracted from 

BP feature set. Those 9 BD allowed to segregate 23 BEC. 

 

Table 8: Experimenter given names for the BEC segregated on BD extracted from the BAP features-

set in the single object exploration experiment. 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BD 1 is not oriented toward the closest wall is oriented toward the closest wall 

BD 2 is in a corner is not in a corner 

BD 3 
orients away from the 

centre 
stable arena related orientation 

orients toward the 

centre 
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BD 6 goes toward the wall stable distance to the wall 
goes away from the 

wall 

BD 7 
goes forward toward 

the corner 
does not progress with the corner in front 

goes backward away 

from the corner 

BD 8 
goes backward toward 

the corner 

does not progress with the corner in the 

back 

goes forward away 

from the corner 

BD 11 is in the near wall area is in the corner or intermediate area 
is in the middle 

diagonal cross 

BD 15 
orients toward the 

corner 
stable wall-corner orientation 

orients toward the 

wall 

BD 17 
is oriented toward the wall rather than the 

corner 

is oriented toward the corner rather than the 

wall 

 

BD 1 to BD 17 refer to the behavioural descriptors axes and BEC 1, BEC 2 and  BEC 3 refer to the 

behavioural event categories segregated on those axes. 

 

The BAOP feature set 

In the single object exploration data, on the set grouping body, arena, object and particle features, 

SUCCUBE extracted 14 BD. We kept 11 of those which did not correlate at more than 75% with BD 

extracted from BP and BAP feature set. These 11 BD allowed to segregate 30 BEC. 
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Table 9: Experimenter given names for the BEC segregated on BD extracted from the BAOP features-

set in the single object exploration experiment. 

 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BD 1 is close to or in the house is far from the house 

BD 2 
get away from the 

house 
stable distance from the house goes toward the house 

BD 3 
is oriented toward the 

house 
no special house related orientation 

is oriented away from 

the house 

BD 4 does not orient away from the house orients away from the house 

BD 5 orients toward the house does not orient toward the house 

BD 7 
goes backward toward 

the house 
does not progress with house in the back 

goes forward away 

from the house 

BD 8 
goes forward toward 

the house 
does not progress with house in front 

goes backward away 

from the house 

BD 9 angular decelerates stable angular speed angular accelerates 

BD 10 
orients toward the 

house 
stable house related orientation 

orients away from the 

house 

BD 11 is not in the far from is in intermediate house related area is in the far from 
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house area house area 

BD 14 

goes in direction from 

a house wall to an 

open side 

stable house open side to wall closeness 

goes in direction from 

a house open side to a 

wall 

 

BD 1 to BD 14 refer to the behavioural descriptors axes and BEC 1, BEC 2 and BEC 3 refer to the 

behavioural event categories segregated on those axes. 

 

The long-term group monitoring 

The long-term group monitoring protocol’s data led to the clustering of 112 BEC. 

 

The BP feature set 

In the long term group monitoring data, on the set grouping body and particle features, SUCCUBE 

extracted 25 BD. We kept 24 of those because the GGM based clustering did not allow for any BEC 

segregation on the 21th BD. These 24 BD allowed to segregate 63 BEC. 
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Table 10: Experimenter given names for the BEC segregated on BD extracted from the BP features-

set in the long term group monitoring experiment. 

 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BD 1 
the movements of all body parts is oriented 

forward 

the movements of some body parts is not 

oriented forward 

BD 2 turns decelerating does not turn in deceleration 

BD 3 turns accelerating does not turn in acceleration 

BD 4 is extended normal extension is short on x-y axis 

BD 5 contracts stable extension extends 

BD 6 moves forward does not move forward 

BD 7 accelerates stable speed decelerates 

BD 8 is not deviating is deviating 

BD 9 does not move backward moves backward 

BD 10 rears up stable altitude rears down 

BD 11 is reared is not reared has the head down 

BD 12 has the tail down no head-tail inversion on rearing 
head-tail inversion on 

rearing 
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BD 13 lowers the tail stable tail altitude raises the tail 

BD 14 

the movements of the 

tail is not oriented 

forward but the one of 

the head is 

head and tail movements are each as 

oriented forward than the other 

the movements of the 

head is not oriented 

forward but the one of 

the tail is 

BD 15 bends stable bending unbends 

BD 16 
no bedding 

movements 
bedding movements some individuals dig 

BD 17 lowers the head stable head altitude raises the head 

BD 18 is bent is not bent 

BD 19 head pushed forward head synchronized with other body parts head pushed back 

BD 20 is arched in a U shape has the back straight has the back rounded 

BD 22 tail base pushed back tail base synchronized with other body parts 
tail base pushed 

forward 

BD 23 head deviation no partial deviation 
centre of mass 

deviation 

BD 24 

the movement of the centre of mass is not 

oriented forward but the one of the head 

and the tail are 

the movements of the head and the tail are 

not oriented forward but the one of the 

centre of mass is 

BD 25 
centre of mass synchronized with other body 

parts 
centre of mass pushed back 
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BD 1 to BD 24 refer to the behavioural descriptors axes and BEC 1, BEC 2, BEC 3 and BEC 4 refer to the 

behavioural event categories segregated on those axes.  
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The particle feature is the principal contributor to the 16th BD. It is not specific to one individual but 

global for the all environment. We thus cannot specify which animals take part to the BEC extracted 

from this axis. 

The BEC “head-tail inversion on rearing” extracted from the 12st BD is similar to the one extracted 

from the 21st BD of the BP features-set from the single object exploration experiment (table 10). It 

thus also describes a mix behaviour of both an individual and the tracking system. 

 

The BAP feature set 

In the long term group monitoring data, on the set grouping body, arena and particle features, 

SUCCUBE extracted 25 BD. We kept 7 of those which did not correlate at more than 75% with BD 

extracted from BP feature set. Those 7 BD allowed to segregate 17 BEC. 

 

Table 11: Experimenter given names for the BEC segregated on BD extracted from the BAP features-

set in the long term group monitoring experiment. 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BD 1 is in a corner is not in a corner 

BD 2 is oriented toward the closest wall is not oriented toward the closest wall 

BD 3 does not turn toward the centre turns toward the centre 

BD 7 
goes forward away 

from the centre 
does not progress with the centre in the back 

goes backward toward 

the centre 
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BD 8 
goes forward toward 

the centre 
does not progress with the centre in front 

goes backward away 

from the centre 

BD 15 

orients toward the 

wall rather than the 

corner 

stable wall-corner orientation 

orients toward the 

corner rather than the 

wall 

BD 16 
is oriented toward the wall rather than the 

corner 

is oriented toward the corner rather than the 

wall 

 

BD 1 to BD 17 refer to the behavioural descriptors axes and BEC 1, BEC 2 and BEC 3 refer to the 

behavioural event categories segregated on those axes. 

 

The BASP feature set 

In the long term group monitoring data, on the set grouping body, arena, social and particle features, 

SUCCUBE extracted 27 BD. We kept 13 of those which did not correlate at more than 75% with BD 

extracted from BP and BAP feature set. Those 13 BD allowed to segregate 32 BEC. 
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Table 12: Experimenter given names for the BEC segregated on BD extracted from the BASP features-

set in the long term group monitoring experiment. 

 

BD 

BEC 1 BEC 2 

BEC 1 BEC 2 BEC 3 

BD 2 same orientation as the receiver opposed orientation with the receiver 

BD 3 is in contact with the receiver is at distance from the receiver 

BD 6 
emitter gets closer to 

the receiver 
neither getting closer or escaped 

receiver gets further 

from the emitter 

BD 7 
emitter gets further 

from the receiver 
neither getting further nor joined 

receiver gets closer to 

the emitter 

BD 11 is back to the receiver no particular social orientation faces the receiver 

BD 13 has a small view angle on the receiver has a big view angle on the receiver 

BD 16 the receiver is low the receiver is at average altitude the receiver is high 

BD 17 
the animals’ anterior parts go in opposite 

directions 

the animals’ anterior parts go in same 

direction 

BD 19 
the view angle on the 

receiver increases 
stable view angle on the receiver 

the view angle on the 

receiver decreases 

BD 20 
emitter anterior part and receiver posterior 

part go in the same direction 

emitter anterior part and receiver posterior 

part go in opposite directions 

BD 21 emitter posterior part and receiver anterior emitter posterior part and receiver anterior 
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part go in opposite directions part go in the same direction 

BD 22 
the animals’ posterior parts go in the same 

direction 

the animals’ posterior parts go in opposite 

directions 

BD 24 
goes ahead the 

receiver 
goes neither ahead nor behind the receiver 

goes behind the 

receiver 

 

BD 1 to BD 14 refer to the behavioural descriptors axes and BEC 1, BEC 2 and BEC 3 refer to the 

behavioural event categories segregated on those axes. 

 

Those BEC describe also the behaviour of the receiver. This is particularly true for the BEC extracted 

on the 16th BD which only describes the behaviour of the receiver. Such categories can thus be 

redundant with other categories describing the behaviour of the emitter when emitter and receiver 

are switched. 

 

Behavioural event categories of interest 

Behavioural event categories of interest in single object exploration 

The variable selection aim at reducing the subsequent number of statistical comparisons. The 

variations between the time proportion during which each individual display each BEC have then be 

used to cluster groups of BEC which are related in their expression. This will be presented in three 

dendrograms, figures 26 to 28. Such clustering allows to select one BEC to represent each cluster, in 

order to obtain a synthetic set of behaviors that summarizes the measured variations. This analysis 

has been led on the first cohort data, on which the full repertoire has been discovered. 
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Selection  
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169 

Figure 26: Dendrogram of the HAC of BEC measurements, depending on their proportions of 

production by individuals, in each phase of the single object exploration experiment. The vertical red 

line marks the Ward distance threshold of 1 chosen for clustering. Horizontal red lines separate the 

BEC clusters. Blue rectangles highlight the BEC measurement chosen as representative of each cluster. 

Signs after the BEC names show in which phase of experiment we measured emission proportions. “nh” 

stands for “no house” or the first phase, before the addition of the house. “wh” stands for “with house” 

or the second phase, after the addition of the house. 

 

On the basis of the HAC we clustered BEC time proportions in the single object exploration experiment 

in 19 clusters. We selected in each one a category to represent the cluster (figure 26 in blue). We thus 

described the behaviour of mice in this experiment by a profile of 19 measurements. 
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Interpretation 

We consider six aspects of the solitary behaviour in the single object exploration experiment. We 

interpret BEC time proportions in terms of: locomotor activity; exploration; stereotyped behaviours; 

thigmotaxis; neophobia and interest for the house. 

 

The behaviours of moving forward and of rotation in acceleration can be interpreted as locomotor 

activities, and exploratory behaviours. After the addition of the house we can also interpret a 

reduction of the production of such behaviours as a sign of neophobia induced by the novel object. 

 

The fact of moving backward and to orient the movements of the tail away from forward orientation 

are not straight forward to interpret. Such motions could depend on locomotor activity. 

 

The behavioural events consisting in having the anterior part at a stable speed are likely to happen 

mostly when the animal is immobile. As a matter of fact, motion sequences are often made of 

successive acceleration and deceleration events, what is even clearer for mice in a limited arena. This 

behavioural event is thus likely to be more displayed by animals with lower locomotor activity. 

 

The posture of extension is part of the exploratory behaviours, as it allows mice to investigate their 

environment through olfactory and tactile clues. Such behaviour should be less present in animals 

afflicted with high stress or pain which generally adopt a balled posture. This behaviour can be 

compared to the stretched attend posture described in de Chaumont et. al.[93]. We can thus see it 

as a precautious exploratory behaviour, in particular after the addition of the house, this could be a 

sign of interest toward this novel object. The rearing behaviour can also be considered as an 

exploratory behaviour as it allows the scanning of the environment above them.  
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The behaviour consisting in moving without agitating the bedding necessitates a slow movement 

which is likely to be linked with exploration and curiosity. On the other hand, the fact to agitate the 

bedding is generally caused by fast movements which are more likely to reveal locomotor activity. The 

digging which is characterized by the highest amount of bedding movement can be an exploratory 

behaviour because it allows the mouse to discover underground environmental elements. Digging 

can also be a stereotypic behaviour, what can be interesting in the context of autism spectrum 

disorder model [166]. 

 

The fact to be in the near wall area or to be oriented toward the closest wall could be interpreted as 

thigmotaxis, which can itself be a response to stress or anxiety in mice. After the addition of the house 

such thigmotaxic behaviours can result from the neophobia stimulated by the novel object 

 

The events when mice are close or in the added house show their curiosity and lack of neophobia. 

The house can also be a way to avoid some light and hide, a behaviour which could be produced as a 

response to stress. 

 

Finally, the fact to be in a stable orientation relatively to the added house is likely to be due to the fact 

that the animal is oriented toward it to investigate it. This can be interpreted as a sign of curiosity. 

 

Solitary behavioural event categories of interest in long term group monitoring 

Selection  
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Figure 27: Dendrogram of the HAC of solitary BEC measurements, depending on their proportions of 

production by individuals, in each phase of the long term group monitoring experiment. The vertical 

red line marks the Ward distance threshold of 1 chosen for clustering. Horizontal red lines separate 

the BEC clusters. Blue rectangles highlight the BEC measurement chosen as representative of each 

cluster. Signs after the BEC names show in which phase of experiment we measured emission 

proportions. “n1”, “n2” and “n3” stands respectively for first, second and third nights. 

 

On the basis of the HAC we clustered BEC time proportions in the long-term group monitoring 

experiment in 18 clusters. We selected in each one a category to represent the cluster (figure 27 in 

blue). We thus described the behaviour of mice in this experiment by a profile of 18 measurements. 
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Interpretation 

We consider four aspects of the solitary behaviour in the long term group monitoring experiment. We 

interpret BEC time proportions in terms of: locomotor activity; exploration; stereotyped behaviours 

and thigmotaxis. 

 

The behaviours of moving forward, backward and of deviation can be interpreted as locomotor 

activities, and exploratory behaviours. If studied on successive night we can say that the first night 

gives a better idea of the animal tendency to explore when the third night is more informative on the 

spontaneous locomotor activity. 

 

The fact of moving backward and that the movements of the head is not oriented forward but that 

the one of the tail is, are not straight forward to interpret. Such motions could depend on locomotor 

activity. 

 

The stable bending event is likely to happen mostly when the animal is immobile. This behavioural 

event is thus likely to be more express by animals with lower locomotor activity. 

 

The posture of being arched in a U shape can make think about lordosis. We could hypothesis that, 

if this behaviour appears as an event category in the long-term group monitoring, it could consist of 

a socially relevant posture. If studied on successive night we can say that such trait evolution could 

reflect the evolution of the social organisation inside the group. 

 

As in the single object exploration, the extension and rearing postures produced, during the long term 

group monitoring, are considered as exploratory behaviours. 
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Events of stability of body altitude and of tail altitude are not straight forward to interpret. Such 

motion could depend on locomotor activity and exploration. 

 

The event when the bedding moves are generally caused by fast movements which are more likely 

to reveal locomotor activity. The digging which is characterized by the highest amount of bedding 

movement can be an exploratory behaviour because it allows the mouse to discover underground 

environmental elements. Digging can also be a stereotypic behaviour, what can be interesting in the 

context of autism spectrum disorder model. 

 

The fact to be in a corner or to be oriented toward the closest wall could be interpreted as thigmotaxis, 

which can itself be a response to stress or anxiety in mice. Finally, events when the animal is oriented 

toward the wall rather than the corner are not straight forward to interpret. Such posture could 

depend on thigmotaxis. 

 

Social behavioural event categories of interest in long term group monitoring 

Selection 
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Figure 28: Dendrogram of the HAC of social BEC measurements, depending on their proportions of 

production by oriented dyads of mice, in each phase of the long term group monitoring experiment. 

The vertical red line marks the Ward distance threshold of 1 chosen for clustering. Horizontal red lines 

separate the BEC clusters. Blue rectangles highlight the BEC measurement chosen as representative 

of each cluster. Grey rectangles highlight the clusters for which we didn’t choose any representative 

measurements. Signs after the BEC names show in which phase of experiment we measured emission 

proportions. “n1”, “n2” and “n3” stands respectively for first, second and third nights. 

 

On the basis of the HAC we clustered BEC time proportions in the long-term group monitoring 

experiment in 17 clusters. We selected, in 14 of them, one category to represent the cluster (figure 

28 in blue). In the 3 other ones (figure 28 in grey), all BEC only described the behaviour of the receiver 

and we did not include such categories in the profile. We thus described the behaviour of oriented 

dyads in this experiment by a profile of 14 measurements. 
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Interpretation 

All social behavioural events selected here should reflect the level of social interest. Such traits are 

thus of high interest in the context of autism spectrum disorder model. We will consider three 

different aspects of social interest: 

- social proximity expressed by contact events; 

- social orientation that we can interpret from facing and sharing orientation behaviours; 

- social motion showed when the emitter gets closer to the receiver or event during which the 

two animals body parts move in the same direction. 

If studied on successive nights, we can say that such trait evolution could reflect the evolution of the 

social organisation inside the group.  
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Collaborative Cross strain behavioural profiles 

The behavioral profiles of the collaborative cross strains are then obtained by comparing the 

proportions of time spent producing each previously selected BEC between this CC line and the 

C57BL/6J. These profiles are therefore based on the data from the first cohort only. They are 

represented by figures 29, 31 and 33 for males and 30, 32 and 34 for females. 

 

Behavioural profile in single object exploration experiment 

We compared the behaviour in single object exploration of the 12 CC to C57BL/6J mice on the basis 

of 19 BEC measurements. We compared all means by performing Mann-Whitney non-parametric 

tests which were adapted to non-Gaussian and non-homoscedastic populations. In order to avoid the 

family-wise type 1 error-rate inflation with the extension of this screening we chose to correct all tests 

here led through Bonferroni method for 228 tests. 
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Figure 29: Behavioural profile of CC strain males in single object exploration, barplot of the logarithm 

of the ratio of time proportions of BEC production between CC and C57BL/6J male mice. Each bar 

gives the logarithm of the ratio (CC / C57BL/6J) in proportion of production of one BEC in one phase 

of an experiment. Black error bars display the confidence interval of CC strains means around the 

ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 228 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “nh” and 

“wh” stands respectively for first and second phases of the single object exploration.  
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During the single object exploration, before the addition of the house, CC001 males spent less time 

moving forward, being extended and being oriented toward the closest wall (respective P-values = 

2.04e-03 ; 5.84e-04 ; 2.8e-02), and more time moving backward (P-value = 1.96e-02), than C57Bl/6J 

males. 

This suggests that CC001 males demonstrate less locomotor activity, exploration and thigmotaxis than 

C57BL/6J males. 

 

Before the addition of the house, CC002 males spent less time moving forward and being oriented 

toward the closest wall (respective P-values = 9.49e-04 ; 9.49e-04), and more time moving backward 

(P-value = 4.27e-02), than C57BL/6J males. Once we added the house, CC002 males spent less time 

moving forward, rotating in acceleration, being in the near wall area and being close to or in the house 

(respective P-values = 9.49e-04 ; 1.9e-03 ; 1.9e-03 ; 9.49e-04), than C57Bl/6J males. 

This suggests that CC002 males demonstrate less locomotor activity, exploration and thigmotaxis and 

more neophobia than C57BL/6J males. 

 

Before the addition of the house, CC012 males spent less time moving forward, rotating in 

acceleration and being oriented toward the closest wall (respective P-values = 2.04e-03 ; 1.17e-03 ; 

2.8e-02), and more time moving backward (P-value = 1.96e-02), than C57BL/6J males. Once we added 

the house, CC012 males spent less time being extended (P-value = 2.57e-02), than C57BL/6J males. 

This suggests that CC012 males demonstrate less locomotor activity, exploration, thigmotaxis and 

interest toward the house than C57BL/6J males. 
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Before the addition of the house, CC018 males spent less time agitating the bedding, digging and 

being oriented toward the closest wall (respective P-values = 2.92e-04; 1.62e-02 ; 1.31e-02), and 

more time moving backward (P-value = 2.8e-02), than C57BL/6J males. Once we added the house, 

CC018 males spent less time being close to or in the house (P-value = 1.31e-02), than C57BL/6J males. 

This suggests that CC018 males demonstrate less exploration, potentially stereotyped behaviours and 

thigmotaxis and more neophobia than C57BL/6J males. 

 

Before the addition of the house, CC024 males spent less time moving forward, being extended, being 

reared and moving without agitating the bedding (respective P-values = 2.92e-04; 2.92e-04 ; 5.84e-

04 ; 2.92e-04), and more time moving backward and rotating in acceleration (respective P-values = 

5.55e-03 ; 8.76e-03), than C57BL/6J males. Once we added the house, CC024 males spent less time 

moving forward and being extended (respective P-values = 2.92e-04 ; 1.61e-02), than C57BL/6J males. 

This suggests that CC024 males demonstrate less locomotor activity, exploration, thigmotaxis and 

interest toward the house and more neophobia than C57BL/6J males. 

 

Before the addition of the house, CC037 males spent less time moving without agitating the bedding 

(P-value = 3.97e-02), than C57BL/6J males. Once we added the house, CC037 males spent more time 

rotating in acceleration (P-value = 5.84e-04), than C57BL/6J males. 

This suggests that CC037 males demonstrate less exploration and neophobia than C57BL/6J males. 
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Before the addition of the house, CC040 males spent less time putting the movement of their tail out 

of their axis and moving without agitating the bedding (respective P-values = 3.5e-03; 1.61e-02), and 

more time digging (P-value = 1.62e-02), than C57BL/6J males. Once we added the house, CC040 males 

spent less time having a stable house related orientation (P-value = 3.97e-02), than C57BL/6J males. 

This suggests that CC040 males demonstrate less exploration, potentially stereotyped behaviours and 

interest toward the house than C57BL/6J males. 

 

Before the addition of the house, CC041 males spent less time moving forward and rotating in 

acceleration (respective P-values = 3.97e-02; 2.8e-02), and more time moving backward (P-value = 

1.96e-02), than C57Bl/6J males. 

This suggests that CC041 males demonstrate less locomotor activity and exploration than C57BL/6J 

males. 

 

Before the addition of the house, CC042 males spent more time moving backward and rotating in 

acceleration (respective P-values = 1.96e-02; 2.04e-03), than C57BL/6J males. Once we added the 

house, CC042 males spent less time being close to or in the house and having a stable house related 

orientation (respective P-values = 1.17e-03; 8.76e-03), than C57Bl/6J males. 

This suggests that CC042 males demonstrated more locomotor activity, exploration and neophobia 

and less interest toward the house than C57BL/6J males. 
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Before the addition of the house, CC051 males spent less time moving forward, being reared and 

moving without agitating the bedding (respective P-values = 2.92e-04 ; 2.92e-04 ; 2.92e-04), and 

more time moving backward and being in the near wall area (respective P-values = 8.76e-03 ; 2.92e-

04), than C57BL/6J males. Once we added the house, CC051 males spent less time moving forward 

and being close to or in the house (respective P-values = 1.96e-02 ; 1.17e-03), than C57BL/6J males. 

This suggests that CC051 males demonstrate less locomotor activity and exploration and more 

thigmotaxis and neophobia than C57BL/6J males. 

 

Before the addition of the house, CC059 males spent less time moving forward and being oriented 

toward the closest wall (respective P-values = 8.76e-03 ; 8.76e-03), and more time moving backward 

(P-value = 1.96e-02), than C57BL/6J males. Once we added the house, CC059 males spent less time 

being close to or in the house (P-value = 1.17e-03), than C57BL/6J males. 

This suggests that CC059 males demonstrate less locomotor activity, exploration and thigmotaxis and 

more neophobia than C57BL/6J males. 

 

Before the addition of the house, CC061 males spent less time putting the movement of their tail out 

of their axis, being extended, being reared and being oriented toward the closest wall (respective P-

values = 1.17e-03 ; 1.96e-02 ; 2.92e-04 ; 2.92e-04), than C57Bl/6J males. Once we added the house, 

CC061 males spent less time being extended (P-value = 1.61e-02), than C57BL/6J males. 

This suggests that CC061 males demonstrate less exploration, thigmotaxis and interest toward the 

house than C57BL/6J males. 
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Figure 30: Behavioural profile of CC strain females in single object exploration, barplot of the 

logarithm of the ratio of time proportions of BEC production between CC and C57BL/6J female mice. 

