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Abstract | Résumé

When learning, the brain faces a difficult problem. It is learning from an environment

that is both stochastic and dynamic, i.e. that is characterised by probability

distributions that are subject to change. Stochasticity encourages the brain to

integrate a large number of past observations in order to achieve greater precision in

learned knowledge, while the propensity to change encourages the brain to consider

only the most recent observations. This tension leads to a tradeoff in the learning rate

to be used, which the brain should ideally adapt constantly. How does the brain

achieve such adaptive learning? According to normative theory, it should constantly

represent the uncertainty of its knowledge through probability distributions and

update its knowledge by weighting the different probabilities, as described by the

computations of dynamic Bayesian inference (also known as Bayesian filtering).

Guided by this theory, my thesis work has investigated the computational and neural

bases of adaptive learning in humans through three studies.

In the first study (Foucault & Meyniel, submitted), I examined human behaviour

during magnitude and probability learning and tested its alignment with normative

theory. Using a new experimental paradigm, I measured the dynamics of human

learning rates observation by observation, and related them to the computational

factors that govern the adaptations of the learning rate according to normative theory.

I have shown that humans adapt their learning rate dynamically and normatively,

guided by the uncertainty, which plays a dominant role in probability learning. Overall,

I found that human behaviour closely followed normative theory, providing a strong

empirical ground for my overarching thesis.

How could the normative adaptive learning observed in humans be realised in the

brain at the computational and mechanistic level? In the second, theoretical study

(Foucault & Meyniel, 2021, published in eLife), I explored this question by studying

the computational mechanisms that enable neural networks to achieve normative

adaptive learning capabilities. I have shown that with a simple gating mechanism,

which could be implemented in the brain by the locus coeruleus-norepinephrine

system, a tiny recurrent neural network can perform quasi-optimal Bayesian learning.
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This mechanism is key to the network's ability to evaluate and use uncertainty to

adapt its learning rate, as found by decoding and manipulating the uncertainty

represented in the network’s internal recurrent dynamic activities, and it is also key to

other adaptive capabilities.

A fundamental quantity in our theory is probability. As shown in the first study,

humans are clearly capable of estimating probability, but how is it represented in the

brain? Neurally, the representation of probability has remained elusive. My third study

(Foucault*, Bounmy* et al., in prep.), attempts to answer this question by using a new

method that combines encoding models with approximation theory to model the

neural coding of probability without making assumptions about the form of the code.

This method revealed a previously unknown neural code for probability in human

brain activity measured by fMRI during learning within the dorsolateral prefrontal and

intraparietal cortices. I characterised this neural code by reconstructing its tuning

curves. I found that, compared to the neural code for uncertainty (which had already

been observed in previous studies and which I further characterised in this study),

the neural code for probability was highly nonlinear and non-monotonic.

Altogether, my thesis provides theoretical and empirical insights into the

computational and neural bases of the human learning process and the role of

uncertainty and probabilities in this process.
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Résumé (version française de l’Abstract)

Lors de l’apprentissage, le cerveau est confronté à un problème difficile. Il apprend

d’un environnement qui est à la fois stochastique et dynamique, c’est-à-dire qui se

caractérise par des distributions de probabilité qui sont susceptibles de changer. La

stochasticité incite le cerveau à intégrer un grand nombre d’observations passées

pour arriver à une meilleure précision des connaissances acquises, tandis que la

propension au changement l’incite à ne prendre en compte que les observations les

plus récentes. Cette tension donne lieu à un compromis dans le taux d’apprentissage

à utiliser, que le cerveau devrait idéalement adapter en permanence. Comment le

cerveau parvient-il à un tel apprentissage adaptatif ? Selon la théorie normative, il

devrait constamment représenter l’incertitude de ses connaissances par des

distributions de probabilité, et les mettre à jour en pondérant les différentes

probabilités, comme décrit dans les calculs de l’inférence bayésienne dynamique

(aussi appelée filtrage bayésien). Guidés par cette théorie, mes travaux de thèse ont

examiné les bases computationnelles et neurales de l’apprentissage adaptatif chez

les humains à travers trois études.

Dans la première étude (Foucault & Meyniel, soumise pour publication), j’ai examiné

le comportement humain lors de l’apprentissage des magnitudes et des probabilités

et testé son alignement avec la théorie normative. Grâce à un nouveau paradigme

expérimental, j’ai mesuré les dynamiques du taux d’apprentissage des humains

observation après observation, et les ai mises en relation avec les facteurs

computationnels qui régissent les adaptations du taux d’apprentissage selon la

théorie normative. J’ai montré que les humains adaptent leur taux d’apprentissage de

façon dynamique et normative, guidés par l’incertitude, qui joue un rôle prépondérant

dans l’apprentissage des probabilités. Globalement, j’ai constaté que le

comportement humain suivait de près la théorie normative, offrant ainsi un

fondement empirique solide pour ma thèse générale.

Comment l’apprentissage adaptatif normatif observé chez les humains peut-il être

réalisé dans le cerveau au niveau computationnel et mécanistique ? Dans la

deuxième étude, théorique (Foucault & Meyniel, 2021, publiée dans eLife), j’ai
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exploré cette question en étudiant les mécanismes computationnels qui permettent à

des réseaux de neurones de réaliser des capacités d’apprentissage adaptatif

normatives. J’ai montré qu’avec un simple mécanisme de gating, qui pourrait être

implémenté dans le cerveau par le système locus coeruleus-norepinephrine, un très

petit réseau de neurones récurrent peut réaliser un apprentissage bayésien

quasi-optimal. Ce mécanisme est essentiel pour la capacité du réseau à évaluer et

utiliser l’incertitude pour adapter son taux d’apprentissage, comme je l’ai montré en

décodant et en manipulant l’incertitude représentée dans les activités dynamiques

récurrentes internes au réseau, et il est aussi essentiel pour d’autres capacités

adaptatives.

Une quantité fondamentale de notre théorie est la probabilité. Comme l’a montré la

première étude, les humains sont clairement capables d’estimer la probabilité, mais

comment est-elle représentée dans le cerveau ? Au niveau neural, la représentation

de la probabilité est restée insaisissable. Ma troisième étude (Foucault*, Bounmy* et

al., en préparation) tente de répondre à cette question en utilisant une nouvelle

méthode alliant des modèles d’encodage à la théorie de l’approximation afin de

modéliser le codage neural de la probabilité sans faire de supposition sur la forme du

code. Cette méthode a révélé un code neural de la probabilité jusqu’alors inconnu

dans l’activité cérébrale humaine mesurée par IRMf lors de l’apprentissage dans les

cortex préfrontal dorsolatéral et intrapariétal. J’ai caractérisé ce code neural en

reconstruisant ses tuning curves (fonctions d’encodage). J’ai ainsi constaté que, par

rapport au code neural de l’incertitude (qui avait déjà été observé dans de

précédentes études et que j’ai caractérisé plus en détail dans cette étude), le code

neural de la probabilité était hautement non-linéaire et non-monotone.

Dans l’ensemble, ma thèse apporte un éclairage théorique et empirique sur les

bases computationnelles et neurales du processus d’apprentissage humain et le rôle

de l’incertitude et des probabilités dans ce processus.
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1. Adaptive learning in stochastic and dynamic environments

Today, Emily came into the room and sat down at her desk without saying a word. She usually says

hello, but not always. This time, though, there was something more. I think it's the way she walked:

it was slower than usual. It got me wondering. I started to wonder if there might be something

wrong. Then, during the break, she remained very quiet. But she gave me a big smile when I held

the door for her, so I thought maybe there was nothing to worry about. Except that later on, Alex's

children came by and she seemed completely disinterested, even though she usually loves playing

with them. That's when I became really concerned. I had to ask her.

“Is everything okay, Emily?”

—Amade-up short story.

1.1. Learning in a stochastic and dynamic environment

In the short story above, the narrator makes observations about their colleague's

behaviour and tries to learn about her state. This state is not directly observable to

the narrator: it is a hidden state. Based on the observations, the narrator can only

estimate this state.

Estimating the person's state is not easy because the relationship between the

observations the narrator can make and the underlying state of the person is

uncertain. For example, the fact that the person does not say hello or that she walks

slower than usual is not necessarily indicative of a bad state (the person could simply

be thinking about something else, among others). Similarly, even though it is

generally a positive sign, the fact that the person smiles does not necessarily mean

that she is doing well. The observation of any given behaviour is only more or less

probable, but not certain, under one state or another. This element of probability, the

absence of certainty in the correspondence between observations and the hidden

state, is called stochasticity.

The person's state is also dynamic. It can change from one day to another (one day

the person is fine, the next day she is not) or even from one moment to another. For

this reason, the observer must constantly re-evaluate their estimate of the person's
12



state. This process by which an observer updates their knowledge as observations

are made is referred to as a learning process (formally conceptualised as a

sequential inference process) in this thesis.

Learning a hidden state in a stochastic and dynamic environment is a complex and

ubiquitous task. As illustrated in the situation described above, in social interactions,

we are constantly learning about the mental states, physical states, intentions,

interests, opinions of others, and other dynamic characteristics of others which we

can only have uncertain knowledge about based on their behaviours. In medical

monitoring, the patient or the doctor following the patient must constantly watch for

certain symptoms that are more or less indicative of an abnormal state in order to

successfully detect the onset of an epileptic seizure or a psychotic break, for

example. More mundane examples include our daily commute: we learn our average

travel time in the presence of stochasticity (travel times for the same route typically

vary randomly from one day to another) and unpredictable changes (average travel

time can be delayed due to roadworks, for example).

To perform such learning, the brain must evaluate probabilities. As observations are

received, it must update its knowledge, taking into account the probabilities that such

observations occur according to different possible states, and taking into account the

probabilities it can assign to those states based on prior knowledge or learning. The

probabilistic nature of learning serves as the basis for the theoretical framework used

throughout my thesis: probability theory.

Before further describing learning in a probabilistic framework, I provide some

historical elements on the study of learning in psychology and neuroscience that

have led the field to adopt this framework.

1.2. Learning in a probabilistic inference framework: A brief historical context

The study of learning in animals began with associative learning and conditioning

experiments (Dickinson, 1980; Mackintosh, 1983; Skinner, 1938). These experiments

investigate how animals learn to predict events significant for their survival and

well-being, such as the receipt of food or a painful stimulus, by association with a

preceding event. In the case of classical conditioning (or Pavlovian conditioning), the

13



predictive event is the occurrence of a stimulus (initially neutral, called "conditioned

stimulus"), such as a bell sound or a light. In the case of operant conditioning (or

instrumental conditioning, Skinnerian conditioning), the predictive event is an action

performed by the animal, such as pressing a lever. When the experiment begins, the

predictive and predicted events are paired, and the animal learns through repetitions

that the first event predicts (deterministically or probabilistically, depending on the

experiment) the occurrence of the second event. Learning is measured in these

experiments by the increase in the frequency of a certain behaviour of the animal. In

Pavlov's experiments, it was the dogs’ salivation in response to the sound of the bell

after the bell had been associated with the receipt of food. In Skinner's experiments,

it was the increase in lever presses (by rats or pigeons) after this action had been

associated with the receipt of food.

Originally, the interpretation of conditioning experiments, in accordance with the

dominant behaviourist viewpoint of the time (Watson, 1913), was that learning could

be reduced to the formation of a direct association between the stimulus (such as the

sound of a bell) and the behavioural response (such as salivation). With the

emergence of cognitivism, it became clear that this restrictive interpretation was

difficult to maintain. It was more useful to postulate that the animal could form an

internal representation of the associations between different events, and that the

change in behaviour (such as salivation) only indexed this representation that had

been formed (Dickinson & Mackintosh, 1978). Such internal representations could

account for many phenomena that were difficult to explain from a purely behaviourist

standpoint. One of the most famous example was explaining how rats could quickly

navigate to the exit of a maze to obtain food on their first attempt, without this

behaviour having been reinforced beforehand, as long as the rats had had the

opportunity to freely move in the maze on previous days (during which they did not

try to exit the maze). According to Tolman, the rats had formed an internal

representation of the maze (a "cognitive map") that then allowed them to know how

to navigate to a specific location (Tolman, 1948). In the conditioning experiments

themselves, one example of a phenomenon unaccounted for by behaviourism was

that animals are sensitive to the time interval between stimuli: dogs do not

immediately salivate at the sound of the bell, and if the time interval between the bell

and the food is increased, they start salivating later and later after the bell (Gallistel &
14



Gibbon, 2000). This can be explained assuming that dogs learn and maintain a

representation of the time interval between stimuli. More generally, according to a

cognitive view of learning, animals possess and update internal representations that

guide their predictions. Such internal representations can be, for example, a

representation of the reliability with which an event predicts the occurrence of

another event, or a representation of the future rewards that are expected to follow a

given observation.

Theories on how internal representations are learned have long focused on basic

learning rules. One of the most influential is the delta-rule, made famous by the

Rescorla-Wagner model, and involved in many other models, such as temporal

difference learning and various kinds of reinforcement learning models (Bush &

Mosteller, 1951; Rescorla & Wagner, 1972; Sutton & Barto, 2018; Widrow & Hoff,

1960). According to this rule, following an observation, which has a given value, the

internal representation is updated in proportion to the prediction error, which is the

difference between the observed value and the predicted value. This is expressed by

the equation Δv(t) = α δ(t), where Δv(t) is the amount of update in the representation,

δ(t) is the prediction error, and α is the constant of proportionality. Despite the many

successes they have allowed, these basic learning rules have limitations. How can

we explain, for example, with a constant α, that learning is sometimes very slow (e.g.

in conditioning experiments, many trials can be required for the animal to learn an

arbitrary association) and sometimes very fast (e.g. only a single intoxication is

needed to learn to avoid a certain food, taste, or smell)? Even within a domain, the

speed of learning can vary over time. For example, in language learning, the speed

of learning can go from 2 to 3 words per week to 10 words per day in learning to

associate a word with its referent (Bloom, 2013).

One approach to explaining new phenomena would be to resort to more

sophisticated learning rules, as Pearce and Hall did, for example (Pearce & Hall,

1980). However, a principles-based approach may be more enlightening. One such

approach is that based on the principles of probabilistic inference, which I unpack

here. First, learning is treated as an inference process within an internal model of the

world. Internal representations correspond to variables of that model, and the model

specifies how the variables are related to each other and related to the observations
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that the learner can make (see e.g. Figure 1). Learning consists of inferring what the

values of these variables could be given the observations that have been made.

Modelling the learning process then amounts to formally specifying the internal

model, and solving the inference problem within that model. Second, the inferential

perspective on learning is also combined with a probabilistic (or statistical)

perspective. The probabilistic perspective is motivated by the fact that learning

situations in the real world often involve incomplete information or probabilistic

outcomes, which make the inference process itself probabilistic (Chater et al., 2006).

Following this approach, learning has been increasingly considered in terms of

probabilistic inference (Courville et al., 2004, 2006; Dayan et al., 2000; Dayan &

Long, 1997; Gershman et al., 2010). In the words of Peter Dayan, "any system,

natural or artificial, that estimates the current predictive relationship between stimuli

and reward based on past observations can be described as making statistical

inferences" (Dayan et al., 2000). This trend has benefited from concomitant progress

in the mathematics and computer science of probabilistic models. These advances

have provided the theoretical and practical tools to define and compute the optimal

solution to the learning problem, once specified in terms of probabilistic inference

within a model. The optimal solution is a normative model, that is, a model that

explains how the problem should be solved, according to an optimality principle. The

normative probabilistic framework thus offers an explanation of both how and why

subjects learn as they do, and allows researchers to identify quantities and principles

of the probabilistic theory that may underlie patterns of experimental data and are

likely to generalise to other situations (Courville et al., 2006; Dayan et al., 2000).
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Figure 1. Graphical model of the stochastic and dynamic environment in which
learning is taking place. The learner tries to infer the current value of the hidden

variable (ht) based on past observations (x1:t). The arrows represent conditional

dependencies in the environment. The observation is generated depending on the

hidden variable according to a conditional probability distribution p(xt | ht) which

describes stochasticity, and the next value of the hidden variable is generated

depending on the previous one according to a conditional probability distribution

p(ht+1 | ht) which describes the dynamics of the environment.

1.3. Essential concepts for the study of adaptive learning

Several concepts have emerged in the previous sections. In this section, I will clarify

these concepts with precise definitions and link them together by listing them in an

organised manner. As I do so, I will introduce a formalism with notations (summarised

in Box 1) that will be used throughout the document. This formalism will serve as a

unifying framework to explain a large number of tasks and learning models which are

often treated separately in the literature, and whose connections will be made explicit

in my thesis thanks to this formalism.

The word "learning" has a different meaning depending on the context in which it is

used, but in a broad sense it usually involves an acquisition of knowledge (Greeno,

1980). In the context of this thesis, learning is defined as the process by which

knowledge is updated. The learner’s knowledge, which will also be referred to

interchangeably as “belief”, will concern one or more variables of the environment,

which are hidden from the learner (i.e. not directly observable by them). These

environment variables are interchangeably referred to as hidden variable, hidden

quantity, or hidden state, and denoted by the symbol h (Figure 1). For simplicity, I will

generally use the singular "hidden variable" whether the environment variables are
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composed of one or several scalar variables, treating the hidden variable as a vector

composed of the different scalar variables when there are several. I will generally

prefer the term “quantity” over “state” because in the contexts I am studying the most,

the hidden variable has continuous rather than categorical values. In experiments,

the environment and its hidden variable are defined and manipulated by the

experimenter.

During the learning process, the learner is learning the value of the hidden variable

based on the observations received sequentially from the environment (Figure 1).

Each observation may trigger an update in the learner’s knowledge. The nature of

the observation depends on the learning context. It can be, for example, the

occurrence of a reward. The observation will also be referred to interchangeably as

“outcome” (the term “outcome” has two senses: the realisation of a random variable,

or the result of an action; it turns out that in the learning contexts considered in this

thesis, the observations are always realisations of a random variable, and can

sometimes be the result of an action). In experiments, the observations and their

relationship with the hidden variable are also under the experimenter’s control. The

observation will be denoted by the symbol x.

As each observation can trigger an update, it defines a discrete unit of time for the

learning process: each observation defines one time step. In the context of
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Box 1. Symbols and notation.

t Time step

ht Hidden variable at time step t (scalar or vector composed of several scalar variables)

xt Observation at time step t

x1:t Sequence of observations from the first time step to time step t

vt Estimate following the observation at time step t

ut Uncertainty prior to the observation at time step t

αt (Apparent) Learning rate following the observation at time step t

p(z) Probability density of continuous variable z or probability of discrete variable z

p(z|y) Conditional probability density or conditional probability of z given y

∫f(z)dz Integral over the entire domain of z



experiments, a time step can also be referred to as a trial. The time step will be

denoted by the symbol t. It will be used as a subscript to index each value in a

sequence: xt is the value of the t-th observation of the sequence, and ht is the value

of the hidden variable that conditioned the t-th observation. The subsequence

comprising all values from the start of the sequence until the t-th observation is

denoted 1:t, that is, x1:t = (x1, …, xt).

All the learning contexts considered here require the learner to estimate the value of

the hidden variable based on their acquired knowledge. The learner’s estimate

(which is a point estimate of a scalar hidden variable) will be denoted by the symbol

v.

The learner may associate a degree of uncertainty to their estimate. This type of

uncertainty is more completely referred to as “estimation uncertainty” or “belief

uncertainty” (see Note 1). Uncertainty will be denoted by the symbol u.

Both the estimate v and the associated uncertainty u are derived based on the

knowledge acquired and updated by the learner during the learning process.

Knowledge is conceived of as an internal representation of the learner that

researchers are trying to elucidate. In the probabilistic framework, it formally

corresponds to a probability distribution over the hidden variable. This will be

explained in quantitative, computational terms in section 3.

A key descriptive tool, used in this thesis to characterise the learning process and

define adaptive learning, is the instantaneous, apparent learning rate, which will

simply be referred to as learning rate. The learning rate will be denoted by the

symbol α. The learning rate quantifies the apparent weight assigned by the learner to

a given observation in the updating of their estimate. It is calculated as the ratio

between the change in estimate elicited by the observation to the difference between

observation and the prior estimate, as described by equation [1] below:

αt = (vt - vt-1) / (x_t - v_t-1) [1]

This measure of learning rate is instantaneous because it is calculated with respect

to a given time step (i.e. observation) in the sequence. It is apparent because, unlike

the delta-rule introduced previously and other models where the learning rate is also
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a true parameter of the learning process, this learning rate measure is a descriptive

measure that makes no assumptions about the underlying learning process.

Note 1: Definition of uncertainty.

In this thesis, the term “uncertainty” is specifically referring to the uncertainty

associated with the estimates, which is a form of epistemic uncertainty. This type of

uncertainty is known as estimation uncertainty or belief uncertainty. There are

other types of uncertainty, such as decision uncertainty (uncertainty about one’s

decision being correct), and outcome uncertainty (about an upcoming outcome,

also known as unpredictability, or risk in the context of risky choice). A discussion

of the different types of uncertainty is out of the scope of this thesis (see e.g. (Bach

& Dolan, 2012) for a review discussing different types of variables about which one

can be uncertain, and (Walker et al., 2023) for a review of studies investigating

different types of uncertainty). Here, I only want to highlight that these different

types of uncertainty have distinct functional roles, and may have distinct neural

bases. This is why I am careful to be specific about which type of uncertainty I am

referring to and not to mix it together with other types of uncertainty.

The term estimation confidence or precision is sometimes used instead of

uncertainty in the articles of my thesis and the articles I am referring to in the

references. In those articles, confidence, precision and uncertainty are all referring

to the same type of uncertainty. According to the mathematical definition I am using

in this thesis for uncertainty (equation [6] in section 3), and the mathematical

definition of confidence often used, confidence = ½ log(precision) =

-log(uncertainty) (Meyniel et al., 2015).

The estimate, the learning rate, and the uncertainty will be indexed with respect to

the observation (xt) received at time step t in this way: vt is the estimate after

observing xt, αt is the learning rate for the update from vt-1 to vt, and ut is the

uncertainty about the estimate before observing xt. I chose this indexing because a

normative hypothesis investigated in this thesis is that the uncertainty of the estimate

modulates the subsequent update of that estimate, i.e. that ut modulates αt (this will
20



be covered in section 3.3). This indexing aligns in time the modulating variable (ut)

and the modulated variable (αt).

1.4. Learning contexts involving stochastic and dynamic environments

In this section, we will review the paradigms used to study learning in stochastic and

dynamic environments, and we will see that they can be grouped into several

learning contexts that will be characterised using three axes. This characterization

will be used throughout the document and will illuminate the understanding of the

relationships between different studies and the challenges in learning that arise

specifically in certain contexts.

All the learning contexts studied here involve stochastic and dynamic environments

(Figure 1), two characteristics that, as illustrated at the beginning of the introduction,

are ubiquitous in real life. Let's review them using the concepts defined in the

previous section.

Stochastic: This means that the relationship between the hidden variable ht
and the observation xt is not deterministic but probabilistic. The degree of

stochasticity corresponds to the degree of variability of xt given ht according to

the probability distribution of the environment.

Dynamic: This means that the hidden variable is subject to change from one

time step to another, that is, that ht+1 can be different from ht. Moreover, these

changes have a degree of variability (in the time at which they occur, and/or

their amplitude) that is also most often probabilistic.

Numerous experimental paradigms have been created to study learning in stochastic

and dynamic environments. I have made an inventory of these paradigms and listed

representative studies for each of these paradigms in Table 1. Examples are shown

in Figure 2, 3, and 4.
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Table 1: Representative studies of different learning contexts.

Study Type of learning Type of dynamics Type of response

Daw et al. (2006) Magnitude learning Random walk Choice

Jepma et al. (2011) Magnitude learning Random walk Choice

Speekenbrink et al. (2015) Magnitude learning Random walk Choice

Findling et al. (2019) Magnitude learning Random walk Choice

Fan et al. (2023) Magnitude learning Random walk Choice

Lee et al. (2020) Magnitude learning Random walk Estimate

Ossmy et al. (2013) Magnitude learning Change points Choice

Glaze et al. (2015) Magnitude learning Change points Choice

Murphy et al. (2021) Magnitude learning Change points Choice

Nassar et al. (2010) Magnitude learning Change points Estimate

Nassar et al. (2012) Magnitude learning Change points Estimate

McGuire et al. (2014) Magnitude learning Change points Estimate

Jepma et al. (2016) Magnitude learning Change points Estimate

Vaghi et al. (2017) Magnitude learning Change points Estimate

Prat-Carrabin et al. (2021) Magnitude learning Change points Estimate

Gershman et al. (2009) Probability learning Random walk Choice

Walton et al. (2010) Probability learning Random walk Choice

Fouragnan et al. (2019) Probability learning Random walk Choice

Behrens et al. (2007) Probability learning Change points Choice

Browning et al. (2015) Probability learning Change points Choice

Pulcu et al. (2017) Probability learning Change points Choice

Cook et al. (2019) Probability learning Change points Choice

Gallistel et al. (2014) Probability learning Change points Estimate

Meyniel et al. (2015) Probability learning Change points Estimate

Heilbron et al. (2019) Probability learning Change points Estimate

I have categorised the paradigms along three axes: the type of learning (magnitude

learning or probability learning), the type of dynamics (random walk dynamics or

change point dynamics), and the type of response required from the subject (choice

or estimate). This categorisation defines different learning contexts and highlights the

commonalities and differences between contexts, which have implications for the

learning process as we will see. Each axis of the categorisation is detailed below.
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Figure 2. Types of learning. Panels adapted from (Findling et al., 2019; Foucault &

Meyniel, 2023; Pulcu & Browning, 2017).

Two types of learning can be involved: magnitude learning, when the hidden

quantities being learned (h) are magnitudes, or probability learning, when they are

probabilities (Figure 2). Due to their pervasiveness in real life, magnitudes and

probabilities have a central place in psychology and neuroscience. Magnitudes and

probabilities often encountered in experiments include the magnitude and probability

of occurrence of a reward (e.g. food or money) in decision-making studies (Behrens

et al., 2007; Doya, 2008; Edwards, 1954; Fiorillo, 2003; Kahneman & Tversky, 1979;
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Skinner, 1953), the sensory magnitude (e.g. lightness, loudness, size, position,

angle, motion, number) and probability of occurrence of a stimulus in perception

studies (Shepard, 1987; Stevens, 1957; Summerfield & de Lange, 2014; Tudusciuc &

Nieder, 2007), and the salience of an attentional cue or the probability that it correctly

predicts a target in attention studies (Posner et al., 1980; Treisman & Gelade, 1980;

Yu & Dayan, 2005). In learning studies (the focus of this thesis) where magnitudes or

probabilities are learned, the magnitudes to be learned are typically the average size

of rewards or punishments (Daw et al., 2006; Findling et al., 2019; Jepma &

Nieuwenhuis, 2011; Speekenbrink & Konstantinidis, 2015), or the average position

(Jepma et al., 2016; Lee et al., 2020; McGuire et al., 2014; Prat-Carrabin et al.,

2021), angular direction (J. X. O’Reilly et al., 2013; Vaghi et al., 2017), or symbolic

number (Nassar et al., 2010, 2012) of the presented stimuli. The learned probabilities

are typically the probabilities of occurrence of rewards or punishments, or of neutral

stimuli perceived in the visual, auditory, or nociceptive modalities (Behrens et al.,

2007; Browning et al., 2015; Fouragnan et al., 2019; Gallistel et al., 2014; Gershman

et al., 2009; Meyniel et al., 2015; Pulcu & Browning, 2017; Walton et al., 2010).

One difference between magnitude learning and probability learning is that the

hidden variable belongs to the same domain as the observations in magnitude

learning (since the hidden variable is typically the average magnitude, i.e. the mean

of the generative distribution of the observation), but does not belong to the same

domain as the observations in probability learning (since the hidden variable is

typically the probability that a certain category of observation occurs). This may

induce differences in the learning process because, in the case of magnitude, the

possibility to represent the hidden variable and the observations in the same space

allows the learner to reason about them using psychological and neural mechanisms

specific to that space (for example, integrating stimulus positions/numerosities to

calculate the average position/numerosity).

Another difference between magnitude learning and probability learning is the degree

of informativeness of an observation for learning the hidden variable. The

observations are typically much less informative for learning probabilities than for

learning magnitudes. This is covered in Chapter 2, and in that chapter I show that

this has consequences for the learning process.
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Figure 3. Types of dynamics. Panels adapted from (Daw et al., 2006; Jepma &

Nieuwenhuis, 2011; McGuire et al., 2014; Meyniel et al., 2015).

Two types of dynamics can be studied: random walk dynamics, where changes

occur predictably at each time step, or change point dynamics, where changes

occur at unpredictable time steps called change points (Figure 3). In the case of

random walk dynamics, the hidden variable changes at each time step by an

independent random amount. The variance of those amounts, which dictates the

average amplitude of the change in hidden variable from one time step to the next, is

called volatility. In the case of change point dynamics, at each time step, a change

point can occur randomly with a certain probability. When a change point occurs, the

hidden variable changes abruptly, otherwise, it remains the same. The probability that

a change point occurs is referred to as probability of change point, or

volatility—please note that the volatility in the case of change point dynamics is not
the same as the volatility in the case of random walk dynamics—, or hazard rate (this

term has been borrowed from the engineering literature used because historically

change points modelled failures in plants or engineering components). The random

walk and change point dynamics will be described formally and more thoroughly in

section 3.1.
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A key difference between these two types of dynamics is that in the random walk

case, the times at which changes occur are known (they occur on every trial),

whereas in the change point case, the times at which changes occur are unknown

and unpredictable (these are the change points). In the latter, the learner must try to

infer when a change has occurred to perform the task effectively. This change point

inference process is only called upon during learning for the second type of

dynamics, and poses unique challenges as we will see later.

Two types of responses can be required from the subject: based on what they have

learned, they must either make a choice between several options, or provide an

estimate on a continuous scale of a hidden variable (Figure 4). The choice case can

further be splitted into two subcases depending on whether it is a perceptual choice

or a reward-based choice. In the perceptual case, as in (Glaze et al., 2015) shown in

Figure 4 and in (Murphy et al., 2021; Ossmy et al., 2013), the subject chooses,

having observed a certain number of perceptual evidence samples (the observations

x1:t, star positions in Glaze et al.), which distribution is the one currently generating

the samples, among a set of possible distributions (each distribution corresponds to

one possible value of ht, which is categorical in this case; the two possible

distributions are represented by the two triangles in Glaze et al.). In the case of

reward-based choices, typically in multi-armed bandit tasks as in (Daw et al., 2006;

Findling et al., 2019; Jepma & Nieuwenhuis, 2011; Pulcu & Browning, 2017) shown in

Figure 2, 3 and 4, at each time step, the subject makes a choice and receives a

reward (the observation xt, e.g. in Findling et al. the number of points of 52 displayed

on Figure 4 and 2) which is sampled according to the reward distribution of the option

they have chosen. From the observed rewards, the subject must learn the

parameters of the reward distributions of the different options (the hidden variable ht,

e.g. in Findling et al. these are the mean rewards associated with each of the two

possible choices) in order to maximise their cumulative total rewards. In both the

perceptual and the reward-based cases, the subject's choice is informed by what

they have learned from past observations, which allows researchers to make

inferences about their underlying learning process, but this inference is rather

indirect. The estimate case is more straightforward: based on the observations they

have been presented with (x1:t), the subject provides a continuous estimate (vt) of the

hidden variable (ht), typically using a slider as shown on Figure 4.
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Figure 4. Types of responses. Panels adapted from (Daw et al., 2006; Findling et

al., 2019; Foucault & Meyniel, 2023; Glaze et al., 2015; Meyniel et al., 2015; Nassar

et al., 2010; Vaghi et al., 2017).

1.5. Adaptive learning at different levels

Here, we will look at the challenges of adaptive learning in stochastic and dynamic

environments, and distinguish two levels of adaptive learning with specific challenges

whose traces in human behaviour will be explored in section 2.
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In a stochastic and dynamic environment, effective learning requires adapting the

learning rate because there is a permanent tension between stochasticity and the

dynamics, which encourage the learner to decrease and increase their learning rate,

respectively (Soltani & Izquierdo, 2019). Let’s illustrate in turn the influence of

stochasticity and the influence of the dynamics.

Stochasticity introduces variations in observation values that occur even when the

underlying hidden variable is held fixed. This means that a single observation is not

sufficient to obtain an accurate estimate of the hidden variable; multiple past

observations are needed, which corresponds to using a learning rate lower than 1.

The greater the stochastic variations, the more advantageous it is for the learner to

reduce their learning rate as this will average observation values across a larger

window and thereby increase the precision of the estimate, assuming that the hidden

variable has not changed within that window. However when a change in hidden

variable occurs, using a low learning rate is disadvantageous. Indeed, if the learner

knew for sure that a change had just occurred and that their previous knowledge was

irrelevant for knowing the new hidden variable value, they would need to discard their

old estimate and base their new estimate only on the upcoming observation. This

corresponds to using a learning rate equal to 1. In practice, changes are hidden, so

the learner is never certain whether a change has occurred (when the dynamics have

unpredictable change points), or how much change there has been. The general

principle is that the more likely a change has occurred (or the more likely changes

are to be large), the higher the learning rate should be.

The tension between the ability to deal with stochasticity versus the dynamics is

sometimes referred to as the stability-flexibility trade-off (Nassar & Troiani, 2021).

The value of the learning rate corresponds to a certain value of the trade-off: the

higher the learning rate, the more flexibility is favoured over stability.

  In this thesis, adaptive learning generally refers to a learning process that features

an adaptation of the learning rate (“generally” in the sense that the ability to adapt the

learning rate is relevant to all chapters of the thesis; in chapter 3 specifically

additional adaptive capabilities are also explored).
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Two levels of adaptive learning can be distinguished. The first level concerns the

average learning rate and its adaptation based on the average level of stochasticity

or volatility in the environment. Average learning rate is contrasted with

instantaneous values of the learning rate, which are the focus of the second level.

The second level involves dynamically adapting the learning rate for each

observation in order to better respond to a change and disregard stochastic

fluctuations. Let's examine in more detail what these two levels entail—I informally

describe below the adaptation principles that are called for in each level, and they will

be characterised more formally (mathematically and computationally) in section 3.

Level 1 of adaptive learning. There are two kinds of adaptation at level 1:

adaptation to stochasticity and adaptation to volatility.

Adaptation to stochasticity: When the level of stochasticity in the environment

is higher, the learning rate should be lower on average to compensate for the

loss of precision induced by greater stochasticity. Precision is gained by taking

into account a larger number of past observations for the estimation.

Adaptation to volatility: When the volatility of the environment is higher, the

learning rate should be higher on average. Volatility quantifies the average

rate of change; a higher volatility means that changes in the hidden variable

occur on average more frequently (when the dynamics are of the change point

type), and/or have higher average amplitude. A higher learning rate when

volatility is higher is adaptive allows for a quicker convergence of the estimate

to the new value of the hidden quantity each time a change occurs.

What is normatively relevant for calibrating the average learning rate in level 1 is the

relative level of volatility compared to stochasticity. However, it is useful from an

empirical point of view to consider volatility and stochasticity separately as they are

two independent quantities.

Level 2 of adaptive learning. Level 2 corresponds to dynamic adjustments of the

learning rate, i.e. made on an observation-by-observation basis, and with different

adjustments depending on what is observed (not simply on the observation index, in

which case the adjustment process is not truly dynamic in the sense that learning
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rates could be determined in advance). These dynamic adjustments are typically

called for in the case of change point dynamics: the learning rate should ideally be

increased when a change point occurs, i.e. when the hidden variable has changed,

and decreased after the change point when only stochastic fluctuations occur. As

change points are hidden, these adjustments should be based on the probabilities

inferred from the observations received that a change point has occurred in the

recent past (i.e., the probability that a change point has occurred at time t, at time t-1,

...). In that case, the dynamic adjustments are the result of a change point inference

process.

Note that the level 2 dynamic adjustments of the learning rate in response to

individual change points imply a level 1 adaptation of the average learning rate to the

average rate of change points: when change points are more frequent, transient

increases in the learning rate occur more frequently, which is reflected overall by an

increase in the average value of the learning rate.

In the literature, and in this thesis, level 2 of adaptive learning is primarily studied in

the case of change point dynamics. However, it could in principle also be studied in

the case of random walk dynamics, assuming that volatility and/or stochasticity can

vary dynamically in the environment. In that case, the learner should infer, based on

the received observations, the current relative level of volatility compared to

stochasticity, and dynamically adjust their learning rate accordingly. This case is

connected to the change point case: One can think of the change point case as an

extreme case of dynamically varying volatility/stochasticity ratio in a random walk,

where the volatility/stochasticity ratio has a base level of 0 and occasional

instantaneous spikes (which creates change points).

2. Behavioural findings on adaptive learning

We have seen that there are several types of challenges and several levels of

adaptive learning. Here, we will examine what has been discovered about how

humans meet these challenges behaviorally. We will see that numerous findings
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have been made about level 1 but few about level 2 of adaptive learning, and that the

latter remains unexplored in probability learning.

The behavioural findings in this section are organised into two parts, corresponding

to the two levels of adaptive learning. The first part focuses on the average measure

of learning rate across a block of trials, and encompasses the majority of studies.

The second part, which has been examined in a narrower range of learning contexts,

involves measuring the learning rate on an observation-by-observation basis. The

asymmetry between the two parts is attributable to the fact that in many experimental

paradigms measuring the learning rate on each observation is not feasible. In order

to calculate the learning rate using equation [1], a continuous measure of vt (the

subject’s estimate) is needed, which excludes all studies where the subject’s

responses are choices, or are not provided on each observation.

2.1. Behavioural results related to the average learning rate (level 1)

The results regarding the adaptation of the average learning rate can be divided

according to the two main effects of environmental volatility and stochasticity. In the

following paragraphs, I discuss the results related to these two effects separately,

detailing the different learning contexts in which they have been shown.

Effect of volatility

A highly influential study by Behrens et al. demonstrated an effect of volatility on

average human learning rate in a probability learning, choice-based, reinforcement

learning context (Behrens et al., 2007). The task is a probabilistic reversal learning

task, a type of two-armed bandit task like that of (Pulcu & Browning, 2017) shown on

Figure 2 (but with only one type of outcome rather than two). In each trial, subjects

choose one of two bandit arms and either receive or do not receive a reward based

on the reward probability pt, which is the hidden quantity that the subject needs to

learn, pt=ht. One arm has a reward probability of pt, while the other has a reward

probability of 1-pt. The volatility in this task is manipulated using two conditions, each

corresponding to a different block of trials (120 or 170 trials) that the subject performs

consecutively. In the stable condition, the reward probability remains the same

throughout the block of trials (pt=75%, volatility=0). In the volatile condition, the
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reward probability undergoes reversals (alternating between pt=80% and pt=20%)

regularly every 30 or 40 trials (volatility=1/30 or 1/40). The key question is whether

the subjects’ average learning rate in the volatile block differs from that in the stable

block. The method used in this type of task to measure the average learning rate is to

fit a model—see Box 2 for an explanation.

The results obtained by Behrens et al. show that the average learning rate of the

subjects in a volatile block is significantly higher than that in a stable block (Figure
5). These results have been replicated in subsequent studies (although the size or

significance of the effect are not always replicated) and generalised to cases where

the valence of reinforcements is negative (e.g. electric shocks or money losses), and

cases where two types of outcomes occur on each trial according to two distinct

hidden probabilities (Browning et al., 2015; Cook et al., 2019; Pulcu & Browning,

2017).

Figure 5. Average learning rate of subjects in a volatile block compared to a
stable block in reinforcement learning tasks. Panels adapted from (Behrens et al.,

2007; Cook et al., 2019; Pulcu & Browning, 2017).
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Box 2. Measurement of average learning rate through model fitting.

In choice tasks, the typical method used to measure the average learning rate is to

use a model that comprises a learning rate parameter and fit it to the subject's

choices. The fitted parameter value is used as a measure of the average learning

rate. When comparing the average learning rate in two conditions (e.g., stable vs

volatile blocks), the learning rate is fitted twice separately on the blocks of trials

corresponding to the given condition.

In most studies, the learning rate parameter is involved in a delta-rule used as a

learning component of the model (Bush & Mosteller, 1951; Rescorla & Wagner,

1972; Sutton & Barto, 2018; Widrow & Hoff, 1960). This delta-rule assumes a fixed

learning rate and is described by the update equation [2] below:

vt = vt-1 + α (xt - vt-1) [2]

The delta-rule is integrated within a larger model that includes a choice component,

such as Q-learning or SARSA or another reinforcement learning model (Sutton &

Barto, 2018), in order to model the subject’s choices. The fitting process involves

comparing the subject's choices to those that the model would have made under a

given learning rate parameter value, and adjusting the learning rate parameter so

that the subject's choices and the model's choices are as close as possible.

Technically, the learning rate is fitted jointly with the other parameters of the model,

and the process of adjusting the parameters corresponds to an optimization

process that aims to minimise a cost function. In a probabilistic modelling

framework, following the maximum likelihood principle, the canonical cost function

is the negative log-likelihood of the choices made by subjects according to the

model (Goodfellow et al., 2016; Wilson & Collins, 2019).

The effect of volatility has also been studied in non reinforcement-based learning

tasks, which are perceptual evidence accumulation tasks, like the one by (Glaze et

al., 2015) shown in Figure 4. These studies have been conducted notably in the

laboratories of Joshua Gold and Tobias Donner (Glaze et al., 2015; Murphy et al.,
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2021; Ossmy et al., 2013). In this type of task, the hidden variable that the subject

needs to learn is a binary state variable indicating which of two distributions is the

current generative distribution of the observed evidence samples. Each sample

constitutes an observation. In Glaze et al’s study, for example, each observation is

the position of a star on the screen, and the two possible distributions generating the

star positions are two Gaussian distributions centred at opposite sides of the screen.

As a behavioural report, the subject must choose which of the two distributions they

believe to be the current generative distribution of the samples. At unpredictable

change points, the true hidden state switches, with a certain hazard rate. Different

hazard rate values are used in different blocks of trials. For example, in Glaze et al.’s

study, subjects performed blocks of 1000 trials, each block having a hazard rate

chosen from a set of 7 possible values (0.05, 0.1, 0.3, 0.5., 0.7, 0.9, 0.95).

As in the previously-mentioned reinforcement learning tasks, the effect of volatility on

learning was studied by fitting a model separately in the different blocks

corresponding to different volatility conditions. The models used in perceptual

evidence accumulation studies were different from those used in reinforcement

learning studies and did not have a learning rate parameter, but another parameter

that plays an analogous role to the average learning rate: the subjective hazard rate.

The results of these studies show that the subjective hazard rate of the subjects is

consistently adapted based on the objective hazard rate of the considered block

(Glaze et al., 2015).

Effect of stochasticity

Compared to volatility, the effects of stochasticity have been shown in a smaller

number of studies, with less known generality. These studies focus on a magnitude

learning context (rather than a probability learning context).

One study where the effect of stochasticity on the learning rate is most clearly

presented is the study by Lee et al. (Lee et al., 2020). In this task, as in other

magnitude learning tasks, the subject needs to estimate the mean of the observation

generation distribution (a Gaussian distribution), which is the hidden quantity. The

observation values are continuous (in Lee et al.’s task they correspond to stimulus
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positions). After each observation, the subject reports their estimate of the hidden

quantity (formulated in Lee et al.’s task as an estimate of the predicted position of the

next stimulus). The hidden quantity is also dynamic; in Lee et al.’s study these

dynamics followed a Gaussian random walk process (described in section 3.1).

Stochasticity is quantified by the standard deviation (SD) of the observation

generation distribution (the larger the SD, the higher the stochasticity).

To study the effect of stochasticity, Lee et al. used two conditions: one with an SD of

10 and the other with an SD of 25, on a domain of position values ranging from 0 to

300 (0 and 300 correspond to the leftmost and rightmost possible stimulus position,

respectively). Lee et al. measured the subjects’ average learning rate in each

condition from their estimate reports. The results show an effect of stochasticity in the

expected direction: the subjects’ average learning rate is significantly higher in the

condition with lower stochasticity than in the condition with higher stochasticity

(Figure 6). The difference in subjects' learning rates was however smaller compared

to that predicted by the optimal model: the average learning rates were 0.59 and 0.69

in the two conditions for the subjects, vs. 0.35 and 0.65 for the optimal model.

Figure 6. Average learning rate of subjects in a condition with high
stochasticity compared to a condition with low stochasticity. Figure adapted

from (Lee et al., 2020).
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Stochasticity has also been manipulated in magnitude learning studies with change

point dynamics, but the effects of the manipulation of the SD on subjects' average

learning rate have not been reported as clearly as in Lee et al.’s study. (Nassar et al.,

2010) used four SD conditions and reported a plot of the subjects' learning rate as a

function of the absolute value of the prediction error for each condition. These plots

visually show lower learning rate values overall in conditions with higher SD, but

statistical tests have not been reported. (McGuire et al., 2014) used two SD

conditions and reported in the supplementary materials an analysis showing that the

modulation of subjects' learning rate by the absolute prediction error was significantly

modulated by the level of SD. This effect was mainly manifested for intermediate

values of prediction error, because normatively an intermediate value of prediction

error indicates a high change-point probability in a low SD condition but a low

change-point probability in a high SD condition, and the change-point probability in

turn modulates the learning rate. Overall, it seems that most of the effect of

stochasticity on the subjects’ learning rate in change-point magnitude learning tasks

is mediated by the change-point probability. This is consistent with the Chapter 2

results showing that most of the variations in the learning rate is explained by the

change-point probability in magnitude learning tasks.

