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Abstract

There have been recently significant progress in quantum technologies to realize
physically diverse quantum computation and simulation platforms. The aim of
this thesis is to develop theoretical approaches based on measurement protocols to
experimentally characterize quantum entanglement generated in these state-of-art
quantum technological platforms. In the past few years, protocols belonging to
the randomized measurement toolbox (RM toolbox) have shown to have the ability
to measure bipartite entanglement (entanglement between two parts of a quantum
system). These protocols have been implemented in several experimental platforms
consisting of quantum simulators and quantum computers beyond the regime of
full state tomography. In this manuscript, we principally report the development
of new approaches based on the RM toolbox to provide experimental groups with
advanced tools and methods to probe new fundamental quantities of interest related
to entanglement prepared in large quantum platforms.

The first objective of this thesis is to provide a new protocol to optimize the
existing RM protocol by reducing statistical errors in the estimated quantities. This
is done with two approaches: (i) via importance sampling of randomized measure-
ments and (ii) by implementing common randomized measurements. These tech-
niques automatically enable us to implement the RM toolbox to estimate properties
associated to entanglement on larger experimental platforms. Then, a central part of
this work proposes an alternate effective protocol to measure an important quantity
known as the quantum Fisher information (QFI) that enables us to characterize the
multipartite entanglement content of the underlying quantum state and is a funda-
mental quantity in quantum metrology. This novel protocol is based on estimating
the QFI via the RM toolbox, as a converging series of lower bound polynomials of
the density matrix.

Additionally, the manuscript also focuses on solving a practical bottleneck of
the current RM toolbox caused by the over-burdening classical cost to post-process
experimental RM data to evaluate unbiased estimations of relevant quantities. This
motivates the introduction of the batch shadow formalism that circumvents this
problem and provides an efficient data treatment technique with rigorous perfor-
mance guarantees to get estimates of quantities accessible from experimental RM
data. Lastly, owing to these developments of the RM toolbox, the manuscript reports
estimation of some quantities that were accessed for the first time by experimental
implementation of this toolbox on two different architectures of quantum platform
consisting of superconducting qubits and trapped ions.

Keywords: Randomized measurements, Entanglement, Quantum Fisher infor-
mation, Classical shadow formalism, Experimental protocols.
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Résumé

La technologie quantique a fait des progrès significatifs dans la réalisation de di-
verses plateformes de calcul et de simulation quantiques. L’objectif de cette thèse
est de développer des approches théoriques pour comprendre le rôle de l’intrication
dans les systèmes quantiques, et de proposer des protocoles de mesure pour son-
der expérimentalement ces concepts dans ces plateformes technologiques quantiques
courantes. Ces dernières années, des protocoles appartenant aux mesures aléa-
toires (randomized measurement toolbox or RM toolbox) ont montré leur capac-
ité à mesurer l’intrication bipartite (intrication entre deux parties d’un système
quantique). Ces protocoles ont été mis en œuvre dans plusieurs plateformes ex-
périmentales composées de simulateurs et d’ordinateurs quantiques. Ce manuscrit
rapporte principalement le développement de nouvelles approches basées sur cette
toolbox afin de fournir aux groupes expérimentaux des outils avancés de mesure
de l’intrication en mesurant des nouvelles quantités fondamentales d’intérêt liées à
l’intrication préparée dans les platformes quantiques.

Le premier objectif de cette thèse est de fournir un nouveau protocole pour opti-
miser le protocole RM existant en réduisant les erreurs statistiques dans l’estimation
des quantités. Ceci est fait avec deux approches : (i) via l’échantillonnage d’importance
des unitaires aléatoires locales et (ii) en mettant en œuvre des mesures aléatoires
communes (common randomized measurements). Ces techniques nous permettent
d’implémenter automatiquement la boîte à outils RM (RM toolbox) pour estimer les
propriétés associées à l’intrications sur de plus grandes plateformes expérimentales.
Ensuite, une partie centrale de ce travail propose un protocole alternatif efficace
pour mesurer une quantité fondamentale en métrologie quantique connue comme
information quantique de Fisher (quantum Fisher information) qui nous permet de
caractériser le contenu de l’intrication multipartite de l’état quantique. Ce protocole
est basé sur l’estimation de l’information quantique de Fisher via la boîte à outils
RM, en tant qu’une série convergente de polynômes de la matrice de densité.

En outre, le manuscrit se concentre également sur la résolution d’un prob-
lème pratique de la boîte à outils RM actuelle, causé par le coût classique excessif
du post-traitement des données RM expérimentales afin d’évaluer des estimations
non biaisées des quantités d’intérêt. Cela motive l’introduction du formalisme de
batch shadows et fournit une technique de traitement des données efficace avec des
garanties de performance rigoureuses pour obtenir des estimations des quantités ac-
cessibles à partir des données RM expérimentales. Enfin, en raison de ces développe-
ments de la boîte à outils RM, le manuscrit discute également des quantités qui ont
été accessibles pour la première fois par la mise en œuvre expérimentale de cette
boîte à outils sur deux architectures différentes de plateforme quantique composée
de qubits supraconducteurs et d’ions piégés.
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Mots-clés : Mesures aléatoires, intrication, information quantique de Fisher,
formalisme de classical shadows, protocoles expérimentaux.
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Introduction / Introduction en français

T he early period of last century comprised of the ‘first quantum revolution’ that
consisted of researchers trying to understand the intrinsic nature of quantum me-
chanics. Several of the founding experiments at that time began by manipulating
single quantum particles at the atomic scale. Currently, with rapid advancements on
the experimental front, we enter into the era of the second quantum revolution [22].
Over the past few years, current experiments have the capability to program co-
herent interactions between tens to hundreds of particles that can be arranged and
manipulated in various tunable geometries. With these operations, one can create
highly complex and correlated quantum matter states on diverse quantum platforms
such as Rydberg atoms [70, 110], trapped ions [43, 83], superconducting qubits [18,
1], ultra-cold atoms in optical lattices [69] and quantum dots [12].

Originally as suggested by Feynman in Ref. [38]: “Let the computer itself be built
of quantum mechanical elements which obey quantum mechanical laws", these quan-
tum technological platforms made up of the building blocks known as qubits, now
present for us a rich playground for practical applications in the current era dubbed
as the Noisy-Intermediate Scale Quantum (NISQ) era [97]. These imperfect and
noisy devices are prospective candidates for quantum computation [25] that could
potentially out-perform classical computer in certain specific ‘hard’ tasks, quan-
tum simulation [46] of fundamental models of condensed matter and high-energy
physics, quantum communication [49] and quantum metrology [47, 94]. Currently,
we can greatly feel an active drive to develop further these various quantum tech-
nologies as investments starting from public to private organizations have started to
surge. Our hope is to develop practical commercial quantum technology that will
help solve today’s real world problems.

A key resource that is often generated by coherent interactions between particles
in these quantum devices and that is completely absent in their classical counter-
parts is quantum entanglement [62]. It describes the extent to which a many-body
quantum state can not be described as a classical product state [53]. This ele-
mentary quantum property has its imprint in several fields of study starting from
quantum information and computation [53] to condensed matter and high energy
physics [46]. There has been a significant interest to constantly characterize and
estimate entanglement produced in today’s noisy quantum platforms in full gener-
ality, independent of the platform’s architecture and the prepared many-body state.
Estimating entanglement properties naturally helps benchmark the quantum plat-
form and also could provide interesting signatures of universal properties related to
entanglement [27].

To estimate properties associated to entanglement for an unknown quantum state
prepared in quantum devices presents an outstanding technological challenge as the
quantum state of 𝑁 qubits lives in an exponentially large Hilbert space of dimen-
sion 2𝑁 . There exists experimental methods such as quantum state tomography
(QST) that can reconstruct an unknown quantum state 𝜌 [52, 21] prepared in an
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experiment. A main drawback of this method is that the required number measure-
ments to overcome statistical errors scale exponentially with the number of qubits
𝑁 , i.e it scales as 23𝑁 [54]. The consequence of such an overload of measurements
and exponential resources required for classical postprocessing of the experimental
results greatly restricts the investigation of properties of interest in larger quantum
platforms. In particular, this technique can potentially probe properties of quantum
system in the range of 6− 8 qubits.

In recent years, new advanced protocols by the name of randomized measurement
toolbox (RM toolbox) [31] have been developed by theorists to assist the constant
experimental progress. This protocol is based on executing on a prepared quantum
state of interest, single qubit (or global) random unitary operations that are sampled
from an appropriate unitary ensemble followed by fixed computational basis mea-
surements. This procedure, repeated many times for different sets of unitaries and
recorded measurements makes up a data-set. This quantum to classical translation
via the RM protocol maps succinctly a vast amount of information contained in the
multi qubit quantum state to some compact representation in the form of classical
data. Then, efficient classical post-processing of this collected data follows to give
us access to properties of interest of the quantum system.

One of the main advantages of this method is that it offers a reduced measure-
ment budget compared to QST to measure quantities relevant to entanglement. To
overcome statistical errors that are caused by finite measurement statistics, the re-
quired number of measurements for randomized measurements scale as 2𝛼𝑁 with
𝛼 ∈ [1, 1.5] [29, 11, 125, 32]. This allows the RM protocol to be implemented on
current quantum hardware beyond the regime of QST and has been experimen-
tally demonstrated to access many interesting properties of quantum many-body
states associated to entanglement such as entanglement entropies [11, 111, 135, 60],
negativities [34, 86], scrambling [72] and topological invariants [33, 17]. Addition-
ally, this method also allows experimentalists to benchmark their prepared quantum
states by measuring the fidelity (through state overlap) of an experimental quantum
state with respect to a corresponding state calculated or modelled classically, e.g
on a high-performance cluster [32, 73] or realized on another quantum platform as
demonstrated in [142]. Thus these results suggest that the RM protocol can be a
method of reference to probe properties of interest associated to entanglement in
quantum simulators and quantum computers.

Since the development of the RM protocol, there have been some pertinent chal-
lenges and questions that have been asked. In this manuscript, we shall provide
solutions to some relevant and practical problems in this context. Below, we sum-
marize and divide the challenges tackled by this manuscript that broadly make up
the following research objectives of this thesis:

1. Optimization: Currently, the RM protocol still suffers from an exponential
scaling of the required number of measurements to fight against statistical er-
rors in the estimation of the quantities. Though this method can be applied to
probe system-sizes beyond QST, the increasing demand to benchmark quan-
tum properties in larger quantum devices still presents a challenge. The first
research axis focuses on rendering the current RM protocol more efficient. We
provide a key solution by developing a more optimized version of the current
RM protocol. This consequently allows us to implement the protocol to inves-
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tigate quantum properties created in larger experimental setups as discussed
in Chapter. 3 and Chapter. 6.

2. Probe new quantities: Until present, quantum entanglement between two par-
ties (bipartite entanglement) has been extensively probed in quantum exper-
iments. The extension of the RM toolbox to estimate quantities related to
multipartite entanglement and other novel quantities of interest that can be
accessed using the same framework of the RM toolbox, has been another re-
search direction that has been greatly explored during this thesis in Chapter. 4
and Chapter. 5.

3. Measurement budget analysis: Estimating the sample complexity (required
number of measurements) becomes crucial in understanding the required in-
vestments in terms of experimental resources and time. In this context, we
develop in detail a generalized and formal study comprised of both analytical
and numerical techniques to obtain the required number of measurements to
estimate arbitrary quantities of interest accessible using the RM toolbox in
Chapter. 4.

4. Effective data post-processing methods: Probing properties generated in large
system sizes with the RM protocol consequently presents post-processing over-
load of collected experimental data. A significant effort of this thesis focuses
on solving this practical issue. We develop a new efficient formalism that is
supported equally by compact classical routines for a fast treatment of the
experimental data generated by the RM protocol in Chapter. 5.

5. Experimental realization of the protocol: Lastly, development of experimental
protocols from the theory side has its ultimate impact when they are verified
on real experimental devices. We report the implementation of some of our
novel proposed methods on experimental platforms to measure new quantities
of interest for the first time as shown in Chapter. 4 and Chapter. 5.

Structure of the manuscript — This manuscript is self-contained and comprises
a total of seven chapters including the conclusion. The first two chapters will pro-
vide the required background to quantum entanglement and the RM toolbox. In
Chapter. 1, we start by introducing the notion of quantum entanglement. We define
a list of important entanglement quantifiers that shall be discussed throughout the
course of this manuscript. These quantities can certify or quantify the presence of
different kinds of entanglement for example in pure or mixed states or in a scenario of
entanglement between two parties—bipartite entanglement or entanglement among
multiple parties—multipartite entanglement.

The introductory chapter on entanglement is followed by Chapter. 2, where we
shall review in detail the randomized measurement toolbox [31] and additionally
derive the classical shadow formalism [64] which forms a key component of the
RM toolbox. We shall show in particular that with this framework, we can access
quantities expressed as expectation values of multi-copy operators directly from
the RM data generated by the experiment. These two chapters set us up for the
subsequent chapters that shall discuss and elaborate on the results developed during
the course of this thesis and have lead to published works.
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• Aniket Rath, Cyril Branciard, Anna Minguzzi, and Benoît Vermersch. Quan-
tum Fisher information from randomized measurements. Phys. Rev. Lett.,
127:260501, Dec 2021 (Chapter. 4 and in Ref. [100])

• Vittorio Vitale, Aniket Rath, Petar Jurcevic, Andreas Elben, Cyril Branciard,
and Benoît Vermersch. Estimation of the quantum Fisher information on a
quantum processor, arXiv:2307.16882, 2023 (Chapter. 4 and in Ref. [129])

• Aniket Rath, Vittorio Vitale, Sara Murciano, Matteo Votto, Jérôme Dubail,
Richard Kueng, Cyril Branciard, Pasquale Calabrese, and Benoît Vermer-
sch. Entanglement barrier and its symmetry resolution: Theory and experi-
mental observation. PRX Quantum, 4:010318, Feb 2023 (Chapter. 5 and in
Ref. [101]).

• Benoît Vermersch, Aniket Rath, Bharathan Sundar, Cyril Branciard, John
Preskill, and Andreas Elben. Enhanced estimation of quantum properties with
common randomized measurements, arXiv:2304.12292, 2023 (Chapter. 6 and
in Ref. [126]).

Chapter. 3 centers around the optimization problem related to the randomized mea-
surement protocol which is detailed in Ref. [99]. We consider the case where we are
interested to estimate the purity of an unknown quantum state from randomized
measurement data. The purity of a quantum state can be used to detect entangle-
ment and can quantify it for pure states. The aim is to develop a new framework
that enables us to decrease statistical errors in estimating the purity compared to
the initial proposed protocol in Ref. [11]. This would then allow us to measure the
purity in much larger quantum system compared to the current system sizes that we
can address. The main idea that we develop in this chapter is to use an approximate
prior knowledge on the prepared quantum state of the experiment and implement
based on this knowledge importance sampling of random unitaries. In the chapter,
we show analytical evidence of reduction of statistical errors and provide multiple
numerical case studies by simulating the protocol classically.

The results of Chapter. 4 are based on Ref. [100] and the last section of this chap-
ter is based on a recently completed work [129]. It comprises in designing a method
adapted in the framework of the RM toolbox to probe multipartite entanglement in
quantum platforms and also experimentally verify the proposal on a superconduct-
ing qubit device. We aim here to estimate the quantum Fisher information (QFI),
a quantity that can witness multipartite entanglement via the entanglement depth
present in the underlying quantum system [122, 67]. As the highly non-linear expres-
sion of the QFI cannot be estimated without employing quantum state tomography,
in our work, we propose an alternate expression to measure the QFI by constructing
a converging polynomial series of lower bounds as a function of the density matrix.
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These lower bounds can be estimated using the classical shadow formalism of the
RM toolbox [64] for system sizes beyond the regime of QST. Additionally, in this
chapter, we also derive a general framework that provides rigorous bounds on the
required number of measurements to evaluate arbitrary functions accessible by the
classical shadow formalism with a given accuracy and confidence interval. In the
last section of Chapter. 4, we discuss a recently completed work [129] where we
apply our theoretical proposal and other advanced techniques of the RM toolbox to
estimate experimentally the QFI using the converging series of lower bounds in a
superconducting qubit device for system size upto 13 qubits. On this platform, we
prepare GHZ states and the ground state of the transverse field Ising model at the
critical point using the quantum adiabatic optimization algorithm [37].

In Chapter. 5, we present the results from Ref. [101]. Here, we provide a new
formalism of classical shadows that we dub batch classical shadows. It enables us
to effectively post-process estimations of quantities of interest from the RM dataset
which were not accessible by previous methods. The bottleneck that crippled previ-
ous methods involved an expensive cost of classical data-treatment for the classical
shadow formalism which is solved by the batch shadow formalism. We also devel-
oped a general framework to assess the required number of measurements to estimate
functions of interest using this new formalism. The development of this framework
was extremely useful in firstly observing an interesting quantum property associated
with the operator entanglement known as the entanglement barrier [130] from exist-
ing experimental data. Secondly, it also enabled us to successfully estimate higher
order lower bounds of the QFI from experimental data as stated earlier.

Lastly, Chapter. 6 is based on the work of Ref. [126]. We develop a new variant
of the RM protocol that we coin common randomized measurements (CRM) in
order to boost estimation of expectation values of multi-copy operators that can be
accessed from the classical shadow formalism. We define a new kind of classical
shadow known as common randomized shadows (CR shadows). This framework
also uses an approximate prior knowledge on the prepared state of the experiment
to enhance estimations of the quantities of interest. We perform multiple numerical
case studies to demonstrate the advantages of the developed framework compared
to the standard classical shadow formalism [64].

Particularly, Chapter. 3 and 6 contain additional relevant studies that have not
been explicitly mentioned in their respective publications. We include a note at
the beginning of each of these chapters to describe the correspondence between its
content and the respective publication. We end the thesis with conclusions and
perspectives on our work.

Introduction en français

Le début du siècle dernier a été marqué par la "première révolution quantique",
au cours de laquelle les chercheurs ont tenté de comprendre la nature intrinsèque
de la mécanique quantique. Plusieurs des expériences fondatrices de l’époque ont
commencé par la manipulation de particules quantiques uniques à l’échelle atom-
ique. Aujourd’hui, grâce aux progrès rapides réalisés sur le front expérimental,
nous entrons dans l’ère de la deuxième révolution quantique [22]. Au cours des
dernières années, les expériences actuelles ont permis de programmer des interac-
tions cohérentes entre des dizaines ou des centaines de particules qui peuvent être
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disposées et manipulées dans diverses géométries accordables. Ces opérations per-
mettent de créer des états de matière quantique hautement complexes et corrélés
sur diverses plateformes quantiques telles que les atomes de Rydberg [70, 110], les
ions piégés [43, 83], les qubits supraconducteurs [18, 1], les atomes ultrafroids dans
des réseaux optiques [69] et les boîtes quantiques (quantum dots) [12].

A l’origine, comme suggéré par Feynman dans Ref. [38]: "Que l’ordinateur lui-
même soit construit à partir d’éléments mécaniques quantiques qui obéissent aux lois
de la mécanique quantique", ces plateformes technologiques quantiques composées
de blocs de construction connus sous le nom de qubits nous offrent aujourd’hui un
riche terrain de jeu pour des applications pratiques dans l’ère actuelle appelée "ère
quantique à échelle intermédiaire et bruitée" (NISQ) [97]. Ces dispositifs imparfaits
et bruyants sont des candidats potentiels pour le calcul quantique [25] qui pourrait
potentiellement surpasser les ordinateurs classiques dans certaines tâches "difficiles"
spécifiques, la simulation quantique [46] des modèles fondamentaux de la matière
condensée et de la physique des hautes énergies, la communication quantique [49] et
la métrologie quantique [47, 94]. Actuellement, nous sentons une volonté active de
développer davantage ces diverses technologies quantiques, car les investissements
des organisations publiques et privées ont commencé à augmenter. Nous espérons
développer une technologie quantique commerciale pratique qui contribuera à ré-
soudre les problèmes du monde réel d’aujourd’hui.

L’intrication quantique est une ressource clé qui est souvent générée par des in-
teractions cohérentes entre les particules dans ces dispositifs quantiques et qui est to-
talement absente dans ses homologues classiques [62]. Il décrit la mesure dans laque-
lle un état quantique à plusieurs corps ne peut pas être décrit comme un état produit
classique [53]. Cette propriété quantique élémentaire est cruciale dans plusieurs do-
maines d’étude, depuis l’information et l’informatique quantiques [53] jusqu’à la
matière condensée et la physique des hautes énergies [46]. La caractérisation de
l’intrication produite dans les plateformes quantiques bruitées d’aujourd’hui ont sus-
cité un intérêt considérable, en toute généralité, indépendamment de l’architecture
de la plateforme quantique et de l’état préparé de nombreux corps. L’estimation
des propriétés de l’intrication permet naturellement d’évaluer la performance de la
plateforme quantique et pourrait également fournir des signatures intéressantes de
propriétés universelles liées à l’intrication [27].

L’estimation des propriétés associées à l’intrication pour un état quantique in-
connu préparé dans des dispositifs quantiques représente un défi technologique ex-
ceptionnel car l’état quantique de 𝑁 qubits vit dans un espace de Hilbert exponen-
tiellement grand de dimension 2𝑁 . Il existe des méthodes expérimentales telles que
la tomographie d’états quantiques (QST) qui peut reconstruire un état quantique in-
connu 𝜌 [52, 21] préparé lors d’une expérience. L’un des principaux inconvénients de
cette méthode est que le nombre de mesures nécessaires pour surmonter les erreurs
statistiques augmente de façon exponentielle avec le nombre de qubits 𝑁 , c’est-à-
dire qu’il s’élève à 23𝑁 [54]. La conséquence d’une telle surcharge de mesures et
des ressources exponentielles requises pour le post-traitement classique des résultats
expérimentaux limite considérablement l’étude des propriétés intéressantes dans les
grandes plateformes quantiques. En particulier, cette technique peut potentielle-
ment sonder les propriétés de systèmes quantiques de l’ordre de 6 à 8 qubits.

Ces dernières années, de nouveaux protocoles avancés appelés "randomized mea-
surement toolbox" (RM toolbox) [31] ont été mis au point par des théoriciens pour
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faciliter les progrès expérimentaux constants. Ce protocole est basé sur l’exécution,
sur un état quantique d’intérêt préparé, d’opérations unitaires aléatoires sur chaque
qubit, échantillonnées à partir d’un ensemble unitaire approprié, suivies de mesures
projectives dans une base fixe. Cette procédure, répétée de nombreuses fois pour
différents ensembles unitaires et de mesures enregistrées, constitue un ensemble de
données. Cette conversion du quantique au classique via le protocole RM permet de
transposer succinctement une grande quantité d’informations contenues dans l’état
quantique à qubits multiples en une représentation compacte sous forme de données
classiques. Ensuite, un post-traitement classique efficace de ces données collectées
permet d’accéder aux propriétés intéressantes du système quantique.

L’un des principaux avantages de cette méthode est qu’elle offre un budget de
mesure réduit par rapport à la QST pour mesurer les quantités pertinentes pour
l’intrication. Pour surmonter les erreurs statistiques causées par des statistiques de
mesure finies, le nombre requis de mesures de l’intrication est réduit à 2𝛼𝑁 avec
𝛼 ∈ [1, 1.5] [29, 11, 125, 32]. Cela permet d’implémenter le protocole RM sur
les platformes quantique actuel au-delà du régime de la QST. Il a été démontré
expérimentalement qu’elle permet d’accéder à de nombreuses propriétés intéres-
santes des états quantiques à plusieurs corps associés à l’intrication, telles que
les entropies d’intrication [11, 111, 135, 60], les négativités [34, 17], l’embrouillage
(scrambling) [72] et les invariants topologiques [33, 17]. En outre, cette méthode
permet également aux expérimentateurs d’évaluer leurs états quantiques préparés
en mesurant la fidélité d’un état quantique expérimental par rapport à un état cor-
respondant calculé ou modélisé classiquement, par exemple sur un cluster à haute
performance [32] ou réalisé sur une autre plateforme quantique. Ces résultats sug-
gèrent donc que le protocole RM peut être une méthode de référence pour sonder
les propriétés intéressantes dans les simulateurs quantiques et les ordinateurs quan-
tiques.

Depuis le développement du protocole RM, certains défis et questions pertinents
ont été posés. Dans ce manuscrit, nous apporterons des solutions à certains prob-
lèmes pertinents et pratiques dans ce contexte. Nous pouvons résumer et diviser les
défis abordés par ce manuscrit qui constituent globalement les objectifs de recherche
suivants de cette thèse :

1. Optimisation: Actuellement, le protocole RM souffre toujours d’une échelle
exponentielle du nombre de mesures nécessaires pour lutter contre les erreurs
statistiques dans l’estimation des quantités. Bien que cette méthode puisse
être appliquée pour sonder des systèmes de plus grande taille par rapport à
la QST, la demande croissante d’étalonnage des propriétés quantiques dans
des dispositifs quantiques de plus grande taille constitue toujours un défi. Le
premier axe de recherche se concentre sur l’amélioration de l’efficacité du pro-
tocole RM actuel. Nous apportons une solution clé en développant une version
plus optimisée du protocole RM actuel. Cela nous permet de mettre en œuvre
le protocole pour étudier les propriétés quantiques créées dans des dispositifs
expérimentaux plus importants, comme indiqué dans les chapitres. 3 et au
chapitre. 6.

2. Sonder de nouvelles quantités : Jusqu’à présent, l’intrication quantique entre
deux parties (intrication bipartite) a été largement étudiée dans les expériences
quantiques. L’extension de la boîte à outils RM pour estimer les quantités
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liées à l’intrication multipartite et d’autres nouvelles quantités intéressantes
auxquelles on peut accéder en utilisant le même cadre de la boîte à outils RM,
a été une autre direction de recherche qui a été largement explorée au cours
de cette thèse dans les chapitres. 4 et au chapitre. 5.

3. Analyse du budget de mesure : L’estimation de la complexité de l’échantillon
(nombre requis de mesures) devient cruciale pour comprendre les investisse-
ments requis en termes de ressources expérimentales et de temps. Dans ce
contexte, nous développons en détail une étude généralisée et formelle com-
prenant à la fois des techniques analytiques et numériques pour obtenir le
nombre requis de mesures pour estimer des quantités arbitraires d’intérêt ac-
cessibles en utilisant le formalisme RM dans le chapitre. 5.

4. Méthodes efficaces de post-traitement des données : L’étude des propriétés
générées dans des systèmes de grande taille à l’aide du protocole RM entraîne
une surcharge de post-traitement des données expérimentales collectées. Un
effort important de cette thèse se concentre sur la résolution de ce problème
pratique. Nous développons un nouveau formalisme efficace qui est soutenu
également par des routines classiques compactes pour un traitement rapide
des données expérimentales générées par le protocole RM dans le chapitre. 5.

5. Réalisation expérimentale du protocole : Enfin, le développement de protocoles
expérimentaux à partir de la théorie nécessite sa "cerise sur le gâteau". Ceci est
réalisé par la mise en œuvre des nouvelles méthodes proposées sur des plates-
formes expérimentales réelles et la mesure de nouvelles quantités d’intérêt,
comme le montrent les chapitres. 4 et au chapitre. 5.

Structure du manuscrit — Ce manuscrit est autonome et comprend un total
de sept chapitres. Les deux premiers chapitres fournissent le contexte nécessaire à
l’intrication quantique et à la boîte à outils RM. Dans le chapitre. 1, nous com-
mençons par introduire la notion d’intrication quantique. Nous définissons un cer-
tain nombre de quantificateurs d’intrication importants qui seront discutés tout au
long de ce manuscrit. Ces quantités peuvent certifier ou quantifier la présence de
différents types d’intrication, par exemple dans des états purs ou mixtes ou dans
un scénario d’intrication entre deux parties, d’intrication bipartite ou d’intrication
entre plusieurs parties, d’intrication multipartite.

Le chapitre d’introduction sur l’intrication est suivi du chapitre. 2. Nous ex-
aminerons en détail la boîte à outils des mesures aléatoires (RM toolbox) [31] et
déduirons en outre le formalisme de classical shadows [64], qui constitue un élé-
ment clé de la boîte à outils des mesures aléatoires. Nous montrerons en particulier
qu’avec ce cadre, nous pouvons accéder à des quantités exprimées en tant que valeurs
d’espérance d’opérateurs multicopies directement à partir des données RM générées
par l’expérience. Ces deux chapitres nous préparent pour les chapitres suivants qui
discuteront et développeront les résultats développés au cours de cette thèse et qui
ont conduit à des travaux publiés.

Les chapitres suivants de la thèse suivent un format basé sur des articles. Ils
comprennent la liste suivante de travaux réalisés :

• Aniket Rath, Rick van Bijnen, Andreas Elben, Peter Zoller, and Benoît Verm-
ersch. Importance sampling of randomized measurements for probing entangle-
ment. Phys. Rev. Lett., 127:200503, Nov 2021 (Chapter. 3).
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• Aniket Rath, Cyril Branciard, Anna Minguzzi, and Benoît Vermersch. Quan-
tum Fisher information from randomized measurements. Phys. Rev. Lett.,
127:260501, Dec 2021 (Chapter. 4)

• Vittorio Vitale, Aniket Rath, Petar Jurcevic, Andreas Elben, Cyril Branciard,
and Benoît Vermersch. Estimation of the quantum Fisher information on a
quantum processor, arXiv:2307.16882, 2023 (Chapter. 4)

• Aniket Rath, Vittorio Vitale, Sara Murciano, Matteo Votto, Jérôme Dubail,
Richard Kueng, Cyril Branciard, Pasquale Calabrese, and Benoît Vermersch.
Entanglement barrier and its symmetry resolution: Theory and experimental
observation. PRX Quantum, 4:010318, Feb 2023 (Chapter. 5).

• Benoît Vermersch, Aniket Rath, Bharathan Sundar, Cyril Branciard, John
Preskill, and Andreas Elben. Enhanced estimation of quantum properties with
common randomized measurements, arXiv:2304.12292, 2023 (Chapter. 6).

Le chapitre. 3 est centré sur le problème d’optimisation lié au protocole de mesure
aléatoire qui est détaillé dans Ref. [99]. Nous considérons le cas où nous sommes
intéressés à estimer la pureté d’un état quantique inconnu à partir de données de
mesures aléatoires. L’objectif est de développer un nouveau cadre qui nous per-
met de réduire les erreurs statistiques dans l’estimation de la pureté par rapport au
protocole initial proposé dans Ref. [11]. Cela nous permettrait alors de mesurer la
pureté dans des systèmes quantiques beaucoup plus grands que les tailles de systèmes
actuelles que nous pouvons traiter. L’idée principale que nous développons dans ce
chapitre est d’utiliser une connaissance préalable approximative de l’état quantique
préparé de l’expérience et de mettre en œuvre, sur la base de cette connaissance,
l’échantillonnage préférentiel d’unitaires aléatoires. Dans ce chapitre, nous mon-
trons des preuves analytiques de la réduction des erreurs statistiques et fournissons
plusieurs études de cas numériques en simulant le protocole de manière classique.

Les résultats du chapitre. 4 sont basés sur Ref. [100] et la dernière section de
ce chapitre est basée sur un travail récemment achevé [129]. Il s’agit de concevoir
une méthode adaptée dans le cadre de la boîte à outils RM pour sonder l’intrication
multipartite dans les plateformes quantiques et de vérifier expérimentalement la
proposition sur un dispositif de qubit supraconducteur. Nous visons ici à estimer
l’information quantique de Fisher (QFI), une quantité qui peut témoigner du degré
d’intrication multipartite présent dans le système sous-jacent [67, 122]. Comme
l’expression hautement non linéaire de la QFI ne peut être estimée sans utiliser
la tomographie d’état quantique, nous proposons dans notre travail une expression
alternative pour mesurer la QFI en construisant une série polynomiale convergente
de limites inférieures en tant que fonction de la matrice de densité. Ces limites
inférieures peuvent être estimées en utilisant le formalisme de classical shadows de
la boîte à outils RM [64] pour des tailles de système dépassant le régime de la QST.
En outre, dans ce chapitre, nous dérivons également un cadre général qui fournit
des bornes rigoureuses sur le nombre requis de mesures pour évaluer des fonctions
arbitraires accessibles par le formalisme de classical shadows avec une précision et
un intervalle de confiance donnés.

Dans la dernière section du chapitre. 4, nous discutons d’un travail récemment
achevé [129] dans lequel nous appliquons notre proposition théorique pour estimer
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expérimentalement le QFI en utilisant la série convergente de limites inférieures dans
un dispositif de qubits supraconducteurs pour une taille de système allant jusqu’à
13 qubits. Sur cette plateforme, nous préparons l’état GHZ et l’état fondamental
du modèle d’Ising à champ transverse au point critique en utilisant l’algorithme
d’optimisation adiabatique quantique.

Dans le chapitre. 5 nous présentons les résultats de Ref. [101]. Nous proposons
ici un nouveau formalisme des classical shadows que nous appelons batch shadows.
Il nous permet d’effectuer efficacement des estimations a posteriori des quantités
d’intérêt à partir de l’ensemble de données RM qui n’étaient pas accessibles par les
méthodes précédentes. Le goulot d’étranglement qui paralysait les méthodes précé-
dentes impliquait un coût élevé de traitement des données classiques du formalisme
de classical shadows. Nous avons également mis au point un cadre général permet-
tant d’évaluer le nombre de mesures nécessaires pour estimer les fonctions d’intérêt
à l’aide du nouveau formalisme de batch shadows. Le développement de ce cadre a
été extrêmement utile pour observer une propriété quantique intéressante associée
à d’intrication de l’opérateur, connue sous le nom de barrière d’intrication [130], à
partir de données expérimentales existantes. Deuxièmement, il nous a également
permis d’estimer avec succès des limites inférieures d’ordre supérieur de la QFI à
partir de données expérimentales, comme indiqué précédemment.

Enfin, le chapitre. 6 est basé sur les travaux de Ref. [126]. Nous développons
une nouvelle variante du protocole RM que nous appelons mesures aléatoires com-
munes (CRM) afin d’améliorer l’estimation des valeurs d’espérance des opérateurs
multicopies qui peuvent être accessibles à partir du formalisme de classical shadows.
Nous définissons un nouveau type de classical shadows appelée common random-
ized shadows (CR shadows). Ce cadre utilise également une connaissance préalable
approximative de l’état préparé de l’expérience pour améliorer les estimations des
quantités d’intérêt. Nous réalisons plusieurs études de cas numériques pour dé-
montrer les avantages du cadre développé par rapport au formalisme standard de
classical shadows [64].

En particulier, les chapitres. 3 et 6 contiennent des études pertinentes supplé-
mentaires qui n’ont pas été explicitement mentionnées dans leurs publications re-
spectives. Nous incluons une note au début de chacun de ces chapitres pour décrire
la correspondance entre son contenu et la publication correspondante.
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1
Introduction to entanglement quantifiers

The present chapter introduces the required theoretical background to understand the quantities
of interest for this manuscript that certify entanglement in quantum many-body systems.
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1.1. Bipartite entanglement in pure states

Entanglement is a vital resource and plays a key role in various applications start-
ing from quantum cryptography [28], quantum teleportation [4], quantum metrol-
ogy [94] and in quantum computation and simulation [97]. There are various quan-
tities starting from Bell inequalities [10], entanglement witnesses [120], entropic
quantities and non-linear functionals of the quantum state that certify the presence
of entanglement in a quantum state [53]. In this chapter, we shall aim at provid-
ing a brief theoretical overview of some important entanglement quantifiers among
the vast zoo of quantities that certify entanglement. In particular, we will mainly
focus on introducing the background of the quantities that shall be relevant to this
manuscript and will be discussed in detail in subsequent chapters. Namely, we will
mainly devote our attention on quantifiers that describe bipartite entanglement (en-
tanglement between two constituents of the system) in the context of both pure
and mixed quantum systems and also in the multipartite scenario (entanglement
between multiple parties of the system).

1.1 Bipartite entanglement in pure states
Consider a quantum system that comprises of two parts 𝐴 and 𝐵 as illustrated

in Fig. 1.1. The full system is described by a quantum state in a 𝑑 dimensional
Hilbert space ℋ𝐴𝐵(𝑑)

|𝜓𝐴𝐵⟩ =
∑︁
𝑖,𝑗

Ψ𝑖𝑗 |𝑖𝐴⟩ ⊗ |𝑗𝐵⟩ (1.1)

where {|𝑖𝐴⟩} and {|𝑖𝐵⟩} are orthonormal bases spanning the Hilbert spaces of sub-
systems 𝐴 and 𝐵 given by ℋ𝐴(𝑑𝐴) and ℋ𝐵(𝑑𝐵) with dimensions 𝑑𝐴 and 𝑑𝐵 respec-
tively. We assume here that the wave function |𝜓𝐴𝐵⟩ is pure; that is, the state of the
environment |𝜓ℰ⟩ can be factorized with respect to the state of the system that we
are interested in. We define a separable state if a given state |𝜓𝐴𝐵⟩ obeys a product
decomposition [53] as follows

|𝜓𝐴𝐵⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩ . (1.2)

On the contrary, a state that fails to be represented as above is called an entangled
state that shares entanglement between the parts 𝐴 and 𝐵. In particular, such an
entangled state cannot be prepared using local operations on sub-systems 𝐴 and 𝐵
aided by classical communication (LOCC operations). Additionally, we can define
the Schmidt decomposition of this state into orthonormal base |𝑎ℓ⟩ ∈ ℋ𝐴(𝑑𝐴) and
|𝑏ℓ⟩ ∈ ℋ𝐵(𝑑𝐵) such that [53]

|𝜓𝐴𝐵⟩ =
𝑅∑︁
ℓ=1

𝑤ℓ |𝑎ℓ⟩ |𝑏ℓ⟩ (1.3)

with {𝑤ℓ}ℓ being the Schmidt spectrum that obeys
∑︀

ℓ𝑤
2
ℓ = 1 with 𝑤ℓ ≥ 0 and 𝑅 ≤

min{𝑑𝐴, 𝑑𝐵} is the Schmidt rank of the state |𝜓𝐴𝐵⟩. Interestingly, this decomposition
also validates the presence of entanglement: Entangled states have a Schmidt rank
𝑅 > 1, that is, there exists at least two non-zero values for 𝑤ℓ in the Schmidt
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𝑨 𝑩 𝑬

Figure 1.1: Bipartite quantum system — This figure illustrates a quantum system where each
green circle represents a local system. The full system is comprised of a sub-system 𝐴 (blue) and
sub-system 𝐵 (red). The rest of the constituents form the environment 𝐸.

decomposition of the state |𝜓𝐴𝐵⟩. A pure product state always has a single Schmidt
value that results in 𝑅 = 1. Additionally, the Schmidt decomposition allows us
to introduce a set of important quantities that can also quantify the amount of
entanglement in the system of interest.

1.2 Entanglement entropies
One can obtain a reduced density matrix (RDM) that describes all the properties

of the state in region 𝐴 (or conversely in 𝐵) by tracing out the degrees of freedom of
the complement system (𝐵 in this case). This operation, that is achieved by taking
the partial trace gives

𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵) = Tr𝐵(|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|) =
𝑅∑︁
ℓ=1

𝑤2
ℓ |𝑎ℓ⟩⟨𝑎ℓ| (1.4)

where we have the density matrix of the full system 𝜌𝐴𝐵 = |𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵| which is an
operator that is positive and semi-definite. The square singular values 𝑤2

ℓ define the
eigenvalues 𝜆ℓ of the RDM. One can define an entropy of entanglement famously
known as the von Neumann entropy

𝑆vN(𝜌𝐴) = −
𝑅∑︁
ℓ=1

𝜆ℓ log 𝜆ℓ = −Tr(𝜌𝐴 log 𝜌𝐴) (1.5)

and additionally the Rényi entropies

𝑆𝑛(𝜌𝐴) =
1

1− 𝑛
log

𝑅∑︁
ℓ=1

(𝜆ℓ)
𝑛 =

1

1− 𝑛
logTr(𝜌𝑛𝐴). (1.6)

More generally, one can recover the von Neumann entropy from Rényi entropies
given by lim𝑛→1 𝑆𝑛 = 𝑆vN. Importantly, for pure states described in the joint system
𝐴 ∪ 𝐵, the above entropies satisfy the appropriate conditions to be considered as
entanglement measures, i.e they quantify the amount of entanglement in the system
and vanish for separable states. They are entanglement monotones, that is they do
not increase under LOCC operations [62]. Additionally, these set of entropies have a
range of important applications in understanding universal behaviors in many-body
physics [27]. They also quantify the complexity to classically simulate quantum
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many-body systems with numerical methods such as tensor network algorithms [113].
Let us now show how entanglement entropies detect entanglement of a quantum
system.

1.2.1 Entanglement detection with entropies

Let us fall back on the entanglement Schmidt criteria obtained from the Schmidt
decomposition. As states with a Schmidt rank 𝑅 = 1 are product states, this
implies that there exists a unique singular value 𝑤ℓ = 1 (also a unique eigenvalue
𝜆ℓ = 1). Computing the RDM of the sub-system 𝐴 as done in Eq. (1.4) shows that
the reduced state 𝜌𝐴 has a purity Tr(𝜌2𝐴) = 1 and is therefore a pure state. The von
Neumann or Rényi entropy of a reduced state on 𝐴 is 𝑆vN(𝜌𝐴) = 𝑆𝑛(𝜌𝐴) = 0. This
immediately gives rise to the following statement based on the Schmidt criterion: A
pure state defined on the system 𝐴 ∪ 𝐵 is entangled between 𝐴 and 𝐵 if and only
if the von Neumann or Rényi entropy of the reduced systems 𝐴 (respectively 𝐵) is
nonzero [53].

Additionally, we observe from Eq. (1.6) that if 𝑅 > 1, the purity of the reduced
state Tr(𝜌2𝐴) < 1. This can be easily noted from the fact that the purity Tr(𝜌2𝐴) can
be equivalently expressed using Eq. (1.4) as

Tr(𝜌2𝐴) =
𝑅∑︁
ℓ=1

𝑤4
ℓ =

𝑅∑︁
ℓ=1

𝜆2ℓ . (1.7)

When 𝑅 > 1, ∀ℓ : 𝜆ℓ < 1 as it satisfies
∑︀𝑅

ℓ=1 𝜆ℓ = 1. This results in
∑︀

ℓ 𝜆
2
ℓ =

Tr(𝜌2𝐴) < 1. Thus in an analogous manner, we can state that the RDMs of entangled
states are mixed when compared to the pure state 𝜌𝐴𝐵: Tr(𝜌2𝐴) < 1 = Tr(𝜌2𝐴𝐵) and
conversely the entropy of the reduced states are larger than entropy of the full system
𝑆2(𝜌𝐴) > 𝑆2(𝜌𝐴𝐵) = 0. We note that the purity and the second Rényi entropy will
be the main quantities of interest in Chapters. 2 - 3 where we describe methods to
measure them in order to validate the presence of entanglement in experimentally
prepared quantum states. Note additionally that these conditions can also be used to
detect entanglement in mixed quantum state (Tr(𝜌2𝐴𝐵) < 1) as long as we satisfy the
condition shown earlier (Tr(𝜌2𝐴) < Tr(𝜌2𝐴𝐵)). A drawback of these conditions is that
though they are powerful to assert bipartite entanglement in pure quantum states,
they are weaker conditions to detect bipartite entanglement for generic mixed states.
We shall discuss in the subsequent section the appropriate quantities to address this
issue.

1.3 Mixed state entanglement
Pure states are in general hard to realize in experimental platforms. The sys-

tem or sub-system of interest is always coupled to an external environment. The
description of the quantum state in such a scenario is more appropriately captured
by the density matrix 𝜌𝐴𝐵. In general, such states have a global purity Tr(𝜌2𝐴𝐵) less
than one. Generic separable states can be constructed in terms of convex weights
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𝑝ℓ and product states 𝜌(ℓ)𝐴 ⊗ 𝜌
(ℓ)
𝐵 acting on sub-system 𝐴 and 𝐵 respectively. We can

define such a separable state by [53]

𝜌𝐴𝐵 =
∑︁
ℓ

𝑝ℓ𝜌
(ℓ)
𝐴 ⊗ 𝜌

(ℓ)
𝐵 . (1.8)

These separable states could be classically correlated as one can prepare them only
using LOCC operations but do not possess quantum correlations among the two
parties. To certify entanglement for generic mixed states, one could already start
with the purity or entropic condition mentioned in the previous section which re-
mains valid in this situation as well [62]. A draw back of the latter is that the
entropic condition is weak to detect entanglement present in generic mixed states.
There are entangled states that are not detected by this condition. So, now let us
discuss some more advanced tests that can typically better confirm the presence of
entanglement in such mixed states.

1.3.1 Positive-partial transpose condition

The positive-partial transpose condition is based on a mathematical operation known
as the partial transpose. To better understand this operation, let us expand for con-
creteness the density matrix 𝜌𝐴𝐵 in the bases {|𝑖𝐴⟩} and {|𝑖𝐵⟩} as given in Eq. (1.1)

𝜌𝐴𝐵 =

𝑑𝐴∑︁
𝑖𝐴,𝑗𝐴

𝑑𝐵∑︁
𝑖𝐵 ,𝑗𝐵

(𝜌𝐴𝐵)(𝑖𝐴𝑗𝐴, 𝑖𝐵𝑗𝐵) |𝑖𝐴⟩⟨𝑗𝐴| ⊗ |𝑖𝐵⟩⟨𝑗𝐵| . (1.9)

The partial transposition consists in executing the transposition of the density ma-
trix with respect to a given sub-system. Without loss of generality, the partial
transposition performed with respect to the sub-system 𝐴 can be noted by

𝜌𝑇𝐴𝐴𝐵 =

𝑑𝐴∑︁
𝑖𝐴,𝑗𝐴

𝑑𝐵∑︁
𝑖𝐵 ,𝑗𝐵

(𝜌𝐴𝐵)(𝑗𝐴𝑖𝐴, 𝑖𝐵𝑗𝐵) |𝑖𝐴⟩⟨𝑗𝐴| ⊗ |𝑖𝐵⟩⟨𝑗𝐵| (1.10)

where we have exchanged the indices 𝑖𝐴 and 𝑗𝐴. The density matrix 𝜌𝐴𝐵 is said to be
positive-partial transpose (PPT) if 𝜌𝑇𝐴𝐴𝐵 is positive semi-definite 𝜌𝑇𝐴𝐴𝐵 ≥ 0, that is, its
spectrum does not contain any negative eigenvalues. The negation of PPT is said to
be negative partial transpose (NPT). This definition is followed by an entanglement
criterion known as the PPT criterion or the Peres-Horodecki criterion [91] which
states that: A bipartite separable state 𝜌𝐴𝐵 is PPT. More precisely, for a given
state 𝜌𝐴𝐵, if the spectrum of 𝜌𝑇𝐴𝐴𝐵 contains a negative eigenvalue, then the state is
necessarily entangled across the partition 𝐴 and 𝐵 [61].

The PPT criterion is also associated to an entanglement monotone known as the
negativity [128] 𝒩 =

∑︀
ℓ|𝜆′ℓ<0 |𝜆′ℓ| and is defined by the spectrum 𝜆′ℓ of 𝜌𝑇𝐴𝐴𝐵. It simply

quantifies entanglement through the amount the PPT criterion is violated [128]. One
may now wonder if the PPT condition detects all possible separable states? This is
the case only for low dimensional systems. It has been shown that a state defined in
ℋ𝐴(2)⊗ℋ𝐵(2) or ℋ𝐴(2)⊗ℋ𝐵(3) is separable if and only if it is PPT [61]. Though
this condition is capable of detecting entanglement for many generic mixed states,
there exists a class of entangled states known as bound entangled that can not be
detected via this criterion [53]. Now let us move our focus to another entanglement
detection condition known as the CCNR criteria for mixed quantum states that can
detect some of the bound entangled states [53].
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1.3.2 CCNR criterion

The computable cross norm or realignment criterion [107, 108] provides a simple test
to certify entanglement for generic mixed states and in particular in a small window
of entangled states that are not sensitive to the PPT criterion. The criteria states
that if 𝜌𝐴𝐵 is separable then

‖ℛ(𝜌𝐴𝐵)‖1 ≤ 1, (1.11)

where we define the trace norm ‖𝑋‖1 = Tr(
√
𝑋𝑋†) and the realignment operation

as [ℛ(𝜌𝐴𝐵)](𝑖𝐴𝑖𝐵 , 𝑗𝐴𝑗𝐵) := (𝜌𝐴𝐵)𝑖𝐴𝑗𝐴, 𝑖𝐵𝑗𝐵 that re-shapes the original 𝑑𝐴𝑑𝐵 × 𝑑𝐴𝑑𝐵
density matrix 𝜌𝐴𝐵 into a realigned matrix of dimension 𝑑2𝐴×𝑑2𝐵. This criterion can
be further enhanced and generalized into the enhanced realignment criterion [140].
It states that, if a state 𝜌𝐴𝐵 is separable then

‖ℛ(𝜌𝐴𝐵 − 𝜌𝐴 ⊗ 𝜌𝐵)‖1 ≤
√︁

1− Tr(𝜌2𝐴)
√︁

1− Tr(𝜌2𝐵). (1.12)

where 𝜌𝐴 and 𝜌𝐵 are the RDMs on sub-systems 𝐴 and 𝐵 respectively. We note that
the presence of bipartite entanglement between sub-systems 𝐴 and 𝐵 is confirmed
when Eq. (1.11) or Eq. (1.12) are violated. Note that in Chapter. 5, we shall also
introduce new variants of conditions based on the CCNR and the enhanced CCNR
to detect entanglement in mixed quantum states.

Alternately, we can obtain the CCNR criterion by performing an operator Schmidt
decomposition [53] of 𝜌𝐴𝐵 acting on a Hilbert space ℋ𝐴(𝑑𝐴)⊗ℋ𝐵(𝑑𝐵)

𝜌𝐴𝐵√︀
Tr(𝜌2𝐴𝐵)

=
∑︁
ℓ

𝜇ℓ𝑂𝐴,ℓ ⊗𝑂𝐵,ℓ (1.13)

where we have the operator Schmidt coefficients 𝜇ℓ that are real and positive and
the operators 𝑂𝐴,ℓ and 𝑂𝐵,ℓ that form an orthonormal basis on the operator space of
sub-system 𝐴 and 𝐵 respectively. The LHS of Eq. (1.13) is appropriately normalized
to ensure that

∑︀
ℓ 𝜇

2
ℓ = 1. The CCNR criterion is equivalently expressed in terms

of the operator Schmidt values, that is, a separable state 𝜌𝐴𝐵 satisfies [53]∑︁
ℓ

𝜇ℓ ≤
1√︀

Tr(𝜌2𝐴𝐵)
. (1.14)

As seen previously, from the Schmidt decomposition of pure states, we defined a set
of entropic quantities, namely the von Neumann and the Rényi entropies. We shall
detail in the next section, how we can define in a similar spirit, entropic quantities
based on the operator Schmidt coefficients obtained from the operator Schmidt
decomposition.

1.3.3 Operator entanglement

The operator Schmidt decomposition can be more easily related to the standard
Schmidt decomposition for pure states. Let us consider the state 𝜚𝐴𝐵 = 𝜌𝐴𝐵√

Tr(𝜌2𝐴𝐵)
.

The connection between the two decompositions can be understood when we vec-
torize the operator 𝜚𝐴𝐵 using the known Choi-Jamiołkowski isomorphism [71, 16]:

𝜚𝐴𝐵 =
∑︁
𝑖,𝑗

(𝜚𝐴𝐵)𝑖,𝑗 |𝑖⟩⟨𝑗| ↦→ |𝜚𝐴𝐵⟩ =
∑︁
𝑖𝑗

(𝜚𝐴𝐵)𝑖,𝑗 |𝑖⟩ |𝑗⟩ . (1.15)
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The vectorized operator state |𝜚𝐴𝐵⟩ now lives in a doubled Hilbert space ℋ𝐴𝐵(𝑑)⊗
ℋ𝐴𝐵(𝑑). The operator Schmidt decomposition can be viewed as applying the
Schmidt decomposition on the pure vectorized operator state |𝜚𝐴𝐵⟩ and then re-
turning to the operator space [53]. With the operator Schmidt coefficients 𝜇ℓ, we
define the Rényi 𝛼−operator entanglement entropy (Rényi 𝛼−OE) as

𝑆(𝛼)(𝜌𝐴𝐵) =
1

1− 𝛼
log

srank(𝜌AB)∑︁
ℓ=1

(𝜇2
ℓ)
𝛼 (1.16)

and correspondingly the (Shannon) operator entanglement entropy [138, 136, 98, 95]
which is the same in the limit of 𝛼 → 1

𝑆(𝜌𝐴𝐵) = −
srank(𝜌AB)∑︁

ℓ=1

𝜇2
ℓ log 𝜇

2
ℓ (1.17)

with srank(𝜌𝐴𝐵) being the operator Schmidt rank. We remark as previously done,
that if the state obeys 𝑆(𝜌𝐴𝐵) = 0, then it can be expressed in an operator product
form on subsystem 𝐴 and 𝐵 like 𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵 and is said to be operator sepa-
rable. On the contrary, when 𝑆(𝜌𝐴𝐵) > 0, 𝜌𝐴𝐵 is operator entangled. Importantly,
it is worth noting the distinction of a quantum system being “operator” or “state”
entangled. We emphasize on the fact that a quantum system can be operator en-
tangled (𝑆( · ) > 0) while being not entangled with respect to the definition of the
standard terminology given for separable mixed states as defined in Eq. (1.8). In
particular, Chapter. 5 shall discuss a method to measure the second operator Rényi
entropy and reveal an interesting quantum many-body property associated with this
quantity known as the entanglement barrier [26, 130].

