
HAL Id: tel-04521379
https://theses.hal.science/tel-04521379

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix Algebraic Systems and Application to DAGS
Cryptanalysis

Manon Bertin

To cite this version:
Manon Bertin. Matrix Algebraic Systems and Application to DAGS Cryptanalysis. Cryptography
and Security [cs.CR]. Normandie Université, 2022. English. �NNT : 2022NORMR108�. �tel-04521379�

https://theses.hal.science/tel-04521379
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat
Spécialité INFORMATIQUE

Préparée au sein de l'Université de Rouen Normandie

Systèmes algébriques matriciels et applicatiοn à la
cryptanalyse de DAGS

Présentée et soutenue par
MANON BERTIN

Thèse soutenue le 13/12/2022
devant le jury composé de :

M. PHILIPPE GABORIT Professeur des Universités - UNIVERSITE LIMOGES Rapporteur du jury

M. JEAN-PIERRE TILLICH Directeur de Recherche - CENTRE REGIONAL DE L'INRIA
SACLAY ILE DE FRANCE Rapporteur du jury

MME DELPHINE BOUCHER Maître de Conférences HDR - UNIVERSITE RENNES 1 Membre du jury

M. ALAIN COUVREUR Directeur de Recherche - ECOLE POLYTECHNIQUE Membre du jury

M. OLIVIER BLAZY Professeur des Universités - ECOLE POLYTECHNIQUE Président du jury

M. AYOUB OTMANI Professeur des Universités - Université de Rouen
Normandie Directeur de thèse

MME MAGALI BARDET Maître de Conférences HDR - Université de Rouen
Normandie Co-directeur de thèse

Thèse dirigée par AYOUB OTMANI (LABORATOIRE D'INFORMATIQUE DE TRAITEMENT DE
L'INFORMATION ET DES SYSTEMES) et MAGALI BARDET (LABORATOIRE D'INFORMATIQUE DE
TRAITEMENT DE L'INFORMATION ET DES SYSTEMES)

Acknowledgements -
Remerciements

Ce manuscrit est l’aboutissement de plusieurs années de travail, autant académi-
que que sur moi-même. Il est évident qu’une grande partie de cette thèse a été
difficile pour moi, comme elle l’est pour beaucoup. J’ai refusé d’abandonner, et
ce doctorat m’a finalement permis de me connaître mieux, de me comprendre
et surtout, de trouver ma voie.

Les premières personnes que je voudrais remercier sont Magali Bardet et
Ayoub Otmani, qui m’ont encadrée et dirigée pendant toute cette thèse. Merci
d’avoir continué à croire en moi quand j’avais moi-même du mal à le faire,
d’avoir été si compréhensifs et d’avoir partagé tant de conseils.

Je tiens aussi à remercier Nicolas Forcadel et Alin Bostan pour avoir accepté
de faire partie de mon Comité de Suivi de thèse. Vos conseils et remarques ont
toujours été justes et m’ont permis de finir cette thèse dans de bonnes conditions.

Je souhaite vivement remercier Philippe Gaborit et Jean-Pierre Tillich pour
avoir accepté d’être rapporteurs de ce manuscrit. Merci à Delphine Boucher,
Olivier Blazy et Alain Couvreur pour avoir accepté de faire partie du jury pour
ma soutenance.

J’ai eu l’occasion de mesurer l’importance des rencontres pendant ces quelques
années, et ainsi je souhaite remercier les personnes que j’ai pu croiser, que ce
soit aux journées Codes et Cryptographie, aux Journées Nationales de Calcul
Formel et plus régulièrement au groupe de travail sur la cryptographie post-
quantique basée sur les codes correcteurs d’erreurs. Je mesure la chance d’avoir
assisté à tous ces évènements et d’y avoir tant appris.

i

ii

Cette thèse s’est effectué au sein du LITIS, au croisement de l’Université
de Rouen Normandie et de l’INSA de Rouen Normandie. Je voudrais donc
commencer par remercier tous mes collègues du département d’Informatique.
Merci particulièrement à Cécile, tu m’as énormément aidée grâce aux quelques
pauses repas qui se sont transformées en longues discussions. Merci à Pascal,
Bruno, Valentin et Yannick pour nos fameux "groupes de travail" du midi. On
retiendra que définitivement, Race for The Galaxy n’est pas mon jeu ! Merci à
Bruno pour ta réactivité dès que j’ai pu avoir des problèmes informatiques.

Je souhaiterais associer à ces remerciements les membres du département
ASI de l’INSA. Après avoir été votre élève pendant quelques années, j’ai apprécié
vous découvrir en tant que collègues. Merci à Cecilia, pour ta gentillesse et
ton soutien notamment à l’école doctorale. Merci à Laurent, tu as marqué mes
années à l’INSA et tu m’as accompagné jusqu’à mes concours cette année. Merci
à Nicolas et Nicolas, Gilles, Nathalie, Clément et Samia pour leur aide.

Je remercie tout autant les collègues doctorants avec qui j’ai pu partager
toutes mes années de thèses, et qui sont devenus mes amis. Merci à Amazigh,
pour ton humour qui n’a jamais manqué d’animer le bureau, et pour ta profonde
gentillesse. Merci à Clément, pour avoir tout autant contribué à l’animation de
la salle, pour ton stock de nourriture et pour le carillon (quand il ne sonne pas
trop). Merci à Etienne, pour avoir doublé le nombre de doctorant en cryptogra-
phie dans l’équipe et pour nos discussions autant académiques que personnelles.
Merci à Pierre, pour m’avoir aidé à survivre au confinement, et pour le soutien
que tu m’as offert pendant ces années. Merci à Marc, Younes, Samira, Safaa,
Gabriel, Diane, Edwin, Elodie et Alexandre pour avoir été des compagnons de
travail et, surtout, de pauses.

Toutes les démarches administratives et les préparations de missions n’auraient
pas pu se faire sans l’aide des gestionnaires, secrétaires et assistant(e)s de direc-
tion. Marion, Fabienne, Solène, Brigitte, merci pour votre gentillesse et votre
aide précieuse. Mathieu, merci pour ta bonne humeur et pour les innombrables
longues discussions que j’ai adoré avoir avec toi.

Il y a quelques personnes sans qui cette thèse se serait finie en plein milieu et
qui ont contribué à me faire reprendre pied. Je voudrais remercier le personnel
du CMP de Rouen, avec une pensée toute particulière pour l’infirmière qui m’a
suivie.

iii

Je voudrais continuer ces remerciements par les personnes de ma vie qui
n’étaient pas directement liées à ma thèse, mais ont contribué, à leur façon, à
ce que ce manuscrit existe.

Merci aux membres de la chorale de l’INSA, pour m’avoir permis de relâcher
la pression régulièrement, de m’impliquer dans les concerts et d’avoir partagé
de très chouettes moments entre musiciens. Merci aux anciens du Quartier des
Geeks à qui j’ai la chance de parler encore de temps en temps, j’ai beaucoup
appris grâce aux projets que l’on a monté ensemble. Merci aux Archers Blancs
de Pavilly, la thèse m’a empêchée d’être aussi présente que je l’aurais voulu
mais votre soutien a beaucoup compté. Merci aux membres de la Bibliotèque
Virtuelle et aux Alchimistes, certaines de mes séances de travail n’auraient pas
été aussi productives sans vous. Merci aux collègues des établissements où j’ai
enseigné depuis l’année dernière, particulièrement à Mélissa, Caroline, Sarah et
Janine, merci pour votre bonne humeur et vos encouragements.

Robin, merci d’avoir été l’autre "vieux" de l’AMIR. Matthieu, merci d’être
le meilleur public de mes blagues. À tous les deux, merci pour votre soutien,
nos soirées et les nombreuses discussions sur nos expériences de doctorat.

Shubiao, thank you for being such a precious friend. Miao, Elodie, Thibault,
Thomas, merci d’avoir pris de mes nouvelles si souvent et d’être d’immuables
soutiens. Pline, Jean-Marc, Raphaël, merci de nourrir mon goût des jeux de
société mais surtout, surtout, merci d’être si présents, au quotidien. Nayeem,
merci d’avoir accompagné les derniers jours d’écriture de cette thèse.

Je ne pourrais finir ces remerciements sans citer ma famille, sans qui je
ne serais évidemment pas là. Que ce soit mes grands-parents, oncles, tantes,
cousin(e)s ou mon petit frère, vous avez tous contribué, à votre façon, à ce
que j’arrive à finir ce doctorat. Maman, Papa, merci de m’avoir transmis
votre amour de la culture et de la science et l’importance de ne jamais cesser
d’apprendre. Je n’aurais jamais eu le courage de commencer, ni de finir cette
thèse sans votre soutien.

iv

Contents

Introduction 1

Contributions 3

Notation 5

I Solving Polynomial Systems 7

1 Polynomial Systems Solving 9
1.1 Introduction . 10
1.2 Polynomial Systems . 11
1.3 Solving Polynomial Systems . 13
1.4 Complexity Tools . 17
1.5 Regular and Semi-regular Sequences 20

2 Bilinear Systems 23
2.1 Introduction . 24
2.2 Bilinear Systems . 25
2.3 Solving Bilinear Systems . 27
2.4 MinRank Instances . 30

3 Solving Superdetermined MinRank Instances 33
3.1 Introduction . 34
3.2 Superdetermined MinRank Instances 35
3.3 Changing Variables Using Minors 40

v

vi CONTENTS

II Attacking Cryptosystems 53

4 Code-Based Cryptography 55

4.1 Introduction . 56

4.2 Coding Theory . 57

4.3 Code-Based Cryptography . 66

5 Presentation of DAGS cryptosystem 69

5.1 Introduction . 70

5.2 Presentation of the DAGS cryptosystem 71

5.3 First attack on DAGS . 74

6 A MinRank Attack on DAGS 85

6.1 Introduction . 86

6.2 Modifying the Modeling . 87

6.3 Changing the Variables of DAGS Attack System by Minors . . . 98

6.4 Experimental Results . 100

6.5 Attacking New Parameters . 106

Conclusion 113

Bibliography 114

A Products and Vectorization 121

A.1 Different Products in this Thesis 121

A.2 Properties of the Products . 122

A.3 Vectorization: Definitions and Properties 124

B Canceling More Than the Homogeneous Part 127

B.1 Canceling More than the Homogeneous Part - Theory 127

B.2 Canceling More Than the Homogeneous Part of the DAGS System132

Introduction

Cryptography has been a tool used during all eras, mostly to protect war secrets.
This explains that one of the most, if not the most, famous cryptosystem is
called after the emperor of Antique Roma Caesar. Encryption of messages
continually improved since then, and it has been of utmost importance since
the democratization of computers and of the Internet. Indeed, cryptography
allows messages to be transmitted between a selected number of persons while
remaining secret to everyone else. This is particularly useful to communicate
safely through the Internet, or to pay with a debit card and a code.

As cryptography became a well-researched field, a need for standards arose.
In the 1970s, multiple algorithms were considered, and RSA was picked against
others such as McEliece. The advantage of RSA over McEliece is that it has
shorter cryptographic keys that allowed to reduce the storage needed and to
make the computations faster. McEliece is a code-based cryptosystem, and its
security relies on the problem of decoding a linear code. As it was not chosen
at that time, it was not as studied as RSA, but it came back into research when
the threat of quantum computers took form. Indeed, the security of RSA does
not hold again such a computer, when McEliece is, for now, still considered as
a hard problem for all computers.

In 2017, the National Institute of Standards and Technology started a Call
for Submissions to find the next potential algorithms that are resistant to quan-
tum computers. By the end of the year, more than 60 cryptosystems were
kept for round 1 of analysis, using different methods to do encryption and/or
signature. After multiple rounds of selection, a first list of algorithms to be
standardized was picked, while some other ones were chosen to be evaluated
for longer. Among the algorithms of the first round was the DAGS candidate.
Based on quasi-dyadic General Srivastava codes, it was unfortunately attacked
during the first round and did not make it to the next one. The attack is
described in the second part of this thesis, as well as improvements we made
later.

Concurrently to the NIST Call for Submissions, some publications analyzed
the solving of the systems built from the MinRank problem.

This solving was applied to Hamming metric as well as rank metric, improved
in multiple articles. For example, the SupportMinors modeling was brought by
those improvements, that also allowed a better understanding of the solving if
attack on DAGS that we will present here.

1

2 CONTENTS

Organisation of this thesis. This thesis is split in two parts, each treating
a different domain, while still being related, as we use the content of one part
to help with the other.

The first part goes over polynomial systems and their solving. We start by
giving some definitions that create the basis to polynomial systems studying.
Once the basics are covered, we detail how Gröbner bases are a very important
tool to solve such systems. We then focus on a particular subfamily of poly-
nomial systems, which are bilinear systems. We list multiples types of bilinear
systems, how they were studied and some results on their complexity. Finally,
we consider some recent results around bilinear systems that are expressed as
a MinRank problem instance. This highlighted that the mechanism mainly in-
volves one set of variables among the two of the system, and we noticed that
we could use that to improve an algebraic attack we already worked on against
the DAGS cryptosystem. This leads to the second part of this thesis.

The domain of the second part is cryptography. Indeed, we begin by talking
about the basics of code-based cryptography, which is the foundation of this
thesis. We define the codes and other notions that are really important after.
We remind the context of the Call for Submissions from the NIST, and introduce
the DAGS cryptosystem. At the same time, we describe the first attack that
was published against it. The last two chapters are explaining improvements
we were able to do on the attack to make it faster. We separated them in two
categories : one for the changes made on inputs, like varying the number of
rows of one of the matrix; and one for the changes that were more around the
Gröbner basis computations.

Contributions

Solving bilinear matricial algebraic systems One of the main contribu-
tions of this thesis is the extension of [57, 3] works on matricial algebraic systems.
We use the approach of multiplying the original bilinear system by vectors of
minors of the jacobian of the matrix, that we can easily compute in advance.
Considering the fact that those vectors of minors are elements of the kernel of
the jacobian, the product induces a degree fall, and we obtain polynomials of
lower degrees. In the system newly created, we consider the minors as our
variables and explain how it reduces the size of the matrices we encounter in
our computations, and thus the length of said computations. This process can
be done for multiple degrees, and we are able to determine if the solving of the
system is possible for a given set of degrees. It is described in Chapter 3.

Modelisations equivalence This analysis of the solving of bilinear matricial
systems leads to another contribution. The process we just described is linked to
the SupportMinor approach presented in [12]. As explained in [9], the Support-
Minor modeling exists in multiple versions and this way of considering minors
as variables is equivalent to one of these versions. We actually present all the
different modeling and how they can be related to one another in Subsection
3.3.3

Attack improvement against DAGS This thesis also presents in Chapter 6
the way we improved the attack on the NIST candidate DAGS that was initially
made by [16]. An algebraic system is built from the elements of the cryptosys-
tem, and the private parts are recovered through the solving of this system.
In order to make computations easier, the number of variables is reduced by
shortening codes that are used to build the system. We remark that the ra-
tio between the number of equations and the number of variables is actually
more important than the reduction of the number of variables to its minimum.
Then, starting with the work in [10] and progressing into a SupportMinor-like
approach, we manage to attack all the initial sets of parameters. Concurrently,
we were able to reduce the computations time so that every sets of parameters
can be broken in less than a second.

3

4 CONTENTS

Hybrid attack on DAGS updated parameters Following the attack,
DAGS authors updated the parameters so that they would be secure against it.
We present in Chapter 6 of this manuscript a hybrid method that allows us to
attack one of these updated sets of parameters. Such a hybrid method relies on
exhaustive search to go through all possible values for a subset of the variables
and then, for every value tested, we try to solve the algebraic system. For some
sets of parameters, we are able to estimate a complexity that is much lower than
the claimed security. For others, we remark that the update makes this attack
impossible.

Notation

A Matrix A (Bold uppercase letter).

A[I,J] Submatrix of A where we picked only the rows whose indices are in I
and the columns whose indices are in J .

a Vector a (Bold lowercase letter). We chose to have row vector by default.

aT Transpose of the vector a. Column vector.

eni Canonical vector of size n with a 1 as its i-th coefficient.

⊗ Kronecker product (Definition in appendix A).

||e|| Hamming weight of the vector e.

5

6 CONTENTS

Part I

Solving Polynomial Systems

7

Chapter 1

Polynomial Systems Solving

Contents
1.1 Introduction . 10
1.2 Polynomial Systems 11

1.2.1 Definitions . 11
1.2.2 Ideals and Varieties 12

1.3 Solving Polynomial Systems 13
1.3.1 Monomial orders . 14
1.3.2 Gröbner Bases . 16

1.4 Complexity Tools 17
1.4.1 Definitions . 17
1.4.2 Hilbert functions and series 18
1.4.3 Complexity computations 19

1.5 Regular and Semi-regular Sequences 20
1.5.1 Regular Sequences 20
1.5.2 Semi-regular Sequences 21

9

10 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

1.1 Introduction
This thesis is at the confluence of polynomial systems solving and cryptography,
and this chapter introduces the former.

Polynomial systems solving is a classical problem in mathematics, where we
aim to solve a set of equations with one or more unknowns. Solving means, in
the general case, that we find all the possible solutions i.e. the possible values
that the unknowns can take to satisfy the equations. The number of solutions
may vary depending on the space in which the values of the unknowns are and
the constraints given on them. Such systems are used to model mathematical
and physical problems in numerous domains, and that is why finding ways to
solve them efficiently is important.

One of these domains is a big part of this thesis : cryptography. In this are of
study, we create a polynomial system from the public parts of a cryptographic
scheme. We then have polynomials where coefficients corresponds to public
parts and unknowns to secret parts that we want to find. Solving a system
means getting values for those unknowns and thus obtaining informations on
parts that are not supposed to be found. We call this an algebraic attack.
Sometimes it can even result on the knowledge of the whole secret, which is the
ideal result of the attack.

We will develop about algebraic attacks later on, but first we need to define
basic concepts around polynomials, polynomial systems and their solving.

Outline of the chapter
In this chapter, we begin by giving definitions about monomials, polynomials
and polynomial systems in section 1.2, including those of ideals and varieties
that are essential for the whole thesis. This first section allows us to tackle the
solving of those polynomial systems in section 1.3, particularly with Gröbner
bases as detailed in subsection 1.3.2 and their complexity in section 1.4. Finally,
we finish this chapter with the definitions and properties of regular and semi-
regular sequences in 1.5.

1.2. POLYNOMIAL SYSTEMS 11

1.2 Polynomial Systems
In this very first section we introduce definitions about polynomials and systems
of polynomials, as well as ideals and varieties. All those elements are essential
as they are used throughout this thesis.

The definitions and propositions presented here correspond to those from
[25] and [24], unless otherwise specified.

1.2.1 Definitions
We consider x1, . . . , xn some variables.

Definition 1.1. A monomial in variables x1, . . . , xn is a product of the form :

xα1
1 xα2

2 · · ·xαnn
where each degree αi of a variable xi is a non-negative integer. The sum α1 +
α2 + · · · + αn is the total degree of a monomial, that we sometimes abbreviate
as xα with α the list of the degrees αi.

Definition 1.2. Let K be a field. A polynomial is a finite linear combinations
of monomials with coefficients in K. We can write a polynomial in x1, . . . , xn
as :

f =
∑
α

cαx
α

where cα are coefficients in Kn. For a given α, we will refer to cαxα as a term.

We denote by K [x1, . . . , xn] the ring of all the polynomials in x1, . . . , xn with
coefficients in K.

When studying cryptosystems, as we will do later on, we rarely encounter
a polynomial by itself. Most of the time, we see them as a set of polynomials
that we aim to solve and that we call polynomial system.

Definition 1.3. Let f1, . . . , fm a set of polynomials in K [x1, . . . , xn]. A poly-
nomial system is the collection of those polynomials.

Another way of writing this is:
f1 (x1, . . . , xn)
f2 (x1, . . . , xn)

...
fm (x1, . . . , xn)

We will sometimes write such a polynomial system as F .

Our goal being to solve a polynomial system, we will search for the potential
values of x1, . . . , xn to obtain the results F = 0.

Depending on their properties, we can give a name to some specific sys-
tems. We present here some systems whose names come from the degrees of the
polynomials in their equations and we will highlight why we are interested in
them.

12 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

Definition 1.4. A polynomial system is said to be linear when the maximum
degree of a monomial in each equation is 1. Therefore, we can write a linear
system as:

AxT − b

where A is the matrix of the coefficients, x is the vector containing the variables
and b is the vector containing the constant parts.

Considering that it is always possible to solve linear systems in a polynomial
time, they are often easier to solve than other systems: we will give details in
section 1.3.

Definition 1.5. A polynomial is said to be quadratic when the maximum degree
among its monomials is 2. We can write a quadratic polynomial as:

xAxT + bx− c

where A and b are respectively a matrix and a vector of coefficients, x is the
vector containing the variables, and c is a constant.

In this thesis we will be particularly interested in a subfamily of quadratic
systems: bilinear systems. The maximal degree of a bilinear system is also 2,
but the system is using two sets of variables and is linear in each one of these
sets. We will not give more details about these systems here, as we will discuss
them in depth in chapter 2.

Another property that will be discussed in this thesis is the homogeneity of
a system. Therefore, we introduce the notion of homogeneous systems :

Definition 1.6. A polynomial is said to be homogeneous if all its monomials
with nonzero coefficients have the same total degree. We can extend this defi-
nition to polynomial systems : they are said to be homogeneous when all their
polynomials are homogeneous.

Homogeneous systems are important because they are used as references for
computing the complexity of algorithms made for solving systems. Unfortu-
nately, we encounter many systems that are not homogeneous, named affine
systems. When dealing with such systems, we divide them into two parts : the
homogeneous part of highest degree and the affine part which is of lower de-
gree. We focus the analysis on the homogeneous part of highest degree as we
can predict the behavior of the algorithms and then examine the effects on the
affine part. Again, these will be discussed further in section 1.3 and chapter 2.

1.2.2 Ideals and Varieties
Now that we tackled the basics about polynomial systems that are going to
be useful for this thesis, we also need to define the particular subsets of rings
named ideals. To do so, we have to introduce polynomial combinations first.

1.3. SOLVING POLYNOMIAL SYSTEMS 13

Definition 1.7. Let f1, . . . , fm polynomials from K [x1, . . . , xn]. We denote by
〈f1, . . . , fn〉 the polynomial combination:

〈f1, . . . , fm〉 =
{

m∑
i=1

pifi : pi ∈ K [x1, . . . , xn] for i = 1, . . . ,m
}

Definition 1.8. Let I ⊂ K [x1, . . . , xn] a non-empty subset. I is said to be an
ideal if

• ∀f ∈ I, ∀g ∈ I, f + g ∈ I

• ∀f ∈ I, ∀p ∈ K [x1, . . . , xn] , pf ∈ I

From Definitions 1.7 and 1.8, we can deduce that 〈f1, . . . , fm〉 is an ideal
generated by f1, . . . , fm. We say that we have an homogeneous ideal when
there exists a system of homogeneous generators for this ideal. Moreover, if an
ideal has a finite number of solutions, its degree corresponds to this number of
solutions, taking into account the potentiel multiplicities.

Lastly, we need to define an object corresponding to the set of solutions of
the system we want to solve.

Definition 1.9. Let K be a field and f1, . . . , fm be polynomials in K [x1, . . . , xn].
We define the variety V (f1, . . . , fm) as:

V (f1, . . . , fm) = {(a1, . . . , an) ∈ Kn : fi (a1, . . . , an) = 0, ∀i ∈ [1, . . . ,m]}

In other words, it corresponds to the set of all solutions in K of the system:
f1 (x1, . . . , xn) = 0
f2 (x1, . . . , xn) = 0

...

fm (x1, . . . , xn) = 0

The set K can be either an infinite field or, as we will see mainly in this
thesis, a finite field. However, using this definition in an infinite field such as
R or C is hard, contrary to applying it on a finite field. Indeed, working on
a finite field implies that we have algebraic constraints that are easier to deal
with. When searching for a variety in a finite field Fq, we can add multiple field
equations of the form xqi − xi = 0. This assures us that the computation will
give a set a solutions of the polynomial system in the right space.

1.3 Solving Polynomial Systems
Polynomial systems are meant to be solved, that is to say we want to find values
of the variables x1, . . . , xn such that all the equations are true at the same time.
Depending on the properties of the systems, the meaning of solving may differ.

14 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

In the case of a positive dimensional system, i.e. a system with an infinite
number of solutions, it is impossible to enumerate each one of them. Thus we
aim for a general formula or property applicable to all of them. In the case
of a zero-dimensional system, i.e. a system with a finite number of solutions,
solving means finding all those solutions. This is actually the case of most of
the systems that we will study in this thesis. Moreover, in cryptography, we do
not necessarily want to find all the solutions, but to recover a sufficient amount
of information about secret parts of a scheme. Finding one solution among the
set is sometimes enough to get relevant information.

The difficulty of finding a solution depends on the degrees of the polynomials,
the number of variables and the number of polynomials. In some cases, such
as those we encounter in cryptography, some structure may be added to the
system, impacting its difficulty. Generically, a system with more variables than
equations is said to be underdetermined, and a system with more equations than
variables is said to be overdetermined. If the number of equations surpasses
greatly the number of variables we sometimes use the word superdetermined.
In this section, we will tackle the solving of generic polynomial systems. Some
special cases will be discussed later in chapter 2.

1.3.1 Monomial orders
The division for polynomials in one variable is known. A legitimate question is:
does a similar notion exist for multivariate polynomials? It actually exists, and
to introduce it, we will first define what is a monomial order and present some
orders that will be useful later on.

Definition 1.10. A monomial order on K [x1, . . . , xn] is any relation > on
the set of monomials of the form xα in K [x1, . . . , xn] that has the following
properties :

• > is a total ordering relation: any two distinct elements can be comparable,
and this relation is transitive.

• > is compatible with multiplication in K [x1, . . . , xn] : for xα, xβ and xγ
monomials in K [x1, . . . , xn], if xα > xβ then xαxγ > xβxγ .

• > is a well-ordering: ∀xα ∈ K [x1, . . . , xn] , xα > 1.

Example 1.11. There exists only one monomial order for univariate monomi-
als. It depends solely on the degree of the monomials:

· · · > xn+1 > xn > · · · > x3 > x2 > x > 1

When we consider multivariate monomials, there are much more possibilities
for monomial orders. First, when writing them as xα = xα1

1 xα2
2 · · ·xαnn , we

implicitly set up the following order :

x1 > x2 > · · · > xn

1.3. SOLVING POLYNOMIAL SYSTEMS 15

But even then, there are a lot of possibilities for ordering multivariate mono-
mials. We present here two monomial orders that we will use regularly in this
thesis. To do so, let α = (α1, . . . , αn) and β = (β1, . . . , βn) be two sequences of
degrees.

Definition 1.12. The lexicographic order (lex) is similar to the way words are
ordered in a dictionary:

xα >lex x
β if ∃i such that

{
αj = βj for j < i

αi > βi

This order is the most intuitive one, and it is the best to use for solving a
system. Indeed, the variables are separated into distinct groups, which makes
linear algebra computations easier by allowing to eliminate one variable after
one variable. Let us see an example of the application of this order on 3-variables
monomials to illustrate it better:

Example 1.13. For the variables x1 >lex x2 >lex x3, the lexicographic ordering
of the monomials of degree up to 3 is x3

1 > x2
1x2 > x2

1x3 > x2
1 > x1x

2
2 >

x1x2x3 > x1x2 > x1x
2
3 > x1x3 > x1 > x3

2 > x2
2x3 > x2

2 > x2x
2
3 > x2x3 > x2 >

x3
3 > x2

3 > x3 > 1.

Definition 1.14. The graded reverse lexicographic order (grevlex) is the order
such that:

xα >grevlex x
β if

α1 + · · ·+ αn > β1 + · · ·+ βn

or
α1 + · · ·+ αn = β1 + · · ·+ βn

and

{
αj = βj pour j > i

αi < βi

This grevlex order will particularly interests us because it is the easiest to
work with when computing Gröbner bases as we will see in subsection 1.3.2. As
we did with lex order, we provide an example of the application of the grevlex
order on 3-variables monomials:

Example 1.15. For the variables x1 >grevlex x2 >grevlex x3, the graded reverse
lexicographic ordering of the monomials of degree up to 3 is x3

1 > x2
1x2 > x1x

2
2 >

x3
2 > x2

1x3 > x1x2x3 > x2
2x3 > x1x

2
3 > x2x

2
3 > x3

3 > x2
1 > x1x2 > x2

2 > x1x3 >
x2x3 > x2

3 > x1 > x2 > x3 > 1

The two orders we presented here are used for different purposes. It may
seems overcomplicated to make an ordering change when dealing with a different
step of the solving of the system.

Actually, there exists an algorithm called FGLM [32], that allows this change
to be done for ideals with a finite number of solutions. Its complexity is well-
estimated: it is similar to a linear algebra computation. With n variables, I an

16 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

ideal and D = deg (I) its degree, the FGLM algorithm complexity is bounded
by O

(
nD3). Using the optimized order for each step and using the FGLM

algorithm in between makes for a lower complexity than using only one order
for the full solving process.

Now that we defined some orders, we can decide on a way to write poly-
nomials. In the following, we will consider polynomials as sum of monomials,
ordered from the highest to the lowest according to the order chosen. This leads
to the following definitions:

Definition 1.16. Let us consider f =
∑
α
cαx

α a polynomial and > an ordering.

The leading term is the product cαxα where xα is the highest monomial in f
according to the ordering > for which cα 6= 0. Then, we call cα the leading coef-
ficient and xα the leading monomial. We will denote them respectively LT> (f),
LC> (f) and LM> (f).

When the order that we use is clear or if any order can be used, we will not
specify it. We can now introduce the method we will use to solve polynomial
systems.

1.3.2 Gröbner Bases
The principal method to solve polynomial systems we will discuss in this thesis
is using Gröbner Bases. In order to define such bases, we need first to extend
the definition of univariate polynomials division to multivariate polynomials:

Definition 1.17 (Multivariate Polynomial Division). Let F = (f1, . . . , fm) be
an ordered tuple of polynomials in K [x1, . . . , xn]. Given a monomial order >,
we can write every f ∈ K [x1, . . . , xn] in the form of :

f = a1f1 + · · ·+ amfm + r

where ai, r ∈ K [x1, . . . , xn] such that either r = 0 or r is a linear combination
of monomials. r is called a remainder of f on division by F , and its com-
putation is called a reduction. We can also write r as fF . If r is a linear
combination of monomials that are not divisible by any of the leading terms
LT> (f1) , . . . ,LT> (fm), then this is a total reduction.

This definition allows us to divide a polynomial f bym polynomials f1, . . . , fm
that we will consider generators of some ideal I. Also, we can have different ai
and r depending on the monomial order > and the order of the polynomials fi.

We now have all the tools needed to define Gröbner Bases:

Definition 1.18. Let > be a monomial order on K [x1, . . . , xn] and I ⊂ K [x1, . . . , xn]
be an ideal. A Gröbner basis for I with respect to > is a finite collection
G = {g1, . . . , gt} ⊂ I such that, for every nonzero f ∈ I, LT> (f) is divisi-
ble by LT> (gi) for some i. The Gröbner basis G is a basis of I.

1.4. COMPLEXITY TOOLS 17

An important thing with reducing with Gröbner basis is that given an order
>, the remainder will always be the same, independently of the order of the gi.

