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Summary

Human metabolic phenotyping can detect abnormal physiological changes

via metabolites circulating in biofluids (plasma, urine). These metabolic profiles

can be obtained by classical clinical assays (small targeted number of molecules)

or by a more global approach aimed at measuring a wide range of endogenous

molecules without a priori knowledge, known as metabolomics.

However, metabolomics approaches cannot cover the entire human

metabolome with a single analytical technique. It is therefore essential to

plan and optimise metabolomics experiments to ensure that the covered

metabolome will be as relevant as possible for the condition studied. The

hypothesis of this thesis work is that global modelling of metabolism makes it

possible to simulate a metabolic disturbance by being free from the constraints

of coverage and observability of metabolomics, and thus assist the experimental

design involving these techniques.

The other challenge that metabolomics applied to biofluids faces is

understanding how to link metabolic profiles with the molecular metabolic

perturbations that caused them. In this context, the thesis work aims at proposing

a modelling method to simulate, from a molecular event (e.g. inhibition of an

enzymatic activity), the metabolic profile signalling the physiological drift.

The central objective of the thesis is therefore to create a predictive system

which can simulate metabolic perturbations, and to recommend the most

changed metabolites associated with them. For this, the project consists in

modelling human metabolism by simulating the exchanges involving all the

metabolic reactions that can take place in humans. This modelling, known

as constraint-based modelling, makes it possible to simulate metabolic fluxes

(rate of production and consumption of metabolites) and thus to predict which

metabolites will be present or not in biofluids.

In this thesis, a constraint-based modelling approach is developed and

applied to predict in silico profiles of metabolites that are more likely to be
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differentially abundant under a given metabolic perturbation (e.g. due to a

genetic disease) using flux simulation. In genome-scale metabolic networks

(large networks containing metabolic, enzymatic and genetic data and how they

are linked together), the fluxes through reactions which transport metabolites

externally (called exchange reactions) can be simulated and compared between

control and disease conditions in order to calculate changes in metabolite import

and export. These import/export flux differences are expected to induce changes

in circulating biofluid levels of those metabolites, which can then be interpreted

as potential metabolites of interest. SAMBA (SAMpling Biomarker Analysis),

developed for this project, is an approach which simulates fluxes in exchange

reactions following a metabolic perturbation using random sampling, compares

the simulated flux distributions between the baseline and modulated conditions,

and ranks predicted differentially exchanged metabolites as potential biomarkers

for the perturbation.

The project’s results show that there is a good fit between simulated metabolic

exchange profiles and experimental differential metabolites detected in plasma,

such as patient data from the disease database OMIM (Online Mendelian

Inheritance in Man), and metabolic trait-SNP (Single Nucleotide Polymorphism)

associations found in mGWAS (metabolite genome-wide association study)

studies. These metabolic profile recommendations can provide insight into

the underlying mechanism or metabolic pathway perturbation lying behind

observed metabolite differential abundances, and suggest new metabolites as

potential avenues for further experimental analyses.
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Résumé

Le phénotypage métabolique humain permet de déceler des dérives

physiologiques anormales via des molécules circulantes dans les biofluides

(plasma, urines). Ces profils métaboliques peuvent être obtenus par des dosages

cliniques classiques (petit nombre ciblé de molécules) ou par une approche plus

globale visant à mesurer sans a priori une gamme large de molécules endogènes

: la métabolomique.

La métabolomique ne permet pas de couvrir avec une seule technique

analytique l’ensemble du métabolome humain. Il est donc indispensable de

planifier et d’optimiser les expériences de métabolomique pour s’assurer que le

métabolome sera couvert de la façon la plus pertinente possible pour chaque

condition. L’hypothèse de ce travail de thèse est que la modélisation globale du

métabolisme permettrait de simuler une perturbation métabolique autorisant

de dépasser les contraintes actuelles de couverture et d’observabilité de la

métabolomique, et ainsi permettre d’assister le design expérimental impliquant

ces techniques.

L’autre défi auquel fait face la métabolomique appliquée aux biofluides est

d’établir un lien entre les profils métaboliques et les perturbations moléculaires

métaboliques qui en sont à l’origine. Dans ce contexte, ce travail de thèse

vise à proposer une méthode de modélisation permettant de simuler, à partir

d’événements moléculaires ou biochimiques, le profil métabolique diagnostique

d’une dérive physiologique.

L’objectif central de la thèse est donc de créer une approche prédictive qui

permet de simuler des perturbations métaboliques et d’y associer les métabolites

qui sont le plus affectés. Pour cela, le projet consiste à modéliser le métabolisme

humain en modélisant les échanges impliquant l’ensemble des réactions

métaboliques qui peuvent avoir lieu chez l’homme. Cette modélisation, dite sous

contrainte, permet de simuler les flux métaboliques (taux de production et de

consommation de métabolites) pour prédire quels métabolites se retrouvent ou

5



non dans les biofluides.

Dans cette thèse, une approche de modélisation sous contraintes est

développée et appliquée pour prédire in silico les profils métaboliques qui

sont les plus susceptibles d’être différentiellement abondants lors d’une

perturbation métabolique donnée en utilisant la simulation de flux. Dans les

réseaux métaboliques à l’échelle du génome (réseaux contenant des données

génomiques, enzymatiques, et métaboliques ainsi que les liens qui les relient),

les flux des réactions d’échange, également connues sous le nom de réactions qui

transportent les métabolites vers l’extérieur, peuvent être simulés et comparés

entre les conditions de contrôle et de maladie afin de calculer les changements

dans l’import et l’export des métabolites. Ces différences de flux d’import et

d’export devraient induire des changements dans le niveau de ces métabolites

dans les biofluides circulants, qui peuvent alors être interprétés comme des

métabolites d’intérêt potentiels. SAMBA (SAMpling Biomarker Analysis),

développé pour ce projet, est une approche qui simule les flux dans les réactions

d’échange suite à une perturbation métabolique en utilisant le random sampling

(ou échantillonnage aléatoire), compare les distributions de flux simulées entre

la condition de base et la condition modulée, et ordonne les métabolites prédits

comme différentiellement échangés en tant que biomarqueurs potentiels de la

perturbation.

Les résultats du projet montrent qu’il existe une bonne correspondance

entre les profils d’échanges métaboliques simulés et les métabolites différentiels

expérimentaux détectés dans le plasma, tels que les données sur les patients

de la base de données sur les maladies OMIM (Online Mendelian Inheritance

in Man), et les associations entre trait métabolique et SNP (Single nucleotide

polymorphism) trouvées dans les études mGWAS (metabolite genome-wide

association study). Ces recommandations de profils métaboliques peuvent

donner un aperçu du mécanisme métabolique ou de la perturbation de la voie

métabolique qui se cache derrière les différences de métabolites observées, et
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suggérer de nouveaux métabolites comme pistes potentielles pour des analyses

expérimentales plus poussées.
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Quotes

I thought there couldn’t be anything as

complicated as the universe, until I started

reading about the cell.

Systems Biologist Eric de Silva

-astrophysicist by training-

Imperial College London

In theory, theory and practice are the same.

In practice, they are not.

Albert Einstein

Art is not one great act of creation, but many

small ones. When you read one of my

poems, you fail to see the weeks of careful

work it took me to build it - the thinking, the

scratched-out words, the pages I burned in

disgust. All you see, in the end, is what I

want you to see.

Samantha Shannon

The Priory of the Orange Tree

Many fall in the face of chaos... but not this

one, not today.

Darkest Dungeon

Red Hook Studios
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Note

In PDF form, all citations, contents titles, figure and table labels, and acronyms are

hyperlinked and clickable for ease of reading. Citations in the bibliography section contain

backlinks to return to the cited location(s).
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Chapter I

Introduction: Measuring and

modelling metabolism

1 Metabolomics and its uses in human health

1.1 Metabolism

Metabolism is a crucial biological process which ensures that cells have the

energy and components required to survive, function, and grow. It consists of the

set of chemical reactions which break down molecules into smaller compounds

known as metabolites (any molecule with a molecular weight less than 1.5 kDa),

produce energy, build and repair tissue, eliminate metabolic waste, and provide

the ability to respond to the surrounding environment. These metabolites are

involved in every living organism’s metabolism and are produced, degraded,

and transformed via biochemical reactions, the majority of which take place

inside cells. Different cellular compartments such as mitochondria, cytoplasm,

and nucleus all have specific enzymatic expression profiles, which can lead to

metabolites only being present within certain compartments. Some metabolites

are not in contact with each other as they are not used in every compartment and

only traverse these areas through transport mechanisms (passive or active).

Metabolism is globally grouped into two processes: catabolism and
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anabolism. While catabolism is the process of breaking down compounds to

release energy, anabolism consumes this energy to synthesise larger compounds

from smaller molecules. Breaking down glucose in cellular respiration to

produce energy in the form of Adenosine TriPhosphate (ATP) is an example of

a catabolic process. This mechanism is the essential first step to being able to

harness external molecules and transform them into something usable by the

organism. Conversely, the synthesis of proteins from amino acids is an example

of an anabolic process which consumes energy. Anabolism can be viewed

as the second step in providing the organism with the ability to survive and

grow. It uses the energy released from catabolic reactions and building blocks

to biosynthesise new larger molecules, which can be functional or for storage

purposes. Anabolism is highly controlled and regulated by the cell which helps

avoid wasting energy in infinite loops of synthesis and degradation.

Being able to observe and measure the presence, quantities and variations of

these small molecules is of major importance in human health. First, and most

evidently, any disease related directly to metabolic disruptions can be efficiently

identified and described by measuring the concentrations of specific metabolites,

or biomarkers, in the blood or urine. A second, more recently developed way

of viewing a patient’s metabolism is by profiling a large range of metabolites at

once, to gain a global perspective of the current state of metabolic activity.

1.2 Biomarkers

Biomarkers are measurable indicators of a given biological state, and can be

anything from externally measurable markers such as temperature or weight,

to internally evaluated markers in biofluids like blood or urine. When applied

to human health research, a subset of the metabolome can be considered as

metabolic biomarkers of a given pathology if this subset is statistically shared by

a homogeneous group of patients in comparison to control subjects or another
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group of patients not affected by the pathology under study. A well-known

example is the level of glucose in diabetic patients compared with non-diabetic

individuals. In non-diabetic people, the average fasting level of blood sugar

is below 100 mg/dL, whereas a higher fasting blood glucose concentration

indicates either a prediabetic or diabetic state. For type I diabetes, the pancreas

cannot produce insulin, which is the activator for the glucose channel to open.

For type II diabetes, the pancreas produces insulin but cells have become resistant

to its effect. In short, for both types of diabetes, this results in an accumulation

of glucose in the bloodstream. Because glucose is easily measurable using many

different types of glucose monitors, it is a useful biomarker of a diabetic state, as

well as an indicator that can be tracked over time once diagnosed.

In clinical settings, biomarkers are traditionally detected using targeted

bioassays, which result in measurements for a small number of well-characterised

diagnostic metabolites. Specific sets of biomarkers are known to be associated

with certain diseases, meaning that future cases of these diseases can be easily

diagnosed using previously observed information, and they are useful for

monitoring disease progression as well as predicting the onset of degenerative

diseases. Biomarker discovery is a large part of human health research and

pharmaceutical studies, for use as intermediate diagnostic markers and potential

drug targets. A major advantage of using biomarkers in disease diagnosis is the

easy accessibility of these biomarkers in biofluids, as opposed to more invasive

approaches like organ biopsies.

These metabolic biomarkers are especially useful for diagnosing a subset

of diseases called Inborn Errors of Metabolisms (IEMs). IEMs are rare genetic

mutations affecting enzyme-coding genes. They tend to affect systems such

as carbohydrate metabolism, the urea cycle, amino acids, and mitochondrial

functions, and generally result in clinically significant symptoms. Online

databases such as Online Mendelian Inheritance in Man (OMIM) [1] contain

associations between various diseases and metabolic biomarkers, using past
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patient case reports and publications. However, for diseases such as IEMs, the

data is based on very few patients and can have a large inter-patient variability

due to variation in parameters such as the weight of patients. Treatments are

generally swiftly tailored to the specific disorder once a diagnosis is made due

to the often young age of the patients, with the goal of eliminating the build-up

of excess or toxic metabolites that result from this metabolic dysregulation.

Due to the direct link of these diseases with metabolism, biomarkers have been

identified over the years in patients with each disease. These biomarkers are

usually specific to a given disorder and are therefore ideal candidates for use as

diagnostic indicators for IEMs. For example, maple syrup urine disease (MSUD),

named after the odour it gives to the urine of patients with this disease, is

an IEM caused by a genetic mutation in enzymes involved in the catalysis of

branched-chain amino acids. The major metabolic biomarkers for MSUD are

elevated levels of leucine, isoleucine, and valine, which can be measured in

newborn serum for an early diagnosis [2].

1.3 Metabolic profiles

In contrast to biomarker-level measurements of metabolites, entire lists of

metabolites can be measured, identified and quantified (most often using relative

quantification), constituting a metabolic profile representative of a given state.

This is of course thanks to newer experimental approaches which can measure

not only an entire class of metabolites but also multiple classes at once. Metabolic

profiling consists of the measurement of these profiles to evaluate the response

to physiological, pathophysiological or otherwise environmental stimuli, as

well as measure the behaviour of metabolism in an individual with a genetic

mutation or developmental issues [3]. This is usually done with a biofluid

sample such as serum or urine. The main applications of metabolic profiling are

toxicity assessment of various environmental contaminants [4], biomarker and
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drug discovery for human disease diagnosis and treatment [5, 6], nutrition [7],

infections [8], and functional genomics [9].

1.4 Single nucleotide polymorphisms

The linking of a genomic variant with a phenotypic trait (functional

genomics), often used in plants or bacteria, is similar to approaches involving

single nucleotide polymorphisms (SNPs) in humans. Indeed, functional

genomics is useful for determining the phenotype linked with a genetic mutation

or variant, such as the impact of genetic heritability on cytokine production in

the human immune response [10]. SNPs are mutations of one nucleotide in

DNA strands in a minority of the human population compared to the majority

nucleotide, but present in at least 1% of the population.

SNPs can also be used to predict the function of unknown genes by

comparing the metabolic profile with that of a known genetic perturbation. [11].

Additionally, these nucleotide variants, for example a G (guanine) instead of an

A (adenine), can be predictive and linked to certain diseases. An example of

this is the E4 allele and its link to Alzheimer disease, affecting the apoϵ4 protein,

which leads to a higher risk of early onset dementia [12].

Most SNPs occur in non-coding regions of the genome, but some do appear in

coding regions and therefore may directly affect the gene sequence, expression,

and/or gene product by producing a different amino acid. It is more probable for

a given SNP to result in a deleterious or neutral effect than an increase in gene

expression or enhanced enzyme activity: it is easier to break or do nothing than to

improve. Due to the redundancy of the genetic code, some nucleotide mutations

can have no effect on the resulting amino acid, often in the third position of the

codon. Both GCA and GCG code for the alanine amino acid, meaning if the A

mutates to a G or inversely, alanine will be added to the protein regardless. Other

mutations will introduce an early stop codon, resulting in a truncated protein
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which is either degraded or non-functional but still produced. SNPs occurring

in non-coding regions can have effects on regulation by modifying transcription

factor binding sites, chromatin folding, epigenetic modifications, enhancers, non

translated RNA genes, and likely many more we have yet to discover. Indeed,

non-coding regions of the genome are understudied due to the less direct link

they have with the phenotype, while constituting 99% of the human genome [13],

meaning many effects of SNPs are best studied by linking observable phenotypes

such as metabolic profiles with the genotypic mutation.

A Genome-Wide Association Study (GWAS) is the observation of genomic

variations with phenotypic traits across many individuals. It is based on the

statistical testing of many variations to find the statistically significant traits

associated with them [14]. For example, one of the first GWAS linked age-related

macular degeneration, resulting in blurred vision, with two SNPs. GWAS

can reveal links between a genetic variation and a disease without necessarily

understanding why or how the two are linked, and can thus help in diagnosing

or prescreening diseases without obvious symptoms. It can also orient research

towards genetic targets that were previously not thought to be associated with

the disease, and it can be used in epidemiology to discern group differences in

response to diseases.

In 2008, GWAS was applied to metabolomics data, combining the genotypic

variation associations with metabolic traits such as the concentration of a

given metabolite in blood to form a metabolite genome-wide association

study (mGWAS) [15]. This study tested the link between 363 serum metabolites

and SNPs in 284 individuals, and demonstrated the concept of the ”genetically

determined metabotype”. Many mGWAS cohort studies focus specifically on

SNPs involved in or near enzyme-coding regions since those are the SNPs most

likely to have a measurable effect on metabolism. Applications of mGWAS can

be seen across a variety of fields, describing links between genetic factors and

diseases, such as cancer [16] and kidney disease [17], or in plant physiology in
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seed development for example [18]. mGWAS can thus be used with large-scale

metabolite measurement approaches to produce entire profiles of metabolites

across many individuals and detect significant shifts in concentrations associated

with SNPs in those individuals.

1.5 Omics approaches for metabolic phenotyping

The “omics” sciences are branches of science focused on the comprehensive

and broad study of the constituents within cells, tissues, or otherwise biological

samples. The names of each branch end in the suffix ”–omics” and each branch

has its associated “-ome”, such as genomics with the set of all genes being

the genome. By describing and measuring the complete sets of molecules and

biochemical processes that contribute to the survival and development of cells,

tissues, and organisms, information can be gained, specific to an individual,

condition or even timepoint, as well as entire populations. This of course

generates large amounts of data relevant to each part of the cellular process.

Each approach examines specific parts of biology, and the major approaches can

be described as the following:

Genomics represents the sequencing of the genome of an organism and the

study of its genetic or epigenetic sequence. It focuses on analysing all genes and

their relationships to identify how they interact to affect the development of an

organism as well as how it reacts to external changes. In human health, these

molecular mechanisms are studied in relation to diseases and environmental

factors, and more specifically in relation to this thesis, enzyme-coding genes

are identified to link genetic expression mechanisms with translation of mRNA

to enzymes. Depending on gene annotations available for a given organism,

predictions of putative functions can be evaluated as regulatory, metabolic, or

otherwise involved in cellular processes.

Transcriptomics is inherently closely linked to genomics, since the range of
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possible transcripts is dependent on the genes present in the genome and their

expression. While the genome of an individual is established, the transcriptome

can differ depending on the tissue, conditions, and other factors. This is why

transcriptomics, the study of mRNA produced by the transcription of genes, is a

good indicator of gene expression and can unveil this first level of regulational

difference between genome and transcriptome, but depends greatly on the

location of the sample.

Proteomics draws the final link between genes and their products, as mRNA

expression is not always correlated with enzyme translation and activity. By

identifying and quantifying proteins directly, it indicates whether a gene was

transcribed into mRNA and then translated into its final form. In the case of

metabolic genes, often the products are enzymes or proteins directly involved in

the transformation of metabolites.

Metabolomics involves the identification and sometimes quantification

(often relative) of metabolites in a sample. Metabolites are small molecules

used by enzymes in biochemical reactions. Metabolites found in an organism’s

metabolome (set of metabolites in a sample) can be either naturally produced

by that organism (endogenous) or originate from external sources (exogenous)

non-natural to the organism. By studying the link between metabolites and

enzymes, hypotheses can be drawn on the reality of enzyme activities, as well

as on entire metabolic processes and markers of specific conditions or changes.

More specific branches of metabolomics include lipidomics, which is the study

of lipids and their structure and function within the cell or organism. Lipidomics

became a separate field of study due to the complexity and diversity of lipid

structures and unique functions [19].

Finally, fluxomics consists of the measurement of the rate of intracellular

fluxes of cellular metabolism. Fluxes are measured as the concentration of

produced matter over time; in this case the matter consists of metabolites.

It provides information on the dynamic biological processes that take place
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within metabolism. Essentially, it combines the effect of all the previous omics

approaches into one, in contrast to each approach only focusing on their own

elements [20]. It is closely linked to a field of systems biology involving

simulating these fluxes with the goal of explaining the complex biological

systems behind metabolism.

There are of course various regulation points in between each omics approach,

each of which adds a level of abstraction from the resulting phenotype. Indeed,

a gene can exist without being expressed, and an enzyme can be produced

without being active in reality. This can be due to regulatory mechanisms such

as post-translational modifications, transcriptional regulation, epigenetics, and

enzymatic inhibition, to cite a few.

1.5.1 Metabolomics

As mentioned briefly before, metabolomics is an approach aiming at the

measurement and analysis of metabolites from biological samples. The major

innovation of metabolomics is the global overview it provides of the metabolic

processes present in a system, similar to older approaches like genomics, used

to sequence entire genomes rather than focusing on a specific set of genes

of interest. Metabolites and reactions take part in many different aspects of

an organism’s metabolism, which can be defined and split up into functional

metabolic pathways such as glycolysis, and they can be more or less specific to

an organ, tissue, cell type, or even cell compartment. A general metabolomics

workflow is shown in Figure 1.
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Figure 1: A metabolomics workflow, from the biological sample input to interpreting the data
contextually.

The identification and quantification of metabolites has applications in

various fields of research, such as studying the effect of the environment on

organisms [21], biomarker discovery [22, 23], disease diagnostics [24], drug

discovery [23, 25, 26], and food and nutrition research [27]. By acquiring and

analysing snapshots of the metabolome at different time points, conditions,

tissues, or individuals, biochemical effects and risks can be understood.

Metabolomics approaches are divided into two categories: targeted and

untargeted. Targeted approaches focus on one metabolic pathway or class of

compounds which defines the specific group(s) of metabolites to be analysed.

This usually involves the addition of stable isotopic standards that are easily

detectable when taking them into account as controls. These analyses often

consist of tailored steps for certain chemical classes (e.g. amino acids,

nucleotides. . . ). Targeted methods are advantageous in their quantitative

precision but lack breadth of coverage and detection capabilities, since they rely

on prior knowledge and experimental design.

Untargeted approaches are oriented towards a global view of metabolic
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fluctuations, usually in response to a given perturbation. These perturbations

can be diseases, genetic, or environmental. Generally, untargeted analyses are

used for hypothesis generation, which is then followed by targeted profiling on

metabolites of interest. The metabolites of interest can then be quantified and

analysed more confidently and thoroughly [28].

The two approaches can be combined by performing an untargeted

acquisition of data followed by analysing data in a targeted way. It has

the advantage of allowing data to be processed again, this time with a new

perspective, without requiring the analysis of samples a second time.

The two main methods of measuring metabolites from a sample are mass

spectrometry (MS) and nuclear magnetic resonance (NMR). Each analytical

setup has the ability to detect a portion of the metabolome depending on the

physico-chemical properties of molecules (e.g. polarity) [29].

1.5.2 Mass Spectrometry

MS can detect and identify metabolites with high sensitivity using their

mass and charge, and can cover many different classes of metabolites due to

the different methods available with different coverages. It consists of two

technical steps: ionisation of metabolites followed by separation according to

their mass-to-charge ratio. The signal produced by this method is then analysed

to extract data from the resulting spectra.

Ionisation is the process by which a molecule (or single atom) gains or loses

charges via the gain or loss of a proton or electron, often accompanied by other

chemical changes. This results in a molecule, now known as an ion, with a

negative or positive charge. In an MS procedure such as Electron ionisation for

example, the sample can be bombarded with a beam of electrons which can ionise

it or even fragment it into multiple smaller ion fragments. Different methods of

ionisation are used depending on sample phase (liquid, solid, gas), sample size
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or even sample salinity.

Among the various MS ionisation methods, atmospheric pressure chemical

ionisation (APCI) is a gas-phase ionisation method used to detect medium

and low polarity thermally-stable compounds (e.g. lipids), and is commonly

used for trace analysis detection such as pesticides and drug metabolites. This is

complementary to other methods like electrospray ionisation (ESI) which is better

for high polarity metabolite detection and larger compound masses. Different

methods cannot ionise certain molecules, such as volatile or thermosensitive

compounds, meaning an absence of a metabolite in the resulting detection does

not necessarily imply it was not present in the sample.

Compounds are then separated based on their mass-to-charge ratio by an

analyser. Each molecule will have a different ion trajectory and speed which are

generally characteristic of its behaviour, but some molecules are not able to be

separated, resulting in identification ambiguity. They are then detected thanks to

their charged nature, and the signal is converted to a mass spectrum.

Furthermore, MS techniques are often coupled with other methods to enhance

coverage and precision. Many metabolites can correspond to the same mass

or chemical formula, which then need to be separated in order to identify each

metabolite correctly. For example, MS coupled with liquid chromatography

(LC-MS/MS), combines both the physical separation provided by the LC, based

on each metabolite’s affinity for the phase(s) in the column, with the mass

analysis from MS. MS is also commonly combined with a second MS to separate

and detect fragments of the ions from the first MS. This approach, known as

tandem mass spectrometry or MS/MS, makes it possible to overcome the issue

of separating ions with very similar mass-to-charge ratios. MS/MS is also an

essential tool for going further in metabolite identification due to the fact that the

spectra can be compared with existing spectra in databases. These databases can

be shared with the community [30], meaning that identifying metabolites using

this method does not rely on internal identification databases.
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1.5.3 Nuclear Magnetic Resonance

As opposed to MS, spectroscopy by nuclear magnetic resonance (NMR) often

does not require chemical manipulation or destruction of a sample. NMR is a

different metabolomics approach, and is based on detecting the shift in resonance

frequencies of certain nuclei when exposed to an external magnetic field. This

provides information on atoms as well as the neighbouring atoms and the

bonds between them, which, combined together, provides enough information

to more precisely identify metabolites than MS. It also is not limited by the

physico-chemical properties of metabolites, meaning it can be used to measure a

much wider range of molecules, and it is better for direct quantification, where

MS is often best used for relative quantification. However, the major drawback

of NMR is its lower sensitivity, meaning a minimum concentration is required in

the sample for a compound to be detected, as well as the necessity of a larger base

sample. For quantification, NMR does not require the use of standards which are

often expensive to obtain, and is especially adapted for targeted quantification,

as well as untargeted non-quantitative analysis.

