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Abstract - Résumé

Short Abstract - English Version

Research around Robust Estimator in the context of 3D Stereo Reconstruction is compli-
cated by the difficulty to obtain reliable Ground Truth data. The literature around this
subject proposes a number of RanSaC like algorithms that are compared to each other us-
ing either fully artificial data or estimated real data which leads to unreliable conclusions.
Recent work focuses on methods that do not use user-defined thresholds which require
strong hypothesis on the data distribution. To efficiently compare this new methods we
propose a new benchmarking solution that will help leveraging recent work to improve
the State of the Art. Our first contribution is a novel data generation method that relies
on real data to obtain a realistic model and distribution of data points to create reliable
benchmarks with precise metrics. We then used this method to compare most recent
adaptative methods on a variety of Multi-View Stereo (MVS) and Structure-from-Motion
(SfM) problems and obtain insight in the capabilities of each algorithm. Using these con-
clusions, we tried to improve ColMap using user-set-threshold-free methods. Finally, we
provide the complete code base used to generate the benchmarks, with all tested methods
in a unified framework. This includes an implementation of an algorithm making use of
Likelihood Ratio Tests which had not been made available by the original authors.

Keywords: RanSaC, Semi-artificial dataset, Multi-View Stereo (MVS), Structure-from-
Motion, Perspective-from-n-Points (PnP), Benchmark, Image processing, 3D Reconstruc-
tion, ColMap
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Abstract - Résumé

Résumé court - Version Française

La recherche sur les estimateurs robustes pour la reconstruction stéréo 3D est compliquée
par la difficulté d’obtention de données précises pour évaluer les méthodes. La littérature
sur ce sujet propose un certain nombre d’algorithmes de type RanSaC qui sont comparés
les uns aux autres en utilisant soit des données entièrement artificielles, soit des données
réelles estimées ce qui conduit à des conclusions peu fiables. Les travaux récents se
concentrent sur les méthodes qui n’utilisent pas de seuils définis par l’utilisateur. Pour
comparer efficacement ces nouveaux algorithmes, nous proposons une nouvelle méthode
d’analyse. Notre première contribution est une méthode de génération de données qui
s’appuie sur des données réelles pour obtenir un modèle et une distribution réalistes des
données afin de créer des benchmark fiables. Nous avons ensuite utilisé cette méthode
pour comparer les algorithmes adaptatifs les plus récentes sur une variété de problèmes
de reconstruction stéréo et obtenir un aperçu des capacités de chaque algorithme. Sur la
base de cette analyse, nous avons essayé d’améliorer ColMap en utilisant des méthodes
adaptatives. Enfin, nous fournissons la base de code complète utilisée pour générer les
benchmarks, avec toutes les méthodes testées dans un framework unifié. Cela inclut une
implémentation d’un algorithme utilisant le Test de Rapport de Vraisemblance qui n’avait
pas été mise à disposition par les auteurs originaux.

Keywords: Perspective à partir de n Points (PnP), Stéréoscopie Multi-Vues (MVS),
Structure à partir d’un Mouvement, RanSaC, Jeux de données semi-artificielles, Bench-
mark, Traitement d’images, Reconstruction 3D, ColMap
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Résumé substantiel - Version Française

La reconstruction 3D à partir d’images, telle que la stéréoscopie multi-vues (MVS) et la
structure à partir du mouvement (SfM), consiste à récupérer des données de profondeur
à partir de données 2D, généralement en utilisant l’analyse géométrique d’une scène et en
reliant les images entre elles. En utilisant différents points de vue d’une même scène ou
d’un même objet, la profondeur de chaque point peut théoriquement être récupérée car
les rayons lumineux qui se réfléchissent sur le point suivent une trajectoire droite depuis le
point jusqu’à chaque position de la caméra et le point peut donc être trouvé à l’intersection
de ces rayons. C’est le cas d’un modèle de sténopé parfait, où chaque point est capturé
par un seul rayon lumineux qui aboutit à une position unique sur le capteur de la caméra.
Bien sûr, dans la réalité, le trajet de la lumière sera déformé par les lentilles situées devant
le capteur, des effets de quantification s’ajouteront aux pixels des images et un flou causé
par le mouvement ou une mauvaise mise au point apparaîtra. Des solutions ont été mises
au point pour tenir compte de ces différents problèmes et, aujourd’hui, la reconstruction
3D a de nombreuses applications industrielles, de la conservation du patrimoine à la
robotique et aux véhicules autopilotés. La reconstruction 3D est également à la base
d’autres tâches, comme la reconstruction de surfaces, la modélisation d’objets en 3D, le
suivi d’objets et la relocalisation.

Aussi intuitif que cela puisse paraître, la reconstruction nécessite l’exécution de
plusieurs tâches difficiles, tout d’abord la recherche de la position des caméras autour
de la scène afin de pouvoir tracer la position des points. Cela implique généralement
de trouver des correspondances entre les images et d’analyser la déformation entre elles
pour trouver les positions relatives les unes par rapport aux autres et enfin évaluer la
profondeur de la scène jusqu’à une certaine échelle. Si plus de deux images sont utilisées
pour la reconstruction, l’ajout d’images ajoutera des erreurs et entraînera une dérive qui
doit également être prise en compte. Ces défis ont été en grande partie relevés et des
logiciels tels que ColMap [79], Bundler [81] ou VisualSFM [96] offrent des solutions prêtes
à l’emploi pour effectuer la reconstruction 3D.

La plupart des travaux récents dans le domaine du traitement des images 3D utilisent
des réseaux neuronaux et l’apprentissage profond au lieu de méthodes plus traditionnelles.
Ils peuvent être utilisés pour remplacer des parties du pipeline, comme les caractéristiques
apprises ou l’estimation de la pose, ou pour effectuer une estimation de la profondeur de
bout en bout. Les méthodes d’apprentissage automatique s’avèrent efficaces dans une
grande variété de tâches, en particulier les plus complexes, comme la reconstruction d’une
vue unique, où la profondeur et les éléments non vus doivent être reconstruits à partir
d’une seule vue d’un objet, ou la génération de la vue suivante, où une nouvelle image 2D
est générée à partir de la scène et d’une nouvelle position de la caméra. Ces méthodes ont
également un impact considérable sur les problèmes 3D dérivés, comme la modélisation
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Abstract - Résumé

et la reconstruction d’objets en 3D.
Cependant, lorsque l’on utilise des méthodes d’apprentissage, la question des données

d’entraînement se pose et il est difficile d’obtenir des données 3D fiables. Tous les ensem-
bles de données dépendent d’une certaine forme d’estimation pour obtenir des données de
vérité terrain précises, soit en utilisant un capteur actif comme un LIDAR ou une caméra
de profondeur et en calibrant le résultat de leurs mesures sur l’ensemble de l’image, soit
en utilisant une estimation de pipeline traditionnelle comme vérité terrain. Cela rend les
algorithmes d’évaluation comparative complexes, car tous les résultats sont comparés à
des données partiellement incorrectes et introduisent un biais quant à la manière dont les
données ont été obtenues. Les méthodes d’apprentissage profond sont bien plus perfor-
mantes que les méthodes traditionnelles pour les tâches les plus complexes, mais en ce qui
concerne la reconstruction 3D de base, les méthodes traditionnelles comme ColMap sont
toujours très précises et plus robustes [21]. L’amélioration des méthodes traditionnelles
permettra d’obtenir des données d’entraînement plus précises qui pourraient contribuer à
l’apprentissage de meilleurs modèles. Ces méthodes permettent de reconstruire une image
à partir d’une seule vue d’un objet, de générer une nouvelle image en 2D à partir de la
scène et d’une nouvelle position de la caméra. Ces méthodes ont également un impact
considérable sur les problèmes 3D dérivés, comme la modélisation et la reconstruction
d’objets en 3D.

À la lumière de ces observations, nous examinons comment améliorer la méthode
traditionnelle. Le pipeline de reconstruction habituel se compose principalement de trois
éléments : la détection et la mise en correspondance de points caractéristique, l’estimation
robuste du modèle et les optimisations globales. Des travaux récents ont été réalisés
sur tous ces éléments mais, comme nous l’avons déjà dit, il est difficile de comparer les
nouvelles méthodes entre elles et la plupart des publications récentes se contredisent sur
les algorithmes les plus performants dans tel ou tel scénario, principalement parce qu’elles
utilisent des méthodes différentes pour générer leurs vérités de base et qu’elles utilisent
des mesures empiriques différentes. Cela est particulièrement vrai dans le domaine des
estimations robustes, où de nombreuses solutions nouvelles sont encore produites et sont
censées battre l’état de l’art précédent, mais ne sont pas intégrées dans des solutions
logicielles telles que ColMap.

Les améliorations les plus récentes autour des estimateurs robustes se concentrent
sur les méthodes adaptatives. Un estimateur robuste évalue un modèle en présence de
données aberrantes qui empêchent l’utilisation d’un estimateur global. Ces estimateurs
fournissent généralement en même temps un modèle estimé uniquement sur les données
valides et une classification des points de données comme valides ou aberrants en fonction
de leur distance par rapport au modèle et d’un seuil d’acceptation fixé par l’utilisateur.
La qualité d’un modèle dépend de la taille de son ensemble consensus : l’ensemble des
valeurs validant le modèle selon le seuil. La définition d’une valeur appropriée pour ce
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seuil nécessite des connaissances sur les données qui ne sont pas disponibles a priori
et implique soit une recherche itérative des paramètres, soit l’utilisation d’estimations
prudentes qui peuvent conduire à des performances médiocres. Pour éviter ces problèmes,
des méthodes adaptatives qui estiment simultanément la valeur du seuil et le modèle ont
été développées. Ces méthodes nécessitent une fonction objective différente qui permet
d’équilibrer le nombre de valeurs valides et la qualité du modèle, car la taille classique
de l’ensemble consensus ne peut pas être utilisée lorsque le seuil varie. Nous concentrons
notre étude sur ces méthodes et sur la manière de les utiliser pour améliorer le pipeline
classique.

Pour analyser efficacement les différentes méthodes disponibles dans la littérature,
nous avons créé une nouvelle méthode de génération de données. Il s’agit d’une méth-
ode semi-artificielle qui utilise des données réelles pour sélectionner un modèle et guider
la génération de valeurs aberrantes contrôlées afin d’éviter les lacunes des méthodes
d’évaluation habituelles. Les méthodes entièrement artificielles nécessitent un choix sur
la distribution du modèle, des points de données valides et des points de données aber-
rantes, ce qui peut avoir un impact considérable sur les performances des algorithmes, car
la plupart des méthodes adaptatives doivent faire des hypothèses sur la distribution des
données pour calculer une fonction objective différente de la taille de l’ensemble consensus.
Les données artificielles soulèvent également la question de la possibilité d’application des
résultats dans le monde réel. D’autre part, comme indiqué précédemment, tous les en-
sembles de données du monde réel présentent une certaine imprécision, qu’ils utilisent des
capteurs actifs ou non, car certains algorithmes doivent être exécutés et des estimations
doivent être faites pour créer l’ensemble de données, ce qui introduit une incertitude dans
le résultat. La plupart des comparaisons effectuées à l’aide de ces données reposent sur
une analyse qualitative et les résultats quantitatifs se concentrent sur l’obtention d’une
qualité de base. L’utilisation de données réelles empêche également la catégorisation des
scènes en fonction de leur difficulté, car il n’y a pas de mesure objective du défi présenté,
qui ne peut être analysé qu’a posteriori en regardant quelle configuration s’est avérée plus
difficile à traiter pour les algorithmes testés.

C’est pourquoi notre solution guide la méthode de génération à l’aide d’estimations
réelles, tout en créant une vérité de terrain artificielle sans incertitude quant aux valeurs
valides et aberrantes. Nous pouvons ensuite analyser les performances des méthodes
adaptatives en faisant varier l’ensemble de données de base, le bruit des valeurs valides
et le ratio des valeurs aberrantes pour créer des scènes de difficulté variable et révéler le
comportement intrinsèque des algorithmes si des tendances se dégagent dans toutes les
situations testées. Nous commençons par effectuer une analyse comparative des méth-
odes adaptatives sur des tâches à deux vues telles que l’estimation de l’homographie,
l’estimation de la matrice fondamentale et l’estimation de la matrice essentielle, ainsi que
le problème PnP. Cette analyse nous permet de mieux comprendre les méthodes adap-
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tatives et leurs performances afin d’exploiter les meilleures améliorations proposées dans
un pipeline de reconstruction complet. Nous avons choisi les algorithmes adaptatifs les
plus performants pour la tâche PnP et analysé leur impact sur l’ensemble du pipeline en
remplaçant le RanSaC classique de la tâche PnP dans le logiciel ColMap. Notre objectif
est d’améliorer la robustesse de ColMap en supprimant un hyper-paramètre et donc en
supprimant la nécessité d’adapter sa valeur aux tâches à accomplir, et potentiellement,
grâce à de meilleurs algorithmes RanSaC, de traiter des scènes plus difficiles que ColMap
ne parvient toujours pas à traiter correctement.

La première contribution que nous apportons est une nouvelle méthode d’évaluation
comparative qui s’appuie sur des données semi-artificielles. Afin d’obtenir des mesures
fiables des performances des algorithmes d’estimation robuste tout en disposant de don-
nées réalistes pouvant être étendues à des configurations réelles, nous avons développé
une nouvelle méthode de génération de données. Cette méthode repose sur l’utilisation
d’une estimation corrigée d’une scène réelle pour créer des valeurs valides et des valeurs
aberrantes fiables, mais toujours basées sur des éléments réels. Elle propose également une
nouvelle approche pour générer des valeurs aberrantes qui posent davantage de problèmes
à un estimateur robuste.

Afin de réaliser un jeu de données de test, n’importe quelle paire d’images ou ensemble
de correspondances 2D-3D obtenu d’une scène réelle peut être utilisé comme entrée. Un
modèle est alors estimé avec un algorithme de RanSaC quelconque (nous avons choisi AC-
RanSaC) et ce modèle, bien qu’imparfait, devient la Vérité Terrain (Ground Truth) semi-
artificielle de notre générateur. Les correspondances sont alors corrigées pour s’aligner
parfaitement avec ce model vérité terrain, il s’agit des ground truth inliers. Ainsi, les
algorithmes testés seront bel et bien évalués sur leur capacité à reproduire la vérité terrain
et non leur capacité à reproduire le résultat de l’estimation initiale. À partir de ce modèle
et des correspondances associées, il est possible de générer du bruit pour les valeurs
valides, inliers et des valeurs aberrantes, outliers pour étudier la robustesse des différentes
méthodes.

Le bruit associé aux inliers est dans la plupart des cas relativement proche d’un
bruit gaussien, néanmoins nos expériences n’ont pas révélé de différences notables de
comportement en utilisant un bruit uniforme. Utiliser un bruit uniforme permet d’avoir
plus de contrôle sur l’erreur maximale des inliers et leur variance. Du bruit est donc
généré pour les données inliers en choisissant un «côté» de la donnée d’entrée, soit une
des images pour des cas de géométrie à deux vues, soit le plan 2D pour le problème PnP,
et en s’éloignant du modèle vérité terrain, en choisissant une distance et direction aléatoire
pour des problèmes point à point et en choisissant une distance aléatoire et une direction
perpendiculaire à la ligne épipolaire pour les problèmes points à ligne. Le bruit maximal
généré devient alors le seuil entre données valides et données aberrantes qui sera utilisé
pour générer les données aberrantes.
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Pour pouvoir mesurer la capacité des algorithmes de RanSaC à discriminer les inliers
des outliers nous générons de vrais outliers, c’est à dire des points dont la distance au
modèle est supérieure aux niveaux de bruit de tous les inliers. En effet, un point qui
tomberait par hasard dans la zone d’acceptation du modèle, même si sémantiquement
aberrant, n’aurait pas de différence géométrique avec des données valides. Il faut donc
s’assurer d’une distance minimale des points aberrants. Lorsque les outliers sont générés
uniformément dans la région outlier du modèle, ceux-ci ne présentent que peu de défis aux
algorithmes d’estimation robuste. Pour palier ce problème nous utilisons une distribution
uniforme non pas dans l’espace des correspondances mais dans l’espace des erreurs. La
génération d’un point aberrant passe alors par la génération d’une erreur d’une valeur tirée
aléatoirement. Pour ce faire, un point est tiré de l’autre côté de la donnée par rapport aux
inliers, l’autre image ou l’espace 3D, et sa correspondance exacte via le modèle est calculée.
Ensuite, une perturbation est générée uniformément parmi les perturbations possibles
pour perturber la correspondance et assurer qu’elle soit aberrante. En contrôlant le niveau
de bruit des inliers et le pourcentage d’outliers on peut alors tester les performances des
algorithmes, notamment en calculant la précision et le rappel, en s’assurant de la fiabilité
des métriques.

En utilisant cette méthode de génération de données, nous évaluons les différentes
solutions de seuils adaptatifs qui éliminent la nécessité d’un seuil de valeurs aberrantes
/ valides défini par l’utilisateur. Ce benchmark permet de révéler le comportement et la
durée d’exécution des algorithmes en fonction des niveaux de bruit et de valeurs aber-
rantes avec une plus grande confiance qu’auparavant. Cela permet de déterminer quels
algorithmes fonctionnent le mieux dans quels scénarios et quels sont les seuils de perfor-
mance où un algorithme commencera à être moins performant que le RanSaC de base.
Les différents algorithmes testés sont MUSE [58], StaRSaC [13], A-Contrario RanSaC
(AC-RanSaC) [61], Likelihood Ratio Test (LRT) [17], Marginalizing Sample Consensus
(MAGSAC) [6] et deux variations Fast-AC-RanSaC[65] et MAGSAC++ [7]. Le bench-
mark a été lancé sur différentes tâches : l’estimation d’homographie, de matrice fon-
damentale, de matrice essentielle et le problème PnP. Afin de simultanément vérifier la
validité de la méthode de génération de données, de multiples scènes issues de différents
types de jeux de données ont été utilisées, en faisant à chaque fois varier le niveau de bruit
des inliers de 0 à 3 pixels par incrément de 0.1 et le pourcentage d’outliers de 0% à 90%
par incrément de 10% pour créer des tâches de complexité variée. Nous avons mesuré à
la fois la précision et le rappel des différents algorithmes ainsi que leur temps d’exécution.
La première observation que nous faisons est que StaRSaC est simplement trop lent par
rapport aux autres méthodes, et ne présente pas de suffisamment bonne performance pour
être utilisé de façon raisonnable. Ensuite, nous identifions que LRT, RanSaC et MUSE
sont les algorithmes les plus rapides tandis que MAGSAC, MAGSAC++ et Fast-AC-
RanSaC ont un temps de calcul intermédiaire et AC-RanSaC est le plus lent. Néanmoins,
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lorsque la complexité de la tâche augmente trop, LRT, RANSAC et MAGSAC voient
leur temps de calcul rapidement augmenter et dépasser parfois celui de AC-RanSaC.
En termes de performance, les algorithmes présentent systématiquement une meilleure
précision que leur rappel. Les algorithmes de MAGSAC, MAGSAC++ et AC-RanSaC
présentent des résultats très robustes, quelque soit le niveau de complexité de la tâche,
tandis que LRT et RanSaC voient leur performance diminuer significativement pour les
tâches complexes. MUSE présente des résultats stables mais inférieurs à la plupart des
autres algorithmes dans la plupart des situations. Ces observations se font quelque soit
le problème d’estimation ou le dataset utilisé pour générer les données. Il y a bien sûr
des variations dans les valeurs exactes de précision, rappel, et temps d’exécution mais les
tendances des différents algorithmes et les comparaisons entre algorithme restent glob-
alement inchangées et ne varient qu’en fonction des paramètres de génération, le niveau
de bruit des inliers et le pourcentage d’outliers. Cela montre que la méthode de généra-
tion de données semi-artificielles permet bel et bien de révéler les qualités intrinsèques
des algorithmes utilisés. La méthode de génération de données et le benchmark des algo-
rithmes de RanSaC adaptatifs ont été publiés dans [77], qui a ensuite été étendu dans un
journal [76].

La troisième contribution de cette thèse a été d’analyser l’impact de ces méthodes
RanSaC adaptatives sur le logiciel ColMap et d’analyser comment améliorer ses perfor-
mances en supprimant un hyper-paramètre et en gérant potentiellement des scènes plus
difficiles. Actuellement, ColMap utilise LO-RanSaC [16] et RanSaC [26] comme estima-
teurs robustes, tous deux dépendant d’un seuil de valeurs aberrantes / valides défini par
l’utilisateur qui est, par défaut, fixé à une valeur élevée. Au vu des performances sur le
problème PnP des algorithmes LRT, AC-RanSaC et Fast-AC-RanSaC, nous avons testé
leur impact sur la qualité, la rapidité et la robustesse de la reconstruction 3D avec le
pipeline complet. Le pipeline de génération des données est adapté à ColMap, le mod-
èle vérité terrain ainsi que les inliers bruités sont calculés de la même façon que pour
le problème PnP pour chaque image, et pour générer les outliers les chaînes de corre-
spondances entre les images sont modifiées. Pour les modifier, chaque paire d’images qui
constitue la chaîne est traitée indépendamment, à l’exception des deux images qui ser-
vent à initialiser la reconstruction, dont les correspondances sont laissées telles quelles.
Pour les autres paires, une des deux images est choisie et une portion de ses correspon-
dances 2D-2D est corrompue par des correspondances 2D-3D erronées, afin de créer des
outliers. Le bruit des inliers et les correspondances 2D-3D erronés sont créés de la même
façon que pour le problème PnP. Après avoir évalué les algorithmes choisis sur plusieurs
scènes contenant différents nombres d’image, différentes densités de prise de vue et avec
une variation du niveau de bruit des inliers de 0 à 6 pixels par incréments de 0.5 et le
pourcentage d’outliers de 0% à 90% par incrément de 10%, on observe que les méthodes
adaptatives présentent des performances similaires à LO-RanSaC utilisé par ColMap sauf
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dans les cas les plus complexes. Lorsque la qualité de la reconstruction diminue fortement,
et que toutes les images n’arrivent pas à être recalées, les algorithmes adaptatifs voient
leur performance diminuer moins rapidement que LO-RanSaC. En termes de temps de
calcul, aucune amélioration du temps passé à effectuer les tâches autres que RanSaC n’est
notée et donc le temps d’exécution global se retrouve légèrement augmenté vu que les al-
gorithmes adaptatifs sont plus longs que LO-RanSaC. Nous avons donc réussi à retirer un
hyper-paramètre de ColMap, le seuil d’acceptation de LO-RanSaC, ainsi qu’à augmenter
la robustesse dans les cas les plus complexes. Néanmoins, ces résultats ont peu d’impact
sur la qualité globale de la reconstruction dans la plupart des cas et il est nécessaire de
faire d’autres améliorations.

La dernière contribution est une analyse détaillée des améliorations proposées par [17]
pour réduire le temps d’exécution lors de l’utilisation du test du rapport de vraisemblance
comme objectif pour l’estimation robuste ainsi que leur impact sur la performance de la
classification, et une implémentation de LRT, qui n’était pas encore disponible publique-
ment, sur IPOL: [75]. L’algorithme LRT propose différentes solutions pour réduire le
temps de calcul, la première et principale étant l’interruption du calcul des erreurs des
points lorsque la probabilité de trouver suffisamment d’inliers diminue trop. Les dif-
férentes solutions sont testées en utilisant la même méthodologie que précédemment et
on observe bien l’effet voulu, dans la majorité des cas le temps de calcul diminue bien et
les performances sont similaires à celles sans les optimisations. Cela nous permet donc de
valider précisément l’impact des améliorations proposées.

Le premier chapitre de cette thèse présente la littérature autour du pipeline générique
de reconstruction 3D, ainsi que les problèmes de stéréoscopie. Il inclut une revue
des travaux relatifs aux estimateurs robustes, en particulier les algorithmes inspirés de
RanSaC qui sont décrits en détail car au centre de notre étude. Ce chapitre présente égale-
ment de manière succincte des éléments du pipeline tels que les méthodes pour obtenir
des correspondances 2D à partir d’images, ou les différents estimateurs de modèles pour
les problèmes inclus dans notre benchmark.

Le deuxième chapitre présente en détail notre nouvelle méthode de génération
d’ensembles de données semi-artificielles. Après avoir présenté les jeux de données ex-
istants utilisés dans la littérature, nous présentons notre méthode et la manière de
l’appliquer aux différents problèmes à deux vues ainsi qu’au problème PnP. L’application
de cette méthode au pipeline ColMap est laissée au chapitre 4, après une présentation
détaillée du pipeline.

Le troisième chapitre présente l’analyse comparative des méthodes RanSaC adapta-
tives pour l’estimation d’homographie, l’estimation des matrices fondamentales et essen-
tielles et pour le problème de la perspective à partir de n points (PnP). Il comprend une
variété de méthodes RanSaC adaptatives appliquées à diverses configurations générées à
partir de divers ensembles de données et d’un large éventail de paramètres de génération.
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Abstract - Résumé

Il permet de révéler les différences de performance et d’efficacité entre les algorithmes plus
clairement que les comparaisons précédentes disponibles.