Entanglement witnesses

Taking a short detour, in a simpler scenario, for any entangled state, one can con-
struct an entanglement witness that is expressed as an expectation value of certain
observables in order to detect entanglement [120]. This constructed observable 𝒲 ,
is designed to provide a negative outcome, only if the state being measured is en-
tangled. In other words, if the measured value of the entanglement witness is below
a certain threshold i.e Tr(𝒲𝜌) < 0, it implies the presence of entanglement. Fa-
mous entanglement witnesses known as Bell inequalities [10] can assert the presence
of non-local correlations in a prepared quantum state and thus also validate the
presence of entanglement. To their advantage these quantities can be probed with
minimal assumptions on the operations performed by the measurement device or
the quantum state being measured: these are said to be device-independent entan-
glement witnesses. They simply focus on the correlations between measurement
outcomes, making them experimentally accessible and applicable to a wide range
of quantum systems. Note additionally that not all entangled states violate Bell
inequalities [132, 53]. However, as mentioned earlier, every entangled state can be
detected by a certain entanglement witness though it is not obvious to propose the
right witness for a given unknown entangled state.
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1.4 Multipartite entanglement
Let us now discuss the nature and structure of entanglement present amongst

more than two parties. In recent years, there has been a significant interest to
analyze the rich multipartite structure of quantum states. The characterization
of multipartite entanglement allows us to have a fine-grained understanding of the
structure of quantum states at the most fundamental level.

Let us consider a pure multipartite quantum state |𝜓⟩ constituted of 𝑁 particles.
It is easy to see that in the case when 𝑁 = 2, we can classify the state either to be
entangled or separable while 𝑁 > 2 requires further finer investigation. We define a
fully separable or 1-producible state if we can decompose the quantum state |𝜓⟩ as
a 𝑁−fold tensor product of states [53]

|𝜓⟩ =
𝑁⨂︁
𝑖=1

|𝜑𝑖⟩ , (1.18)

where |𝜑𝑖⟩ describes the state of the 𝑖th particle. In the case of mixed states, we can
obtain a fully separable state in terms of a statistical mixture of fully separable pure
states

𝜌 =
∑︁
𝑗

𝑝𝑗 |𝜓𝑗⟩⟨𝜓𝑗| (1.19)

with 𝑝𝑗 ≥ 0 and
∑︀

𝑗 𝑝𝑗 = 1. Clearly, upon examination, there exist many possible
tensor product structures of such a multipartite state. One may either wonder
about the number of particles that are entangled in state |𝜓⟩ or the number of
decomposable separable partitions of the state |𝜓⟩. Both these questions can be
addressed by the notion of producibility vs separability [53].

Firstly, we can introduce the notion of 𝑘−producibility that corresponds to a
division of the multipartite state described by the largest non-separable set of at
most 𝑘 particles. More formally these states can be defined as

|𝜓𝑘−prod⟩ = |𝜑𝑁1⟩ ⊗ |𝜑𝑁2⟩ ⊗ · · · ⊗ |𝜑𝑁𝐿
⟩ , (1.20)

where 𝑁𝑙 denotes the number of particles in the state |𝜑𝑁𝑙
⟩ that satisfies 𝑁𝑙 ≤ 𝑘 for

all values of 𝑙 and
∑︀

𝑙𝑁𝑙 = 𝑁 . On the other hand, the notion of 𝑚−separability
describes multipartite content in terms of a decomposition of the state in 𝑚 possible
separable blocks,

|𝜓𝑚−sep⟩ = |𝜑𝑁1⟩ ⊗ |𝜑𝑁2⟩ ⊗ · · · ⊗ |𝜑𝑁𝑚⟩ (1.21)

where a given block 𝑙 contains 𝑁𝑙 particles with
∑︀

𝑙𝑁𝑙 = 𝑁 . There exists 𝑚𝑁

𝑚!

possible manner to decompose 𝑚 blocks from a total set of 𝑁 particles.
We can observe that the two notions of 𝑘−producibility and 𝑚−separability

describe different potential decompositions of the multipartite state |𝜓⟩ and pro-
vide a finer knowledge on the structure of entanglement. In two extreme cases,
both these notions converge to the same multipartite description of the state, i.e
|𝜓𝑁−sep⟩ = |𝜓1−prod⟩ describes the fully separable state as in Eq. (1.18). On the
other hand, quantum states that are not |𝜓2−sep⟩ or not |𝜓(𝑁−1)−prod⟩ describe a
well-known class of states that are genuinely multipartite entangled (GME) and
constitute all 𝑁 particles to be entangled with each other. Note, additionally that
we can define mixed 𝑘−producible or 𝑚−separable states as statistical mixtures via
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convex combinations of at most 𝑘−producible or at least 𝑚−separable pure states
respectively. Let us now discuss a particular quantity that is relevant to detect
multipartite entanglement in quantum states.

1.4.1 Quantum Fisher information

The quantum Fisher information (QFI) being a fundamental quantity of relevance
shares an important association with detecting multipartite entanglement in quan-
tum systems. Its applications range from quantum metrology [8, 9, 94], many-body
physics [131, 81], resource theory [74] to quantum information. The explicit expres-
sion of the QFI is defined in function of the eigenvalues 𝜆𝑖 of the density matrix
𝜌 =

∑︀
𝑖 𝜆𝑖 |𝑖⟩⟨𝑖| and an Hermitian operator 𝒜

𝐹𝑄 = 2
∑︁

(𝑖,𝑗),𝜆𝑖+𝜆𝑗>0

(𝜆𝑖 − 𝜆𝑗)
2

𝜆𝑖 + 𝜆𝑗
| ⟨𝑖| 𝒜 |𝑗⟩ |2. (1.22)

When the state is pure 𝜌 = |𝜓⟩⟨𝜓|, the QFI is simply four times the variance of the
operator 𝒜: 𝐹𝑄 = 4

(︀
⟨𝜓| 𝒜2 |𝜓⟩ − ⟨𝜓| 𝒜 |𝜓⟩2

)︀
. Considering 𝑁 spin 1/2 particles or

qubits and 𝒜 = 1
2

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝜈 with 𝜈 = 𝑥, 𝑦, 𝑧 that defines the Pauli matrices, the

QFI is directly linked to detecting entanglement in generic states 𝜌 as all separable
states obey 𝐹𝑄 ≤ 𝑁 [93]. Thus 𝐹𝑄 > 𝑁 implies the presence of entanglement in the
state 𝜌. The maximum attainable value of QFI is upper bounded by 𝐹𝑄 ≤ 𝑁2.

The deep relation of QFI and multipartite entanglement comes from the fact
that it can witness the entanglement depth of a quantum state. The entanglement
depth defines the number of particles that are non-trivially entangled in the state,
i.e if a quantum state is not 𝑘−producible, then it contains an entanglement depth
of at least 𝑘 + 1. We can certify the entanglement depth of a given state with
violations of certain bounds on the QFI (that form entanglement witnesses) [122,
67]. In particular, the entanglement depth is closely related to the producibility
nature of the state as it consists of characterizing the number of entangled particles.
Consider a 𝑘−producible state, then the following inequality holds:

𝐹𝑄 ≤ Γ(𝑁, 𝑘) ≡
⌊︂
𝑁

𝑘

⌋︂
𝑘2 +

(︂
𝑁 −

⌊︂
𝑁

𝑘

⌋︂
𝑘

)︂2

. (1.23)

If 𝐹𝑄 > Γ(𝑁, 𝑘), then the quantum state is not 𝑘−producible and hence contains
an entanglement depth ≥ 𝑘+1 [122, 67]. Apart for the QFI validating the presence
of multipartite entanglement, let us also discuss some of its pertinent entanglement
properties associated with quantum metrology.

1.4.2 Connection with quantum metrology

Quantum metrology is the field that focuses on obtaining enhanced estimations of
unknown parameters from standard measurements [47]. Consider the estimation
accuracy ∆𝜃 of an unknown parameter 𝜃 encoded in a quantum state 𝜌(𝜃) that
is estimated by performing 𝑀 measurements. The accuracy heavily depends and
is always bounded by the inverse of the QFI of the quantum state 𝜌(𝜃) given by
∆𝜃 ≥ 1√

𝐹𝑄𝑀
which is called the Cramer-Rao bound [93]. Typically, the maxi-

mum phase accuracy provided by separable (or classical) states is limited by the
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1.4. Multipartite entanglement

standard shot-noise limit ∆𝜃 = 1√
𝑁𝑀

[47]. Enhanced accuracies can be achieved
for 𝑘−partite entangled (quantum) states given by ∆𝜃 = 1√

𝑘𝑁𝑀
as the bound in

Eq. (1.23) increases monotonically with the entanglement depth 𝑘 [93]. In the case
when the achieved value of QFI of a quantum state is saturated to 𝑁2, one attains
the ultimate Heisenberg limit of sensitivity ∆𝜃 = 1

𝑁
√
𝑀

[93].
Interestingly, while entanglement remains extremely resourceful for quantum

technological applications, it has been rigorously argued that not all entangled states
are meaningful for enhanced metrological tasks [93, 94]. It has been shown that the
states that obey 𝐹𝑄 > 𝑁 are necessary and sufficient to achieve higher sensitiv-
ities beyond the shot-noise limit [93]. Thus, as seen before, along with certifying
entanglement, the previous inequality is central to identify quantum states that are
more suited for applications in quantum metrology. Moreover, the usefulness of
the states in terms of estimation accuracy is proportional to the value of QFI. In
particular, states with larger entanglement depth provide higher accuracy as the
bound in Eq. (1.23), increases proportionally with 𝑘: 𝐹𝑄 ≤ 𝑘𝑁 [122, 67]. The
ultimate precision is provided by a genuinely multipartite entangled state that has
an entanglement depth of 𝑘 = 𝑁 with an associated QFI value of 𝑁2. Due to its
great pertinence in various branches of quantum theory, we shall discuss at length
in Chapter. 4, how to access the QFI in quantum platforms and demonstrate its
estimation on a superconducting quantum device.

With this we end the introduction on the entanglement quantifiers around which
this manuscript is centered. In the following chapter, we shall elaborate on methods
to measure some of the previous quantities and quantify entanglement on experi-
mental quantum hardware. In particular, we shall discuss and introduce the central
method: the randomized measurement toolbox [31]. So stay tuned!
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2
Introduction to randomized measurements

This chapter provides the necessary formal background to the randomized measurement toolbox
which shall be the central measurement technique addressed in the subsequent chapters to measure
interesting quantities associated with entanglement.
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2.1. How are measurements done?

We are currently in the era where we have at our disposable noisy intermediate-
scale quantum devices that range from tens to hundreds of qubits [97]. Lately,
characterizing quantum properties prepared in these systems, independently of the
architecture of the platform has raised a significant interest among theorists as well
as experimentalists building such devices. In particular, measuring properties and
quantities associated to entanglement, as introduced in the previous chapter, be-
comes relevant to understand the most elementary quantum property that can be
used to benchmark the performance of quantum computers and simulators. What
are the methods that help us measure physical properties embedded in these large
Hilbert spaces? In this chapter, we shall present and discuss three potential can-
didates that address this problem and probe properties associated to entanglement
prepared on a quantum hardware. In particular, we shall introduce the central
method of this manuscript known as the randomized measurement toolbox (RM
toolbox) [31] and shall re-derive the formalism in the context of measuring the pu-
rity of an unknown quantum state in generic quantum platforms made up of qubits.
In addition, we will also discuss a vital addition to the RM toolbox known as the
classical shadow formalism [64]. This formalism provides us with estimations of
additional quantities of interest based on the randomized measurement framework.
Before getting into the details of the toolbox, let us start by briefly discussing how
a measurement procedure is done in common experimental setups.

2.1 How are measurements done?
Let us first describe the standard measurement procedure that are routinely

done in quantum devices. We consider here for simplicity quantum devices made
up of qubits. In such platforms, measurements typically consists of local operations
performed to collapse the prepared state 𝜌 in a fixed computational basis. The
computational basis in general is defined as measuring each qubit locally along the
𝑧 axis. Thus, after the local measurement operation, the state of each individual
qubit either collapses to the state |0⟩⟨0| or |1⟩⟨1| associated to the bit-string 0 or
1 respectively. In the case of a 𝑁−qubit state, the set of observed bit-strings can
possibly take 2𝑁 different values. The probability to observe a given bit-string
s = (𝑠1, . . . , 𝑠𝑁) with 𝑠𝑖 ∈ {0, 1} is given by the Born’s rule

𝑃 (s) = Tr(|s⟩⟨s| 𝜌) = ⟨s| 𝜌 |s⟩ (2.1)

where |s⟩ = |𝑠1⟩ ⊗ · · · ⊗ |𝑠𝑁⟩. To estimate the probabilities experimentally requires
repeating the measurement step multiple times. We prepare the state of interest 𝜌
in the experiment and collect bit-string measurements 𝑠(𝑚) from a finite number of
repetitions 𝑚 = 1, . . . , 𝑁𝑀 of the experiment. From this data, we can provide the
estimated probability 𝑃 (s) by counting the number of occurrence of the bit-string
s:

𝑃 (s) =

𝑁𝑀∑︁
𝑚=1

𝛿s(𝑚), s

𝑁𝑀

. (2.2)
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2.2. Estimation of properties with tomography

In the limit when 𝑁𝑀 → ∞, the estimated probability converges to the exact
theoretical value of the probability given by the Born’s rule EQM

[︁
𝑃 (s)

]︁
= 𝑃 (s),

where EQM[ · ] is the quantum mechanical average over the projective measurements.
These probabilities additionally can be used to extract expectation values of

local observables that are diagonal in the computational basis. We can estimate, for
example, the total transverse magnetization in the system given by 𝑂 = 1

2

∑︀𝑁
𝑗=1 𝑍𝑗,

with 𝑍𝑗 being the Pauli-𝑧 matrix acting on the 𝑗th qubit, directly from the measured
bit-strings as given by

⟨𝑂⟩ = Tr(𝑂𝜌) =
∑︁
s

Tr(|s⟩⟨s| 𝜌) ⟨s|𝑂 |s⟩ =
∑︁
s

𝑃 (s) ⟨s|𝑂 |s⟩ . (2.3)

The above quantity can be directly linked to the measurement data obtained from the
experiment using Eq. (2.2). An obvious question that arises is how do we compute
the expectation value of observables that are not diagonal in the computational basis,
like observables related to Pauli-𝑥 or Pauli-𝑦 operators 𝑋 or 𝑌 respectively. In these
cases, the experimental platforms need to implement a unitary transformation prior
to the measurement operation. More specifically, in-order to measure the observable
𝑋𝑗, we need to perform a local Hadamard transformation𝐻𝑗 =

1√
2
( 1 1
1 −1 ) prior to the

measurement. This transforms the computation basis of the 𝑗th qubit to eigenbasis
|+⟩ and |−⟩ of Pauli-𝑥. Similarly, to measure expectation value of 𝑌𝑗, one needs to
execute a local transformation of 𝐻𝑗𝑆

†
𝑗 =

1√
2

(︀
1 −𝑖
1 +𝑖

)︀
with 𝑆𝑗 = ( 1 0

1 −𝑖 ) being the single
qubit phase gate prior to the measurement of the qubit. These transformations are
done locally depending on the observable at question that needs to be measured and
are easily executed in current devices. The expectation value of generic observable
made up of local Pauli matrices can be directly calculated in a similar fashion as
shown in Eq. (2.3). With this background, we can now discuss the existing methods
that can be used to measure entanglement related quantities.

2.2 Estimation of properties with tomography
Quantum state tomography (QST) has been one of the “go to" methods to probe

properties of quantum states prepared in experiments [54]. Suppose, we prepare an
unknown 𝑁−qubit quantum state 𝜌 in the experiment. The main objective of this
algorithm is to reconstruct the quantum state 𝜌 by performing repeated single copy
measurements. To be more concrete, we can summarize QST as follows: A density
matrix 𝜌 defined on ℋ(𝑑) (𝑑 = 2𝑁) can always be expanded as a sum over 𝑁−fold
tensor product of Pauli matrices [53]

𝜌 =
1

2𝑁

∑︁
𝒫

Tr(𝜌𝒫)𝒫 (2.4)

where 𝒫 =
⨂︀𝑁

𝑖=1 𝒫𝑖 with 𝒫𝑖 ∈ {1, 𝑋, 𝑌, 𝑍} is a single qubit Pauli matrix. We note
that the sum in the above equation runs over all possible combinations of single
qubit Pauli matrices on 𝑁 qubits. This results with a total number of summands
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2.2. Estimation of properties with tomography

given by 4𝑁 . Thus the central objective of QST is to measure each Pauli string 𝒫
and estimate its associated weight Tr(𝜌𝒫). The weight Tr(𝜌𝒫) is equivalent to the
estimation of an expectation value of the prepared state 𝜌 with respect to a given
Pauli string 𝒫 and can be easily performed for each 𝒫 as detailed in previous section.
Once we have reconstructed the quantum state, we can probe all its associated prop-
erties related to entanglement from the same measurement data. The main catch
of this method is that it requires an expensive measurement budget. The required
number of measurements to overcome statistical errors that occur as we repeat the
experiment a finite number of times, scale exponentially with respect to the system
size 𝑁 . More concretely, it has been shown that to achieve an accuracy 𝜀 in trace
distance for a quantum state of rank 𝑅, requires a number of single copy measure-
ments that scales as 𝑀 = 𝒪(2𝑁𝑅2/𝜀2) [54]. In the case of an unknown quantum
state of full rank, the sample complexity (required number of measurements) scales
as 𝑀 = 𝒪(23𝑁/𝜀2) and becomes prohibitively expensive. Additionally, the task
to classically post-process the measurement data can be over-burdening due to an
exponential increase of the required classical memory as a function of 𝑁 . These
reasons limit the use of QST on system sizes up to 8− 10 qubits [116].

There have also been alternative proposals that take into consideration some
suitable assumptions on the quantum state and provide sample complexity improve-
ments for QST. These include the following short list:

• QST using compressed sensing [52] can help reduce the required number of
measurements for state reconstruction. This method is effective when the
investigated density matrix has a low rank (close to a pure state) as the mea-
surements could only be done within the rank of the density matrix.

• Under the assumption that the quantum state can be well approximated by
a matrix product state (MPS) of low bond dimension, that is, it has a low
level of entanglement, one can use the technique of MPS tomography [21, 77].
This method is efficient as the number of measurements scale polynomially as
a function of the system size 𝑁 .

• Neural network tomography can be used to train few parameters of a classical
neural network model which can in turn represent the quantum state in terms
of an efficient anstaz [121, 13].

As QST is in general an expensive tool to implement in terms of the measure-
ment cost and the classical treatment of the measurement data; one may consider
looking for alternative approaches that do not require an explicit reconstruction of
the state and can be applied to investigate properties of arbitrary quantum states
of interest without prior assumptions on their structure. In particular, in order to
measure properties of the quantum states for larger systems, we may want to develop
methods that directly give access to these estimates from the data acquired from the
experiment. Importantly, these approaches should be practical and can be readily
implemented on current quantum hardware with cheap post-processing methods of
the experimental data. In this context, let us now describe alternate approaches
to estimate state-agnostically a simple non-linear quantity of the quantum state as
introduced in the previous chapter: the purity.
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2.3. Estimation of the purity

2.3 Estimation of the purity
The purity of the quantum state 𝑝2 = Tr(𝜌2) is a simple but fundamental quan-

tity that not only asserts the presence of entanglement in a quantum state 𝜌, but
also relates more importantly to the second Rényi entropy 𝑆2(𝜌) = − logTr(𝜌2) (in
Eq. (1.6)). Firstly, as we have seen earlier in Chapter. 1 (Sec. 1.2.1), measuring the
purity (or second Rényi entropy) can immediately detect the presence of entangle-
ment in the quantum system. This quantity can also reveal interesting properties
of entanglement in terms of its scaling with respect to the (sub-)system sizes as
described by an area law [27] (the entanglement entropy grows with the area of the
(sub-)system) or volume law (the entanglement entropy grows with the volume of
the (sub-)system), universal signatures of quantum phase transitions [66] and finally
topological order [75] created by long-range entanglement that is characterized by
the topological entanglement entropy [75, 57]. In addition, the purity provides a
simple figure of merit to benchmark the quality of state produced after executing
an algorithm on noisy quantum processors. A purity close to one can immediately
suggest a well executed quantum circuit or quantum dynamics that has not been
affected drastically by errors and decoherence in the experiment. First, let us begin
by reviewing other methods to access the purity of a quantum state 𝜌.

2.3.1 Estimation of the purity using physical copies

The purity can be alternately formulated in terms of a linear observable over two
copies of the quantum state 𝜌

𝑝2 = Tr(𝜌2) = Tr(S𝜌⊗ 𝜌) (2.5)

where the swap operator S is defined on ℋ(𝑑)⊗ℋ(𝑑) and acts on two copies of the
state |𝑖1⟩ and |𝑖2⟩ as S |𝑖1⟩ ⊗ |𝑖2⟩ = |𝑖2⟩ ⊗ |𝑖1⟩. The above expression can be readily
seen as

Tr(S𝜌⊗ 𝜌) =
∑︁
𝑗1,𝑗2

⟨𝑗2, 𝑗1| 𝜌⊗ 𝜌 |𝑗1, 𝑗2⟩ =
∑︁
𝑗1,𝑗2

⟨𝑗2| 𝜌 |𝑗1⟩⟨𝑗1| 𝜌 |𝑗2⟩ = Tr(𝜌2). (2.6)

From the above equation, the purity can be measured as the expectation value of
the swap operator. This formalism requires at first the realization of two identical
physical copies 𝜌⊗𝜌 of the quantum state in the experiment and then to perform joint
entangling operations between the two independent copies (or Bell measurements)
to estimate the expectation value of the swap operator [68, 6]. One of the first
measurement of the purity up to six atoms using this protocol was demonstrated in
a platform composed of ultra-cold bosonic gas [68]. These impressive experiments
consisted in demonstrating entanglement dynamics between two phases of the Bose-
Hubbard model. The ground state prepared at large interaction strengths of this
model which is described by a Mott insulator (product state with 𝑆2(𝜌) = 0) melted
into a super-fluid state (entangled state with 𝑆2(𝜌) > 0) at smaller values of the
interaction strength. More advanced recent experiments on neutral atom quantum
platform have demonstrated this method’s applicability to measure 𝑆2(𝜌) up to eight
qubits [6].

One of the main technological challenges of this protocol is that it requires phys-
ical copies of the state that can be created and coherently manipulated in noisy
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quantum platforms. For this reason, one may be limited by the system size of the
experimental platform at hand or could potentially find it practically difficult, based
on the architecture layout of the platform, to implement joint-entangling measure-
ment operations. So, a more practical question that can be asked is the following:
Given a single copy of a quantum hardware, can we estimate the purity of the
state realized in this system with a direct method that would scale more favorably
compared to QST? The answer to this question directly leads us to introduce the
central method of this manuscript known as the randomized measurement toolbox
(RM toolbox) [31]. It was originally inspired by the two copy estimation of the
purity in Eq. (2.5) [30] and provided a protocol that can be easily implemented in
current experiments with repeated single copy operations that are done in the case
of QST.

In summary, a quick overview of the following section goes as follows: We shall
begin by providing some historical background that inspired the creation of the
current RM protocol. To understand and appreciate the details of the RM protocol,
we will present a short mathematical background to summarize the necessary tools
at play. Following this, we will provide the full derivation of the protocol as presented
in [30] and discuss further some of its key features that include the required number
of measurements to overcome statistical errors, classical data treatment to obtain
estimations from experimental data and some of its robustness characteristics.

2.4 Estimation of the purity using Random mea-
surements

The main intuition of the RM toolbox [31] is to replace the method employing
entangling measurements on multiple physical copies of the state by an estimate of
the statistics of finite rounds of randomized experiments performed only on single
copies of the state at a given instance. The historical background of this method was
first presented by van Enk and Benakeer [36]. They claimed that non-linear prop-
erties of the state 𝜌 such as trace moments 𝑝𝑛 = Tr(𝜌𝑛) can be estimated directly
without the use of multiple copies or state reconstruction in the case of a single
multi-level system (𝑁 = 1). The additional ingredient that they introduced was to
use random unitaries chosen from an appropriate ensemble prior to the projective
measurements on the system. This step repeated multiple times on single copies
for different unitaries yields a collection of random measurements that can provide
estimation of moments 𝑝𝑛. Inspired by their work, further works [29, 124, 30, 11]
developed this formalism to be applicable for many-body systems (𝑁 > 1) with
random unitaries that can be applied locally on each individual constituent or glob-
ally on the whole quantum state as preferred by the constraints of the experimental
setup [124].

We shall now detail in the following subsections the formalism of the randomized
measurement toolbox that can estimate the purity using statistical correlations of
the random measurement data. We will begin by giving the reader a short theoretical
background on some useful mathematical tools in this context.
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2.4.1 Short mathematical background

Let us consider for simplicity a quantum system composed of 𝑁−qubits and the set
𝒰(𝑑) containing all the unitary matrices defined on the full space of these 𝑁 qubits
with 𝑑 = 2𝑁 . We consider Haar random unitaries that are sampled according to
the distribution of the Haar measure on this unitary group [20]. The Haar measure
defines an unique measure that remains invariant under group multiplication: For
𝑈&𝑉 ∈ 𝒰(𝑑), the ensemble average over the Haar measure of a function 𝑓(𝑉 )
defined on 𝒰(𝑑) satisfies ∫︁

Haar

𝑑𝑉 = 1 (2.7)

and ∫︁
Haar

𝑑𝑉 𝑓(𝑉 ) =

∫︁
Haar

𝑑𝑉 𝑓(𝑈𝑉 ) =

∫︁
Haar

𝑑𝑉 𝑓(𝑉 𝑈). (2.8)

The group 𝒰(𝑑) that respects the Haar measure is called a circular unitary ensemble
(CUE). We can estimate averages, according to the Haar measure, for an operator
𝑂 that acts on the same space. This action is described by a quantum channel Φ(𝑂)

Φ(𝑂) =

∫︁
Haar

𝑑𝑉 𝑉 †𝑂𝑉 (2.9)

where the operator 𝑂 is averaged or twirled over all possible choice of unitaries
𝑉 ∈ 𝒰(𝑑). Twirling an operator in simple terms can be seen as a “sandwich” of the
operator 𝑂 between 𝑉 † and 𝑉 that is averaged over the different choices of unitaries
𝑉 . One can also compute averages over higher order moments of the unitaries 𝑉 .
We can now consider an operator 𝑂 that acts on ℋ(𝑑)⊗𝑡. Twirling the operator over
𝑡−copies which is also known as a 𝑡−fold Haar twirl Φ(𝑡)(𝑂) can be defined as

Φ(𝑡)(𝑂) =

∫︁
Haar

𝑑𝑉
(︀
𝑉 †)︀⊗𝑡𝑂𝑉 ⊗𝑡. (2.10)

To sample random unitaries 𝑉 acting on ℋ(𝑑) from the CUE is a hard task to
implement on realistic quantum platforms as it demands an exponential resource
with the system size 𝑁 . For example, to generate a Haar random unitary 𝑉 that acts
on 𝑁 qubits requires a quantum circuit made up of 𝒪(𝑁222𝑁) number of single and
two qubit gates [35]. This makes sampling a large number of unitaries practically
unfeasible. Instead, to compute averages of higher order moments over the Haar
measure, one could restrict the unitaries to form a finite set {𝑉𝑖} with 𝑖 = 1, . . . , 𝐾.
The set {𝑉𝑖} is said to be a unitary 𝑡−design [51] if and only if

∀𝑂 :
1

𝐾

𝐾∑︁
𝑖=1

𝑉 †
𝑖

⊗𝑡
𝑂𝑉 ⊗𝑡

𝑖 = Φ(𝑡)(𝑂) =

∫︁
Haar

𝑑𝑉 𝑉 †⊗𝑡𝑂𝑉 ⊗𝑡 ≡ E𝑉
[︁
𝑉 †
𝑖

⊗𝑡
𝑂𝑉 ⊗𝑡

𝑖

]︁
,

(2.11)
that is, the average over this discrete set is equal to an average over all possible
unitaries according to the Haar measure for multi-copy polynomials of 𝑉 of degree
𝑡. We have also added the short hand notation E𝑉 [ · ] to denote the average over
the unitaries. Moreover, if a set is an unitary 𝑡−design then it is automatically
an unitary 𝑡′−design for 𝑡′ < 𝑡. For example, the Clifford group is known to be a
2−design as it is a 3−design [143] but does not satisfy the necessary relations to be
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a 4−design [144]. The set of unitary 𝑡−designs bring practical values as they can
be efficiently realized with local random circuits and in quantum simulators having
generic local interactions.

To explicitly evaluate the 𝑡−fold twirling of an operator 𝑂 as described before,
we can use the mathematical identity in the form of Schur-Weyl duality [106]

Φ(𝑡)(𝑂) =
∑︁
𝜋,𝜎∈𝒮𝑡

𝐶𝜋,𝜎𝑊𝜋Tr(𝑊𝜎𝑂) (2.12)

where 𝑊𝜋 is a 𝑡−copy permutation operator belonging to the symmetric group 𝒮𝑡
and 𝜋 denotes the permutation of the index that acts as 𝑗 ↦→ 𝜋(𝑗). Its action is
defined as

𝑊𝜋 |𝑖1, . . . , 𝑖𝑡⟩ = |𝑖𝜋(1), . . . , 𝑖𝜋(𝑡)⟩ , ∀ |𝑖1, . . . , 𝑖𝑡⟩ ∈ ℋ(𝑑)⊗𝑡 and for 𝜋 ∈ 𝒮𝑡, (2.13)

where the |𝑖𝑚⟩ are the basis states defined in the Hilbert space ℋ(𝑑) with an implicit
tensor product over the qubits. The matrix 𝐶 is called the Weingarten matrix
whose coefficients 𝐶𝜋,𝜎 = Wg(𝜋𝜎−1) can be calculated using the Weingarten function
Wg [19]. For example, we show the explicit expressions for the cases of 𝑡 = 1, 2,
which will come in our use in later computations.

We can explicitly express the 𝑡−fold twirling by using Eq. (2.12) and replacing
the appropriate identity for the Weingarten matrix. The 1−fold twirling identity
for an operator 𝑂 in ℋ(𝑑) can be written as

Φ(1)(𝑂) =
1
𝑑
Tr(𝑂) (2.14)

while, the 2−fold twirling identity for an operator 𝑂 ∈ ℋ(𝑑)⊗2 writes as

Φ(2)(𝑂) =
1

𝑑2 − 1

(︂
1Tr(𝑂) + STr(S𝑂)− 1

𝑑
STr(𝑂)− 1

𝑑
1Tr(S𝑂)

)︂
. (2.15)

The above equation is a result of an expansion of the sum in Eq. (2.12) with respect
to the elements 𝜋, 𝜎 ∈ 𝒮𝑡. We note here that the permutation operator 𝑊(1,2) = 1
and 𝑊(2,1) = S defined on the space ℋ(𝑑)⊗2 respectively. Also for the sake of
completeness of the above result, we have Wg(1) = 1

𝑑
for 𝑡 = 1 and Wg(1⊗2) = 1

𝑑2−1
,

Wg(S) = −1
𝑑(𝑑2−1)

for 𝑡 = 2.

Twirling for local unitaries

Consider now for simplicity unitaries belonging to ℋ(𝑑) defined as 𝑉 =
⨂︀𝑁

𝑖=1 𝑉𝑖,
where each 𝑉𝑖 is a local random unitary sampled from the CUE defined on the unitary
group 𝒰(2) that acts of the 𝑖th qubit. As we shall see later on, the algebra that we
present here for the local unitaries are well motivated as they can be effectively
implemented in most of the current experimental qubit platforms.

When we have an operator 𝑂 of the form 𝑂 =
⨂︀𝑁

𝑖=1𝑂𝑖, the 𝑡−fold twirling can
be similarly computed in terms of tensor product of permutation operators 𝜋𝑖 and
𝜎𝑖 that act locally on each qubit. This explicitly writes as

Φ
(𝑡)
𝑁

(︃
𝑁⨂︁
𝑖=1

𝑂𝑖

)︃
=

𝑁⨂︁
𝑖=1

Φ
(𝑡)
1 (𝑂𝑖) =

𝑁⨂︁
𝑖=1

∑︁
𝜋𝑖,𝜎𝑖∈𝒮𝑡

𝐶𝜋𝑖,𝜎𝑖𝑊𝜋𝑖Tr(𝑊𝜎𝑖𝑂𝑖) (2.16)
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where 𝒮𝑡 is the symmetric group. The same calculation for 𝑡−fold twirling (𝑡 = 1, 2)
in the case of a single qubit product operator 𝑂𝑖 gives

Φ
(1)
1 (𝑂𝑖) =

1𝑖
2

Tr(𝑂𝑖) (2.17)

for the 1−fold twirling and

Φ
(2)
1 (𝑂𝑖) =

1

3

(︂
1𝑖Tr(𝑂𝑖) + S𝑖Tr(S𝑖𝑂𝑖)−

1

2
S𝑖Tr(𝑂𝑖)−

1

2
1𝑖Tr(S𝑖𝑂𝑖)

)︂
(2.18)

for the 2−fold twirling. We have used here the fact that local Hilbert space dimension
of each qubit is 𝑑 = 2 and the operators 𝑊(1,2)𝑖

= 1𝑖 and 𝑊(2,1)𝑖
= S𝑖 act on the 𝑖th

qubit.
This summarizes the required mathematical background to address and under-

stand the details of the RM toolbox formalism to measure the purity. In the next
sub-section we shall describe and derive the estimation of the purity from random
measurements.

2.4.2 The RM protocol and its derivation

In this section we shall re-derive the formalism of the randomized measurement
toolbox (RM toolbox) based on the prior work of [30], to estimate the purity of
a quantum state. The RM protocol introduced in [29, 11, 125, 32], are based on
applying random unitaries 𝑈 sampled from at least an unitary 2−design or CUE.
In particular, we shall be more interested in the case where we want to estimate
the purity of a 𝑁−qubit quantum state prepared in a quantum device that has
the capability to perform independent local random operations on each individual
qubit. The only requirements from the experimental side for the RM protocol is
firstly to be able to rotate randomly each individual qubit independently on the
Bloch sphere and secondly to be able to measure the state of each qubit in a fixed
computational basis. These requirements are generally easily satisfied in many of
the current available quantum devices.

Protocol

We illustrate the randomized measurement protocol in Fig. 2.1. We prepare a
𝑁−qubit state of interest 𝜌. This is followed by local random operations 𝑈 =
𝑈1 ⊗ · · · ⊗ 𝑈𝑁 that are applied on the quantum state where single qubit random
unitaries 𝑈𝑖 are sampled from at least a 2−design. The rotated state 𝑈𝜌𝑈 † is then lo-
cally projected for each qubit on a fixed computational basis state |s⟩ = |𝑠1, . . . , 𝑠𝑁⟩.
We independently repeat this procedure of single copy measurements for 𝑁𝑈 distinct
random unitaries 𝑈 (𝑟) with 𝑟 = 1, . . . , 𝑁𝑈 and for each of the applied unitrary 𝑈 (𝑟),
subsequently record 𝑁𝑀 bit-string outcomes s(𝑟,𝑚) = (𝑠

(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁 ) with the ad-

ditional label 𝑚 = 1, . . . , 𝑁𝑀 running over the number of projective measurements
performed. The total number of experimental runs is then given by 𝑀 = 𝑁𝑈𝑁𝑀 ,
which is the product of the number of applied unitaries and the number of projective
measurements performed for each unitary. This provides a data set collected from
the experiment in the form of bit-strings that implicitly carry information about the
prepared quantum state 𝜌 and also the applied random unitaries 𝑈 (𝑟).
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Figure 2.1: Randomized measurement protocol — The figure describes the randomized measure-
ment protocol. We prepare a state of interest in the experiment. We apply a set of random unitaries
sampled from a suitable ensemble followed by measurements in a fixed computational basis. The
data-set comprises of the bit-strings that implicitly carry the knowledge of the unitaries and the
prepared state. Fast data post-processing allow us to extract some non-linear quantities of interest
from this experimental data.

From this data, one can estimate the probability given by the Born’s rule to
observe a spin configuration |s⟩ after the applied random rotation 𝑈

𝑃 (s|𝑈) = Tr
(︀
|s⟩⟨s|𝑈𝜌𝑈 †)︀ = ⟨s|𝑈𝜌𝑈 † |s⟩ . (2.19)

The main intuition of the derivation as mentioned in [30] is to compute the aver-
age over the random unitaries E𝑈 [ · ] of second order correlations of the outcome
probabilities obtained from the RM data-set. As a first observation that was made
in [30], we note that the ensemble average over the unitaries of the cross-correlation
of the outcome probabilities can be written as an expectation value of an operator
𝑂 and the twirled state Φ(2)(𝜌⊗2). Defining such an operator 𝑂 that is diagonal in
the computational basis 𝑂 =

∑︀
s,s′ 𝑂s,s′ |s⟩⟨s| ⊗ |s′⟩⟨s′| and by recalling the action of

the 2−fold twirl (Eq. (2.10) for 𝑡 = 2), we have

Tr
(︀
𝑂Φ(2)

(︀
𝜌⊗2
)︀)︀

= Tr
(︁
𝑂Φ(2)† (︀𝜌⊗2

)︀)︁
= Tr

(︃∑︁
s,s′

𝑂s,s′ |s, s′⟩⟨s, s′|E𝑈
[︁
𝑈⊗2(𝜌⊗ 𝜌)𝑈 †⊗2

]︁)︃
=
∑︁
s,s′

𝑂s,s′Tr
(︀
E𝑈
[︀
|s⟩⟨s| ⊗ |s′⟩⟨s′|𝑈⊗2𝜌⊗2(𝑈 †)⊗2

]︀)︀
=
∑︁
s,s′

𝑂s,s′E𝑈
[︀
Tr
(︀
|s⟩⟨s|𝑈𝜌𝑈 †)︀Tr

(︀
|s′⟩⟨s′|𝑈𝜌𝑈 †)︀]︀

=
∑︁
s,s′

𝑂s,s′E𝑈 [𝑃 (s|𝑈)𝑃 (s′|𝑈)] (2.20)

where we have used the fact that the 2−fold twirling channel is Hermitian-preserving
and obeys self-duality: Φ(2)( · ) = Φ(2)†( · ). Most importantly, we see that the RHS of
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the above expression is what we can estimate from the experimental data consisting
of bit-strings. We remark that the operator 𝑂 can be viewed as a virtual two copy
observable. It is virtual in the sense that the average over the applied unitaries
taken for the cross-correlations of the bit-string probabilities effectively provides a
two copy observable. In the experiment, we do not have two physical copies of the
state but rather only perform single copy measurements. Thus from the self-duality
of the channel we get

Tr
(︀
𝑂Φ(2)

(︀
𝜌⊗2
)︀)︀

= Tr
(︀
Φ(2) (𝑂) 𝜌⊗ 𝜌

)︀
. (2.21)

We begin to notice that the final form of the above expression starts to resemble
close to a form of the purity that we have defined earlier in Eq. (2.5). So in-order to
directly relate the cross-correlations of the probabilities that are accessed from the
experimental measurement data to the purity, we equate

𝑝2 = Tr(𝜌2) = Tr(S𝜌⊗ 𝜌) = Tr
(︀
Φ(2) (𝑂) 𝜌⊗ 𝜌

)︀
=
∑︁
s,s′

𝑂s,s′E𝑈 [𝑃 (s|𝑈)𝑃 (s′|𝑈)] .

(2.22)
Thus the main goal now is to find the appropriate operator 𝑂 and its coefficients
𝑂s,s′ that satisfy Φ(2) (𝑂) = S.

Purity estimator for local random unitaries

Our starting point consists in noting that the swap operator acting on ℋ(𝑑)⊗ℋ(𝑑)
can be expressed as

S =
∑︁
s,s′

|s′⟩⟨s| ⊗ |s⟩⟨s′| =
𝑁⨂︁
𝑖=1

∑︁
𝑠𝑖,𝑠′𝑖

|𝑠′𝑖⟩⟨𝑠𝑖| ⊗ |𝑠𝑖⟩⟨𝑠′𝑖| = s⊗𝑁 (2.23)

where s =
∑︀

𝑠,𝑠′ |𝑠′⟩⟨𝑠|⊗ |𝑠⟩⟨𝑠′| is the swap operator defined on ℋ(2)⊗ℋ(2) and acts
on 2-copies of a single qubit. Thus considering the same structure for our operator
𝑂 = 𝑜⊗𝑁 that acts locally on each site, we have

Φ(2) (𝑂) = Φ
(2)
𝑁

(︀
𝑜⊗𝑁

)︀
=
(︁
Φ

(2)
1 (𝑜)

)︁⊗𝑁
= s⊗𝑁 . (2.24)

Then, using the identity presented in Eq. (2.18), it is sufficient to determine the local
two copy single qubit operator 𝑜 =

∑︀2
𝑠,𝑠′ 𝑜𝑠,𝑠′ |𝑠⟩⟨𝑠|⊗|𝑠′⟩⟨𝑠′| along with its coefficients

that satisfy

Φ
(2)
1 (𝑜) =

1

3

(︂
1Tr(𝑜) + sTr(s𝑜)− 1

2
sTr(𝑜)− 1

2
1Tr(s𝑜)

)︂
= s (2.25)

that act on two copies of the single qubit. This implies

Tr(𝑜)− 1

2
Tr(s𝑜) = 0 and Tr(s𝑜)− 1

2
Tr(𝑜) = 3, (2.26)

which requires the following equations to hold:

Tr(𝑜) =
∑︁
𝑠,𝑠′

𝑜𝑠,𝑠′ = 2 and Tr(s𝑜) =
∑︁
𝑠

𝑜𝑠,𝑠 = 4. (2.27)
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The simple choice of 𝑜𝑠,𝑠′ that satisfies the above equations was found in Ref. [30, 11]
as 𝑜𝑠,𝑠′ = 2× (−2)−𝐷[𝑠,𝑠′] where 𝐷 is the Hamming distance which is one if 𝑠 ̸= 𝑠′

and zero if 𝑠 = 𝑠′. By replacing the coefficient 𝑂s,s′ = 2𝑁
∏︀𝑁

𝑖=1(−2)−𝐷[𝑠𝑖,𝑠
′
𝑖] =

2𝑁 × (−2)−𝐷[s,s′] in Eq. (2.22) we can re-express the purity of a quantum state as

𝑝2 = Tr(S𝜌⊗ 𝜌) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]E𝑈 [𝑃 (s|𝑈)𝑃 (s′|𝑈)] . (2.28)

The above equation is an important relation that relates directly the quantity of
interest (in this case the purity) to estimations of spin probabilities that can be
computed from the data of the RM protocol. Analogously, the Rényi entropy can
be simply estimated by taking the negative logarithm of the above expression. We
also remark that the estimator of purity provided here does not require explicitly
the knowledge of the applied unitary as one only needs to construct probabilities
from the collected bit-strings of the RM data.

2.4.3 Fidelity estimations from random measurements

In addition, the expression of the purity in Eq. (2.28) with a slight modification can
also be used to estimate fidelities between two quantum states 𝜌1 and 𝜌2 that are
prepared in two separate quantum platforms. To illustrate the idea briefly, which can
directly be derived using a similar reasoning as before; we consider a scenario where
two quantum devices independent of the type of architecture, would like to realize
the same state 𝜌. As both the platforms will suffer from different types of errors
during the state preparation, they will end up generating two different states 𝜌1 and
𝜌2 in each platform respectively. The fidelity can be used as a metric to understand
the overlap between the two prepared states. In the particular case of pure quantum
states, the fidelity can be defined as an overlap ℱpure(|𝜓1⟩ , |𝜓2⟩) = | ⟨𝜓1|𝜓2⟩ |2 where
|𝜓1⟩ and |𝜓2⟩ denote the pure states prepared on device 1 and 2 respectively. For
mixed states, we can consider the fidelity defined as [79]

ℱ(𝜌1, 𝜌2) =
Tr(𝜌1𝜌2)

max{Tr(𝜌21),Tr(𝜌22)}
. (2.29)

In order to estimate this quantity, the main intuition given in [32] is that the overlap
is expressed in terms of the swap operator Tr(𝜌1𝜌2) = Tr(S𝜌1⊗𝜌2). Though one can
directly measure the overlap by performing joint measurements on the two platforms
simultaneously, it becomes quite evident that this method is highly impractical when
the two states are prepared on two different architectures of quantum platforms
located in two distinct locations. We can employ an alternative method based on
the purity formula obtained above, where we can cross-correlate the probabilities
estimations from the two devices to realize an effective virtual swap operator [32].
In the protocol, we apply the same set of 𝑁𝑈 unitaries and record 𝑁𝑀 bit-string
measurements for each of them. We calculate the probabilities 𝑃1(s|𝑈) and 𝑃2(s

′|𝑈)
after having applied the unitary 𝑈 on platform 1 and 2 respectively by

𝑃𝑖(s|𝑈) = Tr
(︀
|s⟩⟨s|𝑈𝜌𝑖𝑈 †)︀ = ⟨s|𝑈𝜌𝑖𝑈 † |s⟩ (2.30)

with 𝑖 = 1 or 2. Cross-correlating these probabilities as done previously to derive
the purity of the state [30], we finally obtain

Tr(𝜌1𝜌2) = Tr(S𝜌1 ⊗ 𝜌2) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]E𝑈 [𝑃1(s|𝑈)𝑃2(s
′|𝑈)] . (2.31)
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The major advantage of this formula is that one can estimate fidelities between two
experimental platforms directly by sharing the experimental data classically (over
the internet for example) [32]. Quantum platforms all around the world can be
benchmarked against one another or against a theoretical state with this method.

Let us now move the discussion to detail how to treat the experimental data in
the post-processing phase of the RM protocol. We shall also highlight some of the
important features that provide an advantage to estimate the purity (or overlap)
from the RM protocol compared to other proposed methods.

2.4.4 Post-processing and additional features of the RM pro-
tocol

Post-processing

As we have seen previously, the RM protocol consists of applying 𝑁𝑈 different
local random unitaries 𝑈 (𝑟) and recording 𝑁𝑀 bit-string measurements for each
of them. The experimental data obtained after executing the RM protocol consists
of a collection of bit-strings s(𝑟,𝑚) = (𝑠

(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁 ) with 𝑠

(𝑟,𝑚)
𝑖 ∈ {0, 1} that

are labeled by 𝑟 = 1, . . . , 𝑁𝑈 and 𝑚 = 1, . . . , 𝑁𝑀 . Each of the bit-string s(𝑟,𝑚) is a
random variable that is distributed according to the Born’s rule 𝑃 (s|𝑈 (𝑟)) as defined
in Eq. (2.19). With this data-set, we can provide an estimator 𝑃 (s|𝑈 (𝑟)) that gives
the estimated probability to observe the bit-string s after having applied the unitary
𝑈 (𝑟)

𝑃 (s|𝑈 (𝑟)) =

𝑁𝑀∑︁
𝑚=1

𝛿s(𝑟,𝑚), s

𝑁𝑀

(2.32)

where we simply count the number of occurrences of the bit-string s(𝑟,𝑚) = s. In the
limit when 𝑁𝑀 → ∞, the estimated probability converges to the exact theoretical
value of the probability given by the Born’s rule EQM

[︁
𝑃 (s|𝑈 (𝑟))

]︁
= 𝑃 (s|𝑈 (𝑟)). To

estimate the purity as given in Eq. (2.28) (or analogously for the overlap between two
quantum states as in Eq. (2.31)), we need an estimate of the cross-correlation of the
probabilities. We note importantly that EQM

[︁
𝑃 (s|𝑈 (𝑟))𝑃 (s′|𝑈 (𝑟))

]︁
̸= 𝑃 (s|𝑈 (𝑟))𝑃 (s′|𝑈 (𝑟))

and has a bias of 𝒪(1/𝑁𝑀) [124]. Thus, if one naively averages the cross-correlations
of the estimated probabilities respectively for s and s′, one would obtain a biased
estimator of the purity. In order to provide unbiased estimates of polynomial func-
tionals, we use the theory of U-statistics [59]. The U-statistics estimator can be
formulated by summing all possible different pairs of bit-strings [124] recorded for
a single unitary 𝑈 (𝑟). This gives for an applied unitary 𝑈 (𝑟)

𝑃 (s|𝑈 (𝑟))𝑃 (s′|𝑈 (𝑟)) = EQM

[︃
1

𝑁𝑀(𝑁𝑀 − 1)

∑︁
𝑚 ̸=𝑚′

𝛿s,s(𝑟,𝑚)𝛿s′,s(𝑟,𝑚′)

]︃
, (2.33)

which leads to the final estimator of the purity 𝑝2 by replacing the U-statistics
estimator of cross-correlation of the probabilities in Eq. (2.28)

𝑝2 =
2𝑁

𝑁𝑈𝑁𝑀(𝑁𝑀 − 1)

𝑁𝑈∑︁
𝑟=1

𝑁𝑀∑︁
𝑚 ̸=𝑚′

(−2)−𝐷[s(𝑟,𝑚),s(𝑟,𝑚
′)]. (2.34)
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This unbiased estimator guarantees that E[𝑝2] = 𝑝2 with E[ · ] = E𝑈EQM[ · ] [30].
Additionally, for later convenience we can alternately define the estimator of the
purity as:

𝑝2 =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

𝑋̂2(𝑈
(𝑟)) with 𝑋̂2(𝑈

(𝑟)) =
2𝑁

𝑁𝑀(𝑁𝑀 − 1)

𝑁𝑀∑︁
𝑚̸=𝑚′

𝑚,𝑚′=1

(−2)−𝐷[s(𝑟,𝑚),s(𝑟,𝑚
′)]

(2.35)
that satisfies

EQM[𝑋̂2(𝑈
(𝑟))] = 𝑋2(𝑈

(𝑟)) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]𝑃 (s|𝑈 (𝑟))𝑃 (s′|𝑈 (𝑟)) (2.36)

with 𝑝2 = E𝑈 [𝑋2(𝑈
(𝑟))]. The above expression for the estimator of the purity already

provides us some intuition on potential advantages of the RM protocol. The estimate
can be computed effectively on a classical device as it can be heavily parallelized on
multiple classical processors. It can be computed on the fly and does not require
storing large matrices in classical memory as in the case with QST. Importantly,
we notice that the knowledge of the applied unitary in the experiment does not
explicitly enter the post-processing of the RM data. This feature allows this RM
protocol to possess some additional robustness features in the estimation of the
purity [11, 32]. We shall also see in the next section, that adding the knowledge
of the applied unitaries we can define new estimators from the RM data-set. In
summary, it provides a direct method to connect the measurement data with the
quantity of interest such as the purity.

Statistical errors

The experiment for the RM protocol is always executed for a finite number of runs
𝑀 = 𝑁𝑈𝑁𝑀 due to time and energy constraints of the concerned quantum plat-
form. From the collected data the estimator 𝑝2 can be constructed as shown earlier.
This estimator differs from the true value of the purity 𝑝2 of the underlying state
due to statistical errors. Statistical errors are induced due to a finite application
of random unitaries 𝑁𝑈 followed by finite number of measurements 𝑁𝑀 . It can be
characterized by the average relative statistical error ℰ = |𝑝2 − 𝑝2|/𝑝2, where ( · )
represents an average performed over multiple numerically simulated independent
experimental runs of the RM protocol using the same measurement budget 𝑀 . One
may wonder about the sample complexity of the RM protocol to provide estimates
of the purity with a certain accuracy. In other words, what is the required number
of measurements in terms of 𝑁𝑈 and 𝑁𝑀 to achieve a desired precision of the pu-
rity? Does the RM protocol provide any sample complexity advantages compared
to the method of QST introduced earlier? Various prior studies and numerical sim-
ulations [29, 11] have addressed this question and have shown that the total number
of randomized measurements 𝑀 = 𝑁𝑈𝑁𝑀 scales as 2𝛼𝑁 with 𝛼 ∈ [1, 1.5] [29, 11,
125, 32] for most generic quantum states. The scaling of the required number of
measurements, as a function of the system-size 𝑁 , is one of the key advantages of
the RM protocol. Though the method still scales exponentially with respect to 𝑁 ,
it is significantly better when compared to QST (that scales as 𝑀 ∼ 23𝑁 [54]). The
direct consequence of this result is that we can expect to go beyond and measure
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the purity (and also the second Rényi entropy or benchmark quantum states with
the fidelity) for larger systems that are not accessible by QST.

Experimental implementations of the RM protocol

Since the RM protocol provides an easy method to measure the purity of the quan-
tum state in current NISQ platforms, several experiments realizing the RM protocol
have been carried out on different quantum platforms ranging from trapped ions [11],
superconducting qubits [142, 111, 60] to nitrogen vacancy (NV) spin center [134].
Let us summarize and name a few pertinent ones below that measured interest-
ing entanglement properties connected to many-body physics. The first experiment
demonstrating the implementation of the RM protocol was realized on an ion trap
quantum simulator [11]. They measured purities (and second Rényi entropy) of
system sizes up to 10 qubits and demonstrated generation of entanglement for a
many-body system undergoing a quench dynamics. We shall discuss some of the de-
tails of this experiment later in the manuscript as it contains a rich amount of physics
in terms of entanglement dynamics. Further experiments have been performed to
measure fidelities between multiple pairs of quantum states that are realized on
different quantum computing platforms [134]. These experiments successfully mea-
sured the fidelites upto 13 qubits between multiple superconducting devices of IBM
and other architectures such as trapped ion platforms of IonQ. Experiments were
also conducted on Google’s Sycamore superconducting chip to measure second Rényi
entropy via the purity [111, 60]. In the first experiment, they realized the ground
state of the toric code [111]. To demonstrate that the toric code ground state has
topological properties or formally said to have a topological order, they measured a
quantity known as the topological entanglement entropy (TEE) [57, 75]. The TEE
can be expressed in terms of second Rényi entropies of certain sub-partitions of the
considered system [57] and was measured for a partition size up to 9 qubits. The
second more recent experiment was conducted to understand the scaling of the en-
tanglement entropy in measurement-induced circuits [60]. They demonstrated using
the second Rényi entropy the area and volume law scaling in 2D shallow circuits.

