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Abstract

This thesis seeks to answer an open question in the field of language processing and comprehen-
sion: Is language a phenomenon based on statistical regularities, such as transition probabilities,
or is it a phenomenon deeply rooted in a uniquely human ability to represent nested, symbolic
structures? This question essentially contrasts two distinct mechanisms of language processing.
The first mechanism is attributed to probabilistic modeling at the sequence level, and presup-
poses no structural bias (hereafter linear mechanism), whereas the second is sensitive to the
syntactic structure of the sentence (hereafter structural mechanism). Evidence from previous
studies on human, non-linguistic sequence processing, and artificial neural language models,
suggests that these two mechanisms might co-exist, however, for language processing, their
isolation remains a challenge.

To disentangle the two mechanisms, we created a new design that utilizes the classical psy-
cholinguistic phenomenon of subject-verb agreement, and in particular, the modulation of this
agreement in the presence of a noun that does not intervene structurally with the agreement con-
figuration (hereafter attractor). To identify neural correlates of these mechanisms, we analyzed
data collected from two neuroimaging, and one online-behavioral experiment. Additionally, we
employed comparisons between human subjects and deep neural networks, to draw a compar-
ative picture between two systems that are assumed to have a different underlying language
apparatus.

In experiment 1, we collected behavioral and neural data (EEG & MEG recordings) from 22
human participants and from artificial neural models, presented with the same set of stimuli.
The participants performed a forced-choice, violation-detection task, in an RSVP study with an
SOA of 500ms. The experiment was conducted in English and utilized two different grammatical
features: number and animacy. In the models, we show the coexistence of both transition- and
structure-sensitive effects and for both features. In humans, we failed to trace neural correlates
of a phenomenon stemming purely from transition probabilities of linearly- but not structurally
adjacent words (i.e: occurring within the embedding of a prepositional phrase; The boy near
the girls likes climbing.). In contrast, when a deviant bigram transition, co-occurred with a
syntactically illicit template (i.e: occurring within the embedding of an object-relative clause;
The boy that the girls likes leaves.), the effect was significantly detectable. Notably, we reported
attraction effects at the behavioral level, but only for the feature of grammatical number. Taken
together, our results suggest that human language processing is dominated by structure-based
computations and is largely robust to transition effects. Additionally, our results point to a
difference between language processing in humans and neural models, and to a major difference
between how humans process sequences of non-linguistic items and sentences.

In experiment 2, we sought to tackle possible confounds that might have led to the null
result of a purely Markov-chain based processing in experiment 1. We hypothesized that three
factors might be responsible. First, the morphological complexity of English might not have
been sufficiently visible to provoke a large violation-of-transition-probability effect, given that
the inflectional difference of the singular and the plural tense is mostly based on a single let-

ix



ter. Second, transition-based effects might be transient and therefore dissolved down to an
undetectable level in our original slow SOA settings. Third, in experiment 1, the subjects
could have employed task-resolution strategies due to the lack of filler trials. To control for
such possibilities, we launched a new M/EEG experiment using French, a language with richer
inflectional morphology compared to English, utilizing a carefully selected lexicon. We used
several shorter stimulus onset asynchronies (125, 250, 375, 500ms ). Finally, we included filler
trials where violations occurred in different places, compared to those of our canonical condi-
tions. This design utilized only the feature of grammatical number. In agreement with our
previous results, we managed to decode the effect attributed to the structural mechanism, but
not the transition-based effect. When filtering for the correctness of the responses, we man-
aged to trace effects stemming from the parametric, inflectional covariation of the head noun
and the attractor. Importantly, these effects were consistently late, surfacing after the onset
of the structural effect. Notably, similar to our previous analysis, we could not decode a pure,
violation-of-transition-probability effect between linearly-but, not structurally-adjacent words.
Experiment 2 thus replicates the findings and conclusions of experiment 1: language process-
ing is driven by structure-based computations and is robust to transition probabilities between
adjacent but non-structurally linked words.

Finally, in experiment 3, we sought to isolate correlates of linear processing, by introducing
a parametric manipulation of the linear distance between the attractor and the verb. To that
end, we utilized a subject relative clause modifier, with an embedded attractor (i.e: The boy who
likes the girl the most sneezes). We collected behavioral data from a forced-choice, violation-
detection RSVP experiment, and compared the performance of the humans to deep neural
networks. Driven by our previous analyses, we employed a design with a higher percentage of
filler trials, and we carefully selected participants based on their performance on both the filler
trials and canonical conditions, in an attempt to reduce the effects of task-resolution strategies.
Our results showed a clear effect of linear distance: there was an interference effect when
the attractor was adjacent to the verb, but not when it was more distant. Nevertheless, our
analysis showed that this effect stems from a dependency realized between the head noun and
the attractor, and not between the attractor and the verb. In other words, when the attractor
was adjacent to the target verb, we observed a significant effect of congruency, but not of
transition. These results corroborate our previous findings and point to a language processing
system that robustly circumvents linear effects stemming from transition probabilities between
non-structurally adjacent words.

In conclusion, in a series of experiments, we sought to isolate neural and behavioral correlates
of two discrete mechanisms in language processing and comprehension. Across all experiments,
we consistently detected correlates of the structural mechanism. We also observed an influence
of the non-structurally intervening attractor in the resolution of the subject-verb agreement,
but importantly, this effect did not stem from a purely transition-based mechanism. Across
experiments, we reported attraction effects and identified two asymmetries that bound this
attraction phenomenon: first, participants experience mostly grammatical illusions, that is,
misjudging an erroneous sentence as grammatical, but not a grammatical sentence as erroneous
(grammatical asymmetry); and second, subjects make more errors in the presence of a plural
attractor, compared to a singular one.

Our results are in agreement with the cue-based retrieval model of attraction [Wagers et al.,
2009], according to which, errors in subject-verb agreement are due to a faulty working-memory
mechanism. This model postulates that the parser might retrieve the feature of another element
that shares similar morphosyntactic characteristics (attractor), instead of the noun that controls
the grammatical agreement (head noun). Our analysis showed that this retrieval mechanism,
is indeed, only engaged when the antecedent carries morphosyntactic information, and not
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semantic marking, such as animacy. Overall, our results draw a clear picture of a structure-
based language processing system, adherent to the recursive nature of syntactic computations
postulated by formal syntactic theory.
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Abstract in French

Cette thèse cherche à répondre une question ouverte dans le domaine du traitement et de la
compréhension du langage: le langage est-il un phénomène basé sur des régularités statistiques,
telles que les probabilités de transition, ou est-ce un phénomène enraciné dans une capacité
humaine unique à représenter des structures imbriquées et symboliques? Cette question met
essentiellement en contraste deux mécanismes distincts du traitement du langage. Le pre-
mier mécanisme est attribué à la modélisation probabiliste au niveau de la séquence et il ne
présuppose aucun biais structurel (ci-après mécanisme linéaire), tandis que le deuxième est
sensible à la structure syntaxique de la phrase (ci-après mécanisme structurel). Les preuves
d’études antérieures sur le traitement des séquences humaines non linguistiques et des modèles
de langage neuronal artificiel suggèrent que ces deux mécanismes pourraient coexister, mais
pour le traitement du langage, leur isolement reste un défi. Pour démêler les deux mécanismes,
nous avons créé un nouveau design qui utilise le phénomène psycholinguistique classique de
l’accord sujet-verbe, et en particulier, la modulation de cet accord en présence d’un nom qui
n’intervient pas structurellement avec la configuration de l’accord (ci-après attracteur). Pour
identifier les corrélats neuronaux de ces mécanismes, nous avons analysé les données recueillies à
partir de deux expériences de neuro-imagerie et d’une expérience comportementale en ligne. De
plus, nous avons utilisé des comparaisons entre des sujets humains et des réseaux de neurones
profonds pour construire un tableau comparatif entre deux systèmes supposés avoir un appareil
linguistique sous-jacent différent.

Dans l’expérience 1, nous avons collecté des données comportementales et neuronales (en-
registrements EEG et MEG) de 22 participants humains et de modèles neuronaux artificiels,
présentés avec le même ensemble de stimuli. Les participants ont effectué une tâche de détection
de violation à choix forcé, dans une étude RSVP avec un SOA de 500 ms. L’expérience a été
menée en anglais et a utilisé deux caractéristiques grammaticales différentes: le nombre et
l’animéité. Dans les modèles, nous montrons la coexistence des effets sensibles à la transition
et à la structure et pour les deux caractéristiques. Chez les humains, nous n’avons pas réussi
à tracer les corrélats neuronaux d’un phénomène provenant uniquement des probabilités de
transition de mots linéairement adjacents mais pas structurellement(i.e: se produisant dans
l’incorporation d’une phrase prépositionnelle; The boy near the girls likes climbing.). En
revanche, lorsqu’une transition bigramme déviante coexistait avec un modèle syntaxiquement
illicite (i.e: se produisant dans l’incorporation d’une clause relative à l’objet ; The boy that the
girls likes leaves), l’effet était significativement détectable. Nous avons notamment rapporté
des effets d’attraction au niveau comportemental, mais uniquement pour la caractéristique du
nombre grammatical. Pris ensemble, nos résultats suggèrent que le traitement du langage hu-
main est dominé par des calculs basés sur la structure et il est largement robuste aux effets de
transition. De plus, nos résultats indiquent une différence entre le traitement du langage chez
les humains et les modèles neuronaux, et une différence majeure entre la façon dont les humains
traitent les séquences d’éléments et de phrases non linguistiques.

Dans l’expérience 2, nous avons cherché à aborder les confusions possibles qui auraient pu
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conduire au résultat nul d’un traitement exclusivement basé sur la châıne de Markov dans
l’expérience 1. Nous avons émis l’hypothèse que trois facteurs pourraient être responsables.
Tout d’abord, il est possible que la complexité morphologique de l’anglais ne soit pas suffisam-
ment visible pour provoquer un important effet de violation de la probabilité de transition, étant
donné que la différence flexionnelle du singulier et du pluriel est principalement basée sur une
seule lettre. En deuxième lieu, les effets basés sur la transition peuvent être transitoires et donc
dissous à un niveau indétectable dans nos paramètres SOA lents d’origine. Troisièmement,
dans l’expérience 1, les sujets auraient pu utiliser des stratégies de résolution de tâches en
raison du manque d’essais de remplissage. Pour contrôler ces possibilités, nous avons lancé
une nouvelle expérience M/EEG utilisant le français, une langue avec une morphologie flexion-
nelle, plus riche que l’anglais, en utilisant un lexique soigneusement sélectionné. Nous avons
utilisé plusieurs asynchrones de début de stimulus plus courts (125, 250, 375 & 500ms). Enfin,
nous avons inclus des essais de remplissage où les violations se sont produites à des endroits
différents, par rapport à ceux de nos conditions canoniques. Cette conception n’utilisait que la
caractéristique du nombre grammatical. En accord avec nos résultats précédents, nous avons
réussi à décoder l’effet attribué au mécanisme structurel, mais pas l’effet transitionnel. Lors
du filtrage de l’exactitude des réponses, nous avons réussi à retracer les effets découlant de la
covariation paramétrique et flexionnelle du nom principal et de l’attracteur. Il est important
de noter que ces effets étaient systématiquement tardifs, apparaissant après le début de l’effet
structurel. Notamment, comme dans notre analyse précédente, nous n’avons pas pu décoder
un pur effet de violation de la probabilité de transition entre des mots linéairement mais pas
structurellement adjacents. L’expérience 2 reproduit ainsi les résultats et les conclusions de
l’expérience 1 : le traitement du langage est piloté par des calculs basés sur la structure et
robuste aux probabilités de transition entre des mots adjacents mais non structurellement liés.
Enfin, dans l’expérience 3, nous avons cherché à isoler des corrélats de traitement linéaire, en
introduisant une manipulation paramétrique de la distance linéaire entre l’attracteur et le verbe.
Dans ce but, nous avons utilisé un modificateur de clause relative du sujet, avec un attracteur
intégré (I.e: The boy who likes the girl the most sneezes). Nous avons recueilli des données
comportementales à partir d’une expérience RSVP à choix forcé et à détection de violation, et
nous avons comparé les performances des humains aux réseaux de neurones profonds. Motivés
par nos analyses précédentes, nous avons utilisé une conception avec un pourcentage plus élevé
d’essais de remplissage, et nous avons soigneusement sélectionné les participants en fonction de
leurs performances à la fois dans les essais de remplissage et dans les conditions canoniques,
dans le but de réduire les effets des stratégies de résolution de tâches. Nos résultats ont montré
un effet clair de la distance linéaire à la fois sur les temps de réaction et sur le taux d’erreur :
il y avait un effet d’interférence lorsque l’attracteur était adjacent au verbe, mais pas lorsqu’il
était plus éloigné. Néanmoins, notre analyse a montré que cet effet provient d’une dépendance
réalisée entre le nom principal et l’attracteur, et non entre l’attracteur et le verbe. En d’autres
termes, lorsque l’attracteur était adjacent au verbe cible, nous avons observé un effet significatif
de congruence, mais pas de transition. Ces résultats confirment nos découvertes précédentes
et indiquent un système de traitement du langage qui contourne de manière robuste les effets
linéaires résultant des probabilités de transition entre des mots non structurellement adjacents.

En conclusion, dans une série d’expériences, nous avons cherché à isoler les corrélats neu-
ronaux et comportementaux de deux mécanismes discrets dans le traitement et la compréhension
du langage. Dans toutes les expériences, nous avons systématiquement détecté des corrélats
du mécanisme structurel. Nous avons également observé une influence de l’attracteur inter-
venant non structurellement dans la résolution de l’accord sujet-verbe, mais surtout, cet effet
ne découlait pas d’un mécanisme uniquement basé sur la transition. À travers les expériences,
nous avons signalé des effets d’attraction et identifié deux asymétries qui lient ce phénomène
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d’attraction : premièrement, les participants éprouvent principalement des illusions grammat-
icales, c’est-à-dire qu’ils jugent à tort une phrase erronée comme grammaticale, mais pas une
phrase grammaticale comme erronée (asymétrie grammaticale) ; et deuxièmement, les sujets font
plus d’erreurs en présence d’un attracteur pluriel, par rapport à un attracteur singulier. Nos
résultats sont en accord avec le modèle d’attraction basé sur les indices, selon lequel les erreurs
d’accord sujet-verbe sont dues à un mécanisme de mémoire de travail défectueux. Ce modèle
postule que l’analyseur pourrait récupérer la caractéristique d’un autre élément qui partage des
caractéristiques morphosyntaxiques similaires (attracteur), au lieu du nom qui contrôle l’accord
grammatical (nom principal). Notre analyse a montré que ce mécanisme de récupération n’est
en effet engagé que lorsque l’antécédent porte une information morphosyntaxique, et non un
marquage sémantique, comme l’animéité. En général, nos résultats dessinent une image claire
d’un système de traitement du langage basé sur la structure, adhérent à la nature récursive des
calculs syntaxiques postulés par la théorie syntaxique formelle.
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Chapter 1

Introduction

1.1 On the nature of neurolinguistic operations.

Language is such an amazing phenomenon, inherently complex and intrinsically beautiful. Yet,
many aspects of this uniquely human mechanism remain elusive. In the words of Robbins
Burling [Burling, 2007],

We know more about the ways the vocal tract produces the sounds of speech
than about how the brain deals with them.

Language appears trivial, but it is nothing but that. Ray Jackendoff in his book Patterns in
the Mind: Language and Human Nature [Jackendoff, 2008] describes this dichotomy vividly:

The main thing is to appreciate how hard a problem this is. The fact that
we can talk (and cat’s can’t) seems so obvious that it hardly bears mention.
But just because it’s obvious doesn’t mean it’s easy to explain.

Language is a matter of contention. Is it an innate ability? Does it purely serve communication?
Is it a syntax-dominated mechanism, or is it semantics, the driving force of language? This
very controversial nature of language comes as a byproduct of the underlying complexity that
language encloses. Of the many unresolved questions within the domain of language studies, a
topic that often stirs up heated controversy entails the nature of linguistic computations [Ding
et al., 2017, Haskell and MacDonald, 2005, Ding et al., 2015, Willer Gold et al., 2017, Arana
et al., 2021]. Is language enabled via an innate, human specific, ability to mentally represent
linear input (such as words in a sentence) into structured representations? According to formal
linguistic accounts, that is indeed the case. On the other hand, advances on the deep learning
front challenge this point of view. Artificial natural language processing models are getting
progressively better at resolving linguistic tasks. These models presuppose no structural bias,
and operate solely based on statistical learning and probabilistic modeling at the sequence
level. Simply put, these models operate on a linear, rather than a structural-basis. This thesis
will touch upon this debate, utilizing an experimental design that allows for a direct contrast
between structure-based and low-level, linear-order computations, and will seek to answer the
following question: Is language a phenomenon based on statistical regularities, such as transition
probabilities, or is it a phenomenon deeply rooted in a uniquely human ability to represent nested,
symbolic structures?

1.1.1 Hierarchical processing

The question regarding the nature of linguistic computations is paramount. The root of human
singularity is often attributed to language, and many linguists following the seminal work of
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Chomsky believe that language is enabled via the mechanism of recursion[Chomsky, 2014a,
Chomsky, 2009, Hauser et al., 2002]. Recursion refers to the ability to apply a function on its
own output.1. In language, this property is reflected in the ability of the parser to combine, or
merge [Chomsky, 1957] syntactic units, and apply the same rule repeatedly.

A simple illustration of the recursiveness that governs language is the ability to extend
(theoretically, ad infinitum) a sentence using relative clauses,

I saw a cat on the park → I saw a cat that chased a mouse on the park → I saw a cat that
chased a mouse that was eating cheese on the park → . . .

or coordination,

I saw a dog and a cat → I saw a dog and a cat and a cow . . .

Evidence for recursion, as the core of human singularity, first came from an influential behav-
ioral study by Fitch & Hauser [Fitch and Hauser, 2004]. The authors collected data from a
familiarization-discrimination paradigm, from both human subjects and tamarin monkeys, in a
design that compared two types of artificial grammars. The first grammar, called Finite State
Grammar (FSG), is simple and can be described by the formula (AB)n. This formula implies
that for every element ’A’, an element ’B’ will follow. In other words, this language can be fully
described via means of transition probabilities. The second grammar, called Phrase Structure
Grammar (PSG), contains hierarchical structure and can be compressed to the formula AnBn.
For this grammar, a simple transition-probability based description cannot suffice. The main
characteristic of this grammar is recursiveness, therefore, structure. Indeed, Fitch & Hauser
showed that humans could master both types of grammars, whereas the non-human primates
could only perform well on the FSG.

In a follow-up fMRI study, Angela Friederici and colleagues, compared the two grammars
while human subjects performed a violation-detection task[Friederici et al., 2006a]. The subjects
had learned the two grammars prior to the task. For the FSG, the authors reported activity in
the Frontal Operculum, but not in brodmann area 44 (Broca’s area). In contrast, for the PSG,
the Frontal-Operculum was still engaged, but there was also activation in BA44. Importantly,
both grammars were equally difficult for the subjects. This study hence concluded that the
brain is indeed sensitive to structural hierarchy, and this is processed in BA44.

Nevertheless, these results were based on artificial grammars. Friederici and colleagues then
sought to identify whether the same holds for natural language [Friederici et al., 2006b]. The
authors varied syntactic hierarchy (embedded vs non-embedded) and dependency length (short
vs long), in a study that was conducted in German. The authors confirmed that the main effect
of hierarchy was located in BA44.

To further verify the active involvement of BA44 in hierarchical processing, the same group
investigated whether the activation in this region increases parametrically with sentence com-
plexity [Makuuchi et al., 2009]. Friederici and colleagues verified, with a region of interest
analysis, that indeed the BOLD signal change in BA44 was modulated as a function of sentence
complexity.

As already mentioned, Noam Chomsky proposed that a fundamental linguistic operation,
underlying recursion, is that of merge [Chomsky, 2014b]. According to this, two linguistic
units can be combined to create a new one (e.g: [[The][Ship]] −→ [The Ship]). Therefore, direct
evidence of such operation would be in line with a sensitivity of hierarchical operations in the
human brain. Evidence from two recent fMRI and one ECOG2 study indeed confirm that.

1 An illustrating example of recursion comes from mathematics and the Fibonnaci sequence, which is defined as: f(i) =
f(i− 1) + f(i− 2)

2 Electrocorticography
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In a seminal work, Pallier et al.[Pallier et al., 2011] presented word-sequences of vary-
ing lengths to adult volunteers during fMRI. Their analysis led to an identification of a lef-
lateralized, syntax specific network that includes the inferior frontal gyrus or “Broca’s area”
(IFG, Brodmann areas BA44 and 45) and the superior temporal sulcus (STS). In these areas,
the activity increased monotonically as a function of the complexity of the phrase structure.
Notably, the authors also included a “Jabberwocky” condition. In this condition, the sentences
resembled normal sentences, but all the non-function words were replaced with meaningless
tokens. This led to the designation of brain areas responsible for core-syntax operations. In
particular, the authors reported monotonically increasing activation in both frontal, and poste-
rior STS regions, irrespective of lexico-semantic information. In a 2015 fMRI study, Emiliano
Zaccarella and Angela Friederici investigated the difference in activations of the subjects brains,
when confronted with word-lists versus syntactic phrases [Zaccarella and Friederici, 2015]. The
authors pointed to a systematic activation in BA44 for phrase structures, but not for word-lists.
Importantly, this result was evident not only at the aggregated group analysis, but also at the
single subject level. In an ECOG study, Nelson et al. [Nelson et al., 2017] analyzed high gamma
activity from a rapid-serial-visual (RSVP) presentation experiment and identified sets of elec-
trodes within the above-mentioned network, where the activity increased with each consecutive
word, but abruptly diminished once a phrase could be completed. This result was interpreted
as an indicant of a neural correlate of the ’merge’ mechanism.

The above-mentioned studies report results from English, French, and German, but evidence
of active engagement of BA44 in syntactic processing is evidence from other languages including
Hebrew and Japanese [Friederici, 2011].

Evidence for sensitivity to hierarchical operations does not only come from brain imaging
studies, but also from behavioral experiments. Shi et al. showed that toddlers can effectively
understand hierarchical phrase structures, necessary to determine the grammatical configuration
of two distinct linguistic structures [Shi et al., 2020]. In a recent study comparing humans and
artificial language models, Coopmans et al. [Coopmans et al., 2021] showed that humans only
interpret equivocal noun phrases such as “second blue ball” using a hierarchical parsing, in
contrast to language models that require explicit hierarchical information during training.

Overall, a plethora of brain and behavioral studies as well as theoretical work [Hauser et al.,
2002, Berwick and Weinberg, 1986, Everaert et al., 2015, Jackendoff, 1972, Kratzer and Heim,
1998, Partee, 1975, Pinker, 1998, Lidz et al., 2003, Martin, 2020] point to linguistic operations
driven purely by hierarchical structure, blind to the surface or linear representation of the
sentences. From this standpoint, in language, “what you see is not what you get”[Everaert
et al., 2015].

Indeed, according to this view, a sentence can have two representations. A so-called linear
form, and a corresponding tree-representation. The linear representation of a sentence is the
familiar form used in writing. For example, the following sentence is presented in a linear (or
sequential) form:

(1) The boy near the girl likes climbing.

The structure-driven hypothesis of language representation states that this very same sentence
can be represented using a syntactic tree, such as this, shown in figure 1.1.

This representation opens the possibility to define two distinct distance metrics. A structural-
distance and a linear-distance. We would return to these definitions often in this thesis, but
first, we ought to describe an important element of psycholinguistics: agreement.

In order for sentence (1) to be grammatical, the noun “boy” (hereafter trigger) must agree
with the verb “likes” (hereafter target). The feature of the trigger-target agreement, in this
case, is grammatical number.

3



S

climbing.likes

girlthe

nearboyThe

Figure 1.1: The syntactic-tree representation of the sentence.

Hence, in order for the grammaticality of the sentence to be evaluated, the agent (neural or
artificial) needs to investigate the agreement relationship between the trigger and the target.
According to Chomsky et al. [Berwick et al., 2011], the brain performs that under the principle
of minimal structure distance. Chomsky [Chomsky, 2015] states that:

Language makes use of a property of minimal structural distance, never using
the much simpler operation of minimal linear distance; in this and numer-
ous other cases, ease of processing is ignored in the desing of language. In
technical terms, the rules are invariably structure-dependent, ignoring linear
order

This argument can be demonstrated easier with an example. Consider the following sentence:

(2) The boy near the girls likes climbing.

In this sentence, there exists a “local” disagreement in the bigram girls-likes. Nevertheless,
humans are able to judge this sentence as grammatical, despite the interference of a token
that disagrees with respect to the feature of interest (grammatical number). This intervening
element is called an attractor, and the effects investigating these intervening phenomena are
called attraction effects.

According to Chomsky, the ability to circumvent the attractor interference, is due to the
property of the minimal structure distance, which stems from a much broader principle, that of
Minimal Computation [Chomsky, 2015]. Based on this approach, the structural trigger-target
distance is smaller compared to the distance between the second noun (girls) and the target. In
other words, the second noun is deeper into the syntactic tree and thus needs to “transverse” a
greater distance to reach the target.

1.1.2 Non-structural processing

The existence of structure as the underlying faculty of language, is often perceived axiomatically
[Bybee, 2002, Uddén et al., 2020] and, although broadly, is not universally accepted. In the
words of Ioan Bybee [Bybee, 2002]:

Linguists rarely ask why natural language has constituent structure; they
merely assume that it does, just as they assume that all phonologies will be
organized into segments and features.
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The recent success of natural language processing (NLP) and deep learning (DL) is challenging
the theory-driven approach sketched above. Most NLP models don’t have explicit structural
bias and perceive sentences simply as a sequential string of words.

Stefan Frank, Rens Bod and Morten Christiansen in their review paper ¨How hierarchical
is language use?¨[Frank et al., 2012] make a claim that in terms of computational expenditure,
a sequential processing approach should be favored over a hierarchical one, sketching a non-
hierarchical model of language processing that relies on sequential order. In line with this view,
a growing body of research supports the view that statistical regularities alone could suffice to
explain linguistic phenomena usually attributed to hierarchical operations [Elman, 1990, Bybee,
2002, Frank et al., 2012, Frank and Christiansen, 2018b, Christiansen and Chater, 2015, Haskell
and MacDonald, 2005, Haskell et al., 2010]. In a behavioral study, Frank and Bod [Frank and
Bod, 2011] demonstrated that reading times could be explained by probabilistic modelling alone,
thus disregarding the necessity of a hierarchical processing. Operations that do not assume any
underlying hierarchy and only occur at the sequence, or word-order level, are often termed as
linear. The implementations of this mechanism stem from an information-theory approach to
language processing, and include metrics such as word-suprisal and entropy. It is important to
note, that information-based approaches and structure-based processing are not always mutually
exclusive and often assume an underlying phrase-structure grammar [Hale, 2016]. For a review
on probabilistic accounts of language processing, see [Armeni et al., 2017]. Therefore, the
debate is not whether predictive coding is actively engaged in language processing, but whether
prediction occurs at the structural or sequence (linear) level.

1.2 Bridging the gap: Computational modelling and compar-
isons with human data.

The success of Deep Learning in natural language processing is palpable, with applications
ranging from machine translation to speech recognition and text summarization. Nevertheless,
prof. Noam Chomsky, believes that this success is simply an engineering feat, irrelevant to
science[Norvig, 2017] and the deep questions a scientist should ask about the nature of the
world [Chomsky, 2015].

