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RÉSUMÉ EN FRANÇAIS

Introduction

Historiquement, le domaine de la robotique a été d’un intérêt particulier pour les
applications de sûreté, de sécurité et de sauvetage en raison de l’utilité des robots qui
peuvent remplacer ou compléter les humains dans les opérations dangereuses, atteindre
des endroits inaccessibles, manipuler des objets avec précision et collecter des informations.
Ils sont ainsi particulièrement appréciés pour les applications de recherche et de sauvetage
en milieu urbain (USAR). Dans ce genre de situation d’urgence, la cartographie 3D de
l’environnement et la navigation autonome sont des éléments cruciaux des missions de
reconnaissances. Ils permettent aux opérateurs d’optimiser leur déploiement en localisant
des zones de dangers, en planifiant leur itinéraire, et en identifiant des zones prioritaires
d’interventions.

L’utilisation des drones aériens, et plus précisément des quadricoptères, présente un
avantage majeur pour ces cas d’usage. Ce type de plateforme est moins coûteuse, plus
légère, facilement déployable, et permet une plus grande manœuvrabilité, notamment en
environnement intérieur. Cependant, le contrôle de ces drones requiert généralement la
mobilisation d’un pilote expérimenté. Ainsi, la navigation autonome pourrait permettre
de rendre plus accessible l’utilisation des drones pour ce type d’usage. Cela soulagerait
également la charge cognitive des opérateurs en leur permettant de se concentrer davan-
tage sur l’analyse des scènes explorées et le contrôle de plusieurs drones. La navigation
autonome requiert trois fonctionnalités clés : la localisation, la cartographie, et la
planification de trajectoire. Cette thèse aborde essentiellement les deux premières fonc-
tionnalités. En effet, la localisation est nécessaire pour estimer la trajectoire du drone et
la pose des capteurs vis-à-vis de la scène visionnée. La cartographie permet quant à elle
de construire une représentation virtuelle de l’environnement où le drone navigue. Pour
permettre la navigation et l’évitement d’obstacles, la carte reconstruite doit être dense,
métrique (c’est-à-dire avec l’échelle absolue), et construite en temps-réel.

Le SLAM (Simultaneous Localization And Mapping) est l’approche la plus pertinente
pour cette tâche. Tandis que plusieurs capteurs peuvent être considérés, les travaux de
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cette thèse se restreignent à l’utilisation d’une caméra monoculaire et d’une centrale in-
ertielle (IMU). En effet, cette combinaison de capteurs est relativement simple à mettre
en œuvre et permet de minimiser les contraintes classiques en embarqué (taille, poids,
consommation et coûts). L’utilisation d’une centrale inertielle accroît également la ro-
bustesse des systèmes de SLAM et permet d’obtenir une information métrique. Toutefois,
l’incapacité à percevoir la profondeur à partir d’une caméra monoculaire, aussi connue
sous le nom d’ambiguïté d’échelle, rend l’initialisation du SLAM plus difficile et la car-
tographie éparse.

La recherche sur le SLAM est assez mature, et a jusqu’à lors été majoritairement
concentrée sur la robustesse et la précision de la tâche de localisation. Les méthodes
de SLAM visuel conventionnelles à l’état-de-l’art sont capables de précisément estimer la
trajectoire et de construire une carte non-dense en temps-réel. Leur robustesse et précision
ont été démontrées sur plusieurs jeux de données d’évaluations. Cependant, elles n’ont
pas été testées de façon exhaustive sur des conditions plus spécifiques, communes à la
navigation de drone, comme les vitesses extrêmes ou les grands changements de luminosité,
et particulièrement en configuration monoculaire.

Récemment, il y a eu un intérêt grandissant pour la densification du SLAM monocu-
laire grâce à l’émergence de la prédiction de profondeur monoculaire basée sur l’apprentissage
profond. Ces approches reposent majoritairement sur des méthodes de SLAM monoculaire
pures sans information métrique. Ainsi, elles se concentrent sur la reconstruction 3D pré-
cise sous forme de modèle 3D dense, généralement avec une échelle relative. Quelques tech-
niques denses et métriques ont été proposées grâce à l’utilisation du SLAM monoculaire-
inertiel, ce qui a permis d’obtenir les meilleures performances dans ce domaine. Toutefois,
la plupart de ces travaux utilisent une stratégie multi-vues et de grosses architectures de
réseaux de neurones, ce qui limite leur potentielle application sur des systèmes embar-
qués. De plus, l’utilisation de l’apprentissage supervisé contraint également les capacités
de généralisation de ces méthodes sur de nouveaux environnements.

Dans le cadre de cette thèse, nous nous concentrons sur la navigation des drones en
intérieur, où une représentation 3D grossière mais métrique est suffisante pour éviter les
obstacles. Cette tâche ne requiert pas de modèle 3D de haute résolution. En effet, une
carte d’occupation sous forme de voxel est suffisante et optimale. Cette contrainte, moins
stricte, ouvre la voie à des approches plus légères pour obtenir une cartographie 3D dense,
métrique et en temps réel en densifiant le SLAM monoculaire-inertiel. Ainsi, l’objectif de
cette thèse est la cartographie 3D de scènes intérieures à partir d’un drone léger équipé
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d’une caméra monoculaire dans le cadre d’opérations USAR. Nous concentrons notre
étude sur la densification du SLAM monoculaire-inertiel dans ce contexte spécifique et
adressons les questions de recherches suivantes :

— Dans quelle mesure le SLAM visuel peut-il être appliqué à la navigation
des drones dans des conditions difficiles ?
Dans le but d’identifier une méthode de base pour nos travaux, nous présentons
une évaluation de plusieurs algorithmes de SLAM visuel à l’état-de-l’art dans des
conditions de hautes vitesses et de changements de luminosité importants.

— Comment réaliser une densification du SLAM monoculaire à l’échelle
métrique en temps réel sur un système embarqué ?
Nous introduisons un processus permettant de densifier un système de SLAM monoculaire-
inertiel grâce à la prédiction de profondeur monoculaire. Le système ayant pour
objectif la reconstruction d’une carte 3D dense et métrique sous forme de voxel fa-
vorisant de futures applications de navigation et d’évitement d’obstacle depuis une
plateforme embarquée.

— Comment combiner la profondeur métrique et éparse du SLAM pour
retrouver l’échelle absolue d’une carte de profondeur dense prédite ?
Intégré dans le processus précédent, nous proposons une approche découplée per-
mettant de retrouver l’échelle absolue d’une carte de profondeur dense prédite par
un réseau de neurones profond à partir des estimations de profondeurs du SLAM,
tout en minimisant l’impact sur le SLAM de base utilisé. La carte de voxels est con-
struite de façon itérative à partir des cartes de profondeurs corrigées, et une fusion
multi-vues volumétrique.

État de l’art en matière de densification du SLAM

Le SLAM visuel conventionnel repose essentiellement sur des fondations de la géométrie
multi-vue. Il est généralement représenté sous la forme d’un problème d’optimisation de
graphe de pose, où le nombre de variables croit avec le nombre de points dans la carte.
Etant donné les objectifs initiaux de localisation précise et de temps-réel, la majorité des
travaux ont adoptés une cartographie non-dense. Ce choix ayant permis d’adresser la plu-
part des défis associés à la localisation avec l’implémentation de méthodes plus robustes
(ORB-SLAM 3 [1], Basalt [2]), démontrés sur des jeux de données standards (EuRoC [3],
TUM-VI [4], KITTI [5]). Concernant les méthodes denses, elles ont jusqu’alors étaient
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principalement limitées par leur complexité, notamment en configuration monoculaire.

Toutefois, l’émergence récente de l’apprentissage profond a permis un regain d’intérêt
pour le SLAM dense monoculaire. En effet, l’approche typique pour densifier le SLAM con-
siste à intégrer un réseau de neurones profond pour prédire une carte de profondeur dense.
Jusqu’à présent, l’objectif principal de ces recherches a été le reconstruction 3D dense sous
forme de modèle 3D de haute qualité. Ainsi, la plupart des solutions reposent sur un SLAM
monoculaire pur, sans échelle absolue. Aussi, alors que plusieurs métriques d’estimation
de profondeur sont utilisées, il n’y a pas de processus et de métriques d’évaluation stan-
dardisées. Etant basé sur l’apprentissage profond, ces méthodes requièrent des ressources
de calculs conséquentes qui semblent peu adaptées aux applications embarquées. De plus,
l’utilisation de l’apprentissage supervisé implique également une limitation des capac-
ités de généralisation. Aujourd’hui, CodeMapping [6] et CodeVIO [7] sont les méthodes à
l’état-de-l’art, basées sur un SLAM monoculaire-inertiel et atteignant d’excellent résultats
de cartographie. Cependant, leur code n’a pas été rendu publique.

La prédiction de profondeur monoculaire a donc été un levier majeur pour la densifica-
tion. Ce sujet de recherche a été très largement adressé, en particulier pour les applications
de voitures autonomes. A partir d’une image monoculaire, une carte de profondeur dense
est prédite à un facteur d’échelle près. La principale approche repose sur l’apprentissage
supervisé, où un modèle est entraîné à partir d’une grande quantité de données annotées.
Toutefois, la collecte d’images avec la vérité-terrain de profondeur est très difficile. La
principale alternative utilise l’apprentissage supervisé. Basée sur la géométrie multi-vue,
il est possible d’entraîner le modèle sans vérité-terrain, à partir de plusieurs images d’une
même scène sous différents points de vue et où les poses relatives sont connues. Cette ap-
proche, typiquement moins précise, tend à fournir de meilleure capacité de généralisation.
PackNet-Sfm [8] est l’une des meilleures de cette catégorie, qui prétend même prédire
l’échelle absolue grâce à une supervision de la vélocité. Très récemment, l’intégration des
Transformers sur les approches supervisées a permis d’améliorer la précision mais surtout
les capacités de généralisation. ZeroDepth [9] est l’une de ces méthodes qui atteint au-
jourd’hui les meilleures performances.

Pour nos expérimentations, nous avons choisi d’utiliser plusieurs bases de données.
EuRoC [3] est un choix classique contenant des séquences collectées dans des scènes in-
térieures relativement petites. UZH-FPV [10] est un jeu de données contenant des images
capturées depuis un drone à haute vitesse et contenant des mouvements agressifs. HILTI
[11] est une base de données collectées dans des environnements intérieurs assez grands,

9



et contenant quelques séquences avec de forts changements de luminosité. Pour évaluer
nos travaux, nous utilisons les métriques classiques d’estimation de pose et d’estimation
de profondeur.

Du SLAM épars au SLAM dense pour la navigation de drones
en intérieur

Le SLAM est devenu la méthode privilégiée pour effectuer les tâches de localisation
et de cartographie essentielles à la navigation autonome des drones. Toutefois, lorsqu’elle
repose sur une configuration monoculaire-inertielle, elle se limite à des méthodes éparses
moins complexes pour atteindre une performance en temps réel.

Architecture du système de navigation

Alors que la cartographie dense tend à complexifier les solutions, nous proposons une
approche découplée visant à minimiser l’impact sur la vitesse du SLAM épars de base.
Le système proposé repose sur une architecture classique où les différentes tâches sont
parallélisées sur CPU. Ainsi, plusieurs études ont analysé les performances de ces algo-
rithmes sur des plateformes embarquées, démontrant leur efficacité. En particulier, on
observe l’utilisation négligeable du GPU par ces algorithmes. De plus, les systèmes em-
barqués modernes montrent une amélioration constante des capacités de leurs processeurs
graphiques pour l’apprentissage profond au fil des ans. Tous ces éléments nous confortent
dans l’idée que l’utilisation d’un réseau de neurones peut être envisagée pour la densifi-
cation du SLAM monoculaire et de futures applications de navigation de drone.

L’architecture proposée consiste donc à ajouter un processus de densification de la
carte qui fonctionne à la fréquence des images clées. Cette fréquence est plus faible car les
images clées sont sélectionnées lorsqu’un changement de point de vue suffisant est détecté.
Pour chaque image clée, un réseau neuronal prédit une carte de profondeur dense, qui est
ensuite combinée avec les points triangulés par le SLAM pour améliorer sa précision et
en particulier pour assurer une échelle métrique. Enfin, la carte des voxels est mise à jour
par projection de rayons en utilisant la carte de profondeur corrigée et la pose estimée
par le SLAM. L’utilisation d’une grille d’occupation sous forme d’une carte de voxels
est optimale pour sa construction et sa mise à jour, son stockage, et pour l’évitement
d’obstacles.

Pour la cartographie 3D, une estimation robuste et précise de la trajectoire est es-
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sentielle, car les points triangulés sont projetés à partir des poses estimées de la caméra.
Il est donc essentiel pour notre système de sélectionner une méthode de SLAM de base
suffisamment performante. C’est pourquoi nous présentons une évaluation exhaustive des
performances de localisation de plusieurs algorithmes de SLAM visuel à l’état-de-l’art.
Nous avons choisi ORB-SLAM 3 MI (Monoculaire-Inertiel) parmi les méthodes monocu-
laires conventionnelles car elle les surpasse de loin. Pour référence, nous avons également
étudié les solutions Basalt [2], Kimera [12] et ORB-SLAM 3 [1] en configuration stéréo-
inertielle.

Évaluation du SLAM épars

Toutes ces méthodes ont déjà été testées par leurs auteurs sur la base de données
EuRoC [3]. Nous avons donc d’abord vérifié si nous pouvions reproduire correctement
les résultats publiés. Dans l’ensemble, nous avons obtenu des résultats très similaires, à
l’exception de Kimera, qui s’est avérée incorrecte sur quelques séquences difficiles avec
des conditions d’éclairage très faibles. Sur ces scènes particulières, nous avons pu observer
la résilience des autres méthodes dans de telles circonstances. Cela est principalement dû
à leurs procédures respectives de détection et d’appariement des points caractéristiques,
qui sont beaucoup plus robustes. D’autre part, nous avons également observé un retard
dans l’initialisation d’ORB-SLAM 3, en particulier sur les scènes difficiles.

Le jeu de données suivant, UZH-FPV [10], contient des séquences avec des mouvements
extrêmement rapides. Il a été collecté dans deux configurations différentes, l’une avec la
caméra orientée vers l’avant et l’autre vers le bas. La première configuration correspond
mieux à notre contexte d’application. Basalt ayant déjà été configuré par ses auteurs pour
ces données, elle atteint une excellente robustesse et de très bons résultats compte tenu
de la vitesse et des longues trajectoires impliquées. Cependant, l’estimation de l’échelle
dans de telles conditions présente quelques lacunes. De façon générale, ORB-SLAM 3
obtient de meilleurs résultats, en particulier dans la configuration monoculaire-inertielle.
En revanche, nous n’avons pas pu obtenir de résultats satisfaisants pour Kimera, qui a
eu des difficultés à estimer l’échelle ou certains mouvements. Globalement, les séquences
considérées contenaient des flous de mouvement et des décalages importants dans les
images successives. Pour référence, nous avons également analysé les séquences avec la
caméra pointant vers le sol. Si les résultats pour Basalt sont cohérents avec nos observa-
tions précédentes, les résultats pour Kimera et ORB-SLAM 3 ne sont pas concluants. En
réalité, ORB-SLAM 3 n’a pas réussi à s’initialiser ou a perdu le fil dans la plupart des
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séquences. Ces scènes présentent des complexités supplémentaires, telles que la prédomi-
nance de textures uniformes.

Enfin, nous avons utilisé la base de données HILTI [11], qui contient de grandes
scènes d’intérieur. Il s’agit notamment de scènes comportant de longs couloirs et de
grands changements d’éclairage. Malheureusement, nous n’avons pas été en mesure de
présenter des résultats pour les solutions stéréo-inertielles. Cependant, nous avons ob-
servé d’excellentes performances pour ORB-SLAM 3 MI dans la plupart des séquences,
même dans des conditions d’éclairage difficiles.

Nos expériences montrent que ORB-SLAM 3 dans une configuration monoculaire-
inertielle émerge comme une base prometteuse pour la navigation des drones. Elle a dé-
montré des performances compétitives sur l’ensemble de données sélectionné, avec de
grande vitesse et dans des conditions d’illumination variables, surpassant même parfois
les méthodes stéréo-inertielles. Cependant, la solution requiert un paramétrage minutieux,
une calibration précise, et rencontre des difficultés sur les images sans textures. Cela tend
à créer des retards d’initialisation, notamment lors de faibles mouvements. Basalt a dé-
montré une grande robustesse dans toutes les séquences, mais a eu du mal à estimer avec
précision l’échelle et a parfois mal estimé les rotations dans des scénarios de mouvement
agressifs, ce qui a entraîné une dérive notable dans les estimations de certaines trajectoires.
Kimera a montré des difficultés à estimer avec précision les différents mouvements, bien
que ses résultats pourraient être améliorés avec un meilleur ajustement des paramètres.

Densification du SLAM monoculaire

En s’appuyant sur le système présenté précédemment et sur la méthode de SLAM
sélectionnée (ORB-SLAM 3 [1]), nous introduisons un processus de récupération d’échelle
qui combine les résultats du SLAM épars avec la carte de profondeur dense prédite par
un réseau de neurones profond. Ce travail est évalué et comparé aux méthodes existantes.
En outre, une présentation des résultats initiaux de la construction de la carte de voxels
est fournie pour illustrer la mise en œuvre complète du système proposé.

Estimation de profondeur dense et métrique découplée : récupération d’échelle

Dans le système proposé, nous incorporons un modèle à l’état-de-l’art pour prédire
une carte de profondeur dense à partir d’une image monoculaire. PackNet-Sfm [8] est un
modèle entraîné sur des scènes extérieures, tandis que ZeroDepth [9] fut également en-
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traîné sur de petits espaces intérieurs. Notre cas d’utilisation comporte de grands environ-
nements intérieurs. Bien que ces méthodes affirment estimer l’échelle absolue et affichent
des capacités de généralisation prometteuses, étant donné que le changement de domaine
avec nos données peut être significatif, nous nous attendons à ce que l’échelle ne soit pas
exactement métrique, mais au moins consistante.

Par conséquent, dans une deuxième phase, nous proposons de récupérer l’échelle
métrique à partir de la profondeur éparse triangulée par le SLAM. Notre approche re-
pose sur l’hypothèse d’échelle consistante, ce qui signifie que la carte de profondeur dense
est prédite jusqu’à un facteur d’échelle globale. La plupart des travaux connexes utilisent
l’approche d’échelle médiane pour retrouver le facteur global. Ces méthodes s’appuient
sur les points de profondeur de la vérité terrain, généralement des nuages de points Li-
DAR. Dans notre contexte, nous disposons uniquement des points triangulés par le SLAM
dans une quantité extrêmement faible. La méthode de la médiane devient donc moins fi-
able pour les petits ensembles de données où la variance peut être élevée et les valeurs
aberrantes plus impactantes.

Par conséquent, pour tenir compte du faible nombre de points et de leur variabilité
potentielle, nous suggérons d’estimer le facteur d’échelle global en minimisant l’erreur
quadratique relative entre les points estimés par le SLAM et les points correspondants
prédits par le réseau de neurones. Notre proposition repose sur l’observation que les points
estimés par le SLAM sont relativement précis, avec une faible erreur de reprojection
moyenne, ce qui en fait une bonne source pour retrouver le facteur d’échelle. L’efficacité
de notre approche pour la récupération d’échelle métrique est démontrée à travers une
analyse quantitative et qualitative des résultats. Bien que notre solution ne surpasse pas
les meilleures méthodes de densification du SLAM monoculaire, elle s’en approche très
fortement en s’appuyant sur une procédure moins complexe. D’autre part, nous avons
également observé certaines limites des modèles de prédiction de profondeur, avec des
résultats parfois bruités ou inconsistants, sur des objets fins ou lorsque le changement de
domaine semblait trop important.

Construction de la carte de voxels

L’approche présentée plus tôt repose sur l’utilisation d’une vue unique. Pour la car-
tographie 3D, l’utilisation de techniques multi-vues permet de grandement améliorer les
résultats. Une première catégorie d’approches consiste à fusionner plusieurs images d’une
même scène sous différents points de vue afin d’améliorer la prédiction de carte de pro-
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fondeur. L’autre catégorie s’appuie sur la fusion de cartes de profondeur pour améliorer la
qualité de la carte 3D reconstruite. Ici, contrairement à la majorité des travaux existants
pour la densification du SLAM monoculaire, nous ne souhaitons pas reconstruire un mod-
èle 3D de haute qualité. Au contraire, nous choisissons d’intégrer une solution existante
de construction de carte de voxels par projection de rayons. Cette technique exploite des
cartes de profondeur dense dont la pose est connue afin de construire la carte de façon
itérative. Lors de la projection de rayon, chaque voxel traversé est mis à jour, en ajustant
son poids et sa distance à la surface la plus proche. Il en résulte une fusion volumétrique
des cartes de profondeurs.

Bien que des méthodes d’évaluation de carte de voxels existent, aucune n’a encore été
appliquée au SLAM monoculaire. Nous avons donc évalué qualitativement notre chaîne
complète de cartographie 3D sous forme de voxels en la comparant à une méthode de
référence basée sur la vision stéréo.

Nous expérimentons notre système sur les données EuRoC [3] pour une cartographie
relativement fine, avec une largeur de voxels de 100 mm. Globalement, notre approche dé-
montre une capacité à reconstruire une carte 3D dense de la pièce, avec l’échelle métrique,
et sans vérité terrain. En comparaison avec les résultats de la référence stéréo, notre méth-
ode semble couvrir davantage d’espace. Toutefois, notre carte est plus grossière et certains
détails ne sont pas correctement cartographiés, en particulier sur les contours et les objets
minces. Cela est principalement dû aux prédictions bruitées de la carte de profondeur
et au fait que nous nous appuyons sur un nombre plus faible d’images, ce qui fait que
certains endroits sont moins couverts. Ainsi, cela traduit une forte dépendance de notre
système sur la qualité de la prédiction de profondeur.

La construction itérative et la fusion multi-vues volumétrique doivent permettre de
mitiger les effets des prédictions bruitées ou aberrantes. L’utilisation de voxels plus grands
(200 mm) permet d’atténuer ces effets en augmentant le nombre de points les plus proches
qui sont moyennés. Néanmoins, il en résulte une carte plus grossière et un espace navigable
plus restreint.

Conclusion et perspectives

Cette thèse a exploré la densification du SLAM monoculaire pour la cartographie 3D
en temps réel, dense et métrique, cruciale pour la navigation autonome des drones dans
les environnements intérieurs, en particulier dans des scénarios USAR. En relevant les
défis de l’ambiguïté d’échelle et de la complexité inhérente au SLAM monoculaire, nous
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proposons un système découplé qui combine le SLAM épars avec l’estimation monoculaire
de la profondeur pour obtenir une reconstruction 3D dense et métrique sous forme de
voxels, pensée pour de futures applications en temps réel sur des systèmes embarqués.

Les approches existantes reposent principalement sur des schémas multi-vues com-
plexes ou nécessitent la vérité terrain de profondeur pour l’ajustement de l’échelle. Alors
que notre méthode exploite les ressources GPU pour la densification sans pénaliser la
fréquence du SLAM sous-jacent. Elle applique également une nouvelle procédure de récupéra-
tion d’échelle permettant d’ajuster les cartes de profondeur prédites par le réseau de
neurones à l’aide de la profondeur éparse estimée par le SLAM. Grâce à une analyse
comparative dans des scénarios difficiles spécifiques aux drones, nous avons choisi ORB-
SLAM 3 [1] comme méthode de base pour sa robustesse, malgré certaines limitations
dans l’initialisation de la centrale inertielle. Les fonctions de récupération d’échelle et de
cartographie en voxel de notre système ont été validées en intégrant différent modèles
d’estimation de profondeur monoculaire à l’état-de-l’art. Nos expérimentations ont per-
mis d’apprécier l’efficacité de notre approche qui a fourni des résultats prometteurs pour
la navigation en temps réel des drones en intérieur. Cependant, elles ont également révélé
une forte dépendance à la qualité des méthodes de SLAM et de prédiction de profondeur
dense sous-jacentes.

Ces travaux ont vocation à être améliorés, en commençant par une évaluation quanti-
tative plus approfondie. Cela requiert notamment la mise à disposition de nouveaux jeux
de données d’évaluation et d’apprentissage comportant des vérités terrains de qualité.
L’évaluation de la carte de voxels reconstruite à l’aide de métriques pertinentes perme-
ttrait de mieux mesurer les performances de notre approche. Une analyse détaillée des
temps d’exécution de la chaîne complète sur plateformes embarquées est également néces-
saire pour juger de l’applicabilité de la solution sur des systèmes réels. L’utilisation d’une
approche couplée est une autre perspective de recherche qui permettrait d’exploiter les
capacités des réseaux de neurones pour modéliser la relation entre une image monoculaire
et les estimations du SLAM, afin de directement prédire une carte de profondeur dense
et métrique. D’autre part, la construction de la carte de voxels pourrait être améliorée
en ajustant la fonction de projection de rayons afin qu’elle considère l’incertitude des
prédictions pour pondérer l’influences des points et minimiser la propagation des erreurs.
Finalement, la carte 3D dense reconstruite pourrait être exploitée afin d’améliorer les
performances de localisation du SLAM, notamment pour l’initialisation des points et la
robustesse sur les images sans texture.
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GLOSSARY

ATE Absolute Trajectory Error. A metric used to measure the absolute accuracy of
SLAM trajectory estimation. ATE quantifies the difference between the estimated
and ground truth trajectory. 80

BA Bundle Adjustment. A technique in computer vision and photogrammetry used to
refine the parameters (such as camera poses and 3D points) of a 3D reconstruc-
tion model to minimize the error between the observed and projected 2D points in
images. It is commonly employed in Structure-from-Motion (SfM) and multi-view
stereo (MVS) pipelines to improve the accuracy of 3D reconstructions from multiple
images. 56

CNN Convolutional Neural Network. A type of deep neural network designed for pro-
cessing structured grid data, such as images and video. CNNs are commonly used
in image recognition and computer vision. 69

CVAE Conditional Variational Auto-Encoder. An extension of the standard VAE that
incorporates conditional variables into the architecture. This enables the model to
generate data conditioned on certain attributes, making it more versatile for tasks
like conditional data generation, where the output is guided by specific input con-
ditions. 70

DNN Deep Neural Network. A type of artificial neural network with multiple layers
(deep architecture). DNNs are often used in machine learning and deep learning
tasks, including image and speech recognition. 43

ESDF Euclidean Signed Distance Function. A variant of the signed distance function
that calculates the Euclidean distance of each point in the map to the closest ob-
stacle. This function is particularly useful for path planning and navigation tasks in
robotics. 94

GNSS Global Navigation Satellite System. A satellite-based navigation system that pro-
vides geolocation and time information to GPS receivers. Examples include GPS
(Global Positioning System) and GLONASS. 34
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Glossary

GPU Graphics Processing Unit. A specialized electronic circuit designed to accelerate
the processing of images and videos. GPUs are commonly used in graphics rendering
and machine learning tasks. 38

IMU Inertial Measurement Unit. A device that measures and reports a body’s specific
force, angular rate, and sometimes the magnetic field surrounding the body. IMUs
are often used in robotics, navigation, and control systems. 37

LiDAR Light Detection and Ranging. A remote sensing technology that uses laser light
to measure distances and create detailed 3D maps of objects and environments.
LiDAR is used in various applications, including autonomous vehicles and mapping.
40

MDE Monocular Depth Estimation. A computer vision task that involves estimating the
depth or distance of objects in a scene using a monocular camera. Monocular depth
estimation is important for various applications, including autonomous navigation
and 3D scene understanding. 43, 47

RMSE Root Mean Square Error. A statistical measure of the difference between pre-
dicted values and observed values. RMSE is commonly used to evaluate the accuracy
of predictive models, with lower RMSE values indicating better model performance.
81

RPE Relative Pose Error. A metric used to measure the relative accuracy of pose estima-
tion in computer vision and robotics. RPE quantifies the difference in pose between
consecutive time steps or between two poses in a sequence. 80

SLAM Simultaneous Localization and Mapping. A technique used in robotics and com-
puter vision to create and maintain a global map of an environment while simulta-
neously tracking the location of a sensor within that environment. 28, 39, 41

SoM System on Module. A small, integrated computing module that contains essential
components of a computer system, often used in embedded and IoT (Internet of
Things) applications. 38

TSDF Truncated Signed Distance Function. A representation in 3D reconstruction and
mapping, where each voxel in a grid contains a truncated distance to the nearest
surface. This function is useful in scenarios like robotic mapping and 3D scene
reconstruction. 67, 94, 124
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Glossary

UAV Unmanned Aerial Vehicle. A type of aircraft that operates without a human pilot
onboard. UAVs are commonly used for various applications, including aerial surveil-
lance, photography, and remote sensing. 31

UGV Unmanned Ground Vehicle. A robotic vehicle that operates on land without the
need for a human driver. UGVs are used in tasks such as autonomous exploration,
reconnaissance, and search and rescue missions. 36

USAR Urban Search and Rescue. A specialized task that involves the location, extrac-
tion, and medical treatment of individuals trapped in urban or disaster-stricken
environments. USAR teams often use advanced technology and equipment, includ-
ing robots. 31

VAE Variational Auto-Encoder. A type of generative model that leverages deep learning
and variational Bayesian methods to learn latent representations of input data.
Unlike traditional auto-encoders, VAEs introduce probabilistic constraints on the
encoding process, enabling them to generate new data samples that resemble the
input data. 70

VIO Visual-Inertial Odometry. An extension of VO technology that combines visual and
inertial sensor data to estimate the motion and position of a device or vehicle. The
use of an IMU increases robustness and accuracy and also provides metric scale. 39

ViT Vision Transformer. A type of neural network model that applies the transformer
architecture, originally designed for natural language processing tasks, to image
analysis. ViTs divide an image into patches and process these through a series of
self-attention mechanisms, enabling the model to focus on different parts of the
image and understand the global context better. 76

VO Visual Odometry. A method used to estimate the motion and trajectory of a sensor or
vehicle by analyzing sequential images. It typically builds a local map to determine
relative motion, focusing on local consistency. 21, 63
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Chapter 1

INTRODUCTION

The use of drones has attracted considerable interest in recent years, be it for personal
or professional use. Their ease of use and deployment make them indispensable resources
for safety, security, and rescue. Despite advances in drone control that facilitate their
operation, safe navigation in the presence of obstacles is not always guaranteed, especially
in indoor environments. Therefore, it is still necessary to mobilize a certified pilot for each
intervention.

