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Abstract
Estimating lightpath Quality of Transmission (QoT) is crucial in network design and service
provisioning. Recent studies have turned to artificial intelligence (AI) techniques to improve
the accuracy of QoT estimation using the data generated by the operational network. We
distinguish four categories of solutions. The first category consists of building AI models
to check the feasibility of a lightpath. The second category aims to predict the exact QoT
performance in order to compete with analytical models. The third category uses AI to
improve the performance of QoT estimation models by reducing the uncertainty on input
parameters. The last category consists of improving the performance and generalization
ability of AI-based solutions by retraining the models using the least amount of training
samples through transfer learning techniques.

QoT models can act as part of the digital twin of the operational network by simulating
the impact of new network configurations before deploying them. However, they require a
perfect knowledge of the network state, consisting of a set of optical parameters that have
different levels of uncertainty. Using the QoT measurements collected by the network con-
troller, we can have a feedback about the QoT estimation inaccuracy, which can potentially
be addressed using ML based techniques. In this thesis, we study this issue of uncertainty
in network parameters and consider three approaches that can improve the QoT estima-
tion in this case. We propose different learning processes in each approach, and test their
performance using simulation and real data.

The first approach relies on optimizing the network parameters using the QoT estimation
error as an objective function. We apply this approach through two learning processes to
target QoT estimation tools based respectively on analytical model (GNPy) and Machine
Learning (neural network). This approach can minimize the SNR estimation error to close
to 0 dB on already trained network configuration, and reaches 0.3 dB estimation error on
unseen network configurations.

In the second approach, we retrain a neural network based model to adapt it to changes
in QoT due to parameters uncertainty through Transfer Learning. We show how the model
can relearn the new behavior of the network without searching for the correct values of
the network parameters. We can reach up to 0.5 dB in validation error with only ten new
training samples.

The last approach consists of detecting parameter changes in response to failure events
using reinforcement learning techniques. We consider two types of failure events. We show
that the model can correctly classify the events with up to 93% of accuracy in small network
topologies.

Finally, we apply the first approach based on Bayesian Optimization algorithm to refine
network parameters using data collected from a live network. We use data extracted from
the north-bound interface of the network controller to build a network state based on the
input data model of GNPy. Then, we apply our learning process on two transmission lines,
which led to SNR estimation improvement up to 1.7 dB for the monitored services.
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Résumé
L’estimation de la qualité de transmission (QoT) des chemins optiques est cruciale dans
la conception du réseau et le provisionnement des services. Des études récentes se sont
tournées vers les techniques de l’intelligence artificielle (IA) pour améliorer la précision
de l’estimation de la QoT, en utilisant les données générées par le réseau optique. Nous
distinguons quatre catégories de solutions. La première catégorie consiste à construire un
modèle d’IA pour vérifier la faisabilité d’un chemin optique. La deuxième catégorie vise à
proposer des modèles basés sur l’IA pour remplacer les modèles analytiques. La troisième
catégorie utilise l’IA pour améliorer les performances des modèles d’estimation de la QoT en
réduisant l’incertitude sur les paramètres d’entrée. La dernière catégorie consiste à améliorer
les performances et la capacité de généralisation des solutions à base d’IA en améliorant
les échantillons des jeux de données dans la phase d’apprentissage grâce à des techniques
d’apprentissage par transfert.

Les modèles d’estimation de la QoT peuvent constituer un module dans le Digital Twin
du réseau optique, visant à simuler l’impact d’une nouvelle configuration sur la performance
du réseau avant la phase de déploiement. Cependant, ces modèles requirent une connaissance
parfaite de l’état du réseau, représenté à partir d’un ensemble de paramètres optiques ayant
des valeurs qui peuvent être certaines ou incertaines. Les mesures de performance collectées
par le contrôleur peuvent représenter un feedback sur la précision de l’estimation de la QoT,
ce qui peut déclencher des algorithmes à base de machine learning pour raffiner les valeurs
des paramètres incertains. Dans cette thèse, nous étudions le problème d’incertitude des
paramètres, et nous proposons trois approches pour améliorer la QoT dans ce cas. Nous
proposons pour chaque approche un certain nombre de processus d’apprentissage et nous
testons leur performances avec des données de simulation et des données collectées à partir
du réseau opérationnel.

La première approche se base sur l’optimisation des paramètres du réseau en utilisant
l’erreur dans l’estimation de la QoT comme fonction d’objectif. Nous implémentons cette
approche avec deux processus d’apprentissage, le premier basé sur un modèle analytique
(GNPy) et le deuxième sur un modèle à base de machine learning (réseau de neurones).
Cette approche arrive à minimiser l’erreur d’estimation jusqu’à 0 dB pour des configurations
de réseau où le modèle a été déjà entraîné, et atteint une erreur d’estimation de 0.3 dB sur
des nouvelles configurations.

Dans la deuxième approche, nous ré-entraînons un modèle basé sur un réseau de neu-
rones pour l’adapter à l’incertitude des paramètres en utilisant l’apprentissage par transfert.
Nous montrons que le modèle peut apprendre un nouveau comportement sans optimiser les
paramètres incertains. Nous arrivons à une erreur de validation de 0.5 dB avec seulement
dix nouveaux échantillons.

La dernière approche consiste à détecter les changements de paramètres en réponse à
un événement de panne en utilisant des techniques d’apprentissage par renforcement. Nous
considèrons deux types de pannes, et nous montrons que le modèle atteint une précision de
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classification de 93% dans une petite topologie.
Enfin, nous appliquons la première approche basée sur l’optimisation Bayésienne pour

raffiner les paramètres du réseau sur des données collectées à partir d’un réseau opérationnel.
Nous extrayons les données à partir de l’interface nord du contrôleur, et nous construisons
l’état du réseau selon le modèle de donnée d’entrée de GNPy. En appliquant notre processus
d’apprentissage sur deux lignes de transmission, nous constatons une réduction d’erreur qui
atteint 1.7 dB sur les services monitorés.

Mots-clés

Qualité de Transmission, Machine Learning, Intelligence Artificielle, Optimisation des Pa-
ramètres, Réseaux Optiques.
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20 1.1. CONTEXT AND MOTIVATION

1.1 Context and Motivation

In a constant attempt to meet increasing capacity demands, optical transport networks
have steadily evolved through a number of technological advances. Technologies such as
coherent transmission, flexible modulation and tunable transceivers have led to a plethora
of new parameters and configurations that complicate network design and operation. At the
same time, revolutionary initiatives are emerging with the introduction of Software Defined
Networks (SDN) [1] that could open up new opportunities to deal with these complexities
in optical networks. Among these initiatives are those that push towards the promotion of
the openness of Application Programming Interfaces (APIs) and the definition of common
data models (e.g., T-API [2] and OpenROADM initiative [3][4]). Other initiatives propose
new control and monitoring protocols such as Netconf and gRPC [5][6]. These solutions
will lead to providing large amounts of data in standardized format that could be harnessed
to solve network issues using new paradigms in optical networks like Artificial Intelligence
(AI).

AI is the introduction of intelligence to machines in order to perform complex tasks in a
similar manner to humans. The most popular sub-field of AI is machine learning (ML). ML
consists of algorithms that capture patterns and behaviors in the data in order to produce
models for a variety of tasks such as estimating a value based on inputs (i.e., regression
techniques) and classifying data into groups (i.e., classification techniques). ML has seen
an increase in popularity in research in recent years in multiple fields, particularly computer
vision, natural language processing and speech recognition [7]. ML is subject to the same
scrutiny in optical networks. A large amount of papers have been published on the appli-
cation of ML techniques to multiple use cases: routing and wavelength (RWA)/spectrum
assignment (RSA) [8][9] , Quality of Transmission (QoT) estimation [10] and fault manage-
ment [11].

QoT estimation is of particular interest for optical networks. It consists of assessing the
performance of an existing or candidate lightpath based on its characteristics and the net-
work configuration. The QoT is used to monitor the health of an existing lightpath or check
the feasibility of a candidate one by comparing its predicted QoT to the receiver’s threshold.
Estimating the QoT of a lightpath is crucial in network design and service provisioning. In
fact, an underestimated QoT value can lead to significant loss in capacity and increase the
network deployment cost (e.g., unnecessary equipment expenditure). On the other hand, an
overestimation of QoT can lead to unstable lightpath. QoT estimation is also the basis of
network optimization, as an accurate QoT is required for optimal RWA/RSA and capacity
maximization.

The difficulty of QoT estimation stems mainly from the various impairments in the
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fiber that optical transmission is subject to [12]. Linear impairments are due to the signal
attenuation, chromatic/polarization dispersion and the noise generated by the equipment.
Nonlinear impairments include effects such as Kerr and scattering effects. QoT estimation
must also take into consideration the behavior of various transmission equipment that vary
widely in their performance according to their models, types and vendors. QoT estimation
is generally performed using analytical models. An analytical model features a model of
the fiber transmission also called a Physical Layer Model (PLM) that estimates the linear
and nonlinear impairments. Analytical models vary in their accuracy, execution time and
considered assumptions which always leaves room for improvement. ML is being used to
improve QoT estimation in several creative ways such as building ML-based QoT estimators,
modeling the response of optical equipment or estimating nonlinear effects.

An accurate estimation of Quality of Transmission (QoT) is a critical component in
developing a Digital Twin (DT) [13]. A DT serves as a software replica of the actual
network, enabling simulations of changes before implementing them in the real network.
The current trend in literature focuses on constructing DTs for Information Technology
(IT) systems, which facilitates network automation, optimization, and fault management.
To create a DT for QoT estimation, it is necessary to represent the network using parameters
(referred to as network state) and employ a precise QoT estimation tool. By considering
QoT estimation within the specific context of DT development, we can define the task
of QoT improvement more accurately. In fact, the QoT estimation must ensure sufficient
accuracy to align the simulated changes in the DT with the actual effects on the network once
implemented. Furthermore, the QoT estimation should adapt to any potential inaccuracies
in the parameters used to construct the network state of the DT. This DT approach helps
bridge the gap between QoT estimation under ideal design conditions and the real network
state, empowering network operators to exercise better control over the network.

From an operator’s perspective, QoT estimation poses significant challenges. In to-
day’s networks, equipment is typically sourced from different suppliers, each with their own
parameter specifications, data models, and protocols for accessing network data. These
elements are often proprietary, making it difficult for operators to accurately represent the
network state. Additionally, QoT estimation in live networks relies on black-box supplier-
proprietary tools, further complicating operational tasks. Moreover, the live network ex-
periences variations due to faults and equipment aging, requiring QoT tools to be used
beyond their ideal prediction conditions. In this context, ML can enhance QoT estima-
tion by learning network behavior directly from data. This approach has the potential
to overcome challenges related to parameter availability, network state accuracy, and the
limitations of existing QoT estimation models.
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1.2 Objectives of the Thesis

The main objective of this thesis is to explore ways to improve the estimation of QoT
in optical transport network using data based algorithms. This objective comes from a
realization that optical networks control plane has a wealth of data that can be potentially
used to improve operational functions and modules such as the QoT estimation module.
This comes at a time where machine learning is being used in a multiple application fields to
yield great results in terms of automation, performance gain and cognitive breakthroughs.
After a rigorous literature overview, we settled on the topic of improving QoT estimation
by reducing uncertainty on network parameters. We then set the following objectives for
this thesis:

• Survey recent publications to find ways to improve QoT estimation using ML tech-
niques.

• Propose learning processes to improve QoT estimation using network data.

• Propose simulation scenarios to test the learning processes.

• Validate the learning processes in a real operational scenario using data collected from
the a network.

These four goals were addressed in several contributions as outlined in the following
section.

1.3 Contributions of the Thesis

In order to meet the above research objectives, we have proposed three main contributions.
The first contribution is a rigorous literature overview that shows how ML techniques can
be used to improve QoT estimation. In the second contribution, we propose different
data-based learning processes to improve QoT estimation. We then validate them using
different simulation scenarios. More specifically, we propose in this contribution four learn-
ing processes. Two learning processes to optimize network parameters using both ML and
analytical based QoT models. One learning process based on transfer learning techniques
to improve the QoT estimation of a ML-based model. The last learning process is based
on a reinforcement learning technique to detect parameter changes in the network. The
last contribution consists of testing the proposed learning processes and validating their
relevance using data collected from a live network.

C.1 The first contribution is a rigorous literature overview that shows how ML techniques
can be used to improve QoT estimation.
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C.2 In the second contribution, we propose different data-based learning processes to
improve QoT estimation and validate them in different simulation scenarios. More
specifically, this contribution provides three sub-contributions, as follows:

C.2.1 Firstly, it proposes two learning processes to optimize network parameters using
both ML and analytical based QoT models.

C.2.2 Secondly, it proposes a transfer learning technique to improve the estimation of
a ML-based QoT estimation model.

C.2.3 Thirdly, it proposes a reinforcement learning technique to detect parameter
changes in the network.

C.3 The last contribution consists of the validation of the proposed learning process using
data collected from a live network.

1.4 Publications List

Journal Papers

• [14] AYASSI Reda, TRIKI Ahmed, CRESPI Noel, MINERVA Roberto and LAYE
Maxime “Survey on the Use of Machine Learning for Quality of Transmission Estima-
tion in Optical Transport Networks”, J. Lightwave Technol. 40, 5803-5815 (2022)

• [15] BABAR Jatin, AYASSI Reda, TRIKI Ahmed, and LAYE Maxime, “Machine
learning models for alarm classification and failure localization in optical transport
networks”, J. Opt. Commun. Netw. 14, 621-628 (2022)

Conference Papers

• [16] AYASSI Reda, TRIKI Ahmed, LE GUYADER Bertrand, FRANK Florian, LE
ROUZIC Esther, HERVIOU Fabrice, CRESPI Noel and MINERVA Roberto. “Field
Trial to Assess Bayesian Optimization for Improving QoT Estimation”. In: European
Conference on Optical Communication. Optica Publishing Group, 2023.

• [17] AYASSI, Reda, TRIKI, Ahmed, LAYE, Maxime, LE ROUZIC Esther, CRESPI
Noel and MINERVA Roberto. “Bayesian optimization-based algorithm to improve
the quality of transmission estimation”. In: Photonic Networks and Devices. Optica
Publishing Group, 2021. p. NeF2B. 3.

• [18] AYASSI Reda, TRIKI Ahmed, LAYE Maxime, CRESPI Noel, MINERVA Roberto
and CATANESE Clara. “An overview on machine learning-based solutions to improve



24 1.5. RELATIONSHIP OF PUBLICATIONS WITH CONTRIBUTIONS

lightpath QoT estimation”. In: 2020 22nd International Conference on Transparent
Optical Networks (ICTON). IEEE, 2020. p. 1-4.

• [19] CATANESE Clara, AYASSI Reda, PINCEMIN Erwan and JAOUEN Yves. “A
Fully Connected Neural Network to Mitigate 200G DP-16-QAM Transmission System
Impairments”. In: Signal Processing in Photonic Communications. Optical Society of
America, 2020. p. SpTh3I. 1.

• [20] CATANESE Clara, AYASSI Reda, PINCEMIN Erwan and JAOUEN Yves. “A
fully connected neural network approach to mitigate fiber nonlinear effects in 200G
DP-16-QAM transmission system”. In: 2020 22nd International Conference on Trans-
parent Optical Networks (ICTON). IEEE, 2020. p. 1-4.

1.5 Relationship of Publications with Contributions

In this section, we provide the relationships of publications with contributions.

• The publications ‘An overview on machine learning-based solutions to improve light-
path QoT estimation’ and ‘Survey on the Use of Machine Learning for Quality of
Transmission Estimation in Optical Transport Networks’ corresponds to Contribu-
tion C.1 in chapter 2.

• The publication ‘Bayesian optimization-based algorithm to improve the quality of
transmission estimation’ corresponds to Contribution C.2.1 in Section 4.4.

• The publication ‘Field Trial to Assess Bayesian Optimization for Improving QoT
Estimation’ corresponds to Contribution C.3 in Chapter 5.

• The two publications ‘A Fully Connected Neural Network to Mitigate 200G DP-16-
QAM Transmission System Impairments’ and ‘A fully connected neural network ap-
proach to mitigate fiber nonlinear effects in 200G DP-16-QAM transmission system’
were the results of a collaboration with a colleague on the topic of non-linear effects
mitigation using ML algorithms. This collaboration is not directly related to the main
topic of this thesis.

• The publication ‘Machine learning models for alarm classification and failure localiza-
tion in optical transport networks’ is the result of a collaboration with a intern on the
topic of alarm classification in optical networks. This topic is closely related to the
QoT estimation improvement topic, and will be addressed in future work by different
colleagues.
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1.6 Outline of the Thesis

The thesis is structured into 6 chapters:

• Chapter 1 is the current chapter and serves to introduce the context and the scope
of the thesis.

• Chapter 2 includes a literature overview of recent papers that use ML techniques to
improve QoT estimation.

• Chapter 3 describes the QoT estimation framework that we chose to study and
discusses optical parameters uncertainty.

• Chapter 4 presents the proposed learning processes and the simulation results related
to their performance.

• Chapter 5 describes an experiment on a live network where data are extracted and
used to optimize the QoT using a learning processes based on Bayesian Optimization.

• Chapter 6 summarizes the thesis and discusses possible perspectives and benefits
from the obtained results.
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2.1 Introduction

Estimating the Quality of Transmission (QoT) of the optical signal from source to desti-
nation nodes is the cornerstone of design engineering and service provisioning in optical
transport networks. Recent studies have turned to Machine Learning (ML) techniques to
improve the accuracy of QoT estimation. In this chapter, we survey the literature on this
topic and classify the studies into categories based on their scope. Accordingly, we dis-
tinguish four categories of ML-based solutions: i) check lightpath feasibility, ii) estimate
a lightpath’s QoT, iii) enhance existing analytical models and iv) improve model general-
ization. We describe the proposed solutions in each category in terms of ML algorithms,
inputs/outputs of the models, source of data and performance evaluation. Deploying a
ML-based solution in the real field is not straightforward and presents several challenges.
Therefore, we also discuss from an operator’s perspective the potential of these solutions
for real-field deployment.

This chapter is structured as follows. Section 2.2 gives an in-depth look into the QoT
estimation problem from an analytical point of view. Section 2.3 gives an overview of
papers that apply ML to estimate QoT in terms of ML models, used data and the obtained
performances. Section 2.4 discusses the challenges of the proposed solutions and their
applicability in the real field. Finally, we conclude the chapter in section 2.5 by presenting
our main take away, and how this literature impacted the rest of our research efforts. The
contribution presented in this chapter were published in a conference paper [18] and a
journal paper [14].

2.2 QoT Estimation Approaches

QoT estimation is traditionally performed using analytical models. An analytical model
is built upon four elements: i) the transmission impairments taken into consideration, ii)
the QoT indicator to be estimated and iii) the physical layer model (PLM) used to model
the transmission and iv) the information about the transmission required as input. In
this section, we provide an overview of each of these factors in order to show the current
challenges of analytical QoT estimation.

2.2.1 Transmission impairments

Impairments in the transmission come either from the propagation of the signal through
the fiber, or from the behavior of optical equipment. Fiber optical impairments can be
split into linear and nonlinear effects. Linear effects include signal attenuation, Chromatic
Dispersion (CD), Polarization Dependent Loss (PDL) and Polarization Mode Dispersion
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(PMD). Signal attenuation is rectified using optical amplifiers, however, this degrades the
signal by adding Amplified Spontaneous Emission (ASE) noise. CD, PDL and PMD, on
the other hand, are compensated using modern digital signal processing (DSP) techniques
in the receiver. Nonlinear impairments are either due to the Kerr effects that include Self-
Phase Modulation (SPM), Cross-Phase Modulation (CPM) and Four-Wave Mixing (FWM),
or the inelastic scattering phenomenon that includes Stimulated Brillouin-Scattering (SBS)
and Stimulated Raman-Scattering (SRS). The scattering effects manifest themselves as a
tilt in the spectrum which can be corrected using power equalizers. Kerr effects are usually
modeled using equations that calculate the Power Spectral Density (PSD) of the signal such
as the Schrödinger or Manakov equations [12]. Significant research effort is dedicated to
the mitigation of nonlinear effects, and ML-based solutions have recently been proposed for
this purpose [21].

In addition to propagation impairments, equipment generate impairments that con-
tribute to signal degradation. The ASE noise generated by amplifiers, especially Erbium-
Doped Fiber Amplifiers (EDFA), significantly degrades the signal [22]. Additionally, wave-
length and polarization dependent gain in the amplifiers introduces a tilt and ripple effect
on signal spectrum. The impairments in a Reconfigurable Optical Add-Drop Multiplexer
(ROADM) include PMD and PDL effects, insertion losses, ASE noise from internal ampli-
fiers, filtering effects from imperfect filters and cross-talk effects between the channels. The
impairments from the equipment are estimated by doing laboratory characterization, or by
modeling each equipment analytically.

2.2.2 QoT indicators

QoT is generally measured using either the Bit Error Rate (BER) or the Signal to Noise
Ratio (SNR). SNR represents the ratio of the power of the optical signal to the noise
contribution of all the optical impairments mentioned above. Linear SNR, referred to as
Optical SNR (OSNR), is defined as the ratio of optical power of the signal Psig to optical
noise added to the signal by optical amplifiers Pase as in 2.1 (see 6.2).

OSNR =
Psig

PASE
(2.1)

The OSNR can be measured using an optical spectrum analyzer (OSA) [23], which is
not possible for the SNR. BER, on the other hand, is a measure of the number of errors in
the received bits. A lightpath is considered healthy if its BER is above a certain threshold
and the receiver’s Forward Error Correction (FEC) module is able to correct the error in the
bits. SNR is computed before the deployment of a lightpath to check its feasibility taking
into account optical impairments as well as various margins such as end of life margins and
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equipment aging [24]. BER is measured at the transceiver in real time, so it can be used
to monitor the health of a lightpath. Before service deployment, BER cannot be estimated
but deduced from the SNR once the modulation format, and the transceiver’s back-to-back
penalty are provided. This characterization is done by mapping the back-to-back OSNR to
the BER response of the transceiver [25].

2.2.3 Physical layer models

Analytical models are based on PLMs that attempt to model the propagation of the signal
through the fiber medium. This generally comes down to estimating the PSD that is defined
in the Schrödinger equation. Each PLM takes into consideration a number of impairments
based on the assumptions taken into consideration. A large number of models have been
proposed in literature [26]. We distinguish two families of QoT estimation analytical models.
The first family consists of exact models that use comprehensive and extremely accurate
methods. These models are heavy to execute and require a large number of parameters to
model the transmission line. Therefore, they are more suitable for laboratory simulations as
their execution time and parameter requirements make them inconvenient to be used in the
field. Among the models of this family, we find the Split-Step Fourier method [27] (SSFM)
which is a numerical method of solving Schrödinger’s equation by splitting the transmission
into a succession of small linear and nonlinear steps. It is highly flexible and can be used
to simulate network scenarios that have not yet been deployed. Its high computational
requirements make this method unsuited for online QoT estimation.

The second family consists of approximate models that are able to estimate the QoT
accurately once a set of assumptions are satisfied. The most popular class of these mod-
els are the ones that consider nonlinear interference as a small perturbation of the signal.
Among perturbation models, we find models based on truncated Volterra Series [28], log-
arithmic perturbation models [29] as well as Gaussian Noise (GN) models [30]. The light
computational load makes these models more likely to be used in an operational context.
The GN-model [30] for instance considers that the nonlinear interference in the fiber can
be modeled as white Gaussian noise. It is based on three main assumptions [30]: i) non-
linear noise is a perturbation of the signal, ii) the transmitted signal statistically behaves
as stationary Gaussian noise and iii) interference in the fiber is an additive Gaussian noise.
These assumptions simplify the expression of the PSD defined by the Manakov equation
(which itself is a simplification of the Schrödinger equation [31] ). In GN-model, the SNR
is redefined as the generalized SNR (GSNR) as in 2.2.

GSNR =
Psig

PNL + PASE
(2.2)
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Several versions of the GN-model have been proposed such as the enhanced GN-model
(EGN) [32] which removes the third assumption (iii), or the generalized GN-model (GGN)
[33] which includes the SRS noise contribution. Analytical models based on the GN-model
are fast to compute and have been experimentally demonstrated to have satisfying results
[34]. However, their performance drops when the aforementioned assumptions fail (e.g., in
highly nonlinear regimes).

2.3 ML-based QoT solutions

In this section, we provide a survey of papers dealing with QoT estimation using machine
learning. We distinguish four categories of solutions: A) check lightpath feasibility, B)
estimate lightpath’s QoT, C) enhance analytical models and D) improve model generaliza-
tion. These categories were chosen based on the scope of the problem to be solved from an
operational context. In the first two categories, the scope is to provide an alternative to
analytical models either in the form of a ML lightpath feasibility decision model (category
A) or a ML QoT estimation model (category B). The scope in category C is to improve the
performance of existing analytical tools instead of replacing them. Solutions in category D
aim to make ML based solutions more usable in an operational context by improving model
generalization and solving dataset collection issues.

Figure 2.1: General process to train a ML QoT estimation model

The general learning process to train a ML-based QoT estimation model is shown in
Figure 2.1. A dataset must be collected using either a simulation, experimental set-up or
operational network. In each case, a set of features is extracted from the data and are
used as an input of the ML model. The features are selected by cleaning up the dataset
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(removing noisy data) and selecting the data that has the most impact on QoT estimation.
Then, the dataset is split into three smaller datasets to be used in training, validation
and testing. Training the model means constructing a function that predicts the target
values in the training dataset as closely as possible. The validation step is used to tune
the hyper-parameters of the model to improve its performance. In the testing step, the
final performance of the model is calculated. This learning process is used to train different
types of ML model such as regression and classification models. In section 2.3.1 we survey
papers that use classification models to check lightpath feasibility and in section 2.3.2 papers
that use regression models to estimate lightpath QoT. Section 2.3.3 focuses on improving
analytical models and features a mix of regression models to estimate impairments and
optimization algorithms to reduce the uncertainty on network parameters. 2.3.4 introduces
ML techniques to improve ML model generalization such as transfer learning and active
learning. Tables 2.1, 2.2, 2.3 and 2.4 give an overview of the particularities of the proposed
algorithms in each category based on a set of criteria:

• Algorithm: the ML techniques used by the solutions.

• Input: the selected features to feed the machine learning model.

• Output: the output of the ML model. This is generally the QoT indicator that the
study seeks to compute.

• Source of data: information about how data was collected (i.e., synthetic, simulated
or experimental or real data).

• Results: the key results from the study. As most of the papers provide results from
multiple experiments, we choose to only mention the most relevant results.

2.3.1 ML based models to check lightpath feasibility

The goal of a ML classification model is to attribute a class to each data entry composed of
a combination of features. In the case of QoT estimation, ML classification models are used
in literature to decide if a candidate lightpath is feasible or not based on a set of optical
parameters. The classes in this case are generally binary: the lightpath’s QoT indicator
is beyond a predefined threshold or not. Thus, ML is used as a simple decision tool for
lightpath deployment. Table 2.1 lists the characteristics of surveyed papers that fall into this
category. The performance of a classification model is usually represented by the accuracy
score; the ratio of correctly classified lightpaths to the total number of lightpaths.