Nevertheless, computational modelling is a valuable tool for cognitive neuroscience and
neurolinguistics, as it allows researches to compare the performance of the networks directly
with that of humans and generate predictions, but also, and most importantly, researches have
the ability to approach the networks “optogenetically”, either by ablating certain units or by
introducing perturbations to the networks[Lakretz et al., 2019a].

As previously mentioned, number agreement over long-distance, is considered a classical
demonstration of structural operations, associated with the recursive ability of the biological
system. On what is now considered a hallmark paper, Tal Linzen, Emmanuel Dupoux and Yoav
Goldberg evaluated the ability of Recurrent Neural Networks (RNNs) to perform the number
prediction task [Linzen et al., 2016a] on long-range dependencies. The network was presented
with all but the last token, and asked to predict the last work, a process called “language
modelling” [Linzen and Baroni, 2021].

Importantly, Linzen and colleagues evaluated the performance of the network in the presence
of intervening nouns that carried an opposite grammatical number (attractors). The network
achieved high performance (82%) even in sentences with four attractors. The ability of the
networks to perform the number agreement task is not constrained to the specific architecture
of the RNNS, as many other architectures are equally successful (for a review, see [Linzen and
Baroni, 2021]).
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On a later study, Lakretz and colleagues [Lakretz et al., 2019a] took a neuroscientific ap-
proach to Deep Learning, by opening the “black box” of a Long short-term memory network
(LSTM), a specific, gated-architecture of an RNN, and the same kind of architecture that
[Linzen et al., 2016a] used.

The authors ablated units of the LSTM (by setting the activation function to zero) and
observed the performance of the network in the number agreement task. By doing so, Lakretz
and colleagues identified a circuit of neurons in the network that are responsible for performing
the task.

There are three types of units in the network that operate in order for the network to
correctly conjugate the verb of the sentence over a long distance. The first unit is the so-
called Syntax unit. The activity of this unit traces the structure of the long-range dependency.
There also exist two types of long-range units, with which the syntax unit has strong synaptic
connections. In a dependency where the main noun is singular, the Singular Unit is active
throughout, whereas the Plural unit is silent. In contrary, when the main noun of the subject is
plural, the Plural unit is active and the Singular is silent. Finally, there exist short-range units
that are active throughout but only represent the last encountered number and cannot carry
information across the long-range.

A striking aspect of this study is the sparsity of this mechanism. From a total of 1300 units,
only a few units are carrying this operation. This experiment was conducted in English, but
later replicated in Italian [Lakretz et al., 2021b].

The authors tested many models, different in the initialization of the training procedure.
After the ablation of very few units, the networks reach chance level performance on agreement
tasks. This not confined to the number feature, but is also confined to different grammatical
features, such as gender.

In the same study, the authors moved from a single long-range dependency (The keys to the
cabinet are . . . ) to two long-range dependencies (The keys that the man near the cabinet holds
are . . . ) forming a 2×2 factorial design, where the first factor manipulates whether the two
dependencies are successive or nested. The second factor manipulates whether the embedded
dependency is short or long. Given the sparsity of the mechanism, the authors predicted that
the network will not manage to resolve the nested dependency. Additionally, the predictions
stated that this should not be the case in the successive dependency, given the ability of the
network to process them sequentially.

Indeed, in the successive dependencies, the long-range units process the dependencies se-
quentially for both the short-range and long-range cases. In the nested cases (both short and
long), the units can process robustly the outer dependencies, but not the inner. This was in-
terpreted as evidence for the sparsity of the mechanism, given the inability of the network to
allocate computational resources.

The authors then compared the behavioral performance of the network to that of the hu-
mans. The network had very low error-rate in the successive dependencies (both short and
long). In the nested cases, the network was erroneous, in particular when the main and the
embedded noun(s) disagreed in grammatical number.

When comparing the short vs long dependencies, Lakretz and colleagues showed that indeed
the networks make more errors on the inner dependency compared to the outer one. This was
especially pronounced in the case of long-range dependencies. Interestingly, the performance of
the humans followed an extremely similar structure. This might be an indication that humans
operate based on a sparse mechanism, similar to the networks. However, and despite the
initial similarity of the results, the authors observed one big difference between the human and
the network performance. For the models, the performance on the long-nested dependency
was below chance level. Therefore, although there is high similarity between humans and the
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networks, there is still a fundamental difference in the ability to process complex linguistic
constructions.

In yet another recent work by Lakretz et al. [Lakretz et al., 2021a], the authors tested the
robustness of syntactic processing in humans and transformed-based language models. Lakretz
and colleagues used the same setup as [Lakretz et al., 2021b], and introduced a set of three
words to the inner dependency of their design. Surprisingly, the minimal addition brought
the transformer’s performance to below chance, whereas prior to this addition, these language
models achieved “superhuman” performance (almost zero error-rate). The authors interpreted
these results as evidence of instability of syntactic processing in state-of-the-art language models,
a phenomenon which was not observed in the human subjects.

To sum up, in the results of [Lakretz et al., 2021b], a sparse, long-range mechanism for
grammatical agreement consistently emerged in both humans and models, across languages,
grammatical features and network random initialization. However, the RNNs fail to process
inner dependencies of nested constructions. Humans also make errors in inner dependencies,
but perform significantly better compared to RNNs, and above chance level. This difference
can be explained by an underlying recursive processing in humans but not in the networks.

Other than behavioral evidence, language modelling can be applied in conjunction with
neuroimaging studies. In a 2021 study by Charlotte Caucheteux, Alexandre Gramfort and
Jean-Remi King, the authors tested whether the gap between human and artificial behavioral
performance can be explained by the range over which the biological and artificial systems are
able to make predictions [Caucheteux et al., 2021]. The authors tested the hypothesis that
the biological system is optimized to perform long-range and hierarchical predictions, unlike
language models, which are fine-tuned to predict adjacent words.

In what can only be considered a “big-data” approach, the authors went on to put this
hypothesis to the test, by showing that activations of deep neural network models follow a
linear mapping onto the fMRI responses of a total of 345 subjects that listened to short stories.

[Caucheteux et al., 2021] showed that this mapping can be significantly improved if the
networks are enhanced with language representations of the next 8 words. Additionally, the
mapping of the enhanced model broadly coincides with brain regions associated with language
processing. The authors showed a hierarchy of predictions in the human brain, with fronto-
parietal regions engaged in long-range predictions, and superior-temporal regions involved in
short-term predictions.

Section Summary

The plethora of extremely recent studies in the intersection of neuroscience and computational
modelling, is indicative of the benefits of studying both the human and the artificial system.
Comparative studies between humans and Deep Neural Networks can efficiently pave the way
towards understanding the inner mechanisms of language processing in the human brain.

1.3 Subject-verb agreement and models of attraction

1.3.1 Neural correlates of subject-verb agreement

There exists a long body of research regarding the neural correlates of subject-verb agreement
in many languages. Overall, the literature points to an ERP profile that consists of a LAN (Left
Anterior Negativity, observed 300-500ms post verb onset) followed by a P600 (Positivity starting
at 500ms post verb onset) [Kutas and Hillyard, 1983, Osterhout and Holcomb, 1992, Osterhout
and Mobley, 1995, Kaan et al., 2000, Kaan, 2002, Molinaro et al., 2011b, Friederici et al.,
1996, Rossi et al., 2005, Hagoort et al., 1993, Hagoort et al., 2003, Friederici, 2017, Molinaro
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et al., 2011a, Coulson et al., 1998]. Nevertheless, the LAN reports are irreconcilable across
studies. In particular, the LAN has been hypothetized to be a byproduct of the averaging process
but also dependent on the complexity of the linguistic construction [Molinaro et al., 2011a] and
has been a topic of debate over the past years [Tanner and Van Hell, 2014, Molinaro et al.,
2015, Caffarra et al., 2019]. On the other hand, most subject-verb agreement studies report
systematically effects in the time-frame of the P600. Another component that has been reported,
mostly by the work of Friederici is that of ELAN (Early Left Anterior Negativity emerging
between 100 and 300 ms after the onset of the target word) [Friederici and Kotz, 2003, Hahne
and Friederici, 1999, Herrmann et al., 2011, Friederici, 2017]. However, this component is also
a matter of debate [Steinhauer and Drury, 2012] and seems to be dependent on experimental
settings and modality [Molinaro et al., 2011a].

1.3.2 Attraction Phenomena

Agreement attraction occurs when the subject-verb computation is disrupted due to the presence
of a distractor noun. Traditionally, this noun is referred to as an “attractor”. There is a long-
history of attraction studies that can be traced back to the 1960s [Zandvoort, 1961], but most
of the influence in the field comes from the works of Kathryn Bock [Bock and Miller, 1991, Bock
and Cutting, 1992, Bock and Eberhard, 1993], who provided psycholinguistic evidence for the
“Markedness phenomenon” in the case of number agreement.

The Markedness phenomenon

This is a phenomenon that bears polysemy in linguistics. In his influential paper, Martin
Haspelmath describes twelve different uses of the term in linguistics [Haspelmath, 2006]. Es-
sentially, this phenomenon refers to the property of certain linguistic elements to be “marked”
compared to their binary counterparts. The markedness of these elements can be associated
with an increased processing cost.

In the case of number agreement, the marked property is the plural number, and the corre-
sponding unmarked (or default) is the singular. Kathryn Bock [Bock and Miller, 1991] showed
that attraction effects occur only when the attractor is plural. This can be better demonstrated
with an example, comparing the two sentences,

1. The key to the cabinets

2. The keys to the cabinet

Bock et al. showed that subjects made more errors in a production task, in the first sentence
compared to the second. This asymmetry in the behavioral index metrics between the singular
and the plural attractor is called a mismatch asymmetry. This asymmetry can be thought as
an instantiation of the markedness effect for the grammatical number feature. Notably, similar
effects have been shown in studies of computational modeling [?]

Grammatical Asymmetry

In an influential paper by Matt Wagers, Ellen Lau and Colin Phillips [Wagers et al., 2009],
the authors showed the presence of an attractor had a severe effect in the error rate of the
agrammatical sentences but a less significant effect in the grammatical cases. In other words,
the presence of an attractor in the sentences that contain a violation, leads to an a-grammatical
illusion[Phillips et al., 2011] but not to grammatical illusions. This effect is termed grammatical
asymmetry and bears great significance for the explanation of the attraction mechanisms. The
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explanation of this asymmetry is the crucial differentiating factor between the existing models
of attraction.

Models of attraction

There exist two main families of models that account for the attraction phenomena. The main
difference between the two, is whether the representation of the head noun of the sentence is
active continuously, or whether a memory mechanism is enabled upon a cue, that retrieves the
number of the subject from the memory system.

Continuous representation models: In the first family of models, the errors occur because
the representation of the subject number is erroneous [Eberhard et al., 2005, Franck et al.,
2002, Staub, 2009, Staub, 2010, Vigliocco and Nicol, 1998]. The first account of this line of
thinking can be traced back to 1924 and the work of Otto Jespersen [Sonnenschein, 1925], who
claimed that:

If the verb comes long after the verb, there is no more mental energy to
remember what the number of the subject was, and therefore the system uses
the number of the closest noun.

This led Fayol and colleagues, [Fayol et al., 1994] to approach the subject-verb agreement
phenomenon through the lens of a spreading of activation. In a seminal 1994 work, the authors
claimed that:

Agreement is computed automatically through the spreading of activation
from the subject to the verb. When there is a local noun, activation will
spread from this noun too.

This model was later formalized into a quantitative version by Ederbard and colleagues under
the term: “Marking and Morphing model” [Eberhard et al., 2005]. For a brief review on this
model, see [Hammerly et al., 2019]. Another model that assumes a global representation of the
subject number is the percolation model. In this account, the number feature of the intervening
noun percolates upwards to the root node of the syntactic tree [Franck et al., 2002].

Cue-based memory model: This model is based on a cue-based memory architecture ac-
cording to which, upon a cue elicited by the verb, the parser would search for the agent of the
grammatical agreement (controller) [McElree et al., 2003, Lewis and Vasishth, 2005, Van Dyke
and Johns, 2012, Wagers et al., 2009, Badecker and Kuminiak, 2007, Dillon et al., 2013, Martin
and McElree, 2008].

Importantly, this model is the only model that can explain the phenomenon of grammatical
asymmetry [Wagers et al., 2009]. Additionally, unlike the continuous valuation models, this
model does not assume separate mechanisms for different linguistic constructions, but rather
builds up on an already existing content-addreasable memory mechanism that underlies general
purpose working memory [Jonides et al., 2008]. Another advantage of the cue-based model is
its ability to account for attraction effects in the case of object-relative clauses, in which the
attractor does not appear between the subject-verb dependency (e.g: The boy that the girl likes
leaves). Upward percolation cannot account for errors in such sentences

In the account of the cue-based model, the errors stem from a faulty memory access (for
example, the head and the attractor noun might be competing for the same memory slot), and
the parser temporarily accesses constituents not authorized by the structural operations. That
is, attraction effects stem from similarity-based interference at the retrieval stage [Gordon et al.,
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2001, Gordon et al., 2002, Tanner et al., 2014]. Furthermore, it has been hypothesized that cue-
based retrieval mechanisms might be operating in parallel with predictive mechanisms[Tanner
et al., 2014, Tanner and Bulkes, 2015].

Other accounts

Even though the cue-based retrieval model is the dominant model in accounting for attraction
phenomena, there exist other frameworks that challenge, or try to augment this account [Jäger
et al., 2017].

The cue-retrieval model pinpoints to errors that occur at the retrieval stage of processing,
but the encoding process might be an alternative account [Vasishth et al., 2017]. The encoding
stage is not taken into account by the cue-based retrieval model.

In a recent study, Villata, Tabor and Julie Frank [Villata et al., 2018] tried to disentangle the
two stages reporting data from two self-paced reading experiments of object relative clauses (e.g:
The boy that the girl likes leaves) in number and gender agreement in Italian and English. Their
results point to an interference profile stemming from both encoding and retrieval processes.
Villata and colleagues proposed an augmented version of the state-of-the-art cue-based retrieval
computational model (ACT-R, [Lewis and Vasishth, 2005]), that takes the encoding stage into
account.

Another recent paper by Christopher Hammerly, Adrian Staub and Brian Dillon [Hammerly
et al., 2019] challenges the premise of the cue-retrieval, by providing evidence that the grammat-
icallity asymmetry is an epiphenomenon of response bias, and that when this bias is regressed
out (the response bias was modelled as the rate of evidence accumulation in a diffusion pro-
cess), the asymmetry disappears (it is worth noting that based on this analysis, the asymmetry
was significantly diminished but not entirely vanished). The authors interpreted this results
as in line with the family of continuous valuation models, and in particular, the marking and
morphing model [Eberhard et al., 2005].

In another recent work, Bojana Ristic, Simona Mancini, Nicola Molinaro & Adrian Staub
[Ristic et al., 2021], reported results from two eye-tracking experiments in English and Spanish,
that show similarity-based (encoding) interference over the interpolated elements (the elements
that carried grammatical number). The authors interpreted these results as evidence of an
active maintenance of the number feature of the subject, and therefore as indication in favor of
the continuous valuation family models. Notably, the task did not include any comprehension
task, and therefore, the grammatical asymmetry cannot be assessed.

Neural correlates of attraction phenomena.

Studies on the neural correlates of interference/attraction phenomena are scarce in general. Ad-
ditionally, when it comes to classical ERP analyses, Tanner and colleagues have reported results
that showcase the extreme sensitivity of language ERP analysis to technical configurations, such
as high-pass filtering and averaging.

In particular, Tanner et al. [Tanner et al., 2015] demonstrated that high filtering values
usually applied in language ERP studies (e.g: 0.3Hz and above) introduced an N400 effect in
syntactic violations that was not evident in the unfiltered data. In follow-up works, Tanner
and colleagues demonstrated that classical ERP analyses fail to capture individual subject
contributions [Tanner et al., 2018]. Using a large cohort of English monolingual participants
(N=114), Darren Tanner demonstrated that the individual subject responses in a subject-verb
agreement varied in a continuum between the N400 and the P600 component. Importantly,
Tanner did not report the LAN or ELAN component, neither at the individual nor at the group
level.
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Overall, the few ERP studies available point to a response profile in which the main com-
ponents (N400/P600) are reduced in amplitude in the presence of an attractor [Chen et al.,
2007, Kaan, 2002, Severens et al., 2008, Shen et al., 2013, Tanner et al., 2017, Santesteban
et al., 2017] and an overall saliency of the attraction effects. That is, the singular head—plural
attractor configuration was harder to detect across studies.

Section Summary

Attraction phenomena are bounded by two well showcased asymmetries. The mismatch asym-
metry that illustrates that attraction effects arise only when the attractor is plural, and the
grammaticallity asymmetry that depicts that attraction takes place mostly in the agrammatical
sentences. Notably, there is a scarcity of studies investigating the neural correlates of attraction.

1.4 Predictive coding as a mechanism of language processing

Two recent accounts hypothesized that the dominant model of attraction (cue-based model)
might be operating in parallel with predictive mechanisms [Tanner et al., 2014, Tanner and
Bulkes, 2015]. In this section, we review evidence for the role of predictive mechanisms in
language processing.

Cognitive systems, whether biological or artificial, are considered fundamentally “predic-
tion engines” [Nave et al., 2020, Clark, 2013], with a growing body of research in cognitive
neuroscience claiming that prediction is a “canonical computation” of cognition [Keller and
Mrsic-Flogel, 2018].

This is encapsulated in the idea of predictive coding [Friston, 2005] formulated by Karl
Friston. Predictive coding assumes that the brain constantly generates and evaluates a mental
model of the word. According to this theory, the notion of prediction (expressed via the principle
of free energy minimization) is a fundamental property of the human brain[Friston, 2010].)

There is evidence for an active role of prediction in language processing. All the way back
to 1984 and the seminal work of Marta Kutas and Steven Hillyard[Kutas and Hillyard, 1984],
who showed a modulation of the N4003 event-related-component (ERP) with the subject’s ex-
pectancy for the terminal word of the sentence. The authors measured this expectancy via
means of “cloze probability” 4. In a follow-up paper by Delong, Urbach and Kutas [DeLong
et al., 2005] participants were asked to provide the optimal continuation for sentences trun-
cated either before the article or the noun. The authors took advantage of the morphological
difference of the English indefinite articles (“a” vs “an”) and measured scalp potentials of par-
ticipants during the task. The authors found a strong correlation between the amplitude of
the N400 and the cloze probabilities of the nouns and the articles, attributing their results to
an anticipatory behavior that the human brain expresses, given that the article ‘an’ narrows
down the number of expected upcoming words. The above-mentioned experiments were based
on scalp-potentials, but evidence for the role of prediction in language comes from eye-tracking
paradigms as well. Kamide, Altmann and Haywood from the University of York performed a set
of three eye-tracking experiments (in English and Japanese) using the ’visual-word’ paradigm5

Their results demonstrated anticipatory eye-movements towards the matching object compared
to the unrelated one, providing another piece of evidence for active anticipatory behavior in
humans.

3 Negative scalp polarity that peaks at around 400ms after the onset of the target word
4 The probability of the target word completing a particular sentence
5 A setup in which the participants hear utterances while looking at objects which may or may not be associated with

the sound. This is a well-studied tool in language research. For a review, see [Huettig et al., 2011].
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Evidence of prediction can be traced down to toddlers of two years of age. In a set of
picture-priming task experiments performed by Mani, Durrant and Floccia [Mani et al., 2012],
the authors provided evidence that word-recognition utilizes a streamlined pipeline of phono-
semantically related words, thus pinpointing to an active role of word-prediction even at a very
small age. Interestingly, one of the main authors of this paper, co-authored a follow-up review
paper entitled “Is prediction necessary to understand language? Probably not” [Huettig and
Mani, 2016]. The main claim of the authors is that despite the popularity of the predictive
coding framework, there is very sparse experimental evidence that the human brain is engaged
in predictive coding during language processing, and that may be due to the fact that cur-
rent (2016) neuroscientific methods are ill-suited to address this question. Additionally, the
authors provide a set of five arguments against the necessity of prediction in language com-
prehension. Amongst them, the fact that prediction is strongly context-dependent and that
many experimental set-ups and designs encourage prediction processing. With respect to the
argument of context dependency, the authors refer to a previous work of Falk Huettig [Huet-
tig and Guerra, 2015] where the participants were listening to sentences, while presented with
pictures of target words. Of these words, only the target was properly gender-marked with the
definite determiner of the sentence. The authors offered a preview of the images (the target and
the unrelated elements) and varied the speed of this preview, constructing a slow and a fast
experimental condition. Huettig and Guerra observed that the prediction effects disappear in
the slow condition. These results were interpreted as evidence that prediction mechanisms are
not robust to the variability of presentation speed, and thus prediction depends on the context
in which a language user is placed. The second argument refers to the fact that many of the
typical linguistic and neurolinguistic experiments are prediction-engaging, thus, even thought
prediction results are reported, the importance of prediction in language cannot be robustly
inferred. Overall, Huettig and Mani [Huettig and Mani, 2016] do not claim that there is no pre-
dictive processing in language comprehension and production, but rather question the necessity
of prediction in natural language processing.

In a very recent paper that tackled the issues raised by [Huettig and Mani, 2016], Cory Shain
et al. [Shain et al., 2020] presented fMRI evidence that addressed the following two questions:

• Does language-specific predictive coding take place in the Language Network (LANG:
[Fedorenko et al., 2011, Fedorenko et al., 2012]) or the domain-general, fronto-parietal
multiple demand network (MD: [Duncan, 2010]).

• Is language-specific predictive coding sensitive to both structure and surface operations
(Hierarchical Syntax Vs n-grams).

This study is unique in two-ways:

• The authors used naturalistic rather than controlled stimuli (the 78 participants of the
study listened to stories while scanned). This approach addresses the criticism of using
laboratory-controlled settings that might lead to “enhanced” prediction processes [Huettig
and Mani, 2016].

• The authors also used a participant-specific localized to identify the distinct networks of
interest and a unique, recently developed regression technique which is suited for analyzing
BOLD responses from naturalistic stimuli (Continuous Time Deconvolutional Regression-
CDR, [Shain and Schuler, 2021], thus partially addressing the issue of the ill-suited neu-
roscience methods raised by [Huettig and Mani, 2016].
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Importantly, the authors contrasted the fit of two models of surprisal6. A surface-based,
5-gram model and a hierarchical probabilistic context-free grammar (PCFG), essentially con-
trasting structural VS n-gram operations.

Crucially, [Shain and Schuler, 2021] found significant and independent results of both models
in the LANG, but not the MD.

The authors interpreted these results as evidence of direct involvement of predictive coding in
language processing and as a mechanism operated by a language-specific network. Additionally,
language specific predictive-coding appears as a mechanism that operates both at the surface (n-
grams) and syntax level, and that different regions of the language network show sensitivity to
these distinct mechanisms (temporal and inferior-frontal regions). These results are in contrast
to the work mainly driven by Robert Frank, who claims insensibility of the neural system to such
effects [Frank and Bod, 2011, Frank et al., 2012, Frank and Christiansen, 2018b]. All in all, the
results of [Shain et al., 2020] point to a predictive coding mechanism specialized for language,
and sensitive to both surface effects and hierarchical structure operations. The prediction of
syntactic structure (as opposed to mere prediction of word-order or semantic associations) is
addressed in a very recent review by Fernanda Ferreira and Zhuang Qiu from the University of
California, [Ferreira and Qiu, 2021]. The authors claim that syntactic, precedes that of semantic
prediction. As a minimal demonstration example, the authors refer to a hypothetical case-study
in which only the word “Those” is presented to a subject. Under this scenario, there can be
no semantic prediction whatsoever (given the non-existent contextual frame) Nevertheless, the
subject can expect that, most probably, a noun in plural will follow immediately (e.g: Those
workers). As evidence for prediction of syntactic forms, the authors refer to the seminal paper
by Lau et al. [Lau et al., 2006]. In this paper, the authors examined ERPs and in particular
the LAN7 component on the critical word and compared a minimal-pair of the two conditions
shown below:

• Although Erica kissed Mary’s mother, she did not kiss Dana’s of the bride.

• Although the bridesmaid, kissed Mary, she did not kiss Dana’s of the bride.

Both sentences contain a violation and are thus agrammatical. The authors compared the LAN
component in the two sentences and found that in the first sentence, the amplitude of the
violation-ERP was smaller. The difference between the two sentences is that the first one could
have had closure at the last noun (Dana). This fact allows for a so-called elliptical reading (see
section ??). This result is interpreted as a null-form prediction by the syntactic parser, and
thus provides evidence of syntactic structure prediction.

In another very recent study, researchers from the Donders Institute in Nijmegen sought
to investigate the granularity of linguistic prediction [Heilbron et al., 2021] and addressed the
following two questions:

• Is linguistic-prediction ubiquitous?

• What is the level of linguistic prediction?

Similar to the work of [Shain et al., 2020], the authors used naturalistic stimuli. 8 In ad-
dition, they utilized a state-of-the-art transformer-based neural network (GPT-2) to quantify

6 Surprisal is an information-theoretic measure quantifying how unexpected the current word is, given the words that
precede it. [Armeni et al., 2017]

7 Left Anterior Negativity
8 Two datasets of participants listening to audiobooks. The first (N=19) is a publicly available EEG dataset, whereas

the second consisted of 3 participants with custom-made MEG head casts
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linguistic predictions in a granular way. The lexical predictions of the GPT-2 were partitioned
into distinct linguistic dimensions, which allowed the authors to investigate systematically the
level of linguistic prediction (syntactic, semantic & phonemic). Specifically, the syntactic pre-
diction was defined as the conditional probability distribution over parts-of-speech, the semantic
prediction as the predicted semantic embedding and the phonemic prediction as the probability
of the following phoneme. Using this fine-grained prediction schemas, the authors analyzed
the neural responses of the participants using a regression-based deconvolution approach, to
study prediction error signals within the continuous recordings. [Heilbron et al., 2021] used
three regression models of increasing complexity, and found that the model that included prob-
abilistic information was the best predictor of the neural activity. This result was interpreted
as evidence that the brain operates predictive processing on a constant basis. Additionally,
the authors reported dissociable patterns of explained variance per participant, and for each
prediction level. This was construed as evidence towards feature-specific linguistic prediction,
but also, prediction that occurs at both low and high levels of linguistic processing.

Lastly, [Heilbron et al., 2021] decomposed the spatiotemporal dynamics of the syntactic,
semantic and phonemic prediction errors, and observed dissociable signatures for each of these
levels. Specifically, the syntactic surprise lead to a significant frontal positivity between 200 and
500ms after the onset of the critical word, the semantic effect leaf to a much later positivity,
significant between 600 and 1100ms. Finally, the phonemic effect was characterized by a nega-
tive, early component, significant between 100 and 500ms. These results were seen as evidence
that linguistic predictive coding occurs at multiple networks and at different levels that form a
hierarchy of linguistic predictions.

Section Summary

The literature presented in this section draws a clear picture of linguistic predictive coding as
an active mechanism of linguistic processing. This mechanism operates at various linguistic
levels, from low-level transition probabilities to high-level syntactic operations.

1.5 Non-linguistic sequence processing

1.5.1 A taxonomy sequence processing.

As previously mentioned, language can be decomposed in a sequence of elements, therefore to
study language, one should take into account evidence from sequence processing. In a seminal
work, Deahene and colleagues[Dehaene et al., 2015] reviewed evidence from sequence processing
in humans and other primates, and proposed a taxonomy of five levels of representations of
sequences. Of those five levels, four are believed to be shared with other primates. Many other
primates represent sequences by their transition and timing (what comes next and at what
time: level1), they can chunk sequences into groups of objects, discovering that there are so-
called words inside the sequence (level2), they can decide what comes first, second or third and
have number knowledge (level3: number sense in other primates), and they can even, in some
experiments, understand algebraic patterns.