In this context, autonomous or semi-autonomous navigation is a key functionality that
is highly desired in this sector. In parallel, 3D mapping can facilitate navigation whilst
offering insights into the structure of the operational theatre. Several approaches exist to
map the environment, plan the drone trajectory, and avoid obstacles. In practice, however,
they are complex to implement, especially onboard, with limited resources, or in highly
adverse conditions. Improving 3D perception in an embedded context would therefore
enhance operational control of one or more Unmanned Aerial Vehicles (UAVs) in first
responder or military operations and provide additional intelligence for intervention.

1.1 Specifics of autonomous indoor drone navigation

Historically, the field of Robotics has been of particular interest for safety, security,
and rescue applications due to the expendability of robots that can replace or complement
humans in hazardous operations, reach inaccessible places, handle objects with precision,
and collect information [13], [14].

In particular, Urban Search And Rescue (USAR) applications are of particular interest.
In the context of a specialized emergency response, the focus is on rescuing individuals
trapped or injured in urban environments following disasters or emergencies. USAR teams,
comprising trained experts and specialized equipment aim to locate survivors, provide
medical assistance, and ensure their safe evacuation from collapsed structures or hazardous
situations. Collaborating with various agencies, USAR operations require specialized skills
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and technological support, including drones, to overcome challenges such as unstable
structures, limited access, and time-sensitive searches, all in the pursuit of saving lives
and providing critical assistance during crisis situations. Several studies reviewed these
aspects of the applications of robots and especially drones for USAR [13]–[17].

Safety and security use cases may involve tactical criteria, such as discretion or high
resilience, that impose additional constraints. Autonomous navigation and 3D mapping
in military drones can serve surveillance and reconnaissance missions [13], [18]–[20]. They
can provide perimeter security and patrolling, support search and rescue operations by
covering large areas to locate personnel, facilitate route clearance in hazardous areas, and
enhance counter-IED operations by identifying and eliminating potential threats. Overall,
this contributes to improving tactical flexibility, situational awareness, and risk reduction
in military operations.

The French group Thales is a major actor in various fields, including aerospace, de-
fense, and security. The company, which is supporting this research, has been involved
in several works related to drones, illustrating their usefulness in various domains. To
address the potential risks associated with drone operations, Thales has developed a com-
prehensive guideline to help operators assess risk and comply with European regulations
[21]. Products in the Thales ScaleFlyt line [22] are designed to enhance operations safety
with features such as antijamming and geocaging. The BlueSwarm system introduces a
novel counter-UAV approach to automatically and autonomously manage drone threats
by detecting intrusions and executing countermeasures in real-time [23]. Besides its ex-
isting solutions for long-range surveillance [20], Thales is also exploring smaller drones,
especially for first responder applications, as demonstrated by several research projects
[24]–[27]. A notable project closely related to this thesis is Prometheus (illustrated in Fig-
ure 1.1), which focuses on autonomous drones for underground exploration and mapping,
essential for ensuring safety in underground environments such as railway systems [28],
[29].

In fact, among robotic platforms, drones were quickly adopted for their ease of de-
ployment, low cost, and versatility [17], [30]. Nevertheless, in the beginning, controlling a
drone was not a trivial task and required a trained pilot. Since then, navigation assistance
has reached a level of maturity where drones (especially multi-rotor drones) have become
widely available in the consumer market. Manufacturers, such as DJI and Parrot, have
released several devices allowing anyone to capture high-quality video footage [31]. Yet,
as demonstrated in [30], indoor navigation remains challenging because the number of
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Figure 1.1 – Underground exploration illustration from the Prometheus project [28].

obstacles is higher, and free space is even more limited. In fact, as flight safety cannot
be ensured at all times, regulations in several countries strictly limit the use of drones to
specific isolated outdoor areas or specific usage [13], [31]. However, the missions of first re-
sponders often involve working in hazardous indoor environments. For this purpose, they
require a certified pilot to be fully dedicated to the piloting. By enabling autonomous or
semi-autonomous navigation, the operator would be able to control multiple drones or
focus on scene analysis [17].

Such a navigation system requires three key functionalities: localization, environment
mapping, and path planning. Determining the localization is fundamental for other
tasks. It can be estimated using various types of sensors, the accuracy of which is highly
dependent on the environment and the type of movement. The mapping task consists
in building a virtual representation of the environment in which the drone navigates.
Depending on the application, the map can be local or global, represented in 2D or 3D
with different levels of density (Figure 1.2), be estimated with an absolute scale or up to a
scale factor, be dynamic, or include only static obstacles. Finally, path planning consists of
computing the best trajectory to reach a destination considering the estimated localization
in the reconstructed map. Thus, it is highly dependent on the first two functionalities and
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Figure 1.2 – Various map representation: 2D points (top-left), 3D point cloud (top-right),
3D mesh (bottom-left), voxels (bottom-right).

takes into account multiple criteria such as safety, speed, and length. This thesis will
specifically focus on the tasks of localization and environment mapping.

Localization

A typical use case is the localization of a robot that may be affected by extrinsic or
intrinsic limitations. Regarding intrinsic constraints, some applications prevent the use
of some sensors, typically active sensors such as LiDARs or RGB-D cameras, because of
energy consumption or discretion criteria. As for today, most systems rely on extrinsic
sources such as Global Navigation Satelite System (GNSS)-based localization which is
not guaranteed indoors, underground, or in zones of conflict. In fact, satellite reception
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cannot be assured in all areas, or the signal can even be spoofed. Moreover, the granularity
of this kind of geo-localization system is not adapted for indoor navigation and obstacle
avoidance. The review [32] provides a comprehensive comparison of various indoor and
outdoor localization technologies. For indoor environments, alternatives to GNSS include
solutions based on Wireless Access Point (WAP), Bluetooth Low Energy (BLE), Radio
Frequency Identification (RFID), or Ultra-wideband (UWB). While some of these systems
give a higher precision, sometimes for a higher cost, they all involve a strong external de-
pendency for the robotic platform. In contrast, during a rescue or military operation, an
autonomous system capable of operating even in the absence of external sources is pre-
ferred and sometimes required. Thus, localization from passive sensors is of high interest
for the exploration of unknown buildings or undergrounds by robots or first responders.

Mapping

On the other hand, mapping is also a critical function for rescue operations. For
instance, in the context of first responders’ intervention, the autonomous exploration and
real-time mapping of a dangerous collapsed building is crucial. Indeed, in this scenario, the
structure of the surrounding environment is a priori unknown and irregular, so identifying
hazards is critical before sending rescuers [15], [16]. First responders are required to do
a fast site survey to build a map of the building and gather as much information as
possible. To this end, fly assistance or even autonomous navigation is essential. It allows
the operator to fly the drone in difficult lighting conditions, narrow paths, avoid obstacles,
and focus on inspecting visual images. Indeed, manual control of a remote platform is
generally based on images from an onboard camera with a limited field of view, which
strongly affects the pilot’s perception of the environment [30], [33]. Building a 3D map
can provide the operator with a view including the surroundings of the platform [33]–[35],
or allow an autopilot system to assist the navigation by avoiding obstacles [17], [36], [37].
In addition, the mapping of the area of operation can be used to efficiently schedule the
intervention. It allows to locate victims and plan the optimal itinerary to rescue them. In
practice, the choice of a representation for a reconstructed 3D map is essential. In fact,
maintaining a global map in large-scale environments requires memory and algorithm
optimization as computational load and memory grow with the size of the map [38].
Dense point clouds or high-resolution 3D meshes provide a superior level of precision,
whereas obstacle avoidance for drone indoor navigation might not require such precision.
In such cases, a coarse reconstruction such as a voxel 1map (Figures 1.1 and 1.2) could be
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sufficient as long as it provides metric and dense structure [39]–[41].

Selecting a drone for indoor navigation

Multiple types of robotic platforms are considered for USAR, surveillance, or recon-
naissance operations [13], [14]. Robots enable the replacement of vehicles, airplanes, or
helicopters for both indoor and outdoor missions. Without pilots onboard, these platforms
can be controlled remotely and achieve the same missions with reduced risk. They are
available in multiple sizes, powered either thermally or electrically, and capable of carrying
a significant payload. Unmanned ground vehicles (UGVs) offer high payload capacity and
long endurance but are less maneuverable. UAVs may be a preferable alternative, but de-
spite their improved agility, they require more advanced piloting skills. The most common
categories of drones are fixed-wing, multi-rotor, and single-rotor, whose characteristics are
compared in [42] and summarized below.

Fixed-wing drones have a design resembling traditional airplanes. They are rather
expensive but highly efficient in terms of endurance and range. They always fly forward
and are also very fast, but this makes them more constrained in their movements. Fixed-
wing drones can cover large areas in a single flight making them popular for long-range
surveillance, aerial mapping, and environmental research.

Single-rotor drones, similar to traditional helicopters, are typically powered by gas,
giving them extended autonomy and higher payload capacity. Their aerodynamic design
and larger rotor have benefits in hovering, stability, and wind resistance. However, their
mechanical complexity requires more maintenance, increases cost, and makes them harder
to use. These drones are suited for tasks requiring long endurance, large payloads, and
stable flight, such as heavy lifting, surveillance, search and rescue.

Multi-rotor drones are known for their versatility, agility, and precise control, mak-
ing them ideal for close-quarters operations. They range down to very small sizes, are
cost-effective, and are the easiest alternative to operate. However, being primarily battery-
powered limits their payload capacity and flight duration. These drones are widely used
for aerial photography, surveillance, 3D mapping, or entertainment. Their ability to hover
and maneuver in confined spaces makes them suitable for indoor and urban environments.

Therefore, small multi-rotor drones are particularly attractive indoors, as they gener-
ally offer greater mobility than UGVs. Small drones, also known as Micro Aerial Vehicles

1. A voxel, or volumetric pixel, is a three-dimensional analog of a pixel. It represents a value on a
regular grid in 3D space and is often used in computer graphics for 3D modeling and visualization.
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Figure 1.3 – Quadrotor UAVs equipped with an embedded system and various sensors for
the BlueSwarm system [23] (left) and the TeamAware project [25] (right).

(MAVs), have been widely used in the literature for indoor navigation, especially quadro-
tors [17], [30], [43]. However, MAVs usually have higher power constraints than UGVs as
most of the energy is consumed by the motors. Thus, the choice of payload is essential
and must consider the volume, weight, and power consumption of each device.

Payload content

Depending on mission requirements, a drone should be configured with an appropriate
payload. Two examples are shown in Figure 1.3. The first example shows a drone suit-
able for outdoor use, able to carry about 1 kg of payload and larger sensors for 20 to 30
minutes. The second example features a smaller drone designed for indoor use that can
carry up to 700 g of payload for about 10 minutes, illustrating the significant volume and
capacity constraints. Thus, a standard drone setup includes a flight controller, wireless
communications, GNSS, and an Inertial Measurement Unit (IMU). The additional equip-
ment is selected to perform the mission as efficiently as possible while minimizing Size,
Weight, Power, and Cost, commonly referred to as SWaP-C constraints.

In the case of autonomous navigation, and more specifically real-time 3D mapping,
calculations must be carried out onboard to control the drone with minimum latency [43].
Therefore, an embedded system with sufficient computing resources is required. Systems
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such as Odroid, NUC, or UP Board have been benchmarked for applications on drones
[44]. However, when using visual sensors, and by extension computer vision algorithms,
having a GPU is preferable, if not essential. The NVIDIA Jetson series is particularly
adapted for this need [45], [46]. In a small format, such Systems on Modules (SoMs)
feature a GPU and a range of hardware accelerators for Deep Learning (DL), camera
acquisition, and video streaming.

Several sensors have been studied for drone indoor navigation or 3D mapping [17], [47]–
[49]. While active sensors can typically measure depth directly, they tend to be bulky,
expensive, and power-hungry. In contrast, passive sensors, which generally have better
SWaP-C properties, present a greater challenge in deriving depth information from their
output. Thus, the choice of sensor setup depends on the intended application. This thesis
aims to provide drone autonomous navigation and 3D mapping capabilities for USAR
scenarios. As we focus on small drone applications, energy efficiency is a major criterion
for extending mission duration. Therefore, the ideal setup would rather include passive
sensors [47], and preferably a monocular camera and an IMU when considering all the
SWaP-C constraints [17], [30], [43]. However, this choice comes with inherent challenges in
depth perception. For this reason, the following section briefly explores possible solutions
for achieving dense 3D mapping in drone indoor navigation scenarios.
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1.2 3D mapping for UAV navigation

In this work, we focus on the development of dense, metric1, and real-time 3D mapping
for autonomous UAV navigation, as accurate localization and environment mapping are
essential for autonomous flight. While some approaches are able to build a dense and
metric 3D map from sensor data, many are not optimized for real-time applications on
small drones, particularly in challenging real-world scenarios like USAR.

Real-time localization and 3D mapping

Localization is a critical part that allows environment mapping and path planning.
Typically, Visual Inertial Odometry (VIO) and Simultaneous Localization And Mapping
(SLAM) address this problem [30]. VIO is dedicated to tracking the robot by building a
short-term local map, which requires less computation. SLAM, on the other hand, builds
and maintains a long-term global map, allowing for place recognition, better accuracy, and
robustness, but using significantly more resources. Nowadays, VIO is usually preferred
for real-time robot localization, whenever there is no specific need for mapping. SLAM
is preferred when accurate global positioning is required, which is ensured by the loop
closure procedure and maintaining a global map [50].

Another challenge is to create a dense and metric 3D map in real-time. The expected
map should be metric in order to keep the drone at a safe distance from potential obstacles
and retrieve a precise location of places and hazards. The map should also be sufficiently
dense for navigation, especially in narrow areas and to detect thin obstacles. Finally, this
mapping procedure should enable live operation by being executed in real-time. Structure
from Motion (SfM) provides an offline solution to reconstruct a high-resolution 3D mesh.
It performs a 3D reconstruction by processing together all the images acquired by the
drone, and the estimated model is not guaranteed to be metric [51]. This method is too
complex and cannot be considered for real-time mapping applications [52]. On the other
hand, SLAM is an online method that works in real-time, which generally favors compu-
tation efficiency over map density. Finally, while SLAM has reached an increased level of
technological maturity, its use has still not been extensively tested for some challenging
drone navigation conditions, especially for monocular setups.

1. In computer vision and photogrammetry, metric scale refers to the scale at which real-world mea-
surements are accurately represented in images or data. Achieving metric scale is essential for accurate
3D reconstruction and mapping.
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Active vs passive sensors for SLAM

SLAM techniques can be classified according to the sensor types they employ. Active
sensors emit signals or energy and measure the response to gather information about the
environment. In contrast, passive sensors capture ambient energy to gather information
about their surroundings. Below, the primary sensors used in SLAM are presented and
their essential properties are summarised.

LiDAR (Light Detection And Ranging): These sensors emit laser beams and
measure the time it takes for the beams to reflect off surfaces and return. This data is
used to create detailed 3D point clouds of the environment. While they typically have
poor SWaP-C properties, lighter versions have been introduced, but these tend to offer
lower quality measurements [43].

RGB-D (Red, Green, Blue - Depth) Cameras: This type of camera combines
traditional RGB color imagery with depth information. It uses structured light or time-
of-flight technology to estimate depth, resulting in colored 3D point clouds. These sensors
provide both visual and depth data, but they typically have higher power consumption
and limited depth range, which restricts their usage to indoor applications.

Event Cameras: These novel sensors (also known as Dynamic Vision Sensor - DVS)
do not capture traditional frames but instead detect changes in intensity over time. They
are very sensitive to motion, offer high temporal resolution, and have a particularly low
power consumption. Event cameras are especially suited for high-speed and dynamic
scenes, such as fast drone maneuvers or tracking fast-moving objects. They also have
a higher dynamic range making them more robust to high illumination changes and low
lighting conditions. However, their weaknesses include the inability to provide data in the
absence of motion, limited availability, higher cost, and the need for specialized algorithms
to process their output.

Stereo Cameras: Comprising two cameras mounted at a fixed distance from each
other, known as the baseline, stereo cameras derive depth information by analyzing the
disparities between corresponding points in the images from both cameras. Nevertheless,
this sensor type requires precise calibration, and the depth range is limited by the baseline
distance, which also affects the overall size of the camera. Additionally, handling dual
image streams from stereo cameras increases computational load and power consumption.

Monocular Cameras: Consisting of a single lens, these cameras capture 2D images
and are commonly used for navigation and perception tasks. Although lacking inherent
depth perception capabilities, they are preferred for their light weight, low cost, and low
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power usage. Additionally, they are relatively easy to calibrate and have been widely
studied in computer vision, making them a practical choice for a variety of applications.

IMU: This electronic device integrates multiple sensors to measure orientation, veloc-
ity, and acceleration. It typically includes an accelerometer that measures linear accelera-
tions and a gyroscope that measures angular rates. Some IMUs also feature a barometer to
measure atmospheric pressure, enhancing altitude estimation and overall accuracy. IMUs
are prone to measurement noise and sensor bias, resulting in drift over time, particularly
for lower-quality and affordable models. This drift can significantly impact the long-term
accuracy of the data they provide, necessitating frequent recalibration or fusion with other
data sources to maintain reliable measurements.

Sensors Pros Cons
LiDAR • Accurate 3D point cloud

• Long-range sensing
• Suitable for outdoor

• Expensive
• Relatively bulky and heavy
• Power consumption
• Vulnerable to weather conditions

RGB-D
Camera

• Measure depth
• Easier SLAM initialization
• Dense 3D maps

• Limited outdoor use
• Complex calibration
• Power consumption
• Interference with active sensors

Event
Camera

• Low latency
• High dynamic range
• Suitable for fast motion tracking

• Price and availability
• Requires specialized algorithms
• No data without motion

Stereo
Camera

• Depth estimation by stereo
matching

• Easier SLAM initialization

• Extrinsic calibration
• Range limited by the baseline
• More data to process

Monocular
Camera

• Inexpensive
• Small and lightweight
• Easy calibration
• Low power consumption

• Scale ambiguity
• Complex SLAM initialization
• No mapping for pure rotations

IMU • Inter-frame motion estimation
• Low latency and high frequency
• Metric information for

monocular SLAM

• Drift over time (sensor biases)
• Visual-inertial calibration
• Synchronization

Table 1.1 – Comparison of sensors for visual SLAM

These sensors have been extensively reviewed in the literature [30], [47]–[49] and their
characteristics for SLAM applications are summarised in the table 1.1. LiDARs and RGB-
D cameras have proven to be effective in producing 3D maps in various works [53]–
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[57]. Nonetheless, when considering SWaP-C constraints alongside the discrete operation
requirement, these active sensors are incompatible with real-time application on small
lightweight drones.

Stereo cameras enable dense depth estimation via stereo matching, thus enabling some
SLAM algorithms to reconstruct dense and metric 3D maps [12]. Nevertheless, in the
context of the aforementioned limitations, stereo cameras are notable for their relatively
high power consumption compared to other passive camera options.

In recent years, event cameras have attracted increasing interest for drone applica-
tions. A comprehensive survey [58] provides a detailed review of the literature in this
field. In particular, it highlights several successful implementations of event-based SLAM,
especially in scenarios involving high-speed motion and challenging lighting conditions.
Furthermore, it covers depth estimation with event cameras, in which both monocular
[59] and stereo configurations [60] have shown promising results. However, the major lim-
itation of event cameras is their inability to provide data in the absence of motion or in
a textureless environment. Given these aspects and the previously mentioned drawbacks,
using this type of sensor for dense mapping presents significant challenges. Hence, while
event cameras fall outside the primary focus of this work, their potential integration with
visual cameras represents an exciting avenue for future research.

Nowadays, monocular cameras are commonly used for SLAM [48]. Such systems ex-
tract visual features such as keypoints and edges in successive frames to track camera
movements and derive depth information by triangulating these features across multiple
views. Nevertheless, the lack of direct depth perception results in scale ambiguity. Despite
this, monocular SLAM offers advantages such as simplicity, easy calibration, and minimal
hardware requirements.

IMU data are essential for the accurate estimation of drone motion between camera
frames, especially in situations with indistinct visual features, motion blur, or uniform
image textures. Furthermore, inertial measurements provide metric information that is
crucial for scale recovery in monocular setups. Nonetheless, effective integration of these
different sensors requires precise temporal synchronization and accurate calibration be-
tween the camera and the IMU.

Thus, visual SLAM combining a monocular camera and an IMU provides an optimal
balance between lightweight hardware, cost, energy efficiency, and real-time performance.
Previous investigations have explored monocular VIO or SLAM systems using other sensor
configurations in scenarios involving high-speed motion or variable lighting conditions
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[44], [61], [62]. Although monocular-inertial SLAM has reached a mature stage [38], its
effectiveness in such challenging drone navigation contexts has not been fully explored
yet. Moreover, while existing real-time methods deliver robust camera positioning, they
mostly produce sparse 3D maps. Consequently, the densification of monocular SLAM has
emerged as a significant area of interest, which is essential in our context of indoor drone
navigation and obstacle avoidance.

Densifying monocular-inertial SLAM for drone navigation

Although monocular cameras are appropriate for real-time SLAM, their inherent depth
ambiguity poses practical limitations. Initially, geometric methods for dense monocular
SLAM were too complex and were consequently sidelined in favor of sparse methods pri-
oritizing localization robustness [38]. Nevertheless, with the evolution of robust sparse
SLAM methods, recent research has explored monocular SLAM densification by leverag-
ing advances in deep learning. The most effective approach integrates monocular depth
estimation (MDE), which predicts a dense depth map from a single frame, into the SLAM
process. In particular, MDE has seen significant advances in recent years, largely driven
by the capabilities of Deep Neural Networks (DNNs) [63].

These approaches have primarily been applied in purely monocular SLAM settings
without metric data. Some works have attempted either to infer metric depth maps [64]
or to predict depth up to a scale factor [65], [66]. A few techniques have been developed to
construct dense and metric maps through the use of monocular-inertial SLAM, resulting
in the best performance in this domain [6], [7]. These advancements are notably attributed
to the implementation of multi-view strategies, which enhance accuracy but also increase
complexity. Most of the existing methods in this area use large DNN architectures, which
may limit their potential application in embedded systems. Additionally, these techniques
are often tailored to specific benchmarks due to their reliance on supervised learning
approaches, whose primary focus is to achieve precise 3D reconstructions.

In contrast, this thesis focuses on drone indoor navigation, where a coarse 3D repre-
sentation is sufficient for obstacle avoidance accuracy, and does not require high-precision
3D mapping. This loosened constraint paves the way for more lightweight approaches to
achieve dense, metric, real-time 3D mapping by densifying monocular-inertial SLAM.
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1.3 Objective of this thesis

The scope of this thesis is the 3D mapping of indoor scenes from a lightweight drone
equipped with a monocular camera in the context of USAR and military operations.
The built 3D map can be a coarse representation like a voxel map, but it needs to be
dense, metric, and done in real-time. This enables autonomous navigation of the drone
and provides the operator with a fast 3D reconstruction of the terrain. We focus our study
on the densification of monocular-inertial SLAM in this specific context.

Contributions

To what extent can state-of-the-art visual SLAM be applied to drone nav-
igation in challenging conditions?
We propose a workflow based on monocular-inertial SLAM for 3D mapping which re-
quires a baseline method adapted to our context. Therefore, the initial inquiry that we
address revolves around the applicability of current advances in visual SLAM to the do-
main of drone navigation, particularly in challenging scenarios. In practice, indoor drone
movements often involve motion blur, low lighting, or high illumination changes. These
disturbances can have a significant impact on the robustness of the algorithms. Numerous
methodologies have been developed, typically evaluated against established SLAM bench-
marks, some of which include drone-acquired data under standard conditions. Other stud-
ies have evaluated visual SLAM algorithms for indoor navigation of drones and robots,
focusing primarily on RGB-D and Stereo cameras, while others have become obsolete or
less relevant.

Our contribution, published in [67], is to identify a representative, state-of-the-art
monocular baseline method, and evaluate it under conditions that include low illumina-
tion, illumination changes, and high-speed motions. We assess the level of robustness of
the chosen baseline by illustrating its ability to provide accurate global positioning in
real-time in all of the specified scenarios. We also note limitations in its IMU initializa-
tion procedure, which requires specific conditions. Our study enables us to conclude that
the selected baseline is well-suited for providing metric scale localization and sparse 3D
mapping in real-time, necessary for our workflow.

How can we perform monocular SLAM densification with metric scale in
real-time on an embedded system ?
We introduce a pipeline in [67] designed for real-time processing on an embedded system,
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aiming to densify monocular-inertial SLAM by capitalizing on monocular depth estima-
tion and constructing a dense and metric voxel map. Alternative approaches focus on ei-
ther improving robustness and accuracy or reconstructing a dense 3D mesh with detailed
precision. Our objective is to use monocular SLAM densification for drone navigation.

To achieve this, instead of using point clouds or 3D meshes, we opt for creating an
occupancy map using voxels, as it is ideal for our purpose. This particular structural
choice is notable for its potential memory-efficient storage, and its ability to be efficiently
constructed and updated incrementally through raycasting techniques. By partitioning
space into a grid, each voxel can efficiently replace a full set of points, indicating whether
a region is occupied or not. Additionally, most related works employ a pure monocular
setup, constructing a map with relative scale. In contrast, we use a monocular-inertial
setup for SLAM, allowing us to estimate the absolute scale. The resulting sparse depth,
being metric, is leveraged to correct the predicted dense depth map.

How can we combine SLAM sparse and metric depth to recover the absolute
scale of a predicted dense depth map?
Expanding upon this pipeline, we conceived and developed a loosely coupled approach that
integrates sparse yet metric SLAM depth data with the dense depth map obtained from
MDE. Most of the works on monocular SLAM densification employ a supervised approach
with restricted generalization abilities. They commonly rely on complex architectures or
use a pure monocular baseline without metric information. These solutions typically aim
at improving the robustness in textureless scenes or performing precise 3D reconstruction.
As a result, their primary concern is generally neither real-time processing nor metric scale.

Our methodology presented in [68] involves scale recovery from SLAM sparse land-
marks estimated via multi-view geometry. Notably, we have proposed a decoupled frame-
work that minimizes the impact on the underlying SLAM baseline frame rate. We eval-
uate our approach against relevant works using depth estimation metrics and provide
both quantitative and qualitative assessments using specific indoor datasets. Further-
more, leveraging the resulting scaled dense depth map, we employ raycasting to construct
and continually update a voxel map, achieving multi-view volumetric depth refinement.
We demonstrate the capabilities of our framework to build a voxel map suitable for drone
navigation and show its limitations through a qualitative analysis.
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Outline of the thesis

Following this introduction, the thesis will be structured into the following sections:

— Chapter 2 reviews the current landscape in Visual SLAM. We analyze conventional
techniques, observing the shift from dense methods to efficient and robust sparse
approaches that can carry out real-time execution. Furthermore, we delve into the
field of monocular SLAM densification, emphasizing the application of DNNs to
predict dense depth maps from single RGB images. In this context, we explore
recent enhancements in the area of monocular depth estimation. The chapter also
introduces key metrics and datasets necessary for evaluating SLAM and MDE.