A case-based reasoning (CBR) approach is proposed in [35] to classify lightpaths based
on a Q-factor threshold, proving that only a simple classification model is required to achieve
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Table 2.1: Comparison of papers proposing a ML model to check lightpath feasibility

Ref Algorithm Inputs Outputs Data
Source

Performance

[35] Case based rea-
soning

Channel wavelength, launch power, loss per
span, number of spans, active lightpaths, to-
tal input power, total power of the adjacent
channels

Q-factor Experimental Accuracy be-
tween 79% and
98.7%

[36] SVM Number of ROADMs, of links, of fiber spans;
length of fiber span, launch channel power

OSNR Synthetic Accuracy > 95%

[37] ANN Total length, max link length, central fre-
quency, number of allocated slots, modulation
format, number of amplifiers, number of links

BER based
on slice re-
quirement

Simulated Accuracy > 90%,
depends on slices
and class per ex-
periment

[38] Logistic regres-
sion, Decision
trees, SVM,
random forest,
xgboost

Hop lengths, number of channels, hop losses,
number of hops, modulation format, bitrate,
aggregation-based feature engineering

2 classes:
bad and good
configuration

Simulated Best performance
at 0.9 Area Under
the Curve (AUC)

[39] K-Nearest
Neighbors
(KNN), logis-
tic regression,
SVM, ANN

Number of hops, number of spans, total
length, average link length, maximum link
length, average attenuation, average disper-
sion, modulation format

SNR above
threshold

Simulated Accuracy > 95%

[40] KNN, random
forest

Lightpath length, longest link length, number
of links, traffic volume, modulation format,
left/right guardband, left/right traffic volume,
left/right modulation format

Ppos prob-
ability that
the BER of
the lightpath
exceeds a
predefined
threshold

Synthetic Accuracy up to
96 % on certain
topologies

[41] SVM, ANN Total link length, span length, launch power,
modulation format, data rate

SNR Synthetic Accuracy > 99%

[42] SVM, logis-
tic regression,
Classification
and regression
trees (CART),
random forest

Lightpath length, link lengths, wavelength,
statistics on co-propagating light paths

BER Simulated Best performance
at 99.9% accu-
racy

[43] Deep graph
convolution-al
neural network

Channel adjacency matrix, lightpath length,
max link length, central frequency, number of
slots, core identifier, modulation format, num-
ber of amplifiers, number of links, BER of the
deployed lightpaths.

BER classifi-
cation based
on threshold

Synthetic Accuracy rates
between 92% and
97%

high accuracy scores up to 98.7%. More conventional ML models like Support Vector
Machines (SVM) and random forest, are used in [39] [40] [41] [42] [38] and [36]. These
two models usually have the best performance. Authors in [43] use a more complex ML
model based on a deep graph Convolutional Neural Network (CNN) to model inter-channel
interference in multi-core fibers which can classify lightpaths with up to 97% accuracy.

Most studies use end-to-end line features, such as total lightpath length and number
of spans. However, authors in [40] prove that using additional features from neighboring
channels improve the classification results. In [38], the statistical representations of the
features are calculated and used in the classification in order to reduce the number of
features without losing information. Almost all studies use the BER as a QoT indicator and
choose the FEC limit as the threshold to separate the two classes (i.e., feasible/unfeasible
lightpath). Authors in [40] additionally provide a degree of certainty to the classification,
which can be used to choose between multiple feasible lightpaths.
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2.3.2 ML based models to estimate a lightpath’s QoT

Table 2.2: Comparison of papers proposing a ML model to estimate a lightpath’s QoT
metric

Ref Algorithm Inputs Outputs Data
Source

Performance

[44] ANN Per channel launch power, per amplifier
[gains, NFs, gain tilts], per span input power

SNR Experimental SNR standard de-
viation < 0.14 dB

[45] ANN Launch power, laser bias, per amplifier [input
power, output power]

Q-factor Experimental Q RMSE
<0.02 dB

[46] Random forest Number of links, total length, max link length,
traffic volume, modulation format

GNSR distri-
bution

Synthetic Best perfor-
mance: 0.02
RMSE

[47] Decision tree,
random forest,
NN

Received signal power, NLI, ASE, channel fre-
quency, total length

GSNR Synthetic Best perfor-
mance: 0.16 dB
in average pre-
diction error

[48] ANN Per channel [power, frequency], number of
spans, analytical model output [ASE, nonlin-
ear noise]

SNR Simulated Max error
< 0.5 dB

[49]
[50]

Gaussian pro-
cess

Wavelength, measured OSNR, OSNR noise OSNR Field trial
testbed

MSE < 0.7 dB

[51] ANN Channel under test [symbol rate, transmit
power, distance to channel, number of neigh-
bor channels], total used bandwidth, num-
ber of WDM channels, number of spans, span
length parameters, average power level

SNR Trained on
synthetic and
applied real
data

Max error < 0.5
dB

[52] ANN Channel, noise power on each link OSNR Experimental Average error
<0.5 dB

[53] ANN Source node, destination node, OSNR of re-
quired path

Per channel
OSNR

Experimental RMSE < 0.2 dB

[54] CNN for feature
extraction +
ANN for predic-
tion

Per channel [Power, ASE, NLI, number of
spans, total length]

GSNR Synthetic Maximum error
= 0.37 dB

[55] Gaussian pro-
cess regression

Input power, number of spans, baud rate,
inter-channel spacing

BER, Q-
factor

Simulated
and experi-
mental

Average error<
0.3 dB

[56] Random Forest,
ANN, KNN

Distance, number of spans, ASE noise, nonlin-
ear interference, power

GSNR Synthetic MAE score <
0.007

In this category, the scope of the proposed solutions is to estimate the precise value of
a QoT indicator. Therefore, ML-regression models are used. The learning process to train
such a model is outlined in Figure 2.1. However, this scope can be more challenging than
the previous one since the model output space is continuous. Having the exact QoT value
allows to compare two feasible potential lightpaths. Regression models are usually scored
using an error operator, such as Root Mean Squared Error (RMSE) or Mean Absolute Error
(MAE). MAX and MIN errors are also used, as they allow to set network margins. Table
2.2 lists the surveyed papers that belong to this category.

The features used in regression models are more diverse than those used in classification.
Basic line features, such as the number of spans or length of the link, are always used,
noticeably in [55] and [46]. Additionally, authors in [44] consider per-channel features, for
instance input power and amplifier gain for each channel in the link. The per-channels
features are generally flattened into a single vector, except in the case of [54], where a
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two dimensional CNN is used to obtain a one-vector representation of all the features.
Furthermore, [44] [45] use features from multiple points of the line, such as input power at
each amplifier.

In terms of QoT indicator, we notice that noise based QoT indicators (SNR and OSNR)
are more frequently used than BER. Authors in [46] propose to estimate the distribution of
the QoT indicator rather than just a single value. Authors in [44] compare the estimation
of a ML model to that of an analytical model and show that ML models perform better
than analytical ones for lightpaths in the edge of the spectrum.

While the majority of the surveyed papers are based on synthetic and experimental
data, a couple of papers have also used real data. Noticeably, authors in [51] showcase a
model trained on synthetic data then tested on real network data.

2.3.3 ML models to enhance analytical models

Figure 2.2: Learning process to reduce uncertainty on parameters

The goal of the first and second categories was to build a standalone ML estimator,
while the goal of this category is to use ML models and analytical models in tandem. This
means that ML is used to improve the accuracy of analytical models instead of replacing
them. This can be achieved by, either improving the accuracy of input parameters of an
analytical model (i.e., reducing the uncertainty on input parameters) or assessing hard to
compute impairments or physical coefficients.

Studies focusing on “Reducing uncertainty on parameters” justify the usefulness of their
approach by the fact that some parameters values are not up to date in the operators’
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Table 2.3: Comparison of papers attempting to enhance analytical models through machine
learning

Ref Algorithm Inputs Outputs Data
Source

Performance

Reducing uncertainty on parameters
[57] Gradient de-

scent
SNR Noise Figure,

power profile
Synthetic Design margins

reduced from few
dBs to 0.1 dB

[58] 3 step opti-
mizations based
on Gradient
descent

consecutive power estimation, end to end SNR
estimation

Lumped loss
before/after
fiber spans,
amplifier
power ripple

Experimental SNR estimation
improved from
2 dB to 0.2 dB

[59] Custom linear
regression

Target Q-factor value, initial noise Figure
value, initial nonlinear coefficient value.

Noise Figure,
nonlinear co-
efficient

Experimental Error reduced
from 1.4 dB to
0.6 dB

[60] Gradient de-
scent

Target SNR value, initial noise Figure value,
initial input power value.

Noise Figure,
input power

Synthetic Error reduced by
up to 4.18 dB

[61] Nonlinear curve
fitting

Target SNR value, initial values of attenua-
tion, dispersion and non-linear coefficients.

Attenuation,
disper-
sion and
non-linear
coefficients

Synthetic Design margin re-
duction is up to
1.95 dB

[62] Metropolis algo-
rithm

OSNR estimation Nonlinear
distortion
coefficient,
filter wave-
length detun-
ing, amplifier
gain, am-
plifier noise
Figure

Experimental Error reduction
from 3.7 dB to
0.5dB.

Impairment modeling
[63] ANN Spectral load OSNR Experimental Average error <

0.2dB
[64] ANN Noise covariance, output of analytical model,

number of spans, max span length, average
power, launch power, link length, chromatic
dispersion, average fiber gamma, average fiber
alpha, number of channels.

Nonlinear
SNR

Synthetic 0.33 dB of
SNRnl deviation
using combi-
nation of all
features

[65] ANN Fiber attenuation, dispersion coefficient, effec-
tive area, non-linear refractive index

Nonlinear
SNR

Simulated Error below
0.5 dB for 99%
of cases

[66] SVM Per channel power, optical spectrum, pre-FEC
BER

SNR Synthetic Average er-
ror<0.2 dB

[67] Linear Regres-
sion, Multivari-
ate polynomial
Regression,
Decision Tree,
Random Forest,
Support Vec-
tor Machines,
K-Nearest
Neighbors, NN

Number of fiber spans, span length, channel
bandwidth, guard band, number of channels,
channel power

SNR (when
lightpath
length
<200km)

Synthetic Decreased the
cases where the
absolute error
was higher than
2 dB from 2.30%
to 0.47%.

databases because they undergo changes due to multiple factors (e.g., temperature and
equipment aging). This could be due to the inability of equipment to measure these pa-
rameters (e.g. the fiber nonlinear coefficient) or the inability of the monitoring protocols
deployed between the equipment and network management system (NMS) to communicate
parameters values in real-time. As an alternative, fixed values like design/beginning-of-life
values are used to compute QoT [68]. In literature, optimization algorithms such as gra-
dient descent, are generally used to reduce uncertainty in parameters using the learning
process outlined in Figure 2.2. The objective function of the optimization is generally set
to the difference between measured and estimated QoT indicator (also called QoT error).
Then, the values of a set of uncertain parameters are iteratively changed until the QoT
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error is minimal. The amplifier’s noise Figure is the most commonly considered uncertain
parameter [59]–[62]. The performance of the solution is assessed according to the ability of
the algorithm to improve the QoT estimation of the analytical model and reduce the QoT
error. This performance closely depends on the number of uncertain parameters assumed
in the experiments.

Authors in [59] propose two different approaches for QoT estimation. The first is a
purely ML-based estimator that assesses the SNR value. The second approach iteratively
reduces the uncertainty of the parameters required as input of an analytical model in order
to improve the model’s QoT estimation. An elaborate closed-loop controller architecture
for optical networks is proposed [61] in order to use feedback from network measurements to
improve the accuracy of the ML-model by reducing parameter uncertainty. To improve QoT
estimation models, other studies focused on estimating optical parameters that represent
hard to compute impairments. This means to assess a certain coefficient required by the
analytical model such as the nonlinear coefficient in GN models or by modeling the behavior
of an equipment. In Table 2.3, we survey the papers that follow one of these two approaches.
Authors in [64] and [65] attempt to estimate the nonlinear SNR. Thus, a neural network
model is proposed in [64] to directly estimate the nonlinear noise from line features and
fiber characteristics. Authors in [65] propose to mix line features with covariance coefficient
calculated from DSP constellations, as well as the output of an analytical model. They show
that the nonlinear SNR estimation can be enhanced by feeding all this information as an
input of an artificial neural network (ANN). Papers [63] and [66] are focused on modeling
the effect of different spectral loads on amplifiers. The aim is to estimate the SNR and
OSNR taking into consideration only the impairments generated by the amplifier. This
estimation is used alongside an analytical model in order to estimate the overall QoT. In a
similar vein, authors in [67] propose a ML model to estimate the SNR of a lightpath. The
ML model is used when the total length of the lightpath is inferior to 200 km, otherwise,
the GNLI is used.

2.3.4 ML techniques to improve model generalization

Model generalization refers to the ability of the model to adapt to data with different
distributions. A ML model trained on data extracted from a specific network would not
necessarily perform similarly using another network dataset. In order to improve model
generalization, more diverse datasets are needed to train the model which is not always
possible due to the lack of datasets extracted from different networks. Techniques such as
transfer learning and active learning are generally used to resolve this issue. In Table 2.4,
we have surveyed papers that try to improve ML model performance using these techniques.
It is worth noting that each of these papers propose its own QoT estimation model which
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Table 2.4: Comparison of papers featuring machine learning techniques for dataset man-
agement

Ref Algorithm Inputs Outputs Data
Source

Performance

[69] ANN, Ac-
tive learning
through Monte
Carlo (MC)
dropping for
uncertainty
sampling

Signal bandwidth, modulation format, peak-
to-peak voltage, received power

Generalized
mutual infor-
mation

Experimental Requires 25% less
data than ran-
dom sampling,
while maintain-
ing blow 0.055 in
MSE

[70] DNN, Evolu-
tionary transfer
learning

Power profile at each optical switch Q-Factor Experimental Only 10% data
size required for
retraining

[71] DNN DSP constellation SNR Experimental Average Error <
0.2dB

[72] Gaussian pro-
cess, Active
learning using
a MC method,
Domain adap-
tation using
Bayesian up-
dating, feature
augmentation,
Correlation
alignment

total lightpath length, longest link length,
number of traversed links, traffic volume, and
modulation format

SNR Synthetic Depends on
method and
dataset size

[73] ANN Span lengths SNR Simulated RMSE improved
by 2 after retrain-
ing

[74] DNN Q-factor of different lines Q-factor Experimental 50% less dataset
size for retraining

[75] SVM Total length, number of links, maximum link
length, demand capacity, modulation format

BER classifi-
cation

Synthetic 20 times less data
required for re-
training

[76] DNN Amplitude histogram of received samples OSNR Experimental 20 times less data
required for re-
training

means that it can also fit into the category A or B. However, we choose to survey them in this
category as we consider their main contribution is to solve the model generalization problem.
In the characteristics, we provide both the ML algorithm used for QoT estimation and the
ML algorithm used for model generalization. The performance is assessed according to the
ability to reduce the dataset requirements or to improve error rates. The goal of Transfer
Learning (TL) algorithms is domain adaptation, which means ensuring that a ML model is
generalizable to multiple datasets with different feature distributions. Figure 2.3 shows how
transfer learning can adapt a ML model to multiple network domains. Pesic et al. study
in [73] the impact of using networks with different span lengths on the performance of ML-
based solution. They show the importance of pre-training a model on unbiased data. This
study is extended in [74] to include more network features. Authors also study the effect of
domain adaptation on the structure of an ANN model. In [76], [75] and [73], authors use a
ML model initially trained on data from a network A in another network B. To adapt the
model, a dataset from network B, up to 50 times smaller than that of network A is used for
retraining.
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Figure 2.3: Learning process to adapt a ML model from one domain to another using
Transfer Learning

Active Learning (AL) approaches are proposed in [69] and [72]. AL algorithms seek
to reduce the dataset size by selecting data that best improve model performance. The
method typically starts with an initial small dataset, then progressively adds more data
entries using an algorithm to compute and rank the importance of each data point. Only
the selected data points are measured which avoid the need of a large dataset from the
beginning. Both papers use a Monte Carlo based process for data selection. Authors in
[72] also propose three domain adaptation techniques, namely Bayesian updating, feature
augmentation, correlation alignment, then provide an extensive benchmark of each method.

2.4 Discussion

In this section, we discuss the ML-based solutions described in the previous section. Through
this discussion, we present the challenges of these solutions and explore their feasibility in
the context of operational networks. We also propose some perspectives for future work.
Our discussion focuses on four main points: i) the relevance of the tackled scopes, ii) the
dataset used for training, iii) the feature and model choice and iv) the evaluation metrics.

2.4.1 Adopted approaches

The four categories that we have identified to classify the solutions proposed in the literature
tackle the use of ML to estimate the QoT in different manners. Each solution has its own
benefits and challenges that make it more or less usable in an operational context.

By proposing a ML-based QoT estimator, whether it is a classification or a regression
model (Categories A and B), the objective is to provide an alternative to analytical mod-
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els. In order to justify the substantial efforts needed to train the model correctly and the
extra-costs to deploy such solution, especially when it comes to data collection, ML-based
solution must outperform the analytical models in terms of QoT estimation precision, num-
ber of required input parameters or/and computational load. Guaranteeing, at least, the
performance achieved by analytical model seems to be feasible because the capacity of ML-
solutions to model complex physical phenomenon has been extensively proven not only in
optics but also in various areas of research [7]. Reducing the execution time is also not a
concern, because outside of the training phase, model inference is generally not computa-
tionally extensive. In [51], ANN prediction takes microseconds, compared to minutes using
a full EGN model. Additionally, ML models may use feature representations with fewer
input parameters, for instance by averaging the list of span lengths as in [39]. ML models
can also be more robust to uncertain parameters as featured in [77]. However, the challenge
facing solutions involved in these categories (i.e., A and B) is to build a model that is ef-
fective, easy to maintain and works on all the scenarios where it is applied with acceptable
deployment extra-cost.

The choice between classification and regression depends on the operational requirement.
If only checking the feasibility of an optical path is needed, classification is better. However,
if the value of the QoT is needed (e.g., to compare the performance of different models of
equipment), the regression model will be the best option. For both methods, it is useful,
from an operational point of view, to additionally assess the estimation error in order to
facilitate the computation of operational margins, which might be easier to compute with
a regression approach.

The idea behind the category C is to use ML in tandem with analytical models. Analyt-
ical models are already used extensively in the field, so proposing solutions to improve their
usability is better than replacing them. In fact, missing or inaccurate parameter values is a
recurring issue in data extracted from operational networks as outlined in [78]. Studies that
focus on reducing the inaccuracy of parameters values have mostly focused on optimization
approaches using the error in QoT estimation between measurements and the analytical
model as an objective function [57]. The solutions proposed within this scope risk not be-
ing able to converge towards the real values because some impairments that are not taken
into consideration by the analytical model may contribute to the error in QoT estimation.
In this case, alternative values of the input parameters are provided by the ML algorithm
which improves the accuracy of the QoT, although the values of input parameters do not
correspond to the real values [17].

As analytical models are showing promising results with decent rapidity [68], we believe
that solutions that aim to assist analytical models (i.e., Category C) are pragmatic and
could provide promising results in short/medium terms. For solutions of categories A and
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B, we consider that the main benefit of using a ML estimator rather than an analytical one
could be in one of these cases: i) the ML estimator can achieve accurate performance when
the analytical model is not appropriate because its assumptions are not satisfied [67], ii)
some input parameters of the analytical model could not be provided, whereas they are not
needed by ML-based solution (e.g. a better feature representation in [59] leads to reduce
the number of input parameters), or iii) the analytical model is unusable due to execution
time constraints.

The interest of improving the generalization of ML models (Category D) is justified by
the issues around data collection in optical networks. Models proposed within this category
do not focus only on computing the QoT itself but to make models proposed under the
other categories technically feasible in terms of data and able to be generalized in many
scenarios. Concepts presented in this category could be applied to any ML-model that
requires training. We believe that this approach will be the key to making ML models a
viable solution in the field, especially when it comes to domain adaptation between hetero-
geneous networks as in [72]. Another point of interest that was rarely addressed in papers
is continuous learning. Operational networks are susceptible to change, which might make
ML models inefficient if they are not updated regularly. Therefore, proposing a closed-loop
process, based for example on active learning as in [79] would help to solve this problem.

2.4.2 Dataset collection

Training ML models requires large datasets. Some approaches do not have a proper training
phase, as in the case of solutions based on optimization algorithms such as [59] and [60].
However, even in this case QoT indicator measurements are still required. In general, the
performance of ML methods is tightly linked to the quality of the dataset used in the
training phase. The different steps to build the dataset which are data collection, data
annotation, feature engineering, data augmentation and splitting datasets for training and
validation, must be carefully performed in order to ensure a successful training and avoid
biased results.

Data collection remains the first bottleneck in optical networks due to several factors:
equipment lock-in (i.e., inability to access equipment data), lack of standardized data mod-
els and monitoring protocols, lack of data collection and monitoring tools and the cost of
deploying optical signal probes in the network. Datasets used in the surveyed papers are
either synthetic, experimental or operational. Synthetic datasets are generated by simu-
lating network scenarios using an analytical model, for instance, authors in [46] and [56]
use the GNPy tool [80]. This method allows greater control over data entry points, feature
variation, flexibility in the definition of the scenario and setting the dataset size. However,
models trained with synthetic data learn the behavior of the simulation platform and the
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analytical model behind which might not faithfully represent a real optical network behav-
ior. In fact, the performance of the ML in this case is tightly related to the accuracy of
the simulation platform. Transfer learning approaches proposed in Section 2.3.4 could solve
this problem by retraining the model using field data in order to increase its accuracy and
remove the synthetic data bias, but, to our knowledge, this has not yet been demonstrated
in the literature.

Experimental setups on the other hand better reproduce the conditions of an opera-
tional network, while keeping the flexibility of simulation approaches. For example, in [63],
a setup consisting of cascaded amplifiers is used to model amplifier response to spectral
load, while in [44] an experimental setup of a full transmission line is used. Through ex-
perimental data, models can learn the behavior of a real transmission using physical fibers
and equipment. Generating this kind of data is costly and time-consuming given the large
number of measurements required to train a ML model. Therefore, a full automation of the
experimental setup, as proposed in [81], is highly recommended. The experimental setup
is usually limited to a small-scale network. Thus, applying the ML model in a large-scale
operational network requires the use of adaption and generalization techniques.

Training ML algorithms with operational data confronts the model to the real condition
of the field. However, the data collection process in this case is complex due to the lack
of monitoring and data extraction tools in the optical layer and the inability to define on-
demand data extraction scenario. For instance, data cannot be extracted from unfeasible
or low QoT lightpath and equipment configuration settings cannot be changed for training
purposes. Moreover, operational datasets are less diverse in terms of features availability
and variation. In fact, these datasets are tightly linked to the network from which they
were collected. Since feature distributions could change from one network to another,
transfer learning could be applied to generalize the model between heterogeneous networks
(or domains) as shown in [74].

We notice that most papers use synthetic or experimental data to train ML models. Only
a few studies have used data from an operational network such as [51], [49] and [50] use data
extracted from a field trial testbed with a total 436.4 km optical path over the national
dark fiber facility in UK. The choice of a data source requires a balance between simulation
flexibility and representation. The ideal scenario is to have enough variation in field data
to train the models correctly. But since this is far from being immediately achievable, we
consider that it is more convenient to train models with synthetic or experimental data
mixed with samples of operational data to generalize the model’s performance.

Data collection concerns hamper research focused on the application of ML in optical
networks. While it is justified to adopt an optimist outlook and assume that the data
scarcity will be resolved in the future, we believe that it will be more beneficial to actively
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tackle the problem by proposing detailed data collection schemes alongside the ML solutions
as in [49], or by only taking into consideration parameters that are available in the field as
features as in [17].

2.4.3 ML models and input/output features

Figure 2.4: Four levels of data features for ML-based solutions

The choice of input features and ML model is motivated primarily by the scope of the
solution. If we assume that the goal is to estimate a QoT indicator, the input feature of the
model must fully describe the factors that impact this indicator. Similarly, the ML model
must be sufficiently complex to model the impact of said features on the indicator. In the
surveyed papers, we find different levels of features. The first level concerns the end-to-end
lightpath features, such as total length of the lightpath, and number of hops/spans [36].
These features are often related to the lightpath under study rather than considering the
entire network. The next level includes data related to specific equipment/fiber through
the path such as the attenuation coefficient of the fiber spans, or the amplifier gains in [44].
The third level concerns information about the co-propagating lightpaths (i.e., neighboring
wavelengths). These features can range from a simple number of wavelengths to a detailed
description of the spectral load [63]. The fourth level is to use a feature representation of
the whole network and its lightpaths. This can be modeled using matrices or graphs as
in [43]. Feature representation of the network can also be provided with other information
depending on the use case: information about slices [37], calculated features from DSP
constellations [51] , or analytical model output [65]. Setting the level of details in features
depends on the impairments to be considered and the level of precision to be achieved by
the ML-model. For instance, study [43] proposes a graph based feature representation of all
the lightpaths in the networks (i.e., fourth level of feature representation) because they aim
to take into consideration inter-core cross-talk effects between all the lightpaths. Figure
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2.4 shows the various levels of feature extraction that can be used as input of ML models.
Table 2.5 further shows the data that must be extracted from the network in order to extract
these features, as well as the operational requirements to collect them. The use of higher
level of data probably improves the precision of estimated QoT but it could lead to more
complex ML model as well as increase the cost of deploying such solution for a network
service provider. For instance, the existing data in the NMS are sufficient to retrieve level
L1-data. In this case, the cost needed to deploy such solution mainly concerns the data
storage and ML processing. For illustrative purposes, we estimate the rental cost for data
storage and execution of algorithm at 10 k euros per month for a ML-solution deployed in
one thousand-node network. For levels L2, L3 and L4, streaming telemetry protocol and
dedicated hardware are needed to obtain measurement from ports. We estimate the cost of
the cards in the order of 100 euros per port.

Table 2.5: Four levels of data features for ML-based solutions

Level Description Example Data extraction requirements
L1 Path routing and lightpath configu-

ration data
Number of EDFA, number of
links, average link length, input
power ...

Data from the NMS

L2 L1 data + Equipment parameters re-
lated to the transmission line

EDFA gains, fiber loss ... Data from the NMS + streaming
telemetry (optional)

L3 L2 data + Routing and spectrum oc-
cupancy data related to the line

Neighbor channel bandwidth,
per channel power ...

Data from the NMS+ streaming
telemetry

L4 L3 for all the network lightpaths of
the network

Adjacency matrix Routing and spectrum occupancy
data related to all the network from
the NMS+ streaming telemetry

The output of the ML model mainly depends on the scope of the solution. If the output
is a QoT indicator that could not be measured in the real network, the only source of data
to train and validate the model will be experiments and simulations. Furthermore, the
model could not be adjusted in a closed loop architecture during the life of the network.
Therefore, the QoT indicator should be carefully chosen to ensure a practical validation of
the solution.

2.4.4 Performance and evaluation metrics

Several metrics exist to assess the performance of ML models. The choice of metric depends
primarily on the type of model (regression or classification), and on the performance to eval-
uate. In the case of classification, some studies such as [37] use the accuracy metric, which
gives the rate of successful classifications but does not give information on false positives
or false negatives. In the case of regression, a Root Mean Squared (RMSE) or/and Mean
Absolute Error (MAE) operator are used [46][56]. Using a varied list of evaluation metrics
assesses better the model’s performance, for instance, providing AUC scores for classifica-
tion as in [38], and error distribution for regression as in [46]. These evaluation metrics
allow to precisely know the model capability which could be helpful for some operational
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settings like the specification of network margins.
Furthermore, careful attention must be given to data biases, such as a dataset with

higher percentage of a class over another. Multiple papers have used cross validation to
detect over-fitting problems like in [56] and [40]. But the best approach is to validate the
performance on completely different dataset such as in [51] .

In addition to the accuracy of QoT estimation, other evaluation metrics such as network
capacity gain [61] or potential resource saving [40] are relevant to show the added-value of
the proposed solution. Nevertheless, the assessment of resource saving should also take
into consideration the extra cost of deploying the ML solution such as the probes for data
monitoring. Finally, a comparison must be established with existing solutions, especially
with analytical models in the case of ML-based QoT estimators as in [67].

2.5 Conclusion

Using machine learning to improve the QoT estimation has seen a surge in popularity over
the last years. Therefore, we provided in this chapter a survey of studies that investigate
this research topic from different angles. We distinguish four categories of models using ML
for QoT estimation. The first category consists in building ML model to check the feasibility
of a path. The second category aims to make the ML-based model as full alternative of
analytical models. The third category uses ML to improve analytical models by either
reducing the uncertainty in input parameters and equipment modeling or assessing hard
to compute impairments and coefficients to supplement the analytical models. The last
category consists in improving the performance and generalization ability of ML-based
solution by enhancing the samples of the dataset in the training phase through transfer
learning or active learning techniques.