There exists multiple algorithms to compute Gröbner bases. The historical
one is the Buchberger algorithm [22], which go through every possible couple of
polynomials of an ideal to find new elements of the basis. However, other algo-
rithms emerged with another way of doing the computations. Indeed, Lazard
[45] showed that it is possible to compute Gröbner bases by applying linear
algebra to the Macaulay matrix. More recently were introduced the algorithms
F4 in [29] and F5 in [30] that are based on the Buchberger mechanisms but rely
on linear algebra on the Macaulay matrix.

The complexity of computing a Gröbner basis is a very important point that
we will address later on.

1.4 Complexity Tools
It is one thing to know a method, it is another to actually be able to apply it.
Obstacles to do so can be that the computations take too long or use too much
memory on a computer. To avoid these kinds of situation and be able to find an
actual solution to a system, we can study the complexity of the solving. Here
we will present tools that help to do this.

1.4.1 Definitions
We begin by introducing a notation that will allow us to refer to all polynomials
of degree ≤ s or exactly s.

Definition 1.19. Let s be an integer, and I be an ideal over K [x1, . . . , xn]. We
denote all the polynomials of degree ≤ s of K [x1, . . . , xn] as:

K [x1, . . . , xn]≤s

We can apply that to an ideal:

I≤s = I ∩K [x1, . . . , xn]≤s

We obtain I≤s, which is a vector subspace of K [x1, . . . , xn]≤s.
We can use a similar definition to restrict our space to polynomials of degree

exactly s and for I an homogeneous ideal. Then, we denote K [x1, . . . , xn]s
the polynomials of K [x1, . . . , xn] of degree s and Is = I ∩ K [x1, . . . , xn]s the
polynomials of degree s in I.

Associated with this separation of polynomials by degree, we have the Macaulay
matrix, which is a matricial representation of the system. It was introduced by
Macaulay in [46].

Definition 1.20. The Macaulay matrix of degree d of a system of polynomi-
als (f1, . . . , fm), homogeneous in the variables (x1, . . . , xn), is the matrix that

18 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

describes every polynomials of the form u · fi with u a monomial, such that
deg (u · fi) = d, in function of monomials of degree d. More precisely, it is a
matrix where each column is indexed by monomials of degree d and each row is
indexed by the products u · fi. Each element of the matrix corresponds to the
coefficient of the monomial of the column in the polynomial product of the row.

Let us see an example of a Macaulay matrix:

Example 1.21. Let f1 = x3
1+x1x2x3, f2 = x2

1−x1x3+x2x3 and f3 = x1x
2
2−x3

3
be three homogeneous polynomials in variables (x1, x2, x3). We want to write
the corresponding Macaulay matrix of degree 3. The polynomials f1 and f3 are
already of degree 3, so we use them directly. However, the polynomial f2 is only
of degree 2, so we will have to consider all products u · f2 such that u takes
the value of all possible monomials of degree 3 − 2 = 1. It gives us three new
polynomials that will be new rows of the matrix:

x1 · f2 = x3
1 − x2

1x3 + x1x2x3

x2 · f2 = x2
1x2 − x1x2x3 + x2

2x3

x3 · f2 = x2
1x3 − x1x

2
3 + x2x

2
3

Finally, we get the following Macaulay matrix:

x3
1 x2

1x2 x1x
2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3
f1 1 0 0 0 0 1 0 0 0 0
x1 · f2 1 0 0 0 −1 1 0 0 0 0
x2 · f2 0 1 0 0 0 −1 1 0 0 0
x3 · f2 0 0 0 0 1 0 0 −1 1 0
f3 0 0 1 0 0 0 0 0 0 −1

1.4.2 Hilbert functions and series
Thanks to the tools previously defined, we can now introduce Hilbert functions
[39, 40].

Definition 1.22. Let I be an ideal in K [x1, . . . , xn], and s ∈ N. For homoge-
neous systems, the Hilbert function is the function defined by:

HFI (s) = dim (K [x1, . . . , xn]s /Is)
= dim (K [x1, . . . , xn]s)− dim (Is)

Property 1.23. [39, 24] Let I be an ideal, and z a formal variable. The Hilbert
series is the formal series which coefficients are given by the Hilbert function:

HS (z) =
∑
s≥0

HFI (s) zs

It corresponds to the following rational fraction:

P (z)
(1− z)d

1.4. COMPLEXITY TOOLS 19

with P (1) 6= 0. Thus d is the dimension of I and P(1) the degree of the variety
defined by I.

Because they illustrate a relation between the dimension of the ideal and the
degree of the variety, Hilbert series are a useful tool to compute the complexity
of solving a given system.

Hilbert series are only relevant for homogeneous systems, that is why we
chose here to not define them for affine systems. However, for homogeneous
systems of dimension zero, that is to say with a finite number of solutions, there
is a unique solution which is 0. When dealing with affine systems, we use the
Hilbert series of the homogeneous part of highest degree as an indication for the
complete system complexity in the generic case.

1.4.3 Complexity computations
The goal here when computing Hilbert series is to get a complexity formula for
applying an echelon form to a Macaulay matrix. This would allow us to also
have a formula for the computation of the associated Gröbner basis, as their
link was highlighted in [45].

We consider a system of polynomials (f1, . . . , fm) in the variables x1, . . . , xn.
For all i ∈ {1, . . . ,m}, we denote di the degree of the polynomial fi. Let
K [x1, . . . , xn]d be the ring of homogeneous polynomials of degree d, and Id
the intersection K [x1, . . . , xn]d ∩ I, which represents the homogeneous ideal of
degree d.

Definition 1.24. The complexity of getting the echelon form of a matrix of size
Rd × Cd of rank rankd can be bounded [43, 1] by

O
(
Cd ×Rd × rankω−2

d

)
with ω the constant that express the complexity of the linear algebra used in this
computation. The current best bound for ω is 2.37286 as stated in [2].

To get a formula with elements that are known, we compute all the following
elements:

• the number of columns Cd: as we want to apply the formula of complexity
on a Macaulay matrix, it corresponds to the number of monomials of
degree d in the variables x1, . . . , xn. This is given by the following binomial
coefficient:

Cd =
(
n+ d− 1

d

)
• the number of rows Rd: for a Macaulay matrix, it corresponds to the
number of monomials of degree d− di for each polynomial fi. This gives
us the following sum:

Rd =
m∑
i=0

(
n+ d− di − 1

d− di

)

20 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

• the rank: the rank of the Macaulay matrix can be computed from the
formula of the Hilbert series. Indeed, from the Hilbert series, we have:

HF (d) = dim (K [x1, . . . , xn]d /Id)
= dim (K [x1, . . . , xn]d)− dim (Id)
= dim (K [x1, . . . , xn]d)− rankd

As the dimension of K [x1, . . . , xn]d corresponds to the number of mono-
mials of degree d, we have:

rankd =
(
n+ d− 1

d

)
−HF (d)

Now that we have all the elements that were not explicit, we obtain the final
formula for all the Macaulay matrices up to a degree D, with F a constant that
depends only on the matrix.

D∑
d=0

((
n+ d− 1

d

)
×

m∑
i=0

(
n+ d− di − 1

d− di

)
×
((

n+ d− 1
d

)
−HF (d)

)ω−2
× F

)

We can give an upper bound to this formula, that we can find in [14]:

O

(
mD

(
n+D

D

)ω)

1.5 Regular and Semi-regular Sequences
In this section we introduce regular and semi-regular sequences, their respective
properties and their associated Hilbert series.

1.5.1 Regular Sequences
Regular sequences were introduced by Macaulay [46, 47]. Their behavior can be
predictable and corresponds to the average behavior of polynomial sequences.
We remind that K a field and K [x1, . . . , xn] the polynomial ring with n variables
with coefficients in K.

Definition 1.25. A sequence f1, . . . , fm of m homogeneous polynomials in
K [x1, . . . , xn] is said to be regular if the following statements are verified:

• 〈f1, . . . , fm〉 6= K [x1, . . . , xn]

• ∀i ∈ [1;m], if gifi = 0 in K [x1, . . . , xn] /〈f1, . . . , fi−1〉 then gi = 0 in
K [x1, . . . , xn] /〈f1, . . . , fi−1〉

Now that we have introduced the notion, we can give some properties of
these sequences:

1.5. REGULAR AND SEMI-REGULAR SEQUENCES 21

Proposition 1.26. Let f1, . . . , fm be a homogeneous regular sequence, and di
the degree of fi. Then the following properties are verified:

1. the ideal 〈f1, . . . , fm〉 has a dimension n−m

2. the Hilbert series of the polynomial sequences is:∑
d≥0

HFd (n) zd =
m∏
i=1

(
1− zdi

)
(1− z)n

3. any permutation fσ(1), . . . , fσ(m) is also a regular sequence

4. the index of regularity is the Macaulay bound
m∑
i=1

(di − 1) + 1

5. almost every sequence is a regular sequence : the set of sequences of n
variables and degrees d1, . . . , dm that are regular is a Zariski open set.

Proof. The first property appears in [24]. Proof of the second one can be found
in [24] as well as in [8]. Property 3 is proven in [28] and property 4 in [45].
Lastly, the proof of property 5 is in [8].

1.5.2 Semi-regular Sequences
Semi-regular sequences are an extension of regular sequences for the overde-
termined case. Most of the definitions and the properties given here are from
[8], and for all of them we consider the ideals to be homogeneous and zero-
dimensional. Unless otherwise specified, all the proofs can be found in [8] as
well.

We begin by giving a definition of semi-regular sequences, similar to the one
we previously presented for regular sequences:

Definition 1.27. Let f1, . . . , fm ∈ K [x1, . . . , xn] be a homogeneous sequence.
It is said to be semi-regular if the following conditions are verified:

• 〈f1, . . . , fm〉 6= K [x1, . . . , xn]

• ∀i ∈ [1;m], if gifi = 0 in K [x1, . . . , xn] /〈f1, . . . , fi−1〉 and deg (gifi) <
H(I) then gi = 0 in K [x1, . . . , xn] /〈f1, . . . , fi−1〉

Similarly to the regular sequences, we can now give some properties of semi-
regular sequences.

Proposition 1.28. Let f1, . . . , fm be a homogeneous semi-regular sequence, di
the degree of fi and I = 〈f1, . . . , fm〉. Then the following properties are verified:

1. the sequence f1, . . . , fm is semi-regular in K [x1, . . . , xn] if and only if its
Hilbert series is:

HSI(z) =
[
m∏
i=1

(
1− zdi

)
(1− z)n

]

22 CHAPTER 1. POLYNOMIAL SYSTEMS SOLVING

with
m∏
i=1

(
1− zdi

)
(1− z)n

=
∑
d≥0

hd,m(n)zd the generating series of the sequence

f1, . . . , fm. The notation with brackets means that we keep only the terms
of the sequence whose coefficients are strictly positive.

2. any permutation fσ(1), . . . , fσ(m) is also a semi-regular sequence

3. when the variety associated to the ideal is zero-dimensional (i.e. m ≥ n),
the index of regularity H (I) is characterized by:

∀d < H (I) , hd,m(n) > 0 and hH(I)(n) ≤ 0

4. f1, . . . , fm being semi-regular does not imply that for all i ∈ [1;m], the
sequence f1, . . . , fi is semi-regular.

When the sequence of polynomials is in K [x1, . . . , xn], we can determine
equivalence between some of those previous properties:

Proposition 1.29. For a given sequence ofm = n polynomials of K [x1, . . . , xn],
the following properties are equivalent:

• the sequence is regular

• the sequence is semi-regular

• its Hilbert series is
m∏
i=1

(
1− zdi

)
(1− z)n

Chapter 2

Bilinear Systems

Contents
2.1 Introduction . 24
2.2 Bilinear Systems . 25

2.2.1 Homogeneous bilinear systems 25
2.2.2 Affine bilinear systems 27

2.3 Solving Bilinear Systems 27
2.3.1 Definitions around complexity 28
2.3.2 Known Complexities for some Specific Systems . . . 29

2.4 MinRank Instances 30
2.4.1 MinRank problem and system 30
2.4.2 Matricial Bilinear Systems 31

23

24 CHAPTER 2. BILINEAR SYSTEMS

2.1 Introduction
We presented in the previous chapter polynomials as well as polynomial systems,
linear and quadratic. They both have interesting properties, and we will focus
on a family mixing properties of both: bilinear systems. These systems have
a maximum degree of 2, and are linear in each set of variables they are using.
As we quickly mentioned before, there exist homogeneous systems where all
monomials have the same degree d and affine systems where d is the maximum
degree while there is a part of lower degree.

Bilinear systems appear in various scientific domains to model different situ-
ations. We will not detail those possibilities, but focus on the one that interest
us particularly here: cryptography. Indeed, in order to execute an algebraic
cryptographic attack, it happens that the system we build is bilinear. We then
need to study the complexity of solving the obtained system, to know if we are
able to go through all the computations successfully. It occurs sometimes that
the structure of the system is even more particular: while still being bilinear, it
can be written as a multiplication of some matrices.

This chapter discusses about all these possibilities.

Outline of the chapter
In this chapter, we will first define bilinear systems in section 2.2, insisting on
the two possible distribution of degrees: homogeneous in subsection 2.2.1 and
affine in subsection 2.2.2. In section 2.3, we address the solving of such systems
and the complexities of some given systems previously studied. Finally, on the
last section 2.4, we will consider a special case of bilinear systems where those
are expressed as a product of matrices.

2.2. BILINEAR SYSTEMS 25

2.2 Bilinear Systems
Bilinear systems are a subfamily of quadratic systems. Indeed, all monomials
are of degree 2 but we have two separate groups of variables that both have a
maximum degree equal to 1.

We consider F to be a field of characteristic 2 : although the analysis we will
present here can be applied to fields with a different characteristic, we will keep
2 as it allows us to neglect signs in formulas. Moreover, it is consistent with the
systems we will create in the attack of DAGS in part II.

For this section we will use R = F
[
x1, . . . , xnx , y1, . . . , yny

]
a polynomial ring

with two blocks of variables. Thus, the systems we will observe here are systems
of polynomial equations bilinear in x = (x1, . . . , xnx) and y =

(
y1, . . . , yny

)
.

Among those systems, we can have two possibilities : either they are homo-
geneous, and we only have monomials of degree 2 in the polynomials, or they
can be affine, and we can have monomials of lower degrees. Each case will have
its own section, here we begin by homogeneous bilinear systems.

2.2.1 Homogeneous bilinear systems
We begin by detailing the bilinear systems that are homogeneous. They are
important because we are able to predict the generic complexity of solving them
much more easily than for affine systems, and when dealing with affine systems,
we use homogeneous systems as models for complexity. Let us begin by defining
a bilinear equation:

Definition 2.1. Let M be a matrix of size nx × ny with coefficients in F. A
bilinear equation in x and y can be written as the following product:

f : xMyT =
nx∑
`=1

x`M [`,∗]y
T = 0 (2.1)

We rarely deal with one bilinear equation only, but with multiple ones orga-
nized as a bilinear system, that can be defined as:

Definition 2.2. A bilinear system F = (f1, . . . , fm) ∈ R, expressed as a column
vector of m equations, can be written as

F :
nx∑
`=1

x`M `y
T = 0 where M ` =

M

(1)
[`,∗]

M
(2)
[`,∗]
...

M
(m)
[`,∗]

 (2.2)

with each matrix M (i) being associated to the equation fi. The matrices M `

are of size m× ny.

26 CHAPTER 2. BILINEAR SYSTEMS

For the analysis we will do later on, we need two other definitions, the first
one being about syzygies:

Definition 2.3. A syzygy of F = (f1, . . . , fm) ∈ R is a sequence of polynomials
(g1, . . . , gm) ∈ R such that:

m∑
i=1

gifi = 0 (2.3)

Remark 2.4. It is important to distinguish equations where the goal is to find
a solution by finding potential values for unknowns, and polynomial identities to
0 such as in the previous definition where the equality with zero is a constraint
for the sequence of polynomials.

Syzygies are not strictly restricted to bilinear systems and equations, they
can be used with any category of polynomials. We can say the same thing
for the jacobian matrix, although with bilinear systems, these matrices have a
particularity. We present that in the next definition:

Definition 2.5. We can define the jacobian matrix of the system F with respect
to x as

jacx (F) =
(
∂fi
∂xj

)
1≤i≤m
1≤j≤nx

(2.4)

Likewise, we can define jacy (F) the jacobian matrix of F with respect to y.
If F is a bilinear system, the entries of these jacobian matrices are particular.
They are linear polynomials: jacx (F) has entries linear in y and jacy (F) has
entries linear in x.

We can see it with the jacobian matrices for the system given in (2.2):

jacx (F) =
(
M1y

T , . . . ,Mnxy
T
)

(2.5)

jacy (F) =
n∑
l=1

xlM l (2.6)

It is obvious here that each jacobian here has entries that are respectively
linear in y and x. This allows us to give the following lemma:

Lemma 2.6. Considering F a bilinear system, we have :

jacx (F) · xT = FT (2.7)

It implies that finding an element from the left kernel of the jacobian cancels the
homogeneous system, i.e. we find syzygies of F that are dependent on y.

We have seen definitions and properties of homogeneous bilinear systems
and we will now introduce similar notions about affine bilinear systems.

2.3. SOLVING BILINEAR SYSTEMS 27

2.2.2 Affine bilinear systems
Let’s now consider f an affine bilinear polynomial in x and y. With the same
notation as before, we can write it as :

xMyT + xaT + byT + c = (x, 1)
(
M aT

b c

)(
yT

1

)
(2.8)

where a and b are vectors of respective lengths nx and ny, and c is a constant.
It can be divided into 2 parts : the homogeneous part of highest degree

fh = xMyT and the affine part fa = xaT + byT + c. We can notice that
fh, considered alone, is actually a homogeneous bilinear polynomial and all the
definitions and properties presented before can apply to it. We can extend those
definitions to systems, with Fh the homogeneous part of highest degree of the
complete system and Fa the affine part of the system.

During the solving of such systems, we use products by polynomials to create
new ones. Those newly created polynomials have a degree that is at most the
sum of the degree of previous polynomials. If the degree we obtain is lower, we
can say that a degree fall happened.

Definition 2.7. Let F = (f1, f2, . . . , fm) a system of polynomials with an ho-
mogeneous part of degree d, and (g1, g2, . . . , gm) a set of polynomials. If the
polynomial resulting from the sum

m∑
i=1

figi has a degree lower than d, we say

that the computations induced a degree fall.

The computations with the new polynomials are faster if they are of lower
degrees, thus having degree falls helps. For affine bilinear systems, we can induce
a degree fall by extending Lemma 2.6:

Lemma 2.8. For F an affine bilinear system, we can write:

jacx (Fh) · xT + FTa = FTh + FTa (2.9)

Let v be an element from the left kernel of jacx (Fh), thus this element cancels
the homogeneous part of the system. We obtain :

v · FTa = v
(
FTh + FTa

)
= v · FT (2.10)

The new equations obtained with v · FTa belong to the ideal generated by F . By
definition, Fh is of a higher degree than Fa, its cancellation induces a degree
fall.

This theorem is interesting when v is not a syzygy of the affine part, which
is the case in general.

2.3 Solving Bilinear Systems
Now that we have seen what are homogeneous and affine bilinear systems, we
will present how their respective properties are influencing the complexity of

28 CHAPTER 2. BILINEAR SYSTEMS

solving them. We consider [24] as our main reference unless otherwise specified.
We will begin by introducing some useful definitions and explaining some basic
notions about complexity, and then we will give some theoretical formulas for
generic homogeneous and affine bilinear systems.

2.3.1 Definitions around complexity
We use Gröbner basis with respect to the grevlex order, which we already pre-
sented as the best monomial order for this.

Homogeneous Bilinear Systems Let’s now dive into the first category of
systems we want to talk about here: homogeneous bilinear systems. Something
to notice for these systems is that the Macaulay matrices that are computed at
each step of the Gröbner basis computations are indexed by the monomials of
degree exactly d for columns and by the polynomials mfi such that deg (mfi) =
d for the rows. The complexity of homogeneous bilinear systems is easier to
analyse than the one for affine bilinear systems, as we know that the biggest part
of it corresponds to the cost of computing a row echelon form on all the Macaulay
matrices up to degree d, d being the largest polynomial degree encountered. A
tool that we can use to help evaluate complexity of a Gröbner basis computation,
is the degree of regularity of a system.

Definition 2.9. Let F be a homogeneous zero-dimensional system, its degree
of regularity corresponds to:

dreg (F) = min
{
d ∈ Z+|dim (Id) = dim (Rd)

}
with R the polynomial ring F [x].

This degree of regularity has the benefit of depending only on the ideal
generated by the system. It is related to the complexity of solving a system,
making it interesting to study. For some families its value has been precisely
estimated, we will give some examples in the subsection 2.3.2.

Affine Bilinear Systems Let us consider now the case of affine systems,
which is different. First, the Macaulay matrix is indexed by the monomials of
degree ≤ d for columns and by the polynomials mfi such that deg (mfi) ≤ d
for the rows. However, it is not linked to the complexity of solving the system
anymore, due to the presence of partial syzygies, i.e. syzygies of the homoge-
neous parts only that induce degree falls, as explained in lemma 2.8. In order
to estimate the complexity, we need to introduce the notion of first degree fall:

Definition 2.10. Let F be a system that we want to solve using a Gröbner
basis computation. The first degree fall, that we will denote dff , is the smallest
degree d of the Gröbner basis computation such that there is a degree fall in d
on F .

2.3. SOLVING BILINEAR SYSTEMS 29

We consider that it is representative of the complexity of solving the system
when the computation ends shortly after reaching dff . If this is not the case,
a higher degree is reached later during the computation and the complexity is
not related anymore to the value of dff .

2.3.2 Known Complexities for some Specific Systems
It is too difficult to estimate a precise complexity for every bilinear system.
However, some precise families of systems were studied throughout the years
and we present here the estimations that resulted.

Affine Overdetermined Systems with Semi-Regular Homogeneous Lead-
ing Part These systems were studied in 2005 in [13]. This article studied affine
systems such that the homogeneous leading part is semi-regular. Thus, we can
use the following dmax as a good measure of complexity.

dmax ≤ deg
([

(1− z2)#eq

(1− z)#vars

])
+ 1

Generic Bilinear Affine Square Systems Those were explored in 2011
in [31]. Before giving the complexity result of this article, we will talk about
another result that will be very important for the rest of the thesis.

Let us consider x = (x1, . . . , xnx) and y =
(
y1, . . . , yny

)
two vectors of

unknowns, and F = (f1, . . . , fm) a set of polynomials such that m = nx+ny. A
system F = 0 respecting the previous constraints is said to be a square system.

We want to understand the algebraic structure of such an affine bilinear
system, and for that we need to study the two following jacobian matrices:

jacx (F) =
(
∂fi
∂xj

)
i=1,...,m
j=1,...,nx

and jacy (F) =
(
∂fi
∂yj

)
i=1,...,m
j=1,...,ny

We remind that in the case of bilinear systems, the jacobian matrices coefficients
are only linear forms. The elements of the kernels of those matrices cancel the
homogeneous part of the system, which is interesting as it can induce a degree
fall. According to Conjecture 1 from [31], all elements in these kernels are
vectors of maximal minors of the jacobian matrices.

Let us give an example for a small system.

Example 2.11. We can consider a system with nx = 3 and ny = 3 unknowns
for m = 4 polynomials. Then, we have the following elements in the respective
kernels of jacx (F) and jacy (F):

u =
(

minor (jacx (F) , 1) ,−minor (jacx (F) , 2) ,minor (jacx (F) , 3) ,−minor (jacx (F) , 4)
)

v =
(

minor
(
jacy (F) , 1

)
,−minor

(
jacy (F) , 2

)
,minor

(
jacy (F) , 3

)
,−minor

(
jacy (F) , 4

))

30 CHAPTER 2. BILINEAR SYSTEMS

where minor (jacx (F) , i) is the determinant of the matrix obtained by removing
the i-th row from jacx (F). The two vectors u and v are generic syzygies that
cancel the homogeneous part of the system, provoking a degree fall.

Now that we presented this result about maximal minors, we can give the
upper bound on the degree of regularity for this kind of "square" systems :

dreg ≤ min (nx, ny) + 2

This is given for a "square" system, however if we have an overdetermined
system, we can get a similar estimation by removing enough equations to get
back to a square system. The estimation will correspond to an upper bound
for our system, as adding new equations, i.e. new constraints, will help with
decreasing the complexity of solving the system.

We shared here the estimates of two families of bilinear systems, but the
systems that we have for our attacks are even more precise: they are written as
products of matrices. We will see in the next section that it has been recently
studied a lot and that we give a closer estimation than the ones introduced
here.

2.4 MinRank Instances
We consider now a particular case of a bilinear system, which is a modeling
allowing to solve the MinRank problem. We will first present the problem and
the associated modeling, and we will explain how this relates to the systems we
previously introduced.

2.4.1 MinRank problem and system
The MinRank problem was first introduced in [33]. The problem was not named
MinRank yet, but Gabidulin was the first to formulate it. It is an NP-complete
problem [23], and it can be stated as follows :

Definition 2.12. Let r be a positive integer and M1, . . . ,Mm matrices of size
p× n over F. Find x1, . . . , xm, not all zero, such that:

Rank
(

m∑
i=1

xiM i

)
≤ r (2.11)

In [44], Kipnis and Shamir introduced a new way to present the problem,
as a system to be solved. We will call it the KS method, where we solve the
MinRank problem by finding x1, . . . , xm, k1, . . . , kr(n−r) ∈ F such that :

(
m∑
i=1

xiM i

)(
In−r
K

)
= 0 where K =

k1 . . . kr(n−r−1)+1
...

. . .
...

kr . . . kr(n−r)

 (KS)

2.4. MINRANK INSTANCES 31

We can notice that the system described here is bilinear in two sets of vari-
ables x1, . . . , xm and k1, . . . , kr(n−r). The homogeneous part of highest degree
has monomials of bidegree (1, 1), while the affine part has monomials of bidegree
(0, 1), (1, 0) and (0, 0).

The MinRank problem and its derivatives have been recently studied pro-
fusely in [57, 3, 12, 11]. Each one of these articles relates improved ways to solve
the systems created in order to break the corresponding cryptosystem. We will
present these improvements in the chapter 6, focusing on what will be useful for
our attack on DAGS.

Remark 2.13. It is to be noticed that we can apply the methods we will present
when the systems we are studying have a form that is a transpose of KS, that
is to say:

(
In−r U

)(m∑
i=1

xiM
′
i

)
= 0 with U = KT and M ′

i = (M i)T

2.4.2 Matricial Bilinear Systems
We can notice in the Kipnis-Shamir modeling for the MinRank problem that it
actually is a bilinear system were the second block of variables is not a vector y
but a ν × ny matrix Y . If we consider the homogeneous part of highest degree,
we can write it as:

Fh :
nx∑
l=1

xlM lY
T = 0 (2.12)

It is the apparition of the matrix Y that generates the block structure. Each
block of the system uses the same coefficients and variables from x but only a
specific subset of variables from Y . Such a block, that we will denote F (i), can
be expressed with a formula similar to (2.2) :

F (i)
h :

nx∑
l=1

xlM l

(
Y [i,∗]

)T = 0 with i = {1, . . . , ν} (2.13)

Remark 2.14. It is important to notice that the whole system generated is a
matrix of equations, thus it is necessary to be cautious about the order in which
we take the equations and the variables when doing an analysis.

We can now consider the affine system, where we add the part of lower
degrees to the homogeneous part of highest degree. We can notice that there
is an affine part in the modeling of the MinRank problem, due to the identity
part of one of the matrices. We can write a generic affine bilinear system as:

xMY T + xA+ bY T + c = (x, 1)
(
M A
b c

)(
Y T

Iν

)
(2.14)

where A is a matrix of size nx × ν, b and c are vectors of respective lengths ny
and ν and Iν is the identity matrix of size ν.

32 CHAPTER 2. BILINEAR SYSTEMS

The homogeneous part of highest degree is Fh = xMY T and the affine part
is Fa = x A + b Y T + c. The result of lemma 2.8 still holds for such systems
which means that we can try to cancel the homogeneous part of highest degree
and thus inducing a degree fall.

Chapter 3

Solving Superdetermined
MinRank Instances

Contents
3.1 Introduction . 34
3.2 Superdetermined MinRank Instances 35

3.2.1 x variables . 35
3.2.2 u variables . 37

3.3 Changing Variables Using Minors 40
3.3.1 Associated Macaulay Matrix and Rank 41
3.3.2 Complexity Results 46
3.3.3 Relation with SupportMinors 47

33

34CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

3.1 Introduction
We previously saw what a matricial bilinear system looks like. We remind the
general formula:

F :
m∑
`=1

x`M
(`)UT

︸ ︷︷ ︸
Fh

+
m∑
`=1

x`A
(`) +BUT +C︸ ︷︷ ︸
Fa

= 0

with B a matrix of size n× ny and C a matrix of size n× ν.
We want to solve such a system, and we will explore multiple connected

ways to do so. We recall the results from [57], and explain how we can compute
syzygies of the system that induce a degree fall in the system. To do so, we
create a new matrix, and the syzygies are expressed with the elements of the
kernel of this matrix.

We will need a new notation for blocks of polynomials that use a subset of
variables of the whole system containing all the x variables and only variables
from the row i of the matrix U :

F (i)
h :

m∑
`=1

x`M
(`)UT

[i,∗]

Finally, we will study the Macaulay matrix of the system as a whole, for
all possible degrees. We notice that its structure is particular and linked to the
previous approach, as we see blocks with a structure similar to the matrix of the
first method presented. We will also compare this process with SupportMinors,
another modeling of similar systems which was presented in 2020 [12].

Outline of the chapter
In this chapter, we will begin by using the results from [57] on matricial bilinear
systems in Section 3.2. Then in 3.3 we will explore another method which uses
the Macaulay matrix of the whole system and will compare it to SupportMinors.

3.2. SUPERDETERMINED MINRANK INSTANCES 35

3.2 Superdetermined MinRank Instances
Let us consider now that we have a MinRank-like instance with a system written
as : (

In−r U
)(m∑

`=1
x`M `

)
= 0

with U a matrix of unknowns of size (n− r)× r and x a vector of unknowns of
size m. It is clear that the system is bilinear and as we can see, it is expressed
as a product of two matrices.

The problem here is how we can solve it: we can use the studies presented
in subsection 2.3.2 of the previous chapter, but U being a matrix instead of a
vector induces changes in the structure of the system. Solving such system has
been studied in [57], and we will remind those results here.

We separate the two sets of variables in the analysis: even if the goal of
finding elements of the kernel of the jacobian matrix is common, the ways to do
so are not. We will begin by the study of the jacobian with linear entries in the
x variables and we will study the other one after.

3.2.1 x variables
Let us focus first on the x variables. We begin by computing the jacobian matrix
of the homogeneous part of highest degree in variables from U , whose entries
are linear in x. The jacobian matrix here has a very specific form: due to the
structure of the system, there is a repetition of the same submatrix. It happens
for each block F (i)

h , that is to say for each set of polynomials that uses the same
set of u variables. The following lemma explains this repetition:

Lemma 3.1. For all i ∈ {1, . . . , n− r}, we have:

jacU [1,∗]

(
F (1)
h

)
= jacU [i,∗]

(
F (i)
h

)
(3.1)

We also have:
jacU [i,∗]

(
F (j)
h

)
= 0 for j 6= i (3.2)

by definition of the F (i)
h blocks that only contain a subset of the u variables.