1.5.4 Lack of metabolome coverage

Even by combining all possible analytical platforms, it is for now impossible

to detect all metabolites with high confidence (see [31] for metabolic coverage

assessment of MS data). This means that when preparing a metabolomics

experiment, it is important to select the correct setup for the metabolites

of interest beforehand. Due to the fundamental nature of metabolites as a

molecular class, no one instrument can reliably measure every compound

considered as a metabolite [32]. Metabolites are an incredibly broad range

of molecules with different chemical properties and are present in varying

concentrations in samples. This is in stark contrast with any gene or RNA related

quantification: nucleotides are a very limited pool of molecules with similar
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properties, meaning only one technique is required to even detect them. Multiple

combinations of instruments are therefore often required to cover a broader

variety of metabolites.

1.5.5 Downstream metabolomics analysis

Compound identification is generally preceded by statistical evaluation and

analysis, often involving multivariate and univariate analyses, to categorise

and predict sample properties, and identify major trends among the data.

Multivariate analyses such as principal component analysis (PCA) and partial

least squares discriminant analysis (PLS-DA) reduce the dimensionality of

metabolomics data and can be used in classification, regression and prediction.

These methods help select variables which could be of interest for identification.

Regardless of the metabolite identification method used, raw metabolomics

data results in unidentified features in the form of spectrum peaks. Due to the

nature of metabolomics experiments, once detected, measured features must be

identified to ensure they are metabolites of interest. In order to be confident in

an identification, the measurement must be compared and confirmed with the

corresponding standard of that molecule. Often this reference standard is not

available for new metabolites, meaning that new standards have to be bought in

order to detect previously unknown metabolites. This leaves gaps in observations

where an absence of measurement and identification cannot be equated to an

absence of the metabolite in the sample.

Metabolite identification has been standardised in the community to improve

communication and reuse of information. A system of four identification levels

was proposed and is now widely used [33]. Since then, other initiatives have been

developed [34], but the system proposed by the MSI (Metabolomics Standards

Initiative) remains the most widespread. It is described as the following:

1. Identified compounds: the requirements for a level 1 identification involve
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the use of a pure solution of the molecule (a standard) in identical

experimental conditions as well as documentation of the spectral matching

process used.

2. Putatively annotated compounds: a molecule is annotated as level 2 when

the identification is based on spectral or chemical similarity with public

spectral libraries.

3. Putatively characterised compound classes: a class is assigned to a

molecule based on its phyisco-chemical properties or spectral similarity to

compounds of that class.

4. Unknown compounds: a compound which can be differentiated and

quantified but not identified or classified.

Prior knowledge of which molecules should be identified is essential when

designing a metabolomics experiment due to the difficulty of obtaining a pure

standard for many metabolites. Identifying novel metabolites remains difficult,

especially when carrying out exploratory experiments, and reaching level 1

identification on all detected spectra is impossible. This results in a loss of

information at multiple levels, and the resulting metabolic profile is not wholly

representative of the sample.

1.6 Conclusion: a need to fill the gaps in metabolic profiling

Measuring metabolites has impacts in many fields and studies, such as

human health, and one of its advantages, especially in the case of health-related

studies, is that it is very close to the actual phenotype of the organism

compared with transcriptomics. This results in cellular metabolic mechanisms

that can be closely correlated with observable phenomena like diseases, and

is why metabolic profiling can be very performant in diagnosing diseases.

Metabolomics holds its appeal primarily because it captures the most dynamic
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representation of phenotype and medical conditions. Metabolites are viewed

as falling downstream of genetic, transcriptomic, proteomic and environmental

variation [32].

The fundamental advantage of recent advances in metabolomics is the ability

to measure large numbers of metabolites at once, going from metabolite-level

analysis to metabolic profile-level analysis. This transition from single biomarker

quantification to lists of hundreds of metabolites not only creates a need for

downstream methods able to analyse these large lists of metabolites but also

approaches involving prior analysis and selection of classes of metabolites to

measure for future experiments. Knowing when and what to focus experiments

on is not only essential for reducing costs and time spent, but also for more

directed hypothesis generation as well as easier down-stream analysis.

In addition to this, the loss of metabolites along the way means that the

resulting metabolic profile captures only a partial view of the metabolome in the

sample, inherently misrepresenting the metabolic state. Being able to complete

the experimental view of the metabolome with predicted metabolites of potential

interest can add new information to the current analysis as well as improve

future experimental design.

2 Metabolic modelling

The ultimate goal of metabolomics and biology in general is the full

comprehension of every biological system in any given scenario. Ideally, this

would serve to improve our understanding of the relationships between our

bodies and everything they encounter, as well as why sometimes things go

wrong. Of course, this is not (yet) possible, and creating models to represent

and study reality is a step towards even better models and of course complete

understanding. This ”classic” view of modelling helps understand and predict

complex functionalities that are understudied.
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In this thesis, the aim is to move past this use of modelling with the goal of

predicting outputs that could be observable in a given condition. By developing

the prediction of metabolic profiles using in silico methods, this can aid in the

design of experimental studies and improve our knowledge of metabolism.

As mentioned in the previous sections, designing experiments is difficult,

time-consuming and expensive, and results may not always be positive, which

leads to more experimental design to confirm and develop results. Being able

to narrow down future metabolic targets is an essential part of optimising

hypothesis testing. This can be achieved by modelling metabolism at the level of

cells or tissues.

2.1 Bioinformatics, a necessary tool in the era of systems

biology

Bioinformatics is the hybrid approach of developing and using computational

techniques to support other areas of scientific research involving biology. By

manipulating and interpreting biological data, biological problems can be solved

and hypotheses can be generated. This data can be produced experimentally,

come from public cohort data, or other online databases. Bioinformatics has been

used since the 1950s, becoming essential when comparing sequences of genes

manually became impractical. As the production of biological data becomes

easier, cheaper, more widespread and on a larger scale, techniques must be

developed to analyse it in order to keep up.

Beyond analysing and comparing biological data, entire new fields of

bioinformatics have flourished, giving rise to predictive tools in an area of study

known as systems biology. By combining pieces together, as opposed to taking

pieces apart and looking at them individually, systems biology gives a view of

the larger picture and this enables the modelling of complex biological systems at

various levels (organism, tissue, cell. . . ). The hypothesis behind systems biology
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is that this combination of interactions between individual systems possesses

additional properties as a whole (holistic), resulting in emergent properties. One

of these complex biological systems is metabolism, which can be especially well

simulated by a model due to its interconnected nature.

2.2 Modelling principles and goals

Modelling entire complex systems is based on the simplification of what is

known to a certain degree where the model remains a valid approximation.

This is done by removing parameters deemed with minimal impact on the

results, or those difficult to measure experimentally and therefore complicated

to validate biologically. This approximation remains valid as long as there is

enough information left in the model to result in realistic predictions. Generally,

a model is defined for a given objective, meaning a model is developed and used

to answer a predefined question, or to generate questions and hypotheses. In this

sense, it is a specialised model which should only be used for the corresponding

topic, and should be re-evaluated if used for other predictive purposes. The goal

is to obtain a scientifically accurate prediction which can then be reflected back

onto reality, but no one model describes an absolute truth.

Scientific modelling encompasses many different types of models, such as

conceptual models, graphical models, mathematical models (using mathematical

concepts: statistics, game theory...), and computational models (more algorithm

and simulation focused). Computational models are often used to simulate a

complex system using a mechanistic approach. They aim to replace manual

and “intuitive” approaches with a more parameter-centric computer-based

experimentation.

Understanding genes and gene expression is essential to the enrichment of

the community’s knowledge of metabolism, and more specifically the biological

processes involved in getting from a gene to an enzyme and finally to an
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active biochemical reaction. Ultimately, it is by studying metabolism and

metabolic-related mechanisms that we can understand the final effects of gene

regulation on metabolism, due to the many intermediate steps in between.

Biologists can work backwards from metabolite measurements to understand

how reactions are linked together, which is of course a necessary preliminary

step for fundamental biology and developing any sort of model representing

reality. Now that these models exist, they can be improved upon with additional

knowledge gained from experiments, and, more relevant to this thesis, can

be used to generate this new knowledge and create a feedback loop of model

improvement.

We cannot predict the effect of a blocked enzyme on the entirety of

metabolism by looking at how reactions are linked together. Just because an

enzyme is repressed does not mean that the substrate metabolite will accumulate

in the cell, as other compensatory mechanisms may exist and only activate in

the event of an abundance of that metabolite. Being able to simulate metabolite

fluctuations is essential to understanding the propagation of disruptions across

an organism’s metabolism.

2.3 Metabolic modelling methods

There are a multitude of networks developed and used for biological

applications, such as protein-protein interaction networks, cellular signalling

networks, between-species interaction (trophic) networks, and many more.

When applied to metabolism, networks consist of metabolites, usually unique

single entities, linked by reactions. The simplest form of representing a

reaction is by combining an enzyme with its substrates and products as well

as stoichiometry information. The next level is the combination of multiple

reactions and metabolites contributing to a cellular function, known as a

pathway. Pathways can be defined differently depending on the method of
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segmentation, and can overlap, sharing metabolites, or not overlap. As a whole,

these various levels of an organism’s metabolism are available in databases,

containing all known information on each entity and their relationships. This

information can then be harnessed by using either graphs, for a more static and

descriptive approach, or constraint-based modelling, for more predictive and

quantitative methods.

When modelling metabolism, the model can be structured in different ways

depending on the biological question and technical solutions available. Since a

model by definition is a reduction of information, choosing which information to

keep and which to remove is essential when designing or selecting the method

of modelling. It is also dependent on the data available for a given process: if a

parameter is impossible or difficult to measure, then the model can be based on a

hypothesis to either remove the parameter or estimate it theoretically.

2.3.1 Databases, gathering knowledge on metabolism

Metabolic databases include information on each metabolite, reaction,

enzyme and gene known for a given organism, as well as how they are linked

together. Kyoto Encyclopedia of Genes and Genomes (KEGG) [35, 36, 37], is a

Japanese collection of databases containing many aspects of biology including,

but not limited to, genomes, metabolites, biological pathways, and diseases.

It is a comprehensive representation of the interactions between molecules,

reactions and genes in the form of pathways, and chooses to represent pathways

as visually simple manually laid out maps. MetaCyc [38, 39, 40] is a metabolic

pathways- and enzymes-centric database, and is viewed as an extensive online

encyclopaedia of metabolism. Many pathways and enzymes are backed by

mini reviews and other literature references, and it also includes data on

metabolites. Reactome [41] is another online database of biological pathways,

with several dedicated organism-specific databases. It focuses on the visual
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aspects of representing biological pathways as well as sharing the data in a

computationally accessible format. Rhea [42] is a manually curated database,

specialising in biochemical reactions.

In the databases containing pathways, each pathway is defined and named

differently and can vary in size compared with the equivalent in other databases

[43, 44]. Some pathways exist in certain databases and are merged or non-existent

in others. This leads to issues mapping between databases, and requires a choice

of database when using pathway data to enrich metabolomics results.

Most databases use identifiers for reactions, genes and metabolites. Gene

identifiers are generally well-standardised across multiple databases, with

common identifiers including Ensembl [45], NCBI Entrez [46], and even the

basic gene symbols are well recognised. Enzymes have a universal enzyme

class, also known as the Enzyme Commission (EC) number [47], which classifies

enzymes according to the reaction(s) they catalyse, meaning multiple enzymes

can have the same EC number if they carry out the same metabolic function.

By contrast, UniProt [48] identifiers are uniquely assigned to enzymes, which

contains all annotated information as well as the link to genes that code for the

enzyme. Finally, metabolites have different identifiers such as Chemical Entities

of Biological Interest (ChEBI) [49], PubChem [50], and Human Metabolome

DataBase (HMDB) [51], which serve to assign a unique identifier to each

metabolite to help find, archive, and consolidate diverse metabolite names. A

different type of identifier is based on the chemical structure of metabolites, such

as SMILES [52] and InChi [53]. These identifiers also have the goal of being

unique: some rare cases can occur where an identifier corresponds to multiple

metabolites but these tend to be fixed quickly. They encode chemical properties

(molecular structure, stereochemistry...) into the identifiers themselves, meaning

that information can be extracted and used without querying external databases.

Despite these identifier development efforts and pushes towards a more

consistent approach to metabolite nomenclature [54], no real homogeneous
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naming convention has been chosen as the consensus yet. For metabolites there

is a distinct lack of combined effort for harmonisation of identifiers, which

leads to issues such as misidentification of metabolites, difficulty in mapping

from names to ChEBI or PubChem, and the necessity of manual curation to

check identifiers. Common names, which can differ from a missing hyphen

to a completely different chemical description for the same molecule, need

to be associated with at least one standard identifier upon identification, but

this is not always the case when producing metabolomics data. For example,

20alpha-Hydroxyprogesterone is also called 20a-Dihydroprogesterone. When

inputting 20alpha-Hydroxyprogesterone into identifier mapping services such as

MetaboAnalyst [55], 20a-Dihydroprogesterone is returned, but if the hyphen is

removed in the input, many different metabolites are proposed as equal matches.

Finally, this molecule has many different synonyms listed on HMDB such as

20alpha-Progerol and 4-Pregnen-3-one-20alpha-ol which both refer to the same

compound.

Some of the previously mentioned databases also provide their information

through visual networks of connected nodes and edges. KEGG for example

displays pathway-based networks with metabolites as nodes and reactions

linking them as edges. Such networks contain the complete known set of

metabolic and otherwise metabolically linked chemical or physical processes.

Importantly, these are not solely lists of reactions but include how every object is

linked to one another, which is the defining feature of a network. In principle,

this represents discrete or binary data, meaning that either two entities are linked

or not.

Other large metabolic databases include BiGG [56], MetaNetX [57], BioModels

[58], and Metabolic Atlas [59, 60, 61], all four of which are intrinsically linked to

systems biology and storing metabolic information in a suitable format. The main

format for storing a metabolic network is Systems Biology Markup Language

(SBML), an XML-based data format for storing and describing models in biology
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[62, 63, 64]. Models in the SBML format include identifiers for various databases

depending on the level of curation and annotation, which is important when

mapping to or from biological data.

BiGG is an open-source knowledgebase of more than 70 genome-scale

metabolic network reconstructions with standardised BiGG IDs. This allows the

user to quickly obtain the ID from one model’s metabolites, genes or reactions

in another model, even across species. MetaNetX is a similar repository for

many metabolic networks with their own ”MNXref” IDs for metabolites, genes

and reactions, as well as external database links when available. BioModels

is an open repository for mathematical models curated and hosted by the EBI

(European Bioinformatics Institute). Metabolic Atlas is specifically built to

browse and view a set of genome-scale metabolic models (GEMs) made with the

goal of being the community’s consensus models for 7 species (human, yeast,

fruitfly, mouse, rat, worm, and zebrafish). Since these models can be large, it

can be useful to browse the model’s entities online to understand each entity’s

properties, such as the genes responsible for a given reaction.

All of this data contained within databases is of use when constructing models

that represent various aspects of biology, including metabolism. By translating

the interconnected knowledge into a functional or structural network or model,

new information can be extracted from what was already known, using the links

annotated on each entity, as well as the entity’s own data. The following sections

describe these metabolic networks that are constructed from knowledge available

in databases and in the literature.

2.3.2 Reconstructing metabolism to create genome-scale metabolic

networks

Genome-scale metabolic networks (GSMNs) aim to encompass all known

metabolic genes, reactions and metabolites as well as the interactions between
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them for a given organism [65, 66, 67]. They are created ”bottom-up” from

genomic and literature data, in contrast to ”top-down” approaches, which use

large quantities of data to infer interactions and generally do not form functional

models for mathematical modelling [67]. The reconstruction process starts with

the genome sequence assembly for the chosen organism:

1. Draft reconstruction: from genome annotations, identify metabolic

reactions and combine into a draft reconstruction with potential metabolic

reactions.

2. Refinement of reconstruction: various checks and addition of information

on substrates, cofactors, formula, stoichiometry, compartments, transport

reactions...

In these networks, metabolites and reactions are represented as a stoichiometric

matrix, containing information on the proportions of each metabolite involved in

each reaction. For example, the combustion of methane (CH4 with O2) produces

CO2 and H2O, but one unit of CH4 contains 4 hydrogens and therefore produces

2 units of H2O while consuming 2O2. The 2 units of O2 and H2O required to

make the reaction balanced are the stoichiometric coefficients of the compounds

for that reaction, as well as 1 for CH4 and CO2.

Enzymes are annotated by matching metabolic genes to their corresponding

enzymes both structurally, using the gene sequence, and functionally, using

databases and other information like EC numbers.

In GSMNs, genes are linked to reactions through their Gene Protein

Reaction (GPR) rules (see Figure 2). In the case of an “AND” GPR, all of genes in

the reaction’s GPR must be active for it to be active, and in the case of an “OR”

GPR, at least one gene in a reaction’s GPR must be active for it to be active. This

concept represents some aspects of gene regulation, requiring some genes to be

active either because they code directly for the gene or are known to regulate the

enzyme’s expression directly. The ”AND” GPR can model protein complexes
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and how some enzymes require multiple proteins to join together to function.

The ”OR” GPR can model the gene duplication that can occur throughout

evolutionary processes, resulting in multiple enzymes with the same function.

Figure 2: Gene-Protein-Reaction relationships. In metabolic models, isoenzymes correspond to
the ”OR” GPR, where at least one of the genes is required to be active, and enzymatic complexes
correspond to the ”AND” GPR, where multiple genes are required to be active for a reaction to
take place. Figure based on the GPR figure in [68].

Homeostasis, or the internal balance of conditions, is maintained and

regulated by three components: a receptor, a control centre and an effector. The

conditions can range from body temperature to pH levels, concentrations of

sodium to blood sugar levels, and must be kept within predefined ranges even

when external changes affect the organism. Homeostasis is incredibly important

for the function of many metabolic processes due to their specific environmental

requirements. A major example of this is osmosis, the spontaneous movement

of molecules through a membrane, which can only occur if the molecule is

in a lower concentration in the destination compartment. There are transport

mechanisms in place which transfer molecules in the opposite direction to

maintain ideal concentrations on either side of the membrane. In GSMNs,

metabolites can be separated into compartments such as cytosol, mitochondria,

endoplasmic reticulum, and peroxisome etc., resulting in duplicated version

of metabolites for each compartment. Metabolites are transported between

each compartment via dedicated reactions converting a metabolite in one

compartment to the same metabolite in the destination compartment. This

transfer via transport reactions can occur between any two compartments in
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contact with each other. A specific type of transport reaction is the exchange

reaction, which transports metabolites out of the cell, creating an ”exchange”

with the ”outside” of the cell. The ”outside” of the cell can model the cellular

medium or a biofluid such as blood vessels connecting and supplying cells with

nutrients as well as providing an output for waste and exports.

GSMNs are used in many applications such as maximising the production of

certain metabolites (metabolic engineering) [69], studying the effect of drugs on

pathogens [70], discovering enzyme functions [71], comparing the metabolism

of different cells, tissues or organisms and predicting interactions between them

[72], and studying disease states in relation to metabolism [73, 74].

2.3.3 History of metabolic network reconstruction

The first genome-scale metabolic networks were developed for bacteria due

to the smaller genomes and easier to access information in 1995 for Haemophilus

influenzae [75] followed by Escherichia coli [76]. Multicellular organisms are more

difficult to reconstruct due to the size of the genome, less knowledge and the

various cellular compartments. The first multicellular reconstruction was for

C. elegans in 1998 [77]. Since then, many other organism models have been

reconstructed, including updates to older versions.

After the publication of the complete human genome in 2004 [78], human

metabolic network reconstructions started to be developed. Curated collections

of biochemical reactions in human cells were built in 2004 (HumanCyc) [79] and

2005 (Reactome) [80, 41] but the first metabolic models of human metabolism

were published in 2007 as Recon1 [81] and EHMN (Edinburgh human metabolic

network) [82] with more unique metabolites and reactions that HumanCyc.

Recon2 was the next step in human metabolic models [83], combining everything

from EHMN, Recon1, and HepatoNet1 [84], as well as extra modules, and

was then refined in 2015 with improved GPRs and other updates to form
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Recon2.2 in 2016 [85]. In parallel, HMR [86] was built combining Recon1,

EHMN, HepatoNet1, Reactome, HumanCyc, KEGG, and the Human Metabolic

Atlas [87], and then further updated as HMR2 [88]. In 2017, another human

metabolic model was developed called iHsa [89] as an extension of HMR2,

combined with the rat metabolic model iRno. Recon3D [90] was then developed

using Recon2 and HMR2 as well as other reaction sets. Finally, the most recent

human metabolic network is known as Human1 [60] and is provided via github,

meaning it can be regularly updated by the community with proper versioning

and without having to release a new version of the model separately. For

instance, I identified some GPR-related errors in the model, and the corrections

were rapidly integrated into Human1 v1.15, after being reviewed and validated

by other contributors.

2.3.4 Metabolic graphs to discover network structure and relationships

between elements

A different approach to structuring information is using graphs and graph

theory. Graph theory revolves around the relations between elements: how they

are connected and how they are not connected. It has its origins in mathematics,

more specifically in recreational maths problems, and is now used widely in

many different fields of application, such as chemistry, computer science, maps,

sociology, and even linguistics.

Graphs are useful for exploring structured knowledge thanks to the edges

not only linking entities (nodes) but also describing the links with meaningful

connections. This allows for automated association generation between many

types of data, such as metabolic signatures and biomedical concepts [91], as

well as hierarchical structures such as ontologies. Hierarchical ontologies

are structured tree (more precisely directed acyclic graphs) representations of

knowledge using controlled vocabulary as labels to describe objects. The most
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well-known biological ontology is GO (Gene Ontology) [92, 93], which classifies

genes into a tree structure with three main branches (Molecular Function,

Celullar Component, Biological Process). An ontology based on small molecules

is the ChEBI Ontology [49], which organises molecules such as metabolites

based on their Molecular Structure and Role. The ChEBI ontology uses different

relationships between nodes, with generic links like ”is a” and ”has part”, and

more molecule-specific links such as ”is enantiomer of” etc.

Graph theory is an expansive field which uses various approaches to explore

and utilise graphs. Algorithms have been created to calculate various properties

of either the graphs themselves or the entities within them. A useful example

is calculating the shortest path between two entities (nodes) in a graph. The

shortest path is the path between two entities such that the sum of the weights

of the edges along the path is minimised (when no weight or equal weight

is defined, the shortest path is a path with the minimum number of edges).

Many algorithms have been developed to solve this problem such as Dijkstra’s

algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm. The shortest

path length (or total weight), once calculated, can be considered as a distance

between two entities. The graph’s diameter can be determined by calculating

all of the shortest paths between each pair of nodes and taking the length of the

longest path.

In addition to the shortest path, many other metrics and algorithms exist to

exploit graphs. Centrality is a measure of the importance of a node in the graph,

which can be defined in different ways depending on the goal. It can be based

on the number of edges connecting each node, or based on the distance to all

other nodes. Assortativity describes the tendency for nodes to connect to other

nodes with similar properties. The PageRank algorithm, well-known for its use

by Google to rank search results, is another measure of importance based on the

capacity of a node to be a key connecting point in the network.

Graphs are also extremely useful in visualising information as the simplicity
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of the edge and node combination means that many different styles can be

applied, and large scales can be reached. Many different libraries and tools

exist for visualising a graph stored in a file, such as the igraph libraries (R,

Python...), Cytoscape for general graph visualisation with special applications

in bioinformatics [94], and MetExplore [95, 96] for specialised visualisation of

metabolic networks as graphs.

Metabolic networks can be used to create graphs in multiple ways [97]. A

reaction graph contains the nodes as reactions, with the edges representing a

shared metabolite between reactions (the product of one is the substrate of the

other) (left of Figure 3). A compound graph is the compound-centric counterpart:

two nodes are connected by an edge if one is the substrate of a reaction and the

other the product of the same reaction (middle of Figure 3). Bipartite graphs

contain both types of nodes but the edges can only link different types: a reaction

node can only be linked to metabolite nodes and vice versa (right of Figure 3).

Choosing how to model metabolism using graphs depends on the biological

question and available data (on metabolites or reactions), and can greatly change

the interpretation and conclusions drawn from the graph.

Figure 3: A metabolic network shown using different graph models.

Finally, graphs can also be directed or undirected (and even mixed), meaning
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that the edges in the graph contain information of their directionality or not.