2.2. Behavioural results related to the dynamic adjustments of the learning rate
(level 2)

Previous studies on the dynamic adjustments of the learning rate at each observation

have been restricted to one class of learning tasks: magnitude learning tasks, with

change point dynamics, and estimate reports. These studies have been conducted in

particular by Matthew Nassar and colleagues. They have shown that, in magnitude

learning, humans dynamically adapt their learning rate by transiently increasing it

following a change point (see Figure 7) (McGuire et al., 2014; Nassar et al., 2012;

Vaghi et al., 2017). The increase is immediate (occurring at the first observation

following the change point) and relatively short-lived (the increase is mainly

concentrated on the first outcome, almost back to baseline by the third outcome). In

Chapter 2, I will demonstrate that this "one-shot" profile of dynamic adjustment is

characteristic of magnitude learning tasks.
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Nassar et al.’s results have been replicated and generalised across different types of

magnitudes, including symbolic numbers (Nassar et al., 2012), positions (McGuire et

al., 2014), and angular directions (Vaghi et al., 2017). Note that, as mentioned earlier

in section 1.5, these level 2 findings also imply that the average learning rate should

increase with volatility, further extending the volatility findings covered in section 2.1.

Figure 7. Learning rate of subjects following a change point during magnitude
learning. Panels adapted from (McGuire et al., 2014; Nassar et al., 2012; Vaghi et

al., 2017).

The other analyses reported in these magnitude learning studies show that human

learning rates increase with the absolute value of prediction error (consistent with the

fact that larger prediction errors indicate a higher change-point probability) and are

significantly modulated by change-point probability and relative uncertainty, as

estimated by a normative model of the task (more details about normative models will

be provided in section 3).
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To my knowledge, the study by (Nassar et al., 2010) was the first to collect

behavioural measures of the apparent learning rate using equation [1]. Unlike the

method described in Box 2, this measure does not depend on any modelling

assumptions, and allows for studying how the learning rate is dynamically adjusted in

response to task events and as a function of dynamic factors. These are advantages

that I fully exploit in Chapters 2 and 3 by similarly collecting

observation-by-observation estimate reports and using the measure of the apparent

learning rate.

2.3. Open question: Dynamic adjustments in probability learning, and
comparison with magnitude learning

A gap in scientific knowledge concerns the dynamic adjustments of human learning

rates in probability learning. As covered in section 2.1, there is ample empirical

evidence that the human learning rate is on average adapted depending on whether

the environment is stable or volatile (level 1 of adaptive learning). But is the human

learning rate dynamically adapted on the basis of each observation in response to a

single change in the environment (level 2 of adaptive learning)?

Examining these dynamic adjustments in probability learning is necessary because,

firstly, there is a fundamental difference in the informativeness of the observations in

these two types of learning, as detailed in chapter 2, and in fact, I show in chapter 2

that this leads to differences in the learning process in these two contexts. Secondly,

the results presented in section 2.1 regarding probability learning can be explained in

several ways that do not involve level-2 dynamic adaptation. Subjects could, for

example, exhibit two different average learning rates in low and high volatility

conditions by adopting two different behavioural strategies and switching between the

two depending on the condition they are in, without each strategy involving any

dynamic adaptation of the learning rate. Two such strategies that often explain

human choices well are the win-stay, lose-shift strategy (well-suited when volatility is

high), and a strategy with a strong choice repetition bias (well-suited when volatility is

low) (Cook et al., 2019; Palminteri, Wyart, et al., 2017; Wilson & Collins, 2019).

Another possibility would be that the subjects' learning rate gradually increases or
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decreases over time depending on the average number of change points over a long

period of time, without exhibiting any adaptation in response to a single change point.

The need to examine the dynamic adjustments of the learning rate in probability

learning and the lack of suitable data for this examination were one motivation for the

study presented in chapter 2. Another motivation was the need to bring together and

compare magnitude learning and probability learning, which, despite being two very

common types of learning, have been studied by largely separate branches of the

literature (cf. Table 1). How do they relate to each other? What do these two types of

learning have in common, and what are their differences?

3. Computational bases of adaptive learning

In this section, I discuss the computational process involved in adaptive learning from

a normative perspective. I formally describe the problem posed in learning and derive

the optimal solution to this problem. I then identify the properties that govern adaptive

learning in this solution. These normative properties will define desiderata and

evaluation criteria for computational models of learning. Next, I will summarise the

computational models proposed in the literature to solve the learning problem, and

will then highlight key limitations of previous approaches and outstanding questions

that I will address in chapter 2 using a neural network-based approach to investigate

the feasibility and realisation of adaptive learning in the brain.

The normative approach which I adopted here is useful for several reasons. First, the

optimal solution allows me to describe how the learning rate should be adapted and

to identify computational factors that modulate the adaptations in the optimal solution,

and that should be taken into account in any other adaptive solutions. This allows me

to formulate general principles governing adaptive learning. Additionally, the optimal

solution serves as a benchmark for any other learning model. The quality of the

solution provided by a model, and of its adaptive capacities, can be quantified in

comparison to the optimal solution. Finally, the normative approach allows me to

make empirical predictions that explain both "how" learning is performed and "why" it

is performed in this way (because it follows from an optimality principle), and that
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have the potential to generalise beyond a specific experimental situation (because

the ingredients from which these predictions are derived, namely the optimality

principle, probability theory, and the generic learning problem I describe, have broad

applicability). Normative predictions thus have strong descriptive value, strong

interpretive value, and strong potential for generalisation (Courville et al., 2006;

Dayan et al., 2000).

3.1. Modelling the learning problem

In all the contexts studied here (Table 1), the task requires solving a learning

problem. This problem can be asked to the subject directly (in estimation tasks, the

subject must report the learned value) or indirectly (in choice tasks, choices are

made based on the learned values).

Formally, the learning problem corresponds to a sequential probabilistic inference

problem. Probabilistic inference consists of estimating (as accurately as possible) the

hidden variable of the environment from stochastic observations. The inference is

probabilistic due to the stochasticity (it is impossible to determine with certainty the

exact value of the hidden variable from the observations). In the context of learning,

the inference is sequential because the observations are received sequentially, and

because we are interested in the updating process.

Specifying the problem requires specifying the hidden variable to be estimated, and

how they are related to the observations in the considered environment. This

specification is mathematically modelled by a stochastic process called the

generative process of the environment. The process is referred to as generative

because it generates the observation sequence.

One way to describe the generative process involved in the learning problem in a

generic way is through a probabilistic graphical model (also called Bayesian network,

and here more specifically a dynamic Bayesian network, because it relates variables

over adjacent time steps), which is the one shown in Figure 1. The graphical model

represents the conditional dependence structure between the random variables of

the process. Each edge represents a direct conditional dependency. Any variable in

the graph is conditionally independent of all its non-descendants given the value of
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all its parents. For example, ht+1 is conditionally independent of xt (a non-descendent)

given ht (its parent). This conditional dependence structure applies to all learning

environments, and is key to solving the learning problem, as we will see in the next

section. (Note that this structure is not as restrictive as it might seem in fact, because

a generative process that is described by a graph that does not have this structure

can often be turned into an equivalent one that does have this structure, by a change

of variable in which the new hidden variable contains the conditional dependencies of

the original graph that are not captured in the structure from Figure 1.)

To fully specify the generative process, one only needs to specify for each variable z

the probability distribution for z conditional upon z's parents in the graph. Thus, in the

case of learning, to define the generative process of a particular studied environment,

only three probability distributions need to be defined.

1) The initial distribution of the hidden variable: p(h0).

2) The dynamics distribution: How the next value of the hidden variable

(ht+1) is generated based on the previous value (ht). This is the distribution:

p(ht+1 | ht).

3) The observation generation distribution: How an observation (xt) is

generated given the values of the hidden variable (ht). This is the distribution:

p(xt | ht).

Definition of the generative process for specific learning contexts

Three common learning contexts are magnitude learning with random walk

dynamics, magnitude learning with change point dynamics, and probability learning

with change point dynamics (Table 1). These correspond to distinct classes of

environments. Detailing the specificities of each of these classes is useful because

their specific properties have important computational consequences. The classes of

environments corresponding to each learning context are defined by the generative

processes below.

The case of change point dynamics is subdivided into two cases that commonly

occur in experiments: either (a) the hidden variable varies uniformly over an interval
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(e.g. (Gallistel et al., 2014; Nassar et al., 2010)), or (b) the hidden variable makes

reversals between two values (reversal tasks) (e.g. (Behrens et al., 2007; Glaze et

al., 2015)).

Magnitude learning with random walk dynamics.

1) Initial distribution of the hidden variable. This is typically a uniform

distribution over the domain of the hidden variable (for magnitude: a

continuous range of magnitudes, whose bounds depend on the application

domain), or a Gaussian distribution around the central value of the domain.

2) Dynamics distribution. The hidden quantity evolves according to a

random walk process. At each time step, a random step (i.e. amount of

change) is drawn from a distribution and injected into the hidden quantity.

Importantly, these steps are independent. This random walk process is

characterised by the step distribution, which is typically Gaussian, and the

standard deviation of the distribution, σh, which defines a volatility level

(typically experimental-controlled). It may also involve a decay (parameterised

by a decay rate λ and a convergence value h∞) but most often in experimental

studies the decay is absent (λ=1) or very small. For a Gaussian random walk,

the dynamics are thus described as:

ht+1 ~ N(λ ht, σh
2), or equivalently: ht+1 = λ ht + εt+1 where εt+1 ~ N(0, σh

2)

3) Observation generation distribution. In the case of magnitude learning,

the hidden variable and the observations belong to the same domain, which is

a domain of magnitudes. The hidden variable defines the mean of the

observation generation distribution, which is typically Gaussian (or a circular

normal distribution, for circular magnitudes), and characterised by a standard

deviation, σx, which defines a stochasticity level (typically

experimental-controlled). Thus, the observation generation distribution is N(ht,

σx
2), i.e.:

xt ~ N(ht, σx
2)
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Magnitude learning with change point dynamics.

1) Initial distribution of the hidden variable. Case (a): A uniform distribution

is taken over the domain of the hidden variable. Case (b): An equal probability

for the two values between which the hidden variable reverses.

2) Dynamics distribution. It is characterised by a probability pc that a change

point occurs (which is the volatility level, typically experimenter-controlled),

and by a distribution for resampling the hidden variable when a change point

occurs. The dynamics from ht to ht+1 are described as:

“with probability pc, ht+1 is sampled from the resampling distribution,

otherwise, ht+1=ht”.

The resampling distribution is different in case (a) and case (b). In case (a),
the resampling distribution is equal to the initial distribution, meaning that after

the change point, the value of the hidden variable is uniformly resampled over

its domain (possibly with some constraint to ensure that the magnitude of the

change is not too small). In case (b), after the change point, the value of the

hidden variable reverses.

3) Observation generation distribution. Same as for magnitude learning

with random walk dynamics.

Probability learning with change point dynamics.

1) Initial distribution of the hidden variable. Same as for magnitude

learning except that the domain of the hidden variable is always bounded

between 0 and 1, since the hidden variable is a probability.

2) Dynamics distribution. Same as for magnitude learning with change point

dynamics.

3) Observation generation distribution. In the case of probability learning,

the observations are categorical and the hidden variable defines the

probability of each category. In the simplest, most common case, the

observations are binary, and each observation is sampled from a Bernoulli
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distribution whose parameter is equal to the hidden variable. Thus, the

observation generation distribution is Bern(ht), i.e.:

xt ~ Bern(ht)

A more complex case of probability learning, which I study in Chapter 3, is the case

where observations are generated according not to a single hidden probability p(1)

but to two hidden probabilities p(1|0) and p(1|1) (Foucault & Meyniel, 2021; Heilbron

& Meyniel, 2019; Meyniel et al., 2015). In this case, the observation is still generated

according to a Bernoulli distribution, but the Bernoulli parameter is either one or the

other of the two hidden probabilities, depending on the previous observation. This

also introduces an additional level of complexity in the dynamics because the change

points of the two hidden probabilities can occur either independently or at the same

time, which in the latter case introduces coupling between the two hidden

probabilities and an additional level of hierarchy in the inference process (see

Chapter 3).

3.2. Optimal solution

The learning problem described above, once specified using probability distributions,

has an optimal solution that can be derived from probability theory. This solution uses

the principle of Bayesian inference (Ma et al., 2023). More importantly for learning,

the optimal solution can be computed through a sequential update process, where

the next belief is calculated based on the previous belief and the observation

received at time t (rather than being calculated from scratch each time by considering

all the observations received from the start, as a direct application of Bayes' rule

would dictate). This sequential solution is called Bayesian Filtering or Recursive

Bayesian Estimation (Chen, 2003; Särkkä & Svensson, 2023). I provide below the

essential elements of this optimal sequential solution.

The problem requires estimating the hidden variable, ht, given the observations

received so far, x1:t. The solution prescribed by probability theory is to calculate the

posterior probability distribution over the hidden variable given the observations, p(ht |

x1:t), which I will simply refer to as the posterior, and from the posterior, to calculate a

point estimate of the hidden variable. The optimal point estimate depends on the
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exact task at hand. Without loss of generality, I will consider in the following that the

estimate is taken as the mean of the posterior, which is optimal, for example, to

minimise the mean squared error between the estimate and the true value of the

hidden probability. It would be easy to swap the mean for another statistic such as

the median (which minimises the mean absolute error) or the mode (maximum a

posteriori estimate). The core of the problem is computing the posterior.

According to Bayes' rule, the posterior is equal to:

p(ht | x1:t) = p(x1:t | ht) p(ht) / p(x1:t) [3]

Unfortunately, this solution is not very useful, for two reasons. The first reason is that

the terms on the right-hand side of equation [3] cannot be directly calculated from the

generative process distributions. To compute them, one would first need inject all

past values of the hidden variable into equation [3] in order to compute the joint

distribution p(h1:t | x1:t) rather than p(ht | x1:t). This would then allow one to calculate

the first term of the right-side as a product of p(xi | hi) for all i, each of which can be

calculated using the observation generation distribution, and to calculate the second

term p(h1:t) as a product involving the initial distribution p(h0) and the dynamics

distribution p(hi | hi-1) for all i. Finally, having computed the joint distribution, one

would then need to marginalise all previous values of the hidden variable (h1:t-1) in

order to obtain the desired distribution p(ht | x1:t).

The second, more fundamental reason why this solution is not so useful as a model

of the learning process involved in animals and brains, is that it has the major

disadvantage that each time a new observation is received, the posterior must be

recalculated from scratch, taking into account all the observations received from the

start, x1:t. This is not only computationally costly, but also not very relevant from a

psychological and neuroscience point of view because the brain cannot store in

memory all the observations received over an arbitrarily long period of time, and

because in these disciplines the learning process is conceived of as an update

process.

For these reasons, a sequential method for calculating the posterior would be more

useful. One such sequential method is called Bayesian filtering, also known as
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Recursive Bayesian estimation (Chen, 2003; Särkkä & Svensson, 2023). It is

applicable whenever the generative process has the conditional independence

properties described on Figure 1. It computes the successive posteriors following

each observation without retrieving all previous observations, using instead the

posterior previously computed. It thus presents the calculation of the posterior as a

sequential update process, which is more compatible with learning in the sense of

psychology and neuroscience. It is described by the algorithm below, graphically

illustrated in Figure 8.

Figure 8. Depiction of the posterior updating process from t to t+1 in the
Bayesian filtering algorithm.

Bayesian filtering algorithm.

Initialization. The initial posterior (i.e. the prior) is p(h0), which is the initial

distribution of the hidden variable of the generative process.

Updating. Following each observation xt+1, the distribution is updated from p(ht
| x1:t) to p(ht+1 | x1:t+1) in two steps.

(i) Go from p(ht | x1:t) to p(ht+1 | x1:t) by taking into account the dynamics of the

generative process. This calculation is performed with the equation:
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p(ht+1 | x1:t) = ∫ p(ht+1 | ht) p(ht | x1:t) dht [4]

(ii) Add the new observation xt+1. The new posterior is calculated with the

equation:

p(ht+1 | x1:t+1) = 1/kt+1 p(xt+1 | ht+1) p(ht+1 | x1:t) [5]

where kt+1 = p(xt+1 | x1:t), is a normalisation constant that can be taken into

account in the computation implicitly, by dividing the unnormalized distribution

by its sum across the possible values of ht+1, so that the resulting distribution

sums to 1.

The equations [4] and [5] hold due to the structure of the generative process, shown

in Figure 1, which has two key conditional independence properties: (a) ht+1 is

independent of x1:t given ht, which allows for equation [4] to hold true, and (b) xt+1 is

independent of x1:t given ht+1, which allows for equation [5] to hold true. The proofs

are given below.

Proof of [4].

p(ht+1 | x1:t) = ∫ p(ht+1, ht | x1:t) dht (sum rule)

p(ht+1 | x1:t) = ∫ p(ht+1 | ht, x1:t) p(ht | x1:t) dht (chain rule)

p(ht+1 | x1:t) = ∫ p(ht+1 | ht) p(ht | x1:t) dht (property (a))

Proof of [5].

p(ht+1 | x1:t+1) = p(xt+1 | ht+1, x1:t) p(ht+1 | x1:t) / p(xt+1 | x1:t) (Bayes’ rule)

p(ht+1 | x1:t+1) = p(xt+1 | ht+1) p(ht+1 | x1:t) / p(xt+1 | x1:t) (property (b))

An example of computed posteriors for a sequence of a probability learning task is

illustrated in Figure 9.
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Figure 9. Example of posteriors calculated over a sequence of observations in
a probability learning context. A sequence of binary observations was generated

according to the hidden probability value shown by the grey dotted line on the top

plot, with a change point in the middle. The top plot shows the (optimal) posterior

probability density for each time step of the sequence as a colormap (bright yellow

and dark blue indicate high and low probability density, respectively). The two line

plots at the bottom show in more detail the posterior for the two time steps outlined in

red and pink above.

3.3. Normative properties governing the adaptations of the learning rate

Several principles can be derived from the optimal solution presented above. Out of

these principles, the focus of my thesis is mainly on the effect of uncertainty, which,

because it varies dynamically with each observation, is a driver of the dynamic

adjustments of the learning rate (level 2 of adaptive learning described above).

Effect of volatility: The higher the volatility of the environment, the larger the

updates.
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This effect is reflected in the term p(ht+1 | ht) of equation [4]. When the volatility is

zero, p(ht+1 | ht) is zero everywhere except for ht+1=ht, which results in equation [4]
inducing no update to the posterior. The higher the volatility, the larger p(ht+1 | ht)

becomes for values of ht+1 unequal to ht, which leads to a larger updating of the

posterior.

Effect of stochasticity: The higher the stochasticity of the environment, the smaller

the updates.

This effect is reflected in the likelihood term p(xt+1 | ht+1) of equation [5]. Stochasticity

is maximal when the likelihood function is uniform, meaning that all values of ht+1 lead

to an equal likelihood value. In that case, equation [5] does not produce any update

to the posterior. The lower the stochasticity, the more the likelihood term favours

certain values of ht+1 over others (those values that are more consistent with the

observation received xt+1), which leads to a larger updating of the posterior by

equation [5].

Effect of uncertainty: The higher the uncertainty associated with the estimate, the

larger the update (and thus the learning rate) triggered by the new observation.

Uncertainty is present in the posterior p(ht|x1:t) being updated. In statistical terms,

uncertainty corresponds to the dispersion of the posterior distribution: the more

dispersed the distribution, the more probable it is that the true value of ht is far from

the (point) estimate derived from the posterior, resulting in greater uncertainty

associated with this estimate. One measure of dispersion is the standard deviation.

Unless stated otherwise, I will use this measure to quantify the normative uncertainty

(unless otherwise stated:

ut+1 = SD[ht | x1:t] [6]

Remark: this time indexing is used so that ɑt+1 is regulated by the variable ut+1,

rather than ut.

Normatively, uncertainty affects the updating during the multiplication between p(ht+1 |

x1:t) and the likelihood function p(xt+1 | ht+1) in equation [5]. A graphical illustration of

this effect is provided in Figure 10. Here is a simplified textual explanation. When
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uncertainty increases, p(ht+1 | x1:t) is more spread out and its probability density

becomes larger far from its centre of mass. Let's assume that the centre of mass of

p(xt+1 | ht+1) is shifted to the right compared to p(ht+1 | x1:t). Once multiplied with p(xt+1 |

ht+1), the probability density of the posterior will increase towards the right and

decrease towards the left, and these increases and decreases in probability density

will be all the higher than the original probability density was high, that is, that the

uncertainty was high. Higher uncertainty therefore produces a larger shift of the

posterior towards the right, a larger shift in posterior mean, a larger estimate update

(the numerator of equation [1]), and thus a larger learning rate (having kept the

denominator of equation [1] constant).

Figure 10. Example illustrating the effect of uncertainty on the update during
the multiplication with the likelihood function in equation [5]. The posteriors at

the top were extracted from the two time steps of the example shown in Figure 9.

The likelihood function in the middle is that of a probability learning context for xt+1=1.
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3.4. Computational models of learning

Numerous models have been proposed in the literature on learning. I focus here on

those that have been used in the behavioural and brain sciences as models of

learning in humans and non-human animals. These models are often inspired by

algorithms from computer science, engineering, and machine learning. I will list and

detail these models below.

As we will see, these models have been designed "by hand" (handcrafted) by

researchers, following a traditional approach that has the merit of producing easily

explainable and interpretable models. By exploring these models, we will have a

better understanding of the different approaches adopted and also the limitations of

these approaches (which will be summarised in the next section). To give an

overview, pure normative approaches produce optimal principles-based models but

are commonly criticised for their possible too-high complexity; therefore, some

researchers try to produce models of lesser complexity by using simplifications which

unfortunately have consequences that are not well determined, while others restrict

the problem to a particular type of generative process, which limits the applicability of

the model, or use a model that assumes a particular generative process and apply

the model to another generative process, which produces unpredictable behaviour.

Delta-rule / Rescorla-Wagner model (Rescorla & Wagner, 1972)

Normative models (Adams & MacKay, 2007; Behrens et al., 2007; Chen, 2003; Meyniel et al., 2015)

Reduced normative model for magnitude learning (Nassar et al., 2010, 2012)

Approximation of normative models by sampling: Particle Filters (Gordon et al., 1993; Chen, 2003)

Kalman Filter (Kalman, 1960)

Kalman filter-based model with estimation of volatility and stochasticity (Piray & Daw, 2021)

Hierarchical Gaussian Filter (C. Mathys et al., 2011; C. D. Mathys et al., 2014)

Adaptive mixture of delta-rules (Wilson et al., 2013)

Proportional-Integral-Derivative (PID) controller (Ritz et al., 2018)

Metaplastic synapses guided by a change detection system (Iigaya, 2016)

List 1. Computational models of learning proposed in the existing literature.
The models are described below.
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Delta-rule / Rescorla-Wagner model (Rescorla & Wagner, 1972).

The delta-rule has been introduced earlier in this manuscript, see equation [2]. It is

the simplest learning model among the models discussed here. It serves as a

baseline for the definition of adaptive learning: by construction, this model has a fixed

learning rate and its learning is therefore non-adaptive. Note that, as mentioned in

Box 2, the delta-rule is often embedded as a component in larger models, including

all reinforcement learning models based on temporal difference (TD) learning such as

Q-learning and SARSA (Schultz et al., 1997; Sutton & Barto, 2018).

Normative models (Adams & MacKay, 2007; Behrens et al., 2007; Chen, 2003;

Meyniel et al., 2015)

Normative models realise the optimal solution to the learning problem for the

generative process of the given task. In section 3.2 above, I described a general way

to compute the optimal solution using Bayesian filtering (Chen, 2003). Other ways to

compute the optimal solution have been proposed for specific classes of generative

processes. In particular, for those with change points, Adams and MacKay (Adams &

MacKay, 2007) proposed another algorithm that, in addition to providing estimates of

the hidden quantity, provides an estimate of when the last change point occurred (it

computes the posterior probability distribution over the run length, which is the

number of observations since the last change point). (Meyniel et al., 2015) also

proposed another algorithm to estimate change points based on sampling. This is

interesting because some laboratory tasks require subjects to detect change points

(Gallistel et al., 2014). However, these change-point estimation algorithms are

significantly computationally more costly than Bayesian filtering.

One note regarding when a model is considered 'normative' in this thesis. Generally,

‘normative’ means that the model realises the optimal solution. Sometimes, such a

model can be used with some assumed parameter values of the generative process

which may differ from the true ones, such as the level of volatility or the level of

stochasticity. This is typically the case when these parameters are fitted to the

subject’s behaviour rather than set to the true generative ones. Even though the

model no longer performs optimally when the model and the generative parameter

values differ, I still refer to the model as a normative model because it can perform
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optimally (with the right settings) and performs the same computational process as

an optimal model. However, I no longer consider a model to be normative when it

assumes a different structure of the generative process compared to the true one (for

example, when the model assumes that the dynamics follow a random walk process

while in reality they follow a change point process), as in that case it cannot perform

optimally and may involve a very different computational process from that of any

optimal model.

Reduced normative model for magnitude learning (Nassar et al., 2010, 2012).

Nassar et al. proposed a reduced (i.e. simplified and approximated) version of the

normative model for the specific case of magnitude learning, in which the reduced

model achieves a performance to that of the full model (Nassar et al., 2010). The

approximations include that the reduced model only maintains the first two moments

(the mean and the variance) of the posterior distribution, instead of maintaining the

complete distribution, and that it computes them according to a formula that

considers only a single expected run length (rather than all possible run lengths).

These approximations greatly reduce computational complexity.

One advantage of this reduced model is that it explicitly calculates the learning rate,

using an analytical formula which can serve as a simplified explanation for how the

learning rate should be adjusted in the case of magnitude learning. The formula is: αt
= τt + (1-τt) Ωt, where Ωt is the change-point probability and τt is the relative

uncertainty (Nassar et al., 2012).

While the performance of the reduced model is nearly optimal for magnitude learning,

it may fall short in other learning contexts. Among others, one reason why it is likely

to fall short is that by approximating the posterior by the first two moments, it loses

any bimodal or asymmetric features that the normative posterior may have. And

indeed, in certain cases, such as in probability learning, the normative posterior

distribution can have highly asymmetric and bimodal shapes, and these features

greatly influence the subsequent updates and thus performance of the model : see

the pink distribution in Figure 9 and 10. (Also note that asymmetry in the posterior

leads to an asymmetric update between positive and negative prediction errors, at

equal absolute prediction error, which cannot be reproduced by the reduced model.)
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Approximation of normative models by sampling: Particle Filters (Brown &

Steyvers, 2009; Chen, 2003; Gordon et al., 1993; Prat-Carrabin et al., 2021).

The optimal solution involves calculating integrals that are often difficult to compute

exactly (see for example equation [4]). Such an integral can be treated as an

expectation, which can be approximated by sampling from the underlying distribution

and computing the sample mean corresponding to that expectation. This idea has

given rise to a family of methods and algorithms known as sampling-based

approximation. The particle filter (Chen, 2003; Gordon et al., 1993) is one such

sampling-based method that is specifically designed to approximate Bayesian

filtering, thus providing a model for learning.

In the particle filter, the posterior distribution is approximated by a set of samples

(called "particles") and a set of weights associated to those samples, which represent

their respective posterior probabilities. The algorithm provides a guarantee: as the

number of samples tends to infinity, it produces the optimal solution. The number of

samples controls the degree of approximation, and can be treated as a model

parameter.

Brown and Steyvers (Brown & Steyvers, 2009) and Prat-Carrabin et al.

(Prat-Carrabin et al., 2021) have applied the particle filter to the modelling of human

behaviour in magnitude learning tasks, fitting the number of samples in the model to

the subject’s behaviour. This produced a better fit to behaviour compared to the other

models they tested.

Kalman Filter (Kalman, 1960).

Owing to its relative simplicity and its general usefulness in a wide range of

engineering applications, the Kalman filter has been used also in neuroscience, to

model for example the integration of visual information in visuomotor tasks (Baddeley

et al., 2003; de Xivry et al., 2013), and as a basis for other neuroscience learning

models (see the next two models presented below).

The Kalman filter is an algorithm designed to solve the learning problem in the

specific case where the generative process is assumed to be the Gaussian random

walk described in section 3.1, corresponding to the context of magnitude learning
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with random walk dynamics. For this specific generative process, the optimal solution

can be computed much more easily than in the general case. Because the posterior

in that case is a Gaussian distribution, only the first two moments of the posterior

distribution need to be maintained: the mean vt and variance wt of the posterior.

Furthermore, these can be calculated using a simple set of (tractable) update

equations (Kalman, 1960), which are provided below:

vt = vt-1 + αt (xt - vt-1) [7]

wt = (1-αt) (wt-1 + σh
2) [8]

where αt is the apparent learning rate, which is calculated by the equation:

αt = (wt-1 + σh
2) / (wt-1+ σh

2 + σx
2) [9]

Note that in the Kalman filter, the learning rate (αt) and the uncertainty (wt) do not

depend on the observed sequence (x1:t), but only on the number of observations

received from the start of the sequence (t). In that sense, the Kalman filter does not

perform level 2 adaptive learning. Also note that, as the coefficient (1-αt) in equation

[8] is less than 1, the uncertainty wt tends to decrease over time, and so does the

learning rate αt (since αt is an increasing function of wt according to equation [9]). In

an environment with change points, this monotonous decrease of the learning rate

would not be adaptive, as the adaptive solution in that case is characterised by

dynamic increases in the learning rate in response to change points (see section 2.2

and chapter 2).

Kalman filter-based model with estimation of volatility and stochasticity (Piray

& Daw, 2021)

The model by Piray and Daw extends the equations of the Kalman filter presented

above and promotes the volatility σh
2 and stochasticity σx

2 parameters of the model,

originally fixed, into dynamic variables. As presented by Piray and Daw, this

extension allows the model to estimate volatility and stochasticity.

In the context of my thesis, what I find particularly interesting in the results that Piray

and Daw presented with this model, is that when it is run on sequences generated by
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a process with change point dynamics (which aren’t the dynamics that the model

assumes, but the model can still be run on those sequences as if they had been

generated by a process with random walk dynamics), the model exhibits dynamic

increases of the learning rate in response to change points (which are absent from

the original Kalman filter, as mentioned above) (Piray & Daw, 2020, 2021). These

dynamic increases in the Piray and Daw model reflect the increases in the estimated

volatility variable of the model: when a change point occurs, the Piray and Daw

model estimates that the assumed volatility of the random walk has increased (even

when the true generative volatility, i.e. the average rate of change points, is held

fixed).

This observation illustrates the fact that a normative learning model which assumes

random walk dynamics but with variable volatility (like the Piray and Daw model), and

a normative learning model which change point dynamics with fixed volatility (like the

one used in (Foucault & Meyniel, 2021, 2023; Meyniel et al., 2015; Nassar et al.,

2012)), both predict dynamic increases of the learning rate when exposed to the

same sequences generated by a process with change point dynamics. A qualitatively

similar behavioural signature can thus be exhibited by these two types of model,

which provide a different interpretation of the underlying learning process that gives

rise to this behaviour.

Hierarchical Gaussian Filter (C. Mathys et al., 2011; C. D. Mathys et al., 2014)

Like the Kalman filter and the Piray and Daw model, the Hierarchical Gaussian Filter

(HGF) assumes a generative process in which the hidden variable follows a

Gaussian random walk process. The generative process assumed by the HGF has

multiple hidden variables that evolve in parallel and are organised hierarchically. In

the case where there is only one level in the hierarchy, the model is equivalent to the

Kalman filter. In the general case, the hidden variable at level i+1, h(i+1), and the

hidden variable at level i, h(i), are coupled by the fact that the noise variance of the

random walk of h(i) is equal to a positive (exponential) function fi of h(i+1), i.e.:

ht+1(i+1) ~ N(ht(i), fi(ht+1(i+1)))
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As computing the exact optimal solution for the generative process assumed by the

HGF is difficult, the HGF model approximates the optimal solution using a variational

inference method. This method approximates the posterior distribution over the

hidden variable at each level as a Gaussian distribution.

In experimental studies, the HGF is often used with two hierarchical levels, which

introduces a dynamic volatility variable similar to that in the Piray and Daw model

(Piray & Daw, 2020). Note that, like the Piray and Daw model, the HGF model has

been applied in cases where the sequences were generated by a process different

from that assumed by the HGF, such as one with change point dynamics. In these

use cases, the quality of the solution provided by the HGF remains unclear: in the

results presented by (Piray & Daw, 2020), the HGF exhibited learning rate

adjustments that go in the opposite direction of what is expected normatively (a

decrease instead of an increase in the learning rate following a change point).

Adaptive mixture of delta-rules (Wilson et al., 2013).

Wilson et al. have proposed a learning model that relies on an adaptive mixture of

delta-rules which corresponds to an approximation of the full Bayesian model with

change-point inference presented in (Adams & MacKay, 2007). In this model, the

estimate of the hidden variable (vt) is computed as a weighted sum (i.e., a mixture) of

the estimates computed in parallel by different delta-rules with different learning

rates. It is an adaptive mixture because the weights assigned to each delta-rule are

adjusted at each time step.

This model is related to the full Bayesian model by Adams and MacKay in the

following way. The full Bayesian model computes a posterior distribution over all

possible run lengths. In the Wilson et al. model, this posterior is approximated using

a subset of possible run lengths, r1, …, rk. The estimation of the hidden variable

assuming that the run length is equal to ri is performed by the i-th delta-rule of the

Wilson et al. model. The weight assigned to delta-rule i on a given time step is

calculated based on the posterior probability of the corresponding run length, p(ri |

x1:t).
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Proportional-Integral-Derivative (PID) controller (Ritz et al., 2018).

The proportional-integral-derivative (PID) controller was developed in a branch of

engineering called control theory, which studies the behaviour of dynamical systems.

The learning process can be seen as a control system in which the output (the

control signal) corresponds to the update of the estimate of the hidden variable (Δvt =

vt - vt-1), and the error signal (the feedback signal which regulates the control system)

corresponds to the prediction error (δt = xt - vt-1).

The PID controller is a simple model where the output signal is computed as a

function of the error signal by adding three terms: the proportional term, which is

proportional to the current value of the error signal, the integral term, which is

proportional to the integral over time of the past values of the error signal, and the

derivative term, which is proportional to the current value of the derivative of the error

signal. In the discrete-time case, the integral and derivative terms become the sum of

the past errors and the difference in the error between the last and current time step.

This gives the following update equation:

Δvt = KP δt + KI δi + KD (δt - δt-1)
𝑖=1

𝑡

∑

Ritz et al. (Ritz et al., 2018) applied this model to the modelling of human behaviour

in a magnitude learning task. Their version of the PID controller was modified to

introduce a leak factor in the integral term. They reported that their PID model

provided a better fit to behaviour in their task compared to the delta-rule and the

Kalman filter.

Metaplastic synapses guided by a change detection system (Iigaya, 2016).

Iigaya has studied the modelling of adaptive learning through a neural network in

which the synapses are metaplastic, meaning that the rates of synaptic plasticity (i.e.

the extent to which the synaptic weights change from one time step to the next) can

change (Iigaya, 2016). In the Iigaya model, the modification of the rates of synaptic

plasticity is regulated by a change detection system (referred to as surprise detection

system in the original paper). It is through this system that the system can exhibit an

adaptive apparent learning rate. The change detection system is implemented by a
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mathematical algorithm whose biological feasibility remains unknown (this has been

left to future studies, as per the author). Thus, the biological feasibility of the Iigaya

model as a whole remains unknown.

If you made it to this sentence without skipping, congratulations and thank you for

your careful reading.

3.5. Open questions: Feasibility and mechanisms of adaptive learning in the
brain and neural networks

Overall, the models listed in the previous section have an undetermined capacity for

generalisation or a computational complexity that may be too high. Even more

critically, their feasibility and how they could be implemented in the brain remain

unknown (except for the delta-rule, which does not possess the desired adaptive

properties). Indeed, these models are described by equations and algorithms that are

not constrained by the brain. They are also limited by the researchers' design

capabilities (Saxe et al., 2021). How can adaptive learning be realised in the brain?

In the study presented in Chapter 3, I overcome the above limitations by adopting a

new approach, which partially automates the design of the model and allows a large

class of possible models to be explored, while being constrained by feasibility in the

brain. I rely on recurrent neural networks (RNNs) (Goodfellow et al., 2016), a class of

artificial neural network models whose feasibility in the brain is established because

their basic building blocks are all biologically realisable (Douglas & Martin, 2007;

Hunt & Hayden, 2017; R. C. O’Reilly & Frank, 2006), and which have led to

advances in several neuroscience domains (Chaisangmongkon et al., 2017; Dubreuil

et al., 2022; Mante et al., 2013; Sheahan et al., 2021; Wang et al., 2018).

Optimization and machine learning algorithms are used to automate the assembly of

the defined building blocks and the adjustment of the network's parameters to solve

the given learning problem, thus producing a biologically feasible model of learning.

Through this method, I’ve explored numerous possible architectures and sizes of

RNNs to study the feasibility and minimal sufficient mechanisms to achieve the

desired adaptive properties in learning. The specific questions and investigation

methods of this study will be introduced in section 5 of this introduction and fully

detailed in the article in Chapter 3.
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4. Neural bases of adaptive learning

In this section, I review the findings about the neural bases of different components of

learning. These components are involved in most probabilistic learning models: the

surprise (or prediction error), the update, and the uncertainty (the latter being critical

for adaptive learning, as explained in section 3). They can be articulated around a

schematic model of the neural learning process hypothesised in many studies

investigating the neural basis of learning, represented in Figure 11. However, not all

components of learning have a clearly established neural basis; this includes

probabilities (see section 4.4 and Chapter 4).

Figure 11. Schematic model of the hypothetical neural learning process. The

received observation produces a surprise commensurate with its deviation from what

was expected based on prior knowledge. The surprise, in turn, leads to an update of

the knowledge represented in the brain. The uncertainty modulates the updating of

knowledge by surprise.

4.1. Surprise signals emerge in the brain in response to an observation

The surprise or prediction error is a quantity that is central in many theories of

brain function. These theories include predictive coding, the free energy principle,

reinforcement learning and optimal control theories, as well as other theories

subscribing to a Bayesian, Helmholtzian view of the brain as an inference machine

(Daw & Doya, 2006; Dayan et al., 1995; Friston, 2010; Knill & Pouget, 2004; Rao &

Ballard, 1999; Rescorla & Wagner, 1972; Schultz et al., 1997; Sutton & Barto, 2018).

Surprise or prediction error is involved in these theories as a quantity that the brain

seeks to minimise or maximise: predictive coding minimises prediction error; the free
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energy principle minimises free energy which has two terms, one of which is equal to

surprise; optimal control and reinforcement learning maximise value which is often

estimated using reward prediction errors, and this maximisation can often also be

written as a maximisation of likelihood and a minimisation of surprise. In general, the

optimised quantity is often proportional to, or a function of, or contains, surprise or

prediction error. Surprise and prediction error both measure the deviation between

the just-received observation and the expectation (= prediction) formed on the basis

of prior knowledge. In the strict sense, one definition of surprise, according to

Shannon, is the negative logarithm of the expected probability of the observation

occurring, and one definition of prediction error is the difference between the value of

the observation and that of the expectation. In this section, I adopt a broader

definition of “surprise” that encompasses the two previous definitions (Shannon

surprise and prediction error).

Some of the earliest discovered neural correlates of surprise are the

electrophysiological correlates observed in oddball and oddball-like paradigms, in

which a surprising stimulus (called oddball) can occur within a sequence of stimuli

(Bendixen et al., 2007; Horvath et al., 2001; Lieder et al., 2013; Mars et al., 2008;

Squires et al., 1976). In response to the oddball stimulus, evoked potentials are

observed including the mismatch negativity (MMN) and the P300.

In probabilistic learning paradigms, within the brain, surprise signals are observed

first in the sensory areas associated with the modality in which the observation is

perceived: visual (Bounmy et al., 2023; McGuire et al., 2014; Meyniel & Dehaene,

2017), or auditory (Meyniel & Dehaene, 2017; Ulanovsky et al., 2004). In the case

where observations are rewards, surprise signals, which are more often referred to

as reward prediction error (RPE) signals in that case, are also observed in a

dopaminergic circuit that includes the mesolimbic pathway and the nigrostriatal

pathway, involving many subcortical and cortical structures: the ventral tegmental

area (VTA), substantia nigra compacta (SNc), ventral striatum (including nucleus

accumbens) and other basal ganglia nuclei, the amygdala, the ventromedial

prefrontal cortex, and when punishments are included, the anterior insula and dorsal

striatum (Daw et al., 2006; Garrison et al., 2013; Palminteri et al., 2012; Schultz,

2022; Schultz et al., 1997). However, in these regions the neural correlates of
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surprise are not domain-general: they are bound to the sensory modality or the

rewarding nature of the observation.

Across sensory modalities and independently of rewards, surprise signals are

observed in higher-level regions that include parietal, prefrontal, and anterior

cingulate cortex areas (Bounmy et al., 2023; Kouider et al., 2015; McGuire et al.,

2014; Meyniel & Dehaene, 2017; J. X. O’Reilly et al., 2013; Strange et al., 2005).

These regions encode surprise across multiple experimental paradigms and multiple

learning contexts (magnitude learning, probability learning). In these regions, the

neural coding of surprise therefore seems to be domain-general, and surprise is

encoded monotonically, and most often positively: the higher the surprise, the higher

the neural activity.

4.2. Surprise signals trigger update signals

Knowledge updates are typically triggered by a surprise signal, and can be

distinguished from surprise in two ways: normatively, the knowledge update is

modulated by other factors, and behaviorally, knowledge updates can be measured

from the subject’s responses.

Knowledge updates have repercussions in many cortical regions, predominantly

fronto-parietal, as observed in fMRI (Meyniel & Dehaene, 2017; J. X. O’Reilly et al.,

2013) and in EEG/MEG (Fischer & Ullsperger, 2013; Jepma et al., 2016; Meyniel,

2020). Greater updating has also been related to increased functional connectivity

between the fronto-parietal network and other functional systems that include regions

in the dorsolateral and dorsomedial frontal cortex, the lateral and medial parietal

cortex, and the anterior insula (Kao et al., 2020).

Updating is also reflected in pupil diameter (Filipowicz et al., 2020; Joshi et al., 2016;

Meyniel, 2020; Nassar et al., 2012; J. X. O’Reilly et al., 2013). A study found that

under constant surprise, pupil diameter correlates with the extent to which individuals

updated their knowledge, as measured behaviorally (Filipowicz et al., 2020). A causal

manipulation has also been conducted in the context of magnitude learning (Nassar

et al., 2012). This manipulation involved playing an auditory stimulus increasing the

subject’s arousal level in a task-independent manner on certain trials. The increase in
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arousal was reflected by an increase in pupil diameter. Concurrent with the effect on

the pupil, it produced an effect on the subjects’ learning rate, as measured

behaviourally. The direction and magnitude of the effect on learning rates depended

on the baseline level of pupil diameter.

The pupil diameter findings indicate that the locus coeruleus-norepinephrine (LC-NE)

system (and possibly other neuromodulatory systems, e.g. cholinergic), could play a

key role in updating. Indeed, pupil diameter is often considered to index LC activity

because the LC controls pupil dilations via a sympathetic circuit in the spinal cord

and the brainstem (Joshi & Gold, 2020). The LC is not the only structure controlling

pupil diameter in general, but it is likely to be the one most contributing to

non-luminance related changes in pupil size that occur during learning (Joshi & Gold,

2020). Anatomically, the connectivity of the LC puts it in a good position to integrate

surprise signals and the other factors modulating the update, and to produce update

signals widely distributed across the brain. The LC receives inputs from the cortex

including the frontal and anterior cingulate regions, which convey surprise and

uncertainty, and is the principal source of noradrenergic innervation of the entire

cortex (as well as of the hippocampus, amygdala, cerebellum, and spinal cord)

(Aston-Jones & Cohen, 2005). Functionally, a wide range of empirical findings show

that the LC responds to the occurrence of a surprising stimulus, as measured not

only through pupil dilations as mentioned earlier, but also directly using single-unit

electrophysiological recordings of LC neurons (Aston-Jones & Bloom, 1981;

Aston-Jones & Cohen, 2005; Joshi et al., 2016), and recently, using fMRI

(Mazancieux et al., 2022).

4.3. Uncertainty signals may modulate the updates

Neural correlates of uncertainty (that is, estimation uncertainty, see Note 1) have

been observed in the cortex in parietal, frontal, and cingulate regions across multiple

learning contexts (magnitudes, probabilities) (Bounmy et al., 2023; McGuire et al.,

2014; Meyniel & Dehaene, 2017). These regions are partly separate from, and partly

overlap with surprise regions, as observed at the group level (McGuire et al., 2014;

Meyniel & Dehaene, 2017), and at the subject level an overlap was also reported in

the case of probabilities (Bounmy et al., 2023).
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The correlates of uncertainty are also observed in MEG/EEG signals in the

modulation of the response evoked by the observation (at equal levels of surprise,

the amplitude of the response increases with uncertainty) and in the power of neural

oscillations in the alpha-beta band (8-30 Hz) (Jepma et al., 2016; Meyniel, 2020).

Furthermore, they are reflected in changes in pupil diameter (Meyniel, 2020; Nassar

et al., 2012). Transient (also called “phasic”) and sustained (also called “tonic”)

variations in pupil diameter reflect surprise and uncertainty, respectively (Joshi &

Gold, 2020; Meyniel, 2020; Nassar et al., 2012).

Overall, these results combined with those from the above subsections relating pupil

diameter to uncertainty, surprise, and updating suggest that: 1) uncertainty may

modulate the activity of the LC-NE system and its responses to surprise, and 2)

these modulations of LC-NE system activity may modulate the updates at the neural

and behavioural level.

The hypothesis that the LC-NE system plays a regulatory role in learning is related to

other theories on the functions of the LC-NE system and the mechanisms regulating

learning. One theory that Yu and Dayan proposed is that NE signals unexpected

uncertainty (which is strongly related to the uncertainty as defined in this thesis, since

in Yu and Dayan's original model, it is equal to 1 - the maximum of the posterior

probability distribution, and there is strong correlation between 1-max-p and SD), and

that acetylcholine (ACh) signals expected uncertainty. They proposed that the

uncertainty signal conveyed by NE interacts with the expected uncertainty signal

conveyed by ACh to enable optimal learning in a stochastic and changing

environment (Yu & Dayan, 2005). Another hypothesis (which follows in part from

study 2 of this thesis, reported in Chapter 3) is that the modulation of learning rate by

NE could occur through gain modulation, or gating. This hypothesis is supported

biologically (by previous studies) and computationally (by study 2). I will return to this

hypothesis in the general discussion.