Proof. We remind the equation for a block of variables of the system :

F (i)
h :

m∑
`=1

x`M
(`) (U [i,∗]

)T = 0

From this, we can deduce the jacobian matrix for a block F (i)
h :

jacU [i,∗]

(
F (i)
h

)
=

m∑
`=1

x`M
(`)

36CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

We can notice that the matrix in the right part does not actually depend on the
value of i. Thus, we can deduce that for i ∈ {1, . . . , n− r}, we have

jacU [1,∗]

(
F (1)
h

)
= jacU [i,∗]

(
F (i)
h

)

From this lemma we know the form of every non-zero block of the jacobian
matrix. We can deduce a formula for the complete jacobian of the homogeneous
part of the highest degree. To do so we need to define the vectorization:

Definition 3.2. The vectorization of a matrix A of size nA ×mA is the verti-
cal vector of size nAmA containing all the coefficients of A in a chosen order.
The row vectorization, denoted vecrow (A), corresponds to the concatenation of
successive rows. Similarly, the column vectorization, denoted veccol (A), corre-
sponds to the concatenation of successive columns.

We can now use the vectorization to express the jacobian matrix expression:

Lemma 3.3.

jacvecrow(U) (veccol (Fh)) = In−r ⊗

(
m∑
`=1

x`M
(`)

)
(3.3)

Proof. By definition of the jacobian, we can write:

jacvecrow(U) (veccol (Fh))

=
[
jacU [1,∗]

(veccol (Fh)) | . . . |jacU [n−r,∗]
(veccol (Fh))

]
The block structure implies that variables from U [i,∗] are only in block F (i)

h :

=
[(
en−r1

)T ⊗ jacU [1,∗]

(
F (1)
h

)
| . . . |

(
en−rn−r

)T ⊗ jacU [n−r,∗]

(
F (n−r)
h

)]
Thanks to Lemma 3.1, we can write all the blocks the same way :

=
[(
en−r1

)T ⊗ jacU [1,∗]

(
F (1)
h

)
| . . . |

(
en−rn−r

)T ⊗ jacU [1,∗]

(
F (1)
h

)]
=
[(
en−r1

)T | . . . | (en−rn−r
)T]⊗ jacU [1,∗]

(
F (1)
h

)
= In−r ⊗ jacU [1,∗]

(
F (1)
h

)
= In−r ⊗

(
m∑
`=1

x`M
(`)

)

3.2. SUPERDETERMINED MINRANK INSTANCES 37

Now that we know the complete jacobian matrix, we need to find the ele-
ments of its kernel so we can apply Lemma 2.8. Due to the form of this matrix
that uses a Kronecker product with an identity matrix, we only need to find the
elements of the left kernel of

m∑̀
=1
x`M

(`). Assuming that Conjecture 1 from [31]

is true, this kernel is a set of vectors of minors.

Definition 3.4. Let A be a matrix of size p × r, and J be a set such that
J ⊂ {1, . . . , p} of size r + 1. We define the vector of minors vJ (A):

(vJ (A))j =
{∣∣∣(A)J\{j},∗

∣∣∣ if j ∈ J
0 if j 6∈ J

(3.4)

We can directly apply this definition for A =
m∑̀
=1
x`M

(`). There are
(
p
r+1
)

elements in this kernel and each nonzero component of an element of the kernel
is a minor of size r. As each entry of vJ is a homogeneous linear polynomial in
the x variables, we expect to find elements of degree r in the kernel.

Thus, as stated in Theorem 1 of [57], with high probability the first fall
degree will happen at the degree r + 2. Indeed, during the computations, we
are multiplying the syzygies of degree r we found thanks to the process we just
presented by the homogeneous bilinear polynomials of degree 2 that we had
beforehand. This actually results in the cancellation of the homogeneous part
at the degree r + 2, giving us new polynomials of degree at most r + 1.

Remark 3.5. Most of the time, this analysis around the x variables does not
provide the most interesting results compared to what we will present in the
next subsection. However, in some cases where the next subsection does not lead
to good enough syzygies, it can be interesting to check with the x variables.

3.2.2 u variables
We now focus on the u variables, that is to say the variables that represent the
unknowns in the matrixU . As for x, we begin by computing the jacobian matrix
of the homogeneous part of highest degree in variables from x, whose entries
are linear in u. This case will be more complicated than the previous one due
to the different distribution of the variables. Indeed, for the x variables, they
were structured in blocks so the jacobian matrix was composed of a repeated
block which made it easier to compute. For the u variables, all the variables are
possibly found in all the equations, which makes it harder.

3.2.2.1 The matrix B

To get a jacobian matrix with a structure that will be useful for our future
computations, we need the following lemma :

38CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

Lemma 3.6. For all matrices A, B and C, we have :

vecrow (ABC) =
(
A⊗CT

)
vecrow (B) (3.5)

The proof of this lemma is given in Appendix A.
We can apply this lemma to the jacobian matrix we have, and we obtain the

following proposition:

Proposition 3.7.

jacx (vecrow (Fh)) =
(

vecrow
(
M (`)UT

))
`={1...m}

(3.6)

= (Im ⊗U)
(

vecrow
(
M (`)

))
`={1...m}

(3.7)

As for the x variables, we want to find the kernel of the jacobian matrix.
This time we need more work, and we need to introduce some new objects that
will be useful later on.

Let d ∈ N∗ the degree in which we want to do the computations. We define
three sets of indices :

J = (j1, . . . , jd+1) such that 1 ≤ jk < jk+1 ≤ n− r
T = (t1, . . . , td) such that 1 ≤ tk < tk+1 ≤ r
T ′ =

(
t′1, . . . , t

′
d+1
)

such that 1 ≤ t′k < t′k+1 ≤ r

We define a block matrix B, whose blocks are indexed by the different values
of T for the rows and T ′ for the columns. Thus, there are

(
r
d

)
rows and

(
r
d+1
)

columns, as they are the respective number of possible values for T and T ′. Each
block is a zero matrix, unless T ′ corresponds to the union of T with exactly one
element of {1, . . . , r} that we will denote s. The whole block is then dependent
on this s, and we can have the same block with different T and T ′ as long as
their difference is s. Thus, we define a block as follows:

BT,T ′ =

Bs =
(
M

(`)
[∗,s]

)
`={1...m}

if T ′\T = {s}

0n×m else

This matrix B is going to be our main tool to find the kernel of the jacobian
matrix. The following theorem explains how we will be able to use it:

Theorem 3.8 (Theorem 2 from [57]). Let F be a field, d be an integer such
that 0 < d + 1 < min {n− r, r}, J = (j1, . . . , jd+1) a set of indices such that
1 ≤ jk < jk+1 ≤ n− r and aT1 ,aT2 , . . . ,aT` ∈ Fn.

(aT1 ,aT2 , . . . ,aT`) ∈ ker (B) iff
∑
T

aT ⊗ vJ ∈ ker (jacx (vecrow (Fh)))

3.2. SUPERDETERMINED MINRANK INSTANCES 39

Proof. Let J and T be two sets of indices as defined previously. We use the
vector vJ , which is similar to the one defined in (3.4) but with smaller minors,
and can notice that, with T ′ = T ∪ {s} :

vJ ·U =
∑
s/∈T

det
(
U [J,T ′]

)
.ers

We finally define another vector :

VJ =
∑
T

aT ⊗ vJ

We want to find elements from the kernel of the Jacobian matrix :

VJ · jacx (vecrow (Fh)) =
∑
T

(aT ⊗ vJ) (Im ⊗U)
(
vecrow

(
M (`)))

`={1...m}

=
∑
T

(aT ⊗ vJU)
(
vecrow

(
M (`)))

`={1...m}

=
∑
T

(
aT ⊗

∑
s/∈T

det
(
U [J,T ′]

)
ers

)(
vecrow

(
M (`)))

`={1...m}

with T ′ = T ∪ {s}

=
∑
T

∑
s/∈T

det
(
U [J,T ′]

)
(aT ⊗ ers)

(
vecrow

(
M (`)))

`={1...m}

=
∑
T

∑
s/∈T

det
(
U [J,T ′]

)
aT

(
M

(`)
[∗,s]

)
`={1...m}

=
∑
T ′

det
(
U [J,T ′]

)∑
s∈T ′

aT ′\{s}

(
M

(`)
[∗,s]

)
`={1...m}

We can write, for a specific T ′ :∑
s∈T ′

aT ′\{s}

(
M

(l)
[∗,s]

)
l={1...m}

=
∑
s∈T ′

aT ′\{s}Bs

=
∑
T

aTBT,T ′

The blocks of B are the BT,T ′ matrices we introduced before, thus the size of
B is

(
r
d

)
n×

(
r
d+1
)
m. We can find an element that cancels all

∑
T

aTBT,T ′ if and

only if we can construct an element of the kernel of the jacobian matrix. Indeed,
the polynomial gets canceled if and only if the coefficients of all its monomials
are zero: here, all monomials are actually different minors, so the only way to
cancel it is to have zero coefficients.

Now we know how we can find the kernel of the jacobian matrix, and thus
syzygies for our system. We can use the following conjecture about the rank of
the matrix B:

40CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

Conjecture 3.9 ([57], Conjecture 1). Suppose
(
r
d

)
m >

(
r
d+1
)
n, d such that

d + 1 ≤ min {m− r, r}, n ≤ mr and J = (j1, . . . , jd+1) such that 1 ≤ jk <
jk+1 ≤ n− r.

If the matrices M (`), with ` ∈ {1 . . . n} are chosen uniformly at random,
then with overwhelming probability in the size of F, we have :

Rank (B) =
(

r

d+ 1

)
n (3.8)

3.2.2.2 Remaining System

We found how to express the elements of the kernel of the jacobian matrix and
the syzygies. We then obtain a new system with the equations corresponding
to the affine part multiplied by the syzygies and we have new variables. Let us
count equations and variables in this new system.

Corollary 3.10 ([57], Corollary 1). Suppose
(
r
d

)
m >

(
r
d+1
)
n, d such that d+1 ≤

min {m− r, r}, n ≤ mr, J = (j1, . . . , jd+1) such that 1 ≤ jk < jk+1 ≤ n − r,
and Conjecture 3.9 holds.

If the matrices M (`), with ` ∈ {1 . . . n} are chosen uniformly at random,
then with overwhelming probability, there is a set of

(
r
d

)
m −

(
r
d+1
)
n syzygies of

Fh of degree d.

This corollary gives us the number of syzygies that we can expect to get
from this method, and thus how many polynomials of a lower degree we can get
at the degree of first fall.

3.2.2.3 Complexity

The complexity of solving such a system, if the computations finish soon after
the first fall, depends on the following degree :

dmin = min
{
d |
[(
r

d

)
m >

(
r

d+ 1

)
n

]
, 1 ≤ d ≤ r − 1

}
(3.9)

When we reach this degree d and multiply the polynomials we have with the
syzygies we computed, we have a degree fall from d + 2 to d + 1. Then the
complexity of applying this method, given in [57], is:

O

((
rκ+ dmin + 1
dmin + 2

)ω)
= O

((
rκ+D − 1

D

)ω)
= O

(
(rκ)Dω

)
with κ the number of rows of variables from U that we keep, ω the linear

algebra complexity constant and D = dmin + 2.

3.3 Changing Variables Using Minors
From the previous analysis, we can see that minors are everywhere. Every time
we compute new polynomials in order to have a degree fall, we actually see

3.3. CHANGING VARIABLES USING MINORS 41

minors of multiple degrees appearing. A legitimate question is then : what
happens if we consider minors as variables in the new polynomials ?

3.3.1 Associated Macaulay Matrix and Rank
We want to build the Macaulay matrix of a system where we consider the minors
as new variables and all the possible degrees. The advantage of such a matrix
is that we can just multiply it by a vector containing all the developed minors
and we can go back to the initial system. Moreover, the sizes of the matrices
are then reduced by a lot, as we will see in the results.

3.3.1.1 Building the Matrix

We noticed before the omnipresence of minors in our analysis, and with [3], we
can say that the degree falls appear from the product of the initial system by
minors in the u variables. Let us recall this initial system, as well as the sets of
indices J , T and T ′: (

In−r U
)(m∑

i=1
xiM i

)
= 0

J = (j1, . . . , jd+1) such that 1 ≤ jk < jk+1 ≤ n− r
T = (t1, . . . , td) such that 1 ≤ tk < tk+1 ≤ r
T ′ =

(
t′1, . . . , t

′
d+1
)

such that 1 ≤ t′k < t′k+1 ≤ r

We multiply the system by a vector vJ,T of minors of U of degree d, as we
defined previously.

vJ,T ·
(
In−r U

)(m∑
i=1

xiM i

)

=
(
vJ,T vJ,TU

)(m∑
i=1

xiM i

)

=
(∑
j∈J

det
(
U [J\{j},T]

)
en−rj

∑
s/∈T

det
(
U [J,T∪{s}]

)
ers
)(m∑

i=1

xiM i

)

=
m∑
i=1

[∑
j∈J

xiM i,[`,j] det
(
U [J\{j},T]

)
+
∑
s/∈T

xiM i,[`,n−r+s] det
(
U [J,T∪{s}]

)]
`=1,...,n

From this last line, we can see that for a product of the system by a vector of
minors of degree d, we obtain monomials of two bidegrees : (1, d) and (1, d+ 1).
Their respective coefficient that are going to be in the Macaulay matrix are
elements of the matrix M i.

For a row of degree d, corresponding to the multiplication of the system by
minors of degree d, we have two adjacent blocks: one of degree d+ 2 = bidegree

42CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

(1, d+ 1) and one of degree d+ 1 = bidegree (1, d). This is not the case for the
top row of degree r: because of the jacobian matrix, it is not possible to have
monomials of bidegree (1, r + 1).

Table 3.1: General structure of the Macaulay matrix, with degrees of the minors
to multiply for rows and total degree for the columns.

deg r + 1 deg r . . . deg d+ 2 deg d+ 1 . . . deg 3 deg 2 deg 1
deg r (1, r)
deg r − 1 (1, r) (1, r − 1)
...

. . .

deg d (1, d+ 1) (1, d)
...

. . .

deg 1 (1, 2) (1, 1)
deg 0 (1, 1) (1, 0)

All the blank cells are zero blocks, as there are a limited variables and degree
for each equation of the system. On every row, there is only two nonzero-blocks,
corresponding to the colored cells. Although those are not full of zero, they are
sparse matrices.

We want to define a way to index this matrix, to make some future analysis
easier. For columns, we use 3 indices i, K and T ′, and a column corresponds to
a monomial xi det(UK,T ′) with i = {1, . . . ,m}, K ⊂ {1, . . . , n− r} of size d+ 1
such that 1 ≤ k` < k`+1 ≤ n − r and T ′ is as defined before. For rows, we use
3 indices as well, `, J and T . A row then corresponds to a product between a
minor of vJ,T and a polynomial f` from the system with ` ∈ {1, . . . , n} and J
and T as previously defined. We chose an order for each set of indices, which
can be seen in Table 3.2. For columns, we start by picking a set K, then a set
T ′ and the last thing to be fixed is i. We have the same kind of order for the
rows, with J , then T and finally `.

For a given d, we call block the submatrix composed of the columns indexed
by a same K and the rows indexed by a same J . Those blocks are not zero only
if K = J . Indeed, the monomials that can be found in the product between
a minor and a polynomial of the system are necessarily using the same set of
indices, that is to say the same choice of columns and rows in the matrix of
variables. This is repeated for all

(
n−r
d+1
)
sets J vertically and for all

(
n−r
d+1
)
sets

K horizontally. The same thing is repeated for all degrees in the matrix.
For a given degree, we saw that we have 2 adjacent block matrices and that

their entries are either 0 or entries ofM i matrices. To summarize, the first block
contains M i,[`,s] entries and is indexed by a degree d set in rows and columns
while the second block containsM i,[`,j] entries and is indexed by a degree d for
rows but d− 1 for columns.

Thanks to the order of indices that we chose, we can notice that the first
nonzero blocks for the rows of a degree d have a familiar structure. The next
subsection explains this resemblance.

3.3. CHANGING VARIABLES USING MINORS 43

Table 3.2: Part of the matrix that highlights the order of the indices
K1

T ′1 . . . T ′(r
d+1)

i = 1 . . . i = m i = 1 . . . i = m
x1|U[K1,T ′1]| . . . xm|U[K1,T ′1]| x1|U[K1,T ′(r

d+1)
]| . . . xm|U[K1,T ′(r

d+1)
]|

J1

T1

` = 1
|U[J1,T1]|f1

...
` = n

|U[J1,T1]|fn
...

T(rd)

` = 1
|U[J1,T(rd)]|f1

...
` = n

|U[J1,T(rd)]|fn

3.3.1.2 Relation with a previous modeling

The block represented in Table 3.2 corresponds to one matrix B that we de-
scribed in 6.2.4. Indeed, we can see that, like B, the block is indexed by T
for rows and by T ′ for columns. We recall the expression of an equation of the
system multiplied by a vector of minors:

m∑
i=1

∑
s/∈T

xiM i,[`,s] det
(
U [J,T∪{s}]

)
+
∑
j∈J

xiM i,[`,j] det
(
U [J\{j},T]

)
`=1,...,n

(3.10)
We notice that the coefficients that we will have in the matrix are M i,[`,j] and
M i,[`,s], and that the latter actually correspond to entries in the B, as given by
the definition of its nonzero blocks:

Bs =
(
M `,[∗,s]

)
`={1...n} if T ′\T = {s}

We suppose that the sets J and K are sorted the same way, thus Ji = Ki.
Then, we can rewrite the first block of the Macaulay matrix for a degree d using
the B matrices:

Table 3.3: Block of the Macaulay matrix using matrices Bi for a given degree d
K1 K2 . . . K(n−rd+1)

J1 B1 0 0 0
J2 0 B2 0 0
... 0 0

. . . 0
J(n−rd+1) 0 0 0 B(n−rd+1)

We know the rank of the matrixBi with i ∈
{

1, . . . ,
(
n−r
d+1
)}

from Conjecture

44CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

3.9 if the number of rows is greater than the number of columns:

Rank (B) =
(

r

d+ 1

)
n (3.11)

We can then deduce the total rank of the submatrix of Table 3.3:

Lemma 3.11. Let d be an integer such that 0 < d + 1 < min {n− r, r}. The
rank of a diagonal block of the Macaulay matrix made of matrices Bi is:

Rank
(

diag (Bi)i=1,...,(n−rd+1)
)

=
(
n− r
d+ 1

)(
r

d+ 1

)
n (3.12)

Knowing this rank will help calculating the rank of the full matrix.

3.3.1.3 Rank of the Macaulay Matrix

We want to compute the rank of the whole Macaulay matrix. We remind that
we are working on generic systems and thus the ranks given are generic. We
will see in the second part that there exist cases where the ranks are actually
lower. We need to begin by finding the rank of the two blocks of matrices in all
the rows for a degree d.

We already know that the first block has a rank
(
n−r
d+1
)(

r
d+1
)
n. We need to

compute the rank of the adjacent block, the second on the row. To be able to
apply Theorem 6.6 and Conjecture 3.9, we focus on the cases where we have
more rows than columns.

Let us first recall the expression that gives the coefficients of this second
block:

m∑
i=1

∑
j∈J

xiM i,[`,j] det
(
U [J\{j},T]

)
`=1,...,n

Here, the blocks are zero when T (indexing rows) and T ′ (indexing columns)
are different or when K 6= J\{j}. We can notice that for a given K, we have
multiple couples (J, j) such that J\{j} = K. For all J and K, we have :

RJ,K =
{
Rj if K = J\ {j}
0 else

with Rj a block that we will define right after.
Let us first see an example of this structure:

Example 3.12. Let n− r = 4 and d = 1. The rows are indexed by sets of size
d + 1 = 2 and the columns by sets of size d = 1. The block that we then have
is:

We notice that the general structure of this matrix is similar to the transpose
of a B matrix in 3.2.2.1.

3.3. CHANGING VARIABLES USING MINORS 45

Table 3.4:
{1} {2} {3} {4}

{1, 2} R2 R1 0 0
{1, 3} R3 0 R1 0
{2, 3} 0 R3 R2 0
{1, 4} R4 0 0 R1
{2, 4} 0 R4 0 R2
{3, 4} 0 0 R4 R3

By checking the expression of the equations and the previous matrix, we can
notice that the only constraint on the sets T and T ′ is that they must be equal
for the associated block to be nonzero. Thus, we will index the columns by the
T sets as well. It leads, for given J and K, to the matrix Rj represented in
Table 3.5.

Table 3.5: Details on the Rj matrix
T1 . . . T(rd)

i = 1 . . . i = m i = 1 . . . i = m

T1

` = 1 M1,[1,j] . . . Mm,[1,j] 0 . . . 0
...

...
. . .

...
...

. . .
...

` = n M1,[n,j] . . . Mm,[n,j] 0 . . . 0
...

. . .

T(rd)
` = 1 0 . . . 0 M1,[1,j] . . . Mm,[1,j]
...

...
. . .

...
...

. . .
...

` = n 0 . . . 0 M1,[n,j] . . . Mm,[n,j]

We can easily notice that the same block is repeated along the diagonal, and
we can write it with a Kronecker product:

Rj = I(rd) ⊗ (M1,[∗,j] . . .Mm,[∗,j])

The rank corresponds to the minimum between the number of rows and the
number of columns. We can give a conjecture similar to Conjecture 3.9.

Conjecture 3.13. Suppose that m > n, the rank of Rj is then:

Rank (Rj) =
(
r

d

)
n

As the matrices Rj are all different, this would imply that the complete rank
is
(
n−r
d

)(
r
d

)
n.

We have the rank of the two blocks independently, we can wonder if consid-
ering them together will reduce the rank. To answer this question, we can check

46CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

the equation 3.10 and notice that for a given n, when j = s ∈ J\T , we have
two similar columns, one in the first block and one in the second. However,
we can see from the structure of the matrix given in Table 3.1 and in the dif-
ferent illustrations given that we can not cancel a column because of the other
elements that would appear on the same column as a consequence of the linear
combination.

The total rank depends only on the size of the matrix: if the number of rows
is less than the number of columns, then the rank corresponds to the number of
rows; if the number of columns is less than the number of rows, then the rank
corresponds to the number of columns minus 1.

We can consider the complete Macaulay matrix, or we can chose a submatrix
that checks the requirements to reduce the number of computations to do. If
we chose a submatrix, we introduce two indices db and de such that the rows
chosen are all consecutive rows in {db, db + 1, . . . , de}. We keep all the columns
that are not all zero on those rows. Thus, for P a submatrix of the Macaulay
matrix that goes from degree db to de, we obtain the expression for the total
rank.

Proposition 3.14. Let db and de be two integers such that 0 ≤ db ≤ de ≤ r
with r the maximal degree possible. Let P be a Macaulay matrix for the degrees
db to de. The rank of this matrix is:

Rank (P) = min
{

de∑
i=db

m

(
n− r
i+ 1

)(
r

i

)
,

(
de∑
i=db

n

(
n− r
i

)(
r

i

))
− 1
}

3.3.2 Complexity Results
We experimented this method on generic bilinear systems in a field of charac-
teristic 2 and an extension degree 4 over F2, on two different sizes. Later in this
thesis, we will also experiment on the DAGS cryptosystem.

Table 3.6: Results for m = 10, n = 10 and ν = n− r and comparison between
the method of 3.2 and the method introduced in 3.3. d is the highest degree
reached during the computations, Matrix Size is the matrix we use for our
Gröbner basis computations and Time is the duration of those computations. If
it is possible, we took a submatrix of the Macaulay matrix to have the smallest
matrix possible.

Classic Method 3.2 Minors Method 3.3
r d Matrix Size Time d Matrix Size Time
2 3 1984× 2209 0.05s 560× 280 0.02s
3 4 26502× 24582 1.29s 350× 350 0.03s
4 4 31206× 43930 3.33s 1860× 1850 0.44s
5 5 243815× 341515 145s −×− −s
6 - Too big - −×− −s

3.3. CHANGING VARIABLES USING MINORS 47

In table 3.6, we can see a difference when r = 5 and r = 6. Indeed, we can
not find a submatrix of the Macaulay matrix that has more rows than columns.
In those case, we can not linearize the system.

For r = 5, the classic method still works in a reasonable time.

Table 3.7: Results for m = 12, n = 12 and ν ≤ n− r and comparison between
different methods.

Classic Method 3.2 Minors Method 3.3
r ν d Matrix Size Time d Matrix Size Time

4

8 4 72920× 98598 20s 9504× 5940 31s
7 4 53641× 72785 12s 5544× 3960 12s
6 4 37986× 51850 9s 3024× 2520 4.6s
5 4 33995× 29339 16s 1512× 1512 1.5s
4 4 33793× 18349 10.6s - −×− −s
3 5 26959× 24798 8.0s - −×− −s
2 5 42969× 34704 31s - −×− −s

5

7 5 982072× 1297064 2148s 11088× 9504 75s
6 5 630209× 838357 1037s 5544× 5544 13s
5 5 350320× 469744 394s - −×− −s
4 5 227715× 200808 499s - −×− −s
3 6 205830× 205140 1050s - −×− −s

We can notice in table 3.7 that the computations get difficult when ν is equal
to or lower than r. This is particularly visible on the last case where r = 6.
Indeed, all the values possible for ν are smaller than 6 and thus the minors
method does not seem to be efficient on those cases.

3.3.3 Relation with SupportMinors
In [12], the authors presented a method named SupportMinors, and the method
we presented in the previous sections is actually SupportMinors, considering
b = 1, as explained in [9]. Here we explain what is the SupportMinors modeling
and how it is related to previous modelings.

We first need to define the Plücker coordinates:

Definition 3.15 ([41]). Let A be a matrix of size nA × mA with nA < mA.
The Plücker coordinates of A correspond to a vector whose entries are the
maximal minors of A. These minors are of order nA and there are

(
mA
nA

)
of

those coordinates.

We denote aT the new variables that replace the minors of A. This trans-
formation is done using the injective Plücker map [58].

Definition 3.16. The Plücker map can be defined as:

p :
{
W ⊂ Fnq : dim(W) = r

}
→ PN (Fq) (N =

(
n
r

)
− 1)

48CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

A 7→ (aT)T⊂{1..n},#T=r.

Let Mx =
nx∑̀
=1
x`M`. We first define a Minors Modeling:

Definition 3.17 (Minors modeling). Let (M1, . . . ,Mnx) ∈ Fm×nyq be a Min-
Rank instance with a target rank r. Then, the MinRank problem can be solved
by finding x1, . . . , xnx ∈ Fnxq such that

{|Mx| = 0,∀J ⊂ {1, . . . ,m} ,#J = r + 1,∀T = {t} ∪ {n− r + 1, . . . , n} ⊂ {1, . . . , n}}
(Minors)

From this Minors modeling, we can define two versions of the Support Minors
modeling for MinRank instances, corresponding to two different ideas introduced
in [12].

The first idea is that the vector space of the generator matrix Mx is or-
thogonal to the one with generator matrix

(
Iν CT

)
. This leads to the first

Support Minors modeling:

Definition 3.18 (Support Minors modeling). Let (M1, . . . ,Mnx) ∈ Fm×nyq be
matrices used in a MinRank instance with a target rank r. The problem can be
solved by finding x1, . . . , xnx ∈ Fnxq and U = (ui,j)1≤i≤r,1≤j≤n−r ∈ Fn−rq such
that:{∣∣∣∣(ri

−U Ir

)∣∣∣∣
∗,T

= 0,∀T ⊂ {1, . . . , n} ,#T = r + 1, ri a row of Mx

}
(SM-U)

We obtain m
(
n
r+1
)
equations that have a bidegree (1, r) respectively in the n

variables x and the r × (n− r) variables c.

We notice that all the entries ofU in this modeling appear as maximal minors
of (−U Ir). Thus, we can replace the minors of degree r in the variables u by
new variables uT using the Plücker coordinates.

Definition 3.19 (Support Minors modeling - Minors version [12]).
Let (M1, . . . ,Mnx) ∈ F×q be matrices used in a MinRank instance with a
target rank r. The problem can be solved by finding x1, . . . , xnx ∈ Fnxq and

(uT)T⊂{1,...,n},#T=r+1 ⊂ F(nr)
q such that:{∑

t∈T
(Mx)t,i uT\{t} = 0,∀T ∈ {1, . . . , n} ,#T = r + 1, and i ∈ {1, . . . ,m}

}
(SM)

We obtain m
(
n
r+1
)
equations that are bilinear in the n variables x and the

(
n
r

)
minor variables uT .

The advantages of such a modeling is that each minor variable uT is replacing
r! terms of degree r, reducing the size of the Macaulay matrix and making

3.3. CHANGING VARIABLES USING MINORS 49

the computations easier. It can be considered as a mix between the previous
approach in 3.3 and the first Support Minors modeling.

The Support Minors modeling is currently the most efficient one to solve
systems from a MinRank instance.

The relation between the different modelings can also be highlighted by the
relations between their ideals. The following proposition illustrates that.

Proposition 3.20. The equations from the (Minors) modeling are included in
the ideal generated by the equations of the (KS) modeling.

Proof. We have seen before in Lemma 3.3 and Proposition 3.7 that the jacobian
matrices for the (KS) modeling have a very particular form. Indeed, we can write
Mx =

(
M (1)

x M (2)
x

)
, withM (1)

x andM (2)
x matrices of respective sizem×n−r

andm×r. We can write every matrixM ` the same way: M ` =
(
M

(1)
` M

(2)
`

)
We notice thatM (2)

x U is the homogeneous part of highest degree of the system
and we can write the following Jacobian matrices:

jacvecrow(U)

(
veccol

(
M (2)

x U
))

= In−r ⊗M (2)
x

jacx
(

vecrow
(
M (2)

x U
))

= (Im ⊗U)
(

vecrow
(
M

(2)
`

))
`={1...m}

The jacobian matrix in U admits a left kernel containing the following vec-
tors:

ei ⊗ vJ(M (2)
x) for any J ⊂ {1..m},#J = r + 1, 1 ≤ i ≤ n− r

where ei corresponds to the ith row of In−r. Then we can see that the ideal
generated by the (KS) equations contains the following equations:

(ei ⊗ vJ(M (2)
x))veccol

(
Mx

(
In−r
U

))
= (ei ⊗ vJ(Mx(2)))veccol

(
M (1)

x

)
= vJ(M (2)

x)M (1)
x e

T
i

= |Mx|J,{i}∪{n−r+1..n} .

Those are the (Minors) equations. We can remark that the ideals generated
by the (KS) equations and by the (Minors) equations can not be equal, as the
(Minors) equations contains only one set of variables.

Proposition 3.21. The equations of the (KS) modeling are included among the
equations of the (SM-U) modeling, and their ideals are equal.

