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Abstract

The age of social media has opened new opportunities for businesses. This flourishing wealth
of information is outside traditional channels and frameworks of classical marketing research,
including that of Marketing Mix Modeling (MMM). Textual data, in particular, poses many
challenges that data analysis practitioners must tackle. Social media constitute massive, het-
erogeneous, and noisy document sources. Industrial data acquisition processes include some
amount of ETL. However, the variability of noise in the data and the heterogeneity induced by
different sources create the need for ad-hoc tools. Put otherwise, customer insight extraction
in fully unsupervised, noisy contexts is an arduous task.

This research addresses the challenge of fully unsupervised topic extraction in noisy, Big Data
contexts. We present three approaches we built on the Variational Autoencoder framework:
the Embedded Dirichlet Process, the Embedded Hierarchical Dirichlet Process, and the time-
aware Dynamic Embedded Dirichlet Process. These nonparametric approaches concerning top-
ics present the particularity of determining word embeddings and topic embeddings. These
embeddings do not require transfer learning, but knowledge transfer remains possible. We test
these approaches on benchmark and automotive industry-related datasets from a real-world
use case. We show that our models achieve equal to better performance than state-of-the-art
methods and that the field of topic modeling would benefit from improved evaluation metrics.

Lastly, we leverage the Autoencoding Variational Bayes framework and Deep Learning to design
a toolkit suitable for industrial practice. This toolkit allows for fast and scalable training and
development of new models, thus bridging the gap between statistical modeling and software
development and allowing for working with iterative project management methods and domain
knowledge updates.

Keywords: Bayesian Statistics, Topic Modeling, Natural Language Processing, Machine Learn-
ing, Deep Learning, Business Analytics



Résumé

L’ère des médias sociaux a ouvert de nouvelles perspectives aux entreprises. Cette richesse
florissante d’informations se situe en dehors des canaux et des cadres traditionnels de la re-
cherche marketing classique, y compris celui du Marketing Mix Modeling (MMM). Les données
textuelles, en particulier, posent de nombreux défis que les praticiens de l’analyse de données
doivent relever. Les médias sociaux constituent des sources de documents massives, hétérogènes
et bruitées. Les processus industriels d’acquisition de données comprennent une certaine quan-
tité d’ETL, cependant, la variabilité du bruit dans les données et l’hétérogénéité induite par les
différentes sources créent le besoin d’outils ad hoc. En d’autres termes, l’extraction d’insight
client dans des contextes bruités et totalement non supervisés est une tâche ardue.

Nous nous intéressons ici à l’extraction de thématiques entièrement non supervisée dans des
contextes Big Data bruités. Nous présentons trois approches construites suivant le framework
de l’autoencodeur variationnel : l’Embedded Dirichlet Process, l’Embedded Hierarchical Diri-
chlet Process et le Dynamic Embedded Dirichlet Process. Ces approches non paramétriques
concernant les thèmes présentent la particularité de déterminer des embeddings de mots et des
embeddings de sujets. Ces embeddings ne nécessitent pas d’apprentissage par transfert, mais le
transfert de connaissances reste possible. Nous testons ces approches sur des jeux de données de
référence et des jeux de données liés à l’industrie automobile, issus d’un cas d’utilisation réel.
Nous montrons que nos modèles atteignent des performances égales ou supérieures à celles de
l’état de l’art et que le domaine du topic modeling bénéficierait de meilleures mesures d’éva-
luation.

Enfin, nous tirons parti du cadre Autoencoding Variational Bayes et du Deep Learning pour
concevoir une boîte à outils adaptée à la pratique industrielle. Cette boîte à outils permet un
entraînement et un développement rapides et évolutifs de nouveaux modèles, comblant ainsi le
fossé entre la modélisation statistique et le développement de logiciels et permettant de travailler
à la fois avec les méthodes de gestion de projet itératives et les mises à jour de connaissances
métier.

Mots-clés : Statistique bayésienne, Topic Modeling, Traitement automatique du langage na-
turel, Machine Learning, Deep Learning, Business Analytics
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Chapter 1

Introduction

1.1 General considerations

The age of social media has opened new opportunities for businesses. Customers are no
longer the final link of a linear value chain; they have also become informants and influencers
as they review goods and services, talk about their buying interests and share their opinion
about brands, manufacturers, and retailers. This flourishing wealth of information is outside
traditional channels and frameworks of classical marketing research - including that of MMM 1

- and poses many challenges. Data analysis practitioners must tackle these challenges when
testing the viability of a business idea or capturing the whole picture and the latest trends
in consumers’ opinions. Social media constitute massive, heterogeneous, and noisy document
sources often accessed through web scraping when no API 2 is available. Data acquisition
processes include some amount of ETL 3 or ELT 4. However, the variability of noise in the
data and the heterogeneity induced by different sources create the need for ad-hoc tools. In
other words, even if large quantities of data are accessible for virtually free, customer insight
extraction is arduous.
Additionally, documents’ structure is frequently more complex than in classical applications, as

1. Marketing Mix Modeling.
2. Application Programming Interface.
3. Extract-Transform-Load.
4. Extract-Load-Transform.
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documents can exhibit some linking in a graph (e.g., Twitter) or in the form of a nested hierarchy
(e.g., Reddit). Linking between words and linking between topics are also crucial for efficient
meaning extraction and better interpretation. Finally, customer trends tend to evolve through
time, thus causing data drifts that create the need for Machine Learning models’ updates – not
to mention already existing data that businesses have not yet integrated into their information
systems. This industrial context is paramount to understanding the choices and implications
of this piece of research.

1.2 Industrial context

Our research originates from industrial needs for customer insight extraction from massive
streams of texts from social media in a broad sense: technical reports, blogs, microblogs, and
forum posts. The data sources are carefully selected; consequently, these documents all display
technical details about the products or customer insights. The needs, however, solely cover
the contents of these media and not their emitters. Lizeo IT provides our experimental mate-
rial and harvests data daily. The company uses web scraping techniques on over a thousand
websites in 6 different languages: English, French, Spanish, Italian, German, and Dutch. The
data acquisition pipeline includes parsing and basic data-cleaning steps. However, the noise
remains, e.g., markup languages, misspells, and documents in a given language that comes
from a source supposedly in another language. Due to this noise and its variability, off-the-shelf
tools seldom work. Plus, tools are only available in some domains, such as the tire industry,
which is Lizeo IT’s field of expertise. In-house data dictionaries and ontologies about the tire
industry exist, but they rely on manual, expert knowledge-backed labeling that does not apply
to other products. The company’s intent for this project is to extract information without any
background information - objectively observable elements inherent to data set aside - to work
with data related to other industries. The aimed use case is pure exploratory data analysis.
Unfortunately, data opaqueness, lack of data background, heterogeneity, and noisiness are all
hindrances to the practitioner.
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1.3 Desiderata

We pursue several goals :

Explicit modeling The primary purpose of the tools is exploratory data analysis. The latent
structures or topics must enable practitioners to explore several dimensions with precise
definitions.

Nonparametric topic extraction The data volumes are massive and come from diverse
sources. We cannot anticipate the topics or their number, especially without prior in-
formation on new products.

Integrative extraction We need to extract customers’ insights in a way that preserves docu-
ment, topic, and word structures and relationships while considering temporal dependen-
cies, languages, and noise.

Generic Extraction without prior knowledge Customers tend to focus on their product
experience. They also discuss product characteristics. Without prior knowledge injection,
we need to extract these insights to the fullest extent.

Data cleaning processes improvement We need our approaches to cope with noise di-
rectly, either by isolating or filtering it.

Scalability We must adapt to Big Data-like settings.

Fast development As practitioners extract information, knowledge reinjection to future it-
erations of the data analysis cycle becomes desirable. Moreover, other data properties
(graphs, Etc.) may be available in the future. To benefit from this knowledge faster, we
need a framework that enables model builders to add a hypothesis in the most seamless
possible way.

1.4 Document outline

This document’s organization follows the chronological order of our contributions. Chapter
1 lays the Bayesian foundations regarding modeling, parameter inference, and criticism, par-
ticularly in applying these concepts to topic modeling. We give an overview of the state of the
art of topic modeling and its application to media mining. We also link classical probabilistic
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graphical modeling with the latest advances in deep generative modeling. Chapter 2 presents
our theoretical framework and how it enables moving quickly between modeling phases. This
framework is the first contribution to this project. In Chapter 3, we introduce two novel topic
models we call Embedded Dirichlet Processes. These models can efficiently capture the number
of topics along with their contents. They can also generate topic and word embeddings, thus
enabling practitioners to see the correlation patterns in a given corpus. We also compare our
approaches to the state-of-the-art on data proceeding from our industrial context. Finally, we
present a novel dynamic extension to our Embedded Dirichlet Processes in Chapter 4. We test
our models on two benchmark datasets and two others in different languages proceeding from
our industrial context.

13



Chapter 2

State-of-the-art

In this Chapter, we lay the Bayesian foundations for probabilistic graphical modeling. We
show its link with the exponential family of density distributions, parameter inference, model
criticism, and how it relates to topic modeling. Among the different parameter inference meth-
ods, we insist on variational inference due to its ability to scale efficiently to massive text
streams. We then detail the link between deep neural networks and probabilistic graphical
modeling. In particular, we review autoencoders and their subsequent variants concerning
probabilistic settings. We show that this kind of architecture leverages the advantages and
cons of both probabilistic graphical modeling and neural networks. Finally, we review the state
of the art of topic modeling. We present an overview of the latest wave of topic models, i.e.,
neural topic models. We also show how contextualization helps in getting meaningful topic
representations. The Chapter ends with a presentation of a few applications of topic modeling
to social media mining.

14



2.1 Bayesian foundations

Our work finds its roots in the field of Bayesian Statistics. In this section, we present some
principles of probabilistic graphical modeling. In particular, we review the principles of model
building, parameter inference, and model criticism.

2.1.1 Probabilistic Graphical Modeling

Probabilistic topic models are latent variable models at their very core, i.e., models where a
specific data structure is assumed. They are a language whose building blocks are distributions
and express dependencies between hidden and observed variables, thus forming a unifying
framework. These variables often follow distributions that belong to the exponential family. A
family of probability density functions (PDF) P = {pθ : θ ∈ Θ} on a measure space (χ,B, ν)
forms an exponential family if:

Prθ (x) = exp
(
η (θ)T t (x)− A (η (θ))

)
(2.1)

A (η (θ)) = log
∫

exp
(
η (θ)T t (x)

)
ν (dx) (2.2)

In Eqn. 2.1 and Eqn. 2.2, A (η (θ)) is the log-normalizer, η (θ) is the natural parameter, and
t (x) is the vector of sufficient statistics. These expressions are known and depend on the con-
sidered probability distribution. The exponential family of probability functions includes usual
distributions, such as the Gaussian, the Dirichlet, the Gamma, the Beta, or the Poisson distri-
butions. During the fitting step, practitioners try to unveil the structure’s parameter values in
terms of distributions of the latent variables, thus inscribing them in a Bayesian probabilistic
frame. This kind of modeling is often referred to as graphical due to the representation of model
structures.
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Figure 2.1 – LDA’s graphical model

Figure 2.2 – A modeling framework: G. Box’s loop
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These models are also generative by essence:

Pr(h, x | η) = Pr(h | η) Pr(x | h) (2.3)

In Eqn. 2.3, x denotes an observation, h denotes a latent variable, and η is a fixed random
parameter or hyperparameter. As it turns out, and thanks to the Bayesian setting, latent vari-
ables models are helpful for descriptive, exploratory, and predictive purposes. As the models
are also generative, they can theoretically serve as methods for data augmentation when data
is too scarce to use with other techniques.

G. Box & al.’s framework ([Box76], Fig. 2.2) is a particularly pertinent and valuable frame-
work for data modeling. The framework consists of three steps, from model building to model
assessment, and includes the faculty of further iterations through the process without losing
the benefit of the previous actions. The approach enables practitioners to build parsimonious
solutions by adding variables stepwise, thus getting the minimal set of variables that best model
the data in their view. However, it does not apply the fullest, orthodox Bayesian approach, as it
does not encode all the uncertainty about the data structure but only the variables of interest.
In the following sections, we detail each step and show how they apply to a probabilistic topic
model through the example of the Latent Dirichlet Allocation (LDA) [BNJ03].

2.1.1.1 Model building

The first step of the model building step consists of setting a generative process, i.e., to
form the setting of underlying assumptions about the data. This process distinguishes between
the global latent variables and the local latent variables. Let us consider LDA’s document-wise
generating process (Alg. 1).

In the generative process (Alg. 1), wdn denotes the observations; α is a hyperparameter
for the Dirichlet distribution; θ is a global latent variable that parameterizes a multinomial
and that represents the document-wise topic mixture; zdn indicates a multinomial-generated
topic; β is a local latent variable that represents the word-wise topic mixture, and that also
parameterizes a multinomial to generate a word. Considering the LDA’s generative process,
we can see what its building blocks are and that the model is hierarchical in the sense that
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Algorithm 1 Generative process for the LDA
1: Choose Nd ∼ Poisson (λ)
2: Choose θd ∼ Dirichlet(α)
3: for all word wn in document d do
4: Choose a topic zdn ∼ Multinomial (θ)
5: Choose a word wdn from Pr(wn| zdn, β), a multinomial probability conditioned on the

topic zdn
6: end for

these basic building blocks interact together. As such, and in principle, this apparent atomicity
eases the task of creating new models by changing distributional assumptions or exchanging
components from different models.

Pr(θ, z, w | α, β) = Pr(θ | α)×
N∏
n=1

Pr(zn | θ)Pr (wn | zn, β) (2.4)

Pr(θ, z | w, α, β) = Pr(θ, z, w | α, β)
Pr(w | α, β) (2.5)

Pr(w |wobs) =
∫ ∑

z

Pr(w | z)Pr(z | θ)× Pr(θ | wobs)dθ (2.6)

Formalizing this setting helps to form the joint distribution and the graphical model that fits
the variables. The joint distribution (Eq. 2.4), in turn, is used to define the posterior (Eq.
2.5), thanks to Bayes’ theorem. Last but not least, marginalizing the posterior over the global
latent variables enables deducing the predictive distribution (Eq. 2.6) given the observations.

In this Section, we have seen that the formalization step is essential to leveraging the model
and setting how variables interact together. One of the most significant difficulties in using
latent variable models is to reverse the data generating process in the inference step, as the
latent quantities are unknown by definition and design.
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MethodProperty MCMC VI
Engine Sampling Optimization

Core
differences

A tool for
simulating
densities

A tool for
approximating densities

Theoretical
guarantees

Asymptotically, computes
exact samples

from the target density

Moderate certainty of
the results only

Table 2.1 – Approximate inference methods’ properties

2.1.1.2 Parameter inference

Parameter inference is not only necessary to understand the data but also one of the keys
to the journey to model scalability. As exact inference is seldom possible due to the usual
evidence’s intractability in the posterior distribution, practitioners usually fall back on approx-
imate inference. Among the existing methods, three are fit to determine the value of the latent
quantities. These approaches are Laplace approximation, Markov Chain Monte Carlo (MCMC),
and Variational Inference (VI).

Laplace approximation represents the posterior as a Gaussian distribution, derived from
Taylor’s theorem. However, it is not a convenient analytical tool to handle data from other
distributions, and therefore, the literature is much more focused on MCMC and VI methods.
While MCMC forms a Markov chain over the hidden variables whose stationary state is the
posterior, VI posits a variational objective whose optimization offers a reasonable approxima-
tion of the desired quantities [BKM16]. Both methods are equivalent to choosing between two
different engines, as they both have valuable properties depending on their use case. Before
choosing, and besides different foundations (Tab. 2.1), one has to assess the needs of the model
application (Tab. 2.2). The criteria to consider are the problem scale, the need for precision,
and certainty.
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MethodCriterion MCMC VI
Problem

scale
Small

(expensive to compute)
Large

(generally fast)
Need for
precision Great Moderate

Certainty
of model

specification
Great Moderate

Fidelity to
the geometry

of the posterior

Gibbs sampling can help,
but the methods generally

fall short in complex settings

Is not
guaranteed

Relative
accuracy

Asymptotically
perfect

Generally
underestimates the

variance of the posterior

Table 2.2 – Inference method selection guide

MCMC is a tool for simulating densities at its very core. It offers asymptotical certainty of
exact computing samples from the target density. These methods are helpful when the need
for precision is predominant and the model specification is neat and clear, like in conjugate
distributional contexts. However, it falls short when the setting is too complicated or when
the data to analyze is massive, as in Big Data contexts. VI, on the other hand, can succeed
in settings where MCMC falls short, including in massive scale, non-conjugate distributional
settings, and even non-convex settings 1. This basis also is VI’s weak spot, as this technique is
prone to underestimating the variance of the posterior. Our work relies on VI for three reasons.
The first one is that despite the theoretical guarantees it offers, most classical MCMC methods
such as Gibbs sampling are too slow for parameter inference in our industrial setting. The
second reason is that despite the existence of online Gibbs sampling variants [DB16], adding a
new modeling hypothesis to an existing model requires devising an entirely new inference pro-
cess, thus making model updates slightly tricky. The third reason is that VI is able to handle

1. As this Section’s contents are mathematically dense, we refer the reader to [HBB10] for an application of
online variational inference to the LDA model to avoid clutter.
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nonconjugate settings [BL06; WB13].

VI approximates the posterior distribution using optimization. To achieve this goal, it posits
the existence of a family of distributions that match the posterior. This family is called varia-
tional. The Kullback-Leibler divergence (KLD) defines this closeness between the approximate
distribution and the true posterior. Thus, the optimization procedure aims to find the param-
eters that minimize the KLD between the variational family and the true posterior. Let λ be
this set of parameters. The optimization objective is the following:

λ∗ = arg minλKLD (q (θ, z;λ) ∥ Pr (θ, z | w)) (2.7)

Eqn 2.7 is intractable due to the posterior. It is, however, possible to re-express it:

KLD (q (θ, z;λ) ∥ Pr (θ, z | w)) = log Pr (w)− Eq(θ,z;λ)
[
log

Pr (w, z, θ)
q (θ, z;λ)

]
(2.8)

As the first term in Eqn. 2.8 does not depend on the set of parameters to optimize, our goal
is equivalent to minimizing the expectation. Doing so enables defining a lower bound on the
expectation, hence the name of Evidence Lower BOund (ELBO).

ELBO = Eq(θ,z;λ)
[
log

Pr (w, z, θ)
q (θ, z;λ)

]
≤ log Pr (w) (2.9)

It is possible to (tractably) approximate the ELBO provided a tractable variational density
exists. The following sections review two ways of performing VI: mean-field VI and black-box
VI. We close this section by showing how Deep Learning can leverage these techniques for
parameter inference.

2.1.1.2.1 Mean-field variational inference As its name states, Mean-field VI (MFVI)
makes the mean-field assumption, i.e., we can write the variational as follows:

q (θ, z;λ) = q (θ;λθ)
N∏
i=1

q (zi;λi) (2.10)
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with λ = (λθ, λ1, . . . , λN). The ELBO becomes the following:

ELBO (w, λ) = Eq(θ;λθ)∏N
i=1 q(zi;λi)

{
log

Pr (θ)
q (θ)

+
N∑
i=1

log
Pr (zi | θ)
q (zi;λi)

+
N∑
i=1

log Pr (wi | zi, θ)
}

(2.11)

2.1.1.2.2 Black-box variational inference We follow A. B. Dieng’s thesis formalism
[Die21] and rewrite the ELBO’s expression including all the latent variables in z. The ELBO
becomes the following:

ELBO = Eq(z;λ) [log Pr (x, z)− log q (z;λ)] (2.12)

Instead of the MF assumption, BBVI optimizes the ELBO using a Monte Carlo to approximate
its gradients:

∇λELBO = ∇λ

∫
[q(z;λ) logPr(x, z)− q(z;λ) log q(z;λ)]dz

=

∫
[∇λq(z;λ) logPr(x, z)−∇λ(q(z;λ) log q(z;λ))] dz

=

∫
[logPr(x, z)∇λq(z;λ)− log q(z;λ)∇λq(z;λ)− q(z;λ)∇λ log q(z;λ)] dz

=

∫
[logPr(x, z)− log q(z;λ)]∇λq(z;λ)dz−

∫
∇λq(z;λ)dz

=

∫
q(z;λ)[logPr(x, z)− log q(z;λ)]∇λ log q(z;λ)dz−∇λ

∫
q(z;λ)dz

= Eq(zλ) [(logPr(x, z)− log q(z;λ))∇λ log q(z;λ)]

(2.13)

We used the following identities:
∫

q (z;λ) dz = 1 and ∇λlog q (z;λ) = ∇λq(z;λ)
q(z;λ) . It is possible

to use a Monte Carlo procedure to approximate this expectation thanks to the below formula,
which is also an unbiased and consistent estimator of the actual score gradient. This estimator,
however, is known to have a high variance. In this work, we use pathwise derivatives - also known
as the reparamaterization trick (RT) - to approximate gradients of Monte Carlo objectives.