According to this review, the uniqueness of the human brain can be traced to its ability to
represent sequences in the higher level of this codification, that is, representing nested symbolic
structures. Notably, W. Tecumseh Fitch, claims that this human tendency to encompass nested
symbolic representations expands to high cognitive functions other than language, such as music
or mathematics. Fitch terms this ability as “dendrophilia”9 [Fitch, 2014].

9 From Greek: δέντρο (tree) + φίλος (friend). Dendrophilia is the love of trees.
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1.5.2 The “local-global” paradigm.

The “local-global paradigm” [Bekinschtein et al., 2009a], which is a variant of the auditory odd-
ball paradigm. In the local-global paradigm, participants are presented with sounds in short
sequences, and not continuously, as in the classic oddball paradigm, which allows them to per-
form chunking. The “local-global” paradigm shows that when participants are presented with
aaaab sequence patterns, in which the first four tones are identical and the fifth differs, the de-
viancy of the last tone generates a mismatch response (MMR) followed by a late surprise-elicited
P3b wave. A repetition of the same aaaab sequence reduces the P3b component, however, the
“local” effect of MMR remains, suggesting that the MMR is an automatic response to local
transition probabilities. The disappearance of the P3b component suggests that a “global” ex-
pectation for a deviant fifth tone was generated. Indeed, when a aaaaa pattern is subsequently
presented, the P3b wave reappears, showing that a monotonic sequence can be surprising if it
violates prior expectations [Dehaene et al., 2015].

The neural signatures of these local and global effects differ in several ways. First, the
local effect is early (100–200ms) and transient, whereas the global effect requires an additional
100–200ms to rise, and it remains stable [King and Dehaene, 2014]. Second, the local effect
is automatic (does not require attention) and unconscious, whereas the global one disappears
when participants are not attending or unconscious [Bekinschtein et al., 2009b, Strauss et al.,
2015]. Third, while the local effect was traced back to auditory cortices [Pegado et al., 2010], the
global one is distributed across the superior temporal sulcus; inferior frontal gyrus, dorsolateral
prefrontal, intraparietal, anterior, and posterior cingulate cortices [Uhrig et al., 2014].

1.6 On the disentanglement of structural and linear operations
in language comprehension

1.6.1 What this thesis seeks to answer

This thesis seeks to answer an open question in the field of language processing and comprehen-
sion: Is language a phenomenon based on statistical regularities, such as transition probabilities,
or is it a phenomenon deeply rooted in a uniquely human ability to represent nested, symbolic
structures? This question is of paramount importance as it addresses the core mechanism of
human singularity.

This dichotomy essentially contrasts two distinct mechanisms of language processing. The
first mechanism is attributed to probabilistic modeling at the sequence level, and presupposes
no structural bias, whereas the second is sensitive to the syntactic structure of the sentence.

The studies mentioned and reviewed above pave the way for this endeavor. We revisit
a phenomenon studied since 1924 [Sonnenschein, 1925], armed with predictions from Deep
Learning studies and non-linguistic sequence processing. Indeed, evidence from previous studies
on human, non-linguistic sequence processing, and artificial neural language models, suggests
that these two mechanisms might co-exist, however, for language processing, their isolation
remains a challenge.

To disentangle the two mechanisms, we created a new design that utilizes the classical
psycholinguistic phenomenon of subject-verb agreement, and in particular, the modulation of
this agreement in the presence of a noun that does not intervene structurally with the agreement
configuration (hereafter attractor).

To identify neural correlates of these mechanisms, we analyzed data collected from two
neuroimaging, and one online-behavioral experiment. Additionally, we employed comparisons
between human subjects and deep neural networks, to draw a comparative picture between two
systems that are assumed to have a different underlying language apparatus.
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Additionally, to address the demonstrated sensitivity of the classical ERP approaches to
experimental configurations [Tanner et al., 2015, Tanner et al., 2018], we utilize a multivariate,
machine learning analysis approach that provides bigger sensitivity to individual subject contri-
bution, as well as statistical robustness to analyze our data [King and Dehaene, 2014, Dehaene
and King, 2016].
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Chapter 2

Disentangling Structural and
Transition-based Computations
during Sentence Processing.

Abstract

Sequence processing in the primate brain is known to rely on multiple mechanisms,
including a local mechanism based on transition probabilities, and a more global
mechanism based on working memory for long-distance structural regularities. It is
debated whether sentence processing also reflects this duality, with one mechanism
computing transition probabilities of adjacent elements, and the second comput-
ing syntactic tree structures. To disentangle those mechanisms, we examined the
brain response to sentence violations in a factorial subject-verb agreement design
analogous to the non-linguistic local-global design. In each sentence, one feature
of the verb, either animacy or grammatical number, agreed or not with the pre-
ceding noun or with a more distant noun (e.g., “The boy near the girls jumps”).
We collected electro- and magneto-encephalography signals from 22 human partici-
pants, and compared them with the responses of artificial neural networks presented
with the same set of stimuli. In the models, transition and structure effects co-
existed. However, in humans, we only found evidence for the structural effect. The
intervention of an attractor noun with incongruent features did create behavioral
interference, but this was due to noun-noun interference in working memory rather
than to noun-verb transition probability. Our results point to a major difference
between language processing in humans and neural models, as well as between the
processing of non-linguistic and linguistic sequences in humans.

2.1 Introduction

Sequence processing was conjectured to take place across multiple levels in the brain, from low-
level, transition-based processing, to high-level processing of tree-like representations [Dehaene
et al., 2015]. According to this view, incoming sequences are internally represented across a
hierarchy of five distinct levels, each with corresponding cerebral mechanisms and specific prop-
erties: (1) transitions and timing knowledge, (2) chunking, (3) ordinal knowledge, (4) algebraic
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patterns, and (5) nested tree structures. While the lowest level in this hierarchy is assumed to
pertain to various types of sequence processing, and to be found in animals, the highest level,
that of tree-structure representations, is considered to be specific to human language. Following
this multi-representational view, here, we study whether sentences in language are processed
at multiple levels, involving both structural and transition-based computations, and whether
distinct neural mechanisms underlie different levels of processing.

The multi-representational view to sequence processing was based on evidence coming from
the processing of non-linguistic sequences. In several studies, it was shown that separate brain
regions are involved in the processing of different levels of encoding of incoming sequences.
Specifically, using the Local-Global Paradigm, a variant of the oddball auditory paradigm,
[Bekinschtein et al., 2009b] showed that transition-based (local) processing can be distinguished
from that of chunking (global) and from possibly higher levels, eliciting signals in disjoint brain
regions [El Karoui et al., 2015, King and Dehaene, 2014, Strauss et al., 2015]. Extrapolating
these findings to language, we ask whether during sentence processing, distinct neural mecha-
nisms might underlie transition-based (local) and structure-based (global) processing of word
sequences in the human brain.

Recent studies on artificial Neural Language Models (NLMs) provide further support to the
multi-representational view. In these studies, it was shown that distinct neural mechanisms,
which spontaneously emerge in the models during training, underlie two types of computations
during language processing [Lakretz et al., 2019a, Lakretz et al., 2021c]. One type of mechanism
was shown to be sensitive to the latent structure of the sentence, and to be carried by dedicated
units in the network, termed ‘Syntax units’ and ‘Long-range number units’. The second type of
mechanism was shown to be sensitive to local word transitions in language, and to be carried by a
different set of units, termed ‘Short-range’ units. While the short-range units carry predictions
about upcoming words based on ’low-level’ properties of the sentence, the long-range units
generate predictions based on the hierarchical structure of the sentence. Predictions in the
models about upcoming words were therefore shown to be composed of processes occurring at
distinct levels and to be either structure sensitive or structure agnostic.

Suppose that the human brain also contains such two distinct types of neurons, in low-
and high-level regions, which are either structure-sensitive or structure agnostic. Then, during
sentence processing, we might observe neural activity arising from such distinct neural mech-
anisms, similarly to what has been observed for sequence processing of non-linguistic stimuli.
To test this hypothesis, we introduce a new design, akin to the local-global paradigm, which
directly contrasts structure-agnostic (local) and structure-sensitive (global) computations dur-
ing sentence processing. We recorded neural activity from both human participants (n=22,
magnetoencephalography; MEG) and neural language models (n=20) and studied whether the
neural signatures of the two levels can be disentangled. We used temporally resolved decod-
ing techniques [King and Dehaene, 2014], which we applied to neural data from both humans
and neural language models. In the models, we found evidence for two distinct neural effects,
which correspond to the two types of processing, corroborating previous results in NLMs. With
humans, however, only a structural main effect was found, whereas decoding of the transition
effect remained at chance level. Yet, the structural effect was modulated by the transition
one, as revealed by an interaction analysis, providing indirect evidence for the existence of also
word-transition computations during language processing. However, this discrepancy in effect
size suggests that unlike low-level processing of auditory stimuli, in sentence processing, once
word sequences enter the language system they are dominated by structure-based processing
and are largely robust to transition effects.

Finally, the global effect was further modulated by grammatical number, which provides the
evidence for neural correlates of the markedness effect [Bock and Miller, 1991], so far mainly
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described in behavioral data.

2.1.1 The Local-Global Paradigm for Sentence Processing

We start with a short description of the classic “local-global paradigm”, whose design is parallel
to that suggested here for sentence processing. The local-global paradigm is a variant of the
auditory oddball paradigm [Bekinschtein et al., 2009b], in which participants are presented
with sounds in short sequences, instead of in a continuous manner as in the classic oddball
paradigm, which allows them to perform chunking. The local-global paradigm shows that
when participants are presented with aaaab sequence patterns, in which the first four tones
are identical and the fifth differs, the deviancy of the last tone generates a mismatch response
(MMR) followed by a late surprise-elicited P3b wave [Bekinschtein et al., 2009b]. A repetition
of the same aaaab sequence reduces the P3b component, however, the “local” effect of MMR
remains, suggesting that the MMR is an automatic response to local transition probabilities.
The disappearance of the P3b component suggests that a “global” expectation for a deviant
fifth tone was generated. Indeed, when a aaaaa pattern is subsequently presented, the P3b wave
reappears, showing that a monotonic sequence can be surprising if it violates prior expectations
[Dehaene et al., 2015]. The neural signatures of the local and global effects further differ
in several ways. First, the local effect is early (100–200 ms) and transient, whereas the global
effect requires an additional 100–200 ms to rise, and it remains stable [King and Dehaene, 2014].
Second, the local effect is automatic (does not require attention) and unconscious, whereas the
global one disappears when participants are not attending or unconscious [Bekinschtein et al.,
2009b, Strauss et al., 2015]. Third, while the local effect was traced back to auditory cortices
[Pegado et al., 2010], the global one is distributed across the superior temporal sulcus; inferior
frontal gyrus, dorsolateral prefrontal, intraparietal, anterior, and posterior cingulate cortices
[Uhrig et al., 2014]. Taken together, this shows that there exist two distinct neural mechanisms
involved in the processing of sequence patterns, with very different properties and which are
sensitive to regularities at different scales.

Extrapolating from sequences of simple tones to words, we hypothesized that distinct neural
mechanisms might also underlie sentence processing. For sentence processing, the local effect
would correspond to local transition between adjacent words in a sentence, whereas the global
effect would correspond to structural relations among distant words, where one word is syntac-
tically dependent on another one. To contrast syntactic and local expectation, we make use
of grammatical agreement, which is considered one of the best proxies to syntactic computa-
tions during sentence processing [Franck et al., 2007]. This is since grammatical agreement
is ruled by the latent structure of the sentence rather than by its linear (sequential) order
of words. Consider for example the following sentence, which contains a nested prepositional
phrase (Nested-PP; Figure 2.1A):

(1) Nested-PP: “The boy near the girls likes climbing” (“Det N1 P det N2 V N3”).

In this sentence, the structural dependency between the main subject ‘boy’ (N1 and verb
‘likes’ (V ) requires that they agree on the grammatical number (singular), despite their linear
separation. In contrast, the second noun, ‘girls’ (N2, is adjacent to the verb but does not
stand in structural relations with it. It rather linearly intervenes between the main subject and
verb, possibly generating (erroneous) local expectations for a plural form of the upcoming word.
Transition- and structure-based processing can be therefore separately manipulated by:

1. The structural relation between N1 and V (Global manipulation).

2. The linear intervention of N2 on the processing of V (Local manipulation).
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Figure 1: Structural vs. linear intervention in sentence processing - experimental design and 
paradigm. To disentangle two possible types of processing during sentence comprehension, the 
experimental design contrast: (i) a structural dependency between a target verb and a noun, which 
either holds or creates a violation at the verb, and (ii) a linear (sequential) interaction between the 
target verb and another noun, which either facilitates or interferes with verb processing. (A) Tree 
representations of the two sentence constructions explored in the experiments. Below, an 
illustration of the main effects of the design: Violation effect (orange), which depends on the 
structural relation between the main subject and target verb (colored path in the tree 
representation). Transition effect (magenta), which refers to the (mis)match between the target verb 
and a linearly intervening noun, with respect to either grammatical number or animacy. Congruency 
effect, which refers to the (mis)match between the two nouns; In the left construction, the violation 
(structural) effect is long-range and the transition (linear) one is short-range. On the right 
construction, it’s the opposite. (B) Experimental Paradigm: subjects were presented with sentences 
in a rapid serial visual presentation (RSVP), and their task was to report whether the sentences are 
grammatically correct. At the end of each trial, a visual feedback on their performance was given.

B

A

Figure 2.1: Structural vs. linear intervention in sentence processing—experimental
design and paradigm. To disentangle two possible types of processing during sentence com-
prehension, the experimental design contrast: (i) a structural dependency between a target verb
and a noun, which either holds or creates a violation at the verb, and (ii) a linear (sequential)
interaction between the target verb and another noun, which either facilitates or interferes with
verb processing. (A) Tree representations of the two sentence constructions explored in the
experiments. Below, an illustration of the main effects of the design: Violation effect (orange),
which depends on the structural relation between the main subject and target verb (colored
path in the tree representation). Transition effect (magenta), which refers to the (mis)match
between the target verb and a linearly intervening noun, with respect to either grammatical
number or animacy. Congruency effect, which refers to the (mis)match between the two nouns;
In the left construction, the violation (structural) effect is long-range and the transition (linear)
one is short-range. On the right construction, it’s the opposite. (B) Experimental Paradigm:
subjects were presented with sentences in a rapid serial visual presentation (RSVP), and their
task was to report whether the sentences are grammatically correct. At the end of each trial, a
visual feedback on their performance was given.
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Table 1: Design and prototypical examples. The experiment utilizes two linguistic constructions, 
a Prepositional Phrase (PP) and an Object Relative Clause (ObjRC) as well as two features of 
interest (Number & Animacy).   Based on the main effects of Violation,Congruency, and Transition 
the design can be interpreted as a 3x3 factorial design. 

Figure 2.2: Design and prototypical examples. The experiment utilizes two linguistic
constructions, a Prepositional Phrase (PP) and an Object Relative Clause (ObjRC) as well
as two features of interest (Number & Animacy). Based on the main effects of Violation,
Congruency, and Transition, the design can be interpreted as a 3×3 factorial design.

These two dimensions span the two-by-two design of the paradigm, and its corresponding two
main effects are defined as follows (Figure 2.1): A structural effect, which contrasts conditions
in which N1 and V agree and disagree on grammatical number. In the case of disagreement, a
syntactic violation occurs, and a neural response to this violation is expected, as was extensively
studied in past studies [Osterhout and Holcomb, 1992, Osterhout and Mobley, 1995]. The
second one is a transition effect, which contrasts conditions in which N2 and V match and
mismatch with respect to grammatical number. The transition effect corresponds to local word
transitions and was not identified in neural recordings thus far. Following results from the
classic local-global paradigm and from simulations in neural language models, we hypothesized
that a local number mismatch would violate local word-transition expectations, which, in turn,
would generate an identifiable neural response, independently of whether a syntactic violation
simultaneously occurs. For example, in sentence (1), the frequency of ‘girls likes’ is two orders
of magnitude smaller than that of ‘girl likes’ (log-frequency = -8 and -6, respectively; Google’s
ngram). Low-level brain regions of the language network might be sensitive to such transition
probabilities, in which case, a greater neural response is predicted for the low-compared to the
high-frequency word pair. This is based on a predictive-coding framework [Friston, 2005, Friston
et al., 2021], which suggests that cortical circuits form an internal model of input sequences,
and that this model continuously generates predictions about upcoming items, confronting them
with incoming stimuli. The local effect would thus reflect a prediction error that results from
an internal model based on transition probabilities (see also [Kuperberg and Jaeger, 2016], for
a multi-representational hierarchical generative approach to language comprehension).

2.1.2 Decoupling syntactic dependency and linear proximity

Notice that in the construction with a nested PP, the global (structural) and local (transition-
based) effects are correlated with linear proximity. That is, the global effect between the subject
N1 and verb V is long-range, whereas the local effect between the intervening noun N2 and verb
is short-range. To decouple syntactic dependency and linear proximity, we included a control
construction in the design, in which syntactic dependency and linear proximity are reversed
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by the replacement of only a single word. Specifically, we replaced the nested PP by a nested
object-relative clause (ObjRC; Figure 2.1, Table 2.2):

(2) Nested-ObjRC: “The boy that the girls like. . . ” (“Det N1 that det N2 V ”),

In this case, the structural dependency (in bold) is now between N2 and V , whereas the
intervening noun is the distant N1. The difference between the two sentences (1) and (2) is
minimal – only at the third word (‘near’/’that’), and the number of words that precede the
target verb V is the same. This allows us to test the impact of the length of the subject-verb
dependency on the global effect, and the impact of the proximity between N2 and V on the local
effect. In particular, to test the prediction that a neural response to local-transition violations
would occur only in the case of a nested-PP but not in the nested-ObjRC case.

2.1.3 Local and global effects for animacy violations

So far, the examples shown contained variations of a sentence with respect to the feature of
grammatical number. The number feature and the corresponding agreement phenomena are
generally perceived as a proxy into syntactic processing. However, violation responses are known
to vary depending on whether the violation is semantic or syntactic. While syntactic violations
typically generate a late positive neural response P600 [Friederici et al., 1999], semantic viola-
tions were found to elicit an earlier negative response N400 [Hagoort, 2003]. The local-global
design therefore further manipulates the type of feature in the agreements, and it includes
sentences of the form (1), in which violations are with respect to animacy, for example:

(3) Nested-PP: “The boy near the car likes climbing” (“Det N1 near det N2 V ”),

In these sentences, the subject N1 and verb V always agree on number, however, the sentence
contain a semantic violation, which is either local (‘car likes’), or global (as in, “The boy near
the girl rusts badly”). Table 2.2 summarizes the three constructions of the design along with
example sentences. Last, note that due to a time constraint on the entire experimental duration,
we did not include a fourth case in the design, which includes sentences with a nested object-
relative clause (3) and semantic violations.

2.2 Methods

Participants A total of 22 participants with normal or corrected to normal vision were in-
cluded in the M/EEG experiment. In compliance with the institutional guidelines, all partic-
ipants gave a written, informed consent prior to the experiment and were compensated with
100 for their participation. Prior to the participation, the subjects had to perform an online
sentence reading task (Dialang reading task). The procedure and the consent were approved by
the local ethical committee (Université Paris-Saclay, ref. CER-Paris-Saclay-2019-063).

Experimental Paradigm The participants undertook a rapid serial visual presentation
(RSVP) reading task and were asked to report whether a sentence contained a violation to
the grammaticality of the task by pressing a button on an MEG response device. To verify that
participants understood the task, prior to recording, they went through a short training phase
(10minutes). The task was divided into 10 equal runs, where each run contained the same
number of trials (n = 48). A 600ms fixation cross interval preceded the onset of the first word
(Figure 2.1B). All the sentences had the same length. The words were presented with a stim-
ulus onset asynchrony (SOA) of 500ms. After the onset of the last word and following a time
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interval of 1s, a decision panel with the words “OK” and “WRONG” appeared on the screen.
To control for motor preparation, the location of the words (left or right) was randomized at
each trial. As soon as the participants stated their decision, the decision panel disappeared and
the subjects received immediate visual feedback on their performance. If their response was
correct, they were presented with a green cross, otherwise with a red one. Decision duration
was limited to 1.5s, after which a blue fixation cross appeared and the experiment continued.
The interval to the next trial (ITI) was 1.5s. All time intervals were set to multiplications of
the video projector refresh rate (60Hz).

Stimuli In this design, we used two linguistic structures, a Nested Prepositional Phrase
(Nested-PP) and a Nested Object Relative Clause (Nested-ObjRC). Additionally, we utilized
two grammatical features: Number and Animacy. This led to the creation of three constructions
used in the paradigm: Nested-PP-Number, Nested-PP-Animacy, Nested-ObjRC-Number.

For each of the three constructions (Table 2.2), we generated 16 stimuli per block for a total
of 10 blocks. Half of these stimuli contained a violation. The stimuli were generated using
an automated algorithm which sampled without replacement words from the lexicon. Each
participant was presented with a different set of stimuli. The lexicon consisted of 19 animate
nouns, 7 inanimate nouns and a total of 15 verbs. The stimuli were controlled for low-level
features such as length and unigram frequency.

M/EEG recordings Due to the COVID-19 pandemic, recording took place in two different
MEG centers -NeuroSpin(N = 15), ICM (N = 7). Participants performed the task while
sitting in an electromagnetically shielded room. Brain magnetic fields were recorded with a
306-channel, whole-head MEG by Elekta Neuromag® (Helsinki, Finland), in 102 triplets: one
magnetometer and two orthogonal planar gradiometers. In NeuroSpin and ICM, EEGrecording
was recorded with a 60 and 64 channel MEG compatible Neuromag EEG cap, respectively. The
brain signals were acquired at a sampling rate of 1000Hz with a hardware highpass filter at
0.03Hz. Eye movements and heartbeats were monitored with vertical and horizontal electro-
oculograms (EOGs) and electrocardiograms (ECGs). The subjects’ head position inside the
helmet was measured at the beginning of each run with an isotrack Polhemus Inc. system from
the location of four coils placed over frontal and mastöıdian skull areas. All EEG sensors were
digitized as well.

Preprocessing Bad sensors per sensor-type were automatically detected at the run level
based on a variance criterion. Channels of which the variance exceeded the median channel
variance by 6 times, or was less than the median variance divided by 6, were marked as bad. A
visual inspection was followed to verify the detection accuracy. Prior to the variance detection,
Oculomotor and cardiac artifacts were removed at the run level, using signal-space projection
(SSP) implemented with MNE Python [Gramfort et al., 2013, Jas et al., 2018]. To compensate
for head movement and reduce non-biological noise, the MEG data were Maxwell-filtered [Taulu
et al., 2004] using the implementation of Maxwell filtering in MNE Python. The bad EEG
sensors were interpolated using the spherical spline method [Perrin et al., 1989] implemented in
the same package. Following Maxwell filtering, the linear component of the data was removed
and the time-series were clipped at the upper and lower bound values of (-3,3) interquartile
range (IQR) around the median. The data were then bandpass filtered between 0.4 and 50
Hz using a linear-phase FIR filter (hamming) with delay compensation, implemented in MNE-
python version 0.16 [Gramfort et al., 2013]. Finally, the continuous time-series were segmented
into 3.5s epochs of interest (first word onset to panel onset) and the SSP procedure was applied
to the epoched data to remove heart-beats and ocular motions.
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Figure 2: Behavioral results. Interaction plots for the Violation and Congruency effects (N=22).  
The main effects for Violation and Congruency as well as their interaction, are significant in the 
number constructions (p<0.05). In the animacy condition, only the main effect of Violation is 
significant. The error bars indicate the standard error of the mean (SEM) calculated across 
participants.

Main effects

PP-Number ObjRC-Number PP-Animacy

Congruent Incongruent

Figure 2.3: Behavioral results. Interaction plots for the Violation and Congruency effects
(N=22). The main effects for Violation and Congruency as well as their interaction, are signif-
icant in the number constructions (p < 0.05). In the animacy condition, only the main effect of
Violation is significant. The error bars indicate the standard error of the mean (SEM) calculated
across participants.

Decoding Analyses We used a temporally defined decoding approach to classify neural
activity from two conditions at the trial level [King and Dehaene, 2014, Dehaene and King, 2016].
These analyses were implemented in MNE-python version 0.16 [Gramfort et al., 2013]. Prior
to model fitting, the data were standardized using the Scikit-Learn package [Pedregosa et al.,
2011]. We used a linear classifier (logistic-regression) with default Scikit-Learn parameters.
The evaluation metric was the Area Under the Curve (AUC). The estimator was trained and
tested on data from the same condition., To prevent overfitting, we used a 5-fold stratified
cross-validation procedure.

Statistical Analyses The reported statistics correspond to group-level analyses and were per-
formed using the Statsmodels package in Python3 and in MNE-python version 0.16 [Gramfort
et al., 2013]. The statistical significance of the decoding performance over time was evaluated
and corrected for multiple comparisons using a cluster-based permutation approach [Maris and
Oostenveld, 2007], using a total of 1000 permutations. The significance threshold (alpha level)
for all analyses was set to 0.05.

2.3 Results

In this project, we sought to disentangle structural from transition (surface statistics) effects.
To analyze the data, we parsed the factorial design based on two main factors and their corre-
sponding interaction. We first introduce behavioral results from the experiment, based on the
performance of the subjects in a forced-choice, violation-detection task (Figure 2.1C). We then
present classification results in a time-resolved manner on the main effects of the design, for
both humans (MEG & EEG) and artificial language models.
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2.3.1 Behavioral Results

Figure 2.3 shows the mean error rates across all participants for the three main constructions.
We present the error-rates with respect to the two main factors of the design: violation and
congruency.

We first tested whether the structural effect (violation – Figure 2.1C), is observed at the
behavioral level. Indeed, this effect was significant across all constructions. This effect indicates
that participants made more errors in detecting a violation, compared to an affirming that a
sentence was grammatical, and coincides with the well reported phenomenon of grammatical
illusions [Wagers et al., 2009]. The effect was stronger for PP-Number (Violation: 22.11.78%;
Grammatical:7.530.92%; F (21) = 56.94, p < 1e − 10), followed by PP-Animacy (Violation:
12.631.2%; Grammatical: 6.660.81%; F (21) = 16.85, p < 1e − 04) and finally ObjRC-Number
(Violation: 22.862.01%; Grammatical:14.521.32%; F (21) = 13.25, p < 1e− 03).

We then examined the modulation of the error-rate by the congruency effect. Notably,
this effect was significant only for the number feature. In other words, we did not observe
any influence of the embedded noun in the processing of the subject-verb agreement, when the
intervening noun mismatched the main noun in animacy. Importantly, the effect was weaker
compared to that of violation for both constructions (PP & ObjRC). We also observed within-
construction differences. In particular, the effect was weaker in the PP-Number construction,
(Congruent: 11.51.31%; Incongruent: 18.121.81%, F (21) = 11.77, p < 1e−03) compared to the
ObjRC (Congruent:14.161.4%; Incongruent: 23.22, 1.4%; F (21) = 15.67, p < 1e− 03)

The congruency effect stems from a factorial manipulation of features across the two nouns
of the sentence. We then sought to investigate the effect of a mismatch between the non-
structurally intervening noun, and the target verb. This effect can be realized as the interaction
of the main factors of congruency and violation, and in the case of the PP construction, it
corresponds to a bigram transition effect between the non-structurally intervening attractor
and the verb. Notably, as with the congruency effect, this effect was significant only in the case
of the number feature.