Proof. We use similar notation that in the previous proof.
The jacobian matrix in x variables admits a left kernel containing the fol-

lowing vectors:

e` ⊗ vJ(U) for any J ⊂ {1..n− r},#J = r + 1, 1 ≤ ` ≤ m

50CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

With the same reasoning as before, we can say that the ideal generated by
the (KS) equations contains the following equations:

(e` ⊗ vJ(U))vecrow
(
M (1)

x

)
= e`M

(1)
x vJ (U)T

= vJ (U)
(
M

(1)
x,[`,∗]

)T
=
∣∣∣∣((M (1)

x,[`,∗]

)T
UT

)∣∣∣∣
J,∗

=

∣∣∣∣∣
(
M

(1)
x,[`,∗]
U

)∣∣∣∣∣
∗,J

We just found exactly the (SM-U) equations for J ⊂ {1 . . . n− r}, that have
a degree r in the variables ui,j .

In Theorem 3.8, we try to solve (KS) instances by finding elements in the
left kernel of the jacobian matrix in x for some degree 1 < d ≤ r− 1. To do so,
we consider all combinations of the polynomials with coefficients

e` ⊗ vJ (UT,∗)

for any d ∈ {1, . . . , r}, J ⊂ {1, . . . , n− r}, #J = d+ 1, T ⊂ {1, . . . , r}, #T = d
and ` = {1, . . . ,m}.

We can remark that in Theorem 3.8, we consider the following equations:

(e` ⊗ vJ(UT,∗))vecrow
(
Mx

(
In−r
U

))
= e`Mx

(
In−r
U

)
(vJ(UT,∗))T

=
∣∣∣∣(r`
−U Ir

)∣∣∣∣
∗,T ′

for T ′ = J ∪ ({n− r+ 1..n} \ (T + n− r)) ⊂ {1..n} of size r+ 1. The equations
have a degree d in the variables ui,j .

For d = 0 and T ′ = {`}∪ {n− r+ 1..n},
∣∣∣∣(r`
−U Ir

)∣∣∣∣
∗,T ′

corresponds to the

`th equation from the (KS) modeling, and we get all the (SM) equations.

Remark 3.22. Considering Propositions 3.20 and 3.21, we are able to get
a better understanding of the behavior of a generic Gröbner basis algorithm
with a graded monomial ordering. As (SM-U) contains (KS) directly into the
system, computing a Gröbner basis on (SM-U) will also compute all equations
that would be computed by (KS). On the other hand, when computing a
Gröbner basis for (KS), the algorithm will produce all equations from (SM-U)
by multiplying by monomials in U , hence we can expect many syzygies during
a Gröbner basis computation on (SM-U).

3.3. CHANGING VARIABLES USING MINORS 51

It seems to indicate that the best strategy would be to compute with (SM-U),
but to look only at multiple of the equations by the xi’s variables, which is the
strategy proposed in [12]. Moreover, by considering minors as variables as we
previously explained, it removes the hardness of computing with high degree
polynomials.

52CHAPTER 3. SOLVING SUPERDETERMINED MINRANK INSTANCES

Part II

Attacking Cryptosystems

53

Chapter 4

Code-Based Cryptography

Contents
4.1 Introduction . 56
4.2 Coding Theory . 57

4.2.1 Linear codes . 57
4.2.2 Building new codes from old 58
4.2.3 GRS and Alternant codes 60
4.2.4 Cyclic and Dyadic codes 64

4.3 Code-Based Cryptography 66
4.3.1 McEliece Scheme . 66
4.3.2 Security of the scheme 67

55

56 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

4.1 Introduction
Historically, cryptography has been restricted to what is called secret key cryp-
tography or symmetric cryptography. This kind of cryptography implies that
the same secret key is used to encrypt and decrypt a message, and this secret
key is shared only to the people that are authorized to read the message.

However, in the 70s, an other family emerged: public key cryptography, also
called asymmetric cryptography. Contrary to the secret key cryptography, the
public key cryptography uses a pair of keys: one is a public key and can be known
by anybody, the other is a private key and is only known to one person. This
kind of cryptography can be used for multiple purposes, including encryption
and signature. In the first case, the public key is used by the sender to encrypt
and the private key by the receiver to decrypt the message. In the second case,
the person who wants to sign uses its own private key, and any other person
can verify the authenticity of the signature with the public key.

Public-key cryptography was introduced by Diffie and Hellman in 1976 [27]
but the first scheme was proposed in 1978 by Rivest, Shamir and Adleman [55].
This cryptosystem is called RSA, and its security rests on a problem considered
as hard: factorizing large numbers, that is to say finding the prime factors of
such a large number. It is one of the main schemes that are used nowadays.
Since it was published, multiple other systems were proposed using the same
problem, but some were based on other number theory problems such as the
discrete logarithm problem.

However, those algorithms are all vulnerable to quantum computers that are
currently emerging, particularly to Shor’s algorithm [56] that allows to quickly
find prime factors of an integer. To respond to this threat, the public key
cryptography was updated with the new family of post-quantum cryptography.
The aim of this cryptography is to provide algorithms that are resistant to
quantum computers, while still be usable by traditional ones. To do so, they
rely on problems that are considerd hard for quantum computers. In this thesis,
we will consider a subfamily of post-quantum cryptography that is using error-
correcting codes.

Outline of the chapter
In this chapter, we will present all the basic definitions about codes and their
link to cryptography. In section 4.2, we will talk about the coding theory, in
particular linear codes, operations on codes and different families of codes that
we will encounter later in this thesis. Then, in section 4.3, we will cover the
subject of code-based cryptography: its foundations with the McEliece scheme
and the basic attacks that can be used against it.

4.2. CODING THEORY 57

4.2 Coding Theory
In this section, we will introduce definitions, properties and theorems about
error-correcting codes, with a focus on linear codes. The main reference for this
matter is [48].

Let Fq be a finite field of q elements.

4.2.1 Linear codes
There exist multiple types of codes, and here we will mostly talk about linear
codes.

Definition 4.1. Let k and n be two integers such that 0 < k ≤ n. A linear
code C of length n and dimension k is a linear subspace of Fn of dimension k.
C is said to be an [n, k]-code.

A vector of C is called a codeword. The ratio k

n
is called the information

rate and the difference n− k is the redundancy of the code.

4.2.1.1 Generator and Parity-Check Matrices

A linear code can be defined by two different matrices: its generator matrix or
its parity-check matrix.

Definition 4.2. A generator matrix G of a code C is a matrix whose rows
form a basis of the code C . We can write:

C =
{
mG |m ∈ Fkq

}
For a given C , there are multiple generator matrices. However, some matri-

ces form are more interesting than others to work with, such as the systematic
form. A generator matrix is said to be in systematic form when it is written as:

G = (Ik | A)

with A a matrix of size k × (n− k) over Fq. Such a matrix does not always
exist, but when it does, it is unique. In this thesis, we will usually assume that
it does exist.

Let us now define parity-check matrices.

Definition 4.3. A parity-check matrix H of a code C is a matrix of size
(n− k)× k over Fq of rank (n− k) such that:

∀c ∈ C ,HcT = 0

As it is the case for generator matrices, there exist multiple parity-check
matrices for a given code.

The generator matrix and the parity-check matrix for a given code C are
linked. If the generator matrix G is written as

(
Ik | P

)
then an associated

58 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

parity-check matrix H is written as
(
−P T | In−k

)
because we can write

that G ·HT = 0.
Parity-check matrices can also be used to define the syndrome :

Definition 4.4. Let C be an [n, k] code, H its parity-check matrix and c a
vector of size n. The syndrome s of a vector c is :

s = cHT

This resulting vector s is a vector of size n − k. When the syndrome is a zero
vector, it means that the vector c is a codeword of the code C .

We will encounter the syndrome later in this chapter, when discussing the
Syndrome Decoding Problem in 4.35. Another important fact about parity-
check matrices is that they are also the generator matrices of other codes, as
explained in the following definition.

Definition 4.5. For C a linear code over Fq, we can define its dual or or-
thogonal code denoted C⊥, the set of all vectors orthogonal to all codewords of
C :

C⊥ =
{
y ∈ Fnq | xyT = 0, ∀x ∈ C

}
A parity-check of the code C is a generator matrix for its dual C⊥. C and

C⊥ have the same length n, however C⊥ has a dimension of n − k with k the
dimension of C .

4.2.2 Building new codes from old
4.2.2.1 Puncturing and Shortening

There are different operations that can be used to create codes from already
existing ones. We present two of them: puncturing and shortening. Both imply
a reduction of the length of the code, but only the shortening usually induces a
reduction of the dimension too.

Definition 4.6. Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordi-
nates. The puncturing of the code C on the coordinates of I is defined by:

PunctI (C) =
{

(ci)i∈{1,...,n}\I | c ∈ C
}

The resulting code has a length n − |I| and its dimension k′ and minimal
distance d′ are in the following intervals:

k − |I| ≤ k′ ≤ k and d− |I| ≤ d′ ≤ d

In this case, the parameter k′ usually tends to be k and d′ tends to be
d − |I|. Practically, it can be done using the generator matrix G of a code C
by removing the columns indexed by I.

4.2. CODING THEORY 59

Definition 4.7. Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordi-
nates. The shortening of the code C on the coordinates of I is defined by:

ShortI (C) = PunctI ({c ∈ C | ∀i ∈ I, ci = 0})

The resulting code has a length n − |I|. Its dimension k′ and minimum
distance d′ are bounded as follows:

k − |I| ≤ k′ ≤ k and d ≤ d′

In this case, the parameter k′ usually tends to be k− |I|. Practically, it can
be done by puncturing the dual code C⊥, that is to say removing the columns
indexed by I of the parity-check matrix H of C .

The following theorem highlights a link between puncturing and shortening
a code.
Theorem 4.8. Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordinates.
We can write:

ShortI
(
C⊥
)

= (PunctI (C))⊥

4.2.2.2 Trace code

Other than shortening and puncturing, another way to obtain a new code from
a given one, is to use a trace map:
Definition 4.9. Let a be an element in Fqm . The trace is a Fq-linear map that
we can define as :

TrFqm/Fq : Fqm −→ Fq

a 7−→
m−1∑
j=0

aq
j

We can extend this definition to the vector a = (a1, . . . , an) by applying it
component-wise :

TrFqm/Fq (a) =
(
TrFqm/Fq (a1) , . . . ,TrFqm/Fq (an)

)
The fact that the trace map results in an element of Fq makes it really

interesting for computations. This particularity will be used later in the attack
of the cryptosystem DAGS we present in 5.3. This map, applied on every
codeword of a code C , allow us to compute the trace code.
Definition 4.10. Let C ⊂ Fnqm be a code of length n over Fqm . We call trace
code of C over Fq the code defined by:

TrFqm/Fq (C) =
{

TrFqm/Fq (c) | c ∈ C
}

Proposition 4.11. Let a be an element of Fq and m the field extension. Then,
the trace of a is TrFqm/Fq (a) = ma.
Remark 4.12. If the finite field has a characteristic 2 and an extension m = 2,
then the trace of a ∈ Fq is TrFqm/Fq (a) = 0.

When the fields involved are clear, it is possible to omit them in the notation
and write the trace code Tr (C).

60 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

4.2.2.3 Subfield subcodes

For the following definitions, we consider codes over a finite extension Fqm of
Fq. In such codes, there is a possibility that all components of some codewords
lie over the subfield Fq, which leads to the following definition.
Definition 4.13. Let C ⊂ Fnqm be a code of length n over Fqm . We call subfield
subcode of C the code C |Fq made up of all the codewords of C whose all entries
lie in Fq:

C |Fq= C ∩ Fnq
The resulting code has the same length as the starting code. Its dimension

k′ and minimum distance d′ are bounded as follows:

k′ ≥ n−m (n− k) and d′ ≥ d

Theorem 4.14 (Delsarte Theorem, [26]). Let C ⊂ Fnqm be a linear code, then:(
C ∩ Fnq

)⊥ = TrFqm/Fq
(
C⊥
)

4.2.3 GRS and Alternant codes
In this thesis we will see different families of codes. We will begin by the GRS
codes, continue with alternant codes and finish with subfamilies of alternant
codes. We chose to present those because there exists an efficient decoding
algorithm for them.

4.2.3.1 GRS codes

Definition 4.15 ([54]). Let n be a positive integer, x ∈ Fnqm a vector whose
entries are pairwise distinct, that we call the support of the GRS code and
y ∈ Fnqm a vector whose entries are not zero, that we call the multiplier of the
GRS code. The Generalized Reed-Solomon (GRS) code with support x and
multiplier y, of dimension k, is defined as

GRSk (x,y) =
{

(y1f(x1), . . . , ynf(xn)) | f ∈ Fq [z]<k
}

A GRS code can also be defined by its generator matrix:

G =

y1 . . . yn
y1x1 . . . ynxn
...

...
...

y1x
k−1
1 . . . ynx

k−1
n

Remark 4.16. When y = 1, the code is called a Reed-Solomon (RS) code that
we denote RSk (x). Its generator matrix is then:

G =

1 . . . 1
x1 . . . xn
...

...
...

xk−1
1 . . . xk−1

n

4.2. CODING THEORY 61

We can define multiple properties of the GRS codes:

Proposition 4.17. Let n, k be two positive integers such that k ≤ n. Let
x ∈ Fnqm be a support and y ∈ Fnqm a multiplier.

• The minimum distance between two codewords of GRSk (x,y) is d =
n− k + 1.

• The dual of a code GRSk (x,y) is a GRS code too:

GRSk (x,y)⊥ = GRSn−k
(
x,y⊥

)
with y⊥ = (y⊥1 , . . . , y⊥n) the n-tuple such that for all j in J1, nK we have

(
y⊥j
)−1 = yj

n∏
`=1, 6̀=j

(x` − xj).

• It exists an efficient decoding algorithm for the code GRSk (x,y) that can
correct up to bn−k2 c errors.

4.2.3.2 Alternant codes

We consider now a subcode of the GRS codes, by applying Definition 4.13 of a
subfield subcode.

Definition 4.18 ([37, 38, 26]). Let x ∈ Fnqm and y ∈ Fnqm be respectively a
support and a multiplier. The alternant code over Fq corresponds to the subfield
subcode of a GRS code, and is defined as:

Ar,q (x,y) = GRSr (x,y)⊥ ∩ Fnq

The integer r is called the degree of the alternant code. We can write Ar (x,y)
when the value of q is defined. Its length is n, and its dimension k verifies the
following equation:

k ≥ n−mr

We can define multiple properties of the alternant codes:

Proposition 4.19. Let n, r be two positive integers such that r ≤ n. Let
x ∈ Fnqm be a support and y ∈ Fnqm a multiplier.

• The minimum distance of Ar (x,y) is d ≥ r + 1.

• The dual of a code Ar (x,y) is:

Ar (x,y)⊥ = Tr (GRSr (x,y))

• As for the GRS codes, it exists an efficient decoding algorithm for Ar (x,y)
that can correct up to t = b r2c errors.

62 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

Proposition 4.20. Let m,r be two positive integers. Let x,y ∈ Fnqm be respec-
tively a support and a multiplier. Then,

ShortI (Ar (x,y)) = Ar (xI ,yI)

with xI (resp. yI) the vector x (resp. y) from which we removed all coordinates
indexed by I.

Alternant codes are a large family of codes, and there are many subfamilies
that can be interesting. We will now present two of those subfamilies: Goppa
codes and Srivastava codes.

4.2.3.3 Goppa Codes

We begin by the family of Goppa codes. This family is important as its binary
subfamily is used in the McEliece cryptosystem.

Given a polynomial P and a vector x, the notation P (x) corresponds to the
application of the polynomial P on each coordinate of x.

Definition 4.21 ([34, 18]). Let x ∈ Fnqm be a support. Let Γ ∈ Fqm [z] be a
polynomial such that all evaluations of Γ on the coordinates of x are not zero:
Γ (xi) 6= 0 for every i ∈ {1, . . . , n− 1}. The Goppa code of support x and
associated to the Goppa polynomial Γ is defined as:

Gr (x,Γ) = Ar,q

(
x,Γ (x)−1

)
The integer r is the degree of the polynomial Γ. Its length is n, and its dimension
k verifies the following equation:

k ≥ n−mr

The parity-check matrix of a Goppa code can be written as:

H =

Γ (α1)−1

. . . Γ (αn)−1

α1Γ (α1)−1
. . . αnΓ (αn)−1

... . . .
...

αr−1
1 Γ (α1)−1

. . . αr−1
n Γ (αn)−1

Among Goppa Codes, there is the binary Goppa Codes subfamily, which

relies on a binary structure to provide interesting changes in the minimum dis-
tance or the correction capacity. This is why this family is the one used in the
McEliece cryptosystem in the next section.

Definition 4.22 ([18]). A binary Goppa code is a Goppa code whose vector x
is in Fn2m and whose Goppa polynomial Γ is defined over F2m .

Proposition 4.23 ([53]). While keeping the notation we used before, we give
some properties that have changed when setting q = 2:

4.2. CODING THEORY 63

• The minimum distance of Gr (x,Γ) is d ≥ 2r + 1.

• Gr (x,Γ) = Gr
(
x,Γ2).

• It exists an efficient decoding algorithm for Gr (x,Γ) that can correct up
to r errors.

4.2.3.4 Srivastava Codes

Definition 4.24 ([17, 36, 35]). Let s and t be two integers. Let α = (α1, . . . , αn)
and w = (w1, . . . , ws) be two vectors of n+ s distinct elements of Fqm , and z =
(z1, . . . , zn) a vector of nonzero elements of Fqm . We can define a Generalized
Srivastava (GS) code thanks to its parity-check matrix of the form:

H =

H1
H2
...
Hs

where the block are built as following, for i ∈ {1, . . . , s}:

Hi =

z1

α1 − wi
. . .

zn
αn − wiz1

(α1 − wi)2 . . .
zn

(αn − wi)2

...
...

...
z1

(α1 − wi)t
. . .

zn

(αn − wi)t

We say that this code is of order st, of length n ≤ qm − s and of dimension
k ≥ n−mst.

These Generalized Srivastava codes will particularly interest us, as they are
the family of codes used in the scheme DAGS presented in the chapter 5.

Proposition 4.25 ([48]). Generalized Srivastava Codes are a subfamily of al-
ternant codes.

Proof. Let us consider an alternant code Ar,q (α,y) with r = st. Let α1, . . . , αn,
w1, . . . , ws be n+ s distinct elements of Fqm and z1, . . . , zn be nonzero elements
of Fqm . We define a polynomial g in x:

g(`−1)t+k (x) =

s∏
j=1

(x− wj)t

(x− w`)k
with ` = 1, .., s and k = 1, . . . , t

We also define the elements of the vector y as:

yi = zi
s∏
j=1

(αi − wj)t
with i = 1, . . . , n

64 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

By multiplying each element of y with the polynomial g, we obtain:

yig(`−1)t+k (αi) = zi

(αi − w`)k

We can notice that this corresponds to the definition of an alternant code (as
it is a subfield subcode of a GRS code) as well as it is the expression of an
elements form the parity-check matrix for a Generalized Srivastava code.

We can now define some properties for Generalized Srivastava codes.

Proposition 4.26 ([48]). Let n, s and t be three positive integers. Let α, w
and z as introduced in 4.24. As GS codes are a subfamily of alternant codes,
their properties derive from the alternant ones:

• The minimum distance of GSt (α,w, z) is d ≥ st+ 1.

• The dual and the decoding algorithm for GS codes are the same as for the
alternant codes.

Remark 4.27. When t = 1 and zi = αµi for some µ , the code is said to be a
Srivastava code. Its parity-check matrix is then:

H =

αµ1
α1 − w1

. . .
αµn

αn − w1
αµ1

α1 − w2
. . .

αµn
αn − w2

...
...

...
αµ1

α1 − ws
. . .

αµn
αn − ws

4.2.4 Cyclic and Dyadic codes
In this subsection, we will introduce two different families of codes that can
be used to introduce structure into a code and its associated matrices. Such
families are interesting because they allow to reduce the storage of the keys,
which is a crucial matter in cryptography. The first family we will discuss is the
one of cyclic codes, the second is the one of dyadic codes.

4.2.4.1 Cyclic codes

For this whole subsection, let F be a finite field.

Definition 4.28. Let s be a positive integer. A cyclic shift map σs can be
defined as:

σs : Fs −→ Fs
(x0, . . . , xs−1) 7−→ (xs−1, x0, . . . , xs−2)

4.2. CODING THEORY 65

Definition 4.29. Let σs be a cyclic shift. A linear code C of length s is said
to be cyclic if

∀c ∈ C , σs (c) ∈ C

Definition 4.30. Let n be a multiple of s. We define the quasi-cyclic shift σ
as :

σ : Fn −→ Fn(
b1 | . . . | bn

s

)
7−→

(
σs (b1) | . . . | σs

(
bn
s

))
It is actually the application of the cyclic shift σs on the blocks b1, . . . , bns of
length s.

Definition 4.31. Let σ be a quasi-cyclic shift, and n a multiple of s. A linear
code C of length n is said to be quasi-cyclic if

∀c ∈ C , σ (c) ∈ C

Such a code has a generator matrix G which is said to be block-circulant. It
means that the matrix can be split into s× s circulant blocks as follows :

G =

. . .

...
· · · Gi,j · · ·

...
. . .

 with Gi,j =

g0 g1 · · · gs−1
gs−1 g0 · · · gs−2
...

. . .
...

g1 · · · gs−1 g0

We can see that the knowledge of the first row of each block is sufficient

to get the complete matrix. This is the reason why adding such a structure in
error-correcting codes reduces the storage of cryptographic keys by a factor that
corresponds to the length of the cyclic shift s. Thus, instead of storing k × n
coefficients for the generator matrix, we only need to store k×n

s coefficients.

4.2.4.2 Dyadic codes

Another family of codes that have a repetitive structure is dyadic codes. We
start by defining dyadic matrices.

Definition 4.32. A matrix 2k × 2k is said to be dyadic if we can write it
recursively as:

M =
(
A B
B A

)
where each block is itself a 2k−1 × 2k−1 dyadic matrix.

Definition 4.33. A code is called quasi-dyadic when its parity-check matrix is
a block matrix whose blocks are dyadic matrices.

66 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

Example 4.34. Let us consider a quasi-dyadic code with blocks of size 4× 4.
The length of the code is then necessarily a multiple of 4. A parity check matrix
for such a code can be written as :

H =

. . .

...
· · · Hi,j · · ·

...
. . .

 with Hi,j =

h0 h1 h2 h3
h1 h0 h3 h2
h2 h3 h0 h1
h3 h2 h1 h0

The dyadic blocks must be square matrices, but the complete parity-check ma-
trix can be not square, as long as both its number of rows and columns are
multiple of the size of the dyadic blocks, 4 here.

4.3 Code-Based Cryptography
Code-based cryptography relies on the problem of decoding a random linear
code. It is currently considered as intractable for quantum computers, which
makes those very interesting to study. In the same period that RSA was pro-
posed, in 1978, McEliece published a public key encryption scheme based on
linear codes [49]. Due to their publication at the same time, they were compet-
ing to be used but RSA was preferred because of the smaller size of the keys.
McEliece’s scheme made a come back when the problem on which RSA is based
was found to be an easy problem for quantum computers to solve. This scheme
seems to stay safe against quantum computers, this is why it is an important
part of the schemes proposed to NIST Call for proposals [51].

4.3.1 McEliece Scheme
The McEliece scheme [49] is made up of three algorithms: KeyGen for key gen-
eration, Encrypt for encryption and Decrypt for decryption.

4.3.1.1 Key Generation KeyGen(n, k, t)

This algorithm takes as input the parameters n, k, t ∈ N and a finite field Fq in
order to generate the pair of public/private keys necessary for the scheme. The
steps of the algorithm are the following ones :

1. Choose a family of linear codes over Fq for which an efficient decoding
algorithm that we denote D exists. The basic version of the McEliece
scheme uses the families of binary Goppa codes.

2. From this family, pick a [n, k] code C which can correct up to t errors.
We call DC the decoding algorithm associated to the code C .

3. Let G be a random generator matrix of C .

The algorithm can then output the pair of keys : the public key pk = (G, t)
and the private key sk = DC .

4.3. CODE-BASED CRYPTOGRAPHY 67

4.3.1.2 Encryption Encrypt(m, pk)

This algorithm takes as input a messagem ∈ Fnq and the public key in order to
compute and return the corresponding ciphertext. The steps of the algorithm
are the following ones :

1. Pick a random error vector e ∈ Fnq such that ||e|| = t

2. Compute y = mGpub + e

The vector y is the ciphertext.

4.3.1.3 Decryption Decrypt(y, sk)

This algorithm takes as input a ciphertext y and the private key in order to
retrieve the messagem. The ciphertext is of the form y = c+e with c ∈ C the
ciphertext without any errors and e the error vector such that ||e|| ≤ t. The
steps of the algorithm are the following ones :

1. Compute c = DC (y) thanks to the private key sk.

2. Deduce m thanks to the private key and the knowledge of c = mG.

The vector m is the plaintext we wanted to retrieve.

4.3.1.4 Niederreiter Variant

After the publication of McEliece scheme [49], a variation was introduced by
Niederreiter [50]. It induces the following changes in the different elements :

• the public key is (Hpub, t)

• the private key is also the decoding algorithm DC

• the ciphertext c = Hpubm
T

The decryption uses the fact that the product GHT = 0.

4.3.2 Security of the scheme
We present two types of attacks here, that can be performed against a McEliece-
like system : message recovery attacks and key recovery attacks.

Message Recovery Attacks A message recovery attack aims at recovering
the plaintext m when the ciphertext y and the public key (Gpub, t) are known.
Such an attack must be reiterated for each ciphertext we want the corresponding
plaintext of, which can be bothersome.

68 CHAPTER 4. CODE-BASED CRYPTOGRAPHY

Key Recovery Attacks A key recovery attack aims at finding an efficient
decoding algorithm, the one from the private key or an equivalent algorithm,
when knowing the generator matrix of the code. Once an algorithm is found, we
can decrypt all ciphertexts, which makes this attack very powerful. Moreover,
even when the scheme has multiple private keys that can help decoding, finding
one is sufficient to have a successful attack.

Syndrome Decoding Problem and ISD In cryptography, we need to have
a hard problem to ensure the security of a scheme. Both McEliece and Nieder-
reiter schemes security rely on the hardness of the Syndrome Decoding Problem
:

Problem 4.35 (Syndrome Decoding Problem). Let C be a [n, k] code over Fq
and H its parity check matrix. Let t be an integer and s ∈ Fn−kq be a uniformly
random vector. The Syndrome Decoding Problem consists in finding a vector
e ∈ Fn with ||e|| ≤ t such that HeT = sT .

The Syndrome Decoding Problem is NP-complete, and it is hard for the
quantum computers for now. That is why the McEliece and Niederreiter cryp-
tosystems are considered serious candidates for post-quantum cryptography, in
particular the Classic McEliece cryptosystem [19] proposed to the NIST Post-
Quantum Call for Submissions [51].

Chapter 5

Presentation of DAGS
cryptosystem

Contents
5.1 Introduction . 70
5.2 Presentation of the DAGS cryptosystem 71

5.2.1 Construction . 71
5.2.2 Original Sets of Parameters 73

5.3 First attack on DAGS 74
5.3.1 Definitions . 74
5.3.2 Principle of the attack 77
5.3.3 Complexity results 83
5.3.4 Consequences on parameters 84

69

70 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

5.1 Introduction
In 2017, the NIST launched a Call for Submissions for post-quantum algorithms.
The goal was to find one or multiple algorithms to use against the quantum
computer threat, and for the chosen ones, to be standardized. The researched
algorithms are for encryption as well as for signatures.

More than 80 teams of researchers from all over the world made a propo-
sition, and 69 were kept for the first round of analysis. The submissions were
separated in multiple families : lattice-based, code-based, isogeny-based or mul-
tivariate were among them.

Since them, multiple rounds of analysis were done, and recently, in July
2022, a first group of algorithms was chosen to be standardized. For encryp-
tion, only the lattice-based candidate CRYSTALS-KYBER was selected, and
for signatures the lattice-based algorithms CRYSTALS-Dilithium and Falcon,
as well as the hash-based algorithm SPHINCS+ were chosen. No code-based
candidate has been already picked, but some of them are still under analysis for
a 4th round : Classic McEliece, BIKE and HQC. The isogeny-based algorithm
SIKE was also selected for this 4th round.

Among the algorithms that were eliminated in previous rounds, there were
some code-based algorithms, and particularly an algorithm named DAGS. It is
based on McEliece and uses Generalized Srivastava codes, we will introduce it
here. We will also explain the first attack that was made against it [16].

Outline of the chapter
In this chapter, we begin by introducing the properties and parameters of the
DAGS cryptosystem in section 5.2. Then, in section 5.3, we will present the
first attack that was effective on it.

5.2. PRESENTATION OF THE DAGS CRYPTOSYSTEM 71

5.2 Presentation of the DAGS cryptosystem
DAGS is a variant of the McEliece scheme presented in subsection 4.3.1, but the
authors incorporated a randomization into their system, following the model of
[52]. This choice is made to improve the efficiency of the scheme by using a
shorter starting vector in the encapsulation, and to get tighter security bounds.
All the elements presented in this section are extracted from the specifications
sent to NIST [5, 6] or the article [7].

5.2.1 Construction
The cryptosystem DAGS can be separated into three distinct algorithms : one
is for key generation, a second is for the key encapsulation and a third is for the
key decapsulation. As the cryptosystem uses finite fields and alternant codes,
we need the following parameters :

• q is the size of the finite field

• m is the extension degree

• n is the length of the QD-alternant code

• k is the dimension of this code

• k′ is an arbitrary small value which depends on the base field such that
k = k′ + k′′

• s = 2γ is the number of elements of the permutation group (γ being the
number of generators)

• t is the degree of the alternant code

5.2.1.1 DAGS Key Generation

The first algorithm generates the public and private keys. Before developing
the process of key generation, we need to introduce the co-trace function:

1. Generate the vector h = (h0, . . . , hn−1) of elements of Fqm :

(a) Choose random distinct nonzero h0 and h2` for ` = 0, . . . , blog qmc
(b) Generate the missing elements of h using the following formula :

1
hi⊕j

= 1
hi

+ 1
hj

+ 1
h0

(5.1)

(c) Return a selection of blocks of dimension s up to length n

2. Build the corresponding Cauchy support :

(a) Choose a random offset ω $←− Fqm

72 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

(b) Create two vectors u = (u0, . . . , us−1) and v = (v0, . . . , vn−1) such
that :

ui = 1
hi

+ ω for i = 0, . . . , s− 1 (5.2)

vj = 1
hj

+ 1
h0

+ ω for j = 0, . . . , n− 1 (5.3)

3. Create the Cauchy matrix Ĥ1 = C (u,v) with components Cij = 1
ui−vj

4. Build blocks ĥi for i = 2, . . . , t by raising elements of Ĥ1 to the power i

5. Form the matrix Ĥ by superimposing the blocks in ascending order.

6. Choose random elements zi
$←− Fqm of a vector z such that zis+j = zis

for i = 0, . . . , n0 − 1 and j = 0, . . . , s− 1

7. Form the matrix H = Ĥ · diag (z)

8. Transform H into alternant form to obtain the matrix H ′ (see [48], chap.
12), that is to say transform H to get a matrix whose each coefficient is
of the form H ′ij = fj (αi), with fj functions from a set K to Fqm and αi
elements of K.

9. Project H onto Fq using the co-trace function to obtain a matrix Hbase

10. Put Hbase into systematic form
(
M In−k

)
The public key is the generator matrix G =

(
Ik MT

)
, while the private key

is the alternant matrix H ′ defined at step 8.