Technically, all reactions are reversible, but an enzyme is required for most

reactions to take place in biological conditions, leading to certain reactions only

able to occur in the direction catalysed by the enzyme. For instance, a biochemical

reaction can be irreversible, carrying out the metabolic transformation only in

one direction, or reversible, able to go back and forth in the transformation. An

irreversible reaction has a defined substrate(s) and product(s), and forms a point

of no return for the path of metabolite transformation. This affects the calculation

of shortest paths for example as a path may be possible from a source node

to destination node in an undirected version of the graph, but in the directed

equivalent the destination node could be unreachable, resulting in an ”infinite”

distance between the two.

Choices must therefore be made when defining a graph type and its

properties from a metabolic network. For instance, reaction graphs are less

useful for metabolomics data and simulating metabolism due to the implicit

nature of how metabolites are described. Bipartite graphs are good for explicitly

modelling both metabolites and reactions, while compound graphs provide

the transformation information between two metabolites within the edges

themselves. In general, metabolic graphs are directed as the irreversibility of

reactions is important when considering modelling and biological coherence.

Undirected metabolic graphs can still be useful for calculating paths between

entities for example, which could reveal metabolites that are close when choosing

to disregard the directions of reactions.

2.3.5 Quantitative and dynamic metabolic modelling

Overall, reactions can be viewed as chained together by the metabolites

involved as substrates or products. One reaction’s product is another reaction’s

substrate, and this links the two reactions, rendering them and their activities
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dependent on one another. Most reactions are catalysed by an enzyme, a

protein coded for by a given gene. Without these enzymes, the corresponding

biochemical reactions would not be able to occur at rates fast enough to sustain

life. This means that if a deleterious mutation occurs in an enzyme-coding gene,

that enzyme will not function correctly and the reaction will most likely not take

place spontaneously. In addition to metabolites as the main substrate or product

of an enzyme, some enzymes require cofactors which can be inorganic (such

as zinc) or organic, such as the coenzymes ATP, NADH, and NADPH which

transfer chemical groups from one enzyme to another. These coenzymes are

incredibly common to many different enzymes and are continuously regenerated

to maintain a stable level inside the cell.

Enzyme activities are confined by the kinetics rules based on the chemical

laws of molecular binding, transformation, and cleaving. Kinetics, or the

study of the rate of enzymatic catalysis, can help understand the biochemical

mechanisms involved in the reactions and their role in metabolism, by predicting

the evolution of metabolite concentrations over time. It also includes the study

of the control and regulation of their activities, based on regulatory mechanisms

via inhibitors or activators and how they can affect the reaction rate. Once

enzymatic kinetics parameters are known, they can be used to model metabolism

using ordinary differential equations (ODE). This appears to be the most evident

way of modelling metabolism: by using knowledge of how fast each reaction

takes place combined with initial concentrations of metabolites, a kinetic model

should be able to predict metabolite concentrations over time. The major issue

with kinetic models is the need for kinetic enzyme parameters which are difficult

to measure and not available for every enzyme in every condition, but they can

be estimated using various parameter estimation methods [98, 99, 100, 101].

In vitro measurements can be used for single enzyme activities but they can

cause unrealistic model behaviour when put in relation to one another and with

regulatory mechanisms [102]. In general, kinetics data remains sparse and often
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information is only available for a small number of well-known reactions and

enzymes. These data limitations can result in uncertainties in predictions which

render the simulations computationally unfeasible or expensive [103], which

leads to these analyses being restricted to small networks and pathways.

The shift away from considering the temporal dimension of kinetics-based

modelling was driven by the simplification of ODEs into linear equations,

by imposing the steady-state hypothesis (explained below). A well-suited

class of methods for this global metabolic modelling is constraint-based

modelling (CBM). By using genome-scale metabolic networks, CBM can

compute steady-state metabolic fluxes (the flow of metabolites) through

biochemical reactions [104]. In contrast to methods requiring information on the

kinetics of enzymes, CBM needs very little data of enzymatic parameters and

metabolic concentrations to function. Networks for CBM play a central role in

our understanding of the relation between genotype and phenotype due to its

intermediary position. They are used not only to explain metabolic mechanisms

but also predict various areas of metabolic processes.

The major requirement for creating a functional model from GSMNs is

physiological data to compare the model predictions to, since evaluation and

validation of the model relies on comparing predictions to reality. The two main

steps are:

1. Conversion of reconstruction into computable format: convert network

into a mathematical format and set objective function and constraints.

2. Network evaluation: tests based on mass and charge balance, gaps,

dead-ends, blocked reaction and comparison with known properties.

These steps form a feedback loop of model improvement by using results

from the evaluation step to change entities and parameters in the refinement

of the model. CBM methods are based on mass-balance across the entire

metabolic network, using both known reaction stoichiometry as well as the
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main hypothesis of CBM: all internal metabolites are at a “stable” concentration

and are therefore consumed as soon as they are produced by any reaction (in

other words, their concentrations stay unchanged). This has the advantage of

being able to solve problems with thousands of reactions, but its drawback is

that it prevents the prediction of the internal concentrations of metabolites. The

metabolic models used in CBM integrate not only reaction and metabolite data

but also metabolic gene information and how the genes are related to reactions.

The model is therefore a global representation of a given organism’s metabolic

knowledge, from genes to metabolites.

The fact that GSMNs contain information on both genes and proteins as well

as metabolites provides a single platform to which transcriptomics, proteomics,

and metabolomics data can be integrated, for a multi-omics approach to

studying metabolism. This data and network, combined together, provide a

specific simulation of metabolism in a given tissue [105]. These models, created

as an ”instance” of a network, can instead be tailored to a specific condition,

such as different cellular environments, growth conditions or diseases such

as cancer [106, 107, 108]. By modifying different parameters in the network

such as exchange reactions and redefining the objective function (seen as the

biological ”goal” of the cell, like biomass production), a different model can be

generated from this static network. This creates the key link between phenotype

and gene variations, which is mechanistically more informative compared to

standard GWAS data for example, which only provides significantly associated

phenotypic traits with gene variations without an explanation of why these links

exist [109]. Beyond modelling a single organism on a genome scale, networks

can also be built to model a specific tissue or cell type [110] or even multiple

tissues linked together [111]. Often, tissue-specific models are derived from

generic models by removing genes that are not expressed in that tissue using

transcriptomics data.

Fluxes exist under defined flux constraints, known as upper and lower
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bounds, attributed to each reaction in the network. These constraints have

default boundary values assigned by the network’s creators which define both

the range of possible fluxes and consequently reaction directionality (reversible if

both negative and positive values are allowed, or irreversible if only positive or

only negative values are possible). By changing these bounds, different metabolic

states can be modelled, for instance the simulation of a complete knock-out (KO)

of a reaction by setting both of its bounds to zero. By knocking out a gene and

therefore its associated reactions in the model, an IEM can be simulated. The

reduction of flux through a reaction or multiple reactions (knock-down) can also

be simulated in the model, representing reduced enzyme activity due to some

effect of treatment, regulation, or exposure to xenobiotics.

2.4 Limits of metabolic networks in the integration of

regulatory mechanisms

Biologically, enzyme production and activity can be regulated in different

ways. The first and more extreme method is through alternative splicing, which,

through the different combinations of intron and exons from one gene, produces

variations of the same enzyme with distinct functions and structures. This can

be predicted using splicing prediction tools from the genetic sequence [112,

113], and can be measured using transcriptomics since splicing directly affects

mRNA transcripts. Some splicing mechanisms can result in smaller proteins due

to alternative splice sites [114]. Other genetic-related regulation mechanisms

include gene expression modulation via transcription factors or chromatin

remodelling, and mRNA regulatory processes, where different steps of the

translation process can be regulated by initiation, elongation, and release factors.

All of these genetic-level regulations can be affected by genetic mutations such

as SNPs, for example in intronic or exonic regions, or disrupting transcription

factor binding sites.
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Cellular compartmentalisation plays a key role in how an enzyme functions.

Enzymes are spatially separated by the cellular membranes of each cellular

component, restricting the reach of enzymes to the substrates currently in

their compartments. Certain enzymes sometimes require a specific pH and

temperature to function, which can be found in the mitochondria for example,

and the directionality of reactions can also change depending on pH.

Enzyme activity can also be directly influenced by their own substrates

and products in positive or negative feedback loops. The concentrations of

substrates are highly controlled and some enzymes are only activated if there

is a minimum level of its substrate nearby, even if the enzymes are otherwise

available. Of course, no enzyme can function without its substrates, which makes

it intrinsically linked to the flow of metabolites through other reactions located

up and downstream. More specific enzyme regulation mechanisms include

allosteric regulation, meaning the enzyme has a second binding site to which a

ligand can bind and modulate its activity. These ligands are molecules which can

either affect the enzyme positively (activation) or inhibit its activity. For example,

a well-known allosteric enzyme is phosphofructokinase-1 (PFK-1) [115], as

it is an important enzyme of glycolysis. It is regulated by many inhibitors,

such as a high ratio of ATP to ADP inhibiting PFK-1 and therefore glycolysis,

and activators, such as fructose 2,6-biphosphate in eukaryotes, a feedforward

stimulation resulting in an acceleration of glycolysis when glucose is abundant.

Enzymes can also be regulated by controlling their degradation rate, directly

affecting the number of enzymes available to catalyse reactions. Proteasomes,

which are protein complexes located in the nucleus and cytoplasm, degrade

unneeded or damaged proteins and enzymes, after being tagged with a small

protein called ubiquitin, by breaking their peptide bonds.

In GSMNs, some enzymatic regulatory mechanisms can be modelled while

others are not included in the network. Any direct and constant effect on a gene

or enzyme can be modelled by affecting the parameters of the corresponding
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reaction, such as rendering it completely non-functional. Regulation via

substrate availability is baked into how CBM models simulate fluxes: if the

previous reaction is not producing a metabolite in a given state, the following

reaction using that metabolite as a substrate will not be able to function.

Compartmentalisation is also included in GSMNs as metabolites have different

versions for each compartment, leading to compartment-specific reactions.

However, detailed regulation like allosteric regulation is not modelled by

GSMNs due to its relation to time-dependency: this sort of regulation fluctuates

over time which is difficult to model on a genome scale because of the quantity

of information that would be required. Additionally, enzyme degradation is

not modelled in GSMNs as enzymes are not entities that can be created and

degraded over time.

2.5 Flux simulation using CBM

CBM can be used to predict fluxes, or the flow of metabolites through a

reaction, at steady state under various conditions. This is achieved by defining

metabolism as a system of linear equations, which represent the mass balance

equations of metabolites, composed of the reaction flux vectors involving each

metabolite. Metabolites are the links between reactions, meaning that when a

metabolite is “produced” by a reaction, it is immediately “consumed” by the

next reaction.

First, reactions and metabolites are modelled using a stoichiometric matrix

(S) with metabolites as rows and reactions as columns, and the values as the

coefficients for each metabolite’s involvement in each reaction. This results in

a generally sparse matrix since most reactions only involve a few metabolites.

Figure 4 shows how each constraint is added to the model and the resulting

equations detailed in this section.
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Figure 4: Constraint-based modelling constraints are defined using model assumptions. The
objective function constraint is used in FBA for example.

Mass balance equations can then be mathematically defined for each

intracellular metabolite, describing the evolution over time of each metabolite

mi:

(1)
dm

dt
= S.v

where m = (m1,m2, ...,mi) is the vector of concentrations of intracellular

metabolites, and v = (v1, v2, ..., vn) is the flux vector.

CBM relies on one major assumption, the first of which is the general pseudo

steady-state of the model’s internal metabolites. This assumption is based on

the fact that internal dynamics happen quasi-instantaneously, meaning that the

model reaches the steady state instantly and that its transient behaviour should

not be taken into account. Consequently, at steady-state there is no accumulation

or depletion of internal metabolites, which means that the rate of production

is equal to the rate of consumption for each metabolite [116]. This can then be
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expressed mathematically as:

(2) S.v = 0

Even with this steady-state assumption, the possible space of all solutions is

undetermined because the number of unknowns (i.e., reactions (n)) is usually

greater than the number of equations (i.e., metabolites (i)). Additional constraints

are added using the thermodynamic and capacity properties of reactions when

this information is available: irreversibility and reversibility, and maximum

uptake or measured flux values. This is done by adding minimum and

maximum bounds for the fluxes of reactions: vmin < v < vmax , as well as setting

both bounds to either only positive or only negative values for irreversible

reactions: v > 0 or v < 0. These constraints define a range of feasible values in

the solution space but no unique solution [117].

Flux Balance Analysis (FBA) is a CBM approach which relies on one

additional assumption in order to restrict the solution space further: the

optimisation of the cell through a biological goal, or objective function (Bf ).

This means that when modelling using this method, the solution obtained is

optimised for a certain metabolic objective [117] like biomass production. The

addition of this optimisation problem means that the system becomes solvable

using linear programming methodologies, but only provides one solution among

many possible solutions. The final maximisation problem can be stated as:

max(vBf ) where

(3)


S.v = 0

v > 0 or v < 0 for irreversible reactions

vmin < v < vmax for enzyme capacities and known flux limits

Defining the objective function is essential to the correct simulation of
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the metabolic state of the cell. The objective function should closely match the

cellular metabolism’s ”goal” for a given state. The typical assumption is that cells

have evolved to optimise growth, or the creation of biomass. Other objective

functions include optimising ATP production, for the most energy efficient

metabolism, the production of a specific metabolite, or a maintenance function,

simulating cellular survival without growth.

A consequence of the steady-state hypothesis is that internal reaction fluxes

cannot be used to simulate the quantity of any single metabolite. Conversely,

reactions which import and export metabolites to and from the model, called

exchange reactions, are able to be used to somewhat “quantify” the amount of

that metabolite being exported to the extracellular space. This ”quantification” is

limited by the initial flux bounds set on not only the exchange reaction but also

the other reactions in the network, and does not represent a real amount of that

metabolite in the extracellular space. Despite this, this exchange reaction-based

flux simulation is how we are able to draw a parallel between the model’s

simulations and experimental metabolic profiles (see Figure 6). By simulating

fluxes representing metabolite export and import to the cell, metabolic profiles

can be predicted representing how much a metabolite’s export rate has changed

between two conditions, for example a healthy condition and a disease condition

(see Figure 7 for more details).

Thanks to the steady-state assumption in combination with other assumptions

(such as the objective function in FBA) to reduce the solution space, CBM

methods can simulate fluxes using no kinetic parameters or metabolite

concentrations. Various methods exist to explore this constrained solution space,

with FBA using stoichiometric and initial model constraints in combination with

the optimisation of the objective function to provide an (one) optimal solution.

As mentioned previously, there are not enough constraints to define one single

optimal solution, meaning that there are many different combinations of flux

values for each reaction which can satisfy the constraints. Different methods exist
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to explore the solution space and its possible combinations, two of which are

Flux Variability Analysis (FVA) and random sampling (detailed in the following

section). FVA can describe the extent of the solution space by providing the

minimum and maximum possible values each reaction’s fluxes can take in any

of the viable solutions. This represents the extreme possibilities of a reaction, i.e.

the most extreme cases that solve the flux equations. Therefore, FVA reports two

possible solutions (the minimum and maximum values), leaving the rest of the

flux solutions to fall in the interval between the extremes. The behaviour of fluxes

within these boundaries remains undefined by FVA.

2.6 Random sampling in metabolic networks

Random sampling is a statistical method where each sample has an equal

probability of being drawn. It ensures the chosen samples are an unbiased

representation of the source population. It is often used when generalising

predictions and inferences about a particular population, removing the need to

collect data from every individual in that population.

Random sampling the fluxes of each GSMN reaction within the solution

space brings us closer to the real distribution of fluxes which satisfy the model

constraints. Any one possible solution is a specific combination of flux values

for each reaction, and some flux values are more frequent than others, meaning

that they appear more often in different valid solutions. These many solutions

can therefore outline each reaction’s flux distribution and thus reveal the most

frequent fluxes along with the variability of the values, including the extreme

flux values like with FVA. Some of the first applications of random sampling in

CBM were to determine the effects of enzymopathies on red blood cells [118]

and to study the impact of diabetes, ischemia and diets on human mitochondria

[119].

Figure 5 highlights both FVA and random sampling, two CBM methods
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for assessing the variability of flux values, in two different conditions (WT

and MUT). FVA predicts two extreme flux solutions (minimum and maximum

flux bounds) for each reaction in the network (Figure 5B) under the predefined

constraints, while sampling calculates many different solutions spanning the

solution space (Figure 5C). The FVA interval represents the range of possible

values that the fluxes of a given reaction can take. In an extreme case, like a

complete KO or a single flux value, both the upper and lower bounds of the

involved reaction will have null or close to zero values, like R2 in the MUT state

in Figure 5B.

Figure 5: Flux Variability Analysis (FVA) and sampling for simulating fluxes in different
conditions (A). The resulting flux values to be compared differ depending on the method used.
FVA generates minimum and maximum possible flux values, shown as intervals (B), whereas
sampling generates many values within those bounds, shown as distributions (C).

63



Chapter I. Introduction: Measuring and modelling metabolism

In [120], the authors developed a workflow for using condition-specific

extracellular metabolomics data to predict intracellular fluxes. They created

multiple versions of a subset of Recon2 to represent different conditions and

sampled the fluxes of all reactions. To compare flux distributions between

conditions, they compared median values and defined a minimal change of

10% to be considered as different. This mainly serves to evaluate shifts in flux

distributions, and determine differences in metabolism between two leukemic

conditions. This predicted a higher use of glycolysis for one model and a more

oxidative phenotype for the other, supported by experimental validation, gene

expression data, and the fact that leukemia cancer cells are known to rely more

on glucose to support proliferation, while remaining heterogeneous.

A different method of comparing flux distributions is by calculating a

z-score for each reaction. A z-score is a scoring metric which quantifies the

number of standard deviations by which a value is above or below the mean

of a distribution. In this case, a ”pseudo z-score” is calculated between two

distributions using the mean and variance of that reaction in two conditions, as

shown in [121, 122]. For this thesis, z-scores refer to this pseudo z-score applied

to scoring the difference between two distributions. The z-score helps take into

account the variation and uncertainty in the flux distributions, which is not

possible using FVA or a comparison of medians, as well as the shifts in values.

This can be taken further by calculating a p-value to evaluate the significance of

the flux distribution change but can be difficult to interpret or choose a cutoff for.

3 State of the art in predicting biomarkers

Predicting biomarkers using metabolomics data is fundamental in discerning

metabolic differences between different conditions, and between patients in

differing cohorts or otherwise physiological states. From metabolomics data,

potential biomarkers can be identified using classical statistical approaches
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such as partial least squares discriminant analysis (PLS-DA), a supervised

technique which maximises the variance between predefined classes [123, 124,

125]. This produces a list of certain features (in this case metabolites) that are

able to separate these classes the most. The advantage of this compared with

unsupervised methods like PCA is that sometimes PCA is not able to produce

a meaningful separation between the expected groups, since by definition it

maximises the global variance between individuals and not the part of the

variance which is specifically associated to the biological factor of interest.

Metabolomics data can also be converted into experimental networks which

can link the metabolite data based on different properties [126]. These can be

based on mass differences between metabolites, structural similarities (using the

raw data directly), and correlation data based on the metabolite abundances.

Experimental networks can be used to annotate and identify features from

untargeted metabolomics analyses, which can then be selected as potential

biomarkers.

These biomarker prediction strategies are based on identifying biomarkers

that already exist within the data. Alternative approaches exist which can be

described as data-independent and are therefore able to select both measured

and unmeasured features as potential biomarkers. Metaborank [127] is a

network-based recommendation system inspired by how social networks

recommend content to users. It uses experimental metabolic fingerprints to

extend and recommend other metabolites of potential interest in relation to the

initial profile, based on a GSMN. Knowledge-based networks can also be used

to infer new information about potential biomarkers. For example, FORUM

[91] harnesses information from the literature to provide new significant links

between chemicals and biomedical concepts, by constructing a knowledge

graph from published articles and annotated MeSH (Medical Subject Headings)

terms. MeSH terms are part of the controlled vocabulary thesaurus used for

indexing articles on PubMed. These links can help develop new hypotheses and
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distinguish potential metabolites of interest in relation with a given condition.

3.1 Previous work on predicting biomarkers using CBM

The first paper to predict biomarkers using genome-scale metabolic networks

and CBM was published by Shlomi et al. [128] in 2009. The study focused on

using the human network Recon1 [81], along with known IEM diseases to predict

20 specific metabolite increases or decreases in the extracellular compartment (see

Figure 18). 17 IEMs were modelled in the network as gene KOs using the known

genetic mutations for each IEM from OMIM (Online Mendelian Inheritance in

Man) [1], a database of human genetic disorders and associated traits. For each

IEM, both a KO (knock-out) condition, where the reactions corresponding to

the mutated gene are blocked, and a wild type (WT) condition, where the same

reactions are forced to be active, were simulated.

The study used FVA to generate a pair of flux boundary values for each

of the 20 exchange reactions in each condition (KO and WT), for each disease.

These upper and lower bound values were then compared between WT and

KO to predict an increase, decrease, or no change for that metabolite exchange.

Therefore, for a given IEM, this results in a predicted change direction for a

metabolite level in the extracellular space, which can be matched with observed

data (of plasma levels) from OMIM.

This work was replicated by Mondeel et al. [129] in 2018 in order to improve

the reproducibility of the project, and was published in the ReScience C journal.

The original Shlomi et al. paper did not provide source code, and even if

it had, it most likely would have been in Matlab, which is the standard for

constraint-based modelling. Recently, Python has seen an increase in usage for

CBM, with the release of the cobrapy package [130] in 2013. This replication was

coded in Python and shared freely on github.

In a 2013 study, Thiele et al. [83] published the next human model in the
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Recon lineage, Recon 2. In this paper, a similar analysis was carried out using

FVA, this time on a wider range of 49 genetic diseases and 54 metabolites, using

a gold standard created in [131]. This resulted in a larger table of predictions

of metabolite increases and decreases, each compared with the corresponding

observation in the gold standard (see Figure 19). The method was able to

predict many relevant biomarkers, but the table was shown without false

positives (prediction of a change where there is none) and negatives (absence

of a prediction where a change was observed) in the paper. Their results are

presented and discussed in Chapter III, and thanks to their published code,

for this thesis, I reproduced this table from Thiele et al. to demonstrate the

reproducibility of the method, as well as to highlight the missing false positives

and negatives. This included all metabolite changes using their code, data and

model, as well as versions using a different model, parameters, and an adapted

version of their Matlab code in Python. This is also shown in the beginning of

Chapter III.

3.2 Critical assessment of the use of CBM methods for

biomarker prediction

FVA does well to evaluate the ranges of flux values that reactions in a

metabolic network can take. By using the maximum and minimum bounds, we

can gain information about the capacity of a reaction and how it can be increased

or decreased. The size of the interval also indicates how adaptable a reaction is: a

reaction with extremely tight flux boundaries cannot function in many different

scenarios and can be considered as a non-flexible reaction. However, beyond this

information, FVA does not provide information on the flux values within the

boundaries. We could imagine any number of flux distribution configurations

within these boundaries, such as uniform or bimodal distributions, but without

evaluating this space, we cannot know which values are the most frequent and
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we may make incorrect assumptions because of this. For instance, the mean

of the minimum and maximum values (a.k.a. the halfway point) could be

calculated but this relies on the assumption that the internal distribution is either

uniform or normal and perfectly centred between the bounds.

FVA has another underlying limit when comparing bounds between

conditions: there are multiple ways of defining the comparison between two

intervals. This can especially become difficult when the intervals are both

positive and negative (reversible reactions): for example, if a reaction has bounds

of [-100, 100] in one condition and [-50, 300] in another, can this be considered an

increase or a decrease of flux? The total flux interval has increased but the flux in

one direction has decreased. This is one of many cases where flux intervals can

be ambiguous in determining an increase or decrease.

Evaluating any sort of metabolite or biomarker prediction using traditional

contingency tables, recall and precision is difficult due to the nature of

metabolomics measurements and the available “truth” datasets. A metabolic

model contains all known metabolites involved in metabolic reactions, but

metabolomics methods are not able to detect and annotate all of them. Not

every metabolite has been measured in patients of diseases, meaning a missing

experimental value does not mean absence of change for that metabolite. This

results in many cases where metabolites are predicted to be of interest while they

are not detected by typical assays. In these cases, the predictions could be correct

while being considered as a “false positive”. New methods must be developed to

take into account the nature of metabolomics data, and visualising the results of

these analyses requires a better understanding of what we can and should show.

To predict biomarkers using GSMNs, the network must contain as much

relevant knowledge of metabolism as possible. As genome-scale reconstructions

have improved, models have increased in size, especially for well-studied

organisms like the human metabolic network. Knowledge of new metabolites,

reactions and their interactions with metabolic genes has increased, leading
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to more connected networks. Globally, any calculation or simulation will

take longer on a larger model and require more resources than a smaller

one, especially for exponentially intensive calculations like random sampling.

Sampling an entire network such as Human1 can take several hours on a

multi-core computing cluster. This of course improves with faster CPUs and

more memory availability, as well as better algorithms.

Initially, CBM methods were developed in MATLAB [132], a proprietary

software platform for mathematical calculations, plots, and algorithms. An

entire toolbox, COBRA [133, 134], was and is being developed for MATLAB and

includes CBM algorithms and functions for many different methods. However,

because MATLAB is proprietary and its code is in their dedicated programming

language, the spread of information and learning is limited to the availability of

these resources. COBRApy [130] is a Python equivalent of COBRA which has

many of the same functions coded for use in Python.