Le quatrième et dernier chapitre présente notre travail d’utilisation des méthodes
adaptatives dans ColMap [79]. Il détaille le pipeline générique de reconstruction 3D et
les améliorations proposées par le cadre ColMap. Ensuite, l’adaptation de la méthode
de génération de jeux de données au cas multi-vues est présentée et les performances des
meilleurs algorithmes trouvés dans le chapitre 3 sont analysées.
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Introduction

3D reconstruction from images, such as Multi-view Stereo (MVS) and Structure-from-
Motion (SfM), consists in recovering depth data from 2D data, usually using geometric
analysis of a scene and relating images together. Using different view points a same scene,
or object, the depth of each point could theoretically be retrieved as light rays reflecting
on it follow a straight path from the point to each camera position and thus the point can
be found at the intersection of those. This is in the case of a perfect Pinhole Model, where
each point is captured by only one light ray that ends to a unique position on the camera
sensor. Of course, in reality, the light path will be deformed by the lenses in front of the
sensor, quantification effects will append on the pixels of the images and blur caused by
motion or out of focus will appear. Solutions have been developed to take those different
problems into account and nowadays 3D reconstruction has many industrial applications,
from heritage conservation to robotics and self-driving vehicles. 3D reconstruction is also
the basis of other tasks, like surface reconstruction, 3D object modelling, object tracking
and relocalisation.

As intuitive as it seems, performing the reconstruction requires to perform multiple
difficult tasks, first and foremost finding the position of the cameras around the scene to
be able to trace the position of the points. This usually implies finding correspondances
between images and analysing the deformation between them to find the relative positions
to each other and finally evaluate the depth of the scene up to a scale. If more than two
images are used for the reconstruction, adding images will add errors and will lead to drift
which also needs to be taken into account. Those challenges have been mostly answered
and softwares like ColMap, Bundler or VisualSFM offer off-the-shelf solutions to perform
3D reconstruction.

Most of the recent work in 3D image processing uses Neural Networks and Deep
Learning instead of more traditional methods. They can be used to replace parts of the
pipeline, like with learned features or pose estimation, or can be used to perform end-to-
end depth estimation. Machine Learning method prove efficient in a huge variety of tasks,
especially the more complex ones, like single view reconstruction where depth and unseen
elements have to be reconstructed from a single view of an object, next view generation,
where a novel 2D image is generated from the scene and a new camera position. These
methods also have a huge impact on derived 3D problems, like 3D object modelling and
reconstruction.

However, when using learning methods, the question of training data rises and reliable
3D data is hard to obtain. All datasets relie on some sort of estimation to get accurate
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ground truth data, either using an active sensor like a LIDAR or a depth camera and
calibrating the result of their measurements to the image set, or using a traditional pipeline
estimation as ground truth. This makes benchmarking algorithms complex, as all results
are compared to partially incorrect data and will introduce bias regarding how the data
was obtained. Deep Learning methods perform way better than traditional methods on
the most complex of tasks but regarding basic 3D reconstruction, traditional methods like
ColMap are still very accurate and more robust, [21]. Improving the traditional methods
will lead to more accurate training data which could help learning better models.

In light of these observations, we look at how to improve the traditional method. The
usual reconstruction pipeline is made mainly of three elements, the feature detection and
matching, the robust model estimation and the global optimisations. Recent work has
been made on all these elements but, as said earlier, comparing new methods together is
difficult and most recent publications contradict themselves on which algorithms perform
better on which scenarios, mostly because they use different methods to generate their
ground truths and use different empirical metrics. This is especially true in the domain of
robust estimations, where plenty of novel solutions are still produced and supposedly beat
the previous state-of-the-art but are not integrated in software solutions like ColMap.

Most recent improvements around Robust Estimators focus on adaptative methods.
A Robust Estimator evaluates a model in the presence of outlier data that prevents
the use of a global estimator. Those estimators usually provide at the same time a
model estimated only on inlier data and a classification of data point as inlier or outliers
depending on their distance to the model and a user set acceptance threshold. The
quality of a model will depend on the size of its consensus set, the set of inliers according
to the threshold. Defining an appropriate value for this threshold requires knowledge
about the data that is not available a priori and will either imply iterative research of
parameter or using conservative estimates that can lead to poor performance. To avoid
these problems, adaptative methods that estimate the inlier/outlier threshold and the
model simultaneously have been developed. These methods require a different objective
function that will balance the number of inliers with the quality of the model as the classic
size of consensus set cannot be used when the threshold varies. We focus our study on
those methods and how to use them to improve the classical pipeline.

To efficiently analyse the different methods available in the literature we create a novel
data generation method. This is a semi-artificial method that uses real data to select a
model and guide the generation of controlled inliers to avoid the shortcomings of usual
benchmarking methods. Fully artificial methods require a choice on the distribution of
model, inlier points and outliers points, which can have a huge impact on the performance
of algorithms as most adaptative methods have to make assumptions about the distri-
bution of data to compute an objective function different from the size of the consensus
set. Artificial data also raises the question of portability of the results to real world set-
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tings. On the other hand, as outlined earlier, all real world dataset introduce some sort
of inaccuracy, whether they use active sensors or not, as some algorithms have to be run
and estimations have to be made to create the dataset and thus uncertainty is introduced
in the result. Most comparison made using such data use a lot of qualitative analysis
and quantitative results focus on reaching a baseline quality. Using in-the-wild data also
prevents categorisation of scenes by difficulty as there is no objective measurement of
the challenge presented, it can only be analysed a posteriori by looking at which setup
proved more difficult to handle for the tested algorithms. This is why our solution guides
the generation method using real life estimation, while still creating an artificial ground
truth with no uncertainty about inliers and outliers. We can then analyse performance
of adaptative methods by varying the base dataset, the inlier noise and outlier ratio to
create settings of various difficulty and reveal the intrinsic behaviour of algorithms if
tendencies emerge in all tested situations. We first perform a benchmark of adaptative
methods on two-view tasks such as homography estimation, fundamental matrix estima-
tion and essential matrix estimation as well as the PnP problem. Using this analysis we
provide insight on adaptative methods and their performance to leverage the best pro-
posed improvements in a complete reconstruction pipeline. We chose the best performing
adaptative algorithms on the PnP task and analyse their impact on the whole pipeline
by replacing the classical RanSaC of the PnP task in the ColMap software. Our goal is
to improve the robustness of ColMap by removing an hyperparameter and thus removing
the need to tailor its value to the tasks at hand, and potentially, thanks to better RanSaC
algorithms, handle more challenging scenes that ColMap still fails to handle properly.

Contributions

The first contribution we make is a new benchmarking method that relies on semi-artificial
data. In order to have reliable measures of robust estimation algorithms performance while
still having realistic data which can be extended to real world setups we developed a novel
data generation method. This method relies on the use of a corrected estimation of an
in-the-wild scene to create inliers and outliers that can be trusted but still based on real
elements. It also proposes a new approach to generate outliers that are more challenging
to a Robust Estimator.

Using this benchmarking method, we evaluate the different adaptative threshold so-
lutions that remove the need for a hard user-set inlier/outlier threshold. This benchmark
allows to reveal behaviour and runtime of algorithms depending on noise, outlier levels
with greater confidence than earlier. This allows to determine which algorithms works best
in which scenarios and what are the performances cut-offs, where an algorithm will start
to perform worst than baseline RanSaC. Both those contributions have been published
in [77] which was then extended in a journal has yet to be released.

The third contribution of this thesis was to analyse the impact of those adaptative
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RanSaC methods to the ColMap software and analyse how to improve its performance by
removing an hyperparameter and potentially handle more challenging scenes. Currently,
ColMap uses LO-RanSaC [16] and RanSaC [26] as its Robust Estimators, both depending
on a user set inlier/outlier threshold that is, by default, set to a high value.

The final contribution is a detailed analysis of improvement proposed by [17] to reduce
runtime when using the likelihood ratio test as an objective for robust estimation and their
impact on classification performance, as well as an implementation for LRT, which was
not yet available publicly, published on IPOL: [75].

Manuscript Outline

The first chapter of this thesis presents literature around the generic 3D reconstruction
pipeline, as well as two-view stereo problems. It includes a review of related work in
Robust Estimator, especially RanSaC-inspired algorithms which are described in detail as
they are the main focus of our study. This chapter also presents succinctly over elements
of the pipeline such as methods to obtain 2D features from images, that is detectors,
descriptors and matchers, or the various model estimators for the problems included in
our benchmark.

The second chapter presents our novel semi-artificial dataset generation method in
details. After presenting the existing datasets used in the literature, we present our
method and how to apply it to the various two-view problem as well as the PnP problem.
The application of this method to the ColMap pipeline is left to chapter 4, after a detailed
presentation of the pipeline.

The third chapter presents the benchmark and analysis of the Adaptive RanSaC meth-
ods for homography estimation, fundamental and essential matrix estimation and for the
Perspective-from-n-Points (PnP) problem. It includes a variety of adaptative RanSaC
methods applied to various setups generated from various datasets and a wide range of
generation parameters. It helps to reveal performance and efficiency differences between
algorithms clearer than previous available comparisons.

The fourth and final chapter presents our work using Adaptative methods in ColMap
[79]. It details the generic 3D-reconstruction pipeline and the improvements proposed by
the ColMap framework. Then the adaptation of the dataset generation method to the
multi-view case is presented and the performances of the best algorithms found in chapter
3 are analysed.

Associated publications

This thesis lead to the following publications. First a publication in the IPOL jour-
nal: [75] which proposes a detailed analysis of the method proposed by [17] with a closer
look on the impact of early bailout and other optimisation strategies. This publication

16



includes an implementation of the method, in C++, as it was not yet available with a
demo made available at https://www.ipol.im/pub/art/2022/357/. The second publi-
cation, in the VISAPP conference, [77] presents our novel data generation method and
uses it to benchmark various adaptative RanSaC algorithms in a unified framework. It
focuses on two-view stereo tasks, homography estimation, fundamental matrix estima-
tion and essential matrix estimation, using RanSaC [26], AC-RanSaC [62, 61, 60] and
Fast-AC-RanSaC, LRT [17], MUSE [58] and MAGSAC [6]. This publication was ex-
tended for a special issue journal with increased details about the generation method
as well as an extended benchmark, adding MAGSAC++ [7] and a better version of
Fast-AC-RanSaC from [66]. The extension also includes the PnP task in the bench-
mark which offers different behaviours than two-view geometry problems. This paper
was published in [76]. Finally, we make available the C++ code used to generate data
and evaluate robust estimators, including all adaptative RanSaC implementations that
were used in the experiments in a unified pipeline for ease of comparison and reuse,
at https://github.com/ClementRiu/AdaptativeRanSaCBenchmark.git.
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Chapter 1

Related Work and Presentation of
the Traditional Reconstruction

Pipeline

A Multi-View Stereo (MVS) or Structure-from-Motion (SfM) pipeline requires multiple
steps which are all studied extensively, independently or jointly. The usual pipeline uses
the following steps:

1. Get features from the input data, like an image pair, using a feature detector,
descriptor, and matcher, see Section 1.3.

2. Use a Robust Estimator to estimate models from the features, see Section 1.4.

3. To estimate such a model, use an ad-hoc estimator, see Section 1.2.

4. Perform those tasks multiple times to add the multiple views and perform a global
adjustment of parameters, see Section 1.5.

How all these elements are linked together will be described in more details in Chapter 4.
Most of the algorithms and methods described here can have other applications than
image 3D-reconstruction but we focus on this aspect specifically here. Feature detector
and matches, model estimators and bundle adjustment methods are presented succinctly
here in order to give a good understanding of the data and questions handled in the rest
of the document. Robust estimators and most importantly Random Sample Consensus
(RanSaC) algorithms are the focus of most of the work presented here and so are detailed
the most extensively.

A lot of the recent efforts around 3D reconstruction are using machine learning meth-
ods and specifically neural networks, to perform different 3D tasks, like multi-view stereo
reconstruction [22, 86], 3D surface generation [11, 86] novel point of view generation [93]
and many more. In most fields state-of-the-art solutions are based on neural networks.
However, these methods require training data which usually comes from more traditional
3D reconstruction solutions but not from an accurate 3D measure. For example, one
of the most used dataset is MegaDepth [46], whose 3D ground truth is generated using
ColMap [79] a state-of-the-art software for multi-view stereo which still gives competitive
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Table 1.1: Notations used throughout this thesis.

Definition Description
|x| x ∈ 2S cardinal of set x
|x| x ∈ Rm×m determinant of matrix x
|x| x ∈ Rm norm of vector x
[n] n ∈ N interval of integers from 1 to n included
k ∈ N∗ dimension of data points
S = Rk space of data points
P ⊂ S set of input data points
p ∈ P a data point
ε ∈ [0, 1] ratio of inliers
d ∈ N∗ degrees of freedom of a model
Θ ⊂ Rd space of model parameters
θ ∈ Θ parameter vector of a model
s ∈ N∗ data sample size
Sa : Ω→ Ss random sampling function
F : Ss → 2Θ fitting function
Us : [0, 1]→ [0, 1] proba. of sampling inliers only
D : S ×Θ→ R point-model residual function
σ ∈ R inlier/outlier threshold or noise level
I : Θ× R→ 2P inlier selector function
I = I(θ, σ) ⊂ P set of model inliers
Q : 2P ×Θ→ R model quality function
Xgt variable X is relative to ground truth data
X∗ variable X is relative to the best model estimated

result in 3D reconstruction [21]. Other famous datasets for training data like Photo-
tourism and Building Rome in a Day [81, 2] use classic RanSaC procedures to generate
their data, or HPatches [5] which uses classical Difference of Gaussian, Hessian and Harris
detectors — see section 1.3 — to detect its patches. Others will use ColMap as a refer-
ence to beat or in their training process directly [22, 86, 93]. Despite all recent efforts in
machine learning solutions we believe it is still relevant to revisit classical methods and
how to improve them and offer both a better solution for industry and as a training tool,
so that neural networks can learn with better data.

1.1 Notations

The notations we use are summarised in Table 1.1. The notation |x| can be the cardinal
of a set, the determinant of a matrix or the norm of a vector, depending on the type of
x. [n] if n is an integer, is the interval of non negative integers less or equal to n.

The entry data of RanSaC algorithms are data points of dimension k. It can be k = 3
when fitting a plane in 3D space for example but the problems we consider in SfM and
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MVS require matches between two images, with k = 41 or for the PnP problem matches
between putative 3D points and an image, with k = 52. The set of data points p is P a
subset of S = Rk the ambiant space of the inputs.

The main interest of RanSaC algorithms is their capability to handle corrupted data.
Thus, usually P includes both inliers and outliers. Inliers are points that are actually
originating from the true model but that might not perfectly fit due to noise. The true
model being the actual geometric relation between the images or data points. Outliers are
points that have no relation to the model and can be the product from issues with data
acquisition or issues with the algorithms generating the matches. The true ratio of inliers
in the dataset is noted εgt ∈ [0, 1]. Usually, this ratio is unknown, and ε will generally
denote the inlier ratio of a given estimated model.

The underlying model is also unknown and models estimated through the pipeline
are parametrised in the parameter space Θ ⊂ Rd where d is the degree of freedom.
d = 8 for homographies, 7 for fundamental matrices because of rank 2 constraint, 5 for
essential matrices, and 6 for PnP. Models are estimated using an ad hoc fitting function, or
estimator, F . This function can yield more than one model depending on the algorithm,
see Section 1.2. Most RanSaC algorithm involve two estimators: one using the minimal
number of data points necessary to estimate a model and one using all available data —
usually a least square estimation. This second algorithm will be noted Ffull.

To estimate a model, usually a sample Ps is drawn from Ps, where s is the number
of points used to estimate the model. This sample is obtained with a sampler Sa. Most
algorithms use a uniform sampler, which gives probability Us(ε) = εs to draw an uncon-
taminated sample3; however some algorithms presented in this chapter use a non-uniform
sampler and try to improve the sampling strategy. s is usually set to the lowest possible
number of samples required to estimate a model in order to increase the aforementioned
probability of drawing an outlier-free sample.

Once a model θ is computed, it is possible to evaluate its quality using the function Q.
This function usually depends on the selected inliers of the model I = I(θ), where I is the
selector function. The classic selector of RanSaC I(θ, σ) = {p ∈ P : D(p, θ) ≤ σ} depends
on an inlier/outlier threshold σ and the computation of all residuals of data points p ∈ P
with error function D(p, θ). This error function is usually a reprojection error, that is the
distance between point and the projection of its matching point. Other errors computation
are possible like the Sampson error which approximates the Gold Standard error between
the noisy inliers and the supposed ground truth inlier. For standard RanSaC, the quality
function Q(I, θ) = |I| is the number of inliers. Symbol σ might also be used to represent

1Two 2D matches.
2One 2D match and one 3D match.
3A sample is said "uncontaminated" when it is composed exclusively of inliers. This probability is

not exact as we do sampling without replacement but the number of point is usually big enough to use
this definition.
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the noise level of inliers, which ideally would be the same as the inlier/outlier threshold.
The noise existing on inliers can have multiple sources, and be modelled through different
distributions. The most common source is acquisition or a previous algorithm imprecision.
Not all RanSaC methods need a hypothesis on the distribution but the most common ones
are Gaussian and uniform.

Among those different quantities, D, k, Θ and d vary with the model while F , Sa,
Q, I vary with the chosen algorithm. For example algorithms that would estimate σ
and θ simultaneously cannot use the same quality function Q as standard RanSaC where
the number of inliers increases with σ. Another usual parameter of the presented algo-
rithms are the confidence they have regarding some errors, like the type II error—the
risk of missing a valid solution because the algorithm ends to early, called premature
termination—for classic RanSaC.

We denote with subscripts gt a quantity relative to ground truth data, for example
the ground truth model θgt and with superscript ∗ quantities relative to the best model
estimated by an algorithm, like θ∗ for best model parameters.

Most functions and variables depend on a lot of elements, for example, the quality
function Q of an algorithm might usually depend on the dimension of the data k, the
dataset P , the computed threshold σ∗, the resulting model θ∗, the inlier set I(θ, σ) and
so on. For the sake of simplicity of notations, throughout this thesis, dependence of a
quantity to other parameters will only be marked when it is most relevant.

1.2 Model estimators

RanSaC algorithms can be used for many different problems and most different variations
of the RanSaC algorithm detailed in Section 1.4 just require two estimators, one with as
small a sample as possible and one with all available data points. The scope of this
thesis is Multi-View Stereo (MVS) and Structure-from-Motion (SfM) and specifically
homography estimation, fundamental and essential matrix estimation and the Perspective-
from-n-Points (PnP) problem. Only these problems will be described in this section.
Detailed explanation about multi-view problems can be found in [33].

The input data of the model estimators described in this section are 2D points match-
ing between two images for two view geometry problems and 2D points from an image to
3D points correspondences for the PnP problem. The 2D points have coordinates in the
image which are usually extracted using some algorithm described in Section 1.3. They
are usually extracted after some processing of the image to remove distorsion and other
effects from the camera to get closer to the ideal pinhole model. These processes are not
described here but they are extensively documented in different software frameworks like
OpenCV [9] and ColMap [79]. The pinhole model is an ideal model of a camera that
represents the camera aperture as a single point through which light will make a perfect,
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non blurry image on the image plane. This model implies that each world point visible
to the camera results in one precise point on the image which can then be used to com-
pute information about the camera setup. Most of the following computations are based
around this model which enables us to use decimal value for the position of points in pixel
space while still making sense in a geometric point of view.

All cameras have intrinsic parameters which are summed up in a calibration matrix K.
Those include the focal length of the camera, the principal point of the camera and a
potential skew s even though this last parameter is almost always zero. The focal length
f can either be the same for both direction or different along x and y axis, noted then
fx and fy. The principal point coordinates are written, in pixel coordinates, cx and cy.
They are the entries in K such that:

K =


fx s cx

0 fy cy

0 0 1

 . (1.1)

The intrinsic parameters of a camera can be found using a calibration technique. Many
different methods exist for this [33] but are not described here.

Points can be either expressed in image coordinates, in number of pixel with origin
(cx, cy) or be expressed in camera coordinates, expressed in external unit. When it matters
it would be differentiated by the subscript im or cam and for a point m: mim = Kmcam

in homogenous coordinates. In the following, unless specified, all pairs of images need not
be from cameras with the same intrinsic parameters.

1.2.1 Homography estimation

An homography results when two pictures are taken of a planar scene from different
viewpoints or from a non-planar scene with only a rotation around the optical center
of the camera. This transformation H conserves alignments and elements of a match
p = (m,m′) are related by: m′ = Hm. For a planar scene we have:

H = K
(
R1 R2 T

)
, (1.2)

and for a pure rotation and potential change of intrinsic parameters:

H = K ′RK−1, (1.3)

where R =
(
R1 R2 R3

)
is the rotation of the camera—where R1, R2 and R3 are the

columns of R—and T is the translation between optical centres. This matrix H is invert-
ible. Homography can be used to stitch images together and create mosaics for example,
see Figure 1.1.
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Figure 1.1: Two images acquired from the same viewpoint are related by an homography
(left and right) and the stitched image resulting from overlapping the transformed left
image on the right one (center). Images from [60].

To be precise, in pixel coordinates we have the relation:

λm′ = Hm, (1.4)

where λ is a unknown scale parameter. This yields:

m′ × (Hm) = 0, (1.5)

where × is the vector product. If we write H =


H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3

 and m = (x, y, 1)T ,

m′ = (x′, y′, 1)T we have:

x′

y′

1

×

H1,1x+H1,2y +H1,3

H2,1x+H2,2y +H2,3

H3,1x+H3,2y +H3,3

 =0 (1.6)


y′(H3,1x+H3,2y +H3,3)− (H2,1x+H2,2y +H2,3)
(H1,1x+H1,2y +H1,3)− x′(H3,1x+H3,2y +H3,3)
x′(H2,1x+H2,2y +H2,3)− y′(H1,1x+H1,2y +H1,3)

 =0, (1.7)

which means, if we write this as Aph with h the vector of the elements of H:

Ap =


0 0 0 −x −y −1 y′x y′y y′

x y 1 0 0 0 −x′x −x′y − x′

−y′x −y′y −y′ x′x x′y x′ 0 0 0

 . (1.8)

This means each match p yields two independent equations, as the last line of Ap is a linear
combination of the two first ones. We can either suppose H3,3 = 1 of fix |h| = 1, with h
the vector of elements of H, and this leaves 8 values to find so with 4 matches p1, p2, p3, p4
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we get 8 equations and can find H as solution of Ah = 0 where A = (Ap1 , Ap2 , Ap3 , Ap4)T .
This is the 4-points algorithm as only 4 data points are required to find an homography.
The associated non-minimal solver still uses equation (1.8) and tries to minimise algebraic
or Sampson error by finding H as close as possible to the kernel of A where A has twice
as many lines as there are data points.

1.2.2 Epipolar Geometry

When the movement of the camera between two pictures of a non-specific scene, that
is not planar, includes at least a translation, the resulting images are not linked by an
homography. Instead, the images are linked by a rotation R and a translation T .

Figure 1.2: Two images defined by optical center C and C ′, differentiated by translation
T and rotation R, observing a same point X. The light rays from this point create the
match p = (m,m′). The epipole e and e′ are, respectively, the image of C ′ and C in the
opposite image. The epipolar line l′ associated to m is the line of all possible positions of
X in the right image.

Given the two optical centres C and C ′ the light rays originating from an element and
creating a match p = (m,m′) leads to the three vectors Cm, C ′m′ and T being coplanar,
see figure 1.2, and thus the determinant:

|m T Rm′| = 0, (1.9)

which can be re-written as mTEm′ = 0 with E = T × R, with × the cross product of T
with each column of R, the vector product of the translation and the rotation which we
call the Essential Matrix, it was introduced in [51]. A matrix is an essential matrix if,
and only if, its singular values are 0 and 2 equal positive ones. The later condition can
be expressed as: 2EETE − tr(EET )E = 0 provided the first condition is satisfied. The
essential matrix can be computed if we have the points expressed in camera coordinate

25



Chapter 1 – Traditional Reconstruction Pipeline

frame:
mT
camEm

′
cam = 0, (1.10)

which requires knowing the calibration matrix of the two images. If they are unknown,
we compute the Fundamental matrix, introduced in [24] defined a F = K−TEK ′−1:

mT
imFm

′
im = 0. (1.11)

A matrix is a fundamental matrix if, and only if, it is rank 2.
The projection of the left optical centre in the right image is the left epipole which

satisfies eTF = 0 and e = KT and the projection of the right optical centre in the left
image is the right epipole: Fe′ = 0 and e′ = K ′R−1T . Each point m on the left image has
an associated line F Tm which is the epipolar line of m in the right image, and reciprocally
for a point m′ in the right image, the line Fm′ is the epipolar line associated to m′ in
the left image. For a given point, all points along its associated epipolar line can thus be
matches.

