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Abstract

Multimode quantum light �elds have emerged as a promising tool for the generation
of multipartite entangled states, known as cluster states, and the advancement of
continuous-variable (CV)-based quantum information technologies. In our approach, the
nodes of the entangled network represent individual temporal/frequency modes of the
electromagnetic �eld, while the links are tailored entanglement correlations. In this thesis
we demonstrate the generation of multimode squeezed states that are multiplexed both in
the temporal and in the spectral domain. Our setup is based on a train of ultrashort pulses
that drive a spontaneous parametric down conversion process in a non-linear periodically
poled KTP waveguide. Here, we produced the largest number of spectral modes of squeezed
vacuum measured via homodyne detection in a single-pass con�guration. Moreover,
we performed pulse-resolved (pulse-by-pulse) squeezing measurements, con�rming the
existence of the multimode spectral structure at a single pulse level; this paves the
way for generating entangled structures at the repetition rate of the laser. While
temporal multiplexing has already enabled the generation of the largest CV cluster states,
multimode squeezing in the spectral modes of a femtosecond source provides complete
recon�gurability of the entanglement network. In addition to the generation of multiplexed
entangled networks, this thesis explores other types of quantum information processing
applications for multimode squeezed light. The high number of pulsed modes allows us
to implement quantum walks on a graph for search purposes, analogously to the Grover
algorithm. Multimode squeezed light has also been exploited in this work to investigate
the �eld of quantum simulations, and in particular to observe the emergence of quantum
synchronization e�ects.
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Introduction

Since the dawn of history, people worldwide have celebrated light as the source of life on
Earth, associating it to prosperity, creation, knowledge. The Sun has been one of the major
deities in many of the pantheons of ancient religions: the Greek god Helios, that rode his
chariot though the sky to bring the day, whose �gure was sculpted into one of the seven
wonders of the ancient world; the Egyptian Ra, the earliest god to have emerged from the
primordial waters and creator of all forms of life; and the god Tonatiuh, that ruled the world
and all living beings, and in the name of whom the Aztecs made sacri�ces in order to
ensure his daily voyage from the east to the west, securing the continuation of daylight.
In the Jewish and Christian Bible, “Let there be light” is one of the �rst acts of creation, to
illuminate the darkness of a “formless and empty earth”. Over time, the association of light
with goodness and darkness, the absence of light, with evil has endured: in popular culture,
we are all aware that the “dark side of the Force” is the bad side.

While the symbolic and spiritual exploration of light has persisted since prehistory, the
scienti�c investigation of light began around 2500 years ago in ancient Greece, in strict
connection with the study of visual perception. Euclid’s Optics, in which he delineates
the geometry of “visual rays”, emitted from the eyes and traveling in straight lines, is the
ancestor of the modern ray optics model. Throughout the centuries, countless philosophers
and scientists have tried to unravel the mysteries of the properties of light through various
theories and experiments. More than a millennium after Euclide’s Optics, Ibn al-Haytham
Optics, where we discover that vision is the result of light interacting with objects and being
directed into the eye, marked another monumental milestone. During the Middle Ages,
advancements in lens-making and optics allowed to deepen the study of the properties of
light and laid the foundation for the development of eyeglasses and, some centuries later,
of telescopes. This allowed the �eld of astronomy to �ourish, permitting astronomical
observations that challenged the geocentric view of the cosmos in the 16th century.

In the 17th century, Sir Isaac Newton conducted groundbreaking experiments on light
and color, demonstrating that white light is composed of a spectrum of colors, that can be
separated when passed through a prism. Newton was a supporter of the corpuscolar theory
of light, believing that light was made of “corpuscles” that travelled in a straight line at
�nite speed [Newton 04]. Even if he was his contemporary, Christiaan Huygens proposed
an entirely di�erent theory, suggesting that light propagates as a wave [Huygens 90]. The
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wave theory of light gained signi�cant traction, and was predominant until the beginning of
the 20th century [Fresnel 19, Foucault 53, Fizeau 49]. After countless brilliant intuitions and
missteps, with the help of cornerstones experiments like Young’s interference experiment,
at the end of the 19th century the classical electromagnetic theory is �nally fully described:
light is an electromagnetic radiation obeying Maxwell equations [Maxwell 96].

However, this was just the beginning. In less than a century, a new theory of the
nature of light takes over, the quantum theory of light. This theory reveals light as
a quantum �eld, whose excitations, the photons, can be identi�ed as the elementary
particles of light. The discovery of unsettling properties, such as entanglement [Einstein 35]
and non-locality [Bell 64], and their experimental veri�cation [Aspect 82], challenged
long-established classical concepts, leading to a revolutionary paradigm shift in our
understanding of the natural worlds: this is the �rst Quantum Revolution.

The focus of this �rst revolution is on fundamental research. During this period,
scientists spent decades applying the principles of QuantumMechanics to the world around
us; suddenly, many phenomena unexplainable with classical physics started to make sense.
Understanding the natural world was the goal of this generation of scientists. However,
throughout human history, knowledge has consistently served as a wellspring of inspiration
for creativity and innovation. Mere understanding isn’t enough. Humans don’t stop at
knowing that striking a piece of obsidian with a hammerstone results in the removal of
stone �akes; they want to use this knowledge to shape the obsidian into a tool with a
speci�c purpose. Since time immemorial, fundamental science has been the driving force
behind technological advancement. The fundamental knowledge acquired during the �rst
Quantum Revolution is no di�erent. By learning how nature works, we aim to use this
knowledge to shape the physical world at will, to serve a speci�c purpose. This marks
the advent of the Second Quantum Revolution, where our understanding of the physical
world has paved the way for numerous applications, collectively referred to as Quantum
Technologies [Dowling 03, Bruss 19].

The seed for the �ourishing of Quantum Technologies was planted 40 years ago,
when during the “Physics of Computation Conference” Richard Feynman proposed a
Quantum computer to simulate nature: “Nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum mechanical, and by golly
it’s a wonderful problem because it doesn’t look so easy” [Feynman 82]. Since his talk,
the idea gained widespread attention. The scienti�c community started to investigate
the notion of Quantum Computers and their advantages [Deutsch 85, Bernstein 93], and
the �rst Quantum Algorithms, with a consistent speedup with respect to classical ones,
were proposed [Shor 94, Grover 96]. More than 40 years later, while still remaining “not
so easy”, the �eld of Quantum Information is thriving [Nielsen 10]. Attempts to build
quantum computers are taking place across a diverse range of platforms, and although
fault-tolerant quantum computing remains on the horizon, recent developments [Arute 19,
Zhong 20] hold the promise of near-term noisy-intermediate-scale-quantum (NISQ)
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technology [Preskill 18].
In this context, Quantum Networks, a collection of quantum systems linked

by quantum channels, emerge as an essential resource for Quantum Information
Processing. They serve as the foundational framework for allowing long-distance
quantum communication between parties [Cirac 97] and for implementing multiparty
distributed quantum computing [Preskill 99, Gottesman 99, Daiss 21] or a quantum
internet [Kimble 08, Pirandola 16]. Quantum Networks can also be used as a support
for Measurement-Based-Quantum-Computing (MBQC), that employs speci�c entangled
states, known as cluster states, to propagate quantum information through the network via
successive measurements and feedforward operations [Raussendorf 01].

Quantum technologies are in principle supported by a wide variety of physical systems,
each one with its unique challenges. Among them, photonic quantum technologies
emerge nowadays as one of the leading technologies [O’Brien 07, O’Brien 09]. In this
work, we focus on multimode light �elds for the development of Continuous-variable
(CV) quantum technologies [Braunstein 05b, Weedbrook 12, Adesso 14]. In particular,
squeezed states and CV-entangled states are an essential resource for many applications,
such as MBQC [Menicucci 06, Gu 09, Bourassa 21], quantum sensing [Zhang 21, Pinel 12,
Gessner 18], quantum communication [Cai 17, Arzani 19b] and simulations [Nokkala 18],
and quantum-enhanced machine learning [Nokkala 21].

Squeezed states and cluster states can be deterministically generated via nonlinear optics
interactions, followed by linear optics operations, in the frequency domain [Roslund 14,
Cai 17]. Here, we generate multimode squeezing both in the temporal and in the spectral
degree of freedom [Kouadou 23], with the �nal aim (still in-progress) to implement
cluster states multiplexed both in the spectral and the temporal domain, that o�er both
good scalability (due to a high number of modes) and recon�gurability of our resource.
Indeed, temporal multiplexing already permitted the generation of the largest entangled
networks [Yokoyama 13, Asavanant 19, Larsen 19], while spectral multiplexing enables
full recon�gurability of the entanglement links [Cai 17, Chen 14] and mode-selective
non-gaussian operations via ultrafast-pulse shaping [Ra 20].

In addition to providing scalable multiplexed resources for MBQC, we can leverage the
bene�ts of having numerous modes and recon�gurable quantum correlations for various
quantum information processing techniques. In this work we concentrate on quantum
walks [Childs 04a, Matthews 12] and simulation of open quantum systems [Nokkala 18,
Renault 23].
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Outline of this thesis
The �rst part of this thesis has the aim of providing the reader with the fundamental
concepts that are needed for the understanding of this work. In the �rst chapter, we
introduce the concept of classical and quantum electromagnetic �eld and we give the
notations used throughout this work. We begin by providing a classical de�nition of the
multimode electromagnetic �eld, with a particular focus on time-frequency modes, which
are of primary interest in this work. Successively, we switch to a quantum description, and
we provide the basics of the description of quantum light, focusing on a continuous-variable
(CV) framework. In the second chapter, we present Gaussian states and measurements.
Here, we describe squeezing and linear-optics operations and their e�ect on Gaussian states,
as well as the measurement technique of balanced homodyne detection. In the third chapter,
we introduce nonlinear optics. We start by giving general notions of nonlinear optical
processes and we later focus on second-order nonlinearities, concentrating in particular
on second-harmonic generation (SHG) and parametric-down conversion, the two nonlinear
processes present in the experimental setup. Spontaneous parametric down-conversion
(SPDC), that enables squeezing generation, will be treated in the last part of this chapter.

The second part of this thesis gives a detailed description of the experimental setup
for multimode squeezing generation and presents the measurement results. The fourth
chapter presents the experiment in all its components: the ultrafast light source, nonlinear
waveguides for SPDC, the SHG process and pulse-shaping are described in detail. The �fth
chapter presents the measurement results, recently published in [Kouadou 23]. Here, we
describe the multimode squeezing measurement in the spectral domain and in the temporal
domain, demonstrating the time-frequency multiplexing of our resource, and we present
the measurement of the covariance matrix. In the sixth chapter we present the ongoing
e�orts for the implementation of a cluster state multiplexed both in time and in frequency.
The experimental setup, which includes a second waveguide, and the locking system are
presented.

In the third part, we investigate quantum information processing applications of the
squeezed resource generated in the experiment. In the seventh chapter, we discuss
continuous-time quantum walks (CTQW) for the task of quantum search on a network.
A description of the quantum walk framework is provided, and we present an experimental
mapping for the implementation of CTQW on a photonics setup, using squeezed light
and photon subtraction operations. In the eighth chapter, we investigate the use of our
experimental setup for quantum simulation, in the context of open quantum systems,
aiming to observe the emergence of quantum synchronization. We present the experimental
mapping and the numerical simulations of the experimental parameters needed for the
success of the experiment.
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Chapter 1

Quantum Light
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1.1 The multimode classical electromagnetic �eld . . . . . . . . . . . . 8

1.1.1 The classical electromagnetic �eld . . . . . . . . . . . . . . . . . . 8
1.1.2 Multimode description . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Gaussian Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Temporal and spectral modes . . . . . . . . . . . . . . . . . . . . . 13
1.1.5 Quadratures of the �eld . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Quantization of the �eld . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 From classical mechanics to quantum mechanics . . . . . . . . . . 16
1.2.2 Quadratures as quantum operators . . . . . . . . . . . . . . . . . . 17

1.3 Multimode quantum light . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 The multimode electric �eld operator . . . . . . . . . . . . . . . . . 19
1.3.2 Basis change and two Hilbert spaces . . . . . . . . . . . . . . . . . 20
1.3.3 Intrinsic single-mode states . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Description of quantum states . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Discrete variables and Continuous variables . . . . . . . . . . . . . 22
1.4.2 Pure and Mixed states . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Common states in Quantum optics . . . . . . . . . . . . . . . . . . . 26
1.5.1 Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.2 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3 Squeezed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.4 EPR state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

The goal of this chapter is to establish the de�nitions and conventions that we will
use throughout this work and to outline the multimode framework within which we are
operating. We will start with a classical description of a multimode electromagnetic �eld
and we will later transition from the classical realm to the quantum domain. In the quantum

7



1.1. THE MULTIMODE CLASSICAL ELECTROMAGNETIC FIELD

domain, our focus will be on Continuous-Variable states and the encoding of quantum
information into �uctuations of light’s quadratures. Additionally, we will introduce useful
tools for describing CV quantum states and we will explore the most common quantum
states in quantum optics.

1.1 The multimode classical electromagnetic �eld

In this section, we present a classical description of a multimode light �eld, focusing on both
the temporal and spectral domains, connected by the Fourier transform. Moreover, we will
establish a rigorous de�nition of what constitutes “multimode" light.

1.1.1 The classical electromagnetic �eld

From a classical point of view, light is an electromagnetic wave, whose propagation through
linear and nonlinear media is described by the well-knownMaxwell equations [Maxwell 96,
Gri�ths 14, Jackson 12]. Thewave equation for the propagation in amediumwith refractive
index 𝑛 reads:

∇2E(r, 𝑡) − 1
𝑣

𝜕2

𝜕𝑡2
E(r, 𝑡) = 0 (1.1)

where 𝑣 = 𝑐/𝑛 is the propagation velocity of the �eld in said medium The most common
solution to this equation is the monochromatic plane wave:

E(r, 𝑡) = E0 cos(kr − 𝜔𝑡 + 𝜙0) (1.2)

where k is the propagation vector and 𝜔 is the angular frequency. The same equation can
be expressed as:

E(r, 𝑡) = E0𝑒𝑖 (kr−𝜔𝑡+𝜙0) + c.c (1.3)

While these two expressions are equivalent1, using complex exponentials permits us to
carry out calculations more conveniently. As the wave equation is linear, a variety of
solutions can stem from a solution basis. Indeed, a superposition of two solutions is still
a solution of the Maxwell equations. Linearity also precludes light-by-light interaction,
implying that non-linearity is a necessary condition for the interaction of EM �elds. This
thesis will concentrate on how to exploit non-linearity to drive an interacting Hamiltonian
term between the EM �elds.

It is useful to treat the E(r, 𝑡) �elds in the frequency domain, as we work with broadband
�elds, i.e. �elds with many frequency components. Going to the Fourier space, we can write

1A factor of 1/2 is usually omitted but it can be found in some of the literature.
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the electric �eld along with its Fourier transform:

E(r, 𝑡) =
∫
R

𝑑𝜔
√
2𝜋

E(r, 𝜔)𝑒−𝑖𝜔𝑡 (1.4)

E(r, 𝜔) =
∫
R

𝑑𝑡
√
2𝜋

E(r, 𝑡)𝑒𝑖𝜔𝑡 (1.5)

As the electric �eld is a real quantity, we have:

[E(r, 𝜔)]∗ = E(r,−𝜔) (1.6)

This symmetry highlights the presence of redundant information in Eq. 1.4. Therefore, to
get rid of redundancy, we de�ne the so-called analytic signal E(+) (r, 𝑡) as:

E(+) (r, 𝑡) =
∫
R+

𝑑𝜔
√
2𝜋

E(r, 𝜔)𝑒−𝑖𝜔𝑡 (1.7)

where we integrate only on positive frequencies. We note that, di�erently from E(r, 𝑡),
E(+) (r, 𝑡) is complex. We de�ne the complex conjugate of the analytic signal as:[

E(+) (r, 𝑡)
]∗

= E(−) (r, 𝑡) (1.8)

that represents the integration over the negative frequencies. In terms of the analytic
signals, the real electric �eld can be written as:

E(r, 𝑡) = E(+) (r, 𝑡) + E(−) (r, 𝑡) (1.9)

We de�ne the Fourier transform of the analytic signal as:

E(+) (r, 𝜔) =
∫
R

𝑑𝑡
√
2𝜋

E(+) (r, 𝑡)𝑒𝑖𝜔𝑡 (1.10)

so that: [
E(+) (r, 𝜔)

]∗
= E(−) (r,−𝜔) (1.11)

The real electric �eld in the frequency domain can be written as:

E(r, 𝜔) = E(+) (r, 𝜔) + E(−) (r, 𝜔) (1.12)
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1.1.2 Multimode description
Due to the linearity of the Maxwell equations, we can expand the EM �eld into an in�nite
sum of monochromatic plane-waves with di�erent complex amplitudes. The derivation can
be found in [Loudon 00, Grynberg 10, Gerry 05]. Its analytic signal takes the form of:

E(+) (r, 𝑡) = 𝑖
∑︁
𝑙

𝜺𝑙E𝑙𝛼𝑙𝑒𝑖 (k𝑙 r−𝜔𝑙 𝑡) (1.13)

where 𝜺𝑙 is the polarization vector and E𝑙 is a constant given by:

E𝑙 =

√︄
~𝜔𝑙
2𝜖0𝑉

(1.14)

The purpose of this constant is to ensure that the𝛼𝑙 coe�cients are dimensionless and satisfy
the usual commutation relations when we later promote them to creation and annihilation
operators, as we will show in section 1.2. In this equation we used mono-chromatic plane
waves as the orthonormal basis of the Hilbert space of the EM �eld. More generally, the EM
�eld can be expressed as1:

E(+) (r, 𝑡) =
∑︁
𝑙

E𝑙𝛼𝑙 f𝑙 (r, 𝑡) (1.15)

where {f𝑙 (r, 𝑡)} is a suitable orthonormal basis. The vector �eld f𝑙 (r, 𝑡) is what we call a
mode. A mode is a normalized solution to the Maxwell equations that satis�es at any time
𝑡 the normalization condition:

1
𝑉

∫
𝑉

𝑑3𝑟 |f𝑙 (r, 𝑡) |2 = 1 (1.16)

where 𝑉 is a large volume that contains the EM �eld of interest.
Starting with a speci�c mode f1(r, 𝑡), we can build an orthonormal basis of modes,

denoted as f𝑙 (r, 𝑡), such that any solution to the Maxwell equations can be represented as
a linear combination of these basis modes. In other words, f𝑙 (r, 𝑡) forms an orthonormal
basis in the Hilbert space to which the operator E(+) (r, 𝑡) belongs. This orthonormality
requirement entails that for any time 𝑡 :

1
𝑉

∫
𝑉

𝑑3r f∗
𝑙
(r, 𝑡)f𝑙 ′ (r, 𝑡) = 𝛿𝑙𝑙 ′ (1.17)

It is worth noting that the �eld can be equivalently described in a di�erent basis. We will
not cover the basis change details in the classical case; however, we will address this topic in
section 1.3.2 within the context of multimode quantum light. More details on the multimode
nature of light can be found in [Fabre 20].

1We dropped the 𝑖 factor as it is a global phase and can be included in the f𝑙 (r, 𝑡) term.
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Wewill now introduce two important approximations used extensively in this thesis: the
paraxial approximation and the narrowband approximation. The paraxial approximation is
based on the assumption that the di�erent wave-vectors k𝑙 of the plane-waves composing
the EM �eld have very small angular deviation among each other and can be approximated
by a mean value k. We will assume here that the propagation direction is along 𝑧.
The narrowband approximation is applicable if the spectral bandwidth is narrow and
centered around the optical frequency 𝜔0, i.e. Δ𝜔 � 𝜔0. It is also known as the
slowly-varying envelope approximation (SVEA), as in the temporal domain this implies that
the pulse envelope changes slowly with time compared to the optical period1. Under these
assumption, we can approximate E𝑙 ∼ E0. The �eld can �nally be rewritten as:

𝐸 (+) (r, 𝑡) = E0𝑒
𝑖 (𝑘𝑧−𝜔0𝑡)

∑︁
𝑙

𝛼𝑙 𝑓𝑙 (r, 𝑡) (1.18)

where we adopt a linear polarization and consider the �elds as scalars for simplicity. In this
context, the term 𝑒𝑖 (𝑘𝑧−𝜔0𝑡) is referred to as the carrier plane wave, where 𝜔0 is the carrier
frequency.

In this thesis, we restrict to modes that can be factorized in a transverse and longitudinal
component as:

𝑓𝑙 (r, 𝑡) = 𝑓 𝑇𝑚 (r)𝑢𝑛 (𝑧, 𝑡) (1.19)

where the subscript 𝑙 is used as a shorthand notation for the subscripts (𝑚,𝑛). In this
decomposition, the term 𝑓 𝑇𝑚 (r) correspond to a transverse (or spatial) mode, that accounts
for the spatial shape of the light beam in the plane perpendicular to the propagation, while
𝑢𝑛 (𝑧, 𝑡) is a longitudinal (or temporal) mode, responsible for the EM wave pattern along the
temporal (or 𝑧) axis. Some examples of spatial mode bases include the spatial Hermite-Gauss
basis, the spatial Laguerre-Gauss basis and the spatial pixel mode basis2. Some examples of
temporal-frequency mode bases include the frequency Hermite-Gauss basis, the frequency
pixel mode basis, the sideband mode basis and the time-bin mode basis; we will deal with
all of them, more or less extensively, within this manuscript.

1.1.3 Gaussian Beam
The spatial modes of a laser beam can often be approximated by the family of Hermite-Gauss
modes (or TEMmodes), when the paraxial approximation is satis�ed [Siegman 86, Yariv 89].
In particular, the beam in our experiment is spatially single-mode, and its intensity
distribution can be approximated by the TEM00 mode. This mode exhibits a Gaussian

1When we deal with femtosecond pulses of near-infrared and visible light, we are at the limit of this
approximation, as the period of an optical cycle is around𝑇 = 2𝜋

𝜔0
∼ 2.7 fs. This is particularly true in our case,

as our laser delivers 22-fs pulses, which contain only a few optical cycles.
2The spatial pixel mode basis is useful to describe the detection process of an array of photodiodes. Pixel

modes are constant over a speci�c pixel area and zero outside. This basis is not complete.
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Figure 1.1: Gaussian beam radius 𝑤 (𝑧) as a function of 𝑧. 𝑤0 is the beam waist
and 𝑧𝑅 is the Rayleigh length.

spatial pro�le and it is often called, for this reason, Gaussian beam. From Eq. 1.18, a spatially
single-mode �eld can be written as:

𝐸 (+) (r, 𝑡) = E0𝑒
𝑖 (𝑘𝑧−𝜔0𝑡) 𝑓 𝑇0 (r)

∑︁
𝑙

𝛼𝑙𝑢𝑙 (𝑧, 𝑡) (1.20)

where 𝑓 𝑇0 (r) represents the TEM00 mode. The Gaussian beam is expressed as:

𝑓 𝑇0 (r = (𝝆, 𝑧)) = 𝑤0
𝑤 (𝑧)𝑒

−𝜌2/𝑤2 (𝑧)𝑒−𝑖𝑘0𝜌
2/2𝑅(𝑧)𝑒𝑖𝜙 (𝑧) (1.21)

where 𝑅(𝑧) is the radius of curvature of the beam’s wavefronts and 𝜙 (𝑧) is the Gouy phase.
The term𝑤 (𝑧) is the radius of the beam, that represents the radial coordinate at which the
�eld amplitude decreases to 1/𝑒 of its axial values and whose behaviour is shown in Fig. 1.1.
The radius at the focal point, denoted as𝑤0, is called waist of the beam, and it corresponds
to the smallest beam size. In the above equations, we de�ned the Gaussian beam as centered
at 𝑧 = 0, so that𝑤0 = 𝑤 (0). These terms 𝑅(𝑧), 𝜙 (𝑧) and𝑤 (𝑧) are de�ned as:

𝑤2(𝑧) = 𝑤2
0

(
1 + 𝑧

𝑧𝑅

)
(1.22)

1
𝑅(𝑧) =

𝑧

𝑧2 + 𝑧2
𝑅

(1.23)

𝜙 (𝑧) = arctan
(
𝑧

𝑧𝑅

)
(1.24)

where
𝑧𝑅 =

𝜋𝑤2
0𝑛

𝜆
(1.25)
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CHAPTER 1. QUANTUM LIGHT

is called Rayleigh length and it represents the distance at which the beam section doubles
compared to its waist, i.e. 𝑤 (𝑧𝑅) =

√
2𝑤0.

To avoid confusion, we point out that, according to the de�nitions given, the beam
radius is measured at 1/𝑒 of the �eld amplitude. The radius corresponds then to twice
the standard deviation of the intensity distribution of the Gaussian beam. In terms of the
Full-Width-Half-Maximum (FWHM) of the intensity, it holds:

𝑤 (𝑧) = 𝐹𝑊𝐻𝑀 (𝑧)
√
2𝑙𝑛2

(1.26)

1.1.4 Temporal and spectral modes

We now investigate time-frequency modes, represented by the longitudinal component
𝑢𝑙 (𝑧, 𝑡) of the �eld modes. These modes represent the main focus of our work as they are the
natural basis for describing light pulses. In particular, throughout this thesis we will often
omit the single-mode spatial component, to focus our attention on the longitudinal �eld. In
terms of temporal modes, the �eld can be expressed as:

𝐸 (+) (𝑧, 𝑡) = E0𝛼 (𝑧, 𝑡)𝑒𝑖 (𝑘𝑧−𝜔0𝑡) (1.27)

where 𝛼 (𝑧, 𝑡) =
∑
𝑙 𝛼𝑙𝑢𝑙 (𝑧, 𝑡) is the pulse envelope and {𝑢𝑙 (𝑧, 𝑡)} is a basis of orthonormal

temporal modes. For a non-distorted pulse propagating at the speed of light, the explicit
dependence on (𝑧, 𝑡) reads 𝑢𝑙 (𝑧, 𝑡) = 𝑢𝑙 (𝑡 − 𝑧/𝑐). However, our primary interest lies in the
temporal dependence; for simplicity, we can evaluate the �eld at 𝑧 = 0, which we can, for
example, consider as the position of the detector. This will lead us to:

𝐸 (+) (𝑡) = E0𝛼 (𝑡)𝑒−𝑖𝜔0𝑡 (1.28)

where 𝛼 (𝑡) = ∑
𝑙 𝛼𝑙𝑢𝑙 (𝑡). We stress that the envelope 𝛼 (𝑡) is complex. The Fourier transform

of this �eld reads:
𝐸 (+) (𝜔) = E0𝛼 (Ω) (1.29)

where Ω = 𝜔 − 𝜔0 is the frequency with respect to the carrier1. In this work, 𝜔 typically
refers to optical frequencies in the THz range, while Ω represents electronic frequencies
ranging from kHz to MHz. Note that 𝛼 (Ω) is the Fourier transform of 𝛼 (𝑡) with respect
to the Ω frequency, di�erently from 𝛼 (𝜔); 𝛼 (Ω) (and, by consequence, 𝐸 (+) (𝜔)) is centered
around 𝜔0

2, while 𝛼 (𝜔) is centered around 0.
1In some texts 𝐸 (+) (𝜔) is referred to as 𝐸 (+) (Ω). If we want to be strict, 𝐸 (+) (Ω) is supposed to represent

𝐸 (+) (Ω) ∝
∫
𝑑𝑡 𝑒𝑖Ω𝑡𝐸 (+) (𝑡) but in most cases it indicates 𝐸 (+) (𝜔) = E0𝛼 (Ω).

2The Fourier transform of the real �eld 𝐸 (𝑡) has two contributions, one centered around 𝜔0 and the other
around −𝜔0.
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1.1. THE MULTIMODE CLASSICAL ELECTROMAGNETIC FIELD

1.1.5 Quadratures of the �eld
The classical electric �eld of Eq. 1.28 features the slowly-varying complex envelope function
𝛼 (𝑡). It is often useful to break down this envelope into its real and imaginary parts, that
we call quadratures of the �eld1[Bachor 19]. These are de�ned as follows:

𝑞(𝑡) = 𝛼 (𝑡)∗ + 𝛼 (𝑡) (1.30)
𝑝 (𝑡) = 𝑖 (𝛼 (𝑡)∗ − 𝛼 (𝑡)) (1.31)

where 𝛼 (𝑡) is the envelope of the �eld. Note that, by de�nition, the 𝑞 and 𝑝 quadratures are
real variables. The inverse relations are given by:

𝛼 (𝑡) = 𝑞(𝑡) + 𝑖𝑝 (𝑡)
2 (1.32)

𝛼∗(𝑡) = 𝑞(𝑡) − 𝑖𝑝 (𝑡)
2 (1.33)

The real electric �eld can then be rewritten in terms of quadratures as:

𝐸 (𝑡) = E0 [𝑞(𝑡) cos(𝜔0𝑡) + 𝑝 (𝑡) sin(𝜔0𝑡)] (1.34)

The complex amplitude at one speci�c point in time can be depicted by using the phasor
diagram, a two-dimensional chart of 𝑞 and 𝑝 , shown in Figure 1.2a. In the phasor diagram,
the complex amplitude 𝛼 (𝑡) = |𝛼 (𝑡) |𝑒𝑖𝜙 (𝑡) corresponds to a point with coordinates (𝑞, 𝑝).
These coordinates are identi�ed by a vector that is proportional to the magnitude |𝛼 (𝑡) |,
with an angle 𝜙 measured with respect to the 𝑞-axis, given by the phase 𝜙 = arctan(𝑝/𝑞).
Note that here the phasor diagram represents only the complex amplitude 𝛼 (𝑡), and the
carrier oscillations of Eq. 1.34 are not taken into account. In practical terms, when dealing
with phasors, we place ourselves in a rotating reference frame at the carrier frequency 𝜔0.
It is customary to set the global phase at 𝜙 = 0; this way, if the light exhibits no �uctuations,
𝛼 (𝑡) = 𝛼 and the vector lies on the 𝑞 axis of the phasor diagram [Bachor 19]. In some
references, the phasor diagram is used to describe the electric �eld instead of the complex
amplitude [Grynberg 10]. In this case, the vector magnitude is rescaled by E0 and it rotates
at frequency 𝜔0 in the diagram.

The description of the light �eld in terms of quadratures and the corresponding phasor
diagram are useful when we work with �uctuations of the electric �eld. In general, light
�uctuates both in phase and in amplitude. This can be expressed as:

𝛼 (𝑡) = 𝛼 + 𝛿𝛼 (𝑡) = 𝛼 + 𝛿𝑞(𝑡)2 + 𝑖 𝛿𝑝 (𝑡)2 (1.35)

1In this section we focused on a �eld in the SVEA approximation. Quadratures can also be analogously
de�ned for a �eld E(+) (r, 𝑡) =

∑
𝑙 E𝑙𝛼𝑙𝑒

𝑖 (k𝑙 r−𝜔𝑙 𝑡 ) . In this case we often rewrite the real �eld as 𝐸 (r, 𝑡) =∑
𝑙 E𝑙 [𝑞 cos(k · r − 𝜔𝑡) + 𝑝 sin(k · r − 𝜔𝑡)], where we de�ne 𝑞 = 𝛼∗

𝑙
+ 𝛼𝑙 and 𝑝 = 𝑖 (𝛼∗

𝑙
+ 𝛼𝑙 ).

14



CHAPTER 1. QUANTUM LIGHT

(a) (b)

Figure 1.2: Monochromatic electric �eld represented with a phasor diagram (a)
and plotted as a function of time (𝑏). In these two �gures the mean value of the
�eld is represented with a solid line. Small �uctuations 𝛿𝛼 (𝑡) of amplitude and
phase of the electric �eld are mapped into �uctuations around the mean value
in the phasor diagram, represented with dashed lines.

where 𝛼 is the mean value of the �eld amplitude and the 𝛿 indicates small �uctuations.
Fluctuations of the �eld amplitude and phase are translated into �uctuations of the �eld
quadratures. These �uctuations (modulations) are represented on the phasor diagram as a
series of random points around the mean value, within an area de�ned by the magnitude of
the �uctuations, as shown in Figure 1.2. Fluctuations may be due to random noise or may
also be imprinted intentionally on the light �eld to carry information, like in the case of
classical amplitude and phase modulations, that we will describe later in section 2.2.1.

1.2 Quantization of the �eld

Now that we have introduced the most important classical quantities, we can investigate
their quantum counterpart. While a semi-classical theory can account for many processes,
including the photoelectric e�ect [Scully 72, Loudon 00], quantizing the radiation is a
necessary step when dealing with other physical phenomena, for instance spontaneous
emission. In this section, we will present the main features of quantized radiation,
emphasizing distinctive quantum characteristics that are absent in classical light, such as
the existence of non-commuting observables and the emergence of the concept of photons.
Details on the quantization of the EM �eld can be found in [Loudon 00, Grynberg 10].
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1.2. QUANTIZATION OF THE FIELD

1.2.1 From classical mechanics to quantum mechanics
A common method for transitioning from the classical treatment of light to its quantum
counterpart involves promoting the complex amplitudes to creation and annihilation
operators: 𝛼 → 𝑎 and 𝛼∗ → 𝑎†. However, formally, the standard approach for
quantizing a classical theory is based on the canonical quantization method that stems
from Hamiltonian mechanics. The Hamilton (or canonical) equations of motion govern the
evolution, prescribed by a Hamiltonian 𝐻 , of a set of conjugate canonical variables (q, p) in
the phase space.

Therefore, our point of departure is the Hamiltonian of the free-�eld, and the
identi�cation of the conjugate canonical variables that obey Hamilton’s equations. The
energy of the free-radiation1 reads 𝐻 =

∑
𝑙 𝐻𝑙 , where

𝐻𝑙 =
𝜔𝑙

2
(
𝑄2
𝑙
+ 𝑃2

𝑙

)
(1.37)

is the energy carried by a mode of radiation. The variables 𝑄𝑙 and 𝑃𝑙 are de�ned as:

𝑄𝑙 =

√︂
4𝜖0𝑉
𝜔𝑙

E𝑙Re(𝛼𝑙 ) (1.38)

𝑃𝑙 =

√︂
4𝜖0𝑉
𝜔𝑙

E𝑙 Im(𝛼𝑙 ) (1.39)

where we recall that 𝛼𝑙 is the complex amplitude of the electric �eld as it is de�ned in
Eq. 1.13. The variables 𝑄 and 𝑃 satisfy the Hamilton equations of motion:

𝑑𝑄𝑙

𝑑𝑡
=
𝑑𝐻𝑙

𝑑𝑝
(1.40)

𝑑𝑃𝑙

𝑑𝑡
= −𝑑𝐻𝑙

𝑑𝑞
(1.41)

and therefore they represent the canonical variables of our system. Following the
prescriptions of canonical quantization, we proceed by promoting 𝑄𝑙 and 𝑃𝑙 to quantum
operators 𝑄̂𝑙 and 𝑃𝑙 that obey the following canonical commutation relations:[

𝑄̂𝑖, 𝑃 𝑗
]
= 𝑖~𝛿𝑖 𝑗1 (1.42)[

𝑄̂𝑖, 𝑄̂ 𝑗

]
=

[
𝑃𝑖, 𝑃 𝑗

]
= 0 (1.43)

1The energy of free radiation is de�ned as [Grynberg 10]

𝐻 =
𝜖0
2

∫
𝑉

𝑑3𝑟
[
E2 (r, 𝑡) + 𝑐2B2 (r, 𝑡)

]
= 2𝜖0𝑉

∑︁
𝑙

E2
𝑙
|𝛼𝑙 |2 (1.36)

so that we can express the total energy of the �eld as 𝐻 =
∑

𝑙 𝐻𝑙 , where 𝐻𝑙 is the energy of a single mode 𝑙 of
the �eld.
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and that follow the evolution prescribed by the quantum counterpart of the
Hamiltonian 1.37. We stress that 𝑄̂ and 𝑃 are not the quantum version of the classical
quadratures 𝑞 and 𝑝 that we encountered in section 1.1.5, as they have dimensions [~]: they
will need to be rescaled accordingly, as we will see later. By setting 𝑄̂𝑙 + 𝑖𝑃𝑙 =

√
2~𝑎𝑙 we

can check that the creation and annihilation operators1 𝑎†
𝑖
and 𝑎 𝑗 satisfy the commutation

relations: [
𝑎𝑖, 𝑎

†
𝑗

]
= 1𝛿𝑖 𝑗 (1.44)[

𝑎𝑖, 𝑎 𝑗
]
=

[
𝑎
†
𝑖
, 𝑎

†
𝑗

]
= 0 (1.45)

The Hamiltonian of the free-�eld can be expressed as follows:

𝐻̂ =
∑︁
𝑙

~𝜔𝑙
(
𝑎
†
𝑙
𝑎𝑙 +

1
2

)
(1.46)

This equation describes a system consisting of a collection of uncoupled quantum harmonic
oscillators, where each mode 𝑙 acts as an independent oscillator. In this framework, the
concept of a photon emerges as an excitation of mode 𝑙 with energy ~𝜔𝑙 .

The Hamiltonian 1.46 is an operator acting on a Hilbert space that describes a
many-particle system, the Fock space. The Fock space is commonly used in the second
quantization framework to model systems with a variable number of either bosons or
fermions. In the bosonic case it is de�ned as:

F𝑆 (H) = ⊕∞
𝑛=0H𝑛

𝑆 (1.47)

where the subscript 𝑆 indicates that the subspaces of the Fock space are symmetric (as
opposed to antisymmetric for the case of fermions) and where H𝑛

𝑆
represents the Hilbert

space of a system of 𝑛 particles. In the occupation number representation, an orthonormal
basis of the Fock space can be written as:

{|𝑛1, 𝑛2, . . . , 𝑛𝑘 , . . .〉}(𝑛1,𝑛2,...,𝑛𝑘 ) (1.48)

where 𝑛𝑘 denotes the number of particles in mode 𝑘 and it can range from zero to in�nity.
Fock states are among the most common states encountered in quantum optics, and they
will be given a more detailed description later in section 1.5.1.

1.2.2 Quadratures as quantum operators
The photon-number (Fock) representation of a quantum state of light is widely used in the
�eld of Quantum Information. However, in this work, the quantum features of our interest

1We remind that the creation and annihilation operators are non-Hermitian and, therefore, do not represent
observables.
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are encoded into �uctuations of the light �eld. Therefore, we concentrate on the quantum
analogue of the classical quadratures of the �eld, introduced in section 1.1.5.

Analogously to the classical case, we can de�ne quadrature operators as1:

𝑞𝑙 = 𝑎
†
𝑙
+ 𝑎𝑙 (1.49)

𝑝𝑙 = 𝑖

(
𝑎
†
𝑙
− 𝑎𝑙

)
(1.50)

These operators obey the following commutation relations:[
𝑞𝑖, 𝑝 𝑗

]
= 2𝑖𝛿𝑖 𝑗1 (1.51)[

𝑞𝑖, 𝑞 𝑗
]
=

[
𝑝𝑖, 𝑝 𝑗

]
= 0 (1.52)

The creation and annihilation operators are expressed in term of quadrature operators as:

𝑎𝑙 =
𝑞
†
𝑙
+ 𝑖𝑝𝑙
2 (1.53)

𝑎
†
𝑙
=
𝑞
†
𝑙
− 𝑖𝑝𝑙
2 (1.54)

Using these equations, the Hamiltonian of the free-�eld in Eq. 1.46 can be rewritten as:

𝐻 =
∑︁
𝑙

~𝜔𝑙
4

(
𝑞2
𝑙
+ 𝑝2

𝑙

)
(1.55)

Since 𝑞 and 𝑝 are non-commuting observables, they must satisfy a form of generalized
Heisenberg uncertainty relations, known as Robertson–Schrödinger uncertainty
relations [Robertson 29]. These relations are expressed as:

Δ2𝑞𝑖Δ
2𝑝 𝑗 − cov(𝑞𝑖, 𝑝 𝑗 ) ≥

���� 12𝑖 〈[𝑞𝑖, 𝑝 𝑗 ]〉����2 = 𝛿𝑖 𝑗 (1.56)

where Δ2𝑞𝑖 and Δ2𝑝 𝑗 are the variances of the two operators2 and cov(𝑞𝑖, 𝑝 𝑗 ) is the covariance
term. The states that minimize this relation are known as minimum uncertainty states.

We note that the quadrature operators 𝑞 and 𝑝 de�ned here do not depend on time: they
can be considered operators in the Shrödinger picture, or, equivalently, in the Heisenberg
picture at 𝑡 = 0 (see Appendix A). It is worth emphasizing that equivalent de�nitions can
also be provided for the time-dependent case, i.e., for quadrature operators in theHeisenberg

1The quantized canonical variables are connected to quadrature operators as follows: 𝑄̂ = 𝑞
√︁
ℎ/2 and

𝑃 = 𝑝
√︁
ℎ/2.

2We recall that the variance of an operator 𝑂̂ is given by 𝑂̂ = 〈𝑂̂2〉 − 〈𝑂̂〉2 = 〈𝜓 |𝑂̂2 |𝜓 〉 − 〈𝜓 |𝑂̂2 |𝜓 〉2.
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picture, denoted as 𝑞(𝑡) and 𝑝 (𝑡). They are de�ned as linear combinations of 𝑎(𝑡) and 𝑎†(𝑡),
with equations that are equivalent to the ones presented in this section.

Similar to our approach with classical �uctuations, when dealing with �uctuations of
the �eld, we can decompose the operator into two contributing terms:

𝑎(𝑡) = 〈𝑎〉1 + 𝛿𝑎(𝑡) (1.57)

where we neglect higher order terms assuming small �uctuations. The identity operator
that multiplies the expectation value 〈𝑎〉 is omitted most of the times. The �uctuating term
𝛿𝑎(𝑡) and its Fourier transform will be analyzed extensively in the next chapter.

1.3 Multimode quantum light
In section 1.1.2, we presented the multimode description of a classical light �eld. Here, we
aim to do the same but in the context of quantized radiation. Details are given in [Fabre 20].

1.3.1 The multimode electric �eld operator
In analogy to Eq. 1.15, the quantized EM �eld can be expressed as:

Ê(+) (r, 𝑡) =
∑︁
𝑙

E𝑙𝑎𝑙 f𝑙 (r, 𝑡) (1.58)

where 𝑎𝑙 is the annihilation operator associated with a speci�c optical mode f𝑙 (r, 𝑡). From
this equation, we observe the emergence of an important concept within the framework of
multimode quantum light. The operator Ê(+) (r, 𝑡) accounts for the existence of two distinct
Hilbert spaces: the Hilbert space of optical modes, spanned by the orthonormal basis f𝑙 (r, 𝑡)
and the Hilbert space of quantum states, identi�ed by the annihilation operators 𝑎𝑙 . It
follows that the operators 𝑎𝑙 are annihilation operators associated with an excitation of
the optical mode f𝑙 (r, 𝑡). Therefore, in a multimode framework, it is crucial to consistently
specify the modes associated with speci�c creation and annihilation operators of the �eld.

As for the classical �eld, it is common to encounter the expansion of the quantum electric
�eld into a basis of monochromatic plane waves:

𝐸 (r, 𝑡) =
∑︁
𝑙

E𝑙
(
𝑎𝑙𝑒

𝑖 (k𝑙 r−𝜔𝑙 𝑡) + 𝑎†
𝑙
𝑒−𝑖 (k𝑙 r−𝜔𝑙 𝑡)

)
= (1.59)

=
∑︁
𝑙

E𝑙 (𝑞𝑙 cos (k𝑙r − 𝜔𝑙𝑡) + 𝑝𝑙 sin (k𝑙r − 𝜔𝑙𝑡)) (1.60)

We note that the operator 𝐸 (r, 𝑡) does evolve with time and it is therefore described here in
the Heisenberg picture. A Schrödinger picture description is equivalent and can be found
in some of the literature [Grynberg 10].
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1.3.2 Basis change and two Hilbert spaces
In general, there is not a preferred basis for the description of the electromagnetic �eld and
the expansion in any basis is equally valid to describe the physical system. However, one
basis might be more suitable for a certain task with respect to another, emerging as more
natural for the description of a particular quantum system or for the detection process. A
basis change is performed by applying a unitary transformation:

𝑏
†
𝑖
=

∑︁
𝑗

𝑈𝑖 𝑗𝑎
†
𝑗

(1.61)

This corresponds to a transformation in the modal Hilbert space:

g𝑖 (r, 𝑡) =
∑︁
𝑗

𝑈𝑖 𝑗 f 𝑗 (r, 𝑡) (1.62)

Note that optical modes and the associated creation operators of the �eld transform in the
same way. The electric �eld can be written equivalently in the {f𝑙 (r, 𝑡)} and in the {g𝑙 (r, 𝑡)}
basis:

Ê(+) (r, 𝑡) =
∑︁
𝑙

E𝑙𝑎𝑙 f𝑙 (r, 𝑡) =
∑︁
𝑙

E𝑙𝑏𝑙g𝑙 (r, 𝑡) (1.63)

The same quantum state has a di�erent expression if we consider its expansion in a
di�erent mode basis. As already mentioned in the previous section, when we consider a
speci�c quantum state of light, e.g. a squeezed state, it is important to always specify the
mode basis it is associated with. As a title of example, two single photon states occupying
the �rst modes of the basis {f𝑖 (r, 𝑡)} can be written as:

|𝜓 〉 = |1 : f1〉 ⊗ |1 : f2〉 (1.64)

Through a balanced beam-splitter transformation, we apply the basis change f± = (f1 ±
f2)/

√
2 and in the new basis the quantum state can be rewritten as:

|𝜓 〉 = |2 : f+〉 ⊗ |0 : f−〉 − |0 : f+〉 ⊗ |2 : f−〉 (1.65)

A basis change allowed us to transition from a separable state to an entangled state; this
is because applying a global basis change corresponds to repartitioning the system. It’s
important to emphasize that the quantum state remains the same; however, changing the
basis might unveil quantum correlations. In other words, the presence (or absence) of
entanglement correlations is dependent on the basis. Something analogous happens with
squeezed states and EPR states (investigated in the next sections), which represent the same
quantum state, up to a basis change. Indeed, via the same beam-splitter transformation we
obtain:

|𝜓 〉 = |squeezed : f+〉 ⊗ |squeezed : f−〉 → |𝜓 〉 = |EPR state : f+, f−〉 (1.66)
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While the emergence of quantum correlations depends on the choice of basis, certain
quantities are basis-independent. For instance, the total number of photons is an intrinsic
quantity:

𝑁̂𝑡𝑜𝑡 =
∑︁
𝑙

𝑎†𝑎 =
∑︁
𝑙

𝑏†𝑏 (1.67)

as well as the negativity of the Wigner function, a tool that we will explore in the next
chapter.

1.3.3 Intrinsic single-mode states
Wehave just mentioned the possibility of describing themultimode quantum state of light in
any chosen basis. A question naturally arises: is there a basis where a multimode quantum
state can be reduced to a single-mode one? A state can be referred to as single-mode state,
when it can be rewritten in the form:

|𝜓 〉 = |𝜙1〉 |0, 0, . . .〉 (1.68)

for a speci�c basis {f𝑙 (r, 𝑡)} where |0, 0, . . .〉 is the multimode vacuum. When such basis
exists, the state is said to be intrinsically single-mode. Conversely, if no such basis exists, it is
intrinsicallymultimode. A necessary and su�cient condition for a state |𝜓 〉 to be intrinsically
single-mode, is that the action of the annihilation operators 𝑎𝑙 in any basis on the state |𝜓 〉
must yield collinear vectors, i.e. all the vectors |𝜓𝑙〉 = 𝑎𝑙 |𝜓 〉must be proportional [Treps 05].

An example is the multimode coherent state which, despite the name, is intrinsically
single mode. It can be written as:

|𝜓 〉 = |𝛼1 : f1〉 ⊗ · · · ⊗ |𝛼𝑙 : f𝑙〉 ⊗ . . . (1.69)

We de�ne the mode:
g1 =

1
𝛽

∑︁
𝑙

𝛼𝑙 f𝑙 (1.70)

where |𝛽 |2 =
∑
𝑙 |𝛼𝑙 |2. Starting from g1 we build an orthonormal basis {g𝑙 } and it can be

demonstrated that in this new basis the state |𝜓 〉 can be rewritten as:

|𝜓 〉 = |𝛽 : g1〉 ⊗ |0, 0, . . .〉 (1.71)

It follows that any multimode coherent state is intrinsically single-mode.
We point out that for an intrinsic single-mode state, the quantum properties of

interest can be entirely described within a single mode description. In such cases, the
equivalent multimode description does not reveal properties that cannot be assessed using
the single-mode approach. However, in the context of this work, a multi-mode description
is necessary. This is because a multimode squeezed state, which is the primary focus of this
thesis, cannot be rewritten as a single-mode state. The multi-mode squeezed vacuum state
is inherently multi-mode, and, as a result, the quantum properties associated with it cannot
be fully described using only a single mode of the �eld.

21



1.4. DESCRIPTION OF QUANTUM STATES

1.4 Description of quantum states
In this section, we outline di�erent ways of describing quantum states of light. We mostly
restrict to the single mode description, which o�ers the advantage of keeping our notation
simple without sacri�cing any crucial concepts, as the multimode generalization is often
straightforward.

1.4.1 Discrete variables and Continuous variables
The same quantum state |𝜓 〉 can be represented in di�erent ways, according to the choice
of the orthonormal basis of the Hilbert space he belongs to. We already mentioned in
section 1.2.1 the Fock basis, a possible orthonormal basis for the Hilbert space of the
free-radiation. In the Fock basis, a pure single-mode quantum state is expressed as:

|𝜓 〉 =
∑︁
𝑛

𝑐𝑛 |𝑛〉 (1.72)

and the completeness relation reads: ∑︁
|𝑛〉〈𝑛 | = 1 (1.73)

Generalizing to many modes, we can express the quantum state as:

|𝜓 〉 =
∑︁
𝑛

𝑐𝑛1,𝑛2,... |𝑛1, 𝑛2, . . . , 𝑛𝑘 , . . .〉 (1.74)

The Fock basis description is particularly useful when working in the photon counting
regime, where discrete quantities 𝑛 correspond to the photon number. In this context, we
refer to such work as being conducted within a discrete variables (DV) regime [Nielsen 10],
as we encode the relevant information in discrete variables of our physical system,
implementing qubits (two-level system) or qudits (𝑛-dimensional system). For instance, in an
optical framework, to encode a qubit we can exploit the polarization or the presence-absence
of a single-photon, while to encode a qudit we can use the photon number 𝑛 of a state.
Conversely, we can work in the continuous variables regime (CV) [Braunstein 05b], where
the orthonormal basis of the Hilbert space is indexed with continuous values instead of
discrete values. This is the case for one of the main representations in quantum mechanics,
the position representation, used extensively in the context of the �rst quantization for the
description of the wavefunction.

In the position representation, a quantum state can be expanded in the orthonormal basis
indexed by the position variable, denoted as {|𝑞〉}𝑞∈R. The orthonormal and completeness
relations read:

〈𝑞 |𝑞′〉 = 𝛿 (𝑞 − 𝑞′) (1.75)∫
R
𝑑𝑞 |𝑞〉〈𝑞 | = 1 (1.76)
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and the {|𝑞〉}𝑞∈R vectors are eigenvectors of the position operator

〈𝑞 | 𝑞 = 〈𝑞 | 𝑞 (1.77)

A generic pure quantum state can then be expressed in this basis as

|𝜓 〉 =
∫
R
𝑑𝑞𝜓 (𝑞) |𝑞〉 (1.78)

where𝜓 (𝑞) = 〈𝑞 |𝜓 〉. In the multimode generalization, the quantum state is written as

|𝜓 〉 =
∫

𝑑𝑞1

∫
𝑑𝑞2· · ·

∫
𝑑𝑞𝑘 . . .𝜓 (𝑞1, 𝑞2, . . . , 𝑞𝑘 , . . . ) |𝑞1, 𝑞2, . . . , 𝑞𝑘 , . . .〉 (1.79)

and the orthonormality and completeness relations are generalized accordingly.
We can equivalently work in the momentum representation, where the orthonormal

basis is denoted by {|𝑝〉}𝑝∈R. In this case, we write the quantum state as

|𝜓 〉 =
∫
R
𝑑𝑝𝜓 (𝑝) |𝑝〉 (1.80)

where 𝜓 (𝑝) = 〈𝑝 |𝜓 〉 is the conjugate wavefunction of 𝜓 (𝑞). The other relations are
analogous to the ones of the position representation. The position and momentum
representations are linked through the relation

〈𝑞 |𝑝〉 = 𝑒
𝑖
~𝑞𝑝

(2𝜋~)1/2
(1.81)

It is worth to make one last remark before concluding this section. A quantum state can
be equivalently described both in the photon-number basis and in the position basis. A good
exemplary case is the vacuum state, that does not contain any photon and is well identi�ed
by the relation 𝑎 |0〉 = 0. The vacuum state is generally described in the photon-number
basis, as |𝜓 〉 = |0〉. However, we can also represent the vacuum state in the position basis
as:

|𝜓 〉 =
∫
R
𝑑𝑞

1
4√𝜋
𝑒−

𝑞2
2 |𝑞〉 (1.82)

CV is the most natural regime when working with the quadratures 𝑞, 𝑝 of the �eld. As
just seen, the description of the quantum �eld of light can be equivalently carried out both
in DV and in CV; what ultimately discriminates between the two regimes is the detection
process: homodyne detection is the detection process of choice in the CV regime, while
photon counting detectors, or more realistically on/o� detectors, are used in the DV regime.
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1.4.2 Pure and Mixed states
In the previous section, we represented the state |𝜓 〉 by expressing it in terms of an
orthonormal basis of our choosing, denoted as |𝜓𝑛〉. This representation takes the form
|𝜓 〉 =

∑
𝑛 𝑐𝑛 |𝜓𝑛〉 for discrete variables, while for continuous variables we replace the sum

with an integral. This mathematical formulation helps us understand that |𝜓 〉 is a vector
within a Hilbert space, speci�cally referred to as pure state. Not all the quantum states can
be described by pure states. In the most general case, a quantum state is not described
by a vector but rather by an operator, known as density operator. The density operator
characterizes a statistical ensemble of state vectors |𝜓𝑖〉, giving rise to what is termed as
mixed state, de�ned as:

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖〉 〈𝜓𝑖 | (1.83)

where
∑
𝑖 𝑝𝑖 = 1 and where 𝑝𝑖 is the probability that the system is in state |𝜓𝑖〉. In the speci�c

case of a pure state, all the weights are null except for one, and the density operator can be
written as:

𝜌 = |𝜓 〉 〈𝜓 | (1.84)

By evaluating Tr(𝜌2), we can determine whether a given state is pure or mixed: we will
obtain Tr(𝜌2) = 1 for pure states and Tr(𝜌2) < 1 for mixed states.

The density operator, like any other operator, can be expressed in terms of a chosen
orthonormal basis of the Hilbert space:

𝜌 =
∑︁
𝑖 𝑗

𝜌𝑖 𝑗 |𝑖〉 〈 𝑗 | (1.85)

The o�-diagonal terms represent interference or coherence terms, and they contain the
crucial information about the relative phases between di�erent basis states. We use the
term “coherent superposition” when these o�-diagonal terms are present, which indicates
a well-de�ned relative phase relationship between the states. In this case, the e�ect of
quantum interference may appear. In contrast, an “incoherent mixture” of states lacks
information about these o�-diagonal terms.

Mixed states are often referred to as classical mixtures because their probabilistic
measurement outcomes result from classical uncertainty or lack of knowledge about the
quantum system of interest. Statistical mixtures typically arise due to various factors,
including the preparation of the quantum state, losses incurred during the system’s
interaction with an uncontrollable environment where the information leaks to, or when
we focus on a speci�c subsystem within an entangled quantum system and “trace out”
the degrees of freedom from the other subsystem. In contrast, the probabilistic nature
of a coherent superposition does not stem from lack of knowledge, but rather from the
fundamental principles of quantum mechanics and it can be exploited to carry quantum
information.
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1.4.3 Wigner function
In section 1.4.1, we discussed how to describe a quantum state of light using continuous
variables 𝑞 and 𝑝 , and we saw that we have the option to expand it in either the position
or momentum basis. Here we introduce the Wigner function [Wigner 32, Leonhardt 97], a
phase-space distribution that employs the statistics of both the 𝑞 and the 𝑝 quadratures to
represent a quantum state. While in the DV regime it is customary to represent quantum
states through their expansion in the occupation-number basis, in the CV regime we often
make use of the Wigner function to describe a given quantum state. More speci�cally,
the Wigner function is a quasiprobability distribution: it di�ers from classical probability
distributions, exhibiting counterintuitive behaviors, such as the presence of negative
regions, a necessary feature for achieving speedup in quantum computation [Tan 20,
Chabaud 21, Mari 12], but it allows the calculation of expectation values and it exhibits
other types of classical-like features.

