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Abstract

The need to determine the location of individuals or objects in indoor environments

has become an essential requirement. The Global Navigation Satellite System, a

predominant outdoor localization solution, encounters limitations when applied

indoors due to signal reflections and attenuation caused by obstacles. To address

this, various indoor localization solutions have been explored. Wireless-based in-

door localization methods exploit wireless signals to determine a device’s indoor

location. However, signal interference, often caused by physical obstructions, re-

flections, and competing devices, can lead to inaccuracies in location estimation.

Additionally, these methods require access points deployment, incurring associated

costs and maintenance efforts. An alternative approach is dead reckoning, which

estimates a user’s movement using a device’s inertial sensors. However, this method

faces challenges related to sensor accuracy, user characteristics, and temporal drift.

Other indoor localization techniques exploit magnetic fields generated by the Earth

and metal structures. These techniques depend on the used devices and sensors as

well as the user’s surroundings.

The goal of this thesis is to provide an indoor localization system designed for

professionals, such as firefighters, police officers, and lone workers, who require

precise and robust positioning solutions in challenging indoor environments. In

this thesis, we propose a vision-based indoor localization system that leverages re-

cent advances in computer vision to determine the location of a person within in-

door spaces. We develop a room-level indoor localization system based on Deep

Learning (DL) and built-in smartphone sensors combining visual information with

smartphone magnetic heading. To achieve localization, the user captures an image

of the indoor surroundings using a smartphone, equipped with a camera, an ac-

celerometer, and a magnetometer. The captured image is then processed using our

proposed multiple direction-driven Convolutional Neural Networks to accurately

predict the specific indoor room. The proposed system requires minimal infrastruc-
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ture and provides accurate localization. In addition, we highlight the importance of

ongoing maintenance of the vision-based indoor localization system. This system

necessitates regular maintenance to adapt to changing indoor environments, par-

ticularly when new rooms have to be integrated into the existing localization frame-

work. Class-Incremental Learning (Class-IL) is a computer vision approach that al-

lows deep neural networks to incorporate new classes over time without forgetting

the knowledge previously learned. In the context of vision-based indoor localiza-

tion, this concept must be applied to accommodate new rooms. The selection of

representative samples is essential to control memory limits, avoid forgetting, and

retain knowledge from previous classes. We develop a coherence-based sample se-

lection method for Class-IL, bringing forward the advantages of the coherence mea-

sure to a DL framework. The relevance of the methodology and algorithmic con-

tributions of this thesis is rigorously tested and validated through comprehensive

experimentation and evaluations on real datasets.
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Résumé

La localisation d’une personne ou d’un bien dans des environnements intérieurs

est devenue une nécessité. Le système de positionnement par satellites, une solu-

tion prédominante pour la localisation en extérieur, rencontre des limites lorsqu’il

est appliqué en intérieur en raison de la réflexion des signaux et de l’atténuation

causée par les obstacles. Pour y remédier, diverses solutions de localisation en in-

térieur ont été étudiées. Les méthodes de localisation en intérieur sans fil exploitent

les signaux pour déterminer la position d’un appareil dans un environnement in-

térieur. Cependant, l’interférence des signaux, souvent causée par des obstacles

physiques, des réflexions et des appareils concurrents, peut entraîner des impré-

cisions dans l’estimation de la position. De plus, ces méthodes nécessitent le dé-

ploiement d’infrastructures, ce qui entraîne des coûts d’installation et de mainte-

nance. Une autre approche consiste à estimer le mouvement de l’utilisateur à l’aide

des capteurs inertiels de l’appareil. Toutefois, cette méthode se heurte à des dif-

ficultés liées à la précision des capteurs, aux caractéristiques de mouvement de

l’utilisateur et à la dérive temporelle. D’autres techniques de localisation en in-

térieur exploitent les champs magnétiques générés par la Terre et les structures mé-

talliques. Ces techniques dépendent des appareils et des capteurs utilisés ainsi que

de l’environnement dans lequel se situe l’utilisateur.

L’objectif de cette thèse est de réaliser un système de localisation en intérieur

conçu pour les professionnels, tels que les pompiers, les officiers de police et les

travailleurs isolés, qui ont besoin de solutions de positionnement précises et ro-

bustes dans des environnements intérieurs complexes. Dans cette thèse, nous pro-

posons un système de localisation en intérieur qui exploite les récentes avancées

en vision par ordinateur pour localiser une personne à l’intérieur d’un bâtiment.

Nous développons un système de localisation au niveau de la pièce. Ce sys-

tème est basé sur l’apprentissage profond et les capteurs intégrés dans le smart-

phone, combinant ainsi les informations visuelles avec le cap magnétique du
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smartphone. Pour se localiser, l’utilisateur capture une image de l’environnement

intérieur à l’aide d’un smartphone équipé d’une caméra, d’un accéléromètre et

d’un magnétomètre. L’image capturée est ensuite traitée par notre système com-

posé de plusieurs réseaux neuronaux convolutionnels directionnels pour identi-

fier la pièce spécifique dans laquelle se situe l’utilisateur. Le système proposé

nécessite une infrastructure minimale et fournit une localisation précise. Nous

soulignons l’importance de la maintenance continue du système de localisation

en intérieur par vision. Ce système nécessite une maintenance régulière afin de

s’adapter à l’évolution des environnements intérieurs, en particulier lorsque de

nouvelles pièces doivent être intégrées dans le système de localisation existant.

L’apprentissage incrémental par classe est une approche de vision par ordinateur

qui permet aux réseaux neuronaux profonds d’intégrer de nouvelles classes au fil du

temps sans oublier les connaissances déjà acquises. Dans le contexte de la localisa-

tion en intérieur par vision, ce concept doit être appliqué pour prendre en compte

de nouvelles pièces. La sélection d’échantillons représentatifs est essentielle pour

contrôler les limites de la mémoire, éviter l’oubli et conserver les connaissances des

classes déjà apprises. Nous développons une méthode de sélection d’échantillons

basée sur la cohérence pour l’apprentissage incrémental par classe dans le cadre

de l’apprentissage profond. La pertinence de la méthodologie et des contributions

algorithmiques de cette thèse est rigoureusement testée et validée par des expéri-

mentations et des évaluations complètes sur des données réelles.
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Chapter 1

General Introduction

“ Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that

we may fear less. ”

Marie Curie

Sommaire

1.1 Thesis Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 General Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Research Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Indoor localization systems have piqued the interest of both academia and in-

dustry because of their numerous applications, ranging from security and military

use to monitoring and tracking in homes, commercial buildings, airports, hospitals,

and university campuses. The Global Navigation Satellite System (GNSS) is a lead-

ing solution for outdoor localization. Yet, its effectiveness diminishes indoors due

to numerous multi-path reflections and considerable attenuation of signals caused

by obstacles such as walls. To solve this issue, various indoor localization systems

are being created. Vision-based indoor localization systems are a category of indoor

localization solutions that use computer vision and image processing techniques to

1



CHAPTER 1. GENERAL INTRODUCTION

detect the location or the position of people or objects within indoor environments.

1.1 Thesis Collaboration

This CIFRE (Convention Industrielle de Formation par la Recherche) PhD the-

sis is part of a long and fruitful collaboration between the LITIS (Laboratoire

d’Informatique, du Traitement de l’Information et des Systèmes) laboratory and

DataHertz company [KPHB18, KPHB19].

The LITIS laboratory, founded in 2006, is a research unit in information science

and technology affiliated with the University of Rouen Normandy, the University

of Le Havre Normandy, and the National Institute of Applied Sciences of Rouen

Normandy. The LITIS is a founding member of the CNRS (Centre National de la

Recherche Scientifique) research federation NormaSTIC. The laboratory’s methodol-

ogy is distinctly multidisciplinary, fostering collaborations between both practition-

ers and theoreticians at the intersection of computer science, artificial intelligence,

signal and image processing, and applied mathematics. The laboratory projects and

applications reach several industries, including the development of intelligent mo-

bility systems, the processing of medical data, and the protection of cultural assets.

The LITIS is divided into seven different teams, notably including the APP (Appren-

tissage) and STI (Systèmes de Transport Intelligents) teams.

The APP team specializes in machine learning, using statistical modeling and

learning methodologies to extract knowledge from data of various nature (e.g., sig-

nal, image, and graph). The research applications encompass handwriting recogni-

tion, ancient and historical document analysis, information retrieval, medical imag-

ing, time series analysis, as well as scene analysis and description. On the other

hand, the STI team is committed to leveraging information science and technology

for Advanced Driving Assistance Systems (ADAS) by focusing on computer vision.

The research of this team focuses on the design of onboard autonomous systems

capable of delivering valuable real-time information to drivers and passengers, es-

pecially in resource-constrained environments with limited infrastructure and de-

graded conditions. The goal of this team research is to enhance transport optimiza-

tion, risk prevention, and safety. This thesis project aligns with both of these teams.

DataHertz company, founded in 2010, is an innovative Small and Medium-sized

Enterprise (SME) with a unique expertise in communication networks. DataHertz

specializes in the design, development, integration, and maintenance of private
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mobile radio and wireless broadband installations. Its main customers are public

institutions and companies as well as industrial groups. The DataHertz teams are

present throughout France, offering high-quality services and developing commu-

nication networks adapted to the needs of diverse industries and professions in the

most extreme conditions. DataHertz’s Research and Development (R&D) activity of-

fers innovative and secure technologies for voice, video, and high-speed data trans-

mission over fixed or mobile networks. The R&D team, based in Troyes, includes

engineers, PhD researchers, and interns with the following responsibilities:

• Design and definition of product evolution.

• Maintenance and support for current products.

• Development, testing, and validation of future products.

• Custom development and prototyping for critical projects.

This thesis project is seamlessly integrated into the suite of indoor/outdoor lo-

calization solutions provided by DataHertz. The "Polyalerte" localization solution,

developed by DataHertz, has been rigorously crafted to correspond with the dif-

ferent objectives expressed by customers across a range of industries (e.g., pris-

ons, security companies, industrial sites, municipal police forces, university cam-

puses, etc.). This indoor/outdoor localization solution uses Global Positioning Sys-

tem (GPS), High Frequency (HF) beacons or Radio Frequency Identification (RFID)

tags to improve the safety and security of both assets and humans. Our research

activities aim to develop and expand the capabilities of DataHertz company’s local-

ization products, specifically tailored to the demands of firefighters, police officers,

military and defense personnel, as well as lone workers, to ensure safety, security,

and efficiency in various operational scenarios.

1.2 Research Context

Localization and positioning services are gaining popularity around the world as

people want reliable location-based information for a variety of applications, such

as navigation, monitoring, tracking, and information services [FHS18, KKAMAA20,

AAW+20]. To meet this requirement, a wide range of strategies based on diverse

technologies have arisen to provide precise positioning solutions in both outdoor
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and indoor situations. In recent years, the expansion of mobile devices and their

applications has resulted in the introduction of new services for users. This surge

in mobile technology adoption has further fueled the demand for localization and

positioning services [AHP20]. Indoor localization solutions are a collection of tech-

nologies, systems, or methods for determining and tracking the location of people

or objects within an indoor environment, often a building or an enclosed space. In-

door localization solutions serve several key industries, mainly:

• Emergency services: Security stakeholders such as firefighters, security

guards, police officers, and military personnel require precise and robust po-

sitioning systems during critical operations.

• Lone workers protection and safety: Workers operating in remote or isolated

environments demand vital safety solutions. This is common in various in-

dustries, including transportation, tertiary sectors (e.g., hotels, cultural and

sports facilities), as well as municipal services.

• Marketing and management: Mobile devices users require positioning sys-

tems to enhance their overall navigation experience. These systems allow

them to access route guidance and to discover nearby businesses or shops.

Additionally, owners and operators of large enclosed spaces such as airports,

museums, and shopping malls demand positioning solutions to improve their

services and security.

The GNSS (e.g., GPS and Galileo) is a dominant solution for outdoor localization

based on trilateration, a process in which a GNSS mobile device receiver’s position

is identified based on signals received from the GNSS satellites orbiting above. A

minimum of four separate satellites are necessary. Each of these satellites emits

a signal including both its precise location and the current time. The mobile de-

vice GNSS receiver analyzes these signals and performs the necessary calculations

to estimate its distance from each satellite and therefore its position. The delay in

signal exchange between a mobile device and a satellite determines the distance be-

tween them [Ble97]. However, the performance of GNSS signals deteriorates inside

buildings due to numerous multi-path reflections and significant signal attenuation

through walls. To address this issue, localization systems based on other technolo-

gies are being developed [KKAMAA20].

Wireless-based indoor localization technologies include a variety of methods

and systems that rely on wireless signals to determine a device’s location in indoor
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environments such as infrared [HK10, AL20], ultrasound [MAG+02, QL17], and RFID

tags [CWG+20]. Furthermore, the increasing number of wireless networks has en-

couraged the development of indoor localization systems based on technologies

such as Ultra-Wide-Band (UWB) [SM16], WiFi [ZGL19, SFH+19, LLY+20], or Blue-

tooth [TLG+20, MSG+20]. While these technologies offer promising solutions for

indoor localization, they share several challenges and limitations. These systems are

vulnerable to signal interference, often resulting from physical obstructions, reflec-

tions and competing devices, leading to inaccuracies in location estimation. In ad-

dition to this, these technologies necessitate reference points with predetermined

coordinates, known as base stations, tags, access points, or beacons, depending on

their function within the localization system. Thus, their deployment needs the in-

stallation and maintenance of a transmitter/receiver infrastructure, which incurs

high costs and complex logistics [ACHC20, ACH18]. Another approach for indoor

localization is the use of dead reckoning techniques which removes the restriction of

dependence on reference points. Pedestrian Dead Reckoning (PDR) estimates user’s

movement based on accelerometer and magnetometer sensors (and/or gyroscope)

commonly found in devices like smartphones [KH14, KPC15, AHP18, KNZC18]. The

primary challenge with such approaches lies in calculating distance and orientation

based on the measured signals, which are susceptible to numerous factors such as

sensor placement and accuracy as well as individual’s physical characteristics and

activities. Another issue is temporal drift, which results from the accumulation of lo-

calization errors over time. Indoor localization techniques that use magnetic fields

are also proposed [AHP20, TAC+21, OAM22]. These systems use the Earth’s mag-

netic field for localization, taking advantage of anomalies caused by metal struc-

tures in indoor environments. The difficulties in such a method come from the de-

pendence of the magnetic field measures on the used devices and sensors as well as

on the users’ surroundings.

In the current state of the art, vision-based localization has gained prominence.

This shift has been made possible by the progress of computer vision algorithms and

the widespread availability of camera-equipped devices. Vision-based techniques

hold considerable appeal due to their independence from radio and wireless sig-

nal measurements, as they rely on the visual data captured by the camera, and the

nonessential infrastructure installation and its maintenance. Vision-based meth-

ods offer a proficient and precise positioning solution. Indoor environments are

relatively complicated because of layout variability, object and decoration complex-
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ity, multi-scale and viewpoint changes, as well as lighting conditions. Vision-based

robust algorithms try to mitigate indoor environmental variations and complexity.

Traditionally, vision-based indoor localization heavily relied on handcrafted fea-

ture extraction techniques, like Scale-Invariant Feature Transform (SIFT) [Lin12]

and Speeded Up Robust Features (SURF) [BETVG08], which allow for the extrac-

tion of real or integer characteristics, as well as Oriented FAST and rotated BRIEF

(ORB) [RRKB11] and Binary Robust Invariant Scalable Keypoints (BRISK) [LCS11],

which allow for the extraction of binary characteristics. Handcrafted feature ex-

traction techniques entail the manual design and extraction of distinctive visual

features from images collected within indoor environments. These features are in-

tended to incorporate important visual information, making them appropriate for

tasks such as scene recognition. During the offline phase, features are extracted

from images taken by smartphones or other devices cameras within the indoor en-

vironment using a handcrafted feature extraction technique. Then, a dataset with

features representing each indoor location is created and prepared. These fea-

tures capture unique patterns, shapes, or textures present in the indoor scenes.

During the online phase, the system matches the query image features with the

previously collected features dataset using traditional classifiers, such as Support

Vector Machines (SVM) [LW18], K-Nearest Neighbors (KNN) [Pet09], or Random

Forests [Bre01]. This allows the determination of the user device’s location. These

traditional techniques necessitate expertise in feature design and selection, and

they frequently entail complex algorithms to efficiently identify and match features,

which often struggle to adapt to the complexity of indoor environments. Addition-

ally, given that extracting relevant local features from an image and searching for

correspondences in a large mass of data is time-consuming, the real-time process-

ing constraint reduces the use of these conventional methods.

Previous work, based on a collaboration between the LITIS laboratory and Data-

Hertz company, focused on using SIFT local features for localization in known en-

vironments [KPHB18, KPHB19]. However, this research showed some limits in both

feature indexing and correspondence search. It also highlighted restrictions with

computational complexity and memory use. This PhD thesis aims to overcome

these limitations, by taking full advantage of recent advances in machine learning

for computer vision with Deep Learning (DL).

With the emergence of DL, the landscape of computer vision has undergone

a paradigm shift [LBH15, ZYT17]. This revolutionary technology, distinguished by
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deep neural networks architectures, has changed the way we approach and perceive

various problems. This thesis aims to overcome difficulties in indoor localization,

thanks to recent advances in DL and recent progress in reducing computational

complexity and memory space.

1.3 Research Purpose

This thesis addresses the problem of localization in indoor human environments.

GNSS-based localization is not feasible in such environments, and the proposed

wireless-based alternatives can incur significant costs for infrastructure deployment

and maintenance. The main aim of this thesis is to develop a system that allows a

user to locate himself in real-time inside a building, using an embedded camera

(e.g., smartphone or tablet), or an augmented reality glasses (e.g., Google Glass).

The chosen approach consists in locating the camera’s carrier based on the images

he captures of his surroundings.

In this thesis, we provide new solutions and improvements to existing methods

for the complex problem of indoor scene recognition using pre-existing technolo-

gies embedded in smartphones, which are accessible across various brands and

models. Indoor scene recognition, considered a key component for vision-based

localization systems, is the process of identifying an indoor scene from an indoor

environment based on visual data (typically images or video frames). The main fo-

cus of this thesis is the use of a conventional monocular camera for indoor scene

image acquisition for reasons of cost, practicality, and computation time. These

cameras commonly available in end-user devices, such as smartphones, capture

imagery in the form of RGB images, making them practical and accessible for in-

door localization scenarios. We aim to extract valuable visual cues and features

from the images describing the indoor environments using computer vision and

DL methods to aid in localization tasks. Additionally, our research is grounded in

the context of known indoor environments, where datasets describing the indoor

space have been carefully acquired and maintained. Having prior knowledge of the

indoor environments allows us to leverage this information during the localization

process. To enhance performance, the system will also exploit other sensors found

in the user’s end-device. Our system does not require costly implementation and

subsequent maintenance costs, making it a cost-effective and hassle-free solution

for indoor localization.
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Vision-based indoor localization faces several challenges, all of which add to

the task’s complexity. The inherent intra-class variability and inter-class similar-

ity within indoor scenes necessitate advanced scene recognition algorithms. The

dynamic nature of indoor environments, influenced by factors such as varying light

conditions as well as moving furnishings and humans, adds another layer of com-

plexity. Furthermore, occlusion limits visibility and complicates accurate localiza-

tion. Additionally, indoor environments are subject to scene modifications and ad-

ditions that necessitates adaptability in localization systems to maintain efficacy

over time.

Implementing vision-based indoor localization on embedded systems encoun-

ters inherent limitations. Possessing millions and billions of parameters, deep neu-

ral networks are naturally greedy for computing power and memory, making them

difficult to use and deploy on embedded systems [NJKN20]. Indeed, this thesis is

aimed at implementation on smartphones, thus requiring solutions with low power

consumption and low memory capacity. Reducing the number of parameters and

computational requirements, while preserving performance, is very important for

the deployment of deep neural networks. Real-time constraint is also a critical con-

sideration for indoor localization systems embedded in smartphones. To meet the

real-time processing requirements, the time taken for processing an image should

be less than the acquisition time between two images. This temporal restriction

poses challenges for traditional computer vision methods. In this context, deep

neural networks prove to be more suitable [AZH+21].

Throughout this study, we are operating within the scenario of identifying indi-

vidual rooms. This means that the primary objective of our research is to develop

a system that can accurately determine and distinguish different rooms within a

building or enclosed space. The accuracy of localization at the level of entire rooms

within a building is provided by room-level solutions. They concentrate on figur-

ing out what room a user is in. It can be applied to smart buildings to track as-

sets [TKVT18], keep an eye on room occupancy [JJCS15], provide general location

awareness [GPMSSA21], etc. This room-level vision-based indoor localization sys-

tem is suitable for applications where coarse location information is sufficient. It is

designed for people who need positioning solutions that are accurate, robust, and

less susceptible to conditions that alter waves in indoor environments like firefight-

ers, police officers, lone workers, visually impaired people, dependent elderly peo-

ple, office buildings and university campus visitors, as well as airport travelers.
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In this thesis, we also highlight the importance of ongoing improvement and

maintenance of vision-based indoor localization systems. This system requires

maintenance to adapt to evolving indoor environments, especially when new rooms

need to be integrated into the existing indoor localization system. This is where

Class-Incremental Learning (Class-IL) must be applied. Class-IL is a computer vi-

sion approach that enables deep neural networks to incorporate new classes over

time without forgetting the knowledge of previously learned classes. In the context

of vision-based indoor localization, this approach is essential for incrementally up-

dating the localization model, facilitating its seamless adaptation to new rooms as

well as controlling memory and computation limitations.

1.4 General Contributions

In this thesis, our main contributions are as follows:

• Introducing a direction-driven multiple Convolutional Neural Networks

(CNNs) system for indoor localization: This system is based on a combina-

tion of image features and the magnetic heading from a smartphone. The

proposed architecture is composed of four CNNs, each specific to a definite

heading range, trained on a dataset containing images with their respective

magnetic heading.

• Proposing a hybrid "server and on-device" computing approach: This

method addresses latency, scalability, and privacy challenges in indoor local-

ization systems while meeting the computational requirements of DL and re-

specting the end-user devices’ limitations.

• Providing a novel indoor scenes dataset: The created dataset contains real

images with their respective magnetic heading direction in the metadata.

While there are various indoor and/or outdoor localization datasets in the lit-

erature, none of them incorporate data other than images.

• Introducing a coherence-based sample selection strategy for Class-IL: This

sampling method is based on the coherence measure to maximize the exem-

plars diversity for Class-IL. This is the first time that the coherence measure

is investigated for DL, and more specially for Class-IL. Class-IL is critical for

maintaining and updating a vision-based indoor localization system as new
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rooms need to be integrated into the existing indoor localization system with

time.