∇λELBO ≈ 1

S

S∑
s=1

(log Pr (w, zs)− log q (zs;λ))∇λq (zs;λ) (2.14)
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The RT’s name comes from the fact that it introduces variables ϵ whose distribution q (ϵ)
do not depend on λ. Under this assumption, the ELBO becomes the following:

ELBO = Eq(ϵ) [log Pr (w, g (ϵ, λ))− log q (g (ϵ, λ) ;λ)]) (2.15)

where z ∼ q (z;λ)⇔ ϵ ∼ q (ϵ) and z = g (ϵ;λ). Its gradient is written as follows:

∇λELBO = Eq(ϵ) [log Pr (w, g (ϵ;λ))− log q (g (ϵ;λ) ;λ)] (2.16)

We can use the following formula for Monte Carlo approximation:

∇λELBO ≈ 1

S

S∑
s=1

∇λ [log Pr (w, g (ϵ;λ))− log q (g (ϵ;λ) ;λ)] (2.17)

As per [KW14], in this work, we set S = 1 as it has proven enough for learning procedures.

In Deep Learning, the reparameterization trick proves useful for two reasons. On the one
hand, it enables using BBVI. Conversely, it implies deterministic, differentiable, and equivalent
density transformations of some specified distribution. These transformations make it possi-
ble to use backpropagation through stochastic nodes. It is the procedure used in variational
autoencoders [KW14] (VAEs). The reparameterization trick, however, comes with a downside
called latent variable collapse. In VAEs, latent variable collapse is when the variational poste-
rior stops depending on the data, i.e., when the approximate posterior becomes so close to the
prior that the posterior estimates of the latent variable do not represent the data’s underlying
structure. Formally, we can express posterior collapse as follows: qϕ(z | x) ≈ p(z). Several
authors have reported on the issue [Bow+16; Søn+17; Kin+16; Che+17; ZSE17; Yeu+17].
For instance, consider z ∼ N (µ, σ2); a simple data point-wise reparameterization is the follow-
ing :

z(i) = µ+ σ ⊗ ϵ and ϵ ∼ N (0, I) (2.18)

In the above equation, µ is the location parameter for a (variational) Gaussian, and is σ its
scale parameter. Finally, ⊗ stands for the Hadamard product. Without loss of generality,
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we will refer to this specific case where g(.) is a standardization function under the name of
reparameterization by standardization (RBS). RBS works with any distribution that admits
location-scale parameterization. We find the Gaussian, Logistic, and Student’s t distributions
among these distributions. Another possible variant implies using a tractable inverse cumulative
distribution function (CDF) for g(.) and ϵ ∼ U(0, I). This variant is usable with distributions
such as the Exponential, the Weibull, or the Gumbel distributions. A third possibility is to
express random variables following a given distribution as a composition of random variables
that follow other distributions. For instance, if σ ∼ Gamma(ν

2
, ν
2
) then z ∼ N (0, σ2) is a

Student t distribution; if z1 ∼ Gamma(α, 1) and z2 ∼ Gamma(β, 1) then z1
z1+z2

∼ Beta(α, β);
if zi ∼ Gamma(αi, 1) then ( z1∑D

j=1 zj
, z2∑D

j=1 zj
, . . . , zD∑D

j=1 zj
) ∼ Dirichlet(α1, . . . , αD). Other suitable

approximations to the inverse CDF exist, see [Dev86].
In this Section, we have presented three methods for parameter inference and deep-dived into VI
due to its ability to cope with complex settings and to scale to massive data sets. Following the
parameter inference step is the evaluation step. This evaluation must consider several aspects
regarding a topic model’s use cases to be adequate.

2.1.1.3 Model criticism

Probabilistic topic models are a flexible range of techniques. These Bayesian methods can
simultaneously act as feature extractors, dimensionality reduction techniques, and language
models. Most of their applications in the scientific literature imply them as tools for data
exploration as practitioners expect the latent variables to convey some meaning, thus yielding
precious insights about the dataset at hand and easing model interpretations. This piece of
research falls within this use case.
Fitting a topic model is a complex matter that needs careful handling. As probabilistic topic
models are generative models, statistical goodness-of-fit is paramount. However, overlooking the
semantic aspect of topic modeling would go against the foundational assumption that models
capture semantically meaningful latent variables. This assumption is the principal reason for
making them first-class citizens of unsupervised corpora exploration. The scientific literature
does not show much change in the topic models’ training and, perhaps more importantly, topic
model evaluation since Chang & al.’s work ([Cha+09]). With the profusion of information
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due to the Big Data phenomenon, overall interpretability is more than ever a concerning issue
that remains open to this day. In the following sections, we present two kinds of evaluations:
quantitative and qualitative.

2.1.1.3.1 Statistical assessment Predictions are the intrinsic objective for this set of
metrics. These metrics were also the first ones to appear in scientific literature. As probabilistic
topic models are generative, they include some discriminative capacities. In other words, it is
possible to infer a set of topics for a given document. They can also reduce a document’s
dimensionality, i.e., describe a document by a set of topics instead of words. When performing
classification tasks, authors feed these topics to their downstream classifiers and measure their
performance with classical metrics for classification. Doing so implies disposing of labeled data,
which is not our case. In this piece of research, we try to uncover latent, unknown topics from
nonlabeled documents coming from the Internet without any prior knowledge. As such, and
despite their existence, we can not use these indicators. Instead, we focus on likelihood-based
methods.
The most commonly used statistical metric is perplexity as per [Wal+09]. Perplexity measures
the likelihood of an unseen document. Practitioners compute it on a held-out sample from an
unseen test dataset. Its formulation is the following:

perplexity( test set w) = exp

{
− L(w)
count of tokens

}
(2.19)

In Eqn 2.19, L(w) is the model’s log-likelihood. Authors also use the ELBO as a surrogate.
Qualitative evaluation is not the only way to assess a topic model; one must also assess its
quality.

2.1.1.3.2 Quality assessment When discussing a topic model’s quality, authors can refer
to two concepts: topic coherence and topic interpretability. These concepts are complex enough
to justify further discussions. These discussions are beyond the scope of this work yet still
need some definition to understand this research. We call topic coherence the lexically sensible
co-occurrence of words. On the other hand, we call topic interpretability the possibility of
unequivocally naming a topic.
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In 2009, Chang & al. [Cha+09] released an article that stands out comparatively with previous
works on topic model evaluation that only use perplexity. To introduce their line of thinking,
they start by reconnecting the Latent Semantic Analysis (LSA) [Dee+90], i.e., one of the very
first topic models, to its origins in the field of Psychology. In particular, the authors state that
psychologists used the LSA to replicate human reasoning. The assumption still holds more or
less implicitly. In more recent works, authors sometimes involve humans in the loop at different
stages either by displaying a qualitative evaluation of topic models or twisting the inference
process to include human insights [HBS11]. Chang & al. are the authors that went the furthest
down the path of evaluating a topic model concerning a set of almost purely human criteria of
their time, thus re-establishing the links between the fields of Psychology research and main-
stream Machine Learning research.
Their work is insightful and helps determine how analysts understand and interpret supposedly
semantic latent spaces. To assess a topic model’s results, the authors used the probabilistic
Latent Semantic Indexing (pLSI) [Hof99], the Latent Dirichlet Allocation (LDA), and the Cor-
related Topic Model (CTM) [LB05]. They asked a sample of people to perform two intruder
detection tasks: one on topics and one on words. The experiment presented document samples
and a randomized selection of topics with the highest probability according to a topic model,
plus an intruder topic. The procedure also included a similar task for words. Topics and
words are the analytic levels the simplest topic models summarize within their latent space.
The working hypothesis is that if topics (respectively words) are coherent with a document’s
content, then the test subjects should non-randomly select the intruder topic, and they should
answer randomly otherwise. In other words, the collective answers about the same elements
experiment will allow judging about the semantic goodness-of-fit. The results confirm that a
model’s raw predictive power does not determine its semantical quality; on the contrary, i.e.,
models with lower log-likelihood than their counterparts were deemed better regarding seman-
tics. Additionally, the more specific or fine-grained the topic gets, the fewer users can interpret
them. The results suggest that relative semantic homogeneity and topic separateness are key
to interpretability. To assess this aspect, Dieng & al. [DRB20] use topic diversity:

Topic diversity =
Number of unique tokens among the set of topics

Total number of tokens in the set of topics
(2.20)
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We retain from Chang & al.’s and previous work that achieving significant latent spaces and
high statistical goodness-of-fit is as tricky as achieving a good bias-variance tradeoff in a clas-
sification task.
Despite these insights, we think the experimental protocol’s design does not fully evaluate a
probabilistic topic model’s inner latent space, nor does it comply with reproducibility require-
ments for evaluation. The same applies to subsequent rating-based works that use human rating
[New+10; Mim+11; AS13]. We explain our position about the protocol not being a complete
evaluation of the latent space by the fact that to evaluate it, the authors have devised tasks
to evaluate document-topic and topic-word levels separately and only inquire about intruders.
The task does not determine the extent of a document’s "correct topics" representativity. Also,
it does not clarify what a "good" model is, nor what is a "semantically homogeneous" topic.
These points are essential, as the whole mixture of elements requires an evaluation. Besides,
the protocol only applies to the simplest probabilistic topic models; the protocol would fall
short in evaluating more complicated settings.
The issues of non-reproducibility, costs, incompleteness, and discrepancy with statistical indi-
cators of human evaluation have created the need for metrics for automated evaluation. Sci-
entific literature includes three notable attempts at capturing coherence ([New+10; Mim+11;
LNB14]). All of these metrics are mutual information-based. The most common indicator
for topic coherence is the Natural Pointwise Mutual Information (NPMI) ([LNB14]). Authors
usually report the mean NPMI, whose formula is the following:

Topic coherence =
1

K

K∑
k=1

1

45

n∑
i=1

n∑
j=i+1

f
(
w

(k)
i , w

(k)
j

)
(2.21)

where
{
w

(k)
1 , . . . , w

(k)
n

}
is the set of the top-n most likely words in topic k ∈ {1, . . . , K} and f

is the normalized mutual information:

f (wi, wj) =
log

Pr(wi,wj)

Pr(wi)Pr(wj)

− logPr (wi, wj)
. (2.22)

Pr (wi, wj) is the probability of words wi and wj co-occurring in a document and Pr (wi) is the
marginal probability of word wi. These quantities result from the empirical count of words.
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This indicator oscillates between -1 and +1, with -1 indicating that the considered words never
occur together, 0 indicating the absence of link, and +1 indicating that the considered words
systematically appear together. The underlying assumption of (mean) NPMI is that a coherent
topic’s word should appear in the same context, i.e., document. This assumption corresponds
to Harris’ distributional hypothesis, which is the exact one that underlies Mikolov & al.’s works
on word embeddings [Mik+13].To take all the aspects of quality into account, Dieng & al.
[DRB20] consider it as the product between topic diversity and the topic coherence, hence:

Topic quality = topic diversity × topic coherence (2.23)

The NPMI has been the golden standard for topic modeling evaluation for nearly a decade
without being challenged. In 2021, Hoyle & al. presented a meta-analysis paper [Hoy+21]
that assesses the validity of the usual evaluation when used with neural topic models (see
Section 2.2.1), among others. They show that human judgment differs substantially from
automated metrics and that automated metrics tend to exaggerate model differences compared
with human judgment, thus undermining their utility for model selection. Moreover, the authors
report that the metrics favor blurrier topics. These observations do not lead them to prefer
human evaluation: it is costly and has reproducibility issues. They also show that using word
familiarity as a substitute for domain expertise is not a satisfying solution. Therefore, the issue
of evaluating a topic model is still an open one. This issue is particularly challenging due to the
increasing interaction between probabilistic graphical modeling and deep generative learning.

2.1.2 Deep Learning and Probabilistic Graphical Modeling

Deep Learning has proven useful in several domains, text included. In unsupervised settings,
its role is complementary to probabilistic graphical modeling. On the one hand, probabilistic
graphical modeling aims to specify a mathematical structure of a dataset in the form of latent
variables that follow hypothetical distributions. On the other hand, a neural network aim at
capturing data structure, e.g., its correlations. Hornik & al. [HSW89] have shown that neural
networks can represent any function; as such, they are flexible settings that can capture com-
plex data dependencies and links in datasets. This flexibility is also their Achille’s heel, as they
are prone to overfit datasets, hence the need for specific regularization methods.
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Figure 2.3 – Simplified representation of a VAE’s logic

Notable contributions to deep unsupervised learning include the AutoEncoder (AE). The
AE is fundamentally a dimensionality reduction framework that aims to learn a code from data,
i.e., a latent, low-dimension variable called code that contains the essential characteristics of
data [HS06]. The setting uses a duo of neural networks to achieve this goal; a first neural
network called an encoder outputs the code. Then, a second neural network called a decoder
tries reconstructing the input data thanks to the sole code. The variational autoencoder (VAE)
[KW14], i.e., the probabilistic extension to the AE framework, is particularly interesting. The
VAE’s logic is close to AEs (Fig. 2.3). The models, however, differ because VAEs do not
extract an intrinsic code from data but an underlying distribution. We provide additional
practical reasons for focusing on VAEs in Appendix C. In Fig. 2.3, we display stochastic
elements involving variational parameters in a white cell. This distribution serves to generate
samples 2 that go through a deterministic standardization process. This deterministic aspect is
paramount to parameter inference using backpropagation [RHW86].

The framework presents the property of matching model design with posterior inference. In
other words, it uses both a data model and an approximate posterior over the latent variables:

Prβ(w, z) = Pr (w | fβ(z)) · Pr(z) (2.24)

qϕ(z | w) = qϕ (z | gϕ(w)) (2.25)

In Eqn. 2.24 and Eqn. 2.25, fβ and gϕ are both neural networks. fβ defines the likelihood,
whereas gϕ parameterizes the posterior. In scientific literature, gϕ is called an encoder and fβ

2. These samples are the stochastic equivalent to the code in the AE context.
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is the decoder. The likelihood belongs to the exponential family.

Practitioners use stochastic gradient ascent to train both neural networks whose weights are
the model’s parameters. The optimization objective is still the ELBO, whose expression is as
follows:

ELBO(β, ϕ) = Eqϕ(z|w) [log pβ(w, z)− log qϕ(z | w)] (2.26)

For a given set of parameters ϕ, maximizing the ELBO with respect to β is equivalent to
maximizing the likelihood of observations. However, maximizing the ELBO with respect to ϕ
for a given set of parameters β has two possible interpretations.
The first possible perspective is that of KL minimization. It is possible to write the ELBO as
follows:

ELBO(β, ϕ) = Eqϕ(z|w) [logPrβ(z | w) + logPrβ(w)− log qϕ(z | w)] (2.27)

As logPrβ has no dependency on ϕ, maximizing the expression with respect to ϕ is the same
as minimizing the KLD between the variational qϕ(z | X) and the true posterior Prβ(z | w).
Under these assumptions, the objective becomes the following:

ELBO(β, ϕ) = −KLD (qϕ(z | w)∥Prβ(z | w)) + cst (2.28)

The second perspective is that of a regularized AE. The ELBO is expressable as follows:

ELBO(β, ϕ) = Eqϕ(z|w) [logPrβ(w | z)]−KLD (qϕ(z | w)∥Pr(z)) (2.29)

Without loss of generality, we consider a Gaussian with identity variance likelihood case. We
assume a standard Gaussian prior and optimization through BBVI with RBS. Also, let w be a
set of data points. Under these assumptions, the ELBO is the following:

ELBO(β, ϕ) = ∥w − fβ (zϕ(w))∥22 −
1

2
∥gϕ(w)∥22 (2.30)

The first term is the objective that corresponds to that of an AE; the second regularizes the
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parameters ϕ to bound the encoder’s L2 norm. The supplementary Gaussian noise from the
RBS is also a form of regularization. Its purpose is to enable the trained decoder to simulate
new data.

It is possible to use a conjunction of amortized variational inference (AVI) and MFVI to fit a
VAE. AVI means the VAE passes data through a shared network to compute the approximate
posterior. The procedure amortizes the cost of inference for models with local latent variables.
On the contrary, the MFVI procedure uses the following factorization:

q (β, z1:N ;λ) = q (β;λβ) ·
N∏
i=1

q (zi;λi) (2.31)

This factorization implies the independence of all latent variables. It is possible to relax the
assumption by including conditional independence between the local latent variables z1:N and
the global variables β. Consequently:

q (β, z1:N ;λ) = q (β;λβ) ·
N∏
i=1

q (zi | β;λi)

= q (β;λβ) ·
N∏
i=1

q (zi | xi,β;λi)

(2.32)

To connect MFVI with AVI, we assume the set of global latent variables β to represent an a
posteriori neural network with parameters λβ and the latent variables zi to have their distribu-
tion through the data points. Doing so is equivalent to passing a data point through a neural
network. Thus, we get the following expression:

q (β, z1:N ;λ) =
N∏
i=1

q (zi | xi,λβ) (2.33)

In this section, we have presented the Bayesian foundations for probabilistic topic modeling.
We have also linked these foundations to deep generative learning. In the next section, we give
an overview of state-of-the-art of topic modeling.
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2.2 Topic modeling

This section gives the reader an overview of state-of-the-art topic modeling. We mainly
focus on neural topic modeling, time dynamics, and contextualization. We then present some
applications of topic modeling to media mining.

2.2.1 Neural topic modeling

Most neural topic extractors follow a VAE’s logic [KW14]. The VAE is a generative neural
framework that allows for simplified variational inference on large datasets. As it uses the same
classical backpropagation from Deep Learning, one only needs to derive a formula for the lower
bound on the likelihood of the model. This bound is usually referred to as Evidence Lower
Bound, or ELBO. For simplicity, we will use the terms ELBO and likelihood interchange-
ably. Miao et al. [MYB16] have devised one of the earliest models of the kind: the Neural
Variational Document Model. The Neural Variational Document Model suffers from posterior
collapse despite its increased scalability and precision compared with non-neural topic models.
To circumvent the issue, Srivastava & Sutton developed the ProdLDA [SS17]. Its main contri-
bution is that it tries to get closer to a Dirichlet prior distribution thanks to its approximate
relationship with the logit normal distribution. Additionally, the prior takes place in the sim-
plex as expected for compositional data modeling. The ProdLDA makes topic modeling with
a VAE more efficient, thus highlighting the importance of Dirichlet-like priors for topic mod-
eling. LDA-like generative processes rely on the conjugacy relationship between the Dirichlet
distribution and the categorical distribution used to indicate topics. Other Gaussian-based de-
velopments include the TopicRNN [Die+17] and the Embedded Topic Model (ETM) [DRB20]
(by chronological order). TopicRNN and the ETM both include unsupervised word informa-
tion, under sequential form [Die+17] and embedding form [DRB20], respectively. These models,
however, are fully parametric concerning the number of topics; consequently, it is compulsory
to run them several times to find the optimal number of topics.
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One of the Bayesian statistic’s classical ways of dealing with compositional data whose
number of mixture components 3 is not specified beforehand is the Dirichlet process (DP) family.
A DP is a stochastic process that yields a probability distribution. To achieve this result, it takes
on two parameters: a concentration parameter and a base distribution. In other words, a DP is
a distribution built on another distribution. The choice of the base distribution is paramount
and strongly depends on the use case. In topic modeling, practitioners usually choose a discrete
measure. As the name indicates, the DP is closely related to the Dirichlet distribution; it is
considered an infinite-dimensional Dirichlet. There are several ways to construct a DP. In
variational inference, the most used one is the stick-breaking construction (SBC) 4. Miao & al.
[MYB16] have devised a Gaussian SBC to automatically determine the number of topics, thus
trying to achieve the same results as a fully-fledged DP. The setting seems to perform well.
However, it needs two RNNs on the encoder side (the first to learn the SBC weights and the
second to bind the number of topics), and it is still fully Gaussian, hence not Dirichlet-related.
To our knowledge, the first work to involve DPs in the strict sense with VAEs is Nalisnick & al.’s
stick-breaking VAEs (SB-VAE) [NS17]. The work does not particularly focus on topic modeling
tasks and is actually of a general extent. Due to the reparameterization trick, Nalisnick & al.
have replaced the original Beta distribution with a Kumaraswamy distribution. Relying on SB-
VAEs, Ning & al. [Nin+20] have devised unsupervised VAE-based topic models. Still, there is
no notion of word linking within these works.

2.2.2 Dynamic topic modeling

One of LDA’s central hypotheses is that of exchangeability between documents. In some
cases, the order of the documents is essential, and thus, they are not exchangeable. Blei & al.’s
Dynamic Topic Models [BL06] is perhaps the most famous work in the field. The authors build
a temporal extension for LDA (Dynamic LDA or D-LDA) that includes a chain with each topic
parameter embedded into a state-space model that changes with Gaussian noise. The chain’s
role is to ensure proper document linking. In addition to this chaining, the document-topic prior
is no longer a Dirichlet distribution but a Logistic Normal. DTM is much more a framework

3. In topic modeling, the topics are these components.
4. We provide more details on DPs in Section 3.
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than a model. It focuses on building a model with implicit time-dependency inclusion that cap-
tures dependencies for both document-topic and word-topic distributions. A recent application
inspired by the framework is the Dynamic Embedded Topic Model (D-ETM) [DRB19]. The
D-ETM extends the ETM to a dynamic context and shares a similar inference engine.

