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Abstract

Ionic liquids (ILs) are salts with low melting points, often resulting in a liquid state at room temperature.
ILs are regarded as highly tailorable designer solvents with many potential applications, such as in
organic synthesis, energy storage devices and as solvents for biological molecules. However, for many
applications the use of ILs is limited due to their cost and viscosity. One approach used to address this
is combining ILs with molecular solvents. However, currently there is insufficient knowledge about the
interaction of these IL-molecular solvents with solutes and interfaces, particularly regarding which ions
or molecular solvent molecules are involved in solvating various solutes. This thesis expands our
understanding and provides insight into the tools available to investigate solvent behaviour of ionic

liquids at a molecular level using both experiments and computational simulations.

Machine learning was initially used to understand the trends between chemical structure and
physicochemical properties of protic ionic liquids (PILs) in the presence of water. Due to the vast
sample space in the field of PILs, it is near impossible to characterise these mixtures experimentally.
Machine learning, which allows for the input of experimental data from which extrapolations can be
made about new ILs, is a novel technique which has sparked great interest within our field. Machine
learning models were created using linear regression and neural network methods using literature
experimental viscosity and conductivity data to predict 8605 viscosity values and 8580 conductivity
values. The viscosity and ionic conductivity of 10 new PILs of these predicted values were verified
experimentally as part of this thesis, which demonstrates that high quality machine learning models can
be crafted to complement experimental studies in the future. The machine learning study also
demonstrated that physical properties of PILs are subject to drastic changes with minute changes to
their chemical structure. This motivated the need to develop a deeper understanding of the role of a PIL

1n mixtures.



Ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN), two PILs which are quite
structurally similar with a small change in their chemical structures of replacing a hydrogen with a
hydroxyl group, were chosen as the PILs for further investigation. While PILs are widely studied in the
literature due to the ease with which they can be synthesised and favourable physical properties such as
low viscosity, questions remain regarding how their solvent properties alter in the presence of water.
The self-assembly of surfactants Cetyltrimethylammonium bromide (cationic), sodium octyl sulfate
(anionic) and Tetraethylene glycol monododecyl ether (non-ionic) in PIL-water mixtures were probed
to understand the solvation properties of PILs in the presence of water. The methods used to investigate
these properties included surface tensiometry and small angle x-ray scattering (SAXS), both of which
were used to understand ternary mixtures of PILs with surfactants and water. Surface tensiometry was
able to show that the critical micelle concentration was greatly affected by the concentration of the PILs.
The presence of PIL in the mixture led to an initial decrease in the CMC but led to an overall increase
in the CMC across all surfactants above 5 mol% of the PIL. To confirm the presence of self-assembled
structures in the ternary mixtures, SAXS was used. The SAXS experiments proved to be difficult for
EAN due to contrast issues but scattering from micelles were observed in EtAN solutions. No scattering
was observed for the EAN rich solvent, whereas for similar concentrations of EtAN x-ray scattering
could be observed. To solve the conundrum regarding why such similar PILs led to vastly different

results, it was decided computational techniques are necessary.

Molecular dynamics (MD) was explored as a complementary computational technique to probe deeper
into the experimental data. As a starting point, a systematic review of 31 existing water models was
performed to understand which water model force-field would be suitable for mixing with existing IL
force-fields. OPC3 water model was deemed to be suitable for the purposes of this thesis to combine
with the existing OPLS EAN force-field. These force-fields were combined with existing force-fields
for the three surfactants to probe the molecular level interactions between the EAN-water mixtures and
the surfactants which self-assemble into micelles. The simulations suggested that ethylammonium ions,

which are supposed to be in the bulk solvent, were in fact participating in the micelle formation with



the surfactants. This provided an explanation regarding the contrast issues which led to inconclusive

results from SAXS experiments.

The overall objective of this thesis was to gain a fundamental understanding of how PILs behave in
mixtures with other solvents and solutes. To achieve this, a wide variety of experimental and
computational techniques had to be explored to understand the mixtures from different perspectives,
where that be experimentally or at a molecular level using simulations. The work done during this thesis
will form a basis for future work in the space of molecular dynamics and machine learning models for

PILs and their mixtures.
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Figure A.1. Illustration of properties of ionic liquid mixtures investigated and the methods used in the
thesis.



1 Introduction

Ionic Liquids (ILs) are salts with melting points under 100 °C, mainly due to poorly coordinated ions
which cannot pack efficiently and hydrogen bonding. The main advantage in using ILs is their
versatility as a solvent. Various features such as polarity, cation alkyl chain length, anion
nucleophilicity, hydrophobicity, pH, salt kosmotropicity and ionicity can be altered to tailor for a
specific application by changing the structure of the cation and the anion.! There are two main categories
of ILs; aprotic ionic liquids (AILs) and protic ionic liquids (PILs), where PILs are synthesised through
proton transfer from a Brensted acid to a Brensted base.? PILs are the largest known solvent class

capable of promoting self-assembly of surfactants and they will be the focus of this thesis.

In recent years, the field of ionic liquids has shifted from neat ILs to exploring IL-water mixtures for
various applications, due to the costs and viscosity issues associated with using neat ILs. However, it is
unclear what factors and parameters allow ILs to be successful co-solvents, and what the new solvent
properties are. The overall objective of this thesis was to gain understanding into the behaviour of ionic

liquids in mixtures with water and various solutes using both experimental and computational tools.

1.1 Protic ionic liquids (PILs)

PILs are a subclass of ionic liquids with an available proton. Unlike AILs which generally require
complex synthesis and purification processes, PILs can be synthesised via a straightforward Brensted

acid-base reaction:
Brensted acid + brgnsted base — PIL cation + PIL anion

This allows PILs to be created via automated high-throughput processes, which along with generally

cheap precursors, makes them cheaper and faster to produce than AlLs. PILs are also easier to purify



than AILs. Water can be removed during the synthesis process using vacuum methods due to the low
volatility of PILs, and PIL synthesis does not involve any halides. Incremental changes to the cation
and anion structure of PILs can lead to vast differences in their bulk physicochemical properties.
Therefore, it is difficult to predict and categorise PILs and their property trends. High throughput
experimental efforts have been pursued in recent years due to the sheer number of available cation and
anion combinations.** Figure 1.1 depicts a subset of PILs which are widely studied in the literature,

with incrementally increasing carbon chains and branching on the cation, paired with nitrate or formate

anions.
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Figure 1.1. Examples of widely used protic ionic liquids. Reproduced from ref 5.

In addition, PILs are the largest known class of solvents demonstrating the ability to support amphiphile
self-assembly.® PILs which can promote self-assembly allow us to understand interactions between
solvents and solutes. In this thesis we aim to use self-assembly as a process to give us insights into the

solvation properties of PILs.

The available protons in PILs lead to a hydrogen bonded network akin to water.” The hydrogen bonded
network allows PILs to have high cohesive energy density. Like water, PILs are highly polar hydrogen-

bonded solvents, which exhibit behaviour associated with the hydrophobic effect. This effect, as it



applies to PILs can be generalised as the solvophobic effect. This hypothesis was first suggested by
Evans et al. in 19813, Figure 1.2 depicts how the hydrogen network in EAN was illustrated by Evans

and how it compares to the H-network in water.
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Figure 1.2. Hydrogen bond networks in ethylammonium nitrate and water. Reproduced from .

1.1.1 Physicochemical properties of PILs

To gain insight into the intermolecular interactions of ionic liquids, the physicochemical solvent
properties of PILs can be characterised experimentally. Thermal properties such as melting point, a
defining feature of ILs, can be characterised using differential scanning calorimetry (DSC). The melting
point of ILs tend to be defined as under 100 °C, mostly defined to separate ILs from molten salts. The
ILs are, in theory, not supposed to have boiling points, due to their non-volatile nature. However, the
proton transfer between the precursor acid and base reaction can sometimes be reversible. If so, then
upon heating, the molecular species can evaporate, with typically the amine being more volatile than
the acid, which leads to the proton transfer reaction going backwards, creating more molecular species
and less ions. Due to this instability, some PILs have a boiling point as is expected for molecular

solvents.

The density and viscosity of ILs tend to be higher than water and other molecular solvents. One key
issue in using ILs for industry applications is their high viscosity at room temperature, which increases

as the length of carbon chains in ILs increase. A low melting point, viscosity, and vapour pressure, as



well as high thermal stability and ionic conductivity are often considered desirable properties of PILs
in various applications. Mixing PILs with water, which leads to lower viscosity, is considered to be

very useful. However, the properties of the resulting mixtures are not well characterised.

It is no simple task to characterise the vast number of ILs which can be synthesised by precursor acids
and bases. ILs are also complex to characterise at the nanoscale due to the polar-apolar separation
sometimes leading to liquid nanostructure. To gain structural information regarding ILs and their
nanostructure, a host of experimental techniques can be used. Scattering techniques such as dynamic
light scattering (DLS) and small angle x-ray and neutron scattering (SAXS and SANS) can provide
insight into the liquid nanostructure of ILs. While microscopy techniques such as cross-polarised optical
microscopy (CPOM) and electron microscopy can be used to visualise and qualitatively understand
solutes in ILs, techniques are required to understand the systems quantitatively. The refractive indices
of ILs also tend to be higher than that of water, which leads to contrast issues during light scattering

techniques as the refractive index of ILs tend to be similar to surfactants and biomolecules.

There has been significant focus in the literature regarding the evaluation of structure-property
relationships and physicochemical properties for PILs, as summarised in Table 1.1.%3 %1% Physical
properties such as density, viscosity, surface tension, liquid nanostructure, ability to promote self-
assembly, as well as thermal properties melting and boiling points, glass transitions have been reported
extensively. Changes in the chemical structure of the PIL proposes significant changes to its solvent
properties. Yalcin et al'! summarised the relationship between chemical structure changes and

physicochemical properties for 17 unique PILs as shown in Table 1.1.



Table 1.1. Summary of trends in physicochemical properties with changes to PIL chemical structures,
summarising whether they decrease (dec), increase (inc) or no change (NC) as properties of the cation
and anion vary. Reproduced from !! based on the 17 ILs listed below *.
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2 List of 17 ILs: ethylammonium formate (EAF), ethanolammonium formate (EtAF), diethylammonium formate
(DEAF), diethanolammonium formate (DEtAF), triethylammonium formate (TEAF), triethanolammonium
formate (TEtAF), butylammonium formate (BAF), pentylammonium formate (PeAF), ethylammonium nitrate
(EAN), ethanolammonium nitrate (EtAN), butylammonium nitrate (BAN), pentylammonium nitrate (PeAN),
ethylammonium acetate (EAA), ethanolammonium acetate (EtAA), diethanolammonium acetate (DEtAA),
triethanolammonium acetate (TEtAA) and pentylammonium acetate (PeAA).

1.1.2 Physicochemical properties of PIL mixtures

The physicochemical properties vary even more as molecular solvents are introduced into PILs as a co-
solvent. This is largely because there are many interactions occurring, such as van der Waals, charge,
entropic, hydrogen bonding and solvophobic interactions. Depending on the ratio of PIL to molecular
solvent, the role of the PIL changes as the amount of molecular solvent present increases. The acid-base
equilibria can also shift with the addition of excess water. While there is an inherent assumption that

ionic liquids consist simply of the cation and the anion, the presence of water can lead to molecular



speciation, leading to charged pairs and neutral clusters. These effects were observed for AlILs and is
summarised for molar conductivity in AIL-molecular solvents mixtures by MacFarlane et al. in Figure

1.3.
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Figure 1.3. Molar conductivity trends in two AILs: water—1-ethyl-3-methylimidazolium ethyl sulfate
and dichloromethane—1-butyl-3-methylimidazolium tetrafluoroborate  with  varying water
concentrations. Reproduced from 2.

In mixtures of IL-molecular solvents, at concentrations less than 5 mol% of the IL, the solvent mixture
acts as a dilute electrolyte, wherein trends are consistent with trends observed in conventional salts. As
the IL concentration increases in these solvent mixtures, physicochemical properties reflect a mixture
wherein the two solvents co-exist as co-solvents, both contributing to the overall properties observed.
After a specific amount of IL is reached in the mixture, literature suggests that IL overtakes as the
primary solvent, wherein IL-IL interactions dominate over interactions between molecular solvent-
molecular solvent and molecular solvent-IL properties. ILs dictating the critical micelle concentration
(CMC) of an amphiphile during self-assembly in binary mixtures is a prime example of this behaviour.'
The nanostructure of ILs, segregation of polar and non-polar species, persist for dilutions up to 10 mol%
water per IL and it has been shown that water is taken up within polar domains of an IL. This dilution
changed the nanostructure by changing the volume fraction of polar and non-polar regions, and in turn

changes the CMC.



The concentration ranges and behaviour of these different stages vary for specific ILs and molecular
solvents, so it is difficult to make general assumptions regarding the concentration ranges where each
solvent dominates as the primary solvent in an IL-molecular solvent mixture. As shown by previous
studies, surfactant self-assembly can provide insights regarding the solvent environment in which it
occurs. Yalcin et al. has explored the chemical environment of binary PIL-molecular solvent mixtures
using dyes as probe molecules. The results indicated that the solvation parameters of the binary mixtures
deviated considerably from the ideal solvation behaviour. They suggested preferential solvation was
solute-dependent and the results demonstrate using PILs in mixtures with molecular solvents can

enhance the solvation capabilities.'*

1.1.3 Ethylammonium nitrate (EtAN) and ethanolammonium nitrate (EAN)

While AILs have received greater attention in the literature than PILs, the first ionic liquids reported
were two prominent protic ionic liquids. EtAN which has a melting point of 52-55 °C was first reported
in 1888 by Gabriel and Weiner?, while EAN with its melting point of 12.5 °C was reported in 1914 by
Walden.!> EAN and EtAN remain a popular choice of PIL due to their low viscosity, melting point and
ability to dissolve solutes while being miscible with some molecular solvents, such as water.!* EAN
and EtAN serve as an interesting comparison for PIL structure property relationships due to their very
similar molecular structure which leads to widely different bulk solvent properties. The only difference
between EAN and EtAN chemically is the presence of a hydroxyl group in EtAN as shown in Figure

1.4.
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Figure 1.4. The chemical structures of the protic ionic liquids (PILs). A) Ethylammonium nitrate (EAN)
and B) ethanolammonium nitrate (EtAN).

This minute difference in chemical structure leads to EtAN having a greater ability to form H-bonds
due to the OH group, while in contrast EAN is amphiphilic due to the alkyl chain. While there have
been a significant number of literature studies investigating structure property relationships of PILs,
investigating how the bulk solvent properties are affected by differences in chemical structure, there are
large gaps in our knowledge regarding how interactions with solutes and molecular solvents are affected
by these changes in PIL structures. The molecular level interactions due to PIL structural differences

and how they affect self-assembly still requires future investigation.

1.2 Novel data analysis techniques for PILs: Machine learning

To thoroughly understand the structure-property relationships of ILs and develop new models for
understanding trends and predicting properties, novel data analysis techniques are necessary. There are
large datasets for the thermal and physical properties of neat ILs which have been built up over time
from research in many different groups.” '*!7 In addition, to investigate the vast number of IL
possibilities, high throughput experimental methods and computational modelling have been used to
screen various ILs solvent properties which can rapidly increase the data available. As the use of ILs
combined with a co-solvent is increasing, we need methods to obtain and interrogate this multi-variable
data. For all these systems there are likely to be a combination of some dominant trends, along with
weaker ones. Consequently, it can be difficult to extract structure-property relationships from IL data,

and there is a need for advanced data analysis methods.
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Structure-property relationships have been studied, since the natures of the anions and cations, and the
interactions between these are usually directly translated to the IL's physical properties. However,
quantitative structure property relationship (QSPR) is difficult for ILs and experimentally and/or
computationally costly because inter- and intramolecular interactions are not completely understood for
all types of ILs. In literature, computational methods such as molecular dynamics'®, Monte-Carlo, ab
initio calculations'’, and Conductor-like Screening Model for Real Solvents (COSMO-RS)? have been
employed. The biggest drawback from these methods is that they are all computationally costly. Similar
issues arise with experimental determination of structure-property relationships, with even high

throughput methods tending to be laborious for the number of possible ILs.

Machine learning and advancements in artificial intelligence brings forth a new age of QSPR
determination. ML models can be devised to understand structure-property relationships of large data
spaces, and to predict properties of new structures. This is currently an exciting emerging field in the
greater IL community where machine learning models are being devised to interrogate trends in IL data
and predict new IL properties.?! The number of studies using ML in the field of ILs has steadily

increased in recent years, as summarised by Figure 1.5.
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Figure 1.5. Number of search results on webofscience with topics “ionic liquids” and “machine
learning” in recent years.
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Most existing literature which uses machine learning to investigate ILs focuses on a few physical
properties of ILs in the development of their machine learning models and extracts information relevant
to these properties from databases. Beckner et al. recently devised an adaptive learning and design
strategy using a combination of neural network training, genetic algorithm search and molecular
dynamics.??> They focused on C, and p and used experimental information contained in the ILThermo
database as a starting point for training the neural networks. Both Keshavarz et al. and Paduszynski
have devised models for predicting p,”** while Paterno et al. and Zhao et al. have developed QSPR

(quantitative structure-property relationship)*® models for modelling C,.>*?’

Ionic liquid toxicity and
CO> solubility have also been predicted with machine learning models.”®? Previously, machine
learning has been used to interrogate the IL solvents properties for an experimental dataset in order to
understand the relationship between the surface tension and liquid nanostructure and the solvent
composition of non-stoichiometric aqueous protic IL solvents.*® This work suggested that high quality

machine learning models can be developed to interrogate IL properties using multiple linear regression

(MLR) and artificial neural network (ANN) methods.

There is a noticeable lack of literature when it comes to PILs in the ML literature for IL discovery. This
is certainly a topic we need to investigate because unlike aprotic ILs, it is easier to produce PILs in a

high throughput manner due to the more straightforward synthesis and purification process.

1.2.1 Machine learning modelling method

The data requirement for machine learning varies greatly based on what information is intended to be
gathered from the model. For the models and data sets we will discuss in this thesis, machine learning
was performed on datasets with 20 or more values. While it is imperative to have a large enough dataset
to perform machine learning models on, it is even more important to have a wide variety of data from

trusted sources. This data was then separated into training and test data. A subset of the data was used

13



for training the model, and this model was then tested on the complete data set. In this study, two types
of machine learning algorithms will be explored: multiple linear regression (MLR) and artificial neural
networks (ANN). These algorithms were chosen as representative models due to their simplicity and

their success in literature for use with IL systems.” 3!

MLR can give insights regarding the structure property relationships of an IL data set. It is a statistical
regression model, which is simple in nature, and seeks to find linear relationships between variables,
while assigning a weighting to each factor. MLR algorithms will be created with input descriptors, as

according to the generalised model equation noted in Equation 1.1:

Yi=Inti+ Y%_, CyiXn (1.D)

Where Yi is the generated output variable, Int; are the intercepts, C; are the regression coefficients and

X are the selected input descriptors.

ANN are non-linear models which can be generated with the same input variables. Much like the neural
networks in our brains, artificial neural networks seek to emulate a simplified version of how neurons
in our nervous system operate, establishing connections between different nodes in the system. The one
used in this study is a three-layer network with a hidden layer node which will result in a single output

node. A schematic of an ANN model is shown in Figure 1.6.
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Input layer Hidden layer Output layer

Figure 1.6. Illustration of a simple artificial neural network model. Reproduced from ¥,

The different models will be assessed to determine the best model for investigating the dataset for the
current study. The MLR will be used to understand the complex physicochemical properties and their

relationships with the structure of ILs and ANN will be used for predicting properties of new ILs.

1.2.2 Descriptors

Descriptors are used to describe a material in quantified ways a ML model can understand them. These
descriptions can range from composition of starting materials used during the synthesis process to
microscopic and macroscopic properties of the material. Molecular descriptors can be categorised into

broad categories which include:

e Constitutional: information about atom types

e Topological: descriptions of how atoms are connected and their resulting properties

e Physicochemical: properties such as solubility, charges, dipole moment

e Structural: descriptions of size, shape and surface properties of molecules

e Quantum-chemical: partial charges, polarizability, orbital energies etc calculated using density

functional theory (DFT), and ab initio quantum-chemical programs.
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These descriptors can be calculated using software such as DRAGON and CODESSA and the choice
of descriptors are important to the quality of the model predictions. The calculated descriptors are
usually sifted to find the non-zero and non-correlated descriptors before they are used in the model. For
example, in the case of ILs, it is important to include key constitutional descriptors about the cations
and anions of the ionic liquids, as well as physicochemical and structural information about the bulk

liquid properties.

1.2.3 Performance of models

To ensure the accuracy and usefulness of the model, statistical criteria are used to assess them. These
variables are approximated by dividing the available data into a training set and a test set. The variables
calculated include R? (the coefficient of determination), which is the square of the correlation coefficient
between the training and test sets. The standard error of estimation (SEE) and standard error of
prediction (SEP) can also be calculated to assess the robustness of the models using the root mean
square values of the difference between training and test sets of data. The standard error can be

calculated using equation 1.2 below:

o= E(Ymeasured_ypredicted)z
Total_entries

(1.2)

The SEE and SEP are the preferred assessment of quality of the models because unlike R?, they are
independent of the number of data points in the training set or the number of descriptors. Successful

models tend to have R? values close to 1 and their SEE and SEP values are similar and small.

1.3 Amphiphile self-assembly
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Self-assembly is the spontaneous aggregation of molecules into 3-D nanostructures.>* Amphiphiles are
molecules containing polar hydrophilic and nonpolar hydrophobic constituents which display self-
assembly behaviour in selective solvents. Water is by far the most commonly used and well-studied
solvent available for amphiphile self-assembly. Model amphiphiles such as polymers and surfactants,
are important to gain understanding of solute-solvent interactions. The self-assembly of amphiphiles in

solvents can give us insights regarding the solvation properties and the solvent environment of ILs.'*

34-36

1.3.1 Surfactants for self-assembly

Amphiphiles are molecules which consist of both hydrophilic and hydrophobic components. In most
cases the hydrophobic part is a long hydrocarbon chain while the hydrophilic head of the amphiphile
can be non-ionic or ionic. Non-ionic surfactants often consist of a hydrophilic poly(ethylene oxide)
chain, connected to a hydrophobic alkyl chain, such as the polyoxyethylene alkyl ethers, C,En.. Anionic
surfactants are widely used as detergents and soaps for cleaning purposes and have a negatively charged
headgroup consisting of sodium, potassium, or ammonium ions. Cationic surfactants consist of
positively charged headgroups such as a quaternary ammonium or a halide ion.
Cetyltrimethylammonium bromide is one of the most widely used cationic surfactants. Amphiphiles are
also referred to as surface active agents, or surfactants, because of their ability to reduce interfacial

tension due to their amphiphilicity leading them to migrate to the interface.

The surfactants chosen as model amphiphiles during the current study are shown in Figure 1.7. These
consist of the cationic surfactant cetyltrimethylammonium bromide (CTAB), a nonionic amphiphile
tetracthylene glycol monododecyl ether (Ci2E4), as well as sodium octyl sulfate (SOS), an anionic

surfactant with a shorter alkyl chain than the commonly used sodium dodecyl sulfate (SDS).
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Figure 1.7. The chemical structures of solutes used during study: A) tetraethylene glycol monododecyl
ether (Ci2E4), B) cetyltrimethylammonium bromide (CTAB) and C) sodium octyl sulfate (SOS).

Both CTAB and Ci»E4 have previously been shown to self-assemble into micelles in PILs, including
EAN and EtAN.*7*® These micelles tend to have up to 2 times higher critical micelle concentrations
compared to that in water. The common anionic surfactant of SDS has limited solubility in PILs,
therefore SOS, a surfactant with a shorter alkyl chain was selected to improve solubility. SOS has
previously shown to form micelles in water and mixed catanionic systems (cationic and anionic
mixtures)* but there are currently no studies exploring them in ILs. While there are some studies
exploring EAN-molecular solvent mixtures and their effect on surfactant self-assembly, there are no
comprehensive studies which explore the full range of concentrations.' ** 4" There is also a gap in the
literature when it comes to anionic surfactants. A comprehensive literature review of these surfactants

and existing studies are described in later sections.

1.3.2 Self-assembly in water

In the case of water, amphiphiles tend to form 3-D structures so that the hydrophobic part of the
molecule is secluded from the water by the hydrophilic parts, through the hydrophobic effect. At low
concentrations, amphiphiles self-assemble into different shapes such as spheres and cylinders, based on
their geometry.*! These are named micelles. At higher concentrations, the order of the structures being
formed increases and, the micelles can form hexagonal, lamellar or cubic phases.*? Figure 1.8 illustrates

some of the 3-D structures which can be formed by amphiphiles during self-assembly.
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Figure 1.8. Structures of amphiphile self-assembly phases. (A) spherical micelles; (B) cylindrical
micelles; (C) bicelles (disks); (D) hexagonal phase; (E) bicontinuous cubic phase Im3m; (F)
bicontinuous cubic phase Ia3d. Adapted from *.

