
HAL Id: tel-04522156
https://theses.hal.science/tel-04522156

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning-Based Network Intrusion Detection : an
Imbalanced, Constantly Evolving and Timely Problem

Nicolas Sourbier

To cite this version:
Nicolas Sourbier. Learning-Based Network Intrusion Detection : an Imbalanced, Constantly Evolving
and Timely Problem. Cryptography and Security [cs.CR]. INSA de Rennes, 2022. English. �NNT :
2022ISAR0028�. �tel-04522156�

https://theses.hal.science/tel-04522156
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES

APPLIQUEES DE RENNES

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Nicolas SOURBIER
Learning-Based Network Intrusion Detection : an Imbalanced,
Constantly Evolving and Timely Problem

Thèse présentée et soutenue à Rennes, le 29 Septembre 2022
Unité de recherche : IETR

Thèse N° :D22 - 22 / 22ISAR 22

Rapporteurs avant soutenance :

Isabelle Chrisment Professeur des universités, Université de Lorraine, LORIA
Malcolm Heywood Professeur, Dalhousie University

Composition du Jury :
Président : Gilles Grimaud Professeur des universités, Université de Lille, CRIStAL
Examinateurs : Peggy Cellier Maître de conférences HDR, INSA de Rennes, IRISA

Grégory Blanc Maître de conférences, SAMOVAR, IMT/Télécom Sud Paris, Institut Polytechnique de Paris
Dir. de thèse : Maxime Pelcat Maitre de Conférences, HDR, INSA Rennes

Invités :
Thomas Guyet Maître de Conférences HDR, INRIA centre Lyon
Frédéric Majorczyk Expert SSI, DGA MI, Rennes
Olivier Gesny Directeur innovations, PROPH3CY Rennes

Table of Contents

Acknowledgements 11

1 French Summary 13
1.1 Introduction . 13
1.2 Contexte : apprentissage de comportements dans un réseau IP 14

1.2.1 La sécurité du réseau . 14
1.2.2 Apprentissage machine et AIDS . 15

1.3 Challenges et objectifs . 15
1.4 Contributions : vers la création d’un AIDS basé sur de l’apprentissage ma-

chine. 16
1.4.1 Impact des biais d’apprentissage sur les TPGs 16
1.4.2 Apprentissage déséquilibré : une approche par la programmation

génétique . 17
1.4.3 Adaptabilité des AIDS haute performance sur des réseaux opéra-

tionnels . 17

2 Introduction 19
2.1 Context: learning behaviors in a dynamic IP network environment 20

2.1.1 Intrusion detection and security in a dynamic IP network 20
2.1.2 Learning Anomaly-based Intrusion Detection System (AIDS) using

IP network data . 21

3

TABLE OF CONTENTS

2.2 Challenges and thesis Objectives . 22
2.3 Thesis contributions: toward designing a Machine Learning (ML)-based

Anomaly-based Intrusion Detection System (AIDS) 23
2.3.1 Contribution 1: assessing the biases of IP networks intrusion de-

tection datasets and evaluating their effect on a Tangled Program
Graph (TPG)-based Anomaly-based Intrusion Detection System
(AIDS) . 23

2.3.2 Contribution 2: study of the impact of data imbalance on Tangled
Program Graph (TPG) performance 24

2.3.3 Contribution 3: Evaluating Tangled Program Graph (TPG) for
stream processing, continual learning and high efficiency Anomaly-
based Intrusion Detection System (AIDS) 25

2.3.4 Appendix A: Prototyping and optimization of a Tangled Program
Graph framework (GEGELATI) . 26

I Background 29

3 Intrusion detection and security in a dynamic IP network 31
3.1 Introduction . 31
3.2 The computer network: a dynamic and complex environment 32

3.2.1 Computer networks: Endpoints and organization 32
3.2.2 Computer networks: communication protocol 34
3.2.3 Computer networks: a dynamic environment 36

3.3 Network security . 37
3.3.1 Network security: attacks, intrusions, vulnerabilities 37
3.3.2 Network security: the cyber kill chain 40
3.3.3 Network security: why is security required ? 41

3.4 Detecting intrusions on a network . 41
3.4.1 Network data . 42
3.4.2 Detection: the signature approach 42

3.4.2.1 How are Signature-based Intrusion Detection Systems
(SIDS) built? . 43

3.4.3 Detection: detecting anomalies . 46

4

TABLE OF CONTENTS

3.4.3.1 How are Anomaly-based Intrusion Detection System
(AIDS) built? . 46

3.4.4 Network Security: defense in depth 47
3.5 Conclusion . 48

4 Training Anomaly-based Intrusion Detection System (AIDS) using IP
network data 49
4.1 Introduction . 49
4.2 Machine Learning: Learning methods . 50

4.2.1 Supervised Learning . 50
4.2.1.1 Linear Regression . 50
4.2.1.2 Support Vector Machines 50
4.2.1.3 Decision trees . 51
4.2.1.4 Neural Networks . 52

4.2.2 Unsupervised Learning . 53
4.2.2.1 K-means . 53
4.2.2.2 Singular Value Decomposition 53

4.2.3 Reinforcement Learning . 53
4.2.3.1 Q-Learning . 54
4.2.3.2 Deep Q-networks . 55

4.2.4 Genetic programming . 55
4.3 Evaluation of classification and detection 55
4.4 Learning from network data . 57

4.4.1 Network data: Network Intrusion Detection Systems (NIDS) datasets 57
4.4.2 Packets, Network flows and logs . 57
4.4.3 Network Intrusion Detection Systems (NIDS) datasets 57
4.4.4 Network data: the imbalance nature of the intrusion detection prob-

lem . 58
4.5 Using ML algorithms for Network security through the design of an AIDS . 58

4.5.1 Supervised Learning . 59
4.5.2 Unsupervised Learning . 59
4.5.3 Reinforcement Learning . 59
4.5.4 Genetic Programming . 60

4.6 Experimented GP method: Tangled Program Graphs (TPG) 60

5

TABLE OF CONTENTS

4.6.1 Tangled Program Graph (TPG): Model and Learning Algorithm . . 60
4.6.2 Parameters of the Tangled Program Graph (TPG) 63

4.7 Conclusion . 63

II Contributions 66

5 Contribution 1: Assessing the biases of IP networks intrusion detec-
tion datasets and evaluating their effect on a Tangled Program Graph
(TPG)-based Anomaly-based Intrusion Detection System (AIDS) 67
5.1 Introduction . 67
5.2 Related Work . 68

5.2.1 Reducing biases in the algorithm 70
5.2.2 Pre-processing datasets for fairness 70

5.3 Impact of learning biases in Network Intrusion Detection Systems (NIDS) . 72
5.3.1 Problem definition . 72
5.3.2 Learning with representation biases 72
5.3.3 Learning with label biases . 73

5.4 Experimental Setup . 73
5.4.1 The CICIDS 2017 dataset . 73
5.4.2 Experiment 1: representation bias of an Intrusion Detection System

(IDS) . 75
5.4.3 Experiment 2: label bias of an Intrusion Detection System (IDS) . . 76
5.4.4 Parameters of the Tangled Program Graph (TPG) 76

5.5 Experimental Results . 78
5.5.1 Preliminary training of a Tangled Program Graph (TPG) on the

CICIDS 2017 dataset . 78
5.5.2 Experiment 1: impact of the representation bias on the learned

Network Intrusion Detection Systems (NIDS) 81
5.5.3 Experiment 2: impact of label bias on the Machine Learning (ML)-

based Anomaly-based Intrusion Detection System (AIDS) 82
5.5.4 Experiment 3: cost of mislabeling of the data 84

5.6 Discussion: mitigation of the representation and labeling biases of Network
Intrusion Detection Systems (NIDS) datasets 85

6

TABLE OF CONTENTS

5.6.1 Assessing representation biases of a Network Intrusion Detection
Systems (NIDS) dataset . 85

5.6.2 Mitigation of labeling bias using Tangled Program Graph (TPG)
and future work . 86

5.7 Conclusion . 86

6 Contribution 2: Study of the impact of data imbalance on Tangled Pro-
gram Graph (TPG) performance 89
6.1 Introduction . 89
6.2 Related work . 90
6.3 Impact of imbalance on the learning . 93

6.3.1 Cardinality: range of the fitness function 94
6.3.2 Imbalance: modeling of the data . 94

6.4 Fitness functions and genetic selection phase for imbalance classification . . 96
6.4.1 The imbalanced classification problem 96
6.4.2 Selection: Choosing fitness and evaluation metrics 97
6.4.3 Selection: Comparison of the individuals 99

6.5 Experimental Setup . 102
6.5.1 Parameters of the Tangled Program Graph (TPG) 102

6.6 Experimental Results . 104
6.6.1 Fitness function and evaluation metric 104

6.6.1.1 Evaluation metric . 105
6.6.1.2 Choosing the right fitness 106

6.6.2 Evaluation of the Proposed Selection Algorithm 107
6.6.3 Testing on a Network Intrusion Detection Systems (NIDS) dataset . 107

6.7 Discussion and future work . 109
6.8 Conclusion . 109

7 Contribution 3: Evaluating Tangled Program Graph (TPG) for stream
processing, incremental learning and high efficiency Anomaly-based In-
trusion Detection System (AIDS) 113
7.1 Introduction . 113
7.2 Related Work . 116
7.3 The Secure-GEGELATI stream processing prototype 117

7.3.1 An Anomaly-based Intrusion Detection System 117

7

TABLE OF CONTENTS

7.3.2 A Genetic Programming (GP)-based probe 119
7.3.3 A stream processing Embedded system 121
7.3.4 Using Secure-GEGELATI as an Intrusion Detection System (IDS) 122

7.4 Experimental setup . 122
7.4.1 Description of the datasets used in the experiments 124

7.4.1.1 The CICIDS 2017 dataset 124
7.4.1.2 The CSE-CIC-IDS2018 dataset 124
7.4.1.3 Adjustments . 125

7.4.2 Parameters of the Tangled Program Graph (TPG) 125
7.5 Experimental Results . 126

7.5.0.1 CICIDS 2017 Analysis . 126
7.5.1 Performance of the RF and the TPG algorithms on the datasets

CICIDS 2017 and CSE-CIC-IDS2018 127
7.5.1.1 Random Forest (RF) implementation 127
7.5.1.2 Using the TPG to analyze CICIDS 128

7.5.2 Adaptability of GEGELATI . 129
7.5.2.1 Inferring the previous models to the CSE-CIC-IDS2018

dataset . 129
7.5.2.2 Discovering new categories of attacks 130

7.5.3 Stream processing and energy efficiency of Secure-GEGELATI . . 131
7.5.3.1 Energy efficiency of the IDS 134

7.5.4 Comparison with the state of the art 135
7.5.5 Training an Anomaly-based Intrusion Detection System (AIDS) for

operational conditions . 136
7.6 Discussion and future work . 136
7.7 Conclusion . 139

III Conclusion 140

8 Conclusion 141
8.1 Research contributions . 142

8.1.1 Assessing the biases of IP networks intrusion detection datasets and
evaluating their effect on a Tangled Program Graph (TPG)-based
Anomaly-based Intrusion Detection System (AIDS) 142

8

TABLE OF CONTENTS

8.1.2 Study of the impact of data imbalance on Tangled Program Graph
(TPG) performance . 143

8.1.3 Evaluating Tangled Program Graph (TPG) for stream processing,
continual learning and high efficiency Anomaly-based Intrusion De-
tection System (AIDS) . 143

8.2 Prospects and Future Works . 144
8.2.1 Biases network data handling . 144
8.2.2 Imbalanced learning: algorithmic mitigation of Genetic Program-

ming (GP) methods . 145
8.2.3 Adaptive Intrusion Dectection Systems (IDSs) as high performance

probes . 145
8.3 Journal and conference papers . 146

8.3.1 As the first author: . 146
8.3.2 As a co-author: . 146

A Prototyping and optimization of a Tangled Program Graph framework
(GEGELATI) 149
A.1 Introduction . 149
A.2 The Tangled Program Graph (TPG) as a deterministic and parallel agent . 150
A.3 Generating code for fast Tangled Program Graph (TPG) inference 153

A.3.1 Motivations . 153
A.4 Code Generation for Tangled Program Graph (TPG) Inference 153

A.4.1 Code Generation for Programs . 154
A.4.2 Code Generation of Tangled Program Graph (TPG) Structure . . . 155
A.4.3 Discussion on the prototyping work 158

A.5 Saving and restoring Tangled Program Graphs (TPGs) 158
A.5.1 Motivations . 159
A.5.2 Prototyping choices for storing a Tangled Program Graph (TPG) . 159
A.5.3 Discussion . 161

A.6 External parametizing of the Tangled Program Graph (TPG) 161
A.6.1 Parameterized Tangled Program Graph (TPG) implementation . . 161

A.7 Mimicking decision trees and Convolutional Neural Network (CNN) with
Tangled Program Graphs (TPGs) . 161
A.7.1 Motivations . 161

9

TABLE OF CONTENTS

A.7.2 Implementation of Tangled Program Graph (TPG) constants 162
A.7.3 Discussion . 162

A.8 Towards a semi-supervised Tangled Program Graph (TPG) ? 163
A.8.1 Motivation . 163
A.8.2 Prototyping a semi-supervised learning based Tangled Program

Graph (TPG) . 163
A.8.3 Discussion . 164

A.9 Conclusion . 165

List of Figures 170

List of Tables 175

List of Listings 176

Bibliography 181

10

Acknowledgements

Ce travail est le résultat de trois années. La plupart des personnes qui ont croisé mon
chemin sur cette période méritent ici quelques mots.

Dans un premier temps, les membres de mon encadrement méritent une mention
particulière. Maxime, pour la direction de thèse que tu as su mener, toi même sous la
pression de nombreux projets, merci. Tu as su me transmettre beaucoup, scientifiquement
mais aussi humainement. Thomas, Frédéric et Olivier, merci à vous pour l’encadrement,
les conseils, les relectures et votre implication en général sur ce projet. Merci à Karol
Desnos, qui bien qu’en dehors de l’encadrement de cette thèse à été une aide importante
pour le développement des outils, les conseils, les discussions parfois trop longues -mais
toujours très riches- lors des pauses café.

Merci aux rapporteurs ainsi qu’aux examinateurs de ma thèse, d’avoir consacré du
temps à évaluer mon travail. Vos retours ont été constructifs à tout niveaux et leur
bienveillance m’a aidé à en terminer joyeusement avec ma vie de doctorant.

Merci à l’équipe VAADER, pour la convivialité et les échanges, pour les moments de
détentes et les pauses café, pour les petits à côtés et les attentions diverses. En particulier,
merci aux personnes qui se seront personnellement impliquées dans mon projet, le temps
d’un échange, d’une relecture. Merci à ceux qui ont été là pour changer d’air, sortir,
boire une bière en terrasse, vous avez assurément apporté un peu de légèreté dans ce
quotidien. Une mention particulière au bureau 214 qui en plus du reste, à su me divertir
quotidiennement à coup de musique et de blagues douteuses.

11

TABLE OF CONTENTS

Merci à ma famille qui à été d’un soutien inestimable sur ces trois ans. Sans votre
appui constant, ce document ne serait peut-être pas ce qu’il est aujourd’hui. Merci pour
le bonheur que vous me procurez.

Merci à mes amis qui ont été là pour moi, qui ont pris soin de moi et qui m’ont soutenu.
Sans avoir besoin de vous nommer, je vous porte haut dans mon cœur, mais ça, vous le
savez déjà.

Même si certaines personnes se retrouveront dans le paragraphe au dessus, merci à
mes partenaires sportifs, qu’ils soient du groupe de capoeira ou de l’escalade pour avoir
été un refuge et un havre de tranquillité pour moi et mon esprit.

12

CHAPTER 1

French Summary

1.1 Introduction

Les systèmes de détection d’intrusion réseau (NIDS) sont des systèmes observant l’en-
vironnement réseau IP, essayant d’en isoler les comportements malveillants compromet-
tant l’intégrité, la disponibilité ou la confidentialité des services et des données fournies
par ce réseau [Van20 ; HH05 ; Zam01]. Il existe deux types de NIDS. Les uns identifient
les comportements malveillants en se référant à une base de connaissance pré-existante
(SIDS). [HS14 ; KT03]. Les systèmes de détection d’intrusion par anomalie (AIDS), eux,
essayent de qualifier les comportements malveillants en se basant sur des modèles de com-
portements sains et malveillants, généralement issus d’un apprentissage machine (ML)
[Gar+09 ; JPP11].

La détection d’intrusion dans des environnements dynamiques, tels que les réseaux IP,
sont liés à d’importants problèmes [KA17 ; KV02]. La collecte de données réseau repré-
sentatives et étiquetées est complexe et coûteuse et pose un problème pour la conception
et l’évaluation des NIDS. Le problème de détection d’intrusion dans un réseau se forma-
lise également comme un problème de classification déséquilibré. Enfin, il n’y a aucune
garantie qu’un modèle appris sur un jeu de données d’intrusions réseau puisse être utile
pour la détection d’intrusion sur un système opérationnel.

Chapter 1 – French Summary

Ce manuscrit explore les capacités des TPGs [KH17b], des graphes de programmes,
pour la création d’un AIDS. Les TPGs sont une forme d’apprentissage machine légers et
polyvalents basés sur des concepts de programmation génétique (GP).

Ce manuscrit étudie les biais de représentation et d’étiquetage des données réseau,
ainsi que leur effet sur l’apprentissage des TPGs. L’impact des données déséquilibrées
sur l’apprentissage des TPGs est également exploré. Enfin, nous montrons que le carac-
tère évolutif des TPGs permet l’adaptabilité du modèle à un environnement dynamique,
rendant possible la détection de nouvelles attaques par un apprentissage continu. Il est
montré que la légèreté de la méthode peut être utilisée pour une utilisation rapide et basse
consommation, faisant des TPGs de très bons candidats pour le futur des NIDS.

1.2 Contexte : apprentissage de comportements dans
un réseau IP

Ce manuscrit se concentre sur la sécurité des réseaux et la détection d’intrusion ainsi
que sur l’utilisation de techniques ML pour la modélisation du trafic IP. Cette section
introduit des notions de sécurité réseau essentielles à la compréhension du domaine et
discute de leur intersection avec le domaine du ML.

1.2.1 La sécurité du réseau

Un réseau est un ensemble d’éléments communicants appelés terminaux. Les données
sont échangées entre deux terminaux par l’intermédiaire de paquets réseaux. La com-
promission de la sécurité des services est considérée comme une intrusion. Les intrusions
peuvent avoir de fortes conséquences économiques, juridiques ou même sur la réputation
des victimes. La détection d’intrusion, qui constitue la troisième étape de la procédure
NIST [Bar+18], est une des 5 facettes de la sécurité des réseaux. Un NIDS analyse les
informations qui circulent sur le réseau et essaye d’isoler le trafic spécifique menant à
une intrusion [Den87]. Les NIDS sont utilisés pour signaler les intrusions à un analyste
(humain) afin qu’il puisse agir et intervenir, en prenant des contres mesures pour réduire
l’impact de l’intrusion. Il est primordial que les NIDS ne génèrent que très peu de fausses
alertes positives. Pour un analyste seul, pas plus de 20 fausses alertes par jour doivent
être générées. Par exemple, la précision minimale d’un AIDS pour une journée de trafic

14

1.3. Challenges et objectifs

de CICIDS 2017 [SLG18] est de 99.67%. Ce manuscrit explicite les enjeux et objectifs des
AIDS de demain.

1.2.2 Apprentissage machine et AIDS

Dans le but de construire des modèles précis pour la détection d’intrusions réseau, une
quantité massive de données réseau doit être recueillie. Les AIDS basés sur du ML
prennent en entrée des données réseau ou des séquences particulières de données réseau
appelées flux et lèvent des alertes lorsque le trafic observé correspond à une intrusion
[Lev16]. Les données d’entraînement sont nécessaire à la modélisation du problème. Cela
implique que des données biaisées peuvent causer la création d’un modèle également biaisé.
Par exemple, les biais d’étiquetage causent dans cette étude (voir Chapitre 5) la perte
de près de 14% de performance. De plus, il y a naturellement plus de comportements
sains que d’intrusions sur un réseau. Cela veut dire que le ML se doit d’être résilient à la
présence de données déséquilibrées [HG09]. Les jeux de données CICIDS 2017 [SLG18] et
PUF [SSG18] comportent respectivement 17% et 12% de trafic d’intrusions. En résumé,
la méthode ML idéale serait résistante aux biais, erreurs d’étiquetage et au déséquilibre
de données. Cette méthode serait facilement mise à jour pour s’adapter à de nouveaux
comportements émergents et permettrait un traitement de flux efficace afin de lever les
alertes au plus tôt.

Ce manuscrit détaille les capacités des TPGs pour la détection d’intrusions et appro-
fondit les axes précédents, à la croisée des domaines du ML et de la détection d’intrusion.

1.3 Challenges et objectifs

Dans le Chapitre 5, les avantages et inconvénients des données réseau disponibles sont
évalués. Le défi est ici de trouver des moyens corrects d’exploiter les données du réseau
et de trouver une méthode résistante à des erreurs d’étiquetage. De manière similaire
à la résilience au biais, le Chapitre 6 vise à améliorer la robustesse de la méthode ML
face à des données déséquilibrées. Tous les réseaux sont différents et par conséquent, un
modèle entraîné sur un jeu de données n’est intuitivement pas adapté pour être utilisé
dans un contexte opérationnel, différent de son contexte d’entraînement. Cette question
est détaillée dans le Chapitre 7. Dans ce chapitre, nous présentons également une étude
sur l’efficacité du TPG pour le traitement des données réseau. Enfin, afin de réduire le

15

Chapter 1 – French Summary

temps d’analyse et de pouvoir réduire le temps entre l’intrusion et sa détection, un effort
doit être fait pour être capable de traiter efficacement les données du réseau. Pour cela,
nous avons étudié les capacités d’adaptation et la rapidité des TPGs.

1.4 Contributions : vers la création d’un AIDS basé
sur de l’apprentissage machine.

Il est nécessaire de mieux comprendre les contraintes qui ont un impact sur la conception
des AIDS. Cette section explore les inconvénients et les limites des AIDS actuels afin
d’introduire nos contributions.

1.4.1 Impact des biais d’apprentissage sur les TPGs

Les données réseau peu représentatives du problème de la détection d’intrusion mènent à
la création de modèles inexacts [GD95 ; PKP21]. Lorsque l’on extrait des données réelles
du réseau, on se heurte à la RGPD et à un problème d’étiquetage très coûteux. Lorsque le
trafic réseau est simulé, le comportement humain réaliste est absent de la jeu de données
[Rin+19]. De plus, la manipulation des données est source d’une nouvelle introduction de
biais. Il semble impératif de disposer de méthodes plus résistantes aux biais de données,
pour réduire l’impact des biais dans la conception d’un AIDS. Le Chapitre 5 s’intéresse à
l’impact du biais de représentation qui se produit lorsque les caractéristiques disponibles
introduisent des corrélations non pertinentes avec l’étiquette associée. Le biais d’étique-
tage de CICIDS 2017 est également étudié, car plus de 20% de l’ensemble du jeu de données
est sujet à une erreur d’étiquetage [ERJ21]. Ce biais d’étiquette impacte la construction
du modèle et conduit à plus de 14% d’erreurs dans la détection d’intrusion. Les TPGs
sont utilisés comme des classificateurs et l’impact du biais d’étiquette sur les TPGs est
étudié. Les résultats expérimentaux montrent que le TPGs peut apprendre lorsque jusque
20% des étiquettes sont incorrectes, ce qui en fait un bon candidat pour la détection
d’intrusion où les données d’apprentissage sont souvent biaisées.

16

1.4. Contributions : vers la création d’un AIDS basé sur de l’apprentissage machine.

1.4.2 Apprentissage déséquilibré : une approche par la program-
mation génétique

Lorsque l’on utilise des techniques ML pour classer les entrées d’un jeu de données, ces
entrées sont la plupart du temps équilibrées car il est plus facile de modéliser une solution
à un problème équilibré où l’on peut construire des modèles indépendants de chacune
des classes. Lorsqu’il existe un déséquilibre de données, des méthodes d’échantillonnage
sont souvent utilisées pour rééquilibrer artificiellement les données [YL06 ; ZL14]. un jeu
de données NIDS possède un trafic d’intrusions représentant en moyenne 10% du trafic.
Des méthodes d’échantillonnage peuvent être appliquées mais cela éloigne les NIDS de
leur utilisation opérationnelle. Pour garantir les performances de l’inférence, un entraî-
nement en ligne sur des données réalistes est recommandé. L’entraînement y est soumis
au déséquilibre des données. Le Chapitre 6 étudie l’impact des données déséquilibrées
sur l’apprentissage et propose des modifications du TPGs en conséquence [JCD13]. Les
résultats expérimentaux montrent que la robustesse des TPGs aux données déséquilibrées
peut être améliorée et que les TPGs peuvent continuent d’apprendre dans des conditions
où jusqu’à un échantillon positif sur 10000 échantillons est présent.

1.4.3 Adaptabilité des AIDS haute performance sur des réseaux
opérationnels

Il semble contre-intuitif de se fier à un mécanisme de défense statique qui devrait être ex-
trêmement précis dans des conditions d’inférence en constante évolution [Mor11 ; Rai12 ;
Sym17]. Le biais de déploiement se produit lorsque l’entraînement ne représente pas les
mêmes conditions que l’utilisation opérationnelle. Ce problème motive l’utilisation de mé-
thodes d’apprentissage incrémental, présentes de par la programmation génétique dans
les TPGs. Le Chapitre 7 explore les capacités des TPGs en terme de détection et d’adap-
tabilité [KH17b]. En tant que preuve de concept, le TPG est utilisé comme une sonde à
apprentissage incrémental, intégrée à un système sur puce Exynos 5422, capable d’effec-
tuer un apprentissage continu sur le flux de réseau entrant. En tant que dispositif toujours
actif, un effort est fait pour le rendre fonctionnel à faible énergie. Les résultats expérimen-
taux montrent que la sonde est capable de s’adapter aux changements de l’environnement
réseau, tout en étant capable d’analyser le flux de connexion au fur et à mesure, le tout
pour moins de 3.5W. Les expériences sous conditions opérationnelles montre une précision

17

Chapter 1 – French Summary

de 99.96%, supérieure aux 99.67% théoriques requis pour le jeu de données CICIDS2017.
Cette précision implique des taux de détection d’attaque moins élevés.

18

CHAPTER 2

Introduction

Network Intrusion Detection Systems (NIDS) observe a network environment and try to
identify malicious behaviors that compromise integrity, confidentiality or availability of
either the network data or the systems [Van20; HH05; Zam01]. NIDS can be classified
as Signature-based (SIDS) or Anomaly-based (AIDS). SIDS identify known malicious
behaviors by comparing the traffic with a knowledge base [HS14; KT03]. Conversely,
AIDS try to qualify the unknown, supposedly malicious behaviors [Gar+09; JPP11].
AIDS are mostly based on Machine Learning techniques.

Performing detection of rare events such as intrusions in an ever-changing environ-
ment using AIDS based on Machine Learning (ML) is a challenge bound to several big
issues [KA17; KV02]. Network data is used to both setup and evaluate NIDS. Gathering
representative network data with accurate label information is costly. Once qualitative
network data is available, the detection problem can be addressed as a highly imbalanced
classification problem. Finally, there is no guarantee that a learned AIDS on a network
intrusion detection dataset is useful for real NIDS inference and is able to keep pace with
the input data flow.

This thesis explores the capabilities of the Tangled Program Graphs (TPGs) frame-
work [KH17b] to act as an AIDS probe. TPG is a form of machine learning based on
genetic programming that offers lightweight and versatile learning capabilities. NIDS
training data tend to be biased while the problem is imbalanced by nature. We study

Chapter 2 – Introduction

the consequences of training data biases on the TPG framework and explore the im-
pact of mislabeling and representation biases in the NIDS domain. We then specialize
the TPG framework to fit imbalanced classification problems. We show that the genetic
programming selection phase associated with the use of an adequate fitness function of-
fer mitigation of data imbalance. We also show that the evolving topology of the TPG
framework makes it capable of adapting to a dynamic network environment, taking into
account zero-day intrusions. Finally, we demonstrate on experiments that the lightweight
properties of the TPG framework can be exploited for a fast and low energy inference,
making it a promising candidate for future NIDS technologies.

2.1 Context: learning behaviors in a dynamic IP net-
work environment

This thesis is built on two technologies. It focuses on IP network security and intrusion
detection, and uses ML techniques to contribute to this domain. This section introduces
the context of IP network environment and security, and discusses the intersection of this
domain with ML statistical learning methods.

2.1.1 Intrusion detection and security in a dynamic IP network

An IP network environment is a complex and ever changing framework. A network
is a set of communicating devices called endpoints. These endpoints exchange data
through the use of structured data containers called IP Packets. The security of the
network is bound to the security of three of its individual components that are integrity,
availability and confidentiality of both the data and systems. It means that, at any time,
an authorized party should have access to a data (availability) that shall not be accessible
by an unauthorized party (confidentiality) and that shall not have been modified by
an unauthorized party (integrity) [Zam01; Van20]. Compromising any of these three
characteristics is considered as an intrusion. Intrusions are harmful as they can cause
economical, reputational and regulatory damages to the victims. Attackers that intrude
a network use specific network packets that exploit one or several vulnerabilities of the
network. The security of the network is partly bound to the detection of these intrusions
that comes as the third component of the NIST framework [Bar+18]. This framework
orders the five main high-level cyber-security actions as Identify, Protect, Detect, Respond

20

2.1. Context: learning behaviors in a dynamic IP network environment

and Recover. An Intrusion Detection System (IDS) is a system that observes the networks
packets and tries to recognize the packets that lead to an intrusion [Den87]. There exist
IDS that examine the network traffic, comparing it to a knowledge base of malicious data
packets and other IDS called AIDS that explore the unknown data packets and try to
correlate them with the known sane and malicious behaviors to determine whether or not
an IP packet is likely to lead to an intrusion. An AIDS raises alerts as a signal to help a
human analyst to examine the data packets and then take counter-measures to reduce
the impact of the intrusion. It is then primordial that alerts are early raised and that as
few as possible false alerts are raised from the AIDS. For a single analyst, no more than
20 false positive alerts per day should be raised. For example, during the four days of
traffic generation of the CICIDS 2017 dataset [SLG18], an IDS with a precision of 99.67%
is acceptable.

This thesis explicates the goals of an AIDS and explores the research challenge of the
conception of the next generation AIDS.

2.1.2 Learning AIDS using IP network data

Machine Learning (ML) is mostly used when it comes to the AIDS design. Other ap-
proaches using signal processing and decomposition are rarely used [ZL03; Ren+08]. In
order to train AIDS, a considerable amount of network data containing realistic traffic
and intrusion traffic is required. More than 85 % of recent ML-based AIDS are classifiers
[Har07] that take as an input, a network packet or a sequence of network packets with a
fixed source and destination called network flow, and raise an alert if the incoming data
is classified as an intrusion [Lev16]. This training data is a key component for the design
of an AIDS as the AIDS model takes decisions based on its acquired knowledge base.
This implies that biased training data will result into a biased AIDS model, making the
intrusion detection task less efficient (up to 14% in our case study on the bias impact).
Intrusion detection data is also naturally imbalanced in a normal operating mode. There
are more sane traffic exchanged between endpoints than intrusion traffic on a network.
For example, the imbalance ratio on the CICIDS 2017 dataset [SLG18] is close to one in-
trusion for a hundred of connections (Two orders of magnitude or Imbalance Order of
Magnitude (IOM)). In the PUF dataset [SSG18], extracted from real traffic, the IOM
is one. This means that the ML method used for the design of an AIDS (i.e. a classifier)
must be resilient to the presence of imbalanced data [HG09]. Even though the datasets
do not necessarily reflect the ground truth, these values are lowest bound in which the

21

Chapter 2 – Introduction

AIDS should be able to learn. There exist many different ML techniques, each of them
having advantages and drawbacks when facing the intrusion detection problems [HTF09;
CA16; KLM96]. In particular, the ideal ML method for the design of an AIDS is a ML
method that:

• is resilient to imbalanced learning

• is resilient to label errors and biases, as analysts can not perfectly label datasets
and tend to miss some attacks

• facilitate the update of the model, as the network environment and traffic is ever-
changing

• provide a fast inference, as early intrusions detection opens for more countermea-
sures

In this thesis, the capabilities of the TPG framework for intrusion detection are ex-
plored. In particular, these four main axes are deepened as thesis contributions.

2.2 Challenges and thesis Objectives

This work aims to help in the comprehension of the requirements of ML-based AIDS.
This work requires data that are fair and representative of the network intrusion detection
problem. In Chapter 5, we evaluate the strengths and weaknesses of available network
intrusion detection datasets. Data biases have to be studied and understood in order to
have a correct and fair use of the network data and to be able to produce an unbiased
operational intrusion detection system. The challenge is here to find correct methods for
exploiting network data. Furthermore, as labeling network data is a complex task, it is
important to find a method resilient to errors in the dataset labels. Chapter 6 focuses on
the imbalance mitigation in AIDS. Intrusion data are naturally rare with respect to the
normal traffic on a network. An IOM of two is present in the CICIDS 2017 dataset. This
raises the question of imbalanced data comprehension and handling by the ML method.
Furthermore, and similarly to the resilience to the biases, the resilience of the considered
ML method to imbalance is an important challenge. Chapter 7 focuses on operational
TPG-based AIDS performances. Operational NIDS require a training that conditions
the model. This issue has to be studied as all networks are different and thus, a model
trained offline is intuitively not suited to be used as a detector in a different context than

22

2.3. Thesis contributions: toward designing a ML-based AIDS

it has been trained for. Finally, in order to reduce the packet analysis time and to be able
to reduce the time between the intrusion and its detection, an effort should be made to
efficiently process the network data.

2.3 Thesis contributions: toward designing a ML-
based AIDS

In order to fulfill AIDS needs using ML techniques, it is required to understand the ML
constraints that have an impact on the AIDS performance. This section explores the
drawbacks and limitations of present AIDS in order to introduce our contributions.

2.3.1 Contribution 1: assessing the biases of IP networks in-
trusion detection datasets and evaluating their effect on a
TPG-based AIDS

To understand a problem, it is important to build an accurate representation of this
problem. This is exactly the issue faced when training a ML method using low quality
data. The representation of the problem is based on data that is poorly representative of
the problem, leading to inaccurate models [GD95; PKP21]. Qualitative network data is
hard to obtain. When extracting real traffic data, one faces the General Data Protection
Regulation (GDRP) and must manually analyze the traffic in order to characterize which
traffic is or is not an intrusion (unless unsupervised learning methods are used) [Bri+18].
When the network traffic is simulated (which is the case of most labeled network intrusion
datasets), the realistic human behavior is shadowed in the generated dataset. "[...]the
perfect network-based data set is up-to-date. correctly labeled, publicly available, contains
real network traffic with all kinds of attacks and normal user behavior as well as payload
and spans a long time. Such a data set, however, does not exist and will (probably)
never be created" [Rin+19]. Furthermore, the manipulation of the data is subject to the
introduction of biases that have an impact on the learned model. These data biases
can be of several kinds such as non-representative features, label errors, mistakes in the
acquisition of the data or the use of a non-representative population for the generation
of the dataset [GHF22; Meh+21]. Two mitigation approaches can be thought. On the
first hand, we can deal with the data itself, trying to extract representative features or to

23

Chapter 2 – Introduction

generate qualitative normal and attack traffic. On the other hand, having methods that
are more resilient to inaccurate labels helps in the reduction of the impact of the biases in
the design of a learned AIDS. Chapter 5 focuses on the CICIDS 2017 datasets and explores
the use of non-relevant features in the dataset. This issue is known as a representation
bias and happens when available features introduce irrelevant correlations between the
feature and the associated label. The label bias of the CICIDS 2017 is also explored, as
more than 20% of the CICIDS dataset is subject to a label error [ERJ21]. This label bias
has an impact on the built model and leads to errors in intrusion detection. In particular,
the use of our TPG-based method results in a drop of 14% of precision when training
using incorrect labels. Finally, the TPG framework is used as an ML-classifier and the
impact of the label bias on the TPG is studied. Experimental results show that the TPG
is resilient to up to 25 % of label bias making it a good candidate to face the intrusion
detection problem.

2.3.2 Contribution 2: study of the impact of data imbalance on
TPG performance

Learning on strongly imbalance data leads to a so-called "imbalanced data representation"
[HG09]. When using ML techniques to classify entries of a dataset, these entries are
most of the time forced to be balanced as it is easier to model a solution to a balanced
problem than design a model of an imbalanced problem. When data imbalance exists,
a pre-processing of the dataset is usually performed where sampling methods are used
to artificially re-balance the dataset [YL06; ZL14]. As aforementioned, intrusion traffic
represents a small proportion of the total amount of traffic on a network. Realistic data
representations take into account the natural imbalance of the problem and thus, a fair
NIDS dataset is imbalanced having an amount of intrusion traffic representing inferiorly
to 10% of the overall data (These 10% are a mean of NIDS datasets). Sampling methods
can be applied to facilitate the training of NIDS but unfortunately, doing so gets the
NIDS farther from operational exploitation as the differences between the dataset and
a live operational system can cause important drops of performances. To guarantee the
performances of live inferring AIDSs, online training on realistic data is recommended
and thus, the ML method use will be subject to the data imbalance. Chapter 6 explores
algorithmic modifications of the ML, that are required to deal with the imbalanced nature
of the problem. In order to propose algorithmic modifications to Genetic Programming

24

2.3. Thesis contributions: toward designing a ML-based AIDS

(GP) techniques for imbalanced classification, the classification problem and its impact
on the ML method is studied [JCD13]. Then, a mitigation method based on the GP
selection mechanism and the used fitness functions and evaluation metrics are exposed.
Experimental results show that the TPG framework can be designed to be robust to data
imbalance and keeps learning with high imbalance ratios in extreme conditions where less
than one positive sample out of 10,000 samples is present.