Our takeaway from this literature overview is that QoT estimation models that are
totally based on ML models are not sufficiently mature to replace analytical models. The
results of the proposed algorithms are generally satisfactory, but some concerns remain
regarding their ability to be generalized in order to support complex optical transport
network topologies and various equipment configurations. Moreover, the data scarcity and
additional cost related to monitoring data and implementing these solutions are among
the challenges that hinder the deployment of ML-based QoT estimator in the operational
networks.

Therefore, we believe it will be more convenient to focus on reducing optical parameters
uncertainty instead of replacing the QoT analytical model by a ML-based one. Indeed, we
cannot correctly estimate the QoT if we have a poor knowledge of the state of the network
and its parameters. Even, in the case where a ML-based model is used to estimate QoT,
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accurate values of input parameters are required. In the remaining sections of this report,
we focus on exploring learning process to create a dataset reflecting the actual state of
the network using data collected from the NMS. If such a state can be inferred from the
measurable and collectable parameters, the estimated QoT will have a high level of accuracy
and reliability. Additionally, we explore how QoT models, particularly ML-based ones, can
be improved to be able to adapt to changes in network states.
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3.1 Introduction

QoT estimation tools require the knowledge of a large set of parameters. These parameters
can be acquired in different ways and from different sources (e.g., NMS, telemetry, supplier
data sheet). Depending on the reliability of the source, some parameters may represent
uncertainties in the precision of their values, which leads to inaccuracies in QoT estimation.
In section 2.3.3, we showed that AI techniques can be used to refine parameters and provide
accurate values of input parameters to analytical tools which improves the QoT estimation.
In this chapter, we seek to extend the study of this use case. We first describe the problem
in more depth, then we propose a framework where learning processes can be executed
to improve QoT estimation in the presence of uncertain parameters. Finally, we study
the reliability of different parameters from an operator point of view and assess, through
simulation, their impact on the estimation of the QoT.

3.2 Problem Description and Proposed Framework

Figure 3.1: QoT computation and improvement framework

From an operator’s point of view, QoT estimation is needed to perform the network
design and service provisioning. During the network design, the operator must propose
a network configuration that guarantees a suitable QoT, in other words a QoT superior
to that required by transponders, for all services to be deployed in the network. Network
design can involve the establishment of new transmission lines (greenfield scenario) or re-
utilize existing parts of the network (brownfield scenario). In the greenfield scenario, we can
generally assume that data related to parameters are reliable since a lot of measurements
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and tests are performed before the deployment of new transmission lines. However, we can
still have some uncertainties related for instance to the inherent imperfection of equipment
and connectors. In the brownfield scenario, parameters uncertainties are more prevalent, as
parameters related to already-deployed equipment may change during the life cycle of the
network. These changes can be unreported by the network controller which impacts the
QoT estimation.

In the case of service provisioning, the QoT of each candidate lightpath must be assessed
accurately in order to properly route the service. In an operator’s context, the transmis-
sion lines are already designed to fit a predefined service deployment configuration that
estimates how optical services will be provisioned until the end-of-life of the network. How-
ever, significant margins are taken into account to compensate uncertainties in parameter
and equipment aging. This does not mean that at this stage the service configuration is
definitively settled. On the contrary, during the life cycle of the network the provisioning
configuration may change to meet the emerging operational needs and new technological
advances. For instance, the appearance of flex-grid technology has pushed towards the
consideration of new parameters (e.g., number of slots) to compute the QoT. Moreover,
obtaining an accurate QoT estimation before service provisioning avoids assuming large
system margins which permits network re-optimization and more efficient routing.

In the context of building a DT of the network, the QoT estimation tool can be used to
check the performance of an optical service before pushing any changes to the network, and
keep an up-to-date vision of the network state. This requires setting up a feedback loop
between the controller and the QoT tool to ensure that the QoT indicators that have just
been calculated correspond to the measurement (e.g., the BER). Most network operators
establish an interface between the QoT estimation tool and the database that could be fed
by the controller itself or a dedicated application. However, these data generally suffer from
a lack of accuracy (i.e., some data are not correct), reliability (i.e., out-of-date values) and
completeness (i.e., missing data). This means that the collected data are rarely used to
improve QoT estimation.

In order to improve QoT estimation, we propose a framework as shown in Figure 3.1.
The database, hereinafter referred to as Network State, holds all the network parameters
that are required to calculate the QoT. The network state contains a mix of information
that are configured by the operator (e.g. service deployment parameters), measured by
the equipment (e.g. power values) or obtained from equipment manufacturing sheets (e.g.
amplifier gain spectrum curves). We organize these data into service, topology and mea-
surement data. This network state database is permanently populated with data from the
NMS.

The "Service Deployment Process" (represented by green bold arrows in the Figure)
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shows the typical scenario where a QoT tool is solicited to estimate the QoT of a potential
lightpath. Following a request from the NMS (step A), the QoT tool consults the network
state database (step B) in order to get the values of parameters needed to perform the
computation of the QoT (step C). Then, the QoT estimation value is sent back to the
controller (step D) which uses it to decide which lightpath configuration to deploy (step E).
The flow of information from the QoT tool to the controller represents the feed-forward
part of the QoT estimation closed-loop. Once the deployment is done, new measurements
are available in the network such as the BER of the just-deployed lightpath, which can be
collected and used to update the network state. Typically, this new information is only
stored but not exploited. To close the QoT estimation loop, a second data flow must be
set up in order to use the measurements collected in the network to improve the QoT
estimation accuracy. Therefore, we propose the "QoT Estimation Improvement Process"
which corresponds to the feedback part of the closed-loop (represented by blue dashed arrows
in the Figure).

The "QoT Estimation Improvement Process" must regularly be performed to adapt to
changes in the network measurements. In this process, the network measurements are first
collected (step 1), then stored in the network state (step 2). The network state is used to
prepare a dataset (step 3). The dataset contains carefully selected data that are required
to run the ML-based learning process. In the case of training a ML model for instance, the
input could be network features and the output could be QoT metrics. Once the dataset
is ready, the learning process is executed (step 4). The learning process typically runs for
a few iterations until the maximum improvement is achieved. The outcome of the learning
process depends on the chosen approach to solve the problem. In the surveyed papers in
chapter 2.1, we identified two typical outcomes (step 5.1 and 5.2). Firstly, the network
state can be modified to take into account the changes in network behaviour as proposed in
papers reviewed in section 2.3.3 where optical parameters are re-optimized. Secondly, the
QoT model can be extended or improved, as proposed in papers reviewed in section 2.3.4
where ML models are retrained to adapt to the characteristics of a new network domain.

As could be noticed, the proposed learning process supposes the existence of measure-
ments, which means that some services have been already deployed. Therefore this solution
is applicable to perform network design in the brownfield scenario and in the case of service
provisioning. In the case of greenfield network design, the equipment are usually new and
well characterized which means they have less parameter uncertainties. In this framework,
the AI-based learning process permits a closed-loop control that changes either the network
state or the QoT tool so that the estimations match the measurements as much as possible.
Whenever a new service is deployed, the available data to run the learning process increase,
and consequently the inaccuracy of the QoT estimation is reduced further.
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The choice of QoT tool impacts the accuracy of the estimation, the execution time, and
the type of parameters that must be collected. In this study, we seek to provide a solution
agnostic to the QoT computation tool. Analytical models are the most widely used in the
operational network. But this does not preclude that the learning processes should also
be applied in the case of neural network-based QoT estimator. With the scale that AI is
taking, this kind of solutions are more and more likely to exist. Therefore, we decided to
also explore the case where a ML base model is used in the operational network. The final
takeaway from our literature review in chapter 2 is that ML models are not mature enough
to replace analytical tools in the field today, but this could change in the future due to
the accelerated progress of this discipline. The key selling point of ML models is that they
can learn the real behaviour of the network from historic data. As a result, the success
of these solutions depends on their ability to achieve more accuracy with less computation
time than the analytical tool. For this reason, in this chapter we study both cases. For the
first case, we take the GNPy tool ([80]) as a reference analytical tool for QoT estimation.
For the second case, we propose and train a neural network (NN) to estimate the QoT. We
chose to use GNPy as it is an open source tool and shows a high efficiency and satisfying
results in computing QoT [82]. The comparison between different analytical QoT tools is
out of the scope of this study as it does not affect the learning process that we propose.

In the rest of this chapter, we present in section 3.3 and 3.4 the two QoT tools we used
in the study, i.e., GNPy and the neural network model respectively. Then, in section 3.5,
we discuss the choice of parameters that constitute the network state and their degree of
certainty in an operational context.

3.3 GNPy as Analytical QoT Estimator

GNPy is an open source QoT estimation tool based on the Gaussian Noise model. It is
developed within the Telecom Infra Project (TIP) by the Physical Simulation Environment
(PSE) working group. It is part of the effort to provide a vendor agnostic performance esti-
mator and network planing tool. GNPy provides two levels of control over QoT estimation;
the GNPy simulation tool, and the GNPy library. The simulation tool is a high level script
that takes as input three types of configuration files (service file, topology file and equipment
configuration file) and automatically provides QoT estimation and network design for the
desired network. The GNPy simulation tool is intended for operational users as it requires
low configuration effort to run, whereas the GNPy library is destined to developers as it
provides a modular implementation of each element of the optical transmission and offers
a higher degree of control over the network simulation.

In our study, we first implemented a new layer over the core GNPy library called "LineS-
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imulator". This allows us to use GNPy to simulate multiple network transmission scenarios.
Then, for each learning process, we developed a tool that interfaces with "LineSimulator".

GNPy was chosen as the analytical QoT model in our study for multiple reasons. First,
it uses the Guassian Noise (GN) model as Physical Layer Models (PLM), and the GN
model seems to be the most widely used transmission model in recent literature. Second,
it is developed in part by members of our work team which helped in understanding and
exploring the tool. Finally, GNPy is an open source tool that aims to be vendor agnostic,
meaning that it can be used in a various network scenarios regardless of operator and vendor
constrains.

The learning processes we proposed are supposed to be QoT tool agnostic in terms of
how QoT is computed but, of course, it must take into consideration the input parameters
needed for estimation and the QoT metrics provided. In Appendix 6.2, we present more
details of the implementation of GNPy which help in justifying our choice of uncertain
parameters in Section 3.5.

3.4 Neural Network as QoT Estimator

In chapter 2, we surveyed several papers that attempt to train ML models to estimate QoT
of lightpath (e.g., [44], [45] and [46]). Our conclusion is that in most cases ML models can be
successfully trained to achieve a high level of accuracy under specific network transmission
scenarios and using specific dataset for training and validation. As far as we know, no ML
model can be claimed to be general enough to be applied to estimate the QoT in any use
case. However, we can expect more efficient ML models in the coming years due to the
availability of data and the high interest of researchers on this topic. For these reasons, we
do not seek to provide a highly accurate ML model, nor to outperform existing analytical
models. Our goal is to show how parameter uncertainty can affect ML based QoT models,
and to provide learning processes to improve QoT estimation in this case.

Figure 3.2: Structure of the Neural Network Based QoT Model
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Table 3.1: List of Parameters Used to Generate the Training and Validation Datasets

Parameter Range Step Total number of values
Input power spectrum (dBm) [-2, 4] 0.5 13

Noise Figure (dB) [4,9] 0.5 11
Connection loss in (dB) [0,3] 0.2 15
Target Pch out (dBm) [-1,6] 1 8

We trained a neural network model to estimate the SNR and the power spectrum at
the output of an OMS as shown in Figure 3.2. The model is an artificial neural network
(ANN) with three hidden layers. We use ReLu activation functions, ADAM [83] optimizer
and a weighted Root Mean Squared Error (RMSE) loss function to train the model.

The model takes as input the power spectrum at the input of the booster, the connection
in losses of each fiber, the mean NF of each amplifier and the mean Gain of each amplifier.
It outputs the SNR spectrum at the end of the OMS, and the power spectrum at the output
of the pre-amplifier. In the Section 3.5, we discuss in detail the choice of parameters that
impact the QoT estimation. Since our goal is not to train a ML to compete with analytical
models, we chose the most relevant input parameters that impact the optimization learning
process, as will be explained in the rest of this manuscript.

Figure 3.3: Network Topology Used to Generate the Training Dataset for the NN Model

In order to train the model, we use a dataset generated by GNPy. We use a single OMS
topology as shown in Figure 3.3 to simulate multiple transmission scenarios by changing the
input parameters. In Table 3.1, we show the list of parameters that we change to generate
the dataset, as well as the parameters ranges. For each parameter, we take its value range,
then split it into 90% training and 10% validation. Then we generate the training and
validation dataset by randomly sampling input parameters from the respective training and
validation ranges to run the simulation. The output is then calculated with GNPy and
added to the dataset. This techniques means that the values of the parameters in the
validation dataset will be completely new and have not been encountered during training.

Figure 3.4 shows the summary of the training and validation of the neural network. We
do not explore regularization, over-fitting and validation in detail in this study as it is not
our main purpose. Figure shows that after 2500 iterations, the RMSE error is below 0.1.
This model will be used in the framework presented in Figure 3.1 as a ML-based QoT tool.
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Figure 3.4: Evolution of the training loss during model training

3.5 Selection of Uncertain Parameters

In this section, we discuss the different input parameters of QoT estimation tool in order
to distinguish between certain and uncertain parameters and determine which one have the
most impact on QoT computation. As the discussion about parameters is strongly related
to the QoT tool, we will focus in the section on GNPy input parameters.

GNPy takes as input a set of parameters in order to compute the above mentioned
transmission effect. The core library of GNPy is split into multiple classes that each rep-
resents an equipment line. The transmission is simulated by propagating a spectrum over
each element in the line. Since GNPy is an open-source tool that is still under development,
these parameters are subject to change. However, the approach we propose in the following
section is designed to be agnostic to the QoT models as discussed before, so it can easily be
adapted. We will overview optical parameters in respect to their measurement availability
and accuracy according to various hypotheses and observations as a Telecom operator. The
information in this section is highly subject to change as measurement technologies progress
and is also highly variable based on vendor and operator capabilities.

3.5.1 Simulation Description

To further justify our choice of parameters, we use GNPy to estimate the impact of each
parameter uncertainty on SNR. We use a flat line topology as shown in Figure 3.5 with a
full grid of 80 channels over the C-band having a channel spacing of 100 GHz. The span
configuration in each OMS is the same: 80 km spans length of Single Mode Fiber (SMF),
16 dB of amplifier gain, and 2 dB of tilt. The per channel output power of each amplifier
is set to 4 dBm. We change the values of each parameter that we consider uncertain and
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Figure 3.5: Network Topology Used to Calculate Parameter Impact

estimate the SNR using GNPy. The values of uncertainty used in this chapter are arbitrary
and are only there to showcase the impact.

3.5.2 Service-Related Parameters

Those parameters are related to each deployed service including service route, baud rate,
modulation format, frequency and bit rate. We generally assume that all of these parameters
are available in the network state database with high accuracy. We find in the literature
some works such as [84] and [85] that assume the modulation format of an optical service as
unknown in the context of alien wavelength but this case is outside the scope of our study.

3.5.3 Transponder-Related Parameters

In GNPy, almost all transponder-related parameters are taken into account in the service-
related parameters. The other transponder-related parameters which remains to be men-
tioned are the back-to-back noise, the emission power and the central frequency.

The back-to-back noise is modeled in GNPy as an SNR penalty that is added to the ser-
vice performance. Actually, this penalty varies between transponders and could be identified
using a back-to-back characterization. In our study, we assume that the the back-to-back
noise of the transponder is constant and it is set to 45 dB. The output power and the central
frequency are configuration parameters and should be available in the controller.

It is worth mentioning that some analytical models calculate the BER instead of the
SNR. This requires additional information about the modulation format and constellation
shaping. Since GNPy only estimates the SNR and OSNR, these parameters will not be
considered.

3.5.4 ROADM-Related Parameters

ROADM is an optical element capable of switching optical signal in different directions.
It is composed of multiple Wavelength Selective Switching (WSS), amplifiers and Variable
Optical attenuators (VOA). In order to model the propagation through the ROADM accu-
rately, the parameters related to each components should be taken into consideration (e.g.,
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the filtering effects of WSS, noise factor for amplifiers and power attenuation for the VOA).
In GNPy, ROADMs are implemented as an equalization element, with the target output
power as a parameter. The target power can be a Power Spectral Density (PSD) value, a
flat power value over all channels or a customized power target per channel. The power
spectrum at the output of the WSS can potentially be measured if Optical Power Monitors
(OPM) are available. Otherwise, we assume that we have knowledge of the equalization
method used, such as the PSD value, or the attenuation values for each channel of the WSS.
We can use this information to construct the power spectrum at the output of the WSS.

3.5.5 Amplifier-Related Parameters

Three parameters model the EDFA amplifier in GNPy: the tilt, the gain and the noise
Figure. Both the noise figure and the gain can be considered as a single mean value, or
as a set of parameters, one for each channel. The tilt is configured in the equipment after
deployment and generally does not change.

The nominal gain is a configurable parameter in amplifiers. However, the effective gain
spectrum can have a number of uncertainties due to gain ripple effects. The effective total
gain can be measured if the total input and output powers of the amplifier are available.
In this study, we do not consider the gain spectrum as an uncertain parameter, however we
do study the network scenario where gain spectrum has a small uncertainty and propose a
solution to deal with this issue.
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Figure 3.6: Maximum SNR error generated by gradually changing the NF of each amplifier
in the 4 OMS FLAT_NET topology
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Figure 3.7: Mean SNR error generated by gradually changing the NF of each amplifier in
the 4 OMS FLAT_NET topology

Noise Figure (NF) measures the amount of noise added to a signal when it is amplified.
A higher noise Figure indicates a poor quality of the amplified signal, and vice versa. We
consider the NF as an uncertain parameter. The first reason is that in the data extracted
from the operator NMS, the NF values are usually part of the missing data. One solution
to obtain these values is to use data sheets provided by some equipment suppliers which
contain the NF values corresponding to the gain and input power values. These values, if
any, can be inaccurate. The second reason is that the NF represents the main source of
ASE noise in the transmission. Including the NF as an uncertain parameter means that
it will compensate for uncertainties on ASE noise of the transmission line even if it is not
generated by the amplifiers.

In Figures 3.6 and 3.7, we see the evolution of the maximum and mean SNR error
when we increase the number of erroneous NF values of the amplifiers that make up the
transmission line. We consider the same error on NF for all the amplifiers in each simulation.
Three values of error are simulated: 0.5 dB, 1 dB and 1.5 dB. This range is arbitrary as we
do not have access to any statistics on NF errors in the field. We notice that at maximum
error value, the SNR error can reach a maximum of 1.2 dB and an average of 0.7 dB. We
also notice that the impact of the NF parameter is a linear curve. The slope of this curve
is proportional to the amount of uncertainty to add to the NF parameter.
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3.5.6 Fiber-Related Parameters

The fiber-related parameters model the various effects that occur in the fiber. The span
loss is the main impairment that greatly affects the quality of the optical signal. It could
be caused by the attenuation coefficient of the fiber (also called lineic loss) and the fused
losses such as splices (which are more numerous in older fibers) and the connectors losses.

The span loss is characterized in GNPy by the attenuation coefficient α, the connector
losses (CONN_IN and CONN_OUT) and the splice losses called fused in the tool (FL
for fused loss). α depends on the type of fiber but can have a small uncertainty due to
manufacturing. Although fiber type has been the subject of some papers in the literature
[86], operational experts confirm that these data are generally available with low degree of
uncertainty. The total span loss can be calculated if the total power is measured from the
input and the output of the span.
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Figure 3.8: Mean SNR error generated by gradually changing the CONN_OUT loss in each
span in the 4 OMS FLAT_NET topology in power mode

If we assume that these measurements are not available, the impact depends on the
amplifier operation mode as shown in Figures 3.8 and 3.9. Here, we only change the
CONN_OUT parameter to increase the total loss. In power mode, the amplifier increases
the gain to maintain the target output power which increases the generated ASE noise. The
SNR error generated is similar to the NF uncertainty case, and can reach up to 1.2 dB on
average. In gain mode, the amplifier does not change its gain, so the power level gradu-
ally decreases through the line which results in a poor SNR. The SNR error here increases
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exponentially with the CONN_OUT error and can reach 7 dB in the worst case.
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Figure 3.9: Mean SNR error generated by gradually changing the CONN_OUT loss in each
span in the 4 OMS FLAT_NET topology in gain mode

Besides the fiber attenuation, GNPy takes into account the lumped loss on the con-
nectors (in and out) and splices. The distribution of this kind of attenuation is important
because it affects the power injected into the fiber, which affects the intensity of the non-
linear effects, and the SRS shape applied to the spectrum. In Figure 3.10, we change the
CONN_IN parameter between 0.1 and 2 dB, while conserving the total loss in each span
in the first OMS of Figure 3.5. We also change the power per channel at the output of
the amplifier. We notice that the SNR spectrum changes drastically based on the injected
power in the fiber. At 4 dBm, the nonlinear effect are less prominent so the impact of the
connection loss is only reaches up to 1.6 dB for the worst channel in the spectrum. But
at higher power, large CONN_IN values reduces the injected power into the fiber, which
reduces the SRS effects which leads to up to 8 dB error in the worst channels.

./chap_fig/_chap2/CON_in_SRS_impact-eps-converted-to.pdf

Figure 3.10: SNR spectrum generated by changing the CONN_IN loss in each span in the
1 OMS FLAT_NET topology

Based on these observations, we chose two sets of parameters to model the uncertainty
on the fiber loss distribution. If the total span loss can be measured through power mea-
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surements, we calculate the residual loss (total span loss - (lineic loss + VOA losses)), then
distribute the residual loss on the CONN_IN and CONN_OUT parameters. If the total
span loss in unknown, we consider each source of potential loss other than the lineic loss as
uncertain. In the case of GNPy, these parameters would be represented by the CONN_IN,
CONN_OUT and losses due to fiber fusing (FL).

3.5.7 Optical Power

Optical power can be reliably measured at different points in the field. But, this is highly
dependent on the operator and vendor specifications. Some equipment boards have optical
power monitoring (OPM) units that can measure the signal spectrum, while other boards
contain photo-diodes that can only measure the total power. We considered three different
scenarios related to power measurements: i) no power measurements are available, ii) total
input and output power can be measured on each amplifier and the power spectrum is
available at the output of the booster and the input of the preamplifier and iii) power
spectrum can be measured at each point of the OMS. The last assumption is currently
unrealistic, but it could exist in future operational systems thanks to technological advances
like the use of ML techniques as proposed in [63].

3.5.8 QoT metrics

As discussed in chapter 2, we consider that the only QoT indicator that can reliably be
measured in the field is the BER, because it is reported by the transponders. OSNR can
technically be measured by using an Optical Spectrum Analyzer (OSA), but it requires
shutting off services in order to measure the ASE under the channel, which is not possible
in the field. The SNR however can be calculated from the BER if the back-to-back char-
acterization of the transponder is known. As GNPy is able to calculate the SNR and the
OSNR of each service, the QoT metric we rely on is the SNR.

3.5.9 Discussion on parameters uncertainty

We summarize the analysis of the parameter uncertainty in Table ??. We specify in the
"GNPY" column whether the parameter is required by the current version of the GNPY
tool. We omit the parameters that are not required from our study. We consider that the
amplifier NF and the fiber loss distribution modeled using the CONN_IN, CONN_OUT
and FL are the main uncertain parameters that impact QoT estimation. The fiber losses
mainly affect the nonlinear effects in the fiber by attenuating the power injected into the
fiber. The NF affects the linear noise by injecting ASE noise in the transmission. This
means that using this two parameters we can compensate for any inaccuracy in the linear
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and nonlinear noise contribution in the SNR. We can potentially have other parameters
whose value is uncertain, or simply incorrectly saved in the control plane. However, if
we consider a wider range of uncertain parameters, the number of possibilities increases
and it becomes hard to find the correct set of parameters. Furthermore, we only consider
these parameters as a single mean value over all the channels in the transmission. The
potential per channel variation of the NF and loss parameters will be addressed in our
learning processes. Lastly, these are the parameters that we consider uncertain by default.
If we have any knowledge that an additional parameter is uncertain in a specific network
scenarios, this parameter must be taken into consideration. For this reason, the learning
processes that we set up can be easily modified to account for a different set of uncertain
parameters.

3.6 Conclusion

In this chapter, we presented the framework that describes the use of QoT estimation in
a real network scenario, and the process by which we can improve the accuracy of this
estimation. We consider that parameter uncertainty is the main factor that affect QoT
estimation, and propose to use learning processes based on AI techniques to reduce the
effects of this uncertainty on the QoT. In this chapter, we presented two elements of this
framework which are the QoT models and the network state. We presented two QoT
estimation tools: an analytical tool (GNPy) and a ML-based one (Neural Network). We
then presented the choice of parameters that constitute the network state and discussed
their relative degree of certainty. In chapter 4, we present the learning processes that aim
to improve the QoT estimation.
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Parameter/QoT
indicator GNPy Certainty and Assumption

TRX
Service configura-
tion (Bit rate, Baud
Rate, Spacing ...)

Individual ser-
vice parameters

Accurate: can be obtained from the
controller

Back-to-back
penalty OSNR penalty We assume that TRX characteriza-

tion is available

Bit Error Rate
(BER) Not Computed Certain: assumed to be always mea-

sured in the field

Signal to noise ratio
(SNR) Computed Certain: deduced from the BER

ROADM Equalization Fixed PCH or
PSD

Equalization information should be
available on the controller

WSS configuration
(signal loss, filtering
penalties . . . )

Not required Not studied

EDFA Noise Figure Required Uncertain: usually missing or not
available in the field

Total Gain Required

The total gain value is known and
the gain spectrum assumed to be
flat tilted. Potential uncertainty on
gain ripple

Total input power Required Accurate but depends on OPM
availability

Total output power Required Accurate but depends on OPM
availability

Per channel in-
put/output power Required Accurate but depends on OPM

availability

Fiber Total loss Required Depends on available power mea-
surements

Loss distribution Required Uncertain and modeled as fused and
connection losses

Fiber coefficient
(attenuation, dis-
persion, gamma,
PDL)

Required Assumed to be certain

Table 3.2: Summary of the parameters constituting the GNPy based network state and
their level of certainty
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4.1 Introduction

We proposed in the previous chapter a framework based on a closed-loop that uses QoT
measurements collected by the controller to improve the QoT estimation. In this chapter,
we propose several approaches that can achieve this improvement, which constitutes the
feedback part of the loop. We distinguish three different approaches: i) optimizing network
parameters, ii) adapting the QoT model to parameter uncertainty and iii) detecting param-
eter changes. For each approach, we propose one Learning Process (LP) whose performance
is assessed using several simulation scenarios.

The rest of this chapter is organized as follows. In Section 4.2, we present a mathematical
formulation of the parameters refinement problem. In Section 4.3, we show the two network
topologies we used in our simulations in order to test the LPs we propose. Then, the next
three sections (4.4,4.5 and 4.6) are dedicated to present the three approaches mentioned
above. In each one, we first present the concept of the learning process, then the ML
algorithm used, and finally the simulation results.

4.2 Problem Formulation

The problem we seek to solve is how to utilize the data measurement collected by the
controller to improve the accuracy of the QoT estimation using an analytical model or a
machine learning model. We can represent our network as a set of nodes N and connections
C where a set of lightpaths L = {li : i ∈ [1, NL]} are deployed. The network state P is the
sum of all parameters that describe the network. We split the parameters P into certain PC ,
which represent parameters whose values are trusted, and uncertain parameters PU , which
represent parameters whose values might be missing or have changed during the life-cycle
of the network. Furthermore, each lightpath li has a set of parameters Xi which include the
transponder configuration (bit rate, modulation format ...) and the route of the lightpath.

