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Abstract 
 

Ionic liquids (ILs) are salts with low melting points, often resulting in a liquid state at room temperature. 

ILs are regarded as highly tailorable designer solvents with many potential applications, such as in 

organic synthesis, energy storage devices and as solvents for biological molecules. However, for many 

applications the use of ILs is limited due to their cost and viscosity. One approach used to address this 

is combining ILs with molecular solvents. However, currently there is insufficient knowledge about the 

interaction of these IL-molecular solvents with solutes and interfaces, particularly regarding which ions 

or molecular solvent molecules are involved in solvating various solutes. This thesis expands our 

understanding and provides insight into the tools available to investigate solvent behaviour of ionic 

liquids at a molecular level using both experiments and computational simulations. 

 

Machine learning was initially used to understand the trends between chemical structure and 

physicochemical properties of protic ionic liquids (PILs) in the presence of water. Due to the vast 

sample space in the field of PILs, it is near impossible to characterise these mixtures experimentally. 

Machine learning, which allows for the input of experimental data from which extrapolations can be 

made about new ILs, is a novel technique which has sparked great interest within our field. Machine 

learning models were created using linear regression and neural network methods using literature 

experimental viscosity and conductivity data to predict 8605 viscosity values and 8580 conductivity 

values. The viscosity and ionic conductivity of 10 new PILs of these predicted values were verified 

experimentally as part of this thesis, which demonstrates that high quality machine learning models can 

be crafted to complement experimental studies in the future. The machine learning study also 

demonstrated that physical properties of PILs are subject to drastic changes with minute changes to 

their chemical structure. This motivated the need to develop a deeper understanding of the role of a PIL 

in mixtures. 
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Ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN), two PILs which are quite 

structurally similar with a small change in their chemical structures of replacing a hydrogen with a 

hydroxyl group, were chosen as the PILs for further investigation. While PILs are widely studied in the 

literature due to the ease with which they can be synthesised and favourable physical properties such as 

low viscosity, questions remain regarding how their solvent properties alter in the presence of water. 

The self-assembly of surfactants Cetyltrimethylammonium bromide (cationic), sodium octyl sulfate 

(anionic) and Tetraethylene glycol monododecyl ether (non-ionic) in PIL-water mixtures were probed 

to understand the solvation properties of PILs in the presence of water. The methods used to investigate 

these properties included surface tensiometry and small angle x-ray scattering (SAXS), both of which 

were used to understand ternary mixtures of PILs with surfactants and water. Surface tensiometry was 

able to show that the critical micelle concentration was greatly affected by the concentration of the PILs. 

The presence of PIL in the mixture led to an initial decrease in the CMC but led to an overall increase 

in the CMC across all surfactants above 5 mol% of the PIL. To confirm the presence of self-assembled 

structures in the ternary mixtures, SAXS was used. The SAXS experiments proved to be difficult for 

EAN due to contrast issues but scattering from micelles were observed in EtAN solutions. No scattering 

was observed for the EAN rich solvent, whereas for similar concentrations of EtAN x-ray scattering 

could be observed. To solve the conundrum regarding why such similar PILs led to vastly different 

results, it was decided computational techniques are necessary.  

 

Molecular dynamics (MD) was explored as a complementary computational technique to probe deeper 

into the experimental data. As a starting point, a systematic review of 31 existing water models was 

performed to understand which water model force-field would be suitable for mixing with existing IL 

force-fields.  OPC3 water model was deemed to be suitable for the purposes of this thesis to combine 

with the existing OPLS EAN force-field. These force-fields were combined with existing force-fields 

for the three surfactants to probe the molecular level interactions between the EAN-water mixtures and 

the surfactants which self-assemble into micelles. The simulations suggested that ethylammonium ions, 

which are supposed to be in the bulk solvent, were in fact participating in the micelle formation with 
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the surfactants. This provided an explanation regarding the contrast issues which led to inconclusive 

results from SAXS experiments.  

 

The overall objective of this thesis was to gain a fundamental understanding of how PILs behave in 

mixtures with other solvents and solutes. To achieve this, a wide variety of experimental and 

computational techniques had to be explored to understand the mixtures from different perspectives, 

where that be experimentally or at a molecular level using simulations. The work done during this thesis 

will form a basis for future work in the space of molecular dynamics and machine learning models for 

PILs and their mixtures. 

 

 

Figure A.1. Illustration of properties of ionic liquid mixtures investigated and the methods used in the 
thesis.  
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1 Introduction 

 

Ionic Liquids (ILs) are salts with melting points under 100 C, mainly due to poorly coordinated ions 

which cannot pack efficiently and hydrogen bonding. The main advantage in using ILs is their 

versatility as a solvent. Various features such as polarity, cation alkyl chain length, anion 

nucleophilicity, hydrophobicity, pH, salt kosmotropicity and ionicity can be altered to tailor for a 

specific application by changing the structure of the cation and the anion.1 There are two main categories 

of ILs; aprotic ionic liquids (AILs) and protic ionic liquids (PILs), where PILs are synthesised through 

proton transfer from a Brønsted acid to a Brønsted base.2 PILs are the largest known solvent class 

capable of promoting self-assembly of surfactants and they will be the focus of this thesis.  

 

In recent years, the field of ionic liquids has shifted from neat ILs to exploring IL-water mixtures for 

various applications, due to the costs and viscosity issues associated with using neat ILs. However, it is 

unclear what factors and parameters allow ILs to be successful co-solvents, and what the new solvent 

properties are. The overall objective of this thesis was to gain understanding into the behaviour of ionic 

liquids in mixtures with water and various solutes using both experimental and computational tools. 

 

1.1 Protic ionic liquids (PILs) 
 

PILs are a subclass of ionic liquids with an available proton. Unlike AILs which generally require 

complex synthesis and purification processes, PILs can be synthesised via a straightforward Brønsted 

acid-base reaction: 

 

This allows PILs to be created via automated high-throughput processes, which along with generally 

cheap precursors, makes them cheaper and faster to produce than AILs. PILs are also easier to purify 
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than AILs. Water can be removed during the synthesis process using vacuum methods due to the low 

volatility of PILs, and PIL synthesis does not involve any halides. Incremental changes to the cation 

and anion structure of PILs can lead to vast differences in their bulk physicochemical properties. 

Therefore, it is difficult to predict and categorise PILs and their property trends. High throughput 

experimental efforts have been pursued in recent years due to the sheer number of available cation and 

anion combinations.3-4 Figure 1.1 depicts a subset of PILs which are widely studied in the literature, 

with incrementally increasing carbon chains and branching on the cation, paired with nitrate or formate 

anions.  

 

Figure 1.1. Examples of widely used protic ionic liquids. Reproduced from ref 5. 

 

In addition, PILs are the largest known class of solvents demonstrating the ability to support amphiphile 

self-assembly.6 PILs which can promote self-assembly allow us to understand interactions between 

solvents and solutes. In this thesis we aim to use self-assembly as a process to give us insights into the 

solvation properties of PILs.  

 

The available protons in PILs lead to a hydrogen bonded network akin to water.7 The hydrogen bonded 

network allows PILs to have high cohesive energy density. Like water, PILs are highly polar hydrogen- 

bonded solvents, which exhibit behaviour associated with the hydrophobic effect. This effect, as it 
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applies to PILs can be generalised as the solvophobic effect. This hypothesis was first suggested by 

Evans et al. in 19818. Figure 1.2 depicts how the hydrogen network in EAN was illustrated by Evans 

and how it compares to the H-network in water.  

 

Figure 1.2. Hydrogen bond networks in ethylammonium nitrate and water. Reproduced from 8. 

 

1.1.1 Physicochemical properties of PILs 
 

To gain insight into the intermolecular interactions of ionic liquids, the physicochemical solvent 

properties of PILs can be characterised experimentally. Thermal properties such as melting point, a 

defining feature of ILs, can be characterised using differential scanning calorimetry (DSC). The melting 

ILs are, in theory, not supposed to have boiling points, due to their non-volatile nature. However, the 

proton transfer between the precursor acid and base reaction can sometimes be reversible. If so, then 

upon heating, the molecular species can evaporate, with typically the amine being more volatile than 

the acid, which leads to the proton transfer reaction going backwards, creating more molecular species 

and less ions. Due to this instability, some PILs have a boiling point as is expected for molecular 

solvents.   

 

The density and viscosity of ILs tend to be higher than water and other molecular solvents. One key 

issue in using ILs for industry applications is their high viscosity at room temperature, which increases 

as the length of carbon chains in ILs increase. A low melting point, viscosity, and vapour pressure, as 
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well as high thermal stability and ionic conductivity are often considered desirable properties of PILs 

in various applications. Mixing PILs with water, which leads to lower viscosity, is considered to be 

very useful. However, the properties of the resulting mixtures are not well characterised.  

 

It is no simple task to characterise the vast number of ILs which can be synthesised by precursor acids 

and bases. ILs are also complex to characterise at the nanoscale due to the polar-apolar separation 

sometimes leading to liquid nanostructure. To gain structural information regarding ILs and their 

nanostructure, a host of experimental techniques can be used. Scattering techniques such as dynamic 

light scattering (DLS) and small angle x-ray and neutron scattering (SAXS and SANS) can provide 

insight into the liquid nanostructure of ILs. While microscopy techniques such as cross-polarised optical 

microscopy (CPOM) and electron microscopy can be used to visualise and qualitatively understand 

solutes in ILs, techniques are required to understand the systems quantitatively. The refractive indices 

of ILs also tend to be higher than that of water, which leads to contrast issues during light scattering 

techniques as the refractive index of ILs tend to be similar to surfactants and biomolecules.  

 

There has been significant focus in the literature regarding the evaluation of structure-property 

relationships and physicochemical properties for PILs, as summarised in Table 1.1.2-3, 9-10 Physical 

properties such as density, viscosity, surface tension, liquid nanostructure, ability to promote self-

assembly, as well as thermal properties melting and boiling points, glass transitions have been reported 

extensively. Changes in the chemical structure of the PIL proposes significant changes to its solvent 

properties. Yalcin et al11 summarised the relationship between chemical structure changes and 

physicochemical properties for 17 unique PILs as shown in Table 1.1.  
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Table 1.1. Summary of trends in physicochemical properties with changes to PIL chemical structures, 
summarising whether they decrease (dec), increase (inc) or no change (NC) as properties of the cation 
and anion vary. Reproduced from 11 based on the 17 ILs listed below a.  

a List of 17 ILs: ethylammonium formate (EAF), ethanolammonium formate (EtAF), diethylammonium formate 
(DEAF), diethanolammonium formate (DEtAF), triethylammonium formate (TEAF), triethanolammonium 
formate (TEtAF), butylammonium formate (BAF), pentylammonium formate (PeAF), ethylammonium nitrate 
(EAN), ethanolammonium nitrate (EtAN), butylammonium nitrate (BAN), pentylammonium nitrate (PeAN), 
ethylammonium acetate (EAA), ethanolammonium acetate (EtAA), diethanolammonium acetate (DEtAA), 
triethanolammonium acetate (TEtAA) and pentylammonium acetate (PeAA).

1.1.2 Physicochemical properties of PIL mixtures

The physicochemical properties vary even more as molecular solvents are introduced into PILs as a co-

solvent. This is largely because there are many interactions occurring, such as van der Waals, charge, 

entropic, hydrogen bonding and solvophobic interactions. Depending on the ratio of PIL to molecular 

solvent, the role of the PIL changes as the amount of molecular solvent present increases. The acid-base 

equilibria can also shift with the addition of excess water. While there is an inherent assumption that 

ionic liquids consist simply of the cation and the anion, the presence of water can lead to molecular 
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speciation, leading to charged pairs and neutral clusters. These effects were observed for AILs and is 

summarised for molar conductivity in AIL-molecular solvents mixtures by MacFarlane et al. in Figure 

1.3.  

 

Figure 1.3. Molar conductivity trends in two AILs: water 1-ethyl-3-methylimidazolium ethyl sulfate 
and dichloromethane 1-butyl-3-methylimidazolium tetrafluoroborate with varying water 
concentrations. Reproduced from 12. 

 

In mixtures of IL-molecular solvents, at concentrations less than 5 mol% of the IL, the solvent mixture 

acts as a dilute electrolyte, wherein trends are consistent with trends observed in conventional salts. As 

the IL concentration increases in these solvent mixtures, physicochemical properties reflect a mixture 

wherein the two solvents co-exist as co-solvents, both contributing to the overall properties observed. 

After a specific amount of IL is reached in the mixture, literature suggests that IL overtakes as the 

primary solvent, wherein IL-IL interactions dominate over interactions between molecular solvent-

molecular solvent and molecular solvent-IL properties.  ILs dictating the critical micelle concentration 

(CMC) of an amphiphile during self-assembly in binary mixtures is a prime example of this behaviour.13 

The nanostructure of ILs, segregation of polar and non-polar species, persist for dilutions up to 10 mol% 

water per IL and it has been shown that water is taken up within polar domains of an IL. This dilution 

changed the nanostructure by changing the volume fraction of polar and non-polar regions, and in turn 

changes the CMC. 
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The concentration ranges and behaviour of these different stages vary for specific ILs and molecular 

solvents, so it is difficult to make general assumptions regarding the concentration ranges where each 

solvent dominates as the primary solvent in an IL-molecular solvent mixture. As shown by previous 

studies, surfactant self-assembly can provide insights regarding the solvent environment in which it 

occurs. Yalcin et al. has explored the chemical environment of binary PIL-molecular solvent mixtures 

using dyes as probe molecules. The results indicated that the solvation parameters of the binary mixtures 

deviated considerably from the ideal solvation behaviour. They suggested preferential solvation was 

solute-dependent and the results demonstrate using PILs in mixtures with molecular solvents can 

enhance the solvation capabilities.14  

 

1.1.3 Ethylammonium nitrate (EtAN) and ethanolammonium nitrate (EAN) 
 

While AILs have received greater attention in the literature than PILs, the first ionic liquids reported 

were two prominent protic ionic liquids. EtAN which has a melting point of 52-55 °C was first reported 

in 1888 by Gabriel and Weiner2, while EAN with its melting point of 12.5 °C was reported in 1914 by 

Walden.15 EAN and EtAN remain a popular choice of PIL due to their low viscosity, melting point and 

ability to dissolve solutes while being miscible with some molecular solvents, such as water.14 EAN 

and EtAN serve as an interesting comparison for PIL structure property relationships due to their very 

similar molecular structure which leads to widely different bulk solvent properties. The only difference 

between EAN and EtAN chemically is the presence of a hydroxyl group in EtAN as shown in Figure 

1.4. 
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Figure 1.4. The chemical structures of the protic ionic liquids (PILs). A)  Ethylammonium nitrate (EAN) 
and B) ethanolammonium nitrate (EtAN).

This minute difference in chemical structure leads to EtAN having a greater ability to form H-bonds 

due to the OH group, while in contrast EAN is amphiphilic due to the alkyl chain. While there have 

been a significant number of literature studies investigating structure property relationships of PILs, 

investigating how the bulk solvent properties are affected by differences in chemical structure, there are 

large gaps in our knowledge regarding how interactions with solutes and molecular solvents are affected 

by these changes in PIL structures. The molecular level interactions due to PIL structural differences 

and how they affect self-assembly still requires future investigation. 

1.2 Novel data analysis techniques for PILs: Machine learning

To thoroughly understand the structure-property relationships of ILs and develop new models for 

understanding trends and predicting properties, novel data analysis techniques are necessary. There are 

large datasets for the thermal and physical properties of neat ILs which have been built up over time 

from research in many different groups.2, 16-17 In addition, to investigate the vast number of IL 

possibilities, high throughput experimental methods and computational modelling have been used to 

screen various ILs solvent properties which can rapidly increase the data available. As the use of ILs 

combined with a co-solvent is increasing, we need methods to obtain and interrogate this multi-variable 

data. For all these systems there are likely to be a combination of some dominant trends, along with 

weaker ones. Consequently, it can be difficult to extract structure-property relationships from IL data, 

and there is a need for advanced data analysis methods. 

A B
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Structure-property relationships have been studied, since the natures of the anions and cations, and the 

interactions between these are usually directly translated to the IL's physical properties. However, 

quantitative structure property relationship (QSPR) is difficult for ILs and experimentally and/or 

computationally costly because inter- and intramolecular interactions are not completely understood for 

all types of ILs. In literature, computational methods such as molecular dynamics18, Monte-Carlo, ab 

initio calculations19, and Conductor-like Screening Model for Real Solvents (COSMO-RS)20 have been 

employed.  The biggest drawback from these methods is that they are all computationally costly. Similar 

issues arise with experimental determination of structure-property relationships, with even high 

throughput methods tending to be laborious for the number of possible ILs.  

 

Machine learning and advancements in artificial intelligence brings forth a new age of QSPR 

determination. ML models can be devised to understand structure-property relationships of large data 

spaces, and to predict properties of new structures. This is currently an exciting emerging field in the 

greater IL community where machine learning models are being devised to interrogate trends in IL data 

and predict new IL properties.21 The number of studies using ML in the field of ILs has steadily 

increased in recent years, as summarised by Figure 1.5.  

 

Figure 1.5. 
 



13 
 

Most existing literature which uses machine learning to investigate ILs focuses on a few physical 

properties of ILs in the development of their machine learning models and extracts information relevant 

to these properties from databases. Beckner et al. recently devised an adaptive learning and design 

strategy using a combination of neural network training, genetic algorithm search and molecular 

dynamics.22 They focused on Cp rmo 

database as a starting point for training the neural networks. Both Keshavarz et al. and Paduszynski 

23-24 while Paterno et al. and Zhao et al. have developed QSPR  

(quantitative structure-property relationship)25 models for modelling Cp.26-27 Ionic liquid toxicity and 

CO2 solubility have also been predicted with machine learning models.28-29 Previously, machine 

learning has been used to interrogate the IL solvents properties for an experimental dataset in order to 

understand the relationship between the surface tension and liquid nanostructure and the solvent 

composition of non-stoichiometric aqueous protic IL solvents.30 This work suggested that high quality 

machine learning models can be developed to interrogate IL properties using multiple linear regression 

(MLR) and artificial neural network (ANN) methods.  

 

There is a noticeable lack of literature when it comes to PILs in the ML literature for IL discovery. This 

is certainly a topic we need to investigate because unlike aprotic ILs, it is easier to produce PILs in a 

high throughput manner due to the more straightforward synthesis and purification process. 

 

1.2.1 Machine learning modelling method 
 
 

The data requirement for machine learning varies greatly based on what information is intended to be 

gathered from the model. For the models and data sets we will discuss in this thesis, machine learning 

was performed on datasets with 20 or more values. While it is imperative to have a large enough dataset 

to perform machine learning models on, it is even more important to have a wide variety of data from 

trusted sources. This data was then separated into training and test data. A subset of the data was used 
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for training the model, and this model was then tested on the complete data set. In this study, two types 

of machine learning algorithms will be explored: multiple linear regression (MLR) and artificial neural 

networks (ANN). These algorithms were chosen as representative models due to their simplicity and 

their success in literature for use with IL systems.9, 31    

 

MLR can give insights regarding the structure property relationships of an IL data set. It is a statistical 

regression model, which is simple in nature, and seeks to find linear relationships between variables, 

while assigning a weighting to each factor. MLR algorithms will be created with input descriptors, as 

according to the generalised model equation noted in Equation 1.1: 

Yi = Inti +  (1.1) 

Where Yi is the generated output variable, Inti are the intercepts, Ci are the regression coefficients and 

X are the selected input descriptors.  

 

ANN are non-linear models which can be generated with the same input variables. Much like the neural 

networks in our brains, artificial neural networks seek to emulate a simplified version of how neurons 

in our nervous system operate, establishing connections between different nodes in the system. The one 

used in this study is a three-layer network with a hidden layer node which will result in a single output 

node. A schematic of an ANN model is shown in Figure 1.6.  
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Figure 1.6. Illustration of a simple artificial neural network model. Reproduced from 32. 

 

The different models will be assessed to determine the best model for investigating the dataset for the 

current study. The MLR will be used to understand the complex physicochemical properties and their 

relationships with the structure of ILs and ANN will be used for predicting properties of new ILs.  

 

1.2.2 Descriptors 
 

Descriptors are used to describe a material in quantified ways a ML model can understand them. These 

descriptions can range from composition of starting materials used during the synthesis process to 

microscopic and macroscopic properties of the material. Molecular descriptors can be categorised into 

broad categories which include: 

 Constitutional: information about atom types 

 Topological: descriptions of how atoms are connected and their resulting properties  

 Physicochemical: properties such as solubility, charges, dipole moment 

 Structural: descriptions of size, shape and surface properties of molecules 

 Quantum-chemical: partial charges, polarizability, orbital energies etc calculated using density 

functional theory (DFT), and ab initio quantum-chemical programs.  
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These descriptors can be calculated using software such as DRAGON and CODESSA and the choice 

of descriptors are important to the quality of the model predictions. The calculated descriptors are 

usually sifted to find the non-zero and non-correlated descriptors before they are used in the model. For 

example, in the case of ILs, it is important to include key constitutional descriptors about the cations 

and anions of the ionic liquids, as well as physicochemical and structural information about the bulk 

liquid properties.  

 

1.2.3 Performance of models 
 

To ensure the accuracy and usefulness of the model, statistical criteria are used to assess them. These 

variables are approximated by dividing the available data into a training set and a test set. The variables 

calculated include R2 (the coefficient of determination), which is the square of the correlation coefficient 

between the training and test sets. The standard error of estimation (SEE) and standard error of 

prediction (SEP) can also be calculated to assess the robustness of the models using the root mean 

square values of the difference between training and test sets of data. The standard error can be 

calculated using equation 1.2 below: 

                                (1.2) 

 

The SEE and SEP are the preferred assessment of quality of the models because unlike R2, they are 

independent of the number of data points in the training set or the number of descriptors. Successful 

models tend to have R2 values close to 1 and their SEE and SEP values are similar and small.  

 

1.3 Amphiphile self-assembly  
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Self-assembly is the spontaneous aggregation of molecules into 3-D nanostructures.33 Amphiphiles are 

molecules containing polar hydrophilic and nonpolar hydrophobic constituents which display self-

assembly behaviour in selective solvents. Water is by far the most commonly used and well-studied

solvent available for amphiphile self-assembly. Model amphiphiles such as polymers and surfactants, 

are important to gain understanding of solute-solvent interactions. The self-assembly of amphiphiles in 

solvents can give us insights regarding the solvation properties and the solvent environment of ILs.13, 

34-36

1.3.1 Surfactants for self-assembly 

Amphiphiles are molecules which consist of both hydrophilic and hydrophobic components. In most 

cases the hydrophobic part is a long hydrocarbon chain while the hydrophilic head of the amphiphile 

can be non-ionic or ionic. Non-ionic surfactants often consist of a hydrophilic poly(ethylene oxide)

chain, connected to a hydrophobic alkyl chain, such as the polyoxyethylene alkyl ethers, C E . Anionic 

surfactants are widely used as detergents and soaps for cleaning purposes and have a negatively charged 

headgroup consisting of sodium, potassium, or ammonium ions. Cationic surfactants consist of 

positively charged headgroups such as a quaternary ammonium or a halide ion. 

Cetyltrimethylammonium bromide is one of the most widely used cationic surfactants. Amphiphiles are 

also referred to as surface active agents, or surfactants, because of their ability to reduce interfacial 

tension due to their amphiphilicity leading them to migrate to the interface. 