The Wigner function for a single-mode quantum state described by the density matrix
𝜌 is de�ned as:

𝑊 (𝑞, 𝑝) = 1
4𝜋

∫
R
𝑑𝑦 𝑒

𝑖𝑝𝑦

2

〈
𝑞 − 𝑦2

���� 𝜌 ����𝑞 + 𝑦2 〉
(1.86)

Analogously to classical probability distributions, theWigner function yields the probability
distributions for 𝑞 and 𝑝: ∫

R
𝑑𝑝𝑊 (𝑞, 𝑝) = 〈𝑞 |𝜌 |𝑞〉 = 𝑝 (𝑞) (1.87)∫
R
𝑑𝑞𝑊 (𝑞, 𝑝) = 〈𝑝 |𝜌 |𝑝〉 = 𝑝 (𝑝) (1.88)

We recall that for a pure state 𝑝 (𝑞) = |𝜓 (𝑞) |2 and 𝑝 (𝑝) = |𝜓 (𝑝) |2, which represent the
probability to measure the value 𝑞 or 𝑝 following a position or momentum measurement.
The marginal distributions can be generalized to a rotated quadrature 𝑝 (𝑞𝜃 ) for every
𝜃 , a feature that has a crucial role in the process of quantum state tomography for the
reconstruction of a quantum state.

From the hermiticity of the density matrix and the condition Tr(𝜌) = 1 we can
demonstrate that the Wigner function is real and normalized:

𝑊 (𝑞, 𝑝) =𝑊 ∗(𝑞, 𝑝) (1.89)∫
R
𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝) = 1 (1.90)

Up to now, we have de�ned the Wigner function of a density operator 𝜌 . However, we
can analogously de�ne the Wigner function𝑊𝑂̂ (𝑞, 𝑝) of a generic operator 𝑂̂ , by replacing
𝜌 in Eq. 1.86 with 𝑂̂ , such that:

𝑊𝑂̂ (𝑞, 𝑝) =
1
4𝜋

∫
R
𝑑𝑦 𝑒

𝑖𝑝𝑦

2

〈
𝑞 − 𝑦2

���� 𝑂̂ ����𝑞 + 𝑦2 〉
(1.91)
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Additionally, we introduce the overlap formula

Tr(𝑂̂1𝑂2) = 4𝜋
∫
R
𝑑𝑞𝑑𝑝𝑊𝑂̂1

(𝑞, 𝑝)𝑊𝑂̂2
(𝑞, 𝑝) (1.92)

that proves useful in many situation of interest. For instance, we can calculate the
expectation value of an observable if we set 𝑂̂1 = 𝜌 , or we can assess the purity of a quantum
state if we set 𝑂̂1 = 𝑂̂2 = 𝜌 ; this leads us to:

〈𝑂2〉 = Tr(𝜌𝑂2) = 4𝜋
∫
R
𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝)𝑊𝑂̂2

(𝑞, 𝑝) (1.93)

Purity = Tr(𝜌2) = 4𝜋
∫
R
𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝)2 (1.94)

Here, the �rst equation re�ects the classical rule for calculating expectation values in
statistical mechanics: the Wigner function of the state corresponds to a classical probability
density, while the Wigner function of the operator 𝑊𝑂̂2

(𝑞, 𝑝) represents the physical
quantity of interest.

In contrast to classical probability densities, which are always positive, the Wigner
function of a state can have negative regions. This is the case for photon-number states
with 𝑛 > 0, shown in Fig. 1.4b.

The generalization tomanymodes is straightforward. TheWigner function of a𝑁 -mode
quantum state is:

𝑊 (q, p) =
(
1
4𝜋

)𝑁 ∫
R𝑁
𝑑𝑁y 𝑒

𝑖p·y
2

〈
q − y

2

���� 𝜌 ���� q + y
2

〉
(1.95)

The other formulas explored in this section can be adjusted accordingly.

1.5 Common states in Quantum optics
In this section, we will discuss the most common states encountered in the �eld of Quantum
Optics. This includes Fock states, coherent states, and the main focus of this thesis:
squeezed states of light and EPR states. Similar to the previous section, we will present a
simpli�ed single-mode description of these states whenever possible, although a multimode
generalization is often straightforward.

1.5.1 Fock states

Fock states have already been introduced in section 1.2, wherewe encountered the quantized
Hamiltonian of the electric �eld in the form of Eq. 1.46 andwe introduced the Fock space and

26



CHAPTER 1. QUANTUM LIGHT

its orthonormal occupation-number basis. Here, we aim to give amore complete description
of the Fock states and their properties.

Fock states are eigenstates of the number operator 𝑛̂ = 𝑎†𝑎. As a consequence, measuring
the number of photons of a Fock state with an ideal photon-resolving detector yields a
precise outcome:

𝑛̂ |𝑛〉 = 𝑛 |𝑛〉 (1.96)

and it is straightforward to calculate the �rst and second moments as 〈𝑛〉 = 𝑛 and Δ2𝑛 = 0.
We now aim at calculating the expectation value of the electric �eld operator 𝐸 (r, 𝑡),

de�ned in section 1.3.11. The �rst and second moment are:

〈𝐸〉 = 0 (1.97)
Δ2𝐸 = E2

0 (2𝑛 + 1) (1.98)

The mean electric �eld vanishes, regardless of the number of photons of the Fock state.
Moreover, a measurement performed at any time 𝑡 could result in any outcome within the
range de�ned by Δ2𝐸. Indeed, the phase of a Fock state takes a random value at any time
𝑡 and it can vary from 0 to 𝜋/22. For this reason, the behaviour of the electric �eld of the
Fock state di�ers signi�cantly from the oscillatory pattern we are familiar with.

The mean value and variance of the quadratures read:

〈𝑞〉 = 〈𝑝〉 = 0 (1.99)
Δ2𝑞 = Δ2𝑝 = 2𝑛 + 1 (1.100)

From these relations we see that, among all the Fock states, only the vacuum �eld is a
minimum uncertainty state, i.e. it minimizes the Heisenberg uncertainty relations 1.56.

The Wigner function of a Fock state with photon number 𝑛 is expressed as:

𝑊|𝑛〉 (𝑞, 𝑝) =
(−1)𝑛
2𝜋 𝑒−

𝑞2+𝑝2
2 𝐿𝑛 (𝑞2 + 𝑝2) (1.101)

where 𝐿𝑛 are Laguerre polynomials. Only the Wigner function of the vacuum state |0〉
is Gaussian, while the Wigner function of a Fock state with 𝑛 > 0 exhibits non-classical
behavior, due to the presence of negative regions. An example of Wigner function of the
vacuum state and of a Fock state with 𝑛 = 10 can be seen in Fig. 1.4.

1We work here in the Heisenberg picture, where the electric �eld operator depends on time 𝐸 (r, 𝑡), but we
recall the results are independent on the picture used to carry out the calculations.

2We should expect it from the number-phase uncertainty relation that stems from the non-commuting
observables

[
𝑛̂, 𝜙

]
= 1, where 𝜙 is a phase operator whose de�nition has some subtle problems that we will

not mention here. For Fock states, as the number is perfectly de�ned, the uncertainty of the phase tends to
in�nity [Grynberg 10].
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(a) (b)

Figure 1.3: Phasor diagram (a) and electric �eld (b) of the vacuum state |0〉. The
�eld �uctuates around a vanishing mean value.

(a) (b)

Figure 1.4: Wigner function of the vacuum state |0〉 (a) and of the Fock state |10〉
(b).
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1.5.2 Coherent states
In order to obtain a classical oscillatory behavior, we introduce coherent states, also
considered the “most classical states of light” among pure states. They are de�ned as
eigenstates of the annihilation operator:

𝑎 |𝛼〉 = 𝛼 |𝛼〉 (1.102)

It can be shown that these eigenstates exist if the eigenvalues 𝛼 are complex numbers,
represented as 𝛼 = |𝛼 |𝑒𝑖𝜙 , as 𝑎 is not hermitian. The �rst and second moments of the
electric �eld, evaluated at r = 0, are:

〈𝐸 (r = 0, 𝑡)〉 = E0𝛼𝑒
−𝑖𝜔𝑡 + c.c. (1.103)

Δ2𝐸 (r = 0, 𝑡) = E2
0 (1.104)

From the expression of 〈𝐸〉 it is evident that we have retrieved the oscillatory nature
characteristic of a monochromatic wave. Additionally, Δ2𝐸 is independent of both position
and time.

The quadratures of the �eld are given by:

〈𝑞〉 = 2Re(𝛼) and 〈𝑝〉 = 2Im(𝛼) (1.105)
Δ2𝑞 = Δ2𝑝 = 1 (1.106)

therefore we can conclude that coherent states are minimum uncertainty states. In Fig. 1.5
the behavoir of a coherent state is shown.

Coherent states can be expanded in the basis of Fock states as |𝛼〉 = ∑
𝑛 |𝑛〉 〈𝑛 |𝛼〉. After

calculating the terms 〈𝑛 |𝛼〉, it can be shown that:

|𝛼〉 = 𝑒−
|𝛼 |2
2

∞∑︁
𝑛=0

𝛼𝑛
√
𝑛!

|𝑛〉 (1.107)

wherewe see that coherent states are linear superpositions of Fock states, and therefore they
do not have a de�nite number of photons. More speci�cally, the probability distribution
𝑝 (𝑛) = |〈𝑛 |𝛼〉|2 follows a Poisson distribution with parameter |𝛼 |2, resulting in 〈𝑛̂〉 = Δ2𝑛 =

|𝛼 |2, as it can also be directly calculated. It is to note that two coherent states are not
orthogonal, as 〈𝛼 |𝛽〉 = 𝑒 |𝛽−𝛼 |2 , so that we cannot build an orthonormal basis from coherent
states.

The Wigner function of a coherent state is given by:

𝑊|𝛼〉 =
1
2𝜋 𝑒

− (𝑞−𝑞0)2
2 − (𝑝−𝑝0)2

2 (1.108)

where (𝑞0 + 𝑖𝑝0)/2 = 𝛼 , which represents a Gaussian distribution, as expected for
semi-classical states. We note that the Wigner function of a coherent state is obtained by
displacing theWigner function of the vacuum state in the phase-space by the values (𝑞0, 𝑝0)
.
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(a) (b)

Figure 1.5: Typical phasor diagram (a) and electric �eld (b) of a coherent state.
We note here that, regardless of themagnitude of the vector, the uncertainty area
remains constant. For |𝛼 | � 1 we can recover a classical �eld, where quantum
�uctuations are negligible.

1.5.3 Squeezed states
We �nally describe the class of states that is of most interest in this dissertation: squeezed
states of light. Squeezed states are minimum uncertainty states characterized by reduced
variance in one quadrature, at the expense of the other quadrature, where variance is
increased. Indeed, the two variances do not need to be equal to minimize the uncertainty
relations, and we can have quadrature variances of the type Δ2𝑞 = 𝑎 and Δ2𝑝 = 1/𝑎 that still
ful�ll the Heisenberg uncertainty principle. We will see in this section how to implement
such states and what are their main properties. It is to note that here we will investigate
single-mode squeezed states, as opposed to two-mode squeezed states or twin beams that
we will review in the next section. Single-mode squeezing occurs from a degenerate SPDC
process, when the emitted pairs of photons are indistinguishable. In Chapter 3, we will see
how this speci�c nonlinear process generates squeezed states. A comprehensive review on
squeezed states can be found in [Lvovsky 16].

Squeezed vacuum states are de�ned by:

|𝜁 〉 = 𝑆 (𝜁 ) |0〉 (1.109)

where 𝑆 (𝜁 ) is the unitary squeezing operator1:

𝑆 (𝜁 ) = 𝑒 1
2 (𝜁𝑎†2−𝜁 ∗𝑎2) (1.110)

1A di�erent convention de�nes 𝑆 (𝜁 ) = 𝑒
1
2 (𝜁𝑎2−𝜁 ∗𝑎†2) . In this convention the state is initially 𝑞-squeezed

and 𝑝-antisqueezed.
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Here, 𝜁 = 𝑟𝑒𝑖𝜙 is the squeezing parameter and 𝑟 and 𝜙 are real numbers, where 𝜙 determines
the angle of the squeezed quadrature. In most cases, for simplicity we set 𝜙 = 0 and we refer
to the operator 𝑆 (𝑟 ). The squeezing operator 𝑆 (𝑟 ) acts on the creation and annihilation
operators as:

𝑆†(𝑟 )𝑎𝑆 (𝑟 ) = 𝑎 cosh 𝑟 + 𝑎† sinh 𝑟 (1.111)
𝑆†(𝑟 )𝑎†𝑆 (𝑟 ) = 𝑎† cosh 𝑟 + 𝑎 sinh 𝑟 (1.112)

From these relations we can straightforwardly derive the electric �eld �rst and second
moments:

〈𝐸〉 = 0 (1.113)
Δ2𝐸 = E2

0
[
cosh2 𝑟 + sinh2 𝑟 + cosh 𝑟 sinh 𝑟 (𝑒−𝑖2𝜔𝑡 + 𝑒𝑖2𝜔𝑡 )

]
(1.114)

The transformation of 𝑞 and 𝑝 under a squeezing operation reads:

𝑆†(𝑟 )𝑞𝑆 (𝑟 ) = 𝑒𝑟𝑞 (1.115)
𝑆†(𝑟 )𝑝𝑆 (𝑟 ) = 𝑒−𝑟𝑝 (1.116)

in which case we de�ne 𝑞 as the anti-squeezed quadrature and 𝑝 as the squeezed
quadrature1. From these relations we can calculate the �rst and second moments of the
position and momentum operator:

〈𝑞〉 = 〈𝑝〉 = 0 (1.117)
Δ2𝑞 = 𝑒2𝑟 ,Δ2𝑝 = 𝑒−2𝑟 (1.118)

where we see that squeezed states are minimum uncertainty states. We de�ne 𝑠 = 𝑒2𝑟 as the
squeezing factor2 that we often quantify in decibels:

𝑠𝑑𝐵 = 10 log10(𝑠) (1.119)

Fig. 1.6 illustrates the behavior of a squeezed vacuum state along with its distinctive
quadrature distribution and electric �eld.

Despite being called squeezed vacuum state, |𝑟 〉 is not void of photons. To assess this,
we can represent this state in the photon-number basis and describe its photon number
statistics, obtaining:

|𝑟 〉 = 1
√
cosh𝑟

∞∑︁
𝑛=0

(− tanh 𝑟 )𝑛
√︁
(2𝑛)!
2𝑛𝑛! |2𝑛〉 (1.120)

1In the general case where the squeezing phase is non-zero, we identify an anti-squeezed rotated
quadrature 𝑞𝜙 and a squeezed rotated quadrature 𝑝𝜙 as the quadratures of the rotated operator 𝑎𝜙 = 𝑎𝑒−𝑖𝜙 .

2The squeezing factor is always rescaled by the variance of the vacuum noise: 𝑠 = Δ2𝑞/Δ2𝑞0. In our
convention, Δ2𝑞0 = 1 and we obtain simply 𝑠 = Δ2𝑞.
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(a) (b)

Figure 1.6: Typical phasor diagram (a) and electric �eld (b) of squeezed vacuum
states with two di�erent squeezing parameters. The �uctuations in the second
half of (b) correspond to the 𝑟 = 0.2 squeezing parameter.

Wenote that squeezed states are coherent superpositions of even number Fock states, where
the probability amplitude weights decrease as we increase the number of photons. This is
expected from the de�nition of the squeezing operator in Eq. 1.110, that contains the square
of the creation operator. The physical meaning behind the sole presence of even number
states is intrinsic from the SPDC process, which is a three-wave-mixing nonlinear process
where a pump photon is converted into two twin photons. From Eq. 1.120 we can also
calculate the mean photon number of a squeezed vacuum state, that is given by:

〈𝑛〉 = sinh2 𝑟 (1.121)

Another common way of describing squeezed states is via the position or momentum
representation. The wavefunction in the position basis reads:

𝜓𝑟 (𝑞) =
1

(𝑠𝜋)1/4
𝑒−

𝑞2
2𝑠 (1.122)

and the Wigner function is:
𝑊|𝑟 〉 =

1
2𝜋 𝑒

−𝑞2
2𝑠 −

𝑠𝑝2
2 (1.123)

An example of the Wigner function of a squeezed state is depicted in Fig. 1.7b.

1.5.4 EPR state
EPR states have been a milestone in the development of Quantum theory and technologies,
since their theoretical introduction in 1935, by Einstein, Podolsky and Rosen. In their
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(a) (b)

Figure 1.7: Wigner function of (a) a coherent state centered at (𝑞0, 𝑝0) = (2, 2)
and (b) of a 3 dB 𝑞-squeezed state (b).

original formulation, they represent a system of two distant particles characterized by the
following unnormalized wavefunction:

𝜓 (𝑞1, 𝑞2) = 𝛿 (𝑞1 − 𝑞2) (1.124)
𝜓 (𝑝1, 𝑝2) = 𝛿 (𝑝1 + 𝑝2) (1.125)

where the positions (resp. momenta) of the two particles are perfectly correlated (resp.
anticorrelated). In particular, the EPR state is a non-separable state, meaning that the
correlations among the two particles of the EPR pair cannot be regarded as classical
correlations: the EPR state exhibits entanglement correlations and the two systems are
entangled.

Here, we cannot give a single-mode description, as we did in the rest of this section, as
we obviously need at least two modes to de�ne an entangled state. We de�ne the two-mode
squeezed vacuum state (TMSV), of which the EPR state constitutes a limiting case. The
TMSV is generated by acting on the vacuum with the two-mode squeezing operator:

𝑆2(𝜁 ) = exp
[
𝜁 ∗𝑎†1𝑎

†
2 − 𝜁𝑎1𝑎2

]
(1.126)

where 𝜁 = 𝑟𝑒2𝑖𝜃 . Assuming 𝜃 = 0 for simplicity, we �nd that the corresponding
transformation 𝑆2(𝑟 ) on the annihilation operators in the Heisenberg picture gives the
outcome:

𝑎1(𝑟 ) = 𝑎1 cosh 𝑟 + 𝑎†2 sinh 𝑟 (1.127)
𝑎2(𝑟 ) = 𝑎2 cosh 𝑟 + 𝑎†1 sinh 𝑟 (1.128)

The two-mode vacuum state generated by the action of the operator 𝑆2(𝑟 ) on the vacuum
can be physically implemented by a non-degenerate parametric down conversion process.
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Figure 1.8: A two-mode squeezed vacuum state can be implemented by mixing
two squeezed states on a 50:50 beam-splitter (BS). Each quadrature of the TMSV
exhibits excess of noise. However, the 𝑞 quadratures are partially correlated,
while the 𝑝 quadratures are partially anticorrelated.

Equivalently, it can be realized by combining two single-mode squeezed states with linear
optics, as shown in Fig. 1.8.

While the individual quadratures of the EPR state show �uctuations above the vacuum
noise:

Δ2𝑞1 = Δ2𝑞2 = Δ2𝑝1 = Δ2𝑝2 =
𝑒2𝑟 + 𝑒−2𝑟

2 (1.129)

we can �nd speci�c linear combinations of the quadratures the exhibit noise below the
vacuum level:

Δ2(𝑞1 − 𝑞2) = 2𝑒−2𝑟 (1.130)
Δ2(𝑝1 + 𝑝2) = 2𝑒−2𝑟 (1.131)

For 𝑟 → ∞, the noise of the relative position and of the sum of the momenta decreases and
we retrieve the behavior of an ideal EPR state.

The TMSV state exhibits correlations not only in position and momentum, but also in
photon number. Indeed, in the Fock basis, the TMSV is written as:

𝑆2(𝑟 ) |00〉 =
1

cosh 𝑟

∞∑︁
𝑛=0

(tanh 𝑟 )𝑛 |𝑛〉 |𝑛〉 (1.132)

which shows that the TMSV state can be written as a superposition of states with the same
photon number.
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Finally, the Wigner function for the two-mode squeezed vacuum reads:

𝑊𝐸𝑃𝑅 (𝑞, 𝑝) =
1
4𝜋2 exp

{
−

[
(𝑞1 + 𝑞2)2 + (𝑝1 − 𝑝2)2

]
4𝑒2𝑟 −

[
(𝑞1 − 𝑞2)2 + (𝑝1 + 𝑝2)2

]
4𝑒−2𝑟

}
(1.133)

This Wigner state is gaussian: the two-mode squeezed state is then a gaussian state and it
can be completely characterized by its covariance matrix, as we will see in the next chapter.
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Chapter 2

Gaussian states and measurements
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A central role in quantum optics is assumed by the category of Gaussian states,
which includes some of the states encountered in section 1.4.3, such as coherent states,
squeezed states and EPR states. Despite their inherent limitations [Mari 12], together
with Gaussian operations they constitute a foundational resource for CV Quantum
Information Processing [Ferraro 05, Weedbrook 12, Braunstein 98, Braunstein 00]. In this
chapter, we will review Gaussian states and operations, with a focus on linear optics and
squeezing transformations. Moreover, we will investigate homodyne detection, a Gaussian
measurement technique widely used in CV quantum optics, both in the spectral and in the
temporal domains.
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2.1 Gaussian states and operations

In this section, we review the main de�nitions and tools for Gaussian states and operations
of interest for our work. More extensive details on the subject can be found in [Ferraro 05,
Weedbrook 12, Adesso 14, Braunstein 05b].

2.1.1 Gaussian states

A Gaussian state is, by de�nition, a state whose Wigner quasi-probability distribution is a
multi-variate Gaussian function in phase space. TheWigner function of an𝑛-modeGaussian
state can be expressed as follows:

𝑊 (x) = 1
(2𝜋)𝑛

√
detV

exp
[
−12 (x − x̄)𝑇 V−1 (x − x̄)

]
(2.1)

where x = (q, p), and where x̄ is the mean value (or �rst moment) and V is the covariance
matrix (or second moment) of the state. These are de�ned as:

x̄ = 〈x̂〉 = Tr(x̂𝜌)

𝑉𝑖 𝑗 =
1
2 〈𝑥𝑖𝑥 𝑗 + 𝑥 𝑗𝑥𝑖〉 − 〈𝑥𝑖〉〈𝑥 𝑗 〉

(2.2)

(2.3)

FromEq. 2.1, it can be concluded that themean value and the covariancematrix are su�cient
to fully characterize a Gaussian state. In this thesis, we often assume, without loss of
generality, that x̄ = 0. This is because the mean value can be centered at the origin of
the phase space through a displacement operation, which preserves correlations among
the quadratures [Adesso 14]. Speci�cally, in the quantum states of interest for our work,
quantum information is encoded in quadrature variances and correlations, and it remains
preserved under such displacements. Therefore, we concentrate on the essential properties
of the covariance matrix of the state1.

The covariance matrix of a quantum state must adhere to certain constraints. Similar to
the covariance matrix used in statistics to describe covariances between random variables,
the quantum state’s covariance matrix must also be real, symmetric and positive-de�nite.
However, unlike a “classical” covariance matrix, the covariance matrix of a quantum state
must satisfy an additional constraint imposed by the Heisenberg uncertainty relations,
namely:

V − 𝑖J ≥ 0 (2.4)
1We point out that we are using the notation x = (𝑥1, 𝑥2, . . . , 𝑥𝑁 , 𝑝1, 𝑝2, . . . , 𝑝𝑁 ). A di�erent notation

according towhich the vector is described as x = (𝑥1, 𝑝1, . . . , 𝑥𝑁 , 𝑝𝑁 ) exists. The two approaches are equivalent
and the most important equations in both notations can be found in [Ferraro 05].
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where J is the 2𝑛 × 2𝑛 symplectic matrix:

J =
(
0 −1
1 0

)
(2.5)

This relation is necessary and su�cient to ensure that the covariance matrix represents a
physical quantum state.

The purity of an n-mode quantum state can be determined from its covariance matrix
as follows:

𝜇𝜌 =
1

detV (2.6)

It follows that a quantum state is pure if and only if detV = 1.
In this thesis, we will encounter the covariance matrices of several common states. The

covariancematrix for the single-mode vacuum state, coherent state and squeezed state, read:

𝑉|0〉 = 1 (2.7)
𝑉|𝛼〉 = 1 (2.8)

𝑉|𝑟 〉 =

(
𝑒2𝑟 0
0 𝑒−2𝑟

)
(2.9)

The covariance matrix for the two-mode EPR state reads:

𝑉|𝐸𝑃𝑅〉 =
©­­­«
cosh 2𝑟 sinh 2𝑟 0 0
sinh 2𝑟 cosh 2𝑟 0 0

0 0 cosh 2𝑟 − sinh 2𝑟
0 0 − sinh 2𝑟 cosh 2𝑟

ª®®®¬ (2.10)

2.1.2 Generalities on Gaussian operations
The transformation that a quantum system undergoes is described by a quantum operation
that acts on the quantum state of the system. When addressing an open system, one that
interacts with an environment, the quantum operation is a completely positive linear map
that operates on the initial state [Nielsen 10, Breuer 02]. In general, this operation is non
trace-preserving, as it is the case with measurements on a state. A trace preserving map is
called a quantum channel and it is reversible if and only if it is unitary. Therefore, the action
of a quantum channel is expressed as:

𝜌 → 𝑈𝜌𝑈 † (2.11)

AGaussian operation is de�ned as a transformation that maps Gaussian states into Gaussian
states. In this thesis we focus on Gaussian operations, that include Gaussian unitaries
(Gaussian quantum channels) and Gaussian measurements, notably homodyne detection.
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Gaussian unitaries are operators of the form𝑈 = 𝑒−
𝑖
~ 𝐻̂ , where 𝐻̂ is at most quadratic in

the creation and annihilation operators:

𝐻̂ = 𝑖~
∑︁
𝑖 𝑗

𝐴𝑖 𝑗𝑎
†
𝑖
𝑎 𝑗 + 𝐵𝑖 𝑗𝑎†𝑖 𝑎

†
𝑗
+ 𝛾𝑖𝑎†𝑖 + h.c. (2.12)

In the Heisenberg picture this translates to a linear unitary Bogoliubov transformation of
the creation and annihilation operators:

𝑎𝑘 → 𝑈 †𝑎𝑘𝑈 =
∑︁
𝑗

𝛼 𝑗𝑘𝑎 𝑗 + 𝛽 𝑗𝑘𝑎†𝑗 + 𝛾𝑘 (2.13)

𝑎
†
𝑘
→ 𝑈 †𝑎†

𝑘
𝑈 =

∑︁
𝑗

𝛼∗
𝑗𝑘
𝑎
†
𝑗
+ 𝛽∗

𝑗𝑘
𝑎 𝑗 + 𝛾∗𝑘 (2.14)

or in matrix form:
𝑈 †

(
â
â†

)
𝑈 =

(
𝜶 𝜷
𝜷∗ 𝜶 ∗

) (
â
â†

)
+

(
𝜸
𝜸∗

)
(2.15)

where 𝜶 and 𝜷 are 𝑛 × 𝑛 matrices. Due to the unitarity of the transformation, the
commutation relations must be preserved. This imposes the following constraint on the
𝜶 and 𝜷 matrices:

𝜶𝜶 † = 𝜷𝜷† + 1 (2.16)
𝜶𝜷𝑇 = 𝜷𝜶𝑇 (2.17)

These equations are the de�ning relations of the complex form of the real symplectic group
Sp(2𝑛,R)1. We can write more compactly Eq. 2.15 as follows:

𝑈 †𝝃 (𝑐)𝑈 = S(𝑐)𝝃 (𝑐) + d(𝑐) (2.18)

where 𝝃 (𝑐) = (â, â†)𝑇 . On the quadrature operators this transformation translates to:

𝑈 †x̂𝑈 = Sx̂ + d (2.19)

where x̂ = (𝑞1, . . . , 𝑞𝑛, 𝑝1, . . . , 𝑝𝑛)𝑇 , d ∈ R2𝑛 and it can be shown that S ∈ Sp(2𝑛,R). The two
forms are related by the relations:

x̂ = 𝛀
−1𝝃 (𝑐) (2.20)

d = 𝛀
−1d(𝑐) (2.21)

S = 𝛀
−1S(𝑐)𝛀 (2.22)

1We recall that the real symplectic group is de�ned by matrices that, if we write S in block-form as S =(
A B
C D

)
, satisfy the following constraints: 1) 𝐴𝐵𝑇 and 𝐶𝐷𝑇 must be symmetric, 2) 𝐴𝐷𝑇 − 𝐵𝐶𝑇 = 1 where

𝐴, 𝐵,𝐶, 𝐷 are 𝑛 × 𝑛 matrices.
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where:

Ω =

(
1𝑛 𝑖1𝑛
1𝑛 −𝑖1𝑛

)
(2.23)

A useful approach involves translating the e�ects of this unitary transformation from
the Hilbert space to a transformation operating on statistical moments within the quantum
phase space. For a Gaussian unitary the following transformation holds:

x̄′ = Sx̄ + d

V′ = SVS𝑇
(2.24)
(2.25)

We conclude that the e�ect of Gaussian unitary on a Gaussian state is completely
characterized by the transformations operated on the �rst and second moment of the state.

Finally, we note that under a symplectic transformation theWigner function transforms
as:

𝑊 (x) →𝑊 ′(x) =𝑊
(
S−1(x − d)

)
(2.26)

2.1.3 Linear optics transformations
We introduce here a subgroup of Sp(2𝑛,R) that plays a central role in quantum optics and
that will frequently appear in the next chapters: the unitary subgroup, denoted by 𝐾 (𝑛) and
of dimension 𝑛2. This subgroup contains the transformations that do not mix the creation
and annihilation operators, and whose action is expressed as:

𝑎𝑘 →
∑︁
𝑗

𝑈 𝑗𝑘𝑎𝑘 (2.27)

𝑎
†
𝑘
→

∑︁
𝑗

𝑈 ∗
𝑗𝑘
𝑎
†
𝑘

(2.28)

where U is a unitary matrix that we can decompose into its real and imaginary parts as
U = X + 𝑖Y. The corresponding S(𝑐) matrix, which acts on the creation and annihilation
operators, reads:

S(𝑐) =
(
U 0
0 U∗

)
(2.29)

Using Eq. 2.22, we can retrieve the S matrix that operates on quadrature operators:

S =

(
X −Y
Y X

)
(2.30)

We can check that S represents a real symplectic transformation. Indeed, the condition for
unitarity𝑈𝑈 † = 𝑈 †𝑈 = 1 translates to the matrices 𝑋 and 𝑌 as 𝑋𝑋𝑇 +𝑌𝑌𝑇 = 1 and 𝑋𝑌𝑇 =
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𝑌𝑋𝑇 . These conditions align with the criteria de�ning a symplectic matrix and, moreover,
they imply orthogonality. Therefore, we conclude that a symplectic transformation that
belongs to the subgroup 𝐾 (𝑁 ) is also orthogonal.

Orthogonal symplectic transformations preserve the trace of the covariancematrixV, i.e.
the mean energy of the system1. As a result, these transformations are often referred to as
passive transformations, in contrast to active transformations, such as squeezing operations,
which do not preserve the energy of the system. Passive transformations correspond to
linear optical devices, such as beam splitters and phase shifters.

2.1.4 Decompositions of states and unitaries
Any element S that belongs to the symplectic group can be decomposed in several
ways. In this section we will describe the Bloch-Messiah decomposition (also known as
Euler decomposition). A symplectic transformation can be decomposed via Bloch-Messiah
decomposition into the product of three operations, namely:

S = O1KO2 (2.31)

where O1 = S(X1,Y1) and O2 = S(X2,Y2) are symplectic orthogonal matrices
de�ned as in 2.30 and K = K(d) is a diagonal positive-de�nite matrix such that
K(k) = diag(𝑑1, . . . , 𝑑𝑛, 𝑑−11 . . . 𝑑−1

𝑁
). We can reinterpret this mathematical tool in an

optics framework: the O1 and O2 matrices represent linear optics operations, de�ned in
section 2.1.3, while the K matrix can be identi�ed as a squeezing transformation where
𝑑𝑖 = 𝑒𝑟𝑖 . We can draw the following remarkable conclusion: any Gaussian unitary can
be decomposed into a multiport linear inteferometer, followed by a set of 𝑛 single-mode
squeezers and by another multiport linear interferometer [Braunstein 05a].

Bloch-Messiah decomposition shows us how to decompose a Gaussian unitary. The
Williamson decomposition, instead, involves the decomposition of Gaussian states. The
Williamson theorem states that every positive-de�nite real matrix V of dimension 2𝑛 can
be diagonalized by a symplectic transformation as:

V = SWS𝑇 (2.32)

where W = diag(𝑘1, . . . , 𝑘𝑁 , 𝑘1, . . . , 𝑘𝑛) and its elements are called symplectic
eigenvalues [Williamson 36]. If V represents the covariance matrix of a state, the 𝑘𝑖
symplecic eigenvalues satisfy 𝑘𝑖 ≥ 1, as a consequence of Eq. 2.4. We draw the following
conclusion: any Gaussian state, pure or mixed, described by a covariance matrix V, can be
obtained from a thermal state, described by a diagonal matrix D and subjected to a given
Gaussian unitary S [Weedbrook 12, Ferraro 05].

1The mean energy of the system is proportional to the mean number of photons 〈𝑛〉 = 1
𝑚

∑
𝑘 〈𝑎†𝑘𝑎𝑘〉 =

Tr𝜎/𝑚 − 1, with𝑚 number of modes.
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Combining the Williamson decomposition and the Bloch-Messiah reduction, the
covariance matrix of a Gaussian state can be expressed as:

V = O1KO2WO𝑇2KO
𝑇
1 (2.33)

For a pure Gaussian state,W = 1, and the covariance matrix reads:

V = O1K2O𝑇1 (2.34)

This indicates that any pure Gaussian state can be obtained by acting on vacuum with
a squeezing transformation, followed by a basis change on the independently squeezed
modes, which creates quantum correlations. When the state is mixed, Eq. 2.33 cannot
be further simpli�ed. The matrix W indicates the basis where each mode is in a thermal
state, characterized by excess noise in both quadratures. This thermal noise includes losses
and classical noise from the laser. The basis change O2 is responsible for creating classical
correlations between the modes. Subsequently, we apply a squeezing operation and another
basis changeO1. This decomposition explicitly identi�es the two bases inwhich the classical
noise (thermal noise) and the quantum noise (squeezing) are decoupled [Fabre 20].

2.2 Sidebands in optics
In the context of waveforms and signals, the term sidebands refers to the spectral
components that are located on either side of a carrier frequency in the frequency domain.
In this section, we use the terminology that has been introduced in the �eld of radio
communication, well before the study of quantum information encoded in an optical �eld.
Indeed, both disciplines deal with an electromagnetic �eld and with the encoding and
decoding of information (classical or quantum). In optics, the main �eld is in the THz region,
while the informationwe are interested in is often encoded in radio-frequencies (RF) relative
to an optical carrier.

2.2.1 Classical modulations of the �eld
The modulation of an optical �eld is analogous to the well-known FM (frequency
modulation) or AM (amplitude modulation) radio broadcasting, where the signal to be
transmitted is encoded in modulations of the carrier wave. In radio communication, the
receiver is responsible for demodulating the received radio wave to recover the original
signal. Here, we will be mostly interested in amplitude modulation (AM) and phase
modulation (PM) of the optical �eld. We can indeed decompose every noise or signal present
in our light source into amplitude or phasemodulations (or �uctuations). We stress here that
the terms �uctuations and modulations will be used interchangeably. We are interested in
the sidebands of the optical �eld, that contain the information on the amplitude and phase
modulations imprinted on the �eld.

43



2.2. SIDEBANDS IN OPTICS

To summarize, the essential aspect to grasp in this section is the following: light can
serve as a medium for transmitting classical information, in the form of combinations of
AM and PM of the carrier wave. These modulations manifest themselves as sidebands in
the frequency domain. Therefore, classical information is encoded into sidebands of the light
�eld. This concept extends to the quantum domain as well, but with signi�cant di�erences,
as we will explore in the next section. The goal of this section is to investigate the basics of
classical modulation, in particular how to exploit AM or PM of the carrier to send a signal
via the appearance of sidebands in the frequency domain [Bachor 19].

Here, we assume that we deal with an electric �eld in the slowly-varying envelope
approximation, de�ned in Eq. 1.28. We modulate1 the amplitude of the electric �eld with a
sinusoidal signal of the type𝑚(𝑡) = 𝑀 cos(Ω𝑚𝑜𝑑𝑡), where 𝑀 < 1 and where Ω𝑚𝑜𝑑 falls in
the RF range. The modulated �eld reads:

𝐸
(+)
𝐴𝑀

(𝑡) = E0𝛼 (𝑡) (1 +𝑚(𝑡))𝑒−𝑖𝜔0𝑡 (2.35)

Consequently, following Eq. 1.29, its Fourier transform becomes:

𝐸
(+)
𝐴𝑀

(𝜔) = E0

(
𝛼 (Ω) + 𝑀2 𝛼 (Ω + Ω𝑚𝑜𝑑) +

𝑀

2 𝛼 (Ω − Ω𝑚𝑜𝑑)
)

(2.36)

where Ω = 𝜔 − 𝜔0. The e�ect of amplitude modulation is to generate sidebands at +Ω𝑚𝑜𝑑
(upper sideband) and at −Ω𝑚𝑜𝑑 (lower sideband) relative to Ω. For the case in which 𝛼 (𝑡)
is a constant, this results in 𝛿 (Ω𝑚𝑜𝑑) and 𝛿 (−Ω𝑚𝑜𝑑) in the frequency domain, as depicted in
Fig. 2.1a. The sidebands are equal and perfectly correlated, having the same amplitude and
phase.

Phase modulation is analogous, but this time we use the signal 𝑝 (𝑡) = 𝑀 sin(Ω𝑚𝑜𝑑𝑡) to
modulate the phase of the �eld:

𝐸
(+)
𝑃𝑀

(𝑡) = E0𝛼 (𝑡)𝑒𝑖𝑝 (𝑡)𝑒−𝑖𝜔0𝑡 (2.37)

If the modulation factor𝑀 is small, we can expand this expression to �rst order:

𝐸
(+)
𝑃𝑀

(𝑡) ≈ E0𝛼 (𝑡) (1 + 𝑖𝑝 (𝑡))𝑒−𝑖𝜔0𝑡 (2.38)

In the Fourier domain, this becomes:

𝐸
(+)
𝑃𝑀

(𝜔) = E0

(
𝛼 (Ω) + 𝑀2 𝛼 (Ω + Ω𝑚𝑜𝑑) −

𝑀

2 𝛼 (Ω − Ω𝑚𝑜𝑑)
)

(2.39)

The sidebands for phase modulation are equal in magnitude but perfectly anti-correlated,
di�erently from the AM case. The e�ect of this di�erence between AM and PM can be seen
in the phasor diagrams of Fig. 2.1b and 2.1c.

1We point out, to avoid confusion, that the electric �eld in general can be already optically modulated, for
example in the case of pulsed light, via the complex envelope 𝛼 (𝑡) that modulates the amplitude of the carrier
wave.
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(a)

(b) (c)

Figure 2.1: AM and PM modulations of a continuous-wave carrier 𝜔0, resulting
from Eq. 2.36 and Eq. 2.39. In a) we see the emergence of modulation sidebands
at optical frequencies 𝜔0 ± Ω1 for AM and 𝜔0 ± Ω2 for PM. Note that the PM
sidebands are 𝜋 out-of-phase. In b) and c) the phasor diagrams in the rotating
frame at carrier frequency 𝜔0 are shown. When modulation is not present, the
vector lays on the 𝑞 axis. In the case of AM (b) the sidebands rotate at frequency
±Ω1 in the diagram: the vector still lays on the 𝑞 axis but as a net result its
magnitude oscillates. In the case of PM (c) the sidebands rotate at frequency ±Ω2
in the diagram, and as a net result the vector 𝑝-axis component is not vanishing
but it oscillates. Note that the upper sidebands of AM and PM have a phase
di�erence of 𝜋 .
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In our experiment, we work with a train of femtosecond pulses, collectively forming a
frequency comb when represented in the frequency domain. The comb consists of evenly
spaced Dirac delta peaks, often referred to as the “teeth" of the comb. While a detailed
description of the frequency combwill be provided in section 4.2, here we aim to understand
the impact of applying amplitude and phase modulation to such a train of light pulses. In
this context, 𝛼 (Ω) represents the multitude of frequency teeth, essentially Dirac deltas, with
speci�c spacing. Referring to Eqs. 2.36 and 2.39, the modulation introduces the following
e�ect on the frequency comb: it generates sidebands re�ecting the structure of 𝛼 (Ω) at
±Ω𝑚𝑜𝑑 , while attenuating them by a factor of 𝑀

2 , and eventually adding a phase shift in
upper sidebands, if dealing with PM. As a result, the amplitude modulation (AM) and phase
modulation (PM) sidebands are generated around each individual tooth of the comb.

2.2.2 Sidebands quantum operators

In the previous section, we saw that classical modulations or �uctuations of the �eld are
translated into the emergence of sidebands distributed around a carrier frequency 𝜔0. The
carrier itself conveys no information. Therefore, the goal of light detection is to extract the
information embedded within the continuum of sideband modes surrounding the carrier.
In this section, we will de�ne the sideband operators, which are responsible for creating or
annihilating sideband states, along with the associated quadrature operators.

In this context, we will adopt the notation 𝜔 to indicate optical frequencies (in the THz
range) and Ω to indicate frequencies relative to the optical carrier 𝜔0, in the electronic
range (from kHz to GHz). The Fourier transforms will be evaluated around Ω, as most
photodetectors and spectrum analyzer will resolve �uctuations of this order. We will also
use the term upper sideband (resp. lower sideband) to denote the optical frequencies 𝜔0 +Ω
(resp. 𝜔0 − Ω).

As already seen in Eq. 1.35, in the Heisenberg picture the �uctuations of the �eld can be
expressed as1:

𝑎(𝑡) = 𝛼 + 𝛿𝑎(𝑡) (2.40)

where we recall that 𝛼 = |𝛼 |𝑒𝑖𝜙 is the average value over time of 𝑎(𝑡), while 𝛿𝑎(𝑡) represents
the �uctuations of the �eld [Huntington 05, Bachor 19]. We neglect higher order terms
assuming small �uctuations. Moreover, in many practical cases of interest, the mean value
is zero, so that 𝑎(𝑡) and 𝛿𝑎(𝑡) are often used interchangeably.

The Fourier transform of the operator 𝑎(𝑡) de�ned in Eq 2.40 reads:

𝑎(Ω) =
∫
R

𝑑𝑡
√
2𝜋

𝑒𝑖Ω𝑡𝑎(𝑡) (2.41)

1We point out that this operator is de�ned in the rotating frame at frequency 𝜔0. In practice, this means
that the vector in the phasor diagram representing the amplitude 𝑎(𝑡) �uctuates around a �xed average value,
represented by a vector of magnitude 𝛼 and with a certain angle 𝜙 .
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The mean �eld 𝛼 yields simply a Dirac delta in the correspondence of the carrier frequency
Ω = 0. As this is of little interest, this part is usually discarded, and we frequently indicate
𝑎(Ω) as the Fourier transform, with respect to Ω, only of the �uctuating term 𝛿𝑎(𝑡). We
de�ne the sideband operators as [Huntington 05]:

𝑎(Ω) =
∫
R

𝑑𝑡
√
2𝜋

𝑒𝑖Ω𝑡𝛿𝑎(𝑡) (2.42)

𝑎(−Ω) =
∫
R

𝑑𝑡
√
2𝜋

𝑒−𝑖Ω𝑡𝛿𝑎(𝑡) (2.43)

𝑎†(Ω) =
∫
R

𝑑𝑡
√
2𝜋

𝑒−𝑖Ω𝑡𝛿𝑎†(𝑡) (2.44)

𝑎†(−Ω) =
∫
R

𝑑𝑡
√
2𝜋

𝑒𝑖Ω𝑡𝛿𝑎†(𝑡) (2.45)

where the 𝛿 indicating the �uctuation is explicitly dropped in the frequency domain. These
operators create or annihilate a photon at sideband frequency±Ωwith respect to the carrier,
i.e. at the optical frequency 𝜔 = 𝜔0 ± Ω [Martinelli 23, Zhang 03, Barbosa 20].

To de�ne quadratures 𝑥 (Ω) in the Fourier space we might be tempted to implement the
Fourier transform of the quadratures 𝑥 (𝑡). However, this would not be the correct de�nition,
because quadratures are de�ned as linear combinations of creation and annihilation
operators of a speci�c mode. For example, for a monochromatic mode, we have 𝑞(𝜔) =

𝑎†(𝜔) + 𝑎(𝜔), and for sideband modes analogously:

𝑞(Ω) = 𝑎†(Ω) + 𝑎(Ω) (2.46)
𝑝 (Ω) = 𝑖 (𝑎†(Ω) − 𝑎(Ω)) (2.47)

However, the Fourier transform of the quadratures �uctuations 𝛿𝑥 (𝑡) reads:

𝑞𝐹𝑇 (Ω) =
∫
R

𝑑𝑡
√
2𝜋
𝑒𝑖Ω𝑡𝛿𝑞(𝑡) = 𝑎†(−Ω) + 𝑎(Ω) (2.48)

𝑝𝐹𝑇 (Ω) =
∫
R

𝑑𝑡
√
2𝜋
𝑒𝑖Ω𝑡𝛿𝑝 (𝑡) = 𝑖

(
𝑎†(−Ω) − 𝑎(Ω)

)
(2.49)

We can see that 𝑥𝐹𝑇 (Ω), the spectrum of the quadrature �uctuations 𝛿𝑥 (𝑡), is di�erent from
the canonical quadrature 𝑥 (Ω). Indeed, this spectrum involves the operators of both the
lower and upper sidebands. This is not surprising: we already saw in section 2.2.1 that a
sinusoidal modulation in time at frequency Ω𝑚𝑜𝑑 results in the appearance of both the Ω𝑚𝑜𝑑
and the −Ω𝑚𝑜𝑑 sidebands in the frequency domain.

2.2.3 Sidebands as quantum states
In the previous section we introduced all the tools necessary to describe the electric �eld in
the sideband mode basis, which is the natural basis of spectral homodyne detetection, that
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we will investigate in the next sections. We rewrite the expression of the electric �eld from
Eq. 1.34:

𝐸 (𝑡) = E0 [𝑞(𝑡) cos(𝜔0𝑡) + 𝑝 (𝑡) sin(𝜔0𝑡)] (2.50)
This expression can be reformulated, in terms of sidebands operators, as:

𝐸 (𝑡) = E0

[
cos(𝜔0𝑡)

∫
R

𝑑𝑡
√
2𝜋
𝑒−𝑖Ω𝑡𝑞𝐹𝑇 (𝑡) + sin(𝜔0𝑡)

∫
R

𝑑𝑡
√
2𝜋
𝑒−𝑖Ω𝑡𝑝𝐹𝑇 (𝑡)

]
=

E0 cos(𝜔0𝑡)
∫
R

𝑑𝑡
√
2𝜋
𝑒−𝑖Ω𝑡

(
𝑎†(−Ω) + 𝑎(Ω)

)
+

E0 sin(𝜔0𝑡)
∫
R

𝑑𝑡
√
2𝜋
𝑒−𝑖Ω𝑡𝑖

(
𝑎†(−Ω) − 𝑎(Ω)

) (2.51)

This expansion reveals that the electric �eld can be expressed as a combination of creation
and annihilation operators of the upper and lower sidebands, e�ectively representing it in
a sideband mode basis.

Just like any other mode basis, the sideband modes can be populated by di�erent
quantum states, that can exhibit quantum correlations among themselves. For instance,
a beam modulated at frequency Ω𝑚𝑜𝑑 can be written as:

|𝜓 〉 = |𝛼 : Ω𝑚𝑜𝑑〉 |𝛼 : −Ω𝑚𝑜𝑑〉 |0 : Ω ≠ ±Ω𝑚𝑜𝑑〉 (2.52)

In this state, the upper and lower sidebands ±Ωmod are occupied by a pair of coherent states,
featuring perfectly correlated or anticorrelated signals, depending on whether we deal with
amplitude or phasemodulation. In this case, the state is Gaussian and separable [Barbosa 20,
Bachor 19]. The emergence of classical sidebands due to modulation is consistent with the
classical description we provided in section 2.2.1. What changes in the quantum description
is that we must also consider inherent quantum noise. The di�erence between the classical
and quantum descriptions is akin to how a classical state can be represented by a point in a
phasor diagram, while in a quantum state we can never simultaneously assign given values
to 𝑞 and 𝑝 and the best we can do is to give a mean value (a point) surrounded by noise. The
noise in the sideband modes will de�ne the quantum properties of the state [Bachor 19].

In the case of a coherent state, which represents the most classical pure state of light,
the noise is random and uncorrelated across all sidebands. It is important to distinguish
between classical signals and noise: for amodulated coherent state, the noise is uncorrelated,
while the signals, which are the coherent amplitudes in the sidebands, are perfectly
correlated [Barbosa 20, Barbosa 13]. This is depicted in Fig. 2.2a.

It is interesting to investigate the case of a state that is more “quantum” than the coherent
state, for instance the squeezed vacuum state. In such state, the sidebands exhibit correlated
noise, as depicted in Fig. 2.2b. The quantum state of the ±Ω sidebands in this case is an
EPR-like entangled state

|𝜓 〉 = |EPR : Ω,−Ω〉 (2.53)
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perfectly correlated signals
uncorrelated noise

(a)

partially correlated noise

(b)

Figure 2.2: a) Sidebands description of an AM state, modulated at frequency
Ω𝑚𝑜𝑑 . The emergence of correlated sidebands at ±Ω𝑚𝑜𝑑 is expected also
classically. In the quantum description, uncorrelated quantum noise is present at
every frequency. b) Sidebands description of vacuum squeezed state. There is no
coherent signal, but the noise in sidebands ±Ω is partially correlated, depending
on the squeezing level of the state. The correlations are EPR correlations (see
Fig. 1.8, depicting correlations of the EPR state).

The closer this state is to an ideal EPR state, the bigger the squeezing value of the
state [Zhang 03, Bachor 19].

2.3 Measurement of quantum states

In section 1.4.1, we emphasized that there is no inherently preferred basis for describing
quantum states of light. Equivalently, we can employ photon-number states (a
discrete-variable (DV) formalism), or opt for a continuous-variable (CV) description using
quadratures of the �eld as our chosen observables. It is a common misconception to
exclusively associate single photon states with DV and squeezed states with CV. However,
a single photon state can be e�ectively described within a CV framework and, conversely,
a squeezed state can be expanded in the Fock basis, as shown in Eq. 1.120. The underlying
physics remains unchanged; it is merely a matter of selecting our preferred description.
Nevertheless, when it comes to detection, a choice must be made. A DV description is
favored when employing single-photon counters in the detection process, whereas a CV
approach is more suitable when using a homodyne detector. In this work, our focus is on
the latter, and in this section we will illustrate how to measure quadratures using homodyne
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detection.

2.3.1 Intensity measure
The quantity of interest in the CV case is the photocurrent generated by photodetectors,
that are hit by the beam of light we want to measure. The interaction of the photons with
the semiconductor material of the photodetector liberates photoelectrons, depending on the
quantum e�ciency 𝜂𝑑𝑒𝑡 , that is the ratio between liberated electrons per number of photons.
Consequently, the photocurrent carries the information encoded in the incident light, which
can then be analyzed using tools such as oscilloscopes or spectrum analyzers.

The intensity of the �eld is de�ned1 as [Loudon 00]:

𝐼 (r, 𝑡) = 2𝜖0𝑛𝑐𝐸 (−) (r, 𝑡)𝐸 (+) (r, 𝑡) (2.54)

For a detector placed at 𝑧 = 0, the generated photocurrent is given by:

𝑖 (𝑡) = 𝑅
∫
𝑆

𝑑𝑆

∫
R
𝑑𝜏 𝑟 (𝜏)𝐼 (𝑥,𝑦, 𝑡 − 𝜏) (2.55)

where the �eld intensity is integrated over the detector surface 𝑆 and 𝑟 (𝜏) is the
impulse-response function of the detector. The responsivity of the detector 𝑅 is de�ned as
the ratio of the photocurrent to the power of the input beam and it is given by the formula:

𝑅 =
𝑞𝑒𝜂𝑑𝑒𝑡

ℎ𝜈
(2.56)

where 𝑞 is the elementary charge and 𝜈 is the frequency of the incident photons. This
expression can be simpli�ed if we consider a single spatial mode contained in the detector
surface and an instantaneous response function. Under these conditions, following the
de�nition given in Eq. 2.54, we obtain:

𝑖 (𝑡) = 𝑞𝜂𝑑𝑒𝑡𝑎†(𝑡)𝑎(𝑡) (2.57)

This expression is consistent with what we expect: for perfect conversion e�ciency𝜂𝑑𝑒𝑡 = 1,
the photocurrent at time 𝑡 is, trivially, the elementary charge multiplied by the number of
photons detected at time 𝑡 . Usually, we drop the elementary charge constant and we use,
for simplicity, the dimensionless operator:

𝑖 (𝑡) = 𝑎†(𝑡)𝑎(𝑡) (2.58)

where here we assume 𝜂𝑑𝑒𝑡 = 1.
In this framework, a light beam can be analyzed by measuring the photocurrent

observable 𝑖 (𝑡) via direct detection, i.e. by using a single photodetector to measure the beam
1For a polarized parallel light beam.
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of interest. Referring to Eq. 2.58, and by splitting the creation and annihilation operators
into their mean value and �uctuating terms as in Eq. 2.40, the photocurrent can be rewritten
as:

𝑖 (𝑡) = 𝛼2 + 𝛼𝛿𝑞(𝑡) (2.59)
Fluctuations in the 𝑞(𝑡) quadrature can then be directly measured by direct photodetection,
as we have access to the term 𝛿𝑖 (𝑡) = 𝛼𝛿𝑞(𝑡). In the literature 𝑞(𝑡) is sometimes de�ned, for
this reason, amplitude quadrature or in-phase quadrature, since intensity �uctuations are
proportional to the mean �eld in the phasor representation. The 𝑝 (𝑡) quadrature, known as
the phase quadrature, can be accessed by transforming phase information into amplitude
information through interference with a reference beam, a concept we will explore in more
detail later on.

We can discard the average term of the photocurrent, that yields a Dirac delta peak in
Ω = 0, and we de�ne the quantity:

𝑖 (Ω) =
∫

𝑑𝑡
√
2𝜋

𝑒𝑖Ω𝑡𝛿𝑖 (𝑡) = 𝛼𝑞𝐹𝑇 (Ω) = 𝛼
(
𝑎†(−Ω) + 𝑎(Ω)

)
(2.60)

where, as usual, we omit the “𝛿′′ that indicates �uctuations in the Fourier space. This
equation shows us that the spectral noise at a given frequency depends on the noise on
the upper and lower sidebands, and it is proportional to the mean value of the detected
light.

2.3.2 Noise spectrum and quantum noise
Fluctuations 𝛿𝑖 (𝑡) of the photocurrent can be measured in the temporal domain using
an oscilloscope. Alternatively, we can also choose to investigate the properties and the
quadrature statistics encoded in the photocurrent in the Fourier domain. The analysis of the
photocurrent is carried out by analyzing the intensity noise spectrum, a plot of the noise
as a function of Ω, the frequency relative to the carrier. More speci�cally, the quantity of
interest is the power spectral density (or spectral noise power) of the photocurrent, which
is de�ned as:

𝑆 (Ω) = lim
𝑇→∞

1
𝑇

�����∫ 𝑇 /2

−𝑇 /2

𝑑𝑡
√
2𝜋
𝑖 (𝑡)𝑒𝑖Ω𝑡

�����2 (2.61)

The Wiener-Khinchin theorem states that for a stationary process the power spectral
density is equal to the Fourier transform of the autocorrelation function of the signal. The
power spectral density 𝑆 (Ω) can be rewritten as:

𝑆 (Ω) =
∫ ∞

−∞

𝑑𝜏
√
2𝜋

〈𝑖 (𝑡)𝑖 (𝑡 + 𝜏)〉𝑒𝑖Ω𝜏 (2.62)

where 〈𝑖 (𝑡)𝑖 (𝑡 + 𝜏)〉 is the autocorrelation function of the photocurrent. The spectral noise
power 𝑆 (Ω) is the quantity obtained from the spectrum analyzer, and it measures the power
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contained in a signal or noise at a speci�c frequency Ω relative to the carrier. Details on the
useful relations and characteristics of the spectral noise power can be found in [Ansquer 22].