5.2.1.2 DAGS Encapsulation

The second algorithm is for encaspulation. It uses three hash functions :

• G : Fk′q → Fkq , which helps with generating randomness for the scheme

• H : Fk′q → Fk′q , which provides plaintext confirmation as explained in [42].

• K : {0, 1} ∗ → {0, 1}`, which gives the shared symmetric key of length `

Now that have seen those necessary hash functions, here are the steps of the
encapsulation algorithm :

1. Pick a vector m $←− Fk′q

2. Compute r = G (m) and d = H (m)

3. Split r into two parts as (ρ || σ) then set µ = (ρ ||m)

4. Generate the error vector e of length n and weight w from the vector σ

5.2. PRESENTATION OF THE DAGS CRYPTOSYSTEM 73

5. Compute c = µG+ e

6. Compute k = K (m)

The ciphertext to be sent is the pair (c,d) while the encapsulated key is the
vector k.

5.2.1.3 DAGS Decapsulation

The last algorithm is for decapsulation and uses the same hash functions de-
scribed in the encapsulation. It uses the alternant decoding algorithm from [48]
on the noisy codeword received in the ciphertext. It requires the parity-check
matrix to be in alternant form, as specified during the computation of the keys.

1. Decode c using the private key H ′ to obtain codeword µ′G and error e′

2. Return ⊥ if the decoding fails or if the weight of e′ is not w

3. Recover µ′ and split it into two parts (ρ ||m′)

4. Compute r′ = G (m′) and d′ = H (m′)

5. Split r′ as (ρ′′ || σ′)

6. Generate the error vector e′′ of length n and weight w from the vector σ′

7. If e′ 6= e′′ or ρ′ 6= ρ′′ or d 6= d′, return ⊥

8. Else, retrieve the decapsulated key k = K (m′)

5.2.2 Original Sets of Parameters
The first sets of parameters were given in the DAGS specifications [5, 6]. They
are shown in Table 5.1.

Table 5.1: DAGS original sets of parameters
q m n k γ t NIST Security Level

DAGS_1 25 2 832 416 4 13 Level 1 (128 bits AES)
DAGS_3 26 2 1216 512 5 11 Level 3 (192 bits AES)
DAGS_5 26 2 2112 704 6 11 Level 5 (256 bits AES)

The authors provided 3 sets of parameters corresponding to the three se-
curity levels asked by the NIST. They called them DAGS_1, DAGS_3 and
DAGS_5, and they respectively correspond to the same security as a 128, 192
and 256 bits AES exhaustive search. We can notice that the characteristic is 2
for all the sets of parameters, which means that we will not have to keep the
negative signs along computations.

74 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

5.3 First attack on DAGS
In 2018, a first attack was designed against the cryptosystem DAGS and pre-
sented in [16], which is the main reference for the contents of this section. It is
a key-recovery attack that is available in two versions : one combinatorial, one
algebraic. Both versions rely on finding a subcode of the public code using an
operation called conductor. They differ by the method used : the first makes
use of partial brute force while the second solves a polynomial bilinear system.

In this section we begin by giving some definitions needed to understand the
attack. We then explain the core principle of the attack and the complexity of
the two versions. We end by presenting the changes made to the parameters
following this attack.

5.3.1 Definitions
We begin by giving some definitions that are needed to do the attack on DAGS.

5.3.1.1 Codes

To proceed with the attack, we have to create some codes from the public parts
of the scheme. We introduce here some products as well as codes that uses
them.

Definition 5.1. The component-wise product of two vectors a and b in Fnq is
defined as

a ? b = (a1b1, . . . , anbn)

In the same spirit, we can define a component-wise power such that, for any
positive integer t, we have

a?t = a ? · · · ? a︸ ︷︷ ︸
t times

For a ∈ Fnq2 , we recall the trace Tr (a) and the norm N (a) the vectors
that result from the application of the trace and the norm maps component by
component:

Tr (a) = (a1 + aq1, . . . , an + aqn)

N (a) =
(
aq+1

1 , . . . , aq+1
n

)
Definition 5.2. The Schur product of two codes A and B ⊆ Fnq corresponds
to the code generated by all the component-wise products of one codeword from
A and one codeword of B:

A ?B = 〈a ? b | a ∈ A , b ∈ B〉Fq

We can define as well the square code of a code A by:

A ?2 = A ?A

5.3. FIRST ATTACK ON DAGS 75

This Schur product has a different behavior when applied to GRS and some
alternant codes than when it is applied to random linear codes. It thus provides
a way to distinguish GRS codes among random ones. We can give the following
result:

Theorem 5.3 (Proposition 6 from [16]). Let x ∈ Fnqm and y,y′ ∈ Fnqm be
respectively a support and two multipliers. Let k, k′ be two positive integers.
We can write:

GRSk (x,y) ?GRSk′ (x,y′) = GRSk+k′−1 (x,y ? y′)

with k + k′ − 1 < n.

5.3.1.2 Conductors

Definition 5.4 ([16]). Let C and D be two codes of length n over Fq. The
conductor of D into C is defined as the largest code Z ⊆ Fnq such that D ?Z ⊆
C :

Cond (D ,C) =
{
u ∈ Fnq | u ?D ⊆ C

}
Proposition 5.5. Let D ,C ⊆ Fnq two codes, then

Cond (D ,C) =
(
D ? C⊥

)⊥
When computing the conductor of a GRS code into another, we obtain a

new code, which is much simpler. The following proposition explains that.

Proposition 5.6. Let x,y ∈ Fnqm be respectively a support and a multiplier.
Let k ≤ k′ be two integers less than n. Then, we can write:

Cond (GRSk (x,y) ,GRSk′ (x,y)) = RSk′−k+1 (x)

This proposition highlights the main advantage of using a conductor: the
code obtained uses x but not y, which is canceled. This resulting code is a
Reed-Solomon code, which depends only on a support vector.

5.3.1.3 Norm-Trace Code

For the following statements, we consider an element α ∈ Fq2 , α 6= 1 such that
Tr (α) = 1. The couple (1, α) forms a Fq-basis of Fq2 .

Definition 5.7. Let the vector x ∈ Fnq2 be a support. The norm-trace code
NT ⊆ Fnq can be defined as:

NT (x) = 〈1,Tr (x) ,Tr (αx) ,N (x)〉Fq

The dimension of this code is 4.

76 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

5.3.1.4 Invariant subcode

For the explanation of the attack, we need to define two new constructions of
codes: the folded code and the invariant code.

Definition 5.8. Let n, s be two positive integers such that s divides n. Let σ be
a quasi-cyclic shift of length n as defined in definition 4.30 and σs its associated
cyclic shift of length s. The folded map on F is:

ϕs : Fn −→ Fn

(x1, . . . , xn) 7−→
s−1∑
i=0

σis (x1, xs+1, . . . , xn−s+1)

Definition 5.9. Let C ⊆ Fn be a quasi-cyclic code with a quasi-cyclic shift of
size s. Then, the folded code is ϕs (C) ⊆ Fn

s .

Definition 5.10. Let C ⊆ Fn be a quasi-cyclic code with a quasi-cyclic shift σ.
Then, the invariant code is defined by:

C σ = {c ∈ C |σ (c) = c}

This invariant code has repeated entries, which may induce some redundancy
into the systems we will work on. Such redundancy does not change the result we
obtain, but it surely slows down the computations and reduces their efficiency.

So we use a variant of this code, that we will call the punctured invariant
code and that we will write:

C
σ = PunctIs (C σ)

where Is = {1, . . . , n} \ {1, s+ 1, . . . , n− s+ 1}.
Usually, the folded code and the invariant code are not equal, but we have

the following lemma from [15]:

Lemma 5.11. Let s be a positive integer and C be a quasi-cyclic code with a
quasi-cyclic shift of length s. Then, we have:

ϕs (C) ⊆ C
σ

If s is not a multiple of the characteristic of the field, then ϕs (C) = C σ

Remark 5.12. Given C a linear code over Fqm stable under a permutation σ,
the invariant and the subfield subcode operations can commute:(

C ∩ Fnq
)σ =

{
c ∈ C | c ∈ Fnq and σ (c) = c

}
= C σ ∩ Fnq

5.3.1.5 The subcode D

To do the attack, we need to introduce a subcode D of Cpub that will allow us
to compute the norm-trace code, as we will see in the following subsection. This
subcode is unknown by the attacker.

5.3. FIRST ATTACK ON DAGS 77

Definition 5.13. Let be G a permutation group such that |G| ≤ q. (This is
true for all the cases we treat in this thesis.) We can define the code D as an
invariant subcode of an alternant code:

D = Ar+q (x,y)G

Theorem 5.14. Under the heuristic presented in [16], we have the following
result:

Cond (D ,Cpub) = NT (x)

Moreover, the code D has a codimension ≤ 2q
|G| in (Cpub)G.

The result of this theorem is verified most of the time when doing experi-
ments.

5.3.2 Principle of the attack
The general principle of this attack is to find the code D so that we can compute
the norm-trace code NT and then retrieve the vectors x and y of the original
code.

The attack can be divided in three major steps:

1. Compute the invariant subcode (Cpub)G of the public code Cpub. The
public code, by definition, is known so we just have to apply the definition
5.10 of an invariant code on it.

2. Find the unknown subcode D of (Cpub)G of codimension 2q
|G| such that

Cond (D ,Cpub) = NT (x) (5.4)

This step is the most difficult one, and two ways of achieving it were
presented:

• The first approach aims at finding D using a brute force search on
subcodes of codimension 2q

|G| of (Cpub)G (Details in 5.3.2.1)
• The second approach consists in solving a bilinear system to find D
and NT (x) (Details in 5.3.2.2)

From the code D , we can compute NT (x).

3. Recover x from NT (x) and then y from x (Details in 5.3.2.3)

5.3.2.1 Combinatorial version: brute force search

The first way of finding the subcode D ⊆ (Cpub)G is to conduct a brute force
search. We enumerate all the subspaces X of codimension 2q

|G| until we find a
Cond (X ,Cpub) whose dimension is 4. However, the number of such subspaces
is unreasonably large to be practically computed.There are two strategies we
can use to reduce the cost of this search.

78 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

The first one is to use the fact that the public code has a rate less than 1
2 .

Hence, there is a high probability that the conductor Cond (D0,Cpub), with D0
a random subcode of D of dimension 2, equals NT (x). It results in an average
number of O

(
q

4q
|G|

)
computations to find NT (x).

The second one consists in shortening the public code Cpub on a set of a ≥ 1
positions corresponding to a0 blocks of size |G|. This shortened code conve-
niently remains quasi-dyadic. The integer a is chosen so that the shortening
of D has a dimension 2. We then enumerate the possible subspaces until we
find one that has a conductor of dimension 4, that equals NT (x) with a high
probability. It results in an average number of O

(
q

4q
|G|

)
computations to find

NT (x), just as the strategy previously presented.
Both strategies allow a reduction of the number of computations needed to

find the conductor NT (x) that is enough to make this attack doable.
Thus, for each subspace X that we enumerate, we have to do an average

number of O
(
q

4q
|G|

)
computations. Finally, we need to consider the cost of

computing the conductor for each X we have to enumerate, which is at most
2n3 computations in Fq. The final complexity is then :

O
(
n3q

4q
|G|

)
operations in Fq (5.5)

These complexity computations are explained in greater details in [16].

5.3.2.2 Algebraic version: polynomial system solving

Another way of finding the subcode D is to solve a specific bilinear system.
To determine this system, we use the facts that Tr (x) ∈ Cond (D ,Cpub) and
Cond (D ,Cpub) =

(
D ? C⊥pub

)⊥. From these two formulas, we can write:

GD?C⊥pub
· Tr (x)T = 0 (5.6)

where GD?C⊥pub
is the generator matrix of the code D ? C⊥pub. As this equality

stands true when replacing Tr (x) by Tr (βx) for any β ∈ Fq2 , we also have:

GD?C⊥pub
· xT = 0 (5.7)

This gives us the system we need, although we may need to alter it for analysis.
We have two unknowns: the code D and the vector x that will provide us two
sets of variables. We denote c = 2q

|G| the codimension of D in (Cpub)G and Ginv

the k0 × n0 generator matrix of (Cpub)G .
For the code D , we introduce (k0 − c) c formal variables in a matrix:

U =

 U1,1 . . . U1,c
...

...
Uk0−c,1 . . . Uk0−c,c

5.3. FIRST ATTACK ON DAGS 79

Then, it is probable that the code D has a generator matrix of the form(
Ik0−c | U

)
·Ginv. If it is not the case, which is rare, we can simply choose

another generator matrix for (Cpub)G .
To stay true to the system given above, we search for a generator matrix

for D ?C⊥pub. We can get one by constructing a matrix whose rows corresponds
to all the Schur products of one row of the generator matrix of D by one row
of the parity-check matrix Hpub of Cpub. This matrix is a generator matrix of
D ? C⊥pub for a specialization of the variables Ui,j .

We need to define a product that we will call star product, that we will use
right after in the writing of the system.

Definition 5.15. The star product of two matrices A of size nA×mA and B of
size nB ×mB corresponds to the component-wise product of every combination
of one row from each matrix. It is defined as:

(A ?B)i,j = a(i−1) div nB+1,jb(i−1) mod nB+1,j

It works only if mA = mB and the resulting matrix is nAnB × mA. For this
specific product, an order has to be chosen for the rows that are taken. The
choice here is taking one row on the first matrix, and multiplying it by every
row of the second matrix.

The second set of variables corresponds to the entries of the vector x that
we will denote X1, . . . , Xn. Our final system can be written:

(((
Ik0−c | U

)
·Ginv

)
?Hpub

)
·

X1
...
Xn

 = 0 (5.8)

The intuitive idea to make the solving of the system easier is to maximize
the number of equations while minimizing the number of variables. We will see
later that there are other details we need to consider to be the most efficient
possible.

For the (k0 − c) c variables in U , the only thing we can do is keeping a
limited amount of rows in U , the minimum, 2, if it is possible. We then have
Number of rows ×c variables U .

For the n variables X, we can reduce their number by applying three tricks:

1. We use the fact that the code is quasi-dyadic and take advantage of the
effects of the additive groupe G. We introduce the variables A1, . . . , Aγ
the generators of G, which allow us to substitute (X1, . . . , Xn) by:

V = (T1, T1 +A1, . . . , T1 +A1 + · · ·+Aγ , T2, T2 +A1, . . .)

= (T1, . . . , Tn0)⊗ 12γ + 1n0 ⊗

(
0, A1, A2, A1 +A2, . . . ,

γ∑
i=1

Ai

)

for some variables T1, . . . , Tn0 .

80 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

2. We are able to specialize two variables thanks to the 2-transitive action of
the affine group on Fq2 . Then, one can replace variable Tn0 by 0 and A1
by 1.

3. As in the second strategy described in 5.3.2.1, it is possible to shorten the
codes in order to reduce the number of variables. We shorten the code D ,
which also implies that we puncture the matrix Hpub and the vector V
accordingly. These changes reduce the length of the support of the code,
and the number of the variables Ti accordingly. We will see later on that
although it intuitively seems the best idea to reduce the variables to their
minimum (which corresponds to keeping only 2 rows of the matrix U),
this does not always give the best results.

The system can now be modified again to include the application of those
tricks. Let I ⊂ J1, nK be a set of cardinality 2γa0 such that I is the union of a0
disjoint dyadic blocks. The system becomes:

(((
Id | U

)
· ShortI (Ginv)

)
? PunctI (Hpub)

)
· PunctI

0
1

0 +A2
...
Tn0
...

Tn0 +
γ∑
i=1

Ai

= 0

where d = dim ShortI (D) = k0 − c− a0.
For the different versions of DAGS, we obtain the following reduction of

variables:

Table 5.2: Reduction of the variables
Initial #U Initial #X Final #U Final #X
(k0 − c) c n Total (k0 − a0 − c) c n0 − a0 + γ − 2 Total

DAGS_1 88 832 920 88− 4a0 54− a0 142− 5a0
DAGS_3 48 1216 1264 48− 4a0 41− a0 89− 5a0
DAGS_5 18 1600 1618 18− 2a0 37− a0 55− 3a0

The variable a0 is the number of indices that we shorten with the last trick
presented. The numerical results that are presented afterwards are using all
these tricks, and the next chapters as well.

5.3.2.3 Finishing the attack

Both of the versions explained imply that we have the knowledge of NT (x) or
NT (xI). Thus, it is possible to apply the same steps to recover the private
vectors x and y:

5.3. FIRST ATTACK ON DAGS 81

1. Recover x from NT (x) or xI from NT (xI)
Let’s consider we have found the NT (x). This code has a dimension 4
over Fq and we can prove that:

NT (x)⊗ Fq2 = 〈1,x,xq,x(q+1)〉

Thanks to the 2-transitivity of the affine group on Fq2 , we can specialize
the value of the two first entries: we will consider the first entry of x to
be 0, and the second to be 1. Then, we shorten NT (x) ⊗ Fq2 . We get
the following code:

S = Short{1}
(
NT (x)⊗ Fq2

)
= 〈x,xq,xq+1〉

We can deduce the intersection between the code S and its square:

S ∩S 2 = 〈xq+1〉

The second entry of x being 1, we deduce the value of x(q+1). To find x,
we then need to enumerate the vectors of NT (x)⊗Fq2 that have 0 and 1
as their first and second entries. For any vector c that fills that condition,
we compute cq+1. We compare this value to the value of xq+1, if they are
equal then c is either x or xq.

Remark 5.16. We can actually make the computations faster, by try-
ing to recover

(
Tr (x)⊗ Fq2

)
= 〈Tr (x) ,Tr (αx)〉Fq2 . We don’t need to

shorten the code anymore, and we get:

Tr (x)⊗ Fq2 = 〈x,xq〉Fq2

Then, we have
(
Tr (x)⊗ Fq2

)2 ∩ (NT (x)⊗ Fq2
)

= 〈xq+1〉

We can still wonder: how can we find Tr (x) and Tr (αx) ? The first
way to do so is explained in Barelli’s thesis [15]. We will need to solve two
systems in the form of (5.6), where we are searching the value of Tr (x) for
the first system, an Tr (αx) for the second one. Both those systems have
the same first entry x1 of x which is equal to 0 due to the 2-transitivity:
we have Tr (x1) = Tr (t1) = 0, and we can deduce that T1 can be replaced
by 0. The two different systems actually differ by the value that replaces
the variable A1. The second entry x2 of x is equal to 1: for the first
system, we have Tr (a1) = 0, which means that we can replace A1 by 0;
for the second system, we have Tr (αa1) = Tr (α) = 1, thus we can replace
A1 by 1. This way works, but it requires to do two Gröbner bases, which
increases the complexity of performing the attack.
There is another way of obtaining the values of Tr (x) and Tr (αx), and it
only requires one Gröbner basis computation. We specialize the variables
T1 and A1 to respectively 0 and 0, and the variable A2 to 1. We can do
this last specialization thanks to the fact that we are searching for the

82 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

value of a trace. With these values, we solve the system and compute the
corresponding conductor. To get the values of Tr (x) and Tr (αx), we use
the generator matrix of the conductor. For Tr (x), we add its third and
fourth columns, thus obtaining a vector of the form

(
0 0 1 1 . . .

)
.

For Tr (αx), we add its second and fourth columns, resulting in a vector
of the form

(
0 1 0 1 . . .

)
.

We may encounter some cases where this reasoning does not work, when
values of Ai are in the base field instead of the extension, because the
trace of such values is equal to 0. We then need to tweak the algorithm
to find the correct trace vectors, but it is still possible.

2. Recover y from x or yI from xI
We know that the public code Cpub is alternant, so its parity-check matrix
Hpub follows the properties and form shown in 4.2.3.2. Let Gpub be the
generator matrix of Cpub. Since the coordinates of x (resp. xI) are known
from the previous step, we can compute the coordinates of y (resp. yI)
by solving the linear system:

H (x,y) ·GT
pub = 0 (5.9)

3. If necessary, recover x and y from xI and yI
This step is necessary only if we made the computations after shortening
the public code Cpub. We consider I = {s, s+ 1, . . . , n} the set of the
indices that were shortened. We suppose here that they are the indices of
the last columns; if otherwise, we can use an appropriate reordering. From
the previous steps, we have the knowledge of the coordinates x1, . . . , xs−1
and y1, . . . , ys−1. We begin by setting I ′ = I\ {s}. Let G (I ′) be a
generator matrix for the code Ar (xI′ ,yI′). We can write the following
equation:

y1 . . . ys
x1y1 . . . xsys
...

...
xr−1

1 y1 . . . xr−1
s ys

 ·G (I ′) = 0 (5.10)

The only unknowns here are xs and ys.
We can compute ys by solving the linear system:(

y1 . . . ys
)
·G (I ′) = 0 (5.11)

Once we have ys, we can compute xs by solving the linear system:(
x1y1 . . . xsys

)
·G (I ′) = 0 (5.12)

We can iterate this reasoning to compute the next entries until we recover
the whole vectors x and y.

5.3. FIRST ATTACK ON DAGS 83

5.3.3 Complexity results
Here we will present the complexities depending on the type of attack we chose
to do. We will analyse what we can see in the tables in order to understand the
computations that were made.

5.3.3.1 Combinatorial Attack Complexity

For the combinatorial version of the attack, we have the following estimated
complexities:

Table 5.3: Numerical complexity of the combinatorial attack
DAGS version Claimed Security Approximate Complexity

DAGS_1 128 bits ≈ 270

DAGS_3 192 bits ≈ 280

DAGS_5 256 bits ≈ 258

To get those complexities, we used the formula (5.5) and replaced the vari-
ables by the values presented in Table 5.1.

We notice that they are clearly under the security level they claimed to be
at first. The number are still high to do the computations in practice, but the
attack is considered to work nonetheless. Another thing that we can see from
this table is that, although the claimed security and the sizes of the vectors used
are the highest, DAGS_5 actually have the lowest complexity for this attack.
This can be explained by the choices that were made for the parameters q and
γ. Indeed, the complexity has an exponent of 4q

|G| , which, computed, is 8 for
DAGS_1 and DAGS_3 but only 4 for DAGS_5.

5.3.3.2 Algebraic Attack Complexity

For algebraic attacks, it is much harder to estimate the complexity so the com-
plexity presented are only practical. Here are the approximated times for the
attack on each version of DAGS, computed as an average from multiple runs:

Table 5.4: Average time for the algebraic attack in [16]
DAGS version Claimed Security Approximate Time

DAGS_1 128 bits 19 min
DAGS_3 192 bits −
DAGS_5 256 bits < 1 min

On this table, we can see that DAGS_1 can be attacked successfully in a rea-
sonable amount of time, whereas the attack on DAGS_3 was not yet achieved.
Indeed, a choice was made in order to reduce the number of variables to its

84 CHAPTER 5. PRESENTATION OF DAGS CRYPTOSYSTEM

minimum, but in the case of DAGS_3, it resulted in the practical impossibility
to realize the attack correctly. This issue will be discussed in detail in the next
chapter. We also notice that, just as it was the case for the combinatorial at-
tack, DAGS_5 seems to be the easiest to attack. The explanation is the same,
it is due to the choice of parameters.

5.3.4 Consequences on parameters
Due to the attack in [16], the authors updated their sets of parameters, as shown
in Table 5.5. We can notice two major changes in the values : the sizes q of the
finite fields have been increased for all sets of parameters, and the code-related
values have been modified. More precisely, the length n has been reduced from
2112 to 1600, while the dimension k has been raised from 704 to 896.

Table 5.5: DAGS updated sets of parameters
q m n k γ t NIST Security Level

DAGS_1 26 2 832 416 4 13 Level 1 (128 bits AES)
DAGS_3 28 2 1216 512 5 11 Level 3 (192 bits AES)
DAGS_5 28 2 1600 896 5 11 Level 5 (256 bits AES)

We can directly notice the effect of those changes when calculating the com-
plexity of the combinatorial version of the attack. They are shown in the table
5.6. We can see that DAGS_3 and DAGS_5 are completely exceeding their
respective claimed security. It is slightly different fore DAGS_1 : it is close to
the claimed security.

Table 5.6: Complexity of the combinatorial attack for updated parameters
DAGS version Claimed Security Approximate Complexity

DAGS_1 128 bits ≈ 2127

DAGS_3 192 bits ≈ 2287

DAGS_5 256 bits ≈ 2289

Chapter 6

A MinRank Attack on
DAGS

Contents
6.1 Introduction . 86
6.2 Modifying the Modeling 87

6.2.1 Eliminating redundancy among the equations 87
6.2.2 Altering the number of rows of the matrix U 88
6.2.3 Rewriting the DAGS Attack System 88
6.2.4 U variables . 92

6.3 Changing the Variables of DAGS Attack System
by Minors . 98

6.3.1 Macaulay matrix . 98
6.3.2 Rank of the Macaulay matrix 100

6.4 Experimental Results 100
6.4.1 With Input Improvements 100
6.4.2 With the B matrix 105
6.4.3 With MinRank Attack 105

6.5 Attacking New Parameters 106
6.5.1 Using the previous attack on updated parameters . . 106
6.5.2 Hybrid method . 107
6.5.3 Results on the updated parameters 108
6.5.4 Another update on the parameters 110

85

86 CHAPTER 6. A MINRANK ATTACK ON DAGS

6.1 Introduction
In the previous chapter we saw two different versions of the attack, one being
combinatorial and the other algebraic. Although the complexity of the combina-
torial one is known more precisely, the algebraic one is more efficient and takes
less time to succeed. We focus on the algebraic version, that worked initially
only on the sets of parameters DAGS_1 and DAGS_5.

Our goal here will be to make it work on the last set of parameters, DAGS_3,
and to shorten the time taken to attack the other sets of parameters. We begin
by making some changes in the modeling, either by changing the inputs or by
rewriting the system so that we can apply the method seen in Chapter 3.

This leads to the application of the MinRank attack on the DAGS cryp-
tosystem, which is currently the best alternative. It works efficiently for the
three first sets of parameters.

The authors of DAGS published updated parameters, and the attacks we
did would not be effective against them. We decided on relying on an hybrid
attack that mixes brute force search and algebraic modeling to try to attack
those new parameters.

Outline of the chapter
In this chapter, we first present multiples changes for the modeling in 6.2,
whether they are about the inputs or with the matrix B. We then describe
how the MinRank attack adapts to the DAGS cryptosystem in 6.3. We give
the results of all those previous explained methods in 6.4. Finally, in 6.5, we
present an alternative way of attacking the new parameters.

6.2. MODIFYING THE MODELING 87

6.2 Modifying the Modeling
After the publishing of the article [16], we tried to see if we could find any way
of improving further the attack, either by making it faster or by managing to
attack the DAGS_3 version. We found multiple improvements that reduced
considerably the computations time, and, that allowed us to successfully attack
DAGS_3. We will present here these improvements one after another.

Before introducing those improvements, we recall the formula of the system:

(((
Id | U

)
· ShortI (Ginv)

)
? PunctI (Hpub)

)
·

0
1

0 + b2
...

τn0−a0
...

τn0−a0 +
γ∑
i=1

bi

= 0

with

• Id the identity matrix of size d× d

• U the matrix of size (k0 − a0 − c)× c of variables

• Ginv the generator matrix of the invariant subcode of the public code

• Hpub the parity-check matrix of the public code

• τ1, . . . , τn0−a0 the n0 − a0 variables on which we apply the permutation
group

• b1, . . . , bγ the γ unknown elements of the permutation group

We can easily identify the two sets of variables that make this system bilinear:
one is the variables from U the other corresponds to both variables τ and b.

To ease the writing, from now on, we will not specify the shortening and
puncturing and when relevant, we will call V the vector made from the variables
τ and b. This leads to the system being rewritten as:(((

Id | U
)
·Ginv

)
?Hpub

)
· V T = 0

6.2.1 Eliminating redundancy among the equations
The first improvement came from the observation that during the computations
we had a huge number of equations that seemed to be almost all reduced after
a few steps. It was explained in [10].

This behavior comes from the fact that Ginv and Hpub are not indepen-
dent from each other. Indeed, Ginv is the generator matrix of the invariant

88 CHAPTER 6. A MINRANK ATTACK ON DAGS

code associated to the code Cpub, whose Hpub is a parity-check matrix. Their
structure and the fact that we do a product with the vector V that has every
entries repeated (due to the fact that b1 = 0) creates redundancy in the final
polynomials that we obtain.

Let’s take two rows r and rσ from Hpub in the same quasi-dyadic block
where σ is a permutation in G. For any row u = uσ from the invariant matrix(
Id U

)
SIGinv, the component-wise product with rσ satisfies u?cσ = (u ? c)σ.

As V = V σ + σ1n and u ? c · 1n = 0, we have a redundancy with as many
repetition as the size of the permutation group G.

This problem does not have an impact on the fact that we can find a solution,
but it may slow down the computation of the Gröbner basis, as the computer
will have to deal with more polynomials than what is actually needed. It is
however a problem to accurately estimate the complexity of computations. We
can solve this problem by deliberately picking 1 row every 2γ in the matrix H.

6.2.2 Altering the number of rows of U
This last improvement is the one that was the most effective in reducing the
practical complexity of the attack. In the previous chapter, we addressed the
fact that intuitively, we want to have the minimum number of variables possible.
We also noticed that reasoning like that did not allow DAGS_3 to be attacked.
We studied the DAGS system and identified that the number of variables was
heavily influenced by the number of rows of the matrix U .

This number of rows of the matrix U can vary between 2 and k0− a0− c. 2
is the minimum to be able to perform the attack but in some cases, as it is for
DAGS_3, the ratio between equations and variables is too small for the attack
to be doable practically. To actually being able to do the attack, we have to
consider keeping more rows from the matrix U . Indeed, this means keeping
more variables but also more equations. In the case of DAGS, for 1 row of U
that we keep, we get more equations than variables. The size of the identity
matrix concatenated to U corresponds to the number of rows we decide on for
U . The details of how many of each we keep for 1 row depending on the set of
parameters we are considering is given in the table 6.2.

6.2.3 Rewriting the DAGS Attack System
We recall the system we have for the attack on DAGS from previous chapters:(((

Id | U
)
·Ginv

)
?Hpub

)
· V T = 0

Unfortunately, this form does not allow us to apply easily the method pre-
sented in section 3.2. Thus, we need to transform it into a product of matrices
instead of a mix of classical and star products. To help with doing such thing,
we need to introduce two results about equalities between different matricial
products. The proof of the two lemmas can be found in the appendix A.

6.2. MODIFYING THE MODELING 89

Lemma 6.1. Let v a vector of size mv and X and Y be two matrices with mv
columns. We can write:

(X ? v) · Y T = X · (Y ? v)T (6.1)

(X ? Y)vT = vecrow
(

(X ? v)Y T
)

(6.2)

Lemma 6.2. Let A and C two matrices with the same number of columns, and
b and d two vectors of the same size.

(A⊗ b) ? (C ⊗ d) = (A ?C)⊗ (b ? d) (6.3)

Proposition 6.3 (Kronecker product properties). Let A and C two matrices
of the same size, and B and D two matrices also of the same size.