In both constructions, the interaction was weaker compared to the violation and congru-
ency factors and for the long-range dependency (Nested-PP-number), it was marginally sig-
nificant (F (21) = 3.99, p = 0.04). It is important to note, that in the ObjRC construction,
this interaction reflects the interference produced by a distant element (N1) that disagrees in
grammatical number with the target verb. Simply put, this effect does not coincide with a
transition phenomenon, as it does for the PP-Number construction. It is worth noting, then,
that for this construction, we observed a stronger interaction effect compared to the Nested-PP
condition, nevertheless, still a weaker effect compared to the effects of congruency and violation
(F (21) = 6.2, p = 0.01).

In summary, at the behavioral level we observed a clear modulation of the error rate by the
structural effect of violation, for both constructions and features. Additionally, we reported a
modulation of the error-rate by effects stemming from the influence of a non-structurally inter-
vening noun. Notably, we reported interference effects in the case of a non-embedded attractor
(ObjRC construction), in agreement with previous studies [Wagers et al., 2009]. Importantly,
the latter effects were weaker compared to the structural effect of violation.

Finally, we detected a significant construction effect. Overall, participants made more errors
on sentences with a nested object relative clause compared to a nested prepositional phrase
(PP : 3.052.9%; ObjRC = 4.643.31%, F (21) = 15.82, p < 1e− 03).
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Table 2: Behavioral Results. 
Figure 2.4: Three one-way between subjects ANOVAs were conducted to compare the effects
of congruency, violation, and their interaction on the Error Rate

2.3.2 Structural but not Transition Effects are Decodable in Human Data.

Subsequently, we tested whether these effects are traceable in the neural data. We tested this
in both neural-network language models and humans. We presented the same stimuli to human
participants and to the models, and recorded network activity after the presentation of each
word. For humans, neural activity was recorded with a magnetoencephalography (MEG) ma-
chine. For models, we extracted hidden activity of all recurrent units of the network (Methods).

To identify the main effects in the data, we used standard decoding techniques: for each
effect, at each time point, a linear binary classifier was trained to separate trials from the two
conditions, and then tested on unseen data in a cross-validation manner. Figure 2.5 shows the
decodability of the main effects for both the artificial (panel A) and human data (panel B).

For the models (Figure 2.5A), for all three constructions, all effects were decodable with high
performance, measured in terms of the Area Under of Curve (AUC). The violation effect reached
full decodability after the onset of the target word. Indeed, prior to the onset of the target verb,
the model cannot predict the grammaticality of the sentence. The transition effect reached full
decodability also after the onset of the target word. Here too, prior to verb onset, a mismatch
between the verb and the non-head noun cannot be predicted. Finally, the congruency effect
was decodable already after the onset of the second noun. Indeed, information about feature
mismatch between the two nouns is already available at this time point.

For the MEG data, and in contrast to the models, only the structural effect of violation was
decodable. The onset and the peak decodability of the violation effect varied across construc-
tions. The effect becomes significant first, for the Nested-ObjRC-number (t = 300ms), then for
the Nested-PP-Number (530ms), and lastly for the Nested-PP-animacy (760ms). The signifi-
cance of the decodability was calculated based on cluster-based permutation testing [Maris and
Oostenveld, 2007]; Methods). The decodability of the violation effect reached its highest value
for the Nested-ObjRC-number construction (AUC : 0.61), followed by the Nested-PP-Number
(AUC : 0.58) and finally by Nested-PP-animacy (AUC : 0.55). We observed a discrepancy
between the behavioral results, the decoding from the neural networks, and the decoding from
the neural data. At the behavioral level, the structural effect was the dominant factor, and
effects emerging from the interaction with the attractor were significant (but weaker) only for
the number feature. In the networks, we observed the same sensitivity across all three main
factors, namely, clear effects arising from the attractor for both the animacy and the number
feature. Lastly, in the human neural data, only the structural effect was decodable, whereas
the performance of the attraction effects remained at chance level. It is worth noting, that
the simulations we run in the language models might be considered as noiseless “recordings”.
Therefore, one reason that we failed to detect the attraction effects at the neural level, might
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Figure 3: Structural but not linear effects are decodable in human data. In contrast, all 
effects are decodable in LSTM activations. (A) Decoding of the main effects originating from the 
activations of an LSTM architecture. All main effects are decodable. (B) Neural decoding of the 
three main effects using all sensor types (magnetometers, gradiometers and eeg).  A different 
decoder was evaluated per time-point and modifier. The evaluation metric is the Area Under the 
Curve (AUC). Only the main effect of Violation (A) is decodable. The dotted lines indicate 
statistically significant time intervals (p < 0.05; corrected - spatio-temporal clustering permutation 
test). The decoding for the main effects of Transition (B) and congruency (C) remained at chance 
level until the end of the time of interest. Results shown for correctl responses (See S3 for all 
responses). Data smoothed with a 100ms moving Gaussian kernel for visualization purposes. 

500 ms

Figure 2.5: Structural but not linear effects are decodable in human data. In contrast,
all effects are decodable in LSTM activations. (A) Decoding of the main effects originating
from the activations of an LSTM architecture. All main effects are decodable. (B) Neural
decoding of the three main effects using all sensor types (magnetometers, gradiometers and
eeg). A different decoder was evaluated per time-point and modifier. The evaluation metric
is the Area Under the Curve (AUC). Only the main effect of Violation (A) is decodable. The
dotted lines indicate statistically significant time intervals (p < 0.05; corrected—spatio-temporal
clustering permutation test). The decoding for the main effects of Transition (B) and congruency
(C) remained at chance level until the end of the time of interest. Results shown for correct
responses (See S3 for all responses). Data smoothed with a 100ms moving Gaussian kernel for
visualization purposes.
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be that their size is significantly smaller, and the signal-to-noise ratio (SNR) of the M/EEG
does not allow for their detection. Given the evidence for the existence of these effects from the
behavioral analysis, we sought to analyze the data employing a second-order analysis.

2.3.3 The influence of the attractor on the structural effect of violation.

We aimed to improve the SNR by increasing the number of samples on which the decoder is
trained. We therefore examined the modulation of violation by both the congruency (Figure
2.6A) and transition effects (Figure 2.6B), employing a second order approach. For this, and
for each construction, we trained a linear binary classifier on the violation effect, and then,
separately, tested it on different conditions in the test data. For example, for modulation of
violation by congruency (Figure 2.6A), at training time, the classifier was trained to separate
violation and non-violation trials regardless of whether they are congruent or not. Then, at test
time, the classifier was separately tested on unseen trials that were either congruent (continuous
lines) or incongruent (dashed lines). The same approach was taken to examine the modulation
by transition. At test time, the classifier was tested on trials for which the second noun agreed
(match) or disagreed (mismatch) in feature with the target word.

Figure 2.6 shows that for Nested-PP-Number, the violation effect is modulated by both
congruency and linear interference. The difference between the congruent and incongruent
trials became significant at 580ms after the onset of the target, and was sustained for 200ms
(Figure 2.6A). In contrast, the difference emerging from the transition effect became significant
much earlier (300ms) and was sustained for another 300ms.

For Nested-objRC-number, violation was only modulated by congruency. This modulation
became significant later compared to the one for the Nested-PP-Number construction, starting
at 780ms and up until 980ms after the target onset. It’s important to note that the linear
interference effect did not modulate violation for this construction. In this case, the effect is not
defined as a transition probability between two adjacent elements, but rather as an intervention
caused by the first noun of the sentence. Finally, for Nested-PP-animacy, violation is neither
modulated by linear interference nor by congruency, in complete agreement with the behavioral
results.

2.3.4 The neural correlates of the markedness effect

In classic work on grammatical agreement, it was observed that for sentences with a long-range
subject-verb agreement, participants make more errors if the attractor is plural compared to
singular [Bock and Miller, 1991]. For example, comparing the two following sentences,

1. “The boy near the girls ”.

2. “The boys near the girl ”.

Participants would make on average more errors on (1) compared to (2). This phenomenon
is known as the markendess effect, since in English, plural is the marked form (English: [Bock
and Miller, 1991, Eberhard, 1997, Wagers et al., 2009] ; Italian: [?] Spanish: [Bock et al.,
2012, Lago et al., 2015] French: [Franck et al., 2002] Russian: [Lorimor et al., 2008].

Thus far, this phenomenon has been studied mainly through behavioral results. We thus
sought to investigate whether we can identify neural correlates of this phenomenon.

We previously saw that the congruency effect modulated the effect of violation (Figure
2.6B). To investigate the markedness effect, we took this analysis one step further. Α linear
binary classifier was trained on the violation effect, and then at testing time, asked to classify
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Figure 5: Modulation of the structural effect by linear intervention and congruency. A 
classifier was trained on the main effect of violation per modifier, and subsequently tested on the 
violation effect when (A) contrasting the local standard (continuous line) and local deviant (dashed 
line) trials, (B) contrasting the congruent (continuous line) and incongruent (dashed line) trials. The 
performance was evaluated using the AUC metric (see figure S4 for correct responses only).
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Figure 2.6: Modulation of the structural effect by transition and congruency. A
classifier was trained on the main effect of violation per modifier, and subsequently tested on
the violation effect when (A) contrasting the local standard (continuous line) and local deviant
(dashed line) trials, (B) contrasting the congruent (continuous line) and incongruent (dashed
line) trials. The performance was evaluated using the AUC metric.
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Figure 6: The neural correlate of the markedness effect.  A classifier was trained on the main 
effect of violation per modifier, and subsequently tested on the violation effect of trials which were 
split for congruency and attractor number. There is no significance different between the congruent 
and the incongruent trials for any of the modifiers in the case of the singular attractor (A). In 
contrast, there is a statistically significant difference(p < 0.05; corrected - cluster based permutation 
test) between the two in the case of the plural attractor. This is in complete alignment with the 
behavioral results (See S2).
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Figure 2.7: The neural correlate of the markedness effect. A classifier was trained on
the main effect of violation per modifier, and subsequently tested on the violation effect of
trials which were split for congruency and attractor number. There is no significance differ-
ent between the congruent and the incongruent trials for any of the modifiers in the case of
the singular attractor (A). In contrast, there is a statistically significant difference(p < 0.05;
corrected—cluster based permutation test) between the two in the case of the plural attractor.
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trials based both on their congruency and attractor number (e.g: congruent-singular attractor
vs incongruent-singular attractor).

When examining the modulation of violation by congruency only for the singular attractor,
we observed no difference between the congruent and incongruent trials, for none of the three
constructions. On the contrary, when examining the same effect for the plural attractor, the
decodability of the congruent trials was significantly higher compared to the incongruent ones.
This difference was significant for the time interval between 620ms and up until 810ms after the
onset of the target word. Figure 2.7 summarizes the neural correlates of the markedness effect.
This significance was calculated based on cluster-based permutation testing using a third-order
interaction analysis where the three factors of the analysis were the grammatical number, the
congruency and the construction. The significance of the decodability for this interaction was
calculated as the difference of the differences of the three factors against the chance level. [Maris
and Oostenveld, 2007], 2007; Methods).

2.4 Discussion

Evidence from animals, humans, and neural language models suggests that non-linguistic se-
quence processing takes place across multiple levels, simultaneously, from local transition-based
processing to more global processing that captures long-distance abstract regularities in the
input data. Brain-imaging and neurophysiological studies of non-linguistic sequence processing,
primarily using the local-global paradigm, have shown that local and global levels of process-
ing are carried by largely distinct neural circuits [Bekinschtein et al., 2009b, Dehaene et al.,
2015, Dehaene and King, 2016]. Likewise, analyses of artificial neural networks have concluded
that both mechanisms contribute to next-word prediction in AI language models [Lakretz et al.,
2019a]. In the present study, we tested whether this is also during human language process-
ing: could structure- and transition-based processing be dissociated, and do they have distinct
neural underpinning? For this, we introduced a new experimental design which directly con-
trasts transition- and structure-based processing. The design manipulates prediction violations
which are either structure-dependent (i.e., violating expectations that depend on the syntactic
structure of the sentence) or structure-agnostic (i.e., violating local word-transition predictions
only). We studied subject-verb agreement, and presented sentences with violations of either
grammatical number or animacy. This allowed us to test whether structure and transition-
based processing are distinguishable, consistently, through the looking glass provided by both
types of processing.

The behavioral data revealed a large difference between the two types of violations. Partic-
ipants were able to detect both number and animacy violations and, in both cases, were better
at affirming that a sentence is grammatical/felicitous than at detecting a violation. However,
an intervening incongruent noun, with the wrong number, induced a large behavioral interfer-
ence in the case of number violations, while a similar intervention of a noun with the wrong
animacy feature did not affect participant performance in the case of animacy violations. This
finding suggests that those features differed. Although both number and animacy are syntactic
as well as semantic features, number is borne by an overt morpheme in both nouns and verbs,
whereas animacy information can only be retrieved from the lexicon. Thus, number may have
been processed at a morphosyntactic stage earlier than, and more susceptible to interference
than, the lexicosemantic stage needed to notice the infelicity of animacy violations. Our results
suggest that the latter stage is totally structure-dependent and immune to intervention. At the
very least, they indicate that during language processing, grammatical number and animacy
are processed and integrated into an ongoing sentence representation in quite different ways,
and that the processing of animacy is more robust to intervening material. This result is con-
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sistent with memory-based models of sentence processing [Lewis and Vasishth, 2005] for which
it was suggested that morphosyntactic processing is relatively ‘fragile’ compared to processing
of animacy [Stoops and Christianson, 2017].

Memory-based models of sentence processing [McElree et al., 2003, Lewis and Vasishth,
2005, Van Dyke and Johns, 2012, Wagers et al., 2009, Badecker and Kuminiak, 2007, Dillon
et al., 2013, Martin and McElree, 2008] suggest that new incoming materials, such an inflected
verb, trigger memory retrieval of previous information, stored in sentence constituents in mem-
ory, in order to complete the noun-verb pairing process. This retrieval process is sensitive
to similarities among items in memory, and can therefore explain the observed discrepancy.
Morphosyntactic features were found to be weaker cues compared to animacy [Stoops and
Christianson, 2017], which results in high similarities among memory items that only differ
by morphosyntactic marking. This could make grammatical-number processing more prone to
confusion errors, compared to animacy, and therefore to more (erroneous) affirmations of un-
grammatical sentences. Our results therefore corroborate the robustness of animacy processing
compared to grammatical number.

The second main result from the behavioral data was the identification of transition effects
in the case of morphosyntactic processing. In this case, we found a positive interaction between
grammaticality and congruency (Figure 2.3, Table 2.4). That is, an incongruency between the
main and local noun elicited more errors in ungrammatical compared to grammatical sentences,
more than in the congruent conditions. This finding is akin to a previous one reported in studies
using self-paced reading, which was termed grammatical asymmetry [Wagers et al., 2009, Lago
et al., 2015]. In these studies, it was shown that agreement attraction facilitated the processing
of ungrammatical but not grammatical sentences, in the case of incogruent nouns.

Memory-based models of sentence processing [Lewis and Vasishth, 2005, Wagers et al.,
2009] were suggested as an explanation for this asymmetry. The cue-based model is a two-stage
mechanism. The parser predicts the number of the verb, and only engages in a retrieval process
when this prediction mismatches the bottom-up input. The second-stage of this mechanism, is
sensitive to interference effects and might lead to the retrieval of the wrong feature.

Returning to the main effect of congruency, the behavioral data is ambiguous and could
be explained by two mechanisms. In a sentence such as “the boy near the girls are tall”, the
incongruent noun could interfere with the decision that the sentence is agrammatical, either
because of the correct local noun-to-verb transition (“girls are”), or because the incongruent
noun-to-noun relationship (the plural of “girls” would interference with the memory of the
singular “boy”). To lift this ambiguity, we looked for the existence of these mechanisms in both
human MEG signals and in artificial neural network models.

To analyze the neural data, we adopted a multivariate decoding approach, since some of the
effects, in particular the transition one, might be small and hard to detect. Decoding methods
are adapted for the identification of fine effects in possibly noisy neural data, given that they
are multivariate and incorporate model-parameter regularization techniques (e.g., [King and
Dehaene, 2014, King et al., 2018].

In the models, based on previous findings about two neural mechanisms underlying mor-
phosyntactic processing [Lakretz et al., 2019a], we hypothesized that both the structural and
transition effects should be found in the model activations. The structural effect involves a
violation between the main noun and verb. Such a violation would affect model predictions
about upcoming words once the verb is presented to the model. Regarding the transition effect,
our hypothesis was based on previous findings showing that grammatical numbers of the main
and local nouns are carried by two separate mechanisms. While the grammatical number of the
main noun was shown to be robustly carried by long-range number units up to the verb, the
grammatical number of the local noun (attractor) was shown to be carried by short-range num-
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ber units. Short-range number units encode the grammatical number of the last encountered
noun and are agnostic to the syntactic structure of the sentence. Model prediction about up-
coming words, and in particular about the main verb, is therefore composed of two (possibility
contradicting) predictions, arising from the two types of units in the model. For example, in the
PP-number construction, following the transition between the local noun and verb, the encoding
in the short-range, but not in long-range number units, changes number. This is expected to
be reflected in model activations after verb onset. Indeed, for all three constructions, we found
significant effects for both structural, transition and congruency effects (Figure 2.5). For the
structural and transition effects, maximal decoding was reached at the verb onset, whereas for
the congruency effect it occurred on the preceding noun, since information about congruency is
already available at this point.

Crucially, the human data contrasted sharply with the predictions from the models. For all
three constructions, no transition-based effect was ever observed, and only the structural effect
was significant (Figure 2.5). Furthermore, the structural effect was modulated by noun-noun
congruency (Figure2.6A), thus providing an explanation for the findings from the behavioral
data.

Taken together, our results suggest a substantial difference between how humans and mod-
els process language, and importantly, a difference between how non-linguistic sequences and
language are processed in humans. Specifically, in the case of the local-global paradigm with
sequences of auditory tones, transition effects are easily detectable, and it is rather the ‘global’
effect, which is more difficult to identify in the neural data. For language processing, our results
point to the complete opposite – while the structural effect is large and easily detectable, the
transition effect is barely detectable or non-existent. This shows that once sequence items enter
into the language system, as is the case here for features of number and animacy, sentence-
level computations are entirely dominated by structure-sensitive processes, and largely robust
to low-level transition effects.
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Chapter 3

Neural correlates of subject-verb
agreement resolution: A multiple
stimulus onset asynchrony study in
French. Abstract

In this study, we investigated an open question in language comprehension, and sought to iden-
tify neural correlates of two discrete mechanisms of language processing. The first mechanism
(hereafter structural is grounded in linguistic theory and pre-assumes a hierarchical encoding of
sentences, whereas the second is attributed to probabilistic modeling, and presupposes no struc-
tural bias (hereafter linear. To tackle this question, we used multivariate analysis to analyze
behavioral and neural data (EEG & MEG recordings, N = 20) originating from a forced-choice,
violation-detection task. In our previous work, we failed to detect direct neural signatures
of a purely linear mechanism originating from operations that can be attributed to transition
probabilities between non-structurally adjacent words.
We hypothesized that three factors might be responsible. First, the morphological complexity
of English might not have been sufficiently complex to provoke such effects, given that the
inflectional difference of the singular and the plural tense is mostly based on a single letter.
Second, we operated under the hypothesis, that transition-based effects might be too fast of
a process and therefore dissolved in our original slow SOA settings. Third, we framed the
hypothesis that the subjects employed task-resolution strategies due to the lack of filler trials.
To that end, we launched a new M/EEG experiment using French, a language with richer
inflectional morphology compared to English, utilizing a carefully selected lexicon. In this study,
we expanded our previous design, by introducing a modulation of the stimulus onset asynchrony
(125, 250, 375, 500ms) to address the working hypothesis that purely-transition effects might not
be detectable in slow SOA settings. Additionally, we included trials where violations occurred
in different places, compared to those of our canonical conditions
Compatible with our previous results, we managed to decode the effect attributed to the struc-
tural mechanism. When filtering for the correctness of the responses, we traced effects stemming
from a noun-noun dependency. Importantly, these effects were consistently late, surfacing after
the onset of the structural effect.
Notably, we could not decode any effects attributed to transition-probabilities between the at-
tractor and the target verb. Thus, in agreement with our previous work, we could not trace neu-
ral correlates of transition probabilities between linearly-but, not structurally-adjacent words.
In contrast, the structural effect was significantly detectable. Our results replicate the find-
ings and conclusions of our previous work. Language processing is driven by structure-based
computations and is robust to transition probabilities between non-structurally adjacent words.
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3.1 Introduction

Language processing appears as a trivial task accomplished within milliseconds by the neural
system. Nevertheless, the underlying mechanisms of language comprehension are not entirely
unriddled.

Reviewing evidence from sequence processing in humans and other primates, [Dehaene et al.,
2015] postulated a taxonomy of sequence representation. According to this codification, the low-
est level of sequence-processing pertains to effects of transition probabilities between adjacent
elements, a processing that can be attributed purely to Markov chain operations and stems from
the predictive coding theory [Friston, 2005, Friston et al., 2021]. In contrast, the highest level
of sequence processing is the ability to manipulate nested tree structures. This project seeks
to answer an open question in the field of language processing and comprehension, originating
from the hierarchy of sequence representations [Dehaene et al., 2015] - Does language process-
ing engage both simple statistical regularities, such as transition probabilities, and structural
operations, deeply rotted in complex tree structures?

To that end, we focus on the phenomenon of subject-verb number agreement. This gram-
matical aspect refers to the ability to encode and store the feature of grammatical number
information of the subject across many elements of a sentence, until the target (verb) is reached
[Molinaro et al., 2011a].

On the one hand, linguistic regularities, such as feature agreement, have been described by
linguists under the assumption of structural computations. Symbolic structures, often termed as
syntactic trees, can describe the sentences, and the structure of the trees can be used to infer the
agreement configuration [Franck et al., 2007, Franck et al., 2006, Franck et al., 2010]. Structural
operations are considered a hallmark of language processing, rooted in an innate human ability
for recursion [Chomsky, 1957, Rizzi, 2004, Cinque and Rizzi, 2010, Dehaene et al., 2015].

On the other hand, language processing utilizes prediction at multiple levels [Heilbron et al.,
2021]. For example, probabilistic processing is summoned to resolve ambiguity when multiple
structures are available in a given input [Levy, 2008]. In general, probabilistic processing is con-
sidered a mechanism that the parser employs to process linguistic input in the presence of noise
[Gibson et al., 2013]. The debate between statistical, word-order processing (hereafter linear
operations and symbolic, structural operations is a topic that often stirs up heated controversy
[Frank and Christiansen, 2018a].

In previous work (Chapter 4 we sought to identify distinct, incontrovertible signatures of
both types of processing in a combined M/EEG1, RSVP2 experiment in English, with an SOA3

of 500ms. Whereas, we were able to successfully decode neural activity attributed to structural
processing, we failed to identify any effect ascribed purely to linear operations. We hypothesized
that three factors might be responsible for the absence of word-order effects. First, it might
be that phenomena stemming from transition probabilities are extremely fast processes, and
therefore our relatively slow SOA failed to capture them. Second, the lack of filler-trials4 might
have resulted in the development of task-resolving strategies (i.e., encoding the number of the
main subject and wait until the verb is presented, ignoring all that appears in between, including
the attractor.) Third, the morphological complexity of English might not be sufficient to elicit
strong word-order effects in a subject-verb agreement M/EEG setting, given that the covariation
of inflection morphology in English is mostly attributed to an addition or subtraction of a single
letter (“s”). Finally, we conjectured that the Signal-to-Noise-Ratio (SNR) of our non-invasive

1 Magnetoencephalography & Electroencephalography
2 Rapid Serial Visual Presentation
3 Stimulus Onset Asynchrony
4 Sentences where the violation occurs in positions other than the target verb.
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experimental setting might have been low enough, for these effects to remain undetectable. In
this project, we address the abovementioned issues in a two-fold manner. Inspired by the work
of [Vagharchakian et al., 2012], we utilize a new M/EEG design with a multiple of SOAs in
French, where we carefully constructed the lexicon to maximize the inflectional difference of the
verb conjugation (see section 3.2. Additionally, to tackle the probable cause of the low SNR,
we run the English version of the experiment in patients implanted with intracranial recording
sites. In this project, we present evidence from a complete M/EEG cohort and preliminary,
single-subject, intracranial results.

3.2 Methods & Materials

Participants

M/EEG

A total of 23 participants were recruited. Two participants were exlcuded due to a technical
malfunction, and one due to overall bad performance (chance level). Therefore, a total of 20
participants with normal or corrected to normal vision were included in the M/EEG experiment.
In compliance with the institutional guidelines, all participants gave a written, informed consent
prior to the experiment and were compensated with €100 for their participation. The procedure
and the consent were approved by the local ethical committee (Université Paris-Saclay, ref.
CER-Paris-Saclay-2019-063). Recordings took place at the NeuroSpin research center, in Paris-
Saclay, France. After the end of the experiment, the participants were asked to provide feedback5

and answer a few questions regarding the experiment.

Intracranial Recordings

A total of 4 participants participated in the intracranial recording experiments after written
informed consent was obtained. All experimental procedures were reviewed and approved by
the Committee for the Protection of Human Subjects (CPHS) of the University of Texas Health
Science Center at Houston. Inclusion criteria for this study were that the participants were
English native speakers, left hemisphere dominant for language and did not have significant ad-
ditional neurological history (for example, previous resections, MR imaging abnormalities such
as malformations or hypoplasia). Recordings took place at the Memorial Hermann Hospital, in
Houston, Texas, USA, under the supervision of Dr.Nitin Tandon.

Experimental Paradigms

In both experiments, participants undertook a rapid serial visual presentation, forced, binary-
choice, violation-detection task. To verify that participants understood the task, prior to record-
ing, they went through a short training phase. A 600ms fixation-cross interval preceded the
onset of the first word (Figure 4.1C). All sentences had the same length. In both experimental
designs, a decision panel with the words “OK” and “WRONG” appeared on the screen 1250ms
after the onset of the last word.

To control for motor preparation, the location of the words (left or right) was randomized
at each trial. As soon as the participants stated their decision, the decision panel disappeared
and the subjects received immediate visual feedback on their performance. If their response was
correct, they were presented with a green cross, otherwise with a red one. Decision duration

5 https://tinyurl.com/languageexpfeedback
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Construction Template Examples Violation Congruency

PP −Number Det N1 P det N2 V1 N3 The doctor near the nurse fears the dog. No Yes

The doctor near the nurses fears the dog. No No

The doctor near the nurses fear the dog. Yes No

The doctor near the nurse fear the dog. Yes Yes

ObjRC −Number Det N1 Adv det N2 V1 V2 The doctor that the nurse fears operates tomorrow. No Yes

The doctor that the nurses fear operates tomorrow. No No

The doctor that the nurses fears operates tomorrow. Yes No

The doctor that the nurse fear operates tomorrow. Yes Yes

PP − Filler Det N1 P det N2 V1 N3 The doctor near the sneezes fears the dog. Yes -

ObjRC − Filler Det N1 Adv det N2 V1 V2 The doctor that the nurse fears farmer tomorrow. Yes -

Table 3.1: Prototypical sentences used in the French M/EEG experiment, translated in English.
For a set of French sentences, see table 3.3

was limited to 1.5s, after which a blue fixation cross appeared and the experiment continued.
The interval to the next trial (ITI) was 1.5s. All time intervals were set to multiplications of
the video projector refresh rate (for the M/EEG experiment) and the personal computer for
the intracranial experiment. Both refresh rates were 60 Hz.