2.3.3 Contribution 3: Evaluating TPG for stream processing,
continual learning and high efficiency AIDS

Once trained and used as a detection probe, an AIDS is a static representation of the
network environment. Conversely, the network environment is dynamic where new end-
points and services appear and where behaviors evolve. It seems counter intuitive to rely
on a static defense mechanism that should be extremely precise in constantly changing
inferring conditions [Mor11; Rai12; Sym17]. A first considerable change occurs after the
offline training on a NIDS dataset to the operational use of the model on the network
environment. For example, it is unlikely that a model trained on a dataset will infer
under operational condition using the same IP network topology, same addresses and
similar traffic. This issue is addressed as a deployment bias and happens when train-
ing and evaluation do not represent operational evaluation conditions. This first issue
motivates for the use of incremental learning methods, allowed in the TPG framework
by the GP method, in order to incrementally adapt to the live network inference after
training on an offline dataset. In Chapter 7, the TPG capabilities in terms of detection
capabilities and adaptability are experimentally explored [KH17b]. Furthermore, in or-
der to perform live training on the network environment, the AIDS probe requires to
keep pace with the incoming data flow. As an example, a saturated IP network with a
1GBps bandwidth generates a mean of 210 MBps network flow metadata to be analyzed.
This figure comes under the pessimistic hypothesis of one flow per packet sent, with 80
floating point metadata extracted and an average of 1.5kB per packet. Once again, the
TPG framework displays interesting properties of being lightweight and able to process
rapidly large amount of data. As a Proof of Concept, the TPG is used in Chapter 7 as
an incremental learning probe, embedded on a small Exynos 5422 System on Chip, able
to perform live training on the incoming network flow up to 149 MB/s. As a comparison,
the SIDS SNORT functions around an average of 3MB/s and state of the art methods

25

Chapter 2 – Introduction

does not reach an analysis rate over 45MB/s. Finally, as an always-on device, an effort
is made to make it able to keep pace with incoming network flow while having a low
energy functioning point. Experimental results show that the probe is able to adapt to
consequent changes on the network environment, using the incremental learning property
of the TPG agent, while being able to process all the network flows information as they
come and under 3.5W. Experimenting under operational condition leads to a precision
of 99.96 which is above the 99.67% precision theoretically required for the CICIDS 2017
dataset. This high precision implies the detection of fewer attacks and, in particular,
more subtle attacks such as infiltration or code injections tend not to be seen.

2.3.4 Appendix A: Prototyping and optimization of a Tangled
Program Graph framework (GEGELATI)

As an enabler of this work, Chapter A details modifications to the legacy TPG framework
that are used or explored in the different thesis contributions. The Generic Evolvable
Graphs for Efficient Learning of Artificial Tangled Intelligence (GEGELATI) version of
the TPG is deterministic for the reproducibility of the results and parallel to enhance
the efficiency of the TPG framework. Its inferring performances are, thanks to a C
code generation of the model, accelerated between 40 and 50 times. The graphs can be
exported and imported and benefits from external parametering, which is convenient for
the reproducibility of the results as well. Finally, minor modifications such as the use of
constants or a semi-supervised version of the TPG have been studied. In particular, the
semi-supervised version of the TPG is not yet functioning and thus, is not used in this
manuscript.

Thesis outline

As a first part of this thesis, the context is presented. Chapter 3 gives details on the
network environment in which the intrusion detection is performed. In particular, this
chapter introduces notions of network security and presents the Intrusion Detection Sys-
tem (IDS) and its basic design. Chapter 4 presents the wide scope of the ML domain,
discussing the existing methods and their potential advantages facing the intrusion detec-
tion problem. Particularly, the TPG framework is detailed as the main interest method of
this thesis. The second part of this thesis focuses on research contributions to the domain

26

2.3. Thesis contributions: toward designing a ML-based AIDS

Figure 2.1: Links between this manuscript’s chapters

of intrusion detection. Firstly, in Chapter 5 a particular interest is put on the available
network data used in order to learn the semantics of the network intrusions. This chapter
focuses on the representation bias of the network data and on the impact of errors in
labels on the ML method. In Chapter 6, the data imbalance existing in network intrusion
datasets is studied and algorithmic mitigation for GP methods are explored. Chapter 7
explores the detection capabilities of an incremental learning IDS, trained offline and used
on a simulated live network that differs from the training conditions. Finally, Chapter
A details implementations on the TPG framework that permits the different presented
contributions. Figure 2.1 illustrates the links between the different chapters.

As a conclusion, Chapter 8 sums up the thesis contributions and details the future
research work that constitutes the actual challenges faced by next generation intrusion
detection systems.

27

Part I

Background

29

CHAPTER 3

Intrusion detection and security in a dynamic IP network

3.1 Introduction

Intrusion detection consists of spotting the actions of attackers attempting to compromise
the integrity, confidentiality, or availability of a computer resource [Zam01; Van20]. The
first Intrusion Detection System (IDS) was proposed by D. Denning in 1987 [Den87] as
a way to early detect and prevent networking attacks and deviant behaviors. Intrusion
detection is now used at a large scale and is necessary to ensure the security of a resource as
attackers proved their ability to bypass the protections of the resources [Mor11; Sym17;
Rai12]. The protection can be ensured, for example, by a firewall blocking incoming
attacks and such a firewall can be bypassed by zero-days attacks.

To enhance the security of a network, the messages exchanged between two or more
devices must be analyzed for early intrusion detection and for countermeasures to be
deployed. In a realistic information system context, the connection rate is high, making
it impossible for a human analyst to analyze the traffic in real-time. There is thus a need
of precise systems that help the analysts to analyze the traffic and handle intrusions when
detected.

This chapter presents generalities on IP computer networks, including its organization
and its communication protocols, and then defines the basis of computer network security
given the attack context and state-of-the-art network intrusion detection procedures.

Chapter 3 – Intrusion detection and security in a dynamic IP network

3.2 The computer network: a dynamic and complex
environment

This section aims to comprehend the dynamic network environment, its organization, its
communication protocols and the main challenges in terms of network security.

Figure 3.1 presents the schematics used for the description of networks.

Figure 3.1: Schematics used for different endpoints, devices, software and services in a
network. Conversely to IDSs, that raise alert when malicious packets are detected, an
Intrusion Protection System (IPS) is more similar to a firewall that actively blocks the
known malicious packets.

3.2.1 Computer networks: Endpoints and organization

Definition 3.2.1
An Information System (IS) is a combination of people, hardware, software, commu-
nication networks, data resources and policies, as well as procedures that store, retrieve,
transform, and disseminate information in an organization [OM05].

Definition 3.2.2
A computer network is a component of an IS that provides internal and external
communication means based on message passing. It consists of a set of inter-connected
computers that exchange information. The inter-connected hardware defines the network
topology [GJM14] as a graph where nodes are the connection point of the transmission
hardware and the edges are the physical links between the nodes including wired technolo-

32

3.2. The computer network: a dynamic and complex environment

gies (Ethernet (RJ45), optical fibber, coaxial cables,...) and wireless technologies (WiFi,
satellite communications) using mostly radio waves.

Definition 3.2.3
An endpoint is a computer device that is connected to a network. Servers are endpoints
and so are computers, laptops, smartphones and IoT devices.

The inter-connection of the different endpoints in the network is called the network
topology [SA13]. There exist a lot of different network topologies such as ring, star 3.2,
bus, mesh 3.3, tree 3.4 and all the possible combination of those topologies. The most
common combinations of topology is a tree network where some node drive a star network.

Figure 3.2: On the ring topology (left), each node is directly connected with exactly two
nodes. Data travels from node to node, with each node along the way handling every
packet. The star network topology (right) is a commonly used topology where each node
is connected to a central node (represented by a server) that acts like a conduit to transmit
messages.

Figure 3.3: On the bus topology (left), each node is connected to a bi-directional (half-
duplex) link called a bus. A mesh topology (right) is formed when each node is connected
with all the other nodes in the network.

We can differentiate several categories of networks [PD07]. Among them, the Local
Area Network (LAN) is a limited area network. Examples of LANs are domestic networks,
small companies or school networks. Wide Area Network (WAN) is a network that extends

33

Chapter 3 – Intrusion detection and security in a dynamic IP network

Figure 3.4: The tree network topology is a combination of star network topology and
bus network topology where a hierarchical order exists and where each node has a fixed
arbitrary number of child nodes (here, two).

on a wide geographic zone. Several inter-connected LAN can be considered as a WAN.
The internet is an example of a WAN.

3.2.2 Computer networks: communication protocol

Definition 3.2.4
Internet Protocol (IP) is a family of communication protocols of computer networks
used on the Internet. IP protocol enables a unique addressing service for all the inter-
connected endpoints.

Definition 3.2.5
An IP packet is a structured unit of data consisting in the association of control infor-
mation (Called header) and a payload. The header helps for the delivery of the payload,
using source and destination IP addresses and ports and the detection of errors. The
payload contains the actual message sent from the source to the destination. It is the only
information that is received by the destination of the packet. A pcap is a file containing
a packet capture of the network activity (pcap = Packet CAPture). It corresponds to the
raw bytes that arrives on a network card. A pcap often contains several packets.

Definition 3.2.6
Network flows correspond to a sequence of packets generated by a fixed pair of source and
destination IP addresses and ports. Network flow metadata can be extracted to measure,
for example the number of bytes exchanged, the duration of the network flow or the number
of bytes that traveled in the forward direction. Chinchani et al. [CB05] points out that

34

3.2. The computer network: a dynamic and complex environment

Data

Data

Data

Segment

Packet

Frame

Bit

Application

Presentation

Session

Transport (TCP)

Network (IP)

Data link

Physical

H
o
st

 la
ye

rs
M

e
d
ia

 la
ye

rs

Data type Layer

Figure 3.5: The OSI model and its seven layers. The layer 2 and 3 are interesting in LAN
and WAN communication. The layer 2 (data link layer) transmit data frames between two
endpoints connected by a physical layer. The layer 3 (network layer) send data packets
and rely on addressing and routing.

flow-based Network Intrusion Detection Systems (NIDS) savings represents only 0.1%
of data volume with respect to the storage of the packet’s payload. This optimization
works once the text header is removed (under the assumption that the flow corresponds to
HTTP traffic) and relies on a data pre-processing. Network flows are extracted processing
PCAP files or from the traffic. Tools to extract network flows include the CICFlowMeter
[Las+17], Zeek logs [LAR13], etc...)

35

Chapter 3 – Intrusion detection and security in a dynamic IP network

As seen in Definition 3.2.2, the inter-connected endpoints of a network exchange mes-
sages. Network communication is mainly based on the TCP/IP protocols. This protocol
is used for both the communication in LAN and WAN. TCP/IP respects the OSI model
[Sta87]. TCP/IP is used at large scale as it is reliable to send packets in order and with-
out errors. The UDP protocol is connectionless. Although it is less reliable than TCP,
it is used as it requires less processing at the network interface level. The LAN internal
communication does not require an internet connection and communicates directly by
sending Network frames (OSI layer 3, network layer, view figure 3.5). A packet contains
a header and a payload (See Definition 3.2.5). While the payload contains the actual
message, the header is used for rooting, containing among other information, destination
information. The communication of the LAN with the exterior (Internet connection or
WAN connection) can be seen as a connection between two routers added to the LAN in-
ternal connection. A router is a device that allows packets transfers (OSI layer 3, network
Layer) between the inside and the outside of the computer Network.

3.2.3 Computer networks: a dynamic environment

The network is a dynamic environment. Many changes can occur inside of the LAN
network such as:

• Changes in the topology of the network

• Insertion of new computers

• Allowance of new services

• Use of new applications

• Installation of new software

• System updates

Changes outside of a network can also have an impact on the network inside of the
LAN:

• Appearance of new services, applications, websites used by the user inside of the
network

• Novel Protocols (e.g. 5G)

36

3.3. Network security

Definition 3.2.7
We refer as the normal behavior of the IS to all the behaviors that do not break or attempt
to break the security policy of the IS.

Definition 3.2.8
An asset is a data, device or component of a network, that supports informational activ-
ities.

Definition 3.2.9
An information security policy is the action plan of a defined group to ensure the
protection of its assets. We often refer as a security policy as the security of confidentiality,
availability and integrity of a data, a service.

Both the changes, inside and outside the LAN have an impact on the structure of
the network as well as on the traffic generated in the network. These changes imply
an evolution of the content of the data navigating on the network through the data
packets and network frames that are exchanged by endpoints. These modifications have
a consequence on the traffic and thus, have a consequence on the analysis of this traffic.
Traffic analysis using static methods is thus intuitively forced to be updated frequently
to remain relevant. Furthermore, the aforementioned changes are an opportunity for an
attacker to bypass such static traffic analysis methods.

Figure 3.6 provides an example of a company network organization with several in-
terconnected devices, in and outside the internal zone. Several networking zones are
accessible through the router and a Demilitarized Zone (DMZ): a low trust zone where
a lot of interactions with the internet can be performed. The internal zone contains the
company computers and data servers. Its security is reinforced with another firewall.
Traffic that comes from the internet is analyzed by both a firewall and an IDS/Intrusion
Protection System (IPS).

3.3 Network security

3.3.1 Network security: attacks, intrusions, vulnerabilities

Cyber-security refers to all the protection measures against cyber-attacks [CDP14]. The
security of the internal zone is bound to both its data and the available systems.

37

Chapter 3 – Intrusion detection and security in a dynamic IP network

Company Network

DMZ

Web Server

Mail
Server

FirewallRouter
Internet

IDS/IPS

Workstations

Internal Zone

Firewall

Data
Server

Figure 3.6: An example of a company’s network. Traffic incoming from internet goes
through a firewall, an IDS or Intrusion Protection System (IPS) and through a router.
The incoming traffic is then routed either to the Demilitarized Zone (DMZ) or to the LAN.
Diverse Security mechanisms are in place including several firewalls and a IDS/Intrusion
Protection System (IPS).

Definition 3.3.1
We define a network attack as a deliberate attempt from an unauthorized person to
perform unlawful actions on a network. Those actions aim to compromise either the
confidentiality, availability or integrity of an asset [HH05].

38

3.3. Network security

The Confidentiality guarantees an asset from unauthorized misuse or access. The
integrity guarantees an asset from unauthorized modifications. The availability guar-
antees the access to an asset to the authorized users in an uninterrupted way.

Example 3.3.1. The following behavior gives an example of confidentiality, integrity
and availability compromise: an attacker able to steal credential to one’s email address
compromises the confidentiality of data. Using its email address to send a phishing link
that installs a ransomware (a software that encrypts the data of one’s computer) results
in a data integrity compromise, once the ransomware is installed. The deletion, by the
attacker of content in the mail box, is a data availability compromise.

Definition 3.3.2
We refer as an intrusion as a successful compromise of confidentiality, integrity and/or
availability of an asset.

Definition 3.3.3
A vulnerability is a security weakness that can be exploited by an attacker. The attack
surface is the sum of all system vulnerabilities.

Definition 3.3.4
An exploit is a sequence of commands used by an attacker to take advantage of a vulner-
ability. An exploit is an intrusion.

Definition 3.3.5
A zero-day attack is the tentative of exploiting a vulnerability that is not publicly known
when the attack occurs.

Definition 3.3.6
An attack scenario refers to a sequence of actions performed by an attacker that aims to
reach the final intrusion goal of the attacker. An action itself can either be an attack, an
intrusion, or a benign action, i.e. a legal activity such as a request for publicly available
data.

The notion of "attack scenario" is close to the "cyber kill chain" which is an abstraction
of the attack scenario [HCA+11; PB17].

39

Chapter 3 – Intrusion detection and security in a dynamic IP network

3.3.2 Network security: the cyber kill chain

Definition 3.3.7
The cyber kill chain is the model of the intrusion process over time [YR15].

The cyber kill chain is compound of 7 steps [AL15; MPB14]:

1. Reconnaissance: the target is selected and its potential vulnerabilities are explored,

2. Weaponizing: the attacker creates the software that exploits one or several vulner-
abilities of the target system,

3. Delivery: the attacker transmits the malicious software to the system,

4. Exploitation: the software is executed and the vulnerability is exploited,

5. Installation: the malicious software installs a backdoor for the external attacker,

6. Command and Control: the malicious software grants a permanent access to the
network,

7. Action on objective: the attacker takes measures to reach his goals.

This model is useful to propose different security steps to prevent the attacker to reach
her/his objectives:

1. Detect the reconnaissance step and the exploration behavior of the attacker,

2. Reject: prevent the information leaks and un-authorized access,

3. Interrupt or stop the outgoing traffic toward the attacker,

4. Deteriorate the command control of the attacker,

5. Deceive the command control of the attacker,

6. Contain: change the memory representation of the network.

It is important to note that the attack is successful (i.e. there is an intrusion on the
network) at the installation step of the cyber kill chain.

40

3.4. Detecting intrusions on a network

3.3.3 Network security: why is security required ?

Intrusions are costly for the individual and for an organization. These costs can be
classified in three main categories:

• Economical cost: the economical prejudice can be high. It can happen through
the theft of data or intellectual property, through a denial of services, through the
reparation costs of a compromised service/system, etc. For example, the Wannacry
ransomware [MP17] costed an estimated amount of 4B$, affecting more than 200,000
computers over 150 countries. The attacker received a cumulative amount of money
in Bitcoins, estimated over 300k$.

• Reputation cost: intrusions can lead to loss of customer’s trust, bad publicity
in press,... [Lab15] evaluated the cost of reputation damage of an intrusion to an
average of 8500$ for small businesses and over 200,000$ for enterprises.

• Regulatory fines: General Data Protection Regulation (GDRP) and other legal
framework around cyber-security states that fines could be charged to an organiza-
tion in the event of a cyber-attack. The GDPR states that some violations could
result in fines of up to $12M$ [Pel21].

[BD12] gives an interesting statistic: zero-days attacks last a mean time of 312 days
and by the time the vulnerability is publicly known, the amount of the vulnerability
exploit is multiplied by a factor 10,000. Unfortunately, each of the vulnerability exploit
can be linked with one or several of the aforementioned costs, showing the importance of
intrusion detection.

3.4 Detecting intrusions on a network

There exist two main types of IDS :

• Signature-based Intrusion Detection Systems (SIDS) where known behaviors are
used to compare with the occurring behaviors [GS08; HS14]

• Anomaly-based Intrusion Detection System (AIDS) where all the traffic is analyzed,
and unknown and malicious traffic is spotted to raise alerts [Khr+19; DDW00;
Lia+13].

41

Chapter 3 – Intrusion detection and security in a dynamic IP network

3.4.1 Network data

While network messages circulate through packets, there exist other type of network data
that can be used for the detection of intrusion.

Definition 3.4.1
We call network logs the records of the events that occurred in an application. It contains
information about the user and its actions (Access to objects, authentications attempts,...).
Most of the time, each line of the network log is a description of a single event. Network
logs can be extracted from a firewall, from an IDS/IPS and from most software present
on the network.

3.4.2 Detection: the signature approach

Definition 3.4.2
A signature is a search rule used for the examination of the network traffic (a packet or
a series of packets). This rule searches for matches in the packet header or/and in the
payload.

Definition 3.4.3
Signature-based Intrusion Detection Systems (SIDS) are devices or software that
filter a data source (traffic, network flows, logs) using signatures of the attacks, defining
known characteristics of cyber-attacks [KT03; HS14; GS08].

SIDS are widely used on nowadays networks. Their main advantages is that their
detection is very efficient for known attack behaviors which makes with the firewall a
solid first barrier for the attackers to pass. The main drawback of SIDS is the high
number of patterns that need to be handcrafted, stored and analyzed, as each attack has
a unique signature. Furthermore, the fixed signature base used for the detection can be
bypassed by attackers (see example 3.4.1 (2)) by finding a sequence that is sufficient to
exploit a vulnerability while being far enough of the matching signature to pass through
the in-place security.

As an example, [Hol14] tests on the SNORT signature-based IDS a dataset of 356
severe attacks including 183 attacks seen as zero-days attacks to the rule set. This paper
explains how SNORT is able to detect a conservative estimate of zero-day detection of
8.2% due to the fact that zero-days attack deviate from known behaviors. It also shows
that more than 54% of the known attacks are accurately detected using SNORT. Event

42

3.4. Detecting intrusions on a network

if half of the attacks are identified by SNORT, this figure shows that the other half of the
attack traffic is able to compromise the security of the network. Thus, it seems that a
single SIDS is not sufficient for ensuring the security of the network.

3.4.2.1 How are SIDS built?

SIDS are based on user-defined signatures. The signatures are designed from several data
sources.

• Common knowledge: using already known attacks and events from the past (years,
months, days) to build signatures. Default signature datasets exist on open access.

• An alert raised by a SIDS can trigger a refining of an existing signature.

• An alert triggered by a SIDS can lead to the analysis of an attack scenario and thus,
new signatures can be defined for the un-detected attacks.

Figure 3.7 illustrates a simple version of the functioning of SIDS.
SIDS generally use regular expressions as filters. The main drawback of SIDS is the

high number of signatures that need to be handcrafted, stored and analyzed. The SIDS
is generally paired with the router and filter incoming and outgoing traffic from the LAN.

Example 3.4.1. The XSS attack (Cross-site Scripting) is a code injection of HTML
code into a website. For example, HTML code can be injected in an authentication field
on a website. HTML code is bound to the use of HTML tags between angle brackets ("<"
and ">"). A simple way to raise an alert preventing the XSS intrusion is to detect the
angle brackets.

The following signature rule – SNORT rule – detects angle brackets and HTML tags:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"Paranoid XSS Cross-site scripting attempt"; flow:to_server,
established;pcre:"/((\%3C)|<)[^\n]((\%3E)|>)/i";
classtype:web-application-attack; sid:9000; rev:5;)

The rule is built as follow:

• alert: rule action. SNORT will generate an alert if the condition of the rule is met.

• tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS: observe all the traffic
coming from the outside of the network, toward the HTTP network server on the
HTTP ports, using the TCP protocol.

43

Chapter 3 – Intrusion detection and security in a dynamic IP network

Figure 3.7: The analyst is at the heart of the SIDS. She/he creates a signature dataset
which is exploited to correlate the incoming data source (IP packets, network flow, logs)
with the known malicious characteristics. The SIDS raises alerts that comes back to the
analyst. With the help of external data-sources (documentation, logs, alerts from other
security mechanisms), the analyst updates the signature dataset.

• msg: ”Paranoid XSS Cross-site scripting attempt”;: an alert message that
will be logged if the condition is met

• flow: to_server, established; observe the TCP flow destined to the server,
once the session is connected

• pcre:"/((\%3C)|<)[^\n]+((\%3E)|>)/i"; The actual payload filter. Looking for
payload where a HTML tag is present.

– (\%3C)|<) detects the HTML encoding of the character ’<’ or the character
’<’ itself.

– [^\n]+ detects any sequence of characters that do not contain the new line
character.

– (\%3E)|>) detects the HTML encoding of the character ’>’ or the character
’>’ itself.

44

3.4. Detecting intrusions on a network

• classtype:web-application-attack; classify the alert in a category that is in a
more general category of attacks (here : web application attacks).

• sid:9000; rev:5; SNORT rule index and revision index.

This SNORT rule:

• is able to detect an XSS attack

• can be bypassed by an attacker

• can raise false positive alerts

1) the xss attack : <script alert=document.cookies/> would raise an alert as the
HTML code contains a JavaScript code injection that displays the website cookies, it
would be a true positive (even though the injected code is harmless).

2) An attacker can still perform an XSS attack embedding the following code into an
uploaded file:
javascript:/*--></title></style></textarea></script></xmp><svg/onload=
’+/"/+/onmouseover=1/+/[*/[]/+alert(document.cookies)//’> Note that the here
above JavaScript intrusion is performed on a specific application and is not generic. This
code, embedded in an uploaded file is able to bypass the SNORT rule using JavaScript
comment that shadows the HTML tags while still being able to execute the malicious
code. (alert(document.cookies)).

3) A user using the password iybzef<hjbaz>zd would raise an alert, even though
she/he is not attacking the information system. This alert is a false positive.

There are four things to learn from the example 3.4.1:

• A signature based intrusion detection can allow efficient attack detection

• Writing a detection rule is a complex task

• There is a way to bypass a detection rule but this way increases the complexity of
the attack

• There are cases where the rule can raise false alerts

45

Chapter 3 – Intrusion detection and security in a dynamic IP network

3.4.3 Detection: detecting anomalies

Definition 3.4.4
AIDS are devices or software that detect deviations of the occurring connections with
respect to a known model of correct network behavior [Gar+09; JPP11].

Anomaly detection is a difficult task. It is required as attackers often make changes to
already known attacks to evade SIDS and other security mechanisms. For instance, only
in the first quarter of 2017, more than 55.000 attack variations were discovered in only
15 attack families [Sym17].

AIDS aim at producing a model of the normal behavior and to detect behaviors de-
viating from this model. Anomaly-based IDS use statistical inference with either un-
supervised learning (a method of learning where no labels are required) or supervised
learning (a method of learning where immediate feedback depending on label information
is required). Unsupervised learning is widely used as it is possible to analyze the net-
work frames without the need of labeled data [SGA20; ASS19; Don+19]. As stated in
[SGA20], there exists a trade-off between a high accuracy using unsupervised learning and
a time-efficient, low complexity model. While unsupervised learning is convenient due to
its ability to train in real-time and to use unlabeled data, its performances are hindered
by high false positive rates. False positives are particularly costly in IDS, as they require
analysts to study in depth imaginary intrusions and eventually decrease the confidence
of the analysts in the IDS. In practice, FPR needs to be extremely low, for an IDS to be
operational.

In terms of practical implementation, retrieving labeled network logs (Definition 3.4.1)
to detect an anomaly is a major issue. Indeed, such data require expert engineers to
analyze vast amounts of network logs to pick the ones related to an attack.

3.4.3.1 How are AIDS built?

Figure 3.8 illustrates the basic functioning and updating of an AIDS. The AIDS is trained
using a Machine Learning (ML) algorithm from a network traffic dataset [AMH16; SV17].
Supervised, Unsupervised or Reinforcement Learning (RL) based AIDS can be designed
depending on the data used for training. This dataset contains either:

• only normal traffic: in this case the AIDS computes the difference between the
incoming traffic and its conception of normal behavior and raises an alert if too

46

3.4. Detecting intrusions on a network

much difference is found [Abb+14; BMS13; Khr+19]. It is hard for supervised
learning algorithms to learn from such dataset

• normal and attack traffic: in this case, the ML algorithm acts as a classifier [Sar+20;
ASS19; Khr+19]. From such datasets, all ML methods can be applied

Once trained, the model is used in an inference mode and raises alerts that are sent
back to the analyst. That is done by exploiting the obtained model on the real incoming
data. The dataset can be updated, and the analyst can then re-train the AIDS in order
to update it.

Figure 3.8: The AIDS is trained from a dataset. Once trained, it is used for inference on
the network. Raised alerts go back to the analyst. She/he can trigger the re-training of
the AIDS from more recent data. The analyst can update the dataset through re-labeling.

3.4.4 Network Security: defense in depth

Cyber-defense, as a security concept, promotes the use of security controls in multiple
layers in an IS [Smi03]. For example, using a network firewall at the entry of the company
network and before the internal zone (see Figure 3.6) constitutes two security layers.
The security controls can be arranged to shelter a sub-network from some intrusions
packets. Firewalls can be used to block packets based on their destination or source (IP
addresses, TCP ports,...). Firewalls are often used as a router to create a sub-network
(a demilitarized zone) separated with respect to the level of trust that is given to each
network [Esc98]. An IPS can filter the data directly (if a matching pattern is found for
example) or block a user.

47

Chapter 3 – Intrusion detection and security in a dynamic IP network

3.5 Conclusion

Network security is a complex field due to the high number of variables of this perpetually
changing environment.

On the first hand, the network itself changes, with the use of new hardware, new
software, services, unfortunately introducing vulnerabilities. It makes the network security
a complex task as the security itself has to evolve with respect to the network changes.
On the other hand, the user’s behavior adapts to these numerous changes and so does the
attacker, exploiting the newly created vulnerabilities.

The goal of network security is to secure a network by identifying, protecting, de-
tecting, responding and recovering, in accordance with the NIST framework [Bar+18].
To this end, there exist many security tools such as firewall or IDS/IPS. IDS are probes
that study the network traffic and tries to detect malicious behavior, either using already
known misbehaviors (Using a signature approach) or by finding anomalies in the user’s
behaviors.

The challenges of anomaly and signature probes are to be able to detect accurately
those misbehaviors while not generating too many false alarms. Furthermore, those probes
should be able to keep up with the incoming traffic. Finally, such probes should preferably
be easy to update to remain relevant in the context of a dynamic network environment,
with dynamic behaviors.

While SIDS are efficient to help an analyst to analyze known traffic, they perform
poorly in the detection of zero-days attacks. AIDS examine the traffic and compare it with
an empirical model of the normal and attack traffic. It is more relevant for the detection
of the novel attacks but also bound to higher false positive alert rate. This manuscript
explores the AIDS capabilities for the detection of intrusions on simulated network traffic.
The issue of the false positive alerts is explored as well as the design challenges of such
probes, facing biased imbalanced data and dynamic network environments.

48

CHAPTER 4

Training AIDS using IP network data

4.1 Introduction

Network Intrusion Detection Systems (NIDS) are required for the security of the network.
As stated in Chapter 3, it exists two types of NIDS :

• Signature-based Intrusion Detection Systems (SIDS)

• Anomaly-based Intrusion Detection System (AIDS)

AIDS are mostly based on Machine Learning (ML) techniques. This chapter aims to
discern the different ML techniques. The considered ML algorithms can be classified as
supervised, unsupervised, reinforcement learning and Genetic Programming (GP). The
drawback and advantages of each category of ML algorithms in an intrusion detection
context are discussed. This chapter also introduces the classification and detection prob-
lems and set ground for the requirements of efficient AIDS based on ML. Finally, the
Tangled Program Graph (TPG) learning framework is introduced as a technique that can
be derived into an evolutive supervised classification task. The TPG is used in this thesis
as an AIDS.

Chapter 4 – Training AIDS using IP network data

4.2 Machine Learning: Learning methods

ML is a wide domain where many methods exist. The here after methods differs by their
learning principles, types of data or how data are used in order to train the method.

4.2.1 Supervised Learning

Supervised Learning is a family of training methods for which all training set data samples
are labeled with their expected output data [HTF09]. The supervised Learning Agent
(LA) is trained to map the expected output (label) to the input data using feed-
backs under the form of fitness functions and back propagation or mathematical operations
such as gradient descent, derivatives and linear algebra. Supervised learning algorithms
include among others, linear regression, Support Vector Machine (SVM), decision
trees and most Neural Network (NN).

4.2.1.1 Linear Regression

Linear regression is a simple data modeling method, reflecting a regression problem where
the output of the classifier is a single real value. The model is described by a simple
equation Y = aX + b. The model is mostly used for predicting the Y ∈ R from a given
X using a and b as the parameters of the model [MPV21; Wei05].

Example 4.2.1. An estimation of the amount of rain (Y) depending on the average cloud
cover (X) could be given using a linear regression model (See Figure 4.1).

The problem is to find the value of the parameters a and b that minimize the mean
error of the model on the dataset. The example with two variables can be generalized to
a larger number of variables.

Definition 4.2.1
Linear classifiers are linear models that classify data by applying a set of linear com-
bination on the samples.

4.2.1.2 Support Vector Machines

SVM [Hea+98] is a generalization of linear classifiers [CV95; CDS19]. It builds a linear
separation model where the average distance to the line of each sample from each class
has been maximized. The SVM model idea is to embed the examples of the dataset into

50

4.2. Machine Learning: Learning methods

R
ai

n
(m

m
)

Cloud cover
Figure 4.1: Example of a one dimension linear regression. The model can be used to
predict the amount of rain depending on the average cloud cover.

a very high dimension space. We know that with a sufficiently high dimension space, any
dataset is linearly separable (meaning that a hyper plan separates samples of two classes
perfectly). The SVM trick is to do this operation without having to really build up those
high dimension representations.

4.2.1.3 Decision trees

Decision trees [CP77] are models composed of a succession of splitting nodes. The entry
point of the decision tree is called the root node. Nodes that do not have children are
called leaves. In the learning phase, the tree is recursively built starting from the root
node, processing the whole dataset. There are two main steps:

1. find the feature that discriminate the best the classes of the sample.

2. define the boundaries to split the dataset on the selected feature.

Then, each sub-dataset is recursively split as described above. In the inference phase,
each sample data goes from the root node to one of the leaves, representing a decision.
Each node contains a condition. Depending on whether or not this condition is met, the
data sample travels to either the left node child or to the right node child. The process
recurses until a leaf node is reached.

Example 4.2.2. Figure 4.2 is a simple decision tree model. Each sample data goes from
the root node ("Is it sunny?") and follows the path depending on the condition. A single
decision is taken when the leaf node is reached.

51

Chapter 4 – Training AIDS using IP network data

Is it sunny ?

Is it windy ? Is it Raining ?

Stay home Stay homeGo for a walk Go for a walk

yes no

nono
ye

s
ye

s

Figure 4.2: Simple example of a decision tree. Input data are weather data and output
data is a decision in the set {Stay home, Go for a walk}.

The Random Forest algorithm [Bre01] is based on the use of multiple decision trees.

4.2.1.4 Neural Networks

NN are complex networks used for classification [MP43]. A layer is composed of several
nodes. Nodes in a layer are interconnected with the nodes of the next layer. In the infer-
ence phase, a node receives incoming data, applies a weight and an activation function,
and passes the results to the next layer. Depending on the activation of the different
nodes, different decisions can be taken. In the learning phase, an optimization technique
is used to improve the values of the weights based on the current errors produced by the
NN. Convolutional Neural Network (CNN) are complex neural network where nodes can
perform a convolution, detecting patterns in the data [LB+95]. CNN are widely used for
classification problems.

52

4.2. Machine Learning: Learning methods

4.2.2 Unsupervised Learning

Unsupervised learning learns regularities from unlabeled data. When data are represented
by vectors in Rn, the problem of unsupervised classifiers is to create groups of samples
that are similar, groups being dissimilar from each other. In these algorithms, the notion
of similarity between samples is of particular importance. Most of the time, information
such as the number of classes is required for the learning process [CA16]. In the following,
we introduce common unsupervised learning algorithms such as K-means and Singular
Value Decomposition (SVD).

We notice that it also exists a domain in between supervised and unsupervised learning
called semi-supervised learning, where the ML method is robust to the missing of one or
several label information [Zhu05; OHT20].

4.2.2.1 K-means

K-means [Mac+67] clusters data samples into k groups (called clusters). The separation
is based on the computation of the mean distance of the data samples to the separation
limit. Although the resulting model is similar to SVM, k-means uses an iterative process to
converge toward the optimal solution based on mathematical optimization. Furthermore,
K-means do not use labels in its training and can lead to data separations that are not
relevant in a classification problem, depending on both how the initialization phase of
the learning process was done and the function chosen to measure the distance between
samples in order to separate them.

4.2.2.2 Singular Value Decomposition

SVD [WRR03] is a mathematical operation used to find eigenvectors on complex ma-
trix. Those eigenvectors are used to accurately separate the data samples. Principal
Component Analysis (PCA) is a similar method that helps reducing the number of
variables, selecting combinations of features containing as much information as possible.

4.2.3 Reinforcement Learning

Reinforcement Learning (RL) [KLM96] is an alternative to both supervised and unsu-
pervised learning. RL is the problem faced by a ML agent that learns behavior through
trial-and-errors interactions with a complex and dynamic environment (see Figure 4.3).

53

Chapter 4 – Training AIDS using IP network data

The actions of the RL agent have an impact on the environment. When an action is good
for the expected problem to solve, the environment rewards the agent. The actions learned
as reactions to a set of specific states of the environment is called the policy. RL is known
to perform correctly when the environment works under the Markovian assumption that
each state depends on the finite combination of the previous state and is a reaction to
the agent’s policy [NN98]. RL algorithms interact with their environment to find relevant
solution to the problem they face. It implies that they are subject to the Explore/Exploit
dilemma which consists in finding an equilibrium between the exploration of the environ-
ment (that can lead to greater rewards and thus, better policies) and the usage of the
current agent’s policy (that may cause a lack of observations of important characteristics
of the environment). Using this feature, a RL method is able to keep including novelty
in its policy and exploitation is particularly interesting for the design of an Intrusion
Detection System (IDS) constantly facing new threats.

Agent

Environment

A
ct

io
n State
+

R
eward

Figure 4.3: Reinforcement learning is the problem of an agent learning from a complex
environment. The agent modifies the environment through the use of actions and the
environment sends back its state and a reward.

RL training is based on the maximization of a reward. A reward can be seen as a
signal, sent by the environment, that implicitly indicates the performance of the RL agent.
The reward is sent after an action was taken by the RL agent. Common RL agents are
Deep Q-Networks (DQN) [Mni+15], based on the Q-Learning algorithm [WD92].

4.2.3.1 Q-Learning

Q-learning [WD92] is efficient on smaller problems, where the action space (A) and the
state space (S) is small. It associates a S × A sized matrix (the Q-table), storing the

54

4.3. Evaluation of classification and detection

expected reward values for a given state of the environment and for all actions. The
chosen action is the one that maximizes the reward.

4.2.3.2 Deep Q-networks

DQN are an optimization of Q-learning based on the use of NN that generalize the agents
for greater state spaces and action spaces [SB18]. In case of high dimensions, the Q-
table becomes complex to fill with correct reward estimations and the exploration of the
environment can be limited.

4.2.4 Genetic programming

GP [Hol92] is a programming technique where a population of individual (often randomly
initialized) is set to face a complex task. The individuals that perform badly on this
task are discarded, and the others are kept. That is the selection and decimation
phases. The remaining individual goes through cloning and complex mutation processes.
These mutations results in light modifications of each individual behavior. The selection,
decimation and mutation altogether is called a generation. The population is then re-
evaluated and the process iterates. The successive generation can be seen as an empirical
fine-tuning of a population.

The aforementioned learning techniques can be tuned to be trained using genetic
programming. For example, a NN population with random weights can be generated,
and the best fitting individuals in that population can be cloned and mutated to improve
the classification results of the method. In order to determine whether or not a model is
correct, an evaluation is required. This evaluation consists in inferring the learned model
on new data samples and to measure its performance.