The Dynamic Mixture Model (DMM) [WSW07] is a variant of DTM. Instead of chaining priors
on topics, DMM chains the topic themselves and drops word-topic dependencies. The impact
of this difference is that DMM rendering is about consecutive documents instead of temporal-
grouped slices of a corpus that posits the exchangeability of its members. In other words, we
could consider that DTM processes streams of batches of documents and that DMM processes
streams of individual documents, thus making it sound akin to an online model. The DTM
or the DMM model time by passing parameters from one time slice to the following, similar
to a prior. This process is an implicit, Markovian linking. Other authors have chosen explicit
modeling of the time dependency, resulting in a much more orthodox Bayesian approach. For
instance, in Topics Over Time (TOT) [WM06], the authors build an extension of the LDA,
where a document’s timestamp is associated with its tokens. Besides capturing the underlying
data structure of the documents, the models also render how it changes over time in both short
and long terms in a non-Markovian way. TOT assumes that topics are associated with a con-
tinuous distribution over timestamps. The mixture distribution of topics for each topic, in turn,
has influences from both the observable word co-occurrences and document timestamp variables.

As our work aims at handling a massive preexistent dataset coming from several sources, it
is impossible to anticipate how many topics the dataset will contain. Under our assumptions,
including non-parametric aspects to topic models make sense to keep track of topic evolution.
Non-parametric topic models find their premises in Teh al.’s Hierarchical Dirichlet Processes
(HDP) [Teh+06]. Their stick-breaking approach has become popular and fuels the inference
of many topic models, including LDA. The non-parametric version of LDA is the hierarchi-
cal LDA (HLDA) [Ble+03]. It uses an arborescent process based on the Chinese Restaurant
Process (CRP) due to an analogy between its construction and Chinese restaurant customers.
Wang & al. [WPB11a] have devised an online variational algorithm to make this model suitable
for large datasets. Despite not having any temporal dynamic, the model still opened a way
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toward non-parametric, efficient models. Ahmed & Xing [AX10] have used the CRP to build
their infinite dynamic topic model (iDTM), an extension of DTM.

Similarly to its parametric counterpart, iDTM posits that documents are exchangeable
within the same epoch. However, they have adapted the evolution of per-document and per-
word topics to distribution into a Chinese Restaurant Franchise (CRF) representation. The
CRF enables the activation and deactivation of topics at any epoch. By attributing a recurrent
twist to the CRF, iDTM can also capture dependencies between the topics and the popularity
of each epoch. Despite these features, DTM, and subsequently, iDTM, need a discretization
of time. The granularity impacts the exchangeability assumption of documents within a time
slice. If the time slices are too extensive, then the temporal equivalence between documents
can barely hold; on the contrary, if the time slices are too shallow, the number of variational
parameters will explode.

In 2008, Ren & al. [RDC08] presented the dynamic Hierarchical Dirichlet Processes (dHDP).
The model directly extends the HDP. As a Bayesian hierarchical model, dHDP posits some
dependency between groups or topics. However, the model assumes exchangeability for topics
corresponding to the same time slice. Wang & al. [WBH08] have developed the continuous-time
dynamic topic model (cTDTM) with this criticism in mind. It is still a variant of DTM, except
that it uses Brownian motion to model the latent topics through a sequential collection of
documents. Thanks to this setting, cTDTM can handle arbitrary granularity, as demonstrated
experimentally. Finally, the CRF applies when the temporal dimension is explicit, such as
non-parametric TOT [Dub+12]. As common with classical Bayesian statistics, most models
use Gibbs sampling as their inference workhorse. Despite the theoretical guarantees it offers,
Gibbs sampling in general is too slow for document stream processing, thus making variational
techniques preferable for this task.
In this Section, we have presented an overview of state-of-the-art of dynamic topic modeling.
While time is an essential element in understanding the underlying structure of a corpus, so are
contextual elements. The next Section presents an overview of the state-of-the-art of contextual

35



topic modeling.

2.2.3 Contextual topic modeling

The LDA is a generative model that tries to capture topics and word co-occurrence in a
corpus. However, it comes to a price, as elements in a document are conditionally indepen-
dent. This exchangeability makes inference easier, but it decontextualizes a word by ignoring
its vicinity. The same applies to topics, as the LDA does not capture their proximity. Context
is essential to knowledge discovery for textual data [BTH21; Bia+21], as their goal is to make
collections of documents interpretable to analysts without reading each of them. It is also cru-
cial to dimensionality reduction as it enables summarizing a text to its essential features.

Several authors have tried to introduce context and proximity in a topic model. For instance,
Blei & Lafferty [LB05] have tried to leverage topic correlations in their Correlated Topic Models
(CTM). Du & al. [DBJ10]) have devised Sequential LDA, a topic model that makes use of the
segments in a corpus (chapters, paragraphs, Etc.) to render its underlying topics. Hu & al.
[HBS11] even suggested that humans can correct topic models by adding a linking constraint
between words in an interactive mode. According to Zhu & al. [ZBL06], syntactic elements
act as scaffolding without dropping the exchangeability assumptions. None of these approaches
apply to our case; we focus on modeling a massive volume of documents from several sources.
We want to extract information when we have no prior knowledge of a specific domain that often
needs particular expertise or tools. Depending on additional external tools that strongly depend
on external choices and data quality is risky and might hinder a model from producing quality
topics. Additionally, our goal is not to build models that reproduce an expert’s knowledge; it is
much more to build techniques that faithfully report the datasets at hand. The way we consider
it, the fidelity must depend on the fact that language and text are a sequence of words and
symbols that follow a specific order. Finally, we mainly focus on leveraging fully unsupervised
word semantics in topic modeling, as it is one of the most basic observable variables, the other
being time.
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Capturing word dependencies is achievable in several ways. The most direct way is to lever-
age the LDA word-topic priors by weighting terms that we want to appear together. However,
similarly to Hu & al.’s interactive solution [HBS11], there is no guarantee that the user’s mod-
ifications correspond to what is inside the dataset, even if the weighting relied on a thorough
expert diagnosis. It is merely a prior. Yan & al. introduced the Biterm topic model (BTM)
[Yan+13] in a much more unsupervised way. It treats words in pairs to introduce context. The
finality is to better model short documents, one of LDA’s identified pitfalls. The experiments
on the Tweets2011 Collection 5 and the 20 Newsgroup 6 datasets show that BTM outperforms
LDA on short and "normal" text settings. However, the approach is highly impractical in our
industrial context due to the need to form bi-terms, thus considerably increasing the volume
of data. In the same vein, Balikas & al. [Bal+16] have designed the senLDA. In this work,
the authors assume that the terms occurring within the same sentence come from the same
topic. The method is generalizable to longer or shorter texts, thus making the LDA a particu-
lar case of senLDA. LDA performs better on perplexity evaluation, whereas senLDA is better
for classification tasks and converges faster. This kind of linking still assumes that elements are
somewhat exchangeable, even if the considered text spans are variable in length.

Despite being tools primarily aiming at knowledge discovery, topic models are also perceiv-
able as language models. Some language models take word order into account to reproduce
language effectively. To our knowledge, the first Markovian topic model for language modeling
is Griffiths & al.’s HMM-LDA [Gri+04]. This model has the particularity of considering both
"short-range syntactic dependencies and long-range semantic dependencies" instead of solely
focusing on syntax and semantics. In other words, the model integrates word meanings and
order to extract faithful topics. According to the authors, only a subset of words – the content
words – will produce long-range semantic dependencies, yet they depend on local dependencies
– syntax – as all words. Syntax also carries contextual elements. The model yields good results
on several tasks, such as topic extraction and POS tagging. It behaves similarly to LDA on

5. https://trec.nist.gov/data/tweets/
6. http://qwone.com/~jason/20Newsgroups/
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document classification on the Brown corpus 7. HMM-LDA has a neural alternative named
TopicRNN [Die+17]. The underlying ideas of this model are the same and combine a topic
modal and a recurrent neural network (RNN) for topic extraction and sentiment analysis. Top-
icRNN, however, does not model the topics explicitly. The RNN encodes the topic extraction
information in its hidden states instead.

Another approach relies on word embeddings. For recall, word embeddings are dense vecto-
rial representations of words obtained from a bag of words representation of documents. These
vectors not only encode words; they also encode their context. One of the most famous ap-
proaches is Word2Vec [Mik+13]; other authors have released other representation techniques
since Word2Vec, yet they remain trendy and used in various works and industrial applications.
Dieng & al. have successfully adapted word embeddings to LDA-like topic modeling in their
Embedded Topic Model [DRB20]. The model not only learns topic representations (or con-
texts); they are also capable of learning word representations (or embeddings). As with other
embedding techniques, it is possible to use pre-trained embeddings and to learn topics only.
The model considers the word vicinity only: the model is still non-Markovian. However, the
model explicitly captures both the topics and the elements. Despite the model’s performance
on topic extraction tasks, it is not usable for other tasks that require word sequence reporting,
such as POS tagging. Other methods use pre-trained embeddings [DZD15; Xun+17; HBS11].
The process even works in nonparametric settings, as reported in the spherical Hierarchical
Dirichlet Process [Bat+16]. We present a few applications in the following Section.

7. http://korpus.uib.no/icame/brown/bcm.html
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2.3 Applications to media mining

Topic models uses have been reviewed in both the academic [BHM17; Jel+19] and the indus-
trial [VJ21; Xio+18] contexts, including marketing [GS21] and social media research. Our work
is not the first to involve web-collected data. Most of the previous works we noticed use a single
data source [Qia+22] - Twitter or Reddit, for instance -, thus allowing for specific data cleaning
processes and standardization steps 8, even when involving web-scraping[Arm+21; Mau+21].
Some works also explicitly involved collection through APIs, and as such, no data parsing nor
markup languages removal was necessary[El +21; HP21]. As far as we know, applications of
neural-based topic models almost exclusively concern health issues (mental health and COVID-
19). We believe this interest is, first and foremost, due to the closeness between the moment
they were released and the various health issues caused by the pandemia. Contrarily to our
use case, the applications we listed do not particularly focus on specific named entities such
as products. In one of them, [HP21] topic modeling only serves to reduce text dimension for
classification without any other concern for the extracted topics. The work we find closest to
ours is Bennett & al.’s [BMT21]. The authors compared state-of-the-art neural and non-neural
topic models and applied these same models to COVID-19 Twitter data. Contrasting with our
approach, they emphasized parametric neural topic models, while our work focuses on applying
non-parametric ones. Like all the other works, they did not try to use the model’s properties to
cope with data-inherent noise. Last but not least, they introduced a novel regularization term,
which is something beyond the scope of this work.

2.4 Conclusion

In this Chapter, we have presented the Bayesian foundations of probabilistic graphical mod-
eling. We have shown its links with probabilistic topic modeling and deep generative learning.
We have also presented state-of-the-art topic modeling and some applications for media mining.
In the next Chapter, we present the theoretical framework we derivate from this knowledge.

8. E.g., setting words to lowercase or punctuation removal.
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Chapter 3

The Embedded Dirichlet Processes

In this Chapter, we present two contributions to solving the problem of large-scale, unsu-
pervised topic extraction in social media: the Embedded Dirichlet Process and the Embedded
Hierarchical Dirichlet Process. These models can automatically detect the number of topics
in a corpus and compute word embeddings and topic embeddings for better text exploration.
These approaches do not need prior learning in the sense of transfer learning to reach these
goals. We start by laying the theoretical foundations for building our two models, i.e., the Em-
bedded Topic Model and the Dirichlet Processes. The Embedded Topic Model is a neural-based
topic model that presents the particularity of capturing semantic links in long-tail vocabularies.
This property makes the model particularly interesting for Web-extracted, heterogeneous, and
noisy corpora, where the writers often use Internet slang or misspell words. It also captures
links between topics, thus considering that specific topics can exhibit some degree of related-
ness. Dirichlet Processes, in turn, are particular probability distributions that determine latent
variables’ number of components or topics. We focus on the stick-breaking variant of the Dirich-
let Processes and show how they relate to Deep Learning. We then test our models on two
standardized datasets before applying them to an industrial dataset proceeding from several
social media sources. We show that they perform better than their concurrent counterparts in
empirical comparative studies.
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3.1 Related work

The following sections present the theoretical foundations for our Embedded Dirichlet Pro-
cesses. These foundations are two-fold, as we mainly rely on the Embedded Topic Model and
the Dirichlet Processes. Last, we present an alternative to the RBS that enables sampling from
Gamma and Gamma-derivated distributions instead of using surrogates.

3.1.1 The Embedded Topic Model

The Embedded Topic Model (ETM) [DRB20] extends the Latent Dirichlet Allocation [BNJ03]
to include Continuous Bag-Of-Words-like (CBOW) embeddings [Mik+13] in its generative pro-
cess. The algorithm learns word embeddings from data using entire document contexts (or
topics) instead of surrounding words. The contexts themselves are topic embeddings that are
visualizable in the same space as the word embeddings. It is also possible - yet optional - to ini-
tialize the embedding layers with pre-fitted and more complex word representations, including
words that do not appear in the dataset. In this setting, the model will still fit representations
for these words according to their lexical vicinity. The ETM shares LDA’s mixture assumptions,
except that words and topics can show similarities in their embedding space in contrast with
the latter. It can also capture the distribution of rare words and the long tail of language data.
This property proves useful in heterogeneous datasets. ETM uses a VAE setting [KW14] for
parameter inference. The authors use a Logistic Normal prior as a surrogate distribution for a
Dirichlet (Fig. 3.4) to work with the reparameterization trick.

Algorithm 2 Generative process for the ETM
1: Choose Nd ∼ Poisson (λ)
2: Draw topic proportions θd ∼ LN (0, I)
3: for all word wn in document d do
4: Draw topic assignment zdn ∼ Categorical (θd)
5: Draw the word wdn ∼ softmax

(
ρ⊤αzdn

)
6: end for
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Figure 3.1 – Simplified representation of the ETM

In Alg. 2, θd = softmax (δd) where δd ∼ N (0, I), ρ is a L×V tensor, and α is a L×K tensor.
L is a fixed embedding dimension, V is the vocabulary length, and K is a hyperparameter for
the number of topics. Its ELBO is the following:

ELBO(ν) = Eq [logPr (w | δ, ρ, α)]−KLD (q (δ;w | ν) ∥ Pr (δ)) (3.1)

In Eqn. 3.1 1, w is the document set, ν represents the weight coefficients of a MultiLayer
Perceptron (MLP) that acts as an encoder - or inference network - for a Gaussian variational
distribution parameterized with µ and Σ. Applying the softmax function normalizes the samples
from this Gaussian and embeds them on the simplex. Finally, the optimization process uses
the Adam optimizer (Alg. 3).

1. We disclose the formula details in Appendix A.
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Figure 3.2 – Contour plot of a Dirichlet distribution

Figure 3.3 – Contour plot of a logit-normal distribution

Figure 3.4 – Densities of the Dirichlet and the logit-normal distributions
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Algorithm 3 Inference process for the ETM
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Compute βk = softmax(ρ⊤αk) for each topic k
4: Choose a minibatch B of documents
5: for each document d in B do
6: Get a bag of words representation xd
7: Compute µd = MLP (xd; νµ)
8: Compute Σd = MLP (xd; νΣ)
9: Sample θd ∼ LN (µd,Σd)

10: for all word w in document d do
11: Compute Pr (wdn | θd) = θ⊤d β·,wdn

12: end for
13: end for
14: end for
15: Estimate the ELBO and its gradient through backpropagation
16: Update model parameters α1:K

17: Update variational parameters (νµ, νΣ)

3.1.2 Dirichlet processes and neural variational inference

In this section, we present the Dirichlet processes. The Dirichlet processes are a classical
Bayesian tool for determining the number of underlying components in a dataset [Teh+06;
Ble+03]. The Dirichlet processes typically replace a Dirichlet prior in topic models that infer
the number of topics from data. We then move on to presenting how to use Dirichlet processes
with neural variational inference.

3.1.2.1 Dirichlet processes and stick-breaking construction

Let (Θ,B) be a measurable space, with G0 a probability measure defined on that space.
Let α0 be a positive real number. A Dirichlet process DP(α0, G0) is a probability distribution
of a random probability measure G over (Θ,B) such that, for any finite measurable parti-
tion (A1, A2, · · · , Ar) of Θ, the random vector (G(A1),G(A2), · · · ,G(Ar)) is distributed as a
finite-dimensional Dirichlet distribution with parameters (α0G0(A1), α0G0(A2), · · · , α0G0(Ar)).
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Figure 3.5 – Simplified representation of the SB-VAE

We write G ∼ DP(α0, G0) is G is a random probability measure with distribution given by
the Dirichlet process. Three different ways of constructing a Dirichlet process exist, each cor-
responding to a metaphor: the Pólya urn model, the Chinese restaurant process, and the
stick-breaking construction. Variational inference involving Dirichlet processes often uses the
latter.

Sethuraman introduced the stick-breaking construction for Dirichlet processes in 1994 [Set94].
It uses independent sequences of i.i.d. random variables (π′

k)
∞
k=1 and (ϕk)

∞
k=1:

π′
k |α0, G0 ∼ Beta (1, α0) ϕk|α0, G0 ∼ G0 (3.2)

We then define a random measure G as follows:

πk = π′
k

k−1∏
l=1

(1− π′
l) G =

∞∑
k=1

πkδϕk (3.3)

In Eqn. 3.3, δϕ is a probability measure concentrated at ϕ, e.g., a Dirac. Additionally, G is a
random probability measure distributed according to DP(α0, G0). The sequence π = (πk)

∞
k=1

satisfies
∑∞

k=1 πk = 1. As Beta(1, α0) is equivalent to GEM(α0), we can write π′ ∼ GEM(α0)

and π′ ∼ Beta (1, α0) interchangeably.

3.1.2.2 Stick-breaking variational autoencoder

The stick-breaking VAE (SB-VAE) is an adaptation of the SGVB framework for Bayesian
nonparametric processes [NS17]. More particularly, it aims to learn the stick-breaking process’
weights through posterior inference. Despite being of a general extent, the SB-VAE algorithm
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Figure 3.6 – Samples from the densities of the Beta and the Kumaraswamy distributions

is also applicable to topic modeling [Nin+20].
Let w = {w1, . . . ,wd} be a corpus of D documents, where wd is a collection of Nd words. Each
document representation is a bag of words wd.

Algorithm 4 Generative process for the SB-VAE
1: Choose Nd ∼ Poisson (λ)

2: Get a document-specific G(d)
(
θ; π(d),Θ

)
=

∑∞
k=1 π

(d)
k δθk (θ), with π(d) ∼ GEM (α0)

3: for all word wdn in the document do
4: Draw a topic θ̂dn ∼ G(d)

(
θ; π(d),Θ

)
5: Draw a word wdn ∼ Categorical

(
θ̂dn

)
6: end for

In Alg. 4, qψ (·) denotes the family of variational distributions, ψ denotes the neural network
parameters, and a and b are the variational parameters learned by a MultiLayer Perceptron
(MLP), and v denotes the weights for the stick-breaking step. Contrarily to Ishwaran & James
[IJ01], it is not possible to use a variational Beta distribution for stick-breaking with the RBS
from Kingma & Welling’s work [KW14]. The RBS requires a differentiable non-centered param-
eterization that the Beta distribution cannot provide. Consequently, Nalisnick & al. replaced
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the Beta variational with a Kumaraswamy distribution [Kum80]. Although with higher en-
tropy, this distribution is proper as a surrogate for a Beta distribution and has a DNCP (Fig.
3.6). It is a two-parameter continuous distribution on a unit interval whose density function is
the following:

Kumaraswamy(x; a, b) = abxa−1 (1− xa)b−1 (3.4)

where x ∈ (0, 1) and a, b > 0. It is possible to obtain the required samples from the Ku-
maraswamy distribution as follows:

x ∼
(
1− u

1
b

) 1
a where u ∼ Uniform(0, 1) (3.5)

The KLD from the optimization objective is, thus, between a Kumaraswamy distribution
and a Beta distribution. Its formulation is the following:

ELBO(ν) = Eq [logPr (w | π)]−KLD (q (π | w, ν) ∥ Pr (π)) (3.6)

In Eqn. 3.6 2, w is the document set. We use amortized variational inference and Adam to fit
the model concerning all the parameters (Alg. 5).

2. We disclose the formula details in Appendix A.
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Algorithm 5 Inference process for the SB-VAE
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Compute βk = softmax(ρ⊤ϕk) for each topic k
4: Choose a minibatch B of documents
5: for each document d in B do
6: Get a bag of words representation xd
7: Compute a = MLP (xd;ψa)
8: Compute b = MLP (xd;ψb)
9: Sample v ∼ Kumaraswamy (a, b)

10: Compute π =

{
v1 if k = 1
vkΠj<k (1− vj) for k > 1

11: for all word wd in the document do
12: Compute Pr (wdn | π) = softmax (MLP(π))
13: end for
14: end for
15: end for
16: Estimate the ELBO and its gradient through backprogation
17: Update the parameters
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3.1.3 Implicit reparameterization gradients

Machine Learning and Statistics have made extensive use so far of pathwise gradient es-
timators. In the context of Machine Learning, pathwise gradient estimators are usually the
engine under the hood of the widely known reparameterization trick - or reparameterization
by standardization (RBS) in this research. On the one hand, RBS makes backpropagation
through stochastic nodes possible in a variety of contexts, including that of VAEs [KW14]. On
the other hand, it only works with distributions with location-scale parameterization, tractable
inverse cumulative distribution functions (CDF), or distributions that are expressible through
deterministic transformations. These conditions exclude distributions, including the Gamma,
the Beta, and the Dirichlet. As seen in [DRB20], [SS17], or in [NS17], it is possible to use
surrogate distributions. These distributions, however, only sometimes exhibit all the good
properties needed to model data. In particular, surrogate distributions can struggle to capture
sparsity [RTB16], which is paramount to efficient topic modeling. Figurnov & al. introduced
an alternative to RBS in [FMM18] they call the implicit reparameterization gradients. The
implicit reparameterization gradients (IRG) allegedly provide unbiased estimators for contin-
uous distributions whose CDF is numerically tractable, faster, and more accurate and enable
using the Gamma, Beta, and Dirichlet distributions, among others. They also present applica-
tions of the IRG in the context of VAEs, thus making them fully compatible with our desiderata.