1.5 Thesis Outline

The rest of the manuscript is divided into four main chapters. The first two chapters

are dedicated to the state of the art of indoor localization technologies and tech-

niques, along with the application of smartphone sensors in indoor localization.

The following chapter concerns the development of our indoor localization ap-

proach based on smartphone’s camera, accelerometer, and magnetometer sensors.

The last chapter focuses on coherence-based sampling for Class-IL, shedding light

on the importance of maintaining and updating a vision-based indoor localization

system. In the following, we present a brief overview of the manuscript’s chapters.

Chapter 2: Fundamentals of Vision-based Indoor Localization
This chapter introduces indoor localization technologies and techniques. It briefly

reviews several technologies, setting the stage for an in-depth examination of

vision-based indoor localization, with a focus on scene recognition. Additionally, it

explores the area of DL in the context of indoor scene recognition, more specially

CNNs. These deep neural networks revolutionized image classification by enabling

automated and accurate recognition of complex visual patterns. Within this scope,

this chapter examines existing approaches, datasets, and challenges that demand

careful consideration.

Chapter 3: Smartphones in Indoor Localization Systems
This chapter delves into the application of smartphone built-in sensors in in-

door localization. It includes an overview of the capabilities and constraints

of these sensors when employed for location estimation as well as some existing

smartphone-based indoor localization systems. We also present the DL frameworks

interoperability for smartphone deployment. In addition, this chapter provides a

thorough examination of the advantages and disadvantages of current computing

approaches in this context.

Chapter 4: Multi-sensor Data Fusion for Indoor Localization
This chapter presents an approach that takes advantage of smartphone sensors
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combined with computer vision, more specially DL, for indoor room-level localiza-

tion. As smartphones are not only endowed with cameras but also equipped with

several other sensors, such as accelerometers and magnetometers, they provide

the opportunity to acquire additional information and therefore build reliable

localization systems. We propose a novel direction-driven multi-CNN indoor scene

recognition system based on image features and the magnetic heading from a

smartphone camera. Results on a real dataset show that the proposed method

outperforms the scene recognition method based solely on image features in terms

of accuracy. To address latency, scalability, and privacy issues, a hybrid computing

strategy is also presented.

Chapter 5: Coherence-based Sample Selection for Class-
incremental Learning
This chapter presents a novel sample selection strategy for Class-IL. In order to

handle memory constraints and prevent forgetting previously acquired knowledge,

the careful selection of representative samples is important. The proposed ap-

proach is based on the coherence measure, which was originally used with linear

and kernel-based models. This chapter investigates the coherence measure for

diverse samples selection in a DL context. The coherence-based sample selection

method is validated on two well-known datasets. The obtained results show that the

proposed method outperforms state of the art techniques, with better average test

accuracy. This chapter sheds light on the importance of Class-IL for maintaining

a vision-based indoor localization system in changing environments over time,

especially when adding new rooms to an existing indoor localization system.

Finally, a general conclusion assesses the results of this thesis and suggests a

number of future research directions.

1.6 Research Publications

Peer-reviewed international journal paper (1 + 1)

• A. Daou, J.B. Pothin, P. Honeine, and A. Bensrhair. Indoor scene recognition

mechanism based on direction-driven convolutional neural networks. Sen-

sors, 23(12):110439, 2023.
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• A. Daou, J.B. Pothin, P. Honeine, and A. Bensrhair. Coherence-based sample

selection for class-incremental learning. Pattern Recognition Letters. Submit-

ted on October 2023.

Peer-reviewed national conference paper (1)

• A. Daou, J.B. Pothin, P. Honeine, and A. Bensrhair. Contrôle d’un système

multi-cnn via le cap magnétique du smartphone pour la reconnaissance de

scènes indoor. In Actes du 28-ème Colloque GRETSI sur le Traitement du Sig-

nal et des Images, Nancy, France, 6 - 9 September 2022.

Workshop with proceedings (1)

• A. Daou, J.B. Pothin, P. Honeine, and A. Bensrhair. Amélioration des perfor-

mances des réseaux de neurones convolutifs en localisation indoor par aug-
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Ferréol, France, 13 - 17 September 2021.
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2.1 Introduction

Indoor location-based services constitute an important part in our daily life, pro-

viding position and direction information of a person or an object in an indoor
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space. These systems can be useful in security and monitoring applications that

target specific areas such as rooms. Indoor localization has profound implications

across a range of applications such as navigation and tracking [KKAMAA20], retail

and marketing [HKLK17, HQY+22], robotics [HJLT23] and many more. According to

Technavio 1, the global Indoor Positioning and Indoor Navigation (IPIN) market is

expected to increase by USD 52,503.46 million between 2022 and 2027, with a Com-

pound Annual Growth Rate (CAGR) 2 of 34.07%. Different strategies have been de-

veloped with varying degrees of success to address the needs of localization. Indoor

and outdoor localization challenges differ significantly due to the unique charac-

teristics of each environment. GNSS is the most well-known and frequently used

system in modern times. Unfortunately, GNSS only works in outdoor environments

and fails in indoor environments because the satellite network requires visibility.

In an indoor context, alternatives such as UWB, RFID tags, and more recently

Bluetooth and WiFi have been proposed [ZGL19]. These new solutions require a

transmitter/receiver infrastructure before implementing the localization applica-

tion. Considering the deployment requirement and the maintenance costs they

may incur, computer vision-based approaches prove to be a highly promising so-

lution. These approaches require (almost) no infrastructure, and it is possible

to achieve more accurate localization than some of the aforementioned strate-

gies [MPS14].

Scene recognition forms the foundation of vision-based indoor localization,

which is defined as the task of identifying accurately a room from a given image.

In scene recognition, the goal is to classify an input image into a predefined set of

scene classes. As the system analyzes the visual information in the image, several

discriminating characteristics play a crucial role in the recognition process, mainly:

environment data, sensing devices, detected elements, and the used localization

method. Depending on the configuration, the number of cameras, and the nature of

the environment, the challenges can be more or less complex [MMM+20]. Despite

years of research in this field, indoor scene recognition remains an open problem

due to the different and complex places in the real-world. Indoor environments are

relatively complicated because of layout variability, objects and decorations com-

plexity, multi-scale and viewpoint changes.

In this chapter, we present a comprehensive exploration of indoor localization

1Technavio; Website: https://www.technavio.com/report/indoor-positioning-and-ind
oor-navigation-market-industry-analysis, accessed on 12 September 2023.

2CAGR is the annual growth of a person’s investments over a specific period of time.
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techniques, starting with an overview of several technologies. Then, we focus on

vision-based indoor localization in known environments, covering essential top-

ics like scene understanding and recognition, allowing systems to interpret and

navigate complex indoor environments using visual cues. Furthermore, we delve

into the field of DL for vision-based indoor localization, specially concentrating on

CNNs which transformed image classification, making it possible to automatically

and precisely identify intricate visual features. In this context, we investigate exist-

ing approaches, datasets, and the challenges that must be addressed.

2.2 Background on Indoor Localization Techniques

People all over the world are increasingly interested in localization and positioning

services. Location-based services, relying on location data, provide precise and real-

time information on a user’s or an object’s location in a given environment. Several

techniques based on different technologies are available to provide an accurate po-

sitioning solution in outdoor and indoor environments [AM22]. Accurate localiza-

tion is critical in many domains, providing numerous benefits and enabling a wide

range of applications in different domains like navigation systems [AAW+20], aug-

mented reality [JS23], asset tracking [FHS18], and emergency response [FFCM17].

Indoor localization systems aid users in navigating through complex indoor spaces

such as shopping malls, airports, hospitals, and large office complexes, making it

easier for them to locate specific points of interest, such as stores, gates, or meeting

rooms, which improves the overall user experience.

While GPS [KKAMAA20] and Point Of Interest (POI) [LTC21] have been widely

used for outdoor localization, indoor localization presents unique challenges due

to low signal strength and reduced accuracy in enclosed and cluttered environ-

ments. Indoor localization systems are classified according to their sensing tech-

nologies and measurement methods. The sensing technologies refer to the sen-

sors utilized, while the measurements techniques refer to the methods and met-

rics used in localization. There are two main approaches to the indoor localiza-

tion problem: infrastructure-based systems, which require a transmitter/receiver

infrastructure, and infrastructure-free systems, which can operate (almost) au-

tonomously [AHP18]. See Figure 2.1 for the different indoor localization techniques.

The diverse nature of indoor localization solutions, the different elements that

influence their performance, and the multiple applications they serve present a
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Figure 2.1: Indoor localization techniques.

number of problems for the design and the development of a methodology that

delivers meaningful results. To be considered effective and practical, an indoor lo-

calization system must meet a number of criteria and needs. Indoor localization

solutions are characterized by several elements [GFM21, SHK22]. See Figure 2.2 for

the various elements representing an indoor localization solution.

The characteristics of an indoor localization system depend on a variety of fac-

tors, such as the utilized agents that encompass devices (e.g., RFID tags, WiFi ac-

cess points, Bluetooth beacons, smartphones, etc.) and sensors (e.g., camera, ac-

celerometer, magnetometer, barometer, etc.). These devices and sensors have a piv-

otal role in gathering essential data and processing it. Furthermore, the underlying

technologies and applied techniques (see Sections 2.2.1 and 2.2.2), which include

used methods and algorithms (e.g., fingerprinting, triangulation, trilateration, sen-

sor fusion, machine learning, computer vision, etc.), represent a key element of the

solution. Integrating several technologies and sensors can be complex. As a result,

a methodology should consider how various technologies can coexist to produce

accurate and consistent results.

The studied environment has an impact on the solution as well. The application

environment might range from office buildings, airports, hospitals to warehouses.

Indoor localization solutions need to be customized for individual use cases and

modifications must be applied in order to effectively meet the application require-

ments. In indoor localization systems, place representation entails gathering and
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Figure 2.2: Elements of an indoor localization solution.

encoding information about the indoor environment studied. This representation

includes a variety of data types, such as images, WiFi signal strengths, magnetic fin-

gerprints, or other sensors information.

Additionally, the choice of evaluation metrics depends on the unique goals and

needs of the indoor localization solution, such as accuracy, complexity, security,

power consumption, cost, scalability, latency and many more. The achievement of

high accuracy, in line with users’ expectations, is a crucial necessity for localization

systems. The user experience is also greatly influenced by energy efficiency, which

emphasizes the necessity for optimum energy utilization to prolong device battery

life. The difficulty of cost effectiveness also looms big. Utilizing existing infrastruc-

ture is a crucial cost-saving approach since systems that depend on new infrastruc-

ture frequently have higher costs than those that do not. Another crucial element

is scalability, which ensures adaptation to varied user densities dispersed over large

areas. The key to creating a complete localization system is striking a balance be-

tween a variety of evaluation metrics. A careful consideration of evaluation metrics

is essential for designing, optimizing, and validating indoor localization solutions.

Thorough validation is required for meaningful results like testing real-world sce-

narios and recreating difficult conditions.

2.2.1 Infrastructure-based Techniques

The majority of systems with infrastructure that have been popular for indoor lo-

calization use wireless technologies such as infrared [HK10, AL20], UWB [SM16],

WiFi [SFH+19, LLY+20], Bluetooth [TLG+20, MSG+20], RFID tags [CWG+20], and

sensor fusion techniques that combine several wireless technologies [TC22]. Di-

verse sensor technologies used for indoor localization are represented in Figure 2.3.
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Figure 2.3: Examples of sensor technologies for indoor localization.

Wireless signals propagate differently indoors than outdoors due to issues such as

signal attenuation, multi-path interference, and signal reflections [LLY+20]. This

involves the development of specialized localization algorithms and techniques. In

wireless-based indoor localization systems, various techniques such as fingerprint-

ing [YWW20], trilateration [Shc14], and Received Signal Strength Indicator (RSSI)

measurements [SS18] are used. Fingerprints involve creating a database of signal

characteristics at known locations and matching them to the received signals to esti-

mate the user’s position. Trilateration relies on measuring the distances between the

user and multiple transmitters/receivers. RSSI-based methods estimate the user’s

position based on the Received Signal Strength (RSS).

Wireless-based indoor localization systems confront a number of challenges

that can reduce their applicability and accuracy. The deployment of transmitters

and receivers, as well as the calibration of the system, necessitate careful planning

and configuration, resulting in high installation expenses. Additionally, maintain-

ing that infrastructure can be costly. These systems are also susceptible to envi-

ronmental conditions that alter the waves, such as walls, furniture, and human be-

ings [ACH18, ACHC20].

2.2.2 Infrastructure-free Techniques

Continuous studies seek to improve the accuracy, reliability, and scalability of

wireless-based indoor localization systems. This includes creating advanced signal

processing algorithms, computer vision techniques, and hybrid systems that use

other sensor modalities, such as initial sensors and cameras.

Indoor localization techniques encompass diverse methods, including naviga-
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tion by estimation (e.g., PDR) based on acceleration, gyroscope and magnetic sen-

sors, which estimate movement by continuously updating the device’s estimated

position based on its initial known position and the collected sensor data [KH14,

AHP18, KNZC18]. Challenges involve accurately extracting distance and orienta-

tion from these signals amidst factors like sensor accuracy and user activities. Nav-

igation by estimation frequently incorporates additional data sources or sensor fu-

sion techniques to improve accuracy. This might include periodic correction using

known reference points or incorporating external data like WiFi or Bluetooth bea-

cons [SLK18, PEH19, RK22].

Magnetic field has also been used for localization and tracking in a variety of ap-

plications [AHP20, TAC+21, OAM22]. These indoor localization systems rely on the

Earth’s magnetic field and leverage anomalies created by metal structures within

the indoor environments, eliminating the need for an infrastructure installation.

The magnetic field of the Earth is a natural phenomena. It maintains a consistent

magnetic field strength across vast distances and does not undergo sudden changes

over short shifts like a few meters. However, the presence of ferromagnetic mate-

rials within indoor environments introduces anomalies [ZWWN15, SGD13]. These

anomalies, detectable by a magnetometer, can serve as fingerprints, enabling lo-

cation estimation. However, these systems face challenges due to the variability in

building structures, interference from electronic devices, and the need for careful

calibration.

In the current landscape, vision-based localization emerges as a prominent

trend, leveraging advancements in computer vision algorithms and camera-

equipped devices. These systems create databases of images labelled with geo-

graphic information and then use these databases to match and locate new images

during online localization. Vision-based methods do not rely on radio/wireless sig-

nals and offer efficient and accurate positioning. While environmental variations

exist due to factors like viewpoint, light conditions, and many more limitations,

robust algorithms aim to mitigate these effects. An alternative approach employs

Simultaneous Localization and Mapping (SLAM) techniques [LRH+19, KRM+21],

which, unlike prior methods, construct environment maps alongside localization,

employing methodologies like Kalman filters and Expectation Maximization Algo-

rithms.

Vision-based techniques are of great interest because they do not require im-

plementing and maintaining an infrastructure, unlike other indoor technologies.
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Choosing a suitable solution is dependent not only on the application domain, but

also on the application’s specific needs such as accuracy, computing time, memory

size, and equipment.

2.3 Vision-based Indoor Localization in Known Envi-

ronments

Vision-based localization aims to answer the fundamental question "Where am I?"

by leveraging computer vision techniques and image analysis. The system seeks to

determine the location of a user within an environment by recognizing the specific

characteristics and scene category of that location. In this section, we will go into a

comprehensive exploration of scene recognition in the context of localization. Our

focus will be directed to the complex area of indoor scene recognition.

2.3.1 Scene Recognition for Localization

In the context of localization, vision-based methods have shown great interest in

recent years [Hu15]. Indeed, tracking methods based on visual image recognition

(i.e., image features) require only an image acquisition device. The cognitive ability

of people to perceive and analyze the visual aspects and elements present in an

environment is referred to as scene understanding. It includes tasks such as scene

recognition, semantic segmentation, and object recognition and detection [NKP18]

(see Figure 2.4). Scene understanding attempts to grasp the underlying meaning

and context of a scene by using the visual information collected in images serving

as the framework for higher-level analysis and interpretation.

Scene recognition is concerned with categorizing the entire scene, taking into

account the general structure, context, and functionality of the indoor or the out-

door environment [TSYW17]. Scene recognition can be described as classifying a

scene query image to one many scene categories, serving as the bridge between raw

visual data and meaningful spatial information. Traditional vision-based methods

for scene recognition mainly focus on images features, which include the image’s

global content, objects, and layout visual comprehension. The scene recognition

system must therefore have a thorough understanding of the scenes that we en-

counter in daily life, including both indoor and outdoor environments, in order to

be able to assign the appropriate scene category to the given query image. For more
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Figure 2.4: Given a RGB image, visual scene understanding can involve: (a) scene recogni-
tion, (b) semantic segmentation, and (c) object detection [NKP18].

than a decade, scene recognition has been an active research area benefiting a wide

range of applications, such as image retrieval [VS07], service robots [LT19], video

surveillance [SD19], augmented reality [MXD+18], etc. Semantic segmentation is a

computer vision technique that adds a category label to each pixel in an image, es-

sentially splitting the image into regions containing meaningful items or fragments

of objects. Semantic segmentation classifies each pixel to provide a more complete

knowledge of the image [Tho16, GLGL18, WA19, MWY+22]. Object recognition is

a method that identifies and categorizes individual objects within an image. It in-

volves recognizing predefined object classes and determining which of these classes

an object belongs to. Object detection takes a step further by detecting and localiz-

ing objects inside an image by providing bounding boxes around the detected ob-

jects. Object detection can identify and locate multiple objects of different classes

within the same image [RP00, DLY+17, ZZXW19, ZCS+23]. In vision-based local-

ization, the system can use different types of cameras to capture images for scene

understanding, mainly:

• Mobile camera: In this approach, the subject that requires positioning carries

a mobile camera that captures visual information of the surrounding environ-

ment. The camera’s images are processed using advanced computer vision

techniques to extract features and patterns that help establish the subject’s

location. This method is versatile as it can be applied to various entities such

as individuals or robots.

• Static camera: This approach involves a network of static cameras positioned

at predetermined locations throughout the indoor space. These cameras con-

tinuously monitor the environment and track the subject’s movement by cap-

turing visual data. While this method can offer high accuracy, it necessitates
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careful camera placement and calibration to ensure comprehensive coverage

of the space. It is particularly suitable for scenarios where an infrastructure is

pre-installed.

Our primary emphasis will be on the task of scene recognition with mobile

camera-based systems, where the user is equipped with a camera (e.g., smartphone

camera or other end-user devices built-in cameras) that can move during the local-

ization process to capture images from the user’s point of view. To summarize the

advantages of vision-based localization, consider the following:

• Rich information: Cameras capture detailed visual information, including

textures, colors, shapes, and structural elements of the environment. This

rich data can be leveraged to create distinctive representations for accurate

recognition and localization.

• Contextual information: Visual data provides contextual information about

the surroundings, enabling the system to understand the scene’s layout, struc-

ture, and the relationships between objects. This context aids in accurate lo-

calization.

• Low infrastructure requirements: Vision-based systems can operate with

minimal infrastructure. Cameras are often already present in devices like

smartphones, eliminating the need for extensive additional hardware.

• Compatibility with different environments: Vision-based techniques can be

applied in a wide range of environments, making them versatile for various

applications.

2.3.2 Fine-grained Indoor Scene Recognition for Localization

Indoor scenes are complex because of the diversity of objects and layouts, the

problem of occlusion as well as the variability of lighting and viewing orientations.

Therefore, achieving great indoor scene recognition is quite challenging. The goal is

to develop algorithms and models that can effectively handle these obstacles, and

therefore achieve more accurate and comprehensive scene interpretation in real-

world indoor situations. Indoor scene recognition has received a lot of attention

in recent years, because of the advances in robust computing systems, the rapid
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growth of computer vision algorithms, and the emergence of minimalist interac-

tive devices. In indoor scene recognition, the scope extends from recognizing the

broader category of an indoor scene, such as a kitchen or office, to the finer task of

identifying specific rooms within those categories. While recognizing scene types

lays the foundation for understanding the overarching context, identifying specific

rooms involves a more intricate analysis. This distinction becomes particularly im-

portant in real indoor environments, where multiple instances of the same scene

type coexist but possess unique characteristics. This paradox highlights the neces-

sity for systems that can understand the subtle variations that make each instance

distinct.

Unlike outdoor space, a room-level location in which different rooms within a

building are distinguished may be sufficient for most indoor location-based ser-

vices. A room-level indoor localization system is mainly designed for people who

need positioning solutions that are less susceptible to conditions that alter the

waves in indoor areas, focusing on easy system installation and usage. This cost-

effective system does not require any additional infrastructure to function; it may

operate in indoor environments that do not have pre-installed beacons, transmit-

ters, or receivers.

In a vision-based indoor localization scenario, a "known environment" refers to

an indoor setting where the system has prior knowledge or information about the

visual features of the environment. This information is usually obtained during a

training phase, where the system is exposed to the environment, and images are

collected and labeled with corresponding location information. The advantage of

a known environment in vision-based indoor localization is that it allows for more

accurate and efficient localization results. However, it is essential to note that main-

taining an up-to-date and accurate dataset of the known environment is crucial for

the system’s success. Changes in the indoor environment can lead to inconsisten-

cies between the known features and the actual scene, potentially impacting the

accuracy of localization results.

Vision-based indoor localization, particularly indoor scene recognition,

presents significant challenges. These include addressing the diversity of indoor

scenes, the need for robust algorithms to handle variations in lighting, layout, and

viewpoint, as well as the requirement of user-friendly systems. Additionally, due to

the data-driven nature of vision-based localization solutions, significant computa-

tional resources are required. This thesis focuses on using DL techniques to address
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the issues of vision-based indoor localization. Before providing a survey on DL for

vision-based indoor localization, we give in the following an overview of available

datasets for scene recognition.

2.3.3 Datasets for Scene Recognition and Their Limitations

The most widely recognized dataset is ImageNet [DDS+09] created to address the

problem of object classification. This publicly available dataset includes 21,841

classes with more than 14 million images, providing the scientific community with

a valuable data resource for computer vision tasks. Each image is annotated with an

object class label following the WordNet hierarchy [Mil95]. The ImageNet dataset

contains a set of manually annotated images with an approximate image size of

500×400 pixels. Since 2010, ImageNet has been at the core of the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC), a famous benchmark for image clas-

sification and object recognition [KSH12].