4.3 Evaluation of classification and detection

The classification problem is formalized as a machine learning problem where sample
belong to different categories (or classes). The classification task faced by a ML model
is to associate a sample with its class. The detection problem is a binary classification
task where one of the classes is the class to detect, often called Positive (P). Conversely,
the other class is called Negative (N).

55

Chapter 4 – Training AIDS using IP network data

Accurate prediction of P by the model leads to true positives (tp) while predicting the
Positive class on a negative sample results in a false positive (fp). Conversely, we refer
as a true negative as the prediction of the Negative class on a negative sample and as a
false negative as the negative prediction of a positive sample (fn). A detection model is
commonly evaluated [Lev16] with four measures:

• Accuracy (see Eq. 4.1)

• Precision (see Eq. 4.2)

• Recall (see Eq. 4.3)

• F1-score (see Eq. 4.4)

Accuracy = tp + tn

tp + tn + fp + fn
(4.1)

Accuracy is the measure of the amount of correct prediction with respect to the overall
number of predictions. A high accuracy testifies about a model taking good decisions.

Precision = tp

tp + fp
(4.2)

Precision is the measure of the number of true positives with respect to the overall number
of positive predictions. A high precision is correlated with a model rarely mistaking when
predicting the positive class. A model with a high precision can miss Positive samples.
Such a model is a good candidate for intrusion detection as false alarms are costly for an
operational security analyst.

Recall = tp

tp + fn
(4.3)

Recall is the measure of the number of true positives with respect to the overall number
of positive samples. A model with a high recall is a model that rarely misses a Positive
sample. Such a model can generate false positive alerts.

F1 − score = 2 ∗ Recall ∗ Precision

Recall + Precision
(4.4)

F1-score is a measure that gives as much importance to the recall and the precision (i.e.
to the false positive and false negatives). It compares the number of true positives to the
number of total errors of the model.

56

4.4. Learning from network data

The ROC curve is the representation of the True Positive Rate with respect to the
False Positive rate. Area Under Curve (AUC) is defined as the area under that curve.

4.4 Learning from network data

Network anoaly detection is often done at the layer 3 and 4 of the OSI model (se Figure
3.5). The network frames and packets can be analyzed. Information on the network
connection can be extracted under the form of features and be used for the training of
learning-based IDS.

4.4.1 Network data: NIDS datasets

Network Intrusion Detection Systems (NIDS) datasets generally comes in two formats.
Some datasets use network packets (or PCAP) while other use network flow or network
logs. These types of data are structured and have standard formats.

4.4.2 Packets, Network flows and logs

We refer to Packets network flows and logs as defined (respectively) in Definition 3.2.6
and 3.4.1. Packets have a structured header and a variable payload size. Minimum packet
size is 64B and its maximum size is 64KB. Network flows are structure data extracted
from pcap files. The size and structure of a network flow depends on the processing.
For example, the CICFlowMeter software extracts 80 features from PCAP files. An un-
optimized storage of such a data through the use of double precision values would be 640B
per network flow. Finally, logs are also structured data that vary depending on the source
of the log or the application used to extract it, but its size is not necessarily bound as
it contains textual description of events. The log file size has a high bound (for example
1GB under UNIX systems) in order to prevent process errors and operations such as log
rotation exist in order to keep logs for a longer amount of time.

4.4.3 NIDS datasets

M. Ring et Al. [Rin+19] published a survey of NIDS datasets. Among them, some such
as CIDDS-001 or CICDDoS19 are flow based and generally more compact as they sum
up meta-information of the traffic. The DARPA dataset [MIT99] comes with PCAP

57

Chapter 4 – Training AIDS using IP network data

information. Some other datasets such as the CICIDS 2017 dataset [SLG18] gives both
PCAP and network flow information.

The CICIDS 2017 is a recent labeled network intrusion dataset originally designed to
meet the needs of having representative network data for Network intrusion Detection
[SLG18]. Even though a revision of this dataset is proposed in [ERJ21], correcting some
of the label information, the original CICIDS 2017 dataset is mostly used for the exper-
imental parts of this thesis, in order to both, study the impact of the dataset errors on
the ML method proposed and to be comparable with the state of the art methods.

4.4.4 Network data: the imbalance nature of the intrusion de-
tection problem

Attack traffic coming from outside of the Information System (IS) toward the inside of
the IS represent a small amount of traffic with respect to a normal amount of connection
resulting of normal activity. Realistic network intrusion detection datasets should take
into account that there are usually fewer attacks on a network than harmless traffic. This
issue impact the ML training of the IDS as realistic data are by nature imbalanced and
thus statically harder to learn from [HG09].

4.5 Using ML algorithms for Network security
through the design of an AIDS

The ideal AIDS is a probe that

• triggers as few false alerts as possible (We saw in Chapter 2 that 99.67% precision
is a minimum on the CICIDS 2017 dataset),

• is resilient to mislabeling and data imbalance as they are both present in NIDS
datasets,

• enables continual learning, to fit the changes occurring on the network,

• enables an efficient learning phase, to keep pace with the incoming traffic,

• can learn with missing labels.

58

4.5. Using ML algorithms for Network security through the design of an AIDS

4.5.1 Supervised Learning

Supervised learning is intuitively a good candidate for network security. It permits efficient
classification with the use of CNN and reaches high precision. The drawbacks of this
method is that the learning depends on the presence of accurate labels which is hard to
obtain. Thus, the training of supervised learning method faces at least one of the two
issues:

• errors in label cause a degradation of the detection of intrusion and produces a
model with degraded capabilities

• the model over-fits the dataset leading to costly errors under operational inferring
conditions

Furthermore, ML-based models are static and thus, are not sustainable solutions for long-
lasting inference.

4.5.2 Unsupervised Learning

Unsupervised learning major strength is that it does not depend on data labeling. It
makes it easier to obtain qualitative data to train the model as unlabeled PCAP data
are sufficient. Unfortunately as an attacker tries to be as close as possible to a normal
behavior, it seems easier to bypass such methods. The challenge on the use of unsupervised
learning is thus to find accurate data separation. Furthermore, learning from unlabeled
data is computing intensive making it difficult to enable both flux processing and continual
learning.

4.5.3 Reinforcement Learning

Reinforcement Learning is adapted to timely problems where the environment’s state
at T = t + 1 depends on both the environment’s state at T = t and on the action
taken by the RL agent. Such dependence is met even when no actions are taken on the
network for a fixed pair of source and destination IP addresses and ports. The supervision
required by the RL agent is relaxed with respect to the one needed by supervised learning
algorithms. RL algorithms are sometime used as classifiers, that usually converge slower
than supervised learning algorithms as they require no immediate supervision.

59

Chapter 4 – Training AIDS using IP network data

A B+>

B

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

TPG example Semantics of the TPG

Figure 4.4: Example of a Tangled Program Graph (TPG)

4.5.4 Genetic Programming

Genetic programming used with any of the previously described methods will permit in-
cremental learning, updating continuously the model and making it able to detect novelty
along the monitoring.

4.6 Experimented GP method: Tangled Program
Graphs (TPG)

The TPG framework [KSH] is a GP-based RL method which weightlessness and agility
is interesting for the intrusion detection problem. The capabilities for intrusion detection
of the TPG is deeply studied in this thesis. We describe here the TPG, as introduced by
Kelly and Heywood [KSH].

4.6.1 TPG: Model and Learning Algorithm

The semantics of the Tangled Program Graph (TPG) model consists of three elements
composing a directed graph: programs, teams and actions. The teams and actions are the
vertices of the graph, teams being internal vertices while actions are leaves of the graph.
The programs are associated to the edges of the graph that each connects a source team
to either a destination team or a destination action vertex. Self-loops, that is an edge
connecting a team to itself, are not allowed in TPGs.

60

4.6. Experimented GP method: Tangled Program Graphs (TPG)

42.0e

Figure 4.5: Program from a TPG. On the left, the learning environment state fed to the
program. In the middle, the sequence of instructions of the program. On the right, the
result produced by the program.

A program can be seen as a black box that takes the current state of the learning
environment as an input, processes it, and produces a real number, called a bid, as a
result. In more detail, a program is a sequence of simple arithmetic instructions, like
additions or exponents. Each instruction takes as an operand either data coming from the
observed learning environment, or the value stored in a register by a previous instruction.
The last value stored in a specific register, generally called R0, is the result produced by
the program.

The execution of a TPG starts from its unique root team, when a new state of the
environment becomes available. All programs associated to outgoing edges of the root team
are executed with the current state of the environment as their input. Once all programs
have completed their execution, the edge associated to the largest bid is identified, and
the execution of the TPG continues, starting from the destination team or action of this
edge. If another team is pointed by this edge, its outgoing programs are executed, still
with the same input state, and the execution continues along the edge with the largest
bid1. Eventually, the edge with the largest bid leads to an action vertex. In this case,
the action is executed by the learning agent, a new resulting state of the environment is
received, and the TPG execution restarts from its root team.

The genetic evolution process of a TPG relies on a graph with several root teams. The
initial TPG created for the first generation only contains root teams whose outgoing edges
each lead directly to an action vertex. At a given generation of the learning process, each
root team of the TPG represents a different policy whose fitness is evaluated. Evaluating
a root team consists of executing the TPG stemming from it a fixed number of times, or
until a terminal state of the learning environment is reached, like a game-over in a video

1If a team is visited several times, previously taken edges are ignored to avoid infinite loops.

61

Chapter 4 – Training AIDS using IP network data

game. The function used to evaluate a root team based on the action it took is called the
fitness function. The fitness obtained after evaluating each root team of the TPG is used
by the evolution process. Worst-fitting root teams, which obtained the lowest fitness, are
deleted from the TPG.

To create new root teams for the next generation of the evolution process, randomly se-
lected remaining teams from the TPG are duplicated with all their outgoing edges. Then,
these new edges undergo a random mutation process, possibly altering their destination
vertex, and modifying their programs by adding, removing, swapping, and changing their
instructions and operands. Surviving root teams from previous generations may become
the destination of an edge added during the mutation process, thus becoming internal ver-
tices of the TPG. This mutation mechanism favors the emergence of long-living valuable
sub-graphs of connected teams. Indeed, useful teams contributing to higher fitness have a
greater chance of becoming internal vertices of the TPG which can not be discarded unless
they become root teams again. Hence, complexity is added to the TPG adaptively, only
if this complexity leads to better fitness for the learning agent. Finally, it is important to
note that a team from the TPG may be used by several policies stemming from different
root team. Hence, a valuable behavior discovered by a single root team at generation n

may be reused by other root team in subsequent generations. A detailed description of
this evolution process can be found in [Kel18].

The capabilities of TPGs have been demonstrated [KSH; Kel18] on automatically play-
ing the 55 video games from the Arcade Learning Environment (ALE) [Bel+13]. In this
learning environment, the adaptive complexity of TPG leads to models with diverse sizes,
depending on the complexity of the strategies developed to play each game. For example,
there are two orders of magnitude between the smallest and largest networks built within
these learning environments. On the performance side, TPGs have been shown to reach
a level of competency comparable with state-of-the-art deep-learning techniques on ALE
games, for a fraction of their computational and storage cost. Extensions of the TPG
model have been proposed to support continuous action spaces in order to target new
learning environments, like time-series predictions [KH17b], and to GP-based support
classification [KH17a]. This last GP-based classification proposal motivates the chapter
on imbalanced classification.

62

4.7. Conclusion

4.6.2 Parameters of the TPG

In this manuscript, an effort is made for the reproducibility of the results. We present
the parameters of the legacy TPG in Table 4.1 and provide a quick description of them
associated with their default values. Additional parameters of the Generic Evolvable
Graphs for Efficient Learning of Artificial Tangled Intelligence (GEGELATI) TPG library
are described in Table 4.2

The parameters selected for each contribution will be detailed in the corresponding
chapters.

Default parameters of the TPG has been studied and defined in [Kel18].

4.7 Conclusion

This Chapter explains the context of ML in the intrusion detection domain. ML exists
under different forms and each of them presents drawback and advantages in a NIDS
context. The learning of the ML techniques is conditioned by the available data. Thus,
network intrusion data used for the training of an AIDS must be qualitative and represents
as much as possible the reality of the network environment.

Through this chapter important intrusion detection problems are introduced. Indeed,
obtaining representative and qualitative network data is a complex task. Then, once
qualitative data is obtained, one must, while designing its ML model, use it in a fair
way and deal with the imbalanced nature of the detection task where intrusions are less
represented than normal traffic. Finally, obtaining a fair ML model trained on a NIDS
dataset does not guarantees that the model is usable in operational conditions, knowing
that the network environment is dynamic and zero day attacks emergence. To this end,
the TPG framework is introduced as a way to provide an adaptive method based on
the incremental nature of the genetic programming process. This thesis explores the
capabilities of the TPG framework in an intrusion detection context.

63

Chapter 4 – Training AIDS using IP network data

Pa
ra

m
et

er
N

am
e

D
es

cr
ip

tio
n

D
ef

au
lt

Va
lu

e
m

ax
N

bA
ct

io
ns

Pe
rE

va
l

M
ax

im
um

nu
m

be
r

of
ac

tio
ns

pe
rfo

rm
ed

on
th

e
le

ar
ni

ng
10

00
en

vi
ro

nm
en

t
du

rin
g

ea
ch

ev
al

ua
tio

n
of

a
ro

ot
m

ax
N

bE
va

lu
at

io
nP

er
Po

lic
y

M
ax

im
um

nu
m

be
r

of
tim

es
a

gi
ve

n
ro

ot
is

ev
al

ua
te

d
10

00
m

ax
Pr

og
ra

m
Si

ze
M

ax
im

um
nu

m
be

r
of

Li
ne

w
ith

in
th

e
Pr

og
ra

m
of

th
e

T
PG

96
pA

dd
Pr

ob
ab

ili
ty

of
in

se
rt

in
g

a
lin

e
in

th
e

Pr
og

ra
m

0.
5

pD
el

et
e

Pr
ob

ab
ili

ty
of

de
le

tin
g

a
lin

e
in

th
e

Pr
og

ra
m

0.
5

pM
ut

at
e

Pr
ob

ab
ili

ty
of

al
te

rin
g

a
lin

e
of

th
e

Pr
og

ra
m

1.
0

pS
wa

p
Pr

ob
ab

ili
ty

of
sw

ap
pi

ng
tw

o
lin

es
of

th
e

Pr
og

ra
m

1.
0

m
ax

In
itO

ut
go

in
gE

dg
es

M
ax

im
um

nu
m

be
r

of
Ed

ge
co

nn
ec

te
d

to
ea

ch
T

PG
Te

am
3

of
th

e
G

ra
ph

w
he

n
in

iti
al

iz
ed

m
ax

O
ut

go
in

gE
dg

es
M

ax
im

um
nu

m
be

r
of

ou
tg

oi
ng

ed
ge

du
rin

g
5

G
ra

ph
m

ut
at

io
ns

nb
R

oo
ts

N
um

be
r

of
ro

ot
Te

am
s

to
m

ai
nt

ai
n

w
he

n
po

pu
la

tin
g

th
e

G
ra

ph
10

0
pE

dg
eA

dd
iti

on
Pr

ob
ab

ili
ty

of
ad

di
ng

an
ou

tg
oi

ng
Ed

ge
to

a
Te

am
0.

7
pE

dg
eD

el
et

io
n

Pr
ob

ab
ili

ty
of

de
le

tin
g

an
ou

tg
oi

ng
Ed

ge
of

a
Te

am
0.

7
pE

dg
eD

es
tin

at
io

nC
ha

ng
e

Pr
ob

ab
ili

ty
of

ch
an

gi
ng

th
e

de
st

in
at

io
n

of
an

Ed
ge

0.
1

pE
dg

eD
es

tin
at

io
nI

sA
ct

io
n

Pr
ob

ab
ili

ty
of

th
e

ne
w

de
st

in
at

io
n

of
an

Ed
ge

to
be

an
A

ct
io

n
0.

5
pP

ro
gr

am
M

ut
at

io
n

Pr
ob

ab
ili

ty
of

m
ut

at
in

g
th

e
Pr

og
ra

m
of

an
ou

tg
oi

ng
Ed

ge
0.

2
nb

G
en

er
at

io
ns

N
um

be
r

of
ge

ne
ra

tio
ns

of
th

e
tr

ai
ni

ng
50

0
nb

It
er

at
io

ns
Pe

rP
ol

ic
yE

va
lu

at
io

n
N

um
be

r
of

ev
al

ua
tio

n
of

ea
ch

ro
ot

pe
r

ge
ne

ra
tio

n
5

nb
R

eg
ist

er
s

N
um

be
r

of
re

gi
st

er
s

fo
r

th
e

Pr
og

ra
m

ex
ec

ut
io

n
8

ra
tio

D
el

et
ed

R
oo

ts
Pe

rc
en

ta
ge

of
de

le
te

d
(a

nd
re

ge
ne

ra
te

d)
0.

5
ro

ot
Ve

rt
ex

at
ea

ch
ge

ne
ra

tio
n

Ta
bl

e
4.

1:
D

ef
au

lt
pa

ra
m

et
er

s
of

th
e

T
PG

fra
m

ew
or

k.

64

4.7. Conclusion

Pa
ra

m
et

er
N

am
e

D
es

cr
ip

tio
n

D
ef

au
lt

Va
lu

e
A

rc
hi

ve
Si

ze
N

um
be

r
of

re
co

rd
in

gs
he

ld
in

th
e

A
rc

hi
ve

50
ar

ch
iv

in
gP

ro
ba

bi
lit

y
Pr

ob
ab

ili
ty

of
ar

ch
iv

in
g

th
e

re
su

lt
of

ea
ch

Pr
og

ra
m

ex
ec

ut
io

n
0.

05
m

ax
C

on
st

Va
lu

e
M

ax
im

um
co

ns
ta

nt
va

lu
e

po
ss

ib
le

10
0

m
in

C
on

st
Va

lu
e

M
in

im
um

co
ns

ta
nt

va
lu

e
po

ss
ib

le
-1

0
pC

on
st

an
tM

ut
at

io
n

Pr
ob

ab
ili

ty
of

ea
ch

co
ns

ta
nt

to
be

m
ut

at
ed

0.
5

fo
rc

eP
ro

gr
am

Be
ha

vi
or

C
ha

ng
eO

nM
ut

at
io

n
M

ak
es

su
re

a
Pr

og
ra

m
s

be
ha

vi
or

ch
an

ge
s

w
he

n
m

ut
at

ed
fa

lse
nb

Pr
og

ra
m

C
on

st
an

t
N

um
be

r
of

C
on

st
an

t
av

ai
la

bl
e

in
ea

ch
Pr

og
ra

m
0

nb
T

hr
ea

ds
N

um
be

r
of

th
re

ad
s

us
ed

fo
r

th
e

tr
ai

ni
ng

pr
oc

es
s

1

Ta
bl

e
4.

2:
A

dd
iti

on
al

pa
ra

m
et

er
s

of
th

e
G

EG
EL

AT
IT

PG
lib

ra
ry

.

65

Part II

Contributions

66

CHAPTER 5

Contribution 1: Assessing the biases of IP networks
intrusion detection datasets and evaluating their effect on a

Tangled Program Graph (TPG)-based Anomaly-based
Intrusion Detection System (AIDS)

5.1 Introduction

Learning based Anomaly-based Intrusion Detection System (AIDS) are used in IP net-
works as an efficient method to reinforce the security of a network. These probes are
trained on either real data collected on a company network or using synthetic data from
generated or simulated datasets. In the design process of the learning based AIDS, the
choice of the training dataset is important as it conditions the type of input data and
its characteristics. The learning process and the inferring results of the produced model
depend on the training data. The model produced by the Machine Learning (ML) in-
telligence, studying batches of specific data, is subject to the data biases that exist in
the dataset [GD95; PKP21]. Choosing a Network Intrusion Detection Systems (NIDS)
dataset implies choosing implicit biases that will condition the learning. Those biases can
take different forms and have diverse effects on the learning process. It is important to
consider that, for operational constraints, the training data used in the modeling should

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

mirror the network reality. Thus, training network data require to be similar to user
generated network data in order to perform an accurate detection.

This chapter aims to examine the different data biases existing in the NIDS datasets,
their potential impact on the training process and the mitigation that can be applied to
the data for better consistency. Furthermore, this chapter shows the Tangled Program
Graph (TPG) framework robustness to biases in the labeling of the dataset.

This chapter answers three main questions:

• what is the influence of biases on the learning process?

• how to fairly and impartially test, in an un-biased way, the produced decision model?

• how to create fair NIDS datasets while being realistic compared to a real incoming
network traffic?

Finally, this chapter proposes a procedure in order to identify biased features. Fur-
thermore, it is shown that the TPG, is a good candidate for intrusion detection, where
labels are often subject to biases.

5.2 Related Work

When it comes to learning application for real-life use-cases, the choice of the training
data must be relevant enough to produce a realistic training environment that mirrors
the reality in which the application might be used. Considering the intrusion detection
problem, many limitations can be found in training dataset that can lead to a decision
model inaccurate in operational conditions. There exist eight of these limitations, called
"biases" [GHF22; Meh+21].

• Deployment bias: The model is used for inference in a context differing from
the one it has been built into [Meh+21; Olt+19]. A NIDS trained on a dataset
and used in real-life condition is subject to a Deployment bias. The bias happens
when characteristics of the training and inferring networks differ. In [MLK14],
authors state that the dataset they use for training a Signature-based Intrusion
Detection Systems (SIDS) (DARPA 1999 [darpa_dataset]) is not sufficient to
prove operational performances and that another testing dataset should be used to
get rid of this bias.

68

5.2. Related Work

• Representation bias: This bias appears when the input data do not represent the
reality [Lan+10]. For example, in the CICIDS 2017 dataset [SLG18] the simulated
traffic is compound of intrusions and background traffic. The attack traffic results
in successful intrusions scenario whereas no unsuccessful attack scenario exists in
the dataset.

• Measurement bias: The features and labels available in the dataset are not real
variables of interest useful to characterize the problem [SG21].

• Label bias: Errors in the labeling can be found in the dataset [BB17]. Label bias
exists in NIDS dataset when the labeling of the data is performed by already existing
Intrusion Detection System (IDS). It leads zero-days attacks to be labeled as "sane
traffic". Some datasets are known to have incorrect or missing labels such as in the
CICIDS 2017 dataset [ERJ21].

• Algorithmic bias: The construction of the model leads to deviations of the out-
come [dOL17; FN96]. An algorithmic bias exists for example in the model trained
on imbalanced datasets [MG09; Vet21]. As IDS datasets are mostly imbalanced,
the model can tend to identify the different samples to the most represented classes
of the dataset [AI19]

• Evaluation bias: Inappropriate testing population or evaluation metric is used
[Meh+21; Olt+19]. The DARPA 1999 dataset is compound of two parts. One part
is made of background traffic, and the other is made of attack traffic. [McH00]
points out several evaluation biases. For example, in this case, the performance
measurement of the IDS is based on the number of sessions. In this special case
multi-sessions attacks can reduce in an optimistic way the number of false positive
alarms as the denominator would be larger when a false alarm is reported.

• Social bias: The population of experts that create the dataset is biased [Olt+19].
For example in the design of a NIDS dataset, a ratio above normal of attacks can
be recorded.

• Feedback bias: This issue appears as feedback on the ML method can be sent
only for samples that have been analyzed by the algorithm [Meh+21; Olt+19].

The existing bias can be classified in two main categories:

69

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

• Biases of the data

• Biases of the algorithm

We refer as fairness as the property of a ML-based model that ensures that biases in
the data do not lead to biases in the model output [OC20]. In order to increase fairness
in the learning process of IDS, one can mitigate the biases of its algorithm and take into
account the biases of the data. Biases of the algorithm are deployment, algorithmic and
feedback biases whereas the remaining (representation, measurement, label, evaluation
and social biases) is linked to the data.

5.2.1 Reducing biases in the algorithm

Methods exist in order to reduce the bias of the algorithm used for intrusion detection.
[MLK14] states that testing operational functioning of an IDS on a sub-part of the train-
ing dataset is not sufficient to prove the efficiency of the solution. This is mainly due
to the differences that can exist between the training and operational network environ-
ment. Pessac et al. [PS22] state that fairness in ML can be measured in five different
ways (Disparate Impacts, demographic parity, equalized odds, equal parity and individual
fairness). Among them, the Individual fairness [DI18; Jos+16] measure seems relevant
in the intrusion detection context, as it requires similar samples to be treated similarly.
As there exist several types of attacks, and as some are totally different from the others,
creating a single IDS able to identify with the same precision all attacks is a complex
task. Although it seems obvious, fairness in comparison of several methods comes with
identical input data, and identical testing conditions as stated in [Che+21].

5.2.2 Pre-processing datasets for fairness

The KDD dataset [kdd_dataset] is based on a feature extraction of the DARPA dataset.
In [Tav+09] KDD dataset [kdd_dataset] is pre-processed in order to remove all the

duplicated records of the dataset and to produce the NSL-KDD dataset. Abdulraheem et
al. [AI19] has a similar approach and reduce the size of the KDD dataset by up to 97%.
These pre-processing can be seen as a representation bias mitigation as the redundancy of
the features can lead the ML to unfair decisions based on to much weight given to these
redundant features.

70

5.2. Related Work

Sarhan et al. [SLP22] propose a set of 43 features to fairly train IDS. The pre-
processing for the extraction of these features results in a reduction of deployment bias
as it promotes the use of a standardized feature set for four different NIDS databases.
They promote the use of Network flow based features as they are light and can be easily
extracted by a router or a switch. Authors show that the proposed feature set is adequate
for the design of NIDS. Although they are important features for operational intrusion
detection, the conservation of the IP source and destination address keeps a representation
bias inside of the dataset, as most datasets are simulated with one or several fixed attacker.
This study is complementary with the work of [MLK14] as the standardization of the
useful features for intrusion detection helps to train and to infer on different datasets.

Similarly, the information gain of the features of the dataset can be measured [KZH05].
The information gain results from the computation of the entropy of samples split by a
given feature. If a split separates the population in two groups of different classes, the
information gain is high. Conversely, low information gain indicates that splitting a group
with respect to the chosen feature does not helps in the classification of the samples. The
information gain is often used for the training of classification trees. A biased feature with
high information gain is intuitively dangerous for the training of an IDS. Other studies
perform feature extraction through the use of Auto-Encoders [YH18; MK18] or other ML
techniques [MK18; ASS20]. Zhang et al. [ZD21] try to increase fairness using adversarial
networks. This study to de-correlates the representation bias from the dataset sensitive
attributes. In [DR20], representation and algorithmic biases in anomaly detection are
explored. The outcome fairness is measured with respect to "protected status variables"
and by finding combination of these variables in the outlier class and in the normal class.
Similarly, Deepak et Al. [DA20] explain the importance of sensitive attributes in the
design of fair outlier detection algorithms and propose three heuristics (Neighborhood
diversity, Apriori distribution and Attribute asymmetry) to enhance fairness. Although
the former works focused on fair outlier detection for people, the idea of measuring fairness
in the output with respect to protected status variables is useful for intrusion detection.
For example, in the original version of the CICIDS 2017 dataset [SLG18], the attacks
comes from a set of four computers generating only attack traffic. The attack detection
using simply the source IP addresses of the attackers would be effective in this context,
but biased.

71

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

5.3 Impact of learning biases in NIDS

This section aims to define the impact of the label biases on the learning and the fairness
of a TPG-based AIDS. We here formalize the representation bias and the label bias as they
are the main focus of this chapter. This discussion is mostly illustrated on the CICIDS
2017 dataset as a recent study proposes a re-labeling of the dataset in order to increase
its fairness [ERJ21].

5.3.1 Problem definition

The problem of learning from biased data can be defined as the following:
Supposing two datasets:

• A dataset B divided in a training set Btr and a test set Bte

• the ideal fair dataset F representing the same data as B divided in a training set
Ftr and a test set Fte

Samples are named σFtr ∈ Ftr, σFte ∈ Fte, σBtr ∈ Btr and σBte ∈ Bte.
Samples σF ∈ Ftr ∪ Fte and σB ∈ Btr ∪ Bte correspond in the way that there exist

indexes i and j, such as σFi
and σBj

represent the biased and un-biased records of the
exact same event occurrence on the network.

Each sample σ belongs to one of two classes {P, N} where P denotes the positive
class and N the negative class. The class associated with the sample σi is li ∈ {P, N}. A
classifier is a function m that associates a sample with a single label l′. m|σ(i) 7→ m(σi) =
l′
i.

Typically, label bias exists when lFi
̸= lBj

.
Supposing two classifiers identical but trained on different data: mF |σi ∈ FT r 7→

mF (σi) = l′
Fi

and mB|σj ∈ BT r 7→ mB(σj) = l′
Bj

, there is no label bias present when for
σi ∈ FT e ∪ BT e, mB(σi) = mF (σi) = l′

i.

5.3.2 Learning with representation biases

Representation biases are present in a dataset when the available features do not truly
represent the learning problem. Intuitively, it results in setting too much attention to
these specific features that facilitate the detection of the positive events without being
necessarily relevant for the detection of positive events in a real context. In the CICIDS

72

5.4. Experimental Setup

2017 dataset, the positive events are generated from a set of four attack computers during
specific time frames. The identification of the network flow logs (using the destination
and source ports and IP addresses) or the timestamp of the network flow logs are both
examples of representation biases. In the first case, the identification of the log is a clue for
the detection but is not a required condition to qualify the traffic as an intrusion or as sane
traffic. For example, the use of a computer to generate attack traffic once does not imply
that all traffic coming from this computer is harmful. In the second case, the presence of
the timestamps of the attack in the training dataset is questionable since the generation
of the dataset simulates attacks at fixed time. Intuitively, a model detecting intrusions
based on the timestamps of the network flow logs is really likely to be over-fitting the
data rather than being an adequate classifier.

5.3.3 Learning with label biases

Label biases are biases existing in datasets where one or several labels are incorrect. In
intrusion detection, this bias exists in datasets that qualify safe network traffic as attack
traffic or inversely. This issue also exists in the CICIDS 2017 dataset [ERJ21] where
unsuccessful attacks are considered as intrusions and some of the succeeding attacks are
considered as safe traffic. Furthermore, in [ERJ21], a distinction in the labels is made
between intrusions, i.e. successful attacks, and unsuccessful attacks. In this chapter, we
study the impact of label bias on the learning of a Genetic Programming (GP)-based
NIDS. In particular, we aim to measure the differences of identical classifiers per-class
results having correct and incorrect labels.

5.4 Experimental Setup

We focus on the observation and mitigation of data biases. Among them the representa-
tion bias is particularly interesting. A prior pre-processing of the dataset can contribute
to its reduction.

5.4.1 The CICIDS 2017 dataset

The CICIDS 2017 dataset is one of the intrusion detection datasets with the most diverse
and realistic range of cyber-attacks. It addresses recent attacks that are not available
in other datasets using a range of different computers, operating systems and security

73

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

features [PB18]. It has been generated using two networks. The first one, the victim
network, is a set of five servers and 10 computers using different operating systems (Win-
dows, Linux and Macintosh) and necessary devices such as routers, firewalls and switches.
The attacker’s network includes four computers using Windows 8.1 and Kali operating
systems, one router and one switch. The CICIDS 2017 dataset contains a week of gen-
erated traffic network frames. In this traffic several anomalies labeled in 14 different
categories can be found. Most of the traffic is labeled as “normal traffic". The attacks are
highly unbalanced, but this disparity does not reflect a usual behavior on an Information
System (IS). Indeed, more than 16% of the traffic summaries in the CICIDS 2017 dataset
represent attack traffic whereas it is believed that the attack ratio is under 0.002% which
is the amount of attack traffic in the KDD dataset. Table 5.1 summarizes the different
classes and the amount of data per class.

The dataset is separated in two subsets. 25% of the dataset is randomly extracted
from the legacy dataset and constitutes the testing dataset. The remaining samples are
kept for training.

Table 5.1: Distribution of classes in the CICIDS dataset in network flow logs. Each
network flow log corresponds to 78 fields and 312 Bytes of raw data [SLG18].

Classes Amount of network flow logs

BENIGN 2.359.087
Dos Hulk 231.072
Port-Scan 158.930
DDoS 41.835
Dos Golden-eye 10.293
FTP-Patator 7.938
SSH-Patator 5.897
Dos Slow-loris 5.796
Dos Slow-httptest 5.499
Bot 1.966
Brute force 1.507
XSS 652
Infiltration 36
SQL-Injection 21
Heart-bleed 11

74

5.4. Experimental Setup

The data used in our study is taken from the fully labeled CICIDS 2017 dataset. It
sums up, in a .csv file, 78 network flow features from the captured network traffic (PCAP
files). Information such as the destination port, the number of bytes per second or flags
can be found in the dataset. Those information are represented as 32bits integers, floating-
point numbers and Boolean. Detailed information about the 78 extracted features have
been defined and explained on the CICFlowMeter web-page [Cyb].

As a first experiment, a legacy TPG [KSH] is trained on the CICIDS 2017 dataset. A
second training on the same dataset is performed with a TPG adapted for classifications
problems by taking as a reward the F1-score of the classification (this will be used for
comparison in Chapter 6).

5.4.2 Experiment 1: representation bias of an IDS

As a first part of the experimental study of biases in intrusion detection, the representation
bias of an IDS is studied. To this extent, a TPG is trained on the CICIDS 2017 NIDS
dataset. The legacy TPG operating mode is based on the observation of specific parts
of the state of the environment (i.e. in our case specific features of the network flows).
We first train a TPG using the original CICIDS 2017 NIDS dataset and then observe the
features that are used for classification. The traffic simulated for the dataset generation,
as described in [SLG18], uses an attack network made of a set of four computers intruding
a local network at regular time, it is expected that the TPG focuses on the identification
of the malicious network flow features preferably based on the source IP and port and
destination IP, as well as using the timestamp of the connections rather than using other
available features. The experiment aims to train three different ML classifiers.

• M1 is trained on the full version of the CICIDS 2017 dataset and infers on a similar
test dataset.

• M2 is trained on the full version of the CICIDS 2017 dataset and infers on a test
dataset where white noise is synthetically added to the supposedly biased features.

• M3 training and test sets are edited with additional white noise to these particular
features.

The attention of the agent to these specific features is studied as well as the classification
results.

75

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

5.4.3 Experiment 2: label bias of an IDS

To reveal the impact of label bias, the legacy CICIDS 2017 and its revision, where labeling
bias has been corrected, as described in [ERJ21] datasets are used. In order to enlighten
the label bias, a specific focus is put on the DDoS and DoS Hulk attack as it is described
as the attack class with the most incorrect labels.

Two classifiers are used. M4 is trained and evaluated on the legacy CICIDS 2017
dataset. M5 model’s results after inferring on the corrected version of the CICIDS 2017
dataset are studied. Conversely, M5 is trained and evaluated on the corrected version of
the CICIDS 2017 dataset. It is important to note that biased features as described in
Section 5.4.2 are removed from the training set. The detection rates of each evaluation
are studied.

Finally, to show the impact of the label bias on the TPG model, we study the inferring
performances of M4 where a fraction of the intrusions are progressively re-labeled as
sane traffic during the training phase and show the resilience of the TPG framework to
inaccurate data labels.

The performance function used to train the TPG for Experiment 1 and Experiment 2
consist in a +1 score for each correct decision and a −1 score for each incorrect decision.
This score is normalized on the overall number of decisions taken to give a single floating
point value between −1 and 1.

5.4.4 Parameters of the TPG

Table 5.2 displays the parameters used in this Chapter to train TPGs.

These parameters are chosen so as to provide a fast prototyping TPG that converges
rapidly. In particular, 10 000 samples are evaluated per generation raising the probability
of each team to observe samples from different classes.

The parameters of the TPG as defined in [Kel18] are used. The number of actions
taken, the number of root teams and the number of evaluation required are designed to
widen the exploration space of the TPG. Due to the consequences of these parameters,
the size of the programs have been reduced to reduce the execution time of the programs.
Finally as a feature developped by our team, we force the program behavior to change if
the program goes through mutations.

76

5.4. Experimental Setup

Parameter Name Value
maxNbActionsPerEval 10000

maxNbEvaluationPerPolicy 500
maxProgramSize 20

pAdd 0.5
pDelete 0.5
pMutate 1.0
pSwap 1.0

maxInitOutgoingEdges 2
maxOutgoingEdges 5

nbRoots 500
pEdgeAddition 0.7
pEdgeDeletion 0.7

pEdgeDestinationChange 0.1
pEdgeDestinationIsAction 0.5

pProgramMutation 0.2
nbGenerations 100

nbIterationsPerPolicyEvaluation 10
nbRegisters 8

ratioDeletedRoots 0.4
archive Size 500

archivingProbability 0.01
maxConstValue 100
minConstValue -10

pConstantMutation 0.5
forceProgramBehaviorChangeOnMutation true

nbProgramConstant 0
nbThreads 16

Table 5.2: Parameters of the TPG framework used in this Chapter.

77

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

5.5 Experimental Results

This section discusses the experimental results of the exploration as well as the mitigation
of learning biases for the design of an AIDS.

5.5.1 Preliminary training of a TPG on the CICIDS 2017
dataset

As a preliminary work, and as the TPG method is used in each chapter of this thesis, a
legacy TPG is trained on the CICIDS 2017 dataset. The TPG is trained using a classical
Reinforcement Learning (RL)-liked fitness function where a correct classification results
in a +1 score and a bad classification a −1 score. Figure 5.1 represents the learning curve
of such a TPG. In particular, this basic IDS is bound to a TPR of 99.53% and a TNR of
75.46%. This IDS is rather good considering that it does not raise too many false positive
alerts (0.47%). In operational conditions, it is required that there are as few false alerts
as possible as alerts imply strong activity of cyber analysts to examine the connection
and to apply counter measures to an eventual intrusion. In practice, a FPR of 0.47%
represents more than 4600 false alerts per millions of connections. Supposing that the
network records 1M connections per days, and that an analyst can study between ten and
twenty alerts per day, 230 analysts would be required to analyze those 4600 false alerts.
As a consequence, the FPR is a crucial parameter for AIDS. Hence, such an IDS is not
precise enough to be used under operational conditions.

