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Abstract

This thesis mainly focuses on the study of reactive systems, exploring how nuclear quantum effects 
(NQEs), in particular tunneling and zero point energy (ZPE), can affect the dynamical and 
thermodynamical properties of a chemical reaction. In principle, in order to include NQEs, one 
should solve the time-dependent Schrödinger equation for the atomic nuclei, but this is possible 
only for systems with few degrees of freedom. For this reason, different approximate methods were 
developed in the past in order to take into account those effects without excessive computational 
effort.

In this thesis, we will discuss in detail two approaches: ring polymer molecular dynamics (RPMD), 
and the quantum thermal bath (QTB). The first one is based on the path integral formalism outlined 
by Feynman, while the second one uses a generalized Langevin equation in order to introduce zero 
point energy (ZPE) in an otherwise classical simulation.

First, we investigate how the ZPE of the system affects an unimolecular fragmentation, comparing 
rate constants and activation energies for both classical and quantum results obtained with RPMD 
and QTB methods. The system is described by an analytical potential, and in order to explore a 
different ranges of temperature, the potential was modified, changing the barrier of the reaction. 
Furthermore, a benchmark with the exact result is obtained for a 1D model system (a simple morse 
potential). Results show that RPMD is able to capture correctly the NQEs on rate constants (and 
therefore activation energy). Instead, QTB largely overestimates the rate constants in all the 
systems. The reason of this wrong behaviour, is to search in the distance distribution, where the 
QTB describes poorly the tail of the probability distribution which is fundamental to describe the 
fragmentation correctly. 
Then, we study the double proton transfer in guanine-cytosine DNA base pairs. In particular we 
focus on how NQEs and environment can affect this reaction, thus the thermodynamics and 
dynamical properties. In order to study the mechanism, the free energy landscape was obtained 
using umbrella sampling for both classical and path integral based simulations. Furthermore, an 
ensemble of trajectories was performed starting from the tautomeric form and was let free to go 
back to the more stable form (the canonical one). The results show that for the dimer in gas phase 
the mechanism is concerted, and the effect of NQEs is to speed up the reaction up to a factor of 30 
in comparison with classical results. When the environment is included the mechanism becomes 
step-wise, the NQEs still speed up the reaction, but what is more affected is the free energy 
landscape, for which the intermediate ceases to be a local minimum, making the proton transfer 
almost barrierless. 
The last part concerns the study of heavy atoms tunneling for a prototypical reaction, the Cope 
rearrangement of semibullvalene. We focus on the reaction within transition state theory  (TST) 
approximation, by computing the free energy barrier with umbrella sampling technique for both 
classical and RPMD methods. We also correct the TST by the recrossing factor, in order to estimate 
the accuracy of this approximation. We found that in the case of RPMD when the temperature is 
lower than the cross over temperature, the free energy profile in the transition state region is 
completely flat, showing a typical marker for tunneling. The inclusion of tunneling speeds up the 
reaction up to 60 order of magnitude at 25 K, and this difference disappears in the classical limit, as 
we expected. The computation of the recrossing factor, shows that it is significant only at the lowest
temperature (25 K), where this value is about 0.6. It should be noted that even if the rate constant is 
lowered by the inclusion of the recrossing factor in this low temperature regime, it is not 
comparable with the impact of tunneling which, as we said before, speeds up the reaction up to 60 
order of magnitude.



Resumé

Cette thèse se concentre sur l'étude des systèmes réactifs, en explorant comment les effets 
quantiques nucléaires (EQN), en particulier le tunneling et l'énergie du point zéro (EPZ), peuvent 
influencer les propriétés dynamiques et thermodynamiques d'un système chimique, en particulier 
lorsque des atomes légers sont impliqués. En principe, pour inclure les EQN, il faudrait résoudre 
l'équation de Schrödinger dépendante du temps pour les noyaux atomiques, mais cela n'est possible 
que pour les systèmes à quelques degrés de liberté. Pour cette raison, différentes méthodes 
approchées ont été développées.

Dans cette thèse, nous discuterons en détail deux approches : ring polymer molecular dynamics 
(RPMD) et le quantum thermal bath (QTB). La première repose sur le formalisme des intégrales de 
chemin développé par R. Feynman, la seconde utilise une équation de Langevin généralisée pour 
introduire l’EPZ dans une simulation classique.

En premier lieu, nous avons étudié comment l'EPZ du système affecte la fragmentation 
unimoléculaire du méthane, en comparant la constante de réaction et l'énergie d'activation dans les 
cas classiques et quantiques obtenus avec les méthodes RPMD et QTB.  Les résultats montrent que 
RPMD est capable de capturer correctement les EQN sur les constantes de réaction (et donc 
l'énergie d'activation). En revanche, QTB surestime largement la constante de réaction dans tous les 
systèmes étudiés. La raison de ce comportement erroné se trouve dans la distribution des distances: 
le QTB décrit mal la queue de distribution de probabilité qui est fondamentale pour bien décrire la 
fragmentation.
Ensuite, nous avons étudié le double transfert de proton dans les paires de bases d'ADN guanine-
cytosine. En particulier, nous nous concentrons sur la façon dont les EQN et l'environnement 
biochimique peuvent affecter cette réaction, ainsi que les propriétés thermodynamiques et 
dynamiques. Afin d'étudier le mécanisme, le profil d'énergie libre a été obtenu en utilisant la 
technique d'umbrella sampling (US) pour les simulations classiques et basées sur le RPMD. De 
plus, un ensemble de trajectoires a été effectué en partant de la forme tautomérique et en la laissant 
libre de revenir à la forme plus stable (la forme canonique). Les résultats montrent que pour le 
dimère en phase gaz, le mécanisme est concerté, et l'effet des EQN est d'accélérer la réaction d'un 
facteur de 30 par rapport aux cas classiques. Lorsque l'environnement est inclus, le mécanisme se 
déroule par étapes, les EQN accélérant toujours la réaction, mais c'est le profil d'énergie libre qui est
le plus affecté, le processus devenant presque sans barrière.
La dernière partie concerne l'étude du tunneling des atomes lourds pour une réaction prototypique, 
le réarrangement de Cope du semi-bullvalène. Nous nous concentrons sur la réaction dans 
l'approximation transition state theory (TST), en calculant la barrière d'énergie libre avec la 
technique US pour les méthodes classiques et RPMD. Nous corrigeons également la TST par le 
facteur de recrossing, afin d'estimer la précision de cette approximation. Nous avons constaté que 
dans le cas de RPMD, lorsque la température est inférieure à la température dite de “cross-over”, le 
profil d'énergie libre dans la région de l’état de transition  est complètement plat, ce qui est un 
indicateur typique de l’effet tunnel. L'inclusion du tunneling accélère la réaction jusqu'à 60 ordres 
de grandeur à 25 K, et cette différence disparaît dans la limite classique (haute température), comme
nous nous y attendions. Le calcul du facteur de recrossing montre qu'il est significatif uniquement à 
la plus basse température (25 K), où cette valeur est d'environ 0,6. Il convient de noter que même si 
la constante de vitesse est réduite par l'inclusion du facteur de recrossing dans ce régime de basse 
température, cet effet n'est pas comparable à l'impact de l’effet tunnel qui, comme nous l'avons dit 
précédemment, accélère la réaction jusqu'à 60 ordres de grandeur.
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Computational molecular dynamics (MD) simulations are one of the most common tools
to study the equilibrium and dynamical properties of a chemical system. This approach
can be useful as a complement to experimental works and as a support to their interpreta-
tion. The �rst system studied with MD simulations was composed of 64 particles in a 1-D
model in 1955 by Fermi, Pasta and Ulam [1]. About twenty years later Karplus and cowork-
ers [2] were able to simulate the folding of a protein (bovine pancreatic trypsin inhibitor)
using an empirical potential, for a total simulation time of 8.8 ps. Nowadays, thanks to
the progress in computing power and algorithms, the scienti�c community is able to per-
form MD simulations of complex systems (up to hundreds of millions of atoms) on much
longer timescales (up to microseconds) [3, 4]. Depending on the process under study and
the associated size / timescale, di�erent electronic descriptions can be used. In most cases,
MD simulations are based on the Born-Oppehneimer approximation [5] which separates
the motion of electrons and nuclei. Within this approach, it is possible to obtain a 3N po-
tential energy surface on which nuclei move, either according to classical or to quantum
mechanics. A typical way is to perform the electronic structure calculation on-the-�y: at
each step of the dynamics the energy and the gradients of the system are computed and the
dynamics is thus propagated. In this way, one can obtain a trajectory fromwhich dynamical
or equilibrium properties of the system can be extracted. The most common approach in
MD simulations, is to treat nuclei in a classical way, within Newton’s equations of motion.
This kind of approach can lead to signi�cant errors, especially when light nuclei such as
protons are involved or at low temperatures when the quantum nature of the nuclei cannot
be neglected.

This thesis mainly focuses on the study of reactive systems, exploring how Nuclear
Quantum E�ects (NQEs), in particular tunnelling and zero point energy (ZPE), can a�ect
the dynamical and thermodynamical properties of chemical systems [6]. Indeed, NQEs
are known to potentially in�uence the reactivity in chemical and biological systems [7],
to correctly capture the complex and anomalous behaviour of water [8, 9] and to a�ect
hydrogen bonds [10–13].

In principle, to include NQEs in the description of chemical reactions, one should solve
the time-dependent Schrödinger equation for the atomic nuclei, but this is possible only
for systems with few degrees of freedom. Some re�ned techniques have been designed to
propagate the nuclear wave function in a more e�cient manner, such as the Multi Con�g-
urational Time Dependent Hartree (MCTDH) [14], but it is still limited to tens of atoms.
For this reason, di�erent approximate methods were developed in the past in order to take

1



C������ 0

into account those e�ects without excessive computational e�ort, based on di�erent types
of semi-classical approximations, that allows to treat larger molecular systems. For the
calculation of reaction rates, these methods can be divided into two groups: those that in-
volve only static calculations and those that are based on trajectories, as in the classical
picture, but accounting for NQEs via di�erent approximations. In the former, it is used the
Transition State Theory (TST) approximation combined with small curvature tunnelling
(SCT) [15] or semi-classical TST (SCTST) [16] to correct for quantum e�ects such as tun-
nelling and ZPE. The second category instead, exploits reactive trajectories of the system in
order to estimate the rate constant. An example of this category is the quasi-classical trajec-
tory [17–19] or Linearized semi-classical Initial Value Representation [20], which combine
a sampling of initial conditions according to quantum statistics (usually Wigner sampling)
with classical trajectories to compute dynamical observables. Both methods have as main
issue to perform the dynamics classically, and sample only initial conditions correctly. This
predisposes the system to the phenomenon of ZPE leakage.

In this thesis, we will discuss in detail two trajectory-based approaches: ring polymer
molecular dynamics (RPMD)[21], and the quantum thermal bath (QTB)[22]. The �rst one
is based on the path integrals formalism outlined by Feynman, while the second one uses a
generalized Langevin equation in order to introduce zero point energy (ZPE) in an other-
wise classical simulation. Both of thesemethodswere �rst applied to amodel system, which
represents a unimolecular fragmentation, to evaluate how accurately they capture NQEs.
We then focus on two more complex reactions: the double proton transfer in DNA base
pairs, and the Cope rearrangement of semibullvalene at low temperature. In order to study
dynamical and thermodynamical properties, we combine enhanced sampling techniques,
transition state theory and direct dynamics simulations in the RPMD framework.

To carry out the unimolecular fragmentation calculations, we used VENUS [23], in
which we implemented the RPMD algorithm. For the last two systems, we developed a
speci�c code which allows the use of RPMD interfaced with DFTB+ [24] and PLUMED [25]
software. For more details, see Appendix C.

The thesis is organized as follows:

Chapter 1.
This Chapter starts with a brief overview of molecular dynamics simulation. We start
with a general introduction, before presenting the Langevin thermostat in detail, then
the tight-binding density functional theory (DFT)method is shortly reviewed. Finally,
we provide a short overview of the methods used to obtain free energy pro�les, fo-
cusing on metadynamics, umbrella sampling and to compute rate constants within
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the quantum and classical frameworks.

Chapter 2.
In this Chapter, we explain in detail the methods used in this thesis in order to include
NQEs in the calculation of dynamical properties: ring polymer molecular dynamics,
and the quantum thermal bath. A subsection on the RPMD rate theory is also in-
cluded.

Chapter 3.
In this Chapter, we compared the accuracy of the two methods, QTB and RPMD, for
the evaluation of the rate constant of unimolecular fragmentation. Here we studied
di�erent systems: a model potential of CH4 is modi�ed in order to explore di�erent
ranges of temperature, and a benchmark with exact results is performed for a 1D
Morse potential. We compare di�erent methods to compute the rate constants and
the associated activation energies.

Chapter 4.
Here we study the double proton transfer reaction in DNA base pairs. We performed
simulations for an isolated guanine-cytosine base pair and for the same pair within
a model DNA environment. The mechanism is analyzed through the umbrella sam-
pling method and we compare the rate constants between classical and RPMD rate
constants. Furthermore, we deuterate the system in order to compare the rate con-
stants kH and kD and evaluate the kinetic isotopic e�ect.

Chapter 5.
A simple reaction is modelled in order to explore the in�uence of NQEs on reactions
involving heavy atoms at low temperatures. The reaction is the Cope rearrangement
of semibullvalene, the aim is to evaluate the accuracy of the TST, evaluating the re-
crossing factor. The relative contributions of tunnelling and ZPE are also discussed.
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This Chapter begins with a general overview of MD simulation and the di�erent ther-
mostats that can be used to �x the temperature. Additionally, the basic principles of the
electronic semiempirical method density functional tight binding (DFTB) used in this the-
sis will be explained. Moreover, in the last part of this Chapter, an exploration it is provided
of the methods used to obtain reaction rate constants and relevant free energy pro�les from
MD simulations.

1.1 Overview

Molecular dynamics is a computational technique, which allows us to follow the dynamical
evolution of a system composed of N classical particles subject to a potential V . Given an
initial set of 3N cartesian coordinates and 3N momenta (or velocities), the evolution of
the system in time is obtained through the numerical integration of Newton’s equation of
motion:

Fi(t) = mẍi(t) = −∂V (�x)

∂xi

(1.1)
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where i runs over the number of degrees of freedom (3N ). Fi(t) is the force at time t
that acts on the particle,m is the mass, ẍi(t) the acceleration and V is the potential which
is only function of the nuclear positions.

The outcome of an MD simulation is a trajectory of the system, that can be de�ned as a
time sequence of points in the phase space (i.e. a set of 3N coordinates and 3N momenta).

Knowing the dynamics of the system, it is possible to obtain all the physical observables
by computing their average along the trajectory. From statistical mechanics, the average of
the observableA is computed over an ensemble of all accessible phase space con�gurations
Γ:

�A�Γ =

�

Γ

A(Γ)P (Γ)dΓ (1.2)

where Γ are all the possible phase space con�gurations of the system and P (Γ) is the prob-
ability distribution, which depends on the chosen ensemble. In the case of the canonical
ensemble (NVT), P (Γ) is proportional to the Boltzmann factor e−H(�x,�p)/kbT with H(�x, �p)

the Hamiltonian of the system and kb the Boltzmann constant. Thanks to the ergodic hy-
pothesis, the average of A can also be calculated by its integration over time:

�A�Γ = �A�t =
� tf

0

A(t)dt (1.3)

This hypothesis ensures that the two ways of computing the average value of A (Equa-
tion 1.2 and Equation 1.3) lead to the same results, for t long enough and for optimal sam-
pling of the phase space. This hypothesis allows us to obtain statistical properties from
molecular dynamics simulations.

1.2 The canonical ensemble and Langevin thermostat

The integration of the equation of motion, Equation 1.1, leads to the so-called microcanoni-
cal ensemble (NVE), where the number of particles (N), the volume (V) and the total energy
(E) of the system are kept constant. On the other hand, many dynamical and statistical
properties are obtained at a given temperature. This means that one should be able to sim-
ulate the canonical ensemble (NVT), �xing the temperature at a certain value during the
simulation. In order to control the temperature, di�erent approaches can be followed, like
scaling (Berendsen thermostat) [26], extended systems (Nosé-Hoover) [27] or dissipative
methods (Langevin) [28]. The former can be considered the simplest and quickest way to
thermalize the system since it simply rescales the velocities (�v) of the particles according
to the desired temperature:

8
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�vscaled ← λ�v (1.4)

with λ:

λ =

�
1 +

Δt

τT

�
T ∗

T
− 1

�� 1
2

(1.5)

where �vscaled and �v are respectively the new and the old velocities of the system, T ∗ is
the desired temperature, T is the instantaneous temperature and τT is a coupling factor,
homogeneous to a time. Another approach to �x the temperature during an MD simula-
tion involves the inclusion of additional degrees of freedom, whereby the system can ex-
change energy (extended systems). One of the most common thermostats of this category
is the Nosé Hoover [27] thermostat. The main drawback of this approach is that it is deter-
ministic (strictly determined by the initial condition of the extended system coordinates),
furthermore, it does not work properly for small systems, as it fails for example in �xing
the temperature for a single Harmonic Oscillator [29]. To overcome this problem di�erent
modi�cations were proposed, leading to more e�cient thermostats as Nosé-Poincaré [30]
and Nosé-Hoover chains methods [31].

The approach used in this thesis in order to �x the desired temperature is the Langevin
thermostat. This can be described by a stochastic equation, known as the Langevin equa-
tion. It �nds its origin in the classical theory of Brownian motion [32], where it represents
the dynamics of a macroscopic particle subject to random impacts. Those random collisions
between the particle and the environment lead to two di�erent e�ects:

1. A systematic e�ect: the surrounding molecules create frictional forces

2. A random e�ect: that is represented by a random driving force on the particle

For a single particle in 1-D, the stochastic equation used to describe this motion is the
Generalized Langevin Equation (GLE) [33]:

mẍ = −dV

dx
−
� t

t0

dt
�
K(t− t

�
)ẋ(t

�
) +R(t) (1.6)

where x is the position,m themass of the particle, V the potential,K is the kernel which
is a function of time, and characterizes the dependence of the friction force on the past val-
ues of the velocity ẋ up to the time t. The Fluctuation Dissipation Theorem (FDT) [34] ex-
presses the fact that for a system at thermal equilibrium, the power injected by the random
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force and dissipated by the friction should compensate each other. The relation between
the random force R(t) and the kernel K(t) is expressed by the following relation:

�R(t)R(t+ τ)� = kBTK(τ) (1.7)

In the particular case of a Markovian system (i.e. when there is no memory e�ect) the
Equation 1.7 becomes:

�R(t)R(t+ τ)� = 2kBTγmδ(τ) (1.8)

where γ is the (constant) friction coe�cient of the thermostat. The Langevin equation
then becomes:

mẍ = −dV

dx
− γẋ+R(t) (1.9)

This last equation is the one used in this thesis, in order to �x the temperature during
the simulations. Since the dynamics can be a�ected by the use of the thermostat, a small
value of friction γ is recommended if one wants to obtain dynamical properties.

1.3 Born-Oppenheimer molecular dynamics

To obtain the full quantum dynamics of a system, in principle the quantum time-dependent
Schrödinger equation should be solved for both nuclei and electrons. This is not possible for
more than a few degrees of freedom, and for this reason, di�erent approximations are made
to obtain the dynamics of more complex systems. One of the most common approaches is
to divide the motion of electrons and nuclei: obtaining the potential energy surface for
the nuclei from the ground state of the time-independent Schrödinger equation for the
electrons at �xed nuclei position. Nuclei are then generally evolved classically under the
forces deriving from this potential. This approach is called Born-Oppenheimer molecular
dynamics. The forces can be obtained by di�erent electronic structure methods such as
density functional theory (DFT) [35], semiempirical methods (such as AM1 [36], PM3 [37,
38] and PM6 [39]) or analytical methods (such as force �elds, or analytical potentials). In
this thesis, the electronic structure problem is solved through the semiempirical approach
called tight binding DFT.
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1.3.1 Electronic Structure: density functional tight binding

The density functional tight binding (DFTB) method is a semi-empirical method based on
the tight binding theory (TB)[40] and density functional theory (DFT) [35, 41]. This method
takes into account the variations of the electronic density self-consistently in the DFT. From
this theory, it retains only a few terms and recasts them in a tight-binding Hamiltonian.