Each bar gives the logarithm of the ratio (CC / C57BLl/6J) in proportion of production of one BEC in 

one phase of an experiment. Black error bars display the confidence interval of CC strains means 

around the ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 228 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “nh” and 

“wh” stands respectively for first and second phases of the single object exploration.  
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During the single object exploration, before the addition of the house, CC001 females spent less time 

moving forward and being extended (respective P-values = 4.15e-02 ; 1.18e-02), than C57BL/6J 

females. 

This suggests that CC001 females demonstrate less locomotor activity and exploration than C57BL/6J 

females. 

 

Before the addition of the house, CC002 females spent less time moving forward, rotating in 

acceleration, moving without agitating the bedding, agitating the bedding, digging and being oriented 

toward the closest wall (respective P-values = 3e-05 ; 2.92e-03 ; 1.8e-04 ; 1e-03 ; 7.33e-03 ; 1.78e-

02), and more time moving backward (P-value = 4.08e-03), than C57BL/6J females. Once we added 

the house, CC002 females spent less time moving forward (P-value = 3e-05), than C57BL/6J females. 

This suggests that CC002 females demonstrate less locomotor activity, exploration, potentially 

stereotyped behaviours and thigmotaxis and more neophobia than C57BL/6J females. 

 

Before the addition of the house, CC012 females spent less time moving forward, rotating in 

acceleration, being reared, moving without agitating the bedding and digging (respective P-values = 

2.08e-03 ; 2.61e-03 ; 1.45e-03 ; 4.5e-04 ; 2.92e-03), and more time having the anterior part at stable 

speed (P-value = 5.4e-03), than C57BL/6J females. Once we added the house, CC012 females spent 

less time moving forward and being extended (respective P-values = 6.75e-04 ; 6e-05), than C57BL/6J 

females. 

This suggests that CC012 females demonstrate less locomotor activity, exploration, potentially 

stereotyped behaviours and interest toward the house and more neophobia than C57BL/6J females. 
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The behaviours of CC018 females were not significantly different from the behaviour of C57BL/6J 

females before we added the house. Once we added the house, CC018 females spent less time being 

extended, being in the near wall area and being close to or in the house (respective P-values = 1.86e-

02 ; 1.18e-02 ; 1.18e-02), than C57BL/6J females. 

This suggests that CC018 females demonstrate less interest for the house and more neophobia than 

C57BL/6J females. 

 

Before the addition of the house, CC024 females spent less time moving forward, being extended, 

being reared and moving without agitating the bedding (respective P-values = 6.2e-04 ; 2.48e-03 ; 

2.48e-03 ; 6.2e-04), and more time moving backward and having the anterior part at stable speed 

(respective P-values = 4.15e-02 ; 2.29e-02), than C57BL/6J females. Once we added the house, CC024 

females spent less time moving forward and being extended (respective P-values = 6.2e-04 ; 1.86e-

02), than C57BL/6J females. 

This suggests that CC024 females demonstrate less locomotor activity, exploration and interest 

toward the house and more neophobia than C57BL/6J females. 

 

Before the addition of the house, CC037 females spent less time moving without agitating the bedding 

(P-value = 2.48e-03), than C57BL/6J females. The behaviours of CC037 females were not significantly 

different from the behaviour of C57BL/6J females once we added the house. 

This suggests that CC037 females demonstrate less exploration than C57BL/6J females. 
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During the single object exploration, CC040 females did not spent significantly different proportions 

of time producing any behavioural event category, compared to C57BL/6J females. 

This suggests that CC040 females demonstrate behavioural traits close to the ones of C57BL/6J 

females. 

 

Before the addition of the house, CC041 females spent less time moving forward, rotating in 

acceleration, being reared and moving without agitating the bedding (respective P-values = 7.44e-03 ; 

1.18e-02 ; 7.44e-03 ; 2.29e-02), than C57BL/6J females. Once we added the house, CC041 females 

spent less time being close to or in the house (P-value = 2.79e-02), than C57BL/6J females. 

This suggests that CC041 females demonstrate less locomotor activity and exploration and more 

neophobia than C57BL/6J females. 

 

Before the addition of the house, CC042 females spent more time rotating in acceleration (P-value = 

1.3e-02), than C57BL/6J females. The behaviours of CC042 females were not significantly different 

from the behaviour of C57BL/6J females once we added the house. 

This suggests that CC042 females demonstrated more locomotor activity and exploration than 

C57BL/6J females. 

 

Before the addition of the house, CC051 females spent less time being reared and agitating the 

bedding (respective P-values = 1.24e-03 ; 6.2e-04), than C57BL/6J females. Once we added the house, 

CC051 females spent less time moving forward and being close to or in the house (respective P-values 

= 2.48e-03 ; 7.44e-03), than C57BL/6J females. 

This suggests that CC051 females demonstrate less locomotor activity and exploration and more 

neophobia than C57BL/6J females.  
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Before the addition of the house, CC059 females spent less time moving forward (P-value = 4.15e-02), 

than C57BL/6J females. Once we added the house, CC059 females spent less time moving forward (P-

value = 4.15e-02), than C57BL/6J females. 

This suggests that CC059 females demonstrate less locomotor activity, exploration and more 

neophobia than C57BL/6J females. 

 

Before the addition of the house, CC061 females spent less time being reared (P-value = 6.2e-04), 

than C57BL/6J females. Once we added the house, CC061 females spent less time being extended (P-

value = 2.94e-02), than C57BL/6J females. 

This suggests that CC061 females demonstrate less exploration and interest toward the house than 

C57BL/6J females. 

 

Solitary behavioural profile in long term group monitoring experiment 

We compared the solitary behaviour in long term group monitoring of the 12 CC strains to C57BL/6J 

mice on the basis of 18 BEC measurements. We compared all means by performing Mann-Whitney 

non-parametric tests. These tests were adapted to non-gaussian and non-homoscedastic populations. 

In order to avoid the family-wise type 1 error-rate inflation with the extension of this screening we 

chose to correct all tests here led through Bonferroni method for 216 tests.  
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Figure 31: Solitary behavioural profile of CC strain males in long term group monitoring, barplot of 

the logarithm of the ratio of time proportions of BEC production between CC and C57BL/6J male mice. 

Each bar gives the logarithm of the ratio (CC / C57BL/6J) in proportion of production of one BEC in one 

phase of an experiment. Black error bars display the confidence interval of CC strains means around 

the ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 216 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “n1”, “n2” 

and “n3” stands respectively for first, second and third nights of the long term group monitoring.  
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During long term group monitoring, on the second night, CC001 males spent less time deviating from 

their past trajectories (P-value = 3.43e-03), and more time putting the movement of their head out 

of their axis, being extended and being in a corner (respective P-values = 1.37e-02 ; 4.12e-02 ; 3.43e-

03), than C57BL/6J males. 

This suggests that CC001 males in social context demonstrate more exploration and thigmotaxis than 

C57BL/6J males. 

 

During long term group monitoring, on the first night, CC002 males spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. On the second night, CC002 males spent less time moving 

forward and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03), and 

more time moving backward, deviating from their past trajectories, putting the movement of their 

head out of their axis and being at a stable altitude (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-

03 ; 3.43e-03), than C57BL/6J males. On the third night, CC002 males spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC002 males in social context demonstrate less locomotor activity, exploration and 

thigmotaxis than C57BL/6J males. 
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During long term group monitoring, on the first night, CC012 males spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. On the second night, CC012 males spent less time moving 

forward, being reared and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 

3.43e-03 ; 3.43e-03), and more time moving backward, deviating from their past trajectories, putting 

the movement of their head out of their axis, having a stable bending, having a stable tail altitude, 

being at a stable altitude and being oriented toward the wall rather than the corner (respective P-

values = 3.43e-03 ; 3.43e-03 ; 1.37e-02 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J 

males. On the third night, CC012 males spent less time moving forward (P-value = 3.43e-03), than 

C57BL/6J males. 

This suggests that CC012 males in social context demonstrate less locomotor activity, exploration and 

thigmotaxis than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC018 males spent less time moving forward, 

agitating the bedding and digging (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more 

time moving backward, deviating from their past trajectories, putting the movement of their head 

out of their axis, having a stable bending and being extended (respective P-values = 3.43e-03 ; 6.86e-

03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J males. On the third night, CC018 males spent less 

time moving forward (P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC018 males in social context demonstrate less locomotor activity, exploration and 

potentially stereotyped behaviours than C57BL/6J males. 
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During long term group monitoring, on the second night, CC024 males spent less time deviating from 

their past trajectories, having a stable bending, being extended, agitating the bedding and digging 

(respective P-values = 2.4e-02 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time moving 

backward and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03), than 

C57BL/6J males. 

This suggests that CC024 males in social context demonstrate less locomotor activity, exploration and 

potentially stereotyped behaviours and more thigmotaxis than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC037 males spent less time having a stable 

tail altitude and being oriented toward the closest wall (respective P-values = 1.37e-02 ; 1.37e-02), 

and more time moving backward, putting the movement of their head out of their axis, agitating the 

bedding, being in a corner and being oriented toward the wall rather than the corner (respective P-

values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 4.12e-02 ; 6.86e-03), than C57BL/6J males. On the third 

night, CC037 males spent less time moving forward (P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC037 males in social context demonstrate first more exploration and thigmotaxis 

and then less locomotor activity on the third day than C57BL/6J males. 
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During long term group monitoring, on the first night, CC040 males spent more time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. On the second night, CC040 males spent less time 

deviating from their past trajectories, having a stable tail altitude and being at a stable altitude 

(respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time moving forward, moving 

backward, having a stable bending, being extended, being reared, digging, being in a corner and being 

oriented toward the wall rather than the corner (respective P-values = 3.43e-03 ; 2.4e-02 ; 3.43e-03 ; 

3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J males. On the third night, CC040 

males spent more time moving forward (P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC040 males in social context demonstrate more locomotor activity, exploration, 

potentially stereotyped behaviours and thigmotaxis than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC041 males spent less time moving forward, 

agitating the bedding and digging (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more 

time moving backward, deviating from their past trajectories, putting the movement of their head 

out of their axis, having a stable bending and being extended (respective P-values = 3.43e-03 ; 3.43e-

03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J males. On the third night, CC041 males spent less 

time moving forward (P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC041 males in social context demonstrate less locomotor activity, exploration and 

potentially stereotyped behaviours than C57BL/6J males. 
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During long term group monitoring, on the first night, CC042 males spent more time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. On the second night, CC042 males spent less time moving 

backward, deviating from their past trajectories, having a stable bending and being at a stable altitude 

(respective P-values = 4.12e-02 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time moving forward, 

putting the movement of their head out of their axis, being reared, agitating the bedding and digging 

(respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J males. On 

the third night, CC042 males spent more time moving forward (P-value = 3.43e-03), than C57BL/6J 

males. 

This suggests that CC042 males in social context demonstrate more locomotor activity, exploration 

and potentially stereotyped behaviours than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC051 males spent less time moving forward, 

putting the movement of their head out of their axis, being reared and agitating the bedding 

(respective P-values = 3.43e-03 ; 1.37e-02 ; 3.43e-03 ; 3.43e-03), and more time moving backward 

and being at a stable altitude (respective P-values = 3.43e-03 ; 3.43e-03), than C57BL/6J males. On 

the third night, CC051 males spent less time moving forward (P-value = 3.43e-03), than C57BL/6J 

males. 

This suggests that CC051 males in social context demonstrate less locomotor activity and exploration 

than C57BL/6J males. 
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During long term group monitoring, on the second night, CC059 males spent less time being oriented 

toward the closest wall (P-value = 3.43e-03), and more time moving backward, being at a stable 

altitude and being oriented toward the wall rather than the corner (respective P-values = 3.43e-03 ; 

3.43e-03 ; 3.43e-03), than C57Bl/6J males. On the third night, CC059 males spent less time moving 

forward (P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC059 males in social context demonstrate less locomotor activity, exploration and 

thigmotaxis than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC061 males spent less time being extended, 

being reared and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03 ; 

3.43e-03), and more time moving backward, putting the movement of their head out of their axis, 

having a stable bending, being at a stable altitude, being in a corner and being oriented toward the 

wall rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-

03 ; 3.43e-03), than C57BL/6J males. On the third night, CC061 males spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J males. 

This suggests that CC061 males in social context demonstrate less locomotor activity and exploration 

and more thigmotaxis than C57BL/6J males. 
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Figure 32: Solitary behavioural profile of CC strain females in long term group monitoring, barplot of 

the logarithm of the ratio of time proportions of BEC production between CC and C57BL/6J female 

mice. Each bar gives the logarithm of the ratio (CC / C57BL/6J) in proportion of production of one BEC 

in one phase of an experiment. Black error bars display the confidence interval of CC strains means 

around the ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 216 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “n1”, “n2” 

and “n3” stands respectively for first, second and third nights of the long term group monitoring.  
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During long term group monitoring, on the first night, CC001 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC001 females spent less time 

moving forward, agitating the bedding and being oriented toward the closest wall (respective P-values 

= 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time moving backward, deviating from their past 

trajectories, being in a corner and being oriented toward the wall rather than the corner (respective 

P-values = 3.43e-03 ; 3.43e-03 ; 1.37e-02 ; 3.43e-03), than C57BL/6J females. 

This suggests that CC001 females in social context demonstrate less locomotor activity and 

exploration and more thigmotaxis than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC002 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC002 females spent less time 

moving forward, being reared, agitating the bedding, digging and being oriented toward the closest 

wall (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time 

moving backward, deviating from their past trajectories and having a stable tail altitude (respective 

P-values = 3.43e-03 ; 3.43e-03 ; 1.37e-02), than C57BL/6J females. On the third night, CC002 females 

spent less time moving forward (P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC002 females in social context demonstrate less locomotor activity, exploration, 

potentially stereotypic behaviours and thigmotaxis than C57BL/6J females. 
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During long term group monitoring, on the first night, CC012 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC012 females spent less time 

moving forward, being extended, being reared, agitating the bedding, digging and being oriented 

toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 

3.43e-03), and more time moving backward, deviating from their past trajectories and being at a 

stable altitude (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J females. On the 

third night, CC012 females spent less time moving forward (P-value = 3.43e-03), than C57BL/6J 

females. 

This suggests that CC012 females in social context demonstrate less locomotor activity, exploration 

and thigmotaxis than C57BL/6J females. 

 

During long term group monitoring, on the second night, CC018 females spent less time agitating the 

bedding and digging (respective P-values = 3.43e-03 ; 3.43e-03), and more time being extended, 

having a stable tail altitude and being oriented toward the wall rather than the corner (respective P-

values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J females. 

This suggests that CC018 females in social context demonstrate less locomotor activity, exploration 

and potentially stereotyped behaviours than C57BL/6J females. 

 

During long term group monitoring, on the second night, CC024 females spent less time deviating 

from their past trajectories, being extended, agitating the bedding, digging and being oriented toward 

the wall rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 

3.43e-03), and more time moving backward (P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC024 females in social context demonstrate less locomotor activity, exploration 

and potentially stereotyped behaviours than C57BL/6J females.  
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During long term group monitoring, on the second night, CC037 females spent less time being 

oriented toward the closest wall (P-value = 3.43e-03), and more time moving backward, agitating the 

bedding and being oriented toward the wall rather than the corner (respective P-values = 3.43e-03 ; 

3.43e-03 ; 4.12e-02), than C57BL/6J females. On the third night, CC037 females spent less time 

moving forward (P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC037 females in social context demonstrate less thigmotaxis and less locomotor 

activity on the third day than C57BL/6J females. 

 

During long term group monitoring, on the second night, CC040 females spent less time moving 

forward and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03), and 

more time moving backward, being extended, being in a corner and being oriented toward the wall 

rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), than 

C57BL/6J females. 

This suggests that CC040 females in social context demonstrate less locomotor activity, exploration 

and more thigmotaxis than C57BL/6J females. 
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During long term group monitoring, on the first night, CC041 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC041 females spent less time 

moving forward, being reared, agitating the bedding, digging and being oriented toward the closest 

wall (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time 

moving backward, deviating from their past trajectories, being extended, being at a stable altitude 

and being oriented toward the wall rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 

3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J females. On the third night, CC041 females spent less 

time moving forward (P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC041 females in social context demonstrate less locomotor activity, exploration, 

potentially stereotyped behaviours and thigmotaxis than C57BL/6J females. 

 

During long term group monitoring, on the second night, CC042 females spent less time deviating 

from their past trajectories, digging and being oriented toward the closest wall (respective P-values = 

3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time being extended and being oriented toward the wall 

rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03), than C57BL/6J females. 

This suggests that CC042 females in social context demonstrate less locomotor activity, exploration, 

potentially stereotyped behaviours and thigmotaxis than C57BL/6J females. 
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During long term group monitoring, on the first night, CC051 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC051 females spent less time 

moving forward, being reared, agitating the bedding and being oriented toward the closest wall 

(respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03 ; 3.43e-03), and more time moving backward, 

having a stable tail altitude and being at a stable altitude (respective P-values = 3.43e-03 ; 3.43e-03 ; 

3.43e-03), than C57BL/6J females. On the third night, CC051 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC051 females in social context demonstrate less locomotor activity, exploration 

and thigmotaxis than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC059 females spent less time moving forward 

(P-value = 3.43e-03), than C57BL/6J females. On the second night, CC059 females spent less time 

moving forward and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-

03), and more time moving backward, deviating from their past trajectories, being at a stable altitude 

and being oriented toward the wall rather than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 

3.43e-03 ; 4.12e-02), than C57BL/6J females. On the third night, CC059 females spent less time 

moving forward (P-value = 3.43e-03), than C57BL/6J females. 

This suggests that CC059 females in social context demonstrate less locomotor activity, exploration 

and thigmotaxis than C57BL/6J females. 
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During long term group monitoring, on the second night, CC061 females spent less time agitating the 

bedding and being oriented toward the closest wall (respective P-values = 3.43e-03 ; 3.43e-03), and 

more time moving backward, being at a stable altitude and being oriented toward the wall rather 

than the corner (respective P-values = 3.43e-03 ; 3.43e-03 ; 3.43e-03), than C57BL/6J females. On the 

third night, CC061 females spent less time moving forward (P-value = 3.43e-03), than C57BL/6J 

females. 

This suggests that CC061 males in social context demonstrate less locomotor activity, exploration and 

thigmotaxis than C57BL/6J males. 

 

Social behavioural profile in long term group monitoring experiment 

We compared the social behaviour in long term group monitoring of the 12 CC strains to C57BL/6J 

mice on the basis of 14 BEC measurements. We compared all means by performing Mann-Whitney 

non-parametric tests which was adapted to some non-gaussian and non-homoscedastic populations. 

In order to avoid the family-wise type 1 error-rate inflation with the extension of this screening we 

chose to correct all tests here led through Bonferroni method for 168 tests. 
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Figure 33: Social behavioural profile of CC strain males in long term group monitoring, barplot of the 

logarithm of the ratio of time proportions of BEC production between CC and C57BL/6J male mice. 

Each bar gives the logarithm of the ratio (CC / C57Bl/6J) in proportion of production of one BEC in one 

phase of an experiment. Black error bars display the confidence interval of CC strains means around 

the ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 216 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “n1”, “n2” 

and “n3” stands respectively for first, second and third nights of the long term group monitoring.  
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During long term group monitoring, on the first night, CC001 males spent less time facing a 

conspecific (P-value = 4.14e-06), than C57BL/6J males. On the third night, CC001 males spent less 

time being in contact with a conspecific and facing a conspecific (respective P-values = 6.37e-12 ; 

1.58e-07), than C57BL/6J males. 

This suggests that CC001 males demonstrate less social interest in term of proximity and motion than 

C57BL/6J males. 

 

During long term group monitoring, on the first night, CC002 males spent less time facing a 

conspecific (P-value = 1.74e-07), and more time being in contact with a conspecific (P-value = 4.48e-

05), than C57BL/6J males. On the second night, CC002 males spent less time getting closer to a 

conspecific and moving their anterior parts in the same direction than a conspecific anterior part 

(respective P-values = 1.32e-08 ; 8.27e-03), than C57BL/6J males. On the third night, CC002 males 

spent less time facing a conspecific (P-value = 4.05e-04), and more time being in contact with a 

conspecific (P-value = 5.38e-05), than C57BL/6J males. 

This suggests that CC002 males demonstrate more social interest in term of proximity and motion but 

less in term of orientation than C57BL/6J males. 
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During long term group monitoring, on the first night, CC012 males spent less time being in contact 

with a conspecific and facing a conspecific (respective P-values = 8.33e-04 ; 3.06e-02), than C57BL/6J 

males. On the second night, CC012 males spent less time getting closer to a conspecific, moving their 

anterior parts in the same direction than a conspecific anterior part and moving their posterior parts 

in the same direction than a conspecific posterior part (respective P-values = 2.77e-08 ; 1.72e-06 ; 

6.38e-03), than C57BL/6J males. On the third night, CC012 males spent less time being in contact with 

a conspecific and moving their anterior parts in the same direction than a conspecific anterior part 

(respective P-values = 1.28e-03 ; 1.34e-03), than C57BL/6J males. 

This suggests that CC012 males demonstrate less social interest in term of proximity, orientation and 

motion than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC018 males spent less time having the 

same orientation than a conspecific, getting closer to a conspecific and moving their anterior parts in 

the same direction than a conspecific anterior part (respective P-values = 6.17e-03 ; 2.15e-06 ; 1.38e-

03), than C57BL/6J males. On the third night, CC018 males spent less time facing a conspecific (P-

value = 3.16e-02), than C57BL/6J males. 

This suggests that CC018 males demonstrate less social interest in term of orientation and motion 

than C57BL/6J males. 
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During long term group monitoring, on the first night, CC024 males spent more time being in contact 

with a conspecific, facing a conspecific, moving their anterior parts in the same direction than a 

conspecific anterior part and moving their anterior parts in the same direction than a conspecific 

posterior part (respective P-values = 9.56e-07 ; 2.86e-03 ; 3.62e-04 ; 4.51e-02), than C57BL/6J males. 

On the second night, CC024 males spent more time getting closer to a conspecific (P-value = 1.88e-

06), than C57BL/6J males. On the third night, CC024 males spent more time being in contact with a 

conspecific and facing a conspecific (respective P-values = 1.38e-08 ; 2.28e-08), than C57BL/6J males. 

This suggests that CC024 males demonstrate more social interest in term of proximity, orientation 

and motion than C57BL/6J males. 

 

During long term group monitoring, on the first night, CC037 males spent less time facing a 

conspecific (P-value = 1.46e-04), than C57BL/6J males. On the second night, CC037 males spent less 

time moving their anterior parts in the same direction than a conspecific anterior part (P-value = 

1.25e-02), than C57BL/6J males. On the third night, CC037 males spent less time moving their anterior 

parts in the same direction than a conspecific anterior part (P-value = 4.31e-07), than C57BL/6J males. 

This suggests that CC037 males demonstrate less social interest in term of orientation and motion 

than C57BL/6J males. 
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During long term group monitoring, on the first night, CC040 males spent less time being in contact 

with a conspecific and facing a conspecific (respective P-values = 1.25e-08 ; 1.1e-06), than C57BL/6J 

males. On the second night, CC040 males spent more time getting closer to a conspecific (P-value = 

1.25e-08), than C57BL/6J males. On the third night, CC040 males spent less time being in contact with 

a conspecific and facing a conspecific (respective P-values = 9.32e-15 ; 6.67e-05), than C57BL/6J 

males. 

This suggests that CC040 males demonstrate more social interest in term of motion but less in term 

of proximity and orientation than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC041 males spent less time having the 

same orientation than a conspecific and getting closer to a conspecific (respective P-values = 2.2e-07 ; 

1.25e-08), than C57BL/6J males. On the third night, CC041 males spent more time facing a conspecific 

(P-value = 4.15e-03), than C57BL/6J males. 

This suggests that CC041 males demonstrate less social interest in term of motion and orientation 

sharing and more in term of orientation toward the conspecific than C57BL/6J males. 

 

During long term group monitoring, on the first night, CC042 males spent more time moving their 

anterior parts in the same direction than a conspecific anterior part and moving their posterior parts 

in the same direction than a conspecific anterior part (respective P-values = 4.87e-04 ; 4.78e-02), than 

C57BL/6J males. On the second night, CC042 males spent more time having the same orientation 

than a conspecific and getting closer to a conspecific (respective P-values = 4.25e-02 ; 1.25e-08), than 

C57BL/6J males. 