For a second part of this preliminary study, the F1-score fitness function, more suited
to classification problems is used as a reward function for the TPG agent. F1-score
is defined in 4.3. Figure 5.1 is the learning curve of this revised version of the TPG.
In particular, this IDS is bound to a TPR of 77.55% and a False Positive Rate (FPR)
of 1.72%. The F1-score function further balances the classification results of the IDS
finding a better equilibrium between True Positive Rate (TPR) and True Negative Rate
(TNR). This equilibrium is interesting for classification tasks but not relevant for intrusion
detection where the minimization of the false positive alerts is a more important criterion.

The FPR reached by the legacy TPG are too high and not sufficient to draw conclu-
sions on the TPG capabilities in an intrusion detection context. We study the impact of
the dataset biases on the TPG-based AIDS.

78

5.5. Experimental Results

0 20 40 60 80

0

20

40

60

80

100

Generations

%

Accuracy
Precision

Recall
F1-Score

Figure 5.1: Machine learning evaluation metrics using the legacy TPG on the CICIDS
2017 dataset depending on the number of training generations.

79

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

0 20 40 60 80 100

0

20

40

60

80

100

Generations

%

Accuracy
Precision

Recall
F1-Score

Figure 5.2: Machine learning evaluation metrics using a TPG using the F1-score fitness
function as a reward depending on the number of training generations.

80

5.5. Experimental Results

Model source IP source port destination IP timestamp
M1 1 0 0 5
M3 1 0 0 0

Information gain 0.8285 0.8420 0.7874 0.712606

Table 5.3: This table sums up the amount of observation of the supposedly biased features
in the programs of the best TPG teams). The model M1 is trained and tested using those
features. M3 is trained and tested with noisy features. High Information gain is present
in the used and supposedly biased features.

5.5.2 Experiment 1: impact of the representation bias on the
learned NIDS

As a first part of this study, the representation bias of the IDS is studied.
This bias exists in a dataset where the available features are not representative of the

problem faced by the ML algorithm. As described in [SLG18], the CICIDS 2017 dataset
has been synthesized using a sub-network of four computers to generate attack traffic.
The source IP and ports and the source IP are thus consequent clues for the detection of
attacks or the identification of normal traffic. Furthermore, as the intrusions are simulated
at a given time, the timestamp feature of the dataset constitutes an important clue for
the unfair detection of the intrusions.

Firstly we compute the entropy E = 0.8433 of the Benign and Attack traffic in the
CICICDS 2017 dataset. This entropy bounds the information gain of the features. In-
formation gain of each feature is between 0 and E. The information gain for a perfect
split values E, meaning that the feature alone is able to separate the intrusions from the
normal traffic of the dataset.

Table 5.3 sums up the observations of the models observing or not those features.
From this table we can observe really information gain. These values, correlated with the
knowledge on the data synthesis confirm the hypothesis of biased features in the CICIDS
2017 dataset. The model M1 is biased as it uses the Source IP and timestamp features.
Table 5.4 sums up the results of the three classifiers. M2 is trained with the legacy
CICIDS 2017 dataset, but infers on a dataset where white noise is synthetically added to
these previous features. The inferring results raise of 18% FPR as the observed features
are noisy, proving the use of the features in the decision making. In operational terms, a
raise of FPR implies an over-solicitation of the analysts. Fewer correlations can be made
between the identification features and the presence or not of an intrusion while inferring.

81

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

Model TPR TNR Learning score
M1 99.8 77.6 0.87
M2 99.8 59.7 0.87
M3 96.3 83.2 0.88

Table 5.4: This table sums up the detection results of the three models built using (or
not) the supposedly biased identification features. The learning score is obtained during
training and the TPR and TNR are inference results. The learning score used comes from
the legacy TPG as described in Section 5.5.1.

M3 results (view Table 5.4) differ from results of M1 and M2:

• Firstly the TNR is affected. For M3, the identification and temporal features are
not available anymore, correlations using other features are made. The TNR of M1
is inferior to the one of M3 which uses features supposedly more relevant than the
connection identification or temporal feature.

• Secondly, the TPR is slightly inferior for M3, proving that the Timestamp and
identification information were helping the identification of intrusion. Table 5.3
confirms that the variables are not of interest when additional white noise is added.

The complexity of the different models (described by the number of teams, programs
and depth of the graph) is similar for the three models. This is mainly due to the
determinism of the used TPG framework.

It appears that the identification features of the logs constitutes, in the CICIDS 2017
dataset, a representation bias and should be removed for a fair exploration of the intrusion
detection problem. We recommend not to use the features Source IP and Timestamp to
reduce representation bias while training on the CICIDS 2017 dataset.

5.5.3 Experiment 2: impact of label bias on the ML-based AIDS

This section uses the results of the previous experiments. The features containing repre-
sentation bias (Source IP, Source port, Destination IP and timestamp) are removed from
the training datasets.

We here study the labeling bias of in the CICIDS 2017 NIDS dataset. In order to
identify the label bias, two models are used:

• M4 is trained on the original version of the CICIDS 2017 dataset

82

5.5. Experimental Results

Class Detection rate Detection rate Detection rate
of M1 (%) of M1’ (%) of M2 (%)

Benign 99.53 99.67 99.98
Brute Force 0.00 0.00 0.00

XSS injection 0.00 x x
SQL Injection x x x

Botnet 0.00 0.00 0.00
Infiltration 0.00 x x

FTP-Patator 0.00 0.00 100.00
SSH-Patator 0.00 0.00 0.00

Port Scan 99.13 0.11 99.71
DoS Slow Loris 0.00 16.67 0.00

DoS Slow HTTP test 52.99 3.70 0.00
DoS Hulk 62.64 13.31 99.97

DoS Golden-eye 25.00 0.58 94.12
Heart-bleed x x x

DDoS 87.99 4.21 100.00

Table 5.5: Inferring results of the Model M4, trained on the original CICIDS 2017 dataset
M4′ is the same model as M4 inferring on the revised version of the CICIDS 2017 dataset.
Conversely, M5 is trained and infers on the revised version of the CICIDS 2017 dataset.
The model M4 loses a significant part of its detection capabilities, comparing the per-class
results with M4′. This can be explained by the re-labeling of the dataset. The detection
rate drops on most intrusions. M5 reaches higher detection rates than M4. ’x’ indicates
that no samples from this class exist in the test dataset.

• M5 is trained on the corrected version of the CICIDS 2017 dataset, as described in
[ERJ21].

Both models are used inferring on both datasets and the per class detection rate are
studied. The revised version of the CICIDS 2017 dataset contains fewer intrusions than
its original version as some of the intrusion traffic as been re-labeled as "Attack" as some
of the intrusion traffic was interrupted. As we focus on the intrusion detection problem,
no alerts should be raised by the NIDS when the "Attack" label is present. Thus, the
"Attack" traffic is considered as sane.

The important information to note from Table 5.5 is that inferring with M4 does not
raise the amount of false positive alerts. Even with the re-labeling, the IDS is able to
detect some intrusions. The mislabeling of the CICIDS 2017 dataset has an impact on the
learning. Furthermore, we can see that, in line with the results of [ERJ21], M5 trained

83

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

0 10 20 30 40 5098

98.5

99

99.5

100

% of corrupted intrusion labels

T
N

R

Figure 5.3: TNR of M4 with respect to the percentage of corrupted intrusion labels. The
TNR does not vary when the amount of corrupted intrusion label evolves. It is because
the corrupted labels correspond to intrusion traffic. When inferring, the intrusion traffic
does not trigger an alert an is thus a False Negative, not impacting the FPR. When 50%
of the intrusion labels are corrupted, the TNR eventually reaches 100%. The intrusion
traffic is corrupted, and the traffic is qualified as sane all the time.

on the revised version of the CICIDS 2017 datasets converges easily and obtains better
detection rates than M4.

5.5.4 Experiment 3: cost of mislabeling of the data

It is a complex task to correctly label a dataset. Under operational conditions, unknown
traffic can be labeled as sane (at t = t0) while it is in fact intrusion traffic. At t = t0 + δt,
the label of the incorrect samples are modified and the model must adapt. To simulate
this issue, a fraction of the intrusions labels are corrupted, with a uniform probability,
from the training dataset. Figures 5.3 and 5.4 displays respectively the TNR and TPR of
M4 while inferring on the CICIDS 2017 testing dataset. As we can see on Figure 5.3, the
TNR is slightly raising. It is due to the fact that the corrupted labels raise the probability
of having negatives samples in the training set and thus affect the learning. Indeed, in
such conditions, maximizing the number of true negatives helps the TPG to reach higher
scores. Conversely, the true positive rate drop when more than 25% of the labels are
corrupted.

84

5.6. Discussion: mitigation of the representation and labeling biases of NIDS datasets

0 10 20 30 40 500

20

40

60

80

100

% of corrupted intrusion labels

T
PR

Figure 5.4: TPR of M1 with respect to the percentage of corrupted intrusion labels. The
TPG model for intrusion detection is under 90% of its detection capabilities when reaching
25% of corrupted labels. Its detection capabilities drop drastically when the quantity of
corrupted labels raises.

5.6 Discussion: mitigation of the representation and
labeling biases of NIDS datasets

Although the mitigation of data biases require, at one point an expert knowledge, we can
propose a procedure to reduce the representation biases of the datasets.

5.6.1 Assessing representation biases of a NIDS dataset

As seen as experimental results, reducing the biases in the dataset does not immediately
lead to better classification results. Indeed, the biases facilitate the classification task by
providing a simpler problem with inadequate features. This issue is known as a represen-
tation bias. We have identified features bound to a representation bias in the CICIDS
2017 dataset. The main drawback of the approach followed in this chapter is that this
identification requires a deep knowledge of the data and its synthesis. Other features of
the CICIDS 2017 dataset may be subject to representation bias.

In order to evaluate whether or not a feature is subject to a representation bias, we
propose the following procedure :

1. Compute the information gain of all features

85

Chapter 5 – Contribution 1: Assessing the biases of IP networks intrusion detection datasets
and evaluating their effect on a TPG-based AIDS

2. Sort the features on descending information gain order

3. From the first features (i.e. the feature having the greater information gain), study
their specificity and whether or not their variations are realistic with respect to a
real-world use-case.

4. Remove the risky features and verify that both TPR and FPR are not decreasing too
much, even if this impact can be explained by a reduction of the model over-fitting
on the biased features.

Such a procedure can not be followed on the labeling bias. Errors in labels require a
costly expert analysis to be identified. In a real-life scenario, zero-days intrusions exist,
implying that all attack traffic is not known and thus, considered as normal traffic.

5.6.2 Mitigation of labeling bias using TPG and future work

Expert analysis is required to reduce the label bias of a dataset by re-labeling the erro-
neously labeled samples. In order to mitigate the issue, we show in Section 5.5.4 that the
use of the TPG is robust to up to 25% of missing attack labels. This robustness comes
from the RL-based reward system. Through belated rewarding of a whole sample batch,
the TPG lowers the supervision. We believe that lowering the supervision of the TPG
could help in increasing the robustness of the method facing label bias. A semi-supervised
prototype of the TPG relying on internal reward is described in Appendix A. The study
of the intrusion detection capabilities of a semi-supervised version of the TPG and the
impact measurement of data biases on it are kept as future work.

5.7 Conclusion

This chapter has explored both the representation and label biases existing in the CICIDS
2017 dataset. This chapter measures the impact of the learning biases and evaluates the
resilience of the TPG framework to those data biases. For the first part, it is shown
that some of the features of the CICIDS 2017 dataset contain a representation bias that
is costly for the model. Indeed, the CICIDS 2017 dataset generation uses a cluster of
attackers that are the source of all the intrusions at pre-set times. Thus, the information
of the source IP and port, the destination IP as well as the timestamp give clues that
do not allow to generalize if a given traffic constitutes a threat for the network or not.

86

5.7. Conclusion

Experimental results show that these features are used by the ML agent in order to decide
whether or not an alert is to be raised. Furthermore, adding noise in those variables for
inference leads to a drop of 18% of the TNR of the TPG. A procedure that consists in
the correlation of expert knowledge about the data synthesis for high information gain
features is proposed. This procedure, prior to a pre-processing of the dataset can be used
to reduce the impact of representation bias on the model. Secondly, the impact of the
label bias on the TPG is measured using both the original and the corrected labels of the
dataset. Experimental results show that inferring on the corrected dataset having learned
on the biased one made the results drop by up to 99% on the Ports Scans attacks and
by a mean of 61% on the attack traffic. Finally, the resiliency of the TPG is tested on
the original dataset where some of the attack traffic is synthetically biased. Results show
that the TPG method is resilient to up to 25% of inaccurate labels.

87

CHAPTER 6

Contribution 2: Study of the impact of data imbalance on
TPG performance

6.1 Introduction

Results of this study have been published in [Sou+22a] Imbalanced classification is the
problem of training a classifier on a problem where one or several classes are represented
by fewer samples than other classes. Imbalanced classification is necessary in a wide set
of use cases, in particular when rare events [WRM03], or anomalies [CBK09], need to
be detected in a large amount of normal data. The imbalance can reach various orders
of magnitude making it particularly difficult to efficiently identify minority classes while
avoiding false positives, i.e. false identification of the minority class.

While a lot of real world use cases are imbalanced, most recent studies on machine
learning based classification focus on learning from balanced datasets. The studies of
imbalanced learning problems themselves mostly manage the imbalance by over-sampling
or under-sampling training and test datasets [YL06; ZL14].

Genetic Programming (GP) has recently been shown to perform well on balanced
image classification [KH17b] by using the framework of Tangled Program Graph (TPG).
With respect to competitors, TPGs have the advantage of a lightweight inference and
a support for both high data cardinality and efficient diversity maintenance [SAH21].

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

When used for classification, TPG actions translate into classes while they originally
refer to environment modifying actions in a Reinforcement Learning (RL) environment.
Further details on the TPG framework are available in Section .

This chapter aims at adapting the TPG GP framework so as to improve its capacity
to perform imbalanced classification. We first show that the current TPG framework
does not perform well in an imbalanced context. We then propose new semantics to be
integrated within TPGs in the form of an adapted selection system.

In this chapter:

• we evaluate the decrease of classification performance induced by the dataset im-
balance in a TPG genetic programming framework.

• we compare different fitness functions and evaluation metrics; and we evaluate their
effect on the training of a TPG-based classification.

• we demonstrate on an example that GP can adapt to imbalanced classification
problems, provided that the fitness and selection phase is adapted using statistics
on training sub-set performances.

• we report experimental studies conducted both on the MNIST handwritten digit
image classification problem and on a network intrusion detection problem.

6.2 Related work

State of the art methods to deal with imbalanced learning problems can be classified into:

• data level methods, using dataset over and under-sampling or specialized feature
selection, and

• algorithm level methods, including e.g. cost sensitive methods and hybrid/ensemble
learning [Lee+18].

Data level methods aim to modify the input data to mitigate the classification perfor-
mance degradation due to imbalanced datasets whereas algorithm level methods aims to
modify the classifier in order to make it robust to the imbalanced data. Ensemble meth-
ods are a combination of both data level and algorithm level mitigation. The methods
proposed in this chapter concentrate on algorithmic-level imbalance mitigation.

90

6.2. Related work

Over-sampling [ZL14] and under-sampling [YL06] methods re-balance the dataset to
make an unmodified classifier robust to imbalance. Over-sampling methods select or
generate more samples from the minority classes than from the other classes. This method
adjusts the amount of data available in the training dataset and introduces a controlled
bias. Conversely, under-sampling methods consist in selecting fewer samples from the
majority classes, voluntarily omitting data. Synthetic Minority Oversampling Technique
(SMOTE) [Cha+02; Fer+18], used for imbalanced classification, is a combination of over-
sampling and under-sampling. The main drawbacks of these methods are that in case of
over-sampling, artificially duplicated samples risk causing over-fitting of the classifier. In
case of under-sampling, important components from the majority class can be deleted,
and it is a shame to ignore samples potentially costly to obtain.

At the algorithm level, the mitigation of the imbalance issue is mostly addressed
through adapting the fitness function. In [PBC15; Pei+20; Wan+15; Lóp+13], au-
thors use custom or cost-based functions to counteract the effects of data imbalance.
In [Vie+18], a fitness function is derived from the F1-Score and adapted to the problem
of analyzing textual and biological data. The main disadvantage of the method is that the
cost of error of a misclassification is not initially known by the algorithm but estimated
through the learning. In [DH08], the Area Under Curve (AUC) metric is coupled with an
active sub-sampling, to improve the results of the GP binary classification.

In these previous works, no comparison is performed on the performance of the training
using one fitness function or another. This observation motivates the current study on
the impact of imbalance on genetic programming-based classification. There exist generic
fitness functions [JCD13] that are relevant candidates for learning from imbalanced data:

• Matthew’s Correlation Coefficient (MCC) [Zhu20] is a correlation coefficient used
for binary classification problems or for the detection of positives samples among
negative samples. Yet, the study recommends not using MCC as an evaluation
metric but only as a fitness function.

• G-mean [Aur+19] is a geometric mean of sensitivity and specificity. It is more
reliable than F1-score to evaluate the quality of a training on an imbalanced dataset
because the true negatives are injected in its computation while they do not appear
in F1-score.

91

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

• Cohen’s Kappa (κ) [VKS10] represents the probability of the correct classification
not being random. It is interesting for high imbalance rates because the computation
of the random classification is influenced with the imbalance ratio.

Section 6.4.2 will discuss these functions and other more common Machine Learning
(ML) metrics for their use as fitness functions.

Classification with GP is an active research field [SAH21; Sá+20; LBX20]. In [SAH21],
a TPG agent is specialized for performing balanced classification through the comparison
of learning schemes. Among them, the “Lexicase”, a method where each class is introduced
one after the other as the agent’s input, appears to be the most efficient. As this study
aims at improving the imbalanced classification task results in order to contribute to the
intrusion detection domain, we work under the constraint that we should not alter the
incoming data to support a flow of network data as they come. These modifications of
the Learning Agent of the TPG motivate the specifications of the Learning Agent to suit
the imbalanced learning classification task.

GP includes a selection phase where the best individuals of the generation are kept
for mutations and crossovers. There exist several selection algorithms such as:

1. Roulette wheel selection: The individuals with the highest fitness has higher
probability to be kept.

2. Rank selection: The individuals are ranked and attributed a probability of being
kept depending on how well they performed. The selection is a Roulette wheel
selection with non-uniform probability.

3. Steady State Selection: Best individuals go through crossovers and mutations.
The children replace the worst performing individuals.

4. Tournament Selection: Some individuals from the pool are randomly selected
and evaluated in a tournament. The individual that performs the best is kept for
mutation and crossover, the others are killed. The process iterates on a pool of
individuals.

Although the impact of selection method for imbalanced classification has not been
shown at algorithmic level, those methods have been used to improve the performance of
the sampling method for hybrid classifiers. Roulette Wheel selection (1) has been used
for imbalanced classification sampling methods in [MNN21; Gon+19]. [Le+21; Poz+21;

92

6.3. Impact of imbalance on the learning

LP18] are hybrid learners implementing steady state selection to the data-level mitigation
method. Similarly, [PBC15] uses tournament selection to improve the sampling process.

The legacy TPG implements a rank selection (2) where the best individuals go through
crossovers and mutations. The children replace the worst performing individuals. [SAH21]
demonstrates that rank selection is an adequate candidate for balanced classification.

6.3 Impact of imbalance on the learning

The imbalance nature of the classification problem has two different forms of impact. The
learning process requires the use of a fitness function in order to evaluate the performances
of the built model. When the number of samples from the positive class tends toward
zero, we observe that the range of the fitness function is reduced, making it difficult,
during the learning process, to distinguish which model fits the data in a better way.

The imbalance of the considered problem is expressed as card(sP) : card(sN). In
order to compactly express this degree of imbalance that can reach very high values in
practice, we propose the notion of Imbalance Order of Magnitude (IOM). Formally, we
define iom of a sample set s as:

iom : s → N,

iom(s) 7→ log10

(
card(sN)
card(sP)

) (6.1)

For example, an IOM of 3 in a training set str means that there are 1000 times more
negative samples than positive samples in the set. The same imbalance is expressed as a
ratio 1 : 1000, where a ratio is defined as 1 : card(sN)

card(sP) . In this chapter, we hypothesize that
the IOM of both the training and test sets are equivalent: iom = iom(str) ≈ iom(ste) and
we thus refer to this IOM as the global imbalance of the problem.

Furthermore, the scarcity of the data makes it difficult for the learning agent to produce
a realistic model of the minority class. Both issues are discussed in this section.

93

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

6.3.1 Cardinality: range of the fitness function

The range of values of the fitness function is affected by the number of positive samples in
the dataset tends toward zero. In order to illustrate the problem, Example 6.3.1 depicts
several situations at different IOM.

Example 6.3.1. Supposing two classifiers having constant True Negative Rate (TNR)
and False Positive Rate (FPR), learning at different IOM and analyzing a constant number
of 1,000 samples.

• The first classifier (C1) has a 90% TNR and 10% FPR.

• The second classifier (C2) has a 99% TNR and 1% FPR.

We study the evolution of the Fitness function for different True Positive Rate (TPR).
Considering the κ fitness function at different IOM, we observe (see Figure 6.1):

• For high IOM, the used fitness function tend to be less influenced by the detection
of a positive sample. In the example, the κ fitness function is used. Figure 6.1
shows that even though the classifier detects accurately all the positives, its κ stays
relatively low (around 0.4)

The genetic process is affected by this issue. When the cardinality of the positive
samples is low, the probability of having a positive sample in the training set is low. Hence,
the GP algorithm maximizes its result by identifying correctly the negative samples. The
seemingly good results obtained by the GP algorithm can cause the loss of important
information by deleting important information of the Positive sample model.

6.3.2 Imbalance: modeling of the data

The TPG builds a model from trial and errors of the different classes existing in the
dataset. The training phase of the learning is based on the observation and classification
of samples from a training set (also called a batch) and its classification. Once a batch
is processed, the overall fitness is computed and the teams are sorted from the most
performing to the worst. The teams that performed the best are kept. As a result, the
model of the observed samples becomes better. When the dataset is imbalanced and
independently of its fitness function, much effort is put on the majority class. The model
of the majority class is thus quite accurate while the model of the minority class is poor.
In the worst cases, all samples are classified to belong to the majority class.

94

6.3. Impact of imbalance on the learning

IOM C1 C2

0

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

TP

κ

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

TP

κ

1

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

TP

κ

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

TP

κ

2

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

TP

κ

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

TP

κ

2.5

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

TP

κ

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

TP

κ

Table 6.1: The range of the fitness is highly affected for high IOM. The sensibility of the
fitness function is high with respect to the TNR and low with respect to the TPR. It
causes an issue when the probability of having a positive sample in the training set is low.

95

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

6.4 Fitness functions and genetic selection phase for
imbalance classification

This section aims to define the imbalance classification problem and to specify the hy-
pothesis and intuitions for this work. In particular, Section 6.4.2 details the fitness and
evaluation functions compared in this work and Section 6.4.3 explains the proposition of
the selection phase to ensure the robustness of the learning GP algorithms.

6.4.1 The imbalanced classification problem

We consider the following problem: a classifier m is trained on a training set str and
tested on a test set ste. Each sample σ ∈ str ∪ ste belongs to one of two classes {P, N}
where P denotes the positive class and N the negative class. The oracle function o :
str ∪ ste → {P, N} associates to each sample σ its true class o(σ) while the classifier
m : str ∪ ste → {P, N} associates to each sample σ its predicted class m(σ).

Formally, given a set of samples s, the subset of true positive samples is expressed as
sP = {σ ∈ s|o(σ) = P}. Conversely, the subset of true negative samples is expressed as
sN = {σ ∈ s|o(σ) = N}.

In the rest of this chapter, we will use TP , TN , FP and FN as intuitive cardinality
expressions of respectively true positives, true negatives, false positives and false negatives
in the classifier produced results, on the test set. We formally define these expressions as:

TP = card({σ ∈ ste|o(σ) = P ∧ m(σ) = P}),

TN = card({σ ∈ ste|o(σ) = N ∧ m(σ) = N}),

FP = card({σ ∈ ste|o(σ) = N ∧ m(σ) = P}),

FN = card({σ ∈ ste|o(σ) = P ∧ m(σ) = N}).

(6.2)

A classification problem is qualified as imbalanced when the training and test sets
contain much less positive samples than negative samples. The choice of setting the
positive class as the least represented one is motivated by the detection problem that
consists in detecting a rare type of positive events among a vast number of (negative)
samples. If data is received as a sample, imbalance corresponds to a low frequency of
appearance of samples of one class, making each of them of a high importance.

96

6.4. Fitness functions and genetic selection phase for imbalance classification

Intuitively, the imbalance of a problem systematically tends to complicate the task
of the classifier because an ML algorithm has difficulty to fit a model with few samples
of the minority class. In addition, an ML algorithm favors the accuracy on the majority
class to achieve an overall high accuracy and thus neglects the minority class. We want to
study this hypothesis with a GP classifier, and characterize the link between imbalance
ratios and classification decrease of performances.

Secondly, many metrics exist to evaluate the quality of a classifier and these metrics
themselves are affected by the degree of imbalance of the problem. Our objective is to
provide a multifaceted characterization of the classification decrease of performances.

Finally, we aim at adapting the considered GP to our imbalanced problem classifier
by adapting its fitness and selection phase.

6.4.2 Selection: Choosing fitness and evaluation metrics

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Number of generations

A
cc

u
ra

cy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of generations

κ

(a) (b)

Figure 6.1: Using accuracy classification metric on an imbalanced problem. With an IOM
of 1.5 and using accuracy as TPG fitness function, the TPG agent is able to maximize its
accuracy (plot (a)) but produces a bad classifier. Indeed, its κ remains null (b) because
the TPG agent is predicting the majority class for all samples.

Two functions need to be selected to train and test the TPG: the fitness function and
the evaluation function. While the fitness function generates the inputs to the comparison
of two teams, the evaluation function evaluates the capacity of the model to perform the
classification. For both fitness and evaluation, functions from the state-of-the-art can be
used, such as classification accuracy and F1-score. We here discuss the different metrics
that will be evaluated in the experimental results.

97

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

There exist many methods to evaluate the efficiency of a model, the method to be used
for a given classifier depending on its objective and on the requested trade-off between
missing true positive samples and detecting false positive samples.

On balanced classification problems, i.e. iom = 0, a classifier efficiency is primarily
evaluated through its accuracy, precision, recall and F1-score. On imbalanced problems,
these statistical metrics shadow the minority class misprediction and profit to the majority
class [War+19]. Consequently, some fitness functions lose their utility on imbalanced
classification problems. In this section, we compare, for different imbalance ratios, a list
of classification metrics. These metrics are then used to both evaluate the classifier and
to build a fitness function for the training of the classifier.

Accuracy, used in most ML publications today, is the arithmetic mean of the correct
decisions, defined as:

Accuracy = TP + TN

TP + TN + FP + FN
(6.3)

The accuracy metric is not an adequate method for evaluating learning-based methods
in highly imbalanced contexts. Figure 6.1 illustrates this metric on the imbalanced MNIST
dataset. It depicts the evolution of the accuracy and the κ score (see below) with respect
to the successive generation of a GP algorithm. Despite the constant increase of the
accuracy, the κ score remains steadily null.

F1-score = TP

TP + 1
2 ∗ (FP + FN) (6.4)

Similarly, the F1-score does not take into account TN. F1-score is arguably more adapted
to imbalanced classification than Accuracy but a model mistaking half of the time on the
prediction of the minority class results in a seemingly fair F1-score of 0.667.

The G-mean (a geometric mean of the product of the sensitivity and the specificity of
the agent) is more adapted to imbalance cases. It is the geometric mean of the two per
class accuracy:

G-mean =
√

TP

TP + FN
× TN

TN + FP
(6.5)

The value of G-mean is equally sensitive to the ratio of TP versus FN and to the ratio of
TN versus FP.

MCC (also known as the phi-coefficient) is the computation of the correlation between
true and predicted values, leading to a maximal correlation coefficient of one in the case

98

6.4. Fitness functions and genetic selection phase for imbalance classification

of a perfect classifier. MCC is interesting in the case of imbalanced classification because
its formula is completely symmetric. Similarly to the G-mean, high MCCs can be reached
only for good predictions of both majority and minority classes.

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6.6)

The computation of the MCC depends on a product of sums as a denominator. When
the IOM is high, there is a probability that both TP and FP are zero, leading to an
improper operation.

Finally, the Cohen’s Kappa score, measures the reliability of a decision by taking into
account the probability that a good decision happened by chance.

κ = 2 × (TN × TP − FN × FP)
(TP + FP)(FP + TN) + (TP + FN)(FN + TN) (6.7)

Similarly to MCC, the computation of the κ score is sensitive to the number of available
positives in the dataset. The kappa score will unavoidably tend toward zero when the
number of positives tends toward zero, unless in the specific case of a perfect classifier.

In addition to the use of different evaluation functions, it is also possible to modify
the fitness function of the classification policy when it is suitable. In [SAH21], the inner
fitness system for the training of the classification policy is +1 for a good classification
and −1 when the policy is mistaking. To mitigate the imbalance of the dataset, this
fitness system can be weighted e.g. using balanced accuracy. The principle of balanced
accuracy is to weight the accuracy fitness function with coefficients inversely proportional
to the ratio of minority samples. In an imbalanced context, the fitness function and the
evaluation metric must be seen as functions to maximize and do not tell the whole truth
on the accuracy of the classifier. Indeed, each learning problem is specific and has specific
requirements in terms of FN or FP . The metrics discussed here-over are assessed as both
fitness and evaluation functions in Section 6.6.

6.4.3 Selection: Comparison of the individuals

When learning from an imbalanced dataset, few samples of the minority class are con-
tained in the training batch. The risk for GP is that teams with good performance
(according to the fitness function) on the majority class take the lead on teams predicting

99

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

accurately the minority class. The teams able to detect the minority class are likely to
be deleted at the end of the generation step causing a loss of knowledge.

To mitigate this issue, we propose, inspired from [Bon+18], to modify the inner se-
lection phase of the TPG to preserve the teams that both perform well, and have a low
variance on different subsets of samples. Our proposition is to change the evaluation
process of a team. Instead of evaluating the team on a whole training set, we divide the
training set in N independent subsets and test each of them separately. Instead of having
a global score for the whole set, we obtain N scores, one for each subset. We can then
build confidence intervals for each team and compute a mean and a standard deviation of
the agent’s performance. Note that at this point, the mean of the confidence interval is
identical to the legacy TPG and corresponds to the score of the agent on the whole test
set. A comparison of the means of different teams would not change the selection.

Our hypothesis is that when data is imbalanced and subsets are chosen to be small,
some subsets will contain very few positive samples. The teams trained on these subsets
will thus under-perform on the minority class. When a sample of the minority class is
present in the subset, these teams will reach a score significantly lower than the mean.
Our proposition is to change the selection phase so as to maximize the lowest bounds
of the confidence intervals of each team. Selecting individuals this way, the variance of
classification quality is likely to be reduced, and the classifier should be more robust to
imbalance.

The comparison of the bounds of the confidence intervals can lead to diverse results.
Similarly, comparing individuals confidence intervals (wide or tight) can influence on
the selection of the best candidate. In order to evaluate the proposal, experiments are
performed by selecting individuals based on the optimization of a composite function
using the mean and the width of the interval (γ). The problem is formalized hereunder,
and experimental results are discussed in Section 6.6.2.

The selection of the best teams is influenced by the position of the lowest bound of the
confidence interval and is weighted by a coefficient inversely proportional to the width of
the confidence interval.

To formalize the problem, the test set S is divided into N subsets {S0 , S1 ..., SN }. The
TPG is evaluated on each subset with a fixed evaluation function, generating evaluations
E = {e0, e1, ..., eN}. µe and S̃ are respectively E empirical mean and standard deviation.

Equation 6.8 computes the empirical mean µe while Equation 6.9 computes the em-
pirical standard deviation S̃.

100

6.4. Fitness functions and genetic selection phase for imbalance classification

µ̄e = 1
N

N∑
i=0

ei (6.8)

S̃2 = 1
N

N∑
i=0

(ei − µe)2 (6.9)

According to the Central Limit Theorem, provided that subsets {S0 , S1 ..., S29 } are
drawn from the same probability set, and are independent and identically distributed,
Equation 6.10 is verified if the number of samples Nµe is higher than 30. Consequently,
no assumption has to be made on the distribution of the population. In Equation 6.10,
N (0, σ) represents a Gaussian distribution whose mean is 0 and standard deviation is σ .

√
Nµe(µ̄e − µe) Law−−→ N (0, σ) (6.10)

The confidence interval ICp
µe

is computed in Equation 6.11 and contain µe with a
probability p. The term aα

µe
embodies the accuracy of the estimation and is computed

as in Equation 6.12. zα is given by the table of the standard normal distribution given
p. Nµe is the minimal number of samples to simulate to get an estimate respecting the
user-defined parameter {p}.

ICp
µe

= [µ̄e − aα
µe

; µ̄e + aα
µe

] (6.11)

aα
µe

= zα · S̃√
Nµe − 1

(6.12)

Considering a set of two teams {T0, T1}, we define the comparison of the teams score
as follows:

T0 > T1 ⇔ (¯µeT0
− aα

µeT0
) + 1

2aα
µeT0

+ 1 > (¯µeT1
− aα

µeT1
) + 1

2aα
µeT1

+ 1 (6.13)

Equation 6.13 results from the optimization of two elements:

• The lowest bound of the confidence interval (µ̄eT
− aα

µeT
)

• The width of the confidence interval (aα
µeT

), where the smallest confidence interval
is to prefer (1

2aα
µeT

+1).

101

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

By selecting in priority the teams generating tight confidence intervals, we expect
to increase the robustness of our model. Selecting the lowest bound is believed to help
preserving the individuals that observe positives samples.

6.5 Experimental Setup

To study the effect of imbalance and test the selection proposition, we use the MNIST
dataset [Den12]. MNIST is a balanced collection of 50k training images and 10k test
black-and-white images of handwritten digits (from zero to nine). In order to use the
dataset for an imbalanced training, we adjust it as follows:

• we select a positive class among the 10 available classes

• we select the imbalance ratio

• we build a training set of N images (N vary between 10 000 and 45 000) by selecting
images from all the negative classes and images from the Positive class respecting
the imbalance ratio

• we build, using the same method, a test set of 2 000 images.

We use a sampling method not to counter the imbalance effect, but to put ourselves
in conditions to deal with imbalanced data. The imbalance ratio is tuned from (1:1) (i.e.
an IOM of 0), to (1:10000) (i.e. an IOM of 4) with steps of 0.5 IOM. In order to see if
the agent is able to detect the minority class for high imbalance ratios, a Positive sample
is forced into the test set when the imbalance ratio is over 1:1000 (IOM of 3).

6.5.1 Parameters of the TPG

Table 6.2 displays the parameters used in this Chapter to train TPGs. The parameter
maxNbActionsPerEval vary between 10 000 and 45 000 depending on the number of avail-
able samples. The number of available sample is not fixed in order to be able to create
training sets with the required imbalance while conserving as much as samples from the
minority class as possible. The parameters of the TPG as defined in [Kel18] are used.
The number of actions taken, the number of root teams and the number of evaluation
required are designed to widen the exploration space of the TPG. Due to the consequences
of these parameters, the size of the programs have been reduced to reduce the execution

102

6.5. Experimental Setup

Parameter Name Value
maxNbActionsPerEval Vary between 1000 and 45000

depending on the imbalance ratio
maxNbEvaluationPerPolicy 2000

maxProgramSize 20
pAdd 0.5

pDelete 0.5
pMutate 1.0
pSwap 1.0

maxInitOutgoingEdges 2
maxOutgoingEdges 5

nbRoots 500
pEdgeAddition 0.7
pEdgeDeletion 0.7

pEdgeDestinationChange 0.1
pEdgeDestinationIsAction 0.5

pProgramMutation 0.2
nbGenerations 180

nbIterationsPerPolicyEvaluation 5
nbRegisters 8

ratioDeletedRoots 0.9
archive Size 500

archivingProbability 0.01
maxConstValue 10
minConstValue -100

pConstantMutation 0.5
forceProgramBehaviorChangeOnMutation true

nbProgramConstant 0
nbThreads 16

Table 6.2: Parameters of the TPG framework used in this Chapter.

103

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

time of the programs. Finally as a feature developped by our team, we force the program
behavior to change if the program goes through mutations.

6.6 Experimental Results

This chapter primarily aims to demonstrate that modifications on a GP framework can
contribute to improve imbalanced classification. Firstly, we run a legacy TPG agent on a
balanced classification task and study its convergence. Figure 6.2 represents the training
for each class seen as the positive class. This figure is the result of balanced training with
a legacy TPG agent. This plot shows that:

• TPG converges for each class of the dataset.

• A mean convergence of κ = 0.61 is reached.

• A wide range of κ are reached, suggesting that all the considered problems have a
different complexity. The best results are obtained for the detection of the number
“1", reaching κ1 = 0.85. The worst results are obtained for the detection of the
number “5", reaching κ5 = 0.4

• Convergence is reached in most cases after 180 generations. We fix the number
number of generations to this value in next experiments.

This section details the experimental results on the imbalance mitigation using the
TPG.

6.6.1 Fitness function and evaluation metric

In this subsection, we investigate which fitness function and evaluation metric to use for
training on an imbalanced dataset. The fitness function is used as an inner mechanism
for selection of the best individuals in the pool. The evaluation metric is the criterion
with which we evaluate a root team outside the learning environment. This evaluation is
performed on the best root team of a generation. It enables a saving of the model if the
evaluation is greater than the evaluation previous generations. When inferring, the best
root team of the generation that maximized the evaluation is restored.

104

6.6. Experimental Results

0 100 200 300

0

0.2

0.4

0.6

0.8

Generations

κ

Figure 6.2: Learning a TPG on the MNIST dataset with balanced class ratio (IOM of
0). Grey curves show performance evolution with one digit class as the minority sample.
The bold curve shows the mean and converges toward κ = 0.61.