From the DFT theory, the ground state energy of an interacting electron system is writ-
ten as:

E[ρ(�r)] = Ts + Eext[ρ(�r)] + EH [ρ(�r)] + ENN + EXC [ρ(�r)] (1.10)

where Ts is the kinetic energy for a non-interacting system, Eext is the external inter-
action (nuclei-electron interaction), EH is the Hartree energy, ENN is the energy of nuclei-
nuclei interaction and EXC is the exchange-correlation energy term. The electron density
ρ(�r) is de�ned as:

ρ(�r) =
occ�

i=1

ψ∗
i (�r)ψi(�r) (1.11)

with �r the vector for the position of electrons, ψi the wavefunction for one electron
orbital and i runs over the occupied orbitals. The electronic density can be obtained through
a self-consistent method, by iteration of the Kohn-Sham equations:

�
−1

2
∇2 + Veff (�r)

�
ψi = �iψi (1.12)

where:

Veff (�r) = VH(�r) + Vext(�r) + Vxc(�r)

VH =

�
ρ(�r

�
)

|�r − �r� |dr
�

Vext = −
� Za

|�r − �Ra|

Vxc =
∂Exc

∂ρ(�r)

with a over the number of nuclei. These terms correspond to the terms in Equation
1.10 as follows: VH is the Hartree potential, Vext is the external nuclei-electron potential,
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Ra is the position vector a-nuclei, while Vxc is the exchange-correlation potential. Using
Kohn-Sham (KS) Equation (Eq. 1.12) the total energy written in Equation 1.10 can be recast
as [41]:

E[ρ(�r)] =
occ�

i=1

�ψi|−
1

2
∇2+Vext+VH +Vxc|ψi�−EH [ρ(�r)]−Vxc[ρ(�r)]+Exc[ρ(�r)]+ENN

(1.13)
The basic idea behind DFTB theory is to express the electronic density as the superposition
of a reference density ρ0(�r) (considered equal to a superposition of the densities of the
neutral atoms of the system) plus a �uctuation (de�ned as Δρ(�r)):

ρ(�r) = ρ0(�r) +Δρ(�r) (1.14)

Expanding the functional of the electronic density (Eq. 1.13) up to the third order of
Taylor expansion [42] in Δρ:

E[ρ0 +Δρ] =
occ�

i=1

�ψi|−
1

2
∇2 + Vext[ρ0] + VH [ρ0] + Vxc[ρ0]|ψi�+

− 1

2

� �
ρ0ρ

�
0

|�r − �r� |d�rd�r
� −

�
Vxc[ρ0]ρ0d�r + Exc[ρ0] + ENN+

+
1

2

� �
drdr

�
�

1

|�r − �r� | +
δ2Exc[ρ0]

δρδρ�

�
ΔρΔρ

�
+

+
1

6

� � �
drdr

�
dr

��
�

δ3Exc

δρδρ�δρ��ΔρΔρ
�
Δρ

��
�

(1.15)

where the termΔρ or ρ0 stand forΔρ(�r) and ρ0(�r), Δρ
� or ρ�

0 stand forΔρ(�r�) and ρ0(�r
�
),

while Δρ
�� stands for Δρ(�r

��
). The �rst order term in Δρ vanishes [43] because of the

variational theorem, and the therms Δρn for n > 3 are small and can be neglected . The
di�erent terms in Equation 1.15 can be separated as a function of the order in the Taylor
expansion as follows:
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EDFTB1 =
occ�

i=1

�ψi|−
1

2
∇2 + Vext[ρ0] + VH [ρ0] + Vxc[ρ0]|ψi� −

1

2

� �
ρ0ρ

�
0

|�r − �r� |d�rd�r
�
+

−
�

Vxc[ρ0]ρ0dr + Exc[ρ0] + ENN

(1.16)

EDFTB2 =
1

2

� � �
1

|�r − �r� | +
δ2Excρ0
δρδρ�

�
ΔρΔρ

� (1.17)

EDFTB3 =
1

6

� � � �
δ3Exc

δρδρ�δρ��ΔρΔρ
�
Δρ

��
�

(1.18)

We can express, in agreement with the Tight Binding theory, the total energy of the
system as the sum of two contributions:

ETB
tot = Ebinding + Erep (1.19)

Where the �rst term on the right of the equation describes the binding energy of the
system, while the second is related to all the repulsive contributions. The term Ebinding

corresponds to the �rst term in Equation 1.16,
�occ

i=1�ψi| − 1
2
∇2 + Vext[ρ0] + VH [ρ0] +

Vxc[ρ0]|ψi�, that is the Kohn-Sham Hamiltonian at the reference density ρ0. Therefore, its
expectation value is equal to sum of the electronic eigenvalues

�occ
i=1 �i. The basis set in

which ψi are expanded is within LCAO ansatz and only the valence orbitals are considered
(frozen core approximation). The last terms in Equation 1.16, represent the electrostatic
energy of the a,b atom pair and can be approximated as a sum of two centre repulsion
terms:

− 1

2

� � �
ρ0ρ

�
0

|�r − �r� |d�rd�r
� −

�
Vxc[ρ0]ρ0dr +Exc[ρ0] +ENN � 1

2

�

a,b

Vrep,ab[ρ
a
0, ρ

b
0] (1.20)

All terms related to the variation of electron density appear in Equation 1.17 and 1.18.
For what concerns the second order term, which appears in Equation 1.17, it expresses the
response of an atom that modi�es its charge state due to the in�uence of the charge of
another atom, and it can be approximated as:

EDFTB2 � 1

2

�

a,b

γa,b(|Ra −Rb|)ΔqaΔqb (1.21)

13



C������ 1

WhereΔqa = Qa−Za is theMulliken charge of the atom a, and γa,b is the second derivative
of the Hartree and exchange-correlation contributions with respect to the atomic charge.

Summarizing all the approximations, the energy expression for DFTB2 (i.e. second-
order expansion of DFT) is:

EDFTB1+DFTB2 �
occ�

i

�i +
1

2

�

a,b

γa,b(|Ra −Rb|)ΔqaΔqb +
�

a,b

Vrep,ab(Rab) (1.22)

Taking into account the third order expansion in Equation 1.18 we obtain a term which
considers the derivative of the γa,b , called Γa,b , with respect to the charge. The �nal ex-
pression for DFTB3 is:

EDFTB1+DFTB2+DFTB3 �
occ�

i

�i+
1

2

�

a,b

γa,b(|Ra−Rb|)ΔqaΔqb+
�

a,b

Vrep,ab(Rab)+
1

3

�

a,b

Δq2aΔqbΓa,b

(1.23)

Up to nowwe have seen the energy within the DFTB method. Nowwe will focus on the
corresponding Hamiltonian. The corresponding Kohn-Sham (KS) approximated equations
derived from this formalism are:

�
ĥ0 + ĥ1 + ĥ2

�
ψi = �iψi (1.24)

Where the di�erent terms of the KS operator (ĥ0+ ĥ1+ ĥ2) correspond to the Hamiltonian
when it is taking into account the �rst, second and third order expansion. Expanding the
orbital ψi within LCAO approach leads to:

ψi(�r) =
N�

ν

Ci,νφν(�r − �Ra) (1.25)

Where Ci,ν are the coe�cients, and φν is the basis set of localized orbitals centred on atom
a on which the function ψi is expanded. This leads to the secular equations:

N�

ν

Ci,ν(Hµ,ν − �iSµ,ν) = 0 (1.26)

Hµ,ν = H0
µ,ν + Sµ,ν

�

j

qj

�
1

2
(γa,b + γb,j) +

1

3
(qaΓa,j + qbΓb,j) +

qj
6
(Γj,a + Γj,b)

�
(1.27)
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where Sµ,ν is the overlap matrix. These equations are equivalent to the KS equations
in the DFTB approach. The orbitals in Equation 1.24 are considered within the frozen core
approximation (i.e. only valence atomic orbitals), and the Hamiltonian and overlap matrix
contain one and two-centre contributions, as in the standard TB approach. In contrast, its
elements rather than empirical, are computed starting from DFT. For this reason, they can
be calculated and tabulated in advance, so there is no need to recalculate them during the
simulation. Furthermore the diagonal elements of h0 are tabulated from DFT values within
PBE exchange-correlation functional, while the o�-diagonal elements are approximated
with two-centre contributions [44]. In practice the Equations 1.26 and 1.27 are solvedwithin
a self-consistent approach: an initial guess ofΔqa is given, this allows us to obtainHµ,ν , at
this point the Equation 1.26 is used in order to get the coe�cient Ci,ν and then a new value
ofΔqa is achieved. Since this iteration is done on charges, rather than density as in DFT, it
is called self-consistently-charge treatment (SCC).

The atomic forces can be obtained through the gradient of Equation 1.23. For example,
on the atom a the force will be calculated as follows:

�Fa = −
occ�

i

�

µ,ν

C∗
i,µCi,ν

�
∇aH

0
µ,ν − (�i − h1

µ,ν)∇aSµ,ν

�
−Δqa

�

j

(∇aγa,j)δqj −∇aErep

(1.28)

The advantage of this approach is the low computational cost while retaining the reac-
tivity, its main approximations can be summarized as:

1. Expansion of the DFT functional energy

2. Expansion of the orbital ψi within LCAO approach (considering just the valence or-
bitals)

These approximations enable the possibility to study systems for which the standard
DFT would require a too high computational cost, while retaining the reactivity, which is
an advantage of the DFT with respect to force �elds. The applications of DFTB are wide:
it was shown to well describe the geometries and energies of organometallic complexes,
especially if the third order is included [45–47]. Furthermore, it was extensively tested on
biological molecules such as base-pair and DNA [48] or anticancer drugs [49, 50] where
the interaction between an external molecule and DNA was studied. Moreover, there are a
huge number of applications for carbon clusters and nanomaterials [51–53].
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1.4 Dynamical and equilibrium properties

This Section focuses on the methods that can be used to obtain the rate constants and the
free energy surface fromMD simulations. For the rate constant, we start with the quantum
approach, where the rate can be directly computed from the quantum side, �ux or �ux-side
correlation functions, then go step by step to the classical picture and to the widely used
transition state theory (TST) approximation. For the free energy surface instead, we review
the enhanced sampling techniques (metadynamics and umbrella sampling) used to obtain
the free energy surface for rare events in the present thesis.

1.4.1 Rate constants

The thermal equilibrium rate constant of a chemical reaction can be written as [54]:

k(T ) =
1

Q
lim
t→∞

Tr
�
F̂ e

iHtc∗
� h(ŝ)e−

iĤtc
�

�
(1.29)

with tc = t − i�β/2, β equal to 1/kbT (with kb the Boltzmann constant) and Q the
reactant partition function. The operator F̂ is the �ux operator which depends on the
reaction coordinate ŝ, the momentum p̂ and the massm as follows:

F̂ = δ(ŝ)

�
p̂

m

�
(1.30)

Finally, h is the step function de�ned as:




s > 0, h(s) = 1

s < 0, h(s) = 0
(1.31)

where s = 0 is the dividing surface.

The quantum correlation functions (cf,f �ux, cs,s side and cf,s �ux-side) are de�ned as
follows:
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cf,f (t) = Tr

�
F̂ e

iĤt∗c
� F̂ e−

iĤtc
�

�
(1.32)

cs,s(t) = Tr

�
h(−ŝ)e

iĤt∗c
� h(ŝ)e−

iĤtc
�

�
(1.33)

cf,s(t) = Tr

�
F̂ e

iĤt∗c
� h(ŝ)e−

iĤtc
�

�
(1.34)

The three correlation functions just mentioned, are related by the following math op-
erations:

cf,f (t) =
dcf,s(t)

dt
(1.35)

cf,s(t) =
dcs,s(t)

dt
(1.36)

So the relation between the thermal rate constant and the di�erent correlation functions
can be written as:

k(T ) =
1

Q

� ∞

0

cf,f (t)dt (1.37)

k(T ) =
1

Q
lim
t→∞

dcs,s(t)

dt
(1.38)

k(T ) =
1

Q
lim
t→∞

cf,s(t) (1.39)

This shows how the quantum thermal rate constant can be obtained from correlation
functions. In order to have the information to reconstruct one of the three correlation
functions, one should perform full quantum dynamics. An application to a simple 1Dmodel
is given in Chapter 3.

In the past, di�erentmethodswere developed in order to obtain an approximation (semi-
classical) to the true rate constant. These semiclassical methods take into account the nu-
clear quantum behaviour of nuclei. Examples of these methods are the classical Wigner
model [55], forward-backwards semiclassical dynamics [56] or ring polymer molecular dy-
namics [21]. The latter will be explained in detail in Section 2.1.

Classical Picture
A further approximation that can be made, is to consider the system fully classically (the
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nuclei are treated as classical objects). To obtain the classical counterpart of the thermal
rate constant, the trace Tr must be replaced with a classical phase space average, and the
operators with the corresponding classical functions. The �ux operator in Eq. 1.30 can be
written classically as:

F (p, x) =
p

m
δ(s) (1.40)

where, as before (see Equation 1.30) s is the reaction coordinate which is a function of the
positions, and the dividing surface is located at s = 0. Within the classical picture the step
function h remains a simple function of the reaction coordinate s.

The classical side-�ux correlation function becomes:

cclf,s(t) =
1

2π�

�
dp0

�
dx0e

−βH(p0,x0)
p0
m
δ(s0)h(st) (1.41)

Where x0 and p0 are the initial conditions, sampled according to Boltzmann probability
density. This last equation of the classical side-�ux correlation function, has some similar-
ity with its quantum counterpart, as it is also odd and independent of the location of the
dividing surface, in the limit of t → ∞. An important di�erence occurs when it approaches
t → 0, since in the classical case the correlation function is discontinuous at t = 0, while
in the quantum expression, the correlation function is continuous for t → 0. Analyzing the
limit for t → 0+ of the classical �ux-side correlation function in Eq. 1.41 it can be shown
that (for a 1D case s ←→ x):

lim
t→0+

cclf,s(t) =
1

2π�

�
dp0

�
dx0e

−βH(x0,p0)
p0
m
δ(x0)h(p0)

=
1

2π�

� ∞

0

dp0
p0
m
e−βp20/2m

�
dx0e

−βV (x0)δ(x0)

=
1

2πβ�
e−βV (x=0)

Inserting this last equation in Eq. 1.39 and choosing the dividing surface at the high-
est point of the potential (x = x‡) gives the well-known classical transition state theory
(TST) [57] result:

kcl(T )
TST =

1

Q
lim
t→0+

cclf,s(t) =
kBT

h

1

Q
e−βV (x‡) (1.42)

with h the Planck constant. The TST allows us to compute the approximated rate constants,
it assumes that the reactant is in equilibrium with the activated complex (transition state)
and that once the system passes through the dividing surface, it cannot come back (no
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recrossing). The result expressed in Equation 1.42, in comparison to Equation 1.29 depends
on the location of the dividing surface, due to the exponential factor.

The extension of this to a 3N degrees of freedom will become:

kcl(T )
TST =

kBT

h

Q‡

Q
e−βV (s‡) =

kBT

h
e−βΔG‡ (1.43)

Where we explicit the partition function of the transition state (Q‡) and of the reactant (Q).
The term ΔG‡ refers to the free energy value at the transition state.

Applying TST theory can have two main advantages:

• The rate constant will be always the upper bond of the true rate constant, since within
the TST approximation the recrossing is neglected

• The rate constant can be obtained only from the energy at the transition state (V (s‡)),
and the vibrational frequencies are needed to calculate the partition functionQ, thus
there is no need of performing trajectories

If one considers the recrossing, the rate constant can be written as:

k(T ) = k(T )TSTκ (1.44)

where κ is the value in the limit of t → ∞ of the recrossing factor [58]. One of the main
assumptions within the TST approximation is to consider all the trajectories reactive: once
the system passes through the bottleneck, individuated as the dividing surface (s = 0)
the system will go into the products and there is no chance to come back. Including this
correction factor, κ, it is possible to take into account the recrossing. Considering the
dividing surface as s = 0, the recrossing factor can be written as an average of the �ux
side correlation function:

κ(t) =
�δ(s0)ṡ0h(st)�
�δ(s0)ṡ0h(ṡ0)�

(1.45)

where at the numerator the correlation is between the �ux given by ṡ0 on the dividing
surface at time 0 and the side function for the position at time t which gives 1 when the
reaction coordinate is on the side of the products and 0 when it is on the side of reactants.
An application of this will be explained in detail in Chapter 5 with the Cope rearrangement
reaction of semibullvalene.

In this thesis, we also used a direct method to calculate the rate constants, as will be
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better described in Chapter 3: an ensemble of reactive trajectories is performed, then we
can determine if for each time window and for each trajectory the system is still in the
reactant state. From that, we can obtain a population decay and �t it with an exponential
function. This is the case of unimolecular fragmentation as discussed in Chapter 3.

1.4.2 Free energy surface

Two of the main drawbacks of MD simulations are the limited time scale and the limited
sampling of conformational space. In order to follow a reaction, it is useful to reduce the di-
mensionality of the analysis, so that the process (as a reaction or a conformational change)
is analyzed on a reduced set of variables that describe correctly the mechanism under ob-
servation. These variables are called collective variables (CVs) and are typically expressed
through a function of the atomic coordinates s(q). For example in case of a conformational
change, a reasonable CV could be a relevant torsional angle, or in case of a unimolecular
fragmentation the length of the bond as it is shown in Figure 1.1.

In the canonical ensemble when analyzing a system through a particular set of CVs, the
probability P (s) of a certain value s is de�ned as:

P (s) ∝
�

dq exp

�
−V (q)

kBT

�
δ(s(q)− s) (1.46)

where V (q) is the potential, kB the Boltzmann constant and T the temperature. The relation
between the free energy for a certain value called s and the potential energy is:

F (s) = −kBT log

��
dqδ(s(q)− s) exp

�
−V (q)

kBT

��
(1.47)

where F (s) is the free energy, the δ(s(q)− s) inside the integral selects the con�gurations
which correspond to the value s. The free energy obtained using Equation 1.47, requires
computing a multidimensional integral in 3N dimension. For this reason, F (s) is usually
obtained through conformational sampling using MD or Monte Carlo approaches. In this
way, the free energy landscape of the mechanism can be obtained through:

F (s) = −kBT logP (s) (1.48)

Reducing the set of variables, in order to study and obtain the free energy of a system,
is not enough for mechanisms that require a long time in order to explore a certain region
of the phase space. These processes can have a high barrier, or be associated with multiple
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Figure 1.1: Example of free energy (right) obtained from the Probability Distribution of the
CV (left). The model is a simple Morse potential. In this particular case, the CV corresponds
to the atomic coordinate.

paths. To overcome these issues, a bias potential is added Ṽ (s(q)) to the unbiased potential
V (q) that would be used in a conventional MD simulation. This approach is used in a
category of methods called "biased sampling methods". In this way, the system is forced
to explore the region of the potential energy surface of interest, away from the minima.
Whatever CVs are chosen to observe the process, it is fundamental to recognize the e�ect
of the bias potential and to remove it after the simulation is performed. In particular, the
biased distribution of the CV is expressed as:

P
�
(s) ∝ exp

�
−V (q) + Ṽ (s(q))

kBT

�
δ(s(q)− s) ∝ exp

�
− Ṽ (s(q))

kBT

�
P (s) (1.49)

So the biased free energy landscape will be:

F (s) = −F
�
(s)− Ṽ (s) + f (1.50)

where F �
(s) is the biased free energy obtained from −kbT logP

�
(s), while f is a constant

which depends on the partition functions (biased and unbiased).

This means that the e�ect of the bias potential on the free energy landscape is additive,
and so to recover the unbiased free energy, the bias potential must be subtracted a poste-
riori from the biased free energy. This chapter means to present an overview of two bias
sampling methods used in this thesis: metadynamics[59][60] and umbrella sampling[61].
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Metadynamics

Metadynamics simulations are a powerful technique that combines molecular dynamics
simulation with statistical mechanics.

The basic idea behind this method is to add to the actual potential of the simulation
an external one, called "bias" in order to promote the exploration of the potential energy
surface (PES) and overcome barriers that could not be overcome in a conventional MD
simulation. In order to achieve it, a time-dependent potential is added to the potential
energy of the system. This bias will be tuned in order to drive the system towards the
region of interest of the PES and will discourage the system from revisiting the previously
sampled regions of the free energy landscape.

The time-dependent bias potential takes the form of a sum of gaussian functions, and
it is added to the unbiased potential V at regular intervals of time (1t, 2t..kt). For 1D case:

Ṽ (s, t) =
�

kt<t

W (kt) exp

�
−

NumCV s�

i=1

(si − si(q(kt))
2

2σ2
i

�
(1.51)

where W (kt) is the height and σi is the width of the gaussian functions on the i CV.
In the long time limit (when the probability becomes �at) it is possible to recover the free
energy F (s) from the following equation[62]:

F (s) = − lim
t→∞

Ṽ (s(q)) + C (1.52)

The main drawback of this method is the necessity to wisely choose the parameters of the
gaussian functions, and the CVs before performing the metadynamics simulation. More-
over, it is not trivial to decide when the simulation must end.

Umbrella sampling

As with metadynamics, umbrella sampling allows for obtaining the free energy landscape
of a chemical process. A bias potential is applied to the system in order to sample a speci�c
region of phase space. In this case, the bias potential is usually a harmonic one, which
con�nes the system to a particular region of interest in phase space. The equation of the
harmonic potential centred at a value s0 of CV coordinate is:

Ṽ (s) =
k

2
(s− s0)

2 (1.53)
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Figure 1.2: This graph presents a double well potential (y(x) = 1
4
x4 − x2 + 0.5x) as a

model for a generic reaction coordinate (as can be for a single proton transfer). If ΔF �
kBT a bias sampling method is needed. In this case, the method depicted in this graph is
metadynamics: starting from the minimum a certain number of gaussian functions is added
in order to overcome the barrier.

where k is the constant of the harmonic potential, centred on the CV s0. The corre-
sponding probability distribution is proportional to:

P
�
(s) ∝ P (s) exp

�
−k(s− s0)

2

2kBT

�
(1.54)

The unbiased free energy landscape will be recovered using the weighted histogram
analysis method (WHAM) [63]. The main advantage of umbrella sampling is that the dif-
ferent simulations can run independently and thus in parallel, and it is possible to add one
or more windows after the �rst set of simulations has been performed. The only main
drawback is the need to know the mechanism behind the process under observation: imag-
ine for example a double proton transfer described by two CVs, which are represented as
the di�erence of distances between donor-Proton and acceptor-Proton (in such a way that
when this value is zero, the proton is in the middle between the donor and acceptor). If
we know from the beginning that the process occurs through a synchronous and concerted
mechanism, the centres of the biasing potential can be chosen only for the symmetric value
of these distances. On the other hand, if the mechanism is step-wise, the potential will need
to be centred for each possible combination of these two distances.

Weighted histogram analysis method (WHAM)

The WHAM algorithm is a way of reconstructing the free energy surface of a system
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from umbrella sampling data. The algorithmworks by �rst constructing a histogram of data
obtained from umbrella sampling simulations, and then using this histogram to estimate
the free energy as a function of the CVs. The bias potential in Equation 1.53 is centred at
di�erent values of s0. For each value of s0 a simulation is performed, and so each simulation
(usually referred to as "window") explores a portion of a phase space in which the system is
constricted through the harmonic bias potential. Each i-th window will be related to a bias
potential called Ṽi (same of Equation 1.53), and will be associated with a biased probability.
From this, the unbiased probability P (s) can be obtained by iteration [64, 65]. For details
on the equation used see Ref. [63].
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This Chapter we review the two methods used in this thesis in order to include nuclear
quantum e�ects in molecular dynamics simulations. We start with an extensive review of
the path integral theory developed by Feynman, in order to explain in detail the ring poly-
mer molecular dynamics method. Later, we present more brie�y the quantum thermal bath,
an approach which uses a generalized Langevin equation in order to account approximately
for zero-point energy e�ects. For simplicity, we will use 1D notations, but the results can
easily be generalized to molecular systems with multiple degrees of freedom.

2.1 Path integral theory

2.1.1 Formalism

Path integral theory was developed by Feynman in 1948 [66]. It was presented as a third
approach, beside that of Schrödinger and that of Heisenberg, to describe non-relativistic
quantum mechanics.
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The core of this third formalism is to express the quantum time propagation operator as
a sum over all possible paths, where each of them contributes with the same amplitude but
a di�erent phase. The matrix element of the propagation operator within Dirac’s formalism
is:

U(x, x
�
; t) = �x� | exp

�
− iĤt

�

�
|x� (2.1)

where Ĥ is the Hamiltonian, t is the time, and � is the Planck constant divided by 2π.
Within the Feynman picture, the quantum time operator can be rewritten as:

U(x, x
�
, t) =

�

all paths x(τ)

exp

�
i

�
S(x(τ))

�
(2.2)

where S(x(τ)) is the classical action, the functional of the trajectory that can be ob-
tained by integrating the Lagrangian (L[x(τ), ẋ(τ)]) as follows:

S(x(τ)) =

� t

0

L[x(τ), ẋ(τ)]dτ (2.3)

Thanks to the similarity between the quantum time propagation operator expressed in
Equation 2.1 and the canonical density operator ρ̂, the path integral approach can be used to
obtain the canonical partition function Z(β) and therefore the thermodynamics properties
of a chemical system.