This suggests that CC042 males demonstrate more social interest in term of orientation and motion 

than C57BL/6J males.  
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During long term group monitoring, on the first night, CC051 males spent less time being in contact 

with a conspecific (P-value = 5.86e-04), than C57BL/6J males. On the second night, CC051 males spent 

less time getting closer to a conspecific and moving their anterior parts in the same direction than a 

conspecific anterior part (respective P-values = 2.31e-07 ; 1.01e-03), than C57BL/6J males. On the 

third night, CC051 males spent less time being in contact with a conspecific and facing a conspecific 

(respective P-values = 1.64e-02 ; 1.58e-07), than C57BL/6J males. 

This suggests that CC051 males demonstrate less social interest in term of proximity, orientation and 

motion than C57BL/6J males. 

 

During long term group monitoring, on the second night, CC059 males spent less time having the 

same orientation than a conspecific, getting closer to a conspecific and moving their anterior parts in 

the same direction than a conspecific anterior part (respective P-values = 7e-07 ; 2.88e-02 ; 1.83e-

03), than C57BL/6J males. On the third night, CC059 males spent less time facing a conspecific and 

moving their anterior parts in the same direction than a conspecific anterior part (respective P-values 

= 1.42e-05 ; 4.38e-02), than C57BL/6J males. 

This suggests that CC059 males demonstrate less social interest in term of orientation and motion 

than C57BL/6J males. 

 

During long term group monitoring, on the first night, CC061 males spent less time being in contact 

with a conspecific and facing a conspecific (respective P-values = 9.32e-15 ; 2.78e-08), than C57BL/6J 

males. On the third night, CC061 males spent less time being in contact with a conspecific and facing 

a conspecific (respective P-values = 3.07e-08 ; 1.88e-06), than C57BL/6J males. 

This suggests that CC061 males demonstrate less social interest in term of proximity and orientation 

than C57BL/6J males. 
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Figure 34: Social behavioural profile of CC strain females in long term group monitoring, barplot of 

the logarithm of the ratio of time proportions of BEC production between CC and C57BL/6J female 

mice. Each bar gives the logarithm of the ratio (CC / C57BL/6J) in proportion of production of one BEC 

in one phase of an experiment. Black error bars display the confidence interval of CC strains means 

around the ratios.  
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Grey rectangles display the confidence interval of C57BL/6J means around the origin. Stars represent 

the significance of the Mann-Whitney tests comparing strains means on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 216 tests through Bonferroni method. Signs after the 

BEC names show in which phases of the experiments we measured emission proportions. “n1”, “n2” 

and “n3” stands respectively for first, second and third nights of the long term group monitoring.  
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During long term group monitoring, on the first night, CC001 females spent less time facing a 

conspecific (P-value = 9.32e-15), than C57BL/6J females. On the second night, CC001 females spent 

less time getting closer to a conspecific (P-value = 1.25e-08), than C57BL/6J females. On the third 

night, CC001 females spent less time facing a conspecific (P-value = 9.32e-15), than C57BL/6J females. 

This suggests that CC001 females demonstrate less social interest in term of orientation and motion 

than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC002 females spent more time being in 

contact with a conspecific (P-value = 3.64e-06), than C57BL/6J females. On the second night, CC002 

females spent less time getting closer to a conspecific (P-value = 9.18e-07), and more time having the 

same orientation than a conspecific and moving their posterior parts in the same direction than a 

conspecific posterior part (respective P-values = 2.96e-03 ; 2.19e-02), than C57BL/6J females. On the 

third night, CC002 females spent less time facing a conspecific (P-value = 3.11e-04), than C57BL/6J 

females. 

This suggests that CC002 females demonstrate more social interest in term of proximity, orientation 

sharing and synchronized motion and less in term of orientation toward a conspecific and joining 

motion than C57BL/6J females. 
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During long term group monitoring, on the first night, CC012 females spent less time being in contact 

with a conspecific, facing a conspecific and having the same orientation than a conspecific (respective 

P-values = 2.58e-04 ; 2.1e-07 ; 4.01e-03), than C57BL/6J females. On the second night, CC012 females 

spent less time getting closer to a conspecific and moving their anterior parts in the same direction 

than a conspecific anterior part (respective P-values = 1.25e-08 ; 5.97e-03), and more time having the 

same orientation than a conspecific (P-value = 7.5e-03), than C57BL/6J females. On the third night, 

CC012 females spent less time moving their anterior parts in the same direction than a conspecific 

anterior part (P-value = 1.77e-02), than C57BL/6J females. 

This suggests that CC012 females demonstrate less social interest in term of proximity, orientation 

and motion than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC018 females spent less time facing a 

conspecific (P-value = 3.73e-08), and more time being in contact with a conspecific (P-value = 1.25e-

08), than C57BL/6J females. On the second night, CC018 females spent less time getting closer to a 

conspecific (P-value = 1.25e-02), than C57BL/6J females. On the third night, CC018 females spent less 

time facing a conspecific (P-value = 1.07e-05), and more time being in contact with a conspecific (P-

value = 9.32e-15), than C57BL/6J females. 

This suggests that CC0018 females demonstrate more social interest in term of proximity but less in 

term of orientation and motion than C57BL/6J females. 
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During long term group monitoring, on the first night, CC024 females spent more time being in 

contact with a conspecific and facing a conspecific (respective P-values = 9.32e-15 ; 1.86e-14), than 

C57BL/6J females. On the third night, CC024 females spent more time being in contact with a 

conspecific and facing a conspecific (respective P-values = 3.3e-10 ; 9.32e-15), than C57BL/6J females. 

This suggests that CC024 females demonstrate more social interest in term of proximity and 

orientation than C57BL/6J females. 

 

During long term group monitoring, on the second night, CC037 females spent less time getting closer 

to a conspecific (P-value = 1.25e-08), and more time having the same orientation than a conspecific 

(P-value = 6.07e-08), than C57BL/6J females. On the third night, CC037 females spent less time facing 

a conspecific (P-value = 1.61e-05), than C57BL/6J females. 

This suggests that CC037 females demonstrate less social interest in term of orientation toward a 

conspecific and motion and more in term of orientation sharing than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC040 females spent less time being in contact 

with a conspecific and facing a conspecific (respective P-values = 3.73e-08 ; 9.32e-15), than C57BL/6J 

females. On the second night, CC040 females spent less time getting closer to a conspecific (P-value 

= 7.03e-03), than C57BL/6J females. 

This suggests that CC040 females demonstrate less social interest in term of proximity, orientation 

and motion than C57BL/6J females. 
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During long term group monitoring, on the first night, CC041 females spent less time facing a 

conspecific (P-value = 4.54e-08), than C57BL/6J females. On the second night, CC041 females spent 

less time getting closer to a conspecific and moving their anterior parts in the same direction than a 

conspecific anterior part (respective P-values = 1.25e-08 ; 2.4e-02), than C57BL/6J females. On the 

third night, CC041 females spent less time moving their anterior parts in the same direction than a 

conspecific anterior part (P-value = 4.89e-03), than C57BL/6J females. 

This suggests that CC041 females demonstrate less social interest in term of orientation and motion 

than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC042 females spent less time facing a 

conspecific (P-value = 8.53e-12), than C57BL/6J females. On the second night, CC042 females spent 

more time having the same orientation than a conspecific and getting closer to a conspecific 

(respective P-values = 3.11e-05 ; 8.96e-06), than C57BL/6J females. 

This suggests that CC042 females demonstrate less social interest in term of orientation toward a 

conspecific and more in term of orientation sharing than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC051 females spent less time being in contact 

with a conspecific and facing a conspecific (respective P-values = 2.14e-04 ; 9.32e-15), than C57BL/6J 

females. On the second night, CC051 females spent less time getting closer to a conspecific (P-value 

= 1.25e-08), than C57BL/6J females. On the third night, CC051 females spent more time being in 

contact with a conspecific (P-value = 6.6e-05), than C57BL/6J females. 

This suggests that CC051 females demonstrate first less social interest in term of proximity, 

orientation and motion on the two first nights and then more in term of proximity on the third night 

than C57BL/6J females.  



222 

During long term group monitoring, on the first night, CC059 females spent less time facing a 

conspecific (P-value = 6.37e-12), and more time being in contact with a conspecific (P-value = 2.65e-

08), than C57BL/6J females. On the second night, CC059 females spent less time getting closer to a 

conspecific (P-value = 1.25e-08), than C57BL/6J females. On the third night, CC059 females spent less 

time facing a conspecific (P-value = 2.66e-10), than C57BL/6J females. 

This suggests that CC059 females demonstrate less social interest in term of orientation and motion 

and more in term of proximity than C57BL/6J females. 

 

During long term group monitoring, on the first night, CC061 females spent less time facing a 

conspecific (P-value = 1.25e-08), than C57BL/6J females. On the second night, CC061 females spent 

less time getting closer to a conspecific and moving their anterior parts in the same direction than a 

conspecific anterior part (respective P-values = 1.25e-08 ; 1.47e-02), than C57BL/6J females. On the 

third night, CC061 females spent less time facing a conspecific and moving their anterior parts in the 

same direction than a conspecific anterior part (respective P-values = 1.98e-09 ; 9.7e-04), than 

C57BL/6J females. 

This suggests that CC061 females demonstrate less social interest in term of orientation and motion 

than C57BL/6J females. 
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Table 13: Heat-map summary of interpreted trait differences between CC strains and C57BL/6J. 

The blue squares represent traits interpreted as significantly lower than in C57BL/6J, the red squares 

represent traits interpreted as significantly higher than in C57BL/6J, the grey squares represent traits 

interpreted as not significantly different from C57BL/6J.  
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F1 crosses selection 

Table 14: Number of significant proportion differences between the behavioural profiles of CC strains 

and C57BL/6J. 

Strain: CC0... 01 02 12 18 24 37 40 41 42 51 59 61 

Males:             

Behaviour in single object 

exploration 
4 7 5 5 8 2 4 3 4 7 4 3 

Solitary behaviour in long 

term group monitoring 
4 8 12 9 7 8 13 9 11 7 5 10 

Social behaviour in long 

term group monitoring 
3 6 7 4 7 3 5 3 4 5 5 4 

Total in males 11 21 24 18 22 13 22 15 19 19 14 17 

             

Females:             

Behaviour in single object 

exploration 
2 8 8 3 8 1 0 5 1 4 2 2 

Solitary behaviour in long 

term group monitoring 
8 10 11 5 6 5 6 12 5 9 8 6 

Social behaviour in long 

term group monitoring 
3 5 7 5 4 3 3 4 3 4 4 5 

Total in females 13 23 26 13 18 9 9 21 9 17 14 13 

             

Total 24 44 50 31 40 22 31 36 28 36 28 30 
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As past studies found few significant effects of Shank3 haploinsufficiency on C57BL/6J background, 

we chose to first cross it with strains exhibiting a lot of behavioural differences with it. We thus 

selected the strains CC012 and CC002, exhibiting respectively 44 and 50 significant behavioural 

differences, for those F1 crosses (table 14 in red). 

In opposition, we then tried the mutation on a mixed background with a strain exhibiting fewer 

behavioural differences with C57BL/6J. We thus selected the strain CC059, exhibiting 28 significant 

behavioural differences, for this F1 cross. CC059 mice were noticed to be easier to manipulate than 

other strains and therefore potentially less stressed. 

 

F1 crosses behavioural profiles 

The behavioural profiles of the F1 crosses of the second cohort are similar to those of the first cohort 

in the sense that they concern the same selected BEC. However, they differ in that here the 

haploinsufficient mutants of a genetic background are compared to their wild-type littermates of the 

same cross. Such profiles finally describe the behavioural differences caused by the mutation. 

 

Behavioural profile in single object exploration experiment 

We compared the behaviour in single object exploration of the five F1 crosses mice between wild-

types and heterozygous knockout for Shank3 on the basis of 19 BEC measurements. We compared all 

means by performing ANOVA with the genotype of the emitter and its sex as factors and the 

interaction between these factors. In order to avoid the family-wise type 1 error-rate inflation with 

the extension of this screening we corrected all tests of each strain with the Bonferroni method for 

19 tests. 
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Figure 35: Behavioural profile of heterozygous Shank3 knockout in F1 crosses in single object 

exploration, barplot of the logarithm of the ratio of time proportions of BEC production between 

heterozygous and wild-type mice. Each bar gives the logarithm of the ratio (HZ / WT) in proportion of 

production of one BEC in one phase of an experiment. Black error bars display the confidence interval 

of heterozygous mutant means around the ratios. Grey rectangles display the confidence interval of 

wild-type means around the origin. Red ∆ indicates the measurements for which the hypotheses of 
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ANOVA were not respected on the basis of Shapiro’s or Levene's tests. Stars represent the significance 

given by the ANOVA, for genotype effect, on the basis of the P values (*: <0.05 ; **: <0.01 ; ***: 

<0.001), corrected for 19 tests through Bonferroni method. Blue S indicates the measurements for 

which the ANOVA reveals a significant sex effect on the basis of P values <0.05 after Bonferroni 

correction for 19 tests. Signs after the BEC names show in which phases of the experiments we 

measured emission proportions. “nh” and “wh” stands respectively for first and second phases of the 

single object exploration. “WT” and “HZ” stands respectively for wild-types and heterozygous 

knockout for Shank3. 

 

For CC059xC57BL/6J.Shank3, CC012xC57BL/6J.Shank3, C57BL/6JxCC012.Shank3 and 

C57BL/6JxCC002.Shank3 crosses, no time of production of any behavioural event category differed 

significantly between genotypes, in the single object exploration. 

 

In CC002xC57BL/6J.Shank3 cross, the time spent rotating in acceleration before the addition of the 

house was significantly lower for heterozygous mice than for wild-type ones (P-value = 1.99e-02). The 

reduction of such movement BEC is coherent with the hypoactivity observed in homozygous Shank3 

knockout models and thus expected as potential effect of Shank3 haploinsufficiency. 
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Solitary behavioural profile in long term group monitoring experiment 

We compared the solitary behaviour in long term group monitoring of the 5 F1 crosses mice between 

wild-types and heterozygous for Shank3 on the basis of 18 BEC measurements. We compared all 

means by performing ANOVA with the genotype of the emitter, of the sex, of the experimental groups 

and interactions between those factors. It needs to be specified that, for some measurements, the 

gaussianity and homoscedasticity hypothesis were not respected on the basis of Shapiro’s and 

Levene's tests on residuals. We still kept using ANOVA because the test is relatively robust to such 

conditions, and no significant genotype-related differences have been found in tests which did not 

respect these hypotheses. In order to avoid the family-wise type 1 error-rate inflation with the 

extension of this screening we chose to correct all tests of each strain Bonferroni method for 18 tests. 
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Figure 36: Solitary behavioural profile of heterozygous Shank3 knockout in F1 crosses in long term 

group monitoring, barplot of the logarithm of the ratio of time proportions of BEC production 

between heterozygous and wild-type mice. Each bar gives the logarithm of the ratio (HZ / WT) in 

proportion of production of one BEC in one phase of an experiment. Black error bars display the 

confidence interval of heterozygous mutant means around the ratios. Grey rectangles display the 

confidence interval of wild-type means around the origin. Red ∆ indicates the measurements for which 

the hypotheses of ANOVA were not respected on the basis of Shapiro’s or Levene's tests. Stars 
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represent the significance given by the ANOVA, for genotype effect, on the basis of the P values (*: 

<0.05 ; **: <0.01 ; ***: <0.001), corrected for 18 tests through Bonferroni method. Blue S indicates 

the measurements for which the ANOVA reveals a significant sex effect on the basis of P values <0.05 

after Bonferroni correction for 18 tests. Green G indicates the measurements for which the ANOVA 

reveals a significant group effect on the basis of P values <0.05 after Bonferroni correction for 18 tests. 

Signs after the BEC names show in which phases of the experiments we measured emission 

proportions. “n1”, “n2” and “n3” stands respectively for first, second and third nights of the long term 

group monitoring. Signs bellow bars show in which genotype we measured emission times. “WT” and 

“HZ” stands respectively for wild-types and heterozygous knockout for Shank3. 

 

For all crosses, no time of production of any solitary behavioural event category differed significantly 

between genotypes, in any phase of the long term group monitoring. Significant group and sex effects 

have been found for a majority of the time production measurements of solitary behavioural event 

categories, in the long term group monitoring. 
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Social behavioural profile in long term group monitoring experiment 

We compared the social behaviour in long term group monitoring of the 5 F1 crosses between wild-

types and Shank3 heterozygous mice on the basis of 14 BEC measurements. We compared all means 

by performing ANOVA as a function of the genotype of the emitter, the genotype of the receiver, the 

sex of the animals, the experimental group and interactions between these factors. It needs to be 

specified that, for some measurements, the gaussianity and homoscedasticity hypotheses are not 

respected on the basis of Shapiro’s and Levene's tests on residuals. We still kept using ANOVA because 

the test is relatively robust to such conditions. One significant genotype-related difference has been 

found in tests which did not respect these hypotheses. In this case, we checked that the significance 

did not depend on the sex factor, which separated groups with significantly different variances, 

following Levene’s test. In order to avoid the family-wise type 1 error-rate inflation with the extension 

of this screening, we corrected all tests of each strain Bonferroni method for 14 tests. 
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Figure 37: Social behavioural profile of heterozygous Shank3 knockout in F1 crosses in long term group 

monitoring, barplot of the logarithm of the ratio of time proportions of BEC production between 

heterozygous and wild-type mice. Each bar gives the logarithm of the ratio (HZ / WT) in proportion of 

production of one BEC in one phase of an experiment. Black error bars display the confidence interval 

of heterozygous mutant means around the ratios. Grey rectangles display the confidence interval of 



235 

wild-type means around the origin. Red ∆ indicates the measurements for which the hypotheses of 

ANOVA were not respected on the basis of Shapiro’s or Levene's tests. Stars represent the significance 

given by the ANOVA, for genotype effect, on the basis of the P values (*: <0.05 ; **: <0.01 ; ***: 

<0.001), corrected for 14 tests through Bonferroni method. Blue S indicates the measurements for 

which the ANOVA reveals a significant sex effect on the basis of P values <0.05 after Bonferroni 

correction for 14 tests. Green G indicates the measurements for which the ANOVA reveals a significant 

group effect on the basis of P values <0.05 after Bonferroni correction for 14 tests. Signs after the BEC 

names show in which phases of the experiments we measured emission proportions. “n1”, “n2” and 

“n3” stands respectively for first, second and third nights of the long term group monitoring. Signs 

bellow bars show in which genotype we measured emission times. “WT” and “HZ” stands respectively 

for wild-types and heterozygous knockout for Shank3. 

 

For CC059xC57BL/6J.Shank3, CC012xC57BL/6J.Shank3, C57BL/6JxCC012.Shank3 and 

C57BL/6JxCC002.Shank3 crosses, no time of production of any social behavioural event category 

differed significantly between genotypes of the emitter, in the long term group monitoring. 

 

In CC002xC57BL/6J.Shank3 cross, the time spent facing a conspecific on the first night and having the 

same orientation than a conspecific on the second one, were significantly lower for heterozygous 

mice than for wild-type ones (respective P-values = 1.01e-02 ; 6.80e-03). The second difference was 

first proven significant on the basis on an ANOVA which did not respect the homoscedasticity 

hypothesis. Levene’s test here found that the sex factor separated groups with significantly different 

variances. We thus checked in a second time, that the significance did not depend on the sex factor 

by testing through ANOVA without this factor. The P-value for the genetic factor appearing unchanged 

(P-value = 6.80e-03), the confidence in this result is not affected.  
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The reduction of such socially-related orientation BEC is coherent with the lack of social interest 

observed in homozygous Shank3 knockout models and thus expected as potential effect of Shank3 

haploinsufficiency. 

 

No significant receiver’s genotype effect has been found on the production time of any social 

behavioural event category of any cross, in the long term group monitoring. Significant sex and group 

effects have been found for a majority of the production time measurements of social behavioural 

event categories, in the long term group monitoring.  



237 

 

 

 

Discussion  
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Behavioural diversity in mice 

In this work we found a new repertoire for mice behaviour and we phenotyped the behaviour of 

C57BL/6J and 12 CC strains over a representative set of categories from this repertoire. We could 

expect the behaviour to vary between CC strains. We need to remind that we did not lead statistical 

comparisons between CC strains, but only ones between CC strains and C57BL/6J, this last serving as 

a reference. Anyway, the differences in the patterns in which strains differ from this reference one 

inform us indirectly on the behavioural diversity between CC strains. 
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C57BL/6J highly active and social behaviour 

We chose C57BL/6J mice as a reference strain because it is widely used in behavioural biology. The 

fact that such mice are highly active and social makes this strain a good subject for numbers of 

behavioural studies. However, we could suggest that such an active and socially interested genetic 

background potentially could hide Shank3 mutation effect. The hypoactivity and lack of social interest 

could have been compensated in a way by the particular tendencies of this strain. 

 

The first information we can extract from the Collaborative Cross strain comparison confirms that the 

reference strain we used, C57BL/6J, does not have an average behaviour. We found significant 

differences in interpreted traits between C57BL/6J and each of the Collaborative Cross strain. And 

such differences occur generally in the same direction for each strain comparison. The clearest 

C57BL/6J tendencies are high locomotor activity and exploration. Compared to most CC strains, 

C57BL/6J expressed significantly more a lot of the movemes which make the animals change location, 

as moving forward, or orientation, as turning in acceleration, and this in both of our experiments. We 

can also notice the high social interest of C57BL/6J, particularly in term of orientation and motion. 

 

We know the highly active behaviour of C57BL/6 since decades. In 1953 Thompson compared 15 

mouse strains, including C57BL/6 [167]. In the open-field test, C57BL/6 showed the second highest 

exploratory activity. This score was also significantly higher than the one of 9 of those strains (Table 

15). We can note that the three most active strains were then all C57 strains.  
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Table 15: Mean amount of exploratory activity shown by each of fifteen mouse strains, and the P 

values of differences between then, from Thompson in 1953 [167]. 

Thompson measured the exploratory activity score as the number of crossed lines, in 10 minutes, in a 

square arena separated in 36 smaller squares. “*Read, for example, as follows: No. 1, Strain C57BR/a 

has a mean of 459 crosses., significantly greater than Strains Nos. 3 and 4 (p = .05-.01) and Nos. 5 to 

15 (p = .01-.001).” 

 

  



242 

Table 16: Locomotor activity ranks of C57BL/6J between other strains on their in open-field test. 

publication duration sex day C57BL/6J rank / strain number more active strain rate 

Bolivar et al., 2000[168] 5 min 

♀ 

1 1 / 10 0 
2 1 / 10 0 
3 3 / 10 0.22 

♂ 

1 1 / 10 0 
2 4 / 10 0.33 
3 4 / 10 0.33 

Bolivar et al., 2009[169] 15 min ♂ 

1 5 / 14 0.3 
2 6 / 14 0.38 
3 6 / 14 0.38 

O'Leary et al., 2013[170] 5 min 
♀ 1 5 / 14 0.3 

♂ 1 6 / 14 0.38 

Chesler et al., 2013[171] 20 min 
♀ 1 5 / 9 0.5 

♂ 1 4 / 9 0.37 

Delprato et al., 2017[172] 20 min 
♀ 1 9 / 55 0.14 

♂ 1 9 / 55 0.14 

Liu and Gershenfeld, 2003[173] 5 min ♂ 1 3 / 12 0.18 

GMC01 
Kollmus et al., 2020[174] 

20 min 
♀ 1 2 / 8 0.14 

♂ 1 2 / 8 0.14 

Lipkind et al., 2004[175] 30 min ♂ 1 2 / 8 0.14 

de Mooij-van Malsen et al., 
2009[176] 

60 min ♂ 1 1 / 6 0 

Kliethermes et al., 2006[177] 30 min 
♀ 1 4 / 14 0.23 

♂ 1 4 / 14 0.23 

Takahashi et al., 2006[178] 10 min 
♀ 1 1 / 12 0 

♂ 1 2 / 12 0.09 

Geuther et al., 2019[179] 55 min 
♀ 1 24 / 58 0.4 

♂ 1 18 / 58 0.29 

Lad et al., 2010[180] 5 min ♂ 1 1 / 8 0 

Gubner et al., 2010[181] 15 min ♂ 2 6 / 15 0.35 

Moy et al., 2008[182] 10 min ♂ 1 18 / 31 0.56 

Mhyre et al., 2005[183] 45 min ♂ 

1 1 / 15 0 
2 1 / 15 0 
3 2 / 15 0.07 

Keum et al., 2016[184] 5 min ♂ 1 3 / 11 0.2 

Loos et al., 2009[185] 10 min ♂ 1 3 / 12 0.18 

Wiltshire et al., 2015[186] 30 min ♂ 1 23 / 45 0.5 

Schoenrock et al., 2016[187] 10 min ♀ 1 12 / 37 0.3 

Thompson et al., 1953[167] 10 min ♂♀ 1 2 / 15 0.07 

Thomsen et Caine, 2011[188] 180 min 
♀ 1 2 / 15 0.07 

♂ 1 6 / 15 0.35 

Thomsen et al., 2011[189] 180 min 

♀ 1 7 / 15 0.42 

♂ 1 7 / 15 0.42 

♀ 1 6 / 15 0.35 

♂ 1 6 / 15 0.35 

Trullas et Skolnick, 1993[190] 5 min ♂ 1 7 / 10 0.66 

Wahlsten et al., 2003[191] 5 min 
♀ 1 3 / 21 0.1 

♂ 1 7 / 21 0.3 

Wiltshire et al., 2010 
unpublished[192] 

10 min 
♀ 1 15 / 37 0.38 

♂ 1 14 / 37 0.36 
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Benton et al., 2012[193] 10 min ♂ 1 19 / 30 0.62 

total mean of more active strain rate: 0.25 

All publications acquired a measure of locomotor activity in an open-field test or a closely similar 

protocol, estimated through travelled distance or number of lines crossed. The test duration is quite 

variable, from 5 to 180 minutes. For each publication we give the number of strain studied and the 

rank of C57BL/6J between the other strains. We also computed the ratio of other strains which 

exhibited more locomotor activity than C57BL/6J for each study, and the mean across all such ratio. 