In summary, the RM protocol turns to be a cheaper method to implement on
current available experimental devices in comparison to the standard QST. It gives
access to properties of prepared quantum many-body states such as purities, state-
fidelities, etc. With the current scalings of the required number of measurements, one
can envisage applying this protocol to probe purities of (sub-)systems consisting up
to 15 qubits. In the next chapter, one of the original contributions of this manuscript
shall address and propose a method to extend the applicability of the RM protocol to
measure purity in quantum systems of larger system-sizes. Now, one may wonder if
we can estimate additional quantities such as higher order polynomials of the density
matrix or expectation value of additional arbitrary multi-copy operators other than
the purity using the same RM framework? This particularly could be of interest
to detect entanglement in the quantum system. To address this problem, recent
developments have introduced extensions to the RM toolbox. Particularly, in the
following section we shall derive and introduce the classical shadow framework [64].
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2.5 The classical shadow formalism
In the previous section, we have described how the randomized measurement

(RM) protocol provides a direct method to estimate the purity of an unknown
quantum state [29, 11, 125, 32]. The common notion that links these prior works
is that the quantity of interest was directly extracted from the measured bit-strings
after applying random unitary operations. The knowledge of the random unitaries
applied in the experiment were not involved explicitly in the estimation of these
quantities. The estimator of the purity discussed in the previous section was unitary
agnostic as it did not require the explicit knowledge of the unitaries applied in the
experiment. It is natural to think that the knowledge of the unitaries used in the
experiment forms also a key part of the experimental RM data-set. One may wonder
if we can extend the RM toolbox’s capabilities by utilizing this knowledge.

This was indeed the case when the classical shadow formalism was introduced [64].
The classical shadows formalism is an important extension of the RM toolbox that
uses the exact same experimental procedure as before. It consists of a simple addi-
tional ingredient that explicitly incorporates the knowledge of the applied unitaries
during the data-treatment phase to provide estimations of the quantities of interest.
The main feature of this method is that it opens up the possibilities to measure
additional quantities of interest from the same data-set provided by the randomized
measurement framework. In particular, one can evaluate higher order polynomials
and expectation values of arbitrary linear and multi-copy operators 𝑂(𝑛) that act on
ℋ(𝑑)⊗𝑛 with 𝑛 ∈ N*. These quantities can be expressed as Tr(𝜌𝑛) and Tr(𝑂(𝑛)𝜌⊗𝑛)
respectively.

In this section, we shall re-derive the classical shadow formalism inspired by the
formalism of the randomized measurement tomography as described in [30, 87]. In
the following sections, we shall show firstly that using the knowledge of the unitaries
and the measured bit-strings from the experiment, the RM tomography formalism
allows us to reconstruct the underlying density matrix. From this expression, we
shall establish the connection to the more familiar expression of the classical shadows
given in [64]. Then we will detail some of its properties and describe how it can be
used to evaluate expectation values of multi-copy operators.

2.5.1 Randomized measurement tomography

Consider a 𝑁−qubit quantum state prepared on a quantum device. We can write
the state in the two copy space ℋ(𝑑)⊗ℋ(𝑑) with 𝑑 = 2𝑁 as

𝜌 = Tr2 (S(1 ⊗ 𝜌)) (2.37)

where we take the partial trace with respect to the second copy and introduce the
swap operator S. Once we have the swap operator visible, we can use the same
thread of reasoning to replace it with a virtual operator acting on two copies. The
key idea again as proposed in [30] is to find an operator 𝑂 such that Φ(2)(𝑂) = S.
From Sec. 2.4.2 (Eq. (2.28)), we know that such an operator exists and can be
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written as

𝑂 =
∑︁
s,s′

𝑂s,s′ |s⟩⟨s| ⊗ |s′⟩⟨s′| = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′] |s⟩⟨s| ⊗ |s′⟩⟨s′|

= 2𝑁
𝑁⨂︁
𝑖=1

∑︁
𝑠𝑖,𝑠′𝑖

(−2)−𝐷[𝑠𝑖,𝑠
′
𝑖] |𝑠𝑖⟩⟨𝑠𝑖| ⊗ |𝑠′𝑖⟩⟨𝑠′𝑖| (2.38)

where 𝐷 represents the Hamming distance. We can replace the swap operator in
Eq. (2.37) by the twirled operator Φ(2)(𝑂) = E𝑈 [(𝑈 †)⊗2𝑂𝑈⊗2]

𝜌 = Tr2
(︀
Φ(2)(𝑂)(1 ⊗ 𝜌)

)︀
= 2𝑁Tr2

(︃
E𝑈

[︃
(𝑈 †)⊗2

∑︁
s,s′

(−2)−𝐷[s,s′] |s, s′⟩⟨s, s′|𝑈⊗2

]︃
(1 ⊗ 𝜌)

)︃
= 2𝑁

∑︁
s,s′

(−2)−𝐷[s,s′]E𝑈
[︀
𝑈 † |s⟩⟨s|𝑈 Tr(|s′⟩⟨s′|𝑈𝜌𝑈 †)

]︀
= 2𝑁

∑︁
s,s′

(−2)−𝐷[s,s′]E𝑈
[︀
𝑃 (s′|𝑈)𝑈 † |s⟩⟨s|𝑈

]︀
(2.39)

where we have explicitly expanded the trace operation and used the trace cyclicity
property Tr(𝐴𝐵) = Tr(𝐵𝐴). We have also used the short-hand notation |s, s′⟩⟨s, s′| =
|s⟩⟨s|⊗|s′⟩⟨s′| for convenience. The above expression reconstructs the underlying den-
sity matrix using the randomized measurement data. The experimental protocol can
be described as given below. After having prepared the 𝑁−qubit quantum state on
the device, we perform randomized measurements by employing 𝑁𝑈 local random
unitaries 𝑈 (𝑟) followed by 𝑁𝑀 bit-string measurements s(𝑟,𝑚) =

(︁
𝑠
(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁

)︁
with 𝑟 = 1, . . . , 𝑁𝑈 and 𝑚 = 1, . . . , 𝑁𝑀 . The data post-processing uses the full
knowledge of the RM data-set that includes the registered bit-strings and the ap-
plied unitaries to construct the density matrix. The estimator 𝜌 of 𝜌 can be obtained
from analyzing the experimental data as

𝜌 =
2𝑁

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

∑︁
s,s′

(−2)−𝐷[s,s′]𝑃 (s′|𝑈 (𝑟))𝑈 (𝑟)† |s⟩⟨s|𝑈 (𝑟) (2.40)

where we estimate the probabilities 𝑃 (s′|𝑈 (𝑟)) = 1
𝑁𝑀

∑︀𝑁𝑀

𝑚=1 𝛿s′,s(𝑟,𝑚) . The recon-
structed density matrix averaged over the applied unitaries and the projective mea-
surements satisfies E[𝜌] = 𝜌. The famous classical shadow formalism introduced
in [64] can be derived based on the randomized tomography formulation as we show
in the next section

2.5.2 Classical Shadows

The name classical shadows was first given in Ref. [64] and quite accurately captures
the essence of the formalism. The derivation of this formalism will automatically
clarify many of its advantages as its name suggests. To begin its derivation, let us
consider the expression from the randomized tomography of Eq. (2.40) in the spe-
cific regime where we perform 𝑁𝑈 random transformations 𝑈 (𝑟) with 𝑟 = 1, . . . , 𝑁𝑈
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Figure 2.2: Protocol for classical shadow formalism — The figure describes the randomized mea-
surement protocol to construct classical shadows. As we see, the experimental protocol does not
change when compared with Fig. (2.1). The additional ingredient that is introduced is to use
along with the bit-string measurements, the knowledge of the unitaries applied in the experiment.
Post-processing classically this experimental data-set, we can construct classical shadows to predict
non-linear properties of the underlying quantum state.

followed by a single projective measurement (𝑁𝑀 = 1) s(𝑟) = (𝑠
(𝑟)
1 , . . . , 𝑠

(𝑟)
𝑁 ). As

illustrated in Fig. 2.2, the experimental data-set consists of the measured bit-strings
and also the applied unitaries. For a single applied unitary 𝑈 (𝑟) and the correspond-
ing measured bit-string s(𝑟) = (𝑠

(𝑟)
1 , . . . , 𝑠

(𝑟)
𝑁 ), we can construct an operator 𝜌(𝑟) that

depends on the applied unitary rotation 𝑈 (𝑟) from Eq. (2.40) that has the following
form

𝜌(𝑟) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]𝛿s′,s(𝑟)𝑈
(𝑟)† |s⟩⟨s|𝑈 (𝑟) = 2𝑁

∑︁
s

(−2)−𝐷[s,s(𝑟)]𝑈 (𝑟)† |s⟩⟨s|𝑈 (𝑟)

(2.41)

As the Hamming distance 𝐷[s, s′] =
∑︀𝑁

𝑖=1𝐷[𝑠𝑖, 𝑠
′
𝑖], the applied unitary 𝑈 (𝑟) = 𝑈

(𝑟)
1 ⊗

· · · ⊗ 𝑈
(𝑟)
𝑁 and the projected state |s⟩ = |𝑠1, . . . , 𝑠𝑁⟩ can all be expressed locally for

each qubit, we can write

𝜌(𝑟) =
𝑁⨂︁
𝑖=1

𝜌
(𝑟)
𝑖 = 2𝑁

𝑁⨂︁
𝑖=1

∑︁
𝑠𝑖

(−2)−𝐷[𝑠𝑖,𝑠
(𝑟)
𝑖 ]𝑈

(𝑟)
𝑖

† |𝑠𝑖⟩⟨𝑠𝑖|𝑈 (𝑟)
𝑖 . (2.42)

Without loss of generality, focusing on the expression of the operator 𝜌(𝑟)𝑖 of a single
qubit at site 𝑖, we can decompose the sum over the bit-string 𝑠𝑖 for the two cases
when 𝑠𝑖 = 𝑠

(𝑟)
𝑖 and 𝑠𝑖 ̸= 𝑠

(𝑟)
𝑖 . This gives

𝜌
(𝑟)
𝑖 = 2𝑈

(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 𝑈

(𝑟)
𝑖

† (︁
1 −

⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒)︁
𝑈

(𝑟)
𝑖

= 3𝑈
(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 1 (2.43)
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where we have used the fact that when 𝑠𝑖 ̸= 𝑠
(𝑟)
𝑖 , we have the complementary bit-

string which can be expressed as 1−
⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
. Combining all these results together

we finally obtain the standard formula of a classical shadow [64]

𝜌(𝑟) =
𝑁⨂︁
𝑖=1

𝜌
(𝑟)
𝑖 =

𝑁⨂︁
𝑖=1

(︁
3𝑈

(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 1

)︁
(2.44)

that equally fulfills E[𝜌(𝑟)] = 𝜌. This expression is a special case of Eq. (2.40)
obtained for a single applied unitary 𝑈 (𝑟) from the RM tomography formalism as
explained in the previous section. The term “classical shadow” can be better un-
derstood from Eq. (2.44): We construct an operator in the classical post-processing
stage, using the knowledge of the applied unitary and the measurement outcome,
that records some information of the prepared many-body quantum state 𝜌 in
terms of a classical snapshot. With the collection of the classical snapshots 𝜌(𝑟)
for 𝑟 = 1, . . . , 𝑁𝑈 , we can infer properties of the quantum state as E[𝜌(𝑟)] = 𝜌 is
satisfied [30, 64]. Additionally, we observe from Eq. (2.44) that to classically store
these snapshots requires low memory on a device due to its sparse tensor product
structure. A single snapshot can be described by 4𝑁 complex numbers with the
storage that does not scale exponentially with the system size 𝑁 as in the case of
QST. This enables these snapshots to be efficiently computed and stored in clas-
sical memory from the RM data-set. One may wonder how this framework differs
from that of QST as we can reconstruct the state from these classical snapshots.
More importantly, how many measurements do we require to overcome statistical
errors for this particular framework? We shall see in the following section that we
can again directly evaluate expectation values of linear and multi-copy operators
without requiring an explicit construction of the quantum state. Additionally, this
framework also allows us to provide rigorous performance guarantees in terms of
sample complexity.

2.5.3 Estimation of quantum properties with classical shad-
ows

In this section, we will elaborate on estimations of multi-copy observables 𝑓𝑛 =
Tr(𝑂(𝑛)𝜌⊗𝑛) that can be extracted from the classical shadow formalism. Instead
of measuring directly multi-copy expectation values using physical copies in the
experiment (which can be currently a challenge), the classical shadow framework
provides unbiased estimations using repeated single copy randomized measurements.

Given a collection of 𝑁𝑈 classical shadows 𝜌(𝑟) constructed using Eq. (2.44), we
can provide an unbiased estimator of the function 𝑓𝑛 using U-statistics [59]. This
is achieved by replacing each copy of the density matrix in the multi-copy function
𝑓𝑛 by a different classical shadow and computing the average over all possible such
choices to pick 𝑛 different shadows from a total collection of 𝑁𝑈 shadows. This is
explicitly expressed as

𝑓𝑛 =
1

𝑛!

(︂
𝑁𝑈

𝑛

)︂−1 ∑︁
𝑟1 ̸=... ̸=𝑟𝑛

Tr
(︀
𝑂(𝑛)𝜌(𝑟1) ⊗ 𝜌(𝑟2) ⊗ · · · ⊗ 𝜌(𝑟𝑛)

)︀
. (2.45)

where 𝜌⊗𝑛 is replaced by 𝜌(𝑟1) ⊗ 𝜌(𝑟2) ⊗ · · · ⊗ 𝜌(𝑟𝑛) with 𝑟1 ̸= . . . ̸= 𝑟𝑛. Here we use
the key identity that the average over the applied unitaries and the measurement
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for all shadows gives E[𝜌(𝑟𝑖)] = 𝜌. Then the properties of U-statistics [59] ensure
that 𝑓𝑛 is an unbiased estimator of 𝑓𝑛, i.e E[𝑓𝑛] = 𝑓𝑛. As one sees, we do not
reconstruct the quantum state explicitly as done in the case of QST but perform a
multi-linear operation on the fly to obtain estimators of quantites during the post-
processing phase. Within the construction of the current formalism, such estimators
can be evaluated with classical post-processing of RM-data using CPU or GPU
processors with the computational time scaling as 𝒪(𝑁𝑛

𝑈) without needing to store
exponentially large density matrices. Analogous to the unitary agnostic estimator
of the purity discussed earlier in Eq. (2.28), the work of [64] proposed an alternate
estimator of the purity constructed from the classical shadow framework expressed
as

𝑝2 =
1

2!

(︂
𝑁𝑈

2

)︂−1 ∑︁
𝑟1 ̸=𝑟2

Tr
(︀
𝜌(𝑟1)𝜌(𝑟2)

)︀
. (2.46)

Note that both the unitary agnostic [30, 11] and the shadow estimator [64] of the
purity can be constructed from the same experimental RM data-set. It is still not
clear which among the two estimators of the purity provides a better estimation for a
generic quantum state. In particular, for a fixed measurement budget 𝑀 = 𝑁𝑈𝑁𝑀 ,
the shadow estimator achieves better accuracy when 𝑁𝑈 ≫ 𝑁𝑀 while the unitary
agnostic estimator functions better in the regime where 𝑁𝑈 < 𝑁𝑀 [31]. As the
shadow estimator uses the knowledge of the random unitary in the data treatment
phase, it might be less robust to errors induced in the random unitaries compared
to the unitary agnostic estimator of the purity. On the other hand, the shadow
estimator allows generalizations to evaluate higher moments of the density matrix
𝑝𝑛 = Tr(𝜌𝑛), that can be effectively computed classically by evaluating overlaps
between all the distinct shadows using local site contractions. Until now, functions
of order 𝑛 ≤ 3 have been successfully extracted from experimental RM data [34]. As
shown, the main advantage of this framework is that it provides a method to access
arbitrary functions 𝑂(𝑛) with 𝑛 ≥ 1 from the same RM data-set collected from the
experiment.

Measure first, ask questions later — The former phrase has been coined in the
review [31] and aptly captures the usefulness of the classical shadow formalism.
As classical shadows provide a rich collection of non-linear quantities that can be
accessed from the experimental data of randomized measurements, it can give the-
orists as well as experimentalists the liberty to choose the quantum properties to
be investigated after having performed the experiment. A concrete example is the
re-analysis of the RM experimental data of [11] that was carried out to investigate
entanglement in mixed states generated by a quench dynamics [34].

Using simple functions such as moments of the partially transposed density ma-
trix Tr([𝜌𝑇𝐴𝐴𝐵]

𝑛) with 𝑛 = N*, the authors in Ref. [34] derived a slightly weaker
condition called “𝑝3−PPT” based on the original PPT criterion shown in Chapter. 1
as follows

𝜌𝐴𝐵 is separable =⇒ 𝜌𝐴𝐵 ∈ PPT =⇒ Tr
(︀
[𝜌𝑇𝐴𝐴𝐵]

3
)︀
≥ Tr

(︀
[𝜌𝑇𝐴𝐴𝐵]

2
)︀2
. (2.47)

The violation of this condition detects entanglement between the constituents 𝐴
and 𝐵 of the quatum system. They successfully measured the two quantities in the
above inequality by re-analyzing the same data-set of [11] and validated the presence
of entanglement in mixed sub-systems of interest. In a similar spirit, we shall derive
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in Chapter. 5, a weaker variant of the CCNR (also enhanced CCNR) condition that
can be estimated using the same experimental data [11]. Especially in Chapters. 4 -
5, we will exploit these features of classical shadows to measure non-linear quantities
of interest like the QFI and the operator entanglement by adapting them to the RM
framework. This framework allows the same RM data-set to be recycled in-order to
estimate different quantities that become relevant at a later time.

Performance guarantees

The work of [64] provided rigorous performance guarantees in terms of sample com-
plexity for the classical shadow framework to evaluate different estimations, partic-
ularly in the regime where we make only a single projective measurement (𝑁𝑀 = 1).
Thus the total budget simplifies to 𝑀 = 𝑁𝑈 . Consider an Hermitian operator 𝑂
that acts on a 𝑁−qubit state 𝜌. One can estimate the expectation value of this
operator 𝑓1 = Tr(𝑂𝜌) from 𝑀 constructed classical shadows given by

𝑓1 =
1

𝑀

𝑀∑︁
𝑟=1

Tr(𝑂𝜌(𝑟)). (2.48)

The convergence of the estimator 𝑓1 to its true value 𝑓1 = E𝑈 [𝑓1] is governed by
the variance Var[𝑓1] = E𝑈 [𝑓 2

1 ] − E𝑈 [𝑓1]2, where the variance is estimated over the
applied unitaries. To estimate |𝑓1−𝑓1| < 𝜖 for a given accuracy 𝜖 and with a certain
confidence 𝛿, one can firstly use the well known Chebyshev’s inequality that bounds
the probability of the estimator 𝑓1 being in a certain confidence interval:

Pr
[︁
|𝑓1 − 𝑓1| ≥ 𝜖

]︁
≤ Var[𝑓1]

𝜖2
=

Var [Tr(𝑂𝜌)]
𝑀𝜖2

(2.49)

with 𝜌 being a single shot shadow. Here we have used the fact that the shadows
𝜌(𝑟) from Eq. (2.48) are independent, thus we have Var[𝑓1] = 1

𝑀
Var[Tr(𝑂𝜌)]. A key

result introduced in [64], provides an upper bound on the single shot variance. This
can be cast into the following concrete statement

Fact 1. [64, Proposition. 3] Given a linear function 𝑓1 = Tr(𝑂𝜌) defined by an
Hermitian operator 𝑂 that acts on a 𝑁−qubit state 𝜌, the single-shot variance in
function of the shadow 𝜌 obeys the following bound

Var [Tr(𝑂𝜌)] ≤ 2𝑁Tr(𝑂2). (2.50)

The above fact is an important identity that shall be used and generalized further
in our work in the subsequent chapters. Using this identity, we want to ensure that
Eq. (2.49) is upper-bounded by the confidence level 𝛿. The above variance bound
and the Chebyshev’s inequality allows us to express concrete lower bound to the
sample complexity 𝑀 = 𝑁𝑈 to achieve a fixed accuracy 𝜖 with confidence level of
at least 1− 𝛿 given by

𝑀 ≥ 2𝑁Tr(𝑂2)

𝜖2𝛿
. (2.51)

Thus, by performing measurements greater than the above bound would guaran-
tee that the estimation of 𝑓1 is evaluated with a confidence level of 1 − 𝛿 while
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respecting |𝑓1 − 𝑓1| < 𝜖. Additionally, the same collection of shadows can also be
used to estimate arbitrary many linear observables of interest. This could be of
interest to certify entanglement using entanglement witnesses [42, 53], to measure
fidelities with respect to target pure states |𝜓⟩ [41] or estimate ground state energy
of molecules [63]. These estimators also satisfy rigorous sample complexity bounds
as developed in [64, Theorem. 1]. Moreover, these sample complexity results have
been extended only for a few non-linear functionals such as the purity Tr(𝜌2𝐴𝐵) and
Tr([𝜌𝑇𝐴𝐴𝐵]

3) in [34, Lemma. 2 and Lemma. 3 respectively]. These results state that in
the limit of large number of measurements 𝑀 which is analogous to a regime where
𝜖 is small, the required number of measurements to evaluate these functions scale
∝ 2𝑁 .

2.6 Current challenges and outline
In this chapter, we introduced the full framework of the RM toolbox that provides

estimations of quantum properties of interest from experimental data. Its strength
mainly lies in its simple applicability and lower required number of measurements
compared to other existing measurement techniques. In particular, the arrival of
the classical shadow formalism played a key role in further enriching the pertinence
of the RM toolbox and is currently an active topic of research and study. Our
work detailed in this manuscript equally aims at providing solutions to some of the
existing problems faced by the current construction of the RM toolbox that we will
briefly overview in this section.

Firstly, the RM toolbox suffers from exponential scalings, that is, the required
number of measurements scale exponentially with the number of qubits 𝑁 . Due
to the fast progress in current experimental devices, it becomes important to have
methods to be able to measure the purity in these larger systems. As a concrete
example, with the current framework we can not measure the purity in the regime
of 25 − 30 qubits and are limited in the regime of 10 − 15 qubits due to statistical
errors. In Chapter. 3, we shall provide a potential solution to this problem by
improving the current protocol in order to fight statistical errors and correspondingly
reduce the required number of measurement and the associated exponential scaling.
The optimized protocol shall implement importance sampling to select the few best
unitaries needed to be applied in the experiment.

Secondly, let us now move our attention to the classical shadow formalism of
the RM toolbox. Though with this method we can measure arbitrary multi-copy
functions using the RM data, we lack sample complexity bounds that would pro-
vide rigorous performance guarantees for them. More importantly, the U-statistics
estimator to evaluate a given arbitrary order functional has practical limitations
as post-processing such estimators for higher order functions requires an expen-
sive data-treatment. Additionally, can we measure quantities that do not explicitly
express as multi-copy functions? How can we improve estimation accuracy for multi-
copy functions using classical shadows?

We address these problems systematically from Chapter. 4 on-wards where we
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shall focus on further developing the classical shadow formalism. In Chapter. 4,
we will provide a structured method to estimate an important non-linear quantity
known as the quantum Fisher information that can not be cast directly as a multi-
copy function. Our strategy would be to devise a series of multi-copy functionals that
converge to the true value of the QFI and evaluate them using the classical shadow
formalism. This will then motivate us to formulate sample complexity bounds for
arbitrary such multi-copy functions. Additionally, the last section of this chapter,
we also discuss a recent work that demonstrates the first experimental measurement
of the QFI via the lower bounds that have been derived in that chapter.

In Chapter. 5, we will provide a practical solution to estimate functions of arbi-
trary order by introducing the batch shadow formalism. We will show analytically
the performance of this formalism compared to the existing one. This will enable
us to measure the operator entanglement entropy that is difficult to access with the
current U-statistics estimator. By re-analysing the experimental data of [11] we shall
unveil interesting entanglement properties associated to it such as the entanglement
barrier. Lastly, in Chapter. 6, we will show how to again tackle statistical errors by
boosting the estimation of multi-copy estimators using the notion of common ran-
dom numbers. With this we shall propose a modified protocol that we call common
randomized measurements.
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3
Optimizing randomized measurements

protocol with importance sampling

This chapter is based on the published work: Aniket Rath, Rick van Bijnen, Andreas Elben, Peter
Zoller, and Benoît Vermersch. Importance sampling of randomized measurements for probing
entanglement. Phys. Rev. Lett., 127:200503, Nov 2021 (Ref. [99]) and includes an additional
study presented in Sec. 3.4.4.
We develop here a new protocol based on importance sampling of local random unitaries to reduce
the statistical errors in the estimation of the purity. I actively contributed in the development of
this protocol and numerically benchmarked its performance for the various case studies presented
here. My contribution also consisted in writing the related portions of the manuscript of Ref. [99].
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3.1. The main idea: approximate then select

In the previous chapter, we discussed how we can measure the purity of an un-
known quantum state by implementing randomized measurements in an experiment.
The measurement budget 𝑀 = 𝑁𝑈𝑁𝑀 , where 𝑁𝑈 are the number of applied local
random unitaries and 𝑁𝑀 the number of measurements performed for each applied
unitary, defines the total number of repetitions performed in the experiment. How-
ever, as experiments are repeated for a finite measurement budget, this leads to
statistical errors in the estimation of the purity. In particular, the required number
of measurements in the case of randomized measurements for a given tolerance of
statistical error scale exponentially (𝑀 ∼ 2𝑎𝑁 with 𝑎 ∈ [1, 1.5]) with respect to the
number of qubits 𝑁 [29, 11, 125, 32]. This typically restricts our access to estimate
the purity in experiments for (sub-)system sizes in the regime of 10− 15 qubits.

The growth of current experimental platforms necessitates the development of
methods in order to benchmark the entanglement generation in such quantum de-
vices beyond the current restrictive regime. In this chapter, we will propose a
protocol based on randomized measurements that will enable us to measure the pu-
rity of quantum states in significantly larger (sub-)system sizes 𝑁 . This is achieved
by reducing predominantly the statistical errors that governs the estimation of the
purity from finite set of measurements.

We organize this chapter as follows: firstly, we describe the crucial ingredient that
is central to the effectiveness of the new randomized measurement protocol that we
propose here. This is followed by practical details that gives the necessary tools to
implement the new protocol. We will also provide some analytical calculations that
guarantee its performance compared to the old protocol. And lastly, we will spend a
vast majority of the chapter illustrating its performance on different quantum states
with numerical simulations and various case studies.

3.1 The main idea: approximate then select
The previous version of the randomized measurement protocol introduced in the

earlier works of [30, 11] was based on a state-agnostic method to measure the pu-
rity. It implemented a set of random unitaries that were always chosen uniformly
from the Haar measure irrespective of the state prepared in the experiment. But in
typical experimental scenarios, the first step always consists of deciding the perfect
state 𝜌 that we aim to prepare on the quantum device. In certain scenarios, these
prepared quantum states can be well approximated using classical simulation [89].
Thus our main proposal here consists of two main steps. First we use this valuable
prior knowledge to construct a classical representation of the experimental quan-
tum state. The prior classical state can be considered as an approximation to the
realized experimental state due to unknown decoherence effects or other fundamen-
tal reasons that limit classical representations of quantum states. Second, based
on the prior knowledge, we prepare the right selection of local random unitaries
for the experiment that would help reduce statistical errors. These unitaries are
sampled according to an appropriate probability distribution defined in function of
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3.1. The main idea: approximate then select

the approximate classical state at hand and exploit the structure of the underlying
quantum state.

Let us now concretely discuss the new optimized protocol and why it becomes
more effective compared to the old protocol in order to reduce statistical errors.
Our starting point is to view the purity estimator introduced in former works of [30,
11] and as mentioned in Eq. (2.28) as a Monte Carlo integration performed over
the unitaries that are distributed uniformly according to the Haar measure 𝑑𝑈
which writes as 𝑝2 = E[𝑋2(𝑈)] =

∫︀
𝑋2(𝑈)𝑑𝑈 . In principle, one can define the purity

estimator for unitaries that are sampled from a given distribution 𝑝(𝑈) as

𝑝2 = E𝑝(𝑈)

[︂
𝑋2(𝑈)

𝑝(𝑈)

]︂
≡
∫︁ (︂

𝑋2(𝑈)

𝑝(𝑈)

)︂
𝑝(𝑈)𝑑𝑈 (3.1)

where we recall the function 𝑋2(𝑈) as given in Eq. (2.36) is expressed in function
of the Born probability 𝑃 (s|𝑈) = ⟨s|𝑈𝜌𝑈 † |s⟩ for a given random unitary 𝑈 and
the measured bit-string |s⟩ = |𝑠1, . . . , 𝑠𝑁⟩. We also define E𝑝(𝑈)[ · ] as the average
over the unitaries sampled according to a chosen distribution 𝑝(𝑈)𝑑𝑈 . For example,
for a function 𝑔(𝑈) we have E𝑝(𝑈)[𝑔(𝑈)] =

∫︀
𝑔(𝑈) 𝑝(𝑈)𝑑𝑈 . When the unitaries are

sampled uniformly from the Haar measure as done earlier, we have 𝑝(𝑈) = 1 and
we recover our previous expression as mentioned in Eq. (2.28) and in Refs. [30,
11]. Analogously, randomized measurements involves evaluating the above integral
with finite number of applied unitaries 𝑁𝑈 where the estimated function 𝑋̂2(𝑈

(𝑟))
is evaluated from experimental data for each unitary 𝑈 (𝑟) with 𝑟 = 1, . . . , 𝑁𝑈 . The
associated estimator of the purity can be given by

𝑝2 =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

𝑋̂2(𝑈
(𝑟))

𝑝(𝑈 (𝑟))
. (3.2)

The function𝑋2(𝑈) defined earlier depends on the quantum state and the applied
local random unitaires (𝑈 =

⨂︀𝑁
𝑖=1 𝑈𝑖). It turns out naturally that, for a given quan-

tum state, this multi-variate function could present a complex multi-dimensional
landscape consisting of minima and maxima as a function of 𝑈 . In order to effec-
tively evaluate a Monte Carlo integral of this complex function, the wise choice is to
perform an importance sampling of the random unitaries 𝑝(𝑈) = 𝑝IS(𝑈) that would
prioritize the important regions of the function and exploit its inherent structure.
This is the main intuition that we borrow from Monte Carlo integration strate-
gies [96]. It makes a more intelligent choice of the sampling probability distribution
𝑝(𝑈) compared to a blind uniform sampling in order to boost the estimations ob-
tained from Monte Carlo integrals in question.

The choice of the appropriate distribution function 𝑝IS(𝑈) impacts directly the
statistical errors of the estimation of the purity. To achieve optimal performances,
we can naively choose the distribution function to follow in a consistent manner the
structure of the function to be integrated. It should sample predominantly local
random unitaries distributed near the vicinity of the maxima of the function 𝑋2(𝑈)
and conversely sample less frequently in the regions close to the minima of the
function. In this way, we anticipate that the required number of random unitaries
𝑁𝑈 is significantly reduced in comparison to the uniform case. Considering the above
requirements, the best candidate of such a sampling function follows naturally and
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boils down to be
𝑝IS(𝑈) =

|[𝑋2(𝑈)]IS|∫︀
|[𝑋2(𝑈)]IS𝑑𝑈 |

, (3.3)

for some function [𝑋2(𝑈)]IS that aims at approximating 𝑋2(𝑈). Let us now discuss
in the following section the details of the importance sampling protocol and provide
the recipe to obtain and build the function [𝑋2(𝑈)]IS.

3.2 The optimized classical-quantum protocol
As we have seen, in order to perform importance sampling we require a priori

a classical representation of the quantum state that we intend to prepare in the
experiment. Let us define this classical approximate state to be 𝜎. We emphasize
again that 𝜎 could be an approximation of the true state realized in the experimen-
tal setup. One may consider these classical representations belonging to families of
mean-field states or variational tensor-network states such as matrix-product-states
(MPS), projected-entangled pair states (PEPS) [127] that can model in certain sce-
narios the underlying quantum state prepared in the experiment. In particular, let
us focus on an approximate theory representation of the quantum state that can
be obtained using a class of states known as Matrix-Product-States. These states
are commonly found in condensed matter problems [113]. We can define a MPS
wave-function describing a 𝑁−qubit state

|𝜓𝜒⟩ =
∑︁

𝑠1,...,𝑠𝑁
ℓ1,...,ℓ𝑁−1

[𝐴1]
(ℓ1)
𝑠1

[𝐴2]
(ℓ1,ℓ2)
𝑠2

. . . [𝐴𝑁 ]
(ℓ𝑁−1)
𝑠𝑁

|s⟩ , (3.4)

where |s⟩ = |𝑠1⟩ ⊗ · · · ⊗ |𝑠𝑁⟩ denotes the physical indices of the tensor, and the
bond index ℓ𝑖 can have a maximum dimension given by the bond dimension 𝜒.
The bond dimension is a key parameter that describes the amount of entanglement
that is captured by the MPS. A MPS of bond dimension 𝜒 can at most have an
entanglement entropy ∝ log(𝜒). For instance, such states can adequately describe
many-body ground states of gapped Hamiltonians [27] or low depth random quantum
circuits [39]. Truncation of the bond-dimension at a given value of 𝜒 provides an
approximation of the quantum state. The choice of a MPS state is more physically
inspired in terms of finding a valid approximation of the underlying quantum state.
The importance sampling function [𝑋2(𝑈)]IS can be directly constructed from the
probabilities 𝑃𝜒(s|𝑈) for a given random unitary 𝑈 from the approximate MPS
state 𝜎 = |𝜓𝜒⟩⟨𝜓𝜒| at hand via classical simulations. With this we can build the
importance sampling function [𝑋2(𝑈)]IS as given in Eq. (2.36).

Alternately, in the case where RM-data generated from prior quantum experi-
ments that realized the same quantum state are available, we can implement pow-
erful existing machine learning (ML) methods. The goal is to train a ML model to
fit a function that closely mimics the desired multi-variate function 𝑋2(𝑈) for any
given unitary 𝑈 . This is done by defining a training set that consists of evaluating
𝑋2(𝑈) for various different random unitaries 𝑈 . The training involves providing as
input to the neural network numerous samples of unitaries 𝑈 and their associated
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function 𝑋2(𝑈) for each unitary 𝑈 as the desired output of the network. Following
the successful training procedure of the ML algorithm, we obtain a compact classical
representation of [𝑋2(𝑈)]IS in terms of a saved neural network model. This procedure
enables us to convert a costly classical computation (of the training the samples)
into a classical model [𝑋2(𝑈)]IS. In both of these scenarios, one could boost the
estimation of the purity by avoiding uniform sampling and rather using the classical
representation or available experimental data-set to build the importance sampling
function.

This pre-processing step using tensor-network or machine-learning performed on
a classical device provides the importance sampling function to sample the required
unitaries to be applied on the quantum experiment. Hence, the new protocol relies
on the assistance of a classical device to optimize the randomized measurement
protocol for the quantum device. Before recapping the details of the importance
sampling algorithm, let us briefly discuss how we can alternately parameterize the
local random unitaries to make the sampling task more convenient.

Parametrization of the local random unitaries

In order sample unitaries effectively from an appropriate importance sampling dis-
tribution, we firstly need to parameterize the local random unitary. In the pro-
tocol, local random unitaries 𝑈 =

⨂︀𝑁
𝑖=1 𝑈𝑖 are sampled from the Haar measure

𝑑𝑈 =
∏︀𝑁

𝑖=1 𝑑𝑈𝑖. Each of the single qubit unitary 𝑈𝑖 with 𝑖 = 1, . . . , 𝑁 is a 2 × 2
matrix sampled from the Haar measure 𝑑𝑈𝑖 on the unitary group 𝒰(2) and belongs
to the CUE. We can define such a single qubit unitary given in [24, Eq. (3.17)] as

𝑈𝑖 =

⎡⎣ cos𝜑𝑖 𝑒
𝑖𝛼𝑖 sin𝜑𝑖 𝑒

𝑖𝜓𝑖

− sin𝜑𝑖 𝑒
−𝑖𝜓𝑖 cos𝜑𝑖 𝑒

−𝑖𝛼𝑖

⎤⎦ (3.5)

where 𝜑𝑖 ∈ [0 , 𝜋/2] ; 𝛼𝑖 & 𝜓𝑖 ∈ [0 , 2𝜋] with the single qubit Haar measure given as
follows [24]

𝑑𝑈𝑖 = 2 cos𝜑𝑖 sin𝜑𝑖 𝑑𝜑𝑖
𝑑𝛼𝑖
2𝜋

𝑑𝜓𝑖
2𝜋

. (3.6)

We can alternately write the Haar measure by defining sin2 𝜑𝑖 = 𝜉𝑖 which leads to

𝑑𝑈𝑖 = 𝑑𝜉𝑖
𝑑𝛼𝑖
2𝜋

𝑑𝜓𝑖
2𝜋

(3.7)

where 𝜉𝑖 ∈ [0 , 1]. Such a local random unitary 𝑈𝑖 can be experimentally realized by
combining random rotations along 𝑦 and 𝑧 axes of the Bloch sphere as given by

𝑈𝑖 = 𝑅𝑧(𝛾𝑖)𝑅𝑦(𝜃𝑖)𝑅𝑧(𝜙𝑖) (3.8)

where 𝑅𝛽(𝜃) = 𝑒−𝑖𝜎
𝛽𝜃/2, 𝜎𝛽 with 𝛽 = 𝑦, 𝑧 are the Pauli matrices and 𝜃 ∈ [0 , 2𝜋]

is the random rotation angle. By equating the matrix elements of Eq. (3.5) and
Eq. (3.8) gives the relation between the parametrized unitary angles in function of
the rotation angles and the corresponding Haar distribution measures⎧⎪⎨⎪⎩

𝜉𝑖 = sin2 (𝜃𝑖/2)

𝜓𝑖 = (𝜙𝑖 − 𝛾𝑖)/2 + 𝜋

𝛼𝑖 = −(𝜙𝑖 + 𝛾𝑖)/2

=⇒

⎧⎪⎨⎪⎩
𝑑𝜉𝑖 = sin

(︀
𝜃𝑖
2

)︀
cos
(︀
𝜃𝑖
2

)︀
𝑑𝜃𝑖

𝑑𝜓𝑖 = (𝑑𝜙𝑖 − 𝑑𝛾𝑖)/2

𝑑𝛼𝑖 = −(𝑑𝜙𝑖 + 𝑑𝛾𝑖)/2

(3.9)
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As each of the qubit is projected along the computational 𝑧−basis, we can ignore
the last 𝑅𝑧 rotation of 𝑈𝑖 in Eq. (3.8) by putting 𝛾𝑖 = 0. We see firstly, from Eq. (3.9),
that sampling 𝜙𝑖 uniformly in [0, 2𝜋] leads to 𝛼𝑖 and 𝜓𝑖 being distributed uniformly.
Secondly, sampling 𝜉𝑖 uniformly in [0, 1] leads to an uniform sampling of 𝜃𝑖. Thus
for uniformly sampling local random unitaries for each qubit according to the Haar
measure, it suffices to randomly sample: 𝜉𝑖 relating the 𝑧 rotation 𝑅𝑦(𝜃𝑖) and 𝜙𝑖
connecting the local unitary angles 𝜓𝑖 and 𝛼𝑖. Thus we finally can express each
local random unitary as 𝑈𝑖 = 𝑅𝑦(𝜃𝑖)𝑅𝑧(𝜙𝑖) which is parameterized by two rotation
angles. The multi-variate function 𝑋2(𝑈) is finally expressed in terms of 2𝑁 angles
𝜃𝑖 and 𝜙𝑖 with 𝑖 = 1, . . . , 𝑁 .

3.2.1 The importance sampling protocol
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Figure 3.1: Importance sampling randomized measurement protocol — The figure describes the full
protocol that implements importance sampling of random unitaries in an experiment to measure
properties of the quantum state. It starts with a classical pre-processing step that builds the
sampling function [𝑋2(𝑈)]IS. In the second step, local random unitaries are sampled from this
function and are executed on the quantum hardware. The final step realizes a fast post-processing
of the experimental data to extract purities and other properties of interest. Additionally, the
samples obtained from the experiment can be fed-back to improve the classical function for future
experiments.

We describe here the importance sampling protocol. As summarized in Fig. 3.1,
we start by a pre-processing phase where we build the importance sampling function
[𝑋2(𝑈)]IS from the proposed methods of preference as described above. This step
involves having an approximate prior knowledge of the quantum state of interest
prepared on the quantum hardware or prior experimental samples at hand. At the
end of this step, we obtain a classical representation of the state and the sampling
function [𝑋2(𝑈)]IS. In the second step, we would like to sample 𝑁𝑈 unitaries from
the importance sampling distribution 𝑝IS(𝑈) defined in Eq. (3.3). We achieve the
sampling by implementing the metropolis algorithm [96].
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3.2. The optimized classical-quantum protocol

This algorithm is based on the acceptance-rejection procedure which starts by
sampling uniformly the 2𝑁 angles that defines a single random unitary acting on
the 𝑁−qubit state from a proposal distribution. The proposal distribution most
often is taken to be uniformly distributed in the given interval of parameters. The
algorithm has a fixed target distribution [𝑋2(𝑈)]IS according to which it aims to
generate samples of unitaries. As this algorithm is based on an iterative procedure
of ‘accept and reject’, it accepts a new candidate unitary only if it satisfies a certain
criteria1. If the criteria is not satisfied it rejects the candidate sample and repeats
the previous check with a newly picked unitary from the proposal distribution. At
the end of running this algorithm one finds a collection of 𝑁𝑆 samples that contains
𝑁𝑈 distinct unitaries. This is due to the fact that the algorithm does not choose
another unitary until the criteria is fulfilled which causes it to repeat some of the
previously sampled unitaries. We thus define 𝑛(𝑟) as the number of occurrence of the
sampled unitary 𝑈 (𝑟) from total collection of 𝑁𝑆 samples (that include repetition of
the same samples within it).

Once the sampling is done, we perform for each of the unitaries 𝑈 (𝑟) with 𝑟 =
1, . . . , 𝑁𝑈 , a total of 𝑁𝑀 projective measurements on the quantum device, where
we record the bit-strings s(𝑟,𝑚) with 𝑚 = 1, . . . , 𝑁𝑀 . Finally, by post-processing the
data-set of the bit-strings, we can obtain an unbiased importance sampling estimate
of the purity given by

[𝑝2]IS =
1

𝑁𝑆

𝑁𝑈∑︁
𝑟=1

𝑛(𝑟)𝑋̂2(𝑈
(𝑟))

𝑝IS(𝑈 (𝑟))
. (3.10)

Let us try to give an idea about the relevant measurement budget (𝑁𝑈𝑁𝑀) to
implement importance sampling for experiments. When we consider the regime of
𝑁𝑀 ≫ 1 and that the classical state 𝜎 closely approximates the experimentally
prepared state 𝜌 i.e 𝜌 ≈ 𝜎, we have for a given unitary 𝑋2(𝑈

(𝑟)) ≈ [𝑋2(𝑈
(𝑟))]IS.

Thus we observe that the ratio in above expression becomes constant and we can
intuitively see that the estimator has less statistical fluctuations. The only devi-
ations are due to the shot noise (finite number of measurements 𝑁𝑀). Hence the
relevant measurement budget (𝑁𝑈𝑁𝑀) to be considered for importance sampling
is of sampling a fixed, smaller number of unitaries and performing a large number
of projective measurements 𝑁𝑀 ≫ 1 to account for shot-noise fluctuations. This
also becomes pertinent for experimental platforms that have a significant calibration
time such as trapped ions [11]. The few chosen unitaries can be very well calibrated
and would induce less errors in the estimates. Additionally, increasing the number
of measurements in these quantum experiments is easier compared to increasing the
number of unitaries.

In order to provide a concrete assessment on the improvement that importance
sampling provides when compared to uniform sampling, we will discuss in the subse-
quent sections analytical estimation of the statistical errors governed by the variance
of the purity estimator obtained for both uniform and importance sampling. In par-
ticular, we will be interested to determine the scaling of the variance as a function of
the system-size 𝑁 as it directly quantifies the statistical error and the scalability of

1Given an initial chosen unitary 𝑈 (0), a candidate unitary 𝑈 (cand) is accepted if 𝛽 < 𝛼, where
𝛽 is chosen from a uniform random distribution between [0, 1] and 𝛼 = min

{︁
1, |[𝑋2(𝑈

(cand))]IS|
|[𝑋2(𝑈(0))]IS|

}︁
,

otherwise it is rejected.
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the RM protocol. We shall back our analytical predictions with numerical simula-
tions of the randomized measurement protocol by performing different case studies
in the upcoming sections.

3.3 Analytical estimations of statistical errors
In this section, we will provide the variance of the estimator of the purity in the

case of uniform and importance sampling for finite number measurements 𝑁𝑈 and
𝑁𝑀 . We consider here for simplicity that we have collected𝑁𝑈 independent unitaries
𝑈 (𝑟) sampled either from the importance sampling distributed 𝑝IS(𝑈) = |[𝑋2(𝑈)]IS|∫︀

[𝑋2(𝑈)]IS𝑑𝑈

or the uniform distribution 𝑝uni(𝑈) = 1 and collect a set of 𝑁𝑀 bit-strings s(𝑟,𝑚) for
each of them. We can construct for a given unitary 𝑈 (𝑟) the estimator as a function
of the observed bit-strings after applying the same unitary as given in Eq.(2.35)

𝑋̂2(𝑈
(𝑟)) =

2𝑁

𝑁𝑀(𝑁𝑀 − 1)

∑︁
𝑚′ ̸=𝑚

(−2)−𝐷[s(𝑟,𝑚
′),s(𝑟,𝑚)]. (3.11)

The quantum mechanical average over the measurements of the above estimator
gives

EQM[𝑋̂2(𝑈
(𝑟))] = 𝑋2(𝑈

(𝑟)). (3.12)

The unbiased estimator of the purity 𝑝2 for a generic distribution 𝑝(𝑈) can be given
by recalling Eq. (3.2) as

𝑝2 =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

𝑋̂2(𝑈
(𝑟))

𝑝(𝑈 (𝑟))
(3.13)

with
E [𝑝2] ≡ E𝑝(𝑈) [EQM[𝑝2]] = 𝑝2 = Tr(𝜌2). (3.14)

Here E[ · ] includes the expectation over the unitaries from a distribution 𝑝(𝑈) and
the quantum mechanical average over the measurements. The key quantity that
governs the statistical errors in our protocol is given by the variance of 𝑝2. We can
express the variance of the estimator 𝑝2 as

Var[𝑝2] =
1

𝑁𝑈

Var

[︃
𝑋̂2(𝑈

(𝑟))

𝑝(𝑈 (𝑟))

]︃
=

1

𝑁𝑈

⎛⎝E

⎡⎣(︃𝑋̂2(𝑈
(𝑟))

𝑝(𝑈 (𝑟))

)︃2
⎤⎦− E

[︃
𝑋̂2(𝑈

(𝑟))

𝑝(𝑈 (𝑟))

]︃2⎞⎠
(3.15)

where Var[X] = E[X2]−E[X]2 and we note additionally that for 𝑟 = 1, . . . , 𝑁𝑈 , each
of the random unitaries are sampled independently. From this property, we obtain
that Var[𝑝2] = 1/𝑁𝑈Var

[︁
𝑋̂2(𝑈(𝑟))

𝑝(𝑈(𝑟))

]︁
. As we show in our work [99, Appendix. E], we

have the following proposition that summarizes our findings

Proposition 1. The variance of 𝑝2 for a general distribution 𝑝(𝑈) is given by

Var [𝑝2] =
1

𝑁𝑈

(︂
(𝑁𝑀 − 3)(𝑁𝑀 − 2)

𝑁𝑀(𝑁𝑀 − 1)
Γ(4) +

4(𝑁𝑀 − 2)

𝑁𝑀(𝑁𝑀 − 1)
Γ(3) +

2

𝑁𝑀(𝑁𝑀 − 1)
Γ(2) − Tr(𝜌2)2

)︂
.

(3.16)
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where, the coefficients Γ(𝑘) are given by

Γ(𝑘) = E𝑝(𝑈)

[︃
Tr
(︀
𝑂(𝑘)(𝑈𝜌𝑈 †)⊗𝑘

)︀
𝑝(𝑈)2

]︃
=

∫︁
Haar

Tr
(︀
𝑂(𝑘)(𝑈𝜌𝑈 †)⊗𝑘

)︀
𝑝(𝑈)2

𝑝(𝑈)𝑑𝑈 (3.17)

and the 𝑘-copy operators 𝑂(𝑘) are expressed as

𝑂(4) = 𝑂 ⊗𝑂; 𝑂(3) = (1 ⊗𝑂)(𝑂 ⊗ 1); 𝑂(2) = 𝑂2 (3.18)

with the operator 𝑂 diagonal in the computational basis as

𝑂 = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′] |s⟩⟨s| ⊗ |s′⟩⟨s′| = 2𝑁
𝑁⨂︁
𝑖=1

∑︁
𝑠𝑖,𝑠′𝑖

(−2)−𝐷[𝑠𝑖,𝑠𝑖
′] |𝑠𝑖⟩⟨𝑠𝑖| ⊗ |𝑠′𝑖⟩⟨𝑠′𝑖| .

(3.19)

Additionally, we can express the 2-copy operator 𝑂 in an alternate form to
simplify our following calculations:

𝑂 = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′] |s⟩⟨s| ⊗ |s′⟩⟨s′| = 1

2𝑁

𝑁⨂︁
𝑖=1

[(1𝑖 ⊗ 1𝑖) + (3𝑍𝑖 ⊗ 𝑍𝑖)] . (3.20)

where 𝑍𝑖 is the Pauli-𝑧 operator acting on the 𝑖th qubit. The above expression can
be verified by expanding for a single qubit the RHS of the equation. Furthermore,
we note, as further detailed in our work [99, Appendix. B], the function 𝑋2(𝑈) =
Tr[𝑂(𝑈𝜌𝑈 †)⊗2] is bounded by 1/2𝑁 ≤ 𝑋2(𝑈) ≤ 4𝑁 and is thus a positive function.
Let us now illustrate the concrete expression of the variance of the purity for the
two sampling methods.

3.3.1 Variance of uniform sampling for a pure product state

Consider without loss of generality a 𝑁−qubit pure product state 𝜌 = |0⟩⟨0|⊗𝑁 .
We sample local random unitaries 𝑈 =

⨂︀𝑁
𝑖=1 𝑈𝑖 uniformly from the Haar measure

by taking 𝑝(𝑈) = 𝑝uni(𝑈) = 1. Our goal is to compute explicitly all the terms
Γ(𝑘) = E𝑝(𝑈)[Γ

(𝑘)(𝑈)] in Eq. (3.16). The computation becomes easy as we note that
the sampled unitaries 𝑈 , the operator 𝑂(𝑘) =

⨂︀𝑁
𝑖=1𝑂

(𝑘)
𝑖 (noting the form of 𝑂 in

Eq. (3.20)) and the state 𝜌 can be described locally for each qubit. This implies
that we have

Γ(𝑘)(𝑈) =
Tr
(︁
𝑂(𝑘)(𝑈 |0⟩⟨0|⊗𝑁 𝑈 †)⊗𝑘

)︁
𝑝uni(𝑈)2

=
𝑁∏︁
𝑖=1

Tr
(︁
𝑂

(𝑘)
𝑖 (𝑈𝑖 |0⟩⟨0|𝑈 †

𝑖 )
⊗𝑘
)︁

(3.21)

where we have taken 𝑝uni(𝑈) = 1 and have defined

𝑂
(4)
𝑖 = 𝑂𝑖 ⊗𝑂𝑖, 𝑂

(3)
𝑖 = (𝑂𝑖 ⊗ 1𝑖)(1𝑖 ⊗𝑂𝑖), 𝑂

(2)
𝑖 = (𝑂𝑖)

2 (3.22)
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with 𝑂𝑖 =
1
2
(1𝑖 ⊗ 1𝑖)(3𝑍𝑖 ⊗ 𝑍𝑖) such that 𝑂 =

⨂︀𝑁
𝑖=1𝑂𝑖. Computing the expressions

of Γ(𝑘)(𝑈) for each qubit leads to the following:

Γ(2)(𝑈) =
1

4𝑁

∏︁
𝑖

(10 + 6Tr(|0⟩⟨0|𝑈 †
𝑖 𝑍𝑖𝑈𝑖)

2) (3.23)

Γ(3)(𝑈) =
1

4𝑁

∏︁
𝑖

(1 + 15Tr(|0⟩⟨0|𝑈 †
𝑖 𝑍𝑖𝑈𝑖)

2) (3.24)

Γ(4)(𝑈) =
1

4𝑁

∏︁
𝑖

(1 + 3Tr(|0⟩⟨0|𝑈 †
𝑖 𝑍𝑖𝑈𝑖)

2)2 . (3.25)

We further notice that the term Tr(|0⟩⟨0|𝑈𝑖𝑍𝑖𝑈 †
𝑖 ) = ⟨0|𝑈𝑖𝑍𝑖𝑈 †

𝑖 |0⟩ is bounded in
[−1, 1]. As the local unitaries are distributed by the Haar measure and each indi-
vidual qubit is measured in the 𝑧−basis, we can also parameterize them using two
rotation angles 𝜃𝑖 and 𝜑𝑖 as 𝑈𝑖 = 𝑅𝑦(𝜃𝑖)𝑅𝑧(𝜙𝑖) as shown in Sec. 3.2. By simple
replacement we get

Tr
(︁
|0⟩⟨0|𝑈 †

𝑖 𝑍𝑖𝑈𝑖

)︁
= Tr

(︀
|0⟩⟨0|𝑅𝑧(𝜙𝑖)

†𝑅𝑦(𝜃𝑖)
†𝑍𝑖𝑅𝑦(𝜃𝑖)𝑅𝑧(𝜙𝑖)

)︀
= Tr

(︀
|0⟩⟨0|𝑅𝑦(𝜃𝑖)

†𝑍𝑖𝑅𝑦(𝜃𝑖)
)︀

(3.26)

where we have used the relation for matrices 𝐴, 𝐵: (𝐴𝐵)† = 𝐵†𝐴† and the trace
cylicity Tr(𝐴𝐵) = Tr(𝐵𝐴). We also note that 𝑅𝑧(𝜙𝑖) |0⟩⟨0|𝑅𝑧(𝜙𝑖)

† = |0⟩⟨0|. This
expression shows that the unitary only depends on the 𝑅𝑦 rotation. Using (3.5) and
(3.9), we can rewrite ⟨0|𝑈𝑖𝑍𝑖𝑈 †

𝑖 |0⟩ = cos 𝜃𝑖 = 1 − 2𝜉𝑖 with 𝜉𝑖 being uniformly dis-
tributed in [0, 1]. Then, the Haar measure simplifies to 𝑑𝑈 =

∏︀𝑁
𝑖=1 𝑑𝑈𝑖 =

∏︀𝑁
𝑖=1 𝑑𝜉𝑖.