— Chapter 3 introduces our proposal for a pipeline to achieve real-time, dense, and
metric 3D mapping through monocular-inertial SLAM. In this chapter, we explain
the pipeline’s architecture and the reasoning behind our design choices, with a par-
ticular focus on their practical applications in obstacle avoidance and autonomous
drone navigation. Additionally, we selected a state-of-the-art SLAM baseline, justi-
fying our decision with benchmarking against challenging conditions.

— Within Chapter 4, we present a method for determining the absolute scale of a
dense depth map inferred via deep learning by utilizing the sparse depth data from
SLAM. Our approach is evaluated and compared with related research. Furthermore,
we explore the implementation of grouped raycasting techniques to construct a
voxel map while carrying out multi-view volumetric refinement. The implementation
results of the complete framework are presented and analyzed.

— In the final chapter, Chapter 5, the initial part summarizes our contributions in
addressing our research questions, while the second part explores potential directions
for enhancing these concepts.
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Chapter 2

STATE OF THE ART IN MONOCULAR

SLAM DENSIFICATION

In recent years, SLAM has emerged as a fundamental technology in the field of robotics
and computer vision. With the rapid advancement of visual sensors and computational
capabilities, monocular SLAM has garnered significant attention thanks to its simplicity
and applicability in a wide range of real-world scenarios. However, conventional monocular
SLAM techniques are facing challenges in accurately reconstructing dense and detailed
maps from a single camera in real-time, limiting their potential in drone autonomous
navigation applications.

This chapter begins by defining the mathematical basis for visual SLAM, providing a
foundation for understanding the core principles of the field. Next, we review the main
methods of conventional visual SLAM and trace their evolution over time. In the sequel,
we examine the latest progress in densifying monocular SLAM, highlighting limitations,
and exploring contemporary techniques that aim to produce more informative and ro-
bust maps. The quest for densification involves harnessing the power of DNNs for depth
prediction from a single image. Hence, we also examine the present progress of research
in the MDE field. Finally, we recall the standard metrics and notations employed within
these specific domains, along with the common benchmarks used to evaluate them.

Ultimately, the synthesis of the state-of-the-art in densifying monocular SLAM will
serve as a solid foundation for the subsequent chapters of this thesis. Building on this
knowledge, we propose new approaches and conduct a series of extensive experiments to
address existing challenges and contribute to the advancement of monocular SLAM and
its implications for autonomous drone navigation.
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2.1 Theoretical primer for Visual SLAM

In this section, we present basic mathematical definitions and notations that will be
used throughout this thesis. For clarity, we will use boldface to represent vectors and
matrices. We review camera principles and introduce selected camera models that define
the relationship between the 3D scene and the resulting camera image. Additionally, we
give a brief overview of 2-view epipolar geometry for use in our specific context. Following
this, we describe the operational model of an IMU to better understand the strengths and
limitations of this sensor, particularly the effects of noise and biases. Finally, we briefly
outline the prevailing formulation of the SLAM problem today and describe the process
of joint estimation of camera poses and 3D landmarks’ positions.

2.1.1 Camera modeling

Rigid body transformation

The main distinction between linear and affine transformations is their handling of
translations. Linear transformations do not include translations and strictly preserve lin-
earity and the origin. In contrast, affine transformations involve both linear operations
and translations, allowing for a wider range of transformations that include linear trans-
formations as a subset.

In reality, nearly all object transformations will involve both linear (such as rotation)
and translation operations. Therefore, a coordinate transformation becomes affine rather
than linear when considering a complete rigid-body motion. To address this, we typically
use homogeneous coordinates, which involve adding a scalar coordinate to express transla-
tions as linear transformations. Therefore, in the case of 3D geometry, we would represent
a point as [X, Y, Z, 1]T and a vector as [X, Y, Z, 0]T , where (X, Y, Z) ∈ R3.

A rigid body motion is represented by a transformation in SE(3), the Special Euclidean
group in three dimensions. The rigid body transformation T can be expressed as a rotation
R in SO(3), the Special Orthogonal group, and a translation t ∈ R3 and formulated by
a homogeneous 4 × 4 matrix:

∀T ∈ SE(3), T =
 R t
01×3 1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (2.1)
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Figure 2.1 – Frontal pinhole imaging model, adapted from [69]: The image plane is located
at the focal length f from the camera center O, with the optical axis intersecting at the
principal point o. The pixel p represents the projection of a 3D point P onto the image.

Camera models

A camera is an optical device consisting of a lens and a sensor that captures image
intensities from a scene. The sensor is arranged in a grid pattern where each cell accumu-
lates light intensity during a given exposure period. The scene observed by the camera
through the lens is projected onto a 2D surface known as the image plane, which is located
at a distance f from the center of the camera (see Figure 2.1), termed as focal length.

A camera model is a mathematical representation that describes how a camera cap-
tures the 3D world and projects it onto a 2D image. It involves the camera’s intrinsic
parameters (related to its optics and sensor) and extrinsic parameters (related to its
position and orientation in 3D space). Intrinsic parameters are usually provided by the
manufacturer or can be estimated via a process known as calibration. For a detailed ex-
planation of the camera calibration procedure, readers can refer to Section 6.5 in [69].
The pinhole camera model is a standard model used in computer vision and computer
graphics which simplifies the camera optical system to a single point called "pinhole". In
this model, light rays from the scene pass via the pinhole and yield inverted images onto
the camera image sensor.

Let’s define a 3D point P = [X, Y, Z, 1]T in the camera frame, whose coordinates
in the world reference frame are denoted by PW = [XW , YW , ZW , 1]T . The Euclidean
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transformation TC,W ∈ SE(3) represents the transformation from the camera frame to
the world frame, which corresponds to the pose1 of the camera frame C in the world frame.
The inverse of this transform, T−1

C,W = TW,C is defined by the rotation RW and translation
tW . The projection of P onto the image plane is denoted by the pixel p = [u, v, 1]T and
can be expressed by the following equations, where λ ∈ R∗ is a scalar:

λ


u

v

1

 =


fxsx fysθ ox

0 fysy oy

0 0 1



1 0 0 0
0 1 0 0
0 0 1 0


RW tW

0 1



XW

YW

ZW

1


λp = KΠTW,CPW

(2.2)

Here, Π is the standard projection matrix. The camera extrinsic parameters are rep-
resented by the rigid body transformation TC,W , which transforms the coordinates of PW

to the camera frame, giving P = TW,CPW . The matrix K comprises the camera intrin-
sic parameters and is commonly referred to as the calibration matrix: fx and fy are the
focal lengths along the x⃗ and y⃗ axes, (ox, oy) is the principal point coordinates (image
coordinates of the optical center), (sx, sy) is the inverse size of a pixel and sθ is the skew
factor. In most cameras, pixels are square or nearly square, resulting in equal focal lengths
(fx = fy = f) and a negligible skew factor (sθ ≈ 0). Assuming that the camera frame
coincides with the world frame (or that the pose C is known), Equation (2.2) becomes:

λ


u

v

1

 =


fsx 0 ox

0 fsy oy

0 0 1



1 0 0 0
0 1 0 0
0 0 1 0



X

Y

Z

1


λp = KΠP = π(P)

(2.3)

Here, π is the function projecting a 3D point onto pixel coordinates in the image plane.
This expression can be further developed to:

λ


u

v

1

 = Z


fsxX + ox

fsyY + oy

1

 (2.4)

1. A pose represents the position and orientation of an object or a coordinate frame in 3D space,
typically consisting of a translation vector and a rotation matrix or quaternion.
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This expression exposes the monocular depth ambiguity. Specifically, as the depth Z is
not observable, it is replaced by a positive scalar λ (where λ = Z > 0), since we consider
the points in front of the camera:

Camera calibration is a process used to determine the intrinsic parameters of a camera.
If required, its extrinsic parameters are also determined, especially in scenarios such as
camera-IMU calibration to determine the camera pose relative to the IMU frame. A
standard practice in robotics is to assume that the body frame of the drone is aligned
with the IMU frame. Camera-IMU calibration allows for aligning the motion data from the
IMU with the visual data from the camera, which helps to accurately predict the camera’s
motion between frames. Regarding the intrinsic parameters, the pinhole model does not
account for lens radial distortion, which is prevalent in real-world cameras, especially
those with a wide field of view. To address this, more complex camera models, such as
the radial-tangential, the fisheye [70] (also known as equidistant), or the double sphere
[71] models, are also used for more accurate representations of camera optics.

In practice, calibration parameters correct lens distortion and allow the conversion of
2D image points into normalized image coordinates. Despite the inherent depth ambiguity
in monocular vision, a camera model with calibrated parameters expresses the relationship
between image pixels and corresponding points in the scene, up to a scale factor. As we
will see, this relationship can be exploited in multi-view geometry, in particular for the
triangulation of 3D points.

Epipolar geometry of two views

In the following, we consider a calibrated camera with known intrinsic and extrinsic
parameters, the latter implying that the camera frame is finally set to coincide with the
world coordinate frame. Thus, we can assume an ideal perspective camera, simplifying
Equation 2.3:

λp = ΠP (2.5)

Epipolar geometry defines the geometric constraints that exist between two cameras
observing a 3D scene from different viewpoints or equivalently to a monocular camera cap-
turing two images at successive positions, under the assumption of a static scene. Thus,
epipolar geometry can be used to facilitate establishing correspondences between fea-
tures in different camera frames. By establishing feature correspondences between frames,
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Figure 2.2 – Representation of the epipolar constraint: Two cameras, positioned at O1 and
O2, capture the same scene and project it onto their respective image planes I1 and I2.
The points p1 and p2 are the projections of the 3D point P. The baseline, which connects
the camera centers O1 and O2, intersects the image planes at the epipoles e1, e2. The
epipolar lines l1, l2 are formed by the intersection of the epipolar plane (O1, P, O2) with
the image planes. The point P′ lies on the ray (O1P), and its projection p′

2 falls on the
epipolar line l2.

SLAM algorithms can estimate the relative pose between consecutive camera poses.
As shown in Figure 2.2, an epipolar plane is defined by an observed point P and the

centers of the two cameras. The epipolar lines result from the intersection of the epipolar
plane with the image planes. Each camera has an epipole located at the point where the
baseline, connecting the two camera centers, intersects with the image plane. Thus, the
epipolar geometry allows to establish correspondences between points in the two camera
images using the following equation:

pT
2 Ep1 = 0 (2.6)

where E represents the so-called essential matrix. It is defined by translation t ∈ R3

and rotation R ∈ SO(3) describing the transformation between the two cameras. The
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skew-symmetric matrix t̂, allowing to represent a vector cross product by ordinary matrix
multiplication, allows E to be expressed as:

E = t̂R =


0 −tz ty

tz 0 −tx

−ty tx 0



r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.7)

A property of the essential matrix is that it projects an image point (or pixel) p1 from
the first camera onto an epipolar line in the second one. Indeed, as illustrated in Figure
2.2, when the depth remains unknown, the image point is projected up to a scale factor
thus describing a line. So, once the essential matrix is determined, the search for the pixel
p2 corresponding to the pixel p1 in the image I2 is restricted to the epipolar line l2.

By extension, the Fundamental Matrix describes the same relation without assum-
ing calibrated cameras. It is derived from the essential Matrix and the camera intrinsic
matrices K of the two cameras. It can be expressed as:

F = K−T
2 EK−1

1 (2.8)

An interesting application for epipolar constraints is relative pose recovery between
2 image views. By establishing enough correspondences between the pixels of the two
images, it is possible to use the above properties to estimate the essential matrix. Classical
techniques such as SIFT [72], FAST [73], or ORB [74] are used to detect and describe
highly distinctive features in the image and thus select keypoints. The descriptors ensure
that keypoints can be matched robustly across various frames despite challenges presented
by changes in illumination, scaling, rotation, and translation. From there, extracting the
relative rotation and translation is a straightforward task. The accuracy of the feature
matching is critical, as false matches will result in inaccurate pose estimation. Standard
algorithms, such as the 8-point [75] or 5-point [76] algorithms, may be considered to
estimate the essential matrix.

Error metrics

— Reprojection error:
As defined in the Equation (2.3), the function π projects a 3D point onto the image.
Let’s define the function g as the reprojection of a 3D point P based on the camera
pose Ci ∈ SE(3) at the given time instant i:
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g(P, Ci) = π(C−1
i P) (2.9)

The reprojection error quantifies the difference between the actual positions of 2D
image points and their expected positions from the projection of known 3D world
coordinates onto the image plane. It is a key metric for evaluating the quality of
camera calibration, 3D reconstruction, and structure-from-motion processes. Sup-
pose the 3D coordinates of a point P are known, and the corresponding pixel p
in the current image has been detected through feature matching based on its po-
sition in a previous image. Then, considering all the detected pixels p, the image
reprojection error can be defined as the squared error between the detected pixels
coordinates and those projected by a camera model:

ereproj =
∑

p
∥p − g(P, Ci)∥2 (2.10)

Typically, the goal is to minimize the reprojection error by adjusting the camera
model (intrinsic and extrinsic parameters). Smaller reprojection errors indicate a
better fit of the camera model to the observed data, which implies more accurate
camera parameter estimation.

— Photometric error:
Let I be an image. Then, the function I : R2 → R is defined such that for any pixel
coordinate p ∈ R2, I(p) ∈ R represents the intensity value at that coordinate. We
also define the inverse function of π from (2.3) and (2.4), which backprojects pixel
coordinates p = [u, v], combined with its respective depth d, into 3D space:

π−1(p, d) =


d

u − ox

fsx

d
v − oy

fsy

d

 (2.11)

The photometric error measures the difference in pixel intensities (or colors) between
corresponding pixels across two or more images and is relevant to image alignment,
where the goal is to infer the relative camera pose between different viewpoints by
minimizing the photometric error. Let’s consider a monocular camera that captures
images of a scene from various overlapping viewpoints. Given a pixel pk with depth
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dk in the image Ii, and Tj,i as the relative camera pose of Ii with respect to Ij, the
image photometric error is given by:

ephoto =
∑

k

∥∥∥Ii(pk) − Ij(π(Tj,iπ
−1(pk, dk)))

∥∥∥ (2.12)

This error is typically computed over all pixels in an image, providing dense align-
ment and better robustness in featureless regions. Nevertheless, it is vulnerable to
illumination changes and occlusions, and may not be as reliable in textureless areas.

2.1.2 IMU modeling

An IMU measures linear acceleration a⃗ in m.s−2 along three axes via an accelerometer
and angular velocity ω⃗ in rad.s−1 about the same axes via a gyroscope. However, raw
data is often subject to bias and sensor noise. The sensor noise is assumed to be Gaussian
noise with known covariance matrices (Qa and Qω). Bias is an offset and can be static or
affected by various factors. In practice, it is modeled as a random walk driven by a white
noise process [77], [78]. Noise and bias parameters can be supplied by the manufacturer,
but may be refined by calibration procedures for higher accuracy.

To use IMU data for navigation, it is essential to perform integration. Integrating
linear acceleration provides estimates of velocity and position while integrating angular
velocity produces an estimate of orientation or attitude. Nevertheless, bias compensation
and noise filtering are necessary during this process to maintain accuracy.

araw = agt + ba + na (2.13)

ωraw = ωgt + bω + nω (2.14)

In the above equations, araw and ωraw represent the raw measurements of linear ac-
celeration and angular velocity, respectively. agt and ωgt denote the true values without
any errors. The terms ba and bω are the biases for the accelerometer and gyroscope,
respectively, while na and nω capture the Gaussian noise associated with each sensor.

IMUs inherently suffer from drift, where small measurement errors accumulate over
time, especially during integration, leading to significant deviations in estimated trajec-
tories or orientations. To mitigate this, filtering or fusion techniques such as the Kalman
filter or sensor fusion with external measurements such as GPS or visual data are used to
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provide more accurate and reliable navigation estimates.
Pre-integration provides a refined approach to handling IMU measurements in vision-

inertial systems. Instead of integrating raw IMU data at each time step, which can be
computationally demanding and prone to errors, pre-integration aggregates this data over
a fixed interval. This approach consolidates the effects of acceleration and rotation over
that interval into a single relative motion. This enables a more compact representation and
efficient optimization when fusing IMU data with visual observations. As demonstrated
in [79], the use of Lie algebra ensures mathematical consistency and stability during these
operations, making pre-integration particularly relevant for long-term navigation tasks.

2.1.3 SLAM problem representation

In this part, we explore two fundamental methodologies that have become central
to the field of SLAM: Pose Graph Optimization (PGO) and Bundle Adjustment (BA).
These approaches build upon the concepts of camera and IMU modeling discussed in
earlier sections. We will briefly present how PGO and BA articulate the SLAM problem
[80], [81], providing insight into the complexities involved, particularly in the context of
real-time dense mapping.

We consider a moving drone equipped with a monocular camera that is rigidly attached
to the drone. Consequently, the pose of the drone can be seamlessly related to the pose of
the camera. Let us denote the pose of the camera in the world frame at time instant i as
Ci ∈ SE(3). This yields the trajectory formed by the sequence of camera poses: {Ci}N

i=1.
Similarly, we can define the sequence of captured images as {Ii}N

i=1.

Pose graph optimization

The PGO is commonly used as a standard representation of the SLAM problem [80],
[82], [83]. As illustrated in Figure 2.3, nodes represent the camera poses. Edges between
nodes represent the spatial constraints that can arise from sensor measurements. In ad-
dition, when the algorithm recognizes a previously visited location, it identifies a loop
closure and adds a constraint (an edge) to the graph between non-consecutive nodes.
This helps to correct trajectory drift.

In PGO, the objective is to refine the node values so that the implied relative trans-
formations better match the measurements represented by the edges. This is achieved
through an alignment process expressed as a cost function, usually applied as a nonlinear
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Figure 2.3 – Pose graph representation of the SLAM problem. The graph consists of
nodes denoted by Ci, for the drone (or camera) pose, and some variants also include
3D landmarks Pk. Regarding the edges, Ti,j represents the transformation between time
instant i and j, while zi,k is the measurement of the landmark k at time instant i.

least squares problem. Well-known solvers such as Gauss-Newton or Levenberg-Marquardt
are used to solve this problem. As a result, the trajectory of the drone is refined and the
errors, especially those due to loop closure1, are distributed over the entire trajectory.

Considering a graph with nodes representing only camera poses, and focusing on cam-
era pose estimation, the associated cost function is:

arg min
Ci,Cj

∑
i,j

∥Ci − Ti,jCj∥2 (2.15)

The relative pose Ti,j is an edge of the graph that represents spatial constraints based
on sensor measurements that do not change during optimization. Nodes, represented by
camera poses Ci and Cj, are adjusted to best fit the constraints given by the edges.

Beyond pose graphs, factor graphs represent a more advanced modelization that ex-
plicitly represents a probabilistic optimization problem. In this approach, variable nodes
represent unknown values, whereas factor nodes are reflective of constraints on subsets
of these variables. The edges in this type of graph connect only nodes of different types.
This formulation facilitates the use of incremental solvers such as iSAM2 [84], which op-
timize computational effort by focusing on the graph segments most affected by recent
data. Additionally, such models typically allow inertial data to be incorporated into the
graph, as well as IMU parameters that are continuously refined [1], [2], [79]. The tutorial

1. A process in SLAM that detects when the robot revisits a previously observed location, allowing
for corrections to the estimated trajectory and map by aligning the current observation with the previous
one. This reduces drift in long-term navigation.
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in [85] provides a comprehensive explanation of factor graphs, including examples of its
application in SLAM using the GTSAM toolbox [86].

Bundle Adjustment

Bundle Adjustment is a refined optimization technique commonly used in visual SLAM
to simultaneously refine camera poses and 3D landmark positions [50], [81], [83], [87].
Chapter 11 of [69] provides a detailed presentation of the whole process, from feature
detection to projective reconstruction. Here we present a brief overview of the optimization
problem, particularly in the context of SLAM. Basically, the idea is to minimize the
reprojection error (as defined in Equation (2.10)) between observed feature points in the
images and their predicted projections from the current state estimate. In the context of
SLAM, BA expands on the PGO problem by incorporating landmarks into nodes, thereby
providing additional constraints to optimize both the trajectory and the map. This yields
the following cost function:

arg min
Pk,Ci

∑
i,k

∥∥∥pk
i − g(Pk, Ci)

∥∥∥2
(2.16)

This equation seeks to refine the 3D positions of all landmarks, denoted by Pk with
k indexing over all landmarks, and the camera poses, Ci with i indexing over all images
or time. The variable pk

i denotes the observed projection of the k-th landmark in the
i-th image. Meanwhile, the function g(Pk, Ci) computes the expected projection of that
landmark based on the current estimates of its 3D position and camera pose. The objective
is to reduce the difference between the observed and predicted projections for all images
and landmarks, resulting in an optimized reconstruction of the camera trajectory and
scene.

In SLAM, features are detected and tracked across frames, resulting in 2D correspon-
dences. System initialization is an essential initial step, which creates an initial estimate of
the relative camera transformations, typically derived from the Essential, Fundamental,
or Homography matrices [88], or by using IMU data [89]. Then, based on the epipolar
constraints discussed in section 2.1.1, the 3D positions of these features are triangulated.
Specifically, a point P is determined as the intersection of rays (Oipi) projected from
different camera views. Considering the inherent uncertainties in this initial triangulation
resulting from both pose estimation errors and feature tracking inconsistencies, BA re-
fines the 3D point estimates by simultaneously optimizing camera poses and landmark
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positions, thereby improving the accuracy of the triangulated points.
Therefore, considering these approaches, we can see that the construction of a dense

3D map requires the integration of landmarks corresponding to each pixel in the images
into the chosen graphical model as new nodes. Such integration results in a significant
increase in the underlying BA optimization’s complexity. In the following section, we
will review various SLAM methods that successfully build on these classical techniques,
highlighting their ability to achieve real-time and robust localization performance when
constructing a sparse map. Afterward, we will explore novel strategies to achieve dense
monocular SLAM.
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2.2 Conventional Visual SLAM

The challenges of SLAM and VIO have been effectively addressed for several years
now, and their solutions have been widely integrated into industrial products such as
warehouse robots, Microsoft HoloLens, Google Tango, and Oculus Quest [38], [90], [91].
However, there are still some challenges, as highlighted in the review by Cadena et al.[38].
Based on that study, long-term data association addresses robustness and scalability,
as outliers in data association can severely corrupt the system. Map representation and
semantic reasoning optimize map storage and account for scene objects. Deep learning
methods tend to replace intermediate stages such as scene depth estimation or inter-frame
pose regression. Finally, new sensors are being investigated, such as range, light field, or
event-based cameras. All these topics have been motivated by real-world applications in
robotics where SLAM can be applied. This section explores conventional SLAM methods
relying on passive sensors and relevant to drone navigation. Although these methods can
effectively track drone localization, they are limited in achieving dense 3D mapping with
monocular setups, a challenge that can now be addressed by leveraging deep learning
capabilities.

Figure 2.4 – Diagram illustrating the connection between SLAM and VIO: VIO is typically
considered as a subset of SLAM, focusing on pose estimation and local mapping, while
SLAM extends these functionalities with global mapping and loop closure detection.

Both visual SLAM and VIO estimate camera poses for every frame and triangulate
or update the positions of 3D landmarks. However, as illustrated in Figure 2.4, VIO
performs data association only over a local map, ensuring local trajectory consistency
but leaving accumulated drift uncorrected. In contrast, SLAM carries out long-term data
association and thus maintains a global map. When re-observing landmarks, it can correct
the accumulated drift through a process called loop closure [50].
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In the remainder of this section, we discuss the main categorizations of SLAM ap-
proaches and the integration of inertial data providing metric information and enhancing
performance. Subsequently, we review some of the reference methods in conventional vi-
sual SLAM. Table 2.1 provides a comparison of various SLAM techniques based on their
sensor configurations, their ability to estimate the absolute scale and to reconstruct a
dense 3D map.

Sensors Features Constraints Density Scale Methods
Mono •Passive sensor

•Cheap
•High resolution
•Minimal calibration
•Classical algorithms

•Scale ambiguity
•No mapping under

pure rotation
•Difficult initialization

•Sparse Relative PTAM [92], ORB-SLAM
[87], DTAM [93],
LSD-SLAM [94],
VITAMIN-E [95],
ORB-SLAM 3 [1]

Mono +
IMU

•Metric measures
•IMU high rate
•Inter-frame motion

estimation

•IMU drift and biases
•Visual-Inertial

calibration
•Synchronization

•Sparse Absolute ORB-SLAM VI [96],
VINS-Mono [97], OKVIS
[98], SVO + GTSAM [79],
ORB-SLAM 3 [1]

Stereo •Depth from stereo
vision

•Easier SLAM
initialization

•More data to process
•Extrinsic calibration
•Limited range

precision due to
limited baseline

•Sparse
•Dense via

stereo
matching

Absolute ORB-SLAM 2 [99],
VINS-Fusion [100],
OV2SLAM [101], SOFT2
[102], ORB-SLAM 3 [1]

Stereo
+ IMU

•Robustness
•Speed up

computation

•Stereo-IMU
calibration and
synchronization

•Sparse
•Dense via

stereo
matching

Absolute OKVIS [98], VINS-Fusion
[100], Kimera [12], Basalt
[2], ORB-SLAM 3 [1]

Table 2.1 – Comparative overview of conventional visual SLAM methods categorized by
sensor configuration, highlighting their distinct features, constraints, typical map density,
scale estimation capabilities, and notable reference implementations.

Filtering and Keyframe strategies

The seminal methods in this field relied on non-linear filtering, specifically EKF
SLAM [103] or Fast SLAM [104], as formulated and analyzed in [82], [105]. These
techniques estimate the state (camera pose and landmarks) in every frame. The pro-
cess predicts the current state using a motion model and then refines this estimate using
image measurements. The updated covariance provides an indication of the estimate’s un-
certainty. Since SLAM is inherently a non-linear problem, these methods use linearization,
which introduces approximation errors. Moreover, because previous states are marginal-
ized, these errors cannot be corrected afterward.

As demonstrated in [81], they are less accurate and less efficient than keyframe-based
methods, which process each frame to track the camera pose, and then select and store
some of them as keyframes. Camera pose is typically estimated by motion-only BA on
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local frames, using fixed landmarks to optimize only the camera pose. Following this, full
BA is applied to keyframes to jointly refine poses and landmarks using global map data.

Feature-based and Direct approaches

Two types of approaches prevail in visual SLAM. Feature-based methods mainly use
the image reprojection error (cf. eq. (2.10)) as introduced in Section 2.1.3. 2D-to-3D
correspondences are obtained by extracting and describing keypoints in the image using
a feature detector and descriptor (e.g. SIFT [72], Shi-Tomasi corners [106], FAST [73],
ORB [74], etc) and then associating them with 3D landmarks and other images using
robust feature matching. In contrast, direct methods determine camera pose through
image alignment, minimizing the photometric error (2.12). They compare pixel intensities
across the image, using an initial depth estimate for alignment, and jointly adjust depth
and camera pose. The density of the resulting map reconstruction depends on the area
of the image processed: dense (full image), semi-dense (high gradient regions), and sparse
(small pixel set). As a result, direct methods are slower than feature-based methods
because they process a much larger amount of data. However, they are more resilient
to motion blur or textureless regions.

Visual Inertial Odometry

As previously mentioned, monocular cameras suffer from depth ambiguity. Pairing
them with an IMU helps resolve the missing scale information and improves the overall
state estimation. Moreover, IMU sensors have a much higher output rate (1 kHz and
above) compared to RGB cameras (30-60 Hz). Consequently, many VIO methods derive
inter-frame relative motion by integrating or pre-integrating inertial data between frames.
In practice, initializing the IMU parameters is a critical task whose complexity depends
on the quality of the sensor. Thus, accurate synchronization and calibration between the
IMU and the camera is essential.

The literature identifies two types of VIO approaches: loosely coupled techniques esti-
mate pose using individual sensor data and then merge them; tightly coupled methods use
data from both sensor modalities for combined pose estimation. According to the review
by Scaramuzza and Zhang [107], the latter method is more accurate. This review also
describes three major paradigms. Filtering techniques sequentially process measurements
and maintain only the current state estimate. Inertial data enhances accuracy but also in-
troduces more non-linearities, resulting in more linearization errors permanently injected
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into the filter state. Fixed-lag smoothing approach achieves a balance between efficiency
and accuracy by optimizing over a sliding window, adjusting recent portions of the trajec-
tory as new data arrive. Thus, prior states in the window can be re-linearized to correct
a potential error. In contrast, full smoothing methods consider the entire trajectory and
all measurements for estimation, providing the highest accuracy at the expense of greater
computational complexity.