The spectral noise power captures not only the intensity �uctuations of the optical �eld
(which include classical modulations, classical noise and quantum noise), but also the noise
contribution of the electronics, such as ampli�er noise, thermal noise, dark currents. To be
able to detect �uctuations from the optical �eld, we require 𝛿𝑖𝑒𝑙 (𝑡) � 𝛿𝑖𝑜𝑝𝑡 (𝑡), where 𝛿𝑖𝑒𝑙 (𝑡)
and 𝛿𝑖𝑜𝑝𝑡 (𝑡) represent the photocurrent �uctuations arising from the electronics and from
the optical �eld, respectively. The electronic noise can be easily evaluated by measuring the
noise spectrum in the absence of input light.

According to classical physics, it could be in principle possible to transmit a signal
using a modulated light beam without unwanted noise. However, we now understand
that light intensity presents unavoidable �uctuations, quantum noise, prescribed by the
laws of quantum physics [Gardiner 04]. Quantum noise emerges as an intrinsic feature
in quadrature measurements due to the Heisenberg uncertainty principle governing
non-commuting quadrature observables. This translates on a speci�c arrival time statistics
of the photons, that is imprinted in the photocurrent. For a semi-classical coherent �eld,
for example, the arrival times are random, resulting in a Poisson statistics. In such case, the
quantum noise is called shot noise, and it is equivalent to the noise present in the vacuum.
Shot noise power spectral density is independent of frequency, so that we can classify it as
“white noise”. A more regular photon �ux, such as the one of 𝑞-squeezed states of light,
can result in photocurrent �uctuations below the shot noise. However, as already seen,
going below the shot noise limit comes with a price, and the �uctuations in the conjugate
quadrature are increased, so that we do not violate the Heisenberg uncertainty principle.
We point out that quantum noise is not a consequence of the detection process, but it is an
intrinsic feature of light itself.

Quantum noise is proportional to the intensity of the detected light, therefore it is useful
to introduce a normalized version of the spectral noise power:

𝑆 (Ω) = 𝑆 (Ω)
𝑆𝑠ℎ𝑜𝑡 (Ω)

(2.63)

where 𝑆𝑠ℎ𝑜𝑡 (Ω) is the “white noise” that corresponds to the power spectral density of the
shot noise.

2.3.3 Homodyne detection in the temporal domain

Balanced homodyne detection [Yuen 83] is a measurement scheme widely used in quantum
optics and quantum information experiments. This technique employs the interference on a
50:50 beam splitter between the signal beam (the light to be measured) and a local oscillator
(LO) beam, which is usually a bright laser beam derived from the same source as the signal
light; this ensures that the signal and the LO share the same classical noise characteristics.

52



CHAPTER 2. GAUSSIAN STATES AND MEASUREMENTS

Local oscillator

Signal light

Figure 2.3: Homodyne detection scheme. The LO beam and the signal beam
interfere on a 50:50 beam-splitter. The output beams are detected by two
photodiodes and the resulting photocurrents are subtracted. The phase of the
LO is typically adjusted using a piezoelectric actuator.

The result of this interference is two output beams, one from each output port of the beam
splitter, that hit on two photodetectors, generating two photocurrents. These photocurrents
are then subtracted from each other, producing the subtracted photocurrent, denoted as
𝑖−(𝑡). A scheme of homodyne detection can be seen in Fig. 2.3.

Homodyne detection provides several practical advantages compared to direct detection.
One of the primary advantages of this scheme is its ability to cancel out the classical noise of
the LO, which is perfectly correlated in the two beams, as a consequence of the subtraction
process. However, the quantum noise of the signal remains present in the subtracted
current, as we will see shortly. Moreover, by changing the phase of the local oscillator
we can also measure the phase quadrature of the signal light, which was not possible with
direct detection, as shown in Eq. 2.59. Another interesting feature of balanced homodyne
detection is that it constitutes a projectivemeasurement of the signal light onto the LOmode.
In practical terms, this allows us to selectively target the desired mode for measurement,
even with highly multimode light sources, by sending it into the local oscillator beam.

We start by describing the transformation of the balanced beam-splitter on the
annihilation operators of the two input beams, denoted as 𝑎(𝑡) for the signal light and 𝑎𝐿𝑂 (𝑡)
for the LO light. The two output beams, directed towards photodetectors 𝐷1 and 𝐷2, can
be expressed as:

𝑎𝐷1(𝑡) =
𝑎𝐿𝑂 (𝑡) + 𝑎(𝑡)√

2
(2.64)

𝑎𝐷2(𝑡) =
𝑎𝐿𝑂 (𝑡) − 𝑎(𝑡)√

2
(2.65)
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From Eq. 2.58, we write the photocurrents generated by the two photodetectors as:

𝑖𝐷1(𝑡) =
1
2

(
𝑎
†
𝐿𝑂
𝑎𝐿𝑂 + 𝑎†(𝑡)𝑎(𝑡) + 𝑎†

𝐿𝑂
(𝑡)𝑎(𝑡) + 𝑎†(𝑡)𝑎𝐿𝑂 (𝑡)

)
(2.66)

𝑖𝐷2(𝑡) =
1
2

(
𝑎
†
𝐿𝑂
𝑎𝐿𝑂 + 𝑎†(𝑡)𝑎(𝑡) − 𝑎†

𝐿𝑂
(𝑡)𝑎(𝑡) − 𝑎†(𝑡)𝑎𝐿𝑂 (𝑡)

)
(2.67)

and the subtracted photocurrent 𝑖−(𝑡) is obtained by subtracting the photodiodes
photocurrents:

𝑖−(𝑡) = 𝑖𝐷1(𝑡) − 𝑖𝐷2(𝑡) = 𝑎†𝐿𝑂 (𝑡)𝑎(𝑡) + 𝑎
†(𝑡)𝑎𝐿𝑂 (𝑡) (2.68)

We assume a bright local oscillator of the form 𝑎𝐿𝑂 (𝑡) = 𝛼𝐿𝑂 +𝛿𝑎(𝑡). Here, 𝛼𝐿𝑂 = |𝛼𝐿𝑂 |𝑒−𝑖𝜙𝐿𝑂
and it is signi�cantly larger than the other terms involved. We can then neglect all the terms
except the ones proportional to 𝛼𝐿𝑂 and write:

𝑖−(𝑡) = |𝛼𝐿𝑂 |
(
𝑒𝑖𝜙𝐿𝑂𝑎∗(𝑡) + 𝑒−𝑖𝜙𝐿𝑂𝑎(𝑡)

)
= |𝛼𝐿𝑂 |𝑥𝜙𝐿𝑂 (2.69)

where 𝑥𝜙𝐿𝑂 is de�ned as the rotated quadrature. We note that the photocurrent is
proportional to the LO amplitude, but the classical noise of the LO is canceled and does
not a�ect the measurement. The �uctuating term of the photocurrent reads:

𝛿𝑖−(𝑡) = |𝛼𝐿𝑂 |
(
𝑒𝑖𝜙𝐿𝑂𝛿𝑎∗(𝑡) + 𝑒−𝑖𝜙𝐿𝑂𝛿𝑎(𝑡)

)
(2.70)

or, in terms of quadratures:

𝛿𝑖−(𝑡) = |𝛼𝐿𝑂 | (cos𝜙𝐿𝑂𝛿𝑞(𝑡) + sin𝜙𝐿𝑂𝛿𝑝 (𝑡)) = |𝛼𝐿𝑂 |𝛿𝑥𝜙𝐿𝑂 (𝑡) (2.71)

Tuning the phase of the local oscillator allows us to access the �uctuations in the 𝑝 (𝑡)
quadrature, which is not achievable through direct photocurrent detection, as seen in
Eq. 2.59. We also note that the �uctuations are ampli�ed by |𝛼𝐿𝑂 |.

The subtracted photocurrent, and speci�cally the generalized quadrature �uctuations
𝛿𝑥𝜙𝐿𝑂 (𝑡), can be analyzed using a time-resolving device, like an oscilloscope. However, the
detector’s response time is often insu�cient to adequately resolve the mode of interest.
To e�ectively resolve individual pulses of light, we require a detector whose bandwidth is
comparable or higher than the repetition rate of the laser. In this work, a custom detector
has been built, enabling us to access the quadrature �uctuations 𝛿𝑥𝜙𝐿𝑂 (𝑡) of individual light
pulses [Kouadou 21].

2.3.4 Homodyne detection in the spectral domain
It is common to analyze the electronic spectrum 𝑖 (Ω) of the photocurrent to extract
information about the noise statistics of a quantum state. This is particularly true in
squeezing measurements, where the squeezing value is probed using a spectrum analyzer
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at a speci�c electronic frequency Ω = Ω0, often within the MHz range. This technique is
very practical for directly measuring the squeezing value of a speci�c mode of light and it
permits to get rid of unwanted sources of technical noise, such as drifts of the mean value of
the photocurrent over time. However, analyzing photocurrents in the spectral domain has
a signi�cant limitation: the inability to fully reconstruct the quantum state. Despite this,
we can still employ this technique to measure a speci�c class of quantum states. Indeed,
this limitation is not problematic if the only quantity of interest is the noise variance of the
state, as is the case for vacuum squeezed states.

The �uctuating term 𝛿𝑖−(𝑡) in Eq. 2.71 can be analyzed in the Fourier space according
to Eq. 2.60, and it reads:

𝑖 (Ω) = |𝛼𝐿𝑂 |
(
𝑒𝑖𝜙𝐿𝑂𝑎†(−Ω) + 𝑒−𝑖𝜙𝐿𝑂𝑎(Ω)

)
(2.72)

where we drop the “−” subscript in the subtracted photocurrent for notational simplicity.
We note that the operators of both the upper and lower sidebands concur in de�ning the
photocurrent in the spectral domain. The operator 𝑖 (Ω) is not self-adjoint, therefore, unlike
𝑖 (𝑡), it is not an observable1. However, note that 𝑖†(Ω) = 𝑖 (−Ω). We de�ne:

𝑖+(Ω) =
√
2Re

[
𝐼 (Ω)

]
(2.73)

𝑖−(Ω) =
√
2Im

[
𝐼 (Ω)

]
(2.74)

and we rewrite Eq. 2.72 as:

𝑖 (Ω) = |𝛼𝐿𝑂 |√
2

(
𝑖+(Ω) + 𝑖 · 𝑖−(Ω)

)
(2.75)

where 𝑖+(Ω) and 𝑖−(Ω) are observables, as they are self-adjoint by construction, being
de�ned as the real and imaginary part of a complex-valued operator. Moreover, they
commute, therefore they can be measured simultaneously. They can be rewritten as:

𝑖+(Ω) = cos𝜙𝑞+(Ω) + sin𝜙𝑝+(Ω) ≡ 𝑥𝜙+ (Ω) (2.76)

𝑖−(Ω) = cos𝜙𝑝−(Ω) − sin𝜙𝑞−(Ω) ≡ 𝑥
𝜙+ 𝜋

2− (Ω) (2.77)

Here, we have de�ned the modes:

𝑞±(Ω) =
𝑞(Ω) ± 𝑞(−Ω)

√
2

(2.78)

𝑝±(Ω) =
𝑝 (Ω) ± 𝑝 (−Ω)

√
2

(2.79)

1This can be surprising. Di�erently from 𝑖 (𝑡), 𝑖 (Ω) in general has complex eigenvalues. In particular,
〈𝑖 (Ω)〉 is complex, as 〈𝑖 (Ω)〉 ∝

∫
𝑑𝑡 〈𝑖 (𝑡)〉𝑒𝑖Ω𝑡 . Physically, we cannot measure a complex number, but we can

measure its real and imaginary part.
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that are symmetric and asymmetric combination of sideband modes. In this context, 𝑥𝜙+ (Ω)
and 𝑥𝜙+

𝜋
2− (Ω) correspond to generalized quadratures of the symmetric and asymmetric

modes. We emphasise two important points: �rstly, the two generalized quadratures
𝑥
𝜙
+ (Ω) and 𝑥𝜙+

𝜋
2− (Ω) commute allowing us to measure the real and imaginary parts of

the photocurrent independently; it is evident that these quadratures cannot be rotated
independently from each other since they share the same local oscillator and maintain
a �xed phase di�erence of 𝜋/2. This implies that we can measure correlations of the
type 〈𝑥𝜙+𝑥

𝜙+ 𝜋
2− 〉 but we lack information about correlations like 〈𝑥𝜙+𝑥

𝜙
−〉. This inability to

measure correlations among quadratures that di�er from orthogonal ones results in the
impossibility of gaining complete information about the quantum state using spectral
homodyne detection.

In quantum squeezing experiments, we typically measure the spectral noise power,
introduced in section 2.3.2, using a spectrum analyzer. In this case, the spectral noise power
reads [Barbosa 13, Bachor 19, Zippilli 15]:

𝑆 (Ω) =
〈
|𝛿𝑖 (Ω) |2

〉
=

|𝛼𝐿𝑂 |2
2

(〈
𝑖2+(Ω)

〉
+

〈
𝑖2−(Ω)

〉)
=

|𝛼𝐿𝑂 |2
2

(
Δ2𝑥

𝜙
+ (Ω) + Δ2𝑥

𝜙+ 𝜋
2− (Ω)

) (2.80)

In order to obtain this result, we made the assumption that Δ𝑥𝜙± = 〈𝑥𝜙± (Ω)2〉, which implies
that the mean �eld of the sidebands, that cannot be measured with the spectrum analyzer,
is zero. This assumption holds true in the case of a squeezed state. It is more common to
refer to the normalized version of 𝑆 (Ω), namely:

𝑆 (Ω) = 1
2

(
Δ2𝑥

𝜙
+ (Ω) + Δ2𝑥

𝜙+ 𝜋
2− (Ω)

)
(2.81)

From this equation we can see that, if the ± modes are in the vacuum state (and, by
consequence, the two ±Ω sidebands are each in vacuum state as well), we recover shot
noise 𝑆 (Ω) = 1, as expected. When we measure �uctuations below the shot noise, namely
𝑆 (Ω) < 1, Eq. 2.81 satis�es the Duan et al. criterion for inseparability [Duan 00]. According
to this criterion, 𝑥𝜙+ and 𝑥𝜙+

𝜋
2− are EPR-operators, meaning their variance is reduced. If,

without loss of generality, we set the squeezing condition with the LO phase 𝜙 = 0, we have
that 𝑥0+ = 𝑞+ and 𝑥

𝜋
2− = 𝑝− are operators that exhibit reduced variance. This means that

entanglement is shared between the upper and lower sideband modes.
We note that the spectral noise power 𝑆 (Ω) does not represent the variance of a

well-de�ned �eld mode quadrature. Indeed, Eq. 2.81 merely tells us that 𝑆 (Ω) can be
calculated by adding the variances of the two well-de�ned quadratures 𝑥𝜙+ and 𝑥𝜙+

𝜋
2− . For

𝑆 (Ω) to be the variance of a �eld quadrature, we need to infer the stationarity of the
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process1 [Zippilli 15, Barbosa 13]. Indeed, assuming a stationary photocurrent, we have
additionally that: {

Δ2𝑥
𝜙
+ = Δ2𝑥

𝜙+ 𝜋
2−

〈𝑥𝜙+𝑥
𝜙+ 𝜋

2− 〉 = 0
(2.82)

In such a case, the condition of 𝑆 (Ω) < 1 represents indeed the squeezing of a well-de�ned
quadrature of the �eld, namely 𝑥𝜙

𝑆
= 𝑥

𝜙
+ + 𝑥𝜙+

𝜋
2− . In this case, we can write:

𝑆 (Ω) = Δ2𝑥
𝜙

𝑆
(Ω) (2.83)

and the spectral noise power can directly assess the squeezing or antisqueezing of the
�eld quadrature 𝑥𝑆 (Ω). We assume, without loss of generality, squeezing for 𝜙 = 0 and
antisqueezing for 𝜙 = 𝜋/2. In this case Eq. 2.82 becomes:

Δ2𝑞+ = Δ2𝑝− = 𝑒−2𝑟

Δ2𝑝+ = Δ2𝑞− = 𝑒2𝑟

〈𝑞+𝑝−〉 = 〈𝑝+𝑞−〉 = 0
(2.84)

and

Δ2 (
𝑞(Ω) + 𝑞(−Ω)) = Δ2(𝑝 (Ω) − 𝑝 (−Ω)

)
= 𝑒−2𝑟 (2.85)

Δ2 (
𝑝 (Ω) + 𝑝 (−Ω)) = Δ2(𝑞(Ω) − 𝑞(−Ω)

)
= 𝑒2𝑟 (2.86)

where we recover explicitly EPR-like correlations between sidebands. We discover, then,
that single-mode squeezing of the �eld in the time domain reveals two-mode squeezing or
EPR correlations of the sideband modes.

Homodyne detection does not allow us to assess asymmetries between the two
sidebands [Barbosa 13]. Assuming perfect symmetry between the sidebands, as in the case
of the SPDC process, we obtain:

Δ2𝑞(Ω) = Δ2𝑞(−Ω) = Δ2𝑝 (Ω) = Δ2𝑝 (−Ω) = 𝑒−2𝑟 + 𝑒2𝑟
2 (2.87)

Each sideband presents an excess of noise, as we expect from an entangled pair if we trace
out one of the two subsystems [Zhang 03].

When we measure squeezing in the electronic frequency domain by observing spectral
noise density below the shot noise (𝑆 (Ω) < 1) we are actually measuring the EPR
entanglement between the upper and lower sidebands at frequency Ω.

1In the limit of large �ltering times, the correlations of stationary �eld operators do not depend on time.
This is due to the fact that the correlation function only depends on the time di�erence and it is symmetric
(for extensive details on this point, see Appendix B of ref. [Zippilli 15]).
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According to classical electrodynamics, light waves do not generally interact with
each other. This is due to the linearity of the Maxwell equations, that forbids
light-light interaction in vacuum. Today, consistently with the predictions of quantum
electrodynamics (QED), light-by-light scattering has been observed in vacuum [Aaboud 17].
However, evenwhile staying in a classical framework, we can exploit the nonlinear response
of speci�c materials to introduce nonlinear terms to the Maxwell equations. This enables us
to observe light-by-light interaction, mediated by the material, when the interacting �elds
are su�ciently strong.

Non-linear processes play an important role in photonic quantum technologies, where
tailored media are used to produce quantum states of light. In particular, this work
investigates and exploits second-order non-linearity in KTP to produce squeezed states.
In this chapter we will brie�y review the theory of second-order non-linear optics,
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and we will focus on the processes of interest for our case, namely Second-Harmonic
Generation (SHG) and Parametric Down-Conversion (PDC). We will follow the classical
treatment of non-linear optics up to the point where it fails us: for Spontaneous Parametric
Down-Conversion (SPDC), a quantum treatment is required, since the process is forbidden
according to classical physics.

The main references used for this chapter are “Nonlinear Optics” by Boyd [Boyd 08]
and “Ultrafast Optics” by Weiner [Weiner 11]. While [Boyd 08] is among the best-known
references for an extensive treatise of non-linear optics, it focuses mainly on the
Continuous-Wave (CW) case. In [Weiner 11]we can �ndmore details on ultrafast non-linear
processes.

3.1 Introduction to nonlinear optics

This section introduces the topic of nonlinear optics, providing the reader with the
fundamental concepts needed to understand the underlying physics of the processes
discussed in this work, all while avoiding to delve into intricate technical details. We
start from the Maxwell equations and we gradually work our way through generalities on
second-order nonlinear processes of our interest. We conclude by giving details on the
processes occurring in KTP, the medium used for quantum light generation in this thesis
work.

3.1.1 The forced wave equation

A nonlinear media is a material that responds in a nonlinear way to the strength of the
applied optical �eld. To investigate the properties of the nonlinear processes that take place
in a nonlinear media, we need �rst to go back to the very basics of electromagnetism: the
Maxwell equations. It can be shown that to investigate the propagation of light in an optical
medium we need to solve the equation:

∇ × ∇ × E + 1
𝑐2
𝜕2

𝜕𝑡2
E = − 1

𝜖0𝑐2
𝜕P
𝜕𝑡2

(3.1)

that stems from the Maxwell equations and which is the most general form of the wave
equation. Here, the polarization vector P is the dipole moment induced by the light in
the material per unit volume. The polarization vector can be separated into a linear and
a nonlinear part, as P = P𝐿 + P𝑁𝐿 , that account respectively for a linear and a nonlinear
response to the applied electric �eld. More details on this point will be given in the next
section. Considering the identity ∇ × ∇ × E = ∇ (∇ · E) − ∇2E, we can further simplify
this expression by neglecting ∇ · E. While this term is generally non vanishing in nonlinear
optics, even in an isotropic material, in most cases the nonlinear polarization is weak, and
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we can make the assumption ∇·E ∼ 0 [Weiner 11, Boyd 08]. We obtain then the expression:

∇2E − 1
𝑐2
𝜕2

𝜕𝑡2
E =

1
𝜖0𝑐2

𝜕P
𝜕𝑡2

(3.2)

that can alternatively be rewritten as:

∇2E − 1
𝜖0𝑐2

𝜕2

𝜕𝑡2
D(1) =

1
𝜖0𝑐2

𝜕P𝑁𝐿
𝜕𝑡2

(3.3)

where D(1) is the linear part of the electric displacement tensor D = 𝜖0E + P = D(1) + P𝑁𝐿 .
This wave equation is often solved in the literature considering the simpler propagation
in an isotropic and homogeneous medium. The isotropic condition is not always satis�ed
in nonlinear optics applications. This is because the anisotropy of the medium is often
employed to achieve the so-called phase-matching, a necessary condition to generate
constructive build-up of the nonlinear �eld, that will be explored in section 3.2.2 and 3.2.3.
For anisotropic media, the linear part of the electric displacement �eld D(1) reads:

D(1) = 𝝐 (1)E (3.4)

where 𝝐 (1) is the dielectric permittivity tensor. For isotropic media, 𝜖 (1) reduces to a scalar
quantity. The basis in which 𝝐 (1) is diagonal identi�es the principal dielectric axes of the
crystals1. If the electric �eld is polarized along one of these axes, the material can be treated,
for practical purposes, as isotropic [Dubreuil ]. We will see later that, given the nonlinear
processes and medium that we use in this work, we will be in this condition. When this
condition is not satis�ed, a dependence on the so-called walk-o� angle between the D and
E �elds appears in the nonlinear wave equation [Weiner 11, Dubreuil ].

We assume that the �eld propagates in the 𝑧 direction and that it satis�es the slowly
varying envelope approximation, where we consider that the envelope of the �eld 𝛼 (𝑧, 𝑡)
varies slowly with respect to the wavelength scale:����𝜕2𝛼𝜕𝑧2 ���� � 𝑘

����𝜕𝛼𝜕𝑧 ���� and
����𝜕𝛼𝜕𝑧 ���� � 𝑘 |𝛼 | (3.5)

Carrying out the calculations in the frequency domain, we reach a scalar equation that must
be satis�ed for every polarization of the �eld:

𝜕𝐴(𝑧, 𝜔)
𝜕𝑧

=
𝑖𝜔

2𝜖0𝑛𝑐
𝑃
(+)
𝑁𝐿

(𝑧, 𝜔)𝑒−𝑖𝑘 (𝜔)𝑧 (3.6)

1In general, there is a distinction between dielectric axes and crystallographic axes, as the latter identify
geometric properties of the crystal. In many nonlinear crystals, like the KTP crystal that we use in this work,
they coincide [Dmitriev 14].
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where the �eld amplitude is rewritten as 𝐴(𝑧, 𝜔) = E𝜔𝛼 (𝑧, 𝜔) to include the �eld
constant E𝜔 and where P(+)

𝑁𝐿
(𝑧, 𝜔) is the Fourier transform of the analytic signal of the

non linear polarization vector. Details on the derivation of the equation can be found
in [Dubreuil , Medeiros de Araujo 12, Grynberg 10, Weiner 11]. This equation shows that
a �eld at frequency 𝜔 can be driven by the nonlinear source term P𝑁𝐿 (𝑧, 𝜔), under the
appropriate conditions that we will investigate.

3.1.2 Nonlinear polarization
We can express the induced polarization as:

P(r, 𝑡) = 𝜖0
[
𝝌 (1)E(r, 𝑡) + 𝝌 (2)E2(r, 𝑡) + 𝝌 (3)E3(r, 𝑡) + . . .

]
(3.7)

where 𝜖0 is the permittivity of free space and 𝝌 (𝑛) is the n-th order nonlinear susceptibility.
In the general case, 𝝌 (𝑛) is a (𝑛 + 1) rank tensor and in general it is complex and it depends
on the frequencies of the interacting �elds. Only for a lossless and dispersionless medium,
𝝌 (𝑛) is real and does not depend on the frequencies of the �elds; in the time domain, this
translates into an instantaneous response of the material. While nonlinear crystals are in
general dispersivemedia, in the casewhere the frequencies of the �elds are way smaller than
the electronic absorption resonance frequency of the material we can consider the nonlinear
susceptibility as dispersionless. Moreover, if we are below the electronic absorption range
(typically in the UV) and above the vibrational resonances of the lattice (typically in the
infrared region), we can treat the material as transparent. This allows for full permutational
symmetry of the indices of the 𝝌 (𝑛) tensor, a condition known as Kleinman symmetry.

It is convenient to treat the nonlinear polarization and the process in the Fourier space,
as we deal with broadband �elds. Analogously to the de�nitions in Eqs. 1.4 and 1.5 for
the electric �eld E(r, 𝑡), we de�ne the Fourier transform of the polarization vector and its
inverse:

P(r, 𝑡) =
∫
R

𝑑𝜔
√
2𝜋

P(r, 𝜔)𝑒−𝑖𝜔𝑡 (3.8)

P(r, 𝜔) =
∫
R

𝑑𝜔
√
2𝜋

P(r, 𝑡)𝑒𝑖𝜔𝑡 (3.9)

and we can also de�ne the analytic signal P(+) (r, 𝑡), where all the de�nitions and properties
are equivalent to those introduced for the electric �eld in section 1.1.1. In the following, we
drop the spatial dependence r for simplicity.

In our experiment we work only with second-order nonlinear processes, driven by the
𝜒 (2) term. From Eq. 3.7, rewritten in compact notation, where the sum over the indices is
implicit, we will then be interested in the generation of �elds driven by the nonlinear term:

𝑃𝑖 (𝑡) = 𝜖0𝜒 (2)𝑖 𝑗𝑘
𝐸 𝑗 (𝑡)𝐸𝑘 (𝑡) (3.10)
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where we dropped the 𝑁𝐿 subscript. Higher-order nonlinearities have a negligible e�ect
and are out of the scope of this thesis. The indices 𝑖 𝑗𝑘 in Eq. 3.10 represent the principal
or dielectric axes of the nonlinear crystal. Depending on the notational choice, they will be
indicated equivalently as 𝑖, 𝑗, 𝑘 ∈ {𝑥,𝑦, 𝑧} or as 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}. The linear susceptibility 𝜒 (1)

𝑖 𝑗

is diagonal in the same frame of the dielectric tensor and the two are linked by the relation:

𝝐 (1) = 𝜖0(1 + 𝝌 (1)) (3.11)

We rewrite Eq. 3.10 in the frequency domain by substituting the �elds with their expansion
as:

𝑃𝑖 (𝑡) = 𝜖0
∫
R
𝜒
(2)
𝑖 𝑗𝑘
𝐸 𝑗 (𝜔1)𝐸𝑘 (𝜔2)𝑒𝑖 (𝜔1+𝜔2)𝑡 𝑑𝜔1√

2𝜋
𝑑𝜔2√
2𝜋

(3.12)

so that the Fourier transform of 𝑃𝑖 (𝑡) reads:

𝑃𝑖 (𝜔) = 𝜖0
∫
R
𝜒
(2)
𝑖 𝑗𝑘
𝐸 𝑗 (𝜔1)𝐸𝑘 (𝜔2)𝑒−𝑖 (𝜔1+𝜔2−𝜔)𝑡 𝑑𝜔1√

2𝜋
𝑑𝜔2√
2𝜋

𝑑𝑡
√
2𝜋

= (3.13)

𝜖0

∫
R
𝜒
(2)
𝑖 𝑗𝑘
𝐸 𝑗 (𝜔1)𝐸𝑘 (𝜔2)𝛿 (𝜔1 + 𝜔2 − 𝜔)

𝑑𝜔1𝑑𝜔2√
2𝜋

(3.14)

where the delta of Dirac accounts for the energy conservation that must hold between the
frequencies of the interacting �elds.

The processes that can be triggered are: second harmonic generation (SHG),
sum-frequency generation (SFG), di�erence frequency generation (DFG, also known as
parametric ampli�cation [Boyd 08] or parametric down-conversion (PDC)) and optical
recti�cation. In particular sum frequency generation (or SHG in the case of degenerate
frequencies) can be described by the process:

𝑃𝑖 (𝜔) = 𝜖0𝜒 (2)𝑖 𝑗𝑘

∫
R
𝐸 𝑗 (𝜔′)𝐸𝑘 (𝜔 − 𝜔′) 𝑑𝜔

′
√
2𝜋

(3.15)

that has been derived from Eq. 3.14 by integrating over 𝜔2 and renaming 𝜔1 as 𝜔′.
In a similar way we can �nd the driving nonlinear polarization for the DFG process.

From Eq. 3.14, by performing the change of variable 𝜔2 → −𝜔2 and by integrating over 𝜔1
and renaming 𝜔2 as 𝜔′, remembering that 𝐸 (−𝜔) = 𝐸∗(𝜔), we can calculate the nonlinear
polarization Fourier transform for DFG:

𝑃𝑖 (𝜔) = 𝜖0𝜒 (2)𝑖 𝑗𝑘

∫
R
𝐸 𝑗 (𝜔 + 𝜔′)𝐸∗

𝑘
(𝜔′) 𝑑𝜔

′
√
2𝜋

(3.16)

The nonlinear polarization P(𝜔) will generate a �eld of frequency 𝜔 in the direction of the
polarization vector, as prescribed by the Helmholtz equation.
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3.1.3 Contracted notation
The second order nonlinear susceptibility 𝝌 (2) = 𝜒

(2)
𝑖 𝑗𝑘

is a tensor of 27 elements. We
can, however, exploit some symmetries to reduce the number of elements. Indeed, as
already mentioned, if the material is lossless (transparent) and the nonlinear susceptibility
is dispersionless, we recover the Kleinman symmetry condition. We de�ne the tensor:

𝑑𝑖 𝑗𝑘 =
1
2 𝜒

(2)
𝑖 𝑗𝑘

(3.17)

When the Kleinman symmetry is valid, 𝑑𝑖 𝑗𝑘 is symmetric in the last two indices. We can
then introduce a mapping 𝑗𝑘 → 𝑙 following the convention:

𝑗𝑘 : 11 22 33 23, 32 13, 31 12, 21
𝑙 : 1 2 3 4 5 6 (3.18)

and, applying the remaining constraints of the Kleinman symmetry condition, we �nd that
the nonlinear process can be described by the matrix:

𝑑𝑖 𝑗 =
©­«
𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16
𝑑16 𝑑22 𝑑23 𝑑24 𝑑14 𝑑12
𝑑15 𝑑24 𝑑33 𝑑23 𝑑13 𝑑14

ª®¬ (3.19)

reducing the nonlinear parameters from 27 to 10 [Boyd 08].

3.1.4 Nonlinear processes in KTP
In this work, we use a Potassium Tytanil Phosphate (KTiOPO4, known as KTP) crystal. In
this section we will investigate which parametric processes are permitted in KTP, according
to its nonlinear susceptibility tensor. For KTP, the matrix of equation 3.19 reads:

𝑑𝑖 𝑗 =
©­«

0 0 0 0 2.02 0
0 0 0 3.75 0 0

2.02 3.75 15.4 0 0 0

ª®¬ (3.20)

as shown in [Pack 04]1. From this matrix we gain all the relevant information on the type
of nonlinear processes permitted in KTP. We write again Eq. 3.15 substituting 𝜒 (2)

𝑖 𝑗𝑘
with the

notation 𝑑𝑖 𝑗𝑘 , that we will later contract, and rewriting explicitly the sum:

𝑃𝑖 (𝜔) = 𝜖0
∑︁
𝑗𝑘

2𝑑𝑖 𝑗𝑘
∫
R
𝐸 𝑗 (𝜔′)𝐸𝑘 (𝜔 − 𝜔′) 𝑑𝜔

′
√
2𝜋

(3.21)

1In the article, they measured separately the coe�cients 𝑑31 = 2.12 pm/V and 𝑑15 = 2.02 pm/V, without
assuming a priori Kleinmann symmetry. Here, we reported the matrix with 𝑑31 = 𝑑15.
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This equation has been derived from SHG, but the considerations that follow can be
equivalently applied for PDC. We rewrite the equation for 𝑃𝑖 (𝜔), explicitly for the three
cartesian indices, for the case of KTP:

𝑃𝑥 (𝜔) =2𝜖0𝑑15
∫
R
(𝐸𝑥 (𝜔′)𝐸𝑧 (𝜔 − 𝜔′) + 𝐸𝑧 (𝜔′)𝐸𝑥 (𝜔 − 𝜔′)) 𝑑𝜔

′
√
2𝜋

(3.22)

𝑃𝑦 (𝜔) =2𝜖0𝑑24
∫
R
(𝐸𝑦 (𝜔′)𝐸𝑧 (𝜔 − 𝜔′) + 𝐸𝑧 (𝜔′)𝐸𝑦 (𝜔 − 𝜔′)) 𝑑𝜔

′
√
2𝜋

(3.23)

𝑃𝑧 (𝜔) =2𝜖0
∫
R
(𝑑15𝐸𝑥 (𝜔′)𝐸𝑥 (𝜔 − 𝜔′) + 𝑑24𝐸𝑦 (𝜔′)𝐸𝑦 (𝜔 − 𝜔′)+

𝑑33𝐸𝑧 (𝜔′)𝐸𝑧 (𝜔 − 𝜔′)) 𝑑𝜔
′

√
2𝜋

(3.24)

wherewe carried out the summation
∑
𝑗𝑘 , contracting𝑑𝑖 𝑗𝑘 following the rules of section 3.1.3

and considering the null entries of 3.20.
These equations contain all the information about the permitted processes in our KTP

crystal and the corresponding nonlinearities. It is important to correctly identify the axes of
the crystal, and to specify how they relate to the propagation direction of the electric �eld
and its polarization. In our case we have a 𝑥-cut KTP crystal, where the term “𝑥-cut” means
that the propagation of the beam is along the 𝑥-axis of the crystal. To avoid confusion, we
point out that in this thesis, as in most books of optics, we chose the propagation axis as
the 𝑧-axis in our cartesian lab frame, indicating the propagation term of the beam by the
exponential 𝑒𝑖𝑘𝑧 . This doesn’t have to be confused with the 𝑗𝑘 dielectric axes of the crystal:
in principle, the lab frame and the dielectric frame of the crystal have no connection. In our
case, the beam propagates along the 𝑧-axis in the lab frame, which corresponds to the 𝑥-axis
of the dielectric frame of the crystal, being the crystal 𝑥-cut. The subscript 𝑗𝑘 of the electric
�elds will tell us along which axis, in the dielectric frame, the �eld is polarized.

We start by reviewing Eq. 3.22. This process describes a nonlinear polarization �eld
(and generated �eld) polarized along the crystal 𝑥-axis. However, in our case the crystal
𝑥-axis corresponds to the propagation axis of the �eld, as said above, so that we cannot
exploit this process in our experiment. Eq. 3.23 describes the generation of a �eld polarized
along the 𝑦-axis of the crystal. This �eld can be driven by an electric �eld that is polarized
at 45◦ with respect to the 𝑦 and 𝑧 axis of the crystal and the process is mediated by the
nonlinear coe�cient 𝑑24. This is known as type-II process, for both SHG and PDC, and it
is characterized by the fact that the fundamental (lower frequency) �elds in the equation
have orthogonal polarizations. Finally, we can explore in detail Eq. 3.24, for the generation
of a �eld polarized along the 𝑧-axis of the crystal. Such �eld can be driven in three di�erent
ways: by �elds polarized along the crystal 𝑥-axis and mediated by 𝑑15, by �elds polarized
along the crystal 𝑦-axis and mediated by 𝑑24 and by �elds polarized along the crystal 𝑧-axis
and mediated by 𝑑33. The �rst option is not viable for us for the same reasons mentioned
for Eq. 3.22, i.e. it involves a �eld polarized along the propagation axis. The second option
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is known as type-I process: the fundamental �elds share the same polarization, while the
polarization of the harmonic �eld is orthogonal to the one of the fundamental �elds. Finally,
the third option is the most interesting for us, as it is driven by the 𝑑33 coe�cient that turns
out to be the most nonlinear, with 𝑑33 = 15.4 pm/V. The corresponding nonlinear process is
known as type-0 process: all the beams are polarized along the 𝑧-axis of the crystal. This is
the process we decided to exploit for squeezing generation.

Some �nal comments are due regarding SPDC, whose details will be given in the
next sections. Both in type-0 and in type-I processes the signal and idler beams
share the same polarization. If the output beams are also collinear, this process is
degenerate, and it drives a single-mode squeezing Hamiltonian. However, as type-I is less
nonlinear than type-0, it is uninteresting for practical purposes in our experiment. The
type-II process drives a two-mode squeezing Hamiltonian and, while less nonlinear than
type-0, it has some interesting features and a positive trade-o� to compensate the lower
nonlinearity [Roman-Rodriguez 21].

3.2 Second-Harmonic Generation

While generalities on second-order processes have been given in the previous sections,
here we aim to focus on Second-Harmonic generation (SHG), a degenerate case of
Sum-FrequencyGeneration (SFG). SHG is commonly described as a process inwhich a lower
frequency �eld at 𝜔1 drives the generation of a higher frequency �eld at 2𝜔1. However,
when we deal with broadband �elds, we need to consider both the spectral characteristics
of the driving �eld and the properties of the nonlinear crystal in order to determine the
characteristics of the generated second-harmonic �eld. In this section, we examine the SHG
process in the context of broadband �elds and we give details on the constraints that the
nonlinear crystal must satisfy in order to e�ciently mediate the SHG process. Extensive
details can be found in [Weiner 11].

3.2.1 SHG with a broadband �eld

Reintroducing the spatial dependence and recalling that 𝐸 (+) (𝑧, 𝜔) = 𝐴(𝑧, 𝜔)𝑒𝑖𝑘 (𝜔)𝑧 , where
𝐴(𝑧, 𝜔) includes the �eld constant E0, we rewrite Eq. 3.15, in the analytic signal form, as

𝑃
(+)
𝑖

(𝑧, 𝜔) = 𝜖0𝜒 (2)𝑖 𝑗𝑘

∫
R
𝐴 𝑗 (𝑧, 𝜔′)𝐴𝑘 (𝑧, 𝜔 − 𝜔′)𝑒𝑖 (𝑘 (𝜔 ′)+𝑘 (𝜔−𝜔 ′))𝑧 𝑑𝜔

′
√
2𝜋

(3.25)

For notational simplicity, we can now set the polarization of the �elds and focus on one
speci�c allowed process. In our case it will be 𝑃𝑧 (2𝜔) driven by 𝐸𝑧 (𝜔)𝐸𝑧 (𝜔) and the
corresponding nonlinear coe�cient, that we indicate as 𝜒 (2) = 2𝑑𝑒 𝑓 𝑓 , where 𝑑𝑒 𝑓 𝑓 is the
e�ective coe�cient that mediates the process. In the case of a type-0 process in KTP, we
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have 𝑑𝑒 𝑓 𝑓 = 𝑑33 (see section 3.1.4). We can then drop the 𝑖 𝑗𝑘 subscript. The nonlinear
polarization 𝑃 (+) (𝑧, 𝜔) acts as a driving term in Eq. 3.6, such that:

𝜕𝐴2𝜔 (𝑧, 𝜔)
𝜕𝑧

=
𝑖𝜔0
𝑛2𝜔𝑐

𝜒 (2)
∫
R
𝐴𝜔 (𝑧, 𝜔′)𝐴𝜔 (𝑧, 𝜔 − 𝜔′)𝑒𝑖Δ𝑘 (𝜔,𝜔 ′)𝑧 𝑑𝜔

′
√
2𝜋

(3.26)

where we have set 𝜔 ∼ 2𝜔0 in the multiplicative factor and where:

Δ𝑘 (𝜔,𝜔′) = 𝑘𝜔 (𝜔′) + 𝑘𝜔 (𝜔 − 𝜔′) − 𝑘2𝜔 (𝜔) (3.27)

is the phase mismatch. The 2𝜔 and 𝜔 subscripts are used to specify if we are dealing with
the fundamental or the harmonic �eld, as “pump” and “signal” might be misleading, as they
are interchanged depending on the type of process we are looking at (SHG or PDC).

In the undepleted pump regime, 𝐴𝜔 (𝑧, 𝜔′) = 𝐴𝜔 (𝜔′), leaving the complex exponential
as the only term that depends on 𝑧. Considering a propagation in a medium of length 𝐿1,
the generated �eld at the output of the nonlinear medium reads:

𝐴2𝜔 (𝜔) =
𝑖𝜔0𝐿

𝑛2𝜔𝑐
𝜒 (2)

∫
R
𝐴𝜔 (𝜔′)𝐴𝜔 (𝜔 − 𝜔′)sinc

(
Δ𝑘 (𝜔,𝜔′)𝐿

2

)
𝑑𝜔′
√
2𝜋

(3.28)

This equations accounts for dispersion. We de�ne:

Φ(𝜔′, 𝜔) = sinc
(
Δ𝑘 (𝜔,𝜔′)𝐿

2

)
(3.29)

and we call it phase-matching function.

3.2.2 Phase matching
We have seen in the previous sections how the nonlinear polarization can, in principle,
drive a �eld with di�erent frequency components than the ones of the original pump �eld.
Nevertheless, the e�ciency of the nonlinear process is not guaranteed. Indeed, the nonlinear
polarization �eld is driven by the fundamental �eld, and as a consequence they share the
same phase velocity, determined by the refractive index at the fundamental frequency
𝑛(𝜔0). However, the generated SHG wave travels at a phase velocity prescribed by the
index 𝑛(2𝜔0). In most cases, 𝑛(2𝜔0) is greater than 𝑛(𝜔0), due to chromatic dispersion;
consequently, after a certain propagation length, known as coherence length, the two �elds
cumulate a phase di�erence of 𝜋 . This causes destructive interference, and the power starts
to �ow back into the fundamental �eld. The generated SHG �eld �uctuates periodically and
never builds up.

1The integration is performed between −𝐿/2 and 𝐿/2. Integrating between 0 and 𝐿 can also be done, but
in this case an overall phase factor 𝑒 𝑖Δ𝑘𝐿

2 , that is sometimes found in some of the literature, appears.
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For the process to be e�cient, a proper phase condition between the pump �eld and
the nonlinear polarization needs to be ensured, in order for the generated �eld to interact
constructively and to build-up coherently throughout the crystal. This condition is known
as phase-matching condition. In order to achieve perfect phase matching, we have to ful�l

Δ𝑘 = 0 (3.30)

where Δ𝑘 = 𝑘1+𝑘2−𝑘3 (eventually up to a sign, depending on the process) is the wavevector
mismatch among three interacting waves, where 𝜔3 = 𝜔1 + 𝜔2. We rewrite here the
wavevector mismatch already given in Eq. 3.27:

Δ𝑘 (𝜔,𝜔′) = 𝑘𝜔 (𝜔′) + 𝑘𝜔 (𝜔 − 𝜔′) − 𝑘2𝜔 (𝜔) (3.31)

Dealing with broadband �elds, is it clear that we cannot achieve Δ𝑘 (𝜔,𝜔′) = 0 for every
frequency component present in our �elds. We thus ask for the condition to be ful�lled
for the central frequencies 𝜔0 and 2𝜔0 and we expand the wavevector mismatch at �rst
order, neglecting higher order terms, to investigate how the function behaves around these
frequencies1. The phase mismatch at �rst order reads:

Δ𝑘 (𝜔) = 2𝑘𝜔 (𝜔0) − 𝑘2𝜔 (2𝜔0) +
(
𝜕𝑘𝜔

𝜕𝜔

����
𝜔0

− 𝜕𝑘2𝜔
𝜕𝜔

����
2𝜔0

)
(𝜔 − 2𝜔0) + O

(
𝜕2𝑘

𝜕𝜔2

)
(3.32)

The condition Δ𝑘0 = 0, where Δ𝑘0 = 2𝑘𝜔 (𝜔0)−𝑘2𝜔 (2𝜔0), guarantees perfect phasematching
for the central frequencies 2𝜔0 and 𝜔0. As we have a broadband �eld, being in the pulsed
regime, we need now to look at the �rst order. Assuming perfect phase matching for the
central frequencies and neglecting higher-order dispersion terms, we obtain:

Δ𝑘 (𝜔) =
(
𝜕𝑘𝜔

𝜕𝜔

����
𝜔0

− 𝜕𝑘2𝜔
𝜕𝜔

����
2𝜔0

)
(𝜔 − 2𝜔0) =

(
1

𝑣𝑔 (𝜔0)
− 1
𝑣𝑔 (2𝜔0)

)
(𝜔 − 2𝜔0) (3.33)

where 𝑣𝑔 indicates the group velocity. If we consider only the �rst-order term we can see
that the phase mistmatch depends only on 𝜔 . Eq. 3.28 then becomes:

𝐴𝜔 (𝜔) =
𝑖𝜔0𝜒

(2)𝐿

𝑛2𝜔𝑐
𝐹 (𝜔) · Φ(𝜔) (3.34)

where 𝐹 (𝜔) is the self-convolution of the fundamental �eld. We see from this equation
that the e�ect of the phase-matching function is that of a spectral �lter acting on the
second-harmonic �eld driven by the nonlinear polarization, “cutting out” frequencies that
potentially the nonlinear polarization could drive.

1Recall that the term 𝑘𝜔 (𝜔 − 𝜔 ′) in the Taylor expansion gives contributions 𝜕𝑘𝜔 (𝜔−𝜔′)
𝜕𝜔

��
𝜔0
(𝜔 − 2𝜔0) +

𝜕𝑘𝜔 (𝜔−𝜔′)
𝜕𝜔′

��
𝜔0
(𝜔 ′ − 𝜔0) . We can de�ne Ω = 𝜔 − 𝜔 ′ so that 𝜕𝑘𝜔 (Ω)

𝜕𝜔
=

𝜕𝑘𝜔 (Ω)
𝜕Ω

𝜕Ω
𝜕𝜔

and 𝜕𝑘𝜔 (Ω)
𝜕𝜔′ =

𝜕𝑘𝜔 (Ω)
𝜕Ω

𝜕Ω
𝜕𝜔′ . As

𝜕Ω
𝜕𝜔

= 1 and 𝜕Ω
𝜕𝜔′ = −1 and as the derivative with respect to a point can be rede�ned with whichever variable,

i.e. 𝜕𝑘 (Ω)
𝜕Ω =

𝜕𝑘 (𝜔)
𝜕𝜔

, we can rewrite the �rst order as 𝜕𝑘𝜔 (𝜔)
𝜕𝜔

��
𝜔0
(𝜔−2𝜔0) − 𝜕𝑘𝜔 (𝜔)

𝜕𝜔

��
2𝜔0

(𝜔 ′−𝜔0), where the second
term will be canceled out by the �rst order of 𝑘𝜔 (𝜔 ′).
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3.2.3 Quasi-phase-matching
Achieving the phase-matching condition for central frequencies is not trivial. For instance,
for SHG, perfect phase matching with collinear beams requires:

𝑛(𝜔0) = 𝑛(2𝜔0) (3.35)

as a consequence of Eq. 3.30. However, in materials with normal dispersion, 𝑛(𝜔) is a
monotone function of 𝜔 . We then have to resort to particular techniques to achieve the
phase-matching conditions,

One of the most commonly used techniques is called birefringent phase matching, where
we exploit the birefringence property of a crystal. Birefringence is a material’s ability to
refract light di�erently based on its polarization. In birefringent crystals, two orthogonal
polarization components (called “e” and “o” in the literature) propagate with di�erent
refractive indices. This condition is exploited so that the fundamental and the SHG �eld
have the same refractive index. This leads to a linear buildup of the SHG �eld amplitude
and a quadratic buildup of the intensity. Birefringent phase matching can be very e�ective,
but it has some drawbacks. First of all, it doesn’t permit type-0 processes, which could
give access to a higher nonlinearity, as in the case of KTP. Indeed, having all �elds polarized
along the same direction does not permit us to exploit the birefringence property. Moreover,
birefringency can give rise to spatial walk-o�, as the two polarization component propagate
at di�erent angles due to their di�ering refractive indices, leading to spatial separation.
Lastly, the material’s birefringence may not be su�cient to attain phase matching. In the
case of KTP, the phase-matching range for the fundamental �eld wavelength is 984nm ∼
3400nm. In our case, being the fundamental wavelength 𝜆0 = 795 nm, we cannot exploit
birefringent phase matching in KTP. To achieve phase matching, we have to resort to
another technique, known as quasi-phase-matching.

Quasi-phase matching is alternatively used to achieve phase matching [Fejer 92].
Instead of equating the refractive indices of the �elds to satisfy Eq. 3.35, this technique
involves �ipping the sign of the nonlinear coe�cient at multiples of the coherence length,
with the e�ect of resetting the 𝜋 phase that had been cumulating during the propagation.
We de�ne a nonlinear e�ective coe�cient dependent on the spatial coordinate:

𝑑 (𝑧) = 𝑑𝑒 𝑓 𝑓 · 𝑔(𝑧) (3.36)

where |𝑔(𝑧) | ≤ 1. In the case of a periodic modulation, called periodic poling, we can
decompose 𝑔(𝑧) into its Fourier components:

𝑔(𝑧) =
∞∑︁

𝑚=−∞
𝐺𝑚𝑒

𝑖𝐾𝑚𝑧 (3.37)

where the m-th harmonics reads:
𝐾𝑚 =

2𝜋𝑚
Λ

(3.38)

69



3.2. SECOND-HARMONIC GENERATION

Figure 3.1: Intensity of the SHG as a function of 𝑧, the propagation distance
into the crystal. The case of perfect birefringent phase matching, �rst-order
quasi-phase-matching and a non-phase-matched crystal is shown. Note that
the poling period is Λ = 2𝑙𝑐 , where 𝑙𝑐 is the coherence length. Picture
from [Weiner 11].

We rede�ne the phase-mismatch vector as:

Δ𝑘′(𝜔,𝜔′) = Δ𝑘 (𝜔,𝜔′) + 2𝜋𝑚
Λ

∼ 0 (3.39)

where Δ𝑘 (𝜔,𝜔′) is the phase-mismatch de�ned in Eq. 3.31. In order to achieve quasi-phase
matching for the central frequencies, one of the harmonics must satisfy:

Δ𝑘′0 = Δ𝑘0 +
2𝜋𝑚
Λ

∼ 0 (3.40)

so that its contribution dominates the integral over the crystal length. We start from Eq. 3.26
and we replace 𝜒 (2) = 2𝑑𝑒 𝑓 𝑓 with 2𝑑 (𝑧). Assuming Δ𝑘′0 = 0 for the 𝑚-th harmonic and
non depletion of the pump, and considering only the �rst-order contribution of the phase
mistmatch Δ𝑘′(𝜔′, 𝜔), we can write:

𝐴2𝜔 (𝜔) =
𝑖𝜔0𝜒

(2)𝐿

𝑛2𝜔𝑐
𝐹 (𝜔)𝐺𝑚Φ′(𝜔) (3.41)

where Φ′(𝜔) is the phase-matching function from Eq. 3.29, but rede�ned with Δ𝑘′(𝜔′, 𝜔).
In the case where the �rst harmonic (𝑚 = ±1) dominates, we talk about �rst-order
quasi-phase-matching. When 𝑔(𝑧) equals 1 for one half of the crystal’s length and -1
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for the other half, the Fourier coe�cients take the value 𝐺𝑚 = 2/𝑚𝜋 for 𝑚 odd and
𝐺𝑚 = 0 for 𝑚 even. Comparing this last equation with Eq. 3.34 obtained for perfect
phase matching, we notice that quasi-phase-matching is less e�cient, as it is attenuated
by the factor 𝐺𝑚 . Moreover, the highest the order of the phase matching, the lower the
e�ciency. The comparison between birefringent phase matching, quasi-phase-matching
and non-phase-matched generation is shown in Fig. 3.1.

In the case of �rst-order quasi-phase-matching, Eq. 3.40 is written as:

Δ𝑘′0 =
2𝜔0
𝑐

(𝑛2𝜔 (2𝜔0) − 𝑛𝜔 (𝜔0)) −
2𝜋
Λ

∼ 0 (3.42)

and to achieve phase-matching the poling period of the crystal must be engineered to be:

Λ =
𝜋𝑐

𝜔0
(𝑛2𝜔 (2𝜔0) − 𝑛𝜔 (𝜔0)) (3.43)

In section 4.4 we will investigate the characteristics of the SHG light using quasi-phase
matched ppKTP.

3.3 Parametric Down-Conversion
Parametric down-conversion is a second-order nonlinear process that lies at the heart
of many quantum applications, as it is exploited experimentally for the generation of
squeezed states of light, entangled states and single-photons. It involves the interaction
of a low-frequency �eld (the fundamental �eld) and a high-frequency �eld (the harmonic
�eld) in a nonlinear crystal. When the fundamental �eld is absent, we talk about
spontaneous parametric down-conversion (SPDC), a purely quantum e�ect, which is
forbidden by classical electrodynamics. In SPDC, a photon of the second-harmonic �eld
is down-converted into two photons of the fundamental �eld, that share entanglement
correlations. When the two down-converted photons are indistinguishable, the process
is termed degenerate SPDC and it results in the generation of squeezed vacuum states.
Conversely, when the two down-converted photons are distinguishable, non-degenerate
SPDC creates two-mode squeezed vacuum (TMSV) states [Loudon 00].

Here, we treat the case of degenerate SPDC of a broadband �eld. Details on the
derivation can be found in the PhD thesis [Michel 21] and [Medeiros de Araujo 12].

3.3.1 PDC with a broadband �eld
We begin to investigate the degenerate PDC process from Eq. 3.16, that we rewrite here:

𝑃𝜔 (𝜔) = 𝜖0𝜒 (2)𝑖 𝑗𝑘

∫
R
𝐸2𝜔 (𝜔 + 𝜔′)𝐸∗𝜔 (𝜔′) 𝑑𝜔

′
√
2𝜋

(3.44)
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Here, we treat the case of the type-0 process, in which all the �elds are polarized along the
same axis, and we neglect the subscripts for notational simplicity. The analytic signal of the
forcing term 𝑃𝜔 (𝜔) is plugged in Eq. 3.6, and we obtain:

𝜕𝛼𝜔 (𝑧, 𝜔)
𝜕𝑧

=
𝑖𝜔0
2𝑛2𝜔𝑐

E0,2𝜔 𝜒
(2)

∫
R
𝛼2𝜔 (𝑧, 𝜔 + 𝜔′)𝛼∗𝜔 (𝑧, 𝜔′)𝑒𝑖Δ𝑘 (𝜔,𝜔 ′)𝑧 𝑑𝜔

′
√
2𝜋

(3.45)

At a �rst glance this equation may seem similar to the one obtained for SHG, for which
�nding an analytic solution was trivial after postulating an undepleted pump. However, as
the process we are interested in is degenerate, the fundamental �eld is present both as a
derivative and as an integral term. An analytic solution can be found straightforwardly, if
we assume that the signal �eld is real, i.e. 𝛼∗𝜔 (𝜔′) = 𝛼𝜔 (𝜔′). This is equivalent to assume
that the spectral phase is at most linear, with no higher-order components. In this case,
Eq. 3.45 can be rewritten as:

𝜕𝛼𝜔 (𝑧, 𝜔)
𝜕𝑧

= K(𝑧)𝛼𝜔 (𝑧, 𝜔) (3.46)

whereK(𝑧) is an integral operator whose action is speci�ed in Eq. 3.45. The solution to the
above integro-di�erential equation reads1:

𝛼𝜔 (𝐿,𝜔) = 𝑒S0𝛼𝜔 (0, 𝜔) (3.47)

where

S0 =
𝑖𝜔0E0,2𝜔
2𝑛2𝜔𝑐

𝜒 (2)
∫ 𝐿

0

∫
R
𝛼2𝜔 (𝑧, 𝜔 + 𝜔′)𝑒𝑖Δ𝑘 (𝜔,𝜔 ′)𝑧𝑑𝜔

′𝑑𝑧
√
2𝜋

(3.48)

In the undepleted pump regime, this becomes:

𝑆0 = 𝑖𝑔

∫
R
𝐿(𝜔,𝜔′) 𝑑𝜔

′
√
2𝜋

(3.49)

where 𝑔 =
𝜔0𝐿
2𝑛2𝜔𝑐 𝜒

(2)E0,2𝜔 and where we de�ne the joint spectral distribution or joint spectral
amplitude (JSA) as:

𝐿(𝜔,𝜔′) = 𝛼2𝜔 (𝜔 + 𝜔′)Φ(𝜔′, 𝜔) (3.50)

The JSA contains all the information on the spectral characteristics of the parametric
process. An example on how the pump amplitude and the phase-matching function
contribute to the JSA can be found in Fig. 3.2.