Given equations (1.9) and (1.11) if we write F =


F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

F3,1 F3,2 F3,3

 andm = (x, y, 1)T ,

m′ = (x′, y′, 1)T , using F as an example, we have:

mT
imFm

′
im = F1,1xx

′+F1,2xy
′+F1,3x+F2,1yx

′+F2,2yy
′+F2,3y+F3,1x+F3,2y+F3,3, (1.12)

which yields one equation using all 9 parameters of F . However, as F is defined up to
a scale, only 8 parameters are necessary to know F and thus, with 8 matches or more
F can be computed. This is the 8-point algorithm. Equation (1.12) defines the lines of
a matrix A so that ATmf = 0 with f the line vector of elements of F . To include the
indifferent scale, f has to be of norm 1 and we get f an eigenvector of ATA. Then, to
ensure the rank 2 constraint, the fundamental matrix is decomposed using an SVD and
the smallest eigenvalue is set to 0 before recomposing the fundamental matrix. However,
equation (1.12) clearly shows difference of scale for each parameter in A, as F1,1, F1,2, F2,1,
F2,2 are multiplied by two terms in pixel coordinates so in the 100 to 103 range, while F1,3,
F2,3, F3,1, F3,2 are multiplied by one term in this range and F3,3 is not multiplied. This
creates a badly conditioned matrix A and leads to instability. However, by transforming

the input, as proposed in [34], with a matrix N =


10−3 0 0

0 10−3 0
0 0 1

 as m̃ = Nm and

m̃′ = Nm′ we find F̃ which leads to F = N−1F̃N and reduce instability. To ensure the
constraints on the essential matrix, we decompose it, set the first two eigenvalues to 1
and the last one to 0, and then recompose it. As the scale is not important setting the
non-zero eigenvalues to 1 is not a problem.
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As presented in Section 1.4, if it is possible to use less points to compute a model,
it is preferable for the efficiency of the RanSaC procedure. A 7-point procedure can be
devised by using the same equation (1.12) to construct a 7×9 A matrix and find solutions
of Af = 0. Using an SVD, two independent vectors F̃1 and F̃2 of the kernel of A are used
to form a polynomial of degree 3 |F1 + xF2| where F1 and F2 are the 3× 3 matrix of the
elements of F̃1 and F̃2 respectively. Then, by using the fact that the determinant of F is
null, we solve:

|F1 + xF2| = 0 (1.13)

for x which gives 1 or 3 solutions and all can be tested to find the best one, see Section 1.4.
For essential matrix it is possible to derive a method using only 5 points, as it only

depends on 5 parameters — 3 for rotations, 3 for translations and 1 less for scale.
The 5-point method was introduced in [69]. Given 5 matches with equation (1.9), a
5 × 9 matrix A is constructed and four vectors X̃, Ỹ , Z̃, W̃ of its null space can be
found and written as 3 × 3 matrices X, Y, Z,W . Then we search the essential ma-
trix as E = xX + yY + zZ + wW with x, y, z, w scalars. As E can be estimated
up to as scale we define w = 1. Then, using the fact that |E| = 0 and 2EETE −
tr(EET )E = 0 we derive a polynomial system with all monomials of degree at most
3: x3, x2, x, y3, y2, y, z3, z2, z, x2y, xy2, x2z, y2z, xz2, yz2, xyz, xy, xz, yz. By combining the
lines of the system a tenth degree single variable polynomial can be obtained and its
roots will yield up to 10 solutions. See the original paper for details of the methods and
efficiency considerations.

1.2.3 Perspective-from-n-Points

Contrary to previous presented problems, the Perspective-from-n-Points (PnP) problem
is not a two-view geometry problem. Its goal is to determine the position and orientation
of a calibrated camera given a set of n 3D-2D correspondences. It can be used in many
applications, particularly in multi-view stereo reconstruction when adding new images to
an existing reconstruction. In order to do so, the 3D points in world coordinates must be
expressed in camera coordinates which will lead to finding the rotation and translation
associated with the camera. This final step can be done using an analysis of the covariance
matrix between the two coordinates systems [92].

There exists a quantity of options to solve this problem, including iterative [54, 1] and
non-iterative ones. Some only work for a specific value of n like P3P [23, 27, 28, 71, 25] or
more — P4P, P5P [36, 71, 27, 90]. Others will work for any value of n like [71, 43, 23, 4].
In the following, we only describe succinctly two solutions to this problem, the P3P case
and the EPNP [43] algorithm as they are used respectively as minimal and non-minimal
ones in RanSaC implementations, see 1.4.

The most studied element is the minimal case n = 3, called P3P, dating back to 1841
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according to [30] and improved many times over in multiple papers [23, 27, 28, 71, 25].
With only three points, up to four solutions are possible and how to choose between them
is described in the robust estimator Section 1.4. The basic method to solve this problem
is based around geometric conditions. Given c the center of projection of the camera
and the three data points {pi = (mi,m

p
i ), i ∈ [3]}, with mi a 3D world point and mp

i its
projection in the image, we can write the distance between two world points, for any two
points i and j:

D(mi,mj)2 = D(c,mi)2 +D(c,mj)2 − 2D(c,mi)D(c,mj) cos(A(micmj)) (1.14)

where D is the distance between two world points and A is the angle between three world
points, which is the same as the one using mp

i . Stacking equation (1.14) for all three
possible pair of points, yields the following system:

D(c,m1)2 +D(c,m2)2 − 2D(c,m1)D(c,m2) cos(A(m1cm2))−D(m1,m2)2 = 0
D(c,m1)2 +D(c,m3)2 − 2D(c,m1)D(c,m3) cos(A(m1cm3))−D(m1,m3)2 = 0
D(c,m2)2 +D(c,m3)2 − 2D(c,m2)D(c,m3) cos(A(m2cm3))−D(m2,m3)2 = 0

,

(1.15)
which can be solved by substituting D(c,m2) and D(c,m3) judiciously and finding a
fourth degree polynomial in D(c,m1)2 in [71] or in D(c,m2)

D(c,m1) in [27]. With some additional
constrains it is ensured that at most four solutions for D(c,m1),D(c,m2),D(c,m3) are
possible from the root of this polynomial.

EPnP [43] and its variants are the most used solutions currently. Its approach is based
around rewriting the 3D reference points in a new coordinate system based around four
— or three for planar setups — virtual control points. It then solves for the coordinates
of those control points in camera coordinate system instead of n depths, which will lead
to a solution in the kernel of a matrix M of size 2n× 12 — or 2n× 9 in the planar case.
Given the four control points {cj, j ∈ [4]}, each point {pi = (mi,m

p
i ), i ∈ [n]} can have

its 3D part mi be expressed as —in either camera or world coordinates, which we will
denote with respectively c and w:

mi =
4∑
j=1

αijcj, (1.16)

where αij are the homogenous barycentric coordinates. The authors propose to choose
the control point as the centre of the n points and using the principal directions of the
data to choose the 3 remaining points and form a basis. For the 2D projections mp

i we
have:

wi

mp
i

1

 = Kmc
i = K

4∑
j=1

αijc
c
j, (1.17)
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with K the calibration matrix and wi the projective parameter. Writing ccj = (xcj, ycj , zcj)T

and mp
i = (xpi , y

p
i )T we have a system:

wi


xpi

ypi

1

 =


fx s cx

0 fy cy

0 0 1


4∑
j=1

αij


xcj

ycj

zcj

 , (1.18)

with the unknown being the projective parameters and the camera coordinates of the
control points. The last row yields wi = ∑4

j=1 αijz
c
j and, when substituted in the first two

equations:

4∑
j=1

αijfxx
c
j + αijsy

c
j + αij(cx − xpi )zcj = 0 (1.19)

4∑
j=1

αijfyy
c
j + αij(cy − ypi )zcj = 0. (1.20)

Stacking equations (1.19) and (1.20) for all n points we get a system MX = 0 of size
2n × 12 in X = (cTj , j ∈ [4])T the 12 camera coordinates of the control points, where
the projection parameters do not appear anymore (and will be computed later). The
solution then lies within the kernel of M as a linear combination of the singular vectors
associated with the null singular values. At least 6 points are needed and with a perfect
camera model the null space should only have dimension one. However, in practice, and
with more points or with more realistic camera models, the dimension of the null space
can be bigger, up to 4 for the four control points or even bigger because of the noise
on data points. The computation of the parameters of the linear combination are based
around the distance between control points in camera versus world coordinates and small
quadratic equations can be derived to find the best parameters.

1.3 Feature detection and matching

In most two view geometry pipelines, the data points are matched between two images.
In order to obtain these matches, two problems need to be answered: finding a way to
detect and describe points of interest and then matching them together. An element of
an image that can matched is called a feature. The two kinds of algorithms, detectors
and matchers, can be independent or a single one that will perform both tasks. The
matches are usually represented simply by the two 2D coordinates of the points in the
two images but it can also have attached information about the points, like their pixel
greyscale or RGB value or the description of the points, depending on the usage. Indeed
besides two-view geometry that mostly relies on geometry — but not only, see PROSAC
in subsection 1.4.2 — other applications need to have information about the matches like
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image retrieval or object detection which use additional information to create some sort of
identification of the element to retrieve. A good detector and descriptor should be robust
to a wide variety of transformations in the pictures, both local and global. For example,
scale can be modified and a feature can span across a few pixels in an image and across
tens in the other. Orientation, illumination, and intrinsic parameters changes can also
have an impact. Issues that can impact mostly the matcher are partial occlusion, when
an object of an image is hidden in the other one, non-rigid scene, when something in the
scene moved in-between views and repetition, when an object can be present multiple
times, like the windows of a building or bricks. A few classical detectors and matchers
are quickly presented here to give a better understanding on what features will be used
in most of the rest of this thesis.

A natural idea when designing a detector is to use edges and corners, which is what
the Harris corner detector does [31]. This descriptor works in greyscale, where an edge
is defined as a rapid change in brightness, and a corner the intersection of two edges. To
detect those, the spatial derivative of the image is computed along both axis, Ix and Iy,
which gives a good approximation of the brightness changes. Then, the auto-correlation

matrix M =
 I2

x IxIy

IxIy I2
y

 is computed and smoothed with a Gaussian convolution. The

response of the resulting matrix |M | − ktr(M), with k an empirical constant, will be
selected if above a certain threshold. If the selected response is a local maxima in each
direction it is a corner, if only in one direction, an edge.

To remove the issues of scale, blob detection like the Laplacian of Gaussian (LoG) [50,
47, 49] works in the scale space representation. The image is convolved by a Gaussian
kernel g(x, y, t) = 1

2πte
−x

2+y2
2t and the Laplacian of the resulting scale space representation

L(x, y; t) = g(x, y, t)∗ I(x, y) can be used to detect blobs, which correspond to extrema of
radius

√
2t. To remove the dependency in scale, the Laplacian is computed as: t(Lxx+Lyy)

and extrema are detected. Other methods exists, like the Determinant of the Hessian
(DoH) [49] or the Difference of Gaussian (DoG) [48] which use similar solutions with
different operators.

Detecting objects of interest (blobs, points, lines, ...) in an image is not enough
as they need to be matched between images. In order to do so, features have to be
described, using a descriptor. A variety of algorithms exist for this, that can tackle local
or generic features. Histogram of Oriented Gradient (HOG) [19] for example works by
comparing gradient value and orientation between interest points. The gradient of the
image is decomposed in magnitude and angle and it can be compared. Binary Robust
Independent Elementary Features (BRIEF) [10] is based around comparing the intensity
of points in a patch. The descriptor is built as a bitstring of dimension 128, 256 or 512,
where each component’s value depends on a pair of locations (pi, pj) and whether intensity
in pi is lower than in pj. To match patches together, it is also required to have some sort
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of similarity measure. For example the Sum of Squared Differences, which for a patch of
size n in both images will compute the difference between corresponding pixel positions:
SSD(I1(x1, y1), I2(x2, y2), n) = ∑n

i=−n
∑n
j=−n(I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j))2. The

Zero-mean Normalised Cross-Correlation works similarly but with normalised images4

and replacing the squared difference by a product.
These are historic methods but for Multi-View Stereo and Structure-from-Motion the

most commonly used algorithms do detection, description and matching altogether. The
most used one is Scale-Invariant Feature Transform (SIFT) [52, 53]. This algorithm
proposes both a powerful detector and descriptor as well as a matching procedure. To
remove the impact of scale, this algorithm works in scale space. The image I is convolved
successively by a Gaussian kernel with standard deviation σ, G(x, y, σ), L(x, y, σ) =
G(x, y, σ) ∗ I(x, y) and for different resolutions. To get features of scale σ, the difference
of Gaussian is used as D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) with k a preset parameter.
Getting local extrema of D along both space and scale will yield points of interest at
different scales. To increase the quality of the features their coordinates are interpolated
using Taylor expansion to the quadratic terms at perturbation δ: D(p + δ) = D(p) +
∂DT

∂δ
(p)δ + 1

2δ
T ∂2D
∂δ2 (p)δ which, when looking for extrema, by setting its derivative to zero,

will give δ = −∂2D
∂δ2
−1(p)∂D

∂δ
(p). This δ is an offset that, if superior to 0.5 in at least one of

the dimensions means the feature point is one of the neighbours and this new feature is
taken into account. If less than 0.5 the location of the feature is shifted by this δ to get
a subpixel location. The value of |D(p + δ)| is then thresholded to remove low contrast
features: all features such that |D(p+ δ)| < 0.03 are discarded. To avoid instability along
edges, where a feature could easily shift position alongside an edge of the image, where all
points have similar behaviour, points are filtered using a process similar to Harris Edge

and Corner detectors [31]. The Hessian matrix H =
Dxx Dxy

Dxy Dyy

 is computed and the

ratio of its eigenvalues is examined, as r = tr(H)2

|H| which needs to be lower than a given
threshold. To remove sensibility to rotation, an orientation is attributed to each feature.
The magnitude m(x, y) and angle θ(x, y) of L(x, y, σ) is computed in a neighbourhood of
an interest point and the histogram of all pixel angles is computed by using magnitude
and a Gaussian-weighted window as weights for each angle. All angles with weight 80%
or more of the maximum weight will be selected so that all major orientations are taken
into account. All these steps can create duplicates, as a feature is now described as
x, y, σ, θ where two features can be identical except for scale or orientation. This provides
robustness to the detected points. To now attribute features to the points, a square
pixel zone is defined around each point, divided in a 4 × 4 grid where the histogram of
orientation is computed similarly as before, but with only 8 bins, compared to 36 for the

4For each patch, the mean value of the patch is subtracted, and then intensities are divided by the
standard deviation of the patch.
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orientation. The 16 8-bin histograms are concatenated in a 128-row vector that will form
the descriptor of the feature. To further strengthen robustness to brightness changes, the
vector is normalised, its coefficient thresholded at 0.2 and normalised again. At this point,
for each image we have a number of features, usually in the thousands, which need to be
matched. The proposed method is to compute Euclidean distance between all pairs.For
each feature on the left image, the feature on the right image with lowest distance is
selected if this distance is sufficiently low compared to the distance to the second best
feature. The comparison relies on a user set threshold. This avoids features that are
ambiguous. However, if this threshold is too high, it might remove a lot of features,
especially when there are repetitive patterns in an image. Other methods like Speeded
Up Robust Features (SURF) [8] exist, inspired by SIFT but using different solutions for
each step, however, SIFT remains one of the most used methods of feature detection,
description and matching today.

1.4 Robust fitting methods

Robust fitting methods try to answer the problem of finding the underlying model of a set
of data points corrupted both by inlier noise and outliers. Inlier noise represents the fact
that measurements are not exact and that the data points originating from the model do
not perfectly fit it. Outliers are data points that do not originate from the model. They
can be due to error in measurements or to the way data is gathered. Contrary to simple
fitting methods that just deal with inlier noise and the need to interpolate information
from available data points, robust fitting methods also need to be able to discriminate
inliers and outliers, like Random Sample Consensus (RanSaC) [26] or to find an estimator
that is not impacted by the presence of outliers, like Least Median of Squares (LMS) [44].

Traditional fitting methods like Least Square fitting can be arbitrarily disturbed by
one single outlier and so some have proposed methods like LMS to circumvent that. Such
methods use all the data but try to estimate a model without giving any individual data
point too much impact on the final result. Least Median of Square (LMS) [78] tries
to solve the impact of outliers by replacing the mean by the median in the least mean
square method. This creates non-linearity which is solved by drawing multiple samples
and finding the best one. Minimise the Probability of Randomness (MINPRAN) [84] uses
a similar method but tests the randomness of the fits to select the best one. However,
such algorithms typically fail if more than 50% of the data points are outliers and are not
very robust to noise.

RanSaC algorithms have a different approach to handle outliers. To avoid the risk of
computing a model using an outlier, they select the minimum number of data points to
generate an hypotetic model and then evaluate the quality of this model.
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1.4.1 The original RanSaC algorithm

The vanilla RanSaC algorithm, published in [26] and described in algorithm 1, proposes
an iterative approach to find the best fitting model. Instead of taking into account all
the data and optimising a model fitting them, like Least Square Means, a small random
subset Ps of sΘ data points is extracted from P and a model is computed from this
sample using a chosen fitting function FΘ. Then, the number of data points that lie
within a user-set threshold σ of the model is computed and if this number is greater
than the previous so-far-the-best model’s number of inliers, this model becomes the new
best model. Depending on the algorithm used to compute a model, a sample does not
necessary yield a unique set of parameters. Algorithms like the 7-point algorithm can yield
up to three different models for a given sample of seven data points and, occasionally,
some samples can yield no valid models when the data points are in singular positions
and produce a degenerate system of equations. Thus, for each candidate model θ, the set
of inliers is determined using the error to model function D, and all data points whose
error is less than σ are deemed inliers. The quality function Q of RanSaC is thus

Q(θ) = |I(θ, σ)| = |{p ∈ P : D(p, θ) ≤ σ}|. (1.21)

At the end of the procedure, a refined model is usually computed taking into account
all inliers I∗. Typically, a least squares minimisation is performed

Ffull(I∗) = θ̃ = arg min
θ

∑
p∈I∗

D(p, θ)2. (1.22)

This procedure can be iterated as many times as needed but a termination criterion
depending on a confidence pII that an outlier-free sample was drawn during computation
is proposed to end computation early. This optional feature of the algorithm consists
in a dynamic update of its maximum number of iterations T when a better model is
found. Initially, T is proportional to the time budget allocated to the algorithm. It is
then lowered during the procedure: the iterations stop when there is sufficient confidence
that at least one uncontaminated sample has been drawn. With ε the ratio of inliers, the
probability of drawing a sample contaminated by outliers is 1− εs. This event happening
for T samples has a probability (1 − εs)T . During T iterations we can get a confidence
level pII (usually 95% or 99%) that at least one uncontaminated sample was drawn:

pII = 1− (1− Us(ε))T = 1− (1− εs)T , (1.23)

where ε is computed from number of estimated inliers, which means we need at least:

T (ε) =
⌈

log(1− pII)
log(1− εs)

⌉
(1.24)
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Table 1.2: Evolution of minimum number of iteration T to get confidence level pII = 0.95
that an outlier-free sample is drawn, depending on the number of points used to estimate
a model s and inlier ratio ε. In bold, values used in our experiments.

k \ ε 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
2 2 3 5 7 11 18 32 74 299
3 3 5 8 13 23 46 110 373 2995
4 3 6 11 22 47 116 369 1871 3.0 · 104

5 4 8 17 38 95 292 1232 9361 3.0 · 105

6 4 10 24 63 191 730 4108 4.7 · 104 3.0 · 106

7 5 13 35 106 382 1827 1.4 · 104 2.3 · 105 3.0 · 107

8 6 17 51 177 766 4570 4.6 · 104 1.2 · 106 3.0 · 108

9 7 21 73 296 1533 1.1 · 104 1.5 · 105 5.9 · 106 3.0 · 109

10 7 27 105 494 3067 2.9 · 104 5.1 · 105 2.9 · 107 3.0 · 1010

15 13 84 630 6370 9.8 · 104 2.8 · 106 2.1 · 108 9.1 · 1010 3.0 · 1015

iterations to reach the desired confidence. The probability 1 − pII represents a type II
error: missing a good model because the number of tested samples is not sufficient. The
function T (ε) is decreasing, hence a higher inlier ratio means fewer iterations are needed.
The function T (s)ε,pII is increasing which is why model estimators FΘ which require the
smallest sample size sΘ are preferred. The value pII = 1 (100% confidence) requires an
infinite number of iterations in (1.24), in which case dynamic adaptation of T is disabled
and all possible samples of s points generate hypotheses. The evolution of T for a given
confidence level pII (here 0.95) is presented in table 1.2.

Algorithm 1: Regular RanSaC procedure [26]. Blue lines are optional. This
algorithm originates from paper [75].
parameter : Initial maximum number of iterations T , error tolerance

σ ≥ 0, confidence w.r.t type II error pII ∈ (0, 1)
input : Model class Θ ⊂ Rd, input data P ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P
1 θ∗ ← Null, I∗ ← ∅
2 for i = 1 . . . T do
3 Ps ← Rand(P , sΘ) // Draw random subset of sΘ data points
4 for θ ∈ FΘ(Ps) do // Estimate models from sample
5 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
6 if |I| > |I∗| then
7 θ∗ ← θ, I∗ ← I // Keep maximum consensus model
8 ε← |I|/|P| // Ratio of inliers
9 Compute T (ε) // Updated number of iterations (1.24)

10 if T > T (ε) then T ← T (ε)
11 θ∗ ← Ffull(I∗)
12 return (θ∗, I∗)

A simple example of RanSaC can be seen in line estimation in a 2D plane. The true
model is the line y = −0.608x− 0.138 and P consists of 15 000 points in S = [−1, 1]2, 10

34



1.4. Robust fitting methods

000 of which are generated from the model, plus some centred Gaussian noise of standard
deviation 0.1 and the remaining 5000 are uniformly drawn in S, see Figure 1.3.

Figure 1.3: 2D data to illustrate RanSaC algorithm. On the left, labelled data: the true
model is the dark blue line, inlier points are marked in light blue and outliers in red. On
the right: unlabelled data as input of the RanSaC algorithm.

The data is fed unlabelled to the RanSaC algorithm which will iteratively choose
s = 2 points p1 = (x1, y1) and p2 = (x2, y2), the minimum number to estimate a line,
compute the associated model using the estimator F(p1, p2) =

(
y2−y1
x2−x1

, y1 − x1 × y2−y1
x2−x1

)
.

This procedure is iterated until a satisfactory number of inliers is found using a threshold
σ = 0.1. Figure 1.4 and 1.5 shows different iterations of the algorithm.

Here, after 28 iterations the model has confidence pII = 0.99 that an outlier free sample
was drawn, and stops. The best model estimated was at iteration 28. The number of inliers
is 7,599 out of 10,000, with model y = −0.656x− 0.091 instead of y = −0.608x− 0.138.
This ratio of inliers yields a stopping iteration of T ( 7599

15000) = 16. We can see on Figure 1.6
that the estimated model is slightly skewed as the inlier/outlier threshold σ = 0.1 is
too small to encompass all inliers — which are distributed around the model following
a Gaussian distribution of standard deviation σ and thus can end further than 0.1 from
the model with 36% probability. We also see that points that were generated as outliers
have fallen by chance inside the inlier region and thus cannot be distinguished from actual
inliers.

In this example the data provided is quite easy to handle and the value of the chosen
inlier/outlier threshold is adapted to the noise level of the data. Yet, the chosen sample,
even though outlier free, gives a slightly skewed model as an inlier sample can still not
represent perfectly the data due to the noise. Moreover, with data including more out-
liers than inliers, or different distribution of inliers and outliers it can be challenging for
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Figure 1.4: Iterations of RanSaC algorithm. The two selected data points are marked
by dark blue crosses, the computed model by the dark blue line, the points lying within
0.1 of the model as putative inliers in light blue and putative outliers in red. Iteration
number, number of inliers and model parameters are above each graph.

the basic RanSaC to find a valid model, especially if no information on the appropriate
threshold is available.

Since its introduction, many improvements of RanSaC have been proposed to tackle
its shortcomings. Some change the sampler Sa based on some hypothesis about inlier
distribution, others add optimisation or verification steps to improve the quality of the
estimated models. Several more recent methods try to remove the user set threshold in
order to tackle unknown data more easily. This requires a change in quality function
Q as the inlier number depends on this threshold. The latter methods are presented in
the next subsections. Some methods are tailored to answer two-view geometry problems
while other remain general in their approach.
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1.4. Robust fitting methods

Figure 1.5: Iterations of RanSaC algorithm. The two selected data points are marked
by dark blue crosses, the computed model by the dark blue line, the points lying within
0.1 of the model as putative inliers in light blue and putative outliers in red. Iteration
number, number of inliers and model parameters are above each graph.

1.4.2 Early improvements of RanSaC

Improvements on the RanSaC algorithm that still use a threshold propose different so-
lutions depending on the identified shortcomings. Some will propose improvements of
the model estimation to increase the final model quality. Locally Optimized RanSaC
(LO-RanSaC) [16] and its improved version in [42] is based on the observation that a
sample containing only inliers might still produce a subpar model: as RanSaC uses min-
imal samples to estimate a model it is very sensitive to inlier noise. It is presented in
algorithm 2. The authors claim that this leads to an increase in the required number of
iterations needed to obtain a satisfactory model and a diminution in the quality of the
model. To solve this, they propose different local optimisations steps when a new best
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Figure 1.6: Best model estimated by the RanSaC algorithm. The two selected data points
are marked by dark blue crosses, the computed model by the dark blue line, the points
lying within 0.1 of the model as putative inliers in light blue and putative outliers in red.

model is found.

1. The first proposed option is a simple estimation using all putative inliers within a
threshold σ with the global estimator Ffull.

2. The second option is an iterative version of the first one, by increasing the threshold
by a factor K, Kσ, and iteratively estimating a model and reducing the threshold
until it reaches σ.

3. The third option is to use a RanSaC estimation with a non-minimal estimator
where the size of a sample is adapted to the problem — for epipolar geometry
s = min( |I|2 , 14) and for homography estimation s = min( |I|2 , 12).

4. The last method is a combination of the second and third.

In their experiments the fourth method gives the best results and improves runtime in
most cases.