We placed the results of Thompson’s study in the table but marked this line in grey, because this study 

concerns C57BL/6 and not C57BL/6J, which was not considered apart in 1953. 

 

Later on, two distinct sub-strains of C57BL/6 mice emerged because of the separation of breeding 

colonies, giving C57BL/6J in the Jackson Laboratories and C57BL/6N at NIH [194]. C57BL/6J locomotor 

activity has been studied in a lot of publications which also concerned other strains. We found 27 

studies in which this measure of locomotor activity has been acquired through open-field tests or 

equivalent protocols. Out of those 27 studies 5 of them found C57BL/6J to be the most active in at 

least one of their measurements. In order to better understand the relatively high locomotor activity 

of C57BL/6J among mouse strains, we got interested in the proportion of other strains which are 

evaluated as more active. For the measurements which give C57BL/6J in first rank this proportion is 

thus of 0. We can note that most of the proportions are between 0 and 0.5 with rare exceptions above 

0.5 and a maximum of 0.66 or 2/3. We can thus say that C57BL/6J is, in most studies, part of the most 

active half of all strains used. If we compute a mean of all such proportions for each measurement 

across the 27 studies, the value obtained, although a bit abstract, is a proportion of 0.25. This indicates 

that we can generally expect 1/4 of other strains studied to be more active than C57BL/6J and 3/4 to 

exhibit less locomotor activity. The fact that, in the literature, a majority of other strains are less active 

than C57BL/6J is consistent with our results suggesting that C57BL/6J exhibit more locomotor activity 

than most of the CC strains we recorded.  
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Table 17: Social behaviour ranks of C57BL/6J males between other strains on different social tests. 

publication duration measured time C57BL/6J rank 

Bolivar et al., 2007 
20 min social interaction with a novel mouse 4/5 

30 min social interaction with former novel mouse 6/7 

Moy et al., 2008 

10 min 
in chamber with a first novel mouse 6/17 

sniffing cage with a first novel mouse 9/17 

10 min 

in chamber with former novel mouse 8/17 

in chamber with a second novel mouse 11/17 

sniffing cage with former novel mouse 9/17 

sniffing cage with a second novel mouse 11/17 

Shin et al., 2016 

10 min in chamber with a first novel mouse 3/11 

10 min 
in chamber with former novel mouse 4/11 

in chamber with a second novel mouse 2/11 

 

In Bolivar et al., the time on social interaction is measured on two successive presentations, 20 then 

30 minutes, of a novel mouse to a test mouse. The two other publications investigated social behaviour 

through the three-chambered test. In this protocol, a first novel mouse is presented to the test mouse 

in a first 10 minutes period, and two mice including the former one and a second novel one in a second 

10 minutes period. We only kept the measured time spent in chambers containing a conspecific or 

sniffing it. For each measurement of each publication we give the rank of C57BL/6J between the other 

strains on the number of strains studied. 
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We can see that the rank of C57BL/6J males on the different social behaviours measured in the 

literature seems to depend mostly on the study they come from. In Bolivar et al., C57BL/6J exhibited 

few social interactions what gave them low ranks from 6/7 to 4/5. In Moy et al., the social interest of 

C57BL/6J in the three-chambered test seems close to the average, giving ranks from 11/17 to 6/17 

with a mean of 9/17, the middle rank. In Shin et al., the time spent by C57BL/6J test mice in the 

chambers occupied by a conspecific are high, with ranks from 4/11 to 2/11. Considering such different 

ranks of C57BL/6J males, in social behaviour studies which have screened multiple strains, it is hard 

to conclude in any tendency for low or high social interest. We need to keep in mind that such 

measure of social interest toward a novel individual are likely to be different than what we would be 

obtained on familiar individuals as in our long-term group monitoring protocol. 

 

C57BL/6J mice have also been compared to other C57BL/6 sub-strains [194]. In open field test, 

C57BL/6J mice travelled a significantly longer distance than C57BL/6N and C57BL/6C mice. In social 

interaction test, C57BL/6J and C57BL/6C showed significantly more contacts than C57BL/6N. This last 

discovery is consistent with our observation of C57BL/6J relatively high social interest. 
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Locomotor activity and exploration in the Collaborative Cross strains 

This particular high locomotor activity and exploration of the reference strain also points out the even 

higher locomotor activity and exploration of CC042. Males and females CC042 spent significantly 

more time turning in acceleration than C57BL/6J during the single object exploration. Males CC042 

spent significantly more time moving forward than C57BL/6J during each night of the long term group 

monitoring. And females CC042 spent more time moving forward than C57BL/6J during each night of 

this experiment, but this difference is not significant. 

 

CC002 and CC012 are the two strains that we selected to cross with C57BL/6J because they expressed 

the highest amount of significant behavioural differences with this reference strain. Among those 

differences we can note the lower locomotor activity and exploration. This is noticeable at the fewer 

frames at which animals exhibited the move forward category in both experiment for each sex. 
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Figure 38: Locomotor activity obtained from 52 CC lines, from Molenhuis et al. in 2018 [153]. “Plots 

are expressed as mean ± SEM, with CC lines ordered along the x-axis by mean per phenotype.” The 

bottom strain names on the original figure are specific to their facilities of origin, we added the 

collaborative cross number of the strains we used in this work in order to make them easier to 

recognize and locate.  
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In 2018, Molenhuis et al. lead an extensive behavioural screening of 53 different CC strains [153]. Our 

findings on CC042 corroborate the relatively long distance this team observed CC042 mice to travel, 

in their kind of open-field experiment. Depending on their measures, this strain is the 10th on 52 with 

the highest locomotor activity (figure 38). It is also the second one on the 12 we used on the basis of 

this same measurements. 

This study also gave CC002 and CC012 the respective 17th and 37th position on 52 in term of locomotor 

activity, what corresponds to the 5th and 9th in the 12 CC strain we used (figure 38). The fact that those 

positions are below the one of CC042 is coherent with our own findings. We could say the same thing 

for the ten strains that both our study and Molenhuis’ one found less active than CC042, what let 

think that our measurements of activity are globally concordant. 

 

We can question the fact that this team observed even more activity in CC061, what did not happen 

in our experiments. The low sample size, 6 males per strain in average, of Molenhuis screening can 

be a cause of the fact that we cannot reproduce the same results. The strain used in this paper are 

not exactly the same as the one we used because they were note totally fixed at this time, this could 

also be a factor preventing the reproduction of the results. We finally need to keep in mind that even 

if the measured traits are expected to be the same, the two experimental contexts in which animal 

are observed and the measurements led on those last are different. 

  



248 

Social behaviour in the Collaborative Cross strains 

The high social interest of the reference strain also points out the even higher social interest of CC024. 

Males CC024 spent significantly more time in contact with their conspecific, facing them and getting 

closer to them, than C57BL/6J males did. Females CC024 spent significantly more time in contact with 

their conspecific and facing them, than C57BL/6J females did. 

 

For the social behaviour, both CC002 and CC012 tend to differ from C57BL/6J, but each in a different 

direction. This is noticeable at the fewer frames at which animals exhibited the move forward category 

in both experiment for each sex. CC002 males and females spent significantly more time in contact 

with other individuals, than C57BL6/J mice did, what can be interpreted as a sign of higher social 

interest. CC012 mice spent significantly less time in contact with their conspecific, facing them and 

getting closer to them, than C57BL/6J mice did. We interpreted such traits as signs of lower social 

interest. 
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Figure 39: Social interaction from 52 CC lines, from Molenhuis et al. in 2018 [153]. “Plots are expressed 

as mean ± SEM, with CC lines ordered along the x-axis by mean per phenotype.” The bottom strain 

names on the original figure are specific to their facilities of origin, we added the collaborative cross 

number of the strains we used in this work in order to make them easier to recognize and locate.  
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Our observation of a high social interest in CC024 mice seems completely opposed to Molenhuis 

findings [153]. Depending on their measures, this strain is the 9th on 52 with the least time spent in 

social interaction (figure 39). It is also the second shorter time on the 12 we used on the basis of this 

same measurements. In the same way, CC002 mice got the 15th shorter time in social interaction on 

52, or 3rd on 12, when in our study we observed it to perform a higher time in contact than C57BL/6J 

which is already highly social. And on the opposite CC012 mice got the 5th longer time in social 

interaction on 52, or 3rd on 12, when in our study we observed it to be poorly socially interested 

(figure 39). 

 

Here we can think that this precise measurement is not comparable to the different measurements 

we led to evaluate social traits. We could even think that our results on social interest in CC mice 

correlate negatively with Molenhuis’ measure of social interaction. This can be due to differences in 

the protocol. In Molenhuis’ social task, the time in social interaction is evaluated on a short period, 

on the first encounter of an unfamiliar individual. In our-long term group monitoring, socially relevant 

behavioural categories are observed on three successive nights, spent in the group with which 

animals are living their everyday life. Our experiment does not include the aspect of social novelty 

that is present in Molenhuis’ experiment. 

 

It is interesting to note that differences in the protocol between Molenhuis’ study and ours seemed 

to impact more the measurement of social interest than the measurement of locomotor activity. We 

can think that social behaviour being more complex than locomotor one, it is more sensible to the 

differences of experimental protocols, and its measurements are thus harder to replicate. Maybe that 

these same complexity and sensibility of social behaviour are conditioning the fact that social 

behaviour is affected by disorders which do not affect much other behavioural traits, as autism 

spectrum disorder.  
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Behavioural impact of Shank3 haploinsufficiency 

We succeeded in observing some behavioural differences related to Shank3 haploinsufficiency, in 

both experiments and thus both on solitary and social behaviours. This was our major goal. All of 

those differences have been observed in the CC002xC57BL/6J.Shank3 cross. All impacts of Shank3 

mutation, described hereafter between wild-type mice and heterozygous knock-out, thus only 

concern the CC002xC57BL/6J.Shank3 cross genetic background. 

 

Effects on solitary activity 

The time spent rotating in acceleration before the addition of the house was significantly lower for 

heterozygous mice than for wild-type ones. This measurement is not comparable to the distance 

travelled in an open-field, which would certainly be more correlated with the time spent moving 

forward. But the shorter time spent turning can be described as an inhibition of a movement BEC and 

be interpreted as a sign of hypoactivity. This is coherent with the hypoactivity observed in 

homozygous Shank3 knockout models [59]. 

 

In neuroscience, turning behaviour of mice and rats has been particularly studied in the context of 

research relative to Parkinson’s disease. Unilateral injections of 6-hydroxydopamine into the striatum 

or substantia nigra are used to destroy the dopaminergic nerve terminals in it. Injected mice show an 

ipsilateral reduction in forebrain dopamine concentrations and exhibit more ipsilateral turning and 

less contralateral turning, they turn preferentially toward the injected side. Such animals serve as 

models of Parkinson’s disease [195], [196].  
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Most psychomotor stimulants as amphetamine, amantadine and caffeine increase the ipsilateral 

turning. But we can induce contralateral turning with the dopamine precursor L-dopa [197], 

dopaminergic agonists as apomorphine or selective dopaminergic D1 agonists as SKF 38393 and D2 

agonists as LY 171555 [198]. “Turning behavior as performed in these experiments is a simple but 

very sensitive index of central dopaminergic receptor stimulation.” [199] 

 

This can be put in perspective with the findings from Ferhat and colleagues which studied gene 

expression in different parts of the brain of mice homozygous knocked out for Shank3 (Shank3Δ11/Δ11). 

They found that the striatum is the structure showing the maximum of significantly differentially 

expressed genes between Shank3Δ11/Δ11 and Shank3+/+ mice. In Shank3Δ11/Δ11 mice, under-expressed 

genes were enriched in genes expressing dopamine 1 receptor (D1-SPN) and over-expressed genes 

were enriched in genes expressing dopamine 2 receptor (D2-MSN) (unpublished). 

 

In other respects, Peça et al. [52] recorded cortico-striatal synaptic circuitry in acute brain slices of 6–

7-week-old animals. They found that Shank3KO/KO field population spikes were significantly reduced in 

comparison with control animals. As presynaptic function was not altered, this result suggests 

postsynaptic impairments in synaptic function and/or a reduction in the number of functional 

synapses in the striatum. 

 

Altogether, we could hypothesize that an abnormal expression of D1 and D2 receptors relative genes 

in the striatum in Shank3 mutants could lead to an abnormal postsynaptic impairments on 

dopaminergic neurones. Such reduced number of spikes due to the postsynaptic impairments could 

inhibit the turning behaviour mediated by those connections. This would allow to understand why 

Shank3 haploinsufficiency reduces specifically turnings behaviour.  
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Effects on social orientation 

The time spent facing a conspecific on the first night and having the same orientation than a 

conspecific on the second one, were significantly lower for heterozygous mice than for wild-type ones. 

The fact to exhibit less behavioural event categories of socially relevant orientations can be linked to 

the fact that the animals spent less time turning. If the turning behaviour is reduced, the physical 

orientation of the animal’s body is more rarely updated by a rotation. All animals in the group move, 

change location and orientation regularly. Turning behaviour thus -needs to be achieved for an animal 

to orient itself in relation to its conspecific and produce new behaviours of social orientation. 

 

Even if the reduced proportions of socially relevant orientations can be caused by the fact that animals 

turn less, it can, at the same time, be interpreted as a lack of social interest. Such orientation has an 

impact on mouse capacities to perceive other individual visually and through olfaction. Such 

behaviour could lead to the fact that heterozygous mice collect less social cues than wild-type ones. 

 

Socially-relevant orientations were not studied in this form in the past literature, but they are part of 

more complex behavioural sequences as sniffing and following. Many studies using the three-

chambered test did not only evaluate time spent in each chamber but also the time spent sniffing the 

conspecific [200], [182]. This is a proof that, even when measures of social distances do not show an 

effect on social behaviour, we may find some by the addition of a criteria of social orientation. 
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Studies observing dyadic pairs in free interaction can also take into account behaviours involving social 

orientation. For example, Peça and colleagues have shown that pairs involving a wild-type mouse and 

one mutated homozygously for Shank3 displayed a lower frequency of nose-to-nose interaction and 

anogenital sniffing, compared to pairs of two wild-type animals [52]. This last finding is coherent with 

what we find, by showing a lack of social interest through reduced socially-relevant orientations from 

Shank3 homozygous mutant. Such reduced production of socially relevant orientations caused by 

Shank3 haploinsufficiency could thus be expected, and it may be implied in less frequent sniffing 

behaviours. 

 

Selection of a shank3 haploinsufficiency model 

We showed by the present results that the mixed background, obtained from a CC002 mother and a 

C57BL/6J father, CC002xC57BL/6J, heterozygously knocked-out for Shank3, exhibit significant 

genotype dependent behavioural differences. In our animal facility, this particular cross offered an 

efficient reproduction, with female starting gestation quickly, generous litters of about ten pups, and 

a good survival rate until weaning. This genetic background is thus the one we would advise to use in 

order to study Shank3 haploinsufficiency related behavioural affections. 

 

Such model should thus be subjected to the usual test procedures for self-grooming, hypoactivity and 

dyadic social interaction. Such tests would allow to compare it with other pre-existing models of 

Autism spectrum disorder, in particular Shank3 mutant ones. We could also introduce other Shank3 

mutations on this mixed genetic background. If more effects on the behaviour are found on this 

background, differences between different mutations could also be investigated. This would help to 

better understand the role of the different protein isoforms in the behavioural affection of Shank3 

mutations.  
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Limits of the current Shank3 haploinsufficiency study 

This research is explorative, in the sense that it is data oriented and takes into account an important 

number of statistical tests. Due to those numerous tests, Bonferroni corrections for multiple testing 

lower the significance thresholds in high proportions. In this context, the best thing to do to 

counterbalance this loss of statistical power is to increase the sample size. Anyway, the increase in the 

cohort sizes is also an obvious way to increase the reliability of observed differences. It is clear that 

the F1 cohort used here, to discover the effects of Shank3 heterozygous knock-out on the behaviour, 

is understaffed for this purpose. The number of recorded individuals should be increased. This also 

leads to ethical considerations, linked to the reduction of the number of animals used. An effective 

way to statistically compare bigger groups without using too many animals would be to select only 

one strain to study this mutation. After what we preliminary found we would suggest the use of 

CC002xC57BL/6J.Shank3 F1 cross which both reproduced well and gave the biggest amount of 

differences in both solitary and social contexts. 

 

We can think about a potential behavioural convergence effect on behaviour in mouse social groups. 

The behaviour of mice living the same group potentially influences the social behaviour of each group 

member. Therefore, control mice from one mixed-genotype group might not behave in the same way 

as in a group including only control mice. Knowing this we can suggest that the social protocol we 

chose to discriminate between heterozygous and wild-type behaviour is not optimal. Even if the 

mutation causes differences in the behaviour, if both types of animals are present in the same group 

and if groups tends to make the behaviour more uniform between individuals, then the original 

differences can be hidden. We thus propose further experiments grouping only individuals of the 

same genotype. This would allow to observe the mutant and wild-type behaviour separately, without 

any potential of convergence between them.  
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Methodological considerations 

The richness of long experiments 

Long experiments are a major specificity of our data collection protocols. Live Mouse Tracker allows 

a fully automated tracking with regular identity validations. It is thus not limited in tracking duration. 

Long recordings have three principal advantages for behavioural data. First, the accumulation of time 

points of features measurement increases the reliability of the behavioural classification. Bigger 

datasets increase both the quality of the blind source separation obtained through ICA and the 

precision of thresholds extracted by the GMM based clustering on BD distributions. In a second time, 

the more time points we use to compute rates of production of the different BEC, the more reliable 

are those rates. By comparing individuals on the basis of less artificially variant measurements, we 

thus increase our statistical discriminative potential. Finally, we can dissect long recordings in different 

phases in order to separate different effect on the behaviour. For example, with the decreasing 

novelty of the environment we can separate exploration from spontaneous mobility [201]. This can 

also help to understand the evolution of the social relationship with time, which plays a role in the 

definition of hierarchy in groups [202, p. 20]. We here measured BEC proportions at each night of the 

long term group monitoring experiments. Some BEC rates seem highly correlated between nights, 

others evolve between days. In some cases, we thus have an obvious justification for the use of the 

same BEC, to extract different pieces of information, depending on the phase in which we count their 

occurrences. For example, it is without surprise that the proportions of moving forward BEC are 

shown to be partly decorrelated between successive nights (figure 27-28). We are thus motivated to 

think that such variations allow us to evaluate different traits from this unique BEC, as we argued 

earlier: exploration and spontaneous mobility. This is why we compared this BEC proportions 

separately in each night, between strains and finally between genotypes.  
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The discovered repertoire 

This method allowed us to discover wider behavioural repertoires than what has been done in 

previous studies [97], [114], [75], [93]. This means that we are now able to discriminate and evaluate 

new behavioural categories which we could not work with earlier. In the same time, if we do not 

define behavioural event categories of interest, this rich repertoire can be hard to investigate because 

of the wide screening and the subsequent necessary corrections for multiple testing. The here 

discovered behavioural event categories can be interpreted as parts of more complex behavioural 

sequences. If another method than SUCCUBE allows researchers to select a set of behavioural 

sequences, it is then possible to evaluate the enrichment of this set in some specific behavioural event 

extracted from SUCCUBE. Behavioural event enriched in the sequences of interest can be selected as 

behavioural event of interest. 

 

Limits of previous classifiers 

By the past, less behavioural categories were considered. Their selection has first been driven by 

human visual description of the behaviour, which is thus limited by Human perceptive capacities. 

Visual descriptions of solitary behaviour focused on movement leading to a change of location which 

were easier to perceive by the fact that our attention to motion is highly stimulated by those wide 

motions. Visual descriptions of social behaviour focused on contact, and socially relevant changes of 

location. Contact events were easier to recognize by the fact that mice were close to one another and 

therefore can be observed at the same time. And, as for solitary behaviour, the changes of location 

are widely extended in the environment and easy to notice (figure 40).  
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Figure 40: Representation of behavioural events categories automatically labelled by Live Mouse 

Tracker from de Chaumont et al. in 2019 [93]. A list of extracted behaviours, classified into five major 

groups: individual, social dyadic, dyadic dynamic, configuration, and group-making and breaking 

events (dashes indicate that the animals are not moving).  
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Rule-based classifications label categories hard-coded by humans, on the basis of their a priori 

understanding of behaviour. Thus they naturally first focus on location changing movemes and social 

contact postures. We can see for example, that in the behavioural events already labelled by Live 

Mouse Tracker (figure 40), movemes are represented by: 

- jumping behaviour, which is highly stimulating for human perception by the speed, the 

unusual altitude change, and the noise associated. 

- Moving behaviour, which is based on location changes and thus stimulates easily the observer 

because of the spread of localisation in space. 

And social behaviours are represented by: 

- Contact and group postures, which are based on the co-localization, and thus easy to observe 

because all animals implied are visible in the same area. 

- Contact making or breaking, which adds this co-localized posture to moving behaviour 

resulting in its appearance or disappearance and is thus profiting of a synergistic potential of visual 

stimulation on the observer. 

- Trains and following behaviour, which focus on the shared direction of movement, two 

separated objects moving in similar patterns being easily recognized by human perception. 
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Unsupervised behavioural classification relying on a single clustering can also be biased in favour of 

those behaviours which impact location related measurements. Such measurements have a great 

variance and will participate in important proportions to the variance of datasets. 

 

On the opposite, genotype-related alterations of behaviour that we here found are orientation 

changing movements and socially oriented postures. This capacity to cluster behaviours which are 

not the most evident for human senses or in term of variance of measurements is, in our opinion, the 

advantage of a method of unsupervised behavioural classification relying on multiple clustering as 

SUCCUBE. It here seems that this ability to discriminate between co-occurrent behaviours allowed to 

measure the traits altered by Shank3 haploinsufficiency. 
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Main contributions 

The main product of this work is the SUCCUBE algorithm. This new method allows, for the first time, 

the unsupervised discovery of a behavioural repertoire whose categories can co-occur. In addition to 

considerably reducing the inherent biases of supervised classification, this new method allows to 

consider more different aspects of the behaviour and to accurately describe what the animals are 

doing through the simultaneous association of categories. 

 

The application of the SUCCUBE algorithm uncovered a large behavioural repertoire based on the 

diversity of behaviour among 216 individuals from the 13 strains of the first cohort. With 116 BEC for 

the single object exploration experiment and 112 BEC for the long-term group monitoring experiment, 

these repertoires are larger than anything previously described, especially when the combinatorial 

aspect of these behavioural categories is taken into account. 

 

The profiles of the 12 collaborative cross strains we studied are also the most complete descriptions 

of the behaviour of these lines for now. It also provides insight into the relationship between genetic 

diversity and behavioural diversity. This information can be used in the future for the research of new 

mouse models. 