In the context of RBS, let Eqϕ(z)[f(z)] be an expectation of some continuously differentiable
function f(z) with respect to a set of distribution parameters ϕ. Suppose we want to optimize
this expectation. We assume the existence of a standardization function Sϕ(z) that removes
the dependence on the set of distribution parameters when applied to a sample qϕ(z). This
standardization function presents two essential characteristics: it is invertible and continuously
differentiable with respect to both its arguments and the set of parameters:

Sϕ(z) = ε ∼ q(ε) z = S−1
ϕ (ε) (3.7)

We can express the objective as an expectation with respect to ε, thus transferring the depen-
dence on ϕ into f :

Eqϕ(z)[f(z)] = Eq(ε)
[
f
(
S−1
ϕ (ε)

)]
(3.8)
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This transfer allows us to compute the gradient of the expectation as the expectation of the
gradients:

∇ϕEqϕ(z)[f(z)] = Eq(ε)
[
∇ϕf

(
S−1
ϕ (ε)

)]
= Eq(ε)

[
∇zf

(
S−1
ϕ (ε)

)
∇ϕS−1

ϕ (ε)
]

(3.9)

To achieve the IRG, the authors start from Eqn. 3.9. The first idea is to avoid the inversion
of the standardization function. They perform a change of variable such as z = S−1

ϕ (ε), thus
modifying the expression:

∇ϕEqϕ(z)[f(z)] = Eqϕ(z) [∇zf(z)∇ϕz] ; ∇ϕz = ∇ϕS−1
ϕ (ε)

∣∣
ε=Sϕ(z)

(3.10)

The second idea is to leverage implicit differentiation to compute ∇ϕz. They reportedly applied
the total gradient ∇TD

ϕ to Sϕ(z) = ε. Thanks to the chain rule, they expand the total gradient
in terms of the partial gradient, then make the standardization function depend on the set of
parameters ϕ and its argument z. By definition, the noise ε is independent of ϕ. Consequently,
and considering ∇ϕz, the authors had to solve the equation ∇zSϕ(z)∇ϕz+∇ϕSϕ(z) = 0. The
result is the following:

∇ϕz = − (∇zSϕ(z))−1∇ϕSϕ(z) (3.11)

In Eqn. 3.11, the standardization function no longer needs inversion but differentiation.
The IRG applies to the Gamma distribution. The Gamma distribution takes two parame-
ters in its shape-rate expression: a shape parameter α > 0 and a rate parameter β > 0. If
z ∼ Gamma(α, 1), then z/β ∼ Gamma(α, β). It is possible to build the Beta and Dirichlet dis-
tributions with Gamma samples. We first consider the Beta distribution. If z1 ∼ Gamma(α, 1)
and z2 ∼ Gamma(β, 1), then z1

z1+z2
∼ Beta(α, β). On the other hand, if zi ∼ Gamma(αi, 1),

then ( z1∑D
j=1 zj

), . . . , zD∑D
j=1 zj

∼ Dirichlet(α1, . . . , αD).
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3.2 The models

This section presents two novel models: the Embedded Dirichlet Process and the Embedded
Hierarchical Dirichlet Process.

3.2.1 The Embedded Dirichlet Process

The Embedded Dirichlet Process (EDP) is a VAE-based model. Unlike common VAEs,
its core distributions are not Gaussian; it uses a Dirichlet Process instead. It leverages the
implicit reparameterization trick to sample from a Beta variational distribution instead of a
Kumaraswamy.
Let {w1, . . . ,wD} be a corpus of D documents, where wD is a collection of ND words. Each
document representation is a bag of words wD.

Algorithm 6 Generative process for the EDP
1: Choose Nd ∼ Poisson (λ)

2: Get a document-specific G(d)
(
θ; π(d),Θ

)
=

∑∞
k=1 π

(d)
k δθk (θ), with π(d) ∼ GEM (β)

3: for all word wdn in document d do
4: Draw a topic θ̂d ∼ G(d)

(
θ; π(d),Θ

)
5: Draw a word wdn ∼ softmax

(
ρTϕ

)
6: end for

The EDP decomposes the word level in a dot product between the (transposed) word em-
beddings ρ and the context embeddings ϕ (line 5 from Alg. 6). As this decomposition forms
a log-linear model, the word embeddings and the topic embeddings evolve in the same space,
thus making it possible to compare words’ and topics’ positions. These properties make the
EDP a tool for deeper textual exploration than a classical Dirichlet Process-based topic model.
The model’s joint distribution is the following:

Pr
(
w, π, θ̂ | β,Θ, ξ

)
= Pr (π | β)× ΠD

d=1Pr
(
wd | θ̂d, ξ

)
Pr

(
θ̂d | π,Θ

)
(3.12)

where Pr (π | β) = GEM (β), Pr
(
θ̂ | π,Θ

)
= G (θ; π,Θ), Pr

(
w | θ̂, ξ

)
= softmax

(
θ̂ξ
)
, and

ξ = softmax
(
ρTϕ

)
. We use a family of variational distributions to bound the log-marginal
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likelihood, as described in [KW14]. We aim to maximize the following expression 3:

ELBO (ν) = Eq [logPr (w | π, ξ)]−KLD (q (π | w, ν) ∥ Pr (π)) (3.13)

where q (·) denotes the family of variational distributions, ν denotes the neural network param-
eters, and a and b are the Beta parameters learned by a MultiLayer Perceptron (MLP). The
KLD is between two Beta distributions. We use amortized variational inference and Adam to
fit the model concerning all the parameters.

Algorithm 7 Inference process for the EDP
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Compute βk = softmax(ρ⊤ϕk) for each topic k
4: Choose a minibatch B of documents
5: for each document d in B do
6: Get a bag of words representation xd
7: Compute a = MLP (x; νa)
8: Compute b = MLP (x; νb)
9: Sample v ∼ Beta (a, b)

10: Compute π =

{
v1 if k = 1
vkΠj<k (1− vj) for k > 1

11: for all word wd in the document do
12: Compute Pr (wdn | π) = softmax (πξ.,wdn

)
13: end for
14: end for
15: end for
16: Estimate the ELBO and its gradient through backprogation
17: Update the parameters

3. We disclose the formula details in Appendix A.
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Figure 3.7 – Simplified representation of the EDP

3.2.2 The Embedded Hierarchical Dirichlet Process

The EDP’s GEM prior parameter β is equivalent to a Dirichlet’s concentration parameter;
the greater the parameter, the more stick breaks and, by extension, the more topics we get
(Fig. 3.8). Learning this parameter from data enables controlling topic number growth. It is
possible to do so using a Gamma hyperprior [EW95; MBJ06; Nin+20] as it is conjugate to the
GEM distribution.

Algorithm 8 Generative process for the EHDP
1: Choose Nd ∼ Poisson (λ)
2: Draw β ∼ Gamma (γ1, γ2)
3: Get a document-specific G(d)

(
θ; π(d),Θ

)
=

∑∞
k=1 π

(d)
k δθk (θ), with π(d) ∼ GEM (β)

4: for all word wdn in document d do
5: Draw a topic θ̂d ∼ G(d)

(
θ; π(d),Θ

)
6: Draw a word wdn ∼ softmax

(
ρTϕ

)
7: end for
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Figure 3.8 – Draws from a Dirichlet process with a standard Gaussian base function

The optimization objective is the following 4:

ELBO(ν) = Eq [logPr (w | π, ξ)]

+ Eq [logPr (ν | β)]

− Eq [log q (ν | w)]

−KLD (q (β | g1, g2,w) ∥ Pr (β | γ1, γ2))

(3.14)

4. We disclose the formula details in Appendix A.
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where g1 and g2 are the variational’s distribution parameters, and γ1 and γ2 are the hyperprior’s
parameters. The inference process (Alg. 9) differs slightly from the EDP’s (see line 12).

Algorithm 9 Inference process for the EHDP
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Compute βk = softmax(ρ⊤ϕk) for each topic k
4: Choose a minibatch B of documents
5: for each document d in B do
6: Get a bag of words representation xd
7: Compute a = MLP (xd; νa)
8: Compute b = MLP (xd; νb)
9: Sample v ∼ Beta (a, b)

10: Compute π =

{
vk if k = 1
vkΠj<k (1− vj) for k > 1

11: for all word wd in the document do
12: Compute Pr (wdn | π, g1, g2) = softmax (πξ.,wdn

)
13: end for
14: end for
15: end for
16: Estimate the ELBO and its gradient through backprogation
17: Update the parameters
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Figure 3.9 – Simplified representation of the EHDP
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3.3 Empirical studies

This section tests and compares these models on two benchmark datasets and one industrial
dataset. We start by giving precisions about our test metrics before turning to the actual
experimentations.

3.3.1 Metrics

Our experimentations include a statistical assessment and a quality assessment. We use
perplexity for the statistical goodness-of-fit. For quality (TQ), we use the product of diversity
(TD) and mean NPMI (TC). We include an additional human evaluation by a domain expert
for the industrial dataset and text annotation for the benchmark datasets to evaluate coherence.
Please refer to Section 2.1.1.3 for more details.

3.3.2 Benchmark datasets

3.3.2.1 Description and data preparation

The experiments feature the 20 Newsgroups (20NG) 5 and the Humanitarian Assistance and
Disaster Relief articles (HADR) [Hor17] annotated datasets. HADR comes with a lexicon we
will use for the qualitative estimation of results. Both datasets consist of collections of articles
about several topics: 20 in the case of 20 Newsgroups and 25 for HADR. The 20 Newsgroups
contain 18846 articles, while HADR contains approx. 504000 ones in different languages.
Due to technical limitations for this work, we retained a random subset of 20000 HADR articles
for our experimentations. In each case, we used 85% of the entire dataset for the training sets,
10% for the validation sets, and 5% for the test sets. We filtered out words that do not
appear in at least four documents and removed stopwords to accommodate our computational
capabilities, thus yielding V -vocabularies of 28307 words from 20 Newsgroups and 32794 words
from HADR.

5. http://qwone.com/~jason/20Newsgroups/
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3.3.2.2 Training settings

We compare our results with Ning and al.’s iTM-VAE-Prod, iTM-VAE-G [Nin+20], and the
ETM [DRB20]. The iTM-VAE-Prod is a nonparametric topic model that places a GEM prior to
a Kumaraswamy distribution, but the model does not include any word similarity mechanism.
For further study, we also adapted iTM-VAE-Prod to include the implicit reparameterization
trick. To avoid posterior collapse and stabilize VAE training, we used batch normalization
with a batch size of 1000 documents and chose Adam with a learning rate of 0.002. We opti-
mized the ELBOs for both the model and the variational parameters simultaneously for each
model. We performed exponential decay on both first (0.95) and second moment (0.99) esti-
mates. We also used weight decay (1.2 × 10−6). Last but not least, and following [DRB20],
we normalized bag-of-words representations of documents by dividing them by the number of
words for document length accommodation. We chose all the parameters and hyperparameters
with cross-validation, including distributions and encoder sizes. The cross-validation, however,
included both quantitative and qualitative metrics. For each model, we used multilayer percep-
trons with two hidden layers of 100 neurons. We set the prior parameters to α = 1 and β = 5

for both iTM-VAE-HP and EDP, δ1 = 1 and δ2 = 20 for both iTM-VAE-G and EHDP, and a
standard Gaussian for ETM. We kept the same settings for both datasets. We give parametric
model capacities for 50 and 200 topics and nonparametric models capacities for up to 200.
In practice, analysts require a topic model to provide both good insights about the topics and
good predictability of unseen documents. Most topic models, however, are only trained and
selected from a statistical point of view, with topic coherence computed periodically due to its
expense. In this configuration, coherence is an additional indicator almost set apart from the
training process. Our work focuses on maintaining a fair trade-off between goodness of fit and
interpretability. During the validation step, we select our models based on a topic quality -
perplexity ratio.

3.3.2.3 Results and discussion

Nonparametric topic models that use the explicit reparameterization trick all suffered pos-
terior collapse during the experiments. They started producing NaNs as soon as the second
epoch; consequently, we excluded them from our analysis. The phenomenon, however, confirms
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Datasets 20NG (%) HADR (%)
iTM-VAE-G 10 (50%) 1 (4%)

EHDP 9 (45%) 8 (32%)
iTM-VAE-HP 1 (5%) 1 (4%)

EDP 1 (5%) 1 (4%)

Table 3.1 – Topic coverage with respect to human judgement

the value of using the original distribution instead of a surrogate as it enables building more
robust probabilistic settings. As for the other algorithms, found that they all have similar
predictive power 3.4. Thus, according to our selection criteria, topic quality is predominant
in determining the best models. Tab. 3.5 displays topic quality for every model that did
not experience posterior collapse. Our Embedded Hierarchical Dirichlet Process significantly
outperforms the other techniques in terms of topic quality, even ETM and EDP with implicit
reparameterization, despite these algorithms sharing the same decoder as EHDP. In addition,
note that the NPMI only considers the co-occurrence of words in a single document when word
embeddings are cross-corpora. Imagine two documents (1 and 2) and three words A, B, and C.
Let A and B appear together in the first document, and B and C appear together in the second
document.
Similarly to a transitive relation, word embeddings will find that if A and B are close and B and
C are close, then A and C also exhibit some similarity. The NPMI will not take this aspect into
account. Consequently, and for these reasons, the NPMI underestimates coherence in document
models with word embeddings. Besides, statistical goodness-of-fit is the sole driver for model
optimization, excluding semantical coherence. It is an additional indicator for model selection,
i.e., we use coherence to choose amongst models with similar goodness of fit. Involving model
quality in optimization may improve the results. This inclusion could be some form of regu-
larization. As for topic coverage (Tab. 3.1), EHDP falls second to iTM-VAE-G but does not
collapse to a single topic as its nonparametric pairs. These results clearly show that EHDP is
a robust technique with a solid ability to adapt to datasets with large vocabularies, even when
augmenting the number of words by nearly 16% when switching from 20 Newsgroups to HADR.

The last topic, i.e., the French stopwords, is pure serendipity. In [DRB20], the authors
show that ETM can handle stopwords and separate them in a specific topic, but the authors
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Topic Word list

India & Bangladesh tongi, manu, gorai, rly,
storey, serjganj, kanaighat

United Nations gva, dhagva, metzner, masayo,
pbp, spaak, pos

Weather tpc, nws, knhc, outward,
forecaster, accumulations, ast

Floods & landslides floods, landslides, padang, flooding,
rain, mudslides, sichuan

Africa drc, lusaka, monuc, burundi,
darfur, congolese, amis

Economic development development, financing, macroeconomic,
management, reduction, usaid, sustainable

Politics & diplomacy paragraph, decides, resolution,
pursuant, vii, welcomes, stresses

French stopwords les, qui, de, que, à, une, des

Table 3.2 – Complete list of topics extracted from HADR by the EHDP

les, par, à, que, », rapport, pas, «, lui, ses, nt, entre, fin, qui, cet, aux, ou,
gouvernement, fui, bien, han, ces, haïtien, deux, manger, gomez, unies,
rdc, ya, sont, ne, une, notre, ont, locales, avril, sur, première, dans, cours,
santé, una, croix, zona, santander, vie, sailing, mais, milliers, casos

Table 3.3 – Nearest neighbors of the "les" french stopword in decreasing order
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only tested the ETM in monolingual settings. HADR, however, is a multilingual dataset.
Some documents in French remained after we filtered the dataset. EDHP still distinguished
stopwords among the vocabulary while classifying them by language. We explain this result
because our embeddings work with contexts and French words are much more likely to appear
within French documents. Despite its accidental origin, the result is interesting, as multilingual
topic modeling and text mining is still open issue [Vul+15; Yan+19]. To confirm our intuition
about multilingual topic modeling, we benefit from our model’s ability to generate embeddings.
In particular, we extracted the 50 nearest neighbors of our French stopwords. Tab. 3.3 shows
an example. As expected, most neighbors are also French words. However, as we get lower
in the ranking, non-French words appear (in bold). We hypothesize that some words appear
in several languages, especially event-related nouns, in a multilingual corpus. We think these
words can act as pivots to link words from other languages, thus potentially enabling both
supervised and unsupervised cross-lingual topic modeling with no additional adaptations.

3.3.2.4 Conclusion

We found that EHDP outperforms other state-of-the-art algorithms in most configurations
and shows increased robustness to adapt to the dataset. Besides, we found that the EHDP can
handle stopwords and make regroupings in a multilingual environment. As for its summarization
capabilities, we noticed that the algorithm tends to combine several human-annotated topics
into a single one.
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Perplexity TQ
20NG HADR 20NG HADR

50 200 50 200 50 200 50 200
ETM 686.94 695.85 689.34 688.65 0.07 -0.02 0.07 0.02

iTM-VAE-Prod 680.16 0.09 0.16
EHDP 653.58 0.20 0.32

iTM-VAE-HP
implicit 662.66 0.04 0.12

EDP
implicit 664.54 0.04 0.08

Table 3.4 – Dataset-wise and topic number-wise perplexity and topic quality
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TD TC TQ
20NG HADR 20NG HADR 20NG HADR

Models
No. topics 50 200 50 200 50 200 50 200 50 200 50 200

ETM 0.47 0.32 0.45 0.28 0.15 -0.06 0.15 0.07 0.07 -0.02 0.07 0.02
iTM-VAE-Prod 0.91 1.0 0.10 0.16 0.09 0.16

EHDP 0.52 1.0 0.38 0.32 0.20 0.32
iTM-VAE-HP

implicit 1.0 1.0 0.04 0.12 0.04 0.12

EDP
implicit 1.0 1.0 0.04 0.08 0.04 0.08

Table 3.5 – Dataset-wise and topic number-wise topic quality

63



[QUOTE="DBMandrake, post: 2885630, member: 15953"] Wish I’d known that before
fitting them... [/QUOTE] Well, you knew GY Efficient Grip were the quietest you could
buy because I told you. I have also advised that they are not too bad on the white slippy
stuff either

Table 3.6 – A document sample from the industrial database

3.3.3 Industrial dataset

3.3.3.1 Description and data preparation

As we evolve in an industrial context related to the automotive industry with a particular
emphasis on tires, our dataset is a subset of a database that contains documents scraped from
1073 websites, 442 of which are in English. As we do not take multilingual nor cross-lingual
settings into account in our models, we discarded non-English speaking websites. We filter our
data by source and employ language detection thanks to an off-the-shelf solution. Consequently,
there is no guarantee that non-English documents are among these, as generic tools best work
on standardized (i.e., very clean and homogeneous) text corpora such as journal articles. Our
current setting considers non-English elements as noise that our models should isolate. Our
data contains partial annotations according to tire experts’ insights with specific tokens that
replace original tokens or sets of tokens with in-house codification, thus forming a custom
dictionary and a custom ontology. However, these annotations are not the focus of our interest
for the in-house codification and ontology related to product characteristics, thus inducing
biases. Experts tend to focus on products, while customers tend to focus on their experience of
the product. We recall that we focus on customer insight, not expert insight.

Consequently, we rely on totally unsupervised insight extraction on customers’ reviews. The
experts’ token replacement is hard-coded in our ad-hoc industrial process in charge of data
cleaning. The pipeline performs DOM parsing, removes as many markup languages as possi-
ble, detects languages, then replaces tokens accordingly with in-house conventions, but does
not fix typos. Despite these cleaning steps, there is no warranty whatsoever that the noise
will not remain. To illustrate our point, we show a document from the database in Tab. 3.6.
Noise appears in red, while interesting information appears in green. We could not retrieve the
annotation-free text without a full database cleaning replay. We treated the in-house tokens
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on the same level as other tokens. We did not remove classical stopwords as they act as struc-
turing elements for word embeddings. We could not remove the punctuation as tire references
(e.g., 205/50ZR15) and dimensions (e.g., 7.2/32") include some, and as their variability of
denomination makes regexes almost useless for detecting them. Last but not least, we did not
set tokens to lowercase for the same reason as for punctuation. In the same way, as latex (the
material) and LATEX are not the same, continental (the adjective or the climate) is not the
same as Continental (the tire brand).