The only difference between the two designs, is that the length of the English sentences was
seven words, whereas the French sentences had a length of eight words. Tables 3.1 & 3.4 provide
a set of prototypical sentences used in the two experiments.

Stimuli

In both designs, we used two linguistic structures, a Nested Prepositional Phrase (PP) and
a Nested Object Relative Clause (ObjRC). Unlike our previous work (Chapter 4, we only
focused on the feature of grammatical number. This configuration led to the conception of two
constructions (PP-Number & ObjRC-Number). Additionally, we introduced the inclusion of
filler trials. We used both, Part of Speech (PoS), and grammatical number fillers. We aimed
at introducing violations in locations other than those occurring during the presentation of the
sentences of interest. Therefore, we embedded violations in the interior part of the PP (i.e:
N1 −→ verb ) and the exterior part of the ObjRC (i.e: V2 −→ noun). Table 3.36 summarizes the
designs and presents prototypical sentences used in the experiments. In the French, M/EEG
experiment, filler trials occupied 11% of each run, whereas in the intracranial experiment 10%.

French Stimuli

Each construction was equally presented across the four SOAs for a total of eight runs. For each
of the two constructions, we generated 16 stimuli per run, leading to a total of 128 trials per
SOA, for each subject. Half of these stimuli contained a violation. The stimuli were generated
using an automated algorithm which sampled without replacement words from the lexicon.
Each participant was presented with a different set of stimuli.

A custom-made web-scraper was used to download the whole list of second and third group
French verbs from the web repository of Wikipedia (Wiktionary7. The selection of these verb
groups occurred because in these categories, the conjugation of most verbs from the third-

6 For the French sentences, see Table 3.1
7 https://en.wiktionary.org/wiki/Category:French second group verbs
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A.

C.B.

Figure 3.1: Experimental design and paradigm. To disentangle two possible types of processing
during sentence comprehension, the experimental design contrast: (i) a structural dependency between
a target verb and a noun, which defines the grammatical agreement (ii) a linear (word order) interaction
between the target verb and another noun, which either facilitates or interferes with verb processing. (A.)
Tree representations of the two sentence constructions and illustration of the main effects of
the design: Violation effect (orange), which depends on the structural dependency between the subject
and the verb (colored path in the tree representation). Interference effect (magenta), which refers to
the (mis)match between the target verb and a linearly intervening noun. Congruency effect, which
refers to the (mis)match between the two nouns; (B.) M/EEG Experimental Paradigm: Subjects
performed a forced-choice, violation detection task in French, and in a setting with four different Stimulus
Onset Asynchronies (SOAs) of 125ms, 250ms, 375ms and 500ms. (C.) Intracranial Experimental
Paradigm: Patients performed an RSVP, forced-choice, violation detection task in English, in a setting
with a single SOA of 500ms.
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singular to the third-plural tense, requires a change of a multiple of letters, compared to the
simple “ent” suffix addition that the first group requires.8 After the corpus creation, a machine-
learning, open-source conjucator9 was applied to automatically conjugate all the words of the
corpus. Next, verbs were filtered based on their log-unigram frequency10, where infrequent
words11 were excluded from the lexicon. Additionally, words were selected such that their
Levenshtein12 distance was maximal, when conjugated from the singular to the plural form.
A length criterion was also applied, such that only words between three and nine letters were
kept in the lexicon. Finally, the lexicon and the constructed sentences were evaluated by native
French speakers.

English Stimuli

For each construction, we presented 40 trials per run, for a total of 4 runs. Each run contained
90 trials (40 PP-Number, 40 ObjRC-Number plus 10 fillers. Each patient was presented with
the same set of sentences. The English stimuli were also controlled for low-level features such
as length and unigram frequencies. Whereas in our previous work (Chapter 4, we only used the
definite English article, in this design, we also included demonstrative articles (this/these), in
an attempt to maximize the contrast between the singular and the plural form.

M/EEG recordings

Recording took place in the NeuroSpin MEG center. Participants performed the task while
sitting in an electromagnetically shielded room. Brain magnetic fields were recorded with a
306-channel, whole-head MEG by Elekta Neuromag® (Helsinki, Finland), in 102 triplets: one
magnetometer and two orthogonal planar gradiometers. In NeuroSpin and ICM, recording was
recorded with a 60 and 64 channel MEG compatible Neuromag EEG cap, respectively. The
brain signals were acquired at a sampling rate of 1000 Hz with a hardware highpass filter at
0.03Hz. Eye movements and heartbeats were monitored with vertical and horizontal electro-
oculograms (EOGs) and electrocardiograms (ECGs). The subjects’ head position inside the
helmet was measured at the beginning of each run with an isotrack Polhemus Inc. system from
the location of four coils placed over frontal and mastöıdian skull areas. All EEG sensors were
digitized as well.

Intracranial recordings

Data were acquired from stereotactically placed depth electrodes (sEEGs) implanted for clinical
purposes of seizure localization of pharmaco-resistant epilepsy. sEEG probes (PMT Corpora-
tion) were 0.8 mm in diameter, had 8–16 contacts and were implanted using a Robotic Surgical
Assistant (ROSA; Medtech). Each contact was a platinum-iridium cylinder, 2.0 mm in length
with a centre-to-centre separation of 3.5–4.43 mm. Each participant had multiple probes im-
planted. Intra-cranial data were collected using the NeuroPort recording system (Blackrock
Microsystems), digitized at 2 kHz.

8 For example, the verb manger (to eat) belongs to the first group and is conjugated as follows, from the third-singular
to the third-plural tense: mange−→mangent. In contrast, the verb convaincre (to convince) that belongs in the third
group has the following conjugation: convainc−→convainquent.

9 https://github.com/SekouD/mlconjug
10 http://www.lexique.org/
11 Unigram frequency less than three times the median unigram frequency
12 A metric used in information theory, that describes the difference of two strings. For a definition and alternatives, see

[Yujian and Bo, 2007].
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Preprocessing

M/EEG

Bad sensors per sensor-type (magnetometers, gradiometers, eeg) were automatically detected at
the run level based on a variance criterion. Channels for which the variance exceeded the median
channel variance by 6 times, or was less than the median variance divided by 6, were marked
as bad. A visual inspection was followed to verify the detection accuracy. Prior to the variance
detection, Oculomotor and cardiac artefacts were removed at the run level, using signal-space
projection (SSP) implemented with MNE Python [Gramfort et al., 2013], [Jas et al., 2018]. To
compensate for head movement and reduce non-biological noise, the MEG data were Maxwell-
filtered [Taulu et al., 2004] using the implementation of Maxwell filtering in MNE Python.
The bad EEG sensors were interpolated using the spherical spline method [Perrin et al., 1989]
implemented in the same package. Following Maxwell filtering, the linear component of the data
was removed and the time-series were clipped at the upper and lower bound values of (-3,3)
interquartile range (IQR) around the median. The data were then bandpass filtered between
0.4 and 45 Hz using a linear-phase FIR filter (hamming) with delay compensation, implemented
in MNE-python version 0.16 [Gramfort et al., 2013]. Finally, the continuous time-series were
segmented into epochs of interest (first word onset to panel onset) and the SSP procedure
was applied to the epoched data to remove heart-beats and ocular motions. EEG data were
re-referenced to the common average reference.

sEEG

Channels were visually inspected for line noise, artifacts and epileptic activity. The data were
then bandpass filtered between 0.4 and 45 Hz using a linear-phase FIR filter (hamming) with
delay compensation, implemented in MNE-python version 0.16 [Gramfort et al., 2013]. Finally,
the continuous time-series were segmented into epochs of interest (first word onset to panel
onset). Data were re-referenced to the common average reference of the non-rejected channels.

Decoding Analysis

We used a temporally defined decoding approach to classify neural activity from two conditions
at the trial level [King and Dehaene, 2014], [Dehaene and King, 2016]. These analyses were
implemented in MNE-python version 0.16 [Gramfort et al., 2013]. Prior to model fitting, the
data were standardized using the Scikit-Learn package [Pedregosa et al., 2011]. We used a linear
classifier (logistic-regression) with default Scikit-Learn parameters. The evaluation metric was
the Area Under the Curve (AUC). Prior to decoding, the data were smoothed with a 100ms
Gaussian kernel window. To prevent overfitting, we used a 5-fold stratified cross-validation
procedure.

Statistical Analysis

The reported statistics correspond to group-level analyses and were performed using the Statsmod-
els package in Python3 and in MNE-python version 0.16 [Gramfort et al., 2013]. The statistical
significance of the decoding performance over time was evaluated and corrected for multiple
comparisons using a cluster-based permutation approach [Maris and Oostenveld, 2007], using
a total of 1000 permutations. In this approach, a cluster is defined as adjoint time points that
exceed a threshold of significance. The significance threshold (alpha level) for all analyses was
set to 0.05.
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Figure 3.2: Interaction plots for the Violation and Congruency effects (N = 20), M/EEG
analysis. The main effects for Violation and Congruency are systematically significant for the ObjRC-
Number condition. This is not the case for the PP-Number condition, where no effect reaches significance
for the 375ms SOA. The error bars indicate the standard error of the mean (SEM) calculated across
participants.

SOA 125ms 250ms 375ms 500ms

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

PP-Number Violation 13.7 <e-03 4.6 <e-01 n.s n.s 5 <e-01

Congruency 4.4 <e-01 5.6 <e-01 n.s n.s 7 <e-02

Interaction n.s n.s n.s n.s n.s n.s n.s n.s

ObjRC-Number Violation 34.2 <e-06 26.5 <e-05 13.3 <e-03 4.48 <e-01

Congruency 16.6 <e-03 45.6 <e-08 16.2 <e-03 4.7 <e-01

Interaction 4.2 <e-01 n.s n.s n.s n.s n.s n.s

Table 3.2: Eight one-way between subjects ANOVAs were conducted to compare the effects of congru-
ency, violation, and their interaction (linear interference) on the error-rate.
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3.3 Results

Following our previous work (Chapter 4, we define and analyze three main factors. Figure 4.1
provides a visual illustration of the main effects. The Violation effect controls the grammati-
cal configuration of the sentence and can be attributed to structural operations, according to
standard linguistic analysis. Notably, in our two linguistic modifiers, the range of the structural
effect is not symmetric. In the case of the PP-modifier, this effect corresponds to a long-range
dependency, whereas for the ObjRC, the effect can be realized as a transition between two
adjacent words. Importantly, in this configuration, the transition probability between the ad-
jacent words corresponds to a syntactically illicit template (Figure 4.1-Panel A). Additionally,
our design allows for the definition of two additional effects. The Congruency effect corresponds
to a relationship defined based on the inflectional covariation of the head noun and the second
noun (hereafter attractor. The Linear Interference is defined as a dependency realized between
the attractor and the verb. In the prepositional phrase construction, where the attractor is
embedded between the head and the target verb, the linear interference effect coincides with a
bigram transition between the attractor and the verb.

Behavioral Results

We first sought to identify the modulation of the error-rate by the main factors of our design.
Thereefore, unlike Tanner et al. Figure 3.2 shows the interaction plots of the Violation and
Congruency factors. Table 3.2 summarizes the results of a one-way, between subjects ANOVA
analysis per cell of Figure 3.2. The Violation effect was significant across all SOAs for the
ObjRC construction, but this was not the case for the PP, where the 375ms SOA did not
lead to a significant violation effect. The effect was driven by the agrammatical sentences.
Participants made more errors in detecting an existing violation, than confirming that a sentence
was indeed grammatical. This phenomenon is known as a grammatical illusion [Wagers et al.,
2009], as subjects experience the illusion of a grammatical sentence in the presence of violation,
and thus make mistakes in assessing correctly the grammaticality of the sentence. 13 The
Violation effect was not equally dominant across all four SOAs. This is especially evident in the
ObjRC construction, where the faster the SOA, the stronger the effect was. The Congruency
effect followed a similar profile to that of Violation. This effect was significant for all SOAs
in the ObjRC construction and to all but 375ms for the PP. This effect was driven by the
incongruency of the trials. Participants made more errors in sentences where the two nouns
disagreed in grammatical number, compared to the ones where they did. 14 The interaction
of the two factors is, leads by definition, to the third one. We only observed an effect of
the attractor to the verb of the relevant grammatical agreement, in the ObjRC construction,
and only for the fast SOA condition. Notably, this effect was driven by the fact that the
congruent, agrammatical sentences were at chance level of performance. In contrast, in all
other configurations the congruency of the violated sentence acted in a facilitatory way. In
this configuration, the mere presence of a violation, inhibited severely the ability of the parser
to perform the task. Interestingly, the parser, although driven close to chance level, managed
to perform the task in the case of a grammatical incongruency. Notably, this pattern is not
symmetric across linguistic constructions, as in the case of the PP construction, the performance
of the subjects remained above chance. This illustrates the additional processing cost induced
by the mere linguistic complexity of a structure, as it is known that relative clauses are generally
harder to parse compared to preprositional phrases. We verified the structure effects across all

13 For a detailed analysis, see table 3.5 and Figure 3.8.
14 For a detailed analysis, see table 3.6 and Figure 3.10.
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conditions, but the effects were more pronounced for the fast SOA. Figure 3.11 summarizes the
results.

Additionally, we observed a clear effect of the SOA in the overall error-rate15, with the fast
SOA being more detrimental regardless of the linguistic construction. Notably, when analyzing
only the filler trials, we see that the performance of the fast SOA is at chance level. We do not
observe the same behavior when examining the canonical sentences (Figure 3.9a). This might
be an indication that the subjects can already, at this level, develop task-resolving strategies.
We return to this point on the discussion.

Finally, when it comes to the intracranial analysis, the task was initially difficult for the
patients, with the first two patients performing below or almost at chance level (Figure 3.12).
This led us to revise the paradigm and reduce the number of trials to its current version. In
this chapter, we restrict the analysis to data originating from a single patient.

3.3.1 Neural correlates of the main factors, and a dependency on the cor-
rectness of the responses.

At the behavioral level, we observed a clear modulation of the behavioral responses by the
two main factors of Congruency and Violation, across both structures. To identify the main
effects in the neural data, we used standard decoding techniques: for each effect and each
SOA, a linear, binary classifier was trained at each time point to separate trials from the two
conditions, and then tested on unseen data in a cross-validation manner. Figures 3.3 and 3.4
present the results of our decoding analysis per linguistic structure and SOA, when taking all
responses into account. Here, we parse the factorial design according to the main factors, and
we seek the neural correlates of the main effects.

The prominence of the structural effect.

The Violation effect was detectable across both linguistic constructions, but unlike in the be-
havioral data, only for the SOAs of 375 and 500ms. The temporal profile of the effect was
different both across SOA and construction, but it was also affected by the correctness of the
responses. For the long-range dependency, the 375 SOA led to a significant effect 500ms after
the onset of the target verb, that lasted for 400ms and reached its maximum AUC value at
860ms. The effect for the 500ms SOA became significant at 650ms after the onset of the verb,
and lasted for 450ms, with a peak at 800ms. The structural effect for the ObjRC, was also,
only evident for the slow SOAs (375 & 500ms), but the temporal profile of the decoding was
different. For the 375ms, we observed a late emerging phenomenon with an onset of 900ms
post verb presentation that lasted for 250ms. This was surprising, given the fact the Violation
effect for this construction emerges from a dependency between adjacent words (Figure 4.1.)
The 500ms SOA, led to an effect that surfaced at 550ms post-verb onset, with a duration of
180ms.

A neural correlate of Congruency

In contrast to our previous work, we managed to detect a direct, neural correlates of an effect
stemming from the inflectional covariation of the two nouns. In particular, we detected a clear
effect of Congruency in the case of the 125ms SOA and only for the PP-Number construction.
This computation occurs, by definition, prior to the onset of the target-verb. It was therefore
surprising to see such an effect emerging at such a late state, given that the AUC curve crossed

15 For a different view on this, see Figure 3.9b.
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Figure 3.3: Decoding of the main effects across SOAs, taking all responses into account,
for the PP-Number construction. Neural decoding of the three main effects using all sensor types
(magnetometers, gradiometers and eeg). Time zero indicates the onset of the target verb. The period
following the verb onset is the ISI to panel onset, common across all SOAs (Figure 4.1). A different,
linear decoder was evaluated per time-point. The evaluation metric is the Area Under the Curve (AUC).
The continues line above the classification plot indicates statistically significant time intervals (p < 0.05;
corrected - spatio-temporal clustering permutation test). The main effect of Violation reaches significant
classification accuracy for the slow SOAs (375&500ms) only. Unlike our previous work (Chapter: 4,
we managed to detect direct neural correlates of a linear effect. The linear model reaches statistical
significance for the Congruency effect, and only for the fastest SOA (125ns). The decoding of the second
linear effect remained at chance level throughout the whole period of interest. Figure 3.13 summarizes
the results when taking only the correct responses into account. For an analysis based on the false
responses only, see Figure 3.15
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Figure 3.4: Decoding of the main effects across SOAs, taking all responses into account, for
the ObjRC-Number construction. Neural decoding of the three main effects using all sensor types
(magnetometers, gradiometers and eeg). Time zero indicates the onset of the target verb. The period
following the verb onset is the ISI to panel onset, common across all SOAs (Figure 4.1). A different,
linear decoder was evaluated per time-point. The evaluation metric is the Area Under the Curve (AUC).
The continues line above the classification plot indicates statistically significant time intervals (p < 0.05;
corrected—spatio-temporal clustering permutation test). The main effect of Violation reaches significant
classification accuracy for the slow SOAs (375&500ms) only, similar to the PP-Number construction.
Similar to our previous work (Chapter: 4, we did not manage to detect direct neural correlates of a
non-structural factor. Figure 3.14 summarizes the results when taking only the correct responses into
account. In this configuration, the Congruency effect becomes detectable in two SOAs (250&500ms),
whereas the Violation effect is significant for three out of four SOAs (although the onset of the 375ms
SOA appears to be strangely early). For an analysis based on the false responses only, see Figure 3.16
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the significance threshold (p < 0.05 against chance - cluster-based permutation testing, [Maris
and Oostenveld, 2007] at 1.15s after the onset of the verb. The effect had a duration 160ms.
The late onset of the effect might be suggestive of a re-analysis process, occurring after an initial
assessment of the grammatical configuration has taken place.

The correctness of the response modulates the temporal profile of the effects.

When analyzing the main effects taking all responses into account, we observed the emergence
of the structural factor for the relatively slow SOAs and a robust effect of Congruency in the
fastest SOA. We then decided to further split the data by filtering based on the correctness of
the subject responses, under the assumption that this filtering maximizes the selection of trials
with the maximum cognitive engagement.

In agreement with what we reported in the all-responses analysis, we only managed to detect
direct correlates of the Violation and Congruency effects for both constructions. Nevertheless,
the onset of both effects regardless of the linguistic structure was earlier. In particular, for
the PP-Number construction, this configuration led to the decodability of the structural effect
for the 250ms SOA, something that was not possible when taking all responses into account.
Remarkably, unlike all previous results, the effect for this SOA had a particularly late onset of
significance, starting at 1.16s post-verb onset and lasting for 236ms. For the SOA of 500ms,
the effect surfaced 150ms earlier compared to the all-responses analysis, starting at 510ms
post-verb, with a duration of 600ms. For the ObjRC construction, we were able to decode
the Violation effect for all but the 125ms SOA. Notably, the onset of the effect for the 250ms
SOA was later compared to the slower SOAs, as it became significant at 676ms post-target
and lasted for 150ms. The 375ms SOA showed a peculiar profile. The onset for this effect was
particularly fast, surfacing exactly at the onset of the verb, with a second peak emerging much
later at 700ms. The two peaks had a comparable duration (356 and, 464ms respectively).

The unusual onset of the first wave is puzzling. Nevertheless, the fact that the Violation
effect is decodable on this SOA in all response-filtering configurations (correct, false & all
responses), speaks to the robustness and the psychological reality of this effect in this SOA.

Figures 3.13 & 3.14 summarize the main factor effects for this configuration.

A consistent, late profile of Congruency.

The Congruency factor was not decodable for the PP-Number construction when filtering for
correct responses. Nevertheless, the effect had a clear and stable profile in the ObjRC-Number
construction, for the 250ms and 500ms SOAs. Furthermore, the timing of the effect was
consistent across both SOAs. In the 250ms case, the effect surfaced at 766ms after the onset of
the verb and lasted for 180ms. In the 500ms case, the profile was similar, with an emergence
at 800ms and a duration of 250ms. The timing of these effects is consistent with that of the
PP-Number condition, when no response-filtering is applied (onset of 900ms and duration of
250ms). In all cases, the Congruency effect follows the onset of the Violation effect. Remarkably,
in our previous work, we could not decode this effect in the same settings (ObjRC-Number,
500ms SOA).

The Violation effect for the fast SOA only emerges in the false responses.

The ObjRC-Number construction was harder for the subjects compared to the prepositional
phrase across all SOAs (Figure 3.11). In the case of the fast SOA, the subjects performed close
to chance level (Figure 3.2). We thus searched for the neural correlates of the Violation effect in
this configuration and selecting only on the trials in which the subjects gave a false response, as
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we were unable to decode it in any other setting. Indeed, in this case, the Violation effect had
a clear decoding profile, emerging at 500ms after the verb onset and lasting for 260ms. Figures
3.15 & 3.16 summarize the decoding analysis for this trial selection. Table 3.7 summarizes the
timing of the first-order analysis across all trial and SOA selection.

The Linear Interference factor did not emerge at the neural level

Our main analysis sought the neural correlates of the main factors (Figure 4.1). At the behav-
ioral level, the effects of Violation and Congruency were significant across both constructions
and SOAs (apart from the 375ms SOA in the PP construction). The decoding results of this
first-order analysis were in line with the behavioral evidence. Namely, by examining both con-
structions and SOAs, as well as the nature of the subject responses, we were only able to identify
neural signatures of these two effects. No configuration led to the decodability of the main effect
of Linear Interference. Simply put, in agreement with our previous work, we could not trace
neural correlates of operations attributed to transition probabilities between linearly but not
structurally adjacent words.

Modulation of the structural effect by the attractor interference.

In an attempt to boost the SNR of our analysis, we employed a second-order approach that
builds on the dominance of the structural effect. In this approach, a linear model is trained on
classifying Violation per SOA, but then, at test time, the pool of trials is separated based on
the remaining two factors. For example, a classifier can be trained in classifying trials based
on whether they contain a violation for all sentences of the PP-Number construction and the
500ms SOA, and then at test time, perform the same task only the incongruent trials. This
would correspond to the trials pooled from rows 2vs3-Table 3.1. This approach allows us to,
indirectly, investigate the modulation of the structural effect by the congruency factor. The
same approach was followed for the factor of Linear Interference.

When performing the second-order analysis taking all responses into account, we observed a
statistically significant modulation of Violation, by Congruency only in the case of the ObjRC-
Number construction, and only for the slow SOA. The difference between the congruent and
incongruent trials became significant at 690ms after the onset of the target, and remained
significant for 130ms, in alignment with the overall late profile of the factor observed in our
main analysis. The significance of the difference was evaluated using cluster-based permutation
analysis [Maris and Oostenveld, 2007], where the chance level was set to zero. No other effect
was observed for this configuration.

We then continued to perform the same analysis, screening the trials based on the correctness
of the responses. In this configuration, only the effect of Linear Interference emerged, notably
with a different temporal profile across the two constructions. Figures 3.5 & 3.6 summarize
the results of this analysis. The difference was significant only in the case of the 125ms SOA
in the PP-Number construction, and only for the 500ms SOA, in the case of the ObjRC.
Notwithstanding, the onset of the relative differences was different for the two constructions.

The motivation behind the utilization of the multiple SOAs, and in particular the very fast
one, was rooted in the assumption that effects rooted in simple statistical regularities, such
as transition probabilities described in [Dehaene et al., 2015], might be too fast and therefore
undetectable with slow SOA designs. The Linear Interference effect, in the case of the PP-
Number construction, coincides with a pure transition probabilities effect (Figure 4.1). In this
construction, we detected a clear modulation by this effect, in the 125ms SOA. The effect had
a very early profile, with the relative difference becoming significant 120ms after the onset of
the target verb, and a duration of 180ms. In the case of the ObjRC-Number construction,
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the effect does not co-occur with a pure transition phenomenon, at least at the bi-gram level,
but is an effect emerging from a dependency between the attractor, and the target verb. In
this construction, and only for the 375ms we observed a very clear and sustained difference,
emerging at a late stage. Specifically, the difference became significant 990ms after the onset
of the verb, with a duration of 400ms.

Although in this analysis, we observed a modulation of the structural effect by both factors,
it is worth noting that the effects were not consistent across SOAs and constructions.

Preliminary intracranial results.

Our intracranial analysis was limited to a single patient, as s/he was the only one who completed
the whole experiment. The patient had a bilateral fronto-temporal coverage (Figure 3.7 - Panel
A). Similar to our previous, M/EEG experiment (Chapter : 4, the main effect of Violation,
was the only effect for which the linear model reached high classification accuracy. Figure 3.7
presents the Generalization Across Time (GAT) matrices [King and Dehaene, 2014, Dehaene
and King, 2016] for the main effects, across both constructions. The diagonal of the GAT matrix
corresponds to the AUC curves reported throughout the results section.

The profile of the GAT matrix allows us to make an inference on the computational archi-
tecture that corresponds to the given to neural activity [King and Dehaene, 2014]. The diag-
onal profile of the Violation effect, for the ObjRC construction, points to heavily feed-forward
architecture. This architecture necessitates that the likelihood and the prior information is
systematically completed within each of the processing stage of the architecture. We can infer
that, because the classifier does not generalize across time (should it have, the GAT profile
would deviate from the diagonal activation). Simply put, this illustrates that different neuronal
ensembles get activated sequentially and propagate the encoded information in a feed-forward
manner. A generalization across time might have, for example, implied that a given neuronal
population gets re-activated recursively under different firing distributions.

Similar to our main analysis, we sought to investigate the modulation of the structural effect
by the presence of the attractor. We observed a clear modulation by the Congruency effect, but
not from the Linear Interference. Importantly, these results should be interpreted cautiously,
as sample size is minimal (N=1). Nevertheless, this preliminary analysis confirms the presence
of the structural effect, the difficulty to directly decode a violation-of-transition effect, even in
high SNR settings, and the modulation of the structural effect by the congruency factor.