The surfactants chosen as model amphiphiles during the current study are shown in Figure 1.7. These 

consist of the cationic surfactant cetyltrimethylammonium bromide (CTAB), a nonionic amphiphile 

tetraethylene glycol monododecyl ether (C12E4), as well as sodium octyl sulfate (SOS), an anionic 

surfactant with a shorter alkyl chain than the commonly used sodium dodecyl sulfate (SDS). 

A B
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Figure 1.7. The chemical structures of solutes used during study: A) tetraethylene glycol monododecyl 
ether (C12E4), B) cetyltrimethylammonium bromide (CTAB) and C) sodium octyl sulfate (SOS).

Both CTAB and C12E4 have previously been shown to self-assemble into micelles in PILs, including 

EAN and EtAN.37-38 These micelles tend to have up to 2 times higher critical micelle concentrations 

compared to that in water. The common anionic surfactant of SDS has limited solubility in PILs, 

therefore SOS, a surfactant with a shorter alkyl chain was selected to improve solubility. SOS has 

previously shown to form micelles in water and mixed catanionic systems (cationic and anionic 

mixtures)39 but there are currently no studies exploring them in ILs. While there are some studies 

exploring EAN-molecular solvent mixtures and their effect on surfactant self-assembly, there are no 

comprehensive studies which explore the full range of concentrations.13, 34, 40 There is also a gap in the 

literature when it comes to anionic surfactants. A comprehensive literature review of these surfactants 

and existing studies are described in later sections. 

1.3.2 Self-assembly in water

In the case of water, amphiphiles tend to form 3-D structures so that the hydrophobic part of the 

molecule is secluded from the water by the hydrophilic parts, through the hydrophobic effect. At low 

concentrations, amphiphiles self-assemble into different shapes such as spheres and cylinders, based on 

their geometry.41 These are named micelles. At higher concentrations, the order of the structures being 

formed increases and, the micelles can form hexagonal, lamellar or cubic phases.42 Figure 1.8 illustrates 

some of the 3-D structures which can be formed by amphiphiles during self-assembly. 

C
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Figure 1.8. Structures of amphiphile self-assembly phases.  (A) spherical micelles; (B) cylindrical 
micelles; (C) bicelles (disks); (D) hexagonal phase; (E) bicontinuous cubic phase Im3m; (F) 
bicontinuous cubic phase Ia3d. Adapted from 43.  

 

Micelle shapes observed via SAXS can vary based on critical packing parameter (CPP),  

 (1.3) 

where v= the volume of the hydrocarbon, a= the effective area of the head group, and lc= the length of 

the lipid tail(s). Based on the CPP, the shapes can range from spherical micelles, bilayers to inverted 

micelles (hexagonal phase). Figure 1.9 summarises the range of different shapes available for 

surfactants to form as CPP varies.  
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Figure 1.9. Micelle shapes varying due to critical packing parameter. Reproduced from 44.  

 

The micelle behaviour of the chosen surfactants in water has been extensively studied in literature. 

CTAB and SOS have also been investigated in literature as a binary mixture, as summarised in phase 

diagrams in Figure 1.10.  
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Figure 1.10.  A) Phase diagram for CTAB-water, reproduced from 45 and B) CTAB-SOS-water at 25 
, reproduced from 46.  

 

Phases formed during self-assembly in CTAB range from micelles at low concentrations of the 

surfactant to lamellar, hexagonal and cubic phases at higher concentrations and temperatures. In SOS, 

a lesser range of phases are observed. Only vesicles and micelles are observed in SOS-water binary 

systems. For CTAB, the Krafft temperature, minimum temperature micelles formation can begin, of 

45 must be achieved before it can form liquid crystal (LC) phases in water. Phases ranging from 

SOS-rich vesicles (V), rodlike micelles (R) to SOS-rich micelles (M) are observed in CTAB-SOS-water 

systems at room temperature.  It is also worth noting that only up to 5% SOS and CTAB were included 

in this phase diagram. This falls well within the concentration range for only micelles. Higher order 

phases have been observed with CTAB in water47, but no studies could be found exploring SOS LCPs. 

The critical aggregation concentration (CAC) for pure SOS was observed to be two orders of magnitude 

higher than that of pure CTAB and three orders of magnitude higher than that of the mixtures.39 For 

C12E4, lamellar phases were observed in water.  

 

 

A B 
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1.3.3 Self-assembly in ionic liquids 
 

The driving force behind self-assembly is the energy minimisation obtained via segregation of the 

water- -like components. Solvophobicity is a summary of the driving forces, which 

combines all the different solvent properties that are beneficial to self-assembly, such as cohesive 

energy, solvent structure, polarity and the ability to form hydrogen bonded networks, and is the more 

general term compared to hydrophobicity which is specific to water.48 

 

ILs have garnered a lot of interest in recent years due to many having the ability to support surfactants 

to self-assemble into 3D structures.36 Non-aqueous solvents which were known to promote self-

assembly were very limited prior to this discovery, with only about 14 known molecular solvents being 

capable of supporting self-assembly.36 Since the initial discovery that EAN is a solvent which promotes 

self-assembly, over 40 PILs have shown their potential to support self-assembly. 10 While ILs can 

support the self-assembly of higher order phases, such as liquid crystal phases (LCPs), the content of 

this thesis focuses mostly on micelle formation as they are often the simplest form of self-assembly.   

 

Cationic surfactant self-assembly in IL-water mixtures with up to 20 wt% water was investigated by 

Javadian et al. in their study looking at CTAB self-assembled structures in aprotic imidazolium-based 

IL-water mixtures.47 Larger micelles and higher CMC were observed in the IL-water mixtures than in 

water and they were able to distinguish that the hydrogen bond was an important factor in defining the 

solvent properties.47  Smirnova et al. and Sohrabi et al. explored the anionic surfactant, SDS, in 

imidazolium-based IL-mixtures for mole fractions 0.1-0.9 of the IL in water and found that small 

additions of the IL substantially decreased the CMC of SDS, leading to the formation of mixed micelles 

where IL acts as a co-surfactant.49-50 Sohrabi et al. hypothesised that the decrease in CMC could be 

attributed to reduction in electrostatic repulsion between headgroups.50 He et al. has explored the 

pluronic polymer P123 in EAN at dilute concentrations, up to 2 M, to compare the effects with a salt 

and an aprotic IL with similar conclusions and found the formation of mixed micelles at low CMC.51 
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Most of these studies focus on dilute IL-molecular solvent mixtures, where the IL can be considered as 

acting more as a salt additive than a co-solvent. They also focus on aprotic ILs, which have noticeable 

differences in bonding and solvation compared to PILs. Only a handful of studies could be found in 

which micellization was investigated in mixtures of PILs with high IL concentrations. Wakeham et al. 

reported the behaviour of the non-ionic surfactant C14E4 in binary ionic liquid mixtures and ionic liquid-

water mixtures of ethylammonium nitrate and ethanolammonium nitrate.52 They suggested that the 

CMC of the surfactant strongly correlated to the solvent composition, with an increase in CMC 

proportional to the PIL concentration. Bryant et al. has investigated the effect of EAN on cationic and 

anionic surfactants, in which they concluded that the CMC of cationic surfactants are much higher and 

micelles much smaller in the IL mixture than in water, whereas anionic micelles were less affected.34 

Lam et al. investigated the cationic surfactant DTAB in IL-water mixtures up to neat EAN, where they 

determined that at low IL concentration, ILs behaviour is similar to that of a simple electrolyte. Then 

as IL concentration increases beyond the saturation points of most conventional salts, the IL 

nanostructure influences micellization, raising the CMC.13 Due to solubility issues with most anionic 

surfactants in PILs, no studies could be found exploring anionic surfactant self-assembly in aqueous 

PILs.        

 

The self-assembly of surfactants can be used to understand the solvent environment in which they form 

nanostructures. It is difficult to determine the concentrations at which the IL and water are dominating 

the self-assembly process, particularly due to a lack of consistency in concentration units, with mol% 

and wt% both commonly used.  

 

We also cannot make conclusions regarding the trends due to the variety of ions and how differently 

they influence self-assembly. To expand on the findings by Bryant et al. mentioned earlier, they 

explored the difference in self-assembly in EAN and EtAN. The only difference between the two ILs 

chemically is the extra hydroxyl group in EtAN. When the CMC of a non-ionic surfactant in the two 
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ILs are observed in the presence of water, it can be noted that the CMC behaviour in EAN is wildly 

different to EtAN. As depicted in Figure 1.11, in EAN the CMC linearly increases as the concentration 

of the IL increases in the binary solvent mixture. It is worth noting that in the study weight percentages 

were used, which does not allow for a direct comparison between ILs, which can only be done by using 

mol%.  

 

 

Figure 1.11. The critical micelle concentrations of the non-ionic surfactant C12E4 in binary mixtures of 
EAN, EtAN and water. Reproduced from 52.  

 

Lam et al. have observed surfactant self-assembly in ethylammonium nitrate, ethanolammonium nitrate 

and propylammonium nitrate aqueous solvent mixtures with a cationic surfactant, 

dodecyltrimethylammonium bromide (DTAB).13 This was also done in wt%, and only 4 concentrations 

(25, 50, 75 wt% and neat) were explored. They hypothesised that EAN acted as a co-surfactant rather 

than a co-solvent in mixtures with water, leading to mixed micelles. This was not observed with EtAN 

due to the presence of the hydroxyl group making it not possible for it to act as an amphiphile. The 

study on catanionic mixed surfactants by Bryant et al. explored how nanostructure of ILs affected self-

assembly of surfactants.34 They hypothesised that EAN acted as a smaller surfactant rather than a 

solvent species during their neutron scattering studies and that EtAN and EtAF are better suited as self-

assembly media due to their non-amphilicity.  
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1.3.4 Characterisation of self-assembly 
 

To understand self-assembly in ILs and IL mixtures, the characterisation process requires the use of 

different techniques. The complexity of the ILs at the molecular level necessitates the use of a 

combination of both experimental and simulation techniques. This thesis explores using surface 

tensiometry and small angle x-ray scattering (SAXS) to investigate micelle formation in ILs and IL-

water mixtures experimentally. Cross polarised microscopy was also used to assess whether the 

mixtures investigated can form higher order phases. Other methods such as small angle neutron 

scattering (SANS) could also be used for this purpose. However, due to the circumstances during which 

this thesis was completed with multiple lengthy lockdowns during Covid, neutron facility access was 

unavailable.  

 

1.3.4.1 Characterising self-assembly using surface tensiometry 
 

Micelle formation during self-assembly causes changes to the surface tension of the bulk solvent 

environment it occurs in. These changes to the surface tension can be used to understand the 

concentrations at which micellization first occurs. Surface tensiometry measures the surface tension of 

liquids and surfaces. In this study, it was used to measure changes in surface tension of the solvent-

surfactant samples as the amphiphile first begins to self-assemble or aggregate. There are various ways 

to measure surface tension. The technique used during this study uses the Du Noüy Padday method, 

where a probe is inserted into a liquid and the force required to remove it from the surface was used to 

measure the surface tension.    

 

At very dilute amphiphile concentrations, as the number of surfactants increases, they dissolve in the 

solvent and begin to aggregate at the air-solvent interface. This leads to a decrease in surface tension. 

Above a transition concentration, self-assembly of the surfactants begins and the decrease in surface 

tension plateaus to a constant value. The concentration at which this occurs is referred to as the critical 
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micelle concentration (CMC). The change in surface tension during the self-assembly process is 

illustrated in Figure 1.12.53 

 

Figure 1.12. Schematic of the change in surface tension observed during micelle formation. Reproduced 
from 53.  

 

The surface tension measurements and the CMC allow us to gain insight into the interactions occurring 

in the solvent environment due to self- max, at 

the air/liquid interface can be calculated by Equation 1.4, where the quantity inside the brackets is the 

negative gradient at surfactant concentration just below the CMC,  

 
(1.4) 

 

where R is the gas constant and T is the temperature. The surface excess concentration gives insight 

regarding the position of surfactants in the system and the force exerted by them on the surface. 

Accumulation of surfactants at the interface leads to positive surface excess concentrations, whereas 

negative values indicate the surfactants are more likely to be found in the bulk.54 Using the surface 
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excess concentration, the minimum molecular areas of the surfactants absorbed at the interface, Amin

can be calculated,  

Amin =  
(1.5) 

where NA  

 

m
o

ad
o, can 

also be calculated using the CMC and Amin using Equations 1.6 and 1.7, 

 (1.6) 

 (1.7) 

w 0 CMC is the surface tension recorded at the CMC. 55 

 

Positive free energy parameters indicate the process requires an external input of energy, whereas 

negative values are expected for a spontaneous process such as self-assembly. These parameters are 

useful for comparing the energies and micellization process of surfactants in different solvent 

environments.33 

 

1.3.4.2 Micelle confirmation using Small Angle X-ray Scattering 
 

To interrogate the size and shape of self-assembled structures, scattering techniques can be used. Small 

Angle X-ray Scattering (SAXS) is a structural analysis technique, capable of providing information 

such as size and shape of particles as well as internal structural information of systems by measuring 

the fluctuations of electronic densities in the matter. SAXS involves elastic scattering of hard X-rays 
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(0.07 0.2 nm) from a sample and recording the scattering at small angles (0.001 - 1°). The 

experimental process for observing micelles using SAXS is summarised in Figure 1.13.  

 

Figure 1.13. Schematic of experimental workflow of SAXS on micelle samples, from scattering to 
mathematical fitting. 

 

The contrast in the micelle mixtures during SAXS arises due to their electron scattering length density 

(SLD) differences. SLD can be computed from the scattering lengths and material densities. For x-rays, 

the scattering arises from the interaction between the incident wave and the electron clouds of the atoms 

in the material and varies based on the composition of the surfactant components.   

 

The scattering information can be fitted to mathematical models to determine physical properties such 

as size and shape of the particles in the sample. For example, if a sample contained dilute spherical 

structures the scattering intensity function I(q) can be described by the Equation 1.8:56 
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(1.8)

Where scale is a volume fraction, V is the volume of the scattering particle, r is the radius of the sphere 

and bkg is the background level. The 2-dimensional scattering is also described by Equation 1.8, 

regardless of the orientation of the q vector. Fitting the scattering curves of gathered experimental data 

to similar models will allow for determination of the nanoscale structural properties. Structure factors 

were not necessary for these fits during the current study as all systems were dilute.  

 

1.3.4.3 Cross polarised optical microscopy  
 

Cross polarised microscopy (CPOM) has been extensively used in the literature to qualitatively observe 

higher order phases during self-assembly. It is a technique where samples are placed between crossed 

polarisers. In birefringent samples, the polarised light interacts strongly with the sample, leading to a 

non-zero intensity, with patterns characteristic of different phases. Due to the alignment of the 

surfactants in various nanostructures during self-assembly, the birefringence of the sample changes as 

the phases change. Figure 1.14 showcases common liquid crystal phases (LCP) observed in PIL-

surfactant systems with cross polarised microscopy.  

 

Figure 1.14. Cross polarised optical microscopy images of penetration scans of propanolammonium 
formate and CTAB showing anisotropic hexagonal, isotropic cubic and anisotropic lamellar phases. 
Reproduced from 57.  
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As the surfactant concentration increases, the likelihood of forming higher order phases increases. In 

EAN and EtAN, there are three common liquid crystal phases which are observed: H1: hexagonal phase, 

V1: Cubic phase, as well as L: Lamellar phase. Both EAN and EtAN have previously been shown to 

promote LCP with cationic surfactants such as CTAB and DTAB.58 There is less information in the 

literature regarding anionic and non-ionic surfactant higher order self-assembly in PILs.37  

 

1.4 Modelling of molecular dynamics of PILs with solutes 
 

While it is possible to hypothesise the interactions between solutes and the solvent environment based 

on experimental techniques, simulations allow us to approximate and validate these results. There are a 

host of simulation techniques which can emulate physical systems in varying timescales and length 

scales, ranging from density functional theory (DFT) simulation to Monte Carlo. Molecular dynamics 

(MD) simulations can simulate all atoms in system with millions of atoms for timescales up to 

milliseconds, as illustrated in Figure 1.15. 

 

 

Figure 1.15. Scales of descriptions in simulations situating where molecular dynamics simulations 
capacities lie in comparison to other methods. (Schematic provided by: Agilio Padua) 
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MD simulations have been used extensively for AILs in literature. Sprenger et al. has reported that the 

generalised AMBER force field can simulate a variety of ionic liquids and accurately predict 

thermodynamic and transport properties.59 Doherty et al. has also used OPLS (Optimized Potentials for 

Liquid Simulations) based force fields to simulate imidazolium, pyridinium and choline based ionic 

liquids with properties for densities, viscosities, diffusion coefficients and surface tensions comparable 

to experimental results.60 The main issue associated with classical force fields such as OPLS is that they 

do not account for polarizability. These models describe electrostatic interactions in terms of a fixed 

charge, which is not the case in experiments. OPLS based force fields attempt to account for this by 

scaling the charges of the atoms to mimic polarisation and charge transfer effects. However, this could 

potentially lead to degradation of intermolecular interactions at short ranges.60 The classical models are 

unable to model diffusion correctly, which is an important property for simulating liquids and their 

interactions.  

 

1.4.1 Molecular dynamics simulations 
 

MD simulations are used to understand the movement and interactions of systems at an atomic or 

, 

 (1.9) 

 

where F is the force acting on a particle, calculated by its mass, m, and acceleration, a. Every atom in 

an MD simulation is assigned a random initial velocity and the force acting on this atom in a specific 

timestep is used to calculate the new position and velocity. The projected trajectory of the atoms and 

molecules over a specified time period is calculated by repeating this process.  

 

Forcefields are energy functions which describe the geometry of a molecule and allow for the 

calculation of the potential energy of the system. Forcefields are defined for each different type of 
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motion. These energy functions have two components: bonded and non-bonded terms. The bonded 

terms contain information about the bond lengths, angles and dihedrals. The functional form of the 

OPLS forcefields used in the thesis for IL and surfactant simulations is shown in Equation 1.10, 

 (1.10) 

where: 

 

 

 

 

(1.11) 

 

K is the force constant, r is bond length and  is bond angle. The energy terms for dihedrals are 

expressed by a cosine series expansion where n is the number of minima as the bond rotates and  is 

the phase factor, which determines the minimum value of the dihedral.  

 

The non-bonded term includes the van der Waals forces and electrostatics.  The van der Waals forces 

are modelled using the Lennard-Jones 6-12 term, which is a simplified model for describing interaction 

between two particles at a specific distance

each atom is given a partial charge and their energy is determined as a sum of interactions of point 
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charges. The non-bonded terms are more computationally expensive and the cut-off for non-bond 

interactions range from 8-15 Å, with a longer cut off resulting in greater accuracy at the cost of longer 

computational time. Generally, long-range electrostatics beyond the cut-off are approximated by an 

Ewald mesh approximation.61 MD simulations are usually performed under two conditions: NVT 

(constant volume and temperature) and NPT (constant pressure and temperature).  The thermostat used 

in simulations allows particles to move via the kinetic energy corresponding to the set temperature while 

the barostat allows the system to equilibrate to the correct density. The constraint algorithm LINCS 

(Linear Constraint Solver) can be used to fix the bond lengths and allow for larger timesteps.  

 

1.4.2 MD of ILs 
 

While there have been efforts to establish forcefields for PILs, especially EAN, only very recently has 

a polarised forcefield for EAN been published.62 Due to the hydrogen bonding prevalent in EAN and 

other PILs, it has been shown to be difficult to design and implement MD simulations of PILs and 

mixtures.62 While most effort has been concentrated on establishing forcefields, there is currently a gap 

in literature when it comes to combining the available PIL forcefields with molecular solvents and 

solutes. OPLS based force field for EAN  has been revised to provide better reproduction of the 

experimental density and dielectric constant.14 These solvent models, along with the OPLS force field 

for surfactants, have been used to simulate mixtures of micelles in IL-water mixtures in this thesis. 

 

Mixtures of PILs with molecular solvents have not been explored extensively in literature using 

simulations, perhaps in part because it is important to fully understand the force fields being used for 

different constituents of a molecular dynamics simulation before they can be simulated together. Most 

notable studies exploring PIL mixtures using MD simulations include a study by Docampo-Álvarez et 

al., wherein they investigated the self-assembly of EAN in solutions of water, ethanol and methanol. 63 

Their EAN model was an OPLS-AA based force field and a TIP5P water model was used. The 

compatibility of these two force fields is unclear, which could have resulted in inconsistencies.63 Huang 
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et al. has also explored OPLS based EAN in different concentrations of water, which was described by 

the TIP3P water model.64 Again, the lack of consistency of the force fields for IL and molecular solvent 

raises the need for a comprehensive comparison of different water models and IL force fields.  

  

1.5 Scope of the research 

The overall objective of this thesis was to understand the behaviour of protic ionic liquids, with a focus 

on EAN as a representative PIL, in mixtures with water and various amphiphilic solutes using both 

experimental and computational tools. Due to the wide variety of techniques used during this project, 

the details of the methods are included in each chapter, rather than as a separate methods chapter.  

  

Specific aims included:  

1. Understanding solvent properties of IL-molecular solvent mixtures. 

a. Viscosity and ionic conductivity of neat ILs were explored using machine learning 

models.  

b. Surfactants were used as probes to understand mixtures of IL-water.  

2. Creating machine learning models to investigate physicochemical property relationships of 

ionic liquids. 

a. Based on literature values, multiple linear regression and artificial neural network 

models were created and 10 new ionic liquids were synthesised and characterised 

experimentally to verify the models.  

3. Understanding the interaction of IL mixtures and various ionic and non-ionic solutes.  

a. Three surfactants were chosen as model solutes and their interactions in 

ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN) were explored in 

the presence of water.  

4. Optimising molecular dynamics simulations to understand the interactions of ILs in 

mixtures at a molecular level.   
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a. To confirm the presence of micelles in surfactant-IL-water simulations, molecular 

dynamics simulations were used.  

b. How the solvation of the micelle varies as the concentration of the IL present changes 

was observed.  

 

Chapter 2 examines using machine learning as an advanced analysis technique for understanding 

trends in physicochemical properties of PIL, taking into consideration their water content. It also 

examines the capacity of machine learning to extend beyond the capabilities of an analysis technique 

and looks at the feasibility of using machine learning for predicting the physical properties of viscosity 

and ionic conductivity of new ILs.  

 

To extend the understanding of PIL-water mixtures obtained in Chapter 2, the representative PIL of 

EAN was chosen for further experimental investigation in Chapter 3. Chapter 3 investigates the effect 

of ionicity of surfactants on the self-assembly of three surfactants in mixtures of PIL-water solvent 

systems. This chapter systematically examined the effect of changing the ionicity of the surfactant 

across the IL-water concentration range to understand the solvation effects of ILs in systems where self-

assembly is occurring. The CMC of the IL-water-surfactant systems were obtained using surface 

tensiometry measurements and the formation of micelles was confirmed using SAXS measurements. 

Cross polarised optical microscopy was used to identify higher order liquid crystal phases in the 

solvents.  

 

Chapter 4 looks at furthering our understanding of using MD simulations to investigate mixtures of 

ILs and water. This chapter focuses on choosing the optimal water model for use in conjunction with 

existing force fields for ILs, which was used for multi-component systems of PIL-water-solutes.  
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Chapter 5 verifies the experimental results from Chapter 3 using the preliminary results for MD 

simulations gathered in Chapter 4. Finally, molecular dynamics simulations were performed for EAN-

water-surfactant systems to understand the interactions at a molecular level of the experimental results 

from Chapter 3.  