Factor graphs are widely used in full smoothing methods. They facilitate optimiza-
tion tasks by explicitly modeling the structure of the problem, allowing efficient sparse
linear solvers to be used in the optimization process. The GTSAM library [86] is widely
used and combined with the iterative solver iSAM2 [84]. This kind of solver greatly
improves performance by identifying and updating only factors that are affected by new
measurements, thus maintaining the sparsity of the factor graph.

2.2.1 Sparse methods

Feature-based methods mostly adopt a keyframe-based approach, storing selective
keyframes with associated camera poses and landmarks. They are faster because they
do not process the entire image data, but only the most relevant keypoints. While this
allows for real-time performance and robust localization, it also results in sparse map
reconstruction.

PTAM [92] introduced parallel SLAM, divided into a tracking thread that estimates
relative pose at camera frame rate, and a mapping thread that optimizes the global map
at keyframe rate.

Building upon this foundation, Mur-Artal presented ORB-SLAM [87], an algorithm
that runs in real-time using a more robust version of the ORB feature descriptor. Loop
closures are detected using the DBoW2 library [108], which relies on vocabulary trees.
Similar to a pose graph, the covisibility graph is adopted, connecting keyframes based on
spatial proximity. Two nodes connect when they observe a minimum number of shared
landmarks, emphasizing spatial relationships over temporal ones. This representation fur-
ther optimizes data association, loop closure detection, and relocalization by limiting the
search window to a relevant portion of the map.

SVO [109] is a semi-direct Visual Odometry (VO) technique commonly used in various
SLAM front-ends. Motion estimation begins by minimizing the photometric error of the
patches resulting from the projection of 3D landmarks across successive frames. Then,
reprojected points are refined by feature-patch alignment from previous keyframes. BA is
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then applied to further minimize the reprojection error from the previous step. In terms of
mapping, for each identified keypoint, depth filters are initialized with the average depth
of the keyframe, with a high uncertainty. As more frames are processed, depth is updated
in a Bayesian fashion. When the uncertainty is low enough, the depth is incorporated
into the map. This method provides a good balance between direct and feature-based
approaches, resulting in a robust and fast solution that was then implemented for SLAM.

Voxel maps were introduced in [41] as an alternative map representation for keyframe-
based methods. The study argues that the use of a voxel map, as opposed to a covisibility
graph, improves both scalability and geometric reasoning within SLAM systems. This
approach explicitly reasons about occlusions and ensures geometric consistency within
the camera field of view. Furthermore, it avoids the redundancy of keyframes in identical
locations, and the voxel hashing technique maintains a constant query time for a fixed
frustum. The methodology has been integrated into the SVO framework, with empirical
results showing that it achieves an optimal balance between geometric awareness and
computational efficiency.

SVO+GTSAM [79] is another SLAM algorithm based on SVO [109] front-end, and
a full smoothing back-end using factor graph. A structureless approach is introduced
replacing landmarks variables in the graph with structureless factors, accelerating com-
putations. The authors have also formally demonstrated the IMU pre-integration theory
which is widely used in VIO. It constrains a single relative motion from high-frequency
inertial measurements between 2 frames addressing the manifold structure of the rotation
group SO(3).

Basalt [2] is a state-of-the-art stereo-inertial method. It uses the double sphere camera
model [71], which offers improved accuracy for cameras with a wide field of view. The sys-
tem conducts VIO estimation on a dedicated thread using a fixed-lag smoothing strategy.
FAST keypoints are detected and tracked for each frame using the Kanade-Lucas-
Tomasi (KLT) method. Between frames, IMU data is pre-integrated. Next, a local BA
is applied minimizing both the reprojection error and an IMU propagation term from [79].
In the mapping thread, each new keyframe triggers the detection of new ORB features,
which are matched with other keyframes. Then, non-linear factor recovery proceeds by
recovering roll-pitch, yaw, absolute position, and relative poses from the linearization re-
sulting from front-end marginalization. Finally, Global BA optimizes reprojection errors
from ORB features and an error term computed from the non-linear factors.

ORB-SLAM was followed by a visual-inertial version [96] and ORB-SLAM 2 [99],
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an RGB-D and stereo extension. Combining and improving these works led to ORB-
SLAM 3 [1]. Its structure is illustrated in Figure 2.5. It is compatible with monocu-
lar, stereo, RGB-D, and visual-inertial configurations, without restriction on the camera
model. It enhances place recognition through verification of geometric consistency and
implements the Atlas multi-map system [110]. The benchmarking results of the authors
show that ORB-SLAM 3 outperforms all the leading methods in all sensor configura-
tions, making it the state of the art. However, even though the IMU initialization process
has been accelerated, it is still suboptimal in practice. In slow motion, the initialization
tends to fail, especially without pitch and roll rotations.

Figure 2.5 – Architecture of ORB-SLAM 3 as illustrated in [1] © 2021 IEEE, featur-
ing a multi-threaded design. The Tracking thread processes input data to estimate the
camera pose at the camera frame rate. The Local Mapping thread refines camera poses
and updates the local map at the keyframe rate. The Loop & Map Merging thread is
responsible for place recognition and loop closure. The Atlas component is a multi-map
system that stores maps when the algorithm loses track and merges the active map with
stored ones when a previously mapped location is recognized.
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Summary Conventional sparse SLAM and VIO methods have made significant progress
in addressing many of the primary challenges associated with localization. Under classi-
cal conditions, characterized by static scenes without dynamic objects, constant lighting
conditions, and the absence of aggressive motion, state-of-the-art approaches show re-
markable accuracy and robustness in performing metric localization. The adoption of a
sparse map representation allows for the application of more advanced techniques in a
real-time operational context. Additionally, voxel mapping was shown to be particularly
relevant for navigation tasks, providing better scalability and geometric consistency. How-
ever, these systems have mainly been evaluated using standard datasets like KITTI [5]
for automobiles, TUM-VI [4] for handheld payload, and EuRoC [3] for drones, as de-
scribed in Section 2.6. These benchmarks do not explicitly evaluate the performance of
SLAM systems under more challenging conditions.

2.2.2 Dense and semi-dense methods

Dense SLAM is commonly implemented using direct methods, which process much
more data as they estimate depth for each pixel in an image. This approach typically
provides a 3D reconstruction as a dense point cloud or a 3D mesh. This comes at the cost of
increased computational complexity, making it more challenging for real-time applications
than its sparse counterparts.

DTAM [93] is a pioneer in direct methods exploiting GPU-accelerated dense compu-
tations over entire images. Textured depth maps are generated through the optimization
of a projective photometric cost volume, considering factors such as photometric error,
inverse depth, and a robust spatial regularization term. Camera pose is inferred by align-
ing the actual and a virtually reconstructed frame from the dense map. This technique
not only yields a dense 3D reconstruction but also enhances robustness during fast mo-
tion. Nonetheless, the initial bootstrapping of the system and the precision of localization
remain suboptimal.

LSD-SLAM [94] is another renowned direct method. It considers high-gradient re-
gions instead of all pixels in the image to create a semi-dense map. When a new keyframe
is created, the inverse depth is estimated from the previous keyframe and refined by
adaptive-baseline stereo matching from subsequent frames. Motion is estimated by min-
imizing the variance-normalized photometric error. Keyframes and corresponding poses
are inserted into a pose graph and maintained in the background by PGO. This method
runs in real-time on a CPU and achieves good accuracy.
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VITAMIN-E [95] builds on a feature-based approach and achieves dense reconstruc-
tion by handling a very large number of keypoints. It introduces a new form of dense
feature tracking that detects local curvature extrema and uses dominant flow estimation
to predict their new positions. It adopts a subspace Gauss-Newton method for BA op-
timization, which substantially increases computational efficiency by partially updating
variables, making real-time operation feasible. The system generates a mesh by projecting
the resulting dense point cloud and applying 2D Delaunay triangulation, which is then
denoised and integrated within a Truncated Signed Distance Function (TSDF). The pro-
cessing speed of VITAMIN-E on a CPU is such that it can handle every single frame,
not just keyframes. While it surpasses the localization accuracy of methods like ORB-
SLAM and LSD-SLAM, its measurements are not metric, and its overall performance
is below that of state-of-the-art methods such as ORB-SLAM 3.

Figure 2.6 – Example of 3D reconstruction generated by Kimera [12] on the EuRoC [3]
dataset.
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Kimera [12] presents a dense, metric, semantic, and real-time SLAM system using
a stereo-inertial configuration segmented into four primary modules: VIO, robust PGO
(global sparse mapping and loop closure), fast dense 3D mapping, and global dense seman-
tic 3D mapping. The VIO module is based on SVO+GTSAM [79] adapted for stereo.
The robust PGO adopts the DBoW2 [108] library for loop closure detection and improves
reliability through outlier rejection via Pairwise Consistency Maximization (PCM). Sim-
ilar to VITAMIN-E, the system achieves fast dense 3D mapping by performing a 2D
Delaunay triangulation of tracked features and then back-projecting this triangulation
onto corresponding 3D landmarks to generate a fast per-frame and multi-frame 3D mesh.
Global mapping leverages bundled raycasting, as demonstrated in Voxblox [39], using
a 3D point cloud derived from dense stereo to create and update a TSDF from which
an accurate global 3D mesh is extracted using marching cubes [111]. It also incorporates
semantics by raycasting 2D segmentation.

Summary Dense SLAM, especially in its monocular form, has been a less explored
area until recently because the primary focus has been on ensuring robust and accurate
localization over dense mapping. Existing methods often required significant computa-
tional resources or were less efficient than sparse SLAM, which handles fewer parameters
during robust PGO. The inherent depth ambiguity poses a critical limitation to real-time
dense 3D map reconstruction from a monocular camera. Nevertheless, this challenge has
been addressed in recent SLAM developments through the integration of advanced deep
learning techniques that are presented in the following section.
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2.3 Densifying Monocular SLAM

Recent advancements have integrated DNNs into monocular SLAM for end-to-end
learning or specific tasks, thereby improving scene understanding and robustness [38],
[112]. In particular, these methods have significantly advanced dense mapping capabilities
[113]. A common approach to densify sparse or semi-dense SLAM maps is to leverage
Monocular Depth Estimation (MDE), which has been shown to significantly improve
3D reconstruction quality. Yet, many of these methods predict relative depth without
an absolute scale. A concise synthesis of related works is presented in Table 2.2 whose
operation is briefly described in the sequel.

Method Year Metric Sensors Localization
evaluation

Mapping
evaluation

Computing
resources

Code
available

NERF-SLAM [114] 2023 No Mono No Depth map RTX 2080 Ti Yes
Rosinol et al. [115] 2023 No Mono No Point cloud RTX 2080 Ti No
CodeMapping [6] 2021 Yes Mono-IMU No Depth map RTX 3080 No
DROID-SLAM [116] 2021 No Mono Yes N/A 2x RTX 3090 Yes
TANDEM [117] 2021 No Mono Yes Depth map RTX 2080 Yes
CodeVIO [7] 2021 Yes Mono-IMU Yes Depth map GTX 1080 Ti No
DeepRelativeFusion [66] 2021 No Mono Yes Depth map GTX 1070 No
DeepFactors [65] 2020 No Mono Yes Depth map GTX 1080 Yes
MapSlammer [118] 2019 No Mono Yes Point cloud N/A Yes
CodeSLAM [119] 2018 No Mono No N/A N/A Yes
CNN-SLAM [64] 2017 No Mono Yes Depth map Quadro K5200 Yes

Table 2.2 – Comparative overview of the main monocular SLAM densification methods.

CNN-SLAM [64] was a pioneer in integrating DNNs into SLAM, providing a solu-
tion for predicting dense depth maps using Convolutional Neural Networks (CNNs) from
single keyframes and subsequently merging them with depth estimates derived from LSD-
SLAM. This technique addresses specific challenges such as absolute scale estimation,
robustness during pure rotational motion, and extraction of dense depth in textureless
regions.

Map Slammer [118] uses the DeMoN method [120] to predict depth maps from a
pair of successive monocular images. A 3D point cloud is extracted from these depth maps.
It is then registered and fused with the sparse points from ORB-SLAM 2, resulting in
a dense 3D map.

DeepRelativeFusion [66] extends the capabilities of LSD-SLAM by incorporating
MiDaS [121] to predict relative depth from a CNN, and then densify the semi-dense
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map estimated by SLAM. The resulting dense map is then used to fine-tune keyframe
poses, and the global structure is further enhanced by a two-view consistency check.
This approach demonstrates superior results compared to one of the reference methods
DeepFactors presented afterwards.

CodeSLAM [119] introduced Conditional Variational Auto-Encoders (CVAE) to in-
fer depth in monocular SLAM by learning a compact depth representation. The auto-
encoder1 implicitly finds a compact representation referred to as a "code" for the depth
map. The authors argue that when given the corresponding intensity image, only the depth
information that cannot be recovered from the image intensities needs to be encoded. It
translates into the architecture shown in Figure 2.7. The lower network represents a Vari-
ational Auto-Encoder (VAE), whose central variational component samples the code from
the Gaussian distribution it has learned. The connection between the code and the recon-
structed depth is enforced by avoiding non-linear activations in the decoder. The upper
network extracts features from the intensity image and predicts the depth uncertainty.
The encoded features are concatenated at multiple scales in the lower network to con-
dition the VAE. The entire model is trained from RGB-D data. The codes and camera
poses constitute the state variables of the system from which the Jacobian is derived.
Consequently, the use of codes provides a compact representation of the 3D structure of
a keyframe, thereby reducing the complexity of the optimization.

Continuing this work, DeepFactors [65] implements the same concept into a real-time
full SLAM system relying on GPU acceleration. In particular, this approach proposes a
probabilistic formulation that integrates the use of codes in a dense BA framework with a
factor graph. It also introduces a third network that predicts an initial code from an image
for each new keyframe, improving the efficiency of the process. DeepFactors represents
a significant improvement in dense monocular SLAM, with promising reconstruction ac-
curacy compared to previous methods. Nevertheless, Jacobian computation still severely
penalizes its efficiency.

Addressing this issue, CodeVIO [7] intelligently integrates a CVAE with an IMU,
presenting a real-time SLAM framework capable of dense and metric 3D mapping. The
VIO module is based on OpenVINS [122], where the depth code is integrated into the
state vector. Additionally, the sparse depth estimated by VIO is concatenated with the
input intensity image of the conditioner network. On the other hand, since only the Jaco-

1. An auto-encoder is a type of neural network used to learn efficient codings of unlabeled data. The
network typically consists of two parts: an encoder that maps the input to a code, and a decoder that
maps the code to a reconstruction of the original input.
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Figure 2.7 – Architecture of a CVAE as presented in CodeSLAM. Certain methods
additionally integrate the sparse depth from SLAM as input [6], [7] and occasionally
include the associated reprojection error [6].

bian of the VAE decoder is needed, they approximate it with a finite difference equation
and avoid its recurrent computation using the First-Estimate Jacobians technique. This
approach significantly speeds up the process and allows CodeVIO to achieve state-of-
the-art accuracy in monocular SLAM densification.

TANDEM [117] is a dense monocular SLAM system based on photometric BA op-
timized over a sliding window. The method employs a multi-view stereo network, which
efficiently exploits the entire active keyframe window, creating 3D cost volumes hierarchi-
cally and utilizing adaptive view aggregation. This process balances the different stereo
baselines between keyframes, improving depth map prediction. The system produces a
consistent global map through the fusion of depth map predictions into a TSDF voxel
grid. TANDEM is not metric, but for reference, it surpasses CodeVIO in reconstruction
accuracy after scale alignment.

CodeMapping [6] builds on the monocular inertial configuration of ORB-SLAM
3 and uses CVAE to densify the mapping process. Building on the CVAE introduced
in CodeSLAM, it processes a keyframe consisting of an intensity image concatenated
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with the estimated sparse depth and the associated reprojection error. The authors argue
that the reprojection error provides a confidence measure for the sparse depth. Similar to
DeepFactors, the dense mapping thread processes windows of four keyframes from which
depth codes are extracted and optimized in a dedicated factor graph. Only the structure
is optimized since ORB-SLAM 3 already provides accurate pose estimation. Therefore,
this approach strongly relies on the robustness of the underlying SLAM method. Also,
training in a supervised fashion limits the generalization capacity. However, it is currently
one of the state-of-the-art methods for dense and metric monocular SLAM.

DROID-SLAM [116] marks a significant advancement in SLAM research, introduc-
ing an end-to-end differentiable architecture that integrates deep learning with traditional
geometric methods. The problem is structured as a covisibility graph and adapts tech-
niques introduced in the RAFT [123] optical flow estimator. Each edge (image pair)
is processed through a feature network to construct correlation volumes, complemented
by another network that gathers contextual features. A learned recurrent update opera-
tor is the core of this method. It iteratively updates the hidden state, pose, and depth
estimates. The operator incorporates a convolutional Gated Recurrent Unit (GRU) that
interprets correlation, flow, and context features to predict dense optical flow adjustments.
These predictions are integrated into a dense BA layer, which refines the pose and depth
within the graph. Although DROID-SLAM is computationally intensive and follows a
supervised learning paradigm, it demonstrates impressive localization performance and
robustness after scale adjustment.

Following this work, a few approaches have been proposed to specifically improve 3D
reconstruction by enhancing depth map fusion. The paper [115] introduced a probabilis-
tic volumetric fusion technique based on DROID-SLAM aiming to improve the quality
of its noisy reconstructed maps. Depth uncertainty is derived from the dense BA opti-
mization procedure, specifically from the marginal covariance of the depth maps. The
volumetric fusion is applied to the depth maps weighted by their computed uncertainty
to build a TSDF. A mesh is then generated using marching cubes, taking into account
the uncertainty bounds.

Continuing this approach, NeRF-SLAM [114] incorporates Neural Radiance Fields
(NeRF) into SLAM to replace the previous uncertainty-based volumetric construction.
The original NeRF model [124] has demonstrated remarkable capabilities in rendering
3D scenes from different viewpoints, although it requires extensive training on multiple
posed images. However, following subsequent research on instant [125] and pose-free [126],
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[127] techniques, NeRF-SLAM proposes to learn and apply a model from dense SLAM
outputs and computed uncertainty in real-time. This novel method significantly enhances
performance compared to most prior techniques, although the authors acknowledge that
the computational demands in real-time operations are still too high for drone applica-
tions.

Summary Thus, recent studies aim to enhance monocular SLAM by densifying sparse
and semi-dense maps to increase localization robustness or to improve 3D reconstruction.
The majority of these approaches employ deep learning techniques, which have resulted
in remarkable advances in depth estimation accuracy. However, as Table 2.2 illustrates,
several of these methods fail to achieve metric precision due to their reliance on strictly
monocular configurations. Furthermore, these methods have primarily been tested on
high-powered desktop GPUs, raising concerns about their suitability for low-power em-
bedded computing environments. Among these, CodeVIO and CodeMapping stand
out as leading methods for dense and metric monocular SLAM. Unfortunately, they do
not make their source codes publicly accessible, restricting broader experimentation and
adoption.
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2.4 Monocular Depth Estimation

In the previous section, we illustrated the benefit of predicting dense depth maps from
single images for dense SLAM. In this section, we will provide a concise overview of the
various deep learning methods and approaches for Monocular Depth Estimation (MDE).

The review by Ming et al. [128] presents a thorough review of research on MDE. Initial
methods relied primarily on visual depth cues such as vanishing points, shadows, and focus
variations. These were not very effective and were limited to scenes with shallow depth
fields. Subsequently, with the rise of machine learning paradigms, techniques based on
feature detectors and probabilistic graph models were introduced. Although they attained
better performance, they were still sparse, complex, slow, and inefficient in textureless
regions. Finally, the emergence of Deep Learning has led to considerable progress in the
field. Typically, encoder-decoder architectures are used to first extract deep features from
a single image and then use deconvolution layers to regress the corresponding depth map.
Methods can be divided into three categories depending on the employed learning method:
supervised, semi-supervised, and self-supervised (or unsupervised).

Supervised methods, presented in subsection 2.4.1, rely on extensively labeled datasets
where ground truth depth information is used to train models to understand and predict
depth from single images. These methods achieve high precision but require substantial
data collection with accurate labeling, which is a tedious task.

Semi-supervised methods mitigate this by using a combination of labeled and unla-
beled data, improving the model’s ability to generalize from limited ground truth infor-
mation while still leveraging the large amount of unlabeled data. This approach balances
the robustness of supervised methods with the scalability of unsupervised ones.

On the other hand, self-supervised methods, reviewed in subsection 2.4.2, do not re-
quire labeled data and instead rely on innovative training schemes derived from multi-view
geometry, often using stereo pairs or monocular sequences. While this approach provides
greater scalability, it is typically less accurate than its supervised counterparts. It is also
more prone to scale ambiguity and affected by occlusions.

The influence of absolute scale estimation on the depth estimation accuracy was estab-
lished in [129]. Supervised methods tend to achieve higher accuracy when the predicted
scale is close to that of the training ground truth [128]. This approach leads to limited gen-
eralization and increased uncertainty [129]. The alternative approach is to learn relative
depth by predicting depth maps up to an unknown scale factor, typically implementing
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scale-invariant loss [129], which has also been shown to improve generalization [121]. As
a result, most of the algorithms are evaluated either using scale-invariant metrics [129] or
after performing a scale alignment using ground truth data. Certain self-supervised meth-
ods [8], [130] also address this issue by adopting a scale-aware1 loss function, allowing the
prediction of depth maps that are both metric and scale-consistent.

Ming et al.’s review provides a comprehensive comparison of these methods, highlight-
ing quantitative results measured on the KITTI benchmark [5]. The results, particularly
in terms of the squared relative error metric, indicate that supervised methods outperform
others, with self-supervised techniques next in line. Based on these findings, this section
will briefly cover a few renowned techniques from both categories in chronological order.

2.4.1 Supervised methods

Eigen et al. [129] pioneered the use of DNNs in depth estimation, adopting a multi-scale
strategy with CNNs. Their method initially generates a coarse depth map by interpreting
global structure information, which is subsequently refined for specific local regions by
a fine-scale network. Nonetheless, this approach has some limitations, such as the use
of successive spatial pooling operations which degrades the quality of the deep feature
extraction.

Fu et al. proposed the DORN method [131], which redefines depth estimation as an
ordinal regression task instead of traditional direct regression. By discretizing continuous
depth values into distinct ordinal bins, it overcomes some of the inherent challenges of
direct regression, thereby achieving increased stability and accuracy in its predictions.
Additionally, training the model to predict relative scale enhances its ability to stay robust
despite scale changes since the relative depth remains consistent, even if the absolute scale
varies.

BTS [132] proposes to replace traditional skip connections with local planar guidance,
establishing direct and explicit links between encoder and decoder layers at different
resolutions. This approach relies on the assumption that small image regions can often
be approximated as planar surfaces, providing a geometric context that helps maintain
consistency across scales and resolutions.

MiDaS [121] presents a novel training strategy designed for robust depth estimation.

1. In Monocular Depth Estimation, "scale-aware" refers to the ability of a model to predict depth maps
where the absolute scale of the depth values corresponds to the real-world measurements, as opposed to
predicting relative or arbitrary scales.
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The approach relies on mixing multiple datasets, as the combination is likely to contain
different depth ranges, varying depth representations (direct or inverse depth), and po-
tential disparity and scale ambiguity (relative or absolute). To align these diverse data
sources, MiDaS introduces a novel loss function that is both scale and shift invariant
to account for the disparate nature of the integrated datasets. This strategic fusion en-
ables the model to learn depth estimation with enhanced generalizability across different
scenarios and conditions.

The authors of MiDaS then introduced the Dense Prediction Transformer (DPT)
[133], which leverages Vision Transformers (ViTs) to enhance the encoder’s capabilities.
Notably, the ViT backbone in DPT maintains a constant and relatively high resolution
throughout its depth. This consistency allows the model to make more detailed predictions
compared to Fully Convolutional Neural Networks (FCNNs), which lose resolution as they
go deeper when using pooling operations. The depth map prediction is generated by a
convolutional decoder, which reassembles the set of tokens processed by the encoder. Since
ViTs are not the primary focus of our work, we refer readers to the comprehensive survey
[134] for a detailed introduction to the topic.

AdaBins [135] builds on a similar approach to DORN, but introduces a novel ap-
proach to adaptively divide the depth range into bins. The method uses an encoder-
decoder architecture, followed by a unique module that uses a simplified version of ViT
to adaptively determine the bin boundaries for each image. The ultimate depth map is
computed as a linear combination of these adaptive bin centers.

Recently introduced, ZoeDepth [136] addresses the challenges of generalization and
absolute scale in depth estimation. Building on the MiDaS strategy, it adopts an encoder-
decoder architecture derived from DPT and incorporates a modern ViT backbone for the
encoder. While the MiDaS model predicts relative depth, ZoeDepth attaches a metric
bins module to the decoder. Inspired by the adaptive binning technique introduced in
AdaBins, ZoeDepth effectively infers a metric depth map.

ZeroDepth [9] introduces a novel approach to predict metric scale depth in a zero-shot
cross-domain setting. The Transformer-based model is illustrated in Figure 2.8. By inte-
grating camera intrinsic parameters, the model gains insight into object size and shape,
which aids in scale estimation. Using variational inference, it captures uncertainty in
depth predictions, producing a distribution over potential depth maps rather than a sin-
gular estimate. The encoder samples a latent depth representation from image and camera
embeddings, which is then decoded multiple times into a depth map, with the final depth
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Figure 2.8 – Architecture of ZeroDepth as published in [9] © 2023 IEEE.

being the mean of these samples and the standard deviation being the uncertainty. Cur-
rently, ZeroDepth is among the leading methods for monocular depth estimation.

2.4.2 Self-supervised methods

Self-supervised methods, such as the one introduced by Garg et al. [137], eliminate the
need for ground truth depth data by leveraging epipolar geometry constraints. They refor-
mulate monocular depth estimation as an image reconstruction problem. Their pioneering
work introduces a form of unsupervised learning that relies on multi-view geometry, specif-
ically applied within an auto-encoder framework. The training process uses stereo images,
with the encoder first predicting the inverse depth from the left image. This predicted
depth, which is inherently related to disparity, is then integrated with the right image
to create an input for the decoder. The role of the decoder is to warp the right image
to reconstruct the original left view. The network then computes a reconstruction error
between the warped image and the original, and uses this as feedback for learning. Dur-
ing inference, only the encoder is operational, predicting depth maps from single images.
This innovative approach bypasses the need for actual depth data, relying solely on stereo
images and known camera calibration parameters.

Monodepth [138] enhances this approach by implementing a FCNN and a novel loss
function that enforces consistency between the depth maps inferred from the left and right
images. Rather than reconstructing one image from another, Monodepth ensures that
the inferred depth maps maintain coherence as viewpoints are interchanged, facilitating
the management of occlusions and textureless regions. Unlike Garg et al., who linearize
their loss through a Taylor expansion, Monodepth employs a bilinear sampler for image
synthesis, resulting in a training loss that is fully differentiable and thereby more straight-
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forward to optimize. Moreover, the depth smoothness is enforced by a regularization term.
SfMLearner [139] extends the self-supervised learning paradigm by simultaneously

learning depth and camera pose from monocular video sequences. It uses a pose estimation
network that takes a target view and its adjacent source views as input and predicts the
relative poses between the target and each source view. It results in a set of multiple views
of the same scene with estimated relative poses, allowing the previous methodology to
be applied. The training dataset comprises sequences of successive frames, each with an
average optical flow magnitude of at least one pixel to ensure sufficient scene dynamics.
These sequences are fixed to 3 frames, with the target view positioned as the central
frame.

Monodepth2 [140] addresses the inherent occlusion challenge of training on monoc-
ular sequences. For this purpose, it introduces an appearance matching loss that exploits
the per-pixel minimum reprojection error. An automasking procedure is also used to ex-
clude pixels without relative motions, as these pixels do not provide sufficient information
for depth computation. Additionally, the authors implement multi-scale supervision by
calculating the photometric reconstruction error over different scales using intermediate
depth maps upsampled to full resolution.

PackNet-SfM [8] presents a novel neural network structure designed for scale-aware
depth estimation from monocular video sequences. The architecture of the self-supervised
model for depth and camera pose prediction is depicted in Figure 2.9. This method in-
troduces symmetrical packing and unpacking blocks with 3D convolutions, allowing de-
tailed spatial information to be preserved for precise high-resolution depth predictions.
PackNet-SfM also aims to infer depth with absolute scale by integrating a velocity su-
pervision loss when ground truth velocity data is available. This loss function constrains
the estimated translation and guides the model in scale prediction. PackNet-Sfm out-
performs many existing methods without scale adjustment, including supervised learning
approaches. While reported experiments demonstrate promising generalization capabili-
ties, the primary evaluation context remains outdoor car navigation scenarios.