The list of QoT indicators that can be measured in the field is denoted as Qj . We
assume that for each lightpath we can have a set of QoT indicators Q = {Qj : j ∈ [1, NQ]}
noted as Qi for measured QoT and Q̃i for estimated QoT. The estimated QoT for each
lightpath depends on Xi, PC and PU .

We represent the analytical tool estimation by a parametric function f such as Q̃li =

fPU
(Xi) with only PU as function parameters since certain parameters are part of the be-

haviour of the function. The problem we try to solve is how to set up a learning process that
takes as input the measurements Q, the parameters PU to improve the QoT estimation Q̃.
Improving the QoT estimation means reducing the estimation error which is the difference
between Q̃ and Q. This can be solved in three potential manners.

Firstly, we can change the values of the uncertain parameters PU so as the estimation
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error is reduced. We call this approach Uncertain Parameter Optimization. In Section
4.4, we propose two learning processes that utilize this approach. Each learning process is
intended for a different category of QoT estimation model: analytic and ML-based.

Secondly, we can modify the QoT model itself in order to be adapted to the QoT
measurements. We call this approach Adapting the QoT model to Parameter Uncertainty.
We propose a learning process intended for ML-based QoT estimation model. This approach
is expanded upon in Section 4.5.

In the third approach, we aim to detect any changes in the performance of the network
and ascertain the source of this change. This allows us to keep an up-to-date network state
in real time, and avoid large variation in QoT estimation. We call this approach Detecting
Parameter Changes and propose a learning process based on Reinforcement Learning (RL)
algorithms in Section 4.6 to perform it.

4.3 Simulation Network Topology

In order to evaluate the performance of aforementioned learning processes, we set up by
simulation a network topology consisting of a flat transmission line as depicted in Figure
4.1 that we refer to as (FLAT_NET).

Figure 4.1: The FLAT_NET simulation topology

FLAT_NET is a uni-directional transmission line composed of 4 OMS (Optical Mul-
tiplex Section) with 5 spans each. The span configuration is different in each OMS as
detailed in the in Figure 4.1. L represents the length of the span. All fibers are SMF
with 0.2 dB/km attenuation coefficient. The G represents the gain of the amplifiers. The
gain spectrum of all the amplifiers is tilted by 2 dB with no ripple, except in the case of
the OMS between nodes D and E where we add a ripple by adding a small uncertainty
∆Gpch on the per channel gain value of each amplifier. This uncertainty is sampled from
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a normal distribution with a 0.5 standard deviation. Finally, we set a per channel power
target Pch at the output of each amplifier, which corresponds to the output power of the
central wavelength in the spectrum. The amplifier gains are set to compensate the fiber
attenuation, and ensure this power target. We do not consider the amplifier limitations in
terms of minimal input/output power and maximum/minimum gain.

The OMS configuration in this simulation study is set so that we can test the perfor-
mance of the lightpaths in different OMS scenarios. The span configuration of the two
OMSs AB and BC are similar with a 80 km length and 16 dB gain. However, in AB the
power target is set to 4 dBm which puts the transmission in the non-linear regime, while
BC has a power target of -1 dBm, which means the non-linear effects are greatly reduced.
This difference in configuration allows us to test the performance in different transmission
regimes. In the OMS CD, we set a different configuration for each span in order to test
whether this variation in configuration affects the learning processes or not.

Using this topology, we simulate a full load transmission between each two adjacent
nodes. The spectrum grid is composed of 60 channels with 100 Ghz spacing and 90 GBaud
services. We do not consider the mixed rate scenario in our study. All the channels are
launched with the same power, and at the output of each ROADM, we equalize the signal
to a flat spectrum with a total power of -15 dBm.

4.4 First Approach: Optimizing Network Parameters

As explained in Section 4.2, we can improve the QoT estimation if we reduce the error
between the QoT measurements Q and the QoT computed by the parametric function
representing the QoT tool Q̃li = fPU

(Xi). We can assume that the correct values of the
uncertain parameters PU are the ones which lead to an estimated QoT as close as possible
to the measured values. Therefore, we can consider the problem as a general optimization
problem in order to find the set of values VU∗ = argminVU

{Eli =
∣∣Qli−fVU

(li)
∣∣ : i ∈ [1,M ]}.

We can use an optimization algorithm that takes as objective function the aggregation of
the difference between measured and estimated QoT indicators for each lightpath in the
network (i.e., the estimation error), and looks for the values of the uncertain parameters
PU that minimize this function.

The algorithm is guaranteed to converge to an optimum as long as all the inaccuracy of
the QoT estimation can be explained by the selected uncertain parameters. Actually, the
error in estimation is not only due to the imprecision of the input parameters but also to
the imperfection of the analytical model that does not perfectly match with the real field
(e.g., temperature, unclean fiber connector). Consequently, we do not expect to converge
towards the real physical values of the uncertain parameters. We can improve the QoT
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estimation as long as we get a set of values, even if it is different from the real one, that
compensate for the error between the measured and estimated QoT. Nevertheless, values
of uncertain parameters should be as close as possible to the reality in order to guarantee
an accurate estimation of QoT for the long paths as well as the short ones. Therefore, the
ranges of values of each uncertain parameter should be specified in the optimization process
and the objective function should be enriched with several QoT metrics and indicators such
as the optical power in specific points of the transmission line.

This parameter optimization approach can make abstraction of the QoT tool used by
considering the function f as a black box function. However, we distinguish two categories
of QoT computation tools. The first category comprises tools based on an analytical model
and the second category comprises tools based on a ML model. For each category, we
propose one LP. Although each LP has a different optimization algorithm, these two LPs
use a similar processes to choose the set of uncertain parameters. The first learning process
is presented in Section 4.4.1, while the second one is presented in Section 4.4.2. The first
simulation results using LP1 were published in a conference paper [17].

4.4.1 LP1 - Bayesian Optimization for Analytical QoT Model

The resolution of the problem formulated above could be done using multiple optimization
such as genetic algorithms and gradient descent. However, in this learning process, we focus
on the Bayesian Optimization (BO) algorithm. BO is a heuristic search-based optimization
algorithm that can converge towards an optimum in a low number of iterations, and requires
minimal fine-tuning. It incorporates prior belief about a function f and updates the prior
with samples drawn from f to get a posterior that better approximates f . The model used
for approximating the objective function is called surrogate model. Bayesian optimization
also uses an acquisition function that directs sampling to areas where an improvement over
the current best observation is likely. The iteration process of the algorithm is represented
in Figure 4.2. We use BO with a Gaussian Process as the surrogate function and Maximum
Expectation as the acquisition function. No further fine tuning or improvement over the
base algorithm is explored, as the performance is satisfying.
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Figure 4.2: Bayesian optimization algorithm process. Figure taken from [87]

As explained above, the BO algorithm makes abstraction of the physical problem and
simply selects a list of unknown parameters, an objective function, and a list of constrains
in order to launch the optimization. For the purpose of testing our learning process in a
simulation environment, we set up the following steps:

1. Optimization configuration

(a) Choose a subset of the topology: We perform the optimization per OMS
unless otherwise noted.

(b) Select the unknown parameters: We consider two types of parameters: the
amplifier noise Figure and the connection/lumped losses.

(c) Select the measurements in the objective functions: We use the SNR
spectrum at the reception and/or the pre-amplifier output power spectrum as
measurements depending on the network scenario. The objective function con-
sists of the Root Mean Squared Error (RMSE) of each individual measurement
normalized in the [0, 1] range.

2. Running the optimization

(a) Sample the initial state: It represents the current state of the network which
corresponds to the non accurate values of the uncertain parameters. We sample
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these values using a uniform distribution from a specific range per parameter
type (NF: [4, 9] and loss [0, 3]).

(b) Sample the target state: It is the accurate values of the uncertain parameters.
We sample these values in the same way as the initial ones.

(c) Calculate the target QoT indicators: We simulate with GNPy the transmis-
sion using the target state parameters then calculate the performance indicators.
We refer to it as Target QoT.

(d) Run the optimization loop: We set the current state to the initial one.
Then, in each iteration, we calculate the performance and compare it to the
target performance in order to evaluate the objective function. Depending on
the obtained result, a new set of parameters is proposed. The loop ends when
the maximum number of iterations is met.

3. Optimization results and validation

After performing the optimization, we select the set of parameters that gives the best
results, hereafter called the best state. Then, we focus on metrics related to SNR as
listed below to evaluate the performance:

(a) The residual SNR error: We simulate the SNR spectrum using the parameters
values of the best state obtained in the simulation. Then, we calculate the error
between the SNR spectrum of the target state and the best state.

(b) The residual error in the parameters: We calculate the difference between
the best value and the target value for each parameter. This error technically
cannot be measured in a real scenario since we do not have the target parameter
values. But, we compute it in simulation in order to evaluate if the algorithm
converged to the right parameters state or an alternative one.

(c) The residual redesign SNR error: We calculate the residual SNR as ex-
plained above but after increasing the power target of each amplifier by 2 dB.
This metric allows us to validate the parameter state that we obtained by testing
if it reduces SNR error in different network configurations.

This set of metrics permits to evaluate the optimum that the algorithm has reached.
The goal of the parameters optimization use case is to improve the SNR estimation
in the case of future lightpath deployment requests. Therefore, we need to test the
obtained parameters with new network configurations. However, since we study in this
section the transmission with a fully loaded spectrum, we cannot add new lightpaths.
Another method to evaluate our solution consists of evaluating the performance metric
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with a modified set of certain parameters. For this purpose, we choose to increase the
target output power at every amplifier by 2 dB. Then, we calculate the difference in
performance using the target and the best state. We call this validation metric the
"redesign SNR error".

Using this learning process, we run multiple experiments. As explained in Section 3.5, we
chose the amplifier noise Figure and the lumped loss distribution as uncertain parameters.
The noise Figure is always modeled using a single mean value for each amplifier. However,
the lumped loss can either be modeled using a single connection parameter in every span,
or we can consider the connection in and out of the fiber as well as all the fused losses in
the span. This depends on the level of knowledge of the power in and out of the amplifiers.
Furthermore, we consider that it is possible that the gain ripple of the amplifiers is uncertain.
However, we do not consider the per channel gain values as uncertain parameter, since it
would lead to a very large number of parameters to optimize. In order to test the LP
performance in each case, we propose the following simulation scenarios:

4.4.1.1 Simulation Scenario 1: Optimization Without Power Measurements

If no power measurements are available, the total span loss cannot be measured. This means
that we need to consider all the sources of fiber loss distribution ( CONN_IN, CONN_OUT
and FUSED). We suppose that each loss parameter can vary from 0 to 1.5 dB, and we assume
that the number of fused in the span are known. The noise Figure of each amplifier is also
optimized. We use the SNR spectrum to calculate the objective function. We evaluate the
performance of the LP using the aforementioned metrics. We run the simulation with the
following configuration:

• Network topology: separate optimization for each OMS: AB, BC, CD and DE in the
FLAT_NET network topology

• Uncertain parameters: 6 NF parameters, 5 CONN_IN, 5 CONN_OUT loss and 3
FL for each span.

• Objective function: RMSE(target SNR spectrum, current SNR spectrum)
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Figure 4.3: LP1 - Simulation 1 Results: SNR spectrum in each network state during the
learning process

We notice in Figure 4.3 that the LP can reduce the mean SNR error from more than 1 dB
to 0.1 dB in all cases. The residual error is very minimal, except in the case of OMS DE due
to the uncertainty on the gain spectrum. However, in Figure 4.4, we notice that the error
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on the parameters is large (up to 1.5 dB) which means that the set of parameters to which
the LP converges is different from the target one. In OMS CD, the span configuration has a
lot of variation because it was generated randomly, so we expect that the LP will converge
to the correct parameters. However, we do not observe any gain in terms of parameter error
from OMS CD.

The redesign SNR error in 4.3 is quite substantial (mean error of 1.2 dB). This means
that the best state parameter value that we obtained does not fit the real physical state of
the network. This can be explained by the fact that the SNR error can be both compensated
using the fiber loss parameters and the NF, since the SNR calculations are based on the
GNLI model. Furthermore, the impact of the fiber loss parameters is much higher that the
NF in this case as seen in Section 3.5. Both of these factors mean that the LP can converge
to a large set of alternative solutions that minimize the SNR of the initial design, but not
the redesign SNR.

Figure 4.4: LP1 - Simulation 1 Results: Error between the target and best values for each
uncertain parameter in the learning process

4.4.1.2 Simulation Scenario 2: Optimization With Power Measurements

In this scenario, we assume that we can measure the power of the spectrum at the input
of the booster and at the output of the pre-amplifier, and that we can measure the total
power at the output and input of every amplifier. This leads to two main changes in the
learning process. First, we can now calculate the total span loss, which means that we
can model the fiber loss distribution using the CONN_IN parameter only, as discussed in
Section 3.5. Secondly, we can use the power measurements at the end of the OMS as an
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objective function in the optimization.

Figure 4.5: LP1 - simulation 2 results: SNR spectrum in each network state during the
learning process

• Network topology: separate optimization for each OMS: AB, BC, CD and DE in the
FLAT_NET topology

• Uncertain parameters: 5 NF parameters and 5 CONN_IN.
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• Objective function: RMSE (target SNR spectrum, current SNR spectrum) + RMSE
(target PWR spectrum, current PWR spectrum)

Figure 4.5 gives the residual SNR error in function of the power spectrum for both
initial design and the modified design. We notice that the residual error after optimization
is below 0.08 dB for SNR. In general the performance is similar for all the OMSs except
for the OMS DE due to the gain spectrum uncertainty. In terms of redesign SNR error,
the results of this simulation are much better than the previous one (0.7 dB mean error).
This can be explained by the fact that the power spectrum forces the algorithm to select
parameters that fit the real physical state of the network. In particular, we notice that the
OMS DE has 0.2 dB as redesign SNR error.

Figure 4.6: LP1 - simulation 2 results: Error between the target and best values for each
uncertain parameter in the learning process

The parameter errors in Figure 4.6 seem to be improved compared to the previous
simulation. In OMS AB, BC and DE, the mean parameters error is below 0.6 dB. This can
be explained by the fact that the NF and CONN_IN impact in different ways the power and
the SNR, which means that the consideration of power in the objective function can serve to
separate between these parameters. Additionally, we do notice a much greater improvement
in OMS CD due to the different span configurations with 0.1 dB error in parameters. Despite
of this improvement, we notice that even with the addition of power spectrum, the LP is not
guaranteed to converge to the target parameters because the conditions of OMS CD are very
special and in an operational network scenario the span configuration is more consistent in
terms of target output power.
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4.4.1.3 Simulation Scenario 3: Optimization with Power Measurements and
Signal Ripple Compensation

In the previous scenarios, we used the NF and fiber loss parameters to compensate the error
in SNR and power spectrum estimation. For both parameters, we use the mean value over
the spectrum. However it is known that the values of these two parameters depend on the
channel index. Furthermore, in an operational network, we can have per channel variation
in performance that is not explained by the SRS effect or the gain tilt, such as the gain
ripple uncertainty that we introduced in the OMS DE. The two uncertain parameters we
chose cannot compensate for this variation at the channel granularity. For this purpose, we
extend our LP by adding a second optimization step. In this step, we try to compensate
the per channel variation by optimizing a fictional set of parameters ∆Pch, which is an
uncertainty on the power per channel at the input of each booster. These parameters are
optimized using both the SNR and the power as objective functions, right after performing
the optimizing of the NF and CONN_IN parameters. In this simulation, we consider the
results of the previous simulation as an initial state, then perform this extra step in the
learning process to evaluate the gain in performance using this technique. To simulate the
per channel performance variation, we use OMS DE that has an uncertainty on the gain
ripple.

Figure 4.7: LP1 - simulation 3 results: SNR spectrum for each network state during the
learning process

• Network topology: OMS DE

• Initial state: Best state from Simulation scenario 2

• Uncertain parameters: ∆Pch power shift for each channel in the spectrum (60 param-
eters).
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• Objective function: RMSE (target SNR spectrum, current SNR spectrum) + RMSE
(target PWR spectrum, current PWR spectrum)

In Figure 4.7, we plot the different SNR spectra before and after the second optimization
step. We notice a clear improvement of 0.2 dB and 0.3 dB in SNR and power respectively.
However, the redesign SNR decreased by 0.1 dB in average. This means that the second
step allows us to fit the performance of the transmission line much better when we con-
sider channel dependant performance variation. But, since we compensate the error in
performance with a fictional parameter, the resulting network state does not reflect the
real network physical state. The power shift that we add compensates the uncertainty in
the gain ripple at the end of the OMS instead of after every amplifier. This means that
the power spectrum at the output of each amplifier is not accurate, which explains the
difference in QoT estimation. An alternative to this power shift could be to consider the
gain spectrum in every amplifier as uncertain then optimize it. However this would lead
to a similar result, as the objective function is composed of the SNR and power spectrum
at the end of the OMS, so we still would not have the accurate power spectrum after each
amplifier. Additionally this would add too many parameters in the optimization.

4.4.2 LP2 - Gradient Descent for ML-based QoT Model

The LP2 is intended to refine uncertain parameters in the case where the QoT estimation
is performed based on the NN model described in Section 3.4. In the following simulation
scenarios, we use the same learning process and evaluation metrics as LP1 in Section 4.4.1.
This means that we sample the target and initial state the same way, and we chose the
uncertain parameters and objective functions the same way. The only difference is the QoT
model we use for QoT estimation, and the optimization algorithm. However, the NN-based
QoT tool we trained is not as comprehensive as the GNPy tool as explained in Section
3.4, which means that the choice of simulation scenarios is more restricted. For instance,
we only test this LP in the case where the power measurements are available because the
model we trained requires the power spectrum at the input of the OMS. We also run the
optimization over two steps. The first step optimizes the NF and CONN_IN parameters,
and the second step optimizes the uncertainty on the power spectrum. In this learning
process, we use the the Gradient Descent (GD) as optimization algorithm.
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Figure 4.8: Gradient descent algorithm process

GD is a gradient based iterative optimization algorithm. It works by calculating the first
order gradient of the objective function in respect of each parameter in the optimization,
and gradually changing the parameter by a value proportional to the gradient as shown in
Figure 4.8. It is widely used in ML to train neural networks. Gradient descent performs
very well especially if the function is convex, but it requires the function to be differentiable.
This makes its application in the case of a black box function complicated, which means
that it is not suitable for some analytical models.

In our study, we use Gradient Descent in order to optimize the input parameters of our
neural network based-QoT model. Neural networks are trained through back propagation
using algorithms based on gradient calculations. This means that we can efficiently apply
the gradient descent algorithm to perform parameter optimization. Bayesian optimization
can also be used for ML-based QoT computation, however gradient descent is much more
optimized for this task.
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4.4.2.1 Simulation Scenario 1: Comparing SNR Estimation Using NN and
GNPy

Figure 4.9: LP2 - simulation 1 results: comparison between the SNR estimation of GNPy
and that of NN

We start our study by comparing the performance of the NN model to GNPy estimation.
In Figure 4.9, we show the SNR estimation for each OMS of the FLAT_NET topology
using both models. In OMS AB, we notice that the estimation difference reaches up to
0.2 dB with a mean of 0.08 dB. The shape of the SNR spectrum is also more flat using the
NN compared to GNPy. In OMSs BC and CD, the estimation difference is lower with a
mean values of 0.03 dB and a maximum value of 0.18 dB. This can be explained by the fact
that the transmission in OMSs BC and CD is in the linear regime, as shown by a positive
SNR tilt, while OMS AB has more nonlinear effects in the transmission. Because of this
difference, it is easier for the NN model to learn an accurate SNR estimation when there are
small impairments in the transmission. We notice the same effect in the OMS DE which is
also in the nonlinear regime, characterized by large nonlinear noise due to a higher power at
the input of the fiber. Furthermore, another limitation of our NN model is that it does not
take into consideration the ripple in the gain spectrum. This means that in our simulations,
we must use the GNPy to simulate the target state of this OMS in order to study the effects
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of the gain ripple. Overall, we consider that the performance of the NN model is accurate
enough to use it as a QoT model to test our LPs. This does not mean that it can replace
GNPy as a QoT model, since it was trained using data from GNPy. However the goal of
our study is to test the learning processes and not to produce a perfectly accurate NN. In
the next two simulations, we will test how the parameters optimization process performs
when applied to the NN model.

4.4.2.2 Simulation Scenario 2: Optimization With Power Measurements

We run the first step of the optimization process similarly to the simulation scenario 2 in
Section 4.4.1. The target, initial and best states are simulated using the NN model, while
the parameter optimization is performed using the GD algorithm. The initial states are the
same as we used in the previous simulation. We do not test the optimization on OMS DE
because the NN model is not able to simulate amplifier gain ripple.
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Figure 4.10: LP2 - simulation 2 results: SNR spectrum for each network state during the
learning process

• Network topology: separate optimization for each OMS: AB, BC and CD in the
FLAT_NET topology

• Uncertain parameters: 5 NF parameters and 5 CONN_IN.

• Objective function: RMSE (target SNR spectrum, current SNR spectrum) + RMSE
(target PWR spectrum, current PWR spectrum)

We show in Figure 4.10 the SNR estimation results for each OMS. We first notice that
the residual SNR error is successfully minimized in each case with a mean value of 0.03 dB
and a maximum value of 0.11 dB. The SNR improvement between the initial state and
the best state is around 1 dB in all cases. In the OMS CD specifically, we gain 1.5 dB on
average, but only 0.5 dB improvement in the worst channel. The redesign residual error, on
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the other hand, is much higher with up to 3.5 dB in the OMS AB. Additionally, the shape
of the SNR spectrum does not correspond to that of the target in the case of redesign.
This means that optimization can accurately match the SNR spectrum in the objective
function, but the parameters we obtain do not reflect the real physical state of the network.
We noticed the same issue in LP1, however the error in LP2 is much higher meaning this
learning process cannot be reliably used to estimate the performance in case of a change in
the network configuration. These results can be attributed to the fact that the relationship
between the inputs and outputs of the NN model is not based on closed form mathematical
formulas and depends on the NN weights that the model converged to. It is possible that
an NN model that was trained differently would have better redesign performance, however
this was not the case in out model.

Figure 4.11: LP2 - simulation 2 results: Error between the target and best values for each
uncertain parameter in the learning process

In Figure 4.11, we plot, for each OMS, the error in parameters which represents the
difference between the target and best parameter value obtained after optimization. We
notice that none of the parameters were predicted accurately and that the error can reach
up to 2 dB. This matches the results we obtained in LP1 and is due to the fact that multiple
alternative parameters values are able to accurately match the target SNR as well as the
power spectrum at the end of the OMS.
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4.4.2.3 Simulation Scenario 3: Optimization With Power Measurements and
Signal Ripple Compensation

In this simulation, we test the ability to compensate channel dependant inaccuracies in
the QoT by assuming an uncertainty in the input power spectrum. For this purpose, we
use the OMS DE which has inaccuracy on the ripple of the amplifier gain. We must first
apply step one (NF and CONN_IN optimization) on this OMS using the GNPy power and
the SNR spectrum as an objective function. This is due to the fact that the NN model
cannot simulate the gain ripple inaccuracy. However, if we run the optimization using the
QoT estimated by GNPy, the optimization will compensate both the inaccuracy on the
parameters and the difference between the NN and GNPy. To avoid this case, we run the
simulation using the best state obtained in the results of simulation 2 in Section 4.4.1, then
optimize the NF and CONN_IN parameters in order to reduce the estimation error between
GNPy and the NN model.

• Network topology: OMS DE

• Initial state: best state from the simulation scenario 2 in Section 4.4.1

• Uncertain parameters: 5 NF parameters and 5 CONN_IN

• Objective function: RMSE (target GNPy SNR spectrum, current NN SNR spectrum)
+ RMSE (target GNPy PWR spectrum, current NN PWR spectrum)

Figure 4.12: LP2 - simulation 3 results: SNR spectrum comparison between GNPy and NN
model before and after the optimization

We show the results of this optimization in Figure 4.12. We notice a small improvement
in the mean error from 0.07 dB to 0.04 dB. The improvement is small because the initial
error is already small, but this step is necessary to make the NN estimation match GNPy
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as much as possible before optimizing the power spectrum. Then, we run the second step
of the optimization in order to compensate for the per-channel variation by optimizing the
uncertainty on the power spectrum ∆Pch.

• Network topology: OMS DE.

• Initial state: best state from the previous simulation scenario.

• Uncertain parameters: ∆Pch power shift for each channel in the spectrum (60 param-
eters).

• Objective function: RMSE (target GNPy SNR spectrum, current NN SNR spectrum)
+ RMSE (target GNPy PWR spectrum, current NN PWR spectrum).

Figure 4.13: LP2 - Simulation 3 results: SNR spectrum for each network state during the
power shift optimization

The simulation results are presented in Figure 4.13. We notice that the residual SNR
error is not completely minimized as in previous cases. The first half of the spectrum (i.e.,
frequencies lower than 193 Thz) has a low mean error close to 0 dB, but the second half
has a higher mean error of 0.042 dB and a maximum of 0.11 dB. We also notice that the
shape of the SNR spectrum matches the ripple in the gain spectrum, so this residual error
could be due to the remaining inaccuracy on the NF and CONN_IN from the previous
optimization as shown in Figure 4.12. Furthermore, the redesign SNR error continues to be
significant with 0.7 dB maximum error and 0.38 dB mean error. This was expected as we
observed the same pattern when running step two optimization in LP1.
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4.5 Second Approach: Adapting the QoT Model

In the previous approach, we changed the input parameters of the QoT model in order to
reduce the estimation error. The second approach aims to change the QoT model itself and
keep the parameters intact. This does not mean that we attribute the estimation error to
the inaccuracy of the QoT model. On the opposite, we continue to assume that some of
our network parameters are inaccurate, but we seek to correct this inaccuracy using the
QoT model itself. For example, we assume that we only have one uncertain parameter P
such as the QoT function is given by f(P ) = SNR. If the real value of P is 4 such as
f(4) = 15 and the current value of P is 5 such as f(5) = 14, we can solve the problem by
adapting the function f into f̃ such as f̃(4) = 15. This adaptation is not always possible
especially in the case of analytical models where the QoT estimation depends on closed
form equations. For this purpose, we focus in this section on our NN-based QoT model.
Indeed, NN-based model are trained using historic data and are not based on empirical
equations, which means they can be adapted as long as new data is available that describes
the required adjustment in behavior.

To implement this approach, we propose an LP based on Transfer Learning (TL). We
surveyed several papers that utilize TL in Section 2.3.4. These papers were trying to re-
train a ML model from one network domain to another in order to adapt it. The difference
between the domains in these papers is the range or value distributions of the input param-
eters. In our case, we assume that we have an NN model that was trained on a network
with no parameters uncertainty. Then, we retrain this model on a network where the SNR
estimation is inaccurate due to parameters uncertainty. We keep the same parameters dis-
tributions and we do not introduce any new values that the NN model has never trained on,
except for the values excluded in the validation dataset. The challenge is then to change
the NN so that its estimation is accurate on the new network while keeping the values of
uncertain parameters. In the following section, we present our LP3 and test its performance
in two simulation scenarios.

4.5.1 LP3 - Transfer Learning to Adapt a ML-Based QoT Model

The learning process using TL was presented in Figure 2.3. TL is a family of ML techniques
used to transfer learned patterns from one ML model to another. Multiple techniques exist
to retrain a model especially in the case where retraining data is scarce such as one-shot
learning [88]. In this study, we fine tune the initial neural network model by retraining it
on a small dataset using the same training techniques as previously presented in Section
3.4. The main factor that we change is the configuration of the retraining dataset. We set
up the following simulation steps to test our LP:
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1. Network pre-training: We utilize the same pre-trained NN as shown in Section 3.4
as basis for each new retraining task

2. Building the dataset for retraining

(a) Sample initial state: It is the known state of the network represented by a
set of uncertain parameters values. We sample these values using a uniform
distribution from a specific range per parameter (i.e., NF: [4, 9] and loss [0, 3]).