The matrix elements of the canonical density operator are:

ρ(x, x
�
; β) =

1

Z(β)
�x� | exp

�
−βĤ

�
|x� (2.4)

where β = 1
kBT

.

The connection between the two operators, ρ̂ and Û , can be seen as a Wick rotation
(Figure 2.1), which allows to do all the procedures to obtain a path integral expression for
the canonical density operator. The canonical density operator can be obtained from the
quantum time operator calculating it at an imaginary time, t ←→ −iβ�.

In order to obtain a path integral expression for the canonical density operator in Equa-
tion 2.4, the �rst step is to apply the Trotter theorem and split the canonical density operator
in an in�nite number of slices (P) as:
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Figure 2.1: Left: Wick rotation from the real to imaginary axes. As it can be seen t and β can
be considered as two coordinates in the imaginary plane. Right: Schematic representation
of di�erent paths between the initial state x and �nal state x� . Figure adapted from ref [67].

exp
�
−βĤ

�
= lim

P→∞

�
exp

�
−βV̂

2P

�
exp

�
−βK̂

P

�
exp

�
−βV̂

2P

��P

(2.5)

where V̂ is the potential which depends on the position operator x̂, and K̂ is the kinetic
which depends on the momentum operator p̂.

Denoting the product of the three exponential terms in Equation 2.5 as a new operator
γ̂ and inserting this term in Equation 2.4:

ρ(x, x
�
; β) = lim

P→∞

�
x

� ��γ̂P
�� x

�
(2.6)

To expand the term in Equation 2.6, the identity operator is inserted between each γ̂. A
general matrix element can be written as:

�xk+1| γ̂ |xk� = �xk+1| [e−
−βV̂
2P e−

−βK̂
P e−

−βV̂
2P ] |xk� (2.7)

Since V̂ = V (x̂) is a function of the position operator, the |xk� and �xk+1| are eigenvec-
tors of the potential operator, with eigenvalues V (xk) and V (xk+1). For the kinetic energy
which is a function of the momentum operator, the resolution of identity must be inserted
in the momentum basis. In this way, the kinetic operator will act directly on the |p� ket, as
follows:

�xk+1|e
−βK̂
P |xk� =

�
dp�xk+1| exp

�
−βK̂

P

�
|p��p|xk�
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=

�
mP

2πβ�2

� 1
2

exp

��
− mP

2β�2

�
(xk+1 − xk)

2

�
(2.8)

By replacing Equation 2.1.1 in Equation 2.6 we can rewrite the canonical density matrix
within the path integral approach:

ρ(x, x
�
;β) =

1

Z(β)
lim

P→∞

�
mP

2πβ�2

�P/2 �
dx2...dxP exp

�
−1

�

P�

k=1

�
mP

2β�
(xk+1 − xk)

2 +
β�
2P

(V (xk+1) + V (xk))

��
|xP+1=x

�

x1=x

(2.9)

In Equation 2.9 the quantum kinetic energy appears as a harmonic nearest-neighbour
coupling term between points along the same path, where the spring constant is equal to
mP/β2�2. Note that x1 is equal to x (initial state) while xP+1 is equal to x

� (�nal state).
The integration over the intermediate terms (x2..xP ) represents all possible paths between
x and x

� as can be seen in the right panel of Figure 2.1.

The canonical partition function is fundamental in order to obtain the thermodynamical
properties of a chemical system and it is written as the trace of the canonical density matrix:

Z(β) = Tr
�
exp

�
−βĤ

��
=

�
�x| exp

�
−βĤ

�
|x� dx (2.10)

Setting the cyclic condition xP+1 = x1 in the Equation 2.9 it is possible to integrate over
the diagonal element and the Equation 2.10 becomes:

Z(β) = lim
P→∞

�
mP

2πβ�2

�P
2
�

dx1..dxP exp [−βφ(x1..xP )] (2.11)

where φ(x1..xP ) is an explicit potential, that acts on the replicas (x1, .., xP ) (as shown
in Figure 2.2), de�ned by the following equation:

φ(x1..xP ) =
P�

k=1

�
1

2
mω2

P (xk − xk+1)
2 +

1

P
V (xk)

�
(2.12)

The frequencyωP =
√
P/(β�) is the frequency of the harmonic springs between neigh-

bouring replicas of the same physical atom. The Equation 2.11 is equivalent to the classical
con�guration partition function for P classical particles, under the potential φ(x1..xP ). Be-
cause of the cyclic condition, the replicas of the system are usually called "beads", due to
the similarity of the ring polymer with a necklace (Figure 2.2).
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Figure 2.2: The �gure describes two atoms depicted in the path integral formalism, where
each atom is represented by P beads connected by harmonic springs. The dashed lines
represent the physical interaction potential V that acts between beads of the same bead
index. Figure adapted from ref [67]

Note that in the high-temperature limit, T → ∞, β → 0, the spring constant becomes
in�nite, causing the collapse of the cyclic polymer in one point (as for the classical case).
In other terms, classical representation is recovered for T → ∞.

From the path integral expression for the canonical partition function (Eq. 2.11), we can
obtain the average value for an operator Â which depends on position (local operator):

�A(x̂)� = 1

Z(β)
Tr

�
Â exp

�
−βĤ

��
(2.13)

which becomes:

�A(x̂)� = 1

Z(β)
lim
P→∞

�
mP

2πβ�2

�P
2
�

dx1..dxPAP (x1..xP )

exp

�
−1

�

P�

k=1

�
mP

2β�
(xk − xk+1)

2 +
β�
P

V (xk)

�� (2.14)

where AP (x1..xP ) is de�ned as:

AP (x) =
1

P

P�

k=1

A(xk) (2.15)

Once this classical equivalence expressed in Equation 2.11 has been constructed, the
numerical methods that have been developed in the context of classical statistical mechan-
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ics such as Monte Carlo (MC) or molecular dynamics (MD) can also be used in order to
obtain the thermodynamical properties of the system. Those methods within the path inte-
gralformalism are called path integral Monte Carlo (PIMC)[68] or path integral molecular
dynamics (PIMD) [69]. The �rst to be developed was PIMC, and it was used in quantum
chemistry and condensed phase systems [70] but also to describe the behaviour of bosonic
liquid at ultra-low temperature correctly [71].

2.1.2 Path integral molecular dynamics

In the path integral formulation to obtain the partition function (Equation 2.11), no dynam-
ics is involved. In order to perform a molecular dynamics simulation, the momenta of the
particles involved are inserted in the integral of the Equation 2.11:

Z(β) = lim
P→∞

1

(2π�)P

�
dp1..dpP

�
dx1..dxP exp

�
−β

P�

k=1

p2k
2m� + φ(x1..xP )

�
(2.16)

where φ is de�ned in Equation 2.12. Therefore the Hamiltonian of the system is:

HP (p, x) =
P�

j=1

�
p2j
2m� +

1

2
mω2

p(xj − xj+1)
2 +

1

P
V (xj)

�
(2.17)

where p and x are the vectors which contain the momenta and the positions of all the beads.
From the equation 2.17 the equations of motion can be obtained:

ẋj = +
∂HP

∂pj
=

pj
m�

ṗj = −∂HP

∂xj

= −mω2
P (2xj − xj+1 − xj−1)−

∂V (xj)

∂xj

In this way, it is possible to run a molecular dynamics simulation (PIMD [69]), and
obtain (as for PIMC) the exact quantum thermodynamical properties of a chemical system,
in the limit of an in�nite number of beads (P → ∞). In practice the number of beads
required to estimate the quantum behaviour of the system depends on its frequency and on
the temperature at which the simulation is performed. As a general (approximate) rule, the
number of beads must be greater than the ratio between the vibrational energy (considering
the highest frequency of the system) and the thermal energy kBT .
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2.2 Ring polymer molecular dynamics

As discussed in the previous section, both PIMC and PIMD approaches are useful to obtain
the thermodynamical properties of a chemical system. If one is interested in the dynamical
properties (such as di�usion coe�cient or rate constants), some approximations must be
done. Craig andManolopolous in 2004 [21] developed the ring polymermolecular dynamics
(RPMD)method which can be seen as one particular type of PIMD simulation, which allows
computing approximate quantum dynamical properties. It exploits PIMD trajectories to
obtain the approximate Kubo transform correlation function (one of the multiple possible
ways to express quantum correlation functions), in this way also dynamical properties can
be obtained from molecular dynamics simulation, with the inclusion of NQEs such as the
zero point energy or the tunnelling.

As the �rst step the mass m� , in the Equation 2.17 is �xed to the physical mass of the
atoms, so we can write the Hamiltonian of the system HP (p, x), with p and x as the mo-
menta and position of all the beads:

HP (p, x) =
P�

k=1

�
p2k
2m

+
1

2
mω2

p(xk − xk+1)
2 + V (xk)

�
(2.18)

Within the RPMD formalism, the correlation function of two position dependent oper-
ator, Â and B̂ can be written as:

�A(0)B(t)�P =
1

(2π�)PZP

�
dp0

�
dx0 exp

�
−βHP (x0, p0)

P

�
AP (x0)BP (xt) (2.19)

where AP and BP are de�ned in Equation 2.15.

For t → 0 and P → ∞ this correlation function is equal to the Kubo correlation func-
tion:

�CAB(t) =
1

βZ

� β

0

dλTr
�
exp

�
−(β − λ)Ĥ

�
Â exp

�
−λĤ

�
exp

�
+iĤt/�)

�
B̂ exp

�
−iĤt/�

��

(2.20)

The assumption of the RPMD approach is to consider the similarity between the Equa-
tion 2.19 and 2.20 true even for t > 0.
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It was extensively studied on analytical models such as the quartic double-well po-
tential [72], it shows good agreement with quantum exact theory results for bimolecular
collision [73] and it was applied also to gas-surface reactions [74].

The two main drawbacks of RPMD are the computational cost, equal to P times a clas-
sical simulation, and the description of vibrational spectra. This is due to a resonance prob-
lem: the excited modes of the ring polymer could be in resonance during the simulation
with one of the degrees of freedom of the system. This resonance results in a splitting of
certain peaks in the vibrational spectra, which are not related to the physical frequencies of
the system but to the internal frequencies of the ring polymer which do not correspond to
any physical resonance. In order to avoid this problem, Ceriotti and coworker [75] modi�ed
the algorithm RPMD, coupling the harmonic motion of the beads with a Langevin thermo-
stat (T-RPMD). Applying this strong damping on the internal modes of the ring polymer,
make these spurious peaks disappear from the spectra. This is the one used in this thesis,
and the details of the algorithm can be found in Appendix C.

2.2.1 Rate constant from RPMD

As shown before, RPMD is an approximate method which exploits the similarity between
the quantum Kubo-transformed correlation function and the classical one within an ex-
tended phase space. It therefore allows to calculate any dynamical observable that can be
expressed from such correlation functions, as for example the reaction rate constants pre-
sented in Subsection 1.4.1 (Eq. 1.39).

The rate constant can be obtained from the �ux-side correlation function as:

k(T ) =
1

Q
lim
t→∞

cf,s(t)

Taking into account that the centroid of the ring polymer is expressed as:

x̄ =
1

P

P�

k

xk (2.21)

we can write the �ux-side correlation function within RPMD framework as [21, 76]:

�Cf,s(t) �
1

(2π�)P

�
dp0

�
dx0e

−βPHP (x0,p0)δ(s(x̄0))
p̄0
m
h(s(x̄t)) (2.22)
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where the term s(x̄0), p̄0 and s(x̄t) are respectively the reaction coordinate at the cen-
troid position at time zero, the centroid momenta at time zero and the reaction coordinate
at centroid position at time t.

The rate obtained within RPMD has no variational principle (so it does not give the
upper bound to the true rate constant). In the limit t → 0+ of the �ux-side correlation
function (Eq. 2.22), we obtain the so-called the RPMD-TST rate, which is an upper bound
of the RPMD rate (in the same way as the classical TST rate is an upper bond to the full
classical reaction rate). As described in Section 1.4, applying the TST means doing several
approximations, in particular the assumption that once the system passes through the di-
viding surface it does not come back. In Section 1.4 we have seen that in order to consider
this recrossing, we can multiply the classical TST rate by a factor κ(t → ∞) which is ex-
pressed as a correlation function (Equation 1.45). In the same way, the RPMD rate constant
can be obtained by multiplying the RPMD-TST rate by a recrossing factor with a similar
expression, only involving the centroid position and momenta:

κ(t) =
�δ(s(x̄0))ṡ(x̄0)h(s(x̄t))�
�δ(s(x̄0))ṡ(x̄0)h(ṡ(x̄0))�

(2.23)

An application will be presented in Chapter 5.

2.3 Quantum thermal bath

The quantum thermal bath (QTB) method is based on the use of a generalized Langevin
equation in order to introduce approximately the zero point energy of the system during
the simulation. To explain it, it is useful to recall the (classical) Langevin equation in the
Markovian limit (see Chapter 1, Section 1.2):

mẍ = −dV

dx
− γẋ(t) +R(t) (2.24)

and the equation which relates the random force with the friction γ thanks to the �uc-
tuation dissipation theorem (FDT):

�R(t)R(t+ τ)� = 2kBTγmδ(τ) (2.25)

Applying the fourier transform on both sides of the previous equation we have:
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CRR(ω) = 2kBTγm (2.26)

The QTB exploits the FDT within a quantum framework, replacing the classical term
kBT in Equation 2.26 with the average quantum energy at a given temperature for an har-
monic oscillator:

CRR(ω) = 2mγθ(ω, T ) (2.27)

where the term θ(ω, T ) is the average energy of a harmonic oscillator with a frequency
ω at the temperature T , expressed as:

θ(ω, T ) =
�ω
2

coth

�
�ω

2kBT

�
(2.28)

This last expression is the one used by the quantum thermal bath [22] method in order
to introduce the ZPE in the system through a thermostat. As it can be seen comparing
Equations 1.8 and 2.27, the di�erence is in the random noise generated during the simu-
lation. In the case of the classical Langevin equation, the noise is a white noise (Eq. 1.8)
which goes to 0 for T → 0. On the other hand, QTB is able to introduce approximate ZPE in
the dynamics: the random noise generated is quantum (Eq. 2.27) and frequency dependent,
so each mode is thermalized at an e�ective temperature that depends on its frequency to
include the ZPE (of the mode). As a consequence of this approach, the system as a whole
should have approximately the right ZPE.

Dammak and co-workers [22] show how QTB is able to catch the experimental trend of
the lattice parameter and the heat capacity for MgO crystals. Another study was performed
on diamond by Ceriotti and coworkers [77], where the Quantum Thermostat method (sim-
ilar to QTB) was found in agreement with PI, but at low temperatures it displays a prob-
lem called zero point energy Leakage. This consists in the �ow of the energy from high-
frequency modes to low-frequency ones. This is particularly problematic for very anhar-
monic systems, as the classical forces that appear in the Langevin equation 1.6 e�ciently
drive the system towards the classical equipartition of the energy [78].

One way to mitigate this leakage would be using a large friction γ during the simula-
tion, which represents the coupling term between the classical system and the quantum
bath [78], but this a�ects thermodynamical and even more strongly dynamical proper-
ties. [79, 80]. Another way which has less impact on the dynamical and thermodynami-
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cal properties and allows to complitely compensate for the ZPEL, is the adaptive-QTB [81].
This method uses the FDT in order to estimate the ZPEL, and adjust the γ parameter, which
now becomes frequency dependent. In this way, there is a balance between the quantum
bath and the classical degrees of freedom. In this way it allows to correct for the e�ects of
the leakage on static properties, but its ability to capture dynamical rate constants had not
been evaluated.

35



C������ 2

36



Part II

Applications

37





C������ 3

U����������� �������������

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Rate Constants from Reactive Dynamics Simulations . . . . . . . 43
3.3 Simulations Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Model potentials . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Sum-of-States Rate Constants . . . . . . . . . . . . . . . . 45
3.3.3 Computational details . . . . . . . . . . . . . . . . . . . . 46

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 1-D model potential . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 CH4-based potentials . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Distance distributions . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

The present chapter presents an investigation of how nuclear quantum e�ects modify
the temperature-dependent rate constants and, consequently, the activation energies in uni-
molecular reactions. In the reactions under study, nuclear quantum e�ects mainly derive
from the presence of large zero point energy. Thus, we analyze the behavior of methods
compatible with reactive dynamics simulations, the quantum thermal bath (QTB) and ring
polymer molecular dynamics (RPMD). To this end, as the �rst step, we present a com-
parison of these two methods with quantum reaction theory for a model Morse potential
before extending this comparison to molecular models. Results show that, in particular in
the temperature range comparable with or lower than the zero point energy of the system,
the RPMD method is able to correctly capture nuclear quantum e�ects on rate constants
and activation energies. On the other hand, although the QTB provides a good descrip-
tion of equilibrium properties including zero point energy e�ects, it largely overestimates
the rate constants. The origin of these contrasted behaviors is in the distance distribution

39



C������ 3

provided by the two methods and, in particular, in the di�erent description of the tails of
such distributions. The comparison with the harmonic approximation to transition state
theory (TST) shows that RPMD can be used to study the fragmentation of complex systems
for which it may be di�cult to determine the multiple reaction pathways and associated
transition states.

3.1 Background

Unimolecular fragmentation is an elementary chemical process which is involved in many
reaction mechanisms [82]. In fact, it is not only relevant per se in the direct fragmentation
of chemical species but it can be present as part of a more complex mechanism. Direct frag-
mentation is, for example, the key process involved in tandemmass spectrometry, where an
ion is activated (typically by collisions) and then fragments in two (or more) parts [83, 84].
Fragmentation in mass spectrometry has both a qualitative and quantitative application:
the �rst in elucidating the nature of the precursor chemical species from its fragmentation
signature [85–88], the second in determining binding energies [89–91]. Unimolecular frag-
mentation is one of the elementary steps in several reaction mechanisms. For example, the
SN2 reaction has two unimolecular fragmentation steps as part of the whole mechanism: (i)
once the complex is formed and the intermediate species eventually rearranged, the prod-
ucts are obtained by the unimolecular fragmentation of the leaving group, (ii) the reverse
process of the bi-molecular capture is a unimolecular fragmentation [92, 93].

For this reason, unimolecular fragmentation processes were largely studied both exper-
imentally and theoretically [82]. The central theory used to describe such process in the
canonical ensemble is the transition state theory, described in Section1.4.1:

k(T ) =
kBT

h

Q†(T )

Q(T )
e−E0/kBT (3.1)

where E0 is the potential energy at the transition state, while Q†(T ) and Q(T ) are the
canonical partition functions of the TS and reactant, respectively.

The TST is a powerful theory which well describes the kinetics of unimolecular disso-
ciation but one needs to clearly identify the reaction pathway and locate the TS. While this
is straightforward for simple processes, it may be very di�cult for complex and �exible
systems in which di�erent pathways are present. In this context, molecular simulations,
and notably reactive dynamics, provide a useful tool to study the unimolecular fragmen-
tation of such complex molecular systems. From such approach, it is possible not only to
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discover new reaction mechanisms and/or products, but also to obtain the threshold and/or
activation energies [94]. In particular, Hase and co-workers have studied relatively com-
plex systems at di�erent levels of theory, showing how reactive dynamics combined with
unimolecular reaction theory is a powerful tool to get threshold or activation energies [95].
Note that this is particularly useful for large systems, like e.g. polypeptides, for which the
localization of the corresponding TS is highly problematic [96, 97].

One critical aspect when dealing with the quantitative characterization of the reaction
barrier from reactive dynamics simulations is the zero point energy (ZPE). In fact, when the
ZPE is not the same for the reactant and the TS, the classical and the quantum threshold en-
ergies do not correspond. Chemical dynamics simulations are often based on quasi-classical
initial conditions followed by Newtonian equations of motion numerical integration. In this
way, one can observe typical non-physical e�ects, like ZPE leakage [17, 98] or, as it is the
case for simple unimolecular fragmentation, products with incorrect energy distribution.
For the unimolecular fragmentation case, this is due to the fact that simulations can gener-
ate products with vibrational energy which is less than the ZPE. This problem was recently
discussed by Paul andHase for themicro-canonical reactivity of a simple CH4 model [99]. In
this case, the unimolecular fragmentation consists of the H abstraction through a loose TS,
such that one can consider only the di�erence between the ZPE of the reactant (CH4) and
of one product (CH3). These authors have proposed a relatively simple method in which, if
a trajectory forms a product with an energy lower than the ZPE, the trajectory is sent back
to the reactant basin. This approach can be seen as the unimolecular fragmentation version
of one of the �rst methods proposed in the past to avoid ZPE leakage in reactive dynamics
simulations [17, 98]. While the rate constants obtained in this way qualitatively reproduce
ZPE e�ects on the unimolecular rate constant, the resulting energy dependence did not
show the expected Rice–Ramsperger–Kassel–Marcus (RRKM) behavior (i.e. the analogous
of TST in microcanonical ensemble) [100].

Reactive dynamics simulations in the canonical ensemble represent another possibility
to obtain rate constants and then, from anArrhenius �t, the activation energy. The resulting
k(T )will accounts for anharmonicity and can account for NQEs if an appropriate dynamics
method is used. A �rst approach was reported recently by Spezia and Dammak, where
nuclear quantum e�ects were considered using the quantum thermal bath (QTB) [100].
This approach is appealing because it requires a computational e�ort that is very similar
to classical simulations. The QTB has also recently proved capable of capturing accurately
the e�ects of ZPE in liquid water, both on equilibrium properties and on the vibrational
spectrum [101]. However, the quantum-classical activation energy di�erences reported in
Ref. [100] were overestimated, as further analyzed below.
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Another very popular class of methods to account for nuclear quantum e�ects, that can
be used in conjunction with reactive dynamics simulations is that deriving from Path In-
tegral theory [69, 102, 103]. In particular, ring polymer molecular dynamics (RPMD) [21]
and Centroid Molecular Dynamics (CMD) [104, 105] are able to predict approximate reac-
tion rate constants [76, 106]. While these methods have been used for isomerizations and
bi-molecular simulations [76, 107–113], detailed study of how they behave in the case of
unimolecular fragmentation kinetics at di�erent temperatures has not been reported in the
literature so far.