4 Thesis objectives and outline

Metabolomics is a powerful approach for deciphering metabolic modulations

through the identification of metabolic profiles. Nevertheless, metabolomics

remains sparse in terms of metabolome coverage both for analytical and

metabolite identification reasons. Experimental design can be complex when a

compromise has to be made on how to measure metabolites the most precisely

but also the most cost effectively. Having prior knowledge on metabolic

endpoints of modulations could help target specific metabolites or entire

compound classes.

Additionally, understanding the metabolic perturbation behind a phenotype

is not always obvious as the effects of a disruption can propagate throughout

metabolism and be unintuitive to the human eye.

During my PhD, the goal was to develop and improve upon the simulation of
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metabolic profiles using genome-scale metabolic networks, and show how these

predictions can aid in extending experimental metabolic profiles. We also wanted

to help discern the links between a disruption (metabolic state) and what we can

measure (metabolic profile).

This thesis is split into five parts: in Part II, I describe how I built a novel

approach of using random sampling to predict metabolic profiles. I then provide

applications of predicting metabolic profiles with concrete examples in Part III,

followed by an exploratory approach of using simulated metabolic profiles for

benchmarking pathway enrichment analyses in Part IV. Finally, the discussion,

conclusion, and perspectives can be found in Part V.
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Chapter II

Methodology: Developing a new

approach for metabolic profile

prediction

While previous modelling methods have been used to predict biomarkers,

the goal of my thesis was to predict entire metabolic profiles by capturing, for

each metabolite, its amplitude of variation between the control and the condition

under study. This variability can be evaluated, and metabolites can be scored

and ranked in order to prioritise the ones to be measured and annotated during

metabolic profiling.

1 Main questions and design

The major question for this thesis was: can we go beyond predicting a few

predetermined biomarkers for specific conditions, and simulate new scenarios as

well as large panels of metabolites (metabolic profiles)?

Figure 6 shows the parallel between using metabolomics to produce

experimental metabolic profiles (Figure 6A), and modelling metabolism in

silico to simulate metabolic profiles (Figure 6B). The example profiles in this

figure show the possibility of predicting new metabolite changes which weren’t
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detected experimentally (M1), and conversely, the inability for modelling to

predict some metabolites (M6) (due to missing metabolites in the network for

example) hence highlighting the strong potential to combine both experimental

and in silico approaches.

Figure 6: Combining metabolomics profiling with simulations of metabolism. A:
Experimental-based biomarker discovery produces metabolic profiles containing detected and
annotated metabolites along with a concentration or fold-change value. B: Metabolic disruptions
can be modelled to simulate metabolic profiles similar to those generated using metabolomics.
C: By combining information from both types of metabolic profiles and improving both
experimental annotation and in silico models, various approaches can be used to improve our
knowledge of given biomarker sets, affected pathways, and patient disease classes.

Computational solutions can be used to fill the gaps in experimental

observations by providing a recommendation list of metabolites which are

expected to be altered in the studied condition. This list can be used at different

steps of the metabolomics process (Figure 6C). Firstly, it can be used upstream
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of the experiment to select “the most suitable” analytical platform and set-up

(e.g. if mostly lipids are expected to be affected, a lipidomics setup will be

favoured). The benefit of predicting profiles is also downstream of the analysis

for annotation purposes. Raw data can be mined to look directly at the predicted

metabolites which will accelerate the process of identification. This prediction

can be used to select the right set of standards to be analysed to reach level

1 annotation. Finally, they can be of added value to fill gaps in biochemical

interpretation by suggesting metabolites (and related pathways) which could be

of interest for the biological comprehension of a disease.

To improve upon previous studies in the prediction of biomarkers using FVA,

a different CBM method was selected. We chose a random sampling approach to

sample all exchange reactions in the network to get a finer grain of detail in the

prediction results. This sampling method combined with scoring and ranking the

exchange reaction flux differences composes the novel methodology described in

this chapter.

2 Overview of the methodology behind

predicting metabolic profiles and its associated

methods

2.1 Metabolic profile simulation methodology

By combining the flux simulation of exchange reactions with a network

disruption, different flux values can be obtained for both a healthy (default

network) and a disrupted condition. Each metabolite’s exchange reaction fluxes

can then be compared in order to determine an increase, decrease or no change

between the two conditions. As an example, if a metabolite’s exchange reaction

results in a high export in the healthy condition, and a flux of zero in the
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disrupted condition, we can then say that this disruption is expected to cause a

decrease of that metabolite in the biofluid compartment. By simulating this for

every exchange reaction in the network, we can produce an in silico metabolic

profile associated with a given disruption.

This CBM methodology can be used to predict which metabolites will be more

or less released in biofluids by using an organism-specific metabolic network in

conjunction with a metabolic disruption. Indeed, in metabolic networks, some

metabolites can be transported in and out from the internal compartment (cell

or tissue) to the external compartment (e.g. biofluid or cell culture medium)

usually using a single specific exchange reaction. For the in silico prediction of

biomarkers these exchange reactions can be used to model the in/out flux of

metabolites between tissues and circulating biofluids like blood or urine. This

is why, in the context of metabolic profile prediction, the focus must be on these

specific exchange reactions from the metabolic network in order to predict the

equivalent of “biofluid metabolite level changes” using CBM. A break-down

of this methodology is shown in Figure 7, using a simple metabolic network to

compare flux simulations in healthy and disease conditions, and resulting in a

ranked list of metabolites which change the most between the two conditions.
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Figure 7: Methodology for the comparison of flux values and prediction of metabolite ranks using
a simple network (A) in two conditions (B), with single flux values (C). The methodology from
Shlomi et al. is shown in (D): each exported metabolite will have an associated change score for
a given pair of conditions. (E) shows our methodology of scoring and ranking by absolute value
among all of the metabolites in the network.

Metabolic network models are usually undetermined, i.e., there are not

enough constraints in the model to determine a unique solution for the mass

balance system of linear equations [104]. For example, in the wild type (WT)

(Figure 7B), any other value for E1 would still ensure the steady state, as long as

the other reactions’ flux values are changed accordingly to compensate. This is

why it is difficult to define any one exact value for a reaction, and it is generally

necessary to evaluate the range of possible flux values for all reactions through

various CBM methods.
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2.2 Simulating metabolic conditions

Setting up the metabolic state of the GSMN is the first main step of simulating

a metabolic profile for a given condition. First, the model must be chosen. This

choice can be more or less complex depending on the available models for the

organism of interest. Some organisms only have one or two existing metabolic

models, whereas others have many different versions, which can contain new

informational updates.

GSMNs can also be contextualised to a specific cell type or tissue from a

global version of an organism’s network, by integrating transcriptomics or other

biological data [135, 136]. This creates context-specific models which can be

compared directly or used to simulate fluxes, which can then be compared.

Generally, these models differ from the base network on a relatively large scale:

several tens to hundreds of genes could be modulated to simulate one condition.

In this thesis, the focus is more on smaller-scale perturbations, simulating a

metabolic disruption due to a genetic mutation rather than the genetic expression

of entire cell type or tissue. Simulating these perturbations requires a list of genes

or reactions to be disrupted as input. The genes or reactions have to be mapped to

the chosen model, which can be a time-consuming manual step if the model does

not contain external IDs, or if the reactions or genes of interest are not all present

in the model. Additionally, if using genes as input, the information contained

within the network is used to extract the reactions linked to these genes via GPR

relationships, which are not always correctly defined in the model and this often

requires manual curation to check the validity of the GPR links.

2.2.1 Knock-out

The knock-out (KO) state is the easiest state to simulate once the reactions

of interest have been identified in the model. It consists of simply setting all

reactions to KO as blocked reactions, i.e. setting both of their new flux bounds to
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[0, 0], replacing the previous bounds:

(4) ubnew = lbnew = 0

for a reaction R, with ub as upper bound and lb as lower bound.

2.2.2 Wild type

The wild type state may appear to simply be the default model, but in order

to ensure a fair comparison with the disease state, extra parameters must be set

in the model. To begin with, the WT state is created using the default network

parameters (reaction bounds, biomass coefficients etc.). The most obvious

approach would be to only use these default parameters to create this WT state.

However, when simulating the fluxes of a reaction using the default flux bounds,

there is a risk that the fluxes end up being too similar to those of that reaction in

the KO state, since reaction bounds can be [0, 1000] for example, which means 0

is a possible flux value for that reaction. To avoid comparing two states where

the fluxes for the reactions of interest are both zero or near zero, the reaction(s)

to be knocked out in the KO state are forced to carry a non-zero flux in the WT

state. This WT method is the one used in Shlomi et al. and Thiele et al. for their

IEM biomarker predictions.

The maximal possible flux through the reaction to KO is determined by

optimising for this reaction by setting it as the model’s objective function to

maximise. Then, in the WT model, the minimum bound is set to 5% of the

maximum flux value (Rmax) obtained from the previous maximisation. Forcing a

minimum flux in the WT is why each WT is specific to a mutant (MUT) state.

(5) lbnew = 0.05 ∗Rmax

for a reaction R, with lb as lower bound.
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2.2.3 Knock-down

In addition to completely knocking out reaction fluxes, they can be instead

partially reduced using a new method developed for this thesis project. The

reaction knock-down (KD) method is the following: instead of completely

blocking one or several reaction(s), the MUT state can consist of a reduction

percentage of the maximum possible fluxes for a given set of reactions. This

is done by first calculating the maximum possible flux range using FVA in the

chosen metabolic condition. Then, depending on if the FVA upper bound ub and

lower bound lb are forward, backward or reversible, the flux reduction is carried

out differently:

(6)

ubnew = lbFV A + (r ∗ (ubFV A − lbFV A)) for forward reactions ([0, 1000])

lbnew = ubFV A + (r ∗ (lbFV A − ubFV A)) for backward reactions ([−1000, 0])
ubnew = ubFV A ∗ r

lbnew = lbFV A ∗ r
for reversible reactions ([−1000, 1000])

By using this reduction strategy, each total interval space is reduced to r∗ total

range. For example, an interval of [−1000, 1000] has a total range of 2000, therefore

to reduce the range to 30% of 2000 (600), both bounds must be multiplied by 0.3,

leaving us with [−300, 300] and a total range of 600.

Figure 8 shows an example of different KD values on a reaction, from 10%

flux to 100% flux. The reaction shown is therefore the perturbed condition (input

of the simulation), and not an exchange reaction (output of the simulation).

This highlights the approach consisting of reducing the maximum flux bound,

as opposed to also increasing the minimum flux bound, which would not be

coherent since it would imply forcing a higher minimum amount of flux (which

could instead be used to simulate an increased enzymatic activity).
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Figure 8: Different knock-down percentages on an example reaction, showing FVA bounds and
the corresponding sampling distributions. 0.1 reduction corresponds to reducing the upper flux
bound to 10% of its maxmimum value.

The result of reducing fluxes instead of fully knocking them out is that

exchange reactions are affected to a lesser extent. The two following examples

(Figure 9 and Figure 10) show two different levels of disruption due to KDs.

In the MUT 0% flux state, both exchange reaction A and B are affected in the

most ”extreme” manner possible, shown by the FVA bound differences and the

sampling distributions shifts in the top plots of Figure 9 and Figure 10. However,

as the flux reduction percentage increases (Figure 8), meaning less extreme KDs,

the changes are less drastic: in both cases, the distributions do not shift for any

reduction value. For exchange reaction A, the FVA bounds are reduced to a lesser

extent (compared with the 0% state) for 10% and 30% flux reduction. Exchange

reaction B is not affected regardless of the reduction value.
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Figure 9: Flux bounds and distributions for exchange reaction A for different flux range
knock-down values (y grid axis), which can be seen as knock-down percentages. The top plot row
(0) corresponds to the full KO state. A knock-down of 0.1 corresponds to the MUT state reactions
only having 10% of their maximum flux range. Flux values are shown on a log2(value+2) scale.
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Figure 10: Flux bounds and distributions for exchange reaction B for different flux range
knock-down values (y grid axis), which can be seen as knock-down percentages. The top plot row
(0) corresponds to the full KO state. A knock-down of 0.1 corresponds to the MUT state reactions
only having 10% of their maximum flux range. Flux values are shown on a log2(value+2) scale.

2.3 Random sampling methods

By exploring the many combinations of flux values that satisfy the model

constraints, sampling provides an overview of the most frequently valid flux

values for every reaction in the network. Indeed, any one possible solution is

a specific combination of flux values for each reaction, and some flux values

are more frequent than others, meaning that they appear more often in different

valid solutions. These many solutions can therefore outline each reaction’s flux

distribution and thus reveal the most frequent fluxes along with the variability of

the values, as shown in Figure 5. While sampling fluxes in GSMNs in general is

not new, its application to the prediction of biomarkers and metabolic profiles is

a novel approach developed during this thesis.
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As described previously in relation to other CBM methods, sampling explores

other possible (but not necessarily optimal as in FBA, or extreme as in FVA)

solutions contained within the solution space. The solution space can be

visualised as a high dimensional cone, as shown in Figure 11.

Figure 11: Constraint-based modelling solution space cones. From [133].

Sampling is an unbiased method of obtaining solutions as it does not involve

selecting one single solution among many. Random sampling flux distributions

not only provides a more detailed description of each reaction’s flux behaviour

but can also be represented visually as distribution density plots for a more

intuitive comprehension of the fluxes passing through a reaction.

The flux solution space of metabolic networks is a convex polytope, usually

in an irregular shape which is elongated or narrow depending on reaction

constraints. This means that many samples are close to the edges of the solution

space. When exploring areas close to the edges using a hit-and-run algorithm

[137], each new sample is chosen using the previous sample and the direction is

chosen from all possible directions. Being close to the edge means a significant

portion of possible directions is unavailable which leads to closer samples.

Artificial Centering Hit-and-Run (ACHR) algorithms are better at exploring

these irregularly shaped solution spaces. They do this by pushing for samples in

elongated directions resulting in samples further away from each other. By using

an estimation of the center of the solution space at each step and by generating

warm-up samples before the main sampling phase, ACHR can explore these
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specifically shaped spaces more thoroughly. ACHR is used by gpSampler [138],

a popular sampler for exploring the solution spaces in metabolic networks.

The sampling algorithm selected for this project is optGpSampler [139], which

improves upon previous metabolic network sampling algorithms. It is based on

a ACHR algorithm, combining its warm-up phase with an optimised version of

gpSampler’s warm-up phase, as well as an optimisation of how sampling chains

are managed. It has a Python interface and is implemented in cobrapy.

2.4 Scoring metabolite changes

2.4.1 Z-scores

In order to conclude on a change between two conditions, we need a

method of not only comparing but also scoring the differences. Comparing two

distributions is more difficult than comparing two values due to the multiple

inherent properties of a distribution. This necessitates a different approach to

improve the interpretation of distribution changes. A score is calculated for each

exchange reaction in the model by comparing the samples between both states.

We propose the use of a z-score to evaluate the shift in distributions weighted by

their variance, based on the z-score used in Mo et al. [121].

Z-scores are calculated for each metabolite’s exchange reaction exi between

the WT and MUT. First, we sample a number (by default the total number of

samples) of random pairs of values from the WT and MUT distributions. The

collections of all MUT samples and WT samples for metabolite i’s exchange

reaction are MUTi and WTi respectively. A “difference distribution” ddi is

calculated by subtracting random pairs of values from both MUTi and WTi

(Equation (7)). These random samples are not matched: the two WT and MUT

values are not necessarily from the same sample step. The final z-score zi is

calculated by dividing the mean µddi by the standard deviation σddi of ddi.
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Equation (7): For the ith exchange reaction:

(7) zi =
µ(MUTi −WTi)

σ(MUTi −WTi)
=

µddi
σddi

The z-score zi is directional: a negative z-score indicates a decreased shift

in the flux distributions from WT to MUT, and a positive z-score indicates an

increased shift. A z-score close to 0 means that there is little difference between

the distributions in the WT and MUT conditions. A z-score therefore represents

the intensity and direction of one metabolite’s shift in a specific condition.

Z-scores of all the exchange reactions in the network are used as a basis to rank

all exchanged metabolites based on the intensity of the changes. Z-scores can

also be used as-is or used with a threshold. Since both increased and decreased

metabolites are of potential interest, this ranking is based on the absolute values

of the z-scores (Figure 7E). This reveals the metabolites whose import/export

behaviour changes the most between the WT and MUT, relative to every other

exchange metabolite in the network.

Furthermore, ranking the z-scores by absolute value provides insight via the

comparison of the list of the top ranked metabolites between different scenarios,

as ranks are relative to the entire list of exchange metabolites and not quantitative

and therefore do not require normalisation.

2.4.2 Exploring alternative scoring methods

While a z-score was chosen for this metabolic profile prediction approach,

other scoring methods were analysed and compared to make sure it was the best

suited method, such as the subtraction of distribution means. In the following

figures, the example from Chapter 3 Section 3 was used for illustrative purposes.

The example is from an mGWAS cohort which analyses SNPs significantly

associated with various experimentally measured metabolites. When modelling

one example SNP, the simulation predicts the 1497 exchanged metabolites from
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the network and compares them to the list of 20 experimentally significant

metabolites (shown in red in the following figures). The list of 1497 metabolites

is ranked based on the z-score as well as other methods, and them compared

between each scoring method.

Figure 12 shows the comparison of using a z-score to compare distributions,

vs subtracting the means of the distributions (left panel) or medians of the

distributions (right panel). For each pair of metrics, the top ten metabolites

for each given metric are displayed with their labels (red being those in

the experimental signature) and with dots located on the y-axis. The y-axis

corresponds to the position in the ranking of these metabolites among the 1497

metabolites using the corresponding metric (the top being the first metabolite

while the bottom is the last metabolite for the given ranking).

Using the z-score as a ranking metric predicts more experimentally observed

metabolites in the top 10 than when using the difference of the means or medians

to rank metabolites. Additionally, two experimentally observed metabolites,

oleate and palmitate, that were not in the z-score top 10 are highly ranked

when using the mean- or median-based rank. However, most of the other top

10 ranked metabolites using the mean differences appear to be unrelated and

non-specific (H+, CO2) or vague (metabolite pools) in modelling terms. The

metabolites in the top 10 of the z-score-based ranking are ranked in the top ∼200

when using the difference between means or medians to rank metabolites, which

shows that while they do not predict as well as the z-score for these metabolites,

they are relatively well-ranked.
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Figure 12: Z-score based ranks (left side of each plot) vs using the difference between means (right
side of left plot) or medians (right side of right plot) to rank metabolites. The metabolite labels
are all ranked in the top 10 by each method. The metabolites highlighted in red are differentially
abundant in the example dataset, whereas those in black are the rest of the top 10 metabolites
which are not experimentally abundant. For example, both TAG-chylomicron pool and oleate are
ranked in the top 10 when using the mean difference as a ranking metric instead of the z-score
(right side of the left plot), and TAG-chylomicron pool is in black because it is not observed to
be experimentally abundant, whereas oleate (in red) is significantly abundant in the example
experimental data.

Other metrics were compared to z-score ranks: the ratio of means, medians,

1st quartile and 3rd quartile were computed and used to rank the metabolite

changes (Figure 13). In these cases, the ratio metrics were not adapted as they

did not contain any of the experimentally abundant metabolites in their top 10,

and the top 10 z-score predictions were poorly ranked, regardless of the metric

used to compare with the z-score ranks.
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Figure 13: Z-score vs other metric-based rankings. In each subplot, the z-score rank is on the left
with the same total order of metabolites. On the right of each subplot is a different ranking
generated using a different scoring metric, such as the ratio between the means of the two
distributions for each metabolite. The metabolites highlighted in red are those experimentally
observed in the example study.

When comparing differences (Figure 12) and ratios (Figure 13), the best

metrics out of the two appear to be when subtracting means or medians rather

than a ratio, which is akin to a fold change. Indeed, using fold changes in this

scenario can be limiting due to its bias towards values close to zero. Both the

mean and median differences result in a similar top 10 and rank the z-score top

10 metabolites below the 200 mark.

Ultimately, the cons of using the other metrics studied here outweighed the

pros, since the ranks improved marginally while the top predicted metabolites

were flooded with metabolite pools and irrelevant metabolites. For the rest of

this thesis, we used the z-score to rank metabolite changes as it provided the best

results when looking at the top of the ranked list. Indeed, using the bottom half

of the list can be complex due to the similarity in z-scores for the low-ranking

metabolites (see Figure 31).
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2.5 Final pipeline: summary through a toy example

Let us focus this methodology on a toy example consisting of the network

in Figure 14 for two metabolic disruption examples. Example 1 is centred on

reaction REF1 (shown as a blue square) which takes metabolites E and X as

substrates and produces metabolites F and Y (shown as blue circles, with F in

purple due to it being shared with the second example). Example 2 is directed

at the reactions involving metabolite C, B and F (red circles, with F in purple):

RBC and RCF (shown as red squares). Most metabolites in the network have

an exchange reaction which imports or exports them between the cell and the

biofluid compartment.

Figure 14: Toy network composed of metabolites (circles) and reactions (squares), visualised
with MetExploreViz. Blue links are the cytosol compartment. Green links are the extracellular
compartment. The blue square is the knocked out reaction for Example 1, with its substrates
and products shown as blue circles. The light blue circles are the most disrupted metabolites in
Example 1’s flux simulation condition. The red squares are the knocked out reactions for Example
2, with their substrates and products shown as blue circles. The pale red circles are the most
disrupted metabolites in Example 2’s flux simulation condition. Metabolite F is shown in purple
due to it being shared between both examples.

The goal is to predict metabolite exchanges with the biofluid compartment

between a healthy condition and a disease condition. In this example, two

separate conditions are simulated: a total knock-out of reaction REF1, and a

total knock-out of reactions RBC and RCF . By following the pipeline defined
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previously, the following steps are carried out:

1. Choose the model: in this case, the model is a simple toy model.

2. Set up the WT state by forcing a minimum amount of flux through reaction

REF1 in Example 1, and through RBC and RCF for Example 2.

3. Set up the MUT state by setting reaction REF1’s bounds to 0 in Example 1,

and RBC and RCF ’s bounds to 0 in Example 2.

4. Sample the fluxes of all exchange reactions in both WT and MUT states

independently, for both examples.

5. Compare the two flux distributions for exchange reaction by calculating a

z-score for each.

6. Rank the z-scores to gain a list of the most changed metabolites between the

two conditions.

Figure 15: Toy flux sampling and FVA results for two example knock-out conditions. Blue and
red represent the flux distributions (sampling) and flux bounds (FVA) for the WT state and MUT
state respectively. The top row is Example 1, consisting of the knock-out of REF1, while Example
2 (bottom row) is the double knock-out of both RBC and RCF .
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Example 1: in the WT state, flux can go through reaction REF1 and produce

metabolites F and Y . Y is then exported into the biofluid compartment, while X

is imported, as shown by the blue distributions in Figure 15. By blocking REF1

in the MUT state (red), Y can no longer be produced since it was only able to

be produced by this one reaction. Its export reaction fluxes are therefore at 0.

Similarly, X can no longer be used since only REF1 used X as a substrate, so its

export reaction EXX ’s fluxes are also at 0. There is therefore less Y in the biofluid

in the MUT compared to the WT since it is no longer being exported, and more

X in the biofluid in the MUT since it is no longer being imported. More subtly,

metabolites T and Z have slightly increased export and import fluxes respectively

in the MUT state due to repercussions in the network, as shown by the z-scores. T

and Z are both involved in REF3 which is linked to F , a substrate of the blocked

reaction REF1. The metabolites can be ranked by their z-scores to form a list of

most changed metabolites (Table 1), with X and Y at the top, followed by T and

Z, then G, D, C, and A.

Example 2: C is the metabolite the most affected by the KO of RBC and RCF :

in the MUT state, its exchange reaction flux is 0. The only way C can be depleted

is through RCF , and it can only be produced by RBC, meaning if they are both

blocked, no flux can be carried through EXC .

Rank Example 1 Example 2
1 X / Y C
2 T / Z T / Z
3 G X / Y
4 D A
5 C G
6 A D

Table 1: Ranked lists of the metabolite predictions for both toy example conditions. Ties are shown
in the same cells with ”/”.
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3 SAMBA

Once the methodology was developed, I put everything together into

one pipeline for ease of use, tracking past runs, versioning and improving

development. The toolkit is called SAMpling Biomarker Analysis (SAMBA) and

consists of two main parts: a Snakemake Python-based workflow for running

the metabolic flux simulation (left side of Figure 16), known as SAMBAflux,

and an R library and Shiny app for visualising and ranking metabolites (right

side of Figure 16), known as SAMBAR. The steps described in the previous

section are shown in Figure 16, and go from model condition set-up, through

flux simulation, all the way to extracting a predicted ranked list of most changed

metabolites.

The code for the SAMBA project is freely available at:

• https://forgemia.inra.fr/metexplore/cbm/samba-project

• https://doi.org/10.5281/zenodo.8369624
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Figure 16: The SAMBA toolkit. SAMBA is split into two parts: SAMBAflux for the metabolic
network flux simulation, and SAMBAR, which can read in the results from SAMBAflux, rank
metabolites, and create plots.