3.4 Discussion

In this project, we sought to identify neural and behavioral correlates of two distinct mechanisms
in language processing and comprehension. The first mechanism controls the grammatical
configuration of the sentence and is attributed to purely structural operations [Vigliocco and
Nicol, 1998, Rizzi, 2004]. Operations handled by this mechanism are commonly referred to
as syntactic or, hierarchical. These operations are attributed to recursion, a uniquely human
processing ability, hypothesized to be the core of human singularity [Chomsky, 2014a, Chomsky,
2009, Hauser et al., 2002]. This kind of processing is, often, axiomatic, in that many linguistic
theories take it as a given [Uddén et al., 2020]. Nevertheless, this view is far from considered a
consensus standard. A growing body of research supports the view that statistical regularities
alone could suffice to explain linguistic phenomena usually attributed to hierarchical operations
[Frank et al., 2012, Frank and Christiansen, 2018b]. In a behavioral study, Frank and Bod
[Frank and Bod, 2011] demonstrated that reading times could be explained by probabilistic
modelling alone, thus disregarding the necessity of a hierarchical processing. Operations that
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Figure 3.5: Modulation of the structural effect by the attractor. A second order, decod-
ing analysis across SOAs, taking only correct responses into account, for the PP-Number
construction. A linear model was trained on classifying neural data based on the presence or absence
of a violation, and then, at test time, asked to classify a subset of this data in a cross-validated way.
On the left column, the linear model was asked to classify violation separately for the incongruent trials
(Table 3.1 rows 2 vs 3, dashed blue line), and the congruent trials (Table 3.1 rows 1 vs 4, continuous
red line). This selection of the factorial provides an insight on how the congruency factor modulates the
structural effect of violation. On the right column, the classifier was tested on a different subset. Instead
of selecting trials based on their congruency, we separated the sentences based on whether the number of
the non-head noun matched that of the target verb (Table 3.1 rows 1 vs 3, continuous magenta line) or
whether there was a mismatch between the two (Table 3.1 rows 2 vs 4, continuous magenta line). This
selection allows us to investigate the influence of the Linear Interference on the structural effect of Vio-
lation. Unlike our previous results (Chapter 4, we did not observe any modulation from the congruency
factor on the long-range dependency. Nevertheless, we observed a statistically significant difference in
the case of the extremely fast presentation condition, with an onset at 120ms after the verb presentation,
and a duration of 180ms. Figure 3.17 presents the same analysis when taking all responses into account.
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Figure 3.6: Modulation of the structural effect by the attractor. A second order, decoding
analysis across SOAs, taking only correct responses into account, for the ObjRC-Number
construction. On the left column, the linear model was asked to classify violation separately for the
incongruent trials (Table 3.1 rows 5 vs 8, dashed blue line), and the congruent trials (Table 3.1 rows 6
vs 7, continuous red line). Unlike the PP-Number condition, and in agreement with our previous results,
we observed a clear modulation of the structural effect by the congruency factor. This modulation
stems from the fact that the decoding of the incongruent trials remained at chance level, whereas the
congruent trials were easily decodable. The difference between the congruent and incongruent split was
significant on the 375 and 500ms SOAs. On the right column, the classifier was tested on trials selected
based on whether the number of the non-head noun matched that of the target verb (Table 3.1 rows
5 vs 7, continuous magenta line) or whether there was a mismatch between the two (Table 3.1 rows 6
vs 8, continuous magenta line). Similar to the PP-Number construction, we only observe a significant
modulation from the effect of Linear Interference. Notably, in contrast to the long-range dependency, the
effect here becomes significant at a very late stage (onset at 1s). Figure 3.18 presents the same analysis
restricted to correct responses only, in which case, we observe a statistically significant difference in the
375ms SOA, similar to what we see in the PP-Number modifier.
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Figure 3.7: (A.) Single patient, Generalization Across Time (GAT) matrices for the main
effects and the two linguistic constructions. (C.) Modulation of the structural effect by
congruency. In this patient, the decodability of the structural effect for the ObjRC-Number condition
reaches a phenomenal value, of almost 100% (AUC-leftmost GAT matrix). Despite this extremely high
decodability of the Violation effect, we do not observe a similar profile for the other factors. Notably, in
Panel (B.), and in agreement with our previous results, we observe a clear modulation by the Congruency
factor. (C.) Electrode coverage of a single patient, consisting of 166 sEEG probes.

do not assume any underlying hierarchy and only occur at the sequence, or word-order level,
realise the second mechanism. Operations attributed to this mechanism are often termed as
linear. The implementations of this mechanism stem from an information-theory approach to
language processing, and include metrics such as word-suprisal and entropy. For a review on
probabilistic accounts of language processing, see [Armeni et al., 2017].

Syntactic operations have been traced in the human brain through a variety of studies.
In a behavioral study, Shi et al. showed that toddlers can effectively understand hierarchical
phrase structures, necessary to identify the grammatical configuration of two distinct linguistic
structures [Shi et al., 2020]. In a recent study comparing humans and artificial language models,
Coopmans et al. [Coopmans et al., 2021] showed that humans only interpret equivocal noun
phrases such as “second blue ball” using a hierarchical parsing, in contrast to language models
that require explicit hierarchical information during training. At the neural level, Pallier et
al. [Pallier et al., 2011] presented word-sequences of varying lengths to adult volunteers during
fMRI16. Their analysis led to an identification of a lef-lateralized, syntax specific network that
includes the inferior frontal gyrus or “Broca’s area” (IFG, Brodmann areas BA44 and 45) and
the superior temporal sulcus (STS). In these areas, the activity increased monotonically as
a function of the complexity of the phrase structure. Notably, the authors also included a
“Jabberwocky” condition. In this condition, the sentences resembled normal sentences, but all
the non-function words were replaced with meaningless tokens. In an ECOG17 study, Nelson et
al. [Nelson et al., 2017] analyzed high gamma activity from an RSVP experiment and identified
sets of electrodes within the above-mentioned network, where the activity increased with each

16 functional Magneric Resonance Imaging
17 Electrocorticography
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consecutive word, but abruptly diminished once a phrase could be completed. This result was
interpreted as a correlate of the ’merge’ operation, a core, syntax operation proposed by Noam
Chomsky [Chomsky, 2014b], according to which, linguistic objects are unified into a common
representation.

Despite the theoretical formulations and recent experimental evidence, the neural encod-
ing of structural and linear operations remains an open challenge. Our project was designed
to disentangle, operations attributed to both mechanisms. Our results draw a picture of lan-
guage comprehension driven by structural operations robust to effects of low-level statistical
regularities.

Nevertheless, evidence for a multiplex processing system that includes both structural and
low-level transition probabilities, comes from two very recent neuroimaging studies. In an
fMRI study, Cory Shain et al. [Shain et al., 2020] contrasted the fit of two models of sur-
prisal18 in fMRI, while subjects were listening to audiobooks. The two models consisted of
a surface-based 5-gram model, and a hierarchical probabilistic context-free grammar (PCFG),
essentially contrasting structural vs n-gram operations. Crucially, the authors found significant
and independent results of both models in the Language Network (LANG: [Fedorenko et al.,
2011, Fedorenko et al., 2012] but not the domain-general, fronto-parietal multiple demand net-
work (MD: [Duncan, 2010]. Additionally, in a temporally refined, M/EEG study, Heilbron et
al. [Heilbron et al., 2021] demonstrated that the brain employs prediction at the syntactic,
semantic and phonemic level, thus providing evidence of probabilistic processing that occurs at
a multiple of levels.

Our study differs from the above-mentioned in multiple aspects but most importantly, in
both of these studies, the subjects were exposed to stimuli in more ecological settings (listening
to audiobooks). The nature of our design was factorial and included a well-defined task. It
might, thus be, that we failed to detect such effects because, due to the nature of our design,
the subjects employed task-resolving strategies, which allowed them to circumvent the influ-
ence of such effects. Nevertheless, our results show a clear influence of the attractor both at
the behavioral and the neural level. Should the subjects had solely relied on task-resolution
strategies, we should not have observed any interference effects.

In a similar design that utilizes three different SOAs, Tanner and colleagues [Tanner et al.,
2017] sought to investigate whether sentence level re-analysis processes, assumed to be reflected
by the classical P600 ERP19 component, and retrieval interference effects were distinguishable
processes. First, Tanner and colleagues showed that interference (a term that corresponds to
the incongruent trials of our design) reduced the amplitude of the component. Additionally,
the authors reported a diminishing effect on the amplitude of the component, at faster SOAs.
Importantly, Tanner et al. did not find a significant interaction between these two effects. This
result was interpreted as evidence that retrieval interference and sentence re-analysis are distinct
processes.

Even though we employed a multivariate analysis, contrary to the univariate, classical ERP
approach of Tanner, our results are comparable and in partial agreement. The authors did not
select trials based on the correctness of the responses, we would therefore compare our results
as they pertain to this configuration. While Tanner et al. report a diminishing amplitude effect
on faster SOAs, our decoding analysis reached statistical significance for the slow SOAs. The
fact that we did not report a diminishing effect, but rather a no-effect, for the fast SOAs might
be explained by the differences in the sample sizes between the two designs. While Tanner et

18 Surprisal is an information-theoretic measure quantifying how unexpected the current word is, given the words that
precede it. [Armeni et al., 2017]

19 P600: Positivity occurring 600ms post verb onset, ERP: Event Related Potential
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al. tested a total of 119 participants, our study was restricted to 20. The authors reported
that the interference effect was diminishing on the amplitude of the P600. This analysis is
equivalent to our second order analysis. In both the current and previous project (Chapter: 4,
we observed a clear modulation of violation by congruency, with the incongruent trials leading
to less decodability. In agreement with our main results, this modulation was no longer evident
in faster SOAs. Therefore, unlike [Tanner et al., 2017], we observed an interaction between the
SOA feature and the congruency effects. The late profile of the congruency effects point to the
re-analysis stage of a two-step processing mechanism that does not affect the structural repre-
sentation of the sentence, in agreement with behavioral results from Schlueter and colleagues
[Schlueter et al., 2019]. The congruency effects surfaced consistently, after the structural effect
of violation.

Furthermore, we only reported significant effects of congruency, that is, effects stemming
from the factorial covariation of the inflectional morphology between the head-noun and the
attractor, and not transition effects occurring between the attractor and the verb. These effects
point to interference that stems from working memory operations. Behaviorally, we verified the
phenomenon of grammatical asymmetry (the participants experienced attraction effects mostly
in agrammatical sentences and not in grammatical). Amongst the families of attraction models,
the cue-based model of attraction [McElree et al., 2003, Lewis and Vasishth, 2005, Van Dyke
and Johns, 2012, Wagers et al., 2009, Badecker and Kuminiak, 2007, Dillon et al., 2013, Martin
and McElree, 2008] is the model that can account for this phenomenon. This model, does not
assume a continuous, global representation of the subject feature (unlike other accounts such
as the representational models of attraction [Eberhard et al., 2005, Franck et al., 2002, Staub,
2009, Staub, 2010, Vigliocco and Nicol, 1998]. In contrast, attraction effects according to this
model occur due to similarity-based interference at the retrieval stage. In agreement with
previous work [Wagers et al., 2009], we observed congruency effects in the ObjRC construction,
where the interference originates from a non-embedded attractor. It is important to note, that
the cue-based retrieval model of attraction is the only model that can account for such effects.

3.5 Conclusion

We tackled an open question in language comprehension, and sought to isolate two discrete
mechanisms of language processing and comprehension. Our results, corroborate the findings
and conclusions of our previous work. Language processing appears to be driven by solely by
structure-based computations and is robust to linear effects, such as transition-probabilities
between non-structurally adjacent words.
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Supplementary Material

3.6 Prototypical sentences used in the M/EEG & Intracranial
Experiment

Construction Template Examples Violation Congruency

PP −Number Det N1 P det N2 V1 N3 Le chef près du medecin craint le chien. No Yes

Le chef près des medecins craint le chien. No No

Le chef près des medecins craignent le chien. Yes No

Le chef près du medecin craignent le chien. Yes Yes

ObjRC −Number Det N1 Adv det N2 V1 V2 Le chef que le medecin craint part demain. No Yes

Le chef que les medecins craignent part demain. No No

Le chef que le medecin craignent part demain. Yes No

Le chef que le medecin craignent part demain. Yes Yes

PP − Filler Det N1 P det N2 V1 N3 Le chef près du doit craint le chien. Yes -

ObjRC − Filler Det N1 Adv det N2 V1 V2 Le chef que le medecin craint pompier demain. Yes -

Table 3.3: Prototypical sentences used in the M/EEG experiment.

Construction Template Examples Violation Congruency

PP −Number Det N1 P det N2 V1 N3 The doctor near the nurse likes climbing. No Yes

The doctor near the nurses likes climbing. No No

The doctor near the nurses like climbing. Yes No

The doctor near the nurse like climbing. Yes Yes

ObjRC −Number Det N1 Adv det N2 V1 V2 The doctor that the nurse fears leaves. No Yes

The doctor that the nurses fear leaves. No No

The doctor that the nurses fears leaves. Yes No

The doctor that the nurse fear leaves. Yes Yes

PP − Filler Det N1 P det N2 V1 N3 The doctor near the sneezes likes climbing. Yes -

ObjRC − Filler Det N1 Adv det N2 V1 V2 The doctor that the nurse fears farmer. Yes -

Table 3.4: Prototypical sentences used in intracranial experiment.
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3.7 Additional behavioral analysis.

SOA: 125ms 250ms 375ms 500ms

PP Statistic 22.5 17.5 n.s 44.0

p-value 2.19e-03 1.96e-03 n.s 2.62e-02

ObjRC Statistic 1.0 6.0 27.5 37.0

p-value 3.81e-06 2.35e-04 4.04e-03 1.17e-02

Table 3.5: A series of Wilcoxon test (paired samples) with Bonferroni correction that verify the
grammatical illusion phenomenon in the M/EEG behavioral data.

Figure 3.8: Grammatical Illusion. Subjects made more mistakes in detecting a violation compared
to confirming that a sentence was indeed grammatical. This phenomenon is called grammatical illusion,
as there appears to be an illusion of grammaticality in the violated sentences [Wagers et al., 2009]. The
corresponding statistics are presented in table 3.5.

56



(a) label 1 (b) label 2

Figure 3.9: Overall accuracy per SOA. Subjects failed to perform the grammaticality judgement
task on the filler trials and the case of the fast SOA, but not in the case of the normal sentences. These
might be indicative of a strategy e on behalf of the participants, a strategy in which the encoding of the
head noun and the corresponding verb is sufficient to do the task successfully, without reading the whole
sentence.

SOA: 125ms 250ms 375ms 500ms

PP Statistic 29.5 1.0 26.0 12.0

p-value 5.06e-03 1.34e-04 1.81e-02 9.47e-04

ObjRC Statistic 18.0 1.0 3.0 13.0

p-value 1.23e-03 3.81e-06 1.50e-04 7.19e-04

Table 3.6: A series of Wilcoxon test (paired samples) with Bonferroni correction that verify
that subjects made more errors in incongruent trials compared to the congruent ones.

Figure 3.10: Incongruent sentences led to more errors. Subjects made more mistakes in perform-
ing the task when a sentence was incongruent compared to when it was congruent. The corresponding
statistics are presented in table 3.6.
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3.8 The correctness of the responses modulates the profile of
the neural effects.

Figure 3.11: Object relative clauses lead to more errors compared to prepositional phrases.
We verified the linguistic structure effect across all SOAs, with the effects being more prominent in the
fast SOA.

Figure 3.12: Overall behavioral accuraccy for the patients. The task was very hard for the
patients. We, therefore, had to reduce the task duration in order to get meaningful responses. In this
chapter, we present single-subject results originating from patient TS163.
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Figure 3.13: Decoding of the main effects across SOAs, taking only correct responses into
account, for the PP-Number construction. Neural decoding of the three main effects using all
sensor types (magnetometers, gradiometers and eeg). Time zero indicates the onset of the target verb.
The period following the verb onset is the ISI to panel onset, common across all SOAs (Figure 4.1. A
different, linear decoder was evaluated per time-point. The evaluation metric is the Area Under the Curve
(AUC). The continues line above the classification plot indicates statistically significant time intervals
(p < 0.05; corrected—spatio-temporal clustering permutation test). The main effect of Violation reaches
significant classification accuracy for two out of four SOAs. Notably, the linear effect of congruency is
no longer decodable. Additionally, the effect for the 375ms does not reach statistical significance, unlike
when taking all responses into account (Figure 3.3). Interestingly, the 375ms decoding curve presents a
late profile, compared to the 500ms. For an analysis based on the false responses only, see Figure 3.15
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Figure 3.14: Decoding of the main effects across SOAs, taking only correct responses into
account, for the ObjRC-Number construction. Neural decoding of the three main effects using all
sensor types (magnetometers, gradiometers and eeg). Time zero indicates the onset of the target verb.
The period following the verb onset is the ISI to panel onset, common across all SOAs (Figure 4.1). A
different, linear decoder was evaluated per time-point. The evaluation metric is the Area Under the Curve
(AUC). The continues line above the classification plot indicates statistically significant time intervals
(p < 0.05; corrected—spatio-temporal clustering permutation test). The main effect of Violation reaches
significant classification accuracy for all but the 125ms SOA. Importantly, the linear effect of congruency
is decodable for the 250 and 500ms SOAs, with a late significant peak, similar to what observed for the
125ms SOA in Figure 3.3. For an analysis based on the false responses only, see Figure 3.15. For an
analysis where no response-filtering is applied, see Figure 3.4.
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Figure 3.15: Decoding of the main effects across SOAs, taking only false responses into
account, for the PP-Number construction. Neural decoding of the three main effects using all
sensor types (magnetometers, gradiometers and eeg). Time zero indicates the onset of the target verb.
The period following the verb onset is the ISI to panel onset, common across all SOAs (Figure 4.1. A
different, linear decoder was evaluated per time-point. The evaluation metric is the Area Under the Curve
(AUC). The continues line above the classification plot indicates statistically significant time intervals
(p < 0.05; corrected—spatio-temporal clustering permutation test). The main effect of Violation reaches
significant classification accuracy only for the 375ms SOA, which was not the case when examining only
the correct responses for this construction (Figure 3.13. For an analysis based on all responses, see Figure
3.3
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Figure 3.16: Decoding of the main effects across SOAs, taking only false responses into
account, for the ObjRC-Number construction. Neural decoding of the three main effects using
all sensor types (magnetometers, gradiometers and eeg). Time zero indicates the onset of the target
verb. The period following the verb onset is the ISI to panel onset, common across all SOAs (Figure
4.1). A different, linear decoder was evaluated per time-point. The evaluation metric is the Area Under
the Curve (AUC). The continues line above the classification plot indicates statistically significant time
intervals (p < 0.05; corrected—spatio-temporal clustering permutation test). The only decodable effect
is that of Violation, that reaches significant classification accuracy only for the 125ms SOA only. This is
the only configuration that leads to the decodability of the Violation effect for this SOA. For an analysis
based on all responses, see Figure 3.4
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PP ObjRC

Response Type Effect SOA Onset time in (s) Peak Time in (s) Duration in (ms) Onset time in (s) Peak Time in (s) Duration in (ms)

All Responses Violation 125ms - - - - - -

250ms - - - - - -

375ms 0.5 0.86 400 0.9 0.97 256

500ms 0.65 0.8 450 0.556 0.93 180

Congruency 125ms 1.156 1.216 160 - - -

250ms - - - - - -

375ms - - - - - -

500ms - - - - - -

Linear Interference 125ms - - - - - -

250ms - - - - - -

375ms - - - - - -

500ms - - - - - -

Correct Responses Violation 125ms - - - - - -

250ms 1.16 1.256 236 0.676 0.76 150

375ms - - - 0.05, 696 0.806 356, 464

500ms 0.516 0.82 597.6 0.276 0.506 820

Congruency 125ms - - - - - -

250ms - - - 0.766 0.92 180

375ms - - - - - -

500ms - - - 0.806 0.87 250

Linear Interference 125ms - - - - - -

250ms - - - - - -

375ms - - - - - -

500ms - - - - - -

False Responses Violation 125ms - - - 0.506 0.696 260

250ms - - - - - -

375ms 0.296 0.436 160 - - -

500ms - - - - - -

Congruency 125ms - - - - - -

250ms - - - - - -

375ms - - - - - -

500ms - - - - - -

Linear Interference 125ms - - - - - -

250ms - - - - - -

375ms - - - - - -

500ms - - - - - -

Table 3.7: Timing information for the main effects and all response types. In this comparative
table, we gather timing information for time-intervals defined as statistically significant based on the
evaluation of the decoding AUC curve against chance level. The statistical significance is corrected for
multiple comparisons and calculated based on cluster-based permutation testing [Maris and Oostenveld,
2007].
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Figure 3.17: Modulation of the structural effect by the attractor. A second order, decoding
analysis across SOAs, taking all responses into account, for the PP-Number construction.
A linear model was trained on classifying neural data based on the presence or absence of a violation,
and then, at test time, asked to classify a subset of this data in a cross-validated way. On the left
column, the linear model was asked to classify violation separately for the incongruent trials (Table 3.1
rows 2 vs 3, dashed blue line), and the congruent trials (Table 3.1 rows 1 vs 4, continuous red line). This
selection of the factorial provides an insight on how the congruency factor modulates the structural effect
of violation. On the right column, the classifier was tested on a different subset. Instead of selecting trials
based on their congruency, we separated the sentences based on whether the number of the non-head
noun matched that of the target verb (Table 3.1 rows 1 vs 3, continuous magenta line) or whether there
was a mismatch between the two (Table 3.1 rows 2 vs 4, continuous magenta line). This selection allows
us to investigate the influence of the Linear Interference on the structural effect of Violation. Unlike our
previous results (Chapter 4), we did not observe any modulation from the linear factors on the long-range
dependency. Figure ?? presents the same analysis restricted to correct responses only, in which case, we
observe a statistically significant difference in the 125ms SOA.
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Figure 3.18: Modulation of the structural effect by the attractor. A second order, decoding
analysis across SOAs, taking all responses into account, for the ObjRC-Number construc-
tion. On the left column, the linear model was asked to classify violation separately for the incongruent
trials (Table 3.1 rows 5 vs 8, dashed blue line), and the congruent trials (Table 3.1 rows 6 vs 7, continuous
red line). Unlike the PP-Number condition, and in agreement with our previous results, we observed
a clear modulation of the structural effect by the congruency factor. This modulation stems from the
fact that the decoding of the incongruent trials remained at chance level, whereas the congruent trials
were easily decodable. The difference between the congruent and incongruent split was significant on
the 500ms SOAs On the right column, the classifier was tested on trials selected based on whether the
number of the non-head noun matched that of the target verb (Table 3.1 rows 5 vs 7, continuous magenta
line) or whether there was a mismatch between the two (Table 3.1 rows 6 vs 8, continuous magenta line).
There was no effect of Linear Interference in this configuration, nevertheless, we observed a very clear,
late effect when taking correct responses only into account. Figure ?? presents these results.

65



3.9 Questionnaire & Responses

Did you find a way to complete the task without reading the entire sentence?

• 71.4% of the participants replied YES.

• 28.6% of the participants replied NO.

If you answered ”YES” to the previous question, please explain your strategy
here.

Original Replies

• Je me base sur un resentit et une impression lorsque c’est trop rapide.

• En fonction de si le verbe était au pluriel ou singulier (mais pas valable pour tout)
en cherchant le sujet et les verbes.

• Identifier si les groupes nominaux étaient pluriels ou singuliers, et vérifier la corre-
spondance avec le/les verbes. Pour cela, les determinants et les terminaisons des
verbes suffisent.

• Reperer le singulier et le pluriel.

• Les types d’erreur étaient souvent les mêmes : mauvaise conjugaions de verbe ou
bien mots incohérent au milieu de la phrase. En faisant attention à ça j’essayais
d’obtenir la réponse quand la phrase défilait trop vite.

• L’ortographe.

• En regardant juste le nombre de sujets au pluriel et de verbes au pluriel.

• Je me concentrais sur le sujet de la phrase, qui était rapidement faussé ou validé
par le verbe qui arrivait.

• Dès l’erreur arrivée, je stop la lecture de la phrase. Si pas d’erreur, lecture complète.

• En identifiant le sujet et l’accord du verbe et parfois dès l’apparition d’un non sens
dans la phrase lire les deux noms et retenir si pluriel ou singulier puis voir si les
verbes s’accordaient.

• J’essayais de reperer les singuliers et plurielles ainsi que les sujets pour voir si cela
correspondait.

• Je faisais surtout attention à l’accord pluriel/singulier en me concentrant sur le sujet
et le verbe à partir du moment où il y avaient des noms au pluriel, dès qu’un verbe
au singulier apparaissait je ne lisais plus le reste de la phrase (ou inversement).
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If you answered ”YES” to the previous question, please explain your strategy
here.

Translated Replies

• I rely on a feeling and an impression when it is too fast.

• Depending on whether the verb was plural or singular (but not valid for everything)
by looking for the subject and the verbs.

• Identify if the noun phrases were plural or singular, and check the correspondence
with the verb(s). For this, the determiners and endings of the verbs are sufficient.

• Identifying the singular and plural.

• The types of mistakes were often the same: wrong verb conjugations or inconsistent
words in the middle of the sentence. By paying attention to this, I tried to get the
answer when the sentence was running too fast.

• Spelling.

• Just looking at the number of plural subjects and plural verbs.

• I would focus on the subject of the sentence, which was quickly falsified or validated
by the incoming verb As soon as the error arrived, I stopped reading the sentence.
If no error, complete reading.

• By identifying the subject and the agreement of the verb, and sometimes as soon
as a nonsense appears in the sentence.

• Read the two nouns and remember if they are plural or singular, then see if the
verbs agree.

• I would try to spot the singular and plural and the subjects to see if they matched.

• I was paying attention to the plural/singular agreement by concentrating on the
subject and the verb as soon as there were nouns in the plural, as soon as a verb
in the singular appeared I didn’t read the rest of the sentence (or vice versa).
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On a scale of 1 to 9, how natural were the sentences?

3.95± 1.78

What was the most important part of the sentence to solve the task?

Options:

• The subject.

• The verb.

• Both

• The subject: 9.5%

• The verb: 28.6%

• Both: 61.9%

On a scale of 1 to 9, how difficult was the experiment?

5.23± 1.57

On a scale of 1 to 9, how long was the experiment?

5.47± 1.29

On a scale of 1 to 9, how well do you think you did on the task?

5.61± 1.61

Were all sentences of the same length?

• 33.3% of the participants replied YES.

• 66.7% of the participants replied NO.

Which was the easiest, and which the hardest presentation?

Easiest SOA:

• 53.63% :375ms

• 26.13% :250ms

• 21.05% :500ms

Hardest SOA:

• 84.2% 125ms

• 15.7% :250ms

68



Chapter 4

Attractor proximity effects in
subject-verb agreement.

Abstract
Formal linguistic theory postulates that language processing is rooted in a uniquely
human ability to generate recursively, nested symbolic representations. This ability
presupposes a structural encoding of linguistic sequences (structural processing).
Nevertheless, alternative explanations have been proposed, in which no structural
bias is required (linear processing).
In this study, we revisit the well studied psycholinguistic phenomenon of subject-verb
agreement, in the presence of an intervening noun called an attractor. Importantly,
we introduce a minimal set of experimental conditions, in which we modulate para-
metrically the linear distance of the attractor from the verb. Based on evidence from
non-linguistic sequence processing and recent studies in human language processing,
we sought to identify effects that can be attributed to calculations of transition
probabilities between the attractor and the verb. Operations attributed to low-level
statistical regularities, such as transition probabilities at the bigram level, could be
attributed to linear, rather than structural processing.
We report behavioral results from an online, forced-choice, violation-detection ex-
periment. Additionally, we analyze the behavior of transformer language models,
presented with the same set of stimuli. Our results show a clear modulation of the
behavioral index by the attractor distance. Notably, the distance effect modulated
differently the performance of the human and the artificial system. When the attrac-
tor reached the vicinity of the verb, human subjects performed better in detecting
violations, whereas the performance of the models reached chance level.
Importantly, our analyses showed that the distance effects can be traced to the
inflectional covariation of the head noun and the attractor, and not from the depen-
dency between the attractor and the verb. Furthermore, our results in agreement
with the cue-based model of attraction, as this model predicts that the memory
representation of the distant attractor would fade away and thus will not lead to
similarity based retrieval-interference.
Thus, these results corroborate our previous findings and point to a language pro-
cessing system driven by structural operations and robust to low-level statistical
regularities such as transition probabilities.
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4.1 Introduction

On the surface, language appears to be linear, as humans read or hear words one after the
other. However, according to formal linguistic theory, there exists an underlying structure that
governs language processing [Chomsky, 1957, Rizzi, 2004, Dehaene et al., 2015, Vigliocco and
Nicol, 1998, Hauser et al., 2002]. The conception of linguistic structure is a hypothetical notion,
nevertheless perceived as a standard in the linguistic community [Uddén et al., 2020]. Even
though, there exist both behavioral [Shi et al., 2020, Coopmans et al., 2021] and neural [Nelson
et al., 2017, Pallier et al., 2011] accounts for structural operations, alternative interpretations
have been proposed in which no structural presupposition is required [Frank and Bod, 2011].
According to the latter view, linguistic phenomena can be explained by statistical relationships
at the word level. The discrepancy between the two views has led to a decade-long debate
on linear versus structural effects in language processing [Haskell and MacDonald, 2005, Ding
et al., 2015, Willer Gold et al., 2017, Arana et al., 2021].