1The solution to the initial-value problem 𝑦 ′(𝑡) = 𝐴(𝑡)𝑦 (𝑡), 𝑦 (𝑡0) = 𝑦0 where 𝐴(𝑡) is a linear operator,
reads: 𝑦 (𝑡) = exp(

∫ 𝑡

𝑡0
𝑑𝜏 𝐴(𝜏))𝑦0, provided that 𝐴(𝑡1)𝐴(𝑡2) = 𝐴(𝑡2)𝐴(𝑡1), for every value of 𝑡1, 𝑡2. When this

condition is not satis�ed, we have to use the so-called Magnus expansion [Magnus 54].
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a) b) c)

Figure 3.2: (a) Pump with 0.7 nm width (intensity FWHM) as a function of𝜔 +𝜔 ′

and (b) phase-matching function for a type-0 process in KTP at pumpwavelength
of 𝜆0 = 397.5 nm, that result in the JSA displayed in (c).

3.3.2 Eigenmodes of the PDC
The operator 𝑒𝑆0 governs the evolution of the spectral input modes after the propagation
into a crystal of length 𝐿. Under certain conditions, the operator can be diagonalized and
we can recover the eigenmodes of the process, that we call supermodes. Supermodes can
be described as the spectral modes whose shape is not altered by the parametric process,
if they are used as input modes. As we assumed the condition of real �eld, this must hold
also both at the input and the output of the crystal, i.e. 𝛼𝜔 (0, 𝜔) and 𝛼𝜔 (𝐿,𝜔) must be real.
This puts a constraint on the operator 𝑒𝑆0 , as it must satisfy 𝑆0 = 𝑆∗0 , which is satis�ed only
for a purely imaginary pump. We then require the pump to have the form 𝛼2𝜔 (𝜔 + 𝜔′) =

±𝑖 |𝛼2𝜔 (𝜔 + 𝜔′) |, so to be in quadrature with the signal. Under this condition we can check
that 𝑖𝑔𝐿(𝜔,𝜔′) = ±𝑔 |𝛼2𝜔 (𝜔 + 𝜔′) |Φ(𝜔′, 𝜔) is real; as it is also symmetric by de�nition, we
can apply the spectral theorem and �nd an orthonormal basis of real eigenfunctions. We
can rewrite the JSA in the diagonal basis as:

𝑖𝐿(𝜔,𝜔′) =
∑︁
𝑘

Λ𝑘𝑠𝑘 (𝜔)𝑠𝑘 (𝜔′) (3.51)

where the functions 𝑠𝑘 (𝜔) are the eigenmodes of the process and Λ𝑘 are the eigenvalues.
Acting with 𝑒𝑆0 on the eigenmodes leads us to:

𝑠𝑘 (𝐿,𝜔) = 𝑒𝑆0𝑠𝑘 (0, 𝜔) = 𝑒±𝑔Λ𝑘𝑠𝑘 (0, 𝜔) (3.52)

This equation shows us that at the output of the crystal the spectral eigenmodes are
ampli�ed or attenuated depending on the sign of the eigenvalues Λ𝑘 and of the pump
phase. For this reason, this process is known as phase-sensitive ampli�cation, where
phase-sensitivity is a consequence of degeneracy. In non-degenerate PDC (for example
type-II PDC) the process is independent of the pump phase.

The eigenvalue problem can be solved analytically under the assumption of “Gaussian
approximation”, as demonstrated in [Patera 08]. This consists of assuming a Gaussian pump
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and a Gaussian phase-matching function; the latter can be approximated by a Gaussian if
the tails of the sinc function bring negligible contribution to the JSA, for example in the
case of a pump sensibly narrower than the phase-matching function. If this approximation
is valid, the eigenfunctions are Hermite-Gauss modes, whose width depends on the crystal
and on the pump characteristics. In particular, the eigenvaluesΛ𝑘 turn out to be a geometric
sequence Λ𝑘 = Λ0𝜌

𝑘 , where 𝜌 = −1 + 𝜖 and where 𝜖 is generally a small number that
depends on the characteristic times of the process and the �elds involved. We point out
the fact that, as 𝜌 is a negative number, the eigenvalues show an alternating sign. This
means that, keeping the phase of the pump �xed, the process will alternate ampli�cation
and deampli�cation in consecutive spectral eigenmodes.

3.3.3 Quantum treatment (SPDC)

In the previous section, we restricted ourselves to the condition of real �eld 𝛼𝑠 = 𝛼∗𝑠 . Here,
we treat the more general case of a complex �eld. This allows us to promote the �eld
amplitudes to �eld creation and annihilation operators and to approach the solution from
a quantum point of view. In this more general case, the JSA is still a symmetric function,
by construction, but it is complex. We cannot apply the spectral theorem, which requires a
Hermitian matrix. Instead, we must resort to the Autonne-Takagi factorization1.

We rewrite the di�erential equation 3.45 as:

𝜕𝜶𝜔 (𝑧, 𝜔)
𝜕𝑧

= K (𝑧)𝜶𝜔 (𝑧, 𝜔) (3.53)

where
𝜶𝜔 (𝑧, 𝜔) =

(
𝛼𝜔 (𝑧, 𝜔)
𝛼∗𝜔 (𝑧, 𝜔)

)
K (𝑧) =

(
0 K(𝑧)

K∗(𝑧) 0

)
(3.54)

The integral operator K(𝑧) action on the �eld reads:

K(𝑧)𝛼∗𝜔 (𝑧, 𝜔) = 𝑖𝑔
∫
R
𝛼2𝜔 (𝑧, 𝜔 + 𝜔′)𝑒𝑖Δ𝑘 (𝜔,𝜔 ′)𝑧𝛼∗𝜔 (𝑧, 𝜔′) 𝑑𝜔

′
√
2𝜋

(3.55)

As generally K (𝑧1)K (𝑧2) ≠ K (𝑧2)K (𝑧1), the solution cannot be written simply as the
exponential of the integral of theK (𝑧) operator, like we did in section 3.3.1 for the real �eld
case. To solve this di�erential equation we must use the Magnus expansion [Magnus 54].
The solution takes the form:

𝜶𝜔 (𝐿,𝜔) = 𝑒
∑

𝑘 𝛀𝑘 (𝐿,0)𝜶𝜔 (0, 𝜔) (3.56)
1To be able to apply the spectral theorem we require the matrix A to be Hermitian, 𝐴 = 𝐴†, and the

diagonalization takes the form𝐴 = 𝑉𝐷𝑉 †, with𝑉 unitary. In the case of the Takagi factorization we deal with
a complex matrix 𝐴 = 𝐴𝑇 , and we can decompose in the form 𝐴 = 𝑉𝐷𝑉𝑇 with 𝑉 unitary.
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where

𝛀1(𝐿, 0) =
∫ 𝐿

0
𝑑𝑧1K (𝑧1) (3.57)

𝛀2(𝐿, 0) =
1
2

∫ 𝐿

0
𝑑𝑧1

∫ 𝑧1

0
𝑑𝑧2 [K (𝑧1),K (𝑧2)] (3.58)

𝛀3(𝐿, 0) =
1
6

∫ 𝐿

0
𝑑𝑧1

∫ 𝑧1

0
𝑑𝑧2

∫ 𝑧2

0
𝑑𝑧3 ( [K (𝑧1), [K (𝑧2),K (𝑧3)]] +

[K (𝑧3), [K (𝑧2),K (𝑧1)]])
(3.59)

. . . (3.60)

Keeping only the �rst term of the expansion, under the assumption of small gain of the
parametric process, leads us to:

𝜶𝜔 (𝐿,𝜔) = 𝑒S0𝜶𝜔 (0, 𝜔) (3.61)

where

S0 =

(
0 S0
S∗
0 0

)
=

(
0

∫ 𝐿

0 𝑑𝑧K(𝑧)∫ 𝐿

0 𝑑𝑧K
∗(𝑧) 0

)
= (3.62)(

0 𝑖𝑔
∫
R
𝐿(𝜔,𝜔′) 𝑑𝜔 ′

√
2𝜋

−𝑖𝑔
∫
R
𝐿∗(𝜔,𝜔′) 𝑑𝜔 ′

√
2𝜋 0

)
(3.63)

Now that the �eld is allowed to be complex, we can promote it to an operator: 𝛼 (𝜔) →
𝑎(𝜔). Moreover, we discretize the frequencies so that we can deal with matrices, which will
simplify the calculations and the notation1. We will then use the set of operators 𝑎𝑘 = 𝑎(𝜔𝑘).
We de�ne the column vector:

â = (𝑎1, . . . , 𝑎𝑁 , 𝑎†1, . . . 𝑎
†
𝑁
) (3.64)

and with such discretization the JSA can be re-expressed as a matrix and decomposed via
the Autonne-Takagi factorization as:

𝑖L = V𝚲V𝑇 (3.65)

where V is a unitary matrix and 𝚲 is a diagonal matrix with non-negative entries. The
discretized counterpart of 𝑒S0 is:

𝑒S0 = exp
(

0 𝑔V𝚲V𝑇

𝑔V∗
𝚲V† 0

)
=

(
V 0
0 V∗

)
exp

(
0 𝑔𝚲

𝑔𝚲 0

) (
V† 0
0 V𝑇

)
(3.66)

1When we have an integral operator of the type 𝑇 : 𝜙 → (𝑇𝜙) (𝑥) B
∫
𝑘 (𝑥,𝑦)𝜙 (𝑦)𝑑𝑦 we can consider it

as the continuous version of matrix multiplication: 𝑀 : 𝜙 → (𝑀𝜙)𝑖 B
∑

𝑖 𝑗 𝑀𝑖 𝑗𝜙 𝑗 .
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and we obtain: (
â(𝐿)
â†(𝐿)

)
=

(
V 0
0 V∗

) (
cosh(𝑔𝚲) sinh(𝑔𝚲)
sinh(𝑔𝚲) cosh(𝑔𝚲)

) (
V† 0
0 V𝑇

) (
â(0)
â†(0)

)
(3.67)

We de�ne a new basis as: (
ŝ
ŝ†

)
=

(
V† 0
0 V𝑇

) (
â
â†

)
(3.68)

so that in this new basis the previous equation can be expressed as:(
ŝ(𝐿)
ŝ†(𝐿)

)
=

(
cosh r sinh r
sinh r cosh r

) (
ŝ(0)
ŝ†(0)

)
(3.69)

where r = 𝑔Λ. We recall that, as Λ is a diagonal matrix with non-negative entries, the
squeezing factors r will be positive and de�ne 𝑝-squeezed states. However, in this general
case, the supermodes are de�ned by the unitary change of basisV and are in general complex
vectors. The supermodes are squeezed along an arbitrary axis, relatively to the pump phase,
depending on this basis change.

An interesting case is the one in which the pump has at most a �at spectral phase, i.e.
𝛼𝑝 (𝜔) = |𝛼 (𝜔) |𝑒𝑖𝜙𝑝 . In this case, we can use a trick to deal with a real symmetric JSA and
identify the squeezing directions relative to the pump phase. We take out the complex phase
from the L matrix leaving only the |𝛼 (𝜔) | term to account for the pump. This way, L is a
symmetric real matrix and we can diagonalize it with the spectral theorem as:

L = V𝚲V𝑇 (3.70)

where now V is an orthogonal matrix and 𝚲 is a symmetric matrix that contains eigenvalues
in a geometric progression as explained in the previous section. The discretized counterpart
of 𝑒S0 is:

𝑒S0 = exp
(

0 𝑖𝑔V𝚲V𝑇

−𝑖𝑒𝑖𝜙𝑝𝑔V∗
𝚲V† 0

)
=

(
V 0
0 V∗

)
exp

(
0 𝑖𝑒𝑖𝜙𝑝𝑔𝚲

−𝑖𝑒−𝑖𝜙𝑝𝑔𝚲 0

) (
V† 0
0 V𝑇

)
(3.71)

and we obtain:(
â(𝐿)
â†(𝐿)

)
=

(
V 0
0 V∗

) (
cosh(𝑔𝚲) 𝑖𝑒𝑖𝜙𝑝 sinh(𝑔𝚲)

−𝑖𝑒−𝑖𝜙𝑝 sinh(𝑔𝚲) cosh(𝑔𝚲)

) (
V† 0
0 V𝑇

) (
â(0)
â†(0)

)
(3.72)

We de�ne a new basis as:(
ŝ
ŝ†

)
=

(
1 𝑖𝑒

𝑖𝜙𝑝

2 0
0 −1 𝑖𝑒

−𝑖𝜙𝑝
2

) (
V† 0
0 V𝑇

) (
â
â†

)
(3.73)
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HG0 HG1 HG2

Figure 3.3: Scheme of the typical �rst three spectral modes at the output of the
SPDC process, pumped by a �eld that shows at most a linear spectral phase and
in the Gaussian approximation. The squeezing direction is determined by the
pump phase and the squeezing ellipse is rotated by 𝜋/2 in consecutive modes.

so that in this new basis the previous equation can be expressed as:(
ŝ(𝐿)
ŝ†(𝐿)

)
=

(
cosh r sinh r
sinh r cosh r

) (
ŝ(0)
ŝ†(0)

)
(3.74)

where r = 𝑔𝚲. As shown in Sec. 3.3.2, the 𝚲 eigenvalues alternate between positive and
negative values, so between 𝑝-squeezing (for positive eigenvalue) and 𝑞-squeezing (for
negative eigenvalue). However, di�erently from the previous case of a general complex
pump, now we can identify easily the squeezing directions relatively to the pump, as shown
in Fig. 3.3. Indeed, as V is an orthogonal matrix, the supermodes are real eigenvectors up to
common ±𝑖𝑒𝑖𝜙𝑝

2 factors.

3.3.4 Hamiltonian derivation

The process can be equivalently described using a Hamiltonian derivation, which is present
in most books of quantum optics. In this section, we will sketch the basics of this approach,
while skipping the calculations that are analogous to the ones presented in the previous
section. The unitary operator acting on the quantum state can already be derived by the
results of the previous section. Indeed, it can be shown [Horoshko 19] that a transformation
acting on the operators as in 3.69 can be mapped into a unitary operator U = 𝑒−𝑖H acting
on the quantum state, whereH is sometimes called generator or “e�ective Hamiltonian”. In
the case of the transformation under examination, the e�ective Hamiltonian takes the form
of:

H =
𝑖~
2 (ŝ†Λŝ†𝑇 − ŝ𝑇Λŝ) =

∑︁
𝑖

𝑖~𝑔Λ𝑖
2 (𝑠†2

𝑖
− 𝑠2𝑖 ) (3.75)

From this expression we can recognize the Hamiltonian of the squeezing transformation.
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3.3. PARAMETRIC DOWN-CONVERSION

We can also derive the above Hamiltonian directly from the nonlinear interaction
Hamiltonian. The total Hamiltonian of the light modes and their interaction can be written
as:

𝐻̂𝑡𝑜𝑡 = 𝐻̂0 +𝑉 (3.76)
where 𝐻̂0 is the free Hamiltonian that includes the energies of the free �elds (in the form
𝜔𝑘𝑎

†
𝑘
𝑎𝑘 ) and 𝑉 is the three-wave interaction part. When dealing with interacting �elds, it

is useful to switch to the interaction (or Dirac) picture. The interaction picture is useful
because it permits us to unravel part of the dynamics (the part governed by the free
Hamitlonian) and concentrate on the dynamics that arises from the interaction among the
�elds. In this picture, the operators evolve according to the free Hamiltonian, and the overall
e�ect of this transformation is to map the terms 𝑎𝑖 into:

𝑎𝑖,𝐼 (𝑡) = 𝑒
𝑖
~ 𝐻̂0𝑡𝑎𝐼 (0)𝑒−

𝑖
~ 𝐻̂0𝑡 = 𝑎𝑖,𝐼 (0)𝑒−𝑖𝜔𝑖𝑡 (3.77)

where 𝑎𝑖,𝐼 (0) = 𝑎𝑖,𝑆 = 𝑎𝑖 is the annihilation operator in the “usual” Schrödinger picture. An
analogous equation holds for the creation operators. Conversely, the states evolve according
to the interacting Hamiltonian as:

|𝜓 (𝑡)〉𝐼 = T𝑒− 𝑖
~

∫ 𝑡

0 𝑑𝜏 𝑉𝐼 (𝜏) |𝜓 (0)〉𝐼 (3.78)

where the “𝐼” subscript indicates that we are working in the interaction picture and where
T is a time-ordering operator1. More details on the interaction picture can be found in
Appendix A.

In the interaction picture, the interacting Hamiltonian is given by2:

𝑉𝐼 (𝑡) =
1
2

∫
R
𝑑3r𝐸2𝜔,𝐼 (r, 𝑡)𝑃𝐼 (r, 𝑡) (3.79)

where 𝑃𝐼 (r, 𝑡) is the quantized counterpart of the nonlinear polarization introduced in
Eq. 3.10. From now on, we drop the 𝐼 subscripts in the �eld operators. Often in the literature
the �elds are rewritten as 𝐸 (r, 𝑡) = 𝐸 (+) (r, 𝑡) + 𝐸 (−) (r, 𝑡). As we are interested only in PDC,
we are left with the term:

𝑉𝐼 (𝑡) =
𝜖0𝑑𝑒 𝑓 𝑓

2

∫
R
𝑑3r𝐸 (+)

2𝜔 (r, 𝑡)𝐸 (−)
𝜔 (r, 𝑡)𝐸 (−)

𝜔 (r, 𝑡) + h.c. (3.80)

1The time ordering operator acts as:

T (𝐴(𝑡), 𝐵(𝑡 ′)) =
{
𝐴(𝑡)𝐵(𝑡 ′) if 𝑡 < 𝑡 ′

𝐵(𝑡 ′)𝐴(𝑡) if 𝑡 ′ < 𝑡

2As reported in Eq. A.21, the connection between the interaction Hamiltonian in the Schrödinger picture
and in the interaction picture is given by 𝑉𝐼 (𝑡) = 𝑒

𝑖
~ 𝐻̂0𝑡𝑉𝑆𝑒

− 𝑖
~ 𝐻̂0𝑡 .
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CHAPTER 3. NONLINEAR OPTICS

We stress out that we deal with degenerate PDC: the signal and idler �eld are
indistinguishable1. We use the expression of the electric �eld de�ned as:

𝐸 (+) (r, 𝑡) = E0

∫ ∞

0
𝑑𝜔 𝑎(𝜔)𝑒𝑖 (k(𝜔)r−𝜔𝑡) (3.81)

𝐸 (−) (r, 𝑡) = E0

∫ ∞

0
𝑑𝜔 𝑎†(𝜔)𝑒−𝑖 (k(𝜔)r−𝜔𝑡) (3.82)

When performing the time integration of 𝑉𝐼 (𝜏) in Eq. 3.78, we can push the integral limits
to in�nity. Indeed, we have: ∫ 𝑡

0
𝑑𝜏 𝑉𝐼 (𝜏) =

∫ ∞

−∞
𝑑𝜏 𝑉𝐼 (𝜏) (3.83)

as 𝑉𝐼 (𝜏) outside the [0, 𝑡] interaction range vanishes. This step is important, as it permits
to integrate the time-dependence of the electric �eld, of the form 𝑒𝑖 (𝜔𝑝−𝜔𝑠−𝜔𝑖 ) , to obtain the
Dirac delta term 𝛿 (𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖), that accounts for energy conservation. The calculations
are analogous to what has been done in the previous sections. Step-by-step details can be
found in [Ou 07] and in [Mosley 07]. Carrying on the calculations will lead us to:∫ ∞

−∞
𝑑𝜏𝑉𝐼 (𝜏) =

𝑔~
2

∫
R+
𝑑𝜔𝑠𝑑𝜔𝑖𝐿(𝜔𝑠, 𝜔𝑖)𝑎†(𝜔𝑠)𝑎†(𝜔𝑖) + h.c. (3.84)

where 𝐿(𝜔𝑠, 𝜔𝑖) is the JSA already encountered in the previous sections. After switching to
the supermode basis by diagonalizing −𝑖𝐿(𝜔𝑠, 𝜔𝑖) we get:

− 𝑖

~

∫ ∞

−∞
𝑑𝜏𝑉𝐼 (𝜏) =

𝑔

2
∑︁
𝑖

(
Λ𝑖𝑠

†,2
𝑖

− Λ𝑖𝑠
2
𝑖

)
(3.85)

Finally, if we start with a vacuum state in the signal and idler �eld |𝜓 (0)〉𝐼 , the evolution is
given by Eq. 3.78 and we obtain:

|𝜓𝑜𝑢𝑡 〉 =
∏
𝑖

𝑒
𝑔

2

(
Λ𝑖𝑠

†,2
𝑖

−Λ𝑖𝑠
2
𝑖

)
|0〉 (3.86)

In the photon counting regime these equations are usually truncated at �rst order. From
Eq. 3.84 we obtain:

|𝜓𝑜𝑢𝑡 〉 ∼ |0〉 − 𝑖𝑔2

∫
R+
𝑑𝜔𝑠𝑑𝜔𝑖𝐿(𝜔𝑠, 𝜔𝑖)𝑎†(𝜔𝑠)𝑎†(𝜔𝑖) |0〉 + h.c. (3.87)

1From the expression of the nonlinear polarization we also note that if we choose a non-degenerate process
we have to account for a factor 2, that simpli�es with the 1/2 in front of the integral of 𝑉𝐼 (𝑡). Indeed, for two
polarizations, 𝑃𝑖 ∝

∑2
𝑗,𝑘=1 𝐸 𝑗𝐸𝑘 = 𝐸21 +𝐸22 +2𝐸1𝐸2 where we omitted the nonlinear susceptibility. In our case we

deal with a degenerate case: signal and idler are indistinguishable, so depending on the case we keep either
the 𝐸21 term or the 𝐸22 term and the 1/2 factor does not vanish.
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3.3. PARAMETRIC DOWN-CONVERSION

where |0〉 is the multimode vacuum. At �rst order, we obtain at the output of the crystal
a monochromatic bi-photon state, where the frequencies are determined according to the
probability encoded in the JSA. However, if expand the Hamiltonian in the supermode basis,
from Eq. 3.86 we obtain:

|𝜓𝑜𝑢𝑡 〉 ∼ |0〉 − 𝑔2
∑︁
𝑖

Λ𝑖𝑠
†,2
𝑖

|0〉 (3.88)

Even in this case the output state is a bi-photon state, but in a speci�c eigenmode temporal
shape determined by the Λ𝑖 probability coe�cients.
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Chapter 4

Experimental setup for squeezing
generation
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Spontaneous parametric down-conversion is the leading process in CV to generate
squeezed states and entangled states of light, as seen in the previous part of this work.
Squeezed states are a fundamental CV resource, whose application include quantum
computing [Bourassa 21] quantum sensing [Aasi 13] and quantum metrology [Nielsen 23].

In CW, squeezing values of up to 15 dB of squeezing have been obtained via degenerate
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SPDC at 1064 nm [Vahlbruch 16], and the generation of squeezed states and entangled states
has been reported in integrated platforms [Lenzini 18, Mondain 19]. In the pulsed regime,
degenerate SPDC results in the generation of multiple squeezed spectral modes, which can
be employed to generate entangled networks in the spectral domain [Cai 17, Chen 14].

Multimode squeezing for quantum information processing applications has been
presented both in the frequency domain [Yang 21] and in the time domain [Inoue 23].
Here, the goal is the single-pass generation of multimode squeezed states of light that are
multiplexed both in time and in frequency. The spectral multimode structure is present
in each pulse and, via fast balanced homodyne detection, we can measure squeezing in
a pulse-resolved way [Kouadou 23]. Temporal multiplexing allows for the generation of
an in�nite number of modes (one for each pulse) [Yokoyama 13, Asavanant 19, Larsen 19],
while spectral multiplexing enables the recon�gurability of the resource [Cai 17].

In this chapter, we outline the experimental setup that allowed us to carry out the
squeezing generation experiment. The waveguide experimental setup has been designed
by Tiphaine Kouadou, who has also designed and implemented the fast homodyne
detector [Kouadou 21]. Here, I re�ned the simulations originally used for selecting
the nonlinear crystal, enhancing their accuracy and permitting us to gain a better
understanding on the nonlinear process. My experimental contribution consisted in
building the waveguides setup, along with dealing with the necessary steps that resulted in
squeezing generation, from waveguide characterization to performing the measurements
in the spectral and time domain, presented in [Kouadou 23]. In addition, I devised and
implemented a new second-harmonic generation in the setup.

4.1 Scheme of the setup
Our experimental setup is composed of several modules, each of which plays a critical role in
the experiment’s success. While we will detail each module later in this chapter, it is useful
to present the entire setup as a whole, in order to highlight in advance how the various
components are interconnected. In Fig. 4.1 a scheme of the experiment is presented.

Waveguides for SPDC Periodically-poled KTP waveguides crystals are at the core of
this single-pass squeezing generation experiment. The nonlinearity of the crystal drives
the SPDC process, while the waveguide structure ensures that the generated light remains
con�ned within a narrow section. This con�nement enhances the e�ciency of the
non-linear process and, in our case, it ensures spatial single-mode operation. This last aspect
is crucial in preventing the emergence of spatial-spectral correlations, which can occur in
bulk setups [LaVolpe 20].

Nonlinear waveguides have to be carefully engineered to deliver multimode squeezed
states at their output, and the entire setup must be constructed in accordance with
the waveguides requirements. Factors such as the pump beam’s characteristics, spatial
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CHAPTER 4. EXPERIMENTAL SETUP FOR SQUEEZING GENERATION

Figure 4.1: Scheme of the waveguides squeezing generation experiment.

alignment with the local oscillator of the homodyne detector, and precise control over
alignment parameters are all critical for the success of the experiment.

Laser source The laser beam serves as the common source for the various beams used in
the experiment, each with speci�c purposes and distinct characteristics. After undergoing
spatial �ltering, the laser beam is split into three main parts: approximately 50 mW are
used for seeding the SPDC process (referred to as the seed beam), 200 mW are allocated for
the local oscillator (LO) in the detection stage, and the remaining power is directed toward
driving the SHG process.

Pump beam The majority of the laser beam serves as the pump for the second-harmonic
generation (SHG) process. The second-harmonic light is subsequently used to pump
the waveguides to drive the SPDC process; for this reason, throughout this work we
will often refer to this beam as “pump beam”. The SHG crystal was selected to ensure
that the second-harmonic light possesses suitable characteristics for multimode squeezing
generation. Factors such as the e�ciency of SHG, the width of the output pulse and the
spatial properties of the beam were all considered when choosing the crystal. In particular,
we will explore how the spectral width of the SHG light plays a crucial role in determining
certain key spectral characteristics of the generated squeezed light.

Seed beam The seed beam, much like the SHG pump beam, is directed towards the
waveguide module, but its purpose is quite di�erent. It is used exclusively for alignment and
for locking purposes and it is intentionally blocked during the measurement stage. Indeed,
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both temporal and spatial alignment are crucial in this experiment: squeezed vacuum light
is not bright, so its path cannot be easily traced, and the temporal location of its pulses
cannot be measured using conventional methods applied to coherent beams. The seed
beam essentially acts as a “vessel” for the squeezed beam. When alignment procedures are
carried out accurately, the seed pulses follow the same path and occupy the same position
as the squeezed pulses. Furthermore, since both the seed and squeezed light are guided
within a waveguide structure, they share the same transverse spatial pro�le; this is an
important point for ensuring proper spatial overlap with the local oscillator beam during
the homodyne detection stage, as we will discuss in more detail throughout this chapter.

LO beam The local oscillator beam is used in the detection stage of the experiment. It
is sent to a pulse-shaper, an optical device designed for spectral-temporal shaping of light
pulses. The pulse shaper is controlled by a computer program, and it enables us to imprint
a speci�c temporal pro�le on the light, within the resolution limits of the pulse shaper.

Since homodyne detection is a projective measurement, the LO is used to select the
speci�c spectral mode that we intend to measure. Our capabilities in this regard are limited
by the local oscillator bandwidth; a wider bandwidth grants access to a larger number of
modes for measurement. During the alignment phase, the LO beam is combined with the
seed beam at the homodyne detection beamsplitter, while when taking measurements the
seed is blocked and only the squeezed light is measured alongside with the LO.

4.2 The ultrafast light source
In this section, we explore the temporal and spectral characteristics of a femtosecond
light source. Ultrafast light opens the way to a wide range of applications, but it also
introduces unique challenges when compared to Continuous-Wave (CW) light. Managing
dispersion, ensuring precise temporal alignment, and addressing the complex spectral
structure during the measurement stage are prices we have to pay when working in an
ultrafast optics experiment. An extensive review on ultrafast light, its applications and its
inherent challenges is given in [Weiner 11].

4.2.1 Mode-locked lasers
In a laser operating at steady state, only certain frequencies (known as longitudinal modes)
are allowed to resonate in the cavity. It follows that we don’t have a continuous spectrum
but the frequencies are discretized, following:

𝜔𝑛 = 𝑛
2𝜋𝑐
𝐿

= 𝑛𝜔𝑟 , 𝑛 ∈ Z (4.1)

where 𝐿 is the cavity length. The quantity 𝜔𝑟 = 2𝜋𝑐
𝐿

is called free-spectral range of the
cavity, and it corresponds to the angular frequency of the laser repetition rate. When the
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steady-state conditions are valid only for a single longitudinalmode, the laser operates in the
continuous-wave (CW) regime, resulting in the emission of a monochromatic light beam.
More details on laser essentials are given in Appendix B.1.

A priori each longitudinal mode 𝜔𝑛 can oscillate in the cavity with a random phase 𝜙𝑛 ,
resulting in an electric �eld

𝐸 (+) = 𝐸0
∑︁

𝑒𝑖 (𝑘𝑛𝑧−𝜔𝑛𝑡+𝜙𝑛) (4.2)

This results in the intensity �uctuating randomly around its average value 𝐼 (𝑡) ∝ 𝑁 |𝐸0 |2,
where 𝑁 is the number of longitudinal modes and we assume that each mode has the
same amplitude 𝐸0. This situation is analogous to that of a lightbulb, which is inherently a
broadband source but typically does not emit light in the form of distinct pulses. To shift
from continuous light emission to light pulses, we introduce one �nal essential ingredient:
mode-locking.

time
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time
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Out of 
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Figure 4.2: Random phase relation (top) and �xed phase relation (bottom)
between longitudinal modes. In the �rst case, the output results in random (but
still periodic) intensity �uctuations around the average value. A �xed phase
relation permits the formation of a pulse. In both cases, the average value of the
intensity is the same.

Mode-locking is a technique that permits the modes to oscillate inside the cavity with a
�xed relative phase. In most cases of interest we �x the relative phases such that 𝜙𝑛 = 𝜙 . In
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this case, the intensity takes the form:

𝐼 (𝑡) ∝ |𝐸0 |2
sin2(𝑁Δ𝜔𝑡/2)
sin2(Δ𝜔𝑡/2)

(4.3)

where Δ𝜔 is the angular frequency spacing between two consecutive longitudinal modes.
The average intensity is still proportional to 𝑁 |𝐸0 |2 but the peak intensity of the pulse is
much higher and of the order of 𝑁 2 |𝐸0 |2 [Weiner 11]. This is shown in Fig. 4.2.

The mode-locking technique permits to generate very short pulses, up to the
femtosecond range1. While not all laser gain media are capable of producing ultrashort
femtosecond pulses, speci�c gain media, paired with mode-locking technique and with
extensive research in the cavity con�guration, have enabled the generation of remarkably
short pulses. Among these media, titanium-doped sapphire (Ti:Sa) lasers have emerged as
the leading technology for femtosecond pulse generation in the near-infrared spectrum2,
achieving pulses as short as 5 femtoseconds [Ell 01].

Mode-locking can be active or passive3. Here, we focus on passive mode-locking, which
is achieved by placing in the oscillator cavity a saturable absorber, where the absorption of
light is reduced non-linearly if the intensity of light increases. Low intensity CW light will
su�er from absorption losses, while pulsed light, with higher peak intensity, will saturate
the absorber and reduce this induced losses e�ect. In particular, the wings of the pulse,
of lower intensity, will su�er more losses compared to the pulse peak, which saturates the
absorber. This results in pulse shortening, and the saturable absorber acts e�ectively as an
ultrafast shutter. The pulses continue to shorten until a counterbalancingmechanism comes
into play. Indeed, as the pulse shortens, its spectral width broadens. When the ultrashort
pulse reaches a spectral width comparable to the gain bandwidth, a spectral shortening
(temporal-broadening) e�ect kicks in, inducing losses in the spectral wings that overcome
the gain bandwidth. Eventually, the shortening and broadening mechanism balance out and
the pulse is stabilized to a speci�c temporal and spectral width [Agrawal 20, Yefet 13].

The shortest achievable pulses are generated via Kerr-lens mode-locking, a technique
that employs the Kerr-lensing e�ect of the gain medium. This, coupled with either a hard
or a soft aperture, two di�erent mode-locking techniques explained below, behaves like
a fast saturable absorber. The Kerr e�ect is a third-order non-linear e�ect, in which the
refractive index of the crystal changes locally non-linearly with the electric �eld strength:

𝑛(r, 𝑡) = 𝑛0 + 𝑛2𝐼 (r, 𝑡) (4.4)
1Mode-locking is not the only technique for pulse generation, but it is the one that permits the generation

of the shortest pulses. For instance, Q-switching generated pulses are in the nanosecond range.
2We remind that there is an intrinsic limitation: pulses cannot contain less than one optical cycle. Given a

central wavelength 𝜆0 ∼ 800 nm, the shortest pulse duration is of 𝑡𝑚𝑖𝑛 = 2.67 fs. However, attosecond pulses
can be achieved in the XUV (extreme ultraviolet) range.

3Active mode locking requires an external device, such as amplitude or phase modulator, to modulate the
losses synchronously with the resonator round trip. Typically, active mode-locked lasers can generate pulses
in the picosecond range.
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Figure 4.3: Spectrum of our light source.

This gives rise to various e�ects such as self-phase modulation in the temporal domain and
Kerr lensing (or self-focusing) in the spatial domain. As a consequence of this non-linear
e�ect, the intensity of the pump beam being higher along the beam axis results in a bigger
change of the refractive index in the center of the beam. The crystal behaves then like a lens,
causing focusing or defocusing of the high intensity beam. High intensity beams will thus
have a di�erent spatial behaviour than low intensity ones. This di�erence will be exploited
to introduce losses in the CW (low-intensity) operation to promote the ML (mode-locked,
high intensity) operation. In the case of hard-aperture mode-locking, we exploit the fact
that the size of the CW beam at the output mirror is larger than the size of the ML beam.
Adding a slit to induce losses on the CW beam favours ML operation, that soon saturates the
gain. In soft-aperture mode-locking, the ML operation is favoured because the pump itself
acts as an aperture: inside the crystal the ML beam is smaller than the CW beam and it has
a better overlap with the pump, thus favouring its gain over the CW beam. Both methods
have the e�ect of increasing the round-trip gain.

To start the mode-locking operation we kick the end mirror of the cavity, breaking
the CW regime and seeding a pulse that saturates the absorber su�ciently to build up,
overcoming the CWbeam. When the gain is greater than the cavity losses, lasing is possible.
The light builds up in the cavity and a steady-state is reached when the gain and losses are
equal.
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4.2.2 The Synergy laser
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Figure 4.4: Picture of the pump laser and the Ti:Sa laser.

Our light source is a Synergy laser by Femtolaser, a Titanium-Sapphire (Ti:Sa)
soft-aperture Kerr-lens mode-locked laser, that delivers near-infrared 22 fs pulses at a
repetition rate of 𝑓𝑟 = 156 MHz1. In the frequency domain, the source is a frequency
comb (see section 4.2.3) centered at 𝜆0 = 795 nm with a FWHM of 42 nm. Depending
on the alignment of the laser cavity, these parameters can be slightly shifted. A typical laser
spectrum is shown in Fig. 4.3. The oscillator is pumpedwith 5W of 532 nm continuous wave
light delivered by a Finesse pure from Laser Quantum, a diode-pumped solid state laser.

A scheme of the laser can be seen in Fig. 4.4. The cavity is folded into an X-fold
con�guration, and the folding angles 𝜃1 and 𝜃2 between the curved mirrors M1 and M5
and the crystal compensate for the astigmatism introduced by the Ti:Sa crystal. These
angles are calibrated at the factory and the mirrors M1 and M5 must never be realigned.
For intracavity dispersion compensation, all the cavity mirrors, except for M1, M5 and the
OC, are chirped2. For �ne-tuning of the intracavity dispersion, a pair of wedges are placed

1Standard Ti:Sa lasers do not operate at 156 MHz. This unusual repetition rate is due to a customization
of our laser cavity, that has been halved by the manifacturer with respect to the standard Synergy laser that
operates at 80 MHz. The reason was of practical purpose: this laser has been purchased to serve an older
metrology experiment. The higher repetition rate permitted to build a smaller cavity to serve the experiment,
as the distance between pulses is only around 2 m. This footnote is speci�cally intended for the knowledge of
future PhD students.

2Chirped mirrors are speci�cally designed for introducing negative group delay dispersion.
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before the OC, and one of them is mounted on a translation plate; adjusting this translation,
one can �ne tune the width of the output spectrum and restore its nominal alignment values.
Finally, a compensation plate (CP) and extra-cavity chirped mirrors are placed in the path
of the beam, to get the shortest pulse.

The alignment of the laser cavity is achieved by maximizing the output power by
aligning the two injection mirrors P1 and P2 and by aligning the cavity-end mirrors M3 and
OC. Cleaning with a mix of acetone and methanol1 is also part of the routine, as dust on the
optics, and especially on the crystal, is very detrimental to lasing. In optimized conditions,
5W of CW pump generate 0.98 W of pulsed light.

The laser output beam doesn’t have a proper TEM00 spatial shape. Spatial �ltering is
needed, in order to obtain a TEM00 mode. To ensure spatial �ltering, a couple of curved
mirrors and a pinhole of 150 𝜇m are placed in the path of the beam, with a transmission that
ranges from 86% to 90%.

4.2.3 Frequency combs
The electric �eld of an in�nite train of pulses can be mathematically described as:

𝐸
(+)
𝑡𝑟𝑎𝑖𝑛

(𝑡) =
∞∑︁

𝑛=−∞
𝐸
(+)
𝑝𝑢𝑙𝑠𝑒

(𝑡 − 𝑛𝜏) = E0

∞∑︁
𝑛=−∞

𝛼 (𝑡 − 𝑛𝜏)𝑒−𝑖𝜔0 (𝑡−𝑛𝜏) (4.5)

where 𝐸 (+)
𝑝𝑢𝑙𝑠𝑒

(𝑡) is de�ned as in Eq. 1.28, where 𝛼 (𝑡) is the envelope and 𝜔0 is the carrier.
The temporal spacing between the pulses is denoted as 𝜏 and it reads 𝜏 = 2𝜋/𝜔𝑟 , where 𝜔𝑟
is the angular frequency of the laser repetition rate.

The Fourier transform of 4.5 reads2:

𝐸
(+)
𝑡𝑟𝑎𝑖𝑛

(𝜔) = 𝜔𝑟𝐸 (+)
𝑝𝑢𝑙𝑠𝑒

(𝜔)
∞∑︁

𝑛=−∞
𝛿 (𝜔 − 𝑛𝜔𝑟 ) (4.6)

From this equation, we identify the structure of the so-called frequency comb [Fortier 19],
that is characterized by a succession of single-frequencies (the teeth of the comb) equally
spaced by 𝜔𝑟 and modulated by a spectral envelope, de�ned by the laser characteristics.
This comb structure re�ects the temporal periodicity of the train of pulses.

This description is accurate for an ideal frequency comb. However, for a realistic
description of the comb, chromatic dispersion within the cavity must be considered. This
results in a frequency o�set 𝜔𝐶𝐸 in the frequency domain, and in a phase o�set 𝜙𝐶𝐸
between consecutive pulses. More details on a realistic frequency comb are given in B.2
and [Thiel 15]. A picture of the spectral and temporal features of a realistic frequency comb
�eld can be seen in Fig. 4.5.

1The two pump mirrors P1 and P2 are dielectric mirrors and should only be cleaned with methanol.
2Here we use the fact that 𝑓 (𝜔) = 1

𝜔𝑟

∑∞
𝑛=−∞ 𝑒

𝑖𝑛𝜔 2𝜋
𝜔𝑟 =

∑∞
𝑛=−∞ 𝛿 (𝜔 − 𝑛𝜔𝑟 ).

91



4.2. THE ULTRAFAST LIGHT SOURCE

Figure 4.5: Realistic frequency comb in the temporal domain (top) and in the
spectral domain (bottom). Picture from [Thiel 15].

4.2.4 Gaussian pulses

In this experiment, we work with pulses that can be approximated by a Gaussian envelope.
Although ultrafast Ti:Sa lasers pulses typically exhibit a temporal pro�le that more closely
resembles a hyperbolic secant function, employing Gaussian functions allows us to perform
analytical calculations.

We de�ne Gaussian temporal envelopes as a normalized electric �eld mode 𝑢 (𝑡) using
the following expression:

𝑢 (𝑡) = 𝐶𝑡 exp
(
− 𝑡2

4Δ𝑡2

)
(4.7)

where 𝐶𝑡 is a constant that accounts for the normalization of the mode and where the
time width Δ𝑡 , sometimes referred to as 𝜎𝑡 , is the standard deviation of the intensity
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pro�le of the �eld1. This de�nition di�ers from others that are used in the quantum optics
community. However, as here we work extensively with spectral-temporal characteristics,
it is a convenient choice that ensures the symmetry between the temporal and the spectral
domain.

The Fourier transform, with respect to the carrier frequency, of Eq. 4.7 yields the
expression:

𝑢 (Ω) = 𝐶𝜔 exp
(
− Ω2

4Δ𝜔2

)
(4.8)

where Ω = 𝜔 −𝜔0,𝐶𝜔 is the normalization constant and Δ𝜔 (also called 𝜎𝜔 ) is the standard
deviation of the spectral intensity, that can be directly measured with a spectrometer. As
a consequence of the relations between the spectral and the time domain, the following
equality holds:

Δ𝑡Δ𝜔 =
1
2 (4.9)

We point out that in the case of a pulse with a general temporal shape, this equation
represents a lower bound. Pulses that satisfy this equality are said to be Fourier-transform
limited. Ultrafast pulses are subjected to dispersion, that results in the altering of the pulse
shape. The e�ect of dispersion, up to the second order, is treated in B.3.

To describe measured intensities, we often use the Full-Width-Half-Maximum instead
of the standard deviation. The two are related by

Δ𝑡𝐹𝑊𝐻𝑀 = 2
√
2 ln 2Δ𝑡 (4.10)

and Eq. 4.9 can be rewritten in the FWHM notation as

Δ𝑡𝐹𝑊𝐻𝑀Δ𝜔𝐹𝑊𝐻𝑀 ∼ 0.441 (4.11)

This is known as time-bandwidth product2.
To conclude this section, we turn our attention to the energy and power of a pulse. In

the general case, the average detected power of a laser beam is determined by the equation:

𝑃𝑎𝑣𝑔 = 𝐸𝑝 · 𝑓𝑟 (4.12)

where 𝐸𝑝 is the energy of the pulse and 𝑓𝑟 is the repetition rate. For Gaussian pulses, the
peak power of a pulse can be expressed as:

𝑃𝑝𝑒𝑎𝑘 = 0.94
𝑃𝑎𝑣𝑔

𝑓𝑟 · Δ𝑡𝐹𝑊𝐻𝑀

(4.13)

1In this speci�c case, being the mean of the gaussian envelope 〈𝑡〉 = 0, the variance (or second central
moment), corresponds to the second moment, i.e. 〈𝑡2〉 =

∫
R
𝑑𝑡 𝑡2 |𝛼 (𝑡)2 | = 𝜎𝑡

2The time bandwidth product depends on the pulse shape. As an example, for a sech2 pulse it takes the
value of 0.315.
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As an example of the striking di�erences of the scales involved between the CW and the
pulsed regime, we consider a Fourier-transform limited pulse with the characteristics of our
light source. In this case, the peak power can be estimated as 𝑃𝑝𝑒𝑎𝑘 ∼ 0.27 · 106 · 𝑃𝑎𝑣𝑔. For
instance, with just 10 mW of average power, our pulses yield a remarkable peak power of
2.7 kW.

4.3 Nonlinear ppKTP Waveguides

In this section, we introduce nonlinear periodically-poled KTP waveguides, the primary
component of the squeezing generation experiment. We start by discussing the concept of
guided light, which has gained popularity in recent years. This concept is familiar to many,
particularly due to the widespread use of optical �ber internet connections in households,
made possible by advancements in telecommunications. The particular geometry of our
waveguides is studied, along with the nonlinear characteristics of the ppKTP crystal. An
important aim of this section is to evaluate the speci�c requirements that the surrounding
components in this setup must meet to facilitate e�ective squeezing generation. Details on
optical waveguides can be found in [Snyder 83, Okamoto 06].

4.3.1 Generalities on waveguides

Waveguides are structures that con�ne light by exploiting the phenomenon of total internal
re�ection. Typically, guided light is con�nedwithin a region of high refractive index relative
to its surroundings, allowing for transmission along the longitudinal direction, denoted
often as the 𝑧 direction. Waveguides can be classi�ed into di�erent types based on their
geometrical structure and the pro�le of their transverse index of refraction 𝑛(𝑥,𝑦). Light
con�nement can be limited to only one transverse direction (planar or slab waveguides) or to
both transverse directions (non planar waveguides). Moreover, waveguides can be classi�ed
according to their index-pro�le into step-index waveguides, characterized by an abrupt
change in refractive index between the core region and its surroundings, or graded-index
waveguides, where the refractive index changes gradually. Among non-planar waveguides,
optical �bers are perhaps the most well-known, being widely used in telecommunications.
Other types of non-planar waveguides include buried channel, ridge, rib, and di�used
waveguides, as illustrated in Figure 4.6. In the context of this work, we will use di�used
waveguides as the chosen type for our experiments.

These various structures and index pro�les provide control over the characteristics of
the guidedmodes within thewaveguide. Guidedmodes are transverse pro�les of the electric
and magnetic �elds that remain constant along the propagation direction. The electric and
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Buried channel waveguide Ridge waveguide Rib waveguide Di�used waveguide

Figure 4.6: Examples of non-planar waveguides.

magnetic �eld of a guided mode can be written as follows:

E𝜈 (r, 𝑡) = E𝜈 (𝑥,𝑦)𝑒𝑖 (𝛽𝜈𝑧−𝜔𝑡) (4.14)
H𝜈 (r, 𝑡) = H𝜈 (𝑥,𝑦)𝑒𝑖 (𝛽𝜈𝑧−𝜔𝑡) (4.15)

where 𝜈 is the mode index, E𝜈 (𝑥,𝑦) and H𝜈 (𝑥,𝑦) are the transverse distributions of the
electric and magnetic �eld, and 𝛽𝜈 is the propagation constant of the mode. The propagation
constant 𝛽𝜈 , analogously to the wavevector 𝑘𝑧 for a plane wave in a medium with refractive
index𝑛, describes the change in phase along the propagation direction 𝑧. It can be expressed
by:

𝛽𝜈 = 𝑛𝑒 𝑓 𝑓 ,𝜈
𝜔

𝑐
(4.16)

where 𝑛𝑒 𝑓 𝑓 ,𝜈 is the e�ective refractive index experienced by the mode within the waveguide.
It is important to note that dielectric waveguides do not support TEM modes, which are

modes in which the 𝐸𝑧 and 𝐵𝑧 components of the electric and magnetic �elds both vanish.
Instead, waveguides support various types of modes, including: transverse electric (TE)
modes (𝐸𝑧 = 0 and 𝐵𝑧 ≠ 0), transverse magnetic (TM) modes (𝐸𝑧 ≠ 0 and 𝐵𝑧 = 0) and
hybrid modes (𝐸𝑧 ≠ 0 and 𝐵𝑧 ≠ 0). In certain cases, such as for planar waveguides and
optical �bers, the solutions to Maxwell’s equations can be found analytically and result in
pure TE and TM modes. However, in the general case, a pure TE and TM solution does not
exist. Instead, guided modes are typically hybrid modes,1, and the wave equation does not
have an analytical solution [Snyder 83, Murphy 01]. Therefore, numerical methods must be
employed to analyze the modes of these waveguides.

4.3.2 Guided modes in di�used waveguides

Thewaveguides that are employed for the SPDCprocess in this experiment are graded-index
periodically-poled KTP waveguides, provided by the company AdvR Inc. These waveguides
are organized into chips, with each chip containing six groups of �ve waveguides, resulting
in a total of 30 waveguides. The width of these waveguides varies between 2, 3 or 4 𝜇m and

1For hybrid modes, often one of the transverse components of the �elds is much bigger than the other, and
we can approximate them with quasi-TE and quasi-TM modes
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Figure 4.7: High-resolution picture of the �rst group of the waveguide chip.

there is a separation of 75 𝜇m between groups of waveguides, while the distance between
waveguides within the same group is 35 𝜇m. A picture of a group of waveguides is shown
in Fig. 4.7. The KTP chip itself has a length of 5.7 mm; due to fabrication constraints, a
smaller chip length is not achievable. However, the periodically poled region is limited to a
length of 𝐿 = 1 mm, situated at the end of the crystal. Anti-re�ection coatings are applied
to both the input and output facets of the chip to minimize re�ection losses. Moreover, the
crystal is x-cut, meaning that light propagates along the 𝑥-axis of the crystal. In the rest of
this section, we will therefore indicate with 𝑥 the propagation direction and with (𝑦, 𝑧) the
transverse directions.

The di�used pro�le is obtained via Rb+ ions exchange on the x-cut KTP
chip [Bierlein 87]. The ion di�usion into the bulk KTP is responsible for creating a
waveguide structure with a graded index pro�le along the 𝑧-axis, denoted with 𝑛(𝑧).
In this pro�le, the refractive index decreases with depth, following an exponential
law [Roelofs 94]. Since these waveguides lack speci�c planar or cylindrical symmetry,
analytical computations of their eigenmodes are not feasible and numerical techniques must
be employed. For this work, a �nite-di�erence method is used to calculate the spatial modes
supported by the waveguide [Murphy 01, Fallahkhair 08].

To calculate numerically the spatial modes, the graded-index pro�le 𝑛(𝑦, 𝑧) is coarse
grained into a �nite mesh, with elements of size Δ𝑦 · Δ𝑧 in which the refractive index is
constant, as can be seen in Fig. 4.8. The refractive indexes of our waveguides have been
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Figure 4.8: Typical �nite-di�erentmesh, where the refractive index pro�le𝑛(𝑦, 𝑧)
is divided into pixels of dimensions Δ𝑦 and Δ𝑧, over which the refractive index
is constant.

400nm z 400nm y 800nm z 800nm y
𝑛𝑤𝑔 1.98885 1.86786 1.85681 1.77339
𝑛𝑏𝑢𝑙𝑘 1.96405 1.84346 1.84465 1.75653

Table 4.1: Refractive index 𝑛𝑤𝑔 of the waveguide and 𝑛𝑏𝑢𝑙𝑘 of the bulk for the
waveguide chip provided by AdvR Inc. along the axes 𝑦 and 𝑧.

provided by AdvR Inc. for 𝜆 = 400 nm and 𝜆 = 800 nm and are given in Table 4.1. The
y-pro�le follows a step-gradient while the z-pro�le follows a graded-index, expressed as:

𝑛(𝑧) = 𝑛𝑏𝑢𝑙𝑘 + Δ𝑛𝑒−
𝑧
𝑑 (4.17)

where Δ𝑛 = 𝑛𝑤𝑔 −𝑛𝑏𝑢𝑙𝑘 and 𝑑 is a parameter that depends on the fabrication process that is,
unfortunately, unknown. It has been observed that narrower waveguides are deeper than
broader ones [Padberg 20].

The normalized propagation constant:

𝑏𝜈 =
𝑛2
𝑒 𝑓 𝑓 ,𝜈

− 𝑛2
𝑏𝑢𝑙𝑘

𝑛2𝑤𝑔 − 𝑛2𝑏𝑢𝑙𝑘
(4.18)

permits us to calculate the range of modes that can be guided through a waveguide. The
condition for guidance reads 0 < 𝑏 < 1 and 𝑏 decreases with the mode order, as 𝛽𝜈 does. The
more 𝑏𝜈 is closer to 1, the better the mode 𝜈 is guided. With the �nite-di�erence method we
can calculate numerically the 𝑛𝑒 𝑓 𝑓 for each spatial mode supported by the waveguide, until
we reach the cut-o� condition of 𝑏 ≤ 0. The numerical simulations of the guided modes of
the waveguide can be seen in Fig. 4.9 and in Fig. 4.10, for a waveguide of width 3 𝜇m and
𝑑 = 4 𝜇m. The calculated values of 𝑛𝑒 𝑓 𝑓 and 𝑏 for guided modes are provided in Table 4.2.

In the near-infrared at 𝜆 = 800 nm, the waveguide supports the fundamental and the
�rst order mode. While the waveguide isn’t strictly single-mode, we have found that it is
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(a) Fundamental mode at 𝜆0 = 800
with 𝑛𝑒 𝑓 𝑓 = 1.84999 and 𝑏 =

0.438.
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(b) 1st order mode at 𝜆0 = 800 nm
with𝑛𝑒 𝑓 𝑓 = 1.84628 and𝑏 = 0.35.
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(c) 2nd order mode at 𝜆0 = 800
with 𝑛𝑒 𝑓 𝑓 = 1.75672 and 𝑏 =

−0.32.

Figure 4.9: Simulation of the guided modes for 𝑑 = 4 𝜇𝑚 and waveguide width
of 3 𝜇m. The mesh graining is Δ𝑦 = Δ𝑧 = 2 nm. The waveguide supports the
�rst two modes while the second-order one is non-guided.

possible to achieve a single-mode behavior by adjusting the vertical position of the chip.
Indeed, injecting the beam less deeply into the waveguide promotes the selection of the
fundamental mode. However, when the beam is injected more deeply, a second lobe faintly
appears toward the surface of the waveguide, as depicted in Fig. 4.11.

The situation is quite di�erent for 𝜆 = 400 nm light. At this shorter wavelength, the
waveguides become highly multimode, and 𝑏 ≤ 0 only applies to modes starting from the
13th order and beyond. As a result, the selection of only the fundamental mode is typically
not feasible, and the number of excited spatial modes depends greatly on the alignment of
the pump beam. The presence of a large number of pump spatial modes and the challenge
of selecting just the fundamental one represent a signi�cant limitation of this system for
the SPDC process at these wavelengths.

4.3.3 Spectral modes for type-0

The time-frequency structure of the generated light can be investigated following the theory
on SPDC that has been given in section 3.3. For this purpose, we use a software developed
by B. Brecht at the University of Paderborn [Brecht 14], which allows us to numerically
compute the Joint Spectral Amplitude (JSA) of the process. Speci�cally, we rely on the
so-called metallic waveguide approximation, neglecting the graded-index feature in our
simulation. Additionally, our calculations do not account for temperature dependencies.

We begin by de�ning several key parameters: the transverse dimensions and the length
of the waveguide, and the spectral characteristics of the pump. With these parameters
in mind, we compute the joint spectral amplitude 𝐿(𝜔′, 𝜔). We then transform it into its
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(a) Fundamental mode at 𝜆0 = 400
with 𝑛𝑒 𝑓 𝑓 = 1.98328 and 𝑏 =

0.774.
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(b) 1st order mode at 𝜆0 = 400
nm with 𝑛𝑒 𝑓 𝑓 = 1.98009 and 𝑏 =

0.645.
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(c) 2nd order mode at 𝜆0 = 400
with 𝑛𝑒 𝑓 𝑓 = 1.97769 and 𝑏 =

0.548.