Other methods focus on the sampling strategy based on some assumption about the
data. N-Adjacent Points Sample Consensus (NAPSAC) [89] is based around the assump-
tion that inliers are more likely to be found closer to each other. The assumptions are
that outlier data is uniformly distributed in the space while inlier data exist in cluster
with a certain range. In order to do so, the uniform sampler of RanSaC is replaced by
the following procedure:
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Algorithm 2: LO-RANSAC procedure [16]. Blue lines are optional. Red lines
are changes from RanSaC (algorithm 1).
parameter : Initial maximum number of iterations T , error tolerance

σ ≥ 0, confidence w.r.t type II error pII ∈ (0, 1)
input : Model class Θ ⊂ Rd, input data P ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P
1 θ∗ ← Null, I∗ ← ∅
2 for i = 1 . . . T do
3 Ps ← Rand(P , sΘ) // Draw random subset of sΘ data points
4 for θ ∈ FΘ(Ps) do // Estimate models from sample
5 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
6 if |I| > |I∗| then
7 Compute θ̂ and Î from θ // LO-RANSAC optimisation, Algorithm

3, 4, 5 or 6
8 θ∗ ← θ̂, I∗ ← Î // Keep maximum consensus model
9 ε← |I|/|P| // Ratio of inliers

10 Compute T (ε) // Updated number of iterations (1.24)
11 if T > T (ε) then T ← T (ε)
12 return (θ∗, I∗)

Algorithm 3: LO-RANSAC first optimisation method [16].
parameter : Error tolerance σ ≥ 0
input : Model class Θ ⊂ Rd, best-so-far inlier set I ⊂ RD

output : Model parameters θ̂ ∈ Θ, inliers Î ⊂ P
1 θ̂ ← Ffull(I)
2 Î ← I(θ̂, σ)
3 return (θ̂, Î)

Algorithm 4: LO-RANSAC second optimisation method [16].
parameter : Error tolerance σ ≥ 0, increase parameter K
input : Model class Θ ⊂ Rd, best-so-far model θ
output : Model parameters θ̂ ∈ Θ, inliers Î ⊂ P

1 θ̂ ← θ
2 for i = K . . . 1 do
3 Î ← I(θ̂, i · σ)
4 θ̂ ← Ffull(Î)
5 Î ← I(θ̂, σ)
6 return (θ̂, Î)
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Algorithm 5: LO-RANSAC third optimisation method [16].
parameter : Error tolerance σ ≥ 0, increase parameter K
input : Model class Θ ⊂ Rd, best-so-far model θ
output : Model parameters θ̂ ∈ Θ, inliers Î ⊂ P

1 (θ̂, Î)← RanSaC on I with non-minimal sample and threshold σ
// Algorithm 1 with different s

2 return (θ̂, Î)

Algorithm 6: LO-RANSAC fourth optimisation method [16].
parameter : Error tolerance σ ≥ 0, increase parameter K
input : Model class Θ ⊂ Rd, best-so-far model θ
output : Model parameters θ̂ ∈ Θ, inliers Î ⊂ P

1 Î ← I(θ̂, K · σ)
2 for i = K . . . 1 do
3 (θ̂, Î)← RanSaC on Î with non-minimal sample and threshold i · σ

// Algorithm 1 with different s
4

5 Î ← I(θ̂, σ)
6 return (θ̂, Î)

1. Choosing a random point p0 uniformly among all possible ones.

2. Finding all points within a hypersphere Sx0 of radius r of point p0.

3. Reject point p0 if there is less points in Sx0 than s.

4. Uniformly sample s− 1 points from Sx0 .

The rest of the algorithm is kept the same as normal RanSaC. It is presented in algo-
rithm 7. The value of the radius r depends on the dataset and is user set.

Progressive Sample Consensus (PROSAC) [14] leverages the similarity measure (see
Section 1.3) of the matches to sample data points in a more efficient order. This means
that PROSAC can only be used when dealing with data points with such a measure,
which is the case for two-view geometry problems. It is presented in algorithm 8. In order
to reorder data samples without relying too much on the link between similarity of a
match p and probability that this match is indeed an inlier, the method assumes that the
ordering of data points in similarity measure is correlated to their ordering in probability
of being inlier. Given all points p(i) ∈ P ordered using this similarity measure, increasing
subsets of potential samples Un of size n ∈ [s, T ] are created where T is the termination
criterion. A counter t is setup so that, at each iteration, either the sample is drawn from
Un at random if t > T ′n or contains s− 1 points from Un−1 and p(n). t = T ′n also dictates
when to add pn+1 to increase Un. T ′n is computed as T ′s = 1; T ′n+1 = T ′n + dTn+1 − Tne
where Tn = T

(ns)
(|P|s ) is the expected number of samples among all samples drawn by normal
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Algorithm 7: NAPSAC procedure [89]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : Initial maximum number of iterations T , error tolerance

σ ≥ 0, radius r of hypersphere, confidence w.r.t type II error
pII ∈ (0, 1)

input : Model class Θ ⊂ Rd, input data P ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P
1 θ∗ ← Null, I∗ ← ∅
2 for i = 1 . . . T do
3 p0 ← Rand(P , 1) // Draw random initial data point
4 Ps−1 ← Rand(p0, s− 1, r) // Draw s− 1 point uniformly in a sphere of

radius r around p0
5 Ps ← Ps−1 ∪ {p0}
6 for θ ∈ FΘ(Ps) do // Estimate models from sample
7 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
8 if |I| > |I∗| then
9 θ∗ ← θ, I∗ ← I // Keep maximum consensus model

10 ε← |I|/|P| // Ratio of inliers
11 Compute T (ε) // Updated number of iterations (1.24)
12 if T > T (ε) then T ← T (ε)
13 return (θ∗, I∗)

RanSaC sampling that contain only points from Un. This ensures that each subset Un
is explored enough while converging towards normal RanSaC sampling when no good
sample is found early. PROSAC also adds a new termination criterion, in addition to
the classic RanSaC one, see equation (1.24) that adds a non-randomness condition to
the possible max number of iteration T . This condition requires the number of inliers
of UT to be greater than the expected number of inliers given a binomial distribution of
probability of a point being randomly inlier given an incorrect model.

GroupSAC [68] authors make the assumption that there exist a clustering of data
points that will classify them as either high inlier clusters or low inlier clusters. A sample
will then be drawn among a certain subset of the total number of groups ng, called
a configuration, ensuring that every group contributes at least one data point. It is
presented in algorithm 9. They model the repartition as the number of inliers in a group
G as following a mixture of binomial distributions respectively of parameters (|G|, ε) and
(|G|, 0). This leads to the conclusion that the fewer groups used to draw a sample, the
higher the probability of this sample to be containing only inliers (see corollary 2.1 and
equation (8) of [68]) and that the bigger the groups, the higher this probability as well (see
equation (17) of [68]). This allows to sort configurations according to how many groups
they contain and how many data points their groups contain which should reflect the
likeliness of the configuration to yield an inlier only sample. Following this ordering and
using the same logic as PROSAC, multiple samples are drawn from each configurations
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Algorithm 8: PROSAC procedure [14]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : Error tolerance σ ≥ 0, confidence w.r.t type II error

pII ∈ (0, 1), confidence w.r.t. type I error pI
input : Model class Θ ⊂ Rd, input data P̃ ⊂ RD sorted by similarity
output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P

1 θ∗ ← Null, I∗ ← ∅
2 t← 0, n← s, T ← |P|
3 T ′n ← 1
4 Un ← {pi, i ∈ [s− 1], pi ∈ P̃} // Initialise sample set with s− 1 best

matches
5 for i = 1 . . . T do
6 t← t+ 1
7 if t = T ′n and n < T then
8 n← n+ 1
9 Un ← Un ∪ {pn} // If enough draws in Un, add next point.

10 if T ′n < t then // Sample pn and other points from Un−1 to get
enough samples containing pn.

11 Ps−1 ← Rand(Un, s− 1) // Draw s− 1 point uniformly in Un−1
12 Ps ← Ps−1 ∪ {pn}
13 else // Enough samples contain pn to draw randomly.
14 Ps ← Rand(Un, s) // Draw s point uniformly in Us
15 for θ ∈ FΘ(Ps) do // Estimate models from sample
16 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
17 if |I| > |I∗| then
18 θ∗ ← θ, I∗ ← I // Keep maximum consensus model
19 ε← |I|/|P| // Ratio of inliers
20 Compute T (ε) // Updated number of iterations with

inequation (9) and (12) of [14].
21 if T > T (ε) then T ← T (ε)
22 return (θ∗, I∗)
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until a certain confidence is reached that the next configuration can be explored without
missing a valid sample. The number of samples drawn from a configuration C = {Gi},
TC is proportional to the number of samples it is possible to create by drawing at least
one point from each group Gi divided by the number of possible samples to draw from
all points,

(
|P|
s

)
. The global termination criterion is adapted to include a non-randomness

confidence that a random outlier sample does not yield by chance a high number of inliers
and to compute the number of iterations using only the inlier ratio compared to the
current configuration and not all data points. Different clustering solutions can be used,
the authors tested the performance of optical flow and image segmentation for example.

Algorithm 9: GroupSAC procedure [68]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : Error tolerance σ ≥ 0, confidence w.r.t type II error

pII ∈ (0, 1), confidence w.r.t. type I error pI
input : Model class Θ ⊂ Rd, sorted configurations

{Cn = {Gu, |Gu| = n}, n ∈ [1,min(s, ng)]}
output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P

1 θ∗ ← Null, I∗ ← ∅
2 n← 1
3 for i = 1 . . . T do
4 if i = TCn then n← n+ 1
5 // Compute TCn with equation (11) and (13) of [68]
6 Ps ← Rand(Cn, s) // Sample s data points from Cn so that each

group of Cn contributes at least one point.
7 for θ ∈ FΘ(Ps) do // Estimate models from sample
8 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
9 if |I| > |I∗| then

10 θ∗ ← θ, I∗ ← I // Keep maximum consensus model
11 ε← |I|/|P| // Ratio of inliers
12 Compute T (εGn) // Updated number of iterations with

inequation (15) of [68].
13 if T > T (ε) then T ← T (ε)
14 return (θ∗, I∗)

Finally some methods include some tests of validity about the estimated model to
increase efficiency or the quality of the resulting model. It might be a simple geometric
verification that all data points verify some real world constraint like lying in front of the
camera for computer imaging or a chirality constraint. Such a test can happen before
the estimation of the quality of the model, to discard early incorrect models and avoid
computing errors or after to increase the quality of the final model. DegenSac [15] is made
to avoid epipolar geometries that are based on homographies on a dominant plane of the
scene. It is presented in algorithm 10. The authors propose a test to check whether the
seven correspondences used to compute a fundamental matrix, see Subsection 1.2.2, are
actually consistent with a homography. A homographyH is consistent with a fundamental

43



Chapter 1 – Traditional Reconstruction Pipeline

matrix F if all points satisfying the homography constraint x′ = Hx, see equation (1.4),
also satisfy the epipolar constraint x′TFx = 0. The authors prove that if five, six or seven
correspondences used to estimate a fundamental matrix are homography consistent then
the fundamental matrix is H-degenerate. To test this, three points {pi = (xi, x′i), i ∈
[1, 3]} are used to compute the homography associated to F , see equation (4) of [15],
and test 2 other points of the sample. Only five homographies need to be tested out of
all the combinations possible from the seven points as some will be duplicates, so the
author only test those using points of the sample with index PH = {Ps[1], Ps[2], Ps[3]},
{Ps[4], Ps[5], Ps[6]}, {Ps[1], Ps[2], Ps[7]}, {Ps[4], Ps[5], Ps[7]} or {Ps[3], Ps[6], Ps[7]}. This
test is performed after estimating whether a model is the new so-far-the-best model and
if a homography consistent with the current model is found, a specific estimator, called
the plane-and-parallax algorithm [37] is used to compute a new fundamental matrix. If
this new fundamental matrix is still better than the so-far-the-best model, then it is kept.
It is also possible to compute the best homography to find the dominant plane of the
image by computing the inlier set of each homography found and storing its support.

The previously presented algorithms focus on one identified issue and address this spe-
cific problem. However, Universal RanSaC (USAC) [73] proposes a unified algorithm that
combines the best of breed to get an improved algorithm. It is presented in algorithm 11.
For a long time, USAC was considered state-of-the-art and is still used as baseline for
some recent papers like [17, 39]. Many combinations were explored to develop USAC but
the final algorithm uses the following methods:

1. PROSAC [14] sampling.

2. Model dependent sample check, like chirality.

3. Estimation of the model.

4. Model check with the SPRT test [57].

5. DegenSac [15] test when applicable.

6. LO-RanSaC [16] optimisation with both inner RanSaC and iterative least-square.

The SPRT test is based on checking during computation whether the points are validating
a good or a bad model. The termination criterion is adapted to take into account the non-
randomness and confidence like PROSAC but also risk of rejecting good models during
post evaluation checks.

[6, 7] authors proposed another improvement, called VSAC [39]. It is meant as an
aggregate of other recent algorithms to get the best of each of them, hence the name
derived from USAC [73] and is supposed to be better than [7]. They introduce the concept
of independent random inliers to guide the estimation process and get a better estimate
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Algorithm 10: DegenSac procedure [15]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : Initial maximum number of iterations T , error tolerance

σ ≥ 0, confidence w.r.t type II error pII ∈ (0, 1)
input : Model class Θ of fundamental matrices, input matches

P ⊂ RD

output : Fundamental matrix θ∗ ∈ Θ, inliers I∗ ⊂ P , Output
homography H∗ of dominant plane.

1 θ∗ ← Null, I∗ ← ∅
2 H∗ ← Null, I∗H ← ∅
3 for i = 1 . . . T do
4 Ps ← Rand(P , sΘ) // Draw random subset of sΘ data points
5 for θ ∈ FΘ(Ps) do // Estimate models from sample
6 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
7 if |I| > |I∗| then
8 θ∗ ← θ̂, I∗ ← Î // Keep maximum consensus model
9 for P3 ∈ PH do // Test if sample is H-degenerate.

10 H ← F(P3)
11 for p = {x, x′} ∈ Ps\P3 do // Test consistency of other

matches with H
12 if x′ ∝ Hx and x′Fx = 0 then p is consistent
13 if 5 or more points are consistent with H then
14 IH ← {pi ∈ P : D(pi, H) ≤ σ} // Inliers for homography

H
15 if |IH | > |I∗H | then I∗H ← |IH |
16 Compute θH with [37]
17 I ← {pi ∈ P : D(pi, θH) ≤ σ}
18 if |I| > |I∗| then
19 θ∗ ← θH , I∗ ← I
20 ε← |I|/|P| // Ratio of inliers
21 Compute T (ε) // Updated number of iterations (1.24)
22 if T > T (ε) then T ← T (ε)
23 return (θ∗, I∗)
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Algorithm 11: USAC procedure [73]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : Initial maximum number of iterations T , error tolerance

σ ≥ 0, confidence w.r.t type II error pII ∈ (0, 1)
input : Model class Θ ⊂ Rd, input data P ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P
1 θ∗ ← Null, I∗ ← ∅
2 t← 0, n← s, T ← |P| // PROSAC (algo 8)
3 T ′n ← 1 // PROSAC (algo 8)
4 Un ← {pi, i ∈ [s− 1], pi ∈ P̃} // PROSAC (algo 8)
5 for i = 1 . . . T do
6 Sample Ps using PROSAC // Algorithm 8 line 6 to 14.
7 Check sample Ps // For example chirality constraint.
8 for θ ∈ FΘ(Ps) do // Estimate models from sample
9 Check model θ // For example orientation constraint.

10 I ← {pi ∈ P : D(pi, θ) ≤ σ} // Inliers for model θ
11 Verify model θ with SPRT test [57]
12 if |I| > |I∗| then
13 θ̂ ← θ, Î ← I // Keep maximum consensus model
14 Check degenerency using DegenSac // Algorithm 10 line 9 to 19
15 if |Î ∩ I∗| ≤ 0.95|I∗| then // Only apply LO-RANSAC if enough

new inliers
16 Compute θ∗ and I∗ from ˆtheta with inner RanSaC // LO-RANSAC

(algo 5).
17 Compute θ∗ and I∗ from ˆtheta with iterative least-square

// LO-RANSAC (algo 4).
18 θ∗ ← θ̂, I∗ ← Î
19 ε← |I|/|P| // Ratio of inliers
20 Compute T (ε) // Updated number of iterations with equation

(15) of [73]
21 if T > T (ε) then T ← T (ε)
22 return (θ∗, I∗)
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of the distribution of inliers, hypothesised to be a Poisson distribution with parameter λ
once all dependent inliers are removed. The parameter λ is estimated for each image pair
as the mean number of independent inliers consistent with a bad model, estimated on the
first few n models, see equation (2) of the original paper. A data point is said to be a
dependent inlier if it is below the inlier/outlier threshold and follows one of the conditions
below:

• it is in the sample used to estimate the model,

• it is close to an independent inlier,

and in the case of epipolar geometry, a match can also satisfy:

• one of its element is close to the epipole,

• it does not pass the chirality check,

• it is closer than the inlier/outlier threshold to the epipolar lines of a independent
inlier.

This way of defining dependent and independent inliers ensures that local structures are
ignored. To do so, a DEGENSAC+ procedure is introduced, inspired by DegenSac [15].
The homography estimated in DegenSac is decomposed in rotation R and translation T —
which has two solutions for both R and T , each is tested — and the associated fundamental
matrix is directly estimated using calibration matrices K and K ′ as: F̂ = K ′−TTRK−1.
The support of this new fundamental matrix is then compared to the independent inlier
support of the best-so-far one and it can decide whether the model is degenerate. If the
calibration matrices are unknown they are estimated, using the center of the image as
principal point and testing different focal lengths. To speed up the procedure in computing
the support of a model the Adaptative-SPRT (A-SPRT) test is used, adapted from the
SPRT test [57] which can end the computation if the chances of the tested model being
a good one is too low, with a user defined definition of good models. To improve the
original design and remove user defined parameters, A-SPRT evaluates during the first
n runs the time to estimate a model during run, instead of it being user defined, as
well as the number of valid models per sample. Using the parameter λ computed before
the probability of finding good or bad models is also better estimated. Finally, A-SPRT
includes a check to avoid refusing good models when the time gain is too low compared
to the probability of rejecting a good model. Finally, VSAC proposes to use both a fast
local optimisation and a slower final one instead of using least-squares in each step as in
LO-RANSAC [16]. The fast local one is only applied when enough independent inliers are
found and when the intersection over union of the inlier sets of the model and previous
best-so-far model is above 0.95. An iterative version of the third proposed method of LO-
RANSAC is used but with 40 and 42 points used for homography and fundamental matrix
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estimation respectively, and 5 and 12 iterations respectively. The final slow optimisation
is the σ-consensus++ algorithm as proposed in [7].

The algorithms presented above all require a user set threshold that should be close to
the actual inlier noise level of the dataset. This value can only be estimated and requires
knowledge of the data or trial and error to find a good value. This is why methods that do
not require such knowledge have been designed. They are presented in the next section.
Note that such method might still have user set parameters, even user-set inlier/outlier
threshold but usually those values are not hard thresholds nor the threshold actually used
to compute inlier/outliers and might be used as upper bounds or computation tools.

1.4.3 Threshold-free algorithms

The need for a user-set threshold between inlier and outlier requires some knowledge
about the data and the scale of the inlier noise level. In general, such information is not
available and thus, the performance of the algorithm is highly dependent on the validity
of the selected threshold value. Some authors try to tackle this issue by estimating the
threshold as well as the model and inlier/outlier classification or entirely remove the
classification. However, a new measure of model quality is required as quality function of
RanSaC and algorithms presented in the previous Section 1.4.2 use the number of inliers
of a model, see equation (1.21). This function increases with the inlier/outlier threshold
σ and thus would yield models with highest thresholds if used directly.

Stable Random Sample Consensus (STARSAC) [13] aims at solving this issue by
testing different thresholds and selecting the best one. It is presented in algorithm 12.
The proposed method is based around running RanSaC multiple times, nstarsac times, for
each tested threshold and selecting the threshold which yields the most stable results.
This is based around the hypothesis that poorly chosen thresholds will yield models too
sensitive to inlier noise or outliers and thus have high variance of final model parameters
whereas the appropriate threshold will consistently lead to similar variance in model
parameters. The quality function is then the Variance-over-Parameter (VoP):

Q(σ) = − 1
nstarsac

(
nstarsac∑
i=0

(
θ̄i(σ)− θi(σ)

)2
)
, (1.25)

where θi(σ) is the model parameter at threshold σ for i ∈ [nstarsac] and
θ̄i(σ) = 1

nstarsac

∑nstarsac
i=0 θi(σ) is the mean of estimated parameters.

Minimum Unbiased Scale Estimator (MUSE) [58] is designed to handle high outlier
ratios and multiple surfaces but its scale estimate can be used to perform a robust estima-
tion when faced with only one model. It is an adaptation of Least Median of Squares [44]
but replaces the median by a scale estimate computed for each possible residuals and
still uses the iterative procedure of RanSaC. For a given model all absolute residuals
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Algorithm 12: STARSAC procedure [13]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
hyperparameter: Σ, set of possible values for threshold σ, K number of

RanSaC per run.
parameter : Maximum number of iterations T of RanSaC, confidence

w.r.t type II error pII ∈ (0, 1)
input : Model class Θ ⊂ Rd, input data P ⊂ RD

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P , threshold σ∗
1 θ∗ ← Null, I∗ ← ∅, σ∗ ←∞
2 for σ ∈ Σ do
3 for i = 1 . . . K do
4 Compute θi,σ with RanSaC (algo 1)
5 Qσ ← V oP (θi,σ) // Compute with equation (1.25).
6 σ̂ ← arg minσ(Qσ)
7 θ∗ ← 1

K

∑K
i=1 θi,σ̂

8 σ∗ ← best σ > σ̂ consistent with θ∗
9 I∗ ← I(θ∗, σ∗)

10 return (θ∗, I∗)

{rj, j ∈ [s, |P|]} are sorted and the jth residual yields a scale estimate sj = rj
E[uj ] where

E[uj] is the expected value of a random variable u following a standardised distribution
such that the residual distribution r have standard deviation σdev and r = σdevu. The
computation of E[uj] depends on the hypothesis made on the residual distribution. The
quality function Q of a model is the unbiased scale estimate σ̂ which is the minimum scale
estimate s∗θ = sj′ divided by the expected value of the scale estimate of a standardised
normal distribution v′j:

Q(σ, θ) = −σ̂θ = s∗θ
E[min vj′ ]

. (1.26)

Authors of [17] propose to use the Likelihood-Ratio Test to estimate the quality of
models for different thresholds. It is presented in algorithm 14. The authors make the
assumption that data points follow a mixture of two uniform distributions. One, with
weight ρ is the inlier distribution and draws uniformly in the inlier region I(θ, σ) and
the other, with weight 1 − ρ is the outlier distribution which draws uniformly from the
entire space S. Given this hypothesis on data points distribution, the likelihood that the
data is not random — meaning ρ > 0 — is estimated. The quality function is thus the
log-likelihood:

Q(σ) = L(ε, σ) = 2|P|
(
ε log ε

pσ
+ (1− ε) log 1− ε

1− pσ

)
, (1.27)

where pσ = |I(θ, σ)| is the area of the inlier region. Thanks to this quality function,
the inlier/outlier threshold σ and model parameters θ can be estimated simultaneously
during a RanSaC like iterative procedure. In order to do so, a range of potential thresholds
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Algorithm 13: MUSE procedure [58]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
parameter : T , allocated number of iterations.
input : Model class Θ ⊂ Rd, input data P ⊂ Rk

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P , scale estimate σ̂∗
1 θ∗ ← Null, I∗ ← ∅
2 σ̂∗ ←∞
3 for i = 1 . . . T do
4 Ps ← Rand(P , sΘ)
5 for θ ∈ FΘ(Ps) do
6 Dθ ← {D(p, θ), p ∈ P}
7 Sort Dθ
8 for pk ∈ P do
9 Compute sk = D(pk,θ)

E[uk]
10 Compute s∗θ and σ̂θ // Use equation (1.26).
11 if σ̂θ < σ̂∗ then
12 σ̂∗ ← σ̂θ
13 I∗ ← {pi ∈ P : D(pi, θ) ≤ σ̂∗}
14 θ∗ ← θ

15 return (θ∗, I∗, σ̂∗)

{σmin, . . . , σmax} is used at each iteration to get different inlier ratios and the ratio that
yields the best log-likelihood is selected if it beats the best-so-far model’s log-likelihood
L∗. To ensure control over the type I error, the likelihood of a selected model must be
below a certain threshold c computed from a confidence pI and a lookup table for the
χ2 distribution with d + 2 degrees of freedom which the likelihood statistic approaches
asymptotically: ∫ c

0
χ2
dΘ+2(t) dt = pI , (1.28)

and yields a lower bound for the log-likelihood:

Lmin = c

2|P| . (1.29)

The type II error is controlled with the same stopping criterion approach as RanSaC.
The authors also add an early bailout strategy that stops the residual computation with
confidence p′II if the model cannot beat a minimal inlier ratio εmin:

L(εmin(σ), σ) = L∗, (1.30)

which leads to a bound on the probability of premature termination:

τm =

√√√√− log(1− p′II)− log
⌊
|P|
B

⌋
2s . (1.31)
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This test adds a computational cost, which is mitigated by applying it only every B data
points, where B is set empirically to balance the expected gains and costs. This requires
an adaptation of the termination criterion of RanSaC (1.24):

T (ε) =
⌈

log(1− pII)
log(1− εsmin × pII′)

⌉
, (1.32)

We name this method LRT.