Another class of methods is based on a thermal Wigner sampling of initial conditions,
but they will likely su�er from two problems in this context: (i) they usually rely on the
harmonic approximation for the sampling of theWigner density, whereas fully anharmonic
approaches rapidly become computationally heavy for large systems [114–116]; (ii) since
relatively long trajectories are needed for the fragmentation to occur, ZPE leakage from
high to low frequencies might become problematic and bias the results. Other methods,
like e.g. the Gaussian weighting in the quasi-classical trajectory method [18] which is
very powerful to study molecular scattering [19, 117] or dissociation of bimolecular com-
plexes [118, 119], are largely too expensive for medium to large molecular systems, require
the knowledge of products and are generally used for well-de�ned state-to-state reactions.
On the other hand, QTB and RPMD can be applied nowadays to relatively large molecules
and sample the canonical ensemble.

In the present chapter, we studied the ability of reactive dynamics simulations with QTB
and RPMD approaches to quantitatively describe unimolecular fragmentation at di�erent
temperatures and in particular to capture the di�erence between classical and quantum rate
constants and activation energies. To this end, a simple one-dimensional (1-D)Morsemodel
is considered, for which simulation results are compared with thermal rate constants from
quantum theory [120] using a sum-of-states approach. Then we analyze the CH4 model,
which is modi�ed in order to represent di�erent barrier heights and to explore di�erent
temperature ranges. This relatively simple molecular model is chosen in view of the solid
experimental data for CH4 dissociation on a wide temperature range [121–125] and because
an analytical model has been developed [126–128] which is known to be in agreement
with experiments and kinetic theory [127, 128]. Simulation results can thus be compared
with the available experimental and TST data. The simple analytical form of this model
enables fast simulations and can be easily tuned to mimic molecular systems with lower
dissociation energies, which can therefore be studied in reactive dynamics simulations at
lower temperatures. This study also illustrates the conditions for nuclear quantum e�ects
to have a non-negligible impact on the rate constant.
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3.2 RateConstants fromReactiveDynamics Simulations

From trajectory-based simulations the rate constants can be obtained considering the �ux
through the transition state hypersurface and the correlation function(s) discussed in Sec-
tion 1.4.1 (using classical correlation functions in the case of classical dynamics). When the
temperature (or the energy) is high enough, the reactivity can be directly sampled and rate
constants obtained. This was the case of a number of unimolecular fragmentation simu-
lations studied by Hase and co-workers, ranging from small to large systems [94, 95, 129–
131].

In unimolecular fragmentation, the time evolution of the reactants (N(t)) has a simple
behavior:

N(t)/N(0) = e−kt (3.2)

if transition state theory (TST) holds. In this case, the rate constant, k, is related to the
lifetime (τ ) of the reactants, k = 1/τ , which can be obtained from reactive dynamic simu-
lations. From the ensemble of trajectories and associated reaction times, it is thus possible
to reconstruct the number of trajectories which are in the reactant state at each time frame.
If the resulting curve follows a single exponential decay (as it was generally observed in
previous studies [94, 96, 97, 132–134]) then τ can be directly obtained and thus k. Each
trajectory is considered to be converted to products when a given threshold distance is
passed. Trajectories are then immediately stopped, so that they do not allow for recross-
ing, as in the main assumption of transition state theory. For CH4 previous studies have set
this threshold distance at 6 Å based on variational TST and here we use the same value [99,
100]. Thus, once the rate constants for each unimolecular process are obtained at di�erent
temperatures if an Arrhenius behavior holds (and it can be easily veri�ed from the out-
comes of the di�erent simulations), then the activation energy can be obtained by simply
�tting:

k(T ) = Ae
− Ea

kBT (3.3)

where A is the pre-exponential factor and Ea is the activation energy.

3.3 Simulations Set-Up

This section describes the details of the simulations performed, in terms ofmodel potentials,
determination of rate constants via Equation 1.39 and the associated computational details.
The two methods to include nuclear quantum e�ects, RPMD and QTB, are described in
detail in Chapter 2.

43



C������ 3

3.3.1 Model potentials

1-D Morse. The minimal model for unimolecular fragmentation is a one-dimensional
Morse function:

V (x) = De

�
1− e−B(x−x0)

�2 (3.4)

which parameters are set with a relatively low barrier De=10 kcal/mol, in order to be able
to observe fragmentation from reactive dynamics simulations in the temperature range
of interest. The value of B was set to 3 Å−1 and x0=1.09 Å . The equilibrium distance
corresponds roughly to the C–H bond length and in the dynamics we use the corresponding
masses. With these parameters the zero point energy is 2.2 kcal/mol and the vibrational
frequency is 1511 cm−1.

CH4 Analytical Model. To study how nuclear quantum e�ects impact unimolecular
fragmentation for a molecular system, we employ the analytical model proposed and ex-
tensively studied by Hase and co-workers some years ago for the reaction [126–128, 135]:

CH4 → CH3 ·+H· (3.5)

The potential energy function is represented by di�erent terms:

V = VMorse + Vang + Voop + Vnd (3.6)

Where the �rst term is a Morse potential, the second is an angular potential, the third is
the out-of-plane potential and the last one is a non-diagonal cubic term. The combination
of these terms ensures to have the tetrahedral structure of the molecule, for more detail see
Ref. [100]. To model di�erent fragmentation regimes, we considered the Morse term:

VMorse =
4�

i=1

Di

�
1− e−Bi(ri−r0i )

�2
(3.7)

where the sum runs over four C–H bonds. This term is modi�ed in order to build three
di�erent potentials:

• Potential A, which corresponds to the original model for CH4 fragmentation;

• Potential B, where the barrier was lowered down by about 50 %;

• Potential C, where the barrier was lowered further down to 30 kcal/mol, roughly
corresponding to typical values of protonated systems;

The atomic masses are those of C and H (i.e. 12 and 1.008 amu, respectively) for the three
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potentials. Notably, the two parameters,Di andBi, are modi�ed for all four bonds, keeping
the equilibrium geometry �xed (r0i = 1.09 Å ). As a consequence, the ZPEs of reactants and
products are changed and thus also the "quantum" zero Kelvin barrier, D0. The di�erent
sets of parameters are reported in Table 3.1, with the corresponding ZPEs and DQ, while
Figure 3.1 shows the corresponding Morse functions.

Table 3.1: Sets of Parameters modi�ed with respect to the original CH4 model [126] (corre-
sponding to potential A) as used in the present work.

Potential Di( ≡ D(Cl)
0 ) Bi ZPER ZPEP DQ

[kcal/mol] [ Å −1] [kcal/mol] [kcal/mol] [kcal/mol]
A 109.460 1.944 29.18 19.38 99.66
B 50.000 2.500 26.76 16.74 39.98
C 30.000 3.000 25.63 16.54 20.91

Figure 3.1: Morse functions used in the modi�ed CH4 molecular system: potential A is in
black, potential B in red and potential C in blue. Horizontal dotted lines show the corre-
spondingD0 values, while vertical dashed lines show the position of the threshold distances
used in trajectory simulations.

3.3.2 Sum-of-States Rate Constants

The expressions 1.37 to 1.39 for the rate constant can be developed via a discrete basis set
approach. We denote Ei the eigenvalues, the eigenfunctions are denoted as ψi(s) which
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corresponds to the eigenstates |i� of the Hamiltonian: for a one-dimensional system, they
are easily obtained by numerical diagonalization over an arbitrary set of basis functions. In
this eigenstates representation, the �ux correlation function in Eq. 1.37 can be rewritten as:

cf,f (t) =
�

i

e
−βEi

2 e
−Eit

� �i|F̂ ei
Ht∗c
� F̂ |i�

=
�

i,j

e
−β(Ei+Ej)

2 cos

�
(Ei − Ej)t

�

�
|�i|F̂ |j�|2

where we introduced the resolution of identity: 1 =
�

j |j��j|. The rate constant obtained
from the integral of cf,f thus becomes:

k =
1

Q

�

i,j

e−
β(Ei+Ej)

2

sin
�

(Ei−Ej)t

�

�

Ei − Ej

|�i|F̂ |j�|2 (3.8)

Finally, the �ux matrix element is related to the wave functions by two di�erent, equivalent
expressions:

|�i|F̂ |j�|2 =
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�
2m

�2

|ψ�
i(q

‡)ψj(q
‡)− ψi(q

‡)ψ
�
j(q
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2

�2
|�i|h(q − q‡)|j�|2

where ψ�
i denotes the position derivative of the function. Note that a classical counter-

part to this rate expression can easily be obtained by noting that, for the one-dimensional
Morse function, the long-time limit of the �ux-side correlation function is given by:

lim
t→∞

cclf,s(t) =
1

2π�

� ∞

√
2m(De−V (q‡))

dp

�
dq e−βH(q,p)δ(q − q‡)

p

m

=
e−βDe

2π�β
(3.9)

3.3.3 Computational details

1-D Morse. In the case of the 1-D Morse model RPMD, QTB and classical Langevin molec-
ular dynamics (LMD) simulations are performed as follows. We run about 2000 trajectories
for each temperature, a time-step of 0.1 fs, with a friction constant (γ) on the centroid set
up at di�erent values: 0.01, 0.045 and 0.3 fs−1. Note that the highest γ value corresponds
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to an overdamped regime with γ � ω, with ω the typical angular frequency of the Morse
potential, while the smallest friction coe�cient corresponds to an underdamped regime.
The maximum simulation time for each trajectory is of 5.0 ns if it does not react before:
this time-length ensures a reactivity of almost 100 % in all simulations. The number of
beads was chosen in order to obtain the correct quantum energy value at equilibrium, cor-
responding to 8 beads for higher temperatures and 32 for the lowest ones. The range of
temperature is from 800 K up to 1200 K. Details on temperatures and numbers of beads
employed are listed in the Appendix A, Table A.1.

CH4 andmodi�ed potentials. Molecular dynamics simulations were performed with
the three potentials described before using RPMD, QTB and LMD approaches. All simula-
tions were done using our in-house modi�ed version of the VENUS software [23, 136]. The
trajectories were carried out for di�erent ranges of temperature, listed in Appendix A Ta-
ble A.1, to allow the fragmentation of the reactant. If the distance of one bond reaches the
cut-o� value, the trajectory is stopped and the lifetime is collected. The cut-o� value used
in ref. [99] for the potential A (6 Å) corresponds to a plateau in the Morse potential energy
function: the cut-o� values for potentials B and C (5 and 4 Å, respectively) were reduced
since the dissociation energy is reached at shorter distances (see Figure 3.1). The maximum
simulation time was set to 5 ns, with a time-step of 0.1 fs. As before, the number of beads
used in RPMD simulationswas chosen in order to converge the average energy: in Table A.1
are listed the number of beads used for each potential as a function of temperature.

The friction parameter γ was chosen in order to yield a fast enough temperature equi-
libration, as illustrated by the temperature autocorrelation function reported in Figure 3.2.
Notably γ = 0.01 fs−1 provides an e�cient thermostat for this system, whereas smaller val-
ues would result in a too-slow equilibration (here the equilibration should be faster than the
typical reaction time) and too-large values can a�ect the dynamical results (in particular in
the overdamped regime).

To obtain rate constants and the associated uncertainties from trajectory simulations,
we implemented the bootstrap algorithm [137]. This statisticalmethod randomly re-samples
a single data-set, to create multiple data-sets and obtain the mean and the standard devi-
ation from a gaussian distribution. In the present case the data set consists in the set of
reaction times for each individual trajectory and for each re-sampling, the associated rate
constant is computed from single exponential �tting.
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Figure 3.2: Temperature autocorrelation function obtained from LMD simulations at 3000 K
with potential C for two di�erent values of γ: 0.01 fs −1 in black and 0.001 fs −1 in blue.

3.4 Results

3.4.1 1-D model potential

For the 1-D Morse potential the quantum rate constants are calculated using the Sum-Of-
States (SoS) approach, Equation 3.8, detailed previously. Classical rate constants can also
be directly obtained. These results are used as a reference calculation to evaluate the per-
formances of LMD, RPMD and QTB simulations.

In the SoS approach the rate constant is obtained from the t → ∞ limit of the func-
tion cf,s(t)/Q. The time dependence of this function is shown in Figure 3.3 for the 1-D
Morse model at two temperatures, 800 and 1500 K. As discussed in details by Miller in the
past [54, 120], for such low-dimensional system, the function actually goes to zero in the
long-time limit, but the value of the rate k can still be obtained by considering the max-
imum (plateau) of the function in an intermediary time range. In the same plots we also
report the corresponding classical rate constant as an horizontal black line.

Rate constants obtained in an extended temperature range (700-1200 K) are shown in
Figure 3.4 while all the values are listed in Tables A.2 of Appendix A. It is important to
notice that the rate constants show an Arrhenius-like behavior, and thus it is possible to
�t them and obtain activation energies in both classical and quantum regimes. Values are
reported in Table 3.2 together with the di�erence between classical and quantum activation
energies. These results can now be used as a reference to evaluate values obtained from
trajectory simulations.

Trajectory simulations (LMD, RPMD and QTB) were performed on the same temper-
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Figure 3.3: Quantum (red) and classical (black) cf,s obtained with the SoS method for the
1-D Morse model at two di�erent temperatures: 800 K (left) and 1500 K (right)

Figure 3.4: Quantum and classical rate constants as a function of temperature for the 1-D
Morse. In full lines we report values obtained from sum-of-state approach (both Classical
and quantum), while results from trajectory simulations (γ = 0.01 fs −1) are reported as
dots: LMD (black), RPMD (red), QTB (green).
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Table 3.2: Activation energy (Ea) and pre-exponential factor (A) obtained from tempera-
ture dependent rate constants (in the 700-1200 K range) for the 1-D Morse model. The
di�erence between classical and quantum Ea obtained with the same simulation conditions
corresponds to ΔECl−Q. Ea and ΔECl−Q are in kcal/mol and A and γ in fs−1. We also
report the products-reactant energy di�erence obtained in the harmonic approximation,
both classical and quantum.

Method Ea ln(A) ΔECl−Q

Classical reference 9.49 3.34 –
Quantum (SoS) 8.74 3.13 0.75
LMD (γ = 0.01) 8.60 ± 0.09 2.31 ± 0.05 –
RPMD (γ = 0.01) 7.8±0.1 2.12±0.08 0.8 ± 0.1
QTB (γ = 0.01) 1.3 ±0.2 0.6 ± 0.1 7.3±0.2
LMD (γ = 0.045) 9.70 ± 0.03 3.09 ± 0.01 –
RPMD (γ = 0.045) 8.85±0.02 2.83±0.01 0.85 ± 0.04
QTB (γ = 0.045) 1.74±0.08 1.08±0.05 7.96 ±0.08
LMD (γ = 0.3) 9.9 ± 0.2 2.1 ± 0.1 –
RPMD (γ = 0.3) 9.21±0.1 1.91±0.07 0.7 ± 0.2
QTB (γ = 0.3) 5.8±0.4 1.1±0.2 4.1±0.4
Harmonic classic 8.11 - -
Harmonic quantum 7.33 - 0.78

ature range and for all of them we observed a single exponential decay of the reactant
populations, such that rate constants could be extracted directly by �tting the equation 3.2
with the bootstrap method to assign the associated uncertainties. An example is shown in
Figure 3.5, corresponding to simulations at 800 K and γ = 0.01 fs−1 done with LMD, RPMD
and QTB methods. Similar single exponential decays are obtained at other temperatures
and γ values. As we can already see, while LMD and RPMD provide quite similar decays,
the QTB reaction rate is much faster. This aspect will be discussed in the following.

Rate constants obtained from trajectories as a function of temperature are shown in
Figure 3.4 for γ =0.01 fs −1 (and all the values are reported in Appendix A, Tables A.2). We
can notice that LMD and RPMD simulations show a clear Arrhenius-like behavior, with
a slope which is similar to that obtained via the SoS method, and rate constant values of
the same order of magnitude as the reference. On the other hand, in QTB simulations, the
rate constants are much higher and they show only weak variations with temperature. The
corresponding activation energies and pre-exponential factors are reported in Table 3.2
where they can be compared with SoS values. Remarkably, activation energies obtained
from LMD and RPMD simulations are very similar to those obtained from the SoS and
classical reference approaches. In the simulations discussed previously, we use a friction
parameter γ of 0.01 fs −1. Simulations with two additional γ values (0.045 and 0.3 fs −1) are
also performed in order to investigate if there is an impact on kinetics, activation energy
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Figure 3.5: Population decay for 1-D Morse simulations at 800 K as obtained from LMD,
RPMD and QTB trajectories.

and, more importantly, quantum-classical di�erence. Note that γ = 0.3 fs −1 corresponds to
an overdamped regime (γ ∼ ωwith ω the typical angular frequency of theMorse potential).
Lifetimes and rate constants vary with γ, but the variation on the value of activation energy
is very small as shown by the Arrhenius plots reported in Figure A.1 of Appendix A. From
the rate constants as a function of temperature with di�erent γ values, we have done the
Arrhenius �ts to obtain activation energies which display only limited dependence (apart
from the QTB) on γ, as shown in Table 3.2. If now we move to the di�erence between the
classical and quantum activation energies, it can be noticed that RPMD simulations are in
very good agreement with SoS values, while QTB largely overestimating it. Furthermore,
the e�ect of γ on this quantity almost vanishes, in particular for RPMD simulations.

Before moving to the study of more complex molecular systems, we considered the
simple harmonic approximation (for both classical and quantum statistics) to estimate the
barrier. Notably, the barrier can be approximated, for a simple dissociation, as the average
energy di�erence between reactants and products. In the case of a simple 1-DMorse model:

Ei(T ) = Ei
POT + Ei

TR(T ) + Ei
V IB(T ) (3.10)

where i stands for reactant and product and POT , TR and V IB for potential translational
and vibrational energy, respectively, where Ei

POT is the potential energy and thus not tem-
perature dependent. The energy di�erence can be simply estimated as:
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ΔE(T ) = ΔEPOT +ΔETR(T )− Ereact
V IB (T ) (3.11)

since in the simple 1-D Morse model the products have no vibrational energy. The
energy di�erence between the classical and quantum approaches is thus simply reduced to:

ΔECl−Q(T ) = ECl
V IB(T )− EQ

V IB(T ) (3.12)

whereECl
V IB(T ) andE

Q
V IB(T ) are the temperature-dependent classical and quantum vi-

brational energies of the reactant (here the products have no vibrational structure). Results
are reported in the same Table 3.2. Although the average energy di�erence tends to slightly
underestimate the activation energy in absolute value, the quantum-classical di�erence ob-
tained with this method is very similar to that derived from the SoS approach (and to what
is obtained comparing LMD with RPMD simulations). This will be very important for the
study of a more complex molecular system for which the SoS approach is not feasible, and
the simple harmonic approximation can provide a good reference to compare simulations.

3.4.2 CH4-based potentials

In this Subsection we report the results of the rate constants obtained for the unimolecular
fragmentation of the CH4 model (potential A) as a function of temperature and how this
behavior is modi�ed by decreasing the barrier (potentials B and C).

From trajectory simulations we obtain the population decay as a function of time which
shows, also in this case, a single exponential behavior. The single-exponential behavior was
found for each temperature, potential and method (see a prototypical example reported in
Figure 3.6). Thus, it was possible to extract lifetimes and unimolecular rate constants.

LMD, RPMD and QTB rate constants as a function of temperature are shown in Fig-
ure 3.7 for the three potentials (A, B and C), while the full set of values of rate constants
are reported in Tables A.3, A.4 and A.5 of Appendix A. Experimental data are available
only for potential A, corresponding to methane fragmentation. The best sets of values to
be compared with unimolecular rate constants from simulations (where the colliding gas
is not explicitly simulated such that they have inverse time dimensions) are those reported
by Cobos and Troe [121, 122] which also provide an analytical function to express k(T ),
originally in the 300–3000 K temperature range later extended up to 5000 K. Simulation
results agree well with such experimental data as shown in Figure 3.8.
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Figure 3.6: Population decay obtained from RPMD simulations with γ =0.01 fs−1, P = 8 and
T = 4500 K using potential C. Red dots are the simulation data, black solid line corresponds
to a single-exponential �t.

The ability of the RPMD and QTB to correctly capture nuclear quantum e�ects can be
�rst assessed by comparing the ratio between the quantum and classical rate constants (kq

and kcl, respectively) with that obtained from transition state theory (TST), which typically
holds for CH4 fragmentation, [99, 138, 139]. Results are summarized in Table 3.3 where in
order to evaluate the partition function ratio for TST we employed the rigid-rotor harmonic
approximation both classical and quantum. [82] The nuclear quantum e�ects are negligible
for potential A, while they increase for potential B and C, as expected since it was possi-
ble to simulate lower temperatures. Notably, the kq/kcl values obtained from TST are very
similar to the RPMD/LMD ratios, while the QTB largely overestimates the rate constants,
in agreement with what was found for the simple 1-D Morse model. The slight di�erences
between the TST and RPMD/LMD results can be ascribed to anharmonicity e�ects that are
present in the simulations while not accounted for by the TST harmonic approximation for
the partition function. This e�ect is more marked for potential B and C where the barrier
is lower and therefore anharmonicity is likely more important. Note that the CH4 exper-
imental data (Figure 3.8) are in better agreement with RPMD (and quantum TST) values
than with the QTB ones.

As clearly shown in Figure 3.7, the Arrhenius-like behaviors are obtained in all simu-
lations such that it was possible to �t them and derive the activation energies. They are
reported in Table 3.4 together with the corresponding quantum-classical di�erences. It
should be noticed that for all the potentials, the RPMD activation energies are much closer
to the LMD ones than what is obtained from QTB simulations: for the potential A, which
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Table 3.3: Ratio between quantum and classical unimolecular dissociation rate constants as
obtained from the three molecular model potentials using transition state theory (TST) and
simulations (RPMD and QTB for quantum rate constants and LMD for classical ones).

T[K] kTST,q/kTST,cl kRPMD/kLMD kQTB/kLMD

Pot. A
3000 1.17 1.09 3.04
3500 1.12 1.12 2.01
4000 1.09 1.06 1.44
4500 1.07 1.02 1.33
5000 1.06 1.04 1.17

Pot. B
1350 1.86 1.71 54.3
1700 1.49 1.48 5.68
2000 1.34 1.16 2.85
2500 1.21 1.19 1.88

Pot. C
800 4.49 3.53 896
1000 2.72 2.47 60.90
1200 2.04 1.69 11.00
1500 1.59 1.29 3.64
1800 1.39 1.36 2.03

has a high barrier and for which, therefore, the simulations were performed at relatively
high temperatures, this di�erence is negligible, comparable to the uncertainty, while for
the QTB it is about 15 kcal/mol which is similar to the quantum-classical di�erence of the
model at 0 K, namely the di�erence in ZPE between reactant and products, that is around
10 kcal/mol. Moving to potentials B and C, we observe a statistically signi�cant quantum-
classical di�erence from RPMD (3.1 and 3.3 kcal/mol, respectively) and, as before, larger
values from the QTB. Note that the 0 K quantum-classical di�erence does not change much
moving to potentials B and C, while QTB provides even larger values of activation energy
quantum-classical di�erences.