In this study, we tackle this debate by revisiting the subject-verb agreement phenomenon,
a phenomenon traditionally attributed to core syntactic operations [Molinaro et al., 2011a].
A popular way to contrast structural operations and linear, word-order effects is the analysis
of subject-verb agreement errors in the presence of an intervening noun, called an attractor.
Attraction effects in number agreement have been studied extensively in humans [Bock and
Miller, 1991, Shen et al., 2013, Tanner et al., 2014, Hammerly et al., 2019, Paape et al., 2021,
Sinha et al., 2021] and neural language models (NLMs) [Linzen et al., 2016b, Finlayson et al.,
2021, Lakretz et al., 2019b, Jumelet et al., 2019].

In this project, we revisit the subject-verb number agreement phenomenon, and introduce
a parametric manipulation of the attractor distance (Figure 4.1). Additionally, we include a
baseline condition where the subject-verb distance is the same, but no number-carrying word is
introduced within the embedding. We thus provide a minimal triad of experimental conditions
(Table 4.1 that aims to disentangle structural from linear mechanisms, by contrasting operations
directly ascribed to each mechanism. Figure 4.1 summarizes the main factors of the design.

We assume that the grammatical configuration of the sentence is controlled by structural
operations (Violation effect). Similar to our previous work, we define two additional effects.
The Congruency effect stems from the inflectional covariation of the two nouns. Furthermore,
based on the codification of sequence processing proposed by Dehaene et al. [Dehaene et al.,
2015], we attribute the Transition effect to transition-probabilities between the attractor and
the noun. This hypothesis stems from the predictive coding framework [Friston et al., 2021]
and received recent support by a behavioral study that demonstrated effects of local statistics,
at the bigram & trigram level, on the reading time of the participants [Goodkind and Bicknell,
2021]. Lastly, we analyze the behavior of two language models in a comparative way, given the
known sensitive of computational models to statistical relationships.

4.2 Methods

Participants Fifty-four native speakers of English took part in an online experiment. The
experiment was advertised on social media (Twitter and Facebook) and through several mailing
lists, and was targeting native English speakers, although anyone could participate. People
interested to participate could simply click on the provided link, read and accept a written
consent, in which they declared not to be legally minor. Participants were informed that they
could withdraw from the experiment at any moment by simply quitting the webpage, in which
case no data was collected. The procedure and the consent were approved by the local ethical
committee (Université Paris-Saclay, ref. CER-Paris-Saclay-2019-063).
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The N1 who V1 the quick young N2 V2

Viola�on

Congruency

The N1 who V1 the N2 the most V2

Transi�on

Viola�on

Congruency

Figure 4.1: Experimental design: Our design seeks to contrast two different types of processing
in language comprehension. The main effect of Violation refers to the dependency that controls the
grammatical configuration of the sentence and is used as a proxy into structural processing. The Con-
gruency factor refers to a dependency realized between two non-structurally related words (Head:N1

and attractor:N2). The Transition effect is a dependency realized between the attractor (N2) and the
verb (V2). As a baseline, we include a condition with the same number of words but with no noun
between N1 and V2. Table 4.1 summarizes the experimental conditions and the full material is available
in supplementary materials.

Condition Sentence Violation Congruency

Proximal Attractor The doctor who loves the careless young nurse climbs. 7 3
The doctor who loves the careless young nurses climbs. 7 7
The doctor who loves the careless young nurse climb. 3 3
The doctor who loves the careless young nurses climb. 3 7

Distal Attractor The doctor who loves the nurse the most climbs. 7 3
The doctor who loves the nurses the most climbs. 7 7
The doctor who loves the nurse the most climb. 3 3
The doctor who loves the nurses the most climb. 3 7

Baseline The doctor who walks fast but rather clumsily climbs. 7 -
The doctor who walks fast but rather clumsily climb. 3 -

Filler (Number) The doctor who likes the nurse climbs. 7 -
The doctor who like the nurse climbs. 3 -

Filler (POS) The doctor whom the nurse likes climbs. 7 -
The doctor whom likes the nurse climbs. 3 -

Table 4.1: Conditions & stimuli of the design: The main linguistic construction used in the design
is a subject-relative modifier. We present three distinct conditions and two types of filler-trials. The
main conditions are separated, first, by the presence or not of an attractor, and subsequently by the
attractor-verb distance. The main factors of Congruency & Violation are presented in Figure 4.1

.
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Early piloting suggested that some participants would notice the structure of the trials and
purposefully ignore the middle of the sentences. To identify these participants, we made use of
the filler trials: any participant whose answer to fillers was not significantly different from chance
(binomial test, null hypothesis p0 = .5) was rejected. In this way, we tried to address a possible
strategy confound that might be emerging due to the nature of our experiment [Pearlmutter
et al., 1999]. Finally, we rejected any participant whose success rate was below 70% on the
main task. Overall, we rejected 20 participants, and 34 were analyzed.

Experimental procedure The experimental procedure started with a consent form, then
a series of questions on demographic aspects and on subjective self-evaluations, and finally,
the instructions. Then, participants were presented with sentences in a rapid-serial-visual-
presentation (RSVP) manner with a fixation cross between words, in white on black background,
using a presentation time of 200ms and an SOA of 366ms (22 frames on a 60Hz monitor), and
could answer at any point by pressing the left or right key (key randomized across subjects,
specified in the instructions). Participants received auditory and visual feedback with each trial:
green fixation and upward tune (correct), or red fixation and downward tune (incorrect). At
the end of the experiment, participants answered a few extra questions about the experiment,
then saw their overall score and were invited to share the experiment on social media.

Stimuli First we generated sentences from a fixed lexicon and simple construction rules,
yielding a very high number of sentences, part of which were highly improbable. Then we
filtered based on a GPT3 language model perplexity. We only kept sentences that had an
overall perplexity between the median and median +2std. This left us with a homogeneous
pool of sentences from which we sampled stimuli for the experiment. To encourage diversity
during sampling, we rejected sentences that shared more than 5 (out of 9) words with an already
sampled sentence. We sampled 5 sentences for each condition (baseline, distal congruent, distal
incongruent, proximal congruent, proximal incongruent), subject number (singular, plural), and
presence of violation (yes, no), as well as 32 filler sentences, totaling 132 sentences. The same
set was presented to each subject and neural models. The lexicon was balanced for low-level
features such as word length and unigram frequency.

Questionnaire Participants were asked to specify whether they were a native speaker of
English, what other language(s) they were native speakers of, their gender, age and highest
degree obtained. We also asked them, on a scale from one to 10, how calm their environment
was at the time of the experiment.

Instructions Participants were given a description of the task (see appendix for the exact
wording) which indicated (i) what a rapid serial visual presentation looks like, (ii) what the task
was, and which button they should use to answer, and (iii) three examples of grammatical as
well as three examples of ungrammatical sentences. The experiment started with seven training
sentences, independent of our stimuli, in order for the participants to get used to the procedure,
then participants were instructed that the main body of the experiment started, and they went
through the sentences in random order.

Neural Networks We also tested with the same set of sentences two transformer models
downloaded from HuggingFace [Wolf et al., 2020]: a causal GPT3 language model 1 [Brown

1 https://huggingface.co/EleutherAI/gpt-neo-1.3B
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et al., 2020] and a Text-To-Text Transformer (T5) 2 [Raffel et al., 2019] fine-tuned on JFLEG,
a grammatical error correction benchmark [Napoles et al., 2017]. To evaluate the GPT3 model,
we input it with the sentence up to, and excluding the target verb, and compare the probabilities
associated with the token that would make the sentence grammatical and the corresponding
one that would make the sentence agramatical (e.g., “climb” vs “climbs” for sentences in Table
1). Thus, for this model we only get an overall performance per condition, but cannot split
grammatical and agrammatical sentences. To compute the T5 model’s performance, we input
it with the full sentence, and, i) for grammatical sentences, we consider a correct answer if
the output is identical to the input, and ii) for agrammatical sentences, we interpret a correct
answer solely if the only change in the output is to fix the agreement error on the final verb.

4.3 Results

We call incongruent, the trials in which the numbers of N1 and N2 disagree (Figure 4.1),
following standard psycholinguistic terminology.

Figure 4.2 shows the main effect of the number-bearing noun (baseline), and the effect of its
distance to the target (distal, proximal), both in our behavioral experiment and the two Neural
Language Models (NLMs). In all cases, the baseline features fewer errors and faster reaction
times compared to the embedded-noun conditions.

We also find that errors occur more often in agrammatical sentences than in grammatical
ones, irrespective of the condition, replicating the phenomenon of grammatical illusions [Phillips
et al., 2011], indicating that participants more often accept agrammatical sentences than they
reject grammatical ones. We also replicate the grammatical asymmetry [Wagers et al., 2009]
which characterizes subject-verb agreement: incongruent trials led to higher error-rate in the
agrammatical sentences.

Already, these results demonstrate a clear modulation of the behavioral index by a non-
structurally intervening noun. To investigate the nature of this modulation, we sought to
analyze the main factors of our design. The main effect of Violation refers to the dependency
that controls the grammatical configuration of the sentence (Figure 4.1). Grounded on classical
linguistic theory [Rizzi, 2004], we use this effect as a proxy into structural processing. The
Congruency factor refers to a dependency realized between two non-structurally related words.
Due to the factorial nature of our design, the interaction of these two factors, would inevitably
lead to the third factor (Transition.

Figure 4.3, shows the main factor interaction plots, for both humans and NLMs, and table
4.3 presents the corresponding ANOVA analyses. Importantly, in our analysis, we replicated
the markedness phenomenon [Bock and Miller, 1991, Wagers et al., 2009], according to which,
attraction effects surface only when the attractor is plural. Thus, results shown in figure 4.3
and table 4.3 correspond to sentences filtered for the attractor number, as the main effect of
Congruency was not significant in the singular attractor case, irrespective of the distance from
the verb3.

We first sought to investigate the modulation of the behavioral indices by the structural
effect. The main effect of Violation for the human data was significant across all three conditions
and both the error-rate and reaction times (RTs). Nevertheless, for the error-rate, the η2

G factor
(explained model variance) was larger by an order of magnitude in the distal attractor case. This
illustrates that participants made more errors in judging the validity of the sentence when the
attractor was further away, and especially in detecting agrammatical sentences. Simply put, we

2 https://huggingface.co/vennify/t5-base-grammar-correction
3 For a demonstration, see figure 4.4
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Figure 4.2: Comparing performances of humans (Response Times and Error Rates) and Neural
Networks (GPT-3 and T5). Color indicate whether the sentence was grammatical or not. Error
bares indicate SEM, over participants for humans and over sentences for neural networks.

Effect F1,33 p-value η2
G

Response Time; Distal attractor
congruency 7.04 .012 .011
violation 11.64 .002 .031
interaction 0.01 .915 < .001

Response Time; Proximal attractor
congruency 26.90 < .001 .046
violation 11.81 .002 .027
interaction 0.10 .752 < .001

Error Rate; Distal attractor
congruency 2.29 .140 .013
violation 18.01 < .001 .135
interaction 0.04 .846 < .001

Error Rate; Proximal attractor
congruency 15.79 < .001 .085
violation 5.33 .027 .040
interaction 0.57 .454 .003

Table 4.2: Four one-way between subjects ANOVAs were conducted to compare the effect of
congruency, violation, and their interaction on both Response Time and Error Rates, for both
proximal and distal attractors, in sentences were the attractor is plural. Shaded rows with
italic text indicate those were the effect was significant at the p < .05 level. The lase column
provides the η2

G, an estimator of the variance explained by the ANOVA similar to the r2 for
linear models.
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Figure 4.3: Effect of grammaticality, congruency and distance of the attractor on, from left to
right: behavioral measures in humans (Response Times, Error Rates), and average error rates in
Neural Networks. Error bars indicate SEM, across participants in humans and across sentences
in the model.

observed a facilitation effect in the case of the proximal attractor. The distance of the attractor
did not affect the magnitude of the effect in the case of the RTs. To elucidate the root of this
facilitation, we focused on the Congruency effect. The main result of our analysis is, that this
effect was only significant when the attractor was close to the verb (proximal condition). This
effect illustrates that participants made more errors in the incongruent sentences, compared
to the congruent ones. Indeed, figure 4.3 clearly illustrates this. The incongruent trials lead
to similar error-rate in both the distal and proximal attractor. Contrariwise, the congruent
trials led to a significantly lower error-rate in the proximal attractor condition. Similar to
the Violation factor, we observed no effect of distance in the RTs, although interestingly, the
Congruency effect was significant in both conditions.

Importantly, the interaction between the two factors (Transition never reached statistical
significance, irrespective of the attractor distance.

We analyzed the performance of the models similarly to the human data. Figure 4.2 presents
the performance for both models. In particular, the T5 model allowed us to split the data based
on the grammaticality of the sentences, and thus analyze the data comparably to the humans.
Remarkably, the model displayed a super-human performance on evaluating grammatical sen-
tences. In the agrammatical sentences, the mere presence of a number-bearing word led to
an increase in the error-rate, similar to the humans. Importantly, we observed a positively
correlated modulation of the error-rate as a function of the attractor-distance, unlike with the
human data. The GPT − 3 model did not display the same sensitivity to the bare presence of
an intervening element, but crucially, we observed a clear distance effect. Similarly to the T5
model, the presence of an attractor in the vicinity of the target verb, led the network to near
chance performance.

These results might have a two-folded interpretation. The presence of grammatical illu-
sions, in both humans and models, might be informative on the role of training in linguistic
performance. In natural language settings, the presence of grammatical sentences surpasses the
agrammatical ones. We might therefore be describing a similar training bias between humans
and NLMs. This research avenue, although existing, does not fall under the scope of the current
project.

The common element in the response profiles of the two models, was the clear sensitivity
of the error-rate from the attractor distance. This result illustrates that the sensitivity of the
transformer models to statistical regularities is not dependent on the fine-tuning procedure.
This fact allows us to use the T5 model to draw a comparative picture between the human
and the model performance. To investigate the different distance effects observed between the
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human and the artificial system, we employed a similar analysis to that of humans, and sought to
investigate how the Congruency factor modulates the error-rate of the networks. The reduction
on the error-rate in the human data was traced to a facilitatory effect of congruency (congruent
trials led to fewer errors in the proximal compared to the distal attractor). On the contrary,
for the networks, the incongruent trials drove the network to chance level performance, whereas
there was no distance effect on the congruent trials. To condense, our results for the proximal
attractor case draw the following picture: congruent sentences help participants in performing
the task; this is not the case for language models. Additionally, incongruent sentences have a
detrimental effect in the models, but no such effect is observed in humans. These observations
demonstrate a common sensitivity of attractor-verb distance in both systems, but a fundamental
difference as to the outcome of this sensitivity.

4.4 Discussion

In this study, we revisited the classical attraction effect in subject-verb number agreement in
humans and neural networks, and sought to dissociate two distinct mechanisms of language
comprehension. We introduced a baseline condition where no attraction effects can be realized,
and, critically, a distinction between a proximal and distal attractor with respect to the target
verb.

We sought to elucidate the effect of attractor proximity to the verb, driven by the hypothesis
that low-level predictions at the word level operate in parallel with structural computations
in the human system, a hypothesis that has received support by recent neuroimaging and
behavioral studies [Shain, 2019, Goodkind and Bicknell, 2021].

Our results draw a clear picture of a shared sensitivity to linear factors between the human
and the artificial system, but also a fundamental difference in the effect of this sensitivity. The
artificial system operates on the basis of word-level statistics, and is thus driven to chance level
performance in the presence of a proximal attractor. On the contrary, the incongruency of the
sentence leads to comparable error-rates, irrespective of the attractor distance, for the human
subjects. The significant effect of congruency observed in the human data is due to a facilitatory
effect of congruency in judging grammaticality, and not an inhibitory effect of incongruency,
unlike with the neural networks.

The interplay between the attractor distance and the Congruency effect can be decomposed
into the following axes.

Incongruent grammatical sentences are harder than congruent.

First, incongruent grammatical sentences become harder compared to their counterpart, con-
gruent ones, only in the case of the proximal attractor. As an example, consider the following
two sentences:

a. The doctor who likes the young cute nurses climbs.

b. The doctor who likes the nurses the most climbs.

Our analysis showed that participants made more errors in sentence (a) compared to sentence
(b), albeit both being grammatically correct.

Congruent agrammatical sentences are easier than incongruent.

The second observation was that participants parsed the congruent agrammatical sentences
easier, with respect to the incongruent ones, only in the case of the proximal attractor. Again,
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this can be easier demonstrated with an example. Consider the following two agrammatical,
congruent sentences:

c. The doctors who like the young cute nurses climbs.

d. The doctors who like the nurses the most climbs.

Participants made fewer errors in (c) compared to (d).
Overall, our results point to a modulation of the error-rate by operations occurring at

the n-gram level. In the case of grammatical sentences (a), we observe the presence of a
deviant bigram (’nurses climbs’). We might assume, then, that the attraction occurs due to the
presence of a locally unacceptable bigram that lures the participants, and causes a disruption
in the representation of the subject number. This leads to erroneous answers. Similarly, in
agrammatical congruent sentences (c), the presence of a locally deviant bigram (’nurses climbs’),
facilitates the subjects’ performance. It might be that this local deviancy is leading them into
judging the sentence as agrammatical, but in this case, the sentence is indeed violated. This
might explain the asymmetry observed in our results.

To summarize, the effect of attractor proximity can be decomposed in to two factors. The
first is that incongruency leads to more errors in the grammatical sentences, and that congruency
leads to fewer errors in the agrammatical sentences. These effects point to a modulation of the
error-rate by operations that can be traced to calculations of transition probabilities between
the attractor and the verb. Nevertheless, we argue against such operations based on two claims.

First, in our recent work (?? and in agreement with other behavioral studies [Wagers et al.,
2009], we reported significant effects of congruency in non-intervening attractor structures such
as Object Relative Clauses (e.g: The doctor that the [nurse like/s] climbs). The n-gram mech-
anism cannot explain attraction phenomena in this setup, something that the dominant model
of attraction (cue-retrieval model, [Wagers et al., 2009]) can do. In this model, a memory
mechanism is enabled upon a cue, that retrieves the number of the subject from the memory
system and the errors can be attributed to retrieval interference. Under this interpretation,
the memory representation of the attractor in the distal condition fades away and therefore
does not compete for retrieval. In contrast, when the attractor is in the vicinity of the verb,
similarity-based retrieval interference can occur, and thus, attraction effects can only be realized
in that condition.

Second, to corroborate this interpretation, it is worth noting that our analyses showed that
the attraction effects can be traced to the effect of Congruency, that is, effects that stem from
the dependency between the head noun and the attractor. Importantly, the effect of Transition
did not reach statistical significance irrespective of the attractor distance from the verb.

4.5 Conclusion

Taken together, our results suggest that human language processing is reigned by structure-
based computations, and is robust to transition effects between non-structurally adjacent words.
Additionally, our results illustrate a difference between language processing in humans and
neural models.
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Supplementary Material

4.6 Instructions

The exact instructions given to the participants are provided below. They consisted of three
separate pages, participants could go back and forth between pages freely.

Remember that the key/response binding was randomized across subjects, so page 3 pro-
vided below only applied to half of our participants, where the other half had a corresponding,
flipped association of key and responses.

Page 1

• This experiment is about sentence processing

• You will read sentences on the screen, with the words presented one after the other, at the
center of the screen

• Some of these sentences will contain mistakes

• Your task is to find these mistakes

Page 2

Here are a few examples to show what we mean by correct and incorrect. Remember that the
sentence will not be presented as a whole, but rather one word after another.
Incorrect examples:

• The boy drink water while listening to music

• The farmer near the two pilot detests boxing

• The athletes that dislike the happy proud banker sings

Correct examples:

• The boy drinks water while listening to music

• The farmer near the two pilots detests boxing

• The athletes that dislike the happy proud banker sing

Some sentences might be a bit weird, like in example 3, but you should always be able to perform
the task if you remain focused.
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Page 3

You have to look at the cross at the center of the screen, which is always present when there is
no word to read. Make sure the luminosity of your screen is high enough for you to read. Then
you will read sentences one word after the other, and you have to do the following:

• As soon as you think a given sentence is INCORRECT, please press the → right arrow key
on your keyboard

• When the sentence ends, if you think it is CORRECT, please press the ← left arrow key
on your keyboard

• You have to answer every time, even when you’re not sure, or you feel you don’t know.
Only after you answer, the following sentence will start. Answer the best you can!

After each answer you will receive feedback: the central cross will turn green if you answered
correctly, and red otherwise. If you can, please turn your computer audio on: that way, you will
receive feedback with sounds for each trial.
This is the last instruction page. You can go back to the other pages, but when you move forward
the experiment ask you to go fullscreen. Then the experiment will start with 5 training examples
so that you understand the task.

4.7 Material

The grammatical sentences we used are all provided below, in their singular variant.

1. The actor that dislikes the lawyer the most prays.

2. The actor who dislikes the chefs the most swims.

3. The athlete that loves the vet the most lies.

4. The athlete who hates the farmers the least sings.

5. The athlete who hates the proud funny woman prays.

6. The author that hates the waiters the least smokes.

7. The baker that hates the lazy gentle man cooks.

8. The baker who dislikes the judge the least cooks.

9. The baker who dislikes the kind helpful plumbers lies.

10. The baker who likes the clever happy plumber swims.

11. The builder that drives happily though rather quickly cheats.

12. The builder who dislikes the proud gentle farmer cheats.

13. The chef that dislikes the proud clumsy tailors sings.

14. The chef who dislikes the authors the least cheats.

15. The doctor that hates the careless young teacher lies.

16. The doctor that runs happily albeit rather carefully cheats.

17. The doctor who hates the actor the least cheats.
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18. The farmer who fears the clever lazy tailors cheats.

19. The farmer who fears the doctors the least swims.

20. The farmer who likes the builders the least prays.

21. The lawyer that likes the farmers the most swims.

22. The lawyer that runs carefully yet fairly quickly swims.

23. The man that runs carefully though rather quickly lies.

24. The man who avoids the clumsy helpful chef sings.

25. The man who fears the lazy nice authors lies.

26. The man who laughs carefully yet rather quickly smokes.

27. The man who laughs happily though pretty quickly lies.

28. The man who walks carefully although fairly quickly cheats.

29. The painter that avoids the waiter the most prays.

30. The painter who dislikes the nice careless teacher cheats.

31. The painter who loves the helpful friendly judges prays.

32. The painter who loves the young lazy farmers cheats.

33. The plumber that laughs carefully yet pretty quickly prays.

34. The plumber that rides happily although pretty quickly swims.

35. The plumber who fears the lawyer the most climbs.

36. The plumber who talks happily yet rather quickly swims.

37. The tailor that dislikes the cool lazy baker prays.

38. The tailor that loves the clever clumsy bakers cheats.

39. The tailor who avoids the farmer the least prays.

40. The teacher who dislikes the helpful charming builders cheats.

41. The teacher who fears the lawyers the most cheats.

42. The teacher who likes the bakers the most sings.

43. The vet that likes the proud helpful painters cheats.

44. The waiter who avoids the judge the least cooks.

45. The waiter who dislikes the painter the least prays.

46. The waiter who dislikes the proud nice woman swims.

47. The waiter who hates the cool clumsy man swims.

48. The waiter who likes the actors the most smokes.

49. The woman that fears the baker the most cheats.

50. The woman who avoids the gentle lazy waiters prays.
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Figure 4.4: The congruency effect only emerges in the case of a plural attractor, irrespective of the
distance to the verb.

A. B.

Figure 4.5: The two attractor conditions have similar syntactic representations. In other words, the
structural distance between the attractors and the verb is the same in both conditions.
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Chapter 5

Discussion

5.1 On the dissociation of two distinct processing mechanisms

Despite years of research, the underpinnings of language processing in the human brain remain
a topic that often stirs up heated controversy. There exist two different viewpoints regarding
the mechanism that the neural system employs to generate and comprehend language.

One account postulates that language processing is rooted in a uniquely human ability to
produce nested symbolic structures (i.e: recursion, [Chomsky, 1957, Hauser et al., 2002, Rizzi,
2004], whereas the second posits that no structural presupposition is required, and that language
can be sufficiently explained via probabilistic modelling and statistical learning [Frank and Bod,
2011, Christiansen and Chater, 2015]. We refer to the first mechanism as structural, whereas to
the second, as linear. In this project, we sought to identify correlates of these two mechanisms,
using the feature mismatch phenomenon between the subject and the verb. According to formal
syntactic theory, this computation is realized by operations stemming exclusively by syntactic or
hierarchical relationships. We thus hypothesized that neural or behavioral correlates originating
from a factorial manipulation of this dependency can be attributed to the structural mechanism.
To trace evidence of linear processing, we sought for effects stemming from the parametric
manipulation of a dependency between the verb, and a noun that does not structurally intervene
in the subject-verb agreement configuration (hereafter attractor. The backbone of our design
was a prepositional phrase modifier with an embedded attractor, such as the following sentence:

The boy near the girls likes climbing.

To pursue this question, we performed a series of two neuroimaging and one behavioral
experiment. Across all three experiments, the subjects performed a forced-choice, violation-
detection task.

5.2 Brief summary of the results

5.2.1 First study

In this experiment, we utilized two linguistic constructions, a prepositional phrase and an ob-
ject relative clause. Additionally, we analyzed data from both humans and neural networks.
Evidence from non-linguistic sequence processing points to a clear sensitivity of the processing
system to simple statistical regularities, such as transition probabilities between successive el-
ements [Bekinschtein et al., 2009b, Dehaene et al., 2015]. In our neuroimaging experiments,
we searched for neural and behavioral correlates of a similar, transition-based mechanism be-
tween an attractor and a verb that are not structurally related (i.e: “girls likes” in “the boy
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who sees the girls likes their looks”). At the behavioral level, we observed a clear influence of
the attractor in both constructions, and only for the number feature. Notably, attraction ef-
fects were most prominent in the agrammatical sentences, that is, the participants experienced
grammatical illusions, but not a-grammatical ones. In other words, we verified, behaviorally,
the grammatical asymmetry phenomenon. At the neural level, we failed to decode correlates of
a transition-based mechanism, as the classification score remained at chance level. In contrast,
the structural effect was traceable for both constructions and features. Contrary to the hu-
man recordings, when applying the same analysis in activations extracted from LSTM Neural
Networks, the linear effect was fully decodable.

5.2.2 Second study

In our first experiment, we failed to identify neural correlates of a linear processing mechanism,
rooted in transition probabilities between two non-structurally adjacent words (attractor and
target verb). We speculated that three factors might be responsible for that.

• Transition-based phenomena might be too fast, and therefore dissolved in experimental
settings with a relatively slow SOA (in our previous experiment, we used a 500ms SOA).

• The morphological complexity of English might not be sufficient to detect these phenom-
ena, given that the inflectional difference between the singular and the plural tense is only
denoted by a single letter (“s”).

• The participants could have developed task-resolution strategies due to the lack of fillers.