 

Chapter 6 includes concluding remarks and recommended future work.  
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2 Machine learning for investigating IL-mixtures 

 

This chapter has contributed largely to the publication: Dung Viet Duong, Hung-Vu Tran, Sachini P K 

Pathirannahalage, Stuart Brown, Michael Hassett, Dilek Yalcin, Nastaran Meftahi, Andrew J 

Christofferson, Tamar L Greaves, Tu C Le. Machine Learning Investigation of Viscosity and Ionic 

Conductivity of Protic Ionic Liquids in Water Mixtures. J. Chem. Phys. 156, 154503 (2022). This 

chapter details the experimental work, and the interpretation of the machine learning models I 

completed in support of the publication. Full publication can be found in the Appendix. 

 

2.1 Introduction 

Ionic liquids (ILs) are designer solvents consisting of a vast sample space of possible cations and anions, 

with an estimated 1014-18 configurations of possible ionic liquids. To thoroughly understand the 

structure-property relationships of ILs and develop new methods for predicting properties of new ILs, 

novel data analysis techniques are necessary to investigate the existing body of experimental data. In 

addition, to investigate the vast number of IL possibilities, high throughput experimental methods have 

been used to screen various ILs solvent properties which has rapidly increased the data available. 

Therefore, there are large datasets for the thermal and physical properties of neat ionic liquids which 

have been built up over time from research in many different groups.2, 16-17  

 

The use of ILs combined with a co-solvent is also increasing in recent years, and new methods are 

required to obtain and interrogate data from multivariable systems. Thus, it can be difficult to extract 

structure-property relationships from IL data using conventional analysis techniques, and there is an 

urgent need for advanced data analysis methods. Previously, machine learning (ML) has been used to 

interrogate the IL solvents properties for an experimental dataset in order to understand the relationship 

between the surface tension and liquid nanostructure and the solvent composition of non-stoichiometric 

aqueous protic IL solvents.30 This work suggested that high quality machine learning models can be 
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developed to interrogate IL properties using multiple linear regression (MLR) and artificial neural 

network (ANN) methods. 

 

Using statistical systems, ML can provide insights into structure-property relationships, while also 

allowing for predictions of properties of new ILs. While ML has been used extensively in fields such 

as drug discovery, IL researchers have only scratched the surface of the capabilities of using statistical 

analysis for IL property prediction.  A recent review by Koutsoukos et al. summarises the studies 

conducted so far in the area of IL discovery using ML and demonstrates the newfound interest in our 

field regarding the capabilities of ML.21 

 

Existing literature on using ML for ILs focuses on a few physical properties of ILs in the development 

of their machine learning models and extracts information relevant to these properties from databases. 

Beckner et al. recently devised an adaptive learning and design strategy using a combination of neural 

network training, genetic algorithm search and molecular dynamics.22 They focused on heat capacity 

(Cp

point for training the neural networks. Both Keshavarz et al. and Paduszynski have devised models for 

23-24 while Paterno et al. and Zhao et al. have developed QSPR (quantitative structure-

property relationship)25 models for modelling Cp.26-27 Ionic liquid toxicity and CO2 solubility have also 

been predicted with machine learning models.28-29  

 

There is a noticeable lack of literature when it comes to PILs in the ML literature for IL discovery.9 

This is certainly a topic worth investigating because unlike aprotic ILs, it is easier to produce PILs in a 

high throughput manner due to the more straightforward synthesis and purification process, which can 

then be characterised using automated approaches. An example of this was done using automated 

robotic system Chemspeed to create PILs.4 This enables the collection of experimental data from 

libraries of PILs, which allows us to make ML models with consistent datasets under the same 
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experimental settings. The quality of the input data is one of the main factors in producing a good ML 

model with a high R2 value.  

 

This chapter of the thesis is dedicated to using existing literature data to develop ML models which can 

predict the viscosity and conductivity of PILs, with a focus on understanding how the presence of water 

impacts these properties. New PILs were then synthesised and characterised to test the accuracy of the 

created MLR and ANN models. This work has contributed to a publication.65  

 

2.2 Method 

2.2.1 Computational method 

 

Experimental values of viscosity and conductivity for PILs which had been reported previously in a 

review paper was used as the data for creating ML models.1 Attempts to compile data and construct 

models for thermal properties were also made but the available data was not sufficient to generate 

meaningful models. The viscosity dataset comprised 91 data from 83 unique ILs, with 8 additional 

values at different water contents for the same ILs.  These 83 ILs contained 39 different cations and 16 

anions. The conductivity dataset comprised 106 data from 97 unique ILs, again with 8 additional values 

from ILs with multiple water contents. These 97 ILs contained 48 cations and 17 anions. It is noted that 

the viscosity and conductivity of some PILs were measured at different temperatures and/or water 

concentrations, and these were used as input descriptors in the models.  

 

The set of PILs was not identical for the viscosity and conductivity data, and hence some cations and/or 

anions were present for one property and not the other, and these are distinguished in Figures 2.1 and 

2.2, respectively.  
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Figure 2.1. Chemical structures of the cations used in this study, along with their names. The cations 
are categorized as those present in the training sets for viscosity and/or conductivity. The interpolated 
are related ions that had viscosity and conductivity.  



41 
 

 

Figure 2.2. Chemical structures of the anions used in this study, along with their names. The anions are 
categorized as those present in the training sets for viscosity and/or conductivity. The interpolated are 
related ions that had viscosity and conductivity predictions made for the interpolated set of PILs. 

 

After the data sets were collected, all viscosity and conductivity values, as well as water concentrations 

were converted into standardized units of measurement if needed (cP for viscosity, mS/cm for 

conductivity, and wt% for water concentration) during the data processing step. The viscosity values 

are between 0.0258 to 5647 cP, with water concentrations from 0.005 to 4.35 wt%, and temperatures in 

the range of 20-130 oC. The conductivity values are between 0.0149 to 51.1 mS/cm, with water 

concentrations between 0.001 to 4.35 wt%, and temperatures between 20 to 150 oC. Due to the big 

differences between these ranges, the viscosity, conductivity, and water concentration data was 

transformed using the log function. Hence log(viscosity), log(conductivity), and log(water 

concentration) were used in all machine learning models. 

 

Descriptors are numerical values of molecular properties which are essential in quantitative structure

property relationship modelling. To generate the descriptors in this study, Avogadro software was used 
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to draw molecular structures of the precursor acid and base corresponding to the cation and anion for 

each IL, as shown in Figures 2.1 and 2.2.58 Then the Avogadro files of these components were saved in 

MOL format to use as input files for generating molecular descriptors in the Dragon software.59 The 

molecular descriptors correlate with constitutional properties (e.g., the numbers of atom of a specific 

type of element, the molecular weight) and structural properties (e.g., the numbers of a specific type of 

functional group or atom-centred fragments that show the number of atoms within a specific distance, 

molecular properties-related indices such as H-donor, H-acceptor, and topological surface area).60,61 To 

distinguish the effects of anions and cations on the viscosity and electrical conductivity of PILs, 

descriptors of anions and cations were independently generated. Since this project was mainly focused 

on providing guidance for experimental scientists to design new PILs, only the chemically interpretable 

descriptors from the pool of generated descriptors were used. The use of more complex descriptors such 

as those from quantum mechanical calculations may improve the predictability of the models62 but bring 

challenges to the reverse engineering process of designing new compounds. 

 

A k-means clustering algorithm was used to partition the dataset into a training set (80% of the dataset) 

to develop the model, and a test set (20% of the dataset) to evaluate the predictive ability of the machine 

learning models. In comparison to randomly dividing data, the k-means clustering algorithm chooses 

the test set within the domain of applicability of the trained model. Moreover, it will allow others to 

reproduce exactly the model we report here. In this study, the quantitative relationship between the 

input descriptors and properties of PILs containing small amounts of water was derived by applying 

linear algorithm MLREM (multiple linear regression with expectation maximization) and non-linear 

algorithm BRANNLP (Bayesian regularized artificial neural network with Laplacian prior) 

implemented in the BioModeller program.63 65 The neural networks had three layers, consisting of input, 

hidden, and output layers. The number of nodes in the input layer was equal to the number of 

descriptors, while the hidden layer had 2 nodes and the output layer had one single node corresponding 

to the viscosity or conductivity of PILs. Importantly, because MLREM and BRANNLP are sparse 
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feature selection algorithms, they pruned out the irrelevant descriptors allowing retention of only the 

most relevant descriptors.  

 

After developing the robust QSPR models by MLREM and BRANNLP algorithms, the obtained models 

were used to interpolate the viscosity and conductivity values for a variety of PILs containing small 

amounts of water. Relevant descriptors obtained by the training models were used to construct these 

models. A library of new PILs was designed by pairing all possible cations and anions listed in Figures 

2.1 and 2.2, followed by removing the PILs in the original data set. Then each of these new potential 

PILs was combined with five different water concentrations. Specifically, 8605 viscosity values and 

8580 conductivity values of interpolated PILs containing small amounts of water have been predicted. 

Since all the cations and anions were used in these predictions, it is important to note that there were 

some predicted ILs that have a cation and/or anion that was not present in their training set.  

 

2.2.2 Experimental method 

 

A selection of 13 acids and 26 amines were screened to characterise new ionic liquids with a range of 

viscosities. Each precursor was used as received, with formic acid (98%) obtained from Merck, and all 

other chemicals from Sigma-Aldrich including trihexylamine (96%), trioctylamine (98%), 

tributylamine (98.5%), octylamine (99%), 2-methoxyethylamine (99%), acetamide (99%), amylamine 

(99%), benzamide (99%), butylamine (99.5%), allylamine (98%), diethylamine (99.5%), triethylamine 

(99%), trimethylamine (45%), methylamine (40%), ethylamine (70%), ethanolamine (95%), 

diethanolamine (98%), triethanolamine (99%), diethylmethylamine (97%), diisopropylmethylamine 

(98%), 1,1,3,3-tetramethylguanidine (99%), collidine (99%), lutidine (98%), propylamine (98%), 

propanolamine (99%), quinoline (98%), glycolic acid (99%), butyric acid (99%), methanesulfonic acid 

(99%), propionic acid (99.5%), trifluoroacetic acid (99%), acetic acid (99%), thiocyanic acid (99%), 
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hexanoic acid (98%), lactic acid (85%), perchloric acid (70%), trifluoromethanesulfonimide (95%), and 

trifluoromethanesulfonic acid (99%).  

 

The screening process involved combining approximately equal volumes of less than 0.1 ml of all 

possible acid-base combinations of the precursors listed above into Eppendorf tubes. If these all 

underwent a full proton transfer then this would have generated a library of PILs consisting of all 

possible combinations of the 13 anions and 26 cations shown in Figures 2.1 and 2.2, respectively. This 

was a coarse screening process, with no cooling during addition, and no calculated stoichiometry. Each 

resulting combination was visually observed to identify candidates likely to be liquid at room 

temperature after synthesis and drying. Combinations were excluded that were highly viscous or solid 

at room temperature, or where the acid and base did not appear to react. From the remaining ILs, a 

selection of 10 were made with diversity of cations and anions. 

 

Larger batches of the chosen ILs were made using an acid-base titration with a stoichiometric ratio of 

the acid to the base. The acid was slowly added to the base, during which the temperature was 

maintained at 66 Water was removed from the resulting 

ILs using a Heidolph Hei-VAP Core rotatory evaporator, followed by a LabconcoFreeZone 4.5 Litre 

freeze dryer. The water contents of the ILs were measured using a Mettler Toledo Coulometric Karl 

Fischer after freeze drying. From these, ILs with water contents ranging from 0.1-1 wt% were 

investigated during the study and characterized to compare against the ML predictions.  

 

The viscosity of these new ILs was measured under SLC using an AND vibro viscometer. Conductivity 

measurements were taken using a Mettler Toledo Seven Excellence S470 pH/Conductivity Meter under 

SLC. Density was determined in triplicate measurements using a 2 mL volumetric flask.  
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2.3 Results and Discussion 

Models using MLREM and BRANNLP were developed for previously reported viscosity and 

conductivity data of PILs containing small amounts of water. The correlations between the experimental 

and predicted values of viscosity and conductivity for MLREM and BRANNLP models are illustrated 

in Figure 2.3. For both properties, 80% of the data was used for training the predictive models and 20% 

for testing. This led to 73 data points in the training set and 18 in the test set for viscosity, and 84 data 

points in the training set and 21 in the test set for conductivity. 

 

Figure 2.3. Experimental vs. predicted viscosity (A, B) and conductivity (C, D) of PILs containing small 
amounts of water according to MLREM (A, C) and BRANNLP (B, D) models. Blue circles and red 
squares denote the training and test data sets, respectively. 
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Both models also worked well for the conductivity prediction, with R2 and Q2 values higher than 0.78 

for both the MLREM and BRANNLP models. For the conductivity output, the number of effective 

weights was 18 for MLREM and 23 for BRANNLP models. Similar to the viscosity prediction, the 

BRANNLP model also performed better than the MLREM model in the prediction of conductivity for 

the investigated PILs containing small amounts of water, with higher Q2 (0.853 for BRANNLP vs. 

0.785 for MLREM, respectively) and smaller SEP (0.350 vs. 0.409 cP, for BRANNLP and MLREM, 

respectively).  

 

Table 2.1. Statistical Results for MLREM and BRANNLP Models of Investigated PILs Containing 
Small Amounts of Water. 

Output Data points Model 
Effective 
weights 

Training set Test set 

R2 SEE Q2 SEP 

Viscosity (cP) 
Training: 73 MLREM 20 0.921 0.314 0.917 0.310 

Test: 18 BRANNLP 29 0.925 0.240 0.893 0.365 

Conductivity 
(mS/cm) 

Training: 84 MLREM 18 0.889 0.300 0.785 0.409 

Test: 21 BRANNLP 23 0.873 0.272 0.853 0.340 

 

Next, all the data (not partitioned into training and test sets) was used to produce MLREM and 

BRANNLP models for viscosity and conductivity which will be used for exploring structure-property 

relationship and predicting properties of new PILs. The statistical results of the best QSPR models for 

the new library are shown in Table 2.2. Consistent with Table 2.1, all the models had high R2 and small 

SEE, showing good predictive capability. These models were used to predict the viscosity and 

conductivity of all possible combinations of the 63 cations and 29 anions, leading to 1827 cation-anion 

pairs. 
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Table 2.2. Statistical Results for MLREM and BRANNLP Models of the Interpolated PILs Dataset. 

Output 
Training 

Data points 
Model 

Effective 
weights 

Training set 

R2 SEE 

Viscosity (cP) 91 
MLREM 27 0.935 0.290 

BRANNLP 33 0.949 0.202 

Conductivity (mS/cm) 105 
MLREM 38 0.935 0.265 

BRANNLP 37 0.915 0.217 

 

To validate the predictions from the models, a selection of new PILs were synthesized and characterized 

to compare to the outputs of the models. An experimental screen was firstly conducted of 26 amines 

and 13 Brønsted acids to visually observe which combinations were likely to form ILs, and of those 

which were likely to be liquid at room temperature after drying. As described in the methods, this was 

a coarse screening method with equal volumes of the precursors used for simplicity, rather than 

stoichiometric quantities. It was important to note that amine precursors which contained a large 

proportion of water, such as ethylamine, led to significantly lower viscosities, and acid-base 

combinations with one having a particularly high or low molecular weight led to the lowest accuracy 

since the screening was done by equal volumes. The nitrates were deliberately omitted from this 

screening study due to the risk of an explosion through the heat generated from the reaction. The results 

are summarised in Table 2.3.  

 

Table 2.3. Heat map generated from combining volumetrically equal portions of the precursor acid and 
base to screen for protic ionic liquids likely to be liquid at room temperature. The cations are listed in 
the first column, and the abbreviations are given for the anions in the first row, which are the same as 
those in Figure 2.1. The values correspond to increasing viscosity from 1 to 5, where those classified as 

 
 at room temperature. 

Cation F A P B HX G L MsO SCN PC TfA TfO Tf2N 

methylammonium 1 1 1 2 2 1 3 3 1 1 1 5 1 

ethylammonium 1 1 1 2 2 1 1 1 1 1 1 6 1 

propylammonium 1 1 3 3 3 3 2 6 2 6 2 6 1 

butylammonium 1 1 3 3 4 4 3 6 1 5 1 6 1 
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amylammonium 2 2 3 3 4 3 3 6 1 6 3 6 1 

octylammonium 1 1 3 3 4 3 5 6 1 6 3 6 2 

diethylammonium 1 1 2 1 2 3 2 2 5 6 6 6 3 

trimethylammonium 1 1 1 1 1 1 1 1 1 6 1 1 1 

triethylammonium 1 2 1 1 1 1 1 4 1 1 1 1 2 

tributylammonium 1 1 1 2 2 3 3 4 1 6 2 6 1 

trihexylammonium 1 1 1 2 2 1 3 3 3 1 1 1 3 

trioctylammonium 1 1 1 2 2 3 3 2 3 5 1 1 4 

ethanolammonium 1 4 4 4 4 1 3 6 1 1 5 6 4 

propanolammonium 3 5 4 4 2 1 4 3 2 2 3 3 1 

diethanolammonium 2 4 4 3 2 1 4 4 4 1 5 6 4 

triethanolammonium 4 4 3 2 2 1 4 6 4 1 4 4 4 

2-methoxyethylammonium 1 4 4 4 2 1 3 4 1 1 2 6 1 

diethylmethylammonium 1 1 1 2 1 1 2 2 3 1 1 1 3 

diisopropylmethylammonium 1 1 2 1 1 1 3 3 3 6 1 6 3 

1,1,3,3,-tetramethylguanidinium 1 4 4 4 6 1 4 3 2 1 3 3 1 

acetamide (protonated) 1 1 1 1 1 2 1 1 1 1 1 1 1 

benzamide 6 6 1 1 1 6 3 1 6 1 6 1 1 

allylammonium 1 1 3 2 3 3 2 6 2 6 2 6 1 

collidinium 1 2 1 1 1 2 4 3 2 1 1 2 1 

lutidinium 1 1 1 1 1 1 4 3 2 1 1 6 1 

quinolinium 1 1 2 2 1 1 3 6 2 6 6 6 1 
 

 

Of the 338 acid-base combinations, 39 formed solids, 46 had high viscosities, and the remaining 253 

had low to medium viscosities. This latter group was identified as the combinations most likely to result 

in a PIL after careful stoichiometric synthesis, and of those, the ones with the lowest viscosities were 

more likely to be liquid at room temperature. Overall, it could be seen that from the acids and bases 

trialled, the carboxylic and Tf2N acids generally led to a large proportion of low viscosity combinations. 

Similarly, the methylamine, ethylamine, trimethylamine, triethylamine, and acetamide generally led to 

low viscosity acid-base pairs. Conversely, the perchloric, triflic, and methanesulfonic acids along with 

quinolinium had a relatively high proportion of solids forming with the amines in this study. 

 

From this screening, a selection of 10 potential PILs was made and synthesized, namely 

diethanolammonium glycolate (DEtAG), trihexylammonium acetate (THexAA), methylammonium 

propionate (MAP), triethylammonium lactate (TEAL), N,N-diisopropylmethylammonium hexanoate 
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(DIPMAH), pentylammonium acetate (PeAA), trioctylammonium formate (TOAF), trioctylammonium 

methanesulfonate (TOAMS), diethylmethylammonium hexanoate (DEMAH), butylammonium 

propionate (BAP). The water content, surface tension, density, viscosity, refractive index, and 

conductivity of these 10 PILs are provided in Table 2.4. Many of these have not previously been 

reported, and literature values where available with known water contents have been included for 

comparison. These 10 PILs represent a broad range of cation and anion structures across those in the 

interpolated data and had a broad range of viscosities and conductivities.  

 

It should be noted that some of these ions were not in the training sets used for developing the viscosity 

or conductivity models, and these are shown inside the interpolated boxes in Figures 2.1 and 2.2. These 

were deliberately included to test the robustness of the models for predicting the properties of PILs with 

both, one, or neither ions present in the training sets, while keeping the ions used relatively similar to 

those in the training sets.  

The viscosity of these new ILs was measured under SLC using an AND vibro viscometer. Conductivity 

measurements were taken using a Mettler Toledo Seven Excellence S470 pH/Conductivity Meter under 

SLC. Density was determined in triplicate measurements using a 2 mL volumetric flask.  

Table 2.4. Experimental physicochemical properties and melting points of 10 PILs prepared for 
validating the Machine Learning models, including water content, liquid-vapour surface t LV), 
d v refractive index (nD) and c
oC. Uncertainties are provided in parenthesis. 

ILa Water content (wt%) LV (mN/m)   nD (mS/cm) 

DEtAG 0.0050(5) b 1.15(6) b 1.491 0.100(5) 

THexAA 0.011(6) 30.6(1) 0.822(4) 8.51(0.17) 1.437 0.099(5) 

MAP 0.322(7) 44.2(6) 0.991(5) 42.0(8) 1.431 12.8(6) 

TEAL 0.036(6) 51.8(7) 1.04(5) 483(10) 1.458 0.20(1) 

DIPMAH 0.0020(5) 35.6(5) 0.90(4) 44.2(9) 1.443 0.27(1) 

PeAA 
0.047(7) 

0.2617 

37.4(1.3) 

38.9c,17 

0.91(5) 

0.94117 
473(9) 1.444 0.39(2) 
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TOAF 0.0027(50) 32.3(6) 0.83(4) 8.5(2) 1.450 0.176(9) 

TOAMS 0.0040(10) 36.1(1) 0.89(4) 381(8) 1.460 0.019(1) 

DEMAH 0.012(6) 33.1(5) 0.90(5) 26.5(5) 1.436 0.53(3) 

BAP 0.67(1) 38.3(1.2) 0.89(4) 452(9) 1.443 0.32(2) 

a The abbreviations for the ILs are diethanolammonium glycolate (DEtAG), trihexylammonium acetate 
(THexAA), methylammonium propionate (MAP), triethylammonium lactate (TEAL), N,N-
diisopropylmethylammonium hexanoate (DIPMAH), pentylammonium acetate (PeAA), 
trioctylammonium formate (TOAF), trioctylammonium methanesulfonate (TOAMS), 
diethylmethylammonium hexanoate (DEMAH), butylammonium propionate (BAP). 

b Sample had a high viscosity which exceeded the limits of the instrument used. This high viscosity also 
prevented surface tension from being measured, though the measurements suggest it is above 60 mN/m. 

c Measurement reported at 20.5 oC. 

 

Even after multiple days of freeze drying, it was difficult to dry methylammonium proprionate (MAP) 

beyond the 0.322 wt% water noted in Table 2.4. Both diethanolammonium glycolate (DEtAG) and 

ethylammonium lactate (EAL) had viscosities exceeding 1000 mPa.s and the viscosity could not be 

accurately measured using the instrument available to us. The high viscosity of DEtAG also impacted 

its surface tension and the surface tension value obtained was higher than the calibration standard 

(water: 72 mN/m).  

 

These experimental viscosity and conductivity values were compared against the predicted values from 

MLREM and BRANNLP machine learning models to assess the prediction capabilities of the models. 

The predicted viscosities using the MLREM model for THexAA, TOAF, and TOAMS were all 

effectively zero. 
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Figure 2.4. Comparison of experimental viscosity values from the PILs in Table 2.5 with the predictions 
from a) MLREM and b) BRANNLP models, with water contents up to 1 wt %. The predicted data are 
represented by circles, with the solid lines a guide to the eye. Experimental data is shown by squares 
with the same colour corresponding to the modelled PILs. 