The data sources are diverse, and so are the document lengths. Our documents include cus-
tomer opinions from e-commerce websites, review articles, blog posts, forum threads, and even
tweets. A document’s length is closely related to the diversity of written expression. The issue
is essential as topic models generally are bag-of-words-based. We posit three reasons:

1. there is a direct link between document length and document sparsity

2. a long document should have lesser sparsity than a short one yet should contain a high
recurrence of a small vocabulary subset, as shown by Zipf’s law

3. we want the topics to represent all the documents; said otherwise, we want to avoid topics
that represent short or long documents only

We studied a database sample of 96910 documents to hint at how long a "standard" document
is. Our statistical unit for this segmentation is the token, i.e., a string separated from others
with blank space, even for expressions that could qualify as collocations (e.g., "state of the
art" yields four tokens: "state," "of," "the," "art"). Our first task was to test if document
length relates to linguistic diversity, i.e., the ratio between the number of distinct tokens and
total tokens. The Spearman rank correlation test shows such correlation (−0.86 with p < .05),
thus confirming that Zipf’s law applies to our case. As for stopwords, their weight importance
should remain the same in the results. As they are everywhere, they are more likely to act as
noisy factors that the models should cope with than as discrimination factors.
We chose an adaptation of the Kolmogorov-Smirnov test to discrete distributions [Con72] to
assess a fit for the document-wise number of tokens. We can model document length thanks to
a Poisson distribution of parameter λ = 107.9 (p < .05). The distribution is a relatively good
fit for 98.75% of our global sample (approx. 95699 documents). Consequently, we removed
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Min. Q1 Median Mean Q3 Max.
2 45 80 107.9 135 4231

Table 3.7 – Document length description

all documents whose size exceeds 450 tokens as the length distribution is different starting
from this point. Due to limited computational capabilities, we needed to form a subsample. To
preserve representativeness, we decided to stratify our sample using document length as classes.
In particular, we intended to maintain a trade-off between having a good bin width and having
a reasonable number of classes. The Poisson distribution hypothesis and Doane’s formula allow
us to segment the data with 22 bins histogram. We then determined the proportions for each
class in the dataset. We achieved a stratified subsampling of 40000 documents according to
these proportions. We dedicated approximately 80% of the subsample for training, 10% for
validating, and 10% for testing while always respecting our segmentation. We retained a total
V -vocabulary of 26731 words for our experimentations.

3.3.3.2 Training settings and evaluation

We test our models using two comparison grids: neural versus non-neural topic models and
parametric versus non-parametric. Our work, first and foremost, attempts to solve large-scale
topic modeling. We use online stochastic variational inference for all models with a batch size
of 1000 documents. On the nonparametric side, we compare our models to the neural iTM-
VAE-Prod and iTM-VAE-G models [Nin+20] and non-neural HDP[WPB11b]. We also devised
a variant of the SB-VAE [NS17] that uses the IRT [FMM18]; we denote this variant SB-VAE
implicit. Note that the SB-VAE implicit is the same as the iTM-VAE-Prod, except for the
reparameterization. On the parametric side, we compare with the neural ProdLDA [SS17],
ETM [DRB20], and the non-neural LDA [Hof+13]. We selected all models’ parameters either
by learning them from data whenever possible 6, or with cross-validation. For parametric topic
models, we report the number of topics that yielded the best log-likelihood. For VAE-topic

6. We did it for the EHDP, iTM-VAE-G, the LDA, and the HDP. We used the implementations provided by
Gensim for the LDA and the HDP.
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Figure 3.10 – Document length distribution segmentation and actual density

models, we set the encoders to be multilayer perceptrons with two layers of 100 neurons each
and used Adam with a learning rate of 0.002 and L2-regularization of 1.2e − 6. For the ETM
and our models, we set the embedding sizes to 300. Thanks to transfer learning, we added two
trials respecting the word embedding capabilities of these models. For the first one, we used
the Glorot (also known as Xavier) normal initialization, and for the second one, we initialized
the word embedding component with Skip-grams [Mik+13]. We call the models trained with
each of these modalities raw (-R suffix) and transfer (-T suffix), respectively. We trained the
Skip-grams embeddings with a window size of 4, an amount of 10 negative samples, and a
dimension of 300. Regardless of the experiments, we let every model run until convergence
within a limit of 150 iterations.
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Figure 3.11 – Zoomed-in t-SNE representation of the tire adhesiveness topic of EHDP-T

3.3.3.3 Results and discussion

Our results (Tab. 3.8) clearly show that the neural nonparametric topic models achieve
better results than any other kind of topic model. They achieve the lowest perplexities and have
the best overall quality. The iTM-VAE is the exception. The ProdLDA and the ETM did not
suffer from the phenomenon, as they could describe the data in the training step but could not
generalize to unseen datasets. As the SB-VAE implicit is virtually the same as the iTM-VAE-G,
the implicit reparameterization trick’s effects are neatly visible, thus confirming the importance
of the prior to properly extracting latent variables in the VAE context. The iTM-VAE-G
exhibits approximately the same perplexity level as its nonparametric neural counterparts but
has poorer topic diversity and is non-interpretable. The LDA achieves a similar quality but
has a much higher perplexity than the other models. The transfer learning variants yielded
close results as their "raw" counterparts regarding the goodness-of-fit and topic quality. The
models with word embeddings resemble each other, but the SB-VAE implicit outperforms them
in terms of coherence. For all that, we recall that the mean NPMI is an indicator whose values
oscillate between −1 and 1. The indicator value shows independence between words for the
best models (SB-VAE implicit included) at most, but the word embeddings’ similarities show
otherwise (Fig. 3.11). As the SB-VAE does not include word embeddings, it is more uncertain
whether the terms it reports are coherent regarding the dataset.
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Model type Model No. topics Perplexity TC TD TQ
EHDP-R 9 664 -0.05 0.97 -0.05
EHDP-T 10 655 -0.05 1.0 -0.05
EDP-R 9 625 0.05 1.0 0.05
EDP-T 9 622 -0.02 1.0 -0.02

iTM-VAE NaN NaN NaN NaN NaN
SB-VAE implicit 12 631 0.23 0.73 0.17

Neural
nonparametric

iTM-VAE-G 10 680 0.17 0.11 0.02
Nonneural

nonparametric HDP 50 2.7×106 0.21 0.02 0

ProdLDA 10 NaN -0.65 0.8 -0.52
ETM-R 10 NaN -0.63 1.0 -0.63Neural

parametric ETM-T 10 NaN -0.65 0.93 -0.60
Non-neural
parametric LDA 10 2.06× 105 0.06 0.48 0.03

Table 3.8 – Results on the industrial dataset
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Overall, we are much more mitigated about the qualitative results of the models, except for
the EHDP-R and -T (Tables 3.9 and 3.10, respectively). The only models other than the EHDP
that could extract interpretable topics were the EDP-R, the EDP-T, and the SB-VAE implicit.
The SB-VAE implicit extracted 2 to 3 additional topics compared with the two versions of the
EHDP and the EDP, all of which were poorly interpretable and with repeating words, hence
the lower score on topic diversity (Table 3.8). The other topics it extracted were qualitatively
similar to the EHDP-R’s, but with different rankings for the words, more noise, and a blurrier
separation among topics (within the same model’s results), i.e., that some words appeared in
several topics. For the shared topics, there is little difference between the EHDP-R and the
EHDP-T; they took approximately the same amount of time to fit (around 55 epochs each),
and the words that appear are mostly the same, although with different rankings. To verify this
fact, we selected words from the results of each topic model and queried both versions of the
EDP and the EHDP’s word embeddings to see what their neighbor embeddings were under both
configurations. As the results were similar and nearly equal, we conclude that the EDP and
the EHDP models are capable of fitting word embeddings whose quality is at least equivalent
to properly fitted Skip-grams. The EHDP-T, however, extracted one additional topic, looking
more precise. The transfer learning step, it seems, has somewhat yet marginally helped topic
extraction by providing pre-fitted word representations to rely on.

Considering the topics’ labels, we annotated them according to their contents, i.e., we did not
use any specific technique apart from domain knowledge. The models do not assume elements
outside the dataset itself. We checked the word embeddings to deal with uncertainty about a
word and queried the dataset thanks to the topics and the appearing word. For instance, let’s
consider the "tire adhesiveness" topic from Table 3.10, and the embeddings from Figure 3.11.
The word "east" appeared in the topic and is close to the embedding corresponding to "hills."
We deduced from our verifications from the dataset that it was about hills located in the East.
The same goes for "Blackcircles" in the "Stopwords & online provider" topic. Blackcircles is a
retailer, so it makes sense that price tags surround the word. The rest of the topic, however
(e.g., "expand...", "[/QUOTE]"), is pure noise, so we will need to refine the ETL process around
this data source, if not all retailer-related sources. In comparison with the EHDP-R’s result
(Table 3.9), we could only see that this topic was not only about stopwords, thanks to the
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benefits of the transfer learning step. Despite our fairly clear results, topic model evaluation is
still an open issue under active development in the topic modeling field [Hoy+21].

3.3.3.4 Conclusion

In this section, we successfully applied the EDP and the EHDP models to a customer insight
extraction task from web-scraped data related to the tire industry. We found that according
to a domain expert, the EDP and the EHDP outperform other state-of-the-art algorithms in
this precise task. The fully-fledged Dirichlet Process priors enable better capture of corpora
hidden properties. The models also allowed for word disambiguation and showed capabilities
to work in a very noisy context. We showed that the EDP and the EHDP are useful for refining
cleaning processes as they regrouped a retailer with its inner noise. Last but not least, we
found discrepancies between the metrics and the intrinsic quality of the models, thus making
developing efficient indices an open issue.
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Performance
& maneuverability

"performance", "dry", "conditions.", "season",
"conditions", "cornering", "handling",
"confidence", "warm", "performance."

Evaluation
criteria

"4", "5", "3", "1", "great", "off_road_note:",
"ride_comfort_note:", "treadwear_note:",
"recommended:", "durability_note:"

Tire references "assy", "zz5’s", "ZZ5’s", "f1s", "f1",
"rainsports", "Falkan", "FK45x", "eagle", "F1’s"

Handling in
winter conditions

"treads", "east", "handles", "stuck.", "rides",
"ice", "snow.", "threw", "shipped", "son"

Satisfaction about
the durability

"lasted", "far.", "had.", "pleased", "replaced.",
"5k", "30k", "far,", "impressed", "definitely"

Tire
adaptatibility

"fitment:", "road_types:", "road_conditions:",
"Ta11", "Mixed", "4x2", "Suv",
"ice_traction_note:", "N5000", "ort_note:"

Confidence in
the product

"confidence", "daily", "driving.", "comfortable",
"driven", "corners", "Continental", "rain",
"winter.", "review"

Climatic
conditions

"winter", "summer", "weather", "excellent",
"wet", "winter.", "weather.", "most", "poor",
"season"

Stopwords
"tyre", "{[}/QUOTE{]}", "fitted...", "tyres.",
"member:", "expand...", "£110", "ago,", "post:",
"tyres,"

Table 3.9 – Complete list of topics extracted by EHDP-R
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Performance
& maneuverability

"performance", "conditions,", "all-season",
"cornering", "dedicated", "performance.",
"braking", "superior", "standing", "dry"

Evaluation
criteria

"5", "4", "Rain", "winter_traction_note:",
"3", "G2", "great", "1", "handling_note:",
"off_road_note:"

Tire references "zz5’s", "FK45x", "assy", "ZZ5’s", "Falkan",
"f1s", "5:08", "influence.", "f1", "Vorti."

Tire adhesiveness "incline", "encountered", "icy", "snowy",
"hills", "lives", "slid", "slush", "ice.", "east"

Durability
and satisfaction

"lasted", "far.", "had.", "Haven’t", "replaced.",
"far,", "25k", "complaints", "20k", "5k"

Tire
adaptability

"fitment:", "road_types:", "road_conditions:",
"Mixed", "4x2", "ice_traction_note:", "N5000",
"ort_note:", "Suv", "Nt850"

Confidence in
the brand

"Continental", "spirited", "review", "Mazda",
"snows", "average", "daily", "driven", "corners",
"driving."

Climatic
conditions

"winter", "summer", "winter.", "season",
"weather", "weather.", "seasons", "wet",
"excellent", "conditions"

Stopwords
& online provider

"expand...", "member:", "post:", "{[}/QUOTE{]}",
"quid", "£110", "£50", "ZE914", "Blackcircles,",
"£100"

Driving experience "wore", "these.", "Civic", "Ecsta", "SL",
"Definitely", "terrible", "wear,", "noisy.", "these,"

Table 3.10 – Complete list of topics extracted by EHDP-T
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3.4 General conclusion

This section presents two novel models: the Embedded Dirichlet Process and the Embedded
Hierarchical Dirichlet Process. These two nonparametric, VAE-based topic models can capture
the number of topics and their contents, as well as topic embeddings and word embeddings that
are viewable in the same space. We used them in benchmark and industrial settings and found
their results better than their state-of-the-art counterparts. These approaches also prove helpful
in distinguishing noise from data sources. Despite these promising results, we also found that
current topic modeling metrics do not align with practitioners’ expectations on topic models’
evaluation.
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Chapter 4

The Dynamic Embedded Dirichlet Process

In this Chapter, we extend our Embedded Dirichlet Process to capture time dynamics. We
call this extension Dynamic Embedded Dirichlet Process. Similarly to its static counterparts,
this extension can automatically detect the number of topics in a corpus and compute word
embeddings and topic embeddings for better text exploration. The topic embeddings, however,
take time into account. We start by laying the theoretical foundations for building our temporal
extension. We then test our model on two standardized datasets before applying them to two
industrial datasets from several social media sources. We show that it performs equally well to
better than its counterparts in empirical, comparative studies.
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4.1 Related work

The following sections present the theoretical foundations for our Dynamic Embedded
Dirichlet Process. We first present Blei & al.’s dynamic topic modeling framework [BL06],
then show how to adapt stick-breaking processes to capturing time dynamics.

4.1.1 Dynamic topic modeling

This section presents the Dynamic Topic Model (DTM) framework and an example with
the corresponding inference algorithm.

4.1.1.1 Theoretical framework

The DTM framework [BL06] extends the LDA-based topic models. To achieve this exten-
sion, it replaces the exchangeability assumption on a document collection by enforcing time
dependencies. It is also possible to consider the DTM as a framework for time series that
focuses on categorical data instead of continuous data. The authors introduce their framework
in their article by showing how they extend the LDA to time-dependent settings. We call this
extension Dynamic LDA (D-LDA).
Suppose that a data set is divisible in T time slices and that each time slice t ∈ {1, . . . , T}
evolves from time slice t − 1, i.e., each time slice t depends on time slice t − 1. Let β1:K be
a set of K topics, each representing a distribution over a fixed V -vocabulary. Also, let βt,k
denote the V -vector of natural parameters for topic k ∈ {1, . . . , K} in time slice t. The LDA
uses a word-level multinomial distribution; so does the D-LDA. The usual representation for a
multinomial is its mean reparameterization we denote with π. The ith component of the natural
parameter for the multinomial is the following mapping:

βi = log (πi/πV ) (4.1)

As the Dirichlet distribution is not amenable to sequential modeling, the authors switch to a
topic-wise chain of Gaussians to model uncertainty about the distributions over words:

βt,k | βt−1,k ∼ N
(
βt−1,k, σ

2I
)

(4.2)
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Figure 4.1 – D-LDA’s graphical model

The logistic-normal distribution then maps the emitted values to the simplex, thus extending
the logistic-normal distribution to time-series simplex data.

The D-LDA uses a topic-level logistic normal distribution with mean α for the same reasons.
A dynamic model also captures the time dependencies:

αt | αt−1 ∼ N
(
αt−1, δ

2I
)

(4.3)

The idea is different from the CTM despite using a logistic-normal distribution. The D-LDA
uses a diagonal covariance matrix, thus not modeling topic correlation dynamics.

Algorithm 10 Generative process for the D-LDA
1: Draw topics βt | βt−1 ∼ N (βt−1, σ

2I)
2: Draw αt | αt−1 ∼ N (αt−1, δ

2I)
3: for all document d do
4: Draw η ∼ N (αt, a

2I)
5: for all word wn in the document do
6: Draw z ∼ Multinomial(π(η))
7: Draw Wt,d,n ∼ Multinomial (π (βt,z))
8: end for
9: end for
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The π function maps the multinomial’s natural parameters to its mean parameters:

π (βk,t)w =
exp (βk,t,w)∑
w exp (βk,t,w)

(4.4)

For parameter inference, Blei & Laferty [BL06] have two variational methods for a mean-
field approximation. We refer the reader to the original publication for more details about
these methods. The non-conjugacy between the Gaussian and the multinomial complexifies the
inference step. The optimization objective aims at fitting the following latent variables: the
topic parameters βt,k, the mixture proportions θt,d, and the topic indicators zt,d,n. The objective
is the following:

K∏
k=1

q
(
βk,1, . . . , βk,T | β̂k,1, . . . , β̂k,T

)
×

T∏
t=1

 Dt∏
d=1

q (θt,d | γt,d)
Nt,d∏
n=1

q (zt,d,n | ϕt,d,n)

 (4.5)

The mean-field approximation considers latent variables independently of the others. On the
left-hand side, the topic parameters are fit to minimize the KLD between a Gaussian resulting
posterior and a non-Gaussian true posterior. The document-level latent variables on the right-
hand side exhibit the same form as the LDA [BNJ03]. Each proportion parameter θt,d is
endowed with a free Dirichlet parameter γt,d and each topic indicator zt,d,n is endowed with a
free multinomial parameter ϕt,d,n.
Contrasting with the D-LDA, the AEVB framework performs amortized variational inference,
thus considering parameters conjointly. The AEVB framework is also scalable. On the other
hand, the coordinate ascent variational inference approach can fit this non-conjugate approach
but is not scalable as it needs observation-wise re-evaluation. The following section presents a
neural, AEVB-based application of the DTM framework.

4.1.1.2 An implementation: the Dynamic Embedded Topic Model

The Dynamic Embedded Topic Model (D-ETM) [DRB19] is an extension to both the D-
LDA and the ETM, thus exhibiting properties from both. It is also an implementation of the
DTM framework. Like the D-LDA and the ETM, the algorithm learns word embeddings from
data using entire document contexts (or topics) instead of surrounding words. The contexts
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themselves are topic embeddings that are visualizable in the same space as the word embeddings.
Contrasting with the ETM, the D-ETM’s topic embeddings include a time dimension to model
the topics’ evolution. This time dimension implies the inclusion of an additional variational
objective to model the embedding’s time dynamics. The word embeddings, however, do not
include any time dimension: the model focuses on topic dynamics rather than on semantics
dynamics.
Let v be a term from a V -vocabulary. For each term v, we consider an L-dimensional embedding
representation ρv. The D-ETM posits a topic embedding α(t)

k ∈ RL for a given K-set of topics
at a given timestamp t = 1, . . . , T . Under the D-ETM, the probability of a word under a given
topic is the following:

Pr
(
wdn = v | zdn = k, α

(td)
k

)
∝ exp

{
ρ⊤v α

(td)
k

}
(4.6)

where ρ⊤v α
(td)
k is a normalized dot-product. According to the authors, the probability for a

given term is higher when the word embedding for the term and the topic’s embedding are in
agreement. Consequently, semantically similar words are assigned to similar topics.
The D-ETM uses a Markov Chain over the topic embeddings α(t)

k such that the topic represen-
tations evolve with Gaussian noise with variance γ2:

Pr
(
α
(t)
k | α

(t−1)
k

)
= N

(
α
(t−1)
k , γ2I

)
(4.7)

Last but not least, and similarly to the D-LDA, the D-ETM captures how the general topic
usage evolves over time. The prior over θd has dependencies on a latent variable ηtd where td is
the timestamp for document d.

Pr (θd | ηtd) = LN
(
ηtd , a

2I
)

where Pr (ηt | ηt−1) = N
(
ηt−1, δ

2I
)

(4.8)

Contrasting with the D-LDA, the D-ETM uses data subsampling [Hof+13] and amortization
[GG14] to scale to large datasets and reduce the number of variational parameters. Likewise, the
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Figure 4.2 – D-ETM’s graphical model

variational objective does not include non-conjugate distributions. The ELBO is the following 1:

ELBO(ν) = Eq [logPr(w, θ, η, α)− log qν(θ, η, α)] (4.9)

In the ELBO, Pr(w, θ, η, α) is a function of the data, whereas qν(θ, η, α) is a structured varia-
tional family. The authors introduce the following approximation:

q(θ, η, α) =
∏
d

q (θd | ηtd ,wd)×
∏
t

q (ηt | η1:t−1, w̃t)×
∏
k

∏
t

q
(
α
(t)
k

)
(4.10)

q (θd | ηtd ,wd) represent the distribution over the topic proportions. These distributions are
logistic-normal distributions whose mean, and covariance parameters are functions of the latent
mean ηtd and the bag-of-words representation of the d-th document wd. Also, feed-forward
neural networks whose inputs are both ηtd and wd parameterize them. The distributions over
the latent means q (ηt | η1:t−1, w̃t) depend on all previous latent means η1:t−1 and the normalized
representation of documents with the tth timestamp, w̃t. A generative LSTM parameterizes
these Gaussian distributions. Last but not least, and contrasting with the terms before that use
structured variational inference, the authors use the mean-field family for the topic embeddings
q
(
α
(t)
k

)
.