4.4. Open question: Probability, a neural code yet to be discovered

One element that is missing from the discovered neural bases is probability.

Probabilities are doubly involved when learning in a stochastic environment. Firstly,

any stochastic environment is governed by probabilities which must be acquired,
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used, and updated by the brain. Secondly, the learner's own knowledge (whether it

concerns probabilities or other quantities) is normatively represented by probability

distributions (see section 3). How are probabilities neurally represented in the brain?

Several proposals have been made regarding how a neural population could enable

probabilistic computations. These proposals all attempt to explain how a neural

population representing a scalar variable, such as the orientation of a stimulus, could

also represent its probability density. Probabilistic population codes propose that

under certain hypotheses, the probability density function can be decoded from

neural activity (Beck et al., 2008; Ma et al., 2006), distributed distributional codes

propose that neural activity encodes expectations calculated according to the

probability density (Sahani & Dayan, 2003; Zemel et al., 1998), and neural sampling

codes propose that neural activity successively represents samples (e.g. orientation

values) drawn according to the probability density (Fiser et al., 2010; Hoyer &

Hyvärinen, 2002). However, it is important to note that in all these proposals, the aim

is to represent the probability density of a scalar variable, and not to represent the

probability p of an event (such as the probability of occurrence of a given stimulus or

outcome). None of these proposals attempt to explain how such a probability p may

be encoded in neural activity (i.e., activity a=f(p)). Such a representation of probability

is necessary though, at least in situations where individuals explicitly estimate one or

more probabilities, possibly reason about them, and possibly report them or

communicate them to others (for example to improve collective decision making), as

required by task demands or because probabilities are useful to describe the world

(Bahrami et al., 2010; Gluck et al., 2002).

This question is even more enigmatic given that neural correlates of probability have

been searched for and, to my knowledge, using classical approaches, they have not

yielded positive results (except for reward probability, which is a special case).

Although negative results are rarely reported, inability to find linear correlations

between probability and neural activity has been reported in (Bounmy et al., 2023;

Lebreton et al., 2015). In Chapter 4, I examine this question using a new approach.
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5. Objectives and research questions of the thesis articles

In Section 1, I presented the motivations and central issues in the study of adaptive

learning in stochastic and dynamic environments. In Sections 2, 3, and 4, I presented

what is known about the behavioural manifestations, the computational bases, and

the neural bases of such learning, and highlighted at the end of each section a

number of unanswered questions. Here, I present the work I conducted during my

thesis to address these questions (as well as others, more specific to each study). I

conducted three studies: a behavioural study, a theoretical study, and an fMRI study.

Each study is the subject of an independent research article (published or

forthcoming), included as a chapter in this thesis manuscript (Chapter 2, 3, and 4).

5.1. Article 1: Behavioural study of the dynamics of adaptive learning in
magnitude and probability learning

Context and specificities of this study. Level 2 adaptive learning requires adapting

the learning rate observation by observation (section 1.5). Normatively, the

adaptations of the learning rate should be guided by uncertainty (section 3.3). To test

these predictions empirically, it is necessary to study the dynamics of the learning

rate at each observation, which remain unexplored in probability learning (section 2).

Indeed, the investigation of these dynamics in humans has been limited to a narrow

range of experimental paradigms, all of which concern magnitude learning and

involve relatively low levels of stochasticity compared to those involved in probability

learning. Study 1 of my thesis examines the dynamic adaptations in human learning

and the factors that govern these dynamic adaptations, comparing probability

learning and magnitude learning, and more generally testing the consistency of

human behaviour to the normative model of learning presented in this thesis.

Among the three studies in my thesis, study 1 is the only one that, in addition to

probability learning, studies magnitude learning, and examines the effect of surprise

(or more precisely, change-point probability) on learning rates.

Questions investigated. Do humans dynamically adapt their learning rate during

probability learning? How do their dynamic adjustments in probability learning

compare to magnitude learning? What are the computational determinants that
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govern their adjustments? What is the respective importance of these determinants

for the adjustments in probability learning compared to magnitude learning? Do

human adjustments and their determinants conform to normative theory?

Methods of investigation. To measure the subject’s learning rate at each

observation, I developed a new experimental paradigm that continuously tracks the

updates made by the subject as observations occur. I developed two tasks using this

paradigm, one for magnitude learning and the other for probability learning. I

conducted a study where each of the two tasks was performed one after the other by

the subjects. I compared the behaviour of the subjects with that predicted by the

normative model to test their consistency. I identified and extracted from the

normative model two determinants of the dynamic learning rate adjustments,

uncertainty and change-point probability, to test their influence on the subjects'

adjustments.

5.2. Article 2: Theoretical study of the feasibility and mechanisms of adaptive
learning in neural networks

Context and specificities of this study. The feasibility and complexity of adaptive

learning for the brain are quite mysterious. The numerous proposed models (listed in

section 3.4) are specified in a computational form that does not reveal whether, how,

and at what cost they could be implemented in the brain. Furthermore, the adaptive

capabilities of these models (such as their ability to achieve the levels of adaptive

learning listed in section 1.5, and their degree of conformance to the normative

principles listed in section 3.3) are not always known and not often quantified in

comparison to the optimal solution. Study 2 of my thesis seeks to clarify these

questions using a class of artificial neural networks whose feasibility in the brain is

established.

Study 2 examines a broader range of adaptive learning capabilities than those

covered in the general introduction of my thesis. They are related to the presence of

hierarchical latent structure in the environment, in addition to stochasticity and

dynamics. These capabilities include, in addition to the dynamic adaptations of the

learning rate, the ability to disentangle the hidden variables of the environment and

use the relevant variable for the current context, as well as the ability to perform a
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hierarchical transfer of learning from one variable to another when the variables are

coupled by simultaneous change points.

Remark: I regret not mentioning in the article that I tested numerous state-of-the-art

architectures more complex than the ones presented in the article, such as LSTM,

and deep (multi-layer) RNNs (Goodfellow et al., 2016; Hochreiter & Schmidhuber,

1997). My goal was to determine the minimal sufficient architecture, and it turned out

that after an extensive exploration of architectures, a simpler architecture (a

one-layer GRU) was able to solve the problem just as well as the more complex

architectures. That is why I did not mention them in the article. In hindsight, I

acknowledge that mentioning them would have likely made the article more

understandable and accessible to a broader audience.

Questions investigated. To what extent is the optimal (normative) solution to the

problem of learning in a stochastic and dynamic environment feasible for the brain?

Can biologically feasible artificial neural networks achieve quasi-optimal solutions?

Which mechanisms are essential for achieving such solutions? What is the minimum

sufficient network size to achieve such solutions? Qualitatively, do these networks

exhibit the signatures of the normative Bayesian solution when confronted with

increasingly complex environments (namely, the ability to dynamically adjust their

learning rate, to disentangle the hidden variables, to hierarchically transfer their

learning about one hidden variable to another)? Internally, how do the networks solve

the problem? In particular, do they explicitly represent uncertainty (as the normative

model does), and is that represented uncertainty epiphenomenal or crucial for their

adaptive behaviour (as in the normative model)?

Methods of investigation.

● RNNs were trained to solve the learning problem in different environments

with increasing complexity. In order to determine the best achievable

performance for a given defined network architecture, the networks were

trained as much as necessary and the training hyperparameters were

determined by a thorough optimisation procedure.

● To determine which mechanisms are essential for achieving the desired

performance and adaptive capabilities, mechanisms were systematically
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added or removed one by one to define several network architectures, which

were then trained and tested.

● A wide range of network sizes were tested for each architecture to determine

their growth in performance with size and determine their minimum sufficient

size needed to achieve the desired performance.

● The performance of the networks was systematically and quantitatively

compared to the optimal solution and other classical models of learning. Each

studied adaptive learning capability was examined in the networks through

diagnostic behavioural tests, also in comparison to the optimal solution.

● The internal realisation of adaptive learning by the networks and their use of

uncertainty were elucidated using an approach combining neuroscience

methods (decoding, state-space analysis of the dynamics, causal

perturbations) applied to the network’s dynamic activities, techniques from

linear algebra, and the unique advantages provided by the full access to the

network’s internal workings.

5.3. Article 3: fMRI study of the neural coding of probabilities during learning

Context and specificities of this study. As mentioned in section 4, the neural

bases of probability, an essential component of probabilistic learning processes,

remain largely unknown. Study 3 of my thesis seeks to determine them.

Questions investigated. How are probabilities represented in the brain? Is there, in

mesoscopic-level brain activity, a neural representation that specifically represents

probabilities rather than other confounding factors that correlate with probability in

many studies? Which brain regions represent probabilities? How do their neural

activities encode probability? What are the characteristics of the tuning curves for

probability?

Methods of investigation. An experiment was conducted in which human brain

activity was measured using fMRI during probability learning with change points (data

reported in Bounmy et al. 2023; although this data has been reported in that study,

the experiment was designed from the outset for the present study). To find the brain

regions that encode probabilities, we developed a new approach based on versatile

encoding models. These models can approximate arbitrary tuning curves and thus
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allow us to test, from the measured fMRI signal, whether a region is selective for

probability, without assuming a particular form of tuning curves. If there is selectivity,

these models allow us to reconstruct the tuning curves of the selective voxels. A

neural code for probabilities in the brain could thus be located, its tuning curves were

reconstructed, and these were characterised using several characteristic measures.

This characterisation was strengthened by comparing the results obtained for

probability to those obtained for uncertainty (called confidence in this article), which

was used as a control as its neural code was already relatively well known from

previous studies. Numerous methodological controls were used to ensure that the

determined neural code was specifically encoding probability rather than other

confounding factors (stimuli, subject responses, surprise, expected rewards...), and

to ensure that the results were reliable (encoding model generalisation to unseen

data was tested by cross-validation, a stringent null hypothesis definition was

adopted and controlled for in the test metric through null hypothesis simulations, the

analysis pipeline was validated end-to-end through simulations in which experiments

and fMRI signals were generated under different possible neural codes).
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Chapter II: Article 1, Behavioural study (Foucault &
Meyniel, 2023, submitted)

Preprint: https://www.biorxiv.org/content/10.1101/2023.08.18.553813
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Abstract

Humans face a dynamic world that requires them to constantly update their knowledge. Each observation should
influence their knowledge to a varying degree depending on whether it arises from a stochastic fluctuation or an
environmental change. Thus, humans should dynamically adapt their learning rate based on each observation.
Although crucial for characterizing the learning process, these dynamic adjustments have only been investigated
empirically in magnitude learning. Another important type of learning is probability learning. The latter differs from the
former in that individual observations are much less informative and a single one is insufficient to distinguish
environmental changes from stochasticity. Do humans dynamically adapt their learning rate for probabilities? What
determinants drive their dynamic adjustments in magnitude and probability learning? To answer these questions, we
measured the subjects’ learning rate dynamics directly through real-time continuous reports during magnitude and
probability learning. We found that subjects dynamically adapt their learning rate in both types of learning. After a
change point, they increase their learning rate suddenly for magnitudes and prolongedly for probabilities. Their
dynamics are driven differentially by two determinants: change-point probability, the main determinant for magnitudes,
and prior uncertainty, the main determinant for probabilities. These results are fully in line with normative theory, both
qualitatively and quantitatively. Overall, our findings demonstrate a remarkable human ability for dynamic adaptive
learning under uncertainty, and guide studies of the neural mechanisms of learning, highlighting different determinants
for magnitudes and probabilities.

Significance statement

In a dynamic world, we must constantly update our knowledge based on the observations we make. However, how
much should we update our knowledge after each observation? Here, we have demonstrated two principles in humans
that govern their updating and by which they are capable of dynamic adaptive learning. The first principle is that when
they observe a highly surprising event indicating a likely change in the environment, humans reset their knowledge and
perform one-shot learning. The second principle is that when their knowledge is more uncertain, humans update it
more quickly. We further found that these two principles are differentially called upon in two key learning contexts that
could be associated with different brain mechanisms: magnitude learning (which primarily requires adaptation to
surprise, under the first principle) and probability learning (which primarily requires adaptation to uncertainty, under the
second principle). Our findings advance understanding of the mechanisms of human learning, with implications for the
brain and the development of adaptive machines.



Introduction

Humans live in a dynamic world that requires them to constantly update their knowledge as events unfold. For
example, new construction works that cause significant delays in transportation should prompt users to revise their
estimate of their typical commute time. This learning process is a fundamental part of our adaptive behavior, and a
field of study that spans the sciences of behavior, brain, and machines (Rescorla & Wagner, 1972; Rosenblatt, 1961;
Schultz et al., 1997; Sutton & Barto, 2018).

Learning is challenging because the environment is often not only dynamic, but also stochastic. When we take public
transportation, for example, our commute time varies from day to day due to stochastic fluctuations. However, a delay
can also be caused by an abrupt change, such as construction work, that may persist for several weeks. In this case,
we face an ambiguity when a delay occurs: is it due to stochastic fluctuations (in which case we should not significantly
change our estimated average commute time), or a genuine change point (in which case we should revise our
estimate more drastically)? The challenge lies in determining the appropriate weight to give to the current observation
(the observed delay) in our learning process.

A descriptive tool to quantify the weight given by the learner to an observation is the apparent learning rate, which we
will simply call learning rate hereafter (Heilbron & Meyniel, 2019; Nassar et al., 2010). The learning rate measures the
amount of update of the learned value (from vt-1 to vt) induced by the observation xt in proportion to its deviation from
the previously learned value:

αt = (vt - vt-1) / (xt - vt-1) [1]

This tool is useful for characterizing the learning process and distinguishing several levels of adaptive learning
(Foucault & Meyniel, 2021; Soltani & Izquierdo, 2019). Level zero (non-adaptive) corresponds to a constant learning
rate, as in the delta rule, a widely used learning model in psychology and neuroscience. This model accounts for the
basic fact that the amount of update increases with the discrepancy between the expectation and the observation (also
known as prediction error). It has led to numerous successes across various forms of learning, including associative
learning and reinforcement learning in humans, animals, and artificial agents (O’Doherty et al., 2003; Rescorla &
Wagner, 1972; Rosenblatt, 1961; Schultz et al., 1997; Sutton & Barto, 2018). Beyond level zero, adaptive learning
processes involve an adaptation of the learning rate at some level. We distinguish two levels of adaptive learning: one
is at the average level over a block of trials, and the other is more fine-grained, at the level of individual trials.

A first level of adaptive learning corresponds to adjusting the average learning rate to the global statistics of the
environment. Two relevant statistics for adjusting the average learning rate are the average frequency of change points
(also known as volatility) and the level of stochasticity in the environment (Soltani & Izquierdo, 2019). To illustrate,
change points are more frequent in transportation systems where construction campaigns are more frequent, and
commute times are less stochastic in transportation systems that are better organized. When change points are more
frequent, the average learning rate should be higher to update the estimated value more quickly. Accordingly, previous
studies have shown that humans use a higher average learning rate in a block of trials containing many change points
compared to a block with no change points (Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019). When the
environment is more stochastic, the average learning rate should be lower to stabilize the estimated value. Such an
effect has also been observed in humans (Lee et al., 2020).

A second level of adaptive learning corresponds to dynamically adjusting the learning rate from one observation to the
next depending on what is observed—we refer to it as dynamic adaptive learning. Such dynamic adjustments are
particularly critical to learn effectively in a dynamic and stochastic environment, so as to increase the learning rate
locally when a single change point is detected (Foucault & Meyniel, 2021; Nassar et al., 2010). Compared to the first
level (different average learning rates between blocks of trials), less is known in humans about this second level
(dynamic adjustments of the learning rate at the trial level).

Dynamic adaptive learning has been demonstrated in humans in the case of magnitude learning. Empirical evidence is
available for several kinds of magnitudes including symbolic numbers (Nassar et al., 2012), positions (McGuire et al.,
2014), and angular directions (Vaghi et al., 2017). However, these studies leave unexplored another common type of
learning: probability learning. In the transportation example, this could be the probability that a traffic jam (or an
incident in transit) occurs and causes us to be late.



The literature on probability learning is vast, from the learning of reward probabilities to stimulus occurrence to the
validity of attentional cues, but it remains unknown whether humans dynamically adapt their learning of probabilities.
Previous studies are not suitable to examine trial-level adjustments of the learning rate. Many of them are based on
choices, from which only an average learning rate can be estimated, as a model parameter that is fitted across many
choices and compared between blocks of trials (Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019; Cools
et al., 2002).

From a learning perspective, magnitudes and probabilities present a fundamental difference: the amount of information
provided by a single observation about the quantity to be learned is typically much lower for probabilities than for
magnitudes (see Fig. S1 for common examples). This amount of information should in principle regulate the learning
rate: the more information the observation provides about the quantity to be learned, the higher the learning rate
should be. In particular, a single observation may be informative enough to detect a change point and thus immediately
increase the learning rate. Conversely, when observations are less informative, change points are more ambiguous
(difficult to distinguish from stochastic fluctuations), making dynamic adaptive learning all the more challenging.

In light of these differences, what has been demonstrated about human adaptive learning in the context of magnitudes
may not generalize to probabilities. A comprehensive understanding of dynamic adaptive learning requires to study
probability learning and to compare it directly to magnitude learning, in order to uncover the extent and determinants of
dynamic adjustments in each case. Here, we address two main questions:

1) Do humans dynamically adapt their learning rate in probability learning (level 2, introduced above) or use a
fixed learning rate (level 0)? What are their adjustment dynamics, and how do they compare to those of
magnitude learning?

2) What are the computational determinants of the dynamic adjustments of learning rates?

To answer these questions, we conducted a study in which human subjects performed two learning tasks, a magnitude
learning task and a probability learning task. We developed a new experimental paradigm to measure the subject’s
learning rate directly from their report at each observation. This measure of the learning rate serves to characterize the
human learning process.

To identify the determinants of adjustments in learning rates, we adopted a normative approach (also known as
rational analysis) (Lieder & Griffiths, 2020; Oaksford & Chater, 2007). We studied the optimal Bayesian solution to the
learning problem posed and derived normative theoretical properties, which we then tested in subjects. We want to
stress that we make no claims about the algorithm used by subjects to achieve these properties (we use the Bayesian
solution as a means to identify these properties, not as a model of the algorithm).

We identified two computational determinants and we show that they play a quantitatively different role in the two types
of learning. Overall, our results show a remarkable alignment of human behavior with normative behavior in dynamic
adaptive learning, even in the difficult case of probability learning.

Results

Measuring the learning rate at each observation during magnitude or probability learning. To measure subjects’
learning rate at each observation as they are learning, we developed a new experimental paradigm where subjects
update their estimate in real time as they observe a sequence of stimuli occurring one at a time at regular intervals of
1.5s (Fig. 1). We obtained real time reports by continuous motion tracking: the estimation is done with a slider that
follows the subject’s motion, captured on a touchpad or a mouse (Fig. 1 A and B). The subject’s estimate (vt, obtained
from the slider position) is thus collected at each observation (xt, t indexes the observation). This allows us to calculate
the learning rate for each observation using equation [1].

Note that the learning rate calculated in this way is directly obtained from the subject's estimates (Nassar et al., 2010),
rather than derived from model fitting, as is often done (Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019).
This learning rate is a behavioral measure that makes no assumptions about the computational process used by
subjects for learning. The learning rate can thus be measured for all kinds of learning models and compared to
subjects.



Fig. 1. Magnitude and probability learning tasks with estimates reported in real-time. (A and B) Screenshots of the two tasks. The
subject must estimate a hidden quantity (magnitude or probability) based on the stimuli which appear one by one at regular intervals (1.5s).
This quantity changes at hidden, unpredictable times called change points. The subject reports their current estimate by moving a slider in
real time via motion tracking. For the magnitude task (A, frames show successive times), the hidden quantity is the mean horizontal position
generating the stimuli (white circles). For the probability task (B), it is the probability that the circle appearing in the center is blue vs. yellow.
Semi-transparent elements indicating slider movements were added here for explanation. (C and D) Screenshots of the task instructions.
For the magnitude task (C), subjects were told that they should estimate the position of a hidden person throwing snowballs based on
where the balls are landing (the white circles), and that the person could change position at random times without their knowledge. For the
probability task (D), subjects were told they should estimate the proportion of blue and yellow on a hidden wheel used to draw the observed



colors, and that the wheel could be changed at random times without their knowledge. (E and F) Example of one session of the magnitude
(E) and probability (F) task. Vertical dotted lines indicate the first observation after a change point. Thin dotted lines show the hidden
quantity values. Dots represent observations (positions in (E), colors in (F)). The blue line shows the subject’s estimate after each
observation (0: left edge of the slider, 1: right edge). (G and H) Accuracy of subjects’ estimates for each observation compared to normative
(i.e. optimal) estimates in the magnitude (G) and probability (H) task. The data were binned in 6 equal quantiles of normative estimate and
averaged within-subjects. Points and error bars (too small to be seen) show mean ± s.e.m. across subjects, dashed line is the identity line.

We developed two learning tasks using this paradigm: a magnitude learning task and a probability learning task. In
order to compare their results, we adopted a similar design and task structure. In both tasks, the subject’s goal is to
estimate a hidden quantity (magnitude or probability) from the observations they receive, and to produce estimates as
accurate as possible at each observation. During the observation sequence, the hidden quantity undergoes discrete
changes at unpredictable random times called change points (not limited to reversals), which are also hidden (subjects
are not told when a change point occurs). In the magnitude learning task, the hidden magnitude is the mean horizontal
position generating the observed stimulus positions. Subjects were instructed that a hidden person was throwing
snowballs and that their goal was to estimate the position of this hidden person based on where the snowballs are
landing, knowing that the hidden person could change position from time to time without their knowledge (Fig. 1C). In
the probability learning task, the hidden probability is the probability of the centrally-presented stimulus being blue (vs.
yellow). Subjects were instructed that the colors were drawn by spinning a wheel filled with a certain proportion of blue
and yellow and that their goal was to estimate this proportion, knowing that the wheel could be changed from time to
time without being told when it changes (Fig. 1D). The observation sequences were generated, in the magnitude task,
using the same parameters as (Nassar et al., 2012) for comparison (same or very similar parameters were also used
in other magnitude learning studies (McGuire et al., 2014; Vaghi et al., 2017)). In the probability task, we used a
probability of change point occurrence that made the task engaging and difficult but still tractable for subjects. (See
Methods for more details.)

The human subjects (n=96) performed the two task one after the other, in a counterbalanced order across subjects
(see an example session for each task Fig. 1 E and F). We evaluated subjects’ estimate accuracy at the level of each
observation by comparing their estimates with the normative estimates, i.e. the optimal estimates given the
observations received. Although change points were frequent, subjects were able to produce accurate estimates
(close to normative) of magnitudes and probabilities (Pearson r=0.96±0.01 and 0.80±0.01 mean±s.e.m., t95>55.7,
p<10-73 in both cases, see Fig 1 G and H). (See Supplementary Text 1 for further details on the comparison between
the normative estimates and the subjects’ estimates.)

Subjects dynamically adapt their learning rate after a change point for probabilities, and differently than for
magnitudes. As per question 1), we investigated subjects’ ability to dynamically adapt their learning rate in response
to change points, by calculating their learning rate with equation [1] and analyzing its dynamics around the change
points. An optimal learner should increase their learning rate when they believe that a change point has occurred
recently, to quickly update their estimate, and then decrease their learning rate to stabilize their estimate (see
illustration of this behavior and how it differs from that of a learner using a fixed learning rate in Fig. 2C). Note that
change points are more difficult to detect in the probability learning task because the amount of information provided
by a single observation is much lower than for magnitude learning (Fig. S1). Despite this difficulty, subjects dynamically
adapted their learning rate remarkably well, not only in the magnitude learning task, but crucially also in the probability
learning task (Fig. 2 A and B).

In the magnitude learning task, the learning rate dynamics we found (Fig. 2A) replicate those found in previous studies
of magnitude learning (McGuire et al., 2014; Nassar et al., 2012; Vaghi et al., 2017). The increase in learning rate
occurs immediately and mainly at the first observation after a change point, with a learning rate suddenly close to 1. In
the probability learning task, the learning rate dynamics show an increase that is smoother and more prolonged,
remaining significantly higher at the eighth observation after a change point compared to before the change point (Fig.
2B). Importantly, these different dynamics are very similar to those prescribed by normative theory (see insets in Fig. 2;
the Pearson correlation between subject’s mean dynamics and the normative one is 0.99 in both tasks; the amplitudes
of their dynamics are also similar to the normative ones, shown in further detail in Fig. S2). We also controlled for the
frequency at which subjects updated: we observed similar, significant dynamic adaptations of the learning rate even
after excluding from analysis all observations where subjects did not report an update (Fig. S4). (Note that subjects
frequently updated their estimate in our study, see Fig. S3).



Fig. 2. Dynamics of subjects’ learning rate in response to a change point in the two tasks. The subjects’ learning rates were
measured at each observation (equation [1]), then aligned to change points and averaged within-subject. Lines and error bands
show mean ± s.e.m. across subjects. Subjects dynamically adapt their learning rate after a change point, increasing it transiently
and mainly at the first observation in the magnitude learning task (A), and more prolongedly in the probability learning task (B).
Stars show statistically significant differences compared to the baseline measured at the two observations before the change point
(p<0.05, two-tailed, FWE cluster-corrected for multiple comparisons across time). The subjects’ learning rate dynamics are very
similar to those prescribed by normative theory, shown in the insets. (C) Examples illustrating the difference in behavior between a
fixed learning rate (delta-rule, red curves, for different values of the learning rate) and a dynamic one (normative learner, black
curve). When the learning rate is fixed, regardless of its value, the behavior shows systematic deviations making learning less
efficient: after a change point, the estimates are too slowly updated, and in the absence of change points, they fluctuate too much
following the random variability in observations. By dynamically increasing and then decreasing the learning rate after a change
point, the normative learner quickly updates and then stabilizes its estimate.

Two normative determinants of the learning rate. Having demonstrated the dynamic nature of subjects’ learning
rate, we sought to identify the determinants that drive these dynamics (question 2). To this end, we formalized the two
tasks within the same probabilistic framework and resorted to the general principles that govern learning according to
normative theory. Below, we summarize the essential elements for understanding the normative determinants
identified.

According to normative theory, optimal estimates are obtained by calculating the posterior distribution p(ht | x1:t), that is,
the posterior distribution for the value of the hidden quantity (ht), given the observations received so far in the
sequence (x1:t). The posterior must be updated each time a new observation is received. The normative updating
process, whereby the new posterior is calculated from the previous one and the last observation, can be broken down
into two steps (see Fig. 3A and equation [4] in Methods). In the first step, the previous posterior (that is, the posterior
on ht-1) is transformed into a prior on ht by incorporating the generative probability of a change point occurring between
the two. In the second step, this prior is multiplied with the likelihood function of the last observation to give the new
posterior (that is, the posterior on ht).



Fig. 3. Two determinants regulate updating in normative theory. (A) The normative updating process involves the product of the
prior, p(ht|x1:t-1), and the likelihood of the last observation, p(xt|ht). (B) The amount of update resulting from the product is determined
by two factors: the uncertainty of the prior (dispersion), and the change-point probability indicated by the last observation (visualized
by the degree to which the likelihood overlaps with the prior: the less it overlaps, the greater the change-point probability). (C)



Illustration of the effect on the update of each determinant in each task. The specific effect of each determinant is shown by
manipulating either the likelihood (through the last observation) or the prior (through the observations prior to last). A higher
change-point probability or prior uncertainty each produce a greater update (visible by the shift of the distribution and its mean
between the prior and posterior). Vertical dashed lines on the plots of the distributions indicate their means. On the likelihood and
posterior plots, the prior is shown in semi-transparency to visualize the overlap and the update, respectively.

Two factors determine the amount of update (and therefore, the learning rate, which is proportional to the amount of
update, equation [1]) that results from the product of the prior and the likelihood function (Fig. 3B).

(i) The prior uncertainty, ut, quantified by the standard deviation of the previous posterior:

ut = SD[ht-1|x1:t-1] [2]

This is the uncertainty about the value of the hidden quantity before receiving the last observation. The greater the
uncertainty, the larger the resulting update for the same observation, as the wider spread of the distribution leads to a
larger shift (towards values where the likelihood is greater) when it is multiplied with the likelihood function. See Fig.
3C, right.

(ii) The change-point probability, Ωt, which is the term used in previous literature for the estimated probability that a
change point occurred at the last observation (McGuire et al., 2014; Nassar et al., 2010, 2012; Vaghi et al., 2017). It is
expressed as:

Ωt = p(ht≠ht-1|x1:t) [3]

The change-point probability can be understood as the degree to which the likelihood function deviates from the prior.
Visually, it corresponds to the degree to which the likelihood function and the prior overlap (Fig. 3B). The change-point
probability is inversely proportional to this overlap (see denominator of equation [5] in Methods: the integral is
equivalent to the area under the curve of the product of the two curves, which is strongly related to their area of
overlap). It is also strongly related to the magnitude of the error elicited by the last observation, xt -vt-1, also known as
prediction error (Spearman correlation ρ>0.97 in each of the two tasks). A higher change-point probability leads to a
larger update because, as the change-point probability increases, the previous posterior is increasingly discarded (by
multiplication with the likelihood function). See Fig. 3C, left.

Differential effect of the two determinants in magnitude and probability learning. Normative theory predicts a
differential effect of change-point probability and prior uncertainty on the learning rate in the two tasks: the effect of
change-point probability should dominate over that of prior uncertainty in the magnitude learning task, and the effect of
prior uncertainty should dominate over that of change-point probability in the probability learning task (Fig. 4A). The
effect sizes are measured by the weights of a multiple linear regression on the learning rate, and made comparable
through z-scoring prior to regression. This differential effect is due to the fact that the variations of the two factors are
not equal in the two tasks: change-point probability has much larger variations in magnitude learning compared to the
probability learning, and conversely, prior uncertainty has much larger variations in probability learning compared to the
magnitude learning (Fig. 4B). Thus, while both factors modulate the learning rate in both tasks, the factor that varies
the most in the task is most responsible for the variations in the learning rate. The differences in variations of the two
factors are related to differences in the likelihood function involved in magnitude vs. probability learning, which, in the
case of magnitude, is more precise (see Fig. 3C, top vs. bottom), provides more information (Fig. S1), and thus
significantly reduces uncertainty and can produce extreme values of change-point probability.

We further characterized the effects of change-point probability and prior uncertainty by relating them jointly to the
learning rate and plotting the qualitative patterns that should be found in the two tasks (Fig. 4 C and D). These effects
are best understood when viewed over time, by relating the variables to each other and to the observations, see Fig. 4
E and F.



Fig. 4. Differential effect predicted by normative theory in the two tasks. (A) In the magnitude task, the effect of change-point
probability on the learning rate should dominate over that of prior uncertainty, whereas in the probability task, the effect of prior
uncertainty should dominate. Effects are quantified by the weights of a multiple regression of the two factors on the normative
learning rate (to make the weights commensurable, all variables were z-scored). (B) Ranges of variation (min, max) of the two
determinants in the two tasks. (C and D) Relationship patterns predicted between the learning rate, prior uncertainty and
change-point probability in the magnitude (C) and probability (D) task. In A, C and D, we carried out the analyses on the model in
the same way as for subjects in Fig. 5. (E and F) Examples illustrating the dynamics of the different normative variables as a
function of the sequence in the magnitude (E) and probability (F) task; note that the y-axis greatly differs between tasks for
change-point probability, prior uncertainty and learning rate.



Fig. 5. Subjects’ learning rates are
differentially affected by the two
determinants, as predicted by
normative theory. (A and B) Weights of
the change-point probability and prior
uncertainty on subjects’ learning rates in
the magnitude (A) and probability (B) task,
calculated per subject by multiple
regression on the subject’s learning rate.
As predicted in Fig. 4A, the effect of
change-point probability dominates in the
magnitude task; that of uncertainty
dominates in the probability task. ***:
p<0.001, two-tailed t-tests. (C and D)
Subjects’ learning rate increases with
prior uncertainty, especially in the
probability task. (E and F) The interaction
effects between prior uncertainty and
change-point probability on subjects’
learning rate are similar to the normative
model (Fig. 4 C and D). In all plots,
subjects’ learning rates were measured at
each observation (equation [1]), and prior
uncertainty and change-point probability
were calculated using the normative
model for the same observations.
Bars/dots and error bars show mean ±
s.e.m. across subjects.

Do human subjects regulate their learning rate according to the two determinant factors as predicted by normative
theory? To find out, we performed the same analyses as we had done with the normative model but using the subjects’
learning rates instead. All the normative signatures we had identified were found in the subjects. First, the weights of
change-probability and prior uncertainty on subjects’ learning rates are significant in both tasks (Fig. 5 A and B) (in the
magnitude task, mean±s.e.m weight and two-tailed t-test against zero for change-point probability: 0.43±0.02, t95=23.4,



p=10-41, and for prior uncertainty: 0.14±0.01, t95=13.8, p=10-24; in the probability task, for change-point-probability:
0.07±0.02, t95=4.3, p=10-5, and for prior uncertainty: 0.15±0.01, t95=17.0, p=10-30). Second, in the magnitude task, the
weight of change-point probability is significantly higher than that of prior uncertainty (Fig. 5A; two-tailed paired
samples t-test: t95=17.1, p=10-30; see also results in Supplementary Text 2 for comparison with previous studies).
Conversely, in the probability task, the weight of prior uncertainty is significantly higher than that of change-point
probability (Fig. 5B; t95=-4.4, p=10-5). Third, a graded co-variation of the learning rate with prior uncertainty can be
observed in the magnitude task (Fig. 5C) and even more so in the probability task (Fig. 5D). Fourth, the interaction
effects between prior uncertainty and change-point probability on the learning rate in subjects are similar to the
normative ones (Fig. 5 E and F).

Average human learning is close to normative. So far, we have investigated the many ways in which human
learning behaves normatively, but it might also have systematic deviations. Here, we studied systematicity at the group
level by quantifying a systematic deviation as the degree to which the average estimate of human participants for a
given observation deviates from normative estimate. Systematic deviations should be distinguished from
non-systematic deviations, arising from mere variability. Both contribute to the deviations observed in subjects, but
what proportion of those deviations can be attributed to the systematic vs. non-systematic component at the group
level?

We disentangled the two components by performing a decomposition of the mean squared error. According to
statistical theory, the mean squared error (mse) is the sum of two sources of error: the (squared) bias error (sbe),
which is the systematic component, and the variance error (var), which is the non-systematic component (Hastie et al.,
2009).

mse = sbe + var

Here, we are interested in the error between the normative estimate and the subjects’ estimate for a given observation
of the same sequence. To measure the bias and variance errors empirically in our study, we presented identical
observation sequences across subjects (see Fig. 6, examples at the bottom). This allowed us to empirically calculate
the mean and variance of the estimate across subjects, and the resulting bias and variance errors, for each
observation of each sequence (see Methods for the mathematical expressions of this calculation). We then summed
the errors across observations and sequences to obtain the proportion of the total mean squared error due to bias vs.
variance. (Note that the variance measured in this way at the group level encompasses both inter-subject variability,
which accounts for individual biases non-reproducible across individuals, and intra-subject variability as in
(Drugowitsch et al., 2016), which is reflected across subjects in our case as there is at most one presentation per
subject.)

Using this method, we found that only a small proportion of the deviations were systematic: in total across sequences,
the bias/variance ratio was 23.5/76.5% (±1.1% s.e.) in the magnitude learning task and 17.3/82.7% (±0.7% s.e.) in the
probability learning task (Fig. 6). This indicates that there are relatively few systematic deviations in average human
learning.

We observe that there is variability in subjects’ estimates, and this variability seems to be autocorrelated over time (as
seen in the examples in Fig. 6). Such a variability can be produced in a model by introducing noise in the learning
process. In other studies, introducing learning noise helped better explain subjects’ choices, and resulted in an
adjustment of choice stochasticity (also known as exploration-exploitation tradeoff) to the surprise level (Drugowitsch et
al., 2016; Findling et al., 2019). These observations led us to wonder whether such a learning noise could give rise to
the adjustments of the learning rate we observed in subjects. We examined this possibility through simulations of
learning noise (Fig. S5), with a noise level that could be constant, as in (Drugowitsch et al., 2016), or scaled to the
magnitude of the prediction error, as in (Findling et al., 2019). In both cases, these simulations did not reproduce any
of the learning rate adjustments observed in subjects (Fig. S5C). Therefore, the results reported in our study regarding
the subjects’ ability to dynamically adapt their learning rate are not explained by learning noise.



Fig. 6. Group-level decomposition of deviations from normative learning reveals minor systematic deviations compared
with the overall variance. Identical observation sequences were presented across subjects. The bottom plots show, for one of the
sequences in each task and each observation in the sequence, the estimates of different subjects, their average and the normative
estimate. The total deviation (mean squared error) between the subjects' estimates for a given observation and the normative
estimate is equal to the sum of two terms: the bias and the variance, which respectively measure systematic and non-systematic
deviations across subjects. We calculated the proportion of bias/variance across sequences. The bar graphs at the top show the
total proportion across sequences ± s.e. (obtained by bootstrapping) for the magnitude (A) and probability (B) task.

Discussion

Many studies in psychology and neuroscience use a fixed learning rate to model the subject’s behavior (with models
known by various names such as delta rule, Rescorla-Wagner, temporal difference (TD) learning, Q-learning,
SARSA...) (O’Doherty et al., 2003; Rescorla & Wagner, 1972; Rosenblatt, 1961; Schultz et al., 1997; Sutton & Barto,
2018). Our results actually show that in humans, the learning rate varies dynamically from one observation to the next
based on what is observed, and is normatively adapted in response to inferred changes in the environment (Fig. 2).
We found evidence for these normative dynamic adjustments of the learning rate in two common types of learning,
namely magnitude learning and probability learning, despite fundamental differences that exist between these two
types of learning, demonstrating the generality of dynamic adaptive learning in humans.

The dynamic adaptation we have shown for probability learning is distinct from an average adaptation to global
environmental statistics such as volatility. In the latter, the average learning rate was found to be higher in a block of
trials containing many change points (volatile block) than in a block containing no change points (stable block)
(Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019). Here, the adjustment of the learning rate we report is
not on average across trials but from trial to trial, in response to single change points. This dynamic adaptation implies
an adaptation to volatility (because more volatile environments have more change points, inducing more frequent
increases in the learning rate and thus a higher average learning rate), but the reverse is not necessarily true. For
instance, adaptation to volatility can arise from a switch between strategies that are tailored to different volatility
conditions, with each strategy having its own static learning rate; for example, in a choice task, a strategy closer to
choice repetition can be used in the stable condition and one closer to win-stay, lose-shift in the volatile condition
(Cook et al., 2019).

The generality of our finding is further strengthened by several advantages of our paradigm compared to the numerous
probability learning paradigms based on choices used previously, such as probabilistic reversal learning paradigms



(Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019; Cools et al., 2002). First, our measure of the subjects’
learning rate does not require any model. It is obtained directly from the subjects’ behavior (equation [1]). It is therefore
not sensitive to the researcher’s modeling assumptions, as is the case when the learning rate is estimated by fitting a
model parameter across trials. Second, change points in our tasks are not limited to simple reversals and the times at
which they occur are completely unpredictable). This eliminates the possibility that subjects may have anticipated the
change points (as do some models of reversal tasks (Costa et al., 2015; Wilson et al., 2014)).

Before further discussing the implications of our findings, we would like to highlight the context in which they were
obtained. Here, we aimed to study how subjects learn the hidden variable (a magnitude or a probability) of a given
generative process, not how they learn the structure of a generative process. Therefore, we provided subjects with
detailed instructions so that they fully understood the generative process of the task, and the goal of estimating a
time-varying variable. Learning in a context where the structure is unknown, or partially known (to the extent of the
instructions), is a different problem and subject of study known as structure learning (Gershman & Niv, 2010). It
requires a distinct theoretical treatment and needs its own empirical investigation. The extent to which our findings
apply to structure learning remains to be determined.

Given that dynamic adaptive learning has been demonstrated in our study, research in neuroscience should now
uncover its neural mechanisms. To study this question, our paradigm could be reused in neuroimaging experiments,
and as a starting point, neural measurements could be related to the computational determinants we presented.
Catecholaminergic neuromodulators (noradrenaline and dopamine) are good candidates for investigation as several
theoretical and empirical works indicate that they may play a role in regulating learning based on surprise and
uncertainty (Aston-Jones & Cohen, 2005; Yu & Dayan, 2005). These neuromodulators provide a biological
implementation of gating, also known as gain modulation, a computational mechanism that we have previously shown
to play a crucial role for artificial neural networks to achieve the very same dynamic adaptations that we have found
here in humans (Foucault & Meyniel, 2021).

Differences between magnitude and probability learning. In light of the differential effects we found in the
magnitude and probability learning tasks (Fig. 5), it will be important in future studies of learning to distinguish the
contribution of, on the one hand, the effects related to the immediately received observation and the quantities
associated with it, such as error magnitude, surprise and change-point probability, and on the other hand, the effects of
prior uncertainty arising from past observations. Moreover, it will be important to distinguish the role of these two types
of effects in magnitude learning vs. probability learning, as they do not necessarily involve the same mechanisms in
these two types of learning. In the present study, we found that there was overall little correlation between the
magnitude and probability task across subjects in terms of how much they weighted change-point probability (no
correlation, r=-0.01) and prior uncertainty (significant but weak correlation, r=0.26), compared to e.g. how frequently
they updated their reports (r=0.63) (see Supplementary Text 4 for more details). This invites us to be particularly
careful and to not consider a priori that the results discovered in one type of learning will generalize to all types of
learning under uncertainty, because it runs the risk of confusing what are potentially very different processes.

Comparing previous fMRI studies conducted separately on magnitude learning (McGuire et al., 2014) and probability
learning (Bounmy et al., 2023; Meyniel & Dehaene, 2017), we noted differences between the two in the neural
correlates that were specific to each type of effect. Specifically, when examining the selective effects of the error
(quantified by change-point probability or surprise), we noted that frontal regions were implicated mainly in probability
learning (right superior frontal gyrus, left and right supplementary and cingulate eye fields). In magnitude learning, they
involved primarily medial regions of the visual cortex (calcarine sulci), whereas in probability learning the effects in
visual cortex were more lateral (left/right V3/V4). When examining the selective effects of prior uncertainty (quantified
by relative uncertainty or confidence), we noted that ventromedial and anterior prefrontal cortex regions were involved
primarily in magnitude learning. Interestingly, both types of learning showed neural correlates in the parietal cortex, but
in magnitude learning these correlates were specific to prior uncertainty, whereas in probability learning they were
common to both prior uncertainty and surprise.

In general, several factors may give rise to differences between the two types of learning. First, there may be distinct
neural mechanisms for processing different types of quantities (magnitudes vs. probabilities). Second, the ranges and
dynamics of change-point probability and prior uncertainty are different in magnitude and probability learning (Fig. 4),
and different neural substrates may be recruited in these different regimes. Third, these two factors may be processed



differently in the two types of learning because, in magnitude learning, change-point probability is more diagnostic than
prior uncertainty for detecting change points, while in probability learning, prior uncertainty is a more reliable signal for
inferring a change point in the recent past (Fig. 4 E and F). In addition, there may be a trade-off in the degree of
processing one can allocate to compute and use these two factors that favors the most relevant factor in a given
learning context, namely the change-point probability when learning magnitudes and the prior uncertainty when
learning probabilities (Fig. 4A, 5 A and B).

Frequent updating during the learning process. A previous study proposed that the brain does not update its
probability estimate at each observation, but only on rare occasions (Gallistel et al., 2014). This conclusion was based
on an empirical observation: in Gallistel et al.'s study, subjects overtly updated their reported probability estimate only
once every 18.1 observations on average, with only 7% of updates occurring after a single observation. However, a
lack of updating in the subject's report may not necessarily reflect a lack of updating in the subject's internal learning
process. In contrast to Gallistel et al.'s study, our study shows frequent updating during the learning process. Subjects
updated their estimate at each observation in the vast majority of cases: 84% of updates occurred after a single
observation (vs. 7% in Gallistel et al.), and on average subjects updated their estimate every 1.4 observation (vs. 18.1)
(Fig. S3). This makes our data on human probability learning rather novel.

This difference in the frequency of report updates between Gallistel et al.'s study and our study can be explained by
task differences: the cost for the subject to overtly update their estimate greatly varies depending on how the task is
designed, and when this cost is high, subjects may not manifest their update. In Gallistel et al.'s task, the action
required to update the report induces a time cost which, by reproducing the task interface, we estimated to be 4 to 5 s
per observation. If subjects had performed this action for all 1,000 observations of a session, it would have taken them
more than an hour (estimated 67 to 83 min) per session, instead of the 25.6 min they took on average (Gallistel et al.,
2014). In our task, there is no time cost since the observations occur at fixed time intervals. This design choice seems
to have made subjects much more willing to express their update. Subjects in our study also received a performance
bonus encouraging them to report their updates.

The frequency of subjects' updating is critical to the results we have shown on the dynamics of the learning rate at the
scale of an observation. Note that all our conclusions hold after stringently excluding from analysis all trials in which
the report was not updated (Fig. S4).

Computational models of human learning. Although the human learning algorithm remains to be determined, the
results shown here impose strong computational constraints on this algorithm. Models of this algorithm should be able
to exhibit the same dynamic adaptations as humans do in response to change points and depending on change-point
probability and prior uncertainty (Fig. 2 and 5). They should also be able to reproduce the variability of human learning,
and the fact that it is on average close to normative (Fig. 6).