As previously done for the 1-D Morse model, it is possible to use the simple harmonic
approximation approach to evaluate how the reaction barrier depends on the temperature
and compare with simulation results. This simple approach was shown to provide reason-
able results compared with the SoS method for the 1-D Morse model and thus it can also be
used to evaluate the accuracy of the RPMD and QTB results for the molecular model case.

In particular, we can estimate the temperature-dependent average energy di�erence
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Figure 3.7: Arrhenius plots obtained from LMD, RPMD and QTB simulations for A (top-
left), B(top-right) and C (bottom) potentials. Circles are data obtain from simulations while
lines represent the �t results.

Figure 3.8: Rate constants for CH4 fragmentation as obtained from RPMD, QTB and LMD
simulations compared with experimental data and �tted functions as reported by Cobos
and Troe. [121, 122]
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Table 3.4: Activation energies (Ea) and quantum-classical di�erence (ΔE), both in kcal/mol,
obtained for the three CH4-model potentials from LMD, RPMD and QTB simulations. We
report also average energy di�erences obtained from the simple harmonic approximation
both classical (ΔE(T̄ )Cl) and quantum (ΔE(T̄ )Q).

Pot. A Pot. B Pot. C
Method Ea ΔE Ea ΔE Ea ΔE
LMD 88 ± 2 – 43.9 ± 0.2 – 26.2 ± 0.4 –
RPMD 87 ± 2 1 ± 3 40.8 ± 0.9 3.1 ± 0.9 22.9 ± 0.4 3.3 ± 0.6
QTB 73.3 ± 0.9 15 ± 2 22 ± 1 22 ± 1 7.2 ± 1.0 19 ± 1
ΔE(T̄ )Cl 97.52 – 45.11 – 26.24 –
ΔE(T̄ )Q 95.99 1.52 41.82 3.29 22.87 3.37

(both classical,quantum and their di�erence) from:

ΔECl(T ) = D0 +
3

2
kbT +ΔECl

V IB(T ) +ΔECl
ROT (T ) (3.13)

ΔEQ(T ) = D0 +
3

2
kbT +ΔEQ

V IB(T ) +ΔEQ
ROT (T ) (3.14)

ΔΔECl−Q(T ) = ΔΔECl−Q
V IB (T ) +ΔΔECl−Q

ROT (T ) (3.15)

whereD0 is the potential energy surface barrier (coinciding withDi values reported in Ta-
ble 3.1), ΔEcl

V IB and ΔEQ
V IB are the classical and quantum vibrational energy di�erences

between products and reactant, ΔECl
ROT and ΔEQ

ROT are rotational energy di�erences and
ΔΔECl−Q

V IB (T )withΔΔECl−Q
ROT (T ) are the vibrational and rotational quantum-classical dif-

ferences. The 3/2kBT terms come from the di�erence in the translational energy. Here
again, both classical and quantum vibrational energies are obtained in the harmonic ap-
proximation. The rotational energy was considered classical and thus the same for reactant
and product states. In Table 3.4 we report the temperature-averaged barrier values, that are
slightly higher than the activation energy obtained from the Arrhenius plots, in particular
for the potential A for which the simulations were performed at relatively high tempera-
tures. However, the quantum-classical energy di�erences are in excellent agreement with
the LMD-RPMD di�erences for the three potentials. In particular, while for potential A
(in the temperature range considered) there is almost no di�erence between classical and
quantum vibrations, quantum e�ects are larger for potentials B and C: even if the di�er-
ence remains small, it is signi�cant compared to the statistical uncertainty in the simulation
reults.

In Figure 3.9 we show the products-reactant energy di�erence as a function of tempera-
ture as obtained for potentials A and C using both classical and quantum energies. The plots
also illustrate the limit of the "low" temperature region for each potential. It corresponds
to temperatures below the ZPE (shown as vertical dotted lines), which is the point from
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Figure 3.9: Energy di�erences between products and reactants as a function of temperature
in the harmonic approximation as obtained from potentials A (top) and B (bottom). Full
lines are classical values, while dashed lines are quantum ones. Vertical lines show the ZPE
in K.

which the classical and quantum energy curves begin to diverge signi�cantly. It should be
noted that for potential A simulations were done at temperatures higher than the ZPE, in
an almost classical regime (lower temperatures were not accessible due to computational
limitations in trajectories time-length), while for potential C (and B) it was possible to run
trajectories at temperatures that are lower than the ZPE and so in a region where nuclear
quantum e�ects are detectable. As a consequence, for potential A the quantum-classical
energy di�erences are almost irrelevant, while for potential C the di�erence becomes no-
ticeable. RPMD simulations are able to catch this e�ect accurately.

It is well known that the absolute value of the activation energy is often underestimated
from Arrhenius �ts [140, 141], but the quantum-classical di�erence, which mainly re�ects
the ZPE di�erence between reactants and products absent in classical dynamics, are well
reproduced by the comparison between RPMD and LMD simulations.

Clearly, QTB rate constants and activation energies are much higher than that obtained
from the other methods. Even if the harmonic approximation is rather crude, the present
results together with that obtained from the 1-D Morse model, suggest that QTB overes-
timates unimolecular fragmentation rates in this case, while RPMD gives results in very
good agreement with the quantum theory.
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Figure 3.10: Distance distribution (as probability density) for 1-D Morse model at 1000 K.
The inset shows a zoom of the distribution tail.

3.4.3 Distance distributions

Unimolecular fragmentation is obviously related to how the bond distance evolves from
equilibrium to the threshold distance. Chemical reactivity in the canonical ensemble is
related to energy �uctuations [142], and thus to distance �uctuations. As a consequence,
even small di�erences in the distance distribution can cause large di�erences in reaction
dynamics. In particular, the tail of the distribution plays a crucial role. Thus, we analyze
the distance distributions obtained in di�erent simulations (and theory for the simple 1-D
Morse) at some relevant temperatures. Firstly we consider the 1-D Morse model at 1000 K:
in Figure 3.10 we show the classical and quantum analytical distributions and how simula-
tions compare with them. In the case of RPMD simulations two quantities are plotted: the
distribution of the atomic distance for each bead (marked in the �gure as "RPMD-Beads")
as well as the distribution of the centroid of the distance, i.e. its average over all the beads
(marked in the �gure as "RPMD-Centroid"). As one should expect by construction, the LMD
distance distribution essentially coincides with the classical theoretical distribution, while
the RPMD-Beads curve is almost superimposed with the quantum reference. The quantum
distribution is signi�cantly broader than the classical one, due to the non-negligible ZPE
e�ects, even at this relatively high temperature. The maximum of the quantum peak is also
slightly displaced with respect to its classical counterpart. The QTB distribution is broad-
ened in a similar way as the quantum reference, showing that the coloured noise thermostat
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provides an approximation to ZPE e�ects. However, the peakmaximum is slightly displaced
with respect to the quantum reference (it is more in line with the maximum of the classical
distribution), and more importantly, the long-distance tail of the distribution is markedly
longer in the QTB simulations. These slight inaccuracies of the QTB approximation have
been discussed in the literature in the non-reactive case (see for example Ref. [143]), where
they usually have only minor consequences. However, the shape of the distribution tail can
have a much larger impact on the unimolecular fragmentation rate and partly explain its
overestimation by the QTB. The RPMD-Centroid curve is also instructive: the distribution
of the centroid distance is very similar to the classical distribution, with only a slight shift
of its maximum towards longer distances as for the quantum distribution. The distribu-
tions obtained for the C-H distance in the CH4 model potential show very similar behavior.
Figure 3.11 shows an example of the results as obtained for potential C at 1000 K (in this
case the simulations were run with a larger distance cut-o� of 5 Å , to enhance the statistics
on the tail of the distribution). As in the 1-D Morse model, the centroid distribution of the
distance is much sharper than that of the beads and closer to the classical results. The nar-
row centroid distribution explains why the RPMD reaction rate is signi�cantly lower at this
temperature than the QTB one. Indeed, in RPMD simulations, even if individual beads can
undergo a momentaneously increase of the C-H bond length, the harmonic spring forces of
the ring-polymer then tend to attract it back towards the equilibrium distance (where the
centroid tends to remain localized), whereas no such mechanism exists in the case of the
QTB.

3.5 Conclusions

In this chapter, we investigated how a unimolecular reaction is a�ected when passing from
a classical to a quantum description of the nuclear motion. In particular, we studied how the
reaction rates and activation energies are a�ected and how reactive dynamics simulations
based on an ensemble of trajectories are able to reproduce this behavior. For the 1-D Morse
model it was possible to compare the simulation results with quantum rate constant theory,
and then we studied a more complex molecular model tuning the barrier height. Results
show that ring polymer molecular dynamics (RPMD) method provides a satisfactory ap-
proximation to the unimolecular kinetics, and how it is impacted by NQEs. This con�rms
previous studies by Manolopoulos and co-workers on di�erent reactions such as isomer-
izations and bi-molecular reactions [76, 107, 108]. In particular in the low-temperature
regime, although the beads probability distribution (which represents the physical quan-
tum distribution) is strongly broadened by the zero point motion, the centroid distribution
remains localized in a similar way as for a classical system. Since the fragmentation pro-
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Figure 3.11: C–H distance distribution as obtained from trajectory simulations using Po-
tential C at 1000 K

cess requires the whole polymer to go through the barrier, the localization of the centroid
e�ectively reduces the reaction rate at low temperatures, in agreement with the quantum
theory. The quantum thermal bath (QTB) on the other hand, largely overestimates the reac-
tion rates, in particular for low barriers, or when the temperature becomes lower than the
zero point energy (ZPE). The QTB approximates ZPE as an elevated e�ective temperature
via a coloured-noise thermostat. Although this approach proves accurate to describe ZPE
e�ects on the equilibrium distribution, it cannot be used to compute fragmentation rates in
a reactive dynamics set-up.

The temperature dependence of the quantum/classical rate constant ratio shows that
nuclear quantum e�ects can be relevant even at relatively high temperatures. In fact, we
observed that, even at 800 and 1000 K, the quantum rate constants are about 4 and 2.5
times faster than the corresponding classical values, respectively. The temperature range
for which the NQEs are relevant is related to the ZPE of the corresponding breaking bond.
This study suggests that RPMD can be used as a trajectory-based method to investigate
unimolecular reactions of complex systems. This approach can be a powerful alternative
to the transition state theory (TST) to study the fragmentation of large molecules, having
many fragmentation pathways and for which the determination of all the corresponding
transition states may be di�cult [95], while clearly, it will not supersede TST for systems in
which it can be applied. For example, the fragmentation of complex peptides was recently
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studied with Newtonian reaction dynamics not only to study qualitatively the fragmenta-
tion pathways, but also to evaluate quantitatively the activation energies [94, 96, 97]. Future
studies could be now done using RPMD to investigate the role of NQEs on both aspects.
Such reactive dynamics approach is able to provide anharmonic rate constants in which
nuclear quantum e�ects are taken into account. In terms of TST this corresponds to (i)
taking into account the ZPE e�ect on the barrier height and (ii) considering the quantum
partition functions without any speci�c approximation (like the typical harmonic approx-
imation): the e�ect is directly obtained on the resulting rate constant without the need of
any speci�c correction. While all these aspects can be considered using TST (equation 3.1),
one has to determine the reaction pathways which can be not obvious for large and �exible
molecules: RPMD provides it directly from an ensemble of trajectories in a relatively sim-
ple way. Clearly, one critical aspect to apply RPMD to large systems is the computational
cost, which is roughly multiplied by the number of beads compared to classical dynam-
ics. However, the recent and future advances of fast and reliable reactive potentials based,
for example, on machine learning techniques, will enable the study of fragmentation dy-
namics on much larger systems and the inclusion of nuclear quantum e�ects will also be
computationally possible. The very good agreement between RPMD and TST on fragmen-
tation reactions gives con�dence for the use of RPMD when using TST may have practical
problems, as for large and �exible molecules.
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In this chapter, we investigate the double proton transfer (DPT) tautomerization process
in Guanine-Cytosine (GC) DNA base pairs. In particular, we study the in�uence of the bio-
logical environment on the mechanism, kinetics and thermodynamics of this DPT. To this
end, we present a molecular dynamics (MD) study in the tight-binding density functional
theory framework, and compare the reactivity of the isolated GC dimer with that of the
same dimer embedded in a small DNA structure. The impact of Nuclear Quantum E�ects
(NQEs) is also evaluated using Path Integral based MD. Results show that in the isolated
dimer, the DPT occurs via a concerted mechanism, while in the model biological environ-
ment, it turns into a step-wise process going through an intermediate structure. One of
the water molecules in the vicinity of the proton transfer sites plays an important role as it
changes H-bond pattern during the DPT reaction. The inclusion of NQEs has the e�ect of
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speeding up the tautomeric-to-canonical reaction, re�ecting the destabilization of both the
tautomeric and intermediate forms.

4.1 Background

Base pairs mismatch is a phenomenon that occurs when the two DNA strands are not
complementary. This means that the nucleotides which make up the base pairs do not
match, [144] leading to an incorrect pairing in the double helix of the DNA. One of the pos-
sible mechanism for this mismatch to occur, proposed by Lowdin [145], is a double proton
transfer (DPT) between the nucleotides causing an error during the replication of the DNA.
Previous studies have shown that the Guanine-Cytosine (GC) pair is more prone to DPT
than adenine-thymine (AT) [146, 147]. In the case of GC the most probable tautomer, as
discussed in the litterature [148], is that in which H4 is transferred from N4 of cytosine to
O6 of guanine and H1 from N1 of guanine to N3 of cytosine (see numbering in Figure 4.1A
with the corresponding canonical, GC, and tautomeric, G*C*, forms). Thus, if the G*C* tau-
tomer is present during the replication, there is a possibility to form the non-standard G*T
and AC* pairs, which in turn provides a possible explanation for the conversion of GC into
AT [149], as schematically shown in Figure 4.1B. This DPT reaction, which is potentially
responsible for tautomerism in base pairs, has raised signi�cant interest in the theoretical
community, while only a few experiments have been reported [150, 151]. One detailed theo-
retical study of the reaction mechanism is reported by Ceron-Carrasco et al. [148] including
the role of water micro-solvation using static DFT calculations. Notably, they found that
the in�uence of the surrounding water molecules may change the mechanism from con-
certed to asynchronous, for the isolated dimer. Recently, Gheorghiu and coworkers studied
the reaction pathways for tautomerism in GC and AT base pairs via quantum mechanic-
s/molecular mechanics (QM/MM) simulations, showing that GC can form the short-lived
G*C* tautomer, while A*T* tautomerism was not observed [147]. Similarly, Li et al. em-
ployed a QM/MM approach to study tautomerism, focusing on wobble GT pairs. [152] Very
recently a QM/MM study by Soler-Polo and coworkers [153] using Umbrella Sampling [61]
suggested that the water molecules and DNA environment destabilize the tautomeric form
thus showing how nature has designed a robust base pair system. However, all these cal-
culations do not consider the quantum nature of the proton, which is clearly an important
aspect when studying proton transfer. [11–13]

The �rst study considering nuclear quantum e�ects (NQEs) on DPT in DNA base pairs
is reported by Perez et al. [154] who combined Umbrella Sampling (US) with Path Integral
Molecular dynamics (PIMD) [69]. They found that the inclusion of NQEs clearly desta-
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Figure 4.1: Panel A) Canonical (GC) and tautomeric (G*C*) forms of the Guanine-Cytosine
base pair, with atom numbering. Transferring hydrogen atoms are shown in red circles.
Panel B) Schematic representation of the tautomerism and its impact on the replication
of DNA, with a GC base pair forming the G*C* tautomer and eventually leading to non-
standard pairing G*T or AC* (A = Adenine and T = Thymine). Panel C) Structure of the
3BP-DNAmodel extracted from the 1D28 PDB structure [157] with the corresponding crys-
tallographic water molecules.

bilizes the tautomeric form by �attening the free energy pro�le of the tautomeric state.
However, they reduced the guanine-cytosine (GC) pair to a simpler model, taking into ac-
count only the atoms that directly take part in the mechanism. Slocombe et al. [155] studied
this tautomerism using DFT and Machine Learning Nudged Elastic Band methods with a
tunnelling correction to account for NQEs. They show that the G*C* tautomer has a life-
time long enough to survive during the cleavage process of DNA, while it is not the case for
A*T*, which displays a very low reverse DPT barrier making the tautomeric form highly im-
probable. More recently, the DPT process in GC base pairs was also modelled using an open
quantum system approach [156], suggesting that the tunnelling plays a central role even
at biological temperature. However, all these studies that consider the quantum nature of
the proton transfer, do not take into account the biological environment in the description
of the proton transfer mechanism or only indirectly using a bath of harmonic oscillators to
represent it [156].
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4.2 Molecular Systems

In this chapter, we study the DPT reaction dynamics and thermodynamics including both
environmental and nuclear quantum e�ects. The base pair taken into account is the GC one,
since, as discussed previously, it is more prone to DPT than the AT base pair [146, 147, 155].
The reactivity is modelled using tight-binding density functional theory (DFTB) [42, 158,
159] which provides a good compromise between accuracy and computational accessibility,
as was recently shown for di�erent molecular systems [95, 133, 160]. Therefore in the
following, electrons are always considered explicitly and quantum-mechanically, the label
"classical" simulations refers only to the nuclear dynamics (as opposed to Path Integral
simulations that include NQEs).

In particular, two models of GC base pairs are considered: (i) isolated GC, (ii) GC em-
bedded in a DNAmodel composed of three base pairs with GC in the middle, denoted here-
after 3BP-DNA. The embedded model was extracted from the 1D28 PDB structure [157]
and corresponds to a TGA (Thymine-Guanine-Adenine) sequence. For this last model, the
crystallographic water molecules from the X-Ray structure were also included. This cor-
responds to a micro-solvation model that is computationally allowed in conjunction with
DFTB and path integrals and can be compared to some previous literature results [147, 148].
Note that all the atoms are free to move in the simulations, including the crystallographic
water molecules. The di�erent systems studied are shown in Figure 4.1.

TGA is only one of the possible DNA sequences and in principle, the nature of the
bases above and below the GC pair could a�ect the reactivity. However, Cerón-Carrasco
and Jacquemin [161] studied all the possible DNA-trimers and found that the proton trans-
fer energies di�er only by a very small amount. For this reason, we chose a structure
extracted from the crystallographic data of an actual DNA sequence. From this sequence,
we extracted the aforementioned TGA trimer as well as a longer pentamer, TTGAG, used
for validation of the mechanism (5BP-DNA).

Since the DPT occurs between the canonical GC and the tautomeric G*C* forms shown
in Figure 4.1A, four characteristic distances can be used to describe the reaction: r1 =

|O6 −H4|, r2 = |N4 −H4|, r3 = |N1 −H1| and r4 = |N3 −H1|. Two collective variables
are then typically used for DPT reactions: [10, 153, 162] d1 = r2−r1 and d2 = r3−r4. Note
that the G*C* form is typically considered in the literature as the most relevant tautomeric
form from all the possible con�gurations in alternative to the canonical (GC) form [148].

First, it is considered how the G*C* tautomer evolves dynamically once it is formed.
To account for NQEs, ring polymer molecular dynamics (RPMD) simulations starting from
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G*C* are performed. The RPMD approximation is based on the Path Integral formalism [21,
76] as shown in Chapter 2, and it is known to correctly describe proton transfer at room
temperature [10]. It was also recently used to study the stability of base pairs and the
in�uence of NQEs on hydrogen bonds in DNA base pairs [163]. A combined theoretical and
experimental work proposed that the tautomeric form is accessible photochemically [150]:
once formed in the excited state it can eventually relax back to the canonical form. It is
thus useful to understand the dynamics of the reaction pathway connecting the tautomeric
form to the canonical one, and the impact of NQEs and of the biological environment on
this process.

4.3 Simulations set up

Atomic interactions are modeled via DFTB using the MIO set of Slater-Kostner parame-
ters [164] modi�ed to better describe N–H bonds (MIO:NH parametrization [165]). The
third-order expansion was used and dispersion was added at the D4 level [24]. This speci�c
set of parameters was chosen after a thorough comparison between DFTB and high-level
electronic structure calculations. Indeed, the level of theory employed can clearly modify
the energy pro�le of the reaction and consequently its mechanism and rate constant [147,
152, 155, 166]. The DFTB energies and gradients are calculated with the DFTB+ software
(version 22.1) [24], and the RPMD and LMD simulations are implemented via our own in-
house code.

4.3.1 DFTB Benchmarking

The isolated GC dimer in the gas phase was optimized with di�erent DFT functionals with
the 6-311++G(d,p) basis set, and notably: B3LYP [167–170], CAM-B3LYP [171] (with disper-
sion corrections using theD3 versionwith Becke-Johnson damping [172]), LC-ωHPBE [173]
and ωB97XD [174]. Furthermore, a scan of the double proton transfer was performed to
move from the canonical (GC) to the tautomeric (G*C*) form. To this end, the two protons
are moved along the d1 and d2 coordinates on a 6 × 6 grid with a step of 0.15 Å

Since the CAM-B3LYP functional shows the best agreement with the CCSD(T)/MP2 re-
sults for the optimized GC dimer, this functional is the one used for the DPT scan and it is
compared with DFTB. Results are reported in Figure 4.2. In this case the MIO:NH parame-
ters yield the best agreement with CAM-B3LYP reference: the barrier is overestimated by
5 kcal/mol but the other DFFTB parametrizations yield even higher barriers. Furthermore,
the potential energy surface obtained with the MIO:NH parameters is symmetric as found
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O6N4 N1N3 N2O2 Eint
CCSD(T)/aug-cc-pVQZ//RI-MP2/cc-pVTZ[175] 2.75 2.90 2.89 -28.2
B3LYP/6-311++G(d,p) 2.81 2.95 2.94 -25.71
CAM-B3LYP/GD3BJ/6-311++G(d,p) 2.78 2.93 2.91 -28.23
LC-ωHPBE/6-311++G(d,p) 2.80 2.94 2.93 -26.30
ωB97XD/6-311++G(d,p) 2.78 2.92 2.91 -30.21
MIO:NH 2.76 2.83 2.82 -26.57
3OB:NH 2.86 2.98 2.95 -21.79
MIO 2.82 2.96 2.89 -23.89
OB2 2.81 2.89 2.88 -26.43

Table 4.1: Distances (in Å) and interaction energy (in kcal/mol) of the GC dimer in gas
phase. Atoms are numbered as in �gure 4.1 panel A.