Recently, several advanced methods have been proposed, achieving remarkable per-
formance improvements. DIFFNet [141] employs a semantic segmentation network and
incorporates multi-scale feature fusion and spatial attention modules into its decoder to
improve skip connections processing. MonoFormer [142] evaluates the generalization
capabilities of state-of-the-art methods. Based on the observation that CNNs are texture-
biased and Transformers are shape-biased, they exploit the strengths of both and intro-
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Figure 2.9 – Architecture of PackNet-Sfm as published in [8] © 2020 IEEE. The model
is designed for joint depth and camera ego-motion estimation.

duce Monoformer, a hybrid architecture that offers improved performance in various
scenarios. In comparison, MonoViT [143] also combines CNNs and ViT, but stands out
for its higher accuracy and significantly reduced network complexity, with 2 to 16 times
fewer parameters than MonoFormer.

Summary This section has provided a selective review of monocular depth estima-
tion techniques. Overall, supervised methods are more precise, although they have been
severely hampered by the scarcity of large labeled datasets. Their generalization capa-
bilities remained limited until the recent emergence of Transformers, with the example
of ZeroDepth, which has an extensive learning capacity but requires massive amounts
of training data. During our study, self-supervised strategies initially emerged as a more
viable option, providing decent generalization without reliance on labeled data. Notably,
PackNet-Sfm stood out by approaching the accuracy of its supervised counterparts.
However, a common limitation of these diverse approaches is their predominant training
and evaluation in the context of autonomous driving, with insufficient exploration and
adaptation to indoor environments. In the context of this work, we intend to leverage the
generalization capabilities of these methods in indoor scenarios specific to drone naviga-
tion. To achieve this, in the following sections, we will review the evaluation metrics and
datasets that are most relevant to our study.
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2.5 Evaluation metrics

This section presents the classic metrics used to evaluate SLAM systems [144] and
depth estimation [63] algorithms. These metrics will be used in our experiments for the
measurement of the accuracy of our work and the comparison with related works.

2.5.1 Localization evaluation

SLAM and VIO systems need relevant metrics to benchmark their accuracy. The most
used metrics are the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE)
introduced in [145]. The trajectory of a drone can be represented as a sequence of poses
or as a set of rigid body transformations. In the following, the estimated trajectory is
defined as P = {Pi ∈ SE(3)}0<i≤N and the corresponding ground truth trajectory as
Q = {Qi ∈ SE(3)}0<i≤N , where N denotes the number of poses.

Absolute Trajectory Error

The most appropriate metric for evaluating SLAM localization is the ATE, as it as-
sesses global trajectory consistency. Before comparison, the estimated and ground truth
trajectories need to be aligned since they might be expressed in different coordinate frames.
Horn’s alignment method [146] is commonly used. It solves an optimization problem to
determine the rigid body transformation S ∈ SE(3) that aligns the estimated poses Pi

with the ground truth poses Qi. Other methods have been proposed, such as the one
discussed by Salas et al. [147], which presents a least-squares optimization approach on
the manifold. Consequently, the error at time step i can be expressed as:

Ei = Q−1
i SPi (2.17)

This approach is relevant when the evaluated algorithm can determine the absolute
scale. However, in settings such as pure monocular SLAM, where this is not possible, scale
adjustment becomes necessary. Consequently, the transformation S, initially in SE(3),
transitions to a similarity transformation in the Sim(3) group. In this case, the Umeyama
method [148] is commonly used to align trajectories, since it additionally corrects the
scale. Similarity transformations can be defined by the following equation where s ∈ R is
a scale factor:
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∀T ∈ Sim(3), T =
 sR t
01×3 1

 (2.18)

The ATE assumes that rotational errors that accumulate will eventually manifest as
global translation errors at the end of the trajectory. Therefore, the ATE is defined as the
Root Mean Square Error (RMSE) of the translational error. Using the RMSE provides a
significant statistical measure to quantify the average magnitude of the error. Therefore,
the formula for the error is as follows::

ATE =

√√√√ 1
N

N∑
i=1

∥trans(Ei)∥2 (2.19)

with trans(T) being the translation part of T ∈ SE(3).

Relative Pose Error

The RPE is another metric particularly suited for VIO, as it evaluates the trajectory
over segments of length ∆, providing a more granular evaluation of camera pose tracking
accuracy. The error is typically divided into translation and rotation components. The
relative pose error at time i is expressed as follows:

Fi = (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (2.20)

The translation error RPEtrans is calculated following the same principle as the ATE,
but over the segments, where m = N − ∆ is the number of error matrices considered:

RPEtrans =
√√√√ 1

m

m∑
i=1

∥trans(Fi)∥2 (2.21)

On the other hand, the rotational error RPErot is defined as follows:

RPErot =
√√√√ 1

m

m∑
i=1

∥angle(rot(Fi))∥2 (2.22)

with the operator rot(T) extracting the rotation matrix from a transformation T ∈ SE(3),
and angle(R) = arccos

(
tr(R)−1

2

)
computing the rotation angle of a rotation R ∈ SO(3)

around a rotation axis [149].
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2.5.2 Depth estimation evaluation

Monocular depth estimation models are evaluated using various metrics introduced in
[129] to quantitatively analyze the accuracy and precision of the predicted depth maps.
Some of these metrics were then also applied to benchmark the dense reconstruction of
SLAM. Although other methods have been proposed to evaluate point clouds, to our
knowledge there are no standardized metrics used in dense SLAM to evaluate voxel maps.

The key metrics used to evaluate monocular depth estimation and dense SLAM are
outlined below. We have excluded scale-invariant metrics as we aim to evaluate metric
reconstruction and therefore penalize scale errors. In the sequel, Ω is the set of pixels p

considered, N is the number of 3D points in Ω, D̂p is the predicted depth, and Zp the
ground truth depth.

Depth map evaluation

— Absolute Relative Difference
This metric calculates the mean absolute relative error, emphasizing the absolute
difference between the predicted and ground truth values relative to the true depth.
By normalizing errors against the ground truth, it compensates for the different
impacts between farther and closer points. Basically, an identical error magnitude
has a greater impact on closer points than on farther points.

abs_rel = 1
N

∑
p∈Ω

|D̂p − Zp|
Zp

(2.23)

— Squared Relative Difference
Compared to the previous metric, the squared relative difference amplifies larger
errors by squaring the discrepancies. This procedure amplifies the magnitude of
larger errors, making it a sensitive metric that further penalizes significant deviations
between predicted and actual values.

sq_rel = 1
N

∑
p∈Ω

∥∥∥D̂p − Zp

∥∥∥2

Zp

(2.24)

— Root Mean Squared Error
The RMSE calculates the standard deviation of the depth errors and emphasizes
larger differences due to its quadratic nature. Nonetheless, it does not differentiate
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between errors from near points and those from far points, treating all errors with
the same weight regardless of depth.

rmse =
√√√√ 1

N

∑
p∈Ω

∥∥∥D̂p − Zp

∥∥∥2
(2.25)

— RMSE in log scale
This variant of the RMSE operates in the logarithmic domain, reducing the influence
of extreme outliers and focusing on relative errors.

rmse_log =
√√√√ 1

N

∑
p∈Ω

∥∥∥log D̂p − log Zp

∥∥∥2
(2.26)

— Accuracy rate
The accuracy rate (or threshold accuracy) evaluates the proportion of predicted
values that fall within a certain factor threshold of the actual depth, providing a
gradual evaluation of prediction accuracy. It is expressed by the following formula-
tion, where t is typically in {1, 2, 3} and I(·) represents the indicator function that
returns 1 if the specified condition is met and 0 otherwise:

δt = 1
N

∑
p∈Ω

I
(

max
(

D̂p

Zp

,
Zp

D̂p

)
< 1.25t

)
(2.27)

Polygon mesh and point cloud evaluation

In [12], [115], [150], a distinctive approach is proposed for the evaluation of 3D meshes
and point clouds. This method defines both accuracy and completeness scores. For 3D
meshes, point clouds are generated by sampling uniformly over the mesh surface. Subse-
quently, the estimated and ground truth point clouds are registered using the Iterative
Closest Point (ICP) algorithm using the CloudCompare library [151]. The accuracy of the
estimation is then evaluated by computing the average distance from each point in the
ground truth point cloud to its nearest neighbor in the estimated point cloud. Similarly,
completeness is determined by calculating the distance between each estimated point and
the closest point in the ground truth cloud. This approach provides a new and interesting
way to compare reconstructed maps, taking into account both the accuracy of the points
and the completeness of the reconstruction.
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2.6 Datasets

Name Year Sensors IMU Pose GT Map GT Environment Task Platform
NYU Depth v2 [152] 2012 Mono DDM Indoor MDE Car navigation
KITTI [5] 2012 Stereo 10 Hz ✓ S-DDM Outdoor SLAM, MDE Car navigation
TUM-RGB-D [145] 2012 Mono 500 Hz ✓ DDM Indoor SLAM, MDE Handheld
Cityscapes [153] 2016 Stereo ✓ Outdoor SLAM, MDE Car navigation
EuRoC [3] 2016 Stereo 200 Hz ✓ 3D scan Indoor SLAM, MDE Drone indoor flights
MVSEC [154] 2018 Stereo 200 Hz ✓ S-DDM Indoor, Outdoor SLAM, MDE Multi vehicle
ETH3D [155] 2018 Stereo 460 Hz ✓ S-DDM Indoor SLAM, MDE Handheld
TUM-VI [4] 2018 Stereo 200 Hz partial Indoor SLAM Handheld
Blackbird [156] 2018 Stereo 100 Hz ✓ Indoor SLAM FPV drone simulation
UZH-FPV Drone Racing [10] 2019 Stereo 1 kHz ✓ Indoor, Outdoor SLAM FPV drone flight
nuScenes [157] 2019 Stereo 1 kHz ✓ Outdoor SLAM, MDE Car navigation
Waymo [158] 2019 Stereo S-DDM Outdoor MDE Car navigation
KITTI-360 [159] 2020 Stereo ✓ ✓ S-DDM Outdoor SLAM, MDE Car navigation
TartanAir [160] 2020 Stereo ✓ ✓ DDM Indoor, Outdoor SLAM, MDE Drone simulation
Omnidata [161] 2021 Mono DDM Indoor, Outdoor MDE Simulation
Hilti SLAM Challenge 2021 [11] 2021 Stereo 800 Hz sparse Indoor, Outdoor SLAM Handheld
Hilti-Oxford [162] 2022 Stereo 400 Hz ✓ 3D scan Indoor, Outdoor SLAM Handheld

Table 2.3 – Overview of various SLAM and MDE datasets detailing camera sensor types
(Mono/Stereo), IMU frequency, availability of pose and map ground truth (GT), environ-
mental settings, and data collection platforms. Map ground truth formats: Dense Depth
Map (DDM), Semi-Dense Depth Map (S-DDM), or 3D scan. ✓indicates that the data is
available. Blue rows identify indoor datasets with monocular-inertial data and pose ground
truth, while green rows identify those that additionally provide map ground truth.

To test and evaluate SLAM and VIO methods, relevant datasets have to be identified.
These datasets should include synchronized input data (camera images, IMU measure-
ments) and associated ground truth (trajectory and point cloud or mesh model). The
range of cameras includes visible (RGB), Infrared (IR), event-based (Events), and depth
(RGB-D) sensors. Different IMU sensors can be used, their frequency usually ranges from
10 Hz to 1 kHz, and the synchronization with cameras can be software or hardware-based,
the latter being the most precise. The ground truth trajectory can be a set of 3D posi-
tions or 6D poses for the whole track, or only for the start and the end of the sequence.
On the other hand, the map ground truth is rarely available. If available, it is usually
provided as depth maps captured from an RGB-D camera or a 3D point cloud collected
by a high-precision LiDAR.

We present an overview of various SLAM and MDE datasets in Table 2.3. The datasets
highlighted in blue are well adapted for the evaluation of monocular-inertial SLAM al-
gorithms in indoor environments, as they provide pose ground truth. Those highlighted
in green provide additional structure ground truth, allowing for the evaluation of dense
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SLAM or MDE. The remaining datasets either focus exclusively on outdoor environments
or serve to train and evaluate DNNs for MDE. Below, we discuss some of these classic
benchmarks, focusing on those relevant to our study of dense monocular-inertial SLAM.

KITTI [5]

The KITTI dataset [5] is renowned in the computer vision community for providing
a rich collection of data from urban driving scenarios for many tasks such as 3D object
detection, depth estimation, and SLAM. It includes global shutter stereo camera images,
IMU, GPS, and LIDAR data, along with accurate ground truth annotations for 3D point
clouds and objects. This benchmark has been widely used to evaluate SLAM algorithms
and is a reference in depth estimation for training and evaluating DNNs.

EuRoC [3]

The EuRoC dataset [3] serves as a benchmark, providing data captured by Micro-
Aerial Vehicles (MAVs) over 11 sequences, categorized into three levels of difficulty, and
conducted in two different indoor environments. This resource provides stereo inertial data
complemented by precise ground truth for pose estimation. One of the environments also
includes structure ground truth (3D scan of the room), facilitating the evaluation of 3D
reconstruction and depth estimation capabilities. While the EuRoC dataset is a common
benchmark for evaluating SLAM and VIO methods, it is limited by its confined indoor
environments, lack of significant lighting variations, and absence of scenarios involving
rapid, aggressive motion.

TUM datasets [4], [145]

TUM-RGB-D [145] represents a reference benchmark in the history of visual SLAM
and has greatly inspired the trajectory evaluation procedure. The dataset consists of
monocular RGB-D images captured with a Microsoft Kinect camera, especially in small
indoor spaces. Meanwhile, TUM-VI [4] is a stereo-inertial dataset recorded indoors with a
handheld setup, featuring a high dynamic range. It includes both short and long sequences,
including loop closures, and is an essential benchmark for evaluating VIO and visual-
inertial SLAM systems. However, this benchmark only provides partial pose ground truth,
specifically at the beginning and end of the sequences.
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UZH FPV Drone Racing dataset [10]

This dataset, later referred to as UZH-FPV, is known for its comprehensive coverage
of FPV drone flight dynamics, challenging high-speed, aggressive flight maneuvers in both
indoor and outdoor environments. Notably, this benchmark includes event camera data,
facilitating comparative analysis between standard and event-based SLAM methods. With
high-precision ground truth for drone pose tracking, UZH-FPV is specifically designed to
evaluate VIO-based drone navigation systems.

HILTI SLAM Challenge datasets [11], [162]

The HILTI SLAM Challenge is a competition designed to push the boundaries of
SLAM, highlighting the need for millimeter-level precision 3D mapping in complex en-
vironments. Datasets were collected from a handheld device integrating multiple visible
cameras, IMUs, and LiDARs. They capture long indoor trajectories with high illumina-
tion changes in offices, labs, galleries, basements, and construction sites. However, they
do not provide dense trajectory ground truth for most scenes, only a few highly accurate
reference poses. Although precise LiDAR-generated point clouds are accessible, the ab-
sence of complete structure ground truth, primarily due to unknown corresponding poses
and imperfect synchronization with the camera frame rate, is a limitation. However, the
Hilti-Oxford 2022 dataset recently included a detailed 3D scan for one of its scenes,
which could be considered for evaluating dense reconstruction.

TartanAir [160]

The TartanAir dataset is a dataset simulated using the AirSim simulator [163],
which renders realistic 3D environments using Unreal Engine. Scenarios are characterized
by dynamic obstacles, varying lighting, and weather conditions that challenge conventional
SLAM algorithms. The dataset includes multimodal sensor inputs, including stereo RGB,
depth images, optical flow, and object semantics. The ground truth odometry is provided,
but the structure ground truth has not been released.

Summary The field of visual SLAM and MDE has seen the adoption of various
datasets, but not all are ideally suited for evaluating dense monocular-inertial SLAM
in the context of indoor drone navigation. Such evaluation requires datasets with syn-
chronized visual-inertial data, complemented by pose and map ground truths. We have
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Figure 2.10 – Sample images from various datasets: EuRoC (top-left), UZH-FPV (middle),
HILTI (top-right), and KITTI (bottom).

selected a few datasets among those presented above to validate localization robustness
under challenging conditions. Specifically, we chose the HILTI dataset for its large-scale
environments and variable lighting, and the UZH-FPV dataset for its high-speed mo-
tion sequences. The EuRoC dataset was chosen for the evaluation of dense mapping
capabilities due to its common use in monocular SLAM densification research.
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2.7 Conclusion

In this chapter, we have conducted a comprehensive presentation of the landscape of
visual SLAM in the context of our study, which aims to produce dense and metric 3D
maps in real-time for drone navigation.

The first section provided a thorough overview of the mathematical foundations of
visual SLAM, including sensor modeling and the SLAM problem representation. This
provided the basis for a better understanding of the monocular depth ambiguity and the
complexity of the dense 3D mapping problem when applying classical approaches.

Therefore, we presented a comprehensive review of conventional visual SLAM methods,
comparing sensor modalities and highlighting sparse and dense methods. We synthesized
a broad view of this comparison in Table 2.1. We have seen that sparse visual-inertial
methods have reached a level of maturity where they can achieve high localization accuracy
and robustness in real-time. However, these methods have not been extensively evaluated
for challenging indoor drone navigation scenarios characterized by larger exploration areas,
rapid motion, and high illumination changes. We believe that conducting such a broader
evaluation of state-of-the-art methods would provide crucial insights for our study, as such
conditions are most likely to occur when operating a drone inside a building.

On the other hand, we have also noted how the early advancements of dense monoc-
ular SLAM were hindered by their complexity. However, as sparse SLAM became quite
performant, the interest in dense mapping approaches was renewed. Therefore, in the fol-
lowing section, we have focused on the recent work toward densifying monocular SLAM,
typically using deep learning-based MDE. The features of some of the main methods in
this field are also summarized in Table 2.2. While substantial improvements have been
made, a majority of the existing work has focused on achieving superior 3D reconstruc-
tion, often relying on large DNNs while ignoring some aspects such as metric scale or
embedded computing. For drone navigation, we previously identified the voxel represen-
tation as appropriate. Given the aforementioned suitability of voxel representation for
drone navigation, our approach seeks to densify monocular SLAM using MDE to build
coarse but metric voxel maps tailored for real-time applications.

Naturally, we then presented a synthetic overview of Monocular Depth Estimation.
that encompasses the most notable techniques of supervised and self-supervised approaches.
This review highlights significant advancements in both categories, with leading meth-
ods claiming to predict the absolute scale and to provide good generalization capa-
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bilities, although mostly demonstrated in outdoor environments. By integrating MDE
with monocular-inertial SLAM, we expect that the robustly triangulated landmarks from
SLAM algorithms can further improve the performance of MDE. Specifically, since we
intend to apply indoor datasets that may be unfamiliar to the chosen DNNs.

Finally, we have defined the evaluation metrics for SLAM and depth estimation in
the last sections, but we have also shed light on the key datasets that will allow us to
benchmark our work. In the forthcoming chapters, we will present our main contributions
towards the densification of monocular SLAM. Our objective is to facilitate dense and
metric 3D mapping, paving the way for its future application in real-time drone naviga-
tion.
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Chapter 3

FROM SPARSE TO DENSE SLAM FOR

DRONE INDOOR NAVIGATION

SLAM has become the preferred method for performing both localization and mapping
tasks essential for autonomous drone navigation. However, when relying on a monocular-
inertial setup, the scope is limited to less complex sparse methods to ensure real-time
performance. This is mainly because many dense solutions are computationally intensive
and require significant memory. To densify monocular SLAM, a common strategy is to
use DNNs to predict the detailed depth information. Although much of the research in
this area focuses on the accuracy of 3D reconstructions, our focus shifts to building a less
detailed but metrically accurate representation. Our objective is to optimize its efficiency
to make it viable for coarse 3D mapping, real-time navigation, and obstacle avoidance.
The work described in this chapter was presented at the Geospatial Informatics XIII
session of the SPIE Defense + Commercial Sensing 2023 conference in Orlando [67].

In this chapter, we present a SLAM pipeline tailored for autonomous drone naviga-
tion in indoor environments. This pipeline is based on a state-of-the-art SLAM algorithm,
which estimates the camera pose and builds a sparse metric map in real-time. We incorpo-
rate a deep learning method to infer a dense depth map from a single image, which is then
combined with the SLAM outputs to obtain a dense and metric depth map. These result-
ing depth data are then converted into a voxel map. The design of the system architecture
is specifically tailored towards future real-time applications on embedded systems.

Then, we carry out a quantitative performance comparison of visual SLAM approaches
in order to select a state-of-the-art method performing robust localization and sparse
mapping. To determine its suitability for our specific indoor drone navigation context,
we evaluate it on previously unexplored datasets. These datasets capture indoor environ-
ments with long trajectories, rapid motions, low lighting, and high illumination changes.
Our comparison contrasts the capabilities of the selected method with other leading con-
ventional visual SLAM solutions, shedding light on its strengths and limitations.
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3.1 Navigation system architecture

We aim to create a navigation system that can be embedded into a small drone for
real-time use. Therefore, the architecture design should take advantage of all the optimiza-
tion capabilities available in the embedded systems under consideration. Since dense 3D
mapping involves multiple processing and extensive computation, each module in the data
pipeline should be optimized. Nowadays, embedded systems typically include hardware
accelerators dedicated to camera acquisition to minimize CPU usage. Furthermore, since
most SLAM methods are CPU-based, this leaves room in the GPU to run deep learning-
based MDE solutions. The NVIDIA Jetson series is a perfect example of such embedded
systems, featuring a compact form factor and specialized hardware accelerators for video
and deep learning. Specifications for various NVIDIA Jetson modules are compiled in
Table 3.1 from the resource published by the manufacturer [164]. This table, sorted by
computing power, shows the continuous growth of the capabilities of these systems over
the years, especially for deep learning applications. This trend is promising and supports
the approach of using DNNs for depth prediction.

Nano TX2 Xavier NX AGX Xavier Orin NX AGX Orin
Year 2019 2017 2020 2018 2023 2023
AI 0.472 TFLOPS 1.33 TFLOPS 21 TOPS 32 TOPS 100 TOPS 275 TOPS

CPU 4 core ARM A57 4 core ARM A57
2 core Denver

6 core Carmel
ARM v8

8 core Carmel
ARM v8

8 core A78 ARM
v8

12 core A78 ARM
v8

Memory 4 GB 8 GB 8/16 GB 32/64 GB 16 GB 64 GB

GPU 128 core Maxwell 256 core Pascal 384 core Volta 512 core Volta
1x NVDLA 1024 core Ampere 2048 core Ampere

2x NVDLA v2
Power 5-10 W 7.5-15 W 10-30 W 10-30 W 10-25 W 15-60 W
Weight 61 g 85 g 76 g 280 g 28 g -

Table 3.1 – Comparison of different NVIDIA Jetson modules. The weights reported are
for the modules alone, excluding the carrier board. The row labeled "AI" indicates the
evaluated performance of the module for AI computations, measured in TFLOPS (Tera
Floating Point Operations Per Second) or TOPS (Tera Operations Per Second).

3.1.1 Structuring software around the SLAM baseline

If we intend to rely on the aforementioned type of embedded systems, we should first
outline the current architecture and computational load of typical SLAM solutions. In
this study, we develop our system based on a state-of-the-art sparse monocular SLAM
algorithm, prioritizing a solution that offers both accuracy and real-time performance.
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Figure 3.1 – Scheme of our proposed pipeline based on multi-threaded SLAM. The Local
Mapping thread is extended with dense depth map prediction. The predicted dense depth
and metric sparse depth are then fused together. The keyframe pose along with the metric
dense depth map are processed through voxel mapping to build and update the voxel map.

Currently, most methods implement a multi-threaded architecture that distributes the
computation across the CPU. As shown in Figure 3.1, a Tracking thread estimates the
camera pose from monocular images combined with pre-integrated inertial measurements
at the camera frame rate. At this point, a sparse set of keypoints is extracted and tracked
over a sequence of frames for pose estimation. Selected frames that meet certain criteria,
such as an overlap threshold, are designated as keyframes. Afterward, the Local Map-
ping thread processes each keyframe to triangulate keypoints and update the local map
at the keyframe rate. Some algorithms implement an additional Global Mapping thread
to perform place recognition and loop closure at a reduced frequency. Given the poten-
tial complexity of the mapping tasks, a sparse map representation is preferred for this
operation, which is typically implemented as an iterative optimization of a factor graph.

3.1.2 Structural evolution: incorporating densification into SLAM

When exploring indoor environments at a reasonable flight speed, the experiments
described in Section 3.2 revealed that the average keyframe rate remains moderate. It
ranges from 2 to 4 Hz in the EuRoC [3] and UZH-FPV [10] datasets, and fluctuates
around 6 Hz in the HILTI dataset [11]. Consequently, considering a keyframe rate ranging
from 2 to 6 Hz reduces the constraints on deep learning inference to predict depth, which
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in typical computer vision tasks is expected to run at camera frame rates of 20 to 30 Hz.
Naturally, the keyframe rates may vary depending on specific factors such as the SLAM
method complexity, the number of keypoints set, and the speed of the camera.

On a related note, research in [46], which benchmarks SLAM algorithms on various
NVIDIA Jetson platforms, shows that while sparse SLAM requires a significant amount
of CPU, it leaves the GPU largely free. Consider the results reported for the NVIDIA
Xavier NX, whose specifications are reported in Table 3.1. The benchmark conducted on
Kimera [12] shows an average load of 250% CPU (fluctuating between 100% and 360%),
30% memory, and 3% GPU. By comparison, ORB-SLAM 2 [99] (stereo) exhibits slightly
higher efficiency, with CPU consumption of 210% (ranging from 140% to 315%), memory
consumption of 8%, and GPU consumption of 5%. Another study [45] demonstrated the
real-time performance of ORB-SLAM 2 by porting the algorithm on the NVIDIA Jetson
TX2, a predecessor with fewer capabilities than the Xavier NX. These studies confirm
that embedded systems can effectively run SLAM algorithms while primarily using the
CPU without truly involving the GPU. This observation supports our belief that such
systems can simultaneously use a DNN on the GPU to predict a dense depth map for
each keyframe. Adopting a decoupled framework in which the tracking and mapping
threads are independent of the densification extension will minimize the impact on the
SLAM baseline speed.

Additionally, since MDE cannot reliably ensure metric scale, we propose to combine the
densely predicted depth map with the sparse metric depth computed by SLAM within the
Local Mapping thread. Inspired by Kimera [12], we opt for voxel mapping [39] to construct
a voxel map using the scaled depth map and the estimated camera pose. This technique
constructs a TSDF through bundled raycasting, where pixels converging on the same
voxel are raycasted together. This method is highly efficient and works exclusively on the
CPU, but can also be ported to the GPU using nvblox [165]. It is worth mentioning again
that the choice of voxel representation proves to be advantageous for navigation tasks
[40]. The voxel mapping approach [41] highlighted the enhanced scalability and geometric
reasoning of this kind of structure. Additionally, the use of TSDF, and by extension ESDF,
is optimal for path planning tasks as it inherently builds an occupancy grid and provides
a metric distance to any obstacle for each voxel. Finally, this provides an opportunity for
further optimization, such as voxel hashing, which can further improve map usage and
storage [41].

In this section, we have explored the densification of monocular SLAM tailored to
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drone navigation and have proposed a pipeline that is aimed toward future applications
on embedded systems. However, such a framework strongly relies on the chosen sparse
SLAM baseline, the accuracy of which is therefore critical. Consequently, the following
section focuses on the evaluation of state-of-the-art visual SLAM algorithms in order to
select an appropriate monocular-inertial method as a baseline to integrate into our work.
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3.2 Sparse SLAM benchmark

This section presents a thorough evaluation of selected visual SLAM solutions in chal-
lenging drone navigation scenarios. The purpose of this benchmark is restated by present-
ing the algorithms and datasets under consideration and then detailing the experimental
procedure. Quantitative results are reported and discussed, notably to justify the selection
of the sparse SLAM baseline for our study, but more generally to highlight the strengths
and limitations of the algorithms studied.