(b) Sample the target state: It is the accurate set of uncertain parameters values.
We sample these values in the same way as the initial ones.

(c) Generate list of network configurations: Retraining the NN model requires
a large dataset. After sampling the initial and target uncertain parameters, we
randomly generate a list of values for the certain parameters. Each entry in
this list corresponds to a different network configuration but they all assume the
same inaccuracy on the uncertain parameters. These parameters will constitute
the input features of our dataset.

(d) Simulate the list of network configurations: We simulate the transmission
in each network configuration in order to calculate the corresponding QoT indi-
cators (SNR and power spectrum). We chose to use GNPy for the simulation
in order to add a small inaccuracy in the estimation due to the difference be-
tween GNPy and the NN. These QoT values constitute the output features of
our dataset.

(e) Prepare the dataset: The final dataset is the concatenation of the initial
values of the uncertain parameters, the list of network configurations, and the
estimated target QoT indicators.

3. Network retraining: We run the retraining for a maximum number of iterations
(1000 iterations) or until the validation error exceeds a certain threshold

(a) Split the dataset: We split the dataset into 80% training and 20% validation
datasets. We do not employ more advanced training techniques as we assume
that the available data for retraining is scarce.

(b) Run the retraining: We train the model using the new dataset up to a maxi-
mum number of iterations, or until the validation error stops improving.

4. Retraining results and validation

After the retraining, we calculate the following metrics to evaluate the performance of
the LP:
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1. The size of the training dataset: We assume that collecting new data for retraining
will be hard, since it requires the deployment of different network configurations. The
size of the training dataset will be a deciding factor in the feasibility of the LP in a
real network scenario.

2. The training error: The error is calculated using the RMSE over the SNR spectrum
of each network configuration in the training dataset. This allows us to evaluate the
performance using the network configurations available for training. This could impact
for instance the potential estimation error if we deploy a new service without changing
the network configuration.

3. The validation error: The model adaptation must make sure that the QoT model
remains accurate in a number of different network configurations. We use the valida-
tion error to evaluate the new model ability to be generalised. This also replaces the
previous redesign technique we used in LP1 and LP2.

We propose to study this learning process in two scenarios. The first scenario is the
case where we do not know which parameters are uncertain and the second scenario is
the opposite case. The difference between these two cases concerns the structure of the
NN model. If we do not know which parameters are uncertain, we must assume that the
behaviour of the network has completely changed, and we cannot use the data that the
model was initially trained on. If we know which parameters have changed, we can reuse
the initial data as long as we specify to the model that the new behavior is due to the
change in parameters. We incorporate this difference in our learning process and present
the results in the following two sections.

4.5.1.1 Simulation Scenario 1: Retraining the Model Without Knowing Un-
certain Parameters

Figure 4.14: LP3 simulation 1: Dataset composition used to retrain the NN model
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In this simulation, we assume that we do not know which input parameters are causing the
uncertainty. We retrain the model using a data structure as described in Figure 4.14. We
generate the dataset by simulating multiple network configurations using the target state
parameters, then replace the values of uncertain parameters with the initial state values.
This forces the NN model to relearn a completely new mapping between input and output
features. We cannot use the initial pre-training dataset in re-training because the behavior
of the network has changed and the QoT estimation would not be coherent.

Another factor in the retraining is the number of iterations. If we run the training for
too long, we risk over-fitting on the training dataset which would deteriorate the validation
error. This trade-off is a question of whether we want to be as accurate as possible on the
current network configurations, or generalize for future configurations. For this purpose,
we test two methods for determining the number of iterations. In the TRAIN_PRIO
method, we prioritize reducing the training error as much as possible and in the VAL_PRIO
method we stop the retraining at the point where the validation error is the highest. The
training results for each method are presented in Figure 4.15 and 4.16 respectively. For
each method, we train the model with an increasingly larger percentage of the training
dataset (i.e, increase the percentage by 10% in each step), then use the remaining data for
validation. We first retrain the model using only one network configuration to simulate the
case where additional data cannot be collected from the network. We generate the training
dataset using a single OMS from the FLAT_NET topology. The details of this simulation
are described as follows:

• Network topology: OMS AB

• Uncertain parameters: 5 amplifier NFs and 5 fiber CONN_IN

• Number of network configurations: 100 samples

• Batch size: 10 samples from the training dataset

• Loss function: RMSE (RMSE(SNR)+RMSE(POWER) / for each network configura-
tion in the dataset)
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Figure 4.15: LP3 simulation results 1: training and validation results with TRAIN_PRIO
method

Using the TRAIN_PRIO method, we observe in Figure 4.15 that the training error is
almost less than 0.1 dB compared to an initial error of 1.27 dB. However, the validation error
starts at above 2.12 dB, then increases to 3.2 dB in the case of only 1 network configuration,
and finally decreases down to around 1 dB. Both the training and validation loss seem to
stabilize at 0.1 dB and 1.1 dB when the percentage of training data is superior to 60%
and 70% respectively. This seems to be the best performance that we can achieve using
this method. However, a validation loss of 1.1 dB is substantial meaning that the model is
over-fitting on the training data and cannot generalize well to different configurations.

Figure 4.16: LP3 simulation results 1: training and validation results with VAL_PRIO
method
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Using the VAL_PRIO, we obtain a better match between the training and the validation
error. The training error converges to 0.18 dB and the validation error to 0.4 dB from a
training percentage of 70%. This latter performance is much better than that using the
TRAIN_PRIO method at the same data percentage. Further training after 70% decreases
the validation error by 0.6 dB, with only a small (0.1 dB) improvement in the training
loss. Furthermore, with only 10% of training samples, the training error is 0.33 dB and the
validation error is bellow 1 dB, meaning we can have a decrease in SNR error of 0.9 dB and
1.2 dB respectively using retraining with a small dataset.

To conclude, retraining the model with no prior knowledge of uncertain parameters
does not give satisfying results. This is due to the fact that when the model is retrained,
the previous behavior that was learned during pre-training is lost, and the new data is
not sufficient to retrain the new behaviour correctly. We did not explore retraining with
a dataset size larger than 100 samples because we assume that collecting such dataset is a
difficult task in an operational network.

4.5.1.2 Simulation Scenario 2: Retraining the Model With Knowledge of Un-
certain Parameters

Figure 4.17: LP3 simulation results 2: Dataset composition used to retrain the NN model

If we assume that a certain number of parameters are responsible for the inaccuracy of the
QoT estimation, we can use a different training technique than that used in the previous
simulation scenario. In Figure 4.17, we show the input and output features of the training
dataset in this case. The difference is that instead of setting the uncertain parameter values
to the initial state values, we set them to −1 which we call the ’null state’. This state is
technically impossible since the NF and CONN_IN parameters cannot have a value of -1
(the NF of EDFA amplifiers is always positive). The purpose of this state is to notify the
model that the values of these parameters is unknown. But instead of trying to find their
correct values as in LP1, the model will simply learn the corresponding QoT estimation from
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the certain parameters. The impact of this change is that we can now retrain the model
with data from the pre-training dataset (i.e., the dataset used for the first training having
no uncertain parameters) as well as the retraining dataset (i.e., all the datasets having
uncertain parameters). The data will contain samples with target states and null states.
The model will learn the new behavior of the network through the sample with null states,
and it will maintain the previous behavior learned in pre-training using samples with target
states. This will serve to regularize the training and force the model to not completely
change its behaviour. We test this technique using the following simulation configuration:

• Network topology: OMS AB

• Uncertain parameters: 5 amplifier NFs and 5 fiber CONN_IN

• Number of network configurations: 50 samples

• Batch size: 5 samples from the pre-training dataset + 5 samples from the retraining
dataset

• Loss function: RMSE ( RMSE(SNR)+RMSE(POWER) / for each network configu-
ration in the dataset)

Figure 4.18: LP3 simulation results 2: training and validation results with VAL_PRIO
method

We show in Figure 4.18 the results of the simulation. We use the VAL_PRIO method
as we want to focus on improving the validation error. We show in the Figure the training
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error (TRA_ERR), the validation error on samples from the pre-training dataset ’pre-
training_valid_error’ (PRE_ERR) and the validation error on samples from the retrain-
ing dataset ’retraining_valid_error’ (RET_ERR). Before starting the training, only the
PRE_ERR is bellow 0.1 dB as the model was trained on this dataset. Then, after training
on a single sample the TRA_ERR is not minimized as observed in the previous simulation
but remains at 0.66 dB This is due to the presence of samples from the pre-training dataset
that act as a regularization technique to avoid over-fitting. At the percentage of 10% of
training data, the TRA_ERR further decreases down to 0.08 dB, while the PRE_ERR
increases to 1 dB. At 20%, both PRE_ERR and RET_ERR are around 0.5 dB while
the TRA_ERR is at 0.1 dB. This step is considered as the best compromise between the
estimation error improvement and the data set size, because it reaches low error for each
estimation error with only 20% of training data (i.e., 10 network configuration samples). To
obtain validation errors down to 0.2 dB, we need to increase the training data size to 90%
(i.e., almost the full size of the retraining data set equal to 50 samples). Overall the results
of this simulation are much better than the previous one. This is attributed to the fact that
the NN model’s behavior is extended with the new retraining data instead of completely
over-write the pre-training behaviour.

4.5.1.3 Discussion Around LP3

The LP3 is based on retraining the NN model to adapt to changes in parameters values. We
proposed two methods for building the retraining dataset based on the knowledge of which
parameters have changed. The second method turns out to be the most efficient, requiring
only 10 new data samples to reach a validation error of 0.5 dB. The retraining does not
optimize the uncertain parameters as in LP2 but only assumes that a set of parameters are
uncertain. The data requirements can be an issue of this LP and depends of the operational
network. If enough margins are available, we can change the configuration of the network
manually to collect multiple samples. Alternatively, we can collect data permanently during
the life-cycle of the network and detect the network state changes when new services are
deployed. However, we risk that the network parameter change significantly during the
period of data collection, which would mean that the samples collected are not coherent.
In both cases, data collection remains a serious bottleneck for this approach.

The two main factors that impact TL techniques are the generalization of the model
and the amount of data required to retrain. Concerning the generalization issue, the model
is adapted to a specific case of parameter uncertainty. This means that if the values of the
parameters change, the model is no longer usable and needs to be adapted. Furthermore,
if we train the model on data from a specific OMS, the model cannot be used on a different
one. This means that we have to train a specific model for each OMS. Additionally, the data
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required to train the model are of upmost importance due to the lack of data in operational
networks as explained in 2.4.

4.6 Third Approach: Detecting Parameter Changes

Unlike the two previous approaches which can be used offline at any time during the life-cycle
of the network, the third approach is to detect and correct parameter changes in real time.
We first assume that we have perfect knowledge of the network state at the beginning of life
of the network. Then, we monitor the QoT measurements in real time in order to detect
any changes. Whenever an event occurs and affects the QoT measurements, a learning
process is launched to analyse the data, detect changes and identify which equipment or
event is responsible for the change. This change can either be diagnosed and fixed by the
operational team if it is due to an equipment fault, or it can be considered as a normal
change and the corresponding parameter value is updated in the network state.

We assume the following scenario for the learning process. We study a network topology
consisting of a single OMS and we assume that the configuration of this OMS does not
change in our study. This OMS is vulnerable to two type of events that can alter its
performance. For the first event, we assume that one of the amplifiers of the OMS can
malfunction, causing the increase of the noise contribution. We model this event by an
increase in the NF of the amplifier. In order to simplify the study, we assume that the
NF always increases by 1.5 dB. We call this event Amplifier Deterioration (AD_i), the i

refers to the amplifier that caused the event. The second event is a fiber damage, modeled
by an increase in the total fiber span loss. We assume that this increase is equivalent to
adding 1 dB to the CONN_OUT parameter of the fiber. We call this event Fiber Damage
(FD_i), the i refers to the fiber that caused the event. We assume that no other events
can cause changes to the network performance. We also assume that a feedback concerning
the types of certain number of events (NB_EVE) is given by operator once an equipment
diagnosis is performed. This knowledge is mandatory in order to properly train the LP, but
it is not required once the model is fully trained. The list of events in the feedback is called
’event chain’. The goal of the learning process is to correctly guess which events caused the
succession of performance changes.

In order to perform this detection, we need a ML model that takes as input the config-
uration of the network (certain parameters), the network state (uncertain parameters) and
the QoT measurements before and after the event, then outputs a classification of which
event caused the change. After each classification, the network state is updated to reflect
the event that was chosen, the model must perform a number of event detection equal to
the FD_EV_FDB before it can be corrected. The model must be trained using a feedback
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that gives the correct classifications. We have two types of feedback. First, once an event
classification is done, we change the network state parameters to reflect the event impact,
then we estimate the QoT using a QoT estimation model. The change in the estimated QoT
between step i and step i + 1 must match the change in QoT measurement that triggered
the classification. If it is the case, this means that the new network state is the correct so-
lution or at least an alternative solution. The second feedback is after the diagnostic. The
diagnostic identifies the correct event succession, so we can use this information to train
the model to better chose the right events instead of simply reducing the QoT estimation
error.

We chose Reinforcement Learning models (RL) to implement this approach. Indeed, RL
[89] algorithms are able to learn to perform a sequence of actions in an uncertain, potentially
complex environment. RL can be applied to any process as long as it can be modeled as a
Markov chain. Thus, we use a RL algorithm to sequentially chose the correct event after
a set of performance changes. Building a RL model requires the definition of 4 elements:
i) the space of actions, ii) the variables that define every possible state of the environment
called observation iii) the reward given to the model, and iv) the RL algorithm that learns
the policy. The RL model that we use in the simulations of this section is based on the
structure in Figure 4.19.

Figure 4.19: Structure of the reinforcement learning model using in LP4

The observation consists of a concatenation of the network configuration, the network
state and the QoT indicators before and after the event. We chose the optical parameters
similarly to the ones used to train our NN model. The possible actions is a list of all the
possible AD and FD events in the network topology. Finally, the reward is based on two
parts. First, after each classification. The RL agent is based on a deep Q-Learning model
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[90]. It consists of a three-layer neural network model with ReLu activation functions. It
takes as input a concatenation of the observations at a step i, then outputs the Q-value of
each possible action to take as step i+1. The Q-value is a measure of the potential reward
of said action, so in each step, we chose the action with the best Q value. The reward is
calculated by accumulating two types of rewards during the training: i)the event reward
Re, which is calculated based on the QoT estimation feedback, and ii) the reset reward Rr

that gets added at the end of each event chain. The full reward of an event chain is given
by equation 4.1, where NAC is the number of correct classifications in the event chain, and
Q and Q̃ are the measured and estimated QoT indicators.

R = NAC +

FD_EV _FDB∑
i

(
RMSE(Q, Q̃i+1)

RMSE(Q, Q̃i)
) (4.1)

4.6.1 LP4 - Detecting parameter changes using reinforcement learning

We propose a learning process based on the reinforcement learning model presented above.
RL models are either trained online or offline. In online training, the model interacts
with the live environment and takes actions in real time. This is not an option in the
case of optical networks as this would affect the performance of deployed services. In this
learning process, we train the RL model to detect the parameter changes using a prepared
dataset, then deploy it in the network so it can classify parameter change events. The
diagnostic feedback is only necessary in the training phase. Once the model is trained, it
can continuously classify events without any reward feedback. Once the model is trained,
we can test its performance by applying it to a list of events. In order to simulate this
learning process, we set up the following steps:

1. Event sampling: We randomly generate 50 different event chains of size FD_EV_FDB.
40 of these chains will be using for training, and the remaining 10 for validating the
model.

2. Model training: We train the model in multiple episodes. In each episode the model
takes actions after FD_EV_FDB events. The observations and rewards for each ac-
tion is saved as a sample in the training dataset. Once a number of episodes are accu-
mulated (batch_size) we run one training iteration. In each training iteration, we split
the dataset into batches of size batch_size, then train the model using these batches.
For example, in iteration i, a dataset of size S = FD_EV _FDB ∗ (batch_size) ∗ i
available is used for training, and the model’s weights will be updated S/(batch_size)

times.
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3. Model evaluation: We evaluate the model’s performance during the training using
two metrics:

(a) Event classification accuracy (EV_ACC): In each training iteration, we
calculate the number of correct classifications divided by the number of total
training samples

(b) QoT estimation error (QoT_ERR): After each episode during the training
process, we calculate the SNR estimation error after all the actions we performed.
This metric shows if the model is learning to reduce the error on SNR estimation
regardless of the accuracy on the event classification. We chose to calculate
this error at the end of each episode instead of after each action, because the
estimation error can be accumulated by a succession of wrong classifications.

4. Model validation: After the model is trained, we validate it’s performance by testing
it on an event chain of 100 events. We calculate the EV_ACC and QoT_ERR metrics
over this event chain.

4.6.1.1 Simulation Scenario 1: Classification with 3 possible events

We first tested the model’s performance in the smallest possible network scenario. We run
the simulation on OMS AB of the FLAT_NET topology, but consider only three types of
events; FD in the first span, AD in the booster and AD in the preamp called [FD1, AD1,
AD2] respectively. We run the simulation with the following configuration.

• Network topology: OMS AB

• Possible events: [FD1, AD1, AD2]

• FD_EV_FDB: 10

• Batch size: 20



96 4.6. THIRD APPROACH: DETECTING PARAMETER CHANGES

Figure 4.20: LP4 Simulation 1 results: Evolution of the EV_ACC and QoT_ERR at
different milestones in the training phase

In Figure 4.20 we show the training results after each thousand iterations. At each
milestone k, we report the evaluation metrics of the (k ∗ 1000)th iteration. The first step is
the evaluation right before the first training iteration. The accuracy starts 33% then and
remains bellow this value for the first 4 milestones. The accuracy then jumps to 66% at
the 5th milestone. It remains bellow 70% for the two next steps, then jumps again above
90%. In comparison, the QoT error decreases slowly after the 3rd milestone until it reaches
0.21 dB. We observe that it takes up to 9000 iterations for the model to start performing
correctly. In the end of the training both metrics do not continue improving, so we did not
push the training further than 10k iterations. In general we can say that the model learned
to both minimize the QoT error and classify the events correctly.
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Figure 4.21: LP4 Simulation 1 results: Validation results

In Figure 4.21 we show the results of the validation metrics for our simulation. We show
the evolution of the SNR estimation error, alongside the event classification accuracy. We
notice that the SNR estimation error starts at 0.09 dB, but slowly increases up to 0.25 dB.
The classification accuracy fluctuates slightly in the beginning, then stabilizes at 89%. This
means that the model has a stable accuracy throughout the validation, but the mistakes in
classification accumulate which slowly increases the QoT estimation inaccuracy. If we can
have regular diagnostic feedback, we can reset the network state after a number of events
so that the SNR estimation error never reaches high values.

4.6.2 Discussion Around LP4

In this section, we proposed an LP that can detect changes in parameters in real time.
The model learns to reduce the QoT error and correctly classify the source of performance
change using a reinforcement learning process. The classification accuracy of the model
decreases when the number of events increases. However, even if the event type is not well
chosen, the model is still able to reduce the QoT estimation error. Additionally, the RL
model needs a substantial amount of data to be trained on. It is not possible to collect this
data in real field as it is hard to isolate events in a real scenario. We can simulate the event
in a controlled environment in the lab, or simulate the events using a QoT model as shown
in this section.
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4.7 Conclusion

In this chapter we proposed three approaches to solve the parameter uncertainty issue in
QoT estimation. Each approach has its advantage and its drawbacks. The first approach
uses optimization algorithms to refine the values of the uncertain parameters in order to
minimize the QoT estimation error. This approach does not require any additional data,
other than the initial QoT measurements. We have shown that it can be applicable to both
an analytical and machine learning based QoT models. The learning processes implementing
this approach can minimize the QoT estimation error, as long as the parameters being
optimized contribute to the impairment which is the source of the error. The drawback of
this solution is its inability to manage a high number of uncertain parameters. In fact, in
this case the solution could minimize the QoT error but could be unable to retrieve the
accurate values of parameters. To overcome this issue, the LP1/LP2 could be performed
periodically during the life-cycle of the network in such manner that the algorithm detects
faster the change in uncertain parameters and the refined values become the initial values
during the next execution of the learning process.

The second approach relies on retraining a ML-based model in order to be adapted to
measurements changes. In this case, the model is less dependent on the choice of uncertain
parameters and can learn new behavior by modifying its weights. However, the retraining
requires a large amount of data to be collected, which might not be possible in an operational
context.

The final approach is based on detecting parameters changes through failure event clas-
sification. We have shown that using a RL algorithm we can train the model to detect which
equipment have changed and keep the QoT estimation error low. The main drawback of
this approach is that it is hard to scale to larger network topologies, and it requires precise
knowledge of the different failure events and diagnostics in order to be trained properly.

The choice of approach depends on the operational needs and constraints. The first
approach is efficient in the case where the QoT model is robust and the number of uncertain
parameters is limited. The second approach can be interesting in the case where many QoT
measurements are available to train the model. The third approach is more adapted if the
goal is to perform soft failure detection as well as a QoT estimation improvement.
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5.1 Introduction

In the previous chapter, we presented four learning processes to reduce the QoT estimation
error due to parameters uncertainty. We have shown the performance of these LPs by
testing them in different simulation scenarios using the GNPy tool. LP1 seems the most
mature and the easiest to apply in a live network compared to the others since it does not
require an NN-based QoT estimator as LP2 and LP3, or the event feedback information
necessary to train the RL model in LP4. To further validate its performance, we test this
LP in a live network with real measurements. Data are collected using a dedicated tool
that connects to the NMS of the operational optical transport network and collects data
related to the topology, services and performance. We applied the BO-based parameters
optimization of chapter 4 on a sub-network topology. We present in section 5.2 the data
extractor tool, the collected data and the network topology we used in our experiment.
In section 5.3, we show the results of the experiment that we ran on the extracted data.
Section 5.4 concludes this chapter. The field trial results were published in a conference
paper [16].

5.2 Data Extraction

5.2.1 Extraction Tool

To run the the learning processes proposed in chapter 4, we need QoT measurements and
parameter for the network state. To extract this data, it is possible to use either the North-
bound Interface (NBI) from the NMS which controls all the equipment, or directly from the
equipment through the Management Interface of the network element. Extraction based
on the Management Interface is not mature yet and protocols like gRPC or NETCONF
are not yet adopted by all vendors. Access to equipment data is possible via certain legacy
protocols such as SNMP which are generally used for test and validation purposes but are
not suitable for production and large-scale network context.

On the other hand, the NBI-based extraction solution is currently achievable through
SOAP and RESTful APIs provided by vendors. The NBI offers to an external application
the possibility to interrogate the NMS via a RESTful HTTP service. To extract a large
amount of data, the use of the NBI is the most convenient way for the time being. For
this reason, a Data Extraction tool have been developed in our team to exchange with the
NMS and extract data related to the network topology (e.g., nodes, cards and links), the
performance in each port/device (e.g., emitted power, bit error rate at the receiver) and
the alarms. The Data Extractor tool was connected to an operational network and real
data were collected. We have used this data in the following experiment presented in this
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chapter.
The Data Extractor tool involves several extraction modules. Each is targeted to the

NMS of a different vendor, because the data model and API exposed is specific to each
vendor. In order to collect the needed data, the Data Extractor launches a set of jobs.
Each job is intended to collect data related to specific target among these four: topology,
service, performance or alarm. In our study, we do not consider data related to alarms. In
each job, several requests are sent to the NMS using the REST protocol. Some requests do
not support REST, so the SOAP protocol is used instead. The NMS server processes the
request sent by the Data Extractor and returns a response in an expected JavaScript Object
Notation (JSON) format. The Data Extractor filters out the relevant data and stores them
in CSV files. The obtained CSV files are timestamped and well-structured, which facilitates
their use by a ML-based algorithm. The jobs are launched periodically. The period depends
on the change frequency of the targeted elements in the network. For a real network, the
job configuration is done as follows: topology/service jobs are launched each week, whereas
performance and alarms jobs are launched each 15 minutes.

The NBI APIs are based on proprietary data models which require the implementation
of a data extraction module per vendor and additional module that converts the extracted
data to the target data model. In our case, we need to convert the extracted data related to
the topology and services to the GNPy data model. Therefore, we use a software converter
that generates a GNPy compliant input files from the obtained data.

Data Extractor is a useful tool to obtain data but it is worth highlighting these following
points that give some feed-backs concerning the data acquisition in a real network:

• The data extraction process must guarantee speed, lightness and confidentiality.

• A substantial effort is needed to develop a data extractor taking into account the
specificity of each vendor data model and API.

• The proprietary data models requires the implementation of a data converter module
per vendor to adapt the extracted data to the target data model. Moving from a
proprietary API towards a standardized one common for all vendors will simplify the
implementation of these kind of tools and optimize the development and test efforts.

• NBI API is not suitable to collect huge amount of data (networks with more than
1000 nodes) in real time and a dedicated performance monitoring protocol should be
proposed in order to efficiently extract real-time data from equipment.

• The data provided by the NBI suffer from outlier and missing values although most
of these missing data are available in the NMS graphical user interface. This means
that the NBI is not perfectly synchronized with the NMS databases.
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5.2.2 Data Description

Table 5.1: List of features extracted from the NMS

Target Items Example of features

Topology
List of Fibers A-Port ; Z-Port ; Span Loss ; Fiber Type
List of nodes GUI label ; site name; position ; node type
List of NE GUI label ;NE id ;NE name ; NE type ; NE model
List of cards card name ; card Type ; slot location ; NE ID ; NE

Name

Service

List of paths GUI label ; order id ;layer rate ;container type ;op-
erational state ; A-port ; Z-port ; A-NE ; Z-NE

List of OS GUI label ; layer rate ; A-port ; Z-port ; A-NE ;
Z-NE

List of OUT GUI label ; layer rate ; container type ; A-port ; Z-
port ; A-NE ; Z-NE

List of ODU GUI label ; layer rate ; container type ; A-port ; Z-
port ; A-NE ; Z-NE

List of OMS GUI label ; layer rate ; container type ; A-port ; Z-
port ; A-NE ; Z-NE

List of OTS GUI label ; layer rate ; container type ; A-port ; Z-
port ; A-NE ; Z-NE

Performance
Common fields Port Name ; Port Label ; Port Rate ; Port Type ;

NE Id ; NE name ; Card name ; Card Id ; Card type
; Shelf type ; Connected from ; Connected to

Transponder GUI label ; layer rate ; PostFEC BER ; PreFEC
BER ; Tx-Rx power ;

Amplifier input power ; output power ; gain ; ...

Despite the challenges outlined above, we managed to extract data from a live network
consisting on more than 1000 nodes using the extractor. Unfortunately, due to confidential-
ity and missing data issues, not all the extracted data was exploitable. We show in Table
5.1 the list of features that we were able to extract. The features are split into topology,
service and performance features and were processed and converted into GNPy data format
in order to prepare them for simulations. As discussed in section 3.5, we consider a network
state based on GNPy input parameters. When analysing the data, we observed some miss-
ing or incomplete parameters. This was either because we were not able to collect them
from the NMS using the API or simply because they were not measured contrary to what
we assumed before (e.g., BER of some cards). In Table ??, we propose a similar parameters
Table to that we presented in section 3.5 but we update it to reflect the availability and
certainty of the extracted parameters.
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Table 5.2: Network state from extracted parameters

Parameter/QoT
indicator GNPy Data Extraction

TRx
Service configura-
tion (Bit rate, Baud
Rate, Spacing ...)