Micelle shapes observed via SAXS can vary based on critical packing parameter (CPP),

Cop = — (1.3)

where v= the volume of the hydrocarbon, a= the effective area of the head group, and 1= the length of
the lipid tail(s). Based on the CPP, the shapes can range from spherical micelles, bilayers to inverted
micelles (hexagonal phase). Figure 1.9 summarises the range of different shapes available for

surfactants to form as CPP varies.
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Figure 1.9. Micelle shapes varying due to critical packing parameter. Reproduced from #.

The micelle behaviour of the chosen surfactants in water has been extensively studied in literature.
CTAB and SOS have also been investigated in literature as a binary mixture, as summarised in phase

diagrams in Figure 1.10.
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Figure 1.10. A) Phase diagram for CTAB-water, reproduced from ¥ and B) CTAB-SOS-water at 25
°C, reproduced from #°.

Phases formed during self-assembly in CTAB range from micelles at low concentrations of the
surfactant to lamellar, hexagonal and cubic phases at higher concentrations and temperatures. In SOS,
a lesser range of phases are observed. Only vesicles and micelles are observed in SOS-water binary
systems. For CTAB, the Krafft temperature, minimum temperature micelles formation can begin, of
32°C* must be achieved before it can form liquid crystal (LC) phases in water. Phases ranging from
SOS-rich vesicles (V), rodlike micelles (R) to SOS-rich micelles (M) are observed in CTAB-SOS-water
systems at room temperature. It is also worth noting that only up to 5% SOS and CTAB were included
in this phase diagram. This falls well within the concentration range for only micelles. Higher order
phases have been observed with CTAB in water*’, but no studies could be found exploring SOS LCPs.
The critical aggregation concentration (CAC) for pure SOS was observed to be two orders of magnitude
higher than that of pure CTAB and three orders of magnitude higher than that of the mixtures.* For

Ci2E4, lamellar phases were observed in water.
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1.3.3 Self-assembly in ionic liquids

The driving force behind self-assembly is the energy minimisation obtained via segregation of the
water-like and “oil”-like components. Solvophobicity is a summary of the driving forces, which
combines all the different solvent properties that are beneficial to self-assembly, such as cohesive
energy, solvent structure, polarity and the ability to form hydrogen bonded networks, and is the more

general term compared to hydrophobicity which is specific to water.*®

ILs have garnered a lot of interest in recent years due to many having the ability to support surfactants
to self-assemble into 3D structures.*® Non-aqueous solvents which were known to promote self-
assembly were very limited prior to this discovery, with only about 14 known molecular solvents being
capable of supporting self-assembly.*® Since the initial discovery that EAN is a solvent which promotes
self-assembly, over 40 PILs have shown their potential to support self-assembly. © While ILs can
support the self-assembly of higher order phases, such as liquid crystal phases (LCPs), the content of

this thesis focuses mostly on micelle formation as they are often the simplest form of self-assembly.

Cationic surfactant self-assembly in IL-water mixtures with up to 20 wt% water was investigated by
Javadian et al. in their study looking at CTAB self-assembled structures in aprotic imidazolium-based
IL-water mixtures.*’” Larger micelles and higher CMC were observed in the IL-water mixtures than in
water and they were able to distinguish that the hydrogen bond was an important factor in defining the
solvent properties.*’” Smirnova et al. and Sohrabi et al. explored the anionic surfactant, SDS, in
imidazolium-based IL-mixtures for mole fractions 0.1-0.9 of the IL in water and found that small
additions of the IL substantially decreased the CMC of SDS, leading to the formation of mixed micelles
where IL acts as a co-surfactant.*>° Sohrabi et al. hypothesised that the decrease in CMC could be
attributed to reduction in electrostatic repulsion between headgroups.’® He et al. has explored the
pluronic polymer P123 in EAN at dilute concentrations, up to 2 M, to compare the effects with a salt

and an aprotic IL with similar conclusions and found the formation of mixed micelles at low CMC.>!
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Most of these studies focus on dilute IL-molecular solvent mixtures, where the IL can be considered as
acting more as a salt additive than a co-solvent. They also focus on aprotic ILs, which have noticeable
differences in bonding and solvation compared to PILs. Only a handful of studies could be found in
which micellization was investigated in mixtures of PILs with high IL concentrations. Wakeham et al.
reported the behaviour of the non-ionic surfactant Ci4E4 in binary ionic liquid mixtures and ionic liquid-
water mixtures of ethylammonium nitrate and ethanolammonium nitrate.’? They suggested that the
CMC of the surfactant strongly correlated to the solvent composition, with an increase in CMC
proportional to the PIL concentration. Bryant et al. has investigated the effect of EAN on cationic and
anionic surfactants, in which they concluded that the CMC of cationic surfactants are much higher and
micelles much smaller in the IL mixture than in water, whereas anionic micelles were less affected.*
Lam et al. investigated the cationic surfactant DTAB in IL-water mixtures up to neat EAN, where they
determined that at low IL concentration, ILs behaviour is similar to that of a simple electrolyte. Then
as IL concentration increases beyond the saturation points of most conventional salts, the IL
nanostructure influences micellization, raising the CMC.'* Due to solubility issues with most anionic
surfactants in PILs, no studies could be found exploring anionic surfactant self-assembly in aqueous

PILs.

The self-assembly of surfactants can be used to understand the solvent environment in which they form
nanostructures. It is difficult to determine the concentrations at which the IL and water are dominating
the self-assembly process, particularly due to a lack of consistency in concentration units, with mol%

and wt% both commonly used.

We also cannot make conclusions regarding the trends due to the variety of ions and how differently
they influence self-assembly. To expand on the findings by Bryant et al. mentioned earlier, they
explored the difference in self-assembly in EAN and EtAN. The only difference between the two ILs

chemically is the extra hydroxyl group in EtAN. When the CMC of a non-ionic surfactant in the two
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ILs are observed in the presence of water, it can be noted that the CMC behaviour in EAN is wildly
different to EtAN. As depicted in Figure 1.11, in EAN the CMC linearly increases as the concentration
of the IL increases in the binary solvent mixture. It is worth noting that in the study weight percentages
were used, which does not allow for a direct comparison between ILs, which can only be done by using

mol%.

0.1
r’-" J
-~ -EANhwntor =
= E LANIwoalor B e e _ﬂ.“,.-”’
— -EAN/ELAN ik
= 0,01 =t
-
§ -
- ,
= 7
o = *
ol - :
- -~
O 0,001 s )
= 3 — =
- =
0,000 ; v . . -
1] 20 40 60 80 100

Concanirstion Solvent 1 fef]

Figure 1.11. The critical micelle concentrations of the non-ionic surfactant C;2E4 in binary mixtures of
EAN, EtAN and water. Reproduced from 52.

Lam et al. have observed surfactant self-assembly in ethylammonium nitrate, ethanolammonium nitrate
and propylammonium nitrate aqueous solvent mixtures with a cationic surfactant,
dodecyltrimethylammonium bromide (DTAB).!* This was also done in wt%, and only 4 concentrations
(25, 50, 75 wt% and neat) were explored. They hypothesised that EAN acted as a co-surfactant rather
than a co-solvent in mixtures with water, leading to mixed micelles. This was not observed with EtAN
due to the presence of the hydroxyl group making it not possible for it to act as an amphiphile. The
study on catanionic mixed surfactants by Bryant et al. explored how nanostructure of ILs affected self-
assembly of surfactants.>* They hypothesised that EAN acted as a smaller surfactant rather than a
solvent species during their neutron scattering studies and that EtAN and EtAF are better suited as self-

assembly media due to their non-amphilicity.
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1.3.4 Characterisation of self-assembly

To understand self-assembly in ILs and IL mixtures, the characterisation process requires the use of
different techniques. The complexity of the ILs at the molecular level necessitates the use of a
combination of both experimental and simulation techniques. This thesis explores using surface
tensiometry and small angle x-ray scattering (SAXS) to investigate micelle formation in ILs and IL-
water mixtures experimentally. Cross polarised microscopy was also used to assess whether the
mixtures investigated can form higher order phases. Other methods such as small angle neutron
scattering (SANS) could also be used for this purpose. However, due to the circumstances during which
this thesis was completed with multiple lengthy lockdowns during Covid, neutron facility access was

unavailable.

1.3.4.1 Characterising self-assembly using surface tensiometry

Micelle formation during self-assembly causes changes to the surface tension of the bulk solvent
environment it occurs in. These changes to the surface tension can be used to understand the
concentrations at which micellization first occurs. Surface tensiometry measures the surface tension of
liquids and surfaces. In this study, it was used to measure changes in surface tension of the solvent-
surfactant samples as the amphiphile first begins to self-assemble or aggregate. There are various ways
to measure surface tension. The technique used during this study uses the Du Noiiy—Padday method,
where a probe is inserted into a liquid and the force required to remove it from the surface was used to

measure the surface tension.

At very dilute amphiphile concentrations, as the number of surfactants increases, they dissolve in the
solvent and begin to aggregate at the air-solvent interface. This leads to a decrease in surface tension.
Above a transition concentration, self-assembly of the surfactants begins and the decrease in surface

tension plateaus to a constant value. The concentration at which this occurs is referred to as the critical
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micelle concentration (CMC). The change in surface tension during the self-assembly process is

illustrated in Figure 1.12.%

surface tension

log C
grtical micelle concentration

Figure 1.12. Schematic of the change in surface tension observed during micelle formation. Reproduced
from 3.

The surface tension measurements and the CMC allow us to gain insight into the interactions occurring
in the solvent environment due to self-assembly. The maximum surface excess concentration, ['max, at
the air/liquid interface can be calculated by Equation 1.4, where the quantity inside the brackets is the
negative gradient at surfactant concentration just below the CMC,

1 dy (1.4)

INnax =- N .
2.303RT ( d log (amphiphile concentration) )

where R is the gas constant and T is the temperature. The surface excess concentration gives insight
regarding the position of surfactants in the system and the force exerted by them on the surface.
Accumulation of surfactants at the interface leads to positive surface excess concentrations, whereas

negative values indicate the surfactants are more likely to be found in the bulk.** Using the surface
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excess concentration, the minimum molecular areas of the surfactants absorbed at the interface, Amin

can be calculated,

10%° (1.5)

Anin = ——
min N AT max

where Ny is the Avogadro’s constant.

The standard free energy of micellisation, AGy°, and the standard free energy of adsorption, AGa¢°, can

also be calculated using the CMC and Anin using Equations 1.6 and 1.7,
AGY=RTIn(CMC) (1.6)
Ang =AG&-(YO “Yeme ) ><Amin ( L. 7)

where 7y is the initial surface tension and ycwc is the surface tension recorded at the CMC. %

Positive free energy parameters indicate the process requires an external input of energy, whereas
negative values are expected for a spontaneous process such as self-assembly. These parameters are
useful for comparing the energies and micellization process of surfactants in different solvent

environments.>?

1.3.4.2 Micelle confirmation using Small Angle X-ray Scattering

To interrogate the size and shape of self-assembled structures, scattering techniques can be used. Small
Angle X-ray Scattering (SAXS) is a structural analysis technique, capable of providing information
such as size and shape of particles as well as internal structural information of systems by measuring

the fluctuations of electronic densities in the matter. SAXS involves elastic scattering of hard X-rays
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(0.07 — 0.2 nm) from a sample and recording the scattering at small angles (0.001 - 1°). The

experimental process for observing micelles using SAXS is summarised in Figure 1.13.
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Figure 1.13. Schematic of experimental workflow of SAXS on micelle samples, from scattering to
mathematical fitting.

The contrast in the micelle mixtures during SAXS arises due to their electron scattering length density
(SLD) differences. SLD can be computed from the scattering lengths and material densities. For x-rays,
the scattering arises from the interaction between the incident wave and the electron clouds of the atoms

in the material and varies based on the composition of the surfactant components.

The scattering information can be fitted to mathematical models to determine physical properties such
as size and shape of the particles in the sample. For example, if a sample contained dilute spherical

structures the scattering intensity function I(q) can be described by the Equation 1.8:%
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scale |3V (Ap)(sin(qr) — qrcos(qr) ? (1.8)
. @ ) oo

I(q) =

Where scale is a volume fraction, V is the volume of the scattering particle, r is the radius of the sphere
and bkg is the background level. The 2-dimensional scattering is also described by Equation 1.8,
regardless of the orientation of the q vector. Fitting the scattering curves of gathered experimental data
to similar models will allow for determination of the nanoscale structural properties. Structure factors

were not necessary for these fits during the current study as all systems were dilute.

1.3.4.3 Cross polarised optical microscopy

Cross polarised microscopy (CPOM) has been extensively used in the literature to qualitatively observe
higher order phases during self-assembly. It is a technique where samples are placed between crossed
polarisers. In birefringent samples, the polarised light interacts strongly with the sample, leading to a
non-zero intensity, with patterns characteristic of different phases. Due to the alignment of the
surfactants in various nanostructures during self-assembly, the birefringence of the sample changes as
the phases change. Figure 1.14 showcases common liquid crystal phases (LCP) observed in PIL-

surfactant systems with cross polarised microscopy.

Figure 1.14. Cross polarised optical microscopy images of penetration scans of propanolammonium
formate and CTAB showing anisotropic hexagonal, isotropic cubic and anisotropic lamellar phases.
Reproduced from *’.
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As the surfactant concentration increases, the likelihood of forming higher order phases increases. In
EAN and EtAN, there are three common liquid crystal phases which are observed: H;: hexagonal phase,
Vi: Cubic phase, as well as L: Lamellar phase. Both EAN and EtAN have previously been shown to
promote LCP with cationic surfactants such as CTAB and DTAB.?® There is less information in the

literature regarding anionic and non-ionic surfactant higher order self-assembly in PILs.*’

1.4 Modelling of molecular dynamics of PILs with solutes

While it is possible to hypothesise the interactions between solutes and the solvent environment based
on experimental techniques, simulations allow us to approximate and validate these results. There are a
host of simulation techniques which can emulate physical systems in varying timescales and length
scales, ranging from density functional theory (DFT) simulation to Monte Carlo. Molecular dynamics
(MD) simulations can simulate all atoms in system with millions of atoms for timescales up to

milliseconds, as illustrated in Figure 1.15.
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Figure 1.15. Scales of descriptions in simulations situating where molecular dynamics simulations
capacities lie in comparison to other methods. (Schematic provided by: Agilio Padua)
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MD simulations have been used extensively for AILs in literature. Sprenger et al. has reported that the
generalised AMBER force field can simulate a variety of ionic liquids and accurately predict
thermodynamic and transport properties.>® Doherty et al. has also used OPLS (Optimized Potentials for
Liquid Simulations) based force fields to simulate imidazolium, pyridinium and choline based ionic
liquids with properties for densities, viscosities, diffusion coefficients and surface tensions comparable
to experimental results.®® The main issue associated with classical force fields such as OPLS is that they
do not account for polarizability. These models describe electrostatic interactions in terms of a fixed
charge, which is not the case in experiments. OPLS based force fields attempt to account for this by
scaling the charges of the atoms to mimic polarisation and charge transfer effects. However, this could
potentially lead to degradation of intermolecular interactions at short ranges.®® The classical models are
unable to model diffusion correctly, which is an important property for simulating liquids and their

interactions.

1.4.1 Molecular dynamics simulations

MD simulations are used to understand the movement and interactions of systems at an atomic or

molecular level. MD simulations use Newton’s second law of motion,

F =ma (1.9

where F is the force acting on a particle, calculated by its mass, m, and acceleration, a. Every atom in
an MD simulation is assigned a random initial velocity and the force acting on this atom in a specific
timestep is used to calculate the new position and velocity. The projected trajectory of the atoms and

molecules over a specified time period is calculated by repeating this process.

Forcefields are energy functions which describe the geometry of a molecule and allow for the

calculation of the potential energy of the system. Forcefields are defined for each different type of
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molecule present in an MD simulation. The energy function is derived from Newton’s equations for
motion. These energy functions have two components: bonded and non-bonded terms. The bonded
terms contain information about the bond lengths, angles and dihedrals. The functional form of the

OPLS forcefields used in the thesis for IL and surfactant simulations is shown in Equation 1.10,

PE = Ebonds + Eangles + Edihedrals + Enonbonded (1-10)

where:

Epondas = Z KT(T—T‘O)Z (1.11)

bonds

Eangles = Z Ko(6 — 90)2

angles

Eginedrais = Z Ky (1 + cos[ng —y])

dihedrals
atoms 12 6
m m q:q Jj
Enonbonded = Z Eij <_> - 2<_> +
]
= rij rij 47T€0Ti]'

The bonds and angles are modelled as simple harmonic oscillators and described by Hooke’s law where
K is the force constant, r is bond length and 8 is bond angle. The energy terms for dihedrals are
expressed by a cosine series expansion where n is the number of minima as the bond rotates and y is

the phase factor, which determines the minimum value of the dihedral.

The non-bonded term includes the van der Waals forces and electrostatics. The van der Waals forces
are modelled using the Lennard-Jones 6-12 term, which is a simplified model for describing interaction
between two particles at a specific distance. The electrostatics are expressed via Coulomb’s law where

each atom is given a partial charge and their energy is determined as a sum of interactions of point
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charges. The non-bonded terms are more computationally expensive and the cut-off for non-bond
interactions range from 8-15 A, with a longer cut off resulting in greater accuracy at the cost of longer
computational time. Generally, long-range electrostatics beyond the cut-off are approximated by an
Ewald mesh approximation. MD simulations are usually performed under two conditions: NVT
(constant volume and temperature) and NPT (constant pressure and temperature). The thermostat used
in simulations allows particles to move via the kinetic energy corresponding to the set temperature while
the barostat allows the system to equilibrate to the correct density. The constraint algorithm LINCS

(Linear Constraint Solver) can be used to fix the bond lengths and allow for larger timesteps.

1.4.2 MD of ILs

While there have been efforts to establish forcefields for PILs, especially EAN, only very recently has
a polarised forcefield for EAN been published.®? Due to the hydrogen bonding prevalent in EAN and
other PILs, it has been shown to be difficult to design and implement MD simulations of PILs and
mixtures.> While most effort has been concentrated on establishing forcefields, there is currently a gap
in literature when it comes to combining the available PIL forcefields with molecular solvents and
solutes. OPLS based force field for EAN has been revised to provide better reproduction of the
experimental density and dielectric constant.'* These solvent models, along with the OPLS force field

for surfactants, have been used to simulate mixtures of micelles in IL-water mixtures in this thesis.

Mixtures of PILs with molecular solvents have not been explored extensively in literature using
simulations, perhaps in part because it is important to fully understand the force fields being used for
different constituents of a molecular dynamics simulation before they can be simulated together. Most
notable studies exploring PIL mixtures using MD simulations include a study by Docampo-Alvarez et
al., wherein they investigated the self-assembly of EAN in solutions of water, ethanol and methanol.
Their EAN model was an OPLS-AA based force field and a TIP5P water model was used. The

compatibility of these two force fields is unclear, which could have resulted in inconsistencies.® Huang
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et al. has also explored OPLS based EAN in different concentrations of water, which was described by
the TIP3P water model.®* Again, the lack of consistency of the force fields for IL and molecular solvent

raises the need for a comprehensive comparison of different water models and IL force fields.

1.5 Scope of the research

The overall objective of this thesis was to understand the behaviour of protic ionic liquids, with a focus
on EAN as a representative PIL, in mixtures with water and various amphiphilic solutes using both
experimental and computational tools. Due to the wide variety of techniques used during this project,

the details of the methods are included in each chapter, rather than as a separate methods chapter.

Specific aims included:

1. Understanding solvent properties of IL-molecular solvent mixtures.

a. Viscosity and ionic conductivity of neat ILs were explored using machine learning
models.

b. Surfactants were used as probes to understand mixtures of IL-water.

2. Creating machine learning models to investigate physicochemical property relationships of
ionic liquids.

a. Based on literature values, multiple linear regression and artificial neural network
models were created and 10 new ionic liquids were synthesised and characterised
experimentally to verify the models.

3. Understanding the interaction of IL mixtures and various ionic and non-ionic solutes.

a. Three surfactants were chosen as model solutes and their interactions in
ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN) were explored in
the presence of water.

4. Optimising molecular dynamics simulations to understand the interactions of ILs in

mixtures at a molecular level.
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a. To confirm the presence of micelles in surfactant-IL-water simulations, molecular
dynamics simulations were used.
b. How the solvation of the micelle varies as the concentration of the IL present changes

was observed.

Chapter 2 examines using machine learning as an advanced analysis technique for understanding
trends in physicochemical properties of PIL, taking into consideration their water content. It also
examines the capacity of machine learning to extend beyond the capabilities of an analysis technique
and looks at the feasibility of using machine learning for predicting the physical properties of viscosity

and ionic conductivity of new ILs.

To extend the understanding of PIL-water mixtures obtained in Chapter 2, the representative PIL of
EAN was chosen for further experimental investigation in Chapter 3. Chapter 3 investigates the effect
of ionicity of surfactants on the self-assembly of three surfactants in mixtures of PIL-water solvent
systems. This chapter systematically examined the effect of changing the ionicity of the surfactant
across the IL-water concentration range to understand the solvation effects of ILs in systems where self-
assembly is occurring. The CMC of the IL-water-surfactant systems were obtained using surface
tensiometry measurements and the formation of micelles was confirmed using SAXS measurements.
Cross polarised optical microscopy was used to identify higher order liquid crystal phases in the

solvents.

Chapter 4 looks at furthering our understanding of using MD simulations to investigate mixtures of
ILs and water. This chapter focuses on choosing the optimal water model for use in conjunction with

existing force fields for ILs, which was used for multi-component systems of PIL-water-solutes.
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Chapter 5 verifies the experimental results from Chapter 3 using the preliminary results for MD
simulations gathered in Chapter 4. Finally, molecular dynamics simulations were performed for EAN-
water-surfactant systems to understand the interactions at a molecular level of the experimental results

from Chapter 3.

Chapter 6 includes concluding remarks and recommended future work.

36



2 Machine learning for investigating IL-mixtures

This chapter has contributed largely to the publication: Dung Viet Duong, Hung-Vu Tran, Sachini P K
Pathirannahalage, Stuart Brown, Michael Hassett, Dilek Yalcin, Nastaran Meftahi, Andrew J
Christofferson, Tamar L Greaves, Tu C Le. Machine Learning Investigation of Viscosity and lonic
Conductivity of Protic lonic Liquids in Water Mixtures. J. Chem. Phys. 156, 154503 (2022). This
chapter details the experimental work, and the interpretation of the machine learning models I

completed in support of the publication. Full publication can be found in the Appendix.

2.1 Introduction

Ionic liquids (ILs) are designer solvents consisting of a vast sample space of possible cations and anions,
with an estimated 10'*'® configurations of possible ionic liquids. To thoroughly understand the
structure-property relationships of ILs and develop new methods for predicting properties of new ILs,
novel data analysis techniques are necessary to investigate the existing body of experimental data. In
addition, to investigate the vast number of IL possibilities, high throughput experimental methods have
been used to screen various ILs solvent properties which has rapidly increased the data available.
Therefore, there are large datasets for the thermal and physical properties of neat ionic liquids which

have been built up over time from research in many different groups.> !¢

The use of ILs combined with a co-solvent is also increasing in recent years, and new methods are
required to obtain and interrogate data from multivariable systems. Thus, it can be difficult to extract
structure-property relationships from IL data using conventional analysis techniques, and there is an
urgent need for advanced data analysis methods. Previously, machine learning (ML) has been used to
interrogate the IL solvents properties for an experimental dataset in order to understand the relationship
between the surface tension and liquid nanostructure and the solvent composition of non-stoichiometric

aqueous protic IL solvents.’® This work suggested that high quality machine learning models can be
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developed to interrogate IL properties using multiple linear regression (MLR) and artificial neural

network (ANN) methods.

Using statistical systems, ML can provide insights into structure-property relationships, while also
allowing for predictions of properties of new ILs. While ML has been used extensively in fields such
as drug discovery, IL researchers have only scratched the surface of the capabilities of using statistical
analysis for IL property prediction. A recent review by Koutsoukos et al. summarises the studies
conducted so far in the area of IL discovery using ML and demonstrates the newfound interest in our

field regarding the capabilities of ML.%!

Existing literature on using ML for ILs focuses on a few physical properties of ILs in the development
of their machine learning models and extracts information relevant to these properties from databases.
Beckner et al. recently devised an adaptive learning and design strategy using a combination of neural
network training, genetic algorithm search and molecular dynamics.?* They focused on heat capacity
(Cp) and density (p) and used experimental information contained in the ILThermo database as a starting
point for training the neural networks. Both Keshavarz et al. and Paduszynski have devised models for

23-24

predicting p,>** while Paterno et al. and Zhao et al. have developed QSPR (quantitative structure-

property relationship)* models for modelling C,.2*?’ Ionic liquid toxicity and CO; solubility have also

been predicted with machine learning models.?*%

There is a noticeable lack of literature when it comes to PILs in the ML literature for IL discovery.’
This is certainly a topic worth investigating because unlike aprotic ILs, it is easier to produce PILs in a
high throughput manner due to the more straightforward synthesis and purification process, which can
then be characterised using automated approaches. An example of this was done using automated
robotic system Chemspeed to create PILs.* This enables the collection of experimental data from

libraries of PILs, which allows us to make ML models with consistent datasets under the same
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experimental settings. The quality of the input data is one of the main factors in producing a good ML

model with a high R? value.