ΔE‡

CAM-B3LYP/GD3BJ/6-311++G(d,p) 34.39
MIO:NH 39.58
OB2 36.75
3OB:NH 46.01

Table 4.2: Energies (in kcal/mol) for the barrier connecting GCwith G*C* as isolated system
as obtained at di�erent levels of theory.

from CAM-B3LYP calculations, while the other parameter sets show asymmetric pro�les.
Combining together the results shown here, it can be stated that MIO:NH parameters best
reproduce reference calculations, slightly overestimating the reaction barrier but with a
correct global behaviour. Therefore, even if the absolute value of the rate constants can be
a�ected, the mechanism should likely not be impacted. We therefore chose MIO:NH for the
reaction dynamics calculations.

All DFT calculations were performed with the Gaussian16 software [176], while the
DFTB+ software [24] was employed for DFTB calculations.

4.3.2 Reaction Dynamics

To study the DPT process, reaction dynamics simulations are initiated in the tautomeric
form (G*C*) and propagated on the DFTB Born-Oppenheimer surface. Nuclear quantum
e�ects are included within the RPMD framework using a Langevin thermostat with optimal
damping on the �uctuation modes of the ring polymer, corresponding to the Thermostat-
ted RPMD (T-RPMD) algorithm [75], initially developed to improve vibrational spectrum
calculations and later applied to reaction rates [177]. First, we performed short simulations
(100 fs), the timestep is 1.0 fs, we used a Langevin thermostat at 300 K, with a relatively
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Figure 4.2: Potential energy surface of the DPT reaction as obtained from DFT calculations
using CAM-B3LYP/GD3BJ/6-311++G(d,p) (panel A) and DFTBwith di�erent Slater-Kostner
parameters: MIO:NH (panel B), OB2 (panel C) and 3OB:NH (panel D). Energies are in kcal/-
mol, while d1 and d2 are the one described in the text.

high friction coe�cient (γ = 100 ps −1) to obtain initial positions and velocities for both
LMD and T-RPMD [75] simulations using the BAOAB algorithm [178] (see Appendix C).
We then perform an ensemble of trajectories (100 for each system) with the same Langevin
thermostat with a timestep of 1.0 fs but with a lower friction coe�cient (γ = 10 ps −1) to
reduce the impact of the thermostat on the reactivity. The simulation length was chosen
to have above 80% of reactive events, and it is in the range of 1 to 50 ps, depending on the
simulated system. The number of beads is set to 8, lower than the value used in previous
studies on analogous system [10, 154], but it allows capturing the main impacts of NQEs.
Further increase in the number of beads only causes a limited modi�cation of the DPT rate
constants, while keeping the mechanism unchanged, as we will show in Section 4.4. Note
that in this set of simulations, the reaction pathway is not forced: in this way, we can ob-
serve where the system naturally evolves, and it could therefore form one or more �nal
structures through potentially di�erent mechanisms.

4.3.3 Free Energy Landscape

The free energy surfaces for the DPT process are obtained via Umbrella Sampling (US) [61]
using the d1 and d2 collective variables (CVs) previously de�ned. We considered for each CV
a total number of 6 windows between -0.75 and +0.75 Å (spacing of 0.3 Å), for a total of 36
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points on a bi-dimensional grid. The force constant used is 12471 kJ/mol nm2 and the time
step is 1.0 fs. The runs were of 5 ps length. To obtain appropriate initial conditions for each
run, we �rst performed a short trajectory with a high constraint on the CV. The standard
Weighted Histogram Analysis Method (WHAM) [63] is used in order to reconstruct the
free energy surface. In the case of PIMD simulations, 8 beads were used and the reaction
coordinates d1 and d2 in the extended ring-polymer space are computed from the centroid
atomic positions, as in previous studies of reactive dynamics using RPMD [58, 76, 179].
Results are listed in tables B.1, B.2, B.3, B.4 of Appendix B. The values are obtained using
the block average method: each CV trajectory is divided into 5 blocks of 1 ps each, and
5 di�erent FES are calculated (one from each block). The average value and the standard
deviation are then obtained from these di�erent evaluations of the FES, discarding the �rst
picosecond, so using the last four blocks.

4.4 Results

4.4.1 Dynamics Simulations

Almost all the trajectories in the G*C* tautomeric form spontaneously end up in the canon-
ical form during the simulation time length. However, the reaction rates and mechanisms
are dramatically a�ected by both NQEs and the DNA environment. As discussed previ-
ously, two collective variables are typically used to describe the DPT, d1 and d2, where d1
corresponds to the external proton that interacts more strongly with the surrounding water
molecules (when present). Figure 4.3 shows the projection of the direct dynamics on the
d1-d2 plane (the trajectories evolve in the full-dimensional phase space without any con-
straint), as obtained for the isolated base pair and for the 3BP-DNA system. In both cases,
classical (LMD) and quantum (T-RPMD) results are shown. The GC canonical form corre-
sponds to negative values (the minimum is around d1 = -0.7 Å and d2 = -0.8 Å), and the tau-
tomeric G*C* form corresponds to positive values (with a minimum around d1 = 0.7 Å and
d2 = 0.7 Å).

For the isolated system, the DPT occurs in a concerted way (i.e. along the diagonal in
the d1–d2 plot of Figure 4.3) similarly to what was previously suggested [162]. As it can be
noticed, there is a slight deviation from the exact diagonal that corresponds to a slightly
asynchronous mechanism, but it disappears when taking NQEs into account. Indeed, the
inclusion of NQEs has the e�ect of signi�cantly accerating the DPT reaction and of making
themechanism fully synchronous. From direct dynamics simulations it was possible, as pre-
viously, to evaluate reaction rate constants (k) and the corresponding life-times (τ = 1/k)
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Figure 4.3: Trajectories projected on the d1-d2 collective variables plane, as obtained from
DFTB-based direct dynamics simulations starting from the G*C* form: LMD and T-RPMD
for the isolated base pair (panels A and B, respectively), LMD and T-RPMD for the DNA
model environment (3BP-DNA, panels C and D)

from an exponential �t of the population decay of the initial state (here the G*C* tautomer),
as shown in Figure 4.4. The rate constants and corresponding uncertainties, obtained via
the bootstrap method as done for simulations presented in the previous chapter, are listed
in the Table 4.3. The G*C* rate constant of the isolated system estimated from the T-RPMD
trajectories (2.4 ps −1) is about 30 times greater than the LMD one (0.0821 ps −1). This
result is in agreement with Perez et al. [154] who show that the barrier in the free energy
pathway connecting G*C* with GC almost disappears when including NQEs, using Path In-
tegral Umbrella Sampling. Note that, when increasing the number of beads (Table 4.4) the
rate constant furhter increases from 2.4 to 4.0 ps −1, but the mechanism does not change,
showing that 8-beads results are not totally converged for the isolated system but already
capture the correct trend. By substituting with the deuterium the hydrogen involved in the
DPT, the impact of NQEs is reduced, as expected. The ratio kH/kD is equal to 3.8±0.8 for
T-RPMD results, and to 1.2 ± 0.1 in LMD simulations.

When the model DNA environment is taken into account, the DPT mechanism clearly
changes: a step-wisemechanism is observed inwhichH4 moves �rst fromO6 to N4, forming
an intermediate structure and then, in a second step, the other proton (H1) moves and �nally
forms the neutral canonical form (GC). This intermediate structure is described in more
detail below.
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Figure 4.4: Population decay for the isolated dimer (top panel) and for the 3BP-DNA system
(bottom panel). In black, we show results obtained from classical trajectories, while those
from T-RPMD simulations using 8 beads are reported in red.

System k [ps−1] kT−RPMD/kLMD kH/kD

Isolated/LMD 0.0821 ± 0.009 – –
Isolated/LMD/Deuterated 0.070 ± 0.008 – 1.2 ± 0.1
Isolated/T-RPMD 2.4 ± 0.2 29 ± 5 –
Isolated/T-RPMD/Deuterated 0.64 ± 0.07 9 ± 1 3.8 ± 0.8
3BP-DNA/LMD 1.7 ± 0.2 – –
3BP-DNA/LMD/Deuterated 1.3 ± 0.1 – 1.3 ± 0.2
3BP-DNA/T-RPMD 18 ± 2 11 ± 2 –
3BP-DNA/T-RPMD/Deuterated 6.9 ± 0.9 5 ± 1 2.6 ± 0.5

Table 4.3: Comparison between the rate constant (k) of the reverse reaction (from tau-
tomeric to canonic) for the two systems: the isolated GC dimer and the 3BP-DNA model
as obtained from LMD and T-RPMD (using 8 beads) DFTB-based direct dynamics simula-
tions. We report also the values obtained for deuterated systems. Ratios between LMD and
T-RPMD as well as hydrogen (H) and deuterium (D) rate constants are also shown.
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System k [ps−1] τ [ps]
Isolated/T-RPMD (16 beads) 4.0 ± 0.4 0.24 ± 0.02
3BP-DNA/T-RPMD (16 beads) 14 ± 2 0.068 ± 0.009

Table 4.4: Rate constants and corresponding life-times as obtained from DFTB-based T-
RPMD direct dynamics simulations using 16 beads.

The inclusion of the DNA model environment also has the e�ect of further destabi-
lizing the G*C* tautomer, as shown by the corresponding rate constants reported in Ta-
ble 4.3. This result is in agreement with recent QM/MM simulations showing that the
tautomeric form is thermodynamically destabilized when a DNA-like environment is in-
cluded [153]. The acceleration due to NQEs is slightly reduced compared to the isolated
dimer, as kT−RPMD/kLMD is lowered down to 11. Isotopic substitution results also re�ect
this �nding as kH/kD is now reduced to 2.6. Interestingly, when performing T-RPMD sim-
ulations with 16 beads the rate constant does not increase further and remains essentially
unchanged within statistical uncertainties (Table 4.4). More importantly, the mechanism is
unchanged (only few trajectories do not follow a step-wise process, as it can be seen from
Figure 4.5) which allows to use only 8 beads for the free energy calculations and largely
reduces their computational load.

Figure 4.5: Reaction dynamics simulations: trajectories in the d1 vs d2 plane as obtained for
3BP-DNA system in RPMD simulations with 16 beads.

To make sure that this e�ect does not depend on the size of the DNA model, additional
simulations are performed with 5 base pairs (TTGAG sequence with the crystallographic
water molecules, corresponding to the addition of a thymine and a guanine at the beginning
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and at the end of the TGA sequence, rispectively). No signi�cant change was observed in
the mechanism for these larger structures, as it can be seen from Figure 4.6.

Figure 4.6: Classical reaction dynamics simulations: trajectories in the d1 vs d2 as obtained
for a 5 base pairs system (blue line) and for a GC dimer with few water molecules next to
the DPT sites (orange line).

For this reason in this project we used the 3 base pairs model (with 8 beads for T-RPMD)
for further discussions and US simulations.

4.4.2 Free Energy Landscape

The Figure 4.8 shows the free energy surfaces (FES) for the isolated GC base pair and for the
3BP-DNA system, as obtained for both classical and PIMDUS simulations. The classical FES
of the isolated dimer is almost symmetric with respect to the diagonal with a small deviation
from the diagonal, of about 0.2 Å, which is in agreement with the corresponding direct
dynamics results. When including NQEs, the barrier decreases, re�ecting also in this case
the results of the direct dynamics and in agreement with the FES reported on a simpli�ed
model by Perez et al [154]. Furthermore, the reaction pathway becomes fully symmetric as
also found in direct dynamics simulations. Table 4.6 summarizes the di�erent free energy
barriers associated with the process as obtained from DFTB-based US simulations, using
both classical and Path Integral approaches. The inclusion of NQEs has an e�ect on both
the free energy di�erence between GC and G*C* and on the associated barriers. Notably,
the barrier associated with the reaction G*C* → GC decreases from 4.5 to 2.3 kcal/mol.
However, the barrier associated with the GC→ G*C* reaction remains relatively high, thus
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making the process unlikely in the absence of any particular source of activation.

When considering the DNA model environment, the FES pro�le changes dramatically:
the tautomeric form becomes much less stable and the connection with the canonical form
does not follow the diagonal (and consequently it is not possible to de�ne a single saddle
point in the FES as was possible, on the contrary, in the isolated system reaction). Notably,
this is in agreement with the direct dynamics simulations, performed from the tautomeric
to the canonical form. An intermediate form is observed (shown in Figure 4.7) in which
only one proton has been transferred, corresponding to d1 � 0.6 Å and d2 � +0.6 Å . The
d1 coordinate, corresponding to the transferring proton exposed to the solvent, is the same
as in the canonical form, while the d2 coordinate is mostly in the tautomeric con�guration.
This new state is lower in free energy than the tautomeric form (14.4 vs 19.1 kcal/mol) and
has a particular charge distribution character. In order to obtain the charges on the two base
pairs, speci�c simulations of the 3BP systems are performed: canonical (GC), tautomeric
(G*C*) and intermediate (I). In each case, the total time of the simulation is 5 ps (with 1 fs
timestep) at 5 Kwith a friction constant of 10.0 ps−1 for the Langevin thermostat. To �x each
simulation in the desired state, a restraint is applied on the d1 and d2 distances, depending
on the protonation state under observation. In this way the system is cooled down and
reaches a structure of (almost) minimum energy within the applied restraint. The Mulliken
partial charge on each atoms are calculated and summed up to obtain the total charge on
the G and C bases. Table 4.5 reports the results obtained for the three states (tautomeric,
intermediate and canonical), for the atoms numbered in Figure 4.1 panel A. Notably, while
in the tautomeric and canonical form the total charge on each base pair is equal to -0.1 for
the guanine and 0.0 for the cytosine, in the intermediate form the total charge is equal to -0.8
on the guanine and +0.6 on the cytosine, showing a charge separation which is stabilized by
the surrounding water molecules. It should be noted that the trajectories sample a region of
the (d1,d2) space close to the intermediate minimum in the classical FES, but never reach it.
This shows that the exact location of the intermediate as a free energy minimum is di�cult
to reach dynamically from the G*C*, but its presence has an important impact on the shape
of the FES and consequently on the dynamics.

When including NQEs, there is no major change in the free energy di�erence between
GC and G*C* and the FES globally keeps a similar shape, but the intermediate is no more a
clear minimum since the barriers connecting it to the canonical and tautomeric states are
lost.

The decrease in the stability of the tautomeric form in theDNAmodel environmentwith
respect to the isolated system is also visible from the donor-acceptor distributions reported
in Figure 4.9(A) for LMD trajectories. The donor-acceptor distance O6N4, corresponding
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Figure 4.7: Intermediate structure obtained fromUmbrella Sampling simulations in the 3BP-
DNA system.

Atom GC I G*C*
O6 -0.6 -0.7 -0.4
C6 +0.5 +0.5 +0.5
N1 -0.2 -0.6 -0.5
H1 +0.2 +0.3 +0.3
H4 +0.2 +0.3 +0.2
H4� +0.2 +0.2 +0.2
N4 -0.3 -0.3 -0.6
C4 +0.3 +0.3 +0.3
N3 -0.3 -0.2 -0.2
Base
G -0.1 -0.8 -0.2
C +0.1 +0.6 0.0

Table 4.5: Mulliken charges obtained on canonical (GC), intermediate (I) and Tautomeric
(G*C*) structures in 3BP-DNA simulations. We report the values obtained on atoms num-
bered as in Figure 4.1 and also the result of the summation on the G and C atoms.
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Figure 4.8: Free Energy Surfaces as a function of d1 and d2 collective variables as obtained
fromDFTB-based Umbrella Sampling (US) simulations: A) classical US of the isolated dimer;
B) PIMD US of the isolated dimer; C) classical US of 3BP-DNA system; D) PIMD US of the
3BP-DNA system. Canonical (GC) and tautomeric (G*C*) states are indicated as well as the
minimum free energy path connecting these two states as black solid line.

reaction value Isolated system 3BP-DNA
GC→ G*C* ΔFCl 15.0 ± 0.1 19.1 ± 0.3
GC→ G*C* ΔFPI 14.1 ± 0.4 19.1 ± 0.2
GC→ G*C* ΔF ‡

Cl 19.5 ± 0.1 –
GC→ G*C* ΔF ‡

PI 16.4 ± 0.1 –
G*C*→ GC ΔF ‡

Cl 4.5 ± 0.1 –
G*C*→ GC ΔF ‡

PI 2.3 ± 0.4 –
GC→ Intermediate ΔFCl – 14.4 ± 0.1

Table 4.6: Free energy di�erences (in kcal/mol) as obtained from US DFTB-based simula-
tions for the isolated system and in the DNA model environment (3BP-DNA). The indices
Cl and PI refer to classical and Path Integral Umbrella Sampling simulations, respectively,
while ‡ denotes the free barrier barrier to pass the saddle point of a given reaction. The "In-
termediate" label refers to the locally stable state observed in Classical Umbrella Sampling
in the 3BP-DNA model and represented in Scheme 4.7.
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to the external proton transfer, is shorter in the tautomeric structure than in the canonical
one. In the isolated system, this decrease in the distance is of about 0.04 Å, while in the
DNAmodel it is close to 0.1 Å, showing that for this latter system, it is easier for the proton
H4 to move from O6 to N4, causing the formation of the intermediate previously discussed.

An important �nding of this study is that the DNA model environment has a crucial
impact and modi�es the DPT mechanism. By investigating the di�erent trajectories we
found that a key role is played by the surrounding water molecules (in the present sim-
ulations the crystallographic ones are included). More precisely, Figure 4.9 (B) shows the
distance distribution between O6 and the two hydrogen atoms of the closest water molecule
(labeled HW1 and HW2) for the three di�erent forms: the canonical (green), the tautomeric
(blue) and the intermediate forms (yellow). In the canonical form, the O6 atom is strongly
H-bonded to this water molecule via one of its hydrogen atom (and of course to the H4

atom of the cytosine base). In the tautomeric form, conversely, O6 is covalently bound to
the transferred H4 atom and it is, therefore, less prone to form a hydrogen bond with the
surrounding water. The nearby water molecule now interacts with O6 via its two hydrogen
atoms in a weaker way, as shown by the O6-HW distributions. In the intermediate form,
the water molecule moves back to the con�guration where it makes a strong directional
H-bond with O6 (now H4 is back to the cytosine as in the canonical form). This process
is schematically shown in panels C and D of Figure 4.9. In other words the driving force
that pushes the tautomeric form through the formation of the intermediate is the formation
of an N–H bond and, from the point of view of the O6 atom, the formation of two strong
H-bonds: one with the cytosine base and one with the nearest water molecule.

Additional simulations of an isolated G*C* structure in which only few water molecules
are included in the vicinity of the O–HNH-bond con�rm this picture: the trajectories show
a pathway which is similar to what is observed in the full DNA-model structure, as reported
in Figure 4.6. These results, together with that of the 3BP-DNAmodel show the importance
of micro-solvation on the reactivity. Notably, in agreement with the works by Tolosa et
al. [180] and Gheorghiu et al. [147] with di�erent methods and approaches, micro-solvation
is crucial to open a new reaction pathway connecting GC with G*C* via an intermediate.
An important �nding of the present study is that this intermediate is partially destabilized
by NQEs.

4.5 Conclusions

Summarizing, this project can be seen as an exhaustive study of how NQEs and the en-
vironment can a�ect the mechanism of DPT in the GC base pair, using a combination of
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Figure 4.9: Panel A: O–N distance distributions in the isolated system (green) and in the
3BP-DNA (black) as obtained for the canonical (dashed line) and the tautomeric (contin-
uous line) forms from DFTB-based simulations. Panel B: Distance distributions between
the O6 and hydrogen atoms of the nearest water molecule (Hw1 and Hw2) obtained from
DFTB-based classical US simulations: canonical (green), tautomeric (blue) and intermedi-
ate (yellow) forms. Panels C and D: two prototypical snapshots of the canonical (C) and
tautomeric (D) forms where the atoms involved in DPT reaction are highlighted as balls.

direct dynamics simulations, to characterize the spontaneous decay of the tautomeric form,
and Umbrella Sampling simulations to obtain the free energy surface of this reaction.

For the isolated dimer, the mechanism is concerted though slightly asynchronous and
the e�ect of NQEs is to accelerate the reaction by approximately a factor of 30, making
the mechanism fully synchronous. Indeed, while in LMD simulations the minimum free
energy pathway passes about 0.2 Å away from the diagonal of the d1-d2 plot, it moves
to follow the diagonal almost exactly when NQEs are included. When the environment is
taken into account in the 3BP-DNA structure, the mechanism changes completely as the
DPT becomes a step-wise reaction. In this case, we demonstrate the importance of the role
of the surrounding water molecules, that stabilize an intermediate structure with opposite
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partial charges on each base pair. As for the isolated base pair, NQEs speed up the DPT
process (about 10 times compared to classical simulations for the 3BP-DNA structure). The
free energy landscape is also deeply modi�ed as the intermediate form ceases to be a local
minimum, making the proton transfer essentially barrierless.

These results clearly show that further computational studies must include the en-
vironment at least by considering more than one base pair and (crystallographic) water
molecules. This will be important to investigate if modi�cations in the base pairs, for ex-
ample through methylation which may result from carcinogenic agents, [181, 182] have an
e�ect on the stability of the tautomeric and/or intermediate forms. Finally, the step-wise
mechanism reported for GC tautomerism could be important to unravel the biochemistry
of GC-rich DNA regions which are associated with the so-called CpG islands [183] and
related to the promoter region of the genome. [184, 185]
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In the current Chapter, we focus our attention on the study of Heavy Atom tunnelling
using ring polymermolecular dynamics (RPMD) in order to include nuclear quantum e�ects
(NQEs). The reaction under study is the Cope rearrangement of semibullvalene, which was
shown in the literature to display tunnelling at low temperatures. Here we compute the
rate constant over a wide range of temperatures, from 25 K to 300 K, comparing classical
and RPMD results. The rate constants are �rstly obtained with the Eyring formulation,
within transition state theory (TST) approximation. By estimating the associated recrossing
factor, we evaluate the accuracy of the transition state theory. Our results show that on
one side tunnelling increases the reaction rate as a consequence of the decrease of the
free energy barrier, in the low-temperature regime. On the other hand, the reaction rate
TST is decreased by the recrossing factor, which becomes signi�cantly lower than 1 at low
temperatures when NQEs are included, while it remains almost equal to 1 in the classical
case.
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5.1 Background

Quantum tunnelling is a physical process that was �rst predicted by Hund [186] for elec-
trons in 1927, stating that it occurs when a light particle passes through a barrier without
having enough energy to classically overcome it. Five years later, Bell [187] andWigner [188],
discussed this concept in the study of chemical reactions, suggesting that light atoms,
like hydrogen, can exhibit tunnelling. In particular, after the discovery of deuterium in
1950 [189], it was possible to study the contribution of tunnelling and Zero Point Energy
(ZPE) in organic reactions, thanks to the substitution of hydrogen atoms with their heav-
ier isotope. This allows us to make a comparison between the rate constant obtained with
the hydrogenated and deuterated systems. By evaluating the ratio between the two rate
constants (kH and kD) it is possible to estimate how much ZPE or tunnelling impact the
mechanism of the reaction (kinetic isotopic e�ect). Many publications followed [190–194]
showing how tunnelling and ZPE can a�ect rate constants when light atoms such as hy-
drogen are involved.