Figure 4.10: Simulation of the guided modes for light at 𝜆0 = 400 nm for 𝑑 = 4
𝜇𝑚 and waveguide width of 3 𝜇m. The mesh graining is Δ𝑦 = Δ𝑧 = 2 nm.

(a) Emergence of the �rst order mode. (b) Prevalence of the fundamental mode. The
overlap with a TEM00 gives 𝑤𝑥 = 1740 𝜇m and
𝑤𝑦 = 1980 𝜇m.

Figure 4.11: Experimental waveguide output spatial mode at 𝜆 = 795 nm.
Between �gure (a) and �gure (b) the input lens has been raised by 4 𝜇m,
increasing the injection point of the beam.

diagonal form to extract the eigenvalues and the corresponding eigenmodes of the process.
As stated in section 3.3, we anticipate the supermodes to be Hermite-Gauss time-frequency
modes. To quantify the e�ective number of modes, we introduce the Schmidt number
represented as:

𝐾 =
1∑
𝑖 Λ

4
𝑖

(4.19)
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𝜆 = 800 𝜆 = 400
Mode 𝑛𝑒 𝑓 𝑓 𝑏 𝑛𝑒 𝑓 𝑓 𝑏

Fundamental 1.84999 0.438 1.98328 0.774
1 1.84628 0.35 1.98009 0.645
2 - - 1.97769 0.548
3 - - 1.97658 0.504
4 - - 1.97564 0.466
5 - - 1.97351 0.380
6 - - 1.97343 0.377
7 - - 1.97123 0.288
8 - - 1.97068 0.266
9 - - 1.96925 0.209
10 1.96736 0.133
11 1.96704 0.120
12 1.96436 0.012
13 1.96427 0.009

Table 4.2: E�ective refractive index 𝑛𝑒 𝑓 𝑓 and normalized propagation constant 𝑏
of guided modes, for a 3-𝜇m-width waveguide with 𝑑 = 4 𝜇m.

where𝐾 is the e�ective number of squeezed modes of the state, whileΛ𝑖 are the eigenvalues
of the JSA, whose distribution re�ects the distribution of squeezing values [Brecht 14,
Roman-Rodriguez 21]. In Fig. 4.12 we show the eigenvalue distribution and the �rst three
eigenmodes, that, as expected, turn out to be Hermite-Gauss frequency modes for our
current setup, where we satisfy the gaussian pump approximation.

We remind that our primary objective in this context is to generate multimode squeezed
states of light. However, in the frequency domain there is a tradeo� between the number
of generated squeezed modes and the level of squeezing per mode. In other words, a higher
number ofmodes results in a lower squeezing level permode, assuming all other parameters,
such as process non-linearity andwaveguide length, remain constant [Kouadou 23]. For this
reason, it is important to understand the relation that exists between waveguide parameters
and the number of generated modes. The simulation provides valuable insights into the
number of generated squeezed states (in the supermodes basis), the relative squeezing levels
in each mode, and the spectral shape and bandwidth of the supermodes.

Once the length of the crystal is �xed, we can only act on the pump to modify the
outcome of the generation. Indeed, while we also have the option to choose from di�erent
transverse sections (2,3,4 𝜇m), we have observed that this has a negligible impact on the
number of modes and their spectral width. In Fig. 4.13 and 4.14, we present the dependence
of the number of modes and of the spectral width of the squeezed light on the pump width.
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Figure 4.12: (a) Eigenvalues and (b) absolute value of the electric �eld amplitude
of the �rst three eigenmodes for a type-0 SPDC process in a KTP waveguide
of 𝐿 = 1 mm and transverse dimensions 3 × 5 𝜇m in the metallic waveguide
approximation. The pump bandwith here is 0.7 nm (intensity FWHM).

We observe that the number of modes reaches a minimum for a pump width of Δ𝜆 ∼ 0.3
nm (intensity FWHM). However, this corresponds also to the condition of maximum width
for the generated squeezed light, that reads Δ𝜆 ∼ 26.5 nm. It is worth mentioning that the
generated light should not be excessively broad, as this would limit the number of accessible
modes during the measurement stage, due to the �nite bandwidth of the local oscillator.

The choice of the second-harmonic crystal plays a central role in determining the
spectral characteristics of the pump for the SPDC process, which, in turn, determines the
number and the spectral properties of the supermodes. This is why a careful choice of the
SHG crystal is required. In this work, we settled on a 0.7-nm-wide pump, which provides
a suitable balance between the number of generated modes (approximately 98) and their
width.

4.3.4 Waveguides injection and characterization

The fabrication process of the waveguide chip is not ideal and this results in potential
variations between individual waveguides. Consequently, upon receiving a new waveguide
chip, the initial step involves assessing the characteristics of each waveguide, to identify the
most suitable waveguide for generating squeezing.

Waveguide injection requires precise positioning tools. The waveguide chip itself is
mounted on a 6-axis stage, which is composed of a high-precision 3-axis translation stage
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Figure 4.13: Number of generated squeezed modes as a function of the pump
width (in FWHM) for a crystal of length 𝐿 = 1 mm and transverse dimensions
of 3 × 5 𝜇m.
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Figure 4.14: FWHM of the intensity of the generated signal/idler �eld as a
function of the pump width (in FWHM) for a crystal of length 𝐿 = 1 mm and
transverse dimensions of 3 × 5 𝜇m.
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and a 3-axis rotation stage. The input lens is mounted on 3-axis translation stage, while
the output lens only translates along the 𝑧-direction. Moreover, both the input and the
output lens frames have 𝑥𝑦 alignments screws. The waveguide chip is positioned on a
temperature-controlled oven, where the temperature is set at𝑇 = 89◦C. This is the working
temperature provided by AdvR Inc., which corresponds to the temperature for achieving
maximum SHG e�ciency. However, this temperature setting may require adjustments
when working with more than one waveguide, depending on the speci�c characteristics
of each chip, as discussed in detail in Chapter 6.

Output lens

Input lens

Waveguide

Dichroic Dichroic

Figure 4.15: Setup for the injection of waveguides. The input dichroic is used to
mix the pump and seed beam, while the output dichroic is used to discard the
pump.

Due to the beam’s small waist in the waveguide, typically a few micrometers in size, the
focal lengths required for focusing the seed beam into the waveguide are very short, on the
order of approximately 10 mm. In our setup, we have chosen an achromatic lens with 𝑓 = 15
mm as the input lens, that allows for the simultaneous injection of both the pump beam and
the seed beam. For the output lens, we use an aspheric lens with a focal length of 𝑓 = 11
mm, equipped with an anti-re�ective (AR) coating suitable for infrared light. The numerical
aperture of the output lens is NA= 0.30. A high numerical aperture of the output lens is an
important parameter for e�ciently collecting all the light emitted from the waveguide. A
picture of the experimental setup is shown in Figure 4.15.
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Figure 4.16: Example of the spatial modes in waveguide 14 (3 𝜇m), 16 (2 𝜇m), 24
(4 𝜇m).

Another critical parameter is the distance, denoted as 𝑑 , between the output lens and the
output facet of the waveguide. Even a slight deviation from the ideal position of 𝑑 = 𝑓 = 11
mm can result in a non-collimated beam. Achieving precise alignment of this parameter
can be challenging, as it requires a high degree of precision. To address this, we employ a
technique that we refer to as “back-propagation", which involves injecting an infrared beam
into the output facet. To do this, the LO beam is de�ected using two �ip-mirrors and directed
into the output facet. The optimal position for 𝑑 is determined when the transmission is
maximized, meaning that it matches the focal length of the output lens.

Once light is injected, we begin by testing the input-output transmission of the
waveguides. This is accomplished by simply measuring the ratio of output power to input
power. Although there is someminor variation between di�erent waveguides, they perform
similarly1, with transmission >50%.

Next, we proceed to test the spatial modes of the waveguide, searching for the vertical
position that enables single-mode propagation. This is an area where the waveguides di�er
signi�cantly among each other. To give an example of the variety of modes that we may
encounter when translating from one waveguide to another, see Fig. 4.16. Our goal in this
step is to select waveguides in which the spatial modes closely resemble a gaussian shape,
ensuring better overlap with the LO.

Finally, we examine the properties of the second-harmonic beam generated in the
waveguide from the seed beam, verifying that it exhibits the typical sinc spectral shape
associated to a second-harmonic beam. Moreover, measuring the e�ciency of the
waveguide second-harmonic generation we can make a rough estimation of the e�ective
non-linearity of the process within the waveguide. However, this is assessed more
accurately through parametric ampli�cation, a topic we will explore in section 5.1.1.

We conclude this section by providing some general insights on laser-induced damage
threshold (LIDT) for KTP. The laser-induced damage threshold (LIDT) of the waveguide

1An exception is waveguide 29 and 30, which are not accessible, due to the crystal being damaged on the
side.
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is unknown, as it is far too dependent on the characteristics of the light source for
the provider to be able to assess it correctly. Existing studies on the damage threshold
of KTP are usually available regarding nanosecond or picosecond pulses and 1064
nm or 532 nm wavelength [Hildenbrand 08], with few studies exploring femtosecond
pulses [Bach 16]. The surface LIDT is dependent on the AR coating, typically lower
in coated optics compared to uncoated optics, which more closely align with the bulk
material’s LIDT [Bloembergen 74]. Moreover, as a general guideline, while keeping other
parameters constant, the LIDT tends to decrease with longer wavelengths, a trend observed
in various nonlinear crystals. [Yoshida 06]. Di�erent damage mechanisms come into play
depending on the pulse duration. For longer pulses, in the picosecond range, thermal
breakdown resulting from multiphoton-absorption and avalanche ionization is the main
cause of damage [Bloembergen 74]. In contrast, femtosecond pulses lead to optical damage
through Coulomb explosion, where the buildup of electrostatic forces breaks the chemical
bonds and fractures the crystal lattice [Wang 15].

4.4 Second-Harmonic generation via ppKTP

In this section, we provide an experimental implementation of the theory of
second-harmonic generation (SHG) described in section 3.2. Understanding this process and
the various parameters at play is important because we require the SHG light to have certain
characteristics for it to be suitable to pump the SPDC process for squeezing generation.

Here, we present our experimental procedure for generating a light beam centered at
397.5 nm from a 795-nm source light. Additionally, we explore the spectral properties of the
second-harmonic light, in relation to the characteristics of the nonlinear crystal.

4.4.1 The history of SHG in this setup

Initially, SHG in our setup was achieved using a BiBO crystal and relied on birefringent
phase-matching [LaVolpe 19]. This method was employed in the early stages of our
squeezing generation experiment. At that time, the second-harmonic beam had a spectral
width of approximately Δ𝜆 = 2.2 nm (in FWHM of the intensity). Using this pump
con�guration for SPDC resulted in the generation of approximately 170 squeezed modes.
Squeezing was experimentally observed in this con�guration, with the leading mode
exhibiting a squeezing level of 0.4 dB.

In order to reduce the number of modes, and to enhance the squeezing level, a spectral
�lter was placed in the second-harmonic light path, resulting in a narrower pump with
spectral width of 0.7 nm (FWHM), corresponding to ∼ 100 generated squeezed modes.
However, this substantially reduced the average power of the pump, limiting it to a
maximum value of ∼ 6 mW of second-harmonic light. While this average power may su�ce
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for a single waveguide, it falls short if we intend to use multiple waveguide sources for
implementing an entangled network, a topic that will be discussed in Chapter 6.

Additionally, the spatial properties of the second-harmonic beam generated by the BiBO
crystal were ill-suited for injection into the waveguides due to birefringence-induced spatial
walk-o�. This walk-o� e�ect, caused by the beam’s non-collinear propagation through
the crystal, resulted in an elliptical output beam with spatial chirp1. Although some
compensation for ellipticity was achieved using an anamorphic prism pair, the spatial chirp
remained problematic.

A new SHGmethod was chosen to better align with the characteristics of the waveguide
experiment, and periodically-poled KTP (ppKTP) was selected for SHG. Periodically-poled
crystals, as previously explained in section 3.2.3, employ the quasi-phase matching
technique to enable e�cient SHG. The selection of ppKTP was based on three primary
considerations. First, periodically-poled crystals allow the beam to propagate along a
principal axis of the crystal, preventing unwanted spatial walk-o� or spatial chirp e�ects
associated with propagation in di�erent directions in birefringent materials. Second, ppKTP
has a high nonlinear coe�cient for type-0 SHG process, resulting in high SHG e�ciency.
Finally, ppKTP o�ers a very narrow phase-matching bandwidth, as we will show in the
next section, which aligns well with our experimental requirements. Indeed, we speci�cally
require a narrow pump for the SPDC process to limit the number of generated spectral
modes.

4.4.2 Simulation of the second-harmonic spectrum
The process we are interested in is type-0 SHG, primarily because it exhibits the highest
nonlinear coe�cient. We remind that in type-0 SHG, the interacting �elds are all polarized
along the 𝑧-axis of the crystal, as explained in section 3.2.

The refractive index along the crystal’s 𝑧-axis is calculated using the Sellemeier
equations for KTP [Kato 02]. The equation is given by:

𝑛𝑧 (𝜆) =
√︄
𝑎𝑘 +

𝑏𝑘

1 − 𝑐𝑘
𝜆2

+ 𝑑𝑘

1 − 𝑒𝑘
𝜆2

− 𝑓𝑘𝜆2 (4.20)

where the coe�cients read 𝑎𝑘 = 2.12725, 𝑏𝑘 = 1.18431, 𝑐𝑘 = 5.14852 · 102, 𝑑𝑘 = 0.6603,
𝑒𝑘 = 100.00507 and 𝑓𝑘 = 9.68956 · 103 and where 𝜆 is in 𝜇𝑚.

The poling period, denoted as Λ, is a crucial parameter for achieving quasi-phase
matching in the crystal. It can be calculated using Eq. 3.43, and the calculated value is:

Λ =
𝜋𝑐

𝜔0
(𝑛2𝜔 (2𝜔0) − 𝑛𝜔 (𝜔0)) = 3.19 𝜇m (4.21)

1Spatial chirp refers to a speci�c type of spatiotemporal coupling in which various temporal frequencies
are distributed or separated along a single transverse coordinate.
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for a fundamental �eld centered at 𝜆0 = 795 nm and a second-harmonic �eld centered at
𝜆0 = 397.5 nm.
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Figure 4.17: Simulation of the output second-harmonic generation spectrum for
a 0.4 mm long ppKTP crystal, with a superimposed Gaussian �t in blue. The
input �eld is centered at 795 nm and has a spectral width of 44 nm (intensity
FWHM).

Adding the poling period term guarantees quasi phase-matching for the frequencies 2𝜔0
and𝜔0, i.e. Δ𝑘0𝑡ℎ ≈ 0. Aswe have a range of frequencies, being in the pulsed regime, we need
now to look at the �rst order. Assuming Δ𝑘0𝑡ℎ = 0 and neglecting higher-order dispersion
terms, from Eq. 3.33 we retrieve the phase mismatch at �rst order, that we rewrite here:

Δ𝑘 (𝜔) =
(

1
𝑣𝑔 (2𝜔0)

− 1
𝑣𝑔 (𝜔0)

)
(𝜔 − 2𝜔0) (4.22)

where 𝑣𝑔 indicates the group velocity, the velocity withwhich the pulse envelope propagates
in the crystal. The group velocity for a pulse polarized along the 𝑧-axis is de�ned, as a
function of the wavelength, as:

𝑣𝑔,𝑧 (𝜆) =
𝑐

𝑛𝑔,𝑧 (𝜆)
=

𝑐

𝑛𝑧 (𝜆) − 𝜆 𝜕𝑛𝑧𝜕𝜆 (𝜆)
(4.23)

where 𝑛𝑔,𝑧 (𝜆) is the group velocity index and 𝑛𝑧 (𝜆) and 𝜕𝑛𝑧
𝜕𝜆

can be retrieved from Eq. 4.20.
This permits us to calculate the phase-mismatch Δ𝑘 (𝜔) and, consequently, the phase
matching function Φ(𝜔) de�ned in Eq. 3.29. From Eq. 3.41, we can calculate the �eld
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Length (mm) Δ𝜆 (nm) Δ𝜆 (nm)
(Simulated) (Experimental)

0.3 0.91 0.88
0.4 0.68 0.58
0.6 0.46 0.42
0.8 0.34 0.30
1 0.27 0.27

Table 4.3: Experimental and simulated width (intensity FWHM) of the second
harmonic light intensity as a function of the ppKTP crystal length. The
experimental results have been obtained using a crystal with Λ = 3.15 𝜇m and
an input �eld centered at 796 nm with FWHM of 42 nm.

𝐴2𝜔 (𝐿,𝜔) generated at the output of a crystal of length 𝐿. In Fig. 4.17, the expected output
for a 0.4-mm-long crystal is shown.
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Figure 4.18: Experimental output SHG spectrum for a 0.4 mm long ppKTP
crystal, in response to a fundamental �eld centered at 𝜆0 = 795 nmwith a FWHM
of 44 nm. The generated �eld features a central wavelength of 396.6 nm and a
FWHM of 0.58 nm.
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4.4.3 Experimental second-harmonic generation
The simulations show that second-harmonic light generated from ppKTP crystals features
a narrow spectrum, typically with a FWHM shorter than 1 nm, con�rming that the
spectral characteristics of the ppKTP-generated second-harmonic beam are suitable for our
experiment. The ppKTP crystals used in this experiment were supplied by Raicol Crystals
and are employed in a type-0 nonlinear process. To achieve e�cient SHG, both the 795-nm
pump beam and the 397.5-nm second harmonic light must be polarized along the 𝑧 axis
of the crystal. In our experimental con�guration, this 𝑧-axis polarization corresponds to a
vertical polarization direction. Several ppKTP crystals have been tested in the lab, and the
results are shown in Table 4.3, where they are compared with the results of the simulations.
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Figure 4.19: Dependence of the central wavelength of the SHG light with respect
to the temperature of the crystal, with a fundamental �eld centered at 794 nm.
The dependence is linear with a slope of 0.026 nm/℃

.

The poling period provided by Raicol Crystals is speci�ed as Λ = 3.15 𝜇m, only slightly
di�erent from the result of Eq. 4.21. The discrepancy may be attributed to variations in the
speci�c models or characteristics of the KTP crystals used by Raicol Crystals in comparison
to the reference in [Kato 02]. However, these small discrepancies do not signi�cantly a�ect
the results of SHG and may, at most, cause a shift in the central wavelength of the generated
�eld. This shift can be adjusted by �ne-tuning the phase-matching function, which is
accomplished by altering the crystal’s temperature.

We can �nely tune the temperature by means of an oven that heats up the SHG crystal.
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Increasing the temperature shifts linearly the central wavelength of the SHG light towards
a bigger wavelength. This is known as non-critical phase matching and it employs the fact
that the refractive indices are dependent on the temperature. We tested experimentally the
dependence of the central wavelength to the temperature in our crystals. We measured
that a change in temperature of Δ𝑇 = 10 ℃ corresponds to a central wavelength shift of
Δ𝜆 = 0.26 nm, as shown in Fig. 4.19. A change in e�ciency can also be seen in the general
case, but for our crystal it was not observed, probably due to the input pump being broad.
The width of the second-harmonic light, at �rst order, is not a�ected by the temperature.

(a) (b)

Figure 4.20: Experimental spatial transverse pro�le of the second-harmonic
beam, generated from a) a 1-mm BiBO crystal employing bi-refringent
phase-matching and b) a KTP crystal.

Other than the spectral properties of the second-harmonic light, also the spatial
characteristics of the beam have been analyzed. The spatial pro�le is an important feature
for injection in waveguides, and we especially wish to avoid spatial chirp phenomena, that
can be present in the case of birefringent phase-matching. The comparison between the
spatial pro�le of the beam generated from the ppKTP crystals and one generated from a
1-mm BiBO crystal (via birefringent phase-matching) are shown in Fig. 4.20. We observe
that the ppKTP beam approximates more closely a Gaussian pro�le, while in contrast the
BiBO-generated beam shows distortion, due to spatial walk-o�. In addition, spatial chirp
has not been observed in the case of the ppKTP crystals, di�erently from the BiBO case,
where spatial chirp was observed, primarily in the vertical direction [LaVolpe 19].

We conclude that the most suitable crystals for squeezing generation are the 0.4 and
the 0.6 crystals, that show a good compromise between the e�ciency, the peak power of
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the pulse and the number and, as seen in in section 4.3.3, the spectral width of generated
squeezed modes. In response to an input power of 330 mW, the 0.4 and 0.6 show a SHG of
respectively 55 mW and 65 mW, which is enough for providing pumping beams for multiple
waveguides.

Wemake a �nal remark. The generated SHG pulses, which are to be used to pump for the
SPDC process, cannot be reduced to a Fourier transform limited form1, due to the di�cult
task of building a pulse compressor for 397.5-nm light. Measuring the pulse duration for a
blue pulse with our characteristics is not possible in the current setup. In fact, commercially
available ultrashort pulses measurement techniques [Trebino 00] require larger power to
work at this wavelength. Spectral interference techniques with a reference pulse are another
alternative [Ansquer 22, Thiel 15], but given the narrow spectrum of our second-harmonic
light, they would require a spectrometer with a better resolution than the one that we have
in the setup.

4.5 The pulse shaper
In this section, we describe the basics of ultrafast pulse shaping, i.e. the temporal
and spectral shaping of femtosecond pulses. As discussed in previous chapters, the
quantum features of interest are associated with Hermite-Gauss (HG) spectral-temporal
modes. Since homodyne detection is a projective measurement, it is necessary to
e�ectively shape the time-frequency modes of the local oscillator, in order to access
individual HG modes of light, or their linear combinations. Pulse shaping emerges
as a valuable tool for accessing the quantum properties stored in temporal-frequency
modes. This technology is well-established in the femtosecond regime and it relies on
Fourier-transform techniques. An extensive review on ultrafast pulse shaping can be found
in [Monmayrant 10, Weiner 11].

4.5.1 General introduction
Pulse shaping can be achieved by applying a linear-time invariant �lter on an input pulse,
whose behaviour is described by the convolution:

𝐸𝑜𝑢𝑡 (𝑡) = ℎ(𝑡) ∗ 𝐸𝑖𝑛 (𝑡) =
∫
R
𝑑𝜏 𝐸𝑖𝑛 (𝜏)ℎ(𝑡 − 𝜏) (4.24)

For a given input signal 𝐸𝑖𝑛 (𝑡), the output signal 𝐸𝑜𝑢𝑡 (𝑡) is entirely determined by the
response function ℎ(𝜏). The limits of a pulse shaping device are de�ned by how accurately
we can implement ℎ(𝑡) and by how quickly our response function can operate. Creating

1The SPDCpumpwill have a quadratic spectral phase resulting from the propagation of the beam in various
media. These media include the ppKTP SHG crystal, the waveguide injection lens and the waveguide ppKTP
crystal, along with various optics placed on the pump path, such as mirrors and lenses.
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Figure 4.21: Scheme of a the femtosecond pulse shaper.

an appropriate ℎ(𝑡) in the time domain for shaping femtosecond pulses is extremely
complex [Monmayrant 10]. Therefore, we turn to the frequency domain to manipulate
ultrashort light pulses. In the frequency domain, linear �lter input-output equations take
the form:

𝐸𝑜𝑢𝑡 (𝜔) = ℎ(𝜔)𝐸𝑖𝑛 (𝜔) (4.25)
Successfully implementing ℎ(𝜔) to achieve the desired 𝐸𝑜𝑢𝑡 (𝜔) leads to the realization of
ℎ(𝑡) in order to attain the desired 𝐸𝑜𝑢𝑡 (𝑡).

To implement a suitable frequency response ℎ(𝜔), we build a dispersion-free 4-f line
scheme, with two lenses, two di�raction gratings and a spatial light modulator (SLM),
as shown in picture 4.21. The �rst di�raction grating is used to spatially disperse the
various frequency components, and the �rst lens collimates them on the SLM screen, where
each component is addressed by individual pixels. This way, the phase of each spectral
component can be tuned. We will see that using a 2D pixel con�guration enables us to tune
also the spectral amplitude. After being di�racted by the SLM, the beam is refocused onto
the grating and recombined [Weiner 88].

4.5.2 Spectral phase and amplitude shaping
The spectral phase 𝜙𝑖 (𝜔) of each spectral component 𝑖 can be tuned by changing the voltage
applied to the liquid crystals of the SLM, as shown in Fig. 4.22. Indeed, the molecules of the
liquid crystal rotate according to the applied voltage, modifying the refractive index of the
medium. Applying di�erent voltages to di�erent pixels, each spectral component will have
a di�erent spectral phase, resulting in the desired outcome for the overall spectral phase
𝜙 (𝜔) after the recombination of the beam.

In principle, a LC (liquid crystals) SLM acts like a phase modulator, but not as an
amplitude modulator. However, using a 2D-LC-SLM we can achieve also amplitude
modulation of the pulse [Vaughan 05]. For this purpose, the various spectral components
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Figure 4.22: Structure of SLM pixels.

are spatially dispersed on the horizontal direction, and we employ the vertical direction of
the SLM for amplitudemodulation, by applying a blazed grating phase mask, that e�ectively
acts as a physical blazed grating.

A blazed grating is a particular type of di�raction grating, that features a sawtooth
pattern, designed to optimize di�raction e�ciency in a speci�c di�raction order. As in
every blazed grating, the di�raction angles depend on the period 𝑑 of the pattern, while
we can tune the intensity of light present in di�raction order 1 by acting on the depth 𝐴 of
the sawtooth function. In our case, we select only the �rst order of di�raction with spatial
�ltering. When the pattern has a depth of 𝐴 = 1, corresponding to a phase di�erence along
a tooth of Δ𝜙 = 2𝜋 , the intensity in the �rst order of di�raction is maximized. Moreover,
the sawtooth pattern can also be shifted as a whole vertically, creating a global phase shift
𝜙0 of the beam, resulting in an output spectral phase of 𝜙 (𝜔) = 𝜙0. This is summarized
in Fig. 4.23. Adding a global phase to the beam doesn’t seem very interesting, but this
property is actually very promising if we are able to address each wavelength, i.e. each
pixel column, separately. Indeed, shifting the sawtooth pattern di�erently for each pixel
column permits us to tune the phase for each spectral component. For example, a linear
shift of the sawtooth pattern has the e�ect of introducing a �rst-order spectral phase of
the form 𝜙 (𝜔) = 𝜙1𝜔 , where 𝜙1 = 𝑑𝜙/𝑑𝜔 . Quadratic and cubic shifts are also possible, so
that we can introduce (or compensate) a quadratic or a cubic spectral phase in our beam.
Examples of di�erent patterns of the phase mask are shown in Fig. 4.24. Additional details
can be found in [Jacquard 17].

To summarize, the capability of controlling the amplitude and the phase of the grating
mask permits us to control the amplitude 𝐴(𝜔) and the spectral phase 𝜙 (𝜔) of the light
di�racted into the �rst order. This enables us to shape the pulse at will, within the limits of
the pulse shaper performances.
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Figure 4.23: SLM blazed grating phase (left) and its e�ect on the incoming beam
(right). The depth𝐴 of the sawtooth pattern accounts for the spectral amplitude,
while the phase shift 𝜙 accounts for the spectral phase.

(a) (b) (c)

Figure 4.24: Di�erent phase masks for the pulse shaper, that imprint di�erent
spectral phases and amplitudes to the output beam. (a) linear spectral phase
(delay), (b) quadratic spectral phase (spectral chirp), (c) HG1 mask. Note that in
(a) and (b) we don’t act on the spectral amplitude.
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Figure 4.25: Pulse shaper in our setup, where 𝐺 is a blazed grating, 𝑀𝐹 is a
HR mirror used for folding, 𝑀𝐶 is cylindrical mirror used both for focusing and
collimating the beam and𝑀1 is a half-cut mirror, that re�ects the incoming beam
while permitting to the output beam to be directed towards spatial �ltering.

4.5.3 Characteristics of our pulse shaper

The pulse-shaper in our experiment is con�gured in a folded geometry, as shown in Fig. 4.25,
where a grating 𝐺 with groove density1 𝑔 = 600 grooves/mm and a cylindrical mirror of
focal length 𝑓 = 250 mm are employed to disperse the wavelength on the SLM pixels.
Subsequently, the beam is di�racted by the sawtooth pattern of the SLM, it encounters the
same cylindrical mirror and grating of the incoming beam and it is therefore recombined
and collimated. The SLM has a vertical tilt, so that the output beam can be easily separated
from the incoming beam. The SLM is a 2D-LCOS-SLM X10468 (Liquid Crystal On Silicon)
fromHamamatsu. Thewaist of the incoming beam is expanded to the𝑤𝑖𝑛 = 2.6mmvalue by
three curved mirrors placed before the pulse shaper. In Table 4.4 we collect the parameters
of our pulse shaper and of the incoming beam in our setup. From all these parameters, it is
possible to calculate the performances of our pulse shaper and assess how well it can shape
our 22-femtosecond light.

The performances of the pulse shaper are limited both by the �nite pixel size and by the
�nite size, due to di�raction, of each spectral component on the SLM. The size of the beam
spot on the SLM in intensity FWHM is given by:

Δ𝑥0 = 2 ln 2 cos𝜃𝑖𝑛 𝑓 𝜆0
cos𝜃𝑜𝑢𝑡𝜋Δ𝑥𝑖𝑛

(4.26)

1Sometimes in the literature the grating period instead of the grating density is used. One is the inverse of
the other.
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pulse shaper geometry
LCD size 15.8 mm
pizel size 0.02 mm

𝑓 250 mm
𝑔 600 gr/mm
𝜃𝑖𝑛 16◦
𝜃𝑜𝑢𝑡 10◦

beam characteristics
𝜆0 795 nm
Δ𝜆 42 nm
𝜔𝑖𝑛 2.62 mm

Table 4.4: Parameters of the pulse shaper geometry and the incoming beam. In
the pulse shaper, 𝑓 is the focal length of the cylindrical mirror, 𝑔 is the density of
grooves of the grating, 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡 are the angles of the incoming and di�racted
beam on the grating. For the beam 𝜆0 is the central wavelength, Δ𝜆 is the spectral
width and 𝜔𝑖𝑛 is the waist of the incoming beam on the SLM.

where Δ𝑥𝑖𝑛 = 𝑤𝑖𝑛
√
2 ln 2 is the size of the incoming beam (in intensity FWHM), as prescribed

from Eq. 1.26. According to the parameters of our setup, we obtain Δ𝑥0 = 27.7 𝜇m, that with
respect to the pixel size reads Δ𝑥0 = 1.38 pixels. We conclude that the limiting factor for the
resolution of our pulse shaper is the �nite size of the beam due to di�raction, not the pixel
size1. We de�ne the coe�cient 𝛼 : d

𝛼 =
𝜆20 𝑓 𝑔

2𝜋𝑐 cos𝜃𝑜𝑢𝑡
(4.27)

that, substituting our parameters, reads 𝛼 = 5.11 · 10−14 mm·s. The frequency resolution is
given by:

𝛿𝜔 =
Δ𝑥0
𝛼

(4.28)

For our setup, the frequency resolution reads 𝛿𝜔 = 0.543 THz; this represents the smallest
feature that can be imprinted in the light beam by the pulse shaper.

It is interesting to calculate a parameter known as optical complexity, that evaluates the
ratio between the biggest features and the smallest features that can be cast onto light. This
gives us an indication of the number of Hermite-Gauss modes that we are able to shape.
Optical complexity is de�ned as:

𝜂𝑜𝑝𝑡 =
Δ𝜔

𝛿𝜔
=
Δ𝜆

𝛿𝜆
(4.29)

1If Δ𝑥0 < Δ𝑥𝑝𝑥 , where Δ𝑥𝑝𝑥 is the size of the pixel, then the pixel size is the parameter limiting the
resolution of our pulse shaper. In such case, the calculations of this section are to be carried on with the value
Δ𝑥𝑝𝑥 substituting Δ𝑥0 in the equations. The complexity that we calculate in this case is called pixel complexity
and it is designated as 𝜂𝑝𝑥 [Michel 21]
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where in our case Δ𝜔 = 125 THz (which corresponds to Δ𝜆 = 42 nm). We obtain an optical
complexity of 𝜂𝑜𝑝𝑡 ∼ 231. More details on the pulse-shaper used in this experiment, such as
its optimization and its alignment, can be found in [Kouadou 21, LaVolpe 19].

117





Chapter 5

Measuring multimode squeezing
multiplexed in time and frequency
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After describing in detail all the experimental components, here we elaborate on how
these components work together to measure multimode squeezing in time and frequency.
We will cover the alignment steps, emphasizing the most important alignment parameters,
and ultimately we will present the experimental results for both spectral homodyne
detection and time-resolved homodyne detection, whose principles have been discussed
in section 2.3. These results have been published in [Kouadou 23], where me and Tiphaine
Kouadou share the �rst co-authorship.

5.1 Alignment procedure

In section 4.1, we mentioned that temporal and spatial alignment, performed using the seed
beam, is a crucial step of the experiment. In this section, we outline themain alignment steps
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that are needed to achieve temporal and spatial matching. This requires careful adjustment
of many di�erent experimental parameters.

5.1.1 Parametric ampli�cation

The parametric ampli�cation process, detailed in section 3.3, plays a fundamental role
in the alignment procedure. We recall that this process, also known as parametric
down-conversion (PDC), is a three-wave mixing process involving the interaction of three
�elds: the signal, the idler, and the pump beam. In our case, we are dealing with a
degenerate process, meaning that the signal and idler �elds are indistinguishable. In this
work, when dealing with degenerate parametric ampli�cation, we will refer to this beam
as the seed beam. For the process to take place, both the seed and the pump beam are
injected into the waveguide. During the actual squeezing measurement, blocking the seed
and allowing only the pump beam to be injected in the waveguide leads to spontaneous
parametric down-conversion (SPDC) and the generation of squeezed light. Degenerate PDC
is phase sensitive: scanning the phase of one of the two beams, either the seed or the pump,
results in oscillations in the intensity of the seed beam, shifting between points of maximum
ampli�cation and deampli�cation.

For parametric ampli�cation to take place we need to meet two requirements: 1) the
pump and seed beams must be collinear within the nonlinear crystal (spatial matching), and
2) their pulses must arrive simultaneously in the crystal (temporal matching). To achieve
spatial matching, we must carefully select the input lens in order to minimize the focal
shift between the pump and the seed wavelengths. We employ an achromatic lens with a
focal length of 15 mm, as discussed in section 4.3.4. This lens exhibits a minimal relative
focal shift of only 0.003 mm between the two wavelengths1. The blue and infrared light are
directed towards the input lens using a dichroic mirror, that transmits the seed wavelength
and re�ects the pump wavelength, as it is shown in Fig. 4.15.

The alignment procedure follows. First, the seed is injected into the waveguide and the
output power is optimized, to achieve a typical transmission of 55%. Next, the 397.5 nm
pump light is superposed with the seed. The combined beam is then vertically adjusted by
raising the input lens by 4 𝜇m. This vertical displacement has been chosen to promote the
best single-mode operation for the infrared beam. After coarse spatial alignment is achieved,
we concentrate on temporal matching. While temporal matching, on a day-to-day basis, is
easy to retrieve, �nding it from scratch can be quite challenging. Usually, for matching
pulses of light we use interference patterns. However, we cannot directly interfere the
seed and the pump and we have to �nd a workaround. We begin by roughly matching the
seed and the pump paths using a fast photodiode. This method, while not very precise for
femtosecond pulses, allows us to reach a con�guration where the two pulses are separated

1In previous tests, we experimented with a short focal aspheric lens that had a focal shift of 0.4 mm between
397.5 nm and 795 nm light. However, this focal shift was found to be detrimental for the injection process.

120



CHAPTER 5. MEASURING MULTIMODE SQUEEZING MULTIPLEXED IN TIME AND FREQUENCY

Figure 5.1: Typical curve of phase sensitive parametric ampli�cation. The orange
curve is the voltage ramp of the piezo actuator that scans the seed phase, while
the blue curve is the seed intensity signal detected by a photodiode.

by a few centimetres. For �ne alignment, we employ an interference e�ect at 397.5 nm. We
replace the waveguide crystal with a bulk non-linear BiBO crystal, which is phase-matched
for our wavelengths, andwe send both the pump and the seed into it. The seedwill stimulate
the generation of a second-harmonic beam that will interfere with the pump beam. When
using this method, we need to ensure that the spectral shapes of the pump and the generated
SHG beam overlap, at least to some extent. To accomplish this, a 0.5-nm spectral �lter is
employed to select a common spectral band and eliminate portions of the spectra that are
not in common, as they would add noise to the interference e�ect. We scan a translation
stage placed on the seed path until interference patterns appear between the pump and the
seed-generated second-harmonic beam; this indicates that the seed and the pump beams
are temporally matched. The BiBO can be removed and the waveguide can be placed in its
original position.

Daily alignment doesn’t require this step. To achieve temporal matching on a day-to-day
basis we adjust the seed translation stage until we observe the parametric ampli�cation
signal, directly assessed by measuring the intensity of the seed through a photodiode, while
scanning the seed (or pump) phase at 100 Hz. A typical parametric ampli�cation curve is
shown in Fig. 5.1.
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Figure 5.2: Dependence of the parametric ampli�cation with pump input power,
measured in waveguide 25.

After coarse temporal and spatial matching, the alignment is optimized by acting on
the injection mirrors and on the seed translation stage several times, with the aim of
maximizing the parametric ampli�cation signal. Additionally, we make adjustments to the
temperature of the SHG crystal to select the optimal central wavelength for the pump that
better corresponds to the phase-matching conditions of the waveguide.

As a quantitative measure of parametric ampli�cation we use the ratio between the
signal peak-to-peak and the mean �eld. In the waveguide we are currently employing
for squeezing generation, number 26, this can reach a value of 70% with 10 mW of input
power. This value is highly dependent on the waveguide that we choose for the non-linear
process; usually, smaller waveguides have higher parametric ampli�cation gain. The typical
dependence of the parametric ampli�cation gain as a function of the pump power is shown
in Fig. 5.2.

5.1.2 Visibility between seed and LO

Once temporal and spatial matching between the seed and the pump is achieved, we turn
our attention to the detection process. Even this second alignment step has the purpose of
ensuring temporal and spatial matching, but this time between the LO and the seed.

To reach this purpose, we measure the interference fringes between the seed and the LO
at the output of the homodyne detector beam-splitter. We focus onmaximizing the so-called
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(a) (b)

Figure 5.3: Seed (a) and LO (b) transverse spatial modes. The spatial overlap
calculated numerically is 96%. When measuring visibility, the spatial overlap
calculated numerically is to be considered as an upper bound.

visibility (sometimes referred to as contrast) of the interference fringes. The fringe visibility
is de�ned as:

V =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

(5.1)

where 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are respectively the maximum and the minimum of the intensity
oscillations. The visibility falls within the range 0 < V < 1 and it depends on both the
LO and the seed characteristics, as expressed by:

V =
2
√
𝐼𝑠𝐼𝐿𝑂

𝐼𝑠 + 𝐼𝐿𝑂
Γ (5.2)

where 𝐼𝑠 and 𝐼𝐿𝑂 are the intensity of the seed and the LO respectively. In this equation, Γ is
a factor that accounts for the spectral and spatial matching of the two �elds, de�ned as:

Γ =

(∫
𝑆

𝑑𝑆 𝑓𝑠 (x)∗𝑓𝐿𝑂 (x)
) (∫

R
𝑑Ω𝑢𝑠 (Ω)∗𝑢𝐿𝑂 (Ω)

)
= 𝛾𝑆 · 𝛾Ω (5.3)

where 𝛾𝑆 and 𝛾Ω account respectively for the spatial and spectral overlap [Thiel 15]. Here,
we make the assumption that the input �eld modes are factorized in transverse and
longitudinal modes, denoted respectively with 𝑓 (x) and𝑢 (Ω), as de�ned in Eq. 1.19. Perfect
spatial and spectral matching is achieved for 𝛾𝑆 = 𝛾Ω = 1.

The alignment procedure begins by overlapping the seed beam and the LO beam on
the 50:50 beam-splitter of the homodyne detection setup, shown in Fig. 5.4, and searching
for interference fringes. Temporal matching between the seed and the LO is necessary,
and it can be achieved by measuring the beams with a fast photodiode, to ensure that the
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seed

LO

Figure 5.4: Homodyne detection setup. The seed and LO are mixed on a
50:50 beam splitter and a piezo actuator is placed on the LO path. The
translation stage placed after the beam-splitter ensures that the pulses reach
the photodiodes at the same time; this is an important point for the temporal
squeezing measurement.

pulses from both beams arrive at the beam-splitter simultaneously. Fine-tuning the temporal
alignment is performed by adjusting a translation stage along the LO path. Spatial mode
matching is equally important. To achieve this, a telescope is placed in the LO beam’s path,
to resize it to match the dimensions of the seed beam. The two transverse beam pro�les are
then overlapped, and their average power levels are balanced.

We scan the phase of the LO at 300 mHz via a piezoelectric actuator placed in the LO
path and we use a camera to observe the superposed transverse pro�les of the seed and LO
beams. Once the interference fringes appear, we adjust position of the beams to optimize the
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visibility1, until we reach the point inwhichwe observe the transverse pro�le “blinking”. We
then observe the intensity oscillations, measured with a photodiode, using an oscilloscope.
We place a 3-nm bandpass �lter in front of the photodiode, to minimize spectral mismatch
e�ects on the visibility. Indeed, our primary focus in this step is on spatial matching, as the
seed and the generated light share the same spatial mode (the fundamental guided mode)
but do not have the same spectral structure. Spectral matching between the LO and the
squeezed light will need to be optimized at a later stage.

Since the output lens has a short focal length, the seed beam diverges rapidly. However,
in our setup con�guration, the homodyne beam-splitter is at a distance of less than 1 m
from the output of the waveguide, and it is not necessary to re-collimate the beam. After
the beam-splitter, the modes have a high spatial overlap, as seen in Fig. 5.3. With careful
alignment and the 3-nm spectral �lter in place, we can reach a visibility ofV = 0.9.

5.2 Measuring squeezing

5.2.1 Sidebands measurement
In this work, we use the terms “sidebands squeezing” or “sidebands squeezingmeasurement”
to describe the measurement of squeezed light conducted with the spectrum analyzer. As
detailed in section 2.3.4, this type of measurement lacks the complete information about the
quantum state, preventing quantum state reconstruction. However, when dealing with a
squeezed vacuum state and aiming to retrieve only the level of squeezing, this method is
suitable.

After completing the alignment steps outlined in the previous section, the seed is
blocked, so that we transition from a PDC process to a SPDC process and to the consequent
generation of squeezed light in Hermite-Gauss spectral modes. If the alignment has been
done correctly, the pump is matched with the seed, the seed is matched with the LO, and as
a consequence the multimode squeezed light (generated from the pump) matches with the
LO. This involves both spatial and pulse matching, while spectral matching will be achieved
later, as we will explain.

We shape the local oscillator as the Hermite-Gauss spectral mode of interest, choosing
a speci�c width to maximize the squeezing level. Initially, we measure the shot noise level,
i.e. the variance of the vacuum, by blocking the signal path and allowing only the LO to
shine on the photodetectors. Then, we let the down-converted light mix with the LO and
we observe the typical squeezing oscillations, as depicted in Fig. 5.5. We sweep the phase
of the local oscillator with a piezoelectric actuator on the LO path at 300 mHz to access the
variance of the generalized quadrature 𝑥𝜙 . We label the quadrature with the lowest level of
noise as 𝑝 , the squeezed quadrature, and the quadrature with the highest level of noise as
𝑞, the antisqueezed quadrature. Finally, the squeezing level is optimized by adjusting with

1The visibility is increased the more the fringes are big and spaced.

125



5.2. MEASURING SQUEEZING

the pulse-shaper the spectral characteristics of the LO beam, such as central wavelength,
mode width and spectral phase. Typical squeezing and antisqueezing values can be found
in Table 5.1.

A comment on the results is required at this point. Despite tailoring the width of the
pump to minimize the number of spectral modes generated in our setup, as discussed
in section 4.3.3, the number of modes remains considerably high. For this reason, the
squeezing per mode is expected to be low, even with the experiment being low-loss.
Phase-matching function engineering, such as spatial modulation of the poling of the
crystal, is an option and is currently investigated to reduce the number of generated
modes [Dosseva 16, Ramos-Israde 21].
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Figure 5.5: Typical squeezing oscillations (orange) obtained for the mode HG0
(left) and HG20 (right), the highest-order mode measured. The blue curve
represents the shot noise averaged over multiple acquisitions, and the dashed
black line is its mean value.

5.2.2 Temporal measurement: alignment and mode de�nition
The central result of this work is the simultaneous multiplexing of the spectral and the
temporal degrees of freedom. To achieve this result, we need a time-resolving measurement
device, such an oscilloscope, as we will work with the temporal modes 𝑎(𝑡) de�ned by the
pulse. We also need an ultrafast homodyne detector, with a bandwidth of at least 156 MHz.
This detector has been implemented in our lab by Tiphaine Kouadou and it is one of the
main subjects of her PhD manuscript [Kouadou 21].

When we measure squeezing in the time domain, we have to choose a real function
𝜑 (𝑡) that de�nes the mode of interest [Lvovsky 16]. The corresponding mode operators are
de�ned as:

𝐴 =

∫
R
𝑑𝑡 𝜑 (𝑡)𝑎(𝑡) (5.4)
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mode squeezing anti-squeezing
average (dB) error interval (dB) average (dB) error interval (dB)

HG0 -0.47 [−0.50,−0.44] 0.56 [0.55, 0.59]
HG1 -0.33 [−0.36,−0.30] 0.44 [0.40, 0.48]
HG2 -0.24 [−0.27,−0.21] 0.34 [0.27, 0.41]
HG3 -0.20 [−0.23,−0.17] 0.27 [0.23, 0.30]
HG4 -0.19 [−0.22,−0.16] 0.31 [0.27, 0.34]
HG5 -0.19 [−0.21,−0.17] 0.30 [0.28, 0.32]
HG6 -0.19 [−0.21,−0.16] 0.27 [0.24, 0.31]
HG7 -0.13 [−0.16,−0.09] 0.25 [0.23, 0.27]
HG8 -0.14 [−0.15,−0.13] 0.25 [0.22, 0.28]
HG15 -0.08 [−0.11,−0.06] 0.15 [0.13, 0.18]
HG20 -0.07 [−0.09,−0.05] 0.13 [0.11, 0.16]

Table 5.1: Typical values of squeezing in our setup for the squeezed and
antisqueezed quadrature at sidebands frequency Ω = 50MHz. These values have
been obtained with a 0.7-nm-wide pump and with an average pumping power
of 6 mW.

and the associated generalized quadrature as:

𝑋𝜙 =

∫
R
𝑑𝑡 𝜑 (𝑡)𝑥𝜙 (𝑡) (5.5)

where 𝑥𝜙 (𝑡) is the generalized quadrature at time 𝑡 , de�ned in Eq. 2.69. Here,𝜑 (𝑡) represents
the temporal response of the system, that is mainly limited by the electronics response. This
is in any case shorter than the time between two pulses, so that we are not mixing signals
from consecutive pulses. We will de�ne the modes identi�ed by the 𝐴 operators as pulsed
modes. The homodyne detector produces an electrical pulse, the shape of which is de�ned by
the response function. Themagnitude of this pulse is directly proportional to the quadrature
of interest [Lvovsky 16]. A theoretical analysis on the dependence of the measured mode
with the characteristics of the detector, such as response function and bandwidth, can be
found in [Kumar 12].

Time-resolved measurements are highly sensitive to the alignment of the homodyne
detector and the bias voltage of the photodiodes. We start the alignment by balancing the
power of the detected beams, by �ne-rotating the beam splitter of the homodyne, and by
aligning the beams to hit the center of the photodiodes. We verify and adjust the alignment
by examining the DC output of the detector, aiming for a DC value of 𝑉𝐷𝐶 ∼ 0 V1. We

1Usually, an o�set value of the order of a few mW is observed without shining light on the detector, so this
is the value we should aim at when we align.
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then analyze the AC signal with the spectrum analyzer, focusing on the Common Mode
Rejection Ratio (CMRR) at 156 MHz. The CMRR quanti�es the e�ciency of the subtraction
of the photocurrents; a less intense CMRR peak indicates better subtraction. To minimize
the CMRR we act on various parameters. We ensure that the pulses arrive simultaneously
on both photodiodes by adjusting a translation stage, present in one of the two arms.
Additionally, we adjust the bias voltage of the two photodiodes and �ne-tune the alignment
mirrors. These parameters require multiple adjustments to �nd the optimal con�guration
where the common mode rejection ratio is minimized. Empirically, we observe that when
this occurs, the peak of the CMRR starts to oscillate. As a �nal check, by blocking �rst one
photodiode and then the other, we con�rm that the two peaks at 156 MHz from the two
photodiodes have the same intensity.

After taking care of the minimization of the CMRR and the alignment of the detector,
we can begin the measurement procedure. For each squeezed pulse of light 𝑖 , our goal is to
measure the quadrature:

𝑋
𝜙

𝑖
∝

∫ 𝑡𝑖+𝑇

𝑡𝑖

𝑑𝑡 𝜑 (𝑡)𝑥𝜙 (𝑡) (5.6)

where𝑇 is a timewindow containing the pulse. Each pulse then yields one quadrature value.
Our initial step is to identify the time windows that are associated with the squeezed pulses.
To accomplish this, we let the light shine only on the positive photodiode1 and we mark the
positions of the time windows corresponding to individual light pulses, as shown in Fig. 5.6.
They will serve as a time reference for calculating quadratures of individual pulses during
the squeezing measurement.

5.2.3 Temporal measurement: measurement and results
The AC output signal of the homodyne detector is sent through a notch �lter, to get rid of
the 156 MHz component, and an ampli�er. It is then split, with one branch directed to the
spectrum analyzer and the other to the oscilloscope. Since we do not lock the detected
quadrature, the spectrum analyser is used to determine if we are probing the squeezed
quadrature, the antisqueezed quadrature or any generalized quadrature in between. The
trigger of the oscilloscope is set into “single” mode and synchronized with the spectrum
analyzer; this allows us to freeze and save a “screenshot” of the subtracted intensity current
that corresponds to the quadrature displayed on the spectrum analyzer screen. Generally,
we set a longer sweep time for the spectrum analyser, ranging between 0.5 s and 1 s. This
ensures that the 50-100 𝜇s of intensity noise recorded by the oscilloscope correspond to
the �rst few points plotted on the spectrum analyzer. Measurements corresponding to
intermediate values are discarded, and only data related to the squeezed and antisqueezed
quadratures are retained. We collect also data relative to the vacuum (shot) noise, for

1The positive (resp. negative) photodiode is the photodiode that displays a positive (resp. negative) voltage
value when we let light shine on it.
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Figure 5.6: 50 ns detail on a data acquisition with the oscilloscope, where we
collected 2M samples in a time span of 100 𝜇s, corresponding to 15559 pulses.
The signal of the positive photodiode is used to identify the time windows that
correspond to the pulses. A single quadrature value is obtained by integrating
the homodyne signal (orange) over the time of a single pulse (dashed red lines).

normalization purposes. Each quadrature is obtained by adding the voltage points relative
to each pulse. If we collect 2M samples in a time span of 100 𝜇s, corresponding to 15559
pulses, each pulse has approximately 128 voltage samples.

This procedure leads us to collect 𝑁 quadratures, where 𝑁 is the number of pulses,
for each measurement of squeezing, antisqueezing or vacuum. The quadratures must be
normalized and displaced with vacuum as follows:

𝑥𝑖 →
𝑥𝑖 − 𝜇𝑠ℎ𝑜𝑡
𝜎𝑠ℎ𝑜𝑡

(5.7)

where the vector x refers either to the squeezing or antisqueezing quadrature vector, and
𝜇𝑠ℎ𝑜𝑡 and 𝜎𝑠ℎ𝑜𝑡 are the mean and the variance of the shot noise. In Fig. 5.7 a typical histogram
of the quadratures is plotted. As expected, the variance of the squeezed quadrature is smaller
than the variance of the shot noise; the opposite is true for the antisqueezed quadrature.

By changing the shape of the local oscillator, we can access higher-order Hermite-Gauss
modes. We measured squeezing pulse-by-pulse in 7 Hermite-Gauss modes, up to HG6. The
results are shown in Fig. 5.8, where they are compared with the squeezing values obtained
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Figure 5.7: Histogram depicting squeezing and antisqueezing values, normalized
by the relative shot noise curve, for the mode HG0. For each curve we collected
106 quadrature values. The variance of the plotted data gives the squeezing and
antisqueezing values, that in this case are around 0.55 dB for antisqueezing and
-0.27 dB for squeezing.

with the sidebands measurement of section 5.2.1, performedwith the spectrum analyzer and
non-pulse-resolved. These results demonstrate that the squeezing values obtained with the
two methods are consistent and con�rm that the multimode spectral structure is present in
each individual pulse, and we can access it with our homodyne detector. This enables the
possibility to multiplex simultaneously spectral and pulsed modes of light.

5.3 Covariance matrix reconstruction

In this section, we detail the experimental procedure used to reconstruct the covariance
matrix of the multimode quantum state in the frequency pixel basis. We will demonstrate
how the squeezing values obtained in the previous section can be recovered by diagonalizing
this matrix. Finally, we will evaluate the non-separability between di�erent bipartitions of
the state.
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Figure 5.8: Comparison of squeezing and antisqueezing measurements for the
�rst 7 Hermite-Gauss supermodes. The two sets of measurements share the
same basis but use di�erent techniques and devices: spectrum analyser for the
sidebands squeezing measurement (blue) and oscilloscope for the pulse-by-pulse
measurement (orange).

5.3.1 Covariance matrix measurement

Di�erently from the most general de�nition of the covariance matrix, from Eq. 2.3, here we
make the assumption that the 𝑞 and 𝑝 quadratures are uncorrelated, so that the terms of
the type 〈{𝑞𝑖𝑝 𝑗 }〉 are null. This assumption holds if the pump is real, i.e. the higher order
phases are negligible [Michel 21]. In this case, the covariance matrix takes a block-diagonal
form:

V =

(
V𝑞𝑞 0
0 V𝑝𝑝

)
(5.8)

where

V𝑥𝑥 =
©­­«
Δ2𝑥1 〈𝑥1𝑥2〉 . . .

〈𝑥1𝑥2〉 Δ2𝑥2
...

. . .

ª®®¬ (5.9)

with 𝒙 = {q, p}. Considering 𝑛 modes and the symmetry of V𝑞𝑞 and V𝑝𝑝 , we need to
determine 𝑛(𝑛 + 1) terms to reconstruct the covariance matrix.
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Figure 5.9: Frexel modes used for the measurement of the covariance matrix.
Each frexel is 5 nm wide.

From now on we will de�ne the frequency pixel modes as frexel modes. We de�ne
a frexel mode by dividing our 42-nm spectrum into 8 frexels, of 5-nm width, as shown
in Fig. 5.9. Additionally, we make sure that the spectral overlap between two frexels is
negligible.

Each term is measured through homodyne detection, and by scanning the phase of the
local oscillator we can access to the quadrature 𝑞𝜙 for every value of 𝜙 . We note that, if
the spectral phase is �at, the squeezed (or antisqueezed) quadrature is the same for each
mode [Michel 21, Medeiros de Araujo 12]. We choose to de�ne 𝑞 as the quadrature with
less noise, so that 𝑝 is the quadrature with more noise. This choice arbitrary, and a di�erent
choice leads to equivalent results. To reconstruct the covariance matrix for 𝑛 modes we
need 𝑛(𝑛 + 1)/2 homodyne traces.