This chapter of the thesis is dedicated to using existing literature data to develop ML models which can
predict the viscosity and conductivity of PILs, with a focus on understanding how the presence of water
impacts these properties. New PILs were then synthesised and characterised to test the accuracy of the

created MLR and ANN models. This work has contributed to a publication.®

2.2 Method

2.2.1 Computational method

Experimental values of viscosity and conductivity for PILs which had been reported previously in a
review paper was used as the data for creating ML models.! Attempts to compile data and construct
models for thermal properties were also made but the available data was not sufficient to generate
meaningful models. The viscosity dataset comprised 91 data from 83 unique ILs, with 8 additional
values at different water contents for the same ILs. These 83 ILs contained 39 different cations and 16
anions. The conductivity dataset comprised 106 data from 97 unique ILs, again with 8 additional values
from ILs with multiple water contents. These 97 ILs contained 48 cations and 17 anions. It is noted that
the viscosity and conductivity of some PILs were measured at different temperatures and/or water

concentrations, and these were used as input descriptors in the models.

The set of PILs was not identical for the viscosity and conductivity data, and hence some cations and/or
anions were present for one property and not the other, and these are distinguished in Figures 2.1 and

2.2, respectively.
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Viscosity
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Figure 2.1. Chemical structures of the cations used in this study, along with their names. The cations
are categorized as those present in the training sets for viscosity and/or conductivity. The interpolated

are related ions that had viscosity and conductivity.
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Figure 2.2. Chemical structures of the anions used in this study, along with their names. The anions are
categorized as those present in the training sets for viscosity and/or conductivity. The interpolated are
related ions that had viscosity and conductivity predictions made for the interpolated set of PILs.

After the data sets were collected, all viscosity and conductivity values, as well as water concentrations
were converted into standardized units of measurement if needed (cP for viscosity, mS/cm for
conductivity, and wt% for water concentration) during the data processing step. The viscosity values
are between 0.0258 to 5647 cP, with water concentrations from 0.005 to 4.35 wt%, and temperatures in
the range of 20-130 °C. The conductivity values are between 0.0149 to 51.1 mS/cm, with water
concentrations between 0.001 to 4.35 wt%, and temperatures between 20 to 150 °C. Due to the big
differences between these ranges, the viscosity, conductivity, and water concentration data was
transformed using the log function. Hence log(viscosity), log(conductivity), and log(water

concentration) were used in all machine learning models.

Descriptors are numerical values of molecular properties which are essential in quantitative structure—

property relationship modelling. To generate the descriptors in this study, Avogadro software was used
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to draw molecular structures of the precursor acid and base corresponding to the cation and anion for
each IL, as shown in Figures 2.1 and 2.2. Then the Avogadro files of these components were saved in
MOL format to use as input files for generating molecular descriptors in the Dragon software.> The
molecular descriptors correlate with constitutional properties (e.g., the numbers of atom of a specific
type of element, the molecular weight) and structural properties (e.g., the numbers of a specific type of
functional group or atom-centred fragments that show the number of atoms within a specific distance,
molecular properties-related indices such as H-donor, H-acceptor, and topological surface area).®*®! To
distinguish the effects of anions and cations on the viscosity and electrical conductivity of PILs,
descriptors of anions and cations were independently generated. Since this project was mainly focused
on providing guidance for experimental scientists to design new PILs, only the chemically interpretable
descriptors from the pool of generated descriptors were used. The use of more complex descriptors such
as those from quantum mechanical calculations may improve the predictability of the models®? but bring

challenges to the reverse engineering process of designing new compounds.

A k-means clustering algorithm was used to partition the dataset into a training set (80% of the dataset)
to develop the model, and a test set (20% of the dataset) to evaluate the predictive ability of the machine
learning models. In comparison to randomly dividing data, the k-means clustering algorithm chooses
the test set within the domain of applicability of the trained model. Moreover, it will allow others to
reproduce exactly the model we report here. In this study, the quantitative relationship between the
input descriptors and properties of PILs containing small amounts of water was derived by applying
linear algorithm MLREM (multiple linear regression with expectation maximization) and non-linear
algorithm BRANNLP (Bayesian regularized artificial neural network with Laplacian prior)
implemented in the BioModeller program.®-%° The neural networks had three layers, consisting of input,
hidden, and output layers. The number of nodes in the input layer was equal to the number of
descriptors, while the hidden layer had 2 nodes and the output layer had one single node corresponding

to the viscosity or conductivity of PILs. Importantly, because MLREM and BRANNLP are sparse

42



feature selection algorithms, they pruned out the irrelevant descriptors allowing retention of only the

most relevant descriptors.

After developing the robust QSPR models by MLREM and BRANNLP algorithms, the obtained models
were used to interpolate the viscosity and conductivity values for a variety of PILs containing small
amounts of water. Relevant descriptors obtained by the training models were used to construct these
models. A library of new PILs was designed by pairing all possible cations and anions listed in Figures
2.1 and 2.2, followed by removing the PILs in the original data set. Then each of these new potential
PILs was combined with five different water concentrations. Specifically, 8605 viscosity values and
8580 conductivity values of interpolated PILs containing small amounts of water have been predicted.
Since all the cations and anions were used in these predictions, it is important to note that there were

some predicted ILs that have a cation and/or anion that was not present in their training set.

2.2.2 Experimental method

A selection of 13 acids and 26 amines were screened to characterise new ionic liquids with a range of
viscosities. Each precursor was used as received, with formic acid (98%) obtained from Merck, and all
other chemicals from Sigma-Aldrich including trihexylamine (96%), trioctylamine (98%),
tributylamine (98.5%), octylamine (99%), 2-methoxyethylamine (99%), acetamide (99%), amylamine
(99%), benzamide (99%), butylamine (99.5%), allylamine (98%), diethylamine (99.5%), triethylamine
(99%), trimethylamine (45%), methylamine (40%), ethylamine (70%), ethanolamine (95%),
diethanolamine (98%), triethanolamine (99%), diethylmethylamine (97%), diisopropylmethylamine
(98%), 1,1,3,3-tetramethylguanidine (99%), collidine (99%), lutidine (98%), propylamine (98%),
propanolamine (99%), quinoline (98%), glycolic acid (99%), butyric acid (99%), methanesulfonic acid

(99%), propionic acid (99.5%), trifluoroacetic acid (99%), acetic acid (99%), thiocyanic acid (99%),
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hexanoic acid (98%), lactic acid (85%), perchloric acid (70%), trifluoromethanesulfonimide (95%), and

trifluoromethanesulfonic acid (99%).

The screening process involved combining approximately equal volumes of less than 0.1 ml of all
possible acid-base combinations of the precursors listed above into Eppendorf tubes. If these all
underwent a full proton transfer then this would have generated a library of PILs consisting of all
possible combinations of the 13 anions and 26 cations shown in Figures 2.1 and 2.2, respectively. This
was a coarse screening process, with no cooling during addition, and no calculated stoichiometry. Each
resulting combination was visually observed to identify candidates likely to be liquid at room
temperature after synthesis and drying. Combinations were excluded that were highly viscous or solid
at room temperature, or where the acid and base did not appear to react. From the remaining ILs, a

selection of 10 were made with diversity of cations and anions.

Larger batches of the chosen ILs were made using an acid-base titration with a stoichiometric ratio of
the acid to the base. The acid was slowly added to the base, during which the temperature was
maintained at 12 °C using an ice bath, as previously reported.®® Water was removed from the resulting
ILs using a Heidolph Hei-VAP Core rotatory evaporator, followed by a LabconcoFreeZone 4.5 Litre
freeze dryer. The water contents of the ILs were measured using a Mettler Toledo Coulometric Karl
Fischer after freeze drying. From these, ILs with water contents ranging from 0.1-1 wt% were

investigated during the study and characterized to compare against the ML predictions.

The viscosity of these new ILs was measured under SLC using an AND vibro viscometer. Conductivity
measurements were taken using a Mettler Toledo Seven Excellence S470 pH/Conductivity Meter under

SLC. Density was determined in triplicate measurements using a 2 mL volumetric flask.
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2.3 Results and Discussion

Models using MLREM and BRANNLP were developed for previously reported viscosity and
conductivity data of PILs containing small amounts of water. The correlations between the experimental
and predicted values of viscosity and conductivity for MLREM and BRANNLP models are illustrated
in Figure 2.3. For both properties, 80% of the data was used for training the predictive models and 20%
for testing. This led to 73 data points in the training set and 18 in the test set for viscosity, and 84 data

points in the training set and 21 in the test set for conductivity.
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Figure 2.3. Experimental vs. predicted viscosity (A, B) and conductivity (C, D) of PILs containing small
amounts of water according to MLREM (A, C) and BRANNLP (B, D) models. Blue circles and red
squares denote the training and test data sets, respectively.
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Both models also worked well for the conductivity prediction, with R* and Q? values higher than 0.78

for both the MLREM and BRANNLP models. For the conductivity output, the number of effective

weights was 18 for MLREM and 23 for BRANNLP models. Similar to the viscosity prediction, the

BRANNLP model also performed better than the MLREM model in the prediction of conductivity for

the investigated PILs containing small amounts of water, with higher Q2 (0.853 for BRANNLP vs.

0.785 for MLREM, respectively) and smaller SEP (0.350 vs. 0.409 cP, for BRANNLP and MLREM,

respectively).

Table 2.1. Statistical Results for MLREM and BRANNLP Models of Investigated PILs Containing

Small Amounts of Water.
. Training set Test set
Output Data points Model Effe'ectlve
weights ™o T SEE | Q | SEP
Training: 73 MLREM 20 0.921 | 0.314 | 0917 | 0.310
Viscosity (cP)
Test: 18 BRANNLP 29 0.925 | 0.240 | 0.893 | 0.365
Conductivity Training: 84 MLREM 18 0.889 | 0.300 | 0.785 | 0.409
(mS/cm) Test: 21 BRANNLP 23 | 0873 | 0272 | 0.853 | 0340

Next, all the data (not partitioned into training and test sets) was used to produce MLREM and

BRANNLP models for viscosity and conductivity which will be used for exploring structure-property

relationship and predicting properties of new PILs. The statistical results of the best QSPR models for

the new library are shown in Table 2.2. Consistent with Table 2.1, all the models had high R? and small

SEE, showing good predictive capability. These models were used to predict the viscosity and

conductivity of all possible combinations of the 63 cations and 29 anions, leading to 1827 cation-anion

pairs.
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Table 2.2. Statistical Results for MLREM and BRANNLP Models of the Interpolated PILs Dataset.

. . . Training set
Output Tl‘alnll.lg Model Effe.ectlve
Data points weights R SEE
MLREM 27 0.935 0.290
Viscosity (cP) 91
BRANNLP 33 0.949 0.202
MLREM 38 0.935 0.265
Conductivity (mS/cm) 105
BRANNLP 37 0.915 0.217

To validate the predictions from the models, a selection of new PILs were synthesized and characterized
to compare to the outputs of the models. An experimental screen was firstly conducted of 26 amines
and 13 Brensted acids to visually observe which combinations were likely to form ILs, and of those
which were likely to be liquid at room temperature after drying. As described in the methods, this was
a coarse screening method with equal volumes of the precursors used for simplicity, rather than
stoichiometric quantities. It was important to note that amine precursors which contained a large
proportion of water, such as ethylamine, led to significantly lower viscosities, and acid-base
combinations with one having a particularly high or low molecular weight led to the lowest accuracy
since the screening was done by equal volumes. The nitrates were deliberately omitted from this
screening study due to the risk of an explosion through the heat generated from the reaction. The results

are summarised in Table 2.3.

Table 2.3. Heat map generated from combining volumetrically equal portions of the precursor acid and
base to screen for protic ionic liquids likely to be liquid at room temperature. The cations are listed in
the first column, and the abbreviations are given for the anions in the first row, which are the same as
those in Figure 2.1. The values correspond to increasing viscosity from 1 to 5, where those classified as
‘1’ have very low viscosity, and those classified as ‘5’ are extremely viscous. The samples classified a
‘6> were solid at room temperature.

Cation F{A|P|B|HX|G|L|MsO |[SCN | PC | TfA | TfO | TR2N
methylammonium L1 |12 2 113 3 1 1 1 5 1
ethylammonium L1 |12 2 1|1 1 1 1 1 6 1
propylammonium 111333 312 6 2 6 2 6 1
butylammonium 1{1]13]3] 4 |4]3 6 1 5 1 6 1
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amylammonium

octylammonium

diethylammonium

trimethylammonium

triethylammonium

tributylammonium

trihexylammonium

trioctylammonium

ethanolammonium

propanolammonium

diethanolammonium

triethanolammonium

2-methoxyethylammonium

HANUJ-#-PNNN

diethylmethylammonium

diisopropylmethylammonium

Bl
|
Bl

1,1,3,3,-tetramethylguanidinium

acetamide (protonated)

benzamide

allylammonium

collidinium

lutidinium

quinolinium

Of the 338 acid-base combinations, 39 formed solids, 46 had high viscosities, and the remaining 253
had low to medium viscosities. This latter group was identified as the combinations most likely to result
in a PIL after careful stoichiometric synthesis, and of those, the ones with the lowest viscosities were
more likely to be liquid at room temperature. Overall, it could be seen that from the acids and bases
trialled, the carboxylic and Tf:N acids generally led to a large proportion of low viscosity combinations.
Similarly, the methylamine, ethylamine, trimethylamine, triethylamine, and acetamide generally led to
low viscosity acid-base pairs. Conversely, the perchloric, triflic, and methanesulfonic acids along with

quinolinium had a relatively high proportion of solids forming with the amines in this study.

From this screening, a selection of 10 potential PILs was made and synthesized, namely
diethanolammonium glycolate (DEtAG), trihexylammonium acetate (THexAA), methylammonium

propionate (MAP), triethylammonium lactate (TEAL), N,N-diisopropylmethylammonium hexanoate
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(DIPMAH), pentylammonium acetate (PeAA), trioctylammonium formate (TOAF), trioctylammonium
methanesulfonate (TOAMS), diethylmethylammonium hexanoate (DEMAH), butylammonium
propionate (BAP). The water content, surface tension, density, viscosity, refractive index, and
conductivity of these 10 PILs are provided in Table 2.4. Many of these have not previously been
reported, and literature values where available with known water contents have been included for
comparison. These 10 PILs represent a broad range of cation and anion structures across those in the

interpolated data and had a broad range of viscosities and conductivities.

It should be noted that some of these ions were not in the training sets used for developing the viscosity
or conductivity models, and these are shown inside the interpolated boxes in Figures 2.1 and 2.2. These
were deliberately included to test the robustness of the models for predicting the properties of PILs with
both, one, or neither ions present in the training sets, while keeping the ions used relatively similar to

those in the training sets.

The viscosity of these new ILs was measured under SLC using an AND vibro viscometer. Conductivity
measurements were taken using a Mettler Toledo Seven Excellence S470 pH/Conductivity Meter under

SLC. Density was determined in triplicate measurements using a 2 mL volumetric flask.

Table 2.4. Experimental physicochemical properties and melting points of 10 PILs prepared for
validating the Machine Learning models, including water content, liquid-vapour surface tension (yLv),
density (p), viscosity (1), refractive index (np) and conductivity (k). All measurements were made at 22
°C. Uncertainties are provided in parenthesis.

L2 Water content (wt%) yLv (mN/m) p(g/ml) n (cP) no K (mS/cm)
DEtAG 0.0050(5) b 1.15(6) b 1.491 0.100(5)
THexAA 0.011(6) 30.6(1) 0.822(4) | 8.51(0.17) | 1.437 0.099(5)
MAP 0.322(7) 44.2(6) 0.991(5) 42.0(8) 1.431 12.8(6)
TEAL 0.036(6) 51.8(7) 1.04(5) 483(10) 1.458 0.20(1)
DIPMAH 0.0020(5) 35.6(5) 0.90(4) 44.2(9) 1.443 0.27(1)

0.047(7) 37.4(1.3) 0.91(5)
PeAA 473(9) 1.444 0.39(2)
0.26"7 38.9¢17 0.941"7
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TOAF 0.0027(50) 32.3(6) 0.83(4) 8.5(2) 1.450 0.176(9)

TOAMS 0.0040(10) 36.1(1) 0.89(4) 381(8) 1460 | 0.019(1)
DEMAH 0.012(6) 33.1(5) 0.90(5) 265(5) | 1.436 0.53(3)
BAP 0.67(1) 38.3(1.2) 0.89(4) 452(9) 1.443 0.32(2)

2 The abbreviations for the ILs are diethanolammonium glycolate (DEtAG), trihexylammonium acetate
(THexAA), methylammonium propionate (MAP), triethylammonium lactate (TEAL), N,N-
diisopropylmethylammonium  hexanoate (DIPMAH), pentylammonium acetate (PeAA),
trioctylammonium  formate = (TOAF), trioctylammonium  methanesulfonate = (TOAMS),
diethylmethylammonium hexanoate (DEMAH), butylammonium propionate (BAP).

® Sample had a high viscosity which exceeded the limits of the instrument used. This high viscosity also
prevented surface tension from being measured, though the measurements suggest it is above 60 mN/m.

¢ Measurement reported at 20.5 °C.

Even after multiple days of freeze drying, it was difficult to dry methylammonium proprionate (MAP)
beyond the 0.322 wt% water noted in Table 2.4. Both diethanolammonium glycolate (DEtAG) and
ethylammonium lactate (EAL) had viscosities exceeding 1000 mPa.s and the viscosity could not be
accurately measured using the instrument available to us. The high viscosity of DEtAG also impacted
its surface tension and the surface tension value obtained was higher than the calibration standard

(water: 72 mN/m).

These experimental viscosity and conductivity values were compared against the predicted values from
MLREM and BRANNLP machine learning models to assess the prediction capabilities of the models.
The predicted viscosities using the MLREM model for THexAA, TOAF, and TOAMS were all

effectively zero.
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Figure 2.4. Comparison of experimental viscosity values from the PILs in Table 2.5 with the predictions
from a) MLREM and b) BRANNLP models, with water contents up to 1 wt %. The predicted data are
represented by circles, with the solid lines a guide to the eye. Experimental data is shown by squares
with the same colour corresponding to the modelled PILs.

Both models were able to predict that viscosity would decrease with increasing water content. The
predicted data for DEtAG has been omitted since the values were significantly higher, with values from
the MLREM model from 8299 cP at 1 wt% to 12856 cP at 0.001 wt%, and for the BRANNLP model
from 5748 cP at 1 wt% to 9025 cP at 0.001 wt%. These are consistent with the viscosity of DEtAG

being too high to measure in this study.
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Based on the experimental data the ILs can be grouped into those with very high viscosity (DEtAG),
those with an intermediate to high viscosity (TEAL, PeAA, TOAMS, and BAP), and the remainder
with relatively low viscosities (DEMAH, DIPMAH, MAP, TOAF, and THexAA). Overall, there was
good agreement for both models in grouping the ILs into these three categories, indicating the
usefulness of both models for predicting viscosity. Both models clearly distinguished DEtAG as having
the highest viscosity. The BRANNLP model identified TEAL, PeAA, TOAMS, and BAP as having
viscosities higher than the other ILs, but lower than DEtAG, with moderate agreements to the
experimental values, and not in the same order. Similarly, DEMAH, DIPMAH, MAP, TOAF, and
THexAA were identified as low viscosity ILs for the BRANNLP model, though had a different order
compared to the experimental data. The MLREM model predicted non-feasible values for THexAA,
TOAF, and TOAMS of effectively zero, but otherwise performed well. TEAL, PeAA, and BAP were
identified as having intermediate to high viscosities. The other ILs were correctly identified as having

lower viscosities.

For the PILs in Table 2.1 DIPMAH had neither cation nor anion present in the training set. Similarly,
THexAA, TOAF, and TOAMS had cations that were not included in the training set but their anions
were, while DEMAH had an anion not included in the training set, but the cation was. This shows that
these MLREM and BRANNLP models are sufficiently robust to provide useful predictions of low,
intermediate, or high viscosities, even for PILs with structures that are related, but not included in the
original set. The PILs which had both cation and anion present in the training set did have better
numerical similarity to the predicted values for both models. The BRANNLP model overall performed
better, without any non-feasible values close to zero, and with the same general order as the
experimental values, when grouping the PILs as having low, intermediate-high, and very high

viscosities.
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Figure 2.5. Comparison of experimental conductivity values from the PILs in Table 2.5 with the
predictions from a) MLREM and b) BRANNLP models, with water contents up to 1 wt %. The
predicted data are represented by circles, with the solid lines a guide to the eye. Experimental data is
shown by squares with the same colour corresponding to the modelled PILs.

The comparison between the experimental data in Table 2.1 and the models for conductivity is provided
in Figure 2.5. As previously mentioned, the MLREM model for conductivity removed water as an
important descriptor. However, we have constrained the water concentration as a descriptor and built a
MLR model where water concentration together with all descriptors selected as important features were

included. As can be seen in Figure 2.5, the predicted values using MLREM or BRANNLP all had
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increasing conductivity with increasing water content, which was expected since conductivity is a
transport property, and the corresponding decrease in viscosity will increase conductivity. The predicted
values using MLREM were similar to those using BRANNLP, except for TOAMS and TOAF. The

BRANNLP model predicted high conductivity for these two ILs but the MLREM did not.

The experimental data can be grouped as high for MAP, intermediate for TEAL, DIPMAH, PcAA,
EAL, TOAF, DEMAH, and BAP, and low for DEtAG and THexAA. Initially, it appears as though
there is relatively poor agreement between the model and the experimental data, with four of the PILs
having a factor of 5 difference between the experimental and predicted values at the most similar water
contents. However, as described, this was largely dependent on whether the interpolated data entries
are within the applicability domain of models or too different. The absence of similar structures or too
different water concentration reported in the training set could lead to low accuracy in the prediction.
As seen in Figure 2.5, there were moderately good predictions for DEtAG, TEAL, DIPMAH, PeAA,
DEMAG, DEMAH, and BAP. However, the models failed to predict the high conductivity for MAP,

and gave significantly higher predicted values for THexAA, TOAF, and TOAMS.

For the PILs in Table 2.1, DEtAG, MAP, TEAL, PcAA, and BAP had both their cation and anion
present in the training set, and all of these were relatively well predicted by the models, with the
exception of MAP. DEMAH had the cation included in the training set, but not the anion, and similarly
was well predicted. Both the MLREM and BRANNLP models accurately predicted that DEtAG would
have low conductivity, and that many would have intermediate conductivities. The poor agreement of
the model with the high experimental value of MAP® was indicative of limitations of the available
conductivity data for training, since the previously reported values for the structurally similar ILs were
very high for MAF (methylammonium formate) (43.8 mS/cm at 0.46 wt%), but low for EAP
(ethylammonium propionate) (0.872 mS/cm at 0.42 wt%) and EAF (ethylammonium formate) (12.16

mS/cm at 0.38 wt%), all of which were included in the training set.
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In contrast, THexAA, TOAF, and TOAMS all had their anion included in the training set, but not the
cation, and all had the poorest agreement between the predicted and experimental values. It was likely
that the increased multiple alkyl chains on the cations were significantly decreasing their conductivity
through reduced ion mobility and increased van der Waals interactions. The cations in the training set
for conductivity which were similar to the trihexylammonium and trioctylammonium cations used in
this validation set of PILs were pentylammonium, N-octylethylenediaminium, and dibutylammonium,

and hence it was likely that these multiple long alkyl chains were not described well by the model.

2.3.1 Effect of water content on viscosity and conductivity

N,N-diisopropylmethylammonium hexanoate (DIPMAH) was chosen to study the effect of water
concentration on viscosity and conductivity experimentally. The results are shown in Table 2.5. These
experimental measurements were compared to prediction curves from MLREM and BRANNLP for

viscosity and conductivity.

Table 2.5. Experimental measurement for N,N-diisopropylmethylammonium hexanoate with varying
water concentrations. The experiments were performed under SLC.

wt% water Viscosity (m Pa.s) Conductivity (uS/cm)
0.088 37 291.7
0.229 44 314.6
0.568 41 352.1
0.78 59 357.6
1 57 348.2

As the concentration of water increased, the observed viscosity values of DIPMAH increased. This
seemed counterintuitive at first glance and contradicted the trends observed in the ML predicted
viscosity curves. Since this IL has never been studied previously in literature, it was difficult to

determine why this behaviour was observed. It could potentially be attributed to errors and uncertainty
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associated with the values. While great care was taken during experiments to ensure laboratory

conditions remained constant, small fluctuations in temperature could have affected the measurements.
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Figure 2.6. A) MLREM and B) BRANNLP predictions for viscosity with varying water concentrations
compared against experimental values for viscosity for DIPMAH.