• Mixed-product property

(A⊗B) · (C ⊗D) = (A ·C)⊗ (B ·D) (6.4)

• Transpose property
(A⊗B)T = AT ⊗BT (6.5)

We can now use these two equations to transform our system and get it into
a better form to work with. In order to do that, we have to define new elements:

• Gf is the matrix such that Ginv =
(
Ik0 Gf

)
· (In0 ⊗ 12γ)

• H corresponds to the matrix Hpub where we take only 1 row every 2γ .

• H i is the matrix we define as H i = H ·
(
In0 ⊗ ê

T
i

)
with êi the vector of

0 and 1 such that êi = 12γ−i ⊗
(
0 1

)
⊗ 12i−1

Theorem 6.4. The DAGS attack system can be rewritten as:

(
k0∑
i=1

τi

(
0
(
−GT

f

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

f

)
[i,∗]

0

+

γ∑
i=1

bi (H i)[∗,{1...k0}]

)
·
(
Ik0−c
UT

)
= 0

Proof. We begin by directly applying Lemma 6.1 on the system:(((
Id U

)
·Ginv

)
?Hpub

)
· V T =

((
Id U

)
·Ginv

) (
H ? V

)T
Ginv is the generator matrix of the invariant code associated with the code

whose Hpub is the parity-check matrix, it can be expressed as G′f · (In0 ⊗ 12γ)

90 CHAPTER 6. A MINRANK ATTACK ON DAGS

where G′f =
(
Ik0 Gf

)
. The matrix H corresponds to the matrix Hpub where

we take only 1 row every 2γ . We can directly rewrite the previous equation as:(
Id U

)
·G′f · (In0 ⊗ 12γ) ·

(
H ? V

)T = 0(k0−c)×(n0−k0)(
Id U

)
·G′f ·

((
H ? V

)
(In0 ⊗ 12γ)T

)T
= 0(k0−c)×(n0−k0)

Now, we explain how we modify a subpart of the formula of the system:(
H ? V

)
(In0 ⊗ 12γ)T

=
(
H ?

(
~τ ⊗ 12γ + 1n0 ⊗

γ∑
i=1

biêi

))
(In0 ⊗ 12γ)T

We develop the star product, then the classical product of 2 matrices:

=
(
H ? (~τ ⊗ 12γ) +H ?

(
1n0 ⊗

γ∑
i=1

biêi

))
(In0 ⊗ 12γ)T

=
(
H ? (~τ ⊗ 12γ)

)
(In0 ⊗ 12γ)T +

(
H ?

(
1n0 ⊗

γ∑
i=1

biêi

))
(In0 ⊗ 12γ)T

We apply Lemma 6.1:

=H ((~τ ⊗ 12γ) ? (In0 ⊗ 12γ))T +H
((

1n0 ⊗
γ∑
i=1

biêi

)
? (In0 ⊗ 12γ)

)T
We now apply Lemma 6.2:

=H ((In0 ? τ)⊗ (12γ ? 12γ))T +
γ∑
i=1

biH ((In0 ? 1n0)⊗ (12γ ? êi))T

We develop the transpose for both the Kronecker products as in Equation 6.5:

=H
(

diag (τ)T ⊗ 1T2γ
)

+
γ∑
i=1

biH
(
ITn0
⊗ êTi

)
Finally, we apply Equation 6.4:

=H
(
In0 ⊗ 1T2γ

)
(diag (τ)⊗ 1) +

γ∑
i=1

biH
(
ITn0
⊗ êTi

)
=H f · diag (τ) +

γ∑
i=1

biHi

where H f = H ·
(
In0 ⊗ 1T2γ

)
and Hi = H ·

(
In0 ⊗ ê

T
i

)
.

6.2. MODIFYING THE MODELING 91

Our complete system has now become:

(
Id U

)
·G′f ·

(
H f · diag (τ) +

γ∑
i=1

biHi

)T
= 0(k0−c)×(n0−k0)

We continue the transformation to obtain a system with the most suitable
form by applying a transpose on both sides of the equation:(

H f · diag (τ) ·G′Tf +
γ∑
i=1

biHi ·G′Tf

)
·
(
Id
UT

)
= 0(n0−k0)×(k0−c)

To go further, we need to recall the definitions of some matrices:

H f =
(
−GT

f In0−k0

)
Hi =

(
(Hi)[∗,{1...k0}] 0

)
G′f =

(
Ik0 Gf

)
diag (τ) =

(
diag (τ1, . . . , τk0) 0

0 diag (τk0+1, . . . , τn0−1, 0)

)
With the simplifications induced by the way we can write those matrices,

our system becomes:(
−GT

f diag (τ1 . . . τk0) + diag (τk0+1 . . . τn0−1, 0)GT
f

+
γ∑
i=1

bi (Hi)[∗,{1...k0}]

)
·
(
Id
UT

)
= 0(n0−k0)×(k0−c)

(
k0∑
i=1

τi

(
0
(
−GT

f

)
[∗,i]

0

)
+
n0−k0−1∑
i=1

τk0+i

 0(
GT

f

)
[i,∗]

0

+

γ∑
i=1

bi (Hi)[∗,{1...k0}]

)
·
(
Id
UT

)
= 0(n0−k0)×(k0−c)

To be able to apply the reasoning seen before, we still need to separate the
homogeneous and linear parts. We can do that by dividing Gf into two parts

G1 and G2 such that Gf =
(
G1
G2

)
.

The homogeneous part of highest degree comes from the product between the
unknowns of the matrix U and those of the submatrix G2 of Gf . c∑

i=1
τk0−c+i

(
0
(
−GT

2

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

2

)
[i,∗]

0

92 CHAPTER 6. A MINRANK ATTACK ON DAGS

+
γ∑
i=3

bi (Hi)[∗,{k0−c+1...k0}]

)
·UT

The linear and constant parts are corresponding to multiple products that
include the identity matrix of

(
Id U

)
or the matrix H2 that is known.

k0−c∑
i=1

τi

(
0
(
−GT

1

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

1

)
[i,∗]

0

+

γ∑
i=3

bi (Hi)[∗,{1...k0−c}] + (H2)[∗,{k0−c+1...k0}] ·U
T + (H2)[∗,{1...k0−c}]

This way of writing the system is the one we will use to be able to apply the
methodology described in Section 3.2.

As we saw in Chapter 3, using minors with τ and b variables does not improve
the computations. We will then focus on the U variables.

6.2.4 U variables
We can now consider the other jacobian matrix, with respect to the τ and b
variables, which is the one that will bring us better results. Indeed, the solving
of the system using this U variables gets degree falls, when they exist, at a lower
degree. To make the reading easier, we identify the matrices of this system to
the matrices M i we saw before:

Mi =

0 for i ∈ [1, . . . , k0 − c](
0
(
−GT

2

)
[∗,i−k0+c]

0
)

for i ∈ [k0 − c+ 1, . . . , k0]
0(

GT
2

)
[i−k0,∗]
0

 for i ∈ [k0 + 1, . . . , n0 − 1]

(Hi−n0+1)[∗,{k0−c+1...k0}] for i ∈ [n0, . . . , n0 − 1 + γ − 2]

Due to the form of the homogeneous part, we can calculate separately the
jacobian for each sum and we construct the complete jacobian with a concate-
nation of the different parts :

jac(τ ,b) (vecrow (Fh)) = (6.6)(
jac(τk0−c+1,...,τk0) (vecrow (Fh))

∣∣jac(τk0+1,...,τn0−1) (vecrow (Fh))
∣∣jacb (vecrow (Fh))

)
We can notice that only part of the τ variables are appearing. Although,

thanks to the identification we just did, we can write the jacobian matrix with

6.2. MODIFYING THE MODELING 93

one unique formula, using Proposition 3.5 :

jac(τ ,b) (vecrow (Fh)) = (In0−k0 ⊗U) (vecrow (Mi))i={1,...,n0−1+γ−2}

Following Theorem 3.8, our next step is to construct a matrix B. Indeed, we
remarked previously that the Macaulay matrices can be arranged as a diagonal
of matrices B, and to be able to linearize such a matrix, we want to compute
the ranks of all matrices B. We choose to construct the matrix in 2 parts : one
for the τ variables, the other for the b variables. Their behavior is different: the
τ part is the one that induces degree falls and more reductions than expected,
while the b part has a full rank and behaves as a generic matrix. Once the
analysis is done, these parts can be concatenated to form the completeB matrix.

We remind the definition of the sets of indices T and T ′ that we introduced
in Theorem 3.8:

T = (t1, . . . , td) such that 1 ≤ tk < tk+1 ≤ r
T ′ =

(
t′1, . . . , t

′
d+1
)

such that 1 ≤ t′k < t′k+1 ≤ r

We chose to build the vectors of all possible sets of T and T ′: we respectively

denote them T =
(
T1, . . . , T(cd)

)
and T ′ =

(
T ′1, . . . , T

′
(c
d+1)

)
.

6.2.4.1 B for b variables

TheB(b) matrix, that corresponds only to the b variables, is of size
(
c
d

)
(n0 − k0)×(

c
d+1
)

(γ − 2) and its nonzero blocks are defined as :

B(b)
s =

(
(Hi)[∗,k0−c+s]

)
i={3,...,γ}

(6.7)

when T ′\T = {s}.
Th behavior of this matrix is comparable to any random matrix. Its expected

rank is
(
c

d+1
)

(γ − 2) and is identical to its size: the matrix is of full rank. This
can be verified practically.

6.2.4.2 B for τ variables

The B(τ) matrix, that is for the τ variables, is more complex, and is the con-
catenation of two matrices. We will see that this matrix does not have a generic
behavior, as it does not have a full rank.

By definition of the matrix B given in Subsection 3.2.2.1, we can write:

B(τ)
s =

(
M `,[∗,s]

)
`={1...n0−1}

As there are only the variables τk0+c−1 to τn0−1 in the homogeneous part of
highest degree of the system, we can restrict the matrices M `

B(τ)
s =

((
M `,[∗,s]

)
`={k0−c+1...k0}

(
M `,[∗,s]

)
`={k0+1...n0−1}

)

94 CHAPTER 6. A MINRANK ATTACK ON DAGS

By correspondence with the original matrices, and by changing the variable `
to i to remove the offset in the indices, we have:

B(τ)
s =

(

0
(
GT

2

)
[∗,i]

0
)
i=s

 0(
GT

2

)
[i,∗]

0

[∗,s]

i={1,...,n0−k0−1}

We detail the structure of a block of this matrix in the following lemma:

Lemma 6.5. The matrixB(τ) has a size of
(
c
d

)
(n0 − k0)×

(
c

d+1
)

(n0 − k0 + c− 1).
Its nonzero blocks are defined as :

B(τ)
s =

0 . . . gs,1 . . . 0 gs,1 0 0 0
0 . . . gs,2 . . . 0 0 gs,2 0 0
...

...
...

...
... 0 0

. . . 0

0 . . .
... . . . 0 0 0 0 gs,n0−k0−1

0 . . . gs,n0−k0 . . . 0 0 0 0 0

with T ′\T = {s} and gi,j being the element of G2 on the row i and on the
column j.

Proof. We consider T and T ′ two sets of indices, and T ′\T = {s}. From 6.2.3,
we can directly deduce the following form for B(τ)

s :

B(τ)
s =

(

0
(
GT

2

)
[∗,i]

0
)
i=s

 0(
GT

2

)
[i,∗]

0

[∗,s]

i={1,...,n0−k0−1}

This writing being difficult to work with, we will try to simplify it:

B(τ)
s =

((
0
(
GT

2

)
[∗,s]

0
)

diag
((
GT

2

)
[i,s]

)
i={1,...,n0−k0−1}

)
We can even explicitly give this block:

B(τ)
s =

0 . . . gs,1 . . . 0 gs,1 0 0 0
0 . . . gs,2 . . . 0 0 gs,2 0 0
...

...
...

...
... 0 0

. . . 0

0 . . .
... . . . 0 0 0 0 gs,n0−k0−1

0 . . . gs,n0−k0 . . . 0 0 0 0 0

This writing will allow us to find the rank of the complete matrix more easily.

6.2. MODIFYING THE MODELING 95

We can notice that those blocks, when they are not full of zeros, have a
specific structure. The first c columns are composed of 0 except the sth which is
actually the sth column of GT

2 . The rest of the block is composed of a diagonal
matrix composed of the same column. As we are working with a characteristic
2, we do not keep the signs that would have appeared otherwise. The last row
of this right part is full of zeros.

If this was a generic matrix, the rank would have been the one given in
[57]:

(
c

d+1
)

(n0 − k0 + c− 1). This is where the effects of the structure of DAGS
emerge and induce changes: the rank is not the one expected.

Theorem 6.6. We suppose that all coefficients of Bc are different from 0 and
that we do not have a column of Gf that is only zero. The rank of B(τ) is

Rank(B(τ)) = min
{ (

c

d

)
(n0 − k0) ,

(
c− 1
d

)
(n0 − k0) +

(
c

d+ 1

)
d

}
(6.8)

Proof. We remind that B(τ) is a block matrix, whose blocks have a size of
(n0 − k0) × (n0 − k0 + c− 1). They are indexed by T =

(
T1, . . . , T(cd)

)
for

what we will call block rows and T ′ =
(
T ′1, . . . , T

′
(c
d+1)

)
for block columns. We

work in a field with a characteristic 2, so we will discard the signs we will find
along the computation. The simplification of the matrix B(τ) will be done in
two steps, that will help us to prove its rank.

To ease the computation of the rank of B(τ), we choose an ordering on T
and T ′ such that all the block rows and all the block columns indexed by sets
containing the value c are the last ones. With such an ordering, we can divide
B(τ) in 4 parts :

((c−1
d+1
)
sets T ′ with c /∈ T ′

(
c−1
d

)
sets T ∪ {c}(

c−1
d

)
sets T with c /∈ T BT,T ′ diag (Bc)(

c−1
d−1
)
sets T with c ∈ T 0 BT,T ′

)

Step 1 This first step applies operations on columns in the matrix B(τ) so
that its form is right for the second step. For a given block column indexed by
T ′, we want to consider the nonzero block Bs, where s is the greatest element
of T ′. We want to cancel its s-th column, which is the only nonzero column
among the c first ones, using the diagonal part of the matrix. For the fixed
block column, we can add all columns together. This is equivalent to multiply
B(τ) by a matrix on the right that allows sums of columns. The effects of this
product is different whether the block where we apply it is Bs or another block.

96 CHAPTER 6. A MINRANK ATTACK ON DAGS

The matrix Bs becomes:

B′s =

s

0 0 0 0 g1,s 0 0

0 0
... 0 0

. . . 0
0 0 0 0 0 0 gn0−k0−1,s

0 0 gn0−k0,s 0 0 0 0

The other matrices Bk with k 6= s become:

B′k =

k s

0 g1,k 0 g1,k 0 0

0
... 0 0

. . . 0
0 gn0−k0−1,k 0 0 0 gn0−k0−1,k

0 gn0−k0,k gn0−k0,k 0 0 0

As we consider only one block column at a time, the process works on all
the block columns independently. From now on, we will write all the modified
matrices with a prime.

Step 2 The second step removes the diagonal part of all the nonzero blocks
in the top-left part of the matrix, using the B′c blocks in the top-right part.

We make the hypothesis that all the coefficients coming fromB′c are different
from zero. At the end, we will examine the probability of some of them being
zero, and the changes this would induce.

To do so, we need to understand what columns are involved to cancel the
diagonal parts of a given block column. Let’s start by giving new notation:

T ′ = {t1, . . . , td+1}
Ti = T ′\ {ti}
T ′i = T ′\ {ti} ∪ {c}

= Ti ∪ {c}

6.2. MODIFYING THE MODELING 97

T ′ T ′1 . . . T ′2 . . .

...
T1 B

(τ)
t1 B(τ)

c

...
...

...
T2 B

(τ)
t2 B(τ)

c

...
...

...
...

...
...

...
...

T3 0 B
(τ)
t2 . . . B

(τ)
t1

...

In the block column indexed by T ′, we chose a column `′ such that `′ ∈ L =

[c+ 1, . . . , n0 − k0 + c− 1, t1]. We call ` the index of `′ in the list L.
We now consider a submatrix of B(τ) where we have chosen to keep the

column `′ in each block column T ′, T ′1, . . . , T
′
d+1. The only rows that are not

zero on those columns are the rows ` in block rows indexed by T1 to Td+1 as
well as S ∪ {c} , S ⊆ T ′. We obtain the following matrix:

T ′ T ′1 T ′i T ′j T ′d+1
T1 g`,t1 g`,c 0 0 0
Ti g`,ti 0 g`,c 0 0
Tj g`,tj 0 0 g`,c 0
Td+1 g`,td+1 0 0 0 g`,c
T ′\{ti, tj} ∪ {c} 0 0 g`,tj g`,ti 0

We name the columns of this matrix such that c0 corresponds to the block

column indexed by T ′ and ck corresponds to the block columns indexed by T ′k
for k = 1, . . . , d+ 1.

We want to cancel all g`,ti in the first column c0, we have to add the column
ci multiplied by g`,ti

g`,c
:

c0 ← c0 −
d+1∑
k=1

g`,tk
g`,c
× ck

On the rows indexed by T1, . . . , Td+1 we get zero on the column c0. The
operations that we do have no consequences on the row S∪{c}, S ⊂ T ′: we add
twice the same coefficient and thus still have a zero afterwards.

Finally, in the first
(
c−1
d+1
)
block columns (whose column indexing sets do

not contain c), we have d columns that have at least one coefficient. In the
remainder of the matrix, that is to say the

(
c−1
d

)
columns shows indexing sets

contains c, each block is made of a unique column of coefficients as well as a
diagonal part of size n0 − k0 (with a permutation if needed). That means that
there are n0 − k0 + d nonzero columns.

It is to be noticed that if the computed rank is too high compared to the
number of rows of the matrix, the rank is actually this number of rows. This

98 CHAPTER 6. A MINRANK ATTACK ON DAGS

provides an expression for the rank :

Rank
(
B(τ)

)
= min

{
#Rows,

(
c− 1
d+ 1

)
d+

(
c− 1
d

)
(n0 − k0 + d)

}
= min

{(
c

d

)
(n0 − k0) ,

(
c

d+ 1

)
d+

(
c− 1
d

)
(n0 − k0)

}

Remark 6.7. In Theorem 6.6, we made 2 hypotheses about coefficients being
different from 0.

If there is a zero coefficient in Bc, it is possible to modify the order of the
sets T and T ′ such that the matrices we use to cancel the others don’t have any
zero coefficients. This would not change the rank of the matrix. In the extreme
case that all the Bs possible have a zero on the same row, i.e. it is impossible
to find an order that works, this induces a decrease of the rank by one for each
row full of zero. This can happen with a probability of 1

((n0−k0)q)c

If there is a column full of zero in Gf , then there is one less column that has
to be considered when counting the rank. This can happen with a probability
of 1

(cq)n0−k0

In both cases, the probability is quite low. However, if the rank is actually
smaller than expected, this is an advantage: we obtain more syzygies and thus
more degree falls.

We have seen the two parts of the matrix B separately. Considering the two
parts are independent and that there is no reason to have identical columns, we
can simply add the two ranks we got before. We can deduce that the rank of
the complete matrix is the following one:

Theorem 6.8. The total rank of B is

Rank(B) ≤ min
{ (

c

d

)
(n0 − k0) ,

(
c− 1
d

)
(n0 − k0) +

(
c

d+ 1

)
(d+ γ − 2)

}
(6.9)

6.3 Changing the Variables of DAGS Attack Sys-
tem by Minors

In this section, we apply the method explained in 3.3 on the system made from
DAGS. We also explain what makes the process of creating the Macaulay matrix
and calculating its rank different from the generic case.

6.3.1 Macaulay matrix
We begin by searching for the Macaulay matrix structure. We will see that it is
similar though different from the generic case, as we add some new constraints
linked to the codes used.

6.3. CHANGING THE VARIABLES OF DAGS ATTACK SYSTEM BY MINORS99

We have the following system:

(
k0∑
i=1

τi

(
0
(
−GT

f

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

f

)
[i,∗]

0

+

γ∑
i=1

bi (Hi)[∗,{1...k0}]

)
·
(
Id
UT

)
= 0(n0−k0)×(k0−c)

We search for a different way to describe the system, in order to highlight
the coefficients of the Macaulay matrices and the associated minors. We use the
same process as in section 3.3, where we separated the minors of bidegree (1, d)
and (1, d+ 1). This case is a bit harder due to the groups of variables that are
not in every product with minors. It results in the following expression, for a
given d:

k0∑
i=1

[∑
j∈J

τiM i,[`,j] det
(
U [J\{j},T]

)
+
∑
s/∈T

τiM i,[`,s] det
(
U [J,T∪{s}]

)]
`=1,...,n

+
n0−1∑
i=k0+1

[∑
j∈J

τiM i,[`,j] det
(
U [J\{j},T]

)
+
∑
s/∈T

τiM i,[`,s] det
(
U [J,T∪{s}]

)]
`=1,...,n

+
γ∑
i=1

[∑
j∈J

biMn0+i−1,[`,j] det
(
U [J\{j},T]

)
+
∑
s/∈T

biMn0+i−1,[`,s] det
(
U [J,T∪{s}]

)]
`=1,...,n

with the following matrices:

M i =

(
0
(
−GT

f

)
[∗,`]

0
)

if ` = 1, . . . , k0
0(

GT
f

)
[`−k0,∗]
0

 if ` = k0 + 1, . . . , n0 − 1

(H`−n0+1)[∗,{1,...,k0}] if ` = n0, . . . , n0 + γ − 1

We obtain a Macaulay matrix with a form that is similar to the one of the
generic case described in 3.3. However, we have additional constraints that
comes from the sparsity of the matrices M i that imply that the block matrices
are going to be either sparser than before or completely filled by zeros. The
constraints are dependent on each one of the three parts of the previously stated
expression.

In the first part, that is about the variables τ1 to τk0 , we can notice that
M i,[`,j] is zero unless j = i, due to the form of the matrix itself. The same thing
applies forM i,[`,s], which is zero unless s = i. In the second part, that is about
the variables τk0+1 to τn0−1, we see thatM i,[`,j] is zero unless ` = i, due to the

100 CHAPTER 6. A MINRANK ATTACK ON DAGS

matrix begin a null matrix apart from the ith column. The exact same thing
goes for M i,[`,s], which is zero unless ` = i. The third part does not actually
bring a new constraint, as the matrices M i used in this part are not sparse.

Those constraints bring a lot more zeros to the Macaulay matrix than in
the generic process. Indeed, the coefficients of the matrices M i that are used
directly correspond to coefficient of the matrix. Thus, they are inducing a
lowering of the rank, and thus are modifying the complexity of solving the
system. The difference between the generic rank and the DAGS’ one is explained
in next subsection.

6.3.2 Rank of the Macaulay matrix
We want to focus now on the rank of the Macaulay matrix we described just
before.

While studying the generic case, we explained that the rank was:

Rank (Macaulay matrix) = min
{

de∑
i=db

m

(
ν

i+ 1

)(
r

i

)
,

(
de∑
i=db

n

(
ν

i

)(
r

i

))
− 1
}

Unfortunately, due to the different structure of DAGS that we described in
subsection 6.3.1, the rank is different. Considering that the number of zeros
is higher in the Macaulay matrix for DAGS, it is reasonable to think that this
rank is going to be lower. We remind the observation made in 3.3 regarding the
fact that we can find the matrices B in the Macaulay matrix. We can extend it
to the DAGS cryptosystems, by applying the same principle but with the rank
of the matrix B for DAGS:

Rank (Macaulay matrix) = min
{

de∑
i=db

(n0 − k0)
(
k0 − c
i+ 1

)(
c

i

)
,

de∑
i=db

(
k0 − c
i+ 1

)((
c− 1
i

)
(n0 − k0) +

(
c

i+ 1

)
(i+ γ − 1)

)}

6.4 Experimental Results
We present here the experimental results of the application of the theoretical
works previously explained on the DAGS cryptosystem.

6.4.1 With Input Improvements
We apply the improvements we just presented on the DAGS attack system, with
the 3 sets of parameters. We have the choice of shortening the codes used or
not. We will provide explanations and numerical results for both of those cases.

6.4. EXPERIMENTAL RESULTS 101

6.4.1.1 Solving without shortening

Let’s first consider the case where we don’t shorten the codes. The number
of quadratic equations is (k0 − c) × (n0 − k0 − 1) and the number of different
variables are :

• U : Nrows (U)× c, with the number of rows between 2 and k0 − c.

• T : n0 − k0 + c− 1

• A : γ − 2

When we replace all these parameters by their value depending on the set of
parameters of DAGS, we obtain the following table (we consider the maximum
possible size for the matrix U):

Table 6.1: Number of variables and equations for DAGS versions without short-
ening

Name Nrows (U) #U #T #A Vars Eq. Ratio
DAGS-1 22 88 29 2 119 550 4.6
DAGS-3 12 48 25 3 76 252 3.3
DAGS-5 9 18 23 4 45 189 4.2

These numbers are quite high, but we still have way more equations than
variables, as indicated by the ratios. The choice to not apply a shortening to
the system allows the degree reached during the Gröbner basis computation to
stay the lowest possible, as we consider all the equations at our disposal. The
drawback of this choice is that by taking into account all these equations, we slow
down the computations: the computer has to test much more S-polynomials.
The numerical results for DAGS are given in 6.4.1.3.

6.4.1.2 Solving with a shortening

Let’s now consider the case where we chose to shorten the codes. We see the
apparition of the variable a0 in the formulas, which corresponds to the number
of variables Ti that we remove. It also reduces the maximum possible size of
the matrix U .

The number of equations for this case is (k0 − c− a0) × (n0 − k0 − 1) and
the number of variables are:

• U : Nrows (U)× c, with the number of rows between 2 and k0 − c− a0.

• T : n0 − k0 + c− 1

• A : γ − 2

102 CHAPTER 6. A MINRANK ATTACK ON DAGS

One thing that we can notice here is that the number of Ti variables that
we obtain does not depend on a0. We can do the following computation to find
the number of Ti variables:

(#Ti −#shortened indices)−#polynomial linear in Ti −#specializations
= (n0 − a0)− (k0 − a0 − c)− 1
= n0 − a0 − k0 + a0 + c− 1
= n0 − k0 + c− 1

As for the previous case where we were not shortening the code, we replace
parameters by their values and obtain the following numbers of variables and
equations (we consider the maximum possible size for U again):

Table 6.2: Number of variables and equations for each DAGS version with
shortening

Name Nrows(U) #U #T #A Vars Eq.
DAGS-1 22− a0 88− 4a0 29 2 119− 4a0 550− 26a0
DAGS-3 12− a0 48− 4a0 25 3 76− 4a0 252− 22a0
DAGS-5 9− a0 18− 2a0 23 4 45− 2a0 189− 22a0

With this table we clearly see that each time we increase a0, we decrease the
variables respectively by 4, 4 and 2 , while we remove respectively 26, 22 and
22 equations. It means that we can increase the ratio between equations and
variables faster than we increase a0. We can also notice that it entirely depends
on the number of rows of the matrix U . Here we can not provide a ratio as
it depends on the value we chose for a0, but the numerical results for different
number of rows for U are presented in the next subsection.

6.4.1.3 Numerical results

We will present here the numerical results of our attacks on the different sets
of parameters of DAGS. We will consider each set of parameters one after the
other, as the behavior of the systems are not always the same. We attacked each
set of parameters 100 times, and computed the means for the number of Gröbner
bases computations, the duration of these computations and the memory used
for them. We realized those tests using Magma [21] on a machine with a Intel R©

Xeon R© 2.60GHz processor. The number of computations to obtain the Gröbner
bases are indicated in the tables as the number of clock cycles of the CPU,
given by Magma using the ClockCycles() function. Finally, the last column of
the tables corresponds to the highest degree reached during the Gröbner basis
computation. We can see on all the tables that the number of variables in #V
does not vary, as we explained in subsection 6.4.1.2.

6.4. EXPERIMENTAL RESULTS 103

Results for DAGS_1 DAGS_1 is the first set of parameters, its security is
supposed to be equivalent to the security of a 128 bits AES scheme. Here is
the table summarizing what we found during our tests for different numbers of
rows for U :

Table 6.3: Numerical results of the attack on DAGS_1
Nrows (U) #U #V Eq. Ratio Gröb. Time Mem.(Gb) Deg.

2 8 31 50 1.28 239 276s 2.21 4
3 12 31 75 1.74 238 163s 1.11 4
4 16 31 100 2.13 233 4s 0.12 3
5 20 31 125 2.45 234 6s 0.24 3
22 88 31 550 4.6 244 108m 5.01 3

The first row of the table corresponds to the tests with the minimum number
of variables U , which are the same that were done in [16]. We are able to
compute the Gröbner basis faster thanks to the improvements that we applied,
276 seconds instead of 19 minutes, but we can detect that the results are still
not the best ones. This can be explained by observing the last column: when
we keep only 2 or 3 rows for U , the degree reached during the Gröbner basis
algorithm is 4, which is higher than with more rows. It is due to the lower
number of equations, the algorithm then needs to reach a higher degree to find
the linear polynomials that we are searching for.

On the contrary, the last row shows the results for the tests without removing
any row of the matrix U . We notice that the duration of the attack is much
higher, with 108 minutes, mainly because of the huge number of variables and
equations: 119 variables for 550 equations. However, the degree reached during
the Gröbner basis computation is only 3. This is a beneficial effect of having
many equations, we have enough interactions between polynomials at a lower
degree to find our basis.

We can notice that the best result is obtained for a matrix U with 4 rows.
It corresponds to the lowest number of rows for U for which the degree stays 3.
For these tests, we have 47 variables for 100 equations, which gives us a ratio of
2.13. It only takes 4 seconds and 120 Megabytes to compute the Gröbner basis.

Results for DAGS_3 DAGS_3 is the second set of parameters, its security
is supposed to be equivalent to the security of a 192 bits AES scheme. Here is
the table summarizing what we found during our tests for different numbers of
rows for U :

The first row of the table corresponds to the tests with the minimum number
of variables U , which is 8, 28 variables #V and 42 equations. This gives a ratio
between variables and equations of 1.17. Our results are coherent with those
from [16]: we were not able to perform the attack when we only keep 2 rows
from U . The computations had to stop because the memory on our server was
saturated. We reached 139 Gigabytes and a degree 6 as long as the process was

104 CHAPTER 6. A MINRANK ATTACK ON DAGS

Table 6.4: Numerical results of the attack on DAGS_3
Nrows (U) #U #V Eq. Ratio Gröb. Time Mem.(Gb) Deg.

2 8 28 42 1.17 – – ≥ 139 ≥ 6
3 12 28 63 1.58 239 321s 1.24 4
4 16 28 84 1.91 237 70s 1.11 4
5 20 28 105 2.19 238 140s 1.48 4
12 48 28 252 3.3 244 109m 10.2 4

running.
The last row shows the results for the tests without removing any row of

the matrix U . As for DAGS_1, the duration of the tests with the maximum
of 12 rows was 109 minutes. Even if the ratio is high for those values, the
number of variables and equations remains big so the computations are slower
than with fewer rows. We can notice in the table that the degree reached for
every case tested but the first is 4, and as the last row shows a degree of 4, the
computations can not go lower.

We see that the best result is obtained for a matrix U with 4 rows, where
the computation only takes about 70 seconds. The degree reached is the same
than when we do not remove any row from U , but we can explain the better
results by the lower number of variables and equations, respectively 40 and 63
instead of 76 and 252.