Various models have been proposed in the literature, including the Kalman filter (Kalman, 1960), the Hierarchical
Gaussian Filter (HGF) (Mathys et al., 2011), a model estimating the volatility and stochasticity of the environment
(assumed to follow a random walk as in the Kalman filter) (Piray & Daw, 2021), the proportional-integral-derivative
(PID) controller (Ritz et al., 2018), an adaptive mixture of delta-rules (Wilson et al., 2013), a model with metaplastic
synapses guided by a change detection system (Iigaya, 2016), the normative model we used here (which computes
the optimal solution via Bayesian inference) (Adams & MacKay, 2007; Behrens et al., 2007; Heilbron & Meyniel, 2019),
particle filters (which uses sampling to approximate the optimal solution) (Brown & Steyvers, 2009; Prat-Carrabin et al.,
2021), and several architectures of recurrent neural networks (RNNs) (Foucault & Meyniel, 2021; Wang et al., 2018).
The Kalman filter is a particular case because it qualifies for level 1 but not level 2 of adaptive learning as we
presented in the introduction: its learning rate depends on the global level of stochasticity and volatility in the
environment, but does not depend on what is observed (the changes in learning rate over time are simply dictated by
the number of observations). The other models qualify for level 2 (they dynamically adapt their learning rate), but it
remains to be evaluated to what extent they can, in both types of learning, conform to the specific normative properties
demonstrated here in humans.

In a previous article (Foucault & Meyniel, 2021), we have shown that a small recurrent neural network (as small as
three recurrent units) could solve the probability learning task quasi-optimally and reproduce all the above-mentioned
normative properties (Fig. 2 to 5). This model thus provides a low-cost, neurally feasible solution. In addition, it has the



advantage of not incorporating a generative model of the environment a priori: through mere exposure to the
environment, the network spontaneously develops its dynamic adaptive learning capabilities (which is sometimes
referred to as ‘meta-learning’) (Foucault & Meyniel, 2021; Wang et al., 2018). One mechanistic insight from our study
was that small networks demonstrated optimal adaptive learning capabilities only when equipped with a gating
mechanism. This is interesting to put in perspective with the other proposed models as they often involve multiplicative
interactions (i.e. multiplication between two state variables or a state variable and an input variable) like gating.

Using our behavioral dataset, future studies will be able to evaluate and compare models to probe the algorithms
underlying human learning. New data can also be collected easily and in large amounts using the experimental
paradigm that we make available to the community (1 report per observation every 1.5 s).

Relevance for artificial intelligence. Using a dynamic adaptive learning rate is relevant for machine learning and
artificial intelligence. The two determinants we identified could guide the search for new efficient, adaptive learning
methods. One advantage of change-point probability and prior uncertainty, compared to state of the art methods such
as Adam, AdaGrad and RMSprop (Goodfellow et al., 2016), is that they do not require to evaluate the cost function of
the task, which in many cases is not accessible at the level of one input sample (in our task for example, the cost
function is the error between the subject’s estimate and the true quantity, which is hidden). This is especially relevant
for learning from few input samples, as in one-shot or few-shot learning. According to our findings, change-point
probability might be particularly relevant for one-shot learning in contexts where individual samples are highly
informative, and prior uncertainty for few-shot learning in contexts where individual samples are less informative. This
could be linked to current research in machine learning aimed at improving systems’ ability to assess their uncertainty
(Gal & Ghahramani, 2016; Hüllermeier & Waegeman, 2021; Kendall & Gal, 2017; Kompa et al., 2021).

Methods

Participants.
96 human subjects participated in our study (38 female, median age 30 years, interquartile range 25–37 years, from 19
different nationalities). Participants were recruited from Prolific, an online platform for recruiting participants focusing on
academic research. The study was approved by the Comité d’Ethique de la Recherche of the Paris Saclay university
(#CER-Paris-Saclay-2023-010). Participants were required to use a computer with a touchpad or mouse and a screen
large enough to perform the task. They were rewarded £8.40 for their participation (£9/h at an a priori estimated
completion time of 56 min, which also turned out to be the median completion time of the participants), plus a
performance-based bonus of up to £4.20 (50% of the base pay). Informed consent was collected before the start of the
experiment. No participants were excluded from the analyses.

Ethics Statement.
The study has been approved by the Ethics Committee of the Paris-Saclay University (Comité d’Ethique de la
Recherche, approval #CER-Paris-Saclay-2023-010). Participants gave their written informed consent prior to
participating in the study.

Experiment steps.
The experiment consisted of the following steps: Task 1 instructions, Task 1 sessions, Task 2 instructions, Task 2
sessions. Each task session consisted of a sequence of 75 observations, taking under 2 min to perform (see examples
Fig. 1 E and F). In total, the subjects took a median time of 56 min to complete the whole experiment, including
instructions (interquartile range 52–65 min). They performed twenty-one task sessions (six of the magnitude task and
fifteen of the probability task; this split was determined a priori with an independent pilot study of eight subjects in order
to obtain a sufficiently reliable measure of a subject’s learning rate adjustments, with approximately equal relative error
in the measurement in both tasks). At the end of each task session, subjects received feedback whose purpose was to
maximize subjects’ engagement with the task. This feedback did not seem to induce a training effect, as performance
was stable over the course of the task (Fig. S6). The feedback display showed the subject’s score for the session and
the corresponding monetary gain (proportional to the score), and also showed the true values of magnitude/probability
along with the subject’s estimates. The score was calculated based on the mean absolute error between subjects’
estimates and the true values of magnitude/probability. The function mapping the error to the score was designed to:



normalize the score in 0–100%; keep the score of the normative learner at a constant level (close to 100%); prevent
too low scores (equal or close to 0%) that would demotivate subjects, using a softplus nonlinearity.

Task design.
The graphic elements of the tasks were designed with several goals in mind: a) to allow subjects to easily monitor the
stimuli as they are appearing and adjust their estimate at the same time, b) to strike a good balance between speed
and accuracy of adjustments, c) to share as much as possible between the two tasks (see Fig. 1 A and B and links
below to run the tasks). The total length of the slider track was 640 CSS pixels, such that the leftmost and rightmost
reachable position of the slider was at about 6–7º of visual angle from the center (1 CSS px corresponds to 0.0213º
visual angle at the typical viewing distance of the user’s display, https://www.w3.org/TR/css-values-3/#reference-pixel).
This allowed the subject to see the slider and the stimuli at the same time. Tick marks were displayed at every 10%
length of the slider to make location easier for subjects. These elements were shared between the two tasks.
Additionally, there were a few design elements specific to the probability learning task: labels were put below the tick
marks showing the percentage corresponding to the estimated probability (in the magnitude task, this is irrelevant as
the position itself is the estimate); the portions of the slider between 0–10% and 90–100% were hatched to indicate
that the hidden probability never lies within these intervals; a small yellow wheel and blue wheel were shown at the left
and right edge of the slider track, respectively, to indicate the direction of estimation in relation to the two colors; we
chose the blue and yellow colors to be easily recognizable by humans even with color-blindness.

Within the 1.5 s interval separating the onset of each observation, the stimulus offset occurred at 1.3s, and in the
1.3–1.5 s inter-stimulus interval, the slider thumb was highlighted (lighter stroke color) to indicate to subjects when
their estimate was recorded for calculating their performance.

Throughout the session, subjects could at any time move the slider via motion tracking to update their estimate. Motion
tracking was implemented by continuously tracking movements of the subject’s pointer (corresponding to finger
movements on a touchpad, or to mouse movements). The pointer itself was hidden during the task, to make it clear to
the subject that they were controlling the slider.

In the task instructions, for the magnitude learning task, the choice of the cover story (a hidden person throwing
snowballs) was inspired by (Prat-Carrabin et al., 2021).

The tasks can be freely tested online, separately at
https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-pos-study.html?skipConsent (magnitude learning task) and
https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-prob-study.html?skipConsent (probability learning task), and
the combined experiment can be tested at
https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-pos-prob-study.html (magnitude task first) and
https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-prob-pos-study.html (probability task first).

observation sequences and sequence-generating processes of the tasks.
We generated a set of 100 sequences for the magnitude learning task and 150 sequences for the probability learning
task. Each time a subject performed the tasks, they were shown sequences randomly sampled without replacement
from these sets.

For the sake of clarity and to be able to compare the two tasks, we use here as the reference unit the horizontal
position within the slider interval normalized between 0 and 1 (left and right edge of the slider track, respectively). This
unit applies to the estimates (slider positions) and the hidden magnitudes/probabilities these estimates are about, and
to the observations (for the probability task, observation ‘yellow’ and ‘blue’ correspond to ‘0’ and ‘1’, respectively, since
when the estimate is equal to 1 this corresponds to a 100% probability of the observation being blue). For the
magnitude learning task, the observation-generating process was the same as that used by (Nassar et al., 2012) in
order to replicate their procedure: the observations were drawn from a Gaussian distribution with a standard deviation
of 10/300 (in normalized unit), and whose mean (the hidden magnitude) changed with a probability of zero for the first
three observations following a change point and 1/10 for all trials thereafter. For the probability learning task, the
observations were drawn from a Bernoulli distribution whose parameter (the hidden probability) changed with a
probability of zero for the first six observations following a change point and 1/20 for all trials thereafter. The probability
was sampled uniformly between 0.1 and 0.9 initially, and resampled uniformly in the same interval at each change

https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-pos-study.html?skipConsent
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https://run.pavlovia.org/cedricfoucault/ada-learn-task/ada-prob-pos-study.html


point subject to the constraint that the resulting change in the odds p/(1-p) be no less than fourfold. These parameters
were chosen to maintain continuity with previous studies (Bounmy et al., 2023; Heilbron & Meyniel, 2019; Meyniel et
al., 2015; Meyniel & Dehaene, 2017). Sampling probabilities between 0.1 and 0.9 avoids producing sequences with
excessively long streaks of identical observations where almost no update needs to be made. The minimum distance
between change points and the odds-change constraint avoid having change points that are too short-lived or too
subtle to be perceived (even the optimal solution shows almost no learning rate adjustments in response to such
changes). Other studies on probability learning also used probabilities between 0.1 and 0.9 and constrained change
points such that nearly imperceptible change points did not occur (for comparison, the often-used reversal between
20% and 80% produces an odds change of 16) (Behrens et al., 2007; Browning et al., 2015; Cook et al., 2019).

Note that, for the magnitude learning task, we used the same parameter values as previous studies (Nassar et al.,
2012; Vaghi et al., 2017). Equalizing the two tasks in terms of the informative value of the observations would not be
practically feasible (see also Fig. S1).

Behavioral analyses.
The subject’s estimate vt, for observation xt, was taken as the normalized position of the slider at the end of the 1.5s
interval just before receiving the next observation (the estimate prior to the first observation, v0, is 0.5, as the slider is
initially positioned in the middle). The value xt is equal to, for the magnitude task, the (normalized) position of the
stimulus, and for the probability task, 1 for a blue draw and 0 for a yellow draw. vt-1 and vt are the subject’s estimate
prior to and after receiving that observation, and αt is the subject’s learning rate for that observation.

In the results relating to the subjects’ estimate accuracy, the significance was calculated by computing the Pearson
correlation at the subject-level between the subject's and the normative estimates, and then performing at the
group-level a two-tailed, one-sample t-test of those correlations against zero.

When analyzing learning rates in the magnitude learning task, similar to (Nassar et al., 2012; Vaghi et al., 2017), we
ignored from the analyses outliers in the learning rates (which might occasionally occur when the error is very close to
0), corresponding to learning rates above 1.3 or below -0.6. These values were determined a priori using the
distribution of the subjects’ learning rates in an independent pilot study of eight subjects by taking the values above
and below which the empirical density was less than 0.05.

Normative models.
Normative models are Bayesian models that compute the posterior distribution p(ht | x1:t), which is the probability
distribution over the latent quantity that generates the observations (ht) given the observations received by the subject
(x1:t), with knowledge of the true generative process of observations of the task (Ma et al., 2023).

Given the properties of the generative process in both tasks, this distribution can be computed sequentially using the
following update equation (this method is known as Bayesian filtering, for a textbook, see (Särkkä & Svensson, 2023)).

p(ht | x1:t)∝ p(xt | ht) p(ht | x1:t-1)

∝ p(xt | ht) ∫ p(ht | ht-1) p(ht-1 | x1:t-1) dht-1 [4]

where ∝ denotes equality up to a normalization constant (the left-hand side is obtained from the right-hand side by
dividing the right-hand side by its sum over the possible values of ht+1, so that the distribution sums to 1). This equation
is derived by applying the rules of probability theory and leveraging two conditional independence properties of the
generative process: ht+1 is conditionally independent of x1:t given ht, and xt+1 is conditionally independent of x1:t given
ht+1.

Having computed the posterior distribution, its mean can be computed to obtain the model’s estimate, vt = E[ht | x1:t],
and its standard deviation to obtain the uncertainty, which is the prior uncertainty for the next time step (ut=SD[ht-1 |
x1:t-1], equation [2]). The change-point probability can be computed from the posterior distribution using the following
equation, which is derived from Bayes' rule by leveraging the two conditional independence properties mentioned
above:



Ωt = p(ht≠ht-1|x1:t)

= p(xt | ht≠ht-1) p(ht≠ht-1) / ∫ p(xt | ht) p(ht | x1:t-1) dht [5]

Below, we provide the details of the specific implementation of the model we used for each task.

Probability learning task. We reused the implementation of the Bayesian model for the probability learning task of
(Meyniel, 2020) whose code is available online at https://github.com/florentmeyniel/TransitionProbModel. We made
one modification to match the task asked of the subject in the present study: as the subject was told that the hidden
probabilities are drawn in [0.1, 0.9] (with the restriction of the slider to that interval), we also incorporated this
knowledge into the model, by setting the corresponding distribution, p(h1) and p(ht+1 | ht+1≠ht), equal to the uniform
distribution on [0.1, 0.9], rather than [0, 1] as in the original version.

Magnitude learning task. We implemented the reduced Bayesian model of the magnitude learning task described in
(Nassar et al., 2012), which has also been used in other magnitude learning task studies (McGuire et al., 2014; Vaghi
et al., 2017). We implemented this reduced model rather than the full model to replicate the procedure of Nassar et al,
2012, whose magnitude learning task serves as a reference for comparison with the probability learning task. This
model simplifies computations by only maintaining the first two moments of the posterior distribution, which was
reported to have minimal effect on estimates in this task (Nassar et al., 2010, 2012). The model variables are
computed sequentially using the following system of equations:

The estimate of the latent mean:

bt+1 = bt + ηt (xt - bt)

vt = bt+1

Learning rate:

ηt = 𝜏t + (1-𝜏t) Ωt

The change-point probability:

Ωt = 𝒰(xt) H / [𝒰(xt) H + 𝒩(xt; bt, 𝜎t2) (1-H)]

The predictive variance of observations:

𝜎t2 = N2 + 𝜏t N2 / (1 - 𝜏t)

The relative uncertainty about the latent mean with respect to the predictive variance of observations:

𝜏t+1 = [N2 Ωt + (1-Ωt) 𝜏t N2 + Ωt (1-Ωt) (xt 𝜏t + bt (1- 𝜏t) - xt)2] / [N2 Ωt + (1-Ωt) 𝜏t N2 + Ωt (1-Ωt) (xt 𝜏t + bt (1- 𝜏t) - xt)2 + N2]

The uncertainty about the latent mean:

ut2 = 𝜏t 𝜎t2

where 𝒰 is the uniform distribution, 𝒩 is the normal distribution with the mean and variance given after the semicolon,
N is the standard deviation of the observation generation distribution of the task generative process, and H=p(ht≠ht-1) is
the probability of occurrence of a change point of the task generative process.

Bias/variance decomposition of the mean squared error.
Having presented the same sequences multiple times across subjects in our study, we have, for a given sequence k
out of K sequences, N(k) subjects who provided estimates (K=100 and 150 sequences for the magnitude and
probability tasks respectively; median N(k) across sequences: 6 and 10 for the magnitude and probability tasks
respectively). For a time step t of the sequence, the mean squared error (mse) between the normative estimate (vtn)
and the subjects’ estimate (vts(i), where s(i) denotes the i-th subject among the N(k) subjects) is written as:

mse = (vtn - vts(i))2
1

𝑁(𝑘)
𝑖=1

𝑁(𝑘)

∑

https://github.com/florentmeyniel/TransitionProbModel


This is equal to the sum of the squared bias error (also called “bias error”) and the variance (also called “variance
error”) (Hastie et al., 2009). The squared bias error (sbe) is written as:

sbe = (vtn - vts)2

where vts = vts(i) is the mean estimate across subjects.1
𝑁(𝑘)

𝑖=1

𝑁(𝑘)

∑

The variance (var) is written as:

var = (vts - vts(i))2
1

𝑁(𝑘)
𝑖=1

𝑁(𝑘)

∑

We quantified the precision of our measurement of the proportion of bias/variance (and of the proportion of
conservatism bias in Table S3) by the standard error (s.e., which corresponds to the margin of error of the 68%
confidence interval of the measurement). To estimate it, we used a bootstrapping procedure. We generated 10,000
new sets of sequences of the same size as the original set by resampling the original set with replacement, and
performed the measurement on each of those sets. The estimate of standard error is the standard deviation of the
measurement across the sets.

Data and code availability

All data, and code to reproduce the results will be made freely available at the time of publication on OSF, and on our
GitHub repository.

The tasks can also be readily tested online at the links given above.
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Supplementary information

Supplementary Text and Tables

Supplementary Text 1: Comparison between normative estimates and subjects’ estimates.

Linear regression.
To see how subjects’ estimates compared to normative estimates, we performed a linear regression between the two
at the subject level, and then summarized the results at the group level. We collected two measures derived from the
regression: the Pearson correlation coefficient and the slope of the linear regression. The results are reported in Tables
S1 and S2 below.

The Pearson correlation coefficient results (Table S1) had already been reported in the main text. This coefficient
measures the strength of the linear relationship between normative estimates and subjects’ estimates. The fact that
the coefficient is significantly greater than 0 shows that subjects’ estimates covary with the optimal estimates,
indicating that subjects perform the task adequately.

The slope of the linear regression indicates by how much the subject’s estimate changes on average when the
normative estimate changes by one unit. Many studies on human estimates, especially for probability judgments, have
observed that the slope of the regression was less than 1 (Costello & Watts, 2014; Erev et al., 1994; Hilbert, 2012;
Phillips & Edwards, 1966; Zhu et al., 2020). Consistent with these studies, we also observed in our study that the slope
was less than 1, in both tasks (see Table S2 for descriptive and inferential statistics). In the literature, this phenomenon
has been referred to as "conservatism bias" (Costello & Watts, 2014; Erev et al., 1994; Hilbert, 2012; Phillips &
Edwards, 1966; Zhu et al., 2020), because a regression with a slope less than 1 predicts that, for a given level of
normative estimate, the subject’s estimate will be on average less close to the extremes (0 or 1, hence the
‘conservatism’ label), i.e. closer to 0.5, than the normative estimate. Here, we do not attach any particular mechanistic
interpretation to the slope and treat it as a descriptive measure. For possible explanations of this phenomenon, see
(Costello & Watts, 2014; Erev et al., 1994; Hilbert, 2012; Zhu et al., 2020).

Table S1. Pearson correlation coefficient between normative estimates and subjects’ estimates.

Task Mean S.e.m. Standard
deviation

T-test against 0

t statistic p value

Magnitude
learning 0.96 0.01 0.09 106.20 2E-100

Probability
learning 0.80 0.01 0.14 55.79 2E-74

Table S2. Slope of the linear regression between normative estimates and subjects’ estimates.

Task Mean S.e.m. Standard
deviation

T-test against 0 T-test against 1

t statistic p value t statistic p value

Magnitude
learning 0.95 0.01 0.10 88.63 4E-93 4.79 6E-06

Probability
learning 0.88 0.02 0.23 37.03 3E-58 4.96 3E-06

Decomposition of the mean squared error.

As presented in the main text, we performed a decomposition of the mean squared error between the subjects'
estimates and the normative estimates to quantify the proportion of the error that was attributable to systematic biases
in their estimates rather than to their variance (see Results).



We also conducted an additional analysis to investigate the bias: Since we observed a regression slope less than 1
consistent with a "conservatism bias" (Table S2), we investigated the extent to which such a conservatism bias could
explain the subjects’ bias. Specifically, we quantified the amount of bias explained by a linear regression model fitted to
the subjects, which applies a linear transformation to the normative estimates, and models a conservatism bias when
its slope is less than 1. We performed a linear regression between the normative estimates and the subjects’ estimates
averaged across the group, took the predictions of this regression as a model of the biased estimates, and then
calculated the mean squared error obtained by replacing the normative estimates with the biased estimates. The
proportion of the mean squared error that was reduced by using the biased estimates (i.e. the obtained reduction of
the error in proportion to the original error) measures the amount of bias explained by the conservatism bias in
subjects.

The full results of the decomposition (proportion of bias, variance, and of conservatism bias) are reported in Table S3
below.

Table S3. Decomposition of mean squared error between subjects’ estimates and the normative estimates. MSE: mean
squared error.

Task Proportion of MSE
due to bias

Proportion of MSE
due to variance

Standard error of
the proportion of
bias/variance

Proportion of MSE
explained by the
conservatism bias

Standard error of
the proportion of
conservatism bias

Magnitude learning 23.48% 76.52% 1.12% 3.14% 0.63%

Probability learning 17.27% 82.73% 0.72% 3.23% 0.53%

Supplementary Text 2: Regression on subject’s learning rate in the magnitude learning task
performed as in a previous study.

For comparison with previous studies on magnitude learning, we additionally performed a regression analysis on the
subject’s learning rate as it was done in (McGuire et al., 2014), that is, without z-scoring regressors as we did in the
regression reported in the main text, and replacing our prior uncertainty regressor by the RU*(1-CPP) regressor. We
obtained regression weights similar to but slightly higher than those reported in (McGuire et al., 2014): The median and
interquartile range of the regression weights in this analysis are 0.83 [0.56–0.92] and 0.51 [0.24–0.73] in our data for
change-point probability and RU*(1-CPP) respectively (all two-tailed signed-rank p<0.001), vs. 0.53 [0.40–0.76] and
0.32 [0.11–0.44] in (McGuire et al., 2014).

Supplementary Text 3: Noisy delta-rule simulations

To examine the possibility that the learning rate adjustments observed in subjects could emerge from learning noise,
we conducted simulations of a noisy delta rule model, with noise in the update similar to (Drugowitsch et al., 2016;
Findling et al., 2019). The model is described by the following update equation:

vt = vt-1 + η (xt - vt-1) + εt

where vt is the model’s estimate following observation xt, η is the delta-rule parameter, and εt is the noise in the update,
which is sampled from a zero-mean Gaussian distribution whose standard deviation corresponds to the noise level

We tested two variants for the noise level in the model: one (version a) where, as in (Drugowitsch et al., 2016), it is a
constant parameter of the model, σε, and another (version b) where, as in (Findling et al., 2019), it is scaled to the
prediction error, with a scaling factor parameter ζ. Thus, the noise sampling is εt ~ 𝒩(0, σε) in version (a) and εt ~ 𝒩(0, ζ
|xt - vt-1|) in version (b).

To compute the parameter values, we leveraged the following properties of the model (E denotes the expectation, SD
the standard deviation):

η = E[(vt - vt-1) / (xt - vt-1)], since E[εt / (xt - vt-1)] = 0.

σε = SD[(vt - vt-1) - η (xt - vt-1)], for version (a).



ζ = SD[((vt - vt-1) - η (xt - vt-1)) / |xt - vt-1|], for version (b).

By computing the means and standard deviations described above across time and sequences, we obtained, for each
subject and task, the parameter values that best match the subject’s estimates (Fig. S5B).

For the results obtained with this model regarding learning rate adjustments, see Fig. S5C.

Supplementary Text 4: Correlations across subjects between the magnitude learning task and the
probability learning task.

We correlated the regression weights obtained in the magnitude learning task with those obtained in the probability
learning task across subjects (the weights were obtained using the same regression as in Fig. 5). The weight of
change-point probability was not significantly correlated between the two tasks (r=-0.01, p=0.92), and that of prior
uncertainty was weakly though significantly correlated (r=0.26, p=0.012) (partial Pearson correlation controlling for the
individual's average update frequency, two-tailed p values). This is indeed due to differences between the two tasks:
within each task, when performing the same correlation analysis on two halves of the data (even and odd sessions),
we obtained strong correlations (these were, in the magnitude and probability task respectively, r=0.64 and 0.95 for
change-point-probability, r=0.38 and 0.74 for prior uncertainty, all p<0.001, two-tailed). For comparison, another
behavioral measure, the average update frequency of the subject, was more strongly correlated across subjects
between the two tasks: r=0.63, p<0.001 (Pearson correlation, two-tailed).

Supplementary Figures
Continued on next page



Fig. S1. Information gain provided by a single observation about the quantity to be learned in magnitude learning and
probability learning. We computed the information gain as the KL divergence between the prior (uniform) distribution before
having received any observation, and the posterior distribution about the underlying quantity after having received the observation,
using the prior as reference distribution (i.e. DKL[posterior||prior]), on average over the possible observations. The posterior is
obtained from the prior and the likelihood function relating the observation to the underlying quantity using Bayes rule. In probability
learning, the information gain is minimal. This is due to the binary nature of the observation. In magnitude learning, the information
gain is larger because the observation is quantitative and typically fairly representative of the underlying magnitude. Although the
latter depends on the experimenter’s choice of standard deviation with which observations are generated, we computed the
information gain for numerous experiments previously conducted and each condition of these experiments, and as shown above, in
all cases it was substantially higher than that obtained in probability learning (McGuire et al., 2014; Nassar et al., 2010, 2012;
Prat-Carrabin et al., 2021; Vaghi et al., 2017).



Fig. S2. Dynamics of the normative model’s learning rate after a change point, in the magnitude (A) and probability (B)
learning tasks. The plots were obtained as in Fig. 2, but rather than using the subjects’ learning rate, we used the normative
model’s learning rate instead, which we obtained by running the normative model on the same sequences as the subject.



Fig. S3. Distribution of the number of observations elapsed between two report updates made by subjects. A log scale was
used for the number of observations as in (Gallistel et al., 2014) for comparison (the equivalent distribution in Gallistel et al. is
shown in their Fig. 11). In contrast to (Gallistel et al., 2014), in our study, updates were made on each observation most of the time
(84% in the above distribution; mean of the distribution: 1.4 observation).



Fig. S4. The main results are similar and remain significant when excluding all data where the subject did not make an
overt update. After excluding all data points where this was the case (i.e. learning rate = 0), we performed the same analyses as in
previous figures and obtained the above plots: (A and B) Equivalent to Fig. 2 A and B; (C–H) Equivalent to Fig. 5 (A–F). Stars
denote statistical significance as in the main figures (see legends of those figures for further details).



Fig. S5. The subjects’ dynamic adjustments of the learning rate are not explained by learning noise. (A) Model of a delta-rule
with learning noise. A noise sample is injected at each update of the model, otherwise governed by a delta-rule with parameter η.
Two versions were tested for the noise level: (a) constant (parameter σε), (b) scaled to the magnitude of the prediction error (scaling
factor parameter ζ). (B) Values of the model parameters for each subject, for each version of the model and each task. Each dot
represents one subject. (C) Results obtained by simulating the model with the subject’s parameters on the subject’s sequences and
performing the same learning rate analyses as those reported in the main results for subjects. Top plots are the results for the
analysis corresponding to Fig. 2, bottom plots to Fig. 5.



Fig. S6. Subjects' performance was stable over the course of the task. Performance is measured by the accuracy of the
estimates, quantified by the mean absolute error between the subject's estimate and the true value of the hidden quantity (the
negative of the error was used so that higher values correspond to higher performance). Thin dots and lines connecting them each
denote one subject; large circles denote the mean across subjects.
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Abstract From decision making to perception to language, predicting what is coming next is 
crucial. It is also challenging in stochastic, changing, and structured environments; yet the brain 
makes accurate predictions in many situations. What computational architecture could enable this 
feat? Bayesian inference makes optimal predictions but is prohibitively difficult to compute. Here, 
we show that a specific recurrent neural network architecture enables simple and accurate solutions 
in several environments. This architecture relies on three mechanisms: gating, lateral connections, 
and recurrent weight training. Like the optimal solution and the human brain, such networks develop 
internal representations of their changing environment (including estimates of the environment’s 
latent variables and the precision of these estimates), leverage multiple levels of latent structure, 
and adapt their effective learning rate to changes without changing their connection weights. Being 
ubiquitous in the brain, gated recurrence could therefore serve as a generic building block to predict 
in real- life environments.

Editor's evaluation
There has been a longstanding interest in developing normative models of how humans handle 
latent information in stochastic and volatile environments. This study examines recurrent neural 
network models trained on sequence- prediction tasks analogous to those used in human cognitive 
studies. The results demonstrate that such models lead to highly accurate predictions for chal-
lenging sequences in which the statistics are non- stationary and change at random times. These 
novel and remarkable results open up new avenues for cognitive modelling.

Introduction
Being able to correctly predict what is coming next is advantageous: it enables better decisions 
(Dolan and Dayan, 2013; Sutton and Barto, 1998), a more accurate perception of our world, and 
faster reactions (de Lange et al., 2018; Dehaene et al., 2015; Saffran et al., 1996; Sherman et al., 
2020; Summerfield and de Lange, 2014). In many situations, predictions are informed by a sequence 
of past observations. In that case, the prediction process formally corresponds to a statistical inference 
that uses past observations to estimate latent variables of the environment (e.g. the probability of a 
stimulus) that then serve to predict what is likely to be observed next. Specific features of real- life 
environments make this inference a challenge: they are often partly random, changing, and structured 
in different ways. Yet, in many situations, the brain is able to overcome these challenges and shows 
several aspects of the optimal solution (Dehaene et al., 2015; Dolan and Dayan, 2013; Gallistel 
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et al., 2014; Summerfield and de Lange, 2014). Here, we aim to identify the computational mecha-
nisms that could enable the brain to exhibit these aspects of optimality in these environments.

We start by unpacking two specific challenges which arise in real- life environments. First, the joint 
presence of randomness and changes (i.e. the non- stationarity of the stochastic process generating 
the observations) poses a well- known tension between stability and flexibility (Behrens et al., 2007; 
Soltani and Izquierdo, 2019; Sutton, 1992). Randomness in observations requires integrating infor-
mation over time to derive a stable estimate. However, when a change in the estimated variable 
is suspected, it is better to limit the integration of past observations to update the estimate more 
quickly. The prediction should thus be adaptive, that is, dynamically adjusted to promote flexibility in 
the face of changes and stability otherwise. Past studies have shown that the brain does so in many 
contexts: perception (Fairhall et al., 2001; Wark et al., 2009), homeostatic regulation (Pezzulo et al., 
2015; Sterling, 2004), sensorimotor control (Berniker and Kording, 2008; Wolpert et al., 1995), 
and reinforcement learning (Behrens et al., 2007; Iglesias et al., 2013; Soltani and Izquierdo, 2019; 
Sutton and Barto, 1998).

Second, the structure of our environment can involve complex relationships. For instance, the 
sentence beginnings "what science can do for you is..." and "what you can do for science is..." call 
for different endings even though they contain the same words, illustrating that prediction takes into 
account the ordering of observations. Such structures appear not only in human language but also 
in animal communication (Dehaene et al., 2015; Hauser et al., 2001; Robinson, 1979; Rose et al., 
2004), and all kinds of stimulus- stimulus and stimulus- action associations in the world (Saffran et al., 
1996; Schapiro et al., 2013; Soltani and Izquierdo, 2019; Sutton and Barto, 1998). Such a structure 
is often latent (i.e. not directly observable) and it governs the relationship between observations (e.g. 
words forming a sentence, stimulus- action associations). These relationships must be leveraged by the 
prediction, making it more difficult to compute.

In sum, the randomness, changes, and latent structure of real- life environments pose two major 
challenges: that of adapting to changes and that of leveraging the latent structure. Two commonly 
used approaches offer different solutions to these challenges. The Bayesian approach allows to derive 
statistically optimal predictions for a given environment knowing its underlying generative model. 
This optimal solution is a useful benchmark and has some descriptive validity since, in some contexts, 
organisms behave close to optimally (Ma and Jazayeri, 2014; Tauber et al., 2017) or exhibit several 
qualitative aspects of the optimal solution (Behrens et  al., 2007; Heilbron and Meyniel, 2019; 
Meyniel et al., 2015). However, a specific Bayes- optimal solution only applies to a specific genera-
tive model (or class of models [Tenenbaum et al., 2011]). This mathematical solution also does not 
in general lead to an algorithm of reasonable complexity (Cooper, 1990; Dagum and Luby, 1993). 
Bayesian inference therefore says little about the algorithms that the brain could use, and the biolog-
ical basis of those computations remains mostly unknown with only a few proposals highly debated 
(Fiser et al., 2010; Ma et al., 2006; Sahani and Dayan, 2003).

Opposite to the Bayes- optimal approach is the heuristics approach: solutions that are easy to 
compute and accurate in specific environments (Todd and Gigerenzer, 2000). However, heuristics 
lack generality: their performance can be quite poor outside the environment that suits them. In addi-
tion, although simple, their biological implementation often remains unknown (besides the delta- rule 
[Eshel et al., 2013; Rescorla and Wagner, 1972; Schultz et al., 1997]).

Those two approaches leave open the following questions: Is there a general, biologically feasible 
architecture that enables, in different environments, solutions that are simple, effective, and that 
reproduce the qualitative aspects of optimal prediction observed in organisms? If so, what are its 
essential mechanistic elements?

Our approach stands in contrast with the elegant closed- form but intractable mathematical solu-
tions offered by Bayesian inference, and the simple but specialized algorithms offered by heuristics. 
Instead, we look for general mechanisms under the constraints of feasibility and simplicity. We used 
recurrent neural networks because they can offer a generic, biologically feasible architecture able 
to realize different prediction algorithms (see LeCun et  al., 2015; Saxe et  al., 2021 and Discus-
sion). We used small network sizes in order to produce simple (i.e. low- complexity, memory- bounded) 
solutions. We tested their generality using different environments. To determine the simplest archi-
tecture sufficient for effective solutions and derive mechanistic insights, we considered different archi-
tectures that varied in size and mechanisms. For each one, we instantiated several networks and 
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trained them to approach their best possible prediction algorithm in a given environment. We treated 
the training procedure as a methodological step without claiming it to be biologically plausible. To 
provide interpretability, we inspected the networks’ internal model and representations, and tested 
specific optimal aspects of their behavior—previously reported in humans (Heilbron and Meyniel, 
2019; Meyniel et al., 2015; Nassar et al., 2010; Nassar et al., 2012)—which demonstrate the ability 
to adapt to changes and leverage the latent structure of the environment.

Results
The framework: sequence prediction and network architectures
All our analyses confront simulated agents with the same general problem: sequence prediction. It 
consists in predicting, at each time step in a sequence where one time step represents one observa-
tion, the probability distribution over the value of the next observation given the previous observa-
tions (here we used binary observations coded as ‘0’ and ‘1’) (Figure 1a). The environment generates 
the sequence, and the agent’s goal is to make the most accurate predictions possible in this environ-
ment. Below, we introduce three environments. All of them are stochastic (observations are governed 
by latent probabilities) and changing (these latent probabilities change across time), and thus require 
dynamically adapting the stability- flexibility tradeoff. They also feature increasing levels of latent 
structure that must be leveraged, making the computation of predictions more complex.

How do agents learn to make predictions that fit a particular environment? In real life, agents often 
do not benefit from any external supervision and must rely only on the observations. To do so, they 
can take advantage of an intrinsic error signal that measures the discrepancy between their prediction 
and the actual value observed at the next time step. We adopted this learning paradigm (often called 
unsupervised, self- supervised, or predictive learning in machine learning [Elman, 1991; LeCun, 2016]) 
to train our agents in silico. We trained the agents by exposing them to sequences generated by a 
given environment and letting them adjust their parameters to improve their prediction (see Materials 
and methods).

During testing, we kept the parameters of the trained agents frozen, exposed them to new 
sequences, and performed targeted analyses to probe whether they exhibit specific capabilities and 
better understand how they solve the problem.

Our investigation focuses on a particular class of agent architectures known as recurrent neural 
networks. These are well suited for sequence prediction because recurrence allows to process inputs 
sequentially while carrying information over time in recurrent activity. The network architectures we 
used all followed the same three- layer template, consisting of one input unit whose activity codes 
for the current observation, one output unit whose activity codes for the prediction about the next 
observation, and a number of recurrent units that are fed by the input unit and project to the output 
unit (Figure 1b). All architectures had self- recurrent connections.

We identified three mechanisms of recurrent neural network architectures that endow a network with 
specific computational properties which have proven advantageous in our environments (Figure 1c). 
One mechanism is gating, which allows for multiplicative interactions between the activities of units. 
A second mechanism is lateral connectivity, which allows the activities of different recurrent units to 
interact with each other. A third mechanism is the training of recurrent connection weights, which 
allows the dynamics of recurrent activities to be adjusted to the training environment.

To get mechanistic insight, we compared an architecture that included all three mechanisms, to 
alternative architectures that were deprived of one of the three mechanisms but maintained the other 
two (Figure 1d; see Materials and methods for equations). Here, we call an architecture with all three 
mechanisms ‘gated recurrent’, and the particular architecture we used is known as GRU (Cho et al., 
2014; Chung et al., 2014). When deprived of gating, multiplicative interactions between activities 
are removed, and the architecture reduces to that of a vanilla recurrent neural network also known as 
the Elman network (Elman, 1990). When deprived of lateral connections, the recurrent units become 
independent of each other, thus each recurrent unit acts as a temporal filter on the input observa-
tions (with possibly time- varying filter weights thanks to gating). When deprived of recurrent weight 
training, the recurrent activity dynamics become independent of the environment and the only param-
eters that can be trained are those of the output unit; this architecture is thus one form of reservoir 
computing (Tanaka et al., 2019). In the results below, unless otherwise stated, the networks all had 
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Figure 1. Problem to solve and network architectures. (a) Sequence prediction problem. At each time step t, the environment generates one 
binary observation xt. The agent receives it and returns a prediction pt: its estimate of the probability that the next observation will be one given the 
observations collected so far. The agent’s goal is to make the most accurate predictions possible. The agent can measure its accuracy by comparing 
its prediction pt with the actual value observed at the next time step xt+1, allowing it to learn from the observations without any external supervision. 
(b) Common three- layer template of the recurrent neural network architectures. Input connections transmit the observation to the recurrent units and 
output connections allow the prediction to be read from the recurrent units. (c) Three key mechanisms of recurrent neural network architectures. Gating 
allows for multiplicative interaction between activities. Lateral connections allow the activities of different recurrent units i and j to interact. Recurrent 
weight training allows the connection weights of recurrent units to be adjusted to the training environment. i’ may be equal to i. (d) The gated recurrent 
architecture includes all three mechanisms: gating, lateral connections, and recurrent weight training. Each alternative architecture includes all but one 
of the three mechanisms.

The online version of this article includes the following "gure supplement(s) for "gure 1:

Figure 1 continued on next page
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11 recurrent units (the smallest network size beyond which the gated recurrent network showed no 
substantial increase in performance in any of the environments), but the results across architectures 
are robust to this choice of network size (see the last section of the Results).

Performance in the face of changes in latent probabilities
We designed a first environment to investigate the ability to handle changes in a latent probability 
(Figure 2a; see Figure 1—figure supplement 1 for a graphical model). In this environment we used 
the simplest kind of latent probability: p(1), the probability of occurrence (or base rate) of the obser-
vation being 1 (note that p(0) = 1−p(1)), here called ‘unigram probability’. The unigram probability 
suddenly changed from one value to another at so- called ‘change points’, which could occur at any 
time, randomly with a given fixed probability.

This environment, here called ‘changing unigram environment’, corresponds for instance to a 
simple oddball task (Aston- Jones et al., 1997; Kaliukhovich and Vogels, 2014; Ulanovsky et al., 
2004), or the probabilistic delivery of a reward with abrupt changes in reward probabilities (Behrens 
et al., 2007; Vinckier et al., 2016). In such an environment, predicting accurately is difficult due to 
the stability- flexibility tradeoff induced by the stochastic nature of the observations (governed by the 
unigram probability) and the possibility of a change point at any moment.

To assess the networks’ prediction accuracy, we compared the networks with the optimal agent 
for this specific environment, that is, the optimal solution to the prediction problem determined using 
Bayesian inference. This optimal solution knows the environment’s underlying generative process and 
uses it to compute, via Bayes’ rule, the probability distribution over the possible values of the latent 
probability given the past observation sequence, p(penv

t+1|x0, ..., xt)  known as the posterior distribution. It 
then outputs as prediction the mean of this distribution. (For details see Materials and methods and 
Heilbron and Meyniel, 2019).

We also compared the networks to two types of heuristics which perform very well in this environ-
ment: the classic 'delta- rule' heuristic (Rescorla and Wagner, 1972; Sutton and Barto, 1998) and 
the more accurate 'leaky' heuristic (Gijsen et al., 2021; Heilbron and Meyniel, 2019; Meyniel et al., 

!"#$%& '()$* !"#$%& '()$*

!"#$%)$% +$)%,#- &$.),($-&$*! ! !"#$%#&'()"
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Figure 2. Gated recurrent networks perform quasi- optimally in the face of changes in latent probabilities. (a) Sample sequence of observations (dots) 
and latent unigram probability (line) generated in the changing unigram environment. At each time step, a binary observation is randomly generated 
based on the latent unigram probability, and a change point can occur with a "xed probability, suddenly changing the unigram probability to a new 
value uniformly drawn in [0,1]. (b) Prediction performance in the changing unigram environment. For each type of agent, 20 trained agents (trained with 
different random seeds) were tested (dots: agents; bars: average). Their prediction performance was measured as the % of optimal log likelihood (0% 
being chance performance and 100% optimal performance, see Equation 1 for the log likelihood) and averaged over observations and sequences. 
The gated recurrent network signi"cantly outperformed every other type of agent (p < 0.001, two- tailed two independent samples t- test with Welch’s 
correction for unequal variances).

Figure supplement 1. Graphical model of the generative process of each environment.

Figure 1 continued
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2016; Yu and Cohen, 2008) (see Materials and methods for details). To test the statistical reliability 
of our conclusions, we trained separately 20 agents of each type (each type of network and each type 
of heuristic).

We found that even with as few as 11 units, the gated recurrent networks performed quasi- 
optimally. Their prediction performance was 99% of optimal (CI±0.1%), 0% corresponding to chance 
level (Figure 2b). Being only 1% short of optimal, the gated recurrent networks outperformed the 
delta rule and leaky agents, which performed 10 times and 5 times further from optimal, respectively 
(Figure 2b).

For mechanistic insight, we tested the alternative architectures deprived of one mechanism. 
Without either gating, lateral connections, or recurrent weight training, the average performance was 
respectively 6 times, 4 times, and 12 times further from optimal (Figure 2b), that is, the level of a leaky 
agent or worse. The drops in performance remain similar when considering only the best network of 
each architecture instead of the average performance (Figure 2b, compare rightmost dots across 
rows).

These results show that small gated recurrent networks can achieve quasi- optimal predictions and 
that the removal of one of the mechanisms of the gated recurrent architecture results in a systematic 
drop in performance.
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Figure 3. Gated recurrent but not alternative networks adjust their moment- by- moment effective learning rate around changes like the optimal agent. 
(a) Example prediction sequence illustrating the prediction updates of different types of agents. Within each type of agent, the agent (out of 20) yielding 
median performance in Figure 2b was selected for illustration purposes. Dots are observations, lines are predictions. (b) Moment- by- moment effective 
learning rate of each type of agent. 20 trained agents of each type were tested on 10,000 sequences whose change points were locked at the same time 
steps, for illustration purposes. The moment- by- moment effective learning rate was measured as the ratio of prediction update to prediction error (see 
Materials and methods, Equation 2), and averaged over sequences. Lines and bands show the mean and the 95% con"dence interval of the mean.

The online version of this article includes the following "gure supplement(s) for "gure 3:

Figure supplement 1. Attunement of the effective learning rate to the change point probabilities.
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Adaptation to changes through the adjustment of the effective 
learning rate
In a changing environment, the ability to adapt to changes is key. Networks exposed to more changing 
environments during training updated their predictions more overall during testing, similarly to the 
optimal agent (see Figure 3—figure supplement 1) and, to some extent, humans (Behrens et al., 
2007, Figure 2e; Findling et  al., 2021, Figure 4c). At a finer timescale, the moment- by- moment 
updating of the predictions also showed sensible dynamics around change points.

Figure 3a illustrates a key difference in behavior between, on the one hand, the optimal agent and 
the gated recurrent network, and on the other hand, the heuristic agents: the dynamics of their update 
differ. This difference is particularly noticeable when recent observations suggest that a change point 
has just occurred: the optimal agent quickly updates the prediction by giving more weight to the new 
observations; the gated recurrent network behaves the same but not the heuristic agents. We formally 
tested this dynamic updating around change points by measuring the moment- by- moment effective 
learning rate, which normalizes the amount of update in the prediction by the prediction error (i.e. the 
difference between the previous prediction and the actual observation; see Materials and methods, 
Equation 2).

Gated recurrent networks turned out to adjust their moment- by- moment effective learning rate as 
the optimal agent did, showing the same characteristic peaks, at the same time and with almost the 
same amplitude (Figure 3b, top plot). By contrast, the effective learning rate of the delta- rule agents 
was (by construction) constant, and that of the leaky agents changed only marginally.

When one of the mechanisms of the gated recurrence was taken out, the networks’ ability to adjust 
their effective learning rate was greatly degraded (but not entirely removed) (Figure  3b, bottom 
plots). Without gating, without lateral connections, or without recurrent weight training, the ampli-
tude was lower (showing both a lower peak value and a higher baseline value), and the peak occurred 
earlier.

This shows that gated recurrent networks can reproduce a key aspect of optimal behavior: the 
ability to adapt the update of their prediction to change points, which is lacking in heuristic agents 
and alternative networks.

Internal representation of precision and dynamic interaction with the 
prediction
Beyond behavior, we sought to determine whether a network’s ability to adapt to changes relied on 
idiosyncratic computations or followed the more general principle of precision- weighting derived 
from probability theory. According to this principle, the precision of the current prediction (calculated 
in the optimal agent as the negative logarithm of the standard deviation of the posterior distribution 
over the latent probability, see Equation 3 in Materials and methods) should influence the weight of 
the current prediction relative to the next observation in the updating process: for a given predic-
tion error, the lower the precision, the higher the subsequent effective learning rate. This precision- 
weighting principle results in an automatic adjustment of the effective learning rate in response to a 
change, because the precision of the prediction decreases when a change is suspected.