1. We disclose the formula details in Appendix A.
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Algorithm 11 Generative process for the D-ETM
1: Choose Nd ∼ Poisson (λ)

2: Draw initial topic embedding α(0)
k ∼ N (0, I)

3: Draw initial topic proportion mean η0 ∼ N (0, I)
4: for all For time step t = 1, . . . , T do
5: Draw topic embeddings α(t)

k ∼ N
(
α
(t−1)
k , γ2I

)
for k = 1, . . . , K

6: Draw topic proportion means ηt ∼ N (ηt−1, δ
2I)

7: end for
8: for all document d do
9: Draw topic proportions θd ∼ LN (ηtd , a

2I)
10: for all word wn in the document do
11: Draw topic assignment zdn ∼ Cat (θd)

12: Draw word wdn ∼ Categorical
(
softmax

(
ρ⊤α

(td)
zdn

))
13: end for
14: end for

Algorithm 12 Inference process for the D-ETM
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Sample the latent means and the topic embeddings, η ∼ q(η | w̃) and α ∼ q(α)

4: Compute the topics β(t)
k = softmax(ρ⊤α(t)

k ) for k = 1, . . . , K and t = 1, . . . , T
5: Choose a minibatch B of documents
6: for each document d in B do
7: Sample the topic proportions θd ∼ q(θd | ηtd,wd)
8: for all word wdn in the document do
9: Compute Pr(wdn | θd) =

∑
k θdkβ

(td)
k,wdn

10: end for
11: end for
12: end for
13: Estimate the ELBO and its gradient through backpropagation
14: Update the model and variational parameters using Adam
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4.1.2 Dirichlet processes and time dynamics

Dirichlet Processes are reportedly not amenable to modeling spatial and temporal dependen-
cies [RD11; Ren+11] in data. In their paper, Nalisinick & al. (2017), the Probit Stick-Breaking
Process (PSBP) [RD11] is a designated alternative to weight sampling in the Dirichlet Pro-
cesses. More precisely, it is possible to obtain Gaussian samples and then use a squashing
function to map them on (0, 1):

vk = g (µk + σk ⊗ ϵ) (4.11)

In the above formula, µ and σ are, respectively, the location and scale parameters for a Gaussian
and ϵ ∼ N(0, 1) is an additional, element-wise Gaussian noise. Also, g(·) is the Gaussian
cumulative distribution function (CDF).
In their paper, [RD11] propose the PSBP with spatial and temporal dependency modeling
in mind. In the PSBP, the distributions share the same atoms from G0, and the µ and σ

parameters control the variance of the sampled distributions around the mean G0. Rodriguez &
Dunson emphasize their approach as being close to the continuation ratio logit, and continuation
ratio probit models used in discrete-time survival analysis [Agr19; AC01] and flexible enough
to create various nonparametric models. To our knowledge, only a few works exist about
the combination of topic modeling, and survival analysis [Li+20]. Additionally, the PSBP
maintains the theoretical guarantee about the discreteness of a sample from a base distribution
and that a truncated model is an excellent approximation to the infinite process, thus preserving
computational simplicity. These properties make this reparameterization choice as enjoyable
as the original Beta distribution used in the original Dirichlet Processes. The Gaussian CDF,
however, does not have a closed form. Consequently, [NS17] replace the Gaussian CDF with
a logistic function: g(x) = 1/ (1 + e−x). We design this alternative as Logit Stick Breaking
Process (LSBP) for simplicity. Despite the name, we emphasize that this is very close, yet
not the same process as in [Ren+11]. We believe, nonetheless, that our model is extensible
to capturing spatial configurations in data using an appropriate kernel distance in the stick-
breaking process. However, this desirable feature is beyond our industrial project’s scope and
is left for future research.
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4.2 The model

The Dynamic Embedded Dirichlet Process (D-EDP) extends the D-ETM to nonparametric
settings. Consequently, it is also an application of the DTM framework. To automatically
determine the number of topics, it uses the Gauss-Logit parameterization suggested in [NS17].

Let v be a term from a V -vocabulary. For each term v, we consider an L-dimensional
embedding representation ρv. The D-EHDP posits a topic embedding α

(t)
k ∈ RL for k ∈

{1, . . . ,∞} at a given timestamp t = 1, . . . , T . Under the D-EHDP, the probability of a word
under a given topic is the following:

Pr
(
wdn = v | zdn = k, α

(td)
k

)
∝ exp

{
ρ⊤v α

(td)
k

}
(4.12)

where ρ⊤v α
(td)
k is a normalized dot-product. The D-EHDP uses a Markov Chain over the topic

embeddings α(t)
k such that the topic representations evolve with Gaussian noise with variance

γ2:
Pr

(
α
(t)
k | α

(t−1)
k

)
= N

(
α
(t−1)
k , γ2I

)
(4.13)

Last but not least, the prior over θd has dependencies on a latent variable ηtd where td is the
timestamp for document d.

Pr (θd | ηtd) = N
(
ηtd , a

2I
)

where Pr (ηt | ηt−1) = N
(
ηt−1, δ

2I
)

(4.14)
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Algorithm 13 Generative process for the D-EDP
1: Choose Nd ∼ Poisson (λ)

2: Draw initial topic embedding α(0)
k ∼ N (0, I)

3: Draw initial topic proportion mean η0 ∼ N (0, I)
4: for all For time step t = 1, . . . , T do
5: Draw topic embeddings α(t)

k ∼ N
(
α
(t−1)
k , γ2I

)
for k = 1, . . . , K

6: Draw topic proportion means ηt ∼ N (ηt−1, δ
2I)

7: end for
8: for all document d do
9: Draw topic proportions θd ∼ N (ηtd , a

2I)
10: for all word wn in the document do
11: Draw topic assignment zdn ∼ Cat (θd)

12: Draw word wdn ∼ Cat
(
softmax

(
ρ⊤α

(td)
zdn

))
13: end for
14: end for
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Figure 4.3 – Simplified representation of the D-EDP
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Algorithm 14 Inference process for the D-EDP
1: Initialize the model and its variational parameters
2: for i← 1 to maximum number of iterations do
3: Sample the latent means and the topic embeddings, η ∼ q(η | w̃) and α ∼ q(α)

4: Compute the topics β(t)
k = softmax(ρ⊤α(t)

k ) for k = 1, . . . ,∞ and t = 1, . . . , T
5: Choose a minibatch B of documents
6: for each document d in B do
7: Sample θd ∼ q(θd | ηtd,wd)
8: Compute v = logistic(θd)

9: Compute πd =
{
v1 if k = 1
vkΠj<k (1− vj) for k > 1

10: for all word wdn in the document do
11: Compute Pr(wdn | πd) =

∑
k πdkβ

(td)
k,wdn

12: end for
13: end for
14: end for
15: Estimate the ELBO and its gradient through backpropagation
16: Update the model and variational parameters using Adam

The D-EDP uses data subsampling [Hof+13] and amortization [GG14] to scale to large
datasets and reduce the number of variational parameters. Likewise, the variational objective
does not include non-conjugate distributions. The ELBO is the following 2:

ELBO(ν) = Eq [logPr(w, θ, η, α)− log qν(θ, η, α)] (4.15)

In the ELBO, Pr(w, θ, η, α) is a function of the data, whereas qν(θ, η, α) is a structured varia-
tional family. Following the D-ETM’s authors, we introduce the following approximation:

q(θ, η, α) =
∏
d

q (θd | ηtd ,wd)×
∏
t

q (ηt | η1:t−1, w̃t)×
∏
k

∏
t

q
(
α
(t)
k

)
(4.16)

q (θd | ηtd ,wd) represent the distribution over the topic proportions. This distribution is a
Gaussian distribution whose mean and covariance parameters are functions of the latent mean
ηtd and the bag-of-words representation of the d-th document wd. Also, feed-forward neural

2. We disclose the formula details in Appendix A.
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networks whose inputs are both ηtd and wd parameterize them. The distributions over the
latent means q (ηt | η1:t−1, w̃t) depend on all previous latent means η1:t−1 and the normalized
representation of documents with the t-th timestamp, w̃t. A generative LSTM parameterizes
these Gaussian distributions. Last but not least, and contrasting with the terms before that use
structured variational inference, we use the mean-field family for the topic embeddings q

(
α
(t)
k

)
.

4.3 Empirical studies

This section tests and compares these models on two benchmark and two industrial datasets.
We start by giving precisions about our test metrics before turning to the actual experimenta-
tions. These industrial datasets respectively contain documents in English and French.

4.3.1 Metrics

Our experimentations include a statistical assessment and a quality assessment. We use
perplexity for the statistical goodness-of-fit. For quality (TQ), we use the product of diversity
(TD) and mean NPMI (TC). We include an additional human evaluation by a domain expert
for the industrial dataset and text annotation for the benchmark datasets to evaluate coherence.
Please refer to Section 2.1.1.3 for more details.

4.3.2 Benchmark datasets

4.3.2.1 Description and data preparation

We use two datasets for model benchmarking: the UN debates corpus [BDM17] and the
ACL Anthology corpus [Bir+08]. The UN debates corpus contains forty-six years of speeches by
leaders presenting their government’s perspective on major global issues. The corpus contains
the transcription of these statements for each represented country at the UN General Assembly.
On the other hand, the ACL Anthology corpus is a collection of articles discussing issues in
computational linguistics and natural language processing from 1973 to 2006. We use the pre-
processed versions of these corpora delivered in the GitHub repository indicated in [DRB19] 3.

3. https://github.com/adjidieng/DETM
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Dataset Number of
documents

Train
(85%)

Validation
(5%)

Test
(10%)

Number of
time slices

Vocabulary
size

UN 230950 196290 11563 23097 46 12466
ACL 10514 8936 527 1051 31 35108

Table 4.1 – Benchmark datasets’ characteristics

Unfortunately, the Science dataset is not among them.

For the recall, [DRB19] reportedly apply standard preprocessing techniques such as tok-
enization and number and punctuation marks removal. They considered words in more than
70% of the documents as stopwords and other words present in a provided list. They also
removed low-frequency words. For the UN debates corpus, these low-frequency words are the
words that appear in less than 30% of the corpus and 10% of the corpus for the ACL Anthology
corpus. They retained 85% randomly chosen documents for training, 10% for testing, and 5%
for validation. Last but not least, the authors excluded one-word documents from the testing
and validation subsamples of the datasets.

4.3.2.2 Training settings

We compare our D-EDP against two variants of D-LDA and the D-ETM. The results pro-
ceed from [BL06] for the D-LDA and from [DRB19] for the D-LDA-REP and the D-ETM. The
D-LDA-REP model is the same as the D-LDA, except for the inference algorithm. Dieng & al.
devised a different D-LDA inference algorithm to separate the performance gains caused by the
actual modeling and that caused by the inference algorithm. We follow the same settings as
[BL06] to parameterize our D-EDP for model comparison. We reproduce these settings below.
We set the variances of the priors to δ2 = σ2 = γ2 = 0.005 and a2 = 1. We used a batch size
of 200 documents for the UN dataset and 100 documents for the ACL dataset. Contrarily to
[DRB19], we did not use pre-fitted word embeddings for the D-EDP on the UN dataset and
obtained word representations thanks to the model. We use a multilayer perceptron (MLP)
with ReLU activations and two layers of 800 hidden units each for the topic proportions θd.
Linear maps of the MLP’s output parameterize the Gaussian for the topic proportions. We
regularize the MLP before outputting values for the mean and (log)-variance through dropout
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with a rate of 0.1. Regarding the time dynamics-related latent means η1:T , we map each (nor-
malized) bag-of-words representation w̃t to a low-dimensional space of dimensionality 400. We
then feed the output to a 4-layer LSTM with 400 hidden units each. We concatenated the
LSTM’s output with the previous latent mean ηt−1 and mapped the results to a K-dimensional
space to get the mean and log-variance for ηt. For parametric topic models, K refers to the
number of topics. In [DRB19], the authors train the model for K = 50 components. On the
other hand, this number of topics is theoretically infinite for our nonparametric topic model.
Consequently, we truncate the topic to K components. This truncation is equivalent to giving
the model a maximum capacity for K components, not determining the number of topics. The
Dirichlet Processes "neutralize" the additional topics by attributing them a value of 0 for a
given corpus. We determined the number of K = 10 components with cross-validation in a
held-out perplexity (or log-likelihood) task.

We applied Alg. 14 for model training for a maximum of 400 epochs on the UN dataset and
a maximum of 1000 epochs for ACL, with learning rates of 0.001 and 0.0008, respectively. We
used KL-annealing to get adaptive learning rates during the training step. We further regular-
ized the model with weight decay on all network parameters. This applied weight decay is of
1.2× 10−6. We applied a gradient clipping of 2.0 on the ELBO to stabilize training. Last, the
stopping criterion depends on a held-out perplexity task on the validation set.

Concerning the D-LDA, Dieng & al. [DRB19] used the implementation provided with [BL06].
Dieng & al. report that the D-LDA has scalability issues: it took almost two days on each
dataset versus less than 6 hours for the D-ETM. Circumventing the scalability issue, Dieng &
al. [DRB19] used an alternative algorithm 4. The authors used a coordinate-ascent algorithm
that involves a Kalman filter. They used a reparameterization-based stochastic optimization
algorithm with batches of 1000 documents each. They initialized both variants of the D-LDA
with LDA, emphasizing that they ran five epochs of LDA followed by 120 epochs of D-LDA.
They used the RMSProp algorithm to set the step size, thus setting the learning rate to 0.05
for the mean and 0.005 for the variance parameters.

4. The authors do not provide this variant in the GitHub repository
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4.3.2.3 Results and discussion

Unfortunately, the authors from [DRB19] need to provide their qualitative results on the
ACL dataset and the full extent of their results on the UN dataset. Consequently, we voluntarily
restrain our comments to the results contained in [DRB19] and to our own. In this section, we
only display the D-EDP’s results on the UN dataset (Fig. 4.4 and Tab. 4.4) to avoid visual
clutter. However, the rest of the results, including those of [DRB19], is available in Appendix
B.

4.3.2.3.1 Quantitative evaluation Quantitative results show that the D-EDP outper-
forms all the results reported by Dieng & al. [DRB19] regarding topic quality (TQ) on the UN
dataset (Tab. 4.2). The overall topic coherence (TC) explains the results on this particular
dataset; it falls second, however, to the D-ETM with 50 topics in terms of both perplexity and
topic diversity (TD). The D-EDP has detected eight topics on the UN dataset, considering a
maximum capacity of ten topics. To set both the D-ETM and the D-EDP in an equal setting,
we ran a new experiment on the D-ETM with a maximum capacity of ten topics. The results
show that the D-ETM with ten topics outperforms all models in terms of perplexity, TD, and
TQ, but not on TC, where the D-EDP still ranks first. The TQ of the D-ETM with ten topics
is only marginally superior to that of the D-EDP. We reproduced this closeness between both
settings on the ACL dataset (Tab. 4.3).
The D-ETM with 15 topics exhibits the best perplexity compared with all the models, including
its counterpart with 50 topics. However, it falls second to the D-EDP in terms of topic quality.
The model that achieves the best topic quality is the D-ETM with 50 topics. The performance,
however, seemingly came at a cost. The D-ETM with 50 topics has better quality but exhibits a
perplexity of slightly less than double that of the D-ETM and the D-EDP. The gains in terms of
quality look marginal in comparison. The topic diversity metric is the factor that most explains
the difference in quality. For the recall, this metric serves to identify topic uniqueness, i.e., a
fundamental criterion for topic interpretability for a human being [Cha+09] along with topic
coherence. Considering topic coherence and within the limits of the mean NPMI pertinence,
the D-LDA, the D-ETM settings, and the D-EDP match concepts equally well on the ACL
dataset. The D-LDA, however, did not discriminate topics compared with the D-ETM with 50
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Model No. of topics
(capacity) Perplexity TC TD TQ

D-LDA [BL06] 50 (50) 2393.5 0.1317 0.6065 0.0799
D-LDA-REP [DRB19] 50 (50) 2931.3 0.1180 0.2691 0.0318

D-ETM [DRB19] 50 (50) 1970.7 0.1206 0.6703 0.0809
D-ETM 10 (10) 1720.9 0.1814 0.6650 0.1206
D-EDP 8 (10) 2069.8 0.2033 0.5677 0.1154

Table 4.2 – Results on the UN dataset

Model No. of topics
(capacity) Perplexity TC TD TQ

D-LDA [BL06] 50 (50) 4324.2 0.1429 0.5904 0.0844
D-LDA-REP [DRB19] 50 (50) 5836.7 0.1011 0.2589 0.0262

D-ETM [DRB19] 50 (50) 4120.6 0.1630 0.8286 0.1351
D-ETM 15 (15) 2360.8 0.1401 0.6347 0.0891
D-EDP 15 (15) 2492.7 0.1504 0.6321 0.0951

Table 4.3 – Results on the ACL dataset

topics, when the capacity of 50 topics should allow for more room for topic distinction than
a capacity of 15 topics, hence a higher value for TD. In other words, the granularity is finer.
However, whether this additional granularity makes sense is a question we cannot answer as
[DRB19] did not provide all the results on the ACL dataset.
In the case of parametric 5 topic models, contrary to their nonparametric counterparts, there is
no implicit assumption for topic ranking. They can exhibit more significant proportions than
others, but there is an implicit assumption of equivalence in terms of importance. The ade-
quacy of such arbitration depends on practitioners’ criteria according to their use case. This
arbitration goes well beyond the scope of this work.
Consequently, it is not easy to posit that the D-ETM with 50 topics achieves more valuable
results than its counterpart with 15 topics or the D-EDP. On the contrary, we can affirm that
it discriminates better than the D-LDA on both the UN and the ACL dataset.

5. Concerning the number of topics.
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Reference
word Nearest neighbors

economic
development, countries, social, order, international, level, political,
cooperation, world, institutions, economy, based, natural, part,
developing, system, community, national, promote

assembly
general, session, united, delegation, work, nations, role, member,
mr, secretarygeneral, success, express, members, behalf,
organization, deliberations, confident, important, election

security
peace, council, states, united, continue, part, nations, international,
view, make, efforts, community, process, members, hope, time,
support, made, regard

management

reform, efficient, financial, reforms, priority, resources, efficiency,
improve, enhance, primary, report, structural, programmes,
performance, sustainable, budget, contributions, effective,
effectively

debt

servicing, debts, fund, indebtedness, developing, growth,
cancellation, earnings, creditors, developed, creditor, exports,
economies, income, product, rescheduling, debtservicing,
commodity, macroeconomic

rights

human, fundamental, rule, dignity, respect, discrimination,
freedom, justice, equality, freedoms, democracy, society,
principles, violations, constitution, protection, based,
law, citizens

africa

african, south, southern, israel, apartheid, continent,
middle, situation, east, continues, assistance, policies,
palestinian, support, continue, implementation,
africans, arab, national

Table 4.4 – Word embeddings extracted by the D-EDP on the UN dataset
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Figure 4.4 – Evolution of word probability for all the topics extracted by the D-EDP on the
UN dataset
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4.3.2.3.2 Qualitative evaluation The D-EDP extracted eight topics from the UN dataset.
Several topics show similarity with those extracted by the D-ETM as reported in [DRB19] (Fig.
B.1 in Appendix B) 6. For instance, our topics about weapons (topic 2), economic development
(topic 4), Africa and Middle East (topic 5), war (topic 6), and human rights (topic 8) look like
topics "Nuclear Weapons," "Poverty & Development," "Africa," "War," and "Human Rights."
The D-EDP, however, seems to fusion several of the shown topics in a single. For instance, the
topic about economic development (topic 4) looks like both the "Poverty & Development" and
"Climate Change" topics from the D-ETM at the same time.
Overall, the D-EDP finds that the topics’ evolution over time corresponds to historical events 7.
For instance, in topic 1, we can see that the probability for the word "annan" rises and stays
relatively stable during Kofi Annan’s mandate at the UN Assembly, then decays when the
probability for the word "kimoon," corresponding to Ban-Ki-moon, rises. In topic 2, we can
see that the probability for the word "soviet" fell during the 1990s and that chemical weapons
became more of a concern starting in 2010. Likewise, the apartheid disappears during the early
1990s (topic 5), and the probabilities for the words "cambodia" and "kampuchea" (topic 6)
evolve in opposite ways at the same time. Last but not least, the word "freedom" (topic 8)
stays approximately at the same level across all time slices.

4.3.2.4 Conclusion

This section presents the theoretical foundations for the D-EDP, a new time-aware topic
model, and its statistical specifications. We also ran a set of experiments on benchmark datasets
and found that our model yields meaningful results in terms of both topics and word embed-
dings. When not higher, the D-EDP achieves results close to the best models regarding per-
plexity and topic quality. The difference between models is globally marginal on the UN and
ACL datasets, yet, at the very least, the D-EDP selects the number of topics from the data.
Concluding on this situation, we first and foremost express concerns about the adequacy of
the current mainstream indicators used to evaluate topic models. In the next section, we test

6. These results are only an excerpt from those obtained by the authors, as they reportedly trained their
model for 50 topics.

7. Note that we do not specifically display the words with the highest probability in each topic. Because
of our static support, we have chosen words that allow us to capture both the meaning of the topics and the
temporal dynamics.
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the D-ETM and the D-EDP on two industrial datasets regarding the automotive industry. We
decided to exclude the D-LDA due to the required running time. According to [DRB19], it took
around two days to train on benchmark datasets, thus making it inappropriate for industrial
settings. On the other hand, the D-ETM and the D-EDP took approximately the same running
time, i.e., less than six hours each. For these reasons, we believe the two models are the best
candidates for in-house deployment.

4.3.3 Industrial datasets

4.3.3.1 Description and data preparation

We use two industrial datasets from an in-house use case regarding the automotive indus-
try, with a particular emphasis on tires. These datasets come from a web scraping commercial
activity performed on several websites. The difference between these datasets is their reference
markets and the writing language: English and French. Otherwise, they include all the com-
pany’s available material for these languages. For simplicity, we will refer to these datasets as
EN and FR, respectively. We applied the same preprocessing steps whenever possible. How-
ever, we could not guarantee that there were no documents in languages other than the main
one in each of these datasets are our filtering is source-based. The descriptions below apply to
all the datasets unless otherwise specified.
Web scraping implies that no API is involved in the data collection process. Consequently,
the corpora originally came along with source-specific document structures. Contrasting with
our previous work on synchronic topic modeling, we have set up an ad-hoc pipeline for in-
dustrial topic modeling based on the previous one. This pipeline also performs DOM parsing
and proceeds to remove as many markup languages and URIs as possible. We then perform
POS-tagging using spaCy [Hon+19]. We use the pre-trained transformers (one per language)
provided by Explosion AI 8 with the highest number of parameters for the POS-tagging step.
spaCy also allows us to get lemmatized versions of words. We retain all the lemmas except the
ones corresponding to punctuation, numerals, auxiliaries, and determiners.