Scene recognition stands as one of the pivotal tasks within the area of computer

vision. The transition from object recognition to scene recognition represents a shift

from the general recognition of object categories within images to the more chal-

lenging recognition and understanding of outdoor and indoor environments. For

a scene classification problem, a dataset containing the corresponding images (i.e.,

images of indoor or outdoor environments) is required. Outdoor scene recognition

pertains to the recognition of scenes in open outdoor environments. Outdoor scene

categories include a wide range of urban environments, such as bridges, skyscrap-

ers, highways, campuses, and historic landmarks. Additionally, datasets for outdoor

scene recognition include images from various natural landscapes, such as forests,

lakes, caves, mountains, and parks. In contrast, indoor scene recognition focuses on

recognizing scenes in enclosed spaces, such as rooms, offices, shops, classrooms,

and homes. It often deals with scenes characterized by man-made structures and

objects, such as furniture, appliances, and decor.

Researchers have been working on diversifying datasets to make classification

algorithms more effective. An overview of publicly available datasets for scene

recognition is represented in Table 2.1. The Scene15 dataset [LSP06] is a dataset

comprising 4,448 gray-scale images categorized into 15 scene classes. These classes

encompass 5 indoor scenes, such as offices, bedrooms, and kitchens, and 10 out-

door scenes like mountains, forests, and streets. Each class contains between 210
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Table 2.1: An overview of popular datasets for scene recognition.

Dataset Type of scenes #Classes #Images #Images per class Image size Dataset size
Scene15 [LSP06] indoor/outdoor 15 4,488 210 to 410 ≈ 300×250 81.88 MB

MIT Indoor-67 [QT09] indoor 67 15,620 ≥ 100 ≥ 200×200 2.4 GB
SUN397 [XHE+10] indoor/outdoor 397 108,754 ≥ 100 ≈ 500×300 37 GB
Places88 [ZLX+14] indoor/outdoor 88 ≥ 88,000 ≥ 1,000 ≥ 200×200 −

Places205 [ZLX+14] indoor/outdoor 205 2.5 million 5,000 to 15,000 ≥ 200×200 −
Places365-Standard [ZLK+17] indoor/outdoor 365 1,803,460 3,068 to 5,000 ≥ 200×200 28.901 GB
Places365-Challenge [ZLK+17] indoor/outdoor 365 8 million ≥ 4,000 ≥ 200×200 112.901 GB

and 410 images, and the average image size is 300× 250 pixels. The MIT Indoor-

67 dataset [QT09] covers indoor scenes including categories, such as stores, public

places, and working places. This dataset contains 67 indoor categories with a total

of 15,620 images, with approximately 100 images per class. The images within MIT

Indoor-67 have a minimum image size of 200×200 pixels. The Scene UNderstand-

ing 397 (SUN397) dataset [XHE+10] boasts a more extensive collection of 397 scene

categories, encompassing indoor and outdoor scenes. Each category includes over

100 images, resulting in a dataset containing 108,754 images, with an image size of

about 500×300 pixels. The Places dataset [ZLX+14, ZLK+17] stands as an extensive

collection of scenes, including a rich spectrum of 434 scene categories. The images

within the Places dataset have a minimum image size of 200×200 pixels. Places88,

Places205, Places365-Standard, and Places365-Challenge are subsets of the Places

dataset.

Using these public scene datasets for vision-based indoor localization has a

number of significant constraints. These datasets may not fully represent the va-

riety of lighting situations, viewpoints, and indoor layouts encountered in the real-

world. Furthermore, the annotations in public datasets lack the granularity required

for indoor localization systems. Public scene datasets, which include general in-

door scene images, often have relatively broad labeling granularity. These datasets

categorize images into high-level scene categories, such as office, kitchen, or bed-

room. Datasets intended for localization demand a much finer granularity in la-

beling. Instead of high-level scene categories, they require detailed and room-level

descriptions of the studied indoor environments. For example, they need labels like

office A, office B, conference room, etc. Domain gaps can result from the difference

between public datasets and the complexities of real indoor environments. These

datasets are not compatible with the specific requirements of particular applica-

tions.

As indoor scene recognition is a key component of vision-based indoor local-
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ization, creating real problem-specific datasets directly supports real-world appli-

cations. Solutions to address this challenge encompass diverse approaches. Real-

world data collection entails engaging individuals to take videos or images of the

studied indoor environments using smartphone camera or other end-user devices

built-in cameras [ZDM+16, LZL+16, KKAMAA19]. This method guarantees the ac-

quisition of a wide range of scenario representations. Real data can also be acquired

through the deployment of a mobile robot, actively navigating through indoor envi-

ronments [EKRS13, XCD19]. In synthetic image indoor localization, environments

are generated through computer software. Simulated environments generated with

3D rendering software offer a powerful and controlled means to generate diverse

and dynamic indoor scenes [LCZ+22].

2.4 Deep Learning for Vision-based Indoor Localiza-

tion

Since applications that aid humans in understanding their surroundings are sup-

ported by indoor scene recognition systems, it is crucial to develop robust and trust-

worthy indoor scene recognition models. One useful source used for indoor local-

ization is image analysis and classification [MMM+20]. In this section, we will start

by a comprehensive overview on image classification using DL. We will then discuss

the use of CNNs for indoor scene recognition. On this basis, we will dissect existing

approaches and analyze the requirements and challenges that arise in the pursuit

of seamless indoor scene recognition for localization purposes.

2.4.1 Deep Learning Fundamentals for Image Classification

A fundamental task in computer vision is image classification, which aims to clas-

sify images into predefined labels. DL has developed into a game-changer for tack-

ling image classification issues over time, achieving astounding performance gains.

CNNs, in particular, have demonstrated their capacity to learn hierarchical repre-

sentations directly from raw pixel data, enabling them to perform exceptionally well

on image recognition tasks. In what follows, we explore the fundamental ideas be-

hind image classification, passing from traditional handcrafted features to learned

features, and the essential elements that make them effective at image recognition

tasks. Understanding these fundamentals is crucial for building effective and accu-
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rate image classification systems in various real-world applications, such as vision-

based indoor localization systems.

2.4.1.1 From Handcrafted Features to Learned Features

Supervised learning is a machine learning method in which a model is trained using

labeled examples to classify or predict new unlabeled data. In the context of image

classification, supervised classification involves using samples of known classes,

known as training datasets, to teach a model how to recognize and classify unknown

images or objects with unknown identities within an image.

Feature extraction is critical for distinguishing and differentiating images.

Handcrafted features are manually extracted features from images to represent

meaningful visual characteristics such as corners, edges, colors, or texture pat-

terns. These features are engineered based on prior knowledge and understanding

of the data and the problem at hand. Some notable local visual descriptors have

been widely used in image classification, such as Scale Invariant Feature Transform

(SIFT) [Lin12], Histogram of Oriented Gradients (HOG) [DT05], Speeded Up Robust

Features (SURF) [BETVG08], and Bag-of-Visual-Words (BoVW) [YN10].

For image classification, visual characteristic regions are first detected in an im-

age to get descriptors that are capable of distinguishing between the images. These

handcrafted descriptors are then used as inputs to ML classification algorithms,

such as SVM [LW18], KNN [Pet09], or Random Forest (RF) [Bre01], to discriminate

between different classes. The performance of these ML methods is largely depen-

dent on the quality and relevancy of handcrafted features that act as a bridge be-

tween the raw image data and the classifier.

The handcrafted features showed some success in image classification, but re-

quired expert domain knowledge for feature design. The handcrafted features have

major limits. Handcrafted features extract a low-level representation of the data and

hence cannot provide a conspicuous abstract representation, which is required for

recognition tasks. Additionally, high-dimensional feature vectors can result from

handcrafted features. Dealing with such high-dimensional data can be computa-

tionally intensive, requiring substantial memory and processing power. Further-

more, the handcrafted features capacity is limited and determined by a specified

mapping from the data to the feature space, which is fixed independent of the needs

of any identification challenge [TKT+22]. Effective handcrafted features necessitate

domain expertise and a thorough understanding of the problem at hand. As a re-
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sult, feature engineering can be a time-consuming and expert-dependent proce-

dure. Due to the inherent limitations of traditional image classification methods,

the exploration of novel approaches became imperative.

2.4.1.2 Convolutional Neural Networks for Image Classification

Over the last decade, handcrafted methods have been replaced by DL architectures,

which often follow an end-to-end learning scheme in a supervised manner, as they

are able to autonomously learn and extract valuable features directly from raw im-

age data. The progress in DL techniques has reduced the need for manual feature

engineering. In 1989, LeCun et al. used DL for recognizing handwritten digits and

employed the back-propagation algorithm to train a neural network [LBD+89]. The

rise of Graphics Processing Units (GPUs) to meet the demanding computational

needs of DL algorithms, as well as improved DL architectures and the availability of

large labeled datasets, are key factors contributing to DL’s widespread adoption and

improved performance [CPC16]. DL can outperform handcrafted feature extraction

methods, improving state-of-the-art recognition results [LBH15].

CNNs are DL models that are specifically built for analyzing grid-like struc-

tured data like images. These models learn hierarchical representations of fea-

tures from raw pixel data by using interconnected layers of neurons. This ca-

pacity enables CNNs to capture intricate visual patterns, outperforming tradi-

tional approaches in a variety of computer vision challenges like image classifica-

tion tasks [ZYT17]. Various architectures have been proposed for general image

classification, including AlexNet [KSH12], VGG [SZ14], GoogleNet [SLJ+15], Incep-

tion [SLJ+15], ResNet [HZRS16], DenseNet [HLVDMW17], and EfficientNet [TL19,

XLHL20, PDXL21]. A typical CNN architecture is a hierarchical network composed

mainly of convolutional layers, activation functions such as rectified linear units

(ReLUs), pooling layers, and fully connected (FC) layers. The output of the last FC

layer is usually fed into a softmax activation function for multi-class classification.

The output of the softmax layer is a probability distribution vector over the different

studied classes. The intermediate convolutional layers carry the important respon-

sibility of feature extraction. Figure 2.5 presents an illustration of a typical CNN

architecture.

Each CNN architecture has its unique characteristics and distinctive features.

ResNet-32, for example, is a CNN architecture in the ResNet family [HZRS16]. This

particular network is named ResNet-32 due to its 32-layer depth. One of the main
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Figure 2.5: A typical CNN architecture.

Figure 2.6: Residual learning: a building block [HZRS16].

innovations in ResNet-32, as in other ResNet models, is the implementation of iden-

tity shortcut connections as represented in Figure 2.6. These shortcuts allow infor-

mation to bypass one or more intermediate layers, helping to mitigate the issue of

vanishing gradient that typically affects the training of deep neural networks [GB10].

Before training CNNs, data preparation is an important step. The image pre-

processing phase makes sure the data is of a quality and format that the CNN model

can learn from. It is critical to resize images, as CNNs typically expect input im-

ages with a fixed size to maintain interoperability with FC layers. Pre-processing

approaches such as resizing and normalization can improve model training by re-

ducing computational needs and enhancing convergence [MMN22].

The dataset is typically divided into three subsets: training, validation, and test-

ing datasets. The training dataset is used to train the CNN model. This dataset

consists of labeled examples, where each example is an image along with its cor-

responding correct class label (i.e., ground-truth) based on the image classification

task at hand. Ground-truth is essential for quantifying how well the model’s predic-

tions are. The validation dataset is a separate dataset used to fine-tune the model’s

hyperparameters and to provide an estimate of the model’s performance during

training. The testing dataset contains a set of labeled examples like the validation

dataset. These examples have not been used in training or validation. The testing
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dataset is used to evaluate the final performance of the trained model and to get an

estimate of how well the model generalizes to unseen data. Several public datasets

have played a pivotal role in advancing the field of image classification, such as Im-

ageNet [DDS+09], CIFAR-100 [KH+09], and Pascal VOC [EVGW+10]. These datasets

have allowed researchers to train and evaluate models on large-scale diverse collec-

tions of images.

During training, input images from the training dataset are processed through

the neural network. For each input image, the CNN predictive model generates a

vector of scores (i.e., softmax output probabilities), which is then compared to the

corresponding ground-truth label. The difference between the predicted output

and the true ground-truth label is quantified using a loss function (usually cross-

entropy loss for classification tasks). The weights of the model are iteratively up-

dated via a learning process until the output reaches the desired level of accuracy.

The model’s performance is evaluated using the validation dataset after each train-

ing epoch (i.e., a full pass through the training dataset or a training batch). This

evaluation involves feeding the validation data into the model and computing eval-

uation metrics (e.g., accuracy and loss) to monitor the model’s performance during

training by assessing how well the model generalizes to data it has not seen during

training. CNNs build a hierarchical representation of features from the input data,

with the goal of minimizing a specific criterion presented as a differentiable cost

function. This allows CNNs to learn both feature representation and feature encod-

ing from images at the same time. During testing, the trained model is evaluated to

assess its performance on new unseen test data. This phase determines how well

the CNN generalizes its learned features to make predictions on real-world exam-

ples.

During inference, the capabilities acquired by training are put into practice. The

trained CNN model uses the knowledge it gained through training to process each

new input image (i.e., a query image that the model has not encountered before)

and produce an output (i.e., a class prediction). The trained model is able to provide

high-level feature representations for new input data related to the specific dataset

and task on which it was trained [RW17]. The class with the highest probability in

the softmax output is typically considered the predicted class by the trained CNN

model for a given new input image.

CNNs, however, have limitations. For effective training, they require a large

amount of labeled data, and the quality of the data and corresponding labels has

30



CHAPTER 2. FUNDAMENTALS OF VISION-BASED INDOOR LOCALIZATION

a significant impact on their performance. Unfortunately, many application fields

do not have access to huge labeled data for training, leading to overfitting. Overfit-

ting is a machine learning phenomenon in which a model gets highly specialized

or fitted to the training data to the point where it performs badly on unseen or new

data [SP22]. In other words, the model becomes too complex, capturing too much

noise or random variation in the training data rather than learning the underlying

patterns or generalizable features. These deep neural networks present additional

challenges, such as the difficulty in ensuring properties like scale, rotation, or ge-

ometric invariance during training [XXZ+14, JSZ+15, TMU17]. Furthermore, CNN

architectures with a large number of layers and parameters are frequently built for

high accuracy on large-scale datasets. These deep architectures lead to significant

computational and memory needs, making them difficult to deploy on resource-

constrained embedded systems. To achieve optimal performance with CNNs, these

challenges must be carefully addressed. This involves the strategic implementation

of techniques, such as transfer learning and data augmentation, all while consid-

ering the adoption of lightweight CNN architectures when dealing with embedded

systems as investigated in this PhD thesis.

2.4.1.3 Convolutional Neural Networks with Transfer Learning

With the evolution of DL, transfer learning has become a popular approach to solve

new classification tasks with insufficient training datasets by fine-tuning pretrained

CNNs [HBF19]. For example, a CNN model pretrained on large-scale datasets,

such as ImageNet [DDS+09], can be fine-tuned with a training dataset containing

images representing the target task. Typically, when pretraining CNNs with Ima-

geNet, a subset of the dataset consisting of 1,000 categories and 1.2 million images

is used [KSH12]. During transfer learning, the CNN weights are updated in an end-

to-end manner in the training phase. Freezing the first layers refers to the process of

fixing the weights and parameters of specific layers in a pretrained CNN while train-

ing on a new task. This process helps to preserve learned features from the source

task that may be useful for the target task and reduces the number of trainable pa-

rameters in the network, which can significantly accelerate training and prevent

overfitting. See Figure 2.7 for an illustration of CNN training on the target dataset

using transfer learning.
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Figure 2.7: CNN training on a target dataset using transfer learning. A CNN is already pre-
trained on a source dataset. A target dataset is used to fine-tune the pretrained CNN to get
a fine-tuned CNN for a specific task. Layers that are kept fixed during fine-tuning are not
retrained to retain knowledge from the source dataset.

2.4.1.4 Convolutional Neural Networks with Data Augmentation

Data augmentation helps to represent a more comprehensive set of possible data

features. There are several methods of data augmentation, including the appli-

cation of geometric transformations, such as padding, scaling, rotation, flipping,

etc. The majority of these image manipulation techniques are simple to imple-

ment. Data augmentation enables the CNN model to learn a wider range of im-

age features and thus correctly predict the categories of unseen images while re-

ducing overfitting [SK19]. Additionally, data augmentation is used to improve

CNN invariance to image transformations, such as rotation and scaling [QRLB20].

CNNs are translation-equivariant, but not completely invariant to scale and rota-

tion [XXZ+14, JSZ+15, TMU17]. The choice of the augmentation methods and the

number of newly generated images is crucial since producing an excessive amount

of augmented data might demand computational resources without proportional

benefits.
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Figure 2.8: The architecture of SqueezeNet [IHM+16].

Figure 2.9: The organization of the convolution filters in the SqueezeNet fire module. In
this example, the squeeze layer contains three 1×1 convolution filters and the expand layer
contains four 1×1 and four 3×3 convolution filters [IHM+16].

2.4.1.5 Lightweight Convolutional Neural Networks

While it is known that the deeper the CNN model, the better the classification

performance, lightweight (pretrained) CNN architectures are able to perform well

with fewer layers and weights. Lightweight CNN models are intended for resource-

constrained environments with low memory requirements for hardware circum-

stances and good performance for a variety of tasks, balancing between accuracy

and efficiency. Examples of such lightweight CNN architectures are SqueezeNet

[IHM+16], ShuffleNet [ZZLS18, MZZS18], MobileNet [HZC+17, SHZ+18, HSC+19],

PeleeNet [WLL18], FBNet [WDZ+19], and GhostNet [HWT+20].

SqueezeNet [IHM+16] is a lightweight CNN architecture that uses 50× fewer pa-

rameters than AlexNet [KSH12] while achieving the same accuracy. SqueezeNet en-

hances accuracy while limiting the parameter count by adopting strategies such as

replacing 3× 3 convolution filters with 1× 1 filters, reducing input channels, and

downsampling late in the network. The fundamental component in SqueezeNet is

the fire module. The fire module consists of a squeeze layer that employs multiple

1×1 convolution filters and an expand layer that combines 1×1 and 3×3 convo-

lution filters. Both layers incorporate ReLU activation functions. See Figure 2.9 for

the fire module representation. The SqueezeNet architecture contains 8 fire mod-
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Figure 2.10: Comparison of convolutional blocks for different architectures. (a) MobileNet-
v1 [HZC+17]. (b) ShuffleNet [ZZLS18]. (c) MobileNet-v2 [SHZ+18].

ules as illustrated in Figure 2.8. MobileNet-v1 [HZC+17] is another lightweight CNN

that reduces the amount of parameters and operations by dividing the typical con-

volution into distinct depth-wise and 1×1 point-wise convolutions as represented

in Figure 2.10a. In a typical convolution, filters operate across all input channels

and combine them in a single operation. In contrast, depth-wise convolution em-

ploys distinct filters for each input channel and subsequently combines these using

point-wise convolution. This decoupling of filtering and the feature combination

lead to a reduced computational cost and a smaller model size. ShuffleNet [ZZLS18]

is another small CNN architecture that uses an innovative technique known as

channel shuffling to reduce the computational complexity and the memory foot-

print. This approach enables effective information exchange across different net-

work channels. ShuffleNet uses group convolutions and point-wise group convolu-

tions, as represented in Figure 2.10b, to find a balance between model size and ac-

curacy. MobileNet-v2 [SHZ+18] is a version of the original MobileNet-v1 [HZC+17]

built specifically for mobile and embedded vision applications. It uses inverted

residual blocks and linear bottlenecks to improve both efficiency and performance.

MobileNet-v2 employs, like MobileNet-v1, depth-wise separable convolutions as

well as shortcut and residual connections to improve gradient flow and feature reuse

during training. Figure 2.10c represents the convolutional blocks of MobileNet-v2.

PeleeNet [WLL18] is an efficient architecture designed for deployment on resource-

constrained embedded platforms. PeleeNet consists of a stem block to downsam-

ple the input image and four stages to extract features. PeleeNet has a compact

architecture with a model size 66% smaller than MobileNet-v1 [HZC+17]. PeleeNet
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outperforms the two versions of MobileNet [HZC+17, SHZ+18] in terms of accu-

racy and speed, performing 1.8× faster in ILSVRC 2012. FBNet [WDZ+19] is a fam-

ily of compact and efficient CNN architectures discovered using the Differentiable

Neural Architecture Search (DNAS) method. DNAS employs gradient-based tech-

niques to optimize CNN architectures. The architecture of FBNet is inspired by

MobileNet-v2 [SHZ+18], with a fundamental image model block that incorporates

depth-wise convolutions and an inverted residual structure. GhostNet [HWT+20] is

a lightweight CNN that is built around a Ghost module structure. The Ghost mod-

ule is intended to extract additional features efficiently using lightweight operations.

This method takes a foundational set of feature maps and uses cost-effective pro-

cedures to generate a number of ghost feature maps. Each ghost feature map con-

tributes to a more thorough representation of the information embedded within the

original intrinsic features.

2.4.2 Convolutional Neural Networks for Indoor Scene Recogni-

tion

Scene recognition stands as one of the pivotal tasks within the area of computer

vision. This task encompasses both outdoor and indoor environments. Outdoor

scene recognition pertains to the recognition of scenes in open outdoor environ-

ments. Outdoor scene categories include a wide range of urban environments, such

as bridges, skyscrapers, highways, campuses, and historic landmarks. Additionally,

datasets for outdoor scene recognition include images from various natural land-

scapes, such as forests, lakes, caves, mountains, and parks. In contrast, indoor

scene recognition focuses on recognizing scenes in enclosed spaces, such as rooms,

offices, shops, and homes. It often deals with scenes characterized by man-made

structures and objects, such as furniture, appliances, and decor.

Indoor scene recognition began with traditional handcrafted feature extraction

techniques, such as SIFT [LSP06, KPHB19, JQF+20] and HOG [LLLJ14], combined

with typical ML algorithms. Researchers have investigated a variety of handcrafted

features and classification models to classify indoor scenes based on color, texture,

and shape information. The BoVW model also became popular for recognizing in-

door scenes [YJHN07]. It entails displaying images as histograms of visual words de-

rived from grouping and quantization of local image attributes. The BoVW model

detects the distribution of visual words in an image and classifies them using clas-
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sic ML algorithms like SVM [HDO+98]. Researchers have also included spatial re-

lationships between objects or regions inside an image. Spatial pyramid matching

techniques and Markov Random Fields were used to represent and use spatial con-

text information for better recognition accuracy [MB14, XLL+18]. However, these

approaches often failed to represent the hierarchical nature of visual information

present in indoor scenes.