By a simple replacement 𝑧𝑖 = 1 − 2𝜉𝑖 =⇒ 𝑑𝜉𝑖 = −𝑑𝑧𝑖/2, we can compute Γ(𝑘) by
performing the Haar integral locally for each qubit due to the independence of the
local random unitaries over each qubit site. We get

Γ(2) =

∫︁
𝑑𝑈Γ(2)(𝑈) =

[︂
1

8

∫︁ 1

−1

𝑑𝑧(10 + 6 𝑧2)

]︂𝑁
= 3𝑁

Γ(3) =

∫︁
𝑑𝑈Γ(3)(𝑈) =

[︂
1

8

∫︁ 1

−1

𝑑𝑧(1 + 15 𝑧2)

]︂𝑁
=

(︂
3

2

)︂𝑁
Γ(4) =

∫︁
𝑑𝑈Γ(4)(𝑈) =

[︂
1

8

∫︁ 1

−1

𝑑𝑧(1 + 3 𝑧2)2
]︂𝑁

=

(︂
6

5

)︂𝑁
.

We can thus summarize our results by the following Lemma:

Lemma 1 (Uniform sampling). Consider a 𝑁−qubit pure product state 𝜌 and local
random unitaries 𝑈𝑖 sampled uniformly from the Haar measure with 𝑝(𝑈) = 𝑝uni(𝑈) = 1.
Then, we find

Γ(4) =

(︂
6

5

)︂𝑁
; Γ(3) =

(︂
3

2

)︂𝑁
; Γ(2) = 3𝑁 . (3.27)

The computation of the variance for uniform sampling shows explicitly the ex-
ponential scaling with respect to the system size 𝑁 associated with randomized
measurements as these coefficients enter explicitly the expression of the variance as
given in Eq. (3.16). Let us now move on to a similar case study done for importance
sampling.
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3.3.2 Variance of importance sampling for a pure product
state

We consider here without loss of generality the𝑁−qubit pure product state 𝜌 = |0⟩⟨0|⊗𝑁
and random unitaries 𝑈 =

⨂︀𝑁
𝑖=1 𝑈𝑖 sampled from the importance sampling dis-

tribution 𝑝(𝑈) = 𝑝IS(𝑈) = [𝑋2(𝑈)]IS∫︀
[𝑋2(𝑈)]IS𝑑𝑈

. In particular, to find the optimal vari-
ance scaling for importance sampling, we consider here a perfect sampler given by
[𝑋2(𝑈)]IS = 𝑋2(𝑈). We firstly note that we can express 𝑋2(𝑈) as

𝑋2(𝑈) = Tr
(︀
𝑂(𝑈𝜌𝑈 †)⊗2

)︀
=

1

2𝑁

𝑁∏︁
𝑖=1

Tr
(︁
(1𝑖 ⊗ 1𝑖 + 3𝑍𝑖 ⊗ 𝑍𝑖)(𝑈𝑖 |0⟩⟨0|𝑈 †

𝑖 )
⊗2
)︁

=
1

2𝑁

𝑁∏︁
𝑖=1

(︁
1 + 3 ⟨0|𝑈 †

𝑖 𝑍𝑖𝑈𝑖 |0⟩2
)︁
. (3.28)

In a similar manner as done for the uniform sampling case in the previous section,
we would like to compute the function Γ(𝑘) = E𝑝(𝑈)[Γ

(𝑘)(𝑈)] =
∫︀
Γ(𝑘)(𝑈)𝑝(𝑈)𝑑𝑈 . We

have, replacing the expression of the importance sampling distribution in Eq. (3.21),

Γ(𝑘)(𝑈) =

[︂∫︁
𝑋2(𝑈)𝑑𝑈

]︂2 ∏︀𝑁
𝑖=1 Tr

(︁
𝑂

(𝑘)
𝑖 (𝑈𝑖 |0⟩⟨0|𝑈 †

𝑖 )
⊗𝑘
)︁

𝑋2(𝑈)2
. (3.29)

We note that for a pure product state that is considered here
∫︀
𝑋2(𝑈)𝑑𝑈 = 𝑝2 = 1.

Borrowing the notations and definitions that were introduced in the previous sub-
section, we can compute the terms Γ(𝑘) by performing the Haar integrals for each
qubit. This results in

Γ(2) =

∫︁
Γ(2)(𝑈)𝑋2(𝑈)𝑑𝑈 =

[︂
1

4

∫︁ 1

−1

𝑑𝑧
10 + 6 𝑧2

1 + 3 𝑧2

]︂𝑁
=

(︂
1 +

4𝜋

3
√
3

)︂𝑁
Γ(3) =

∫︁
Γ(3)(𝑈)𝑋2(𝑈)𝑑𝑈 =

[︂
1

4

∫︁ 1

−1

𝑑𝑧
(1 + 15 𝑧2)

1 + 3 𝑧2

]︂𝑁
=

(︂
5

2
− 2𝜋

3
√
3

)︂𝑁
Γ(4) =

∫︁
Γ(4)(𝑈)𝑋2(𝑈)𝑑𝑈 =

[︂
1

4

∫︁ 1

−1

𝑑𝑧
(1 + 3 𝑧2)2

1 + 3 𝑧2

]︂𝑁
= 1𝑁 .

We can then summarize our findings as follows

Lemma 2 (Importance sampling with perfect sampler). Consider a 𝑁−qubit pure
product state 𝜌 and local random unitaries 𝑈 =

⨂︀𝑁
𝑖=1 𝑈𝑖 sampled from an impor-

tance sampling distribution 𝑝(𝑈) = 𝑝IS(𝑈) =
𝑋2(𝑈)∫︀
𝑋2(𝑈)𝑑𝑈

according to the Haar mea-
sure. Then, we find

Γ(4) = 1𝑁 ; Γ(3) = 𝛼𝑁 ; Γ(2) = 𝛽𝑁 (3.30)

with 𝛼 = 5
2
− 2𝜋

3
√
3
≈ 1.29, and 𝛽 = 1 + 4𝜋

3
√
3
≈ 3.42.

The analytical expressions derived in Lemma. 1 and Lemma. 2 show that in the
case of importance sampling, the Γ(𝑘) terms for 𝑘 = 3, 4 have reduced exponen-
tials as a function of system size compared to that of uniform sampling for a pure
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product state. As the variance can be directly related to the statistical error of the
estimation of the purity, we can concur that the number of measurements for impor-
tance sampling will scale more favourably in comparison to the uniform sampling.
To highlight this explicitly we can use our analytical calculations presented here to
understand the scaling of the number of measurements as a function of the system
size 𝑁 . For a given value of statistical error ℰ (which we define in this case by the
relation Std[𝑝2] =

√︀
𝜋
2
ℰ), we can extract analytically the optimal required number

of measurements 𝑁𝑈𝑁𝑀 by using Eq. (3.16) in the case of uniform and importance
sampling.

Figure 3.2: Measurement budget scaling for product states — Panel (a) for uniform and (b) for
importance sampling, show the required number of measurements for different accuracy regimes
(in function of ℰ) for different system-sizes 𝑁 . The black dashed line is a guide ∝ 2𝑎𝑁 for the
asymptotic scaling in the limit ℰ → 0, with 𝑎 = 0.92 for uniform sampling and 𝑎 = 0.37 for
importance sampling.

Our results illustrated in Fig. 3.2(a-b) show that the required number of measure-
ments scales as 2𝑎𝑁 . Additionally, we confirm the existence of two distinct regimes
for importance sampling: For a threshold value of 𝑁 ≤ 𝑁𝑐, the scaling for impor-
tance sampling is greatly reduced with an associated exponent 𝑎 = 0.37. When
𝑁 > 𝑁𝑐, we observe a scaling exponent of 𝑎 = 0.88. We can relate the observation
of these two regimes to the dominance of Γ(𝑘) terms in Lemma. 2. When 𝑁 < 𝑁𝑐,
the terms Γ(𝑘) for 𝑘 = 3, 4 are dominant, while 𝑁 > 𝑁𝑐 is mainly dominated by
larger value of Γ(2) in the asymptotic limit. Moreover, we do not observe this feature
in the case of uniform sampling that has a constant scaling exponent of 𝑎 = 0.92.
This behaviour shows that the relevant regime 𝑁 < 𝑁𝑐 increases as a function of
the inverse of the statistical error ℰ . This means that importance sampling provides
striking performance to evaluate the purity in the high accuracy regime (ℰ → 0) in
comparison to uniform sampling.

In order to confirm and complement our analytical studies we shall now provide
numerical evidence of the same for different states.

3.4 Numerical study and performance highlights
In this section, we shall complement our analytical findings of Lemma. 1 and

Lemma. 2 by numerical simulations of the randomized measurement protocol in
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order to gauge the performance of importance sampling compared to uniform sam-
pling. In particular, we shall study different states ranging from product states,
GHZ states, random states and also entangled state produced in a quantum simu-
lation experiment [11] along with a case study of the experiment in [111]. We assess
the performance of the importance sampling with respect to uniform sampling by
computing the average statistical error which is given by ℰ = |𝑝2 − 𝑝2|/𝑝2, where 𝑝2
is the true value of the purity of the quantum state of interest and 𝑝2 is an estima-
tion either provided by importance sampling (using Eq. (3.10)) or uniform sampling
(using Eq. (2.34)). The statistical error ℰ in the following case studies is computed
by averaging ( · ) over 100 independently simulated experimental runs of the RM
protocol.

3.4.1 Estimation with perfect sampler

We start by simulating the RM protocol for a𝑁−qubit pure product state 𝜌 = |0⟩⟨0|⊗𝑁 .
Here to understand the optimal performance provided by importance sampling, we
consider the approximate state to model perfectly the experimental state, i.e 𝜌 = 𝜎.
So we sample random unitaries from the ideal theory state, i.e 𝑝IS(𝑈) = 𝑋2(𝑈)∫︀

𝑋2(𝑈)𝑑𝑈
,

where we take [𝑋2(𝑈)]IS = 𝑋2(𝑈). For our first set of numerical simulations, we
simulate the randomized measurements using various different values of the number
of unitaries 𝑁𝑈 and the corresponding bit-string measurements 𝑁𝑀 . From these
simulations, we extract the minimal measurement budget 𝑀 by finding numerically
the best combination of 𝑁𝑈 and 𝑁𝑀 to obtain a fixed level of statistical error ℰ . In
particular, as mentioned earlier, for importance sampling done from a perfect sam-
pler ([𝑋2(𝑈)]IS = 𝑋2(𝑈)), the optimal measurement budget is obtained for 𝑁𝑈 = 1

and 𝑁𝑀 ≫ 1 as from Eq. (3.13), we have 𝑝2 =
(︀∫︀

𝑋2(𝑈)𝑑𝑈
)︀ 𝑋̂2(𝑈(1))

𝑋2(𝑈(1))
= 𝑝2

𝑋̂2(𝑈(1))

𝑋2(𝑈(1))
.

In this limit of 𝑁𝑀 ≫ 1: 𝑋̂2(𝑈(1))

𝑋2(𝑈(1))
∼ 1 and thus 𝑝2 is close to the value of 𝑝2.

Figure 3.3: Statistical error scaling for product states — Panel (a-b) shows the scaling of the total
required number of measurements 𝑁𝑈𝑁𝑀 as a function of the system-size 𝑁 for product states to
reach a given value of the statistical error ℰ = 0.1 (for panel (a)) and ℰ = 0.05 (for panel (b)).
The number of measurements scale as 2𝑏+𝑎𝑁 .

Fig. 3.3(a-b) show the optimal budget 𝑁𝑈𝑁𝑀 as a function of the system-size
for two different values of ℰ . We have plotted the estimate of the purity in blue and
orange for uniform and importance sampling respectively. The circles describe the
numerical simulations and the cross the analytical prediction as shown in the pre-
vious section. In general, the number of measurements 𝑁𝑈𝑁𝑀 scales exponentially
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2𝑏+𝑎𝑁 as a function of the system-size 𝑁 for both the sampling methods. Interest-
ingly, we observe that importance sampling provides a reduced exponent 𝑎 ≈ 0.65
in comparison to uniform sampling which has 𝑎 ≈ 0.93. Additionally, the prefactor
2𝑏 is always reduced for importance sampling with respect to uniform sampling.

Figure 3.4: Statistical error scaling for GHZ states — Panels (a-b) show the scaling of the total
number of measurements 𝑁𝑈𝑁𝑀 as a function of the system-size for a fixed error of ℰ = 0.1 and
ℰ = 0.05 in panels (a) and (b) respectively. We observe, in general, a reduced exponent for the
measurement scaling for importance sampling in comparison to uniform sampling.

Moving to the case where we consider entangled GHZ states |𝜓(𝑁)
GHZ⟩ = (|0⟩⊗𝑁 +

|1⟩⊗𝑁)/
√
2, we observe as shown in Fig. 3.4 similar performances from our numerical

simulations with importance sampling (in orange) providing improved estimations
compared to uniform sampling (in blue) as given by their respective scaling expo-
nents.

Random states — Additionally, we also simulate the RM protocol for 𝑁−qubit
random states defined as |𝜓⟩ = 𝑈CUE |0⟩⊗𝑁 where 𝑈CUE is a unitary sampled from
the CUE of dimension 𝑑 = 2𝑁 . We again perform importance sampling from a
perfect sampler [𝑋2(𝑈)]IS = 𝑋2(𝑈). In Fig. 3.5(a-b), we plot the extracted optimal
measurement budget 𝑀 = 𝑁𝑈𝑁𝑀 for a fixed level of statistical error (in blue for
uniform and orange for importance sampling respecitvely). We observe that impor-
tance sampling does not provide additional scaling improvements with respect to the
system size 𝑁 . We only gain in terms of the pre-factor 2𝑏 that reduces the number of
measurements when compared with uniform sampling. One of the potential reasons
of this behaviour could be due to a lack of substantial peaks in the multi-variate
function 𝑋2(𝑈) around which importance sampling could prioritize the unitaries.

3.4.2 Machine-learning sampling for product and GHZ states

In this section, we demonstrate importance sampling performed from a trained
machine-learning (ML) model that samples unitaries from the distribution 𝑝IS(𝑈).
We consider a collection of classical data obtained by performing randomized mea-
surements without shot-noise, i.e we take 𝑁𝑀 → ∞. The neural network model is
trained by feeding the 2𝑁 input angles corresponding to the random unitary 𝑈 and
the output being its associated function 𝑋2(𝑈). For product state, we easily obtain
a trained deep neural network (DNN) that fits the function 𝑋2(𝑈) with a mean
absolute error below five percent. For this task, we use optimized routines of the li-
brary TensorFlow-Keras for which we take a total of 𝑁samples = 105 training samples.
Further details on the training parameters are provided in [99, Appendix. C] for the
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Figure 3.5: Statistical error scaling for random states — Panels (a-b) show the scaling of the total
number of measurements 𝑁𝑈𝑁𝑀 as a function of the system-size for a fixed error of ℰ = 0.1 and
ℰ = 0.05 in panels (a) and (b) respectively.

interested readers. In the case of the GHZ state |𝜓(𝑁)
GHZ⟩, we train the DNN model

to learn the intrinsic correlations present in it so that the neural network model is
able to sample the required correlated random unitaries that are more effective than
the uniform ones. Once we obtain the model with an adequate fit below the error
threshold of choice, we save them and re-use the same for later sampling task.

Figure 3.6: Error scaling as function of the number of unitaries — Panel (a) for 10-qubit product
state and (b) for 5-qubit GHZ state, show the statistical error scaling as a function of the applied
number unitaries 𝑁𝑈 . The importance sampling is performed from a trained DNN model. We fix
the number of measurements to be 𝑁𝑀 = 103.

Error scaling with the number of unitaries — We illustrate the result of the sta-
tistical error scaling for both the sampling methods as a function of the number of
unitaries for a 10 qubit product state in Fig. 3.6(a) and a 5 qubit GHZ state in
Fig. 3.6(b). Though errors in both cases scale as 1/

√
𝑁𝑈 as dictated by standard

Monte-Carlo error decay, we see that importance sampling out-performs standard
uniform sampling by decreasing the statistical errors effectively by a factor of five.
As shown, this implies that to achieve a fixed accuracy in terms of ℰ , importance
sampling requires less measurement compared to standard uniform sampling.
Error scaling with the number of projective measurements — Additionally, perform-
ing similar simulations for both product and GHZ states for fixed values of 𝑁𝑈 , we
can see the behavior of the error as a function of the number of measurements 𝑁𝑀 .
We plot in Fig. 3.7(a-d), the average statistical error in function of re-scaled units of
𝑁𝑀/2

𝑎𝑁 , where 𝑎 is adjusted to make all the points for different system sizes, col-
lapse onto a single curve. As the plots suggest, the scaling exponent for importance
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Figure 3.7: Error scaling as function of the number of measurements — Panel (a-b) for product
state with 𝑁𝑈 = 500 and (c-d) GHZ state with 𝑁𝑈 = 200 show the statistical error scaling as a
function the rescaled units 𝑁𝑀/2𝑎𝑁 . For panels (a) and (c), the unitaries are sampled uniformly
and for panel (b) and (d) the unitaries are sampled from the trained DNN model.

sampling is roughly reduced by half when compared to uniform sampling. It is im-
portant to note, compared to the previous case, that here importance sampling not
only reduces the required number of unitaries 𝑁𝑈 but also provides a reduction to
the number of measurements 𝑁𝑀 . This is due to the fact that the unitaries sampled
according to the importance sampling distribution are chosen close to the maxima
of the multi-variate function 𝑋2(𝑈) where fluctuations due to shot-noise are smaller
compared to other regions of the function.

3.4.3 Sampling from MPS approximations

We now move to an example of an entangled state prepared in a quantum simulation
experiment that implemented the randomized measurements protocol for the first
time [11]. This experimental state was realized on a trapped-ion quantum simulator,
by quenching an initial 𝑁−qubit Néel state |𝜓0⟩ = |01⟩⊗𝑁/2 with a long-range
𝐻𝑋𝑌 Hamiltonian for different amounts of time. The 10 qubit state realized after
quenching for a total of 𝑡 = 5 ms had an experimental purity value 𝑝2 ≈ 0.62
which indicates that the realized state was not pure and suffered from decoherence.
We consider here a scenario where we would like to perform importance sampling
without the knowledge of the decoherence parameter in a given experiment. This
could be due to a lack of knowledge on all the decoherence mechanisms affecting
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the quantum device. To perform importance sampling we consider two methods.
First, we train our neural network model by considering samples taken from the
perfect pure state at 𝑡 = 5 ms by modelling classically the same experiment without
decoherence. Second, we use the more physically inspired approach to create an
approximation of the prepared state using a MPS. From the MPS we can build the
importance sampling function as described in the earlier sections.

Figure 3.8: Purity estimation using importance sampling from ML and MPS for entangled 10-qubit
state — Panel (a) shows the statistical error scaling as a function of the number of unitaries 𝑁𝑈

for a fixed value of 𝑁𝑀 = 7500 for uniform sampling (blue) and importance sampling done with a
CNN model (orange) and an MPS approximation of the state of bond-dimension 𝜒 = 15 (green).
Panel (b) highlights the error reduction as a function of the bond dimension 𝜒 used of the MPS
sampler for a fixed measurement budget of 𝑁𝑈 = 5 and 𝑁𝑀 = 75000.

Fig. 3.8(a-b) shows the result of the numerical investigation. In particular, for
the neural network model that we use in this case, we specifically consider training
a convolutional neural network (CNN) that can potentially capture some quasi-
translational invariant features of the function. We remark from Fig. 3.8(a) that
the CNN model outperforms the uniform sampling. The MPS state |𝜓𝜒⟩ for 𝜒 =
15 with a fidelity ⟨𝜓𝜒| 𝜌 |𝜓𝜒⟩ = 0.7 compared to the experimental state 𝜌 already
outperforms the ML sampling. Interestingly, when we plot the statistical error for
a fixed measurement budget (𝑁𝑈𝑁𝑀) as a function of the bond dimension 𝜒 of the
MPS (Fig. 3.8(b)), we observe that as the MPS starts to describe the entanglement
content of the experimental state more accurately with an increase of the bond-
dimension, the statistical errors reduce. This is due to the fact that the approximate
state 𝜎 approaches 𝜌 when 𝜒 is increased. We also observe an interesting trade-off
between classical and quantum resources involved. To obtain a better importance
sampler that enables the reduction of the measurement budget on the experimental
side requires increasing the bond-dimension that uses more classical resources and
run-time.

Optimization for mixed state sub-systems — Additionally, we show that im-
portance sampling can be implemented to probe sub-systems of interest of a quan-
tum state 𝜌. This, in particular, is relevant to effectively establish the presence
of entanglement in the system as done in [53, 11] or to measure for instance the
topological entanglement entropy expressed as a function of Rényi entropies of sub-
partitions [57, 111]. We shall perform a case study on the latter experiment in the
next section to illustrate a strategy of importance sampling to measure multiple
sub-system purities. Importance sampling becomes more relevant in these scenarios
as the probabilities obtained from the bit-string measurements on a highly mixed
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state takes values in a much reduced interval [30]. Here we will be interested to
probe the purity of the half-system reduced state 𝜌𝐴 = Tr𝐵(𝜌) of the entangled
quenched state discussed previously [11]. In particular, we shall effectively consider
a half-system prepared at 𝑡 = 5ms and 𝑡 = 7.5ms for a total system of 10 and 20
qubits respectively. For the 10 qubit system, the half-system purity was found to
be Tr(𝜌2𝐴) = 0.16. We trained the CNN model to build the fit function from sam-
ples obtained from the 5-qubit half-system. In the case of the MPS, we considered
𝜌red = Tr𝐵(|𝜓𝜒⟩⟨𝜓𝜒|) with 𝜒 = 15 as the approximation to the reduced experimental
state for importance sampling.

Figure 3.9: Purity estimation using importance sampling from ML and MPS constructed from
mixed states — Panels (a-b) show the average statistical error ℰ for a 5-qubit reduced state taken
from a total system of 10 qubits. Panel (a) shows the error scaling as a function of 𝑁𝑈 for
importance sampling done from a CNN model and an MPS approximation of bond-dimension
𝜒 = 15. We fix the value of 𝑁𝑀 = 7500. Panel (b) shows the estimation error as a function of
the bond-dimension of the MPS approximation used. We fix 𝑁𝑈 = 5 and 𝑁𝑀 = 7500. Panel (c)
illustrates the statistical error as a function of 𝜒 for a 10-qubit reduced state taken from a total
system of 20 qubits for 𝑁𝑈 = 5 and 𝑁𝑀 = 105.

Fig. 3.9(a) illustrates similar results where statistical errors are reduced by im-
portance sampling. Again we observe the MPS approximation outperforming our
trained CNN model for the mixed state. In Fig. 3.9(b) we show the decay of the sta-
tistical errors as a function of varying bond-dimension 𝜒. In the case of the 10-qubit
half-system, we considered the full 20-qubit state 𝜌 = |𝜓⟩⟨𝜓| to be a pure state which
was described by an MPS of bond-dimension 𝜒 = 256. This reduced state had a
purity value of Tr(𝜌2𝐴) = 0.103. To perform importance sampling we consider states
of the form 𝜌red = Tr𝐵(|𝜓𝜒⟩⟨𝜓𝜒|) for various values of the bond-dimension 𝜒. We
show in Fig. 3.9(c), the reduction of error as a function of the MPS approximation
considered for importance sampling. The MPS representation with 𝜒 = 24 having a
fidelity ℱ(𝜌𝐴, 𝜌red) = 0.87 performs better than the uniform sampler (second point
in Fig. 3.9(c)). As a general remark, we observe that MPS approximations are well
suited and powerful for the importance sampling task and perform better compared
to trained machine-learning models.

3.4.4 Importance sampling illustration for the toric code ex-
periment

In this section, we shall highlight the performance of importance sampling for an ex-
periment that measured the topological entanglement entropy (TEE) using random-
ized measurements [111]. The experiment prepared a 31−qubit toric code ground
state |𝐺⟩ on the Sycamore quantum processor made up of superconducting qubits.
They demonstrated the first measurement of TEE revealing topological order in
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their quantum platform. This was achieved by measuring with uniform sampling
the purity in the high accuracy regime of partitions up to 9 qubits. In our case
study, we intend to illustrate the estimation of the TEE for a 9 qubit sub-partition
for both uniform and importance sampling and gauge their performance.

We consider the 9-qubit partition to be divided into 3 different sub-systems 𝐴,
𝐵 and 𝐶 respectively as shown in Fig. 3.10. The TEE can be formally defined in
terms of the sub-system second Rényi entropies as [75, 57]

𝑆topo
2 = 𝑆

(𝐴)
2 + 𝑆

(𝐵)
2 + 𝑆

(𝐶)
2 − 𝑆

(𝐴𝐵)
2 − 𝑆

(𝐵𝐶)
2 − 𝑆

(𝐴𝐶)
2 + 𝑆

(𝐴𝐵𝐶)
2

= − log
[𝑝2]𝐴 + [𝑝2]𝐵 + [𝑝2]𝐶 + [𝑝2]𝐴𝐵𝐶

[𝑝2]𝐴𝐵 + [𝑝2]𝐵𝐶 + [𝑝2]𝐴𝐶
(3.31)

where 𝐴𝐵 indicates the union of the sub-systems 𝐴 and 𝐵 and [𝑝2]Γ = Tr(𝜌2Γ) is
the purity of the sub-system Γ. The original experiment implemented local haar
random unitaries that were sampled uniformly to evaluate all sub-system purities.
The full state being entangled comprises of sub-systems that are mixed. The to-
tal measurement budget used to estimate the TEE for a 9 qubit sub-system was
𝑀 = 𝑁𝑈𝑁𝑀 = 1000× 10000.

As the experiment a priori intends to realize the ground state of the toric code,
we can use this available knowledge to our benefit in order to perform importance
sampling of the local random unitaries. We obtain the reduced density matrix of
the 9-qubit partition by modelling the full ground state of the toric code using a
MPS [113]. From this modelled state, we can obtain the theoretical 9-qubit reduced
state 𝜌𝐴𝐵𝐶 tracing over the remaining set of qubits. This state allows us to calculate
the ideal values of the purities. We find that the sub-system consisting of 3 qubits
have a purity of [𝑝2]𝐴 = [𝑝2]𝐵 = [𝑝2]𝐶 = 0.125, while the purities of the 6 qubit
sub-systems 𝐴𝐵, 𝐴𝐶 and 𝐵𝐶 are given as [𝑝2]𝐴𝐵 = 0.0156, [𝑝2]𝐴𝐶 = 0.0312 and
[𝑝2]𝐵𝐶 = 0.0624 respectively. The full 9-qubit reduced state has a purity of [𝑝2]𝐴𝐵𝐶 =
0.0312. From these values of the purities, we have 𝑆topo

2 /ln(2) = −1 as measured
in Ref. [111]. As we notice from the expression of Eq. (3.31), we can obtain the
estimation of the purity for each sub-system by sampling the appropriate unitaries
from the right distribution defined in terms of the state of the sub-system. Reducing
the errors via importance sampling in the purity estimation of each of these highly
mixed sub-systems will contribute in decreasing the statistical error in the estimation
of 𝑆topo

2 .
We consider here importance sampling done from a perfect sampler, i.e [𝑋2(𝑈)]IS =

𝑋2(𝑈). Importantly, we select unitaries from the ideal importance sampling distri-
bution 𝑋2(𝑈) that depends on the sub-system of interest in order to provide optimal
estimation of its purity. Hence to evaluate 𝑆topo

2 effectively, we have to adapt the
distribution function appropriately for all the sub-systems of interest as we shall
explain next. In order to evaluate the purity of each sub-system with reduced error
and provide an effective method to perform importance sampling, we propose to
divide the full experiment in 4 batch experiments as shown in Fig. 3.10. For each
batch 𝑏 = 1, . . . , 4, we perform a total of 𝑀 (𝑏) = 𝑁

(𝑏)
𝑈 𝑁

(𝑏)
𝑀 measurements. This gives

the total number of measurements done in the full experiment as 𝑀 =
∑︀

𝑏𝑀
(𝑏).

We begin by the pre-processing step to prepare the local random unitaries for each
batch experiment. As shown in Fig. 3.10, the four batches of experiments consist of
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Figure 3.10: Strategy to perform importance sampling for the toric code experiment [111] on the
sycamore quantum processor [1] — The figure describes the method to implement importance
sampling in order measure 𝑆topo

2 . We divide the full experiment in total of four batch experiments.
In each batch we sample unitaries according to the appropriate distributions as shown in the figure
in order to estimate the purities of the concerned sub-systems. Combining all the estimations of
the sub-system purities enables us to provide the importance sampled estimate of 𝑆topo

2 .

sampling unitaries from the following distribution:

[𝑝(𝑈)]Γ =
[𝑋2(𝑈)]Γ∫︀
[𝑋2(𝑈)]Γ𝑑𝑈

and [𝑝(𝑈)]Γ =
[𝑋2(𝑈)]Γ∫︀
[𝑋2(𝑈)]Γ𝑑𝑈

(3.32)

where Γ ∈ {𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐴𝐵𝐶} and Γ describes the targeted sub-system and its
complement.2 Each of the functions [𝑋2(𝑈)]Γ (or [𝑋2(𝑈)]Γ) can be evaluated using
the knowledge of sub-system density matrix 𝜌Γ (or 𝜌Γ) as given in Eq. (2.28). We
additionally remark that as we know the theoretical state, we can calculate the ideal
value of the purity [𝑝2]Γ =

∫︀
[𝑋2(𝑈)]Γ𝑑𝑈 . Lastly, from each batch experiment, we

get the estimated purities [𝑝2]Γ and [𝑝2]Γ using Eq. (3.10).
We now present our results where we numerically simulated the randomized

measurement protocol for the 9-qubit sub-system to estimate the TEE given by
𝑆topo
2 . To gauge the performance, we compute the average statistical error ℰ =

|𝑆topo
2 − 𝑆topo

2 |/𝑆topo
2 over 100 simulated experimental runs of protocol. We use in

the case of uniform sampling the same measurement budget as done in the real
experiment [111]. For importance sampling, we follow the procedure as shown in
Fig. 3.10 and study two possible choices of measurement budget of the batch exper-
iments. This aims at making a choice between having the same accuracy as uniform
sampling with reduced measurements or an increased accuracy with similar number
of measurements as performed in uniform sampling. In the first proposal, that we
dub ‘IS1’, we use 𝑀 (𝑏) = 𝑁

(𝑏)
𝑈 ×𝑁 (𝑏)

𝑀 = 5×20000 for the first three batch experiments
𝑏 = 1, . . . , 3. In the last batch experiment that evaluates the purity of the full 9 qubit
sub-system, we use 𝑀 (4) = 𝑁

(4)
𝑈 ×𝑁

(4)
𝑀 = 20× 25000. For the second proposal ‘IS2’,

we increase the number of unitaries and use 𝑀 (𝑏) = 𝑁
(𝑏)
𝑈 ×𝑁 (𝑏)

𝑀 = 50×20000 for the

2When Γ = 𝐴𝐵𝐶, the complementary sub-system Γ is empty.
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first three batch experiments 𝑏 = 1, . . . , 3 and increase the number of measurements
for the last batch experiment 𝑀 (4) = 𝑁

(4)
𝑈 ×𝑁 (4)

𝑀 = 20×105. The total measurement
budget for ‘IS1’ and ‘IS2’ is given by 𝑀 = 8×105 and 𝑀 = 5×106 respectively. We
note that both the importance sampling measurement budgets are less compared
to the total measurement budget done in the case of uniform sampling. Now, we
summarize our findings in the following table below:

[𝑝2]𝐴 [𝑝2]𝐵 [𝑝2]𝐶 [𝑝2]𝐴𝐵 [𝑝2]𝐴𝐶 [𝑝2]𝐵𝐶 [𝑝2]𝐴𝐵𝐶 𝑆topo
2

uniform 0.011% 0.012% 0.013% 0.37% 4.3% 4.25% 4.46% 9.67%

IS1 0.073% 0.078% 0.081% 2.51% 2.58% 3.18% 4.5% 9.74%

IS2 0.027% 0.025% 0.022% 0.76% 0.77% 1.05% 1.4% 3.04%

Table 3.1: Performance highlight — The above table illustrates the average statistical errors for
evaluating the purities of each sub-system of the 9 qubit reduced state of |𝐺⟩ and its associated
TEE 𝑆topo

2 .

We firstly observe that the 3-qubit sub-system purities are well estimated with
uniform sampling as this state is completely mixed (𝑝2 = 1/2𝑁). The multi-variable
function [𝑋2(𝑈)]Γ with Γ ∈ {𝐴, 𝐵, 𝐶} presents a flat landscape without peak struc-
ture. Thus importance sampling does not provide additional enhancement of the
estimation. Importantly, we remark that in the case of ‘IS1’, the average statistical
error of TEE is comparable to that of uniform sampling while the measurement
budget is reduced by a factor of at least 10 with importance sampling (𝑀 = 107 for
uniform compared to 𝑀 ∼ 106 for IS1). In the second scenario with ‘IS2’, using only
half the amount of total measurements performed in the experiment (𝑀 = 5× 106

for IS2 compared to 𝑀 = 107 for uniform) we obtain a three-fold decrease of the
statistical error to evaluate 𝑆topo

2 . Thus as we demonstrate again both the mea-
surement cost and estimation accuracy are reduced for importance sampling when
compared to uniform sampling. We note additionally that this proposed strategy
can be implemented in the experiment, in the case where the experimental state
is different than the classically modelled state used for importance sampling due
to unknown decoherence effects (further numerically experiments concerning this
scenario are presented in Chapter. 6).

3.5 Conclusion
In this chapter we proposed a new method taking advantage of importance sam-

pling to optimize the randomized measurement protocol to estimate the purity of
an unknown quantum state. It involves a procedure to parameterize the applied
random unitaries, and a hybrid method to combine classical computational power
with a quantum processor. We take advantage of the available approximate prior
knowledge during the pre-processing stage of the protocol to select the best unitaries
to perform randomized measurements in the experiment. The sampler to select the
‘important’ local unitaries can be built using classical representations such as tensor-
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networks, of the underlying quantum state or training machine learning models using
experimental data registered from prior experiments. From the various numerical
case studies that we performed starting with product state to experimental states
prepared in different quantum platforms, we observe that importance sampling al-
lows us to significantly reduce the required number of measurements to estimate
the purity for a fixed level of statistical error. The effective distribution of the
measurement budget for implementing importance sampling consists of applying
few unitaries 𝑁𝑈 ∼ 𝒪(10) and performing a large number of readout measurements
𝑁𝑀 ≫ 1. Our approach introduced here can be readily used on current experimental
devices as well extend to probe in a similar fashion other quantum properties of in-
terest such as fidelities [32], quantum scrambling [125] and topological invariants [33,
17] using randomized measurements.

As an additional remark, the importance sampling protocol is a powerful method
that demonstrates the usefulness of using prior knowledge of the experimental state
to boost estimation of the purity. Its only potential down side is that the right
choice of the unitaries for the experiment are made prior to the data acquisition
and depend on the (sub-)systems of interest to effectively enhance its estimation.
This implies that it does not allow us to obtain enhanced estimation of the purity
for all sub-systems of interest from the same experimental data. Additionally, this
method currently only optimizes the estimation of purities (or state overlaps) in the
framework of the RM toolbox. Can we extend these methods to reduce statistical
errors in the estimation of other quantities of interest (other than the purity) that
can be for example be accessed using the classical shadow formalism [64]? We shall
address this challenge in Chapter. 6 of the manuscript, where we will introduce a new
method that we call common randomized measurements to boost the estimation of
the quantities of interest without involving the pre-processing step. In sharp contrast
to the importance sampling method, the common randomized measurement protocol
shall apply unitaries that are sampled uniformly in the experiment. With the same
spirit of using approximate prior knowledge on the experimentally realized quantum
state, we obtain enhanced estimations of quantum properties that can be accessed
using the randomized measurement data solely through an effective post-processing
method that we will detail in Chapter. 6. This method shall be applicable to reduce
statistical errors for a wider class of quantities other than the purity accessed by
RM data-set and can be readily tested on current experimental data.

In the upcoming chapters, we shall switch our focus towards the works that
concern mainly to the classical shadow formalism. In particular, the next chapter
shall propose a novel method to measure the quantum Fisher information using
the RM toolbox and experimentally validate this method by measuring the QFI
on a superconducting quantum processor. We shall also provide generalizations
to existing performance guarantees for general quantities of interest that can be
measured with the RM toolbox.
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4
Estimation of the quantum Fisher
information with classical shadows

This chapter is based on two published works: Aniket Rath, Cyril Branciard, Anna Minguzzi, and
Benoît Vermersch. Quantum Fisher information from randomized measurements. Phys. Rev.
Lett., 127:260501, Dec 2021 (Ref. [100]) and Vittorio Vitale, Aniket Rath, Petar Jurcevic, Andreas
Elben, Cyril Branciard, and Benoît Vermersch. Estimation of the quantum Fisher information on
a quantum processor, arXiv:2307.16882, 2023 (Ref. [129]).
We present an operative method to estimate the quantum Fisher information (QFI) using a con-
verging series of polynomials that can be estimated using the RM toolbox. This work is one of
the central projects of my thesis. I have contributed to all the parts of the work (writing of the
manuscript, analytical calculations, numerical investigations). The analytical calculations were
done jointly with Benoît Vermersch and Cyril Branciard. In the later part of this chapter, we
provide experimental measurements of the QFI on a quantum platform as given in Ref. [129] in
which I developed the efficient numerical tools to analyze and extract relevant entanglement prop-
erties from the experimental data along with Vittorio Vitale and contributed to the writing of the
manuscript along with other coauthors.
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4.1. Construction of the lower bounds of QFI

As we have seen from Chapter. 1, the quantum Fisher information (QFI) is a
prime example of a quantity that can certify for some applications, a potential quan-
tum advantage compared to its classical counterparts [94]. For example, it is the
central quantity related to quantum metrology [94, 93] as it validates states that have
the adequate quantum resource to provide enhanced metrological sensitivities [94,
93]. Importantly, the quantum resource responsible in achieving improved metro-
logical sensitivities consists of multipartite entanglement. The QFI additionally
plays a significant role in highlighting various other quantum phenomena associated
with multipartite entanglement in quantum many-body physics. It reveals universal
properties of entanglement during phase transitions at finite temperature [137] or
the role of multipartite entanglement in topological phase transition [92].

The current challenge that we address in this chapter is to measure the QFI for
an unknown quantum state prepared on the quantum hardware comprised of qubits.
The difficulty to estimate QFI arises from the fact that it is a non-linear function of
the density matrix 𝜌 and can not be cast into an observable that can be measured
easily in experiments. Recall from Eq. (1.22) that the QFI is expressed in function
of the eigenvalues of the density matrix 𝜌 =

∑︀
𝑖 𝜆𝑖 |𝑖⟩⟨𝑖| and an Hermitian operator

𝒜 as
𝐹𝑄 = 2

∑︁
(𝑖,𝑗),𝜆𝑖+𝜆𝑗>0

(𝜆𝑖 − 𝜆𝑗)
2

𝜆𝑖 + 𝜆𝑗
| ⟨𝑖| 𝒜 |𝑗⟩ |2. (4.1)

From this expression, we see that the only method that can estimate the QFI in a
state-agnostic manner seems to be quantum state tomography (QST). As we have
seen, this method has an expensive cost in terms of the required number of measure-
ments to be executed on the quantum platform [54]. In this chapter, we will provide
an alternate method to measure the QFI by constructing a polynomial series of the
density matrix in the form of lower bounds that converge to the QFI. Each of the
lower bounds can be measured in a state-agnostic manner using the classical shadow
formalism [64] on current experimental devices with the same generated random-
ized measurement data. We highlight its convergence features along with rigorous
sample complexity identities to estimate the required number of measurements to
estimate them with a given accuracy and confidence interval. Lastly, we also de-
scribe the associated experimental estimation of the QFI via the RM toolbox for
quantum states prepared on a superconducting quantum device.

4.1 Construction of the lower bounds of QFI
In this section, we shall introduce our systematic approach to construct the

polynomial lower bounds of the QFI. We shall provide an alternate novel expression
of the QFI and our bounds along with a convergence study of our bounds. Falling
back on the inequality of Eq. (1.23) presented in the works of [122, 67], the QFI in
particular detects the entanglement depth of a quantum state. For 𝑁 qubits with
collective spin operator 𝒜 = 1

2

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝜇 where we define 𝜎(𝑙)

𝜇 as a Pauli matrix in an
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4.1. Construction of the lower bounds of QFI

arbitrary direction 𝜇 acting on the 𝑙th spin, we find that if

𝐹𝑄 > Γ(𝑁, 𝑘) ≡
⌊︂
𝑁

𝑘

⌋︂
𝑘2 +

(︂
𝑁 −

⌊︂
𝑁

𝑘

⌋︂
𝑘

)︂2

(4.2)

implies that the state is not 𝑘−producible and thus contains an entanglement depth
of 𝑘 + 1. Lower bounds of the QFI are useful to detect multipartite entanglement
using the previous inequality. These include spin-squeezing inequalities that can
be written simply in terms of an expectation value of an operator [93, 84, 119,
2, 7, 112], multiple coherences [45] and additional non-linear lower bounds to the
QFI [104, 105, 139, 48, 3, 14]. These lower bounds however have a finite distance
with respect to the QFI that limits the optimal detection of metrologically useful
quantum states.

To construct the polynomial series of lower bounds that can be accessed by the
classical shadow formalism, the key idea that we introduced in our work is to bound
the fraction (𝜆𝑖−𝜆𝑗)2

𝜆𝑖+𝜆𝑗
in Eq. (4.1) in terms of polynomials of the eigenvalues 𝜆𝑖. We

note that a function 𝑔(𝑥) = 1/𝑥 with 𝑥 ∈ [0, 1] can be expanded using the Taylor
series as 𝑔𝑛(𝑥) =

∑︀𝑛
ℓ=0(1− 𝑥)ℓ that satisfies: For 𝑛 → ∞, 𝑔𝑛(𝑥) → 𝑔(𝑥). Similarly,

noting that the sum of eigenvalues are bounded as 0 < 𝜆𝑖 + 𝜆𝑗 ≤ 1, we have

1

𝜆𝑖 + 𝜆𝑗
=

∞∑︁
ℓ=0

(1− 𝜆𝑖 − 𝜆𝑗)
ℓ ≥

𝑛∑︁
ℓ=0

(1− 𝜆𝑖 − 𝜆𝑗)
ℓ (4.3)

for any 𝑛 ∈ N. Thus truncating the series at a finite value of 𝑛, we get the following
expression for a generic lower bound

𝐹𝑄 = 2
∑︁
𝑖,𝑗

∞∑︁
ℓ=0

(𝜆𝑖 − 𝜆𝑗)
2(1− 𝜆𝑖 − 𝜆𝑗)

ℓ| ⟨𝑖| 𝒜 |𝑗⟩ |2

≥ 2
∑︁
𝑖,𝑗

𝑛∑︁
ℓ=0

(𝜆𝑖 − 𝜆𝑗)
2(1− 𝜆𝑖 − 𝜆𝑗)

ℓ| ⟨𝑖| 𝒜 |𝑗⟩ |2 = 𝐹𝑛. (4.4)

We can see that for any quantum state 𝜌 and operator 𝒜, we have ∀𝑛 ∈ N, 𝐹𝑛+1 ≥ 𝐹𝑛
and that 𝐹𝑛 = 𝐹𝑄 when 𝑛 → ∞. In the two extreme cases when 𝜌 = |𝜓⟩⟨𝜓| is pure
or fully mixed 𝜌 = 1/2𝑁 , we have 𝐹𝑛 = 𝐹𝑄, ∀𝑛 ∈ N. In the former case we have
that 𝐹𝑄 = 𝐹𝑛 = 4

(︀
⟨𝜓| 𝒜2 |𝜓⟩ − ⟨𝜓| 𝒜 |𝜓⟩2

)︀
and in the latter 𝐹𝑄 = 𝐹𝑛 = 0. Let us

now move the discussion to the convergence of our lower bounds.

4.1.1 Convergence and other properties

In this section, we study the convergence features of the lower bounds 𝐹𝑛 for a
generic quantum state 𝜌 that is neither pure nor fully mixed. Firstly, we notice that

1

𝜆𝑖 + 𝜆𝑗
−

𝑛∑︁
ℓ=0

(1− 𝜆𝑖 − 𝜆𝑗)
ℓ =

(1− 𝜆𝑖 − 𝜆𝑗)
𝑛+1

𝜆𝑖 + 𝜆𝑗
. (4.5)

In order to understand the convergence features of our bounds, we need to study
the finite distance 𝜉𝑛 = 𝐹𝑄 − 𝐹𝑛 between our bound 𝐹𝑛 and the true value of the
QFI 𝐹𝑄. Using the previous equation, we have for any operator 𝒜

𝜉𝑛 = 𝐹𝑄 − 𝐹𝑛 = 2
∑︁

𝑖,𝑗:𝜆𝑖+𝜆𝑗>0

(𝜆𝑖 − 𝜆𝑗)
2

𝜆𝑖 + 𝜆𝑗
(1− 𝜆𝑖 − 𝜆𝑗)

𝑛+1| ⟨𝑖| 𝒜 |𝑗⟩ |2 = 𝒪
(︀
𝜁𝑛
)︀

(4.6)
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where we define 𝜁 as

max
𝑖,𝑗:𝜆𝑖+𝜆𝑗>0,𝜆𝑖 ̸=𝜆𝑗 ,⟨𝑖|𝒜|𝑗⟩≠0

(1− 𝜆𝑖 − 𝜆𝑗). (4.7)

When 𝑛 → ∞, we observe an exponential convergence of our bounds 𝐹𝑛 to 𝐹𝑄 for
any operator 𝒜.

In order to illustrate this fact concretely, let us consider a quantum state defined
as 𝜌(𝑝) = (1 − 𝑝) |𝜓⟩⟨𝜓| + 𝑝1/2𝑁 , where |𝜓⟩ is a pure state and 1/2𝑁 is the fully
mixed state. The state 𝜌(𝑝) is mixed with global depolarizing noise of strength 𝑝.
The distinct eigenvalues of 𝜌(𝑝) are 𝜆1 = (1− 𝑝) + 𝑝/2𝑁 and 𝜆2 = 𝑝/2𝑁 . We notice
that for this specific state, all non-zero terms (1−𝜆𝑖−𝜆𝑗) in Eq. (4.6) are equivalent
to 𝑝− 2𝑝/2𝑁 . With this remark, we can simplify the finite distance for 𝜌(𝑝) as

𝜉𝑛 = 2
∑︁

𝑖,𝑗:𝜆𝑖+𝜆𝑗>0

(𝜆𝑖 − 𝜆𝑗)
2

𝜆𝑖 + 𝜆𝑗
(𝑝− 2𝑝/2𝑁)𝑛+1| ⟨𝑖| 𝒜 |𝑗⟩ |2 = 𝐹𝑄(1− 1/2𝑁−1)𝑛+1𝑝𝑛+1.

(4.8)
One can see, from the above expression, the exponential convergence of the lower
bound 𝐹𝑛 to the QFI with respect to the order 𝑛 as the distance decays like
𝜉𝑛 ∝ (1− 1/2𝑁−1)𝑛+1𝑝𝑛+1. In particular, for 𝜌(𝑝), the QFI is more directly given
by [67] (replacing the eigenvalues in Eq. (4.1))

𝐹𝑄 = 4
(︀
⟨𝜓| 𝒜2 |𝜓⟩ − ⟨𝜓| 𝒜 |𝜓⟩2

)︀ (1− 𝑝)2

1− 𝑝+ 𝑝/2𝑁−1
(4.9)

Figure 4.1: Convergence of the lower bounds — Panel (a) shows the QFI (dashed line) and its
lower bounds 𝐹𝑛 as a function of the order 𝑛 (circle connected by solid lines) for a 10 qubit GHZ
state that is mixed with different levels of depolarizing noise 𝑝 (see legend). Panel (b) shows for
the same state, the exponential convergence 𝜉𝑛 ∝ (1−2−9)𝑛𝑝𝑛 for different values of 𝑝 (see legend).
Larger values of 𝑝 show a slower convergence compared to smaller one.

Let us now illustrate this convergence for 𝑁−qubit noisy GHZ states that can
be defined as 𝜌(𝑝) = (1− 𝑝)

⃒⃒⃒
𝜓

(𝑁)
GHZ

⟩⟨
𝜓

(𝑁)
GHZ

⃒⃒⃒
+ 𝑝1/2𝑁 and the operator 𝒜 =

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝑧

with |𝜓(𝑁)
GHZ⟩ = (|0⟩⊗𝑁 + |1⟩⊗𝑁)/

√
2. Fig. 4.1(a) shows the convergence of the lower

bounds to the true value of the QFI for different values of noise strength 𝑝 induced
in the pure GHZ state. Secondly, Fig. 4.1(b) highlights the finite distance 𝐹𝑄 − 𝐹𝑛
for different values of 𝑝. From these plots we observe that when the state is more
noisy (larger values of 𝑝), the convergence of the QFI is slower, so higher orders of
the lower bounds need to be incorporated in order to estimate the value of the QFI.
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4.2. Protocol to measure QFI and its error analysis in qubit platforms

Meanwhile it is also worth noting from Fig. 4.1(a-b) that highly noisy states have
smaller values of QFI and turn out to be not so useful for metrological tasks.

We have shown earlier an alternate expression for the QFI in Eq. (4.4). It
involves polynomials of the eigenvalues of the density matrix 𝜌 that form a converging
series of lower bounds to the QFI. One could naively think that the introduction
of this alternate expression has no additional benefits as once again we need QST
to estimate the eigenvalues to measure QFI. In Appendix. A, we bridge this gap
and show that Eq. (4.4) can indeed be expressed firstly in terms of polynomials of
the density matrix and secondly also in terms of a multi-copy operator. Both these
forms then allow us to estimate these bounds using the classical shadow formalism.
In particular, we can explicitly express the three lowest bounds 𝐹0, 𝐹1, 𝐹2 as

𝐹0 = 4Tr
(︀
𝜌2𝒜2 − 𝜌𝒜𝜌𝒜

)︀
𝐹1 = 2𝐹0 − 4Tr

(︀
𝜌3𝒜2 − 𝜌2𝒜𝜌𝒜

)︀
𝐹2 = 3𝐹1 − 3𝐹0 + 4Tr

(︀
𝜌4𝒜2 − 𝜌2𝒜𝜌2𝒜

)︀
. (4.10)

Let us now look at the experimental protocol that needs to be implemented on the
quantum device to measure each of these lower bounds.

4.2 Protocol to measure QFI and its error analysis
in qubit platforms

In the following section, we will detail the randomized measurement protocol
that shall enable us to access the lower bounds 𝐹𝑛. In particular, we shall provide in
the subsequent sections analytical estimations on the required number of measure-
ments for a given tolerance of statistical error to estimate the lower bounds using
randomized measurements.