3.1 SAMBAflux pipeline

Once SAMBA is installed, the user can provide a genome-scale metabolic

network for a given species, tissue or metabolic condition, along with the

desired metabolic perturbation(s) in the form of gene or reaction IDs. Multiple

independent conditions can be run using one input file, as the Snakemake

pipeline handles parallel jobs automatically. It can be launched locally, for small

analyses, or on a high performance computing cluster for larger models and

running multiple jobs in parallel.

Under the hood, SAMBAflux uses the provided model to prepare two model

states: a WT state and a MUT state. It then generates flux samples for all exchange

reactions (by default). SAMBAflux then calculates the difference between each

pair of distributions and returns a z-score for each exchanged metabolite.
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Various parameters can be modified by the user in the configuration file.

Network modelling parameters such as biomass optimisation, initial exchange

reaction bounds, and the reactions to knockout all affect the “biological” side

of the simulation and the model’s two states. The number of samples, thinning

factor, the solver to use and the number of processors influence the sampling

efficiency. Finally, the user can specify which reactions to output and where

to output them to. In order to predict metabolic profiles, by default only the

resulting flux values for the exchange reactions are exported. This results in two

(WT and MUT) tabular files with rows as samples and columns as exchange

reactions, with the exchange reaction names as column headers (see Table 2).

Sample EXA EXB EXC ... EXm

1 231 3 24 ... 704
2 225 43 25 ... 899
3 503 27 22 ... 835
... ... ... ... ... ...
n 173 37 22 ... 803

(a) WT

Sample EXA EXB EXC ... EXm

1 0 5 26 ... 332
2 0 15 27 ... 302
3 0 4 20 ... 297
... ... ... ... ... ...
n 0 16 23 ... 354

(b) MUT

Table 2: Example output sampling file format for a WT state (a) and a MUT state (b), for n samples
and m exchange reactions.

Random sampling is done using Python code written for SAMBA, based on

the cobrapy [130] Python package. The code uses the CPLEX 12.10 solver by

default and uses the optGpsampler algorithm [139] to sample from the reaction

flux solution space. optGpsampler begins with a warm-up phase to select starting

points (by running a preliminary FVA on each reaction), followed by uniform

sampling within this feasible solution space. Because each sample is selected
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from the solution space directly, there is no sample rejection since this would be

extremely inefficient to do on genome-scale models. A thinning parameter of k

(default k = 100) means that every k sample is saved and the rest is discarded

in order to reduce intersample correlation. For large models such as Recon2 and

Human1, 100 000 samples with a thinning of 100 were used. Convergence tests

are shown in Section 4.

Sampling can be run on a local computer for smaller models, but it needs a

certain amount of resources to run correctly. More specifically, the amount of

RAM required increases with the size of the model, and more CPUs will help

generate the samples faster.

For this thesis project, the larger metabolic models (Recon2 and Human1)

were sampled using a computer cluster which uses 16 cores and 128GB of

RAM for each job. The cluster we used is the Genotoul computational cluster

which has about 3000 cores / 600 threads, 36 Tera Byte memory (3TB on a SMP

machine), Infiniband interconnection (QDR/FDR), parallel file system (GPFS).

For one condition, sampling using Recon2 takes approximately 30 minutes,

whereas sampling Human1’s fluxes takes around 2 hours, both with 16 cores.

3.2 SAMBAR and RShiny

SAMBA outputs a compiled dataframe of z-scores in the form of a .tsv file,

along with an density file (.json file) containing density approximations for each

sampling distribution, for each condition. This data can then be taken into R to be

analysed and plotted using SAMBAR functions, or similarly used in the SAMBA

Shiny web app.

The Shiny app is currently online at https://samba.sk8.inrae.fr/ (see

Figure 17), and the code is freely available for running the Shiny app locally

through R. The app provides a user interface for reading in sampling density

files and z-score files, and plots various representations such as distributions
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and scatterplots for selected conditions. The z-score can have a threshold

applied to it in order to filter the sampling distribution plots to the top N most

changed metabolites. The user can vary the threshold and the plots will update

dynamically.

Figure 17: Screenshot of SAMBAR Shiny on a toy network, for two test conditions. The top most
deregulated metabolites are shown for each condition simultaneously as rows in the sampling
distribution plot.
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Chapter III

Results Part I: Prediction of key

metabolites using metabolic flux

simulation

By exploiting experimental results with computational tools, new insights can

be gained to improve both the prior knowledge required to design experiments

as well as the interpretation and analysis of data. In terms of biomarker

screening, simulations are able to predict certain metabolic markers of genetic

diseases, known to be used in diagnosis, using constraint-based modelling and

genome-scale metabolic networks. This chapter will go over my reproduction of

this work, followed by comparison to the new approach presented previously as

well as its applications the prediction of entire metabolic profiles, as opposed to

a few biomarkers.

1 Reproduction of Thiele et al. results

1.1 Previous work by Shlomi et al. and Thiele et al.

In 2009, Shlomi et al. [128] used FVA combined with a human GSMN, Recon1,

to predict 19 biomarker changes for 17 IEMs. The methodology they used was

96



1. Reproduction of Thiele et al. results

the exchange reaction-based approach described in Chapter II, which produces,

for each metabolite’s exchange reaction, a lower and upper flux bound in the WT

and MUT states. These bounds are the most extreme flux values in both directions

that a reaction can take. The two intervals can then be compared between both

states and if there is a difference between them, the metabolite is described by

their method as increased or decreased in the biofluid compartment.

The figure they published in their paper can be found below (Figure 18),

which describes the predicted flux increases and decreases (blue and red coloured

cells respectively) for the aforementioned metabolites, compared with observed

changes in patients of each IEM (’+’ and ’-’).

Figure 18: Prediction of amino acid biomarkers for a set of amino acid metabolic disorders from
Shlomi et al. Rows represent metabolic disorders and columns represent amino acids. The
causative gene’s name is indicated on the left. Blue and red entries represent biomarkers that
are predicted by our method to be elevated or reduced, respectively. Table entries marked in ’+’
or ’-’ represent elevation or reduction in the metabolite’s concentration in biofluids according to
OMIM, respectively.

The figure reports specific metabolite changes, specifically amino acids, for a

set of genetic diseases with impacts on metabolic enzymes. Correct predictions

are when a blue cell (predicted increase) is paired with a ’+’ (observed increase)

or a red cell (predicted decrease) is with a ’-’ (observed decrease). It also shows
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some false positives (predictions with no observations) and false negatives (no

prediction for an observed change). Overall, it serves well as a proof of concept

of the prediction of biomarkers but lacks exploration of a variety of diseases and

metabolites, since it is restricted to amino acids and related disorders.

Thiele et al. went on to predict more metabolic biomarkers for a better

variety of IEMs [83], with the model Recon2 using FVA. The authors used a

gold standard [131] of known IEM and associated biomarkers. The results were

published in the form of the following heatmap in Figure 19b.
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Figure 19: Predicted biomarkers for IEMs from Thiele et al.. (a) Comparison of the prediction
accuracy of Recon1 and Recon2 against the gold standard [131]. (b) Correct and incorrect
predictions. IEMs and biomarkers are sorted by subsystem. Bright yellow, amino-acid
metabolism; green, central metabolism; blue, hormones; yellow, lipid metabolism; pink,
nucleotide metabolism; lilac, vitamin and cofactor metabolism. Blue and red shading corresponds
to predicted increase and decrease in biomarker, respectively. Blue and red lines represent
reported increase and decrease of the biomarker in plasma, respectively.

This figure uses the same presentation as the previous heatmap in Figure 18

but with coloured slashes instead of ’+’ and ’-’. By expanding both the number

of simulated diseases and predicted biomarkers, the authors achieved a wider
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variety of predictions across multiple metabolic classes. However, a major

difference is the choice to remove all false positives and false negatives, meaning

that predictions with no associated observation are not shown, and neither are

observations with no predicted change. The choice to not show false positives

could be explained by the fact that due to the nature of biomarker profiling, the

other metabolites may have not been measured for all diseases and therefore

lack any kind of information on whether there should be an observed change.

However, the authors do not explain this choice in the paper and therefore the

reasons for not displaying them are unknown. Additionally, they used this

heatmap to calculate an accuracy score when comparing predictions with Recon1

(Figure 19a). In this case, the false positives were predictions of the opposite

change direction compared with the observations. This means that the calculated

accuracy score does not represent the ability to predict a biomarker or not, but

the ability to correctly predict the direction of change.

1.2 Reproducing Thiele et al.’s predictions using FVA and

random sampling

To investigate this lack of false positives and negatives from Figure 19, I

reproduced the previous results using the Matlab code provided with the paper.

The resulting heatmap, using the exact same metabolic model and parameters, is

shown in Figure 20.
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Figure 20: Reproduction of Thiele et al.’s heatmap using Matlab. Blue and red tiles represent
biomarkers that are predicted to be increased or reduced, respectively. Table entries marked with
’+’ or ’-’ represent elevation or reduction in the metabolite’s concentration in biofluids according
to the gold standard [131], respectively.

In this figure we can clearly see the missing false positives and negatives that

were not shown in Figure 20. The false positives make up a large portion of the

predictions and remain important to validating the predictions and describing

their accuracy.

Following this, I developed the same GSMN FVA-based biomarker prediction

in Python to provide better reproducibility and availability for the community,

and to make sure that the method was portable across programming languages.

I coded the methodology from the Matlab script in Python using the cobrapy

[130] package. I then reproduced the previous example, again using the same

metabolic model Recon2, while attempting to match the parameters used in

Matlab as close as possible. The resulting heatmap is shown in Figure 21.
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Figure 21: Reproduction of Thiele et al.’s heatmap using Python. Blue and red tiles represent
biomarkers that are predicted to be increased or reduced, respectively. Table entries marked with
’+’ or ’-’ represent elevation or reduction in the metabolite’s concentration in biofluids according
to the gold standard [131], respectively.

There are some differences for certain diseases due to the inability to match

certain parameters used in Matlab with Python, mainly to do with how the

network is stored as Matlab (more matrix-oriented) versus Python (more

dictionary-oriented) objects, and the corresponding value thresholds which are

applied differently due to these format differences. The majority of predictions

are identical to those from the Matlab simulations. This also serves as a ”sanity

check” since the false positives and negatives are still present, just as with the

Matlab version.

Next, I took the prediction method in a different direction in an attempt

to reduce the biases induced by the FVA approach to predicting metabolic

biomarkers. In order to do this, I developed SAMBA, described in Section 3,

which integrates random sampling with the previous biomarker prediction

methodology. Once SAMBA had been sufficiently developed, I reproduced the

same heatmap with random sampling and z-scores instead of the previously
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used FVA methodology, as shown in Figure 22. The metabolite z-scores are

calculated as described in Section 2.4.1 and quantify not only the intensity but

also direction of predicted change between healthy and disease conditions.

Figure 22: Reproduction of Thiele et al.’s heatmap with random sampling. The blue to red
tile gradient represents biomarkers that are predicted to be more or less increased or reduced,
respectively. Table entries marked with ’+’ or ’-’ represent elevation or reduction in the
metabolite’s concentration in biofluids according to the gold standard [131], respectively.

The sampling results, due to the use of no cut-off, show a gradient of z-scores

which is more difficult to evaluate systemically than the previous binary results.

Despite this, some observed biomarkers are correctly predicted, while others are

not. This view of the metabolite predictions also highlights the scale of changes

as opposed to the binary ”on/off” changes shown in previous heatmaps.

To more easily compare between the two predictions, Figure 23 shows the

overlap of both FVA- and sampling-based biomarker predictions using the same

example dataset as the previous heatmaps, in the form of Venn diagrams.
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Figure 23: Venn diagrams of FVA (orange) and sampling (purple) predictions using Recon2. This
shows the overlap between various predictions of the IEM subset using FVA and sampling. In
orange, the FVA predictions are classed as correct or incorrect depending on the expected increase,
decrease or no change. In purple, sampling was run on the same model with the same reaction
KOs and model parameters. No z-score threshold was used, meaning that no metabolite is truly
classed as “no change” for sampling, and only the prediction of directionality was taken into
account. A correctly predicted increase (decrease) is a predicted increase (decrease) where the IEM
subset reports an observed increase (decrease respectively). An incorrect increase or decrease is
the sum of (i) predictions of the incorrect change direction (for FVA and sampling) and (ii) missing
predictions where an IEM change is observed (for FVA).

Regardless of prediction change direction, FVA and sampling both predict a

similar number of correct and incorrect metabolite changes, with each method

predicting new metabolite changes not predicted by the other. This comparison

highlights the difficulties in comparing the differences in each method, as FVA

is used with a binary conversion to increase/decrease/no change, whereas with

sampling a gradient of scores highlights the changes in many metabolites at once.

More specifically, while the predictions of the two methods overlap frequently,

sampling predicts metabolite decreases better than FVA: 20 correct predictions

vs 14 for FVA, and 6 incorrect predictions vs 12 for FVA, but predicts fewer

metabolite increases correctly.
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A different method of displaying the sampling results is to plot the ranks

directly on the heatmap instead of the z-scores as in Figure 24. The ranks are

calculated by ordering metabolites by decreasing absolute value of z-scores,

which results in the most deregulated metabolites, regardless of direction, being

at the top of the ranked list. This of course causes the loss of information on the

direction of each change but can serve to quickly highlight the most deregulated

metabolites, especially when filtering using the top 10 most deregulated

metabolites per condition for example (Figure 25).

Figure 24: Heatmap based on Figure 22, using predicted ranks instead of z-scores, showing all
ranks for each condition.
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Figure 25: Heatmap based on Figure 22, using predicted ranks instead of z-scores, showing
metabolite ranks with a cut-off of 10. Each row shows the metabolites in the top 10 for that
condition. Most rows have less than 10 metabolites due to the fact that the figure only shows 54
of the ∼600 exchange metabolites in the model.

The use of sampling instead of FVA of course begs the question: why use

random sampling for the prediction of metabolic profiles? The following sections

demonstrate the advantages of sampling using different models and different

experimental data, and serve as applications of the entire methodology including

the use of z-scores and metabolite ranks.

2 Illustrating the benefits of sampling through the

prediction of Xanthinuria type I biomarkers

Xanthinuria type I is a rare genetic disease caused by a mutation in the

XDH gene [140], and is characterised by kidney stones (urolithiasis), urinary
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tract infections, and rarely kidney failure [141]. In patients with this disease,

a decrease in urate and an increase in hypoxanthine has been observed (from

OMIM [1]).

Here, we applied both FVA and sampling in order to compare the information

which can be drawn from both techniques. The flux simulations were run using

Recon2 [83], a human genome-scale metabolic network containing 7 440

reactions, by knocking out the XDH gene, which knocks out 7 reactions (see

Table 3). The exact version of Recon2 used in this example can be found at

https://github.com/opencobra/COBRA.papers/tree/master/2013_Recon2.

Recon2 was used for the IEM analyses as the idea was to compare results

between FVA and sampling for the same set of conditions in the same model.

This served as a proof of concept and we decided to publish the results using

Recon2 to show the comparison with previous work by Thiele et al.. Sampling

and FVA were run using the same parameters as in Shlomi et al. and Thiele et al.

[128, 83]: minimum fraction of optimum of the objective function (biomass) set

to 0, and all exchange reaction bounds set to [−1, 1000].

Condition Model Gene
KO

Reaction KO

Xanthinuria
type I

Recon2 XDH XANDp XAO2x XAOx r0424 r0425 r0546
r0547

Table 3: Genes and reactions knocked-out to simulate Xanthinuria Type I in Recon2.

Both the FVA bounds and the sampling distributions are displayed on the

same plot for both of the expected biomarker metabolites (Figure 26). Expected

biomarkers are defined as metabolites with observed significant changes in

patients with the disease according to the original dataset. The flux values are

reported on a log scale for clarity, and y-axis is the distribution density, hidden

for visual clarity as the density values are not important for calculating z-scores

and comparing distribution shifts.

For urate, the FVA bounds were the same in both conditions (Figure 26A),
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which is interpreted as a metabolite not considered as a biomarker in Shlomi et al.

[128], and thus the FVA prediction does not agree with the observed decrease. On

the other hand, the sampling distributions correctly show a decreasing shift from

WT to MUT. For hypoxanthine (Figure 26B), both methods are able to predict the

expected increase in metabolite export via the shift in distributions for sampling

and the change in upper bounds for FVA, although this change is small (10.3%)

compared to the total feasible range.

Figure 26: Flux bounds (FVA) and distributions (sampling) for urate (A) and hypoxanthine (B) in
the WT state (light blue) and the MUT state (red). MUT here corresponds to the knock-out of the
XDH gene. Highlighted in grey, red, and dark blue are the absences of shifts (=), decreases (-),
and increases (+) respectively between WT and MUT.

Xanthinuria type I is one of many IEMs from an entire IEM - biomarker dataset

which was curated in Sahoo et al. [131]. We used a subset of this dataset, used in

Thiele et al. [83], to run our analyses by knocking out each gene responsible for
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each disease: we ran both FVA and sampling on the 49 IEMs for 54 metabolites

on Recon 2. Heatmap figures containing the entire set of predictions for both FVA

and sampling are included in Figure 22 and Figure 24, and overlaps are shown in

Figure 23.

Overall, sampling not only complements FVA by providing new correct

predictions, but also attributes more meaning to the scores of the predictions

for each metabolite (see Figure 22). Sampling z-scores, as opposed to the binary

increase/decrease indicators of FVA, can be used to rank, filter and gain insight

on the intensity of changes. Indeed, once generated, distributions can be used

in multiple ways, one of which is calculating z-scores and ranks as shown in

this paper; in contrast FVA interval boundaries represent only the flux extremes

instead of the general flux behaviour.

3 Generating coherent recommendations and

identifying novel metabolites of interest

associated with SNPs using SAMBA

3.1 Introduction

For this study, we chose a case example for the comparison of mGWAS

data and SAMBA ranking system. In general, GWAS datasets are composed

of traits associated with SNPs, which are germline genetic substitutions of one

nucleotide, present at a specific DNA position in at least 1% of the population.

Specifically, mGWAS data consists of SNP-to-metabolic trait associations. One

type of metabolic trait consists of single metabolite fold changes between

non-SNP and SNP individuals (e.g. the fold change of margarate). The second

type associated with SNPs in the study is ratios of two different metabolite

levels, again compared between non-SNP and SNP individuals (e.g. the ratio
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of margarate / palmitoleate). Other examples of these types of data are shown

in Table 4 for illustrative purposes. We used data from Suhre et al. [142],

extracted SNPs associated with significant metabolites, and mapped them onto

the Human1 metabolic network. In this study, Human1 v1.10 [60], containing

13 024 reactions, was used to carry out all mGWAS analyses. It can be found at

https://github.com/SysBioChalmers/Human-GEM. Human1 was used for the

mGWAS analyses as we believe it is a more complete model, and it is in the

community’s best interest to use the latest model since it can then be improved

by community efforts. It also highlights that SAMBA can scale to a larger model.

Note that model choice will have an impact on any modelling approach and this

selection step, out of the scope of this thesis, has to be taken with care. Sampling

and FVA were run using the same parameters as in Shlomi et al. and Thiele et al.

[128, 83]: minimum fraction of optimum of the objective function (biomass) set

to 0, and all exchange reaction bounds set to [−1, 1000].

Ratio beta’ meta P meta p-gain meta
myristate (14:0) / myristoleate (14:1n5) 0.124 2.9 ∗ 10−57 1.2 ∗ 1048
myristate (14:0) / palmitoleate (16:1n7) 0.131 1.4 ∗ 10−48 1.0 ∗ 1039
margarate (17:0) / palmitoleate (16:1n7) 0.157 2.1 ∗ 10−42 6.6 ∗ 1032
margarate (17:0) 0.06 4.9 ∗ 10−08 1
myristoleate (14:1n5) −0.075 3.3 ∗ 10−09 1

Table 4: Examples of mGWAS data: 3 significant metabolite ratios and 2 significant single
metabolites. Beta’ represents the relative difference per copy of the minor allele (SNP) for the
metabolic trait compared to the estimated mean of the non SNP population. The p-gain statistic
quantifies the decrease in P value for the association with the ratio compared to the P values of
the two separate corresponding metabolite concentrations.

Among the 37 SNPs present in Supplementary Table 3 of Suhre et al., 17

were SNPs of 17 metabolic genes (one SNP per gene) present in the metabolic

model Human1 (version 1.10). The 20 other SNPs were impossible to simulate

since they do not correspond to metabolic genes in Human1. Human1 was

used to run sampling on 2 of these 17 SNPs: SNPs affecting the Stearoyl-CoA

9-desaturase (SCD) gene and the Acyl-CoA Dehydrogenase Short chain (ACADS)

gene. Human1 is one of the most recent and largest reconstructions of the human
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metabolic network, also showing that the method can scale to this larger network

(13 024 reactions, 8 363 metabolites). The 15 remaining SNPs with corresponding

genes in Human1 were not analysed due to the manual curation needed to

confirm genetic, enzymatic and metabolic matches.

We chose to focus on the SCD SNP specifically because i) the gene and

reactions are present in the network, and ii) there are many measured metabolites

present in the network, which is not the case for all of the SNPs, as some SNPs

only have one or two significantly associated metabolites, or the associated

metabolites do not exist in the network. It therefore serves as a good proof

of concept application for the methodology. Furthermore, the selection of the

correct genes to KO in the model for each SNP requires manual curation to

make sure the GPR (gene-protein-reaction) relationships correctly represent the

enzyme and corresponding gene. Additionally, mapping the metabolite names

from the study to model metabolites is a time consuming manual step. Results

for SCD are shown in the following figures in Section 3.2 and Section 3.3.1, and

those for the ACADS SNP are shown in Section 3.3.2.

In contrast with IEM data, where mutations always result in an enzyme

defect, an SNP might reduce enzyme activity (knock-down), enhance enzyme

activity, or have an effect on a different gene. Some of the SNPs from the Suhre

et al. study are well known to be associated with loss-of-function phenotypes

such as enzyme deficiencies (e.g. the ACADS gene in ACADS-deficiency), and

others have not been studied enough to confirm the effect of the SNP on gene

function. As one example of an understudied SNP phenotype, the SCD gene

(SNP rs603424 [143]) codes for the enzyme Stearoyl-CoA 9-desaturase, involved

in fatty acid metabolism. The hypothesis is that the SNP mutation in the gene

affects the corresponding enzyme negatively, which leads to no SCD enzyme

activity, represented in the network by knocking-out the SCD gene and therefore

blocking the corresponding reactions. This is suggested in Illig et al. [143] by

drawing a parallel between known loss of function SNPs leading to severe
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disorders, and newly identified SNPs. Additionally, the SNP mutation in the

SCD enzyme-coding gene is predicted to be in an intronic (i.e. non-coding)

region, using ensembl’s VEP (Variant Effect Predictor) [144]. When simulating

a scenario, the effect of the gene mutation should always be checked in order to

generate the most accurate metabolic condition possible.

In Human1, there are 19 reactions linked to the SCD gene, most of which

involve the desaturation of stearoyl-CoA, palmitoyl-CoA and myristoyl-CoA into

corresponding mono-unsaturated fatty acids. Following the GPRs relationships

in the model, knocking out SCD only affects 4 reactions (due to the fact that SCD

can be compensated by another gene in the 15 other reactions, one of which is a

transport reaction shared with 34 other genes). However, SCD also shares 14

GPRs with two other genes: SCD5 and FADS6, whose functions are not well

described. We decided to knock out these extra 14 reactions in order to block

the enzymatic function related to SCD completely (Table 5).

In the case of SCD, the GPRs were manually checked. The SCD SNP only

affects the SCD1 gene (known as SCD in the metabolic model), as SCD1 and SCD5

are two separate genes. SCD5 codes for the same enzymatic function as SCD1 but

they are both expressed in different tissues: fat tissue for SCD1, and brain and

pancreas for SCD5. However, Human1 is not tissue-specific and the reactions are

not necessarily associated with the genes according to this tissue specificity, so

in order to block the enzymatic function completely, both SCD1 and SCD5 were

blocked.

Condition Model Gene
KO

Reaction KO

SCD Human1
(v1.10)

SCD
SCD5
FADS6

MAR02281 MAR02282 MAR02284
MAR02286 MAR02287 MAR02292
MAR02293 MAR02294 MAR02295
MAR02296 MAR02288 MAR02289
MAR00144 MAR00146 MAR00147
MAR00148 MAR02126 MAR02128

Table 5: Genes and reactions knocked-out to simulate SCD in Human1.
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The SCD SNP has two types of significantly associated metabolic traits: single

metabolite changes, and ratios of two different metabolite concentrations. The

single significant metabolites measured for the mGWAS study for this SNP are

margarate, palmitoleate, myristoleate, stearate and 1-palmitoleoylglycerophosphocholine.

These are the main “expected” metabolites, which will be compared with the

SAMBA recommended metabolites.

SAMBA returned z-scores for the 1497 unblocked metabolite exchange

reactions in Human1. The distribution of these z-scores is shown in Figure 31,

and highlights the difference between the extreme high-ranking metabolites

and the low-ranking metabolites in the centre. A metabolic profile this large

is difficult to compare with the data from the mGWAS study as no raw data

was included in the original study: only the significantly associated metabolites

were reported, as well as the total list of 295 measured metabolites (but not

their fold changes for each SNP). We also calculated the FVA bounds for each

metabolite for the same metabolic condition as the sampling. The results for

the single metabolites and ratio metabolites are described in the following

sections. Resulting SAMBA metabolites were manually mapped to the mGWAS

significant metabolite names for SCD, with manual verification of metabolite

synonyms as many lipids have multiple names and naming conventions.