6.6.1.1 Evaluation metric

A good evaluation metric for imbalanced classification is an evaluation metric that:

(i) Reaches a maximum for the considered best model,

(ii) Reaches a minimum for the considered worst model,

(iii) Takes into account the imbalance of the dataset,

(iv) Is humanly interpretable.

As explained in Section 6.4.2, F1-score, State-of-the-art TPG fitness and balanced accu-
racy are poor evaluation metrics on an imbalanced problem. Furthermore, it has been
shown that G-mean is not a good evaluation metric as the influence of the Positive class is
shadowed when the number of positive samples is low. Figure 6.3 compares the evaluation
results of the same models with the two remaining considered metrics: κ and MCC. One
expects for the mean evaluation of the classification quality to decrease when the IOM
increases due to the cardinality issue described in Section 6.3.1. Curve on the right of the
Figure represents the evolution of the MCC stops decreasing at an IOM of 3 as the other
computed points are irrelevant. Indeed as seen in Section 6.4.2, the MCC computation
can lead to an improper operation (division by zero) if two values among {TP , TN , FP ,

105

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

(a) (b)

Figure 6.3: κ (a) and MCC (b) versus imbalance ratio of a model. A point represents
an evaluation for a fixed minority class of the dataset, for a fixed imbalanced ratio. The
blue line and gray area represent the conditional mean of the evaluation results associated
with confidence intervals. Each plot goes from IOM 0 to IOM 4. MCC is shown to badly
capture the classification decrease of performances due to imbalance.

FN} are null. The adequate evaluation metric for imbalanced problems among the stan-
dard metrics is thus the Cohen’s Kappa function. Each of these functions merges several
parameters into a single value and, as so, only give a partial view of the problem. The
class-wise accuracy or confusion matrix are still more complete indicators but can not be
used easily in order to compare classification algorithms.

6.6.1.2 Choosing the right fitness

A right fitness function shall:

(i) Reach a maximum for the best model’s predictions,

(ii) Reach a minimum for the worst model’s predictions,

(iii) Produce a model that maximizes the aforementioned evaluation metric.

For the same reasons evoked on evaluation, F1-score and State-of-the-art TPG fitness
are poor evaluation metrics for high IOM. Figure 6.4on page 110 shows the influence
of κ, MCC and G-mean used as fitness functions. For low IOM, from zero to one, the

106

6.6. Experimental Results

G-mean fitness function is the most performing. The MCC Fitness function is to prefer
when the IOM is above one. This figure also shows that a TPG can train, with degraded
performance, on problems with an IOMs greater than 4.

6.6.2 Evaluation of the Proposed Selection Algorithm

Figure 6.5 compares the method with the legacy TPG that selects individuals based
on their means. The fitness function is G-mean for low imbalance and MCC for high
imbalance. We can see that the result’s variance is significantly reduced and that for
IOMs from zero to 1.5, higher κ are reached. However, due to the evaluation metric and
fitness function reaction to the vanishing presence of Positives in the dataset, the modified
TPG fails to converge on IOMs over 3. Reaching low variance Kappas at very high IOMs
will be our next objective.

Finally, Table 6.3 on page 111 shows the impact of the sub-batches size with respect
to the imbalance ratio. The sub-batches are even more impacted by the cardinality issue
described in Section 6.3.1. To this extent, it is normal that this selection mechanism does
not improve the results in case of a low cardinality.

6.6.3 Testing on a Network Intrusion Detection Systems (NIDS)
dataset

The CICIDS-2017 dataset [SLG18] used for testing the method on the intrusion detection
problem. These results are to be compared with the Figures 5.1 and 5.2, on pages 79
and 80. The TPR of this method is at most 93.94% and the TNR, 94.13%. The model
is more balanced using the G-score as a fitness function and thus, the TNR and TPR of
the method are higher than in Figures 5.1 and 5.2.

Table 6.4 compares the results of the models described in Figures Figures 5.1, 5.2 and
6.6 after 100 training generations in terms of Accuracy, Precision, Recall and F1-score.
The model optimized to deal with imbalanced performs better in terms of Accuracy,
Recall and F1-Score, losing precision in order to give more balanced and higher overall
results than the other two methods. The method produced a better classification model,
although it is not the best model to perform intrusion detection as the lower precision
implies a higher amount of false positive alerts.

107

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

0 20 40 60 80 100

0

20

40

60

80

100

Generations

%

Accuracy
Precision

Recall
F1-Score

Figure 6.6: Machine learning evaluation metrics using the imbalanced learning adapta-
tions for the TPG on the CICIDS 2017 dataset depending on the number of training
generations.

108

6.7. Discussion and future work

6.7 Discussion and future work

The proposed modification of the TPG helps in increasing its resilience to imbalance data.
Although we are able to learn from imbalanced data, the issue of the quantization and
attenuation of the fitness function is not resolved. Actual fitness are functions of the TP ,
FP , TN and FN . The use of other variables should be explored to reduce the impact
of imbalanced data. Furthermore, this study focuses on algorithmic modifications. This
is motivated by the necessity of applying stream processing for operational IP network
intrusion detection. Conversely, imbalanced problems are often simplified using hybrid
methods containing both data processing and algorithmic mitigation. As a future work,
finding methods for stream sub-sampling could lead to an hybrid mitigation of the imbal-
ance in live operational NIDS.

6.8 Conclusion

This chapter has studied the effect of imbalance on a binary classification task using
genetic programming. We demonstrate that the Cohen’s Kappa is, among standard met-
rics, the one to use to evaluate a classifier on imbalanced problems. We also propose
algorithm modifications on fitness and selection phases to support imbalance with ge-
netic programming. Indeed, this problem is bound to a training phase where selection
and fitness functions are key components, as the genetic programming algorithm uses
selection phases to keep the individuals that perform correctly, based on their respective
fitness. This chapter shows that the G-mean fitness function is a good candidate for low
IOM while MCC fits better the highly imbalanced problems. In practice, it is shown
that learning in an environment with an IOM of 4 is possible but with very degraded
performances. Finally, we show that the robustness of GP agents facing moderate IOM
problems can be increased through the use of the proposed selection phase, at the cost of
lower performance on higher IOMs.

109

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

(a) (b)

(c)

Figure 6.4: κ versus imbalance ratio for the fitness functions κ (a), MCC (b) and G-mean
(c). A point represents an evaluation at a fixed imbalanced ratio. The blue line and gray
area represent the conditional mean of the evaluation results associated with confidence
intervals. Each plot goes from IOM 0 to IOM 4. G-mean is the best fitness function for
low imbalance and MCC for high imbalance.

110

6.8. Conclusion

(a) (b)

Figure 6.5: κ versus imbalance for the ranked selection phase from legacy TPG (a) ver-
sus the proposed selection phase (b). A point represents an evaluation result for a given
minority class of the dataset for a fixed imbalanced ratio. The blue line and gray area rep-
resent the conditional mean of the evaluation results associated with confidence intervals.
The proposed method, as expected, reduces the variance of the κ and slightly improves κ
on moderate IOMs (lower than 2.5) but has lower performance on very high IOMs.

IOM
Sub-batch size 50 100 200 500 1000 1500

0 0.88 0.89 0.90 x x x
0.5 0.70 0.71 0.78 0.79 0.81 0.73
1 0.66 0.76 0.75 0.75 0.79 0.76

1.5 0.63 0.71 0.79 0.79 0.84 0.79
2 0.57 0.66 0.75 0.79 0.72 0.72

2.5 0.23 0.33 0.34 0.42 0.38 0.51
3 0.18 0.11 0.20 0.20 0.40 0.42

Table 6.3: Impact of the sub-batch size when dealing with imbalanced data. The table
sums up the κ values obtained with the class "0" as the minority class, for different IOM
and batch size for 100 training generations. Firstly, we can observe the impact of the
cardinality on the highest values of the κ measure when the IOM increases. Secondly, it
appears that in most cases, data from large sub-batches are more easily classified than
data from smaller batches. A big sub-batch is more likely to have one or several Positives
in it and thus, the score attributed to this sub-batch is more likely to represent the real
capabilities of the classifier. The × represent values that can not be obtained as the
number of available data to explore these conditions can not be reached.

111

Chapter 6 – Contribution 2: Study of the impact of data imbalance on TPG performance

Legacy TPG TPG using F1-score TPG using G-mean and Optimized selection
Accuracy 93.59 92.92 94.08
Precision 98.01 89.62 84.07

Recall 75.71 80.84 93.94
F1-Score 85.32 85.01 88.73

Table 6.4: Comparing classification results using different fitness functions. Although
the learning on imbalanced data is more efficient using the revised selection mechanism
and the G-mean function, the operational constraint on the false positive rate makes the
legacy TPG more suitable to the intrusion detection problem.

112

CHAPTER 7

Contribution 3: Evaluating TPG for stream processing,
incremental learning and high efficiency Anomaly-based

Intrusion Detection System (AIDS)

7.1 Introduction

Results of this study have been published in [Sou+22b]. Intrusion detection consists in
spotting the actions of attackers attempting to compromise the integrity, confidentiality,
or availability of a computer resource [Zam01]. To enhance the security of a network,
connections need to be analyzed for countermeasures to be deployed. In a realistic infor-
mation system context, the connection rate is high, making it impossible to be analyzed
by a human analyst in real-time. Thus, Network Intrusion Detection Systems (NIDS)
have been created to facilitate the tasks of the analyst. As the network is changing over
time, facilitating the update of Anomaly-based Intrusion Detection System (AIDS) is im-
portant [Mor11; Rai12; Sym17]. NIDSs work under the assumption that attacks packets
share a common basis and similarities. This chapter tackles challenges for AIDS such as
the diminution of the false-positive alert rate and the production of ancillary information
when an alert is raised. Indeed, false alarms are usually very time consuming and can
easily cause a detection system to be rejected by analysts. Furthermore, AIDS based on
statistical inference require an (often costly) initial training that hinders system adapta-

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

tion. Finally, encrypted data packets can bypass the Intrusion Detection System (IDS)
and prevent an attacker from being detected, motivating the choice of network flow logs
analysis.

From the difficulties that are faced by current AIDS, Genetic Programming (GP) have
interesting properties. Indeed, GP are incremental learning agents, able to create novelty
from their evolution process at each generation. Solutions that emerge from this process
are relevant candidate to face the ever-changing nature of the network environment. The
Tangled Program Graph (TPG) intelligence, as designed by Stephen Kelly [KSH], is a
Multi-Agent Reinforcement Learning (MARL) algorithm based on GP showing interesting
properties of emergence. This emergence results in an interaction between a set of agents
and the environment. The agents observe the environment and become more complex
(tangled) in their response to observations. We also hypothesize that the properties of
the TPG can also bypass some of the current difficulties of AIDS. Firstly, the TPG can
train continuously and complex action behaviors have been demonstrated to emerge from
its training, making it adapt over time to a dynamic environment. This online training
also limits the offline training time required to obtain a correct model and the need of
massive training data as it learns on incoming data without the necessity to store them.
Furthermore, the online training is bound to the issue that incremental learning implies
forgetting some of the knowledge. As demonstrated in Chapter 6, the TPG can be used
as a classifier, raising alerts and giving classification information if needed. The current
study focuses on the detection of attacks and thus, their classification is kept out of its
scope. We use as training data the network flow information from both the CICIDS 2017
[Cyb] and the CSE-CIC-IDS2018 [SLG18; CC] datasets.

We developped a high performance monitoring system, named Secure-GEGELATI
based on the TPG. IT aims at progressively automating the detection of intrusions in an
Information System (IS) by observing the incoming data. It constitutes an AIDS probe
which helps a security analyst to early detect an attack. The monitoring system is required
to have nearly perfect precision, potentially trading it off for a low recall. Indeed, false
alarms are extremely time consuming, as they bring analysts to finally uncover that no
attack was currently performed. Conversely, missing intrusions is less costly, as it brings
the security analyst back to the situation where no live monitoring system was present.

To be useful in practice, a live IDS monitoring system must:

• keep up with the pace of the IS incoming data,

114

7.1. Introduction

• be embeddable in an always-on device, and thus energy efficient,

• raise extremely rare false alarms in a context where attacks are very rare events.

This chapter proposes the following:

• we study the GEGELATI TPGs learning capacities and energy efficiency on a
realistic and complex application,

• we demonstrate that the properties of TPGs are well suited for building a learning-
based NIDS. In particular, its energy efficiency and incremental learning capabilities
on new incoming attack flows are studied,

• we introduce the open source Secure-GEGELATI Tangled Program Graph (TPG)
system for learning-based intrusion detection.

The TPG learning method has a lightweight structure, its training and inferring pro-
cesses are known to be fast and adequate for online training [KH17b]. This lightweight
structure helps for online training on an embedded platform. The considered scenario is
the following:

• Training phase: the analyst provides tagged data to train the stream-processing
monitoring system, specifying whether an attack is ongoing or not.

• Monitoring phase: the live monitoring system is switched into a monitoring mode,
continuously observes the IS and triggers an alarm when an attack occurs. With
GP, the analyst can switch back the monitoring device into a training phase at any
time and improve its sensitivity to new attacks.

Section 7.2 introduces state of the art methods for adaptive and stream processing
intrusion detection and situates Secure-GEGELATI among them. We explain in Sec-
tion 7.3 how the TPG can be adapted into a NIDS stream processing probe (The TPG
algorithm was previously described and defined in Section 6.1). Finally, in Section 7.5,
we compare the performance of Secure-GEGELATI with the state-of-the-art methods
in terms of precision, stream processing capabilities and energy efficiency.

115

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

7.2 Related Work

This chapter is about creating an efficient and adaptable solution to the intrusion detection
problem.

As described in Chapter 5, the network environment is dynamic making it a challenge
to determine accurately which traffic is harmless and which is not. Moreover, due to the
changes occurring on the network, new harmless activity may emerge. New emerging
malicious activities may go along with these new harmless activities.

Some research papers focus on method to adapt to these changes over time, using
incremental methods [Liu+19; Liu+20; Con+19; Wu+21]. For example, [Liu+19] applies
incremental learning to deep neural networks in order to train an AIDS. The method
is able to detect unknown attacks sample, even though the novel attacks belong to al-
ready known attack categories. The same critics can be made about [Liu+20] where GP
is used under the same testing conditions. On the other hand, some research articles
[Moh+19; APN18] focus on the design of an IDS, using incremental learning to adapt
to these changes, but without demonstrating the functioning of the method on a live
network making difficult to compare their results. For example, [Moh+19] reached high
classification score on the KDD99 dataset, using an incremental deep learning classifier
but no tests were made on a changing environment. Finally, other methods [LCS20;
ZCS20] claim their solution suitable for live network inferring without demonstrating the
accuracy of the solution on a dynamic network environment.

For their part, [Liu+19; Con+19; WRM03; Moh+19; GMS00; SLP22] measure the
efficiency of their IDS and provide either bit rate or analysis time of network packets.
The most efficient method [SLP22] used extra trees and applied feature selection (using a
43 features dataset) for an efficient and accurate detection reaching a peak performance
of 44.10 MB/s analyzed. [Liu+19] provides an interesting comparison measure as they
used an incremental learning method applied to a changing network environment, while
providing their results in terms of analysis time. Using this method, one is able to examine
2.4MB/s of data.

The main differences between these IDSs lies in the learning method used. Indeed,
[Con+19] used both a Neural Network (NN) coupled with a Support Vector Machine
(SVM) to design an IDS. Similarly, Mohamed et al. [Moh+19] used Deep Neural Networks
(DNNs) resulting in less processing capabilities. The feature selection and sparse neural
structure used by Liu et al. in [Liu+19] made their IDS between 100 and 1000 times more

116

7.3. The Secure-GEGELATI stream processing prototype

efficient in terms of stream processing capabilities than the aforementioned [Con+19] and
[Moh+19]. On the other hand, lighter learning algorithms such as extra trees [SLP22]
give the best performance in terms of stream processing capabilities. This comparative
study of learning algorithms motivates the use of the lightweight structure of the TPG to
face the intrusion detection problem.

Table 7.1 sums up the different research papers that designed AIDS to either fit the
changes occurring on the network or that reaches high network packets processing perfor-
mances.

7.3 The Secure-GEGELATI stream processing pro-
totype

Secure-GEGELATI is a TPG-based system that has been designed to perform intrusion
detection on an IS.

In Section 7.3.1, we present the changes applied to TPGs to use them in an IDS.
Section 7.3.2 details reinforcement learning in a NIDS context. Section 7.3.3 presents the
embedded version of our system. Finally, we describe in Section 7.3.4 a practical use case
of the probe.

7.3.1 An Anomaly-based Intrusion Detection System

Secure-GEGELATI is a TPG system that has been adapted in the following ways:

1. Secure-GEGELATI is tailored to perform an inference task. To build Secure-
GEGELATI, the TPG has been adapted to classification problems by increasing
the probabilities of mutations of programs, and increasing the diversity of explored
solutions. In particular, the mutations that cause the change of the outgoing edges
to a different action are useful to discover samples from all the represented classes,
including rare intrusion classes. After modification, Secure-GEGELATI is able to
create a model for rare events.

2. It is tailored to produce classification with low False Positive Rate (FPR) and in-
cremental learning. Originally, a TPG is designed to solve Reinforcement Learning
(RL) challenges, i.e. to choose the actions to be applied to an environment so as
to increase a reward. A NIDS requires primarily a high precision to get a low false

117

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

pa
pe

r
In

cr
em

en
ta

l
G

P
ac

cu
ra

cy
un

kn
ow

n
no

ve
l

ch
an

gi
ng

ch
an

gi
ng

st
re

am
pr

oc
es

sin
g

at
ta

ck
s

at
ta

ck
s

tr
affi

c
to

po
lo

gy
ca

pa
bi

lit
ie

s
(M

B/
s)

[L
iu

+
19

]
x

98
%

no
ye

s
no

no
2.

4
[L

iu
+

20
]

x
x

87
%

no
ye

s
no

no
x

[C
on

+
19

]
x

83
%

no
no

ye
s

no
0.

00
2

[W
u+

21
]

x
85

%
no

no
ye

s
no

0.
00

3
[M

oh
+

19
]

x
98

%
no

no
no

no
0.

02
[A

PN
18

]
x

89
%

no
no

no
no

x
[L

C
S2

0]
96

%
no

no
no

no
x

[Z
C

S2
0]

70
%

no
no

no
no

x
[G

M
S0

0]
x

no
no

no
no

0.
02

7
[S

LP
22

]
>

90
%

no
no

no
no

44
.1

0

Ta
bl

e
7.

1:
A

da
pt

ab
ili

ty
of

N
ID

S
an

d
pe

rfo
rm

an
ce

m
ea

su
re

m
en

t(
M

B/
s)

fo
rs

tr
ea

m
pr

oc
es

sin
g.

T
hi

st
ab

le
po

in
ts

ou
tt

he
pu

bl
ish

ed
m

et
ho

ds
ei

th
er

ab
le

to
ad

ap
t

to
ch

an
ge

s
on

a
ne

tw
or

k
to

po
lo

gy
,t

ra
ffi

c
or

at
ta

ck
tr

affi
c

or
m

et
ho

ds
us

ed
fo

r
st

re
am

pr
oc

es
sin

g
fo

r
an

om
al

y
de

te
ct

io
n.

A
di

st
in

ct
io

n
is

m
ad

e
be

tw
ee

n
un

kn
ow

n
at

ta
ck

s
an

d
no

ve
la

tt
ac

ks
w

he
re

th
e

fir
st

on
e

is
a

ze
ro

-d
ay

at
ta

ck
th

at
is

to
ta

lly
un

kn
ow

n
fo

r
th

e
ne

tw
or

k
w

hi
le

th
e

se
co

nd
on

e
is

a
ze

ro
-d

ay
at

ta
ck

of
an

al
re

ad
y

kn
ow

n
ca

te
go

ry
.

118

7.3. The Secure-GEGELATI stream processing prototype

alarm rate, and secondarily a high recall to detect as many intrusions as possible. As
described in Chapter 5, the basic fitness function giving points for the true positives
and true negatives and withdrawing points for each false positive or false nega-
tive alert suits the needs of an AIDS. Section 7.5.5 uses this fitness function with
the additional constraint of not raising any false positive alerts during the training
phase.

3. Secure-GEGELATI uses a selection mechanism that is more resilient to the pres-
ence of imbalanced data as described in Chapter 6.

4. It is tailored to high stream processing capabilities enabled by core parallelism and a
training phase where each network flows are processed only once instead of analyzed
by each TPG root teams.

Secure-GEGELATI faces two main problems:

• analyze network flow logs with high stream processing capabilities

• learn in a dynamic environment where new threats appear over time.

To keep pace with the input data stream while training, we studied two training
modes. The first one trains each root team with the same input stream of data and the
second one stacks the network flow logs into a FIFO and different root teams unstack
data through their learning. In the second training mode, each root team is trained with
different data making the imbalanced data problem more important. The two methods
will be compared in results sections on Table 7.9.

Finally, in order to cope with changes on the network (see Table ??) or with the
appearance of novel threats (See Table 7.7 and Table 7.8), we altered the learning process
in order to switch manually between training and highly imbalanced modes. This feature
allows an analyst to update the probe when required. Figure 7.1 and 7.2 show the flow
of data in both inferring and training mode.

7.3.2 A GP-based probe

We designed the Secure-GEGELATI system as a GP probe that:

• takes actions on a dynamic environment, similarly to the legacy RL TPG

• evaluates the internal model (inferring) and explores of the action space (training)

119

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

Internet

Internal
network

Router

CICFlowMeter

Packets

Packets

Secure-GEGELATI

Bi-directionnal

Network flows

Alerts

Analyst

Figure 7.1: In inferring Mode, Secure-GEGELATI monitors Bi-directional Network flow
logs (Network flows logs from both the request and the response) provided by the "CI-
CFlowmeter" software from the raw packets logs. The analyst receives potential alerts.

Internet

Internal
network

Router

Data base

Packets

Packets

Secure-GEGELATI

Bi-directionnal

Network flows

Alerts

Analyst

Labels

Figure 7.2: When Secure-GEGELATI is in training mode, it monitors network flows
labeled by the analyst. The analyst labels this new training set of logs based on existing
labels, expertise and other potential security mechanisms (such as signature-based IDS)
already set-up on the network. The new training network flow logs are copied into to the
previous training set. Secure-GEGELATI itself continues to raise alerts while training.

• learns through a fitness function, similar to rewards.

120

7.3. The Secure-GEGELATI stream processing prototype

Secure-GEGELATI is a GP probe that exploits properties of RL to reduce the re-
quired amount of supervision, learn incrementally and provide a gradient free method.

We can compare Secure-GEGELATI with a RL-based probe as:

• it takes action on a dynamic environment, as we include the input data itself directly
in the environment. When an action is taken (even though it is a classification
action), the environment changes and a new line of network flow summaries is made
available, enabling the agent to make new observations and update its action policy.

• its evaluation of the internal model is kept low to the benefit of a high exploration
allowing the agent to fit to the novelty appearing on the dynamic environment. New
attacks and threats can thus be detected.

• there is no immediate correction of the learning as in supervised learning, but instead
a delayed score that is given to each agent root team at the end of a batch, fostering
the selection of the best root teams for the cloning and the mutations.

7.3.3 A stream processing Embedded system

We use as a proof-of-concept target an octa-core Exynos 5410 SoC with four LITTLE
ARM cores (A7) and four big ARM cores (A15), providing a set of 17 clock configurations
from 200 MHz to 2.0 GHz for the A15 cores and from 200MHz to 1.4GHz for the A7
cores. The TPG graph being a highly dynamic and evolvable model, we choose to use
this versatile platform and benefit from its high-energy efficiency, optimized for running
in handheld devices. This platform constitutes a portable baseline for future studies on
hardware acceleration. Accelerations of TPG programs on a SoC-FPGA is considered for
future work.

Secure-GEGELATI exploits the platform parallelism. As a low-power device, the
number of cores used for the application can be adjusted at initialization to keep pace
with the incoming data flow while functioning at the lowest level of energy consumption.
The clock frequency of the A7 cluster and the A15 cluster can be set at initialization and
updated at runtime to prevent the probe from being flooded.

The determinism of GEGELATI helps in the validation of the embedded Secure-
GEGELATI IDS on the octa-core Exynos 5410 SoC, ensuring that the training is occur-
ring properly on the embedded platform.

121

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

To keep pace with the input stream of data in a training configuration, optimizations
have been performed. Two different settings are considered:

• M1: during training, all root teams analyze the input data. The best root teams
are selected at the end of the generation for replication and mutation. The least
performing root teams are deleted. This is the legacy functioning mode of a TPG.

• M2: online training in a stream processing context forces us to analyze each network
flow log only once. The best root team is not necessarily the one that will analyze
a network flow log. The log is analyzed by the first root team available – depending
on the parallelism/determinism of the application –.

The analysis during an online training of the probe is slower than while inferring. The
results shown in next sections consider both approaches. In M2, network flow logs arrive
in a stack and each root team unstacks one log and analyses it. Each root team thus
trains on different samples.

7.3.4 Using Secure-GEGELATI as an IDS

At initialization, the analyst trains the Secure-GEGELATI IDS offline providing labeled
data or online, using results from other signature-based or anomaly-based IDSs to provide
the labels. After setting the parameters of the embedded device such as started cores and
frequency of the core clusters, the probe starts training. At any time, the analyst is able
to freeze the training to use the probe in inferring mode. To update the device, he only
has to switch back into training mode. This is illustrated in Figure 7.3.

7.4 Experimental setup

The legacy CICIDS2017 dataset is used for training and inferring Secure-GEGELATI.
The CSE-CIC-IDS2018 dataset is also used as it is more realistic in terms of rareness of
malicious events and as it sums up generated traffic on a network topology similar to the
one of a small-company. The datasets are presented in more details in the section 7.4.1

We want to show here that Secure-GEGELATI is a relevant contribution to AIDS
design by measuring its performances on various experiments.

• Firstly, we measure its performances on the CICIDS 2017.

122

7.4. Experimental setup

Analyst

Enables

Learning

Inferring

Model validation

New intrusion

identified

Analyses

Triggers

Enables

Figure 7.3: After an initial training, the Secure-GEGELATI IDS runs on the network.
When a new intrusion is identified by Secure-GEGELATI (and confirmed) by the analyst,
he updates the training set providing new labeled data and the probe is switched back
into learning mode. New intrusion detection capability is checked on a validation set
before turning the probe back into inferring mode.

• Then, to demonstrate the adaptability of the Secure-GEGELATI IDS, we run the
following experiments:

1. we measure the evaluation performances of a TPG previously trained on CI-
CIDS 2017 on the CSE-CIC-IDS2018 dataset and show the adaptability of
the TPG intelligence. The CSE-CIC-IDS2018 dataset represents changes in
terms of network topology, available services, normal traffic and attack traffic.
Furthermore, it introduces zero-days attacks from both known and unknown
categories of attacks. We qualitatively compare the results to the state-of-the-
art methods.

2. We train a model without a category of attacks and study the reaction of
Secure-GEGELATI when we introduce this attack in the dataset. We show
that Secure-GEGELATI is able to evolve in order to discover the new attack
and how it affects the learned model.

123

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

• We show that Secure-GEGELATI is a relevant solution in a stream processing
context and that it is able to keep pace with the network flows of the CICIDS 2017
and 2018 datasets.

• We show that the Secure-GEGELATI IDS is useful on an embedded platform and
measure its performance in terms of the amount of analysis per seconds. Details on
the embedded platform are available in Section 7.3.3

• Finally, we measure the energy efficiency of the Secure-GEGELATI NIDS on the
embedded platform.

7.4.1 Description of the datasets used in the experiments

The datasets CICIDS 2017 and 2018 are used in this study. Even though several draw-
backs exists in both datasets, they both present advantages in terms of quality of gener-
ated traffic, uses of different operating systems and variety of services supported, diverse
attacks while being recent datasets [Rin+19].

7.4.1.1 The CICIDS 2017 dataset

The CICIDS 2017 dataset is used as described in Section 5.4.1. The 15 classes dataset
is turned into a two class problem characterizing the traffic as either normal or as an
intrusion. The dataset is used with respect to the results provided in Chapter 5 in terms
of representation bias mitigation. Except for the experiment under operational conditions
in Section 7.5.5, the corrected dataset proposed by [ERJ21] is not used.

7.4.1.2 The CSE-CIC-IDS2018 dataset

The CSE-CIC-IDS2018 provides a similar dataset and is the result of a simulation of a
much bigger IS. Indeed, the dataset generated comes from a set of 420 computers divided
into five departments and thirty servers. The attacks are carried out from an “attacker"
network composed of 50 machines using the Windows and Kali operating systems. The
CSE-CIC-IDS2018 dataset is composed of the same categories of attacks as the CICIDS
2017 dataset but with slight differences due to the modernization of some attacks or the
changes in operating system. The CSE-CIC-IDS2018 dataset is more representative of a
realistic small company-sized IS.

124

7.4. Experimental setup

Parameter Name Value
maxNbActionsPerEval 10000

maxNbEvaluationPerPolicy 500
maxProgramSize 20

pAdd 0.5
pDelete 0.5
pMutate 1.0
pSwap 1.0

maxInitOutgoingEdges 2
maxOutgoingEdges 5

nbRoots 360
pEdgeAddition 0.7
pEdgeDeletion 0.7

pEdgeDestinationChange 0.1
pEdgeDestinationIsAction 0.5

pProgramMutation 0.2
nbGenerations 100

nbIterationsPerPolicyEvaluation 10
nbRegisters 8

ratioDeletedRoots 0.4
archive Size 500

archivingProbability 0.01
maxConstValue 100
minConstValue 0

pConstantMutation 0.5
forceProgramBehaviorChangeOnMutation true

nbProgramConstant 0
nbThreads 16

Table 7.2: Parameters of the TPG framework used in this Chapter.

7.4.1.3 Adjustments

Some differences between the two datasets required pre-processing to have consistent data
for training and evaluation of the solution. In particular, the CSE-CIC-IDS2018 dataset
has two additional columns compared to the CICIDS 2017 dataset, and the CICIDS 2017
has information about header length whereas the other dataset does not.

7.4.2 Parameters of the TPG

Table 7.2 displays the parameters used in this Chapter to train TPGs. The parameters

125

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

of the TPG as defined in [Kel18] are used. The number of actions taken and the number
of evaluation required are designed to widen the exploration space of the TPG. Due to
the consequences of these parameters, the size of the programs have been reduced to
reduce the execution time of the programs. The archiving probability is also reduced to
limitate the memory impact of the probe on the embedded system. Finally as a feature
developped by our team, we force the program behavior to change if the program goes
through mutations.

7.5 Experimental Results

This section sums up the experiments results of the proposed protocol and evaluates the
utility of the TPG algorithm in the design of a NIDS.

7.5.0.1 CICIDS 2017 Analysis

[SLG18] gives results on the CICIDS 2017 dataset in terms of Precision, Recall and F1
Score using seven Machine Learning (ML) algorithms. Those results have been reported
in Table 7.3. Among those seven supervised learning algorithms, four stand out. Indeed,
k-nearest neighbors (KNN), Random Forest (RF), Iterative Dichotomiser 3 (ID3) and
the Quadratic Discriminant Analyzer (QDA) reach F1-scores above 90%. The Adaboost,
Multi-Layer Perceptron (MLP) and Naive-Bayes algorithm reach lower detection rates.

Table 7.3: Results on the CICIDS 2017 dataset using various ML Algorithms as reported
in [SLG18]

Algorithm Precision Recall F1-score
KNN 0.96 0.96 0.96
RF 0.98 0.97 0.97
ID3 0.98 0.98 0.98
Adaboost 0.77 0.84 0.77
MLP 0.77 0.83 0.76
Naive − Bayes 0.88 0.04 0.04
QDA 0.97 0.88 0.92

A comparison metric for IDS is given by the Intrusion Detection Capability CID

[Gu+06] based on information theory.

126

7.5. Experimental Results

This CID is the result of the computation of the mutual information (I(X⃗; Y⃗) having
X⃗ being the inputs log class of the IDS and Y⃗ being the classifications given by the IDS
on the input logs X⃗) normalized by the entropy of X⃗: H(X⃗). An IDS has to determine
whether a log is normal or represents a threat. Secure-GEGELATI can be seen as a
deterministic function that acts on the input stream (X⃗) and produces the output Y⃗

ideally being identical to X⃗ classes (i.e. “Benign” or “Attack”). The number of guesses
represents H(X⃗) (i.e. the information content of X⃗) and the number of correct guesses
represents I(X⃗; Y⃗). More details on the CID can be found in [Gu+06].

The higher the CID is, the better the IDS performs. In practice, having a perfect
model (FPR (False Positive Rate) and FNR (False Negative Rate) both value 0) leads
to a CID of one . This value helps to choose the best trade-off between Precision and
Recall.

7.5.1 Performance of the RF and the TPG algorithms on the
datasets CICIDS 2017 and CSE-CIC-IDS2018

We compare the algorithms in terms of accuracy, precision, recall (or sensitivity) and
F1-score. It is more interesting in this study to maximize both Precision and Recall (high
F1-score) as we want to detect as many attacks as possible (high recall) while generating
as few false-positive alerts as possible (high precision).

7.5.1.1 RF implementation

Even though the ID3 algorithm produced the best results (see Table 7.3), we use RF to
compare our results as no open-source multi-threaded and low level implementation of
ID3 was found for fair comparison. RF have results close to the ID3 algorithm and a
multi-threaded low-level implementation is available in the Ranger framework [WZ15].
This implementation is useful to try the RF on the embedded platform. Table 7.4 sums
up the precision, recall, F1-score and accuracy of the RF algorithm.

We can see that there are some differences with the results given in Table 7.3 and in
[YSS19] using a state of the art RF algorithm. Those differences are due to a custom RF
parameters tuning to reach a 100% precision. Such a precision is preferable because in
the intrusion detection field, false positive alerts are costly time consuming.

127

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

Table 7.4: Performance metrics using RF on the CICIDS dataset for different training
time + evaluation time.

Time (s) Accuracy (%) Precision (%) Recall (%) F1-score (%)
183 94.5 97.6 74.1 84.3
539 95.5 99.7 77.3 87.1
1867 94.8 99.8 73.9 84.9
3543 92.2 100.0 60.3 75.3

7.5.1.2 Using the TPG to analyze CICIDS

Using the GEGELATI framework gives good results in terms of accuracy, precision,
recall and F1-score as shown on Table 7.5.

Table 7.5: Performance metrics using Secure-GEGELATI on the CICIDS dataset de-
pending on the total time (training + evaluating at the end of each generation on a disjoint
testing dataset).
Comparing with Table 7.4, we can see that for a similar amount of time, the performances
of both algorithms are close. In particular, we are not able to reach a 100% precision with
Secure-GEGELATI but the higher recall makes it competitive.

Time (s) Accuracy (%) Precision (%) Recall (%) F1-score (%)
363 86.27 66.65 63.05 64.80
720 91.89 97.10 61.33 75.18
1701 94.74 96.72 76.32 85.31
3847 96.68 99.12 84.18 91.04

Comparing Table 7.5 with Table 7.4, we can see that for a similar amount of training
time the results of Secure-GEGELATI are slightly better than the results of the RF
algorithm. On one side, RF obtains no false positive alerts (really saving for an analyst).
On the other side, the recall of the method is quite low. The RF implementation of the
NIDS misses 40% of the attacks. Secure-GEGELATI is not able to detect attacks with
a 100% precision but it is incorrect less than one percent of the time. On the other side,
Secure-GEGELATI is able to detect over 84% of the attacks of the dataset. The learning
of the RF being conditioned by statistics, a fast RF-based IDS will difficultly be able to
detect the least represented classes. For example, Heartbleed or SQL-injections represent

128

7.5. Experimental Results

less than 0.001 % of the data available in the CICIDS 2017 dataset. A RF-based probe
able to detect those attacks could be designed by changing learning parameters and thus
increasing the learning time of the IDS.

7.5.2 Adaptability of GEGELATI

7.5.2.1 Inferring the previous models to the CSE-CIC-IDS2018 dataset

In real-world conditions, the network environment is dynamic. The network topology can
change, new services or tools can be installed and new user-behavior will be discovered.
Even though switching from a tiny IS (represented by the CICIDS 2017 dataset) to a
company-sized IS (CSE-CIC-IDS2018), we want our algorithm to be robust and to keep
detecting as many threats as possible (low false-negative rate / high recall) while not
generating false-positive alarms.

We sum up in Table 7.6 the evaluation of CSE-CIC-IDS2018 for both the RF algorithm
and Secure-GEGELATI trained on the CICIDS 2017 dataset.

Table 7.6: Inferring models previously trained on the CICIDS 2017 dataset on the CSE-
CIC-IDS2018 dataset

Algorithm Accuracy Precision Recall F1-score CID

RF 70.58 100 0.08 0.16 4 × 10−3

TPG 91.0 95.3 24.5 39.0 0.15

The difference between the results presented in Table 7.6 comes from the learning
mechanisms. In the first case, with RF, the learning is done by studying the whole dataset
as well as selecting the discriminating variables and thresholds that permit a classification
without false positives. When the available information changes, that threshold and
variables become less accurate for the classification of the new net-flow logs and leads to
more classification errors. We keep detecting 1 threat over 4 using Secure-GEGELATI
(see Table 7.6, recall column). Even if the content of the information changes, the TPG
selects the discriminating variable and applies a program on those. The sequence of
programs leading to the raise of an alarm might still activate, even though the observed
values changed.

Although the use of RF does not generate false-positive alerts, it raises a mean of
an alert every 1250 attacks whereas Secure-GEGELATI is raising a positive alert every

129

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Generations

%

Accuracy
Precision

Recall
F1-Score

Figure 7.4: Performance metrics using Secure-GEGELATI on the CICIDS dataset de-
pending on the total time (training + evaluation time. At generation 80, as Secure-
GEGELATI reaches over 95% of its detection capabilities the analyzed connections are
switched to CSE-CIC-IDS2018 instead of CICIDS 2017).
Even though drastic changes are applied to Secure-GEGELATI, the learning agent is
able to adapt and detect intrusions with a high precision.