Thanks to the success of CNNs, starting with AlexNet in object classification

with the large-scale ImageNet dataset [KSH12], research focus on scene classi-

fication has been diverted from handcrafted feature extraction methods to DL

[ZLK+17, TWK17, ZLT+21]. CNNs have shown great promise for large-scale classifi-

cation and detection tasks. CNN-based approaches predict the probability of scene

categories directly from the entire scene image by extracting rich feature represen-

tations from these images. CNNs are designed to learn features from images in a

supervised training procedure and can learn high-level feature representations of

an image [KHB+16], as described in Section 2.4.1.

To improve the performance of scene recognition systems, researchers have

been interested in replacing these traditional feature detection methods with deep

neural networks, such as CNNs. Ongoing research in vision-based indoor localiza-

tion focuses on improving scene recognition algorithms’ accuracy, efficiency, and

scalability by improving feature extraction techniques, developing robust matching

algorithms, integrating DL approaches for visual representation and recognition,

and exploring multi-modal approaches that combine visual information with other

sensor modalities.

Several approaches have been proposed in literature for indoor scene recogni-

tion based on visual data. In [KHB+16], the authors proposed a feature represen-

tation based on rich mid-level convolutional features to categorize indoor scenes

enabling more precise scene representation. In [HKBA16], the proposed approach

combines a spatial pyramid encoding scheme with scale-invariant feature descrip-

tors to capture both global and local information from indoor scenes. This ap-

proach enabled robust and invariant feature extraction, allowing for effective in-

door scene classification. In [KHP17], the authors proposed implementing a spec-

tral transformation as a convolution layer in the CNN model. Spectral features

from images were used to capture unique signatures of different scene categories.

In [SHC+19], the authors took into consideration the relationship between scenes

and objects. The proposed scene recognition system uses object features extracted
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with ImageNet CNN [DDS+09] and scene features extracted with pretrained Places

CNN [ZLK+17]. In [SHK20], a lightweight architecture and effective feature extrac-

tion called FOSNet is proposed. FOSNet consists of PlaceNet for global context in-

formation extraction, ObjectNet for local features extraction and trainable fusion

modules to enhance scene understanding. In [AASA20], the proposed approach ap-

plies fine-tuning on pretrained EfficientNet [TL19] versions to extract and learn dis-

criminative features from indoor scene images.

The combination of multi-modal data, such as RGB images, depth maps, and

semantic information, has become an active field of research to improve the ro-

bustness and discrimination capacity of indoor scene recognition. Combining sev-

eral modalities allows for a more comprehensive knowledge of indoor scenes, which

results in enhanced accuracy and scene understanding. In [WHA14], the authors in-

troduced an innovative approach to indoor scene recognition that leverages RGB-D

data. The proposed method uses object-level image representations and attributes

to describe scene properties and learn scene-specific sub-dictionaries. In [ZWL16],

the authors considered the relationships between RGB and depth data. The pro-

posed pipeline involves the extraction of deep features using both an RGB CNN

and a depth CNN, followed by a multi-modal learning layer. This approach takes

into account inter-modality and intra-modality correlation for all samples, ensuring

that the acquired features are both discriminative and compact. In [LCEVBGM20],

a novel approach that takes advantage of both visual and semantic features is pro-

posed, combining CNNs with semantic embeddings. In [YWLW20], the authors pro-

posed T-Net, a T-like network that exploits both global and local features by multi-

scale supervision. They include an image translation component and a pixel-level

semantic segmentation annotations alongside the image-level labels. This joint su-

pervision technique helps the model in identifying additional object regions in the

images. In [MZM+21], a novel approach that uses object knowledge to improve in-

door scene recognition is presented. The proposed method incorporates object-

level features and object relations into the scene recognition system using an object

feature aggregation module and an object attention module.
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2.5 Requirements and Challenges for Indoor Scene

Recognition

Indoor scene recognition poses specific requirements due the complexity of indoor

environments and the diverse range of visual information present. Indoor scene

recognition systems should be robust to variations in lighting conditions, view-

points, and environmental changes. They need to handle different scenarios that

can impact the appearance of the scene. As indoor environments can be large and

complex, the system should scale well with the size of the environment and the

number of possible scene categories. Moreover, real-time or near-real-time pro-

cessing is essential for seamless user experiences in many applications. Indoor

scene recognition systems should be capable of efficient and fast image analysis

to provide timely responses.

The main requirement in indoor scene recognition is to understand and rec-

ognize input image data captured by a camera. As a result, robust features must

be extracted from these images. DL approaches, particularly CNNs, have shown to

have considerable potential in solving indoor scene recognition [SHK20, AASA20,

CBLC20]. However, significant obstacles remain, mainly:

• Limited data availability: Because scene recognition is heavily data-

dependent, it is critical to reuse knowledge learned from large-scale datasets

using transfer learning. Learning solely from limited target dataset leads in

low generalization. By applying transfer learning, CNNs pretrained on large-

scale datasets (such as ImageNet [DDS+09, KSH12]) are fine-tuned with target

scene datasets by making the last layers more task-specific [ZLT+21].

• Intra-class variability and inter-class similarity: Considerable variations be-

tween images of the same class and perplexing similarities between images of

different classes make indoor scene recognition a difficult task. A high per-

formance system should be able to deal with the inherent difficulty of indoor

scenes [KHB+16].

• Different light conditions: Indoor lighting conditions can vary significantly,

resulting in differences in illumination, shadows, and color tones. These light-

ing differences can have an impact on the appearance of objects, textures,

and the overall qualities of a scene. Robust indoor scene recognition systems

should be able to manage a variety of lighting situations.
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• Moving furnishings and humans: Indoor scenes are dynamic, with moving

furniture and present people, which alter the appearance and the layout of

the scene over time.

• Occlusion of features: Objects or scene elements might be partially or entirely

occluded, resulting in less informative features for indoor scene recognition.

Occlusions may occur as a result of furniture, walls, or other objects’ presence

in the scene. Knowing that occluded features can provide essential informa-

tion for scene recognition, dealing with this problem is critical.

It is critical to address these challenges in the context of indoor scene recogni-

tion in order to increase the accuracy and robustness of CNN-based models. Inno-

vative solutions, such as data augmentation techniques [DPHB21], context model-

ing approaches [ZBK+17], and transfer learning strategies [AASA20], are constantly

being investigated in order to overcome these limitations and fully exploit CNNs in

indoor scene recognition.

2.6 Conclusion

In this chapter, we addressed indoor localization, providing an encompassing

overview of diverse state of the art methods. Following that, we turned our attention

to vision-based indoor localization. We delved into indoor scene recognition. We

also investigated the use of DL for vision-based indoor localization, with a focus on

CNNs, where we looked at existing approaches, public datasets, and the limitations

and challenges that result. Additionally, we provided a comprehensive overview of

the key steps involved in building an indoor localization system.
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3.1 Introduction

The integration of smartphones into indoor localization systems marked the begin-

ning of an era of innovation in localization technology. Due to their widespread use
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and the variety of sensors they carry, smartphones are uniquely positioned to play a

key role in indoor localization systems. By exploring the symbiotic relationship be-

tween smartphones and indoor localization, this chapter discusses the capabilities

of smartphones sensors, as well as their limitations, when used for location esti-

mation. This chapter also includes some examples of existing smartphone-based

indoor localization systems. We also present the DL frameworks interoperability for

smartphone deployment as well as the advantages and disadvantages of the current

computing approaches.

3.2 Smartphone-based Indoor Localization

The rise of smartphone-based indoor localization represents a significant advance-

ment in the pursuit of location-aware services within indoor environments, rang-

ing from malls, hospitals, airports, and beyond. Smartphone-based indoor local-

ization has several compelling benefits that make it a promising and practical so-

lution for a wide range of applications. Smartphones are widely owned and carried

by individuals, making them an accessible and low cost platform for indoor local-

ization. Using devices already in people’s possession simplifies the implementation

and adoption of localization solutions. On the other hand, the majority of indoor

localization systems need the use of external sensors. While some systems just re-

quire a single additional sensor, others require multiple sensors. In this context, a

smartphone-based indoor localization system is exceptionally user-friendly. Com-

pared to deploying dedicated infrastructure, such as WiFi access points, Bluetooth

beacons, and RFID tags, utilizing smartphones as localization tools minimizes ad-

ditional costs. This is particularly advantageous for large-scale implementations as

smartphone-based localization systems can easily scale to cover large areas. In this

section, we investigate the use of smartphone sensors for indoor localization and

present some existing systems.

3.2.1 Evolution of Mobile Phones and Smartphones

The evolution of mobile phones and the sensors embedded within them has been

nothing short of remarkable. The number of integrated sensors in mobile phones

has increased dramatically over the past years as illustrated in Figure 3.1. The year

1992 witnessed the advent of mass-produced Global System for Mobile Commu-
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Figure 3.1: The evolution of mobile phones and smartphones from 1992 to 2012 [DDVPR13].

nication (GSM) phones with the introduction of the Nokia 1011. By 2000, mobile

phones had become more sophisticated, with many models featuring integrated

infrared ports, GPS receivers, and cameras. In 2002, the Ericsson T39 integrated

Bluetooth. In 2004, the Motorola A845 was the first mobile phone to integrate a dual

camera. In 2007, the Apple iPhone was released. The iPhone was one of the first

smartphones to feature a touchscreen display and a variety of integrated sensors, in-

cluding an accelerometer, a proximity sensor, and a wireless sensor. By 2012, smart-

phones had become ubiquitous, and many models featured a wide range of inte-

grated sensors, including gyroscopes, digital compasses (magnetometers), barom-

eters, and Near Field Communication (NFC) chips [DDVPR13]. The evolution of

smartphone sensors continued to accelerate in the past decade, with the introduc-

tion of even more sophisticated and specialized sensors. Fingerprint sensors gained
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Figure 3.2: Samsung Galaxy smartphones sensor growth.

widespread adoption with the iPhone 5S 1 , elevating security measures and un-

locking mechanisms. In 2014, the Samsung Galaxy S5 integrated heart rate sensors

as represented in Figure 3.2 from Qualcomm 2. In more recent developments, the

iPhone 11 integrated a UWB sensor 3, while the iPhone 12 Pro incorporated a Light

Detection and Ranging (LiDAR) sensor 4. These additions have significantly broad-

ened the spectrum of capabilities in these devices [CVPA22, DPD23, HKPH23]. To-

day, smartphones serve as versatile hubs of sensing, processing, and connectivity.

This combination has unlocked a world of novel applications that were previously

unattainable with standalone devices. As we move forward, smartphones continue

to evolve, and so do sensor technologies.

3.2.2 Smartphone Sensors for Indoor Localization

The growth of smartphone sensors has been remarkable, converting mobile devices

from simple communication tools to versatile, context-aware computing platforms.

1Apple Touch ID technology: https://support.apple.com/en-us/105095, accessed on 22
November 2023.

2Qualcomm; Website: https://www.qualcomm.com/news/onq/2014/04/behind-sixth-sen
se-smartphones-snapdragon-processor-sensor-engine, accessed on 30 October 2023.

3Apple UWB sensor availability: https://support.apple.com/en-us/HT212274, accessed on
22 November 2023.

4Apple LiDAR camera availability: https://developer.apple.com/documentation/avfoun
dation/additional_data_capture/capturing_depth_using_the_lidar_camera, accessed
on 22 November 2023.
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Figure 3.3: Some built-in smartphone sensors [LTP17].

This evolution has been driven by technological breakthroughs and an increasing

demand for different applications. Smartphones are equipped with many sensors

that can be used and optimized for accurate indoor location estimation. These sen-

sors, originally integrated to enhance the user experience and enable various func-

tionalities, have found new applications in indoor localization in real-world envi-

ronments [AHP20]. Some of the key sensors, represented in Figure 3.3, include:

• Accelerometer: This sensor measures acceleration across all three axes,

aligned with the smartphone’s body frame caused by movement (dynamic

force) or by gravity (static force). When at rest, an accelerometer measures an

acceleration equal to the standard gravitational acceleration on the surface of

the Earth. It is used in axis-based motion sensing. In indoor localization, it is

crucial for tracking movement and changes in position.

• Gyroscope: This sensor measures angular velocity, indicating the direction

and speed that the smartphone is spinning about each of the three axes. It

provides information about the orientation and angular changes of a device,

which can contribute to more accurate localization.

• Magnetometer: This sensor detects the local magnetic field strength and di-

rection along the three axes of the smartphone, enabling the determination

of direction and orientation relative to magnetic North. It plays a vital role in

magnetic fingerprints localization as well as orientation estimation and can
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assist in positioning calculations with other inertial sensors (i.e., accelerome-

ter and gyroscope).

• Barometer: This sensor measures atmospheric pressure, which correlates

with changes in altitude. By combining barometric data with other sensor

inputs, it is possible to estimate changes in floor levels within a building.

• WiFi and Bluetooth: These sensors help in WiFi and Bluetooth signal strength

measurements. By analyzing signal strengths from nearby WiFi access points

or Bluetooth beacons, smartphones can estimate their proximity to known

reference points in indoor environments.

• Camera: This visual sensor is of particular significance for indoor localiza-

tion. Advanced image processing and computer vision techniques can be

employed to extract visual features from captured images, aiding in accurate

localization.

• Microphone: This sensor captures and records audio. It can detect sound

waves in the environment and convert them into electrical signals, which are

then processed by the smartphone’s audio system for various applications.

This sensor can be used with other sensors like WiFi, Bluetooth, or inertial

sensors to enhance localization accuracy.

Two major smartphone-based localization approaches can be identified. The

first approach focuses on directly using the various built-in smartphone sensors like

camera, microphone, accelerometer, gyroscope, and magnetometer. The second

approach involves exchanging data and measurements between the smartphone

and built-in wireless or wired communication technologies. In the following, we

explore some smartphone-based indoor localization systems.

3.2.3 Camera-based Indoor Localization

The ability of smartphones to share the captured images opens up the possibility of

using the camera for localization. In fact, using smartphone camera for indoor lo-

calization is a very interesting and viable strategy [SHC+11]. Camera-based indoor

localization leverages the embedded cameras in smartphones and their good qual-

ity images to determine the user’s indoor location by analyzing visual data of the en-

vironment. This category includes techniques such as indoor scene recognition and
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object detection [WKM11, MMFW14, ZLT14, MNP+16], SLAM [LSY+22], QR-Codes

scanning [CMGCCL+11, PMMRSP13], Visible Light Positioning (VLP) [RF21], etc.

These approaches are mainly based on computer vision techniques and algorithms

to identify unique visual features within indoor spaces [JD17, GWCZ18, AHP19]. The

solution to use depends on several factors like the complexity of the indoor envi-

ronment, the level of precision and accuracy required, the available infrastructure

as well as the accessible devices and data. We describe in the following some ex-

isting camera-based localization systems that use conventional approaches or DL

solutions for indoor scene analysis and understanding (see Sections 2.3 and 2.4 for

detail on vision-based indoor localization and DL).

3.2.3.1 Examples of Existing Systems

DeepMoVIPS (Deep Mobile Visual Indoor Positioning System) [WHS16] is a room-

level indoor positioning system that leverages the image classification capabilities

of deep CNNs. DeepMoVIPS employs AlexNet [KSH12], pretrained on ImageNet

dataset, and extract feature values from its FC layer. Various classifiers (like Ran-

dom Forests [Bre01] and Naive Bayes [R+01]) are trained on transformed images

using these features. The evaluation encompasses rooms in an office building envi-

ronment, demonstrating the system’s effectiveness in real-world indoor localization

smartphone application.

VizMap [GGL+16] is an indoor localization system for visually impaired people.

It employs computer vision with crowd-sourcing to gather indoor visual POIs such

as posters, signs, and exit doors. VizMap initiates the process by utilizing videos

captured by on-site volunteers using smartphones (or wearable devices), which are

then used to construct a 3D spatial model. Remote crowd workers semantically la-

bel the collected video frames. These labels are integrated into the 3D model, cre-

ating a spatial representation of the environment that can be queried. Users can be

localized by capturing images using their smartphones. VizMap is based on SIFT

features for image matching and achieves indoor localization with sub-meter accu-

racy, enabling users to interact with their surroundings effectively. See Figure 3.4 for

an overview of the VizMap system.

DeepSpace [ZDM+16] is an approach based on deep CNNs for indoor position-

ing within MIT (Massachusetts Institute of Technology) campus buildings adapted

to smartphone camera use. DeepSpace utilizes two spatial-scale CNNs models; one

for building-level recognition (low spatial resolution) and another for room-level
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Figure 3.4: The VizMap system [GGL+16]. VizMap collects videos from sighted volunteers
(A) and constructs a sparse 3D model of the environment (B). At the same time, clear key
frames are extracted (C) for the crowd to annotate points of interest (D). Finally, the crowd
labels are embedded into the generated points cloud (E), shown here as blue squares.

recognition (meter-level area precision). The CNN model design draws inspiration

from architectures like AlexNet [KSH12] and NIN [LCY13]. The research involved

collecting video data within MIT campus buildings using a GoPro camera, from

which images were extracted for the training phase. In the inference phase, the

building-level CNN initially predicts the input image’s building category and then

directs it to the corresponding room-level CNN model for high-precision localiza-

tion. See Figure 3.5 for an overview of the DeepSpace system.

The study in [XCL+18] describes an indoor positioning system that can accu-

rately find the user’s location in a large indoor environment. This system leverages

ordinary static objects (e.g., doors and windows) as reference points to determine

positions. The method first uses a smartphone’s camera to detect these static ob-

jects and then calculates the smartphone’s position based on DL and computer vi-

sion algorithms. The proposed system relies on Faster Region-based CNN (Faster

R-CNN) [RHGS15] end-to-end network for image recognition and feature extrac-

tion to identify static objects within an indoor environment. See Figure 3.6 for a

diagram of the indoor positioning approach. Experimental validation conducted in

an art museum environment achieved results with a 1-meter range precision.

The paper [LCL+20] outlines a comprehensive method for precise indoor vi-

sual positioning using smartphones cameras. First, a sequence of RGB images
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Figure 3.5: DeepSpace system diagram [ZDM+16].

are collected from the indoor environment using a Sony ILCE-5000 camera, from

which an indoor precise-positioning-feature database is generated. The system

employs a traditional SURF [BETVG08] point matching strategy along with multi-

image spatial forward intersection techniques. Subsequently, the relationships be-

tween SURF [BETVG08] feature points in smartphone positioning images and 3D

object points are established through an efficient similarity feature description re-

trieval method. This method employs a novel matching error elimination technol-

ogy based on Hough transform voting [DH72] to obtain a reliable set of matching

point pairs. Finally, the intrinsic and extrinsic parameters of the positioning im-

age are calculated using Efficient Perspective-n-Point (EPnP) [LMNF09] and Bun-

dle Adjustment (BA) [TMHF00] methods, yielding to the smartphone’s precise lo-

cation. Basically, users capture an image using their smartphone’s camera, feature

extraction is then performed on the smartphone, and the image features and cam-

era information are transmitted to the server. The server utilizes the pre-established

positioning feature database to calculate the accurate pose of the captured image.

Finally, the precise pose information is transmitted back to the user’s smartphone

and displayed, enabling real-time self-positioning of the smartphone camera. See

Figure 3.7 for an overview of the indoor positioning system. This method offers a

robust and accurate solution for indoor visual positioning using standard smart-

phones cameras and a well-structured image feature database.
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Figure 3.6: Diagram of the indoor positioning approach proposed in [XCL+18].

3.2.3.2 Challenging Problems

Although not expensive, smartphone camera-based localization has several associ-

ated challenges that can undermine the system’s accuracy. Vision-based indoor lo-

calization performs poorly in many situations, such as corridors and similar rooms,

where features are frequently indistinguishable and repetitive, making it difficult

to find the correct location (as described in Section 2.5). To achieve high accuracy

and to compensate for the error, one option is sensor fusion techniques. Another

downside of the vision-based system is the storage capacity required for creating the

database of 3D maps, labeled images or features. Additionally, significant compu-

tational resources are required throughout the localization phase to perform image

feature extraction, matching and classification [AHP20] (see Section 3.3.2).

3.2.4 Magnetic-based Indoor Localization

The magnetic field of the Earth is a natural phenomenon. It maintains a consistent

magnetic field strength across vast distances and does not undergo sudden changes

over short shifts like a few meters. However, the presence of ferromagnetic mate-

rials within indoor environments introduces anomalies [ZWWN15, SGD13]. These
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Figure 3.7: The workflow chart of the indoor visual positioning system proposed
in [LCL+20].

anomalies, detectable by a magnetometer, can serve as fingerprints, enabling loca-

tion estimation. The magnetic field has been used for localization and tracking in a

variety of applications [AHP20, TAC+21, OAM22].

3.2.4.1 Examples of Existing Systems

Integration of magnetic field data as fingerprints, along with visual information for

indoor localization, was studied in [LZL+16, AHP19]. Both papers present solutions

based on computer vision and DL approaches.

In [LZL+16], the authors introduced an indoor localization and tracking ap-

proach called VMag that leverages the fusion of magnetic and visual sensing to en-

hance positioning accuracy. VMag employs a context-aware particle filtering frame-

work for user tracking and a neural network-based method to extract deep features

from input data. In the training phase, image and magnetic signals fingerprints

for each location are collected manually using smartphones (in vertical mode and

pointing into the main direction of the path). These measurements, as well as the

floor plan of the building, are then stored at the server end. The positioning deep

features extraction models are built and trained on the server side. In the inference

phase, a user holds his smartphone vertically. After each step, the application takes

an image and measures the magnetic field at its current location. These measure-

ments are sent to the server for localization based on the trained models. The mo-

tion data and the trajectory data are also sent to the server to support the tracking of

the user. Extensive experiments demonstrate VMag’s effective performance in four

diverse indoor environments, including a laboratory, a garage, a canteen, and an
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Figure 3.8: Architecture of the indoor localization approach proposed in [AHP19].

office building.

In [AHP19], an indoor localization approach is presented based on multi-sensor

fusion. First, the indoor scene is recognized using a CNN, decreasing localization

errors and restricting the search space by identifying the unique floor. Then, the

identified scene is employed to narrow down the search space in the magnetic field

database to lower the localization error. A modified K-NN algorithm computes the

user’s current location, which is adjusted using PDR data, and an expanded Kalman

filter enhances accuracy even further. Experimental results show that the approach

succeeds regardless of the smartphone used for localization. See Figure 3.8 for the

architecture of the proposed approach.