 

Finally, the fact that we found a cross, CC002xC57BL/6J, that shows robust differences in behaviour 

due to a haploinsufficiency in Shank3 is our final result. This strain can now be used as a model for 

preclinical testing. 
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Perspectives 

Validation 

The validation process would consist in the fact to encode, in Live Mouse Tracker behavioural 

repertoire, behavioural event categories inspired by the ones segregated through SUCCUBE. This 

validation would first permit to confirm the effects of Shank3 haploinsufficiency on the behaviour. We 

would look for similar effects on simpler trait measurements, mixing less features and quantified with 

one threshold for each feature. Obtaining similar statistical results would corroborate findings made 

with SUCCUBE’s categories. This should also help to confirm our interpretation of behavioural event 

categories. The construction of such simpler trait measurements would reflect our interpretation of 

SUCCUBE’s categories. Such new measurements will finally be usable to further investigate Shank3 

haploinsufficiency effects on mouse behaviour and potential restoration trial. 

 

Methodological improvements 

In further development SUCCUBE’S algorithm can be modified. New features can be added to 

complement the repertoire. The method can also be adapted to datasets acquired through other 

methods and recording setups, as for example accelerometry. Other dimension reduction techniques 

can be tried as auto-encoder which could allow non-linear feature mixes. 
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Temporal structure analysis 

SUCCUBE also enables further investigations on the nature of behaviour. SUCCUBE here allowed us 

to extract a rich and modular behavioural repertoire from tracking data and to classify time-points in 

its categories. The temporal structure linking the production of those behavioural events can thus 

now be studied. The co-occurrence rates of the different behavioural event categories can serve as 

new measurements to characterize mice. Succession patterns between the categories can be studied 

in similar ways by their proportions. The behavioural descriptors and classifications along time may 

also be analysed through autocorrelation in order to identify potential rhythms of behavioural 

mechanisms. In social context the temporal structure of behaviour can also help to understand the 

reaction of one animal to the behaviour of its relatives. For example, concerning the present work, a 

link could be drawn between the reductions of turning behaviour on one side and socially related 

orientations on the other. Temporal analysis of the behaviour could inform us on their potential co-

occurrences or even to recurrent successions suggesting a causal link. 

 

Further investigations 

Continuation with the Collaborative Cross 

After C57BL/6J, it would be interesting to profile the behaviour of the other founding strains of the 

Collaborative Cross. Two Collaborative Cross strains share an eighth of their genes, and it is the same 

between a founding strain and a collaborative strain, but the genetic distance between two founding 

strains is potentially higher. 
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An increase of the number of profiled CC strains could also be interesting as it may allow the use of 

quantitative trait locus analysis. For example Molenhuis found a locus which has great probabilities 

to be implied in the determination of the amount of route tracing stereotypy exhibited by mice, which 

could be relevant in the context of ASD [153]. This would permit to discover genes implied in different 

aspects of the behavioural variability. This could also help in the identification of modifier genes of 

Shank3 mutant phenotype. Which in last instance would make easier the selection of better models 

for Shank3 haploinsufficiency impact on the behaviour. 

 

Pharmaceutical strategy trials 

Now that we identified a model in which the behaviour is affected by Shank3 haploinsufficiency, both 

in their solitary and social phenotype, CC002xC57BL/6J.Shank3 F1 cross, this one can be used for 

pharmacological trials. It is now possible to compare wild-types and non-treated heterozygotes to 

heterozygotes treated with drugs increasing Shank3 transcription. Lithium could be an interesting 

candidate as it has proven its ability to increase SHANK3 transcription in in vitro human neurons [203]. 

It was shown to rescue some symptoms in human SHANK3 patients with ASD [204]. Lithium also 

rescued some repetitive grooming in Shank3 knockout mice [205] If a drug allows some restoration 

of the phenotype closer to the wild-type one, it would be the first indices in favour of future human 

pharmacological treatment opportunity.  



267 

 

 

 

References  



268 

  



269 

[1] Kanner Leo, ‘Autistic disturbances of affective contact’, pp. 217–250, 1943. 

[2] H. Asperger, ‘Die „Autistischen Psychopathen” im Kindesalter’, Arch. Für Psychiatr. 

Nervenkrankh., vol. 117, no. 1, pp. 76–136, Jun. 1944, doi: 10.1007/BF01837709. 

[3] S. Ozonoff et al., ‘A Prospective Study of the Emergence of Early Behavioral Signs of Autism’, J. 

Am. Acad. Child Adolesc. Psychiatry, vol. 49, no. 3, pp. 256-266.e2, Mar. 2010, doi: 

10.1016/j.jaac.2009.11.009. 

[4] M. B. Lauritsen, ‘Autism spectrum disorders’, Eur. Child Adolesc. Psychiatry, vol. 22, no. 1, pp. 

37–42, Feb. 2013, doi: 10.1007/s00787-012-0359-5. 

[5] ‘DSM-5 - Manuel diagnostique et statistique des troubles mentaux’. https://www.elsevier-

masson.fr/dsm-5-manuel-diagnostique-et-statistique-des-troubles-mentaux-

9782294739293.html (accessed Jul. 24, 2021). 

[6] C. Lord, M. Rutter, and A. Le Couteur, ‘Autism Diagnostic Interview-Revised: A revised version 

of a diagnostic interview for caregivers of individuals with possible pervasive developmental 

disorders’, J. Autism Dev. Disord., vol. 24, no. 5, pp. 659–685, Oct. 1994, doi: 

10.1007/BF02172145. 

[7] C. Lord et al., ‘The Autism Diagnostic Observation Schedule—Generic: A Standard Measure of 

Social and Communication Deficits Associated with the Spectrum of Autism’, J. Autism Dev. 

Disord., vol. 30, no. 3, pp. 205–223, Jun. 2000, doi: 10.1023/A:1005592401947. 

[8] E. Schopler, R. J. Reichler, R. F. DeVellis, and K. Daly, ‘Toward objective classification of childhood 

autism: Childhood Autism Rating Scale (CARS)’, J. Autism Dev. Disord., vol. 10, no. 1, pp. 91–

103, Mar. 1980, doi: 10.1007/BF02408436. 

[9] D. V. M. Bishop, ‘Development of the Children’s Communication Checklist (CCC): A Method for 

Assessing Qualitative Aspects of Communicative Impairment in Children’, J. Child Psychol. 

Psychiatry, vol. 39, no. 6, pp. 879–891, Sep. 1998, doi: 10.1017/S0021963098002832. 



270 

[10] J. N. Constantino, T. Przybeck, D. Friesen, and R. D. Todd, ‘Reciprocal social behavior in children 

with and without pervasive developmental disorders’, J. Dev. Behav. Pediatr., vol. 21, no. 1, pp. 

2–11, 2000, doi: 10.1097/00004703-200002000-00001. 

[11] J. W. Bodfish, F. J. Symons, D. E. Parker, and M. H. Lewis, ‘Varieties of Repetitive Behavior in 

Autism: Comparisons to Mental Retardation’, J. Autism Dev. Disord., vol. 30, no. 3, pp. 237–243, 

Jun. 2000, doi: 10.1023/A:1005596502855. 

[12] C. J. Newschaffer et al., ‘The Epidemiology of Autism Spectrum Disorders’, Annu. Rev. Public 

Health, vol. 28, no. 1, pp. 235–258, 2007, doi: 10.1146/annurev.publhealth.28.021406.144007. 

[13] J. Wilkins and J. L. Matson, ‘A Comparison of Social Skills Profiles in Intellectually Disabled Adults 

With and Without ASD’, Behav. Modif., vol. 33, no. 2, pp. 143–155, Mar. 2009, doi: 

10.1177/0145445508321880. 

[14] H. C. Mefford, M. L. Batshaw, and E. P. Hoffman, ‘Genomics, Intellectual Disability, and Autism’, 

N. Engl. J. Med., vol. 366, no. 8, pp. 733–743, Feb. 2012, doi: 10.1056/NEJMra1114194. 

[15] G. Huguet, E. Ey, and T. Bourgeron, ‘The Genetic Landscapes of Autism Spectrum Disorders’, 

Annu. Rev. Genomics Hum. Genet., vol. 14, Jul. 2013, doi: 10.1146/annurev-genom-091212-

153431. 

[16] S. W. White and R. Roberson-Nay, ‘Anxiety, Social Deficits, and Loneliness in Youth with Autism 

Spectrum Disorders’, J. Autism Dev. Disord., vol. 39, no. 7, pp. 1006–1013, Jul. 2009, doi: 

10.1007/s10803-009-0713-8. 

[17] R. Mansour, A. T. Dovi, D. M. Lane, K. A. Loveland, and D. A. Pearson, ‘ADHD severity as it relates 

to comorbid psychiatric symptomatology in children with Autism Spectrum Disorders (ASD)’, 

Res. Dev. Disabil., vol. 60, pp. 52–64, Jan. 2017, doi: 10.1016/j.ridd.2016.11.009. 



271 

[18] C. R. Martin, R. J. P. Lewin, and D. R. Thompson, ‘A confirmatory factor analysis of the Hospital 

Anxiety and Depression Scale in coronary care patients following acute myocardial infarction’, 

Psychiatry Res., vol. 120, no. 1, pp. 85–94, Aug. 2003, doi: 10.1016/S0165-1781(03)00162-8. 

[19] J. Fayyad et al., ‘Cross-national prevalence and correlates of adult attention-deficit hyperactivity 

disorder’, Br. J. Psychiatry, vol. 190, no. 5, pp. 402–409, May 2007, doi: 

10.1192/bjp.bp.106.034389. 

[20] Committee to Evaluate the Supplemental Security Income Disability Program for Children with 

Mental Disorders, Board on the Health of Select Populations, Board on Children, Youth, and 

Families, Institute of Medicine, Division of Behavioral and Social Sciences and Education, and 

The National Academies of Sciences, Engineering, and Medicine, Mental Disorders and 

Disabilities Among Low-Income Children. Washington (DC): National Academies Press (US), 

2015. Accessed: Jul. 24, 2021. [Online]. Available: 

http://www.ncbi.nlm.nih.gov/books/NBK332882/ 

[21] R. E. Frye et al., ‘Neuropathological Mechanisms of Seizures in Autism Spectrum Disorder’, 

Front. Neurosci., vol. 10, p. 192, 2016, doi: 10.3389/fnins.2016.00192. 

[22] E. Beghi, ‘The Epidemiology of Epilepsy’, Neuroepidemiology, vol. 54, no. 2, pp. 185–191, 2020, 

doi: 10.1159/000503831. 

[23] M. J. Maenner et al., ‘Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years 

— Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016’, 

MMWR Surveill. Summ., vol. 69, no. 4, pp. 1–12, Mar. 2020, doi: 10.15585/mmwr.ss6904a1. 

[24] D. S. Mandell and R. Palmer, ‘Differences Among States in the Identification of Autistic 

Spectrum Disorders’, Arch. Pediatr. Adolesc. Med., vol. 159, no. 3, pp. 266–269, Mar. 2005, doi: 

10.1001/archpedi.159.3.266. 



272 

[25] E. Fombonne, ‘Editorial: The rising prevalence of autism’, J. Child Psychol. Psychiatry, vol. 59, 

no. 7, pp. 717–720, 2018, doi: 10.1111/jcpp.12941. 

[26] K. Lyall et al., ‘The Changing Epidemiology of Autism Spectrum Disorders’, Annu. Rev. Public 

Health, vol. 38, no. 1, pp. 81–102, 2017, doi: 10.1146/annurev-publhealth-031816-044318. 

[27] S. N. Hansen, D. E. Schendel, and E. T. Parner, ‘Explaining the Increase in the Prevalence of 

Autism Spectrum Disorders: The Proportion Attributable to Changes in Reporting Practices’, 

JAMA Pediatr., vol. 169, no. 1, pp. 56–62, Jan. 2015, doi: 10.1001/jamapediatrics.2014.1893. 

[28] S. Lundström, A. Reichenberg, H. Anckarsäter, P. Lichtenstein, and C. Gillberg, ‘Autism 

phenotype versus registered diagnosis in Swedish children: prevalence trends over 10 years in 

general population samples’, BMJ, vol. 350, p. h1961, Apr. 2015, doi: 10.1136/bmj.h1961. 

[29] M. DeFilippis and K. D. Wagner, ‘Treatment of Autism Spectrum Disorder in Children and 

Adolescents’, Psychopharmacol. Bull., vol. 46, no. 2, pp. 18–41, Aug. 2016. 

[30] A. Masi, M. M. DeMayo, N. Glozier, and A. J. Guastella, ‘An Overview of Autism Spectrum 

Disorder, Heterogeneity and Treatment Options’, Neurosci. Bull., vol. 33, no. 2, pp. 183–193, 

Apr. 2017, doi: 10.1007/s12264-017-0100-y. 

[31] S. Folstein and M. Rutter, ‘Infantile Autism: A Genetic Study of 21 Twin Pairs’, J. Child Psychol. 

Psychiatry, vol. 18, no. 4, pp. 297–321, 1977, doi: 10.1111/j.1469-7610.1977.tb00443.x. 

[32] A. Bailey et al., ‘Autism as a strongly genetic disorder: evidence from a British twin study’, 

Psychol. Med., vol. 25, no. 1, pp. 63–77, Jan. 1995, doi: 10.1017/S0033291700028099. 

[33] G. Huguet and T. Bourgeron, ‘Chapter 2 - Genetic Causes of Autism Spectrum Disorders’, in 

Neuronal and Synaptic Dysfunction in Autism Spectrum Disorder and Intellectual Disability, C. 

Sala and C. Verpelli, Eds. San Diego: Academic Press, 2016, pp. 13–24. doi: 10.1016/B978-0-12-

800109-7.00002-9. 



273 

[34] M. B. Ramocki and H. Y. Zoghbi, ‘Failure of neuronal homeostasis results in common 

neuropsychiatric phenotypes’, Nature, vol. 455, no. 7215, pp. 912–918, Oct. 2008, doi: 

10.1038/nature07457. 

[35] R. Toro et al., ‘Key role for gene dosage and synaptic homeostasis in autism spectrum disorders’, 

Trends Genet., vol. 26, no. 8, pp. 363–372, Aug. 2010, doi: 10.1016/j.tig.2010.05.007. 

[36] C. M. Durand et al., ‘Mutations in the gene encoding the synaptic scaffolding protein SHANK3 

are associated with autism spectrum disorders’, Nat. Genet., vol. 39, no. 1, Art. no. 1, Jan. 2007, 

doi: 10.1038/ng1933. 

[37] C. S. Leblond et al., ‘Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A 

Gradient of Severity in Cognitive Impairments’, PLOS Genet., vol. 10, no. 9, p. e1004580, Sep. 

2014, doi: 10.1371/journal.pgen.1004580. 

[38] C. Betancur and J. D. Buxbaum, ‘SHANK3 haploinsufficiency: a “common” but underdiagnosed 

highly penetrant monogenic cause of autism spectrum disorders’, Mol. Autism, vol. 4, no. 1, 

Art. no. 1, Jun. 2013, doi: 10.1186/2040-2392-4-17. 

[39] A. Guilmatre, G. Huguet, R. Delorme, and T. Bourgeron, ‘The emerging role of SHANK genes in 

neuropsychiatric disorders’, Dev. Neurobiol., vol. 74, no. 2, pp. 113–122, 2014, doi: 

10.1002/dneu.22128. 

[40] E. Ey, T. Bourgeron, T. M. Boeckers, E. Kim, and K. Han, ‘Editorial: Shankopathies: Shank Protein 

Deficiency-Induced Synaptic Diseases’, Front. Mol. Neurosci., vol. 13, p. 11, 2020, doi: 

10.3389/fnmol.2020.00011. 

[41] S. De Rubeis et al., ‘Delineation of the genetic and clinical spectrum of Phelan-McDermid 

syndrome caused by SHANK3 point mutations’, Mol. Autism, vol. 9, no. 1, p. 31, Apr. 2018, doi: 

10.1186/s13229-018-0205-9. 



274 

[42] Y. Jiang and M. D. Ehlers, ‘Modeling Autism by SHANK Gene Mutations in Mice’, Neuron, vol. 

78, no. 1, pp. 8–27, Apr. 2013, doi: 10.1016/j.neuron.2013.03.016. 

[43] C. Sala, C. Vicidomini, I. Bigi, A. Mossa, and C. Verpelli, ‘Shank synaptic scaffold proteins: keys 

to understanding the pathogenesis of autism and other synaptic disorders’, J. Neurochem., vol. 

135, no. 5, pp. 849–858, 2015, doi: 10.1111/jnc.13232. 

[44] R. Moessner et al., ‘Contribution of SHANK3 Mutations to Autism Spectrum Disorder’, Am. J. 

Hum. Genet., vol. 81, no. 6, Art. no. 6, Dec. 2007, doi: 10.1086/522590. 

[45] M. K. Baron et al., ‘An architectural framework that may lie at the core of the postsynaptic 

density’, Science, vol. 311, no. 5760, pp. 531–535, Jan. 2006, doi: 10.1126/science.1118995. 

[46] C. E. Hakam, ‘Modèles animaux et pathologies humaines: caractérisation de 3 lignées murines 

ENU présentant des anomalies du système vestibulaire ou locomoteur’, p. 142, 2016. 

[47] A. T. Chinwalla et al., ‘Initial sequencing and comparative analysis of the mouse genome’, 

Nature, vol. 420, no. 6915, pp. 520–563, Dec. 2002. 

[48] S. D. M. Brown, J. M. Hancock, and H. Gates, ‘Understanding Mammalian Genetic Systems: The 

Challenge of Phenotyping in the Mouse’, PLOS Genet., vol. 2, no. 8, p. e118, Aug. 2006, doi: 

10.1371/journal.pgen.0020118. 

[49] J. L. Silverman, M. Yang, C. Lord, and J. N. Crawley, ‘Behavioural phenotyping assays for mouse 

models of autism’, Nat. Rev. Neurosci., vol. 11, no. 7, pp. 490–502, Jul. 2010, doi: 

10.1038/nrn2851. 

[50] A.-T. Ferhat, S. Halbedl, M. J. Schmeisser, M. J. Kas, T. Bourgeron, and E. Ey, ‘Behavioural 

Phenotypes and Neural Circuit Dysfunctions in Mouse Models of Autism Spectrum Disorder’, 

in Translational Anatomy and Cell Biology of Autism Spectrum Disorder, M. J. Schmeisser and T. 

M. Boeckers, Eds. Cham: Springer International Publishing, 2017, pp. 85–101. doi: 

10.1007/978-3-319-52498-6_5. 



275 

[51] J. N. Crawley, ‘Translational animal models of autism and neurodevelopmental disorders’, 

Dialogues Clin. Neurosci., vol. 14, no. 3, pp. 293–305, Sep. 2012. 

[52] J. Peça et al., ‘Shank3 mutant mice display autistic-like behaviours and striatal dysfunction’, 

Nature, vol. 472, no. 7344, Art. no. 7344, Apr. 2011, doi: 10.1038/nature09965. 

[53] O. Bozdagi et al., ‘Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in 

synaptic function, social interaction, and social communication’, Mol. Autism, vol. 1, no. 1, Art. 

no. 1, Dec. 2010, doi: 10.1186/2040-2392-1-15. 

[54] X. Wang et al., ‘Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of 

Shank3’, Hum. Mol. Genet., vol. 20, no. 15, Art. no. 15, Aug. 2011, doi: 10.1093/hmg/ddr212. 

[55] M. J. Schmeisser et al., ‘Autistic-like behaviours and hyperactivity in mice lacking 

ProSAP1/Shank2’, Nature, vol. 486, no. 7402, pp. 256–260, Apr. 2012, doi: 

10.1038/nature11015. 

[56] M. Yang et al., ‘Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes 

in Adolescent Shank3 Null Mutant Mice’, J. Neurosci., vol. 32, no. 19, Art. no. 19, May 2012, doi: 

10.1523/JNEUROSCI.6107-11.2012. 

[57] E. Drapeau, N. P. Dorr, G. A. Elder, and J. D. Buxbaum, ‘Absence of strong strain effects in 

behavioral analyses of Shank3-deficient mice’, Dis. Model. Mech., vol. 7, no. 6, pp. 667–681, 

Jun. 2014, doi: 10.1242/dmm.013821. 

[58] T. C. Jaramillo, H. E. Speed, Z. Xuan, J. M. Reimers, S. Liu, and C. M. Powell, ‘Altered Striatal 

Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of 

Autism’, Autism Res., vol. 9, no. 3, pp. 350–375, 2016, doi: https://doi.org/10.1002/aur.1529. 

[59] P. A. Kabitzke et al., ‘Comprehensive analysis of two Shank3 and the Cacna1c mouse models of 

autism spectrum disorder’, Genes Brain Behav., vol. 17, no. 1, pp. 4–22, 2018, doi: 

https://doi.org/10.1111/gbb.12405. 



276 

[60] X. Wang et al., ‘Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 

complete knockout model of autism’, Nat. Commun., vol. 7, no. 1, p. 11459, May 2016, doi: 

10.1038/ncomms11459. 

[61] A. L. Bey et al., ‘Brain region-specific disruption of Shank3 in mice reveals a dissociation for 

cortical and striatal circuits in autism-related behaviors’, Transl. Psychiatry, vol. 8, no. 1, pp. 1–

17, Apr. 2018, doi: 10.1038/s41398-018-0142-6. 

[62] E. Drapeau, M. Riad, Y. Kajiwara, and J. D. Buxbaum, ‘Behavioral Phenotyping of an Improved 

Mouse Model of Phelan–McDermid Syndrome with a Complete Deletion of the Shank3 Gene’, 

eNeuro, vol. 5, no. 3, Oct. 2018, doi: 10.1523/ENEURO.0046-18.2018. 

[63] J. Lee et al., ‘Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, 

enhanced rearing, and spatial memory deficit’, Front. Cell. Neurosci., vol. 9, p. 94, 2015, doi: 

10.3389/fncel.2015.00094. 

[64] C. Vicidomini et al., ‘Pharmacological enhancement of mGlu5 receptors rescues behavioral 

deficits in SHANK3 knock-out mice’, Mol. Psychiatry, vol. 22, no. 5, pp. 689–702, May 2017, doi: 

10.1038/mp.2016.30. 

[65] L. J. Duffney et al., ‘Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin 

Regulators’, Cell Rep., vol. 11, no. 9, Art. no. 9, Jun. 2015, doi: 10.1016/j.celrep.2015.04.064. 

[66] M. Kouser et al., ‘Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent 

Impairments in Behavior and Synaptic Transmission’, J. Neurosci., vol. 33, no. 47, pp. 18448–

18468, Nov. 2013, doi: 10.1523/JNEUROSCI.3017-13.2013. 

[67] Y. Zhou et al., ‘Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display 

Both Shared and Distinct Defects’, Neuron, vol. 89, no. 1, Art. no. 1, Jan. 2016, doi: 

10.1016/j.neuron.2015.11.023. 



277 

[68] H. E. Speed et al., ‘Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes 

Impaired Synaptic Transmission and Behavioral Deficits’, J. Neurosci., vol. 35, no. 26, pp. 9648–

9665, Jul. 2015, doi: 10.1523/JNEUROSCI.3125-14.2015. 

[69] Y. Mei et al., ‘Adult restoration of Shank3 expression rescues selective autistic-like phenotypes’, 

Nature, vol. 530, no. 7591, Art. no. 7591, Feb. 2016, doi: 10.1038/nature16971. 

[70] T. C. Jaramillo et al., ‘Novel Shank3 mutant exhibits behaviors with face validity for autism and 

altered striatal and hippocampal function’, Autism Res., vol. 10, no. 1, pp. 42–65, 2017, doi: 

https://doi.org/10.1002/aur.1664. 

[71] J. Luo, Q. Feng, L. Wei, and M. Luo, ‘Optogenetic activation of dorsal raphe neurons rescues the 

autistic-like social deficits in Shank3 knockout mice’, Cell Res., vol. 27, no. 7, pp. 950–953, Jul. 

2017, doi: 10.1038/cr.2017.52. 

[72] L. Qin et al., ‘Social deficits in Shank3-deficient mouse models of autism are rescued by histone 

deacetylase (HDAC) inhibition’, Nat. Neurosci., vol. 21, no. 4, pp. 564–575, Apr. 2018, doi: 

10.1038/s41593-018-0110-8. 