In line with this principle, human participants can estimate not only the prediction but also its preci-
sion as estimated by the optimal agent (Boldt et al., 2019, Figure 2; Meyniel et al., 2015, Figure 4B), 
and this precision indeed relates to the participants’ effective learning rate (McGuire et al., 2014, 
Figure 2C and S1A; Nassar et al., 2010, Figure 4C and 3B; Nassar et al., 2012, Figure 5 and 7c, ).

We tested whether a network could represent this optimal precision too, by trying to linearly read 
it from the network’s recurrent activity (Figure 4a). Note that the networks were trained only to maxi-
mize prediction accuracy (not to estimate precision). Yet, in gated recurrent networks, we found that 
the read precision on left- out data was highly accurate (Figure  4a, left plot: the median Pearson 
correlation with the optimal precision is 0.82), and correlated with their subsequent effective learning 
rate as in the optimal agent (Figure 4a, right plot: the median correlation for gated recurrent networks 
is –0.79; for comparison, it is –0.88 for the optimal agent).

To better understand how precision information is represented and how it interacts with the 
prediction dynamically in the network activity, we plotted the dynamics of the network activity in the 
subspace spanned by the prediction and precision vectors (Figure 4b). Such visualization captures 
both the temporal dynamics and the relationships between the variables represented in the network, 
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following the precision- weighting principle. (a) Left to right: Schematic of the readout of precision from the recurrent activity of a network (obtained by 
"tting a multiple linear regression from the recurrent activity to the log precision of the optimal posterior distribution); Accuracy of the read precision 
(calculated as its Pearson correlation with the optimal precision); Pearson correlation between the read precision and the network’s subsequent effective 
learning rate (the optimal value was calculated from the optimal agent’s own precision and learning rate); Example sequence illustrating their anti- 
correlation in the gated recurrent network. In both dot plots, large and small dots show the median and individual values, respectively. (b) Dynamics 
of the optimal posterior (left) and the network activity (right) in three sequences (green, yellow, and pink). The displayed dynamics are responses to a 
streak of 1 s after different sequences of observations (with different generative probabilities as shown at the bottom). The optimal posterior distribution 
is plotted as a color map over time (dark blue and light green correspond to low and high probability densities, respectively) and as a line plot at two 
times: on the left, the time tstart just before the streak of 1s, and on the right, a time tA/tB/tC when the prediction (i.e. mean) is approximately equal in 
all three cases; note that the precision differs. The network activity was projected onto the two- dimensional subspace spanned by the prediction and 
precision vectors (for the visualization, the precision axis was orthogonalized with respect to the prediction axis). In the gated recurrent network, the 
arrow ∆p shows the update to the prediction performed in the next three time steps starting at the time tA/tB/tC de"ned from the optimal posterior. Like 
the optimal posterior and unlike the network without gating, the gated recurrent network represents different levels of precision at an equal prediction, 
and the lower the precision, the higher the subsequent update to the prediction—a principle called precision- weighting. In all example plots (a–b), the 
displayed network is the one of the 20 that yielded the median read precision accuracy.

https://doi.org/10.7554/eLife.71801
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and has helped understand network computations in other works (Mante et al., 2013; Sohn et al., 
2019). Here, two observations can be made.

First, in the gated recurrent network (Figure 4b, second plot from the right), the trajectories are 
well separated along the precision axis (for the same prediction, the network can represent multiple 
precisions), meaning that the representation of precision is not reducible to the prediction. By contrast, 
in the network without gating (Figure 4b, rightmost plot), these trajectories highly overlap, which 
indicates that the representation of precision and prediction are mutually dependent. To measure this 
dependence, we computed the mutual information between the read precision and the prediction 
of the network, and it turned out to be very high in the network without gating (median MI = 5.2) 
compared to the gated recurrent network (median MI = 0.7) and the optimal agent (median MI = 0.6) 
(without lateral connections, median MI = 1.3; without recurrent weight training, median MI = 1.9), 
confirming that gating is important to separate the precision from the prediction.

Second, in the gated recurrent network, the precision interacts dynamically with the prediction in a 
manner consistent with the precision- weighting principle: for a given prediction, the lower the preci-
sion, the larger the subsequent updates to the prediction (Figure 4b, vertical dotted line indicates the 
level of prediction and arrows the subsequent updates).

These results indicate that in the network without gating, precision is confounded with prediction 
and the correlation between precision and effective learning rate is spuriously driven by the predic-
tion itself, whereas in the network with gating, there is a genuine representation of precision beyond 
the prediction itself, which interacts with the updating of predictions. However, we have so far only 
provided correlational evidence; to show that the precision represented in the network plays a causal 
role in the subsequent prediction update, we need to perform an intervention that acts selectively on 
this precision.
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Figure 5. Precision- weighting causally determines the adjustment of the effective learning rate in gated recurrent networks only. Causal test of a 
network’s precision on its effective learning rate. The recurrent activity was perturbed to induce a controlled change δ in the read precision, while 
keeping the prediction at the current time step—and thus the prediction error at the next time step—constant. This was done by making the 
perturbation vector orthogonal to the prediction vector and making its projection onto the precision vector equal to δ (bottom left diagram). We 
measured the perturbation’s effect on the subsequent effective learning rate as the difference in learning rate ‘with perturbation’ minus ‘without 
perturbation’ at the next time step (four plots on the right). Each dot (and joining line) corresponds to one network. ***: p < 0.001, n.s.: p > 0.05 (one- 
tailed paired t- test).
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Causal role of precision-weighting for adaptation to changes
We tested whether the internal representation of precision causally regulated the effective learning 
rate in the networks using a perturbation experiment. We designed perturbations of the recurrent 
activity that induced a controlled change in the read precision, while leaving the networks’ current 
prediction unchanged to control for the effect of the prediction error (for the construction of the pertur-
bations, see Figure 5 bottom left diagram and legend, and Materials and methods). These perturba-
tions caused significant changes in the networks’ subsequent effective learning rate, commensurate 
with the induced change in precision, as predicted by the principle of precision- weighting (Figure 5, 
middle plot). Importantly, this causal relationship was abolished in the alternative networks that lacked 
one of the mechanisms of the gated recurrent architecture (Figure 5, right three plots; the slope of 
the effect was significantly different between the gated recurrent network group and any of the alter-
native network groups, two- tailed two independent samples t- test, all t(38) > 4.1, all p < 0.001, all 
Cohen’s d > 1.3).

These results show that the gated recurrent networks’ ability to adapt to changes indeed relies on 
their precision- dependent updating and that such precision- weighting does not arise without all three 
mechanisms of the gated recurrence.

Leveraging and internalizing a latent structure: bigram probabilities
While the changing unigram environment already covers many tasks in the behavioral and neurosci-
ence literature, real- world sequences often exhibit more structure. To study the ability to leverage 
such structure, we designed a new stochastic and changing environment in which the sequence of 
observations is no longer generated according to a single unigram probability, p(1), but two ‘bigram 
probabilities’ (also known as transition probabilities), p(0|0) and p(1|1), which denote the probability 
of occurrence of a 0 after a 0 and of a 1 after a 1, respectively (Figure 6a; see Figure 1—figure 
supplement 1 for a graphical model). These bigram probabilities are also changing randomly, with 
independent change points.

This ‘changing bigram environment’ is well motivated because there is ample evidence that bigram 
probabilities play a key role in sequence knowledge in humans and other animals (Dehaene et al., 
2015) even in the face of changes (Bornstein and Daw, 2013; Meyniel et al., 2015).

We assessed how well the networks could leverage the latent bigram structure after having been 
trained in this environment. For comparison, we tested the optimal agent for this environment as well 
as two groups of heuristics: delta- rule and leaky estimation of unigram probabilities (as in Figure 2b), 
and now also delta rule and leaky estimation of bigram probabilities (see Materials and methods for 
details).

The gated recurrent networks achieved 98% of optimal prediction performance (CI ±0.3%), outper-
forming the heuristic agents estimating bigram probabilities, and even more so those estimating a 
unigram probability (Figure 6c). To demonstrate that this was due to their internalization of the latent 
structure, we also tested the gated recurrent networks that had been trained in the changing unigram 
environment: their performance was much worse (Figure 6—figure supplement 1).

At the mechanistic level, all three mechanisms of the gated recurrence are important for this ability 
to leverage the latent bigram structure. Not only does the performance drop when one of these mech-
anisms is removed (Figure 6c), but also this drop in performance is much larger than that observed in 
the changing unigram environment (without gating: –11.2% [CI ±1.5% calculated by Welch’s t- interval] 
in the bigram environment vs. –5.5% [CI ±0.6%] in the unigram environment, without lateral connec-
tions: –18.5% [CI ±1.8%] vs. –2.9% [CI ±0.2%]; without recurrent weight training: –29.9% [CI ±1.6%] 
vs. –11.0% [CI ±2.1%]; for every mechanism, there was a significant interaction effect between the 
removal of the mechanism and the environment on performance, all F(1,76) > 47.9, all p < 0.001).

Figure  6b illustrates the gated recurrent networks’ ability to correctly incorporate the bigram 
context into its predictions compared to networks lacking one of the mechanisms of the gated recur-
rence. While a gated recurrent network aptly changes its prediction from one observation to the next 
according to the preceding observation as the optimal agent does, the other networks fail to show 
such context- dependent behavior, sometimes even changing their prediction away from the optimal 
agent.

Altogether these results show that gated recurrent networks can leverage the latent bigram struc-
ture, but this ability is impaired when one mechanism of the gated recurrence is missing.

https://doi.org/10.7554/eLife.71801
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Figure 6. Gated recurrent networks correctly leverage and internalize the latent bigram structure. (a) Schematic of the changing bigram environment’s 
latent probabilities (left) and sample generated sequence (right, dots: observations, lines: latent bigram probabilities). At each time step, a binary 
observation is randomly generated according to the relevant latent bigram probability, p0|0 or p1|1 depending on the previous observation. p0|0 denotes 
the probability of occurrence of a 0 after a 0 and p1|1 that of a 1 after a 1 (note that p1|0=1- p0|0 and p0|1=1- p1|1). At any time step, each of the two bigram 
probabilities can suddenly change to a new value uniformly drawn in [0,1], randomly with a "xed probability and independently from each other. 
(b) Example prediction sequence illustrating each network’s ability or inability to change prediction according to the local context, compared to the 
optimal prediction (dots: observations, lines: predictions). (c) Prediction performance of each type of agent in the changing bigram environment. 20 
new agents of each type were trained and tested as in Figure 2b but now in the changing bigram environment (dots: agents; bars: average). The gated 
recurrent network signi"cantly outperformed every other type of agent (p < 0.001, two- tailed two independent samples t- test with Welch’s correction for 
unequal variances). (d) Internalization of the latent structure as shown on an out- of- sample sequence: the two bigram probabilities are simultaneously 
represented in the gated recurrent network (top), and closely follow the optimal estimates (bottom). The readouts were obtained through linear 
regression from the recurrent activity to four estimates separately: the log odds of the mean and the log precision of the optimal posterior distribution 
on p0|0 and p1|1. In (b) and (d), the networks (out of 20) yielding median performance were selected for illustration purposes.
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Figure supplement 1. Performance across training and test environments.
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Is the networks’ representation of the latent bigram structure impenetrable or easily accessible? 
We tested the latter possibility by trying to linearly read out the optimal estimate of each of the 
latent bigram probabilities from the recurrent activity of a gated recurrent network (see Materials and 
methods). Arguing in favor of an explicit representation, we found that the read estimates of each 
of the latent bigram probabilities on left- out data were highly accurate (Pearson correlation with the 
optimal estimates, median and CI: 0.97 [0.97, 0.98] for each of the two bigram probabilities).

In addition to the point estimates of the latent bigram probabilities, we also tested whether a 
network maintained some information about the precision of each estimate. Again, we assessed the 
possibility to linearly read out the optimal precision of each estimate and found that the read preci-
sions on left- out data were quite accurate (Pearson correlation with the optimal precisions, median 
and CI: 0.77 [0.74, 0.78] for one bigram probability and 0.76 [0.74, 0.78] for the other probability).

Figure 6d illustrates the striking resemblance between the estimates read from a gated recurrent 
network and the optimal estimates. Furthermore, it shows that the network successfully disentangles 
one bigram probability from the other since the read estimates can evolve independently from each 
other (for instance during the first 20 time steps, the value for 1|1 changes while the value for 0|0 does 
not, since only 1s are observed). It is particularly interesting that both bigram probabilities are simul-
taneously represented, given that only one of them is relevant for the moment- by- moment prediction 
read by the network’s output unit (whose weights cannot change during the sequence).

We conclude that gated recurrent networks internalize the latent bigram structure in such a way 
that both bigram probabilities are available simultaneously, even though only one of the two is needed 
at any one time for the prediction.

Leveraging a higher-level structure: inference about latent changes
In real life, latent structures can also exhibit different levels that are organized hierarchically (Bill et al., 
2020; Meyniel et al., 2015; Purcell and Kiani, 2016). To study the ability to leverage such a hier-
archical structure, we designed a third environment in which, in addition to bigram probabilities, we 
introduced a higher- level factor: the change points of the two bigram probabilities are now coupled, 
rather than independent as they were in the previous environment (Figure  7a; Figure  1—figure 
supplement 1 shows the hierarchical structure). Due to this coupling, from the agent’s point of view, 
the likelihood that a change point has occurred depends on the observations about both bigrams. 
Thus, optimal prediction requires the ability to make a higher- level inference: having observed that 
the frequency of one of the bigrams has changed, one should not only suspect that the latent proba-
bility of this bigram has changed but also transfer this suspicion of a change to the latent probability 
of the other bigram, even without any observations about that bigram.

Such a transfer has been reported in humans (Heilbron and Meyniel, 2019, Figure 5B). A typical 
situation is when a streak of repetitions is encountered (Figure 7b): if a long streak of 1 s was deemed 
unlikely, it should trigger the suspicion of a change point such that p(1|1) is now high, and this suspi-
cion should be transferred to p(0|0) by partially resetting it. This reset is reflected in the change 
between the prediction following the 0 just before the streak and that following the 0 just after the 
streak (Figure 7b, |pafter−pbefore|).

We tested the networks’ ability for higher- level inference in the same way, by exposing them to 
such streaks of repetitions and measuring their change in prediction about the unobserved bigram 
before and after the streak. More accurately, we compared the change in prediction of the networks 
trained in the environment with coupled change points to that of the networks trained in the environ-
ment with independent change points, since the higher- level inference should only be made in the 
coupled case.

We found that gated recurrent networks trained in the coupled environment changed their predic-
tion about the unobserved bigram significantly more than networks trained in the independent envi-
ronment, and this was true across a large range of streak lengths (Figure 7c, top plot). The mere 
presence of this effect is particularly impressive given that the coupling makes very little difference 
in terms of raw performance (Figure 6—figure supplement 1, the networks trained in either the 
coupled or the independent environment perform very similarly when tested in either environment). 
All mechanisms of the gated recurrence are important to achieve this higher- level inference since the 
networks deprived of either gating, lateral connections, or recurrent weight training did not show any 
effect, no matter the streak length (Figure 7c, bottom three plots; for every mechanism, there was a 

https://doi.org/10.7554/eLife.71801
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significant interaction effect between the removal of the mechanism and the training environment on 
the change in prediction over networks and streak lengths, all F(1,6076) > 43.2, all p < 0.001).

These results show that gated recurrent networks but not alternative networks leverage the higher 
level of structure where the change points of the latent probabilities are coupled.

Gated recurrence enables simple solutions
Finally, we highlight the small number of units sufficient to perform quasi- optimally in the increasingly 
structured environments that we tested: the above- mentioned results were obtained with 11 recurrent 
units. It turns out that gated recurrent networks can reach a similar performance with even fewer units, 
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Figure 7. Gated recurrent but not alternative networks leverage a higher- level structure, distinguishing the case where change points are coupled vs. 
independent. Procedure to test the higher- level inference: (a) For each network architecture, 20 networks were trained on sequences where the change 
points of the two latent bigram probabilities are coupled and 20 other networks were trained on sequences where they are independent (the plots show 
an example training sequence for each case); (b) The networks were then tested on sequences designed to trigger the suspicion of a change point in 
one bigram probability and measure their inference about the other bigram probability: |pafter−pbefore| should be larger when the agent assumes change 
points to be coupled rather than independent. The plot shows an example test sequence. Red, blue, solid, and dashed lines: as in (c), except that only 
the gated recurrent network (out of 20) yielding median performance is shown for illustration purposes. (c) Change in prediction about the unobserved 
bigram probability of the networks trained on coupled change points (red) and independent change points (blue) for each network architecture, 
averaged over sequences. Solid lines and bands show the mean and the 95% con"dence interval of the mean over networks. Dotted lines show the 
corresponding values of the optimal agent for the two cases. Only the gated recurrent architecture yields a signi"cant difference between networks 
trained on coupled vs. independent change points (one- tailed two independent samples t- test, ***: p < 0.001, n.s.: p > 0.05).
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especially in simpler environments (Figure 8a and b, left plot). For instance, in the unigram environ-
ment, gated recurrent networks reach 99% of their asymptotic performance with no more than 3 units.

By contrast, without either gating, lateral connections, or recurrent weight training, even when 
the networks are provided with more units to match the number of trained parameters in the 11- unit 
gated recurrent networks, they are unable to achieve similar performance (Figure 8a and b, right 
three plots, the twin x- axes indicate the number of units and trained parameters).

With an unlimited number of units, at least in the case without gating (i.e. a vanilla RNN, short 
for recurrent neural network), the networks will be able to achieve such performance since they are 
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Figure 8. Low- complexity solutions are uniquely enabled by the combination of gating, lateral connections, and recurrent weight training. (a and 
b) Prediction performance of each network architecture in the changing unigram environment and the changing bigram environment, respectively, 
as a function of the number of recurrent units (i.e. space complexity) of the network. For each network architecture and each number of units, 20 
networks were trained using hyperparameters that had been optimized prior to training, and prediction performance was measured as the % of 
optimal log likelihood on new test sequences. Solid lines, bands, and dashed lines show the mean, 95% con"dence interval of the mean, and maximum 
performance, respectively. At the maximum displayed number of units, all of the alternative architectures have exceeded the complexity of the 11- 
unit gated recurrent network shown on the left and in previous Figures, both in terms of the number of units and the number of trained parameters 
(indicated on the twin x- axes), but none of them have yet reached its performance.
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Figure supplement 1. Training speed of the gated recurrent networks in the changing unigram and bigram environments.
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universal approximators of dynamical systems (Cybenko, 1989; Schäfer and Zimmermann, 2006). 
However, our results indicate that this could require a very large number of units even in the simplest 
environment tested here (see Figure 8a and b, without gating at 1000 units). Indeed, the slow growth 
of the vanilla RNNs’ performance with the number of units is well described by a power law function, 
of the form: (100−p) = c(1/N)α, where p is the % of optimal performance and N is the number of units. 
We fitted this law in the unigram environment using the obtained performance from 2 to 45 units and 
it yielded a goodness- of- fit of R2 = 92.4% (fitting was done by linear regression on the logarithm of N 
and (100−p)). To further confirm the validity of the power law, we then extrapolated to 1,000 units and 
found that the predicted performance was within 0.2% of the obtained performance for networks of 
this size (predicted: 97.8%, obtained: 97.6%). Based on this power law, more than 104 units would be 
needed for the vanilla RNN to reach the performance exhibited by the GRU with only 11 units.

Note that, in terms of computational complexity, the number of units is a fair measure of space 
complexity (i.e. the amount of memory) across the architectures we considered, since in all of them 
it is equal to the number of state variables (having one state variable  per unit, see Materials and 
methods). What varies across architectures is the number of trained parameters, that is, the degrees of 
freedom that can be used during training to achieve different dynamics. Still, the conclusion remains 
the same when an alternative network exceeds the complexity of an 11- unit gated recurrent network 
in both its number of units and its number of trained parameters.

Therefore, it is the specific computational properties provided by the combination of the three 
mechanisms that afford effective low- complexity solutions.

Discussion
We have shown that the gated recurrent architecture enables simple and effective solutions: with only 
11 units, the networks perform quasi- optimally in environments fraught with randomness, changes, 
and different levels of latent structure. Moreover, these solutions reproduce several aspects of opti-
mality observed in organisms, including the adaptation of their effective learning rate, the ability to 
represent the precision of their estimation and to use it to weight their updates, and the ability to 
represent and leverage the latent structure of the environment. By depriving the architecture of one 
of its mechanisms, we have shown that three of them are important to achieve such solutions: gating, 
lateral connections, and the training of recurrent weights.

Can small neural networks behave like Bayesian agents?
A central and much- debated question in the scientific community is whether the brain can perform 
Bayesian inference (Knill and Pouget, 2004; Bowers and Davis, 2012; Griffiths et al., 2012; Rahnev 
and Denison, 2018; Lee and Mumford, 2003; Rao and Ballard, 1999; Sanborn and Chater, 2016; 
Chater et al., 2006; Findling et al., 2019; Wyart and Koechlin, 2016; Soltani and Izquierdo, 2019; 
Findling et  al., 2021). From a computational viewpoint, there exists no tractable solution (even 
approximate) for Bayesian inference in an arbitrary environment, since it is NP- hard (Cooper, 1990; 
Dagum and Luby, 1993). Being a bounded agent (Simon, 1955; Simon, 1972), the brain cannot 
solve Bayesian inference in its most general form. The interesting question is whether the brain can 
perform Bayesian inference in some environments that occur in real life. More precisely, by ‘perform 
Bayesian inference’ one usually means that it performs computations that satisfy certain desirable 
properties of Bayesian inference, such as taking into account a certain type of uncertainty and a 
certain type of latent structure (Courville et al., 2006; Deroy et al., 2016; Griffiths et al., 2012; Knill 
and Pouget, 2004; Ma, 2010; Ma and Jazayeri, 2014; Tauber et al., 2017). In this study, we selected 
specific properties and showed that they can indeed be satisfied when using specific (not all) neural 
architectures.

In the changing unigram and changing bigram environments, our results provide an existence 
proof: there exist plausible solutions that are almost indistinguishable from Bayesian inference 
(i.e. the optimal solution). They exhibit qualitative properties of Bayesian inference that have been 
demonstrated in humans but are lacking in heuristic solutions, such as the dynamic adjustment of the 
effective learning rate (Behrens et al., 2007; Nassar et al., 2010; Nassar et al., 2012), the internal 
representation of latent variables and the precision of their estimates (Boldt et al., 2019; Meyniel 
et al., 2015), the precision- weighting of updates (McGuire et al., 2014; Nassar et al., 2010; Nassar 
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et al., 2012), and the ability for higher- level inference (Bill et al., 2020; Heilbron and Meyniel, 2019; 
Purcell and Kiani, 2016).

The performance we obtained with the gated recurrent architecture is consistent with the numerous 
other successes it produced in other cognitive neuroscience tasks (Wang et al., 2018; Yang et al., 
2019; Zhang et al., 2020). Our detailed study reveals that it offers quasi- optimal low- complexity 
solutions to new and difficult challenges, including those posed by bigram and higher- level structures 
and latent probabilities that change unpredictably anywhere in the unit interval. We acknowledge that 
further generalization to additional challenges remains to be investigated, including the use of more 
than two categories of observations or continuous observations, and latent structures with longer 
range dependencies (beyond bigram probabilities).

Minimal set of mechanisms
What are the essential mechanistic elements that enable such solutions? We show that it suffices 
to have recurrent units of computation equipped with three mechanisms: (1) input, self, and lateral 
connections which enable each unit to sum up the input with their own and other units’ prior value 
before a non- linear transformation is applied; (2) gating, which enables multiplicative interactions 
between activities at the summation step; (3) the training of connection weights.

One of the advantages of such mechanisms is their generic character: they do not include any 
components specifically designed to perform certain probabilistic operations or estimate certain 
types of latent variables, as often done in neuroscience (Echeveste et al., 2020; Fusi et al., 2007; 
Jazayeri and Movshon, 2006; Ma et al., 2006; Pecevski et al., 2011; Soltani and Wang, 2010). 
In addition, they allow adaptive behavior only through recurrent activity dynamics, without involving 
synaptic plasticity as in other models (Farashahi et al., 2017; Fusi et al., 2005; Iigaya, 2016; Schultz 
et al., 1997). This distinction has implications for the timescale of adaptation: in the brain, recur-
rent dynamics and synaptic plasticity often involve short and long timescales, respectively. Our study 
supports this view: recurrent dynamics allow the networks to quickly adapt to a given change in the 
environment (Figure 3), while synaptic plasticity allows the training process to tune the speed of this 
adaptation to the frequency of change of the environment (Figure 3—figure supplement 1).

Our findings suggest that these mechanisms are particularly advantageous to enable solutions with 
low computational complexity. Without one of them, it seems that a very large number of units (i.e. 
a large amount of memory) would be needed to achieve comparable performance (Figure 8) (note 
that universal approximation bounds in vanilla RNNs can be very large in terms of number of units 
[Barron, 1993; Cybenko, 1989; Schäfer and Zimmermann, 2006]). These mechanisms thus seem to 
be key computational building blocks to build simple and effective solutions. This efficiency can be 
formalized as the minimum number of units sufficient for near- optimal performance (as in Orhan and 
Ma, 2017 who made a similar argument), and it is important for the brain since the brain has limited 
computational resources (often quantified by the Shannon capacity, i.e. the number of bits that can be 
transmitted per unit of time, which here amounts to the number of units) (Bhui et al., 2021; Lieder 
and Griffiths, 2019). Moreover, simplicity promotes our understanding, and it is with the same goal 
of understanding that others have used model reduction in large networks (Dubreuil et al., 2020; 
Jazayeri and Ostojic, 2021; Schaeffer et al., 2020).

Since we cannot exhaustively test all possible parameter values, it might be possible that better 
solutions exist that were not discovered during training. However, to maximize the chances that the 
best possible performance is achieved after training, we conducted an extensive hyperparameter 
optimization, repeated for each environment, architecture, and several number of units, until there is 
no more improvement according to the Bayesian optimization (see Materials and methods).

Biological implementations of the mechanisms
What biological elements could implement the mechanisms of the gated recurrence? Recurrent 
connections are ubiquitous in the brain (Douglas and Martin, 2007; Hunt and Hayden, 2017); the 
lesser- known aspect is that of gating. In the next paragraph, we speculate on the possible biological 
implementations of gating, broadly defined as a mechanism that modulates the effective weight of a 
connection as a function of the network state (and not limited to the very specific form of gating of 
the GRU).

https://doi.org/10.7554/eLife.71801
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In neuroscience, many forms of gating have been observed, and they can generally be grouped 
into three categories according to the neural process that supports them: neural circuits, neural oscil-
lations, and neuromodulation. In neural circuits, a specific pathway can be gated through inhibition/
disinhibition by inhibitory (GABAergic) neurons. This has been observed in microscopic circuits, e.g. in 
pyramidal neurons a dendritic pathway can be gated by interneurons (Costa et al., 2017; Yang et al., 
2016), or macroscopic circuits, for example in basal ganglia- thalamo- cortical circuits a cortico- cortical 
pathway can be gated by the basal ganglia and the mediodorsal nucleus of thalamus (O’Reilly, 2006; 
O’Reilly and Frank, 2006; Rikhye et al., 2018; Wang and Halassa, 2021; Yamakawa, 2020). In 
addition to inhibition/disinhibition, an effective gating can also be achieved by a large population of 
interacting neurons taking advantage of their nonlinearity (Beiran et al., 2021; Dubreuil et al., 2020). 
Regarding neural oscillations, experiments have shown that activity in certain frequency bands (typi-
cally, alpha and beta) can gate behavioral and neuronal responses to the same stimulus (Baumgarten 
et al., 2016; Busch et al., 2009; Hipp et al., 2011; Iemi et al., 2019; Klimesch, 1999; Mathewson 
et al., 2009). One of the most influential accounts is known as ‘pulsed inhibition’ (Hahn et al., 2019; 
Jensen and Mazaheri, 2010; Klimesch et al., 2007): a low- frequency signal periodically inhibits a 
high- frequency signal, effectively silencing the high- frequency signal when the low- frequency signal 
exceeds a certain threshold. Finally, the binding of certain neuromodulators to the certain receptors 
of a synapse changes the gain of its input- output transfer function, thus changing its effective weight. 
This has been demonstrated in neurophysiological studies implicating noradrenaline (Aston- Jones 
and Cohen, 2005; Salgado et al., 2016; Servan- Schreiber et al., 1990), dopamine (Moyer et al., 
2007; Servan- Schreiber et al., 1990; Stalter et al., 2020; Thurley et al., 2008), and acetylcholine 
(Gil et al., 1997; Herrero et al., 2008) (see review in Thiele and Bellgrove, 2018).

We claim that gated recurrence provides plausible solutions for the brain because its mechanisms 
can all be biologically implemented and lead to efficient solutions. However, given their multiple 
biological realizability, the mapping between artificial units and biological neurons is not straightfor-
ward: one unit may map to a large population of neurons (e.g. a brain area), or even to a microscopic, 
subneuronal component (e.g. the dendritic level).

Training: Its role and possible biological counterpart
Regarding the training, our results highlight that it is important to adjust the recurrent weights and 
thus the network dynamics to the environment (and not fix them as in reservoir computing [Tanaka 
et al., 2019]), but we make no claims about the biological process that leads to such adjustment in 
brains. It could occur during development (Sherman et al., 2020), the life span (Lillicrap et al., 2020), 
or the evolution process (Zador, 2019) (these possibilities are not mutually exclusive). Although our 
training procedure may not be accurate for biology as a whole, two aspects of it may be informative 
for future research. First, it relies only on the observation sequence (no supervision or reinforcement), 
leveraging prediction error signals, which have been found in the brain in many studies (den Ouden 
et al., 2012; Eshel et al., 2013; Maheu et al., 2019). Importantly, in predictive coding (Rao and 
Ballard, 1999), the computation of prediction errors is part of the prediction process; here we are 
suggesting that it may also be part of the training process (as argued in O’Reilly et al., 2021). Second, 
relatively few iterations of training suffice (Figure 8—figure supplement 1, in the order of 10–100; 
for comparison, Wang et al., 2018 reported training for 40,000 episodes in an environment similar 
to ours).

Suboptimalities in human behavior
In this study we have focused on some aspects of optimality that humans exhibit in the three envi-
ronments we explored, but several aspects of their behavior are also suboptimal. In the laboratory, 
their behavior is often at best qualitatively Bayesian but quantitatively suboptimal. For example, 
although they adjust their effective learning rate to changes, the base value of their learning rate and 
their dynamic adjustments may depart from the optimal values (Nassar et al., 2010; Nassar et al., 
2012; Prat- Carrabin et al., 2021). They may also not update their prediction on every trial, unlike 
the optimal solution (Gallistel et al., 2014; Khaw et al., 2017). Finally, there is substantial interin-
dividual variability which does not exist in the optimal solution (Khaw et al., 2021; Nassar et al., 
2010; Nassar et al., 2012; Prat- Carrabin et al., 2021). In the future, these suboptimalities could be 
explored using our networks by making them suboptimal in three ways (among others): by stopping 
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training before quasi- optimal performance is reached (Caucheteux and King, 2021; Orhan and Ma, 
2017), by constraining the size of the network or its weights (with hard constraints or with regulariza-
tion penalties) (Mastrogiuseppe and Ostojic, 2017; Sussillo et al., 2015), or by altering the network 
in a certain way, such as pruning some of the units or some of the connections (Blalock et al., 2020; 
Chechik et al., 1999; LeCun et al., 1990; Srivastava et al., 2014), or introducing random noise into 
the activity (Findling et al., 2021; Findling and Wyart, 2020; Legenstein and Maass, 2014). In this 
way, one could perhaps reproduce the quantitative deviations from optimality while preserving the 
qualitative aspects of optimality observed in the laboratory.

Implications for experimentalists
If already trained gated recurrent networks exist in the brain, then one can be used in a new but similar 
enough environment without further training. This is an interesting possibility because, in laboratory 
experiments mirroring our study, humans perform reasonably well with almost no training but explicit 
task instructions given in natural language, along with a baggage of prior experience (Gallistel et al., 
2014; Heilbron and Meyniel, 2019; Khaw et al., 2021; Meyniel et al., 2015; Peterson and Beach, 
1967). In favor of the possibility to reuse an existing solution, we found that a gated recurrent network 
can still perform well in conditions different from those it was trained in: across probabilities of change 
points (Figure 3—figure supplement 1) and latent structures (Figure 6—figure supplement 1, from 
bigram to unigram).

In this study, we adopted a self- supervised training paradigm to see if the networks could in prin-
ciple discover the latent structure from the sequences of observations alone. However, in laboratory 
experiments, humans often do not have to discover the structure since they are explicitly told what 
structure they will face and the experiment starts only after ensuring that they have understood it, 
which makes the comparison to our networks impossible in this setting in terms of training (see similar 
argument in Orhan and Ma, 2017). In the future, it could be interesting to study the ability of gated 
recurrent networks to switch from one structure to another after having been informed of the current 
structure as humans do in these experiments. One possible way would be to give a label that indicates 
the current structure as additional input to our networks, as in Yang et al., 2019.

One of our findings may be particularly interesting to experimentalists: in a gated recurrent network, 
the representations of latent probabilities and the precision of these probability estimates (sometimes 
referred to as confidence [Boldt et al., 2019; Meyniel et al., 2015], estimation uncertainty [McGuire 
et al., 2014; Payzan- LeNestour et al., 2013], or epistemic uncertainty [Amini et al., 2020; Friston 
et al., 2015; Pezzulo et al., 2015]) are linearly readable from recurrent activity, the form of decoding 
most frequently used in neuroscience (Haxby et al., 2014; Kriegeskorte and Diedrichsen, 2019). 
These representations arise spontaneously, and their emergence seems to come from the compu-
tational properties of gated recurrence together with the need to perform well in a stochastic and 
changing environment. This yields an empirical prediction: if such networks can be found in the brain, 
then latent probability estimates and their precision should also be decodable in brain signals, as 
already found in some studies (Bach et al., 2011; McGuire et al., 2014; Meyniel, 2020; Meyniel and 
Dehaene, 2017; Payzan- LeNestour et al., 2013; Tomov et al., 2020).

Materials and methods
Sequence prediction problem
The sequence prediction problem to be solved is the following. At each time step, an agent receives 
as input a binary- valued 'observation',  xt ∈ 0, 1  , and gives as output a real- valued 'prediction', 
 pt ∈ 0, 1   which is an estimate of the probability that the value of the next observation is equal to 1, 
 p(xt+1 1) . Coding the prediction in terms of the observation being 1 rather than 0 is inconsequential 
since one can be deduced from the other:  p(xt+1 1) 1 − p(xt+1 0) . The agent’s objective is to 
make predictions that maximize the (log) likelihood of observations in the sequence, which technically 
corresponds to the negative binary cross- entropy cost function:

 (p x) ∑ −1
t 0 xt+1pt + (1 − xt+1)(1 − pt)   (1)

https://doi.org/10.7554/eLife.71801
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Network architectures
All network architectures consist of a binary input unit, which codes for the current observation, one 
recurrent layer (sometimes called hidden layer) with a number N of recurrent units, and an output unit, 
which represents the network’s prediction. Unless otherwise stated, N = 11. At every time step, the 
recurrent unit i receives as input the value of the observation,  xt , and the previous activation values of 
the recurrent units j that connect to i,  ,t−1 . It produces as output a new activation value,  ,t , which 
is a real number. The output unit receives as input the activations of all of the recurrent units, and 
produces as output the prediction  pt .

The parameterized function of the output unit is the same for all network architectures:

 
pt σ

(∑
1 p, ,t + p

)

  

where  σ  is the logistic sigmoid,  p,   is the weight parameter of the connection from the i- th recur-
rent unit to the output unit, and  p  is the bias parameter of the output unit.

The updating of    takes a different form depending on whether gating or lateral connections are 
included, as described below.

Gated recurrent network
A gated recurrent network includes both gating and lateral connections. This enables multiplicative 
interactions between the input and recurrent activity as well as the activities of different recurrent 
units during the updating of   . The variant of gating used here is GRU (Cho et al., 2014; Chung 
et al., 2014). For convenience of exposition, we introduce, for each recurrent unit i, two intermediate 
variables in the calculation of the update: the reset gate    and the update gate   , both of which 
have their own set of weights and bias. The update gate corresponds to the extent to which a unit 
can change its values from one time step to the next, and the reset gate corresponds to the balance 
between recurrent activity and input activity in case of update. Note that    and    do not count as 
state variables since the system would be equivalently characterized without them by injecting their 
expression into the update equation of    below. The update is calculated as follows:

 

,t+1 σ
(

x , xt+1 + x , + , ,t + ∑
! , ,t + ,

)

,t+1 σ
(

x , xt+1 + x , + , ,t + ∑
! , ,t + ,

)

,t+1 ,t+1 ,t

+ (1 − ,t+1)
[

x , xt+1 + x , + ,t+1( , ,t + ∑
! , ,t) + ,

]

,t −1 0   

where ( x , , x , , , , ,  ), ( x , , x , , , , ,  ), ( x , , x , , , , ,  ) are the connection weights 
and biases from the input unit and the recurrent units to unit i corresponding to the reset gate, the 
update gate, and the ungated new activity, respectively.

Another variant of gating is the LSTM (Hochreiter and Schmidhuber, 1997). It incorporates similar 
gating mechanisms as that of the GRU and can achieve the same performance in our task. We chose 
the GRU because it is simpler than the LSTM and it turned out sufficient.

Without gating
Removing the gating mechanism from the gated recurrent network is equivalent to setting the above 
variables    equal to 1 and    equal to 0. This simplifies the calculation of the activations to a single 
equation, which boils down to a weighted sum of the input and the recurrent units’ activity before 
applying a non- linearity, as follows:

 
,t+1

[

x , xt+1 + x , + , ,t + ∑
!

, ,t + ,

]

  

Another possibility (not considered here) would be to set the value of    to a constant other than 1 
and treat this value (which amounts to a time constant) as a hyperparameter.

https://doi.org/10.7554/eLife.71801
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Without lateral connections
Removing lateral connections from the gated recurrent network is equivalent to setting the weights 

 ,  ,  ,  , and  ,   to 0 for all  !  . This abolishes the possibility of interaction between recurrent 
units, which simplifies the calculation of the activations as follows:

 

,t+1 σ( x , xt+1 + x , + , ,t + , )

,t+1 σ( x , xt+1 + x , + , ,t + , )

,t+1 ,t+1 ,t + (1 − ,t+1) x , xt+1 + ,t+1 , ,t + ,   

Note that this architecture still contains gating. We could have tested a simpler architecture without 
lateral connection and without gating; however, our point is to demonstrate the specific importance 
of lateral connections to solve the problem we are interested in with few units, and the result is all the 
more convincing if the network lacking lateral connections has gating (without gating, it would fail 
even more dramatically).

Without recurrent weight training
The networks referred to as ‘without recurrent weight training’ have the same architecture as the 
gated recurrent networks and differ from them only in the way they are trained. While in the other 
networks, all of the weights and bias parameters are trained, for those networks, only the weights and 
bias of the output unit,  p,   p,   and  p , are trained; other weights and biases are fixed to the value 
drawn at initialization.

Environments
An environment is characterized by its data generating process, that is, the stochastic process used 
to generate a sequence of observations in that environment. Each of the generative processes is 
described by a graphical model in Figure 1—figure supplement 1 and further detailed below.

Changing unigram environment
In the changing unigram environment, at each time step, one observation is drawn from a Bernoulli 
distribution whose probability parameter is the latent variable  penv

t  . The evolution of this latent vari-
able is described by the following stochastic process.

•	 Initially,  p
env
t 0  is drawn from a uniform distribution on [0,1].

•	 At the next time step, with probability  p  ,  p
env
t+1  is drawn anew from a uniform distribution on [0,1] 

(this event is called a 'change point'), otherwise,  p
env
t+1  remains equal to  penv

t  . The change point 
probability  p   is fixed in a given environment.

Changing bigram environments
In the changing bigram environments, at each time step, one observation is drawn from a Bernoulli 
distribution whose probability parameter is either equal to the latent variable  p

env
1|1,t , if the previous 

observation was equal to 1, or to the latent variable  (1 − penv
0|0,t)  otherwise (at t = 0, the previous 

observation is considered to be equal to 0). The evolution of those latent variables is described by a 
stochastic process which differs depending on whether the change points are independent or coupled.

•	 In both cases, initially,  p
env
0|0,t 0  and  p

env
1|1,t 0  are both drawn independently from a uniform distri-

bution on [0,1].
•	 In the case of independent change points, at the next time step, with probability  p  ,  p

env
0|0,t+1  is 

drawn anew from a uniform distribution on [0,1], otherwise,  p
env
0|0,t+1  remains equal to  p

env
0|0,t . Simi-

larly,  p
env
1|1,t+1  is either drawn anew with probability  p   or remains equal to  p

env
1|1,t  p

env
1|1,t  otherwise, 

and critically, the occurrence of a change point in  p
env
1|1   is independent from the occurrence of a 

change point in  p
env
0|0  .

•	 In the case of coupled change points, at the next time step, with probability  p  ,  p
env
0|0,t+1  and 

 p
env
1|1,t+1  are both drawn anew and independently from a uniform distribution on [0,1], otherwise, 

both remain equal to  p
env
0|0,t  and  p

env
1|1,t  respectively.

The changing bigram environment with independent change points and that with coupled change 
points constitute two distinct environments. When the type of change points is not explicitly mentioned, 

https://doi.org/10.7554/eLife.71801
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the default case is independent change points. For conciseness, we sometimes refer to the changing 
unigram and changing bigram environments simply as ‘unigram’ and ‘bigram’ environments.

In all environments, unless otherwise stated, the length of a sequence is  0  observations, 
and the change point probability is  p

1
 , as in previous experiments done with human participants 

(Heilbron and Meyniel, 2019; Meyniel et al., 2015).

Optimal solution
For a given environment among the three possibilities defined above, the optimal solution to the 
prediction problem can be determined as detailed in Heilbron and Meyniel, 2019. This solution 
consists in inverting the data- generating process of the environment using Bayesian inference, that 
is, computing the posterior probability distribution over the values of the latent variables given the 
history of observation values, and then marginalizing over that distribution to compute the prediction 
(which is the probability of the next observation given the history of observations). This can be done 
using a hidden Markov model formulation of the data- generating process where the hidden state 
includes the values of the latent variables as well as the previous observation in the bigram case, and 
using the forward algorithm to compute the posterior distribution over the hidden state. Because it 
would be impossible to compute the probabilities for the infinitely many possible values of the latent 
variables in the continuous interval [0,1], we discretized the interval into 20 equal- width bins for each 
of the latent variables. For a more exhaustive treatment, see Heilbron and Meyniel, 2019 and the 
online code (https://github.com/florentmeyniel/TransitionProbModel).

Heuristic solutions
The four heuristic solutions used here can be classified into 2 × 2 groups depending on:

•	 which kind of variables are estimated: a unigram probability or two bigram probabilities.
•	 which heuristic rule is used in the calculation of the estimates: the delta- rule or the leaky rule.

The equations used to calculate the estimates are provided below.

Unigram, delta- rule:

 

p̂t+1 p̂t + α(xt+1 − p̂t)
p̂t −1 0.  
Unigram, leaky rule:

 

n0,t+1 αn0,t + (1 − xt+1)
n1,t+1 αn1,t + xt+1

n0,t −1 n1,t −1 0
p̂t

n1,t+1
n1,t+n0,t+  

Bigrams, delta- rule:

 

p̂0|0,t+1 p̂0|0,t + α(1 − xt)(1 − xt+1 − p̂0|0,t)
p̂1|1,t+1 p̂1|1,t + αxt(xt+1 − p̂1|1,t)
p̂0|0,t −1 p̂1|1,t −1 0.  
Bigrams, leaky rule:

 

n0|0,t+1 αn0|0,t + (1 − xt)(1 − xt+1)
n1|0,t+1 αn1|0,t + (1 − xt)xt+1

n0|1,t+1 αn0|1,t + xt(1 − xt+1)
n1|1,t+1 αn1|1,t + xtxt+1

n0|0,t −1 n1|0,t −1 n0|1,t −1 n1|1,t −1 0
p̂0|0,t

n0|0,t+1
n0|0,t+n1|0,t+

p̂1|1,t
n1|1,t+

n1|1,t+n0|1,t+  
The delta- rule corresponds to the update rule of the Rescorla- Wagner model (Rescorla and 

Wagner, 1972). The leaky rule corresponds to the mean of an approximate posterior which is a Beta 
distribution whose parameters depend on the leaky counts of observations:  n1 + 1  and  n0 + 1  (see 
Meyniel et al., 2016 for more details).

The output prediction value is equal to  ̂pt  in the unigram case, and in the bigram case, to  ̂p1|1,t  if 
 xt 1  and  (1 − p̂0|0,t)  otherwise. The parameter  α  is a free parameter which is trained (using the same 
training data as the networks) and thus adjusted to the training environment.

https://doi.org/10.7554/eLife.71801
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Training
For a given environment and a given type of agent among the network types and heuristic types, 
all the reported results are based on 20 agents, each sharing the same set of hyperparameters 
and initialized with a different random seed. During training, the parameters of a given agent were 
adjusted to minimize the binary cross- entropy cost function (see Equation 1). During one iteration 
of training, the gradients of the cost function with respect to the parameters are computed on a 
subset of the training data (called a minibatch) using backpropagation through time and are used 
to update the parameters according to the selected training algorithm. The training algorithm was 
Adam (Kingma and Ba, 2015) for the network types and stochastic gradient descent for the heuristic 
types.

For the unigram environment, the analyses reported in Figures 2–5 were conducted after training 
on a common training dataset of 160 minibatches of 20 sequences. For each of the two bigram envi-
ronments, the analyses reported in Figures 6–7 were conducted after training on a common training 
dataset (one per environment) of 400 minibatches of 20 sequences. These sizes were sufficient for the 
validation performance to converge before the end of training for all types of agents.