The experimental viscosity data series for DIPMAH had a good general agreement with the predicted
trend for MLREM and BRANNLP generated viscosity. However, the trend for this IL with increasing
water concentration did not agree with the trend in predicted data, or the general expectation. This was
likely due to the ions of DIPMAH not being included in the training data set. The predictions shown in
Figure 2.6 were likely made by the model by extrapolating the information it had for the similar ions

diisopropylethylammonium, octanoate and heptanoate, with 1, 1 and 2 more carbon atoms respectively,
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in the training set. Based on this information, while the trends are not similar, these predictions
demonstrate how powerful ML algorithms can be for prediction of new ILs and their properties, even

with no prior information regarding the ions being used for synthesis.
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Figure 2.7. BRANNLP predictions for conductivity with varying water concentrations compared
against experimental values for conductivity for DIPMAH.

BRANNLP model for conductivity overall suggested an increasing conductivity with increase in water
content. DIPMAH experimental values deviated largely from the predicted curve because there were
no ILs containing diisopropylmethylammonium or hexanoate in the training set for conductivity. It was

concluded more data must be involved in the training set to predict better DIPMAH’s conductivity.

Overall, when there was sufficient data in the training set, there was good agreement between the PILs
used for validation and the predicted conductivity values from the models. The models did not perform

well when the structures of the extrapolated PILs were too different from those used for training.
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2.3.2 Further discussion

It is well known that there are vast numbers of possible combinations of cations and anions which can
result in ionic liquids, and that these become even larger when combined with a second or third solvent,
such as a molecular solvent, another IL, or other additives. While there are high throughput
experimental approaches which have been developed to increase the synthesis and characterization of
ILs, particularly protic ILs,'"!® these are not currently able to cover a large proportion of the
compositional space. Instead, machine learning methods have the capability to interpolate and

extrapolate based on existing data.

In this study, we used reported data that had previously been compiled into a review! to produce
MLREM and BRANNLP models for viscosity and conductivity. Initially, models were also attempted
for thermal properties of glass transitions and melting points. However, these were deemed poor when
80% of the data was used for developing the models and 20% for testing. The other properties, eg.
density, refractive index, and surface tension, reported in the review paper were not included in
developing models, due to insufficient data reported with known water contents. It was central to
developing machine learning models that there was high quality, consistent data available. In particular
for ILs, it was essential that the water content was reported. It was also recommended for PILs that the

pH at a known concentration in water should also be reported as a quasi-measure of stoichiometry.

The viscosity and conductivity models presented here were developed from relatively scarce data
compared to the structure compositional space. There were 91 data points from 83 unique ILs for the
viscosity, from 39 cations and 16 anions. These were sufficient to produce useful models for viscosity
from both MLREM and BRANNLP for all possible cation and anion combinations in the training sets,
along with extrapolation to an additional 24 cations and 13 anions not in the viscosity training data. The

comparison to the experimental values for 10 new PILs with either one, both, or neither ion present in

58



the training set validated both these models, and while the numerical values differed, the models could

identify the general order of viscosity.

The conductivity models were developed from 105 data points for 97 unique ILs, including 48 cations
and 17 anions. Models were developed to predict conductivity values for all possible cation and anion
combinations from the initial training set, along with 15 additional cations and 12 additional anions. In
comparison to the experimental values for the new PILs, these showed good agreement when the cation
was present in the training set, but poor agreement for the PILs containing the bulky trihexylammonium
and trioctylammonium cations which were not present in the training set. Overall, this study
demonstrated that the developed models were capable of making useful predictions for interpolated

PILs based on the cations and anions in the training set.

These models were able to provide predictions for viscosity and conductivity for 1827 cation-anion
combinations, which should provide meaningful guidance about which are likely to be high, low, or
intermediate, and how they are likely to vary with up to 1 wt % water present. We expect that these
models will undergo significant changes over time as more data becomes available. They are likely to
expand to include more cations, anions, and molecular solvents or additives, and in this process the

descriptors which are selected as most relevant are likely to change as well.

2.4 Conclusion

It was observed that for both linear and non-linear machine learning algorithms, MLREM and
BRANNLP, the quality of the training data greatly impacted the prediction capacities for ILs.
BRANNLP models for both viscosity and ionic conductivity outperformed MLREM models with
slightly higher R? and standard deviation values. A significant finding from the current study was that
the water content of the training set affected the accuracy of the predictions to a great degree. The
changes in viscosity and conductivity were not linear with incremental increases to the water content
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and thus the water content plays an important role in the predicted values for neat ILs. BRANNLP
model for conductivity overall suggested an increasing conductivity with increase in water content. This
was confirmed with experimental results. The results for viscosity were less conclusive, with the trends
observed with the ML models not able to be confirmed with the available experimental results. This
was likely due to none of the ions of DIPMAH being included in the training data set for the ML models.
To develop high quality machine learning models, there needs to be high quality, consistent data

available. In particularly for PILs, it was essential that the water content was reported.
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3 Effect of surfactant ionicity on self-assembly in aqueous ionic
liquid mixtures

3.1 Introduction

Protic ionic liquids are the largest known solvent class capable of promoting surfactant self-assembly.
PILs can act as proton donors or acceptors, and this ability can lead to water-like hydrogen bonded
networks.*> %% These H-bonded networks contribute to the ability of some PILs to promote self-
assembly and may contribute to their beneficial solvent properties for applications such as biomolecule

preservation.®-7?

The first report of self-assembly in ILs was by Evans et al. in the early 1980s, where they reported
micelle formation in ethylammonium nitrate (EAN).% 7 A wide range of ILs have been tested for this
property since this discovery, and PILs remain the largest known subclass of solvents capable of
supporting self-assembly.> 3 7576 Reports suggest that the formed micelles tend to be smaller in EAN
when compared to water, attributed as due to the higher solubility of hydrocarbons in EAN.!>7* In
addition to micelles®”- 7 77, liquid crystal phases, such as lamellar, hexagonal and cubic 7% 7678 have
been reported in PILs. In general, it has been noted that as the solvophobicity of an IL increases, the

likelihood of more diverse liquid crystal phases being supported also increases.*® 7

For reasons such as decreasing viscosity, decreasing costs, and increasing surfactant solubility, IL-
molecular solvent mixtures have sparked interest in recent years as self-assembly solvents.> 4 A broad
range of lyotropic liquid crystal phases have been supported in IL-water mixtures, including
hexagonal’®, lamellar®® and cubic phases’. However, to date there are few PIL-water-surfactant systems
which have been explored. For PIL-water mixtures, the studies have included cationic and nonionic
surfactants, such as cetyltrimethylammonium bromide (CTAB)*’, dodecyltrimethylammonium bromide
(DTAB)" and tetradecyltetraglycol (C14E4)*. Some insights into the role of the IL during self-assembly
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can be gathered from these publications. Wakeham et al. suggested that the CMC of the surfactant
strongly correlated to the solvent composition, with an increase in CMC being proportional the PIL
concentration based on their study of Ci4E4 self-assembly in mixtures of EAN-water and EtAN-water.
Bryant et al. reported that the CMC of cationic surfactants are orders of magnitude higher, and micelles
much smaller, in EAN than in water, whereas anionic micelles were less affected.?* Lam et al. reported
IL behaviour is similar to that of a simple electrolyte based on their study of DTAB in EAN-water
mixtures at low EAN concentrations. However, at IL concentrations beyond the saturation points of
most conventional salts, the IL nanostructure influences micellization and acts as a co-solvent rather
than a salt, raising the CMC."? No studies could be found exploring anionic surfactant self-assembly in

PIL-water mixtures.

For aprotic ILs, the micellization behaviour of cationic, anionic and non-ionic surfactants have been
investigated in IL-water solvents, but not all in the same study, or with consistent ILs or surfactants.
Cationic surfactant self-assembly of CTAB in aprotic imidazolium-based IL-water mixtures, with up to
20 wt% water, was investigated by Javadian et al., using ILs with 1-Butyl-3-methylimidazolium
(BMIm) and 1-Hexyl-3-methyl-imidazolium (HMIm) cations paired with Cl, Br and BF4 anions.*’ The
CMC observed in all IL-water mixtures were higher than the values recorded in water, and they
determined that the hydrogen bond was an important factor in defining the solvent properties. In
contrast, Sohrabi et al. explored the anionic surfactant, sodium dodecyl sulfate (SDS), in C;mim, BMIm
and HMIm based IL-mixtures and found that at low concentrations of the ILs, the CMC of SDS
decreased, leading to the formation of mixed micelles.*>* Sohrabi et al. also hypothesised that the

decrease in CMC could be attributed to a reduction in the electrostatic repulsion between headgroups.™

The effect of conventional salts on surfactant self-assembly has also been investigated in depth.’0-%2
Typically the saturation concentrations of conventional salts which can be dissolved in water is 5

mol%?®*. At these concentrations, the salt was noted to decrease the critical micelle concentrations of
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surfactants in water.®-8! Here, the ILs are not solubility limited, as was the case with conventional salts,
and therefore we can investigate the effect on the critical micelle concentrations of having high ion
concentrations present in the solvent. In salts, the high ionic strength screened the headgroup charges
of anionic and cationic surfactants, leading to decreased effective headgroup area compared to in

water.!” 83

The solvation behaviour of solutes in IL-water solvent mixtures is complex, with possible contributions
including specific ion effects, hydrogen bonding and Van der Waal interactions.* '* 7> Recently, Yalcin
et al. explored the chemical environment of binary IL solvents using dyes as probe molecules. The
results indicated that the solvation parameters of the binary mixtures deviated considerably from the
ideal solvation behaviour. This suggested preferential solvation was solute-dependent and the results
demonstrate that some PIL-molecular solvent combinations can enhance the solvation capabilities.'
Surfactant self-assembly will be strongly affected by these solvation properties, and the proportion of
IL cations, IL anions and water are likely to be different in the bulk solvent relative to the proportions
found around cationic, anionic and non-ionic surfactants. Therefore, there is a need to have a systematic
study to directly compare the micellization behaviour of these three amphiphile classes in the same IL-

water environments.

In this chapter the micellization behaviour of a cationic, anionic and non-ionic amphiphiles in PIL-
water mixtures, across the full PIL-water composition range were investigated. This is the first
comprehensive study of the effect of ionicity on the self-assembly of all three classes of surfactants in
PIL-water solvents. Surface tension measurements were used to obtain the CMC, surface excess
concentration, ['max, minimum molecular areas at the air-liquid interface, Amin, standard free energy of
micellization, AG and standard free energy of adsorption, AGZ, of the surfactants in each PIL-water
composition. Small angle X-ray scattering (SAXS) was performed to confirm micelle formation in the

anionic surfactant, sodium octylsulfate. The presence of higher order phases were visually observed in
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the mixtures using cross-polarised optical microscopy. It is anticipated that this knowledge on the self-
assembly behaviour can provide insights regarding the solvent environment in which it occurs, which

will be applicable to a broader range of solutes, such as biomolecules.

3.2 Method

The surfactants of Ci;E4 (Sigma Aldrich), sodium octyl sulfate (Sigma Aldrich) and
cetylrimethylammonium bromide (Sigma Aldrich) were used as received. The ionic liquid precursors
of ethylamine (Sigma Aldrich), ethanolamine (Sigma Aldrich) and nitric acid (Sigma Aldrich) were

used as received.

The ionic liquids used in this study, EAN and EtAN, were prepared using a previously reported
method.'” The reaction was an acid-base titration during which the temperature was maintained 12 °C
using an ice bath, as previously reported.” The resulting PILs were first dried using a rotary evaporator
for 24 hours and then freeze dried up to 3 days to ensure low water content. A Karl Fischer titration
(Mettler Toledo, Titrator Compact C10SD) was performed to ensure the water content was less than
0.05 wt%. PILs were mixed with water to obtain solvent mixtures with concentrations of 5, 14, 25, 33,

50 and 75 mol% PIL.

The surfactants were dissolved in PIL-water mixtures at concentrations between 0.0001 wt% to 15 wt%
for CMC determination. The full list of the concentrations used for each surfactant in each PIL-water

composition are available in the Supporting Information Section 8.2.

Air-liquid surface tension measurements were made using a Kibron Delta-8 multi-channel tensiometer.
The samples were loaded in 96 well plates, with 40 pul of sample in each well. MilliQ water was loaded
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into one column of each plate and was used for calibration before measuring the surface tension of the

samples.

Small angle x-ray scattering was performed at the Australian Synchrotron small and wide-angle X-ray
scattering beamline (SAXS/WAXS). Samples were loaded into 0.5 mm capillaries and the experiment
was performed with a q-range of 0.014 to 1.3 A" at 25°C. Measurements were taken for 1 s and the
obtained 2D scattering patterns were converted to 1D patterns using Scatterbrain software, provided by
the Australian Synchrotron. To fit the 1D scattering patterns to various mathematical models of micelle

scattering patterns, SASView software (Version 4.2.0) was used.

Cross polarised microscopy was used to obtain penetration scans for liquid crystal phases across the
PIL/water concentration range for the three surfactants. The surfactants were compressed between
microscope slides and coverslips before the PIL-water solvent was added to the edge of the coverslip.
The solvent was allowed to penetrate through the surfactant, creating a concentration gradient. The
prepared samples were heated at 2-10 °C/min in a Mettler FP82HT hot stage controlled by a FP90
central processor to temperatures up to 90 °C. This was performed for all three surfactants in mixtures

of EAN and water ranging from 5 mol% to neat IL.
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3.3 Results and Discussion

3.3.1 Micelle formation in EAN

Surface tension measurements, SAXS patterns and cross polarised optical penetration scans were taken
of non-ionic, cationic, and anionic amphiphiles in EAN-water mixtures to observe the effect of changing

the IL concentration on the CMC, and other self-assembly properties.

Air-liquid surface tension measurements were made for the three surfactants in each of the EAN-water
solvents, which contained 5, 14, 25, 33, 50 and 75 mol% of EAN, as well as in neat water and EAN.
The concentration range selected included the characteristic decrease in surface tension due to micelle
formation. In each EAN-water solvent the surface tension was observed to decrease approximately
linearly with increasing surfactant concentration, over some concentration range, before reaching a
plateau. The intersection between the linear decrease and the constant surface tension was taken as the

CMC.

Representative plots of surface tension versus surfactant concentration are provided in Figure 3.1, 3.2

and 3.3. The plots for the other EAN-water concentrations are provided in Figures in the Appendix 8.2.
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Figure 3.1. The surface tension versus CTAB concentration plots in solvents containing a) water, b) 14
mol% EAN/water, ¢) 25 mol% EAN/water and neat EAN.
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Figure 3.2. Surface tension vs Ci2E4 concentration plots in a) water b) 5 mol% EAN/water ¢) 75 mol%
EAN/water and d) neat EAN.
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Figure 3.3. The surface tension versus SOS concentration plots in solvents containing a) water, b) 25
mol% EAN-water, ¢) 33 mol% EAN-water and d) 75 mol% EAN-water.

SOS was used instead of the widely used sodium dodecyl sulfate (SDS) as the anionic surfactant due to
poor solubility of SDS in the chosen protic ionic liquid at room temperature. It was not possible to
dissolve enough SDS to reach the CMC in EAN during initial testing. The shorter alkyl chain length of
SOS increases the solubility of the surfactant in the protic ionic liquid. The CMC of SOS was reported
to be an order of magnitude larger than that of SDS in water and we also observed similar differences

in values in EAN-water mixtures.?

To observe the trends in micellization across the three surfactants across the EAN/water concentration
range, the CMC was compared. CMC values obtained for the surfactants in solvents ranging from water
to neat IL are shown in Figure 3.4 relative to the EAN proportion in the solvent. The CMC values of

SOS in EAN-water mixtures were 2 orders of magnitude larger than that of CTAB in the same mixtures,
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which was consistent with reported findings in water. It was reported that SOS micelle formation occurs
at concentrations 2 orders of magnitude higher in comparison to CTAB in neat water.>* The CMC values
of the non-ionic surfactant Ci,E4 were similar to that of the cationic surfactant, CTAB, and also varied
from SOS CMC values by approximately 2 orders of magnitude. This indicated that it was more
energetically favourable for CTAB and Ci;E4 to form aggregates at lower concentrations than the

anionic surfactant. This could be partly due to the general lack of solubility, as observed with SDS.
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Figure 3.4. The CMC of a) SOS, b) CTAB and Ci,E4 relative to the EAN concentration in EAN-water
mixtures.

The CMC in 5 mol% EAN was lower relative to the CMC in water for CTAB and SOS, and the same
in Ci2E4. The decrease in the CMC for 5 mol% EAN for the ionic surfactants was attributed as due to
head group shielding, with the ILs exhibiting similar properties as conventional salts. This was
consistent with the results observed by Lam et al.!> for the cationic surfactant DTAB in EAN/water

mixtures at similar low concentrations.
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The increase in the CMC with increasing EAN concentration began at 33 mol% for CTAB, whereas
this ascent began at 5 mol% in both C;E4 and SOS. This suggests that water may be dominating the
self-assembly process for CTAB up to 33 mol% EAN, whereas EAN has more influence on the self-
assembly for Ci2E4 and SOS from 5 mol% EAN. Similarly, the relatively constant CMCs of CTAB and
Ci2E4 above 50 mol% and 33 mol% EAN respectively suggests that EAN was acting as the dominant
solvent for these higher concentrations and having a greater influence on the self-assembly than water.
In contrast, there was a more linear increase in the CMC of SOS, with increasing EAN, suggesting EAN

and water were both having an active solvent role.

Interestingly, significantly larger concentrations of SOS were required to form micelles, in comparison
to the cationic and non-ionic surfactants. Initially SDS was explored as an option, but it reached the
solubility limit before the CMC for EAN-water compositions. This gave insight regarding the
difficulties in observing the self-assembly of longer chained anionic surfactants as there is likely a
compromise between the solubility limits of anionic surfactants and the minimum concentration of
surfactants required for self-assembly. The trend in the CMC for SOS with EAN concentration showed

the largest initial decrease with 5 mol% EAN present.

The maximum surface excess concentration, I'max, at the air/liquid interface was calculated from
Equation 3.1, where R is the gas constant, T is the temperature, and dy/dC is the gradient of the surface

tension vs log(concentration) curve at concentrations just below the CMC:

1 dy (3.1)

[Mnax =-
3303RT dlog(C)’

Using the surface excess concentration, the minimum molecular areas of the surfactants absorbed at the

interface, Amin, was calculated from Equation 3.2, Where Ny is the Avogadro’s constant.
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The standard free energy of micellisation, AGn°, and the standard free energy of adsorption, AGaq°, were
calculated using Equations 3.3 and 3.4, respectively®>. These required the previously obtained CMC

and Amin, along with yo, the initial surface tension, and ycwmc, the surface tension at the CMC.

AGY=RTIn(CMC) (3.3)

AG=AG-(Y,Y e Amin (3.4)

The surface tension at the CMC, calculated free energy parameters and packing factors are provided in

Tables 3.1, 3.2 and 3.3 for SOS, CTAB and C;E4 in each EAN-water mixture, respectively.

Table 3.1. Free energy parameters and packing factors for the anionic surfactant SOS in EAN-water
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension
of the solvent, Ysowvent, and at the CMC, Ysoivent, sSurface excess concentration, I'max, minimum molecular
area at the air-liquid interface, Amin, standard free energy of micellization, AGm, and standard free energy
of adsorption, AGag.

Conc EAN (mol%) T eMce (mol/L) (nyl; /Izn) (mol;/mz) ( ﬁz) (kﬁfn";l) (kﬁ/Gni}', )
(mN/m)

0 72 88+2x10° 42 5390+4x10° 312 -6+0.1  -0.94+0.01
5 59 13+5x103 34 2970+70x10° 562  -11£0.2  -2.14+0.01
14 63 44+5x103 34 1740+20x10°  96+2  -8+0.1  -3.61+0.01
25 56 88:+4x1073 37 242049x10° 6943  -6+0.1  -2.40+0.01
33 51 44+3x103 37 2540+10x10°  65+3  -8+0.2  -2.31+0.01
50 51 230+20x1073 38 1040£10x10° 1603 -4+0.1  -5.51+0.004
75 51 320+10x1073 38 1770+7x10° 9444  -3#0.1  -3.23+0.003
100 50 530+10x1073 38 1850+5x10° 6043 -240.1  -3.15+0.002
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Table 3.2. Free energy parameters and packing factors for the cationic surfactant CTAB in EAN-water
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension
of the solvent, Ysowvent, and at the CMC, Ysoivent, Surface excess concentration, I'max, minimum molecular
area at the air-liquid interface, Amin, standard free energy of micellization, AGm, and standard free
energy of adsorption, AGaq.

Conc EAN (mol%) 43 CMC (moliL) (131; /Izn) (mo{/mz) ( ;{:‘2) (kﬁfn";l) (kf‘]/(f;‘:) )
(mN/m)

0 73 55+10x10° 39 1720430x10°  97+2  -18+0.4  -3.16+0.02
5 60 21+3x10° 34 3770+20x10° 44403  -21+0.3  -1.70+0.02
14 56 22+4x10° 32 2780430109  60£0.7  -21£0.4  -2.41:0.02
25 55 19+3x10° 41 1200£30x10 13843 -2140.3  -4.36+0.02
33 56 192+3x10° 37 1470430x10° 11342 -1520.3  -3.93+0.02
50 51 1380+60x10° 42 1460£70x10° 11445  -11+0.8  -3.47+0.01
75 51 2750+1x10° 45 1140+70x10° 14648  -15+0.1  -3.97+0.01
100 51 1100+3x10° 46 1010£40x10°  164+7  -11£0.5  -4.32+0.01

Table 3.3. Free energy parameters and packing factors for the non-ionic surfactant C,E4 in EAN-water
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension
of the solvent, Ysowvent, and at the CMC, Ysorvent, surface excess concentration, I'max, minimum molecular
area at the air-liquid interface, Amin, standard free energy of micellization, AGm, and standard free energy
of adsorption, AGag.

Ysolvent
CF;Z&‘;N (I:Nz/m) CMC (mol/L) (nyﬂ\il/rzn) (mol;/mz) (222) (ké/?nn;)l) (kiAI/(I;r:l:)l)

0 72 1122x10° 33 846+3.33x10%  20%0.1 -22+40.4 -0.788+0.02
5 63 11£2x10° 34 547+3.33x10%  30+0.2 2240.4 -1.1620.02
14 55 69+10x10 33 35242.50x10% 47403 -1820.3 -1.85+0.02
25 56 262+10x10° 32 313£0.975x10°  53+0.2 -150.1 22.16£0.01
33 51 830+10x10° 33 603+2.38x10%  28+0.1 -1240.3 -1.0440.01
50 53 553+10x10° 35 292+4.44x10°  57+0.9 13405 22.10£0.01
75 51 1110£20x10 34 476335108 3502 -1120.4 -1.360.01
100 51 1110+20x10 34 460+3.35x10° 36203 11204 -1.40£0.01

The surface excess concentration, I'max. gives insight regarding the position of surfactants in the system
and the force exerted by them on the surface. Accumulation of surfactants at the interface leads to
positive surface excess concentrations, whereas negative values indicate the surfactants were more
likely to be found in the bulk.>* This was observed across all three surfactants, as shown in Tables 3.1

to 3.3. The trends in Amin and Gm which prove to be more complex are discussed below.
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The average area per surfactant at the interface, Amin, can give insights regarding the arrangement of the
surfactants during the critical micelle concentration. The energy of micellisation, G, can give insights
regarding the arrangement of the surfactants during the critical micelle concentration. To understand
the trends observed across the three surfactants, Figure 3.5 depicts the trends in Amin and G across the
surfactants.
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Figure 3.5. a) The area per surfactant at the interface, Amin, and b) the energy of micellisation, Gm, of
the surfactants SOS, CTAB and C),E4 as calculated from the CMC curve from surface tension.

73



In general, there is an initial increase in the Amin across all the surfactants as the EAN concentration
increases, but this increase becomes less pronounced beyond 50 mol% EAN for the anionic and non-
ionic surfactant. The Amin value fluctuates but remains at a similar order of magnitude for Ci2E4 and
SOS beyond 50 mol%. CTAB shows a different behaviour where the Amin stays constant at 33 mol%
and 50 mol% but continued to increase at higher EAN concentrations. This could indicate that
surfactants were laying flatter at the interface as the EAN concentration increased for Ci2E4 and SOS,
and as the proportion of EAN in the solvent further increased with EAN being dominant, this effect
plateaus and Amin no longer continues to increase. In the case of the cationic surfactant, CTAB, the
separation between the surfactants could also have been increased by the interaction of the anions with

the surfactants, leading to a constant increase in Amin €ven at higher concentrations of EAN.

Positive free energy parameters indicate the process requires an external input of energy, whereas
negative values were expected for a spontaneous process such as self-assembly.> With regards to trends
observed in Gnin Figure 3.5B, we see an initial decrease in the energy required for micellization across
all surfactants at very low EAN concentrations, followed by a linear increase and a plateau beyond 33
mol% EAN. The energy of micellization was observed to be 2 times larger for the anionic surfactant,
in comparison to the cationic and non-ionic surfactants, likely due to solubility limitations associated

with anionic surfactants in ILs.