The general idea suggested that for reactions which involve heavier atoms (for instance
carbon), the tunnelling e�ect should not have a central role. However recent observations
and theoretical studies have shown that atoms heavier than hydrogen can also undergo
tunnelling [195–198]. In particular, one of the �rst papers that suggest the relevance of
heavy atom tunnelling in an organic reaction was published in 1983 by Carpenter [197].
The approach was fully theoretical, and the self-tautomerization of cyclobutadiene was
studied through an analytical potential: the energy levels were calculated within the har-
monic oscillator approximation, while the transmission coe�cient was obtained from Bell’s
formula [199]. Once the rate constant was calculated, he found that carbon tunnelling can
contribute up to 97% of the total rate constant below 0 °C. A list of further organic reac-
tions is presented in a recent Review by Castro and Karney [195], who describe in detail
the theory and the reactions studied up to now.

Recently experiments and theoretical calculations showed, that a candidate for a Heavy
Atom tunnelling (HAT) is the Cope rearrangement of semibullvalene [196, 198, 200, 201].
The hypothesis that tunnelling could a�ect the mechanism of this reaction, was �rst pre-
dicted theoretically by Borden et al in 2010 [198], with the small curvature tunnelling
(SCT)+TST approach. The authors also suggested an experiment to provide evidence for
tunnelling. This experiment was performed 10 years later by Sander and coworkers [196].
Since the reaction is symmetric (see Scheme 5.1), it is impossible to distinguish the two
isomers through Infrared Spectroscopy (IR). For this reason, the �rst step is a deuteration
(in position 2 or 4, Scheme 5.1). In this way, it is possible to recognize the product or
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the reactant through IR measurements. What is done in practice, is to prepare one of the
two deuterated isomers, and observe the reaction via IR at low temperatures. Sanders and
coworkers found that thermodynamical equilibrium is obtained even below 10 K, which is
classically impossible if we consider that the barrier (found experimentally [202]) is about
6 kcal/mol. The most probable explanation is a strong enhancement of the reaction via
tunnelling.

To theoretically study this family of reactions, transition state theory (TST) including
tunnelling corrections via small curvature tunnelling (SCT) [15] is typically employed [201].
This approach relies on the assumption that the tunnelling path proceeds along the Mini-
mum Energy Path (MEP), and that if the concave curvature of the barrier is small enough, it
can be described within the harmonic approximation. In this way the tunnelling probability
can be obtained, and a transmission coe�cient corrects the classical TST rate constant for
the tunnelling e�ect. Another e�cient method to take into account tunnelling in the rate
constant, is the semi-classical TST (SC-TST) [16], which requires anharmonic constants of
the system in the reactant and transition state geometry. Both of these methods are the only
ones used up to now to describe tunnelling when the reaction involves heavy atoms. The
main drawback of the SCT method is that one has to know in detail energy, gradients and
vibrational frequencies of the region of the potential energy surface (PES) where the tran-
sition state is located, and it is highly sensitive to the height and width of the barrier, while
the SC-TST theory scales poorly with the size of the system since it requires the calculation
of the anharmonic frequencies.

An alternative approach is to use ring polymer molecular dynamics which naturally
includes theNQEs in the dynamics of the system. Furthermore, thismethodwas extensively
used in literature to predict tunnelling when light atoms are involved [58, 72, 107, 203]. In
particular, RPMD was found to give the exact rate even in the deep tunnelling regime for
a parabolic barrier [72], while in the case of three speci�c bimolecular reactions (H+H2,
Cl+HCl and F+H2) it gives the rate constant within a factor of 3 in comparison with exact
results [107]. In general, in the deep tunnelling regime, RPMD slightly underestimates the
rate constant in the case of a symmetric barrier and overestimates the rate constant in the
case of an asymmetric one [204].

In the present Chapter, we want to evaluate the accuracy of TST, in classical and RPMD
cases, by estimating the associated recrossing factor. We compute the reaction rates in the
TST approximation with RPMD for the reaction of Cope rearrangement of semibullvalene
(see Figure 5.1), and we compare it with classical results. Then, we correct the TST rate
constant by including the recrossing factor. In order to do it, we have performed MD tra-
jectories from the transition state, using a procedure previously employed by Hinsen and
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Roux [58], Suleimanov[203] and Craig and Manolopolous [76].

The electronic structure was treated within a semiempirical approach: the Tight Bind-
ing DFT method [43] (see Chapter 1).

5.2 Simulation Set-Up

5.2.1 Molecular System and Reaction

In Scheme 5.1we show theCope rearrangement of semibullvalenewhich is a [3,3]-sigmatropic
rearrangement. In Table 5.1 we report the potential energy barrier and imaginary frequency
at TS obtained at di�erent levels of theory: Coupled Cluster (CCSD(T)), Density Functional
Theory (DFT) and Density Functional Tight Binding (DFTB) methods using various func-
tionals and parametrizations. Similarly to the approach followed for choosing the best
Slater Kostner (SK) set of parameters in the case of the Guanine-Cytosine base pair (see
Chapter 4), we �rst compare the single-point values obtained from DFT with the ones ob-
tained from CCSD(T) and then we make a comparison with the DFTB. As it can be noticed
from Table 5.1 all the functionals except B3LYP and LC-ωPBE-D3BJ provide a potential en-
ergy barrier in agreement with the CCSD(T) results. Furthermore, the energies obtained
with DFTB are in good agreement with DFT and CCSD(T). For what concerns the imagi-
nary frequency at the TS, the best set of parameters is 3OB, which shows good agreement
with the functional ωB97XD, while OB2 is in agreement with CAM-B3LYP-D3BJ.

In a second step, as was done previously in Chapter 4, we perform a qualitative analysis
to see what SK set of parameters best captures the reaction mechanism. To this end, we
performed a scan of the potential energy surface as a function of d1 and d2, which are the
distances between atoms C1-C2 and C3-C4 respectively (see Figure 5.1 for atom number-
ing). The potential energy scan was performed with the DFT functional ωB97XD with the
6-31G basis set, which was shown to be a good compromise between accuracy and com-
putational cost [205] and compared with the three sets of DFTB parameters (MIO [164],
OB2 [206], 3OB [207–209]). The results are shown in Figure 5.2. It can be seen clearly that
the most suitable SK set of parameters for this reaction is the 3OB since it shows a con-
certed and synchronous mechanism, in agreement with DFT results and in contrast with
MIO and OB2. This is not surprising, since 3OB includes the third-order dispersion, it was
especially parametrized to study organic molecules and it has a better parametrization for
the vibrational stretching frequencies of the carbon double bonds [207].
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Figure 5.1: Schematic representation of the Cope rearrangement reaction of the semibull-
valene

Table 5.1: Activation energies for tautomerization: potential energy barrier, potential en-
ergy including ZPE. Values are in kcal/mol. We report also the frequency of the imaginary
frequency at the TS, in cm−1.

Method ΔE‡ Δ‡E+ZPE ω‡

CCSD(T)/6-311G(d,p) 9.08
CCSD(T)/cc-pVDZ 8.87
CCSD(T)/6-311G(d,p)//HF/aug-cc-pv5Z 8.49
CCSD(T)/cc-pVDZ//HF/aug-cc-pv5Z 8.24
ωB97XD/6-311++G(d,p) 8.35 7.34 401
ωB97XD/6-31G 8.50 7.46 388
M062X/6-311++G(d,p) 8.79 7.73 380
B3LYP/6-311G(d,p) 5.09 4.02 196
CAM-B3LYP-D3BJ/6-311++G(d,p) 9.12 7.90 355
LC-ωPBE-D3BJ/6-311++G(d,p) 13.9 12.68 606
MIO 10.22 9.12 278
OB2 8.4 6.99 322
3OB 10.5 9.07 413

5.2.2 Free Energy Calculations

To obtain the free energy as a function of the reaction coordinate, we proceed as follows.
Firstly, we de�ne the collective variable (CV) as:

d = d1 − d2 (5.1)

where d1 is the distance between C1 and C2 and d2 is the distance between C3 and C4
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Figure 5.2: Scan of the potential energy surface as a function of two reaction coordinates,
d1 and d2 as obtained with DFT (ωB97XD/6-31G) and di�erent DFTB Slater-Kostner param-
eters.

(see atom numbering in Scheme 5.1). We then use umbrella sampling to force the system
to explore the CV coordinate between -0.88 and +0.88 Å for a total of 37 equally spaced
windows. For each window, we run about 50 ps of molecular dynamics simulations, with
a time step of 1.0 fs and a friction coe�cient of 10 ps −1 for the Langevin thermostat. The
force constant k is chosen in order to obtain a normal distribution of the umbrella sampling
histogram:

exp

�
−k(d− d0)

2

2kbT
)

�
= exp

�
−(d− d0)

2

2σ2

�
(5.2)

where d0 represents the value of the CV centre for each constrained simulation, while
σ is equal to the spacing between each d0 in order to provide a signi�cant overlap in the
�nal histogram.

We have thus performed umbrella sampling with both classical (ClMD-US) and path
integral based (PI-US) molecular dynamics at di�erent temperatures: 300, 200, 100, 50 and
25 K. In the case of PI-US, we used a di�erent number of beads (P) depending on the tem-
perature (respectively 8, 8, 16, 32, 32) in order to describe at our best the nuclear quantum
e�ects. At 50 K we checked the convergence of the free energy with the number of beads
P, as can be seen in Figure 5.3.

In the quantum case, we have de�ned the collective variable from the centroids of the
atomic positions [58, 76]. Once the US simulations are done, the free energy is reconstructed
using the WHAM algorithm. [63]
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Figure 5.3: Free energy pro�le from PI-US simulations at 50 K as a function of the number
of beads used.

Free energy calculationswere performed using our ownmolecular dynamics codewhich
performs path integral based molecular dynamics coupled with DFTB+ [42] software to
obtain energies and gradients and with PLUMED [25] to perform umbrella sampling. The
current version of our software is parallelized with OpenMP when using P beads such that
the user time is almost identical for classical and PI-based simulations. Implementation
details are available in Appendix C.

5.2.3 Rate Constant

The calculation of rate constants was discussed in Chapter 1, here we simply recall the main
equations.

Free energy calculations can give access to the free energy barrier, ΔF ‡ of a reaction,
which can be used to evaluate the reaction rate constant via the transition state theory
(TST) simply by:

kTST (T ) =
kbT

h
exp

�
−ΔF ‡

kbT

�
(5.3)

where kb is the Boltzmann constant, T the temperature and h is Planck’s constant.
However, there are a number of assumptions in TST and one of the most critical is that
each trajectory reaching the transition state (TS) leads to the products side. However, it is
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possible that a number of trajectories "recross" back to the reactants and the full rate can
be written as:

k(T ) = κkTST (T ) (5.4)

where κ is the so-called recrossing factor, which is temperature dependent and can
be obtained from MD trajectories starting at the TS con�guration [58, 203], as shown in
Chapter 1:

κ(t) =
�δ(d0)ḋ0h(dt)�
�δ(d0)ḋ0h(ḋ0)�

(5.5)

Practically, what is done is to generate a number of initial conditions at the transition
state and then run post-TS trajectories in the microcanonical ensemble. From the analysis
of those trajectories, we can obtain κ, where we de�ne that a product is formed when
d > 0.0 Å otherwise if the system is in the reactant side, d < 0.0 Å.

To sample the initial conditions we run, for each temperature and both for classical and
RPMD based simulations, a long NVT trajectory with the CV constrained to be at the TS,
i.e. d = 0.0 Å. From that, we select geometries and momenta each 200 fs, for a total number
of snapshots between 200 and 500 (since for low temperatures we need a larger number
of beads, the computational cost is higher). The microcanonical RPMD simulations were
performed with the same number of beads as for the free energy calculations.

5.3 Results

5.3.1 Free energy pro�le

In Figure 5.4 we report the free energy pro�les as a function of the reaction coordinate
(de�ned in Eq. 5.1) for the di�erent umbrella sampling simulations. From Figure 5.4, the
trends with temperature can be observed. In the case of classical Langevin MD simulations,
(left panel), the free energy barrier slightly decreases with increasing temperature. On the
contrary, the PIMD results, provide the opposite trend: the free energy barrier increases
with the temperature, while in the low-temperature regime the free energy curve becomes
almost �at in the TS region (this is particularly visible at 25 K). This behaviour, is due to
the fact that in PIMD simulations, the springs between the nearest beads of the same atom,
become so loose at low temperatures that the ring polymer is spread in both regions of
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space, reactant and product. This behaviour was already found by Roux and Hinsen [58],
in the case of a proton transfer reaction, and it was qualitatively attributed to tunnelling in
PIMD simulations.

Figure 5.4: Free energy curves as function of d at di�erent temperatures, as obtained from
ClLMD-US (left panel) and PI-US (right panel) simulations.

In Table 5.2 we report the free energy barriers for both classical and PIMD simulations.
Notably, the inclusion of NQEs decreases the free energy barriers, as was shown already
by the plot in Figure 5.4: at 25 K the di�erence between the ClLMD free energy barrier
and the PIMD one, is about 8 kcal/mol, while at the classical limit this di�erence is only
0.5 kcal/mol.

Table 5.2: Free energy barriers for ClLMD and PIMD umbrella sampling simulations in
kcal/mol.

Temperature [K] ΔF ‡
ClLMD ΔF ‡

PIMD

25 K 10.22 2.59
50 K 10.18 5.43
100 K 10.05 8.85
200 K 9.89 9.18
300 K 9.63 9.04

One way to estimate the temperature below which tunnelling is expected to have a
signi�cant impact on the reaction rate, it is by calculating the crossover temperature [211,
212]:

Tc =
�ω‡

2πkb
(5.6)

where ω‡ is the imaginary frequency (in absolute value) at the transition state. For
semibullvalene, this value is around 400 cm−1 (see Table 5.1), giving a crossover tempera-
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ture of about 90 K.

As NQEs, both Zero Point Energy and tunnelling can a�ect the free energy barriers,
and together have as main e�ect the lowering of the free energy barrier, with respect to
classical results. To disentangle the contribution of ZPE from that of tunnelling, it can be
useful to calculate the di�erence, within the harmonic approximation (ΔH.A.), between the
classical vibrational energy and the quantum vibrational energy:

ΔH.A.(T ) = ΔEvib
cl (T )−ΔEvib

q (T ) (5.7)

whereΔEvib
cl andΔEvib

q are the vibrational energy di�erences between TS and reactant,
calculated using classical and quantum statistics, respectively. Note that this Quantum-
Classical di�erence probes how the ZPE modi�es the barrier height. Analyzing the value
of ΔH.A. at di�erent temperatures we can provide an idea of the contribution of the Zero
Point Energy of the system to the reaction rate. In Figure 5.5 we report the di�erence of ZPE
(green line), the crossover temperature (red vertical line) and the di�erence ΔF ‡

ClLMD −
ΔF ‡

PIMD as obtained from umbrella sampling simulations. We can notice that for temper-
atures higher than Tc (T> 90 K) the simulation results follow the harmonic approximation.
However, when the temperature decreases, the di�erence between the free energy barrier
obtained within classical and PIMD simulations becomes much higher than the harmonic
approximation (which for T→ 0 coincides with the di�erence in ZPE). This is an evidence
that below Tc, tunnelling is taking place and it has an important role in the reaction.

In the next subsection we will see how the dynamical properties of such reaction are
impacted by nuclear quantum e�ects.

5.3.2 Rate Constants

In Table 5.3 we report the rate constants obtained within the TST approximation, using
Equation 5.3. As it can be noticed, thanks to the lower free energy barrier discussed previ-
ously, the rate with the inclusion of NQEs at low temperature (25 K) is more than 60 orders
of magnitude lower than the classical result. As expected, at higher temperatures, the PIMD
and classical results are closer and tend to be almost equal at room temperature (di�ering
only by a factor of 3).

The basic assumption behind the TST is to neglect recrossing. As we said before (Chap-
ter 1), the rate obtained within TST is an upper bound to the true rate constant. This is due
to the fact that TST only takes into account the trajectories which, starting from the tran-
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Figure 5.5: Di�erence between ClLMD and PIMD free energy barrier as a function of tem-
perature. Black dots are simulation results, while the green curve is the value obtained
from harmonic approximation (Equation 5.7). With the vertical line in red, we report the
crossover temperature obtained from Equation 5.6.

Table 5.3: Rate constants obtained with Eyring equation 5.3 for ClLMD and PIMD umbrella
sampling simulations in s−1.

Temperature [K] kTST
ClLMD kTST

PIMD

25 K 2.09× 10−78 1.15× 10−11

50 K 3.13× 10−33 1.86× 10−12

100 K 2.19× 10−10 9.24× 10−8

200 K 6.40× 101 3.82× 102

300 K 5.98× 105 1.61× 106

sition state (at the dividing surface), have the momenta pointing towards the product side,
and these trajectories are considered reactive. Instead, what can happen, is that a trajectory
starts in the TS with the momentum pointing to the product side, but after a certain time
goes back to the reactant side, due to the exchange of energy between the di�erent modes.
Also the opposite is true: a trajectory at the dividing surface could have the momentum
projected in the reactant side (and so it will not be considered in the TST approximation)
but, due to this �ow of energy, it can end up in the product side. This approximation can
be re�ned by running actual trajectories starting from the dividing surface to compute the
recrossing factor.

The �nal rate constant is obtained by multiplying the TST rate constant by the recross-
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ing factor in the limit of t → ∞.

From simulations, the recrossing factors (t → ∞) are obtained as a function of time
and they are plotted in Figure 5.6, for di�erent temperatures, for classical (left) and RPMD
(right) results. For T = 100 K and above, the shapes are similar between RPMD and classical
results, except for low temperatures. In particular, it can be seen from Table 5.4 where
we report the values of the recrossing factors in the limit of t → ∞, that in the classical
case, this value approaches 1 with the decrease of the temperature. RPMD results instead,
become di�erent from classical ones at temperatures lower than Tc, where for 25 K we
have the lowest value of the recrossing equal to 0.6. This has the same origin of the �at
free energy pro�le shown before: the ring polymer of the atom involved is so spread, that
it is delocalized on both sides, reactant and product. This means that the system is in both
sides at the same time and that is the way in which RPMD theory represents tunnelling.
Furthermore, as it can be seen from Figure 5.7 which shows the plot at 25 K for RPMD, the
simulation time needed for all the trajectories to reach the product or reactant side, was
2.0 ps, while for temperatures higher than 25 K, a simulation time of 0.3 ps was su�cient.

Figure 5.6: Recrossing factors as function of time at di�erent temperature, classical results
(left) and RPMD results (right)

Temperature [K] κcl
t→∞ κRPMD

t→∞
25 0.99 0.63
50 0.98 0.94
100 0.96 0.97
200 0.93 0.96
300 0.92 0.93

Table 5.4: Factor recrossing for t→ ∞

The di�erence in the trend between the classical and RPMD results can be appreciated
from the plot in Figure 5.8, where we report the value of κ(t → ∞) for RPMD and classical
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simulations at di�erent temperatures. It can be seen that in the classical case, the recrossing
factor decreases as the temperature increases. The trend of RPMD is completely di�erent:
between 100-300 K the results are almost equal to the classical one. The di�erence with
the classical results becomes evident only for temperature lower than the cross-over tem-
perature when tunnelling is expected. This is not surprising, since only when we are in
a regime of tunnelling, the polymer is delocalized between both sides, thus the centroid
initial velocity has less importance and there is more chance that a polymer with initial
velocity towards the products actually ends up in the reactants.

Figure 5.7: Recrossing factors as function of time for RPMD at 25 K.

Figure 5.8: Recrossing factor for t → ∞ for both RPMD (blue) and Classical (black) results.
The red vertical line represents the cross-over temperature
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5.4 Conclusions

Summarizing, in this Chapter we focus on how NQEs a�ect free energy pro�les and rate
constants for amodel reactionwhich involves heavy atoms. In particular, we explore the ac-
curacy of the transition state theory approximation, by correcting the rate obtained within
this approach with the recrossing factor. Thanks to the harmonic approximation and the
estimation of the cross-over temperature, we were able to identify the regime in which
tunnelling plays a central role.

From the analysis of the free energy barrier and the comparison with the harmonic
approximation used to probe the e�ect of ZPE, it is clear that, below the crossover tem-
perature, the main e�ect on the free energy pro�le is due to the tunnelling. This e�ect is
evident in particular at 25 K, where the path integral free energy pro�le is completely �at
in the TS region. This leads to a huge increase of the rate constant, by 60 orders of magni-
tude compared to the classical one. This di�erence, as expected, disappears with increasing
temperature.

Computing the recrossing factor shows that for temperatures greater than the cross-
over temperature the TST holds well for both classical and nuclear quantum results, since
the value for κ(t → ∞) is between 0.94 and 0.99. This means that the e�ect of recrossing
on the rate can be neglected. On the other side, at 25 K, when the tunnelling has a huge
e�ect on the reaction, the TST becomes less accurate, since the recrossing factor was found
to be around 0.6. This means that the inclusion of NQEs (and in particular tunnelling at
low temperature) has two opposite e�ects: on one hand, it reduces the free energy barrier
(which speeds up the reaction) and on the other hand, it decreases the recrossing factor by
about a half (which slow the reaction down). This is still not comparable with the huge
e�ect of tunnelling on the free energy barrier, which speeds up the reaction by 60 orders
of magnitude in comparison with the classical results.
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In this thesis, we focus on how tunnelling and zero point energy (ZPE) a�ect the dynamical
and thermodynamical properties of reactive systems, within a direct dynamics approach.
The methods used to include nuclear quantum e�ects (NQEs) in the simulations are the
quantum thermal bath (QTB) and ring polymer molecular dynamics (RPMD). The �rst was
developed for equilibrium properties and is able to include the zero point energy of the
system through the use of generalized Langevin thermostat. The second is exact for equi-
librium thermodynamical properties and can provide approximate reaction rate values that
account for both ZPE and tunnelling.