3.2 Significant single metabolites for SCD

Here, we compared the 5 significant metabolites reported in the mGWAS

study with their simulated SAMBA metabolite ranks and FVA bounds to see the

biggest effect this KO has on metabolite exports and imports. No rank or z-score

thresholds were used for Figure 27, Figure 28, and Figure 29 as the metabolites

were selected based on their presence in the significant results of the Suhre et al.

dataset.

Figure 27 shows the five metabolites identified in the mGWAS study along
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with the corresponding SAMBA ranks and the FVA predictions. In Figure 27,

Figure 28 and Figure 29, the metabolite(s) marked with “NA” in the SAMBARank

column have no flux values because either they are not present as a metabolite in

the network, don’t have an exchange reaction in the network, or have a blocked

exchange reaction, meaning no flux can be carried through it in the current

metabolic state.

Figure 27: Observed and predicted changes for the five metabolites significantly associated with
the rs603424 SNP. The first column shows the observed change directions from the mGWAS
study. The second column shows the predicted change direction using SAMBA (SAMBAdir).
The third column shows the predicted change direction using FVA (FVAdir). The fourth column
shows the SAMBA predicted rank out of the 1497 metabolites in the network (SAMBARank). The
fifth column shows the SAMBA predicted z-score, with the colour scale as the absolute value of
the z-score. The NAs represent metabolites for which SAMBA was unable to predict fluxes for
one of the following reasons: (i) the metabolite is not in the network, (ii) the metabolite is in the
network but has no exchange reaction, or (iii) the metabolite’s exchange reaction can carry no flux
(=blocked). Sampling distributions and FVA predicted bounds for each metabolite’s exchange
reaction in WT and MUT are shown on the right.

Four out of the five expected metabolites are present with an exchange

reaction in Human1, and the SAMBA predicted change directions match the

expected mGWAS experimental changes. The directions of change predicted by

FVA are correct except for myristoleate, which was predicted to be increased

instead of decreased using the FVA bounds. Their ranks are shown in the column

SAMBARank and these ranks are to be compared with the total number of

exchange metabolites present in Human1, i.e. 1497. These four metabolites are
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in the top 13%, two of which are in the top 1%. The z-scores are also shown in

the last column, which highlights the difference in value between the top best

ranked metabolites and the lower ranks.

3.3 Significant ratio metabolites

3.3.1 SCD ratios

The significant metabolite ratios linked to SCD include many different

combinations of pairs of metabolites. The assumption here is that at least one

of the two metabolites involved in each ratio must change for the ratio to be

significantly changed. This is less direct than the previously shown significant

metabolites, as they may not necessarily change as drastically between the two

conditions, but they serve to extend the list of possible metabolites to map to

using the SAMBA predictions. Figure 28 shows the metabolites present in at

least one ratio significantly associated with SCD and their associated predicted

SAMBARanks.
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Figure 28: Predicted ranks for the metabolites present in a ratio significantly associated with the
rs603424 SNP. The first column shows the predicted rank out of the 1497 metabolites in the
network. The second column shows the SAMBA predicted z-score, with the colour scale as the
absolute value of the z-score. The NAs represent metabolites for which SAMBA was unable to
predict fluxes for one of the following reasons: (i) the metabolite is not in the network, (ii) the
metabolite is in the network but has no exchange reaction, or (iii) the metabolite’s exchange
reaction can carry no flux (=blocked). Sampling distributions for each metabolite’s exchange
reaction in WT and MUT are shown on the right.
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The second most differentially abundant metabolite predicted by SAMBA for

this condition is 10-heptadecenoate, which is present in at least one significant

ratio in the mGWAS SCD dataset. In addition to this, there are 4 other highly

ranked metabolites, all in the top 171 ranked metabolites out of 1497 (top 11%).

The five metabolites ranked below the 50% mark have z-scores lower than 0.1.

Interestingly, myristate is almost ranked last in the entire list of predictions. When

taking a closer look at its flux distributions, the MUT distribution appears to be

bimodal, meaning that while the flux seems to have shifted, the z-score was not

able to detect this difference due to its reliance on the similar means.

3.3.2 ACADS ratios

A second example from the Suhre et al. paper is the Acyl-CoA Dehydrogenase

Short chain (ACADS) SNP. In the paper, it does not have any ”single” metabolite

trait associations, but has 11 significant ratio metabolite associations. The

predictions using SAMBA for these metabolites involved in significant ratios are

shown in Figure 29.
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Figure 29: SAMBA ranks for the metabolites involved in significant ratios for the ACADS SNP
from Suhre et al. 2011. The column shows the predicted rank out of the 1498 metabolites in
the network. The NAs represent metabolites for which SAMBA was unable to predict fluxes for
one of the following reasons: (i) the metabolite is not in the network, (ii) the metabolite is in the
network but has no exchange reaction, or (iii) the metabolite’s exchange reaction can carry no flux
(=blocked). Sampling distributions for each metabolite’s exchange reaction in WT and MUT are
shown on the right.

As in the previous example, there are some extremely well ranked metabolites

while others are poorly ranked. The literature suggests that carnitine (rank 22)

is intrinsically linked with CoA on multiple levels. Metabolically, the reactions

catalysed by ACADS enzymes are two reactions away from propionycarnitine

and L-carnitine, due to their interaction with propanoyl-CoA, their direct

product. Carnitine also plays a role in the stabilisation of CoA and acetyl-CoA

levels, as well as energy production by taking part in a rate controlling step in

mitochondrial oxidation of long-chain fatty acids [145]. Medically, L-carnitine

is used as treatment in some cases of ACADS deficiency (also known as SCAD
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deficiency (short chain acyl-CoA dehydrogenase)) [146]. Regarding the highly

ranked amino acids, an adjacent enzyme Isobutyryl CoA Dehydrogenase (IBD),

which is coded by ACAD8 and shares GPRs with ACADS, has been shown to

be involved in valine metabolism [147, 148]. The ACADS gene is also involved

GPRs in reactions in the ”Valine, leucine, and isoleucine metabolism” pathway

in the Human1 GSMN.

3.4 Significance of predictions

3.4.1 Statistical significance

Despite the problems that come with evaluating the false positives and

negatives provided by the method, the statistical significance of the previous

findings can be evaluated using a hypergeometric test. The test describes the

statistical significance of predicting k number of metabolites correctly out of the

top n predictions, when taking into account the total N number of predictions

containing K number of experimentally significant metabolites.

Figure 30 shows the results of these tests for various rank cut-offs. For

example, when looking at the top 300 (n) metabolites (x-axis), predicting 10

(k) experimentally significant metabolites (green y-axis) out of the 20 (K) total

experimental metabolites for a total of 1497 (N) predictions, is significant (p-value

< 0.05) (blue y-axis).
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Figure 30: Hypergeometric test p-values for different rank cut-off values for SCD. The left y axis
(blue) shows the hypergeometric test p-values when using a given rank cut-off and the number
of experimental metabolites predicted in that top ranking. The right y axis (green) shows the
number of experimental metabolites predicted for each rank cut-off.

The figure highlights the significance of finding theses numbers of expected

metabolites in the top ranks of the SCD predictions. Until around the top 100, the

test shows that predicting around 6 expected metabolites is extremely significant

(p-value ≪ 0.01) and remains significant (p-value < 0.05) until just below the

halfway point of the ranked list.

3.4.2 Ranking provides the extreme metabolite changes

Metabolite ranks are determined from the highest absolute values of z-scores

for each metabolite among the entire list of metabolite changes for that condition.

This means that the top best ranked metabolites are relative to the rest of the

list. Generally, the top most changed metabolites have ”extreme” z-score values

due to large shifts in distributions caused by the metabolic perturbation. In the

SCD example, Figure 31 shows the distribution of z-scores for all metabolite
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predictions. Those with a z-score higher than 1 or lower than -1 are highlighted

in blue (threshold chosen for illustrative purposes), and the expected metabolite

names predicted in the top 10 are shown in red.

Figure 31: Distribution of metabolite z-scores for SCD. The metabolite labels highlighted in red
are significantly observed in the Suhre et al. paper. Here, a threshold of 1 is used to show the
metabolites that pass the threshold (blue).

This distribution shows how the few extreme z-scores are different to the main

”body” of the distribution, and highlights the fact that differences between low

ranks are very small in terms of z-score values. Most z-scores are very close to

0 meaning that the rank at this level does not hold much value when comparing

between two low ranks. This of course must be taken into consideration when

interpreting these simulated metabolic profiles.
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3.5 Using SAMBA predicted metabolite lists can enrich

experimental knowledge

The top most differentially changed metabolites associated with SCD

predicted using SAMBA can be used to form a list of new metabolites of interest

for this condition. By examining the chemical class of each predicted highly

differentially abundant metabolite, we can gather information on a general type

of metabolite affected by the KO. This section displays three approaches to

bridging the gap between enriching predicted data and linking it to experimental

data.

3.5.1 BiNChE, a ChEBI-based enrichment analysis for metabolites

BiNChE [149] creates and enriches a subnetwork using a list of ChEBI IDs

and the ChEBI ontology. For this, I used the top 10 most changed metabolites as

predicted by SAMBA for the SCD example presented previously. Table 6 shows

this list of top 10 metabolites, and the rows shown in blue are the experimentally

significant metabolites for the SCD SNP.

Metabolite name (alternate name) Human1 ID CHEBI SAMBA rank
9-Heptadecenoic acid MAM01238e 80550 1
10-Heptadecenoate MAM00003e 75094 2
gadoleic acid (eicosenoate) MAM01235e 32419 3
heptadecanoic acid (margarate) MAM02456e 32365 4
nonadecanoate MAM02613e 39246 5
cis-tetradec-7-enoic acid MAM00117e 53206 6
(5E)-tetradecenoyl-L-carnitine MAM02974e 131957 7
prostaglandin A1 MAM02776e 15545 8
5-Tetradecenoic acid (physeteric acid) MAM02745e 89393 9
Phytanic acid MAM02746e 16285 10

Table 6: Table of the top 10 most differentially changed metabolites for the SCD gene KO using
SAMBA. Human1 IDs correspond to the exchange metabolite IDs. Metabolites highlighted in
blue were also significant in the SCD mGWAS data.

Using this list as input for enrichment, Figure 32 shows a subnetwork of the

ChEBI ontology. BiNChE is a good alternative to classic pathway enrichment
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analyses (gene set enrichment analysis (GSEA)/metabolite set enrichment

analysis (MSEA), overrepresentation analysis (ORA)) due to its use of the richer

structure of the ChEBI ontology as opposed to the approach of focusing on

metabolites and pathways of interest.

Figure 32: Hierarchical ChEBI graph of the top 10 metabolites predicted to be differentially
abundant (outlined in blue) by SAMBA for SCD, extracted using BiNChE. The node colour
corresponds to the BiNChE enrichment level. The metabolites in bold & italic were significant
in the mGWAS dataset for SCD.

All of the top 10 most changed metabolites are classified as lipids (outlined

in blue in Figure 32), 8 of which are fatty acids, which is consistent with the

functionality of the enzyme SCD. Indeed, the SNP rs603424 has been shown to

be significantly associated with circulating phospholipid levels [150], as well as

with low levels of palmitoleate [150]. SCD is a desaturase which leads to the

formation of fatty acids, specifically monounsaturated fatty acids involved in

membrane phospholipids [151]. While this information could appear evident, it

helps confirm SAMBA predictions, and it can reveal insight into metabolic classes

which are not yet known by the user, serving as a good starting point for further
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research into the chemical classes of interest for a given metabolic state.

Out of the top 10 metabolites, 4 were measured in the mGWAS study

(margarate, 10-heptadecenoate, nonadecanoate, and eicosenoate), and they

are all classified as saturated or long-chain fatty acids. This means that the

other long-chain fatty acids could be potential metabolites of interest, such as

9-Heptadecenoic acid (rank 1) or cis-tetradec-7-enoic acid (rank 6), which weren’t

measured in the original mGWAS study.

However, the ChEBI classification is limited by the annotation of each

metabolite to the correct class. Upon manual inspection, both cis-tetradec-7-enoic

acid and 5-tetradecenoic acid are C14:1 fatty acids, only differing by the position

of the double bond, but they are classified separately in long-chain fatty acid and

unsaturated fatty acid respectively. This indicates that 5-tetradecenoic acid could

also be of interest for future studies. Furthermore, by looking at the chemical

structures, 4 out of the top 10 are odd chain fatty acids which is interesting to

highlight since they represent a very small percentage of the total human fatty

acid plasma concentration [152].

Since BiNChE provides a view of the ChEBI ontology on a per-metabolite

scale, using too many metabolites as input results in a large and difficult to read

figure. Other methods can integrate more of the predicted metabolic profile (for

example 50 metabolites), such as the following approach.

3.5.2 ChemRich enriches chemical classes based on molecular data

As a step closer to using chemical structures as opposed to class annotations

as well as using more of the metabolic profile, we ran a ChemRich [153] analysis

using the top 50 metabolites predicted to be differentially abundant for the same

SCD example as before. ChemRich uses the chemical structure via SMILES,

and the MeSH terms associated with PubChem IDs to highlight enriched

chemical classes. Figure 33 represents the most enriched clusters from the top
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50 metabolite set. The higher the -log(pvalue) (y axis), the more the group is

enriched. The x-axis serves to separate the groups for plotting purposes using a

chemical similarity tree behind the scenes.

Figure 33: ChemRich enrichment of the top 50 most changed metabolites for SCD. The y-axis
shows the most significantly altered clusters on the top. Each node reflects a significantly altered
cluster of metabolites. Enrichment p-values are given by the Kolmogorov–Smirnov test. Node
sizes represent the total number of metabolites in each cluster set. Cluster colours show the
proportion of increased or decreased metabolites (red and blue respectively). The x axis represents
a separation based on cluster order on the chemical similarity tree, and non-significant clusters
are hidden.

The ChemRich plot also shows that both saturated and unsaturated fatty

acids are significantly enriched by this dataset when including 40 more

metabolites. Figure 33 also highlights some other groups such as HETE

(Hydroxyeicosatetraenoic acids (which are oxylipins)), cholestenes, and

cholestadienols not detected using BiNChE (which is most likely due to the

fact that BiNChE was given 10 metabolites instead of 50). ChemRich serves
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as a complsignificantlyementary method to BiNChE for analysing predicted

metabolic profiles, as highlighted in Table 7.

Compound
Name

SMILES Z-score Cluster

9-heptadecylenic
acid

CCCCCCC/C=C/CCCC
CCCC(=O)O

−13.211 UnSaturated FA

(10Z)-
heptadecenoic
acid

CCCCCC\C=C/CCCCC
CCCC(O)=O

−6.854 UnSaturated FA

9-eicosenoic acid [H]\C(CCCCCCCCCC)=
C(/[H])CCCCCCCC(O)=O

−4.342 UnSaturated FA

margaric acid CCCCCCCCCCCCCCCCC
(=O)O

3.099 Saturated FA

nonadecylic acid CCCCCCCCCCCCCCCCCCC
(=O)O

2.920 Saturated FA

(7Z)-tetradecenoic
acid

CCCCCC/C=C\CCC
CCC(=O)O

−2.387 UnSaturated FA

tetradecenoyl
-carnitine(5)

CCCCCCCC/C=C/CCCC
(=O)O[C@H](CC(=O)[O-])
C[N+](C)(C)C

−1.606

prostaglandin
A1

CCCCC[C@@H](/C=C/
[C@H]1C=CC(=O)[C@@H]
1CCCCCCC(=O)O)O

−1.400 prostaglandins
a

physeteric acid CCCCCCCC/C=C/CCCC
(=O)O

−1.213 UnSaturated FA

Phytanate CC(C)CCCC(C)CCCC(C)
CCCC(C)CC(=O)O

−1.175 Saturated FA

Table 7: ChemRich provides a metabolite-level table with each metabolite assigned to a cluster,
the top 10 of which are shown in Table 7. These clusters are more specific than some of the
annotations provided by ChEBI, namely those assigned to “long-chain fatty acid” by BiNChE are
grouped into unsaturated and saturated fatty acids by ChemRich.

Additionally, when using only the top 20 SAMBA predictions as input for

ChemRich, the same classes as those obtained when only using the list of 21

experimentally significant metabolites are identified, shown in Figure 34. By

going further down the list of ranked predictions, the information gained can

be enriched using the simulated data. This figure clearly shows the gain of

information as the list of original metabolites grows in length and is enriched.
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Figure 34: ChemRich using only experimentally significant metabolites (left) and using increasing
numbers of highly ranked SAMBA predicted metabolites (right) for SCD.

Finally, I ran ChemRich on the IEM examples from the Thiele et al. study using

the sampling predictions for each IEM (Figure 22), using only the metabolites

present in the figure (all 54 columns). Figure 35 shows three ChemRich figures

for three IEMs when using all 54 sampling metabolite predictions (z-scores)

for each condition as input. The three IEMs are: Aromatic L-amino acid

decarboxylase deficiency, Fish-eye disease/ LCAT deficiency, and Autosomal

dominant hypercarotenemia and vitamin A deficiency. They are representative

of the other 46 ChemRich figures (not shown here) in that they all show mainly

amino acid enrichments even for non amino acid related diseases, due to the
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many amino acids present in the input metabolites (see Figure 19 for the classes

of each metabolite and IEM shown as colours).
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(a) Aromatic L-amino acid decarboxylase deficiency

(b) Fish-eye disease/ LCAT deficiency

(c) Autosomal dominant hypercarotenemia and vitamin A deficiency

Figure 35: ChemRich using sampling predictions for the 54 metabolites from Thiele et al. for three
IEM conditions.
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The resulting ChemRich figures in Figure 35 show that the enrichment is

mainly influenced by the presence/absence of a metabolite in the list rather than

its fold change or score, which led to the ChemRich enrichment always producing

very similar enrichments (mainly enriched amino acids) when using the same list

of 54 metabolites with different scores. This shows that by using a rank threshold,

the initial bias from choosing which metabolites to predict for is disregarded

since the entire list of metabolites is taken into account to create the list of top 50

most changed metabolites. For example, autosomal dominant hypercarotenemia

and vitamin A deficiency is unrelated to amino acids, being more involved with

vitamins and β-carotene.

Figure 36 shows the ChemRich enrichment using the top 54 best ranked

sampling predictions as opposed to the 54 studied by Thiele et al., for Fish-eye

disease/ LCAT deficiency. Indeed, the enriched compound classes here are

oligopeptides and retinoids, and not amino acids like previously. Fish-eye

disease/ LCAT deficiency, as the name suggests, affects eyesight, resulting

in corneal opacifications. Retinoids are class of chemical compounds that are

vitamers of vitamin A, which plays a vital role in maintaining a clear cornea

[154]. Based on the literature, this appears to be a more coherent enrichment than

the previous amino acids enrichment.
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Figure 36: ChemRich using the top 54 metabolite sampling predictions for Fish-eye disease/
LCAT deficiency.

3.5.3 Biochemical distance between altered reactions and predicted

metabolites

As expected, some top ranked metabolites are substrates or products of the

altered reactions. Nevertheless, we discovered through network analysis that

more indirect relationships can be discovered between altered reactions and top

ranked metabolites. To do so, the metabolic network was first converted into a

bipartite graph using the Met4J library. A bipartite graph applied to metabolism

consists of nodes as both metabolites and reactions, but with no edges between

any two reactions, and no edges between any two metabolites. All edges cross

over from the set of metabolites to the set of reactions, i.e. they alternate between

the two sets.

The goal here is to calculate the distance between the reactions that were

knocked-out in the SCD condition and the top 50 most changed metabolites

according to SAMBA’s predictions. The hypothesis is that the closer a metabolite

is to the set of knocked-out reactions, the more likely it is to be dysregulated by

the disruption. Calculating a distance between two entities using graph theory

can rely on the calculation of shortest paths.
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In order to calculate distances correctly in a metabolic graph, side compounds

must be removed. Side compounds create irrelevant links between reactions

when the goal is to calculate how close a reaction is to another. A side compound

is usually defined as a metabolite with a high degree of connectivity, i.e. involved

in many reactions, and is not considered as the “main” substrate of the reaction.

For example, ATP, ADP, and H2O can be considered as side compounds.

Unfortunately, defining a list of side compounds for a network is not an easy

task as it can depend on the goal of the analysis as well as the organism or other

parameters, and can even be a subjective choice. In this case, a manually curated

list of side compounds was used with Human1 to remove edges that would

shorten paths too much for the distance calculation to be of use.

The final parameter is choosing whether to use the directed or undirected

version of the metabolic graph network. A directed network uses the

directionality of each reaction in its catalysed state, whereas an undirected

network removes this information when calculating a shortest path. Undirected

paths represent the global distance of effect between two entities while directed

paths are more indicative of upstream/downstream effects, which is why they

were chosen for this study.

Figure 37 shows the distances from the 50 most changed metabolites (rows) as

predicted by SAMBA for the SCD condition, in relation to the different reactions

that were knocked-out (columns).
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Figure 37: Distances from the top 50 most changed metabolites to each of the reactions affected
by the SCD SNP. Ranks are shown from beige to dark purple. Distance is shown on the yellow
to dark blue-green scale (black is infinite distance, i.e. no path). The distance is measured in the
number of reactions and metabolites it takes to get from the KO’d reaction to the extracellular
metabolites, using the shortest paths.

This distance heatmap shows that the highest ranked metabolites (top most

rows, pale beige annotation on the left) are the closest (yellow) to the perturbed

reactions, with distances of 5-6. As we move down the ranked list, the general

trend is that the metabolites get further and further from the perturbed reactions,

even reaching ”infinite” distances, meaning that no path was found between the

reactions once the side compounds were removed.
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This data can also be represented on a metabolic network visualisation.

Figure 38 displays the metabolic subnetwork extracted from Human1 using the

perturbed reactions (red squares) and top 50 metabolites (coloured circles).

Figure 38: Undirected subnetwork showing paths between the reactions affected by SCD (red
squares) and the top 50 predicted most changed metabolites for this condition (coloured circles).
Metabolites with a short path to the affected reactions are shown in yellow while darker colours
correspond to a longer path (the colour scale is the same as in Figure 37).

Figure 38 shows that while the highly ranked metabolites are relatively close

to the KO’d reactions, they are not directly linked to them. Furthermore, many

other affected metabolites can be found at a distance of 10 or more steps (shown as

periphery metabolites in the circular layout of this figure). These are additional

metabolites of interest that could be future paths for analysis which could not
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be directly inferred from the affected reactions and scenario. The far but highly

ranked metabolites are metabolites we may not have thought of as potential

metabolites of interest due to their distance from the disruption in the network,

since they may seem unrelated at first glance.

4 Convergence

One of the main limitations of flux simulation with CBM is that it is impossible

to fully describe such a large solution space. The method used in this project

to explore the solution space is random sampling, but determining a sufficient

number of samples is a major challenge when it comes to this method. When

using random sampling to explore the solution space, the number of samples to

use must be provided, but choosing the ideal number for a given network is a

challenge since by definition the structure of the solution space is unknown. The

number of samples can be increased, however, in order to sufficiently explore

the solution space, a large number (at least 100 000) of samples must be used

for larger networks such as Recon2 or Human1 which contain thousands of

reactions.

Therefore it is essential to know when to stop sampling: determining when

the solution space has been sufficiently sampled. We ran convergence tests using

various well-known sampling metrics: running means, traceplots, shrink factor

or potential scale reduction factor (PSRF) plots, autocorrelation function (ACF)

plots, flux density plots, and partial plots to make sure that using 100 000 samples

was enough for a network this large, with the goal of calculating z-scores on

distributions. The results can be found in the following figures, where three

independent runs for each nsamples value (100, 10 000, and 100 000) are shown

for three randomly chosen exchange reactions in the network.

Running means show how the cumulative average value of all sampled fluxes

converges with each sampling iteration. If the final value (black horizontal line)
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is different between the 3 independent runs (columns per subplot), this shows

that there were not enough iterations to reach convergence.

(a) nsamples = 100 (b) nsamples = 10 000 (c) nsamples = 100 000

Figure 39: Running means for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and (c)
100 000 samples, with 3 independent runs for each. The x-axis shows sampling iterations while
the y-axis shows the current mean for that iteration. The three colours are the three independent
runs. The rows in each subplot represent the same randomly picked exchange reactions.

The running means clearly show the variability between runs (red, green

and blue) when using 100 samples, and still show some variability with 10 000

samples. The running means for 100 000 samples show convergence in each run

as well as inter-run stability.

Trace plots show the flux value (y-axis) along iterations (x-axis), for each

independent run. Generally, traceplots should show no general trend if there is

convergence.
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(a) nsamples = 100 (b) nsamples = 10 000 (c) nsamples = 100 000

Figure 40: Trace plots for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and (c)
100 000 samples, with 3 independent runs for each. The x-axis shows the iterations along the
sampling process while the y-axis shows the flux value for each iteration. The three colours are the
three independent runs. The rows in each subplot represent the same randomly picked exchange
reactions.

For all three nsamples values the trace plots appear relatively stable. For

nsamples = 100, the spikes appear larger due to the smaller number of iterations,

but these spikes in flux values are normal, even for high nsamples values, as they

represent an extreme flux value being found as a solution.

PSRF plots show the shrink factor along iterations. It indicates if runs

have “forgotten” their initial flux value. It should decline to 1 as the iterations

approach infinity.