3.2.1 Robust pose estimation in challenging conditions

In dense 3D mapping, accurately estimating trajectory is critical because landmarks
are typically projected from the estimated camera poses. However, tracking the camera
ego-motion in challenging scenes can be tricky. As we noted in Section 2.2, ORB-SLAM
3 [1] is nowadays considered the leading solution across most configurations, and especially
in the monocular-inertial category as demonstrated by the authors. Therefore, we have
decided to study this method to integrate it into our work. In this section, we confirm
this choice by further evaluating its performance and robustness in monocular-inertial
and stereo-inertial settings in various indoor drone navigation scenarios, including fast
motion, low illumination, and high illumination changes. For comparison, we also evaluate
the competitive stereo-inertial methods, Basalt [2] and Kimera [12].

All methods considered have already been benchmarked on the EuRoC dataset [3],
which was collected from a small drone in small rooms. This dataset does not include large
environments and presents few challenging sensing conditions. Still, to verify the consis-
tency of our results with those reported by the original authors, we retested these three
algorithms on the EuRoC benchmark. Subsequently, we used the UZH-FPV dataset
[10] to specifically evaluate the algorithms under aggressive motion and high speeds in
both indoor and outdoor environments. The dataset was collected with two camera pitch
configurations: one facing downwards and the other facing forward. Given the low flight al-
titudes, sequences recorded with the camera pointing downward exhibit particularly high
optical flow. Additionally, the camera’s focus on the ground results in many captured im-
ages displaying uniform textures. Lastly, we integrated the HILTI dataset [11] to address
the challenges associated with large indoor scenes, particularly those with low lighting and
significant illumination variations. However, the absence of calibration sequences for this
dataset has prevented the use of the Double Sphere camera model preferred for Basalt.
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3.2.2 Experimental procedure

The experiments were carried out on a laptop with an Intel i7-8750H CPU, 16GB
memory, and an NVIDIA RTX 2080 Mobile GPU. For our experimental setup, we devel-
oped a script that ran each method 10 times on each scene and then saved the trajectory
results. We use the evo library [166] to align the estimated trajectories with the ground
truth on SE(3). We calculate ATE and RPEtrans in meters, RPErot in degrees, and gen-
erate statistics for these metrics, such as median, mean, and std. To evaluate the different
methods, we report the median and the standard deviation (std) of the results from the
10 executions, providing valuable insight into robustness [1]. Furthermore, the system’s
ability to consistently track the pose throughout the entire trajectory was measured by
the coverage percentage from the 10 executions, thus providing an additional measure of
the robustness of the algorithms. Additionally, we present plots juxtaposing the estimated
trajectories with the ground truth to visualize the shape of the estimated trajectory and
the potential scale errors. For this purpose, we use the median trajectory (based on the
ATE) among the 10 executions, as indicated by the index following the method name in
the plots legend. To conduct a thorough analysis, we also present color plots of the RPE
errors, which effectively highlight local performance nuances, such as during rotations.

— ORB-SLAM 3: The algorithm uses a unique format for calibration parameters and
includes fine-tuned configuration files for the EuRoC dataset. For other datasets, we
developed a script to convert calibration parameters from the Kalibr format [167].
Furthermore, we adapted the original ORB-SLAM 3 implementation to the data
formats of UZH-FPV and HILTI. This adaption also allows to save trajectories,
sparse map keypoints, and the associated reprojection errors.

— Kimera: This method uses a custom format for camera calibration parameters and
provides configuration files specific to EuRoC. A conversion script for calibration
files from the Kalibr format is readily available. We use ROS (Robot Operating
System), a flexible framework for writing robot software, to run Kimera and capture
the estimated camera poses.

— Basalt: This system leverages the double sphere camera model which requires spe-
cific camera calibration. The authors provide the full configuration files for EuRoC
and UZH-FPV datasets. However, we could not run Basalt on the HILTI dataset
since the calibration sequences were not published. Basalt implementation is quite
advanced and provides options to save the estimated trajectory and other statistics.
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3.2.3 Results

In the following, we present the quantitative results for each dataset and analyze the
performance of each method with respect to different metrics.

EuRoC

We first assess the algorithms on the EuRoC dataset [3] to ensure that each algorithm
is correctly set up and to attempt to replicate the reported results. The outcomes are
presented in Table 3.2. Generally, they align with the results reported for Basalt [2]
and ORB-SLAM 3 [1], exhibiting an average absolute difference of less than 20 mm.
While the authors did not publish results on the difficult scene V203, we were able to
successfully execute the algorithm using their updated code without any issues. On the
other hand, it is notable that we could not achieve the same outcomes for Kimera [12],
where we noticed a more significant average absolute difference of 352 mm, particularly
in challenging scenes MH04 and MH05. Detailed results are presented in Table 3.2 and
discussed subsequently.

EuRoC scenes MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Mean
Basalt reported 0,080 0,060 0,050 0,100 0,080 0,040 0,020 0,030 0,030 0,020 0,051

measured 0,082 0,041 0,050 0,095 0,133 0,043 0,049 0,060 0,039 0,053 0,239 0,080
difference 0,002 0,019 0,000 0,005 0,053 0,003 0,029 0,030 0,009 0,033 0,018

Kimera reported 0,080 0,090 0,110 0,150 0,240 0,050 0,110 0,120 0,070 0,100 0,190 0,119
measured 0,112 0,090 0,79 3,533 0,173 0,060 0,059 0,175 0,051 0,081 0,394 0,437
difference 0,032 0,000 0,031 3,383 0,067 0,010 0,051 0,055 0,019 0,019 0,204 0,352

OS3 reported 0,036 0,033 0,035 0,051 0,082 0,038 0,014 0,024 0,032 0,014 0,024 0,035
measured 0,037 0,028 0,027 0,052 0,083 0,036 0,015 0,025 0,026 0,014 0,026 0,034
difference 0,001 0,005 0,008 0,001 0,001 0,002 0,001 0,001 0,006 0,000 0,002 0,003

OS3 (MI) reported 0,062 0,037 0,046 0,075 0,057 0,049 0,015 0,037 0,042 0,021 0,027 0,043
measured 0,031 0,053 0,034 0,129 0,073 0,044 0,015 0,022 0,039 0,019 0,022 0,044
difference 0,031 0,016 0,012 0,054 0,016 0,005 0,000 0,015 0,003 0,002 0,005 0,014

Table 3.2 – ATE measured on the EuRoC dataset using Basalt, Kimera, and ORB-
SLAM 3 (OS3) in stereo-inertial and monocular-inertial (MI) settings. The table contrasts
results published by the authors with those that we measured and presents the absolute
differences. The best results from each set for each scene are shown in bold.

In addition, we report our measurements in more detail in Table 3.3, including the
std and the percentage of trajectory coverage. The following will discuss the results for
the V102 scene, which are representative of the general performance in most scenes. This
sequence spans 83.50 seconds, during which the ground truth encompasses 17,702 poses,

98



3.2. Sparse SLAM benchmark

Figure 3.2 – Evaluation of Basalt, Kimera, ORB-SLAM 3, and ORB-SLAM 3 (MI) on
the V102 sequence from the EuRoC dataset. The plots presented are: aligned trajectories
(top-left), ATE (top-right), RPEtrans (bottom-left), and RPErot (bottom-right).

resulting in a trajectory of 75.89 m at an average speed of 2.19 m/s. Figure 3.2 shows
the estimated trajectories for each method alongside the ground truth. The error metrics
measured are also plotted against time. Generally, we can observe peaks in the ATE

curves associated with scaling errors or accumulated drift. Therefore, the RPE provides
a more appropriate representation of local performance because it allows local estimation
comparisons independent of previous conditions.
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Scene Basalt Kimera ORB-SLAM3 ORB-SLAM3 (MI)
ATE (m) cover ATE (m) cover ATE (m) cover ATE (m) cover

MH01 0.082 (0.082 ± 0) 100% 0.112 (0.118 ± 0.019) 99% 0.037 (0.036 ± 0.004) 100% 0.031 (0.029 ± 0.008) 99%
MH02 0.041 (0.041 ± 0) 100% 0.090 (0.090 ± 0.010) 99% 0.028 (0.028 ± 0.006) 100% 0.053 (0.056 ± 0.015) 80%
MH03 0.050 (0.050 ± 0) 100% 0.079 (0.093 ± 0.091) 50% 0.027 (0.028 ± 0.002) 87% 0.034 (0.085 ± 0.152) 87%
MH04 0.095 (0.095 ± 0) 100% 3.533 (3.002 ± 1.231) 85% 0.052 (0.052 ± 0.002) 82% 0.129 (0.127 ± 0.028) 90%
MH05 0.133 (0.133 ± 0) 100% 0.173 (0.172 ± 0.018) 99% 0.083 (0.080 ± 0.012) 84% 0.073 (0.075 ± 0.018) 81%
V101 0.043 (0.043 ± 0) 100% 0.060 (0.061 ± 0.004) 99% 0.036 (0.037 ± 0.000) 97% 0.044 (0.043 ± 0.004) 97%
V102 0.049 (0.049 ± 0) 100% 0.059 (0.061 ± 0.005) 98% 0.015 (0.014 ± 0.002) 95% 0.015 (0.016 ± 0.002) 94%
V103 0.060 (0.060 ± 0) 100% 0.175 (0.175 ± 0.013) 99% 0.025 (0.024 ± 0.002) 95% 0.022 (0.025 ± 0.008) 93%
V201 0.039 (0.039 ± 0) 100% 0.051 (0.052 ± 0.010) 99% 0.026 (0.026 ± 0.006) 97% 0.039 (0.041 ± 0.004) 97%
V202 0.053 (0.053 ± 0) 100% 0.081 (0.083 ± 0.010) 99% 0.014 (0.014 ± 0.002) 98% 0.019 (0.018 ± 0.003) 98%
V203 0.239 (0.239 ± 0) 100% 0.394 (0.397 ± 0.022) 99% 0.026 (0.031 ± 0.010) 96% 0.022 (0.025 ± 0.007) 96%
Mean 0.080 100.0% 0.437 93.2% 0.034 93.7% 0.044 92.0%
std 0.060 0.0 1.032 14.9 0.019 6.4 0.033 6.7

Table 3.3 – Evaluation of Basalt, Kimera, and ORB-SLAM 3 on the EuRoC dataset. The
ATE values are presented in the format: median (mean ± std). The last two rows report
the mean and std of the median and cover values. For each sequence, the best result is
highlighted in boldface, and the second is underlined.

In this experiment, running Basalt was straightforward and did not require any signif-
icant modifications. As a result, we observe excellent robustness, as the algorithm provides
constant performance and full trajectory coverage, as shown in Table 3.2. Thus, the aver-
age error across all scenes is 80 mm. Looking more closely, the RPE plots show that the
system initializes quickly and keeps relative errors below 0.25 degrees for rotations and
21 mm for translations.

ORB-SLAM 3 achieves outstanding accuracy on this benchmark by reaching an
average error of 34 mm across all scenes, and 44 mm in monocular-inertial setup. However,
its robustness appears to be weaker than Basalt, as the results are less consistent and the
coverage is not always complete. This is primarily due to the initialization process, which
requires parallax and sufficient motion with translation and rotation. The initialization is
even more sensitive in monocular-inertial settings, as we can see in the RPE plots, where
high error peaks are present at the beginning of tracking.

Regarding Kimera, even though we could not exactly reproduce the published results,
we obtained an average error of 448mm instead of 119 mm. While it performs correctly
on the easiest scenes keeping the error below 100 mm, it is severely impacted on difficult
scenes. In particular, the algorithm failed to track the camera multiple times on the MH04
scene.

Supplementary results for this difficult scene are reported in Appendix B.1 to main-
tain focus on the main discussion and avoid overloading it with extensive figures. The
RPE plots for the MH04 scene suggest that Kimera encounters difficulties in precisely
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estimating some rotations and the scale of some translations. However, it is important
to note that the original authors of Kimera achieved greater accuracy on this sequence
compared to us, potentially due to the use of different parameterizations. This particular
sequence contains some very dark scenes. Still, ORB-SLAM 3 demonstrates remarkable
resilience under such conditions, using ORB features that are much more robust than the
Shi-Tomasi corners used by Kimera. On the other hand, Basalt relies on the FAST
feature detector and tracks corresponding patches with KLT. It also employs a pyramidal
method to handle large displacements. Corresponding plots of these two previous systems
demonstrate excellent trajectory estimation.

UZH-FPV

In the following analysis, we benchmark these algorithms on the UZH-FPV dataset
[10] to confront them with high dynamic motion. The overall results are shown in the
Table 3.4. The scenes captured with the camera facing forward are more in line with the
building exploration scenario under the scope of this thesis. However, we will also examine
the results of the sequence with the camera facing down at an angle of 45 degrees.

Scene Basalt Kimera ORB-SLAM3 ORB-SLAM3 (MI)
ATE (m) cover ATE (m) cover ATE (m) cover ATE (m) cover

indoor_45_2 1.083(1.083 ± 0.000) 100% 16.027(15.228 ± 5.114) 100% 3.952(11.964 ± 17.188) 70% - -
indoor_45_4 0.740(0.740 ± 0.000) 100% 14.716(20.064 ± 15.584) 99% 0.568(10.289 ± 17.520) 83% 0.440(0.440 ± 0.052) 54%
indoor_45_12 1.392(1.392 ± 0.000) 100% 6.437(17.157 ± 19.916) 99% 1.342(1.343 ± 0.032) 97% 0.645(0.668 ± 0.096) 61%
indoor_45_13 1.649(1.649 ± 0.000) 100% 28.349(29.880 ± 5.967) 99% - - - -
indoor_45_14 2.965(2.964 ± 0.003) 100% 51.599(173.591 ± 360.774) 99% - - - -
outdoor_45_1 1.722(1.784 ± 0.188) 100% 12.010(10.123 ± 3.492) 99% - - - -

indoor_forward_3 0.731(0.731 ± 0.000) 100% 3.365(3.982 ± 1.660) 100% 0.493(0.500 ± 0.023) 100% 0.508(0.516 ± 0.064) 95%
indoor_forward_5 1.130(1.130 ± 0.002) 100% 2.998(3.125 ± 1.173) 99% 1.368(1.286 ± 0.331) 100% 1.023(1.149 ± 0.684) 98%
indoor_forward_6 1.404(1.404 ± 0.000) 100% 6.017(5.861 ± 0.954) 99% 0.496(0.503 ± 0.033) 100% 0.432(0.467 ± 0.088) 100%
indoor_forward_7 1.268(1.268 ± 0.000) 100% 6.251(5.631 ± 1.188) 100% 0.341(0.858 ± 1.065) 100% 0.167(0.176 ± 0.034) 100%
indoor_forward_9 1.583(1.583 ± 0.001) 100% 3.533(3.558 ± 0.126) 99% 0.984(0.974 ± 0.195) 100% 0.575(0.703 ± 0.193) 99%
indoor_forward_10 1.520(1.520 ± 0.002) 100% 3.502(3.477 ± 0.101) 99% 0.877(1.142 ± 0.811) 100% 0.607(0.669 ± 0.128) 100%
outdoor_forward_1 1.618(1.618 ± 0.000) 100% - - 1.383(1.405 ± 0.096) 100% 1.200(1.224 ± 0.086) 100%
outdoor_forward_3 2.126(2.126 ± 0.001) 100% 14.367(20.157 ± 11.222) 100% 1.553(1.600 ± 0.330) 100% 1.051(1.169 ± 0.342) 100%
outdoor_forward_5 3.031(3.031 ± 0.000) 100% 11.269(11.714 ± 1.353) 100% - - - -

Mean 1.432 100.0 12.900 99.3 1.158 94.4 0.550 88.4
std 0.582 0.0 14.297 0.5 1.112 10.7 0.242 19.2

Table 3.4 – Evaluation of Basalt, Kimera, and ORB-SLAM 3 on the UZH-FPV dataset.
The ATE values are presented in the format: median (mean ± std).

Camera facing forward:
We first discuss the results for the forward sequences. For illustration, we present

results from the indoor_forward_9 sequence in Figure 3.3, which is representative of the
overall performance. This scene recorded a trajectory of 136.34 m over 29.31 seconds, with
14,658 ground truth poses. The average speed is 4.65 m/s and the peak speed is 8.80 m/s.
As a result, significant optical flow is observed in the images captured as detailed in [10].
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Figure 3.3 – Evaluation of Basalt, Kimera, ORB-SLAM 3, and ORB-SLAM 3 (MI) on the
indoor_forward_9 sequence from the UZH-FPV dataset. The plots presented are: aligned
trajectories (top-left), ATE (top-right), RPEtrans (bottom-left), and RPErot (bottom-
right).

Basalt [2], previously configured for this dataset by its authors, demonstrates a high
level of robustness with a negligible standard deviation in all 10 runs. As depicted in Figure
3.3, the shape of the trajectory is accurate, however, the scale estimation is incorrect,
leading to reduced accuracy of the measurements. Thus, errors tend to amplify on curves,
making the peaks on the ATE plot more pronounced.
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Results in Table 3.4 demonstrate that ORB-SLAM 3 performs best in monocular-
inertial configuration, surpassing the performance of Basalt. Although we did not quan-
tify the scale error, the trajectory plot shows that the scale estimation is excellent.
Nonetheless, the stability of the algorithm is lower, with an average std of 0.373 m and
up to 2.05 m in the most difficult scene. The top speed in indoor scenes is 12.8 m/s, and
the ATE error ranges from 0.167 m to 1.041 m, which is fairly good considering the high
speed and the important optical flow. We observed that the initialization tends to fail
at the start of the track when the motion is slow. This translates to a reduced coverage
percentage, as seen in the initial seconds on the RPE plots in Figure 3.3.

Unexpectedly, the stereo-inertial version of ORB-SLAM 3 is slightly less accurate.
We explain this primarily by the sensitivity of the algorithm to calibration accuracy. In
practice, stereo-inertial calibration is more complex than its monocular-inertial counter-
part. Nevertheless, the algorithm initialization is more efficient and produces a greater
coverage and a lower standard deviation.

As for Kimera [12], it seems to have great difficulty in keeping good track of the
drone’s trajectory, especially when estimating rotations in curves. Furthermore, scale es-
timation is poor, as shown by the plots in Figure 3.3. It is possible that adjusting further
the algorithm’s parameters could enhance the results, given that our outcomes were al-
ready below those of the authors on EuRoC. As before, we report more detailed plots for
each method on this sequence in Appendix B.1.

Among the forward sequences, indoor_forward_7 is particularly difficult since it is
longer (313.90 m) and features significant challenges with complex rotations and aggressive
motions. Some consequences are high optical flow and motion blur, as shown in Figure 3.4,
which make feature detection and matching very difficult. For detailed results, we refer
to Appendix B.1. To sum up, we observed again that Kimera struggled to accurately
track camera motion, particularly during rotations, as indicated by high RPErot values.
Unexpectedly, in this specific sequence, despite providing a rough trajectory estimate,
Basalt exhibited large shifts due to accumulated drift, with occasional extreme RPErot

peaks (up to 10 degrees) affecting trajectory accuracy. On the other hand, in line with
previous observations, ORB-SLAM 3 showed relatively good performance considering
the length and difficulty of this sequence, especially in its monocular-inertial configuration.
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Figure 3.4 – ORB feature detection and matching on the indoor_forward_7 sequence of
the HILTI dataset. The figure shows the displacement of keypoints between successive
frames, with start points in red and end points in green.

Camera facing downward:

For information, we also comment on the results of the sequences captured with the
camera pointing downwards. In Figure 3.5, we report the different plots for the sequence
indoor_45_12. This sequence covers a distance of 111.12 m during 40.82 seconds, with
an average speed of 2.72 m/s and a maximum speed of 4.33 m/s. The low flight altitude
and camera angle engender significant optical flow in the indoor_45 and outdoor_45
sequences. The flight altitude also leads to predominantly textureless scenes, as can be seen
in Figure 3.6. Consequently, detecting and tracking keypoints in such frames is particularly
challenging.

Overall, the observed behavior aligns with the patterns seen under previous conditions.
Basalt demonstrates excellent robustness but continues to struggle with metric scale es-
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Figure 3.5 – Evaluation of Basalt, Kimera, ORB-SLAM 3, and ORB-SLAM 3 (MI) on the
indoor_45_12 sequence from the UZH-FPV dataset. The plots presented are: aligned
trajectories (top-left), ATE (top-right), RPEtrans (bottom-left), and RPErot (bottom-
right).

timation. Kimera, under these conditions, fails to track the camera, leading to highly
inconsistent results. The estimated trajectory significantly loses its way during curves,
leading to notable rotational errors. ORB-SLAM 3 encounters difficulties during ini-
tialization and often loses track in more difficult scenes. However, in monocular-inertial
setups, once the system manages to initialize successfully, it delivers exceptional accu-
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racy. We have observed a predominant failure of the system during the initialization of
the IMU parameters. Moreover, there were several instances in which the algorithm strug-
gled to track features with large displacements in the image, or to detect new features,
and was not able to make effective use of the inertial data during these periods. Individual
measurements for each method are also reported in the Appendix B.1.

Figure 3.6 – Image sample from indoor_45_12 sequence of UZH-FPV dataset.

HILTI

We present in Figure 3.7 the results of ORB-SLAM 3 running in a monocular-inertial
configuration on the HILTI dataset. The estimated trajectory is plotted against the highly
sparse reference. Unfortunately, we could not successfully run the other algorithms on this
dataset, either due to problems with the calibration data or their inability to track the
camera effectively. ORB-SLAM 3 provides accurate trajectory estimations across various
scenes, with an ATE ranging from 20 mm to 300 mm. This is a respectable performance,
especially considering the length and challenges of some of the scenes.

The sequence Basement_1 is particularly interesting because it was captured in un-
derground corridors where lights are activated as the operator approaches, resulting in
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Figure 3.7 – Evaluation of ORB-SLAM 3 in monocular-inertial setup on the HILTI dataset.
Left image: Trajectory estimated on scene Basement_1. Right image: Boxplots of the ATE
on different scenes.

significant lighting changes. An illustration of these illumination changes can be seen in
Figure 3.8. Despite these conditions, ORB-SLAM 3 manages to maintain tracking and
provides accurate metric scale pose estimation. The corresponding trajectory plot is de-
picted in Figure 3.7. We have observed comparable findings in the other scene, as shown
in Appendix B.1.

Figure 3.8 – Consecutive frames from the Basement_1 sequence of the HILTI dataset,
showcasing significant illumination changes.
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3.2.4 Discussion

These initial experiments suggest that ORB-SLAM 3, when configured in a monocular-
inertial setup, provides a promising SLAM baseline for our drone navigation system.
Across all three datasets selected, it consistently attained competitive results, success-
fully handling high-speed motion and changes in illumination. In some sequences, it even
outperformed other stereo-inertial algorithms. Nonetheless, some limitations were also
observed, such as with the predominantly textureless images. Moreover, the algorithm
requires a thorough tuning of parameters and precise calibration. In other experiments
conducted with our data, while we were able to obtain fair results in a purely monocular
setup, the monocular-inertial configuration did not yield satisfactory results. We primarily
attribute this to the inferior quality of the built-in IMU in our setup when compared to
the IMUs used in the previous benchmarks. Furthermore, we noted an initialization delay
at the beginning of some sequences, especially when there was insufficient motion for the
algorithm to initialize the IMU.

While our experiments might not fully represent the potential of Kimera due to pos-
sible enhancements through fine-tuning by the authors, the results do reveal some weak-
nesses in the accurate estimation of challenging trajectories, especially regarding rotations.
Still, it is important to remember that the conditions in the UZH-FPV dataset are par-
ticularly challenging for feature detection and matching. Although Basalt demonstrated
excellent robustness across all sequences, it struggled with accurate scale estimation. Addi-
tionally, in the most challenging scenes with aggressive motion, Basalt occasionally failed
to correctly estimate rotations, resulting in significant cumulative drift in its trajectory
estimates.

108



3.3. Conclusion

3.3 Conclusion

This chapter has presented a preliminary study for prototyping a real-time dense
and metric 3D mapping system suitable for drone navigation. Indeed, existing work on
densifying monocular SLAM often lacks metric scale and is not specifically designed for
drone navigation. Our goal was to explore the densification of monocular SLAM for future
implementation in embedded systems. Additionally, we aimed to expand the scope of
visual SLAM benchmarking by focusing on the challenging conditions found in drone
applications in order to identify an appropriate SLAM baseline for our project.

We have introduced a pipeline to densify monocular SLAM by integrating DNNs
for dense depth map prediction. The architecture design is motivated by reference bench-
mark analysis of SLAM performance on embedded systems. Considering that conventional
SLAM architectures predominantly use the CPU, we extend the mapping thread to the
GPU for densification. In particular, this involves inferring a dense depth map for each
keyframe using a DNN while minimizing disruption to the original SLAM process. The
feasibility of this approach is further justified by both the low keyframe rate observed
in our experiments and the growing computational power of modern embedded systems.
Nevertheless, the pipeline is designed under the assumption of a moderate navigation
speed to maintain a reasonable keyframe rate. Finally, we incorporate an incremental
voxel mapping strategy, which will be discussed in the following chapter.

Subsequently, we selected a sparse SLAM baseline to integrate into the presented
densification pipeline. This analysis is supported by a thorough evaluation on several
benchmarks, some of which have not previously been used for visual SLAM assessment.
In fact, the UZH-FPV dataset has been primarily used to evaluate VIO algorithms, while
the HILTI dataset has been predominantly applied to LiDAR-based SLAM research. Our
experiments have shown that ORB-SLAM 3 offers accurate camera tracking in a variety
of difficult scenarios, although there are some resilience issues, especially regarding IMU
initialization. Given its satisfactory overall performance, we have confirmed the selection
of ORB-SLAM 3 in its monocular-inertial configuration for our subsequent work.

Building on the presented pipeline and the selected SLAM baseline, the next chap-
ter introduces a scale recovery process that combines the outputs of the sparse SLAM
with the dense depth map predicted by a DNN. This work is evaluated and compared
against existing methods. Furthermore, an initial presentation of the resulting voxel map
is provided which illustrates the full implementation of the proposed framework.
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Chapter 4

MONOCULAR SLAM DENSIFICATION

In the previous chapter, we proposed a dense and metric 3D mapping pipeline designed
for real-time operation on embedded systems, where we established ORB-SLAM 3 as
our sparse SLAM baseline. In this chapter, we implement the proposed framework and
focus on the challenge of achieving dense and metric mapping through monocular SLAM
densification.

In this context, we incorporate a state-of-the-art DNN, which infers a dense depth
map from a single image, into our loosely coupled framework, allowing the restoration of
metric scale from the sparse depth data estimated by SLAM. We conduct a quantitative
comparison with related works, as well as a qualitative analysis of the results.

We then proceed to construct a voxel map using the rescaled dense depth maps and
the estimated camera poses. This map is created through a raycasting process that allows
for an iterative volumetric fusion of depth maps from multiple viewpoints. Finally, our
experimental results will be presented through a qualitative analysis.

The loosely coupled strategy for producing dense and metric depth maps, in particular
the scale recovery procedure, was presented at the 9th International Conference on Au-
tomation, Robotics and Applications (ICARA) 2023 in Abu Dhabi [68]. Additional results
and the work on volumetric fusion were also presented at the SPIE Defense + Commercial
Sensing 2023 conference in Orlando, for the Geospatial Informatics XIII session [67].
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4.1 Loosely coupled dense and metric depth estima-
tion: scale recovery

We propose to densify SLAM sparse maps for UAV navigation in two stages. The over-
all framework is illustrated in Figure 4.1 which operates at keyframe rate. In addition to
ORB-SLAM 3 [1], we have initially integrated PackNet-Sfm [8] for depth estimation.
This self-supervised method was qualified as scale-aware and shows promising general-
ization capabilities, as described in Section 2.4. The scale-awareness refers to the ability
to estimate the absolute scale. Nevertheless, since the transition from outdoor to indoor
scenes represents a significant domain shift, we expect the predicted depth maps to not
be exactly metric, but still consistent. Following the recent introduction of ZeroDepth
[9], we have finally opted to incorporate this model into our approach. ZeroDepth is
supposed to be scale-aware as well, benefiting not only from training on a huge dataset,
but also from the advanced learning capabilities of Transformers.

Thus, as depicted in Figure 4.1, the first step is to predict a dense depth map using
a DNN and scale it using SLAM triangulated points, as described in Section 4.1.1. In
our experiments, we opted for ORB-SLAM 3 as our monocular-inertial SLAM baseline.
Given the high precision in localization of ORB-SLAM 3, we can assume a sufficient
accuracy of the resulting sparse map, which we will validate in subsequent experiments.
This section outlines a procedure for global scale factor recovery that can operate inde-
pendently of ground truth data during navigation. Following the scale-correction process,

Figure 4.1 – Architecture of our proposed loosely coupled pipeline which recovers the scale
of the predicted dense depth from the sparse depth estimated by SLAM. The final voxel
map is built and maintained by multi-view fusion from the estimated camera pose and
the scaled dense depth map.
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we evaluate the scaled depth maps to assess the impact of our methodology. In the sec-
ond stage, we aim to further improve the process through multi-view refinement using
volumetric fusion, which is detailed in section 4.2.