The diagonal terms are measured by sending with the local oscillator individual frexels.
This permits us to measure Δ2𝑞𝑖 and Δ2𝑝𝑖 , which are the minimum and the maximum of the
homodyne trace obtained from frexel 𝑖 . To measure the o�-diagonal terms, we measure the
quadratures of themode obtained by combining the frexels 𝑖 and 𝑗 . We de�ne the quadrature
operators of the mode 𝑖 + 𝑗 as 𝑥𝑖+ 𝑗 = (𝑥𝑖 + 𝑥 𝑗 )/

√
2, provided that the optical power detected
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Figure 5.10: 36 homodyne traces for the reconstruction of the 8-frexel covariance
matrix. The only traces that show non-vacuum �uctuations are the 1 + 8, 2 + 7,
3 + 6 and 4 + 5 traces. In the plots, the yellow line is the shot noise level, while
the green and the red lines represent respectively the value of the 𝑞 and the 𝑝
quadrature variance. The measurement time is 5 seconds for each trace. We
sweep the LO phase at 300 mHz.

by the frexels 𝑖 and 𝑗 is the same1. The 〈𝑥𝑖𝑥 𝑗 〉 terms of the covariance matrix are given by:

〈𝑥𝑖𝑥 𝑗 〉 =
[
Δ2𝑥𝑖+ 𝑗 −

Δ2𝑥𝑖 + Δ2𝑥 𝑗

2

]
(5.10)

assuming the mean value of the quadratures vanishes, i.e. 〈𝑞𝑖〉 = 〈𝑝𝑖〉 = 0. From this
equation we see that to obtain the 〈𝑥𝑖𝑥 𝑗 〉 term we need the information of the quadrature
variance of both the combined mode 𝑖 + 𝑗 and the frexels 𝑖 and 𝑗 .

The subtracted photocurrent for the mode 𝑘 (in our case a frexel or combinations of
frexel modes) is written as:

𝑖−,𝑘 (𝜙) = |𝛼𝐿𝑂 | (cos𝜙𝑞𝑘 + sin𝜙𝑝𝑘) + 𝑒 (5.11)

and its variance reads:

Δ2𝑖−,𝑘 (𝜙) = |𝛼𝐿𝑂 |2(cos2 𝜙Δ2𝑞𝑘 + sin2 𝜙Δ2𝑝𝑘) + Δ2𝑒 (5.12)
1We indeed need the mode (and the respective quadratures) to be normalized. In the general case, we use

the normalization 𝑥𝑖+𝑗 = (
√
𝑃𝑖𝑥𝑖 +

√︁
𝑃 𝑗𝑥 𝑗 )/

√︁
𝑃𝑖 + 𝑃 𝑗 , where 𝑃𝑖 indicates the average power of frexel 𝑖 .
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where 𝑒 is the electronic noise of the detector and |𝛼𝐿𝑂 | is the intensity of the LO. To access
the information on the quadratures 𝑞𝑘 and 𝑝𝑘 we need to get rid of the electronic noise and
the shot noise and correct the signal accordingly. If no light is shined on the photodetector,
Eq. 5.12 reduces to

𝑉 𝑒𝑙 = Δ2𝑖𝑒𝑙−,𝑘 = Δ2𝑒 (5.13)

while sending only the LO and blocking the signal gives us:

𝑉 𝑠ℎ𝑜𝑡
𝑘

= Δ2𝑖𝑠ℎ𝑜𝑡−,𝑘 = |𝛼𝐿𝑂 |2 + Δ2𝑒 (5.14)

Following these considerations, at the beginning of each measurement round we measure
the electronic noise of the detector by blocking both photodiodes of the detector. Then, by
blocking only the signal light while letting the LO light hit the photodiodes, we take the shot
noise for each frexel or combination of two frexels. In order to correct the signal trace, both
the electronic noise and the shot noise trace will be needed. Lastly, we measure the signal
variance 𝑉𝑘 (𝜙) = Δ2𝑖−,𝑘 (𝜙) by sweeping the phase of the LO with a piezoelectric actuator
to have access to both the 𝑞 and the 𝑝 quadrature. The corrected signal reads:

𝑉 𝑐𝑜𝑟𝑟
𝑘

(𝜙) = 𝑉𝑘 (𝜙) −𝑉
𝑒𝑙

𝑉 𝑠ℎ𝑜𝑡
𝑘

−𝑉 𝑒𝑙
= cos2 𝜙Δ2𝑞𝑘 + sin2 𝜙Δ2𝑝𝑘 (5.15)

In Fig. 5.10 we show the 36 corrected homodyne traces that correspond to the measurement
of a 8-frexel covariance matrix, obtained using a spectrum analyzer as measurement device.

From the homodyne traces, we retrieve the variances that we require for the
reconstruction of the covariance matrix. Typically, multiple acquisitions are taken for
each covariance matrix. An example of reconstructed covariance matrix can be seen in
Fig 5.11. The diagonal elements of the matrix display the noise within individual frequency
bands, whereas the o�-diagonal terms unveil correlations between distinct frequency bands.
Notably, the covariance matrix highlights correlations between frexel pairs 1-8, 2-7, 3-6, and
4-5, consistently with our observations in the homodyne traces depicted in Fig. 5.10. The
correlations observed along the antidiagonal are characteristic of the narrow JSA of the
generated photon-pair from our type-0 SPDC.

Finally, as the squeezing and antisqueezing values are comparable, we expect our
experiment to be low-loss. We can con�rm it by checking the purity of the state, as losses are
the main mechanism that impacts it. For a multimode Gaussian state, the purity is assessed
using Eq. 2.6. From the measurement of the covariance matrix, we can infer that the purity
of the multimode quantum state generated by our source reads 𝜇𝜌 ∼ 96%.

5.3.2 Supermodes reconstruction
In the previous section, we measured the covariance matrix in the frexel basis, which is the
most natural basis for describing the SPDC process and for assessing bipartite entanglement
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Figure 5.11: Experimental matrices V𝑞𝑞 − 1 (left) and V𝑝𝑝 − 1 (right) that show
the correlations among the 8 frexels, where the identity has been subtracted
for better visibility of the o�-diagonal elements. The z-axis of the 𝑞 matrix is
reversed to properly show the anti-diagonal. This covariance matrix is the result
of 5 acquisition rounds.

of the state. By diagonalizing the covariance matrix, we expect to recover the squeezing
values (eigenvalues) and the supermodes (eigenmodes) of the state. We denote V𝐻𝐺𝑥𝑥 and
V𝑓 𝑟𝑥𝑥 as the 𝑥-block of the covariance matrix expressed in the supermodes and frexel basis,
respectively. We expectV𝐻𝐺𝑞𝑞 =

(
V𝐻𝐺𝑝𝑝

)−1
, which follows from the de�nition of the covariance

matrix of a multimode squeezed state. Moreover, we expect the eigenmodes of the two
matrices to be equal. However, there are slight di�erences, likely stemming from low
signal-to-noise ratio. We can verify this by expressing V𝑞𝑞 �rst in a basis of its own
eigenmodes (where it is obviously diagonal), then in a basis of the eigenmodes of V𝑝𝑝 . The
discrepancies are shown in Fig. 5.12.

To de�ne a basis, we choose the eigenvectors corresponding to the 8 highest eigenvalues
of both matrices combining them to form a new basis. While this new basis is not
orthogonal, we can apply Gram–Schmidt orthogonalization to obtain an orthogonal basis.
It is to note that this new basis does not consist of eigenvectors of either V𝑞𝑞 or V𝑝𝑝 , but
it incorporates information from both quadrature measurements. Alternatively, we could
have opted for a basis of eigenvectors of one of the two matrices, but this approach might
introduce more bias towards the measurement of one of the two quadratures.

The diagonal elements relative to the basis change of V𝑓 𝑟𝑞𝑞 and V
𝑓 𝑟
𝑝𝑝 into “quasi-diagonal”

matrices are shown in Fig 5.13. These can be interpreted as an approximation of the
squeezing values of the uncorrelated modes of the system. A comparison between the
squeezing values obtained by directly measuring the HG modes (as in section 5.2.1) and the
ones derived from the measurement of the covariance matrix in the frexel basis is shown
in Fig. 5.14. The uncorrelated modes of the system are approximated by vectors shown in
Fig. 5.15. Some comments about what we expect from our system and the results that we
obtained are in order.
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Figure 5.12: a) Plot of the V𝑞𝑞 − 1 matrix rewritten in the basis of its own
eigenvectors. We trivially obtain a diagonal matrix. b) Plot of the V𝑞𝑞 −1 matrix
rewritten in the basis of the eigenvectors of V𝑝𝑝 . In the ideal, theoretical case
we should obtain a diagonal matrix, as the eigenvectors of V𝑝𝑝 and V𝑞𝑞 should
be equal. In both a) and b) an identity matrix has been subtracted for better
visibility of the correlations.

We expect the recovered uncorrelated modes to be HG modes, or more precisely a
“discretized” version of them. Moreover, we expect the squeezing values to exhibit an
alternating pattern between squeezing in 𝑞 and in 𝑝 , as explained in section 3.3. In Fig. 5.13,
we observe the expected alternating pattern, except for the �rst two values, which both
show squeezing in the 𝑞 quadrature. This deviation can be explained by examining the
corresponding vectors in Fig. 5.15. The vectors appear to be shu�ed and not in the typical
order of HG modes. For instance, the discretized version of HG1 appears to be in the third
position instead of the expected second position. In particular, mode 0 and the mode 7 are
placed in the correct order, while the modes 1-2, 3-4 and 5-6 have switched order. This is
probably due to the low signal-to-noise ratio, that makes it di�cult to discriminate between
squeezing values that are close inmagnitude. This is especially true in our case, as we expect
a �at spectrum of squeezing values, according to the simulations shown in Section 4.3.3 and
the results of section 5.2.1.

5.3.3 Bipartite entanglement in the frexel basis
The frexel basis is the most natural basis for assessing entanglement between frequency
bands, as it re�ects the monochromatic frequency distribution of the JSA. However,
it is obviously a coarse-grained measurement, since we cannot realistically access
monochromatic components. Here we use the covariance matrix of the state, measured
in the frexel basis, to evaluate bipartite entanglement between any bipartition of the 8
frequency bands.
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Figure 5.13: Diagonal of the V𝑞𝑞 and V𝑝𝑝 “quasi-diagonal” matrices, in the
orthonormal basis implemented by the Gram-Schmidt process. These values
correspond to the average value of the squeezing of the supermodes.

First of all, we need to verify that the covariance matrix we have measured is a real
positive semi-de�nite matrix that satis�es the uncertainty relations of Eq. 2.4, i.e. V−𝑖J ≥ 0,
where J is the 2𝑛 × 2𝑛 symplectic form de�ned in Eq. 2.5. In some cases, slow drifts occur
during the acquisition, so that the covariance matrix is slightly unphysical [Gerke 15]. To
correct for this, we add vacuum noise to the measured covariance matrix as follows:

V → V + 𝑐1 (5.16)

where 𝑐 is adjusted so that Eq. 2.4 is satis�ed. The corrected version of the covariance matrix
will be the one used to carry out calculations in the remaining part of this section.

To assess bipartite entanglement, we use the Peres-Horodecki separability criterion for
CV systems [Simon 00], that is based on the positivity of the density operator under the
partial transposition of one of the two subsystems. The positive partial transpose (PPT)
criterion is a necessary and su�cient condition for the separability of bipartite Gaussian
states. We stress again that this criterion does not evaluate multipartite entanglement but
rather the entanglement between bipartitions of the system. Once we have chosen the
bipartition for which we want to evaluate the entanglement, we apply the partial transpose
operation, whose e�ect is a mirror re�ection in phase space for the 𝑝 quadrature of one of
the two subsystems, that reads:

𝑊 (𝑞1, 𝑞2, 𝑝1, 𝑝2)
𝑃𝑇−−→𝑊 (𝑞1, 𝑞2, 𝑝1,−𝑝2) (5.17)
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Figure 5.14: Comparison between squeezing and antisqueezing values measured
in the Hermite-Gauss basis supermodes (blue) and those derived from the
reconstruction of the covariance matrix measured in the frexel basis (red).
Both sets of measurements employ the same technique (non-time resolved
sideband squeezing measurement) and device (spectrum analyzer) but di�er in
the measurement basis.
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Figure 5.15: Orthonormal basis vectors obtained by the Gram-Schmidt process,
that approximate the uncorrelated modes of the system. While we expect these
modes to have the HG shape and to be ordered accordingly, the modes that we
obtained appeared reshu�ed, probably due to the low signal-to-noise ratio.
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This corresponds to a transformation that inverts the 𝑝 coordinate of the transposed system
in the quadrature vector, as:

x
𝑃𝑇−−→ 𝚲x (5.18)

where x = (q, p) and where 𝚲 is a diagonal matrix with +1 or −1 entries, where the −1
entries correspond to the 𝑝 quadrature of the transposed subsystem. This transformation
maps the covariance matrix into:

Ṽ = 𝚲V𝚲 (5.19)

The PPT necessary condition for separability is:

P = Ṽ − 𝑖J ≥ 0 (5.20)

If this condition is not ful�lled, the two partitions are entangled.
For a 8-frexel system, there are 127 possible bipartitions, representing di�erent ways of

dividing the 8 frexels into two sets. Examples of bipartitions include {2} and {1, 3, 4, 5, 6, 7, 8}
or {1, 2, 3, 4} and {5, 6, 7, 8}. We de�ne the PPT value as the smallest eigenvalue of a given
bipartition. In Fig. 5.16, we show the PPT values for the 127 bipartitions of our system,
indicating that approximately 90% of them exhibit inseparability.

The PPT values can be categorized into four distinct bands based on the degree of
entanglement: a lower band, a lower-intermediate band, an upper-intermediate band, and
an upper band. There is a correlation between the partitioning choice and the PPT band to
which the partition belongs. Speci�cally:

• lower band: frexels 4 and 5 are separated in two di�erent bipartitions

• lower-intermediate band: frexels 3 and 6 are separated in two di�erent bipartitions,
but 4-5 are in the same

• upper-intermediate band: frexels 2 and 7 are separated in two di�erent bipartitions,
but 4-5 and 3-6 are in the same

• upper band: 2-7, 4-5 and 3-6 are in the same bipartitions

The pair of frexels 1-8 does not play a signi�cant role, and the upper band contains partitions
that are mostly non-entangled.

The di�erent distribution of the degree of entanglement re�ects the narrow type-0 JSA
of the entangled photon-pairs generated in our setup. Indeed, the quantum correlations, as
also shown in the covariance matrix, are mostly shared between frequency bands positioned
symmetrically in relation to the central optical frequency, i.e. 4-5, 3-6 and 2-7. For this
reason, bipartitions that do not separate these pairs of frexels are not necessarily entangled.
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Figure 5.16: PPT inseparability value (lowest eigenvalue of the PPT matrix) for
all of the 127 possible bipartitions of 8 frexels, ordered from the smallest to the
highest. All the bipartitions below the dashed line (negative PPT value) are
entangled. 4 distinct bands of values are distinguishable, depending on which
pair of frexels are separated into two di�erent bipartitions (4-5, 3-6, 2-7 or none
of them).
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Towards a time-frequency multiplexed
CV network
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In this work, we demonstrated the generation of multimode squeezed states that
are multiplexed both in the temporal and spectral degrees of freedom: the temporal
multiplexing is achieved by measuring squeezing in individual pulses at a repetition rate
of 156 MHz, while 21 squeezed spectral modes have been measured for each pulse. The
next step is to employ this multimode squeezed source to build time-frequency multiplexed
cluster states. In this chapter we will describe the setup for the implementation of the
resource of interest.

6.1 Time-frequency multiplexed cluster state

6.1.1 Building a multiplexed network
Large-scale CV cluster states have already been built in the temporal domain, both in a
2D [Yokoyama 13] and in a 3D con�guration [Larsen 19, Asavanant 19]. The simpler 2D
scheme, shown in Fig. 6.1, involves the use of two squeezed light sources and a linear
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Figure 6.1: Implementation of a dual-rail cluster state, from [Yokoyama 13].
Squeezed light is generated at the output of the two OPO and it is subsequently
mixed on a 50:50 beam-splitter for the generation of EPR states. A delay and
another beam-splitter enable the generation of the dual-rail cluster state.

interferometer to implement the cluster state, and of two homodyne detectors to measure
it. The linear interferometer consists of a �rst beam-splitter, a delay-line, and a second
beam-splitter. The �rst beamsplitter is used to create an EPR state from the two squeezed
states, while the delay line and the second beam-splitter are used to entangle successive
nodes and implement a cluster state with the so-called dual-rail shape.

Our setup di�ers in two main aspects. First, instead of CW light, we employ pulsed
light, which grants us access to the spectral multimode degree of freedom. Second, instead
of using anOPO as the source of squeezed lightwe employwaveguides. This allows us to use
the natural time slot of the laser pulse and to implement entangled states at the repetition
rate of the laser.

The state generated at the output of the waveguides consists of a series of 𝑛 independent
squeezed states in the supermode basis. Combining these states on a 50:50 beam splitter
leads to the implementation of 𝑛 EPR states, as shown in Fig. 6.2. This occurs because the
squeezed states of the two waveguides are mixed mode-wise. Indeed, orthogonal modes in
the spectral basis cannot be mixed via a linear optics interferometer. This kind of mixing can
only be achieved through a non-linear e�ect, as demonstrated in the case of the quantum
pulse gate [Eckstein 11].

Similarly, by employing the interferometer illustrated in Fig. 6.1, it becomes possible to
create 𝑛 dual-rail cluster states, one for each mode within the supermode basis. However,
linear combinations of spectral modes can be easily implemented at the measurement stage,
by changing themeasurement basis [Cai 17]. This allows us to recon�gure the spectral layer
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Figure 6.2: The two multimode squeezed vacuum states generated in the
supermode basis at the output of the two waveguides are mixed on a 50:50 beam
splitter. This results in the implementation of mode-wise EPR states.

e�ectively, resulting in a 3D cluster state that is multiplexed in both time and frequency. One
axis corresponds to the temporal degree of freedom, and at each pulse-time 𝑡 a 2D spectral
layer is present.

6.1.2 Second waveguide

In the previous section, we discussed the necessity of a second source of squeezed light to
construct a cluster state in the temporal domain. To ful�l this requirement, we use a second
waveguide chip, manufactured within the same batch as the �rst one, ensuring that they
possess similar characteristics. We evaluated the performances of the second waveguide
chip, by employing the same procedures already used for the �rst chip. More precisely, our
objective was to identify a suitable waveguide for both the generation of squeezing and the
overlap with the light beam from the �rst waveguide chip.

We focus our attention especially on the output mode of the seed, as in this case we are
not only seeking a spatial mode with a good overlap with the local oscillator (LO) but also
one that could e�ectively match with the seed of the �rst waveguide. Even in this case, the
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Figure 6.3: (a) Spectrum of the SHG for 𝑇 = 90◦C, overlapped with its gaussian
�t and (b) fundamental spatial mode of waveguide 26 of the second chip.

choice falls on waveguide 26, whose mode can be seen in Fig. 6.3b.
However, the two waveguide chips present a substantial di�erence that needs to be

addressed. Indeed, we observed a discrepancy between the central wavelengths of the
SHG produced by the two waveguide chips, as shown in Table 6.1. This indicates that the
phase-matching functions of the two chips are not centered at the same wavelength. In
particular, at the theoretical point of maximal SHG e�ciency (90◦C), there is a di�erence of
approximately Δ𝜆0 ∼ 0.55 nm. While 0.55 nm does not seem like a substantial di�erence,
we recall that our pump has a comparable width. In the case of a very narrow pump and a
very narrow phase-matching function, even such a small di�erence can signi�cantly a�ect
the e�ciency of the process. Indeed, the e�ciency of the parametric ampli�cation process is
contingent upon how well the pump (and the seed) align with the phase-matching function
of thewaveguide crystal. Since the two phase-matching functions are slightly di�erent, they
require a pump centered at a di�erent wavelength to optimize the parametric ampli�cation.
However, given that the pump for the SPDC process is necessarily the same, originating
from the SHG process described in section 4.4, tuning the wavelength of the pump to
optimize the parametric ampli�cation for one chip results in suboptimal ampli�cation for
the other chip, and vice versa.

A possible solution is to adjust the temperature of the waveguide chips to strike a
balance, ensuring that the pump aligns well with both chips. We will deviate from the
temperature providing best SHG e�ciency (90◦C) and aim to set the central wavelength of
the SHG to 𝜆0 = 397 nm for both waveguides. This is achieved by tuning the temperature
of the �rst chip to around 80◦C and the temperature of the second chip to around 105◦C.
The temperature of the ppKTP SHG crystal that generates the pump beam will be adjusted
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Temperature (◦C) 𝜆0 SHG chip1 (nm) 𝜆0 SHG chip2 (nm)
90 397.2 396.65
80 396.95 396.45
70 396.6 396.25
60 396.45 396.01
50 396.16 395.83
40 395.96 395.56
30 395.75 395.23

Table 6.1: Central wavelength 𝜆0 of the SHG generated by the two waveguides
chip in waveguide 26. The pump is at 𝜆0 = 794 nm.

as to achieve a 𝜆0 = 397 nm output.

6.1.3 Implementation of an EPR state

The two waveguides are used as squeezed light sources to build �rst an EPR pair, then an
entangled network. In this section, we focus on the EPR state implementation, whose setup
can be seen in Fig. 6.4. The initial challenge involves combining the two squeezed light
beams at the �rst beam splitter. Indeed, we have to take care of: 1) achieving optimal spatial
overlap between the two modes to maximize the entanglement level of the resulting state,
and 2) ensuring that the two beams interfere with a precise phase relation to generate an
EPR pair, necessitating phase-locking.

The divergence of the seed beams after passing through the two output lenses of the
waveguide setup may a�ect the spatial overlap, as one beam may be larger than the other
at the beam-splitter level. To overcome this problem, we adjusted the geometry of the setup
to ensure that the two paths at the waveguide outputs are nearly equal. This also required
careful temporal matching; the pump paths have been adjusted so that the pump pulses are
injected into the waveguide simultaneously. This guarantees that, at the beam-splitter level,
the spatial modes of the two seeds have the same width and divergence.

The second challenge arises from the fact that the squeezing ellipses of the two beams
rotate as they propagate1, as shown in Fig. 6.4. In order to generate the EPR state, we
require them to interfere with a relative angle of 𝜙 = 𝜋/2, as explained in section 1.5.4.
Deviating from this angle results in a reduction of entanglement in the resulting EPR state,
with complete loss of entanglement occurring at 𝜙 = 0 or 𝜙 = 𝜋 angles. To maintain the
�xed phase relation at 𝜋/2, we employ three phase locks, that will be detailed in section 6.2.

The EPR state generated at the output of the beam splitter is sent to two homodyne

1In the phasor diagram description, it is often used the rotating frame at frequency 𝜔0. Here, we take into
account also the evolution of the 𝑒𝑖𝜔0𝑡 term of the electric �eld.
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SPDC

SPDC

Figure 6.4: Experimental setup that shows both the generation and the
interference of the two squeezed beams, with the consequent implementation of
an EPR pair. Note that the squeezing ellipse rotates along the propagation axis,
and the creation of an EPR pair is contingent on a 𝜋/2 relative phase between
the squeezing ellipses of the two beams.

detectors. The goal is to be able to measure the combination of quadratures 𝑥1 − 𝑥2,
𝑥1 + 𝑥2, 𝑝1 − 𝑝2, 𝑝1 + 𝑝2; while 𝑥1 − 𝑥2 and 𝑝1 + 𝑝2 will exhibit noise �uctuations below
the shot noise limit, the pair 𝑥1 + 𝑥2 and 𝑝1 + 𝑝2 will exhibit �uctuations above the shot
noise limit, as reported in section 1.5.4. The measurement of these linear combinations
requires phase-locking at the homodyne detection stage, that still needs to be implemented
and investigated in detail.

For alignment purposes, we have established an alternative path with �ip mirrors, that
directs the output beams of the two waveguides to the homodyne detectors without passing
through themixing stage. Indeed, before proceeding with themixing process, it is necessary
to con�rm the successful generation of squeezed light in both waveguides and ensure that
the alignment is optimized to maximize the level of squeezing.

6.2 Locking system

As previously mentioned, this experiment necessitates phase locking, which involves
stabilizing the relative phases of the various beams. This is important both during the
cluster state implementation stage and in the measurement stage. In this section we will
go through the details and the techniques used for phase locking.
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Process

Figure 6.5: Scheme of a PID controller.

6.2.1 The PID controller

Phase-locking is accomplished through a feedback loop mechanism that is controlled by a
PID (Proportional-Integral-Derivative) controller, whose scheme is shown in Fig. 6.5. The
loop works as follows. The PID receives an electronic signal, that we call process variable
signal 𝑦 (𝑡); this signal contains information about the phase �uctuations and modulations
within our system. Our objective is to “lock” the system to a speci�c point on the process
variable signal, referred to as the setpoint 𝑆 . The PID generates an error signal 𝑒 (𝑡) = 𝑆−𝑦 (𝑡),
that represents the deviation between the desired setpoint and the variable of interest in our
system - the phase, in our case. The larger the phase deviates from the desired setpoint, the
larger the PID error signal becomes.

The PID error signal is handled by the proportional unit (P), the integral unit (I) and the
derivative unit (D) of the PID controller, which collectively generate the output signal:

𝑢 (𝑡) = 𝐾𝑃𝑒 (𝑡) + 𝐾𝐼
∫ 𝜏

0
𝑑𝜏 𝑒 (𝜏) + 𝐾𝐷

𝑑𝑒 (𝑡)
𝑑𝑡

(6.1)

Here, 𝐾𝑃 is the proportional gain, 𝐾𝐼 is the integral gain and 𝐾𝐷 is the derivative gain.
These are tuning parameters that in�uence the output of the controller. The response signal
𝑢 (𝑡) then acts on the piezoelectric actuator of the pump beam, modifying the phase of the
beam. As a result, both the process variable signal𝑦 (𝑡) and the error signal 𝑒 (𝑡) are a�ected.
The PID controller continuously processes the error signal and acts on the piezo actuator
to minimize the error signal, bringing the phase closer to the setpoint 𝑆 . The aim of this
feedback loop is to maintain 𝑒 (𝑡) ∼ 0 and 𝑦 (𝑡) ∼ 𝑆 .

The P, I, and D modules of the PID controller have distinct roles in the control
process [Aström 95, Aström 08]. The P module generates an output that is proportional to
the error signal magnitude. However, its in�uence diminishes as the process approaches the
setpoint. The integral module, on the other hand, produces an output that depends on both
the duration and magnitude of the error signal. It accumulates gradually and increases as
long as an error persists, making it e�ective for addressing persistent errors over time. The
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output of the derivative module is proportional to the rate of change of the error signal. It
anticipates future changes in the error and contributes to the controller output accordingly.
By adjusting the contributions of these three components, the PID controller can achieve
stable and precise control of the phase of the process, e�ectively “locking” it to a �xed
setpoint.

In our setup, we only have control over the 𝐾𝑃 and 𝐾𝐼 parameters, but this is su�cient
for phase-locking. Typically, the 𝐾𝑃 and 𝐾𝐼 values require manual adjustment, because
there is no established analytical method for determining the precise settings. Therefore,
we adopt the approach that follows the so-called Ziegler-Nichols rules [Tho 23, Ogata 10].
Initially, we set all values to zero. Then, we gradually increase the 𝐾𝑃 gain until we observe
oscillations in the signal and we can audibly hear the piezo actuator. We identify this value
with the critical proportional gain 𝐾𝑐𝑟 and we denote the period of the oscillations with
𝑃𝑐𝑟 . The �nal 𝐾𝑃 value is set at roughly half of this observed level, precisely 𝐾𝑃 = 0.45𝐾𝑐𝑟 .
Typically, when only the proportional gain 𝐾𝑃 is used, we may observe an o�set between
the value of the phase variable and the setpoint 𝑆 , called steady-state error. Enabling
the integral correction allows us to compensate for this error, as the role of the integral
module is to address persistent errors. We proceed by increasing the 𝐾𝐼 value until we
observe steady-state error compensation. However, increasing this value too much can
result in instability and oscillations around the setpoint. A more rigorous application of
the Ziegler-Nichols rules prescribes precisely setting the 𝐾𝐼 to 𝐾𝐼 = 1.2𝐾𝑃/𝑃𝑐𝑟 . Once the 𝐾𝑃
and 𝐾𝐼 value are determined, we can successfully achieve phase-locking.

To conclude this section, we highlight an important point. For the PID controller to
e�ciently achieve a stable lock, the error signal must possess speci�c characteristics. In
particular, we require that the error signal displays a nearly linear behavior around the lock
point. Additionally, a sharp signal, characterized by steep slopes, indicates high sensitivity
to phase errors and ensures a fast response from the controller. For this reason, a lock point
cannot coincide with a stationary point of the process variable signal, such as a maximum
or a minimum. To facilitate locking at these points, we must modify the signal as discussed
in the next section.

6.2.2 DC lock and AC lock
In this work, we will employ two locking techniques, which we respectively refer to as DC
lock and AC lock. The signals we employ and manipulate for locking purposes in this setup
are photocurrents directly detected by photodiodes.

In the DC lock or side-of-fringe lock technique, we identify the original signal, that has
been directly detected by the photodiode, with the process variable signal 𝑦 (𝑡) for the PID
module, introduced in the previous section. We take the DC (low-frequency) output of the
photodiode, and we set the setpoint 𝑆 at the value of the DC signal we want to lock onto, as
shown in Fig. 6.6a. The error signal 𝑒 (𝑡) = 𝑦 (𝑡) − 𝑆 is fed to the PID, and its response signal
𝑢 (𝑡) acts on the setup to directly modify 𝑦 (𝑡).
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Figure 6.6: Left �gure: schematics of DC lock, right �gure: schematics of AC
lock. In the AC lock the setpoint is usually 𝑆 = 0, and the derivative signal 𝑦𝑜𝑢𝑡
is used as error signal 𝑒 (𝑡) = 𝑦𝑜𝑢𝑡 (𝑡).

The DC lock is simple to implement, as we only need to connect the photodiode to the
PID module and set the lock point. However, it comes with an important drawback: the
impossibility of locking close to or at the peaks of the signal. Indeed, as the name suggests,
we can use this technique when our setpoint is located on a slope, as shown in Fig. 6.6a.
Moreover, this type of lock is sensitive to intensity �uctuations that change the mean value
of the optical �eld1.

The AC lock or top-of-fringe lock is a technique that permits to lock the phase at the
peaks of the signal, as the name suggests. It o�ers greater stability compared to its DC
counterpart because it is not a�ected by intensity �uctuations of the signal. However, setting
up an AC lock involves more complex signal processing. This is the technique we will use
to lock the phase in the parametric ampli�cation process.

Establishing an AC lock involves several signal processing steps, whose purpose is to
transform the original process variable signal, here denoted as 𝑦𝑠𝑖𝑔 (𝑡), into its derivative.
This transformation has the e�ect of converting the curve around a maximum or minimum

1As our setpoint is usually located at the average value of the �eld, to avoid this problem we may be
tempted to take the AC output of the photodiode and lock at 𝑆 = 0. This would permit to be una�ected by
mean �eld �uctuations. However, in so doing, we would �lter out the slow contributions of the phase noise,
present only in the DC output, which is precisely what we are interested in and what we want to compensate.
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into steep slopes, where we can place lock points. By feeding the derivative signal to the
PID control, we can e�ectively lock onto the signal peaks of the original signal, as illustrated
in Fig. 6.6b.

We proceed as follows:

• Modulation stage: the original signal 𝑦𝑠𝑖𝑔 (𝑡) is modulated with a sinusoidal signal at
a frequency Ω𝑚1, resulting in the signal 𝑦𝑚𝑜𝑑 (𝑡). In the electronic frequency domain,
this modulation shifts the noise information from the DC (low-frequency) range into
sidebands around Ω𝑚1.

• Demodulation stage: the signal 𝑦𝑚𝑜𝑑 (𝑡) is multiplied by a sinusoidal signal 𝑦𝑑𝑒𝑚𝑜𝑑 (𝑡)
that oscillates at the same frequency Ω𝑚1 using an electronic mixer. This yields the
signal 𝑦𝑜𝑢𝑡 (𝑡) = 𝑦𝑠𝑖𝑔 (𝑡) ·𝑦𝑑𝑒𝑚𝑜𝑑 (𝑡). In the spectral domain, this operation replicates the
phase noise sidebands, already present around Ω𝑚1, also at 0 Hz and at 2Ω𝑚1.

• Filtering stage: a low-pass �lter with a cuto� frequency Ω𝐿𝑃𝐹 < Ω𝑚1 is added after
the mixer to select only the DC-low frequency sidebands.

Finally, the signal is ampli�ed and fed to the PID, for feedback control. The signal 𝑦𝑜𝑢𝑡 (𝑡)
produced by this process is proportional to the derivative of the original signal 𝑦𝑠𝑖𝑔 (𝑡). The
mathematical details are presented in Appendix C. By locking at the zero-crossing points
(𝑆 = 0) of the 𝑦𝑜𝑢𝑡 (𝑡) signal, we e�ectively achieve locking at the minima or maxima of the
original signal.

6.2.3 Experimental implementation of phase locks
In the experimental implementation of phase locks, we �rst need to extract a portion of the
signal that we intend to lock onto. This is done by placing two 95:5 beam-splitters after each
waveguide chip on the seed path, to retrieve the parametric ampli�cation signal, and one
95:5 beam-splitter after the beam-splitter used for the EPR implementation, to retrieve the
interference signal of the two seeds.

Stabilizing the parametric processes in both waveguides, speci�cally at either an
ampli�cation or deampli�cation point (i.e. antisqueezing or squeezing point), requires
locking at the maximum or minimum of the signal. As already discussed, in this case we
need to resort to the AC locking technique. The third lock is used to stabilize the relative
phases of the two seeds at 𝜋/2 within the interference pattern. In this case, we can directly
use the signal detected by the photodiode, and implement a simpler DC lock. If the objective
is to build a cluster state, the same 𝜋/2 DC lock is implemented on a second beam-splitter.

For each AC lock we want to implement we introduce additional components into our
setup: a piezoelectric actuator on the pump beam (in addition to the one present in the seed
beam), a frequency generator with two channels that allows for tuning the electronic phase
between the channels, a mixer, an ampli�er, and a low-pass �lter. A schematic of the AC
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Figure 6.7: Scheme of the AC locking system implemented into our experiment.
The parametric ampli�cation signal, optically modulated at 90 kHz, is detected
through a photodetector to yield 𝑦𝑚𝑜𝑑 (𝑡). This signal is multiplied with
𝑦𝑑𝑒𝑚𝑜𝑑 (𝑡), a 90 kHz sinusoid, through a mixer and the output is �ltered with
a low-pass �lter (LPF) and ampli�ed. The resulting signal 𝑦𝑜𝑢𝑡 (𝑡) is fed to the
PID controller to generate a feedback signal 𝑢 (𝑡) on the pump phase. The phase
𝜙𝑒𝑙 between the modulation and demodulation channel is tuned to maximize the
error signal.

lock setup and how it provides feedback to the experiment is depicted in Fig. 6.7. The piezo
on the pump beam is used to drive the 100 Hz ramp of the parametric ampli�cation process,
while the piezo on the seed path modulates the seed beam phase with a sinusoidal signal at
Ω𝑚1 = 90 kHz1.

The intrinsic phase �uctuations of the light, along with the 100 Hz and 90 kHz phase
oscillations, are converted into intensity �uctuations through the parametric process, and
they can then be detected by a photodetector, which generates the AC output signal𝑦𝑚𝑜𝑑 (𝑡).

1This value of Ω𝑚1 is not the only possible choice; in general, we will choose a resonant frequency of the
piezo+mirror+mount system.
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Figure 6.8: In (a) the temporal evolution of the photodiode signal is plotted and
in the inset we can clearly see the 90 kHz modulation. (b) Frequency spectrum
of the electronic signal generated from the photodiode, where both the 90 kHz
modulation and the phase noise are present. Note that the phase noise is centered
around Ω𝑚1 = 90 kHz. The e�ect on the 100 Hz ramp is added in (c), where
sidebands of the order of ∼ 300 Hz (that re�ects the number of oscillations
present in a single ramp period) are present.
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We remind here that direct detection can only capture amplitude �uctuations 𝛿𝑞(𝑡) (see
section 2.3.1), therefore a parametric or an interference e�ect are needed to convert the
phase �uctuations 𝛿𝑝 (𝑡) into amplitude ones 𝛿𝑞(𝑡). The resulting optically modulated signal
is shown in Fig. 6.8a.

During an actual measurement, the 100 Hz ramp will be o�, and the photocurrent signal
will contain only the phase �uctuations that we aim to compensate and the Ω𝑚1 kHz signal.
Due to the optical Ω𝑚1 modulation, the phase noise, in the electronic frequency domain,
will be present in the sidebands around Ω𝑚1, as previously explained and shown in Fig. 6.8b
and 6.8c. In contrast, without modulation, the phase noise information is concentrated in
the DC component.
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Figure 6.9: Experimental signals of the parametric ampli�cation optically
modulated at 90 kHz (orange) and of the corresponding error signal 𝑦𝑜𝑢𝑡 (𝑡)
(blue). Note that the error signal crosses zero when the parametric ampli�cation
reaches a peak.

After the demodulation and the �ltering stages, where we use a low-pass-�lter with a
30 kHz cuto� frequency, the signal is ampli�ed and sent to the PID controller. In Fig. 6.9,
we show the experimental photodiode signal 𝑦𝑚𝑜𝑑 (𝑡) as well as the error signal that results
from the modulation-demodulation-LPF chain. The response signal 𝑢 (𝑡) of the PID is sent
to the pump piezo actuator, to correct for phase �uctuations.

The amplitude of the error signal depends on the relative phase between the modulation
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and demodulation channels. This phase can be tuned by ensuring that both the piezo
modulation signal and the corresponding demodulation signal stem from the same function
generator. Tuning the relative phase between the two output channels grants control on
the amplitude of the error signal. Typically, we �x the phase of one channel and we scan
the phase of the other channel, searching for the phase value 𝜙𝑚𝑖𝑛 at which the error signal
vanishes and then setting the phase at 𝜙𝑚𝑖𝑛 + 𝜋/2. Indeed, the phases 𝜙𝑚𝑖𝑛 ± 𝑛𝜋 will all
correspond to vanishing error signals, while the phases 𝜙𝑚𝑎𝑥,± = 𝜙𝑚𝑖𝑛 ± 𝜋/2 are the phase
values for which the error signal is maximal.

We conclude the review of the AC lock by addressing a di�culty encountered during
its implementation that remains, at present day, unresolved. Theoretically, the AC lock is
designed to be insensitive to mean value �uctuations. This property is advantageous, as
it contributes to increased lock stability. However, in our setup we observe a residual DC
signal that manages to reach the ampli�cation stage, resulting in an ampli�ed DC o�set
within the error signal. This presents a signi�cant issue, because our error signal must lock
precisely at zero. While we can mitigate this by adjusting the o�set of the ampli�er at the
outset of each experimental run, it remains a vulnerability in our locking system, as our
lock point becomes susceptible to gradual drifts in this residual DC signal.

After stabilizing both parametric processes of the two waveguides, we proceed to lock
the seed phases at the 50:50 beam splitter level. We remind that our goal is to lock the
relative phases of the two beams at 𝜙 = ±𝜋/2. In an interference signal, provided it is
well-aligned and the visibility is maximized, this corresponds to setting the setpoint 𝑆 at the
average value of the signal, which corresponds to a steep slope. Therefore, we can safely
employ the simpler DC lock. The interference signal of the two seed beams is measured by
a photodiode and, in this case, the resulting signal 𝑦 (𝑡) is directly sent to the PID, without
additional processing. The response signal 𝑢 (𝑡) is sent to a piezo actuator placed onto the
seed path to �nally achieve locking.

6.2.4 Measurement-hold phase
The phase-locking system, which involves the detection of the seed at various points in
the experiment, plays a crucial role in aligning the phases within the setup. However,
if our goal is to measure squeezed vacuum light, we must get rid of the seed beam
during the measurement. Therefore, during a measurement run, we need to distinguish
between two distinct phases: 1) a locking phase, where all beams are precisely aligned to
facilitate the implementation of the EPR state (or of the cluster state) and its subsequent
measurement, and 2) an actual measurement phase. In the measurement phase, the seed
beam is blocked, allowing only the vacuum squeezed light to illuminate the homodyne
detector. The transition between the lock and measurement phases must occur rapidly to
outpace the phase �uctuations in our beam.

In Fig. 6.10, we can observe the typical phase noise characteristic of our setup,
with the majority of the noise occurring in the 1 kHz range. To accommodate these
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Figure 6.10: Characteristic phase noise in our setup, obtained by taking the FFT
of the oscilloscope measurement of light hitting a photodiode. Most of the phase
noise is contained in the range 0-1kHz.

lock-measurement cycles e�ectively, we have selected a chopping wheel (speci�cally, the
MC1F100 from Thorlabs) capable of de�ning cycles with frequencies up to 𝑓𝑐ℎ𝑜𝑝 = 10 kHz.
This choice is deliberate because if 𝑓𝑐ℎ𝑜𝑝 was smaller or comparable to the phase noise, the
phase could drift too quickly during themeasurement stage, making it challenging to correct
during the lock stage.
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Continuous-Time QuantumWalks in a
photonics setup
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Quantum walks, the quantum analogue of classical random walks, serve as tools
for quantum information processing, o�ering a framework for implementing quantum
algorithms that can provide quantum speed-up for speci�c problems. In this study,
we speci�cally focus on the quantum walk version of the well-known Grover search
algorithm [Grover 96]. Our focus is on continuous-time quantum walks (CTWQ), where
time is treated as a continuous parameter, in contrast to the discrete-time version,
that involves discrete time steps. The primary goal of this research is to identify an
implementation of CTQW that incorporates operations that are feasible in an optical setup.
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7.1 QuantumWalks
In this section, we provide a concise theoretical overview of continuous-time quantum
walks applied to quantum search. Since quantum walks are often described as the quantum
counterpart of classical random walks, we begin our study from the classical description
and we later switch to the quantum domain. Here, quantum walks are investigated for the
speci�c search task and in particular we will opt for a speci�c topology of the walk, that
corresponds to the unstructured Grover search, to facilitate the implementation of spatial
search. Although di�erent topologies re�ecting diverse information structures can also be
implemented, exploring them falls beyond the scope of this thesis.

7.1.1 Random walks on graphs
Random walks are stochastic processes that �nd applications across various �elds,
providing insights into the dynamics of various systems. They serve as valuable tools
in statistical physics, economics, biology, and computer science [Révész 13, Weiss 94]. In
computer science, random walks play a crucial role, particularly in modelling Markov
chains [Levin 17], which underpin numerous applications, especially those involving
graph-based processes. In physics, random walks are used to model Brownian motion,
capturing the random movement of particles suspended in a �uid [Weiss 94].

Here, we are interested in graph-based random walks. A graph G is characterized by a
�nite set of vertices 𝑉 = {1, 2, . . . , 𝑁 } and a �nite set of links (or edges) 𝐸, represented by
pairs of the form 𝑒 = (𝑖, 𝑗), that indicate the connections between nodes. The degree 𝑑 ( 𝑗)
of a node 𝑗 is the number of edges to which the node is connected. The adjacency matrix of
the graph G = (𝑉 , 𝐸) is de�ned by:

𝐴𝑖 𝑗 =

{
1 if (𝑖, 𝑗) ∈ 𝐸
0 otherwise

(7.1)

and it contains all the information regarding the connectivity and topology of the graph.
Moreover, we de�ne the Laplacian matrix as1:

L = A − D (7.2)

where D is a diagonal matrix with 𝐷 𝑗 𝑗 = 𝑑 ( 𝑗). The Laplacian matrix serves as the driving
term for the random walk. The Laplacian matrix, as the name suggests, embodies the
discretization of the Laplace operator ∇2, present in the kinetic energy term of a particle
trapped in a lattice [Wong 16].

A random walk on a graph is a stochastic process in which, at each time step 𝑡𝑖 , we
investigate the random variable 𝑋𝑖 , associated with the position of a so-called walker. In

1Here, we use the notation of ref. [Childs 04a] and [Wong 16]. A di�erent notation, where L = D − A, is
often used.
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Figure 7.1: a) Classical random walk, where the walker moves left or right at
each step. b) Quantum walk, where the walker moves in a superposition of left
or right. The wavefunction of the walker can interfere destructively, impacting
the probability of �nding the walker in a speci�c vertex and leading to di�erent
results than the classical counterpart. Picture from [Matthews 12].

a discrete-time random walk, the walker is situated in a speci�c site of a lattice and has a
certain probability of jumping to a neighbouring site at every time-step 𝑡𝑖 . Conversely, a
continuous-time random walk involves in�nitesimal time-steps 𝑑𝑡 , and we then de�ne the
hopping rate 𝛾 , that represents the probability per unit time for the walker to move to a
connected vertex. Both of these processes can be envisioned as the deterministic evolution
of a probability density de�ned over the graph.

In this work we focus on continuous-time walks. De�ning 𝑝𝑖 (𝑡) as the probability that
the walker is in vertex 𝑖 at time 𝑡 , we can derive the equation:

𝑑𝑝 𝑗 (𝑡)
𝑑𝑡

= 𝛾
∑︁
𝑖

𝐿 𝑗𝑖𝑝𝑖 (𝑡) (7.3)

Note that, as by construction
∑
𝑗 𝐿 𝑗𝑖 = 0, probabilities are conserved, i.e.

∑
𝑗 𝑑𝑝 𝑗 (𝑡)
𝑑𝑡

= 0. We are
left with a set of 𝑁 di�erential equations, that can be solved to yield the probability vector
p(𝑡) = (𝑝1(𝑡), . . . , 𝑝𝑁 (𝑡)):

p(𝑡) = 𝑒𝛾L𝑡p(0) (7.4)

From this equation, we identify the Laplacian matrix of the graph as the generator of time
evolution.

7.1.2 Continuous-time QuantumWalks for spatial search
In the context of quantum walks, the fundamental concept of random walks is retained, but
instead of a classical probability distribution we deal with a quantum state and its complex
amplitudes. The behavior of a quantum walk, however, diverges signi�cantly to that of a
random walk, due to the quantum interference e�ect [Matthews 12], as shown in Fig. 7.1.

161



7.1. QUANTUM WALKS

This distinctive feature allows us to devise quantum algorithms based on quantum walks
that exhibit a substantial speed-up compared to classical counterparts.

In the quantum scenario, the Hilbert space of the quantum walk is 𝑁 -dimensional and
is spanned by states | 𝑗〉, that represent vertices of the graph. The walker is described by
a quantum state |𝜓 (𝑡)〉 and instead of dealing with probabilities, we work with complex
amplitudes denoted as 𝑝 𝑗 = | 〈 𝑗 |𝜓 (𝑡)〉 |2. The evolution of the state is dictated by the
Schrödinger equation, where probability amplitudes evolve as follows:

𝑖
𝑑𝑝 𝑗

𝑑𝑡
=

∑︁
𝑖

𝐻 𝑗𝑖𝑝𝑖 (7.5)

Comparing this equation with Eq. 7.3, we can recognize the quantum version of the random
walk, with the Hamiltonian evolution de�ned by the matrix H = −𝛾L. Di�erent choices
of Hamiltonian are possible, leading to the same dynamics, provided that the graph is
regular [Wong 16].

The quantum walk described above adheres to the topology of a given graph without
targeting a speci�c task. However, we can modify the Hamiltonian of the graph to serve a
speci�c purpose. Here, we speci�cally revise quantum walks for spatial search, exploring
how the walk can be employed to execute quantum search on a graph. A well-known
quantum search algorithm is the Grover search algorithm [Grover 96], designed to address
the problem of locating a particular item, labeled as𝑤 , in a list of 𝑁 unsorted items. While
classical algorithms typically require O(𝑁 ) queries to �nd the marked item, the Grover
search algorithm exhibits a quadratic speedup, accomplishing the task with O(

√
𝑁 ) queries,

and this has been proved to be asymptotically optimal [Bennett 97]. Quantum walks can
be implemented in a graph that re�ects the structure of the database. A detailed reference
on search by quantum walks, that provides the theoretical framework that we outline here,
can be found in [Childs 04a].

To implement the spatial search with a quantum walk, the evolution must be directed
towards the vertex |𝑤〉. We de�ne the oracle Hamiltonian:

𝐻̂𝑤 = − |𝑤〉〈𝑤 | (7.6)

and we modify the walk Hamiltonian as:

𝐻̂ = −𝛾𝐿̂ + 𝐻̂𝑤 (7.7)

We initialize the walker in the state de�ned as:

|𝑠〉 = 1
√
𝑁

∑︁
𝑗

| 𝑗〉 (7.8)

which represents an equal superposition of all the vertices in the graph, and we let the state
evolve for a certain time𝑇 . Our goal is to �nd the smallest𝑇 for which |𝜓 (𝑇 )〉 is as close to
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|𝑤〉 as possible, resulting in the quantity:

𝑝𝑤 = | 〈𝑤 |𝜓 (𝑇 )〉 |2 (7.9)

being as close to 1 as possible.
In general, we have no guarantee of the success of the algorithm for a given

topology. However, insights into the success probability, given 𝛾 and 𝑇 , can be obtained
from the spectrum of the Hamiltonian and, consequently, from a given shape of the
graph [Childs 04a]. Here, we work with 𝑁 � 1. We point out that |𝑠〉 and |𝑤〉 are not
orthogonal, i.e.

〈𝑠 |𝑤〉 = 1
√
𝑁

(7.10)

but for 𝑁 >> 1 we can recover orthogonality.
We start by noting that |𝑠〉 is the ground state of the Laplacian (a positive-de�nite

operator), as 𝐿̂ |𝑠〉 = 0. It follows that, for 𝛾 → ∞, the ground state |𝑣0〉 of 𝐻̂ is |𝑣0〉 ∼ |𝑠〉.
Conversely, for 𝛾 → 0, the contribution of 𝐿̂ in the Hamiltonian of Eq. 7.7 is negligible, and
we obtain |𝑣0〉 ∼ |𝑤〉. The ground state of 𝐻̂ switches from |𝑤〉 to |𝑠〉 as we increase the
value of 𝛾 to in�nity. It is then reasonable to conclude that, since |𝑠〉 and |𝑤〉 are almost
orthogonal, there must be a certain value of 𝛾 for which the ground state has a substantial
overlap with both |𝑠〉 and |𝑤〉.

A similar reasoning can be applied to the �rst excited state |𝑣1〉. For 𝛾 → 0, the lowest
energy state after the ground state must be |𝑠〉. Indeed, following the orthogonality of |𝑣0〉 ∼
|𝑤〉 and |𝑣1〉, it follows that 𝐻̂ |𝑣1〉 = −𝛾𝐿̂ |𝑣1〉. As |𝑤〉 is the ground state of 𝐿̂ for 𝛾 → 0,
it follows that |𝑣1〉 ∼ |𝑠〉. For the case 𝛾 → ∞ the same cannot be inferred, but we expect
the overlap | 〈𝑤 |𝑣1〉 |2 to increase with respect to the 𝛾 → 0 case, for which it is vanishing.
If the �rst excited state has some considerable overlap with both |𝑠〉 and |𝑤〉, for the same
values of 𝛾 obtained for the ground state, then the Hamiltonian will drive transitions from
|𝑠〉 to |𝑤〉 in a time of the order 1/(𝐸1 − 𝐸2) [Childs 04b].

The spatial search is optimal if the ground state and the �rst excited state show the
same overlap with |𝑠〉 and |𝑤〉, for a speci�c value of 𝛾 . Indeed, in the case where the two
eigenstates of the Hamiltonian satisfy:

|𝑣0〉 ∼
|𝑠〉 − |𝑤〉

√
2

(7.11)

|𝑣1〉 ∼
|𝑠〉 + |𝑤〉

√
2

(7.12)

we can calculate the evolved state at time 𝑡 , starting from the initial state |𝜓 (0)〉 = |𝑠〉:

|𝜓 (𝑡)〉 = 𝑒−𝑖𝐻̂𝑡 |𝑠〉 = 𝑒−𝑖𝐸0𝑡
√
2

[
|𝑣0〉 −

𝑒−𝑖 (𝐸1−𝐸0)𝑡

2 |𝑣1〉
]

(7.13)
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For time 𝑡∗ = 𝜋/(𝐸1 − 𝐸2), the evolution yields:

|𝜓 (𝑡∗)〉 = 𝑒−𝑖𝐸0𝑡 |𝑣0〉 + |𝑣1〉√
2

= 𝑒−𝑖𝐸0𝑡 |𝑤〉 (7.14)

Therefore, the quantum walk converges to the target state with probability 𝑝𝑤 = 1.
This condition has been found for the complete graph, where all the vertices are

interconnected, and the 𝑛-dimensional hypercube, with 𝑁 = 2𝑛 vertices. Moreover,
for 𝑑−dimensional periodic lattices, where 𝑑 is �xed independently on 𝑁 , the algorithm
succeeds in the case 𝑑 > 4, while for 𝑑 = 4 it provides a speedup of O(

√︁
𝑁 log𝑁 ) and for

𝑑 < 4 it provides no speedup.

Figure 7.2: Complete graph with 𝑁 = 15, where a vertex has been marked as the
target state of the quantum search.

7.1.3 QuantumWalk search in a complete graph

In this manuscript we will be interested in the complete graph, whose topology is illustrated
in Fig. 7.2, which is the direct analogue of the Grover search, as it can be used to represent
an unstructured database [Farhi 96]. Alternative topologies would correspond to di�erent
database structures.
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Figure 7.3: Energy gap and overlaps for the complete graph with 𝑁 = 1024,
from [Childs 04a]. We see from this graph that the condition 𝛾𝑁 = 1 is optimal
for the success of the walk.

The Hamiltonian for the quantum search algorithm in a complete graph is1:

𝐻̂ = −𝛾𝑁 |𝑠〉 〈𝑠 | − |𝑤〉 〈𝑤 | (7.15)

In Fig. 7.3, the overlaps between the |𝑤〉 and |𝑠〉 states and the ground and �rst excited state
are shown, and we conclude that for 𝛾𝑁 = 1 the quantum walk is optimal. Therefore, from
now on we will set 𝛾𝑁 = 1.