To address the above, we designed a new experiment with multiple SOAs (125, 250, 375 &
500ms), in French, a language with richer morphological variety. Additionally, we included filler
trials that contained violations in locations other than the target verb.

In this study, we used the same linguistic constructions as before, but only the feature of
grammatical number. Similarly to our first experiment, the decoding of the linear transition-
based effect remained at chance level. The structural effect was decodable across both linguistic
structures and for the slow SOAs only. Notably, the congruency1 effect reached significance
only for the SOA, and only for the prepositional phrase. When taking only correct responses
into account, the main effect of congruency was decodable across more SOAs, but only in the
object-relative clause.

5.2.3 Third study

Our third experiment, aimed to investigate the effect of linear proximity of the retrieval point,
by introducing a parametric modulation of the verb-attractor distance. Additionally, given
the known sensitivity of deep learning models to low-level statistical properties, we compared
the behavioral performance of humans and two transformer-based models. Attraction effects
only emerged when the attractor was in the vicinity of the verb. Furthermore, we verified the
two asymmetries that bound the attraction phenomena. Attraction effects occurred mostly in
the agrammatical cases (grammatical asymmetry) and only in the case of the plural attrac-
tor (mismatch asymmetry). Both the human and the artificial system were sensitive to the
attractor-verb distance. Nevertheless, we observed effects that pointed to different directions1.
Whereas for the humans, we observed a facilitatory interference effect, the performance of the
models was severely impacted when the attractor reached the vicinity of the verb.

1 Given the detection of the grammatical asymmetry, we refer to effects restricted to the agrammatical cases.
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5.3 Structural operations dominate the computation of subject-
verb agreement

Our results show that during the computation of subject-verb dependency, a non-structurally
intervening noun interfered with the agreement computation. These results are in agreement
with the existing literature, for both the behavioral [Wagers et al., 2009] and the neural [Tanner
and Van Hell, 2014] level.

In our behavioral analysis, and across all three experiments, we observed the phenomenon of
grammatical asymmetry. Additionally, in agreement with the work of Wagers, Lau and Phillips
[Wagers et al., 2009], we observed significant interference effects in an object relative clause
construction, where the attractor does not intervene with the agreement computation. Further-
more, across all experiments, we replicated the phenomenon of grammaticality asymmetry.

Importantly, both at the behavioral, and the neural level we only reported interference effects
for the number feature, but not that of animacy. This result is compatible with a syntax-first
cognitive model of language processing [Bornkessel and Schlesewsky, 2006, Frazier and Fodor,
1978, Friederici, 2002, Friederici and Weissenborn, 2007]. Based on this approach, during the
initial stage of language processing, local phrase structures are built first in an extremely fast
manner. Only after this stage has been completed, the parser can continue with building
semantic and thematic dependencies. These results strengthen the compatibility of our results
with the cue-based retrieval model of attraction [Lewis and Vasishth, 2005, Wagers et al., 2009],
as it has been suggested that the error-driven retrieval operations are only sensitive to the
number feature [Schlueter et al., 2019]. In particular, behavioral evidence points to a relative
’fragility’ of morphosyntactic processing compared to semantic processing of animacy [Stoops
and Christianson, 2017].

Additionally, the observed grammatical asymmetry can be primarily explained by the cue-
based model of attraction[Wagers et al., 2009, Lewis and Vasishth, 2005, Van Dyke and Johns,
2012, McElree et al., 2003] - although, see [Hammerly et al., 2019]. This model assumes that the
agreement is computed based on existing, general purpose memory operations [Jonides et al.,
2008], that may retrieve unsuitable elements, given that they share similar features to the ones
that should have been retrieved. In the case of the subject-verb agreement, this memory search
might retrieve the number of the local number and not that of the controller (subject).

The observed interference patterns indicate, that during the processing of the subject-verb
dependency, the number feature of the structurally illicit antecedent perturbed the parser, and
affected the resolution of the grammatical configuration. This illustrates that, during sentence
processing, structural operations are not completely robust to non-structural interference. Nev-
ertheless, that is not to say that structure does not guide the parser. In fact, our results point to
a clear dominance of syntax-based operations. The structural effect of violation was significant,
both at the behavioral and the neural level, across all three experiments. Therefore, our results
attest to the presence and dominance of structural operations.

The question is now whether, or to what extent, linear operations are also engaged in
language processing resolution. Based on both non-linguistic sequence processing [Dehaene
et al., 2015] but also studies in computational modelling [Lakretz et al., 2019a], we hypothesized
the existence of a transition-probability sensitive mechanism. Indeed, for the neural networks,
we were able to decode the transition effect, but in the human data this effect remained at
chance level in both experiments.

In our third experiment, we observed a clear impact of the linear distance of the verb
from the retrieval point. Congruency effects only emerged when the attractor was linearly
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adjacent to the verb. Nevertheless, the main effect of transition2 did not reach statistical
significance. Superficially, the profile of these results seems to point to a sensitivity of the
parser to transition probability between consecutive words, a linear parameter. However, an
alternative explanation based on the cue-based model exists. When the attractor is further
away, the memory representation of the embedded noun declines and thus attraction effects (or
effects of retrieval interference) are only detectable in behavior when the verb is presented close
to the retrieval point. Given the MEG results of experiments 1 and 2, when no transition effect
was found, the latter interpretation is the only one that seems to account for the entire dataset.

Overall, then, across all three studies, the interference patterns can be explained by a faulty-
access working memory mechanism. The absence of neural correlates that correspond to a pure
transition mechanism is striking given the known sensitivity of the human brain to prediction
based on transition probabilities [Friston et al., 2021] and clear evidence of this sensitivity at
the non-linguistic sequence level [Dehaene et al., 2015]. It appears, thus, that once a sequence
enters the linguistic domain, these mechanisms are of less importance for the processing system,
and the structural syntactic representation dominates the picture.

Our results draw an image of a structure-based language processing system, in agreement
with formal linguistic theory [Chomsky, 1957, Chomsky, 2009, Rizzi, 2004], where interference
from non syntactically licit constituents can be explained via faulty working memory operations
at the retrieval stage. Importantly, this interference only emerges for the number feature. Lastly,
we demonstrated that language processing between humans and artificial models is different.

5.4 Limitations

In our neuroimaging experiments, we failed to detect neural correlates of a purely transition-
based mechanism. Even though we tried to address the possible confounds of our first exper-
iment, it is possible that our studies have limitations that did not allow for the detection of
these events.

The subjects performed a forced-choice, violation-detection task. In all of our experiments,
we provided immediate feedback at the trial level, with the intention of making the experiment
more enjoyable. These types of experiments are repetitive by nature, and the inclusion of the
feedback might have transformed them into a sort of linguistic game, thus forcing the subjects
into developing strategies towards their resolution. In fact, in our second experiment, we asked
explicitly whether the participants “had found a way of performing the task without reading
the whole sentence”, where 71.4% of the participants replied positively. Importantly, in this
experiment, we had included filler trials, hoping to alleviate the development of explicit, task-
resolution strategies. Nevertheless, despite the subjects reporting the use of strategies, our
behavioral results showed a clear interference pattern. Had the subjects only fully attended to
the beginning and the end of the sentences, these interference patterns should not have been
detected.

In the same questionnaire, we asked the subjects to rate how natural the sentences were (on
a scale from 1 to 10). The mean rating was 3.95± 1.78. This might corroborate the notion of a
strategy-driven task, and the fact that our analyses might have been reflecting general cognitive
functions (such as task resolution), and not natural language processing. However, our results
both at the neural and the behavioral level are in line with previous studies where different
stimuli and tasks were used [Wagers et al., 2009, Tanner et al., 2017].

2 Due to the nature of the factorial design, the transition effect can be analyzed as the interaction of the congruency and
violation factors
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Finally, it is worth noting that the SNR of our analysis might not have been optimal for
detecting linear effects, under the assumption that these effects are subtle and difficult to detect.

5.5 Future Research

An approach that could address the above-mentioned concerns, is one that employs a continuous
presentation of stimuli in a natural setting, such as for example with an audiobook. Based on a
corpus analysis, transitions between grammatically illicit nouns and verbs (such as the attractor-
verb dependency), or other locally deviant dependencies can be identified in a natural setting.
Thus, the neural correlates of these illicit transitions can be examined in more ecological settings.

The SNR of our M/EEG analysis was limited, therefore, a natural extension of this design,
would be one in higher SNR settings, such as intracranial data or even single-cell recordings.
Recent work in computational modelling has suggested that the computation of subject-verb
agreement is being carried by an extremely sparse mechanism [Lakretz et al., 2019a], thus,
single-cell recordings might be the optimal configuration for tracking down such a mechanism.
Additionally, to compensate for low-level linguistic factors, future designs should be bimodal
(auditory & visual). This allows us to test for generalization across modalities, by, for exam-
ple, training a classifier on visual data and subsequently evaluating the model performance on
auditory. Other than the temporal profile of these computations, of the utmost importance is
their localization in the human brain. To that end, the proposed bimodal design should be run
in 7T fMRI settings, with an emphasis on single subject analysis.

Additionally, to address whether the results were driven or reflect, task-resolution strategies,
it would be interesting to repeat the same factorial experiment, with a much higher proportion
of fillers (up to even 50% of the trials) and without an end-of-sentence task.

We sought to identify effects of transitions between non-structurally adjacent elements. For
both the animacy and the number features, we failed to trace down such effects. It would be
interesting to attest such a claim for the remaining two φ-features, person and gender [Molinaro
et al., 2011a]. Therefore, a similar design that factorially manipulates these two features, paired
with the same type of analysis, would be an exciting future research avenue.

Finally, to assess whether the interference patterns that emerged in our last experiment
could be attributed to transition probabilities, it would be interesting to repeat the same exact
experiment, but with jabberwocky stimuli. Should the same patterns emerge, we can certify
that interference occurs due to faulty memory operations at the morphosyntactic level.

5.6 Concluding summary

In a series of three experiments, we attempted to trace down correlates of two distinct language
processing operations. Our results show that once linguistic items enter into the language
system they are dominated by structure-sensitive processing, and are largely robust to low-level
transition effects. Interference effects were observed only for the feature of grammatical number,
and both at the behavioral and the neural level. These interference patterns can be explained
by the cue-based retrieval model of attraction.

87





Appendix A

Appendix for Chapter 2

A.1 The attractor-target transition validity modulates the de-
codability of violation.

In the following, we present additional analyses on the data presented in chapter2. Figure A.1
shows the modulation of the violation decodability with respect to whether, or not, a valid
transition could be realized between the main noun of the sentence and the target verb. This
contrast allows us to examine the modulation of a structural effect by surface-lever statistical
relationships.

For example, a valid transition coincides with an acceptable bigram in the case of the PP-
construction (Panels A & C). Consider the following two sentences, the classification of which
corresponds to the discrete line of panel A.

a. The boy near the girls likes climbing. Grammatical-Deviant transition

b. The boys near the girls likes climbing. Agrammatical-Deviant transition

On the contrary, the continuous line of panel A corresponds to classification of sentences
similar to the following, where a valid transition can be realized between the attractor and the
target verb.

c. The boy near the girl likes climbing. Grammatical-Valid transition

d. The boys near the girl likes climbing. Agrammatical-Valid transition

Figure A.1 illustrates that in the case of local mismatch between the attractor and the target
verb, the linear model reaches higher performance levels. Simply put, it appears that there is
an additional processing cost introduced by a feature mismatch between the attractor and the
target, at the n-gram level. Importantly, even though the examples corresponding to the PP-
Number case draw the picture of a relationship realized at the bi-gram level (see sentence a),
this is not true for the ObjRC structure. Consider the following sentence pair, corresponding
to the discrete line of panel B.

e. The boys that the girl likes leave. Grammatical-Invalid transition

f. The boys that the girls likes leaves. Agrammatical-Invalid transition

In the above examples, the attractor is located away from the target verb, unlike the PP-Number
construction. Regardless, we observe a similar decodability pattern. This illustrates, that this
effect cannot be attributed to transition effects, but rather stems from memory-interference
operations, in agreement with our main results.
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Figure A.1: Classification of grammaticallity is modulated by the attractor-verb relation-
ship. Continuous lines correspond to classification of grammaticallity where a valid transition between
the attractor and the verb could be realized (sentences a. Vs b. for PP-Number). Discrete lines cor-
respond to sentences where there was a mismatch between the attractor and the target verb (sentences
c. Vs d. for PP-Number). The performance of the linear model in the case of a deviant transition is
consistently higher and more sustained for the number feature (Panels A & B). This decoding profile is
not evident in the animacy case (Panel C). The corresponding lines on the top of each panel correspond
to statistically significant time intervals (p < 0.05; corrected - spatio-temporal clustering permutation
test). Nevertheless, the difference of the two conditions never reached statistical significance in none of
the constructions.

A.2 The Grammatical Asymmetry is evident at the behavioral,
but not at the neural level.

According to this well-established phenomenon [Wagers et al., 2009], the presence of an attractor
leads to more errors in agrammatical sentences compared to grammatical ones. Importantly,
this asymmetry can be examined from a different point of view, akin to the classical ’local-global’
paradigm for sequence processing.

The investigation of the attraction effect when splitting the design for grammaticality, es-
sentially coincides with the investigation for a pure ’local effect’, in terms of the classical ’local-
global’ paradigm.

For example, the split with respect to attraction and agrammaticallity (figure A.2 - Panel
A, right) corresponds to sentences similar to the following:

g. The boy near the girls like climbing. Agrammatical-Valid transition

h. The boy near the girl like climbing. Agrammatical-Invalid transition

We first sought to investigate this effect at the behavioral level. Table A.1 summarizes the results
of a series of Welch’s t-tests, corrected for multiple comparisons, that verify the grammatical
asymmetry effect at the behavioral level, and only for the number feature. For the animacy
feature (figure A.2 - Panel C), the attraction was examined with respect to the animacy marking
of the attractor. The interaction of the number and animacy features was beyond the scope of
the current analysis.

Therefore, we verified the grammaticality asymmetry phenomenon at the behavioral level.
The presence of an attractor had a significant effect only at the agrammatical cases. We then
sought to investigate the neural correlates of this phenomenon. Figure A.3 shows an attempt to
decode this asymmetry from the neural recordings. The colors correspond to the grammaticality
of the sentences, similarly to that of figure A.3. The red, dashed line corresponds to classification
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PP-Number ObjRC-Number PP-Animacy

Grammatical Violation Grammatical Violation Grammatical Violation
p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic

n.s n.s 0.01 2.57 n.s n.s 0.002 3.31 n.s n.s n.s n.s

Table A.1: Behavioral verification of the grammatical asymmetry phenomenon. Six Welch’s
t-test with Bonferroni correction were applied to the behavioral data, for each cell of figure A.2.

Figure A.2: The grammatical asymmetry is evident at the behavioral level. The presence of an
attractor had a significant effect only in the agrammatical sentences. We did not observe any attraction
effects for the animacy feature.

of agrammatical sentences with and without an attractor (corresponding example: figure A.3 -
Panel A. right), whereas the green, continuous line, to the same difference but for grammatical
sentences. Should the behavioral data match exactly the neural responses, the decodability of
the dashed-red line must have been above chance level for a given time interval, whereas the
continuous line should remain at chance level. This inconsistency with the predictions drawn
from the behavioral level might illustrate the subtlety of these phenomena, and the need for
pursuing high signal-to-noise ratio (SNR) neuroimaging methods for their investigation.
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Figure A.3: No ”local effect” at the neural level. Each panel has a direct correspondence to figure
A.2. Even though we observed clear behavioral results, we could not decode them at the neural level.

PP-Number ObjRC-Number PP-Animacy

Grammatical Violation Grammatical Violation Grammatical Violation

Plural Attractor Statistic 2.555 3.951 n.s 2.434 n.s n.s

p-value 0.01542 0.000326 n.s 0.01972 n.s n.s

Singular Attractor Statistic n.s n.s 2.112 3.395 n.s n.s

p-value n.s n.s 0.04068 0.002 n.s n.s

Table A.2: A Welch’s t-test with Bonferroni correction was applied to every cell of figure A.4.

A.3 Neural and behavioral correlates of the markdedness phe-
nomenon.

The markdedness of grammatical number is a well established behavioral phenomenon and
states the attraction effect is rooted at the plural noun [Bock and Miller, 1991]. Here, we
revisited this phenomenon, by investigating the effect of attraction while splitting the data
for both attraction number and grammaticality (Figure: A.4, Table: A.2). The fact that the
attractor number leads to different behavioral profiles is often termed “mismatch asymmetry”
[Hammerly et al., 2019].

We verified this asymmetry at the behavioral level and only for the number feature, but
notably, the error-rate profiles were not identical for the two linguistic structures. For the PP-
Number, the results were in agreement with the literature. We observed a very strong, plural
attraction effect for the agrammatical sentences (t(21) = 3.95, p < 1e− 3) and a weaker effect
on the grammatical sentences (t(21) = 2.55, p < 1e− 1). For the ObjRC-Number construction,
the attraction effect was driven by the singular attractor, where the effect was present for both
grammatical (t(21) = 2.12, p < 1e − 1) and agrammatical sentences (t(21) = 3.39, p < 1e − 2).
The plural attractor only had an effect on the agrammatical cases (t(21) = 2.43, p < 1e − 1).
Note that for this construction, the attraction effect stems from an element further away in the
linear representation, as demonstrated below.
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Figure A.4: The plural attractor drives the attraction effect for the PP-Number construc-
tion, but this is not the case for the ObjRC.

Figure A.5: The presence of a plural attractor delays the decodability of violation.
This effect is more pronounced in the long-distance dependency where the plural attractor adds
an additional 300ms, compared to a singular attractor.
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The boy that the girls likes leaves.

Singular ATT

Table A.2 summarizes the mismatch asymmetry results. We did not observe any attraction-
like effects when splitting for the animacy of the attractor.

We then sought to investigate this phenomenon at the neural level. Our previous, direct
analysis for the corresponding grammatical asymmetry (Figure A.3) did not yield any results,
despite the clear behavioral evidence (Figure A.2). We hypothesize that the reduction of the
number of trials due to the screening procedure impairs directly the performance of the linear
model. For this analysis thus, we employed an indirect approach, in which we further analyzed
the dominant effect of violation in the presence of an invalid transition (A.1-dashed line), by
splitting the trials for attractor number. Figure A.5 summarizes the results. For the PP-Number
construction, the performance of the model was directly comparable for the two attractors, but
the temporal profiles of the classification were different. The performance of the linear model
reaches significance at exactly 500ms after the onset of the target verb in the case of the
singular attractor, but requires another 300ms in the case of the plural attractor. For the
ObjRC-Number construction, we observed as similar pattern, but the difference in the onset of
the respective significant decodability was not as pronounced. Nevertheless, the SNR of this
analysis appears to be significantly impaired by the further splitting of the trials, which justifies
our main analysis approach.

A.4 Generalization of number-violation across constructions.

The design implements the use of two different features (number animacy) and structures (PP
ObjRC). So far, we used standard classification techniques to investigate how a linear model
can classify between trials of a structure, for a given feature (e.g: Nested-PP-Number). We saw
that for the human data, a linear model was able to reach high performance in classifying trials
for the main effect of violation for all three constructions.

As a next step, we wanted to examine the ability of the model to generalize across two
different axes. First, whether a model trained on data from a given structure can classify
unseen data from the same structure, but for a different feature (Generalization Across Feature;
e.g: PP-Number → PP-Animacy). Next, whether a model trained on data for a given feature
can distinguish unseen data for the same feature but from a different structure (Generalization
Across Structure; e.g: PP-Number → ObjRC-Number). Figure A.6 summarizes the results of
these generalizations across the two axes (feature structure) in a 3×3 grid of Generalization
Across Time (GAT) matrices ([King and Dehaene, 2014], [Dehaene and King, 2016]) for the
violation effect. The diagonals of this grid represent the time-resolved decodabily -measured in
AUC-of the linear model, when trained and tested with data from the same construction and
feature (e.g: PP-Number). The x-axis of the grid corresponds to the construction on which the
model was trained, and subsequently the y-axis represents the testing construction. The dashed
lined indicate the significant AUC values. The significance of this generalization was evaluated
against chance level using permutation based clustering ([Maris and Oostenveld, 2007]).

The diagonals of this 3×3 grid, correspond to the main effect of violation across the three
constructions, locked to the onset of the target word. Our results show that the number feature
generalizes well across structure. A decoder trained on the PP-Number structure achieves high
performance when tested in classifying neural activity corresponding to the ObjRC structure
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Figure A.6: Number-violation decoding generalizes across constructions, but weaker gener-
alization from number to animacy violation. Generalization across conditions and time points for
the main effect of violation, for both number (PP- and objRC modifiers) and animacy, measured in Area
Under the Curve (AUC). Only significant AUC values are shown (p < 0.05; corrected—spatio-temporal
clustering permutation test). Dashed contours indicate cluster-level significance. Continuous horizontal
and vertical lines indicate target-verb onset. The rows indicate the modifier on which the classifier was
tested, whereas the columns the one on which it was trained (i.e: second row, first column: Trained on
PP-Number and tested on ObjRC-Number).

and vice versa. The opposite is not true. For example, a decoder trained on ObjRC-Number,
fails to reach significance on data from PP-Animacy. These results indicate that the two different
features are encoded and processed differently by the neural system.

A.5 Different lateralization for each feature.

The fact that the two features lead to different generalizations can also be seen at their re-
spective topographic plots (A.7). The violation of the number feature leads to left lateralized
topographies, whereas the violation effect for the animacy feature led to topographies that
highlight a right-frontal representation.
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Figure A.7: Grand average magnetometer topographic plots for the main effect of violation
across the three constructions. Time zero corresponds to the onset of the target word.
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Appendix B

Technical work

The following pages showcase a demonstration of a preprocessing pipeline that I co-developed
during the first year of my PhD, to identify channels that contain epileptic activity. The pipeline:

• Handles data from different hospitals and recording setups.

• Applies basic signal processing steps (line-noise removal, downsampling, and linear de-
trending).

• Identifies channels and trials that contain epileptic activity.

• Offers feedback to the user at each intermediate analysis level.

• Delivers flexible solutions to run into multiple workstations irrespective of hardware ca-
pabilities of the user and various slower options with lower consumption offered as alter-
natives.

• Ensures compatibility with Windows and Linux operating systems.
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This is a function with default settings. Every input in 
this function comes in pairs (this is where the 
function parsePairs is used.) This is done to 
increase human readability when it comes to the 
inputs. For example, to change the processing 
option, type :

 runPreprocessing(‘processing’,’slow’)
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The “getCore” function is used to set the 
paths. This function is build to set the 
paths irrelevant of the OS used by the 
user. Moreover, the user can also specify 
the hostname of the PC in use, and the 
paths will be automatically set as long as 
the file-tree where the code is stored has 
the following structure: 

 

Once the user specifies the hostname and 
set the “core” path that leads to the above 
tree (this can be a hard-drive or the server) 
the paths are set automatically. 

That makes it easy to git-push and work 
between different people, OSs and PCs 
under the same OS. 

Automatically detect whether the 
parallel computing toolbox is 
installed. If so, soft-code the 
number of workers and open the 
local cluster.

From this point onward, we start to 
build the configuration structure. 
This will include the high-level 
parameters such as the Hospital 
where we analyzing the data from, 
the type of processing, etc.

The option (‘processing’,’slow’) allows for visual inspection of the rejected channels at each step. Also, it 
saves the data from every step on the data path. It is recommended  especially for the first time that you run 
the analysis on a new patient. The option ‘quick’ only informs the user on the number and location of the 
rejected channels, without showing them.  
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Here, we specify the list of patients 
per hospital. We can either select 
a single patient or loop through all 
patients. 

“hopID” stands for “Hospital ID” 

The processing for the Grid 
electrodes has not yet been 
implemented.

At each step of the process, the user get 
feedback on the command window.
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We initialize a channel logical array (in 
Houston, the trigger is on the last 
channel, so we exclude it here.) 

1 indicates a good channel
0 indicates a bad channel

Filter with the notch filter and 
downsample here. At this point you 
can also change the bandwidth of 
the filter. In the future this will be 
automated based on where the data 
come from (Europe or otherwise)

Step 1 : Median thresholding (Rejection based on raw power)
We get the variance of all 
channels. This returns aI.
row matrix of dimensions (1 x 
channels) – we have a single 
variance value per channel
(σ^2/channel). 

We then threshold and 
exclude those channels that 
exceed an upper and a lower 
threshold.

Upper threshold = 
5*median(var(all_channels))

Lower threshold = 
median(var(all_channels))/5
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The user receives feedback at each stage of 
the processing. Here, we see that 16 channels 
were rejected on the first stage.

The labels of the discarded channels

The locations of the discarded channels

The same holds for each step. In step n.2, 6 
channels were rejected

Example of a discarded channel from stage 1.

Current 
channel 
and total 
number of 
discarded 
channels in 
this stage.
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Step 2 : Detection of Spiking channels 
The goal here is to detect 
rapid changes in the signal 
(“jumps”). 

Initially, we set a threshold in 
mV  (80 mV).

We loop through each 
individual channel and get the 
difference of two successive 
points. If this difference 
exceeds the provided 
threshold, we call that a spike 
and
we register the spiking event 
on the channel.

Example of a discarded channel from stage 2.
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Step 3 : Detection of deviant channels from the Power - Spectrum 

A callback function allows the 
user to see the index of the 
deviant channel (in that case, 
45). 

The user can then update the 
rejected channels on the 
command window

Step 4 : Rejection  of  channels based on the presence of HFOs 
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● The code is not fully vectorized, yet for the largest part, it is. 

● To make this code as generic as possible, I’ve identified several hot-spots where a memory error 
can occur. At those points, I tried to provide alternative solutions (slower). This code has been 
tested in Windows (i7,16gb ddr3), Linux (i7,16gb ddr3), Linux (i7,32gb ddr3) and two matlab 
versions (2017b, 2018a)

● At the end of the pipeline, the user can eyeball the discarded channels, where different colors 
indicated rejection in different stages.

○ Stage 1 : blue 
○ Stage 2 : black
○ Stage 3 : magenda
○ Stage 4 : red

● After applying CAR (Common Average Re-referencing), the user can eyeball the non-rejected 
channels

● Up to this point, the user has to mentally-note the channels that he/she wants to keep or reject 
after the visual inspection and manually add them at the editor. I will soon implement an 
interactive way of doing that from the command window.

● Experiment with the thresholds and find a “Hospital-specific” list of thresholds for each stage.

● So far, this procedure has been implemented at the channel level. I will also implement it at the 
epoch level. 

106



Example of a non-discarded channel.
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[Vasishth et al., 2017] Vasishth, S., Jäger, L. A., and Nicenboim, B. (2017). Feature over-
writing as a finite mixture process: Evidence from comprehension data. arXiv preprint
arXiv:1703.04081. 10

[Vigliocco and Nicol, 1998] Vigliocco, G. and Nicol, J. (1998). Separating hierarchical relations
and word order in language production: Is proximity concord syntactic or linear? Cognition,
68(1):B13–B29. 9, 49, 54, 70

[Villata et al., 2018] Villata, S., Tabor, W., and Franck, J. (2018). Encoding and retrieval
interference in sentence comprehension: Evidence from agreement. Frontiers in psychology,
9:2. 10

[Wagers et al., 2009] Wagers, M. W., Lau, E. F., and Phillips, C. (2009). Agreement attrac-
tion in comprehension: Representations and processes. Journal of memory and language,
61(2):206–237. x, xxiii, 8, 9, 25, 28, 32, 43, 54, 56, 73, 77, 85, 86, 90

[Willer Gold et al., 2017] Willer Gold, J., Arsenijević, B., Batinić, M., Becker, M., Čordalija,
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