4.1.1 Scale recovery

For a keyframe Ik we define Ωk ⊂ Ik as the subset of pixels for which ORB-SLAM 3
estimated the depth such that for p ∈ Ωk the estimated depth is Dk

p ∈ R∗
+. Likewise, the

chosen Deep Learning model infers a dense depth map such that each pixel p ∈ Ik has a
predicted depth D̂k

p . Assuming that the predicted depth map is consistent, we obtain:

∃αk ∈ R, ∀p ∈ Ik → Zk
p = αkD̂k

p (4.1)

where Zk
p is the ground truth and αk the scale factor for this keyframe. When evaluating

depth prediction, this consistency assumption is widely assumed, and the typical approach
is to use the ratio of the median predicted depth to the median of the ground truth in
order to scale the estimated depth map [138], [139]. We will refer to this global scale factor
as the GT-scale which is defined by the following expression:

αk =
med({Zk

p , p ∈ Ik})
med({D̂k

p , p ∈ Ik})
(4.2)

Using medians to estimate scale is less prone to outliers compared to using means.
Nevertheless, this approach may become less reliable for smaller datasets, where variance
can be high and outliers more impactful. In the context of depth estimation, ground truth
data derived from sparse LiDAR point clouds typically contain a fair number of points,
representing about 5% of the image density [168]. On the other hand, the number of
points tracked by a system like ORB-SLAM 3 is much lower, about 0.1% of the image
density on EuRoC/V101 and 0.02% on HILTI/Basement_1. The algorithm detects up
to 1,200 points per frame, but the actual number of robustly mapped points per keyframe
is much lower, as shown in Figure 4.2. On average, it represents only 366 mapped points
per keyframe on the V101 scene, and 289 on Basement_1. The higher number of points
observed at the beginning of the sequences can be attributed to the initialization procedure
of the system, which is more permissive and accepts more points during this phase [1].
The lower numbers at the end of the EuRoC sequences are associated with frames with
uniform textures, which typically occur when the drone is landing.
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(a) EuRoC: V101 (b) HILTI: Basement_1

Figure 4.2 – Evolution of the landmarks density per keyframe running ORB-SLAM 3.

Therefore, to account for the fewer points and their potential variability, we suggest
estimating the global scale factor by minimizing the square relative error, as outlined by
Equation (2.24). To the best of our knowledge, this particular approach has not been
previously explored. As mentioned in Section 2.5.2, this metric aims to counterbalance
the disproportionate influence of distant points with large absolute errors, while still
penalizing significant deviations robustly. Hence, when working with sparse depths from
SLAM, we define the global scale factor as follows:

α̂k = min
α

1
N

∑
p∈Ωk

∥∥∥αD̂k
p − Dk

p

∥∥∥2

Dk
p

(4.3)

here, N represents the total number of points within the set Ωk. For simplification in
the minimization process, we omit the factor of 1

N
as it does not affect the value of α that

minimizes the function. Then, expanding the sum yields a quadratic polynomial, which
is trivial to minimize:

α̂k = min
α

α2 ∑
p∈Ωk

D̂k2
p

Dk
p

− 2α
∑

p∈Ωk

D̂k
p +

∑
p∈Ωk

Dk
p (4.4)

In the following, we will refer to the resulting scale factor as the SR-scale. Although
the solution to this equation is straightforward, we emphasize that the proposed procedure
still relies on a strong assumption regarding the consistency of the predicted depth map.
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4.1.2 Experimental procedure

All experiments were conducted on the same system described in Section 3.2.2, fea-
turing an NVIDIA RTX 2080 mobile GPU with 8 GB of dedicated memory. In addition,
we adapted ORB-SLAM 3 to not only store the trajectory, but also to export each
keyframe’s associated landmarks, reprojection errors, and timestamps. For each keyframe,
dense depth maps were predicted using the PyTorch implementation of PackNet-Sfm
and ZeroDepth using the weights published by their authors. PackNet-Sfm was trained
using velocity supervision on two autonomous driving datasets: Cityscapes [153] and
KITTI [5]. On the other hand, ZeroDepth training involved a much larger set of data,
including both outdoor environments such as Tartan Air [160], Waymo [158], Parallel
Domain [9], and the Large-Scale Driving dataset [9], and indoor environments rep-
resented by the immense OmniData dataset [161]. Furthermore, we developed a script
to construct ground-truth depth maps for each keyframe by projecting the scene LiDAR
point cloud onto the image plane, using the ground-truth camera poses and the camera’s
intrinsic parameters.

For quantitative analysis, we exclusively focus on the V101 scene from the EuRoC
dataset. This choice is motivated by the limited availability of evaluation datasets that
provide both trajectory and 3D structure ground truth. The chosen scene is comprehensive
and has also been used in several related works to evaluate their performance. Additionally,
we provide a qualitative evaluation of PackNet-Sfm and ZeroDepth networks on the
Basement_1 scene from the HILTI dataset. As mentioned earlier, this scene presents
particular challenges due to lighting variations and the presence of long corridors which
result in a greater depth of field.

Regarding the evaluation process, we use three types of depth maps: dense (DNN-
predicted), semi-dense (ground truth), and sparse (SLAM-estimated). To ensure consis-
tency despite density variations, a mask is applied to align the DNN and SLAM depth
maps with the semi-dense ground truth, and values outside the specified range are filtered
out. Values are capped at 30 m since the room size is approximately 8 m x 8.4 m [3] and
the valid DNN predictions largely fall within this range. In this study, we evaluate the orig-
inal SLAM sparse depth, the original DNN predictions, the predictions scaled to ground
truth (GT-scale), and the predictions aligned with our proposed method (SR-scale). The
evaluation metrics outlined in Section 2.5.2 are measured on every keyframe of the scene,
and the mean values for each metric are reported. We contrast our results with other
approaches that densify monocular SLAM with reported quantitative evaluations on the
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V101 scene, specifically referencing DeepFactors [65], TANDEM [117], CodeVIO [7]
and CodeMapping [6]. Unfortunately, although the authors reported standard metrics,
they did not all use the same ones. Furthermore, we present a 3D visualization of the
results via the camviz Python library [169]. This library allows us to display the evalu-
ated depth maps as 3D point clouds for each keyframe by projecting them using camera
intrinsic parameters.

4.1.3 Quantitative results

Our experimental evaluation results are summarized in Table 4.1, which presents the
metrics we measured alongside those from related works. The table is organized in three
sections. The first section evaluates the sparse map produced by ORB-SLAM 3. The
second section shows the results of other methods, and the third one presents the results
of the DNN-generated depth maps without scaling, with median-scaling (GT-scale), and
rescaled with our proposed method (SR-scale).

abs_diff abs_rel sq_rel rmse rmse_log δ1 δ2 δ3
ORB-SLAM 3 [1] (sparse) 0.284 0.156 0.266 0.572 0.222 89.8% 94.6% 96.5%
DeepFactors [65] (GT-scale) 0.842 1.050
TANDEM [117] (GT-scale) 94.25%
CodeVIO [7] 0.468 87.0% 95.2% 97.9%
CodeMapping [6] 0.192 0.381
PackNet-Sfm 6.309 2.720 22.945 7.267 1.258 1.3% 4.4% 12.0%
PackNet-Sfm (GT-scale) 0.807 0.331 0.530 1.145 0.396 48.2% 76.0% 89.6%
PackNet-Sfm (SR-scale) 0.792 0.318 0.443 1.063 0.418 43.2% 72.7% 87.9%
ZeroDepth 0.791 0.285 0.326 0.953 0.392 38.8% 70.6% 88.8%
ZeroDepth (GT-scale) 0.386 0.167 0.152 0.545 0.217 81.3% 92.5% 96.6%
ZeroDepth (SR-scale) 0.412 0.167 0.145 0.569 0.222 77.0% 92.5% 96.6%

Table 4.1 – Evaluation of depth estimation on the EuRoC V101 scene, with units in
meters except for the δi metrics. The best value for each metric is highlighted in bold for
dense evaluations, excluding the first row.

Our analysis begins with the sparse depth estimation provided by ORB-SLAM 3.
Due to the inherent sparsity of the SLAM-generated maps, the evaluation is based on
significantly fewer points compared to dense depth maps, making the measurements more
susceptible to the influence of errors or outliers. However, as shown in Figure 4.3, the
mean reprojection error remains below 1 pixel despite a few peaks up to about 5 pixels.
This demonstrates a great level of precision in estimating depth, as evidenced by the
high percentage of valid points (δ1 = 89.8%) and the low errors reported in Table 4.1.
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These observations affirm our belief that the sparse depth estimated by ORB-SLAM 3
provides a reliable source for scale recovery.

(a) EuRoC: V101 (b) HILTI: Basement_1

Figure 4.3 – Evolution of the reprojection error per keyframe running ORB-SLAM 3.

The second group of Table 4.1 presents results related to different metrics, such as
abs_diff , rmse, δ1, δ2, and δ3. According to the values published in [6], [117], even with
multi-view optimization and scaling to ground truth, DeepFactors shows limitations on
new data. In contrast, TANDEM, which was also trained on indoor datasets, shows
outstanding performance after scale alignment. Considering metric methods that do not
depend on ground truth scaling, CodeVIO and CodeMapping emerge as top performers
in terms of rmse. Both techniques are based on CVAE (presented in Section 2.3) which
allows to integrate dense depth into the multi-view optimization framework by exploiting
the compact code representation. Furthermore, CodeMapping improves the performance
even further by exploiting the reprojection error.

In the final group, we present the evaluation of PackNet-Sfm and ZeroDepth, both
unscaled and scaled with ground truth as well as with our proposed method. We note that
there is no multi-view processing, and each depth map is predicted solely from a single
image. Our findings reported in Table 4.1 indicate that PackNet-Sfm faces difficulty in
absolute scale estimation, with a significant drop in rmse from 7.27 m to 1.15 m following
scale adjustment, but the result remains suboptimal. Yet, it is worth noting that our
approach successfully recovers the scale factor using the sparse depth data from ORB-
SLAM 3. The results reported in the table sometimes surpass those using GT-scale for
the first metrics. We attribute this to our method considering fewer points and offering
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Figure 4.4 – Left: A plot of the global scale factors estimated for ZeroDepth [9] predictions
on the V101 scene of the EuRoC dataset, comparing the use of ground truth (GT) scaling
with our SLAM-based approach. Right: A plot of the absolute difference between the two
scale estimates over the sequence.

a finer approach than the median technique, as described in section 4.1.1. As a result, in
some cases, our method is less affected by predicted depth outliers.

In contrast, ZeroDepth performs very well thanks to its training dataset, which in-
cludes a significant number of indoor samples. Throughout the entire sequence, it achieves
an average rmse of less than 1 meter. After rescaling, the error decreases to 0.545 m with
the GT-scale and 0.569 m with the SR-scale. Figure 4.4 presents the GT-scale and SR-scale
plots for ZeroDepth, along with their absolute differences. A mean absolute difference of
0.118 demonstrates that our method yields a reasonably accurate estimation of the global
scale factor, even if it relies on much fewer reference points. Another notable observation
is the inconsistency of the predicted scale over time. The scales estimated show significant
variability, even between consecutive frames, as shown in the figure. During our experi-
ments, this phenomenon occurs more frequently on frames with mainly uniform textures.
Similar observations have been made using PackNet-Sfm, and the corresponding results
are reported in Appendix B.2.

As introduced in Section 2.4, ZeroDepth uses a learned variational distribution to
sample depth maps from a latent space constructed from image and geometric embed-
dings. In practice, 10 samples are generated, from which the final depth map is derived
using the mean, and the uncertainty is obtained from the standard deviation. The ex-
periments conducted by the authors on the KITTI dataset indicate that this sampling
number is reasonable to efficiently exploit the resulting uncertainty and filter out low-
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PackNet-Sfm ZD01 ZD02 ZD03 ZD04 ZD05 ZD06 ZD07 ZD08 ZD09 ZD10
Inference (ms) 9.2 13.9 19.7 22.5 24.8 29.1 144.6 456.0 804.9 1152.9 1501.1

Table 4.2 – Average inference time in milliseconds for PackNet-Sfm and ZeroDepth (ZD)
on the V101 scene of the EuRoC dataset, measured using 1 to 10 samples.

confidence depth values. Nonetheless, the repetitive sampling process significantly affects
speed performance, as shown in Table 4.2. We conducted our own experiments on Eu-
RoC, testing the model with 1 to 10 samples over 10 iterations each. This comparison
revealed only negligible differences in both mean uncertainty and accuracy over the en-
tire sequence. Therefore, a smaller number of samples can be considered, especially for
use on embedding systems. This observation is specific to the V101 sequence and more
exhaustive experiments would be required on other sequences or datasets to be conclusive.

4.1.4 Qualitative analysis

We will now present and analyze our qualitative results. Figure 4.5 illustrates the
evaluation of our scale recovery procedure in 3D. This visualization effectively highlights
the initial incorrect prediction of scale by the deep learning models and demonstrates the
effectiveness of our scaling approach with respect to the δ1 metric. Through the use of
the δ1 accuracy rate metric (cf. Equation 2.27), valid points are shown in green, incorrect
points in red, and the reference point cloud is shown in white to provide the context. For
detailed views of the corresponding color images and depth maps, refer to Figure 4.6 for
ZeroDepth and Figure B.27 for PackNet-Sfm.

In addition to evaluating the scale recovery, we analyze the overall depth estimation
quality. We note that PackNet-Sfm fails to accurately infer the depth of some structures
and the predictions happen to be very noisy on some edges. However, as we can see from
the Figures reported in the Appendix B.2, the model manages to correctly distinguish
most of the surfaces in the scene. We also note that the network fails to predict some
planar surfaces or predicts them as if they were outdoors, with larger depths in the upper
part of the image. This indicates that the predicted scale does not appear to be consistent
within the image. In contrast, ZeroDepth predicts much higher quality depth maps,
as shown in Figure 4.6. The predictions are notably smoother and exhibit less noise at
surface discontinuities.

Applying these models to the Basement_1 scene of the HILTI dataset (as seen in Fig-
ure 4.7) presents challenges due to the scene’s dim lighting and the extended depth of field
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original GT-scale SR-scale

Figure 4.5 – 3D visualization of the evaluation of PackNet-Sfm and ZeroDepth predictions
using the δ1 metric on the V101 scene of EuRoC. The depth maps, both with and without
scaling, are projected into a 3D point cloud. The ground truth points are shown in white
for reference, the correct predictions in green, and the incorrect ones in red.

in its long corridors. Surprisingly, PackNet-Sfm manages to yield reasonable predictions
in these long corridors, even under darker conditions. However, as highlighted in the side
view shown in the figure, the predictions are significantly poorer in the upper part of the
image. This limitation is likely because PackNet-Sfm was trained on datasets focused on
autonomous driving, where such image regions typically depict the sky, thus leading to its
unfamiliarity with indoor scene characteristics. The predictions of ZeroDepth, although
less planar than those of PackNet-Sfm, maintain a notable level of smoothness across
surfaces. Nonetheless, in the darkest images, the network often predicts overly flat depth
maps, failing to accurately capture the extended depth characteristic of the corridor. We
include supplementary qualitative results in the Appendix B.2.

Since both models were trained on color images, we tested them using a sequence
captured in the corridors of our laboratory. PackNet-Sfm exhibited poor performance
in these tests, while ZeroDepth demonstrated significantly better results, as shown in
Figure 4.7. With the use of color images, the planarity of the wall and floor surfaces
was correctly represented in the ZeroDepth predictions. However, it is worth noting
that the scene captured in our laboratory was significantly better illuminated than the
Basement_1 scene. Additionally, when surfaces at the end of the corridor are too distant,
the network tends to incorrectly predict them as being closer than they actually are.
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Figure 4.6 – Visualization of ZeroDepth predictions on the scene V101 of EuRoC dataset.

(a) PackNet-Sfm (b) ZeroDepth (c) ZeroDepth

Figure 4.7 – Visualization of depth prediction from Basement_1 scene of HILTI dataset
and a sequence that we collected in IMT Atlantique school (last column). The first line
shows a frontal view, and the second one is a side view.
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4.1.5 Discussion

In this section, we have presented our scale recovery procedure, which leverages the
sparse depth estimated by ORB-SLAM 3 to adjust the scale of dense depth maps
predicted by deep learning models, specifically PackNet-Sfm and ZeroDepth. Our
method has demonstrated its effectiveness in helping to provide metrically accurate dense
depth maps through evaluation on the established EuRoC dataset. The experiments
further supported that these DNNs have promising generalization capabilities.

However, our approach heavily depends on the accuracy of the chosen model’s depth
predictions. Although the qualitative evaluation in EuRoC yielded satisfactory results,
the dataset mainly comprises confined room settings. To assess the models under different
conditions, we additionally applied them in long corridors with different lighting scenarios.
These experiments uncovered certain constraints for depth prediction, especially in such
specific environments.

Given that PackNet-Sfm was trained only on outdoor color images, we first con-
sidered retraining or fine-tuning the network. The usual process in depth estimation for
self-supervised learning using monocular sequences involves electing successive frames
with sufficient optical flow to ensure parallax [129], [139]. Despite applying this method
with multiple datasets, our attempts to train the network were unsuccessful. Still, the
original authors reported successful training on EuRoC, but neither the weights nor the
scores for that specific training were made available.

ZeroDepth performed reasonably well on the grayscale images of EuRoC, but its
effectiveness seems to decrease in darker scenes without color. Furthermore, it may not
have encountered comparable scenarios with deep hallways during training. Unfortunately,
we have not attempted to fine-tune ZeroDepth for these specific scenarios due to the
extensive computational resources required.

Even though these results are specific to single-view depth estimation, they lay the
groundwork for the next stage of our research. In the following section, we build on this
procedure for generating dense and metric depth maps and introduce voxel mapping as a
means to achieve efficient multi-view volumetric fusion.
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4.2 Voxel map construction

This section delves into the voxel mapping procedure, an integral part of the pipeline
previously presented in Figure 4.1. Notably, our research focuses on creating a metric
occupancy grid for navigation purposes, rather than a high-precision 3D model. Here, we
will show how voxel mapping effectively serves this goal, providing an optimal approach for
both building and maintaining the 3D map, and facilitating multi-view fusion refinement.

4.2.1 Multi-view volumetric refinement

The use of multi-view techniques is essential in Visual SLAM, as previously explained
in Section 2.1.3 with Bundle Adjustment. This process jointly optimizes camera poses
and 3D landmarks across multiple frames observing the same scene. Unlike MDE, which
relies solely on a single input image, the multi-view approaches enforce both temporal
and geometric consistency.

Consequently, other works aimed at densifying SLAM have also leveraged multi-view
schemes to improve depth estimation. In particular, this has been achieved by integrating
depth code representations into a factor graph [6], [7], [65], employing multi-view stereo
networks [117], or using recurrent neural networks [114], [116]. Although some of these
methods have shown high accuracy, as mentioned in the previous section, they often
require significant computational resources because they involve the joint optimization of
a problem with a greater number of variables.

Applying multi-view to the mapping task by fusing depth maps is another common
strategy in 3D reconstruction. More recently, the integration of NeRF into SLAM has
been explored [114], [170], [171], but this approach is computationally intensive as it
requires learning a NeRF model from SLAM outputs in real-time. On the other hand,
the conventional solution involves volumetric fusion of depth maps obtained from either
RGB-D sensors or stereo matching [12], [39], [56], [172], [173]. Here, fusion requires the
weighing of depth maps based on the corresponding depth sensor model.

In our work, we use a fast and iterative volumetric method derived from Voxblox
[39], following the same approach as Kimera [12]. Instead of relying on stereo for dense
depth estimation, we follow our previously presented pipeline for predicting metric and
dense depth maps. Moreover, unlike Kimera which proceeds to construct a 3D model
via marching cubes, we stop our process at an earlier stage and focus solely on the voxel
level. We elaborate on this approach in the remainder of this section.
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Partie , Chapter 4 – Monocular SLAM densification

Figure 4.8 – Schema illustrating the construction of a voxel map from multiple viewpoints
using a TSDF to update voxels’ distance from the nearest surface.

Voxblox [39] uses dense depth maps to construct and maintain a voxel map through
raycasting. At its core, Voxblox relies on the TSDF to represent 3D space. In this rep-
resentation, each voxel stores a weight and a distance to the nearest surface, as shown in
Figure 4.8. During the process of raycasting, a ray is projected for each pixel from the
optical center of the camera to the corresponding point projected in 3D space, updat-
ing each voxel it intersects along the way. This update is based on the Signed Distance
Function, which calculates the distance from the voxel’s center to the target point, being
positive outside the object and negative inside. The application of the TSDF improves
efficiency by limiting updates to voxels within a predefined truncation distance from the
surface.

The voxel updating process involves a weighing function that balances new ray data
with existing voxel information. Voxblox adopts a weighing strategy that is inspired by
RGB-D sensor models, assigning a fixed weight of 1 in front of the surface and decreasing
quadratically with distance behind the surface. Additionally, to optimize the fusion pro-
cess, Voxblox introduces bundled raycasting. This technique aggregates multiple pixels
that terminate in the same voxel into a single ray, which significantly enhances perfor-
mance with minimal loss in accuracy. This approach enables fast volumetric fusion by
iteratively building and updating the voxel map from multiple viewpoints.
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4.2. Voxel map construction

In our proposed pipeline, Voxblox receives at each keyframe the rescaled dense depth
map computed via our approach and the corresponding camera pose estimated by ORB-
SLAM 3. This integration enables the iterative construction and refinement of the voxel
map by bundled raycasting from successive viewpoints.

4.2.2 Experimental results

To test this method, we have integrated Voxblox into our current framework. Voxblox
was incorporated through its implementation [174] in ROS. As of now, while a few methods
have been proposed for evaluating voxel maps [41], [175], to the best of our knowledge,
while few methods were proposed to evaluate voxel maps [41], [175], there is no stan-
dardized quantitative metric for comparing voxel maps that has been applied to dense
monocular SLAM or MDE. Nevertheless, we provide experimental results of voxel map-
ping applied to EuRoC and HILTI datasets. For visualization, we use RViz, a ROS 3D
visualization tool, to display both the generated voxel map and the 3D mesh rendered
via marching cubes. To facilitate qualitative comparison, we add a reference point cloud,
displayed in white or red. It is generated using Voxblox by raycasting the ground truth
depth maps and displaying the centers of the occupied voxels, i.e. those that lie on a
surface. Additionally, for EuRoC, we run the example provided in Voxblox, which uses
the ground truth trajectory and stereo inputs to estimate dense depth via stereo matching
[176]. We will refer to it as the stereo-based reference.

Fine-grained voxel map reconstruction: Figure 4.9 presents the results of voxel
mapping for scene V101 of the EuRoC dataset, using a voxel size of 100 mm.

The map was constructed using the estimated trajectory from ORB-SLAM 3 and the
dense depth maps predicted by ZeroDepth, scaled using our method. The ground truth
point cloud in red was aligned with the estimated trajectory. Assuming perfect alignment
and reconstruction, all ground truth points would fall within surface voxels. Nonetheless,
given the ATE of 49 mm measured for this sequence, a slight misalignment may exist.
The map generated by Voxblox using stereo input is displayed in the second row. It is
worth noting that the stereo-based approach processes all frames of the sequence, while
our method only processes the keyframes selected by the SLAM algorithm.

Overall, our approach produces a decent reconstruction of the room, capturing most
of the major structural elements that are important for drone navigation and obstacle
avoidance. The majority of voxels are well aligned with the reference point cloud, indicat-
ing a good fit. However, we observe some shortcomings in the mapping of thinner objects.
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Figure 4.9 – Visualization of voxel mapping results in EuRoC, using Voxblox with a voxel
size of 100 mm. The first row presents our results, while the second row shows those of
the stereo-based reference.

As observed in the top-right image in Figure 4.9, a ladder against the wall is inaccurately
mapped, with only part of it being reconstructed. A more detailed view of the recon-
structed mesh and depth prediction for this area is illustrated in Figure 4.10. Upon closer
examination of the corresponding depth predictions, it is apparent that there is consider-
able noise surrounding thin objects. Additionally, this region of the scene received limited
coverage in the sequence, restricting the potential for correction from other viewpoints.

Figure 4.10 – 3D meshes generated via marching cubes from the voxel maps: our approach
(left) and stereo-based method (middle). The right image displays the original depth
prediction by ZeroDepth in this area. Notably, the point cloud of the mattress at the
bottom left of our map, covered by only a single image, was not mapped.
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4.2. Voxel map construction

Coarse-grained voxel map reconstruction: Our experiment using a 200 mm
voxel size produced the map featured in Figure 4.11. When we increased the voxel size,
the resulting map became coarser but smoother, mitigating some of the noise we noticed
in the input depth maps. Moreover, increasing the voxel size yields also results in a more
restrictive navigable space that maintains a greater distance between the drone and the
actual surfaces.

Figure 4.11 – Visualization of voxel mapping results using Voxblox in EuRoC, with a
voxel size of 200 mm. The first row presents our results, while the second row shows those
of the stereo-based example.

For completeness, we further present the corresponding textured 3D meshes in Figure
4.12 for a more detailed visualization of the captured structures. In general, the stereo-
based method produces a more detailed reconstruction. Nevertheless, our approach yields
reasonable performance considering that it processes fewer images (529 keyframes against
1,151 frames). Interestingly, our approach provides more detail in the upper parts of the
images, especially around the windows, where stereo matching struggles due to the lack
of texture.

Afterward, we tested our pipeline on the Basement_1 scene from the HILTI dataset,
choosing PackNet-Sfm for depth estimation since ZeroDepth tended to predict flat
depth maps, which significantly affected voxel mapping. Further details on the suboptimal
results of ZeroDepth are provided in Appendix B.2. The results of the experiment using
PackNet-Sfm are thus shown in Figure 4.13, depicting voxel maps and corresponding 3D
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(a) voxel size = 100 mm (b) voxel size = 200 mm

Figure 4.12 – 3D mesh reconstructions from voxel maps: the first row displays results
using our approach, while the second row features the stereo-based method.

meshes. As a reference, we projected LiDAR measurements using the trajectory estimated
by ORB-SLAM 3, since dense ground truth trajectory data was not available.

The analysis of the results indicates that the sparse depth information from ORB-
SLAM 3 effectively outlines the geometric structure of the scene, but really lacks density.
Furthermore, within empty spaces in the voxel map, we observed outliers, which likely
arose from the strong illumination changes typical of this scene. As for the densified map
enhanced by multi-view fusion, it does not sufficiently correct for structural inaccuracies.
Although the extended hallway is somewhat noticeable, the resulting map is too coarse
and irregular, making it unsuitable for navigation purposes.
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4.2. Voxel map construction

(a) ORB-SLAM 3 (b) our (c) LiDAR

Figure 4.13 – Multi-view volumetric fusion results using Voxblox in HILTI dataset: the
first row presents voxel maps, and the second row depicts 3D meshes reconstructed via
marching cubes. For reference, the LiDAR-measured point cloud is shown in red.

In conclusion, our experiments with voxel mapping using Voxblox for volumetric
fusion have provided valuable insights. Our approach demonstrated the potential for cre-
ating coherent and geometrically consistent voxel maps for drone navigation, in particular
within the V101 scene of the EuRoC dataset. While the sparse depth information from
ORB-SLAM 3 successfully captured the primary geometric structures, its density lim-
itation became apparent. Furthermore, although our densification method improved the
completeness of the map, the multi-view fusion scheme could not compensate for the
structural inaccuracies in the initial DNN depth predictions, resulting in maps unsuitable
for precise navigation. These findings highlight the importance of the initial depth map
quality in voxel-based mapping, and point to the inherent trade-offs when choosing a
lightweight volumetric fusion approach.
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4.3 Conclusion

In this chapter, we have successfully implemented and demonstrated our proposed
framework which effectively densifies monocular-inertial SLAM for drone navigation. The
framework relies on the pose estimation and sparse depth from SLAM, and requires reli-
able initial monocular depth predictions, but operates without direct depth measurements.

We introduced a loosely coupled approach that efficiently retrieves the metric scale
of DNN dense depth predictions using sparse SLAM depths. This method differs from
most related works in dense monocular SLAM that generally depend on ground truth
measurements for scaling or use tightly coupled approaches with inertial measurements
to determine the metric scale. Our approach, which relies on a single image input, has
demonstrated fair results in comparison to state-of-the-art performances, while most of
these methods incorporate more complex multi-view schemes. The experiments we have
conducted validate the use of SLAM sparse depth as a reliable source for our method and
confirm successful scale recovery across different deep learning models.