[73] M. Bidinosti et al., ‘CLK2 inhibition ameliorates autistic features associated with SHANK3 

deficiency’, Science, vol. 351, no. 6278, pp. 1199–1203, Mar. 2016, doi: 

10.1126/science.aad5487. 

[74] S. E. R. Egnor and K. Branson, ‘Computational Analysis of Behavior’, Annu. Rev. Neurosci., vol. 

39, no. 1, Art. no. 1, 2016, doi: 10.1146/annurev-neuro-070815-013845. 

[75] A. B. Wiltschko et al., ‘Mapping Sub-Second Structure in Mouse Behavior’, Neuron, vol. 88, no. 

6, Art. no. 6, Dec. 2015, doi: 10.1016/j.neuron.2015.11.031. 

[76] G. Lindzey, H. Winston, and M. Manosevitz, ‘Social dominance in inbred mouse strains.’, Subj. 

Strain Bibliogr. 1961, pp. 474–476, Jan. 1961. 



278 

[77] M. Bourin and M. Hascoët, ‘The mouse light/dark box test’, Eur. J. Pharmacol., vol. 463, no. 1, 

Art. no. 1, Feb. 2003, doi: 10.1016/S0014-2999(03)01274-3. 

[78] J. J. Nadler et al., ‘Automated apparatus for quantitation of social approach behaviors in mice’, 

Genes Brain Behav., vol. 3, no. 5, pp. 303–314, 2004, doi: 10.1111/j.1601-183X.2004.00071.x. 

[79] G. Lindzey, M. Manosevitz, and H. Winston, ‘Social dominance in the mouse’, Psychon. Sci., vol. 

5, no. 11, Art. no. 11, Nov. 1966, doi: 10.3758/BF03331044. 

[80] B. L. Pearson, E. B. Defensor, D. C. Blanchard, and R. J. Blanchard, ‘C57BL/6J mice fail to exhibit 

preference for social novelty in the three-chamber apparatus’, Behav. Brain Res., vol. 213, no. 

2, pp. 189–194, Dec. 2010, doi: 10.1016/j.bbr.2010.04.054. 

[81] R. Paylor, ‘Simultaneous behavioral characterizations: Embracing complexity.’, Proc. Natl. Acad. 

Sci. U. S. A., vol. 105, no. 52, Art. no. 52, Dec. 2008, doi: 10.1073/pnas.0811546106. 

[82] D. A. Levitis, W. Z. Lidicker, and G. Freund, ‘Behavioural biologists do not agree on what 

constitutes behaviour’, Anim. Behav., vol. 78, no. 1, Art. no. 1, Jul. 2009, doi: 

10.1016/j.anbehav.2009.03.018. 

[83] R. E. Arrington, ‘Time sampling in studies of social behavior: a critical review of techniques and 

results with research suggestions’, Psychol. Bull., vol. 40, no. 2, Art. no. 2, 1943, doi: 

10.1037/h0053539. 

[84] D. J. Anderson and P. Perona, ‘Toward a Science of Computational Ethology’, Neuron, vol. 84, 

no. 1, Art. no. 1, Oct. 2014, doi: 10.1016/j.neuron.2014.09.005. 

[85] K. S. Button et al., ‘Power failure: why small sample size undermines the reliability of 

neuroscience’, Nat. Rev. Neurosci., vol. 14, no. 5, Art. no. 5, May 2013, doi: 10.1038/nrn3475. 

[86] E. I. Knudsen, G. G. Blasdel, and M. Konishi, ‘Sound localization by the barn owl (Tyto alba) 

measured with the search coil technique’, J. Comp. Physiol., vol. 133, pp. 1–11, Mar. 1979. 



279 

[87] R. Bermejo, D. Houben, and H. P. Zeigler, ‘Dissecting the Conditioned Pecking Response: An 

Integrated System for the Analysis of Pecking Response Parameters’, J. Exp. Anal. Behav., vol. 

61, no. 3, Art. no. 3, 1994, doi: 10.1901/jeab.1994.61-517. 

[88] D. Friedman, A. Haim, and N. Zisapel, ‘Temporal Segregation in Coexisting Spiny Mice (Genus 

Acomys): Role of Photoperiod and Heterospecific Odor’, Physiol. Behav., vol. 62, no. 2, Art. no. 

2, Aug. 1997, doi: 10.1016/S0031-9384(97)00040-1. 

[89] D. O. Elias, A. C. Mason, W. P. Maddison, and R. R. Hoy, ‘Seismic signals in a courting male 

jumping spider (Araneae: Salticidae)’, J. Exp. Biol., vol. 206, no. 22, Art. no. 22, Nov. 2003, doi: 

10.1242/jeb.00634. 

[90] A. J. Spence, S. Revzen, J. Seipel, C. Mullens, and R. J. Full, ‘Insects running on elastic surfaces’, 

J. Exp. Biol., vol. 213, no. 11, Art. no. 11, Jun. 2010, doi: 10.1242/jeb.042515. 

[91] C. S. Mendes, I. Bartos, T. Akay, S. Márka, and R. S. Mann, ‘Correction: Quantification of gait 

parameters in freely walking wild type and sensory deprived Drosophila melanogaster’, eLife, 

vol. 2, p. e00565, Feb. 2013, doi: 10.7554/eLife.00565. 

[92] J. P. Neunuebel, A. L. Taylor, B. J. Arthur, and S. R. Egnor, ‘Female mice ultrasonically interact 

with males during courtship displays’, eLife, vol. 4, Oct. 2019, doi: 10.7554/eLife.06203. 

[93] F. de Chaumont et al., ‘Real-time analysis of the behaviour of groups of mice via a depth-sensing 

camera and machine learning’, Nat. Biomed. Eng., pp. 1–13, May 2019, doi: 10.1038/s41551-

019-0396-1. 

[94] A. Kendon, ‘Some functions of the face in a kissing round’, Semiotica, vol. 15, no. 4, Art. no. 4, 

1975, doi: 10.1515/semi.1975.15.4.299. 

[95] H. Buelthoff, T. Poggio, and C. Wehrhahn, ‘3-D analysis of the flight trajectories of flies 

(Drosophila melanogaster)’, Z. Naturforsch. [C], 1980, Accessed: Oct. 23, 2019. [Online]. 

Available: http://agris.fao.org/agris-search/search.do?recordID=US201302858396 



280 

[96] G. Moran, J. C. Fentress, and I. Golani, ‘A description of relational patterns of movement during 

“ritualized fighting” in wolves’, Anim. Behav., vol. 29, no. 4, Art. no. 4, Nov. 1981, doi: 

10.1016/S0003-3472(81)80067-X. 

[97] F. de Chaumont et al., ‘Computerized video analysis of social interactions in mice’, Nat. Methods, 

vol. 9, no. 4, Art. no. 4, Apr. 2012, doi: 10.1038/nmeth.1924. 

[98] A. J. Spink, R. A. J. Tegelenbosch, M. O. S. Buma, and L. P. J. J. Noldus, ‘The EthoVision video 

tracking system—A tool for behavioral phenotyping of transgenic mice’, Physiol. Behav., vol. 73, 

no. 5, Art. no. 5, Aug. 2001, doi: 10.1016/S0031-9384(01)00530-3. 

[99] L. P. J. J. Noldus, A. J. Spink, and R. A. J. Tegelenbosch, ‘Computerised video tracking, movement 

analysis and behaviour recognition in insects’, Comput. Electron. Agric., vol. 35, no. 2, Art. no. 

2, Aug. 2002, doi: 10.1016/S0168-1699(02)00019-4. 

[100] K. Branson, A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson, ‘High-throughput ethomics 

in large groups of Drosophila’, Nat. Methods, vol. 6, no. 6, Art. no. 6, Jun. 2009, doi: 

10.1038/nmeth.1328. 

[101] N. A. Swierczek, A. C. Giles, C. H. Rankin, and R. A. Kerr, ‘High-throughput behavioral analysis in 

C. elegans’, Nat. Methods, vol. 8, no. 7, Art. no. 7, Jul. 2011, doi: 10.1038/nmeth.1625. 

[102] S. Ohayon, O. Avni, A. L. Taylor, P. Perona, and S. E. Roian Egnor, ‘Automated multi-day tracking 

of marked mice for the analysis of social behaviour’, J. Neurosci. Methods, vol. 219, no. 1, Art. 

no. 1, Sep. 2013, doi: 10.1016/j.jneumeth.2013.05.013. 

[103] A. Pérez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda, and G. G. de Polavieja, ‘idTracker: 

tracking individuals in a group by automatic identification of unmarked animals’, Nat. Methods, 

vol. 11, no. 7, Art. no. 7, Jul. 2014, doi: 10.1038/nmeth.2994. 

[104] Z. Xu and X. E. Cheng, ‘Zebrafish tracking using convolutional neural networks’, Sci. Rep., vol. 7, 

p. 42815, Feb. 2017, doi: 10.1038/srep42815. 



281 

[105] F. Romero-Ferrero, M. G. Bergomi, R. Hinz, F. J. H. Heras, and G. G. de Polavieja, ‘idtracker.ai: 

Tracking all individuals in large collectives of unmarked animals’, ArXiv180304351 Cs, Mar. 2018, 

Accessed: Oct. 23, 2019. [Online]. Available: http://arxiv.org/abs/1803.04351 

[106] J.-R. Martin, ‘A portrait of locomotor behaviour in Drosophila determined by a video-tracking 

paradigm’, Behav. Processes, vol. 67, no. 2, Art. no. 2, Sep. 2004, doi: 

10.1016/j.beproc.2004.04.003. 

[107] H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson, and P. Perona, ‘Automated monitoring and 

analysis of social behavior in Drosophila’, Nat. Methods, vol. 6, no. 4, Art. no. 4, Apr. 2009, doi: 

10.1038/nmeth.1310. 

[108] A. Gomez-Marin, N. Partoune, G. J. Stephens, and M. Louis, ‘Automated tracking of animal 

posture and movement during exploration and sensory orientation behaviors.’, PloS One, vol. 

7, no. 8, Art. no. 8, 2012, doi: 10.1371/journal.pone.0041642. 

[109] A. A. Robie, A. D. Straw, and M. H. Dickinson, ‘Object preference by walking fruit flies, 

Drosophila melanogaster, is mediated by vision and graviperception’, J. Exp. Biol., vol. 213, no. 

14, Art. no. 14, Jul. 2010, doi: 10.1242/jeb.041749. 

[110] H. Jhuang et al., ‘Automated home-cage behavioural phenotyping of mice’, Nat. Commun., vol. 

1, no. 1, Art. no. 1, Sep. 2010, doi: 10.1038/ncomms1064. 

[111] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, ‘Behavior Recognition via Sparse Spatio-

temporal Features’, in Proceedings of the 14th International Conference on Computer 

Communications and Networks, Washington, DC, USA, 2005, pp. 65–72. Accessed: Nov. 22, 

2019. [Online]. Available: http://dl.acm.org/citation.cfm?id=1259587.1259830 

[112] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, ‘Evaluation of local spatio-temporal 

features for action recognition’, Sep. 2009, Accessed: Nov. 22, 2019. [Online]. Available: 

https://hal.inria.fr/inria-00439769 



282 

[113] J. K. Aggarwal and M. S. Ryoo, ‘Human Activity Analysis: A Review’, ACM Comput Surv, vol. 43, 

no. 3, Art. no. 3, Apr. 2011, doi: 10.1145/1922649.1922653. 

[114] M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson, ‘JAABA: interactive machine 

learning for automatic annotation of animal behavior’, Nat. Methods, vol. 10, no. 1, Art. no. 1, 

Jan. 2013, doi: 10.1038/nmeth.2281. 

[115] J. Yamato, J. Ohya, and K. Ishii, ‘Recognizing human action in time-sequential images using 

hidden Markov model’, in Proceedings 1992 IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition, Jun. 1992, pp. 379–385. doi: 10.1109/CVPR.1992.223161. 

[116] X. P. Burgos-Artizzu, P. Dollár, D. Lin, D. J. Anderson, and P. Perona, ‘Social behavior recognition 

in continuous video’, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 

2012, pp. 1322–1329. doi: 10.1109/CVPR.2012.6247817. 

[117] O. Mirat, J. R. Sternberg, K. E. Severi, and C. Wyart, ‘ZebraZoom: an automated program for 

high-throughput behavioral analysis and categorization’, Front. Neural Circuits, vol. 7, 2013, doi: 

10.3389/fncir.2013.00107. 

[118] G. J. Berman, D. M. Choi, W. Bialek, and J. W. Shaevitz, ‘Mapping the stereotyped behaviour of 

freely moving fruit flies’, J. R. Soc. Interface, vol. 11, no. 99, Art. no. 99, Oct. 2014, doi: 

10.1098/rsif.2014.0672. 

[119] L. van der Maaten and G. Hinton, ‘Visualizing Data using t-SNE’, J. Mach. Learn. Res., vol. 9, no. 

Nov, Art. no. Nov, 2008. 

[120] A. E. X. Brown, E. I. Yemini, L. J. Grundy, T. Jucikas, and W. R. Schafer, ‘A dictionary of behavioral 

motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion’, Proc. Natl. Acad. 

Sci., vol. 110, no. 2, Art. no. 2, Jan. 2013, doi: 10.1073/pnas.1211447110. 



283 

[121] U. Klibaite, G. J. Berman, J. Cande, D. L. Stern, and J. W. Shaevitz, ‘An unsupervised method for 

quantifying the behavior of paired animals’, Phys. Biol., vol. 14, no. 1, Art. no. 1, Feb. 2017, doi: 

https://doi.org/10.1088/1478-3975/aa5c50. 

[122] R. F. Schwarz, R. Branicky, L. J. Grundy, W. R. Schafer, and A. E. X. Brown, ‘Changes in Postural 

Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion’, PLOS 

Comput. Biol., vol. 11, no. 8, Art. no. 8, Aug. 2015, doi: 10.1371/journal.pcbi.1004322. 

[123] Hua Zhong, Jianbo Shi, and M. Visontai, ‘Detecting unusual activity in video’, in Proceedings of 

the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. 

CVPR 2004., Jun. 2004, vol. 2, p. II–II. doi: 10.1109/CVPR.2004.1315249. 

[124] J. T. Vogelstein et al., ‘Discovery of Brainwide Neural-Behavioral Maps via Multiscale 

Unsupervised Structure Learning’, Science, vol. 344, no. 6182, Art. no. 6182, Apr. 2014, doi: 

10.1126/science.1250298. 

[125] L. Zelnik-Manor and M. Irani, ‘Event-based analysis of video’, in Proceedings of the 2001 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Dec. 

2001, vol. 2, p. II–II. doi: 10.1109/CVPR.2001.990935. 

[126] E. Braun, B. Geurten, and M. Egelhaaf, ‘Identifying Prototypical Components in Behaviour Using 

Clustering Algorithms’, PLOS ONE, vol. 5, no. 2, Art. no. 2, Feb. 2010, doi: 

10.1371/journal.pone.0009361. 

[127] U. Klibaite and J. W. Shaevitz, ‘Interacting fruit flies synchronize behavior’, bioRxiv, p. 545483, 

Feb. 2019, doi: 10.1101/545483. 

[128] M. Schwager, D. M. Anderson, Z. Butler, and D. Rus, ‘Robust classification of animal tracking 

data’, Comput. Electron. Agric., vol. 56, no. 1, Art. no. 1, Mar. 2007, doi: 

10.1016/j.compag.2007.01.002. 



284 

[129] J. C. Niebles, H. Wang, and L. Fei-Fei, ‘Unsupervised Learning of Human Action Categories Using 

Spatial-Temporal Words’, Int. J. Comput. Vis., vol. 79, no. 3, Art. no. 3, Sep. 2008, doi: 

10.1007/s11263-007-0122-4. 

[130] K. V. Gris, J.-P. Coutu, and D. Gris, ‘Supervised and Unsupervised Learning Technology in the 

Study of Rodent Behavior’, Front. Behav. Neurosci., vol. 11, 2017, doi: 

10.3389/fnbeh.2017.00141. 

[131] S. R. Datta, D. J. Anderson, K. Branson, P. Perona, and A. Leifer, ‘Computational Neuroethology: 

A Call to Action’, Neuron, vol. 104, no. 1, pp. 11–24, Oct. 2019, doi: 

10.1016/j.neuron.2019.09.038. 

[132] E. Müller, S. Günnemann, I. Färber, and T. Seidl, ‘Discovering Multiple Clustering Solutions: 

Grouping Objects in Different Views of the Data’, p. 146. 

[133] Y. Cui, X. Z. Fern, and J. G. Dy, ‘Non-redundant Multi-view Clustering via Orthogonalization’, in 

Seventh IEEE International Conference on Data Mining (ICDM 2007), Oct. 2007, pp. 133–142. 

doi: 10.1109/ICDM.2007.94. 

[134] D. Niu, J. G. Dy, and M. I. Jordan, ‘Multiple Non-Redundant Spectral Clustering Views’, presented 

at the ICML, Jan. 2010. Accessed: May 29, 2020. [Online]. Available: 

https://openreview.net/forum?id=BJV2z3Zu-S 

[135] A. K. Jain, ‘Data Clustering: 50 Years Beyond K-means’, in Machine Learning and Knowledge 

Discovery in Databases, Berlin, Heidelberg, 2008, pp. 3–4. doi: 10.1007/978-3-540-87479-9_3. 

[136] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, ‘Measuring Statistical Dependence with 

Hilbert-Schmidt Norms’, in Algorithmic Learning Theory, Berlin, Heidelberg, 2005, pp. 63–77. 

doi: 10.1007/11564089_7. 



285 

[137] J. J. Valletta, C. Torney, M. Kings, A. Thornton, and J. Madden, ‘Applications of machine learning 

in animal behaviour studies’, Anim. Behav., vol. 124, pp. 203–220, Feb. 2017, doi: 

10.1016/j.anbehav.2016.12.005. 

[138] A. De Moivre, ‘Approximatio ad summam terminorum binomii.’, 1733. 

[139] P. Comon, ‘Independent Component Analysis’, in Higher-Order Statistics, J-L.Lacoume, Ed. 

Elsevier, 1992, pp. 29–38. Accessed: Jun. 19, 2020. [Online]. Available: https://hal.archives-

ouvertes.fr/hal-00346684 

[140] J. C. Fentress and F. P. Stilwell, ‘Grammar of a Movement Sequence in Inbred Mice’, Nature, vol. 

244, pp. 52–53, Jul. 1973, doi: 10.1038/244052a0. 

[141] S. A. Overduin, A. d’Avella, J. M. Carmena, and E. Bizzi, ‘Microstimulation Activates a Handful of 

Muscle Synergies’, Neuron, vol. 76, no. 6, pp. 1071–1077, Dec. 2012, doi: 

10.1016/j.neuron.2012.10.018. 

[142] L. Goncalves, E. Di Bernardo, and P. Perona, ‘Movemes for Modeling Biological Motion 

Perception’, in Seeing, Thinking and Knowing: Meaning and Self-Organisation in Visual 

Cognition and Thought, A. Carsetti, Ed. Dordrecht: Springer Netherlands, 2004, pp. 143–170. 

doi: 10.1007/1-4020-2081-3_7. 

[143] A. Gomez-Marin, J. J. Paton, A. R. Kampff, R. M. Costa, and Z. F. Mainen, ‘Big behavioral data: 

psychology, ethology and the foundations of neuroscience’, Nat. Neurosci., vol. 17, no. 11, Art. 

no. 11, Nov. 2014, doi: 10.1038/nn.3812. 

[144] T. Arbogast et al., ‘Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse 

Models of 16p11.2 Deletion and Duplication Syndromes’, PLoS Genet., vol. 12, p. e1005709, 

Feb. 2016, doi: 10.1371/journal.pgen.1005709. 



286 

[145] G. A. Churchill et al., ‘The Collaborative Cross, a community resource for the genetic analysis 

of complex traits’, Nat. Genet., vol. 36, no. 11, Art. no. 11, Nov. 2004, doi: 10.1038/ng1104-

1133. 

[146] A. Roberts, F. Pardo-Manuel de Villena, W. Wang, L. McMillan, and D. W. Threadgill, ‘The 

polymorphism architecture of mouse genetic resources elucidated using genome-wide 

resequencing data: implications for QTL discovery and systems genetics’, Mamm. Genome, vol. 

18, no. 6, pp. 473–481, Jul. 2007, doi: 10.1007/s00335-007-9045-1. 

[147] J.-J. Panthier and X. Montagutelli, ‘Le Collaborative Cross - Un outil révolutionnaire à l’assaut 

des caractères complexes’, médecine/sciences, vol. 28, no. 1, Art. no. 1, Jan. 2012, doi: 

10.1051/medsci/2012281024. 

[148] C. M. Miles and M. Wayne, ‘Quantitative Trait Locus (QTL) Analysis’, p. 8, 2008. 

[149] D. W. Threadgill and G. A. Churchill, ‘Ten Years of the Collaborative Cross’, G3 

GenesGenomesGenetics, vol. 2, no. 2, pp. 153–156, Feb. 2012, doi: 10.1534/g3.111.001891. 

[150] D. L. Aylor et al., ‘Genetic analysis of complex traits in the emerging Collaborative Cross’, 

Genome Res., vol. 21, no. 8, pp. 1213–1222, Jan. 2011, doi: 10.1101/gr.111310.110. 

[151] E. J. Chesler et al., ‘The Collaborative Cross at Oak Ridge National Laboratory: developing a 

powerful resource for systems genetics’, Mamm. Genome, vol. 19, no. 6, pp. 382–389, Jun. 

2008, doi: 10.1007/s00335-008-9135-8. 

[152] K. W. Broman, ‘The Genomes of Recombinant Inbred Lines’, Genetics, vol. 169, no. 2, pp. 1133–

1146, Feb. 2005, doi: 10.1534/genetics.104.035212. 

[153] R. T. Molenhuis et al., ‘Modeling the quantitative nature of neurodevelopmental disorders 

using Collaborative Cross mice’, Mol. Autism, vol. 9, no. 1, p. 63, Dec. 2018, doi: 

10.1186/s13229-018-0252-2. 



287 

[154] F. Zou et al., ‘Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical 

and empirical considerations’, Genetics, vol. 170, no. 3, pp. 1299–1311, Jul. 2005, doi: 

10.1534/genetics.104.035709. 

[155] W. Sun et al., ‘Transcriptome Atlases of Mouse Brain Reveals Differential Expression Across 

Brain Regions and Genetic Backgrounds’, G3 GenesGenomesGenetics, vol. 2, no. 2, pp. 203–

211, Feb. 2012, doi: 10.1534/g3.111.001602. 

[156] F. de Chaumont et al., ‘Icy: an open bioimage informatics platform for extended reproducible 

research’, Nat. Methods, vol. 9, no. 7, Art. no. 7, Jul. 2012, doi: 10.1038/nmeth.2075. 

[157] T. D. Gould, D. T. Dao, and C. E. Kovacsics, ‘The Open Field Test’, in Mood and Anxiety Related 

Phenotypes in Mice: Characterization Using Behavioral Tests, T. D. Gould, Ed. Totowa, NJ: 

Humana Press, 2009, pp. 1–20. doi: 10.1007/978-1-60761-303-9_1. 

[158] C. J. Heyser and A. Chemero, ‘Novel object exploration in mice: Not all objects are created 

equal’, Behav. Processes, vol. 89, no. 3, Art. no. 3, Mar. 2012, doi: 

10.1016/j.beproc.2011.12.004. 

[159] L. A. Rabin, ‘Maintaining behavioural diversity in captivity for conservation: natural behaviour 

management’, Anim. Welf., vol. 12, no. 1, pp. 85–94, Feb. 2003. 

[160] A. Hyvarinen, ‘Fast and robust fixed-point algorithms for independent component analysis’, 

IEEE Trans. Neural Netw., vol. 10, no. 3, Art. no. 3, May 1999, doi: 10.1109/72.761722. 

[161] ‘R Core Team (2021). R: A language and environment for statistical   computing. R Foundation 

for Statistical Computing, Vienna, Austria.   URL https://www.R-project.org/.’  

[162] L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, ‘mclust 5: Clustering, Classification and 

Density Estimation Using Gaussian Finite Mixture Models’, R J., vol. 8, no. 1, Art. no. 1, Aug. 

2016. 



288 

[163] O. Bauer et al., ‘Unbiased analysis of mouse social behaviour using unsupervised machine 

learning’, in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Apr. 

2017, pp. 878–881. doi: 10.1109/ISBI.2017.7950656. 