To understand the relationship between solvophobicity of the mixtures and the self-assembly process,
the Gordon parameters for the solvents were calculated. In the field of amphiphile self-assembly, the
cohesive energy density can be approximated by the Gordon parameter, G, as given in Equation 3.5,

where vy is the surface tension at the liquid-air interface and Vi, is the molar volume®:

(3.5)

=S-|=
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While there are other methods for solvent cohesive energy density, these are applicable to volatile

solvents. Figure 3.6 depicts the Gordon parameter calculated for varying EAN-water concentrations.
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Figure 3.6. Gordon parameters calculated for EAN-water mixtures.

The decreasing trend in Gordon parameter suggests a lower cohesive energy density in EAN rich
compositions and indicates that micellization was less favourable as the EAN concentration increased.
For the non-ionic surfactant of Ci,Es, the free energy of micellization showed an inverse relationship to
the Gordon parameter, as shown in Figure 3.5. Charge screening effects were not relevant for the non-
ionic surfactant, and hence this was consistent with the hypothesis that an increased Gordon parameter
led to higher solvophobicity, therefore requiring less energy for micellization. At low EAN
concentrations, the water was likely preferentially solvating the surfactants, leading to a higher cohesive
energy density, before the IL-water interactions becomes the major influencer of the CMC. This also
confirms that solvent-solvent interactions in the system dominate the self-assembly process, with

minimal solvent-solute interactions.

Another interesting observation was that the polarity response of the coumarin dye observed by Yalcin
et al., which provided insight regarding the change in solvation preferences of the dye in EAN-water

mixtures, had an inverse trend in comparison to the change in CMC of C12E4+.'* This consistency in
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trends observed further suggests that the changes observed in CMC of non-ionic surfactants are in fact
a result of the solvophobic effect. Polarity measurements made via coumarin suggested that with
increasing water concentration, the IL-water mixture becomes more polar and solvophobic. '* This was
consistent with the low CMC values observed at low EAN concentrations and further justifies the

hypothesis that surfactant-solvent interactions were more prominent at low EAN concentrations.

3.3.2 Micelle characterisation of SOS in EAN-water solutions using SAXS

Since SOS self-assembly has not been previously reported in ILs or IL mixtures, small angle x-ray
scattering (SAXS) was performed to confirm the presence of micelles in EAN mixtures. However, in
EAN and EAN-water mixtures no scattering could be observed from SOS using SAXS, despite trialling
multiple SOS concentrations. This has been attributed as most likely due to contrast issues between the
micelles and the solvent. Previous studies on similar systems in neat EAN found that the shell-solvent
interface had poor contrast and there was effectively no scattering for many surfactant samples, and
instead the contrast observed arose from the core-shell.’” ¢ 7 The x-ray scattering length densities
(SLD) of EAN and the shell of the SOS micelle are very close in values, as shown in Table 3.4. These

values were approximated using the SLD calculator on the SASView software.

Table 3.4. Electron scattering length densities (SLD) of the solvents and the anionic surfactants for x-
rays.

X-ray SLD
(10%/A%)
Water 9.46
EAN 10.9
EtAN 12.5
SOS core 9.3
SOS shell 9.12
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As shown in Table 3.4, the difference in electron scattering length densities of the solvents and
surfactants is minute. During SAXS, the scattering relies on the contrast between the solvent and solute,
which is determined by the SLD difference. The contrast between SOS and water can be predicted to
be the worst of all three solvents, as shown by the extremely similar SLD values. Due to the similar

SLD values between water and SOS, scattering was not observed during our experiments.

With EAN, due to the slightly better contrast, we were optimistic about observing scattering from the
samples. However, consistent x-ray scattering was also not observed with the SOS-EAN samples. A
reason for the lack of contrast could also stem from EAN lodging itself into the micelle, causing the
contrast between the micelle and the solvent to be even harder to distinguish. Bryant et al. observed this
with EAN and mixed micelles of anionic and cationic surfactants. They found that EAN, due to its
cationic nature, participates in the micelle formation and acts as a surfactant rather than a solvent during
self-assembly. They were able to observe this based on neutron scattering, which allows for higher

contrast between the surfactants and solvents. 3*

Neutron scattering would be a better experimental method for these systems due to the different
scattering length densities for neutrons, which allow for greater contrast between solvents and
surfactants. Due to circumstances detailed in the COVID-19 statement that was not feasible. Instead, to
continue with this investigation, we chose EtAN as the solvent to investigate SOS micelles in PIL

systems.

3.3.3 SOS micelles in EtAN-water mixtures

EtAN, a less cationic PIL, was chosen as the PIL to investigate the micelle formation of SOS. As
demonstrated in Table 3.4 in Section 3.3.2, EtAN has a higher SLD, which leads to better contrast with

SOS during x-ray scattering investigations. Another important difference between EtAN and EAN is
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that it lacks the amphiphilic nature of EAN**. It is unlikely EtAN would lead to contrast issues during

micellization due to cationic ions participating in the shell of the micelle.

CMC of SOS in mixtures of EtAN were measured using surface tensiometry, following the same
method as for EAN. Figure 3.7 summarises the CMC of SOS micelles observed across the EtAN-water
concentration range. The trend in CMC of SOS in EtAN mixtures was quite similar to the trend observed
with SOS in EAN mixtures. The initial lowering of CMC at 5 mol% was observed across both PILs,
along with the steady increase in CMC beyond the concentrations during which the PIL has a more
dominant role in the bulk solvent. After 33 mol%, the CMC hovered around a constant value, which

was also observed with EAN.
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Figure 3.7. The critical micelle concentration (CMC) of SOS in EtAN-water mixtures ranging from
water to neat EtAN.

To confirm the presence of micelles in these mixtures, SAXS experiments were performed at the
Australian Synchrotron SAXS/WAXS beamline. Figure 3.8 depicts the observed experimental SAXS

scattering and the model data for SOS in EtAN and water mixtures.
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Figure 3.8. Small angle x-ray scattering of SOS in a) 33 mol%, b) 50 mol%, c) 75 mol% and d) Neat
EtAN with the mathematical scattering fit for spherical micelle. Red points indicate experimental
scattering data and black line indicates the SASView mathematical fit for a sphere.

Overall, the scattering observed for SOS in EtAN mixtures in Figure 3.8 were consistent with micelles,
or more generally, spherical aggregates. The upturn at the lowest q values in Figure 3.8D was attributed
to small aggregates, and the decrease at low q in the neat EtAN sample was attributed to over subtraction
of the buffer. This was the best subtraction we could manage given the scattering issues associated with
the samples. Low q also indicated that the scattering occurred close to the beamstop, which usually
leads to less reliable data. It should be noted that the peak at 0.3 A™! was due to Kapton tape, and weak
scattering, due to poor contrast, made it difficult to subtract the background adequately. Even with the
changeover in solvent to EtAN, the data quality was not optimal, and we attribute it to a similar poor
contrast as EAN. While EtAN is not amphiphilic, it is also possible that EtAN cations could have
aggregated among the headgroups of SOS, also leading to worse contrast than hypothesised. Overall,

in the case of EtAN, the contrast was sufficient to obtain scattering to confirm micelles.
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Comparison of experimental scattering data and SASView mathematical models indicated the presence
of spherical micelles in EtAN-water mixtures above 33 mol% EtAN. Core-shell spheres and ellipsoid
models were also tested to confirm the shape of the micelles. While it was hypothesised that the core-
shell model would fit the description of a micelle best, the spherical model was able to best approximate
the experimental scattering patterns, though we note the fits are poor for what is usually achievable for

micelles. Table 3.5 summarises the fitting parameters for the micelles, as performed on SASView.

Table 3.5. The models and corresponding fitting parameters for micelles formed by SOS at varying
EtAN concentrations. SLDgurfactant Was set to 10x10°%/A? and SLDsolvent Was set to 9x10°/A2.

C%?;;lt(ﬁgﬁ,z;) f Model Scale Background Rz(lgl)us
33 Sphere 239.5 143.5 14.2
50 Sphere 1142 190.6 13.1
75 Sphere 1229 200.3 13.2
100 Sphere 973.3 285.7 14.0

To understand the radii values observed, we approximated the size of the fully extended carbons chains
contained in the core of a SOS micelle.’ This value was 12.6 A, which is very similar to the observed
values. The lack of contrast between the core and shell of the micelles, arising from very similar SLDs,
led to a lack of distinction between the core-shell boundary. It is likely we have gained scattering
information at the SOS core-shell interface during this experiment. This once more highlighted the

challenges faced with using x-rays for characterising micelles in PIL mixtures.

No scattering was observed in solvents ranging from water to 25 mol% EtAN, likely due to contrast
issues. The SLD of the surfactant tail and core were very similar to the SLD of water. With the water
rich environment at low concentrations of the PIL, the boundary between the micelles and solvent was
likely not obvious enough with x-ray scattering. With the observed micelles, there were many features
in the scattering pattern which could give more structural detail about the micelles. It was difficult to
approximate information regarding the core and shell lengths of the micelles based on the obtained

scattering.
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3.3.4 Higher order liquid crystal phases

To determine the self-assembly behaviour above the CMC concentrations, penetration scans of the three
surfactants in varying EAN-water concentration mixtures were characterised using a cross-polarised
microscope within a temperature range from 25-90 °C. This method provides information regarding the
higher order phases the surfactant could form in the solvent mixtures and the temperature ranges during
which they occur. However, they do not give insight into the exact concentrations of the surfactant at
which phase formation occurs. Representative images of CTAB and Ci;E4 phases observed in EAN-

water solvent mixtures are shown in Figure 3.9 and the full list of phases are shown in Table 3.6.

Figure 3.9. Cross polarised optical microscopy images of penetration scans of A) CTAB in 75 mol%
EAN at 90 °C and B) Ci2E4 in water at 25 °C. The numbers in A) represent the following phases: 1.
Hexagonal, 2. Cubic, 3. Lamellar and 4. Neat surfactant. In B) only the lamellar phase was observed.

A wide variety of phases were observed for CTAB, whereas only the lamellar phase was observed in
Ci2E4 at limited temperatures and EAN concentrations. SOS was unable to form any higher order phases
which could be observed with optical microscopy at any of the solvent concentrations. This was likely
due to the short alkyl chain of SOS, leading to poor chance of higher order phase, and the low solubility
of anionic surfactants in general. In CTAB across the full EAN concentration range a wide variety of
higher order phases were observed. Initially during the heating process hexagonal phases appeared after
30-60 °C, which evolved into cubic and lamellar phases as the heating continued to 90 °C. This was
consistent with values reported in literature.*® The higher order phase formation in the non-ionic Ci2E4
was limited to the lamellar phase, which was observed at room temperature during the initial contact
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between the solvent and surfactant. The likelihood of Ci2E4 forming the lamellar phase decreased with
increasing EAN concentration and temperature. The approximate results of the temperature ranges for
the higher order phases at varying EAN concentrations across the three surfactants are summarised in

Table 3.6.

Table 3.6. The approximate temperature ranges for higher order liquid crystal phases of CTAB, Ci2E4
and SOS in a range of EAN/water concentrations.

Temperature range (°C)

Conc EAN
Surfactant o
(mol%) Hexagonal Cubic Lamellar
0 33->90 55->90 70->90
5 33->90 60->90 77->90
14 49->90 58->90 74->90
25 51->90 65->90 86->90
CTAB
33 49->90 66->90 90->90
50 45->90 69->90 86->90
75 43->90 78->90 90->90
100 60->90 76->90 88->90
0 20->70
5 22->32
14 22->29
25 22->28
Ci2E4 No phases
33
50
No phases
75
100
0
5
14
25
SOS 33 No phases observed
50
75
100
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The experimental methods employed during this chapter proved to be insufficient to make conclusions
regarding the behaviour of anionic surfactants in PIL-water mixtures due to a variety of contrast and
solubility issues. CTAB was observed to have the most phases present, which could be attributed to
several reasons. Cationic surfactants tend to perform better in self-assembly studies in comparison to
anionic and non-ionic surfactants, likely due to their good solubility. It could also have led to a wider
variety of phases due to having the longest alkyl chain of C16, which led to a higher driving force for
self-assembly. Both Ci2E4 and SOS were molecules with a smaller carbon chain. Computational
methods could potentially provide insights regarding the experimental data which was not conclusive

regarding the solvent environment the anionic surfactants experience in the presence of EAN.

3.4 Conclusion

The self-assembly of a cationic, anionic and non-ionic surfactant were investigated in aqueous solutions
of two ionic liquids, EAN and EtAN, to gain insight into the role of solvent species, and effect of solvent
ionicity on the self-assembly process. For CTAB and SOS, at low concentrations of the PIL (< 5 mol%),
the ionic liquids acted as free ions, decreasing the CMC due to charge screening effects reducing head
group repulsion, similar to conventional salts. This effect was not observed in Ci2E4 due to it being non-
ionic. Micelle formation of the anionic amphiphile was found to be more complex than initially
hypothesised in ionic liquids. It was discovered that EtAN, the less cationic ionic liquid, was able to
facilitate self-assembly of SOS, whereas in EAN mixtures micelles could not be confirmed using x-ray
scattering due to contrast issues. It was hypothesised that the ethylammonium cation was actively
participating in the micellization as a smaller surfactant, rather than just existing in the bulk solvent.
The “surfactant-like” behaviour of the ethylammonium cation led to the formation of a micelle akin to
a catanionic micelle, which was difficult to observe using x-rays due to lack of contrast between the
micelle and the solvent interface. To observe higher order phases in the surfactants, CPOM was utilised.
CTAB and Ci2E4 were able to form LCPs, whereas the anionic surfactant was not observed to have

LCPs forming in EAN containing solvents.
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4 Comparison of water models for simulations

The work in this chapter has been published: Sachini P K Pathirannahalage, Nastaran Meftahi, Aaron
Elbourne, Alessia C G Weiss, Chris F McConville, Agilio Padua, David A Winkler, Margarida Costa
Gomes, Tamar L Greaves, Tu C Le, Quinn A Besford, Andrew J Christofferson, Systematic
Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular
Dynamics Simulations. J. Chem. Inf. Model. 2021, 61, 9, 4521-4536 (2021). Full publication available
in the Appendix.

4.1 Introduction

Water is used extensively in simulation studies as a solvent yet the effect of mixing water with other
constituents and the changes this induces on the bulk properties of the solvent are not well understood.
Water models are widely used to explore many mixtures, including but not limited to, other polymers,

biomolecules and interfaces.3¢-8

This thesis investigates the interactions between water and protic ionic
liquids. While experimental methods allow us to make hypotheses regarding how PILs and water
interact based on their structural properties, molecular dynamics simulations allow us to gain an insight
into the dynamics at the molecular level. For this, it is important for the bulk properties of the water
model used to reflect experimental values when used with MD settings we use for the simulations of

the mixtures. This allows us to make conclusions regarding the interactions between the PILs and water

with certainty that the changes stem from the mixing, rather than the simulation settings.

To understand how bulk properties of water changes with the addition of another solvent in simulations,
we can refer to a study by de Jesus-Gonzélez et al. on mixing acetone with water.® They examined the
changes to the dielectric constant, which is an indication of miscibility of molecules, with varying
polarizability, with the water model TIP4P. They were able to conclude that to obtain a satisfactory
dielectric constant at room temperature in mixtures of acetone and water, the forcefields for the
constituents first need to give a good description of the bulk properties of the pure components.”
Therefore, it is important to test the bulk properties of the pure components before building simulations
of the mixtures.
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While there are many types of water models available for MD simulations, both implicit and explicit,
this study will focus on explicit water models. This thesis specifically discusses rigid and flexible fixed
charge models, as well as a polarisable model. As the initial publications of water models report physical
properties using settings available to them at the time of inception of the model, which ranges from
1980s to 2020, the aim of the current study was to explore how changing these settings to enable

simulations of mixtures changes the predicted physical properties of bulk water.

A prime example of a model that is still widely used is TIP3P, a model first parameterised by Jorgensen
in 1981.°! TIP3P remains a popular choice amongst many due to its simple geometry, low computational
cost and relative accuracy. The initial parameterisation of TIP3P truncated the short-range pairwise
electrostatic interactions at a cut-off distance of 7.5 A to produce the properties cited in the original
publication. However, due to advances in computational capacities in more recent years, this cut-off
distance is often extended as far as 9-12 A°*** in simulations where mixing of water with another
forcefield is performed. More modern settings such as long-range electrostatic treatment and dispersion
corrections provided by most simulation packages such as AMBER®® and GROMACS®® could also not
have been accounted for in initial parameterisations. How these changes to settings of the simulations
changes the resulting bulk water properties has not been explored. While there have been studies
investigating rigid Single Point Charge (SPC) and TIP N-point models with the inclusion of long-range

corrections, there has not been an extensive study on a variety of models.®

It can also be difficult to determine which water model would suit a specific mixture, considering the
sheer variety of water models available. For example, one of the main differences between initial TIP
N-point water models and SPC water models is the model geometry, which in the case of SPC mimics
a tetrahedral shape of water as present in ice, whereas TIP3P is based on water molecules as they exist
in the gas phase. The slight changes in bond lengths and angles allow for SPC based models to reproduce
the second peak in the radial peak distribution °’, whereas the second peak is missing entirely from the

initial TIP3P potential °'. It has also been shown that varying the bond length by as little as 10 A has
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led to up to 30% differences in the calculated self-diffusion constants. °® This emphasises the sensitivity

of the water models to their parametrisation. &’

Comparing the proficiency of water models based on their original publications also proves to be
problematic because initial parameterisations were often performed with a very specific application in
mind. For example, SPC is often preferred over TIP3P in simulations of bulk water due to improved
self-diffusion coefficients.’” SPC/E* and TIP4PEw!'® are reparametrized versions of SPC and TIP4P

101 was designed specifically

for use with Ewald summation to improve water thermodynamics. TIP4P/g
to reproduce the experimental dielectric constant of water. TIP4P/2005' was developed based on
stability of ice polymorphs. The key goal of OPC!®* was to mimic hydrogen bonding via geometry
optimisation. There are also specialised water models such as TIP4P-D*, developed to more accurately
account for London dispersion interactions. New developments in the field, including flexible variations
of models such as TIP N-point and SPC, can reproduce experiments such as infrared and Raman

spectra.’ %% 14 Some of these models are more specialised than others so users should understand the

water model and their compatibility before mixing them.

Forcefields have often been parameterised with the assumption that models based on similar
parametrization philosophies will be used. Therefore, changing the simulation settings and mixing these
models and forcefields could lead to unexpected inconsistencies. A prime example of mismatching
forcefields leading to physically impossible simulations was found by Giri et al. where they simulated
cluster formation of NaCl in TIP3P water.!” They tested different ionic forcefields to simulate NaCl
and found that the mixing rule of the Lennard-Jones potential of the forcefield needs to be compatible.
In cases where the mixing rules were inconsistent, for example where a forcefield with geometric
mixing rule was combined with a forcefield with arithmetic mixing rule for the Lennard Jones potential,
the crystallisation of the NaCl occurred at much lower concentrations of the salt than is physically
observed during experiments.'% This study highlights the importance of understanding the forcefields

for simulations before mixing them with other constituents.
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The various considerations involved in the choice of water models led to the need for a systematic study
on widely used water models to understand the effect of recent advancements and how they reflect on
the bulk water properties of these models. The last study to do a systematic test under standard
simulation settings was almost 20 years ago and only included rigid 3-point water models from 3
classes. They were able to conclude that bulk properties of liquid water in molecular dynamics
simulations are affected by simulation settings such as the system size, the method used for truncating
long-range interactions and the method used for temperature control.”* The current study builds on work
such as this and tests a wider variety of models with a standard, more recent set of parameters to be able
to compare them. This is a necessary step towards gaining insight regarding the bulk water properties

in PIL-mixtures during simulations. The findings from this study have contributed to a publication.!'%

Table 4.1. Water models examined in this work.

Lennard-Jones

Name Type Flexible? on H? Year Published Reference
SPC 3-point No No 1981 107
TIP3P 3-point No No 1983 108
TIP4P 4-point No No 1983 108
TIPS3P (mTIP3P)  3-point No Yes 1985 109
SPC/E 3-point No No 1987 9
CVFF 3-point Yes Yes 1988 110
PCFF Class 11 Yes Yes 1994° i
COMPASS Class IT Yes Yes 1998° 12
TIP3P/Fw 3-point Yes No 1999 13
TIPSP 5-point No No 2000 114
TIP3P-Ew 3-point No No 2004 s
TIP4P-Ew 4-point No No 2004 116
TipSP-Ew 5-point No No 2004 17
TIP4P/2005 4-point No No 2005 s
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TIP4P/Ice 4-point No No 2005 1o

SPC/Fw 3-point Yes No 2006 120
SWM4-NDP Polarizable No No 2006 121
TIP4P/2005f 4-point Yes No 2011 122

TIP4P/e 4-point No No 2014 101

OPC 4-point No No 2014 123
TIP3P-FB 3-point No No 2014 124
TIP4P-FB 4-point No No 2014 124

TIP4P-D 4-point No No 2015 86

SPC/e 3-point No No 2015 125
OPC3 3-point No No 2016 126
a99SB-disp 4-point No No 2018 127
TIPSP-2018 5-point No No 2018 128
TIP3P-ST 3-point No No 2019 129
TIP4P-ST 4-point No No 2019 129
FBA/e 3-point No No 2020 130

SPCFF water forcefield parameters were published as part of the INTERFACE forcefield.!*!
®Approximate COMPASS water parameters without cross-terms were published as part of the
INTERFACE forcefield.'*!

4.2 Method

Thirty different water models were compared using NPT and NVT simulations. The simulations were
performed using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 5Junl9
release. LAMMPS was chosen as it can run models with LJ functional form 12-6 (Class I), as well as
9-6 (Class II), and polarizable models easily, with input files generated by CHARMM-GUI or Visual
Molecular Dynamics (VMD)."*? Moreover, LAMMPS provides the option of running 4-point water
models as explicit 3-point models with the offset partial charge of the oxygen calculated internally. This
allows 4-point models to be used from structure files that contain only 3-point water. The simulations

were performed with periodic boundary conditions in a cubic box with side length 40.0 A. This box
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contained 2000 water molecules and was constructed using PACKMOL version 18.169,'** and
converted to LAMMPS data files using TopoTools'* release 1.7 in VMD version 1.9.3. The long-range
interactions were cut-off at 12.5 A across all simulations. The simulations were repeated three times for

statistical analysis.

The simulations began with an initial energy minimisation wherein the simulation box was under NVT
condition before the SHAKE algorithm was enforced to keep the molecules rigid. The initial velocities
during the equilibration step of 5 ns were randomly generated and the temperature was set to a constant
298 K. All 3-point and implicit 4-point models used the same initial structure, with a conjugate gradient
energy minimization step in LAMMPS to optimize the initial geometry for each model, using force
constants of 500 kcal/A? for the O-H bond and 50 kcal/radian> for the H-O-H angle with the rigid
models, while flexible models used their default parameters. Explicit 4-point models, which were
necessary for the calculation of dielectric constants, were constructed individually using PACKMOL,
as were the 5-point models. The polarizable SWM4-NDP model was constructed as an explicit 4-point
model using PACKMOL, with the Drude oscillator added by the Python tool polarizer.py.'* Data was

collected for 25 ns.

For analysis, the PYLAT program was used to calculate dielectric constant, mean square displacement
(MSD) and coordination numbers!*®. The slope of the linear section of the MSD vs time plot of the
oxygen atoms was used to estimate the self-diffusion coefficient. The geometries and interaction

parameters for 3-point, 4-point and 5-point models are given in Tables 4.2, 4.3 and 4.4, respectively.

Table 4.2. Parameters from original publications for 3-point models. Full list of publications and
reference provided in Table 4.1.
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O sigma O epsilon O charge H charge O-H bond H-O-H angle

Model A)  (kealimol) © © A) ©)
SPC 3.166 0.15535 -0.82 0.41 1.0 109.466667
TIP3P 3.15061 0.1521 -0.834 0.417 0.9572 104.52

TIPS3P 3.1506 0.1521 -0.834 0.417 0.9572 104.52

H: 04 H: 0.046

SPC/E 3.166 0.15535 -0.8476 0.4238 1.0 109.466667
CVFF 3.16552 0.155416 -0.82 0.41 0.96 104.5
PCFF 3.608 0.274 -0.7982 0.3991 0.97 103.7

H: 1.098 H:0.013
COMPASS 3.84 0.08 -0.82 0.41 0.9572 104.52

H: 1.087 H: 0.008

TIP3P/Fw 3.1506 0.1522 -0.834 0.417 0.96 104.5
TIP3P-Ew 3.188 0.102 -0.83 0.415 0.9572 104.52
SPC/Fw 3.165492 0.155425 -0.82 0.41 1.012 113.24
TIP3P-FB 3.178 0.155865 -0.84844 0.42422 1.0118 108.15
SPC/e 3.1785 0.168704 -0.89 0.445 1.0 109.45
OPC3 3.17427 0.163406 -0.89517 0.447585 0.97888 109.47
TIP3P-ST 3.19257 0.143858 -0.85112 0.42556 1.023 108.11
FBA/e 3.1776 0.18937 -0.845 0.4225 1.027 114.7
TIP3P/Fw 3.1506 0.1522 -0.834 0.417 0.96 104.5

Table 4.3. Parameters from original publications for 4-point models. Full list of publications and
reference provided in Table 4.1.
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O-M bond

Model O sigma (A) (icealilslirl::)lll) ch(ael;ge H c:le:;rge O-Iz ;)(md aﬁ-g(l)e-g) A)

TIP4P 3.15365 0.155 -1.04 0.52 0.9572 104.52 0.15

TIP4AP-Ew 3.16435 0.16275 -1.04844 0.52422 0.9572 104.52 0.125
TIP4P/2005 3.1589 0.185207 -1.1128 0.5564 0.9572 104.52 0.1546
TIP4P/Ice 3.1668 0.210839 -1.1794 0.5897 0.9572 104.52 0.1577
TIP4P/2005f 3.1644 0.185207 -1.1128 0.5564 0.9419 107.4 0.15555

TIP4P/e 3.165 0.18481 -1.054 0.527 0.9572 104.52 0.105
OPC 3.16655 0.212801 -1.3582 0.6791 0.8724 103.6 0.1594
TIP4P-FB 3.1655 0.179082  -1.05174 0.52587 0.9572 104.52 0.10527
TIP4P-D 3.165 0.223841 -1.16 0.58 0.9572 104.52 0.1546
a99SB-disp 3.165 0.238764 -1.18 0.59 0.9572 104.52 0.1546
TIP4P-ST 3.1661 0.176936  -1.04344 0.52172 0.9572 104.52 0.0989

Table 4.4. Parameters from original publications for 5-point models and polarizable model. Full list of
publications and reference provided in Table 4.1.