3.2.4.2 Challenging Problems

Smartphone sensors are an important component in the mobile computing do-

main, serving as a platform for new applications. However, the accuracy of these

sensors is critical for such applications. A smartphone magnetometer is a Hall ef-

fect sensor that perceives magnetic fields in an active manner [Chi13]. Artificial and

natural magnetic fields are numerous and variable. Thus, the magnetometer sensor

(digital compass sensor) of smartphones must be recalibrated regularly to reana-

lyze the present magnetic fields and determine where the North is. Magnetic field

measurements are primarily dependent on:

• The device: Sensors’ measurements are imperfect and imprecise. Different

sensors have varying precision, sensitivity, and stability. Various built-in sen-

sors and algorithms utilized by smartphone manufacturers lead to different
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magnetic field measurements.

• The user’s surroundings: Data uncertainty is caused not only by noisy mea-

surements but also by the surrounding environment. Other electronic devices

commonly found inside buildings cause interference and magnetic perturba-

tion. The omnipresent magnetic field is disrupted by ferromagnetic materials

used in buildings, affecting magnetic field measurements and causing inac-

curate direction and position information.

All the above challenges may affect the performance of localization systems rely-

ing on magnetic field data. Thus, proper stability management is critical for achiev-

ing accurate localization results that are closer to situations in reality.

3.2.5 WiFi-based Indoor Localization

The widespread availability of Wireless Local Area Network (WLAN) infrastructures

has accelerated the use of WiFi-based systems for indoor localization. The WiFi

technology offers a cost-effective solution for localizing a diverse range of WiFi-

compatible devices (e.g., smartphones and tablets) without necessitating additional

software installations [XZYN16, AMCHC20]. In the following, we describe some ex-

isting WiFi-based localization systems and delve into the inherent challenges asso-

ciated with these systems.

3.2.5.1 Examples of Existing Systems

SWiN (Self-evolving WiFi-based Indoor Navigation) system is a real-time

lightweight indoor navigation solution for smartphone implementation [ZHSS19].

SWiN retrieves both the static and dynamic WiFi signal features such as the scanned

access point list, the variations of signal strength, and the access point’s relative

strength order. SWiN uses the leader-follower structure. The authors presented a

novel step-constrained hybrid synchronization algorithm that allows navigation

based on user motion patterns. Furthermore, an updating mechanism ensures the

system’s long-term utility. See Figure 3.9 for a diagram of the SWiN system. Exper-

imental results obtained in a five-story office building and a two-story shopping

mall affirm the effectiveness of the SWiN system deployed on smartphones.

In [GCY+19], the authors proposed an indoor smartphone localization and

tracking solution based on WiFi technology. The system uses a hybrid algorithm
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Figure 3.9: SWiN system diagram [ZHSS19].

Figure 3.10: Architecture of the indoor localization system proposed in [GCY+19].

based on the WiFi Round Trip Time (RTT) and RSS to improve the positioning accu-

racy and scalability. A multilateration method is used to determine the position of

the smartphone. Multilateration is a localization method that converts signal ranges

to a position [LDBL07]. See Figure 3.10 for the proposed localization system archi-

tecture. Experiment results show that the proposed system outperformed the clas-

sic fingerprinting approach in terms of accuracy and update time.

3.2.5.2 Challenging Problems

WiFi-based indoor localization systems confront several challenges that can re-

duce their applicability and accuracy. The ubiquitous availability of WLAN in-

frastructures in indoor environments has led to the widespread use of WiFi tech-

nology for indoor localization. However, when such infrastructures are not avail-

able, the deployment of transmitters/receivers is required. The installation and

the maintenance of these infrastructures incur significant costs. Additionally, WiFi
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signals may fluctuate and vary due to factors such as temperature changes and

moving objects. Furthermore, signal attenuation induced by static components,

such as walls, doors, and furniture, presents a significant challenge for this tech-

nique [ACH18, ACHC20].

3.2.6 Bluetooth-based Indoor Localization

Bluetooth-based indoor localization relies on the Bluetooth technology to estimate

a user’s position within an indoor environment. The Bluetooth technology is widely

available in low-cost devices, such as smartphones and tablets, making it a popu-

lar choice for indoor localization. In the following, we describe a range of existing

Bluetooth-based localization systems and delve into the challenges that these sys-

tems face.

3.2.6.1 Examples of Existing Systems

In [SP20], the authors investigated an indoor positioning system for museums that

relies on Bluetooth Low Energy (BLE) beacons. The interactive smart museum sys-

tem uses an RSS-based technique to estimate the location of the visitor in the mu-

seum. The RSS from the BLE beacon is used to calculate the distance between the

beacon and the receiver (e.g., a smartphone). Trilateration is employed to estimate

the receiver’s location within the indoor environment. An Android application was

developed to test the proposed system. To improve the localization accuracy, the

application uses a simple Kalman filter, which is computed directly on the smart-

phone. Experimental results show the effectiveness of the developed solution.

In [PACK22], the authors introduced a novel approach for indoor smartphone

localization based on the joint use of BLE beacons, RSSI values, fingerprinting, and

neural networks. The neural network architecture utilized in this work follows the

framework outlined in [KSV16], with certain modifications identified through rig-

orous validation processes. The neural network assists the system’s response to

changes in RSSI values. See Figure 3.11 for the architecture of the indoor localization

system. Results show the significance of the proposed localization system.

3.2.6.2 Challenging Problems

A notable drawback of Bluetooth-based indoor localization lies in its execution of

the device discovery procedure during each location estimation, leading to a sub-
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Figure 3.11: Architecture of the indoor localization system proposed in [PACK22].

stantial increase in localization latency and power consumption. This latency is

particularly unsuitable for applications requiring real-time localization. Moreover,

Bluetooth’s short-range necessitates a dense deployment of Bluetooth beacons for

achieving accurate positioning, leading to a higher cost for the required infrastruc-

ture [ZLXQ18].

3.3 Deep Learning for Smartphone-based Systems

Smartphones are widely used and easily accessible devices. With regard to process-

ing power, memory size, and battery life, these devices still have limited resources.

This section delves into the complexities of deploying DL models on smartphones,

exploring the challenges posed by computational constraints and unveiling innova-

tive solutions to overcome them.

3.3.1 Deep Learning Frameworks Interoperability

DL frameworks serve the dual purpose of developing DL models and deploying

these models. DL model development refers to the process of designing, training

and testing a DL model to perform a specific task. On the other hand, DL model

deployment entails making a trained DL model accessible for use in real-world ap-
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Figure 3.12: Deep Learning Frameworks interoperability.

plications (i.e., inference). It is the transition from the development phase to the

practical integration of the model into systems, devices, or applications that can

make predictions based on new unseen data. Frameworks offer different levels of

abstraction and flexibility for DL. The appropriate framework should align with the

requirements of the task at hand, providing the required tools and functions for

efficient model development and deployment. Several DL frameworks have been

developed by leading technology companies for the deployment on smartphones

and other resource-constrained platforms. Among these mobile DL frameworks

are TensorFlow Lite by Google, PyTorch Mobile by Facebook, and Core ML by Ap-

ple [XLL+19]. Our focus revolves around exploring the synergies between MATLAB

as a development framework and TensorFlow Lite 5 as a deployment framework,

with a particular emphasis on achieving interoperability through the Open Neural

Network Exchange (ONNX) 6 format.

Building DL models using MATLAB, provided by MathWorks, is made accessible

through specialized Toolboxes 7, which encompass an extensive set of functions and

tools designed specifically for DL. MATLAB provides an environment for data prepa-

ration as well as designing, training, and testing deep neural networks. MATLAB

supports interoperability with other open-source DL frameworks such as ONNX.

ONNX, jointly developed by Facebook and Microsoft, is an open format for repre-

senting DL models that allows for interoperability among various DL frameworks.

ONNX allows models to be easily exported from one framework, such as MATLAB,

and imported into another framework, such as TensorFlow Lite. TensorFlow Lite,

introduced in late 2017, is a lightweight version of the TensorFlow 8 framework de-

signed for mobile and embedded devices. TensorFlow Lite is specifically tailored

5TensorFlow Lite: https://www.tensorflow.org/lite, accessed on 23 September 2021.
6Open Neural Network Exchange: https://onnx.ai/, accessed on 26 August 2021.
7MATLAB for Deep Learning: https://mathworks.com/solutions/deep-learning.html,

accessed on 4 January 2021.
8TensorFlow: https://www.tensorflow.org/, accessed on 23 September 2021.
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for inference, facilitating the deployment of TensorFlow models on smartphones.

It is compatible with both Android and iOS platforms. The Deep Learning Toolbox

Converter for ONNX Model Format 9 is a utility, provided by MATLAB, to simplify

the transition between MATLAB models and the ONNX format. Import and export

functions to and from the ONNX format were introduced in MATLAB R2018a. These

functions are compatible with a wide range of DL architectures for image classi-

fication, object detection, and more. On the other hand, TensorFlow provides a

converter tool that allows the transition from the ONNX model to the TensorFlow

format. The TensorFlow Lite Converter 10 is then used to convert the TensorFlow

model to the TensorFlow Lite format. See Figure 3.12 for DL frameworks interop-

erability. The frameworks ecosystem and interoperability contribute to a smoother

development process, allowing engineers, scientists, and domain experts to access

additional tools and libraries.

3.3.2 Computational Constraints and Solutions

Smartphone’s hardware technology has improved to the point where it can now

handle some difficult calculations, but it is still in its infancy when it comes to sup-

porting computationally demanding tasks like decision-making and image classifi-

cation. Additionally, these heavy tasks consume more battery power, making them

power-hungry. Thus, a solution is needed to surpass these limitations.

As DL models move to the deployment phase on end-user devices (e.g., IoT de-

vices, smartphones, and tablets), unique computational constraints emerge. Dif-

ferent computing strategies for inference have been proposed to meet application

constraints on end-user devices. As shown in Figure 3.13, there are four common

computing approaches: (a) on-device computation, (b) cloud-based computation,

(c) edge server-based computation, and (d) hybrid computation. We describe in the

following each of these strategies.

9MATLAB Deep Learning Toolbox Converter for ONNX Model Format; Support package: https:
//mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-convert

er-for-onnx-model-format, accessed on 26 August 2021.
10TensorFlow Lite Converter: https://www.tensorflow.org/lite/models/convert/conve

rt_models, accessed on 23 September 2021.
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Figure 3.13: (a) On-device computation. (b) Cloud-based computation. (c) Edge server-
based computation. (d) Hybrid computation.

3.3.2.1 On-device Computation

On-device computation is a strategy in which computational operations are carried

out directly on end-user devices. As smartphones are equipped with cameras and

other useful sensors, they enable the design and implementation of many beneficial

applications. Unfortunately, some applications are heavy to compute, putting for-

ward smartphones constraints: limited processing and computation power, limited

battery life in addition to insufficient memory and storage capacity.

3.3.2.2 Server-based Computation

To overcome these limits, the recently-introduced mobile computation offloading

can be a solution as it helps in offloading computation from mobile devices to re-

mote cloud servers or local edge servers. Full offloading is mainly the transfer of

all computational tasks to a separate processor. As a result, information must be

moved from the end-user device, which serves as the data acquisition device, to the

server.

Cloud-based computation: Cloud-based computation is leveraged for its pro-

cessing capabilities and memory capacity as the data is processed on the cloud side,

not on the limited-resources devices. It also helps storing the data if required and
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thus enables the access to this data later on [Liu19]. Moving computation tasks and

storage operations away from the main processor of the smartphone can help save

computation time by lowering the running cost of computation-intensive tasks. Ba-

sically, using a server for inference keeps the mobile application simple because all

the complex tasks are done on the server. Thus, when implementing the system

in a mobile user-friendly application, smartphones deficiencies do not have to be

considered anymore. This allows unrestricted computing performance and mobil-

ity at any moment from any user’s device. On another side, limited battery energy

impacts the use of the smartphone for heavy tasks as it requires more energy due

to high processing requirements, screen use and sensors continuous data acquisi-

tion. Given the data, the application must perform a series of tasks requiring spe-

cific computation to achieve the desired result. Cloud-based computation can help

in saving energy of mobile devices as computation intensive tasks are offloaded to

the cloud and can improve reliability by storing and accessing data on cloud side,

which decreases the risk of data loss on mobile devices [Liu19]. In addition to these

advantages, there are numerous disadvantages [CR19]:

• Bandwidth and scalability: Bandwidth is a main issue in cloud-based com-

putation, and it gets worse with an increasing number of connected mobile

devices and data transfer volume. Likewise, as the number of connected de-

vices increases, sending data from the mobile devices to the cloud introduces

scalability problems as the cloud entry can become a bottleneck.

• Latency: Cloud-based computation may not always be a good solution when

working on real-time applications as data transfer to the cloud may suffer

from extra network queuing and transmission delays leading to high latency.

• Service availability: Due to wireless bandwidth limitation, network discon-

nection and signal attenuation, a connection to the cloud might not always

be possible. A sudden internet outage will stop application functionalities as

cloud-assisted systems rely on it to transfer data from users’ mobile devices to

the cloud server and vice versa.

• Privacy: The data sent from end-user devices to the cloud may contain sen-

sitive information leading to privacy concerns. Data sharing and storage in

the European Union and the European Economic Area must comply with the
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General Data Protection Regulation (GDPR), an EU law regulation on data

protection and privacy.

Edge server-based computation: Edge server-based computation can be

adopted as a solution to reduce offloading and results in communication delays

between mobile devices and the cloud. Instead of offloading tasks to the remote

cloud, mobile devices can offload tasks to closer edge servers that help meet re-

quired delays by short data transfer intervals. Edge computing is an appropriate

solution in case the user or the system cannot wait the time it takes to send the

data to a large remote center (cloud) and have results sent back. With computing

power at the edge side, decisions and results are received quickly. In addition to

the edge servers’ power which is higher than end-user devices, these servers con-

serve network bandwidth usage by doing on-site computing and only sending nec-

essary information for off-site servers. Thus, edge server-based computation helps

meet latency, scalability, and also privacy by keeping sensitive data close to the

source [CR19, MPI20, WHL+20]. However, there are differing opinions on the safety

of edge computing. While some consider edge servers to be a safer option for pro-

tecting sensitive data, others believe that data breaches occur more frequently with

edge infrastructures due to inadequate security measures. As a result, a robust edge

security system must be installed to protect the edge computing infrastructure and

ensure its viability. Because of edge computing, less data is sent to the cloud, which

may aid in lowering operational costs. On the other hand, the initial investment

in hardware and infrastructure for on-premises edge server systems can be con-

siderable. In addition to pricing the server hardware and installing it in a suitable

location, infrastructure requires regular maintenance and updating.

3.3.2.3 Hybrid Computation

Mobile computation offloading enables the offloading of parts of the computation

tasks (i.e., partial offloading) from mobile devices to remote cloud servers, local

edge servers, or both (i.e., edge-cloud computing). This division of computation

tasks allows for more efficient use of available resources while still utilizing the pro-

cessing power of the mobile device. The transfer of information from the end-user

device to the server is a key aspect of this approach.

Hybrid computation refers to a combination of different computing approaches

that requires the integration of several resources, such as mobile devices, edge
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servers, and cloud servers [CR19, MPI20, WHL+20]. As previously mentioned, com-

putation offloading can be full or partial. While the full offloading means that the

application is fully executed on the cloud or edge-server side, the partial offloading,

which applies to hybrid computing, means that an application is executed on dif-

ferent processing resources. Hybrid computation combines the computational ca-

pabilities of mobile devices with the resources of cloud servers and/or edge servers

located closer to the devices. In general, lightweight tasks or initial processing are

performed on mobile devices, while the more computationally intensive parts are

offloaded to the cloud and/or edge server for execution. There are various advan-

tages of using hybrid computation:

• Scalability: Cloud and edge servers offer high-performance computing capa-

bilities, which enables the efficient execution of challenging heavy tasks. The

ability to scale resources dynamically based on the workload or demand en-

sures that the computational requirements of the tasks can be met effectively.

• Network bandwidth: Offloading computationally intensive tasks to servers

minimizes the quantity of data that needs to be transferred across the net-

work, which is important when bandwidth is limited. The overall network

traffic can be reduced by transmitting only the necessary inputs and receiving

only the processed results.

• Latency: Determining which tasks to offload to servers is critical for reduc-

ing latency. Offloading computationally complex operations that benefit from

server-side processing can increase real-time performance and reduce total

response time. Lightweight tasks can be maintained on the mobile device for

faster execution.

• Centralized maintenance and updates: By offloading computationally inten-

sive tasks to servers, the server infrastructure carries the main responsibility

of maintaining and updating the system. This decreases the complexity and

effort necessary for each mobile device maintenance and updates, simplify-

ing overall system management.

• Energy: Hybrid computing architectures can help with energy efficiency. En-

ergy consumption can be lowered through performing lightweight tasks or

initial processing on-device. Edge computing lowers the requirement for

long-distance data transmission, saving even more energy. Using cloud for
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resource-intensive tasks allows for more efficient server infrastructure use and

potentially reduced power consumption.

• Privacy: When employing hybrid computing architectures, privacy is a crucial

factor, especially when external servers are involved. To guarantee that pri-

vacy requirements are respected, task offloading policies should be carefully

considered. Offloading only non-sensitive to servers while retaining sensitive

data on the mobile device can help to preserve user privacy.

3.4 Conclusion

In this chapter, we investigated the use of built-in smartphone sensors for indoor

localization. We provided an in-depth assessment of the capabilities and limits of

these sensors in localization. We also provided some examples of existing systems

that use smartphone sensors for indoor localization. Furthermore, this chapter

demonstrated the interoperability of DL frameworks for smartphone deployment.

We also reviewed the benefits and drawbacks associated with the existing comput-

ing strategies used in this specific context.

In the next chapters, we will demonstrate two main contributions that we in-

troduce to the field of vision-based indoor localization and sample selection for in-

cremental learning, addressing both practical implementation challenges and the

need for robust and efficient solutions in these domains.
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CHAPTER 4. MULTI-SENSOR DATA FUSION FOR INDOOR LOCALIZATION

4.1 Introduction

In previous chapters, we reviewed various elements of the indoor localization task

and the current methodologies in the field. These studies show that, with recent

progress in computer vision, indoor scene recognition can now be considered a

promising room-level localization solution. Indoor scene recognition approaches

based on computer vision with DL have led to good results in some situations and

environments; however, there is still room for improvement. It is therefore rele-

vant to combine computer vision with other sources of information to overcome

this hard problem.

In this chapter, we investigate an approach that takes advantage of smartphone

sensors combined with computer vision for indoor room-level positioning. Smart-

phones are easily accessible devices with built-in cameras that are used on a daily

basis. These devices are not only endowed with cameras but also equipped with sev-

eral built-in sensors that provide the opportunity to acquire additional information

and therefore build reliable systems for indoor scene recognition [GWCZ18] as pre-

viously stated in Chapter 3. Almost every smartphone has a built-in magnetometer

that provides the direction the user is facing, which is known as the magnetic head-

ing. Magnetic heading represents a device’s direction relative to the magnetic North.

In general, compass heading is the heading measured clockwise from the magnetic

North varying from 0◦ (North) to 360◦.

We propose a direction-driven multi-CNN indoor scene localization system

based on a combination of image features and the magnetic heading (i.e., pointing

direction). We assume that the magnetic heading can be very informative, given that

indoor scene recognition constitutes a complex task in computer vision. The pro-

posed system contains four CNNs, each specific to a definite direction range. Given

a query image, the system selects the corresponding CNNs for image classification

depending on the magnetic heading of the user’s smartphone camera. Four CNNs

are adopted due to constraints on dataset size. When dealing with a small dataset

for training a CNN, two common challenges are overfitting and underfitting. Over-

fitting occurs when the model becomes excessively tailored to the training dataset,

memorizing it instead of generalizing patterns (see Section 2.4.1.2). On the other

hand, underfitting occurs when the model is too simplistic to capture the underly-

ing patterns in the dataset. In small datasets, underfitting can occur if the model

is too complex relative to the amount of samples available [GJVD18, SP22]. Based
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on the above, if we divided the heading directions into more ranges (i.e., the use

of more than four CNNs), it would demand a larger number of training images for

each range to ensure a robust representation. By choosing four orientation ranges,

we can allocate a balanced quantity of images to each range, ensuring that the four

CNNs effectively capture distinctive features.

In the training phase, we consider overlapping direction ranges, which means

that for a given image direction, the image is fed to two CNNs. This allows for

more training images per CNN, since two CNNs may share a subset of the training

dataset. In the inference phase, two CNNs are involved in query image classifica-

tion depending on the magnetic heading of the smartphone camera to obtain more

comprehensive features. At the end of this process, to further upgrade the model

performance, a weighted fusion method is adopted to determine the final image

category and predict the user’s specific room location in the indoor space.

We conducted experiments in five different indoor scenes and evaluated classi-

fication performance according to accuracy on the whole test set. Compared to the

scene recognition method based solely on image features, which is a single-CNN-

based classification system fine-tuned on an image training set, the proposed model

enables significant improvement in recognition accuracy.

The main contributions of this chapter can be summarized as follows:

• A novel direction-driven architecture of CNNs is introduced to provide an

improvement in indoor scene recognition accuracy. Off-the-shelf pretrained

CNNs have predefined architectures, with a fixed input size, which prohibits

additional information from being provided as an entry. We propose an image

classification system guided by supplementary information. The magnetic

heading direction of the smartphone assists in vision-based indoor scene

recognition, helping the system to identify different specific indoor rooms,

taking into account multiple viewpoints.

• A hybrid computing approach is proposed to address latency, scalability, and

privacy challenges. In general, meeting the computational requirements of

DL with the limited resources of handheld devices is not feasible. Several

works have combined on-device computing with edge computing and/or

cloud computing, resulting in hybrid architectures [CR19]. We take advan-

tage of these new computing techniques to propose a global system comput-

ing strategy that meets users’ needs.
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• While several indoor and/or outdoor localization datasets exist in the litera-

ture, none of them integrates information other than images. To overcome

this issue, we provide a dataset containing images with their respective mag-

netic heading direction in the metadata.

The rest of this chapter is organized as follows. Section 4.2 describes the investi-

gated indoor scene recognition approach, as well as each component of its architec-

ture. Section 4.3 discusses the partitioning of the proposed DL model. Section 4.4

depicts the different experiments conducted on a real dataset, in addition to the ef-

fect of model partitioning on system computation. Finally, Section 4.5 concludes

the chapter with a discussion of future work.

4.2 Direction-driven Convolutional Neural Networks

for Indoor Scene Recognition

Our primary focus in this thesis lies in directly using built-in smartphone sensors.