Individual ser-
vice parameters

The Bit rate, Baud Rate, Spacing
and frequency are available

Back-to-back
penalty OSNR penalty

Not available in the controller. We
used characterization data provided
by equipment vendors

Bit Error Rate
(BER) Not Computed The BER is only available for a lim-

ited list of TRx boards

Signal to noise ratio
(SNR) Computed Certain: deduced from the BER

ROADM Equalization Fixed PCH or
PSD

No equalization information was
available. We assumed that a PSD-
based equalization is performed,
but we consider the PSD value un-
known

WSS configuration
(signal loss, filtering
penalties . . . )

Not required Not extracted

EDFA Noise Figure Required
We consider it uncertain, and use
the default value from the equip-
ment sheet as an initial value

Total Gain Required
The total gain value can be ex-
tracted. No information about the
gain spectrum is available

Total input power Required Can be extracted

Total output power Required Can be extracted

Per channel in-
put/output power Required No power spectrum is available in

any amplifier

Fiber Total loss Required The total loss was deduced from the
total power difference

Loss distribution Required Fuses or connection losses is avail-
able in other database

Fiber coefficient
(attenuation, dis-
persion, gamma,
PDL)

Required Assumed the default values per
fiber type
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Parameters related to transponders were always available except for the BER measure-
ments as only a small number of cards were reporting the BER through the API. We were
not able to extract any parameter about ROADM, because the ROADM component was
considered as passive and no data was available via the API. Total power measurement were
available at the input and the output of each amplifier, but no power spectrum was available.
This means that we could calculate the total span loss, so we used the CONN_IN parameter
to model the fiber distribution. However, we were not able to measure the power spectrum
at the ends of the OMS. We assume that the WSS equalization was performed using a PSD
parameters based on the spacing of each channel, but we did not have access to the value
of the PSD. For this reason, in addition to NF and CONN_IN parameters, we consider the
value of the equalization PSD as uncertain. This new parameter would allow us to have an
approximation of the WSS output power spectrum in order to launch the simulations using
GNPy, and replace the second step of the optimization in LP1 and LP2 (spectrum power
shift). We use this network state configuration in the following experiments.

5.2.3 Experiment Sub-Network Topology

After extracting data, we limited our experiment to a sub-network consisting of two optical
transmission lines (EXTRACT_NET). The network is managed by an NMS, composed of
8 ROADMs and extended over 1000 km. These two lines are independent of each other and
have different equipment configurations. Each OMS is composed of fiber spans of different
lengths as depicted in Figure 5.1.

Figure 5.1: The sub-network transmission lines used for the optimization process
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Data Extractor tool is used to collect data via the NBI of the NMS to provide data
on the topology, the deployed services, the equipment configuration and the performance
metrics. Data extracted from the NMS are not exhaustive, which leads us to complete the
models with external information such as equipment characterizations. The performance
data provide the output power of each amplifier and the BER of each service. The BER
is transformed to SNR using transponder back-to-back characterization. Several services
(between 16 and 49) are transmitted through the setup with different source-destination
nodes leading to a different spectrum load distribution in each OMS. For this experiment,
we only monitor the performance of a selected list of services, 12 services in Line 1 and 8
services in Line 2, as depicted in Tab. 5.3.

Table 5.3: List of monitored services in the two transmission lines

Line Route List of Services

1
A-B S11

B-C S2, S3, S4, S5, S6, S7, S8, S9

A-C S1, S10, S12

2
D-F S1, S7, S8

D-G S2, S3

D-H S4, S5, S6

5.3 Experiment Results

For this experiment, we use the learning process LP1 based on Bayesian Optimization to
optimize network parameters. For this purpose, we set up a service deployment scenario
in order to emulate how the LP can reduce the SNR estimation error during the life cycle
of the network. Since the monitored services already exist in the field, we assume that all
the services are already deployed, but we progressively increase the number of available
measurements for the LP.

We apply the model as described in 4.4.1. We define SD as the set of services already
deployed and SND as the set of services not yet deployed. In each step, we perform the
optimization based on performance collected from SD, then we compute the training error
and the validation error corresponding to the error between measured and estimated SNR
in SD and also in the services planned to deployed (i.e., SND), respectively. This method
allows us to test the performance of the LP with a different number of QoT measurements,
and to calculate what is the gain in QoT estimation error right before deploying a service.

Graphs in Figure 5.2 and Figure 5.4 depict the progression of the mean SNR error after
each successive optimization for Line 1 and Line 2 respectively. The initial error (int-err)
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Figure 5.2: Progressive deployment scenario - Mean SNR error progression for Line 1.

Figure 5.3: Progressive deployment scenario - SNR error per service for Line 1.

shows the expected performance without the optimization process and serves as benchmark.
The training error (train-err) and validation error (vald-err) are calculated at each step k

by averaging the SNR error for SD and SND services respectively. We notice that the initial
error is around 2 dB for Line 1 and 1.5 dB for Line 2. Those errors are mainly due to the
fact that data extracted from the live network and used to model the two lines in GNPy
are not reliable (e.g., missing or not up-to-date values). The high initial error stresses the
importance of refining network parameters. After performing the optimization, the mean
SNR error (i.e., full-err) is reduced by 1.44 dB for Line 1 and 0.52 dB for the Line 2. This
difference in performance is due to the initial error, the number of parameters to optimize
and the number of already deployed services in each case. The training and validation error
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Figure 5.4: Progressive deployment scenario - Mean SNR error progression for Line 2.

Figure 5.5: Progressive deployment scenario - SNR error per service for Line 2.

slightly fluctuate depending on which service is optimized first, but the overall trend shows
that the error decreases proportionally to the number of services taken into consideration
during the optimization.

In order to deeply understand the optimization result, we plot in the graphs of Figure 5.3
and Figure 5.5 the improvement in the SNR estimation for each service. The error without
optimization (no-opt) is the initial error per service. The error before service deployment
(pre-depl) shows the expected improvement in the SNR estimation if the optimization pro-
cess is performed just before deployment. The error after all optimizations (all-opt) is the
expected performance after all optimizations are performed. We notice that the initial SNR
error for each service varies between 0.5 dB and 3 dB. After successive optimizations, the



108 5.4. CONCLUSION

performance of services having an initial error over 0.5 dB is significantly reduced and the
improvement in SNR error can reach up to 1.78 dB. Furthermore, the all-optimization error
shows that continuous optimizations serve to increase the accuracy of the QoT estimation
further and does not penalize already deployed services. By analyzing the pre-depl error, we
can expect up to 1.6 dB improvement in QoT estimation of services right before deployment.

5.4 Conclusion

In this chapter, we tested the LP1 based on the Bayesian optimization to refine uncertain
parameters in a live network. Therefore, we used a data extraction tool that collects data
directly from the controller. This proves that our approach can be successfully applied in
the operational network without further telemetry. We were not able to test LP2 and LP3
because they are based on a neural network model that should be trained using different
data distributions than the collected ones. LP4 was not also tested because we do not have
data related to failure event feedback that is needed to train the RL model. Using LP1,
we show that the accuracy of QoT estimation is improved by up to 1.78 dB per service.
The reduction in QoT estimation error is substantial, but the results could be improved by
adopting streaming telemetry for data extraction.
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6.1 Conclusion

Optical transport technology is being pushed to work closer to its theoretical limits to satisfy
the ever-increasing traffic demands. The increasing complexity of these systems will make
their design, control, and management challenging. On the other hand, a large amount of
data is currently available in industrial Network Management Systems (NMSs), but it is
not well harnessed by operators. The goal of this thesis was to explore ML techniques in
order to open new opportunities to utilize these data to optimize optical transport networks
and enhance their reliability. We specifically focused on the QoT estimation topic, since an
accurate QoT estimation is required for various tasks related to the management of optical
networks such as service provisioning and network design. QoT estimation is performed
using QoT models that rely on a set of network parameters to predict the quality of the
optical signal. An accurate QoT model and a reliable network state representation allow the
operator to estimate the potential impact of any configuration changes before deployment,
which could act as a module of the digital twin for the transport layer.

We carry out the study from an operator point of view. In other words, we aim to
propose solutions that can easily be deployed in the operational network, using only data
in the management/control plan. This does not preclude that, in some parts of this study,
some assumptions related to futuristic data extraction methods (e.g., data monitoring) are
considered.

We began our study with a literature overview, where we surveyed multiple papers that
attempted to use ML to improve the QoT estimation. We found that ML models are used
in a variety of ways to train QoT estimators, enhance analytical models and deal with data
shortage issues. We discussed the validity of their approaches and assumptions when it
comes to a real operational scenario. The main issue that we observed is the high data
requirements. Indeed, in order to train some proposed models, a substantial monitoring
and a data collection infrastructure must be set up. Furthermore, some solutions relying
on ML to potentially replace analytical models do not bring sufficient gains to justify the
additional cost of their implementation and deployment.

Analytical models are performing very well when their physical assumptions correspond
to the reality on the ground and their input parameters are accurately provided. But, in
the case when these two conditions are not met, ML models can be used to improve the
QoT estimation by either estimating some difficult-to-characterize optical impairments, or
by refining the hard-to-measure network parameters. Additionally, a number of papers have
focused on transfer learning approaches to reduce the amount of data needed for training.
This could be an important factor that makes ML-based model industrialized in the future.
As a conclusion of our literature overview, we consider that ML models can be more useful
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in the short / medium term if they work alongside analytical models, although we do not
rule out that full ML-based QoT estimation could be improved to reach high performance
and be easily generalized. For this reason, we have used in our simulations both a ML-based
model and an analytical QoT model.

Given our conclusions from the literature study, we have focused on the issue of network
parameters inaccuracy. We mean by uncertain parameters, those which are missing or do
not have reliable values. This issue affects the accuracy of QoT estimation tools based on
either analytical or ML models. To resolve this issue, we benefit from the large amount
of QoT measurements existing in the network, particularly BER measurements. Actually,
these data have not been used before to improve the accuracy of QoT estimation. Therefore,
our approach aims to create a closed-loop process to compute QoT. The feed-forward part of
the closed-loop is the QoT estimation tool, while the feedback part is our ML-based solution
that uses BER and SNR measurements on already-deployed-optical services to improve the
accuracy of QoT estimation of future services.

The identification of uncertain parameters depends on the ability of equipment to detect
and update changes of their parameters and the ability of the control/management plan to
collect those parameters. According to the study that we carry out to identify uncertain
parameters, we have assumed three main sources of inaccuracy. Firstly, we consider amplifier
NF as the first uncertain as it represents the main source of ASE noise. Secondly, we
consider the fiber loss distribution as the second uncertain parameter and model it using a
combination of connection and fused losses. In fact, the nonlinear effects can be accurately
calculated as long as the power level along the length of the fiber is well characterized. While
the emission power could be accurately measured, the fiber loss is difficult to estimate due
to uncertain lumped loss (i.e., connection loss and fiber splice loss). Finally, we consider
the spectrum power shift as the third inaccurate parameter since it impacts the per channel
QoT estimation. Using this set of uncertain parameters, we compensate for most of the
sources of inaccuracy impacting the QoT estimation.

To resolve the parameters uncertainty, we proposed three approaches. The first approach
aims to refine uncertain parameters at the input of QoT estimation tool. In the case where
an analytical QoT model is used (GNPy is taken as an example), we propose a learning
process based on Bayesian optimization (i.e., LP1). We observed that LP1 can minimize the
SNR estimation error to lower than 0.1 dB for all the services that it was trained on. When
we apply it to new services in a different network configuration, the error is still reduced by
up to 0.8 dB, and the residual SNR error can remain up to 0.23 dB. This means that the LP
is accurate on the services already deployed, but can still have a small estimation error in
the prediction of QoT for the services to be deployed. In the case where a ML-based QoT
estimation is used, we propose a learning process based on a gradient descent algorithm
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(i.e., LP2). LP2 is able to reduce the SNR error to less than 0.1 dB with the training
configuration, but with the redesign configuration, this SNR error can reach 3 dB. This
first approach performed the best and required the least amount of data to be trained. It
can reliably be used in the operational network to reduce the QoT estimation error before
service deployment. When the network configuration changes, the first few QoT estimations
might have some inaccuracies, but once new measurement data is available, the LP can be
run again to give better performance.

the novelty in this approach lies in its operator-centric perspective, which sets it apart
from existing literature. This perspective brings two key differences. Firstly, we consider
uncertain parameters by carefully analyzing operational constraints, allowing for more real-
istic representations. Secondly, we employ optimization techniques specifically tailored for
black-box QoT tools. While our methods demonstrate performance comparable to similar
studies, we further validate their effectiveness by applying them to live network data. This
additional validation enhances the credibility and applicability of our approach.

The second approach aims to improve the QoT estimation by changing the QoT model
itself. We proposed a learning process (i.e., LP3) that retrains a ML-based QoT model to
adapt it to inaccurate input parameters. The LP can relearn the new behavior without
finding the correct values of the uncertain parameters. Once the model converges, the
training error is minimized bellow 0.1 dB and the validation error bellow 0.25 dB. The
main advantage of this LP is that it can also compensate for any other inaccuracy in the
QoT estimation without necessarily knowing where the inaccuracy comes from. In this LP,
the weights of the model itself are changed to take into account the inaccuracy without
identifying the uncertain parameters. The drawback of LP3 is that the retraining requires
multiple new sample in order to work. Even if we compromise in the QoT estimation
accuracy, we still need at least 10 new samples. Note that each sample requires a different
network configurations from the others. Thus, the applicability of this approach depends
mainly on data collection availability.

In the literature, transfer learning (TL) techniques have been utilized to adapt QoT
models to various domains, as outlined in Chapter 2. However, our contribution uniquely
applies TL to specifically address parameter uncertainty. Unlike other studies that have
employed TL techniques to adjust models to changes in parameter distribution (as in [69]),
assuming accurate re-training data, our approach differs in its assumptions, leading to
distinct TL tasks and making direct performance comparisons challenging. Nevertheless,
the surveyed papers indicate that TL can be achieved with even less data than we have
used, suggesting potential for enhancing our contribution through more sophisticated TL
techniques.

The third approach consists of detecting parameter changes in real time. If we can keep
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up with each change in performance then detect which parameter change caused it, we
can maintain an accurate estimation of the QoT. This approach could be achieved in the
frame of a digital twin where the parameters values are updated as changes occurs, creating
then an accurate database of the network state. To implement this approach, we propose a
learning process based on a reinforcement learning (LP4) able to classify events that cause
parameter changes, based on the variation of the performance. We train this model to
detect fiber and amplifier damage, which we represent using variation in the connection loss
and NF respectively. LP4 performs well in the case of a small number of events. It can
reliably detect the events and reduce the QoT estimation error. However, the classification
accuracy decreases when the network topology is large, even though the model can still
maintain an estimation error around 0.5 dB. This approach could be used to detect failure,
but it requires collecting diagnostic feedback data in order to train Reinforcement Network
algorithm on all potential failure events in the network.

This approach is indeed quite unique in the literature. While most studies tend to
focus solely on either fault management or QoT estimation improvement, our contribution
aims to combine both tasks using a reinforcement learning (RL) agent. It is worth noting
that when considering fault classification and QoT improvement as separate metrics, other
papers may demonstrate more significant results than our contribution. However, we believe
the novelty of our work lies in the correlation we establish between QoT inaccuracy and
fault detection, which adds a valuable dimension to this research work.

In addition to simulation experiments, we tried to test these approaches using data col-
lected from a field trial. The available data enabled us to run only LP1 based on Bayesian
Optimization. We adapted our learning process by adding an additional uncertain parame-
ter which is the equalization PSD as we do not have any idea about the power management
in the output of the WSS. The results of the experiment showed that despite the lack of
exhaustive network state, LP1 is able to achieve a gain up to 1.7 dB in SNR estimation
error. This experiment was a precious opportunity to challenge our learning process in a
real field scenario. This experiment is to the best of our knowledge represents the first time
where SNR improvement was reported using data collected from the network management
system.

This field trial has provided valuable insights into the deployment of ML-based solutions
in a live network. Firstly, despite conducting a thorough analysis of parameter availability,
the collected data did not align perfectly with our expectations. This provides evidence
that solutions aimed at improving QoT estimation should be capable of adapting to the
diverse levels of information available in the network. In Chapter 5 , we demonstrated the
flexibility of the Bayesian optimization LP by introducing a new uncertain parameter (PSD)
and utilizing only SNR as an objective function.
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Secondly, we observed a significant margin for QoT improvement in the real network.
The initial SNR estimation error exceeded 3 dB, mainly due to substantial inaccuracies
in network parameters. This further justifies the need of a such data refinement tool for
parameter optimization. It is important to note that the margin of improvement may
vary depending on the network condition and data accessibility. Nevertheless, we have
demonstrated that even in challenging conditions, our learning process can enhance QoT
estimation.

Thirdly, due to limitations in data collection, we were unable to apply several of the LPs
proposed in our research. This highlights a significant bottleneck that hinders the deploy-
ment of ML-based solutions. Our key takeaway is that without substantial advancements in
telemetry and monitoring, the successful implementation of most ML-based solutions from
the literature would be challenging in operational networks.

6.2 Perspectives

The learning processes we proposed show promising results in simulation and real network
scenarios. However, there is always room for improvement. These following steps summarize
the potential perspectives of this thesis:

• Explore different network scenarios: Two additional use-cases could be further
investigated. The first one related to C+L band [91]. In this use-case, the modeling of
the connection losses is different because we have more equipment per band, moreover,
the SRS becomes more severe than in the C-band case. The second use-case concerns
the integration of Raman amplifiers [92] that will change the power level progression
in the fiber so we might need to change the model of the lumped loss distribution.

• Improve the parameter optimization LP: The uncertain parameters we used
cover a large amount of uncertainty on the QoT estimation. Other parameters could be
taken into consideration such as transponder back-to-back uncertainty. Furthermore,
our Bayesian optimization approach could be tested with alternative analytical model-
based QoT estimation tool other than GNPy. Also, in order to reduce the number
of parameters to optimize (e.g., a few dozen of parameters), the LP1/LP2 could be
permanently executed jointly with LP4 during the life-cycle of the network. Once
LP4 detects a change, LP1/LP2 will be run in order to refine the parameters. In this
case, the LP1/LP2 will have few number of parameters to refine.

• Improve NN retraining: The third learning process (LP3) can be improved by
using different transfer learning techniques. Currently, the LP requires a large amount
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of data for retraining, this can potentially be reduced using techniques such as one-
shot learning. Furthermore, the NN model used to estimate the QoT is simple. If we
can test LP3 with a more efficient QoT model, this might improve the performance
of the learning process.

• Improve the Reinforcement Learning Process: In the LP4, we proposed a way
to detect parameter changes, but we made multiple assumptions related to the failure
events, for instance only two type of events are considered. In order to make it
applicable in the field, we need to relax some of these assumptions which make the
model easily generalizable. However, this requires a more detailed knowledge of the
failures occurring in the field and obtaining performance data that correlates with
alarms and maintenance data generated by the operational team.



116 References



References

[1] Mayur Channegowda, Reza Nejabati, and Dimitra Simeonidou. “Software-Defined
Optical Networks Technology and Infrastructure: Enabling Software-Defined Optical
Network Operations [Invited]”. en. In: Journal of Optical Communications and Net-
working 5.10 (Oct. 2013), A274. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.5.
00A274. url: https://www.osapublishing.org/abstract.cfm?URI=jocn-5-10-
A274 (visited on 09/29/2021).

[2] Victor Lopez et al. “Transport API: A Solution for SDN in Carriers Networks”. en.
In: (), p. 3.

[3] Martin Birk et al. “The OpenROADM initiative [Invited]”. en. In: Journal of Optical
Communications and Networking 12.6 (June 2020), p. C58. issn: 1943-0620, 1943-
0639. doi: 10.1364/JOCN.380723. url: https://opg.optica.org/abstract.cfm?
URI=jocn-12-6-C58 (visited on 01/31/2022).

[4] Shoichiro Oda et al. “A Learning Living Network With Open ROADMs”. In: J. Light-
wave Technol. 35.8 (Apr. 2017), pp. 1350–1356. issn: 0733-8724, 1558-2213. doi: 10.
1109/JLT.2017.2660540. url: http://ieeexplore.ieee.org/document/7835740/
(visited on 01/08/2020).

[5] M. Dallaglio et al. “Control and Management of Transponders With NETCONF and
YANG”. en. In: Journal of Optical Communications and Networking 9.3 (Mar. 2017),
B43. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.9.000B43. url: https://opg.
optica.org/abstract.cfm?URI=jocn-9-3-B43 (visited on 01/31/2022).

[6] Francesco Paolucci et al. “Network Telemetry Streaming Services in SDN-Based Dis-
aggregated Optical Networks”. en. In: Journal of Lightwave Technology 36.15 (Aug.
2018), pp. 3142–3149. issn: 0733-8724, 1558-2213. doi: 10.1109/JLT.2018.2795345.
url: https://ieeexplore.ieee.org/document/8263153/ (visited on 01/31/2022).

[7] Weibo Liu et al. “A survey of deep neural network architectures and their appli-
cations”. en. In: Neurocomputing 234 (Apr. 2017), pp. 11–26. issn: 09252312. doi:
10.1016/j.neucom.2016.12.038. url: https://linkinghub.elsevier.com/
retrieve/pii/S0925231216315533 (visited on 12/01/2021).

117

https://doi.org/10.1364/JOCN.5.00A274
https://doi.org/10.1364/JOCN.5.00A274
https://www.osapublishing.org/abstract.cfm?URI=jocn-5-10-A274
https://www.osapublishing.org/abstract.cfm?URI=jocn-5-10-A274
https://doi.org/10.1364/JOCN.380723
https://opg.optica.org/abstract.cfm?URI=jocn-12-6-C58
https://opg.optica.org/abstract.cfm?URI=jocn-12-6-C58
https://doi.org/10.1109/JLT.2017.2660540
https://doi.org/10.1109/JLT.2017.2660540
http://ieeexplore.ieee.org/document/7835740/
https://doi.org/10.1364/JOCN.9.000B43
https://opg.optica.org/abstract.cfm?URI=jocn-9-3-B43
https://opg.optica.org/abstract.cfm?URI=jocn-9-3-B43
https://doi.org/10.1109/JLT.2018.2795345
https://ieeexplore.ieee.org/document/8263153/
https://doi.org/10.1016/j.neucom.2016.12.038
https://linkinghub.elsevier.com/retrieve/pii/S0925231216315533
https://linkinghub.elsevier.com/retrieve/pii/S0925231216315533


118 References

[8] Ignacio Martin et al. “Machine Learning-Based Routing and Wavelength Assignment
in Software-Defined Optical Networks”. en. In: IEEE Transactions on Network and
Service Management 16.3 (Sept. 2019), pp. 871–883. issn: 1932-4537, 2373-7379. doi:
10.1109/TNSM.2019.2927867. url: https://ieeexplore.ieee.org/document/
8758853/ (visited on 04/13/2021).

[9] Matteo Salani, Cristina Rottondi, and Massimo Tornatore. “Routing and Spectrum
Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic Optical
Networks”. en. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations. Paris, France: IEEE, Apr. 2019, pp. 1738–1746. isbn: 978-1-72810-515-4. doi:
10.1109/INFOCOM.2019.8737413. url: https://ieeexplore.ieee.org/document/
8737413/ (visited on 12/10/2019).

[10] Yvan Pointurier. “Machine learning techniques for quality of transmission estimation
in optical networks”. en. In: Journal of Optical Communications and Networking 13.4
(Apr. 2021), B60. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.417434. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B60 (visited on
03/25/2021).

[11] Tarem Ahmed and Mark Coates. “Machine Learning Algorithms for Anomaly Detec-
tion in Optical Networks”. en. In: (), p. 1.

[12] G. P Agrawal. Fiber-optic Communication Systems (Wiley series in microwave and
optical engineering). John Wiley & Sons Incorporated., 0. isbn: 978-0-471-22114-2
978-0-471-17540-7.

[13] Danshi Wang et al. “The Role of Digital Twin in Optical Communication: Fault Man-
agement, Hardware Configuration, and Transmission Simulation”. In: IEEE Commu-
nications Magazine 59.1 (2021), pp. 133–139. doi: 10.1109/MCOM.001.2000727.

[14] Reda Ayassi et al. “Survey on the Use of Machine Learning for Quality of Transmis-
sion Estimation in Optical Transport Networks”. In: Journal of Lightwave Technology
(2022), pp. 1–13. issn: 0733-8724, 1558-2213. doi: 10.1109/JLT.2022.3184178. url:
https://ieeexplore.ieee.org/document/9799746/ (visited on 07/05/2022).

[15] Jatin Babbar et al. “Machine learning models for alarm classification and failure local-
ization in optical transport networks”. In: J. Opt. Commun. Netw. 14.8 (Aug. 2022),
pp. 621–628. doi: 10.1364/JOCN.457687. url: https://opg.optica.org/jocn/
abstract.cfm?URI=jocn-14-8-621.

[16] Reda Ayassi et al. “Field Trial to Assess Bayesian Optimization for Improving QoT
Estimation”. In: 49th European Conference on Optical Communications (ECOC 2023).
2023.

[17] Reda Ayassi et al. “Bayesian optimization-based algorithm to improve the quality of
transmission estimation”. en. In: (), p. 3.

https://doi.org/10.1109/TNSM.2019.2927867
https://ieeexplore.ieee.org/document/8758853/
https://ieeexplore.ieee.org/document/8758853/
https://doi.org/10.1109/INFOCOM.2019.8737413
https://ieeexplore.ieee.org/document/8737413/
https://ieeexplore.ieee.org/document/8737413/
https://doi.org/10.1364/JOCN.417434
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B60
https://doi.org/10.1109/MCOM.001.2000727
https://doi.org/10.1109/JLT.2022.3184178
https://ieeexplore.ieee.org/document/9799746/
https://doi.org/10.1364/JOCN.457687
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-14-8-621
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-14-8-621


References 119

[18] R. Ayassi et al. “An Overview on Machine Learning-Based Solutions to Improve
Lightpath QoT Estimation”. In: 2020 22nd International Conference on Transpar-
ent Optical Networks (ICTON). event-place: Bari, Italy. IEEE, July 2020, pp. 1–4.
isbn: 978-1-72818-423-4. doi: 10.1109/ICTON51198.2020.9203755. url: https:
//ieeexplore.ieee.org/document/9203755/ (visited on 01/12/2021).

[19] Clara Catanese et al. “A Fully Connected Neural Network to Mitigate 200G DP-16-
QAM Transmission System Impairments”. en. In: OSA Advanced Photonics Congress
(AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). Washing-
ton, DC: OSA, 2020, SpTh3I.1. isbn: 978-1-943580-79-8. doi: 10.1364/SPPCOM.2020.
SpTh3I.1. url: https://www.osapublishing.org/abstract.cfm?URI=SPPCom-
2020-SpTh3I.1 (visited on 09/29/2021).

[20] Clara Catanese et al. “A Fully Connected Neural Network Approach to Mitigate Fiber
Nonlinear Effects in 200G DP-16-QAM Transmission System”. en. In: 2020 22nd In-
ternational Conference on Transparent Optical Networks (ICTON). Bari, Italy: IEEE,
July 2020, pp. 1–4. isbn: 978-1-72818-423-4. doi: 10 . 1109 / ICTON51198 . 2020 .
9203197. url: https://ieeexplore.ieee.org/document/9203197/ (visited on
09/29/2021).

[21] Clara Catanese et al. “A Survey of Neural Network Applications in Fiber Nonlinear-
ity Mitigation”. en. In: 2019 21st International Conference on Transparent Optical
Networks (ICTON). Angers, France: IEEE, July 2019, pp. 1–4. isbn: 978-1-72812-
779-8. doi: 10.1109/ICTON.2019.8840355. url: https://ieeexplore.ieee.org/
document/8840355/ (visited on 12/05/2019).

[22] S. Donati and G. Giuliani. “Noise in an optical amplifier: formulation of a new semi-
classical model”. en. In: IEEE Journal of Quantum Electronics 33.9 (Sept. 1997),
pp. 1481–1488. issn: 00189197. doi: 10.1109/3.622626. url: http://ieeexplore.
ieee.org/document/622626/ (visited on 02/01/2022).

[23] Daniel Gariepy et al. “Novel OSNR Measurement Techniques Based on Optical Spec-
trum Analysis and Their Application to Coherent-Detection Systems”. en. In: Journal
of Lightwave Technology 37.2 (Jan. 2019), pp. 562–570. issn: 0733-8724, 1558-2213.
doi: 10.1109/JLT.2018.2878744. url: https://ieeexplore.ieee.org/document/
8515023/ (visited on 11/04/2021).