8. https://spacy.io/models
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Document lengthDataset Number of
documents

Number of
time slices Min. Q1 Median Mean Q3 Max.

English 97714 61 1 23 40 53.05 66 2997
French 63590 112 1 17 33 57.9 65 3690

Table 4.5 – Industrial datasets’ characteristics prior to preprocessing

Dataset Number of
documents

Train
(85%)

Validation
(5%)

Test
(10%)

English 97714 83056 4887 9771
French 63590 54051 6359 3180

Table 4.6 – Industrial datasets’ splitting

Before splitting datasets into three subsets for training, validating, and testing, we study
them in terms of time slice-wise document counts and document length. Similarly to our
synchronic topic models, our basic unit for the document length study is the token. The
reasons for doing so are the same. The retained granularity for the time slices is the month.
Our datasets comprise all the available documents for each language, i.e., 97714 documents
for English and 63590 for French. Table 4.5 shows that the document lengths are very close.
They follow a Poisson distribution with parameter λ = 53.03 and λ = 57.9, respectively. The
distribution is a good fit for more than 85% of the documents in each case. We discard all the
documents whose length does not fall within an interval of 20 to 200 words, bounds included.
However, while we have more documents for the English dataset, we have fewer time slices than
for the French dataset. We split our datasets into 85% randomly chosen documents for training,
10% for testing, and 5% for validation. Our V -vocabulary sizes are 13364 English tokens and
13421 French tokens.

4.3.3.2 Training settings

We compare our D-EDP against the D-ETM with the same set of common parameters on
both datasets. As previously, we set the variances of the priors to δ2 = σ2 = γ2 = 0.005

and a2 = 1. We used a batch size of 200 documents. Contrarily to [DRB19], we did not use
pre-fitted word embeddings to init the D-EDP nor the D-ETM models and trained them with
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Figure 4.5 – Number of English documents per-time slice

Figure 4.6 – Q-Q plot for the English documents’ length against a Poisson(λ = 53.03)

Figure 4.7 – EN dataset’s characteristics
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Figure 4.8 – Number of French documents per-time slice

Figure 4.9 – Q-Q plot for the French documents’ length against a Poisson(λ = 57.9)

Figure 4.10 – FR dataset’s characteristics
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300-dimensional topic and word embedding layers. We use a multilayer perceptron (MLP) with
ReLU activations and two layers of 800 hidden units each for the topic proportions θd. Linear
maps of the MLP’s output parameterize the Gaussian for the topic proportions. We regularize
the MLP before outputting values for the mean and (log)-variance through dropout with a
rate of 0.5. Regarding the time dynamics-related latent means η1:T , we map each (normalized)
bag-of-words representation w̃t to a low-dimensional space of dimensionality 200. We then
feed the output to a 3-layer LSTM with 300 hidden units each. We concatenated the LSTM’s
output with the previous latent mean ηt−1 and mapped the results to a K-dimensional space
to get the mean and log-variance for ηt. We set the number of topics, K, to 50 and 10 for
the D-ETM and 10 for the D-EDP. Again, this truncation is equivalent to giving the model a
maximum capacity for K components, not determining the number of topics. We determined
the truncation level and all the other common parameters with cross-validation in a held-out
perplexity (or log-likelihood) task.
We applied Alg. 14 for model training for a maximum of 50 epochs on both datasets, with a
learning rate of 0.005. We used KL-annealing to get adaptive learning rates during the training
step. We further regularized the model with weight decay on all network parameters. This
applied weight decay is of 1.2 × 10−6. Last, the stopping criterion depends on a held-out
perplexity task on the validation set.

4.3.3.3 Results and discussion

4.3.3.3.1 Quantitative evaluation The D-ETM with 50 topics and the D-EDP exhibit
similar perplexities but differ significantly in terms of quality on the EN dataset (Tab. 4.7).
Despite displaying close topic coherence, the D-ETM struggled to discriminate between different
topics. However, the D-ETM with ten topics is much closer to the D-EDP yet less performant
in terms of quality. It is, nonetheless, the best model in terms of perplexity. The D-ETM with
ten topics also shows a lower perplexity metric than its counterparts and is still better than the
D-ETM with 50 topics in terms of quality on the FR dataset (Tab. 4.9). However, its topic
diversity performance is only marginally better than that of the D-EDP; similarly, the D-EDP
is only marginally better than the D-ETM with ten topics in terms of coherence.
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Model No. of topics
(capacity) Perplexity TC TD TQ

D-ETM 50 (50) 1295.3 0.2271 0.0889 0.0202
D-ETM 10 (10) 1070.9 0.2029 0.5790 0.1175
D-EDP 6 (10) 1251.9 0.2425 0.6848 0.1660

Table 4.7 – Results on the EN dataset

4.3.3.3.2 Qualitative evaluation Except for specific topics and concepts, the models ex-
tract relatively stable elements 9. The most variable topics are driving conditions-related topics
(topics 1 and 1 from 4.11 and 4.12, respectively) and R&D-related topics (topics 6 and 5 from
Fig. 4.11 and Fig. 4.12, respectively). For instance, the words for snow and winter show
seasonal probability patterns during winter periods. Likewise, prizes awarding (topic six from
Fig. 4.11) show one-off peaks. Last but not least, we can observe an increasing interest in
alternative energy sources for car engines. In particular, the topic of electric engines has been
gaining momentum during the last months (topic six from Fig. 4.11 and topic five from 4.12).

4.3.3.4 Conclusion

This Section presents the second set of experiments involving the D-ETM and the D-EDP.
The D-ETM with ten topics achieves the best perplexity on both the EN and FR datasets. It
also marginally outperforms the D-EDP in terms of topic quality on the FR dataset but exhibits
slightly lower quality than its nonparametric counterpart on the EN dataset. Regardless of the
models, we show that these approaches can work in at least two languages and still capture
topic and language dynamics.

9. Note that we do not specifically display the words with the highest probability in each topic. Because
of our static support, we have chosen words that allow us to capture both the meaning of the topics and the
temporal dynamics.
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Figure 4.11 – Evolution of word probability for the topics extracted by the D-EDP on the EN dataset
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Reference
word Nearest neighbors

tire
driving, product, rate, style, vehicle, highway, location, review, city,
combine, condition, mile, average, spirited, purchase, traction, drive,
rain, truck

handling handle, dry, wet, noise, road, snow, drive, comfort, traction, feel,
overall, ride, high, performance, short, continental, low, test, good

performance road, high, feel, like, noise, low, well, good, long, wet, speed,
time, corner, compare, grip, come, day, ride, year

noise wet, road, dry, ride, good, wear, drive, buy, well, long, tread,
bad, performance, great, like, handle, corner, little, grip

braking
resistance, distance, test, brake, handling, rolling, read, dry,
wet, st, negative, short, aquaplane, overall, positive, straight,
comfort, result, th

carbon
fibre, adjustable, litre, unit, button, leather, exhaust, lightweight,
interior, paint, wing, body, seat, chassis, mod, production, splitter,
panel, damper

electric
battery, motor, charge, petrol, engineer, emission, develop, support,
plug, seat, renault, gearbox, interior, body, engine, chassis, paint,
torque, litre

Table 4.8 – Word embeddings extracted by the D-EDP on the EN dataset

Model No. of topics
(capacity) Perplexity TC TD TQ

D-ETM 50 (50) 1984.3 0.0860 0.3381 0.0291
D-ETM 10 (10) 1534.5 0.1544 0.5325 0.0822
D-EDP 7 (10) 2110.6 0.1595 0.4845 0.0773

Table 4.9 – Results on the FR dataset
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Figure 4.12 – Evolution of word probability for the topics extracted by the D-EDP on the FR
dataset
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Reference
word Nearest neighbors

pneu qu, bon, route, michelin, bien, hiver, monter, savoir, usure, gomme,
monte, changer, très, faire, voir, falloir, sec, pluie, mettre

crossclimate
crossclimat, saison, hiver, neige, weatherproof, climat, pneu, alpin,
climate, vector, gen, pluie, sec, nokian, cross, condition, hivernal,
roule, mouiller

performance
sport, meilleur, sportif, gamme, nouveau, pilot, offrir, marque,
dimension, performant, rapport, grip, choix, version, également,
modèle, conduite, sec, grand

carbone
fibre, aileron, capot, diffuseur, émission, aérodynamique, piston,
alcantara, carrosserie, m2, aluminium, échappement, forger,
calandre, cylindre, jupe, toit, exemplaire, m4

technologie

développer, innovation, innovant, matériau, développement,
concept, technologique, mondial, mobilité, optimiser, actif,
unique, grâce, doter, intégrer, automobiliste, prototype,
offrir, automobile

adhérence
virage, route, pneu, sol, mouiller, gomme, dimension, meilleur,
humide, performance, tenue, sec, profil, caractéristique, résistance,
pluie, conduite, hiver, condition

électrique
batterie, autonomie, recharge, véhicule, rechargeable, recharger,
moteur, thermique, énergie, système, automobile, tesla, matériau,
kwh, conducteur, bord, grâce, affiche, caméra

Table 4.10 – Word embeddings extracted by the D-EDP on the FR dataset
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4.4 General conclusion

This Chapter presents the theoretical foundations for the D-EDP, a nonparametric time-
aware topic model. This model can capture the number of topics, content, and dynamic and
dense representations for topics and words. We tested our model on benchmark datasets and
industrial datasets. Our results show that the D-EDP achieves a slightly similar perplexity
to its parametric counterpart, the D-ETM, with the latter having as many components as the
number of topics detected by the D-EDP. This result is similar to that of [Teh+06]. Both models
are globally close regarding topic quality. However, the D-EDP emphasizes the quantitative
importance of topics more than its parametric counterpart, while the D-ETM achieves finer
granularity than the D-EDP. The impact in terms of practical value is debatable, strongly
depends on the use case, and is well beyond this piece of research scope. While the phenomenon
enables questioning the adequacy of the mainstream metrics for a topic model’s evaluation,
and while there is evidence of automatic evaluation being "broken" [Hoy+21], the question is
extensible to other fields, including that of supervised learning.
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Chapter 5

Work review and conclusion

The Variational Autoencoder framework is helpful in several regards. It enables the rela-
tively fast and modular development of scalable algorithms while combining the good properties
of Bayesian probabilistic modeling and Deep Learning. In other words, it allows for uncertainty
modeling and flexibility. Its application to the task of topic modeling also enables one to ac-
count for rich contextual elements.
In this research, we have developed three topic models: the Embedded Dirichlet Process, the
Embedded Hierarchical Dirichlet Process, and the Dynamic Embedded Dirichlet Process. Apart
from being fully nonparametric regarding the number of topics in a given corpus, these topic
models present the particularity of determining dense representations for topics and words.
These dense representations, or embeddings, form a log-linear model that allows for simulta-
neous representation in the same space, thus providing practitioners with additional analytical
levels compared with classic topic models. We present two tests for each: one on benchmark
datasets and one on industrial datasets. The benchmark datasets are a proof of concept, while
our industrial datasets represent our use case. Our models proved successful in both cases, thus
demonstrating their performance being on par and even superior to state-of-the-art models.
Despite these results, we must find a way to address the deficiencies of current metrics for topic
model evaluation. These otherwise already identified deficiencies also exist in our real-world
use case. This issue goes well beyond the sole field of topic modeling, and solving it would
address many other issues in Natural Language Processing and Understanding. Our industrial
context would also benefit from improving existing metrics or designing new indicators.
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As stated in our preliminary remarks, this work is part of an industrial framework whose
primary objective is discovering customer insight in social media without a business expert.
Therefore, the model development priorities we recommend depend strictly on this industrial
context.

Zooming on topic contents We observed the granularity differential between models and
between models and expert annotation throughout our research. Consequently, we con-
sider capturing a hierarchical structure of topics, thus distinguishing topics and subtopics.
In other words, we would like to capture a topical tree. The idea is not new and appeared
in previous research ([WB09]). We believe that a neural adaptation should involve math-
ematical structures (e.g., neural networks) capable of capturing the hierarchical structure
of topics at both the latent variable and the embeddings’ levels. The task, however, is
not easy. As far as we know, in [Goy+17], the authors try to include the nested Chinese
Restaurant Process in their VAE-based algorithms. They effectively apply their algorithm
to video data instead of text. The setting, however, is fully Gaussian. As demonstrated
and despite its flexibility, a Gaussian lacks the desirable properties of Dirichlet-related
distributions for text modeling. Additionally, we express concerns regarding its scalability.

Document-wise word distribution customization Topic models focus on describing a doc-
ument with topics that are, in turn, described by words. Document-wise topics’ distribu-
tion varies depending on the document, but the topic-wise word distributions do not vary.
To illustrate our point, let A and B be two separate documents exhibiting identical topic
distributions. Suppose these topics are customer reviews about a given product, with
customer A being pleased and customer B being utterly unsatisfied. It is implausible that
the two customers’ way of talking about the same topic is the same, considering their
experience. Despite our example being sentiment analysis-related, we focus on advanced
document filtering. Such a feature could help customer service and target customers more
effectively, but it could also reveal different customer experiences, thus making the model
more informative to analysts. We see at least one challenge in adding document-wise
information: increasing complexity linearly as the number of documents increases too.
We consider the issue a mild hindrance. On the one hand, the amount of documents
to consider is foreseeably massive due to the Big Data industrial context. On the other
hand, the VAE framework, whether implying alternate optimization or not, uses batch
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learning. Machine Learning, in general, is about induction and inference from popula-
tion samples and has never been about deduction from the whole statistical population.
However, adding a pseudorandom variable for document indexes can put the generative
capabilities and the flexibility of a model at stake.

Semi-supervised extensions When developing our models, our starting point was complete
ignorance about a given corpus. In practice, this ignorance-is-bliss stance is only partially
realistic. Our zero-amount-of-knowledge assumption is a simplifying one that aims at
avoiding as much practitioner bias as possible. Whether in a statistical sense or not, an
incorrect prior can lead to a wrong inference and subsequent conclusions - including the
posterior distribution. As scientific literature demonstrates, human-in-the-loop machine
learning is optional to draw contradictory conclusions. These points explain why we
precluded human-in-the-loop approaches: practitioners will only sometimes have precise
domain experts to check the results 1, can disagree with each other, and make decisions
that do not reflect the actual data contents, hence possibly preventing the model from
performing proper inference. Bias is the greatest obstacle in analytical projects that
involve unsupervised learning in entirely unknown settings. However, knowledge bases
will eventually build following iterations based on essential elements or domain knowledge.
Such based knowledge is precious. Apart from transfer learning using word embeddings or
topic embeddings, it is possible to inject this knowledge through semi-supervised learning
to back models’ inference process.

1. In our case, this implies having marketing experts for every market who is preferably a native speaker of
the language to handle ambiguities and address specificities.
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Appendix A

Formulas

The following Sections present the Evidence Lower BOunds for all the models. We tried to
present each symbol by appearing order and by coherence. We also include and detail each
model-specific element. We repeat some elements for convenience.

A.1 Evidence Lower Bound of the Embedded Topic Model

ELBO(ν) = Eq [logPr (w | δ, ρ, α)]−KLD (q (δ | w, ν) ∥ Pr (δ))

=
1

S

D∑
d=1

Nd∑
n=1

S∑
s=1

logPr
(
wdn | δ(s)d , ρ, α

)
−

D∑
d=1

(
1

2

{
tr (Σd) + µ⊤

d µd − log det (Σd)−K
}) (A.1)

Notation

— ν are the inference network’s - or encoder’s - weights

— w is the document set and wdn is the nth word from document d

— δ is the latent variable

— ρ is the word embedding matrix
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— α is the topic embedding matrix

— S is the number of samples required to form Monte Carlo estimates of the data log-
likelihood (in practice, S = 1 has proven enough)

— D is the number of documents and Nd is the number of words in document d

— µ and Σ are the variational distribution’s parameters (the prior is a standard Gaussian)

— K is the number of topics

A.2 Evidence Lower Bound of the Stick-Breaking Varia-

tional Autoencoder

ELBO(ν) = Eq [logPr (w | π)]−KLD (q (π | w, ν) ∥ Pr (π))

=
1

S

D∑
d=1

Nd∑
n=1

S∑
s=1

Pr
(
wdn | π(d)

(s)

)

−


a− 1

a

(
−γ −Ψ(b)− 1

b

)
+ log ab+ logB(1, β)

−b− 1

b
+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)


(A.2)

Notation

— ν are the inference network’s - or encoder’s - weights

— S is the number of samples required to form Monte Carlo estimates of the data log-
likelihood (in practice, S = 1 has proven enough)

— D is the number of documents and Nd is the number of words in document d

— wdn is the nth word from document d

— π is the latent variable obtained after applying a stick-breaking process on a sample from
the Kumaraswamy variational

— a and b are the Kumaraswamy variational’s parameters
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— β is the GEM prior’s parameter (this is the same as Beta(1, β))

— γ is Euler’s constant

— Ψ is the digamma function

— B is the Beta function

— m is a term for a Taylor expansion (hence the infinite sum)

Sampling from a Kumaraswamy distribution Let x ∼ Kumaraswamy(a, b). This is
equivalent to:

x ∼
(
1− u

1
b

) 1
a where u ∼ Uniform(0, 1) (A.3)

For convenience, several Python packages include functions that enable sampling from a Ku-
maraswamy (e.g., TensorFlow Probability 1 and Sympy 2).

Stick-breaking process on a Kumaraswamy Let v ∼ Kumaraswamy(a, b). The stick-
breaking process is defined as follows:

π =

{
v1 if k = 1

vkΠj<k (1− vj) for k > 1
(A.4)

where k = 1, . . . , K and K is the truncature level on the number of topics.

1. https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Kumaraswamy
2. https://docs.sympy.org/latest/modules/stats.html
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A.3 Evidence Lower Bound of the Embedded Dirichlet Pro-

cess

ELBO (ν) = Eq [logPr (w | π, ξ)]−KLD (q (π | w, ν) ∥ Pr (π))

=
1

S

D∑
d=1

Nd∑
n=1

S∑
s=1

Pr
(
wdn | π(d)

(s) , ξ
)

−

 log
B (a, b)

B (1, β)
− (a− 1)Ψ (1)− (b− β)Ψ (β)

+ (a− 1 + b− β)Ψ (1 + β)


(A.5)

Notation

— ν are the inference network’s - or encoder’s - weights

— S is the number of samples required to form Monte Carlo estimates of the data log-
likelihood (in practice, S = 1 has proven enough)

— D is the number of documents and Nd is the number of words in document d

— w is the document set

— ξ is the topic-word matrix

— β is the GEM prior’s parameter (this is the same as Beta(1, β))

— a and b are the Beta variational’s parameters

— wdn is the nth word from document d

— π is the latent variable obtained after applying a stick-breaking process on a sample from
the Beta variational

— Ψ is the digamma function

— B is the Beta function

Sampling from a Beta distribution In the Embedded Dirichlet Process context, the
model implies drawing from a Beta distribution using the implicit reparameterization gradients
method. This research presents the implicit reparameterization gradients technique in Section

112



3.1.3. For convenience, we inform the reader that the implicit reparameterization gradients
technique is implemented in Tensorflow Probability 3.

Stick-breaking process on a Beta Let v ∼ Beta(α, β). The stick-breaking process is
defined as follows:

π =

{
v1 if k = 1

vkΠj<k (1− vj) for k > 1
(A.6)

where k = 1, . . . , K and K is the truncature level on the number of topics.