To overcome the difficulties encountered with vision-based indoor localization, re-

searchers have proposed the integration of other sensors. Today, all smartphones

are equipped with a magnetometer, making it a universally accessible sensor for

indoor localization. The magnetometer is designed to measure the Earth’s mag-

netic field. In indoor environments, where GNSS signals are unreliable, and WiFi

and Bluetooth signals can be obstructed by walls and structures, the Earth’s mag-

netic field remains relatively stable. Magnetometer can complement other smart-

phone sensors for indoor localization, offering a cost-effective solution. Our work

aligns with the concept of fusion of visual and magnetic sensor data. We propose

to use built-in smartphone sensors to provide valuable information about the de-

vice’s magnetic heading with respect to the magnetic North (Section 4.2.1) and then

investigate it in the proposed localization system (Section 4.2.2).

4.2.1 Magnetic Heading Estimation

The smartphone sensors’ outputs are provided with respect to the smartphone’s ref-

erence frame. The smartphone reference frame is defined by the Xs , Ys , and Zs axes.

These axes are oriented relative to the smartphone terminal screen, with its center

serving as the origin of the smartphone reference frame. The Xs axis points to the
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Figure 4.1: (a) The smartphone coordinate system. (b) The navigation coordinate system.

right (in the horizontal direction), the Ys axis points to the front (in the vertical di-

rection), and the Zs axis points upward (in the outward direction) from the screen,

as represented in Figure 4.1a. However, in order to align the smartphone actions

with the surrounding world, a connection with the navigation coordinate system is

required. The navigation coordinate system usually follows the Earth’s surface, with

the point of contact representing its origin. The Xn axis points to the East, the Yn

axis points to the North, and the Zn axis points up, as illustrated in Figure 4.1b.

In our application, the process entails orienting the device vertically with the

user pointing the camera in the desired direction. In the context of heading esti-

mation, collected sensors data from both the magnetometer and the accelerometer

are used to bridge the gap between the two coordinate systems and calculate the

smartphone’s heading as described in the following. The magnetometer is designed

to measure the Earth’s magnetic field in three dimensions (Xs , Ys , and Zs). This sen-

sor provides data related to the strength and direction of the magnetic field in the

smartphone’s vicinity. To enhance the accuracy of determining the smartphone’s

orientation and heading, this magnetic field data is combined with information

from the accelerometer. The accelerometer is responsible for sensing gravity to give

the smartphone tilt information. It is imperative to maintain the assumption that

the accelerometer primarily detects the constant force of gravity while remaining

static in orientation. By combining the data from the magnetometer and the ac-

celerometer, the smartphone’s software can precisely determine the smartphone’s

heading with respect to the magnetic North. The accelerometer and magnetometer

sensors operate in a continuous data reporting mode, generating high-frequency

data updates. These sensors are well-suited for real-time applications, such as ori-
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entation tracking and motion sensing.

To get the smartphone’s orientation angles, first, a rotation matrix Rot is ob-

tained using the accelerometer and the magnetometer data. The rotation matrix

describes how the smartphone is oriented to the Earth’s navigation reference frame.

Rot is a 3×3 matrix that describes the transformation required to bring the smart-

phone’s coordinate system to the navigation coordinate system.

In Android, it is obtained using the accelerometer and the magnetometer data (rep-

resented as A and M, respectively) as follows:

SensorManager.getRotationMatrix(Rot, I, A, M), (4.1)

with I being a 3×3 matrix that represents the inclination matrix. It describes how

much the Earth’s magnetic field is inclined with respect to the gravity vector.

Then, remapping is applied to the original rotation matrix Rot. The remapping

of the rotation matrix guarantees that the smartphone coordinate system is aligned

with the plane parallel to the Earth’s surface, allowing an accurate calculation of the

smartphone’s tilt angles with respect to that plane. The orientation O corresponds to

an array of length 3 and contains the orientation angles of the smartphone around

Xs , Ys , and Zs axes. O is represented as follows

O =


o0

o1

o2

 . (4.2)

In Android, the orientation O is obtained using the rotation matrix Rot as follows

SensorManager.getOrientation(Rot, O), (4.3)

with the orientation angles in radians.

The magnetic heading of the user’s smartphone camera with respect to the mag-

netic North is defined as o0, which can be written in degree as

θ= o0 × 180

π
. (4.4)
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4.2.2 Localization System Architecture

Knowing that indoor scenes are very complex due to strong change in viewpoints

and high similarity between scenes, additional information could be of great in-

terest. Our intuition relies on the assumption that the camera heading of the user

smartphone relative to the magnetic North can be very informative. It informs the

image classification system as to which way the smartphone’s camera is facing. We

combine accelerometer information with magnetometer data for magnetic heading

estimation, which allows for correct orientation relative to North when the smart-

phone is held vertically (i.e., determining the camera facing when capturing an im-

age).

We consider a direction-driven multi-CNN system for indoor scene recognition

that takes into account the magnetic heading of the user’s smartphone (θ). The

global architecture illustrated in Figure 4.2 consists of three main components: the

selection block for direction-driven model selection, the image classification model

defining four CNN models, and the fusion and decision block for combination of

the obtained results. These three components are described in detail in Sections

4.2.2.1–4.2.2.3, respectively. In order to cover the four ranges of orientations (A, B,

C, and D in Figure 4.3a), the proposed classification system contains four CNNs, de-

noted as A, B, C, and D. The use of four ranges of orientations is motivated by small

datasets and the need to avoid underfitting or overfitting. Dividing the heading di-

rections into more ranges would necessitate a greater number of images for each

range to provide adequate representation. This strategy allows us to assign a fair

number of images to each range, guaranteeing that the CNNs can efficiently learn

distinguishing features. Algorithm 1 presents the process followed for indoor scene

image classification in the inference phase.

In the following, we describe in detail the three main building blocks of the pro-

posed method.

4.2.2.1 Selection Block

The main objective of the selection block is to select two of the four available CNNs

in order to use them for indoor scene recognition. For training or inference, given

an image, two CNNs are selected according to the quadrant to which the magnetic

heading (θ) of the camera belongs. More precisely, as in Figure 4.3a, the selection

rule is as follows:
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Figure 4.2: Architecture of the proposed system with four CNNs.

• Between North and East: select CNN A and CNN B;

• Between East and South: select CNN B and CNN C;

• Between South and West: select CNN C and CNN D;

• Between West and North: select CNN D and CNN A.

The outputs of the two selected CNNs are subject to weighted fusion performed

in the fusion and decision block, as described in Section 4.2.2.3. Before, we provide

a detailed description of the image classification models.

4.2.2.2 Image Classification Models

We propose a generic system that can include any type of deep neural network

used for image classification, even though we focus on CNNs. Pretrained CNNs are

trained on more than a million images from the ImageNet dataset [DDS+09, KSH12].

Consequently, these networks learn rich feature representations from a wide range

of images. Instead of building CNN models from scratch, we investigated mobile-

compatible pretrained CNNs, namely SqueezeNet [IHM+16], ShuffleNet [ZZLS18],

and MobileNet [HZC+17, SHZ+18] (see Section 2.4.1.5). These lightweight CNN
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Algorithm 1 Inference classification methodology

Input: Query image, Magnetic heading θ.
1: Determine the quadrant to which the magnetic heading θ belongs
2: Select the two corresponding CNNs according to the selection rule defined in

Section 4.2.2.1
3: p1 = Estimated probabilities with the first selected CNN
4: p2 = Estimated probabilities with the second selected CNN
5: α(θ′) = Weighting parameter of the fusion method with (4.7) or (4.8)
6: p = α(θ′) p1 +

(
1−α(θ′)

)
p2

7: Predict the image category with max(p)
Output: Prediction of the specific indoor room.

Figure 4.3: (a) CNN selection depending on the magnetic heading of the image (θ). (b)
Weighted fusion strategy. (c) Fusion techniques: (i) piecewise linear and (ii) cosinusoidal.

models have demonstrated a good tradeoff between accuracy and efficiency while

addressing resource-constrained environments, including low memory and hard-

ware requirements.

Transfer learning using pretrained CNNs on ImageNet is important as these

models have already learned to extract low-level and mid-level features, making

them a valuable resource for a variety of computer vision tasks. Despite the Im-

ageNet dataset focuses on objects, some features, such as edges and textures, are

common between objects and indoor scenes. Moreover, limited indoor scenes

data can hinder the ability of CNNs to generalize well and may lead to overfitting.

Pretrained models reduce the need for extensive labeled data (see Sections 2.4.1.2

and 2.4.1.3). By transfer learning, we fine-tuned these pretrained CNN models as

follows. The top layer (fully connected layer or convolutional layer) of the pretrained

CNN is replaced with a new layer having a number of outputs equal to the number of

categories in the target dataset. A softmax activation function is introduced at the

73



CHAPTER 4. MULTI-SENSOR DATA FUSION FOR INDOOR LOCALIZATION

output of the CNN with a number of neurons equals the number of categories to

obtain a probability vector as an output. A well-known technique in transfer learn-

ing consists of freezing some trainable layers. The weights of those frozen layers

are not updated during fine tuning. In general, the frozen layers are selected from

the first convolutional layers of the model because the last convolutional layers are

more task-specific; therefore, applying fine-tuning to these layers is important to

enhance learning quality. Moreover, freezing the weights of several layers can sig-

nificantly speed up network training.

4.2.2.3 Fusion and Decision Block

As mentioned in Section 4.2.2.1, two CNNs are selected based on the quadrant to

which the magnetic heading (θ) of the image belongs. Therefore, a weighted fusion

technique is applied to the two probability vectors (p1 and p2) corresponding to the

inference outputs of the two selected CNNs. The adopted principle in the fusion

block is that, when classifying an indoor scene query image, each of the two selected

paths contributes to the final decision by a factor depending on the value of θ.

In order to provide a single formulation for all four possible quadrants shown in

Figure 4.3a, we represent them in a single quadrant using the modulo operation as

follows

θ′ = θ mod 90◦, (4.5)

namely the modified magnetic heading of the smartphone camera (θ′ ∈ [0◦,90◦[).

As depicted in Figure 4.3b, p1 corresponds to the probability vector at the output of

the specific CNN for the range of θ′ centered at the vertical axis and p2 at the output

of the CNN whose specific range of θ′ is centered at the horizontal axis. Thus, the

proposed fusion method is defined as

p = α(θ′) p1 +
(
1−α(θ′)

)
p2, (4.6)

where α(θ′) is the weighting parameter calculated to combine the two probability

vectors (p1 and p2) as described in Algorithm 1.

We consider two weighted fusion strategies based on the smartphone’s magnetic

heading. The first strategy is the piecewise linear weighted fusion, as represented

in Figure 4.3c(i). Inspired by fuzzy logic, let β be the hyperparameter defining the

different intervals of weighting that can take values in the range of [0◦, 90◦[. For this
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first fusion method, the weighting parameter α(θ′) is defined as

α(θ′) =


1 if θ′ ∈ [0◦, β[

1
2β−90◦ θ

′+ β−90◦
2β−90◦ if θ′ ∈ [β, 90◦−β]

0 if θ′ ∈ ]90◦−β, 90◦[

(4.7)

with a special case when β= 45◦. In this case,

α(θ′) = 1

2
if θ′ = β. (4.7a)

In this chapter, we deal with the following three cases of linear weighted fusion:

β= 0◦, β= 30◦, and β= 45◦. The second fusion strategy is the cosinusoidal weighted

fusion, as illustrated in Figure 4.3c(ii), with α(θ′) defined as

α(θ′) = cos(θ′) ∀θ′ ∈ [0◦, 90◦[. (4.8)

After applying one of the fusion techniques, the category with the maximum

classification probability is selected, namely

max(p). (4.9)

This leads to the final prediction of the specific indoor room.

4.3 Global System Architecture

End-user devices are used to generate and collect data that often necessitate real-

time analysis through DL models. These valuable data also serve as an input to train

DL models. However, the efficient execution of DL inference and training poses a

significant computational challenge, requiring substantial resources. In this sec-

tion, we discuss distributed DL training, as well as DL task partitioning, which are

fundamental approaches that optimize training workflows and enhance model per-

formance. We propose a hybrid computing approach to address latency, scalability,

and privacy issues.
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4.3.1 Distributed Deep Learning Training

DL model training is a time-consuming process. To speed up this process, dis-

tributed training can be used. Distributed training can be accomplished through

data parallelism or model parallelism. These techniques leverage multiple proces-

sors that work in parallel. Data parallelism is one method of parallelism that in-

volves splitting the training data and processing each split on a separate processor

in parallel. Each processor independently trains a copy of the DL model on a dif-

ferent subset of the training data [SLA+18, LHRX20]. Data parallelism can be in

synchronous or asynchronous mode. In synchronous mode, all processors han-

dle different training data splits and aggregate the models’ weights and gradients

at the end of each processor computation. On the other hand, in asynchronous

mode, each processor works independently on its training data split and updates

the model’s weights without waiting for other processors. This asynchronous pro-

cess allows each processor to update the model at its own pace [LZV+20, AKSM22].

Generally, data parallelism is a straightforward and efficient method for accelerat-

ing DL model training. On the other hand, model parallelism is used when a DL

model is extremely large to fit into the memory of a single device or processor. In

this case, the model is divided into submodels, and each submodel is loaded onto

a separate processor. During training, each processor processes its allocated part

of the model. Like data parallelism, communication is required to synchronize the

model’s weights and gradients among the processors [LHRX20].

Distributed DL training gains popularity and proves effective in situations

where the computational requirements for training deep neural networks exceed

the capacity of a single processor or when rapid and efficient convergence is re-

quired [LHRX20, BSD+21]. The training process is distributed depending on the

available computation resources. In the proposed indoor scene recognition system,

each of the four CNNs is specific for a predetermined range of magnetic headings

(see Section 4.2.2.1). Thus, the four CNNs can be trained in parallel. Each CNN is

trained on its training data subset on a separate processor using data parallelism
1, allowing for simultaneous training. Once all CNNs are trained, their predictions

are combined for inference with the fusion and decision block (see Section 4.2.2.3).

Through weighted fusion, aggregation harnesses the strengths of each CNN. The

inherent scalability of our multi-CNN approach is one of its key benefits, closely

1MATLAB Parallel Computing Toolbox: https://mathworks.com/products/parallel-compu
ting.html, accessed on 20 November 2023.
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following the ideas of data parallelism. Our approach effortlessly scales to accept

larger datasets and speed up processing as processing units become available. Data

parallelism gives the proposed system the ability to effectively handle data without

compromising performance, making it suitable for a variety of applications and sit-

uations.

4.3.2 Computing and Partitioning Deep Learning Tasks

The DL inference can be performed on cloud servers, referred to as cloud-based

deep inference, or on edge servers, referred to as edge-server-based deep inference.

Alternatively, inference can be performed locally using mobile CPU and GPU, re-

ferred as on-device deep inference [CR19].

The DL inference is computationally intensive. Even after the creation of

lightweight mobile-compatible deep neural networks, smartphones remain clearly

inferior to edge and cloud servers in terms of performance, as several deep neu-

ral networks may be needed during inference in some applications. In the case of

image classification, the inference computational demands of DL are strongly re-

liant on the increase in computing power. In general, meeting the computational

requirements of DL necessitates cloud computing, as it guarantees limitless on-

demand processing power.

Recent studies have shown that splitting the network between the mobile device

and cloud and/or edge servers can improve the end-to-end latency of deep neural

networks inference [WHL+20, MMH+21]. One way of using hybrid computing with

partial offloading with DL models is CNN model partitioning [KHG+17, XZC+19]. In

such approaches, instead of creating an application handling everything, CNN ar-

chitectures are distributed between the mobile device and cloud and/or edge server,

as shown in Figure 3.13d. Thus, some layers are computed on the mobile device

while other layers are computed by the cloud and/or the edge server, which may re-

duce the computation power required on the smartphone. The key aspect when dis-

tributing computing between the mobile device and the cloud and/or edge server

is which data must be stored and processed locally. The optimal computation par-

titions for offloading are difficult to choose, requiring a separate study and analysis.
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Figure 4.4: (a) Architecture of the proposed system with four CNNs. (b) Computing strategy
with full offloading, with the four CNNs partitioned in the common submodel (i.e., frozen
layers) and the other four submodels (i.e., trained layers A, B, C, and D). (c) Computing
strategy with partial offloading.

4.3.3 Partitioning of the Proposed Model

DL model partitioning is the process of dividing a DL model into multiple parts that

can each be deployed and run on different computing devices and servers. In the

proposed indoor scene recognition system, several CNN models need to be saved

and used during inference, requiring an increase in memory capacity and computa-

tion power. Including all the needed models in the mobile application bundle also

significantly increases its size, up to many megabytes (MB) in practice. The pro-

posed direction-driven CNNs model has a common inference part because some of

the layers of the CNNs are frozen during the training phase. Thus, the architecture

of the proposed system represented in Figure 4.4a is partitioned into five submod-

els: the common submodel (i.e., frozen layers) and the other four submodels (i.e.,

trained layers A, B, C, and D).

Two computing strategies are considered; Figure 4.4b represents full offloading

(i.e., cloud-based computing or edge-server-based computing), while Figure 4.4c

constitutes partial offloading (i.e., hybrid computing). In the case of full offload-

ing, the captured image is preprocessed and sent to the cloud or edge server for

full computation. In the case of partial offloading, the common submodel is com-

puted on the user’s end device (making preliminary predictions before sending the

data), and the output intermediate features are sent to the server. Then, the other
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four submodels are computed on a cloud or edge server. For these two computing

strategies, the final prediction (i.e., user’s room-level position in the indoor environ-

ment) is sent back from the server to the user side.

The primary goal is to minimize the end-to-end latency while respecting end-

user devices and server constraints (see Section 3.3.2). It is important to note that

the practical implementation and testing of an application on a smartphone, as well

as the connection with a server to assess the most appropriate computation ap-

proach, were not within the scope of this research. We concentrated our efforts dur-

ing the study on building and analyzing the proposed indoor localization system

employing built-in smartphone sensors and DL. However, we realize the vital ne-

cessity of these practical issues in fulfilling our proposed framework’s full potential.

Partitioning into submodels is based on the communication and computational

costs of the submodels; thus, it depends mainly on the layer types, the per-layer

output size (i.e., activation), the per-layer data communication latency, the per-

layer computation latency (i.e., server and end-user devices processing latency),

and the memory footprint. As described in the following section, we conducted

experiments in order to provide a deep insight into the explored partitioning of the

direction-driven model.

4.4 Experiments and Results

4.4.1 Dataset Preparation

To construct and evaluate the proposed indoor scene classification system, we first

created a dataset of images with their respective magnetic headings with respect

to the magnetic North. The prepared dataset includes informative images of the

indoor environment with different perspectives of the studied rooms.

To ensure an efficient data collection process, we designed an Android appli-

cation that uses the smartphone’s built-in sensors. When capturing images using

this application, each image is collected with the corresponding magnetic heading

saved in its metadata (see Section 4.2.1). For data collection, the smartphone was

held in the portrait/vertical position. The RGB images were cropped and saved at a

size of 1088×1088 pixels to avoid distorting the shapes of the objects in the images

when resized. The dataset was prepared using the main rear camera of a Samsung

Galaxy A51.
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Figure 4.5: Examples from the different classes of the collected dataset.

The indoor environment studied in this work has five rooms: coffee break room,

office 1, office 2, office 3, and storage room. To provide diverse and representative

data, the data collection process was conducted over several days. We took precau-

tions to maintain consistency during the data collection period. Two data collection

rounds were conducted. In the first round, we took eight images per position (i.e.,

a given standing location) in each room with different orientations. Each position

used to collect images results in a distinct perspective. Images were collected at ori-

entations of 0° (North), 45°, 90°, 135°, 180°, 225°, 270°, and 315°. These images were

used for training the proposed direction-driven multi-CNN system. In the second

round, we took an average of 20 images per position in each room, with different po-

sitions than the first round and a full 360-degree rotation in each position to take all

the heading viewpoints into consideration. The entire dataset was then cleaned by

deleting uninformative images (i.e., images constituted mostly of walls, windows,

etc.). We obtained between 100 and 200 images per class depending on the room

dimensions and complexity. A part of these collected images was used for training

and validation of the system, and the rest were used for assessment of the classifica-

tion accuracy (50% for the training phase and 50% for the testing phase). Figure 4.5

shows some examples from the collected dataset.

4.4.2 CNN Training and System Testing

For the proposed indoor scene recognition system based on the direction-driven

multi-CNN architecture, the four CNN models need to be trained and validated in

order to be implemented. To assess its performance, the proposed classification

system was evaluated on the totality of the testing set. We also used the testing set

to examine the relevance of the fusion strategies described in Section 4.2.2.3.

As previously mentioned, since we had few real data points, we relied on CNN

models pretrained on ImageNet [DDS+09, KSH12], and fine-tuned them using the
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real dataset. We examined three well-known mobile-compatible pretrained CNNs:

SqueezeNet [IHM+16], ShuffleNet [ZZLS18], and MobileNet version 2 [SHZ+18]. In

order to provide a baseline system, we trained and fine-tuned a single CNN model

with the totality of the training and validation sets. In order to provide a fair com-

parative analysis, we considered the same pretrained CNN used for the proposed

recognition system.

Models were optimized using a batch gradient descent optimizer with a learn-

ing rate equal to 0.001. Note that pretrained CNNs take fixed image sizes and a

defined number of input channels; therefore, all the images in the dataset were pre-

processed (Images from our real dataset were scaled to 224 × 224 × 3 to respect the

dimensions accepted by the input layer of the pretrained CNNs ShuffleNet and Mo-

bileNet and to 227 × 227 × 3 when working with SqueezeNet). We trained the mod-

els for a maximum of 500 epochs. In order to avoid overfitting, the CNN training

stopped automatically when the validation loss starts increasing while the training

loss was still decreasing. Simulations were implemented using MATLAB R2019a.

4.4.3 Performance Evaluation

We computed the standard performance metric for image classification to assess

performance. The test accuracy is defined as

Accuracy = Total number of test images correctly classified

Total number of test images
.

Five Monte Carlo simulations were conducted to evaluate our direction-driven

multi-CNN model, as well as the single-CNN baseline system. The average test ac-

curacies, denoted as Accuracyav g , are presented in Table 4.5 for the three pretrained

CNN models and the fusion strategies. The proposed indoor scene recognition ap-

proach outperformed the baseline system in terms of accuracy for all proposed fu-

sion strategies. The results show that the linear weighted fusion with β= 0◦ achieved

the best performance, proving the necessity of combining the two selected CNNs.

Additional tests were carried out to evaluate the performance of various selec-

tion rules and their impact on the overall system accuracy. We investigated several

scenarios, including one in which the system selects the quadrant that is completely

opposite to the magnetic heading, resulting in the selection of the two opposite

CNNs. For example, if the magnetic heading is between North and East, select CNN

C and CNN D (i.e., the complete opposite of the proposed selection block approach,
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Table 4.1: Comparison of the accuracy (av g (%)) between the baseline system and the pro-
posed approach (best results are in bold).