For concreteness, the experimental protocol is described as follows. We prepare
a 𝑁−qubit state of interest on the quantum device. We apply a set of 𝑁𝑈 local
random unitaries 𝑈 (𝑟) = 𝑈

(𝑟)
1 ⊗ · · · ⊗𝑈

(𝑟)
𝑁 with 𝑟 = 1, . . . , 𝑁𝑈 that are sampled from

the circular unitary ensemble or at least a 2−design as described earlier in Sec. 2.4.2.
These set of operations are followed by computational basis measurements that are
repeated 𝑁𝑀 times and for each applied unitary giving the bit-string outcomes
s(𝑟,𝑚) =

(︁
𝑠
(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁

)︁
with 𝑚 = 1, . . . , 𝑁𝑀 . The total number of repetitions

performed in the experiment is given by 𝑀 = 𝑁𝑈𝑁𝑀 . The data set generated by
this protocol enables us to define for a single applied unitary 𝑈 (𝑟) a classical shadow
as previously illustrated in Chapter. 2 (Eq. (2.40)) as follows [64]

𝜌(𝑟) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]𝑃 (s′|𝑈 (𝑟))𝑈 (𝑟)† |s⟩⟨s|𝑈 (𝑟) (4.11)

where 𝑃 (s′|𝑈 (𝑟)) = 1
𝑁𝑀

∑︀𝑁𝑀

𝑚=1 𝛿s′,s(𝑟,𝑚) are the Born probabilities and 𝐷 is the Ham-
ming distance. In particular, when the random unitary 𝑈 (𝑟) is followed by a single
projective measurement (𝑁𝑀 = 1), we can express the classical shadow in its more
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4.2. Protocol to measure QFI and its error analysis in qubit platforms

standard form as given in [64] (Eq. (2.44) in Chapter. 2)

𝜌(𝑟) =
𝑁⨂︁
𝑖=1

[︁
3𝑈

(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 12

]︁
. (4.12)

The classical shadows when averaged over the applied unitaries and performed mea-
surements converge to the underlying density matrix prepared in the experiment
E[𝜌(𝑟)] = 𝜌. In order to build unbiased estimators for our lower bounds using these
classical shadows, we use the U-statistics estimator [59] (Eq. (2.45) in Chapter. 2).
We first note as shown in Appendix. A (Eq. (A.8)) that the lower bound 𝐹𝑛 is
described in terms of polynomial functions of order 𝑞 ∈ [2, 𝑛 + 2] of the density
matrix. Then the approach of U-statistics [59] computes the average over all possi-
ble combinations of 𝑞 different classical shadows to estimate each polynomial order
𝑞 ∈ [2, 𝑛 + 2]. We can translate this idea explicitly to provide unbiased estimators
of the three first bounds 𝐹0, 𝐹1, 𝐹2:

𝐹0 = 4 𝛽−1
0

∑︁
𝑟1 ̸=𝑟2

Tr
(︀
𝜌(𝑟1)[𝜌(𝑟2),𝒜]𝒜

)︀
,

𝐹1 = 2𝐹0 − 4 𝛽−1
1

∑︁
𝑟1 ̸=... ̸=𝑟3

Tr
(︀
𝜌(𝑟1)𝜌(𝑟2)[𝜌(𝑟3),𝒜]𝒜

)︀
,

𝐹2 = 3𝐹1 − 3𝐹0 + 4 𝛽−1
2

∑︁
𝑟1 ̸=... ̸=𝑟4

Tr
(︀
𝜌(𝑟1)𝜌(𝑟2)[𝜌(𝑟3)𝜌(𝑟4),𝒜]𝒜

)︀
(4.13)

with 𝛽𝑗 = (𝑗 + 2)!
(︀
𝑁𝑈

𝑗+2

)︀
and where [ · , · ] denotes the commutator. Note that we

can make a suitable choice of the operator 𝒜 during the post-processing phase. For
example, in order to detect higher level of multipartite entanglement in the experi-
ment using Eq. (4.2), the choice of the collective spin operator 𝒜 =

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝜇 can be

adjusted based on the directions 𝜇 inorder to maximize the QFI. More importantly,
all the lower bounds can be accessed using the same RM data-set. The U-statistics
estimator relates the experimental data directly to our lower bounds as given in
Eq. (4.13). Additionally, we note that the computational cost to classically post-
process the lower bound increases with the order 𝑛, as the number of summands 𝛽𝑗
in the U-statistics expression increases rapidly with 𝑗. This means that estimating
𝐹2 is computationally more demanding than 𝐹1 compared to 𝐹0. The solution to
this practical problem shall be the main topic of discussion in Chapter. 5 where we
shall introduce a new framework work to tackle this problem. Finally, the finite
set of measurements 𝑀 performed in the experiment induces statistical errors in
the estimators of the lower bounds. These statistical errors play an important role
in our ability to detect and validate experimentally the entanglement depth of an
unknown quantum state with the help of the entanglement witnesses described in
Eq. (4.2). In the subsequent sections, we shall analyse analytically the statistical
errors and provide rigorous performance guarantees of our protocol to estimate the
lower bounds of arbitrary order 𝑛.

4.2.1 Error analysis of a generic multi-copy functional

In this section, we consider that randomized measurements are performed using 𝑁𝑈

unitaries followed by a single projective measurement 𝑁𝑀 = 1. This results in a
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total measurement budget of 𝑀 = 𝑁𝑈 which is the optimal measurement budget
split for the classical shadow formalism [31]. As we have stressed, the QFI can be
estimated by measuring the converging polynomial series of bound until any order
𝑛. Not restricting only to the estimation of the QFI, we would like to develop
here a general theory to study the performance guarantee by providing analytical
estimation on the error bound for a general multi-copy functional 𝑓𝑞 defined for a
𝑁−qubit state. This analysis will enable us to estimate the sample complexity, that
is, the required number of measurements needed to be performed in an experiment
to estimate a function to be 𝜖 close with a confidence level of 𝛿. Moreover, these
results will automatically translate to provide the same for our lower bounds. We
recall that the general functional expressed in terms of the multi-copy operator 𝑂(𝑞)

acting on 𝑞 copies of the density matrix 𝜌 is given by

𝑓𝑞 = Tr
(︀
𝑂(𝑞)𝜌⊗𝑞

)︀
. (4.14)

Its estimator constructed using 𝑀 classical shadows is given by U-statistics as de-
scribed in Chapter. 2 (Eq. (2.45)) and writes as

𝑓𝑞 =
1

𝑞!

(︂
𝑀

𝑞

)︂−1 ∑︁
𝑟1 ̸=... ̸=𝑟𝑞

Tr

(︃
𝑂(𝑞)

𝑞⨂︁
𝑖=1

𝜌(𝑟𝑖)

)︃
. (4.15)

Using the Chebyshev’s inequality, we can calculate the required sample complexity
𝑀 to estimate 𝑓𝑞 such that |𝑓𝑞 − 𝑓𝑞| < 𝜖 with a confidence level of 𝛿. It writes as
given in Chapter. 2 (Eq. (2.49))

Pr
[︁
|𝑓𝑞 − 𝑓𝑞| ≥ 𝜖

]︁
≤ Var[𝑓𝑞]

𝜖2
. (4.16)

As we see from the above equation, we need to compute the variance of the unbiased
estimator 𝑓𝑞. In the rest of section, we develop a framework to calculate and bound
the variance of 𝑓𝑞 which governs the convergence of the estimator to its true value
as E[𝑓𝑞] = 𝑓𝑞. We can define the variance of the estimator of 𝑓𝑞 as

Var
[︁
𝑓𝑞

]︁
= E

[︁
𝑓 2
𝑞

]︁
− E

[︁
𝑓𝑞

]︁2
= E

[︁
𝑓 2
𝑞

]︁
− 𝑓 2

𝑞 (4.17)

Expanding the estimator E[𝑓 2
𝑞 ] using Eq. (4.15), we get

Var
[︁
𝑓 2
𝑞

]︁
=

1

𝑞!2

(︂
𝑀

𝑞

)︂−2∑︁
𝑟1 ̸=... ̸=𝑟𝑞

∑︁
𝑟′1 ̸=... ̸=𝑟′𝑞

E

[︃
Tr
(︀
𝑂(𝑞)

𝑞⨂︁
𝑖=1

𝜌(𝑟𝑖)
)︀
Tr
(︀
𝑂(𝑞)

𝑞⨂︁
𝑖=1

𝜌(𝑟
′
𝑖)
)︀]︃

− 𝑓 2
𝑞

(4.18)

Recalling that for any given random variables X and Y, the covariance is given by
Cov [X,Y] = E[XY]− E[X]E[Y], we can simplify the above expression as

Var
[︁
𝑓 2
𝑞

]︁
=

1

𝑞!2

(︂
𝑀

𝑞

)︂−2∑︁
𝑟1 ̸=... ̸=𝑟𝑞

∑︁
𝑟′1 ̸=... ̸=𝑟′𝑞

Cov

[︃
Tr
(︀
𝑂(𝑞)

𝑞⨂︁
𝑖=1

𝜌(𝑟𝑖)
)︀
,Tr
(︀
𝑂(𝑞)

𝑞⨂︁
𝑖=1

𝜌(𝑟
′
𝑖)
)︀]︃
.

(4.19)
The current task requires us to compute the sum in the above expression over two
independent sets of 𝑞−uplets of indices {𝑟1, 𝑟2, . . . , 𝑟𝑞} and {𝑟′1, 𝑟′2, . . . , 𝑟′𝑞}. This task
can be broken down as follows:
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• We start by summing over the number ℓ that denotes the indices that are in
common between the two 𝑞−uplets.

• We perform the sum over these common indices denoting them into a single
set of indices 𝛽𝑖 that are present in the two 𝑞−uplets.

• We then sum over the remaining indices that are not common to each of the
𝑞−uplets. We denote these sets of indices as 𝛾𝑖 and 𝛾′𝑖.

• To simplify the computation, we consider the above indices to be ordered,
which allows us to sum over the all possible orderings of indices by introducing
the permutation operators𝑊𝜋, 𝑊𝜏 defined as𝑊𝜋 =

∑︀
𝑖1,...,𝑖𝑞

⃒⃒
𝑖𝜋(1), . . . , 𝑖𝜋(𝑞)

⟩︀⟨︀
𝑖1, . . . , 𝑖𝑞

⃒⃒
and equivalently for 𝑊𝜏 (referred in Chapter. 2, Eq. (2.13)).

We can summarize the listed steps by the following expression:

Var[𝑓𝑞] =
1

𝑞!2

(︂
𝑀

𝑞

)︂−2 𝑞∑︁
ℓ=0

∑︁
𝛽1<···<𝛽ℓ

̸=𝛾ℓ+1<···<𝛾𝑞
̸=𝛾′ℓ+1<···<𝛾′𝑞

∑︁
𝜋,𝜏

Cov
[︁
𝐶𝜋, 𝐶𝜏

]︁
(4.20)

with

𝐶𝜋 = Tr
(︀
𝑂(𝑞)𝑊𝜋

ℓ⨂︁
𝑖=1

𝜌(𝛽𝑖)
𝑞⨂︁

𝑗=ℓ+1

𝜌(𝛾𝑗)𝑊 †
𝜋

)︀
= Tr

(︀
𝑊 †
𝜋𝑂

(𝑞)𝑊𝜋

ℓ⨂︁
𝑖=1

𝜌(𝛽𝑖)
𝑞⨂︁

𝑗=ℓ+1

𝜌(𝛾𝑗)
)︀

(4.21)
and

𝐶𝜏 = Tr
(︀
𝑂(𝑞)𝑊𝜏

ℓ⨂︁
𝑖=1

𝜌(𝛽𝑖)
𝑞⨂︁

𝑗=ℓ+1

𝜌(𝛾
′
𝑗)𝑊 †

𝜏

)︀
= Tr

(︀
𝑊 †
𝜏𝑂

(𝑞)𝑊𝜏

ℓ⨂︁
𝑖=1

𝜌(𝛽𝑖)
𝑞⨂︁

𝑗=ℓ+1

𝜌(𝛾
′
𝑗)
)︀
.

(4.22)
We additionally note that the indices satisfy 𝛽𝑖 ̸= 𝛾𝑗, 𝛽𝑖 ̸= 𝛾′𝑗, 𝛾𝑖 ̸= 𝛾′𝑗 for all 𝑖, 𝑗.
We see, by comparing the expression of 𝐶𝜋 and 𝐶𝜏 that the indices 𝛾𝑗 or 𝛾′𝑗 appear
only once in the expectation value composing the covariances. This leads to all 𝜌(𝛾

′
𝑗)

and 𝜌(𝛾𝑗) terms to average to 𝜌 as E[𝜌] = 𝜌. All the different combinations of 𝛽
indices give the same value, so we can simply write 𝛽𝑖 = 𝑖 ∀ 𝑖. Counting the number
of terms in the sum of the two 𝑞−uplets for different set of indices 𝛽1 < · · · < 𝛽ℓ
(
(︀
𝑀
ℓ

)︀
possible choices), 𝛾ℓ+1 < · · · < 𝛾𝑞 (

(︀
𝑀−ℓ
𝑞−ℓ

)︀
possible choices) and 𝛾′ℓ+1 < · · · < 𝛾′𝑞

(
(︀
𝑀−𝑞
𝑞−ℓ

)︀
possible choices), we get:

Var[𝑓𝑞] =

(︀
𝑀
𝑞

)︀−2

𝑞!2

𝑞∑︁
ℓ=0

(︂
𝑀

ℓ

)︂(︂
𝑀 − ℓ

𝑞 − ℓ

)︂(︂
𝑀 − 𝑞

𝑞 − ℓ

)︂
Var

[︃∑︁
𝜋

Tr
(︀
𝑊 †
𝜋𝑂

(𝑞)𝑊𝜋[⊗ℓ
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑞−ℓ)]
)︀]︃

(4.23)

where we have simplified the expression of Eq. (4.20) using the fact that for depen-
dent random variables X𝑖 we have

Var

[︃∑︁
𝑖

X𝑖

]︃
=
∑︁
𝑖

Var[X𝑖] + 2
∑︁
𝑖<𝑗

Cov[X𝑖,X𝑗] =
∑︁
𝑖,𝑗

Cov[X𝑖,X𝑗]. (4.24)
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We can rewrite the trace term in the above expression for later convenience as a
function of a multi-copy operator 𝑂(𝑞)

ℓ acting on ℓ copies of shadows 𝜌(ℓ)

Var[𝑓𝑞] =
(︂
𝑀

𝑞

)︂−2 𝑞∑︁
ℓ=0

(︂
𝑀

ℓ

)︂(︂
𝑀 − ℓ

𝑞 − ℓ

)︂(︂
𝑀 − 𝑞

𝑞 − ℓ

)︂
Var

[︃
Tr
(︀
𝑂

(𝑞)
ℓ

ℓ⨂︁
𝑖=1

𝜌(𝑖)
)︀]︃

(4.25)

with 1

𝑂
(𝑞)
ℓ =

1

𝑞!

∑︁
𝜋

Tr{ℓ+1...𝑞}
(︀
𝑊 †
𝜋𝑂

(𝑞)𝑊𝜋[1
⊗ℓ ⊗ 𝜌⊗(𝑞−ℓ)]

)︀
= Tr{ℓ+1...𝑞}

(︀
𝑂̄(𝑞)[1⊗ℓ ⊗ 𝜌⊗(𝑞−ℓ)]

)︀
,

(4.26)
where we defined the “fully-scrambled” operator 𝑂̄(𝑞) = 1

𝑞!

∑︀
𝜋𝑊

†
𝜋𝑂

(𝑞)𝑊𝜋 for later
convenience. Hence we have at our disposal an analytical expression of the variance
for a generic estimator 𝑓𝑞 that can be evaluated knowing the operator 𝑂(𝑞) and the
state of interest 𝜌. Let us now show how we can bound such a general expression of
the variance.

Variance bound

We note firstly that for ℓ = 0, the above variance term is zero (so that the sum
can be taken to start at ℓ = 1). In order to bound the variance terms comprising
of ℓ distinct copies of shadows, we start by reminding a key result proved in [64]
(referred in Chapter. 2 in Fact. 1). It bounds the single-shot variance of a linear
function Tr( ̃︀𝑂1𝜌

(1)) associated with the shadow 𝜌(1) that acts on a 𝑁−qubit state:

Var
[︁
Tr( ̃︀𝑂1𝜌

(1))
]︁
≤ 2𝑁Tr( ̃︀𝑂2

1). (4.27)

We can generalize this identity for a ℓ−order function with the operator ̃︀𝑂ℓ acting
on ℓ copies of shadows 𝜌(1) ̸= . . . ̸= 𝜌(ℓ) by considering the tensor product

⨂︀ℓ
𝑖=1 𝜌

(𝑖)

as a single shadow in an augmented Hilbert space of dimension 2ℓ𝑁 . This leads to
the following general bound:

Var
[︁
Tr
(︁ ̃︀𝑂ℓ(𝜌

(1) ⊗ · · · ⊗ 𝜌(ℓ))
)︁ ]︁

≤ 2ℓ𝑁Tr
(︀ ̃︀𝑂2

ℓ

)︀
. (4.28)

With this general condition and developing the binomial terms we can bound Var[𝑓𝑞]
from Eq. (4.25) as

Var[𝑓𝑞] ≤
𝑞∑︁
ℓ=1

𝑞!2(𝑀 − 𝑞)!2 2ℓ𝑁

𝑀 !ℓ!(𝑞 − ℓ)!2(𝑀 − 2𝑞 + ℓ)!
Tr
(︀
[𝑂

(𝑞)
ℓ ]2

)︀
≤

𝑞∑︁
ℓ=1

𝑞!22ℓ𝑁

ℓ!(𝑞 − ℓ)!2(𝑀 − ℓ+ 1)ℓ
Tr
(︀
[𝑂

(𝑞)
ℓ ]2

)︀
(4.29)

where, we have isolated the dependency on 𝑀 as finally we want to obtain a bound
on 𝑀 . The bound on Var[𝑓𝑞] comprises of a sum of 𝑞 different orders of contributions

1One may note that the calculation of the operator 𝑂
(𝑞)
ℓ can be simplified to a calculation of(︀

𝑞
ℓ

)︀
distinct rearrangements with each of the terms occurring 𝑞!

(𝑞ℓ)
times, and the partial trace being

taken over the corresponding positions of 𝜌.
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ℓ to the variance. Recalling the Chebyshev’s inequality mentioned in Eq. (4.16), we
write

Pr
[︁
|𝑓𝑞 − 𝑓𝑞| ≥ 𝜖

]︁
≤ Var[𝑓𝑞]

𝜖2
≤ 1

𝜖2

𝑞∑︁
ℓ=1

𝑞!22ℓ𝑁Tr([𝑂(𝑞)
ℓ ]2)

ℓ!(𝑞 − ℓ)!2(𝑀 − ℓ+ 1)ℓ
. (4.30)

To ensure that Pr[|𝑓𝑞 − 𝑓𝑞| ≥ 𝜖] ≤ 𝛿, for a given confidence level 𝛿 ∈ [0, 1], we
consider for simplicity that each term in the above sum is less than 𝛿/𝑞. This allows
us to summarize our results with the following proposition

Proposition 2. Consider a 𝑁−qubit state 𝜌 and the associated multi-copy func-
tional 𝑓𝑞 = Tr(𝑂(𝑞)𝜌⊗𝑞) defined in terms of the multi-copy operator 𝑂(𝑞) that we
want to estimate. For 𝜖, 𝛿 > 0, it suffices

𝑀 ≥ max
1≤ℓ≤𝑞

⎧⎨⎩
(︃

𝑞 𝑞!2

ℓ!(𝑞 − ℓ)!2
Tr([𝑂

(𝑞)
ℓ ]2)

𝜖2𝛿

)︃ 1
ℓ

2𝑁 + ℓ− 1

⎫⎬⎭ (4.31)

number of measurements to ensure that the estimator 𝑓𝑞 defined in Eq. (4.15) is
estimated such that |𝑓𝑞 − 𝑓𝑞| ≤ 𝜖 with a probability of at least 1− 𝛿.

The above expression provides the required measurement budget 𝑀 to evaluate
the estimator of an arbitrary order polynomial function with any defined accuracy
𝜖 and confidence level of 1 − 𝛿. In particular, for each of the 𝑞 possible values of
ℓ the number of measurements is proportional to 𝜖−2/ℓ. We expect this to dictate
different error decay regimes. In particular, this behavior have been shown through
numerical simulations of the RM protocol for non-linear functions such as Tr(𝜌2)
and Tr([𝜌𝑇𝐴 ]3) in [34]. In the limit of 𝜖 → 0 (and for a fixed 𝛿), the max in the
above equation corresponds to ℓ = 1 (linear contribution to the variance), with a
required number of measurements 𝑀 ∝ 𝜖−2. This proposition shall come in use
in the subsequent section, where we will detail the sample complexity of our lower
bounds.

4.2.2 Sample complexity for lower bounds 𝐹𝑛

Our previous variance computations for a generic function 𝑓𝑞 allows us now to trans-
late these findings to obtain the sample complexity of our lower bounds 𝐹𝑛. We start
by recalling that the lower bound 𝐹𝑛 contains polynomials of order up to 𝑛+2 (refer
to Eq. (A.8)). The Cauchy–Schwarz inequality Cov[X1, X2] ≤

√︀
Var[X1]

√︀
Var[X2]

allows us to bound sum of dependent random variables X𝑖 as follows

Var

[︃∑︁
𝑖

X𝑖

]︃
=
∑︁
𝑖

Var[X𝑖] + 2
∑︁
𝑖<𝑗

Cov[X𝑖,X𝑗] ≤
(︃∑︁

𝑖

√︀
Var[X𝑖]

)︃2

. (4.32)
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Using the above identity and the multi-copy expression of the lower bounds given
in Eq.(A.11) of Appendix. A, we can write

Var[𝐹𝑛] = Var

[︃
2

𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂
(−1)𝑞 𝑓𝑞+2

]︃
≤ 4

[︃
𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂√︁
Var
[︀
𝑓𝑞+2

]︀]︃2

≤ 4

[︃
(𝑛+ 1) max

0≤𝑞≤𝑛

(︂
𝑛+ 1

𝑞 + 1

)︂√︁
Var
[︀
𝑓𝑞+2

]︀]︃2

≤ 4(𝑛+ 1)2 max
0≤𝑞≤𝑛

(︂
𝑛+ 1

𝑞 + 1

)︂2

Var
[︀
𝑓𝑞+2

]︀
. (4.33)

Using now Eq. (4.29), we obtain

Var[𝐹𝑛] ≤ 4(𝑛+ 1)2 max
0≤𝑞≤𝑛

(︂
𝑛+ 1

𝑞 + 1

)︂2 𝑞+2∑︁
ℓ=1

(𝑞 + 2)!22ℓ𝑁

ℓ!(𝑞 + 2− ℓ)!2(𝑀 − ℓ+ 1)ℓ
Tr
(︀
[𝑂

(𝑞+2)
ℓ ]2

)︀
,

(4.34)

where 𝑂(𝑞+2)
ℓ is the ℓ-copy operator defined in Eq. (4.26), from the (𝑞 + 2)-copy

operator 𝑂(𝑞+2) defined in Eq. (A.12) of Appendix. A.
Using the Chebyshev’s inequality, we can ensure that Pr[|𝐹𝑛 − 𝐹𝑛| ≥ 𝜖] ≤ 𝛿, for

a given confidence level 𝛿 ∈ [0, 1], by taking for all values of 𝑞, each term in the
above sum is less than 𝛿/(𝑞+2). This allows us to summarize the sample complexity
bound for the lower bounds 𝐹𝑛 with the following proposition

Proposition 3. Consider a 𝑁−qubit state 𝜌 and an Hermitian operator 𝒜 for which
we want to estimate 𝐹𝑛. For 𝜖, 𝛿 > 0, it suffices

𝑀 ≥ max
1≤ℓ≤𝑞+2≤𝑛+2

⎧⎨⎩
(︃
4(𝑛+ 1)2

(︂
𝑛+ 1

𝑞 + 1

)︂2
(𝑞 + 2) (𝑞 + 2)!2

ℓ!(𝑞 + 2− ℓ)!2
Tr
(︀
[𝑂

(𝑞+2)
ℓ ]2

)︀
𝜖2𝛿

)︃1/ℓ

2𝑁 + ℓ− 1

⎫⎬⎭
(4.35)

number of measurements to ensure that the estimator 𝐹𝑛 is estimated such that
|𝐹𝑛 − 𝐹𝑛| ≤ 𝜖 with a probability of at least 1− 𝛿.

The measurement budget 𝑀 can now be evaluated by estimating Tr
(︀
[𝑂

(𝑞+2)
ℓ ]2

)︀
(either analytically or numerically) which is expressed as a function of the state
𝜌 and the operator 𝒜. Analogous to the expression of Eq. (4.31), we could po-
tentially expect for the above confidence interval bound, 𝑛 + 2 regimes where the
measurements scale as 𝑀 ∝ 2𝑁/𝜖

2
ℓ with ℓ = 1, . . . , 𝑛+ 2.

For interested readers, we have explicitly detailed in our work [100], using the
above proposition, the calculation of the sample complexity bounds for 𝐹0 and 𝐹1

respectively [100, Eq. G8 for 𝐹0 and Eq. G12 for 𝐹1]. To summarize our findings,
the required number of measurements 𝑀 scale as 𝛼2𝑁 with 𝛼 being a factor that
can be computed based on our framework provided here for any given state 𝜌 and
operator 𝒜. In particular, when we consider GHZ states 𝜌 =

⃒⃒
𝜓𝑁GHZ

⟩︀⟨︀
𝜓𝑁GHZ

⃒⃒
with

𝒜 = 1
2

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝑧 , in the limit when 𝜖→ 0 (when the dominant term in the variance is

given by the linear one: Tr([𝑂𝑛+2
1 ]2) with 𝑛 = 0, 1) we find the sample complexities
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as 𝑀 ≥ 16𝑁
4

𝜖2𝛿
2𝑁 and 𝑀 ≥ 256𝑁

4

𝜖2𝛿
2𝑁 for 𝐹0 and 𝐹1 respectively. These results present

an interesting trade-off between detection of multipartite entanglement vs the exper-
imental measurement cost. As 𝑛 increases the lower bounds become tighter and are
able to detect more multipartite entanglement content via the condition Eq. (4.2).
On the other hand, higher bounds require more investment of measurements to over-
come statistical errors. As we shall show in the next section, we can complement
these analytical findings by numerical simulations of the randomized measurement
protocol to estimate the lower bounds.

4.2.3 Numerical illustrations

In this section, we shall investigate the error scaling for our lower bounds 𝐹0 and 𝐹1

by numerically simulating the randomized measurement protocol. In particular, we
consider the scenario where we perform a single computational basis measurement
(𝑁𝑀 = 1) after applying the random unitary operation. The total measurement
budget is simply given by 𝑀 = 𝑁𝑈 . We are interested in the average statistical error
on the estimated bound 𝐹𝑛 given by ℰ = |𝐹𝑛 − 𝐹𝑛|/𝐹𝑛 with the average computed
over 50 simulated experimental runs. We consider in our example 𝑁−qubit noisy
GHZ states defined as 𝜌(𝑝) = (1− 𝑝)

⃒⃒
𝜓𝑁GHZ

⟩︀⟨︀
𝜓𝑁GHZ

⃒⃒
+ 𝑝1/2𝑁 where 𝑝 determines the

strength of the global depolarization noise added to the ideal state and choose the
Hermitian operator 𝒜 = 1

2

∑︀𝑁
𝑙=1 𝜎

(𝑙)
𝑧 .

Figure 4.2: Error scalings — Panel (a) and (b) show the statistical error scaling for 𝐹0 and 𝐹1

respectively for a GHZ state mixed with depolarization strength of 𝑝 = 0.25 for different values of
𝑁 . The black dashed line are guide to the eye to highlight the different error decays ∝ 1/𝑀 and
1/

√
𝑀 .

In fig. 4.2(a-b), we show the scaling of the average statistical error as a function
of the re-scaled number of measurements 𝑀/2𝑎𝑁 where we adjusted the coefficient
𝑎 such that all the simulated data fall on a single curve. We see that the required
number of measurements for ℰ ∼ 0.1 scale as 20.7𝑁 for 𝐹0 and 20.8𝑁 for 𝐹1. In-
terestingly, we also observe two error decay regimes, one ∝ 1/

√
𝑀 that represents

the standard Monte-Carlo error decay and additionally a more rapid error decay
∝ 1/𝑀 that is prominent in the regime of low number of measurements that have
a higher statistical error. These features become apparent from the expression of
Proposition. 3 by simply inverting the relation 𝑀 ∝ 1/𝜖

2
ℓ as we see that 𝜖 ∝𝑀−ℓ/2

with ℓ = 1, . . . , 𝑛+ 2.
Additionally, we complement these above numerical investigations by extracting

the maximum value of the number of measurements 𝑀 for different system sizes
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Figure 4.3: Scaling of the required number of measurements — Panel (a) and (b) provide the
required number of measurements 𝑀 to estimate 𝐹0 and 𝐹1 respectively for a fixed statistical
error of ℰ = 0.1 for noisy GHZ states. We consider different values of 𝑝 that adds depolarization
noise to the ideal GHZ state. The circles represent the simulated data while the dashed lines
provide the exponential fit 2𝑏+𝑎𝑁 to understand the scaling of the measurements as a function of
𝑁 .

𝑁 such that for each of them we obtain an average error ℰ < 0.1 using a linear
interpolation function. This allows us to get fitted scaling exponents for 𝑀 vs 𝑁 .
We plot these findings in Fig. 4.3(a-b), where the scaling exponents of the required
number of measurements as a function of the system-size 𝑁 agree with those found
in the previous error scaling of Fig. 4.2. As shown by our analytical calculations in
the previous section, we equally remark here that for a fixed level of statistical error
ℰ , 𝐹0 requires less measurements when compared to 𝐹1 (as shown by the respective
scaling exponents) at the cost of 𝐹0 being less tight compared to 𝐹1 in terms of
measuring the QFI or detecting multipartite entanglement.

4.3 Experimental measurement of the QFI on a quan-
tum device

In this section, we shall present a recently finished work [129] in which we provide
an experimental measurement of QFI upto 13 qubits for quantum states prepared in
a 33-qubit IBM superconducting device called ‘ibm_prague’ that is equipped with
an ‘Egret r1’ quantum processor. Importantly, we use the converging polynomial
series of lower bounds 𝐹0 ≤ 𝐹1 ≤ · · · ≤ 𝐹𝑛 to estimate the QFI as introduced in
Eq. (4.10) of this chapter by experimentally employing the randomized measurement
protocol. Additionally, we combined a set of advanced methods of the RM toolbox
to mitigate estimations of the converging lower bounds that are robust against errors
caused uniquely during the RM protocol. Among these set of techniques, one of the
main technical advancements that goes by the name of the batch shadow formalism
that was developed during the course of this thesis [101], helped us post-process
effectively the lower bounds from the generated experimental data-set. We leave
the detailed discussion and development of the batch shadow formalism for the next
chapter.
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In the following subsections, we shall first present briefly the idea of the robust
shadows proposed in Ref. [15, 76] that we implement in our experiments and then
shall discuss the experimental results of the QFI for two prototypical examples of
states realized on the noisy IBM quantum processor: (i) the GHZ state and (ii) the
ground state of the transverse field Ising model (TFIM) prepared by the quantum
approximate optimization algorithm (QAOA) at the critical point.

4.3.1 Robust estimation of quantum properties in a nutshell

As we continue to work in the NISQ era [97], the present quantum devices are prone
to errors. This is due to a lack of total control over the operations performed on
the device. This implies that errors are also induced during the RM protocol as the
applied unitary and readout measurements could suffer from errors. These errors
propagate to the estimations of quantities of interest extracted from the RM data-
set. Within the framework of the RM toolbox, several recent works address this
pertinent issue [15, 76]. In particular, Ref. [15] provides an experimentally-friendly
method to mitigate the errors affecting the RM protocol under some verifiable and
reasonable assumptions of the noise. In the classical shadow formalism, robust
estimations can be obtained in the presence of an unknown noise channel. This
is achieved via a calibration step, which uses a state that can be prepared with
high fidelity. Under the assumption of local, gate-independent, time-stationary and
Markovian noise, the RM-data obtained from such calibration provides a model to
build robust classical shadows from randomized measurements.

Our experiments are thus divided in two steps (i) the calibration of randomized
measurements (ii) randomized measurements on the state of interest 𝜌. Step (i), as
suggested in Ref. [15, 76], requires realizing an experimental state with high fidelity
(minimal state preparation errors). We fix the calibration step to be |0⟩ = |0⟩⊗𝑁
that can be prepared with significantly high fidelity in our experimental platform.
The calibration step requires us to preform randomized measurements on the state
|0⟩. The data-set consisting of the applied ‘noisy’ unitaries and ‘noisy’ readout
measurements collected in step (i) allow us to estimate the necessary noise parameter
as shown in our work [129, Appendix. B2]. Using the RM data generated in step
(ii) and the estimated noise parameter from step (i) we can construct in the post-
processing stage a ‘robust shadow’ as given in our work [129, Appendix. B1]. Taking
the U-statistics of the robust shadows allows us to obtain robust properties of multi-
copy operators and equally the bounds of the QFI. Interestingly, in our work, we
also verify some of the noise assumptions such as locality of the noise based on the
calibration data of step (i).

4.3.2 Experimental Results

We present and discuss in this section the experimental results on the two type of
states prepared in our quantum processor: (i) the GHZ state and (ii) the ground state
of the TFIM at the critical point. Moreover, in our work, we propose and implement
a new modified version of the robust protocol. The main intuition is to divide the full
experimental run into multiple ‘iterations’ that consist of executing step (i) followed
by step (ii) respectively. Assuming that the temporal fluctuations of the noise within
a given iteration is negligible, calibration step in each iteration captures the specific
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noise profile within that time window of the experiment. Thus consecutive iterations
allows to account for the temporal variations in gate and readout errors. In each
iteration, we implement a total of 𝑁𝑈 = 200 number of unitaries for which we record
𝑁𝑀 = 1000 bit-string measurements for both step (i) and step (ii). The number of
such iteration runs are dictated by the total measurement budget which we fix with
𝑁𝑈 = 300 · 20.5𝑁 and record 𝑁𝑀 = 1000 bit-string measurements for each of them.
This allows us to provide robust estimations of the lower bounds with statistical
errors ℰ ∼ 10%.

GHZ state

GHZ states are ideal candidates for quantum metrology as they saturate the value of
the QFI (𝐹𝑄 = 𝑁2) and, thus, can be used to reach higher sensitivities in parameter
estimation that scale as ∼ 𝑁−1 (known as Heisenberg limit). By implementing the
randomized measurements protocol, we experimentally estimate the QFI through
the series of lower bounds as a function of different system sizes 𝑁 . We witness the
presence of multipartite entanglement with the help of entanglement witness given
in Eq. (4.2) [122, 67, 102].

Figure 4.4: Experimental results for the lower bounds of the QFI for the GHZ state — Panel (a)
shows the circuit implemented to prepare the GHZ state. In panel (b), we show 𝐹2, 𝐹1, 𝐹0 (dark
to light with diamond, square and circle respectively) as a function of the number of qubits 𝑁 .
The solid line is the exact value of the QFI 𝐹𝑄 = 𝑁2 for pure GHZ states. The dashed black
line corresponds to the entanglement witness Γ(𝑁, 𝑘 = 𝑁 − 1) = (𝑁 − 1)2 above which the state is
considered to be genuinely multipartite entangled (GME). The dashed grey line corresponds to the
entanglement witness Γ(𝑁, 𝑘 = 5) above which we detect a state to be at least 6-partite entangled.

In Fig. 4.4, we show our experimental results. Fig. 4.4(a) shows the circuit used
to prepare the GHZ state in our quantum processor. In Fig. 4.4(b) we show the
experimental measurements 𝐹2, 𝐹1, and 𝐹0 (dark to light) on the prepared GHZ
state as a function of 𝑁 . The black thick line provides the ideal scaling of the
QFI (𝐹𝑄 = 𝑁2) for pure GHZ states. The black dashed line, instead, denotes the
entanglement witness Γ(𝑁, 𝑘 = 𝑁 − 1) that scales as (𝑁 − 1)2 above which we can
consider our prepared states to be genuinely multipartite entangled (GME) with an
entanglement depth of 𝑘 = 𝑁 . The experimental points correspond to the measured
bounds for two different cases: Mitigated results through our calibration step in blue,
raw data without performing the calibration step in orange. We observe that the
mitigated data used to estimate 𝐹𝑛 violates the necessary entanglement witness to
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be GME for any size 𝑁 . Thus all our prepared states have an entanglement depth of
𝑘 = 𝑁 . Hence, we demonstrate the presence of multipartite entanglement through
the estimation of converging lower bounds to the QFI as proposed in this chapter.
Importantly, we observe with the mitigation that the QFI for our experimental
states grows ∼ 𝑁2. Additionally in our work, we also demonstrate the estimation
of the lower bounds in the case when the calibration (step (i)) is done entirely at
the beginning and is followed by the experiment (step (ii)). We observe clearly that
our iterative experiment idea provides improved mitigated results compared to the
latter method for larger system sizes.

Analysing the raw data (orange points in Fig. 4.4(b)) that are prone to errors
during the RM protocol gives us lower estimations of the bounds. They do not
violate the GME threshold and do not follow the expected scaling seen for the
mitigated data points. This shows that the error mitigation in the measurement
protocol is decisive and useful to estimate underlying properties of the prepared
quantum states. In the case of the analysis of the raw data, we can assert from the
witness bounds in Ref. [122, 67] that our prepared state contains an entanglement
depth of 𝑘 = 6 for 𝑁 ≥ 6.

Ground state of TFIM at the critical point

To complement the estimation of the QFI to more generic quantum many-body
states, we study here the behaviour of the QFI at a critical point that also presents
a rich structure of multipartite entanglement [115, 90, 44]. In particular, we consider
the TFIM Hamiltonian

𝐻 = −𝐽
∑︁
𝑗

𝑍𝑗𝑍𝑗+1 − ℎ
∑︁
𝑗

𝑋𝑗, (4.36)

where ℎ is the transverse field and we set 𝐽 = 1. It displays a quantum phase
transition at ℎ = 1 that manifests as a growth of multipartite entanglement that
can be witnessed by the QFI [58]. We employ the classical simulations to optimize
the parameters of the quantum adiabatic optimization algorithm [37] in order to
realize the ground state at the critical point. Especially, as we shall see, we study
the interplay between the depth 𝑑 of the circuit realized and the approximation of
the ground state.

The preparation of the state entails a series of unitary evolutions under the non-
commuting terms in Eq. (4.36), i.e. 𝐻𝐴 = −𝐽∑︀𝑗 𝑍𝑗𝑍𝑗+1 and 𝐻𝐵 = −ℎ∑︀𝑗 𝑋𝑗, that
are applied to an initial quantum state |𝜓0⟩. The final state after 𝑑 layers can be
written as:

|𝜓(𝛿,𝛾)⟩ =
𝑑∏︁
𝑙=1

e−𝑖𝛿𝑙𝐻𝐵e−𝑖𝛾𝑙𝐻𝐴 |𝜓0⟩ (4.37)

where the ‘angles’ 𝛿𝑙 and 𝛾𝑙 are variational parameters used in the 𝑙-th layer to
minimise the final energy ⟨𝜓(𝛿,𝛾)|𝐻 |𝜓(𝛿,𝛾)⟩.

In Fig. 4.5(a) we show a sketch of the circuit used to prepare the desired state. In
Fig. 4.5(b) we plot 𝐹1 for different values of the depth 𝑑 of the circuits as a function
of the number of qubits 𝑁 for the robust estimator. The solid black line represents
the numerical exact value of the QFI. Our first observation consists in remarking
that we generate and certify the presence of entanglement in all our prepared states
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Figure 4.5: Experimental results of the lower bound 𝐹1 for the ground state of the TFIM at the
critical point — Panel (a) shows the sketch of the circuit used to variationally prepare the ground
state. Panel (b) highlights the results for 𝐹1 estimated with the robust estimator as a function of
the number of qubits 𝑁 , for different circuit depth 𝑑. The lines correspond to (solid black) exact
QFI value, (dashed dark grey) detects entanglement depth 𝑘 = 3 (𝐹𝑄 = Γ(𝑁, 2)), (dashed grey)
detects entanglement (𝐹𝑄 = 𝑁).

as 𝐹𝑄 ≥ 𝐹1 ≥ 𝑁 within error bars for all values of depths 𝑑 and system size 𝑁 . The
corresponding threshold is shown as a dashed grey line in the plot.

For all system-sizes, states prepared with a circuit depth of 𝑑 = 2 have the highest
measured value of 𝐹1 compared to other circuit depths. As shown in Fig. 4.5(a), a
further increase in the circuit depth 𝑑, incorporates more noisy gates that reduces
the fidelity of the prepared state compared to its true target state. This results in
a decrease of the QFI estimation compromised by the noisy state preparation that
is captured very well in Fig. 4.5(b). We explicitly see for 𝑑 = 3, 4, a compatible
estimation of 𝐹1 within error bars compared to the former case of 𝑑 = 2 that shows
a signature of noise and decoherence in the preparation of the state. In fact, in the
ideal scenario, increasing the number of layers should guarantee better convergence
to the target state resulting with a higher value of QFI.

Importantly, we establish the presence of multipartite entanglement via 𝐹1 as we
violate the entanglement witness 𝐹1 > Γ(𝑁, 𝑘 = 2). This confirms the presence of
an entanglement depth of 𝑘 = 3 for all prepared states of system-size 𝑁 > 2, as the
experimental points are above the witness depicted by the dashed dark grey line in
Fig. 4.5(b). Thus our method allows to quantify the true metrological power in form
of generating multipartite entanglement in variationally prepared noisy quantum
states.

4.4 Conclusion
In this chapter, we presented an operative construction of monotonically increas-

ing lower bounds that converge to the QFI. As the order of the bounds increase,
they become more sensitive to detect the multipartite entanglement present in a
quantum state. This helps in asserting and verifying quantum states capable of
providing enhanced metrological sensitivities. These lower bounds are explicitly ex-
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pressed as polynomials of the density matrix that enables us to measure them using
the classical shadow formalism of the RM toolbox for any quantum state prepared
on state-of-art quantum devices. To understand the behaviour of statistical errors
caused by finite measurement statistics, we derive analytically the variance bounds
for arbitrary multi-copy functionals of the density matrix that can be accessed using
the RM data-set. This enabled us to extend our analytical calculations and make
predictions on the required number of measurements to detect entanglement with a
certain confidence interval using our lower bounds. Additionally in our work [100],
we also extend our approach to measure the QFI in ensemble of collective spins
that can be implemented using ultracold atoms or trapped ions platforms that are
equally relevant for quantum metrological applications.

In the latter part of this chapter, we showed the first experimental measurement
of the QFI on a quantum processor with up to 13 qubits based on the measurements
of the converging series of polynomial lower bounds derived in this chapter. This
work combined advanced methods of the randomized measurement that allowed us to
mitigate drifting gate and readout errors. Additionally, the batch shadow framework,
that shall be discussed at length in the following chapter, enabled us to effectively
post-process unbiased estimators of the lower bounds using the experimental data.
For our prepared GHZ states that employed the robust RM protocol, our estimators
agree perfectly to the theoretically predicted value of 𝐹𝑄 = 𝑁2 and validated that
the prepared states were GME. Secondly, in the case of the variational preparation
of the ground state of the critical TFIM, we observed an interesting trade-off by
the estimation of the QFI: The theoretical approximation accuracy of the ground
state increases with the circuit depth and is optimal at depth 𝑑 = 𝑁/2, the best
estimation of the theoretically predicted ground state QFI is obtained with a smaller
circuit depth. This was attributed to the noise induced by an increase of the layers
in the QAOA algorithm. More importantly, the advanced methods employed in this
work are not only restricted to the measurement of the QFI but extend its use for
estimating arbitrary non-linear multi-copy functionals of the density matrix.

Lastly, as we show, we can construct classical shadows from the RM data-set and
measure order by order until the lower bound gets close enough to the desired value
of the QFI. In practice, it becomes apparent quite easily that the classical post-
processing of the experimental data to obtain the U-statistics estimator of higher
order bounds soon becomes computationally unfeasible and impractical. This is due
to the fact that the number of summands in the U-statistics estimator of the lower
bounds increases rapidly with the order 𝑛. Moreover, we encounter this technical
difficulty equally in the case when we want to estimate the operator entanglement
using classical shadows. Motivated by this problem, in the following chapter, we
shall present an effective solution for it by introducing the batch shadow formalism.
It will enable us to post-process efficiently experimental data to give access to higher
order estimation of the lower bounds and also observe interesting quantum properties
associated to the operator entanglement.
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5
Observation of the entanglement barrier

using batch shadows

This chapter is based on the published work: Aniket Rath, Vittorio Vitale, Sara Murciano, Matteo
Votto, Jérôme Dubail, Richard Kueng, Cyril Branciard, Pasquale Calabrese, and Benoît Vermer-
sch. Entanglement barrier and its symmetry resolution: Theory and experimental observation.
PRX Quantum, 4:010318, Feb 2023 (Ref. [101]).
In this work, we formally introduce the new batch shadow formalism and its properties to effectively
post-process randomized measurement data to estimate multi-copy functionals. This enables us
to re-analyze prior experimental data of [11] and observe the entanglement barrier. My main
contribution consisted in developing the batch shadow formalism by deriving all its properties
and obtaining the new entanglement criteria measurable using the RM protocol. The associated
analytical calculations were performed jointly with Benoît Vermersch, Cyril Branciard and Richard
Kueng. I also re-analyzed the experimental data to estimate the quantities of interest and engaged
in writing the related portions of the manuscript along with other coauthors.
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As seen from previous chapters, the addition of the classical shadow formalism
to the RM toolbox extends access to many non-linear quantities of interest that can
certify entanglement from the experimental RM data-set. More specifically, these
quantities can be written as expectation values of multi-copy operator 𝑂(𝑛) of the
density matrix 𝜌, i.e 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛). The U-statistics estimator links directly the
RM data to the estimation of such functions. A key practical question that stands
out is related to our ability to post-process the experimental data efficiently on a
classical computer in order to obtain these estimators. The current U-statistics esti-
mator presents a bottleneck for classical post-processing to extract the quantities of
interest. Until now, functionals up to order 𝑛 ≤ 3 have been successfully extracted
from experimental data [11, 34]. For 𝑛 > 3, the post-processing time starts to in-
crease significantly and becomes overburdening for classical devices. In this chapter,
we will concretely address this problem by introducing a new framework of classical
shadows that we dub batch shadows.

Our work, on the development of the batch shadow formalism originated from
the inability to access a 𝑛 = 4 order function. The function in particular that we
were interested to estimate was the second Rényi operator entanglement entropy
(or Rényi 2-OE). Recall from Chapter. 1 (Eq. (1.16)) that we can express the Rényi
𝛼−OE for a biparitite density matrix 𝜌𝐴𝐵 using the operator Schmidt coefficients
𝜇ℓ given as

𝑆(𝛼)(𝜌𝐴𝐵) =
1

1− 𝛼
log
∑︁
ℓ

(𝜇2
ℓ)
𝛼. (5.1)

To measure this quantity as constructed above requires an expensive measurement
budget using quantum state tomography in order to access all the values of 𝜇ℓ.
On the other hand, one can access moments of the Schmidt coefficients by refor-
mulating them in terms of multi-copy observables in the form of trace polynomials
Tr(𝑂(𝑛)𝜌⊗𝑛𝐴𝐵) [80]. This enables us to estimate them more easily compared to QST by
employing the classical shadow formalism of the randomized measurement toolbox.
In particular, a recent work showed that one can express the Rényi 2-OE as a ratio
of a fourth order function (𝑓4) over a second order function (𝑓2) of 𝜌𝐴𝐵 [80]:

𝑆(2)(𝜌𝐴𝐵) = − log
𝑓4
𝑓2

= − log
Tr
(︁
𝒮 𝜌⊗4

𝐴𝐵

)︁
Tr(𝜌2𝐴𝐵)2

= − log
Tr
(︁[︁

S(𝐴)
1,4 ⊗ S(𝐴)

2,3 ⊗ S(𝐵)
1,2 ⊗ S(𝐵)

3,4

]︁
𝜌⊗4
𝐴𝐵

)︁
Tr(𝜌2𝐴𝐵)2

.

(5.2)
where S(Γ)

𝑎,𝑏 is the two copy swap operator that acts on 𝑎th and 𝑏th copies of the
sub-system Γ.

With this motivation, we organize this chapter as follows: We will first develop
in detail the novel framework of batch shadows and perform a rigorous analysis on
its statistical errors compared to the standard U-statistics estimator. This shall also
be formally detailed in Appendix. B. Then, as an example, we will illustrate the
required sample complexity to evaluate 𝑓2 and 𝑓4 with an error 𝜖 and confidence
level 𝛿. We will then apply this powerful framework to extract the Rényi 2-OE
from existing experimental data of [11]. This shall enable us to observe interesting
entanglement properties associated to this quantity such as the entanglement barrier
that we will discuss in detail later in this chapter. Additionally, to the phenomenon
of the entanglement barrier, we shall also show that the multi-copy observables 𝑓2
and 𝑓4 can be used to derive an entanglement condition based on the CCNR criteria
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as given in Chapter. 1 (Sec:1.3.2) to detect mixed-state entanglement in quantum
systems.

5.1 Batch shadow formalism
Our starting point is the RM data-set that consists of 𝑁𝑈 distinct local random

unitaries 𝑈 (𝑟) =
⨂︀𝑁

𝑖=1 𝑈
(𝑟)
𝑖 and 𝑁𝑀 bit-string measurements recorded for each of

them s(𝑟,𝑚) =
(︁
𝑠
(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁

)︁
with 𝑟 = 1, . . . , 𝑁𝑈 and 𝑚 = 1, . . . , 𝑁𝑀 . From

this data-set we can construct independent, unbiased estimators of the underlying
quantum state in the form of classical shadows [64] as shown in previous chapters

𝜌(𝑟,𝑚) =
𝑁⨂︁
𝑖=1

[︁
3𝑈

(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟,𝑚)
𝑖

⟩⟨
𝑠
(𝑟,𝑚)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 1

]︁
, (5.3)

which give the underlying density matrix when averaged over the applied unitaries
and measurements E[𝜌(𝑟,𝑚)] = 𝜌.

We recall that in order to measure functions 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛), we use the U-
statistics estimator 𝑓𝑛 given by [59]

𝑓𝑛 =
1

𝑛!

(︂
𝑁𝑈

𝑛

)︂−1 ∑︁
𝑟1 ̸=... ̸=𝑟𝑛

Tr
[︁
𝑂(𝑛)

𝑛⨂︁
𝑖=1

𝜌(𝑟𝑖)
]︁
, (5.4)

where the sum ranges over all possible disjoint shadow indices (𝑟1, . . . , 𝑟𝑛) ∈ {1, . . . , 𝑁𝑈}×𝑛
with 𝑟1 ̸= · · · ̸= 𝑟𝑛. Additionally, we have also introduced here the classical shadow
𝜌(𝑟) = 1

𝑁𝑀

∑︀
𝑚 𝜌

(𝑟,𝑚) constructed by averaging over all measured bit-strings for an
applied unitary 𝑈 (𝑟). The U-statistics estimator is an unbiased estimator, i.e.,
E[𝑓𝑛] = 𝑓𝑛 [59, 100].

We observe for example that in order to estimate the U-statistics estimator of the
purity (Tr(𝜌2)) with classical shadows, the moderate post-processing runtime scales
quadratically 𝒪(𝑁2

𝑈) with the number of unitaries 𝑁𝑈 . Additionally, the runtime
complexity further increases, as the required number of measurements 𝑀 (in the
regime of 𝑀 = 𝑁𝑈 with 𝑁𝑀 = 1) scale exponentially with respect to the system
size 𝑁 (𝑀 ∝ 2𝑁) [34, 100]. In practice, the current optimal method to evaluate the
U-statistics estimator of the purity 𝑓2 from a collection of 𝑁𝑈 shadows writes as

𝑓2 =

𝑁𝑈∑︁
𝑟1 ̸=𝑟2

Tr
(︀
𝜌(𝑟1)𝜌(𝑟2)

)︀
𝑁𝑈(𝑁𝑈 − 1)

=
1

𝑁𝑈(𝑁𝑈 − 1)

⎡⎣Tr

(︃
𝑁𝑈∑︁
𝑟=1

𝜌(𝑟)

)︃2

− Tr

(︃
𝑁𝑈∑︁
𝑟=1

𝜌(𝑟)
2

)︃⎤⎦ . (5.5)

This requires computing the sum and the squared sum over all the shadows and then
computing the difference between them. This procedure requires two loops in the
case when we do not store each classical shadow in classical memory. Similarly in
the case of a third order function 𝑓3 = Tr(𝜌3), the U-statistics estimator is computed
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as

𝑓3 =

𝑁𝑈∑︁
𝑟1 ̸=... ̸=𝑟3

Tr
(︀
𝜌(𝑟1)𝜌(𝑟2)𝜌(𝑟3)

)︀
𝑁𝑈(𝑁𝑈 − 1)(𝑁𝑈 − 2)

(5.6)

=

Tr
[︂(︁∑︀𝑁𝑈

𝑟=1 𝜌
(𝑟)
)︁3

− 3
(︁∑︀𝑁𝑈

𝑟=1 𝜌
(𝑟)
∑︀𝑁𝑈

𝑟=1 𝜌
(𝑟)2
)︁
+ 2

(︁∑︀𝑁𝑈

𝑟=1 𝜌
(𝑟)3
)︁]︂

𝑁𝑈(𝑁𝑈 − 1)(𝑁𝑈 − 2)
.

The same is visible for the above estimator that requires computing the sum, the
squared sum and the cube of the sum in order to finally obtain the final U-statistics
estimator.

Currently the above methods are restricted upto 𝑛 ≤ 3 and extending them
to extract higher order functionals is not trivial and could be an interesting topic
of study. As developing these methods for higher order functionals is not trivial,
we are thus immediately exposed to the bottleneck of evaluating the U-statistics
estimator. Naively, in the case of a function involving 𝑛 = 4 copies of 𝜌, the num-
ber of summands to be calculated in Eq. (5.4) quickly becomes uncomputable for
moderate system sizes as the runtime scales as 𝒪(𝑀4) without requiring to store
exponentially large matrices in the classical memory. In general, for a generic func-
tion 𝑓𝑛, this underlying procedure quickly becomes unfeasible and impractical as it
requires summing over all possible combinations of 𝑛 distinct shadows 𝜌(𝑟1), . . . , 𝜌(𝑟𝑛)
for 𝑟𝑖 ∈ [1, . . . ,𝑀 ]. Furthermore, its runtime scales with the number of terms in-
volved in the sum of Eq. (5.4): 𝒪(𝑀𝑛), a number that grows exponentially with the
polynomial degree 𝑛. An additional bottleneck that plagues the post-processing is
that the required number of measurements for the classical shadow formalism scales
exponentially with respect to the systems-size 𝑁 [31]. Thus one has to try to devise
other alternatives to tackle this problem.