H-O-
H -L L-O-L
5-point ) 0 O epsilon L charge O-H H 0 N
model sigma (keal/mol) charge charge © bond (A) angle bond angle
A) (e) () ©) A) @)
104.5
TIPSP 3.12 0.16 0.0 0.241 -0.482 0.9572 ) 0.70 109.47
104.5
TIPSP-Ew  3.097 0.178 0.0 0.241 -0.482 0.9572 ) 0.70 109.47
TIPSP- 3.145 0.188815  0.64111 0.39413 -0.07358 0.9572 104.5 0.70 109.47
2018 7 2
4
H-O-
Polarizabl ) 0 O epsilon H M charge Drude O-H H O-M
e model sigma (keal/mol) charge charge © charge bond angle bond
A) (e) (e (e) Q) ©) (A)
S\ggr- 3.18395  0.210939  1.71636 0.55733 -1.11466  -1.71636 0'9257 10;'5 0.24034

4.3 Results and Discussion
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Thirty water models with varying structures were simulated with consistent conditions and parameters
to obtain structural and dynamic properties. Each simulation was run for 25 ns across three separate
simulations and results were compared against each model and to experimental properties of water. The
radial distribution function (RDF) analysis was investigated to confirm the structural characteristics of
the simulated water. A representative RDF for the 3-point water model, OPC, is shown in Figure 4.1,
along with the anticipated experimental RDF for water. Refer to Section 8.3 in the Supplementary
Information for all RDFs.

oPC B vlal

1A =" B .

— k- — -

i

v k) - I . ; LA
Figure 4.1. A) Radial distribution function (RDF) of 3-point water model OPC and B) experimental
RDF for water reproduced from '/,

As shown in the case of OPC, the majority of water models showed satisfactory agreement between
their simulated RDF and the experimental RDF for water. The largest discrepancy between the
experimental and simulated models was seen in the second peak of the partial RDF which corresponded
to the Hydrogen atoms of the same water molecule. The magnitude of this peak varied across the
different models, likely resulting from the specified bond angles and lengths differing from one model
to another. An overall summary of the calculated structural and dynamic properties across all the tested

water models are provided in Table 4.5.

Table 4.5. Calculated dielectric constant, MSD, surface tension, coordination number and density of 30
water models and the associated uncertainties.
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Self-diffusion

Woaa pomih Comttn gy ket
(mN/m) (x 1075 cm?/s)

SPC 0.972 £ 0.006 5.585+0.001 50.3+0.2 651 432+0.04
TIP3P 0.980 + 0.006 6.239 +0.001 47.0+£0.2 95+3 5.72 +£0.04
TIP4P 0.994 £ 0.006 5.14 £0.001 522+0.2 513+0.5 2.57+0.04
TIPS3P 1.007 = 0.006 7.5+03 51.1+£0.2 106 £1 5.55+0.06
SPC/E 0.993 + 0.006 49+0.2 57.6+£0.2 73+1 2.60 £0.03
CVFF 0.978 £0.006 6.4+0.3 473 +04 135+3 5.95+0.05
CVFF(cm) 0.989 £ 0.006 5.761 £0.001 49.8+ 0.4 151+2 52402
PCFF 1.008 + 0.005 135104 69.5+0.4 159 £2 7.7+0.2
COMPASS 0.958 = 0.006 4.953 +£0.001 40.7+0.4 118+2 6.4+0.1
TIP3P/Fw 1.027 + 0.006 53+0.3 552+04 197 £2 3.8+0.1
TIP5P 0.985 £0.006 4.991 +0.001 48.9+0.2 94+3 2.79+0.03
TIP3P-Ew 0.996 £0.006 4.7300+£0.0004 47.1+0.2 92 +1 4.11+0.05
TIP4P-Ew 0.996 £0.005  4.6900 £0.0005 59.2+0.2 65+1 2.54+£0.01
TIPSP-Ew 1.003 + 0.006 5.143 £ 0.001 52.2+0.2 100 £2 2.92 +0.04
TIP4P/2005 0.997 £0.005 4.7053 £0.0001 63.5+0.2 581 2.18+0.04
TIP4P/Ice 0.993 £0.006 4.634 = 0.001 73.4+0.2 63+2 1.21 +£0.03
SPC/Fw 1.007 £+ 0.006 4.743 £ 0.001 58.6+0.4 80+3 2.57+0.06
SWM4-NDP 0.990 + 0.005 5.209 +0.001 63.1£0.5 75+ 1 2.57+£0.05
TIP4P/2005f 0.996 + 0.005 5.0+0.2 60.3+0.4 59+2 2.76 £0.04
TIP4P/e 0.996 £ 0.006 4717 £0.001 64.6+0.2 79+2 2.16 £0.01
OPC 0.997 £0.005 5.1971 £0.0005 70.1+0.2 78+ 1 2.27+0.02
TIP3P-FB 0.990+0.006 4.6786+0.0004 60.3+0.2 79 +£4 2.14 £0.05
TIP4P-FB 0.997 £0.006 4.702 = 0.001 64.7+0.2 77+ 1 2.10+0.03
TIP4P-D 0.993 £0.006 5.149 + 0.001 70.8+0.2 63+1 2.01 £0.07
SPC/e 0.991 £ 0.005 4.672 +£0.001 65.3+0.2 80+3 1.55+0.05
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OPC3 0.991 = 0.006 49+0.2 61.0+£0.2 79+ 1 2.28 £0.02
a99SB-disp 0.996 £+ 0.006 5.173 £0.001 74.4+£0.2 67+1 1.78 £ 0.03
TIP5P-2018 0.997 £0.006 5.175 £ 0.001 61.6£0.2 129 £2 2.31+£0.09
TIP3P-ST 0.993+0.005 4.6009 +£0.0005 63.8+0.2 81+£2 1.24 £0.02
TIP4P-ST 0.999+0.006 4.7034+£0.0003 64.5+0.2 82+4 2.02+0.01
FBA/e 0.991 + 0.005 4.64 +0.001 68.0+0.4 75+1 1.56 +£0.02
Experimental 0.997!38 4.7'% 71.99140 78.314 2.30'4?

Interestingly, some 3-point models outperformed 4-point models in terms of simulating specific
properties. This demonstrated that more computationally costly models do not necessarily lead to more

accurate representations of water in simulations, especially for very specific property.
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Figure 4.2. Simulated density for water models from 1981 to 2020. The horizontal line corresponds to
the experimental density of 0.99753 g/cm’.

The density across all water models reproduced experimental results very well, as shown in Figure 4.2,
with newer models outperforming older models. It was observed that models published after the
introduction of particle-particle particle-mesh (PPPM)'** and particle-mesh Ewald (PME)!** methods

for approximating long-range electrostatics performed better than models published before this

94



advancement. The model which deviated from the experimental density value the most was COMPASS,

published in 1998 without long-range electrostatics approximations, which was likely affected

adversely by PPPM which it was not designed to be used with. These findings suggest that testing is

required before combining older water models with newer long-range electrostatic treatments available

for use today.
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Figure 4.3. Simulated surface tension of water models from 1981 to 2020. The horizontal line

corresponds to the experimental coordination number of 4.7.
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Figure 4.4. Simulated coordination number of first solvation shell of water models from 1981 to 2020.

Horizontal line corresponds to the experimental surface tension of 71.99 mN/m.
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Until recently the water models were not parameterised to optimise the surface tension values.
Unsurprisingly, TIP3P-ST and TIP4P-ST, designed for use in simulations where surface tension is a
key property, performed well, as shown in Figure 4.4. The analytical tail correction to the surface
tension due to the Lennard-Jones cutoff was not performed in this study, which could explain why some
models outperformed TIP3P-ST and TIP4P-ST at first glance. The majority of models published in

2005 and later reproduced the experimental surface tension reasonably well.
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Figure 4.5. Static dielectric constant of water models from 1981 to 2020. The horizontal line
corresponds to the experimental dielectric constant of 78.3.
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Figure 4.6. Self-diffusion coefficient of water models from 1981 to 2020. The horizontal line
corresponds to the experimental self-diffusion coefficient of 2.30 x 107> cm?/s.
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As with most other properties discussed, experimental dielectric constant and self-diffusion coefficient
improved drastically after 2006. As the field progressed and use of water models in multivariable
systems increased, these properties were important for interactions in mixtures and had to be
investigated thoroughly during forcefield parameterisation. TIP4P/e, SPC/e, and the flexible FBA/e
were all parametrized to optimise the dielectric constant, therefore reproducing the experimental value
quite well. Unfortunately, during the parametrisation of SPC/e, and FBA/e to increase accuracy of the
dielectric constant, the changes led to not so accurate self-diffusion coefficients. The majority of the
TIP3P based models, except TIP3P-FB, also had large discrepancies between simulated and
experimental diffusion coefficients. This was largely expected since TIP3P based models were initially

designed for Monte Carlo simulations.

To compare the models against corresponding experimental values for the properties of water and
determine the best option across the wide variety of models available for use in simulations with
mixtures, the discrepancy between the calculated values and the experimental values was quantified,

and these are provided in Table 4.6.

Table 4.6. Discrepancy between the simulated water model physical property values and the
experimental values as a percentage.

Dielectric Surface Coord

constant MSD tension number Average

COMPASS 50% 180% 43% 5% 70%
PCFF 103% 236% 3% 187% 132%
SPC 17% 88% 30% 19% 38%
SPC/E 6% 13% 20% 4% 11%
TIP3P 22% 149% 35% 33% 60%
TIPS3P 35% 142% 29% 60% 66%
TIP4P/2005 26% 5% 12% 0.11% 11%
TIP4P/e 0.7% 6% 10% 0.36% 4%
a99SB-disp 15% 22% 3% 10% 13%
CVFF 72% 159% 34% 36% 75%
SPC/Fw 1.93% 12% 19% 1% 8%
TIP3P/Fw 152% 67% 23% 13% 64%
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TIP3P/Ew 17% 79% 35% 1% 33%

TIP4P-Ew 17% 10% 18% 0.21% 11%
TIP4P/2005f 25% 20% 16% 6% 17%
TIP4P-D 19% 12% 1.70% 10% 11%
OPC 0.1% 1.06% 3% 11% 3.7%
TIP4P 35% 12% 28% 9% 21%
TIP3P-FB 1% 7% 16% 0.46% 6%

TIP4P-FB 2% 9% 10% 0.04% 5%

CVFFem 93% 126% 31% 23% 68%
TIP4P/Ice 19% 47% 2% 1% 17%
OPC3 0.8% 0.66% 15% 4% 5%

SPC/Epsilon 2% 33% 9% 1% 11%
TIP3P-ST 3% 46% 11% 2% 16%
TIP4P-ST 4% 12% 10% 0.07% 7%

FBA/Epsilon 5% 32% 6% 1% 11%
TIPSP 20% 22% 32% 6% 20%
TIP5P-Ew 28% 27% 28% 9% 23%
TIP5P-2018 65% 0.6% 15% 10% 23%
SWM4-NDP 5% 12% 12% 11% 10%

Overall, the water models with the most accurate predicted properties in comparison to experimental
results could be identified. With an average discrepancy of 5% across all properties, the best 3-point
model was OPC3. For 4-point model, the OPC description of water also had the best agreement across
properties with an average difference of 3.7% between the simulated and experimental properties.
TIP5P had the best agreement with experimental results of all the tested 5-point models, with an average
difference between experimental and simulated values of 20%. Of all the flexible models tested,

SPC/Fw yielded the best results, with an average difference of 8%.

4.4 Conclusion

30 water models were tested to explore how the simulated properties of water change due to widely
used, modern settings. The models which had the closest average agreement with experimental results
across properties, dielectric constant, surface tension, coordination numbers and density were identified.

The best 3-point model was determined to be OPC3, as well as for 4-point models, OPC description of
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water also had the best agreement across properties. TIPSP had the best agreement with experimental
results of all the tested 5-point models and for the flexible models tested, SPC/Fw yielded the best
results. As the field of molecular dynamics have shifted to simulating pure water to mixtures in the
early 2000s, properties important for mixtures such as surface tension, dielectric constant and self-
diffusion coefficients have become more of a focus during water forcefield parametrisation. This was
clearly reflected by the general increase in accuracy across all properties of water models investigated
in the current study. For the purpose of investigating PIL-water mixtures, OPC3 was chosen as the
suitable water model due to the accuracy of its simulated properties as well as the efficiency in

comparison to more computationally costly 4-point, 5-point or polarisable models.
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5 Molecular dynamics of micelles in protic ionic liquid mixtures

5.1 Introduction

As discussed throughout this thesis, the presence of the hydrogen available for proton transfer in PILs
leads to many of their interesting physicochemical properties, particularly due to a strong H-bond
network in the bulk solvent.”* Much like water, this led to complications when it came to PIL
descriptions in molecular dynamics simulation. In the case of water, there was much debate regarding
ways to express the molecular structure which leads to accurate physical properties in simulations.®* In

developing forcefields for PILs, a similar conundrum occurred.

While there was interest in designing appropriate forcefields for ILs, the wider field of computational
work related to PILs was divided on the nature of the H-bonds and how to best reproduce experimental
properties. EAN, a usual starting point for work involving PILs, was at the heart of the debate. There
were contradicting opinions in literature regarding whether the H-bonds in EAN should be expressed
as linear or with a slight bent. Based on x-ray and neutron structure factors, several literature sources
have hypothesised that the bond between NH-O is slightly bent.!*-14” On the other hand, several other
authors suggest that this bond was linear in nature, based on DFT trajectories in condensed phase!*® and
X-ray diffraction of EAN crystals'®. It was unclear so far which is the correct interpretation of the H-
bonds involved in EAN and it was difficult to make conclusions regarding the molecular structure based

on the current experimental information we have on EAN.

There is renewed interest in using computational molecular dynamics simulations to understand
molecular interactions in PIL mixtures due to the new polarisable forcefield for EAN. Goloviznina et
al. has extended their transferable polarisable forcefield to include EAN, which could allow for accurate

representation of EAN in mixtures.®* This allows for simulations of EAN to simulate diffusion, which
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solves the issues of EAN being solid at room temperature in classical MD. While this new force field
will prove to be a large step forward, critical properties such as dielectric constant has not been validated
yet. As the field of PILs gear up for a new era of simulations which will allow for binary and ternary
mixtures with polarisable effects included, it is now possible to combine existing classical forcefields

to simulate these systems.

The existing literature in the field of PILs and MD focuses on mixing PILs with forcefields for
molecular solvents such as water and other organic solvents. There are some recent examples of PILs,
EAN and PAN, being mixed with water and organic solvents.'* These studies allowed the authors to
confirm hypotheses regarding preferential solvation properties of PILs, which were verified via
autofluorescence spectroscopy. Since the main focus of the field has been on refining and answering
fundamental questions about forcefield development, there is still much room for more studies to
understand binary and ternary mixtures of ILs using MD. It was also worth noting that since classical
forcefields for PILs come with some caveats, existing MD studies on PILs mostly use MD as a
complementary computational technique to understand behaviour and properties of mixtures that they

verify experimentally.'*

There is a distinct lack of any literature on using MD to probe self-assembly of surfactants in PILs or
PIL mixtures. An important unanswered question in the wider PIL community is the role of the cation
and the anion of the PIL during surfactant self-assembly. As PILs are the largest solvent class capable
of promoting self-assembly of surfactants, it is important to understand how the constituents of the PIL
are acting during this process. While experimental techniques such as SAXS and neutron scattering
allow us to make hypotheses regarding what happens at the molecular level, computational simulations
are necessary to truly understand the processes and dynamics of the mixtures. While MD forcefields
for PILs are still being refined, they are now at a level where they can be used to probe the molecular

structures and dynamics of surfactant self-assembly successfully. Compatible forcefields for surfactants
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and molecular solvents with force fields for PILs now exist.'* While there are no reports in the literature
which seek to combine these force fields to simulate ternary mixtures of micelles, the current study
aims to show this was in fact possible, opening the door of opportunities for the field of PILs to

complement their experimental self-assembly studies with computational MD simulations.

5.2 Method

The molecular dynamics simulations were setup using the simulation package GROMACs. The
surfactant forming micelles used during the current study were CTAB, SOS and Ci2E4. These were
chosen to be consistent with previous experimental investigations in Chapter 3. The micelles were
constructed using PACKMOL and equilibrated in water for 100 ns. Separately from the micelles, cubic
boxes of length 100 A were packed with solvents. The solvents included binary mixtures of
ethylammonium nitrate (EAN) and water. The concentration of EAN varied from 0, 25, 50, 75 mol%
to neat EAN. Setting up the simulations with the micelles included in the solvents required a several
step process. First, the solvent was equilibrated for up to 10 ns. The micelles were then extracted from
the initial water box and packed into the solvent box using PACKMOL. VMD was used to remove the
solvent molecules which were closer than 2 A from the micelle. The charges and the solvent ratios were
readjusted by manually adding the appropriate number of cations and anions before submitting the
simulation to run. Simulations of the CTAB, SOS and C2E4 micelles in EAN-water mixtures underwent
an energy minimisation, followed by equilibration for 5 ns before running for 10 ns. The temperature
of the simulation was kept constant at 298 K. Radial distribution functions were calculated for the

systems to understand the solvation layers around the micelles.
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5.3 Results and discussion

MD simulations were performed for the three surfactants forming micelles in EAN-water mixtures to
understand their interactions. Micelles of CTAB, Ci2E4 and SOS were equilibrated for 100 ns in water
before introducing the solvents, EAN and EAN-water mixtures. Figure 5.1 illustrates the equilibrated

micelles in water prior to solvating them in the respective EAN-water solvent boxes.

Figure 5.1. Molecular Dynamics simulations of surfactant micelles of A) CTAB, B) Ci2E4 and C) SOS
in water.

In water, the micelles were surrounded by the solvent, with no significant molecular level interactions
observed between the solvation layer and the micelles. This changed drastically when EAN was
introduced to the anionic and cationic surfactant micelles. As hypothesised in Chapter 3, the
experimental results indicated that there could be interactions between the cation of the PIL and the

micelle formed by the surfactants.

In the MD simulations, the cation of the EAN, ethylammonium, was seen to form a solvation layer

around the micelles with an overall charge. Ethylammonium was lodging itself in the shell layer of the

micelle, displaying “surfactant-like” behaviour, as shown in Figure 5.2 and 5.3.
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Y
Figure 5.2. SOS micelles solvated by neat EAN. SOS micelle is represented by pale blue and white

molecules, while nitrate anions are blue and red.

Figure 5.3. CTAB micelles solvated by neat EAN. CTAB micelle is represented by pale blue and white
molecules, while nitrate anions are blue and red.

With CEa4, it was noticable that a layer of nitrate ions from the EAN seemed to be closer to the micelle
surface, compared to the ethylammonium ions. In general, the “surfactant-like” behaviour of the
ethylammonium cation, where it lodged itself into the micelle was not visually observed to the extent it

was with the charged micelles, as shown in Figure 5.4.

104



Figure 5.4. C12E4 micelles solvated by neat EAN.

These results show ethylammonium cations participating in the micelle formation as small surfactants,
rather than simply solvating the micelles. This was hypothesised by Lam et al. via their neutron
scattering studies of DTAB micelles in EAN." Their experimental investigation of DTAB in multiple
PILs, including EAN and EtAN, suggested that due to the polar and non-polar constituents of the EA
cation, which is similar to the structure of the surfactants themselves, they lodge themselves into the
micelle and act as smaller cationic surfactants with DTAB. We were able to demonstrate that this
hypothesis holds in the case of the cationic surfactant, CTAB, and also extends to anionic surfactant
self-assembly via the current study. Another interesting insight gained from the SOS micelles being
solvated by the EAN was that nitrate ions are forming a solvation shell around the anionic micelles,
despite both constituents being negatively charged. This was likely due to the cationic ethylammonium
ions making the overall charge of the micelle less negative than initially anticipated. To verify these
results quantitatively, the radial distribution functions (RDF) were calculated. The RDFs for the three

micelles in neat EAN are shown in Figure 5.5.
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Figure 5.5. Radial distribution functions (RDFs) of A) CTAB, B) SOS and C) Ci;E4 in neat EAN.

Across the three surfactants, the calculated RDFs showed that the nitrogen from the ethylamine cation
from the EAN was interacting closely to the anion of the surfactants. In the case of the positively
charged surfactant CTAB, there was a noticeable solvation shell of nitrate anions of the EAN
surrounding the micelle, as demonstrated by the RDFs in Figure 5.5. In the case of SOS, the cation of
EAN, ethylamine, had a considerably large and close interaction with the outer shell of the micelle.
This likely is due to the “lodging” of the cation in the micelle, observed visually in Figure 5.2. For Ci2E,4

micelles, the interactions were less complicated, due to the lack of surface charge of the micelle.

It is important to note that the EAN model used in these simulations does not factor in diffusion, as
observed by the very large RDF peaks across all surfactants. This is a limitation of classical force fields

which is addressed in polarisable force fields. Due to the time constraints of this project, we were unable
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to test and confirm the polarisable force field for EAN to confirm if the trends observed using classical

force fields translate to the dynamics observed when diffusion is factored.

The RDFs for the negatively charged micelle, SOS, as the concentration of EAN varies are shown in
Figure 5.6. The trends in the RDFs provide insight into the interactions between the different atoms on
the surfactant and the solvent. As shown in Figure 5.6, as the ratio of water and EAN varies in the
micelle solvent environment, the biggest change to the RDFs was observed in the interaction between
the micelle cation and anion. As the EAN concentration increased in the SOS-EAN-water mixtures, the
strength of interaction between the micelle cation and anion seemed to increase. The interaction between
the micelle cation and the EAN cation also seemed to decrease with increasing EAN concentration.
However, the surprising outcome of this was the shapes of the curves did not change with the increasing

EAN concentration in the presence of SOS. The water did not appear to displace the EAN or vice-versa.

LI 2 G |

Figure 5.6. Radial distribution functions (RDFs) of SOS in A) 25 mol% EAN, B) 50 mol% EAN, C) 75
mol% EAN and D) neat EAN mixtures.
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The RDFs for the micelle formed by positively charged surfactant, CTAB, as the concentration of EAN
varies was shown in Figure 5.7. As the EAN concentration increased in the presence of the positively
charged micelle, the biggest change observed was in the interaction between the cation and the anion
of the CTAB. When the concentration of the EAN increases, it seemed to facilitate the nitrogen of the

CTAB anion and the bromide ion to interact to a greater degree.
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Figure 5.7. Radial distribution functions (RDFs) of CTAB in A) 25 mol%, B) 50 mol%, C) 75 mol%
and D) neat EAN mixtures.

Finally, the RDFs formed by the neutral micelle, Ci,E4, as the concentration of EAN varies was shown
in Figure 5.8. At low concentrations of EAN, there was a strong interaction between the Ci2E4 micelle
and the nitrogen of the ethylamine cation. However, as the ratio of EAN increased in the solvent, this
interaction was overtaken by the water, as water seems to be forming a solvation layer surrounding the
micelle in higher EAN concentrated solvents (above 50 mol% EAN). This can be seen in Figure 5.8 by

the decrease in the CE4 — O interaction and the increase in the CE4 — WAT O.
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Figure 5.8. Radial distribution functions (RDFs) of C12E4 in A) 25 mol%, B) 50 mol%, C) 75 mol%
and D) neat EAN mixtures.

In the literature, there was vast interest in forming mixed catanionic micelles using both cationic and
anionic surfactants.>* *° It was interesting to observe that this effect was possible by using ILs as a co-
solvent and it was possible to make catanionic micelles without necessarily having to use two different

types of surfactants.