[24] Yvan Pointurier. “Design of Low-Margin Optical Networks”. In: J. Opt. Commun.
Netw. 9.1 (Jan. 2017), A9. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.9.0000A9.
url: https://www.osapublishing.org/abstract.cfm?URI=jocn-9-1-A9 (visited
on 04/08/2020).

[25] Gert Grammel, Vittorio Curri, and Jean-Luc Auge. “Physical Simulation Environ-
ment of The Telecommunications Infrastructure Project (TIP)”. en. In: Optical Fiber
Communication Conference. San Diego, California: OSA, 2018, p. M1D.3. isbn: 978-
1-943580-38-5. doi: 10.1364/OFC.2018.M1D.3. url: https://www.osapublishing.
org/abstract.cfm?URI=OFC-2018-M1D.3 (visited on 12/05/2019).

https://doi.org/10.1109/ICTON51198.2020.9203755
https://ieeexplore.ieee.org/document/9203755/
https://ieeexplore.ieee.org/document/9203755/
https://doi.org/10.1364/SPPCOM.2020.SpTh3I.1
https://doi.org/10.1364/SPPCOM.2020.SpTh3I.1
https://www.osapublishing.org/abstract.cfm?URI=SPPCom-2020-SpTh3I.1
https://www.osapublishing.org/abstract.cfm?URI=SPPCom-2020-SpTh3I.1
https://doi.org/10.1109/ICTON51198.2020.9203197
https://doi.org/10.1109/ICTON51198.2020.9203197
https://ieeexplore.ieee.org/document/9203197/
https://doi.org/10.1109/ICTON.2019.8840355
https://ieeexplore.ieee.org/document/8840355/
https://ieeexplore.ieee.org/document/8840355/
https://doi.org/10.1109/3.622626
http://ieeexplore.ieee.org/document/622626/
http://ieeexplore.ieee.org/document/622626/
https://doi.org/10.1109/JLT.2018.2878744
https://ieeexplore.ieee.org/document/8515023/
https://ieeexplore.ieee.org/document/8515023/
https://doi.org/10.1364/JOCN.9.0000A9
https://www.osapublishing.org/abstract.cfm?URI=jocn-9-1-A9
https://doi.org/10.1364/OFC.2018.M1D.3
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-M1D.3
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-M1D.3


120 References

[26] P. Poggiolini and Y. Jiang. “Recent Advances in the Modeling of the Impact of Non-
linear Fiber Propagation Effects on Uncompensated Coherent Transmission Systems”.
en. In: Journal of Lightwave Technology 35.3 (Feb. 2017), pp. 458–480. issn: 0733-
8724, 1558-2213. doi: 10.1109/JLT.2016.2613893. url: http://ieeexplore.ieee.
org/document/7577767/ (visited on 11/18/2021).

[27] Ya.l. Bogomolov and A.D. Yunakovsky. “Split-step Fourier method for nonlinear
Schrodinger equation”. In: DAYS on DIFFRACTION 2006. St.Petersburg, Russia:
IEEE, 2006, pp. 34–42. isbn: 978-5-9651-0226-6. doi: 10.1109/DD.2006.348170.
url: http://ieeexplore.ieee.org/document/4154014/ (visited on 09/29/2021).

[28] K.V. Peddanarappagari and M. Brandt-Pearce. “Volterra series transfer function of
single-mode fibers”. In: Journal of Lightwave Technology 15.12 (Dec. 1997), pp. 2232–
2241. issn: 07338724. doi: 10.1109/50.643545. url: http://ieeexplore.ieee.
org/document/643545/ (visited on 02/01/2022).

[29] Marco Secondini, Enrico Forestieri, and Curtis R. Menyuk. “A Combined Regular-
Logarithmic Perturbation Method for Signal-Noise Interaction in Amplified Optical
Systems”. In: Journal of Lightwave Technology 27.16 (Aug. 2009), pp. 3358–3369.
issn: 0733-8724. doi: 10.1109/JLT.2009.2012873. url: http://ieeexplore.ieee.
org/document/5170205/ (visited on 02/01/2022).

[30] P. Poggiolini et al. “The GN-Model of Fiber Non-Linear Propagation and its Appli-
cations”. In: J. Lightwave Technol. 32.4 (Feb. 2014), pp. 694–721. issn: 0733-8724,
1558-2213. doi: 10.1109/JLT.2013.2295208. url: http://ieeexplore.ieee.org/
document/6685826/ (visited on 03/30/2020).

[31] D. Marcuse, C.R. Manyuk, and P.K.A. Wai. “Application of the Manakov-PMD equa-
tion to studies of signal propagation in optical fibers with randomly varying birefrin-
gence”. In: Journal of Lightwave Technology 15.9 (Sept. 1997), pp. 1735–1746. issn:
07338724. doi: 10.1109/50.622902. url: http://ieeexplore.ieee.org/document/
622902/ (visited on 02/01/2022).

[32] Andrea Carena et al. “EGN model of non-linear fiber propagation”. en. In: Optics
Express 22.13 (June 2014), p. 16335. issn: 1094-4087. doi: 10.1364/OE.22.016335.
url: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-13-16335
(visited on 11/18/2021).

[33] Daniel Semrau, Robert I. Killey, and Polina Bayvel. “The Gaussian Noise Model
in the Presence of Inter-Channel Stimulated Raman Scattering”. en. In: Journal of
Lightwave Technology 36.14 (July 2018), pp. 3046–3055. issn: 0733-8724, 1558-2213.
doi: 10.1109/JLT.2018.2830973. url: https://ieeexplore.ieee.org/document/
8351897/ (visited on 09/09/2021).

[34] A. Nespola et al. “Extensive Fiber Comparison and GN-model Validation in Un-
compensated Links using DAC-generated Nyquist-WDM PM-16QAM Channels”. en.
In: Optical Fiber Communication Conference/National Fiber Optic Engineers Confer-
ence 2013. Anaheim, California: OSA, 2013, OTh3G.5. isbn: 978-1-55752-962-6. doi:

https://doi.org/10.1109/JLT.2016.2613893
http://ieeexplore.ieee.org/document/7577767/
http://ieeexplore.ieee.org/document/7577767/
https://doi.org/10.1109/DD.2006.348170
http://ieeexplore.ieee.org/document/4154014/
https://doi.org/10.1109/50.643545
http://ieeexplore.ieee.org/document/643545/
http://ieeexplore.ieee.org/document/643545/
https://doi.org/10.1109/JLT.2009.2012873
http://ieeexplore.ieee.org/document/5170205/
http://ieeexplore.ieee.org/document/5170205/
https://doi.org/10.1109/JLT.2013.2295208
http://ieeexplore.ieee.org/document/6685826/
http://ieeexplore.ieee.org/document/6685826/
https://doi.org/10.1109/50.622902
http://ieeexplore.ieee.org/document/622902/
http://ieeexplore.ieee.org/document/622902/
https://doi.org/10.1364/OE.22.016335
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-13-16335
https://doi.org/10.1109/JLT.2018.2830973
https://ieeexplore.ieee.org/document/8351897/
https://ieeexplore.ieee.org/document/8351897/


References 121

10.1364/OFC.2013.OTh3G.5. url: https://www.osapublishing.org/abstract.
cfm?URI=OFC-2013-OTh3G.5 (visited on 11/18/2021).

[35] Antonio Caballero et al. “Experimental demonstration of a cognitive quality of trans-
mission estimator for optical communication systems”. In: (2012), p. 3.

[36] Alan A. Diaz-Montiel et al. “Active Wavelength Load as a Feature for QoT Estimation
Based on Support Vector Machine”. In: ICC 2019 - 2019 IEEE International Con-
ference on Communications (ICC). event-place: Shanghai, China. IEEE, May 2019,
pp. 1–6. isbn: 978-1-5386-8088-9. doi: 10.1109/ICC.2019.8761369. url: https:
//ieeexplore.ieee.org/document/8761369/ (visited on 02/27/2020).

[37] Tania Panayiotou et al. “Centralized and Distributed Machine Learning-Based QoT
Estimation for Sliceable Optical Networks”. en. In: arXiv:1908.08338 [cs, eess] (Sept.
2019). arXiv: 1908.08338. url: http://arxiv.org/abs/1908.08338 (visited on
12/10/2019).

[38] Stanisław Kozdrowski et al. “Machine Learning Algorithms for Prediction of the Qual-
ity of Transmission in Optical Networks”. en. In: Entropy 23.1 (Dec. 2020), p. 7.
issn: 1099-4300. doi: 10.3390/e23010007. url: https://www.mdpi.com/1099-
4300/23/1/7 (visited on 04/19/2021).

[39] Rui Manuel Morais and João Pedro. “Machine Learning Models for Estimating Quality
of Transmission in DWDM Networks”. In: J. Opt. Commun. Netw. 10.10 (Oct. 2018),
p. D84. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.10.000D84. url: https:
//www.osapublishing.org/abstract.cfm?URI=jocn- 10- 10- D84 (visited on
01/08/2020).

[40] Cristina Rottondi et al. “Machine-Learning Method for Quality of Transmission Pre-
diction of Unestablished Lightpaths”. In: J. Opt. Commun. Netw. 10.2 (Feb. 2018),
A286. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.10.00A286. url: https:
//www.osapublishing.org/abstract.cfm?URI=jocn- 10- 2- A286 (visited on
02/12/2020).

[41] Sandra Aladin et al. “Quality of Transmission Estimation and Short-Term Perfor-
mance Forecast of Lightpaths”. en. In: Journal of Lightwave Technology 38.10 (May
2020), pp. 2807–2814. issn: 0733-8724, 1558-2213. doi: 10.1109/JLT.2020.2975179.
url: https://ieeexplore.ieee.org/document/9004503/ (visited on 04/12/2021).

[42] Javier Mata et al. “Supervised Machine Learning Techniques for Quality of Trans-
mission Assessment in Optical Networks”. In: 2018 20th International Conference on
Transparent Optical Networks (ICTON). event-place: Bucharest. IEEE, July 2018,
pp. 1–4. isbn: 978-1-5386-6605-0. doi: 10.1109/ICTON.2018.8473819. url: https:
//ieeexplore.ieee.org/document/8473819/ (visited on 12/10/2019).

[43] Tania Panayiotou et al. “Machine Learning for QoT Estimation of Unseen Optical
Network States”. In: Optical Fiber Communication Conference (OFC) 2019. event-
place: San Diego, California. OSA, 2019, Tu2E.2. isbn: 978-1-943580-53-8. doi: 10.
1364/OFC.2019.Tu2E.2. url: https://www.osapublishing.org/abstract.cfm?
URI=OFC-2019-Tu2E.2 (visited on 02/10/2020).

https://doi.org/10.1364/OFC.2013.OTh3G.5
https://www.osapublishing.org/abstract.cfm?URI=OFC-2013-OTh3G.5
https://www.osapublishing.org/abstract.cfm?URI=OFC-2013-OTh3G.5
https://doi.org/10.1109/ICC.2019.8761369
https://ieeexplore.ieee.org/document/8761369/
https://ieeexplore.ieee.org/document/8761369/
http://arxiv.org/abs/1908.08338
https://doi.org/10.3390/e23010007
https://www.mdpi.com/1099-4300/23/1/7
https://www.mdpi.com/1099-4300/23/1/7
https://doi.org/10.1364/JOCN.10.000D84
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-10-D84
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-10-D84
https://doi.org/10.1364/JOCN.10.00A286
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-2-A286
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-2-A286
https://doi.org/10.1109/JLT.2020.2975179
https://ieeexplore.ieee.org/document/9004503/
https://doi.org/10.1109/ICTON.2018.8473819
https://ieeexplore.ieee.org/document/8473819/
https://ieeexplore.ieee.org/document/8473819/
https://doi.org/10.1364/OFC.2019.Tu2E.2
https://doi.org/10.1364/OFC.2019.Tu2E.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2019-Tu2E.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2019-Tu2E.2


122 References

[44] Qirui Fan et al. “Experimental Comparisons between Machine Learning and Analyt-
ical Models for QoT Estimations in WDM Systems”. en. In: Optical Fiber Communi-
cation Conference (OFC) 2020. San Diego, California: OSA, 2020, M2J.2. isbn: 978-
1-943580-71-2. doi: 10.1364/OFC.2020.M2J.2. url: https://www.osapublishing.
org/abstract.cfm?URI=OFC-2020-M2J.2 (visited on 04/07/2021).

[45] Zhengguang Gao et al. “ANN-Based Multi-Channel QoT-Prediction Over a 563.4-
km Field-Trial Testbed”. en. In: Journal of Lightwave Technology 38.9 (May 2020),
pp. 2646–2655. issn: 0733-8724, 1558-2213. doi: 10.1109/JLT.2020.2971104. url:
https://ieeexplore.ieee.org/document/8978723/ (visited on 04/13/2021).

[46] Memedhe Ibrahimi et al. “Machine Learning Regression vs. Classification for QoT
Estimation of Unestablished Lightpaths”. en. In: OSA Advanced Photonics Congress
(AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). Washing-
ton, DC: OSA, 2020, NeM3B.1. isbn: 978-1-943580-79-8. doi: 10.1364/NETWORKS.
2020 . NeM3B . 1. url: https : / / www . osapublishing . org / abstract . cfm ? URI =
Networks-2020-NeM3B.1 (visited on 03/25/2021).

[47] Ihtesham Khan, Muhammad Bilal, and Vittorio Curri. “Advanced Formulation of
QoT-Estimation for Un-established Lightpaths Using Cross-train Machine Learning
Methods”. en. In: 2020 22nd International Conference on Transparent Optical Net-
works (ICTON). Bari, Italy: IEEE, July 2020, pp. 1–4. isbn: 978-1-72818-423-4. doi:
10 . 1109 / ICTON51198 . 2020 . 9203334. url: https : / / ieeexplore . ieee . org /
document/9203334/ (visited on 09/08/2021).

[48] Ihtesham Khan et al. “QoT Estimation for Light-path Provisioning in Un-Seen Op-
tical Networks using Machine Learning”. en. In: 2020 22nd International Conference
on Transparent Optical Networks (ICTON). Bari, Italy: IEEE, July 2020, pp. 1–4.
isbn: 978-1-72818-423-4. doi: 10.1109/ICTON51198.2020.9203364. url: https:
//ieeexplore.ieee.org/document/9203364/ (visited on 04/13/2021).

[49] F. Meng et al. “Field Trial of Gaussian Process Learning of Function-Agnostic Channel
Performance Under Uncertainty”. In: Optical Fiber Communication Conference. event-
place: San Diego, California. OSA, 2018, W4F.5. isbn: 978-1-943580-38-5. doi: 10.
1364/OFC.2018.W4F.5. url: https://www.osapublishing.org/abstract.cfm?
URI=OFC-2018-W4F.5 (visited on 02/04/2020).

[50] Shuangyi Yan et al. “Field trial of Machine-Learning-assisted and SDN-based Op-
tical Network Planning with Network-Scale Monitoring Database”. In: 2017 Euro-
pean Conference on Optical Communication (ECOC). Gothenburg: IEEE, Sept. 2017,
pp. 1–3. isbn: 978-1-5386-5624-2. doi: 10.1109/ECOC.2017.8346091. url: https:
//ieeexplore.ieee.org/document/8346091/ (visited on 04/07/2021).

[51] Jasper Muller et al. “Estimating Quality of Transmission in a Live Production Network
using Machine Learning”. en. In: (2021), p. 3.

https://doi.org/10.1364/OFC.2020.M2J.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-M2J.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-M2J.2
https://doi.org/10.1109/JLT.2020.2971104
https://ieeexplore.ieee.org/document/8978723/
https://doi.org/10.1364/NETWORKS.2020.NeM3B.1
https://doi.org/10.1364/NETWORKS.2020.NeM3B.1
https://www.osapublishing.org/abstract.cfm?URI=Networks-2020-NeM3B.1
https://www.osapublishing.org/abstract.cfm?URI=Networks-2020-NeM3B.1
https://doi.org/10.1109/ICTON51198.2020.9203334
https://ieeexplore.ieee.org/document/9203334/
https://ieeexplore.ieee.org/document/9203334/
https://doi.org/10.1109/ICTON51198.2020.9203364
https://ieeexplore.ieee.org/document/9203364/
https://ieeexplore.ieee.org/document/9203364/
https://doi.org/10.1364/OFC.2018.W4F.5
https://doi.org/10.1364/OFC.2018.W4F.5
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-W4F.5
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-W4F.5
https://doi.org/10.1109/ECOC.2017.8346091
https://ieeexplore.ieee.org/document/8346091/
https://ieeexplore.ieee.org/document/8346091/


References 123

[52] R. Proietti et al. “Experimental Demonstration of Cognitive Provisioning and Alien
Wavelength Monitoring in Multi-domain EON”. In: Optical Fiber Communication
Conference. event-place: San Diego, California. OSA, 2018, W4F.7. isbn: 978-1-943580-
38-5. doi: 10.1364/OFC.2018.W4F.7. url: https://www.osapublishing.org/
abstract.cfm?URI=OFC-2018-W4F.7 (visited on 02/17/2020).

[53] Payman Samadi et al. “Quality of Transmission Prediction with Machine Learning for
Dynamic Operation of Optical WDM Networks”. en. In: 2017 European Conference
on Optical Communication (ECOC). Gothenburg: IEEE, Sept. 2017, pp. 1–3. isbn:
978-1-5386-5624-2. doi: 10.1109/ECOC.2017.8346216. url: https://ieeexplore.
ieee.org/document/8346216/ (visited on 03/25/2021).

[54] Fehmida Usmani et al. “Convolutional neural network for quality of transmission
prediction of unestablished lightpaths”. en. In: Microwave and Optical Technology
Letters 63.10 (Oct. 2021), pp. 2461–2469. issn: 0895-2477, 1098-2760. doi: 10.1002/
mop.32996. url: https://onlinelibrary.wiley.com/doi/10.1002/mop.32996
(visited on 09/08/2021).

[55] Jesper Wass et al. “Gaussian Process Regression for WDM System Performance Pre-
diction”. en. In: Optical Fiber Communication Conference. Los Angeles, California:
OSA, 2017, Tu3D.7. isbn: 978-1-943580-23-1. doi: 10.1364/OFC.2017.Tu3D.7. url:
https://www.osapublishing.org/abstract.cfm?URI=OFC-2017-Tu3D.7 (visited
on 04/13/2021).

[56] Fehmida Usmani et al. “Evaluating Cross- feature Trained Machine Learning Models
for Estimating QoT of Unestablished Lightpaths”. en. In: 2021 International Con-
ference on Electrical, Communication, and Computer Engineering (ICECCE). Kuala
Lumpur, Malaysia: IEEE, June 2021, pp. 1–6. isbn: 978-1-66543-897-1. doi: 10.1109/
ICECCE52056.2021.9514154. url: https://ieeexplore.ieee.org/document/
9514154/ (visited on 09/09/2021).

[57] Emmanuel Seve, Jelena Pesic, and Yvan Pointurier. “Associating machine-learning
and analytical models for quality of transmission estimation: combining the best
of both worlds”. en. In: Journal of Optical Communications and Networking 13.6
(June 2021), p. C21. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.411979. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-6-C21 (visited on
04/13/2021).

[58] Nathalie Morette. “Leveraging ML-based QoT Tool Parameter Feeding for Accurate
WDM Network Performance Prediction”. en. In: (2021), p. 3.

[59] Ippokratis Sartzetakis, Konstantinos (Kostas) Christodoulopoulos, and Emmanouel
(Manos) Varvarigos. “Accurate Quality of Transmission Estimation With Machine
Learning”. en. In: Journal of Optical Communications and Networking 11.3 (Mar.
2019), p. 140. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.11.000140. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-3-140 (visited on
12/10/2019).

https://doi.org/10.1364/OFC.2018.W4F.7
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-W4F.7
https://www.osapublishing.org/abstract.cfm?URI=OFC-2018-W4F.7
https://doi.org/10.1109/ECOC.2017.8346216
https://ieeexplore.ieee.org/document/8346216/
https://ieeexplore.ieee.org/document/8346216/
https://doi.org/10.1002/mop.32996
https://doi.org/10.1002/mop.32996
https://onlinelibrary.wiley.com/doi/10.1002/mop.32996
https://doi.org/10.1364/OFC.2017.Tu3D.7
https://www.osapublishing.org/abstract.cfm?URI=OFC-2017-Tu3D.7
https://doi.org/10.1109/ICECCE52056.2021.9514154
https://doi.org/10.1109/ICECCE52056.2021.9514154
https://ieeexplore.ieee.org/document/9514154/
https://ieeexplore.ieee.org/document/9514154/
https://doi.org/10.1364/JOCN.411979
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-6-C21
https://doi.org/10.1364/JOCN.11.000140
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-3-140


124 References

[60] E. Seve et al. “Learning Process for Reducing Uncertainties on Network Param-
eters and Design Margins”. In: J. Opt. Commun. Netw. 10.2 (Feb. 2018), A298.
issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.10.00A298. url: https://www.
osapublishing.org/abstract.cfm?URI=jocn-10-2-A298 (visited on 12/10/2019).

[61] Martin Bouda, Oda Shoichiro, and Vasilieva Olga. “Accurate prediction of quality of
transmission with dynamically configurable optical impairment model”. In: Mar. 2017.

[62] Fanchao Meng et al. “Robust Self-Learning Physical Layer Abstraction Utilizing Opti-
cal Performance Monitoring and Markov Chain Monte Carlo”. In: 2017 European Con-
ference on Optical Communication (ECOC). event-place: Gothenburg. IEEE, Sept.
2017, pp. 1–3. isbn: 978-1-5386-5624-2. doi: 10.1109/ECOC.2017.8346217. url:
https://ieeexplore.ieee.org/document/8346217/ (visited on 03/12/2020).

[63] Andrea D’Amico et al. “Using Machine-Learning in an Open Optical Line Systems
Controller”. In: (2019), p. 9.

[64] Qunbi Zhuge and Weisheng Hu. “Application of Machine Learning in Elastic Optical
Networks”. In: 2018 European Conference on Optical Communication (ECOC). event-
place: Rome. IEEE, Sept. 2018, pp. 1–3. isbn: 978-1-5386-4862-9. doi: 10.1109/ECOC.
2018.8535565. url: https://ieeexplore.ieee.org/document/8535565/ (visited
on 02/04/2020).

[65] Rui Manuel Morais, Bruno Pereira, and João Pedro. “Fast and High-Precision Op-
tical Performance Evaluation for Cognitive Optical Networks”. en. In: Optical Fiber
Communication Conference (OFC) 2020. San Diego, California: OSA, 2020, Th3D.3.
isbn: 978-1-943580-71-2. doi: 10.1364/OFC.2020.Th3D.3. url: https://www.
osapublishing.org/abstract.cfm?URI=OFC-2020-Th3D.3 (visited on 04/13/2021).

[66] Ankush Mahajan et al. “Modeling Filtering Penalties in ROADM-based Networks with
Machine Learning for QoT Estimation”. In: Optical Fiber Communication Conference
(OFC) 2020. event-place: San Diego, California. OSA, 2020, Th3D.4. isbn: 978-1-
943580-71-2. doi: 10.1364/OFC.2020.Th3D.4. url: https://www.osapublishing.
org/abstract.cfm?URI=OFC-2020-Th3D.4 (visited on 03/21/2020).

[67] D Uzunidis et al. “Enhancing Closed-Form Based Physical Layer Performance Esti-
mations in EONs Via Machine Learning Techniques”. en. In: (), p. 4.

[68] Alessio Ferrari et al. “Experimental Validation of an Open Source Quality of Transmis-
sion Estimator for Open Optical Networks”. In: Optical Fiber Communication Confer-
ence (OFC) 2020. event-place: San Diego, California. OSA, 2020, W3C.2. isbn: 978-
1-943580-71-2. doi: 10.1364/OFC.2020.W3C.2. url: https://www.osapublishing.
org/abstract.cfm?URI=OFC-2020-W3C.2 (visited on 03/20/2020).

[69] Shuang Yao et al. “Data Efficient Estimation for Quality of Transmission Through
Active Learning in Fiber-Wireless Integrated Network”. en. In: Journal of Light-
wave Technology 39.18 (Sept. 2021), pp. 5691–5698. issn: 0733-8724, 1558-2213. doi:
10.1109/JLT.2021.3091377. url: https://ieeexplore.ieee.org/document/
9462465/ (visited on 09/30/2021).

https://doi.org/10.1364/JOCN.10.00A298
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-2-A298
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-2-A298
https://doi.org/10.1109/ECOC.2017.8346217
https://ieeexplore.ieee.org/document/8346217/
https://doi.org/10.1109/ECOC.2018.8535565
https://doi.org/10.1109/ECOC.2018.8535565
https://ieeexplore.ieee.org/document/8535565/
https://doi.org/10.1364/OFC.2020.Th3D.3
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-Th3D.3
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-Th3D.3
https://doi.org/10.1364/OFC.2020.Th3D.4
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-Th3D.4
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-Th3D.4
https://doi.org/10.1364/OFC.2020.W3C.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-W3C.2
https://www.osapublishing.org/abstract.cfm?URI=OFC-2020-W3C.2
https://doi.org/10.1109/JLT.2021.3091377
https://ieeexplore.ieee.org/document/9462465/
https://ieeexplore.ieee.org/document/9462465/


References 125

[70] Che-Yu Liu et al. “Performance studies of evolutionary transfer learning for end-to-end
QoT estimation in multi-domain optical networks [Invited]”. en. In: Journal of Optical
Communications and Networking 13.4 (Apr. 2021), B1. issn: 1943-0620, 1943-0639.
doi: 10.1364/JOCN.409817. url: https://www.osapublishing.org/abstract.
cfm?URI=jocn-13-4-B1 (visited on 04/13/2021).

[71] Ihtesham Khan et al. “Lightpath QoT computation in optical networks assisted by
transfer learning”. en. In: Journal of Optical Communications and Networking 13.4
(Apr. 2021), B72. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.409538. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B72 (visited on
04/13/2021).

[72] Dario Azzimonti et al. “Comparison of domain adaptation and active learning tech-
niques for quality of transmission estimation with small-sized training datasets [In-
vited]”. en. In: Journal of Optical Communications and Networking 13.1 (Jan. 2021),
A56. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.401918. url: https://www.
osapublishing.org/abstract.cfm?URI=jocn-13-1-A56 (visited on 04/13/2021).

[73] Jelena Pesic et al. “Transfer Learning from Unbiased Training Data Sets for QoT Esti-
mation in WDM Networks”. en. In: 2020 European Conference on Optical Communica-
tions (ECOC). Brussels, Belgium: IEEE, Dec. 2020, pp. 1–4. isbn: 978-1-72817-361-0.
doi: 10.1109/ECOC48923.2020.9333399. url: https://ieeexplore.ieee.org/
document/9333399/ (visited on 04/13/2021).

[74] Jiakai Yu et al. “Model transfer of QoT prediction in optical networks based on
artificial neural networks”. In: J. Opt. Commun. Netw. 11.10 (Oct. 2019), p. C48.
issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.11.000C48. url: https://www.
osapublishing.org/abstract.cfm?URI=jocn-11-10-C48 (visited on 01/08/2020).

[75] Cristina Rottondi et al. “On the benefits of domain adaptation techniques for quality
of transmission estimation in optical networks”. en. In: Journal of Optical Commu-
nications and Networking 13.1 (Jan. 2021), A34. issn: 1943-0620, 1943-0639. doi:
10.1364/JOCN.401915. url: https://www.osapublishing.org/abstract.cfm?
URI=jocn-13-1-A34 (visited on 04/13/2021).

[76] Le Xia et al. “Transfer learning assisted deep neural network for OSNR estimation”.
en. In: Optics Express 27.14 (July 2019), p. 19398. issn: 1094-4087. doi: 10.1364/
OE.27.019398. url: https://www.osapublishing.org/abstract.cfm?URI=oe-27-
14-19398 (visited on 04/13/2021).