Table 1. Selected hyperparameter values after optimization.
(*: fixed value.)

Environment Network architecture N  η0  σ0,x·  σ0, ·  µ0, ·,  

unigram gated recurrent network 3 8.00E- 02 0.02 0.02 0*

unigram gated recurrent network 11 6.60E- 02 0.43 0.21 0*

unigram gated recurrent network 45 4.20E- 02 1 0.02 0*

unigram without gating 3 2.50E- 02 1 0.07 0*

unigram without gating 11 1.70E- 02 1 0.07 0*

unigram without gating 45 7.60E- 03 1 0.08 0*

unigram without gating 1,000 1.34E- 04 1 0.04 0*

unigram without lateral connections 3 5.30E- 02 0.02 0.02 1

unigram without lateral connections 11 2.70E- 02 1 0.02 1

unigram without lateral connections 45 1.30E- 02 1 1 1

unigram without recurrent weight training 3 1.00E- 01 1.07 0.55 0*

unigram without recurrent weight training 11 1.00E- 01 2 0.41 0*

unigram without recurrent weight training 45 1.00E- 01 2 0.26 0*

unigram without recurrent weight training 474 9.60E- 03 1 0.1 0*

bigram gated recurrent network 3 6.30E- 02 0.02 1 0*

bigram gated recurrent network 11 4.40E- 02 1 0.02 0*

bigram gated recurrent network 45 1.60E- 02 1 0.02 0*

bigram without gating 3 5.50E- 02 0.02 0.13 0*

bigram without gating 11 3.20E- 02 1 0.05 0*

bigram without gating 45 8.90E- 03 1 0.06 0*

bigram without gating 1,000 5.97E- 05 1 0.03 0*

bigram without lateral connections 3 4.30E- 02 1 0.02 0

bigram without lateral connections 11 4.30E- 02 1 1 0

bigram without lateral connections 45 2.80E- 02 1 1 0

bigram without recurrent weight training 3 6.60E- 02 0.73 0.55 0*

bigram without recurrent weight training 11 1.00E- 01 2 0.45 0*
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Parameters initialization
For all of the networks, the bias parameters are randomly initialized from a uniform distribution on 
 −1

√
, +1

√
  and the weights  p,   are randomly initialized from a normal distribution with standard 

deviation  1
√

  and mean 0. For all the networks, the weights  x ,  ,  x ,  ,  x ,   are randomly initialized 
from a normal distribution with standard deviation  σ0,x·  and mean 0, and the weights  , , , , ,   
are randomly initialized from a normal distribution with standard deviation  σ0, ·  and mean 0 for all  !   
and  µ0, .,   for   .  σ0,x·,σ0, ·,µ0, ·,   are hyperparameters that were optimized for a given environ-
ment, type of network, and number of units as detailed in the hyperparameter optimization section 
(the values resulting from this optimization are listed in Table 1).

For the initialization of the parameter  α  in the heuristic solutions, a random value r is drawn from a 
log- uniform distribution on the interval [10-2.5,10-0.5], and the initial value of  α  is set to r in the delta- rule 
case or exp(- r) in the leaky rule case.

Hyperparameter optimization
Each type of agent had a specific set of hyperparameters to be optimized. For all network types, it 
included the initial learning rate of Adam  η0  and the initialization hyperparameters  σ0,x· ,  σ0, · . For the 
networks without lateral connections specifically, it also included  µ0, .,   (for those networks, setting 
it close to one can help avoid the vanishing gradient problem during training Bengio et al., 1994; 
Sutskever et al., 2013) for the other networks, this was set to 0. For the heuristic types, it included 
only the learning rate of the stochastic gradient descent. A unique set of hyperparameter values was 
determined for each type of agent, each environment, and, for the network types, each number of 
units, through the optimization described next.

We used Bayesian optimization (Agnihotri and Batra, 2020) with Gaussian processes and the upper 
confidence bound acquisition function to identify the best hyperparameters for each network archi-
tecture, environment, and number of units. During the optimization, combinations of hyperparameter 
values were iteratively sampled, each evaluated over 10 trials with different random seeds, for a total of 
60 iterations (hence, 600 trials) for a given architecture, environment, and number of units. In each trial, 
one network was created, trained, and its cross- entropy was measured on independent test data. The 
training and test datasets used for the hyperparameter optimization procedure were not used in any 
other analyses. The training datasets contained respectively 160 and 400 minibatches of 20 sequences 
for the unigram and the bigram environment; the test datasets contained 200 sequences for each envi-
ronment. We selected the combination of hyperparameter values corresponding to the iteration that 
led to the lowest mean test cross- entropy over the 10 trials. The selected values are listed in Table 1.

For the heuristic types, we used random search from a log uniform distribution in the [10–6, 10–1] 
range over 80 trials to determine the optimal learning rate of the stochastic gradient descent. This led 
to selecting the value 3.10–3 for all heuristic types and all three environments.

Performance analyses
All agents were tested in the environment they were trained in (except for Figure 6—figure supplement 
1 which tests cross- environment performance). We used a single test dataset per environment of 1000 
sequences independent of the training dataset. The log likelihood L of a given agent was measured 
from its predictions according to Equation 1. The optimal log likelihood  pt   was measured from 
the predictions of the optimal solution for the given environment. The chance log likelihood  n e  was 
measured using a constant prediction of 0.5. To facilitate the interpretation of the results, the predic-
tion performance of the agent was expressed as the % of optimal log likelihood, defined as:

 
− n e

pt − n e
× 100  

To test the statistical significance of a comparison of performance between two types of agents, 
we used a two- tailed two independent samples t- test with Welch’s correction for unequal variances.

Analysis of the effective learning rate
The instantaneous effective learning rate of an agent that updates its prediction from  pt  to  pt+1  upon 
receiving observation  xt+1  is calculated as:

https://doi.org/10.7554/eLife.71801
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αt+1
pt+1−pt
xt+1−pt

αt 0
p0−0.
x0−0.   

(2)

We call it ‘effective learning rate’ because, had the agent been using a delta- rule algorithm, it 
would be equivalent to the learning rate of the delta- rule (as can be seen by rearranging the above 
formula into an update equation), and because it can be measured even if the agent uses another 
algorithm.

Readout analyses
The readout of a given quantity from the recurrent units of a network consists of a weighted sum of the 
activation values of each unit. To determine the weights of the readout for a given network, we ran a 
multiple linear regression using, as input variables, the activation of each recurrent unit at a given time 
step  ,t , and as target variable, the desired quantity calculated at the same time step. The regression 
was run on a training dataset of 900 sequences of 380 observations each (hence, 342,000 samples).

In the unigram environment, the precision readout was obtained using as desired quantity the log 
precision of the posterior distribution over the unigram variable calculated by the optimal solution as 
previously described, that is,  ψt − σt , where  σt  is the standard deviation of the posterior distri-
bution over  p

env
t+1 :

 σt SD penv
t+1|x0, ..., xt   (3)

In the bigram environment, the readout of the estimate of a given bigram variable was obtained 
using as desired quantity the log odds of the mean of the posterior distribution over that bigram 
variable calculated by the optimal solution, and the readout of the precision of that estimate was 
obtained using the log precision of that same posterior under the above definition of precision.

In Figure 4a, to measure the accuracy of the readout from a given network, we calculated the 
Pearson correlation between the quantity read from the network and the optimal quantity on a 
test dataset of 100 sequences (hence, 38,000 samples), independent from any training dataset. To 
measure the Pearson correlation between the read precision and the subsequent effective learning 
rate, we used 300 out- of- sample sequences (hence, 114,000 samples). To measure the mutual infor-
mation between the read precision and the prediction of the network, we also used 300 out- of- sample 
sequences (114,000 samples).

In Figure 6d, the log odds and log precision were transformed back into mean and standard devi-
ation for visualization purposes.

Dynamics of network activity in the prediction-precision subspace
In Figure 4b, the network activity (i.e. the population activity of the recurrent units in the network) 
was projected onto the two- dimensional subspace spanned by the prediction vector and the precision 
vector. The prediction vector is the vector of the weights from the recurrent units to the output unit of 
the network,  p . The precision vector is the vector of the weights of the precision readout described 
above,  ψ . For the visualization, we orthogonalized the precision vector against the prediction vector 
using the Gram- Schmidt process (i.e. by subtracting from the precision vector its projection onto 
the prediction vector), and used the orthogonalized precision vector to define the y- axis shown in 
Figure 4b.

Perturbation experiment to test precision-weighting
The perturbation experiment reported in Figure 5 is designed to test the causal role of the precision 
read from a given network on its weighting of the next observation, measured through its effective 
learning rate. We performed this perturbation experiment on each of the 20 networks that were 
trained within each of the four architectures we considered. The causal instrument is a perturba-
tion vector q that is added to the network’s recurrent unit activations. The perturbation vector was 
randomly generated subject to the following constraints:

•	  · ψ δψ is the desired change in precision (we used five levels) that is read from the units’ 
activities; it is computed by projecting the perturbation onto the weight vector of the precision 
readout ( ψ , ·  is the dot product);
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•	 the perturbation    induces no change in the prediction of the network:  · p 0 , where  p  is 
the weight vector of the output unit of the network;

•	 the perturbation has a constant intensity c across simulations, which we formalize as the norm 
of the perturbation:  ‖ ‖  .

We describe below the algorithm that we used to generate random perturbations    that satisfy 
these constraints. The idea is to decompose    into two components: both components leave the 
prediction unaffected, the first ( ψ ) is used to induce a controlled change in precision, the second (  ) 
does not change the precision but is added to ensure a constant intensity of the perturbation across 
simulations.

1. To ensure no change in precision, we compute Q, the subspace of the activation space spanned 
by all vectors q that are orthogonal to the prediction weight vector  p , as the null space of  p  
(i.e. the orthogonal complement of the subspace spanned by  p , dimension N- 1).

2. We compute  ψ , the vector component of Q that affects precision, as the orthogonal projection 
of  ψ  onto Q ( ψ  is thus collinear to the orthogonalized precision axis shown in Figure 4b and 
described above).

3. We compute  βψ , the coefficient to assign to  ψ  in the perturbation vector to produce the desired 
change in precision  δψ , as 

 
βψ

δψ
‖ ψ· ψ‖ 

.
4. We compute R, the subspace spanned by all vector components of Q that do not affect preci-

sion, as the null space of  ψ  (dimension N- 2). A perturbation vector in R therefore leaves both 
the prediction and the precision unchanged.

5. We draw a random unit vector    within R (by drawing from all N- 2 components).
6. We compute  β  , the coefficient to assign to    in the perturbation vector so as to ensure that the 

final perturbation’s norm equals c, as  β
√

− βψ
∥∥
ψ

∥∥
 .

7. We combine  ψ  and    into the final perturbation vector as  βψ ψ + β  .

The experiment was run on a set of 1000 sample time points randomly drawn from 300 sequences. 
First, the unperturbed learning rate was measured by running the network on all of the sequences. 
Second, for each sample time point, the network was run unperturbed up until that point, a perturba-
tion vector was randomly generated for the desired change of precision and applied to the network 
at that point, then the perturbed network was run on the next time point and its perturbed learning 
rate was measured. This was repeated for each level of change in precision. Finally, for a given change 
in precision, the change in learning rate was calculated as the difference between the perturbed and 
the unperturbed learning rate.

For statistical analysis, we ran a one- tailed paired t- test to test whether the population’s mean 
change in learning rate was higher at one level of precision change than at the next level of precision 
change. This was done for each of the four consecutive pairs of levels of change in precision.

Test of higher-level inference about changes
For a given network architecture, higher- level inference about changes was assessed by comparing 
the population of 20 networks trained in the environment with coupled change points to the popula-
tion of 20 networks trained in the environment with independent change points.

In Figure 7c, the change in unobserved bigram prediction for a given streak length m was computed 
as follows. First, prior sequences were generated and each network was run on each of the sequences. 
We generated initial sequences of 74 observations each with a probability of 0.2 for the 'observed' 
bigram (which will render its repetition surprising) and a probability p for the 'unobserved' bigram 
equal to 0.2 or 0.8 (such probabilities, symmetric and substantially different from the default prior 
0.5, should render a change in their inferred value detectable). We crossed all possibilities (0|0 or 1|1 
as observed bigram, 0.2 or 0.8 for p) and generated 100 sequences for each (hence 400 sequences 
total). Second, at the end of each of these initial sequences, the prediction for the unobserved bigram, 
pbefore, was queried by retrieving the output of the network after giving it as input ‘0’ if the unobserved 
bigram was 0|0 or ‘1’ otherwise. Third, the network was further presented with m repeated observa-
tions of the same value: ‘1’ if the observed bigram was 1|1 or ‘0’ otherwise. Finally, after this streak 
of repetition, the new prediction for the unobserved bigram, pafter, was queried (as before) and we 
measured its change with respect to the previous query, |pafter−pbefore|. This procedure was repeated 
for m ranging from 2 and 75.

https://doi.org/10.7554/eLife.71801
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For statistics, we ran a one- tailed two independent samples t- test to test whether the mean change 
in unobserved bigram prediction of the population trained on coupled change points was higher than 
that of the population trained on independent change points.

Complexity analyses
The complexity analysis reported in Figure 8 consisted in measuring, for each network architecture 
and each environment, the performance of optimally trained networks as a function of the number 
of units N. For optimal training, hyperparameter optimization was repeated at several values of N, 
for each type of network and each environment (the resulting values are listed in Table 1). For the 
complexity analysis, a grid of equally spaced N values in logarithmic space between 1 and 45 was 
generated, an additional value of 474 was included specifically for the networks without recurrent 
weight training so as to match their number of trained parameters to that of an 11- unit gated recur-
rent network, and an additional value of 1,000 was included specifically for the networks without 
gating to facilitate the extrapolation. For every value on this grid, 20 networks of a given architecture 
in a given environment were randomly initialized with the set of hyperparameter values that was 
determined to be optimal for the nearest neighboring N value in logarithmic space. The performance 
of these networks after training was evaluated using a new couple of training and test datasets per 
environment, each consisting of 400 minibatches of 20 sequences for training and 1000 sequences 
for testing.

Statistics
To assess the variability between different agent solutions, we trained 20 agents for each type of agent 
and each environment. These agents have different random seeds (which changes their parameter 
initialization and how their training data is shuffled). Throughout the article, we report mean or median 
over these agents, and individual data points when possible or 95% confidence intervals (abbreviated 
as "CI") otherwise, as fully described in the text and figure legends. No statistical methods were used 
to pre- determine sample sizes but our sample sizes are similar to those reported in previous publica-
tions (Masse et al., 2019; Yang et al., 2019). Data analysis was not performed blind to the conditions 
of the experiments. No data were excluded from the analyses. All statistical tests were two- tailed 
unless otherwise noted. The data distribution was assumed to be normal, but this was not formally 
tested. The specific details of each statistical analysis are reported directly in the text.

Code availability
The code to reproduce exhaustively the analyses of this paper is available at https://github.com/ 
cedricfoucault/networks_for_sequence_prediction and archived on Zenodo with DOI: 10.5281/
zenodo.5707498. This code also enables to train new networks equipped with any number of units 
and generate Figures 2–7 with those networks.

Data availability
This paper presents no experimental data. All synthetic data are available in the code repository at 
https://github.com/cedricfoucault/networks_for_sequence_prediction and archived on Zenodo with 
DOI: 10.5281/zenodo.5707498.
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Figure 1—figure supplement 1. Graphical model of the generative process of each environment. Nodes encode the variables and edges the 
conditional dependencies between variables. Each graph represents a factorization of the joint probability distribution of all variables in the generative 
process: this joint distribution is the product of the conditional probability distributions of each variable given its parents in the graph. For further 
details on the generative processes, see Materials and methods. In all environments, inferring the next observation from previous observations using 
such a graph is computationally dif"cult because it requires computing and marginalizing over the continuous probability distribution of the latent 
probabilities. This distribution is not easy to compute because it incorporates the likelihoods of the observations (for any latent probability value) and 
the change point probabilities from all previous time steps, and requires normalization. Notice also the increasingly complex conditional structures of 
the graphs from left to right. In the unigram environment, observations are conditionally independent given the latent probabilities, but in the bigram 
environments, they interact. In the bigram environment with coupled change points, the hierarchical structure implies that the two latent bigram 
probabilities are no longer conditionally independent of each other given their values at the previous time step, since they are connected by a common 
parent (the change point).
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Figure 3—figure supplement 1. Attunement of the effective learning rate to the change point probabilities. 
(a) Average effective learning rate of the gated recurrent networks as a function of the change point probability 
used during testing (columns) and during training (rows). Each row corresponds to a different set of 20 networks 
trained in the changing unigram environment with the indicated change point probability. Each column 
corresponds to a different test set with the indicated change point probability, each of 1000 out- of- sample 
sequences. The networks’ effective learning rate was measured and averaged over time, sequences, and networks. 
(b) Average effective learning rate of the optimal agent as a function of the change point probability used during 
testing (columns) and the prior on the change point probability assumed by the model (rows). The optimal agent 
was tested on the same sets of sequences as the gated recurrent networks and its effective learning rate was 
averaged over time and sequences.
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Figure 6—figure supplement 1. Performance across training and test environments. For each type of agent and each environment, a set of 20 
agents was trained in the given environment as in Figures 2, 5 and 6. The performance of each set of trained agents was then evaluated in each test 
environment, using 1,000 new sequences per environment and the same performance measure as in Figures 2 and 5. ch.: changing; ind.: independent 
change points; coup: coupled change points.
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Figure 8—figure supplement 1. Training speed of the gated recurrent networks in the changing unigram and 
bigram environments. During training, the networks’ weights were iteratively updated, with each update based on 
the evaluation of the cost function on 20 sequences. Prediction performance was repeatedly measured after each 
iteration as the % of optimal log likelihood on an out- of- sample validation set of 200 sequences. The thin lines and 
the thick line show the mean and the individual performances of the 20 networks, respectively.
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Abstract

Assessing probabilities and predicting future events are fundamental for perception and adaptive behavior, yet the
neural representations of probability remain elusive. While previous studies have shown that neural activity in
several brain regions correlates with probability-related factors such as surprise and uncertainty, similar correlations
have not been found for probability. Here, using 7 Tesla functional magnetic resonance imaging, we uncover a
representation of the probability of the next event in a sequence within the human dorsolateral prefrontal and
intraparietal cortices. Crucially, univariate and multivariate analyses revealed that this representation employs a
highly nonlinear code. Tuning curves for probability exhibit selectivity to various probability ranges, while the code
for confidence accompanying these estimates is predominantly linear. The diversity of tuning curves we found
recommends that future studies move from assuming linear correlates or simple canonical forms of tuning curves to
considering richer representations whose benefits remain to be discovered.
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Introduction

Our world is conveniently described in terms of probabilities. Examples include perception (e.g. “I’m sure I saw
someone I know in the crowd” (Kersten et al., 2004)), social interaction (“My boss is probably lying about my pay
rise” (Diaconescu et al., 2014)), and prediction (“It is unlikely to rain tomorrow” (Yang & Shadlen, 2007)). These
probabilities reflect the uncertainty of our beliefs about the world, due to the ambiguity of our inputs or limitations in
our information processing capabilities (Walker et al., 2023). Human behavior is adapted to these probabilities, as
shown by numerous examples both in laboratory experiments and in real life. To name a few, perception is tuned to
the probability of occurrence of a given object or feature in the visual, auditory, and somatosensory spaces
(Summerfield & de Lange, 2014), and choices are guided by the probability of reward (Rangel et al., 2008). These
behavioral results imply that probabilities must be encoded in the brain.

However, the neural code for probabilities remains largely unknown. Several studies have reported that neural
activity increases (or decreases) monotonically with quantities that are related to probabilities, but not with
probabilities themselves. Examples of related quantities include the coding of prediction error (Schultz et al., 1997),
surprise (O’Reilly et al., 2013), and predictability (Bach et al., 2011; Fiorillo, 2003; Monosov & Hikosaka, 2013) .
Some studies explicitly reported a failure to identify correlations between probabilities and neural activity (Lebreton
et al., 2015; Marshall et al., 2022).

Here, we tested the possibility that neural activity does not scale with probability levels, but instead that the neural
code for probability is nonlinear. The codes we studied belong to the broader class of codes that are characterized
by tuning curves. A tuning curve relates the value of a quantitative feature (e.g. the orientation of a grating (Hubel &
Wiesel, 1959), the number of items in a set (Eger, 2016; Moser et al., 2008; Nieder, 2016)) to the neural activity that
this value elicits on average across trials. A special case of tuning curve is the linear code, where neural activity is
simply proportional to the encoded quantity. The linear code has been extensively tested and it accounts for the
encoding of various quantities such as prediction error, surprise, predictability as mentioned above, and other
quantities not related to probabilities, e.g. value (Padoa-Schioppa & Assad, 2008), complexity (Wang et al., 2019),
salience (Kutlu et al., 2021). There are also numerous examples of quantities that are encoded with a nonlinear
code, such as orientation (Hubel & Wiesel, 1959), numerosity (Nieder, 2016), proportion (Jacob & Nieder, 2009).
For these quantities, tuning curves are not linear, but highly non-monotonic. They are often bell-shaped, but more
complex tuning curves have also been observed (Diehl et al., 2017; Hardcastle et al., 2017).

To adjudicate between linear and nonlinear codes for probability, it is necessary to characterize the brain’s tuning
curves for probability. We measured neural activity with ultra-high field fMRI (7T) because it provides a high
signal-to-noise ratio to capture the organization of the neural code at a millimeter-scale with a whole-brain coverage
(which is very useful given the lack of anatomical priors on the brain regions involved in the representation of
probabilities). We characterized tuning curves for probability in each fMRI voxel using a method that combines the
generality of function approximation with basis functions (Bishop, 2007) and linearizing encoding models (Huth et
al., 2016; Naselaris et al., 2011). This method does not make assumptions about tuning shape, in contrast to
related encoding methods (see Discussion, (Dumoulin & Wandell, 2008; Friston et al., 2007)). It is also more
informative about tuning curves than decoding methods. For example, linear classifiers (e.g. regularized linear
regression (Findling et al., 2023), support vector machine (Eger et al., 2009)) are often used to decode a quantity
from brain signals, but these methods can achieve high performance regardless of whether the underlying tuning
curves are linear, bell-shaped, or even more complex (Kriegeskorte & Diedrichsen, 2019). We analyzed the tuning
curves for probability both at the single-voxel level and at the level of populations of voxels to strengthen our
conclusions. At the single-voxel level, following a univariate approach, we quantified the form and degree of
nonlinearity of tuning curves. At the population level, following a multivariate approach, we quantified whether
patterns of voxel responses (more specifically their similarity across probabilities) conformed to a linear or a highly
nonlinear code.

In terms of experimental design, studying the neural representation of probability requires minimizing potential
confounds between probability, and other constructs and task features (Walker et al., 2023). For example, in
several previous studies the concept of probabilities has been confounded with evidence for a decision (Yang &

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.28.582455doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?97QyXU
https://www.zotero.org/google-docs/?ftKapA
https://www.zotero.org/google-docs/?vJbvyd
https://www.zotero.org/google-docs/?uzOBr2
https://www.zotero.org/google-docs/?i2jiZ4
https://www.zotero.org/google-docs/?9hjjDM
https://www.zotero.org/google-docs/?zPcDE7
https://www.zotero.org/google-docs/?aiJYwn
https://www.zotero.org/google-docs/?jb466a
https://www.zotero.org/google-docs/?87HkVN
https://www.zotero.org/google-docs/?87HkVN
https://www.zotero.org/google-docs/?A744H7
https://www.zotero.org/google-docs/?A744H7
https://www.zotero.org/google-docs/?5Mt5MQ
https://www.zotero.org/google-docs/?MQw0K1
https://www.zotero.org/google-docs/?ieOnHN
https://www.zotero.org/google-docs/?Fx8qXe
https://www.zotero.org/google-docs/?EqxKV3
https://www.zotero.org/google-docs/?7VTugs
https://www.zotero.org/google-docs/?agw4HI
https://www.zotero.org/google-docs/?8bJNwU
https://www.zotero.org/google-docs/?VPzReH
https://www.zotero.org/google-docs/?1XuZA8
https://www.zotero.org/google-docs/?1XuZA8
https://www.zotero.org/google-docs/?bjaJw7
https://www.zotero.org/google-docs/?0gnwix
https://www.zotero.org/google-docs/?DZotoi
https://www.zotero.org/google-docs/?KRvKNP
https://www.zotero.org/google-docs/?9DVTpf
https://www.zotero.org/google-docs/?dKuG3n
https://doi.org/10.1101/2024.02.28.582455
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shadlen, 2007), or with the reward that the subject expects to receive (Ferrari-Toniolo & Schultz, 2023; Kepecs et
al., 2008). Probabilities are also correlated with some motor or sensorimotor transformations in many tasks (Yang &
Shadlen, 2007), which is useful for studying the behavioral relevance of probabilities, but is a nuisance when
studying the neural code of probabilities themselves. To alleviate the problem of confounding factors and variables,
we used a probability learning paradigm. Participants estimated the (changing) generative probability of occurrence
of neutral items presented sequentially. To limit confounds related to motor actions and decision making, this
estimation was covert on most trials (on which the analysis focused), and behavioral reports of probabilities were
kept to a minimum. The design had no overt rewards to avoid confounds related to valuation processes. Finally,
probability is a latent parameter of this task (i.e., it is not observable in stimulus space), which minimizes confounds
related to sensory processes.

To anticipate our result, we provide evidence for the nonlinearity of the neural code of probability, and we
strengthen this conclusion by comparing it to another quantity whose code is linear. There is evidence from
previous studies that the confidence that accompanies a probability estimate in a learning task correlates (linearly)
with neural activity, particularly in regions of the fronto-parietal network (Bounmy et al., 2023; McGuire et al., 2014;
Meyniel & Dehaene, 2017; Tomov et al., 2020). The comparison between probability and confidence is not
confounded by between-subject differences, or differences in perceptual space since both are derived from the very
same sequence of stimuli.

Results

Task probing the representation of probabilities

We subjected twenty-six human subjects to a probability learning task and simultaneously measured their brain
activity using ultra-high field (7T) fMRI, to examine their neural representation of probabilities, and of the confidence
associated with their probability estimates. After one training session out of the scanner, subjects performed four
sessions of the task in the MRI scanner. In each session, subjects observe a sequence of 420 stimuli appearing
one by one, each with a binary value (A or B) sampled from a hidden generative probability p(A) (Fig. 1). This
hidden probability undergoes abrupt change points at random unpredictable times which were not signaled to the
subjects. The subject’s goal is to estimate the current value of the hidden probability throughout the sequence. To
perform the task correctly, subjects have to frequently update their estimate as new observations are made. This
experimental protocol allows us to efficiently probe the neural representation of probabilities and confidence as it
induces frequent variations in these quantities that can be compared with variations in measured neural activity.

To minimize disruption to the fMRI signals, we asked subjects to perform their estimation covertly and only
occasionally requested behavioral reports. The reports occurred during dedicated periods (on average every 22
stimuli), during which the subject had to choose a range for their current probability estimate and associate a level
of confidence with that estimate. We found a strong correspondence between the estimates reported by the
subjects and those of the normative model (see Methods) (Fig. 1 B; Pearson r=0.79 mean ±0.12 s.e.m, t25=31.8,
p<10-21 for probability and r=0.16±0.13, t25=5.9, p<10-5 for confidence). In another recent study, we found that this
strong correspondence with the normative model was consistently observed at the trial-by-trial level (Foucault &
Meyniel, 2023). In what follows, we thus used the estimates of the normative model as a proxy for those of the
subjects in order to relate trial-by-trial estimates with ongoing neural activity.

Encoding models and evaluation procedure

To relate probability and confidence estimates to neural activity, we constructed models that predict neural activity
as a function of the estimate of interest (probability or confidence), which we refer to as encoding models (Fig. 2A).
We defined two classes of models: the class of linear encoding models, which is the one classically used in fMRI
studies and which assumes a linear relationship between the variable of interest and neural activity, and the class
of versatile encoding models, which does not make such an assumption. Instead, the versatile class captures all
kinds of relationships, which include but are not restricted to linear relationships, by leveraging approximation
theory. The versatile class can approximate arbitrary functions as a weighted sum of basis functions (see Methods).
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To evaluate the encoding models, we incorporated them into a larger pipeline to obtain predictions at the level of
the fMRI signal measured in each voxel (Fig. 2A). The resulting model predicts the fMRI time series in a given
session from the probability or confidence estimates, as well as several factors of no-interest that we aim to control
for, including: the stimulus onset, the surprise elicited by the stimulus, the entropy associated with the probability
estimate (a measure of unpredictability), factors related to the report periods, and motion factors.

We fitted the model parameters and tested the fitted model on independent data using a leave-one-session-out
cross-validation procedure (see Methods). During testing, we only kept the part of the model corresponding to the
factor of interest (probability or confidence) and calculated the R2 score, which represents the predictive accuracy of
the model. Finally, to ensure that a positive score can only be obtained by an encoding related to the sequence
specifically observed by the subject and not merely to the statistical structure of the sequences in general, we
calculated a null distribution of R2 scores by performing the same analysis after replacing the true sequence with
other sequences, and standardized the score obtained with the true sequence relative to this null distribution to
yield the final score, which we call z-R2.

We validated our approach end-to-end using simulations (Fig. 2B). By simulating an experiment following our
protocol under the hypothesis that neural activity noisily encodes one of the two types of estimate (probability or
confidence) according to an encoding belonging to one of the two classes (linear or versatile), and by applying our
fMRI analysis pipeline to the simulated fMRI signal, we established that when neural activity encodes the same type
of estimate as the model, the linear model only explains the signal well when this encoding is linear, while the
versatile model explains the signal well no matter whether this encoding is linear or not. When neural activity and
the model encode a different type of estimate, the model does not explain the signal.

Neural encoding of probability

The versatile model revealed a significant encoding of probabilities in the prefrontal and parietal cortex (Fig. 3 and
Table 1). In contrast, the linear model did not reveal any encoding of probabilities across the cortex, even below the
significance threshold (see Fig. 3). The superiority of the versatile encoding model over the linear one is confirmed
by the statistical map of the difference in R2 the two models (Supplementary Fig. 1).

This pattern of results is consistent with those predicted under the hypothesis that neural activity encodes
probabilities in a nonlinear way (Fig. 2B, second row and first two columns of the matrix). Note that these results do
not depend much on the specific choice of basis functions, provided that they have the same approximation
properties (see Supplementary Fig. 2).

Neural encoding of confidence

Contrary to probabilities, for confidence, the linear encoding model significantly explains the measured signal in
large regions around the intraparietal and precentral sulci (Fig. 4 and Supplementary Table 1). This is consistent
with previous studies on the neural correlates of confidence (Bounmy et al., 2023; Meyniel & Dehaene, 2017). As
expected, the versatile encoding model also captures the signal in the regions explained by the linear model.
However, unlike probabilities, the regions captured by the versatile and the linear encoding models are very similar
throughout the cortex (Fig. 4). This indicates that probability and confidence are encoded differently by the brain,
which we sought to further characterize next.

Univariate characterization of the neural code

To characterize the neural code, we reconstructed the tuning curves measured at the vertex level. These curves
were obtained by calculating the sum of the basis functions weighted by the fitted weights of the versatile model
(Fig. 5A). For each subject, we focused on a set of vertices where the predictive accuracy of the versatile model
was large enough to ensure a reliable characterization of the tuning curves, which we verified by estimating the
tuning curves independently on two halves of the data (Pearson correlation of the estimated weights on the two
halves for the vertices of interest: 0.55±0.03 and 0.51±0.04 for probability and confidence, respectively). See
examples of tuning curves estimated on the whole and on two halves of the data in Fig. 5B.
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We used three characteristic measures to describe and compare the tuning curves for probability and confidence
(Fig. 5C). For all three measures, the neural encoding of probability and confidence differed significantly. The first
measure looked at the location of the maximum of the tuning curve (i.e., the probability or confidence value that
maximizes neural activity). This maximum is expected to be close to one of the two extremes in the case of a linear
code. Compared to confidence, tuning curves for probability were more often maximized at non-extreme values
(Fig. 5C, proportion: 84±6 % for probability vs. 42±6 % for confidence, p<0.001, two-tailed t-test). The second
measure looked at the degree of non-monotonicity of the tuning curves, quantified by a continuous index between 0
and 1 (see illustration in Fig. 5C). According to this index, tuning curves were more non-monotonic for probability
than for confidence (Fig. 5C, 0.61±0.04 for probability vs. 0.36±0.04 for confidence, p<0.001, two-tailed t-test). The
third measure looked at the degree of nonlinearity of the tuning curve (corresponding to the degree of a polynomial,
the higher the degree, the more nonlinearities). This measure showed that tuning curves were more nonlinear for
probability than for confidence (Fig. 5C, 4.5±0.4 for probability vs. 3.5±0.2 for confidence, p<0.05, two-tailed
Kruskal-Wallis test by ranks).

Multivariate characterization of the neural code

So far, the analysis has been univariate, focusing on one voxel at a time. If different voxels are tuned to different
ranges of probability, as indicated by the above encoding analysis, then patterns of voxel responses should be
informative about probability, which we tested with a multivariate decoding approach. Furthermore, the pattern of
voxel response should exhibit different geometric properties if they arise from nonlinear vs. linear codes, providing
another test of the hypothesis that the neural code for probability is highly nonlinear. Below, we present thise two
analyses.

We measured the extent to which probability (and for comparison, confidence) could be decoded in different brain
regions by dividing the cortex following the parcellation by Glasser et al (Glasser et al., 2016) and pooling
homologue regions in both hemispheres, resulting in 180 regions. We based our decoding approach on the
versatile encoding model presented above. The versatile encoding model quantifies in each voxel the weights of
basis functions of probability. The basis functions being equally spaced narrow Gaussian functions, the set of
estimated weights can be thought of as characterizing the voxel responses to different bins (i.e. narrow ranges) of
probability. We tested whether it is possible to identify (i.e. decode) these probability bins given the pattern of voxel
responses that they elicit. We used 5 probability bins instead of 10 as in the encoding approach presented above to
make the estimates of weights more reliable, and thus decoding easier. We adopted the same approach to decode
confidence levels.

We trained and tested the decoder on different data sets, using leave-one-session-out cross validation at the
subject-level (Varoquaux et al., 2017). First, we reduced dimensionality in each region by selecting the 100 voxels
that are the most informative about probabilities (using the z-R² metric introduced above, but estimated using the
training sessions only). Then we estimated the patterns of voxel responses for different probability bins, for the test
session on the one hand and the three training sessions together on the other hand. Last, we decoded the
probability bin corresponding to a response pattern in the test session by identifying the probability bin eliciting the
most similar response pattern in the training session. We computed the decoding accuracy for each brain region
and tested for statistical significance against chance-level accuracy at the group level (see Fig. 5 and Methods).

Decoding accuracy was generally larger for confidence than probability (Fig 6, Tables 2 & 3), which is expected
given that the versatile encoding model accounted for voxel responses in more regions based on confidence than
on probability (Fig. 4 vs. 5). For probability, we found 6 regions with FDR-significant decoding accuracy. They
comprised the dorsolateral prefrontal cortex and the intraparietal cortex, which had been identified with the
encoding approach. For confidence, more regions exhibited a FDR-significant decoding accuracy, notably in
parietal and prefrontal cortex, similar to the regions identified with the encoding approach.

Decoding accuracy indicates that patterns of voxel activity are informative about probability or confidence, but it
does not characterize the type of neural code being used. We examined more closely the patterns of voxel
responses to test for the existence of different codes for probability and confidence. More precisely, we examined
the matrices that quantify the dissimilarity of patterns of voxel responses between bins of probability (and similarly,
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bins of confidence) that served as a basis for decoding. These matrices are called representational dissimilarity
matrices (RDM) (Kriegeskorte & Kievit, 2013). Different types of code predict different types of RDM. If the code is
highly nonlinear and non-monotonic, as suggested by the encoding analysis of probability, then the patterns of
voxel responses should be maximally similar when representing the same probability bin, and equally dissimilar
between a given bin and any other bin, resulting in an identity RDM (Fig. 7A). In contrast, if the code is highly linear
(or more generally monotonic), as suggested by the encoding analysis of confidence, then the patterns of voxel
responses should be more similar for confidence bins that are closer to one another, resulting in a graded RDM. To
determine which code best accounted for the empirical RDMs, we regressed the RDMs for probability (and
confidence) obtained in each region onto the identity RDM and graded RDM arising from highly nonlinear and linear
codes, respectively.

We first focused on the 5 regions exhibiting the most significant decoding accuracy, separately for probability (Fig.
7B) and confidence (Fig. 7C). The identity RDM significantly accounted for the RDMs for probability, while no
significant effect of the graded RDM was found, and the difference between the two approached significance in
most regions. In contrast, for confidence, the graded RDM significantly accounted for the RDMs, the identity RDM
yielded no significant effect, and their difference was significant in most regions.

We then carried another analysis that covered all regions. We counted the number of regions best explained by the
identity or the graded RDM based on the maximum regression coefficient. A majority of regions followed the graded
RDM in the case of confidence (Mgraded=0.672, SEM=0.132, t=3.6, p=0.0014, t-test against 0.5) whereas a majority
of regions followed the identity RDM in the case of probability (Mgraded=0.436, SEM=0.086, t=-1.8, p=0.078, t-test
against 0.5), and the difference between confidence and probability was significant (paired difference 0.236,
SEM=0.0462, t=3.6, p=0.0014, t-test). Together, these results indicate that the codes for probability and confidence
are different, being respectively highly nonlinear and mostly linear, which confirms the conclusion of the encoding
analysis presented above.

Discussion

We used a task in which participants estimated the latent probability of a stimulus occurring in a sequence.
Subjects accurately tracked this latent probability, as revealed by the comparison of their reports with an ideal
observer. We identified a representation of this latent probability in the fMRI signals recorded outside of the report
periods, particularly in the dorsolateral prefrontal cortex and intraparietal cortex. Crucially, this representation was
based on a nonlinear code. In contrast, the representation of the confidence that accompanied the probability
estimate was based on a linear code. Detailed analysis revealed that the vast majority of fMRI voxel tuning curves
for probability were non-monotonic, with one or more local extrema. In contrast, the tuning curves for confidence
were essentially linear. In addition, a linear code and a highly nonlinear code are expected to result in different
geometries, which we confirmed with a multivariate analysis of the patterns of voxels responses to probability and
confidence.

Our results relied on the use of a versatile encoding model capable of accommodating tuning curves of almost any
shape. To this end, we combined the universal function approximation properties of basis sets (Bishop, 2007;
Franke, 1982) with the use of linearizing encoding models for fMRI (Huth et al., 2016; Naselaris et al., 2011). This
method consists of applying basis functions to a quantity of interest to obtain features and then modelling the fMRI
signal in each voxel as a linear combination of these features, following the general linear model approach that is
massively used in fMRI (Friston et al., 2007). This approach is related to other methods that can accommodate
nonlinear tuning curves, such as population receptive field (pRF) mapping (Barretto-García et al., 2023; Dumoulin &
Wandell, 2008; Harvey et al., 2013). The key difference is that pRF methods assume a specific form of nonlinearity,
typically bell-shaped tuning curves, corresponding to the idea that a voxel is selective for a range of values. In
contrast, our method can accommodate tuning curves exhibiting a selectivity for multiple value ranges. It turns out
that approximately a third of tuning curves we obtained for probability did not conform to a bell-shaped tuning as
they exhibited more than one peak. Our finding that the neural representation of probability is highly nonlinear
retrospectively explains null findings in previous studies that used methods assuming a linear code (Bounmy et al.,
2023; Lebreton et al., 2015; Marshall et al., 2022).
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Our results raise the puzzling question of why some quantities are encoded with linear codes, such as confidence
here, or reward (Lebreton et al., 2009; Padoa-Schioppa & Assad, 2008), salience (Kutlu et al., 2021), surprise
(Meyniel & Dehaene, 2017; O’Reilly et al., 2013), prediction error (Pessiglione et al., 2006; Schultz et al., 1997),
evidence accumulation (Brunton et al., 2013; Gold & Shadlen, 2007) and some other quantities are encoded with
nonlinear codes, such as probability here, or orientation of visual object (Hubel & Wiesel, 1959), angle in arm
reaching (Georgopoulos et al., 1986), numerosity (Nieder, 2016). This question is beyond the scope of our study,
but we mention some speculations. Some scalar quantities lie on an axis whose direction is relevant to the
regulation of behavior and brain processes. For instance, humans and other animals generally seek more, not less,
rewards (Rangel et al., 2008). A linear code with increasing activity levels for larger rewards may, in downstream
circuits, facilitate the invigoration of behavior to obtain larger rewards (Pessiglione et al., 2007), and the comparison
of different reward levels (which, in a linear code, simply amounts to comparing activity levels). A similar argument
applies to salience, surprise, accumulated evidence, and lack of confidence. Higher values of these quantities
usually enhance other processing: more salient and surprising events elicit stronger orienting responses (Sara &
Bouret, 2012), lower confidence about a learned estimate increases the learning rate (Foucault & Meyniel, 2023;
Nassar et al., 2010). In contrast, in our task, the probability of occurrence of a right- vs. left-tilted Gabor patch has
no valence and it is not immediately relevant to behavior. Interestingly, the average response across a population
(of neurons or voxels) is invariant to the value encoded in a nonlinear code with sufficiently diverse tuning curves.
Assuming that more neural activity is costly (Gallistel, 2017), this invariance property implies that the same energy
budget is expended to represent any probability, in particular for low (close to 0) and large (close to 1) probabilities.
In contrast, encoding reward, salience, surprise, or lack of confidence with increasing (linear) levels of activity
appropriately expends more energy on larger, behaviorally relevant values.

Here, we found a neural representation of probabilities predominantly in the dorsolateral prefrontal cortex, the
precentral sulcus and the parietal region. The dorsolateral prefrontal and intraparietal cortices have been reported
to host a general coding system for magnitudes of different types, from number of objects to proportions in humans
and monkeys (Eger, 2016; Nieder, 2016). Our results suggest that this general coding system may also encode
probability. In our results, the dorsolateral portion of the prefrontal cortex appeared to encode only probability,
whereas the precentral sulcus and the parietal regions encoded both confidence (with a linear code) and probability
(with a nonlinear code). Simulations showed that a linear code for confidence and a nonlinear code for probability
can be clearly distinguished from one another; their co-localization is therefore a notable finding. We speculate that
if a region is involved in estimating and encoding of probabilities, it should be more active when the estimate is
updated more, which typically occurs when confidence is lower (Bounmy et al., 2023; McGuire et al., 2014; Tomov
et al., 2020). Co-localization of a nonlinear code for probability and a decreasing (linear) code for confidence would
then be expected. Future studies should distinguish between updating and representing probabilities, and our
results suggest that these processes may differentially involve the dorsolateral prefrontal cortex on the one hand,
and the precentral sulcus and parietal region on the other hand.

It is important to distinguish between the representation of an event probability and the representation of a
probability density function (of scalar variables such as the orientation of a grating). The latter has been
investigated by two lines of research focusing on encoding and decoding, respectively. On the one hand, some
researchers have proposed that probability density functions are encoded in activity patterns (Jazayeri & Movshon,
2006; Zemel et al., 1998). On the other hand, research on probabilistic population codes (Ma et al., 2006) posits
that, with certain models of neural variability, probability density functions can be decoded from activity patterns in
the form of a posterior distribution over some scalar variable. Here, we have identified a neural code for the event
probability (which is the mean of the posterior distribution); it remains open whether the brain also codes a
probability density function of the event probability (i.e. its full posterior distribution, see Eq. 1 in Methods).
Following the encoding approach (à la Zemel et al), we have tested a variant of the versatile encoding model that
encodes the full posterior distribution of the event probability (instead of its mean; see Methods). We found no clear
evidence for such a representation (see Supplementary Fig. 3). We did not attempt to follow the probabilistic
population code approach (à la Ma et al), because it requires modelling the variability of the responses elicited by a
given probability (van Bergen et al., 2015), which is difficult to obtain in practice but promising for future research.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.28.582455doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?noS9HH
https://www.zotero.org/google-docs/?QXmcy1
https://www.zotero.org/google-docs/?f4YuxC
https://www.zotero.org/google-docs/?QqYdYE
https://www.zotero.org/google-docs/?MYQlMO
https://www.zotero.org/google-docs/?s6XYrm
https://www.zotero.org/google-docs/?JbjVNQ
https://www.zotero.org/google-docs/?9bt34x
https://www.zotero.org/google-docs/?VNw2LG
https://www.zotero.org/google-docs/?EdmuVq
https://www.zotero.org/google-docs/?YLnYmK
https://www.zotero.org/google-docs/?YLnYmK
https://www.zotero.org/google-docs/?uWxZz1
https://www.zotero.org/google-docs/?uWxZz1
https://www.zotero.org/google-docs/?QPB5Xa
https://www.zotero.org/google-docs/?KtXDPA
https://www.zotero.org/google-docs/?khVm80
https://www.zotero.org/google-docs/?khVm80
https://www.zotero.org/google-docs/?HZt8G7
https://www.zotero.org/google-docs/?HZt8G7
https://www.zotero.org/google-docs/?2zshIJ
https://www.zotero.org/google-docs/?AyGIlb
https://doi.org/10.1101/2024.02.28.582455
http://creativecommons.org/licenses/by-nc-nd/4.0/


We acknowledge that our results do not exclude the possibility that other coding schemes are used to represent
probability. Functional MRI can study rate codes (in which information is conveyed by the rate of spikes, not their
timing) at the level of voxels, but its temporal resolution is incompatible with the study of temporal codes (Dayan &
Abbott, 2005), especially at the level of neurons. Temporal codes may also be used for probabilities. Probabilities
could in principle also be stored in synaptic weights (Iigaya, 2016) or intracellular substrates (Gallistel, 2017). It has
been claimed that the function of neural activity (and thus indirectly, the fMRI signal (Logothetis et al., 2001)) is to
transmit information, which is much more energetically costly than storing information in a cellular substrate
(Gallistel, 2017). We note that the probability here has to be constantly updated because there are change points
occurring at random, un-signalled times. The reason why we found a representation of probabilities in fMRI activity
patterns may be because probabilities were being constantly updated by subjects. This updating process, which
involves the interaction of neurons that combine the current estimate with information about the incoming stimulus,
may cause fMRI activity patterns tuned to probability. In this view, had the probabilities not been frequently updated,
we may not have detected them in activity patterns. This possibility remains to be tested.