[164] A. Sih, A. M. Bell, J. C. Johnson, and R. E. Ziemba, ‘Behavioral Syndromes: An Integrative 

Overview’, Q. Rev. Biol., vol. 79, no. 3, pp. 241–277, Sep. 2004, doi: 10.1086/422893. 

[165] O. Bauer, T. Bourgeron, J.-C. Olivo-Marin, E. Ey, and F. de Chaumont, ‘Unsupervised analysis of 

mouse social behaviour reveals how hyperactivity impacts social aspects in a mouse model of 

autism’, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr. 

2018, pp. 1149–1152. doi: 10.1109/ISBI.2018.8363774. 

[166] Ö. Sungur, K. Vörckel, R. Schwarting, and M. Wöhr, ‘Repetitive Behaviors in the Shank1 Knockout 

Mouse Model for Autism Spectrum Disorder: Developmental Aspects and Effects of Social 

Context.’, J. Neurosci. Methods, vol. 234, May 2014, doi: 10.1016/j.jneumeth.2014.05.003. 

[167] W. R. Thompson, ‘The inheritance of behavior: behavioural differences in fifteen mouse strains’, 

Can. J. Psychol. Can. Psychol., vol. 7, no. 4, pp. 145–155, 1953, doi: 10.1037/h0083586. 

[168] V. J. Bolivar, B. J. Caldarone, A. A. Reilly, and L. Flaherty, ‘Habituation of Activity in an Open Field: 

A Survey of Inbred Strains and F1 Hybrids’, Behav. Genet., vol. 30, no. 4, pp. 285–293, Jul. 2000, 

doi: 10.1023/A:1026545316455. 

[169] V. J. Bolivar, ‘Intrasession and intersession habituation in mice: From inbred strain variability to 

linkage analysis’, Neurobiol. Learn. Mem., vol. 92, no. 2, pp. 206–214, Sep. 2009, doi: 

10.1016/j.nlm.2009.02.002. 

[170] T. P. O’Leary, R. K. Gunn, and R. E. Brown, ‘What are we measuring when we test strain 

differences in anxiety in mice?’, Behav. Genet., vol. 43, no. 1, pp. 34–50, Jan. 2013, doi: 

10.1007/s10519-012-9572-8. 



289 

[171] V. M. Philip et al., ‘Genetic analysis in the Collaborative Cross breeding population’, Genome 

Res., vol. 21, no. 8, pp. 1223–1238, Aug. 2011, doi: 10.1101/gr.113886.110. 

[172] A. Delprato et al., ‘QTL and systems genetics analysis of mouse grooming and behavioral 

responses to novelty in an open field’, Genes Brain Behav., vol. 16, no. 8, pp. 790–799, Nov. 

2017, doi: 10.1111/gbb.12392. 

[173] X. Liu and H. K. Gershenfeld, ‘An exploratory factor analysis of the Tail Suspension Test in 12 

inbred strains of mice and an F2 intercross’, Brain Res. Bull., vol. 60, no. 3, pp. 223–231, May 

2003, doi: 10.1016/s0361-9230(03)00033-9. 

[174] H. Kollmus et al., ‘A comprehensive and comparative phenotypic analysis of the collaborative 

founder strains identifies new and known phenotypes’, Mamm. Genome Off. J. Int. Mamm. 

Genome Soc., vol. 31, no. 1–2, pp. 30–48, Feb. 2020, doi: 10.1007/s00335-020-09827-3. 

[175] D. Lipkind, A. Sakov, N. Kafkafi, G. I. Elmer, Y. Benjamini, and I. Golani, ‘New replicable anxiety-

related measures of wall vs center behavior of mice in the open field’, J. Appl. Physiol. Bethesda 

Md 1985, vol. 97, no. 1, pp. 347–359, Jul. 2004, doi: 10.1152/japplphysiol.00148.2004. 

[176] J. G. de Mooij-van Malsen et al., ‘Variations in ventral root axon morphology and locomotor 

behavior components across different inbred strains of mice’, Neuroscience, vol. 164, no. 4, pp. 

1477–1483, Dec. 2009, doi: 10.1016/j.neuroscience.2009.09.008. 

[177] C. L. Kliethermes and J. C. Crabbe, ‘Genetic independence of mouse measures of some aspects 

of novelty seeking’, Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 13, pp. 5018–5023, Mar. 2006, 

doi: 10.1073/pnas.0509724103. 

[178] A. Takahashi, K. Kato, J. Makino, T. Shiroishi, and T. Koide, ‘Multivariate analysis of temporal 

descriptions of open-field behavior in wild-derived mouse strains’, Behav. Genet., vol. 36, no. 5, 

pp. 763–774, Sep. 2006, doi: 10.1007/s10519-005-9038-3. 



290 

[179] B. Q. Geuther et al., ‘Robust mouse tracking in complex environments using neural networks’, 

Commun. Biol., vol. 2, p. 124, 2019, doi: 10.1038/s42003-019-0362-1. 

[180] H. V. Lad et al., ‘Behavioural battery testing: Evaluation and behavioural outcomes in 8 inbred 

mouse strains’, Physiol. Behav., vol. 99, no. 3, pp. 301–316, Mar. 2010, doi: 

10.1016/j.physbeh.2009.11.007. 

[181] N. R. Gubner, C. J. Wilhelm, T. J. Phillips, and S. H. Mitchell, ‘Strain differences in behavioral 

inhibition in a Go/No-go task demonstrated using 15 inbred mouse strains’, Alcohol. Clin. Exp. 

Res., vol. 34, no. 8, pp. 1353–1362, Aug. 2010, doi: 10.1111/j.1530-0277.2010.01219.x. 

[182] S. S. Moy et al., ‘Social approach and repetitive behavior in eleven inbred mouse strains’, Behav. 

Brain Res., vol. 191, no. 1, pp. 118–129, Aug. 2008, doi: 10.1016/j.bbr.2008.03.015. 

[183] T. R. Mhyre et al., ‘Heritability, correlations and in silico mapping of locomotor behavior and 

neurochemistry in inbred strains of mice’, Genes Brain Behav., vol. 4, no. 4, pp. 209–228, Jun. 

2005, doi: 10.1111/j.1601-183X.2004.00102.x. 

[184] S. Keum et al., ‘Variability in empathic fear response among 11 inbred strains of mice’, Genes 

Brain Behav., vol. 15, no. 2, pp. 231–242, Feb. 2016, doi: 10.1111/gbb.12278. 

[185] M. Loos et al., ‘Activity and impulsive action are controlled by different genetic and 

environmental factors’, Genes Brain Behav., vol. 8, no. 8, pp. 817–828, Nov. 2009, doi: 

10.1111/j.1601-183X.2009.00528.x. 

[186] T. Wiltshire et al., ‘Initial locomotor sensitivity to cocaine varies widely among inbred mouse 

strains’, Genes Brain Behav., vol. 14, no. 3, pp. 271–280, Mar. 2015, doi: 10.1111/gbb.12209. 

[187] S. A. Schoenrock et al., ‘Ovariectomy results in inbred strain-specific increases in anxiety-like 

behavior in mice’, Physiol. Behav., vol. 167, pp. 404–412, Dec. 2016, doi: 

10.1016/j.physbeh.2016.09.026. 



291 

[188] M. Thomsen and S. B. Caine, ‘Psychomotor stimulant effects of cocaine in rats and 15 mouse 

strains’, Exp. Clin. Psychopharmacol., vol. 19, no. 5, pp. 321–341, Oct. 2011, doi: 

10.1037/a0024798. 

[189] M. Thomsen, R. J. Ralph, and S. B. Caine, ‘Psychomotor stimulation by dopamine D₁-like but not 

D₂-like agonists in most mouse strains’, Exp. Clin. Psychopharmacol., vol. 19, no. 5, pp. 342–360, 

Oct. 2011, doi: 10.1037/a0024053. 

[190] R. Trullas and P. Skolnick, ‘Differences in fear motivated behaviors among inbred mouse strains’, 

Psychopharmacology (Berl.), vol. 111, no. 3, pp. 323–331, 1993, doi: 10.1007/BF02244948. 

[191] D. Wahlsten, P. Metten, and J. C. Crabbe, ‘Survey of 21 inbred mouse strains in two laboratories 

reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus 

callosum’, Brain Res., vol. 971, no. 1, pp. 47–54, May 2003, doi: 10.1016/s0006-

8993(03)02354-0. 

[192] ‘MPD: Data set: Wiltshire1’. https://phenome.jax.org/projects/Wiltshire1 (accessed Sep. 17, 

2021). 

[193] C. S. Benton et al., ‘Evaluating genetic markers and neurobiochemical analytes for fluoxetine 

response using a panel of mouse inbred strains’, Psychopharmacology (Berl.), vol. 221, no. 2, 

pp. 297–315, May 2012, doi: 10.1007/s00213-011-2574-z. 

[194] C. D. Bryant et al., ‘Behavioral Differences among C57BL/6 Substrains: Implications for 

Transgenic and Knockout Studies’, J. Neurogenet., vol. 22, no. 4, pp. 315–331, Dec. 2008, doi: 

10.1080/01677060802357388. 

[195] N. Simola, M. Morelli, and A. R. Carta, ‘The 6-Hydroxydopamine model of parkinson’s disease’, 

Neurotox. Res., vol. 11, no. 3, pp. 151–167, Sep. 2007, doi: 10.1007/BF03033565. 

[196] V. Francardo, A. Recchia, N. Popovic, D. Andersson, H. Nissbrandt, and M. A. Cenci, ‘Impact of 

the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-



292 

DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease’, Neurobiol. Dis., vol. 42, 

no. 3, pp. 327–340, Jun. 2011, doi: 10.1016/j.nbd.2011.01.024. 

[197] G. S. Robertson and H. A. Robertson, ‘Evidence that L-dopa-induced rotational behavior is 

dependent on both striatal and nigral mechanisms’, J. Neurosci., vol. 9, no. 9, pp. 3326–3331, 

Sep. 1989, doi: 10.1523/JNEUROSCI.09-09-03326.1989. 

[198] M. Morelli, S. Fenu, A. Cozzolino, A. Pinna, A. Carta, and G. Di Chiara, ‘Blockade of muscarinic 

receptors potentiates D1 dependent turning behavior and c-fos expression in 6-

hydroxydopamine-lesioned rats but does not influence D2 mediated responses’, Neuroscience, 

vol. 53, no. 3, pp. 673–678, Apr. 1993, doi: 10.1016/0306-4522(93)90615-M. 

[199] P. F. Von Voigtlander and K. E. Moore, ‘Turning behavior of mice with unilateral 6-

hydroxydopamine lesions in the striatum: Effects of apomorphine, l-DOPA, amantadine, 

amphetamine and other psychomotor stimulants’, Neuropharmacology, vol. 12, no. 5, pp. 451–

462, May 1973, doi: 10.1016/0028-3908(73)90061-0. 

[200] V. J. Bolivar, S. R. Walters, and J. L. Phoenix, ‘Assessing autism-like behavior in mice: Variations 

in social interactions among inbred strains’, Behav. Brain Res., vol. 176, no. 1, pp. 21–26, Jan. 

2007, doi: 10.1016/j.bbr.2006.09.007. 

[201] S. Tanaka, J. W. Young, A. L. Halberstadt, V. L. Masten, and M. A. Geyer, ‘Four factors underlying 

mouse behavior in an open field’, Behav. Brain Res., vol. 233, no. 1, pp. 55–61, Jul. 2012, doi: 

10.1016/j.bbr.2012.04.045. 

[202] Z. Fan, H. Zhu, T. Zhou, S. Wang, Y. Wu, and H. Hu, ‘Using the tube test to measure social 

hierarchy in mice’, Nat. Protoc., vol. 14, no. 3, pp. 819–831, Mar. 2019, doi: 10.1038/s41596-

018-0116-4. 



293 

[203] H. Darville et al., ‘Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput 

Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency 

Syndrome’, EBioMedicine, vol. 9, pp. 293–305, Jul. 2016, doi: 10.1016/j.ebiom.2016.05.032. 

[204] S. Serret, S. Thümmler, E. Dor, S. Vesperini, A. Santos, and F. Askenazy, ‘Lithium as a rescue 

therapy for regression and catatonia features in two SHANK3 patients with autism spectrum 

disorder: case reports’, BMC Psychiatry, vol. 15, no. 1, p. 107, May 2015, doi: 10.1186/s12888-

015-0490-1. 

[205] V. Tatavarty et al., ‘Autism-Associated Shank3 Is Essential for Homeostatic Compensation in 

Rodent V1’, Neuron, vol. 106, no. 5, pp. 769-777.e4, Jun. 2020, doi: 

10.1016/j.neuron.2020.02.033. 

  



294 

  



295 

 

 

 

Annexes  



296 

  



297 

Table annex 1: SUCCUBE features 

N° Feature names measurement time scale category 

1 particle number number dynamic particle 
2 length HT distance static body 
3 length MT distance static body 
4 length HM distance static body 
5 change in length HT distance dynamic body 
6 change in length MT distance dynamic body 
7 change in length HM distance dynamic body 
8 angle HMT angle static body 
9 change in angle HMT angle dynamic body 

10 altitude H distance static body 
11 altitude M distance static body 
12 altitude T distance static body 
13 change in altitude H distance dynamic body 
14 change in altitude M distance dynamic body 
15 change in altitude T distance dynamic body 
16 angular velocity HT angle dynamic body 
17 angular velocity MT angle dynamic body 
18 angular velocity HM angle dynamic body 
19 angular acceleration HT angle dynamic body 
20 angular acceleration MT angle dynamic body 
21 angular acceleration HM angle dynamic body 
22 change in velocity direction H distance dynamic body 
23 change in velocity direction M distance dynamic body 
24 change in velocity direction T distance dynamic body 
25 speed H distance dynamic body 
26 speed M distance dynamic body 
27 speed T distance dynamic body 
28 forward velocity H distance dynamic body 
29 forward velocity M distance dynamic body 
30 forward velocity T distance dynamic body 
31 sideway velocity H distance dynamic body 
32 sideway velocity M distance dynamic body 
33 sideway velocity T distance dynamic body 
34 acceleration H distance dynamic body 
35 acceleration M distance dynamic body 
36 acceleration T distance dynamic body 
37 angle HT velocity H angle dynamic body 
38 angle HT velocity M angle dynamic body 
39 angle HT velocity T angle dynamic body 
40 distance to centre H distance static arena 
41 distance to centre M distance static arena 
42 distance to centre T distance static arena 
43 change in distance to centre H distance dynamic arena 
44 change in distance to centre M distance dynamic arena 
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45 change in distance to centre T distance dynamic arena 
46 angle HT centre H angle static arena 
47 angle HT centre M angle static arena 
48 angle HT centre T angle static arena 
49 change in angle HT centre H angle dynamic arena 
50 change in angle HT centre M angle dynamic arena 
51 change in angle HT centre T angle dynamic arena 
52 distance to closest wall H distance static arena 
53 distance to closest wall M distance static arena 
54 distance to closest wall T distance static arena 
55 change in distance to closest wall H distance dynamic arena 
56 change in distance to closest wall M distance dynamic arena 
57 change in distance to closest wall T distance dynamic arena 
58 angle HT closest projection on a wall H angle static arena 
59 angle HT closest projection on a wall M angle static arena 
60 angle HT closest projection on a wall T angle static arena 
61 change in angle HT closest projection on a wall H angle dynamic arena 
62 change in angle HT closest projection on a wall M angle dynamic arena 
63 change in angle HT closest projection on a wall T angle dynamic arena 
64 distance to closest corner H distance static arena 
65 distance to closest corner M distance static arena 
66 distance to closest corner T distance static arena 
67 change in distance to closest corner H distance dynamic arena 
68 change in distance to closest corner M distance dynamic arena 
69 change in distance to closest corner T distance dynamic arena 
70 angle HT closest corner H angle static arena 
71 angle HT closest corner M angle static arena 
72 angle HT closest corner T angle static arena 
73 change in angle HT closest corner H angle dynamic arena 
74 change in angle HT closest corner M angle dynamic arena 
75 change in angle HT closest corner T angle dynamic arena 
76 distance to closest house wall H distance static object 
77 distance to closest house wall M distance static object 
78 distance to closest house wall T distance static object 
79 change in distance to closest house wall H distance dynamic object 
80 change in distance to closest house wall M distance dynamic object 
81 change in distance to closest house wall T distance dynamic object 
82 sum of distances to house walls H distance static object 
83 sum of distances to house walls M distance static object 
84 sum of distances to house walls T distance static object 
85 change in the sum of distances to house walls H distance dynamic object 
86 change in the sum of distances to house walls M distance dynamic object 
87 change in the sum of distances to house walls T distance dynamic object 

88 
angle to closest projection on a wall in reference to 

animal axis H 
angle static object 

89 
angle to closest projection on a wall in reference to 

animal axis M 
angle static object 

90 angle to closest projection on a wall in reference to angle static object 
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animal axis T 

91 
change in the angle to closest projection on a wall 

in reference to animal axis H 
angle dynamic object 

92 
change in the angle to closest projection on a wall 

in reference to animal axis M 
angle dynamic object 

93 
change in the angle to closest projection on a wall 

in reference to animal axis T 
angle dynamic object 

94 
sum of angles to projections on walls in reference to 

animal axis H 
angle static object 

95 
sum of angles to projections on walls in reference to 

animal axis M 
angle static object 

96 
sum of angles to projections on walls in reference to 

animal axis T 
angle static object 

97 
change in the sum of angles to projections on walls 

in reference to animal axis H 
angle dynamic object 

98 
change in the sum of angles to projections on walls 

in reference to animal axis M 
angle dynamic object 

99 
change in the sum of angles to projections on walls 

in reference to animal axis T 
angle dynamic object 

100 distance to closest house gate H distance static object 
101 distance to closest house gate M distance static object 
102 distance to closest house gate T distance static object 
103 change in distance to closest house gate H distance dynamic object 
104 change in distance to closest house gate M distance dynamic object 
105 change in distance to closest house gate T distance dynamic object 
106 sum of distances to house gates H distance static object 
107 sum of distances to house gates M distance static object 
108 sum of distances to house gates T distance static object 
109 change in the sum of distances to house gates H distance dynamic object 
110 change in the sum of distances to house gates M distance dynamic object 
111 change in the sum of distances to house gates T distance dynamic object 

112 
angle to closest projection on a gate in reference to 

animal axis H 
angle static object 

113 
angle to closest projection on a gate in reference to 

animal axis M 
angle static object 

114 
angle to closest projection on a gate in reference to 

animal axis T 
angle static object 

115 
change in the angle to closest projection on a gate 

in reference to animal axis H 
angle dynamic object 

116 
change in the angle to closest projection on a gate 

in reference to animal axis M 
angle dynamic object 

117 
change in the angle to closest projection on a gate 

in reference to animal axis T 
angle dynamic object 

118 
sum of angles to projections on gates in reference 

to animal axis H 
angle static object 

119 
sum of angles to projections on gates in reference 

to animal axis M 
angle static object 

120 sum of angles to projections on gates in reference angle static object 
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to animal axis T 

121 
change in the sum of angles to projections on gates 

in reference to animal axis H 
angle dynamic object 

122 
change in the sum of angles to projections on gates 

in reference to animal axis M 
angle dynamic object 

123 
change in the sum of angles to projections on gates 

in reference to animal axis T 
angle dynamic object 

124 distance to closest house corner H distance static object 
125 distance to closest house corner M distance static object 
126 distance to closest house corner T distance static object 
127 change in distance to closest house corner H distance dynamic object 
128 change in distance to closest house corner M distance dynamic object 
129 change in distance to closest house corner T distance dynamic object 
130 sum of distances to house corners H distance static object 
131 sum of distances to house corners M distance static object 
132 sum of distances to house corners T distance static object 
133 change in the sum of distances to house corners H distance dynamic object 
134 change in the sum of distances to house corners M distance dynamic object 
135 change in the sum of distances to house corners T distance dynamic object 
136 angle to closest corner in reference to animal axis H angle static object 
137 angle to closest corner in reference to animal axis M angle static object 
138 angle to closest corner in reference to animal axis T angle static object 

139 
change in the angle to closest corner in reference to 

animal axis H 
angle dynamic object 

140 
change in the angle to closest corner in reference to 

animal axis M 
angle dynamic object 

141 
change in the angle to closest corner in reference to 

animal axis T 
angle dynamic object 

142 
sum of angles to corners in reference to animal axis 

H 
angle static object 

143 
sum of angles to corners in reference to animal axis 

M 
angle static object 

144 
sum of angles to corners in reference to animal axis 

T 
angle static object 

145 
change in the sum of angles to corners in reference 

to animal axis H 
angle dynamic object 

146 
change in the sum of angles to corners in reference 

to animal axis M 
angle dynamic object 

147 
change in the sum of angles to corners in reference 

to animal axis T 
angle dynamic object 

148 biggest angle of view of a house wall angle static object 
149 biggest angle of view of a house gate angle static object 
150 angle of view of the house angle static object 
151 change in the biggest angle of view of a house wall angle dynamic object 
152 change in the biggest angle of view of a house gate angle dynamic object 
153 change in the angle of view of the house angle dynamic object 
154 part of the animal recovered by the house distance static object 
155 change in the part of the animal recovered by the distance dynamic object 
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house 
156 social altitude Hr distance static social 
157 social altitude Mr distance static social 
158 social altitude Tr distance static social 
159 distance HHr distance static social 
160 distance HMr distance static social 
161 distance HTr distance static social 
162 distance MHr distance static social 
163 distance MMr distance static social 
164 distance MTr distance static social 
165 distance THr distance static social 
166 distance TMr distance static social 
167 distance TTr distance static social 
168 change in distance HHr distance dynamic social 
169 change in distance HMr distance dynamic social 
170 change in distance HTr distance dynamic social 
171 change in distance MHr distance dynamic social 
172 change in distance MMr distance dynamic social 
173 change in distance MTr distance dynamic social 
174 change in distance THr distance dynamic social 
175 change in distance TMr distance dynamic social 
176 change in distance TTr distance dynamic social 
177 angle HT HHr angle static social 
178 angle HT HMr angle static social 
179 angle HT HTr angle static social 
180 angle HT MHr angle static social 
181 angle HT MMr angle static social 
182 angle HT MTr angle static social 
183 angle HT THr angle static social 
184 angle HT TMr angle static social 
185 angle HT TTr angle static social 
186 angle HT HrTr angle static social 
187 angle HT MrTr angle static social 
188 angle HT HrMr angle static social 
189 angle MT HrTr angle static social 
190 angle MT MrTr angle static social 
191 angle MT HrMr angle static social 
192 angle HM HrTr angle static social 
193 angle HM MrTr angle static social 
194 angle HM HrMr angle static social 
195 angle velocities H Hr angle dynamic social 
196 angle velocities H Mr angle dynamic social 
197 angle velocities H Tr angle dynamic social 
198 angle velocities M Hr angle dynamic social 
199 angle velocities M Mr angle dynamic social 
200 angle velocities M Tr angle dynamic social 
201 angle velocities T Hr angle dynamic social 
202 angle velocities T Mr angle dynamic social 
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203 angle velocities T Tr angle dynamic social 
204 angle HrHTr angle static social 
205 angle HrHMr angle static social 
206 angle MrHTr angle static social 
207 change in angle HrHTr angle dynamic social 
208 change in angle HrHMr angle dynamic social 
209 change in angle MrHTr angle dynamic social 
210 difference velocities H Hr distance dynamic social 
211 difference velocities H Mr distance dynamic social 
212 difference velocities H Tr distance dynamic social 
213 difference velocities M Hr distance dynamic social 
214 difference velocities M Mr distance dynamic social 
215 difference velocities M Tr distance dynamic social 
216 difference velocities T Hr distance dynamic social 
217 difference velocities T Mr distance dynamic social 
218 difference velocities T Tr distance dynamic social 
219 speed H toward Hr distance dynamic social 
220 speed H toward Mr distance dynamic social 
221 speed H toward Tr distance dynamic social 
222 speed M toward Hr distance dynamic social 
223 speed M toward Mr distance dynamic social 
224 speed M toward Tr distance dynamic social 
225 speed T toward Hr distance dynamic social 
226 speed T toward Mr distance dynamic social 
227 speed T toward Tr distance dynamic social 
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Figure annex 1: IC clusters over numbers of IC to extract for the BP feature set of the single object 
exploration dataset. Each dot represent a level 1 cluster of IC, each line of dot of unique colour 
represent a level 2 cluster of IC. 