Algorithm 14: LRT procedure [17]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
hyperparameter: Σ, set of possible values for threshold σ
parameter : T , allocated number of iterations, confidence probability pI of

avoiding type I error
input : Model class Θ ⊂ Rd, input data P ⊂ Rk

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P , threshold σ∗
1 L∗ ← 0, θ∗ ← Null, σ∗ ← 0
2 Compute εmin(σ), ∀σ ∈ Σ from Lmin // Algorithm 15, Lmin computed

from (1.28) and (1.29)
3 while number of iterations is below T and Σ is not empty do
4 Xs ← Rand(X, sΘ) // Get random minimal sample
5 for θ ∈ FΘ(Xs) do
6 Compute ratio of inliers ε̂(σ), ∀σ ∈ Σ with early bailout // Algorithm 16
7 σ̂ ← arg maxσ L(ε̂(σ), σ), L̂← L(ε̂(σ̂), σ̂)
8 if L∗ < L̂ then
9 L∗ ← L̂, θ∗ ← θ, σ∗ ← σ̂

10 Compute εmin(σ), ∀σ ∈ Σ from L∗ // Algorithm 15
11 Update T from εmin(σ) // Algorithm 17
12 return (θ∗, I∗, σ∗) // Model parameters, inlier set and threshold

Algorithm 15: Compute equivalent inlier ratios and reduce Σ procedure for
LRT [17].
input : L∗, target likelihood, Σ, set of possible values for threshold σ
output : Minimal equivalent inlier ratios εmin(σ), ∀σ ∈ Σ, reduced set

Σ
1 for σ ∈ Σ do
2 if L(1, σ) < L∗ then
3 Discard σ from Σ
4 else
5 Compute εmin(σ), from a bisection of (1.30)
6 return ({εmin(σ), σ ∈ Σ},Σ)

A-Contrario RanSaC (AC-RanSaC), also named Optimized RanSaC (ORSA), [62, 61,
60] tries to determine whether a model occurred by chance or not. It is presented in algo-
rithm 18. The only hypothesis made is that background points are uniformly distributed
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Algorithm 16: Compute inlier ratio ε̂(σ), ∀σ ∈ Σ with early bailout procedure
for LRT [17].
hyperparameter: Set of possible thresholds Σ, bailout test periodicity B
parameter : Probability of avoiding premature bailout p′II
input : data X, model to evaluate θ, {εmin(σ), σ ∈ Σ}, minimal

required inlier ratios
output : {ε̂(σ), σ ∈ Σ}

1 ε̂(σ)← 0, ∀σ ∈ Σ
2 for Xi ∈ X do
3 Compute e(Xi, θ)
4 for σ ∈ Σ do
5 if e(Xi, θ) ≤ σ then
6 ε̂(σ)← ε̂(σ) + 1

n

7 if i ≡ 0 (mod B) then // Early bailout
8 Compute τi // Apply (1.31)
9 for σ ∈ Σ do

10 if ε̂(σ)× n/i ≥ εmin(σ)− τi then
11 Go to next point // Back to line 2
12 Bailout // Back to Algorithm 14, line 5
13 return {ε̂(σ), σ ∈ Σ}

Algorithm 17: Update number of iterations T while controlling type II error
procedure for LRT [17].
parameters: Confidence probabilities against type II error: pII , confidence that

no valid model was missed because of lack of iterations, p′II ,
probability of a valid model avoiding premature bailout

input : Σ, set of possible values for threshold σ
output : T , number of iterations

1 return T (σmin) // Apply (1.32)

in the whole space S. From this hypothesis, and a threshold σ, the Number of False
Alarms (NFA) of a model θ can be computed, that is an indication of the expected num-
ber of occurrences by chance. It is computed as the number of tests times the probability
of n inlier validating a model by chance.

NFA(θ, σ) = Nestimator(|P| − s)
(
|P|
n

)(
n

s

)
(σdα0)n−s, (1.33)

where Nestimator is the number of potential models and α0 the probability of a random
data point having residual at most 1. It is used as a quality function by ordering all
residuals after estimating a model and computing the NFA for each residual, testing all
sorted D(pn, θ), n ∈ [|P|] as potential thresholds σ:

Q(θ, σ) = −NFA(θ,D(pn, θ)) = Nestimator(|P| − s)
(
|P|
n

)(
n

s

)
(D(pn, θ)dα0)n−s. (1.34)
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As the residuals are sorted n data points are considered inliers using D(pn, θ) as threshold.
The model and threshold that yields lowest NFA is then selected. 10% of the total number
of possible iterations so that once a model with a NFA below a thresholdNFAmax is found,
it is improved by iterating only over its inliers to refine the model. Normally, the NFA
is computed for all residuals but to improve performance an upper bound σmax can be
defined to ignore data points that would most likely be outliers of the considered model.

Algorithm 18: AC-RANSAC procedure [62, 61, 60]. Blue lines are optional.
Red lines are changes from RanSaC (algorithm 1).
hyperparameter: NFAmax the threshold of the NFA
parameter : T , allocated number of iterations
input : Model class Θ ⊂ Rd, input data P ⊂ Rk

output : Model parameters θ∗ ∈ Θ, inliers I∗ ⊂ P , threshold σ∗
1 θ∗ ← Null, I∗ ← ∅
2 Treserve ← T/10, T ← T − Treserve
3 Pin ← P
4 for i = 1 . . . T do
5 Ps ← Rand(P , sΘ)
6 for θ ∈ FΘ(Ps) do
7 Dθ ← {D(pi, θ), pi ∈ P}
8 Sort Dθ
9 Find best NFA and index of best residual: N̂FAθ and î // Use

algorithm 19.
10 if N̂FAθ < NFA∗ then
11 NFA∗ ← N̂FAθ
12 I∗ ← {pi ∈ P : D(pi, θ) ≤ D(pî, θ)}
13 θ∗ ← θ
14 New best model was found
15 if (A new best model was found and NFA∗ < NFAmax) or (i = T and

Treserve > 0) then
16 if I∗ = ∅ then T ← T + 1, Treserve ← Treserve − 1
17 else
18 Pin ← I∗
19 T ← Treserve
20 Treserve ← 0
21 return (θ∗, I∗, D(pî, θ∗))

Marginalised Sample Consensus (MAGSAC) [6] uses a novel method to remove the
need for an inlier/outlier threshold by giving weights to pseudo-inliers and estimating
models using weighted estimation. It is presented in algorithm 20. At each RanSaC
iteration models are estimated using a minimal sample and then a procedure called σ-
consensus is used to compute the weights. Each data point with residual lower than a
threshold σmax gets sorted in npartition partitions Pi whose maximum residual is σmax,i,
those are the pseudo-inliers. Models θi are then estimated using increasing sets of pseudo-
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Algorithm 19: Compute and find NFA for AC-RANSAC [62, 61, 60].
parameter : σmax maximum residual to compute NFA for
input : Sorted residuals of all data points {D(pi, θ), pi ∈ P}
output : Best NFA N̂FAθ, index of best residual î

1 N̂FAθ ←∞
2 î← s
3 for i = s . . . |P| so that D(pi, θ) ≤ σmax do
4 Compute NFAi with equation (1.34)
5 if NFAi < N̂FAθ then
6 î← i

7 N̂FAθ ← NFAi

8 return (N̂FAθ, î)

inliers: θi = Ffull(
⋃i
j=0Pj) and each point p ∈ P gets a weight W (p) depending on its

residual to the estimated model:

W (p) = 2C(ρ)
σmax

npartition∑
i=1

(σmax,i − σmax,i−1)σ−ρmax,iD(p, θi)ρ−1 exp
(
−D(p, θi)2

2σ2
max,i

)
, (1.35)

where ρ is the dimension of the error space, C(ρ) = 1
2ρ/2Γ(ρ/2) with Γ the gamma function.

This quantity originates from assuming the squared residuals to be chi-squared distributed
with standard deviation σ and inliers uniformly distributed with standard deviation σ

and outliers uniformly distributed with standard deviation l. This skews the residual
thresholds by a multiplicative factor of 3.64. In practice, this means a point gets a higher
weight depending on how many models it belongs to and thus will be more important if
it validates many models. A final model is estimated from those weights and its quality
is computed as the marginalised over σ log-likelihood of model θ given σ:

Q(θ) = −|P| ln(l) + 1
σmax

npartition∑
i=1

(
i(ln(2C(ρ)l)− ρ ln(σmax,i))−

Ri

σ2
max,i

+ (ρ− 1)Lri
)

(σmax,i − σmax,i−1), (1.36)

where Ri = 1
2
∑i
j=1D(pj, θ)2 is, Lri = ∑i

j=1 ln(D(pj, θ)). Finally the number of iteration
is also marginalized over σ as:

T (θ) = 1
σmax

npartition∑
i=1

(σmax,i − σmax,i−1) ln(1− pII)
ln
(
1−

(
|I(θ,σ)|
|P|

)s) . (1.37)

MAGSAC’s authors proposed an improvement named MAGSAC++ [7]. It is presented
in algorithm 22. They propose both to change the RanSaC procedure used by a mixture of
NAPSAC [89] and PROSAC [14] and a new σ-consensus method named σ-consensus++.
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Algorithm 20: MAGSAC procedure [6]. Blue lines are optional. Red lines are
changes from RanSaC (algorithm 1).
hyperparameter: NFAmax the threshold of the NFA
parameter : T , allocated number of iterations
input : Model class Θ ⊂ Rd, input data P ⊂ Rk

output : Model parameters θ∗ ∈ Θ
1 θ∗ ← Null, I∗ ← ∅
2 q∗ ← 0
3 for i = 1 . . . T do
4 Ps ← Rand(P , sΘ)
5 for θ ∈ FΘ(Ps) do
6 if θ is not valid then Reject θ
7 Compute θ̂ from σ-consensus // See algorithm 21
8 Compute Q(θ̂) // Use equation (1.36)
9 if Q(θ̂) > q∗ then

10 q∗ ← Q(θ̂)
11 θ∗ ← θ̂
12 Update T // Use equation (1.37)
13 return θ∗

Algorithm 21: σ-consensus algorithm from MAGSAC [6].
parameter : Number of partition npartition, max residual of points to

weight σmax.
input : Model θ ⊂ Θ, input data P ⊂ Rk.
output : θ̂

1 I ← I(θ, σmax) // Only consider points with residual less than σmax
2 Sort I by residual D(p, θ)
3 σmax ← maxp∈P D(p, 3.64θ)
4 {w(p)← 0, p ∈ I}
5 δσ ← σmax

npartition
, σmax,n ← δσ

6 Itmp ← ∅
7 for p ∈ I do
8 if D(p, θ) ≤ 3.64σmax,n then // Check if p belongs to partition n.
9 Itmp ← Itmp ∪ {p}

10 Go to next p
11 θn ← Ffull(Itmp) // Once all points of partition n are found,

estimate model.
12 for p′ ∈ I do // Update weight of all points according to local

model.
13 w(p)← w(p) +W (p, θn, σmax,n, Itmp)/σmax // Use equation (1.35)
14 Itmp ← Itmp ∪ {p} // Go to next partition.
15 θ̂ ← Ffull(I, {w(p), p ∈ I})
16 return θ̂
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The assumptions made are that inlier noise σ is uniformly distributed in a range [0, σmax]
where σmax is a user set threshold and given a noise level σ residuals are distributed
following the square root of the χ2-distribution with n degrees of freedom, the dimension
of the residual space. This yields a quality function as the inverse of a quantity that
depends on the weights of σ-consensus++:

Q(θ) = 1∑
p∈P ρ(D(p, θ)) , (1.38)

where ρ(D(p, θ)) =
∫D(p,θ)

0 pw(p)dp with W (p) the weights. ρ can be computed, the
exact formula can be found below equation (3) of the paper [7]. To improve the RanSaC
procedure with NAPSAC and PROSAC, first an initial point is chosen using PROSAC
sampling, it is the seed of the NAPSAC-like procedure. However, instead of drawing
uniformly in a sphere around this seed, points are drawn using a local PROSAC procedure
where the metric used is the distance to the seed. This method is a way to leverage the
power of localised sampler while still being able to tackle more global models if no local
ones are found early. The other proposed improvement is to replace σ-consensus by σ-
consensus++, an iterative reweighted least squares instead of the normal weighted least
square. At each step, weights and models are iteratively estimated based on the putative
inliers of the estimated model, given a user-set maximum threshold for residual σmax. The
weight of a point is computed as the marginal density of the inlier residual:

w(p) = 1
σmax

C(n)2n−1
2

(
Γ
(
n− 1

2 ,
D(p, θi)2

2σ2
max

)
)
− Γ

(
n− 1

2 ,
k2

2

))
, (1.39)

for points with residual less than kσmax where k is determined by a chosen quantile of
the χ-distribution, w(p) = 0 otherwise. Γ is the upper incomplete gamma function and
C(n) =

(
2n

2 Γ(n2 , 0)
)−1

. θi is the model estimated at the ith step of the iterative reweighted
least square and θ0 is the model estimated with the minimal sampler in the RanSaC step.

1.4.4 Multi model methods

Some algorithms have been designed specifically to tackle multi-model problems. Those
are situations where there are multiple underlying models describing the inliers and thus,
finding one can be harder. An example would be a scene with multiple flat surfaces.
Finding the homography defining each surface requires different processing. Most of the
time, the processing is based around finding the best model, removing points considered
inliers for it and then looking for the next best models. The number of underlying models
might be required before hand to find all the models.

MUSE [58] described earlier is tailored to tackle such situations and will simply use
the solution of removing points belonging to a model before computing the next one.
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Algorithm 22: MAGSAC++ procedure [7]. Blue lines are optional. Red lines
are changes from RanSaC (algorithm 1).
hyperparameter: NFAmax the threshold of the NFA
parameter : T , allocated number of iterations
input : Model class Θ ⊂ Rd, input data P ⊂ Rk

output : Model parameters θ∗ ∈ Θ
1 θ∗ ← Null, I∗ ← ∅
2 q∗ ← 0
3 for i = 1 . . . T do
4 Select random seed pinit ∈ P
5 Uinit ← sth nearest neighbours
6 Follow PROSAC procedure to increase Uinit // Algoritmh 8 from line 6

to line 14 but line 14 is modified to draw in P.
7 for θ ∈ FΘ(Ps) do
8 if θ is not valid then Reject θ
9 Compute θ̂ from σ-consensus++ // See algorithm 23

10 Compute Q(θ̂) // Use equation (1.38)
11 if Q(θ̂) > q∗ then
12 q∗ ← Q(θ̂)
13 θ∗ ← θ̂
14 Update T // Use adapted version of equation (1.37) to

include the impact of the new sampling strategy.
15 return θ∗

Multiple AC-RanSaC (MAC-RANSAC) [72] goes a little further than simply launching
multiple times the AC-RanSaC algorithm [62, 61, 60]. Indeed, to avoid classical issues of
simply launching multiple runs, like splitting a single surface or merging different ones, or
detecting multiple surfaces in a repeating pattern, after each run a fusion detection and
filtering of repeating patterns is used. Other algorithms like J-linkage or T-linkage [55, 87,
88] compute multiple models and find which consensus set each point will belong to. By
then clustering points according to the Jaccard distance using this characteristic, models
and their consensus set can be selected. The different versions add a real time speed-up
to work on-line instead of computing everything at once [88] or using a continuous version
and the Tanimoto distance [55].

These solutions are not developed further as multiple model fitting is not the focus of
this thesis.

1.5 Bundle Adjustment

Bundle adjustment refers to a global optimisation of all the estimated parameters of a
pipeline. It can adjust the 3D coordinates of estimated points, the position of the cameras
and their estimated intrinsic parameters. The main principle of bundle adjustment is to
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Algorithm 23: σ-consensus++ algorithm from MAGSAC++ [7].
parameter : Max residual of points to weight σmax, reference threshold

σref , number of iteration of the iterative reweighted least
square Tirwls.

input : Model θ ⊂ Θ, input data P ⊂ Rk, so-far-the-best model θ∗.
output : θ̂

1 I ← ∅
2 if θ∗ is NULL then // Select all points with residual below σmax
3 for p ∈ P do
4 if D(p, θ) < σmax then I ← I ∪ {p}
5 else // If there is already a so-far-the-best model, check if it is

possible to beat it.
6 r ← |I(θ∗, σref )| // Threshold to check if enough points are left to

beat the model.
7 for p ∈ P, i ∈ [|P|] do
8 if D(p, θ) < σmax then
9 I ← I ∪ {p}

10 if D(p, θ) < σref then r ← r − 1
11 if |P| − i < r then Stop σ-consensus++
12 θ̂ ← θ
13 for it ∈ [Tirwls] do // Compute the weights.
14 I ← ∅
15 for p ∈ P do
16 if D(p, θ̂) < σmax then I ← I ∪ {p}
17 for p ∈ I do
18 Compute w(p) using equation (1.39)
19 θ̂ ← Ffull(I, {w(p), p ∈ I})
20 return θ̂

minimise the reprojection error between the detected features and the projection of the
observed 3D points. To do this, a large number of non-linear functions needs to be handled
and it often requires sparse solutions as most points are often seen by only a few images.

A classic solution to the bundle adjustment problem is the Levenberg-Marquardt al-
gorithm [45, 56]. It is an iterative procedure that uses a modified version of the Gauss-
Newton method, where the equation (JTJ)δ = JT (y−f(x, β)) with f the fitting function,
δ an increment and J the Jacobian of F with respect to the parameters β is replaced by:

(JTJ + λI)δ = JT (y − f(x, β)), (1.40)

with I the identity and λ a damping factor that is adjusted dynamically. If λ is small,
the method is closer to the Gauss-Newton algorithm, and if it is big it is closer to the
gradient descent. Multiple solutions exist to adapt λ at each step, usually it increases
or decreases depending on whether the current step improved or not the model and how
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fast the convergence needs to be. As most optimisation methods it requires an initial
estimation to be provided but it is far less sensitive to its quality than other methods like
Gauss-Newton.

In recent years, the main focus of improvement of bundle adjustment has been effi-
ciency as it is a time consuming step, see Chapter 4. [12] is focused on how to perform
the bundle adjustment in a parallel setting to handle larger datasets as they are more
common nowadays. Many other solutions have been developed for bundle adjustment.
An extensive review of those can be found in [91], where the methods are categorised by
type, with both generic and ad-hoc solutions analysed and recommendations on design
and implementations. As the scope of this thesis is not bundle adjustment, we do not go
further in details about those methods.
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Chapter 2

Presentation of a Novel
Semi-Artificial Data Generator

In this section we detail one of the main contribution of this work, semi-artificial data
generation. This consists in a novel way of getting data to run benchmarks on with reliable
metrics while keeping a realistic aspect to ensure that results can easily transcribe to real
world scenarios. Section 2.1 presents existing datasets, how they were built and their
shortcomings and the logic behind our solution. Section 2.2 presents the different metrics
that we can study thanks to our solution and how they are defined for specific algorithms.
Sections 2.3 and 2.4 present respectively how our method generates inliers and how it
generates outliers to create a dataset. This chapter handles generation of data for the
homography, fundamental matrix and essential matrix estimation problems. Element
specific to the whole 3D reconstruction pipeline are presented in Chapter 4 alongside the
pipeline.

2.1 Reasoning and motivation

Most of the previous work on RanSaC algorithms uses either real data processed through
another algorithm or artificial data, or both, as their benchmark. When using real data,
different kinds of solutions exist to create a dataset. For two-view geometry tasks, some
will prefer to use an active sensor, like a LIDAR or a Microsoft Kinect and align the
resulting 3D point cloud with the 2D images and detected matches. This is the case
for some famous datasets like Tanks and Temple [40] (example in Figure 2.1) that uses
scanners, TUM RGB-D [85] (Figure 2.2) or NYU Depth [80] (Figure 2.3) that use Kinect,
Kitti [29] (Figure 2.4) that uses stereo cameras, GPS, and laserscan. The use of GPS or
a mean to control the camera, like an articulated mechanical arm as in [82] (Figure 2.5)
gives a reasonable estimation of the ground truth for the camera pose in the image that
can be used as ground truth for the tested model. Others will use some reconstruction
pipeline like ColMap or simply RanSaC with many iterations to find a satisfying solution
to consider as ground truth. The famous USAC paper [73] (Figure 2.6) uses as a bench-
mark real images processed through 107 iterations of RanSaC to produce ground truth
inliers. [64] uses data processed through Blender [18] without any further processing. The
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Extreme View Dataset [59] (Figure 2.7) uses LORANSAC [16] to create ground truths
as well as artificially distorted images. EPnP [43] uses known 3D models to compute the
pose of real images to test its algorithm. A step of manual verification can be added to
validate inliers and clean the dataset. This is the case for the PROSAC [14] paper that
uses SIFT [52, 53] matches with simple manual annotations of inliers and outliers. The
AdelaideRMF dataset [95] is also built with real images processed manually to obtain
the ground truth. NAPSAC [89] even uses only manually created matches for its exper-
iments. Both solutions present two main drawbacks. Firstly, there is an uncontrolled
noise level on the inliers. Indeed, whether it comes from active sensor or a pipeline, the
matches used as inliers for the benchmark are computed with another algorithm and there
is no indication or certainty on the actual noise level between the two matching points.
Secondly, the outlier to inlier ratio is not controlled any more than the distribution of
the outliers. Thus it requires extensive computation and analysis to categorize dataset
elements according to their difficulty and obtain a large, controlled set of data on which
precise metrics can be computed. This work can be costly especially if using an active
sensor and adding manual verification which has not really been done extensively. Some
datasets are extensive and are known to offer different cases with varying difficulty but
not precisely quantified. This makes it hard to compute precise and meaningful metrics
when using real data and it is hard to conclude on the generalisation power of the results.

On the other hand, the use of purely synthetic data can solve this by offering perfect
control over the inliers and outliers. Most papers that use synthetic data do not exclusively
use those. It is often a way of confirming hypotheses and get quantitative results before
doing some test on real data to get qualitative results. In LRT [17] and RECON [74]
random 3D planes, homographies and fundamental matrices are drawn to generate data
for experiments. MINPRAN [83] uses 3D planes to test different scenarios and analyse
its behaviour. The EPnP paper [43] uses artificial scenes created through the software
Blender1 to get test cases. AMLESAC [41] uses 2D lines or random poses to measure
precision and accuracy. When using such scenarios, usually the model is random and
inliers and outliers are drawn uniformly in the relevant spaces. Some geometric constraints
can be added to increase the realism like making sure the points are in front of the
hypothetical camera.

All such methods lack likelihood relatively to real data as inliers distribution is not
based on any analysis of real data and outliers can be poorly generated. Results on purely
synthetic data are not enough to conclude on the quality of RanSaC algorithms and are
always complemented by an analysis on real data. Tests on synthetic data are used as
a proof of concept more than an actual benchmarking solution as it is not possible to
conclude on the performance of algorithms with such artificial data.

In order to do meaningful improvements on the reconstruction pipeline, it is important
1https://www.blender.org/
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2.1. Reasoning and motivation

Figure 2.1: Exemples of images and scan from the dataset Tank and Temples [40]. Scan
are obtained with a LIDAR.

Figure 2.2: Exemples of images from the dataset TUM RGB-D [85]. Images and depth
maps are acquired with a Kinect.

Figure 2.3: Exemples of image and scan from the dataset NYU Depth [80]. Images and
depth maps are acquired with a Kinect.

Figure 2.4: Exemples of image and capture setup from the dataset Kitti [29]. The vehicule
is equiped with GPS, laser and stereo cameras to capture an annotated video flux.

to have actual control over the impact of the changes implemented. To evaluate the quality
of a RanSaC algorithm one can look at the retrieval capacity of the algorithm or at the
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Figure 2.5: Exemples of capture setup and image from the dataset DTU Robot [82].
All objects captured are miniature installed in a photo box with lighting control and an
articulated robot arm with stereo cameras.

Figure 2.6: Exemples of image pairs from the dataset of USAC [73]. Image pairs come
with unlabelled matches and need to be processed to get a ground truth.

Figure 2.7: Exemples of image pairs from the dataset of EVD [59].

quality of the resulting model. However, as the final model is estimated using global
optimisation on the final supposed inlier subset, a good retrieval performance should
increase the quality of the computed model parameters. Moreover, the inlier subset has
its own interest in a full MVS or SfM pipeline, as it is used for further computation and
verification. This motivates the need for a method to reliably measure the capacity of
RanSaC algorithms to discriminate between inliers and outliers. To do so, our solution
uses data extracted from real datasets as a basis. This ensures that the resulting models
are actually likely and the benchmark can be extended to real data with more confidence
than simple toy problems. This also enables us to use true inlier distributions and make
sure the results are not impacted by poor generation of inliers. Finally, we propose a way
to control inlier noise and outlier/inlier ratio in order to compare solutions in different
scenarios with accurate description of settings to be able to observe what impacts each
algorithm’s performance.
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2.2 Metrics

RanSaC algorithms are meant to be used to perform robust model estimation; however,
in an MVS or SfM pipeline, the inlier/outlier classification is useful as the inliers are
used to create the 3D model and help computing future poses. This is why we can also
consider RanSaC algorithms as classifiers and evaluate their capacity to separate inliers
from outliers. Our studies focus mainly on this aspect by evaluating the precision and
the recall of each algorithm for a given dataset.