The main technical contribution of our work [101] addresses this pertinent prac-
tical issue. We propose another unbiased estimator of the same functional 𝑓𝑛 by
distributing our 𝑀 shadows into 𝑛′ ≥ 𝑛 subsets, and first averaging the shadows
in each subset. Each such defined subset is independent with respect to any other
and can independently approximate 𝜌. More specifically, let us define the 𝑏th batch
shadow (denoted by a tilde rather than a hat) as

𝜌(𝑏) =
𝑛′

𝑀

∑︁
𝑡𝑏∈𝑇𝑏

𝜌(𝑡𝑏) where 𝑇𝑏 = {1 + (𝑏− 1)𝑀/𝑛′, . . . , 𝑏𝑀/𝑛′} (5.7)

for batches ranging from 𝑏 = 1, . . . , 𝑛′ (for simplicity we assume 𝑛′ divides 𝑀 such
that each subset contains 𝑀/𝑛′ original classical shadows). We note, as claimed
above, that E[𝜌(𝑏)] = 𝜌 for every 𝑏. We then define the alternate unbiased estimator
𝑓
(𝑛′)
𝑛 of 𝑓𝑛 in a similar fashion to Eq. (5.4) by symmetrizing over 𝑛′ batch shadows:

𝑓 (𝑛′)
𝑛 =

(𝑛′ − 𝑛)!

𝑛′!

∑︁
𝑏1 ̸=... ̸=𝑏𝑛

Tr
(︁
𝑂(𝑛)

𝑛⨂︁
𝑖=1

𝜌(𝑏𝑖)
)︁

=
(𝑛′ − 𝑛)!

𝑛′!

𝑛′𝑛

𝑀𝑛

∑︁
𝑏1 ̸=... ̸=𝑏𝑛

∑︁
𝑡𝑏1∈𝑇𝑏1 ,...,𝑡𝑏𝑛∈𝑇𝑏𝑛

Tr
(︁
𝑂(𝑛)

𝑛⨂︁
𝑖=1

𝜌(𝑡𝑏𝑖 )
)︁
. (5.8)
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Again, by construction, E[𝑓 (𝑛′)
𝑛 ] = 𝑓𝑛, i.e. the batch shadow estimator is unbiased.

The principal advantage of introducing this batch estimator lies in the fact that,
in the limit of 𝑛′ ≪ 𝑀 , one can more efficiently post-process arbitrary 𝑛-order
functionals 𝑓 (𝑛′)

𝑛 compared to the basic U-statistics estimators 𝑓𝑛. The evaluation of
𝑓
(𝑛′)
𝑛 from the constructed batch shadows scales as 𝒪(𝑛′𝑛). Thus by choosing 𝑛′ = 𝑛

and assuming that 𝑀 ≫ 𝑛′𝑛, we obtain the fastest estimator. The runtime scaling
of this estimator becomes solely restricted by the time required to evaluate each
batch shadow, resulting in an overall evaluation time of 𝒪(𝑀). This is a drastic
runtime improvement compared to the original U-statistics estimator in Eq. (5.4):
𝒪(𝑀) steps (new) vs. 𝒪(𝑀𝑛) steps (old).

We note that, by increasing 𝑛′ the performance of 𝑓 (𝑛′)
𝑛 improves in terms of

convergence to the U-statistics estimator as more distinct ordered pairings of 𝑛
different shadows 𝜌(𝑟1), . . . , 𝜌(𝑟𝑛) are incorporated in the batch estimator that were
not considered before. In the final limit of 𝑛′ = 𝑀 , we actually recover the full U-
statistics estimator 𝑓 (𝑀)

𝑛 = 𝑓𝑛 which we have studied in detail in the previous chapter
(Chapter. 4). Note also that, in contrast to the bare classical shadows 𝜌(𝑟,𝑚), during
the post-processing phase, the batch shadows 𝜌(𝑏) are stored in memory as dense
2𝑁 × 2𝑁 matrices. For typical memory available on current classical hardware, this
limits our fast estimation methods to system sizes of up to 𝑁 ≈ 15 qubits.

In order to understand the trade-off in terms of performance of statistical errors
vs computational feasibility of this new estimator 𝑓 (𝑛′)

𝑛 compared with the standard
U-statistics estimator 𝑓𝑛, let us study its variance in the following section.

5.1.1 General variance treatment of batch shadow estimator

In this section, we would like to analytically benchmark the performance of the
batch shadow estimator by studying its variance Var[𝑓 (𝑛)

𝑛 ]. We remind again here
that we work in the regime where we execute 𝑀 = 𝑁𝑈 total measurements that
are given by performing a single projective measurement (𝑁𝑀 = 1). Following a
similar reasoning as done previously in Chapter. 4, we can gauge the performance
by calculating the required number of measurements 𝑀 to estimate 𝑓𝑛 with an error
|𝑓 (𝑛)
𝑛 − 𝑓𝑛| ≤ 𝜖 and a certain confidence level using the Chebyshev’s inequality:

Pr[|𝑓 (𝑛)
𝑛 − 𝑓𝑛| ≥ 𝜖] ≤

Var
[︁
𝑓
(𝑛)
𝑛

]︁
𝜖2

, (5.9)

which leads us to now focus on the expression of Var[𝑓
(𝑛)
𝑛 ] for the batch shadow

estimator. Now our goal is to compute this variance term and provide an upper
bound to it. This shall be done with a similar spirit to the analytical calculations
previously done in Chapter. 4 (in Sec. 4.2.1) which we detail for the interested
readers in Appendix B. Recalling Eq. (B.4) from Appendix. B

𝒱𝑘 = Var

[︃
1

𝑛!

∑︁
𝜋

Tr
(︁
𝑊 †
𝜋𝑂

(𝑛)𝑊𝜋[⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]
)︁]︃
, (5.10)

with 𝑊𝜋 being the permutation operator that permutes the 𝑛 shadows correspond-
ingly as 𝑊𝜋 =

∑︀
𝑗1,...,𝑗𝑛

⃒⃒
𝑗𝜋(1)

⟩︀⟨︀
𝑗1
⃒⃒
⊗· · ·⊗

⃒⃒
𝑗𝜋(𝑛)

⟩︀⟨︀
𝑗𝑛
⃒⃒
(where the |𝑗𝑖⟩’s are orthonormal
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basis states), we obtain the expression for Var[𝑓 (𝑛)
𝑛 ] as given in Eq. (B.5) of Ap-

pendix. B

Var[𝑓 (𝑛)
𝑛 ] =

𝑛2

𝑀
𝒱1 +

𝑛3(𝑛− 1)

2𝑀2
(𝒱2 − 2𝒱1) +𝒪

(︁ 1

𝑀2

)︁
(5.11)

and additionally for any value of 𝑛′ we obtain the expression of Var[𝑓 (𝑛′)
𝑛 ] as given

in Eq. (B.6) of Appendix. B

Var[𝑓 (𝑛′)
𝑛 ] =

𝑛2

𝑀
𝒱1 +

𝑛2(𝑛− 1)2 𝑛′

𝑛′−1

2𝑀2
(𝒱2 − 2𝒱1) +𝒪

(︁ 1

𝑀2

)︁
. (5.12)

Variance bounds for batch shadow estimators

We can provide bounds to the above variance expressions by using the fact that the
variance of an average of random variables is upper-bounded by the average of the
variances. This can be seen as follows: For 𝐾 random variables 𝐶𝑖, one has, using
the Cauchy–Schwarz inequality:

(︁ 1

𝐾

𝐾∑︁
𝑖=1

𝐶𝑖 − E[
1

𝐾

𝐾∑︁
𝑖=1

𝐶𝑖]
)︁2

=
(︁ 1⃗

𝐾
· (𝐶⃗ − E[𝐶⃗])

)︁2
≤ ‖ 1⃗

𝐾
‖2 ||𝐶⃗ − E[𝐶⃗]||2 = 1

𝐾

𝐾∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖])
2 (5.13)

with 𝐶⃗ = (𝐶1, . . . , 𝐶𝐾) and 1⃗ = (1, . . . , 1). Taking the expectation values on both
sides gives Var[ 1

𝐾

∑︀𝐾
𝑖=1𝐶𝑖] ≤ 1

𝐾

∑︀𝐾
𝑖=1 Var[𝐶𝑖]. This provides us the bound:

𝒱𝑘 = Var

[︃
1

𝑛!

∑︁
𝜋

Tr
(︁
𝑊 †
𝜋𝑂

(𝑛)𝑊𝜋[⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]
)︁]︃

≤ 𝒱𝑘 =
1

𝑛!

∑︁
𝜋

Var

[︃
Tr
(︁
𝑊 †
𝜋𝑂

(𝑛)𝑊𝜋[⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]
)︁]︃
. (5.14)

With this we can summarize and formalise the variance bound for arbitrary batch
shadow estimator as follows.

Proposition 4. Given a 𝑛𝑡ℎ order function Tr(𝑂(𝑛)𝜌⊗𝑛) evaluated using the batch
shadow estimator 𝑓 (𝑛′)

𝑛 from a total of 𝑀 measurements, its variance can be bounded
as

Var[𝑓 (𝑛′)
𝑛 ] ≤

𝑛∑︁
𝑗=1

(︂
𝑛

𝑗

)︂(︀𝑛′−𝑛
𝑛−𝑗

)︀(︀
𝑛′

𝑛

)︀ 𝑗∑︁
𝑘=1

(︂
𝑛′

𝑀

)︂𝑘 (︂
1− 𝑛′

𝑀

)︂𝑗−𝑘
𝒱𝑘 (5.15)

and in particular for 𝑛′ = 𝑛, the bound writes

Var[𝑓 (𝑛)
𝑛 ] ≤

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂(︁ 𝑛
𝑀

)︁𝑘 (︁
1− 𝑛

𝑀

)︁𝑛−𝑘
𝒱𝑘. (5.16)
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One can further bound 𝒱𝑘 using the presented results of Chapter. 4 (Sec. 4.2.1,
Eq. 4.28). This then, along with the Chebyshev bound, helps us obtain concrete
sample complexity bounds to evaluate arbitrary functions 𝑓 (𝑛′)

𝑛 for any chosen value
of 𝑛′ using batch shadows. In particular, we shall show an example of the sample
complexity calculation for the batch shadow estimator of the purity in the upcoming
sections.

More concretely, for comparison with the U-statistics estimator, Eq. (4.25), we
can re-write the U-statistics estimator 𝑓 (𝑀)

𝑛 = 𝑓𝑛 as

Var[𝑓𝑛] =
𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂(︀𝑀−𝑛
𝑛−𝑘

)︀(︀
𝑀
𝑛

)︀ 𝒱𝑘 =
𝑛∑︁
𝑘=1

(︀
𝑛
𝑘

)︀2(︀
𝑀
𝑘

)︀[︁ ℓ∑︁
𝑘=1

(︂
ℓ

𝑘

)︂
(−1)ℓ−𝑘𝒱𝑘

]︁
. (5.17)

Computing the first and second order in 1
𝑀

, we now obtain

Var[𝑓𝑛] =
𝑛2

𝑀
𝒱1 +

𝑛2(𝑛− 1)2

2𝑀2
(𝒱2 − 2𝒱1) +𝒪

(︁ 1

𝑀2

)︁
. (5.18)

We observe that the behavior for large𝑀 is dependent upon the relationship between
𝑛′ and 𝑀 . This dependence arises whether 𝑛′ is treated as independent of 𝑀 (as in
the case of 𝑛′ = 𝑛), or whether it is simply proportional to 𝑀 (as observed in the
limiting scenario of 𝑛′ =𝑀 as seen in standard U-statistics). Comparing Eq. (5.12)
and Eq. (5.18), one finds that Var[𝑓 (𝑛′)

𝑛 ] and Var[𝑓𝑛] have the same behavior of 𝑛2

𝑀
𝒱1

at first order in 1
𝑀

for any value of 𝑛′. This high accuracy regime results from large
number of measurements 𝑀 that is associated to the standard Monte-carlo error
decay (as errors decays proportional to

√︁
Var[𝑓𝑛] =

√︁
Var[𝑓

(𝑛′)
𝑛 ] ∼ 1/

√
𝑀). At the

second order, Var[𝑓 (𝑛′)
𝑛 ] is only marginally larger (by a factor of 𝑛′

𝑛′−1
) than Var[𝑓𝑛].

In summary, the key takeaway from this section is that the precision loss when
utilizing our innovative batch shadow technique in place of the conventional U-
statistics estimator for classical shadows is negligible. This conclusion remains valid
regardless of the specific choice of 𝑛′, as our approach demonstrates comparable
performance without significant compromise in accuracy. On the other hand, we
evidently achieve exponential improvements in runtime of the classical treatment of
the measurement data. We shall also confirm this fact by numerical simulations of
the protocol.

In the following section, combining the general bounds on the batch shadow
estimator and some new properties of classical shadows elaborated in Appendix. C,
we can calculate the sample complexity bounds of the functions of interest.

5.1.2 Sample complexity calculations to estimate Rényi 2-OE

In this section, we aim to illustrate the principal steps of calculation for the sample
complexity bound (required number of measurements) in order to evaluate the Rényi
2-OE using the batch shadow estimator introduced earlier. As we see from the
expression of Rényi 2-OE given in Eq. (5.2), the numerator is expressed as a fourth
order function 𝑓4 = Tr

(︁
𝒮 𝜌⊗4

𝐴𝐵

)︁
with the denominator expressed as the square of

the purity 𝑓2 = Tr(𝜌2𝐴𝐵). In order to improve on the existing sample complexity
bounds derived for these quantities in previous works [34, 100, 80], we derive in
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Appendix. C, novel variance bound relations based on Pauli shadows [65] that we
shall use in the following. The combination of these relations along with the batch
shadow formalism will give us rigorous analytical arguments on the required number
of measurements to estimate 𝑓2 and 𝑓4.

Sample complexity of 𝑓2

In this section, we focus on illustrating the required number of measurements to
estimate the purity 𝑓2 = Tr(𝜌2𝐴𝐵) using the batch shadow estimator of Pauli shad-
ows. As we will show here, we improve upon existing sample complexity bounds of
previous works [34, 100] based on the geometric properties of Pauli shadows that
are derived in Appendix. C.

The purity of a 𝑁 -qubit quantum state 𝜌𝐴𝐵 can be expressed as:

𝑓2 = Tr
(︁

S(𝐴𝐵)
1,2 𝜌𝐴𝐵 ⊗ 𝜌𝐴𝐵

)︁
= Tr(𝜌2𝐴𝐵), (5.19)

where S(𝐴𝐵)
1,2 is the swap operator. As mentioned in Ref. [65], we can construct Pauli

shadows by performing Pauli measurements that consist in applying 𝑀 random
unitaries 𝑈 (𝑟) =

⨂︀𝑁
𝑖=1 𝑈

(𝑟)
𝑖 (with 𝑟 = 1, . . . ,𝑀) where each 𝑈 (𝑟)

𝑖 is uniformly sampled
in the set 𝒰cl(2) =

{︁
12,

1√
2
( 1 1
1 −1 ) ,

1√
2

(︀
1 −𝑖
1 +𝑖

)︀}︁
so that 𝑈 †

𝑖 𝑍𝑈𝑖 = 𝑍, 𝑋, 𝑌 . We also
note that 𝑋, 𝑌, 𝑍 are single qubit Pauli matrices. Note additionally that here 𝒰cl(2)
forms a discrete set taken from the single qubit Clifford gates (Hadamard and phase
gate). The Pauli shadows can be constructed from the above data-set of Pauli
measurements (unitaries and the measured bit-strings as done in Eq. (5.3)). Given
𝑀 such Pauli shadows, the corresponding batch shadow estimator 𝑓 (2)

2 (with 𝑛′ = 2)
of the purity can be written as

𝑓
(2)
2 =

1

2!

∑︁
𝑏1 ̸=𝑏2

Tr
[︁
S(𝐴𝐵)
1,2

2⨂︁
𝑖=1

𝜌(𝑏𝑖)
]︁
, (5.20)

where each batch shadow 𝜌(𝑏), for 𝑏 = 1, 2 writes as

𝜌(𝑏) =
2

𝑀

𝑏𝑀/2∑︁
𝑟=(𝑏−1)𝑀/2+1

𝜌(𝑟). (5.21)

Our goal is to bound Var[𝑓
(2)
2 ] for Pauli shadows (this restriction is important,

because we will use the introduced properties given in Appendix. C). We use Propo-
sition. 4 to explicitly bound the variance of 𝑓2 as

Var[𝑓
(2)
2 ] ≤ 4

𝑀
𝒱1 +

4

𝑀2

(︀
𝒱2 − 2𝒱1

)︀
≤ 4

𝑀
𝒱1 +

4

𝑀2
𝒱2. (5.22)

The next step consists of obtaining the bounds on the terms 𝒱𝑘. From the expression
of Eq. (5.14), we notice that for 𝑛 = 2, the two permutation operators that need
to be considered are: 𝑊(1,2) = 1 ⊗ 1 and 𝑊(2,1) = S. In each case, we find that
𝑊 †
𝜋𝑂

(2)𝑊𝜋 = S. Now recalling Lemma. 2 and Lemma. 3 from Appendix. C, we can
compute the bounds on 𝒱1 and 𝒱2 respectively:

𝒱1 = Var
[︁
Tr
(︀
S(𝐴𝐵)
1,2 (𝜌⊗ 𝜌𝐴𝐵)

)︀]︁
= Var

[︁
Tr
(︀
𝜌𝜌𝐴𝐵

)︀]︁
≤ Tr[𝜌2𝐴𝐵]2

𝑁 ≤ 2𝑁 , (5.23)

𝒱2 = Var
[︁
Tr
(︀
S(𝐴𝐵)
1,2 (𝜌(1) ⊗ 𝜌(2))

)︀]︁
= Var

[︁
Tr
(︀
𝜌(1)𝜌(2)

)︀]︁
≤ 8.5𝑁 ≤ 32𝑁 . (5.24)
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Then from Eq. (5.22), we obtain the following bound on Var[𝑓
(2)
2 ]:

Var[𝑓
(2)
2 ] ≤ 4

𝑀
𝒱1 +

4

𝑀2
𝒱2 ≤

4

𝑀
2𝑁 +

4

𝑀2
32𝑁 . (5.25)

Recalling the Chebyshev’s inequality mentioned in Eq. (5.9), we conclude

Pr
[︁
|𝑓 (2)

2 − 𝑓2| ≥ 𝜖
]︁
≤ Var[𝑓

(2)
2 ]

𝜖2
≤ 4

𝜖2

[︃
2𝑁

𝑀
+

32𝑁

𝑀2

]︃
. (5.26)

This allows us to formulate a concise sample complexity bound by taking the two
terms in the above expression to be less than 𝛿/2

Proposition 5. Suppose that we wish to estimate the purity 𝑓2 = Tr(𝜌2𝐴𝐵) =

Tr(S(𝐴𝐵)
1,2 𝜌⊗2

𝐴𝐵) of a 𝑁-qubit state 𝜌 using the batch shadow estimator 𝑓 (2)
2 constructed

from Pauli shadows. Then for 𝜖, 𝛿 ∈ (0, 1), a total of

𝑀 ≥ max

{︂
8
2𝑁

𝜖2𝛿
, 2

3𝑁

𝜖
√
𝛿

}︂
(5.27)

measurements suffices to ensure Pr
[︁
|𝑓 (2)

2 − 𝑓2| ≥ 𝜖
]︁
≤ 𝛿.

We can compare the obtained sample complexity bound with previous bounds
derived in the case of the U-statistics estimator 𝑓2 = 𝑓

(𝑀)
2 of the purity using 𝑀

Haar shadows [34, 100]. The previous sample complexity bound for the purity writes
as

𝑀 ≥ max

{︃
8

Tr(𝜌2𝐴𝐵)2𝑁

𝜖2𝛿
, 2

22𝑁

𝜖
√
𝛿
+ 1

}︃
. (5.28)

We immediately notice the similarities between both these bounds, while the main
striking difference is that using our key results on Pauli shadows as described pre-
viously, we were able to make the bound tighter (the exponential scaling improves
from 4𝑁 to 3𝑁). We also note that the scaling in terms of system size 𝑁 is given
by 3𝑁 which is a strict improvement over general quantum state tomography. This
kind of scaling for the purity is also observed for SIC POVM measurements on in-
dependent copies where the sample complexity bound scales as 𝑀 ∝ 3𝑁/𝜖2𝛿 [118].
But, when 𝑀 becomes sufficiently large, the scaling in Eq. (5.25) is dominated by
the first term (𝑘 = 1) which is ∝ 2𝑁/𝑀 . This then produces a measurement com-
plexity that scales as 𝑀 ∝ 2𝑁/𝜖2𝛿. From Eq. (5.28), we see similar scaling behavior
in this limit 𝑀 → ∞ that reproduce an error decay rate proportional to 1/

√
𝑀 –

the ultimate limit for any Monte Carlo averaging procedure.

Sample complexity of 𝑓4

Let us now move on to compute the sample complexity bound of the function 𝑓4
in the numerator of the Rényi 2-OE. We consider here the simplest batch shadow
estimator 𝑓 (4)

4 of this function that can be evaluated from 𝑀 Pauli shadows as:

𝑓
(4)
4 =

1

4!

∑︁
𝑏1 ̸=... ̸=𝑏4

Tr
[︁
𝒮

4⨂︁
𝑖=1

𝜌(𝑏𝑖)
]︁

(5.29)
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where each batch shadow 𝜌(𝑏), for 𝑏 = 1, . . . , 4 is an average over 𝑀/4 Pauli shadows
given as:

𝜌(𝑏) =
4

𝑀

𝑏𝑀/4∑︁
𝑟=(𝑏−1)𝑀/4+1

𝜌(𝑟) (5.30)

and 𝒮 = S(𝐴)
1,4 ⊗S(𝐴)

2,3 ⊗S(𝐵)
1,2 ⊗S(𝐵)

3,4 . Our task is to bound the variance Var[𝑓
(4)
4 ]. With

the help of Proposition. 4, we can simply bound the corresponding variance as

Var[𝑓
(4)
4 ] ≤

4∑︁
𝑘=1

(︂
4

𝑘

)︂(︁ 4

𝑀

)︁𝑘(︁
1− 4

𝑀

)︁4−𝑘
𝒱𝑘 ≤

4∑︁
𝑘=1

(︂
4

𝑘

)︂(︁ 4

𝑀

)︁𝑘
𝒱𝑘, (5.31)

where each of the 𝒱𝑘 can be expressed from Eq. (5.14) as

𝒱𝑘 =
1

4!

∑︁
𝜋

Var

[︃
Tr
(︁
𝒮𝑊𝜋[⊗𝑘

𝑖=1𝜌
(𝑖) ⊗ 𝜌

⊗(4−𝑘)
𝐴𝐵 ]𝑊 †

𝜋

)︁]︃
. (5.32)

As we see, we now need to calculate the bounds on the term 𝒱𝑘 for each value of
𝑘 = 1, . . . , 4. This mathematical step is illustrated in detail for interested readers in
our work [101, Appendix C.4]. Summarizing our findings and putting all the pieces
together, we obtain using Eq. (5.31)

Var[𝑓
(4)
4 ] ≤

4∑︁
𝑘=1

(︂
4

𝑘

)︂
4𝑘

𝑀𝑘
𝒱𝑘 ≤

4∑︁
𝑘=1

(︂
4

𝑘

)︂
4𝑘

3𝑘𝑁

𝑀𝑘
=

(︂
1 + 4

3𝑁

𝑀

)︂4

− 1. (5.33)

The Chebyshev’s inequality in Eq. (5.9) helps us provide a sample complexity for
this estimator that is summarized in the following proposition

Proposition 6. Let 𝜌𝐴𝐵 be a bipartite quantum state on 𝑁 qubits and suppose that
we wish to estimate the non-linear function 𝑓4 = Tr(𝒮𝜌⊗4

𝐴𝐵), with 𝒮 = S(𝐴)
1,4 ⊗ S(𝐴)

2,3 ⊗
S(𝐵)
1,2 ⊗ S(𝐵)

3,4 , using the batch shadow estimator 𝑓 (4)
4 constructed from Pauli shadows.

Then for 𝜖, 𝛿 > 0, a total of

𝑀 ≥ 4
3𝑁

(1 + 𝜖2𝛿)
1
4 − 1

≳ 16
3𝑁

𝜖2𝛿
, (5.34)

measurements suffices to ensure Pr[|𝑓 (4)
4 − 𝑓4| ≥ 𝜖] ≤ 𝛿.

This measurement cost scales (at worst) as 3𝑁 in system size 𝑁 . The vari-
ance bound obtained in Eq. (5.33) offers an exponential improvement over the best
known scaling bound for the U-statistics estimate of 𝑓4 in the case of Pauli shad-
ows given in [80, Appendix. C, Eq. C36]. These improvements on the complexity
bounds were achieved by exploiting the rich structure of Pauli basis measurements
to produce powerful auxiliary statements, most notably Lemma. 1 and Lemma. 3 in
Appendix. C. At the present stage, these auxiliary results are only valid for Pauli
shadows and do not yet cover Haar shadows.

It is interesting to point out that the measurement complexity bound 𝑓4 is al-
ways comparable in term of the scaling with the system-size 𝑁 to the measurement
complexity bound for 𝑓2 (purity). Moving from a second-order function to a fourth
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order function does not seem to incur a large penalty in measurement complexity.
We equally note that, in the limit of 𝑀 → ∞, the dominant contribution to the
variance is given by the linear term (𝑘 = 1) which scales ∝ 2𝑁/𝑀 . Then, in this
limit, it holds that the measurement bound scales as 2𝑁/𝜖2𝛿. Having discussed the
sample complexity bounds, in the next section, we shall demonstrate numerically
the error scaling of the batch shadow estimators for the function 𝑓4.

5.1.3 Numerical investigations

In this subsection, we would like to consecrate ourselves to support our analytical
finding with numerical simulation of the protocol. We mainly would like to study
error scalings and the performance of the batch shadow estimator 𝑓 (𝑛′)

4 by using
random Pauli and Haar random shadows in the regime where 𝑀 ≫ 𝑛′ and compare
it to the standard U-statistics estimator 𝑓4. We consider a 4-qubit GHZ state and
numerically simulate the protocol by applying 𝑀 Haar random (CUE) unitaries 𝑈
followed by fixed basis measurements to construct Haar random shadows (fixing
𝑁𝑀 = 1). We equally construct numerically 𝑀 Pauli shadows by choosing 𝑁
random Pauli basis for each shadow. We calculate the average statistical error
ℰ = |𝑓 (𝑛′)

4 − 𝑓4|/𝑓4 for different values of 𝑛′ and 𝑀 by simulating the RM protocol
200 times. This is plotted in Fig. 5.1 for Pauli and Haar shadows respectively. We
make two important observations:

• The error scaling characteristics of Pauli shadows, which require sampling from
a fixed set of three measurement settings (𝑥, 𝑦, 𝑧), show similarities to those
of Haar shadows that utilize an infinite number of measurement settings.

• The batch shadow estimator 𝑓 (𝑛′)
4 with 𝑛′ ∼ 10 has very close performance as

that of the U-statistics estimator. This in general translates into huge runtime
gain in terms of data treatment (𝒪(104) compared to 𝒪(𝑀4)) and allows us
to process the quantities of interest for a larger set of measurement data.
We clearly observed a limitation in post-processing the U-statistics estimator
(𝑛′ =𝑀) for a modest system size of 𝑁 = 4 qubits. This constraint starts
to be extremely prominent when the system size 𝑁 increases. This is due to
the fact that the number of measurements 𝑀 scales exponentially with 𝑁 as
shown in the previous section.

To sum up this section, we introduced the batch shadow formalism and provided
in Appendix. B and Appendix. C, the necessary analytical tools to compute sam-
ple complexity bounds for general multi-copy functionals of interest. In particular,
we also derived new trace bounds identities of Lemma. 1 and Lemma. 3 for Pauli
shadows. With the help of these results, we were able to obtain improved bounds
on the required number of measurements to estimate the functions 𝑓2 and 𝑓4. Sup-
plementary numerical simulations of the protocol showed equally the advantages of
using the batch shadow estimator compared to the standard U-statistics one. With
all these tools at hand, let us now dive into the experimental observation of the en-
tanglement barrier and its interesting properties realized on a trapped ion quantum
simulator.
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Figure 5.1: Error scaling as a function of 𝑀 — Panels (a) for Pauli shadows and (b) for Haar
shadows show the scaling of the average statistical error ℰ as a function of the number of mea-
surements 𝑀 for the functional 𝑓 (𝑛′)

4 calculated on a 4-qubit GHZ state for different values of 𝑛′.
The black line marks the value of 𝑀 until which we could simulate 𝑓

(𝑀)
4 . The dashed black lines

highlight the different error scalings ∝ 1/𝑀 and 1/
√
𝑀 .

5.2 Experimental observation of the entanglement
barrier

Our main interest to measure the Rényi 2-OE follows from the fact that the
operator entanglement (OE) of a reduced bipartite density matrix 𝜌𝐴𝐵 displays an
interesting physical feature known as the entanglement barrier [130]. In this section,
we will describe its relevance and observe the entanglement barrier by measuring
the Rényi 2-OE with the help of the batch shadow formalism developed in this
chapter. In particular, this novel method allows us to re-analyze the RM data of
a prior experiment [11] and effectively estimate the Rényi 2-OE leading to its first
experimental observation on a trapped ion quantum simulator.

The experimental platform in [11] consists of a linear string of trapped 40Ca+
atoms where each individual ion encodes a single qubit. Coupling all ions off-
resonantly with a laser beam subjects the ions to realize a long-range XY model
in presence of a transverse field1, whose effective Hamiltonian writes:

𝐻𝑋𝑌 = ℏ
∑︁
𝑖<𝑗

𝐽𝑖𝑗(𝜎
+
𝑖 𝜎

−
𝑗 + 𝜎−

𝑖 𝜎
+
𝑗 ) + ℏ𝐵

∑︁
𝑖

𝜎𝑧𝑖 , (5.35)

where 𝜎+
𝑖 (𝜎−

𝑖 ) are the spin-raising (lowering) operators with 𝑖, 𝑗 = 1, . . . , 𝑁 , 𝐽𝑖𝑗
the spin-spin coupling matrix and 𝐵 the transverse magnetic field strength. The
strength of the spin coupling follows an approximate power law behaviour that
depends on the distance between the atoms |𝑖−𝑗| given by 𝐽𝑖𝑗 ∼ 𝐽max/|𝑖−𝑗|𝛼 where
the values of 𝐽max = max |𝐽𝑖𝑗| and 𝛼 depend on the specifics of each experimental
realization. For the experiments conducted with strings of 10 ions, 𝛼 = 1.24 and
𝐽0 = 420 𝑠−1. For the ones with 20 ions, 𝛼 = 1.01 and 𝐽0 = 370 𝑠−1.

The experiment in [11] performed a global quench dynamics using the 𝐻𝑋𝑌

Hamiltonian starting from an initial Néel state, |𝜓⟩ = |01⟩⊗𝑁/2, with vanishing
operator (and state) entanglement entropy. The global quench was followed by
the implementation of the randomized measurement protocol involving a total of

1in the regime of 𝐵 ≫ max |𝐽𝑖𝑗 |
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𝑁𝑈 = 500 Haar random unitaries for which 𝑁𝑀 = 150 bit-string measurements were
collected for each applied unitary. For the 20 ion system, randomized measurements
were performed on the central 10 ions of the chain.

We consider two bipartite reduced density matrices 𝜌𝐴𝐵 defined on the subsys-
tems 𝐴 = [2, 3] and 𝐵 = [4, 5] and 𝐴 = [8, 9] and 𝐵 = [10, 11] for a total chain of
10 ions and 20 ions, respectively, where we have labelled the ions along the chain
from 1 to 𝑁 . Our observations remain unchanged for other partitions. Additionally,
we can express Eq. (5.2) as a function of entropic quantities

𝑆(2)(𝜌𝐴𝐵) = − log
Tr
(︁
𝒮 𝜌⊗4

𝐴𝐵

)︁
Tr(𝜌2𝐴𝐵)

2
= 𝑆(2)(𝜌𝐴𝐵)− 2𝑆2(𝜌𝐴𝐵), (5.36)

where we have defined the unnormalized Rényi 2-OE 𝑆(2)(𝜌𝐴𝐵) = − log
(︁
Tr(𝒮𝜌⊗4

𝐴𝐵)
)︁
,

and we note that 𝑆2(𝜌𝐴𝐵) is the second Rényi entropy. We extracted Rényi 2-OE
from the experimental data using the simplest batch shadow estimator with 𝑛′ = 4
batches.

To further motivate the estimation of Rényi 2-OE, let us begin by briefly summa-
rizing the phenomenon of the entanglement barrier. For a generic quantum dynam-
ics starting from a product state with no entanglement (consequently no operator
entanglement), the OE of a sub-system density matrix initially grows linearly as en-
tanglement is generated from coherent interaction between particles. It then reaches
a maximum height that is proportional to sub-system size that is equivalent to the
state entanglement growing and saturating to a volume-law value. This value of the
OE then decays at longer times of the dynamics. The decay at later times reflects
the convergence of the reduced density matrix towards a simple stationary state [26],
through the mechanism of thermalization [103, 85, 82, 23, 117]. This signature shape
of the OE dynamics is most often interpreted as a ‘barrier’ in terms of our ability to
represent efficiently the sub-system reduced density matrix all along the quantum
evolution on classical hardware using algorithms such as tensor-networks [113]. In
particular, the height of the ‘barrier’ or analogously the value of the OE attained
provides an indication of the bond dimension of matrix product operator (MPO)
required to simulate classically the reduced density matrix.

In Fig. 5.2(a), we observe the entanglement barrier for the considered partition
of the 20 ion system. Firstly, the initial state at 𝑡 = 0 ms starts from a product
state of the type 𝜌𝐴𝐵 = 𝜌𝐴 ⊗ 𝜌𝐵 that has an associated Rényi 2-OE 𝑆(2)(𝜌𝐴𝐵) = 0.
As the quench dynamics begins, coherent interactions amongst the spins generate
entanglement. We thus observe a barrier composed of a growth phase from 𝑡 > 0
to 𝑡 ≈ 3 ms, and a decay phase from 𝑡 ≈ 3 ms to the last data point at 𝑡 = 10
ms. The peak at 𝑡 ≈ 3 ms actually looks more like a double-peak with maxima
at 𝑡 ≈ 1.8 ms and 𝑡 ≈ 3.8 ms. We interpret this as oscillations superimposed
on the primary barrier, attributed to finite size effects due to the relatively small
sizes of subsystems 𝐴 and 𝐵. The initial growth phase during early times signifies
the emergence of correlations between subsystems 𝐴 and 𝐵, resulting from the
coherent dynamics within the system. On the other hand, the subsequent decay
phase reflects the trend of 𝜌𝐴𝐵 transitioning towards a thermal-like density matrix
with small OE [26]. A comparison between Figures 5.2(a) and (b) reveals that no
analogous barrier is observed in the smaller system of 10 ions. Particularly, the
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decay phase is absent. This discrepancy is attributed to the finite size of the ion
chain (10 compared to 20), and this aspect is elaborated in our work [101].

Alternatively, one can perceive the emergence of the barrier as being directly
connected to the distribution of squared operator Schmidt values, denoted as 𝜇2

ℓ

according to Eq. (5.1). In the initial stages, the evolution originates from a pure
product state, where a single Schmidt value differs from zero. The growth of en-
tanglement is reflected in the increasing count of non-zero Schmidt coefficients, 𝜇ℓ.
For long times, the system eventually locally tends to approach, in the case of the
infinite temperature limit, to a density matrix that is proportional to the identity,
𝜌𝐴𝐵 ∝ 1 = 1𝐴 ⊗ 1𝐵. In this scenario, only a single Schmidt value differs from zero,
leading to the vanishing of the value of OE.

The barrier can also be understood as a competition between the terms 𝑆(2)(𝜌𝐴𝐵)
and 𝑆2(𝜌𝐴𝐵) in the respective regimes as shown in Fig. 5.2(c) [130]. In the growth
phase, the unnormalised Rényi 2-OE 𝑆(2)(𝜌𝐴𝐵) grows at a faster rate compared to
the state entropy 2𝑆2(𝜌𝐴𝐵). In the decay phase, this behavior is inverted. These
general features are consistent with the theoretical predictions of different models
shown in Refs. [26, 130, 5].

Overall Fig. 5.2(b) and (d) show excellent agreement of the experimental data
with the numerically modeled results for the 10 ion experiment. On the other
hand, it is quite surprising to see that even though the individual estimations of
𝑆(2)(𝜌𝐴𝐵) and 𝑆2(𝜌𝐴𝐵) from the 20 ion experiment as shown in Fig. 5.2(c) have
systematic shifts of the experimentally measured values caused likely due to an
imperfect modeling of decoherence during the experiment and the measurement
protocol, the corresponding measured Rényi 2-OE shows quite good agreement with
the theoretical model as in Fig. 5.2a). This suggests a robustness feature of the
Rényi 2-OE where errors in estimations of the two terms compensate each other.
We also remark that the measured values of Rényi 2-OE are lower as shown in
Fig. 5.2(a-b) from the numerical simulations of the experiment.

Additional to the entanglement barrier the quantities 𝑆(2)(𝜌𝐴𝐵) and 𝑆2(𝜌𝐴𝐵) ex-
pressed in function of multi-copy operators 𝑓4 and 𝑓2 respectively can serve to pro-
vide an entanglement condition for mixed states based on the CCNR (or enhanced
CCNR) criteria. This shall be the topic of discussion of the next subsection.

5.2.1 Mixed state entanglement conditions and experimental
detection

Firstly, let us start by a key result in entanglement theory by recalling that the
operator Schmidt values for separable density matrix 𝜌𝐴𝐵 on a bipartite system
𝐴 ∪𝐵 obeys

𝑅∑︁
ℓ=1

𝜇ℓ ≤ 1/
√︁

Tr (𝜌2𝐴𝐵) , (5.37)

see e.g. [53, Theorem 6] and also Eq. (1.11) in Chapter. 1. Here, 𝑅 ≥ 1 denotes the
operator Schmidt rank and the Schmidt values 𝜇1, . . . , 𝜇𝑅 are non-negative (𝜇ℓ ≥ 0)
and obey

∑︀𝑅
ℓ=1 𝜇

2
ℓ = 1. Conversely, if Eq. (5.37) is violated, then 𝜌𝐴𝐵 is entangled

across the bi-partition 𝐴 and 𝐵. The main drawback to verify this condition is that
it seems to rely on the explicit availability of an operator Schmidt decomposition
and thus requires full quantum state tomography of the density matrix 𝜌𝐴𝐵.
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Figure 5.2: Experimental observation of the entanglement barrier — Panels (a-b) show the mea-
sured Rényi 2-OE and correspondingly, panels (c-d) the measured values of 𝑆(2)(𝜌𝐴𝐵) and 𝑆2(𝜌𝐴𝐵)
relating to Rényi 2-OE as in Eq. (5.36) for a reduced density matrix of 4 ions from a total a system
consisting of 𝑁 = 20 (left panels) and 𝑁 = 10 (right panels). We observe the two phases of the
entanglement barrier that is separated by a black vertical dashed line for panels a) and c) given by:
(1) the growth phase followed by (2) the decay phase. The points show experimental results with
the error bars calculated with Jackknife resampling. Lines correspond to numerical simulations of
the unitary dynamics (dashed) and including dissipation (solid).

As mentioned earlier in the chapter, this apparent drawback was recently over-
come in Ref. [80]. There, the authors point out that sums of higher powers of Schmidt
values can be reformulated in terms of linear observables in tensor products of the
original density matrix 𝜌𝐴𝐵.

𝑅∑︁
ℓ=1

𝜇4
ℓ =

Tr
(︀
𝒮𝜌⊗4

𝐴𝐵

)︀
Tr (𝜌2𝐴𝐵)

2 where 𝒮 = S(𝐴)
1,4 ⊗ S(𝐴)

2,3 ⊗ S(𝐵)
1,2 ⊗ S(𝐵)

3,4 . (5.38)

This is relevant, because we can estimate trace polynomials of the form Tr
(︀
𝑂(𝑛)𝜌⊗𝑛𝐴𝐵

)︀
by employing the classical shadow formalism of the RM toolbox [31]. It is important
to remember now that we know how to directly estimate the RHS of Eq. (5.37), while
we are not aware of a direct estimation protocol for the LHS of Eq. (5.37).

Let us consider a separable density matrix 𝜌𝐴𝐵 on a bipartite system 𝐴 ∪𝐵 as:
𝜌𝐴𝐵√︀
Tr [𝜌2𝐴𝐵]

=
∑︁
ℓ

𝜇ℓ𝑂𝐴,ℓ ⊗𝑂𝐵,ℓ. (5.39)

We can collect the operator Schmidt values in a vector 𝑙 as 𝑙 = (𝜇1, . . . , 𝜇𝑅). Let us
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5.2. Experimental observation of the entanglement barrier

note that the following inequality (Littlewood’s inequality) based on vector norms
holds

||𝑙||𝑝𝜃 ≤ ||𝑙||𝜃𝑝1||𝑙||1−𝜃𝑝0
, (5.40)

with 𝜃 ∈ [0, 1], and
1

𝑝𝜃
=

𝜃

𝑝1
+

1− 𝜃

𝑝0
. (5.41)

Here we have defined the vector norm (or ℓ𝑝 norm) for a vector x = (𝑥1, . . . , 𝑥𝑛) as

‖x‖𝑝 =
(︃

𝑛∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃ 1

𝑝

. (5.42)

Choosing 𝜃 = 1/3, 𝑝0 = 4, 𝑝1 = 1, we obtain 𝑝𝜃 = 2, and

||𝑙||2 ≤ ||𝑙||1/31 ||𝑙||2/34 =⇒ ||𝑙||32 ≤ ||𝑙||1||𝑙||24. (5.43)

Therefore by simple manipulations and taking the squares of both sides of the equal-
ity, we can write the following conditions in terms of the vector norms of the operator
Schmidt values of a separable density matrix:(︂ ||𝑙||32

||𝑙||24

)︂2

≤ ||𝑙||21 ≤ 1/Tr(𝜌2𝐴𝐵) =⇒ Tr(𝜌2𝐴𝐵)||𝑙||62 ≤ ||𝑙||44 (5.44)

where we have used the CCNR condition Eq. (1.11). Since

||𝑙||1 =
𝑅∑︁
ℓ=1

𝜇ℓ, ||𝑙||62 =
(︃

𝑅∑︁
ℓ=1

𝜇2
ℓ

)︃3

= 1, ||𝑙||44 =
𝑅∑︁
ℓ=1

𝜇4
ℓ =

Tr(𝒮𝜌⊗4
𝐴𝐵)

Tr(𝜌2𝐴𝐵)2
, (5.45)

we obtain the separability condition in terms of quantities that are accessible with
randomized measurements from Eq. (5.44)

Tr(𝜌2𝐴𝐵) ≤
Tr(𝒮𝜌⊗4

𝐴𝐵)

Tr(𝜌2𝐴𝐵)2
=⇒ Tr(𝜌2𝐴𝐵)

3 ≤ Tr(𝒮𝜌⊗4
𝐴𝐵), (5.46)

If this relation is violated, then we can confirm that the state 𝜌𝐴𝐵 must be entangled.
In stark contrast to the original CCNR condition, both the expression on the left
and the expression on the right of the above inequality are directly accessible in
an experiment as we show in Fig. 5.3. From the above equation, we can also take
logarithms and negate the sign to obtain an equivalent statement in terms of Rényi
entropies.

Proposition 7 (Entanglement condition). Let 𝜌𝐴𝐵 be a bipartite quantum state with
Rényi 2-OE 𝑆(2)(𝜌𝐴𝐵) = − log(

∑︀
ℓ 𝜇

4
ℓ) and Rényi 2-entropy 𝑆2(𝜌𝐴𝐵) = − log(Tr(𝜌2𝐴𝐵)).

Then, the relation
𝑆(2)(𝜌𝐴𝐵) > 𝑆2(𝜌𝐴𝐵) (5.47)

implies that 𝜌𝐴𝐵 must be entangled (across the bipartition 𝐴 vs 𝐵).
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Figure 5.3: Entanglement detection — We consider a reduced density matrix 𝜌𝐴𝐵 defined on the
subsystem 𝐴 = [1, 2] and 𝐵 = [3, 4] for the 10-ion experiment of Ref. [11]. In panel (a), we plot
as detection on the vertical axis, the condition given in Proposition. 7 (𝑆(2)(𝜌𝐴𝐵)−𝑆2(𝜌𝐴𝐵)), and
similarly in panel (b) we use the optimal condition in Eq. (7) of [80] (𝐸𝜋

2𝑛(𝜌𝐴𝐵) − 1). We detect
entanglement between the partitions 𝐴 and 𝐵 for various times 𝑡 during the quench dynamics
when we observe values greater than 0. The points show experimental results with the error bars
calculated with Jackknife resampling. The solid lines correspond to numerical simulations of the
unitary dynamics including dissipation.

Finally, we can substantially enhance the ability to detect entanglement by using
the enhanced CCNR criteria. The key operation that it involves is to shift the
original density matrix by

𝜌′𝐴𝐵 ↦→ 𝜌𝐴𝐵 − 𝜌𝐴 ⊗ 𝜌𝐵, (5.48)

where 𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵) and 𝜌𝐵 = Tr𝐴(𝜌𝐴𝐵) are the reduced density matrices of 𝜌𝐴𝐵.
Note that this shifted density matrix 𝜌′𝐴𝐵 is not physical, because it has negative
eigenvalues and a vanishing trace. Let us consider the vector 𝑙′ = (𝜇′

1, . . . , 𝜇
′
𝑅′)

consisting of operator Schmidt decomposition of the shifted density matrix 𝜌′𝐴𝐵.
According to the enhanced realignment condition [53] and given in Eq. (1.12), we
have

||𝑙′||32
||𝑙′||24

≤ ||𝑙′||1 ≤
√︀
1− Tr(𝜌2𝐴)

√︀
1− Tr(𝜌2𝐵)√︀

Tr([𝜌′𝐴𝐵]
2)

(5.49)

and using the same thread of calculations as done earlier we find

𝑅′∑︁
ℓ=1

𝜇′4
ℓ ≥ Tr([𝜌′𝐴𝐵]

2)

(1− Tr(𝜌2𝐴)) (1− Tr(𝜌2𝐵))
=⇒ Tr(𝒮(𝜌′𝐴𝐵)⊗4) ≥ Tr([𝜌′𝐴𝐵]

2)3

(1− Tr(𝜌2𝐴)) (1− Tr(𝜌2𝐵))
.

(5.50)
If this condition is violated, the underlying state must be entangled. Although it
requires some additional work, the expression on both sides of this inequality can be
re-expressed in terms of linear observables in tensor products of 𝜌𝐴𝐵, which makes
them experimentally accessible.

Moreover, entanglement conditions based on realignment moments have been
introduced in [141]. In Figure 5.3, we employ batch shadow estimators to illus-
trate an example of entanglement detection in mixed states from the experimental
data of Ref. [11] using Proposition. 7 and the optimal condition in Eq. (7) of [80],
where we clearly observe an enhanced detection capability of the optimal condition.
We additionally note that with the finite measurement statistics available from the
experiment of Ref. [11], we were unable to extract experimentally, the enhanced
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condition derived in Eq. (5.50) and its corresponding optimal condition [80, Eq. (8)]
due to large error bars on the experimental data arising from the finite available
measurement statistics.

5.3 Conclusion
This chapter was motivated by the prior technical difficulties associated to the

RM toolbox to post-process classical shadows from RM data in order to measure
quantities involving higher order multi-copy functions such as the QFI or the Rényi
2-OE. Our main technical contribution was to develop a method that we named
the batch shadow formalism as a key addition to the RM toolbox. It offers an
efficient solution to the pertinent post-processing problem that involves estimating
higher order multi-copy functionals from RM data with close statistical performance
when compared to the U-statistics estimator. The batch shadow estimator provides
drastic runtime improvement compared to the original U-statistics estimator esti-
mated using 𝑀 classical shadows: 𝒪(𝑀) steps (new) vs. 𝒪(𝑀𝑛) steps (old). We
develop this framework in detail and provide rigorous performance guarantees of it
to understand the role of statistical errors involved in the estimates.

The batch shadow estimator enabled us to measure the Rényi 2-OE and con-
sequently observe the entanglement barrier by re-processing existing experimental
data. With our analytical framework of batch shadow estimators, we also establish
improved sample complexity bounds to evaluate the Rényi 2-OE from batch shad-
ows. To estimate the purity (𝑓2), Proposition. 5 provides an unconditional reduction
from existing bounds of 4𝑁/𝜖2 [34, 100]. Remarkably, we obtain the same scaling
for the fourth order function 𝑓4, with similar polynomial improvements compared to
previous bounds [80]. Additionally, we also derive and experimentally show simple
mixed-state entanglement detection criteria according to the CCNR criterion that
can be accessed from the RM data. In our accompanying paper [101], we also study
the structure of the operator entanglement in the presence of certain symmetries
in the system. We define symmetry resolved operator entanglement in presence of
𝑈(1) symmetry in addition to the operator entanglement and experimentally mea-
sure them.

As an outlook to the batch shadow framework, we could aspire to devise alternate
methods to make the post-processing task for classical shadows more scalable and
efficient than current methods. In particular, we shall provide a partial solution
to the problem in the following short chapter. The main idea is to address the
measurement budget of classical shadows (or batch shadows) needed to evaluate
multi-copy functions. We will introduce a framework known as common randomized
measurements that shall help us decrease the measurement cost to estimate multi-
copy functions compared to the old uniform sampling of randomized measurements.
Thus we expect that by decreasing the measurement cost especially the required
number of unitaries (𝑁𝑈) shall simplify the post-processing cost of the concerned
estimates.
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6
Common randomized measurements

This chapter is based on the published work: Benoît Vermersch, Aniket Rath, Bharathan Sundar,
Cyril Branciard, John Preskill, and Andreas Elben. Enhanced estimation of quantum properties
with common randomized measurements, arXiv:2304.12292, 2023 (Ref. [126]) and contains addi-
tional results as described in Sec. 6.1.2 and Sec. 6.2.2.
In this work, we introduce the new method that we call common randomized measurements that
can reduce statistical errors in the estimation of multi-copy functionals using the classical shadow
formalism. My contribution consisted in developing this method and performing the numerical
analysis on direct fidelity estimation. I also participated in writing the manuscript along with
other coauthors.
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6.1. Main idea & the protocol

In this short chapter, we shall discuss a recently developed proposal to ob-
tain enhanced estimations of quantities of interest from randomized measurement
data [126]. As shown earlier in Chapter. 3, we proposed a method based on impor-
tance sampling of local random unitaries to reduce the exponential scaling of the
required number of measurements to evaluate the purity of an unknown quantum
state. This in particular provided improved performance that reduced the statisti-
cal error of the “unitary agnostic” estimate of the purity (refer to Eq. (2.28)). An
important general question that we can ask now is that: How can we reduce the
required number of measurements to evaluate the quantities that can be accessed
using the classical shadows formalism? In particular, we are interested in reducing
the statistical error in the estimation of the expectation of multi-copy operators
(MCOs) 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛) that equally suffer from exponential scalings of required
measurements as a function of the system size 𝑁 [31]. This issue has been addressed
to reduce the statistical errors in the context of evaluating functions expressed as a
single copy observable, i.e functions of the type 𝑓1 = Tr(𝑂(1)𝜌) [63, 56, 55, 133, 123].
Here, our main goal is to provide a method to optimize all functions of interest for
𝑛 ≥ 1.

We organize this chapter as follows: We will provide the main idea of our proposal
to boost estimations by reducing statistical errors of MCOs. It is inspired by common
random numbers which is widely used in statistics for variance reduction and will
help us introduce the common randomized measurement (CRM) protocol. Based
on this idea, we will propose the construction of boosted estimators of multi-copy
functionals using the common randomized (CR) shadows and additionally introduce
a new CRM estimate for the unitary agnostic estimator for the purity. And finally
we shall illustrate its performance to estimate many interesting quantum properties
accessible from the RM data-set via numerical experiments.

6.1 Main idea & the protocol
Consider two random variables X and Y and suppose our ultimate goal is to

estimate the expectation value of the random variable X given by E[X]. We can
obtain an estimate of the mean by simply averaging over 𝐾 collected samples X𝑖

with 𝑖 = 1, . . . , 𝐾. The statistical error associated to the estimator of the mean,
as seen in the earlier chapters, can be quantified by the variance Var[X]. Now,
consider that we have at our disposal another random variable Y which is correlated
or dependent on the variable X and whose average value E[Y] is known. More
explicitly, we can note that for all 𝑖, Y𝑖 is correlated to its partner X𝑖. Then the
idea of common random number suggests that E[X] can be evaluated by averaging
a new random variable Z = X−Y+E[Y] for commonly sampled variables {X𝑖,Y𝑖}
with the guarantee that E[Z] = E[X]. The advantage of doing so is understood when
we compute the variance of the new variable Z. We note that when the condition
Cov[X,Y] = E[XY]− E[X]E[Y] > Var[Y]/2 is satisfied, we can estimate E[X] with
a reduced variance given as

Var[Z] = Var[X] + Var[Y]− 2Cov[X,Y] < Var[X] (6.1)
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and this in return could potentially help decrease statistical errors in the estimation
of E[X]. Let us now incorporate this idea and develop the necessary steps to imple-
ment common randomized measurements in practical scenarios to evaluate functions
of interest more effectively.