(a) nsamples = 100 (b) nsamples = 10 000 (c) nsamples = 100 000

Figure 41: PSRF plots for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and (c) 100
000 samples, with 3 independent runs for each. The x-axis shows sampling iterations while the
y-axis shows the current shrink factor (PSRF) for that iteration. The three colours are the three
independent runs. Each subplot represent the same randomly picked exchange reactions.
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The PSRF plots for 100 samples have clearly not converged to 1, whereas those

for 10 000 and 100 000 samples rapidly approach 1.

Autocorrelation (ACF) can be measured as a function of the lag along

iterations. The sample autocorrelation should decrease as a function of their lag

if the chain is properly mixed.
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(a) nsamples = 100

(b) nsamples = 10 000

(c) nsamples = 100 000

Figure 42: ACF plots for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and (c)
100 000 samples, with 3 independent runs for each. The x-axis shows the iteration lag along the
sampling process while the y-axis shows the autocorrelation for each iteration. The three colours
are the three independent runs. The columns in each subplot represent the same randomly picked
exchange reactions.

The ACF plots show a decrease in autocorrelation relatively rapidly for all

three values of nsamples, meaning that regardless of the number of samples, the

autocorrelation between iterations is similar.
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The flux density plots are a visual way of seeing the smoothness of the

sampling distributions across runs, as well as seeing if a given run has managed

to explore enough of the solution space. Note that the x-axes in each subplot are

not the same scale.

(a) nsamples = 100 (b) nsamples = 10 000 (c) nsamples = 100 000

Figure 43: Flux density plots for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and
(c) 100 000 samples, with 3 independent runs for each. The x-axis shows the flux values obtained
at the end of the sampling process while the y-axis shows the density. The three colours are the
three independent runs. The rows in each subplot represent the same randomly picked exchange
reactions.

When comparing between runs for the same nsamples value, regardless of the

value the flux distributions appear relatively stable. However, when comparing

between nsamples values (columns), the flux distributions for nsamples = 100,

especially the first exchange reaction (top row), are very unstable. Even for 10

000 and 100 000 samples, the first exchange reaction solution space seems more

”difficult” to sample for than the other two. We can also see that outliers/extreme

flux values with 100 samples are more visible and therefore more weighted,

whereas with higher nsamples counts, these values are squashed by the higher

flux counts in the center of the distributions.

Partial plots show how the last 10% of samples compare with the whole

sampling distribution. This gives a visual preview of if the last samples are

representative of the whole distribution. Ideally, the whole and final parts of

the chain sample in the same target distribution, so the overlapped distributions

should be similar.
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(a) nsamples = 100 (b) nsamples = 10 000 (c) nsamples = 100 000

Figure 44: Partial plots for 3 random exchange reaction fluxes using (a) 100, (b) 10 000 and (c)
100 000 samples, with 3 independent runs for each. The x-axis shows the flux values obtained at
the end of the sampling process while the y-axis shows the density. The three columns are the
three independent runs. The rows in each subplot represent the same randomly picked exchange
reactions.

These plots can be difficult to judge visually, as depending on the exchange

reaction, the flux distributions can be more or less stable. With 100 samples, the

bottom exchange reaction (EX ura(e)) is clearly undersampled as the final 10% of

fluxes (green) do not represent the entire flux distribution (grey) well. With 10 000

samples, again many of the last 10% of distributions do not overlap sufficiently

with the complete distributions. With 100 000 samples, there is still a lack of

overlap but more distributions overlap correctly.

The main conclusion of this analysis is that one should never rely on one single

diagnostic, and that these diagnostic measures cannot guarantee the absence of

problems, they only help us to spot a problem. These results indicate that 100 000

samples is sufficient for exploring these large GSMNs, and while not perfect, the

flux distributions are enough for computing z-scores for our use case.
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Results Part II: Simulated data for

pathway analysis benchmarking

1 Introduction: Pathway enrichment

Pathway enrichment methods were originally developed for analysing

genetic expression data. Indeed, with great quantities of data comes great

responsibility for analysis and interpretation. As large amounts of data are

generated, interpretation relies on reducing the number of variables through

approaches like PCA and enrichment analyses to obtain human-comprehensible

results that either contain meaning (to us) or from which meaning can be

extracted. Gene expression data features can be in the tens of thousands in

number and organising this data into smaller functional sets of genes can aid

greatly in understanding biological mechanisms.

These smaller sets of genes consist of pathways often using Gene

Ontology (GO) [92, 93], from high level sets like ”Immune response” to more

fine-grain ”positive regulation of non-canonical NF-κB signal transduction”.

They can be metabolic pathways, gene regulation pathways, cell-level responses,

cell signalling processes etc.

For metabolites, there are two types of ontologies, both of which are less
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widespread than GO is for genes. Chemical ontologies, such as ChEBI, are

based on the chemical structure and properties of compounds individually.

Compound classes can be ”parents” of multiple metabolites (as shown

previously in Figure 32). However, the annotation of compounds in ChEBI

is not always optimal, leading to some metabolites being annotated with

top-level classes which do not contain much specific information. An example

of this is 1-(11Z-icosenoyl)glycerol which is directly annotated as an ”organic

molecular entity”. The second type of ontology is biochemical ontologies,

which are pathway-based collection of reactions and metabolites as well as

sometimes genes. In theory, a pathway ontology would be a good GO equivalent

for metabolites, but there is no real consensus and many different pathway

ontologies exist, such as KEGG, BioCyc, and Reactome, which all have different

pathway definitions. This means that gaining functional information is more

difficult and less standardised.

Pathway enrichment analysis serves two primary purposes. The first

scenario involves investigating whether specific genes or metabolites of interest

are grouped together in a particular pathway. For instance, researchers may

want to ascertain whether differentially abundant metabolites resulting from a

comparison are produced independently or if they collaboratively participate

in shared pathways. In this context, the ORA method proves valuable. The

second situation is a more global approach, where the entire list of measured

metabolites is considered by establishing a ranking based on a chosen metric.

For this, methods like GSEA and MSEA are employed. The rest of this section

will refer to pathway enrichment methods in terms of metabolites rather than

genes.
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1.1 Overrepresentation analysis

ORA involves three key parameters: first, a filtered list of metabolites of

interest is required (n in Figure 45). This list can be obtained from an experimental

abundance analysis, involving the comparison of metabolite abundance in two

conditions. The list must be filtered based on a metric such as fold change using

a significance threshold. The second input is a pathway database containing

annotated metabolites corresponding to each included pathway (one pathway

is shown as k in Figure 45). Finally, an important (but overlooked) input is

the background set (N in Figure 45), which is often not explicitly provided

by the user, and by default is all metabolites in the network. ORA employs a

hypergeometric test on a per-pathway basis to determine the significance of

enrichment.

For instance, we can consider a scenario where we have identified 50 (n)

significantly abundant metabolites, and our aim is to define how they are

connected across the entire KEGG database. Manually, we can begin by taking

the first pathway and discerning whether any of the 50 metabolites are present

within it. The question then arises: is finding 5 (k) metabolites from our

significant list within this pathway considered significant? The null hypothesis

for this test is that due to chance alone, more than 5 of our metabolites can be

found in this pathway.

To address this question, two factors come into play. First, the size of

the pathway is crucial. If the pathway contains 20 (M) metabolites in total,

discovering 100% of the metabolites among the initial list of 50 is almost certain

to be a significant outcome. However, if our set of metabolites only includes

10 out of 20 metabolites in the pathway, the method needs to consider another

aspect: the background set. The background set is defined by the total number

of detectable metabolites in the experimental setup. This aspect is pivotal in the

analysis, as the significance of finding 10 metabolites in a pathway from a list
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of 50 metabolites that have been measured in a targeted metabolomics setup,

or 300 metabolites measured by an untargeted setup is not comparable. The

background set has a strong impact on the pathway enrichment results and must

be taken into account, and in metabolomics this is often overlooked due to the

difficulty of defining a background set when many features remain unidentified

[43].

Figure 45: Venn diagram representing ORA parameters. N represents compounds forming the
background set, which covers part of the full metabolome. M represents compounds in the
pathway of interest. n represents compounds of interest (i.e., differentially abundant metabolites),
and k represents the overlap between the list of compounds of interest and compounds in the
pathway. Figure from [43].

1.2 Metabolite set enrichment analysis

ORA is often likened to a supervised analysis due to its reliance on a

pre-filtered list of metabolites as input. This contrasts with the more global

nature of MSEA, which doesn’t require a predefined metabolite list. However,

MSEA necessitates the availability of as many metabolites in the sample for

accurate results, as it takes the entire list of measured metabolites into account.

MSEA operates with just two essential parameters: a database of pathways and

a sorted list of metabolites. A typical workflow involves ranking metabolites
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based on their fold change when comparing two conditions. For each pathway,

the MSEA algorithm goes through the sorted metabolite list and it accumulates

a score for the pathway. If a metabolite is annotated in the pathway, the score

increases, and it decreases otherwise. When multiple annotated metabolites

cluster in the sorted list, the pathway’s score rises significantly, increasing what

is known as the ”enrichment score” (ES). To enhance interpretability, this ES

is normalized by the size of the pathway, yielding the normalised enrichment

score (NES).

Using fold changes or other indicators of increase/decrease as a ranking

metric in MSEA can enhance result interpretation. For instance, a significant

positive NES implies that the pathway contains increases in metabolite

concentrations, indicating an overall ”increase” in the pathway’s activity,

even if this interpretation can be ambiguous regarding metabolites, since an

increase in a metabolite can also mean a decrease of the reaction using it as a

substrate. The choice of metrics in MSEA is pivotal and can significantly impact

the results as well as their interpretation: an alternative approach involves using

adjusted p-values from statistical tests to rank metabolites. This alternative

metric can provide valuable insights. In this scenario, pathways with the

highest NES would be the most deregulated pathways in the comparison, while

pathways with a negative NES would represent the most stable pathways.

Ultimately, the selection of the appropriate metric and interpretation strategy

depends on the research question, the dataset characteristics, and the biological

context of the analysis. It is crucial to carefully consider these factors to derive

meaningful insights from MSEA results, as with any analysis.

1.3 Limitations and current pitfalls

Pathway enrichment methods have several limits that should be taken into

consideration, especially when applying them to metabolomics data. First, there
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is always a bias depending on input data used for enrichment analyses: some

metabolites cannot be detected using certain setups and will never be able to be

used to enrich pathways in these cases.

A major potential pitfall is the definition of each pathway: not only are

pathways defined differently depending on the database, but there are issues

inherent to how pathways were initially identified and described. A pathway

in this case is a set of metabolites involved in a biological function, which is

usually the name of the pathway. For example, glycolysis/gluconeogenesis, a

KEGG pathway, is split into the glycolysis and gluconeogenesis pathways in

HumanCyc. Pathways, by definition, focus on one area of metabolism, usually

the metabolism of one or a few metabolites (such as galactose metabolism).

These pathways were defined manually, and are also impacted by the order

of discovery of metabolites and metabolism throughout history. Only the

metabolites the most central to metabolic functions were studied first, and

this created a focus on certain metabolites that may not be as central as first

imagined. There are several published approaches to reconstruct metabolic

pathways automatically, but the results often require manual post-processing

expertise [44]. Stoichiometry-based approaches appear to be the most promising

but can often lead to thermodynamically infeasible cycles and high computation

times [155].

Additionally, metabolite identifier mapping is a major issue: metabolites

have multiple names, IDs, isomers and are named differently depending on the

database.

Another point to take into consideration is the localisation of measured

metabolites. If the metabolomics experiment measures metabolites in the

extracellular medium (exo-metabolomics), the possible pool of measurable

metabolites is different compared with internal cellular measurements, since

not every metabolite is exported out of the cell. Additionally, when focusing on

exo-metabolomics, one must consider that much can happen between the origin
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of the metabolic perturbation and the export of the metabolite, and biofluid-level

metabolites are seen as further away from the internal metabolism than cellular

metabolite levels.

Due to its nature, metabolomics data has a lower metabolome coverage than

genes have of genome coverage, and there is less metabolite data in general from

a single experiment, due to loss of metabolites along the process of experimental

setup design, measurement, statistical analysis, and identification.

Despite these drawbacks, pathway enrichment analyses are widely

used, often without taking into account the biases caused by the nature of

metabolomics data, and therefore treating it as genomic data. Little research has

been done on the extent of the effects of the different parameters on pathway

enrichment results.

2 Benchmarking pathway enrichment methods

using experimental data

The first part of this research study was to benchmark pathway analysis

methods using existing metabolomics data, in order to explore the variables

and parameters that can change enrichment outcomes. This work was done in

collaboration with colleagues from Imperial College London, and was published

in 2021 [43]. The first author of this paper, Cecilia Wieder, carried out the main

tasks consisting of varying the different inputs of ORA to determine those

with minimal to extreme impacts on the results, described in the following

paragraphs. Various public MS datasets were used for analysis due to their

non-targeted and multi-species nature.

The first ORA parameter that was analysed for this paper was the background

set. Indeed, intuitively, the background set has a large impact on the significance

of results but until this study, this was not quantified. It is important to only
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include metabolites that are measurable in the sample, in the background set, as

including a generic background set means that extra metabolites are taken into

account in the statistical test. The results showed, by varying the background set

from non-specific to specific, that not only were more pathways significant when

using the non-specific set, but also certain pathways were significant in one case

but not in the other. For some datasets, the only way to get significant pathways

when using a specific background set was to increase the p-value cut-off to 0.1 for

demonstration purposes (Figure 46). These differences are mainly due to the size

differential between the sets, with smaller background sets causing less pathways

to be enriched.

Figure 46: Number of pathways significant at p ≤ 0.1 (solid bars) and the number of pathways
significant at q ≥ 0.1 (hashed bars, BH FDR correction). Datasets are ordered by number of
compounds mapping to KEGG pathways. Figure from [43].

The second input is the list of differentially abundant metabolites. The chosen

threshold is a major parameter in defining this list and can have a large impact on

results, since any metabolites under the threshold are not taken into account for

enrichment. When increasing the threshold, the metabolite list increases in size

leading to more significantly enriched pathways up to a certain point, eventually

reaching the entire background set list, resulting in zero significantly enriched
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pathways (shown in Figure 47).

Figure 47: The effect of the number of DA metabolites in the list of metabolites of interest on the
number of significant pathways (p ≤ 0.1) in the Labbé et al. dataset. Results corresponding
to Bonferroni thresholds are denoted by red markers while those corresponding to BH FDR
thresholds are denoted by black markers. Marker shape (circle, cross, or triangle) represents the
adjusted p-value threshold for DA metabolite selection (0.005, 0.05, and 0.1 respectively). Figure
from [43].

Another major input in ORA is the pathway database used to define

pathways of the metabolic profile. Pathway sets can vary in size and nature

between databases. KEGG, Reactome and HumanCyc were tested and the

enriched pathways were compared between each test, resulting in a low

concordance of pathway names for the significantly enriched pathways. The

overlap of metabolites between the significant pathways was also low, as

quantified by an overlap coefficient.

Finally, variations on these inputs, simulating experimental issues, were

tested, such as the effect of metabolite misidentification, as well as chemical

biases induced by the experimental setup. This resulted in certain significant
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pathways which were enriched due to misidentified metabolites, as well as

loss of previously significant pathways. The chemical bias analysis revealed

that certain areas of metabolism cannot be accessed due to the differences in

experimental setups.

This work concludes by providing the community with guidelines to avoid

the misuse of pathway enrichment methods for metabolomics data analysis, as

well as the information that should be reported when performing any type of

pathway enrichment analysis. The recommended guidelines are the following:

• Use a realistic background set specific to the experimental setup, usually

the entire set of identified metabolites.

• Use an organism-specific pathway set if available, and perform enrichment

multiple times with different pathway set databases to perform a consensus

enrichment.

• Use multiple testing correction for differential metabolite selection as well

as significantly enriched pathways if possible.

This work contributes greatly to our understanding of these methods that

were originally developed for gene expression data, but are now used without

hesitation on other, less adapted types of data. The missing information to push

this benchmark to the fullest is knowing the metabolic disruption causing the

metabolic profile. To gain better insight on the mechanics of metabolism and how

they are revealed using pathway enrichment methods, the underlying disruption

must be known, which will enable the identification of true positive enrichments.

This is explored in the following section.
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3 Benchmarking pathway enrichment methods

using simulated data

In order to fully benchmark pathway analysis methods in metabolomics,

the ”true positive” state must be known. Indeed, we need to be able to match

the enriched pathways with the pathways that were actually disrupted in the

condition. The main problem is that this sort of experimental dataset does not

exist for humans. By forcing the disruption ourselves using simulations, we can

know exactly where the metabolic disruption occurred.

The goal here was to benchmark pathway enrichment methods using SAMBA

to create metabolic disruptions in known pathways, attempt to obtain these

pathways as enriched (Figure 48), and perhaps show the flaws in pathway

enrichment methods when applied to metabolic data. The work in this section

is still in its preliminary stages but serves as a first exploratory step into testing

these methods.

Figure 48: Benchmarking pathway enrichment methods using simulated data. Affected reactions
and pathways in the network are in the blue columns. Simulated metabolite fluctuations are in
purple, and enriched pathways using these simulated metabolites are in green.

By affecting a reaction in a given pathway (blue columns) in a metabolic

network followed by predicting a metabolic profile for that disruption (purple

columns), we can expect to obtain the disrupted pathway in the top most

enriched pathways using traditional pathway enrichment methods (green

columns).

Additionally, by using predicted metabolic profiles, the exact background set
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for enrichment approaches is known: the entire list of predictable metabolites.

The pathway sets are those used in the metabolic model which means there is no

information loss due to identifier mapping.

In this section, SAMBA was run on Human1 by blocking all of the reactions

in each pathway independently, and predicting the metabolic profile for each

blocked pathway condition. This creates a disruption condition of an entirely

blocked pathway for each pathway in the network, only if this blocking this

pathway does not stop growth. If the entire pathway KO renders the model

non-viable, the flux simulations cannot take place and therefore a metabolic

profile cannot be predicted for that condition.

3.1 ORA and MSEA enrichments

3.1.1 Preliminary enrichment

ORA and MSEA were run using the metabolic profiles predicted for each total

pathway knockout. For ORA, metabolites were filtered by calculating a p-value

from the z-scores and keeping those strictly below 0.05. The input for MSEA

was created by ranking all metabolites by their z-score. Figure 49 and Figure 50

show the average confusion matrices for ORA and MSEA with true positives

(TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs). They

are calculated by taking the average of all predictions across all conditions. If a

pathway KO produces a metabolic profile that then enriches that same pathway

significantly using ORA or MSEA, it is counted as a true positive hit. A false

positive pathway is a pathway that is significantly enriched despite it not being

knocked-out in the flux simulation. A false negative corresponds to not finding

the knocked-out pathway as significantly enriched.
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Figure 49: Average confusion matrix for ORA.

Figure 50: Average confusion matrix for MSEA.

Confusion matrices are generally good indicators of prediction performances

for methods like this. In this case, they show the balance between sensitivity

(capturing as many TPs as possible) at the expense of specificity (higher FN rate).
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Despite the high number of FNs, in both cases, the matrices show that when a

positive is predicted, it is very unlikely to be wrong, even if we are not able to

capture all positives (37% and 66% of missed positives). The differences between

the ORA and MSEA predictions are explored in Section 3.1.3.

The high number of FNs, corresponding to pathways that were not

significantly enriched despite them being knocked out in the model, is intriguing

as it could reveal the issues with pathway enrichment methods for metabolomics

data, especially with enrichments possibly being unrelated to the original

perturbation. This can confirm the initial motivation behind this work: by using

metabolites as input for pathway enrichment, if these metabolites are indirectly

linked to the disrupted pathway, the enrichment may return incorrect results.

3.1.2 False positive example

In order to investigate the reasons behind false positive hits, an example is

detailed below. The pathway that was entirely knocked-out in the network for

the MUT condition is Acylglycerides metabolism. This produced a metabolic

profile of extracellular metabolites, which was then filtered by keeping the top

25% of z-scores. The list of significantly changed metabolites was then used in

ORA and resulted in the following significantly enriched pathways, shown in

Table 8. The knocked out pathway is shown in red, while other false positives are

shown in blue.

ID Hits Coverage P-value P-adjust
Acylglycerides metabolism 5/18 18/19 6.19E-08 1.11E-06
Glycerophospholipid
metabolism

4/51 51/55 0.000335 0.002012

Glycerolipid metabolism 3/25 25/27 0.000628 0.002828
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis

2/14 14/14 0.004287 0.015433

Prostaglandin biosynthesis 2/41 41/41 0.034645 0.102045

Table 8: Significantly enriched pathways after running ORA on the simulated metabolic profile
predicted with SAMBA using the total pathway knockout of Acyglycerides Metabolism. The true
positive result is shown in red, and false postives are shown in blue.
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In this case, the knocked-out pathway is enriched significantly and is even the

most enriched when comparing hit ratios ( 5
18

= 0.28 vs 4
51

= 0.08), and is therefore

considered as a true positive hit. The four other pathways are considered as false

positives as they were not affected in the MUT state of the flux simulation, but

these extra pathways could also be new information indicating the effects of the

original pathway KO.

The following Figure 51 shows a network view of the pathways listed in

Table 8. The pathway highlighted in red (edges) is Acyglycerides metabolism.

Other pathways from the table are shown in varying colours. Because the

metabolic profile consists of extracellular metabolites, in order to map them

onto the network which in this case consists of internal pathways, they must

be converted into their corresponding intracellular versions. For instance,

an extracellular metabolite M e may also exist in the cytoplasm and the

mitochondria, which means we can map the M c and M m versions of the

metabolite onto the network. The metabolites shown in red are all of the

compartment variations of the significantly enriched metabolites for this

condition.
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Figure 51: Network view of the blocked pathway, the simulated metabolic profile, and other
significantly enriched pathways. The acyglycerides metabolism pathway is shown in red. The
other significantly enriched pathways (false positives) are shown in other colours. The metabolic
profile used to enrich these pathways is shown as red circles.

The network view shows that metabolites not directly within the knocked-out

pathway are affected despite the distance between them. This causes other

pathways to be enriched which may or may not be relevant to the KO condition.

3.1.3 Using absolute z-score values

In the previous section, MSEA had a lower true positive rate than ORA which

can be surprising. In order to understand this difference, the use of absolute

values of z-scores instead of raw z-scores was investigated. However, one must

note that by using absolute values, the directionality of the z-scores is lost. The

highest ranked absolute z-scores represent the most deregulated metabolites,
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regardless of their increase or decrease. Consequently, the MSEA NES must

be interpreted differently: the NES in this case will signify strong to weak

enrichment, as opposed to a directional overall pathway increase or decrease.

Figure 52 shows a standard MSEA plot of an enriched pathway. Due to the

bidirectionality of z-scores (as shown in Figure 53), significant metabolites are

spread between the extremely high ranks (red) and extremely low ranks (blue).

Figure 52: Example MSEA plot.
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Figure 53: Example z-score distribution of a simulated metabolic profile.

By converting the z-scores to absolute values of the z-scores, the following

distribution can be observed in Figure 54.

Figure 54: Example z-score distribution of a simulated metabolic profile using absolute values.

The average MSEA confusion matrix when using the absolute values of

z-scores to rank the input metabolites is shown in Figure 55. The true positive

rate increased from 0.341 to 0.635 when using absolute z-score values instead of

raw z-scores.
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Figure 55: Average confusion matrix for MSEA when using z-score absolute values to rank the
MSEA input list.

Normally, MSEA is able to take into account directionality when calculating

enrichment for a list of ranked entities ranging from negative to positive scores. In

this case, grouping the most differentially abundant metabolites together results

in better predictions regardless of the directionality of change. This is visible in

Figure 56 where most of the significant metabolites are shown on the left of the

plot (and are highly ranked), increasing the NES drastically.

This difference could be explained by the fact that an increase in metabolite

exports does not mean the corresponding pathway is necessarily upregulated.

As a hypothetical example, in ”Alanine, aspartate and glutamate metabolism”,

alanine could be increased while aspartate is decreased, leading to a split

enrichment which is ignored when only using the fact that both alanine and

aspartate are significantly differentially abundant, regardless of direction. This

is in contrast with gene enrichment where often sets of genes are upregulated

together, leading to a general pathway upregulation.
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Figure 56: MSEA plot using absolute z-score values as input.

3.2 Distance analyses using graphs

The hypothesis for the following section is that a metabolite that is highly

ranked using SAMBA on an entire pathway knockout is close in network

distance to that pathway. For this, I computed shortest paths between the

metabolites involved in the knocked-out pathway and the most differential

metabolites (ranked by absolute value of z-scores), for each pathway simulation.

The distance is measured in the number of metabolites it takes to get from the

KO’d pathway metabolites to the extracellular metabolites, using the shortest

paths in the undirected network. Figure 57 and Figure 58 show two examples

of heatmaps representing these distances, using the top 50 most changed

metabolites (rows) for each pathway KO metabolites (columns).
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Figure 57: Distances from the top 50 most changed metabolites to each of the metabolites in
the KO’d pathway Acylglycerides metabolism. Ranks are shown from beige to dark purple (left
column). Distance is shown on the yellow to dark blue-green scale (black is infinite distance, i.e.
no path). The distance is measured in the number of metabolites it takes to get from the KO’d
pathway metabolites to the extracellular metabolites, using the shortest paths in the undirected
network.