Pre-trained Baseline Proposed Approach
Model Linear Fusion Cosinusoidal Fusion

β= 0◦ β= 30◦ β= 45◦

SqueezeNet 67.52 ± 1.95 81.02 ± 2.75 77.50 ± 3.30 77.02 ± 3.30 79.52 ± 2.62
ShuffleNet 88.98 ± 2.03 92.22 ± 0.41 91.40 ± 0.54 91.34 ± 0.44 91.94 ± 0.69
MobileNet-v2 90.66 ± 1.80 93.10 ± 0.56 92.62 ± 1.03 92.50 ± 0.82 92.44 ± 0.82

Table 4.2: Comparison of the accuracy (av g (%)) between the baseline system and different
selection rules (best results are in bold).

Pre-trained Baseline Different Selection Rules
Model Opposite Quadrant Selection One Random CNN One Specific CNN

with Linear Fusion (β= 0◦)
SqueezeNet 67.52 32.96 52.96 51.91
ShuffleNet 88.98 44.86 63.38 63.45
MobileNet-v2 90.66 46.30 63.92 64.21

which selects CNN A and CNN B in this case). We also assessed the system’s perfor-

mance when only one CNN was chosen randomly from the four available CNNs, as

well as when one specific CNN was chosen for all test images. Table 4.2 shows the

results of these tests, which demonstrate how including these alternate scenarios

considerably affects the system’s accuracy. The performance in these three scenar-

ios falls significantly short of what the proposed approach presented in Algorithm 1

achieves. In terms of accuracy, the system performs worse than the baseline system

when using the opposite two CNNs to the corresponding magnetic heading quad-

rant for fusion or when omitting the fusion block and instead depending on one

of the four available CNNs. These findings highlight the importance and efficacy

of the proposed approach, demonstrating higher accuracy. The proposed selection

block and fusion block are crucial in improving the system’s performance, resulting

in increased accuracy for indoor scene recognition.

4.4.4 Stability Analysis: Effect of Sensor Accuracy on the System

As explained in Section 3.2.4.2, there are several challenges that can affect the accu-

rate estimation of the magnetic heading, impacting the overall performance of the

proposed localization system. In [HNO13], a sensor accuracy test was conducted in

a large industrial hall with seven different mobile devices with non-identical built-
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in sensors, analyzing the impact of a harsh environment and different hardware on

smartphones’ digital compass estimation. At each position in the studied environ-

ment, the divergence of the magnetic heading provided by the smartphones from

the correct heading from the construction plan was recorded. Examination of the

collected device measurements showed that, for most mobile devices, the proba-

bility of having a magnetic heading error below 20◦ is around 85%. In [NP17], over

14,000 readings from two Android devices were collected to evaluate the stability of

the sensors’ readings. Smartphone Honor 3C provided quite consistent sensor data

with a heading error of about ±2◦. Lenovo B8080-F tablet provided a lower sensor

quality with a heading error of about ±20◦.

To analyze the effect of the error when estimating the magnetic heading on the

proposed system’s performance and stability, we conducted magnetic heading error

simulations. We assumed that the magnetic heading error, denoted as e, follows a

normal distribution:

e ∼N (µ,σ2). (4.10)

Thus, the normal probability density is guided by the mean (µ) and the standard

deviation (σ) and is defined as follows:

P(e) = 1p
2πσ2

exp

(
− (e −µ)2

2σ2

)
. (4.11)

We computed the commonly used image classification performance measure to as-

sess the stability of the proposed system. This time, the accuracy can be measured

as

θe = (θ+e) mod 360◦, (4.12)

where θ is the magnetic heading of the smartphone’s camera when the image is

captured, and e is the random Gaussian error as previously defined. The expression

of the modified magnetic heading (4.5) leads to

θ′ = θe mod 90◦. (4.13)

Based on [HNO13], knowing that we are not working in an industrial indoor en-

vironment and that smartphones have come a long way over the past few years, we

simulated error values following a normal distribution with several values of σ and

µ = 0◦. The obtained results are represented in Table 4.3. The results show a per-

formance reduction when simulating an error following a normal distribution with
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Table 4.3: Comparison of the accuracy (av g (%)) between the baseline system and the pro-
posed approach with the linear fusion (β = 0◦) and simulating error on magnetic heading
(best results are in bold and worst results are highlighted in red).

Pre-trained Baseline Proposed Approach with Linear Fusion (β= 0◦)
Model e = 0 σ= 30 σ= 60 σ= 90 σ= 120
SqueezeNet 67.52 81.02 80.18 79.26 77.84 75.78
ShuffleNet 88.98 92.22 91.46 91.24 89.12 88.10
MobileNet-v2 90.66 93.10 92.86 92.60 91.30 89.60

Table 4.4: Model file size of the different implementations with MobileNet-v2.

Framework Model Model File Size

ONNX
Four Complete CNNs 35 MB

Proposed Computing Strategy 19 MB

µ= 0◦ and σ= {30◦,60◦,90◦} on the proposed indoor recognition model using linear

weighted fusion with β= 0◦. Nonetheless, the proposed model still outperforms the

baseline system, demonstrating the relevance of our approach. An error following a

normal distribution with µ= 0◦ and σ= 120◦ causes a drop in accuracy, resulting in

the worst performance when compared to the baseline. However, such a high value

of variance error is not practical in general [HNO13, NP17].

4.4.5 Model Analysis and Partitioning for Inference

In a CNN model, each layer has its own set of learnable weights that are optimized

during training by minimizing the classification loss. These parameters are typi-

cally saved in a model file that can be loaded into memory during inference. ONNX
2 is an important DL model format because it provides a common standard for rep-

resenting DL models, making it easier to develop and deploy them across multiple

frameworks and devices (see Section 3.3.1). We compared the model file size of each

implementation (with MobileNet-v2) as shown in Table 4.4. The proposed comput-

ing strategy (composed of frozen layers and trained layers) is lighter than the four

complete direction-driven CNNs by about 16 MB.

Additionally, Figure 4.6 describes the per-layer output data size (in MB) for the

four complete CNNs represented in Figure 4.4a compared to the proposed comput-

ing strategies as in Figure 4.4b, and c. We can observe the following. First, adopt-

2Open Neural Network Exchange; GitHub repository: https://github.com/onnx/onnx, ac-
cessed on 26 January 2022.
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Figure 4.6: Per-layer output data size (MB) for four complete CNNs compared to the pro-
posed computing strategy with MobileNet-v2. The dotted vertical line is the split point
based on on-device (frozen layers) and cloud/edge-server computing as in Figure 4.4.

Table 4.5: Proposed computing strategy submodel sizes and outputs with MobileNet-v2
based on partial offloading as in Figure 4.4c.

Submodels Submodel File Size (MB) Output Data Size (MB) Computing Strategy
Frozen Layers 5.31 3.136×10−2 On-Device (User-Side)

A (Trained Layers)
3.44×4 0.002×10−2 Cloud or Edge Server

B (Trained Layers)
C (Trained Layers)
D (Trained Layers)

ing the proposed computing strategy is better than using the four complete CNNs

because the common frozen layers are implemented once rather than four times,

resulting in less computation time and required power. Second, because the input

image size is larger than the intermediate feature size, splitting the CNN into two

parts (i.e., a first part running on the mobile device and a second part running on

a cloud or edge server) may be more beneficial. As a result, the submodels are de-

ployed in the manner described in Table 4.5 (i.e., partial offloading as in Figure 4.4c).

4.5 Conclusion

In this chapter, we proposed a direction-driven multi-CNN indoor scene recogni-

tion system for room-level localization that uses embedded smartphone sensors to

account for the camera heading direction relative to magnetic North. We created a
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dataset that includes images with corresponding magnetic heading values. We also

used and compared two heading-based weighted fusion techniques. Experiments

showed that the proposed system outperforms the baseline system based solely on

images. When dealing with indoor scene image data, the proposed system outper-

formed the traditional CNN image classification system. The proposed system relies

on built-in smartphone sensors, which vary in quality and accuracy across different

devices and environments and may have an impact on the overall performance of

the system. We also investigated how magnetic heading error affected the proposed

system, demonstrating the utility and stability of our method. Additionally, we dis-

cussed the current computing paradigms and how they apply to DL tasks. We also

analyzed the effect of model partitioning on system computation and proposed a

hybrid computing strategy for our scene recognition system (i.e., model partial of-

floading between the mobile device and server).

In the next chapter, we will focus on the applicability of the proposed system in

terms of maintenance when additional new rooms must be integrated and identi-

fied, requiring the system to be deployed over a larger area.
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5.1 Introduction

Maintenance is a critical step for a vision-based scene recognition system, as it al-

lows the system to evolve and accommodate new specific scenes over time. The

localization system may be delivered with a set of preliminary indoor scene recog-

nition capabilities, but new rooms may need to be added with time. Additionally,

in order for embedded devices and platforms to operate effectively in real-world

situations, computational and memory efficiency are essential. Thus, memory-

controlled incremental approaches are required.

CNNs have been established as a cornerstone in computer vision. They have

exhibited remarkable achievements in image classification, object detection, and

semantic segmentation. While CNNs have excelled at several vision tasks, they en-

counter challenges when it comes to continuous knowledge learning, specifically in

scenarios involving incremental learning of new classes. For example, in the con-

text of indoor scene recognition systems, there is a necessity for incremental learn-

ing to assimilate new classes over time. As a result, the learning system must pos-

sess the capability to assimilate novel knowledge persistently to remain effective in

evolving scenarios. Due to these requirements, the Class-IL domain has been re-

cently advanced, aiming to continually build a classifier that contains all encoun-

tered classes [ZWQ+23].

Class-IL involves incrementally updating the recognition system at each time,

by adding new classes from a new training dataset (also called task) available at

some time [HWC22]. As a sub-field of Incremental Learning (IL) within the Con-

tinual Learning paradigm, it should accommodate the memory limit by not storing

all training data and learning from scratch at each time. Due to storage limitation,

the model is only able to access the dataset at the current task. However, this re-

striction is often alleviated by retaining a fairly small subset of the training dataset

from the former tasks. The retained subset is denoted by the exemplar set in the

literature.

The purpose of having an exemplar set for Class-IL is to address the issue of

catastrophic forgetting [GMX+13, KPR+17, CDAT18]. The exemplars need to be

properly selected to represent the previous tasks while managing limited resources

and model training time. Beyond a simplistic random selection, several selection

strategies were proposed in the literature, the most well-known being mean-of-

features sampling, also called herding [RKSL17], entropy-based sampling [CDAT18],
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and distance-based sampling [CDAT18].

In this chapter, we propose a novel sample selection strategy to maximize ex-

emplars diversity for Class-IL. The proposed method is inspired from the coherence

measure for sparse approximation introduced for adaptive kernel-based models. To

the best of our knowledge, this is the first time that the coherence is investigated for

DL, and more specifically for Class-IL. To this end, we define the coherence between

two images as a normalized inner product between their feature vectors obtained

by a deep neural network, e.g., employing a CNN as a feature extractor. Besides

providing a solution for selecting diverse and informative samples using the coher-

ence measure, our sampling strategy takes into account a fixed memory budget for

each class as a selection criterion. Therefore, the proposed method ensures that

the selected exemplars are not only diverse but also accommodate memory limits,

which is critical in the IL context. Several experiments are conducted to compare

our method with the aforementioned existing sample selection techniques, on the

two well-known datasets CIFAR-100 and MIT Indoor-67. The obtained results show

that our method outperforms state of the art techniques, with better average test

accuracy in low computational complexity.

The contributions of this chapter are summarized as follows:

• We introduce a novel sample selection strategy based on the coherence mea-

sure to maximize the exemplars diversity. The proposed algorithm is relevant

for Class-IL, as it relies on a fixed memory budget for each class.

• This is the first time that the coherence measure is defined in a DL framework,

beyond linear and kernel-based models. We bring forward the advantages

of the coherence measure, initially explored in the literature of compressed

sensing and sparse approximation, to Class-IL.

• We provide some theoretical results, allowing to connect the proposed coher-

ence criterion to the herding criterion, and demonstrate the relevance of the

proposed method with extensive comparative experiments.

• We shed light on the importance of Class-IL for maintaining and updating a

vision-based indoor localization system.

The rest of this chapter is organized as follows. In Section 5.2, we explain the

value of Class-IL for vision-based indoor localization systems. In Section 5.3, we
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introduce the foundations of Class-IL in the context of image classification in ad-

dition to commonly used sample selection strategies. Section 5.4 exhibits the pro-

posed coherence-based sample selection strategy. In Section 5.5, we evaluate the

performance of our sample selection approach on two different datasets. Finally,

Section 5.6 concludes this chapter.

5.2 Class-incremental Learning for Indoor Scene

Recognition

Regular monitoring and maintenance of vision-based indoor localization systems is

important for ensuring that they continue to provide accurate and reliable results.

To maintain an effective and robust indoor scene recognition model, there are sev-

eral important maintenance points that should be addressed, including:

• Data collection and annotation: To keep the system up-to-date, new indoor

scene data collection and annotation need to be done regularly.

• Model(s) training: Retraining the model when needed can improve its perfor-

mance and adapt it to changes in indoor environments.

• Model(s) evaluation: Regularly testing the model may help identify and ad-

dress any performance issues.

• Data management: Efficiently managing large amounts of indoor scene data

is crucial to ensure system’s performance and scalability.

Retraining the indoor scene recognition model with new data when necessary

can maintain the localization system’s performance. When new rooms must be

added to the system, Class-IL must be used. This enables the system to adapt to

new classes without requiring the entire model to be retrained from scratch. In this

context, Class-IL can help in several ways:

• Adaptation to changes in the indoor environment: Indoor environments can

change as new objects and scenes may appear over time. Class-IL enables

the system to adapt to these changes in an efficient manner, by incremen-

tally adding new classes to the indoor scene recognition model, rather than

retraining it from scratch.
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• Maintained accuracy: The indoor localization system requires continuous

knowledge update to maintain system accuracy and ensure that predictions

are always up-to-date.

• Reduced computational cost: Retraining a DL model from scratch can be

computationally expensive. Class-IL allows the system to adapt to new classes

incrementally, reducing the computational cost and making the system more

practical for real-world applications.

• Better scalability: As the system continues to learn, it may encounter a large

number of new classes, making it challenging to store all of the information

in memory. A sample selection strategy enables the system to manage its

memory resources, as it only stores exemplars from seen classes. Further-

more, Class-IL reduces the demand for significant expansion of the model

size, unlike ensemble multiple models techniques that increase memory re-

quirements with the increase in the number of tasks [SAR19, RPR20].

Class-IL techniques were not explicitly built and tested for indoor scene recog-

nition, but they can be adapted and applied to this problem domain to help with

the maintenance of localization systems.

5.3 Background on Class-incremental Learning

In this section, we provide a comprehensive overview of Class-IL in the field of DL.

We start by laying the essential foundations of Class-IL, investigating the knowledge

distillation technique. Then, we delve into the existing sample selection strategies.

5.3.1 Foundations of Class-incremental Learning

Data is collected incrementally in real-life. Of particular interest is emerging

new classes, namely when new data from previously-unknown classes need to be

learned. Deep neural networks in general, and more specially CNNs, have a fixed

supervised learning mechanism that cannot learn new classes. To address this issue,

the learning process must be continuous and capable of taking in new inputs. How-

ever, due to the high processing needs and the unavailability of all previously seen

training samples because of memory management, retraining CNNs can be chal-

lenging. Memory management constraints restrict the storage of all past training
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samples, especially in scenarios with large datasets or limited memory resources.

This restriction gets more important as incremental updates become more crucial.

To enable continuous learning and adaptability in CNNs, new methodologies

and techniques are required [SAR19] instead of training a model from scratch for

each update. In the context of image classification using CNNs, the concept of

Class-IL is essential [MLT+22]. Class-IL techniques seek to effectively incorporate

new data into CNN models by learning from new classes while retaining knowledge

gained from earlier classes. Researchers are innovating Class-IL algorithms to en-

hance CNN performance when adapting to new classes and prevent catastrophic

forgetting, i.e., a phenomenon that occurs when previously gained knowledge is lost

when training on new data [GMX+13, KPR+17, CDAT18]. The goal of these models

is to be able to dynamically adapt to new information while maintaining high clas-

sification accuracy and successfully handling changing data distributions. Overall,

Class-IL algorithms need to meet the following criteria [PUUH01]:

• The model should be able to learn additional information from new data and

to accommodate to new classes that may be introduced.

• The model should not require access to the original data, used to train the

existing classifier.

• The model should preserve previously acquired knowledge.

To address this issue, the rehearsal-based strategy has been advocated to maintain

few samples from previously seen classes. For this purpose, a number of stud-

ies relying on response-based Knowledge Distillation (KD) [HVD15] have recently

emerged, such as Learning without Forgetting (LwF) [LH17], incremental Classifier

and Representation Learning (iCaRL) [RKSL17], Bias Correction (BiC) [WCW+19],

and Deep Model Consolidation (DMC) [ZZG+20].

LwF [LH17] was proposed by Li and Hoiem to incrementally train a single net-

work to learn multiple tasks (i.e., multiple sets of classes) without using samples

from old classes, preventing catastrophic forgetting by applying the distillation loss.

This loss was introduced in [HVD15] for model compression in which knowledge

is distilled from a large pretrained model (called teacher) to a smaller one (called

student). In LwF, the student is trained on the new classes while also learning from

the teacher’s predictions on these classes, which assists the student in mimicking

the behavior of the teacher, allowing the knowledge to be retained. When using LwF
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distillation concept with exemplars (denoted by LwF-E), the distillation loss is ap-

plied to the selected exemplars from old classes as well as the data from new classes.

This loss is then combined with the classification loss [MLT+22].

Following the notation of [RKSL17], let X1,X2, . . . , be the sample sets where all

images of a set Xy = {x y
1 , . . . , x y

ny
} are of class y ∈N, ny being the number of samples

from that class. Let Py be the set of selected exemplars for class y , with the number

of stored exemplars per class equal to a fixed parameter m. For a new task, new

data Xs , . . . ,Xt for new classes s, . . . , t (disjoint from previous or future classes) are

encountered. We have to update the old model Θ1:s−1 to get a new one Θ1:t able to

classify old and new classes 1, . . . , s −1, s, . . . , t . The new model is obtained by using

a distillation loss and a classification loss, as described in the following.

Let D be the training set containing both the training dataset of the classes s, . . . , t

(i.e., new task) and the exemplars from the previous classes 1, . . . , s−1 (i.e., old tasks),

namely

D = ⋃
y=s,...,t

{(x, y) : x ∈ Xy }∪ ⋃
y=1,...,s−1

{(x, y) : x ∈ Py }. (5.1)

Let ô(x) = [ô1(x), . . . , ôs−1(x)] be the output logits of the old model Θ1:s−1 trained

on the old classes and o(x) = [o1(x), . . . ,os(x), . . . ,ot (x)] the output logits of the new

model Θ1:t . The distillation loss is applied on the combined training set D defined

in (5.1) following [LH17]:

Ld =− ∑
x∈D

s−1∑
k=1

π̂k (x) log[πk (x)], (5.2)

where π̂k (x) andπk (x) are temperature scaled logits for class k ∈ [1, . . . , s−1], defined

respectively as

π̂k (x) = e
ôk (x)

T

s−1∑
j=1

e
ô j (x)

T

and πk (x) = e
ok (x)

T

s−1∑
j=1

e
o j (x)

T

, (5.3)

with T the temperature scaling parameter.

The softmax cross-entropy is used as the classification loss, which is computed

as follows:

Lc =− ∑
(x,y)∈D

t∑
k=1

δk=y log[pk (x)], (5.4)

where δk=y is the indicator function (i.e., ground truth of the image) and pk (x) is the
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output softmax probability defined by,

pk (x) = eok (x)

t∑
j=1

eo j (x)
. (5.5)

The overall loss is formulated as follows:

L = Lc +λLd , (5.6)

where λ is the distilling coefficient used to balance between the two terms.

5.3.2 Sample Selection Strategies

Due to restricted memory capacity, it is not possible to store all data for network

training replay. Thus, to manage memory limits, avoid forgetting and maintain

knowledge from previous classes, the selection of representative samples becomes

important. Although there are several Class-IL techniques proposed in the liter-

ature [BPK21], we focus primarily on the sample selection strategies adopted in

Class-IL, since it is the main topic studied in this paper.

In Class-IL, rehearsal-based techniques require storing and repeating past data

to prevent catastrophic forgetting. The sample selection procedure involves select-

ing a collection of representative samples from the classes that best represent the

class distribution and features. These chosen exemplars are subsequently saved in

the separate memory, where they serve as a reference knowledge for the old classes

during IL. Selected exemplars are important as they affect the efficiency and effec-

tiveness of IL algorithms. Care must be taken to ensure that the chosen exemplars

effectively capture the key characteristics of their classes while minimizing the risk

of catastrophic forgetting. Uncertainty and diversity are two different factors of

sample selection that are often considered to select the most representative and in-

formative exemplars.

The updated CNN modelΘ1:t is interpreted as a trainable feature extractorφ fol-

lowed by a classification layer and a softmax layer with the same number of output

nodes as the number of learned classes so far (in this case t nodes). Uncertainty-

based selection strategies depend on the network’s predictions (i.e., softmax out-

put probabilities), while diversity-based selection ones depend on the network’s

intermediate feature vectors (i.e., embeddings at the output of the feature extrac-
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tor). Beyond a simple random selection, researchers have proposed several sam-

ple selection strategies, the most well-known being the mean-of-features sampling,

also known as herding [RKSL17], the entropy-based sampling [CDAT18], and the

distance-based sampling [CDAT18].

Herding [Wel09, RKSL17] chooses exemplars repeatedly for each class by select-

ing those with features that are closest to the features mean. For each sample of

a class, embeddings are extracted, and the mean of all feature vectors of this class

samples is calculated by,

µy = 1

ny

∑
x∈Xy

φ(x). (5.7)

At each iteration, an exemplar is chosen so that, when added to the other selected

exemplars in its class, the resulting exemplars mean is the closest to µy . This is

repeated for all the classes that we want to select exemplars for.

Entropy-based sampling [CDAT18] exploits the uncertainty information to se-

lect exemplars by using entropy of the model’s predictions (i.e., output probabili-

ties). It computes the entropy of the softmax outputs and selects exemplars that

have a higher uncertainty (i.e., higher entropy) for each class. The uncertainty in-

formation of a sample is calculated based on,

Entropy(x) =−
t∑

k=1
pk (x) log[pk (x)], (5.8)

with pk (x) being the output softmax probability as defined in (5.5). Samples with

high entropies are more difficult and confusing for the model and thus are consid-

ered more informative and potentially beneficial training data for future incremen-

tal steps.