Overall, the simulations were able to allow us insight into the solvation properties of EAN in mixtures
of water and a self-assembling solute. This investigation allowed us to further investigate the hypotheses
formed in Chapter 3 regarding how the cation of a PIL could potentially participate in self-assembly as
more than just a bulk solvent. However, it would be hasty to make conclusions regarding the surfactant-
like qualities of PIL cations based on these simulations alone. As mentioned throughout this thesis,
classical simulations come with uncertainties regarding their ability to simulate diffusion correctly. This
is a very important property to simulate correctly when investigating complex solutions with PILs.
These results must be validated using a polarisable model to fully understand these mixtures
computationally and make firm conclusions.
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5.4 Conclusion

The hypothesis regarding the behaviour of the cation of EAN acting as a co-surfactant rather than just
a co-solvent during the self-assembly process was observed in this chapter using MD simulations. We
were able to observe the molecular level interactions of the micelles and the solvation layer, which
allowed us insight into the contrast issues observed in Chapter 3 during SAXS experiments on the same
systems. The RDFs were able to provide insight regarding the solvation properties of EAN in the
presence of cationic, anionic and non-ionic surfactants. Caution must be taken regarding making further
conclusions based on the MD simulations performed during this chapter due to the lack of polarizability
in the forcefields. While this study was able to provide clarification for our experimental results, the
results are at best qualitative. Further investigations are required using polarisable forcefields with more

extensive testing to quantitatively assess molecular interactions of PILs in mixtures with micelles.
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6 Conclusions and recommended future work

The work summarised in this thesis sought to understand the solvent properties of protic ionic liquids
in mixtures with water using a variety of experimental and computational methods. The development
of capabilities in applying machine learning algorithms and molecular dynamics simulations to systems

which have never been subjected to these techniques was also a focus.

Chapter 2 used machine learning as an advanced analysis technique for understanding trends in
physicochemical properties of PIL-water mixtures reported in the literature. Predictive models were
generated, and their predictions were tested experimentally. A significant finding from the study was
that the water content of the training set affected the accuracy of the predictions to a great degree. The
changes in viscosity and conductivity were not linear with incremental increases to the water content

and thus the water content plays an important role in the predicted values for neat ILs.

To extend the understanding of PIL-water mixtures obtained in Chapter 2, the representative PIL of
EAN was chosen for further experimental investigation in Chapter 3. Chapter 3 investigated the effect
of ionicity of surfactants on the self-assembly of a cationic, anionic, and non-ionic surfactant in mixtures
of PIL-water systems. For CTAB and SOS, at low concentrations of the PIL (< 5 mol%), the ionic liquid
acted as free ions, decreasing the CMC due to charge screening effects, similar to conventional salts.
This effect was not observed in Ci2E4 due to its neutral charge. Micelles could not be confirmed using
x-ray scattering in EAN mixtures due to a variety of contrast issues. It was hypothesised that the
ethylammonium cation was actively participating in the micellization as a smaller surfactant, rather than
only existing in the bulk solvent. The “surfactant-like” behaviour of the IL cation probably led to the
formation of a micelle akin to a catanionic micelle, which was difficult to observe using x-rays due to
lack of contrast between the micelle and the solvent interface. This led to the need to explore
computational methods to confirm findings. The ability of SOS to self-assemble in PIL mixtures was

confirmed in EtAN, a less cationic PIL with higher contrast with SOS, using SAXS.
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Chapter 4 set up the foundation for using molecular dynamics simulations to investigate mixtures of
ILs and molecular solvents. This chapter focused on choosing the optimal water model for use in
conjunction with existing force fields for ILs, which was used for multi-component systems of IL-
water-solutes. 30 water models were tested to explore how the simulated properties of water change
due to widely used, modern settings. OPC3 was identified as the best option for use with IL forcefields
as a suitable water model due to the accuracy of its simulated properties as well as the efficiency in

comparison to more computationally costly 4-point, 5-point or polarisable models.

Chapter 5 verified the experimental results from Chapter 3 using the preliminary results for MD
simulations gathered in Chapter 4. Finally, molecular dynamics simulations were performed for EAN-
water-surfactant systems to understand the interactions at a molecular level of the experimental results
from Chapter 3. The simulations suggested that ethylammonium ions, are not just in the bulk solvent,
but are in fact participating in the micelle formation with the surfactants. This provided an explanation
regarding the contrast issues which led to inconclusive results from SAXS experiments and was

consistent with the hypothesis from the experimental results.

As the properties of PILs are subject to drastic changes with minute changes to their chemical structure,
as shown by the example of EAN and EtAN, it was necessary to develop new methods of investigating
PIL mixtures. Due to the vast sample space in the field of PILs, it is near impossible to characterise
these mixtures only using experimental approaches. The work included in this thesis was able to
demonstrate that combining experimental, MD simulations and machine learning methods allow us to
approach the problem of characterising PIL mixtures from a fresh perspective. The work done during
this thesis will form the basis for future work in the space of MD simulations and machine learning

models for PILs and their mixtures.

Future work from this study could branch out to several areas, both experimental and computational:
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e Neutron scattering experiments could be performed on the experimental samples from Chapter
3 to verify the hypothesis regarding ethylammonium cation behavior during micelle formation.

e Polarizability should be introduced to the MD forcefields of ILs used for the Chapter 5 study
with mixtures. A polarizable forcefield for EAN has recently been published and should be
tested for compatibility with existing solvent and surfactant forcefields before using them in
mixtures. Testing water and more PILs using MD is a must for the future to understand the
interactions of PIL-water mixtures at the molecular level.

e Machine learning models could be trained with the insights gathered during this study
regarding how PILs influence surfactant self-assembly to aid the ultimate goal of our field,

designing PILs for various applications.

The biggest hindrance during the current study, lack of contrast between observed components in
solution, could be resolved using neutron scattering. It is anticipated these experiments would be
able to clarify the interactions between the surfactants and the protic ionic liquid mixtures. As
scattering tools rapidly progress with the availability of resources such as x-ray free electron lasers,
there is no doubt that future experimental work in the field of solvation properties of protic ionic
liquids will be able to probe even deeper into the molecular structure and dynamics. However, one
of the most prominent challenges faced by the field, the lack of behavioral patterns and
predictability with minute changes to ionic liquid chemical structures, cannot be resolved by merely
performing “crank the handle” type experiments. It is imperative to embrace computational
techniques such as machine learning and molecular dynamics to probe deeper into the trends of
large ionic liquid datasets to discern patterns one may not be able perform within the capacity of a
single laboratory group. The experimental ionic liquid researchers will need to find ways to
collaborate and create databases which can be easily accessible by computational researchers. These
ventures will come with many challenges, including verification and standardization of data, but it

will create imperative infrastructure for future advancements in the field.
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8 Appendix

8.1 Supplementary information for machine learning (Chapter 2)

Table 8.1. Reported data in the viscosity training set for ILs library.

ILs KF value Viscosity (m Pa.s)
Triethylammonium formate 0.00875 17.7
Triethylammonium di-n-butylphosphate 0.00875 94.4
Triethylammonium methanesulfonate 0.00875 100
Propylammonium formate 0.6753 96.77
Propylammonium acetate 0.5436 932.22
Propylammonium formate 0.6753 96.77
Propylammonium acetate 0.5436 932.22
Table 8.2. Reported data in the conductivity training set for ILs library.
IL KF (wt%) Conductivity (uS/cm)
Diisopropylethylammonium formate 0.0065 5800
N,N-diethylmethylammonium TfO 0.01 8330
Diethanolammonium formate 0.88 550
Diethanolammonium formate 0.6 770
Diethanolammonium formate 0.00875 930
Diethanolammonium acetate 0.85 130
Diethanolammonium acetate 0.00875 110
Diethanolammonium sulfamate 0.025 140
Diethanolammonium di-n-butylphosphate 0.00875 60
Diethanolammonium MsOH 0.00875 320
Diethanolammonium malonate 0.44 53
Alaninemethylester glycolate 0.18 23.6




Alanineethylester glycolate 0.62 55.4
Prolinemethylester glycolate 0.74 86.1
Ethylammonium acetate 0.018 2220
Ethylammonium heptafluorobutyrate 0.51 880
Ethylammonium pentadecafluorooctanoate 0.61 169
Glycineethylester lactate 0.17 4009
Prolinemethylester lactate 0.76 118




Figure 8.1. BRANNLP viscosity predictions for carboxylic acid based ILs.

Perfluoro
Trifluoro Heptafluoro octanoic
Formate | Acetate | Glycolate | acetic acid | Propi Lactate | Butyrate | Isobutyrate [ butyrate | Pentanoate | Hexanoate | Heptanoate | Octanoate | Malonate acid
Meth: i 70.61 76.84 3433
Ethylammonium 240.19 101.16 84.87 259.23  84.87 125.34 84.87 65.36
Ethanolammonium 95.98 294.82  1025.36 480.03 411.67 1096.56  411.67 579.20 -~ 41167 - 83.91 83.91 330.04
2methoxyethylammonium 36.84 116.57 455.43 201.14 170.43 489.52 17043 246.27 91.34 170.43 37.99 133.19
2-2-hydroxyethoxyethy i 106.28  310.67  1092.03 531.15 440.79 1167.40  440.79 618.91 248.24 440.79 110.93 90.73 90.73 351.24
A id
Propylammonium 13418 409.77  1324.00 631.03 543.17 1413.73  543.17 757.99 309.17 543.17 140.29 115.19 115.19 434.63
Propanolammonium 309.67 84921  2684.92 =" 1167.62 285486 1167.62  1593.83 690.36 1167.62 33091 275.52 275.52 953.86
2-propanol i 61023 1599.06 = 475321 @ 246926  2163.53 216353 290280 131771 216353 659.13 554.77 55477 1777.86 6581
2-methyl propyl i 11926 360.11  1246.24 591.47 508.67 1331.19  508.67 711.22 288.57 508.67 130.32 106.87 106.87 406.50
Isopropylammonium 436.15  1479.41 710.54 612.59 1578.61  612.59 851.86 350.80 612.59 160.58 132.14 132.14 491.35
Butyl i 82.24 256.81 921.15 427.99 366.47 985.76  366.47 517.39 366.47 90.12 73.45 73.45 290.94
2-methyl butyl ammonium 79.14 247.99 892.82 413.91 354.25 955.62 35425 500.65 197.28 354.25 86.74 70.65 70.65 281.04
Sec butyl i 47.63 156.40 591.75 266.38 226.60 635.00  226.60 324.58 123.29 226.60 52.41 4232 4232 178.14
N-butyramide
Isobutyramide 44.03 48.06
Pent i 74.68 235.27 851.80 393.58 911.98  336.62 476.45 186.97 336.62 81.89 66.64 66.64 266.78
Heptylammonium 78.76 246.92 889.39 41221 951.98 35278 498.62 196.42 35278 86.33 70.31 70.31 279.85
Octylammonium 75.05 236.32 855.21 395.27 915.61  338.08 478.46 187.82 338.08 82.29 66.97 66.97 267.96
Dimethylammonium 9ES 3214 14506 5883 15719 4897 7361 [ 2451 | 4897 37.26
N-methyl-2-hydroxyethylammonium | ~ 73.60 232.18 841.81 388.64 901.36 / 470.57 18447 " 80.72 65.67 65.67 263.32
bis-2-hydroxyethylmethylammonium 405.06  1384.62 661.98 570.18 1478.06  570.18 794.54 32534 570.18 148.15 121.75 121.75 456.68
Diethyl i 59.29 249.75 105.49 88.57 269.48 130.61 88.57 68.26
Diethanolammonium 33922 90439  2807.28  1408.43 122524 2984.19 122524  1670.21 726.13 1225.24 349.24 291.03 291.03 1074.87
bis-2-methoxyethylammonium 69.80 7596 [12197 3391
Diallylammonium 80.07 116.12 378.93 165.11 139.51 407.77  139.51 202.84 73.97 139.51
Dinpropylammonium 63.21 264.35 112.14 94.23 285.13  94.23 138.69 4891 94.23 72.72
Dibutyl i 60.17 114.89 449.59 198.38 168.06 48328  168.06 242.94 168.06 37.39 131.30
Dimethylethylammonium 114.70 45.65 37.85 12440 = 37.85 57.37 37.85
N-allyl dimethylammonium 135.55 54.65 45.44 146.84 4544 68.46 45.44 3451
Diethylmethylammonium 114.49 45.56 37.78 12418  37.78 57.26 37.78
N-N-diethylmethyl i 114.49 45.56 37.78 124.18 = 37.78 57.26 37.78
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N-allyldiethylammonium 135.07 54.44 45.26 14633 4526 68.20 4526 34.38
N-N-diethylpropylammonium 113.22 45.01 3732 12281 = 3732 56.59 3732
Triethylammonium 117.53 46.86 38.88 12745 = 38.88 58.87 38.88
Triethanol i 26729  744.16  2390.76  1186.57 1029.94 254381 1029.94  1410.92 605.23 1029.94 287.55 238.88 238.88 887.59
Tributylammonium 53.42 227.70 95.51 80.07 24584  80.07 118.46 41.19 80.07 61.58
Trihexyl i 51.34 219.79 91.95 77.04 23736 77.04 114.12 39.55 77.04 59.20
Trioctylammonium 49.82 214.03 89.36 74.84 231.17  74.84 110.96 3836 74.84 57.47
Alanine ethyl ester
Alanine methyl ester
Glycine ethyl ester
Proline methyl ester
Collidini 86.12 33.51 93.59 42.36
Diphenylammonium 31.83 108.54 427.42 187.89 159.05 459.59  159.05 230.32 84.93 159.05 35.14 124.12
Lutidinium 45.31 49.46
lini 88.63 34.57 96.29 43.67
N.N.N'.N"-Tetramethylguanidine 81.96 332.95 143.69 121.17 35858 12117 176.95 63.76 121.17 94.02
HNC dmaH 81.96 332.95 143.69 121.17 35858 121.17 176.95 63.76 121.17 94.02
Amilamini 263.13 941.37 438.06 375.21 1007.26 37521 529.35 209.57 375.21 92.54 75.46 75.46 298.02
N-(2-ethyl-hexyl)-ethylenediami 265.60 74727 239770  1190.25 1033.17 255115 1033.17  1415.22 607.22 1033.17 288.56 239.73 239.73 837.18
N-Butylethylenediamine 299.84 83477 264840  1323.54 1150.46 281625 1150.46  1571.06 679.72 1150.46 325.47 270.92 270.92 934.15
N-hexylethylenediaminium 27500 77138  2467.04  1227.03 1065.52  2624.49 1065.52  1458.25 627.18 1065.52 298.70 248.29 248.29 863.91
N-octylethylenediaminium 25875  729.65  2346.86  1163.32 1009.50  2497.37 1009.50  1383.71 592.63 1009.50 281.17 233.49 233.49 817.64
N-decylethylenediaminium 24986  706.73  2280.59 112828 978.70 242726 978.70 1342.68 573.68 978.70 271.58 225.40 225.40 792.22
N-dodecylethylenediamini 24126 68448  2216.01 1094.20 94876 235894 948.76 1302.76 555.28 948.76 262.29 217.57 217.57 767.52
thyldi i 25333 715.67  1521.64 73225 631.56 1623.41  631.56 877.46 362.22 631.56 166.18 136.83 136.83 506.87




Figure 8.2. BRANNLP viscosity predictions for inorganic acid based ILs.
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Benzamide
Diphenylammonium
Lutidinium
Quinolinium
N,N,N',N'-Tetramethylguanidine
HNC dmaH
Amilamini
N-(2-ethyl-hexyl)-ethylenedi
N-Butylethylenediamine

Nt Tathyul
-hexylethy

N Tathyul
-octylethy

N-decylethyl
-decylethy

N-dodecylethyl
-dodecylethy

Ethyldiammonium

Hydrogene
bisfluoride

83.48
30.34
90.27

114.62
27426
552.38
106.34
131.50
73.07
70.29
42.10

66.29
69.95
66.62

65.33
121.15

289.70

29.85

237.77

75.07
238.62
269.68
247.14
232.41
22435
216.56
136.16

Chloride

83.48
30.34
90.27

114.62
274.26
55238
106.34
131.50
73.07
70.29
42.10

66.29
69.95
66.62

65.33
121.15

289.70

29.85

237.77

75.07
238.62
269.68
247.14
23241
22435
216.56
136.16

Perchlorate

78.55
384.72
158.43
412.09

508.43
1097.79
2041.16
475.96
573.82
34224
330.76
211.00

314.20
329.37
315.57
45.16

310.18
533.87
81.99
1152.27

967.65
74.08
71.26
69.21

147.79

112.40

112.40

350.45

970.70
1081.56
1001.27
948.34

919.24

890.96

591.69

Nitrate | Thiocyanate

68.69
342.16
139.60
409.09

453.48
986.67
1845.56
42423
512.42
304.01
293.71
186.49

278.86
292.47
280.09
39.25
275.25
476.40
71.73
1036.13

868.63
64.74
62.25
60.44

130.13

98.68
98.68
311.38
871.39
971.94
899.11
851.12
824.76
799.14
528.55

93.84
3444
101.39

128.45
304.88
610.23
119.26
147.18
8224
79.14
47.63

74.68
78.76
75.05

73.60
135.70

321.89

264.67

31.83

84.47
265.60
299.84
275.00
258.75
249.86
241.26
15234

Dihydrogen

hosphate

41.91
22231

87.62
238.93

297.78
666.63
1274.96
277.88
338.02
196.65
189.73
118.39

179.78
188.90
180.61
77.43
177.37
313.40
43.84
701.28

584.18
39.40
37.83
36.68

81.45

61.09

61.09
201.59
586.11
656.33
605.44
571.99
553.64
535.82
349.05

Dinbutyl
hosphate

103.31
488.95
205.18
523.00

642.47
1365.76
2508.72

602.26

723.30

436.03

421.71

271.59

401.02
419.98
402.74
181.79
396.00
673.93
181.79
2175.89

168.48
114.50
202.36
46.68
55.87
46.59
46.59
74.45
51.25
53.37
43.50
55.42
82.86
55.66
46.04
83.78
1206.89
16533
93.92
91.28

34.29
191.69

3537
146.66
146.66
446.27

1210.62
1345.97
1247.97
1183.28
1147.69
1113.08
1161.58

Mesylate

88.40
426.61
177.12
456.69

562.40
1206.16
2230.91

526.79

634.04

379.91

367.28

235.27

349.06
365.76
350.57
51.10
344.63
590.27
92.24
1265.50

98.11
174.65
39.53
47.43
39.46
39.46
63.44
43.45
45.27
36.80
47.04
70.70
47.25
38.98
40.60
1064.33
83.42
80.27
77.98

165.33

29.84
126.06
126.06
388.94

1067.66
1188.48
1100.99
1043.27
1011.54
980.68

653.62

Hexafluoro
isopropoxy | Hydrogen
sulfate sulfate
109.69 33.72
357.61 123.35
1455.78 598.41
663.77 24257
1547.35 647.92
42.56
1864.69 747.66
3699.79 1573.55
2867.88
1758.51 701.48
2076.34 840.38
1312.29 510.10
1273.20 493.57
855.11 319.82
35.87
69.55
1216.53 469.69
1268.47 491.58
1221.24 471.68
219.87 77.43
1202.72 463.89
1947.34 783.77
371.35 128.55
3863.17 1649.04
108.47 33.31
555.64 199.74
39231 136.51
655.54 239.29
175.15 56.40
205.79 67.32
174.85 56.29
174.85 56.29
266.36 89.33
190.45 61.83
197.49 64.34
164.40 52.61
20431 66.79
293.23 99.25
205.09 67.06
172.98 55.63
179.33 57.88
3306.09 1392.76
339.62 116.57
328.23 112.30
319.91 109.18
32.92
132.84 41.63
624.25 226.84
71.51
136.57 4291
490.31 174.22
490.31 17422
1340.17 521.91
3315.40 1397.01
3650.97 1551.04
3408.31 1439.54
324722 1365.87
3158.29 1325.32
3071.56 1285.87
2133.75 865.67

Pulfamate

89.46
32.71
96.70

122.62
291.99
585.92
113.81
140.57
78.37
75.40
45.29

71.14
75.04
71.49

70.11
129.57

448.52

32.18

253.34

30.22

80.50
25424
287.14
263.27
247.66
239.12
230.85
145.52

Triflate | Tf2N | BETI

47.11
246.18
97.83
264.41

328.92
73137 55.26 49.60
1391.39 122.78 110.97
307.12
372.96
217.99
210.40
131.82

199.46
209.48
200.36

196.80
346.03
49.26
769.06 58.83 52.83
79.32
52.57
96.40

4335

36.01
58.11
39.69

33.58

37.24
43.18
35.58

641.61
4432
42.56
41.29

46.94

91.00

68.43
68.43

223.43

643.72 4225
72015 _— 4865
664.76 _ " 43.99
62833 7 40.98
60834 _— 3935
588.92 37.77
385.04

BETT: bis[(pentafluoro-ethyl)sulfonyl]ate, Tf2N: bis(trifluoromethanesulfonyl)imide.



Figure 8.3. MLREM viscosity predictions for carboxylic acid based ILs.

Perfluoro
Trifluoro Heptafluor Heptanoat octanoic
Formate | Acetate | Glycolate |acetic acid |Propionate| Lactate | Butyrate |Isobutyrate| obutyrate |Pentanoate|Hexanoate c Octanoate| Malonate acid
Methyl 80.40 514.20 152.68 80.40 514.20 80.40 80.40 152.68 80.40 80.40 80.40 80.40 121.20 80.40
Ethyl; 688.93 204.56 107.72 688.93 107.72 107.72 107.72 107.72 107.72 107.72 162.38
Ethanolammonium 95.98 294.82 342763 1017.74 535.96 3427.63 535.96 535.96 / 535.96 535.96 535.96 330.04 535.96
2methoxyethylammonium 102.80 657.41 195.20 102.80 657.41 102.80 102.80 195.20 102.80 102.80 102.80 102.80 154.95 102.80
2-2-hydroxyethoxyethylammonium 106.28 469.26 3001.05 531.15 469.26 3001.05 469.26 469.26 891.07 469.26 469.26 469.26 469.26 707.34 469.26
A )
Propyl 134.18 409.77 1830.68 543.57 286.25 1830.68 286.25 286.25 543.57 286.25 286.25 286.25 286.25 431.49 286.25
Propanol. 309.67 84921 1137.43 113743 113743 215987 113743 113743 113743 113743 953.86 1137.43
2-proy 109.21 382.81 2448.19 726.92 382.81 2448.19 382.81 382.81 726.92 382.81 382.81 38281 382.81 577.04 382.81
2-methylpropylammonium 134.95/ 473.03 302521 898.25 473.03 302521 473.03 473.03 898.25 473.03 473.03 473.03 473.03 713.04 473.03
Isopropyl i ~ 107.72 688.93 204.56 107.72 688.93 107.72 107.72 204.56 107.72 107.72 107.72 107.72 162.38 107.72
Butylammonium 120.33 421.80 2697.53 800.95 421.80 2697.53 421.80 421.80 421.80 421.80 421.80 421.80 635.80 421.80
2-methylbutylammonium 189.81 665.34 425507 1263.42 665.34 4255.07 665.34 665.34 1263.42 665.34 665.34 665.34 665.34 1002.92 665.34
Sec-butylammonium 72.14 252.86 1617.11 480.15 252.86 1617.11 252.86 252.86 480.15 252.86 252.86 252.86 252.86 381.15 252.86
N-butyramide 153.35 15335
Isobutyramide 164.16 164.16
Pentylammonium 124.28 435.64 2786.06 827.24 435.64 2786.06 435.64 435.64 827.24 435.64 435.64 435.64 435.64 656.67 435.64
Heptylammonium 107.53 376.94 2410.63 715.77 376.94 2410.63 376.94 376.94 715.77 376.94 376.94 376.94 376.94 568.18 376.94
Octylammonium 95.11 333.39 2132.13 633.08 333.39 2132.13 333.39 333.39 633.08 333.39 333.39 333.39 333.39 502.54 333.39
Dimethyl ammonium 167.48 167.48
N-methyl2-hydroxyethylammonium 75.70 265.33 1696.90 503.85 1696.90 265.33 503.85 265.33 265.33 265.33 399.96 265.33
bis-2-hydroxyethylmethyl i 402.97 2577.11 765.20 402.97 2577.11 402.97 402.97 765.20 402.97 402.97 402.97 402.97 607.42 402.97
Diethylammonium 104.61 669.00 198.64 104.61 669.00 143.05 104.61 104.61 104.61 104.61 104.61 157.68 104.61
Diethanol ammonium 904.39 2300.03  1211.24 1211.24  1211.24  2300.03 121124 121124 121124 121124 1074.87 1211.24
bis-2-methoxyethylammonium 150.90 150.90
Diallyl 80.07 1008.81 299.54 157.74 1008.81 157.74 157.74 299.54 157.74 157.74 157.74 157.74 116.12 157.74
Dinpropylammonium 56.99 199.76 1277.56 379.33 199.76 1277.56 199.76 199.76 379.33 199.76 199.76 199.76 199.76 301.12 199.76
Dibutylammonium 1637.30 486.15 256.01 1637.30 256.01 256.01 256.01 256.01 256.01 256.01 38591
Dimethylethylammonium 164.63 164.63
N-allyldimethyl i 169.36 169.36
Dicthylmethylammonium 246.17 246.17 73.09 58.02
N-N-diethylmethylammonium 21132 21132 62.74
N-N-diallylmethylammonium 293.71 293.71 87.21 69.23
N-methyldipropyl i 177.70 177.70
Diisopropylmethylammonium 203.57 203.57 60.44
N-N-dimethylpropylammonium 117.27 117.27
Diisopropylethylammonium 260.89 77.46 260.89 77.46 61.49
Dimethylbutylammonium 23629 70.16 70.16 55.69
N-allyldicthyl i 281.83 83.68 83.68 66.43
N-N-diethylpropyl 266.15 79.02 62.73
Tricthylammonium 267.29 217959  1147.81 1147.81 114781  2179.59 114781 114781 1147.81 114781 887.59 1147.81
Triethanolammonium 55.94 357.77 106.23 55.94 357.77 55.94 55.94 106.23 55.94 55.94 55.94 55.94 84.33 55.94
Tributylammonium 114.45 114.45
Trihexylammonium
Alanine ethyl ester
Alanine methyl ester
Glycine ethyl ester
Proline methyl ester
Collidini 211.43 62.78 211.43 62.78
B id 186.75 5545 186.75 55.45
Diphenylammonium 186.03 186.03
Lutidinium 91.53 91.53
Quinolinium 17139 17139
N.N,N',N'-Tetramethylguanidine 9291 325.66 2082.70 618.40 325.66 2082.70 325.66 325.66 618.40 325.66 325.66 325.66 325.66 490.89 325.66
HNC dmaH 9291 325.66 2082.70 618.40 325.66 2082.70 325.66 325.66 618.40 325.66 325.66 325.66 325.66 490.89 325.66
Amilamini 28221 1804.83 535.89 28221 1804.83 28221 28221 535.89 28221 28221 28221 28221 425.40 28221
N-(2-ethyl-hexyl)- ethylenedi 215.06 753.85 4821.13 1431.49 753.85 4821.13 753.85 753.85 1431.49 753.85 753.85 753.85 753.85 1136.34 753.85
N-Butylethylenediamine 332.98 1167.18 221637 1167.18 1167.18  1167.18 221637 1167.18 1167.18 1167.18 1167.18 175938  1167.18
N-hexylethylenediaminium 252.53 885.19 1680.90 885.19 885.19 885.19 1680.90 885.19 885.19 885.19 885.19 133432 885.19
N-octylethylenediamini 180.00 630.96 403520  1198.13 630.96 4035.20 630.96 630.96 1198.13 630.96 630.96 630.96 630.96 951.09 630.96
N-decylethylenedi: 123.43 432.64 2766.90 821.55 432.64 2766.90 432.64 432.64 821.55 432.64 432.64 432.64 432.64 652.16 432.64
N-dodecylethylenediaminium 83.33 292.09 1868.04 554.66 292.09 1868.04 292.09 292.09 554.66 292.09 292.09 292.09 292.09 440.30 292.09
Ethyldi i 25333 71567 | 732493 2174.92 114535 [ 730493] 114535 114535 217492 114535 114535 114535 114535 172648 114535




Figure 8.4. MLREM viscosity predictions for inorganic acid based ILs.