 

Both models were able to predict that viscosity would decrease with increasing water content. The 

predicted data for DEtAG has been omitted since the values were significantly higher, with values from 

the MLREM model from 8299 cP at 1 wt% to 12856 cP at 0.001 wt%, and for the BRANNLP model 

from 5748 cP at 1 wt% to 9025 cP at 0.001 wt%. These are consistent with the viscosity of DEtAG 

being too high to measure in this study. 
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Based on the experimental data the ILs can be grouped into those with very high viscosity (DEtAG), 

those with an intermediate to high viscosity (TEAL, PeAA, TOAMS, and BAP), and the remainder 

with relatively low viscosities (DEMAH, DIPMAH, MAP, TOAF, and THexAA). Overall, there was 

good agreement for both models in grouping the ILs into these three categories, indicating the 

usefulness of both models for predicting viscosity. Both models clearly distinguished DEtAG as having 

the highest viscosity. The BRANNLP model identified TEAL, PeAA, TOAMS, and BAP as having 

viscosities higher than the other ILs, but lower than DEtAG, with moderate agreements to the 

experimental values, and not in the same order. Similarly, DEMAH, DIPMAH, MAP, TOAF, and 

THexAA were identified as low viscosity ILs for the BRANNLP model, though had a different order 

compared to the experimental data. The MLREM model predicted non-feasible values for THexAA, 

TOAF, and TOAMS of effectively zero, but otherwise performed well. TEAL, PeAA, and BAP were 

identified as having intermediate to high viscosities. The other ILs were correctly identified as having 

lower viscosities.   

 

For the PILs in Table 2.1 DIPMAH had neither cation nor anion present in the training set. Similarly, 

THexAA, TOAF, and TOAMS had cations that were not included in the training set but their anions 

were, while DEMAH had an anion not included in the training set, but the cation was. This shows that 

these MLREM and BRANNLP models are sufficiently robust to provide useful predictions of low, 

intermediate, or high viscosities, even for PILs with structures that are related, but not included in the 

original set. The PILs which had both cation and anion present in the training set did have better 

numerical similarity to the predicted values for both models. The BRANNLP model overall performed 

better, without any non-feasible values close to zero, and with the same general order as the 

experimental values, when grouping the PILs as having low, intermediate-high, and very high 

viscosities.  
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Figure 2.5. Comparison of experimental conductivity values from the PILs in Table 2.5 with the 
predictions from a) MLREM and b) BRANNLP models, with water contents up to 1 wt %. The 
predicted data are represented by circles, with the solid lines a guide to the eye. Experimental data is 
shown by squares with the same colour corresponding to the modelled PILs. 

 

The comparison between the experimental data in Table 2.1 and the models for conductivity is provided 

in Figure 2.5. As previously mentioned, the MLREM model for conductivity removed water as an 

important descriptor. However, we have constrained the water concentration as a descriptor and built a 

MLR model where water concentration together with all descriptors selected as important features were 

included. As can be seen in Figure 2.5, the predicted values using MLREM or BRANNLP all had 
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increasing conductivity with increasing water content, which was expected since conductivity is a 

transport property, and the corresponding decrease in viscosity will increase conductivity. The predicted 

values using MLREM were similar to those using BRANNLP, except for TOAMS and TOAF. The 

BRANNLP model predicted high conductivity for these two ILs but the MLREM did not. 

 

The experimental data can be grouped as high for MAP, intermediate for TEAL, DIPMAH, PeAA, 

EAL, TOAF, DEMAH, and BAP, and low for DEtAG and THexAA. Initially, it appears as though 

there is relatively poor agreement between the model and the experimental data, with four of the PILs 

having a factor of 5 difference between the experimental and predicted values at the most similar water 

contents. However, as described, this was largely dependent on whether the interpolated data entries 

are within the applicability domain of models or too different. The absence of similar structures or too 

different water concentration reported in the training set could lead to low accuracy in the prediction. 

As seen in Figure 2.5, there were moderately good predictions for DEtAG, TEAL, DIPMAH, PeAA, 

DEMAG, DEMAH, and BAP. However, the models failed to predict the high conductivity for MAP, 

and gave significantly higher predicted values for THexAA, TOAF, and TOAMS.  

 

For the PILs in Table 2.1, DEtAG, MAP, TEAL, PeAA, and BAP had both their cation and anion 

present in the training set, and all of these were relatively well predicted by the models, with the 

exception of MAP. DEMAH had the cation included in the training set, but not the anion, and similarly 

was well predicted. Both the MLREM and BRANNLP models accurately predicted that DEtAG would 

have low conductivity, and that many would have intermediate conductivities. The poor agreement of 

the model with the high experimental value of MAP68 was indicative of limitations of the available 

conductivity data for training, since the previously reported values for the structurally similar ILs were 

very high for MAF (methylammonium formate) (43.8 mS/cm at 0.46 wt%), but low for EAP 

(ethylammonium propionate) (0.872 mS/cm at 0.42 wt%) and EAF (ethylammonium formate) (12.16 

mS/cm at 0.38 wt%), all of which were included in the training set.  
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In contrast, THexAA, TOAF, and TOAMS all had their anion included in the training set, but not the 

cation, and all had the poorest agreement between the predicted and experimental values. It was likely 

that the increased multiple alkyl chains on the cations were significantly decreasing their conductivity 

through reduced ion mobility and increased van der Waals interactions. The cations in the training set 

for conductivity which were similar to the trihexylammonium and trioctylammonium cations used in 

this validation set of PILs were pentylammonium, N-octylethylenediaminium, and dibutylammonium, 

and hence it was likely that these multiple long alkyl chains were not described well by the model.  

 

2.3.1 Effect of water content on viscosity and conductivity  
 

N,N-diisopropylmethylammonium hexanoate (DIPMAH) was chosen to study the effect of water 

concentration on viscosity and conductivity experimentally. The results are shown in Table 2.5. These 

experimental measurements were compared to prediction curves from MLREM and BRANNLP for 

viscosity and conductivity.  

Table 2.5. Experimental measurement for N,N-diisopropylmethylammonium hexanoate with varying 
water concentrations. The experiments were performed under SLC. 

wt% water Viscosity (m Pa.s) Conductivity (uS/cm) 

0.088 37 291.7 

0.229 44 314.6 

0.568 41 352.1 

0.78 59 357.6 

1 57 348.2 

 

As the concentration of water increased, the observed viscosity values of DIPMAH increased. This 

seemed counterintuitive at first glance and contradicted the trends observed in the ML predicted 

viscosity curves. Since this IL has never been studied previously in literature, it was difficult to 

determine why this behaviour was observed. It could potentially be attributed to errors and uncertainty 
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associated with the values. While great care was taken during experiments to ensure laboratory 

conditions remained constant, small fluctuations in temperature could have affected the measurements. 

Figure 2.6. A) MLREM and B) BRANNLP predictions for viscosity with varying water concentrations 
compared against experimental values for viscosity for DIPMAH.

The experimental viscosity data series for DIPMAH had a good general agreement with the predicted 

trend for MLREM and BRANNLP generated viscosity. However, the trend for this IL with increasing 

water concentration did not agree with the trend in predicted data, or the general expectation. This was 

likely due to the ions of DIPMAH not being included in the training data set. The predictions shown in 

Figure 2.6 were likely made by the model by extrapolating the information it had for the similar ions 

diisopropylethylammonium, octanoate and heptanoate, with 1, 1 and 2 more carbon atoms respectively, 

A

B
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in the training set. Based on this information, while the trends are not similar, these predictions 

demonstrate how powerful ML algorithms can be for prediction of new ILs and their properties, even 

with no prior information regarding the ions being used for synthesis.  

 

Figure 2.7. BRANNLP predictions for conductivity with varying water concentrations compared 
against experimental values for conductivity for DIPMAH. 

 

BRANNLP model for conductivity overall suggested an increasing conductivity with increase in water 

content. DIPMAH experimental values deviated largely from the predicted curve because there were 

no ILs containing diisopropylmethylammonium or hexanoate in the training set for conductivity. It was 

concluded  

 

Overall, when there was sufficient data in the training set, there was good agreement between the PILs 

used for validation and the predicted conductivity values from the models. The models did not perform 

well when the structures of the extrapolated PILs were too different from those used for training.   
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2.3.2 Further discussion  
 

It is well known that there are vast numbers of possible combinations of cations and anions which can 

result in ionic liquids, and that these become even larger when combined with a second or third solvent, 

such as a molecular solvent, another IL, or other additives. While there are high throughput 

experimental approaches which have been developed to increase the synthesis and characterization of 

ILs, particularly protic ILs,17,18 these are not currently able to cover a large proportion of the 

compositional space. Instead, machine learning methods have the capability to interpolate and 

extrapolate based on existing data. 

 

In this study, we used reported data that had previously been compiled into a review1 to produce 

MLREM and BRANNLP models for viscosity and conductivity. Initially, models were also attempted 

for thermal properties of glass transitions and melting points. However, these were deemed poor when 

80% of the data was used for developing the models and 20% for testing. The other properties, eg. 

density, refractive index, and surface tension, reported in the review paper were not included in 

developing models, due to insufficient data reported with known water contents. It was central to 

developing machine learning models that there was high quality, consistent data available. In particular 

for ILs, it was essential that the water content was reported. It was also recommended for PILs that the 

pH at a known concentration in water should also be reported as a quasi-measure of stoichiometry.  

 

The viscosity and conductivity models presented here were developed from relatively scarce data 

compared to the structure compositional space. There were 91 data points from 83 unique ILs for the 

viscosity, from 39 cations and 16 anions. These were sufficient to produce useful models for viscosity 

from both MLREM and BRANNLP for all possible cation and anion combinations in the training sets, 

along with extrapolation to an additional 24 cations and 13 anions not in the viscosity training data. The 

comparison to the experimental values for 10 new PILs with either one, both, or neither ion present in 
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the training set validated both these models, and while the numerical values differed, the models could 

identify the general order of viscosity.   

 

The conductivity models were developed from 105 data points for 97 unique ILs, including 48 cations 

and 17 anions. Models were developed to predict conductivity values for all possible cation and anion 

combinations from the initial training set, along with 15 additional cations and 12 additional anions. In 

comparison to the experimental values for the new PILs, these showed good agreement when the cation 

was present in the training set, but poor agreement for the PILs containing the bulky trihexylammonium 

and trioctylammonium cations which were not present in the training set. Overall, this study 

demonstrated that the developed models were capable of making useful predictions for interpolated 

PILs based on the cations and anions in the training set.  

 

These models were able to provide predictions for viscosity and conductivity for 1827 cation-anion 

combinations, which should provide meaningful guidance about which are likely to be high, low, or 

intermediate, and how they are likely to vary with up to 1 wt % water present. We expect that these 

models will undergo significant changes over time as more data becomes available. They are likely to 

expand to include more cations, anions, and molecular solvents or additives, and in this process the 

descriptors which are selected as most relevant are likely to change as well.   

 

2.4 Conclusion  

It was observed that for both linear and non-linear machine learning algorithms, MLREM and 

BRANNLP, the quality of the training data greatly impacted the prediction capacities for ILs. 

BRANNLP models for both viscosity and ionic conductivity outperformed MLREM models with 

slightly higher R2 and standard deviation values. A significant finding from the current study was that 

the water content of the training set affected the accuracy of the predictions to a great degree. The 

changes in viscosity and conductivity were not linear with incremental increases to the water content 
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and thus the water content plays an important role in the predicted values for neat ILs. BRANNLP 

model for conductivity overall suggested an increasing conductivity with increase in water content. This 

was confirmed with experimental results. The results for viscosity were less conclusive, with the trends 

observed with the ML models not able to be confirmed with the available experimental results. This 

was likely due to none of the ions of DIPMAH being included in the training data set for the ML models. 

To develop high quality machine learning models, there needs to be high quality, consistent data 

available. In particularly for PILs, it was essential that the water content was reported. 
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3 Effect of surfactant ionicity on self-assembly in aqueous ionic 
liquid mixtures 

 

3.1 Introduction 
 

Protic ionic liquids are the largest known solvent class capable of promoting surfactant self-assembly. 

PILs can act as proton donors or acceptors, and this ability can lead to water-like hydrogen bonded 

networks.35, 66-68 These H-bonded networks contribute to the ability of some PILs to promote self-

assembly and may contribute to their beneficial solvent properties for applications such as biomolecule 

preservation.69-73  

 

The first report of self-assembly in ILs was by Evans et al. in the early 1980s, where they reported 

micelle formation in ethylammonium nitrate (EAN).66, 74 A wide range of ILs have been tested for this 

property since this discovery, and PILs remain the largest known subclass of solvents capable of 

supporting self-assembly.2, 36, 75-76 Reports suggest that the formed micelles tend to be smaller in EAN 

when compared to water, attributed as due to the higher solubility of hydrocarbons in EAN.17, 74 In 

addition to micelles67, 74, 77, liquid crystal phases, such as lamellar, hexagonal and cubic 17, 58, 76, 78 have 

been reported in PILs. In general, it has been noted that as the solvophobicity of an IL increases, the 

likelihood of more diverse liquid crystal phases being supported also increases.58, 79 

 

For reasons such as decreasing viscosity, decreasing costs, and increasing surfactant solubility, IL-

molecular solvent mixtures have sparked interest in recent years as self-assembly solvents.3, 14 A broad 

range of lyotropic liquid crystal phases have been supported in IL-water mixtures, including 

hexagonal78, lamellar58 and cubic phases76. However, to date there are few PIL-water-surfactant systems 

which have been explored. For PIL-water mixtures, the studies have included cationic and nonionic 

surfactants, such as cetyltrimethylammonium bromide (CTAB)47, dodecyltrimethylammonium bromide 

(DTAB)13 and tetradecyltetraglycol (C14E4)52. Some insights into the role of the IL during self-assembly 
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can be gathered from these publications. Wakeham et al. suggested that the CMC of the surfactant 

strongly correlated to the solvent composition, with an increase in CMC being proportional the PIL 

concentration based on their study of C14E4 self-assembly in mixtures of EAN-water and EtAN-water. 

Bryant et al. reported that the CMC of cationic surfactants are orders of magnitude higher, and micelles 

much smaller, in EAN than in water, whereas anionic micelles were less affected.34 Lam et al. reported 

IL behaviour is similar to that of a simple electrolyte based on their study of DTAB in EAN-water 

mixtures at low EAN concentrations. However, at IL concentrations beyond the saturation points of 

most conventional salts, the IL nanostructure influences micellization and acts as a co-solvent rather 

than a salt, raising the CMC.13 No studies could be found exploring anionic surfactant self-assembly in 

PIL-water mixtures.  

 

For aprotic ILs, the micellization behaviour of cationic, anionic and non-ionic surfactants have been 

investigated in IL-water solvents, but not all in the same study, or with consistent ILs or surfactants. 

Cationic surfactant self-assembly of CTAB in aprotic imidazolium-based IL-water mixtures, with up to 

20 wt% water, was investigated by Javadian et al., using ILs with 1-Butyl-3-methylimidazolium 

(BMIm) and 1-Hexyl-3-methyl-imidazolium (HMIm) cations paired with Cl, Br and BF4 anions.47 The 

CMC observed in all IL-water mixtures were higher than the values recorded in water, and they 

determined that the hydrogen bond was an important factor in defining the solvent properties. In 

contrast, Sohrabi et al. explored the anionic surfactant, sodium dodecyl sulfate (SDS), in Cnmim, BMIm 

and HMIm based IL-mixtures and found that at low concentrations of the ILs, the CMC of SDS 

decreased, leading to the formation of mixed micelles.49-50 Sohrabi et al. also hypothesised that the 

decrease in CMC could be attributed to a reduction in the electrostatic repulsion between headgroups.50 

 

The effect of conventional salts on surfactant self-assembly has also been investigated in depth.80-82 

Typically the saturation concentrations of conventional salts which can be dissolved in water is 5 

mol%80. At these concentrations, the salt was noted to decrease the critical micelle concentrations of 
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surfactants in water.80-81 Here, the ILs are not solubility limited, as was the case with conventional salts, 

and therefore we can investigate the effect on the critical micelle concentrations of having high ion 

concentrations present in the solvent. In salts, the high ionic strength screened the headgroup charges 

of anionic and cationic surfactants, leading to decreased effective headgroup area compared to in 

water.17, 83 

 

The solvation behaviour of solutes in IL-water solvent mixtures is complex, with possible contributions 

including specific ion effects, hydrogen bonding and Van der Waal interactions.3, 14, 75 Recently, Yalcin 

et al. explored the chemical environment of binary IL solvents using dyes as probe molecules. The 

results indicated that the solvation parameters of the binary mixtures deviated considerably from the 

ideal solvation behaviour. This suggested preferential solvation was solute-dependent and the results 

demonstrate that some PIL-molecular solvent combinations can enhance the solvation capabilities.14 

Surfactant self-assembly will be strongly affected by these solvation properties, and the proportion of 

IL cations, IL anions and water are likely to be different in the bulk solvent relative to the proportions 

found around cationic, anionic and non-ionic surfactants. Therefore, there is a need to have a systematic 

study to directly compare the micellization behaviour of these three amphiphile classes in the same IL-

water environments.  

 

In this chapter the micellization behaviour of a cationic, anionic and non-ionic amphiphiles in PIL-

water mixtures, across the full PIL-water composition range were investigated. This is the first 

comprehensive study of the effect of ionicity on the self-assembly of all three classes of surfactants in 

PIL-water solvents. Surface tension measurements were used to obtain the CMC, surface excess 

max, minimum molecular areas at the air-liquid interface, Amin, standard free energy of 

micellization,  and standard free energy of adsorption,  of the surfactants in each PIL-water 

composition. Small angle X-ray scattering (SAXS) was performed to confirm micelle formation in the 

anionic surfactant, sodium octylsulfate. The presence of higher order phases were visually observed in 
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the mixtures using cross-polarised optical microscopy. It is anticipated that this knowledge on the self-

assembly behaviour can provide insights regarding the solvent environment in which it occurs, which 

will be applicable to a broader range of solutes, such as biomolecules. 

 

3.2 Method 
 

The surfactants of C12E4 (Sigma Aldrich), sodium octyl sulfate (Sigma Aldrich) and 

cetylrimethylammonium bromide (Sigma Aldrich) were used as received. The ionic liquid precursors 

of ethylamine (Sigma Aldrich), ethanolamine (Sigma Aldrich) and nitric acid (Sigma Aldrich) were 

used as received. 

 

The ionic liquids used in this study, EAN and EtAN, were prepared using a previously reported 

method.10 The reaction was an acid-

using an ice bath, as previously reported.7 The resulting PILs were first dried using a rotary evaporator 

for 24 hours and then freeze dried up to 3 days to ensure low water content. A Karl Fischer titration 

(Mettler Toledo, Titrator Compact C10SD) was performed to ensure the water content was less than 

0.05 wt%. PILs were mixed with water to obtain solvent mixtures with concentrations of 5, 14, 25, 33, 

50 and 75 mol% PIL.  

 

The surfactants were dissolved in PIL-water mixtures at concentrations between 0.0001 wt% to 15 wt% 

for CMC determination. The full list of the concentrations used for each surfactant in each PIL-water 

composition are available in the Supporting Information Section 8.2.  

 

Air-liquid surface tension measurements were made using a Kibron Delta-8 multi-channel tensiometer. 
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into one column of each plate and was used for calibration before measuring the surface tension of the 

samples.  

 

Small angle x-ray scattering was performed at the Australian Synchrotron small and wide-angle X-ray 

scattering beamline (SAXS/WAXS).  Samples were loaded into 0.5 mm capillaries and the experiment 

was performed with a q-range of 0.014 to 1.3 Å-1  taken for 1 s and the 

obtained 2D scattering patterns were converted to 1D patterns using Scatterbrain software, provided by 

the Australian Synchrotron. To fit the 1D scattering patterns to various mathematical models of micelle 

scattering patterns, SASView software (Version 4.2.0) was used. 

 

Cross polarised microscopy was used to obtain penetration scans for liquid crystal phases across the 

PIL/water concentration range for the three surfactants. The surfactants were compressed between 

microscope slides and coverslips before the PIL-water solvent was added to the edge of the coverslip. 

The solvent was allowed to penetrate through the surfactant, creating a concentration gradient. The 

prepared samples were heated at 2-10 °C/min in a Mettler FP82HT hot stage controlled by a FP90 

central processor to temperatures up to 90 °C. This was performed for all three surfactants in mixtures 

of EAN and water ranging from 5 mol% to neat IL.  
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3.3 Results and Discussion 
 

3.3.1 Micelle formation in EAN 
 

Surface tension measurements, SAXS patterns and cross polarised optical penetration scans were taken 

of non-ionic, cationic, and anionic amphiphiles in EAN-water mixtures to observe the effect of changing 

the IL concentration on the CMC, and other self-assembly properties.  

 

Air-liquid surface tension measurements were made for the three surfactants in each of the EAN-water 

solvents, which contained 5, 14, 25, 33, 50 and 75 mol% of EAN, as well as in neat water and EAN. 

The concentration range selected included the characteristic decrease in surface tension due to micelle 

formation. In each EAN-water solvent the surface tension was observed to decrease approximately 

linearly with increasing surfactant concentration, over some concentration range, before reaching a 

plateau. The intersection between the linear decrease and the constant surface tension was taken as the 

CMC. 

 

Representative plots of surface tension versus surfactant concentration are provided in Figure 3.1, 3.2 

and 3.3. The plots for the other EAN-water concentrations are provided in Figures in the Appendix 8.2.  
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Figure 3.1. The surface tension versus CTAB concentration plots in solvents containing a) water, b) 14 
mol% EAN/water, c) 25 mol% EAN/water and neat EAN. 

  

   

Figure 3.2. Surface tension vs C12E4 concentration plots in a) water b) 5 mol% EAN/water c) 75 mol% 
EAN/water and d) neat EAN. 
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Figure 3.3. The surface tension versus SOS concentration plots in solvents containing a) water, b) 25 
mol% EAN-water, c) 33 mol% EAN-water and d) 75 mol% EAN-water. 

 

SOS was used instead of the widely used sodium dodecyl sulfate (SDS) as the anionic surfactant due to 

poor solubility of SDS in the chosen protic ionic liquid at room temperature. It was not possible to 

dissolve enough SDS to reach the CMC in EAN during initial testing. The shorter alkyl chain length of 

SOS increases the solubility of the surfactant in the protic ionic liquid. The CMC of SOS was reported 

to be an order of magnitude larger than that of SDS in water and we also observed similar differences 

in values in EAN-water mixtures.84  

 

To observe the trends in micellization across the three surfactants across the EAN/water concentration 

range, the CMC was compared. CMC values obtained for the surfactants in solvents ranging from water 

to neat IL are shown in Figure 3.4 relative to the EAN proportion in the solvent. The CMC values of 

SOS in EAN-water mixtures were 2 orders of magnitude larger than that of CTAB in the same mixtures, 

A B 

C D 
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which was consistent with reported findings in water. It was reported that SOS micelle formation occurs 

at concentrations 2 orders of magnitude higher in comparison to CTAB in neat water.39 The CMC values 

of the non-ionic surfactant C12E4 were similar to that of the cationic surfactant, CTAB, and also varied 

from SOS CMC values by approximately 2 orders of magnitude. This indicated that it was more 

energetically favourable for CTAB and C12E4 to form aggregates at lower concentrations than the 

anionic surfactant. This could be partly due to the general lack of solubility, as observed with SDS.

Figure 3.4. The CMC of a) SOS, b) CTAB and C12E4 relative to the EAN concentration in EAN-water 
mixtures.