The complete graph is a useful topology because, regardless of the number of
nodes, we can exploit the graph symmetry to restrict the dynamics to a 2-dimensional
subspace [Novo 15]. We identify the basis vectors of the 2-dimensional subspace as all the
unmarked vertices on one hand, and as all the marked one(s), identi�ed with 𝑤 . If 𝑤 is a
single node in the graph, we de�ne:

|𝑒1〉 =
1

√
𝑁 − 1

(1, 1, . . . , 1, 0, 1 . . . ) =
(
1
0

)
|𝑒2〉 = |𝑤〉 = (0, 0, . . . , 0, 1, 0 . . . ) =

(
0
1

)
1To obtain this Hamiltonian, the term 𝑁1, that does not modify the dynamics, has been added to the

Laplacian.
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where |𝑒1〉 and |𝑒2〉 are the basis vectors. In this new basis, the vectors |𝑠〉 and |𝑤〉 read:

|𝑠〉 =
√
𝑁 − 1 |𝑒1〉 + |𝑒2〉√

𝑁
=

1
√
𝑁

(√
𝑁 − 1
1

)
|𝑤〉 = |𝑒2〉 =

(
0
1

)
and the Hamiltonian of Eq. 7.15 in the {𝑒1, 𝑒2} basis can be written as:

𝐻̂ = − |𝑠〉 〈𝑠 | − |𝑤〉 〈𝑤 | = −𝑁 − 1
𝑁

|𝑒1〉 〈𝑒1 | −
√
𝑁 − 1
𝑁

|𝑒1〉 〈𝑒2 | − (7.16)
√
𝑁 − 1
𝑁

|𝑒2〉 〈𝑒1 | −
𝑁 + 1
𝑁

|𝑒2〉 〈𝑒2 | (7.17)

and in matrix form:
𝐻 = − 1

𝑁

(
𝑁 − 1

√
𝑁 − 1√

𝑁 − 1 𝑁 + 1

)
(7.18)

The eigenvalues of this Hamiltonian are:

𝐸0 = −1 − 1
√
𝑁

(7.19)

𝐸1 = −1 + 1
√
𝑁

(7.20)

and the energy gap is Δ𝐸 = 2/
√
𝑁 . Moreover, the eigenvectors read:

|𝑣0〉 =
(√

𝑁−1√
𝑁+1
1

)
∝ |𝑠〉 + |𝑤〉

√
2

(7.21)

|𝑣1〉 = −
(√

𝑁−1√
𝑁−1
1

)
∝ |𝑠〉 − |𝑤〉

√
2

(7.22)

We then expect the Quantum Walk Hamiltonian to rotate from |𝑠〉 to |𝑤〉 in a time of order
1/(𝐸1 − 𝐸0). In the case of the complete graph, this time is:

𝑡∗ =
𝜋
√
𝑁

2 (7.23)

This can be veri�ed as follows. Along with the identity matrix, the Pauli matrices
{𝜎𝑖}𝑖=1,2,3 constitute an orthonormal basis within the Hilbert space of 2×2 complex matrices.
The quantumwalk Hamiltonian can then be expressed in the {1, 𝜎𝑖} basis with the following
formula:

𝐻 =
∑︁

𝜇=0,1,2,3
𝛼𝑥𝜎𝑥 (7.24)
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where we de�ne 𝜎0 = 1 and where 𝛼𝜇 = 1
2Tr(𝐻𝜎𝜇). From the de�nition of Eq. 7.18, it follows

that 𝛼0 = −1, 𝛼1 = −
√
𝑁−1
𝑁

, 𝛼2 = 0 and 𝛼3 = 1/𝑁 . The Hamiltonian of the walk can then be
expressed in the Pauli basis as:

𝐻 = −1 −
√
𝑁 − 1
𝑁

𝜎𝑥 +
1
𝑁
𝜎𝑧 = −1 + ®𝑣 · ®𝜎 (7.25)

where ®𝑣 = (−
√
𝑁−1
𝑁

, 0, 1
𝑁
) and ®𝜎 is the Pauli matrices vector. We de�ne 𝑘 = ®𝑣/‖𝑣 ‖, where

‖𝑣 ‖ = 1√
𝑁
, so that ®𝑣 · ®𝜎 = ‖𝑣 ‖𝑘 · 𝜎̂ . The unitary evolution operator associated to the quantum

walk Hamiltonian can be written as:

𝑈 (𝑡) = 𝑒−𝑖𝐻̂𝑡 = 𝑒−𝑖1𝑡𝑒−𝑖‖𝑣 ‖𝑘 ·𝜎̂𝑡 (7.26)

This form is useful because it permits us to apply the well-known formula of Pauli-vector
exponentiation:

𝑒𝑖𝜃𝑘 ·®𝜎 = cos𝜃1 + 𝑖 sin𝜃𝑘 · 𝜎̂ (7.27)

that allows us to rewrite the evolution of the walk as a linear combination of Pauli matrices,
plus the identity. Identifying 𝜃 = ‖𝑣 ‖𝑡 = 𝑡/

√
𝑁 and 𝑘 = (−

√︃
𝑁−1
𝑁
, 0, 1√

𝑁
), we obtain:

𝑈 (𝑡) = 𝑒−𝑖1𝑡
[
cos𝜃1 + 𝑖 sin𝜃

√︂
𝑁 − 1
𝑁

𝜎𝑥 − 𝑖
sin𝜃
√
𝑁
𝜎𝑧

]
(7.28)

The characteristic time for the walk is 𝑡∗ = 𝜋
√
𝑁 /2, as reported in Eq. 7.23, which

corresponds to 𝜃 = 𝜋/2. At 𝑡∗, the evolution operator is given by:

𝑈 (𝑡∗) = 𝑒−𝑖1𝜋
√
𝑁 /2𝑖

[√︂
𝑁 − 1
𝑁

𝜎𝑥 −
1

√
𝑁
𝜎𝑧

]
(7.29)

We can verify that applying this unitary evolution to |𝑠〉 leads exactly to |𝑤〉, up to an overall
complex phase. The probability of �nding the walker in the target state at time 𝑡∗ is:

| 〈𝑤 |𝑈 (𝑡∗) |𝑠〉 |2 = 1 (7.30)

From Eq. 7.29, we can make an important approximation, that will be used throughout this
thesis. Indeed, for 𝑁 � 1, the unitary operation at time 𝑡∗ is given simply by:

𝑈 (𝑡∗) ∼ 𝜎𝑥 (7.31)
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7.2 Mapping from theory to experiment

7.2.1 Encoding qudits in photon-subtracted squeezed states

Continuous-time quantum walks (CTQW) on a graph are implemented in a �nite
𝑁−dimensional Hilbert space, spanned by basis states | 𝑗〉, which we identify with the
vertices of our graph. Our �rst step is to map the physical entities of our experiment to
the theoretical framework of CTQW.

The �rst challenge we encounter is mapping the uncountable nature of the continuous
variables in our experiment to the �nite number of graph vertices. In other words, we
aim to �nd a suitable mapping between the states generated in our experiment and the
states required in quantum walks theory. In our case, this mapping involves encoding
discrete variables into in�nite-dimensional systems represented by continuous variables.
The encoding of DV into CV is not a new concept. One notorious example of this involves
GKP (Gottesman-Kitaev-Preskill) states [Gottesman 01], where the in�nite-dimensional
Hilbert space of a quantum harmonic oscillator is used to encode a qubit. Here, we use
an encoding proposed in [Arzani 19a]. Such encoding employs squeezing and photon
subtractions as tools to map states generated in our optical platform to multiple qubits or
to qudits.

We start with a multimode squeezed vacuum state:

|𝑀𝑀𝑆𝑉 〉 = ⊗𝑁𝑗=1 |𝑟 𝑗 〉 𝑗 = ⊗𝑁𝑗=1𝑆 (𝑟 𝑗 ) 𝑗 |∅〉 (7.32)

where |𝑟 𝑗 〉 𝑗 are squeezed vacuum states in the optical mode f 𝑗 1 with squeezing parameters
𝑟 𝑗 , implemented by acting on the multimode vacuumwith independent squeezing operators
𝑆 (𝑟 𝑗 ) 𝑗 . Here, the multimode vacuum |0, 0, . . . , 0〉 is indicated with |∅〉 not to confuse it
with the logical qudit |0〉. The state |𝑀𝑀𝑆𝑉 〉 is what we obtain at the output of the
nonlinear SPDC process. Indeed, in our setup we have a set of independently squeezed
pulsed-modes and a set of independently squeezed Hermite-Gauss frequency modes, as
shown in Chapter 5.

The next step is applying a photon annihilation operator, or suitable linear combinations,
to the multimode squeezed vacuum state. We de�ne the operator:

𝑏 =
∑︁
𝑗

𝑐 𝑗𝑎 𝑗 (7.33)

where
∑
𝑗 |𝑐 𝑗 |2 = 1. Applying 𝑏 to the |𝑀𝑀𝑆𝑉 〉 state, we obtain:

|𝑀𝑀𝑃𝑆〉 = 𝑏 |𝑀𝑀𝑆𝑉 〉 = 𝑐0𝑎0 |𝑀𝑀𝑆𝑉 〉 + 𝑐1𝑎1 |𝑀𝑀𝑆𝑉 〉 + . . . (7.34)

1In another notation used in previous chapters we indicated them as |𝑟 𝑗 : 𝑓𝑗 〉.
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or, rewritten in a compact form:

|𝑀𝑀𝑃𝑆〉 =
∑︁
𝑗

𝛾 𝑗 |𝑠 𝑗 〉 𝑗 ⊗𝑖≠ 𝑗 |𝑟𝑖〉𝑖 (7.35)

We denote |𝑀𝑀𝑃𝑆〉 as a multimode photon-subtracted state, which represents a multimode
squeezed vacuum state where a photon has been subtracted from a superposition of
the {f 𝑗 } modes [Averchenko 14, Averchenko 16]. Here, 𝛾 𝑗 = 𝑐 𝑗/N𝑗 and we de�ne the
photon-subtracted state in mode f 𝑗 as:

|𝑠 𝑗 〉 𝑗 = N𝑗𝑎 𝑗 |𝑟 𝑗 〉 𝑗 (7.36)

where N𝑗 = 1/sinh(𝑟 𝑗 ) is a normalization factor. We de�ne:

| 𝑗〉 = |𝑠 𝑗 〉 𝑗 ⊗𝑖≠ 𝑗 |𝑟𝑖〉𝑖 (7.37)

that, written explicitly, read:
|0〉 = N0𝑎0 |𝑀𝑀𝑆𝑉 〉
|1〉 = N1𝑎1 |𝑀𝑀𝑆𝑉 〉

. . .

|𝑖〉 = N𝑖𝑎𝑖 |𝑀𝑀𝑆𝑉 〉
. . .

|𝑁 〉 = N𝑁𝑎𝑁 |𝑀𝑀𝑆𝑉 〉

(7.38)

The |𝑖〉 state represents a multimode squeezed vacuum state where a photon has been
subtracted from mode f𝑖 . We can rewrite the |𝑀𝑀𝑃𝑆〉 state from Eq. 7.35 as:

|𝑀𝑀𝑃𝑆〉 =
∑︁
𝑗

𝛾 𝑗 | 𝑗〉 (7.39)

The | 𝑗〉 states are orthogonal and we refer to the | 𝑗〉 basis as the computational basis. By
tailoring appropriately the photon subtraction on multimode squeezed vacuum, we can
e�ectively encode qudits in in�nite-dimensional bosonic systems. This is the encoding
we employ to apply the theory of quantum walks in our setup. Additional details on the
encoding can be found in [Arzani 19a].

7.2.2 Encoding of the states and operations for the walk
Here we investigate how the quantum states relevant for the quantum walk in a complete
graph can be expressed according to the encoding presented in section 7.2.1. In particular,
we focus on the states |𝑠〉 and |𝑤〉, i.e. the superposition of all the vertices and the marked
vertex. These states are expressed as follows:

|𝑤〉 = N𝑎𝑤 |𝑀𝑀𝑆𝑉 〉 (7.40)
|𝑠〉 = N𝑎𝑠 |𝑀𝑀𝑆𝑉 〉 (7.41)
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Here, 𝑎𝑤 is the annihilation operator of a photon in mode f𝑤 and 𝑎𝑠 is de�ned as the operator
that annihilates a photon in the superposition of all the modes, namely:

𝑎𝑠 =
𝑎0 + · · · + 𝑎𝑁√

𝑁
(7.42)

In these equations we assumed, for simplicity, that the squeezing levels are equal, i.e. 𝑟 𝑗 = 𝑟
for every mode 𝑗 , so that N = N𝑗

1.
The𝑎𝑤 and𝑎𝑠 operators in general do not commute, as it is evident from the computation

of their commutator:

[𝑎𝑤 , 𝑎†𝑠 ] =
[
𝑎𝑤 ,

1
√
𝑁

∑︁
𝑖

𝑎
†
𝑖

]
=

1
√
𝑁

1 (7.43)

However, in the limit of large 𝑁 , we recover the commutativity of the 𝑎𝑤 and 𝑎†𝑠 operators,
as [𝑎𝑤 , 𝑎†𝑠 ] ∼ 0.

Now that we have mapped the states of the walk into states that we can generate in
our optical table, we aim to do the same thing with operators. We saw previously that
the unitary of the walk can be expressed, for a complete graph, as a linear combination of
Pauli matrices and the identity matrix, as seen in Eq. 7.28. The mapping from operators
of the form |𝑠〉〈𝑤 | to the experimental operations is de�ned by their action on the Hilbert
space where the quantum walk takes place. From the de�nition of the states |𝑠〉 and |𝑤〉, we
require:

( |𝑠〉〈𝑤 |) |𝑠〉 = |𝑠〉
√
𝑁

(7.44)

( |𝑠〉〈𝑤 |) |𝑤〉 = |𝑠〉 (7.45)

Similar relations hold for |𝑤〉〈𝑠 | , |𝑖〉〈 𝑗 | and so on. These operators are of the type:

|𝑠〉〈𝑤 |
���
H𝑄𝑊

= 𝑆𝑎†𝑠𝑎𝑤𝑆
†
���
H𝑄𝑊

(7.46)

where 𝑆 represents the multimode squeezing operator. Indeed, it can be shown that
operators oh this form ful�l the de�ning relations 7.44 and 7.45. An analogous de�nition
holds for other operators of the same form.

From Eq. 7.31 and considering the mapping of Eq. 7.46, the evolution operator at time 𝑡∗
(the characteristic time of the walk) reads:

𝑈 (𝑡∗) ∼ 𝑆𝑎†𝑠 𝑎𝑤𝑆† + 𝑆𝑎†𝑤𝑎𝑠𝑆† (7.47)
1This is a reasonable physical assumption in some cases, for example if our modes are time-bin modes.

This assumption in general fails if we use frequency modes, that have an unequal level of squeezing, as seen
in the previous chapters. In that case, the operator 𝑎𝑠 needs to be rede�ned to account for the di�erence in
the N𝑖 constants.
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in the limit of large 𝑁 . Taking into account the equations1:

𝑆†𝑎𝑆 = cosh 𝑟𝑎 − sinh 𝑟𝑎† (7.48)
𝑆†𝑎†𝑆 = cosh 𝑟𝑎† − sinh 𝑟𝑎 (7.49)

the unitary operator at time 𝑡∗ can be expressed as:

𝑈 (𝑡∗) ∼ cosh 2𝑟 (𝑎†𝑠 𝑎𝑤 + 𝑎†𝑤𝑎𝑠) + sinh 2𝑟 (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑤𝑎𝑠) (7.50)

Eq. 7.50 and Eq. 7.47 are equivalent for the purpose of the quantum walk, but their
experimental implementation is not. Both of them require photon subtractions and photon
additions, but Eq. 7.47 requires also online squeezing, which is experimentally demanding.
Therefore, we will focus on the implementation that stems from Eq. 7.50.

Figure 7.4: Basic scheme for the implementation of the quantum walk, involving
the interference of photons released when the operations of the main path are
successful. This is followed by detection and post-selection.

7.3 Photonic implementation of QuantumWalks

7.3.1 Building an interferometer
Realizing a unitary transformation as described in Eq. 7.50, requires the quantum
interference of di�erent operations. This can be achieved through an interferometric
scheme shown in Fig 7.4, comprising several steps. Di�erent quantum operations, denoted
as 𝐴𝑖 , are applied along the optical path, leading to the emission of a photon inside an

1These equations are analogous to the ones derived in Eq. 1.112 and 1.111, but here we use a di�erent
convention, that can be found for example in [Lvovsky 16].
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interferometer. These operations could include photon addition or photon subtraction, that
can be implemented in an heralded setting with the following unitaries:

𝑈𝑝𝑠 = 𝑒
𝑖𝜆(𝑎𝑏†+𝑎†𝑏) (7.51)

and
𝑈𝑝𝑎 = 𝑒

𝑖𝜇 (𝑎𝑏−𝑎†𝑏†) (7.52)
where we herald on single-photon counting on themode𝑏 [Jacquard 17, Kim 08]. For 𝜇, 𝜆 �
1 we can expand these operators in the �rst order. As a consequence, quantum interference
occurs in the interferometer, and it is followed by single photon detection and post-selection.
Our goal is to �nd the operations 𝐴𝑖 and the interferometer con�guration that permit us to
implement the unitary of Eq. 7.50.

To understand the concept, and in particular the role of the interferometer, we review a
simple interferometer, with two quantum operations 𝐴1 and 𝐴2 applied on the optical path.
We assume that these operations, when e�ective, release a photon in the interferometer with
a certain probability 𝜆. The scheme of the setup in shown in Fig. 7.5. An analogous setup,
that involves the interference of two photon subtraction operations, has already been tested
to prove the commutation relations of bosonic creation and annihilation operators [Kim 08,
Parigi 07].

“click”

post-selection
50:50 BS

Figure 7.5: Example of simple scheme for the interference of the operations 𝐴1
and 𝐴2.

The action of both operations on the input state |𝜓 〉 results in the state:

|𝜓 〉𝐴 |0〉𝐵 |0〉𝐶 → 1 |𝜓 〉𝐴 |0〉𝐵 |0〉𝐶 + 𝑖𝜆𝐴1 |𝜓 〉𝐴 |1〉𝐵 |0〉𝐶 + 𝑖𝜆𝐴2 |𝜓 〉𝐴 |0〉𝐵 |1〉𝐶 + O(𝜆2) (7.53)
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where with the subscript 𝐴, 𝐵,𝐶 we indicate the three di�erent paths. Here, the term 1
represents the instance in which no operation is e�ective and no photon is released in
the interferometer, while the other two terms represent the success of one of the two
operations with probability 𝜆, paired with the releasing of a photon in the 𝐵 or𝐶 arm of the
interferometer.

The action of the 50:50 beam splitter on the 𝐵,𝐶 subsystems is the following:

|1〉𝐵 |0〉𝐶 → |1〉𝐵 |0〉𝐶 + |0〉𝐵 |1〉𝐶√
2

(7.54)

|0〉𝐵 |1〉𝐶 → − |1〉𝐵 |0〉𝐶 + |0〉𝐵 |1〉𝐶√
2

(7.55)

If 𝜆 � 1, the resulting state turns out to be:

|𝜓 〉𝐴 |0〉𝐵 |0〉𝐶 → 1 |𝜓 〉𝐴 |0〉𝐵 |0〉𝐶 + 𝑖𝜆
√
2
(𝐴1 −𝐴2) |𝜓 〉𝐴 |1〉𝐵 |0〉𝐶 +

𝑖𝜆
√
2
(𝐴1 +𝐴2) |𝜓 〉𝐴 |0〉𝐵 |1〉𝐶

(7.56)

This results show us that if we detect a photon in the 𝐵 output of the beam-splitter, the
operation (𝐴1−𝐴2) is applied on the input state, while if we detect a photon in the𝐶 output
arm we are applying (𝐴1+𝐴2). Post-selecting on the detector clicks, allows us to select only
the states we are interested in. For example, after post-selection on 𝐵-detector clicks, the
output state is:

|𝜓 〉𝑜𝑢𝑡 = C(𝐴1 −𝐴2) |𝜓 〉𝑖𝑛 (7.57)

where C is a normalization factor. Note that the 𝐵 and 𝐶 subsystems have been traced out
as a consequence of the destructive measurement and post-selection.

To obtain this result, we assumed that higher-order terms were negligible. Higher-order
terms are connected to the simultaneous presence of two photons in the interferometer.
As our detectors are on-o� detectors and not photon counting detectors, this will
non-negligibly impact the purity of the post-selected state.

7.3.2 A simple instructive attempt
The goal here is to simulate the quantum walk for search algorithm at the speci�c time
𝑡 = 𝑡∗. We start with an input state |𝜓𝑖𝑛〉 = |𝑠〉, where |𝑠〉 is de�ned in Eq. 7.8. Our goal is to
investigate the possibility of building an interferometer such that, after the post-selection,
the operation𝑈 (𝑡∗) from Eq. 7.50 is implemented and we are left with the target state |𝑤〉.

As an example, we present in Fig. 7.6 an interferometer that could be suitable for the
implementation of the walk unitary. The chosen con�guration includes four operations
applied on the |𝜓𝑖𝑛〉 path:
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A1 A2 A3 A4

Figure 7.6: Simple attempt of interferometer scheme to implement the quantum
search unitary.

• 𝐴1 is a photon addition operation on the mode 𝑠

• 𝐴2 is a photon subtraction operation on the mode 𝑠

• 𝐴3 is a photon addition operation on the mode𝑤

• 𝐴4 is a photon subtraction operation on the mode𝑤

The output arms of the operations 𝐴1 and 𝐴2 on the interferometer side are mixed together
on a beam-splitter, and the same holds for 𝐴3 and 𝐴4. Single-photon detectors are placed
in arms 1 and 4. Delay lines have been added to the 1, 2 and 3 interferometer path both to
enable quantum interference at the beam-splitter level, and for temporal indistinguishability
between the two separate blocks.

The e�ect of the interferometer and the post-selection on the |1〉1 |0〉2 |0〉3 |1〉4 states of
the 1234 subsystem is to implement the operation:

𝐴 = − 𝜆𝜇 (cos𝜃1 cos𝜃2𝑎†𝑠 𝑎𝑤 − sin𝜃1 sin𝜃2𝑎𝑠𝑎†𝑤 )
− 𝜆2 cos𝜃1 sin𝜃2𝑎†𝑠𝑎†𝑤 + 𝜇2 sin𝜃1 cos𝜃2𝑎𝑠𝑎𝑤

(7.58)

Comparing the expression obtained for 𝐴 with the expression of 𝑈 (𝑡∗) from Eq. 7.50, i.e.
𝑈 (𝑡∗) ∼ cosh 2𝑟 (𝑎†𝑠 𝑎𝑤 + 𝑎†𝑤𝑎𝑠) + sinh 2𝑟 (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑤𝑎𝑠), we observe that in order to obtain
𝐴 = 𝑈 (𝑡∗), the coe�cients in front of the terms (𝑎†𝑠 𝑎𝑤 + 𝑎𝑠𝑎†𝑤 ) and (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑠𝑎𝑤 ) must be
equal. This is achieved by setting the beam-splitters parameters to:{

tan𝜃1 = ±𝜆
𝜇

tan𝜃2 = ∓ 𝜇

𝜆

(7.59)

In this case, 𝐴 can be written as:

𝐴 = 𝑓1(𝜆, 𝜇) (𝑎†𝑠 𝑎𝑤 + 𝑎𝑠𝑎†𝑤 ) + 𝑓2(𝜆, 𝜇) (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑠𝑎𝑤 ) (7.60)
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where {
𝑓1(𝜆, 𝜇) = −𝜆𝜃 cos

(
arctan

(
±𝜆
𝜇

))
cos

(
arctan

(
∓ 𝜇

𝜆

) )
𝑓2(𝜆, 𝜇) = −𝑓1(𝜆, 𝜇)

(7.61)

With this interferometer, we managed to obtain the good combinations of creation and
annihilation operators; comparing 𝐴 and 𝑈 (𝑡∗) we indeed �nd the blocks of operations
(𝑎†𝑠 𝑎𝑤 + 𝑎†𝑤𝑎𝑠) and (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑤𝑎𝑠). However, in this con�guration it is impossible to �nd the
required weights cosh 2𝑟 and sinh 2𝑟 for the operators combinations, due to the constraint
𝑓2 = −𝑓1.

7.3.3 Interferometer for quantum search

Many di�erent interferometer con�gurations have been attempted, resulting for most of
them in the impossibility of �nding the required linear combination of operators for the
quantum walk. Ultimately, we converged to the most general beam-splitter con�guration.
This con�guration has been presented in [Reck 94], to implement the most general unitary
achieved with linear optics. Here, the beam-splitter con�guration is analogous, but the
phase-shifters are not present. The geometry of the interferometer is depicted in Fig. 7.7.

A1 A2 A3 A4

Figure 7.7: Interferometer design that permits the implementation of the
quantum search unitary.
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operation parameter operation parameter

𝐴1

𝑎 = 2.8743686

𝐴2

𝑐 = −2.27080046
𝑏 = −2.49093484 𝑑 = −2.59705733
𝜃1 = −𝜋/2 𝜃2 = −𝜋/2
𝜃5 = 0 𝜃6 = 0

𝐴3

𝑒 = 2.95010844

𝐴4

𝑔 = 4.04377552
𝑓 = 3.37396478 ℎ = −3.50434573
𝜃3 = 𝜋/2 𝜃4 = 𝜋/2
𝜃7 = 0 𝜃8 = 0

Interf.

𝜃1,2 = 1.3347714
𝜃1,3 = 0.64247236
𝜃1,4 = 0.13229823
𝜃2,3 = 1.22435466
𝜃2,4 = 0.65498505
𝜃3,4 = 0.78719238

Table 7.1: Parameters of the experimental setup for the implementation of a
successful quantum search, for squeezing value of the input state 𝑟 = 0.08.

We de�ne the four operations acting on the quantum state as:

𝐴1 = 𝑎𝑒
𝑖𝜙5𝑎†𝑤 + 𝑏𝑒𝑖𝜙1𝑎†𝑠

𝐴2 = 𝑐𝑒
𝑖𝜙6𝑎𝑤 + 𝑑𝑒𝑖𝜙2𝑎𝑠

𝐴3 = 𝑒𝑒
𝑖𝜙7𝑎†𝑤 + 𝑓 𝑒𝑖𝜙3𝑎†𝑠

𝐴4 = 𝑔𝑒
𝑖𝜙8𝑎†𝑤 + ℎ𝑒𝑖𝜙4𝑎†𝑠

(7.62)

where the parameters {𝑎, . . . , ℎ} and {𝜙1, . . . , 𝜙8} are real numbers. Considering the number
of free parameters that we are working with, �nding an analytical solution in this case
is complicated, and we have to search for a numerical solution to the problem. Most
importantly, we emphasize that the parameter values depend on the squeezing 𝑟 of the
input state; di�erent squeezing values correspond to di�erent setup parameters.

From the de�nition given in Eq. 7.50, the theoretical quantum state of the quantumwalk
|𝜓𝑤 〉 = 𝑈 (𝑡∗) |𝑠〉 in our encoding is given by:

|𝜓𝑤 〉 =
[
cosh 2𝑟 (𝑎†𝑠 𝑎𝑤 + 𝑎†𝑤𝑎𝑠) + sinh 2𝑟 (𝑎†𝑠 𝑎†𝑤 + 𝑎𝑤𝑎𝑠)

]
|𝑠〉 (7.63)

This state is in general not normalized. We indicate the state implemented by the
interferometer and the post-selection on the detector clicks as |𝜓𝑒𝑥𝑝〉, to indicate that it
is the quantum state built with an experimental setup. In particular, the interferometer

176



CHAPTER 7. CONTINUOUS-TIME QUANTUM WALKS IN A PHOTONICS SETUP

parameter target value obtained value
𝑎𝑘 0 ∼ 10−10
𝑏𝑘 0 ∼ 10−10
𝑐𝑘 0 ∼ 10−9
𝑑𝑘 0 ∼ 10−9
𝑒𝑘 0 ∼ 10−10
𝑓𝑘 0 ∼ 10−10
𝑔𝑘 0 ∼ 10−10
ℎ𝑘 0 ∼ 10−10
𝑙𝑘 cosh(2𝑟 ) ∼ 1.0128273300 1.0128273303
𝑚𝑘 cosh(2𝑟 ) ∼ 1.0128273300 1.0128273312
𝑛𝑘 sinh(2𝑟 ) ∼ 0.1606835410 0.1606835451
𝑜𝑘 sinh(2𝑟 ) ∼ 0.1606835410 0.1606835428

Table 7.2: Comparison between the target value of the parameters of the
quantum state and the values obtained using the setup parameters of Table 7.1
and the scheme of Fig. 7.7, for 𝑟 = 0.08.

of Fig. 7.7, along with the de�nitions of Eq. 7.62 and the post-selection on the clicks from
both detectors, is responsible of mixing two-by-two all the photon subtraction and addition
terms. The state at the output has, in general, the following form1:

|𝜓𝑒𝑥𝑝〉 =
[
(𝑎𝑘 + ℎ𝑘) 𝑎†𝑠𝑎𝑠 + [𝑏𝑘 + 𝑔𝑘] 𝑎†𝑤𝑎𝑤 + 𝑐𝑘𝑎2†𝑠 + 𝑑𝑘𝑎2†𝑤 + 𝑒𝑘𝑎2𝑠

+𝑓𝑘𝑎2𝑤 + (ℎ𝑘 + 𝑔𝑘) 1 + 𝑖𝑙𝑘𝑎†𝑠 𝑎𝑤 + 𝑖𝑚𝑘𝑎
†
𝑤𝑎𝑠 + 𝑖𝑛𝑘𝑎†𝑠 𝑎†𝑤 + 𝑖𝑜𝑘𝑎𝑠𝑎𝑤

]
|𝑠〉

(7.64)

The 12 parameters {𝑎𝑘 , . . . , 𝑜𝑘} that appear in this equation are determined by the weights of
the photon addition and subtractions {𝑎, . . . , ℎ} and {𝜙1, . . . , 𝜙8}, and by the interferometer
angles {𝜃𝑖 𝑗 }. The 𝑔𝑘 and ℎ𝑘 coe�cients arise from 𝑎𝑤𝑎

†
𝑤 and 𝑎𝑠𝑎†𝑠 respectively, that have

been absorbed in other terms in the equation by the use of the commutation relations.
In order for the experimental setup to yield the target state of the walk at the output, we

require |𝜓𝑒𝑥𝑝〉 ∼ |𝜓𝑤 〉. Therefore, the de�ning parameters {𝑎𝑘 , . . . , 𝑜𝑘} of |𝜓𝑒𝑥𝑝〉 must read:

𝑎𝑘 = 𝑏𝑘 = 𝑐𝑘 = 𝑑𝑘 = 𝑒𝑘 = 𝑓𝑘 = 𝑔𝑘 = ℎ𝑘 = 0
𝑙𝑘 =𝑚𝑘 = cosh(2𝑟 )
𝑛𝑘 = 𝑜𝑘 = cosh(2𝑟 )

(7.65)

The protocol is successful if, for a given value 𝑟 of the initial squeezing, there exists an
interferometer such that the output state ful�ls Eq. 7.65.

1We point out that in this equation “𝑖” is not a parameter but it stands for the imaginary unit.
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By exploring di�erent squeezing values, we observed that it is in general possible to
�nd a setup that guarantees the success of the protocol. In Table 7.2 we listed the results
obtained for the interferometer of Fig. 7.7 and the parameters of Table 7.1, for 𝑟 = 0.08,
which is consistent with our squeezing value. We denote the state |𝜓𝑒𝑥𝑝〉 obtained with these
parameters as |𝜓𝑒𝑥𝑝,𝑤 〉. We proved that the interferometer presented here is successful to
implement the quantum search unitary at time 𝑡∗. In particular, we obtained |𝜓𝑒𝑥𝑝,𝑤 〉 ∼ |𝜓𝑤 〉.

7.3.4 Fidelity with the target state of the walk
As the state is computed numerically, it is important to calculate the similarity between the
target state |𝑤〉 and the state resulting from interference and post-selection, with parameters
determined through the numerical procedure. This step is essential for evaluating the
impact of imperfect convergence on the results. In essence, we aim to determine if a
numerical value on the order of 10−6 can be e�ectively treated as zero in our context. To
assess the similarity between quantum states we use here the so-called �delity measure.

The �delity of two pure quantum states |𝜓1〉 and |𝜓2〉 is de�ned as:

𝐹 = | 〈𝜓1 |𝜓2〉 |2 (7.66)

and it measures the degree of overlap between the two states. The use of �delity to evaluate
the similarity of two quantum states is debated in CV, as states with signi�cantly di�erent
physical properties can still exhibit a high �delity [Mandarino 14]. However, it is always
true that 𝐹 = 1 indicates identical quantum states. Moreover, in our case we typically
compare quantum states that are issued from the same physical process. While we aim for
a perfect �delity of 𝐹 = 1, slight deviations from this value can help us understand how
changes in parameters a�ect the �nal quantum state. Additionally, assessing the �delity of
the post-selected state is useful to verify that our computational procedure e�ectively yields
the target state.

In this work the �delity has been calculated analytically. To give an example on how the
�delity is calculated, and to check that the various terms yield the correct result, we show
that the quantum state |𝜓𝑤 〉 de�ned in Eq. 7.63 is equal to |𝑤〉 de�ned in Eq. 7.40. We recall
that |𝜓𝑤 〉 is in general not normalized. Moreover, here we consider non-normalized states
of the form |𝑤〉 = 𝑎𝑤 |𝑀𝑀𝑆𝑉 〉 and we factor the normalization constant N separately. We
expect |𝜓𝑤 〉 = |𝑤〉 and, as a consequence, we expect:

𝐹 ( |𝜓𝑤 〉 , |𝑤〉) =
����� 〈𝑤 |𝜓𝑤 〉√︁

〈𝜓𝑤 |𝜓𝑤 〉
√︁
〈𝑤 |𝑤〉

�����2 = 1 (7.67)

The term 〈𝜓𝑤 |𝜓𝑤 〉 and 〈𝑤 |𝜓𝑤 〉 demand the calculation of 10 and 4 overlap terms respectively,
while 〈𝑤 |𝑤〉 has already been calculated in section 7.2.1 and it reads 〈𝑤 |𝑤〉 = sinh2 𝑟 .
As an example, the 4 overlap terms that need to be calculated for 〈𝑤 |𝜓𝑤 〉 are 〈𝑤 |𝑎†𝑠 𝑎𝑤 |𝑠〉,
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〈𝑤 |𝑎†𝑤𝑎𝑠 |𝑠〉, 〈𝑤 |𝑎†𝑤𝑎†𝑠 |𝑠〉 and 〈𝑤 |𝑎𝑤𝑎𝑠 |𝑠〉. The terms for the calculations of the �delity have
been reported in Appendix D.1. The overlap calculations have been carried out and the
result is, as expected, 𝐹 ( |𝜓𝑤 〉 , |𝑤〉) = 1. This result is trivial but it serves to con�rm that the
analytical calculation of the �delity is carried out correctly.
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Figure 7.8: Plot of the �delity between the target state |𝑤〉 and the output state
|𝜓𝑒𝑥𝑝,𝑤〉 of the interferometric walk as a function of the squeezing parameter 𝑟 .
The parameters used for the interferometer are reported in Table 7.1 and they
have been obtained through numerical simulations for a squeezing value of 𝑟 =
0.08. Here, we show that the �delity decreases as we deviate from this optimal
squeezing value.

To assess how precisely our setup yields the target state of thewalk, wewill be interested
in the �delity between |𝜓𝑒𝑥𝑝,𝑤 〉 and |𝑤〉. This requires the calculation of additional overlap
terms, that can be found in Appendix D.1. Carrying out the calculations by using the values
of Table 7.2 and for an initial squeezing value of 𝑟 = 0.08, the �delity reads:

𝐹 ( |𝜓𝑒𝑥𝑝,𝑤 〉 , |𝑤〉) =
����� 〈𝑤 |𝜓𝑒𝑥𝑝,𝑤 〉√︁

〈𝜓𝑒𝑥𝑝,𝑤 |𝜓𝑒𝑥𝑝,𝑤 〉
√︁
〈𝑤 |𝑤〉

�����2 = 1 (7.68)

This value leaves no doubt about the success of the process, indicating that the
experimentally realized state |𝜓𝑒𝑥𝑝,𝑤 〉 is indeed equivalent to the target state |𝑤〉. The
interferometer depicted in Fig. 7.7, using the parameters outlined in Table 7.1, e�ectively
permits the simulation of the quantum walk unitary for quantum search.

We stress that the interferometer parameters required for the quantum walk
implementation are speci�c to a given squeezing value 𝑟 . Consequently, varying the
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squeezing of the input state leads to di�erent parameters for the interferometer. This is
illustrated in Fig. 7.8, where we show that, for �xed interferometer parameters, there exists
an optimal input squeezing value to achieve unit �delity in quantum search.

Finally, the e�ect of the deviations of the parameters of the |𝜓𝑒𝑥𝑝〉 state from the target
parameters of Table 7.2 can be evaluated, as shown in Fig. 7.9. In general, the higher the
squeezing, the more sensitive the output state is to deviations from the ideal parameters.

Figure 7.9: Dependence between the �delity of the output state |𝜓𝑒𝑥𝑝,𝑤〉 and
the ideal state of the walk on the deviations from the ideal parameters and for
di�erent levels of squeezing. Here, only the deviations of the parameters 𝑐𝑘 , 𝑑𝑘 ,
𝑒𝑘 and 𝑓𝑘 are reported.

7.3.5 Generalities on a realistic experimental implementation
In our experimental con�guration, we have the �exibility to operate with both frequency
modes and pulsed modes.

Working in the frequency domain necessitates nonlinear processes to achieve both
photon addition and photon subtraction. These processes can be tailored to implement
either subtraction or addition in a speci�c superposition of modes by manipulating what
we refer to as the gate beam of the nonlinear process [Averchenko 14, Averchenko 16,
Roeland 22]. The main problem with using frequency modes is that they do not meet the
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condition 𝑁 � 1, which has been a fundamental assumption in most of this chapter. As
a consequence, we cannot apply the results obtained in this work on frequency modes.
However, it is not to be excluded that this approachmight be feasible with a di�erent design.
Moreover, the impact of a small 𝑁 on the expected result might be negligible. This is a point
that can be investigated further, in order to see if it is possible to �nd a solution even with
a �nite number of modes.

Time-bin modes, on the other hand, do not su�er from the drawbacks associated with
frequency modes. Photon subtraction in this scenario is achieved through low-re�ectivity
beam-splitters, while photon addition requires a nonlinear process [Parigi 07]. Additionally,
time-bin modes meet the condition 𝑁 � 1. However, challenges arise in tailoring the
superposition as desired. For instance, implementing the input state |𝑠〉 requires subtracting
a photon from a superposition of pulses. While this remains within the framework of linear
optics, it does impact the size of the setup and the required components.

One �nal remark is needed. While squeezing generation is deterministic, the
probabilistic nature of the photon addition and subtraction signi�cantly a�ects the success
rate of quantum information processing protocols. In our context, the relationship between
the probability of success and various setup parameters is an area that requires further
investigation.

181





Chapter 8

Quantum Synchronization of two
coupled oscillators
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In this chapter, we drift away from the quantum algorithm �eld to dive into the realm
of quantum simulations. The goal here is to explore a phenomenon known as quantum
synchronization, that arises in the framework of open quantum systems. We will not treat
here the complex problem of the derivation of the master equation, and we redirect the
reader to other references that have treated this problem in detail [Breuer 02, Wiseman 10].
Our aim in this chapter is to simulate the Hamiltonian of the system into our optical setup
and to observe the emergence of synchronization phenomena. We will proceed by brie�y
explaining Quantum synchronization from a theoretical point of view and we de�ne the
mapping between the theoretical entities and our experimental setup.
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8.1 Quantum synchronization

8.1.1 Introduction to quantum synchronization

Synchronization phenomena have been observed in classical dynamical systems since
the 17th century in a variety of di�erent interacting systems, from biology to physics
and chemistry [Pikovsky 01, Strogatz 18]. When they arise without an external driving
force, they are called spontaneous or mutual. Among the most surprising examples
of mutual synchronization that we �nd in nature, is the synchronous �ashing of
male �re�ies or the synchronous movement of a swarm of birds. Synchronization
phenomena have been responsible for the swaying of the Millennium Bridge, due to many
pedestrians synchronizing their steps with the vibrations of the bridge, amplifying the
oscillations [Strogatz 05]. All these phenomena are often modeled as populations of coupled
oscillators that, despite having a distribution of frequencies, have the ability to synchronize
to a common frequency and to make a collective behavior emerge.

Synchronization phenomena are now being studied also in the quantum
domain [Zhirov 08, Orth 10, Heinrich 11]. In particular, the link between the presence of
quantum features, such as entanglement correlations, and the emergence of synchronization
is currently being explored [Manzano 13, Jozsa 00, Giorgi 13]. A common factor in the
systems that undergo synchronous dynamics is the presence of dissipation into an
environment: we are then in the framework of Open Quantum Systems [Breuer 02],
where we consider the system of interest embedded in an environment, in which the
system dissipates part of its energy. Depending on the characteristics of the system and
the bath, synchronization can be asymptotic. This usually happens when some of the
eigenfrequencies are protected against dissipation.

Here, we focus on two bosonic oscillators dissipating into an environment of bosonic
oscillators. Mutual synchronization occurs when the two oscillators, despite having
di�erent frequencies, begin to oscillate in unison at a common frequency. This phenomenon
is due to dissipation; in particular it has been found that quantum synchronization
occurs in the presence of a common bath as a result of a separation between dissipation
rates [Giorgi 12]. This condition appears to be general if the bath is in�nite, while e�ects due
to the �niteness of the environment hinder synchronization and lead to revivals, limiting
synchronization to a transient time [Benedetti 16].

In this work, we want to investigate the mapping between the synchronization
e�ect in the open quantum system framework and a continuous-variable quantum optics
experiment, along with the feasibility of simulating quantum synchronization in the
experimental platform and the main limitations. We will proceed by �rst investigating the
quantum synchronization e�ect in the chosen context of harmonic oscillators dissipating
into an environment; we will then describe how open quantum system scenarios involving
harmonic oscillators are mapped into quantum optics setups. The simulation of the
synchronization of a system of two quantum harmonic oscillators embedded in an
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𝑛-oscillators bath is carried out numerically and the corresponding experimental parameters
are calculated.

8.1.2 Generalities on open quantum systems
An open quantum system is a quantum system 𝑆 that interacts with other systems,
collectively referred to as the bath or environment 𝐸, with which it can exchange energy,
information, or particles. These interactions can lead to various e�ects, such as decoherence
and dissipation. In a realistic setting, all quantum systems are open and interact to a certain
extent with an environment. However, in some cases these interactions can be neglected,
and certain systems can be approximated as being closed, with their evolution that can be
described using a unitary operator.

In the context of open quantum systems, we often consider the total
system-environment system as a closed system, whose evolution is unitary. If we
assume that the total input system 𝑆 + 𝐸 is in a separable state, we can introduce the
quantum map or quantum operation E, expressed as:

𝜌′𝑆 = E(𝜌𝑆 ) = Tr𝐸
[
𝑈 (𝜌𝑆 ⊗ 𝜌𝐸)𝑈 †] (8.1)

where Tr𝐸 indicates the partial trace on the environment degrees of freedom [Nielsen 10].
While quantum maps are a useful tool to describe the input-output transformations of

a quantum system, a continuous-time description of the evolution of the system requires a
master equation approach. For instance, a large class of completely-positive trace-preserving
(CPTP) maps result in aMarkovianmaster equation that can be written in the Lindblad form
as [Lindblad 76, Breuer 02]:

𝑑𝜌𝑆

𝑑𝑡
= L(𝜌) = −𝑖

[
𝐻̂, 𝜌

]
+

∑︁
𝑘

𝛾𝑘

(
𝐿̂𝑘𝜌𝑆 𝐿̂

†
𝑘
+ {𝐿̂†

𝑘
𝐿̂𝑘 , 𝜌𝑆 }

)
(8.2)

where we set ~ = 1, the relaxation rates 𝛾𝑘 are positive coe�cients, and the 𝐿̂𝑘 are called
Lindblad operators. While it has not been made explicit for notational simplicity, all these
quantities are in general time-dependent. In this equation, the �rst part represents reversible
unitary evolution, while the second part introduces irreversibility. Many examples of open
quantum systems dynamics can be led, through various approximations, to a Lindblad
form [Wiseman 10]. However, it is important to stress that for many processes, like the
quantum brownian motion, we cannot in general derive a Markovian master equation, and
their evolution must be addressed using di�erent tools, such as the generalized quantum
Langevin equations [Breuer 02].

8.1.3 Coupled dissipative harmonic oscillators
In this thesis, we treat the case of two coupled harmonic oscillators immersed in a thermal
environment, which is modeled by bosonic oscillators. The Hamiltonian of the system, for
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Figure 8.1: (a) Dynamics of secondmomentsΔ2𝑞1(𝑡) andΔ2𝑞2(𝑡) of two squeezed
vacuum states with squeezing parameters 𝑟1 = 2 and 𝑟2 = 4 for a CB and (b)
syncrhonization for a CB (blue) and a SB (yellow), from [Giorgi 12]. Here, 𝜔2 =
1.4𝜔1 and 𝜆 = 0.7𝜔2

1 . Time is scaled with 𝜔1 and the insets in (b) show results
for 𝑡 = 300.

~ = 1 and unit masses, reads:

𝐻̂𝑆 =
𝑝′21
2 +

𝑝′22
2 +

𝜔2
1𝑞

′2
1

2 +
𝜔2
2𝑞

′2
2

2 + 𝜆𝑞′1𝑞′2 (8.3)

where 𝑞′ and 𝑝′ are the canonical position and momentum operators of the quantum
harmonic oscillator and where |𝜆 | < 𝜔1𝜔2, for an attractive potential. Two possible
scenarios have been investigated in previous theoretical works [Giorgi 12], namely the case
of a common bath (CB) and of separate baths (SB). In the CB case, the oscillators dissipate
into the same environment, while in the SB case the oscillators dissipate into two separate
equivalent environments.
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Studying the dynamics of the oscillators, we can calculate the equations of motion of the
�rst and second moments, exploring the di�erences between the CB and the SB case. Here,
wemostly focus on the behavior of secondmoments, which is the quantity of interest in this
thesis. In particular, we are interested in observing the emergence of synchronous dynamics
between the second moments of the two oscillators. To quantify the synchronization, we
use the so-called Pearson coe�cient of two quantities 𝑓 (𝑡) and 𝑔(𝑡), de�ned as:

𝐶 𝑓 ,𝑔 (𝑡,Δ𝑡) =
𝛿 𝑓 𝛿𝑔√︃
𝛿 𝑓 2𝛿𝑔2

(8.4)

where 𝑓 =
∫ Δ𝑡+𝑡
𝑡

𝑑𝑡 ′𝑓 (𝑡 ′) and 𝛿 𝑓 = 𝑓 − 𝑓 . Completely correlated or anti-correlated
evolutions exhibit |𝐶 | ∼ 1.

In Fig. 8.1 from [Giorgi 12], the dynamics of the second moments Δ2𝑞1(𝑡) and Δ2𝑞2(𝑡)
of two squeezed vacuum states, prescribed by the system Hamiltonian of Eq. 8.3 and the
coupling with both a CB and a SB, is shown. In the case of a CB, full synchronization (𝐶 = 1)
is reached after a transient time. This happens for a broad range of parameters and initial
conditions, so that the emergence of synchronization in the CB case is a robust feature. In
particular, as we may expect, synchronization emerges faster for small detunings, i.e. for
𝜔2/𝜔1 ∼ 1, but in general the detrimental e�ect of detuning can be compensated by strong
𝜆 coupling. The behaviour in the SB case, however, is di�erent. Indeed, even if the detuning
is small and the coupling is strong, the two oscillators do not synchronize.

For this reason, in this thesis we consider only the CB case. The aim here is to map
the system and environment into our optical setup and to search for the parameters that
enable the observation of synchronization. Di�erently from Ref. [Giorgi 12] and from
many of the references on the subject where the environment has an in�nite number of
oscillators, we will use here a �nite number of environment oscillators. Finite-size e�ects
can hinder the emergence of synchronization, and we will investigate here if this holds for
our model [Benedetti 16].

8.2 Mapping with experiment

In [Nokkala 18], the authors propose the implementation of the dynamics of a network
of coupled harmonic oscillators into an optical setup. A successful simulation of the
environment network dynamics following this theoretical framework has been carried out,
as reported in [Renault 23]. In this work, we leverage the techniques introduced in Ref.
[Nokkala 18] to explore the emergence of synchronization, speci�cally in the scenario of a
common bath.

To begin, we will de�ne the structure of the environment network. Subsequently, we
will establish the interaction between the system, consisting of a pair of bosonic oscillators,
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and the environment. Finally, we will outline the evolution of these components based on
the speci�ed Hamiltonian.

8.2.1 Environment as a network of oscillators

The environment consists of 𝑛 quantum harmonic oscillators, with bare frequencies 𝜔𝑖 and
connected through spring-like couplings 𝑣𝑖 𝑗 , forming a network characterized by a speci�c
adjacency matrix V. We stress that the couplings between the oscillators and their bare
frequencies merely de�ne the dynamics to be simulated and do not correspond to the actual
parameters of the experimental setup; for instance, the bare frequencies of the oscillators
do not represent the optical frequencies of the quantum states in the experiment.

While the system whose dynamics we are interested in observing is an open quantum
system immersed in an environment, the system+environment network is considered here
as a closed system. Therefore, the system-environment network is subjected to unitary
evolution, and in our case we can calculate precisely its state at a given time. The dynamics
of the system itself is then recovered by tracing out the environment degrees of freedom.
Wemention in advance that simulating the dynamics of the network involves implementing
the Bloch-Messiah decomposition, outlined in section 2.1.4. This decomposition allows us to
break down the evolution of the oscillators’ dynamics (at a speci�c time) into operations that
can be realized in our experimental setup, such as squeezing and linear optics. Furthermore,
it enables the exploration of various network con�gurations, as any quadratic Hamiltonian
can be engineered and simulated in the experiment.

The environment Hamiltonian will read:

𝐻̂𝐸 =
p̂′𝑇 p̂′

2 + q̂′𝑇Aq̂′ (8.5)

where q̂′ and p̂′ are the position and momentum operators of the quantum harmonic
oscillators and where A can be expressed as:

A =
∆𝜔̃
2 − V

2 (8.6)

Here, V is the weighted adjacencymatrix of the graph (with links weighted by the couplings)
and ∆𝜔̃ is a diagonal matrix de�ned as:

∆𝜔̃ =
©­­«
𝜔̃1

. . .

𝜔̃𝑁

ª®®¬ , 𝜔̃2
𝑖 = 𝜔

2
𝑖 +

∑︁
𝑗

𝑣2𝑖 𝑗/2 (8.7)

Additionally, we rescale the position and momentum operators by their frequency to
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obtain the quadrature operators:

q̂ = q̂′
√︁
𝚫𝜔 (8.8)

p̂ =
p̂′

√
𝚫𝜔

(8.9)

where 𝚫𝜔 = diag(𝜔1, . . . , 𝜔𝑛). In terms of quadrature operators, the Hamiltonian 𝐻̂𝐸 reads:

𝐻̂𝐸 =
p̂𝑇𝚫𝜔 p̂

2 + q̂𝑇
√︃
𝚫
−1
𝜔 A

√︃
𝚫
−1
𝜔 q̂ (8.10)

We can equivalently describe this network of harmonic oscillators in terms of
non-interacting modes, i.e. in the basis de�ned by the eigenmodes of the system. This
is achieved by diagonalizing the matrix A to obtain:

D = K𝑇AK, D = diag(Ω2
1/2,Ω2

2/2, . . . ) = (𝚫Ω/
√
2)2 (8.11)

where K is the basis-change matrix that contains the eigenvectors of the system and the
Ω𝑖 are the egienfrequencies. The quadratures of the normal (uncoupled) modes are then
de�ned as:

Q̂ =
√︁
𝚫ΩK𝑇

√︃
𝚫
−1
𝜔 q̂

P̂ =

√︃
𝚫
−1
Ω K𝑇

√︁
𝚫𝜔 p̂

(8.12)

Writing the Hamiltonian 𝐻̂𝐸 in terms of the uncoupled oscillators modes we obtain:

𝐻̂𝐸 =
∑︁
𝑗

Ω 𝑗

2 (𝑃2𝑗 + 𝑄̂2
𝑗 ) (8.13)

To summarize, the quadratures q̂, p̂ represent the interacting oscillators network, while
Q̂, P̂ represent the same dynamics, but in the uncoupled modes basis.

8.2.2 Interaction between system and environment
To describe the interaction between the system and the environment, we de�ne the
interaction Hamiltonian 𝐻̂𝐼 , that contains the necessary information on the couplings
between the environment and the system.

The interaction of the 𝑖-th oscillator of the system with the environment network is
characterized by an interaction term of the form:

𝐻̂𝐼 ,𝑖 = −
𝑞𝑆𝑖k

𝑇
𝑆𝑖
q̂√︁

𝜔𝑆𝑖𝚫𝜔
= −𝑞𝑆𝑖

∑︁
𝑗

𝑘𝑆𝑖 , 𝑗𝑞 𝑗√
𝜔𝑆𝑖𝜔 𝑗

(8.14)
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where 𝑞𝑆𝑖 indicates the quadrature of the 𝑖-th oscillator of the system, while with q̂, p̂ we
indicate the environment quadratures in the interacting basis. Here, 𝑘𝑆𝑖 , 𝑗 are the couplings
between the 𝑖-th oscillator of the system and the 𝑗-th environment oscillator in the coupled
environment basis. To switch to the uncoupled oscillators basis, we simply have to substitute
𝑞 → 𝑄̂ and 𝑝 → 𝑃 , following Eq. 8.12.

We will investigate a minimal coupling scenario, where the system is coupled only to
the �rst oscillator of the environment, i.e. 𝑘𝑆𝑖 , 𝑗 = 0 for 𝑗 ≠ 1. The term 𝐻̂𝐼 ,𝑖 of the interaction
Hamiltonian can be expressed as:

𝐻̂𝐼 ,𝑖 = −𝑞𝑆𝑖𝑘𝑆𝑖 ,1
∑︁
𝑗

𝐾1 𝑗𝑄̂ 𝑗√︁
𝜔𝑆𝑖Ω 𝑗

= −𝑞𝑆𝑖
∑︁
𝑗

𝑔𝑆𝑖 , 𝑗𝑄̂ 𝑗√︁
𝜔𝑆𝑖Ω 𝑗

(8.15)

where we introduced the vector g𝑇
𝑆𝑖
that contains the couplings 𝑔𝑆𝑖 , 𝑗 = 𝑘𝑆𝑖 ,1𝐾1 𝑗 between the

𝑖-th oscillator of the system and the 𝑗-th uncoupled mode of the environment.
While this is valid for any number of system oscillators, in this work we restrict to

a system of two oscillators, whose free Hamiltonian has been de�ned in Eq. 8.3 in terms
of position and momentum operators. In Fig. 8.2, the depiction of the couplings between
system and environment in the two basis is shown.

System EnvironmentSystem Environment

Figure 8.2: Interaction between the system and the environment. Left:
the system interacts with the environment (in the coupled picture q̂, p̂)
with couplings 𝑘𝑆1,1 and 𝑘𝑆2,1 in a minimal coupling scenario. Right: This
system-environment network can be equivalently described in the picture where
the oscillators of the environment are uncoupled (quadratures Q̂, P̂), where
the interaction among the system oscillators and the uncoupled environment
oscillators is described by the vector g𝑇

𝑆𝑖
.

8.2.3 Simulating the evolution with squeezing and linear optics
Our aim is to describe the evolution of the system-environment network prescribed by the
Hamiltonian 𝐻̂𝑡𝑜𝑡 = 𝐻̂𝑆 + 𝐻̂𝐸 + 𝐻̂𝐼 . This can be calculated analytically and the details are
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(a) Symplectic matrix S(1000) . (b) Covariance matrix of the system at 𝑡 =

0 with 𝑟1 = 𝑟2 = 1 and the environment
oscillators in vacuum. It corresponds to ∆𝑖𝑛 .

(c) 𝑅1 resulting from the BM decomposition of
S(𝑡)∆in.

(d) ∆𝑠𝑞𝑧 resulting from the BM decomposition
of S(1000)∆in.

Figure 8.3: Simulated evolution for time 𝑡 = 1000 and 𝑛 = 20. Multiplying
the matrix in a) and b) gives us S𝑒 𝑓 𝑓 ,𝑡 . The matrix in c) and d) result from
the Bloch-Messiah decomposition of S𝑒 𝑓 𝑓 ,𝑡 . The system and environment
parameters can be found in the following section in Table 8.1.

given in Appendix D.2.
In the {Q̂, q̂𝑆 , P̂, p̂𝑆 } basis the quadratures evolve as follows:

©­­­«
Q̂(𝑡)
q̂𝑆 (𝑡)
P̂(𝑡)
p̂𝑆 (𝑡)

ª®®®¬ = S(𝑡)
©­­­«
Q̂(0)
q̂𝑆 (0)
P̂(0)
p̂𝑆 (0)

ª®®®¬ (8.16)

where S(𝑡) is given in Appendix D.2. It is easy to verify that the matrix S(𝑡) is symplectic, as
we expect. Indeed, the hamiltonian 𝐻̂𝑡𝑜𝑡 is at most quadratic in the creation and annihilation
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operators of the networkmodes. As already seen in section 2.1, we conclude that the unitary
evolution prescribed by 𝐻̂𝑡𝑜𝑡 is a Gaussian unitary, and the dynamics of the quadrature
operators is described by a symplectic matrix.

A symplectic matrix can be decomposed via Bloch-Messiah reduction, as shown in
section 2.1.4. We recall that the Bloch-Messiah decomposition prescribes that:

S(𝑡) = S𝑡 = R′
1∆

′
𝑠𝑞𝑧R

′
2 (8.17)

where R′
1 and R′

2 represent linear optics transformations and ∆′
𝑠𝑞𝑧 represent a squeezing

operation. At this point we must stress that in this framework the time 𝑡 is merely a
parameter of our problem: for each time 𝑡 that we want to access, we will have a di�erent
result of the Bloch-Messiah decomposition, corresponding to di�erent experimental
parameters that we have to tune (the squeezing values, the mask of the local oscillator,...).