Results for DAGS_5 DAGS_5 is the third and last set of parameters, its
security is supposed to be equivalent to the security of a 256 bits AES scheme.
Here is the table summarizing what we found during our tests for different
numbers of rows for U :

Table 6.5: Numerical results of the attack on DAGS_5
Nrows (U) #U #V Eq. Ratio Gröb. Time Mem.(Gb) Deg.

2 4 27 42 1.35 231 0.4s 0.12 3
3 6 27 63 1.91 231 0.4s 0.13 3
4 8 27 84 2.40 231 0.5s 0.15 3
5 10 27 105 2.84 231 0.4s 0.19 3
9 18 27 189 4.2 233 42s 0.30 3

The case of DAGS_5 is simpler than the two others, as the results do not
change a lot depending on the number of rows of U we are keeping. As a
general rule for this set of parameter, the less variables and equations there are,
the shortest the Gröbner basis computation is. Thus, we can notice that we
obtain the best results for a matrix U with only 2 rows. The degree reached
during the computations is 3 and stays the same for all the tests we did. The
duration of those computations as well as the memory used are very small: 42

6.4. EXPERIMENTAL RESULTS 105

seconds and 300 Megabytes for the full matrix U with 9 rows, and less than 0.5
seconds and 200 Megabytes with 2 to 5 rows.

6.4.2 With the B matrix
We now present the results that are induced by the method explained before. We
compare them to the solving of the DAGS system without any precomputation.

Table 6.6: Comparison of the computation of a Gröbner basis for DAGS systems
with different sets of parameters with or without precomputations, for the best
degree found in 6.4.1.3

Params Precomp. time GB time Total time Without Precomp.
DAGS_1 0.3s 1.1s 1.4s 4s
DAGS_3 0.3s 1.6s 1.9s 70s
DAGS_5 0.0s 0.3s 0.3s 0.4s

Let us analyse the results for each set of parameters, as the results are slightly
different for each of them.

For DAGS_1, the time is divided by almost 3. We can notice that this is
a slight reduction of the time complexity. The difference between the methods
with or without precomputations is pretty low for one computation, although
it can become significative when we multiply the systems to solve.

For DAGS_3, the time is divided approximately by 35. This is the set of
parameters which shows the best improvement thanks to the precomputation.
It was the hardest set to attack without the precomputations, and although it
stays that way with this method, the difference with the other sets has decreased
immensely.

For DAGS_5, the time does not seem to change a lot. This can be explained
by the fact that this set of parameters is already fast without any precompu-
tations. We can chose any of the two methods as they imply a similar time
complexity.

6.4.3 With MinRank Attack
We present the experimental results that we obtained for the MinRank Attack.

Table 6.7: Experimental results of rank, sizes of matrices and time complexity
for each set of parameters. Comparison with previous results.

Params Matrix Rank Matrix Size Time Comp. Time With Precomp.
DAGS_1 1226 1248× 2448 0.1s 1.4s
DAGS_3 2485 2640× 4250 0.9s 1.9s
DAGS_5 191 198× 310 0.01s 0.3s

106 CHAPTER 6. A MINRANK ATTACK ON DAGS

In Table 6.7, we can see that the matrix sizes are really small, and that
the rank is smaller than the number of rows, which means that we have a
decrease in the rank. These two columns directly impacted the time taken by
the algorithm to find a Gröbner Basis. The Time Comp. columns corresponds to
the time taken to do an Echelon Form on the Macaulay Matrix, while the Time
With Precomp. corresponds to the time taken to compute the F4 algorithm
in MAGMA with some precomputations. By comparing those two columns,
we clearly see the improvements. For all sets of parameters tested, the time
complexity drops under the second, which is a really good time for an attack.

6.5 Attacking New Parameters
After the attack presented in [16], the authors of DAGS updated their parame-
ters to get a better security and thus be protected from it. We already explained
what were the main changes in 5.3.4, here in table 6.8 we simply remind these
updated parameters.

Table 6.8: DAGS updated sets of parameters
q m n k γ t NIST Security Level

DAGS_1.1 26 2 832 416 4 13 Level 1 (128 bits AES)
DAGS_3.1 28 2 1216 512 5 11 Level 3 (192 bits AES)
DAGS_5.1 28 2 1600 896 5 11 Level 5 (256 bits AES)

With these new parameters, the attack as we presented it previously does
not work because the parameters are too big. We will give the details about
this first, then we will introduce the concept of a hybrid method, following by
the explanation on how it allows us to attack the DAGS_1.1 set of parameters.
We will end this section by giving the reasons why we can not apply the same
method to the two other sets of parameters.

6.5.1 Using the previous attack on updated parameters
To try to attack these updated parameters as we did with the first sets, we need
to calculate how many variables and equations we have:

Table 6.9: Number of variables and equations for the updated parameters
Param. Nrows (U) c #U #V Var. Eq. Ratio
DAGS_1.1 18 8 144 35 179 450 2.5
DAGS_3.1 0 16 – – – 0 0
DAGS_3.1 dual 6 16 96 34 130 90 0.7
DAGS_5.1 12 16 192 40 232 252 1.1

6.5. ATTACKING NEW PARAMETERS 107

These numbers do not allow us to perform the attack as we did before. The
reasons are different for each set of parameters:

DAGS_1.1 The number of variables that we have for this set of parameters is
too high for the computations to end without exceeding the memory we
had. Reducing the number of rows ofU diminishes the number of variables
accordingly but it does not help with the complexity. The computation
involve a matrix that has more than 2 millions of rows with polynomials in
degree 4, which was too much to be handled. We were not able to attack
this set of parameters using the previous attack, but the ratio being 2.5,
we tried to find an other way: we explain what we managed to do in 6.5.2.

DAGS_3.1 For this set of parameters, we have c = k0. It implies that some
matrices can not have any rows, and thus the code D does not exist and
we can not perform the attack at all. We even thought of considering the
dual of the public code, but then the ratio between variables and equations
is 0.7, which makes the system underdetermined and impossible to solve.

DAGS_5.1 The problem with this set of parameters is similar to the one en-
countered for DAGS_1.1. Indeed, the numbers of variables and equations,
respectively 232 and 252, is too high to allow us to attack the system. The
ratio being as low as 1.1, it may be difficult to apply the same reasoning
as we did with DAGS_1.1 to attack it another way.

6.5.2 Hybrid method
Before getting into how we can apply it to DAGS_1.1, we will begin by giving
the general idea about what an hybrid method is in our case.

6.5.2.1 General Principle

The principle of this method was introduced in [20]: it consists in mixing exhaus-
tive search to the Gröbner bases computations we were already using before.

Using only one of these 2 methods is too complex: we know that the com-
plexity of computing Gröbner bases for the updated parameters is too high,
and that the complexity for exhaustive search corresponds to the size of the
field of the variables raised to the number of variables we have in the system,
which is too big. Moreover, using this technique increases the ratio between
equations and variables, which is, as we have seen in 6.4.1.3, is beneficial for
the complexity of the attack. Our goal by using this method is to find the best
tradeoff that allow us to compensate the gain obtained by working on systems
with less variables with the cost of the exhaustive search performed on some
given variables.

Furthermore, trying to compute a Gröbner basis for an incorrect specializa-
tion of variables is slightly faster, as it stops as soon as it finds 1 in the system.
It means that the system we tested has no solution, and we then know that
the specialization was wrong. We repeat that for each specializations, taking

108 CHAPTER 6. A MINRANK ATTACK ON DAGS

advantage of the fact that we do less operations when the algorithm does not
have a solution.

We remind that the system we are trying to attack is bilinear, which means
that when we specialize some variables chosen carefully, the polynomials con-
taining those same variables can become linear. This directly impacts the com-
plexity of the attack, as linear polynomials are easier to deal with.

6.5.2.2 Application on DAGS

To apply this on DAGS, we need to select which ones of the variables are the
best ones to specialize: we have the choice between the variables U ∈ Fq,
A ∈ Fqm and T ∈ Fqm . We need to take into account the size of the space
they are contained in, which affect the complexity of the exhaustive search, as
well as the number of equations that are using those variables. Indeed, as the
polynomials are bilinear, specializing variables means making them linear if we
chose the variables correctly.

If we look at how the variables are distributed among the blocks of polyno-
mials, we notice that one block uses all variables A and T , and only one row of
variables U . It means that if we specialize some variables A or T , we keep all
the polynomials bilinear, whereas specializing a row of variables U allows us to
get a complete block composed of solely linear variables. Moreover, as we said,
the variables U are in a finite field smaller than the one the variables A and T
are, so it will cost less to enumerate all their possible values.

Through our tests and experimentations, we noticed that it is more effective
to specialize complete rows of variables U at the same time. Indeed, only ap-
plying the exhaustive search on a limited part of the row can help by reducing
the number of variables but it is not enough to make the polynomials linear.

The complexity of computing a Gröbner basis while using an exhaustive
search is:

qNspec × Cfalse + Ctrue (6.10)

where Nspec corresponds to the number of variables we are trying to specialize,
and Ctrue and Cfalse are respectively the complexities of the Gröbner basis
computation when the specialization of the variables is right and wrong.

6.5.3 Results on the updated parameters
Now that we have seen the principle of this method and the general idea about
how we want to apply it on the updated DAGS sets of parameters, let us see the
results we obtained. We will see that this method works on the set of parameters
DAGS_1.1, and we will explain why it does not on the other sets of parameters.

6.5.3.1 Results on DAGS_1.1

We begin by considering the set of parameters DAGS_1.1. We remind that
the parameters as well as the initial numbers of variables and equations for
DAGS_1.1 can be found in the tables 6.8 and 6.9.

6.5. ATTACKING NEW PARAMETERS 109

We saw in the previous subsection that the variables we need to chose to be
the most efficient in our attack are the variables U . For this set of parameters,
we have c = 8 variables U on each row. Let us begin by trying to specialize only
one row, and testing with different number of rows for the matrix U . We obtain
the following results, the last column not being experimental but corresponding
to the application of the formula 6.10:

Table 6.10: Number of variables, equations and experimental complexities for
the hybrid method applied to DAGS_1.1. Cfalse and Ctrue respectively corre-
spond to the complexity of a try that does not work and the complexity of a
try that works.

Nrows (U) Var Linear Bilinear Cfalse Ctrue Total
2 43 25 25 235 236 283

3 51 25 50 235 236 283

4 59 25 75 238 239 286

5 67 25 100 240 240 288

We can see on this table of experimental complexities, that for all those
tests, the total is far under the claimed security of 128 bits for DAGS_1.1. It
might be too big to be computed practically for the moment, but the fact that
these values are less than 2128 are sufficient to consider this hybrid method a
success for this set of parameters. We can also notice in this table that the
number of linear equations is completely related to the number of rows that we
are specializing in U . Indeed, 1 row specialized gives us a linear block. However,
the number of bilinear equations grows at the same time as the number of rows
of U .

We now have a successful attack against this updated set of parameters, and
we can wonder if we can improve it further, for example by specializing more
variables. We can try to do the calculations : if we want to try to specialize
more variables, we need to consider two rows of the matrix U . That corresponds
to 16 variables. If we apply the formula of complexity 6.10, we have:

(
26)16 × Cfalse + Ctrue = 296 × Cfalse + Ctrue

The value 296 is below the claimed security of 128 bits, but it is not clear
that the product with the complexity of a Gröbner basis computation with a
wrong specialization will not exceed 2128. In that case, that attack would not be
considered successful. The best choice for the number of rows for U to get the
best results in terms of complexity seems to be 2 or 3, with the best measured
complexity of 283. Let us now see if we can apply the same reasoning to the 2
other sets of parameters.

110 CHAPTER 6. A MINRANK ATTACK ON DAGS

6.5.3.2 On the impossibility of attacking DAGS_3.1 and DAGS_5.1

We can not use the same attack on the two other sets of parameters. We will
tackle them one after the other as the reasons are completely different.

For DAGS_3.1, we actually already explained in 6.5.1 why this attack can
not work. The parameters of this set are preventing the code D to exist, thus
making the attack impossible. The dual is not a viable solution either, due to
the ratio between equations and variables being under 1.

For DAGS_5.1, the reason is in the complexity of the attack using the hybrid
method. Indeed, to be efficient, we need to specialize at least 1 complete row
of variables U , which corresponds to 16 variables here. We made the table 6.11
for different number of rows of U and only 1 row specialized.

Table 6.11: Number of variables and equations and ratio for the hybrid method
on DAGS_5.1

Nrows (U) Var Linear Bilinear Ratio
2 72 21 21 0.75
3 88 21 42 0.88
4 104 21 63 0.95
5 120 21 84 1.01
6 136 21 105 1.05

We can see in this table that the ratios are all too small and the number of
variables too high to be able to attack the set of parameters DAGS_5.1. As
specializing 16 variables seems not enough, we can consider specializing more
variables.

Let us consider the case where we want to specialize 2 rows of the matrix
U , which corresponds to 32 variables. We can apply the formula 6.10 and we
obtain: (

28)32 × Cfalse + Ctrue = 2256 × Cfalse + Ctrue

As stated previously, Cfalse corresponds to the complexity of a specialization
that does not work, whereas Ctrue corresponds to the complexity for a correct
specialization. It is clear here that it is not relevant to consider the case where we
try to specialize 32 variables as the cost of the exhaustive search alone is already
2256, and it corresponds to the claimed security for this set of parameters. We
would have to add the Cfalse and Ctrue into the formula, which will inevitably
surpass the claimed security. We can conclude by saying that with all those
elements, we are unable to attack DAGS_5.1 with the hybrid method.

6.5.4 Another update on the parameters
Following this hybrid method for attacking DAGS, the authors published in [4]
another update on the sets of parameters, which consisted in raising the size

6.5. ATTACKING NEW PARAMETERS 111

of the finite field for the DAGS_1.1 set, as well as reducing the values for the
parameters n, k and t:

Table 6.12: DAGS last sets of parameters
q m n k γ t NIST Security Level

DAGS_1.1 28 2 704 352 4 11 Level 1 (128 bits AES)
DAGS_3.1 28 2 1216 512 5 11 Level 3 (192 bits AES)
DAGS_5.1 28 2 1600 896 5 11 Level 5 (256 bits AES)

With these changes, we can legitimately wonder if these parameters are now
secure against this hybrid method for attacking. There were no changes for
DAGS_3.1 and DAGS_5.1, so we can already rule them out. For DAGS_1.1,
we need to do some calculations. The codimension c value changes from 8 to
m×q
2γ = 2×28

24 = 25 = 32, which means that a row of the matrix U corresponds
now to 32 variables. Using the formula 6.10, we determine that the complexity
of computing a Gröbner basis while specializing 32 variables is:(

28)32 × Cfalse + Ctrue = 2256 × Cfalse + Ctrue

We remind that Cfalse is the complexity of a try for a wrong specialization,
and Ctrue is the complexity for a correct specialization. As for DAGS_5.1, we
can see that the complexity of the exhaustive search alone is too big for the
calculations to be made. These changes on the set of parameters DAGS_1.1
are protecting the system against this hybrid version of the attack we presented
in this chapter.

112 CHAPTER 6. A MINRANK ATTACK ON DAGS

Conclusion

In this thesis we first explained what are polynomial systems and one method to
solve them: Gröbner bases computation. We then detailed how we can adapt it
to some subfamilies, in particular the bilinear polynomial systems. We focused
on bilinear systems that can be expressed as a product of matrices, as some
new results were published during these last years. We studied those, and tried
to make some changes to get a better understanding of the process as well as
improving the complexity. We managed to do so by using the minors as variables
of the systems, making the Macaulay matrices much smaller. This consequently
decreased the complexity of applying linear algebra on the matrix.

Following this analysis that was done on generic cases, we recalled definitions
that are important in code-based cryptography. We discussed how the process
of the first part can be applied to the solving of the system coming from on
attack on the DAGS cryptosystem. After presenting how is the DAGS scheme
working, we detailed the first attack that was done against it. Everything
we explained after that were improvements that we made on this attack by
modify the modeling. We improved it first by altering the inputs of the system,
making the attack successful on a set of parameters that was not broken yet.
The other modifications we tried in order to further improve the attack were
more focused on the Gröbner Basis process, particularly by pre-computing some
equations with a lower complexity than it would have been with the Gröbner
basis computation algorithm.

113

114 CHAPTER 6. A MINRANK ATTACK ON DAGS

Bibliography

[1] “Algorithms for matrix canonical forms”. PhD thesis. 2000. doi: 10.3929/
ETHZ-A-004141007 (page 19).

[2] Josh Alman and Virginia Vassilevska Williams. “A Refined Laser Method
and Faster Matrix Multiplication”. In: CoRR abs/2010.05846 (2020). arXiv:
2010.05846. url: https://arxiv.org/abs/2010.05846 (page 19).

[3] John B. Baena, Daniel Cabarcas, and Javier A. Verbel. “On the Com-
plexity of Solving Generic Over-determined Bilinear Systems”. In: CoRR
abs/2006.09442 (2020). url: https : / / arxiv . org / abs / 2006 . 09442
(pages 3, 31, 41).

[4] Gustavo Banegas, Paulo S.L.M. Barreto, Brice Odilon Boidje, Pierre-Louis
Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiecoumba Gueye,
Richard Haeussler, Jean Belo Klamti, Ousmane N’diaye, Duc Tri Nguyen,
Edoardo Persichetti, and Jefferson E. Ricardini. “DAGS: Reloaded Re-
visiting Dyadic Key Encapsulation”. In: Code-Based Cryptography - 7th
International Workshop, CBC 2019, Darmstadt, Germany, May 18-19,
2019, Revised Selected Papers. Ed. by Marco Baldi, Edoardo Persichetti,
and Paolo Santini. Vol. 11666. Lecture Notes in Computer Science. Springer,
2019, pp. 69–85. doi: 10.1007/978-3-030-25922-8_4 (page 110).

[5] Gustavo Banegas, Paulo S.L.M Barreto, Brice Odilon Boidje, Pierre-Louis
Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiecoumba Gueye,
Richard Haeussler, Jean Belo Klamti, Ousmane N’diaye, Duc Tri Nguyen,
Edoardo Persichetti, and Jefferson E. Ricardini. DAGS : Key Encapsu-
lation for Dyadic GS Codes. Specifications from the first round submis-
sion to the NIST post-quantum cryptography call - Version 1. 2017. url:
https://www.dags-project.org/pdf/DAGS_spec_v1.pdf (pages 71,
73).

[6] Gustavo Banegas, Paulo S.L.M Barreto, Brice Odilon Boidje, Pierre-Louis
Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiecoumba Gueye,
Richard Haeussler, Jean Belo Klamti, Ousmane N’diaye, Duc Tri Nguyen,
Edoardo Persichetti, and Jefferson E. Ricardini. DAGS : Key Encapsu-
lation for Dyadic GS Codes. Specifications from the first round submis-
sion to the NIST post-quantum cryptography call - Version 2. 2018. url:

115

https://doi.org/10.3929/ETHZ-A-004141007
https://doi.org/10.3929/ETHZ-A-004141007
http://arxiv.org/abs/2010.05846
https://arxiv.org/abs/2010.05846
https://arxiv.org/abs/2006.09442
https://doi.org/10.1007/978-3-030-25922-8_4
https://www.dags-project.org/pdf/DAGS_spec_v1.pdf

116 BIBLIOGRAPHY

https://www.dags-project.org/pdf/DAGS_spec_v2.pdf (pages 71,
73).

[7] Gustavo Banegas, Paulo Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel,
Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiecoumba Gueye, Richard
Haeussler, Jean Klamti, Ousmane Ndiaye, Duc Tri Nguyen, Edoardo Per-
sichetti, and Jefferson E. Ricardini. “DAGS: Key encapsulation using
dyadic GS codes”. In: Journal of Mathematical Cryptology 12.4 (2018),
pp. 221–239. doi: 10.1515/jmc-2018-0027 (page 71).

[8] Magali Bardet. “Étude des systèmes algébriques surdéterminés. Applica-
tions aux codes correcteurs et à la cryptographie”. PhD thesis. Université
Pierre et Marie Curie - Paris VI, 2004. url: https://tel.archives-
ouvertes.fr/tel-00449609 (page 21).

[9] Magali Bardet and Manon Bertin. “Improvement of algebraic attacks for
solving superdetermined MinRank instances”. In: Post-Quantum Cryp-
tography - 13th International Workshop, PQCrypto 2022, September 28-
30, 2022, Proceedings. Ed. by Jung Hee Cheon and Thomas Johansson.
Vol. 13512. Lecture Notes in Computer Science. Springer, 2022 (pages 3,
47).

[10] Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani. “Prac-
tical Algebraic Attack on DAGS”. In: CBC 2019. Darmstadt, Germany,
May 2019. isbn: 978-3-030-25921-1 (pages 3, 87).

[11] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent
Neiger, Olivier Ruatta, and Jean-Pierre Tillich. “An Algebraic Attack on
Rank Metric Code-Based Cryptosystems”. In: Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12107. Lecture Notes in Computer Science. Springer, 2020, pp. 64–93.
url: https://doi.org/10.1007/978-3-030-45727-3%5C_3 (page 31).

[12] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray
A. Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier A. Ver-
bel. “Improvements of Algebraic Attacks for Solving the Rank Decod-
ing and MinRank Problems”. In: Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-
11, 2020, Proceedings, Part I. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12491. Lecture Notes in Computer Science. Springer, 2020, pp. 507–
536. url: https://doi.org/10.1007/978- 3- 030- 64837- 4%5C_17
(pages 3, 31, 34, 47, 48, 51).

[13] Magali Bardet, Jean Charles Faugère, Bruno Salvy, and Bo Yin Yang.
“Asymptotic Behaviour of the Index of Regularity of Quadratic Semi-
Regular Polynomial Systems”. In:MEGA. Porto Conte, Alghero, Sardinia,
Italy, 2005, p. 16 (page 29).

https://www.dags-project.org/pdf/DAGS_spec_v2.pdf
https://doi.org/10.1515/jmc-2018-0027
https://tel.archives-ouvertes.fr/tel-00449609
https://tel.archives-ouvertes.fr/tel-00449609
https://doi.org/10.1007/978-3-030-45727-3%5C_3
https://doi.org/10.1007/978-3-030-64837-4%5C_17

BIBLIOGRAPHY 117

[14] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. “On the Complex-
ity of the F5 Gröbner basis Algorithm”. In: CoRR abs/1312.1655 (2013).
arXiv: 1312.1655. url: http://arxiv.org/abs/1312.1655 (page 20).

[15] Elise Barelli. “On the security of short McEliece keys from algebraic and
algebraic geometry codes with automorphisms. (Étude de la sécurité de
certaines clés compactes pour le schéma de McEliece utilisant des codes
géométriques)”. PhD thesis. University of Paris-Saclay, France, 2018. url:
https://tel.archives-ouvertes.fr/tel-01993634 (pages 76, 81).

[16] Élise Barelli and Alain Couvreur. “An Efficient Structural Attack on NIST
Submission DAGS”. In: Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part I. Ed. by Thomas Peyrin and Steven D. Galbraith.
Vol. 11272. Lecture Notes in Computer Science. Springer, 2018, pp. 93–
118. doi: 10.1007/978-3-030-03326-2_4 (pages 3, 70, 74, 75, 77, 78,
83, 84, 87, 103, 106).

[17] Elwyn R Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968. isbn:
9780070049031 (page 63).

[18] Elwyn R Berlekamp. “Goppa Codes”. In: IEEE Trans. Inf. Theory 19
(1973), pp. 590–592 (page 62).

[19] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagenand Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic
McEliece: conservative code-based cryptography. Specifications from the
first round submission to the NIST post-quantum cryptography call. 2017.
url: https://classic.mceliece.org/nist/mceliece-20201010.pdf
(page 68).

[20] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Hybrid approach
for solving multivariate systems over finite fields”. In: Journal of Mathe-
matical Cryptology 3.3 (2009), pp. 177–197 (page 107).

[21] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma Alge-
bra System I: The User Language”. In: J. Symb. Comput. 24.3/4 (1997),
pp. 235–265. doi: 10.1006/jsco.1996.0125. url: https://doi.org/
10.1006/jsco.1996.0125 (page 102).

[22] B. Buchberger. “A Theoretical Basis for the Reduction of Polynomials to
Canonical Forms”. In: SIGSAM Bull. 10.3 (1976), pp. 19–29. doi: 10.
1145/1088216.1088219 (page 17).

[23] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. “The
Computational Complexity of Some Problems of Linear Algebra”. In: 58.3
(1999), pp. 572–596 (page 30).

http://arxiv.org/abs/1312.1655
http://arxiv.org/abs/1312.1655
https://tel.archives-ouvertes.fr/tel-01993634
https://doi.org/10.1007/978-3-030-03326-2_4
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219

118 BIBLIOGRAPHY

[24] D. Cox, J. Little, and D. OSHEA. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Al-
gebra. Springer New York, 2013. isbn: 9781475726930 (pages 11, 18, 21,
28).

[25] D.A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer
New York, 2005. isbn: 9780387207063 (page 11).

[26] P. Delsarte. “On Subfield Subcodes of Modified Reed-Solomon Codes”. In:
IEEE Trans. Inf. Theor. 21.5 (1975), pp. 575–576. issn: 0018-9448. doi:
10.1109/TIT.1975.1055435 (pages 60, 61).

[27] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”.
In: IEEE Trans. Inf. Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.
1976.1055638 (page 56).

[28] David Eisenbud. “Commutative Algebra: with a View Toward Algebraic
Geometry”. In: vol. 150. Texts in Mathematics. Springer-Verlag, 1995
(page 21).

[29] Jean-Charles Faugère. “A new efficient algorithm for computing Gröbner
bases (F4)”. In: Journal of Pure and Applied Algebra 139.1-3 (June 1999),
pp. 61–88. doi: 10.1016/S0022-4049(99)00005-5. url: https://hal.
archives-ouvertes.fr/hal-01148855 (page 17).

[30] Jean-Charles Faugère. “A new efficient algorithm for computing Gröb-
ner bases without reduction to zero F5”. In: International Symposium
on Symbolic and Algebraic Computation Symposium - ISSAC 2002. Col-
loque avec actes et comité de lecture. internationale. Villeneuve d’Ascq,
France: ACM, July 2002, pp. 75–83. doi: 10.1145/780506.780516. url:
https://hal.inria.fr/inria-00100995 (page 17).

[31] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer.
“Gröbner bases of bihomogeneous ideals generated by polynomials of bide-
gree (1, 1): Algorithms and complexity”. In: J. Symb. Comput. 46.4 (2011),
pp. 406–437. url: https://doi.org/10.1016/j.jsc.2010.10.014
(pages 29, 37).

[32] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
“Efficient Computation of Zero-Dimensional Gröbner Bases by Change of
Ordering”. In: J. Symb. Comput. 16.4 (1993), pp. 329–344. doi: https:
//doi.org/10.1006/jsco.1993.1051 (page 15).

[33] Ernst Gabidulin. “Theory of codes with maximum rank distance (transla-
tion)”. In: Problems of Information Transmission 21 (Jan. 1985), pp. 1–12
(page 30).

[34] V. D. Goppa. “A New Class of Linear Error-correcting Codes”. In: Prob-
lems of Info. Transmission 6.3 (1970), pp. 207–212. issn: 0555-2923 (page 62).

[35] Hermann J. Helgert. “Noncyclic Generalizations of BCH and Srivastava
Codes”. In: Inf. Control. 21.3 (1972), pp. 280–290. doi: 10.1016/S0019-
9958(72)80007-X (page 63).

https://doi.org/10.1109/TIT.1975.1055435
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/S0022-4049(99)00005-5
https://hal.archives-ouvertes.fr/hal-01148855
https://hal.archives-ouvertes.fr/hal-01148855
https://doi.org/10.1145/780506.780516
https://hal.inria.fr/inria-00100995
https://doi.org/10.1016/j.jsc.2010.10.014
https://doi.org/https://doi.org/10.1006/jsco.1993.1051
https://doi.org/https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1016/S0019-9958(72)80007-X
https://doi.org/10.1016/S0019-9958(72)80007-X

BIBLIOGRAPHY 119

[36] Hermann J. Helgert. “Srivastava codes”. In: IEEE Trans. Inf. Theory 18.2
(1972), pp. 292–297. doi: 10.1109/TIT.1972.1054760 (page 63).

[37] Hermann J. Helgert. “Alternant Codes”. In: Inf. Control. 26.4 (1974),
pp. 369–380. doi: 10.1016/S0019-9958(74)80005-7 (page 61).

[38] Hermann J. Helgert. “Binary Primitive Alternant Codes”. In: Inf. Con-
trol. 27.2 (1975), pp. 101–108. doi: 10.1016/S0019-9958(75)90099-6
(page 61).

[39] D. Hilbert. Ueber die Theorie der algebraischen Formen. B.G. Teubner,
1890 (page 18).

[40] D. Hilbert. Theory of Algebraic Invariants. Trans. by S. Marxsen, D.
Hilbert, B. Sturmfels, R.C. Laubenbacher, R. Laubenbacher, and H. David.
Cambridge Mathematical Library. Cambridge University Press, 1993. isbn:
9780521449038 (page 18).

[41] W.V.D. Hodge and D. Pedoe. Methods of Algebraic Geometry: Volume
2. Cambridge Mathematical Library. Cambridge University Press, 1994.
isbn: 9780521469012 (page 47).

[42] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Anal-
ysis of the Fujisaki-Okamoto Transformation”. In: Theory of Cryptogra-
phy - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I. Ed. by Yael Kalai and Leonid
Reyzin. Vol. 10677. Lecture Notes in Computer Science. Springer, 2017,
pp. 341–371. doi: 10.1007/978-3-319-70500-2_12 (page 72).

[43] Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann. “Rank-
profile revealing Gaussian elimination and the CUP matrix decomposi-
tion”. In: CoRR abs/1112.5717 (2011). url: http://arxiv.org/abs/
1112.5717 (page 19).

[44] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the HFE Public Key
Cryptosystem by Relinearization”. In: Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Ed. by Michael J.
Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999,
pp. 19–30. url: https://doi.org/10.1007/3- 540- 48405- 1%5C_2
(page 30).

[45] Daniel Lazard. “Gröbner-Bases, Gaussian elimination and resolution of
systems of algebraic equations.” In: EUROCAL. Ed. by J. A. van Hulzen.
Vol. 162. Lecture Notes in Computer Science. Springer, 1983, pp. 146–156
(pages 17, 19, 21).

[46] F. S. Macaulay. “Some Formulæ in Elimination”. In: Proceedings of the
London Mathematical Society s1-35.1 (1902), pp. 3–27. doi: https://
doi.org/10.1112/plms/s1-35.1.3 (pages 17, 20).

[47] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
Mathematical Library. Cambridge University Press, 1916. isbn: 9780521455626
(page 20).

https://doi.org/10.1109/TIT.1972.1054760
https://doi.org/10.1016/S0019-9958(74)80005-7
https://doi.org/10.1016/S0019-9958(75)90099-6
https://doi.org/10.1007/978-3-319-70500-2_12
http://arxiv.org/abs/1112.5717
http://arxiv.org/abs/1112.5717
https://doi.org/10.1007/3-540-48405-1%5C_2
https://doi.org/https://doi.org/10.1112/plms/s1-35.1.3
https://doi.org/https://doi.org/10.1112/plms/s1-35.1.3

120 BIBLIOGRAPHY

[48] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting
codes. Vol. 16. North-Holland Mathematical Library, 1977 (pages 57, 63,
64, 72, 73).