The systems studied are:

1. An analytical model for the unimolecular fragmentation of CH4 dissociation that was
tuned to explore di�erent temperature ranges and on which we compared the two
methods (QTB and RPMD).

2. The double proton transfer in DNA base pairs, where we focused on how the double
proton transfer mechanism is a�ected by ZPE and by the biochemical environment.

3. The Cope rearrangement of semibullvalene, to explore how tunnelling can speed up
the reaction at low temperatures even if the atoms involved are not considered "light".

In Chapter 3, we investigate how the ZPE of the system a�ects an unimolecular frag-
mentation. To obtain the rate we used a direct approach: an ensemble of reactive trajecto-
ries is performed, and we collect the time at which each of these trajectories reacts. Results
show that RPMD provides a good approximation of the impact of ZPE on rate constants,
and in particular it captures very accurately the quantum-classical di�erence in the acti-
vation energy. Instead, the QTB largely overestimates the rate constants in all systems
studied. The reason for this incorrect behaviour, is to search in the distance probability
distribution: the QTB describes poorly the tail of this distribution which is fundamental to
describe the fragmentation correctly. We also perform a comparison with TST theory, with
which RPMD is in almost perfect agreement. This study shows how RPMD can be used
to obtain rate constants for unimolecular fragmentations, especially when TST is di�cult
to apply, like when the reaction pathways are not well known, when the system is highly
anharmonic or it has a large number of degrees of freedom.

In Chapter 4 we study the Double Proton Transfer (DPT) in the Guanine-Cytosine (GC)
DNA base pairs. In particular, we focus on how NQEs and the biochemical environment af-
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fect this reaction. The results show that for the isolated dimer the mechanism is concerted,
and the e�ect of NQEs (mainly due to ZPE) is to speed up the reaction by a factor of 30 in
comparison with classical results. In contrast, when the environment is included the mech-
anism becomes step-wise, NQEs still speed up the reaction (even if slightly less than for the
isolated dimer) and the free energy landscape is strongly a�ected as the intermediate state
ceases to be a local minimum, making the proton transfer almost barrierless. These results
underline the importance of both including NQEs and fully accounting for the complexity
of the environment, especially in biological systems.

In Chapter 5 we focus on the study of Heavy Atoms tunnelling for a prototypical re-
action, the Cope rearrangement of semibullvalene. In literature, this kind of reaction was
studied both experimentally and theoretically, using di�erent semiclassical approaches [15,
201]. We performed a RPMD study and found that when the temperature is lower than the
cross-over temperature, the free energy pro�le in the TS region becomes completely �at,
showing a typical marker for tunnelling. The inclusion of tunnelling speeds up the reac-
tion up to 60 orders of magnitude at 25 K, and the quantum-classical di�erence in the free
energy barriers disappears in the classical (high temperature) limit, as we expected. The
computation of the recrossing factor shows that it is relevant only at the lowest tempera-
ture (25 K), where this value is about 0.6. It should be noted that even if the rate constant
is lowered by the inclusion of the recrossing factor in this low temperature regime, is not
comparable with the impact of tunnelling which, as we said before, speeds up the reaction
by 60 orders of magnitude.

In conclusion, we extensively investigated several crucial aspects. In the �rst instance,
we employed an analytical model for studying an unimolecular fragmentation, which yield
three signi�cant �ndings. First, the utilization of RPMD (ring polymer molecular dynamics)
proved e�ective in obtaining accurate dynamical properties. Second, the observation of the
equivalent temperature of the stretching zero point energy (ZPE), particularly in the context
of fragmentation, emerged as a key point for predicting when NQEs have a signi�cant
impact. Lastly, we showed the inadequacy of the QTB method to describe unimolecular
fragmentation. In particular, the representation of the tail of the distance distribution was
found to be a key issue.

Furthermore, we focused on two distinct reactive systems. We �rst showed the impor-
tance of including the environment when investigating reaction mechanisms, especially
for biological systems. Subsequently, we analyzed a reaction in which heavy atoms are in-
volved, and we observed that in a deep tunnelling regime, the tunnelling can lead to dual
e�ects on the rate constant. On one side, this NQE speeds up the reaction due to its in�u-
ence on the free energy barrier, which is lowered down. On the other side, it slows down the
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reaction due to the delocalization of the system that increases the probability of recrossing
of the dividing surface.

Finally, during these three years we developed a software to run such calculations which
is now a user friendly resource, which can be used by future students in the group as well
as researchers from other groups (the code will be soon be made available on github). This
code allows the study of molecular systems within the RPMD approach, and DFTB elec-
tronic structure method, alongside enhanced sampling techniques. The simplicity of the
software, enables easy modi�cations, like the incorporation of di�erent subroutines which
can describe other analytical models, or adding the interaction with an optical cavity in or-
der to study strong vibrational coupling phenomena, as presently done in the group. This
code, written in fortran90 and parallelized with OpenMP, will be shortly published with
these new features.
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In this section some additional computational details and results of the study of chapter 3:

- The number of beads used for each temperature and each potentials, Table A.1

The rate constants in ps−1 computed for each temperature and each potentials, Ta-
bles A.2, A.3, A.4, A.5

-- The Arrhenius plots obtained for di�erent friction values of the Langevin thermostat
for the 1D Morse potential, Figure A.1

Figure A.1: Quantum and classical rate constants as a function of temperature for 1-D
Morse. In full lines we report values obtained from sum-of-state approach (both classi-
cal and quantum), while results from simulations are reported as dots: LMD (black), RPMD
(red) and QTB (green). On the left the results for γ = 0.045 fs−1, on the right γ = 0.3 fs−1
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Table A.1: Simulation set-up: temperatures (in K) and number of beads (P, for RPMD sim-
ulations) used for the 1-D Morse and the three CH4-model potentials.

T (K) P
1D Morse 800 32

900 16
1000 8
1100 8
1200 8

Potential A 3000 8
3500 8
4000 8
4500 8
5000 8

Potential B 1350 16
1500 8
1700 8
2000 4
2500 4

Potential C 800 16
1000 16
1200 8
1500 8

Table A.2: Rate constants in ps−1 for the 1D-Morse potential as a function of temperature
(in K).

Method 700 800 900 1000 1100 1200
Classical SoS 0.03 0.07 0.14 0.24 0.37 0.52
Quantum SoS 0.04 0.17 0.28 0.42 0.57 0.09
LMD (γ = 0.01) 0.0207 0.0456 0.0847 0.128 0.199 0.275
RPMD (γ = 0.01) 0.0293 0.0633 0.109 0.158 0.234 0.311
QTB (γ = 0.01) 0.756 0.819 0.849 0.924 0.965 1.17
LMD (γ = 0.045) 0.0207 0.0488 0.0968 0.168 0.258 0.379
RPMD (γ = 0.045) 0.0292 0.0644 0.121 0.1958 0.293 0.415
QTB (γ = 0.045) 0.845 0.989 1.109 1.18 1.336 1.441
LMD (γ = 0.3) 0.00669 0.0161 0.0312 0.0559 0.0914 0.123
RPMD (γ = 0.3) - 0.0209 0.0376 0.06538 0.100 0.143
QTB (γ = 0.3) 0.049 0.0796 0.108 0.143 0.2099 0.280
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Table A.3: Rate constants in ps−1 for the potential A as a function of temperature (in K)

Temperature LMD RPMD QTB
3000 K 0.00118 0.00129 0.00359
3500 K 0.0107 0.0120 0.0215
4000 K 0.0549 0.0581 0.0792
4500 K 0.175 0.178 0.233
5000 K 0.402 0.420 0.471

Table A.4: Rate constants in ps−1 for the potential B as a function of temperature.

Temperature LMD RPMD QTB
1350 K 0.000289 0.000495 0.0157
1500 K 0.00155 0.00255 -
1700 K 0.00859 0.0127 0.0721
2000 K 0.0600 0.0696 0.171
2500 K 0.397 0.472 0.748

Table A.5: Rate constants in ps−1 for the potential C at di�erent temperatures (in K)

Temperature LMD RPMD QTB
800 K 0.000125 0.000441 0.112
1000 K 0.00348 0.0086 0.212
1200 K 0.0336 0.0571 0.370
1500 K 0.271 0.351 0.986
1800 K 0.875 1.197 1.780
2000 K 1.595 1.901 -
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G�������C������� B��� P���

In this section we report the detailed values of the free energy with the associated uncer-
tainties, obtained for the double proton transfer in base pairs. These data correspond to the
graphs in Figure 4.8 in Chapter 4, where the free energies have been computed on a �ner
grid (36x36) using the Wham algorithm.

d2 / d1 -0.75 -0.45 -0.15 0.15 0.45 0.75

-0.75 0.0 2.2±0.2 7.3±0.3 15.1±0.3 22.3.7±0.3 25.3±0.4
-0.45 4.2±0.1 5.5±0.1 9.3±0.2 15.1±0.4 20.2±0.3 23.2±0.3
-0.15 12.26±0.05 10.93±0.03 12.91±0.06 15.9±0.2 19.4±0.3 21.8±0.1
0.15 20.4±0.1 18.2±0.1 17.1±0.2 17.96±0.08 19.5±0.1 19.49±0.06
0.45 26.3±0.1 23.28±0.08 20.5±0.1 18.6±0.1 18.5±0.2 16.9±0.1
0.75 29.3±0.97 26.4±0.1 23.2±0.2 20.2±0.2 17.7±0.2 15.0±0.1

Table B.1: Umbrella Sampling results for the LMD of isolated dimer: free energies and
associated uncertainties (in kcal/mol) as a function of d1 and d2 coordinates (in Å). The
colours correspond to the canonical (green) and tautomeric (blue) structures.
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d2 / d1 -0.75 -0.45 -0.15 0.15 0.45 0.75

-0.75 0.0 1.9±0.1 6.2±0.2 13.7±0.1 20.5±0.2 24.2±0.2
-0.45 3.5±0.3 4.42±0.04 7.48±0.07 18.0±0.1 20.2±0.3 21.63±0.09
-0.15 11.0±0.2 9.2±0.1 10.6±0.1 17.0±0.2 19.4±0.3 19.9±0.2
0.15 18.62 16.1±0.2 14.4±0.1 15.1±0.2 16.6±0.1 18.1±0.3
0.45 23.5 20.4±0.2 17.9±0.1 16.3±0.1 15.33±0.08 15.8±0.3
0.75 - 21.1 20.92±0.09 18.4±0.2 16.2±0.3 14.1±0.4

Table B.2: Umbrella Sampling results for the PIMD of isolated dimer: free energies and
associated uncertainties (in kcal/mol) as a function of d1 and d2 coordinates (in Å). The
colours correspond to the canonical (green) and tautomeric (blue) structures.

d2 / d1 -0.75 -0.45 -0.15 0.15 0.45 0.75

-0.75 0.0 2.87±0.07 10.3±0.2 18.7±0.3 26.0±0.3 29.2±0.2
-0.45 3.21±0.05 5.7±0.1 12.1 ±0.2 19.7±0.2 24.8±0.2 27.9±0.2
-0.15 9.9±0.2 11.2±0.2 14.9±0.3 21.0±0.4 25.8±0.2 28.4±0.2
0.15 13.6±0.4 14.4±0.2 17.4±0.3 20.6±0.2 23.8±0.3 26.1±0.2
0.45 14.2±0.6 14.4±0.1 16.7±0.2 19.3±0.2 21.3±0.2 22.2±0.3
0.75 14±1 13.8±0.3 15.9±0.3 18.1±0.4 19.1±0.2 19.1±0.3

Table B.3: Umbrella Sampling results for the LMD of 3BP-DNA model: free energies and
associated uncertainties (in kcal/mol) as a function of d1 and d2 coordinates (in Å). The
colours correspond to the canonical (green), tautomeric (blue), and intermediate (yellow)
structures.

d2/d1 -0.75 -0.45 -0.15 0.15 0.45 0.75

-0.75 0.0 2.9±0.1 10.12±0.08 17.9±0.2 24.8±0.5 28.4±0.4
-0.45 2.88±0.04 5.3±0.2 10.1 ±0.3 17.1±0.2 22.7±0.5 26.1±0.6
-0.15 8.2±0.1 8.9±0.3 12.5±0.3 17.9±0.1 22.5±0.2 25.6±0.3
0.15 12.3±0.2 11.8±0.4 14.6±0.4 18.1±0.2 21.2±0.1 23.8±0.2
0.45 14.7±0.5 13.7±0.7 15.7±0.6 17.9±0.5 19.7±0.2 21.2±0.1
0.75 17.1±0.7 15.9±0.8 17.8±0.9 19.6±0.8 19.0±0.3 19.1±0.2

Table B.4: Umbrella Sampling results for the PIMD of 3BP-DNAmodel: free energies and
associated uncertainties (in kcal/mol) as a function of d1 and d2 coordinates (in Å). The
colours correspond to the canonical (green), tautomeric (blue), and intermediate (yellow)
structures.
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Here we report the structure of a software developed during this thesis, in order to perform
molecular dynamics simulation with the inclusion of NQEs. This software was used for the
results shown in Chapter 4 and 5.

The language used is Fortran 90. A previous installation of the PLUMED [25] software
is mandatory.

The aim of this code is to perform Thermostatted Ring Polymer Molecular Dynamics
simulations, and it gives access to the basic observables from a set of trajectories. The forces
can be computed by an analytical potentials (morse, harmonic oscillator) or through an
external software, presently DFTB+ [24]. On the other hand, PLUMED software, called as a
library, allows to couple Path Integral based simulations with enhanced sampling methods.

In the Figure C.1 we show the �owchart of the code. In order to perform a set of simu-
lations, it is necessary to have the following �les in the directory:

1. Input �le: input.nml

2. Geometry: geometry.xyz

3. Input for the external softwares (DFTB+ and/or PLUMED)

Once the simulations are performed the output �les in the directory will be:

1. md_out

2. traj.xyz
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3. traj_beads.xyz

Each of those �les will be describe in detail in the next sections. After the software is
initialized, and the initial conditions are chosen, the information concerning the system
and the parameters used in the simulation will be printed out. Once the dynamics started,
the most computationally expensive loop in the algorithm, namely the computation of the
DFTB forces for the di�erent beads, can be run in parallel using OpenMP. In this way the
computational cost of the simulation is lower, for example in the case of 4 beads the cost
is lower by more than two times then the version not parallelized, as it can be seen in
Table C.1.

Method WallTime [Hours:Minutes:Seconds] Ratio [T-RPMD/Classic]
Classical 00:00:41 -

T-RPMD 4 Beads 00:02:44 4
T-RPMD 4 Beads, OPENMP 00:01:05 1.5

Table C.1: Here we report the wall clock time of simulations performed with the Classical,
T-RPMD and T-RPMD parallelized methods

Algorithm

The algorithm implemented for the integration of the T-RPMD equations of motion is
the BAOAB [178], as reported by Ceriotti and coworkers [75]. For a system with N atomic
degrees of freedom (labeled by the index i) and P replicas (labeled by j):

pji ← pji −Δt
∂V (qj1..q

j
N)

∂qji
(C.1)

�pki =
P�

j=1

pjiCj,k ; �qki =
P�

j=1
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Figure C.1: Flowchart. Step B: propagate momenta; Step A: propagate springs in normal
mode; Step O: Langevin thermostat.
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Where k runs over the normalmode index, ηki are normalized gaussian randomnumbers
and:

ck1 = e−Δtγk (C.7)

ck2 =
�

1− [ck1]
2 (C.8)

The Equation C.1 is the B step of the BAOAB algorithm, and involve the propagation
of the momenta in the cartesian coordinates. This is the most expensive passage in terms
of computational cost, since the forces must be calculated for each replicas of the system.
The schematic loop can be represented in this way:

do i b e a d s =1 , Pbeads

do m = 1 , 3N
q (m) = qbeads (m, i b e a d s )

enddo

i f ( p o t e n t i a l . eq . "DFTB " ) then
c a l l wr i t e_gen ( omp_flag , i b eads , a r r a y _ i n d e x _ l a b e l , q , 3N)
c a l l d f t b +( omp_flag , i b eads , path , output , pot , fxyz , 3N)

e l i f ( p o t e n t i a l . eq . "MORSE" ) then
c a l l a n a l y t i c a l _mo r s e ( pot , q , fxyz , 3N)

e l i f ( p o t e n t i a l . eq . "HO" ) then
c a l l a n a l y t i c a l _ h o ( pot , q , fxyz , 3N)

endif

po t _ a r r a y ( i b e a d s ) = pot

do m=1 , 3N
s t o r e _ f o r c e s (m, i b e a d s ) = f xyz (m)

enddo
enddo

A convenient way to propagate the springs of the Ring Polymer, is by doing it in normal
modes coordinates. This can be achieved thanks to the matrix Cj,k in Equation C.2, whose
elements are de�ned as:

128



C��� ��� A���������

Cj,k =





�
1/P , if k = 0

�
2/P cos(2πjk/P ), if 1 ≤ k ≤ P/2− 1

�
1/P (−1)j, if k = P/2

�
2/P sin(2πjk/P ), if P/2 + 1 ≤ k ≤ n− 1

(C.9)

Once positions and momenta are in the normal mode representation, the spring can
be propagated (Equation C.3). The last fundamental step of the algorithm is the step O,
represented by Equation C.4, where the Langevin thermostat is applied. While the friction
over the centroid is chosen arbitrarily, the friction coe�cient on the normal modes of the
P replicas are equal to their frequency according to the optimal friction criterion de�ned in
Ref. [75].

Input File

The input �le is as follows:

&c a l c u l a t i o n _ p a r am e t e r s
c a l c u l a t i o n _ t y p e = ’DFTB ’ / ’MORSE ’ / ’HO ’
p a t h _ c a l c u l a t i o n = ’ path ’
p lumed_ f l ag = . FALSE . / . TRUE .
r e s t a r t _ f l a g = . FALSE . / . TRUE .
omp_f lag = . FALSE . / . TRUE .

/

&gene r a l _ p a r ame t e r s
s a v e _ s t e p s = i n t e g e r # s t e p t o wa i t f o r s a v i n g
t empe ra tu r e = i n t e g e r # [K]
i s e e d = i n t e g e r # s e e d f o r t h e randomic number g e n e r a t o r
num_tra j = i n t e g e r # number o f t r a j e t o r i e s t o p e r f o rm
n _ r e p l i c a s = i n t e g e r # number o f r e p l i c a s o r b ead s

/

&e q u i l i b r a t i o n _ p a r am e t e r s
e q u i l i b r a t i o n _ f l a g = . FALSE . / . TRUE .
d t_eq= f l o a t # [ f s ]
s t ep_eq = i n t e g e r # number o f s t e p s f o r t h e e q u i l i b r a t i o n
gamma_eq= f l o a t # [ 1 / f s ]

/

&dynamic_parameters
dt_dyn= f l o a t # [ f s ]
s tep_dyn= i n t e g e r # number o f s t e p s f o r t h e dynamics
f lag_NVE = . FALSE . / . TRUE .
gamma_dyn= f l o a t # [ 1 / f s ]

/
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&wr i t i n g _ o p t i o n s :
p r i n t _ r e p l i c a s = . FALSE . / . TRUE . # p r i n t o r no t t h e p o s i t i o n o f t h e b ead s

/

Here we describe each keywords:

calculation_parameters:

1. calculation_type : the forces can be either calculated with the DFTB+ software or
analytical potentials (Morse or harmonic oscillator)

2. path_calculation : in the case of DFTB+, the path where is located the executable of
the software must be given in the input �le

3. plumed_�ag : in case of TRUE, the software PLUMED will be initialized, and the
working directory must contain the input �le for plumed, called "plumed.dat"

4. restart_�ag : in case of TRUE, theworking directorymust contain a�le called "pos_vel"
which contains the positions and momenta to restart the trajectory. The cartesian
coordinates must be speci�ed in Angstorm, while for momenta the Units of measure
must be (kg/mol)Å/fs2, with the format "X Y Z Px Py Pz". In case of FALSE, the velocity
will be generated by Maxwell Boltzmann distribution, and the cartesian coordinate
will be the ones given by the user by the xyz �le.

5. omp_�ag : TRUE or FALSE, it enables the option for running in parallel

general_parameters:
here are described the general keywords to run the simulation, such as the number of steps
to wait until saving, the temperature, a seed for the random number generator, the number
of trajetories to perform and the number of replicas or beads.

equilibrium_parameters and dynamic_parameters:
the same keywords are used for both equilibrium and dynamical simulations. If the "equi-
libration_�ag" is set to TRUE, two separate outputs will be generated: "traj_eq.xyz" and
"md_out_eq". These outputs represent the trajectory of length "step_eq" with a time-step
of "dt_eq" and a friction value of "gamma_eq" for the thermostat. Once this trajectory is �n-
ished, the �nal cartesian coordinates and momenta will be used to start a second trajectory,
the one on which we do the analysis. The "dynamic_parameters" are the ones associated to
the trajectory on which we will do the analysis. The option "�ag_NVE", if TRUE, disables
the step O in the BAOAB algorithm, and the trajectory is performed in the NVE ensemble.
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writing_options:
this will generate an additional output "traj_beads.xyz" which will contain positions and
momenta of all the beads.

Output �les

The output �le will consist in the "md_out" �le, "traj.xyz", "traj_beads.xyz", "pos_vel".
The format of the trajectory is xyz, and it contains also the momenta. In the case of
"traj_beads.xyz" the coordinate and momenta are written for all the beads. The "pos_vel"
�le contains the last coordinates andmomenta, that are useful to start a new trajectory with
them as initial conditions. The "md_out" �le contains the most basic observables from the
dynamics:

1. Kinetic Energy

2. Potential Energy

3. Total Hamiltonian (see Equation 2.17)

4. Virial Energy

All the values are in kcal/mol. The Total Hamiltonian within the RPMD formalism, is
useful to check the conservation of the total energy in the case of performing a trajectory
without a thermostat. On the other hand, the virial energy, is a quantity which describes
the total quantum energy of the system within the ring polymer formalism. For one atom,
and P beads:

Evirial =
PkBT

2
− 1

2P

P�

i=1

mω2
P (qi − qi+1)

2 +
1

P

P�

i=1

V (qi) (C.10)
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