Thanks to the data generation methodology we introduce below we have accurate
labels for each data point and can thus compare predicted labels with ground truth
labels. Precision is a metric that evaluates the quality of the prediction as the percentage
of correctly inlier-labelled data points over the number of data points predicted as inlier.
Lets denote IGT the ground truth set of inliers generated by our method. The precision
P of an algorithm is computed as:

P = |IGT
⋂ I(θ∗)|
|I(θ∗)| (2.1)

where θ∗ is the model returned by the algorithm. This shows whether an algorithm is
accurate in its prediction and not just too broadly accepting data points to populate the
model. A good precision will mean the resulting 3D points that are added to the model
are real elements of the model and thus can be used to compute future views. On the
other hand, recall is a metric that evaluates the retrieval power of the prediction as the
percentage of correctly inlier-labelled data points over the true number of inliers. The
recall R of an algorithm is computed as:

R = |IGT
⋂ I(θ∗)|
|IGT |

. (2.2)

This measures the capacity of an algorithm to find all good points and not just be too
restrictive in its classification. Good recall means more valid points will be added to the
3D model, which will help further reconstruction.

As σ-consensus and σ-consensus++ introduced in [6, 7] remove entirely the need for
inlier/outlier classification in their method by removing the threshold and using a weighted
estimation of the best model, we cannot compute directly the precision and the recall.
However, as the authors of those papers present interesting results and claim to reach
state-of-the-art performance, we wanted to include those in our evaluation. Instead of
using the arbitrary threshold used by those algorithms — see Section 1.4.3 — to compute
inliers, as this would not exploit the novel weights computation of the algorithms, we
introduce four metrics that can be analysed jointly in order to conclude on the necessity
to adapt σ-consensus to a full 3D pipeline. The four metrics we analyse are a weighted
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equivalent of precision Pw and recall Rw as well as the best precision obtainable to reach
the recall of AC-RanSaC [60, 61] PR(AC-RanSaC) and the best recall obtainable to reach the
precision of AC-RanSaC RP (AC-RanSaC).

The first two metrics give a simple insight of whether the data points with high weights
are true inliers or not. We consider “proposed inlier” data points, points that have residual
below the maximum allowed residual σmax of MAGSAC and MAGSAC++. The weighted
precision Pw is computed as follows:

Pw =
∑
p∈I(θ∗) w(p) ∗ IGT (p)∑

p∈I(θ∗) w(p) (2.3)

where, for a proposed inlier data point p ∈ I(θ∗), w(p) is the weight returned by σ-
consensus or σ-consensus++ and IGT is the indicator function of the ground truth inliers.
By doing the ratio of the sum of true inliers weights over all weight, we want to reveal
whether true inliers have enough importance in the final estimation. The weighted recall
Rw is computed as follows:

Rw =
∑
p∈I(θ∗) w(p) ∗ IGT (p)

|IGT | ×maxp∈I(θ∗)(w(p)) . (2.4)

Here, we consider that true inliers should have the maximum weight possible for the
estimation to be perfect, so we do the ratio of the sum of true inlier weights by the
maximum weights across all ground truth inliers. As these metrics depend on points with
residual under σmax which is voluntarily higher than the true threshold, they will always
be under evaluated. We keep this in mind when comparing them to other metrics.

The two other metrics, best precision at AC-RanSaC recall and best recall at AC-
RanSaC precision, are computed by sorting data points by residual and computing the
precision and recall at each possible residual. For the first metric, PR(AC-RanSaC), the
residual that gives the best precision when recall is at least equal to the mean recall of
AC-RanSaC for this experiment setting2. For the second one, RP (AC-RanSaC), it is the
residual that yields the best recall for data points with at least the same precision as the
mean precision of AC-RanSaC for the given experiment setting2.

For all situations were precision and recall is used, another metric can be considered,
the F1-Score F1. It is the harmonic mean of the two metrics:

F1 = 2P ×R
P +R

(2.5)

where precision P and recall R can be substituted by the different metrics computed
specifically for MAGSAC and MAGSAC++ if need be. Usually, performance in precision

2An experiment setting is the inlier noise and outlier ratio. For each setting, multiple run are averaged
to get clearer results. See Section 3.2
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and performance in recall constitute a trade-off, with some hyperparameter threshold
that will increase recall but reduce precision or the other way around. As, in our case,
this inlier/outlier threshold is evaluated directly by the algorithms, the choice of trade-off
should be inherent to design choices of the RanSaC algorithms. So, if algorithms do not
change behaviour depending on the settings, F1-Score can be used to compare algorithms.
We see in Section 3.4 that it is the case, no algorithms change behaviour relatively to this
trade-off depending on test setting.

2.3 Model and inlier generation

2.3.1 Generic method

Our proposed solution to create realistic yet controlled data relies on removing unknown
elements from real data and replacing them with artificial perturbation. From unlabelled
features with unknown noise and underlying model, the classic RanSaC pipeline is run. It
gives a putative model with inlier/outlier classification. This model is supposedly realist
as, bare a failure of the pipeline, it is close to the true model. Thus, it can be considered
as an artificial ground truth model. It is not the true ground truth but it will be the basis
on which we build our artificial data generation. From the artificial ground truth model,
ground truth inliers are generated by using the nin inliers proposed by the RanSaC run
and projecting them on the model to create artificial ground truth inliers. Again, they are
not the true ground truth inliers, but they are noise-free inliers relatively to our artificial
ground truth model. This method ensures the inlier spatial distribution is realistic as it
is issued from a real feature extraction. It removes the impact of the choice of the inlier
repartition for a random artificial model. It also ensures that the benchmarked algorithms
will be tested on their ability to find a model as close as possible to our ground truth and
not their ability to reproduce the estimations made to generate the test data.

At this point, we have a ground truth model and ground truth inliers which are noise
free. To test the sensitivity of algorithms to inlier noise and the capacity to select a
suitable threshold, we can add noise to these inliers. RanSaC algorithms usually make
some sort of assumption on the inlier noise. The original paper [26] assumes normal
distribution, as well as [89, 74, 41]. Some paper assume uniform distribution within the
inlier/outlier threshold, such as [83, 17, 6, 7].

The selected noise needs to be controlled so that an unequivocal inlier/outlier cut-off
exists. Given the sets of noisy inliers Inoisy and generated outliers Ogen, this cut-off is
defined so that:

max
pi∈Inoisy

D(pi) ≤ min
po∈Ogen

D(po). (2.6)

When launching an estimation with AC-RanSaC and arbitrary precision, we observe like
in figures 2.8, 2.9, 2.10 and 2.11 an error distribution of proposed inliers that is closer
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to a normal distribution with a slight offset than to a uniform one, though not perfectly
Gaussian. However, to be able to respect the desired cut-off (2.6), the Gaussian would
need to be truncated to a certain value, to ensure that no points are generated too far
from ground truth model and create a dataset where outliers are very far from the ground
truth model. During preliminary experiments we observed that the inlier distribution
made little to no impact on the performance of algorithms. Thus, to get more control
over the true inlier/outlier threshold, instead of using a truncated Gaussian distribution,
we chose a uniform distribution for the inlier noise.

Figure 2.8: Top: Images on which AC-RanSaC was computed. Bottom: Distribution of
residual (in pixel) of inliers in percentage of inlier points after estimation by AC-RanSaC
with arbitrary precision on the first image of the homography USAC dataset [73].

3See Section 3.2 for more detail about our sub-dataset extracted from MegaDepth.
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Figure 2.9: Top: Images on which AC-RanSaC was computed. Bottom: Distribution of
residual (in pixel) of inliers in percentage of inlier points after estimation by AC-RanSaC
with arbitrary precision on the fith image of the fundamental matrix USAC dataset [73].

This way, for a theoretical noise level σnoise we are sure inliers are distributed around
the ground truth model within a known bound so outliers can be ground truth outliers,
i.e. a point further from the model than the maximum inlier error. The method to
generate outliers properly depends on the application and thus is detailed in Section 2.4.
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Figure 2.10: Top: Images on which AC-RanSaC was computed. Bottom: Distribution of
residual (in pixel) of inliers in percentage of inlier points after estimation by AC-RanSaC
with arbitrary precision on the fourth image of the essential matrix USAC dataset [73].

2.3.2 Generation for MVS and SfM

As presented in Chapter 1 we focus our study on two-view geometry and Perspective-
from-n-Points problems. The presented method can easily be applied to each estimation
problem with little adaptation.

For two-view geometry, the input data is a pair of images. From this image pair,
matches are extracted using SIFT [52, 53]. Those matches are used as input data con-
taining both inliers and outliers. SIFT is used as it is the most used in the literature and
especially in [79]. For PnP, the input data is a 3D set of points and a 2D set of matching
points on an image plane. Then AC-RanSaC [60, 61] is run with arbitrary precision and
up to 106 iterations. Preliminary work used RanSaC to get the initial estimation, but
AC-RanSaC proved more robust to tackle various datasets and no noticeable differences
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Figure 2.11: Top: Image on which AC-RanSaC was computed. Bottom: Distribution of
residual (in pixel) of inliers in percentage of inlier points after estimation by AC-RanSaC
with arbitrary precision on the second image of the PnP MegaDepth sub-dataset3 [46].

were observed in results after switching algorithms. The main advantage of using AC-
RanSaC is that it has a refinement step that iterates over the first good inlier set to get a
better model even when the stopping criterion is met. This estimation gives a hopefully
coherent model. That model can be quickly checked to ensure its coherence with the
image pair or input data. The check consists in a simple observation of the reconstruction
for homography and of the consistency of epipolar lines for Fundamental and Essential
matrix estimation. For PnP visualization is more complex as it requires observing the
pose in a 3D representation. This visual check is not necessary to run the pipeline as any
model could be used as ground truth but it is useful to ensure that the model is close to
the real one. If the model is valid, the proposed inliers of AC-RanSaC can be aligned to
fit it. It gives us the artificial ground truth inliers on which to apply the uniform noise.
Noise is only added on one side of the new matches as we want to control its value and
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adding it to both side would risk cancelling it out or accumulating itself. A final check
is usually added to ensure that the noisy inlier stays in the realm of possible values, for
instance that it does not get out of the input image.

For homographies, one image side of the image pair is selected as reference and the
features from this image of each inlier match are kept. The matching features in the
other image are discarded and replaced by the projection of the point with the ground
truth homography, see Figure 2.12. The inlier perturbations are then drawn uniformly in
[−σnoise, σnoise]2 and added to the new points to create the input noisy matches.

Figure 2.12: From an imperfect match (p1, p2) considered inlier by AC-RanSaC, the “per-
fect match” (p1, p

′
2) is constructed such that p′2 = Hp1 using a realistic homography H

given by AC-RanSaC. Figure originates from [77].

For fundamental and essential matrices, one side from the image pair is selected as
reference as well. However, the position of the feature in the other image is not dis-
carded but orthogonally projected on the epipolar line associated with the feature in the
reference image, see Figure 2.13. The noise is then drawn in [−σnoise, σnoise] and added
perpendicularly to the epipolar line to the new point to create the input noisy match.

Figure 2.13: From an imperfect match (p1, p2) considered inlier by AC-RanSaC, the “per-
fect match” (p1, p

′
2) is constructed using p′2 the orthogonal projection of p2 on the epipolar

line L1 = Fp1 where F is a realistic fundamental matrix given by AC-RanSaC. This does
not guarantee that p′2 represents the same physical point as p1, but that some 3D point
at possibly different depth projects exactly at p1 and p′2. Figure originates from [77].

For Perspective-from-n-Points, the 3D point is kept as reference and the matching 2D
point is discarded. Then, the 3D point is projected on the image plane and noise is added
in [−σnoise, σnoise]2 in the image similarly to the homography setup.
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2.4 Outlier generation

2.4.1 Choice of outlier distribution

Once noisy inliers are generated we can generate ground truth outliers. A “ground truth
outlier” is an element lying further from the ground truth model than the worst noisy
inlier. Thanks to this distinction, metrics can be computed accurately. When algorithms
make assumption about the outliers distribution, it is usually uniform in the whole image
as in [64, 41, 6, 7, 83, 17]. However, a data point inside the inlier region should be con-
sidered an inlier so we restrict outliers to have residual at least bigger than the maximum
inlier residual, see equation (2.6). To do so we could simply choose a random match in S
with uniform distribution. However, such a random distribution is not challenging enough
for RanSaC algorithms. In figures 2.14, 2.15, 2.16 and 2.17 we compare the distribution
of residuals of outliers estimated by AC-RanSaC to the estimated model and points gen-
erated by our method and points generated by uniform distribution in the match space.
This is just a qualitative analysis of the distribution but our method is usually closer to
the estimated distribution than uniform outliers.

Figure 2.14: Distribution of residual (in pixel) of outliers in percentage of outliers points
on the first image pair of the homography USAC dataset [73]. See Figure 2.8 for image
pair. From left to right: Outliers estimated by AC-RanSaC with arbitrary precision,
outliers generated with our methodd, uniformly distributed outliers.

That is why we propose a distribution of data points in error-space. It means that,
for each outlier, its residual is drawn uniformly from the set of possible residuals. This
method is more complex but brings more realistic challenges to the RanSaC algorithms
as presented below.
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Figure 2.15: Distribution of residual (in pixel) of outliers in percentage of outliers points
on the fifth image pair of the fundamental matrix USAC dataset [73]. See Figure 2.9
for image pair. From left to right: Outliers estimated by AC-RanSaC with arbitrary
precision, outliers generated with our methodd, uniformly distributed outliers.

Figure 2.16: Distribution of residual (in pixel) of outliers in percentage of outliers points
on the fourth image pair of the essential matrix USAC dataset [73]. See Figure 2.10
for image pair. From left to right: Outliers estimated by AC-RanSaC with arbitrary
precision, outliers generated with our methodd, uniformly distributed outliers.

2.4.2 For MVS and SfM

In Two-View Geometry and PnP, we use the same logic to generate an outlier match
po = (q1, q2) according to this distribution. First a point q1 is drawn uniformly in one
side of the match. This point will form the first part of the match. Then, its perfect
match and inlier region is computed. From this perfect match, a direction is selected in
which to place the second point q2. With the direction and inlier region, the range of
possible residuals can be computed. By drawing the perturbation uniformly in this range,
the outlier match po = (q1, q2) is generated. This method does not generate a uniform
distribution in error space but it ensures that enough matches are close enough to the

74



2.4. Outlier generation

Figure 2.17: Distribution of residual (in pixel) of outliers in percentage of outliers points
on the second image of the MegaDepth dataset [46]. See Figure 2.11 for image pair.
From left to right: Outliers estimated by AC-RanSaC with arbitrary precision, outliers
generated with our methodd, uniformly distributed outliers. Note that the right image
starts around 2000 pixel error.

ground truth model to present an actual challenge to the RanSaC algorithm.

Specifically, for point-to-point residual models, like homography estimation and PnP,
the principle is the same. In the first case, a 2D point is drawn in one of the two images
and its projection on the second image is computed. In the second case, a 3D point is
drawn in a bounding box bb around inlier points defined as:

bb =[raug min
∀i∈[nin]

(xi), raug max
∀i∈[nin]

(xi)]×

[raug min
∀i∈[nin]

(yi), raug max
∀i∈[nin]

(yi)]×

[raug min
∀i∈[nin]

(zi), raug max
∀i∈[nin]

(zi)]

(2.7)

where raug is a small factor — set to 1.1 in our experiments — to increase the range of
outliers around the inliers and Inoisy = {pi = (xi, yi, zi),∀i ∈ [nin]}. The 3D point is then
projected onto the 2D image. The inlier region is then a circle of radius maxpi∈Inoisy D(pi)
around this projection. A random direction θ is uniformly selected and, from this direc-
tion, the maximum possible residual is computed to ensure the generated point does not
exit the image. To do so, once the perfect match q′2 = (u, v) is generated, depending of
which zone of the image is selected, the distance to the border maxoffset is computed as
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such:

maxoffset =



w−u
cos(θ) , if θ ∈ [0, θ1]⋃ [θ4, 2π]

h−v
cos(θ−π2 ) , if θ ∈ [θ1, θ2]

u
cos(θ−π) , if θ ∈ [θ2, θ3]

v

cos(θ− 3π
2 ) , if θ ∈ [θ3, θ4]

(2.8)

where the image is of width and height (w, h) and the values of θi, ∀i ∈ [4] depend on the
image zones, as presented in Figure 2.18:

θ1 = arctan
(
h− v
w − u

)
(2.9)

θ2 = arctan
(

u

h− v
+ π

2

)
(2.10)

θ3 = arctan
(
v

u
+ π

)
(2.11)

θ4 = arctan
(
w − u
v

+ 3π
2

)
(2.12)

θ1

θ2

θ3

θ4

(0, h) (w, h)

(w, 0)(0, 0)

q'2 = Hq1

Figure 2.18: Illustration of the four angles θ1, θ2, θ3 and θ4 on the second image given the
image q′2 of a point q1 in the first image.

The perturbation is then drawn uniformly in [maxpi∈Inoisy D(pi),maxoffset] and applied
in the direction θ. This gives q2 to create po = (q1, q2), see Figure 2.19
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Figure 2.19: A random point q1 is drawn from the left image. Using the ground truth
model H, its perfect match q′2 = Hq1 is computed. Then a direction and a distance to q′2
are drawn uniformly in order to create q2 so that it remains in the image and out of the
inlier zone (marked in red) defined by the inlier noise level. Figure originates from [77].

Figure 2.20: A random point q1 is drawn from the left image. Using the ground truth
model F , the epipolar line L1 = Fq1 is computed. Then a position on this line and a
distance to L1 are drawn uniformly in order to create q2 so that it remains in the image and
out of the inlier zone (marked in red) defined by the inlier noise level. Figure originates
from [77].

Regarding point-to-line error models, like fundamental and essential matrix estima-
tion, the same logic is applied with small adaptations. To create an outlier po = (q1, q2), a
2D point q1 is drawn in one of the images and the associated epipolar line is computed. A
point is then randomly drawn on the epipolar line while making sure it stays in the image.
To do so, three cases have to be considered. If the epipolar line is horizontal or vertical,
it just requires to select the abscissa and ordinate and project on the epipolar line. In
any other scenario, we compute the min minabs and max abscissa maxabs to generate the
point on the epipolar line. For an epipolar line 0 = ax + by + c, those values depend on
the sign of the slope = −a

b
:

minabs =

max
(
−c
a
, 0
)

, if slope > 0

max
(

h
slope
− c

a
, 0
)

, if slope < 0
(2.13)

maxabs =

min
(

h
slope
− c

a
, w
)

, if slope > 0

min
(
−c
a
, w
)

, if slope < 0
(2.14)
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An abscissa is uniformly drawn in [minabs,maxabs] and its image is computed on the
epipolar line. In all three cases, from the reference point on the epipolar line, themaxoffset
is computed similarly to the homography cases. Instead of choosing a random direction
in [0, 2π], the two possibilities are up and down from the epipolar line — or left and
right if the line is vertical. Then, equation (2.8) is applied with θ = arctan(slope)± π

2 to
get maxoffset and the perturbation can be drawn and applied in perpendicularly to the
epipolar line. This gives q2 and thus the outlier match. See Figure 2.20.
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Chapter 3

Analysis of Adaptative RanSaC
Methods for MVS and SfM Tasks

In the previous chapter we presented how to create datasets designed to evaluate RanSaC
algorithms as classification methods to increase the quality of the pipeline. As such
we propose a benchmark using this method to compare automatic threshold RanSaC
algorithms to find out their strengths and shortcomings depending on the situation.

We simultaneously try to observe whether our data generation methodology reveals
different behaviour depending on the generation parameters. Of course, different estima-
tion problems or input data lead to different values for each metrics but if the general
behaviour of a particular algorithm and how it compares to the others is not impacted
then the method is appropriate to analyse an algorithm accurately.

Finally, our goal is to establish when to use each algorithms and which to include in
ColMap [79] to try and remove the user threshold in the whole pipeline.

3.1 Tested algorithms

For this benchmark we used only a subset of the algorithms presented in Section 1.4.
Methods were chosen based on the following criteria: being a method that does not
require a hard user set threshold — hyper-parameters for max range of thresholds are
allowed but they will not be tuned — tailored for MVS and SfM, and availability of
an implementation or feasibility of implementation. Classical RanSaC [26] is used as a
baseline to validate performance of other methods to ensure they do better than a fixed
threshold. It is tested with two thresholds to better assess its possible performances.
The selected threshold-free method are MUSE [58], StaRSaC [13], A-Contrario RanSaC
(AC-RanSaC) [61], Likelihood Ratio Test (LRT) [17], Marginalizing Sample Consensus
(MAGSAC) [6] and two related variations Fast-AC-RanSaC[65] and MAGSAC++ [7].
Multi-model specific methods like [38, 87, 55] are excluded from the benchmark as we
concentrate our benchmark around the classification performance of the algorithms when
faced with a single model.

RanSaC, presented in Section 1.4.1, was used with two thresholds, σ1 and σ2, in pixel
to offer a baseline of performance of non-adaptative methods with varying thresholds.
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Algorithm RanSaC is described in algorithm 1 but we modified its stopping criterion so
that we have confidence β that at least n = 5 good samples have been drawn. The choice
of n = 5 is a balance to increase the confidence without slowing down the computations
too much. Equation (1.24) is changed to:

itmax = log(1− β)
log(1− εs) +

− log
(∑n−1

i=0

(
εs

1−εs
)i)

log(1− εs) , (3.1)

with the first term being the classic formula and the second one a positive value that
increases the required number of iteration to be confident that n = 5 elements are drawn.
The implementation was adapted from [63].

All other methods included in the benchmark remove the need for a user-set in-
lier/outlier threshold. They can present some hyperparameters that determine a max-
imum range of thresholds to consider. MUSE [58] is an adaptation of Least Median
Squares [44]. It uses scale estimates as objective function to rank models using the stan-
dard iterative sampling of minimal samples of RanSaC. The authors claim that the new
objective function is more robust to higher outlier ratios and can be used to detect multiple
models by iteratively removing points using a well chosen scale estimate. This objective,
the unbiased scale estimate σ̂θ of a model with parameters θ, is computed by sorting all
N residuals Dk of all data points and evaluating the scale estimate sk for the kth residual:

sk = Dk

0.5
(
1 + k

N+1

) , (3.2)

and finding minimal scale s∗θ = sk′ which gives the unbiased scale estimate as:

Q(σ, θ) = σ̂θ = s∗θ
E[min vk′ ]

, (3.3)

where min vk′ is the k′th scale estimate of a standardized normal distribution. This algo-
rithm does not include a stopping criteria when confidence β is reached, thus we added the
RanSaC one as it adapts seamlessly to the framework. The implementation was adapted
from https://github.com/vxl/vxl.

Likelihood Ratio Test (LRT) [17] estimates the likelihood that the data presents non-
random structure and tries to find the best model to describe the data if it is indeed
non-random. It is based on points being drawn from two uniform distributions, one
on the inlier space I(θ, σ) and the other on the whole space, the outlier background
distribution. A theoretical ratio ρ of points are inliers and the null hypothesis is ρ = 0
while the alternative hypothesis requires to determine θ, σ and ρ. The likelihood ratio
test of both hypotheses gives, after some rearrangements, the quality function of a model:
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Q(σ) = L(ε, σ) = 2|P|
(
ε log ε

pσ
+ (1− ε) log 1− ε

1− pσ

)
, (3.4)

with inlier ratio ε = k(σ)/|P| and σ spanning a predefined list {σmin, . . . , σmax}. The
author did not provide the chosen range of σ so we chose σi = 0.25 ∗ 2 i

2 , ∀i ≥ 0, σi ≤
σmax. This range gives reasonable values and distribution for σ. This objective must be
above a certain threshold c, computed from a confidence α and a lookup table for the χ2

distribution with d + 2 degrees of freedom which the likelihood statistic approaches, to
ensure the control over the type I error. To find the best threshold, at each iteration, the
inlier ratio is computed for a range of thresholds and the threshold with best log-likelihood
is selected. The type II error is controlled by a confidence β that works similarly to the
stopping criteria of RanSaC. Moreover, at each iteration, the empiric inlier ratio ε is
compared to minimal inlier ratio ε given the so-far-the-best model. This gives an early
bailout strategy to stop the residual computation if the model should be discarded which
requires a new parameter γ to control the increased risk. This early bailout strategy shifts
the value of the stopping criteria:

itmax = log(1− β)
log(1− εs × γ) , (3.5)

where ε is the minimal value of the possible future inlier ratios to find a better model.
We reimplemented this algorithm in [75].

StaRSaC [13] simply proposes to test RanSaC with multiple thresholds and find which
one offers the most stable results. To do so, the quality function Q is defined as the
variance over parameters computed by evaluating RanSaC nstarsac times for each threshold
σ in the same range as LRT above. The authors expect that a good threshold should
have small variance of model parameters as the same data points should be inliers for the
right threshold.

Q(σ) = − 1
nstarsac

(
nstarsac∑
i=0

(
θ̄i(σ)− θi(σ)

)2
)
, (3.6)

where θi(σ) is the model parameter at threshold σ for i ∈ [nstarsac] and θ̄i(σ) =
1

nstarsac

∑nstarsac
i=0 θi(σ) is the mean of estimated parameters. We reimplemented this al-

gorithm ourselves.

Authors of A-Contrario-RanSaC (AC-RanSaC) [60, 61] use the Number of False Alarm
(NFA) to find whether the model was selected by chance from random uniform outliers.
Testing all data points residual εk, in increasing order, as potential inlier/outlier threshold
the NFA is the number of tests times the probability of k random data points falling within
εk of the model. This probability is computed as (εdkα0)k−s with α0 the probability of a
random data point having residual at most 1. The number of tests is computed as the
number of possible model given the estimation algorithm Nestimator, see Section 1.2, times
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all possible residual to test |P| − s, times the number of possible sets of inliers of size k(
|P|
k(σ)

)
, times the number of possible sample in this inlier set

(
k(σ)
s

)
. This yields the quality

function as:

Q(θ) = −NFA(θ, σ) = Nestimator(|P| − s)
(
|P|
k

)(
k

s

)
(εdkα0)k−s. (3.7)

This quality function controls the type I Error. An upper bound of the NFA, NFAmax, is
set and, once an inlier set and threshold verify this bound, 10% of the maximum number
of iterations are reserved to improve the model by iterating over this so-far-the-best inlier
set. To reduce computation time, an upper bound to the tested residual σmax can be
set but it works as well on tests with all data points. The implementation was adapted
from [63].