4 attacks with 95% of precision. We prefer the use of the Secure-GEGELATI IDS as
CID(TPG) = 0.15 and CID(RF) = 4 × 10−3.

7.5.2.2 Discovering new categories of attacks

To demonstrate the detection of novel attacks, we carefully create two new data sets from
the CICIDS 2017 dataset. The first one D1 is the CICIDS dataset without all the attacks
labeled as “Port Scan" and the traffic in between Port Scan attacks. The second D2 is the
CICIDS dataset without all DoS Slow Loris, Dos slow HTTP-test attacks and Port Scans
and the Benign traffic in between those attacks. We train offline on D1 for 50 generations
and add the port scan network flows to the existing dataset while Secure-GEGELATI
worked in inference mode. After a while, we re-train the probe and write down the results

130

7.5. Experimental Results

after 1 generation and after 50 generations of re-training. The same experiment is run
with the second dataset D2. Table 7.7 shows the results of the experiment were Port
Scan attacks are zero-days attacks whereas Table 7.8 shows the results of the experiment
where the DoS attacks (all categories) are zero-days attacks.

We can see in Table 7.7 that most attacks are less detected after 50 re-train generations
than after 1 re-train generation, marginally for some, significantly for others. This is
partly due to the data imbalance described in Table 5.1 and also to the inner reward
mechanism trying to prevent Secure-GEGELATI to raise false positive alerts. Before the
modification of the dataset, Dos Hulk is the predominant attack class in the dataset. When
Port Scans are added, it becomes the second most represented class, making it important
for Secure-GEGELATI to detect it. Port Scans are known to have a signature and thus
it is more likely that Secure-GEGELATI will come out with a good set of observation to
detect them efficiently. Dos attacks are typically discovered through their volume which is
something Secure-GEGELATI is not doing. Secure-GEGELATI can eventually come
out with correct observations to reach back 100% of detection on the Dos-Hulk attack
through an extended training.

Tables 7.7 and 7.8 sum up that the TPG is agile enough to detect new threats as they
come and can be retrained online to update its knowledge base and keep performing a
precise detection without generating too many false-positive alerts. Secure-GEGELATI
tends to maximize its rewards and thus, attacks that have only a few samples in the
dataset are more likely not to be detected.

7.5.3 Stream processing and energy efficiency of Secure-
GEGELATI

The training time T of the TPG is conditioned by several factors:

• the number of samples or number of connections to analyze. A single policy takes
a time T = t to analyze a sample of the network flow logs and takes T ≈ n × t to
analyze n samples. The approximation is due to the depth of the chosen path. The

131

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

Table 7.7: This table sums up the per class true positives (and true negatives for the
BENIGN class) when adding Port Scan attacks to the training set after 50 generations.
The inferring results are very different from the results of the offline training due to the
change of the evaluation set (required to insert the port scan attacks in the dataset). Note
that without knowing anything about Port-Scans, the TPG model is able to raise an alert
for 40% of them. Retraining causes an instant drop of the True Negative Rate and an
instant raise of the True Positive Rate (TPR). Secure-GEGELATI tends to fit the most
frequently occurring data of the dataset and thus becomes really good at detecting port-
scan while keeping a low false-positive rate. × represents irrelevant data as they are not
part of the evaluation set. Some attacks were not present in both evaluation sets or never
detected.

class train
(50 gen)

Inferring re-train
(1 gen)

re-train
(50 gen)

BENIGN 96.6 95.7 78.9 99.8
XSS 4.8 5.6 5.6 0
DoS slow
Loris

29.1 42.6 38.0 36.4

Dos slow
HTTP-test

58.9 66.0 63.8 59.6

Dos
hulk

94.8 100 100 76.9

Port Scan × 42.6 99.4 99.3
TPR 90.9 38.9 87.3 86

more relay-teams descended while running the algorithm, the more time it takes to
take an action.

• The number of root-teams will have a direct influence on the training time. A
root-team takes T ≈ n × t to train and R root-teams take T ≈ n × t × R.

To train the algorithm, we can choose to send the same sample to each root-team
(M1). In this case, the analysis rate values: Arate(M1) ≈ n

T
. Or we can train the

algorithm sending samples to root-teams as they come (M2) which results in a boost
of the analysis rate: Arate(M2) ≈ R×n

T
. We sum up in Table 7.9 the rates obtained at

different stages of the training on the CICIDS 2017 dataset using a batch size of 10,000
samples.

132

7.5. Experimental Results

Table 7.8: This table sums up the per class true positives (and true negatives for the
BENIGN class) when adding Dos attacks to the training set after 50 generations of offline
training. The inferring results are very different from the results of the offline training
due to the change of the evaluation set (required to insert the DoS attacks in the dataset).
This time the model is not able to detect any DoS attack in inferring mode. Retraining
causes an instant drop of the True Negative Rate. Secure-GEGELATI tends to fit the
most present data of the dataset and thus fits to detect Dos Slow-Loris and DoS Slow-
HTTP test while keeping a low false-positive rate. × represents irrelevant data as they
are not part of the evaluation set. Some attacks were not present in both evaluation sets
or never detected. The data imbalance is described in Table 5.1

class train
(50 gen)

Inferring re-train
(1 gen)

re-train
(50 gen)

BENIGN 100 100 86.1 99.9
Brute-force 75.0 67.5 67.5 67.5
XSS 86.2 94.4 94.4 94.4
DoS slow
Loris

× 0.0 20.9 20.9

Dos slow
HTTP-test

× 0.0 59.6 59.6

Port Scan × 0.0 99.7 99.4
TPR 48.2 10.3 96.3 96.1

Note that Table 7.5 was obtained using the second method where samples are analyzed
as they come and the root-teams do not learn on the same samples.

As seen in Section 7.4.1, the CICIDS 2017 dataset produces a mean of 50 connections
per seconds and peaks to 170 connections per second. The Secure-GEGELATI algorithm
is able to keep pace with the dataset using a X86 architecture. Through the generations,
the graphs get more complex as relay teams are added. This is why the performance of
the algorithm decreases with time.

As the peak number of connections per seconds on CICIDS values 170 connections
per second, the embedded design must be efficient enough to perform online training at
this rate. It is recalled that the four A7 cores of the Exynos 5410 platform can run at a
maximal frequency of 1.4 GHz and the four A15 cores, at 2.0 GHz. We present in Table
7.10 the training times on the Exynos 5410.

133

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

Table 7.9: Measuring the number of connections analysis per seconds (Arate) using Secure-
GEGELATI. The first method (M1) trains a TPG by sending identical data to all teams
whereas the second method (M2) stack all the data in a buffer and teams unstack the
data one at a time. In method M2, teams are training with different data through time.

Gen. Training time (s) Arate(M1) Arate(M2)
1 27.29 1832 916052

20 38.53 1297 642861
40 52.89 945 472643
60 58.61 853 426577
80 66.03 757 378615

Table 7.10: Reachable number of connection analysis per seconds using the Exynos 5410
with M2. We effectuate the training on TPG using 200 root-teams and training over a
batch of 500 connection summaries (100,000 network flows analyzed). The frequencies
FA7 and FA15 are in GHz.

Cores FA7 FA15 Train (s) Arate

4A7 + 4A15 1.4 2.0 7.52 13294
1A7 + 4A15 1.4 2.0 10.49 9533

4A7 1.4 - 22.88 4371
3A7 0.2 - 239.21 418
2A7 0.3 - 258.00 387
2A7 0.2 - 614.39 162
1A7 0.2 - 1286.58 77

The embedded platform is able to process the entirety of the stream, even during the
training phase. The Table 7.10 shows that the rate reachable using Secure-GEGELATI
using 2 A7 cores at 300 MHz is superior to the connection rate on the CICIDS 2017
dataset.

7.5.3.1 Energy efficiency of the IDS

The x86 Intel Xeon W-2145 processor used for previous experiments in Section 7.5.2
has a 140 Watts peak thermal dissipation power (TDP). Using this architecture, Secure-
GEGELATI analyses up to 378k connections per seconds during training and 480k

connections per second using the graph on inference.
The Energy efficiency (Eeff) of the x86 platform is thus :

134

7.5. Experimental Results

• Eeff (Training) = 2 .7k connections.W −1

• Eeff (Inferring) = 3 .4k connections.W −1

As a comparison, the RF IDS has an energy efficiency of Eeff (Inferring) = 400 connections.W −1

using a x86 architecture on inference. We used the framework RANGER [WZ15], a par-
allel framework to train RF for a fair comparison with a parallel TPG-based IDS. The
Secure-GEGELATI software has thus 8 times the energy efficiency of RF-based IDS.

On the Exynos, the chosen solution (using 2 A7 cores at a 300MHz frequency) con-
sumes 0.05 W. It results in an energy efficiency Eeff (Inferring) = 200k connections.W −1 .

Monitoring a theoretical system functioning at 1TBps and saturated in traffic requires
at its maximal capacity the analyses of 700M connections. Under the hypothesis of perfect
scalability, this probe can function on such a system at 35W.

7.5.4 Comparison with the state of the art

Table 7.11 sums up the state of the art contribution over adaptive and real time methods
for the design of AIDS and compares it with our three different tests. During the first test
(see Figure 7.7), Ports Scans attacks were added after a pre-training of the probe. At this
time, the Ports Scan attacks are considered as zero-days attacks although the knowledge of
DoS attacks helps the probe to detect some of the Port Scan attacks when inferring. The
incremental learning process of the TPG is able to detect port-scans accurately after 50
generations. These results can be compared with [Liu+20] as both study use incremental
learning and observe the reaction of the AIDS to the appearance of a zero-day attacks
while having prior information on the attack. In the second test (see Figure 7.8), DoS
attacks and Port Scans attacks were added to the training and testing dataset. No prior
information is known by the probe when the attacks are integrated into the dataset. Once
again, the TPG agent is able to fit the data and to detect the attacks. Finally (see Figure
7.4), a transfer is performed from the CICIDS 2017 dataset to the CSE-CIC-IDS2018
dataset. It results in changes of the network topology, of data traffic (cloud servers
are added into the infrastructure) and of attack traffic, with some attacks where prior
information is available and other attacks that are zero-days attacks. Although the TPG
is able to keep a high precision (95.3%) and accuracy (91%), the method tends to miss a lot
of attacks. It is mainly due to the short simulation time and to the extents of the changes
occurring on the network. A complementary study is required. The Secure-GEGELATI

135

https://github.com/imbs-hl/ranger

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

IDS is able to analyze as much as 149MB/s of network data (which represents a total
amount of 100000 network flows per seconds).

7.5.5 Training an AIDS for operational conditions

AIDS are useful for an analyst to determine whether or not unknown traffic is dangerous
for the IS. Analysts examine packets that triggered an alert through the AIDS. An an-
alyst is known to be able to analyze between 10 and 20 events per day making it a key
component for an AIDS not to generate false positive alerts. We train an AIDS using the
corrected version of the CICIDS 2017 dataset as described in [ERJ21] with the constraint
that no false positive alerts should be triggered during the training phase. The reduction
of the representation bias as described in Chapter 5 is used, as well as the specification
of the imbalanced learning TPG as described in Chapter 6. Table 7.12 shows the results
in terms of True Negative Rate (TNR) and True Positive Rate (TPR) of this AIDS af-
ter inferring. The table also displays the total amount of alerts and the amount of false
positive alerts of the AIDS.

Although the aforementioned AIDS suits the operational requirements in terms of
false positive rate, it mainly detects the Denial of Service (DoS) and Port Scan attacks,
representing large amount of network packets. Thus, subtle intrusions such as Code
Injection or Infiltration are less likely to be detected.

7.6 Discussion and future work

TPGs and RF strongly differ in their learning mechanisms. While RF ingests all the
training data at once to build a model, TPGs progressively incorporate it and can recover
from badly labeled data by feeding the system with new correctly labeled data. The
training time and performance of RF is strongly impacted by the amount of data and the
chosen learning parameters (tree depth, number of trees, etc) that need to be tuned. With
a fine tuning of these parameters and large computation time, the models of predictions
can be very accurate. The drawback of RF is however that they need to be trained and
fine tuned from scratch to incorporate a new intrusion type.

TPG training takes a longer time than RF to converge to an accurate model, as their
model results from trials and errors. Parameterization of the TPG agent is rather easy, the
state of the art parameters used by Stephen Kelly [KH17b] suit most learning application

136

7.6. Discussion and future work

Pa
pe

r
In

cr
em

en
ta

l
G

P
A

cc
ur

ac
y

U
nk

no
w

n
N

ov
el

C
ha

ng
in

g
C

ha
ng

in
g

St
re

am
pr

oc
es

sin
g

at
ta

ck
s

at
ta

ck
s

tr
affi

c
to

po
lo

gy
ca

pa
bi

lit
ie

s
(M

B/
s)

[L
iu

+
19

]
x

98
%

no
ye

s
no

no
2.

4
[L

iu
+

20
]

x
x

87
%

no
ye

s
no

no
x

[C
on

+
19

]
x

83
%

no
no

ye
s

no
0.

00
2

[W
u+

21
]

x
85

%
no

no
ye

s
no

0.
00

3
[M

oh
+

19
]

x
98

%
no

no
no

no
0.

02
[A

PN
18

]
x

89
%

no
no

no
no

x
[L

C
S2

0]
96

%
no

no
no

no
x

[Z
C

S2
0]

70
%

no
no

no
no

x
[G

M
S0

0]
x

no
no

no
no

0.
02

7
[S

LP
22

]
>

90
%

no
no

no
no

44
.1

0
[S

ou
+

22
b]

-(
1)

97
%

no
ye

s
no

no
14

9
[S

ou
+

22
b]

-(
2)

99
%

ye
s

no
no

no
14

9
[S

ou
+

22
b]

-(
3)

91
.8

%
ye

s
no

ye
s

ye
s

14
9

Ta
bl

e7
.1

1:
C

om
pa

rin
g

th
ed

et
ec

tio
n

ac
cu

ra
cy

an
d

st
re

am
pr

oc
es

sin
g

ca
pa

bi
lit

ie
so

fo
ur

th
re

et
es

ts
((

1)
ad

di
ng

Po
rt

sS
ca

ns
at

ta
ck

s,
(2

)
ad

di
ng

Po
rt

s
Sc

an
s

an
d

D
oS

at
ta

ck
s,

(3
)

ch
an

gi
ng

th
e

ne
tw

or
k

to
po

lo
gy

,s
er

vi
ce

s
an

d
da

ta
)

us
in

g
Se

cu
re

-
G

E
G

E
LA

T
I.

T
he

de
te

ct
io

n
ac

cu
ra

cy
is

ab
ov

e
90

%
ev

en
th

ou
gh

m
as

siv
e

ch
an

ge
s

ha
ve

be
en

ap
pl

ie
d

to
th

e
tr

ai
ni

ng
an

d
te

st
in

g
da

ta
se

t.
T

he
m

et
ho

d
fit

st
he

ev
er

ch
an

gi
ng

ne
tw

or
k

da
ta

th
ro

ug
h

tim
eu

sin
g

th
ei

nc
re

m
en

ta
lp

ro
pe

rt
y

of
th

eT
PG

.
Fi

na
lly

,t
he

pr
ob

e
is

ab
le

to
pr

oc
es

s
a

m
ax

im
um

of
14

9M
B/

s
(a

ro
un

d
10

00
00

ne
tw

or
ks

fra
m

es
pe

r
se

co
nd

s)
,o

ve
rc

om
in

g
th

e
re

su
lts

of
[S

LP
22

]
.

137

Chapter 7 – Contribution 3: Evaluating TPG for stream processing, incremental learning and
high efficiency AIDS

TPR (%) TNR (%) Number of Positive alerts Number of false positive alerts
28.83 99.96 2964 15

Table 7.12: Results of a AIDS trained with the constraint of not generating any false
positive alerts during the training phase. The FPR is low (0.04%) which makes it suitable
for operational conditions. Most positives are missed (71%).

and the sensitivity of the parameters is low. Light modifications of the parameters do
not affect the learning process much but can bring interesting properties such as light
graph structure or ability to detect rare events. However, the positive point is that TPGs
are able to detect attacks while training. Online training makes TPGs more fit to detect
novelty. Even if TPGs take time to converge, they finally adapt and are able to detect
new threats as they arrive.

The Secure-GEGELATI TPG algorithm in its current form is still limited for the
observation of rare events. Indeed, rarely activated teams and programs may be deleted,
which can cause issues in real-world conditions for very rare intrusion detection. In the
CICIDS 2017 dataset, there is 1 attack out of five connections so the test conditions
overrate intrusions and the problem does not appear.

A false alarm rate of 0.2% is low but results in too many false alarms in the practical
context of an IDS. Proposing a training with the constraint of not generating false positive
alerts can result in lower FPR but also leads to detection of attacks having a higher
impact on the volume of network packets. The current detection system needs to be
complemented with temporal filtering, exploiting the multi-connection nature of most
intrusions, to reach the extremely low false alarm rates required in practice. This objective
is kept as future work.

The study of Secure-GEGELATI has proven that TPGs are well suited for adaptive
network intrusion detection. However, the Secure-GEGELATI TPG model currently
requires a large amount of labeled data to converge. As a future work, we intend to
reduce the need of supervision by introducing semi-supervised learning into the TPG
framework. Furthermore, being able to process the stream of data is interesting but real-
time processing of the network flow would be more interesting as it would give guarantees
on the ability of the probe to analyze the traffic.

138

7.7. Conclusion

7.7 Conclusion

This chapter has introduced the Secure-GEGELATI learning-based stream processing
NIDS and has demonstrated the agility and energy efficiency reached by the resulting
network probe. Secure-GEGELATI combines several capabilities required by a NIDS:
rare events detection with very few false alarms, as Secure-GEGELATI detects more
than 80% of the intrusions with a precision over 99%; high-energy efficiency, as Secure-
GEGELATI is 8× more energy efficient than RF in the same inference conditions and
can process 3× more data than its concurrent [SLP22]; high scalability as the speedup
over 4 embedded cores reaches 96.9% of the optimum. Furthermore, thanks to the TPG
intelligence, Secure-GEGELATI is a flexible tool that adapts to novel threats. The
system can anytime be switched into a training mode and be fed with new labeled benign
and intrusion data to improve its capabilities. Finally, a training for an operational AIDS
is performed to show that the TPG can be trained to raise alerts without generating too
many positive alerts.

139

Part III

Conclusion

140

CHAPTER 8

Conclusion

This thesis focuses on different aspects of Network Intrusion Detection Systems (NIDS)
design. It has been showed that the data used for training is a key component for the
production of qualitative Anomaly-based Intrusion Detection System (AIDS). Firstly,
network intrusion datasets must be handled with care in order to prevent errors in the
learned model. Indeed, we show that representation bias in a network intrusion dataset
has great impacts on the model decisions. Furthermore, errors in the labels of the dataset
are costly while creating a model of the network traffic. Experimental results show that a
model learned on a dataset with inaccurate labels performs poorly on a corrected version
of the same dataset. The Tangled Program Graph (TPG) capabilities are explored as a
resilient framework to this exposed label bias. In a second time, the same approach is
lead to show the resilience of the TPG to data imbalance. This intrinsic characteristic of
the network intrusion datasets tends to degrade the quality of the models performance.
The impact of the data imbalance on the TPG framework is studied and an algorithmic
mitigation is proposed to enhance the robustness of the TPG framework to the imbalanced
classification task. Finally, the TPG is used as an incremental learning framework, taking
profits of its Genetic Programming (GP) algorithm. This incremental learning process
helps in the reduction of the deployment bias issue. Indeed, training offline on a dataset
which differs from the real network condition causes a drop in terms of the detection
capabilities of the AIDS probe. The TPG-based AIDS is demonstrated to be usable as

an embedded probe capable of keeping pace with the incoming network flow of data and
functioning at low power consumption. The three main contributions are over-viewed
here after.

8.1 Research contributions

Chapter 3 has introduced key notions to progress on the global understanding of the net-
work security applied to intrusion detection. Learned Anomaly-based Intrusion Detection
System (AIDS) rely on Machine Learning (ML) techniques and on a rigorous use of the
network data which is detailed in Chapter 4. These preliminary chapters are the backbone
of the three research contributions proposed in this manuscript.

8.1.1 Assessing the biases of IP networks intrusion detection
datasets and evaluating their effect on a TPG-based AIDS

In Chapter 5, both the label and representation bias are studied. These bias exist in
the CICIDS 2017 database and have an impact on the learning process of the TPG. For
the first part, representation label introduces easy correlations between connections and
their associated classes providing identification features such as information on the source
and destination IP and ports, as well as timestamps. This bias exist since the generation
of the CICIDS 2017 dataset uses a cluster of attackers that are the only source of the
attack traffic. Experimental results show that these features are used by the ML agent
in order to decide whether or not an alert is to be raised. Furthermore, adding noise in
those variables for inference leads to a drop of 18% of the True Negative Rate (TNR) of
the TPG, a particular sensitive indicator. A pre-processing of the dataset to exclude the
biased features is thus recommended. Secondly, using biased labels on the TPG framework
has a strong impact on the learning. Experiments using a model trained on the biased
dataset showed a mean drop of per-class detection rates of 61%. Furthermore, this drop
reaches up to 99% on the Ports Scans attacks. The resiliency of the TPG is tested on
the original dataset where some of the attack traffic is synthetically biased. Results show
that the TPG method is resilient to up to 25 % biased labels where its True Positive Rate
(TPR) still reaches 90% of its maximum.

142

8.1.2 Study of the impact of data imbalance on TPG perfor-
mance

Chapter 6 has studied the effect of imbalance on a binary classification task based on ge-
netic programming. We demonstrate that the Cohen’s Kappa is, among standard metrics,
the one to use to evaluate a classifier on imbalanced problems. The fitness measurement
during the selection phase of the genetic process has a strong impact on the built model.
We propose algorithm modifications on fitness and selection phases to support imbalance
with genetic programming. Indeed, the imbalanced classification problem is bound to
a training phase where selection and fitness functions are key components, as the ge-
netic programming algorithm uses selection phases to keep the individuals that perform
correctly, based on their respective fitness. This chapter shows that the G-mean fitness
function is a good candidate for low Imbalance Order of Magnitude (IOM) while MCC
fits better the highly imbalanced problems. In practice, it is shown that learning in an en-
vironment with an IOM of 4 is possible, but with very degraded performances. Although
hard to measure, the natural IOM of intrusion detection in real network data is above
4.5. Finally, we show that the robustness of GP agents facing moderate IOM problems
can be increased through the use of the proposed selection phase, at the cost of lower
performance on higher IOMs.

8.1.3 Evaluating TPG for stream processing, continual learning
and high efficiency AIDS

Chapter 7 has introduced the Secure-Gegelati learning-based real-time NIDS and has
demonstrated the agility and energy efficiency reached by the resulting network probe.
Secure-Gegelati combines several capabilities required in a NIDS: rare events detec-
tion with few false alarms, as Secure-Gegelati detects more than 80% of the intrusions
with a precision over 99% on the CICIDS 2017 dataset; high-energy efficiency, as Secure-
Gegelati is 8× more energy efficient than Random Forest (RF) in the same inference
conditions and can process 3× more data than competing solutions [SLP22]; high scala-
bility as the speedup over 4 embedded cores reaches 96.9% of the optimum. Furthermore,
thanks to the TPG intelligence, Secure-Gegelati is a flexible tool that adapts to novel
threats. The system can anytime be switched into a training mode and be fed with new
labeled benign and intrusion data to improve its capabilities. Finally, a training for an op-

143

erational AIDS is performed to show that the TPG can be trained to raise alerts without
generating too much positive alerts.

8.2 Prospects and Future Works

This thesis has focused on the following five main research questions:

• How can Intrusion Detection System (IDS) detect new intrusions while raising very
few false alerts?

• How should network intrusion data be fairly used and can we improve the resiliency
of intrusion detection methods to unfairness?

• Can we still learn from highly imbalanced data from algorithmic mitigation only?

• Can incremental learning help in fitting ever-changing network data over time?

• Is it possible to design a low power embedded intrusion detection system that keeps
pace with the incoming data flow?

This thesis is a small step in these particular directions and opens the gate for more
advances on those research topics.

8.2.1 Biases network data handling

The use of qualitative and labeled network data is a first step in the design of an IDS.
Unfortunately, qualitative and representative network data is difficult to generate, costly
to accurately label and tends to be outdated rapidly. These issues constitute a huge
drawback when it comes to train an IDS from these data. Thus, we either want to have
qualitative network data or robust algorithmic methods that help dealing with low quality
data. As a future work, a first approach would be to create a method that unifies the
export of network flow data features in order to give a representation bias free feature set
from the network packets data. A first step in that direction as been conduced by Sarhan
et al. [SLP22].

Network data are often generated by deterministic scripts that reflect a defined be-
havior. Recent research focusing on learning from human demonstration [BRK21] could
be a next step for the simulation of representative human-like behavior in order to have

144

less deterministic data generation and thus more interesting behavior analysis from the
ML-based IDS.

8.2.2 Imbalanced learning: algorithmic mitigation of GP meth-
ods

Imbalanced learning topic is a very challenging problem. The imbalanced data problem
has a strong impact on the score and evaluation functions. This impact is more marked
on gradient-based ML methods because of the quantization of the fitness functions that
occurs when learning with high data imbalance. Thus, it motivates the use of a gradient-
free TPG method to approach the imbalanced data problem. I strongly believe that the
inner modification of known algorithms can conduct to better imbalanced data classifi-
cation performances. Most of the work -including ours- focuses on an external feedback
function that is a function of the correct positive classes found by the classifier. It has the
advantage to testify the performance of the model, but has the drawback of shadowing
several variables into one function. Our main idea is to think about "local" rewards that
comes for different components of the TPG graph, at different times. At any time, a
team, program and a root team can be rewarded (potentially with different functions)
and the selection and decimation mechanisms intervene at all the different reward levels
during the training. These "inner" rewards should not depend on the global performance
of the ML agent, but from local appreciation of the graph components. A basic example
would be to reward a team at each time it has been selected or a program when it reaches
the higher bid of the pool.

8.2.3 Adaptive IDSs as high performance probes

We have shown that incremental learning can be used to create an adaptive probe that
detects intrusions in a network flow. The network flow data can be analyzed as it flows
thanks to the lightness and performance of the TPG framework. A first idea to go
forward would be to enable continual learning in the IDS. Continual learning differs from
incremental learning (where knowledge is incrementally added to the knowledge base
during training) as it enables the exploitation of the model (e.g. triggering alerts) while
learning from the network data. Of course, continual learning raises important questions
of the action of an attacker on such a model. Indeed, one could try to "normalize" the
intrusions traffic by sending requests that seems to be intrusions while being normal. We

145

showed that the TPG performance could allow to process the network frames as they
come, consuming low energy. In order to keep the training and inference performances
and to guarantee real-time processing on the network flows, an effort should be made on
handling graph complexity. This study could be extended using code generation of the
obtained policy in order to speed up the analysis of the network frame while functioning
with even less energy. Finally, it would be interesting to implement a framework in
which the TPG framework is used as its original Reinforcement Learning (RL) framework
design. It would imply the use on a real network of an IDS probe that takes action on
the environment such as {allow, alert, block} to handle the network packets. As it would
be difficult to use such a system on a live network, an adversarial setup could be thought
where an agent tries to intrude the system and the other tries to defend it.

8.3 Journal and conference papers

8.3.1 As the first author:

Journal of Signal Processing Systems, Springer, 2022:

SECURE-GEGELATI Always-On Intrusion Detection through GEGELATI Lightweight
Tangled Program Graphs [Sou+22b]

GECCO 2022

Imbalanced Classification with TPG Genetic Programming: Impact of Problem Imbalance
and Selection Mechanisms [Sou+22a]

Under Submission

Impact of data biases in Intrusion detection: The benefits of genetic programming

8.3.2 As a co-author:

IEEE Workshop on Signal Processing Systems 2022

Ultra-fast Reinforcement Learning through C Code Generation for TPG Inference
[Des+22]

146

Workshop on Design and Architectures for Signal and Image Processing (14th
edition), 2021

GEGELATI: Lightweight artificial intelligence through generic and evolvable tangled pro-
gram graphs

147

APPENDIXA

Prototyping and optimization of a Tangled Program Graph
framework (GEGELATI)

A.1 Introduction

As an enabler of the work described in this manuscript, a consolidated open-source proto-
typing work has been made to provide adaptable Tangled Program Graph (TPG) features.
Reproducibility of the results was ensured by the implementation of a deterministic be-
havior for the TPG while the framework has been sped-up using parallelism. A code
generation of the best TPG-generated policy is shown to improve the inference perfor-
mances. In order to train and switch datasets at any time of the training or inference, a
saving/restoring of the TPG has also been added to the library. This feature comes with
externalized parameterization in json files. Finally, as a way to extend the original TPG,
program’s constants are added and tested into the TPG as well as a inner reward system,
in order to enable semi-supervised learning.

This chapter explains the motivation behind these modifications, overviews prototyp-
ing decisions and displays the benefits of the methods and their limitations.

The produced library is called Generic Evolvable Graphs for Efficient Learning of
Artificial Tangled Intelligence (GEGELATI) and is available on Github [Tec].

A B+>

B

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

TPG example Semantics of the TPG

Table A.1: Recalling the TPG semantics

A.2 The TPG as a deterministic and parallel agent

By determinism, we refer to the property of a program to always produce the exact
same output when provided with the same input data and under the same initial state
[Lee06]. This study is motivated by the lightweight properties of the TPG agent and have
been conduced with K. Desnos [Des+21]. In order to increase both TPG learning and
inference capabilities, providing parallel code for efficient learning is a key component.
Furthermore, in order to be able to reproduce the obtained results easily on embedded
platforms, the determinism of the application was required. It exists a natural conflict
between the parallelism and the portability that constituted an implementation challenge
to provide both features at a time.

How does the deterministic and scalable parallelism work?
During the learning process of TPGs, the most compute-intensive parts are the fitness
evaluation of the policies, and the mutations of the programs added during the evolution
process. The fitness evaluation of individual policies can be deterministically executed in
parallel, on the conditions that: 1/ the learning environment can be cloned to evaluate
several policies concurrently and 2/ any stochastic evolution of the learning environment
state can be controlled deterministically. Under these conditions, the parallel evaluation
of policies is possible, as the topology of the TPG, which is a shared resource for all
policies, is fixed during this evaluation process. Similarly, the mutation of programs
can be applied deterministically in parallel. Two kinds of mutations are applied to the
TPG: mutations affecting the graph topology by inserting new root teams and edges; and
mutations affecting instructions of the programs associated with the new edges. While

150

mutating the graph topology cannot be done in parallel, the graph being a shared resource,
individual programs are independent from each other and can be mutated in parallel.

To control the stochastic process of mutation, random number must be generated.
Pseudo Random Number Generator (PRNG) must be used each time a random number
is needed. Given an initial seed, a PRNG produces a deterministic sequence of numbers.
To ensure full determinism of the training of a TPG, a unique PRNG should be called
in a fixed order during the whole training. The quality of randomness may impact much
TPG performances. One could imagine using TRNGs for TPG inference, at the cost of a
loss of determinism. This is kept as future work.

Letting the parallel parts of the training process call the PRNG directly is not possible,
as the absolute order in which parallel computations occur is itself stochastic. It is also
not possible to give a pre-computed list of pseudo-random numbers to each parallel task,
as the number of random numbers needed for each task is itself stochastic. For example,
when mutating a program, mutations are applied iteratively until the program behavior
becomes “original” compared to pre-existing programs in the TPG. Hence, giving a fixed
number of pre-computed random numbers for the program mutations is not feasible.

The parallelization strategy adopted in GEGELATI is based on the master/worker
principle, with a distributed PRNG. The principle of the distributed PRNG is the use of
two distinct PRNG instances: the prngmaster and the prngworker . The prngmaster is exclu-
sively used in the sequential parts of the learning process, which confers a deterministic
nature to its usage, given an initial seed. Besides being used for stochastic tasks per-
formed sequentially, like TPG topology mutations for example, the prngmaster is also used
to generate a seed for each parallel worker task. In each worker task, a private prngworker

is instantiated and initialized with the seed provided by the prngmaster . Since all calls
to the PRNG from the worker tasks exclusively use their private prngworker , the random
number sequences generated in each parallel task are deterministic.

The pseudo-code of the master and worker tasks for the policy fitness evaluation are
presented in Procedures EvaluateAllPolicies and Worker, respectively. Communications
between the tasks and load balancing of the computations are supported by a job queuing
mechanism based on two queues: JobQ and ResultQ. Each policy evaluation job, prepared
by the master procedure, encapsulates a unique job identifier id, a seed provided by the
prngmaster , and a root team from the TPG. All jobs are pushed in the JobQ queue before
spawning as many worker threads as the number of secondary Processing Elements (PEs)
in the target architecture. For each job it acquires from the jobQ queue, the worker

151

Procedure EvaluateAllPolicies
Input: TPG: G = ⟨Teams, Edges⟩
Data: PRNG: prngmaster

Job queue: JobQ
Result Queue: ResultQ

/* Prepare jobs */
1 idx = 0
2 foreach root ∈ G.Teams do
3 seed = prngmaster .getNumber()
4 job = { idx++, seed, root }
5 jobQ.push(job)

/* Start parallel threads */
6 for i = 1 to NumPE − 1 do
7 Spawn thread: Worker(G, JobQ, ResultQ)
8 Call Worker(G, JobQ, resultQ)
9 Join all threads

/* Post-Process Results and Trace */
10 Sort ResultQ in result.jobId order
11 foreach result ∈ resultQ do
12 Post-process result.trace // Archiving [KSH]
13 ...

Procedure Worker
Input: TPG: G = ⟨Teams, Edges⟩

Job queue: JobQ
Result queue: ResultQ

Data: PRNG: prngworker
Learning environment twin: LE

/* Poll for job */
1 while JobQ.hasJob() do

/* Setup for policy evaluation */
2 job = jobQ.getNextJob()
3 root = job.root
4 prngworker .reset(job.seed)
5 LE.reset(prngworker .getNumber())

/* Evaluate policy fitness */
6 trace = evaluate(G, root, LE, prngworker)
7 result.jobId = job.id
8 result.trace = trace
9 resultQ.push(result)

152

procedure resets its prngworker using the seed contained in the job. Before evaluating
the fitness of the root team contained in a job, the worker procedure resets its private
copy of the learning environment, using a number given by the prngworker . As a result of
the policy fitness evaluation, described in details in [KSH], a result object encapsulating
execution traces for the job is pushed in the resultQ. When all jobs have been processed,
and all workers terminated, the master procedure is responsible for post-processing the
traces stored in the resultQ. To ensure determinism of this post-processing, results stored
in the resultQ are first sorted in ascending job.id order.

The master and worker procedures used for parallelising the mutations of programs
are similar to the one used for policy fitness evaluation, with the difference that jobs
encapsulate programs instead of root teams.

A.3 Generating code for fast TPG inference

This study explores the acceleration of the inference of the TPG through the code gener-
ation of the best TPG policy.
This feature has been developed by T. Bourgoin [Des+22; BOU+21] as a part of his
internship at the IETR lab

A.3.1 Motivations

Parallelism and portability are bound to a consequent overhead during program execu-
tion. Furthermore, the convenience of using lambda expressions as instruction causes the
slowing down of the execution of the TPG graph. In inferrence mode, the TPG graph
can be freezed and transformed into an optimized fixed code. This is the purpose of this
following code generation.

A.4 Code Generation for TPG Inference

The C language was selected as the target language for the TPG code generation as it
is the de facto reference for programming embedded system. Hence, this choice ensures
the portability of generated code on a wide variety of target hardware, ranging for ultra-
low power micro-controllers, to high-end CPUs. The following sections describe how the

153

different parts of a pre-trained TPG from the legacy C++ GEGELATI framework are
translated into standard C code.

A.4.1 Code Generation for Programs

In a TPG, a program is a list of instructions using data from the learning environment or
results of previous instructions as operands. As presented in [Des+21], training a TPG
with different instruction sets results in Reinforcement Learning (RL) agents with different
complexity and fitness. For this reason, it is important to let developers customize the
instruction set for each training with dedicated instructions. In the C++ framework, this
customization can be supported using lambda functions to specify instructions with their
operand number and types, and the lambda function to execute when this instruction is
called. Listing A.1 presents two examples of C++ code declaring such custom instructions
where template arguments define the number and data types of operands accepted by this
instruction, and the lambda function is the code to execute.
auto addInst = LambdaInstruction <int , int >(

[](int a, int b)->double { return a + b;},
"$0 = $1 + $2");

auto accuInst = LambdaInstruction < double [2][1] >(
[](double [2][1] t)->double {

return t [0][0] + t[1][0];} ,
"$0 = $1 [0][0] + $2 [1][0] ")

Listing A.1: LambdaInstruction usage examples. Two instructions are added (addInst is
the addition of two variables and accuInst defines the accumulation of variables contained
in a 2-sized bi-dimensionnal array)

To generate the C code corresponding to a program, each instruction has to be trans-
lated into C code. For this reason, as shown in Listing A.1, a template string is used
when declaring the instruction. This template string, which adopts the syntax of regular
expressions, uses the $0 placeholder for the register storing the result returned by the
instruction, and the $n placeholder for the name of the nth operand of the instruction.

1 double P0(int* in0 /* 1D array */ ,
2 double * in1 /* 4x4 2D-array */)
3 {
4 double reg [8] = { 0 };
5 { /* 1st Instruction : addInst */

154

6 int op0 = in0 [0];
7 int op1 = reg [2];
8 reg [7] = op0 + op1;
9 }

10 { /* 2nd Instruction : accuInst */
11 double [2][1] op0 = {{ in1 [5]} , {in1 [9]}};
12 reg [0] = op0 [0][0] + op0 [1][0];
13 }
14 ... // Following instructions
15 return reg [0];
16 }

Listing A.2: Program P0() generated code

For each program of the TPG, a dedicated C function is printed, as shown in List-
ing A.2. At lines 1-2, the printed function receives as arguments the pointers to the
data sources used to observe the current state of the environment. At line 4, it declares
the registers used to store the results of instructions throughout the program. Then, at
lines 5-14, the instructions of the programs are printed one by one. For each instruction,
the operands are first retrieved from the environment data source, for simple data types,
this is achieved through simple pointer de-referencing, as done at lines 6-7. For complex
operand types, the container class managing the environment data may provide more
complex code generation schemes for fetching the operands, as shown at line 11 where a
2D sub-region of a 2D array of double is extracted automatically. Finally, the value held
in the first register is returned as the bid the program at line 15.