Distance-based sampling [CDAT18] selects exemplars based on their distance to

the model’s decision boundary. This sample selection strategy prioritizes selecting

samples that are closer to the decision boundary for each class. The smaller the

distance measure, the less confidently the model predicts the class, and vice versa.

For a given sample x ∈ Xy , the distance from the decision boundary is calculated by,

dy (x) =φ(x)⊺ w y , (5.9)

where w y are the last FC layer parameters for class y . Samples close to the decision

boundary are considered more challenging and thus are selected to help the model

to learn better in the next incremental steps.

95



CHAPTER 5. COHERENCE-BASED SAMPLE SELECTION FOR CLASS-IL

5.4 Coherence-based Criterion for Sample Selection

In this section, we delve into the integration of coherence measure in sample selec-

tion for Class-IL highlighting its importance in capturing the relationships between

feature vectors. Then, we present our coherence-based sample selection approach

with some theoretical insights.

5.4.1 Introduction to The Coherence Measure

The coherence measure is fundamental in many disciplines, including signal pro-

cessing and machine learning [RSS23]. It is central in sparse models, provid-

ing theoretical foundations and practical insights, such as in compressed sensing

[BCKV15]. With the emergence of online learning, where new samples become

available in real-time, maintaining sparsity turns out to be challenging, requiring

the selection of relevant samples for model formulation. These contributing sam-

ples, known as atoms in the literature, are typically organized in a set referred to as

a dictionary. The construction of a meaningful dictionary and the measurement of

its relevance have been explored in the literature with the coherence criterion.

The coherence measure corresponds to the largest correlation between atoms

of a given dictionary. The coherence of a dictionary of m unit-norm atoms

x1, x2, . . . , xm is defined as

coh = max
i ̸= j

|〈xi , x j 〉|. (5.10)

This simple measure allows a deep analysis and characterization of the quality of

the dictionary for sparse analysis and synthesis. In spite of introducing the coher-

ence measure for linear sparse models [RSS23], it has been investigated for nonlin-

ear (shallow) kernel-based models in several studies, providing in-depth theoretical

results [Hon15a, Hon15b].

Motivated by the underlying theoretical results of the coherence measure, sev-

eral online algorithms were proposed, such as nonlinear adaptive filtering [RBH09]

and nonlinear principal component analysis [Hon12], to name a few. To derive on-

line learning algorithms, one needs to select incrementally the atoms of the dictio-

nary that has a coherence below a user-defined threshold γ ∈ [0;1], namely,

coh ≤ γ. (5.11)

This condition enforces an upper bound on the inner product measure between
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Figure 5.1: Coherence-based sample selection strategy.

each pair of atoms, or feature vectors when working in a feature space. The thresh-

old γ controls the level of diversity of the selected samples, where a null value yields

an orthogonal basis (i.e., most dissimilar samples).

5.4.2 Proposed Coherence Measure in DL

The proposed coherence-based sample selection strategy is represented in Fig-

ure 5.1. The main building block is the investigation of the coherence measure

within the DL embedding. By considering the coherence as a measure of similarity

of DL feature vectors, we provide deeper insights, as opposed to the shallow versions

of the coherence as given in (5.10) or its kernel-based counterpart. Letφ denote the

feature extractor from the deep neural network, from some input space X to a fea-

ture space IRd of dimension d , namely φ : X → IRd . Then the coherence measure is

defined as

coh = max
i ̸= j

|〈φ(xi ),φ(x j )〉|, (5.12)

if the embeddings are unit-norm; Otherwise, replace φ(x) with φ(x)/||φ(x)||. The

higher the inner product between two embeddings of a pair of images, the more

similar these images are.

To the best of our knowledge, the present paper is the first one that explores the

coherence measure beyond shallow models (i.e., linear and kernel-based models),

by investigating a coherence criterion for Class-IL in a DL model. Therefore, in or-

der to have a diverse set of exemplars, we aim to select the least mutually coherent
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exemplars, as described in the following with the coherence criterion.

5.4.3 Proposed Coherence-based Sample Selection

We propose a novel sample selection method relying on the coherence criterion to

boost the performance of Class-IL. The proposed coherence-based sample selec-

tion selects a diverse group of representative exemplars of a class by retaining sam-

ples that are mutually least coherent. As represented in Figure 5.1, this sampling

technique is based on feature vectors obtained from the DL embedding, namely the

last trained model so far, which means after the last incremental step. It strives to

capture the sample diversity, guaranteeing that the chosen exemplars support ef-

fective information retention and learning in the IL context.

Rather than relying on a fixed threshold γ on the coherence between exemplars

as given in (5.11), we propose to work with a fixed memory budget for each class.

Indeed, memory management is critical in Class-IL to handle the limited resources

available for storing exemplars while accommodating the addition of new classes,

ensuring the model’s ability to learn incrementally and retain knowledge from both

old and new classes throughout incremental steps. With the proposed strategy, the

memory allocation grows incrementally as new classes are available. Each class is

assigned its own fixed memory space to store m exemplars. When a new class is

added, a portion of the memory is allocated for storing exemplars of that specific

class to avoid catastrophic forgetting. The specific memory requirements are deter-

mined by the IL scenario, including device memory limits, the number of classes,

and the desired trade-off between memory usage and knowledge preservation. By

having a fixed memory budget per class m, this strategy enables us to select repre-

sentative diverse samples while respecting the memory budget.

For a new task consisting of a new set of classes s, . . . , t , an update procedure is

called as data for these new classes is available. The procedure adjusts the DL pa-

rameters to get the new model Θ1:t based on KD explained in Section 5.3.1 that will

then be used to augment the exemplars saved in memory to get Ps , . . . ,Pt based on

the new training data Xs , . . . ,Xt . For each new class y ∈ [s, . . . , t ], we compute the

inner product between each pair of vectors to investigate the relationships between

these feature vectors (i.e., class-wise comparisons). Let G be the Gram matrix con-

taining the inner products 〈φ(xi ),φ(x j )〉 for xi , x j ∈ Xy . Since we have ny vectors

and we need the inner product for each pair, we only need to compute and store
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Algorithm 2 Coherence-based sample selection

Input: image set Xy = {x y
1 , . . . , x y

ny
} of a class y ∈ [s, . . . , t ], current feature extractor

function φ : X → IRd .
for each: y ∈ [s, . . . , t ]

Compute Gram matrix G for all entries x y
i , x y

j ∈ Xy

while size(G) > m ×m do
Select (i , j ) = argmaxi ̸= j |Gi j |
Update Xy ← Xy \ {x y

i }

Remove i th row and i th column from G
end while

Output: exemplar set Py ← Xy .

half of the Gram matrix entities since it is symmetric.

The proposed sample selection algorithm is performed once for each of the

classes y ∈ [s, . . . , t ] as described in Algorithm 2 which guarantees the diversity of

selected exemplars for each class. In order to produce a γ-coherent set of m ex-

emplars for each class y , our method aims to eliminate the maximum coherence

values. To this end, the Gram matrix G is first computed. From this matrix, the max-

imum coherence value is identified, pinpointing the pair of images that exhibits the

strongest coherence. Then, the class’s training set Xy is updated by eliminating the

image indexed equivalently to the index of the maximum coherence value found.

Simultaneously, the corresponding row and column are removed from G. This se-

quence of steps is repeated until reaching a Gram matrix of size m×m, aligning with

the predefined parameter m. Thus, for a given dataset Xy after an incremental step

and a fixed budget per class equal to m, coherence-based sample selection selects

exemplars for each new class to get at the end the set Py to be used in addition to

the previously stored exemplars in next incremental steps.

5.4.4 Theoretical Analysis

By eliminating the maximum coherence values, the proposed coherence-based cri-

terion aims to select m exemplars per class with the least mutual coherence γ. In

the following, we provide an upper bound on the approximation error of the mean-

of-features µy of all the samples of the class defined in (5.7). This theoretical re-

sult provides connections with the herding criterion which aims to approximate µy

[Wel09, RKSL17].

99



CHAPTER 5. COHERENCE-BASED SAMPLE SELECTION FOR CLASS-IL

Theorem 5.4.1. Consider the coherence-based criterion that selects m exemplars of

coherence γ from the ny samples of Xy . Let µPy denote the approximation of µy by

these exemplars. The error of this approximation is upper-bounded as follows

∥∥µy −µPy
∥∥≤

(
1− m

ny

)√
max
x∈Xy

||φ(x)||2 −γ. (5.13)

Proof. The proof follows the same reasoning as in the proof of Theorem 1 in

[NHR12]. Let P be the projection operator onto the space spanned by the m ex-

emplars, thus µPy =P µ. Then, we have from the generalized triangular inequality

∥µy −µPy∥ =
∥∥∥ 1

ny

∑
xi∈Xy

(1−P )φ(xi )
∥∥∥

≤ ∑
xi∈Xy

1

ny
∥φ(xi )−Pφ(xi )∥

= 1

ny

∑
xi∈Xy \Py

∥φ(xi )−Pφ(xi )∥

where the last equality is due to the fact that ∥φ(xi )−Pφ(xi )∥ = 0 for all xi ∈ Py .

Furthermore, the Pythagorian theorem allows to write

∥φ(xi )−Pφ(xi )∥2 = ∥φ(xi )∥2 −∥Pφ(xi )∥2.

The first term in the right-hand-side is upper-bounded by maxx∈Xy ||φ(x)||2. The

second term, namely the square norm of the projection of φ(x), corresponds to the

maximum inner product 〈φ(x),ϕ〉 over all the unit-norm vectors ϕ, which leads to

∥Pφ(xi )∥2 = max
ζ

∑
x j∈Py ζ j 〈φ(xk ),φ(xi )〉
∥∑

x j∈Py ζ jφ(x j )∥

≥ max
xk

|〈φ(xk ),φ(xi )〉|
〈φ(xk ),φ(xk )〉 ,

where the inequality results from a specific distribution of the coefficients. From

the coherence-based criterion, the right-hand-side is lower-bounded by γ, which

concludes the proof.
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5.5 Experiments and Results

In this section, we evaluate the performance of the proposed coherence-based sam-

ple selection strategy compared to other existing sample selection techniques typi-

cally employed for Class-IL.

5.5.1 Datasets

We study the performance of different sample selection strategies used in rehearsal-

based Class-IL on two different datasets: CIFAR-100 [KH+09] and MIT Indoor-

67 [QT09].

CIFAR-100 provides 32×32 color (RGB) images for 100 object classes, with 600

images divided into 500 for training and 100 for testing for each class. Following

[MLT+22], a padding of 4 was added to each side of the image for data augmenta-

tion, and crops of 32×32 were randomly selected during training while center crops

were adopted during testing. Additionally, input normalization and random hori-

zontal flipping were performed. We randomly selected 50 classes from the CIFAR-

100 dataset with 5 tasks of 10 classes each.

MIT Indoor-67 includes 67 indoor scene categories with 15,620 color (RGB) im-

ages in total (refer to Table 2.1 for more details about this dataset). The number of

images varies across categories with at least 100 images per category divided into 80

images for training and 20 images for testing. Images were resized to 256×256 with

random crops of 224×224 for training and center crops for testing then normaliza-

tion was applied, as corroborated by [MLT+22]. This dataset has 5 tasks divided as

follows: (0, 14) (i.e., 14 classes for the initial task), (1, 14), (2, 13), (3, 13) and (4, 13).

5.5.2 Experimental Setup

We adopt LwF with exemplars (denoted by LwF-E) as a Class-IL technique. We im-

plemented the distillation loss Ld following (5.2) based on [MLT+22] PyTorch source

code 1 We fixed the temperature scaling parameter to T = 2 as proposed in [MLT+22]

and in most of the literature. The distilling coefficient λ was fixed to 1. We relied on

pretrained ResNet-32 [HZRS16] with CIFAR-100 dataset and pretrained MobileNet-

v2 [SHZ+18] with MIT Indoor-67. The coherence expression given in (5.10) fur-

1Framework for Analysis of Class-Incremental Learning (FACIL); GitHub repository: https://gi
thub.com/mmasana/FACIL, accessed on 16 January 2023.
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ther simplifies because the last layer of these deep neural networks imposes non-

negativity with a ReLU operation. We used a learning rate search scheme [DLT21],

a patience of 10, a learning rate factor of 3 (i.e., the learning rate was divided by this

factor each time the patience is exhausted), a gradient clipping at 10 000, a SGD op-

timizer with a momentum of 0.9, a weight decay of 0.0002 and a training batch size

of 64 samples as in [MLT+22]. The training phase stopped either if the learning rate

became equal to 10−4 or if the training reached 200 epochs.

5.5.3 Performance Evaluation

5.5.3.1 Accuracy

In order to analyze the overall Class-IL process and access performances at task p,

the task agnostic average test accuracy metric is used [MLT+22]. The test accuracy

is defined as,

accuracyp = 1

p +1

p∑
q=0

ap,q , (5.14)

where ap,q denotes the accuracy of task q after learning task p, with 0 being the

initial task (q ≤ p). Five runs were conducted to evaluate the performance.

We compare our proposed strategy in the fixed memory per class scenario tak-

ing m = 20 exemplars per class with existing and validated sample selection algo-

rithms that have previously been employed in Class-IL approaches, mainly: herd-

ing [RKSL17], entropy [CDAT18] and distance [CDAT18]. Note that the comparison

between the different sample selection strategies is based on identical data splits.

The average test accuracies, denoted as accuracyp (av g (%)), are presented in Ta-

ble 5.1 for the four sample selection strategies. Results show that the proposed

coherence-based sample selection approach outperforms the reference strategies

in terms of test accuracy which demonstrates the effectiveness of our method in a

Class-IL scenario.

5.5.3.2 Execution Time

We also measured the execution time of the sample selection algorithms, recording

the duration of the selection process. The experiments were conducted on Google

Colab, utilizing the NVIDIA T4 GPU provided by the platform. We evaluated the time

taken for a selection of 20 exemplars per class after the initial task, which means for

10 classes of CIFAR-100 and for 14 classes of MIT Indoor-67. The results represented
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Table 5.1: Accuracy rates, averaged over 5 runs, for LwF-E using different sampling strategies
(best results are in bold).

Task sampling strategy CIFAR-100 MIT Indoor-67

p = 2 (after 3 tasks)

herding 35.12 ± 2.54 68.92 ± 1.76
entropy 27.76 ± 1.00 69.02 ± 2.35
distance 27.14 ± 2.44 68.70 ± 1.49

coherence (ours) 35.98 ± 2.18 69.26 ± 2.57

p = 4 (after 5 tasks)

herding 28.84 ± 1.46 58.18 ± 1.17
entropy 19.96 ± 0.73 56.58 ± 1.67
distance 19.28 ± 1.02 57.14 ± 1.03

coherence (ours) 29.82 ± 2.71 58.52 ± 0.91

Table 5.2: Time (seconds) needed for selecting 20 exemplars per class after the initial task
(i.e., for 10 classes from CIFAR-100 and 14 classes from MIT-Indoor-67) using different sam-
pling strategies (best results are in bold).

sampling strategy CIFAR-100 MIT Indoor-67
herding 4.78 9.10
entropy 2.08 8.52
distance 1.86 9.08

coherence (ours) 3.10 9.30

in Table 5.2 revealed that our coherence-based sample selection strategy exhibited

reasonable average time selection compared to the other sampling strategies.

5.6 Conclusion

In this chapter, we have investigated the efficiency of the sample selection process,

which plays a critical role in improving model performance and memory manage-

ment in Class-IL. We provided a novel sample selection technique based on co-

herence criterion for increasing diversity among class exemplars. The proposed

strategy seeks to promote incoherence by maximizing the distinctiveness of the se-

lected exemplars for each class. The results show that the proposed method not only

demonstrated superior performance compared to state of the art sample selection

techniques in terms of accuracy, but also showcased a reasonable execution time.

Regardless of the DL model being used, this methodology can be seamlessly in-

corporated into any neural network architecture to ensure the diversity of the se-

lected exemplars based on the feature representations. Future work includes ex-

panding the proposed sample selection strategy analysis on other benchmarks in
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order to encompass a broader perspective on its applicability.
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Chapter 6

Conclusions and Future Work

“Everything is theoretically

impossible until it is done. ”

Robert A. Heinlein
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6.1 General Conclusion

Indoor localization has evolved into an important aspect of our daily lives, providing

a diverse range of systems. Our research efforts throughout this thesis have led us

to critical analysis and decisions regarding technologies and algorithms. These de-

cisions have effectively enabled us to propose a novel indoor localization approach,

achieving the objectives fixed at the beginning of this thesis.

In Chapter 2, we have reviewed various aspects of indoor localization, starting

with an extensive overview of state of the art methods in the field. We then shifted

our focus towards vision-based indoor localization, delving deeper into the intrica-

cies of indoor scene recognition. We conducted a thorough examination of the in-

tegration of DL, particularly CNNs, for vision-based indoor localization. This inves-

tigation encompassed an analysis of existing approaches, available public datasets,

as well as a comprehensive exploration of the associated limitations and challenges.
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Additionally, in Chapter 3, we explored the utilization of built-in smartphone

sensors for indoor localization. Here, we provided an extensive evaluation of the

capabilities and constraints inherent to these sensors when applied to localization

tasks. Furthermore, we presented examples of systems that leverage smartphone

cameras and magnetic field sensors for indoor localization. We demonstrated the

interoperability of DL frameworks for smartphone deployment. We also conducted

a critical review of the advantages and disadvantages associated with the prevailing

computing approaches employed in this specific context.

Chapter 4 presented our main contributions on indoor scene recognition. We

introduced a novel direction-driven multi-CNN system for indoor scene recogni-

tion, specifically tailored for room-level localization. We used embedded smart-

phone sensors to consider the user’s smartphone’s magnetic heading relative to the

magnetic North. Our work included the creation of a dedicated dataset with images

annotated with magnetic heading values, along with a comparison of two heading-

based weighted fusion techniques. The experimental results clearly demonstrated

the superiority of our proposed system over the baseline, which solely relied on im-

ages. Notably, when applied to indoor scene image data, our system outperformed

traditional CNN-based image classification. It is important to note that our system

leverages built-in smartphone sensors, whose quality and accuracy can vary across

different devices and environments. We also investigated the impact of magnetic

heading errors, highlighting the resilience and stability of our approach. Addition-

ally, we delved into current computing paradigms, examining their relevance to DL

tasks. We explored the effect of model partitioning on computational efficiency and

introduced a hybrid computing strategy, involving partial offloading between the

mobile device and a server.

In Chapter 5, we presented novel contributions to Class-IL. We focused on the

efficiency of the sample selection process, a crucial aspect for enhancing model per-

formance and memory management in Class-IL. We presented an innovative sam-

ple selection technique based on the coherence criterion, aiming to maximize diver-

sity among class exemplars. This strategy promotes incoherence by emphasizing

the distinctiveness of selected exemplars within each class. Our experimental re-

sults not only showcased the superior accuracy of the proposed method compared

to state of the art sample selection techniques but also demonstrated reasonable

execution times. Importantly, this methodology can be seamlessly integrated into

various neural network architectures to ensure diverse exemplar selection based on
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feature representations.

6.2 Perspectives

Many challenges and limitations remain in achieving a fully functional, high-

performance indoor localization system. This thesis outlines numerous study

paths that we believe will be required to address in future research. As discussed

in [SHG+15], a significant portion of the code in numerous ML systems is not pri-

marily focused on the training and prediction processes. The development and de-

ployment of the models in applications involves a number of auxiliary tasks and

infrastructure components that represent a significant portion of the implementa-

tion (see Figure 6.1). As part of short and mid-term perspectives, we would like to

investigate the following aspects of improving our proposed solutions:

• Implementing a complete Android application: As we have seen throughout

this thesis, all implementations and experiments were carried out on MATLAB

and Google Colab (Python). Although a first version of the Android applica-

tion has been developed and used for dataset acquisition, one of our goals

is to develop the full smartphone application for more real-world tests and

performance assessments. To that purpose, we will soon be working on the

design of this application. We will focus on improving the performance of the

proposed indoor localization system and optimizing it for real-time Android

application (i.e., to achieve real-time processing, the processing time must be

less than the acquisition time between two images).

• Testing the developed application by end-users: We understand how critical

it is to validate the application’s usability, functionality, and performance. To

accomplish this, we plan to perform extensive testing with end-users, in order

to meet real-world requirements.

As for long-term perspectives, we look forward to:

• Diversifying DL models in the proposed system: Due to the rapid progress of

DL and computer vision, it was not possible to thoroughly investigate every

available method. Scene recognition is complex, owing mostly to its intrinsic

variety, which makes labeling scenes a challenging task. To strengthen the
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Figure 6.1: The required surrounding infrastructure for application implementa-
tion [SHG+15].

method proposed in Chapter 4, we intend to widen the frontiers of our indoor

localization system by using varied computer vision DL models other than

CNNs. This strategic expansion intends to investigate novel approaches and

architectures that can improve our system’s performance.

• Integrating and fusing additional smartphone sensor data: We hope to im-

prove our localization system by including a broader range of relevant smart-

phone sensor data. Our goal is to fully utilize the capabilities of modern

smartphones (e.g., using barometer for floor identification). The enhanced

sensor fusion technique will not only improve our system’s accuracy, but will

also allow it to adapt to dynamic indoor environment more efficiently. We

hope that this extensive integration of sensor data will open up new possi-

bilities beyond simple room-level localization, potentially covering context-

aware services and enhanced user experiences in indoor spaces.

• Extending the coherence-based sample selection evaluation: We will extend

the analysis of the sample selection strategy proposed in Chapter 5 to other

benchmark datasets, providing a broader perspective on its applicability and

potential improvements. We also aim to use the coherence-based sample se-

lection for indoor localization, resulting in more accurate localization systems

in changing indoor environments.

• Exploring new DL architectures: We plan to investigate cutting-edge DL

approaches such as Transformers, which are currently gaining prominence.

These architectures offer new possibilities for enhancing indoor localization

techniques. Recent research articles in this domain reflect the ongoing evo-
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lution of these methods, underscoring the significance of staying up-to-date

with the latest advancements [GTP23, SAA+23]. In [GTP23], the authors pro-

posed a novel framework for WiFi fingerprinting-based indoor localization

based on vision transformer neural networks. The proposed method ad-

dresses the issue of the heterogeneity of wireless transceivers across various

smartphones utilized by users. In [SAA+23], vision transform with dual mul-

tiscale attention is proposed to extract features at multiscales by processing

large and small image patches.
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