6.1.1 The common randomized measurement protocol

The spirit of the common randomized measurement (CRM) protocol is consistent
with the phrase “measure first, ask questions late” coined in [31]. The required ad-
ditional ingredients to perform CRM come at play only during the post-processing
phase of the protocol. Unlike in the case of importance sampling discussed in Chap-
ter. 3, the CRM protocol does not involve any pre-processing optimization step prior
to the experimental execution. This presents a possible advantage over importance
sampling, as CRM can be easily applied to both existing or future randomized mea-
surement data to boost estimations of the properties that we would like to extract.
We shall concretely illustrate this scenario in the subsequent section.

To delve in the details, let us consider for concreteness a 𝑁−qubit quantum state
𝜌 prepared on a quantum device. As we have seen in all the previous chapters, we em-
ploy randomized measurements that consist of applying random unitaries 𝑈 (𝑟) with
𝑟 = 1, . . . , 𝑁𝑈 and execute 𝑁𝑀 bit-string measurements s(𝑟,𝑚) = (𝑠

(𝑟,𝑚)
1 , . . . , 𝑠

(𝑟,𝑚)
𝑁 )

for each unitary with 𝑚 = 1, . . . , 𝑁𝑀 . This data set enables us to define 𝑁𝑈 classical
shadows as shown in the previous chapters

𝜌(𝑟) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]𝑃𝜌(s
′|𝑈 (𝑟))𝑈 (𝑟)† |s⟩⟨s|𝑈 (𝑟) (6.2)

where 𝑃𝜌(s′|𝑈 (𝑟)) =
∑︀𝑁𝑀

𝑚=1 𝛿s′,s(𝑟,𝑚)/𝑁𝑀 are the experimentally estimated Born prob-
abilities and 𝐷 is the Hamming distance. The average over the unitaries and the
measured bit-strings of the classical shadows satisfies E[𝜌(𝑟)] = 𝜌. Now, in order to
enhance the estimations of MCOs, we utilize an approximate knowledge of the quan-
tum state 𝜌 prepared in our experiment as previously proposed in the importance
sampling protocol [99]. This approximation is provided in terms of a classically rep-
resentable state 𝜎 that theoretically models the experimental state or that can be
also constructed from prior RM data. The main idea behind CRM is to classically
simulate randomized measurements on the state 𝜎 using the same random unitaries
that are applied in the experiment. In particular, we can define our CR shadows for
an applied unitary 𝑈 (𝑟) as

𝜌(𝑟)𝜎 = 𝜌(𝑟) − 𝜎(𝑟) + 𝜎 (6.3)

where we define the object 𝜎(𝑟) as

𝜎(𝑟) = 2𝑁
∑︁
s,s′

(−2)−𝐷[s,s′]𝑃𝜎(s
′|𝑈 (𝑟))𝑈 (𝑟)† |s⟩⟨s|𝑈 (𝑟) (6.4)

and 𝑃𝜎(s′|𝑈 (𝑟)) = ⟨s′|𝑈 (𝑟)𝜎𝑈 (𝑟)† |s′⟩ is the exact Born probability calculated from the
fictitious projective measurement of the state 𝑈 (𝑟)𝜎𝑈 (𝑟)†. Note that this operation
is fictitious in the sense that it is performed numerically on a classical device—i.e we
rotate and project the state 𝜎 with the same unitary 𝑈 (𝑟) applied in the experiment.
This is the operation that allows us to correlate 𝜌(𝑟) and 𝜎(𝑟) while having the
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knowledge of the mean E[𝜎(𝑟)] = 𝜎. Note also that the term 𝜎(𝑟) does not suffer
from shot-noise due to finite number of measurements as we calculate the exact Born
probabilities classically. Thus the average over the unitaries E[𝜎(𝑟)] = E𝑈 [𝜎(𝑟)] = 𝜎.
This ultimately results in 𝜌

(𝑟)
𝜎 being an unbiased estimator of the prepared state

𝜌 as E[𝜌(𝑟)𝜎 ] = 𝜌 − 𝜎 + 𝜎 = 𝜌 for any chosen approximation 𝜎. From this, we see
the advantage of the CRM protocol as the data acquisition from the experiment is
independent of the choice of the state 𝜎.

To understand intuitively the strength of the CRM protocol, we consider the
limit of large number of measurements 𝑁𝑀 ≫ 1. In this limit, if 𝜌 ≈ 𝜎, then the
classical shadow 𝜌(𝑟) ≈ 𝜎(𝑟). In this case, the random variables 𝜎(𝑟) and 𝜌(𝑟) (they
share the same randomness as they depend on the same random applied unitary 𝑈 (𝑟))
are strongly and positively correlated to one another. This in return reduces the
variance of 𝜌(𝑟)−𝜎(𝑟) compared to that of standard classical shadows 𝜌(𝑟) calculated
in the previous chapters.

In order to effectively evaluate enhanced estimations of MCOs 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛),
we can use the batch shadow estimator introduced in the previous chapter. We com-
pute 𝑏 = 1, . . . , 𝑛′ batch CR shadows 𝜌(𝑏)𝜎 = 𝑛′/𝑁𝑈

∑︀𝑏𝑁𝑈/𝑛
′

𝑟=(𝑏−1)𝑁𝑈/𝑛′ 𝜌
(𝑟)
𝜎 by averaging

𝑁𝑈/𝑛
′ CR shadows. This enables us to define an enhanced CR estimator 𝑓 (CR)

𝑛 by
employing U-statistics [59]

𝑓
(CR)
𝑛,𝑛′ =

(𝑛′ − 𝑛)!

𝑛′!

∑︁
𝑏1 ̸=... ̸=𝑏𝑛

Tr
[︀
𝑂(𝑛)

(︀
𝜌(𝑏1)𝜎 ⊗ · · · ⊗ 𝜌(𝑏𝑛)𝜎

)︀]︀
(6.5)

with E[𝑓 (CR)
𝑛,𝑛′ ] = 𝑓𝑛. Additionally, we observe that the adequate measurement budget

(𝑀 = 𝑁𝑈𝑁𝑀) for the CRM protocol is to take 𝑁𝑀 ≫ 𝑁𝑈 as for the effectiveness
of the CR shadow one requires 𝜌(𝑟) ≈ 𝜎(𝑟) with them differing only due to the finite
measurement statistics for a given unitary 𝑈 (𝑟). The time to post process the CR
estimator firstly takes into account the additional routine to construct classically
the approximation 𝜎 and its corresponding shadows 𝜎(𝑟) for 𝑟 = 1, . . . , 𝑁𝑈 . As in
general, the number of unitaries used in this protocol is greatly reduced compared
to the standard batch shadow estimator1, the batch CR shadow estimator provides
an indirect method to further reduce the classical post-processing cost to treat the
RM data.

6.1.2 CRM protocol beyond the classical shadows regime

As we have seen before, using the RM data-set, we can estimate the purity of a
quantum state using the unitary agnostic estimator described in Eq. (2.34) or using
classical shadows as shown in Eq. (2.46). Here, we extend the CRM protocol to
accommodate the estimation of the purity using the unitary agnostic estimator. We
are mainly interested in this estimator as it can be effectively post-processed com-
pared to the batch U-statistics estimator of CR shadows described in Eq. (6.1.1). In
particular, with sharp contrast to the importance sampling protocol implemented

1During the course of this work, we have developed routines that are well optimized and are
ready to use to construct shadows for a large number of measurements 𝑁𝑀 and do not pose a
significant overhead.
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for this estimator using 𝜎 in the pre-processing step of the protocol to sample the ad-
equate unitary transformations, the CRM estimator of the purity shall use 𝜎 during
the post-processing of the protocol to reduce the statistical error of the estimation
of the purity. Recalling from Eq. (2.35) that the purity can be estimated using the
RM experimental data-set performed on a state 𝜌 as

𝑝2 =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

𝑋̂
(𝜌)
2 (𝑈 (𝑟)) with 𝑋̂

(𝜌)
2 (𝑈 (𝑟)) =

2𝑁

𝑁𝑀(𝑁𝑀 − 1)

𝑁𝑀∑︁
𝑚̸=𝑚′

𝑚,𝑚′=1

(−2)−𝐷[s(𝑟,𝑚),s(𝑟,𝑚
′)]

(6.6)
with E[𝑝2] = 𝑝2. Having at hand the approximation 𝜎, allows us to classically
simulate an estimator using Eq. (2.28) for the same applied unitary 𝑈 (𝑟) of the
experiment:

𝑋
(𝜎)
2 (𝑈 (𝑟)) = 2𝑁

∑︁
s,s′

(−2)−𝐷[s,s′]𝑃𝜎(s|𝑈 (𝑟))𝑃𝜎(s
′|𝑈 (𝑟)) (6.7)

with 𝑃𝜎(s|𝑈 (𝑟)) = ⟨s|𝑈 (𝑟)𝜎𝑈 (𝑟)† |s⟩ being the exact Born probability and so that
we have E𝑈 [𝑋

(𝜎)
2 (𝑈 (𝑟))] = Tr(𝜎2). As we see, the random variable 𝑋

(𝜎)
2 (𝑈 (𝑟)) is

positively correlated to 𝑋̂(𝜌)
2 (𝑈 (𝑟)), we can define a CR estimate of the purity as

𝑝
(CR)
2 =

1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

[︁
𝑋̂

(𝜌)
2 (𝑈 (𝑟))−𝑋

(𝜎)
2 (𝑈 (𝑟))

]︁
+ Tr(𝜎2) (6.8)

that satisfies

E
[︁
𝑝
(CR)
2

]︁
= E

[︁
𝑋̂

(𝜌)
2 (𝑈 (𝑟))−𝑋

(𝜎)
2 (𝑈 (𝑟)) + Tr(𝜎2)

]︁
= 𝑝2−Tr(𝜎2)+Tr(𝜎2) = 𝑝2. (6.9)

Note again that in the limit 𝑁𝑀 ≫ 1, the closer the state 𝜎 approximates the
prepared state 𝜌, the more correlated are the variables 𝑋̂(𝜌)

2 (𝑈 (𝑟)) and 𝑋
(𝜎)
2 (𝑈 (𝑟))

that lead to variance reduction of the estimator 𝑝(CR)
2 compared to 𝑝2.

In the following section, we shall showcase the strengths of the CRM protocol
in comparison to the standard RM protocol. In our work [126], we present a formal
analysis on the variance study of the CRM estimator. Here in particular, we will
compliment further our work with several case studies of examples starting from
single-copy observables such as the direct fidelity estimation. We will then com-
pare numerically the performance of CRM with respect to importance sampling to
evaluate the purity and lastly we will establish the protocol’s relevance to enhance
the estimation of higher order functions of interest such as the lower bounds of the
quantum Fisher information (QFI).

6.2 Performance illustrations of the CRM protocol
This section shall focus on providing some insights on the performance of the

CRM protocol compared to that of the standard (or uniform) RM protocol. In
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particular, we will be interested to observe the performance highlights for different
types of quantities, starting from linear observables (𝑓1 = Tr(𝑂(1)𝜌)), to the pu-
rity (Tr(𝜌2)) and higher order functions of the density matrix such as the bounds
of the QFI (𝐹0 and 𝐹1) introduced in Chapter. 4. For the purity evaluated for
larger system-sizes with the ‘unitary-agnostic’ estimator, we shall study the error
scalings of the CRM protocol compared to that of importance sampling introduced
in Chapter. 3.

6.2.1 Direct fidelity estimation

Let us begin by providing an instructive analysis of the performance highlights of
CRM shadows in the context of standard (single-copy) observables. For this case,
many methods improving over standard classical shadows, e.g. Refs. [56, 55, 63,
133, 123] have been already developed. These methods rely on adapting random-
ized measurements performed on the experiment, eg using importance sampling of
measurement settings, in a way that depends on the operator 𝑂(1). Here, instead,
we build CR shadows from the data of standard classical shadows in an operator
agnostic manner. We can boost the estimations of various observables from a single
experimental data-set.

To demonstrate the explicit use of this feature, we consider here the example of
direct fidelity estimation (DFE) [41, 114]. Here, one aims to estimate the fidelity ℱ
of a prepared quantum state in the experiment 𝜌 to a pure theoretical target state
|𝜑⟩. The observable of interest is the projector on a theory state 𝑂(1) = |𝜑⟩⟨𝜑|, so that
ℱ𝜑 = ⟨𝑂(1)⟩ = ⟨𝜑| 𝜌 |𝜑⟩. In Refs [41, 114], DFE is realized by performing importance
sampling of Pauli measurements according to the distribution of the theory state
over Pauli strings. This means that an experimental data-set can be used to test only
one theory state |𝜑⟩. In contrast, our approach allows to estimate the fidelity of a
state with respect to arbitrary many theory states, from a single data-set. This could
be of interest to check the overlap of the experimental state with multiple family
of theory modelling such as mean-field approximations, stabilizer formalism [50],
tensor-networks [113], etc. In addition, the CRM protocol allows us to choose the
theory state after the experiment is performed. This for example is relevant in the
case when a costly numerical computation triggered by an experimental result has
to be run (in the spirit ‘measure first, ask question later’ of the RM toolbox [31]).

In our illustration, we consider a 𝑁−qubit ‘ideal’ state |𝜓⟩, prepared with a uni-
dimensional random circuit composed of 𝑑 alternated layers of single and two qubit
Haar-random gates. These generated states are represented as Matrix-Product-
States (MPS) using the PastaQ library [40]. We consider two scenarios: First in
which the experimental state is prepared perfectly 𝜌 = |𝜓⟩⟨𝜓|, and secondly in which
it is prepared with imperfect gates where each gate is subjected to local depolar-
ization noise with probability 𝑝 leading to a mixed prepared state 𝜌. We estimate
the fidelities ℱ𝜑 = Tr(𝜎𝜌) = ⟨𝜑| 𝜌 |𝜑⟩, for various approximations 𝜎 = |𝜑⟩⟨𝜑|, which
are obtained by truncating the exact output state of the noiseless quantum cir-
cuit |𝜓⟩ at different bond dimensions 𝜒 of the MPS. For estimating ℱ𝜑, we use the
density matrix 𝜎 as a prior to define the CR shadow as given in Eq. (6.3). We
numerically simulate an experimental scenario in which we would like to bench-
mark multiple states 𝜎 with a fixed target state 𝜌 prepared in the experiment. We
collect a RM data-set consisting of Pauli measurements using 𝑁𝑈 random unitaries
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𝑈 (𝑟) =
⨂︀𝑁

𝑖=1 𝑈
(𝑟)
𝑖 where each 𝑈 (𝑟)

𝑖 is uniformly sampled in
{︁

12,
1√
2
( 1 1
1 −1 ) ,

1√
2

(︀
1 −𝑖
1 +𝑖

)︀}︁
so that 𝑈 †

𝑖 𝑍𝑈𝑖 = 𝑍, 𝑋, 𝑌 with 𝑍, 𝑋, 𝑌 being single qubit Pauli matrices. This is
followed by 𝑁𝑀 bit-string measurements performed on the ‘experimental’ state 𝜌
(for both the ideal and noisy case)2. From this data-set, the estimator of ℱ𝜑 can be
evaluated from 𝑁𝑈 CR shadows as

̂︀ℱ𝜑 =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

Tr(𝜎𝜌(𝑟)𝜎 ) =
1

𝑁𝑈

𝑁𝑈∑︁
𝑟=1

Tr
(︀
𝜎
[︀
𝜌(𝑟) − 𝜎(𝑟) + 𝜎

]︀)︀
. (6.10)

The standard (Pauli) shadow estimator can be simply computed by considering that
𝜎(𝑟) = 𝜎 = 0, ∀𝑟. 3

Figure 6.1: Fidelity estimation in (noisy) random quantum circuits — Panel a) shows the estimated
fidelities ̂︀ℱ𝜑 of the prepared state 𝜌 and the theoretical prior states 𝜎 = |𝜑⟩⟨𝜑| as a function of their
bond dimension 𝜒. Here, 𝜌 is a 𝑁 = 30-qubit pure state generated from an ideal noiseless (𝑝 = 0)
random quantum circuit of depth 𝑑 = 6 and |𝜑⟩ are obtained by truncating 𝜌 to bond dimension
𝜒. In panel b), each gate in the circuit is perturbed by local depolarization noise with strength 𝑝
resulting in a mixed state 𝜌. The prior state 𝜎 is the same as in a). For both panels, we compare
CRM estimation (orange dots) with standard shadow estimation (blue dots). We fix 𝑁𝑈 = 15 and
𝑁𝑀 = 105. The error-bars are evaluated as standard errors of the mean over random unitaries.
The black solid lines denote the exact fidelity ℱ𝜑. The black dashed lines are guides to the eye for
0.5 and 1 respectively.

Fig. 6.1 shows the estimations ̂︀ℱ𝜑 for a 𝑁 = 30 qubit noiseless [𝑝 = 0, panel a)]
and noisy state [𝑝 = 10−3, 10−4, panel b)], with error bars calculated as the standard
error of the mean over random unitaries. When 𝜒 increases, the estimated fidelity
ℱ𝜑 increases, and the error bars of the CRM estimations decrease as the CR shadows
become more accurate (𝜌(𝑟) becomes more postively correlated to 𝜎(𝑟)). At small 𝜒
instead, the CR shadows fail to provide improved estimations and have larger error
bars compared to (standard) classical shadows as seen in Fig. 6.1a). These features
are similarly observed in the case of the noisy experimental state in Fig. 6.1b), where
the pure state |𝜑⟩ remains always different from the mixed state 𝜌.

2With this data-set we can construct Pauli shadows as shown in the appendix of [64].
3We note that 𝜎 does not need to be a valid density matrix (does not need to satisfy 𝜎 ≥ 0 and

Tr(𝜎) = 1).
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6.2.2 Purity estimations: common randomized vs importance
sampling

We shall now move the discussion to investigate the performance of evaluating the
purity of a quantum state with the CR estimation in comparison to the estima-
tion of importance sampling (IS). Particularly, we will be interested to analyze the
performance of “unitary-agnostic’ estimator of the purity. In order to simulate a
realistic experimental scenario, we consider for convenience 𝑁−qubit noisy GHZ
states 𝜌(𝑝) = (1− 𝑝)

⃒⃒
𝜓𝑁GHZ

⟩︀⟨︀
𝜓𝑁GHZ

⃒⃒
+ 𝑝1/2𝑁 with 𝑝 being the depolarization noise

strength. As an approximation of the prepared state, we consider a priory the
knowledge of the ideal GHZ state 𝜎 =

⃒⃒
𝜓𝑁GHZ

⟩︀⟨︀
𝜓𝑁GHZ

⃒⃒
for the case of the CRM and

the IS protocol. Our goal is to gauge the general performance in terms of the scal-
ing of the average statistical error ℰ = |𝑝2 − 𝑝2|/𝑝2 computed over 100 simulated
experimental runs of the RM protocol. For both the standard and CRM protocol
as mentioned earlier, the data acquisition remains the same as we sample uniformly
𝑁𝑈 random unitaries from the circular unitary ensemble and apply them on the
state 𝜌. On the other hand, in the case of importance sampling, we sample 𝑁𝑈

random unitaries from the importance sampling distribution introduced in Eq. (3.3)
of Chapter. 3 where we build [𝑋2(𝑈)]IS from the knowledge of state 𝜎 at the pre-
processing stage of the protocol. Note equally that the CRM protocol uses the same
knowledge 𝜎 of the state only during the post-processing stage. After the unitary
operations, the rotated state is then projected 𝑁𝑀 times in the computational basis.
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Figure 6.2: Purity estimation for standard (uniform), CRM and IS estimators — Panels (a) and
(b) show the scaling of the average statistical error ℰ as function of the number of unitaries 𝑁𝑈

for total system size of 24 qubits. The ‘experimental’ state 𝜌(𝑝) is taken for two different values
of noise strengths of 𝑝 = 0.1 and 𝑝 = 0.3 for panel (a) and (b) respectively. Panel (c) shows
the average statistical error for a 12-qubit reduced state taken from a total system of 24 qubits
extracted for the CRM and standard (uniform) estimates from the same RM data-set as in panel
(a) (where 𝑝 = 0.1). We have considered here 𝑁𝑀 = 5 · 107. The black dashed line is a guide to
the eye ∝ 1/

√
𝑁𝑈 .

In Fig. 6.2, we consider 𝜌(𝑝) to be a 24-qubit noisy GHZ state and fix 𝑁𝑀 =
5 · 107. In particular, Fig. 6.2(a-b) shows the statistical error scaling for all the three
protocols (standard or uniform, CRM, ‘CRM exact’ and IS) as a function of the
number of applied random unitaries 𝑁𝑈 for two different values of noise strength.
In particular, the ‘CRM exact’ represents a scenario where we have a perfectly
benchmarked quantum device in terms of a theoretical state 𝜎 that faithfully rep-
resents the ‘experimental’ state 𝜌 including all its decoherence parameters. In our
simulations for the CRM exact method, we take the theoretically modelled state to
be 𝜎 = 𝜌(𝑝). Correspondingly, the purity of the state 𝜌(𝑝) was noted to be 𝑝2 ∼ 0.81
and 𝑝2 ∼ 0.49 for 𝑝 = 0.1 and 𝑝 = 0.3 respectively. We note that the purity decreases
with an increase of the noise strength 𝑝 and we get a mixed state 𝜌(𝑝).
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6.2. Performance illustrations of the CRM protocol

At first, we observe clearly that both CRM and the IS protocol provide better
estimations of the purity compared to uniform sampling while having a fidelity given
by ⟨𝜓𝑁GHZ| 𝜌(𝑝 = 0.1) |𝜓𝑁GHZ⟩ ∼ 0.9 and ⟨𝜓𝑁GHZ| 𝜌(𝑝 = 0.3) |𝜓𝑁GHZ⟩ ∼ 0.7 with respect
to the ideal GHZ state. Interestingly, we observe from Fig. 6.2(a-b) that the IS
protocol outperforms the CRM protocol in terms of statistical error scalings. The
‘CRM exact’ performs equally well compared to the IS protocol while requiring
an exact description of the prepared state. In realistic experiments, it could be
challenging to obtain an exact theoretical model of the decoherence. If such a
decoherence model is available (or would be available in the future), it can be readily
used to obtain enhanced estimations of the purity based on the CRM framework4.
On the contrary, we see that this knowledge (of the exact decoherence model) is not
necessary for the IS protocol in order to obtain optimal performances compared to
other methods.

We also observe from Fig. 6.2(c) that the CRM and ‘CRM exact’ frameworks
equally allow us to obtain the enhanced estimations of the purity of sub-systems of
interest from the same numerically recorded RM data-set of Fig. 6.2(a). Here, we
have considered the half-partition reduced state 𝜌red(𝑝) = Tr1,...,𝑁/2[𝜌(𝑝)] of 12 qubits
of the full 24-qubit GHZ state for 𝑝 = 0.1. We obtain the corresponding enhanced
estimations with CRM (and CRM exact) by incorporating the knowledge of the
state of the sub-system 𝜎red = Tr1,...,𝑁/2(𝜎) (𝜎red = Tr1,...,𝑁/2[𝜌(𝑝)] respectively). We
observe that, for a fixed measurement budget (𝑀 = 𝑁𝑈𝑁𝑀), as the CRM protocol
optimizes the purity estimation of the full system (24 qubits in Fig.6.2(a)), it equally
guarantees the reduction of statistical errors in the estimates of the relevant sub-
system purities. We note that this advantage is completely absent in the case of
the IS protocol, which requires importance sampling new set of unitaries based on
the distribution that depends on the relevant sub-system to obtain optimal purity
estimations of the same (as illustrated for example in Sec. 3.4.4 of Chapter. 3).
Lastly, we remind that, the IS protocol introduced in Chapter. 3 is restricted to
quantities such as purities or cross platform fidelities [32] while the CRM protocol
can be applied to probe arbitrary multi-copy functionals of the state via the classical
shadow formalism. In the next section, we shall show the advantages of the CRM
protocol for such quantities of interest.

6.2.3 Higher order estimations: common randomized vs stan-
dard shadows

For our last and final illustration, we take the example of the estimation of the
QFI using the classical shadow formalism as previously discussed in Chapter. 4. We
consider evaluating the first two bounds 𝐹0 and 𝐹1 using both the standard (uniform)
and CR shadows and compare their respective performances. As introduced earlier
in this chapter and recalling Eq.(4.13) in Chapter. 4, we can provide unbiased U-
statistics estimators for the bounds 𝐹0 and 𝐹1 by constructing 𝑟 = 1, . . . , 𝑁𝑈 CR

4This knowledge can also be used to perform a more accurate importance sampling of the
random unitaries.
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(6.11)

where we recall that 𝒜 is an Hermitian operator and 𝜌
(𝑟)
𝜎 = 𝜌(𝑟) − 𝜎(𝑟) + 𝜎. Note

that by taking the approximate state 𝜎 = 0, one recovers the standard estimator of
U-statistics as given in Eq. (4.13).

Figure 6.3: Higher order function estimation for standard (uniform) and CRM estimators — Panels
(a-b) for 𝑝 = 0.1 and panel (c-d) for 𝑝 = 0.25, show the scaling of the average statistical error
ℰ in the estimation of the lower bound 𝐹0 (panels (a) and (c)) and 𝐹1 (panels (b) and (d)) as
function the number of measurements 𝑁𝑈𝑁𝑀 for a 10−qubit noisy ground state 𝜌𝐺(𝑝). We have
fixed 𝑁𝑀 = 2 · 104.

For our case study, we consider the ground state |𝜓𝐺⟩ of the transverse field Ising
model (TFIM) at the critical point. We recall that the TFIM Hamiltonian reads as

𝐻 = −𝐽
∑︁
𝑖

𝑍𝑖𝑍𝑖+1 − ℎ
∑︁
𝑖

𝑋𝑖 (6.12)

with 𝑍𝑖 and 𝑋𝑖 being the Pauli-𝑧 and Pauli-𝑥 matrices acting on the qubit 𝑖. Here
ℎ is the transverse field and we take 𝐽 = 1. As described before this Hamiltonian
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displays a quantum phase transition at ℎ = 1 where it features non-trivial mul-
tipartite entanglement that can be probed using the QFI. In order to relate our
numerical simulations to a real experimental scenario, we consider noisy prepared
ground states where the noise is modelled by global depolarization. Thus we study
states of the type 𝜌𝐺(𝑝) = (1− 𝑝) |𝜓𝐺⟩⟨𝜓𝐺|+ 𝑝1/2𝑁 with 𝑝 being the strength of the
noise. This study is inspired by our prior experimental investigation in Sec. 4.3.2
of Chapter. 4 where we estimated the QFI (using the lower bounds) for the noisy
ground states prepared via the QAOA algorithm. In particular, to effectively con-
struct CR shadows, we consider having at hand the ideal theory state 𝜎 = |𝜓𝐺⟩⟨𝜓𝐺|
unaffected by noise.

We perform 100 numerical simulations of the RM experimental protocol to cal-
culate the average statistical error ℰ = |𝐹𝑛 − 𝐹𝑛|/𝐹𝑛 for 𝑛 = 0, 1 as a function of
different values of 𝑁𝑈 and for two distinct values of the noise parameter 𝑝. We
fix the number of measurements 𝑁𝑀 = 2 · 104. Fig. 6.3 displays the results on the
average statistical error for a noisy 𝑁 = 10 qubit ground state as a function of
the measurement budget 𝑁𝑈𝑁𝑀 . In general, we clearly observe favorable statistical
error scaling by using the CRM protocol to estimate higher order functionals com-
pared to the standard shadow protocol. This implies that to achieve a fixed error
accuracy in terms of ℰ , the CRM protocol requires less measurements compared to
standard shadow protocol. The true values of the lower bound for the noisy ground
states are 𝐹0 = 33.33 and 𝐹1 = 36.66 for 𝑝 = 0.1 and 𝐹0 = 23.15 and 𝐹1 = 28.92 for
𝑝 = 0.25 respectively. We can observe some interesting features from our numerical
simulations. Fig. 6.3(a-b) (similarly for panels Fig. 6.3(c-d)) that has the fidelity
⟨𝜓𝐺| 𝜌𝐺(𝑝 = 0.1) |𝜓𝐺⟩ ∼ 0.9 greater than ⟨𝜓𝐺| 𝜌𝐺(𝑝 = 0.25) |𝜓𝐺⟩ ∼ 0.75, we see bet-
ter improvement of statistical error scaling for both the lower bounds. This is due
to the fact that the ideal state 𝜎 is more positively correlated to the ‘experimental’
ground state 𝜌𝐺(𝑝) when the noise strength 𝑝 is lower. This is directly reflected by
the values of the fidelity shown earlier.

Lastly, we also remark for a fixed noise strength 𝑝 that by comparing Fig. 6.3(a)
and (c) with the panels Fig. 6.3(b) and (d), the higher order bound 𝐹1 suffers more
from statistical errors compared to 𝐹0 for both the standard and the CR estimator.
Thus the CRM framework becomes essential in tackling and providing enhanced
estimations of higher order functionals compared to the standard shadow protocol.

6.3 Conclusion
In this chapter, we introduced the common randomized measurement protocol

that enables us to reduce statistical errors in the estimations of any multi-copy ob-
servables that can be estimated using the RM-data. The CRM protocol incorporates
an approximate knowledge of the quantum state at the post-processing stage of the
randomized measurement experiments. It perfectly captures the slogan of the RM
toolbox “measure first, ask questions later" as it can be readily applied on past or
future RM data in order to enhance estimations of quantum properties of interest.

We have studied its performance for multiple quantities starting from linear ob-
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servable in the context of direct fidelity estimation, to the purity and also higher
order functionals such as lower bounds to the QFI. We showed through our numer-
ical experiments that the statistical errors were reduced compared to the standard
(uniform) estimator for all the quantities mentioned above. In particular, we also
discussed a potential advantage of the CRM protocol compared to that of the IS
protocol. Though the IS protocol provides optimal performances even for noisy
states probed from an ideal theoretical distribution, we see that the CRM proto-
col provides an added advantage to obtain enhanced estimation of the purity for
all sub-systems of interest from the same experimental data at the post-processing
stage. Additionally, inspired by our previous work on estimating the QFI [100],
in our work [126], we also demonstrate the effectiveness of the CRM protocol to
estimate the von Neumann entropy by extrapolating it in terms of a polynomial
approximation of the density matrix 𝜌. This polynomial approximation allows us to
implement the RM toolbox to measure and provide an alternate method to measure
the von Neumann entropy without the need of quantum state tomography.

The CRM framework can also be applied for a wide range of applications such
as gradient estimation in variational quantum algorithms [109], probing of quantum
phases of matter [65, 78, 88] and also constructing improved robust shadows with
finite measurement statistics as done in our work [129, Appendix. B3].
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7
Conclusions and perspectives /

Conclusions et perspectives en français

The principal objective of this thesis was to clearly present solutions to pertinent
questions that surrounded the randomized measurement (RM) toolbox by using
a combination of both analytical and numerical techniques which would help us
investigate new properties associated to entanglement created in large quantum
platforms of today. Here, we will briefly summarize the key results presented in this
manuscript and end the discussion with some interesting existing problems that can
be of interest to work on in the future.

The first objective that we addressed in this manuscript was to develop methods
to fight against statistical errors encountered by the RM protocol to be able to
estimate quantities of interest in larger system-sizes of interest. We provide two
solutions to this problem that are described in Chapter. 3 and Chapter. 6. Firstly, as
discussed in Chapter. 3 and in Ref. [99], we presented a protocol to reduce statistical
errors in the estimation of the purity using the unitary agnostic approach of the
RM toolbox [30, 11]. The previous proposed method can be used to measure the
purity in (sub-)system sizes in the range of 10 − 15 qubits [11]. Our new method
uses a prior approximate knowledge in terms of classically modelling the prepared
quantum state to perform importance sampling of the local random unitaries. As
we demonstrated analytically and also in various case studies by simulating the
RM experiment numerically, this collection of unitaries reduced statistical errors
compared to a collection of unitaries that were sampled uniformly from the Haar
measure. Thus our method that is readily applicable in experiments allows one to
probe the purity (or the second Rényi entropy) of (sub-)system sizes in the range of
25− 30 qubits which was out of reach before.

Secondly, not restricting ourselves only to the purity, as shown in Chapter. 6
and in Ref. [126], we developed another method that helps us extend our previous
results to be applicable to various other properties of interest that can be assessed
in particular using the classical shadow formalism [64]. These quantities especially
can be expressed as either polynomials Tr(𝜌𝑛) or multi-copy functionals Tr(𝑂(𝑛)𝜌⊗𝑛)
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of the quantum state 𝜌. The method bases itself on the notion of common random
numbers and thus is dubbed as common randomized measurements. It once again
relies on a classical approximation of the quantum state prepared in the experiment.
In contrast to the importance sampling method, here the additional ingredients of
the procedure are applied only in the post-processing stage of the RM protocol
(note that here the unitaries are sampled uniformly). Thus it can be readily used
to boost quantities estimated in the past and also in the future from the RM data.
Additionally, it also allows us to boost estimations for all sub-systems of interest of
the quantum system. In terms of its practical use, this method can boost estimation
of quantities of interest compared to the standard formalism of classical shadows for
(sub-)system sizes upto 15− 16 qubits depending on the available classical memory.

Another central work of this manuscript was to develop a protocol to access
non-linear quantities that can not be explicitly expressed in terms of polynomials or
multi-copy operators of the quantum state. In this context, we were interested to
estimate the highly non-linear quantity known quantum Fisher information (QFI)
and extend the RM toolbox to probe features associated to multipartite entan-
glement in quantum systems. The QFI is an important quantity for metrological
applications [94] as it validates the presence of multipartite entanglement via the
entanglement depth of the underlying quantum state [67, 122]. We circumvented
the challenge to measure the QFI, which was earlier only possible either by using
an expensive measurement method of quantum state tomography or could be effec-
tively estimated in the case of a thermal state via dynamical susceptibilities [58].
This was discussed in Chapter. 4 and in Ref. [100]. We proposed a novel method to
estimate the QFI by constructing a polynomial series of lower bounds in function of
the density matrix that converges to the QFI. Each of these bounds can be estimated
from the classical shadow formalism at a lower measurement cost in comparison to
quantum state tomography. Additionally, this work also motivated the development
of rigorous sample complexity bounds to gauge the required number of measure-
ments needed to estimate arbitrary multi-copy functionals that are accessible via
the classical shadow formalism.

In this manuscript, we also addressed a pertinent practical problem of the RM
toolbox. The practical issue that we treat rose from the fact that the data treatment
associated with the classical shadow formalism required an expensive classical post-
processing cost. To evaluate the unbiased estimators of multi-copy functions of
interest of higher order (𝑛 > 3) and for larger system-sizes via the U-statistics
estimator soon presents a computational bottleneck as it requires summing over all
possible combinations of 𝑛 distinct classical shadows. As a solution to this problem
developed in Chapter. 5 and in Ref. [101], we proposed an alternate formalism known
as the batch shadow formalism to obtain unbiased estimators of arbitrary functions
of interest and analytically provide sample complexity bounds to understand its
performance. Given a RM dataset consisting of 𝑀 random unitaries, the batch
shadow formalism reduces the computational run-time cost of post-processing a 𝑛
order function compared to the previous U-statistics estimator from 𝒪(𝑀𝑛) (old)
to 𝒪(𝑀) (new) steps while providing similar statistical performances.

Lastly, as this manuscript is centered around protocols based on randomized mea-
surements that can be experimentally implemented to measure interesting proper-
ties related to entanglement in quantum platforms; with the methods and protocols
developed in this manuscript, we were able to experimentally observe and validate
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novel entanglement properties prepared in two different types of quantum hardware:
a quantum computer consisting of superconducting qubits and a trapped ion quan-
tum simulator. Firstly, in Chapter. 4 and in Ref. [100], we measured the QFI by
employing the RM toolbox via the converging series of lower bounds for two kinds of
quantum states prepared on an IBM superconducting quantum device: GHZ states
and ground state of the transverse field Ising model (TFIM) at the critical point
using the QAOA algorithm. Using the batch shadow formalism and other advanced
tools that included mitigating errors of the RM protocol [15, 76], we validated the
presence of multipartite entanglement in all of our prepared quantum states upto
system size consisting of 13 qubits. Secondly, in Chapter. 5 and in Ref. [101], again
using the batch shadow formalism we re-analyzed the existing randomized measure-
ment data of a prior experiment performed on a trapped ion quantum simulator in
Ref. [11] to observe for the first time an interesting property associated to entangle-
ment known as the entanglement barrier. We estimate the second Rényi operator
entanglement entropy (Rényi 2-OE, a fourth order function) from the experimen-
tal data that presents the signature of the entanglement barrier. Additionally, we
experimentally validate the presence of entanglement in mixed states with a new
entanglement condition derived based on the CCNR criterion.

We believe that the work presented in this manuscript paves the way for the
future to investigate interesting properties associated to entanglement to benchmark
quantum states prepared in new experimental platforms. For the future, it would
be interesting to study and work on various possible extensions of the randomized
measurement protocol and methods that we have introduced during the course of
this manuscript. From a wider perspective, one can say that there still exists two
main bottlenecks that still prevent the RM toolbox to reach its full potential: (i)
the RM protocol now suffers from a reduced exponential scaling of the required
number of measurements due to statistical errors as a function of the system size,
(ii) for the classical shadow formalism, the required classical memory prevents us
from post-processing the effective batch shadow estimators for system-sizes more
that 𝑁 ∼ 16. Possible solutions would require us to develop strategies to implement
randomized measurements that would require polynomial number of measurements
as a function of system-size. On the other hand, one could think of incorporating
memory efficient framework of tensor networks to potentially solve the classical
memory issue. This would lead to an efficient technique to post-process RM data-
set of larger system-sizes on classical hardware in order to estimate classical shadow
functionals of interest.

A possible direction of investigation could be to develop a formalism to perform
importance sampling applicable for classical shadows that could present a new alter-
nate method to fight against statistical errors in the estimation of multi-copy func-
tionals. Based on the preliminary studies presented in Chapter. 6, one can perform
a rigorous inspection to understand the performance improvements obtained by sep-
arate or combination of the proposed methods of importance sampling and common
randomized measurements. It would be also interesting to consider a data-driven
approach in the form of an adaptive scheme to iteratively adapt the importance
sampling distribution on prior RM data taken in the experiment.

From the view point of entanglement detection, one can propose an optimal
unifying criterion to detect entanglement solely based on the entanglement detection
quantities accessible by the RM toolbox. This can help certify entangled states based
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Conclusions et perspectives en francais

L’objectif principal de cette thèse était de présenter clairement des solutions aux
questions pertinentes qui entourent la boîte à outils de la mesure aléatoire (RM
toolbox) en utilisant une combinaison de techniques analytiques et numériques qui
nous aideraient à étudier de nouvelles propriétés associées à l’intrication créée dans
les grandes plateformes quantiques d’aujourd’hui. Ici, nous résumerons brièvement
les résultats clés présentés dans ce manuscrit et nous terminerons la discussion par
quelques problèmes existants intéressants sur lesquels il pourrait être intéressant de
travailler à l’avenir.

Le premier objectif que nous avons abordé dans ce manuscrit était de développer
des méthodes pour lutter contre les erreurs statistiques rencontrées par le protocole
RM pour estimer les quantités d ’intérêt dans des systèmes de plus grande taille.
Nous proposons deux solutions à ce problème qui sont décrites dans les chapitres. 3
et au chapitre. 6. Tout d’abord, comme indiqué au chapitre. 3 et dans Ref. [99], nous
avons présenté un protocole visant à réduire les erreurs statistiques dans l’estimation
de la pureté (purity estimations) en utilisant “l’approche agnostique unitaire” de la
boîte à outils RM [30, 11]. La méthode courante proposée peut être seulement util-
isée pour mesurer la pureté dans des tailles de (sous-)systèmes de l’ordre de 10 à 15
qubits [1]. Notre nouvelle méthode utilise des connaissances approximatives préal-
ables en termes de modélisation classique de la structure de l’état quantique pré-
paré pour effectuer un échantillonnage d’importance des unitaires aléatoires locaux.
Comme nous l’avons démontré analytiquement et également dans diverses études de
cas en simulant numériquement l’expérience RM, cette collection d’unitaires réduit
les erreurs statistiques par rapport à une collection d’unitaires échantillonnés uni-
formément à partir de la mesure de Haar. Ainsi, notre méthode, qui est facilement
applicable dans les expériences, permet de sonder la pureté (ou la seconde entropie
de Rényi) de (sous-)systèmes de taille comprise entre 25 − 30 qubits, ce qui était
hors de portée auparavant.

Deuxièmement, ne pas se limiter à la pureté, comme le montrent le chapitre. 6
et dans Ref. [126], nous avons mis au point une autre méthode qui nous permet
d’étendre nos résultats précédents à diverses autres propriétés intéressantes qui peu-
vent être évaluées en particulier à l’aide du formalisme de classical shadows [64].
Ces quantités peuvent notamment être exprimées comme suit polynômes Tr(𝜌𝑛)
ou des fonctionnelles multi-copies Tr(𝑂(𝑛)𝜌⊗𝑛) de l’état quantique 𝜌. La méth-
ode se base sur la notion de nombres aléatoires communs et est donc appelée des
mesures aléatoires communs. Elle repose à nouveau sur une approximation clas-
sique de l’état quantique préparé dans l’expérience. Contrairement à la méthode de
l’échantillonnage d’importance, les ingrédients supplémentaires de la procédure ne
sont appliqués ici qu’au stade du post-traitement du protocole RM (notons qu’ici les
unitaires sont échantillonnés uniformément). Elle peut donc être facilement utilisée
pour améliorer les quantités estimées dans le passé et dans le futur à partir des don-
nées du RM. En outre, elle nous permet également de renforcer les estimations pour
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tous les sous-systèmes d’intérêt du système quantique. En termes d’utilisation pra-
tique, cette méthode peut améliorer l’estimation des quantités d’intérêt par rapport
au formalisme standard des classical shadows pour des tailles de (sous-)systèmes
allant jusqu’à 15− 16 qubits en fonction de la mémoire classique disponible.

Un autre travail central de ce manuscrit a consisté à développer un protocole
pour accéder à des données non linéaires des quantités qui ne peuvent pas être
explicitement exprimées en termes de polynômes ou d’opérateurs multi-copies de
l’état quantique. Dans ce contexte, nous nous sommes intéressés à l’estimation
de la quantité hautement non linéaire connue sous le nom d’information de Fisher
quantique (QFI) et à l’extension de la boîte à outils RM pour sonder les carac-
téristiques associées à l’intrication multipartite dans les systèmes quantiques. La
QFI est une quantité importante pour les applications métrologiques [94] car elle
valide la présence d’une intrication multipartite via la profondeur d’intrication de
l’état quantique [67, 122]. Nous avons contourné le défi de la mesure du QFI, qui
n’était auparavant possible qu’en utilisant une méthode de mesure coûteuse de to-
mographie de l’état quantique ou qui pouvait être estimée efficacement dans le cas
d’un état thermique via les susceptibilités dynamiques [58]. Ce point a été discuté au
chapitre 4 et dans Ref. [100]. Nous avons proposé une nouvelle méthode pour estimer
le QFI en construisant une série polynomiale de limites inférieures en fonction de la
matrice de densité qui converge vers le QFI. Chacune de ces bornes peut être estimée
à partir du formalisme de classical shadows à un coût de mesure inférieur à celui
de la tomographie de l’état quantique. En outre, ce travail a également motivé le
développement de limites rigoureuses de complexité d’échantillonnage pour évaluer
le nombre requis de mesures nécessaires pour estimer des fonctionnelles multi-copies
arbitraires qui sont accessibles via le formalisme de classical shadows [64].

Dans ce manuscrit, nous avons également abordé un problème pratique perti-
nent de la boîte à outils RM. Le problème pratique que nous traitons provient du
fait que le traitement des données associé au formalisme de classical shadows néces-
site un post-traitement classique coûteux. L’évaluation des estimateurs non biaisés
des fonctions multicopies d’intérêt d’ordre supérieur (𝑛 > 3) et pour des tailles de
système plus importantes via l’estimateur U-statistique présente une problème rapi-
dement, car elle nécessite de faire la somme de toutes les combinaisons possibles
de 𝑀 classical shadows distinctes. Une solution à ce problème, développée dans le
chapitre. 5 et dans Ref. [101], nous avons proposé un formalisme alternatif connu
sous le nom de formalisme de batch shadows pour obtenir des estimateurs non biaisés
de fonctions arbitraires d’intérêt et fournir analytiquement des limites de complex-
ité d’échantillon pour comprendre sa performance. Étant donné un ensemble de
données RM composé de 𝑀 unitaires aléatoires, le formalisme de batch shadows
réduit le coût d’exécution informatique du post-traitement d’une fonction d’ordre
𝑛 par rapport à l’estimateur U-statistique précédent de 𝒪(𝑀𝑛) (ancien) à 𝒪(𝑀)
(nouveau).

Enfin, avec les méthodes et les protocoles développés dans ce manuscrit, nous
avons pu observer et valider expérimentalement de nouvelles propriétés d’intrication
préparées dans deux types différents de platforme quantique : un ordinateur quan-
tique composé de qubits supraconducteurs et un simulateur quantique d’ions piégés.
Tout d’abord, dans le chapitre. 4 et dans Ref. [100], nous avons mesuré le QFI en
utilisant la boîte à outils RM via la série convergente de limites inférieures pour deux
types d’états quantiques préparés sur un dispositif quantique supraconducteur IBM
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: Les états GHZ et l’état fondamental du modèle d’Ising à champ transverse (TFIM)
au point critique en utilisant l’algorithme QAOA. En utilisant le formalisme de batch
shadows et d’autres outils avancés [15, 76], nous avons validé la présence d’une in-
trication multipartite dans tous nos états quantiques préparés jusqu’à une taille de
système de 13 qubits. Deuxièmement, dans le chapitre. 5 et dans Ref. [101], tou-
jours en utilisant le formalisme de batch shadows, nous avons réanalysé les données
de mesure aléatoires existantes d’une expérience antérieure réalisée Ref. [11] pour
observer pour la première fois une propriété intéressante associée à l’intrication, con-
nue sous le nom de barrière d’intrication. Nous estimons l’entropie d’intrication du
second opérateur de Rényi (Rényi 2-OE, une fonction du quatrième ordre) à partir
des données expérimentales qui présentent la signature de la barrière d’intrication.
En outre, nous validons expérimentalement la présence d’intrication mixte par une
nouvelle condition d’intrication basée sur le critère de la CCNR.

Pour l’avenir, il serait intéressant d’étudier et de travailler sur diverses exten-
sions possibles du protocole de mesure aléatoire et des méthodes que nous avons
introduites au cours de ce manuscrit. D’un point de vue plus large, on peut dire
qu’il existe encore deux problèmes principaux qui empêchent la boîte à outils RM
d’atteindre son plein potentiel : (i) le protocole RM souffre maintenant d’une échelle
exponentielle réduite du nombre requis de mesures dues aux erreurs statistiques en
fonction de la taille du système, (ii) pour le formalisme de classical shadows, la
mémoire classique requise nous empêche de post-traiter les données de l’échantillon
de mesure aléatoire par des estimateurs efficaces de batch shadows pour des tailles
de système supérieures à 𝑁 ∼ 16. Les solutions possibles nécessiteraient que nous
développions des stratégies pour mettre en œuvre des mesures aléatoires qui né-
cessitent un nombre polynomial de mesures en fonction de la taille du système.
D’un autre côté, on pourrait envisager d’incorporer le cadre efficace de mémoire des
réseaux tensoriels (tensor networks) pour résoudre potentiellement le problème de
mémoire classique. Il en résulterait une technique efficace de post-traitement des
ensembles de données RM de tailles de système plus importantes sur du matériel
classique afin d’estimer les fonctionnelles de classical shadows qui nous intéressent.

Une direction possible de recherche pourrait être de développer un formalisme
pour effectuer un échantillonnage par importance applicable aux classical shadows
qui pourrait présenter une nouvelle méthode alternative pour lutter contre les er-
reurs statistiques. Sur la base des études préliminaires présentées au chapitre. 6,
on peut procéder à une inspection rigoureuse pour comprendre les améliorations de
performance obtenues par des méthodes séparées ou combinées d’échantillonnage
d’importance et de mesures aléatoires communes. Il serait également intéressant
d’envisager une approche guidée par les données sous la forme d’un schéma adap-
tatif pour adapter itérativement la distribution de l’échantillonnage d’importance
sur les données RM antérieures prises dans l’expérience.

Du point de vue de la détection de l’intrication, on peut proposer un critère uni-
ficateur optimal pour détecter l’intrication en se basant uniquement sur les quantités
de détection de l’intrication accessibles par la boîte à outils RM. Cela peut aider à
certifier des états intriqués en utilisant un cadre général et au-delà de la limitation
de certains critères.
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8
Résumé en français

Nous présentons ici un bref résumé des travaux détaillés dans cette thèse. Dans le
premier chapitre, l’objectif principal est de donner un résumé des quantités impor-
tantes qui nous intéressent dans cette thèse pour comprendre et valider la présence de
l’intrication dans les systèmes quantiques. L’intrication quantique est actuellement
une ressource vitale et joue un rôle clé dans les diverses applications, depuis la cryp-
tographie quantique [28], la téléportation quantique [4], la métrologie quantique [94]
et récemment dans le calcul et la simulation quantique [97]. Il existe diverses quan-
tités, à commencer par les inégalités de Bell [10], les témoins d’intrication [120],
les quantités entropiques et les fonctionnelles non linéaires de l’état quantique qui
certifient la présence d’intrication dans un état quantique [53].

En Chapitre. 1, nous viserons à fournir un bref aperçu théorique de quelques
quantificateurs d’intrication importants parmi la vaste gamme de quantités qui cer-
tifient l’intrication. En particulier, dans ce chapitre, nous nous concentrerons princi-
palement sur l’introduction des quantités qui seront pertinentes pour ce manuscrit et
qui seront discutées en détail dans les chapitres suivants. En particulier, nous nous
intéresserons aux quantificateurs qui décrivent l’intrication bipartite (intrication en-
tre deux constituants du système) dans le contexte des états purs tels que la pureté,
les entropies d’intrication et les systèmes quantiques mixtes tels que les critères PPT
ou CCNR et l’entropies d’intrication de l’opérateur. Nous discuterons également de
l’intrication dans le scénario multipartite (intrication entre plusieurs parties du sys-
tème) et en particulier d’une quantité telle que l’information quantique de Fisher
(QFI) qui a une relation profonde avec les applications en métrologie quantique et
qui peut témoigner la profondeur d’intrication (le nombre de particules qui sont non
trivialement intriquées) d’un état quantique.

Ensuite, ces états quantiques maintenant peuvent-être preparés dans les plat-
formes quantiques bruyants à échelle intermédiaire qui vont de dizaines à des cen-
taines de qubits [97]. Dernièrement, la caractérisation des propriétés quantiques
préparées dans ces systèmes, indépendamment de l’architecture de la plateforme,
a suscité un intérêt significatif parmi les théoriciens ainsi que les expérimentateurs
construisant de tels dispositifs. Il est important de noter que la mesure des pro-
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priétés et des quantités associées à l’intrication, telle qu’elle a été présentée dans le
chapitre précédent, devient pertinente pour comprendre la propriété quantique la
plus élémentaire qui peut être utilisée pour évaluer les performances des ordinateurs
et des simulateurs quantiques.

Dans chapitre. 2, on présente et discute trois candidats potentiels qui abordent
ce problème pour sonder les propriétés associées à l’intrication préparées sur des
matériels quantiques. Ces méthodes sont la tomographie d’état quantique [54], la
mesure des propriétés avec des copies physiques [68, 123] du système quantique et les
mesures aléatoires [31]. En particulier, nous introduisons formellement la méthode
centrale de ce manuscrit connue sous le nom de boîte à outils de mesures aléatoires
(boîte à outils RM) [31] et nous redéfinirons le formalisme dans le contexte de la
mesure de la pureté d’un état quantique inconnu dans des plateformes quantiques
génériques composées de qubits.

Le protocole de mesure aléatoire est basé sur l’exécution, sur un état quan-
tique d’intérêt préparé, d’opérations unitaires aléatoires (au nombre de 𝑁𝑈) qui sont
échantillonnées à partir d’un ensemble unitaire approprié, suivies par des mesures
projective dans une base fixe(au nombre de 𝑁𝑀 pour chaque unitaire aléatoire).
Cette procédure, répétée plusieurs fois pour différents ensembles d’unitaires et de
mesures projectives enregistrées, constitue un ensemble de données. Ensuite, un
post-traitement classique efficace de ces données collectées nous permet d’accéder
aux propriétés intéressantes associé à l’intrication du système quantique. En outre,
nous discutons d’un ajout essentiel à la boîte à outils de la RM, appelé le formal-
isme de classical shadows [64]. Ce formalisme, qui utilise des mesures aléatoires,
nous permet d’estimer d’autres quantités intéressantes sur la base des données de
mesure aléatoires. Ces fonctions peuvent être exprimées sous forme de fonctions
polynomiales telles que Tr(𝜌𝑛) ou de valeurs d’espérance d’opérateurs multicopies
Tr(𝑂(𝑛)𝜌⊗𝑛).