Expanding on this foundation, we have integrated a voxel mapping solution into our
framework. This system constructs and updates a voxel map using SLAM-estimated cam-
era poses and corresponding scaled dense depth maps. In contrast to the typical approach
of using multi-view schemes for depth map estimation, we instead apply multi-view fusion
for mapping which merges depth maps from different viewpoints. This decision aligns with
our objective of developing a lightweight solution optimized for navigation applications, as
opposed to more complex but highly accurate alternatives. The selected approach involves
the volumetric fusion of dense depth maps through bundled raycasting, which iteratively
refines the occupancy grid through a TSDF. The presented qualitative analysis illustrates
the ability of our system to map essential structural elements of an environment, allowing
for obstacle avoidance, provided that the initial depth predictions are sufficiently accu-
rate.
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Chapter 5

CONCLUSION

5.1 Synthesis of research contributions

The work presented in this thesis falls within the scope of research aimed at densi-
fying monocular SLAM in the context of 3D mapping for autonomous drone navigation.
We have outlined the significant potential of autonomous drones for first responders in
scenarios like USAR to carry out reconnaissance missions and 3D mapping. This thesis
addresses key scientific challenges associated with the use of small drones in indoor envi-
ronments, equipped with a payload limited to passive sensors: a monocular visible camera
and an IMU. In this context, real-time dense and metric 3D mapping is required for drone
navigation, with SLAM emerging as the most viable solution.

How can we perform monocular SLAM densification with metric scale in
real-time on an embedded system ?
As discussed earlier, achieving real-time dense 3D mapping via monocular SLAM poses
significant challenges due to depth ambiguity and the inherent complexity of conven-
tional SLAM approaches. Within the domain of monocular SLAM densification, a few
approaches have recently emerged that leverage deep learning for depth estimation and
achieve detailed 3D reconstruction. We proposed a loosely coupled framework combining
sparse SLAM and MDE designed for dense and metric voxel mapping for drone nav-
igation. The architectural decisions of the system are strategically targeted for future
real-time applications on embedded systems at reasonable navigation speeds. Given that
the majority of conventional SLAM algorithms run primarily on the CPU, our decoupled
approach to densification exploits the GPU to minimize the impact on the original frame
rate. Additionally, while other studies typically adopt a multi-view scheme for depth esti-
mation, which tends to increase complexity, we instead apply the multi-view strategy in
the voxel mapping process. The chosen lightweight mapping solution iteratively builds a
voxel map via raycasting by performing a volumetric fusion of the provided depth maps.
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To the best of our knowledge, no similar framework exists for comparison, which leads us
to implement the entire pipeline and evaluate its individual components against related
works.

To what extent can state-of-the-art visual SLAM be applied to drone nav-
igation in challenging conditions?
The proposed framework relies on a real-time monocular-inertial SLAM baseline that es-
timates camera pose and sparse depth, a domain that is relatively mature and extensively
evaluated. We conducted additional benchmarks in more challenging drone-specific sce-
narios, typically reserved for VIO or LiDAR-based SLAM, to evaluate several algorithms
in various indoor environments featuring larger scales, high-speed motion, or varying
lighting conditions. These experiments led us to adopt ORB-SLAM 3 as our baseline,
confirming its robustness in challenging environments while also revealing limitations in
its IMU initialization process.

How can we combine SLAM sparse and metric depth to recover the absolute
scale of a predicted dense depth map?
A key feature of our framework is a decoupled scale recovery procedure that uses the metric
sparse depth from SLAM to correct the scale of DNN-predicted dense depth maps. This
differs from common monocular dense SLAM methods that either rely on ground truth
depth for scaling or incorporate dense depth into their SLAM optimization. In contrast,
our proposed method restores the absolute scale of a depth map that is predicted from a
single input image using the corresponding SLAM estimated sparse depth. We applied this
method using state-of-the-art MDE models, namely PackNet-Sfm and ZeroDepth, and
successfully demonstrated effective scale recovery, yielding comparable results with related
works. Complementing this work with the voxel mapping stage, we also demonstrated
through a qualitative evaluation that the proposed system is able to provide a coarse
map of the environment adapted for drone navigation given good initial dense depth
predictions.
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5.2 Future directions and research perspectives

This section discusses potential avenues for advancing the research initiated in this
study. We propose investigating several essential areas, such as extending the benchmark-
ing of algorithms, studying a tightly coordinated approach for MDE, improving the voxel
mapping process, and strengthening the robustness of SLAM localization through the use
of densified maps. This section will review these potential research directions, highlighting
their expected impact and the methods that could be used to achieve their benefits.

Training and validation datasets

In this study, our experiments to evaluate our proposed workflow were constrained
by the limited availability of suitable datasets. To conduct a comprehensive monocular-
inertial SLAM evaluation, we require datasets that provide synchronized visual-inertial
data, calibration parameters, precise trajectory ground truth, and more particularly struc-
tural ground truth. As mentioned in section 2.6, published indoor datasets rarely provide
both pose and map ground truths.

To overcome this limitation, we can consider several approaches. The most direct
method is to collect our own data, but it requires significant resources and a very rigorous
setup. Alternatively, we can use existing datasets that combine visual-inertial data with
precise depth measurements [11], [154], [162] to generate a pseudo ground truth of the
environment. Given the 6D pose trajectory and accurate LiDAR measurements, it would
be possible to reconstruct a global point cloud of the map. In the absence of a ground
truth trajectory, it may be worthwhile to investigate the use of state-of-the-art LiDAR-
based SLAM solutions [53]–[55] for this task. Another interesting approach is the use
of realistic 3D simulations, as demonstrated by the TartanAir dataset [160], which was
created using the AirSim simulator [163] together with Gazebo for physics simulation and
Unreal Engine for graphics rendering. We have initiated similar simulations controlling a
drone in a virtual environment as shown in Figure 5.1. However, with the discontinuation
of AirSim development, certain aspects such as accurate data synchronization and realistic
sensor modeling (camera distortion and IMU noise) need further improvements.

During this research, we observed a lack of standardized metrics for evaluating the
3D mapping of dense monocular SLAM. As discussed in Section 2.5.2, a common way to
evaluate the generated maps is to measure the error of the corresponding depth maps.
Nevertheless, according to a recent study [177], these 2D-based distances do not capture
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Figure 5.1 – Simulated data from a drone flying in an indoor environment, created using
AirSim and Unreal Engine. The first row displays a capture of the drone and a rendered
image, and the second row shows the corresponding point cloud and voxel map generated
for the scene.

the 3D geometry well. Instead, the study proposes the application of various 3D metrics
to MDE. Specifically, common measures such as precision, F-score, completeness, and
Intersection Over Union are adapted for 3D. As mentioned previously, Rosinol et al.
applied similar measures for precision and completeness in dense monocular SLAM [12],
[114], [115], [150], but to the best of our knowledge they are the only ones. In Voxblox
[39], voxel mapping is evaluated by comparing the estimated TSDF to a reference one
reconstructed from the ground truth point cloud. A more recent study [175] also proposed
to evaluate occupancy grids by comparing probability distributions computed from the
3D reconstruction and the ground truth point cloud.

We believe that the use of standard depth estimation metrics remains a reasonable
approach for comparing our scale recovery procedure with similar methods. However, for
a more meaningful analysis and to allow for future comparisons, it would seem wise to
include additional 3D metrics, as suggested by recent research [177]. Still, these metrics
may not be quite appropriate for evaluating voxel mapping, especially if the objective
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is to construct a coarse map as we do. A more relevant evaluation for voxel mapping
might be to evaluate the reconstructed occupancy grid based on its TSDF or probability
distribution. However, this form of evaluation would require applying this approach to the
existing works, but only a few have made their code publicly available [114], [116], [117].

Finally, since we have targeted this research for real-time application on drones, a com-
prehensive study of the framework running on embedded systems is crucial. A thorough
analysis similar to [46] would be of great value, providing key insights into sparse SLAM
performance, MDE inference times, as well as CPU and GPU loads, and memory usage.
Implementing different acceleration methods can further optimize performance, including
using half-precision computation for DNN inference, reducing camera resolution, tuning
keyframe selection criteria, and reducing the number of keypoints. Each factor has a sig-
nificant impact on the overall accuracy and the achievable navigation speed. Therefore,
conducting such benchmarking would provide a deeper understanding of the algorithms’
performance under real conditions and help identify the gaps that need to be bridged for
practical deployment.

Tightly coupled approach

In this thesis, we proposed a decoupled pipeline to minimize any adverse effects on the
baseline performance of sparse SLAM. However, as reported previously, predicting depth
from a single image resulted in scale inconsistencies. An interesting avenue for future
research is to include sparse SLAM depth points as a DNN input. These points, which
reflect multiple observations, carry not only metric scale but also temporal information.
In our current loosely coupled approach, we rely on a custom model to recover the scale.
Moving towards a tightly coupled framework could take advantage of the strong capabili-
ties of DNNs to model the relationship between the sparse SLAM depth information and
the input image. As shown in Figure 5.2, such an approach could allow the prediction to
be metric. Additionally, incorporating the reprojection error could also contribute to the
prediction of the uncertainty. Overall, this integration has the potential to enhance the
consistency and accuracy of depth predictions.

For example, we had described CodeVIO [7] and CodeMapping [6] implementing
such an approach with a CVAE. Additionally, the field of depth completion, which initially
focused on completing the dense depth prediction from semi-dense LiDAR measurements
only, provides valuable insights. Currently, RGB-guided depth completion methods, which
employ a fusion of point clouds and corresponding color images, are the most advanced
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Figure 5.2 – Architecture of a tightly coupled pipeline that would predict metric dense
depth from a monocular image and the sparse depth estimated by SLAM. The integration
of SLAM reprojection error could also contribute to the prediction of depth uncertainty.

techniques [168]. Despite the considerably lower density of points in SLAM compared to
LiDAR data, these techniques can be highly advantageous. Notably, several operators have
been developed to process unstructured data, such as point clouds, and to integrate them
with image features. For example, Du et al. [178] employed a graph neural network and
introduced edge convolution and Dynamic Graph Representation to extract embeddings
from point clouds. Such a technique could potentially be adapted to augment models
like ZeroDepth by incorporating sparse SLAM depth, especially since the model already
merges image and geometric embeddings derived from camera intrinsics. Furthermore,
the adjustment of the loss function to merge image and point cloud data, as well as to
predict uncertainty, could also be inspired by depth completion research [168].

Therefore, the pursuit of a tightly coupled approach to MDE emerges as a compelling
research direction. This approach aims to enhance the accuracy of depth predictions by
more closely integrating MDE with SLAM processes, potentially resulting in mapping
solutions that are more precise and reliable.

Voxel mapping enhancement

The voxel mapping module of our system integrates Voxblox, which was developed for
drone navigation [39]. Voxblox constructs a TSDF and introduces an optimized method to
derive an Euclidean Signed Distance Function (ESDF). The ESDF is particularly useful
for navigation purposes, as it provides the Euclidean distance to the nearest obstacle for
each voxel. In terms of performance, Voxblox is efficient, capable of real-time operation
on CPU only, and its speed can be further enhanced by grouped raycasting. However,
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our implementation has the potential for further optimization. The recent development
of nvblox [165], which parallelizes the algorithm and enables GPU execution, has shown
a significant boost in computational speed and has been demonstrated on an NVIDIA
Jetson embedded platform. This advancement demonstrates the possibility of substantial
computational acceleration, which we aim to explore for future enhancements.

Furthermore, the refinement of the volumetric fusion of depth maps can be achieved
through the adaptation of the raycasting weighing function. As previously stated, prior
research has established weight functions based on sensor models [12], [39], [56], [172],
[173], while a few others have used neural networks for depth map fusion [179], [180]. A
notable dense SLAM method [115] has successfully implemented probabilistic volumetric
fusion by weighing depth maps by their respective uncertainties. We also believe that
incorporating depth uncertainty into our fusion process could significantly reduce the
effects of noise and outliers. In the continuation of our work, we are considering using
the uncertainty prediction provided by ZeroDepth for this purpose. SLAM algorithms
usually detect keypoints in areas with significant gradients, such as object edges. However,
the depth predicted in these regions often exhibits deformations and increased noise,
especially around occlusion boundaries. This issue is discussed in [177] and is illustrated
in the ZeroDepth prediction example shown in Figure 4.10 on the ladder. Therefore, we
believe that the SLAM sparse depth could help alleviate this problem.

Overall, enhancements in voxel mapping should result in more detailed and navigable
environmental maps. Accelerating the process will increase performance on embedded sys-
tems, and adjusting the weighting function should prevent the map from being corrupted
by erroneous predictions.

Robustifying localization

A promising avenue for future research is to use the densified map to enhance the ro-
bustness of SLAM localization. This approach is particularly relevant in scenarios where
ORB-SLAM 3, as shown in Figure 4.2, exhibits a significant reduction in the number
of points, which is often observed in areas with uniform textures or during some pure
rotational motions. While high-quality IMUs can compensate for these constraints, their
lower-cost counterparts may not offer the same level of reliability. In typical SLAM sys-
tems, keypoints are added to the map after triangulation from multiple viewpoints and
a map consistency check. We assume that the information from a densified map could
be valuable to the initialization of additional keypoints. By retrieving the keypoint depth
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from the densified map, we could potentially loosen the criteria for adding new keypoints
to the map, potentially overcoming some of the current limitations of SLAM systems
in complex environments. This method could lead to improved navigation accuracy and
reliability.
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Appendix B

ADDITIONAL RESULTS

B.1 Sparse SLAM evaluation

This section presents additional results from our evaluation of several sparse SLAM
algorithms, including Kimera [12], Basalt [2], and ORB-SLAM 3 [1] in both stereo-
inertial and monocular-inertial configurations.

EuRoC: MH04 sequence

Specifically, we report the performance of these algorithms on the MH04 scene from
the EuRoC dataset, which is identified as one of the more challenging scenarios in the
dataset. Despite the relatively slow speed of the drone and the rich texture of the scene,
one of the areas explored by the drone is particularly dark with limited visibility. Under
these challenging conditions, all of the algorithms we tested demonstrated robust tracking
capabilities, with the exception of Kimera. We present the estimated trajectories aligned
with the ground truth through SE(3) alignment. The corresponding colormaps represent
ATE, RPErot, and RPEtrans.

Figure B.1 – Dark images from the MH04 scene of the EuRoC dataset. Despite the low
light, distinct areas are visible, and the drone navigates at a slow speed
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Method ATE (m) RPErot (deg) RPEtrans (m) cover
Basalt 0.0951 0.0345 0.0040 100.0%
Kimera 3.5326 0.0943 0.1127 99.0%
ORB_SLAM3 0.0515 0.0196 0.0064 81.5%
ORB_SLAM3 (MI) 0.1288 0.1599 0.0253 80.1%

Table B.1 – Median evaluation results on the MH04 scene of EuRoC.

Figure B.2 – Evaluation of Basalt, Kimera, ORB-SLAM 3, and ORB-SLAM 3 (MI) on the
MH04 sequence from the EuRoC dataset. The plots presented are: aligned trajectories
(top-left), ATE (top-right), RPEtrans (bottom-left), and RPErot (bottom-right).
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Basalt

Figure B.3 – Trajectory evaluations of Basalt results on scene MH04.

Kimera

Figure B.4 – Trajectory evaluations of Kimera results on scene MH04.
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ORB-SLAM 3

Figure B.5 – Trajectory evaluations of ORB-SLAM 3 results on scene MH04.

ORB-SLAM 3 (MI)

Figure B.6 – Trajectory evaluations of ORB-SLAM 3 (MI) results on scene MH04.
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UZH-FPV: indoor_forward_9 sequence

Below, we report the the results of the SLAM algorithms on the indoor_forward_9
sequence which is not the most difficult but is representative of most forward sequences.
Similarly, we report the trajectories under the same conditions as before. Comparative
plots of all methods were discussed in Section 3.2. This section presents detailed measure-
ments for each method. While Basalt does not accurately estimate scale, the RPE plots
demonstrate that the relative errors remain acceptable. The results also indicate that
Kimera struggles with estimating rotation, as evidenced by the REProt plots. Overall,
ORB-SLAM 3 performs well, even though in stereo-inertial settings, the scale is slightly
inaccurate.

Method ATE (m) RPErot (deg) RPEtrans (m) cover
Basalt 1.583 0.366 0.055 99.9%
Kimera 3.533 2.780 0.625 99.4%
ORB_SLAM3 0.953 0.376 0.048 99.9%
ORB_SLAM3 (MI) 0.575 0.376 0.043 97.3%

Table B.2 – Median evaluation results on the indoor_forward_9 scene of UZH-FPV.

Basalt

Figure B.7 – Evaluation of Basalt on scene indoor_forward_9 sequence.
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Kimera

Figure B.8 – Evaluation of Kimera on scene indoor_forward_9 sequence.

ORB-SLAM 3

Figure B.9 – Evaluation of ORB-SLAM 3 on scene indoor_forward_9 sequence.
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ORB-SLAM 3 (MI)

Figure B.10 – Evaluation of ORB-SLAM 3 (MI) on scene indoor_forward_9 sequence.

UZH-FPV: indoor_forward_7 sequence

The indoor_forward_7 sequence represents a notable challenge among the forward
sequences due to its length and several aggressive motions and rotations. It also includes
complex maneuvers such as circling objects while maintaining camera focus on a cen-
tral position. Detailed trajectory and measurement data are provided below. For this
sequence, Kimera struggles with accurate camera pose tracking, as evidenced by high
translational and rotational errors. The intense optical flow poses a challenge to the feature
detection and matching capabilities of these algorithms. Thus, while Basalt is generally
consistent, it experiences sporadic but severe rotational errors, resulting in cumulative
trajectory drift. Conversely, ORB-SLAM 3 demonstrates robust performance in both
sensor configurations, benefiting from the resilience of ORB features, as consistent with
its performance in other scenes.

Method ATE (m) RPErot (deg) RPEtrans (m) cover
Basalt 1.268 0.894 0.054 100.0%
Kimera 6.251 5.593 0.716 99.7%
ORB_SLAM3 0.341 0.705 0.042 100.0%
ORB_SLAM3 (MI) 0.167 0.675 0.034 100.0%

Table B.3 – Median evaluation results on the indoor_forward_7 scene of UZH-FPV.

146



Figure B.11 – Evaluation of Basalt, Kimera, ORB-SLAM 3, and ORB-SLAM 3 (MI) on the
indoor_forward_7 sequence from the EuRoC dataset. The plots presented are: aligned
trajectories (top-left), ATE (top-right), RPEtrans (bottom-left), and RPErot (bottom-
right).
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Basalt

Figure B.12 – Evaluation of Basalt on scene indoor_forward_7 sequence.

Kimera

Figure B.13 – Evaluation of Kimera on scene indoor_forward_7 sequence.
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ORB-SLAM 3

Figure B.14 – Evaluation of ORB-SLAM 3 on scene indoor_forward_7 sequence.

ORB-SLAM 3 (MI)

Figure B.15 – Evaluation of ORB-SLAM 3 (MI) on scene indoor_forward_7 sequence.

149



UZH-FPV: indoor_45_12 sequence

The individual performance of each SLAM method on the indoor_45_12 sequence
is reported below. This sequence was captured by the camera pointing down, mostly
capturing textureless ground images. Basalt exhibits good trajectory estimation except
for scale precision. Kimera struggles with translation estimation and especially with
rotation, as indicated by the RPE plots. ORB-SLAM 3 performs similarly to Basalt in
its stereo-inertial configuration. On the other hand, its monocular-inertial configuration,
while more accurate, especially in scale estimation, shows less consistency. Notably, it
failed to complete the sequence in the 10 trials, achieving an average trajectory coverage
of only 73.6%.

Method ATE (m) RPErot (deg) RPEtrans (m) cover
Basalt 1.392 0.276 0.026 100.0%
Kimera 6.437 2.713 0.367 99.2%
ORB_SLAM3 1.342 0.319 0.029 97.2%
ORB_SLAM3 (MI) 0.645 0.296 0.045 73.6%

Table B.4 – Median evaluation results on the indoor_45_12 scene of UZH-FPV.

Basalt

Figure B.16 – Evaluation of Basalt on scene indoor_45_12 sequence.
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Kimera

Figure B.17 – Evaluation of Kimera on scene indoor_45_12 sequence.

ORB-SLAM 3

Figure B.18 – Evaluation of ORB-SLAM 3 on scene indoor_45_12 sequence.
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ORB-SLAM 3 (MI)

Figure B.19 – Evaluation of ORB-SLAM 3 (MI) on scene indoor_45_12 sequence.

HILTI

Below, we present the evaluation of ORB-SLAM 3 on a monocular-inertial setup using
selected sequences from the HILTI dataset with released ground truth. The trajectory
ground truth are extremely sparse except for the last sequence. We plot the estimated
trajectories aligned with the ground truth and the evolution of the ATE over the sequence.
The Basement_1 and Basement_4 scenes were recorded in a long underground corridor
with many objects in the second sequence. The other scenes were taken at a construction
site and in a large empty hall.
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Basement_1

Figure B.20 – Results for the Basement_1 scene from the HILTI dataset. Left: The esti-
mated trajectory aligned with the ground truth. Right: Evolution of the ATE throughout
the sequence.

Basement_4

Figure B.21 – Results for the Basement_4 scene from the HILTI dataset. Left: The esti-
mated trajectory aligned with the ground truth. Right: Evolution of the ATE throughout
the sequence.
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Construction_Site_2

Figure B.22 – Results for the Construction_Site_2 scene from the HILTI dataset. Left:
The estimated trajectory aligned with the ground truth. Right: Evolution of the ATE
throughout the sequence.

uzh_tracking_area_run2

Figure B.23 – Results for the uzh_tracking_area_run2 scene from the HILTI dataset.
Left: The estimated trajectory aligned with the ground truth. Right: Evolution of the
ATE throughout the sequence.
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B.2 Scale recovery

In this section, we provide additional depth prediction results from PackNet-Sfm [8]
and ZeroDepth [9] on the same input images for comparison. The camviz tool [169] was
employed to visualize the results, showcasing the source image (top-left), the predicted
depth map (bottom-left), and the corresponding 3D projection (right).

EuRoC: V101 sequence

In the following, we report some results on the V101 sequence of the EuRoC [3] dataset.
Additionally, we present the estimated scales for PackNet-Sfm in Figure B.24 using both
ground truth and our approach. A plot of the corresponding absolute differences is also
included. The same results were discussed for ZeroDepth in Section 4.1.1.

Figure B.24 – Left: A plot of the global scale factors estimated for PackNet-Sfm [9]
predictions on the V101 scene of the EuRoC dataset, comparing the use of ground truth
(GT) scaling with our SLAM-based approach. Right: A plot of the absolute difference
between the two scale estimates over the sequence.
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Figure B.25 – Keyframe 182: PackNet-Sfm (top) and ZeroDepth (bottom) depth predic-
tions on the V101 scene of EuRoC.
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Figure B.26 – Keyframe 200: PackNet-Sfm (top) and ZeroDepth (bottom) depth predic-
tions on the V101 scene of EuRoC.
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Figure B.27 – Keyframe 353: PackNet-Sfm (top) and ZeroDepth (bottom) depth predic-
tions on the V101 scene of EuRoC.
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HILTI: Basement_1

Overall performance on the Basement_1 sequence of the HILTI [11] dataset was dis-
cussed in Section 4.1.1. Our focus here is to highlight specific situations where ZeroDepth
failed to correctly estimate depth. We noticed inconsistent results in this scene with several
flat depth maps as illustrated in Figure B.28. PackNet-Sfm managed to provide rough
predictions of the geometric structure of the corridor, despite a very noisy prediction in
the upper part.

Figure B.28 – Keyframe 024: PackNet-Sfm (top) and ZeroDepth (bottom) depth predic-
tions on the Basement_1 scene of HILTI.
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Figure B.29 – Keyframe 024: Front view of PackNet-Sfm (top) and ZeroDepth (bottom)
depth predictions on the Basement_1 scene of HILTI.

Collected data

We provide additional results for monocular depth estimation using ZeroDepth on
color images collected in the corridors of the IMT Atlantique school. The purpose of this
study is to evaluate the indoor performance of the model, particularly in lengthy hallways,
as opposed to the scenarios of the HILTI dataset. We observed that ZeroDepth struggles
to estimate depth accurately in poor lighting conditions. Figures B.30 and B.31 illustrate
this with depth predictions in frames 138 and 157 of our sequence with front and side
views . The brighter image seems to have an accurate depth prediction along the length
of the corridor, while the darker image has a very shallow depth of field. The model
estimates the depth for the first few well-lit meters properly, but the more distant, darker
areas appear unnaturally flat.

These scenarios present a significant challenge as the limited lighting provides little
visual information. Nevertheless, in situations with dark illumination but limited depth
of field, the model shows improved performance, as shown in Figures B.32 and B.33.
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Figure B.30 – Front view of ZeroDepth results on our data: frame 138 (left) and 157
(right).



Figure B.31 – ZeroDepth prediction on our data: frame 138 (top) and 157 (bottom).



Figure B.32 – Frame 581: ZeroDepth prediction on our data.

Figure B.33 – Frame 581: Front view of ZeroDepth prediction on our data.
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Titre : Densification du SLAM monoculaire pour la cartographie 3D et la navigation autonome
de drone

Mot clés : prédiction de profondeur, cartographie métrique, apprentissage profond, IA embar-

qué

Résumé : Les drones aériens sont essentiels
dans les missions de recherche et de sauvetage
car ils permettent une reconnaissance rapide de la
zone de la mission, tel qu’un bâtiment effondré. La
cartographie 3D dense et métrique en temps réel
est cruciale pour capturer la structure de l’environ-
nement et permettre une navigation autonome.

L’approche privilégiée pour cette tâche
consiste à utiliser du SLAM (Simultaneous Loca-
lization and Mapping) à partir d’une caméra mo-
noculaire synchronisée avec une centrale inertielle
(IMU). Les algorithmes à l’état de l’art maximisent
l’efficacité en triangulant un nombre minimum de
points, construisant ainsi un nuage de points 3D
épars. Quelques travaux traitent de la densification
du SLAM monoculaire, généralement en utilisant
des réseaux neuronaux profonds pour prédire une
carte de profondeur dense à partir d’une seule
image. La plupart ne sont pas métriques ou sont

trop complexes pour être utilisés en embarqué.
Dans cette thèse, nous identifions une mé-

thode de SLAM monoculaire à l’état de l’art et
l’évaluons dans des conditions difficiles pour les
drones. Nous présentons une architecture fonc-
tionnelle pour densifier le SLAM monoculaire en
appliquant la prédiction de profondeur monocu-
laire pour construire une carte dense et métrique
en voxels 3D.L’utilisation de voxels permet une
construction et une maintenance efficaces de la
carte par projection de rayons, et permet la fusion
volumétrique multi-vues. Enfin, nous proposons
une procédure de récupération d’échelle qui uti-
lise les estimations de profondeur éparses et mé-
triques du SLAM pour affiner les cartes de profon-
deur denses prédites. Notre approche a été éva-
luée sur des benchmarks conventionnels et montre
des résultats prometteurs pour des applications
pratiques.

Title: Monocular SLAM densification for 3D mapping and autonomous drone navigation

Keywords: depth prediction, metric mapping, deep learning, embedded AI

Abstract: Aerial drones are essential in search
and rescue missions as they provide fast recon-
naissance of the mission area, such as a collapsed
building. Creating a dense and metric 3D map in
real-time is crucial to capture the structure of the
environment and enable autonomous navigation.

The recommended approach for this task is
to use Simultaneous Localization and Mapping
(SLAM) from a monocular camera synchronized
with an Inertial Measurement Unit (IMU). Current
state-of-the-art algorithms maximize efficiency by
triangulating a minimum number of points, result-
ing in a sparse 3D point cloud. Few works address
monocular SLAM densification, typically by using
deep neural networks to predict a dense depth map
from a single image. Most are not metric or are too

complex for use in embedded applications.

In this thesis, we identify and evaluate a state-
of-the-art monocular SLAM baseline under chal-
lenging drone conditions. We present a practical
pipeline for densifying monocular SLAM by ap-
plying monocular depth prediction to construct a
dense and metric 3D voxel map. Using voxels al-
lows the efficient construction and maintenance of
the map through raycasting, and allows for vol-
umetric multi-view fusion. Finally, we propose a
scale recovery procedure that uses the sparse and
metric depth estimates of SLAM to refine the pre-
dicted dense depth maps. Our approach has been
evaluated on conventional benchmarks and shows
promising results for practical applications.
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