[77] Matteo Lonardi et al. “The Perks of Using Machine Learning for QoT Estimation with
Uncertain Network Parameters”. en. In: OSA Advanced Photonics Congress (AP) 2020
(IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). Washington, DC: OSA,
2020, NeM3B.2. isbn: 978-1-943580-79-8. doi: 10.1364/NETWORKS.2020.NeM3B.2.
url: https://www.osapublishing.org/abstract.cfm?URI=Networks- 2020-
NeM3B.2 (visited on 03/25/2021).

https://doi.org/10.1364/JOCN.409817
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B1
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B1
https://doi.org/10.1364/JOCN.409538
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-4-B72
https://doi.org/10.1364/JOCN.401918
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-1-A56
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-1-A56
https://doi.org/10.1109/ECOC48923.2020.9333399
https://ieeexplore.ieee.org/document/9333399/
https://ieeexplore.ieee.org/document/9333399/
https://doi.org/10.1364/JOCN.11.000C48
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-10-C48
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-10-C48
https://doi.org/10.1364/JOCN.401915
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-1-A34
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-1-A34
https://doi.org/10.1364/OE.27.019398
https://doi.org/10.1364/OE.27.019398
https://www.osapublishing.org/abstract.cfm?URI=oe-27-14-19398
https://www.osapublishing.org/abstract.cfm?URI=oe-27-14-19398
https://doi.org/10.1364/NETWORKS.2020.NeM3B.2
https://www.osapublishing.org/abstract.cfm?URI=Networks-2020-NeM3B.2
https://www.osapublishing.org/abstract.cfm?URI=Networks-2020-NeM3B.2


126 References

[78] Alessio Ferrari et al. “Assessment on the in-field lightpath QoT computation in-
cluding connector loss uncertainties”. In: J. Opt. Commun. Netw. 13.2 (Feb. 2021),
A156. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.402969. url: https://www.
osapublishing.org/abstract.cfm?URI=jocn-13-2-A156 (visited on 01/01/2021).

[79] K. Christodoulopoulos et al. “Toward efficient, reliable, and autonomous optical net-
works: the ORCHESTRA solution [Invited]”. In: J. Opt. Commun. Netw. 11.9 (Sept.
2019), p. C10. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.11.000C10. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-9-C10 (visited on
02/04/2020).

[80] Alessio Ferrari et al. “GNPy: an open source application for physical layer aware open
optical networks”. en. In: Journal of Optical Communications and Networking 12.6
(June 2020), p. C31. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.382906. url:
https://www.osapublishing.org/abstract.cfm?URI=jocn-12-6-C31 (visited on
01/25/2021).

[81] Jianing Lu et al. “Automated training dataset collection system design for machine
learning application in optical networks: an example of quality of transmission es-
timation”. en. In: Journal of Optical Communications and Networking 13.11 (Nov.
2021), p. 289. issn: 1943-0620, 1943-0639. doi: 10.1364/JOCN.431780. url: https:
//www.osapublishing.org/abstract.cfm?URI=jocn- 13- 11- 289 (visited on
12/16/2021).

[82] Alessio Ferrari et al. “GNPy: an open source application for physical layer aware open
optical networks”. In: J. Opt. Commun. Netw. 12.6 (June 2020), p. C31. issn: 1943-
0620, 1943-0639. doi: 10.1364/JOCN.382906. url: https://www.osapublishing.
org/abstract.cfm?URI=jocn-12-6-C31 (visited on 01/25/2021).

[83] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[84] Jong-Wan Kim and Chang-Hee Lee. “Modulation format identification of square and
non-square M-QAM signals based on amplitude variance and OSNR”. In: Optics Com-
munications 474 (2020), p. 126084. issn: 0030-4018. doi: https://doi.org/10.
1016/j.optcom.2020.126084. url: https://www.sciencedirect.com/science/
article/pii/S0030401820305010.

[85] Zhao Zhao, Aiying Yang, and Peng Guo. “A Modulation Format Identification Method
Based on Information Entropy Analysis of Received Optical Communication Signal”.
In: IEEE Access 7 (2019), pp. 41492–41497. doi: 10.1109/ACCESS.2019.2907521.

[86] Emmanuel Seve et al. “Automated Fiber Type Identification in SDN-Enabled Optical
Networks”. In: Journal of Lightwave Technology 37.7 (2019), pp. 1724–1731. doi:
10.1109/JLT.2019.2896041.

[87] Bobak Shahriari et al. “Taking the human out of the loop: A review of Bayesian
optimization”. In: Proceedings of the IEEE 104.1 (2015), pp. 148–175.

https://doi.org/10.1364/JOCN.402969
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-2-A156
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-2-A156
https://doi.org/10.1364/JOCN.11.000C10
https://www.osapublishing.org/abstract.cfm?URI=jocn-11-9-C10
https://doi.org/10.1364/JOCN.382906
https://www.osapublishing.org/abstract.cfm?URI=jocn-12-6-C31
https://doi.org/10.1364/JOCN.431780
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-11-289
https://www.osapublishing.org/abstract.cfm?URI=jocn-13-11-289
https://doi.org/10.1364/JOCN.382906
https://www.osapublishing.org/abstract.cfm?URI=jocn-12-6-C31
https://www.osapublishing.org/abstract.cfm?URI=jocn-12-6-C31
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.optcom.2020.126084
https://doi.org/https://doi.org/10.1016/j.optcom.2020.126084
https://www.sciencedirect.com/science/article/pii/S0030401820305010
https://www.sciencedirect.com/science/article/pii/S0030401820305010
https://doi.org/10.1109/ACCESS.2019.2907521
https://doi.org/10.1109/JLT.2019.2896041


References 127

[88] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: Advances in Neu-
ral Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates,
Inc., 2016. url: https://proceedings.neurips.cc/paper_files/paper/2016/
file/90e1357833654983612fb05e3ec9148c-Paper.pdf.

[89] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
en. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 0028-0836, 1476-4687. doi:
10.1038/nature14236. url: http://www.nature.com/articles/nature14236
(visited on 09/29/2021).

[90] Jianqing Fan et al. “A Theoretical Analysis of Deep Q-Learning”. In: Proceedings of
the 2nd Conference on Learning for Dynamics and Control. Ed. by Alexandre M.
Bayen et al. Vol. 120. Proceedings of Machine Learning Research. PMLR, Oct. 2020,
pp. 486–489. url: https://proceedings.mlr.press/v120/yang20a.html.

[91] Seiji Okamoto et al. “A Study on the Effect of Ultra-Wide Band WDM on Optical
Transmission Systems”. In: J. Lightwave Technol. 38.5 (Mar. 2020), pp. 1061–1070.
url: https://opg.optica.org/jlt/abstract.cfm?URI=jlt-38-5-1061.

[92] M.N. Islam. “Raman amplifiers for telecommunications”. In: IEEE Journal of Selected
Topics in Quantum Electronics 8.3 (2002), pp. 548–559. doi: 10.1109/JSTQE.2002.
1016358.

https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://doi.org/10.1038/nature14236
http://www.nature.com/articles/nature14236
https://proceedings.mlr.press/v120/yang20a.html
https://opg.optica.org/jlt/abstract.cfm?URI=jlt-38-5-1061
https://doi.org/10.1109/JSTQE.2002.1016358
https://doi.org/10.1109/JSTQE.2002.1016358


128 References



List of figures

2.1 General process to train a ML QoT estimation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Learning process to reduce uncertainty on parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Learning process to adapt a ML model from one domain to another using Transfer Learning . . . . . . 39
2.4 Four levels of data features for ML-based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 QoT computation and improvement framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Structure of the Neural Network Based QoT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Network Topology Used to Generate the Training Dataset for the NN Model . . . . . . . . . . . . . . 53
3.4 Evolution of the training loss during model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Network Topology Used to Calculate Parameter Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Maximum SNR error generated by gradually changing the NF of each amplifier in the 4 OMS FLAT_NET

topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Mean SNR error generated by gradually changing the NF of each amplifier in the 4 OMS FLAT_NET

topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 Mean SNR error generated by gradually changing the CONN_OUT loss in each span in the 4 OMS

FLAT_NET topology in power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 Mean SNR error generated by gradually changing the CONN_OUT loss in each span in the 4 OMS

FLAT_NET topology in gain mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 SNR spectrum generated by changing the CONN_IN loss in each span in the 1 OMS FLAT_NET

topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 The FLAT_NET simulation topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Bayesian optimization algorithm process. Figure taken from [87] . . . . . . . . . . . . . . . . . . . . . 68
4.3 LP1 - Simulation 1 Results: SNR spectrum in each network state during the learning process . . . . . 71
4.4 LP1 - Simulation 1 Results: Error between the target and best values for each uncertain parameter in

the learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 LP1 - simulation 2 results: SNR spectrum in each network state during the learning process . . . . . . 73
4.6 LP1 - simulation 2 results: Error between the target and best values for each uncertain parameter in

the learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 LP1 - simulation 3 results: SNR spectrum for each network state during the learning process . . . . . 75
4.8 Gradient descent algorithm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9 LP2 - simulation 1 results: comparison between the SNR estimation of GNPy and that of NN . . . . 78
4.10 LP2 - simulation 2 results: SNR spectrum for each network state during the learning process . . . . . 80
4.11 LP2 - simulation 2 results: Error between the target and best values for each uncertain parameter in

the learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.12 LP2 - simulation 3 results: SNR spectrum comparison between GNPy and NN model before and after

the optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.13 LP2 - Simulation 3 results: SNR spectrum for each network state during the power shift optimization 83
4.14 LP3 simulation 1: Dataset composition used to retrain the NN model . . . . . . . . . . . . . . . . . . 86
4.15 LP3 simulation results 1: training and validation results with TRAIN_PRIO method . . . . . . . . . 88
4.16 LP3 simulation results 1: training and validation results with VAL_PRIO method . . . . . . . . . . . 88
4.17 LP3 simulation results 2: Dataset composition used to retrain the NN model . . . . . . . . . . . . . . 89
4.18 LP3 simulation results 2: training and validation results with VAL_PRIO method . . . . . . . . . . . 90
4.19 Structure of the reinforcement learning model using in LP4 . . . . . . . . . . . . . . . . . . . . . . . . 93

129



130 List of figures

4.20 LP4 Simulation 1 results: Evolution of the EV_ACC and QoT_ERR at different milestones in the
training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.21 LP4 Simulation 1 results: Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 The sub-network transmission lines used for the optimization process . . . . . . . . . . . . . . . . . . . 104
5.2 Progressive deployment scenario - Mean SNR error progression for Line 1. . . . . . . . . . . . . . . . . 106
5.3 Progressive deployment scenario - SNR error per service for Line 1. . . . . . . . . . . . . . . . . . . . . 106
5.4 Progressive deployment scenario - Mean SNR error progression for Line 2. . . . . . . . . . . . . . . . . 107
5.5 Progressive deployment scenario - SNR error per service for Line 2. . . . . . . . . . . . . . . . . . . . . 107

6.1 Nonlinear effects in optical transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



List of tables

2.1 Comparison of papers proposing a ML model to check lightpath feasibility . . . . . . . . . . . . . . . . 33
2.2 Comparison of papers proposing a ML model to estimate a lightpath’s QoT metric . . . . . . . . . . . 34
2.3 Comparison of papers attempting to enhance analytical models through machine learning . . . . . . . 36
2.4 Comparison of papers featuring machine learning techniques for dataset management . . . . . . . . . . 38
2.5 Four levels of data features for ML-based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 List of Parameters Used to Generate the Training and Validation Datasets . . . . . . . . . . . . . . . . 53
3.2 Summary of the parameters constituting the GNPy based network state and their level of certainty . . 62

5.1 List of features extracted from the NMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Network state from extracted parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 List of monitored services in the two transmission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

131





Appendix

Optical Impairments
An optical network is composed of several nodes (optical equipment that are able to emit/receive and/or switch
optical signal) inter-connected by fibers. Once emitted by a source node, data flows travel through the optical
network without undergoing Optical-to-Electrical-to-Optical conversion at intermediate nodes, until arriving to the
destination. The path followed by the data flow is called “lightpath”. The lightpath is typically transported by one
optical wavelength. An optical fiber can multiplex more than 80 wavelengths. As optical signals traverse fiber links
and nodes, and propagate through several optical components towards their destination, they suffer from a number
of physical impairments which degrade the signal quality. These impairments affect each optical channel individually,
and they also cause disturbance and interference between co-propagating channels. In this section, we make the
inventory of the transmission impairments and the metrics to assess the quality of the optical signal.

Linear Effects
Linear effects mainly include fiber attenuation and dispersion effects.

Fiber Attenuation

Fiber attenuation measures the amount of light lost between input and output. The fiber loss along a span is given
by equation 6.1.

SL = Pin − Pout (6.1)

Where Pin and Pout present respectively the input and the output power in dBm. The attenuation coefficient
(also called lineic loss) α is a characteristic of the fiber that shows optical loss (in dB) per kilometer. The relationship
between the α and SL are given by equation 6.2, where z is the length of the span in km.

SL = z · α (6.2)

The fiber loss is compensated using amplifiers that are located in strategic points (i.e., end of spans) along a
long transmission link (e.g., several hundreds of kilometers) to restore the signal. The amplification process is done
optically without converting the signal to the electric domain. The amplifier is basically characterized by a gain G.
In the case of an amplifier i located in the end of the span i − 1 characterized by a span loss equal to SLi−1, the
gain of the amplifier Gi is given by equation 6.3.

Gi = SLi−1 + Pi − Pi−1 (6.3)
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Figure 6.1: Nonlinear effects in optical transmission

Where Pi and Pi−1 are the output power of the amplifier i and i−1 . The amplification process causes additional
noise to the signal called Amplified Spontaneous Emission (ASE) noise. The ASE noise degrades the transmission
quality (see 6.2).

Dispersion Effects

Dispersion effects are caused by a difference in propagation speed between different light components. The most
important kinds of dispersion are:

• the chromatic dispersion (CD): wavelengths of the same fiber propagate with different phase velocity,

• the polarization mode dispersion (PMD): the two different polarization of light travel in different speeds.

Dispersion is either compensated continuously throughout the line, or at reception by the DSP (Digital Signal
Processor) module.

Nonlinear Effects
Nonlinear (NL) effects are by nature much harder to predict than linear ones. Transmitting at high rates and
power levels causes multiple interference effects that stem from the variation of the fiber’s refractive index and the
interaction between optical channels. This causes multiple physical effects to manifest on the transmission line.
Figure 6.1 gives a brief inventory of optical nonlinear effects. Optical transmission is primarily affected by two types
of NLI impairments: i) the Raman scattering and ii) the Kerr effect. In [20], the mitigation of nonlinear effects has
been studied in conjecture with AI techniques.

Raman Scattering

Raman scattering involves both, Spontaneous Raman Scattering and Simulated Raman Scattering. It occurs when
several wavelengths are propagated through one fiber. The higer wavelength (the lower frequencies) can "absorb"
energy from the lower wavelength (the higher frequencies). Thus, the higher wavelengths are amplified. Microscop-
ically speaking, when a photon at energy level E1 collides with an atom of the fiber, the atom absorbs the photon,
becomes exited and emits another photon with a lower energy E2. This phenomenon causes a shift of the energy
toward lower frequencies according to the formula in 6.4.

E1 = h · f1 > E2 = h · f2 ⇒ f1 > f2 ⇒ λ1 < λ2 (6.4)

where E is the energy of the photon, h is the Planck constant and f is the frequency of the photon. Raman
scattering represented the fundamental principle of Raman amplifiers (Raman pump).
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Kerr Effects

The Kerr effect is a variation of the refractive index of the fiber due to the high power of the propagated signal. The
Kerr-nonlinearity manifests itself in three different effects : SPM, XPM and FWM.

• Self-Phase Modulation (SPM):

SPM arises due to intensity dependence of refractive index. SPM means that the light wave encounters a
nonlinear phase delay which results from its own intensity. The refractive index is intensity dependent, itself
time dependent. Thus, the refractive index is time dependent. This temporally varying index change results
in a temporally varying phase change. Let’s consider refractive index n split between a linear portion nl and
a non-linear portion nnl which is intensity I dependent as illustrate in the equation 6.5:

n(I) = nl + nnl · I (6.5)

The instantaneous phase Φ is time dependent and given by the equation 6.6.

Φ(t, Leff ) = ω0 · t−
2Π

λ
· n(I)Leff = ω0 · t−

2Π

λ
· (nl + nnlI)Leff (6.6)

where, ω0 is the carrier frequency, Leff is the effective length, n is the refractive index, I is intensity and nnl

is the non-linear refractive index.

If I is time dependent, the phase Φ will also be time dependent. In high transmitted power, the shift in
intensity causes a shift in the phase and then in the instantaneous frequency as shown in equation 6.7 :

ω(t) =
∂Φ(t, Leff )

∂t
= ω0 −

2Π

λ
· Leff · nnl ·

dI

dt
(6.7)

• Cross-Phase Modulation (XPM):

CPM is a non-linear impairment caused by the interaction of two (or more) laser pulses. It is always accom-
panied by SPM. When two or more optical pulses propagate simultaneously, the nonlinear refractive index
depends not only on the intensity of one beam but also on the intensity of the other copropagating beams.

• Four-Wave Mixing (FWM):

The FWM is an analogous to intermodulation distortion in electrical systems. The effects of FWM are
increased when channel spacing decreases. In facts, 2 or 3 wavelengths interact to generate a fourth wavelength.
That is why it is called Four-Wave Mixing. For three pulses with carrier pulsations ω1, ω2 and ω3 copropagate
inside the fiber simultaneously, a fourth will be generated at the pulsation ω4, which is related to other
frequencies by a relation, ω4 = ω1 ± ω2 ± ω3 .

GNLI Model
The Gaussian Noise (GN) model [30] is a perturbative model praised for being relatively simple while still providing
adequate results. It offers an approximate analytical solution to the Schrodinger equation. The GN model has found
great success in recent optical systems, due to the advent of Coherent-Detection and the use of uncompensated
transmission techniques, that make the model’s assumptions more plausible.

The GN model is based on three assumptions [30]:

• The nonlinear effects are small enough to be modeled as perturbations,

• The transmitted signal behaves as stationary Gaussian noise,

• The nonlinear disturbance is manifested as Additive Gaussian white noise.

This leads to multiple conclusions, namely the GN Reference Formula (GNRF) [30] in its multiple forms, that
models the power spectral density of the nonlinear effects.
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Optical Metrics

Amplified Spontaneous Emission (PASE)
It represents the power level of the noise emitted by amplifiers. It depends on the noise figure and gain levels of the
amplifier. It can be calculated at the output of each amplifier. Equations 6.8 and 6.9 calculate the linear and decibel
PASE , respectively.

PASE = NF eq · hν∆ν ·G (6.8)

PASEdbm
= NF eqdbm +Gdbm − 58 (6.9)

Where NFeq is the amplifier noise factor and G is the amplifier gain. The ASE noise is accumulated from
multiple amplifiers throughout the line.

Optical Signal to Noise Ratio (OSNR)
It represents the ratio between transmitted signal and noise generated by linear effects. Since most of the linear noise
is generated by amplifier noise, OSNR is given by equation 6.10.

OSNR =
Pch

PASE
(6.10)

Pch is the average power per channel, and PASE is the power of the Amplified Spontaneous Emission (ASE)
noise. OSNR can be measured at the receiver side using a spectrometer. It is also easy to calculate analytically in
the line when the amplifier noise factor is known.

Signal to Noise Ratio (SNR)
OSNR might be an indicator of optical quality, but it does not take into account the nonlinear effects. Instead, the
SNR, which is the signal to noise ratio, takes into accounts all the transmission impairments.

SNR−1 =
σ2
ASE

p
+ σ2

TRx + ηNL · p2 (6.11)

Where σ2
ASE , σ2

TRx and ηNL · p2 model the ASE, transceiver, and nonlinear noise, respectively. SNR cannot
be effectively measured on a spectrometer since the nonlinear (NL) noise is spectrally superimposed to the signal
spectrum. SNR can however be estimated either using a related measure eSNR [3], or by using a back to back
technique to fit SNR = f(BER) (explained further).

Taking into account the Gaussian additive nature of ASE and NLI noise, and considering transponder noise
negligible, the SNR can be expressed by equation 6.12.

SNR =
Pch

PASE + PNLI
(6.12)

PNLI represents the power of nonlinear effects. It can be expressed in function of channel power by the equation
6.13.

PNLI = Anl · P 3
ch (6.13)

Anl is a constant (in regards to power) that characterizes the non-linear nature of the transmission and depends
on multiple factors. This value can be computed using GNRF, or it can be calculated given real measurements of
SNR and OSNR through equation 6.14.
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Anl =

(
1

SNR
−

1

OSNR

)
·

1

P 3
ch

(6.14)

Bit Error Rate (BER)
It represents the number of erroneous bits per second. It is an effective measure of the quality of transmission. The
transponder can correct all errors up until a BER threshold, corresponding to the FEC (Forward Error Correction)
limit. BER can be measured at receiver before (Pre-FEC BER) or after (Post-FEC BER) performing the FEC.

Q-Factor
It represents a measure of the signal quality, and is directly linked to BER using the equation 6.15.

BER =
1

2
erfc(

Q
√
2
) ≃

1
√
2πQ

exp(
−Q2

2
) (6.15)

Q factor can be measured by the transceiver using eye diagrams. However, it is usually calculated from BER
measurements. Using a back to back technique, we can find the relationship between SNR and Q factor.
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Résumé : L'estimation de la qualité de 
transmission (QoT) des chemins optiques est 
cruciale dans la conception du réseau et le 
provisionnement des services. Des études 
récentes se sont tournées vers les techniques de 
l'intelligence artificielle (IA) pour améliorer la 
précision de l'estimation de la QoT, en utilisant 
les données générées par le réseau optique. 
Nous distinguons quatre catégories de solutions. 
La première catégorie consiste à construire un 
modèle d’IA pour vérifier la faisabilité d'un 
chemin optique. La deuxième catégorie vise à 
proposer des modèles basés sur l'IA pour 
remplacer les modèles analytiques. La troisième 
catégorie utilise l'IA pour améliorer les 
performances des modèles d'estimation de la 
QoT en réduisant l'incertitude sur les paramètres 
d'entrée. La dernière catégorie consiste à 
améliorer les performances et la capacité de 
généralisation des solutions à base d'IA en 
améliorant les échantillons des jeux de données 
dans la phase d'apprentissage grâce à des 
techniques d'apprentissage par transfert. 
Les modèles d'estimation de la QoT peuvent 
constituer un module dans le Digital Twin du 
réseau optique, visant à simuler l'impact d'une 
nouvelle configuration sur la performance du 
réseau avant la phase de déploiement. 
Cependant, ces modèles requirent une 
connaissance parfaite de l'état du réseau, 
représenté à partir d’un ensemble de paramètres 
optiques ayant des valeurs qui peuvent être 
certaines ou incertaines. Les mesures de 
performance collectées par le contrôleur 
peuvent représenter un feedback sur la précision 
de l'estimation de la QoT, ce qui peut 
déclencher des algorithmes à base de machine 
learning pour raffiner les valeurs des paramètres 
incertains. Dans cette thèse, nous étudions le 
problème d'incertitude des paramètres, et nous 
proposons trois approches pour améliorer la 
QoT dans ce cas. Nous proposons pour chaque 
approche un certain nombre de processus 
d'apprentissage  

et nous testons leurs performances avec des 
données de simulation et des données collectées 
à partir du réseau opérationnel.  
La première approche se base sur l'optimisation 
des paramètres du réseau en utilisant l'erreur 
dans l'estimation de la QoT comme fonction 
d'objectif. Nous implémentons cette approche 
avec deux processus d'apprentissage, le premier 
basé sur un modèle analytique (GNPy) et le 
deuxième sur un modèle à base de machine 
learning (réseau de neurones). Cette approche 
arrive à minimiser l'erreur d'estimation jusqu'à 
0~dB pour des configurations de réseau où le 
modèle a été déjà entraîné, et atteint une erreur 
d'estimation de 0.3~dB sur des nouvelles 
configurations. 
Dans la deuxième approche, nous ré-entraînons 
un modèle basé sur un réseau de neurones pour 
l'adapter à l'incertitude des paramètres en 
utilisant l'apprentissage par transfert. Nous 
montrons que le modèle peut apprendre un 
nouveau comportement sans optimiser les 
paramètres incertains. Nous arrivons à une 
erreur de validation de 0.5~dB avec seulement 
dix nouveaux échantillons. 
La dernière approche consiste à détecter les 
changements de paramètres en réponse à un 
événement de panne en utilisant des techniques 
d’apprentissage par renforcement. Nous 
considèrons deux types de pannes, et nous 
montrons que le modèle atteint une précision de 
classification de 93\% dans une petite topologie. 
Enfin, nous appliquons la première approche 
basée sur l'optimisation Bayésienne pour 
raffiner les paramètres du réseau sur des 
données collectées à partir d’un réseau 
opérationnel. Nous extrayons les données à 
partir de l'interface nord du contrôleur, et nous 
construisons l'état du réseau selon le modèle de 
donnée d’entrée de GNPy. En appliquant notre 
processus d'apprentissage sur deux lignes de 
transmission, nous constatons une réduction 
d’erreur qui atteint 1.7~dB sur les services 
monitorés. 
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Abstract: Estimating lightpath Quality of 
Transmission (QoT) is crucial in network 
design and service provisioning. Recent studies 
have turned to artificial intelligence (AI) 
techniques to improve the accuracy of QoT 
estimation using the data generated by the 
operational network. We distinguish four 
categories of solutions. The first category 
consists of building AI models to check the 
feasibility of a lightpath. The second category 
aims to predict the exact QoT performance in 
order to compete with analytical models. The 
third category uses AI to improve the 
performance of QoT estimation models by 
reducing the uncertainty on input parameters. 
The last category consists of improving the 
performance and generalization ability of AI-
based solutions by retraining the models using 
the least amount of training samples through 
transfer learning techniques. 
 
QoT models can act as part of the digital twin 
of the operational network by simulating the 
impact of new network configurations before 
deploying them. However, they require a 
perfect knowledge of the network state, 
consisting of a set of optical parameters that 
have different levels of uncertainty. Using the 
QoT measurements collected by the network 
controller, we can have a feedback about the 
QoT estimation inaccuracy, which can 
potentially be addressed using ML based 
techniques. In this thesis, we study this issue of 
uncertainty in network parameters and consider 
three approaches that can improve the QoT 
estimation in this case. We propose different 
learning processes in each approach, and test 
their performance using simulation and real 
data. 
 

The first approach relies on optimizing the 
network parameters using the QoT estimation 
error as an objective function. We apply this 
approach through two learning processes to 
target QoT estimation tools based respectively 
on analytical model (GNPy) and Machine 
Learning (neural network). This approach can 
minimize the SNR estimation error to close to 
0~dB on already trained network configuration, 
and reaches 0.3~dB estimation error on unseen 
network configurations.  
 
In the second approach, we retrain a neural 
network based model to adapt it to changes in 
QoT due to parameters uncertainty through 
Transfer Learning. We show how the model 
can relearn the new behavior of the network 
without searching for the correct values of the 
network parameters. We can reach up to 
0.5~dB in validation error with only ten new 
training samples. 
 
The last approach consists of detecting 
parameter changes in response to failure events 
using reinforcement learning techniques. We 
consider two types of failure events. We show 
that the model can correctly classify the events 
with up to 93\% of accuracy in small network 
topologies.  
 
Finally, we apply the first approach based on 
Bayesian Optimization algorithm to refine 
network parameters using data collected from a 
live network. We use data extracted from the 
north-bound interface of the network controller 
to build a network state based on the input data 
model of GNPy. Then, we apply our learning 
process on two transmission lines, which led to 
SNR estimation improvement up to 1.7~dB for 
the monitored services.  
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