The CMC in 5 mol% EAN was lower relative to the CMC in water for CTAB and SOS, and the same 

in C12E4. The decrease in the CMC for 5 mol% EAN for the ionic surfactants was attributed as due to 

head group shielding, with the ILs exhibiting similar properties as conventional salts. This was 

consistent with the results observed by Lam et al.13 for the cationic surfactant DTAB in EAN/water 

mixtures at similar low concentrations. 

A

B C
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The increase in the CMC with increasing EAN concentration began at 33 mol% for CTAB, whereas 

this ascent began at 5 mol% in both C12E4 and SOS. This suggests that water may be dominating the 

self-assembly process for CTAB up to 33 mol% EAN, whereas EAN has more influence on the self-

assembly for C12E4 and SOS from 5 mol% EAN. Similarly, the relatively constant CMCs of CTAB and 

C12E4 above 50 mol% and 33 mol% EAN respectively suggests that EAN was acting as the dominant 

solvent for these higher concentrations and having a greater influence on the self-assembly than water. 

In contrast, there was a more linear increase in the CMC of SOS, with increasing EAN, suggesting EAN 

and water were both having an active solvent role.  

 

Interestingly, significantly larger concentrations of SOS were required to form micelles, in comparison 

to the cationic and non-ionic surfactants. Initially SDS was explored as an option, but it reached the 

solubility limit before the CMC for EAN-water compositions. This gave insight regarding the 

difficulties in observing the self-assembly of longer chained anionic surfactants as there is likely a 

compromise between the solubility limits of anionic surfactants and the minimum concentration of 

surfactants required for self-assembly. The trend in the CMC for SOS with EAN concentration showed 

the largest initial decrease with 5 mol% EAN present.  

 

The maximum surface excess co max, at the air/liquid interface was calculated from 

Equation 3.

tension vs log(concentration) curve at concentrations just below the CMC: 

 

 
(3.1) 

 

Using the surface excess concentration, the minimum molecular areas of the surfactants absorbed at the 

interface, Amin, was calculated from Equation 3.2, Where NA  
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Amin =  (3.2) 

 

m
o, and the ad

o, were 

calculated using Equations 3.3 and 3.4, respectively55. These required the previously obtained CMC 

and Amin, 0 CMC, the surface tension at the CMC.  

 (3.3) 

 (3.4) 

 

The surface tension at the CMC, calculated free energy parameters and packing factors are provided in 

Tables 3.1, 3.2 and 3.3 for SOS, CTAB and C12E4 in each EAN-water mixture, respectively. 

 

Table 3.1. Free energy parameters and packing factors for the anionic surfactant SOS in EAN-water 
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension 
of the solvent, solvent, and at the CMC, solvent, surface excess concentration, max, minimum molecular 
area at the air-liquid interface, Amin, standard free energy of micellization, m, and standard free energy 
of adsorption, ad. 

Conc EAN (mol%) 
solvent  
± 2 

 (mN/m) 
CMC (mol/L) 

2 
(mN/m) 

 
(mol/m2) 

A  
(Å2) 

m  

(kJ/mol) 
ad  

(kJ/mol) 

0 72  88±2 -3 42 5390±4 -9 31±2 -6±0.1 -0.94±0.01 

5 59 13±5 -3 34 2970±70 -9 56±2 -11±0.2 -2.14±0.01 

14 63 44±5 -3 34 1740±20 -9 96±2 -8±0.1 -3.61±0.01 

25 56 88±4 -3 37 2420±9 -9 69±3 -6±0.1 -2.40±0.01 

33 51 44±3 -3 37 2540±10 -9 65±3 -8±0.2 -2.31±0.01 

50 51 230±20 -3 38 1040±10 -9 160±3 -4±0.1 -5.51±0.004 

75 51 320±10 10-3 38 1770±7 -9 94±4 -3±0.1 -3.23±0.003 

100 50 530±10 -3 38 1850±5 -9 60±3 -2±0.1 -3.15±0.002 
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Table 3.2. Free energy parameters and packing factors for the cationic surfactant CTAB in EAN-water 
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension 
of the solvent, solvent, and at the CMC, solvent, surface excess concentration, max, minimum molecular 
area at the air-liquid interface, Amin, standard free energy of micellization, m,  and standard free 
energy of adsorption, ad. 

Conc EAN (mol%) 
solvent  
± 2 

 (mN/m) 
CMC (mol/L) 

2 
(mN/m) 

 
(mol/m2) 

A  
(Å2) 

m  

(kJ/mol) 
ad  

(kJ/mol) 

0 73 55±10 -5 39 1720±30 -9 97±2 -18±0.4 -3.16±0.02 

5 60 21±3 -5 34 3770±20 -9 44±0.3 -21±0.3 -1.70±0.02 

14 56 22±4 -5 32 2780±30 -9 60±0.7 -21±0.4 -2.41±0.02 

25 55 19±3 -5 41 1200±30 -9 138±3 -21±0.3 -4.36±0.02 

33 56 192±3 -5 37 1470±30 -9 113±2 -15±0.3 -3.93±0.02 

50 51 1380±60 -5 42 1460±70 -9 114±5 -11±0.8 -3.47±0.01 

75 51 2750±1 -5 45 1140±70 -9 146±8 -15±0.1 -3.97±0.01 

100 51 1100±3 -5 46 1010±40 -9 164±7 -11±0.5 -4.32±0.01 

 

Table 3.3. Free energy parameters and packing factors for the non-ionic surfactant C12E4 in EAN-water 
mixtures, as calculated from surface tension measurements. Parameters include, CMC, surface tension 
of the solvent, solvent, and at the CMC, solvent, surface excess concentration, max, minimum molecular 
area at the air-liquid interface, Amin, standard free energy of micellization, m, and standard free energy 
of adsorption, ad. 

Conc EAN 
(mol%) 

solvent  
± 2 

 (mN/m) 
CMC (mol/L) 

2 
(mN/m) 

 
(mol/m2) 

A  
(Å2) 

m  

(kJ/mol) 
ad  

(kJ/mol) 

0 72 11±2 -5 33 846±3.33 -8 20±0.1 -22±0.4 -0.788±0.02 

5 63 11±2 -5 34 547±3.33 -8 30±0.2 -22±0.4 -1.16±0.02 

14 55 69±10 -5 33 352±2.50 -8 47±0.3 -18±0.3 -1.85±0.02 

25 56 262±10 -5 32 313±0.975 -8 53±0.2 -15±0.1 -2.16±0.01 

33 51 830±10 -5 33 603±2.38 -8 28±0.1 -12±0.3 -1.04±0.01 

50 53 553±10 -5 35 292±4.44 -8 57±0.9 -13±0.5 -2.10±0.01 

75 51 1110±20 -5 34 476±3.35 -8 35±0.2 -11±0.4 -1.36±0.01 

100 51 1110±20 -5 34 460±3.35 -8 36±0.3 -11±0.4 -1.40±0.01 

 

 

The surface excess concentration, max. gives insight regarding the position of surfactants in the system 

and the force exerted by them on the surface. Accumulation of surfactants at the interface leads to 

positive surface excess concentrations, whereas negative values indicate the surfactants were more 

likely to be found in the bulk.54 This was observed across all three surfactants, as shown in Tables 3.1 

to 3.3. The trends in Amin and Gm which prove to be more complex are discussed below. 
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The average area per surfactant at the interface, Amin, can give insights regarding the arrangement of the 

surfactants during the critical micelle concentration. The energy of micellisation, Gm, can give insights 

regarding the arrangement of the surfactants during the critical micelle concentration. To understand 

the trends observed across the three surfactants, Figure 3.5 depicts the trends in Amin and Gm across the 

surfactants. 

Figure 3.5. a) The area per surfactant at the interface, Amin, and b) the energy of micellisation, Gm, of 
the surfactants SOS, CTAB and C12E4 as calculated from the CMC curve from surface tension.

A

B
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In general, there is an initial increase in the Amin across all the surfactants as the EAN concentration 

increases, but this increase becomes less pronounced beyond 50 mol% EAN for the anionic and non-

ionic surfactant. The Amin value fluctuates but remains at a similar order of magnitude for C12E4 and 

SOS beyond 50 mol%. CTAB shows a different behaviour where the Amin stays constant at 33 mol% 

and 50 mol% but continued to increase at higher EAN concentrations. This could indicate that 

surfactants were laying flatter at the interface as the EAN concentration increased for C12E4 and SOS, 

and as the proportion of EAN in the solvent further increased with EAN being dominant, this effect 

plateaus and Amin no longer continues to increase. In the case of the cationic surfactant, CTAB, the 

separation between the surfactants could also have been increased by the interaction of the anions with 

the surfactants, leading to a constant increase in Amin even at higher concentrations of EAN.    

 

Positive free energy parameters indicate the process requires an external input of energy, whereas 

negative values were expected for a spontaneous process such as self-assembly.55 With regards to trends 

observed in Gm in Figure 3.5B, we see an initial decrease in the energy required for micellization across 

all surfactants at very low EAN concentrations, followed by a linear increase and a plateau beyond 33 

mol% EAN. The energy of micellization was observed to be 2 times larger for the anionic surfactant, 

in comparison to the cationic and non-ionic surfactants, likely due to solubility limitations associated 

with anionic surfactants in ILs.  

 

To understand the relationship between solvophobicity of the mixtures and the self-assembly process, 

the Gordon parameters for the solvents were calculated. In the field of amphiphile self-assembly, the 

cohesive energy density can be approximated by the Gordon parameter, G, as given in Equation 3.5, 

where  is the surface tension at the liquid-air interface and Vm is the molar volume48: 

 (3.5) 
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While there are other methods for solvent cohesive energy density, these are applicable to volatile 

solvents. Figure 3.6 depicts the Gordon parameter calculated for varying EAN-water concentrations.  

 

Figure 3.6. Gordon parameters calculated for EAN-water mixtures. 

 

The decreasing trend in Gordon parameter suggests a lower cohesive energy density in EAN rich 

compositions and indicates that micellization was less favourable as the EAN concentration increased. 

For the non-ionic surfactant of C12E4, the free energy of micellization showed an inverse relationship to 

the Gordon parameter, as shown in Figure 3.5. Charge screening effects were not relevant for the non-

ionic surfactant, and hence this was consistent with the hypothesis that an increased Gordon parameter 

led to higher solvophobicity, therefore requiring less energy for micellization. At low EAN 

concentrations, the water was likely preferentially solvating the surfactants, leading to a higher cohesive 

energy density, before the IL-water interactions becomes the major influencer of the CMC. This also 

confirms that solvent-solvent interactions in the system dominate the self-assembly process, with 

minimal solvent-solute interactions.  

 

Another interesting observation was that the polarity response of the coumarin dye observed by Yalcin 

et al., which provided insight regarding the change in solvation preferences of the dye in EAN-water 

mixtures, had an inverse trend in comparison to the change in CMC of C12E4.14 This consistency in 
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trends observed further suggests that the changes observed in CMC of non-ionic surfactants are in fact 

a result of the solvophobic effect. Polarity measurements made via coumarin suggested that with 

increasing water concentration, the IL-water mixture becomes more polar and solvophobic. 14  This was 

consistent with the low CMC values observed at low EAN concentrations and further justifies the 

hypothesis that surfactant-solvent interactions were more prominent at low EAN concentrations.  

 

3.3.2 Micelle characterisation of SOS in EAN-water solutions using SAXS 
 

Since SOS self-assembly has not been previously reported in ILs or IL mixtures, small angle x-ray 

scattering (SAXS) was performed to confirm the presence of micelles in EAN mixtures. However, in 

EAN and EAN-water mixtures no scattering could be observed from SOS using SAXS, despite trialling 

multiple SOS concentrations. This has been attributed as most likely due to contrast issues between the 

micelles and the solvent. Previous studies on similar systems in neat EAN found that the shell-solvent 

interface had poor contrast and there was effectively no scattering for many surfactant samples, and 

instead the contrast observed arose from the core-shell.37, 67, 79 The x-ray scattering length densities 

(SLD) of EAN and the shell of the SOS micelle are very close in values, as shown in Table 3.4. These 

values were approximated using the SLD calculator on the SASView software.85 

 

Table 3.4.  Electron scattering length densities (SLD) of the solvents and the anionic surfactants for x-
rays. 

 
X-ray SLD 

(10-6/Å2) 
Water 9.46 
EAN 10.9 
EtAN 12.5 

SOS core 9.3 

SOS shell 9.12 
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As shown in Table 3.4, the difference in electron scattering length densities of the solvents and 

surfactants is minute. During SAXS, the scattering relies on the contrast between the solvent and solute, 

which is determined by the SLD difference. The contrast between SOS and water can be predicted to 

be the worst of all three solvents, as shown by the extremely similar SLD values. Due to the similar 

SLD values between water and SOS, scattering was not observed during our experiments.  

 

With EAN, due to the slightly better contrast, we were optimistic about observing scattering from the 

samples. However, consistent x-ray scattering was also not observed with the SOS-EAN samples. A 

reason for the lack of contrast could also stem from EAN lodging itself into the micelle, causing the 

contrast between the micelle and the solvent to be even harder to distinguish. Bryant et al. observed this 

with EAN and mixed micelles of anionic and cationic surfactants. They found that EAN, due to its 

cationic nature, participates in the micelle formation and acts as a surfactant rather than a solvent during 

self-assembly. They were able to observe this based on neutron scattering, which allows for higher 

contrast between the surfactants and solvents. 34  

 

Neutron scattering would be a better experimental method for these systems due to the different 

scattering length densities for neutrons, which allow for greater contrast between solvents and 

surfactants. Due to circumstances detailed in the COVID-19 statement that was not feasible. Instead, to 

continue with this investigation, we chose EtAN as the solvent to investigate SOS micelles in PIL 

systems.  

 

3.3.3 SOS micelles in EtAN-water mixtures 
 

EtAN, a less cationic PIL, was chosen as the PIL to investigate the micelle formation of SOS. As 

demonstrated in Table 3.4 in Section 3.3.2, EtAN has a higher SLD, which leads to better contrast with 

SOS during x-ray scattering investigations. Another important difference between EtAN and EAN is 
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that it lacks the amphiphilic nature of EAN34. It is unlikely EtAN would lead to contrast issues during 

micellization due to cationic ions participating in the shell of the micelle. 

CMC of SOS in mixtures of EtAN were measured using surface tensiometry, following the same 

method as for EAN. Figure 3.7 summarises the CMC of SOS micelles observed across the EtAN-water 

concentration range. The trend in CMC of SOS in EtAN mixtures was quite similar to the trend observed 

with SOS in EAN mixtures. The initial lowering of CMC at 5 mol% was observed across both PILs, 

along with the steady increase in CMC beyond the concentrations during which the PIL has a more 

dominant role in the bulk solvent. After 33 mol%, the CMC hovered around a constant value, which 

was also observed with EAN. 

Figure 3.7. The critical micelle concentration (CMC) of SOS in EtAN-water mixtures ranging from 
water to neat EtAN.

To confirm the presence of micelles in these mixtures, SAXS experiments were performed at the 

Australian Synchrotron SAXS/WAXS beamline. Figure 3.8 depicts the observed experimental SAXS 

scattering and the model data for SOS in EtAN and water mixtures.
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Figure 3.8. Small angle x-ray scattering of SOS in a) 33 mol%, b) 50 mol%, c) 75 mol% and d) Neat 
EtAN with the mathematical scattering fit for spherical micelle. Red points indicate experimental 
scattering data and black line indicates the SASView mathematical fit for a sphere.  

 

Overall, the scattering observed for SOS in EtAN mixtures in Figure 3.8 were consistent with micelles, 

or more generally, spherical aggregates. The upturn at the lowest q values in Figure 3.8D was attributed 

to small aggregates, and the decrease at low q in the neat EtAN sample was attributed to over subtraction 

of the buffer. This was the best subtraction we could manage given the scattering issues associated with 

the samples. Low q also indicated that the scattering occurred close to the beamstop, which usually 

leads to less reliable data.  It should be noted that the peak at 0.3 A-1 was due to Kapton tape, and weak 

scattering, due to poor contrast, made it difficult to subtract the background adequately. Even with the 

changeover in solvent to EtAN, the data quality was not optimal, and we attribute it to a similar poor 

contrast as EAN. While EtAN is not amphiphilic, it is also possible that EtAN cations could have 

aggregated among the headgroups of SOS, also leading to worse contrast than hypothesised. Overall, 

in the case of EtAN, the contrast was sufficient to obtain scattering to confirm micelles.  

A B 

C D 
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Comparison of experimental scattering data and SASView mathematical models indicated the presence 

of spherical micelles in EtAN-water mixtures above 33 mol% EtAN. Core-shell spheres and ellipsoid 

models were also tested to confirm the shape of the micelles. While it was hypothesised that the core-

shell model would fit the description of a micelle best, the spherical model was able to best approximate 

the experimental scattering patterns, though we note the fits are poor for what is usually achievable for 

micelles. Table 3.5 summarises the fitting parameters for the micelles, as performed on SASView.  

 

Table 3.5. The models and corresponding fitting parameters for micelles formed by SOS at varying 
EtAN concentrations. SLDsurfactant was set to 10x10-6/Å2 and SLDsolvent was set to 9x10-6/Å2. 

Concentration of 
EtAN (mol%) 

Model Scale Background 
Radius 

(Å) 
33 Sphere 239.5 143.5 14.2 
50 Sphere 1142 190.6 13.1 
75 Sphere 1229 200.3 13.2 
100 Sphere 973.3 285.7 14.0 

 

To understand the radii values observed, we approximated the size of the fully extended carbons chains 

contained in the core of a SOS micelle.55 This value was 12.6 Å, which is very similar to the observed 

values. The lack of contrast between the core and shell of the micelles, arising from very similar SLDs, 

led to a lack of distinction between the core-shell boundary. It is likely we have gained scattering 

information at the SOS core-shell interface during this experiment. This once more highlighted the 

challenges faced with using x-rays for characterising micelles in PIL mixtures.  

 

No scattering was observed in solvents ranging from water to 25 mol% EtAN, likely due to contrast 

issues. The SLD of the surfactant tail and core were very similar to the SLD of water. With the water 

rich environment at low concentrations of the PIL, the boundary between the micelles and solvent was 

likely not obvious enough with x-ray scattering. With the observed micelles, there were many features 

in the scattering pattern which could give more structural detail about the micelles. It was difficult to 

approximate information regarding the core and shell lengths of the micelles based on the obtained 

scattering.  
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3.3.4 Higher order liquid crystal phases  
 

To determine the self-assembly behaviour above the CMC concentrations, penetration scans of the three 

surfactants in varying EAN-water concentration mixtures were characterised using a cross-polarised 

microscope within a temperature range from 25- . This method provides information regarding the 

higher order phases the surfactant could form in the solvent mixtures and the temperature ranges during 

which they occur. However, they do not give insight into the exact concentrations of the surfactant at 

which phase formation occurs. Representative images of CTAB and C12E4 phases observed in EAN-

water solvent mixtures are shown in Figure 3.9 and the full list of phases are shown in Table 3.6. 

  

Figure 3.9. Cross polarised optical microscopy images of penetration scans of A) CTAB in 75 mol% 
EAN at 90  and B) C12E4 in water at 25 . The numbers in A) represent the following phases: 1. 
Hexagonal, 2. Cubic, 3. Lamellar and 4. Neat surfactant. In B) only the lamellar phase was observed.  

 

A wide variety of phases were observed for CTAB, whereas only the lamellar phase was observed in 

C12E4 at limited temperatures and EAN concentrations. SOS was unable to form any higher order phases 

which could be observed with optical microscopy at any of the solvent concentrations. This was likely 

due to the short alkyl chain of SOS, leading to poor chance of higher order phase, and the low solubility 

of anionic surfactants in general. In CTAB across the full EAN concentration range a wide variety of 

higher order phases were observed. Initially during the heating process hexagonal phases appeared after 

30- This was 

consistent with values reported in literature.38 The higher order phase formation in the non-ionic C12E4 

was limited to the lamellar phase, which was observed at room temperature during the initial contact 

A B 
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between the solvent and surfactant. The likelihood of C12E4 forming the lamellar phase decreased with 

increasing EAN concentration and temperature. The approximate results of the temperature ranges for 

the higher order phases at varying EAN concentrations across the three surfactants are summarised in 

Table 3.6. 

 

Table 3.6. The approximate temperature ranges for higher order liquid crystal phases of CTAB, C12E4 

and SOS in a range of EAN/water concentrations. 

Surfactant 
Conc EAN 
(mol%) 

 

Hexagonal Cubic Lamellar 

CTAB 

0 33->90 55->90 70->90 

5 33->90 60->90 77->90 

14 49->90 58->90 74->90 

25 51->90 65->90 86->90 

33 49->90 66->90 90->90 

50 45->90 69->90 86->90 

75 43->90 78->90 90->90 

100 60->90 76->90 88->90 

C12E4 

0 

No phases 

20->70 

5 22->32 

14 22->29 

25 22->28 

33 

No phases 
50 

75 

100 

SOS 

0 

No phases observed 

5 

14 

25 

33 

50 

75 

100 
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The experimental methods employed during this chapter proved to be insufficient to make conclusions 

regarding the behaviour of anionic surfactants in PIL-water mixtures due to a variety of contrast and 

solubility issues. CTAB was observed to have the most phases present, which could be attributed to 

several reasons. Cationic surfactants tend to perform better in self-assembly studies in comparison to 

anionic and non-ionic surfactants, likely due to their good solubility. It could also have led to a wider 

variety of phases due to having the longest alkyl chain of C16, which led to a higher driving force for 

self-assembly. Both C12E4 and SOS were molecules with a smaller carbon chain. Computational 

methods could potentially provide insights regarding the experimental data which was not conclusive 

regarding the solvent environment the anionic surfactants experience in the presence of EAN.  

 

3.4 Conclusion 
 

The self-assembly of a cationic, anionic and non-ionic surfactant were investigated in aqueous solutions 

of two ionic liquids, EAN and EtAN, to gain insight into the role of solvent species, and effect of solvent 

ionicity on the self-assembly process. For CTAB and SOS, at low concentrations of the PIL (< 5 mol%), 

the ionic liquids acted as free ions, decreasing the CMC due to charge screening effects reducing head 

group repulsion, similar to conventional salts. This effect was not observed in C12E4 due to it being non-

ionic. Micelle formation of the anionic amphiphile was found to be more complex than initially 

hypothesised in ionic liquids. It was discovered that EtAN, the less cationic ionic liquid, was able to 

facilitate self-assembly of SOS, whereas in EAN mixtures micelles could not be confirmed using x-ray 

scattering due to contrast issues. It was hypothesised that the ethylammonium cation was actively 

participating in the micellization as a smaller surfactant, rather than just existing in the bulk solvent. 

- ethylammonium cation led to the formation of a micelle akin to 

a catanionic micelle, which was difficult to observe using x-rays due to lack of contrast between the 

micelle and the solvent interface. To observe higher order phases in the surfactants, CPOM was utilised. 

CTAB and C12E4 were able to form LCPs, whereas the anionic surfactant was not observed to have 

LCPs forming in EAN containing solvents.   
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4 Comparison of water models for simulations  
 

The work in this chapter has been published: Sachini P K Pathirannahalage, Nastaran Meftahi, Aaron 
Elbourne, Alessia C G Weiss, Chris F McConville, Agilio Padua, David A Winkler, Margarida Costa 
Gomes, Tamar L Greaves, Tu C Le, Quinn A Besford, Andrew J Christofferson, Systematic 
Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular 
Dynamics Simulations. J. Chem. Inf. Model. 2021, 61, 9, 4521 4536 (2021). Full publication available 
in the Appendix.  