As presented in Section 3.3, AC-RanSaC is relatively slow compared to other algo-
rithms. This is usually due to its sorting step which can take the same amount of time
than the residual computation. In OpenMVG [65], the original paper author proposed
an improvement quantizing the residuals and using a histogram to classify errors instead
of sorting all the residuals. To compute the Number of False Alarms, the possible in-
lier/outlier threshold are set to the values separating the nbin, Bi, ∀i ∈ [nbin] and the
number of inliers of all bins k(Bi) can be computed in O(n) instead of O(n log n):

Q(θ) = NFA(θ, Bi) ∼
(
|P|
k(Bi)

)(
k(Bi)
s

)
(Bd

i α0)k(Bi)−s. (3.8)

The implementation was adapted from OpenMVG [65].

MAGSAC [6] introduces σ-consensus to remove the need for inlier/outlier threshold.
σ-consensus weighs data points to do local optimization using a weighted least square
fitting. At each iteration, samples are drawn uniformly and then a model is estimated, or
multiple models depending on the estimator. Then, each data point with residual lower
than σmax gets sorted and ordered in npartition partitions of max residual σmax,i. A model
θi is estimated from the increasing sets of pseudo-inliers of each partition and each point
p gets a weight W (p) depending on its residual to the estimated models:

W (p) =
npartition∑

i=1
exp −D(p, θi)2

σ2
max,i

. (3.9)

This equation is not faithful to equation (6) in [6], but is the one used in their imple-
mentation. The σ-consensus optimization’s goal is to improve the quality of the model
estimated at each iteration. To determine the best model to select during the RanSaC
procedure, MAGSAC assumes uniform inliers and outliers in different space and derives
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the likelihood of a model from it.

Q(θ) =
∑

p,D(p,θ)<σmax

npartition∑
i=1

(
1− D(p, θ)2

σ2
max,i

)
, (3.10)

which deviates again from the proposed marginalised quality function in equation (5)
of [6]. The implementation was adapted from [6].

MAGSAC has been improved by the original authors as MAGSAC++ [7]. σ-consensus
is replaced by σ-consensus++ that does reweighted least square fitting at each itera-
tion. The hypotheses are also changed: inliers residuals are distributed according to a
χ-distribution with a uniformly drawn noise level in U(0, σmax). The author also propose
a new sampling inspired from [89] but it was not made available in their scripts so we did
not include it. This leads to a modification of equations 3.9 and 3.10. The authors claim
that this new version leads to similar or better result while being faster up to a factor ten
than normal MAGSAC. This increase in performance is indeed observed in Section 3.3.1.
The implementation was adapted from [7].

As specified, all algorithms were either implemented from scratch or adapted from
an available repository. However, several publications presenting the algorithms do not
disclose all required implementation details nor design choices. When elements were
missing, hyperparameter values were either divined from available experiments or set
after some initial tuning. When entire procedure or formulas were missing, we used our
best judgement to design an ad hoc solution. For example, the procedure to compute
the set of possible thresholds for LRT was not available and we had to design our own
solution. When differences occurred between a paper presenting an algorithm and its
available implementation appeared, like for MAGSAC and MAGSAC++, we used the
proposed implementation without further analysis, as we aim to compare the results of
the authors’ algorithms and if changes were introduced, either to ease implementation or
propose better results, those are the version we are interested in.

3.2 Benchmark parameters and datasets

This section regroups the different information used for the benchmark: the estimation
problems included, the datasets from which we extracted the input data for the generator
and the parameters of the generator and the choice of hyper-parameters for the tested
algorithms.

Estimation problems:

The different estimation problem we included in the benchmark are homography, funda-
mental matrix and essential matrix estimation and the Perspective-from-n-Points prob-
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lem. All those are classic MVS and SfM tasks that can be used in the global reconstruction
pipeline but most RanSaC algorithms, like [17, 6, 60, 61, 73, 62, 64, 16], are only tested on
homography, fundamental matrix and essential matrix problems whereas the PnP prob-
lem is a staple of the pipeline as it is used to incrementally add new snapshots to the
reconstruction, see Chapter 4.

As minimal solvers F , we use the standard 4-point estimator for homography and 7-
point estimator for fundamental matrix [32], the 5-point estimator for essential matrix [70]
and the P3P algorithm for the PnP problem. For non-minimal solvers, least-square eval-
uation was used for two-view geometry problems and the EPNP[43] algorithm for PnP.
For MAGSAC and MAGSAC++ weighted version of the non minimal solvers are re-
quired and we adapted the EPNP algorithm to work in a weighted case. In order to do
so, equations (1.19) and (1.20) are multiplied by the point’s weight.

Datasets:

Different datasets and different tasks are included in the benchmark in order to test
whether our data generation methodology does indeed allow generalisation of results or
if differences appear between algorithms depending on the test setting.

The first dataset comes from the USAC [73] paper. It is reused by [17, 6, 61, 60]. It
contains 10 image pairs for homography estimation, 11 for fundamental matrix estimation
and 6 for essential matrix estimation which will be called “Problem - USAC - Dataset
i” where Problem can be Homography, Fundamental or Essential and i is the index of
the dataset according to the ordering of USAC. Alongside the image pairs, unlabelled
SIFT [52, 53] matches are provided as well as calibration matrices for the six essential
matrix image pairs. The image pairs are in the wild and present a variety of setup most
from outdoor urban setup but a few aerial or indoor images.

Multi-H [20] is a dataset that can be used for multiple homography detection or for
fundamental matrix estimation.1 In our case, we use it for the latter. In contains 24
image pairs for fundamental matrix estimation without any matches. We compute the
matches using [52, 53] with SIFT ratio of 0.6—this ratio is the maximal feature distance
between the closest matching and second closest matching point for a point to create a
match. Its image pairs are in the wild with mostly outdoor images of academic building
and a few indoor images.

homogr [97] contains 16 image pairs for homography estimation.1 It contains mostly
challenging images with huge occlusions and high change in point of view. Images are
either from outdoor, in the wild, setting or controlled indoor setups. SIFT matches are
computed similarly to the Multi-H dataset.

Kusvod2 is a fundamental matrix dataset containing 16 image pairs.1 It is designed

1Multi-H, kusvod2 and homogr can be found at http://cmp.felk.cvut.cz/data/geometry2view/
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to offer challenging setups with illumination differences and significant point of view
variation using both indoor and outdoor images. Again, no SIFT matchs are available so
we compute them using the same protocol as other datasets.

Finally, for PnP estimation, the megadepth [46] dataset was used. We extract 16
images from this dataset, with 2D-3D correspondance and calibration matrix. The im-
ages are from the wild, found on the Internet. The correspondences and calibration are
computed using ColMap [79].

Data generation parameters:

To reveal performance of algorithms according to noise levels σnoise and outlier ratio 1−ε,
a range of values are used in the benchmark. Inlier noise ranges from no added noise up
to 3 pixels with steps of 0.1. Outlier ratio varies from 0% to 90% by steps of 10%. A
choice of both parameters (σnoise, 1− ε) constitutes a test setting.

To minimise the impact of both the resulting generated dataset and the randomness
of RanSaC algorithms, for each test setting Ngen = 5 different datasets are generated
and for each dataset Nrun = 5 estimations are computed for each algorithm. Results are
then averaged on all success cases, meaning if an algorithm did not succeed in achieving
at least 10% precision or recall it is not included. Early experiments included studies
of standard deviation but no significant variation of standard deviation appeared across
algorithm nor settings. It was thus removed from figures to make them more readable.
This threshold ensures that results are not skewed downward because of a single failure
case and, if need be, the number of failure cases can be analysed separately.

Algorithms hyperparameters:

Our goal is to compare user-threshold-free methods and establish which work best in which
scenarios without any tuning. This is why, when possible we extracted the parameters of
the tested algorithms from their original publications, otherwise we chose value after some
initials tests but keep them fixed those during the benchmark. By doing so, the choice of
algorithm will not be impacted by the quality of the tuning and thus the algorithm can
be used off the shelf. Such values are summarized in table 3.1.

3.3 Time

Analysis of runtime answers two main objectives. Firstly, seeing whether an algorithm
can be used in real-time application or should be used in offline reconstruction depending
on the order of magnitude of its runtime. Secondly, keeping in perspective classification
performance improvements, for example if an algorithm performs slightly better than
another for a huge increase in runtime, its interest is reduced.
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Table 3.1: Hyperparameters of the tested algorithms, see Section 3.1 for definitions.

Parameter name Value Algorithms using it

Success confidence β = 1− pII 0.99 RanSaC, StarSac, MUSE,
LRT, AC-RanSaC, Fast-AC-RanSaC

Inlier search cut-off σmax 16 pixels AC-RanSaC, Fast-AC-RanSaC,
StarSaC and LRT

NFA maximum value NFAmax 1 AC-RanSaC, Fast-AC-RanSaC
Expected type I error α = 1− pI 0.01 LRT
Increase in type II error
from early bailout γ = 1− p′II

0.05 LRT

Number of data partitions p 10 MAGSAC, MAGSAC++
Pseudo-inlier threshold σmax 10 pixels MAGSAC, MAGSAC++
Reference threshold σref 1 pixel MAGSAC, MAGSAC++

To measure runtime, all algorithms are run on the same computer with exactly the
same dataset, sampler and estimator to make the RanSaC algorithm the only algorithm
that changes. The runtime does include the time spent in sampling and running the
estimator, as both can be run a different number of times because of different numbers of
iterations or different optimization strategies.

After some preliminary tests, StaRSaC [13] proved extremely slow for baseline or
slightly above baseline performance. A usual run will take between 3 and 5 minutes to
compute a result which is two orders of magnitude slower than the next slowest algorithm.
For this reason, we removed StaRSaC from the benchmark.

3.3.1 Runtime analysis

The first element a time analysis reveals is whether the noise level, at fixed outlier ra-
tio, impacts the runtime of an algorithm. MUSE, Fast-AC-RanSaC, AC-RanSaC, and
MAGSAC++ are not really impacted by the noise level but mostly by the number of
points of the datasets. On the other hand, LRT, RanSaC and MAGSAC are hugely
impacted by the noise level and can have runtime multiplied by up to 5 times.

The fastest algorithms are RanSaC, LRT and MUSE. These three can have runtimes
around a hundredth of a second for small noise level, below 1 pixel. However, in hard
settings, with high noise levels, runtime for LRT and RanSaC can increase drastically,
up to the point of being the slowest algorithms, taking multiple seconds to stop on a
satisfactory solution. MUSE always keeps its low runtime.

MAGSAC and MAGSAC++ usually show average time performance, with small range
of variations. For the most difficult settings with high outlier ratio and high inlier noise
MAGSAC can show high increase in runtime while MAGSAC++ is more stable and,
usually faster. Both algorithm sometimes fail to terminate even when a good model is
found so a time limit of 2 s was set. However, this time limit does not impact classification
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Figure 3.1: Runtimes over different inlier noise levels and outlier ratios. The fitting prob-
lem, dataset name, and image pair number are in each graph title. Ransac-σ corresponds
to RanSaC with user threshold σ.

performance as usually the algorithm finds a good model before it is reached and just fails
to recognise it and ends iterations.

For easy to medium settings, AC-RanSaC shows higher runtime than most over algo-
rithms. It becomes competitive on difficult test settings as its runtime is not impacted by
inlier noise but by dataset size, so when other algorithm see their runtime increase dras-
tically, it can be faster. Fast-AC-RanSaC is most of the time twice as fast as AC-RanSaC
and not impacted by noise as well.

3.3.2 Using early bailout to improve runtime

LRT appears faster than AC-RanSaC and Fast-AC-RanSaC but, as presented in the
next section, with worst performance in most difficult scenarios. In order to try and
improve the runtime of Fast-AC-RanSaC we analyse the early bailout strategy of LRT,
see Section 1.4.3 and algorithm 14 and see if it is worth adapting to other algorithms.
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This work was done in [75]. All runtime analysis are done on real data and averaged over
100 runs.

We first observe the runtime impact of this strategy for all two-view geometry tasks on
USAC dataset, see Figure 3.2. The left scale presents the ratio of runtime with bailout over
runtime without bailout, and should be as low as possible. The right scale presents the
Verification Per Model (VPM), the number of points whose residual has been computed,
as a proportion of the total number of points. It presents the sensitivity of the early
bailout on the model estimation. For most cases the runtime ratio is below one, and can
drop to 20% while increase in runtime is never above 150% but such increase is due to
premature rejection of models as the VPM is extremely low in such cases.
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Runtime and VPM ratios across USAC datasets

Figure 3.2: Ratios of LRT Runtime and Verification Per Model (VPM) with the early
bailout strategy and without the bailout. Results are presented across all available
USAC [73] datasets where H stands for homography estimation, F for fundamental matrix
estimation and E for essential matrix estimation with same numbering as USAC.

To ensure the decrease in runtime is due to the early bailout strategy, we test LRT
with and without all possible optimization strategy and compare the results together. The
different options are the early bailout, the update of the maximum number of iterations
T and the iterative diminution of σmax once the so-far-the-best likelihood cannot be
reached anymore for σmax. Figures 3.3, 3.4 and 3.5 present the runtime ratio of different
combinations of options over the runtime without any options. It appears that both
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the early bailout strategy and update of T produce significant runtime decrease in most
situations and even just using the bailout strategy (orange bars) can decrease the runtime
by a factor of 10.
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Runtime divided by runtime without any options for USAC homography image pairs.

LRT with bailout, with update of T, with reduce Sigma
LRT with bailout, without update of T, with reduce Sigma
LRT without bailout, with update of T, with reduce Sigma
LRT without bailout, without update of T, with reduce Sigma
LRT without bailout, without update of T, without reduce Sigma

Figure 3.3: Ratios of LRT Runtime with different options enabled over LRT runtime
without any options. Results are presented across all available USAC [73] datasets for
homography estimation. The ratio is presented in logscale.

Finally, to be able to conclude on the validity of the early bailout strategy we observe
how it impacts the classification performance of LRT. Figure 3.6 presents the ratio of the
precision of LRT with early bailout and of LRT without bailout. Figure 3.7 presents the
ratio of the recall of LRT with early bailout and of LRT without bailout. Both graphs are
presented as boxplots with first and third quartiles defining the box and the median for the
middle line. The whiskers are set at 1.5 times the interquartile range. The results shown
are averaged over different noise levels σnoise—from 0 to 3 pixels by 0.1 pixel increments,
different outlier ratios—from 0 to 90% by increments of 10%, and 25 different runs.

Both metrics present a median slightly lower than 1 with a spread on a very small
area around this value, sometimes above 1. This means the early bailout strategy is not
consistently worsening the quality of the result, and not by a lot when it does, thus it is
a valid improvement of the algorithm.

In view of those results, we tried to adapt the early bailout strategy to Fast-AC-
RanSaC. However, as presented in [77] this reduced drastically the performance of the
algorithm and it was not pursued.
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Runtime divided by runtime without any options for USAC fundamental matrix image pairs.

LRT with bailout, with update of T, with reduce Sigma
LRT with bailout, without update of T, with reduce Sigma
LRT without bailout, with update of T, with reduce Sigma
LRT without bailout, without update of T, with reduce Sigma
LRT without bailout, without update of T, without reduce Sigma

Figure 3.4: Ratios of LRT Runtime with different options enabled over LRT runtime
without any options. Results are presented across all available USAC [73] datasets for
fundamental matrix estimation. The ratio is presented in logscale.
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Runtime divided by runtime without any options for USAC essential matrix image pairs.

LRT with bailout, with update of T, with reduce Sigma
LRT with bailout, without update of T, with reduce Sigma
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Figure 3.5: Ratios of LRT Runtime with different options enabled over LRT runtime
without any options. Results are presented across all available USAC [73] datasets for
essential matrix estimation. The ratio is presented in logscale.
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Figure 3.6: Boxplot of the ratio of the precision of LRT with the early bailout strategy and
without the bailout. Results are presented across all available USAC [73] datasets and
over a high range of semi-artificial dataset settings. H stands for homography estimation,
F for fundamental matrix estimation and E for essential matrix estimation with same
numbering as USAC.
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Figure 3.7: Boxplot of the ratio of the recall of LRT with the early bailout strategy and
without the bailout. Results are presented across all available USAC [73] datasets and
over a high range of semi-artificial dataset settings. H stands for homography estimation,
F for fundamental matrix estimation and E for essential matrix estimation with same
numbering as USAC. Dataset E4 and E4 are cut as they spread much more than others
and made them hard to read. For E4 the quartiles are [0.89, 1.15] and the whiskers are
[0.51, 1.56]. For E5 the quartiles are [0.94, 1.07] and the whiskers are [0.78, 1.25].

3.4 Classification performance

In this section we observe the classification performance of each algorithms using precision
and recall, as presented in Section 2.2. However, first observations, see Figure 3.8, reveal
no change in trade-off between the two metrics. Usually, algorithms will perform better
in precision than recall, but it will be a consistent behaviour without any increase in
one metric while the other decreases. This is why we summarise most other observations
using the F1-Score, as it represents the global performance of an algorithm. If interesting
differences between the two metrics appear, it will be discussed.

Our second observation is that algorithms do not change behaviour across two-view
geometry tasks. A given algorithm might show different performance according to the
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Figure 3.8: Precision (left) and recall (right) of all tested algorithms as a function of inleir
noise on the Fundamental USAC dataset for various image pair and outlier ratios.

image pair or test setting but its general tendencies are not impacted by the estimation
problem, be it homography, fundamental matrix or essential matrix. On the other hand,
the PnP problem proves a challenge for some algorithms.

Figures 3.9 and 3.10 illustrate the typical behaviours with low and high outlier ratios
on a variety of estimation problems and datasets.

Classic RanSaC with two different thresholds shows the expected behaviour with good
performance for easy settings that quickly degrades as the inlier noise and outlier ratio
increases. This behaviour can be observed across all estimation problems and all image
pairs. On the one hand, the one with the lowest threshold has higher precision than the
one with higher threshold with huge drops of performance for high noise or outlier ratio.
It gives a baseline for the performance of a conservative RanSaC with low threshold. On
the other hand, concerning recall, the high threshold one performs better than the other

92



3.4. Classification performance

Figure 3.9: Typical F1-score evolution over inlier noise for low outlier ratios. Estima-
tion problem, dataset name and image pair number can be found in each graph’s title.
Magsac-P, Magsac-R and Magsac-W correspond to the metrics presented in Section 2.2.

and, moreover, its recall remains high while for a 3 pixels threshold, it drops significantly.
This gives the baseline for a permissive RanSaC with high threshold.

The MUSE algorithm will often present poor performance, mostly because of its se-
lection of thresholds. Its performance is similar across all test cases and might perform
worse than baseline in easy to normal settings. It usually selects quite small thresholds
which impacts significantly its recall compared to other algorithms. However, this ensures
it keeps high precision, even in the most complex settings, reaching more than 95% of
good selections in some settings.

AC-RanSaC shows good performance for all test settings and estimation problems.
For easy to medium settings it will often be amongst the best performing algorithm and
its performance drop for complex settings is lower than most other algorithms.
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Figure 3.10: Typical F1-score evolution over inlier noise for high outlier ratios. Estima-
tion problem, dataset name and image pair number can be found in each graph’s title.
Magsac-P, Magsac-R and Magsac-W correspond to the metrics presented in Section 2.2.

For LRT, its performance is on par, or just below, the best performing algorithms for
easy to medium settings. However, in hard settings, with high outlier ratios and high
noise levels, it presents significant performance drop though rarely below baseline.

Fast-AC-RanSaC shows performance slightly above LRT in easy to medium settings.
However, for the hardest test conditions, it shows similar performance drop with none of
the two consistently being better across datasets. Its performance is usually explained by
good recall but lesser precision than normal AC-RanSaC which can be explained by its
reduced choice of possible thresholds. The main issue with Fast-AC-RanSaC is reliability
as in some runs it will fail to find any good model and might stop on a contaminated
model or too high a threshold.

MAGSAC does not present a clear inlier/outlier threshold and needs different metrics
to analyse its classification performance, see Section 2.2. However, using all three meth-
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ods to compute precision and recall, it usually performs better than all other algorithms
in two-view geometry tasks. It can even keep above 90% precision and above 80% recall
in the highest inlier noise levels and outliers ratios. We keep in mind that Magsac-P,
corresponding to RP (AC-RanSaC), and Magsac-R, corresponding to PR(AC-RanSaC), depend
on the performance of AC-RanSaC. High precision and high recall in those values mean
MAGSAC can perform better than AC-RanSaC if a well chosen threshold is found. How-
ever, for the PnP task, MAGSAC fails to present satisfactory results. It fails to find a
good model most of the time and when it does its recall is below baseline.

MAGSAC++ almost consistently performs slightly better than MAGSAC with small
variations. It never performs worse than MAGSAC. It does keep the same troubles with
PnP tasks and will show extremely low recall values when it finds a good model. For
both algorithms, lifting the runtime limit does not solve this issue.

3.5 Validity of method and algorithm choice

The behaviour of algorithms across different datasets, different images for a given esti-
mation tasks seems solely impacted by the semi artificial dataset parameters. Indeed,
while specific values might change, the ordering of algorithms, the drops in performance,
the runtime evolution, are consistent across all test cases and depend on the test setting
and not input task or images. We conclude that our data generation methodology is
able to reveal intrinsic qualities and characteristics of the tested algorithms. However,
some differences might appear for specific estimation tasks so we need to test algorithms
accordingly.

Both StaRSaC and MUSE exhibit poor performance compared to other algorithms.
The StaRSaC algorithm offers very small to no increase in performance compared to
RanSaC, even with a poorly chosen threshold, and it is way too slow to justify its use in
almost all cases. MUSE offers high speed and high stability but usually, it will perform
worse than newer fasts methods. It remains interesting when the only focus is precision
and not recall as it selects conservative thresholds.

Then, we separate algorithms according to speed to compare their performance. Firstly
because there is a difference in application for fast algorithms that can be included in real
time applications if they consistently have runtime below a tenth of a second. Secondly
because the speed of an algorithm has a significant impact on the classification perfor-
mance robustness as most fast algorithms will show bigger performance drop in difficult
test settings than slower algorithms. The speed of an algorithm is, in most cases, ex-
plained by the two main steps at each iteration: the computation of the model from the
minimal sample and the computation of the residual to estimate the quality of computed
model. The second step usually represents most of the runtime as estimating a model
from a minimal sample is usually extremely fast. However, algorithms like AC-RanSaC
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and MAGSAC that require a post processing after residual computation, like sorting or
σ-consensus, may show significant slow down. For example, for AC-RanSaC the sorting
step required to compute the NFA at each possible threshold, and can frequently take
as much time as the residual evaluation. It is also impacted by the reserved number of
iterations, as it will always at least do 10% of the maximum number of allowed iterations.
On the other hand, the σ-consensus procedure is, in easy settings, improving the runtime
by reducing the number of iterations required. For example, LRT is a fast algorithm in
easy settings, as its early bailout strategy helps it skip useless computation of residuals.
But for hard settings, it can be slowed down by missing too many good models. The new
Fast-AC-RanSaC algorithm offers a good compromise for a fast algorithm as it is usually
fast enough to perform real-time operations and its runtime is very stable across settings.

For fast algorithms LRT performs slightly worse than Fast-AC-RanSaC in a few cases,
but is almost always faster for easy cases. As it is very sensitive to the complexity of the
task, it might be better to use only when the setting is known and the user may prefer
the slowest but more stable Fast-AC-RanSaC when needing a fast algorithm.

For slow algorithms, AC-RanSaC is one of the slowest but most stable and consistent
solution. Baring the most complex image pairs and generation parameters it always offers
good precision and recall. MAGSAC is almost always slower or less effective or both than
MAGSAC++, as expected as the second is presented as an improvement on the first one.
For two-view geometry, MAGSAC++ performs almost always better than AC-RanSaC,
producing good results even when other algorithms fail. It is also usually faster so it is
a very stable and powerful solution. On the other hand, for the PnP problem, neither
MAGSAC nor MAGSAC++ produce satisfactory results. The σ-consensus step seems to
not be well designed with the EPNP estimator.

To conclude, a user who needs speed should prefer Fast-AC-RanSaC, a user who needs
precision AC-RanSaC and for robustness in two-view geometry tasks MAGSAC++. All
these remarks are summarised in table 3.2. As in the next chapter we focus mainly on
the PnP-problem in ColMap, we implemented Fast-AC-RanSaC, AC-RanSaC and LRT
in the tests to validate those observations.

Table 3.2: Best algorithm for different use-cases.