162



3. Benchmarking pathway enrichment methods using simulated data

Figure 58: Distances from the top 50 most changed metabolites to each of the metabolites in the
KO’d pathway Galactose metabolism. Ranks are shown from beige to dark purple (left column).
Distance is shown on the yellow to dark blue-green scale (black is infinite distance, i.e. no path).
The distance is measured in the number of metabolites it takes to get from the KO’d pathway
metabolites to the extracellular metabolites, using the shortest paths in the undirected network.

The hypothesis for these analyses is that the further down the ranked list

we go, the greater the distance to the knocked-out pathway metabolites. This

trend is somewhat visible on some heatmaps (Figure 58, left cluster of Figure 57)

but was not generalisable to all pathway KOs. Some distances are at 0 because

the top ranked metabolite is the metabolite from the pathway. For example, the

third best ranked metabolite (3rd row) in Figure 57 is at distance 0 of the first
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pathway metabolite (1st column) because it is MAM01570e, and is therefore

in the pathway. Figure 59 shows a subset of Figure 57 with only the rows

(ranked metabolites) that are involved directly in the Acylglycerides metabolism

pathway.

Figure 59: Subset of Figure 57. Distances from the 5 metabolites involved directly in
Acylglycerides metabolism to each of the metabolites in the KO’d pathway Acylglycerides
metabolism. Ranks are shown from beige to dark purple (left column). Distance is shown on the
yellow to dark blue-green scale (black is infinite distance, i.e. no path). The distance is measured
in the number of metabolites it takes to get from the KO’d pathway metabolites to the extracellular
metabolites, using the shortest paths in the undirected network.

4 Conclusion

To conclude on this chapter, pathway enrichment analyses appear to be

less adapted to metabolomics data due to experimental factors as well as the

fundamental nature of how metabolites themselves are linked biologically.

When there is a metabolic perturbation, the disrupted metabolites can quickly

be far in terms of number of reactions from the origin point. The work on

benchmarking using real data displayed the limits of pathway enrichment for
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metabolomics data. The results shown using simulated data with pathway

enrichment investigated the question of distance between the disruption site

and circulating metabolites, a step towards quantifying the risk of errors when

employing this method.

The next steps to push this further are to link the graph-based distances

back to the enrichement results, for example by using the lead metabolites

list that MSEA provides to see if they correspond to the closest metabolites

to the disruption or not. The graph and metabolic network can also be used

be used to our advantage to provide visual information on where these lead

metabolites are located in relation to predicted metabolites and the disruption.

More perturbation scenarios can also be tested, with different combinations of

pathway knockouts, as well as flux reduction instead of knockouts. This work is

the first step to creating a simulated benchmark for future development of new

metabolomics-centric pathway enrichment methods.
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Chapter V

Discussion, conclusion and

perspectives

1 Discussion

The results presented in this thesis show that by using metabolism-simulating

methods like SAMBA, entire metabolic profiles can be predicted. For instance,

for the SCD case study, the metabolites reported as associated with the SNP

were highly ranked, especially when considering the total number of exchange

metabolites in the whole human network. By adding information from the non

observed but highly ranked predictions, we were able to extend the experimental

metabolic profile to include new potential metabolites of interest for future

studies.

1.1 Technical limitations and scoring discussion

We demonstrated that sampling can add a layer of information to better

improve metabolic profiling compared to FVA. Sampling provides a finer

grained description of changes which helps order metabolites based on their

likelihood to be affected by a perturbation. Compared with FVA, sampling is

more computationally intensive (CPU and memory) but recent strategies are
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reducing this computational burden [156, 157, 158]. Nevertheless, sampling is

currently more than feasible on large networks such as Human1.

The samples ACHR-based samplers generate are not guaranteed to converge

to a uniform distribution due to the dependence of each sample on the previous

sample. This means that the number of samples one must define is a major

contributor to how converged the resulting samples are. When exploring a large

solution space, many more samples are required to ensure we get as close to

independence and convergence as possible. This can be improved using the

thinning parameter T, which increases the total number of sampled values. The

resulting number of samples is the same, but each final sample is distanced by

T in the chain of samples, while the rest are discarded. This therefore requires

Ns * T total samples calculated throughout the sampling process to result in Ns

samples, which can inflate sampling run durations.

The FVA method used in previous work [128] to compare intervals calculates

the greatest change between the two pairs of upper bounds and the two pairs of

lower bounds. This comparison of boundary shifts is not always representative

of the underlying changes and can mislead the interpretation of the intensity of

these changes. Using other methods such as comparing the means of boundaries

assumes a uniform flux distribution within these bounds, which we have shown

via sampling is rarely the case. Using the most frequent fluxes with sampling

appears to be a good approximation of the mix of metabolite exports that occurs

in biofluids, but it should be noted that the most frequent flux value may not be

the most frequently observed flux in reality. However, in some cases, the most

frequently predicted flux value may not represent the biological reality of a cell,

such as for cells in extreme conditions or fast-growing cancerous cells, for which

fluxes might be more close to the extremes. To represent these extreme conditions

in SAMBA, the initial parameters of the model could be adjusted (higher minimal

production of biomass) to force the model to operate within extreme (boundary)

optimums as opposed to more likely fluxes.
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The boundary shifts evaluated by FVA are very sensitive to change, since a

very low threshold (1e−6 tolerance and 0.01 factor) for change is used to report

an increase or a decrease. Despite this, FVA is able to predict biomarkers, as

shown in previous studies [128, 83], when aiming to predict specific biomarkers.

We progressed from the calculation of a score to the ranking of these scores

since ranking the change intensities via sampling means that the most changed

metabolites can be highlighted, while still keeping information on the other

subtle metabolite changes. Contrary to the binary change/no change method of

reporting FVA results, sampling ranks provide information on a wider scale by

taking into account relative changes between metabolites.

Z-scores prove to be useful in that they reflect an intensity of change

similar to fold changes, and are weighted by the standard deviation of the

distributions, which helps the z-scores to remain flexible given the variable

nature of these distributions. Initially, instead of using a z-score to compare

sampling distributions, more widely used statistical metrics were tested, such as

Kullback-Leibler Divergence, Kolmogorov-Smirnov, and Wasserstein. However,

they did not prove to be informative in our use case since they lead to p-values

being too sensitive, resulting in extremely significant p-values for very similar

distributions. In addition to this, these tests provide scoring metrics which are

unable to quantify or describe the differences in the way a z-score can. Z-scores

efficiently capture both the intensity and extent of variation of flux distributions

between conditions. Additionally, we assessed various other metrics in order to

decipher their ability to capture relevant metabolite rankings (Figures 12 and 13).

The comparison of probability distributions is not a problem specific to

random sampling: distributions are used in different fields such as statistics.

The simplest way to compare two distributions is to calculate the mean or

median of each distribution and compare those. This however follows the

assumption that the distributions are normally distributed, which in general is

not always the case. There are more complicated statistical metrics designed
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to capture the amount of effort required to transform one distribution into

another like Wasserstein, also known as the earth mover’s distance. Others

calculate the statistical significance of a distance between two distributions, such

as Kullback-Leibler. However, they do not prove to be informative in the case

of quantifying the difference between two flux distributions since they lead to

p-values being too sensitive, resulting in extremely significant p-values for very

similar distributions. In addition to this, these tests do provide scoring metrics,

but they are unable to quantify or describe the differences with the goal of

detecting flux shifts and change directions.

1.2 Challenges in assessing quality of predictions

Although SAMBA is a predictive method, evaluating the predictions using

traditional contingency tables, recall and precision is difficult due to the

nature of metabolomics measurements and the available “truth” datasets. The

model contains all known metabolites involved in metabolic reactions, but

metabolomics methods are not able to detect and annotate all of them. In fact,

as it was shown in Frainay et al. [31], metabolites may be overlooked during the

whole metabolomics pipeline. This can be for instance due to pre-processing

steps since most peak picking methods [159] will define an intensity threshold

to keep only intense peaks and, as a consequence, may discard peaks of interest

that fall just below the threshold. This results in many cases where metabolites

are predicted to be of interest while they are not detected by typical assays. In

these cases, the predictions could be correct while being considered as a “false

positive”. Instead of using “false positive” to represent these predictions, we

simply present the entire ranked prediction results in order to orient the user

towards certain metabolites or metabolite classes. We then evaluate the method

using true positive ranks and the list of the top most changed metabolites, some

of which could be considered false positives, but could also be unmeasured
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metabolites. An additional method of evaluating the statistical validity of the

results is by running a hypergeometric test, to test the significance of obtaining

the number of correct predictions, for different rank cut-offs. This is shown in

Figure 30 and highlights that the number of experimental metabolites predicted

in the top ranks is significant.

Conversely, metabolites in the original experimental results but not predicted

as highly ranked by SAMBA could be due to inconsistencies in the model,

whether they are due to errors or unknowns, or an incorrectly simulated

metabolic condition. Additionally, extra care should be taken when analysing

low-ranking metabolites as their z-scores are very similar to each other. This

means that their specific order does not indicate much information about the

extent of how they were affected by the perturbation, only that they were affected

very little.

SAMBA is based on ranking z-score absolute values, meaning that the

metabolites whose exchange fluxes (and by extension concentrations) are more

likely to change will be considered first. There are of course metabolites whose

concentrations can change very little and have extreme consequences on the

rest of the metabolism, such as via enzyme regulation, or if they are limiting

substrates for example.

Finally, this ranking system bypasses the issues that come with using flux

values directly, and especially helps in choosing which metabolites to focus on

first. The comparison of metabolic profile recommendations between different

scenario simulations can be achieved by considering the top most changed

metabolites and their ranks, as opposed to the raw flux values.

1.3 Current limits in metabolic modelling

Metabolic genes linked to reactions through GPR relationships are a

simplification of the intricate system of gene expression. Reaction and enzyme
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activities are simulated as a binary system, either on or off, depending on the

validity of the GPR. In order to simulate a gene knockout, the gene rule needs

to be invalidated, after which the reaction will not be active. There are of course

more complex enzymatic variations which involve a reduction in enzyme activity

or even an overexpression of an enzyme, which are more difficult to simulate.

Instead of going through the GPR relationship to “turn off” an enzyme, the

reaction’s bounds can be directly modified to reduce or increase the maximum

flux for example. The difficulty comes from the fact that a certain “reduction”

value must be chosen, as well as deciding how to define this reduction, since an

interval can be changed in multiple ways. For example, a 50% reduction could

imply that the maximum reaction bound is divided by two, but it could also

mean that both of the bound values are reduced by 25% towards the halfway

point.

A major point to take into account when considering the use of metabolomics

data is whether the metabolites can easily be mapped to databases using unique

identifiers. This manual curation step is not absent even when using simulations

to generate metabolic profiles: most GSMNs have some identifiers for genes,

reactions and metabolites, but they are not always homogeneous across all

entities, and can sometimes contain errors. When mapping genetic perturbations

to the network, manual checks must be done to ensure that the final enzymatic

disruption corresponds to the actual effect of the genetic mutation, due to

the GPRs linking genes and reactions. Furthermore, once metabolic changes

have been simulated, extracting information by mapping to external biological

knowledge can be difficult due to inconsistent metabolite names and identifiers,

once again often requiring a manual step to check the correspondence. This

issue also renders validation and integration with experimental data slow and

non-automatic. More broadly, this corresponds to the interoperability challenge

of the FAIR (Findable, Accessible, Interoperable and Re-usable) policy in open

science [160]. There is hence a need both for modelling and metabolomics
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scientists to define strategies to facilitate the integration of metabolites in

GSMN. This work could rely on ontologies to provide the necessary flexibility in

metabolite and lipid mapping as proposed in [161].

Furthermore, there are of course many other non-metabolic genes which

could still play a role in metabolism and metabolic regulation. These other genes

are not always included in metabolic networks since their mechanisms are not

always known, or they may not be seen as relevant to metabolism. Additionally,

metabolites are known to regulate enzymes via different mechanisms such

as competitive inhibition, allosteric inhibition, and allosteric activation. These

feedback loops depend on the presence and concentration of different metabolites

in cellular compartments, which cannot be estimated using traditional CBM

methods due to the steady-state assumption. There have been efforts towards

integrating regulatory networks with GSMNs, often limited to bacteria due to

the smaller scale [162, 163, 164].

The measurement of pure standards of metabolites is essential to obtain

the highest level of confidence in metabolite identification (level 1 according to

Metabolomics Standard Initiative [33]). Selecting which standards to measure is

by itself a challenge, since samples can contain thousands of metabolites. Hence,

SAMBA can be used by laboratories to select which standards to acquire in the

context of the disease under study. More broadly, the top ranked list can also be

used to identify families of metabolites to study as a whole, such as by extending

the panel of measurable metabolites during a metabolomics experiment.

The goal of this thesis was to simulate whole-body metabolic markers using

a generic genome-scale model. From a physiological point of view these models

may seem to be somewhat over simplified in that a single metabolic system

is represented. However the examples used in this study are genetic diseases,

therefore they affect the genome of all of the cells in the body. While gene

expression can depend on organs and tissue regions, the hypothesis here is

that experimentally observed metabolic profiles are a combination of metabolite

172



2. Conclusion

exports from all tissues connected to biofluids, which is why they can be equated

to metabolic profiles predicted using a genome-scale network. However, the

modulation of a tissue-specific biomarker may be predicted incorrectly if it is

normally (biologically) compensated by other tissues, which could result in false

positives. In those cases, tissue-specific networks could be useful for analysing

diseases that are known to affect a certain tissue, such as the liver with glycogen

storage diseases. These diseases are a collection of genetic metabolic disorders,

and the enzymes affected by the mutations are specific to the liver and muscle

[165]. By using transcriptomics data to create a liver-specific model, the accuracy

of metabolic simulations could be increased. This can be done using various

integration methods such as iMAT [166] or DEXOM [107]. However, choosing

any given model and tissue-specific conditions must be done with care as it

will have a major impact on the resulting metabolite ranks. More broadly, the

definition of constraints is key to adapting the model to the biological condition

(e.g. availability of nutrients) and will impact predictions. These modelling steps

can be performed upstream of SAMBA.

The sheer quantity of results leads to a growing need for large-scale analysis

methods of metabolomics results, and this is no different for simulated metabolic

profiles. The analysis of pathway enrichment methods, whether applied to

experimental or simulated data, is essential to knowing if the correct information

is being extracted from this data.

2 Conclusion

Building upon constraint based modelling of metabolism through the use of

random sampling of fluxes, we were able to predict large potential metabolic

profiles and confirm measured metabolites both in targeted and untargeted

assays. Ranking all metabolites becomes possible through the methodology’s

comparison of flux distributions between healthy and disease states. Metabolites
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revealed by this method are of potential interest to broaden the panel of targets

for future metabolomics experiments, and can be identified as understudied

metabolites, helping to develop our understanding of metabolic mechanisms.

Furthermore, the rank of a given metabolite can be compared between two

different disruption scenarios, which provides information on the specificity of

the disrupted metabolite to the scenario.

Although the methodology is designed to be used to predict external

metabolite exchange fluxes, it can also be used to simulate the internal reaction

fluxes, which can be useful for understanding internal metabolism along with

external metabolites. Finally, simulated metabolic profiles can also be used to

benchmark various analyses specific to metabolomics, such as pathway analysis,

or other analyses which require lots of data like machine learning.

3 Perspectives

3.1 Aiding in a metabolomics workflow

Ideally, SAMBA will be used in conjunction with real metabolomics

workflows and will be useful at multiple levels. First, many SAMBA simulations

could be run for many different conditions pseudo-randomly, which could help

identify potential avenues of interest if no particular area is favoured initially.

Next, predicted metabolic profiles could help in choosing the sample for an

experiment. Several tissue-specific models could be created and subjected to the

same metabolic perturbation. SAMBA could then predict metabolic profiles for

each model which could then be compared to an experimental plasma sample

in order to determine the tissue which matches the most. This tissue could be

chosen as the optimal sample type for future experiments. When designing

an experiment, if the metabolic perturbation is known or somewhat described,

SAMBA can predict potential metabolites to target, or a class of metabolites to
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optimise the metabolomics setup for before even doing any experiments, saving

time, reducing costs, and providing a less biased approach to both targeted and

untargeted setups. This could provide suspected metabolites of interest for a

given condition with more ”weight”, leading to experiments which may not

have taken place otherwise. Metabolite identification could also benefit from

SAMBA predictions: if extra metabolites are expected to be in the sample or to

be significantly abundant, they could be identified where they previously would

be overlooked. SAMBA predictions in parallel to an experimental setup can also

help extend the global metabolic profile, improving enrichment methods and

interpretation.

3.2 Predicting the toxicological effect of nitrous oxide

A possible application of SAMBA is the prediction of metabolite deregulations

in response to toxicological effects. Toxicology is the study of the adverse effects

of external substances on biological organisms, as well as the diagnosis and

treatment of their exposure. As a concrete example, one could investigate

nitrous oxide (laughing gas, N2O), which is a chemical compound with medical

uses in anaesthesia and pain reduction, as well as uses in fuel propellant and

whipped cream. Since the 18th century, it has been used as a recreational drug,

inducing a euphoric state, hallucinations and relaxation when inhaled [167].

The toxicity of nitrous oxide has been demonstrated to decrease methionine

synthase’s (MS) enzymatic activity in rats [168]. In humans, use of this drug

leads to similar symptoms to those seen in vitamin B12 deficiency, resulting in

a modified form of vitamin B12 which is unable to bind with the MS enzyme,

inactivating it. Following this, individuals who use nitrous oxide take vitamin

B12 to combat the neurological effects of this drug. This masks the biomarker

MMA (methylmalonic acid), whose plasmatic increase in concentration is

traditionally used for the diagnosis of various vitamin B12 deficiencies. This
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biomarker is also used to diagnose nitrous oxide intoxication, but is unable to be

used as a biomarker when the patient has been automedicating with vitamin B12

supplements [169]. Figure 60 shows these known and possible effects in red.

Figure 60: Known and possible impacts of nitrous oxide on its enzymatic targets and associated
biological modifications. Figure from [169].

The reduction in MS enzyme activity could be simulated in a human model in

order to reveal its effect in humans on multiple fronts (shown as red arrows and

question marks in Figure 60).

• First, regarding the use of MMA as a biomarker for this condition: we could

demonstrate that its increase is masked when the network is also supplied

with vitamin B12.

• Second, we could demonstrate that MMA is not a biomarker specific

to nitrous oxide intoxication, as suggested in [169], by simulating other

conditions that lead to an increase in MMA.

• Third, plasmatic homocysteine has been shown to increase during nitrous

oxide intoxication even when supplemented with vitamin B12 [170]. This

could be simulated in order to demonstrate its potential use as a biomarker

for suspected nitrous oxide intoxication.
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• Fourth, MMA-CoA-mutase, a mitochondrial enzyme which uses

MMA-CoA, is often said to be affected by the nitrous oxide-induced

vitamin B12 modification, but this direct link has not been demonstrated,

and it has even been shown to be unaffected in rats [171]. The fluxes of this

enzyme could be simulated in humans in the previously described model.

3.3 Beyond single knockout scenarios

Furthermore, including the SAMBA approach in whole-body metabolic

models [111] which combines the interactions of multiple human tissues

is a potential path for future study. Since sampling algorithms are being

continuously improved and iterated upon, and more CPU power is being added

to computational clusters, running sampling on these larger models will become

less of an issue. These models, with their different gene and reaction expressions

per tissue, could reveal the different effects of genetic diseases or other metabolic

disruptions on biofluid metabolites on a multi-tissular level.

In order to continue to highlight the full benefits of using sampling

distributions instead of FVA boundary values, further research for other

applications and more validation data are required. For instance, in vivo

fluxomics data [172] measured experimentally could be matched to simulated

import/export rates. Other sampling algorithms for GSMNs exist and could also

improve predictions if applied correctly, and there is much more to explore when

it comes to improving the scoring metric for sampling-based metabolic changes.

Instead of sampling the exchange reactions, internal fluxes could also be

investigated in relation to both enrichment methods and metabolic profile

predictions. This could provide insight into how other reactions and pathways

are disrupted in any given specific metabolic condition and help describe the

effects across the entire network.

Finally, while SAMBA was applied to KO scenarios in this paper, the method
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can be adapted to more complex constraints such as multiple gene KOs or

even to simulate knock downs of reactions. Knock downs involve reducing

the maximum flux capacity of affected reactions instead of blocking the flux

completely and can be run directly using SAMBA by changing the input

condition file (see Figure 26 for details). This can be particularly useful in

the context of toxicology or drug development, where these subtle metabolic

disruptions can lead to reduced enzyme activity. There are many potential

applications for SAMBA recommendations, such as in predicting the effects of

xenobiotics on human metabolism. In this thesis, the focus was on simulating

genetic diseases as the metabolic disruptions are simple to translate into the

metabolic model, but the next challenge will be converting more complex

metabolic perturbations into explicit reaction modulations. Effects like toxic

environmental exposure can be simulated once the mechanism is narrowed

down, while the effect of diet could be modelled by varying the input nutrients

via the exchange reactions of the network.

3.4 Generating databases of simulated metabolic profiles

From a more long-term point of view, the next steps for the use of the

SAMBA pipeline involve benefitting from the advantages of simulated data,

by generating many scenarios and many corresponding metabolic profiles.

These large quantities of associated known metabolic perturbations and lists of

metabolites can be used in multiple ways.

The first goal is to make use of knowing where the metabolic perturbation

lies in order to benchmark pathway enrichment methods, continuing the

collaborative work from Chapter IV. This will consist of generating more

scenarios of metabolic disruptions and developing ways to push the analysis

of pathway enrichment methods further, through statistical, analytical and

graph-based techniques. Once the biases involved with pathway enrichment
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methods for metabolomics data are fully known, the community can

become more aware via precautions and extra guidelines, and perhaps more

metabolomics-appropriate methods will be developed.

Furthermore, another approach to using SAMBA’s generative power to its

fullest is by creating a simulated database of every unique KO, KD, multiple KOs,

and combinations of many different disruptions, and compiling it as a repository

for comparison with real data. This could be used in conjunction with biological

data to determine which metabolic perturbations are most likely to cause the

condition tested by the experiment, by matching the experimental profile with

the simulated metabolic profile.

An in depth example of how this could by applied to a biological scenario

is the field of toxicology. As we become increasingly exposed to a multitude

of chemical substances, it is essential to comprehend the potential toxicological

consequences on human health and the environment. By entering the body, these

molecules can disrupt gene expression, cell functions, metabolism and hormone

regulation systems. A class of compounds called endocrine disrupting chemicals

are known to affect both metabolism and interfere with hormones (endocrine

system), and are suspected to cause increased risk of obesity [173], diabetes

[174], diminished immune systems [175], cancer [176], with more potential

understudied effects [177, 178].

Traditional toxicological studies rely on the assessment of individual

chemicals and their effects on specific organs or systems. By applying

metabolomics to toxicology, a new way of comprehensively investigating

the perturbations induced by toxic compounds is available at the molecular level

[179]. By monitoring changes in many metabolite levels at once, metabolomics

presents an opportunity to understand intricate cellular interactions and the

molecular mechanisms underlying toxicity responses [180]. The main issue is

that these metabolic and molecular mechanisms are poorly described as they are

difficult to reproduce in laboratory conditions and, for obvious ethical reasons,
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no intervention studies can be performed on humans to assess the toxicological

impacts of chemicals. This is often due to the long-term exposure required to see

physiological effects on an individual, tissue or sample, as well as the complex

interconnected processes involving multiple tissues or systems (hormonal and

metabolic for example).

Using a simulated database could help pinpoint the modes of action of

xenobiotics (compounds extrinsic to an organism) involving metabolism. By

mapping experimental metabolic profiles obtained from an exposed sample to

predicted profiles using random sampling in a metabolic network, the affected

area(s) can be highlighted since the metabolic perturbation is known when

simulating a metabolic profile. The most probable areas of metabolism to have

caused the metabolic profile can therefore be identified, providing potential

targets of interest for future experiments and analysis.
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[156] Hulda S Haraldsdóttir et al. “CHRR: coordinate hit-and-run with

rounding for uniform sampling of constraint-based models”. In:

Bioinformatics 33.11 (June 2017), pp. 1741–1743. ISSN: 1367-4803. DOI:

10.1093/bioinformatics/btx052. URL: https://doi.org/10.1093/

bioinformatics/btx052 (Cited on page 167).

208

https://doi.org/10.1152/ajpendo.90897.2008
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711665/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711665/
https://doi.org/10.3390/molecules20022425
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272531/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272531/
https://doi.org/10.1038/s41598-017-15231-w
https://www.nature.com/articles/s41598-017-15231-w
https://www.nature.com/articles/s41598-017-15231-w
https://doi.org/10.3390/ijms23031014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835581/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835581/
https://doi.org/10.1016/j.synbio.2017.11.002
https://www.sciencedirect.com/science/article/pii/S2405805X17300820
https://www.sciencedirect.com/science/article/pii/S2405805X17300820
https://doi.org/10.1093/bioinformatics/btx052
https://doi.org/10.1093/bioinformatics/btx052
https://doi.org/10.1093/bioinformatics/btx052


Bibliography

[157] Johann F. Jadebeck, Wolfgang Wiechert, and Katharina Nöh. CHRRT:
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