  

4.1 Introduction 
 

Water is used extensively in simulation studies as a solvent yet the effect of mixing water with other 

constituents and the changes this induces on the bulk properties of the solvent are not well understood. 

Water models are widely used to explore many mixtures, including but not limited to, other polymers, 

biomolecules and interfaces.86-88 This thesis investigates the interactions between water and protic ionic 

liquids. While experimental methods allow us to make hypotheses regarding how PILs and water 

interact based on their structural properties, molecular dynamics simulations allow us to gain an insight 

into the dynamics at the molecular level. For this, it is important for the bulk properties of the water 

model used to reflect experimental values when used with MD settings we use for the simulations of 

the mixtures. This allows us to make conclusions regarding the interactions between the PILs and water 

with certainty that the changes stem from the mixing, rather than the simulation settings.  

 

To understand how bulk properties of water changes with the addition of another solvent in simulations, 

we can refer to a study by de Jesús-González et al. on mixing acetone with water.89 They examined the 

changes to the dielectric constant, which is an indication of miscibility of molecules, with varying 

polarizability, with the water model TIP4P. They were able to conclude that to obtain a satisfactory 

dielectric constant at room temperature in mixtures of acetone and water, the forcefields for the 

constituents first need to give a good description of the bulk properties of the pure components.90 

Therefore, it is important to test the bulk properties of the pure components before building simulations 

of the mixtures.  
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While there are many types of water models available for MD simulations, both implicit and explicit, 

this study will focus on explicit water models. This thesis specifically discusses rigid and flexible fixed 

charge models, as well as a polarisable model. As the initial publications of water models report physical 

properties using settings available to them at the time of inception of the model, which ranges from 

1980s to 2020, the aim of the current study was to explore how changing these settings to enable 

simulations of mixtures changes the predicted physical properties of bulk water.  

 

A prime example of a model that is still widely used is TIP3P, a model first parameterised by Jorgensen 

in 1981.91 TIP3P remains a popular choice amongst many due to its simple geometry, low computational 

cost and relative accuracy. The initial parameterisation of TIP3P truncated the short-range pairwise 

electrostatic interactions at a cut-off distance of 7.5 Å to produce the properties cited in the original 

publication. However, due to advances in computational capacities in more recent years, this cut-off 

distance is often extended as far as 9-12 Å92-94 in simulations where mixing of water with another 

forcefield is performed. More modern settings such as long-range electrostatic treatment and dispersion 

corrections provided by most simulation packages such as AMBER95 and GROMACS96 could also not 

have been accounted for in initial parameterisations. How these changes to settings of the simulations 

changes the resulting bulk water properties has not been explored. While there have been studies 

investigating rigid Single Point Charge (SPC) and TIP N-point models with the inclusion of long-range 

corrections, there has not been an extensive study on a variety of models.88  

 

It can also be difficult to determine which water model would suit a specific mixture, considering the 

sheer variety of water models available. For example, one of the main differences between initial TIP 

N-point water models and SPC water models is the model geometry, which in the case of SPC mimics 

a tetrahedral shape of water as present in ice, whereas TIP3P is based on water molecules as they exist 

in the gas phase. The slight changes in bond lengths and angles allow for SPC based models to reproduce 

the second peak in the radial peak distribution 97, whereas the second peak is missing entirely from the 

initial TIP3P potential 91. It has also been shown that varying the bond length by as little as 10-2 Å has 
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led to up to 30% differences in the calculated self-diffusion constants. 98 This emphasises the sensitivity 

of the water models to their parametrisation. 87 

 

Comparing the proficiency of water models based on their original publications also proves to be 

problematic because initial parameterisations were often performed with a very specific application in 

mind. For example, SPC is often preferred over TIP3P in simulations of bulk water due to improved 

self-diffusion coefficients.87 SPC/E99 and TIP4PEw100 are reparametrized versions of SPC and TIP4P 

101 was designed specifically 

to reproduce the experimental dielectric constant of water. TIP4P/2005102 was developed based on 

stability of ice polymorphs. The key goal of OPC103 was to mimic hydrogen bonding via geometry 

optimisation. There are also specialised water models such as TIP4P-D86, developed to more accurately 

account for London dispersion interactions. New developments in the field, including flexible variations 

of models such as TIP N-point and SPC, can reproduce experiments such as infrared and Raman 

spectra.89, 98, 104 Some of these models are more specialised than others so users should understand the 

water model and their compatibility before mixing them. 

 

Forcefields have often been parameterised with the assumption that models based on similar 

parametrization philosophies will be used. Therefore, changing the simulation settings and mixing these 

models and forcefields could lead to unexpected inconsistencies. A prime example of mismatching 

forcefields leading to physically impossible simulations was found by Giri et al. where they simulated 

cluster formation of NaCl in TIP3P water.105 They tested different ionic forcefields to simulate NaCl 

and found that the mixing rule of the Lennard-Jones potential of the forcefield needs to be compatible. 

In cases where the mixing rules were inconsistent, for example where a forcefield with geometric 

mixing rule was combined with a forcefield with arithmetic mixing rule for the Lennard Jones potential, 

the crystallisation of the NaCl occurred at much lower concentrations of the salt than is physically 

observed during experiments.105 This study highlights the importance of understanding the forcefields 

for simulations before mixing them with other constituents.  
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The various considerations involved in the choice of water models led to the need for a systematic study 

on widely used water models to understand the effect of recent advancements and how they reflect on 

the bulk water properties of these models. The last study to do a systematic test under standard 

simulation settings was almost 20 years ago and only included rigid 3-point water models from 3 

classes. They were able to conclude that bulk properties of liquid water in molecular dynamics 

simulations are affected by simulation settings such as the system size, the method used for truncating 

long-range interactions and the method used for temperature control.94 The current study builds on work 

such as this and tests a wider variety of models with a standard, more recent set of parameters to be able 

to compare them. This is a necessary step towards gaining insight regarding the bulk water properties 

in PIL-mixtures during simulations. The findings from this study have contributed to a publication.106  

 

Table 4.1. Water models examined in this work. 

Name Type Flexible? 
Lennard-Jones 

on H? 
Year Published Reference 

SPC 3-point No No 1981 107 

TIP3P 3-point No No 1983 108 

TIP4P 4-point No No 1983 108 

TIPS3P (mTIP3P) 3-point No Yes 1985 109 

SPC/E 3-point No No 1987 99 

CVFF 3-point Yes Yes 1988 110 

PCFF Class II Yes Yes 1994a 111 

COMPASS Class II Yes Yes 1998b 112 

TIP3P/Fw 3-point Yes No 1999 113 

TIP5P 5-point No No 2000 114 

TIP3P-Ew 3-point No No 2004 115 

TIP4P-Ew 4-point No No 2004 116 

Tip5P-Ew 5-point No No 2004 117 

TIP4P/2005 4-point No No 2005 118 
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TIP4P/Ice 4-point No No 2005 119

SPC/Fw 3-point Yes No 2006 120 

SWM4-NDP Polarizable No No 2006 121 

TIP4P/2005f 4-point Yes No 2011 122 

 4-point No No 2014 101 

OPC 4-point No No 2014 123 

TIP3P-FB 3-point No No 2014 124 

TIP4P-FB 4-point No No 2014 124 

TIP4P-D 4-point No No 2015 86 

 3-point No No 2015 125 

OPC3 3-point No No 2016 126 

a99SB-disp 4-point No No 2018 127 

TIP5P-2018 5-point No No 2018 128 

TIP3P-ST 3-point No No 2019 129 

TIP4P-ST 4-point No No 2019 129 

 3-point No No 2020 130 

aPCFF water forcefield parameters were published as part of the INTERFACE forcefield.131 
bApproximate COMPASS water parameters without cross-terms were published as part of the 
INTERFACE forcefield.131 
 
 

4.2 Method 
 

Thirty different water models were compared using NPT and NVT simulations. The simulations were 

performed using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 5Jun19 

release. LAMMPS was chosen as it can run models with LJ functional form 12-6 (Class I), as well as 

9-6 (Class II), and polarizable models easily, with input files generated by CHARMM-GUI or Visual 

Molecular Dynamics (VMD).132 Moreover, LAMMPS provides the option of running 4-point water 

models as explicit 3-point models with the offset partial charge of the oxygen calculated internally. This 

allows 4-point models to be used from structure files that contain only 3-point water. The simulations 

were performed with periodic boundary conditions in a cubic box with side length 40.0 Å. This box 
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contained 2000 water molecules and was constructed using PACKMOL version 18.169,133 and 

converted to LAMMPS data files using TopoTools134 release 1.7 in VMD version 1.9.3. The long-range 

interactions were cut-off at 12.5 Å across all simulations. The simulations were repeated three times for 

statistical analysis.  

 

The simulations began with an initial energy minimisation wherein the simulation box was under NVT 

condition before the SHAKE algorithm was enforced to keep the molecules rigid. The initial velocities 

during the equilibration step of 5 ns were randomly generated and the temperature was set to a constant 

298 K. All 3-point and implicit 4-point models used the same initial structure, with a conjugate gradient 

energy minimization step in LAMMPS to optimize the initial geometry for each model, using force 

constants of 500 kcal/Å² for the O-H bond and 50 kcal/radian² for the H-O-H angle with the rigid 

models, while flexible models used their default parameters. Explicit 4-point models, which were 

necessary for the calculation of dielectric constants, were constructed individually using PACKMOL, 

as were the 5-point models. The polarizable SWM4-NDP model was constructed as an explicit 4-point 

model using PACKMOL, with the Drude oscillator added by the Python tool polarizer.py.135 Data was 

collected for 25 ns.  

 

For analysis, the PYLAT program was used to calculate dielectric constant, mean square displacement 

(MSD) and coordination numbers136. The slope of the linear section of the MSD vs time plot of the 

oxygen atoms was used to estimate the self-diffusion coefficient. The geometries and interaction 

parameters for 3-point, 4-point and 5-point models are given in Tables 4.2, 4.3 and 4.4, respectively. 

 

 

 

 

 

 
Table 4.2. Parameters from original publications for 3-point models. Full list of publications and 
reference provided in Table 4.1. 
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Model 
O sigma 

(Å) 
O epsilon 
(kcal/mol) 

O charge 
(e) 

H charge 
(e) 

O-H bond 
(Å) 

H-O-H angle 
(°) 

SPC 3.166 0.15535 -0.82 0.41 1.0 109.466667 

TIP3P 3.15061 0.1521 -0.834 0.417 0.9572 104.52 

TIPS3P 3.1506 0.1521 -0.834 0.417 0.9572 104.52 

 H: 0.4 H: 0.046     

SPC/E 3.166 0.15535 -0.8476 0.4238 1.0 109.466667 

CVFF 3.16552 0.155416 -0.82 0.41 0.96 104.5 

PCFF 3.608 0.274 -0.7982 0.3991 0.97 103.7 

 H: 1.098 H: 0.013     

COMPASS 3.84 0.08 -0.82 0.41 0.9572 104.52 

 H: 1.087 H: 0.008     

TIP3P/Fw 3.1506 0.1522 -0.834 0.417 0.96 104.5 

TIP3P-Ew 3.188 0.102 -0.83 0.415 0.9572 104.52 

SPC/Fw 3.165492 0.155425 -0.82 0.41 1.012 113.24 

TIP3P-FB 3.178 0.155865 -0.84844 0.42422 1.0118 108.15 

SPC/  3.1785 0.168704 -0.89 0.445 1.0 109.45 

OPC3 3.17427 0.163406 -0.89517 0.447585 0.97888 109.47 

TIP3P-ST 3.19257 0.143858 -0.85112 0.42556 1.023 108.11 

FBA/  3.1776 0.18937 -0.845 0.4225 1.027 114.7 

TIP3P/Fw 3.1506 0.1522 -0.834 0.417 0.96 104.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.3. Parameters from original publications for 4-point models. Full list of publications and 
reference provided in Table 4.1. 
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Table 4.4. Parameters from original publications for 5-point models and polarizable model. Full list of 
publications and reference provided in Table 4.1. 

5-point 
model 

O 
sigma 

(Å) 

O epsilon 
(kcal/mol) 

O 
charge 

(e) 

H 
charge 

(e) 

L charge 
(e) 

O-H 
bond (Å) 

H-O-
H 

angle 
(°) 

O-L 
bond 
(Å) 

L-O-L 
angle 

(°) 

TIP5P 3.12 0.16 0.0 0.241 -0.482 0.9572 
104.5

2 
0.70 109.47 

TIP5P-Ew 3.097 0.178 0.0 0.241 -0.482 0.9572 
104.5

2 
0.70 109.47 

TIP5P-
2018 

3.145 0.188815 
-

0.64111
4 

0.39413
7 

-0.07358 0.9572 
104.5

2 
0.70 109.47 

Polarizabl
e model 

O 
sigma 

(Å) 

O epsilon 
(kcal/mol) 

O 
charge 

(e) 

H 
charge 

(e) 

M charge 
(e) 

Drude 
charge 

(e) 

O-H 
bond 
(Å) 

H-O-
H 

angle 
(°) 

O-M 
bond 
(Å) 

SWM4-
NDP 

3.18395 0.210939 1.71636 0.55733 -1.11466 -1.71636 
0.957

2 
104.5

2 
0.24034 

4.3 Results and Discussion 
 

Model O sigma (Å) 
O epsilon 
(kcal/mol) 

M 
charge 

(e) 

H charge 
(e) 

O-H bond 
(Å) 

H-O-H 
angle (°) 

O-M bond 
(Å) 

TIP4P 3.15365 0.155 -1.04 0.52 0.9572 104.52 0.15 

TIP4P-Ew 3.16435 0.16275 -1.04844 0.52422 0.9572 104.52 0.125 

TIP4P/2005 3.1589 0.185207 -1.1128 0.5564 0.9572 104.52 0.1546 

TIP4P/Ice 3.1668 0.210839 -1.1794 0.5897 0.9572 104.52 0.1577 

TIP4P/2005f 3.1644 0.185207 -1.1128 0.5564 0.9419 107.4 0.15555 

TIP4P/  3.165 0.18481 -1.054 0.527 0.9572 104.52 0.105 

OPC 3.16655 0.212801 -1.3582 0.6791 0.8724 103.6 0.1594 

TIP4P-FB 3.1655 0.179082 -1.05174 0.52587 0.9572 104.52 0.10527 

TIP4P-D 3.165 0.223841 -1.16 0.58 0.9572 104.52 0.1546 

a99SB-disp 3.165 0.238764 -1.18 0.59 0.9572 104.52 0.1546 

TIP4P-ST 3.1661 0.176936 -1.04344 0.52172 0.9572 104.52 0.0989 
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Thirty water models with varying structures were simulated with consistent conditions and parameters 

to obtain structural and dynamic properties. Each simulation was run for 25 ns across three separate 

simulations and results were compared against each model and to experimental properties of water. The 

radial distribution function (RDF) analysis was investigated to confirm the structural characteristics of 

the simulated water. A representative RDF for the 3-point water model, OPC, is shown in Figure 4.1, 

along with the anticipated experimental RDF for water. Refer to Section 8.3 in the Supplementary 

Information for all RDFs.  

  
Figure 4.1. A) Radial distribution function (RDF) of 3-point water model OPC and B) experimental 
RDF for water reproduced from 137. 

 

As shown in the case of OPC, the majority of water models showed satisfactory agreement between 

their simulated RDF and the experimental RDF for water. The largest discrepancy between the 

experimental and simulated models was seen in the second peak of the partial RDF which corresponded 

to the Hydrogen atoms of the same water molecule. The magnitude of this peak varied across the 

different models, likely resulting from the specified bond angles and lengths differing from one model 

to another. An overall summary of the calculated structural and dynamic properties across all the tested 

water models are provided in Table 4.5.  

 

 

Table 4.5. Calculated dielectric constant, MSD, surface tension, coordination number and density of 30 
water models and the associated uncertainties. 

A B 
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Model 
Density 
(g/cm3) 

Coordination 
number 

Surface 
tension 
(mN/m) 

Dielectric 
constant 

Self-diffusion 
coefficient 

(× 10-5 cm2/s) 

SPC 0.972 ± 0.006 5.585 ± 0.001 50.3 ± 0.2 65 ± 1 4.32 ± 0.04 

TIP3P 0.980 ± 0.006 6.239 ± 0.001 47.0 ± 0.2 95 ± 3 5.72 ± 0.04 

TIP4P 0.994 ± 0.006 5.14 ± 0.001 52.2 ± 0.2 51.3 ± 0.5 2.57 ± 0.04 

TIPS3P 1.007 ± 0.006 7.5 ± 0.3 51.1 ± 0.2 106 ± 1 5.55 ± 0.06 

SPC/E 0.993 ± 0.006 4.9 ± 0.2 57.6 ± 0.2  73 ± 1 2.60 ± 0.03 

CVFF 0.978 ± 0.006 6.4 ± 0.3 47.3 ± 0.4 135 ± 3 5.95 ± 0.05 

CVFF(cm) 0.989 ± 0.006 5.761 ± 0.001 49.8 ± 0.4 151 ± 2 5.2 ± 0.2 

PCFF 1.008 ± 0.005 13.5 ± 0.4 69.5 ± 0.4 159 ± 2 7.7 ± 0.2 

COMPASS 0.958 ± 0.006 4.953 ± 0.001 40.7 ± 0.4 118 ± 2 6.4 ± 0.1 

TIP3P/Fw 1.027 ± 0.006 5.3 ± 0.3 55.2 ± 0.4 197 ± 2 3.8 ± 0.1 

TIP5P 0.985 ± 0.006 4.991 ± 0.001 48.9 ± 0.2 94 ± 3  2.79 ± 0.03 

TIP3P-Ew 0.996 ± 0.006 4.7300 ± 0.0004 47.1 ± 0.2 92 ± 1 4.11 ± 0.05 

TIP4P-Ew 0.996 ± 0.005 4.6900 ± 0.0005 59.2 ± 0.2 65 ± 1 2.54 ± 0.01 

TIP5P-Ew 1.003 ± 0.006 5.143 ± 0.001 52.2 ± 0.2 100 ± 2 2.92 ± 0.04 

TIP4P/2005 0.997 ± 0.005 4.7053 ± 0.0001 63.5 ± 0.2 58 ± 1 2.18 ± 0.04 

TIP4P/Ice 0.993 ± 0.006 4.634 ± 0.001 73.4 ± 0.2 63 ± 2 1.21 ± 0.03 

SPC/Fw 1.007 ± 0.006 4.743 ± 0.001 58.6 ± 0.4 80 ± 3 2.57 ± 0.06 

SWM4-NDP 0.990 ± 0.005 5.209 ± 0.001 63.1 ± 0.5 75 ± 1 2.57 ± 0.05 

TIP4P/2005f 0.996 ± 0.005 5.0 ± 0.2 60.3 ± 0.4 59 ± 2 2.76 ± 0.04 

 0.996 ± 0.006 4.717 ± 0.001 64.6 ± 0.2 79 ± 2 2.16 ± 0.01 

OPC 0.997 ± 0.005 5.1971 ± 0.0005 70.1 ± 0.2 78 ± 1 2.27 ± 0.02 

TIP3P-FB 0.990 ± 0.006 4.6786 ± 0.0004 60.3 ± 0.2 79 ± 4 2.14 ± 0.05 

TIP4P-FB 0.997 ± 0.006 4.702 ± 0.001 64.7 ± 0.2 77 ± 1 2.10 ± 0.03 

TIP4P-D 0.993 ± 0.006 5.149 ± 0.001 70.8 ± 0.2 63 ± 1 2.01 ± 0.07 

 0.991 ± 0.005 4.672 ± 0.001 65.3 ± 0.2 80 ± 3 1.55 ± 0.05 
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OPC3 0.991 ± 0.006 4.9 ± 0.2 61.0 ± 0.2 79 ± 1 2.28 ± 0.02

a99SB-disp 0.996 ± 0.006 5.173 ± 0.001 74.4 ± 0.2 67 ± 1 1.78 ± 0.03

TIP5P-2018 0.997 ± 0.006 5.175 ± 0.001 61.6 ± 0.2 129 ± 2 2.31 ± 0.09

TIP3P-ST 0.993 ± 0.005 4.6009 ± 0.0005 63.8 ± 0.2 81 ± 2 1.24 ± 0.02

TIP4P-ST 0.999 ± 0.006 4.7034 ± 0.0003 64.5 ± 0.2 82 ± 4 2.02 ± 0.01

0.991 ± 0.005 4.64 ± 0.001 68.0 ± 0.4 75 ± 1 1.56 ± 0.02

Experimental 0.997138 4.7139 71.99140 78.3141 2.30142

Interestingly, some 3-point models outperformed 4-point models in terms of simulating specific 

properties. This demonstrated that more computationally costly models do not necessarily lead to more 

accurate representations of water in simulations, especially for very specific property.

Figure 4.2. Simulated density for water models from 1981 to 2020. The horizontal line corresponds to 
the experimental density of 0.99753 g/cm3.

The density across all water models reproduced experimental results very well, as shown in Figure 4.2, 

with newer models outperforming older models. It was observed that models published after the 

introduction of  particle-particle particle-mesh (PPPM)143 and particle-mesh Ewald (PME)144 methods 

for approximating long-range electrostatics performed better than models published before this 
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advancement. The model which deviated from the experimental density value the most was COMPASS, 

published in 1998 without long-range electrostatics approximations, which was likely affected 

adversely by PPPM which it was not designed to be used with. These findings suggest that testing is 

required before combining older water models with newer long-range electrostatic treatments available 

for use today. 

Figure 4.3. Simulated surface tension of water models from 1981 to 2020. The horizontal line 
corresponds to the experimental coordination number of 4.7. 

Figure 4.4. Simulated coordination number of first solvation shell of water models from 1981 to 2020.
Horizontal line corresponds to the experimental surface tension of 71.99 mN/m.
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Until recently the water models were not parameterised to optimise the surface tension values. 

Unsurprisingly, TIP3P-ST and TIP4P-ST, designed for use in simulations where surface tension is a 

key property, performed well, as shown in Figure 4.4. The analytical tail correction to the surface 

tension due to the Lennard-Jones cutoff was not performed in this study, which could explain why some 

models outperformed TIP3P-ST and TIP4P-ST at first glance. The majority of models published in 

2005 and later reproduced the experimental surface tension reasonably well. 

Figure 4.5. Static dielectric constant of water models from 1981 to 2020. The horizontal line 
corresponds to the experimental dielectric constant of 78.3. 

Figure 4.6. Self-diffusion coefficient of water models from 1981 to 2020. The horizontal line 
corresponds to the experimental self-diffusion coefficient of 2.30 × 10 cm2/s.
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As with most other properties discussed, experimental dielectric constant and self-diffusion coefficient 

improved drastically after 2006. As the field progressed and use of water models in multivariable 

systems increased, these properties were important for interactions in mixtures and had to be 

were all parametrized to optimise the dielectric constant, therefore reproducing the experimental value 

dielectric constant, the changes led to not so accurate self-diffusion coefficients. The majority of the 

TIP3P based models, except TIP3P-FB, also had large discrepancies between simulated and 

experimental diffusion coefficients. This was largely expected since TIP3P based models were initially 

designed for Monte Carlo simulations.  

 

To compare the models against corresponding experimental values for the properties of water and 

determine the best option across the wide variety of models available for use in simulations with 

mixtures, the discrepancy between the calculated values and the experimental values was quantified, 

and these are provided in Table 4.6.  

 

Table 4.6. Discrepancy between the simulated water model physical property values and the 
experimental values as a percentage. 