Use-case Setting complexity Algorithms, by order of performance
Runtime only easy LRT, MUSE, RanSaC
Runtime only hard MUSE

Fast and reliable easy LRT, MUSE, RanSaC
Fast and reliable hard MUSE, Fast-AC-RanSaC

Robustness (2-view) Easy and hard MAGSAC++, MAGSAC, AC-RanSaC
Robustness (PnP) Easy and hard AC-RanSaC, Fast-AC-RanSaC, LRT
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Using Adaptative RanSaC Methods
in Colmap

Chapter 3 presented a benchmark of different Multi-View Stereo (MVS) and Structure-
from-Motion (SfM) tasks, including the PnP problem. It showed which threshold-free
algorithms perform better on for each task independently and on various scenarios. Some
algorithms, like MAGSAC [6], LRT [17] and AC-RanSaC [60, 61] presented far better
performance than the baseline in most settings. This could lead to better performance
in a full reconstruction pipeline if used to replace the classical procedure and remove the
need for a user threshold. Indeed, a reconstruction pipeline can be presented with large
quantities of data including lots of variation in view-points and from potentially diverse
sources which prevents a unique choice of threshold. In this chapter we try to see the
impact of the threshold-free algorithms on a reconstruction pipeline.

Instead of building a pipeline from scratch, we are using ColMap, proposed in [79],
which we modify to include different threshold-free RanSaC methods. This implementa-
tion is open-source and in C++ which will ease integration of previous work. It also is still
considered state-of-the-art [21] for 3D-reconstruction and used to generate training data
for many deep learning pipelines, so improving upon it could lead to improving the state-
of-the-art. The fist section 4.1 presents how a basic reconstruction pipeline works and how
ColMap improves upon it, then we present in section 4.2 how we generate semi-artificial
data following the principle described in Chapter 2, then we present our experiments in
section 4.3.

4.1 The ColMap pipeline

A 3D-reconstruction pipeline in the most basic form takes as input a set of photos of
a scene and outputs a 3D point cloud as well as the position of each camera around
this point cloud. The input set of photos can contain different views of the same scene
from various angles, positions and cameras, with varying illumination, some non rigid
transformation, like movement of some elements in the scene, and can include images
that do not overlap at all; for example when taking a full 360-view of a building, the front
and back pictures will not overlap. The cameras can be calibrated or not, and when they
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are not, the calibration can be guessed or estimated alongside the rest of the computation.
The first step of the pipeline is to extract features from each picture using a feature

detector and descriptor. ColMap uses SIFT [52, 53] to generate the features. It has a
lot of different options depending on the number of images and availability of GPU to
decide how to compute matches between images. If the number of images is above a few
hundred, it will avoid doing exhaustive matching between all images. It mostly uses Fast
Library for Approximate Nearest Neighbors (FLANN) [67], a collection of nearest neigh-
bours algorithms which can choose the best one. Once matches are computed between
image pairs, it is necessary to add a geometric verification step, to remove the bulk of
outliers generated by improper matching. This step is performed by estimating homo-
graphies, fundamental matrices or essential matrices using the matches and a RanSaC
algorithm. ColMap adds a series of tests to determine more information about the image
pair: it checks whether this is a panoramic setup or a planar scene or a generic camera
movement, if the image is corrupted by watermarks or other added elements and whether
the calibration is reliable and uses the LO-RanSaC [16, 42] algorithm to improve the
estimations. For any image pair that is tested, first the fundamental matrix is estimated
and nF inliers are found; if it is at least NF inliers nF > NF , the pair is said geometrically
verified. Then an homography is estimated and its number of inliers nH is compared
to the fundamental matrix threshold: if nH/nF < εHF

1, for a threshold εHF , the pair
is deemed to represent a general scene with moving cameras. When the calibration is
available, the same is done to validate the intrinsic parameters: an essential matrix is
estimated and its number of inliers nE is compared to the number of inliers of the funda-
mental matrix: if nE/nF > εEF , for a threshold εEF , the cameras calibration is validated.
If the calibration is valid but nH/nF > εHF the essential matrix is decomposed to find
the rotation and translation and the pair is classified as either a planar scene or a pure
rotation. Finally, an analysis of watermarks, timestamps, frames (WTF [35, 94]) is done,
using a similarity transformation, which yields nS inliers. If this number is too high,
nS/nF > εSF or nS/nE > εSE, for given thresholds εSF and εSE, the image pair is not
used in the reconstruction. All those tests will help the reconstruction by better guiding
the process, mainly by choosing an initial image pair with valid calibration and that is
not panoramic. Once all those steps are done, the scene graph is completed, where image
are linked to each other by a geometric validation and their associated inliers.

In order to initialise the reconstruction, the first image pair has to be carefully selected.
This is done by choosing an image pair in a dense part of the scene graph, where plenty
of other images can be added to increase the robustness of the estimation. As said above,
if possible, the initial image pair is also chosen among calibrated image pairs that are not

1[79] uses the threshold NF in this inequation, found in section 4.1, but in its implementation it is
indeed the number of inliers nF that is used. The rest of the paragraph presents other slight differ-
ences with the original paper for the inequations but what is presented here is based on the available
implementation.
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panoramic views. Then, to add a new image, the Perspective-from-n-Points problem is
solved, by using the 2D matches between the new image and previously registered images
to establish 2D-3D correspondances with already reconstructed points. Those 2D match
strings are called feature tracks. As some matches can be outliers, a RanSaC method is
used here to avoid contaminating the reconstructed points with outliers which might ruin
the rest of the reconstruction. ColMap uses the LO-RanSaC algorithm for this step as well.
The strategy used to choose which image is added to the reconstruction next is crucial as
it will impact each further image registration. ColMap proposes a strategy based around
favouring images that see a lot of points but distributed around the whole image instead of
concentrated in a small section. All images that see at least Nt points will be considered.
Then they are discretised are different scales {Kl = 2l, l ∈ [L]}, for a given L, using a
square grid of K2

l bins, where each bin’s value is set to 1 if at least one 2D-3D match is in
the bin, and 0 otherwise. Each bin will contribute a weight wl = K2

l to the score of the
image, such that higher bigger bins contribute less to the overall score. The image with
best score is selected. Once the position of the image is estimated using the PnP method,
with P3P as minimal solver and EPNP as non minimal solver for the optimisation step, see
sections 1.2.3 and 1.4.2, new points can be triangulated into the reconstruction. This step
is a precarious one, as using corrupted feature tracks can lead to high outlier ratios very
quickly. To avoid testing all pairwise combination which would be too time consuming,
ColMap uses a RanSaC based estimation. Given a feature track T = {Tn, n ∈ [NT ]},
with NT the length of the track, Tn a measurement of image In including a normalised
observation x̄n ∈ R2 and the position of the camera Pn = [RT ,−RT t] with R ∈ SO(3) the
rotation and t ∈ R3 the translation. The metric to maximise in the RanSaC algorithm is
the support of a two-view triangulation in the feature track. Given a triangulated point
Xab from two different images (Ia, Ib), a measurement Tn belongs to the support of Xab if
its depth is positive and: ∣∣∣∣∣∣x̄n −

x′/z′
y′/z′

∣∣∣∣∣∣ < t, (4.1)

with t a given threshold and


x′

y′

z′

 = Pn

Xab

1

. The triangulated point Xab ∼ τ(Ta, Tb),

with τ the triangulation method, Direct Linear Transformation [32] for ColMap, needs
to follow two constraints to be well-conditioned. First, it needs to have a high enough
triangulation angle α, cosα = ta−Xab

|ta−Xab|
· tb−Xab
|tb−Xab|

. Then it needs to respect the chirality
constraints, that is to have a positive depth in both images. Using RanSaC to estimate
feature tracks will provide good triangulated points. As a feature track can be linked
to multiple real world points, RanSaC is launched iteratively, by removing the consensus
set of the previous point each time, until there are fewer than 3 points. Adding images
sequentially will create drift as small errors in registration and triangulation will accumu-
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late, this is why Bundle Adjustment (BA) is performed to optimise camera and 3D points
parameters jointly. BA is one of the most time consuming steps of running a reconstruc-
tion pipeline, so ColMap only runs a global BA each time enough images are added to
the model. However, a local BA step is performed after each image registration. As there
are usually far fewer images than points, it is possible to optimise first the camera posi-
tions and then compute the 3D point positions. To perform BA, ColMap uses the Ceres
solver [3], more details about the parameters can be found in the original citation. To
further improve the reconstruction and avoid drift, points that are too far from the model
are removed after each BA, as well as degenerate cameras. Triangulation is done both
before and after the BA step, by continuing tracks that have been abandoned previously.
To further avoid contamination of the BA by outliers, all those steps, re-triangulation, BA
and filtering, are done iteratively, until the number of filtered or modified points is low
enough, usually this takes two iterations. Finally, to improve the speed of BA, ColMap
clusters view points when they are redundant. This stems from two observations: first
internet photos tend to focus around a few interesting view points, offering dense locations
and sparse images between those, and second that BA will optimise newer elements more
while leaving most of the scene unchanged. Images that have been added recently or that
have enough matches with high reprojection error will be left out of any groups, so that
their parameters can be optimised more efficiently. Other images will be grouped in NG

groups, which will be represented by a single set of parameters. To create the groups,
each image Ii will have a binary vector vi of visibility of the NX world points, vi(n) = 1
if the nth point is visible from Ii and 0 otherwise. Images are then ordered in decreasing
order of number of points visible. The first image Ia will seed the first group, and the
next image Ib will be included in the group if Vab = |va∧vb|

|va∨vb|
is greater than a threshold V

and the group of Ia is not full yet. Otherwise, Ib will seed another group. To speed up
the process, only images spatially close are considered.

4.2 Experimental setup

The ColMap pipeline uses the LO-RanSaC algorithm [16, 42] to perform multiple tasks,
from geometric verification to image registration and triangulation of new points. As
the PnP problem is solved at each image registration and impacts the quality of the
registration of each image, we chose to test replacing the LO-RanSaC algorithm of this
task by threshold-free alternatives. The algorithm we chose are AC-RanSaC [60, 61],
Fast-AC-RanSaC [65], LRT [17], because they are the most reliable for the PnP task,
see table 3.2. Our objective is to see whether the quality of the reconstruction can be
improved by using more carefully chosen inlier/outlier thresholds. To follow the same logic
as in chapters 2 and 3, we use semi-artificial data to study the behaviour of ColMap.
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4.2.1 Generating inlier data

We use the same method as described in Section 2.3.1 to generate semi-artificial data.
First we use real data to evaluate a model, then we correct data to fit this model and
add noise. This is the model we call ground truth. To do so, we run ColMap on a set of
images, with nothing but their calibration available, and let it recompute the SIFT [52, 53]
features, the matches and the geometric verifications that serve as input to the pipeline,
and the output will be the position of the cameras, and the 3D positions of the inlier
elements.

We take both the input database, including all SIFT features with their matches and
verifications and the output 3D positions and cameras positions to use for clean-up. First,
we filter the geometrically verified match to only keep the one that are linked to a 3D
point. This creates new feature tracks, linked to a 3D point. The features of each track
are then replaced by the projection of the 3D point onto their camera using the output
camera positions and calibration. On this reprojection step, a chirality test is added
to avoid corruption of the feature track if one camera has bogus parameters or a 3D
point is wrongly positioned. Once the features are perfectly matched to the 3D point, a
perturbation of uniform noise of standard deviation σ is added. This step allows us to
make sure the inliers are truly linked to a 3D point and we have control over the noise
level.

4.2.2 Generating outlier data

Similarly, the same logic as in Section 2.4.1 is used but with adaptations as we cannot
treat each image individually but we need to work on the feature tracks to ensure the PnP
estimation is properly disturbed and artificial outliers are not filtered out immediately by
the various post-processing of ColMap. First, we identify which image pair is used to
seed the reconstruction, as this step is not our focus, we do not wish to disturb this
reconstruction. Then, for each image pair, we select randomly a side of the pair, avoiding
to select the images used for reconstruction, and will modify the features on this side.
This will break some of the feature tracks by adding outliers to them, disturbing the
registration process. A proportion of the matches are selected and the feature on the
chosen side will be replaced by an outlier, using the same method used to generate an
outlier in the PnP experiment, see Section 2.4.2. First the 3D point associated with the
feature is projected onto the image, then the direction of perturbation is chosen uniformly,
and the offset is chosen uniformly to ensure the point is further away from its true match
than the biggest noise applied to inliers. This new feature is added to the feature pool
and inserted instead of the correct one in the feature track.

The modified inliers and generated outliers are then saved to a database, alongside
the geometric verifications of the image pairs, so that ColMap does not recompute those
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from scratch when running experiments.

4.2.3 Experimental parameters

Datasets used:

Different datasets were used to run experiments with ColMap. First, the Gerrard Hall
dataset, which is provided by the authors of ColMap as a test dataset, and can be down-
loaded from https://demuc.de/colmap/datasets/. It is a set of 100 images of the
Gerrard hall at University of North Carolina, Chapel Hill. This dataset covers a 360-view
of the building and was used to create different datasets, to analyse the impact of spar-
sity of view on the chosen algorithms. Datasets were subsampled at different rates, by
selecting images regularly around the building. The datasets are named subX meaning
that the dataset contains X images out of the 100 available with X ∈ [20, 40, 60, 80] and
sub2 containing half the images. See Figure 4.1 for examples of images of this dataset.

Figure 4.1: Example of images from the 100 images of the Gerrard Hall Dataset.

Other test datasets are extracts of the MegaDepth [46] dataset. A few of the different
scenes have been selected and images have been sampled from those to create small test
sets of various complexity. The first set is Mega01 containing 28 images of the Eiffel Tower
in Paris, see Figure 4.2. Mega11 contains 47 images of the National Gallery in London,
see Figure 4.3. Mega21 contains 22 image of the London Eye, see Figure 4.4. Mega31
contains 42 images of Big Ben in London, see Figure 4.5. Mega41 contains 116 images
of the outside of Notre-Dame in Paris, see Figure 4.6, and Mega42 contains 38 images
of the inside of the cathedral, see Figure 4.7. Mega52 contains 38 images of the Nike of
Samothrace, in the Louvre, Paris, see Figure 4.8. The datasets contain various internet
photos, captured with various devices and represent more in-the-wild situations than the
Gerrard Hall setup.
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Figure 4.2: Example of images from the 28 images of the Mega01 dataset.

Figure 4.3: Example of images from the 47 images of the Mega11 dataset.

Figure 4.4: Example of images from the 22 images of the Mega21 dataset.

Figure 4.5: Example of images from the 42 images of the Mega31 dataset.

Figure 4.6: Example of images from the 116 images of the Mega41 dataset.
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Figure 4.7: Example of images from the 38 images of the Mega42 dataset.

Figure 4.8: Example of images from the 38 images of the Mega52 dataset.

Generation parameters:

ColMap being slower to run than other experiments and more robust to small variations,
we used a broader grid of hyperparameters to study its behaviour. The model used as
ground truth is checked by hand to ensure the ColMap run was successful before generating
semi-artificial data. The inlier noise varies from 0 to 6 pixels by increments of 0.5 pixels.
The outlier ratio varied from 0 to 90% by increments of 10%. For each experimental
setups, 10 different datasets were generated and ColMap was run once on each, to avoid
peculiar cases disturbing the observations.

ColMap hyperparameters:

The different algorithms have following hyperparameters: LO-RanSaC uses a max error
of σmax = 12 and confidence pII = 0.99999 to end computation. LRT uses max inlier
ratio of σmax = 32, with confidence with respect to Type I Error pI = 0.99, confidence
with respect to Type II Error pII = 0.99 and confidence with respect to Type II Error
due to early bailout p′II = 0.95. AC-RanSaC and Fast-AC-RanSaC use max inlier ratio
of σmax = 32. All algorithms are run with at least 100 iterations and maximum 10000.

The max errors of each algorithm is set well above the max inlier noise of the generated
data voluntarily. For LO-RanSaC this is by design, to use a very high value, as it should
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work in most scenarios, and inlier noise above this value would not make much sense. For
adaptative methods, this is leveraging the ability of those methods to choose a smaller
threshold, adapted to the inlier noise level.

4.3 Observation

4.3.1 Time analysis

Figure 4.9: Runtime performance of ColMap for various datasets and outlier ratios, in
log scale for the runtime is seconds, as a function of the inlier noise level in pixels for all
tested algorithms. Ransac time measures the time spent only in the RanSaC algorithm
for the PnP estimation and Non Ransac time measures the rest of the ColMap runtime.
From left to right and top to bottom, dataset sub20 with no outliers, dataset sub2 with
60% outliers, dataset sub60 with 80% outliers and dataset sub80 with 60% outliers.
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Figure 4.10: F1-Score of ColMap for various datasets and outlier ratios as a function of
the inlier noise level in pixels for all tested algorithms. From left to right and top to
bottom, dataset sub20 with no outliers and with 10% outliers, dataset sub40 with 40%
outliers, dataset sub2 with 20% outliers, dataset sub60 with 80% outliers and dataset
sub80 with 80% outliers.

As in the previous chapter, we start by analysing the runtime of the different algo-
rithms. We measure both the time spent by ColMap in the RanSaC procedure linked to
the PnP estimation specifically and the global runtime, minus this element, called Non
Ransac time. As we provide the pipeline with the geometrically verified features, the
rest of the runtime is dominated by the Bundle Adjustment and re-triangulation proce-
dures by up to two orders of magnitudes. The algorithms we chose, LRT, AC-RanSaC,
Fast-AC-RanSaC can be slower than RanSaC in most scenarios, see Section 3.3, and we
hope that the increase in quality will result in a faster Bundle Adjustment and a faster
processing of the whole pipeline.

Figure 4.9 presents runtime in log scale as a function of the inlier noise level for
different datasets and different outlier ratios and is representative of the majority of
observed situations regarding runtime. Performances of the chosen RanSaC algorithms
are coherent with previous observations of Section 3.3, with LRT being faster than Fast-
AC-RanSaC which is faster than AC-RanSaC. We also see little to no difference in runtime
for the Non Ransac time metric, with most algorithms using the same amount of time
for the post-processing steps. This means that the adaptative method will be slightly
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slower overall, as the combined time will be impacted by the RanSaC time, while still
dominated by the Non RanSaC time.

4.3.2 Retrieval performance

Figure 4.11: Precision performance of ColMap for various datasets and outlier ratios as
a function of the inlier noise level in pixels for all tested algorithms. From left to right
and top to bottom, dataset sub20 with no outliers and with 10% outliers, dataset sub40
with 40% outliers, dataset sub2 with 20% outliers, dataset sub60 with 80% outliers and
dataset sub80 with 80% outliers.

The same metrics are studied for ColMap regarding the efficiency of the reconstruction:
the precision and the recall. The ratio of reconstructed points that are truly inliers and
the ratio of inliers that have been reconstructed gives good insight in how the algorithms
successfully retrieve data to enhance the reconstruction. The default ColMap algorithm
uses a non adaptative RanSaC, LO-RanSaC, with an inlier/outlier threshold of 12 pixels
whatever the situation, using an adaptative method could improve the reconstruction if
inliers and outliers are best separated and this is what those metrics would reveal. Another
metric we included is the number of images seen, which corresponds to the number of
image included in the final reconstruction. When ColMap cannot find a good enough
reconstruction, it will not register the image and try another one. For complex setups the
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number of image seen will drop and the better performance of some algorithms might be
able to register more images.

Figure 4.12: Recall performance of ColMap for various datasets and outlier ratios as a
function of the inlier noise level in pixels for all tested algorithms. From left to right and
top to bottom, dataset sub20 with no outliers and with 10% outliers, dataset sub40 with
40% outliers, dataset sub2 with 20% outliers, dataset sub60 with 50% outliers and dataset
sub80 with 80% outliers.

First, Figure 4.10 presents the F1-Score for various setups. The main observation we
can draw from the presented data is the lack of difference between algorithm performance
in the vast majority of setups. Except in the most challenging scenarios, the difference
between adaptative and non-adaptative algorithms is almost non-existent. For high outlier
ratios, or with high view point changes AC-RanSaC consistently performs better than
other algorithms but only in a few extreme cases.

Behaviour in precision and recall is very different, so we present both separately next.
When looking at all datasets besides sub20, the precision remains very high for almost all
setups, even high outliers ratios, as presented in Figure 4.11. This precision performance
is better than the one of normal PnP tasks which means that the different steps of the
pipeline help removing outliers from the reconstructed points. However, when looking at
recall, see Figure 4.12, we observe sharp performance drops, usually around 50% outliers
or above 2.5 pixels of inlier noise, earlier when the view points are further apart. Recall
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Figure 4.13: Number of images registered by ColMap for various datasets and outlier
ratios as a function of the inlier noise level in pixels for all tested algorithms. From left
to right and top to bottom, dataset sub20 with no outliers and with 10% outliers, dataset
sub40 with 40% outliers, dataset sub2 with 20% outliers, dataset sub60 with 50% outliers
and dataset sub80 with 80% outliers.

are partly due to the number of images registered, Figure 4.13 presents the number of
images registered for the same setups as Figure 4.12 and we observe that for complex
cases, like with very few images or high outlier ratio, the number of images registered
drops quickly and recall is reduced as well. However, for more reasonable view points
and outliers ratios, recall can drop while most images are still registered for high outlier
ratios. This leads to lower F1-Score than PnP done outside of the ColMap pipeline for
the tested algorithms.

4.4 Conclusion

The use of adaptative threshold methods in the PnP step of ColMap does yield more
robust results but only when faced with the most extremes experimental setups. Those
situations are rare in normal usage of ColMap as there are checks, especially in the initial
geometric verification steps, to ensure not too many outliers are propagated to the rest of
the pipeline. The efficiency of the method to retrieve more and better matches does not
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allow the Bundle Adjustment and Re-triangulation steps to run faster and compensate
for the increased runtime of the RanSaC methods.

Here, we tried to use adaptative RanSaC for the PnP task of ColMap. We managed to
remove an hyperparameter of ColMap and keep the same quality of results which will ease
the use of the software. However, the default, very conservative value of this parameter
allows ColMap to perform similarly to adaptative methods except in the most difficult
cases. The impact being very limited, we want in future work to explore the impact
adaptative methods would have on the initial two view geometry steps, as it is the step
that initialise the rest of the pipeline, a small improvement on this step could potentially
improve the end result or the efficiency of the pipeline, especially in complex situations.

110



Conclusion

Traditional 3D reconstruction pipelines still rely on non-adaptative robust estimators to
perform all camera pose estimations. In order to switch to adaptative methods, it is
required to have a reliable benchmark of the different existing algorithms. In this thesis,
we developed a novel benchmarking method using semi-artificial data to answer this issue.
To avoid the problem of selecting the distribution for the artificial model generation and
inlier generation, we rely on real data processed through AC-RanSaC and then corrected
to get a ground truth with a realistic model with perfectly aligned inliers. Then it can
be disturbed with inlier noise and carefully generated outliers to benchmark algorithms
across a wide variety of tasks and challenges. We used this method to benchmark various
algorithms using different input datasets. When observing the results of the benchmark, it
appeared clearly that the input dataset was affecting the specific results of each algorithms
but not the generic tendencies, like one algorithm yielding better precision than the other
for a range of noise levels and outlier ratios, then experiencing more drops in performance
around the same values across multiple datasets. This means our dataset generation
method is robust enough to reveal behaviour of algorithms with respect to inlier noise
levels and outlier ratios and not to the intrinsic difficulty of an image pair or PnP problem.

Thanks to our new method, we benchmarked a variety of adaptative RanSaC methods
on homography, epipolar geometry and PnP estimation tasks. This benchmark allowed
to get valuable insight on the various adaptative algorithms and their performance. For
example, we could analyse precisely the impact of early bailout on LRT’s performance.
We also established that LRT, MUSE and RanSaC are the fastest algorithms for easier
tasks and that only MUSE retains this speed at higher difficulties. We showed that
MAGSAC++ and MAGSAC are the most robust algorithm regardless of the setting
for two-view geometry exhibit poor performance for PnP tasks. AC-RanSAC is almost
always slower than other algorithms but shows consistently good results across all tasks
and setting complexity, and Fast-AC-RanSaC runs faster than AC-RanSaC but at the
price of lower performance across the board. Such detailed analysis of the behaviour of
algorithms had not been done before, as previous benchmarks usually focus on testing
algorithms across a wide variety of datasets and observe which one obtain the best average
performances, without looking at the intrinsics of the dataset in detail.

Using the insight gained from the PnP benchmark, we were able to choose LRT, Fast-
AC-RanSaC and AC-RanSaC to implement in the ColMap software and test the impact
of Adaptative methods on a full reconstruction pipeline. To measure the impact of each
RanSaC separately we only substituted the robust estimation of the PnP problem in the
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whole pipeline. The resulting analysis showed little impact in term of performance from
the tested algorithms. All algorithms obtained similar level of quality as the default LO-
RanSaC with a slight increase in global runtime, fully due to the increased runtime of
the RanSaC step. The only exception being AC-RanSaC which performs better than LO-
RanSaC on the most extreme cases where performance drops fast, cases which should be
rare as initialisation should prevent them from happening, either by failing before the PnP
step or cleaning the data before hand. The efficiency of the Bundle adjustment and other
post-processing implemented by ColMap removes the gain of using an adaptative method
in most cases. We still were able to remove an hyperparameter of ColMap without any
drop in classification performance and with a small increase in runtime but the impact is
not significant enough.

In future work, we would like to see the impact of adaptative method on the initial-
isation step of the reconstruction pipeline. Our experiment revealed that wide angles
between initial images are still very hard to tackle for the ColMap software and that it
will quickly fail to find any good model to initialise the reconstruction. Using a more ro-
bust method might prove beneficial, allowing to diminish the number of images required
to get a full reconstruction, and tackling more challenging datasets with sparser views.
Moreover, we hope to increase the quality of the reconstruction in complex cases which
could then be used as more accurate training data for Machine Learning solutions and
thus improve the State-of-the-Art for those algorithms as well.
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