A.4 Evidence Lower Bound of the Embedded Hierarchical

Dirichlet Process

ELBO(ν) = Eq [logPr (w | π, ξ)]

+ Eq [logPr (ν | β)]

− Eq [log q (ν | w)]

−KLD (q (β | g1, g2) ∥ Pr (β | γ1, γ2))

=
1

S

D∑
d=1

Nd∑
n=1

S∑
s=1

Pr
(
wdn | π(d)

(s) , ξ
)

+ (K − 1) (Ψ (g1)− log(g2))

−KLD (q(a, b) ∥ Pr(1, β))

+ log (B(1, β))

+ 2 log (ab)

−KLD (q(g1, g2) ∥ Pr(γ1, γ2))

(A.7)

3. https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Beta
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Notation

— ν are the inference network’s - or encoder’s - weights

— w is the document set

— π is the latent variable obtained after applying a stick-breaking process on a sample from
the Beta variational

— β is the GEM’s prior concentration parameter, achieved through β = g1/g2

— g1 and g2 are the Gamma variational’s parameters

— γ1 and γ2 are the Gamma hyperprior’s parameters

— S is the number of samples required to form Monte Carlo estimates of the data log-
likelihood (in practice, S = 1 has proven enough)

— D is the number of documents and Nd is the number of words in document d

— wdn is the nth word from document d

— ξ is the topic-word matrix

— K is the truncature level for the Dirichlet Process

— Ψ is the digamma function

— a and b are the Beta variational’s parameters

— B is the Beta function

KL-Divergence between two Beta distributions In Eqn. A.7,

KLD (q(a, b) ∥ Pr(1, β)) (A.8)

is the KL-Divergence between two Beta distributions.
Let Pr be a Beta(a, b) and q be a Beta(c, d). The general formula for a KLD between two Beta
distributions is the following:

KLD (Pr ∥ q) = log
B (c, d)

B (a, b)
− (c− a)Ψ (a)− (d− b)Ψ (b) + (c− a+ d− b)Ψ (a+ b) (A.9)
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where B is the Beta function and Ψ is the digamma function. Consequently,

KLD (q(a, b) ∥ Pr(1, β)) = log
B (1, β)

B (a, b)
− (1− a)Ψ (a)− (β − b)Ψ (b)+ (c− 1 + β − b)Ψ (a+ b)

(A.10)

KL-Divergence between two Gamma distributions In Eqn. A.7,

KLD (q(g1, g2) ∥ Pr(γ1, γ2)) (A.11)

is the KL-Divergence between two Gamma distributions.
Let Pr be a Gamma(bPr, cPr) and q be a Gamma(bq, cq). The general formula for a KLD
between two Gamma distributions is the following:

KLD (Pr ∥ q) = (cPr − 1)Ψ (cPr)− log bPr − cPr − log Γ (cPr)

+ log Γ (cq) + cq log bq − (cq − 1) (Ψ (cPr) + log bPr) +
bPrcPr
bq

(A.12)

where Γ is the Gamma function and Ψ is the digamma function. Consequently,

KLD (q(g1, g2) ∥ Pr(γ1, γ2)) = (g2 − 1)Ψ (g2)− log g1 − g2 − log Γ (g2)

+ log Γ (γ2) + γ2 log γ1 − (γ2 − 1) (Ψ (g2) + log g1) +
g1g2
γ1
(A.13)

Stick-breaking process on a Beta Let v ∼ Beta(α, β). The stick-breaking process is
defined as follows:

π =

{
v1 if k = 1

vkΠj<k (1− vj) for k > 1
(A.14)

where k = 1, . . . , K and K is the truncature level on the number of topics.
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A.5 Evidence Lower Bound of the Dynamic Embedded Topic

Model and the Dynamic Embedded Dirichlet Process

ELBO(ν) = Eq [logPr(w, θ, η, α)− log qν(θ, η, α)]

=
1

S

D∑
d=1

Nd∑
n=1

S∑
s=1

logPr
(
wdn | θ(s)d , η, α

)

−



∑
d

KLD
(
q (θd | ηtd ,wd) ∥ N (ηtd−1, a

2I)
)

+
∑
t

KLD
(
q (ηt | η1:t−1, w̃t) ∥ N (ηt−1, δ

2I)
)

+
∑
k

∑
t

KLD
(
q
(
α
(t)
k

)
∥ N (α

(t−1)
k , γ2I)

)


(A.15)

Notation

— ν are the inference network’s - or encoder’s - weights

— S is the number of samples required to form Monte Carlo estimates of the data log-
likelihood (in practice, S = 1 has proven enough)

— D is the number of documents and Nd is the number of words in document d

— w is the document set and w̃ is the time slice-wise document set

— wdn is the nth word from document d

— θd is the latent variable obtained after applying a softmax normalization on a Gaussian
sample in the D-ETM context or a stick-breaking process on a Gaussian sample in a
D-EDP context

— I is the identity matrix

— ηd and a2I are a Gaussian variational’s location and scale parameters where a is a hyper-
parameter

— ηd and δ2I are a Gaussian variational’s location and scale parameters where δ is a hyper-
parameter
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— α
(t)
k and γ2I are the Gaussian variational’s location and scale parameters where γ is a

hyperparameter. The α tensor also corresponds to the time-dynamic topic embeddings

KL-Divergence between two Gaussians In Eqn. A.15, all the KLD terms correspond to
KL-Divergences between two Gaussians.
Let Pr be a N (µPr,ΣPr) and q be a N (µq,Σq). The general formula for a KLD between two
Gaussians is the following:

KLD (Pr ∥ q) = 1

2

[
log
|Σq|
|ΣPr|

− k +
(
µPr − µq

)T
Σ−1
q

(
µPr − µq

)
+ tr

{
Σ−1
q ΣPr

}]
(A.16)

Stick-breaking process on a Gaussian In the D-EDP’s context, the stick-breaking process’
weights are transformed samples from the variational distribution drawn using the reparame-
terization trick [KW14].
Let z be a sample from the latent variable:

z = µ+ σ ⊗ ϵ and ϵ ∼ N (0, I) (A.17)

In Eqn. A.17, ⊗ stands for the Hadamard product. These samples are then squashed to the
simplex thanks to a logistic function:

v = 1/
(
1 + e−z

)
(A.18)

Finally:

π =

{
v1 if k = 1

vkΠj<k (1− vj) for k > 1
(A.19)

where k = 1, . . . , K and K is the truncature level on the number of topics.
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Appendix B

Additional results on time dynamics
modeling
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Figure B.1 – Evolution of word probability for eight topics extracted by the D-ETM on the UN dataset
according to Dieng & al. [DRB19]
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Figure B.2 – Evolution of word probability for eight topics extracted by the D-ETM on the
UN dataset
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Figure B.3 – Evolution of word probability for eight topics extracted by the D-EDP on the
ACL dataset
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Figure B.4 – Evolution of word probability for six topics extracted by the D-ETM on the EN
dataset
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Figure B.5 – Evolution of word probability for six topics extracted by the D-ETM on the FR
dataset
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Reference
word Nearest neighbors

economic
development, social, countries, developing, political, cooperation,
system, order, economy, institutions, developed, international, level,
resources, relations, based, world, common, progress

assembly
general, session, delegation, work, nations, united, secretarygeneral,
organization, members, member, mr, express, deliberations,
important, behalf, success, president, opportunity, extend

security
peace, council, united, states, force, conflict, military, nations,
international, continue, organization, peaceful, time, conflicts,
members, end, forces, part, efforts

management

reform, efficiency, developing, fund, resources, decisionmaking,
institutional, growth, efficient, revitalization, financial, developed,
structural, reforms, reforming, sustainable, resource, budget,
innovative

debt
income, investment, debts, servicing, earnings, indebtedness,
rates, growth, products, markets, rate, commodity, product,
capita, creditors, exports, economies, debtservicing, prices

rights

human, freedoms, rule, fundamental, dignity, constitution,
discrimination, inalienable, democracy, violations, freedom,
law, selfdetermination, minority, respect, constitutional,
protection, society, values

africa

african, continent, africans, south, southern, assistance,
support, namibia, mozambique, zimbabwe, apartheid,
liberation, angola, people, colonial, struggle, eradication,
continues, continue

Table B.1 – Word embeddings extracted by the D-ETM on the UN dataset
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Reference
word Nearest neighbors

machine
translation, english, methods, examples, problems, source, human, method,
anguages, important, input, large, process, made, conference, features,
similar, make, shown

database
databases, queries, query, management, developed, developing, applications,
area, interface, real, domain, specific, including, provide, addition, issues,
technology, users, future

parsing parser, parse, parsers, grammar, grammars, parses, np, head, tree, parsed,
trees, constituent, vp, structures, left, syntactic, constituents, rules, rule

tree trees, node, nodes, grammar, parsing, grammars, left, free, structures, np,
parse, called, rules, syntactic, rule, parser, algorithm, hand, context

rule rules, left, applied, result, grammar, called, hand, np, cases, section, apply,
parsing, simple, fact, context, process, forms, applying, tree

clustering
clusters, cluster, clustered, cosine, similarity, centroid, agglomerative,
distributions, estimates, vectors, wordnet, estimation, vector, smoothing,
entropy, estimate, tishby, idf, latent

probability
probabilities, estimation, estimate, likelihood, estimated, probabilistic,
statistical, estimates, trigram, jelinek, entropy, maximum, estimating,
stochastic, distribution, distributions, markov, training, models

Table B.2 – Word embeddings extracted by the D-EDP on the ACL dataset
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Reference
word Nearest neighbors

tire
product, location, rate, highway, driving, style, city, review,
spirited, combine, vehicle, average, mile, condition, purchase,
drive, pa, traction, toyota

handling
handle, noise, traction, dry, review, wet, comfort, continental,
resistance, balance, low, distance, point, straight, high, test,
surface, road, comfortable

performance
sport, michelin, high, good, well, wet, grip, set, perform,
pirelli, pilot, condition, new, come, summer, car, price, like,
winter

noise
quiet, wear, ride, buy, mile, low, handling, handle, review,
noisy, continental, tread, recommend, bad, road, pirelli,
long, good, little

braking
resistance, brake, distance, aquaplane, steering, meter,
rolling, lateral, handling, stability, test, dry, negative, th,
relatively, control, aquaplaning, overall, ability

michelin sport, pilot, good, pirelli, well, set, car, new, continental,
come, price, tyre, like, year, long, buy, size, wear, get

electric
battery, emission, renault, co2, camera, charge, plug,
leather, peugeot, powertrain, seat, spoke, instrument,
mobility, concept, psa, hurl, combustion, adoption

Table B.3 – Word embeddings extracted by the D-ETM on the EN dataset
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Reference
word Nearest neighbors

pneus
monter, user, bonjour, usure, pneu, montage, hiver, salut,
neuf, changer, témoin, oui, écrire, monte, cher, perso,
dunlop, savoir, ca

crossclimate
crossclimat, climat, saison, hiver, climate, neige, alpin,
weatherproof, vector, cross, pneu, sec, michelin, monte,
cc, gen, grip, sculpture, saver

performance
sport, meilleur, offrir, gamme, nouveau, pilot, également,
sportif, test, haut, rapport, modèle, freinage, dimension,
marque, version, choix, disponible, michelin

carbone
fibre, diffuseur, échappement, capot, émission, alcantara,
aluminium, aileron, exclusif, système, optimiser, grâce,
baquet, couleur, carrosserie, associer, co2, bouclier, innovant

technologie

développer, matériau, innovant, développement, innovation,
technologique, doter, intégrer, mondial, optimiser, marché,
composer, croissance, réduire, grâce, offrir, matière, présenter,
automobile

michelin
pneu, qu, marque, mettre, prix, faire, venir, bon, monte,
prendre, savoir, route, bien, dernier, continental, meilleur,
voiture, hiver, monter

électrique
batterie, autonomie, recharge, thermique, moteur, kwh,
système, rechargeable, pare, recharger, grâce, énergie, concept,
automobile, puissance, hybride, dévoiler, présenter, kw

Table B.4 – Word embeddings extracted by the D-ETM on the FR dataset
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Appendix C

Software engineering part

This Section presents the implementation of our work. Similarly to statistical work, software
engineering requires modeling. These two fields have corresponding frameworks and method-
ologies that are particularly useful in industrial contexts. Relying on our curated scientific
literature and industrial experience, we leveraged state-of-the-art knowledge in both fields to
build a toolkit. We first introduce the underlying principles of this part of our research before
presenting our technological choices and subsequent decisions.

C.1 Modeling principles

Our work aims at industrial topic extraction for the recall. Consequently, scalability and
fast development are critical issues. Achieving these goals requires bridging the gap between
business practices in statistical modeling, data mining, and software development. These fields
work iteratively in business contexts. Statistical modeling and data mining, on the one hand,
essentially iterate through three steps: the modeling phase, the parameter inference step, and
the evaluation step 1. Famous industrial project methodologies include Six Sigma’s DMAIC and
DMADV 2 [DB04], and CRISP-DM [She00] and its subsequent extension ASUM-DM [Ang+18].
The essential bottleneck is the inference step once a statistical model is defined. The most ad-

1. G. Box’s loop provides a simplified view of these three steps. Whether adopting a frequentist or a bayesian
philosophy, these steps hold.

2. These methodologies take direct inspiration from W. E. Deming’s Plan-Do-Study-Act Cycle.
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vanced and complex techniques generally have complex inference algorithms due to computa-
tional intractability. These algorithms are often iterative and imply deriving update formulas for
every parameter. Developing such algorithms requires significant time, and subsequent model
modification requires deriving a new inference algorithm. While existing parts of a model -
such as probability distributions in a graphical model - are theoretically reusable, recycling
these parts in practice is difficult.
On the other hand, reusability is paramount in software engineering, which is involved in
model implementation. The object-oriented paradigm gained much popularity in the industry
in the 1990s. Its goal is to modularize code blocks, manage them more effectively and enhance
reusability. Software project development relies heavily on the ability to build on the existing
blocks, especially to comply with business needs. The Agile methodologies (e.g., Scrum and ex-
treme programming) made this reliance central to collaborating with customers and end users,
similar to a statistical or data analysis project. Software engineering, however, is not a field
that considers data and needs an external driver.
To summarize our point, statistical modeling and software engineering are two distinct fields
that share the same iterative approach to increasing performance and meeting industrial and
modeling needs. They meet and intertwine in the sense that software implements statistical
models are implemented, but it is the modeling that drives the implementation. The bottleneck
of inference, however, hinders moving smoothly between the necessary steps to performance im-
provement.

The Auto-Encoding Variational Bayes (AEVB) framework and its Stochastic Gradient Vari-
ational Bayes (SGVB) [KW14] estimator address the issues of parameter inference on large
datasets. In their seminal paper, Kingma & Welling introduce the Variational AutoEncoder
(VAE) and present it as an application of the AEVB. To illustrate their point, the authors
propose using MultiLayer Perceptrons as encoders and decoders with Gaussians and Bernouilli
distributions, respectively. These neural networks and distributions are only examples and
provide compliance with the AEVB requirements and a good illustration. Still, other neural
networks and distributions are usable. The first benefit of using neural networks for parameter
inference is that their training does not involve deriving update formulas for every parameter.
Instead, training a neural network involves (stochastic) gradient descent and backpropagation.
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The only requirement besides the modeling step is to define a loss function - the Evidence
Lower BOund (ELBO) - that depends on the data and the variational parameters. In other
words, a practitioner can add as many parameters as desired as long as it is possible to derive
a loss function, thus alleviating the bottleneck of inference. The second benefit of using neural
networks is that they allow for including the latest achievements. For instance, we leverage
word embeddings in our contributions as we work with textual data, but we could also import
knowledge and techniques from other fields, such as Computer Vision. The last benefit is the
gain in terms of flexibility. The components of the neural networks are left for the practitioner
to choose, thus making it possible to build adequate architectures. This flexibility is also philo-
sophically attractive. When building a statistical, graphical model, one considers distributions
as elementary building blocks. Each distribution can capture distinct elements (e.g., sparsity).
However, their combination is limited in that some distributions are conjugate while others are
not. The combination issue leads to intellectually restricting the modeling to conjugacy settings
as it is easier to analyze a posterior. Leaving the data complexity to neural networks 3 enables
adding effects in a relatively easy way and using distributions as interpretability proxies. In
other words, the VAE framework leverages the benefits of thinking in terms of architecture and
interpretability behind the concept of a probability distribution. The VAE for probabilistic
graphical modeling framework also has impacts in terms of pure software engineering.

Combining probabilistic graphical modeling with VAEs is an efficient way of iterating
through data analytics projects and statistical modeling. On the one hand, probabilistic graph-
ical modeling relies on combining distributions to achieve a simple or hierarchical model and
encode uncertainty. On the other hand, in its simplest form, the VAE framework has three
distinct components (Fig. 2.3):

1. The encoder captures the data’s underlying structure.

2. The "stochastic layer," i.e., the variational distribution and its normalization, allow for
interpretability by explicitly modeling the latent variable of interest.

3. The decoder reconstructs the data using a sample from the latent variable.

The VAE’s architecture is very modular, thus making it compatible with object-oriented pro-
gramming (OOP). Additionally, each component is customizable as needed. Consequently, it

3. One could also consider a complex neural block that yields a given effect as an "elementary" component
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Criterion Statistical modeling
and data mining

Software
engineering

Development
cycles Iterative Frequently

iterative
Development

driver
Data-driven and
business-driven Business-driven

Building blocks Probability
distributions Code

Reusable components
Distributions, priors,

embeddings, and
other coefficients

Code blocks
(e.g., objects, functions,

procedures)
Key performance

indicators
Statistical indicators

and business-defined indicators
Runtime, latency, resource usage,
business-defined needs fulfillment

Bottlenecks
Distribution combination and

parameter inference,
lack of business knowledge

Scalability, code clutter,
lack of business knowledge,
lack or misuse of resources

Table C.1 – Project management practice comparison

is possible to create a class - a VAE class - built by composition from three other classes or
building blocks: an encoder, a stochastic layer, and a decoder. This modularity requires work-
ing on a standard set of interfaces. The ability to replace components modularly is also crucial
to avoiding code duplication. Still, it enables the creation of new models by simply coding the
missing component(s) or mixing and matching two pre-existent models to create a new one. For
instance, one could replace the Bernouilli MLP decoder described in [KW14] with a product
of experts [Hin02] or replace the stochastic layer to form a new model (e.g., setting a Beta
distribution instead of a Gaussian).
Last but not least, interface and mixins enable extending the classes as needed, depending on
the extension. For instance, one could be interested in getting word embeddings in a model
that embarks them. While the corresponding functions make sense for these models, they do
not serve any purpose for a model without word embeddings. The following section shows how
we implement modeling principles in our industrial context.
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C.2 Implementation

At the time our work began, and before starting the software development part, we tried
to enumerate the existing solutions , we found no software that strictly complied with our re-
quirements. As we use Deep Learning, we exclude libraries that do not build on Deep Learning
frameworks, such as Stan 4 or PyMC3 5. The most famous and widely supported are Tensor-
Flow 6 and PyTorch 7. We preferred TensorFlow (version 2.4.1) over PyTorch for the following
reasons:

— TensorFlow has a stable API and an enterprise-friendly ecosystem (e.g., TFX 8), especially
regarding model deployment.

— Similarly to PyTorch, TensorFlow is a high-performance toolkit that allows distributed
computing with minimal code base changes 9 and uses various computing units (CPUs,
GPUs, or TPUs).

— TensorFlow now includes Keras 10, thus reducing the number of project dependencies.
This inclusion also allows a certain flexibility. On the one hand, using Keras enables
fast development of neural networks as it is a high level of abstraction to practitioners.
Thanks to these properties, they can focus on statistical modeling. On the other hand,
developing new, custom components for Keras with TensorFlow is still possible on a lower
level. Custom components, or layers, imply that the developer sticks with the Keras API 11

to make them as easy to use. In other words, we can make a toolkit for industrial practice
and Research and Development.

Probabilistic modeling had also made its way to TensorFlow by the time we began our research.
TensorFlow developers, indeed, have created a dedicated extension known as TensorFlow Prob-
ability 12 (TFP). This extension contains classes that stand for probability distributions. These

4. https://mc-stan.org
5. https://www.pymc.io/welcome.html
6. https://www.tensorflow.org
7. https://pytorch.org
8. https://www.tensorflow.org/tfx
9. https://www.tensorflow.org/guide/distributed_training

10. https://keras.io/
11. https://keras.io/api/layers/base_layer/
12. https://www.tensorflow.org/probability
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classes implement a variety of methods that enable computing of familiar KL-Divergences 13

(KLD) without having to code the whole formula, adding custom KL-Divergences as well (e.g.,
a KLD between a Beta and a Kumaraswamy distribution), and sampling. TFP is deeply rooted
in scientific research. Consequently, it implements many techniques, including implicit repa-
rameterization gradients [FMM18]. Last but not least, and similarly to TensorFlow, TFP is
still under active development, thus making its deprecation unlikely in the following years.

Disclaimer Due to contractual restrictions, we cannot disclose all of the toolkit’s blueprint or
code and must restrain our presentation to the essentials. We refer the reader to Tensorflow’s
documentation for more details on its contents 14. The following page shows a voluntarily
rudimentary UML representation of our toolkit.

13. https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/kl_divergence
14. https://www.tensorflow.org/versions/r2.4/api_docs/python/tf
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Appendix D

Publication list

All the conferences listed below imply a peer-reviewing process.

D.1 International conferences

Palencia-Olivar, M., Bonnevay, S., Aussem, A., Canitia, B. (2022). Nonparametric neural
topic modeling for customer insight extraction about the tire industry. International Joint Con-
ference on Neural Networks (IJCNN), 2022, pp. 01-09, doi: 10.1109/IJCNN55064.2022.9892577.

Palencia-Olivar, M. (2022). A Topical Approach to Capturing Customer Insight Dynam-
ics in Social Media. In: , et al. Advances in Information Retrieval. ECIR 2022. Lec-
ture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/

978-3-030-99739-7_64.

Palencia-Olivar, M., Bonnevay, S., Aussem, A., Canitia, B. (2021). Neural Embedded Dirich-
let Processes for Topic Modeling. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for
Artificial Intelligence. MDAI 2021. Lecture Notes in Computer Science, vol 12898. Springer,
Cham. https://doi.org/10.1007/978-3-030-85529-1_24.
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D.2 Local conferences

Palencia-Olivar, M., Bonnevay, S., Aussem, A., Canitia, B. (2023). Topic modeling neuronal
non-paramétrique pour l’extraction d’insight client : une application à l’industrie du pneuma-
tique. Conférence francophone sur l’Extraction et la Gestion des Connaissances (EGC), Lyon
(France), January, 2023 (to appear).

Palencia-Olivar, M., Bonnevay, S., Aussem, A., Canitia, B. (2021). Processus de Dirich-
let profonds pour le topic modeling. Conférence francophone sur l’Extraction et la Gestion des
Connaissances (EGC), vol. RNTI-E-38, pages 355-362, Blois (France), January, 2022.
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