 Dielectric 
constant 

MSD  
Surface 
tension 

Coord 
number 

Average 

COMPASS 50% 180% 43% 5% 70% 

PCFF 103% 236% 3% 187% 132% 

SPC 17% 88% 30% 19% 38% 

SPC/E 6% 13% 20% 4% 11% 

TIP3P 22% 149% 35% 33% 60% 

TIPS3P  35% 142% 29% 60% 66% 

TIP4P/2005 26% 5% 12% 0.11% 11% 

 0.7% 6% 10% 0.36% 4% 

a99SB-disp 15% 22% 3% 10% 13% 

CVFF 72% 159% 34% 36% 75% 

SPC/Fw 1.93% 12% 19% 1% 8% 

TIP3P/Fw 152% 67% 23% 13% 64% 
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TIP3P/Ew 17% 79% 35% 1% 33% 

TIP4P-Ew 17% 10% 18% 0.21% 11% 

TIP4P/2005f 25% 20% 16% 6% 17% 

TIP4P-D 19% 12% 1.70% 10% 11% 

OPC 0.1% 1.06% 3% 11% 3.7% 

TIP4P 35% 12% 28% 9% 21% 

TIP3P-FB 1% 7% 16% 0.46% 6% 

TIP4P-FB 2% 9% 10% 0.04% 5% 

CVFFcm 93% 126% 31% 23% 68% 

TIP4P/Ice 19% 47% 2% 1% 17% 

OPC3 0.8% 0.66% 15% 4% 5% 

SPC/Epsilon 2% 33% 9% 1% 11% 

TIP3P-ST 3% 46% 11% 2% 16% 

TIP4P-ST 4% 12% 10% 0.07% 7% 

FBA/Epsilon 5% 32% 6% 1% 11% 

TIP5P 20% 22% 32% 6% 20% 

TIP5P-Ew 28% 27% 28% 9% 23% 

TIP5P-2018 65% 0.6% 15% 10% 23% 

SWM4-NDP 5% 12% 12% 11% 10% 
 

Overall, the water models with the most accurate predicted properties in comparison to experimental 

results could be identified. With an average discrepancy of 5% across all properties, the best 3-point 

model was OPC3. For 4-point model, the OPC description of water also had the best agreement across 

properties with an average difference of 3.7% between the simulated and experimental properties. 

TIP5P had the best agreement with experimental results of all the tested 5-point models, with an average 

difference between experimental and simulated values of 20%. Of all the flexible models tested, 

SPC/Fw yielded the best results, with an average difference of 8%.  

 

4.4 Conclusion 
 

30 water models were tested to explore how the simulated properties of water change due to widely 

used, modern settings. The models which had the closest average agreement with experimental results 

across properties, dielectric constant, surface tension, coordination numbers and density were identified. 

The best 3-point model was determined to be OPC3, as well as for 4-point models, OPC description of 
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water also had the best agreement across properties. TIP5P had the best agreement with experimental 

results of all the tested 5-point models and for the flexible models tested, SPC/Fw yielded the best 

results. As the field of molecular dynamics have shifted to simulating pure water to mixtures in the 

early 2000s, properties important for mixtures such as surface tension, dielectric constant and self-

diffusion coefficients have become more of a focus during water forcefield parametrisation. This was 

clearly reflected by the general increase in accuracy across all properties of water models investigated 

in the current study. For the purpose of investigating PIL-water mixtures, OPC3 was chosen as the 

suitable water model due to the accuracy of its simulated properties as well as the efficiency in 

comparison to more computationally costly 4-point, 5-point or polarisable models.  
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5 Molecular dynamics of micelles in protic ionic liquid mixtures 

5.1 Introduction 

 

As discussed throughout this thesis, the presence of the hydrogen available for proton transfer in PILs 

leads to many of their interesting physicochemical properties, particularly due to a strong H-bond 

network in the bulk solvent.74 Much like water, this led to complications when it came to PIL 

descriptions in molecular dynamics simulation. In the case of water, there was much debate regarding 

ways to express the molecular structure which leads to accurate physical properties in simulations.62 In 

developing forcefields for PILs, a similar conundrum occurred.  

 

While there was interest in designing appropriate forcefields for ILs, the wider field of computational 

work related to PILs was divided on the nature of the H-bonds and how to best reproduce experimental 

properties. EAN, a usual starting point for work involving PILs, was at the heart of the debate. There 

were contradicting opinions in literature regarding whether the H-bonds in EAN should be expressed 

as linear or with a slight bent. Based on x-ray and neutron structure factors, several literature sources 

have hypothesised that the bond between NH-O is slightly bent.145-147 On the other hand, several other 

authors suggest that this bond was linear in nature, based on DFT trajectories in condensed phase148 and 

X-ray diffraction of EAN crystals149. It was unclear so far which is the correct interpretation of the H-

bonds involved in EAN and it was difficult to make conclusions regarding the molecular structure based 

on the current experimental information we have on EAN.  

 

There is renewed interest in using computational molecular dynamics simulations to understand 

molecular interactions in PIL mixtures due to the new polarisable forcefield for EAN. Goloviznina et 

al. has extended their transferable polarisable forcefield to include EAN, which could allow for accurate 

representation of EAN in mixtures.62 This allows for simulations of EAN to simulate diffusion, which 
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solves the issues of EAN being solid at room temperature in classical MD. While this new force field 

will prove to be a large step forward, critical properties such as dielectric constant has not been validated 

yet. As the field of PILs gear up for a new era of simulations which will allow for binary and ternary 

mixtures with polarisable effects included, it is now possible to combine existing classical forcefields 

to simulate these systems.  

 

The existing literature in the field of PILs and MD focuses on mixing PILs with forcefields for 

molecular solvents such as water and other organic solvents. There are some recent examples of PILs, 

EAN and PAN, being mixed with water and organic solvents.14 These studies allowed the authors to 

confirm hypotheses regarding preferential solvation properties of PILs, which were verified via 

autofluorescence spectroscopy. Since the main focus of the field has been on refining and answering 

fundamental questions about forcefield development, there is still much room for more studies to 

understand binary and ternary mixtures of ILs using MD. It was also worth noting that since classical 

forcefields for PILs come with some caveats, existing MD studies on PILs mostly use MD as a 

complementary computational technique to understand behaviour and properties of mixtures that they 

verify experimentally.14  

 

There is a distinct lack of any literature on using MD to probe self-assembly of surfactants in PILs or 

PIL mixtures. An important unanswered question in the wider PIL community is the role of the cation 

and the anion of the PIL during surfactant self-assembly. As PILs are the largest solvent class capable 

of promoting self-assembly of surfactants, it is important to understand how the constituents of the PIL 

are acting during this process. While experimental techniques such as SAXS and neutron scattering 

allow us to make hypotheses regarding what happens at the molecular level, computational simulations 

are necessary to truly understand the processes and dynamics of the mixtures. While MD forcefields 

for PILs are still being refined, they are now at a level where they can be used to probe the molecular 

structures and dynamics of surfactant self-assembly successfully. Compatible forcefields for surfactants 
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and molecular solvents with force fields for PILs now exist.14 While there are no reports in the literature 

which seek to combine these force fields to simulate ternary mixtures of micelles, the current study 

aims to show this was in fact possible, opening the door of opportunities for the field of PILs to 

complement their experimental self-assembly studies with computational MD simulations.  

 

5.2 Method 

 

The molecular dynamics simulations were setup using the simulation package GROMACs. The 

surfactant forming micelles used during the current study were CTAB, SOS and C12E4. These were 

chosen to be consistent with previous experimental investigations in Chapter 3. The micelles were 

constructed using PACKMOL and equilibrated in water for 100 ns. Separately from the micelles, cubic 

boxes of length 100 Å were packed with solvents. The solvents included binary mixtures of 

ethylammonium nitrate (EAN) and water. The concentration of EAN varied from 0, 25, 50, 75 mol% 

to neat EAN. Setting up the simulations with the micelles included in the solvents required a several 

step process. First, the solvent was equilibrated for up to 10 ns. The micelles were then extracted from 

the initial water box and packed into the solvent box using PACKMOL. VMD was used to remove the 

solvent molecules which were closer than 2 Å from the micelle. The charges and the solvent ratios were 

readjusted by manually adding the appropriate number of cations and anions before submitting the 

simulation to run. Simulations of the CTAB, SOS and C12E4 micelles in EAN-water mixtures underwent 

an energy minimisation, followed by equilibration for 5 ns before running for 10 ns. The temperature 

of the simulation was kept constant at 298 K. Radial distribution functions were calculated for the 

systems to understand the solvation layers around the micelles.  
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5.3 Results and discussion 

 

MD simulations were performed for the three surfactants forming micelles in EAN-water mixtures to 

understand their interactions. Micelles of CTAB, C12E4 and SOS were equilibrated for 100 ns in water 

before introducing the solvents, EAN and EAN-water mixtures. Figure 5.1 illustrates the equilibrated 

micelles in water prior to solvating them in the respective EAN-water solvent boxes.  

 

In water, the micelles were surrounded by the solvent, with no significant molecular level interactions 

observed between the solvation layer and the micelles. This changed drastically when EAN was 

introduced to the anionic and cationic surfactant micelles. As hypothesised in Chapter 3, the 

experimental results indicated that there could be interactions between the cation of the PIL and the 

micelle formed by the surfactants.  

 

In the MD simulations, the cation of the EAN, ethylammonium, was seen to form a solvation layer 

around the micelles with an overall charge. Ethylammonium was lodging itself in the shell layer of the 

micelle, displaying - Figure 5.2 and 5.3.  

C A B 

Figure 5.1. Molecular Dynamics simulations of surfactant micelles of A) CTAB, B) C12E4 and C) SOS 
in water. 
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Figure 5.3. CTAB micelles solvated by neat EAN. CTAB micelle is represented by pale blue and white 
molecules, while nitrate anions are blue and red.  

 

With C12E4, it was noticable that a layer of nitrate ions from the EAN seemed to be closer to the micelle 

surface, compared to the ethylammonium ions. I -

ethylammonium cation, where it lodged itself into the micelle was not visually observed to the extent it 

was with the charged micelles, as shown in Figure 5.4.  

 

Figure 5.2. SOS micelles solvated by neat EAN. SOS micelle is represented by pale blue and white 
molecules, while nitrate anions are blue and red.  



105 
 

 

Figure 5.4. C12E4 micelles solvated by neat EAN. 

 

These results show ethylammonium cations participating in the micelle formation as small surfactants, 

rather than simply solvating the micelles. This was hypothesised by Lam et al. via their neutron 

scattering studies of DTAB micelles in EAN.13 Their experimental investigation of DTAB in multiple 

PILs, including EAN and EtAN, suggested that due to the polar and non-polar constituents of the EA 

cation, which is similar to the structure of the surfactants themselves, they lodge themselves into the 

micelle and act as smaller cationic surfactants with DTAB. We were able to demonstrate that this 

hypothesis holds in the case of the cationic surfactant, CTAB, and also extends to anionic surfactant 

self-assembly via the current study. Another interesting insight gained from the SOS micelles being 

solvated by the EAN was that nitrate ions are forming a solvation shell around the anionic micelles, 

despite both constituents being negatively charged. This was likely due to the cationic ethylammonium 

ions making the overall charge of the micelle less negative than initially anticipated. To verify these 

results quantitatively, the radial distribution functions (RDF) were calculated. The RDFs for the three 

micelles in neat EAN are shown in Figure 5.5.  
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Figure 5.5. Radial distribution functions (RDFs) of A) CTAB, B) SOS and C) C12E4 in neat EAN. 

 

Across the three surfactants, the calculated RDFs showed that the nitrogen from the ethylamine cation 

from the EAN was interacting closely to the anion of the surfactants. In the case of the positively 

charged surfactant CTAB, there was a noticeable solvation shell of nitrate anions of the EAN 

surrounding the micelle, as demonstrated by the RDFs in Figure 5.5. In the case of SOS, the cation of 

EAN, ethylamine, had a considerably large and close interaction with the outer shell of the micelle. 

Figure 5.2. For C12E4 

micelles, the interactions were less complicated, due to the lack of surface charge of the micelle.  

 

It is important to note that the EAN model used in these simulations does not factor in diffusion, as 

observed by the very large RDF peaks across all surfactants. This is a limitation of classical force fields 

which is addressed in polarisable force fields. Due to the time constraints of this project, we were unable 

A B 

C 
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to test and confirm the polarisable force field for EAN to confirm if the trends observed using classical 

force fields translate to the dynamics observed when diffusion is factored.  

 

The RDFs for the negatively charged micelle, SOS, as the concentration of EAN varies are shown in 

Figure 5.6. The trends in the RDFs provide insight into the interactions between the different atoms on 

the surfactant and the solvent. As shown in Figure 5.6, as the ratio of water and EAN varies in the 

micelle solvent environment, the biggest change to the RDFs was observed in the interaction between 

the micelle cation and anion. As the EAN concentration increased in the SOS-EAN-water mixtures, the 

strength of interaction between the micelle cation and anion seemed to increase. The interaction between 

the micelle cation and the EAN cation also seemed to decrease with increasing EAN concentration. 

However, the surprising outcome of this was the shapes of the curves did not change with the increasing 

EAN concentration in the presence of SOS. The water did not appear to displace the EAN or vice-versa.  

 

 

Figure 5.6. Radial distribution functions (RDFs) of SOS in A) 25 mol% EAN, B) 50 mol% EAN, C) 75 
mol% EAN and D) neat EAN mixtures. 

A B 

C D 
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The RDFs for the micelle formed by positively charged surfactant, CTAB, as the concentration of EAN 

varies was shown in Figure 5.7. As the EAN concentration increased in the presence of the positively 

charged micelle, the biggest change observed was in the interaction between the cation and the anion 

of the CTAB. When the concentration of the EAN increases, it seemed to facilitate the nitrogen of the 

CTAB anion and the bromide ion to interact to a greater degree.  

 

 

Figure 5.7. Radial distribution functions (RDFs) of CTAB in A) 25 mol%, B) 50 mol%, C) 75 mol% 
and D) neat EAN mixtures. 

 

Finally, the RDFs formed by the neutral micelle, C12E4, as the concentration of EAN varies was shown 

in Figure 5.8. At low concentrations of EAN, there was a strong interaction between the C12E4 micelle 

and the nitrogen of the ethylamine cation. However, as the ratio of EAN increased in the solvent, this 

interaction was overtaken by the water, as water seems to be forming a solvation layer surrounding the 

micelle in higher EAN concentrated solvents (above 50 mol% EAN). This can be seen in Figure 5.8 by 

the decrease in the CE4  O interaction and the increase in the CE4  WAT_O.  

A B 

C D 
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Figure 5.8. Radial distribution functions (RDFs) of C12E4 in A) 25 mol%, B) 50 mol%, C) 75 mol% 
and D) neat EAN mixtures. 

 

In the literature, there was vast interest in forming mixed catanionic micelles using both cationic and 

anionic surfactants.34, 39 It was interesting to observe that this effect was possible by using ILs as a co-

solvent and it was possible to make catanionic micelles without necessarily having to use two different 

types of surfactants.  

 

Overall, the simulations were able to allow us insight into the solvation properties of EAN in mixtures 

of water and a self-assembling solute. This investigation allowed us to further investigate the hypotheses 

formed in Chapter 3 regarding how the cation of a PIL could potentially participate in self-assembly as 

more than just a bulk solvent. However, it would be hasty to make conclusions regarding the surfactant-

like qualities of PIL cations based on these simulations alone. As mentioned throughout this thesis, 

classical simulations come with uncertainties regarding their ability to simulate diffusion correctly. This 

is a very important property to simulate correctly when investigating complex solutions with PILs. 

These results must be validated using a polarisable model to fully understand these mixtures 

computationally and make firm conclusions.  

A B 

C D 
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5.4 Conclusion 

The hypothesis regarding the behaviour of the cation of EAN acting as a co-surfactant rather than just 

a co-solvent during the self-assembly process was observed in this chapter using MD simulations. We 

were able to observe the molecular level interactions of the micelles and the solvation layer, which 

allowed us insight into the contrast issues observed in Chapter 3 during SAXS experiments on the same 

systems. The RDFs were able to provide insight regarding the solvation properties of EAN in the 

presence of cationic, anionic and non-ionic surfactants. Caution must be taken regarding making further 

conclusions based on the MD simulations performed during this chapter due to the lack of polarizability 

in the forcefields. While this study was able to provide clarification for our experimental results, the 

results are at best qualitative. Further investigations are required using polarisable forcefields with more 

extensive testing to quantitatively assess molecular interactions of PILs in mixtures with micelles.  
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6 Conclusions and recommended future work 
 

The work summarised in this thesis sought to understand the solvent properties of protic ionic liquids 

in mixtures with water using a variety of experimental and computational methods. The development 

of capabilities in applying machine learning algorithms and molecular dynamics simulations to systems 

which have never been subjected to these techniques was also a focus.  

 

Chapter 2 used machine learning as an advanced analysis technique for understanding trends in 

physicochemical properties of PIL-water mixtures reported in the literature. Predictive models were 

generated, and their predictions were tested experimentally. A significant finding from the study was 

that the water content of the training set affected the accuracy of the predictions to a great degree. The 

changes in viscosity and conductivity were not linear with incremental increases to the water content 

and thus the water content plays an important role in the predicted values for neat ILs.  

 

To extend the understanding of PIL-water mixtures obtained in Chapter 2, the representative PIL of 

EAN was chosen for further experimental investigation in Chapter 3. Chapter 3 investigated the effect 

of ionicity of surfactants on the self-assembly of a cationic, anionic, and non-ionic surfactant in mixtures 

of PIL-water systems. For CTAB and SOS, at low concentrations of the PIL (< 5 mol%), the ionic liquid 

acted as free ions, decreasing the CMC due to charge screening effects, similar to conventional salts. 

This effect was not observed in C12E4 due to its neutral charge. Micelles could not be confirmed using 

x-ray scattering in EAN mixtures due to a variety of contrast issues. It was hypothesised that the 

ethylammonium cation was actively participating in the micellization as a smaller surfactant, rather than 

only - probably led to the 

formation of a micelle akin to a catanionic micelle, which was difficult to observe using x-rays due to 

lack of contrast between the micelle and the solvent interface. This led to the need to explore 

computational methods to confirm findings. The ability of SOS to self-assemble in PIL mixtures was 

confirmed in EtAN, a less cationic PIL with higher contrast with SOS, using SAXS.  
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Chapter 4 set up the foundation for using molecular dynamics simulations to investigate mixtures of 

ILs and molecular solvents. This chapter focused on choosing the optimal water model for use in 

conjunction with existing force fields for ILs, which was used for multi-component systems of IL-

water-solutes. 30 water models were tested to explore how the simulated properties of water change 

due to widely used, modern settings. OPC3 was identified as the best option for use with IL forcefields 

as a suitable water model due to the accuracy of its simulated properties as well as the efficiency in 

comparison to more computationally costly 4-point, 5-point or polarisable models. 

 

Chapter 5 verified the experimental results from Chapter 3 using the preliminary results for MD 

simulations gathered in Chapter 4. Finally, molecular dynamics simulations were performed for EAN-

water-surfactant systems to understand the interactions at a molecular level of the experimental results 

from Chapter 3. The simulations suggested that ethylammonium ions, are not just in the bulk solvent, 

but are in fact participating in the micelle formation with the surfactants. This provided an explanation 

regarding the contrast issues which led to inconclusive results from SAXS experiments and was 

consistent with the hypothesis from the experimental results.  

 

As the properties of PILs are subject to drastic changes with minute changes to their chemical structure, 

as shown by the example of EAN and EtAN, it was necessary to develop new methods of investigating 

PIL mixtures. Due to the vast sample space in the field of PILs, it is near impossible to characterise 

these mixtures only using experimental approaches. The work included in this thesis was able to 

demonstrate that combining experimental, MD simulations and machine learning methods allow us to 

approach the problem of characterising PIL mixtures from a fresh perspective. The work done during 

this thesis will form the basis for future work in the space of MD simulations and machine learning 

models for PILs and their mixtures. 

 
Future work from this study could branch out to several areas, both experimental and computational: 
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 Neutron scattering experiments could be performed on the experimental samples from Chapter 

3 to verify the hypothesis regarding ethylammonium cation behavior during micelle formation. 

 Polarizability should be introduced to the MD forcefields of ILs used for the Chapter 5 study 

with mixtures. A polarizable forcefield for EAN has recently been published and should be 

tested for compatibility with existing solvent and surfactant forcefields before using them in 

mixtures. Testing water and more PILs using MD is a must for the future to understand the 

interactions of PIL-water mixtures at the molecular level.  

 Machine learning models could be trained with the insights gathered during this study 

regarding how PILs influence surfactant self-assembly to aid the ultimate goal of our field, 

designing PILs for various applications.    

 

The biggest hindrance during the current study, lack of contrast between observed components in 

solution, could be resolved using neutron scattering. It is anticipated these experiments would be 

able to clarify the interactions between the surfactants and the protic ionic liquid mixtures. As 

scattering tools rapidly progress with the availability of resources such as x-ray free electron lasers, 

there is no doubt that future experimental work in the field of solvation properties of protic ionic 

liquids will be able to probe even deeper into the molecular structure and dynamics. However, one 

of the most prominent challenges faced by the field, the lack of behavioral patterns and 

predictability with minute changes to ionic liquid chemical structures, cannot be resolved by merely 

techniques such as machine learning and molecular dynamics to probe deeper into the trends of 

large ionic liquid datasets to discern patterns one may not be able perform within the capacity of a 

single laboratory group. The experimental ionic liquid researchers will need to find ways to 

collaborate and create databases which can be easily accessible by computational researchers. These 

ventures will come with many challenges, including verification and standardization of data, but it 

will create imperative infrastructure for future advancements in the field.  

7    
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8 Appendix 
 

8.1 Supplementary information for machine learning (Chapter 2) 

Table 8.1. Reported data in the viscosity training set for ILs library. 

ILs KF value Viscosity (m Pa.s) 

Triethylammonium formate 0.00875 17.7 

Triethylammonium di-n-butylphosphate 0.00875 94.4 

Triethylammonium methanesulfonate 0.00875 100 

Propylammonium formate 0.6753 96.77 

Propylammonium acetate 0.5436 932.22 

Propylammonium formate 0.6753 96.77 

Propylammonium acetate 0.5436 932.22 

 

Table 8.2. Reported data in the conductivity training set for ILs library. 

IL KF (wt%) Conductivity (µS/cm) 

Diisopropylethylammonium formate 0.0065 5800 

N,N-diethylmethylammonium TfO 0.01 8330 

Diethanolammonium formate 0.88 550 

Diethanolammonium formate 0.6 770 

Diethanolammonium formate 0.00875 930 

Diethanolammonium acetate 0.85 130 

Diethanolammonium acetate 0.00875 110 

Diethanolammonium sulfamate 0.025 140 

Diethanolammonium di-n-butylphosphate 0.00875 60 

Diethanolammonium MsOH 0.00875 320 

Diethanolammonium malonate 0.44 53 

Alaninemethylester glycolate 0.18 23.6 



 

Alanineethylester glycolate 0.62 55.4

Prolinemethylester glycolate 0.74 86.1 

Ethylammonium acetate 0.018 2220 

Ethylammonium heptafluorobutyrate 0.51 880 

Ethylammonium pentadecafluorooctanoate 0.61 169 

Glycineethylester lactate 0.17 4009 

Prolinemethylester lactate 0.76 118 

 

 

  



 

Figure 8.1. BRANNLP viscosity predictions for carboxylic acid based ILs.