We now turn to discuss some limitations of our approach. First, we have used binary sequences with stimulus A or
B, so that the generative process can be described equivalently in terms of p(A) or p(B), since p(A)=1-p(B). We
found evidence that some pieces of the cortex exhibit similar activity for values of p(A) that are symmetric with
respect to 0.5, e.g. when p(A)=0.2 and p(A)=0.8 (see Supplementary Fig. 4). This may be due to a representation
of the event probability switching between p(A) and p(B), or due to a similar proportion within a voxel of neurons
each coding for either p(A) or p(B). Another possibility is that some representations of probability may focus on the
probability of the most likely stimulus (the one with p>0.5) and the identity of this stimulus (these two pieces of
information are sufficient to reconstruct p(A) and p(B) in the binary case). The use of more than 2 items in a
sequence would be useful to adjudicate between these different possibilities.

Invariance is a useful criterion for testing for neural representations, especially in the context of uncertainty (Walker
et al., 2023). The invariance of probability representation could be tested with respect to the features of the stimulus
(e.g. visual stimuli that differ in shape, or color, rather than orientation) or the sensory modality used (e.g. auditory
stimulus (Meyniel & Dehaene, 2017)). The origin of the probability could also be changed. Here, the probability
originates from a statistical learning process operating on a sequence, but not all probabilities do. Reasoning and
memory can also be used, for example when estimating the probability that a statement is true, such as “Is Paris
bigger than Berlin?” (Lebreton et al., 2015).

In addition, the timing of the task and the poor temporal resolution of fMRI precluded the use of trial-level decoding,
which was done at the session level here. Future studies could explore a decoding of probability across trials,
perhaps benefiting from the use of better time-resolved recordings such as electrophysiology.

In summary, we have unraveled a neural representation of event probability in the human cortex that is based on a
highly nonlinear code, and that cannot be detected by simpler methods that assume a linear code. The methods we
have developed here can be used to search for neural representations of probability in many different types of
tasks.

Methods

Participants and task

The behavioral and fMRI data used in this paper have already been analyzed in (Bounmy et al., 2023).
Experimental protocols were approved by the local ethics committee (CPP-100032 and CPP-100055 Ile-de-France)
and the informed consent of all 29 participants (15 female, mean age 25.4 ±1.0 s.e.m.) was obtained before they
began the experiment. Three participants were excluded from analysis due to acquisition problems, resulting in an
effective total of N=26 subjects for analysis.

After receiving task instructions and completing a training session, participants entered the MRI scanner and
performed 4 task sessions, during which the scanner recorded functional MRI data. Each session lasted
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approximately 11 minutes and consisted of a sequence of 420 stimuli presented one after the other, for 1 s each,
with an inter-stimulus interval of 0.3 s (see example in Fig. 1A).

Each stimulus had a binary value, A or B, represented in the task by one of two distinct orientations of a
high-contrast grating, easily distinguishable from each other. The values were drawn from a Bernoulli distribution
with a hidden generative probability p(A) to be learned, whose value will be denoted ht. The hidden probability ht
followed a stochastic change-point process: at each time step, it could either remain the same or undergo a change
point, with a change-point probability of 1/75 under the constraint of a maximum period of 300 stimuli without
change points. The value of ht was uniformly sampled between 0.1 and 0.9 initially and at each change point, under
the constraint that the odds of A changed by a factor of at least four.

Throughout the task, the subjects’ goal was to estimate the hidden probability ht. The occurrence of unsignaled and
unpredictable change points made the estimation all the more challenging. Accurate estimation requires making
probabilistic inferences about the value of ht given the observed stimuli, with knowledge of the generative process
of the sequences, as described in the task model below. Subjects could make such inferences as they had been
briefed about the generative process in an informal way during the instructions phase.

Subjects were instructed to continuously estimate the probability during the sequence, and were occasionally asked
to report their estimate during dedicated time periods. Isolating the report periods from the periods of stimuli and the
estimate updates they elicited allowed us to ensure that neural representation of the factors of interest we found in
the fMRI recordings, related to the estimation process, were not confounded by the subject’s reporting. Report
periods occurred on average every 22 stimuli, with a random uniform jitter of ±3 stimuli maximum. Each report
period consisted of a response screen where the subject made two choices: a choice of estimate range for ht
among three or five possible ranges (the scale was randomly selected between the three-choice scale and the
five-choice scale for each period, except for the first half of participants where the scale was always the five-choice
scale), and a choice of confidence level associated with this estimate among five possible levels. These choices
were made using a right-handed five-finger button pad. Although the choices were discrete, subjects were
instructed to internally generate continuous-valued estimates. They were further incited to do so in order to produce
correct reports as they did not know in advance which scale, and therefore which choice ranges would be available
(there being no trivial mapping between the two scales).

Task model

The model we used for the task is the normative model, in the sense that it produces, for each trial, the optimal
estimate of the hidden probability that the subject could have produced, given the stimuli they have observed so far
and their knowledge of the generative process of the task. This estimation problem requires inferring the value of ht
given the stimulus values observed in the past s1:t. Since the generative process is probabilistic, the inference
problem is also probabilistic (the value of ht cannot be determined with certainty). Using the rules of probability
calculus and in particular Bayes' rule, a posterior distribution on ht can be calculated, denoted as p(ht | s1:t).

In the present case, one solution to calculate algorithmically the posterior distribution is to proceed iteratively on the
observations, initializing p(h0) to a uniform distribution and computing p(ht+1 | s1:t+1) based on the value of st+1 and the
previously computed p(ht | s1:t). This calculation is done using the following formula.

p(ht+1 | s1:t+1)∝ p(st+1 | ht+1) ∫ p(ht+1 | ht) p(ht | s1:t) dht [1]

This formula is derived from the rules of probability calculus by leveraging two conditional independence properties
of the present generative process: (1) st+1 is conditionally independent of s1:t given ht+1; (2) ht+1 is conditionally
independent of s1:t given ht. See Supplementary Note 1 for the derivation.

The ∝ operator denotes the equality up to a constant factor. This constant is implicitly factored in at computation
time by normalizing the right-hand side of equation [1] so that it sums up to 1 over the possible values of ht+1, to
obtain the left-hand side. The term p(st+1 | ht+1) is given by the Bernoulli distribution, equal to ht+1 or (1-ht+1)
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depending on whether st+1 is A or B. The term p(ht+1 | ht) reflects the generative probability that a change point
occurs (1/75) or does not occur (74/75), depending on whether ht+1 is different from or equal to ht, respectively.

The normative estimate of hidden probability and the associated confidence are both calculated from the posterior
distribution. The probability estimate is equal to the mean of the posterior, E[ht+1 | s1:t]. It is optimal in the sense that
it minimizes the mean squared error with the true value, and is equal to the posterior probability that the next
stimulus value is A (this is formally what subjects were asked to report). Confidence was defined as -log SD[ht+1 |
s1:t], the log-precision of the posterior (up to a factor of two). Hereafter, we will use the symbol x to refer to these two
types of estimates indiscriminately (xt representing the estimate for stimulus st) as the presented encoding models
are mostly independent of the specific type of estimate being encoded.

The task model was implemented using Python and the NumPy package (https://numpy.org).

Encoding models

Encoding models predict the fMRI activity of a voxel as a function of the estimates obtained from the stimulus
sequence seen by the subject. We defined four main encoding models, 2×2, depending on whether the encoded
estimates are probability or confidence estimates, and whether the model tuning curve function belongs to the
linear or the versatile class (Fig. 2).

We also considered another model, following a hypothesis proposed in the literature, in which the activity was a
function of the entire posterior distribution (rather than a moment of the distribution, like the probability and
confidence estimates are) (Sahani & Dayan, 2003; Zemel et al., 1998). That is, in that model, fi(x) in equation [3]
was replaced by its posterior mean ∫fi(x)p(x)dx, where p is the posterior distribution. However, when we tested that
model on our fMRI data, it explained the data less well than the simpler models encoding the probability or
confidence estimates (see Supplementary Fig. 3). Therefore, we focused on the simpler models.

The probability and confidence estimates are calculated from the sequence as explained in the "Task Model"
section above. The model tuning curve function maps the encoded estimate, x, to a prediction of neural activity, ŷ,
and is parameterized with weights w that are to be fitted to the data. In the linear class, this function is of the form:

ŷ = w x [2]

In the versatile class, this function is of the form:

ŷ = wi fi(x) [3]
𝑖=1

𝐾

∑

where the fi are (radial) basis functions that have approximation properties (Franke, 1982). Here, we used Gaussian
basis functions, but we also performed simulations using sigmoid basis functions, and the results were similar
whether we used Gaussian or sigmoid functions (Supplementary Fig. 2). The Gaussian basis functions are
expressed fi(x) = c exp[-(x-𝜇i)2 / (2𝜎2)]. The centers of the basis functions µi were distributed to have equal spacing
between two consecutive centers, between the lower bound of the interval and the first center, and between the
upper bound and the last center (the interval being [0, 1] for probability, and [1.1, 2.6] for confidence). The number
of basis functions was K=10, and their dispersion was 𝜎=0.04 for probability and 𝜎=0.06 for confidence. These
values were determined through simulations to optimize the R2 scores averaged over a wide range of simulated
activity with different K and 𝜎 values.

To transform the predictions of the theoretical models described above into predictions at the level of fMRI activity in
a voxel, we convolved the encoding model regressors (that is, the scalar quantities that are multiplied with the
weights w: x in the linear case and the fi(x) in the versatile case), with the canonical hemodynamic response
function at the onsets of the corresponding stimuli (these convolved regressors are often referred to as "parametric
modulations" in the fMRI community).

Additionally, we included in the encoding model other regressors corresponding to factors of no-interest in this
study, which we removed during testing to evaluate the specific encoding of probability or confidence. The
regressors of no-interest were the following.
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● Parametric modulations of stimulus onsets associated with factors other than probability and confidence:
○ a constant
○ the Shannon surprise induced by the stimulus, -log p(s), where s is the stimulus value and p(s) is

the normative probability estimate for that stimulus value given the previously observed stimuli
○ the Shannon entropy of the outcome implied the normative probability estimate, -p log(p) - (1-p)

log(1-p) (see Supplementary Fig. 4).
● Parametric modulations of response screen onsets modeling reporting periods (including, for each period, a

response screen for probability and another for confidence):
○ a constant
○ the normative estimate
○ the estimate reported by the subject

● Six motion regressors

Finally, we applied the same temporal preprocessing to all regressors as we applied to the fMRI signal (detrending,
filtering, z-scoring across sessions, and session-wise demeaning, see MRI data preprocessing section).

At the voxel level, the fMRI activity predicted by the model after preprocessing, ŷfMRI, is written as ŷfMRI = w ẋ + wnn
for the linear model, and ŷfMRI = w ḟ(x) + wn n for the versatile model, where ˙ represents the convolution and
temporal preprocessing operations, w and f are the vectors [w1, …, wk] and [f1, … , fk], n is the vector comprising all
preprocessed regressors of no-interest, and wn is their associated weights vector (bold symbols denote vectors as
opposed to scalar quantities).

The encoding models were implemented using Python, NumPy (https://numpy.org), and nilearn
(https://nilearn.github.io).

Evaluation of the encoding models

We evaluated the ability of the encoding models to predict fMRI data for a given subject using
leave-one-session-out cross-validation: three sessions were used for training the model, and the fourth, left-out
session, was used to test the trained model. This procedure was repeated for each of the four possible choices of
the left-out session, and the test scores obtained were averaged across the four left-out sessions.

Training. During training, the weights of the encoding model were fitted using Ridge regression. The Ridge penalty
was calculated using an analytical formula that adjusted the amount of penalty (𝜆) based on the number of model
parameters (m): 𝜆=199m, which was validated through simulations.

Testing. During testing, we calculated the fMRI activity predicted by the model using only the part of the model
associated with the factors of interest (probability or confidence). (This is equivalent to replacing the regressors of
no-interest with their mean value for the session, which is equal to 0 after session-wise demeaning.) As a score, we
first calculated the R2 obtained by comparing the model predictions with the actual fMRI data, using the
sums-of-squares formulation (Poldrack et al., 2020). We then calculated a null distribution of R2 scores by injecting
null predictions into the R2 calculation. These null predictions were obtained by replacing the true stimulus
sequence seen by the subject with another sequence randomly generated according to the task generative
process, for 100 generated sequences. Finally, we calculated the score we call z-R2 by standardizing the R2 score
obtained for the true sequence by the mean, µ0(R2), and standard deviation, 𝜎0(R2), of the null distribution: z-R2 =
(R2 - µ0(R2)) / 𝜎0(R2).

Models were fitted and tested using Scikit-Learn (https://scikit-learn.org).

Simulation of encoding models

We conducted simulations to verify that our procedure, applied in our experimental protocol, was able to detect and
differentiate a neural encoding of probabilities or confidence, linear or nonlinear. For this purpose, experimental
data was generated assuming a certain encoding model, and the generated experimental data was analyzed with
other encoding models. As for subjects, each generated experiment consisted of four sessions, with one sequence
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of stimuli per session, generated according to the task process. Noisy fMRI activities were then generated for each
session and a certain number of simulated voxels assuming a certain generative model of neural activity, which
corresponded to one of the four encoding models presented above (encoding of probability or confidence
estimates, according to a linear or a versatile encoding model).

The procedure for generating fMRI activity was as follows. For each simulated voxel, we randomly generated
weights for the generative model by drawing each weight uniformly in [-0.5, 0.5]. We generated the "signal"
component of the fMRI activity in accordance with the generative model, by calculating the weighted sum of the
corresponding fMRI regressors as described in the above section on encoding models. We then injected Gaussian
white noise with power equal to nine times that of the signal, in order to obtain a signal-to-noise ratio of 10% signal
to 90% noise. This produced a set of fMRI activities for each generated experiment and each possible generative
model.

For each generated experimental data, the procedure presented in the above section was used to fit the encoding
models and evaluate their ability to predict the simulated fMRI data (as subsequently done for the subjects' fMRI
data). This produced one z-R2 score per voxel, fitted model, generative model, and generated experiment. We
averaged the scores obtained across one hundred experiments and one hundred simulated voxels to obtain an
average z-R2 score for each possible generative model × fitted model pair, resulting in a 4×4 matrix, shown in Fig.
2B.

This analysis was also performed by splitting the versatile model into one with Gaussian basis functions and one
with sigmoid basis functions to produce the matrix shown in Supplementary Fig. 2.

The simulations were implemented using Python and Numpy.

MRI data acquisition

Equipment. The MRI scanner was a Siemens MAGNETOM 7 Tesla at the NeuroSpin center (CEA Saclay, France),
with whole-body gradient and 32-channel head coil by Nova Medical.

Functional MRI acquisition. Whole-brain functional volumes with 1.5mm isotropic voxels and T2*-weighted
fat-saturation images were acquired using a multi-band accelerated echo-planar imaging sequence (Moeller et al.,
2010; https://www.cmrr.umn.edu/multiband/). The sequence parameters were: multi-band factor = 2 (MB); GRAPPA
acceleration factor = 2 (IPAT); partial Fourier = 7/8 (PF); matrix = 130 × 130, number of slices = 68, slice thickness
= 1.5 mm, repetition time = 2 s (TR); echo time = 22 ms (TE); echo spacing = 0.71 ms (ES); flip angle = 68° (FA);
bandwidth = 1832 Hz/px (BW); phase-encoding direction: anterior to posterior.

Before each session, two single-band functional volumes were acquired with the above parameters except that
they had opposite phase-encoding directions. This was later used for distortion correction (see below in
Preprocessing).

A Gradient Recalled Echo (GRE) sequence was acquired for calibration before starting the sessions. For shimming,
a B0 map was acquired and loaded in the console, first of the whole brain, then in an interactive fashion on the
occipito-parietal cortex. This aimed to reduce the FWHM and increase the T2*. A B1 map was then acquired and
the intraparietal sulcus values were used to compute a reference voltage from which the system voltage was
chosen.

Anatomical MRI acquisition. Whole-brain T1-weighted anatomical images with 0.75 mm isotropic resolution were
acquired using an MP2RAGE sequence. The sequence parameters were: GRAPPA acceleration factor = 3 (IPAT),
partial Fourier = 6/8 (PF), matrix = 281 × 300, repetition time = 6 s (TR), echo time = 2.96 ms (TE), first inversion
time = 800 ms (TI1), second inversion time = 2700 ms (TI2), flip angle 1 = 4º (FA1), flip angle 2 = 5º (FA2),
bandwidth = 240 Hz/px (BW).
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MRI data preprocessing

The functional volume slices were corrected for slice-timing with respect to the slice acquired in the temporal middle
of a volume acquisition. The functional volumes were corrected for motion using rigid transformations, and
co-registered to the anatomical image. Session-wise distortion correction was applied to the functional volumes
using FSL apply_topup, after having estimated a set of field coefficients for the session using FSL TOPUP with the
two-single band volumes with opposite phase-encoding directions acquired before that session.

Prior to encoding and decoding analyses, the fMRI time series of each voxel and session were temporally
detrended and high-pass filtered at a cutoff frequency of 1/128 Hz. The series from the four sessions were then
concatenated in order to z-score the fMRI data across the four sessions for each voxel for numerical convenience.
Note that we did not z-score the fMRI data per session because under the versatile encoding model, it is expected
that the variance of the fMRI signal should change from session to session depending on the probabilities and
confidence levels estimated during each session. Finally, the mean of each session was subtracted from the data in
order to ignore any changes in the signal baseline between sessions that might be caused by nuisance factors.

Slice-timing correction, motion correction, and co-registration were done using tools from SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12). Distortion correction was done using tools from FSL
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). SPM12 and FSL were called from Python using the NiPype module
(https://nipype.readthedocs.io). Further preprocessing was done using Python and the NumPy, SciPy
(https://scipy.org) and nilearn (https://nilearn.github.io) packages.

Conversion of volumetric data into cortical surface data.

Here we detail the processing steps we used throughout this study to project subject-level volumetric data, such as
the R2 and z-R2 scores computed from the fMRI data (see section on encoding model evaluation), onto the cortical
surface, and to bring them into a common space across subjects. These processing steps were performed using
FreeSurfer (https://surfer.nmr.mgh.harvard.edu) and the Python interface to FreeSurfer commands provided by the
NiPype module. The resulting surface data were then analyzed by working directly with the numerical arrays in
Python, unless otherwise stated.

For each subject, the cortical surface was reconstructed from the acquired high-resolution anatomical MRI image
by running the FreeSurfer command 'recon-all'. These reconstruction data were then used to project other
volumetric data calculated from the functional data onto the cortical surface, working in the subject's native space.
This projection was performed using the 'mri_vol2surf' command. The surface data were then normalized, i.e.,
resampled to be brought into a common space: the 'fsaverage' template of FreeSurfer, version 7 high-resolution
(163,842 vertices per hemisphere), and were spatially smoothed with a Gaussian kernel of 3mm full width at half
maximum. The resulting data are surface maps containing one data point per vertex (a vertex is the surface
equivalent of a voxel in the volume, called vertex because vertices are assembled to define polygons that together
form a three-dimensional mesh of the cortical surface).

Group-level statistical maps

The subjects’ z-R2 surface maps were grouped together and a one-sample t-test against zero was performed at the
group level. The resulting p-value maps were thresholded at the vertex level with a threshold of p<0.001, and
corrected for multiple comparisons with a family-wise error rate of pFWE<0.05 using FreeSurfer’s Monte Carlo
simulation-based cluster correction with a vertex-wise cluster-forming threshold of p<0.001.

Definition of vertices of interest for characterization

To ensure the reliability of the tuning curves used for characterization, we defined a set of vertices of interest for
which the encoding signal was sufficiently strong. One set was defined per type of estimate and per subject, as the
vertices with the strongest encoding signal are not the same for probability and confidence, and vary across
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subjects. Additionally, the number of vertices was adjusted depending on the availability of vertices with a strong
enough signal.

The definition was done in two steps: first at the group level, and then at the subject level. At the group level, a
region of interest was defined as the union of parcels from the HCP-MMP1.0 atlas (Glasser et al., 2016) containing
the significant clusters found in the group-level statistical maps obtained for the corresponding estimate type
(clusters shown on Fig. 3 and 4 and listed in Table 1 and Supplementary Table 1). The vertices of interest for each
subject were then defined within the group-level region, using the following steps. The R2 scores obtained with the
encoding model were converted into p-values in each subject and vertex. For each vertex and subject, a p-value
was calculated from the R2 score as the probability of obtaining a value at least as large in a distribution of R2

values obtained when the fMRI data is replaced with white noise (empirically calculated for each subject with
1,000,000 noise samples). Finally, the vertices with FDR-corrected p<0.05 were selected as vertices of interest
(controlling the False Discovery Rate using the Benjamini-Hochberg procedure)).

As mentioned in the Results section, we verified the reliability of our estimations within the defined vertices of
interest using a test-retest procedure, by fitting the weights of the versatile encoding model on two independent
halves of the data and comparing the estimated weights between the two halves.

Characterization of tuning curves

Three characteristic measures were defined and applied to the tuning curves estimated for each vertex of interest.

1) Proportion of tuning curves maximized at non-extreme values. For each tuning curve, we took the input value at
which the curve was maximized (i.e. the argmax of the tuning curve function) and treated it as non-extreme if it fell
between the lower and upper bounds of the domain with a margin of at least twenty percent relative to the span of
the domain. The proportion refers to the proportion of vertices out of all vertices of interest within the subject.

2) Non-monotonicity index. Mathematically speaking, a differentiable function is said to be monotonic if its derivative
remains of the same sign over its domain. By extension, we defined the monotonicity index m(f) of a function as the
absolute value of its average derivative, normalized such that the index of any purely monotonic function is equal to
1. The non-monotonicity index n(f) was 1 - m(f). It is calculated by the formula n(f) = 1 - |f(xmax) - f(xmin)| / (fmax - fmin),
where xmin and xmax are the lower and upper bounds of the domain, and fmin and fmax are the minimum and maximum
of the function over the domain, respectively. The indices calculated for each tuning curve function were averaged
across the vertices of interest to obtain a single value per subject. Note that m(f)=1 is a necessary condition for a
monotonic function, but not a sufficient one (non-monotonic functions can yield m(f)=1).

3) Nonlinearity index. We defined the nonlinearity index at the vertex level as the degree of the polynomial that best
fits the estimated tuning curve for that vertex. To avoid favoring larger degrees due to overfitting, we used the
tuning curves estimated on two independent halves of the data, one to fit the polynomial model for each degree, the
other one to measure the variance explained (R2) by the fitted polynomials. The nonlinearity index was equal to the
degree of the polynomial that led to the best R2 score. To summarize the computed index values at the subject
level, we took the median across vertices. At the group level, we tested statistical significance using a
Kruskal-Wallis test by ranks (a nonparametric method for testing whether samples originate from the same
distribution).

Decoding of probability and confidence

The same method was used for decoding probability and confidence; here we explain the method in the case of
probability. Decoding was performed at the level of each session and subject, and it leveraged the methods used
for the encoding analysis. The encoding model characterized a pattern of voxel responses to (overlapping) bins of
probability as a set of regression weights assigned to Gaussian basis functions. The decoder aimed to identify the
probability bin corresponding to the response pattern measured across several voxels in a test session. Decoding
accuracy was assessed with leave-one-session-out cross-validation. The encoding model was fitted (with 5 basis
functions instead of 10) separately in the training set (three sessions) and the left-out session. The decoder
assigned a probability bin to a given response pattern on the test set by identifying the probability bin eliciting the

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.28.582455doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?1qp01m
https://doi.org/10.1101/2024.02.28.582455
http://creativecommons.org/licenses/by-nc-nd/4.0/


most similar response pattern in the training set. More precisely, the decoder used the correlation distance D(j, k)
between the response patterns corresponding to the j-th probability bin in the test session and the k-th bin in the
training set, and looked for the k that minimized D for a given j. The correlation distance is one minus the Pearson
correlation (Walther et al., 2016) qualitatively similar results, although inferior, were obtained with the Euclidean
distance.

The decoder was applied to selected voxels in each parcel of the Glasser et al atlas (Glasser et al., 2016). This
atlas is available in the fsaverage template used for anatomical normalization
(https://figshare.com/articles/HCP-MMP1_0_projected_on_fsaverage/3498446). The atlas was projected onto the
native anatomical surface of each subject using the inverse normalization transform, and projected back into their
native volume, both with FreeSurfer. The voxels corresponding to each parcel in the functional images were
identified based on the coregistration of functional and anatomical images. Decoding was applied to the 100 voxels
with the largest z-R² value, estimated within the training sessions only.

For each subject, decoding accuracy was assessed for each probability bin as the fraction of correctly assigned
probability bins (chance level is 1 out of 5 possibilities) on each left-out session, and averaged across the left-out
sessions. Some probability bins concerned fewer than 5% of stimuli in some test sessions, which we deemed
unreliable; the corresponding session-level accuracy was omitted from the average across sessions. More
precisely, we considered that a stimulus fell in a given bin if its probability elicited more than 10% of the maximum
value of the corresponding basis function. The significance of decoding accuracy was assessed, for each parcel,
with a two-sided t-test against chance-level accuracy at the group level, and corrected for multiple comparisons
across parcels with false discovery rate (0.05) correction (Benjamini-Hochberg procedure).

Analysis of Representational Dissimilarity Matrices (RDMs)

The same method was used for probability and confidence; here we explain the method in the case of probability.
We analyzed the distance matrices D(j, k) used for the decoding process, which are also known as representational
dissimilarity matrices (RDM). For each subject the RDM of each parcel was the average RDM obtained across
cross-validation folds (ignoring the rows j of each RDM corresponding to probability bins concerning fewer than 5%
of stimuli in a session). Note that since RDMs were estimated with leave-one-session-out cross-validation, they are
not symmetric and their diagonal is not 0. The empirical RDMs were compared to the RDMs of different neural
codes, namely, the identity RDM that should arise from a highly nonlinear code, and the graded RDM that should
arise from a linear (and more generally monotonic) code. We estimated the regression weights corresponding to
each theoretical RDM in a multiple regression analysis; theoretical RDMs were z-scored to make the regression
weights commensurable.

Data availability

Behavioral data, raw and preprocessed MRI data will be made available on a public repository upon acceptance.

Code availability

All analysis code to reproduce the reported results and figures from the shared data will be made available on
GitHub upon acceptance.
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Figures

Figure 1. Task and variables of interest. (A) Task session. Visual stimuli of two types, A or B, generated according to a hidden
probability p(A), are presented successively to the subject. During the sequence, the hidden probability changes at random and
unpredictable times. Throughout the session, the subject must estimate the current value of the hidden probability. Occasionally
between two stimuli, a choice period occurs during which the subject chooses a range for their current probability estimate and a
confidence level associated with their estimate. The normative model of the task is used to obtain the trial-by-trial estimates that
the subject should neurally represent. The values of these different variables are displayed above for an example session. (B)
Behavioral results: The estimates chosen by the subjects and the normative estimates are very close for probability (top), and
quite correlated for confidence (bottom). Subjects’ estimates were binned into six equal quantiles of normative estimate,
averaged at the subject level and then at the group level. Subjects’ confidence was recorded from 0 to 1; normative confidence
is in log precision units (hence the different scales). Dots and error bars show group-level mean±s.e.m. Dashed diagonal is the
identity line.
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Figure 2. Modeling the encoding of probability or confidence estimates in voxel-wise fMRI signals. (A) Schematic of the
encoding models and their evaluation against fMRI data. For each session, the sequence of stimuli presented to the subject is
given to the task model to obtain x, the probability or confidence estimates on each trial. These estimates are then given to the
encoding model to predict y, the fMRI signal time series in a voxel. Two classes of encoding models were tested: the linear
class, in which the fMRI signal y in a given voxel is a linear function of the estimate x, and the versatile class, in which the fMRI
signal in a given voxel is a weighted sum of basis functions (fi) that can approximate linear and nonlinear functions of x. To
evaluate the models, we used a cross-validation procedure in which three out of four sessions were used to fit the encoding
model, and the left-out session was used to measure the predictive accuracy of the model (using the coefficient of
determination) after controlling for factors of no interest. (B) Simulation results validating the approach end-to-end. Noisy fMRI
data for one experiment were generated assuming a given model of neural activity, and the generated data were used to
evaluate each of the encoding models using the procedure described in (A). The matrix shows the average score obtained for
each evaluated model and each possible generative model across simulated experiments. Linear models explain the data well
only when the generative model is linear, whereas versatile models explain the data well for both classes of generative model.
Probability and confidence are well separated by the models.
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Figure 3. A neural code for probabilities revealed by whole-cortex analysis in prefrontal and parietal cortex, that only
the versatile model is able to explain. Cortical maps above show the significance of the cross-validated performance of the
linear and versatile encoding models. Top maps show the significant regions after thresholding at p<0.001 and FWE cluster
correction at pFWE < 0.05. Bottom maps show the p-values without thresholding or correction on a flattened view of the cortex.
P-values correspond to the group-level significance of z-R2 scores obtained across subjects (cold colors for negative scores, hot
for positive scores). The HCP-MMP1.0 parcellation is indicated by colored lines (Glasser et al., 2016).
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Figure 4. Neural code for confidence. Both the linear and the versatile models explain the neural encoding of
confidence in approximately the same regions of the cortex. Plotting conventions are as in Fig. 3.
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Figure 5. Characterization of the neural encoding of probability and confidence. (A) Schematic of the reconstruction of the
tuning curve at the level of a cortical vertex. The weights of the versatile encoding model fitted on the vertex data are used to
calculate the tuning curve function, which is equal to the weighted sum of the basis functions. (B) Tuning curves obtained for
probability (left) and confidence (right) for example vertices and subjects (out of 30,000 and 120,000 examples, respectively).
Within each panel, multiple curves correspond to multiple estimates of the tuning curve for a same vertex: in purple, the curve
estimated with the weights fitted on the whole data, red and green, estimated on two independent halves of the data, illustrating
test-retest reliability. (C) Quantitative description and comparison of the tuning curves for probability and confidence according to
three characteristic measures. The tuning curves for probability are more frequently maximized at non-extreme values, have a
higher non-monotonicity index, and a higher nonlinearity index than those for confidence. Bar heights and error bars show
mean±s.e.m across subjects. */***: p<0.05/p<0.001, two-tailed tests. Bottom graphs are illustrations of each of the three
measures (x denotes the encoded variable, which could be probability or confidence, and f a tuning curve function).
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Figure 6. Decoding probability and confidence from the voxel response patterns obtained with the versatile encoding
model. Group-level decoding accuracy for each cortical region (180 bihemispheric parcels from the HCP-MMP1.0 atlas,
rendered on the right hemisphere for illustration purpose). Top: Mean accuracy across subjects (chance level is one out of five
bins, i.e. 0.2). Bottom: T-values of a two-tailed t-test for accuracy different from chance level. Only regions statistically significant
after FDR-correction (p<0.05) for multiple comparisons across the 180 regions are displayed (also see Table 2 and 3). The
decoding method is based on the similarity (correlation distance) of voxel response patterns estimated by the encoding model in
a training set and a test set (see Methods).
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Figure 7: The dissimilarity of voxel response patterns across bins of probability and confidence supports the existence
of different types of codes. (A) The representational dissimilarity matrices (RDM) that served for the decoding analysis (Fig. 6)
were averaged across test sessions and analyzed with a regression analysis at the subject-level. Two theoretical RDMs were
considered in the regression: the “identity” RDM, that should result from a highly nonlinear (and non-monotonic) code, and the
“graded” RDM, that should result from a linear (or more generally, monotonic) code. (B) Average RDM of probability levels and
regression results in each of the 5 regions with top decoding significance for probability. Each line corresponds to a participant;
colored dots and error bars show the average and S.E.M. (C) Same for confidence. In B and C, the same color bar (shown in A)
is used for all RDMs. Each set of regression coefficients was tested at the group level against 0 (two-tailed t-test) and compared
with a paired t-test (two-tailed); ns: p>0.1; +: p<0.1; *: p<0.05; **:p<0.005; ***:p<0.0005. The parcel numbers correspond to the
Glasser parcellation (Glasser et al., 2016); 84: Dorsolateral Prefrontal, Area 46; 140: Temporo-Parieto-Occipital Junction, Area
2, 146: Inferior Parietal, Area 0; 54: Premotor, Dorsal Area 6d, 35: Posterior Cingulate, area 31pv; 96: Premotor, Area 6 anterior;
138: MT+ Complex and Neighboring Visual Areas, Area PH; 116: Inferior Parietal, Area PFt; 49: Superior Parietal, Ventral
IntraParietal Complex, 139: Temporo-Parieto-Occipital Junction, Area 1.
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Table 1. Significant clusters explained by the versatile encoding model for probability. The names of the cortical areas
and parcels refer to the HCP-MMP1.0 atlas (Glasser et al., 2016). Peak x, y, z are MNI coordinates.
Size
(mm²)

Num.
vertices

Hemisp
here Lobe Cortical area Parcel Peak x Peak y Peak z

Peak
-log10(p)

Cluster
pFWE

160.4 232 Right Fr Dorsolateral_Prefrontal a9-46v_R 38.9 45.2 16 6.4097 0.0002
157.4 183 Left Occ Early_Visual V2_L -25.1 -97.9 -2.7 4.8187 0.0002
139.01 236 Left Fr Paracentral_Lobular_and_Mid_Cingulate SCEF_L -9.5 5.3 55.9 4.8964 0.0002
108.66 227 Right Fr Premotor FEF_R 42.2 -5.8 50.7 6.6067 0.0002
106.8 274 Right Par Superior_Parietal LIPv_R 27.7 -52.8 47.4 5.211 0.0002
101.02 198 Left Par Superior_Parietal 7PC_L -37.4 -50.2 55.6 4.5741 0.0002
100.41 202 Right Fr Dorsolateral_Prefrontal 46_R 27.3 29.6 36.2 4.0095 0.0002
98.83 176 Left Fr Premotor 6a_L -29.1 0.6 48.6 5.3333 0.0002
80.1 169 Right Par Superior_Parietal 7PC_R 35.1 -49.1 60.5 4.1947 0.0006
71.32 161 Left Par Inferior_Parietal IP1_L -31.3 -64.2 40.1 5.3758 0.0014
70.44 127 Left Fr Premotor FEF_L -37.3 -7.6 44.5 4.6641 0.0014
69.62 143 Right Fr Paracentral_Lobular_and_Mid_Cingulate 24dd_R 9.5 1.1 53.9 4.8056 0.0008
69.09 132 Left Fr Dorsolateral_Prefrontal 8Ad_L -25.1 24.6 33.7 5.6881 0.0014
67.68 105 Right Fr Dorsolateral_Prefrontal s6-8_R 21.7 20 53.1 4.3053 0.0008
64.72 136 Left Fr Premotor PEF_L -51.2 -2.6 40.4 4.6327 0.002
55.09 83 Right Fr Dorsolateral_Prefrontal 9p_R 19.4 38.9 37 5.5244 0.00599
53.88 95 Right Fr Dorsolateral_Prefrontal 46_R 35.1 33.9 27.9 4.6328 0.00719
51.51 93 Right Fr Dorsolateral_Prefrontal 9-46d_R 30.3 38.8 20.9 4.7414 0.00918
49.07 57 Left Occ Primary_Visual V1_L -17.4 -100.9 0.2 4.189 0.01296
48.56 70 Left Fr Dorsolateral_Prefrontal 46_L -39.2 31.5 29.3 4.2904 0.01355
48.14 103 Left Par Somatosensory_and_Motor 2_L -36.9 -35.2 56.7 4.5609 0.01415
45.65 96 Right Fr Dorsolateral_Prefrontal 8C_R 33.9 10.8 33.4 4.4846 0.0203
44.86 69 Right Fr Dorsolateral_Prefrontal 9-46d_R 25.4 38.8 32.1 4.2132 0.02247
43.94 88 Left Fr Premotor 55b_L -45.1 1.5 46.8 3.7926 0.02366
43.3 56 Right Fr Dorsolateral_Prefrontal 9-46d_R 25.2 45.1 29.1 4.2352 0.02702
43.14 84 Right Par Inferior_Parietal IP2_R 50.1 -37 45.4 5.2945 0.02721
41.56 123 Right Par Somatosensory_and_Motor 2_R 31.5 -35.1 46.2 3.9812 0.03292
41.06 91 Left Par Superior_Parietal AIP_L -31.1 -48.1 44.3 4.2868 0.0345
38.14 72 Left Par Temporo-Parieto-Occipital_Junction STV_L -53.8 -46.6 11.7 4.2271 0.04879

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.28.582455doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?PerQSW
https://doi.org/10.1101/2024.02.28.582455
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Decoding accuracy for probability. Names of cortical areas are as in Table 1. The decoding accuracy is compared to
chance level (0.2) with a two-sided t-test. Only parcels with significant decoding accuracy (pFDR<0.05) are reported.

Lobe Cortical area Parcel Mean T value P value pFDR
Fr Dorsolateral_Prefrontal 46 0.27 4.46 0.0002 0.0327
Par Temporo-Parieto-Occipital_Junction TPOJ2 0.27 4.03 0.0006 0.0327
Occ Inferior_Parietal IP0 0.27 3.93 0.0007 0.0327
Fr Premotor 6d 0.28 3.84 0.0009 0.0327
Par Posterior_Cingulate 31pv 0.27 3.76 0.0011 0.0327
Par Superior_Parietal AIP 0.28 3.74 0.0012 0.0327
Par Superior_Parietal VIP 0.28 3.70 0.0013 0.0327
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Table 3. Decoding accuracy for confidence. Names of cortical areas are as in Table 1. The decoding accuracy is compared to
chance level (0.2) with a two-sided t-test. Only parcels with significant decoding accuracy (pFDR<0.05) are reported.

Lobe Cortical area Parcel Mean T value P value pFDR
Fr Premotor 6a 0.30 6.29 0.0000 0.0002
Temp MT+_Complex_and_Neighboring_Visual_Areas PH 0.34 6.18 0.0000 0.0002
Par Inferior_Parietal PFt 0.34 5.87 0.0000 0.0003
Par Superior_Parietal VIP 0.32 5.72 0.0000 0.0003
Temp Temporo-Parieto-Occipital_Junction TPOJ1 0.33 5.59 0.0000 0.0004
Occ Inferior_Parietal IP0 0.32 5.52 0.0000 0.0004
Par Superior_Parietal LIPd 0.34 5.28 0.0000 0.0006
Occ MT+_Complex_and_Neighboring_Visual_Areas V4t 0.31 5.15 0.0000 0.0007
Par Superior_Parietal 7PC 0.32 5.06 0.0000 0.0007
Temp Ventral_Stream_Visual FFC 0.31 5.04 0.0000 0.0007
Fr Premotor 55b 0.31 5.02 0.0000 0.0007
Ins Insular_and_Frontal_Opercular FOP3 0.29 4.99 0.0000 0.0007
Par Superior_Parietal MIP 0.32 4.81 0.0001 0.0010
Par Temporo-Parieto-Occipital_Junction STV 0.31 4.75 0.0001 0.0010
Occ Dorsal_Stream_Visual V7 0.30 4.75 0.0001 0.0010
Par Early_Auditory PFcm 0.30 4.75 0.0001 0.0010
Occ MT+_Complex_and_Neighboring_Visual_Areas V3CD 0.30 4.66 0.0001 0.0012
Par Inferior_Parietal PGs 0.33 4.64 0.0001 0.0012
Par Paracentral_Lobular_and_Mid_Cingulate 23c 0.28 4.59 0.0001 0.0013
Par Paracentral_Lobular_and_Mid_Cingulate 5mv 0.28 4.52 0.0002 0.0014
Par Dorsal_Stream_Visual IPS1 0.33 4.52 0.0002 0.0014
Occ Early_Visual V3 0.31 4.42 0.0002 0.0016
Occ Posterior_Cingulate POS2 0.29 4.40 0.0002 0.0016
Temp Lateral_Temporal PHT 0.30 4.40 0.0002 0.0016
Par Posterior_Cingulate PCV 0.30 4.35 0.0002 0.0018
Fr Paracentral_Lobular_and_Mid_Cingulate 6mp 0.31 4.34 0.0003 0.0018
Occ Early_Visual V4 0.30 4.32 0.0003 0.0018
Fr Somatosensory_and_Motor 4 0.28 4.31 0.0003 0.0018
Fr Anterior_Cingulate_and_Medial_Prefrontal p32pr 0.31 4.29 0.0003 0.0018
Par Inferior_Parietal PFop 0.29 4.28 0.0003 0.0018
Fr Paracentral_Lobular_and_Mid_Cingulate 24dd 0.28 4.26 0.0003 0.0018
Fr Premotor 6d 0.32 4.21 0.0004 0.0019
Occ Ventral_Stream_Visual VMV2 0.28 4.21 0.0004 0.0019
Occ Early_Visual V2 0.30 4.20 0.0004 0.0019
Fr Posterior_Opercular FOP1 0.27 4.18 0.0004 0.0020
Temp Ventral_Stream_Visual VVC 0.30 4.12 0.0004 0.0022
Occ Ventral_Stream_Visual PIT 0.29 4.07 0.0005 0.0024
Par Superior_Parietal AIP 0.30 4.00 0.0006 0.0028
Temp Auditory_Association STSvp 0.28 3.96 0.0007 0.0031
Par Inferior_Parietal PF 0.29 3.89 0.0008 0.0035
Fr Premotor FEF 0.30 3.89 0.0008 0.0035
Par Early_Auditory RI 0.30 3.88 0.0008 0.0035
Par Somatosensory_and_Motor 2 0.28 3.83 0.0009 0.0038
Fr Paracentral_Lobular_and_Mid_Cingulate 6ma 0.28 3.78 0.0011 0.0043
Par Paracentral_Lobular_and_Mid_Cingulate 5m 0.29 3.77 0.0011 0.0043
Fr Dorsolateral_Prefrontal 8Av 0.27 3.75 0.0011 0.0044
Fr Insular_and_Frontal_Opercular FOP4 0.30 3.74 0.0012 0.0044
Par Temporo-Parieto_Occipital_Junction PSL 0.30 3.73 0.0012 0.0045
Fr Dorsolateral_Prefrontal i6-8 0.27 3.70 0.0013 0.0047
Occ Inferior_Parietal PGp 0.28 3.69 0.0013 0.0048
Par Superior_Parietal LIPv 0.30 3.67 0.0014 0.0048
Occ Temporo-Parieto-Occipital_Junction TPOJ3 0.29 3.67 0.0014 0.0048
Par Superior_Parietal 7AL 0.31 3.66 0.0014 0.0049
Par Somatosensory_and_Motor 1 0.29 3.64 0.0015 0.0050
Par Superior_Parietal 7Pl 0.29 3.62 0.0016 0.0051
Par Inferior_Parietal IP1 0.29 3.55 0.0018 0.0058

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.28.582455doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.28.582455
http://creativecommons.org/licenses/by-nc-nd/4.0/


Occ Dorsal_Stream_Visual V3A 0.28 3.55 0.0018 0.0058
Temp Auditory_Association STSdp 0.29 3.53 0.0020 0.0060
Occ MT+_Complex_and_Neighboring_Visual_Areas FST 0.29 3.51 0.0020 0.0060
Par Inferior_Parietal PFm 0.27 3.51 0.0020 0.0060
Temp Early_Auditory PBelt 0.28 3.51 0.0020 0.0060
Par Posterior_Cingulate 7m 0.29 3.44 0.0024 0.0070
Occ MT+_Complex_and_Neighboring_Visual_Areas MST 0.27 3.44 0.0024 0.0070
Par Posterior_Cingulate ProS 0.27 3.42 0.0026 0.0072
Fr Dorsolateral_Prefrontal 8C 0.27 3.41 0.0026 0.0073
Occ MT+_Complex_and_Neighboring_Visual_Areas LO1 0.28 3.39 0.0027 0.0074
Fr Inferior_Frontal IFJa 0.27 3.39 0.0027 0.0074
Temp Early_Auditory A1 0.27 3.35 0.0030 0.0079
Fr Premotor 6v 0.27 3.32 0.0032 0.0084
Occ Posterior_Cingulate DVT 0.30 3.32 0.0033 0.0084
Temp Auditory_Association A4 0.27 3.25 0.0038 0.0097
Ins Insular_and_Frontal_Opercular MI 0.26 3.25 0.0039 0.0097
Par Somatosensory_and_Motor 3b 0.28 3.21 0.0042 0.0103
Occ Dorsal_Stream_Visual V3B 0.27 3.20 0.0043 0.0106
Par Posterior_Opercular OP4 0.27 3.19 0.0044 0.0107
Par Inferior_Parietal IP2 0.26 3.13 0.0051 0.0121
Fr Dorsolateral_Prefrontal 9-46d 0.27 3.08 0.0058 0.0136
Fr Paracentral_Lobular_and_Mid_Cingulate SCEF 0.28 3.05 0.0061 0.0141
Fr Premotor 6r 0.27 3.01 0.0068 0.0155
Par Paracentral_Lobular_and_Mid_Cingulate 5L 0.27 2.99 0.0072 0.0160
Occ Primary_Visual V1 0.28 2.98 0.0072 0.0160
Par Superior_Parietal 7Am 0.27 2.95 0.0078 0.0169
Fr Paracentral_Lobular_and_Mid_Cingulate 24dv 0.26 2.95 0.0078 0.0169
Occ Ventral_Stream_Visual V8 0.27 2.93 0.0081 0.0173
Fr Inferior_Frontal IFJp 0.28 2.93 0.0082 0.0174
Par Temporo-Parieto-Occipital_Junction TPOJ2 0.28 2.90 0.0088 0.0185
Temp Medial_Temporal PHA1 0.27 2.87 0.0093 0.0193
Par Inferior_Parietal PGi 0.27 2.86 0.0096 0.0196
Temp Early_Auditory LBelt 0.27 2.85 0.0098 0.0198
Occ MT+_Complex_and_Neighboring_Visual_Areas MT 0.28 2.81 0.0107 0.0215
Par Posterior_Opercular OP1 0.25 2.79 0.0114 0.0223
Temp Medial_Temporal PreS 0.27 2.78 0.0115 0.0223
Fr Inferior_Frontal IFSa 0.27 2.78 0.0115 0.0223
Temp Lateral_Temporal TE2p 0.26 2.75 0.0124 0.0237
Fr Insular_and_Frontal_Opercular AVI 0.26 2.74 0.0127 0.0240
Occ MT+_Complex_and_Neighboring_Visual_Areas LO3 0.28 2.71 0.0135 0.0254
Occ Dorsal_Stream_Visual V6A 0.27 2.69 0.0142 0.0264
Temp Medial_Temporal PHA2 0.27 2.62 0.0164 0.0301
Occ Ventral_Stream_Visual VMV3 0.26 2.61 0.0168 0.0301
Fr Dorsolateral_Prefrontal 46 0.26 2.61 0.0168 0.0301
Temp Auditory_Association A5 0.27 2.61 0.0169 0.0301
Occ Ventral_Stream_Visual VMV1 0.27 2.56 0.0190 0.0335
Occ Dorsal_Stream_Visual V6 0.26 2.53 0.0202 0.0352
Par Posterior_Cingulate POS1 0.26 2.51 0.0210 0.0363
Temp Auditory_Association STSda 0.26 2.46 0.0237 0.0405
Fr Inferior_Frontal IFSp 0.25 2.45 0.0238 0.0405
Ins Insular_and_Frontal_Opercular PoI2 0.26 2.45 0.0241 0.0405
Fr Somatosensory_and_Motor 3a 0.25 2.43 0.0250 0.0417
Par Posterior_Cingulate v23ab 0.26 2.40 0.0266 0.0439
Fr Dorsolateral_Prefrontal p9-46v 0.25 2.40 0.0269 0.0441
Fr Posterior_Opercular 43 0.25 2.37 0.0284 0.0461
Fr Anterior_Cingulate_and_Medial_Prefrontal a24pr 0.26 2.34 0.0304 0.0489
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Supplementary information