Another point worth mentioning is that S(𝑡) is applied to a set of states, not all of
which are vacuum states: in particular, the two oscillators are in squeezed vacuum, while
environment oscillators are in vacuum. We initialize the state of our network, as just
described, by acting with the matrix ∆𝑖𝑛 on vacuum. Formally, this means:

©­­­«
Q̂(0)
q̂𝑆 (0)
P̂(0)
p̂𝑆 (0)

ª®®®¬ =

(
q̂𝑖𝑛
p̂𝑖𝑛

)
= ∆𝑖𝑛

(
q̂𝑣𝑎𝑐
p̂𝑣𝑎𝑐

)
(8.18)

where {q̂𝑣𝑎𝑐, p̂𝑣𝑎𝑐} are vacuum quadratures and where ∆𝑖𝑛 is a symplectic transformation
that squeezes the system oscillators and leaves the environmental oscillators in vacuum.
This will give us Δ2𝑞𝑆𝑖 = 𝑒

−2𝑟𝑖 , Δ2𝑝𝑆𝑖 = 𝑒
2𝑟𝑖 , where the 𝑟𝑖 are the squeezing parameters, and

Δ2Q = Δ2P = 1 for all the environmental oscillators1.
We de�ne:

S𝑒 𝑓 𝑓 ,𝑡 = S𝑡∆𝑖𝑛 (8.19)

as the symplectic matrix acting on the vacuum states of our modes, identi�ed by the
quadratures {q̂𝑣𝑎𝑐, p̂𝑣𝑎𝑐}. Decomposing S𝑒 𝑓 𝑓 ,𝑡 via the Bloch-Messiah reduction we obtain:

S𝑒 𝑓 𝑓 ,𝑡 = R1,𝑡∆𝑠𝑞𝑧,𝑡R2,𝑡 = R1,𝑡∆𝑠𝑞𝑧,𝑡 (8.20)

where we can discard R2,𝑡 as it is a linear optics operation acting on vacuum. From now on,
we drop the 𝑡 in the matrices resulting from the decomposition for simplicity of notation but
the reader should keep in mind that the matrices R1 and ∆𝑠𝑞𝑧 are always related to a �xed
time parameter 𝑡 . Some matrix plots of the evolution and its Bloch-Messiah decomposition
can be found in Fig. 8.3.

1We recall that in our convention the vacuum is rescaled to 1.
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By exploiting the decomposition presented in Eq. 8.20, we can e�ectively simulate the
Hamiltonian of the harmonic oscillators network at a speci�c time 𝑡 . The matrix ∆𝑠𝑞𝑧
contains the experimental squeezing values necessary for simulating the network dynamics,
according to the parameters of the problem: this includes the initial theoretical squeezing
of the two-oscillator system (that does not correspond to the experimental one), as well as
the frequencies of the system and the environment. Afterwards, a linear optics operation
R1 is applied to this resulting set of squeezed modes.

In the experimental platform, we can perform the following symplectic operation on
Hermite-Gauss frequency modes:

S𝑒𝑥𝑝 = R𝐿𝑂∆𝐾𝑇𝑃 (8.21)

Here, ∆𝐾𝑇𝑃 is the squeezing generated in the Hermite-Gauss spectral modes through SPDC
in the KTP nonlinear crystal, whileR𝐿𝑂 is ameasurement basis change, equivalent to a linear
optics operation on a set of modes. For the simulation of the network evolution at time 𝑡 , we
require 𝑆𝑒𝑥𝑝 = 𝑆𝑒 𝑓 𝑓 ,𝑡 . This implies that to realize the necessary symplectic transformation
for simulating the given dynamics, one should set R𝐿𝑂 = R1 and ∆𝐾𝑇𝑃 = ∆𝑠𝑞𝑧 . While R𝐿𝑂 is
easy to implement and to tune (within the limits of the pulse shaper resolution), the same
cannot be said for ∆𝐾𝑇𝑃 . Indeed, tuning ∆𝐾𝑇𝑃 to match ∆𝑠𝑞𝑧 would require the shaping of
the pump, which is a feasible but experimentally demanding task.

8.2.4 Local oscillator shaping for basis change
In our setup, linear optics operations on frequency modes are easily achieved via
measurement basis change. On the quadrature vector, a basis change is described by the
general symplectic transformation: (

q̂′

p̂′

)
=

(
𝑋 −𝑌
𝑌 𝑋

) (
q̂
p̂

)
(8.22)

as seen in section 2.1.3. This symplectic operation de�nes new modes described by
annihilation operators {𝑏𝑚} associated with optical modes {g𝑚 (r, 𝑡)}. The creation
operators are transformed according to:

𝑏
†
𝑖
= 𝑞′𝑖 − 𝑖𝑝′𝑖 =

∑︁
𝑗

(𝑋𝑖 𝑗𝑞 𝑗 − 𝑌𝑖 𝑗𝑝 𝑗 − 𝑖𝑌𝑖 𝑗𝑞 𝑗 − 𝑖𝑋𝑖 𝑗𝑝 𝑗 ) =
∑︁
𝑗

𝑈 ∗
𝑖 𝑗𝑎

†
𝑗

(8.23)

where U = X + 𝑖Y and X,Y are real matrices. Our focus is on the operation de�ned by:(
q̂𝑜𝑢𝑡
p̂𝑜𝑢𝑡

)
= R1∆𝑠𝑞𝑧

(
q̂𝑖𝑛
p̂𝑖𝑛

)
= R1

(
q̂𝑠𝑞𝑧
p̂𝑠𝑞𝑧

)
(8.24)

that describes the output modes that we obtain after applying the linear operation on the
squeezed modes. In this context, accessing the quadratures q̂𝑜𝑢𝑡,𝑖 and p̂𝑜𝑢𝑡,𝑖 , identi�ed by the

193
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creation and annihilation operators 𝑏†
𝑖
and 𝑏𝑖 , requires measuring the optical mode g𝑖 (r, 𝑡),

which is sent through the LO.
Comparing Eq. 8.22 and 8.24, we can write:{

𝑋𝑖 𝑗 = 𝑅1,𝑖 𝑗

𝑌𝑖 𝑗 = −𝑅1,𝑖 ( 𝑗+𝑁 )
(8.25)

for 1 < 𝑖 ≤ 𝑁 . Eq. 8.23 can then be rewritten as:

𝑏
†
𝑖
=

𝑁∑︁
𝑗=1

𝑋𝑖 𝑗𝑎
†
𝑗
− 𝑖

𝑁∑︁
𝑗=1
𝑌𝑖 𝑗𝑎

†
𝑗
=

𝑁∑︁
𝑗=1

𝑅1,𝑖 𝑗𝑎
†
𝑗
+ 𝑖

𝑁∑︁
𝑗=1

𝑅1,𝑖 ( 𝑗+𝑁 )𝑎
†
𝑗
=

𝑁∑︁
𝑗=1

𝑅1,𝑖 𝑗𝑎
†
𝑗
+ 𝑖

2𝑁∑︁
𝑗=𝑁+1

𝑅1,𝑖 𝑗𝑎
†
𝑗−𝑁

(8.26)

where in the last sum the index 𝑗 has been rede�ned. In this context, the creation and
annihilation operators 𝑎†

𝑖
and 𝑎𝑖 are associated to the optical modes f𝑖 (r, 𝑡) and to the

squeezed quadratures (q̂𝑠𝑞𝑧, p̂𝑠𝑞𝑧) of Eq. 8.24. As the optical modes follow the creation
operators transformations when a basis change occurs, as seen in section 1.3.2, we �nally
obtain:

g𝑖 (r, 𝑡) =
𝑁∑︁
𝑗=1

𝑅1,𝑖 𝑗 f 𝑗 (r, 𝑡) + 𝑖
2𝑁∑︁

𝑗=𝑁+1
𝑅1,𝑖 𝑗 f 𝑗−𝑁 (r, 𝑡) (8.27)

This is a key equation as it de�nes the mode we have to shape and send with the LO
to the homodyne detection in order to address the 𝑖-th oscillator, in particular the 𝑞𝑖 (𝑡)
and 𝑝𝑖 (𝑡) quadratures and their variances. Indeed, if we want 𝑆𝑒𝑥𝑝 to be equal to 𝑆𝑒 𝑓 𝑓 ,𝑡 , we
need to implement with the Local Oscillator the transformation R𝐿𝑂 that matches R1. This
transformation should be implemented on the squeezed modes de�ned by the squeezing
transformation ∆𝑠𝑞𝑧 . If ∆𝑠𝑞𝑧 = ∆𝐾𝑇𝑃 , the squeezed modes are Hermite-Gauss frequency
modes.

8.3 Synchronization in an optical setup

Here, we investigate the emergence of synchronization between two harmonic oscillators
immersed in an environment with a given shape, using the tools provided in the previous
section. The goal of this section is to �nd suitable parameters that allow for both
the emergence of synchronous dynamics and the simulation of said dynamics in our
experimental setup, with a �nite number of environment oscillators. Themain experimental
limitations are outlined at the end of the section.
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...

System

Environment

Figure 8.4: Two oscillators coupled with strength 𝜆 are connected to a linear
environment with strength 𝑘1 and 𝑘2 respectively. The environment oscillators
𝑖 and 𝑗 have a coupling 𝑣𝑖 𝑗 .

8.3.1 Simulation of the dynamics
We aim to show the emergence of synchronization between two oscillators coupled between
each other with strength 𝜆, that are minimally coupled with a linear environment with
couplings 𝑘1 and 𝑘2, as shown in Fig. 8.4. We begin by de�ning the parameters of the
oscillators network, such as frequencies and coupling strengths. In this section, we will
mostly use the parameters of Table 8.1, unless otherwise stated. A su�cient condition for
transient synchronization is the presence of a gap between the normal modes damping, as it
happens for small detuning, i.e., |𝜔1−𝜔2 |2/𝜆 < 1 [Benedetti 16]. This is true for an in�nitely
large chain but the �nite size of the environment hinders this e�ect.

We proceed by following the steps described in the previous sections. The goal is to
retrieve the matrix S(𝑡), de�ned in Eq. D.61, as a function of the time parameter 𝑡 . An
example of the symplectic matrix and its Bloch-Messiah decomposition for a linear network
can be seen in Fig. 8.3.

The information relative to the variance of the quadratures, the quantity of our interest,
is contained in the covariance matrix. According to Eq. 2.25, a sympectic transformation
S(𝑡) acts by transforming the covariance matrix as:

V(𝑡) = S(𝑡)V(0)S𝑇 (𝑡) (8.28)

where

V(0) =

©­­­­­­­«

1𝑛 0 0 0 0 0
0 𝑒−2𝑟1 0 0 0 0
0 0 𝑒−2𝑟2 0 0 0
0 0 0 1𝑛 0 0
0 0 0 0 𝑒2𝑟1 0
0 0 0 0 0 𝑒2𝑟2

ª®®®®®®®¬
(8.29)
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symbol value physical meaning
𝜔1 0.3 frequency of system oscillator 1
𝜔2 1.4𝜔1 frequency of system oscillator 2
𝜆 0.9𝜔2

1 coupling between two system oscillators
𝜔0 0.4𝜔1 frequencies of the environment oscillators
N 300 number of environment oscillators
𝑣𝑖 𝑗 1.1𝜔2

1 coupling strength of environment oscillators
𝑘1 0.3𝜔2

1 coupling strength between system 1 and the �rst network node
𝑘2 0.3𝜔2

1 coupling strength between system 2 and the �rst network node
𝑟1 2 squeezing of �rst oscillator
𝑟2 2 squeezing of second oscillator

Table 8.1: Parameters of the system, the environment and their interaction used
for the simulation of the dynamics.

is the covariance matrix of the state at 𝑡 = 0, where the environment oscillators are in
vacuum and the system oscillators are vacuum squeezed states, with squeezing parameters
𝑟1 and 𝑟2 respectively.

We calculate V(𝑡) for various values of the 𝑡 parameters and we plot the variance
values that correspond to the oscillators of the system. Moreover, we calculate the Pearson
coe�cient, de�ned in Eq. 8.4, to quantify the synchronization. In Fig. 8.5 we show the
emergence of synchronization for a linear network of𝑛 = 300 oscillators. Note the similarity
with Fig. 8.1, from [Giorgi 12].

It is interesting to assess the e�ect of the number of oscillators and of the squeezing
level on synchronization, as they are our main experimental constraints. For the range
of parameters tested, for instance the ones reported in Table 8.1, we observed that if we
decrease the number of environmental oscillators𝑁 the synchronization period gets shorter,
as shown in Fig. 8.6. Moreover, we observed that the emergence of synchronization and the
length of the synchronization transient period do not depend on the initial squeezing level
of the oscillators, as can be seen in Fig. 8.7. While the squeezing level does not pose a
signi�cant problem for the experimental implementation, the number of modes 𝑁 that we
can measure can be an important limitation, due to the resolution of the pulse shaper and
the �nite width of the LO.

8.3.2 LO shaping for simulation of the dynamics
In the previous section, we recovered the transformation S(𝑡) = S𝑡 , that is to be applied to
the initial state of the network, where the oscillators of the system are in squeezed vacuum
and the oscillators of the environment are in vacuum. To translate this evolution to the
experimental setup, our aim is to reconstruct, for each time 𝑡 , 𝑆𝑒 𝑓 𝑓 ,𝑡 according to Eq. 8.20,
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(a) Quadrature variance 〈𝑞21 (𝑡)〉 and 〈𝑞22 (𝑡)〉. (b) Pearson coe�cient.

(c) Quadrature variance 〈𝑞21 (𝑡)〉 and 〈𝑞22 (𝑡)〉
during the �rst part of the dynamics, the two
oscillators are not synchronized.

(d) Quadrature variance 〈𝑞21 (𝑡)〉 and 〈𝑞22 (𝑡)〉
at a later stage of the dynamics, the two
oscillators are synchronized.

Figure 8.5: Synchronization simulation using the values of Tab. 8.1 (but 𝑟1 = 2
and 𝑟2 = 4). The decrease of synchronization observed in (b) is due to �nite-size
e�ects.

and to tune the experimental parameters so that 𝑆𝑒𝑥𝑝 = 𝑆𝑒 𝑓 𝑓 ,𝑡 , where 𝑆𝑒𝑥𝑝 has been de�ned
in Eq. 8.21. Here, we focus on the implementation of the linear optics transformation R𝐿𝑂 =

R1 for the speci�c task of the simulation of the oscillators dynamics, following the details
outlined in section 8.2.4.

Experimentally, we produce a set of squeezed states of light in the Hermite-Gauss
frequency basis. Hence, the modes {f 𝑗 } that appear in Eq. 8.27 coincide with Hermite-Gauss
frequency modes, de�ned as:

𝐻𝐺𝑚 (𝜔) = 𝑒
− 𝜔2

2𝜎2𝜔 · 𝐻𝑚 (𝜔/𝜎𝜔 ) (8.30)

Moreover, in our case, there is a 𝜋/2 quadrature shift for consecutive modes, as seen in
Section 3.3, and for this reason we need to introduce a factor 𝑖 in the odd modes (or in the
even ones).

The modes {g𝑖} to be shaped (and measured) are linear combinations of the {f 𝑗 }
Hermite-Gauss modes, as prescribed by Eq. 8.27, following the de�nition of R1. We remind
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(a) 𝑛 = 100. (b) .

(c) 𝑛 = 80. (d) .

(e) 𝑛 = 50. (f) .

Figure 8.6: Simulations obtained using the values of Table 8.1 (except for 𝜆 =

0.7𝜔2
1 and 𝑟1 = 𝑟2 = 2) but changing the number 𝑛 of environmental oscillators.

that this needs to be repeated for each 𝑡 . The goal is to take a su�cient number of sampling
points, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 , to reconstruct the synchronization curves of Fig. 8.5. For 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 sampling
points, we need to implement 2𝑛𝑠𝑎𝑚𝑝𝑙𝑒 SLM masks, one for each measurement, where the 2
comes from the fact that we address separately each oscillator of the system.

As an example, we can implement the R1 linear transformation prescribed for a linear
network of 𝑛 = 60 nodes with the values prescribed by Tab. 8.1 by sending the shapes of
Fig. 8.8.
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(a) Quadrature variance plot for 𝑟1 = 2 and
𝑟2 = 4.

(b) Pearson coe�cient plot for 𝑟1 = 2 and 𝑟2 =
4 and Δ𝑡 = 25.

(c)Quadrature variance plot for 𝑟1 = 0.05 and
𝑟2 = 0.01.

(d) Pearson coe�cient plot for 𝑟1 = 0.05 and
𝑟2 = 0.01 and Δ𝑡 = 25.

Figure 8.7: Simulations obtained using the values of Table 8.1 but with 𝑛 = 60
environmental oscillators and changing the squeezing values 𝑟1 and 𝑟2. In the
graph a) and c) the blue and orange curves represent Δ2𝑞1 and Δ2𝑞2 respectively.
The time “sampling” (timestep) is 1.

8.3.3 Experimental limitations

In this last section, we discuss the challenges and limitations that may arise in the simulation
of the synchronous dynamics in our optical setup. The primary limitation stems from the
experimental di�culties associated with tuning the level of squeezing of the Hermite-Gauss
modes in the optical setup, a necessary step to match the matrix 𝚫𝐾𝑇𝑃 with 𝚫𝑠𝑞𝑧 . While
the redistribution of squeezing is technically feasible, it is experimentally demanding, as it
requires shaping the pump of the nonlinear process [Michel 21]. This problem has been
encountered in [Renault 23], where it was demonstrated that the condition 𝚫𝐾𝑇𝑃 ≠ 𝚫𝑠𝑞𝑧

merely resulted in a rescaling of the function characterizing the network properties. The
next step of this work involves investigating the impact of this condition on the emergence
of synchronization, that, as of the writing of this manuscript, is yet to be studied.

A second limitation arises from the shaping capabilities of the pulse shaper and the
bandwidth of the local oscillator. In our setup, the LO has a bandwidth of approximately
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8.3. SYNCHRONIZATION IN AN OPTICAL SETUP
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(a) Intensity and phase of the mode of the �eld for
the �rst oscillator of the system.
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(b) Intensity and phase of the mode of the �eld for
the second oscillator of the system.

Figure 8.8: Local oscillator shapes for accessing the quadratures of the evolved
system, following Eq. 8.27 for time parameter 𝑡 = 402 for a network of 𝑛 = 60
nodes starting from Hermite-Gauss modes with 𝜎 = 2 nm.

∼ 40 nm, while the ability of the pulse shaper to shape higher order modes is determined by
the optical complexity 𝜂𝑜𝑝𝑡 ∼ 231, reported in Eq. 4.29. The examples illustrated in Fig. 8.8
demonstrate that we can simulate a network with 𝑛 = 60 nodes without exceeding the LO
bandwidth using HG modes of 𝜎𝜔 = 2 nm. However, the squeezed modes generated in this
experiment have a 𝜎𝜔 ∼ 6 nm. As the network size increases, the demand for bandwidth in
the simulation also grows.

To reduce the width of the generated modes, adjusting the pump of the SPDC process
is necessary. As illustrated in Fig. 4.14, the width of the generated light depends on the
pump width. For instance, a pump with a spectral width Δ𝜔 = 1 nm (FWHM) generates
squeezed states in HG modes with a spectral width of 𝜎𝜔 ∼ 3.5, while still maintaining a
reasonable amount of output squeezed modes. Additionally, the bandwidth of the LO can
also be expanded with the help of a non-linear �ber [Renault 22]. This enables access to
larger networks, even when the Hermite-Gauss squeezed modes have broader pro�les.
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Conclusion & outlooks

In this work, we have demonstrated the generation of multimode squeezed states
multiplexed both in the time and in the frequency domain via spontaneous parametric
down-conversion in ppKTPwaveguides. While ultrafast pulse shaping permits us to address
chosen spectral modes, the fast balanced homodyne detector built in our lab enables us to
have access to individual pulses of light. In this experiment we measured, to our knowledge,
the largest number of squeezed states in the frequency domain generated via single-pass
SPDC.

The main drawback of this work is undeniably the level of squeezing per mode, which
is still low. During these years, we have understood the main physical limitations and
trade-o�s of our physical system. We conclude that the problem with this con�guration
arises mainly from the high number of spectral modes at these wavelength, which is still
considerably high. This does not permit us to increase the length of our crystal to enhance
the e�ciency of the SPDC process, and we are therefore limited to short ppKTP crystals.
Phase-matching engineering is required to decrease the number of modes, and spatial
modulation of the poling is currently being investigated.

Nonetheless, the main result of this work is the simultaneous multiplexing of both
degrees of freedom, which constitutes an interesting result for future quantum applications.
Indeed, the presence of multiple squeezed frequency modes for each pulse opens the way
for the implementation of a 3D multiplexed entangled resource at the repetition rate of the
laser, where the 2D spectral layers are fully recon�gurable via pulse-shaping of the local
oscillator. This way, di�erent 2D spectral structures can be concatenated, via entanglement
correlations, in the time domain as fast as the repetition rate of the pulsed laser source (156
MHz). Moreover, spectrally mode-selective non-Gaussian operations, needed for quantum
computing protocols, can be implemented on selected nodes of the 3-dimensional structure.

In addition to implementing an entangled multiplexed resource, this thesis explores
various applications of multimode squeezed light in quantum information processing. We
focused on the �elds of quantum algorithms and quantum simulations, and we investigated
quantum information processing protocols with the ultimate goal of implementing them in
our photonics setup.

We explored quantum walks on a complete graph for quantum search purposes,
employing an encoding that maps discrete variables into a photon-subtracted squeezed
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CONCLUSION & OUTLOOKS

�eld. The proposed setup includes a series of photon subtraction and photon addition
operations on speci�c modes, along with the quantum interference of heralding photons.
Here, we demonstrated the successful theoretical implementation of the quantum search
unitary operation at the characteristic search time, which rotates the walk from the input
state to the desired target state. While the experimental implementation with frequency
modes has additional drawbacks that need to be addressed, pulsed modes turn out to be a
possible choice for the realization of the walk in the con�guration that has been proposed
here.

Multimode squeezed light has also been exploited in this work within the open quantum
system framework to investigate the emergence of quantum synchronization between two
quantum harmonic oscillators. The simulation of the dynamics of a network of quantum
oscillators at a given time can be obtained via squeezing operations followed by linear optics,
which is implemented via measurement basis change. Although some issues still need to be
resolved, the results in this area look promising for a future experimental implementation.
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Appendix A

Pictures in quantum mechanics

The dynamics of a quantum system can be described mathematically in di�erent ways,
that we call pictures. Di�erent pictures correspond to di�erent evolutions of the quantum
observables and of the quantum states. What needs to stay the same is the expectation
value of an observable, as it is the only quantity that has a physical meaning. This is
required, as di�erent descriptions must, in any case, yield the same physics. In quantum
mechanics, three pictures are widely used: the Schrödinger picture, the Heisenberg picture
and theDirac or interaction picture. Here, wewill outline the basic equations and formalism,
without giving the proofs.

In the Schrödinger picture, dynamics of the state is governed by the Schrödinger
equation:

𝑖~
𝜕

𝜕𝑡
|𝜓 (𝑡)〉𝑆 = 𝐻̂ |𝜓 (𝑡)〉𝑆 (A.1)

In this picture, the states evolve with time, while the observables do not. We can write:

|𝜓 (𝑡)〉𝑆 = 𝑈 (𝑡) |𝜓 (0)〉𝑆 (A.2)
𝑂̂𝑆 (𝑡) = 𝑂̂𝑆 (0) = 𝑂̂𝑆 (A.3)

where
𝑈 = 𝑒−

𝑖
~ 𝐻̂𝑡 (A.4)

for a time-independent Hamiltonian2. This is the picture that is most often used to describe
the evolution of a quantum state.

2For a time-dependent Hamiltonian the unitary operator takes the form

𝑈 (𝑡) = 𝑒− 𝑖
~

∫ 𝑡

0 𝑑𝜏 𝐻̂ (𝜏) = 1 +
∞∑︁
𝑛=0

(
−𝑖
~

)𝑛 ∫ 𝑡

0
𝑑𝑠𝑛 𝐻̂ (𝑠𝑛)

∫ 𝑠𝑛

0
𝑑𝑠𝑛−1 𝐻̂ (𝑠𝑛−1)· · ·

∫ 𝑠2

0
𝑑𝑠1 𝐻̂ (𝑠1) (A.5)
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In the Heisenberg picture the Schrödinger equation becomes:

𝑖~
𝜕

𝜕𝑡
|𝜓 (𝑡)〉𝐻 = 0 (A.6)

The Heisenberg equation of motion, however, is non-trivial, it reads:

𝑑𝑂̂𝐻 (𝑡)
𝑑𝑡

=
𝑖

~
[
𝐻̂, 𝑂̂𝐻 (𝑡)

]
+ 𝜕𝑂̂𝐻 (𝑡)

𝜕𝑡
(A.7)

In this picture, the observables evolve with time, while the states do not. We can write:

|𝜓 (𝑡)〉𝐻 = |𝜓 (0)〉𝐻 (A.8)
𝑂̂𝐻 (𝑡) = 𝑈 †(𝑡)𝑂̂𝐻 (0)𝑈 (𝑡) (A.9)

The two pictures are connected by the equations:

|𝜓 (𝑡)〉𝐻 = 𝑒
𝑖
~ 𝐻̂𝑡 |𝜓 (𝑡)〉𝑆 (A.10)

𝑂̂𝑆 = 𝑂̂𝐻 (0) (A.11)

Some comments are in order. Here, we postulated a time-independent Hamiltonian for
which 𝐻̂𝑆 = 𝐻̂𝐻 = 𝐻̂ . In general, when the Hamiltonian is time-dependent, this is not true.
The Heisenberg Hamiltonian will read 𝐻̂𝐻 = 𝑈 †𝐻̂𝑆𝑈 ≠ 𝐻̂𝑆 , where 𝑈 is given by the Dyson
expansion. Here,𝑈 is the “usual” evolution operator.

The interaction or Dirac picture is often presented as a “mix” of the two previous
pictures. This is due to the fact that both the states and the operators evolve with time.
This picture is often used to describe evolutions generated by a Hamiltonian that can be
written as

𝐻̂ (𝑡) = 𝐻̂0 +𝑉 (𝑡) (A.12)

where the evolution generated by 𝐻̂0 is the “free Hamiltonian” easy to unravel and𝑉 (𝑡) is an
interaction term, which is in general a time-dependent and more complicated perturbation.

The Schrödinger equation in the interaction picture reads:

𝑖~
𝜕

𝜕𝑡
|𝜓 (𝑡)〉𝐼 = 𝑉𝐼 (𝑡) |𝜓 (𝑡)〉𝐼 (A.13)

We see that the states evolve with the interaction part of the Hamiltonian. However, the
Heisenberg equation of motion reads

𝑑𝑂̂𝐼 (𝑡)
𝑑𝑡

=
𝑖

~
[
𝐻̂0, 𝑂̂𝐼 (𝑡)

]
+ 𝜕𝑂̂𝐼 (𝑡)

𝜕𝑡
(A.14)
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APPENDIX A. PICTURES IN QUANTUM MECHANICS

so that the operators evolve with the free Hamiltonian. The evolution of the state and the
operators in the Interaction picture are given by:

|𝜓 (𝑡)〉𝐼 = 𝑈𝐼 (𝑡) |𝜓 (0)〉𝐼 (A.15)

𝑂̂𝐼 (𝑡) = 𝑒
𝑖
~ 𝐻̂0𝑡𝑂̂𝐼 (0)𝑒−

𝑖
~ 𝐻̂0𝑡 (A.16)

(A.17)

where
𝑈𝐼 (𝑡) = T𝑒− 𝑖

~
∫ 𝑡

0 𝑑𝜏 𝑉𝐼 (𝜏) (A.18)

The Schrödinger and the Dirac picture are connected by the relations:

|𝜓 (𝑡)〉𝐼 = 𝑒
𝑖
~ 𝐻̂0𝑡 |𝜓 (𝑡)〉𝑆 (A.19)

𝑂̂𝐼 (𝑡) = 𝑒
𝑖
~ 𝐻̂0𝑡𝑂̂𝑆𝑒

− 𝑖
~ 𝐻̂0𝑡 (A.20)

and in particular
𝑉𝐼 (𝑡) = 𝑒

𝑖
~ 𝐻̂0𝑡𝑉𝑆𝑒

− 𝑖
~ 𝐻̂0𝑡 (A.21)
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Appendix B

More details on ultrafast light

B.1 Laser essentials

OCHR

gain medium

output 
light

Figure B.1: Scheme of a linear laser cavity. HR = High re�ection mirror, OC =
output coupler. The cavity is resonant for infrared light. Here, the pump laser,
that delivers energy to the active medium, is not depicted.

A basic laser is composed by a set of mirrors that form a cavity (or resonator cavity)
and a gain medium, that acts as a coherent ampli�er. The cavity can have various shapes,
from the simplest linear cavity to more intricate folded con�gurations. Regardless of the
chosen con�guration, each laser cavity must contain a slightly transmissive mirror, called
Output Coupler (OC). The OC permits to collect a fraction of the light, that is used as
the fundamental source to carry out our experiment. A scheme of a linear laser cavity
is shown in Fig. B.1. The gain medium, to avoid violating fundamental physics principles,
cannot provide ampli�cation by itself. Instead, a pumping mechanism is required, whose
role is to deliver energy to the gain medium to excite its atoms. While photons circulate
within the cavity, they undergo ampli�cation via stimulated emission: an incoming photon
triggers the release of another photon with the same properties from an excited atom, and
the power of the incoming radiation is e�ectively ampli�ed. We have mentioned all the
necessary ingredients we need to collect to have a functional laser: a cavity with a speci�c
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B.2. REALISTIC FREQUENCY COMB

con�guration, a gain medium carefully selected to achieve the desired pulse duration, and
a pumping mechanism that aligns with the gain medium requirements.

Circulating in the cavity, light is ampli�ed by the medium and it su�ers also some losses
(for example at the OC level). Lasing is possible only when the gain overcomes the losses,
resulting in a rapid buildup of the power inside the cavity. However, this results in the
de-excitation of the gain medium, as the circulating photons consume the energy stored by
the pump in the material, until steady-state is reached.

In order to achieve steady state, the intra-cavity �eld must be invariant after each
round-trip. Speci�cally, asking for amplitude and phase invariance of the �eld leads us
to the following conditions:

• a gain condition, stating that the gain and losses must be equal at each round-trip
(amplitude invariance),

• a phase condition, stating that only certain frequencies (known as longitudinal modes)
are allowed to resonate in the cavity (phase invariance).

Due to the phase condition, we don’t have a continuous spectrum but the frequencies are
discretized, following

𝜔𝑛 = 𝑛
2𝜋𝑐
𝐿

= 𝑛𝜔𝑟 , 𝑛 ∈ Z (B.1)

where 𝐿 is the cavity length and where 𝜔𝑟 = 2𝜋𝑐
𝐿

is called free-spectral range of the cavity,
and it corresponds to the angular frequency of the laser repetition rate.

B.2 Realistic frequency comb

For the longitudinal modes to oscillate, we require the phase𝜙 (𝜔𝑛) to be invariant after each
roundtrip, up to multiples of 2𝜋 . However, due to dispersion, there is a dephasing between
the di�erent frequencies that oscillate in the cavity, that results, at �rst order, in a mismatch
between the speed of the carrier (phase-velocity, 𝑣𝜙 ) and the speed of the pulse envelope
(group velocity, 𝑣𝑔). The dephasing between two consecutive pulses is

Δ𝜙𝐶𝐸𝑃 =

(
1
𝑣𝑔

− 1
𝑣𝜙

)
𝜔0𝐿 (B.2)

and it is called carrier-envelope phase. The carrier-envelope o�set (CEO) is de�ned as:

𝜔𝐶𝐸𝑂 = Δ𝜙𝐶𝐸𝑃
𝜔𝑟

2𝜋 (B.3)
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APPENDIX B. MORE DETAILS ON ULTRAFAST LIGHT

This leads to a rede�nition of the temporal electric �eld of the pulse train and its Fourier
transform:

𝐸
(+)
𝑡𝑟𝑎𝑖𝑛

(𝑡) = E0

∞∑︁
𝑛=−∞

𝛼 (𝑡 − 𝑛𝜏)𝑒−𝑖𝜔0 (𝑡−𝑛𝜏)𝑒−𝑖𝑛Δ𝜙𝐶𝐸𝑃 (B.4)

𝐸
(+)
𝑡𝑟𝑎𝑖𝑛

(𝜔) = 𝜔𝑟𝐸 (+)
𝑝𝑢𝑙𝑠𝑒

(𝜔)
∞∑︁

𝑛=−∞
𝛿 (𝜔 − 𝑛𝜔𝑟 − 𝜔𝐶𝐸𝑂 ) (B.5)

In the spectral domain, the longitudinal modes are rede�ned to account for this o�set:

𝜔𝑛 = 𝑛𝜔𝑟 + 𝜔𝐶𝐸𝑂 (B.6)

Moreover, due to the added phase between carrier and envelope at each pulse, 𝐸 (+)
𝑡𝑟𝑎𝑖𝑛

(𝑡) is no
longer periodic. A picture of the spectral and temporal description of the frequency comb
�eld can be seen in Fig. 4.5.

B.3 Dispersion of a pulse
Ultrashort pulses consist of multiple spectral components that, when traversing a medium,
experience di�erently the refractive indices. This phenomenon becomes more pronounced
when the pulse has a broad spectral pro�le, emphasizing the crucial role of dispersion
compensation in the realm of ultrashort optics.

We rewrite here Eqs. 1.28 and 1.29, that describe the �eld in the SVE approximation:

𝐸 (+) (𝑡) = E0𝛼 (𝑡)𝑒−𝑖𝜔0𝑡 (B.7)
𝐸 (+) (𝜔) = E0𝛼 (Ω) (B.8)

where we recall that Ω = 𝜔 − 𝜔0. Both complex amplitudes can be rewritten in the
exponential form:

𝛼 (𝑡) = |𝛼 (𝑡) |𝑒𝑖𝜙 (𝑡) (B.9)
𝛼 (Ω) = |𝛼 (Ω) |𝑒𝑖𝜑 (Ω) (B.10)

and we call the functions 𝜙 (𝑡) and 𝜑 (Ω) respectively temporal phase and spectral phase.
These two quantities contain information about the dispersion of the pulse.

We expand the spectral phase around the carrier 𝜔0, to obtain

𝜑 (Ω) ' 𝜑0 + Ω𝜑1 +
1
2Ω

2𝜑2 + O(Ω3) (B.11)

We will now investigate the e�ect of the various terms of this expansion, up to the second
order [Trebino 00].
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B.3. DISPERSION OF A PULSE

The zero-th order term is equal in both the time domain and the spectral domain, i.e.
𝜑0 = 𝜙0. The �eld in the temporal domain reads

𝐸 (+) (𝑡) = E0 |𝛼 (𝑡) |𝑒−𝑖 (𝜔0𝑡−𝜙0) (B.12)

and the e�ect of the global phase term is a dephasing of the carrier by 𝜙0.
The �rst-order term Ω𝜑1 has the e�ect of a temporal delay of the pulse. Indeed, the

electric �eld reads:
𝐸 (+) (𝑡) = E0 |𝛼 (𝑡 − 𝜙1) |𝑒−𝑖𝜔0𝑡 (B.13)

Note that the zeroth-order and �rst-order terms do not alter the pulse’s shape or carrier
frequency. They only introduce an envelope delay and a global phase shift in the carrier,
which do not require speci�c compensation methods.

Figure B.2: Comparison between Fourier-transform limited and chirped pulse.
Picture from [Thiel 15]

The e�ects of the spectral phase become more complex as we go to higher order terms.
Quadratic terms of the type 1

2Ω
2𝜑2 not only alter the envelope’s shape but also impact

the carrier frequency. When such a term is present, we refer to the pulse as chirped
and, depending on the sign of the chirp coe�cient 𝜑2, the pulse is said to be negatively
or positively chirped. The degree of chirp is quanti�ed in terms of femtoseconds squared
(fs2). We can examine its in�uence on a Gaussian pulse characterized by an envelope
𝛼 (𝑡) = 𝛼𝑢 (𝑡), where the Fourier transform of 𝑢 (𝑡) is de�ned in Eq. 4.8, as:

𝛼 (𝑡) = 1
√
2𝜋

∫
R
𝐶𝜔𝛼𝑒

− Ω2
4𝜎𝜔 𝑒

1
2Ω

2𝜑2𝑒−𝑖Ω𝑡 (B.14)
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Completing the square at the exponent1 leads us to the expression

𝐸 (+) (𝑡) = E0𝛼𝐶𝜁𝑒
− 𝑡2

4𝜁 2 𝑒−𝑖𝜔0𝑡 (B.15)

Here, 𝜁 = 𝜎𝑡

√︃
1 − 𝑖𝜑2

2𝜎2𝑡
is a complex number, that can be split into real and imaginary parts2.

This separation allows us to examine its e�ects on both the pulse envelope and carrier. We
rewrite the expression

1
4𝜁 2 =

1
4𝜎2

𝑡 ′
+ 𝑖 𝜑2

8𝜎2
𝑡 ′

(B.16)

where

𝜎𝑡 ′ = 𝜎𝑡

√︄
1 +

(
𝜑2

2𝜎2𝑡

)2
(B.17)

Regardless of the sign of𝜑2, it is important to note that 𝜎𝑡 ′ is always greater than 𝜎𝑡 . Eq. B.15
can be rewritten as:

𝐸 (+) (𝑡) = E0𝛼𝐶𝜁 exp
[
− 𝑡2

4𝜎2
𝑡 ′

]
exp

[
−𝑖

(
𝜔0 + 𝑡

𝜑2

8𝜎4
𝑡 ′

)
𝑡

]
(B.18)

The e�ect of the quadratic phase is two-fold. Firstly, it causes the pulse envelope to widen,
extending the temporal duration de�ned by the standard deviation 𝜎𝑡 ′ , resulting in pulse
broadening. This stands for both positive and negative chirp. Secondly, it introduces linear
frequency modulation characterized by the spectral phase 𝜙 (𝑡) =

𝜑2
8𝜎2

𝑡 ′
𝑡 . Negative chirp

implies a decreasing instantaneous frequency over time, while positive chirp indicates an
increasing instantaneous frequency. This behavior is shown in Fig. B.2.

Positive quadratic spectral phase is naturally induced by propagation of the pulse in a
medium. The amount of chirp introduced by a medium is termed group velocity dispersion
(GVD), and it re�ects the fact that the group velocity is dependent on the frequency of light.
As a title of example, a 6 mm fused silica lens introduces 345 fs2 of chirp, while 1 m of
propagation in air introduces only 21 fs2.

Pulses with quadratic spectral phases are not Fourier-transform limited, and in general
chirp terms need to be compensated for. The objective is to introduce negative chirp terms
to compensate for the positive ones induced by propagation. This compensation can be
achieved through variousmethods, including negatively-chirpedmirrors, prism-based pulse
compressors, and pulse shapers, which are among the commonly employed devices for chirp
compensation.

Higher order terms can also be present, where the instantaneous frequency of the pulse
varies non linearly with time, but they will not be treated in this manuscript.

1The term 𝑒−Ω
2𝜁 2
𝑒−𝑖Ω𝑡 can be rewritten as 𝑒−(Ω𝜁+

𝑖𝑡
2𝜁 )

2
𝑒
− 𝑡2

4𝜁 2 where 𝜁 2 = 1
4𝜎2

𝜔
− 𝑖𝜑2

2 = 𝜎2𝑡

(
1 − 𝑖𝜑2

2𝜎2
𝑡

)
.

2If 𝜁 2 = 𝑎 − 𝑖𝑏 then Re
[
1/𝜁 2

]
= 𝑎/(𝑎2 + 𝑏2) and Im

[
1/𝜁 2

]
= 𝑏/(𝑎2 + 𝑏2)

213





Appendix C

Signal processing and derivative

Here we explain how the modulation-demodulation-LPF chain has the e�ect of yielding the
derivative of the original signal. The photodiode yields a signal, shown in Fig. 6.8a, of the
form:

𝑦𝑠𝑖𝑔 = sin(𝜔1𝑡 + 𝜖 cos(𝜔2𝑡)) (C.1)
where 𝜔2 is the optical modulation, while 𝜔1 < 𝜔2 is the characteristic frequency of the
parametric ampli�cation oscillations. This signal can be split, via a trigonometric identity,
into two components:

𝑦𝑠𝑖𝑔 = sin(𝜔1𝑡) cos(𝜖 cos(𝜔2𝑡)) + cos(𝜔1𝑡) sin(𝜖 cos(𝜔2𝑡)) (C.2)

Let’s investigate the terms dependent of 𝜔2. As it can be seen in Fig. C.1, the term
cos(𝜖 cos(𝜔2𝑡)) oscillates at 2𝜔2 and will be �ltered out by the low pass �lter. We can then
discard this component and concentrating on the remaining one. For small values of 𝜖 , it
reads

sin(𝜖 cos(𝜔2𝑡)) ∼ 𝜖 cos(𝜔2𝑡) (C.3)
as it can be seen in the plot in Fig. C.1b.

We arrive now at the demodulating stage. The operation of the mixer is a multiplication.
At the output of the mixer we get thus

𝑦𝑜𝑢𝑡 = 𝑦𝑠𝑖𝑔 · 𝑦𝑑𝑒𝑚𝑜𝑑 (C.4)

We demodulate with the signal𝑦𝑑𝑒𝑚𝑜𝑑 = cos(𝜔2𝑡), so that, according to what we said earlier,
we are left with

𝑦𝑜𝑢𝑡 ∼ [sin(𝜔1𝑡) cos(𝜖 cos(𝜔2𝑡)) + cos(𝜔1𝑡)𝜖 cos(𝜔2𝑡)] · cos(𝜔2𝑡) (C.5)

We already said that we can discard the �rst term as it is doomed to be �ltered out. However,
the second term yields

𝜖 cos(𝜔1𝑡) cos2(𝜔2𝑡) = 𝜖 cos(𝜔1𝑡)
(
1 − cos(2𝜔2𝑡)

2

)
(C.6)
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Figure C.1: a) Characteristic of the plot: 𝜔1 = 10 Hz, 𝜔2 = 900 Hz, 𝜖 = 𝜋/6, b)
𝜖 = 𝜋/6

where also the term dependent on 2𝜔2 will be �ltered out by the low pass �lter. We now
apply the low-pass �lter to be left with

𝑦𝑒𝑟𝑟 (𝑡) =
𝜖

2 cos(𝜔1𝑡) (C.7)

In Fig. C.2 the plots of the various signals are shown, and we can see howwe recover the
derivative of the original un-modulated parametric ampli�cation signal via the modulation,
demodulation and low pass �ltering technique.
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Figure C.2: Signals at various stages in the AC lock technique.
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Appendix D

Details on calculations

D.1 Calculations on �delity with target state

We provide here all the terms used for the calculation of the �delity. The results are
analytical, and the only condition required is 𝑁 � 1.

The equation of the state after the post-selection process is, from Eq. 7.64:

|𝜓𝑒𝑥𝑝〉 =
[
(𝑎𝑘 + ℎ𝑘) 𝑎†𝑠 𝑎𝑠 + [𝑏𝑘 + 𝑔𝑘] 𝑎†𝑤𝑎𝑤 + 𝑐𝑘𝑎2†𝑠 + 𝑑𝑘𝑎2†𝑤 + 𝑒𝑘𝑎2𝑠

+𝑓𝑘𝑎2𝑤 + (ℎ𝑘 + 𝑔𝑘) 1 + 𝑖𝑙𝑘𝑎†𝑠𝑎𝑤 + 𝑖𝑚𝑘𝑎
†
𝑤𝑎𝑠 + 𝑖𝑛𝑘𝑎†𝑠 𝑎†𝑤 + 𝑖𝑜𝑘𝑎𝑠𝑎𝑤

]
|𝑠〉

(D.1)

The normalization reads:

〈𝜓𝑒𝑥𝑝 |𝜓𝑒𝑥𝑝〉 = 𝑙2𝑘𝐵1 +𝑚
2
𝑘
𝐵2 + 𝑛2𝑘𝐵3 + 𝑜

2
𝑘
𝐵4 + 2𝑙𝑘𝑛𝑘𝐵5 + 2𝑙𝑘𝑜𝑘𝐵6 + 2𝑚𝑘𝑛𝑘𝐵7

+ 2𝑚𝑘𝑜𝑘𝐵8 + 2𝑙𝑘𝑚𝑘𝐵9 + 2𝑛𝑘𝑜𝑘𝐵10 + 2(𝑎𝑘 + ℎ𝑘) (ℎ𝑘 + 𝑔𝑘)𝐴1

+ 2𝑐𝑘 (ℎ𝑘 + 𝑔𝑘)𝐴2 + 2(𝑏𝑘 + 𝑔𝑘) (ℎ𝑘 + 𝑔𝑘)𝐴3 + 2𝑑𝑘 (ℎ𝑘 + 𝑔𝑘)𝐴4

+ 2𝑒𝑘 (ℎ𝑘 + 𝑔𝑘)𝐴5 + 2𝑓𝑘 (ℎ𝑘 + 𝑔𝑘)𝐴6 + (ℎ𝑘 + 𝑔𝑘)2𝐴7 +𝐶1(𝑎𝑘 + ℎ𝑘)2

+ 2(𝑎𝑘 + ℎ𝑘) (𝑏𝑘 + 𝑔𝑘)𝐶2 + 2(𝑎𝑘 + ℎ𝑘)𝑐𝑘𝐶32(𝑎𝑘 + ℎ𝑘)𝑑𝑘𝐶4

+ 2(𝑎𝑘 + ℎ𝑘)𝑒𝑘𝐶5 + 2(𝑎𝑘 + ℎ𝑘) 𝑓𝑘𝐶6 + (𝑏𝑘 + 𝑔𝑘)2𝐶7 + 2(𝑏𝑘 + 𝑔𝑘)𝑐𝑘𝐶8

+ 2(𝑏𝑘 + 𝑔𝑘)𝑑𝑘𝐶9 + 2(𝑏𝑘 + 𝑔𝑘)𝑒𝑘𝐶10 + 2(𝑏𝑘 + 𝑔𝑘) 𝑓𝑘𝐶11 + 𝑐2𝑘𝐶12

+ 2𝑐𝑘𝑑𝑘𝐶13 + 2𝑐𝑘𝑒𝑘𝐶14 + 2𝑐𝑘 𝑓𝑘𝐶15 + 𝑑2𝑘𝐶16 + 2𝑑𝑘𝑒𝑘𝐶17 + 2𝑑𝑘 𝑓𝑘𝐶18

+ 𝑒2
𝑘
𝐶19 + 2𝑒𝑘 𝑓𝑘𝐶20 + 𝑓 2𝑘 𝐶21

(D.2)

The coe�cients of this equations have been determined by the analytic calculation of the
overlap of the various terms. They are given by:
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𝐴1 = 2𝑘21 + 𝑘22 (D.3)
𝐴2 = 3𝑘1𝑘2 (D.4)
𝐴5 = 3𝑘1𝑘2 (D.5)
𝐴3 = 𝑘

2
1 (D.6)

𝐴4 = 𝑘1𝑘2 (D.7)
𝐴6 = 𝑘1𝑘2 (D.8)
𝐴7 = 𝑘1 (D.9)
𝐵1 = 𝑘

3
1 + 𝑘21𝑘3 + 𝑘1𝑘22 (D.10)

𝐵2 = 𝑘
2
2𝑘3 + 2𝑘21𝑘3 (D.11)

𝐵3 = 𝑘
2
1𝑘3 + 𝑘1𝑘23 + 𝑘22𝑘3 (D.12)

𝐵4 = 𝑘1𝑘
2
2 + 2𝑘31 (D.13)

𝐵5 = 𝑘
2
1𝑘2 + 𝑘1𝑘2𝑘3 + 𝑘32 (D.14)

𝐵6 = 3𝑘21𝑘2 (D.15)
𝐵7 = 3𝑘1𝑘2𝑘3 (D.16)
𝐵8 = 𝑘

3
2 + 2𝑘21𝑘2 (D.17)

𝐵9 = 3𝑘1𝑘22 (D.18)
𝐵10 = 3𝑘1𝑘22 (D.19)
𝐶1 = 𝑘

2
2𝑘3 + 2𝑘21𝑘3 + 8𝑘1𝑘22 + 4𝑘31 (D.20)

𝐶2 = 2𝑘31 + 𝑘1𝑘22 (D.21)

𝐶3 = 6𝑘1𝑘2𝑘3 + 6𝑘21𝑘2 + 3𝑘32 (D.22)
𝐶4 = 2𝑘21𝑘2 + 𝑘32 (D.23)
𝐶5 = 12𝑘21𝑘2 + 3𝑘32 (D.24)
𝐶6 = 2𝑘21𝑘2 + 𝑘32 (D.25)
𝐶7 = 𝑘1𝑘4 (D.26)
𝐶8 = 3𝑘21𝑘2 (D.27)
𝐶9 = 𝑘1𝑘8 (D.28)
𝐶10 = 3𝑘21𝑘2 (D.29)
𝐶11 = 𝑘1𝑘5 (D.30)
𝐶12 = 4𝑘21𝑘3 + 2𝑘1𝑘23 + 4𝑘22𝑘3 + 5𝑘1𝑘22 (D.31)
𝐶13 = 3𝑘1𝑘22 (D.32)
𝐶14 = 15𝑘1𝑘22 (D.33)
𝐶15 = 3𝑘1𝑘22 (D.34)
𝐶16 = 𝑘1𝑘9 (D.35)
𝐶17 = 3𝑘1𝑘22 (D.36)
𝐶18 = 𝑘1𝑘7 (D.37)
𝐶19 = 9𝑘1𝑘22 + 6𝑘31 (D.38)
𝐶20 = 3𝑘1𝑘22 (D.39)
𝐶21 = 𝑘1𝑘6 (D.40)

where the 𝑘 parameters are dependent on the squeezing level of the input state and they
are given by:

𝑘1 = sinh2 𝑟 (D.41)
𝑘2 = − sinh2 𝑟 cosh 𝑟 (D.42)
𝑘3 = cosh2 𝑟 (D.43)
𝑘4 = cosh2 𝑟 sinh2 𝑟 (2 + tanh2 𝑟 ) (D.44)
𝑘5 = −3 cosh 𝑟 sinh3 𝑟 (D.45)
𝑘6 = sinh2 𝑟/2(3 cosh(2𝑟 ) − 1) (D.46)
𝑘7 = 3 cosh2 𝑟 sinh2 𝑟 (D.47)
𝑘8 = − cosh3 𝑟 sinh 𝑟 (2 + tanh2 𝑟 ) (D.48)
𝑘9 = cosh2 𝑟/2 ∗ (3 ∗ cosh(2𝑟 ) + 1) (D.49)
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The overlap between the |𝜓𝑒𝑥𝑝〉 state and the target state reads:

〈𝑤 |𝜓𝑒𝑥𝑝〉 = −𝑖 (𝑙𝑘𝑘21 +𝑚𝑘𝑘
2
2 + 𝑛𝑘𝑘1𝑘2 + 𝑜𝑘𝑘1𝑘2) (D.50)

while the overlap with the superposition state |𝑠〉 is:

〈𝑠 |𝜓𝑒𝑥𝑝〉 = (𝑎𝑘 + ℎ𝑘)𝐴1 + 𝑐𝑘𝐴2 + (𝑏𝑘 + 𝑔𝑘)𝐴3 + 𝑑𝑘𝐴4 + 𝑒𝑘𝐴5 + 𝑓𝑘 ∗𝐴6 + (ℎ𝑘 + 𝑔𝑘)𝐴7 (D.51)

From these equations it is possible to calculate the �delity between the state |𝜓𝑒𝑥𝑝〉 and
every superposition of |𝑠〉 and |𝑤〉.

D.2 Evolution of the system-environment network for
synchronization

Our aim is to describe the evolution of the system-environment network prescribed by the
Hamiltonian 𝐻̂𝑡𝑜𝑡 = 𝐻̂𝑆 + 𝐻̂𝐸 + 𝐻̂𝐼 . To achieve this, we start by diagonalizing 𝐻̂𝑡𝑜𝑡 . We will
designate with B the matrix that contains the information about the total system couplings
and frequencies, analogous to the A environment matrix of Eq. 8.10.

The matrix B is related to its diagonal form by:

B = O(𝚫𝑓 /
√
2)2O𝑇 (D.52)

and 𝐻̂𝑡𝑜𝑡 can be expressed as:
𝐻̂𝑡𝑜𝑡 =

∑︁
𝑖

𝑓𝑖

2 (Q
2
𝑖 + P2

𝑖 ) (D.53)

Here, {Q̂, P̂} are the quadratures in the uncoupled basis of the system-environment
network, while 𝑓𝑖 are the eigenfrequencies. In Fig. D.1 the depiction of the couplings
between system and environment in the two bases {Q̂, q̂𝑆 , P̂, p̂𝑆 } and {Q̂, Q̂𝑆 , P̂, P̂𝑆 } is
shown. Analogously to Eq. 8.12, the quadrature transformation reads:

X̂ =

√︃
𝚫
−1
𝑓
O𝑇

√︁
𝚫ΩX̂ (D.54)

X̂𝑆 =

√︃
𝚫𝑓O𝑇

√︃
𝚫
−1
𝜔𝑆
x̂𝑆 (D.55)

where X̂ = {Q̂, P̂} and the subscript 𝑆 indicates the system. Working in the {Q̂, P̂} basis is
convenient because we can easily calculate the quadrature evolution. Once this is done, we
can switch back to the previous basis.

The quadrature operator at time 𝑡 is de�ned as:

X̂(𝑡) = 𝑒𝑖𝐻̂𝑡𝑜𝑡 𝑡X̂(0)𝑒−𝑖𝐻̂𝑡𝑜𝑡 𝑡 (D.56)
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System Environment System Environment

Figure D.1: Network depicted in two di�erent bases. On the left the network is
described by the {Q̂, q̂𝑆 , P̂, p̂𝑆 } quadratures, while after the diagonalization the
oscillators of the system+environment network are all uncoupled and described
by the quadratures {Q̂, Q̂𝑆 , P̂, P̂𝑆 }

To calculate this expression, we use the formula:

𝑒𝑖𝐴𝐵̂𝑒−𝑖𝐴 = 𝐵̂ +
∑︁
𝑛

𝑖𝑛

𝑛! [𝐴, [𝐴, . . . [𝐴, 𝐵̂]] . . . ] (D.57)

where we will replace 𝐴 = 𝐻̂𝑡𝑜𝑡𝑡 and 𝐵̂ = X̂𝑖 (0). Carrying out the calculations we obtain

Q̂𝑖 (𝑡) = Q̂𝑖 (0) cos(𝑓𝑖𝑡) + P̂𝑖 (0) sin(𝑓𝑖𝑡)
P̂𝑖 (𝑡) = −Q̂𝑖 (0) sin(𝑓𝑖𝑡) + P̂𝑖 (0) cos(𝑓𝑖𝑡)

(D.58)

that we can rewrite more compactly as:(
Q̂(𝑡)
P̂(𝑡)

)
=

(
𝐷
𝑓

𝑐𝑜𝑠,𝑡 𝐷
𝑓

𝑠𝑖𝑛,𝑡

−𝐷 𝑓

𝑠𝑖𝑛,𝑡
𝐷
𝑓

𝑐𝑜𝑠,𝑡

) (
Q̂(0)
P̂(0)

)
(D.59)

where 𝐷 𝑓

𝑐𝑜𝑠,𝑡 and 𝐷
𝑓

𝑠𝑖𝑛,𝑡
are diagonal matrices with entries cos(𝑓𝑖𝑡) and sin(𝑓𝑖𝑡) respectively.

Recalling Eq. D.55, we can write:

©­­­«
Q̂(𝑡)
q̂𝑆 (𝑡)
P̂(𝑡)
p̂𝑆 (𝑡)

ª®®®¬ =

(
𝐶−1
1 0
0 𝐶−1

2

) ©­­­­«
Q̂(𝑡)
Q̂𝑆 (𝑡)
P̂(𝑡)
P̂𝑆 (𝑡)

ª®®®®¬
(D.60)

where 𝐶1 =
√︁
𝚫𝑓O𝑇

√︃
𝚫
−1
Ω/𝜔𝑆

and 𝐶2 =

√︃
𝚫
−1
𝑓
O𝑇

√︁
𝚫Ω/𝜔𝑆

. It follows that the evolution of
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Eq. D.59 in the {Q̂, q̂𝑆 , P̂, p̂𝑆 } basis can be written as:

©­­­«
Q̂(𝑡)
q̂𝑆 (𝑡)
P̂(𝑡)
p̂𝑆 (𝑡)

ª®®®¬ =

(
𝐶−1
1 𝐷

𝑓

𝑐𝑜𝑠,𝑡𝐶1 𝐶−1
1 𝐷

𝑓

𝑠𝑖𝑛,𝑡
𝐶2

−𝐶−1
2 𝐷

𝑓

𝑠𝑖𝑛,𝑡
𝐶1 𝐶−1

2 𝐷
𝑓

𝑐𝑜𝑠,𝑡𝐶2

) ©­­­«
Q̂(0)
q̂𝑆 (0)
P̂(0)
p̂𝑆 (0)

ª®®®¬ = S(𝑡)
©­­­«
Q̂(0)
q̂𝑆 (0)
P̂(0)
p̂𝑆 (0)

ª®®®¬ (D.61)
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