Hydrogene
bisfluoride | Chloride
Methylammonium
Ethylammonium
Ethanolammonium 101.43 101.43
2methoxyethylammonium
2-2-hydroxyethoxyethylammonium 88.81 88.81
Acetamide
Propylammonium 54.18 54.18
Propanolammonium 215.27 215.27
2-propanolammonium 72.45 72.45
2-methylpropylammonium 89.53 89.53
Isopropylammonium
Butylammonium | 7983 79.83
2-methylbutylammonium 125.92 125.92
Sec-butylammonium
N-butyramide
Isobutyramide
Pentylammonium 8245 82.45
Heptylammonium 71.34 71.34
Octylammonium 63.10 63.10
Dimethyl ammonium
N-methyl2-hydroxyethylammonium
bis-2-hydroxyethylmethylammonium 76.26 76.26
Diethylammonium
Diethanol ammonium 229.24 229.24
bis-2-methoxyethylammonium
Diallylammonium
Dinpropylammonium
Dibutylammonium
Dimethylethylammonium
N-allyldimethyl onium
Diethylmethylammonium
N-N-diethylmethylammonium
N-N-diallylmethylammonium
N-methyldipropylammonium
Diisopropylmethylammonium
N-N-dimethylpropylammonium
Diisopropylethylammonium
Dimethylbutylammonium
N-allyldiethylammonium
N-N-diethylpropylammonium
Triethylammonium 217.23 217.23
Triethanolammonium
Tributylammonium
Trihexylammonium
Alanine ethyl ester
Alanine methyl ester
Glycine ethyl ester
Proline methyl ester
Collidinium
Diphenylammonium
Lutidinium
Quinolinium
N,N,N',N'-Tetramethylguanidine 61.63 61.63
HNC dmaH 61.63 61.63
Amilamini 53.41 53.41
N-(2-ethyl-hexyl)- ethylenediamine 142.67 142.67
N-Butylethylenediamine 220.90 220.90
N-hexylethylenediamini 167.53 167.53
N-octylethylenediaminium 119.41 119.41
N-decylethylenediamini 81.88 81.88
N-dodecylethylenedi 55.28 55.28
Ethyldiammonium 216.77 216.77

Perchlorat

e

68.66
341.62
65.52
299.10

182.46
725.00
244.00
301.51
68.66
268.85
424.09
161.17

277.68
240.26
212.50

169.12
256.85
66.68
772.04

100.54
127.33
163.18

731.62

207.58
207.58
179.88
480.51
743.96
564.22
402.17
275.77
186.18
730.05

Nitrate

68.66
341.62
65.52
409.09

182.46
725.00
244.00
301.51
68.66
268.85
424.09
161.17

277.68
240.26
212.50

169.12

256.85
66.68
772.04

100.54
127.33
163.18

731.62

207.58
207.58
179.88
480.51
743.96
564.22
402.17
275.77
186.18
730.05

Thiocyanate

101.43

88.81

54.18
215.27
72.45
89.53

79.83
125.92

82.45
71.34
63.10

76.26

229.24

217.23

61.63
61.63
53.41
142.67
220.90
167.53
119.41
81.88
55.28
216.77

Hexafluoro
Dihydrogen| Dinbutyl isopropoxy | Hydrogen
phosphate | phosphate | Mesylates| sulfate sulfate
58130 17964 10995 17964  172.60
77883 24068 14731 24068 23125
387491 119748 73293 119748  598.41
74320 22967 14057 22967  220.67
3302.66 104845 64172 104845  647.92
206057 63957 39146  639.57  614.50
254133 155546 254133  2441.72
2767.67 85530  523.50 85530 82178
341998 105689 64688 105689 101546
77883 24068 14731 24068 23125
304953 94241 57681 94241 90547
481033 148655  909.87 148655 142829
182813 56495 34579 56495 542381
173.36 53.57 - 53.57 51.47
185.58 57.35 57.35 55.10
3149.63 97334 59575 97334 93519
272520 84218 51547 84218  809.17
241036 74488 45592 74488  715.69
18934 | 5851 | 3581 5851 77.43
191834  592.83 36285 59283  569.59
291340 90034  551.07 90034  865.05
75630 18179  143.05 23372 22456
33922 1931.84 270624  2600.17
17059 | 5272 3227 5272
114045 35244 21571 35244 33862
144427 44633 27318 44633  428.84
1850.96  572.01 35011 57201  549.59
186.11 57.51 57.51 55.26
19146 | 59.17 59.17 56.85
27830  86.00 86.00 82.63
23889  73.83 73.83 70.93
33204 10261 6280 10261  98.59
20089 | 62.08 62.08 59.65
230.13 71.12 71.12 68.33
132.57
294.93 91.14 55.79 91.14 87.57
267.13 82.55 82.55 79.32
318.61 98.46 60.26 98.46 94.60
300.88 83.78 71.50 92.98 89.34
256453 1569.66 256453  2464.02
40446 16533 7650 12499  120.09
129.39
23902 7387 73.87 70.97
21112 65.24 65.24 62.69
21030 64.99 64.99 62.44
103.47
193.75 59.88 50.88 57.53
235448 72761 44535 72761  699.09
235448  727.61 44535  T27.61  699.09
204034 63053 38593  630.53  605.82
168431 103091 168431 161830
2607.81 159615  2607.81  2505.59
197777 121052 1977.77 190025
456177 140974 86285  1409.74 135448
312796  966.64  591.65  966.64  928.76
211181 65262 39945 65262  627.04
1161.58 156630  2550.04  2458.74

Pulfamate

68.66
341.62

65.52
299.10

182.46
725.00
244.00
301.51
68.66
268.85
424.09
161.17

277.68
240.26
212.50

169.12
256.85
66.68
448.52

100.54
127.33
163.18

731.62

207.58
207.58
179.88
480.51
743.96
564.22
402.17
275.77
186.18
730.05

Triflate | TN | BETI
109.95 5334
14731 71.46
73293 21762 35556
14057 68.19
64172 190.54 31131
30146 11623 189.90
155546 46185 75457
52350 15544 25396
64688 19207 31381
14731 7146
57681 17127 279.82
909.87  270.16  441.39
34579 102.67  167.75
50575 17689  289.00
51547 153.05  250.06
455.92 13537 22117
36285 10774 176,02
55107 163.62 26733
143.05 69.40
165639 49182 803.54
21571 6405  104.65
27318 8L11 13252
35011 10395  169.84
58.11

55.79

56.91

1569.66  466.06
76.50

44535 13223 21604
44535 13223 21604
38593 11459  187.22
103091 _—" 500.11
150615 __— 77431
121052 __—" 58724
86285 ___— 41858
59165 __—  287.02
39945 " 19378
156630 46507 759.83

BETT: bis[(pentafluoro-ethyl)sulfonyl]ate, Tf2N: bis(trifluoromethanesulfonyl)imide.




Figure 8.5. MLREM/BRANNLP conductivity predictions for carboxylic acid based ILs.

Trifluoro Perfluoro
acetic Heptafluor octanoic
Formate | Acetate |Glycolate| acid | Propionate | Lactate | Butyrate | Isobutyrate| obutyrate | Pentanoate| Hexanoate| Heptanoate | Octanoate | Malonate | acid
Methylammonium 18.61 1.02 7.70 0.67 0.71
Ethylammonium 0.74 10.54 0.89 0.68 1.11 1.67 0.58
Ethanolammonium 4.27 1.98
2methoxyethylammonium 2.26 1.16
2-2-hydroxyethoxyethylammonium 1.37 0.66
Acetamide 6.29
Propylammonium 2.16
Propanolammonium 1.34
2-propanolammonium 1.66 0.78
2-methylpropylammonium 6.38 0.72 2.63
Isopropylammonium 0.79 3.07 0.58
Butylammonium 3.06 1.35
2-methylbutylammonium 3.69 1.59
Sec-butylammonium 6.57 0.69 2.71
N-butyramide 1.10
Isobutyramide 2.25 1.04
Pentylammonium 6.71 0.65 2.78
Heptylammonium 3.31 1.45
Octylammonium 3.30 1.45
Dimethyl i 1.98 0.85 1.56 2.37 2.42 1.34 1.20 1.14 1.07
N-methyl2-hydroxyethylammonium
bis-2-hydroxyethylmethylammonium
Diethylammonium 1.03 10.16 1.22 0.98 0.71 0.64 0.61 0.58
Diethanol ammonium
bis-2-methoxyethylammonium 0.64 0.74 0.62
Diallylammonium 0.64 0.75 0.61
Dinpropylammonium 0.65 0.77 0.62
Dibutylammonium
Dimethylethylammonium 1.84 1.44 221 222 1.24 1.10 1.05 0.98
N-allyldimethylammonium d 1.63 1.28 1.96 1.92 1.10 0.98 0.93 0.87
Diethylmethy! i 26.12 232 10.97 1.35 1.06 1.62 1.52 0.92 0.82 0.78 0.74
N-N-diethylmethylammonium 12.39 1.45 5.46 0.89 0.72 1.05 0.91 0.63
N-N-diallylmethylammonium 11.30 1.33 4.93 0.81 0.66 0.97 0.82 0.58
N-methyldipropylammonium 2.64 13.99 1.49 1.16 1.80 1.71 0.99 0.88 0.84 0.79
Diisopropylmethy! i 291 14.98 1.66 1.30 2.00 1.96 1.12 1.00 0.95 0.89
N-N-dimethylpropy! i 525 1.89 9.02 1.09 0.85 1.31 1.16 0.74 0.66
Diisopropylethy! i 10.19 1.33 4.64 0.83 0.68 0.98 0.85 0.60
Dimethylbutylammonium 8.89 1.12 3.89 0.70 0.83 0.68
N-allyldiethylammonium 8.41 1.06 3.66 0.66 0.79 0.64
N-N-diethylpropylammonium 10.52 1.67 7.17 0.99 0.79 1.19 0.83 0.69 0.62 0.59
Triethylammonium 1.50
Triethanolammonium 4.50 0.68 1.98
Tributylammonium 8.68 0.97 3.56 0.59 0.71
Trihexylammonium 8.27 0.93 3.38 0.68
Alanine ethyl ester 1.25 0.62
Alanine methyl ester 1.51 0.72
Glycine ethyl ester 1.79 0.92
Proline methyl ester 0.70 2.26
Collidini 4.63 1.59 6.83 0.94 0.75 1.13 0.97 0.65 0.58
Benzamide 9.26 0.77 3.73
Diphenylammonium 11.75 1.59 5.57 1.00 0.82 1.17 1.06 0.72 0.65 0.63 0.60
Lutidinjum 7.28 235 12.19 1.32 1.03 1.60 1.48 0.89 0.79 0.75 0.70
inolini 4.89 1.65 6.18 1.02 0.82 1.20 1.08 0.72 0.65 0.63 0.59
N.N,N'.N'-Tetramethylguanidine 243 11.67 1.40 111 1.69 1.59 0.96 0.85 0.81 0.76
HNC dmaH 2.43 11.67 1.40 1.11 1.69 1.59 0.96 0.85 0.81 0.76
Amilamini 0.91 1.62
N-(2-ethyl-hexyl)- ethylenediamine 236 12.48 1.32 1.03 1.61 1.48 0.88 0.79 0.75 0.70
N-Butylethylenediamine 2.08 10.77 1.17 0.91 1.42 1.28 0.78 0.70 0.66 0.62
N-hexylethylenediaminit 2.11 10.95 1.19 0.93 1.44 1.30 0.80 0.71 0.67 0.63
N-octylethylenediaminii 2.14 11.16 1.21 0.94 1.47 1.32 0.81 0.72 0.68 0.64
N-decylethylenediamini 2.14 11.14 1.20 0.94 1.46 1.32 0.81 0.72 0.68 0.64
N-dodecylethylenediamini 2.16 11.26 1.21 0.95 1.48 1.33 0.81 0.72 0.69 0.64

Ethyldiammonium ‘ 10.29 0.70 19.57 0.99 0.72 1.27 1.52 0.59




Figure 8.6. MLREM/BRANNLP conductivity predictions for inorganic acid based ILs.

Hexafluoro
Hydrogene Dihydrogen | Dinbutyl isopropoxy | Hydrogen
bisfluoride | Chloride |Perchlorate | Nitrate | Thiocyanate| phosphate | phosphate | Mesylates | sulfate sulfate | Pulfamate | Triflate | Tf2N | BETI
Methylammonium 12.87 16.03 9.82 10.54 15.55 5.46 13.91 1.72 7.8 545 2310 3279 228
Ethylammonium 16.43 2111 1207 1309 2038 6.24 17.95 227 8.62 623 | 2639 3762 241
Ethanolammonium 421 5.07 334 355 4.94 201 4.49 0.54 222 2.00 1141 1702 0386
2methoxyethylammonium 1.53 1.96 1.14 1.23 1.89 0.60 1.67 - 0.82 0.60 5.42
2-2-hydroxyethoxyethylammonium 112 1.38 0.87 0.67 1.34 0.50 1.21 0.54 0.50 4.68
Acetamide 5.85 6.90 476 5.03 6.74 3.02 6.20 0.72 3.79 3.02 14.20
Propylammonium 3.28 419 242 2.62 4.05 1.27 3.57 0.60 1.74 1.26 9.51
Propanolammonium 112 137 0.88 0.94 133 0.52 1.20 - 0.67 0.52 481
2-propanolammonium 1.28 1.57 1.00 1.07 1.53 0.58 1.38 0.76 0.58 5.23
2-methylpropylammonium 381 493 278 3.02 476 1.41 418 0.71 197 1.41 1038
Tsopropylammonium 4.66 6.03 3.40 3.69 582 1.73 511 0.81 241 1.73 1183
Butylammonium 1.84 235 1.37 1.48 227 0.72 2.01 0.40 0.99 0.72 630
2-methylbutylammonium 2.10 271 1.54 1.67 261 0.79 230 0.46 1.10 0.79 6.80
Sec-butylammonium 423 5.43 3.12 338 525 1.62 4.63 0.73 223 1.61 11.18
N-butyramide 1.02 1.21 0.82 0.87 1.18 051 1.08 - 0.64 0.51
Isobutyramide 211 254 1.68 178 248 1.01 226 130 1.01
Pentylammonium 4.66 5.93 3.46 3.74 5.73 1.83 5.07 0.74 2.50 1.83 1191
Heptylammonium 2.10 267 1.57 1.70 258 0.84 229 0.43 1.14 0.83 7.05
Octylammonium 2.10 2.67 1.57 1.69 258 0.83 2.29 0.42 1.14 0.83 7.04
Dimethyl ammonium 2542 3595 1618  18.19 3436 6.33 0.66 28.93 443 8.18 631 30.90
N-methyl2-hydroxyethylammonium 3.04 3.93 222 241 3.79 1.13 3.33 0.60 1.58 1.13 8.92
bis-2-hydroxyethylmethylammonium 1.69 2.14 1.26 1.36 2.07 0.67 184 | 037 o091 0.66 5.92
Diethylammonium 9.08 6.18 6.83 11.94 2.74 407 2.73 17.16
Diethanol ammonium 0.96 1.20 0.73 0.78 1.16 0.40 054 [0S 389
bis-2-methoxyethylammonium 2.60 3.67 1.71 1.91 3.50 0.71 1.09 0.71 5.58
Diallylammonium 3.73 5.06 258 2.84 4385 118 1.73 1.18 935
Dinpropylammonium 3.80 5.16 2.62 2.89 4.94 1.19 1.75 1.19 9.44
Dibutylammonium 219 2.96 152 1.67 284 0.70 1.02 0.70 5.95
Dimethylethylammonium 238 3390 1556  17.39 3232 638 0.60 27.04 407 9.83 636 | 3036
N-allyldimethylammonium 2032 2851 1348 1500 2719 5.71 0.52 22.90 3.44 8.66 569 1050
Diethylmethylammonium 14.85 20.62 9.97 11.06 19.69 432 044 | __— 260 6.49 431 8.46
N-N-diethylmethylammonium 637 8.78 432 478 8.40 1.90 - 7.14 1.41 283 1.90 437
N-N-diallylmethylammonium 5.79 7.91 3.96 437 757 178 6.46 1.26 262 1.77 415 2029 059
N-methyldipropylammonium 1946 2673 1324 1464 2557 5.88 0.46 21.77 3.09 8.72 586 | 27.68 1.93
Diisopropylmethylammonium 2078 2922 1375 1531 27.85 5.80 053 2343 353 8.82 5.78 1.80
N-N-dimethylpropylammonium 12.84 1730 8.94 9.82 16.59 415 1427 2.05 6.03 414 [ 2166 3225 139
Diisopropylethylammonium 5.06 7.04 339 3.76 6.72 1.46 5.69 1.26 220 146 1107 1803 = 048
Dimethylbutylammonium 443 6.02 3.05 337 577 1.39 4.94 1.02 2,04 139 333 1718 047
N-allyldiethylammonium 420 5.68 291 320 5.44 1.34 4.67 0.96 1.96 134 323 1670 046
N-N-diethylpropylammonium 9.53 12.95 6.56 7.23 12.41 2.98 236 1.71 438 297 1783 2722 097
Triethylammonium 0.69 0.86 0.52 0.56 0.83 074 [UOMSTYN 039 029 281 504
Triethanolammonium 2.14 2.86 151 1.66 274 0.72 237 056 1.03 0.72 618 1052
Tributylammonium 475 6.28 338 3.70 6.04 1.64 524 0.92 233 164 1175 1849 057
Trihexylammonium 457 6.01 3.26 3.56 5.79 1.60 5.03 0.88 226 159 1149 1810 056
Alanine ethyl ester 1.01 1.23 0.79 0.66 1.20 0.46 1.09 0.60 0.46 441 735
Alanine methyl ester 1.28 1.55 1.01 1.08 1.51 0.60 137 0.78 0.60 533 865
Glycine ethyl ester 192 230 1.54 1.63 224 0.94 2.05 1.20 0.94 697 1089 040
Proline methyl ester 2.55 3.40 1.80 145 326 036 283 0.63 123 0.6 724 12,08
Collidinium 9.29 12.53 6.45 7.09 12.02 2.08 1033 1.63 434 297 1765 2688 098
Benzamide 6.56 8.33 4.89 5.28 8.05 2.60 714 0.95 3.54 259 _— | 2221 098
Diphenylammonium 6.10 8.67 3.94 441 827 1.59 6.92 1.61 247 1.58 1174 1927 050
Lutidinium 17.18 2334 1184 1304 2236 539 0.40 19.14 2.68 7.90 538 2584 3792 180
Quinolinium 7.06 995 4.66 5.19 9.48 195 | 036 @ 797 1.68 298 1.95 1385 2213 062
N,N,N',N"-Tetramethylguanidi 15.88 2210 1064 1181 21.10 459 0.45 17.85 2.76 6.90 457 2404 3594 143
HNC dmaH 15.88 2210 1064 1181 21.10 459 0.45 17.85 2.76 6.90 457 2404 3594 143
Amilamini 229 2.93 1.70 1.84 2.83 089 0400 250 047 1.22 0.89 741 12.04
N-(2-ethyl-hexyl)- ethylenediamine 17.66 23.91 1221 1344 2201 5.60 0.40 19.65 271 8.19 559 | 2637 1696 1589
N-Butylethylenediamine 15.63 2094 1094 1201 20.10 5.14 1733 236 7.43 513 2464 1705 177
N-hexylethylenediamini 15.85 21.25 1108 1216 2040 5.19 17.58 2.40 751 518 2483 1600 178
N-octylethylenediamini 16.09 2160 1123 1234 2073 525 17.85 2.44 7.60 524 2504 1613 180
N-decylethylenediamini 1607 2158 1122 1232 2071 5.25 17.83 2.44 7.60 523 2503 1613 1380
N-dodecylethylenediamini 1621 21.78 1131 1242 2089 528 17.99 2.46 7.65 526 2515 1620 181
Ethyldiammonium 2707 3373 2063 2216 3271 1147 29.26 460 1530 1144 | 3779 US1210 497

BETT: bis[(pentafluoro-ethyl)sulfonylJimide, Tf2N: bis(trifluoromethanesulfonyl)imide.



8.2 Supplementary information for surfactant self-assembly (Chapter 3)

Figure 8.7. CMC graphs for SOS, CTAB and Ci,E4 in EAN-water concentrations 5, 14, 25, 33, 50 and
75 mol% EAN.
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8.3 Supplementary material for Molecular Dynamics (Chapter 4)

Figure 8.8. Radial distribution functions (RDFs) for the water models examined in this work. The
experimental RDFs are taken from A. K. Soper.
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COVID-19 Thesis Impact Statement

Majority of the work included in this thesis was completed during the COVID-19 pandemic in Victoria,
Australia. Victoria experienced six lockdowns between March 2020 and October 2021 that collectively
totalled 262 days. The initial plan for the thesis was an experimental one, where experiments would be
performed in both Australia and France. The co-tutelle agreement under which project was undertaken
also required me to spend 6 months in each country every year from 2019 to 2021. Despite obtaining
external funding to fund this collaboration in the form of a SAAFE travel grant from AINSE, only one
visit could be arranged in March 2020 which had to be cut short due to the beginning of global pandemic
travel restrictions. During the lockdowns, I was unable to complete experimental work to full capacity,
had no access to facilities such as the Australian Synchrotron or Neutron scattering facilities and was
unable to travel back to France. Therefore, the direction of the thesis changed quite drastically to focus
more on the computational aspects of the project, which were initially supposed to complement the
experiments. Molecular dynamics simulations and machine learning algorithms were devised during
the height of the pandemic to understand how these computational methods could be used to bridge the
gaps in the experimental data collected during the first year of the PhD and existing data from literature.
While this might seem like a setback, and it was to a degree, the overall quality and impact of the thesis
was improved by considering computational methods which have not previously been used for the

systems we have experimentally investigated.
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