 

  

 Formate  Acetate  Glycolate
 Trifluoro 
acetic acid  Propionate  Lactate  Butyrate  Isobutyrate

 
Heptafluoro

butyrate  Pentanoate  Hexanoate  Heptanoate  Octanoate  Malonate

 Perfluoro 
octanoic 

acid
Methylammonium 3.34 14.21 70.61 27.05 22.25 76.84 22.25 34.33 10.65 22.25 3.76 2.89 2.89 16.64 0.11
Ethylammonium 15.54 240.19 101.16 84.87 259.23 84.87 125.34 84.87 17.25 13.66 13.66 65.36

Ethanolammonium 95.98 294.82 1025.36 480.03 411.67 1096.56 411.67 579.20 411.67 83.91 83.91 330.04 6.72
2methoxyethylammonium 36.84 116.57 455.43 201.14 170.43 489.52 170.43 246.27 91.34 170.43 37.99 30.51 30.51 133.19 1.95

2-2-hydroxyethoxyethylammonium 106.28 310.67 1092.03 531.15 440.79 1167.40 440.79 618.91 248.24 440.79 110.93 90.73 90.73 351.24 7.39
Acetamide 0.96 5.77 26.44 7.57 28.97 7.57 12.11 3.40 7.57 1.09 0.82 0.82 5.52 0.03

Propylammonium 134.18 409.77 1324.00 631.03 543.17 1413.73 543.17 757.99 309.17 543.17 140.29 115.19 115.19 434.63 9.88
Propanolammonium 309.67 849.21 2684.92 1167.62 2854.86 1167.62 1593.83 690.36 1167.62 330.91 275.52 275.52 953.86 28.38

2-propanolammonium 610.23 1599.06 4753.21 2469.26 2163.53 5037.45 2163.53 2902.80 1317.71 2163.53 659.13 554.77 554.77 1777.86 65.81
2-methyl propyl ammonium 119.26 360.11 1246.24 591.47 508.67 1331.19 508.67 711.22 288.57 508.67 130.32 106.87 106.87 406.50 9.02

Isopropylammonium 436.15 1479.41 710.54 612.59 1578.61 612.59 851.86 350.80 612.59 160.58 132.14 132.14 491.35 11.68
Butylammonium 82.24 256.81 921.15 427.99 366.47 985.76 366.47 517.39 366.47 90.12 73.45 73.45 290.94 5.72

2-methyl butyl ammonium 79.14 247.99 892.82 413.91 354.25 955.62 354.25 500.65 197.28 354.25 86.74 70.65 70.65 281.04 5.45
Sec butyl ammonium 47.63 156.40 591.75 266.38 226.60 635.00 226.60 324.58 123.29 226.60 52.41 42.32 42.32 178.14 2.92

N-butyramide 0.77 3.80 22.14 7.72 6.22 24.29 6.22 10.03 2.76 6.22 0.87 0.65 0.65 4.52 0.03
Isobutyramide 1.84 8.31 44.03 16.24 13.25 48.06 13.25 20.80 6.15 13.25 2.07 1.58 1.58 9.79 0.06

Pentylammonium 74.68 235.27 851.80 393.58 336.62 911.98 336.62 476.45 186.97 336.62 81.89 66.64 66.64 266.78 5.08
Heptylammonium 78.76 246.92 889.39 412.21 352.78 951.98 352.78 498.62 196.42 352.78 86.33 70.31 70.31 279.85 5.42
Octylammonium 75.05 236.32 855.21 395.27 338.08 915.61 338.08 478.46 187.82 338.08 82.29 66.97 66.97 267.96 5.11

Dimethylammonium 9.35 32.14 145.16 58.83 48.97 157.19 48.97 73.61 24.51 48.97 9.23 7.23 7.23 37.26 0.33
N-methyl-2-hydroxyethylammonium 73.60 232.18 841.81 388.64 901.36 470.57 184.47 80.72 65.67 65.67 263.32 4.99
bis-2-hydroxyethylmethylammonium 405.06 1384.62 661.98 570.18 1478.06 570.18 794.54 325.34 570.18 148.15 121.75 121.75 456.68 10.57

Diethylammonium 18.16 59.29 249.75 105.49 88.57 269.48 130.61 88.57 18.10 14.35 14.35 68.26 0.77
Diethanolammonium 339.22 904.39 2807.28 1408.43 1225.24 2984.19 1225.24 1670.21 726.13 1225.24 349.24 291.03 291.03 1074.87 30.32

bis-2-methoxyethylammonium 6.40 14.03 69.80 26.71 21.97 75.96 21.97 33.91 10.51 21.97 3.70 2.85 2.85 16.42 0.11
Diallylammonium 80.07 116.12 378.93 165.11 139.51 407.77 139.51 202.84 73.97 139.51 30.29 24.23 24.23 14.89 1.47

Dinpropylammonium 17.51 63.21 264.35 112.14 94.23 285.13 94.23 138.69 48.91 94.23 19.42 15.41 15.41 72.72 0.84
Dibutylammonium 60.17 114.89 449.59 198.38 168.06 483.28 168.06 242.94 168.06 37.39 30.02 30.02 131.30

Dimethylethylammonium 6.16 24.62 114.70 45.65 37.85 124.40 37.85 57.37 18.67 37.85 6.88 5.36 5.36 28.64 0.23
N-allyl dimethylammonium 7.59 29.74 135.55 54.65 45.44 146.84 45.44 68.46 22.65 45.44 8.48 6.63 6.63 34.51 0.30
Diethylmethylammonium 6.14 24.57 114.49 45.56 37.78 124.18 37.78 57.26 18.63 37.78 6.87 5.35 5.35 28.58 0.23

N-N-diethylmethylammonium 6.14 24.57 114.49 45.56 37.78 124.18 37.78 57.26 18.63 37.78 6.87 5.35 5.35 28.58 0.23
N-N-diallylmethylammonium 10.61 40.22 177.05 72.86 60.84 191.47 60.84 90.81 30.83 60.84 11.82 9.29 9.29 46.51 0.45
N-methyldipropylammonium 6.87 27.16 125.09 50.12 41.62 135.59 41.62 62.88 20.64 41.62 7.67 5.98 5.98 31.55 0.26
Diisopropylmethylammonium 7.20 28.34 129.89 52.19 43.37 140.76 43.37 65.44 21.56 43.37 8.04 6.28 6.28 32.91 0.28

N-N-dimethylpropylammonium 5.67 22.86 107.41 42.53 35.23 116.55 35.23 53.52 17.31 35.23 6.34 4.93 4.93 26.61 0.21
Diisopropylethylammonium 13.55 29.49 134.54 54.21 45.07 145.76 45.07 67.92 22.45 45.07 8.40 13.55 14.96 34.23 0.29
Dimethylbutylammonium 12.02 45.00 195.58 81.10 67.83 211.37 67.83 100.88 34.58 67.83 13.37 10.54 10.54 51.98 0.53
N-allyldiethylammonium 7.56 29.62 135.07 54.44 45.26 146.33 45.26 68.20 22.56 45.26 8.44 6.60 6.60 34.38 0.29

N-N-diethylpropylammonium 6.06 24.26 113.22 45.01 37.32 122.81 37.32 56.59 18.40 37.32 6.77 5.27 5.27 28.22 0.23
Triethylammonium 8.01 25.31 117.53 46.86 38.88 127.45 38.88 58.87 38.88 7.10 5.53 5.53 29.43 0.24

Triethanolammonium 267.29 744.16 2390.76 1186.57 1029.94 2543.81 1029.94 1410.92 605.23 1029.94 287.55 238.88 238.88 887.59 23.89
Tributylammonium 14.54 53.42 227.70 95.51 80.07 245.84 80.07 118.46 41.19 80.07 16.14 12.77 12.77 61.58 0.67
Trihexylammonium 13.91 51.34 219.79 91.95 77.04 237.36 77.04 114.12 39.55 77.04 15.45 12.21 12.21 59.20 0.63
Trioctylammonium 13.46 49.82 214.03 89.36 74.84 231.17 74.84 110.96 38.36 74.84 14.95 11.81 11.81 57.47 0.61
Alanine ethyl ester 21.54 3.43 11.52 7.01 5.64 22.23 5.64 9.12 2.49 5.64 0.78 0.58 0.58 4.08 0.02

Alanine methyl ester 0.35 1.87 0.70 3.94 3.14 13.12 3.14 5.18 1.34 3.14 0.40 0.29 0.29 2.24 0.01
Glycine ethyl ester 1.22 8.19 2.62 2.08 0.36 2.08 3.48 0.86 2.08 0.25 0.18 0.18 1.47 0.01
Proline methyl ester 0.24 1.99 1.99 0.53 0.41 2.21 0.41 0.73 0.16 0.41 0.05 0.04 0.04 0.28 0.00

Collidinium 8.24 17.80 86.12 33.51 27.66 93.59 27.66 42.36 13.40 27.66 4.81 3.72 3.72 20.78 0.15
Benzamide 0.55 2.83 17.10 5.83 4.68 18.79 4.68 7.62 2.04 4.68 0.63 0.47 0.47 3.37 0.02

Diphenylammonium 31.83 108.54 427.42 187.89 159.05 459.59 159.05 230.32 84.93 159.05 35.14 28.18 28.18 124.12 1.77
Lutidinium 3.89 8.58 45.31 16.75 13.68 49.46 13.68 21.45 6.36 13.68 2.15 1.64 1.64 10.11 0.06

Quinolinium 7.92 18.39 88.63 34.57 28.54 96.29 28.54 43.67 13.86 28.54 4.99 3.86 3.86 21.46 0.16
23.34 81.96 332.95 143.69 121.17 358.58 121.17 176.95 63.76 121.17 25.82 20.60 20.60 94.02 1.20

HNC dmaH 23.34 81.96 332.95 143.69 121.17 358.58 121.17 176.95 63.76 121.17 25.82 20.60 20.60 94.02 1.20
Amilaminium 263.13 941.37 438.06 375.21 1007.26 375.21 529.35 209.57 375.21 92.54 75.46 75.46 298.02 5.91

N-(2-ethyl-hexyl)-ethylenediamine 265.60 747.27 2397.70 1190.25 1033.17 2551.15 1033.17 1415.22 607.22 1033.17 288.56 239.73 239.73 837.18 24.00
N-Butylethylenediamine 299.84 834.77 2648.40 1323.54 1150.46 2816.25 1150.46 1571.06 679.72 1150.46 325.47 270.92 270.92 934.15 27.81

N-hexylethylenediaminium 275.00 771.38 2467.04 1227.03 1065.52 2624.49 1065.52 1458.25 627.18 1065.52 298.70 248.29 248.29 863.91 25.03
N-octylethylenediaminium 258.75 729.65 2346.86 1163.32 1009.50 2497.37 1009.50 1383.71 592.63 1009.50 281.17 233.49 233.49 817.64 23.25
N-decylethylenediaminium 249.86 706.73 2280.59 1128.28 978.70 2427.26 978.70 1342.68 573.68 978.70 271.58 225.40 225.40 792.22 22.28

N-dodecylethylenediaminium 241.26 684.48 2216.01 1094.20 948.76 2358.94 948.76 1302.76 555.28 948.76 262.29 217.57 217.57 767.52 21.35
Ethyldiammonium 253.33 715.67 1521.64 732.25 631.56 1623.41 631.56 877.46 362.22 631.56 166.18 136.83 136.83 506.87 12.18



 

Figure 8.2. BRANNLP viscosity predictions for inorganic acid based ILs.

 

BETI: bis[(pentafluoro-ethyl)sulfonyl]ate, Tf2N: bis(trifluoromethanesulfonyl)imide. 

  



 

Figure 8.3. MLREM viscosity predictions for carboxylic acid based ILs.

 

  



 

Figure 8.4. MLREM viscosity predictions for inorganic acid based ILs. 

 

BETI: bis[(pentafluoro-ethyl)sulfonyl]ate, Tf2N: bis(trifluoromethanesulfonyl)imide. 

 

  



 

Figure 8.5. MLREM/BRANNLP conductivity predictions for carboxylic acid based ILs.

 

 Formate  Acetate
 

Glycolate

 
Trifluoro 

acetic 
acid  Propionate  Lactate  Butyrate  Isobutyrate

 
Heptafluor
obutyrate  Pentanoate  Hexanoate  Heptanoate  Octanoate  Malonate

 Perfluoro 
octanoic 

acid
Methylammonium 18.61 1.02 0.16 7.70 0.54 0.21 0.41 0.67 0.71 0.34 0.30 0.29 0.27 0.10 0.10
Ethylammonium 27.58 0.74 0.23 10.54 0.89 0.31 0.68 1.11 1.67 0.58 0.51 0.49 0.45 0.16 0.21

Ethanolammonium 4.27 0.31 0.06 1.98 0.18 0.08 0.14 0.22 0.30 0.12 0.10 0.09 0.04 0.04
2methoxyethylammonium 2.26 0.37 0.07 1.16 0.24 0.09 0.20 0.29 0.22 0.18 0.16 0.16 0.15 0.06 0.05

2-2-hydroxyethoxyethylammonium 1.37 0.20 0.04 0.66 0.13 0.05 0.10 0.15 0.13 0.09 0.08 0.08 0.08 0.03 0.03
Acetamide 6.29 0.24 0.06 0.17 0.08 0.13 0.21 0.27 0.11 0.09 0.09 0.08 0.04 0.04

Propylammonium 0.29 0.10 2.16 0.36 0.13 0.29 0.43 0.35 0.26 0.23 0.22 0.21 0.08 0.07
Propanolammonium 1.34 0.17 0.04 0.11 0.05 0.09 0.13 0.12 0.08 0.07 0.07 0.06 0.03 0.03

2-propanolammonium 1.66 0.20 0.04 0.78 0.13 0.05 0.10 0.15 0.14 0.09 0.08 0.08 0.07 0.03 0.03
2-methylpropylammonium 6.38 0.72 0.12 2.63 0.44 0.16 0.36 0.53 0.42 0.32 0.28 0.27 0.26 0.09 0.09

Isopropylammonium 0.79 0.13 3.07 0.48 0.17 0.39 0.58 0.46 0.34 0.31 0.29 0.28 0.10 0.10
Butylammonium 3.06 0.41 0.08 1.35 0.26 0.10 0.22 0.32 0.32 0.20 0.18 0.17 0.16 0.06 0.06

2-methylbutylammonium 3.69 0.50 0.09 1.59 0.32 0.11 0.26 0.38 0.29 0.23 0.21 0.21 0.19 0.07 0.07
Sec-butylammonium 6.57 0.69 0.12 2.71 0.42 0.15 0.34 0.51 0.41 0.30 0.27 0.26 0.24 0.09 0.09

N-butyramide 1.10 0.12 0.03 0.54 0.08 0.04 0.06 0.09 0.09 0.05 0.05 0.05 0.04 0.02 0.02
Isobutyramide 2.25 0.21 0.04 1.04 0.12 0.06 0.10 0.15 0.15 0.08 0.08 0.07 0.07 0.03 0.03

Pentylammonium 6.71 0.65 0.11 2.78 0.39 0.14 0.31 0.47 0.40 0.28 0.25 0.24 0.22 0.08 0.08
Heptylammonium 3.31 0.42 0.08 1.45 0.26 0.10 0.22 0.32 0.25 0.19 0.17 0.17 0.16 0.06 0.06
Octylammonium 3.30 0.42 0.08 1.45 0.26 0.10 0.22 0.32 0.25 0.19 0.17 0.17 0.16 0.06 0.06

Dimethyl ammonium 30.28 3.45 0.65 17.56 1.98 0.85 1.56 2.37 2.42 1.34 1.20 1.14 1.07 0.48 0.47
N-methyl2-hydroxyethylammonium 5.18 0.63 0.11 2.18 0.14 0.47 0.36 0.26 0.25 0.23 0.08 0.08
bis-2-hydroxyethylmethylammonium 0.38 0.07 1.23 0.24 0.09 0.20 0.29 0.23 0.18 0.16 0.16 0.15 0.06 0.05

Diethylammonium 13.14 1.72 0.30 7.16 1.03 0.40 10.16 1.22 0.98 0.71 0.64 0.61 0.58 0.24 0.23
Diethanol ammonium 1.30 0.22 0.05 0.70 0.14 0.06 0.12 0.17 0.14 0.11 0.10 0.10 0.09 0.03 0.04

bis-2-methoxyethylammonium 2.17 0.96 0.21 2.77 0.64 0.27 0.53 0.74 0.62 0.48 0.44 0.42 0.40 0.18 0.17
Diallylammonium 1.30 0.19 3.37 0.64 0.24 0.52 0.75 0.61 0.46 0.42 0.40 0.38 0.14 0.14

Dinpropylammonium 7.78 1.03 0.19 3.44 0.65 0.25 0.53 0.77 0.62 0.47 0.43 0.41 0.39 0.16 0.15
Dibutylammonium 1.68 0.74 0.14 2.16 0.48 0.18 0.40 0.57 0.36 0.33 0.32 0.30 0.12

Dimethylethylammonium 39.97 3.24 0.58 16.94 1.84 0.76 1.44 2.21 2.22 1.24 1.10 1.05 0.98 0.43 0.42
N-allyldimethylammonium 35.11 2.86 0.50 14.67 1.63 0.66 1.28 1.96 1.92 1.10 0.98 0.93 0.87 0.37 0.36
Diethylmethylammonium 26.12 2.32 0.40 10.97 1.35 0.53 1.06 1.62 1.52 0.92 0.82 0.78 0.74 0.31 0.29

N-N-diethylmethylammonium 12.39 1.45 0.27 5.46 0.89 0.35 0.72 1.05 0.91 0.63 0.57 0.55 0.52 0.21 0.20
N-N-diallylmethylammonium 11.30 1.33 0.24 4.93 0.81 0.31 0.66 0.97 0.82 0.58 0.52 0.50 0.47 0.19 0.18
N-methyldipropylammonium 34.91 2.64 0.42 13.99 1.49 0.57 1.16 1.80 1.71 0.99 0.88 0.84 0.79 0.32 0.31
Diisopropylmethylammonium 35.77 2.91 0.51 14.98 1.66 0.67 1.30 2.00 1.96 1.12 1.00 0.95 0.89 0.38 0.37

N-N-dimethylpropylammonium 5.25 1.89 0.30 9.02 1.09 0.39 0.85 1.31 1.16 0.74 0.66 0.23 0.22
Diisopropylethylammonium 10.19 1.33 0.26 4.64 0.83 0.34 0.68 0.98 0.85 0.60 0.54 0.52 0.49 0.21 0.20
Dimethylbutylammonium 8.89 1.12 0.20 3.89 0.70 0.26 0.57 0.83 0.68 0.50 0.45 0.44 0.41 0.17 0.16
N-allyldiethylammonium 8.41 1.06 0.19 3.66 0.66 0.25 0.54 0.79 0.64 0.48 0.43 0.41 0.39 0.16 0.15

N-N-diethylpropylammonium 10.52 1.67 0.28 7.17 0.99 0.37 0.79 1.19 0.83 0.69 0.62 0.59 0.55 0.22 0.21
Triethylammonium 1.50 0.21 0.04 0.53 0.12 0.05 0.10 0.15 0.12 0.09 0.09 0.08 0.08 0.03 0.03

Triethanolammonium 4.50 0.68 0.12 1.98 0.44 0.16 0.36 0.52 0.39 0.32 0.30 0.29 0.27 0.10 0.10
Tributylammonium 8.68 0.97 0.16 3.56 0.59 0.21 0.48 0.71 0.56 0.42 0.38 0.37 0.35 0.13 0.12
Trihexylammonium 8.27 0.93 0.15 3.38 0.57 0.20 0.46 0.68 0.54 0.40 0.36 0.35 0.33 0.12 0.12
Alanine ethyl ester 1.25 0.17 0.03 0.62 0.11 0.05 0.09 0.12 0.12 0.08 0.07 0.07 0.06 0.03 0.03

Alanine methyl ester 1.51 0.17 0.03 0.72 0.10 0.05 0.08 0.12 0.12 0.07 0.07 0.06 0.06 0.03 0.03
Glycine ethyl ester 1.79 0.18 0.04 0.92 0.11 0.04 0.08 0.13 0.14 0.07 0.07 0.06 0.06 0.03 0.03

Proline methyl ester 0.70 0.13 2.26 0.47 0.16 0.39 0.56 0.43 0.35 0.32 0.30 0.29 0.11 0.10
Collidinium 4.63 1.59 0.26 6.83 0.94 0.35 0.75 1.13 0.97 0.65 0.58 0.56 0.52 0.20 0.19
Benzamide 9.26 0.77 0.13 3.73 0.45 0.17 0.36 0.55 0.48 0.31 0.28 0.26 0.25 0.09 0.09

Diphenylammonium 11.75 1.59 0.34 5.57 1.00 0.43 0.82 1.17 1.06 0.72 0.65 0.63 0.60 0.27 0.26
Lutidinium 7.28 2.35 0.37 12.19 1.32 0.49 1.03 1.60 1.48 0.89 0.79 0.75 0.70 0.28 0.26

Quinolinium 4.89 1.65 0.33 6.18 1.02 0.42 0.82 1.20 1.08 0.72 0.65 0.63 0.59 0.26 0.25
27.81 2.43 0.42 11.67 1.40 0.56 1.11 1.69 1.59 0.96 0.85 0.81 0.76 0.32 0.31

HNC dmaH 27.81 2.43 0.42 11.67 1.40 0.56 1.11 1.69 1.59 0.96 0.85 0.81 0.76 0.32 0.31
Amilaminium 0.91 0.48 0.09 1.62 0.30 0.11 0.25 0.36 0.28 0.22 0.20 0.19 0.18 0.07 0.06

N-(2-ethyl-hexyl)- ethylenediamine 31.93 2.36 0.36 12.48 1.32 0.49 1.03 1.61 1.48 0.88 0.79 0.75 0.70 0.27 0.26
N-Butylethylenediamine 28.00 2.08 0.31 10.77 1.17 0.42 0.91 1.42 1.28 0.78 0.70 0.66 0.62 0.23 0.22

N-hexylethylenediaminium 28.43 2.11 0.32 10.95 1.19 0.42 0.93 1.44 1.30 0.80 0.71 0.67 0.63 0.24 0.23
N-octylethylenediaminium 28.91 2.14 0.32 11.16 1.21 0.43 0.94 1.47 1.32 0.81 0.72 0.68 0.64 0.24 0.23
N-decylethylenediaminium 28.88 2.14 0.32 11.14 1.20 0.43 0.94 1.46 1.32 0.81 0.72 0.68 0.64 0.24 0.23

N-dodecylethylenediaminium 29.14 2.16 0.33 11.26 1.21 0.44 0.95 1.48 1.33 0.81 0.72 0.69 0.64 0.24 0.23
Ethyldiammonium 10.29 0.70 0.27 19.57 0.99 0.38 0.72 1.27 1.52 0.59 0.51 0.48 0.44 0.17 0.17



 

Figure 8.6. MLREM/BRANNLP conductivity predictions for inorganic acid based ILs.

 

BETI: bis[(pentafluoro-ethyl)sulfonyl]imide, Tf2N: bis(trifluoromethanesulfonyl)imide. 

 

 

 

 

 



 

8.2 Supplementary information for surfactant self-assembly (Chapter 3) 
 
Figure 8.7. CMC graphs for SOS, CTAB and C12E4 in EAN-water concentrations 5, 14, 25, 33, 50 and 
75 mol% EAN. 

 

 



 

 

 



 

 

   



 

8.3 Supplementary material for Molecular Dynamics (Chapter 4) 
 
Figure 8.8. Radial distribution functions (RDFs) for the water models examined in this work. The 
experimental RDFs are taken from A. K. Soper. 
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