A.4.2 Code Generation of TPG Structure

In this work, we choose to represent the traversal of the TPG graph directly in the
generated code, exposing the graph structure to the compiler to perform additional opti-
mizations.

We choose to represent the TPG as a Finished State Machine (FSM) using a switch
structure. An extract of the TPG switch structure is represented on Procedure Exe-
cuteTPG. Each case represents a team, containing program executions, as Team1 at line 5.
Transitions in the FSM represent the edges of the graph. The traversal of teams is saved
in a specific array initialized at line 2 to avoid executing programs multiple times. Scores
are set to −∞ (e.g. line 13) to record edge traversals during graph execution in order to

155

avoid falling in an infinite loop. The traversal of a leaf team, returns the integer value of
the corresponding action, as in line 18.

Procedure ExecuteTPG
Input: Data sources: data
Output: Action

1 team = rootTeam
2 visited[] = { False }
3 while True do
4 switch team do
5 case Team1 do
6 if !visited[team] then
7 visited[team] = True
8 T1Scores[0] = P0(data)
9 T1Scores[1] = P1(data)

10 ... // Outgoing programs of the team
11 best = bestProgram(T1Scores)
12 T1Scores[best] = −∞
13 team = T1Next[best]
14 ... // Other teams of the TPG
15 case Action0 do
16 return 1
17 ... // Other actions of the TPG

The speedups in inference time of the generated switch-based code with respect to the
library are presented in Figure A.1, measured by ratio for the library and the generated
code, of the total time spent executing the TPG for a complete game of the ALE frame-
work [Bel+13]. On average on all games, the observed speedups are 44× on xeon, 24×
on laptop, 45× on jetson, and 85× on rpi2. There are many possible causes to these
differences in average speedup between platforms, notably: different hardware complexity
(pipeline depth, bit-width, instruction & data cache sizes), different compiler versions,
etc. Nevertheless, the obtained results are very good, especially for the rpi2 which is the
most lightweight CPU and benefits the most from the acceleration brought by the code
generation.

Interestingly, the per-game variations of the speedups observed on every platform are
very similar. For example, speedups obtained on all platforms for the asteroids game are
on average 56% larger than speedups for the fishing_derby game. These results seems

156

xeon laptop jetson rpi2

20x

40x

60x

80x

100x

120x

alien
asteroids
centipede
fishing_derby
frostbite

Platforms

S
pe

ed
up

Figure A.1: Speedup in inference time of the generated code with respect to the library.
Each box-plot represents the statistics for the 10 TPG trained for a given game, and
inferred on a specific platform.

to indicate that the measured speedup per-TPG depends on the intrinsic complexity of
the TPG itself, which derives from its number of teams or programs.

The average times per inference of the TPG, that is per action, for the different
platforms are presented in Figure A.2. These results show the impressive absolute perfor-
mance of the generated code, which on average performs an inference of the TPG within
782ns on xeon, 1.36µs on laptop, 2.41µs on jetson, and 8.60µs on rpi2. While these
result confirm the benefit of using generated code for inference TPG, they also reveal the
important spread of inference time on most platforms, with an average relative standard
deviation of 34% for generated code (excluding laptop), and 42% for inference within the
library.

Figure A.3 depicts the average execution time taken per line of programs of the TPG
on the different platforms. With the library, these results show that the inference time of
a TPG strongly correlates with the number of lines of program to execute, with a relative
standard deviation of only 12%.

157

xeon laptop jetson rpi2
100ns

2

5

1μs
2

5

10μs
2

5

100μs
2

5

0.001s
2

Codegen
Lib

Platforms

Ti
m

e
pe

r
ac

tio
n

(l
og

 s
ca

le
)

Figure A.2: Average time per TPG inference with the generated code and with the library.
Each box-plot represents the statistics for the 50 TPG (5 games×10 TPG) run on a
platform.

A.4.3 Discussion on the prototyping work

Acceleration of the TPG inference is achieved by getting rid of the algorithmic and soft-
ware overhead needed for training TPGs, but dependable when focusing on TPG inference.
Experiments on four computing platforms, ranging from embedded processors to high-
end CPUs, result in a global acceleration by a factor 50 on average, of the inference time,
compared to a traditional TPG framework. For a state-of-the-art visual RL environment
and for performance equivalent to Deep Neural Network (DNN), the obtained inference
time, range from hundreds of nano-seconds to a few micro-seconds on single-core CPUs,
making this approach a very promising one for embedding RL agent in ultra-low power
edge Artificial Intelligence (AI) systems.

A.5 Saving and restoring TPGs

This implementation aims at producing an output file that describes the TPG and that
can be used as input for the GEGELATI framework to restore a graph to a stored state.
This feature was developed with K. Desnos.

158

xeon laptop jetson rpi2
5

10ns

2

5

100ns

2

5

1μs

2

5

10μs

2

Codegen
Lib

Platforms

Ti
m

e
pe

r
lin

e
(l

og
 s

ca
le

)

Figure A.3: Average time per instruction execution with the generated code and with the
library. Each box-plot represents the statistics for the 50 TPG (5 games×10 TPG) run
on a platform.

A.5.1 Motivations

On the one hand, saving a TPG graph at a given generation permits the exploration of its
structure and offline extraction of basic statistics such as the number of teams, programs
or information on what instructions are used. The humanly readable .dot format is used
and can help generate TPG graph visualization. On the other hand, restoring a TPG
graph is interesting when it comes to problems such as porting of a learned Anomaly-
based Intrusion Detection System (AIDS) on a live network, the use of another dataset,
or the deployment of a learned TPG graph on an embedded platform.

A.5.2 Prototyping choices for storing a TPG

Saving a TPG graph is rather simple. At the end of a generation, a graph is exported
following the .dot file format. The algorithm iterates on the {teams, programs, instruc-
tions, action} and saves the components of each of them under text format tagged with
specific indexes:

• T: Team – save the outgoing edges

• P: Program – save the list of instructions and the destination

159

6 7

7 8

0

Figure A.4: A simple graph visualization of an exported TPG graphs, having two root
teams, one team, six programs and four actions (action seven is duplicated for readability).

• I: Instructions – save the instruction and its operands

• A: Action – save the action

The rest of the tag is made of a number. Team’s tags never change with the generations,
implying that when a team is deleted, its tag is never used again.

The export of the graph follows the procedure ExportGraph.
Procedure ExportGraph

Input: TPG_Graph
Output: tpg.dot file

1 Print(TPG_DOT_HEADER) foreach team in TPG_Graph do
2 Print(team)
3 resetProgramTags() foreach program in TPG_Graph do
4 sourceTag = getSourceTag(program) Print(program) programTag =

getProgramTag() instruction = getProgramInstructions() instructionTag =
getInstructionTag Print(instruction) Print(Link(programTag,
InstructionTag)) destination = getDestinationTag(program)
Print(Link(sourceTag, ProgramTag, destinationTag))

5 Print(TPG_DOT_FOOTER)

The .dot format enables simple graph visualization using the Graphviz tool (see
Figure A.4).

Restoring a TPG graph from a .dot file is the exact inverse procedure.

160

A.5.3 Discussion

This feature is a minor contribution to the TPG framework but is useful in many exper-
iments of this manuscript. Furthermore it possible to compute statistics from the graph
topology and a consequent save of time when using one trained model to infer on one or
several other datasets. Furthermore, for reproducing the results, a single .dot file can be
saved, saving the integrity of the graphs component.

A.6 External parametizing of the TPG

As a continuation of efforts to maintain TPG frameworks reproducibility, having ex-
ternal parametizing of the application is convenient. This feature was developed with
P.Y. Raumer [Rau+20] From one part, it makes the modification of the behavior of the
GEGELATI library possible, without the need of rebuilding it when the parameters were
changed. Furthermore, it provides simple parameter exports that can be stored along
with the resulting .dot file, saving both the TPG graph structure and information and its
parameters.

A.6.1 Parameterized TPG implementation

The parameters of the TPG are stored in a JSON file. At initialization, a parser is called
to read the JSON file and fill class information with the parameters it contains. The
parameters are then stored in the TPG environment. Default values of each parameter
are set in the JSON file to prevent errors and missing parameters values.

A.7 Mimicking decision trees and Convolutional
Neural Network (CNN) with TPGs

This work provides constants, that belongs to a TPG program, and that can be used
during both training and inference.

A.7.1 Motivations

The motivation behind this work is to be able to mimic the behavior of a decision tree
by using constants and instructions such as {<,>,=} to compare the currently observed

161

state of the environment to one of the defined program’s constant. Several constants can
be used by the program to execute instructions such as a convolution, so as to mimic the
behavior of a CNN. The implementation of constants in the TPG allows any instructions
that require the use of constants. Common examples are comparison operators, filters
and experts functions. For example in the intrusion detection problem, one can design an
expert function to check which port is used for a connection. This function can rely on
the use of constants and each program, through mutation could develop specific interests
on listening connections on specific ports.

A.7.2 Implementation of TPG constants

The implementation of the TPG constants aims at providing, as part of the TPG environ-
ment a set of values that are fixed for a defined program. In the GEGELATI framework,
constants are only integer values. At the initialization of the TPG, three new parameters
are defined:

• NbProgramConstants: the number of Constants

• MinConstV alue: the low bound of the constant value

• MaxConstV alue: the high bound of the constant value

At initialization, NbProgramConstants are randomly selected between their lowest
and highest bound for each program. These constants can be used by the program as
a part of the environment during all the execution of the TPG given that at least one
instruction enables their use. At the end of a generation, programs subject to mutation
have a chance of having one or several constants edited.

A.7.3 Discussion

The use of constants in a TPG is very use-case dependent. The number of constants and
their range of values depend on both the use case and the instruction set used. Constants
used in intrusion detection need to differ from constants used for image classification. For
example, a 3 × 3 convolution filter applied to an image would require nine parameters
and could not be applied on a single network flow log. The impact of the use of constants
on the learning rate of the TPG has not yet been quantified. Preliminary results showed
positive impact of the use of constants for long-run TPGs facing image classification
problems.

162

A.8 Towards a semi-supervised TPG ?

This implementation work has been thought in order to lower the required supervision of
the TPG.

A.8.1 Motivation

Intrusion detection is bound to the issue of having representative and labeled data. In
this manuscript, we focus on the use of the TPG, as a supervised learning classifier,
to detect intrusion in the network data. When performing continual learning on a live
network, some feedback information are available from other defense mechanisms (Such
as intrusions alerts from other Intrusion Detection System (IDS), known allowed traffic
from the firewalls, ...). Some of this traffic is unfortunately unqualified and requires to
be analyzed. The continual learning AIDS can help in its classification but can not, yet,
learn from its inner reaction to the observation of the unknown observed network data.

A.8.2 Prototyping a semi-supervised learning based TPG

In order to build a TPG-based framework that provides semi-supervised learning, different
fitness information should be used as a reward.

Common classifiers use labels to compute a fitness for the evaluation of a batch of
data and this fitness is used in the core of the TPG to select the best performing teams.

After online training, the structure of the TPG graph is evaluated and validated on a
data batch.

This prototyping work is based on two hypotheses:

1. It exists one or several correlation between samples from the same classes.

2. The chosen TPG path is similar for samples that are similar.

We use the confidence of the graph itself to introduce an inner reward mechanism. This
inner reward mechanism Ri is added with a coefficient λ to the global fitness measurement
of the team such as in equation A.1.

Fitness = Fitness(Batch + λRi) (A.1)

The basic functioning of the TPG relies on the use of teams. Teams are associated
with one or several programs (edges) that compute instructions and give a single bid at

163

0 20 40 60 80 1000

20

40

60

80

100

% of corrupted intrusion labels

%

tnr
tpr

Figure A.5: TPR and TNR of the semi-supervised learning version of the TPG depending
on the amount of missing labels in the dataset. These preliminary results show that the
method seems to be resilient to up to 70% of missing labels.

the end of their execution. The program with the highest bid is selected and leads the
path until its destination (either another team, having the same behavior or an action).

Programs observe specific parts of the environment and transform them, using instruc-
tions, into a bid. This implementation relies on the fact that a program behaves similarly
when observing a similar data. Programs are added a target value for their bid which is
calculated during the first execution of the program. The Mean Square Error (MSE) is
computed using the programs target and the bid. If the MSE value is inferior to a defined
threshold t, the program gets an additional inner reward. The extra points earned by the
programs are added to the graph Ri.

At the end of the generation, the fitness of each graph is computed, and the selection
process occurs as before.

Adaptations are made in the TPG instruction set to have real values at any time in
the graph. More specifically, the instructions that can lead to infinity or Not a Number
(NaN) such as {*, /, exp, log} have been removed.

A.8.3 Discussion

The first interesting result is that the modification of TPG, fully supervised, does not
compromise the learning, validating the hypothesis that for similar data input, the same

164

programs activate. This is true for both fully supervised intrusion detection and MNIST
image classification. The semi-supervised TPG framework results for a RL task of pole
stabilization seems to be degraded by the modification. This is explained by the lack of
the expected correlation between a class and its label in classification environments.

Preliminary results show that the TPG-based semi-supervised learning framework is
able to learn with up to 70% of missing labels (see Figure A.5).

Although no comparison is yet available with the legacy TPG, research on the spe-
cialization of the semi-supervised TPG agent is ongoing as we believe that continual
learning on live network is promising for the intrusion detection domain. An additional
experimental work is ongoing in order to determine suiting parameter value for t and λ.

A parameterization of the thresholds is required, and the measurement of the impact
of the proportion of the missing labels is ongoing.

A.9 Conclusion

This Appendix sums up the prototyping work conducted during this thesis. In partic-
ular, it helped to provide a parallel and deterministic TPG framework to enhance the
performances of the TPG learning algorithms. The TPG inference can be sped up an av-
erage of 50 times using efficient code generation. Fast external parametizing is accessible
through JSON file parsing and graphs can be saved and restored using .dot files that allow
convenient graph visualization. Programs can be associated with constants in order to
perform novel operations such as filters and convolutions. Finally, a prototype of a semi-
supervised TPG framework has been developed in order to enhance the performances of
intrusion detection on live IP networks. Although the prototyping work described in this
chapter does not constitute a major contribution of this manuscript, it is at the ground of
the other contributions presented in this manuscript and extend the future work around
TPG and its capabilities in intrusion detection. Most of this prototyping work ensure the
reproducibility of the obtained results, convenient in the use of the GEGELATI library
and performance improvement.

165

List of Figures

2.1 Links between this manuscript’s chapters 27

3.1 Schematics used for different endpoints, devices, software and services in a
network. Conversely to IDSs, that raise alert when malicious packets are
detected, an Intrusion Protection System (IPS) is more similar to a firewall
that actively blocks the known malicious packets. 32

3.2 On the ring topology (left), each node is directly connected with exactly
two nodes. Data travels from node to node, with each node along the way
handling every packet. The star network topology (right) is a commonly
used topology where each node is connected to a central node (represented
by a server) that acts like a conduit to transmit messages. 33

3.3 On the bus topology (left), each node is connected to a bi-directional (half-
duplex) link called a bus. A mesh topology (right) is formed when each
node is connected with all the other nodes in the network. 33

3.4 The tree network topology is a combination of star network topology and
bus network topology where a hierarchical order exists and where each node
has a fixed arbitrary number of child nodes (here, two). 34

166

3.5 The OSI model and its seven layers. The layer 2 and 3 are interesting
in Local Area Network (LAN) and Wide Area Network (WAN) commu-
nication. The layer 2 (data link layer) transmit data frames between two
endpoints connected by a physical layer. The layer 3 (network layer) send
data packets and rely on addressing and routing. 35

3.6 An example of a company’s network. Traffic incoming from internet
goes through a firewall, an IDS or Intrusion Protection System (IPS) and
through a router. The incoming traffic is then routed either to the Demilita-
rized Zone (DMZ) or to the Local Area Network (LAN). Diverse Security
mechanisms are in place including several firewalls and a IDS/Intrusion
Protection System (IPS). 38

3.7 The analyst is at the heart of the Signature-based Intrusion Detection
Systems (SIDS). She/he creates a signature dataset which is exploited to
correlate the incoming data source (IP packets, network flow, logs) with the
known malicious characteristics. The Signature-based Intrusion Detection
Systems (SIDS) raises alerts that comes back to the analyst. With the help
of external data-sources (documentation, logs, alerts from other security
mechanisms), the analyst updates the signature dataset. 44

3.8 The AIDS is trained from a dataset. Once trained, it is used for inference
on the network. Raised alerts go back to the analyst. She/he can trigger
the re-training of the AIDS from more recent data. The analyst can update
the dataset through re-labeling. 47

4.1 Example of a one dimension linear regression. The model can be used to
predict the amount of rain depending on the average cloud cover. 51

4.2 Simple example of a decision tree. Input data are weather data and output
data is a decision in the set {Stay home, Go for a walk}. 52

4.3 Reinforcement learning is the problem of an agent learning from a com-
plex environment. The agent modifies the environment through the use of
actions and the environment sends back its state and a reward. 54

4.4 Example of a Tangled Program Graph (TPG) 60
4.5 Program from a TPG. On the left, the learning environment state fed to

the program. In the middle, the sequence of instructions of the program.
On the right, the result produced by the program. 61

167

5.1 Machine learning evaluation metrics using the legacy TPG on the CICIDS
2017 dataset depending on the number of training generations. 79

5.2 Machine learning evaluation metrics using a TPG using the F1-score fitness
function as a reward depending on the number of training generations. . . 80

5.3 TNR of M4 with respect to the percentage of corrupted intrusion labels.
The TNR does not vary when the amount of corrupted intrusion label
evolves. It is because the corrupted labels correspond to intrusion traffic.
When inferring, the intrusion traffic does not trigger an alert an is thus a
False Negative, not impacting the FPR. When 50% of the intrusion labels
are corrupted, the TNR eventually reaches 100%. The intrusion traffic is
corrupted, and the traffic is qualified as sane all the time. 84

5.4 TPR of M1 with respect to the percentage of corrupted intrusion labels.
The TPG model for intrusion detection is under 90% of its detection ca-
pabilities when reaching 25% of corrupted labels. Its detection capabilities
drop drastically when the quantity of corrupted labels raises. 85

6.1 Using accuracy classification metric on an imbalanced problem. With an
Imbalance Order of Magnitude (IOM) of 1.5 and using accuracy as TPG
fitness function, the TPG agent is able to maximize its accuracy (plot (a))
but produces a bad classifier. Indeed, its κ remains null (b) because the
TPG agent is predicting the majority class for all samples. 97

6.2 Learning a TPG on the MNIST dataset with balanced class ratio (Im-
balance Order of Magnitude (IOM) of 0). Grey curves show performance
evolution with one digit class as the minority sample. The bold curve shows
the mean and converges toward κ = 0.61. 105

6.3 κ (a) and MCC (b) versus imbalance ratio of a model. A point represents an
evaluation for a fixed minority class of the dataset, for a fixed imbalanced
ratio. The blue line and gray area represent the conditional mean of the
evaluation results associated with confidence intervals. Each plot goes from
Imbalance Order of Magnitude (IOM) 0 to Imbalance Order of Magnitude
(IOM) 4. MCC is shown to badly capture the classification decrease of
performances due to imbalance. 106

6.6 Machine learning evaluation metrics using the imbalanced learning adap-
tations for the TPG on the CICIDS 2017 dataset depending on the number
of training generations. 108

168

6.4 κ versus imbalance ratio for the fitness functions κ (a), MCC (b) and G-
mean (c). A point represents an evaluation at a fixed imbalanced ratio. The
blue line and gray area represent the conditional mean of the evaluation
results associated with confidence intervals. Each plot goes from Imbalance
Order of Magnitude (IOM) 0 to Imbalance Order of Magnitude (IOM) 4.
G-mean is the best fitness function for low imbalance and MCC for high
imbalance. 110

6.5 κ versus imbalance for the ranked selection phase from legacy TPG (a)
versus the proposed selection phase (b). A point represents an evaluation
result for a given minority class of the dataset for a fixed imbalanced ratio.
The blue line and gray area represent the conditional mean of the evalua-
tion results associated with confidence intervals. The proposed method, as
expected, reduces the variance of the κ and slightly improves κ on moder-
ate Imbalance Order of Magnitudes (IOMs) (lower than 2.5) but has lower
performance on very high Imbalance Order of Magnitudes (IOMs). 111

7.1 In inferring Mode, Secure-GEGELATI monitors Bi-directional Network
flow logs (Network flows logs from both the request and the response)
provided by the "CICFlowmeter" software from the raw packets logs. The
analyst receives potential alerts. 120

7.2 When Secure-GEGELATI is in training mode, it monitors network flows
labeled by the analyst. The analyst labels this new training set of logs based
on existing labels, expertise and other potential security mechanisms (such
as signature-based IDS) already set-up on the network. The new training
network flow logs are copied into to the previous training set. Secure-
GEGELATI itself continues to raise alerts while training. 120

7.3 After an initial training, the Secure-GEGELATI IDS runs on the network.
When a new intrusion is identified by Secure-GEGELATI (and confirmed)
by the analyst, he updates the training set providing new labeled data and
the probe is switched back into learning mode. New intrusion detection
capability is checked on a validation set before turning the probe back into
inferring mode. 123

169

7.4 Performance metrics using Secure-GEGELATI on the CICIDS dataset
depending on the total time (training + evaluation time. At generation 80,
as Secure-GEGELATI reaches over 95% of its detection capabilities the
analyzed connections are switched to CSE-CIC-IDS2018 instead of CICIDS
2017).
Even though drastic changes are applied to Secure-GEGELATI, the learn-
ing agent is able to adapt and detect intrusions with a high precision. . . . 130

A.1 Speedup in inference time of the generated code with respect to the library.
Each box-plot represents the statistics for the 10 TPG trained for a given
game, and inferred on a specific platform. 157

A.2 Average time per TPG inference with the generated code and with
the library. Each box-plot represents the statistics for the 50 TPG
(5 games×10 TPG) run on a platform. 158

A.3 Average time per instruction execution with the generated code and with
the library. Each box-plot represents the statistics for the 50 TPG
(5 games×10 TPG) run on a platform. 159

A.4 A simple graph visualization of an exported TPG graphs, having two root
teams, one team, six programs and four actions (action seven is duplicated
for readability). 160

A.5 TPR and TNR of the semi-supervised learning version of the TPG de-
pending on the amount of missing labels in the dataset. These preliminary
results show that the method seems to be resilient to up to 70% of missing
labels. 164

170

List of Tables

4.1 Default parameters of the TPG framework. 64

4.2 Additional parameters of the GEGELATI TPG library. 65

5.1 Distribution of classes in the CICIDS dataset in network flow logs. Each
network flow log corresponds to 78 fields and 312 Bytes of raw data [SLG18]. 74

5.2 Parameters of the TPG framework used in this Chapter. 77

5.3 This table sums up the amount of observation of the supposedly biased fea-
tures in the programs of the best TPG teams). The model M1 is trained
and tested using those features. M3 is trained and tested with noisy fea-
tures. High Information gain is present in the used and supposedly biased
features. 81

5.4 This table sums up the detection results of the three models built using
(or not) the supposedly biased identification features. The learning score is
obtained during training and the TPR and TNR are inference results. The
learning score used comes from the legacy TPG as described in Section 5.5.1. 82

171

5.5 Inferring results of the Model M4, trained on the original CICIDS 2017
dataset M4′ is the same model as M4 inferring on the revised version of the
CICIDS 2017 dataset. Conversely, M5 is trained and infers on the revised
version of the CICIDS 2017 dataset. The model M4 loses a significant
part of its detection capabilities, comparing the per-class results with M4′.
This can be explained by the re-labeling of the dataset. The detection rate
drops on most intrusions. M5 reaches higher detection rates than M4. ’x’
indicates that no samples from this class exist in the test dataset. 83

6.1 The range of the fitness is highly affected for high Imbalance Order of Mag-
nitude (IOM). The sensibility of the fitness function is high with respect to
the True Negative Rate (TNR) and low with respect to the True Positive
Rate (TPR). It causes an issue when the probability of having a positive
sample in the training set is low. 95

6.2 Parameters of the TPG framework used in this Chapter. 103

6.3 Impact of the sub-batch size when dealing with imbalanced data. The
table sums up the κ values obtained with the class "0" as the minority
class, for different Imbalance Order of Magnitude (IOM) and batch size
for 100 training generations. Firstly, we can observe the impact of the
cardinality on the highest values of the κ measure when the Imbalance
Order of Magnitude (IOM) increases. Secondly, it appears that in most
cases, data from large sub-batches are more easily classified than data from
smaller batches. A big sub-batch is more likely to have one or several
Positives in it and thus, the score attributed to this sub-batch is more
likely to represent the real capabilities of the classifier. The × represent
values that can not be obtained as the number of available data to explore
these conditions can not be reached. 111

6.4 Comparing classification results using different fitness functions. Although
the learning on imbalanced data is more efficient using the revised selection
mechanism and the G-mean function, the operational constraint on the
false positive rate makes the legacy TPG more suitable to the intrusion
detection problem. 112

172

7.1 Adaptability of Network Intrusion Detection Systems (NIDS) and per-
formance measurement (MB/s) for stream processing. This table points
out the published methods either able to adapt to changes on a network
topology, traffic or attack traffic or methods used for stream processing
for anomaly detection. A distinction is made between unknown attacks
and novel attacks where the first one is a zero-day attack that is totally
unknown for the network while the second one is a zero-day attack of an
already known category. 118

7.2 Parameters of the TPG framework used in this Chapter. 125
7.3 Results on the CICIDS 2017 dataset using various Machine Learning (ML)

Algorithms as reported in [SLG18] . 126
7.4 Performance metrics using Random Forest (RF) on the CICIDS dataset

for different training time + evaluation time. 128
7.5 Performance metrics using Secure-GEGELATI on the CICIDS dataset

depending on the total time (training + evaluating at the end of each
generation on a disjoint testing dataset).
Comparing with Table 7.4, we can see that for a similar amount of time,
the performances of both algorithms are close. In particular, we are not
able to reach a 100% precision with Secure-GEGELATI but the higher
recall makes it competitive. 128

7.6 Inferring models previously trained on the CICIDS 2017 dataset on the
CSE-CIC-IDS2018 dataset . 129

7.7 This table sums up the per class true positives (and true negatives for the
BENIGN class) when adding Port Scan attacks to the training set after 50
generations. The inferring results are very different from the results of the
offline training due to the change of the evaluation set (required to insert
the port scan attacks in the dataset). Note that without knowing anything
about Port-Scans, the TPG model is able to raise an alert for 40% of them.
Retraining causes an instant drop of the True Negative Rate and an instant
raise of the True Positive Rate (TPR). Secure-GEGELATI tends to fit the
most frequently occurring data of the dataset and thus becomes really good
at detecting port-scan while keeping a low false-positive rate. × represents
irrelevant data as they are not part of the evaluation set. Some attacks
were not present in both evaluation sets or never detected. 132

173

7.8 This table sums up the per class true positives (and true negatives for
the BENIGN class) when adding Dos attacks to the training set after 50
generations of offline training. The inferring results are very different from
the results of the offline training due to the change of the evaluation set
(required to insert the DoS attacks in the dataset). This time the model
is not able to detect any DoS attack in inferring mode. Retraining causes
an instant drop of the True Negative Rate. Secure-GEGELATI tends to
fit the most present data of the dataset and thus fits to detect Dos Slow-
Loris and DoS Slow-HTTP test while keeping a low false-positive rate. ×
represents irrelevant data as they are not part of the evaluation set. Some
attacks were not present in both evaluation sets or never detected. The
data imbalance is described in Table 5.1 133

7.9 Measuring the number of connections analysis per seconds (Arate) using
Secure-GEGELATI. The first method (M1) trains a TPG by sending iden-
tical data to all teams whereas the second method (M2) stack all the data
in a buffer and teams unstack the data one at a time. In method M2, teams
are training with different data through time. 134

7.10 Reachable number of connection analysis per seconds using the Exynos
5410 with M2. We effectuate the training on TPG using 200 root-teams
and training over a batch of 500 connection summaries (100,000 network
flows analyzed). The frequencies FA7 and FA15 are in GHz. 134

7.11 Comparing the detection accuracy and stream processing capabilities of
our three tests ((1) adding Ports Scans attacks, (2) adding Ports Scans and
DoS attacks, (3) changing the network topology, services and data) using
Secure-GEGELATI. The detection accuracy is above 90% even though
massive changes have been applied to the training and testing dataset.
The method fits the ever changing network data through time using the
incremental property of the TPG. Finally, the probe is able to process
a maximum of 149MB/s (around 100000 networks frames per seconds),
overcoming the results of [SLP22] . 137

7.12 Results of a AIDS trained with the constraint of not generating any false
positive alerts during the training phase. The False Positive Rate (FPR)
is low (0.04%) which makes it suitable for operational conditions. Most
positives are missed (71%). 138

174

A.1 Recalling the TPG semantics . 150

175

Listings

A.1 LambdaInstruction usage examples. Two instructions are added (addInst
is the addition of two variables and accuInst defines the accumulation of
variables contained in a 2-sized bi-dimensionnal array) 154

A.2 Program P0() generated code . 154

176

Acronyms

AI Artificial Intelligence

AIDS Anomaly-based Intrusion Detection System

ALE Arcade Learning Environment

AUC Area Under Curve

CNN Convolutional Neural Network

DMZ Demilitarized Zone

DNN Deep Neural Network

DoS Denial of Service

DQN Deep Q-Networks

FPR False Positive Rate

FSM Finished State Machine

GDRP General Data Protection Regulation

GEGELATI Generic Evolvable Graphs for Efficient Learning of Artificial Tangled In-
telligence

177

GP Genetic Programming

IDS Intrusion Detection System

IOM Imbalance Order of Magnitude

IP Internet Protocol

IPS Intrusion Protection System

IS Information System

LA Learning Agent

LAN Local Area Network

MARL Multi-Agent Reinforcement Learning

MCC Matthew’s Correlation Coefficient

ML Machine Learning

MSE Mean Square Error

NaN Not a Number

NIDS Network Intrusion Detection Systems

NN Neural Network

PE Processing Element

PRNG Pseudo Random Number Generator

RF Random Forest

RL Reinforcement Learning

SIDS Signature-based Intrusion Detection Systems

SMOTE Synthetic Minority Oversampling Technique

SVD Singular Value Decomposition

178

SVM Support Vector Machine

TNR True Negative Rate

TPG Tangled Program Graph

TPR True Positive Rate

WAN Wide Area Network

179

Bibliography

[Abb+14] Ali Abbasi et al., “On emulation-based network intrusion detection sys-
tems”, in: International Workshop on Recent Advances in Intrusion Detec-
tion, Springer, 2014 (cit. on p. 47).

[AI19] Mohammed Hamid Abdulraheem and Najla Badie Ibraheem, “A detailed
analysis of new intrusion detection dataset”, in: Journal of Theoretical and
Applied Information Technology (2019) (cit. on pp. 69, 70).

[AL15] Michael J Assante and Robert M Lee, “The industrial control system cyber
kill chain”, in: SANS Institute InfoSec Reading Room (2015) (cit. on p. 40).

[AMH16] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu, “A survey of
network anomaly detection techniques”, in: Journal of Network and Com-
puter Applications (2016) (cit. on p. 46).

[APN18] Tamer Aldwairi, Dilina Perera, and Mark A Novotny, “An evaluation of
the performance of Restricted Boltzmann Machines as a model for anomaly
network intrusion detection”, in: Computer Networks (2018) (cit. on pp. 116,
118, 137).

[ASS19] Simon D. Duque Anton, Sapna Sinha, and Hans Dieter Schotten, “Anomaly-
based Intrusion Detection in Industrial Data with SVM and Random
Forests”, in: arXiv:1907.10374 [cs] (2019) (cit. on pp. 46, 47).

181

[ASS20] Hadeel Alazzam, Ahmad Sharieh, and Khair Eddin Sabri, “A feature se-
lection algorithm for intrusion detection system based on pigeon inspired
optimizer”, in: Expert systems with applications (2020) (cit. on p. 71).

[Aur+19] Yuri Sousa Aurelio et al., “Learning from imbalanced data sets with weighted
cross-entropy function”, in: Neural processing letters (2019) (cit. on p. 91).

[Bar+18] Matthew P Barrett et al., “Framework for improving critical infrastructure
cybersecurity”, in: National Institute of Standards and Technology, Gaithers-
burg, MD, USA, Tech. Rep (2018) (cit. on pp. 14, 20, 48).

[BB17] Solon Barocas and Danah Boyd, “Engaging the ethics of data science in
practice”, in: Communications of the ACM (2017) (cit. on p. 69).

[BD12] Leyla Bilge and Tudor Dumitraş, “Before we knew it: an empirical study
of zero-day attacks in the real world”, in: Proceedings of the 2012 ACM
conference on Computer and communications security, 2012 (cit. on p. 41).

[Bel+13] Marc G Bellemare et al., “The arcade learning environment: An evaluation
platform for general agents”, in: Journal of Artificial Intelligence Research
(2013) (cit. on pp. 62, 156).

[BMS13] Ismail Butun, Salvatore D Morgera, and Ravi Sankar, “A survey of intrusion
detection systems in wireless sensor networks”, in: IEEE communications
surveys & tutorials (2013) (cit. on p. 47).

[Bon+18] Justine Bonnot et al., “CASSIS: Characterization with adaptive sample-size
inferential statistics applied to inexact circuits”, in: 2018 26th European Sig-
nal Processing Conference (EUSIPCO), IEEE, 2018 (cit. on p. 100).

[BOU+21] Thomas BOURGOIN et al., “Génération de code pour une bibliotheque
d’apprentissage par renforcement”, in: (2021) (cit. on p. 153).

[Bre01] Leo Breiman, “Random forests”, in: Machine learning (2001) (cit. on p. 52).

[Bri+18] Pierre-Olivier Brissaud et al., “Passive monitoring of https service use”, in:
2018 14th International Conference on Network and Service Management
(CNSM), IEEE, 2018 (cit. on p. 23).

[BRK21] Samuel Budd, Emma C Robinson, and Bernhard Kainz, “A survey on active
learning and human-in-the-loop deep learning for medical image analysis”,
in: Medical Image Analysis (2021) (cit. on p. 144).

182

[CA16] M Emre Celebi and Kemal Aydin, Unsupervised learning algorithms,
Springer, 2016 (cit. on pp. 22, 53).

[CB05] Ramkumar Chinchani and Eric van den Berg, “A fast static analysis approach
to detect exploit code inside network flows”, in: International Workshop on
Recent Advances in Intrusion Detection, Springer, 2005 (cit. on p. 34).

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly detection:
A survey”, in: ACM computing surveys (CSUR) (2009) (cit. on p. 89).

[CC] Communications Security Establishment (CSE) and Canadian Institute for
Cybersecurity (CIC), Intrusion Detection Evaluation Dataset (CSE-CIC-
IDS2018), url: https://www.unb.ca/cic/datasets/ids- 2018.html
(cit. on p. 114).

[CDP14] Dan Craigen, Nadia Diakun-Thibault, and Randy Purse, “Defining cyberse-
curity”, in: Technology Innovation Management Review (2014) (cit. on p. 37).

[CDS19] Vinod Kumar Chauhan, Kalpana Dahiya, and Anuj Sharma, “Problem for-
mulations and solvers in linear SVM: a review”, in: Artificial Intelligence
Review (2019) (cit. on p. 50).

[Cha+02] Nitesh V Chawla et al., “SMOTE: synthetic minority over-sampling tech-
nique”, in: Journal of artificial intelligence research (2002) (cit. on p. 91).

[Che+21] Jinfu Chen et al., “An Efficient Network Intrusion Detection Model Based
on Temporal Convolutional Networks”, in: 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security (QRS), IEEE, 2021
(cit. on p. 70).

[Con+19] Christos Constantinides et al., “A novel online incremental learning intrusion
prevention system”, in: 2019 10th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), IEEE, 2019 (cit. on pp. 116–
118, 137).

[CP77] Robin LP Chang and Theodosios Pavlidis, “Fuzzy decision tree algorithms”,
in: IEEE Transactions on systems, Man, and cybernetics (1977) (cit. on
p. 51).

[CV95] Corinna Cortes and Vladimir Vapnik, “Support-vector networks”, in: Ma-
chine learning (1995) (cit. on p. 50).

183

https://www.unb.ca/cic/datasets/ids-2018.html

[Cyb] Canadian Institute of Cyber Security, Intrusion Detection Evaluation Dataset
(CIC-IDS2017), url: https://www.unb.ca/cic/datasets/ids-2017.
html (cit. on pp. 75, 114).

[DA20] Padmanabhan Deepak and Savitha Sam Abraham, “Fair Outlier Detection.”,
in: WISE (2), 2020 (cit. on p. 71).

[DDW00] Hervé Debar, Marc Dacier, and Andreas Wespi, “A revised taxonomy for
intrusion-detection systems”, in: Annales Des Télécommunications (2000)
(cit. on p. 41).

[Den12] Li Deng, “The mnist database of handwritten digit images for machine learn-
ing research”, in: IEEE Signal Processing Magazine (2012) (cit. on p. 102).

[Den87] Dorothy E Denning, “An Intrusion-Detection Model”, in: IEEE Transactions
on Software Engineering (1987) (cit. on pp. 14, 21, 31).

[Des+21] Karol Desnos et al., “Gegelati: Lightweight artificial intelligence through
generic and evolvable tangled program graphs”, in: Workshop on Design and
Architectures for Signal and Image Processing (14th edition), 2021 (cit. on
pp. 150, 154).

[Des+22] Karol Desnos et al., “Ultra-fast Reinforcement Learning through C Code
Generation for tpg Inference”, in: IEEE Workshop on Signal Processing Sys-
tems, IEEE, 2022 (cit. on pp. 146, 153).