[49] Robert J. McEliece. “A Public-Key System Based on Algebraic Coding
Theory”. In: DSN Progress Report 44. Jet Propulsion Lab, 1978, pp. 114–
116 (pages 66, 67).

[50] Harald Niederreiter. “Knapsack-type cryptosystems and algebraic coding
theory”. In: Problems of Control and Information Theory 15.2 (1986),
pp. 157–166 (page 67).

[51] NIST. Post-Quantum Cryptography Call for Proposals. 2017. url: https:
/ / csrc .nist . gov / Projects / post- quantum - cryptography / post -
quantum-cryptography-standardization/Call-for-Proposals (pages 66,
68).

[52] Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. “Seman-
tic security for the McEliece cryptosystem without random oracles”. In:
Des. Codes Cryptogr. 49.1-3 (2008), pp. 289–305. doi: 10.1007/s10623-
008-9175-9 (page 71).

[53] N. Patterson. “The algebraic decoding of Goppa codes”. In: IEEE Trans-
actions on Information Theory 21.2 (1975), pp. 203–207. doi: 10.1109/
TIT.1975.1055350 (page 62).

[54] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”.
In: Journal of the Society for Industrial and Applied Mathematics 8.2
(1960), pp. 300–304. doi: 10.1137/0108018 (page 60).

[55] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”. In: Com-
mun. ACM 21.2 (1978), pp. 120–126. doi: 10 . 1145 / 359340 . 359342
(page 56).

[56] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring”. In: 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994.
IEEE Computer Society, 1994, pp. 124–134. doi: 10.1109/SFCS.1994.
365700 (page 56).

[57] Javier A. Verbel, John Baena, Daniel Cabarcas, Ray A. Perlner, and
Daniel Smith-Tone. “On the Complexity of "Superdetermined" Minrank
Instances”. In: Post-Quantum Cryptography - 10th International Confer-
ence, PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected
Papers. Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505. Lecture
Notes in Computer Science. Springer, 2019, pp. 167–186. url: https:
//doi.org/10.1007/978-3-030-25510-7%5C_10 (pages 3, 31, 34, 35,
37, 38, 40, 95).

[58] Bruns W. and Vetter U. Determinantal Rings. Vol. 1327. Lecture Notes
in Computer Science. Springer, 1988 (page 47).

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://doi.org/10.1007/s10623-008-9175-9
https://doi.org/10.1007/s10623-008-9175-9
https://doi.org/10.1109/TIT.1975.1055350
https://doi.org/10.1109/TIT.1975.1055350
https://doi.org/10.1137/0108018
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-030-25510-7%5C_10
https://doi.org/10.1007/978-3-030-25510-7%5C_10

Appendix A

Products and Vectorization

We present here the products that are used a few times in this thesis, as well as
vectorization and their respective properties.

A.1 Different Products in this Thesis

A.1.1 Classical product
Definition A.1. The classical product of two matrices A of size nA×mA and
B of size nB ×mB is defined as:

(A ·B)i,j = (AB)i,j =
mA∑
k=1

ai,kbk,j

It works only if mA = nB and the resulting matrix is nA ×mB.

A.1.2 Kronecker product ⊗
Definition A.2. The Kronecker product of two matrices A of size nA × mA

and B of size nB ×mB corresponds to the multiplication of each coefficient of
the matrix A by the whole matrix B. It can be defined as:

(A⊗B)i,j = a(i−1) div nB+1,(j−1) div mB+1b(i−1) mod nB+1,(j−1) mod mB+1

The resulting matrix is nAnB ×mAmB.

Example A.3.

A⊗B =

 a11B · · · a1mAB
...

. . .
...

anA1B · · · anAmAB

121

122 APPENDIX A. PRODUCTS AND VECTORIZATION

A.1.3 Star product ?
We remind here the definition of the star product we used earlier in this thesis:

Definition A.4. The star product of two matrices A of size nA×mA and B of
size nB ×mB corresponds to the component-wise product of every combination
of one row from each matrix. It is defined as:

(A ?B)i,j = a(i−1) div nB+1,jb(i−1) mod nB+1,j

It works only if mA = mB and the resulting matrix is nAnB × mA. For this
specific product, an order has to be chosen for the rows that are taken. The
choice here is taking one row on the first matrix, and multiplying it by every
row of the second matrix.

Example A.5.

A⊗B =

a11b11 a12b12 · · · a1mAb1mA
a11b21 a12b22 · · · a1mAb2mA
...

...
...

a11bnB1 a12bnB2 · · · a1mAbnBmA
a21b11 a22b12 · · · a2mAb1mA
...

...
...

anA1bnB1 anA2bnB2 · · · anAmAbnBmA

A.2 Properties of the Products
Lemma A.6. Let v a vector of size mv and X and Y be two matrices with
mv columns.

(X ? v) · Y T = X · (Y ? v)T (A.1)

(X ? Y)vT = vecrow
(

(X ? v)Y T
)

(A.2)

Proof. Equation A.1. Using the definitions of the products that are used, we
can directly prove the equality :(

X (Y ? v)t
)
i,j

=
mX∑
k=1

Xi,k (Y ? v)tk,j

=
mX∑
k=1

Xi,k (Y ? v)j,k

=
mX∑
k=1

Xi,kY (j−1) div 1+1,kv(j−1) mod 1+1,k

=
mX∑
k=1

Xi,kY j,kv1,k

A.2. PROPERTIES OF THE PRODUCTS 123

=
(
(X ? v) .Y t

)
i,j

Equation A.2. We begin by computing the formula for the coefficient of
(X ? Y) .vt. The result is a vector, si we only need one indexing variable :

(
(X ? Y)vt

)
i

=
mV∑
k=1

(X ? Y)i,k vk

=
mV∑
k=1

X(i−1) div nY +1,kY (i−1) mod nY +1,kvk

We look at the second part. First, we compute the coefficient of (X ? V) .Y t
:

(
(X ? v)Y t

)
i,j

=
mY∑
k=1

(X ? v)i,kY t
k,j

=
mY∑
k=1

X(i−1) div 1+1,kv(i−1) mod 1+1,kY j,k

=
mY∑
k=1

Xi,kv1,kY j,k

We can finish the proof by applying the definition of the row vectorization:

vecrow
(
(X ? v)Y t

)
i

=
(
(X ? v)Y t

)
(i−1) div nY +1,(i−1) mod nY +1

=
mY∑
k=1

X(i−1) div nY +1,kv1,kY (i−1) mod nY +1,k

=
(
(X ? Y)vt

)
i

Lemma A.7. Let A and C two matrices with the same number of columns,
and b and d two vectors of the same size.

(A⊗ b) ? (C ⊗ d) = (A ?C)⊗ (b ? d) (A.3)

Proof. To prove this equality, we compute the formula for a coefficient in each
matrix. We note nX and mX respectively the number of rows and the number
of columns of a matrix X.(

(A⊗ b) ? (C ⊗ d)
)
i,j

= (A⊗ b)(i−1) div nC+1,j · (C ⊗ d)(i−1) mod nC+1,j

= A(i−1) div nC+1,(j−1) div mB+1b1,(j−1) mod mB+1

124 APPENDIX A. PRODUCTS AND VECTORIZATION

·C(i−1) mod nC+1,(j−1) div mD+1d1,(j−1) mod mD+1(
(A ?C)⊗ (b ? d)

)
i,j

= (A ?C)i,(j−1) div mB+1 · (b ? d)1,(j−1) mod mD+1

= A(i−1) div nC+1,(j−1) div mB+1

·C(i−1) mod nC+1,(j−1) div mD+1

· b1,(j−1) mod mB+1d1,(j−1) mod mD+1

We can see that we obtain the same formula for the coefficients of each
matrix, thus our matrices are equivalent.

A.3 Vectorization: Definitions and Properties
Lemma A.8. For all matrices A, B and C, we have :

vecrow (ABC) =
(
A⊗CT

)
vecrow (B) (A.4)

Proof. We will try to express each side of the equality and prove that they are
equal.

Left Part. Using the definitions of products given in Section A.1, we can
write the coefficient (i, j) of the product ABC as:

(ABC)i,j =
mAB∑
k=1

(AB)i,kCk,j =
mB∑
k′=1

(
mA∑
k′′=1

Ai,k′′Bk′′,k′

)
Ck′,j

The matrix we obtain is of size nA ×mC with the following equalities between
the dimensions : mA = nB and mB = nC . We can now use the definition of
row vectorization to obtain :

(vecrow(ABC))i = (ABC)(i−1) div mC+1,(i−1) mod mC+1

=
mB∑
k′=1

(
mA∑
k′′=1

A(i−1) div mC+1,k′′Bk′′,k′

)
Ck′,(i−1) mod mC+1

The final vector has a size of nAmC .

Right part. Using the definitions of the products in Section A.1 again, we
have :(
A⊗Ct

)
i,j

= A(i−1) div n(Ct)+1,(j−1) div m(Ct)+1C
t
(i−1) mod n(Ct)+1,(j−1) mod m(Ct)+1

= A(i−1) div mC+1,(j−1) div nC+1C
t
(i−1) mod mC+1,(j−1) mod nC+1

= A(i−1) div mC+1,(j−1) div nC+1C(j−1) mod nC+1,(i−1) mod mC+1

We obtain a matrix of size nAmC ×mAnC . Using the row vectorization we can
write :

(vecrow(B))i = B(i−1) div mB+1,(i−1) mod mB+1

A.3. VECTORIZATION: DEFINITIONS AND PROPERTIES 125

We obtain a vector of size nBmB that we need to multiply with vecrow(ABC)
:

(
(A⊗Ct)vecrow(B)

)
i

=
mAnC∑
k=1

(
A⊗Ct

)
i,k

(vecrow(B))k

=
mAnC∑
k=1

A(i−1) div mC+1,(k−1) div nC+1C(k−1) mod nC+1,(i−1) mod mC+1

·B(k−1) div mB+1,(k−1) mod mB+1

As we want to prove that both parts of the lemma 3.5 are equal, we can use the
constraint : mB = nC

=
mAmB∑
k=1

A(i−1) div mC+1,(k−1) div mB+1C(k−1) mod mB+1,(i−1) mod mC+1

·B(k−1) div mB+1,(k−1) mod mB+1

Let k be written as k = (k′ − 1) + (k′′ − 1)mB + 1, with k′ = 1 . . .mB and
k′′ = 1 . . .mA

=
mB∑
k′=1

mA∑
k′′=1

A(i−1) div mC+1,k′′Ck′,(i−1) mod mC+1Bk′′,k′

=
mB∑
k′=1

(
mA∑
k′′=1

A(i−1) div mC+1,k′′Bk′′,k′

)
Ck′,(i−1) mod mC+1

We obtain the same expression found in the left part.

126 APPENDIX A. PRODUCTS AND VECTORIZATION

Appendix B

Canceling More Than the
Homogeneous Part

Contents
A.1 Different Products in this Thesis 121

A.1.1 Classical product . 121
A.1.2 Kronecker product ⊗ 121
A.1.3 Star product ? . 122

A.2 Properties of the Products 122
A.3 Vectorization: Definitions and Properties 124

During our research, we also tried to cancel a bigger part of the system that
just the homogeneous part as we were previously doing.

B.1 Canceling More than the Homogeneous Part
- Theory

Previously, we only worked on the homogeneous part of the algebraic system.
We will give some variants by considering different parts of it. We remind this
system:

F : xMUT + xA+BUT +C = 0

We will try to apply the same method as in subsection 6.2.4 but we will
modify it to find syzygies not only for the homogeneous part, but also for a
piece of the affine part. For each possibility, we will explain the part that we
are trying to cancel and the associated theoretical results.

127

128APPENDIX B. CANCELING MORE THAN THE HOMOGENEOUS PART

B.1.1 Canceling all monomials with x

Our first variant that we present here consists in focusing on all the parts that
are including x as an unknown. The idea behind doing so is that we want to
keep the same modeling that we introduced before, while trying to cancel more
monomials than the ones in the homogeneous part of highest degree, with the
final goal to be able to do a complete linearization. It gives us the following set
of polynomials that we want to cancel:

xMUT + xA
The products xMUT and xA can be rewritten as sums of products to

obtain the following writing:

xMUT + xA =
n∑
`=1

x`M
(`)UT +

n∑
`=1

x`A
(`)

=
n∑
`=1

x`

(
M (`)UT +A(`)

)
We will now use the same method we explained in subsection 6.2.4, thus we
begin by computing the jacobian matrix containing the partial derivatives in x.

jacx

(
vecrow

(
n∑
`=1

x`

(
M (`)UT +A(`)

)))
=
(

vecrow
(
M (`)UT +A(`)

))
`=1,...,n

=
(

vecrow
((
M (`) A(`)) (U Iν

)T))
`=1,...,n

=
(
Im ⊗

(
U Iν

)) (
vecrow

((
M (`) A(`))))

`=1,...,n

Let us recall the set J and define the new T :

J = (j1, . . . , jd+1) such that 1 ≤ jk < jk+1 ≤ ν
T = (t1, . . . , td) such that 1 ≤ tk < tk+1 ≤ r + ν

By analogy with the previous section, we can write the definition of the
vector vJ,T . We remind that all the analysis is done for characteristic 2 so the
signs are not considered. The process works a similar way for a characteristic
greater than 2, the only difference is the possibility of having minus signs.

(vJ,T)j =

det
((
U Iν

)
[J\{j},T]

)
if j ∈ J

0 else

We can actually be more precise about this vector. Indeed, depending on
the set of indices T , we can have different values and there are more cases where
the value is zero. We split T into two parts :

T1 ⊂ {1, . . . , r} T1 = T ∩ {1, . . . , r}

B.1. CANCELING MORE THAN THE HOMOGENEOUS PART - THEORY129

T2 ⊂ {1, . . . , ν} T2 = T ∩ {r + 1, . . . , r + ν} − r
T ⊂ {1, . . . , r + ν} T = T1 ∪ (T2 + r)

Thanks to these new sets, we can define the vector vJ,T only with U :

(vJ,T)j =
{

det
(
U [J\{j}\T2,T1]

)
if j ∈ J and T2 ⊆ J\ {j}

0 else

We notice that the value if the determinant can be 1 if T1 is empty.
We can then deduce the following product:

vJ,T ·
(
U Iν

)
=
(
vJ,TU vJ,T Iν

)
=
(
vJ,TU vJ,T

)
=

∑
s∈{1,...,r}
s/∈T1

det
(
U [J\T2,T1∪{s}]

)
er+νs +

∑
s∈{1,...,ν}
s /∈T2

det
(
U [J\{s}\T2,T1]

)
er+νr+s

We keep the same definition for V J : V J =
∑
T

aT ⊗ vJ,T
Similarly to what we did in the proof of Theorem 3.8, we search for elements

in the kernel of the jacobian by searching for elements in the kernel of the
matrix BJ . We multiply the vector of minors with the jacobian matrix in the x
variables of the part we aim to cancel:

V J · jacx

(
vecrow

(
n∑
`=1

x`

(
M (`)UT +A(`)

)))
=
∑
T

(aT ⊗ vJ,T)
(
Im ⊗

(
U Iν

)) (
vecrow

((
M (`) A(`))))

`=1,...,n

=
∑
T

(
aT Im ⊗ vJ,T

(
U Iν

)) (
vecrow

((
M (`) A(`))))

`=1,...,n

=
∑
T

aT ⊗
 ∑
s∈{1,...,r}
s/∈T1

det
(
U [J\T2,T1∪{s}]

)
er+νs

+
∑

s∈{1,...,ν}
s /∈T2

det
(
U [J\{s}\T2,T1]

)
er+νr+s

× (vecrow

((
M (`) A(`))))

`=1,...,n

Through these computations, we see that our resulting expression can be divided
in two parts: the first one is identical to the computations that were done in
Theorem 3.8, when we consider that J\T2 is replacing J and T1 is replacing T .
Thus, we will focus on the computations on the second part here.

130APPENDIX B. CANCELING MORE THAN THE HOMOGENEOUS PART

∑
T

∑
s∈{1,...,ν}
s /∈T2

det
(
U [J\{s}\T2,T1]

) (
aT ⊗ er+νr+s

)
×
(
vecrow

((
M (`) A(`))))

`=1,...,n

=
∑
T

∑
s∈{1,...,ν}
s /∈T2

det
(
U [J\{s}\T2,T1]

)
aT

((
M (`) A(`))

[∗,r+s]

)
`=1,...,n

=
∑
T

∑
s∈{1,...,ν}
s /∈T2

det
(
U [J\{s}\T2,T1]

)
aT

(
A

(`)
[∗,s]

)
`=1,...,n

This second part actually corresponds to the constraints we are adding to
the system by trying to cancel more parts of it.

From these computations, we can deduce the matrix BT,T ′ by following the
formula given in the previous section:

BT,T ′ =

(
M

(`)
[∗,s]

)
`=1,...,n

if T ′\T = {s} and s ∈ {1, . . . , r}(
A

(`)
[∗,s−r]

)
`=1,...,n

if T ′\T = {s} and s ∈ {r + 1, . . . , r + ν}

0m ×n else

We can apply the corollary 3.10 to have the corresponding number of syzygies
: (

r + ν

d

)
m−

(
r + ν

d+ 1

)
n

Now that we have the matrix that allow us to find elements from the kernel of
the jacobian matrix and thus indice degree falls, we want to compute the effects
of the product of these kernel elements with the affine part of the system. This
means we can precompute the polynomials that are composing the system after
the degree fall. To do so, we multiply the part of the system that was not
canceled with the syzygies.

VJ · vecrow
(
bUT + c

)
=
(∑

T

aT ⊗ vJ,T

)
· vecrow

(
bUT + c

)
=
∑
T

(aT ⊗ vJ,T) · vecrow
(
bUT + c

)
We can use Equation (3.5):

=
∑
T

vecrow
(
aT

(
bUT + c

)
vTJ,T

)
By definition, we can see that the order of the minors in the vector vJ,T

depends on the size of the #T1 part. Thus, if we consider all J and all T , the

total number of minors is :
d∑
i=0

(
ν
i

)(
r+ν
i

)
.

B.1. CANCELING MORE THAN THE HOMOGENEOUS PART - THEORY131

From the product of bUT with vTJ,T , we have minors of higher order, but

the principle is the same. Thus, the number of minors is :
d+1∑
i=1

(
ν
i

)(
r+ν
i

)
for all

J and T .
We can notice that we cannot just add the two numbers we found here: some

minors are the same. If we consider all T and all J , we have the same minors
for orders from 1 to d. The total number of minors is then:

d+1∑
i=0

(
ν

i

)(
r + ν

i

)
We now have the number of equations, thanks to the number of syzygies, as

well as the numbers of minors, that we consider as our variables. We removed all
x variables from our system, and we have removed the corresponding equations.
The equations we have left after all those computations are of a lower degree,
and only in minors of U . Moreover, we consider those minors as our variables,
making those remaining equations linear.

Thanks to the number of equations and variables, we can give an expression
of the degree dmin, as we explained in Subsection 3.2.2.3:

dmin = min
{
d |
[(
r + ν

d

)
m >

(
r + ν

d+ 1

)
n

]
, 1 ≤ d ≤ r + ν − 1

}
(B.1)

We remind that this dmin can be used to estimate the complexity if the com-
putations end shortly after the first degree fall.

B.1.2 Other variants
We can try to cancel other parts of the system. We can either try to cancel all
monomials with u variables, or try to cancel everything but the constant part
of the system.

B.1.2.1 Canceling all monomials with U

The second variant we present here consists in focusing on all the parts that are
including variables from U . It means that we want to cancel:

n∑
`=1

x`M
(`)UT + bUT

We homogenize the system by adding a x0 variable that is equal to 1 and
considering that M (0) = b. This allow to extend the sum to the index 0 and
the computations are similar to those described originally in Section 3.2. The
degree dmin used to compute the complexity estimation then becomes:

dmin = min
{
d |
[(
r

d

)
m >

(
r

d+ 1

)
(n+ 1)

]
, 1 ≤ d ≤ r − 1

}
(B.2)

132APPENDIX B. CANCELING MORE THAN THE HOMOGENEOUS PART

B.1.2.2 Canceling all but the constant part

We can go even further than previously and merge the cancellation of all mono-
mials containing x variables with the homogenization with the variable x0. This
means we have only the constant part remaining to be multiplied by the syzygies
found during the computations.

The part we want to cancel for this last variant can then be written as:

n∑
`=0

x`M
(`)UT + xA =

n∑
`=0

x`M
(`)UT +

n∑
`=1

x`A
(`)

=
n∑
`=0

x`

(
M (`)UT +A(`)

)
with A(0) = 0

As we merge both cancellation processes that we described previously, the
complexity estimation for this variant is also similar. Indeed, the value of dmin
is:

dmin = min
{
d |
[(
r + ν

d

)
m >

(
r + ν

d+ 1

)
(n+ 1)

]
, 1 ≤ d ≤ r + ν − 1

}
(B.3)

However, the two variants presented in Subsection B.1.2.1 and B.1.2.2 do
not improve computations enough to be used. Their complexity being similar
to the one presented in B.1.1, we will chose to focus on this first variant, can-
celing monomials with x variables, to try to improve the attack on the DAGS
cryptosystem.

B.2 Canceling More Than the Homogeneous Part
of the DAGS System

Following the methods that we presented in Chapter 3, we want to extend the
previous results by trying to cancel more than the homogeneous part of highest
degree of the system.

B.2.1 Identification of the matrices
We remind the homogeneous part of highest degree and the affine part :

Fh =

 c∑
i=1

τk0−c+i

(
0
(
−GT

2

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

2

)
[i,∗]

0

+

γ∑
i=3

bi (Hi)[∗,{k0−c+1...k0}]

)
·UT

B.2. CANCELING MORE THAN THE HOMOGENEOUS PART OF THE DAGS SYSTEM133

Fa =
k0−c∑
i=1

τi

(
0
(
−GT

1

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

1

)
[i,∗]

0

+

γ∑
i=3

bi (Hi)[∗,{1...k0−c}] + (H2)[∗,{k0−c+1...k0}] ·U
T + (H2)[∗,{1...k0−c}]

What we need to do for each variant is to identify the matrix of the theo-
retical analysis to the matrices of DAGS. The identification is the following:

x` =
{
τ` if ` = 1, . . . , n0 − 1
b`−n0+1 if ` = n0, . . . , n0 + (γ − 2)− 1

M (`) =

0(n0−k0)×c if ` = 1, . . . , k0 − c(
0
(
−GT

2

)
[∗,`−k0+c]

0
)

if ` = k0 − c+ 1, . . . , k0
0(

GT
2

)
[`−k0,∗]
0

 if ` = k0 + 1, . . . , n0 − 1

(H`−n0+1)[∗,{k0−c+1...k0}] if ` = n0, . . . , n0 + (γ − 2)− 1

A(`) =

(
0
(
−GT

1

)
[∗,`]

0
)

if ` = 1, . . . , k0 − c

0(n0−k0)×(k0−c) if ` = k0 − c+ 1, . . . , k0
0(

GT
1

)
[`−k0,∗]
0

 if ` = k0 + 1, . . . , n0 − 1

(H`−n0+1)[∗,{1...k0−c}] if ` = n0, . . . , n0 + (γ − 2)− 1
B = (H2)[∗,{k0−c+1...k0}]

C = (H2)[∗,{1...k0−c}]

We will begin with explaining how we can cancel all parts with τ and b.

B.2.2 Canceling all parts with τ and b variables
This corresponds to the method of subsection B.1.1 applied on DAGS. We want
to cancel all parts with τ and b variables, that means we want to cancel Fh and
the affine part that is linear in the τ and b variables:

k0−c∑
i=1

τi

(
0
(
−GT

1

)
[∗,i]

0
)

+
n0−k0−1∑
i=1

τk0+i

 0(
GT

1

)
[i,∗]

0

+
γ∑
i=3

bi (Hi)[∗,{1...k0−c}]

134APPENDIX B. CANCELING MORE THAN THE HOMOGENEOUS PART

Using the identifications made in the subsection B.2.1, we directly know the
form of the jacobian matrix. However, to simplify the writing we will consider
different cases corresponding to different values of `.

jacτ,b (Fh + Fa(τ, b)) = vecrow
(
M (`)UT +A(`)

)
`=1,...,n0+(γ−2)−1

with Fa (τ, b) the section of the affine part of the system that is linear in the τ
and b variables.

We can apply the same process we did in B.1.1 and compute the equations
that remain after canceling the homogeneous part of highest degree as well as
the part that is linear in τ and b.

V J · vecrow
(

(H2)[∗,{k0−c+1...k0}]U
T + (H2)[∗,{1...k0−c}]

)
=
(∑

T

aT ⊗ vJ,T

)
· vecrow

(
(H2)[∗,{k0−c+1...k0}]U

T + (H2)[∗,{1...k0−c}]

)
=
∑
T

(aT ⊗ vJ,T) · vecrow
(

(H2)[∗,{k0−c+1...k0}]U
T + (H2)[∗,{1...k0−c}]

)
=
∑
T

vecrow
(
aT

(
(H2)[∗,{k0−c+1...k0}]U

T + (H2)[∗,{1...k0−c}]

)
vTJ,T

)
This gives us the following number of syzygies and variables:

Nsyzygies =
(
k0

d

)
(n0 − k0)−

(
k0

d+ 1

)
(n0 − k0 + c− 1)

Nmonomials =
d+1∑
i=0

(
k0 − c
i

)(
k0

i

)
Using the number of syzygies, we can adapt the expression for the degree

dmin, that helps with estimating the complexity of solving the system when the
computations end shortly after the first degree fall. The degree dmin becomes:

dmin = min
{
d |
[(
k0

d

)
(n0 − k0) >

(
k0

d+ 1

)
(n0 − k0 + c− 1)

]
, 1 ≤ d ≤ k0 − 1

}
(B.4)

It can be then used in the complexity expression given in 3.2.2.3.
We are particularly interested in the practical complexity of solving the sys-

tem created from the DAGS cryptosystem, that is to say the computations time,
thus we present next the experimental results using the variant we described.

B.2.3 Experimental Results
We present the experimental results that we got with these modeling.

The other potential experiments where we cancel all u or everything but the
constant part did not bring any improvements. For some of them, the method
did not even succeed in finding syzygies for the system.

B.2. CANCELING MORE THAN THE HOMOGENEOUS PART OF THE DAGS SYSTEM135

Table B.1: Experimental results for the different sets of parameters of DAGS,
depending on the variant used

Cancel Homogeneous Cancel all τ and b
Vars Eq Time Time

DAGS_1 52 104 1.3s 1.2s
DAGS_3 49 88 1.9 1.8s
DAGS_5 34 44 0.3s 0.3

However, in Table B.1, we can see that by canceling all the part of the
system containing the variables τ and b, we get slightly faster time. Although it
is interesting to always improve the time, this reduction is not really pertinent
here.

136APPENDIX B. CANCELING MORE THAN THE HOMOGENEOUS PART

Matricial Algebraic Systems and Application to the DAGS Cryptanalysis

The National Institute of Standards and Technology (NIST) launched a Call for Submis-
sions in 2017 to find suitable algorithm candidates to be secure against quantum computers.
Among the candidates was DAGS, an key encapsulation mechanism based on quasi-dyadic
General Srivastava codes. In 2018 this scheme was attacked using an algebraic system, whose
solving allows to find parts of the secret. We studied the modelisation that was done for this
attack, and improved it in multiple ways. First, we can modify the input in order to shorten
the time taken for the system solving, which also allowed us to be successful against a set
of parameters that was unbroken before. Concurrently, the Gröbner basis computation was
not behaving as it would for a generic system, showing more degree falls than what was ex-
pected. By comparing it to developments in the MinRank problem modelisation, we noticed
that they were similar, giving us a model to follow for the methods to use and formulas linked
to complexity. It appeared that the structure of DAGS was reducing the complexity of solving
the modelisation system, and we went further to get even better results. We transformed our
system by considering the minors as new variables, making the matrices involved smaller, like
it is in the SupportMinors model. In DAGS case, this model behaves particularly well, and is
able to compute a Gröbner basis efficiently.

Keywords : post-quantum cryptography - code-based cryptography - algebraic attack -
MinRank problem - DAGS cryptosystem - Gröbner bases

Systèmes Algébriques Matriciels et Application à la Cryptanalyse de DAGS

Le National Institute of Standards and Technology (NIST) a lancé en 2017 un Appel à
Soumissions pour trouver des algorithmes candidats pour sécuriser les données contre les or-
dinateurs quantiques. Le candidat DAGS est un mécanisme d’encapsulation de clé basée sur
les codes de Srivastava quasi-dyadiques. En 2018, une attaque algébrique a été publiée, permet
de retrouver une partie du secret du cryptosystème. Après étude de cette modélisation, nous
avons essayé de l’améliorer de différentes façons. Nous avons d’abord modifié le système donné
en entrée de l’agorithme de bases de Gröbner, ce qui nous a permis de raccourcir le temps de
l’attaque ainsi que d’être efficace contre un ensemble de paramètres qui n’avait pas encore été
cassé. Nous avons pu noter à ce moment que le calcul des bases de Gröbner n’avait pas le même
comportement que pour un système générique : les chutes de degrés sont plus nombreuses. En
comparant nos observations avec les récentes publications sur les systèmes modélisant le pro-
blème MinRank, nous avons remarqué qu’ils étaient similaires. Cela nous a permis d’avoir un
modèle à suivre et des formules de base pour la complexité, tout en soulignant le fait que
la structure du cryptosystème DAGS réduit cette même complexité. Nous avons continué les
améliorations en considérant les mineurs comme de nouvelles variables, ce qui a pour avantage
de réduire la taille des matrices utilisées, comme c’est le cas pour la modélisation SupportMi-
nors. Dans le cas de DAGS, celle-ci se comporte particulièrement bien, et calcule une base de
Gröbner de manière efficace.

Mots-clés : cryptographie post-quantique - cryptographie basée sur les codes - attaque al-
gébrique - problème MinRank - cryptosystème DAGS - bases de Gröbner

	Introduction
	Contributions
	Notation
	I Solving Polynomial Systems
	Polynomial Systems Solving
	Introduction
	Polynomial Systems
	Solving Polynomial Systems
	Complexity Tools
	Regular and Semi-regular Sequences

	Bilinear Systems
	Introduction
	Bilinear Systems
	Solving Bilinear Systems
	MinRank Instances

	Solving Superdetermined MinRank Instances
	Introduction
	Superdetermined MinRank Instances
	Changing Variables Using Minors

	II Attacking Cryptosystems
	Code-Based Cryptography
	Introduction
	Coding Theory
	Code-Based Cryptography

	Presentation of DAGS cryptosystem
	Introduction
	Presentation of the DAGS cryptosystem
	First attack on DAGS

	A MinRank Attack on DAGS
	Introduction
	Modifying the Modeling
	Changing the Variables of DAGS Attack System by Minors
	Experimental Results
	Attacking New Parameters

	Conclusion
	Bibliography
	Products and Vectorization
	Different Products in this Thesis
	Properties of the Products
	Vectorization: Definitions and Properties

	Canceling More Than the Homogeneous Part
	Canceling More than the Homogeneous Part - Theory
	Canceling More Than the Homogeneous Part of the DAGS System