 
Figure annex 2:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BP feature set of the single object exploration dataset. 24 behavioural descriptors kept for the BP 
feature set of the single object exploration dataset.  
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Figure annex 3: Interpretation figures for the BEC segregated on the 1st BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not rotate in deceleration” 
- the BEC on the right of B and orange in C: “rotates decelerating” 
 
 
 
 

 
Figure annex 4: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not rotate in acceleration” 
- the BEC on the right of B and orange in C: “rotates accelerating” 
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Figure annex 5: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “moves forward” 
- the BEC on the right of B and orange in C: “does not move forward” 
 
 
 
 

 
Figure annex 6: Interpretation figures for the BEC segregated on the 4th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “contracts” 
- the BEC on the middle of B and orange in C: “stable extension” 
- the BEC on the right of B and red in C: “extends” 
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Figure annex 7: Interpretation figures for the BEC segregated on the 5th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is short on x-y axis” 
- the BEC on the middle of B and orange in C: “normal extension” 
- the BEC on the right of B and red in C: “is extended” 
 
 
 

 
Figure annex 8: Interpretation figures for the BEC segregated on the 6th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not move backward” 
- the BEC on the right of B and orange in C: “moves backward” 
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Figure annex 9: Interpretation figures for the BEC segregated on the 7th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not move the anterior part sideways” 
- the BEC on the right of B and orange in C: “moves the anterior part sideways” 
 
 
 
 

 
Figure annex 10: Interpretation figures for the BEC segregated on the 8th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is posterior deviating” 
- the BEC on the right of B and orange in C: “is not posterior deviating” 
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Figure annex 11: Interpretation figures for the BEC segregated on the 9th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “decelerates” 
- the BEC on the middle of B and orange in C: “stable speed” 
- the BEC on the right of B and red in C: “accelerates” 
 
 
 

 
Figure annex 12: Interpretation figures for the BEC segregated on the 10th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “moves the posterior part sideways” 
- the BEC on the right of B and orange in C: “does not move the posterior part sideways” 
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Figure annex 13: Interpretation figures for the BEC segregated on the 11th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is reared” 
- the BEC on the right of B and orange in C: “is not reared” 
 
 
 
 

 
Figure annex 14: Interpretation figures for the BEC segregated on the 12th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “moves without agitating the bedding” 
- the BEC on the middle-left of B and orange in C: “does not agitate bedding” 
- the BEC on the middle-right of B and red in C: “agitates bedding” 
- the BEC on the right of B and red in C: “digs” 
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Figure annex 15: Interpretation figures for the BEC segregated on the 13th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “unbends” 
- the BEC on the middle of B and orange in C: “stable bending” 
- the BEC on the right of B and red in C: “bends” 
 
 
 

 
Figure annex 16: Interpretation figures for the BEC segregated on the 14th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is not bent” 
- the BEC on the right of B and orange in C: “is bent” 
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Figure annex 17: Interpretation figures for the BEC segregated on the 15th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “rears down” 
- the BEC on the middle of B and orange in C: “stable altitude” 
- the BEC on the right of B and red in C: “rears up” 
 
 
 

 
Figure annex 18: Interpretation figures for the BEC segregated on the 16th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “centre of mass pushed forward” 
- the BEC on the middle of B and orange in C: “centre of mass synchronized with other body 
parts” 
- the BEC on the right of B and red in C: “centre of mass pushed back” 
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Figure annex 19: Interpretation figures for the BEC segregated on the 17th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “tail base pushed back” 
- the BEC on the middle of B and orange in C: “tail base synchronized with other body parts” 
- the BEC on the right of B and red in C: “tail base pushed forward” 
 
 
 

 
Figure annex 20: Interpretation figures for the BEC segregated on the 18th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “head pushed forward” 
- the BEC on the middle of B and orange in C: “head synchronized with other body parts” 
- the BEC on the right of B and red in C: “head pushed back” 
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Figure annex 21: Interpretation figures for the BEC segregated on the 19th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients the movements of the head forward” 
- the BEC on the middle of B and orange in C: “does not orients the movements of any body part 
forward” 
- the BEC on the right of B and red in C: “orients the movements of the tail forward” 
 
 

 
Figure annex 22: Interpretation figures for the BEC segregated on the 20th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients the movements of the head away from forward 
orientation” 
- the BEC on the middle of B and orange in C: “does not orients the movements of any body part 
away from forward orientation” 
- the BEC on the right of B and red in C: “orients the movements of the tail away from forward 
orientation”  
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Figure annex 23: Interpretation figures for the BEC segregated on the 21th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “head-tail inversion on rearing” 
- the BEC on the right of B and orange in C: “no head-tail inversion on rearing” 
 
 
 
 

 
Figure annex 24: Interpretation figures for the BEC segregated on the 22th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “lowers the head” 
- the BEC on the middle of B and orange in C: “stable head altitude” 
- the BEC on the right of B and red in C: “raises the head” 
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Figure annex 25: Interpretation figures for the BEC segregated on the 23th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “anterior acceleration” 
- the BEC on the middle of B and orange in C: “anterior stable speed” 
- the BEC on the right of B and red in C: “anterior deceleration” 
 
 
 

 
Figure annex 26: Interpretation figures for the BEC segregated on the 24th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “lowers the tail” 
- the BEC on the middle of B and orange in C: “stable tail altitude” 
- the BEC on the right of B and red in C: “raises the tail” 
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Figure annex 27: IC clusters over numbers of IC to extract for the BAP feature set of the single object 
exploration dataset. Each dot represent a level 1 cluster of IC, each line of dot of unique colour 
represent a level 2 cluster of IC. 

 
Figure annex 28:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BAP feature set of the single object exploration dataset. 31 behavioural descriptors kept for the 
BAP feature set of the single object exploration dataset.  
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Figure annex 29: Interpretation figures for the BEC segregated on the 1st BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is not oriented toward the closest wall” 
- the BEC on the right of B and orange in C: “is oriented toward the closest wall” 
 
 
 
 

 
Figure annex 30: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is in a corner” 
- the BEC on the right of B and orange in C: “is not in a corner” 
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Figure annex 31: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients away from the centre” 
- the BEC on the middle of B and orange in C: “stable arena related orientation” 
- the BEC on the right of B and red in C: “orients toward the centre” 
 
 
 

 
Figure annex 32: Interpretation figures for the BEC segregated on the 6th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes toward the wall” 
- the BEC on the middle of B and orange in C: “stable distance to the wall” 
- the BEC on the right of B and red in C: “goes away from the wall” 
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Figure annex 33: Interpretation figures for the BEC segregated on the 7th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes forward toward the corner” 
- the BEC on the middle of B and orange in C: “does not progress with the corner in front” 
- the BEC on the right of B and red in C: “goes backward away from the corner” 
 
 
 

 
Figure annex 34: Interpretation figures for the BEC segregated on the 8th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes backward toward the corner” 
- the BEC on the middle of B and orange in C: “does not progress with the corner in the back” 
- the BEC on the right of B and red in C: “goes forward away from the corner” 
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Figure annex 35: Interpretation figures for the BEC segregated on the 11th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is in the near wall area” 
- the BEC on the middle of B and orange in C: “is in the corner or intermediate area” 
- the BEC on the right of B and red in C: “is in the middle diagonal cross” 
 
 
 

 
Figure annex 36: Interpretation figures for the BEC segregated on the 15th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients toward the corner” 
- the BEC on the middle of B and orange in C: “stable wall-corner orientation” 
- the BEC on the right of B and red in C: “orients toward the wall” 
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Figure annex 37: Interpretation figures for the BEC segregated on the 17th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is oriented toward the wall rather than the corner” 
- the BEC on the right of B and orange in C: “is oriented toward the corner rather than the wall” 
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Figure annex 38: IC clusters over numbers of IC to extract for the BAOP feature set of the single object 
exploration dataset. Each dot represent a level 1 cluster of IC, each line of dot of unique colour 
represent a level 2 cluster of IC. 

 
Figure annex 39:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BAOP feature set of the single object exploration dataset. 14 behavioural descriptors kept for the 
BAOP feature set of the single object exploration dataset.  
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Figure annex 40: Interpretation figures for the BEC segregated on the 1st BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is close to or in the house” 
- the BEC on the right of B and orange in C: “is far from the house” 
 
 
 
 

 
Figure annex 41: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “get away from the house” 
- the BEC on the middle of B and orange in C: “stable distance from the house” 
- the BEC on the right of B and red in C: “goes toward the house” 
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Figure annex 42: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is oriented toward the house” 
- the BEC on the middle of B and orange in C: “no special house related orientation” 
- the BEC on the right of B and red in C: “is oriented away from the house” 
 
 
 

 
Figure annex 43: Interpretation figures for the BEC segregated on the 4th BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not orient away from the house” 
- the BEC on the right of B and orange in C: “orients away from the house” 
 
 
 
  



325 

 
Figure annex 44: Interpretation figures for the BEC segregated on the 5th BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients toward the house” 
- the BEC on the right of B and orange in C: “does not orient toward the house” 
 
 
 
 

 
Figure annex 45: Interpretation figures for the BEC segregated on the 7th BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes backward toward the house” 
- the BEC on the middle of B and orange in C: “does not progress with house in the back” 
- the BEC on the right of B and red in C: “goes forward away from the house” 
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Figure annex 46: Interpretation figures for the BEC segregated on the 8th BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes forward toward the house” 
- the BEC on the middle of B and orange in C: “does not progress with house in front” 
- the BEC on the right of B and red in C: “goes backward away from the house” 
 
 
 

 
Figure annex 47: Interpretation figures for the BEC segregated on the 9th BD extracted from the BAOP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “angular decelerates” 
- the BEC on the middle of B and orange in C: “stable angular speed” 
- the BEC on the right of B and red in C: “angular accelerates” 
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Figure annex 48: Interpretation figures for the BEC segregated on the 10th BD extracted from the 
BAOP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients toward the house” 
- the BEC on the middle of B and orange in C: “stable house related orientation” 
- the BEC on the right of B and red in C: “orients away from the house” 
 
 
 

 
Figure annex 49: Interpretation figures for the BEC segregated on the 11th BD extracted from the 
BAOP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is not in the far from house area” 
- the BEC on the middle of B and orange in C: “is in intermediate house related area” 
- the BEC on the right of B and red in C: “is in the far from house area” 
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Figure annex 50: Interpretation figures for the BEC segregated on the 14th BD extracted from the 
BAOP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes in direction from a house wall to an open side” 
- the BEC on the middle of B and orange in C: “stable house open side to wall closeness” 
- the BEC on the right of B and red in C: “goes in direction from a house open side to a wall” 
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Figure annex 51: IC clusters over numbers of IC to extract for the BP feature set of the long-term group 
monitoring. Each dot represent a level 1 cluster of IC, each line of dot of unique colour represent a 
level 2 cluster of IC. 

 
Figure annex 52:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BP feature set of the single object exploration dataset. 25 behavioural descriptors kept for the BP 
feature set of the long-term group monitoring.  
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Figure annex 53: Interpretation figures for the BEC segregated on the 1st BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the movements of all body parts is oriented forward” 
- the BEC on the right of B and orange in C: “the movements of some body parts is not oriented 
forward” 
 
 
 

 
Figure annex 54: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “turns decelerating” 
- the BEC on the right of B and orange in C: “does not turn in deceleration” 
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Figure annex 55: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “turns accelerating” 
- the BEC on the middle of B and orange in C: “does not turn in acceleration” 
 
 
 
 

 
Figure annex 56: Interpretation figures for the BEC segregated on the 4th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is extended” 
- the BEC on the middle of B and orange in C: “normal extension” 
- the BEC on the right of B and red in C: “is short on x-y axis” 
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Figure annex 57: Interpretation figures for the BEC segregated on the 5th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “contracts” 
- the BEC on the middle of B and orange in C: “stable extension” 
- the BEC on the right of B and red in C: “extends” 
 
 
 

 
Figure annex 58: Interpretation figures for the BEC segregated on the 6th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “moves forward” 
- the BEC on the right of B and orange in C: “does not move forward” 
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Figure annex 59: Interpretation figures for the BEC segregated on the 7th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “accelerates” 
- the BEC on the middle of B and orange in C: “stable speed” 
- the BEC on the right of B and red in C: “stable speed” 
 
 
 

 
Figure annex 60: Interpretation figures for the BEC segregated on the 8th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is not deviating” 
- the BEC on the right of B and orange in C: “is deviating” 
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Figure annex 61: Interpretation figures for the BEC segregated on the 9th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not move backward” 
- the BEC on the right of B and orange in C: “moves backward” 
 
 
 
 

 
Figure annex 62: Interpretation figures for the BEC segregated on the 10th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “rears up” 
- the BEC on the middle of B and orange in C: “stable altitude” 
- the BEC on the right of B and red in C: “rears down” 
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Figure annex 63: Interpretation figures for the BEC segregated on the 11th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is reared” 
- the BEC on the middle of B and orange in C: “is not reared” 
- the BEC on the right of B and red in C: “has the head down” 
 
 
 

 
Figure annex 64: Interpretation figures for the BEC segregated on the 12th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “has the tail down” 
- the BEC on the middle of B and orange in C: “no head-tail inversion on rearing” 
- the BEC on the right of B and red in C: “head-tail inversion on rearing” 
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Figure annex 65: Interpretation figures for the BEC segregated on the 13th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “lowers the tail” 
- the BEC on the middle of B and orange in C: “stable tail altitude” 
- the BEC on the right of B and red in C: “raises the tail” 
 
 
 

 
Figure annex 66: Interpretation figures for the BEC segregated on the 14th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the movements of the tail is not oriented forward but 
the one of the head is” 
- the BEC on the middle of B and orange in C: “head and tail movements are each as oriented 
forward than the other” 
- the BEC on the right of B and red in C: “the movements of the head is not oriented forward but 
the one of the tail is”  
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Figure annex 67: Interpretation figures for the BEC segregated on the 15th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “bends” 
- the BEC on the middle of B and orange in C: “stable bending” 
- the BEC on the right of B and red in C: “unbends” 
 
 
 

 
Figure annex 68: Interpretation figures for the BEC segregated on the 16th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “no bedding movements” 
- the BEC on the middle of B and orange in C: “bedding movements” 
- the BEC on the right of B and red in C: “some individuals dig” 
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Figure annex 69: Interpretation figures for the BEC segregated on the 17th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “lowers the head” 
- the BEC on the middle of B and orange in C: “stable head altitude” 
- the BEC on the right of B and red in C: “raises the head” 
 
 
 

 
Figure annex 70: Interpretation figures for the BEC segregated on the 18th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is bent” 
- the BEC on the right of B and orange in C: “is not bent” 
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Figure annex 71: Interpretation figures for the BEC segregated on the 19th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “head pushed forward” 
- the BEC on the middle of B and orange in C: “head synchronized with other body parts” 
- the BEC on the right of B and red in C: “head pushed back” 
 
 
 

 
Figure annex 72: Interpretation figures for the BEC segregated on the 20th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is arched in a U shape” 
- the BEC on the middle of B and orange in C: “has the back straight” 
- the BEC on the right of B and red in C: “has the back rounded” 
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Figure annex 73: Interpretation figures for the BEC segregated on the 21th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM, no clusters are segregated. 
 
 
 
 
 
 
 
 

 
Figure annex 74: Interpretation figures for the BEC segregated on the 22th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “tail base pushed back” 
- the BEC on the middle of B and orange in C: “tail base synchronized with other body parts” 
- the BEC on the right of B and red in C: “tail base pushed forward” 
 
 
  



341 

 
Figure annex 75: Interpretation figures for the BEC segregated on the 23th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “head deviation” 
- the BEC on the middle of B and orange in C: “no partial deviation” 
- the BEC on the right of B and red in C: “centre of mass deviation” 
 
 
anterior deceleration / anterior stable speed / anterior acceleration 

 
Figure annex 76: Interpretation figures for the BEC segregated on the 24th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the movement of the centre of mass is not oriented 
forward but the one of the head and the tail are” 
- the BEC on the right of B and orange in C: “the movements of the head and the tail are not 
oriented forward but the one of the centre of mass is” 
 
  



342 

 
Figure annex 77: Interpretation figures for the BEC segregated on the 25th BD extracted from the BP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “centre of mass synchronized with other body parts” 
- the BEC on the right of B and orange in C: “centre of mass pushed back” 
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Figure annex 78: IC clusters over numbers of IC to extract for the BAP feature set of the long-term 
group monitoring. Each dot represent a level 1 cluster of IC, each line of dot of unique colour represent 
a level 2 cluster of IC. 

 
Figure annex 79:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BAP feature set of the single object exploration dataset. 25 behavioural descriptors kept for the 
BAP feature set of the long-term group monitoring.  
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Figure annex 80: Interpretation figures for the BEC segregated on the 1st BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is in a corner” 
- the BEC on the right of B and orange in C: “is not in a corner” 
 
 
 
 

 
Figure annex 81: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is oriented toward the closest wall” 
- the BEC on the right of B and orange in C: “centre of mass pushed back” 
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Figure annex 82: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “does not turn toward the centre” 
- the BEC on the right of B and orange in C: “turns toward the centre” 
 
 
 
 

 
Figure annex 83: Interpretation figures for the BEC segregated on the 7th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes forward away from the centre” 
- the BEC on the middle of B and orange in C: “does not progress with the centre in the back” 
- the BEC on the right of B and red in C: “goes backward toward the centre” 
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Figure annex 84: Interpretation figures for the BEC segregated on the 8th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes forward toward the centre” 
- the BEC on the middle of B and orange in C: “does not progress with the centre in front” 
- the BEC on the right of B and red in C: “goes backward away from the centre” 
 
 
 

 
Figure annex 85: Interpretation figures for the BEC segregated on the 15th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “orients toward the wall rather than the corner” 
- the BEC on the middle of B and orange in C: “stable wall-corner orientation” 
- the BEC on the right of B and red in C: “orients toward the corner rather than the wall” 
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Figure annex 86: Interpretation figures for the BEC segregated on the 16th BD extracted from the BAP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is oriented toward the wall rather than the corner” 
- the BEC on the right of B and orange in C: “is oriented toward the corner rather than the wall” 
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Figure annex 87: IC clusters over numbers of IC to extract for the BASP feature set of the long-term 
group monitoring. Each dot represent a level 1 cluster of IC, each line of dot of unique colour represent 
a level 2 cluster of IC. 

 
Figure annex 88:  Criterion of number of behavioural descriptors in function of the number of IC for 
the BASP feature set of the single object exploration dataset. 28 behavioural descriptors kept for the 
BASP feature set of the long-term group monitoring.  
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Figure annex 89: Interpretation figures for the BEC segregated on the 2nd BD extracted from the BASP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “same orientation as the receiver” 
- the BEC on the right of B and orange in C: “opposed orientation with the receiver” 
 
 
 
 

 
Figure annex 90: Interpretation figures for the BEC segregated on the 3rd BD extracted from the BASP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is in contact with the receiver” 
- the BEC on the right of B and orange in C: “is at distance from the receiver” 
 
 
 
  



350 

 
Figure annex 91: Interpretation figures for the BEC segregated on the 6th BD extracted from the BASP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “emitter gets closer to the receiver” 
- the BEC on the middle of B and orange in C: “neither getting closer or escaped” 
- the BEC on the right of B and red in C: “receiver gets further from the emitter” 
 
 
 

 
Figure annex 92: Interpretation figures for the BEC segregated on the 7th BD extracted from the BASP 
features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “emitter gets further from the receiver” 
- the BEC on the middle of B and orange in C: “neither getting further nor joined” 
- the BEC on the right of B and red in C: “receiver gets closer to the emitter” 
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Figure annex 93: Interpretation figures for the BEC segregated on the 11th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “is back to the receiver” 
- the BEC on the middle of B and orange in C: “no particular social orientation” 
- the BEC on the right of B and red in C: “faces the receiver” 
 
 
 

 
Figure annex 94: Interpretation figures for the BEC segregated on the 13th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “has a small view angle on the receiver” 
- the BEC on the right of B and orange in C: “has a big view angle on the receiver” 
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Figure annex 95: Interpretation figures for the BEC segregated on the 16th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the receiver is low” 
- the BEC on the middle of B and orange in C: “the receiver is at average altitude” 
- the BEC on the right of B and red in C: “the receiver is high” 
 
 
 

 
Figure annex 96: Interpretation figures for the BEC segregated on the 17th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the animals anterior parts go in opposite directions” 
- the BEC on the right of B and orange in C: “the animals anterior parts go in same direction” 
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Figure annex 97: Interpretation figures for the BEC segregated on the 19th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the view angle on the receiver increases” 
- the BEC on the middle of B and orange in C: “stable view angle on the receiver” 
- the BEC on the right of B and red in C: “the view angle on the receiver decreases” 
 
 
 

 
Figure annex 98: Interpretation figures for the BEC segregated on the 20th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “emitter anterior part and receiver posterior part go in 
the same direction” 
- the BEC on the right of B and orange in C: “emitter anterior part and receiver posterior part go 
in opposite directions” 
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Figure annex 99: Interpretation figures for the BEC segregated on the 21th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “emitter posterior part and receiver anterior part go in 
opposite directions” 
- the BEC on the right of B and orange in C: “emitter posterior part and receiver anterior part go 
in the same direction” 
 
 

 
Figure annex 100: Interpretation figures for the BEC segregated on the 22th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “the animals posterior parts go in the same direction” 
- the BEC on the right of B and orange in C: “the animals posterior parts go in opposite directions” 
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Figure annex 101: Interpretation figures for the BEC segregated on the 24th BD extracted from the 
BASP features-set in the single object exploration. 
A: Bar-plot representing major features contributions to the BD. 
B: Distribution along the BD with curves of the GMM and the threshold of the clustering. 
C: Spatial repartition of the BEC of the BD. 
We named: 
- the BEC on the left of B and blue in C: “goes ahead the receiver” 
- the BEC on the middle of B and orange in C: “goes neither ahead nor behind the receiver” 
- the BEC on the right of B and red in C: “goes behind the receiver” 
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Abstract 

Autism spectrum disorders are neurodevelopmental disorders affecting more than 1% of the global 

population. Among that, more than 1% of people with autism and intellectual disabilities carry a 

mutation in the gene coding for the postsynaptic scaffolding protein Shank3. Mouse models of such 

disorders have been studied through knock-out mutation on the homologous gene. Behavioural 

affections were found in homozygous knocked-out animals, but few effects have been reported on 

the heterozygous individuals, in widely used laboratory mouse strains such as C57BL/6J. Still, 

understanding the impact of Shank3 haploinsufficiency is crucial, because human patients are 

heterozygous, and it will open the way to pharmaceutical strategies targeting an increase in Shank3 

expression. In this optic, we first analysed the behaviour of 12 mouse strains from the Collaborative 

Cross, a panel of a hundred inbred strains emerging from the controlled breeding of eight founder 

strains. This first step was used to grab some of the behavioural diversity present in mice and to select 

genetic backgrounds of interest for their social abilities or activity levels. In a second time, we 

generated Shank3 heterozygous mutant mice on those mixed genetic backgrounds by crossing 

C57BL/6J.Shank3+/- mice with the selected CC strains. We analysed their behaviour as compared to 

their wild-type littermates. We used Live Mouse Tracker, a system to track mice in social group, to 

record and investigate the solitary and social behaviour of those mice. We developed a new 

unsupervised behavioural classification algorithm called SUCCUBE, in order to discover new 

behavioural event categories and extend our investigation of potential behavioural affections. Based 

on independent component analysis followed by Gaussian mixture model based clustering, this 

unsupervised classifier is notably the first one to allow co-occurrences of different behavioural event 

on a same time point. We here first compile wide descriptions of Collaborative Cross strain behaviour, 

in term of locomotor activity, exploration, stereotyped behaviour, thigmotaxis, neophobia and social 

interest. Such description can be beneficial to further development of other mouse models. We finally 

report the finding of three newly discovered behaviours, affected in their proportions of production, 

by Shank3 haploinsufficiency, in a mixed background between C57BL/6J males and CC002 females. 

Those heterozygous mutants spent significantly less time rotating in acceleration, facing a conspecific 

or oriented in the same direction than a conspecific. Such findings open the way to pharmaceutical 

trials aiming to restore the affected behaviour of such mutant models closer to the levels of wild-type 

ones. This also makes the demonstration of the potential of unsupervised behavioural classification 

to investigate the behaviour of animal models of neurological troubles. 