[DH08] John Doucette and Malcolm I Heywood, “GP classification under imbalanced
data sets: Active sub-sampling and AUC approximation”, in: European Con-
ference on Genetic Programming, Springer, 2008 (cit. on p. 91).

[DI18] Cynthia Dwork and Christina Ilvento, “Fairness under composition”, in:
arXiv preprint arXiv:1806.06122 (2018) (cit. on p. 70).

[dOL17] Brian d’Alessandro, Cathy O’Neil, and Tom LaGatta, “Conscientious classi-
fication: A data scientist’s guide to discrimination-aware classification”, in:
Big data (2017) (cit. on p. 69).

[Don+19] Gangsong Dong et al., “DB-Kmeans:An Intrusion Detection Algorithm Based
on DBSCAN and K-means”, in: 2019 20th Asia-Pacific Network Operations
and Management Symposium (APNOMS) (2019) (cit. on p. 46).

[DR20] Ian Davidson and Selvan Suntiha Ravi, “A framework for determining the
fairness of outlier detection”, in: ECAI 2020, IOS Press, 2020 (cit. on p. 71).

184

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html

[ERJ21] Gints Engelen, Vera Rimmer, and Wouter Joosen, “Troubleshooting an intru-
sion detection dataset: the CICIDS2017 case study”, in: 2021 IEEE Security
and Privacy Workshops (SPW), IEEE, 2021 (cit. on pp. 16, 24, 58, 69, 72,
73, 76, 83, 124, 136).

[Esc98] Terry Escamilla, Intrusion detection: network security beyond the firewall,
John Wiley, 1998 (cit. on p. 47).

[Fer+18] Alberto Fernández et al., “SMOTE for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary”, in: Journal of
artificial intelligence research (2018) (cit. on p. 91).

[FN96] Batya Friedman and Helen Nissenbaum, “Bias in computer systems”, in:
ACM Transactions on Information Systems (TOIS) (1996) (cit. on p. 69).

[Gar+09] Pedro Garcia-Teodoro et al., “Anomaly-based network intrusion detection:
Techniques, systems and challenges”, in: computers & security (2009) (cit. on
pp. 13, 19, 46).

[GD95] Diana F Gordon and Marie Desjardins, “Evaluation and selection of biases
in machine learning”, in: Machine learning (1995) (cit. on pp. 16, 23, 67).

[GHF22] Benjamin van Giffen, Dennis Herhausen, and Tobias Fahse, “Overcoming the
pitfalls and perils of algorithms: A classification of machine learning biases
and mitigation methods”, in: Journal of Business Research (2022) (cit. on
pp. 23, 68).

[GJM14] TJ Grant, RHP Janssen, and Herman Monsuur, Network Topology in Com-
mand and Control: Organization, Operation, and Evolution, Information Sci-
ence Reference, 2014 (cit. on p. 32).

[GMS00] Anup K Ghosh, Christoph Michael, and Michael Schatz, “A real-time intru-
sion detection system based on learning program behavior”, in: International
Workshop on Recent Advances in Intrusion Detection, Springer, 2000 (cit. on
pp. 116, 118, 137).

[Gon+19] Sergio González et al., “Chain based sampling for monotonic imbalanced
classification”, in: Information Sciences (2019) (cit. on p. 92).

[GS08] Meera Gandhi and SK Srivasta, Detecting and preventing attacks using net-
work intrusion detection systems, 2008 (cit. on pp. 41, 42).

185

[Gu+06] Guofei Gu et al., “Measuring intrusion detection capability: an information-
theoretic approach.”, in: 2006 (cit. on pp. 126, 127).

[Har07] Anne-Wil Harzing, Publish or Perish, https://harzing.com/resources/
publish-or-perish, 2007 (cit. on p. 21).

[HCA+11] Eric M Hutchins, Michael J Cloppert, Rohan M Amin, et al., “Intelligence-
driven computer network defense informed by analysis of adversary cam-
paigns and intrusion kill chains”, in: Leading Issues in Information Warfare
& Security Research (2011) (cit. on p. 39).

[Hea+98] Marti A. Hearst et al., “Support vector machines”, in: IEEE Intelligent Sys-
tems and their applications (1998) (cit. on p. 50).

[HG09] Haibo He and Edwardo A Garcia, “Learning from imbalanced data”, in:
IEEE Transactions on knowledge and data engineering (2009) (cit. on pp. 15,
21, 24, 58).

[HH05] Simon Hansman and Ray Hunt, “A taxonomy of network and computer
attacks”, in: Computers & Security (2005) (cit. on pp. 13, 19, 38).

[Hol14] Hannes Holm, “Signature based intrusion detection for zero-day attacks:(not)
a closed chapter?”, in: 2014 47th Hawaii international conference on system
sciences, IEEE, 2014 (cit. on p. 42).

[Hol92] John H Holland, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence, MIT
press, 1992 (cit. on p. 55).

[HS14] Neminath Hubballi and Vinoth Suryanarayanan, “False alarm minimization
techniques in signature-based intrusion detection systems: A survey”, in:
Computer Communications (2014) (cit. on pp. 13, 19, 41, 42).

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, “Overview of su-
pervised learning”, in: The elements of statistical learning, Springer, 2009
(cit. on pp. 22, 50).

[JCD13] László A Jeni, Jeffrey F Cohn, and Fernando De La Torre, “Facing imbal-
anced data–recommendations for the use of performance metrics”, in: 2013
Humaine association conference on affective computing and intelligent inter-
action, IEEE, 2013 (cit. on pp. 17, 25, 91).

186

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish

[Jos+16] Matthew Joseph et al., “Fairness in learning: Classic and contextual bandits”,
in: Advances in neural information processing systems (2016) (cit. on p. 70).

[JPP11] VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad, “A review of
anomaly based intrusion detection systems”, in: International Journal of
Computer Applications (2011) (cit. on pp. 13, 19, 46).

[KA17] Kwangjo Kim and Muhamad Erza Aminanto, “Deep learning in intrusion
detection perspective: Overview and further challenges”, in: 2017 Interna-
tional Workshop on Big Data and Information Security (IWBIS), IEEE,
2017, pp. 5–10 (cit. on pp. 13, 19).

[Kel18] Stephen Kelly, “Scaling genetic programming to challenging reinforcement
tasks through emergent modularity”, in: (2018) (cit. on pp. 62, 63, 76, 102,
126).

[KH17a] Stephen Kelly and Malcolm I Heywood, “Emergent tangled graph represen-
tations for Atari game playing agents”, in: EuroGP, Springer, 2017 (cit. on
p. 62).

[KH17b] Stephen Kelly and Malcolm I Heywood, “Multi-task learning in atari video
games with emergent tangled program graphs”, in: Proceedings of the Genetic
and Evolutionary Computation Conference, 2017 (cit. on pp. 14, 17, 19, 25,
62, 89, 115, 136).

[Khr+19] Ansam Khraisat et al., “Survey of intrusion detection systems: techniques,
datasets and challenges”, in: Cybersecurity (2019) (cit. on pp. 41, 47).

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore, “Rein-
forcement learning: A survey”, in: Journal of artificial intelligence research
(1996) (cit. on pp. 22, 53).

[KSH] Stephen Kelly, Robert J Smith, and Malcolm I Heywood, “Emergent policy
discovery for visual reinforcement learning through tangled program graphs:
A tutorial”, in: Genetic programming theory and practice XVI () (cit. on
pp. 60, 62, 75, 114, 152, 153).

[KT03] Christopher Kruegel and Thomas Toth, “Using Decision Trees to Improve
Signature-Based Intrusion Detection”, in: Lecture Notes in Computer Science
(2003), ed. by Giovanni Vigna, Christopher Kruegel, and Erland Jonsson (cit.
on pp. 13, 19, 42).

187

[KV02] Richard A Kemmerer and Giovanni Vigna, “Intrusion detection: a brief his-
tory and overview”, in: Computer 35.4 (2002), supl27–supl30 (cit. on pp. 13,
19).

[KZH05] H Günes Kayacik, A Nur Zincir-Heywood, and Malcolm I Heywood, “Select-
ing features for intrusion detection: A feature relevance analysis on KDD 99
intrusion detection datasets”, in: Proceedings of the third annual conference
on privacy, security and trust, Citeseer, 2005 (cit. on p. 71).

[Lab15] Kaspersky Lab, Damage control: the cost of security breaches, https://
media . kaspersky . com / pdf / it - risks - survey - report - cost - of -
security-breaches.pdf, 2015 (cit. on p. 41).

[Lan+10] Jyhshyan Lan et al., “An investigation of neural network classifiers with
unequal misclassification costs and group sizes”, in: Decision Support Systems
(2010) (cit. on p. 69).

[LAR13] ROGER LARSEN, BRO-an Intrusion Detection System, 2013 (cit. on p. 35).

[Las+17] Arash Habibi Lashkari et al., CICFlowMeter, 2017 (cit. on p. 35).

[LB+95] Yann LeCun, Yoshua Bengio, et al., “Convolutional networks for images,
speech, and time series”, in: The handbook of brain theory and neural net-
works (1995) (cit. on p. 52).

[LBX20] Yi Liu, Will N. Browne, and Bing Xue, “Absumption and subsumption based
learning classifier systems”, in: GECCO ’20: Genetic and Evolutionary Com-
putation Conference, Cancún Mexico, July 8-12, 2020, ACM, 2020 (cit. on
p. 92).

[LCS20] Manuel Lopez-Martin, Belen Carro, and Antonio Sanchez-Esguevillas, “Ap-
plication of deep reinforcement learning to intrusion detection for supervised
problems”, in: Expert Systems with Applications (2020) (cit. on pp. 116, 118,
137).

[Le+21] Hoang Lam Le et al., “EUSC: A clustering-based surrogate model to accel-
erate evolutionary undersampling in imbalanced classification”, in: Applied
Soft Computing (2021) (cit. on p. 92).

[Lee+18] Joffrey L Leevy et al., “A survey on addressing high-class imbalance in big
data”, in: Journal of Big Data (2018) (cit. on p. 90).

188

https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf

[Lee06] Edward A Lee, “The problem with threads”, in: Computer (2006) (cit. on
p. 150).

[Lev16] Jake Lever, “Classification evaluation: It is important to understand both
what a classification metric expresses and what it hides”, in: Nature methods
(2016) (cit. on pp. 15, 21, 56).

[Lia+13] Hung-Jen Liao et al., “Intrusion detection system: A comprehensive review”,
in: Journal of Network and Computer Applications (2013) (cit. on p. 41).

[Liu+19] Jinping Liu et al., “ANID-SEoKELM: Adaptive network intrusion detec-
tion based on selective ensemble of kernel ELMs with random features”, in:
Knowledge-based systems (2019) (cit. on pp. 116, 118, 137).

[Liu+20] Jinping Liu et al., “Adaptive intrusion detection via GA-GOGMM-based
pattern learning with fuzzy rough set-based attribute selection”, in: Expert
Systems with Applications (2020) (cit. on pp. 116, 118, 135, 137).

[Lóp+13] Victoria López et al., “A hierarchical genetic fuzzy system based on genetic
programming for addressing classification with highly imbalanced and bor-
derline data-sets”, in: Knowledge-Based Systems (2013) (cit. on p. 91).

[LP18] Camelia Lemnaru and Rodica Potolea, “Evolutionary cost-sensitive balanc-
ing: A generic method for imbalanced classification problems”, in: EVOLVE-
A Bridge between Probability, Set Oriented Numerics, and Evolutionary
Computation VI, Springer, 2018 (cit. on p. 93).

[Mac+67] James MacQueen et al., “Some methods for classification and analysis of
multivariate observations”, in: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, Oakland, CA, USA, 1967 (cit. on
p. 53).

[McH00] John McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lin-
coln laboratory”, in: ACM Transactions on Information and System Security
(TISSEC) (2000) (cit. on p. 69).

[Meh+21] Ninareh Mehrabi et al., “A survey on bias and fairness in machine learning”,
in: ACM Computing Surveys (CSUR) (2021) (cit. on pp. 23, 68, 69).

189

[MG09] Luis Mena and Jesus A Gonzalez, “Symbolic one-class learning from imbal-
anced datasets: application in medical diagnosis”, in: International Journal
on Artificial Intelligence Tools (2009) (cit. on p. 69).

[MIT99] Massachusetts Institute of Technology MIT Lincoln Laboratory, 1999
DARPA Intrusion Detection Evaluation Dataset, https://www.ll.mit.
edu/r- d/datasets/1999- darpa- intrusion- detection- evaluation-
dataset, 1999 (cit. on p. 57).

[MK18] Soosan Naderi Mighan and Mohsen Kahani, “Deep learning based latent
feature extraction for intrusion detection”, in: Electrical Engineering (ICEE),
Iranian Conference on, IEEE, 2018 (cit. on p. 71).

[MLK14] Weizhi Meng, Wenjuan Li, and Lam-For Kwok, “EFM: enhancing the per-
formance of signature-based network intrusion detection systems using en-
hanced filter mechanism”, in: computers & security (2014) (cit. on pp. 68,
70, 71).

[Mni+15] Volodymyr Mnih et al., “Human-level control through deep reinforcement
learning”, in: nature (2015) (cit. on p. 54).

[MNN21] Behzad Mirzaei, Bahareh Nikpour, and Hossein Nezamabadi-pour, “CDBH:
A clustering and density-based hybrid approach for imbalanced data classi-
fication”, in: Expert Systems with Applications (2021) (cit. on p. 92).

[Moh+19] Marwa R Mohamed et al., “Exploiting Incremental Classifiers for the Train-
ing of an Adaptive Intrusion Detection Model.”, in: Int. J. Netw. Secur.
(2019) (cit. on pp. 116–118, 137).

[Mor11] Benoit Morel, “Artificial intelligence and the future of cybersecurity”, in:
Proceedings of the ACM Conference on Computer and Communications Se-
curity (2011) (cit. on pp. 17, 25, 31, 113).

[MP17] Savita Mohurle and Manisha Patil, “A brief study of wannacry threat: Ran-
somware attack 2017”, in: International Journal of Advanced Research in
Computer Science (2017) (cit. on p. 41).

[MP43] Warren S McCulloch and Walter Pitts, “A logical calculus of the ideas imma-
nent in nervous activity”, in: The bulletin of mathematical biophysics (1943)
(cit. on p. 52).

190

https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset

[MPB14] Ioan-Cosmin Mihai, Stefan Pruna, and Ionut-Daniel Barbu, “Cyber kill chain
analysis”, in: Int’l J. Info. Sec. & Cybercrime (2014) (cit. on p. 40).

[MPV21] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining, Introduc-
tion to linear regression analysis, John Wiley & Sons, 2021 (cit. on p. 50).

[NN98] James R Norris and James Robert Norris, Markov chains, Cambridge uni-
versity press, 1998 (cit. on p. 54).

[OC20] Luca Oneto and Silvia Chiappa, “Fairness in machine learning”, in: Recent
Trends in Learning From Data, Springer, 2020 (cit. on p. 70).

[OHT20] Yassine Ouali, Céline Hudelot, and Myriam Tami, “An overview of deep
semi-supervised learning”, in: arXiv preprint arXiv:2006.05278 (2020) (cit.
on p. 53).

[Olt+19] Alexandra Olteanu et al., “Social data: Biases, methodological pitfalls, and
ethical boundaries”, in: Frontiers in Big Data (2019) (cit. on pp. 68, 69).

[OM05] James A O’brien and George M Marakas, Introduction to information sys-
tems, McGraw-Hill/Irwin New York City, USA, 2005 (cit. on p. 32).

[PB17] Paul Pols and Jan van den Berg, “The Unified Kill Chain”, in: CSA Thesis,
Hague (2017) (cit. on p. 39).

[PB18] Ranjit Panigrahi and Samarjeet Borah, “A detailed analysis of CICIDS2017
dataset for designing Intrusion Detection Systems”, in: International Journal
of Engineering & Technology (2018) (cit. on p. 74).

[PBC15] Todd Perry, Mohamed Bader-El-Den, and Steven Cooper, “Imbalanced clas-
sification using genetically optimized cost sensitive classifiers”, in: 2015 IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2015 (cit. on pp. 91,
93).

[PD07] Larry L Peterson and Bruce S Davie, Computer networks: a systems ap-
proach, Elsevier, 2007 (cit. on p. 33).

[Pei+20] Wenbin Pei et al., “Genetic programming for high-dimensional imbalanced
classification with a new fitness function and program reuse mechanism”, in:
Soft Computing (2020) (cit. on p. 91).

191

[Pel21] LeeAnne M. Pelzer, The true cost of cyber security incidents, https://www.
paloaltonetworks.com/blog/2021/06/the-cost-of-cybersecurity-
incidents-the-problem/, 2021 (cit. on p. 41).

[PKP21] Mirjam Pot, Nathalie Kieusseyan, and Barbara Prainsack, “Not all biases are
bad: equitable and inequitable biases in machine learning and radiology”, in:
Insights into imaging (2021) (cit. on pp. 16, 23, 67).

[Poz+21] Muhammad Syafiq Mohd Pozi et al., “SVGPM: evolving SVM decision func-
tion by using genetic programming to solve imbalanced classification prob-
lem”, in: Progress in Artificial Intelligence (2021) (cit. on p. 92).

[PS22] Dana Pessach and Erez Shmueli, “A Review on Fairness in Machine Learn-
ing”, in: ACM Computing Surveys (CSUR) (2022) (cit. on p. 70).

[Rai12] Costin Raiu, “Cyber-threat evolution: the past year”, in: Computer Fraud &
Security (2012) (cit. on pp. 17, 25, 31, 113).

[Rau+20] Pierre-Yves Raumer et al., “Reinforcement Learning Library based on Tan-
gled Program Graphs: Development of New Learning Environments and Li-
brary Features”, in: (2020) (cit. on p. 161).

[Ren+08] Rafal Renk et al., “Intrusion detection system based on matching pursuit”,
in: 2008 First International Conference on Intelligent Networks and Intelli-
gent Systems, IEEE, 2008 (cit. on p. 21).

[Rin+19] Markus Ring et al., “A survey of network-based intrusion detection data
sets”, in: Computers & Security (2019) (cit. on pp. 16, 23, 57, 124).

[Sá+20] Alex GC de Sá et al., “A robust experimental evaluation of automated multi-
label classification methods”, in: Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference, 2020 (cit. on p. 92).

[SA13] Santanu Santra and Pinaki Pratim Acharjya, “A Study And Analysis on
Computer Network Topology For Data Communication”, in: International
Journal of Emerging Technology and Advanced Engineering (2013) (cit. on
p. 33).

[SAH21] Robert J Smith, Ryan Amaral, and Malcolm I Heywood, “Evolving simple
solutions to the CIFAR-10 benchmark using tangled program graphs”, in:
2021 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2021 (cit.
on pp. 89, 92, 93, 99).

192

https://www.paloaltonetworks.com/blog/2021/06/the-cost-of-cybersecurity-incidents-the-problem/
https://www.paloaltonetworks.com/blog/2021/06/the-cost-of-cybersecurity-incidents-the-problem/
https://www.paloaltonetworks.com/blog/2021/06/the-cost-of-cybersecurity-incidents-the-problem/

[Sar+20] T Saranya et al., “Performance analysis of machine learning algorithms in
intrusion detection system: A review”, in: Procedia Computer Science (2020)
(cit. on p. 47).

[SB18] Richard S Sutton and Andrew G Barto, Reinforcement learning: An intro-
duction, MIT press, 2018 (cit. on p. 55).

[SG21] Harini Suresh and John Guttag, “A framework for understanding sources of
harm throughout the machine learning life cycle”, in: Equity and Access in
Algorithms, Mechanisms, and Optimization, 2021 (cit. on p. 69).

[SGA20] S Sandosh, V Govindasamy, and G Akila, “Enhanced intrusion detection
system via agent clustering and classification based on outlier detection”, in:
Peer-to-Peer networking and Applications (2020) (cit. on p. 46).

[SLG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic characteri-
zation.”, in: ICISSP, 2018 (cit. on pp. 15, 21, 58, 69, 71, 74, 75, 81, 107, 114,
126).

[SLP22] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann, “Towards a stan-
dard feature set for network intrusion detection system datasets”, in: Mobile
Networks and Applications (2022) (cit. on pp. 71, 116–118, 137, 139, 143,
144).

[Smi03] Clifton L Smith, “Understanding concepts in the defence in depth strategy”,
in: (2003) (cit. on p. 47).

[Sou+22a] Nicolas Sourbier et al., “Imbalanced Classification with TPG Genetic Pro-
gramming: Impact of Problem Imbalance and Selection Mechanisms”, in:
The Genetic and Evolutionary Computation Conference, acm, 2022 (cit. on
pp. 89, 146).

[Sou+22b] Nicolas Sourbier et al., “SECURE-GEGELATI Always-On Intrusion Detec-
tion through GEGELATI Lightweight Tangled Program Graphs”, in: Journal
of Signal Processing Systems (2022) (cit. on pp. 113, 137, 146).

[SSG18] Rohini Sharma, RK Singla, and Ajay Guleria, “A new labeled flow-based
DNS dataset for anomaly detection: PUF dataset”, in: Procedia computer
science (2018) (cit. on pp. 15, 21).

193

[Sta87] William Stallings, Handbook of computer-communications standards; Vol. 1:
the open systems interconnection (OSI) model and OSI-related standards,
Macmillan Publishing Co., Inc., 1987 (cit. on p. 36).

[SV17] Rafath Samrin and D Vasumathi, “Review on anomaly based network intru-
sion detection system”, in: 2017 International Conference on Electrical, Elec-
tronics, Communication, Computer, and Optimization Techniques (ICEEC-
COT), IEEE, 2017 (cit. on p. 46).

[Sym17] Symantec, ISTR Volume 22| Symantec, 2017 (cit. on pp. 17, 25, 31, 46, 113).

[Tav+09] Mahbod Tavallaee et al., “A detailed analysis of the KDD CUP 99 data
set”, in: 2009 IEEE symposium on computational intelligence for security
and defense applications, Ieee, 2009 (cit. on p. 70).

[Tec] Institut d’Electronique et des Technologies du numéRique (IETR), Generic
Evolvable Graphs for Efficient Learning of Artificial Tangled Intelligence,
url: https://github.com/gegelati/gegelati (cit. on p. 149).

[Van20] Paul C Van Oorshot, Computer Security and the Internet: tools and jewels.
Springer Nature, 2020 (cit. on pp. 13, 19, 20, 31).

[Vet21] Antonio Vetrò, “Imbalanced data as risk factor of discriminating automated
decisions”, in: (2021) (cit. on p. 69).

[Vie+18] Felipe Viegas et al., “A genetic programming approach for feature selection in
highly dimensional skewed data”, in: Neurocomputing (2018) (cit. on p. 91).

[VKS10] Susana M Vieira, Uzay Kaymak, and João MC Sousa, “Cohen’s kappa co-
efficient as a performance measure for feature selection”, in: International
Conference on Fuzzy Systems, IEEE, 2010 (cit. on p. 92).

[Wan+15] CY Wang et al., “imDC: an ensemble learning method for imbalanced clas-
sification with miRNA data”, in: Genetics and Molecular Research (2015)
(cit. on p. 91).

[War+19] Ni Wayan Surya Wardhani et al., “Cross-validation metrics for evaluating
classification performance on imbalanced data”, in: 2019 international con-
ference on computer, control, informatics and its applications (ic3ina), IEEE,
2019 (cit. on p. 98).

[WD92] Christopher JCH Watkins and Peter Dayan, “Q-learning”, in: Machine learn-
ing (1992) (cit. on p. 54).

194

https://github.com/gegelati/gegelati

[Wei05] Sanford Weisberg, Applied linear regression, John Wiley & Sons, 2005 (cit.
on p. 50).

[WRM03] Jianxin Wu, James Matthew Rehg, and Matthew D Mullin, Learning a rare
event detection cascade by direct feature selection, tech. rep., Georgia Insti-
tute of Technology, 2003 (cit. on pp. 89, 116).

[WRR03] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha, “Singular value
decomposition and principal component analysis”, in: A practical approach
to microarray data analysis, Springer, 2003 (cit. on p. 53).

[Wu+21] Zhijun Wu et al., “An incremental learning method based on dynamic en-
semble RVM for intrusion detection”, in: IEEE Transactions on Network and
Service Management (2021) (cit. on pp. 116, 118, 137).

[WZ15] Marvin N Wright and Andreas Ziegler, “ranger: A fast implementation of
random forests for high dimensional data in C++ and R”, in: arXiv preprint
arXiv:1508.04409 (2015) (cit. on pp. 127, 135).

[YH18] Binghao Yan and Guodong Han, “Effective feature extraction via stacked
sparse autoencoder to improve intrusion detection system”, in: IEEE Access
(2018) (cit. on p. 71).

[YL06] Show-Jane Yen and Yue-Shi Lee, “Under-sampling approaches for improving
prediction of the minority class in an imbalanced dataset”, in: Intelligent
Control and Automation, Springer, 2006 (cit. on pp. 17, 24, 89, 91).

[YR15] Tarun Yadav and Arvind Mallari Rao, “Technical aspects of cyber kill chain”,
in: International Symposium on Security in Computing and Communication,
Springer, 2015 (cit. on p. 40).

[YSS19] Arif Yulianto, Parman Sukarno, and Novian Anggis Suwastika, “Improving
adaboost-based intrusion detection system (IDS) performance on CIC IDS
2017 dataset”, in: Journal of Physics: Conference Series, 2019 (cit. on p. 127).

[Zam01] Diego Zamboni, “Using Internal Sensors For Computer Intrusion Detection”,
in: (2001) (cit. on pp. 13, 19, 20, 31, 113).

[ZCS20] Wei Zong, Yang-Wai Chow, and Willy Susilo, “Interactive three-dimensional
visualization of network intrusion detection data for machine learning”, in:
Future Generation Computer Systems (2020) (cit. on pp. 116, 118, 137).

195

[ZD21] Hongjing Zhang and Ian Davidson, “Towards fair deep anomaly detection”,
in: Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, 2021 (cit. on p. 71).

[Zhu05] Xiaojin Jerry Zhu, “Semi-supervised learning literature survey”, in: (2005)
(cit. on p. 53).

[Zhu20] Qiuming Zhu, “On the performance of Matthews correlation coefficient
(MCC) for imbalanced dataset”, in: Pattern Recognition Letters (2020) (cit.
on p. 91).

[ZL03] Mian Zhou and Sheau-Dong Lang, “A frequency-based approach to intru-
sion detection”, in: Proc. of the Workshop on Network Security Threats and
Countermeasures, 2003 (cit. on p. 21).

[ZL14] Huaxiang Zhang and Mingfang Li, “RWO-Sampling: A random walk over-
sampling approach to imbalanced data classification”, in: Information Fusion
(2014) (cit. on pp. 17, 24, 89, 91).

196

Titre : Détection d’intrusion réseaux par apprentissage machine : Un problème temporel, dés-
équilibré et en constante évolution

Mot clés : Détection d’intrusion, Programmation génétique, Sécurité réseau, Apprentissage

déséquilibré, Apprentissage incrémentiel et TPG

Résumé : Les systèmes de détection d’intru-
sion réseau (NIDS) observent le trafic réseau
et essayent d’en extraire les intrusions : des
compromissions de l’intégrité, la disponibilité
ou la confidentialité des services et des don-
nées fournies par ce réseau. Il existe deux
types de NIDS. 1) Les systèmes de détection
d’intrusion par signature identifient les intru-
sions connues en se référant à une base de
connaissance existante. 2) Les systèmes de
détection d’intrusion par anomalie qui quali-
fient les intrusions en se basant sur un modèle
du trafic réseau normal, généralement appris
par des techniques d’apprentissage machine.

La détection d’intrusion dans les réseaux,
en évolution constante, comporte des verrous

pour être déployée. Premièrement, la collecte
de données réseau représentatives et cor-
rectement étiquetées est complexe et coû-
teuse. Ces données sont également fortement
déséquilibrées, les attaques étant des évé-
nements rares. Enfin, le portage opérationnel
d’un AIDS appris peut entraîner une chute des
taux de détection de par la différence entre le
contexte d’apprentissage et le contexte d’infé-
rence.

Ce manuscrit explore les apports des
TPGs au domaine de la détection d’intrusions
par anomalies et montre que les TPG sont
prometteurs pour la levée des verrous du do-
maine.

Title: Learning-Based Network Intrusion Detection : an Imbalanced, Constantly Evolving and
Timely Problem

Keywords: Intrusion detection, Genetic Programming, Network Security, Imbalanced Learn-

ing, Incremental Learning, Tangled Program Graphs

Abstract: Network Intrusion Detection Sys-
tems (NIDS) observe a network environment
and aim to identify intrusions: malicious be-
haviors that compromise integrity, confidential-
ity or availability of either the network data
or the systems. NIDS can be classified into
signature-based NIDS, that identify known in-
trusions by comparing the traffic with a knowl-
edge base and anomaly-based NIDS (AIDS)
that aim to qualify the unknown intrusion traf-
fic, from a model of normal traffic, mostly
based on Machine Learning techniques.

Performing detection of rare events such
as intrusions in an ever-changing network en-

vironment using learned AIDS is a challenge
bound to several big issues. Firstly, gather-
ing representative network data with accurate
label information is costly. These data are
also highly imbalanced as intrusions are rare
events. Finally, there is no guarantee that a
learned AIDS on a network intrusion detection
dataset is useful for real NIDS inference.

This thesis explores the capabilities of the
TPG framework to act as an AIDS probe. TPG
is a form of machine learning based on genetic
programming that offers lightweight and versa-
tile learning capabilities.

	Acknowledgements
	1 French Summary
	1.1 Introduction
	1.2 Contexte: apprentissage de comportements dans un réseau IP
	1.2.1 La sécurité du réseau
	1.2.2 Apprentissage machine et AIDS

	1.3 Challenges et objectifs
	1.4 Contributions : vers la création d'un AIDS basé sur de l'apprentissage machine.
	1.4.1 Impact des biais d'apprentissage sur les TPGs
	1.4.2 Apprentissage déséquilibré: une approche par la programmation génétique
	1.4.3 Adaptabilité des AIDS haute performance sur des réseaux opérationnels

	2 Introduction
	2.1 Context: learning behaviors in a dynamic IP network environment
	2.1.1 Intrusion detection and security in a dynamic IP network
	2.1.2 Learning AIDS using IP network data

	2.2 Challenges and thesis Objectives
	2.3 Thesis contributions: toward designing a ML-based AIDS
	2.3.1 Contribution 1: assessing the biases of IP networks intrusion detection datasets and evaluating their effect on a TPG-based AIDS
	2.3.2 Contribution 2: study of the impact of data imbalance on TPG performance
	2.3.3 Contribution 3: Evaluating TPG for stream processing, continual learning and high efficiency AIDS
	2.3.4 Appendix A: Prototyping and optimization of a Tangled Program Graph framework (GEGELATI)

	I Background
	3 Intrusion detection and security in a dynamic IP network
	3.1 Introduction
	3.2 The computer network: a dynamic and complex environment
	3.2.1 Computer networks: Endpoints and organization
	3.2.2 Computer networks: communication protocol
	3.2.3 Computer networks: a dynamic environment

	3.3 Network security
	3.3.1 Network security: attacks, intrusions, vulnerabilities
	3.3.2 Network security: the cyber kill chain
	3.3.3 Network security: why is security required ?

	3.4 Detecting intrusions on a network
	3.4.1 Network data
	3.4.2 Detection: the signature approach
	3.4.2.1 How are SIDS built?

	3.4.3 Detection: detecting anomalies
	3.4.3.1 How are AIDS built?

	3.4.4 Network Security: defense in depth

	3.5 Conclusion

	4 Training AIDS using IP network data
	4.1 Introduction
	4.2 Machine Learning: Learning methods
	4.2.1 Supervised Learning
	4.2.1.1 Linear Regression
	4.2.1.2 Support Vector Machines
	4.2.1.3 Decision trees
	4.2.1.4 Neural Networks

	4.2.2 Unsupervised Learning
	4.2.2.1 K-means
	4.2.2.2 Singular Value Decomposition

	4.2.3 Reinforcement Learning
	4.2.3.1 Q-Learning
	4.2.3.2 Deep Q-networks

	4.2.4 Genetic programming

	4.3 Evaluation of classification and detection
	4.4 Learning from network data
	4.4.1 Network data: NIDS datasets
	4.4.2 Packets, Network flows and logs
	4.4.3 NIDS datasets
	4.4.4 Network data: the imbalance nature of the intrusion detection problem

	4.5 Using ML algorithms for Network security through the design of an AIDS
	4.5.1 Supervised Learning
	4.5.2 Unsupervised Learning
	4.5.3 Reinforcement Learning
	4.5.4 Genetic Programming

	4.6 Experimented GP method: Tangled Program Graphs (TPG)
	4.6.1 TPG: Model and Learning Algorithm
	4.6.2 Parameters of the TPG

	4.7 Conclusion

	II Contributions
	5 Contribution 1: Assessing the biases of IP networks intrusion detection datasets and evaluating their effect on a TPG-based AIDS
	5.1 Introduction
	5.2 Related Work
	5.2.1 Reducing biases in the algorithm
	5.2.2 Pre-processing datasets for fairness

	5.3 Impact of learning biases in NIDS
	5.3.1 Problem definition
	5.3.2 Learning with representation biases
	5.3.3 Learning with label biases

	5.4 Experimental Setup
	5.4.1 The CICIDS 2017 dataset
	5.4.2 Experiment 1: representation bias of an IDS
	5.4.3 Experiment 2: label bias of an IDS
	5.4.4 Parameters of the TPG

	5.5 Experimental Results
	5.5.1 Preliminary training of a TPG on the CICIDS 2017 dataset
	5.5.2 Experiment 1: impact of the representation bias on the learned NIDS
	5.5.3 Experiment 2: impact of label bias on the ML-based AIDS
	5.5.4 Experiment 3: cost of mislabeling of the data

	5.6 Discussion: mitigation of the representation and labeling biases of NIDS datasets
	5.6.1 Assessing representation biases of a NIDS dataset
	5.6.2 Mitigation of labeling bias using TPG and future work

	5.7 Conclusion

	6 Contribution 2: Study of the impact of data imbalance on TPG performance
	6.1 Introduction
	6.2 Related work
	6.3 Impact of imbalance on the learning
	6.3.1 Cardinality: range of the fitness function
	6.3.2 Imbalance: modeling of the data

	6.4 Fitness functions and genetic selection phase for imbalance classification
	6.4.1 The imbalanced classification problem
	6.4.2 Selection: Choosing fitness and evaluation metrics
	6.4.3 Selection: Comparison of the individuals

	6.5 Experimental Setup
	6.5.1 Parameters of the TPG

	6.6 Experimental Results
	6.6.1 Fitness function and evaluation metric
	6.6.1.1 Evaluation metric
	6.6.1.2 Choosing the right fitness

	6.6.2 Evaluation of the Proposed Selection Algorithm
	6.6.3 Testing on a NIDS dataset

	6.7 Discussion and future work
	6.8 Conclusion

	7 Contribution 3: Evaluating TPG for stream processing, incremental learning and high efficiency AIDS
	7.1 Introduction
	7.2 Related Work
	7.3 The Secure-GEGELATI stream processing prototype
	7.3.1 An Anomaly-based Intrusion Detection System
	7.3.2 A GP-based probe
	7.3.3 A stream processing Embedded system
	7.3.4 Using Secure-GEGELATI as an IDS

	7.4 Experimental setup
	7.4.1 Description of the datasets used in the experiments
	7.4.1.1 The CICIDS 2017 dataset
	7.4.1.2 The CSE-CIC-IDS2018 dataset
	7.4.1.3 Adjustments

	7.4.2 Parameters of the TPG

	7.5 Experimental Results
	7.5.0.1 CICIDS 2017 Analysis
	7.5.1 Performance of the RF and the TPG algorithms on the datasets CICIDS 2017 and CSE-CIC-IDS2018
	7.5.1.1 RF implementation
	7.5.1.2 Using the TPG to analyze CICIDS

	7.5.2 Adaptability of GEGELATI
	7.5.2.1 Inferring the previous models to the CSE-CIC-IDS2018 dataset
	7.5.2.2 Discovering new categories of attacks

	7.5.3 Stream processing and energy efficiency of Secure-GEGELATI
	7.5.3.1 Energy efficiency of the IDS

	7.5.4 Comparison with the state of the art
	7.5.5 Training an AIDS for operational conditions

	7.6 Discussion and future work
	7.7 Conclusion

	III Conclusion
	8 Conclusion
	8.1 Research contributions
	8.1.1 Assessing the biases of IP networks intrusion detection datasets and evaluating their effect on a TPG-based AIDS
	8.1.2 Study of the impact of data imbalance on TPG performance
	8.1.3 Evaluating TPG for stream processing, continual learning and high efficiency AIDS

	8.2 Prospects and Future Works
	8.2.1 Biases network data handling
	8.2.2 Imbalanced learning: algorithmic mitigation of GP methods
	8.2.3 Adaptive IDSs as high performance probes

	8.3 Journal and conference papers
	8.3.1 As the first author:
	8.3.2 As a co-author:

	A Prototyping and optimization of a Tangled Program Graph framework (GEGELATI)
	A.1 Introduction
	A.2 The TPG as a deterministic and parallel agent
	A.3 Generating code for fast TPG inference
	A.3.1 Motivations

	A.4 Code Generation for TPG Inference
	A.4.1 Code Generation for Programs
	A.4.2 Code Generation of TPG Structure
	A.4.3 Discussion on the prototyping work

	A.5 Saving and restoring TPGs
	A.5.1 Motivations
	A.5.2 Prototyping choices for storing a TPG
	A.5.3 Discussion

	A.6 External parametizing of the TPG
	A.6.1 Parameterized TPG implementation

	A.7 Mimicking decision trees and CNN with TPGs
	A.7.1 Motivations
	A.7.2 Implementation of TPG constants
	A.7.3 Discussion

	A.8 Towards a semi-supervised TPG ?
	A.8.1 Motivation
	A.8.2 Prototyping a semi-supervised learning based TPG
	A.8.3 Discussion

	A.9 Conclusion

	List of Figures
	List of Tables
	List of Listings
	Bibliography