Supplementary Notes

Supplementary Note 1

Equation to be demonstrated:

p(ht+1 | s1:t+1)∝ p(st+1 | ht+1) ∫ p(ht+1 | ht) p(ht | s1:t) dht [1]

Below is the mathematical proof of the formula given by equation [1].

p(ht+1 | s1:t+1) = p(ht+1 | st+1, s1:t)

p(ht+1 | s1:t+1) = p(ht+1, st+1, s1:t) / p(st+1 | s1:t)

p(ht+1 | s1:t+1) = p(ht+1, st+1 | s1:t) p(s1:t) / p(st+1 | s1:t)

p(ht+1 | s1:t+1) = p(st+1 | ht+1, s1:t) p(ht+1 | s1:t) p(s1:t) / p(st+1 | s1:t)

Conditional independence property (1): st+1 is conditionally independent of s1:t given ht+1, therefore:

p(ht+1 | s1:t+1) = p(st+1 | ht+1) p(ht+1 | s1:t) p(s1:t) / p(st+1 | s1:t) [2]

The first term of equation [2] is the same as that equation [1]. Let's expand the second term of equation [2] using
the sum rule.

p(ht+1 | s1:t) = ∫ p(ht+1, ht | s1:t) dht

p(ht+1 | s1:t) = ∫ p(ht+1 | ht, s1:t) p(ht | s1:t) dht

Conditional independence property (2) : ht+1 is conditionally independent of s1:t given ht, therefore

p(ht+1 | s1:t) = ∫ p(ht+1 | ht) p(ht | s1:t) dht [3]

By combining equations [2] and [3] and omitting the normalization factor p(s1:t) / p(st+1 | s1:t), we obtain equation [1]
which was to be demonstrated.
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Supplementary Figures

Supplementary Figure 1. Difference in cross-validated variance explained by the versatile and the linear encoding
models for probability. Vertex-wise p-values are shown on flattened maps of the cortex. Top: P-values correspond to the
group-level significance of z-ΔR2 scores obtained across subjects (ΔR2 = R2[versatile] - R2[linear], cold/hot colors favor the
linear/versatile encoding model respectively, p values are unthresholded and uncorrected). Bottom: Maps of the individual
models, repeated from Fig. 3 for illustration purposes. Delineated by colored lines is the HCP-MMP1.0 parcellation (Glasser et
al., 2016).
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Supplementary Figure 2. Simulation results with Gaussian and sigmoid basis functions. Simulation results obtained as in
Fig. 2B after splitting the versatile encoding model into two: one with Gaussian basis functions (the one used in the main text,
referred to as Versatile-Gaussian above) and one with sigmoid basis functions (referred to as Versatile-Sigmoid above). The
sigmoid basis functions of the Versatile-Sigmoid model are expressed fi(x) = 1 / [1 + exp[-k(x-𝜇i)]]. For comparison, we took the
same number of basis functions (10) and the same centers 𝜇i as for Versatile-Gaussian, and an equivalent slope k was
computed from the Versatile-Gaussian’s 𝜎 using the formula k = 4 / [(2π)1/2𝜎].
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Supplementary Figure 3. Variance explained by the model encoding the posterior distribution (top) vs. the probability
estimate (bottom). Cortical maps as in Fig. 3. See Methods for the encoding model of the posterior distribution. Bottom map is
repeated from Fig. 3 for illustration purposes.
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Supplementary Figure 4. The (linear) effect of confidence and the (nonlinear) effect of probability are not confounded
by a (linear) effect of entropy. (A) Cortical maps for the linear model of entropy, which quantifies the extent to which the next
stimulus is unpredictable (entropy is maximum for p(A)=0.5 and gradually decreases as p(A) deviates from 0.5). Plotting
conventions are as in Fig. 3. Panels B and C for confidence and probability are reproduced from Fig. 4 and Fig. 3, respectively,
to facilitate comparison with A. Note that the regression models in B and C include entropy as an additional regressor, but that
confidence and probability are not included as additional regressors in A. The effect of entropy seen in A is less widespread than
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the effect of confidence, and largely overlaps with the latter; the effect seen in A is thus likely to arise from the small correlation
that exists between entropy and confidence. The effect of confidence we observed in B cannot be reduced to an effect of
entropy because the latter effect is included in the regression model, and the effect of confidence is more widespread than the
effect of entropy. The (nonlinear) effect of probability in C is also not confounded by a (linear) effect of entropy since entropy is
included as an additional regressor, and since the effects of probably and entropy are anatomically distinct (at least in the
anterior part of the dorsolateral prefrontal cortex). (D) Simulation results. Plotting conventions are as in Fig. 1B. Note that a
versatile model of probability explains the data generated by a linear model of entropy very well, but the converse is not true.
Also note that a linear model of entropy can only partially explain the data generated by a linear model of confidence. The
pattern of results observed in the data (panels A-C) are consistent with the results obtained by simulations.
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Supplementary Table 1. Significant clusters explained by the linear encoding model for confidence. The names of the
cortical areas and parcels refer to the HCP-MMP1.0 atlas (Glasser et al., 2016). Peak x, y, z are MNI coordinates.

Size
(mm²)

Num.
vertices

Hemis
phere Lobe Cortical area Parcel Peak x Peak y Peak z

Peak
-log10(p)

Cluster
pFWE

1562.62 3701 Right Par Inferior_Parietal IP2_R 49.2 -37.8 43 5.9237 0.0002

369.56 695 Left Fr Paracentral_Lobular_and_Mid_Cingulate SCEF_L -9.4 4.5 56.4 5.7647 0.0002

341.32 676 Right Par Inferior_Parietal PGi_R 47.1 -63.1 31.4 5.5385 0.0002

335.91 791 Left Par Superior_Parietal 7PC_L -36.9 -50.4 54.9 6.1673 0.0002

257.7 601 Left Par Inferior_Parietal PF_L -49 -38.4 43.1 6.115 0.0002

202.25 328 Right Fr Premotor 6r_R 45.8 10.1 17.9 4.4931 0.0002

202.14 389 Left Fr Premotor FEF_L -37 -8.2 48.3 5.2117 0.0002

198.63 465 Right Fr Premotor 6a_R 33.8 -11 55.5 4.7601 0.0002

195.4 402 Right Fr Paracentral_Lobular_and_Mid_Cingulate SCEF_R 7.7 5.8 51.2 4.6558 0.0002

193.77 432 Right Fr Premotor 6v_R 56.1 6.7 25.7 5.6508 0.0002

189.66 567 Right Temp Temporo-Parieto-Occipital_Junction TPOJ1_R 44.9 -47.4 12.2 5.1703 0.0002

179.33 371 Left Par Temporo-Parieto-Occipital_Junction STV_L -55.6 -48.2 13.3 6.1347 0.0002

175.3 458 Left Par Superior_Parietal AIP_L -30.9 -38.3 41.6 5.2929 0.0002

171.23 209 Right Occ Primary_Visual V1_R 17.8 -94.6 0 4.1598 0.0002

164.69 241 Right Fr Premotor 6a_R 30.6 1.4 49.2 4.9644 0.0002

155.42 293 Left Fr Premotor 6a_L -29 -2.3 45.8 5.92 0.0002

143.36 293 Right Fr Paracentral_Lobular_and_Mid_Cingulate 6ma_R 16.3 -0.9 66.3 4.8137 0.0002

142.98 326 Right Par Inferior_Parietal PF_R 48.4 -37.2 26.8 4.2616 0.0002

137 362 Right Ins Insular_and_Frontal_Opercular FOP5_R 32.5 27.2 7.9 6.2325 0.0002

134.03 253 Left Par Inferior_Parietal PGs_L -40.5 -69.8 32.7 6.4739 0.0002

113.19 159 Right Occ Early_Visual V4_R 26.5 -81.6 -8.8 4.9295 0.0002

110.53 228 Left Par Inferior_Parietal PGi_L -48.4 -58.4 27 4.6878 0.0002

107.12 161 Left Occ
MT+_Complex_and_Neighboring_Visual_A
reas V3CD_L -37.8 -82.8 13.5 5.634 0.0002

105.53 192 Left Par Inferior_Parietal PF_L -55.1 -35.6 28.7 5.1037 0.0002

95.02 201 Right Par Temporo-Parieto-Occipital_Junction PSL_R 58.3 -43.3 22.7 4.4061 0.0002

89 195 Left Par Superior_Parietal VIP_L -19.5 -64.9 56.8 4.2536 0.0002

88.28 175 Right Fr Inferior_Frontal IFJp_R 33.6 5.6 31.4 3.9805 0.0002

86.02 135 Left Temp Lateral_Temporal PHT_L -54.2 -62.8 6.1 4.5631 0.0002

84.01 158 Left Fr Premotor 55b_L -46.7 0.3 46.7 4.5385 0.0004

83.58 168 Left Par Inferior_Parietal PGi_L -43.4 -67.9 19.6 5.5873 0.0004

81.09 113 Right Occ
MT+_Complex_and_Neighboring_Visual_A
reas MT_R 42.5 -73 0.7 3.9207 0.0006

79.95 128 Right Fr Premotor 55b_R 42.9 2.3 43 4.7482 0.0006

75.19 89 Left Occ Primary_Visual V1_L -15 -100.9 -4.8 4.2337 0.001

72.63 126 Right Fr Dorsolateral_Prefrontal 8C_R 37 19.2 26.7 4.2202 0.0006

68.81 117 Left Fr Dorsolateral_Prefrontal p9-46v_L -44.2 30.6 25.8 4.0961 0.0014
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67.41 165 Left Par Inferior_Parietal PFm_L -48.4 -49 43.7 4.6699 0.0016

61.37 150 Left Fr Posterior_Opercular 43_L -57.8 -0.7 14.5 4.6749 0.0024

55.58 83 Left Occ
MT+_Complex_and_Neighboring_Visual_A
reas MT_L -44.6 -72.1 6.3 4.5472 0.00499

54.71 112 Left Fr Premotor 6r_L -46.6 2.4 26.3 3.6783 0.00559

54.6 71 Left Temp Ventral_Stream_Visual FFC_L -41.7 -64.7 -18.7 4.9128 0.00579

53.38 92 Left Fr Paracentral_Lobular_and_Mid_Cingulate 6ma_L -19.8 -2.1 64.5 4.0547 0.00719

51.71 71 Right Occ Early_Visual V4_R 25.9 -71.9 -5.4 5.8811 0.00898

50.52 115 Right Par Superior_Parietal 7Pm_R 8.8 -64.1 48.9 4.279 0.01017

49.89 99 Right Par Superior_Parietal 7PL_R 13.3 -71.6 52.2 4.3245 0.01057

48.04 123 Left Par Superior_Parietal LIPd_L -29.5 -47.9 41 3.9552 0.01435

47.54 111 Left Par Inferior_Parietal PGs_L -40.1 -63.9 33 4.5851 0.01534

46.66 81 Left Par Inferior_Parietal IP1_L -33 -66.3 42 5.061 0.01713

46.55 87 Right Fr Dorsolateral_Prefrontal SFL_R 6.6 2.9 65.2 3.8731 0.01772

45.58 70 Left Occ
MT+_Complex_and_Neighboring_Visual_A
reas V4t_L -41.5 -77.1 -3.6 4.1141 0.01851

44.8 53 Right Occ Dorsal_Stream_Visual V7_R 25 -75 27.5 4.0285 0.02247

43.37 76 Right Fr Anterior_Cingulate_and_Medial_Prefrontal 8BM_R 7 37.7 45.8 4.0643 0.02702

42.5 60 Right Fr Inferior_Frontal 44_R 47.2 20 9.4 3.817 0.03056

41.13 62 Right Par Inferior_Parietal PGp_R 37.4 -79.1 13.6 4.0701 0.03489

40.42 47 Right Occ Dorsal_Stream_Visual V7_R 23.7 -83.3 31.9 4.2199 0.03901

39.7 119 Right Par Posterior_Cingulate PCV_R 7.5 -49.7 55.7 5.3128 0.04234

39.52 58 Left Par Inferior_Parietal PGs_L -35.1 -75.9 39.4 3.7602 0.04273

39.51 104 Left Par Inferior_Parietal PF_L -59 -31.3 36.7 3.9426 0.04273

38.84 95 Left Par Temporo-Parieto-Occipital_Junction STV_L -63.5 -41.9 11.1 4.8528 0.04645
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Chapter V: General discussion

Humans constantly learn from their environment based on the observations they

make. In a stochastic and dynamic environment, learning a hidden quantity (such as

the probability of an event of interest occurring, or the expected size of a future

reward) from observations is a difficult problem because the stochasticity makes the

quantity impossible to determine with certainty and the dynamics imply that the

quantity could have changed from any observation to the next. Classical learning

theories rely on basic learning rules which are unable to solve this problem effectively

and which incompletely explain human behaviour. In recent decades, researchers

have begun to reframe learning theories within a normative probabilistic framework.

In this framework, the learning problem is formalised as a sequential probabilistic

inference problem that has an optimal solution derived from probability theory.

In my thesis, I analysed the predictions made by normative theory in different

common learning contexts and identified properties and components of the normative

solution that make the learning process adaptive and that humans should possess in

order to learn effectively. In light of this analysis, I reviewed existing empirical and

theoretical findings and identified several issues.

(1) Probability learning remained quite mysterious, particularly because the

dynamics of the learning rate had never been examined in humans in this

context, and because the normative determinants of these dynamics had not

been well characterised.

(2) The feasibility in the brain of a solution possessing the identified normative

adaptive learning properties, and the specific mechanisms that could enable

these abilities in the brain, remained undetermined.

(3) The neural representation of probability, a fundamental component of

learning, remained elusive.
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I solved these issues through three studies which showed that:

(1) Probability learning, like magnitude learning, closely follows normative

properties in humans. They dynamically and normatively adapt their learning

rates, and differentially in the two contexts according to two normative

determinants: surprise (or change-point probability), which plays a

predominant role in magnitude learning, and uncertainty, which plays a

predominant role in probability learning.

(2) Tiny recurrent neural networks, feasible in the brain, can perform

quasi-optimal learning, possessing all the identified normative learning

properties (including those demonstrated in study 1 in humans), provided that

they have a gating mechanism.

(3) A nonlinear code represents probability in human brain activity within the

dorsolateral prefrontal and intraparietal cortices.

Collectively, the results of these studies demonstrate the alignment of human

learning with normative theory and highlight mechanisms and neural bases that could

enable humans to use uncertainty and estimate probabilities as prescribed by the

theory to achieve adaptive learning.

In this general discussion, I first discuss in section 1 points specific to each study,

with a particular focus on limitations, and then in section 2, I discuss overarching

points that highlight questions raised by my thesis and future directions.

1. Points specific to each study, focusing on limitations

Study 1

Magnitude learning and probability learning: How are they different?
Implications of the differences we found

In study 1, we highlighted differences between magnitude learning and probability

learning: the main factors driving the adjustments of the learning rate are not the
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same. Surprise (or change-point probability) is the main driver of the adjustments in

magnitude learning, while uncertainty is the main driver of the adjustments in

probability learning. This leads to different profiles of learning rate dynamics:

magnitude learning is characterised by sudden, immediate, and momentary

adjustments of the learning rate following a highly surprising observation, while

probability learning is characterised by gradual, more spread out adjustments of the

learning rate covarying with uncertainty.

As we have shown, these results are expected according to the normative theory.

Normative theory applies to both types of learning and allows us to establish a

common model of learning. From this perspective, there are similarities between the

two types of learning: they can both be treated analytically using the same formalism,

and the observed behaviour in both cases adheres to the normative principles

derived from this analysis. One could choose to focus mainly on these common

aspects rather than on the differences. However I argue that neglecting these

differences would be a potential mistake for understanding the learning process at

play in the brain. To illustrate this, I will use an analogy between learning and visual

recognition.

Two common types of visual recognition are face recognition and place recognition.

The most relevant features for recognizing faces and places are not the same: for

faces, it is better to pay attention to features such as eyes, nose, and corners of the

mouth, while for places, it is better to pay attention to the global context (e.g.,

whether it is an indoor or outdoor place) and features such as the arrangement of

buildings and roads, features which are larger-scale and have a different geometry

than those for faces. It is now established that face recognition and place recognition

are associated with two distinct brain structures: the fusiform face area (FFA), more

specialised for faces, and the parahippocampal place area (PPA), more specialised

for places (Epstein & Kanwisher, 1998; Kanwisher et al., 1997).

In both types of visual recognition, the problem to be solved can be described as that

of associating a retinal image with a concept (a particular person, a particular place).

This problem can be mathematically formalised, and has an optimal, normative,

Bayesian solution. It is likely that one could find numerous behavioural matches
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between the Bayes-optimal solution and human vision, given how well human vision

can perform. However if one were to retain from those matches that visual

recognition is implemented by a common, very general system, they would not

necessarily be the most enlightened for understanding how the brain solves the

problem. As illustrated by the research that ultimately led to the discovery of the FFA

and the PPA, it is useful to focus on the different problem instances commonly

encountered. By studying the different types of visual recognition, it is likely that one

would find that normatively, a differential importance should be given to certain visual

features for recognising faces versus places. Such a finding would indicate that there

may be more specialised systems that the brain could employ to solve the problem

effectively, and indeed it turns out that such systems are likely implemented by the

FFA and the PPA.

Like visual recognition, it is possible that the brain relies on subsystems that are

differentially solicited when learning magnitudes or probabilities. This is supported by

the differences in the solicitation of surprise and uncertainty shown in study 1, and by

the fact that surprise and uncertainty have distinct computational characteristics and

partly distinct neural correlates (see section 4 of the general introduction). One way

to determine this more clearly would be to conduct an experiment in which subjects

would perform a magnitude learning task and a probability learning task as in study

1, but in a MRI scanner with simultaneous measurement of whole-brain functional

activity.

Bias-variance decomposition at the subject level

In study 1, the bias-variance decomposition of subject deviations was performed at

the group level. This informs us about the proportion of deviations attributable to

biases that are reproducible across individuals. Such biases have been observed in

other contexts than that of our study, as detailed in section 2 of this general

discussion: biases in probability judgments (representativeness heuristic, sub- and

super-additivity, partition dependence), biases in learning with decision-making

(confirmation bias, positivity bias), as well as over- and under-weighting of low and

high probabilities respectively as described in prospect theory (Kahneman & Tversky,

1979). In our study, the results of the group-level decomposition show that this type
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of systematic biases constitute a relatively small part of the deviations compared to

the variance of the subjects' estimates for the same sequence.

A remaining question is what the bias-variance decomposition is at the subject level.

This question was not the focus of study 1 but is nevertheless interesting. It is

possible that a subject has an estimation bias that is not visible at the group level

because other subjects do not have the same bias. It is also possible that different

subjects exhibit different biases in opposite directions (that is, at a given time step of

a sequence, the biases of some subjects would lead to an overestimation and those

of other subjects would lead to an underestimation). To perform the bias-variance

decomposition at the subject level, one needs to estimate the variance of the

estimates for the same sequence and the same subject. This could be done by

presenting the same sequence at least twice to the same subject and collecting their

estimates each time, as in (Drugowitsch et al., 2016).

Study 2

Interpretability of the network computations and the gating mechanism

I have proposed an understanding of the network computations through a detailed

analysis of the networks’ adaptive capabilities, the analysis of the mechanisms that

allow the networks to achieve these capabilities (gating, lateral connections, tuning of

the weights to the environment), a description of the internal activity dynamics in

state space (Fig. 4b), the analysis of the variables represented in these internal

activities (the hidden variables of the environment and associated uncertainties,

disentangled from each other, Fig. 4a and 6d), and of their causal role (Fig. 5).

However, compared to a classical model whose algorithm has been designed by

hand by researchers and is thus automatically interpretable, the algorithms realised

by the networks are not as highly understood and one could hope to get even closer

to such a degree of interpretability. The limitation of network size, which I was able to

reduce to 2 or 3 recurrent units without substantially compromising performance (Fig.

8a), is a first step in this direction. A recent paper proposes, similarly, to use tiny

RNNs, combined with state space analyses, as a way to increase interpretability

(Ji-An et al., 2023). By performing a further model reduction, one could hope to arrive
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at a simple and intelligible effective circuit like the ones offered by (Dubreuil et al.,

2022) for solving simpler tasks. Another possible approach to improve network

interpretability would be to introduce in the cost function used for training a term

favouring interpretability, for example that would promote sparsity and penalise the

amount of information contained in the network activities thus introducing an

"information bottleneck" (Miller et al., 2023). These approaches overall are attempting

to constrain the network in such a way that meaningful, interpretable internal

variables are more likely to be extracted from the network. Other points of view exist

on what constitutes a satisfactory explanation or understanding of computations that

may not require interpretable internal variables to be extracted (Barack & Krakauer,

2021).

A more specific target for understanding is the gating mechanism. A more detailed

understanding would help make the finding of its importance in adaptive learning

even more interesting and useful for future research. The gating in the RNNs can be

decomposed into several parts: there are two types of gates, the first type is applied

to the connections upstream, and has a potentially different gating value for each

connection, the other type is applied downstream after performing the summation

and applying the non-linearity. Which parts are necessary? Are both types of gates

necessary? Is it necessary to apply gating to all connections? Can a single gating

value be used for all recurrent connections (versus connections from the input unit)?

Simplifying gating to the maximum, following the same approach I used to simplify

the architecture, would help creating closer links with biology in addition to helping

understanding.

Ideally, one would also like to better understand why gating is necessary. I propose a

first explanation: it adds the possibility of combining multiplicative operations with the

additive operations of a simple recurrent network. This seems particularly useful for

solving the adaptive learning problems insofar as the optimal solution given by

Bayesian filtering combines additive operations (integrals) and multiplicative

operations (see section 3.2 of the general introduction) (these are in general very

frequent in probabilistic computations due to the use of the sum rule and the product

rule of probability calculus). Necessity in a strict, mathematical sense remains to be

demonstrated. There is considerable research currently being done in mathematics
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to better understand which network architectures can efficiently solve which types of

problems (by finding properties characterising approximations bounds and

convergence as a function of network size) and which network architectures can or

cannot be realised by a network of another architecture with limited size (examples of

such properties have been found for deep versus shallow feedforward networks)

(Barron, 1994; Eldan & Shamir, 2016; Lu et al., 2017).

Relating the networks with empirical data (behavioural or neural)

Study 2 is a theoretical study. The objective was to develop neural network-based

learning models and to study them using simulations.

Another project would be to compare these networks with empirical data. Regarding

behavioural data, a first dataset suitable to make such a comparison is now

available: the one from study 1. It provides trial-by-trial behavioural data and thus

allows for a fine comparison between network and human behaviour. The volume of

data also allows for fitting the parameters of a network to the subjects' behaviour at

the group level, and possibly at the subject level, using a small network (2 or 3 units)

and few parameters.

Regarding neural data, the fMRI data used in study 3 could be used to test whether

the activities of the recurrent units of a network can explain unique portions of neural

activity in some regions using a voxel-wise encoding model (as in Study 3). This

would involve inputting the sequence seen by the subject into the network, extracting

from the network the sequence of internal activities (activations of the hidden units,

and/or the gates if the network has some), and using these internal activities as

regressors in the general linear model of the encoding model to predict the fMRI time

series at the voxel level. Using artificial neural networks for the modelling of neural

data has produced significant advances in predictive ability in the domains of visual

perception, auditory perception, and language processing (Caucheteux & King, 2022;

Eickenberg et al., 2017; Güçlü & van Gerven, 2015; Kell et al., 2018; Yamins et al.,

2014). If the results obtained with RNNs were conclusive, it would be interesting to

identify and quantify the importance of more specific factors for predicting neural

data: the role of training the network for the task and of the amount of training, the

role of the network architecture (with or without gating), the choice of internal

186



activities used to predict activity (hidden units or gates), the role of the input

sequence (the one presented to the subject or another with certain statistics altered

or preserved)... in order to gain insights into the information contained in the

explained neural signal and the type of processing performed by the region

producing that signal.

Such a comparison to empirical data would be all the more interesting that a

maximum level of interpretability has been reached (see previous point in this

discussion) and that the networks have been compared to other models and their

differences characterised (see point about models in section 2 of this discussion).

Study 3

Differentiating neural signals encoding probability from those encoding
outcome uncertainty

In the neural coding of probability we found, we observed a fairly high degree of

symmetry with respect to 50%, meaning that probabilities of e.g. 30% and 70% were

neurally encoded in a similar way. This degree of symmetry is mainly observed at the

population level, notably through a representational similarity analysis (RSA): as

quantified by the correlation across voxels of the neural responses, the similarity of

the neural representations of p and 1-p is higher than one would expect from an

encoding that represents probability with a similarity relationship that respects the

order relation of the [0, 1] interval. If the encoding were purely symmetric with respect

to 50%, it would be impossible to distinguish whether the encoded information is the

probability (p) or the outcome uncertainty, as quantified, for example, by the Shannon

entropy (-plog(p) - (1-p)log(1-p)) or the variance (p(1-p)) of the outcome implied by

the probability. Although entropy was added as a covariate of the encoding model

linear regression in our analyses, this method only controls for linear encodings of

entropy, and it is possible that outcome uncertainty is encoded according to a

nonlinear function of entropy. Due to the limited signal-to-noise ratio and the limited

number of sessions available in the data for study 3, it is difficult to clearly

differentiate a nonlinear encoding of probability from a nonlinear encoding of outcome

uncertainty.
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One possibility in the future to differentiate probability and outcome uncertainty would

be to conduct a new experiment with three categories of outcomes instead of two.

There would then be two probabilities to estimate (rather than just one), while

outcome uncertainty would remain a single variable. One could then create

conditions with different combinations of probabilities but equal outcome uncertainty,

for example, the conditions 60/30/10%, 10/60/30%, and 30%/10%/60% (and in

general, any permutation of the probabilities of the three categories). One would

expect the neural signals to differentiate these conditions if they encode the

probabilities of at least two categories in a stable manner (even if each probability

was encoded with a symmetry with respect to 50% or 33%). (Note that the two

probabilities may or may not be mixed in neural activity at the voxel level, this could

be tested using conditions where all but one of the probabilities have changed.)

Apart from outcome uncertainty, another hypothesis that can explain the results we

observed, is that the subject encoded the probability not as the probability of an

arbitrarily chosen category (p(A)), but as the probability of the dominant category

(p(A) when p(A) > p(B), p(B) otherwise) combined with the identity of the currently

dominant category (A or B). This is plausible because the stimuli used in the

experiment for A and B were arbitrary (i.e., they did not have a very strong identity

that would cause the subject to spontaneously treat p(A)=70% very differently from

p(B)=70%), and because the scale displayed for the estimation response was

visually represented as in that “dominant-probability” way:

[A-100%-50/50%-100%-B].

The 3-category experiment proposed above would also allow us to distinguish

between the hypothesis of encoding the two dominant probabilities versus the

hypothesis of encoding outcome uncertainty and the hypothesis of encoding two

category probabilities. To differentiate from outcome uncertainty, one could use, for

example, the conditions 60/20/20% vs. 50/40/10%, which have almost equal

entropies but different dominant probabilities. To differentiate from category

probabilities, one could use conditions where the probabilities for two categories

have been flipped, for example, 60/30/10% vs. 30/60/10%.

Relationship with probabilistic computations in the brain in general
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In the task we studied, subjects explicitly (and covertly) estimated probability. This is

not necessarily the case in all situations that involve probabilities, and assuming that

the neural code for probability described in our study is involved in all these situations

would be an overgeneralization. To contextualise our findings, let's consider other

situations where the brain is performing probabilistic computations and is likely to

represent probabilities in a different, more implicit way.

In situations where probabilistic contingencies are fixed or very stable, probabilities

can be encoded not in neural activity but other biological substrates that are more

stable and less energy-consuming, such as synaptic weights, or other durable

storage formats in the brain (Gallistel, 2017; Hebb, 1949; Langille & Gallistel, 2020).

Study 2 of this thesis provides an example, in a model network, of probability

encoded in synaptic weights and used to optimally solve a task: the probability of a

change point occurring (see Figure supplement 1 of article 2). In the brain, numerous

associative learning experiments (e.g., fear conditioning, eyelid conditioning, appetite

conditioning) have shown that the formation of associations occurs through neural

plasticity in subcortical structures such as the amygdala, cerebellum, hippocampus,

and brainstem structures (Fanselow & Poulos, 2005; Martin-Soelch et al., 2007;

Thompson, 1988). When these associations are probabilistic, their probabilities are

encoded in these structures since the probabilities dictate the degree of plasticity

induced during learning. After learning, probabilities are implicitly taken into account

in the computations performed by the brain to generate behaviour (e.g. the intensity

or frequency of a conditioned response is proportional to the learned probability of an

unconditioned stimulus coming next).

Another situation where the brain needs to perform more complex probabilistic

computations than the previous one is probabilistic categorization tasks (Knowlton et

al., 1994, 1996; Yang & Shadlen, 2007). In these tasks, on each trial, a combination

of cues appears and a binary outcome is generated probabilistically with a probability

calculated by combining the individual probabilities associated with each cue. The

subject learns to associate the cues with probabilities through choices and trial and

error: following the presentation of the cue combination, the subject chooses one of

the two possible outcomes and receives feedback ("correct"/"incorrect," which may

be associated with a material reward) depending on whether the true generated
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outcome was the one chosen by the subject. This task amounts to an evidence

accumulation task where each cue provides an independent sample of evidence.

Indeed, after transforming probabilities (p) into log odds ratios (log[p / (1-p)]), the log

odds ratio of the final probability is calculated by summing the log odds ratios

associated with each cue. After learning, the brain has associated each cue with a

value (a log odds ratio, or evidence strength) that represents a probability, and has

learned to combine them according to the rules of probability calculus. In the

experiment by Yang & Shadlen where this task was performed by rhesus monkeys,

probability was reflected in the activity of LIP neurons, which increased or decreased

following each cue depending on whether it favoured one outcome or the other,

ultimately leading to the monkey's choice by a saccade (Yang & Shadlen, 2007). In

humans, learning in this type of tasks is generally considered a procedural, implicit

learning, and relies on cortico-striatal mechanisms (that are thus likely responsible for

encoding cue probabilities) (Gluck et al., 2002; Knowlton et al., 1996).

Another situation is tasks involving sensory uncertainty. In cue combination tasks, for

example, the subject must estimate a physical magnitude (e.g., height, position,

orientation) based on multiple cues, each of which provides more or less precise

information about that magnitude (e.g., an image of the object whose height must be

judged, corrupted by noise) (Ernst & Banks, 2002; Körding & Wolpert, 2004). The

information provided by the cue about the magnitude can be modelled by a

probability distribution, and to make an accurate estimate, the brain must combine

the information provided by the cues in accordance with the multiplication of their

distributions, which amounts to giving more weight in the estimation to the cues that

provide more precise information. Unlike the previous examples, in this type of task,

the cues do not convey a probability per se but sensory information, and sensory

uncertainty is often decoded from sensory cortices (Geurts et al., 2022; van Bergen

et al., 2015; Walker et al., 2020).

In sum, all the situations above illustrate that there is a great diversity of ways in

which the brain can perform probabilistic computations. The neural code for

probability shown in study 3, where probability is explicitly encoded in neural activity

and can be reported by the subject, has the advantage of being accessible and

usable for many neural systems and cognitive tasks.

190



2. Overarching points, focusing on questions raised by the thesis
and future directions

Reconciling our findings on normative human behaviour with those of the
literature on human biases

If humans are capable of learning close to normatively, including probabilities (see

article 1), how is it that biases are observed in humans when they judge probabilities

or learn in other contexts?

Probability judgments and learning with decision-making are two domains where

there is a large body of literature reporting human biases. Below, I detail these two

cases one after the other. As I will explain, the results found in the literature on

human biases are compatible with our results because the situations where these

biases are observed are different from ours. By making the situations in which human

biases occur more specific and highlighting specific factors that could cause the

biases, our results actually help better understand human biases and provide clues

as to their possible origins which could be investigated by future studies.

Probabilistic judgments. In probabilistic judgments, the following biases have been

observed (for possible explanations of these biases, see e.g. (Costello & Watts,

2014; Zhu et al., 2023)).

Representativeness heuristic. When people are asked to judge the probability

that an object A belongs to category B (for example, judging the probability

that "Steve is a librarian" based on a description of Steve as a "shy and

withdrawn" person), the judged probability is strongly influenced by the degree

to which A is judged to be similar to a prototype (i.e., representative) of B, and

it is not sensitive enough to the prior probability of belonging to B (in the

previous example, the prior probability corresponds to the proportion of

librarians in the population) (Kahneman & Tversky, 1972). This bias can result

in a conjunction fallacy, meaning that the probability that "A belongs to (B and

C)" (e.g., that "Linda is a bank teller and a feminist") is judged to be greater

than the probability that "A belongs to B" ("Linda is a bank teller") when the
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description provided for A (Linda) resembles the prototype of C (a feminist)

(Tversky & Kahneman, 1983).

Subadditivity. The probability that an event from a set A occurs (e.g., "dying

from a natural cause") can be judged to be lower than the sum of the judged

probabilities of A1, A2, and A3, where A1, A2, and A3 form a partition of A ("dying

from a heart disease," "dying from cancer", and "dying from another natural

cause") (Tversky & Koehler, 1994). This occurs when the unpacked examples

for A (A1 and A2) are typical examples (i.e. with high probability). The reverse

bias occurs (superadditivity) when the examples are atypical (i.e. with low

probability) (Sloman et al., 2004).

Partition dependence. Probability judgments are biased depending on how

events are partitioned within a set, in such a way that each element of a

partition is judged to have a more equal probability, regardless of the

partitioning. For example, the probability that "the temperature on Sunday will

be higher than on any other day next week" is judged to be closer to 1/2,

compared to the probability that "the day with the highest temperature next

week will be Sunday", which is judged to be closer to 1/7 (Fox & Rottenstreich,

2003).

These biases in probabilistic judgments all share a commonality: they have been

observed in situations where probability is judged based on a description (often

verbal), rather than based on direct experience of the different possible events (as in

study 1). This gap in subjects' behaviour depending on whether the behaviour is

informed by descriptions or by experience has been observed repeatedly in

decision-making (that is, description-based decision-making differs from

experience-based decision-making) and is known in this field as the

description-experience gap (Bévalot & Meyniel, 2023; Garcia et al., 2023; Hertwig &

Erev, 2009). According to our results, it seems that, similar to decision-making, there

is a useful distinction to be made between probability judgment based on a

description and probability judgment based on experience.

Combining experience and description would be a worthwhile direction for future

studies. In real life, our probability judgments are commonly influenced by both our
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direct experience of the environment and the information communicated by others

(social environment, media, etc.). For example, if one reads that a flu epidemic has

been declared in their region, their judged probability of catching the flu will be

influenced by both this information and their past experience of flu occurrences. In

the laboratory, such an experiment could be done, for example, by asking the subject

to perform a probability learning task like the one I developed for study 1, and

inserting during the task some explicit information provided by a description (such as

"the probability of blue is currently higher than 50%" or "there has been a change

point in the last 5 observations"). The question is how subjects update their estimate

after receiving such information.

Learning with decision-making. In learning with decision-making, biases have

been observed in humans such as a positivity bias, where outcomes that have a

positive valence for the subject are weighted more than those with negative valence

(Frank et al., 2007; Lefebvre et al., 2017; Ting et al., 2022), and a confirmation bias,

where outcomes that confirm the subject's choice are weighted more than those that

disconfirm it (Palminteri, 2023; Palminteri, Lefebvre, et al., 2017; Talluri et al., 2018).

The confirmation and positivity biases can both be formalised as a differential

learning rate depending on whether the observed outcome induced a positively- or

negatively-valenced prediction error and whether the outcome concerned the chosen

or non-chosen option: for the chosen option, the learning rate is higher when the

observed and obtained outcome is “better” than expected than when it is worse than

expected, for the non-chosen option (for which the observed outcome is the one that

the subject could have but did not obtain), the bias goes in the opposite direction

(Palminteri & Lebreton, 2022).

The decision-making component seems to have a critical role in these biases.

Indeed, the positivity and confirmation biases disappear when the subject does not

freely make their own choices but instead the choices are imposed on them

(free-choice condition versus forced-choice condition) (Chambon et al., 2020).

Moreover, a large part of the biases explained by a differential learning rate can also

be explained by a gradual perseveration in choices (i.e. a bias towards repeating

previous choices) (Palminteri, 2023). Finally, a recent study demonstrated that certain

biases in learning specifically occur when outcomes are produced by the subject's

193



choices (controllable condition), but not in the absence of choices when the subject

only monitors the outcomes (uncontrollable condition) (Rouault et al., 2022).

The common denominator in all the above situations where biases have been

observed in learning is that the subject makes choices and that observations are

perceived as consequences of their choices. In this type of situation, the choice

induces a polarity because some observations confirm and others disconfirm the

choice made (which may be associated with a positive or negative valence, either

because rewards are at stake or simply because of an intrinsic desire to be validated

in one's choices). This polarity seems to give rise to asymmetries in human learning

behaviour. In the studies I conducted, on the other hand, the observations from which

the subject is learning do not result from their choices. This is a critical difference that

likely explains why little to no biases have been observed in the studies of my thesis

(at least that were reproducible across individuals, cf. article 1), while biases were

observed in the other studies mentioned above.

In the future, it could be interesting to conduct experiments like those in the

above-mentioned studies where, in addition to choices, estimates are requested from

the subject, in order to investigate if the biases observed through the subject’s

choices are also observed in their estimates (it is possible that the two are not always

consistent).

Testing the models on empirical data and drawing theoretical conclusions
about human learning

I have listed computational models of learning in section 3.4 of the general

introduction. Following study 2 of my thesis, the different architectures of recurrent

neural networks that I have shown capable of learning should be added to this list.

One possibility in the future would be to test these models on behavioural or neural

data and determine which model or models best explain the data. This comparison of

empirical data to models and between models will be more interesting if theoretical

insights can be drawn from the fact that one model or another better explains the

data. What can these models and their comparison teach us about human learning?
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An important theoretical analysis work is needed to clarify these potential insights.

Since the models are numerous and their similarities and differences are not always

clear, it would be useful to establish a categorization of the models, for example,

according to the extent to which they exhibit different abilities (adaptations of the

learning rate at different levels, taking into account uncertainty, etc.), according to the

type of generative process they assume or inference process they perform (dynamics

assumed to follow a random walk or a change point process, and whether change

points are inferred, or volatility is inferred...), according to the variables they

represent internally (e.g. uncertainty, probabilities, learning rate, samples from a

distribution...) and the format in which they represent them (directly by an internal

variable of the model, or encoded in or decodable from the model's variables, in a

linear or non-linear way).

Having established useful categories of models, one needs to ensure that different

models or categories of models can be clearly distinguished using empirical data. For

this purpose, it would be wise to establish diagnostic tests, for example by using

carefully chosen sequences and finding key distinctive behavioural effects, as in

(Foucault & Meyniel, 2021; Heilbron & Meyniel, 2019; Palminteri, Wyart, et al., 2017).

This is critical because two models that provide a priori very different interpretations

can exhibit similar behaviours: for example, one that infers change points in an

environment assumed to have change point dynamics, and another that infers

volatility in an environment assumed to have random walk dynamics, where changes

are assumed to occur on every time step, can both exhibit dynamic adjustments of

the learning rate (see passage on the Piray and Daw model in section 3.4 of the

general introduction). Conducting simulations, model recovery, and parameter

recovery analyses is also necessary (Wilson & Collins, 2019). Simulating neural data

can be challenging but regression, canonical correlation, and RSA between models

can be used, and additionally, neural data can be generated using an encoding

model as done in study 3.

In light of these theoretical analyses, the data available from existing studies

(including those of this thesis) could be used to test the models. The insights drawn

from model testing may be completely new compared to the existing study, or if a

model had already been used in the existing study, they may reinforce the existing

195



results, or may propose a reinterpretation or a refinement of the existing results. For

example, certain effects that were interpreted in terms of estimation of volatility could

be interpreted differently in terms of stochasticity (Piray & Daw, 2021), or in terms of

the width of the prior about the possible hidden variable values (Glaze et al., 2018),

or in terms of change-point inference. New data could also be collected, informed by

the theoretical analyses, in order to better distinguish models and maximise the

insights gained about the human learning process.

Testing the hypothesis that the locus coeruleus-norepinephrine system
regulates learning via a gating mechanism

I have shown in study 2 that the gating mechanism in artificial neural networks plays

a key role in regulating learning. In the brain, such a gating mechanism can be

biologically implemented by the locus coeruleus-norepinephrine (LC-NE) system.

Indeed, gating is a mechanism by which the effective weight (or in other words, the

gain) of a connection from an input to an output is modulated by a dynamic factor

(the activity of a gate in the artificial network). It has been established that the LC-NE

system performs analogous gain modulations in the brain. At the microscopic level,

NE modulates the effective synaptic weight between neurons (it increases the

neuronal responses evoked by synaptic inputs and reduces the background neuronal

firing, thereby increasing the signal-to-noise ratio of the synaptic transmission

between neurons) (Aston-Jones & Cohen, 2005; Berridge & Waterhouse, 2003;

Rogawski & Aghajanian, 1980; Waterhouse & Woodward, 1980). NE can also have a

cascading gain modulation effect as it can target neurons that release other

neurotransmitters that also have a gain modulation effect at the synaptic level

(Ferguson & Cardin, 2020). At the macroscopic, brain-wide level, gain modulation by

the LC-NE system is observed through the behavioural responsiveness to

meaningful events (Aston-Jones & Cohen, 2005; Donner & Nieuwenhuis, 2013). The

observed modulatory actions of the LC-NE system are indeed well explained by a

gain modulation/gating model (Servan-Schreiber et al., 1990).

In addition to the neural gating actions of the LC-system, the functional role of the

LC-system in regulating learning is corroborated by existing theories (Aston-Jones &
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Cohen, 2005; Yu & Dayan, 2005) as well as numerous empirical findings (see section

4 of the general introduction).

One hypothesis that follows from these different lines of work is that learning in the

brain is regulated by a gating mechanism operated by the LC-NE system: the levels

of LC activity and norepinephrine would be the biological analog of the gate activity

levels in artificial neural networks. This hypothesis could be tested through new

neuroimaging experiments involving learning. The following empirical predictions

could be tested.

Correlation with behavior. LC activity and NE levels should correlate with the

subject's learning rate.

Correlation with gating (and gating-related) variables of the models. LC-NE

activity should be correlated with the activities of the gates in a recurrent

neural network trained to perform the same task, or fitted to the subject's

behaviour. It should also correlate with normative uncertainty (in results from

study 2 that were not reported in the article, I found that uncertainty was even

more accurately decoded from gate activities than from hidden unit activities).

Modulation of neural activity in other brain systems. LC-NE activity should

modulate neural signals of surprise, which can be measured by fMRI

activations by surprise, stimulus-evoked pupillary and EEG/MEG responses,

and the EEG/MEG signal power in certain frequency bands (Bounmy et al.,

2023; McGuire et al., 2014; Meyniel, 2020). It should also modulate neural

activity indexing the amount of update (Meyniel & Dehaene, 2017; J. X.

O’Reilly et al., 2013), and possibly modulate the functional connectivity

between regions encoding surprise and those encoding updates (Kao et al.,

2020).

Causality. Manipulation of LC-NE activity should systematically change the

subject's learning rate, and change neural activity indexing updating for the

same amount of surprise.

In practice, the experiments testing these predictions could combine a learning task

with direct measurements of LC activity, using for example fMRI (de Gee et al., 2017;
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Mazancieux et al., 2022), and simultaneous measurements of pupil diameter and of

cortical activity using fMRI or EEG/MEG. NE levels can be manipulated

pharmacologically using a selective norepinephrine reuptake inhibitor such as

atomoxetine for example (Bymaster et al., 2002). Alternatively, a sensory stimulation

that is irrelevant to the task could be investigated as an indirect but lightweight way to

manipulate NE levels (Nassar et al., 2012).
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