Optimisation du protocole de mesures aléatoires avec échantillonnage
préférentiel

Dans Chapitre. 2, nous avons discuté de la façon dont nous pouvons mesurer la
pureté d’un état quantique inconnu en effectuant des mesures aléatoires dans une
expérience. Le budget de mesure 𝑀 = 𝑁𝑈𝑁𝑀 , où 𝑁𝑈 est le nombre d’unitaires
aléatoires locales appliquées et 𝑁𝑀 le nombre de mesures projectives effectuées pour
chaque unitaire appliquée, définit le nombre total de répétitions effectuées dans
l’expérience. Toutefois, comme les expériences sont répétées pour un budget de
mesure fini, l’estimation de la pureté est entachée d’erreurs statistiques. En par-
ticulier, le nombre requis de mesures dans le cas de mesures aléatoires pour une
tolérance donnée de l’échelle d’erreur statistique exponentiellement (𝑀 ∼ 2𝛼𝑁 avec
𝛼 ∈ [1, 1.5]) en ce qui concerne le nombre de qubits 𝑁 [29, 11, 125, 32]. Cela limite
typiquement notre accès à l’estimation de la pureté dans les expériences pour des
tailles de (sous-)systèmes dans le régime de 10− 15 qubits.

La croissance de la taille des plateformes expérimentales actuelles nécessite le
développement de méthodes afin d’évaluer la génération d’intrication dans tels dis-
positifs quantiques au-delà du régime restrictif actuel. Dans Chapitre. 3 sur la
base des travaux de Ref. [99], nous proposons un protocole basé sur des mesures
aléatoires qui nous permettra de mesurer la pureté des états quantiques dans des
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(sous-)systèmes de taille significativement plus grande. Nous y parvenons en ré-
duisant de manière prédominante les erreurs statistiques qui régissent l’estimation
de la pureté à partir d’un ensemble fini de mesures.

Pour le détailler, la version précédente du protocole de mesure aléatoire intro-
duit dans les travaux antérieurs de [30, 11] était basée sur une méthode agnostique
de l’état pour mesurer la pureté. Elle mettait en œuvre un ensemble d’unitaires
aléatoires qui étaient toujours choisies uniformément à partir de la mesure de Haar,
quel que soit l’état préparé dans l’expérience. Mais dans les scénarios expérimen-
taux typiques, la première étape consiste toujours à décider de l’état parfait 𝜌 que
nous voulons préparer sur le dispositif quantique. Dans certains scénarios, ces états
quantiques préparés peuvent être bien approximés à l’aide d’une simulation clas-
sique [89]. Notre proposition principale consiste donc en deux étapes principales.
Tout d’abord, nous utilisons cette précieuse connaissance préalable pour constru-
ire une représentation classique de l’état quantique expérimental. L’état classique
antérieur peut être considéré comme une approximation de l’état expérimental réal-
isé en raison d’effets de décohérence inconnus ou d’autres raisons fondamentales
qui limitent les représentations classiques des états quantiques. Deuxièmement, sur
la base des connaissances préalables, nous préparons la bonne sélection d’unitaires
aléatoires locales pour l’expérience qui aiderait à réduire les erreurs statistiques.
C’est l’esprit de l’échantillonnage préférentiel [96] où ces unitaires sont échantillon-
nés selon une distribution de probabilité appropriée définie en fonction de l’état
classique approximatif à disposition et exploitent la structure de l’état quantique
sous-jacent.

Estimation de l’information quantique de Fisher avec le formalisme de
classical shadows

En Chapitre. 4, nous abordons la mesure de l’information quantique de Fisher (QFI).
Comme nous l’avons vu avant dans le chapitre. 1, le QFI est un excellent exemple de
quantité qui peut certifier, pour certaines applications, un avantage quantique poten-
tiel par rapport à ses homologues classiques [94]. Par exemple, c’est la quantité cen-
trale liée à la métrologie quantique [94, 93] car elle valide les états qui ont la ressource
quantique adéquate pour fournir des sensibilités métrologiques améliorées [94, 93].
Il est important de noter que la ressource quantique responsable de l’amélioration
des sensibilités métrologiques est l’intrication multipartite. Le QFI joue en outre un
rôle important dans la mise en évidence de divers autres phénomènes quantiques
associés à l’intrication multipartite dans la physique quantique des corps multiples.
Il révèle les propriétés universelles de l’intrication pendant les transitions de phase
à température finie [137] ou le rôle de l’intrication multipartite dans la transition de
phase topologique [92].

Le défi actuel que nous abordons dans ce chapitre est de mesurer le QFI pour un
état quantique inconnu préparé sur une platforme quantique composé de qubits. La
difficulté d’estimer le QFI provient du fait qu’il s’agit d’une fonction non linéaire de
la matrice de densité 𝜌 et qu’elle ne peut pas être transformée en une observable qui
peut être mesurée facilement dans les expériences. La méthode la plus couramment
utilisée pour estimer le QFI d’une manière indépendante de l’état semble être la to-
mographie d’état quantique. Cette méthode a un coût élevé en termes de nombre de
mesures à exécuter sur la plateforme quantique. Dans ce chapitre et comme indiqué
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dans nos travaux [100], nous fournirons une méthode alternative pour mesurer le
QFI en construisant une série polynomiale de la matrice de densité sous la forme
de bornes inférieures qui convergent vers le QFI. Chacune des bornes inférieures
peut être mesurée de manière agnostique en utilisant le formalisme classique de
l’ombre [64] sur les dispositifs expérimentaux actuels avec les mêmes données de
mesure aléatoires. Nous montrons que chacune de ces bornes peut être estimée à
partir du formalisme de classical shadows à un coût de mesure inférieur à celui de
la tomographie d’état quantique. Nous mettons en évidence ses caractéristiques
de convergence ainsi que des identités rigoureuses de complexité d’échantillon pour
estimer le nombre requis de mesures pour les estimer avec une précision et un inter-
valle de confiance donnés. Nous généralisons ces calculs pour évaluer le nombre de
mesures nécessaires pour estimer des fonctionnelles multi-copies arbitraires qui sont
accessibles via le formalisme de classical shadows [64].

La dernière partie de ce chapitre est basée sur Ref. [129], où nous avons mesuré
le QFI en employant la boîte à outils RM via la série convergente de limites in-
férieures pour deux types d’états quantiques préparés sur un dispositif quantique
supraconducteur IBM : Les états GHZ et l’état fondamental du modèle d’Ising à
champ transverse (TFIM) au point critique en utilisant l’algorithme QAOA. En util-
isant le formalisme de batch shadows (introduit dans le chapitre suivant) et d’autres
outils avancés de la boîte à outils de la RM, nous avons validé la présence d’un
enchevêtrement multipartite dans tous nos états quantiques préparés jusqu’à une
taille de système de 13 qubits.

Observation de la barrière d’intrication à l’aide de batch shadows

Dans les chapitres précédents nous avons vu que, l’ajout du formalisme de classical
shadows à la boîte à outils de la RM permet d’accéder à de nombreuses quantités
non linéaires intéressantes qui peuvent certifier l’intrication à partir de l’ensemble
des données expérimentales de la RM. Plus précisément, ces quantités peuvent être
écrites comme des valeurs d’espérance de l’opérateur multicopie 𝑂(𝑛) de la matrice de
densité 𝜌, c’est-à-dire 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛). L’estimateur U-statistique relie directement
les données RM à l’estimation de ces fonctions [59]. Une question pratique essentielle
qui se pose est liée à notre capacité à post-traiter efficacement les données expéri-
mentales sur un ordinateur classique afin d’obtenir ces estimateurs. L’estimateur
actuel de la U-statistique constitue un goulot d’étranglement pour le post-traitement
classique permettant d’extraire les quantités d’intérêt. L’évaluation des estimateurs
non biaisés des fonctions multicopies d’intérêt d’ordre supérieur (𝑛 > 3) et pour
des systèmes de plus grande taille via l’estimateur U-statistique présente rapide-
ment un problème informatique, car elle nécessite de faire la somme de toutes les
combinaisons possibles de 𝑛 classical shadows distinctes. Jusqu’à présent, les fonc-
tionnelles jusqu’à l’ordre 𝑛 ≤ 3 ont été extraites avec succès des données expéri-
mentales [11, 34]. Dans chapitre. 5 et dans Ref. [101], nous proposons un autre
formalisme connu sous le nom de formalisme de batch shadows pour obtenir des
estimateurs non biaisés de fonctions arbitraires d’intérêt et fournir analytiquement
des limites de complexité de l’échantillon pour comprendre sa performance. Étant
donné un ensemble de données RM composé de 𝑀 unitaires aléatoires, nous avons
montré que le formalisme de l’ombre du lot réduit le coût d’exécution informatique
du post-traitement d’une fonction d’ordre 𝑛 par rapport à l’estimateur U-statistique
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précédent de 𝒪(𝑀𝑛) (ancien) à 𝒪(𝑀) (nouveau) étapes.
En outre, ce nouveau formalisme nous permet de réanalyser les données de

mesure aléatoires existantes d’une expérience antérieure réalisée en Ref. [11] pour
observer pour la première fois une propriété intéressante associée à l’intrication con-
nue sous le nom de barrière d’intrication. Nous estimons l’entropie d’intrication du
second opérateur de Rényi (Rényi 2-OE, une fonction du quatrième ordre 𝑛 = 4)
à partir des données expérimentales qui présentent cette signature de la barrière
d’intrication. Nous validons également expérimentalement la présence d’intrication
dans les états mixtes avec une nouvelle condition d’intrication que nous dérivons sur
la base du critère CCNR.

Common randomized measurements ou Mesures aléatoires communes

Dans Chapitre. 6 qui est basé sur Ref. [126], nous discutons d’une proposition récem-
ment élaborée pour obtenir des estimations améliorées de quantités d’intérêt à partir
de données de mesure aléatoires [126]. Comme nous l’avons montré précédemment
dans le chapitre. 3, nous avons proposé une méthode basée sur l’échantillonnage
préférentiel d’unitaires aléatoires locales pour réduire l’échelle exponentielle du nom-
bre requis de mesures pour évaluer la pureté d’un état quantique inconnu. Cette
méthode a notamment permis d’améliorer les performances et de réduire l’erreur
statistique de l’estimation "unitaire agnostique" de la pureté (voir Eq. (2.28)). Une
question générale importante que nous pouvons poser maintenant est la suivante
: Comment pouvons-nous réduire le nombre de mesures nécessaires pour évaluer
les quantités accessibles à l’aide du formalisme de classical shadows? En partic-
ulier, nous nous intéressons à la réduction de l’erreur statistique dans l’estimation
de l’espérance des opérateurs multicopies (MCO) 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛) qui souffrent
également d’échelles exponentielles des mesures requises en fonction de la taille du
système 𝑁 [31]. Cette question a été abordée pour réduire les erreurs statistiques
dans le contexte de l’évaluation des fonctions exprimées en tant qu’observable à
copie unique, c’est-à-dire les fonctions du type 𝑓1 = Tr(𝑂(1)𝜌) [63, 56, 55, 133, 123].
Ici, notre objectif principal est de fournir une méthode pour optimiser toutes les
fonctions d’intérêt pour 𝑛 ≥ 1.

Dans ce chapitre, nous présentons d’abord l’idée principale de notre proposition
visant à améliorer les estimations en réduisant les erreurs statistiques des MCO. Elle
s’inspire des nombres aléatoires communs (common random numbers), largement
utilisés en statistique pour réduire la variance, et nous aidera à présenter le pro-
tocole mesures aléatoires communes (common randomized measurements) (CRM).
Sur la base de cette idée, nous proposons la construction d’estimateurs boostés de
fonctionnels multicopies à l’aide des common randomized shadows (CR shadows) et
introduisons en outre une nouvelle estimation CRM pour l’estimateur agnostique
unitaire pour la pureté. Enfin, nous illustrons ses performances pour estimer de
nombreuses propriétés quantiques intéressantes accessibles à partir de l’ensemble de
données RM. Nous comparons les performances du protocole CRM avec celles du
protocole RM standard (ou uniforme). En particulier, nous nous intéresons aux
performances pour des quantités allant des observables linéaires (𝑓1 = Tr(𝑂(1)𝜌)),
à la pureté (Tr(𝜌2)) et aux fonctions d’ordre supérieur de la matrice densité telles
que les limites du QFI (𝐹0 et 𝐹1) introduites dans le chapitre. 4. En ce qui concerne
la pureté évaluée pour des systèmes de plus grande taille avec l’estimateur "agnos-
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tique", nous étudions les échelles d’erreur du protocole CRM par rapport à celle de
l’échantillonnage d’importance introduite au chapitre. 3.
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Appendices



A
Alternate expressions for the lower bounds

and the quantum Fisher information

This appendix provides the alternate expressions of the lower bounds of the quantum Fisher infor-
mation (QFI) that we introduced in Chapter. 4. In particular, we show that the converging series
of lower bounds can be expressed in terms of multi-copy functionals as well as polynomials of the
density matrix.

We have shown in Chapter. 4 an alternate expression for the QFI in Eq. (4.4). It
involves polynomials of the eigenvalues of the density matrix 𝜌 that form a converging
series of lower bounds to the QFI. One could naively think that the introduction of
this alternate expression has no additional benefits as once again we need quantum
state tomography (QST) to estimate the eigenvalues to measure QFI. In this section
we bridge this gap and show that Eq. (4.4) can indeed be expressed firstly in terms
of polynomials of the density matrix and secondly also in terms of a multi-copy
operator. Both these forms then allow us to estimate these bounds using the classical
shadow formalism as we shall show in the next section.

Our starting point is to formulate the standard expression of the QFI [9, 8] given
in Eq. (4.1) in an alternate form using the swap operator S =

∑︀
𝑖1,𝑖2

|𝑖2, 𝑖1⟩⟨𝑖1, 𝑖2|:

𝐹𝑄 = 2Tr
(︂
(𝜌⊗ 1 − 1 ⊗ 𝜌)2

𝜌⊗ 1 + 1 ⊗ 𝜌
S(𝒜⊗𝒜)

)︂
. (A.1)

In the above expression, it might be that the denominator is not invertible, in that
case it admits a multiplication by the Moore-Penrose pseudoinverse of the denomi-
nator that commutes with the numerator. To better understand the expression of
QFI in the above equation, we can expand its numerator using the spectral decom-
position 𝜌 =

∑︀
𝑖 𝜆𝑖 |𝑖⟩⟨𝑖|

(𝜌⊗1−1⊗𝜌)2 =
(︃∑︁

𝑖,𝑗

(𝜆𝑖 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗| − 𝜆𝑗 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗|)
)︃2

=
∑︁
𝑖,𝑗

(𝜆𝑖−𝜆𝑗)2 |𝑖, 𝑗⟩⟨𝑖, 𝑗|

(A.2)
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and the (pseudo)inverse of the denominator of the fraction as

(𝜌⊗ 1 + 1 ⊗ 𝜌)−1 =

(︃∑︁
𝑖,𝑗

(𝜆𝑖 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗|+ 𝜆𝑗 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗|)
)︃−1

=
∑︁

𝑖,𝑗:𝜆𝑖+𝜆𝑗>0

(𝜆𝑖 + 𝜆𝑗)
−1 |𝑖, 𝑗⟩⟨𝑖, 𝑗| . (A.3)

Noting additionally, we can express

| ⟨𝑖| 𝒜 |𝑗⟩ |2 = ⟨𝑗, 𝑖| 𝒜 ⊗ 𝒜 |𝑖, 𝑗⟩ = Tr (|𝑖, 𝑗⟩⟨𝑖, 𝑗|S(𝒜⊗𝒜)) . (A.4)

With the combination of the previous results in Eq. (A.2) and Eq. (A.3) and the
above equation we get the alternate expression of QFI as given in Eq. (A.1). In a
similar spirit, we can also provide an alternate expression of our lower bounds in
Eq. (4.4). Noting additionally that, we can express the expansion term in Eq. (4.3)
as

𝑛∑︁
ℓ=0

∑︁
𝑖,𝑗

(1− 𝜆𝑖 − 𝜆𝑗)
ℓ |𝑖, 𝑗⟩⟨𝑖, 𝑗|

=
𝑛∑︁
ℓ=0

(︃∑︁
𝑖,𝑗

(|𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗| − 𝜆𝑖 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗| − 𝜆𝑗 |𝑖⟩⟨𝑖| ⊗ |𝑗⟩⟨𝑗|)
)︃ℓ

=
𝑛∑︁
ℓ=0

(1 ⊗ 1 − 𝜌⊗ 1 − 1 ⊗ 𝜌)ℓ , (A.5)

we similarly get the final alternate form of the lower bounds

𝐹𝑛 = 2Tr

[︃
𝑛∑︁
ℓ=0

(𝜌⊗ 1 − 1 ⊗ 𝜌)2 (1 ⊗ 1 − 𝜌⊗ 1 − 1 ⊗ 𝜌)ℓ S(𝒜⊗𝒜)

]︃
. (A.6)

Moreover, in order to see the expression of the lower bounds as polynomials of 𝜌,
we start by expanding further the term

(1 ⊗ 1 − 𝜌⊗ 1 − 1 ⊗ 𝜌)ℓ =
ℓ∑︁

𝑞=0

(︂
ℓ

𝑞

)︂
(−1)𝑞(𝜌⊗ 1 + 1 ⊗ 𝜌)𝑞, (A.7)

by swapping the sums and using the hockey-stick identity
∑︀𝑛

ℓ=𝑞

(︀
ℓ
𝑞

)︀
=
(︀
𝑛+1
𝑞+1

)︀
, we can

re-express the lower bound as

𝐹𝑛 = 2
𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂
(−1)𝑞 Tr

(︁
(𝜌⊗1−1⊗𝜌)2(𝜌⊗1+1⊗𝜌)𝑞S(𝒜⊗𝒜)

)︁
=

𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂
(−1)𝑞𝑃𝑞+2.

(A.8)
Here we introduce the function 𝑃𝑞+2 which contains an order 𝑞 + 2 in the density
matrix 𝜌. By further expanding the terms inside the trace expression and using the
cyclic property of the trace, we can directly relate 𝑃𝑞+2 explicitly in terms of powers
of 𝜌 and the operator 𝒜

𝑃𝑞+2 = 2

𝑞+2∑︁
ℓ=0

𝐶
(𝑞)
ℓ Tr(𝜌𝑞+2−ℓ𝒜𝜌ℓ𝒜) (A.9)
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where we have introduced the coefficients 𝐶(𝑞)
ℓ =

(︀
𝑞
ℓ

)︀
− 2
(︀
𝑞
ℓ−1

)︀
+
(︀
𝑞
ℓ−2

)︀
which are

defined such that
(︀
𝑞
ℓ′

)︀
= 0 if ℓ′ < 0 or ℓ′ > 𝑞. Alternately, we can define the cyclic

permutation operator

Π(𝑞+2) =
∑︁

𝑖1,𝑖2,...,𝑖𝑞+2

|𝑖2, . . . , 𝑖𝑞+2, 𝑖1⟩⟨𝑖1, 𝑖2, . . . , 𝑖𝑞+2| (A.10)

with |𝑖𝑚⟩’s being the basis states for the Hilbert space that contains 𝜌. This operator
acts on 𝑞 + 2 copies of the system and shifts them a single step backwards. Using
this operator and rewriting Eq. (A.8) as shown in our work [100, Eq. A7], we get
the following expression for the lower bounds 𝐹𝑛

𝐹𝑛 = 2
𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂
(−1)𝑞

𝑞+2∑︁
ℓ=0

𝐶
(𝑞)
ℓ Tr(𝜌𝑞+2−ℓ𝒜𝜌ℓ𝒜)

= 2
𝑛∑︁
𝑞=0

(︂
𝑛+ 1

𝑞 + 1

)︂
(−1)𝑞 Tr[𝑂(𝑞+2)𝜌⊗(𝑞+2)] (A.11)

with the (𝑞 + 2)-copy operator defined as

𝑂(𝑞+2) =
[︁
2 (1⊗(𝑞+1) ⊗𝒜2) +

𝑞+1∑︁
ℓ=1

𝐶
(𝑞)
ℓ (1⊗(𝑞+1−ℓ) ⊗𝒜⊗ 1⊗(ℓ−1) ⊗𝒜)

]︁
Π(𝑞+2). (A.12)

We see that both the expressions in Eq. (A.8) and Eq. (A.11) are compatible to
be estimated using the classical shadow formalism. In practice, when we want to
extract effectively the estimations of the lower bounds from experimental data, it is
easier to work with the expression of Eq. (A.8). Lastly, we can note for the sake of
completeness as shown in our work [100], that we can also iteratively calculate each
bound 𝐹𝑛 from the previous ones by writing

𝐹𝑛 = (−1)𝑛

[︃
𝑃𝑛+2 −

𝑛+1∑︁
𝑟=0

(︂
𝑛+ 1

𝑟 + 1

)︂
(−1)𝑟𝐹𝑟

]︃
. (A.13)

With these expression, one can use the classical shadow formalism to evaluate the
lower bounds of the QFI until the desired convergence is reached.
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B
Variance computation for the batch

shadow estimator

This appendix provides the derivation of the closed form of the variance for the batch shadow
estimator that can be used to evaluate arbitrary multi-copy functionals of the density matrix. In
particular, the expression of the variance is essential to obtain the sample complexity to estimate
a function of interest using the batch shadow formalism.

We start by performing randomized measurements to construct classical shadows
of an 𝑁−qubit state 𝜌. On each run of the protocol, we sample 𝑁 single-qubit
random unitaries from the CUE or a 2-design and apply them locally on each qubit.
This is followed by a single computational- basis measurement on each qubit (𝑁𝑀 =
1). This procedure is repeated 𝑀 times and allows us to construct 𝑀 classical
shadows 𝜌(𝑟) of 𝜌 with 𝑟 = 1, . . . ,𝑀 [64]. We know that the expectation value of
the classical shadows is E[𝜌] = 𝜌. The functions that we are interested to evaluate
can be expressed as 𝑓𝑛 = Tr(𝑂(𝑛)𝜌⊗𝑛). To evaluate this function with a total of
𝑀 measurements using the batch shadow formalism introduced in Chapter. 5, we
can construct 𝑛′ batch shadows as given in Eq. (5.7). The corresponding batch
shadow estimator can be constructed as shown in Eq. (5.8) and is given by 𝑓

(𝑛′)
𝑛 .

In this section as we shown in Ref. [101], we shall mainly focus on the simplest and
computationally most efficient case of post-processing the batch shadow estimator
which is obtained for 𝑛′ = 𝑛. We write this more formally as a sum over all the
permutations 𝜋 (𝑖 ↦→ 𝜋(𝑖) for 𝑖 ∈ {1 . . . , 𝑛}) which leads to

𝑓 (𝑛)
𝑛 =

1

𝑛!

∑︁
𝑏1 ̸=... ̸=𝑏𝑛

Tr
(︁
𝑂(𝑛)

𝑛⨂︁
𝑖=1

𝜌(𝑏𝑖)
)︁
=

1

𝑛!

𝑛𝑛

𝑀𝑛

∑︁
𝜋

∑︁
𝑡1∈𝑇1,...,𝑡𝑛∈𝑇𝑛

Tr
[︁
𝑂(𝑛)𝑊𝜋

𝑛⨂︁
𝑖=1

𝜌(𝑡𝑖)𝑊 †
𝜋

]︁
(B.1)

with 𝑊𝜋 being the operator that permutes the 𝑛 classical shadows correspondingly
as 𝑊𝜋 =

∑︀
𝑗1,...,𝑗𝑛

⃒⃒
𝑗𝜋(1)

⟩︀⟨︀
𝑗1
⃒⃒
⊗· · ·⊗

⃒⃒
𝑗𝜋(𝑛)

⟩︀⟨︀
𝑗𝑛
⃒⃒
(where the |𝑗𝑖⟩’s are orthonormal basis

states). Now our goal is to compute the variance term Var[𝑓 (𝑛)
𝑛 ] by a similar reasoning
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as done shown in Chapter. 4 (to compute the variance of the U-statistics estimator
using classical shadows). We can express the variance using the decomposition given
in Eq. (B.1) as

Var[𝑓 (𝑛)
𝑛 ] =

(︂
1

𝑛!

𝑛𝑛

𝑀𝑛

)︂2∑︁
𝜋,𝜋′

∑︁
𝑡1,𝑡

′
1∈𝑇1

̸=
...
̸=

𝑡𝑛,𝑡
′
𝑛∈𝑇𝑛

Cov
[︂
Tr
(︁
𝑂(𝑛)𝑊𝜋 ⊗𝑛

𝑖=1 𝜌
(𝑡𝑖)𝑊 †

𝜋

)︁
,Tr
(︁
𝑂(𝑛)𝑊𝜋′ ⊗𝑛

𝑖=1 𝜌
(𝑡′𝑖)𝑊 †

𝜋′

)︁]︂

(B.2)

Note that all shadows that appear only once in the covariances above (i.e., those
with indices 𝑡𝑖 ̸= 𝑡′𝑖) simply average to 𝜌 (where the average is performed over the
applied unitaries: E[𝜌(𝑡𝑖)] = E[𝜌(𝑡

′
𝑖)] = 𝜌). The shadows that appear twice (those with

indices 𝑡𝑖 = 𝑡′𝑖), on the other hand, contribute less trivially. Furthermore, because
of the averaging over all permutations 𝜋, 𝜋′, the positions of the shadows appearing
twice (i.e., the indices 𝑖 such that 𝑡𝑖 = 𝑡′𝑖) does not matter. Thus to compute the
above sums over all the batch indices 𝑡𝑖, 𝑡′𝑖 ∈ 𝑇𝑖, we can decompose these, depending
on the number 𝑘 of copies of shadows that are in common in the two terms inside
the covariances—that is, with 𝑘 values for the index 𝑖 such that 𝑡𝑖 = 𝑡′𝑖, and the
remaining (𝑛− 𝑘) values such that 𝑡𝑖 ̸= 𝑡′𝑖. Hence we can explicitly write:

Var[𝑓 (𝑛)
𝑛 ] =

(︁ 1

𝑛!

𝑛𝑛

𝑀𝑛

)︁2∑︁
𝜋,𝜋′

𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂ ∑︁
𝑡1∈𝑇1
...

𝑡𝑘∈𝑇𝑘

∑︁
𝜏𝑘+1 ̸=𝜏 ′

𝑘+1∈𝑇𝑘+1
...

𝜏𝑛 ̸=𝜏 ′
𝑛∈𝑇𝑛

Cov

[︃
Tr
(︁
𝑊 †

𝜋𝑂
(𝑛)𝑊𝜋[⊗𝑘

𝑖=1𝜌
(𝑡𝑖) ⊗𝑛

𝑗=𝑘+1 𝜌
(𝜏𝑗)]

)︁
,

Tr
(︁
𝑊 †

𝜋′𝑂
(𝑛)𝑊𝜋′ [⊗𝑘

𝑖=1𝜌
(𝑡𝑖) ⊗𝑛

𝑗=𝑘+1 𝜌
(𝜏 ′

𝑗)]
)︁]︃

=

(︂
1

𝑛!

𝑛𝑛

𝑀𝑛

)︂2∑︁
𝜋,𝜋′

𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂(︂
𝑀

𝑛

)︂𝑘 (︂
𝑀

𝑛

(︂
𝑀

𝑛
− 1

)︂)︂𝑛−𝑘

Cov [𝐶𝜋, 𝐶𝜋′ ]

=

𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂(︁ 𝑛

𝑀

)︁𝑘 (︁
1− 𝑛

𝑀

)︁𝑛−𝑘

Var

[︃
1

𝑛!

∑︁
𝜋

Tr
(︁
𝑊 †

𝜋𝑂
(𝑛)𝑊𝜋[⊗𝑘

𝑖=1𝜌
(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]

)︁]︃
,

(B.3)

with
𝐶𝜋 = Tr

(︀
𝑊 †
𝜋𝑂

(𝑛)𝑊𝜋

[︀
⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]︀)︀
and

𝐶𝜋′ = Tr
(︁
𝑊 †
𝜋′𝑂

(𝑛)𝑊𝜋′
[︀
⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]︀)︁ .
We notice from the first to the second lines in Eq. (B.3) (in addition to averaging

the shadows 𝜌(𝜏𝑗), 𝜌(𝜏
′
𝑗) to 𝜌, see above) that all different shadows 𝜌(𝑡𝑖) give the same

statistics (hence, the same covariances), so that we could without loss of generality
replace the 𝑘 shadows 𝜌(𝑡𝑖) by any other 𝑘 shadows 𝜌(𝑖), e.g. those for 𝑖 = 1, . . . , 𝑘.
All 𝑀

𝑛
terms from each of the 𝑘 sums over 𝑡𝑖 ∈ 𝑇𝑖, and all 𝑀

𝑛

(︀
𝑀
𝑛
− 1
)︀

terms from
each of the 𝑛 − 𝑘 sums over 𝜏𝑗 ̸= 𝜏 ′𝑗 ∈ 𝑇𝑗 then give the same values. For the last
line we just rearranged all prefactors and included the sums over 𝜋, 𝜋′ inside the
covariances, noticing that the two arguments of the covariances are then the same.

Let us note already that the variance term inside the sum of Eq. (B.3) cancels
for 𝑘 = 0: the sum can therefore be taken to start from 𝑘 = 1. Simplifying further
our notations by defining,

𝒱𝑘 = Var

[︃
1

𝑛!

∑︁
𝜋

Tr
(︁
𝑊 †
𝜋𝑂

(𝑛)𝑊𝜋[⊗𝑘
𝑖=1𝜌

(𝑖) ⊗ 𝜌⊗(𝑛−𝑘)]
)︁]︃
, (B.4)
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we obtain by using the binomial expansion

Var[𝑓 (𝑛)
𝑛 ] =

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂(︁ 𝑛
𝑀

)︁𝑘(︁
1− 𝑛

𝑀

)︁𝑛−𝑘
𝒱𝑘

=
𝑛∑︁
ℓ=1

(︂
𝑛

ℓ

)︂(︁ 𝑛
𝑀

)︁ℓ[︁ ℓ∑︁
𝑘=1

(︂
ℓ

𝑘

)︂
(−1)ℓ−𝑘𝒱𝑘

]︁
=
𝑛2

𝑀
𝒱1 +

𝑛3(𝑛− 1)

2𝑀2
(𝒱2 − 2𝒱1) +𝒪

(︁ 1

𝑀2

)︁
. (B.5)

By performing similar calculations, we can also provide analogous expression of
Eq. (B.5) for any value of 𝑛′ given by

Var[𝑓 (𝑛′)
𝑛 ] =

𝑛∑︁
𝑗=1

(︂
𝑛

𝑗

)︂(︀𝑛′−𝑛
𝑛−𝑗

)︀(︀
𝑛′

𝑛

)︀ 𝑗∑︁
𝑘=1

(︂
𝑗

𝑘

)︂(︂
𝑛′

𝑀

)︂𝑘 (︂
1− 𝑛′

𝑀

)︂𝑗−𝑘
𝒱𝑘

=
𝑛∑︁
ℓ=1

(︀
𝑛
ℓ

)︀2(︀
𝑛′

ℓ

)︀ (︂ 𝑛′

𝑀

)︂ℓ [︁ ℓ∑︁
𝑘=1

(︂
ℓ

𝑘

)︂
(−1)ℓ−𝑘𝒱𝑘

]︁
=
𝑛2

𝑀
𝒱1 +

𝑛2(𝑛− 1)2 𝑛′

𝑛′−1

2𝑀2
(𝒱2 − 2𝒱1) +𝒪

(︁ 1

𝑀2

)︁
. (B.6)

Thus we have obtained explicit expressions of the variance that can be evaluated
with the knowledge of the quantum state 𝜌 and the multi-copy operator 𝑂(𝑛).
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C
Properties of classical shadows with local

Pauli measurements

This appendix derives novel properties of Pauli shadows by exploiting the rich structure of Pauli-
basis measurements and improves over other previous bounds on the trace overlap between different
Pauli shadows.

Given a 𝑁 qubit state prepared on a quantum device, we can construct a Haar
classical shadow 𝜌(𝑟) (equivalently called a Haar shadow) of the state (with 𝑁𝑀 =
1) [64]:

𝜌(𝑟) =
𝑁⨂︁
𝑖=1

(︁
3𝑈

(𝑟)
𝑖

† ⃒⃒⃒
𝑠
(𝑟)
𝑖

⟩⟨
𝑠
(𝑟)
𝑖

⃒⃒⃒
𝑈

(𝑟)
𝑖 − 12

)︁
(C.1)

where the applied local random unitary is sampled from the CUE equivalently from
the Haar measure (local CUE measurements). Alternatively we could consider ran-
dom single-qubit operations that equivalently lead to measuring each qubit in one
of the random Pauli basis of 𝒳 , 𝒴 or 𝒵 (local Pauli measurements).

These lead to six possible states that can be succinctly summarized as:

|ℬ, 𝑠⟩ with ℬ ∈ {𝒳 ,𝒴 ,𝒵}, 𝑠 ∈ {±} (C.2)

More precisely, these states correspond to the following six possibilities:

|0⟩ = |𝒵,+⟩ , |1⟩ = |𝒵,−⟩ ,
|+⟩ = |𝒳 ,+⟩ , |−⟩ = |𝒳 ,−⟩ ,
|𝑖+⟩ = |𝒴 ,+⟩ , |𝑖−⟩ = |𝒴 ,−⟩ . (C.3)

To construct a Pauli shadow 𝜌, we choose randomly and uniformly for each single
qubit 𝑖, a basis ℬ𝑖 in 𝒳 , 𝒴 or 𝒵 which is subsequently followed by the resulting
basis measurement that provides a string of signs s = (𝑠1, . . . , 𝑠𝑁) ∈ {±}. With
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this information and defining 𝑁 chosen bases ℬ = (ℬ1, . . . ,ℬ𝑁), we can provide an
unbiased estimator of the density matrix 𝜌 as [65]:

𝜌(ℬ, s) =
𝑁⨂︁
𝑖=1

(︁
3 |ℬ𝑖, 𝑠𝑖⟩⟨ℬ𝑖, 𝑠𝑖| − 12

)︁
such that E[𝜌(ℬ, s)] = 𝜌 (C.4)

Here, E denotes the expectation value over the uniformly sampled random bases, as
well as the resulting measurement outcomes. Note that the single qubit Pauli shad-
ows have some interesting properties due to the fact that their chosen measurement
bases are mutually unbiased [118]. For ℬ ̸= ℬ′, we have

Tr
[︁(︀
3 |ℬ, 𝑠⟩⟨ℬ, 𝑠| − 12

)︀(︀
3 |ℬ′, 𝑠′⟩⟨ℬ′, 𝑠′| − 12

)︀]︁
=

1

2
∀𝑠, 𝑠′ ∈ {±} (C.5)

and for ℬ = ℬ′ we have

Tr
[︁(︀
3 |ℬ, 𝑠⟩⟨ℬ, 𝑠| − 12

)︀(︀
3 |ℬ′, 𝑠′⟩⟨ℬ′, 𝑠′| − 12

)︀]︁
=

{︃
−4 if 𝑠 ̸= 𝑠′.

5 if 𝑠 = 𝑠′.
(C.6)

This rich geometric structure allows us to deduce streamlined upper bounds on the
trace overlap between different Pauli shadows. The following Lemma is an important
result that shall come in use in later computations.

Lemma 1. Given two N-qubit basis strings ℬ, ℬ′ ∈ {𝒳 , 𝒴 , 𝒵}×𝑁 , for any sign of
the outcome strings 𝑠, 𝑠′ ∈ {±}×𝑁 the following two statements hold:

Tr
(︁
𝜌
(︀
ℬ, s

)︀
𝜌′
(︀
ℬ′, s′

)︀)︁2
≤

𝑁∏︁
𝑖=1

(︃
521{ℬ𝑖 = ℬ′

𝑖}+
(︁1
2

)︁2
1{ℬ𝑖 ̸= ℬ′

𝑖}
)︃

(C.7)

and

E

[︃
𝑁∏︁
𝑖=1

(︂
521{ℬ𝑖 = ℬ′

𝑖}+
(︁1
2

)︁2
1{ℬ𝑖 ̸= ℬ′

𝑖}
)︂]︃

= 8.5𝑁 , (C.8)

where 1{ℬ𝑖 = ℬ′
𝑖} and 1{ℬ𝑖 ̸= ℬ′

𝑖} denote the indicator function of the advertised
events.

The proof strategy for this auxiliary statement is inspired by a recent analysis
of classical shadows for single-qubit SIC POVMs, see [118, Appendix IX.B].

Proof. The proof of the first inequality follows from the observation that the single
qubit states |ℬ𝑖, 𝑠𝑖⟩ and |ℬ′

𝑖, 𝑠
′
𝑖⟩ are mutually unbiased whenever ℬ𝑖 ̸= ℬ′

𝑖. If two
bases coincide (ℬ𝑖 = ℬ𝑖), the squared overlap either contributes (−4)2 (𝑠′ ̸= 𝑠) or 52
(𝑠 = 𝑠′) and can be bounded by choosing the larger term amongst them. Eq. (C.7)
now follows from applying this single-qubit argument to each contribution in the
𝑁 -fold tensor product that make up the two shadows as the trace inner product of
two shadows factorises into 𝑁 single-qubit contributions from Eq. (C.4).
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Secondly, noting that all random basis choices are independent, we can develop
Eq. (C.8) as:

E

[︃
𝑁∏︁
𝑖=1

(︂
521{ℬ𝑖 = ℬ′

𝑖}+
(︁1
2

)︁2
1{ℬ𝑖 ̸= ℬ′

𝑖}
)︂]︃

=

[︃
E

(︂
521{ℬ𝑖 = ℬ′

𝑖}+
(︁1
2

)︁2
1{ℬ𝑖 ̸= ℬ′

𝑖}
)︂]︃𝑁

=

[︂
52E[1{ℬ𝑖 = ℬ′

𝑖}] +
(︁1
2

)︁2
E[1{ℬ𝑖 ̸= ℬ′

𝑖}]
]︂𝑁

=

[︃
52 × 1

3
+
(︁1
2

)︁2
× 2

3

]︃𝑁
= 8.5𝑁 ,

(C.9)

where we have used the fact that the expectation of an indicator function is the prob-
ability of the associated event. More precisely, E[1 {ℬ𝑖 = ℬ′

𝑖} = Pr [ℬ𝑖 = ℬ′
𝑖] = 1/3,

because there is a total of three basis choices to choose from. The same argument
also ensures E[1 {ℬ𝑖 ̸= ℬ′

𝑖}] = Pr [ℬ𝑖 ̸= ℬ′
𝑖] = 1− Pr [ℬ𝑖 = ℬ′

𝑖] = 1− 1/3 = 2/3.

We now collect a number of helpful auxiliary statements that will enable us to
deduce tight bounds on the estimation protocol for function 𝑓2 and 𝑓4 as done in
Chapter. 5. Some statements directly follow from the properties of classical shadows
and are therefore valid for both Pauli and CUE shadows. Other results, however,
do explicitly use the structure of Pauli basis measurements and are therefore only
valid for Pauli shadows.

Lemma 2. Given a Pauli or Haar shadow 𝜌 that acts on 𝑁 qubits and 𝑂 be an
observable on the same dimension. We have:

Var
[︁
Tr(𝑂𝜌)

]︁
≤ E

[︁
Tr(𝑂𝜌)2

]︁
≤ Tr(𝑂2)2𝑁 . (C.10)

Proof. The above statement follows from the proof of the original bound on the
shadow norm of linear observables in Ref. [64] (proof of Proposition. 3).

Lemma 3. Let 𝜌 and 𝜌′ be two independent Pauli shadows on 𝑁 qubits. Then we
have

Var
[︁
Tr(𝜌𝜌′)

]︁
≤ E

[︁
Tr(𝜌𝜌′)2

]︁
≤ 8.5𝑁 . (C.11)

Proof. The proofs directly follows from Lemma. 1 by taking the expectation value
of Eq. (C.7).

These properties will be explicitly used in Chapter. 5 in order to derive improved
sample complexity bounds for functions of interest.

145



Bibliography

[1] F. Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (2019), pp. 505–510. issn: 1476-4687. doi:
10.1038/s41586-019-1666-5. url: https://doi.org/10.1038/s41586-
019-1666-5.

[2] G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel. “Deterministic
generation of multiparticle entanglement by quantum Zeno dynamics”. In:
Science 349.6254 (2015), pp. 1317–1321. issn: 0036-8075. doi: 10.1126/
science.aaa0754. url: https://science.sciencemag.org/content/
349/6254/1317.

[3] J. L. Beckey, M. Cerezo, A. Sone, and P. J. Coles. “Variational quantum
algorithm for estimating the quantum Fisher information”. In: Phys. Rev.
Res. 4 (2022), p. 013083. doi: 10.1103/PhysRevResearch.4.013083. url:
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013083.

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Woot-
ters. “Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels”. In: Phys. Rev. Lett. 70 (13 1993), pp. 1895–1899.
doi: 10.1103/PhysRevLett.70.1895. url: https://link.aps.org/doi/
10.1103/PhysRevLett.70.1895.

[5] B. Bertini, P. Kos, and T. Prosen. “Operator Entanglement in Local Quantum
Circuits I: Chaotic Dual-Unitary Circuits”. In: SciPost Phys. 8 (4 2020), p. 67.
doi: 10.21468/SciPostPhys.8.4.067. url: https://scipost.org/10.
21468/SciPostPhys.8.4.067.

[6] D. Bluvstein et al. “A quantum processor based on coherent transport of
entangled atom arrays”. In: Nature 604.7906 (2022), pp. 451–456. issn: 1476-
4687. doi: 10.1038/s41586-022-04592-6. url: https://doi.org/10.
1038/s41586-022-04592-6.

[7] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-
Feig, and J. J. Bollinger. “Quantum spin dynamics and entanglement gener-
ation with hundreds of trapped ions”. In: Science 352.6291 (2016), pp. 1297–
1301. issn: 0036-8075. doi: 10.1126/science.aad9958. url: https://
science.sciencemag.org/content/352/6291/1297.

[8] S. L. Braunstein, C. M. Caves, and G. J. Milburn. “Generalized Uncertainty
Relations: Theory, Examples, and Lorentz Invariance”. In: Annals of Physics
247.1 (1996), pp. 135–173. issn: 0003-4916. doi: 10 . 1006 / aphy . 1996 .
0040. url: https://www.sciencedirect.com/science/article/pii/
S0003491696900408.

146

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.aaa0754
https://doi.org/10.1126/science.aaa0754
https://science.sciencemag.org/content/349/6254/1317
https://science.sciencemag.org/content/349/6254/1317
https://doi.org/10.1103/PhysRevResearch.4.013083
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013083
https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://doi.org/10.21468/SciPostPhys.8.4.067
https://scipost.org/10.21468/SciPostPhys.8.4.067
https://scipost.org/10.21468/SciPostPhys.8.4.067
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1126/science.aad9958
https://science.sciencemag.org/content/352/6291/1297
https://science.sciencemag.org/content/352/6291/1297
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1006/aphy.1996.0040
https://www.sciencedirect.com/science/article/pii/S0003491696900408
https://www.sciencedirect.com/science/article/pii/S0003491696900408


BIBLIOGRAPHY

[9] S. L. Braunstein and C. M. Caves. “Statistical distance and the geometry
of quantum states”. In: Phys. Rev. Lett. 72 (1994), pp. 3439–3443. doi: 10.
1103/PhysRevLett.72.3439. url: https://link.aps.org/doi/10.1103/
PhysRevLett.72.3439.

[10] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. “Bell
nonlocality”. In: Rev. Mod. Phys. 86 (2014), pp. 419–478. doi: 10.1103/
RevModPhys . 86 . 419. url: https : / / link . aps . org / doi / 10 . 1103 /
RevModPhys.86.419.

[11] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P.
Zoller, R. Blatt, and C. F. Roos. “Probing Rényi entanglement entropy via
randomized measurements”. In: Science 364.6437 (2019), pp. 260–263. issn:
10959203. doi: 10.1126/science.aau4963. url: http://dx.doi.org/10.
1126/science.aau4963.

[12] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta. “Semicon-
ductor spin qubits”. In: Rev. Mod. Phys. 95 (2023), p. 025003. doi: 10.1103/
RevModPhys.95.025003. url: https://link.aps.org/doi/10.1103/
RevModPhys.95.025003.

[13] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita. “Reconstructing quan-
tum states with generative models”. In: Nature Machine Intelligence 1.3
(2019), pp. 155–161. issn: 2522-5839. doi: 10.1038/s42256-019-0028-1.
url: https://doi.org/10.1038/s42256-019-0028-1.

[14] M. Cerezo, A. Sone, J. L. Beckey, and P. J. Coles. “Sub-quantum Fisher
information”. In: Quantum Science and Technology (2021). doi: 10.1088/
2058- 9565/abfbef. url: http://iopscience.iop.org/article/10.
1088/2058-9565/abfbef.

[15] S. Chen, W. Yu, P. Zeng, and S. T. Flammia. “Robust Shadow Estimation”.
In: PRX Quantum 2 (2021), p. 030348. doi: 10 . 1103 / PRXQuantum . 2 .
030348. url: https://link.aps.org/doi/10.1103/PRXQuantum.2.
030348.

[16] M.-D. Choi. “Completely positive linear maps on complex matrices”. In: Lin-
ear Algebra Appl. 10 (1975), pp. 285–290. doi: 10.1016/0024-3795(75)
90075-0. url: https://doi.org/10.1016/0024-3795(75)90075-0.

[17] Z.-P. Cian, H. Dehghani, A. Elben, B. Vermersch, G. Zhu, M. Barkeshli,
P. Zoller, and M. Hafezi. “Many-Body Chern Number from Statistical Cor-
relations of Randomized Measurements”. In: Phys. Rev. Lett. 126.5 (2021),
p. 050501. doi: 10.1103/PhysRevLett.126.050501. url: https://link.
aps.org/doi/10.1103/PhysRevLett.126.050501.

[18] J. Clarke and F. K. Wilhelm. “Superconducting quantum bits”. In: Na-
ture 453.7198 (2008), pp. 1031–1042. issn: 1476-4687. doi: 10 . 1038 /
nature07128. url: https://doi.org/10.1038/nature07128.

[19] B. Collins. “Moments and Cumulants of Polynomial random variables
on unitary groups, the Itzykson-Zuber integral and free probability”. In:
arXiv:math-ph/0205010 (2002). url: https : / / arxiv . org / abs / math -
ph/0205010.

147

https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://link.aps.org/doi/10.1103/PhysRevLett.72.3439
https://link.aps.org/doi/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://link.aps.org/doi/10.1103/RevModPhys.86.419
https://link.aps.org/doi/10.1103/RevModPhys.86.419
https://doi.org/10.1126/science.aau4963
http://dx.doi.org/10.1126/science.aau4963
http://dx.doi.org/10.1126/science.aau4963
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1103/RevModPhys.95.025003
https://link.aps.org/doi/10.1103/RevModPhys.95.025003
https://link.aps.org/doi/10.1103/RevModPhys.95.025003
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1088/2058-9565/abfbef
http://iopscience.iop.org/article/10.1088/2058-9565/abfbef
http://iopscience.iop.org/article/10.1088/2058-9565/abfbef
https://doi.org/10.1103/PRXQuantum.2.030348
https://doi.org/10.1103/PRXQuantum.2.030348
https://link.aps.org/doi/10.1103/PRXQuantum.2.030348
https://link.aps.org/doi/10.1103/PRXQuantum.2.030348
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevLett.126.050501
https://link.aps.org/doi/10.1103/PhysRevLett.126.050501
https://link.aps.org/doi/10.1103/PhysRevLett.126.050501
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://arxiv.org/abs/math-ph/0205010
https://arxiv.org/abs/math-ph/0205010


BIBLIOGRAPHY

[20] B. Collins and I. Nechita. “Random matrix techniques in quantum informa-
tion theory”. In: Journal of Mathematical Physics 57.1 (2015). 015215. issn:
0022-2488. doi: 10.1063/1.4936880. url: https://doi.org/10.1063/1.
4936880.

[21] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. “Efficient quantum state to-
mography”. In: Nature Communications 1.1 (2010), p. 149. issn: 2041-1723.
doi: 10.1038/ncomms1147. url: https://doi.org/10.1038/ncomms1147.

[22] I. H. Deutsch. “Harnessing the Power of the Second Quantum Revolution”. In:
PRX Quantum 1 (2020), p. 020101. doi: 10.1103/PRXQuantum.1.020101.
url: https://link.aps.org/doi/10.1103/PRXQuantum.1.020101.

[23] J. M. Deutsch. “Quantum statistical mechanics in a closed system”. In: Phys.
Rev. A 43 (1991), pp. 2046–2049. doi: 10.1103/PhysRevA.43.2046. url:
https://link.aps.org/doi/10.1103/PhysRevA.43.2046.

[24] P. Diaconis and P. J. Forrester. “A. Hurwitz and the origins of random matrix
theory in mathematics”. In: arXiv:1512.09229 (2015). url: https://arxiv.
org/abs/1512.09229.

[25] D. P. DiVincenzo. “Quantum Computation”. In: Science 270.5234 (1995),
pp. 255–261. doi: 10.1126/science.270.5234.255. url: https://doi.
org/10.1126/science.270.5234.255.

[26] J. Dubail. “Entanglement scaling of operators: a conformal field theory ap-
proach, with a glimpse of simulability of long-time dynamics in 1+1d”. In: J.
Phys. A 50.23 (2017), p. 234001. doi: 10.1088/1751-8121/aa6f38. url:
https://doi.org/10.1088%2F1751-8121%2Faa6f38.

[27] J. Eisert, M. Cramer, and M. B. Plenio. “Colloquium: Area laws for the
entanglement entropy”. In: Rev. Mod. Phys. 82 (2010), pp. 277–306. doi:
10.1103/RevModPhys.82.277. url: https://link.aps.org/doi/10.
1103/RevModPhys.82.277.

[28] A. K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Phys.
Rev. Lett. 67 (1991), pp. 661–663. doi: 10.1103/PhysRevLett.67.661.
url: https://link.aps.org/doi/10.1103/PhysRevLett.67.661.

[29] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller. “Rényi
Entropies from Random Quenches in Atomic Hubbard and Spin Models”.
In: Phys. Rev. Lett. 120.5 (2018), p. 50406. issn: 10797114. doi: 10.1103/
PhysRevLett.120.050406. url: https://link.aps.org/doi/10.1103/
PhysRevLett.120.050406.

[30] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller. “Statistical correlations
between locally randomized measurements: A toolbox for probing entangle-
ment in many-body quantum states”. In: Phys. Rev. A 99 (2019), p. 052323.
doi: 10.1103/PhysRevA.99.052323. url: https://link.aps.org/doi/
10.1103/PhysRevA.99.052323.

[31] A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch,
and P. Zoller. “The randomized measurement toolbox”. In: Nature Reviews
Physics 5.1 (2023), pp. 9–24. issn: 2522-5820. doi: 10.1038/s42254-022-
00535-2. url: https://doi.org/10.1038/s42254-022-00535-2.

148

https://doi.org/10.1063/1.4936880
https://doi.org/10.1063/1.4936880
https://doi.org/10.1063/1.4936880
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PRXQuantum.1.020101
https://link.aps.org/doi/10.1103/PRXQuantum.1.020101
https://doi.org/10.1103/PhysRevA.43.2046
https://link.aps.org/doi/10.1103/PhysRevA.43.2046
https://arxiv.org/abs/1512.09229
https://arxiv.org/abs/1512.09229
https://doi.org/10.1126/science.270.5234.255
https://doi.org/10.1126/science.270.5234.255
https://doi.org/10.1126/science.270.5234.255
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088%2F1751-8121%2Faa6f38
https://doi.org/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.67.661
https://link.aps.org/doi/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevLett.120.050406
https://link.aps.org/doi/10.1103/PhysRevLett.120.050406
https://link.aps.org/doi/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevA.99.052323
https://link.aps.org/doi/10.1103/PhysRevA.99.052323
https://link.aps.org/doi/10.1103/PhysRevA.99.052323
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2


BIBLIOGRAPHY

[32] A. Elben, B. Vermersch, R. Van Bijnen, C. Kokail, T. Brydges, C. Maier,
M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller. “Cross-Platform Verification
of Intermediate Scale Quantum Devices”. In: Phys. Rev. Lett. 124.1 (2020),
p. 10504. issn: 10797114. doi: 10.1103/PhysRevLett.124.010504. url:
https://link.aps.org/doi/10.1103/PhysRevLett.124.010504.

[33] A. Elben, J. Yu, G. Zhu, M. Hafezi, F. Pollmann, P. Zoller, and B. Ver-
mersch. “Many-body topological invariants from randomized measurements
in synthetic quantum matter”. In: Science Advances 6.15 (2020), eaaz3666.
issn: 2375-2548. doi: 10.1126/sciadv.aaz3666. url: https://advances.
sciencemag.org/lookup/doi/10.1126/sciadv.aaz3666.

[34] A. Elben et al. “Mixed-State Entanglement from Local Randomized Mea-
surements”. In: Phys. Rev. Lett. 125 (2020), p. 200501. doi: 10 . 1103 /
PhysRevLett.125.200501. url: https://link.aps.org/doi/10.1103/
PhysRevLett.125.200501.

[35] J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd, and D. G. Cory. “Pseudo-
Random Unitary Operators for Quantum Information Processing”. In: Sci-
ence 302.5653 (2003), pp. 2098–2100. doi: 10.1126/science.1090790. url:
https://www.science.org/doi/abs/10.1126/science.1090790.

[36] S. J. van Enk and C. W. J. Beenakker. “Measuring Tr𝜌𝑛 on Single Copies of
𝜌 Using Random Measurements”. In: Phys. Rev. Lett. 108 (2012), p. 110503.
doi: 10.1103/PhysRevLett.108.110503. url: https://link.aps.org/
doi/10.1103/PhysRevLett.108.110503.

[37] E. Farhi, J. Goldstone, and S. Gutmann. “A Quantum Approximate Opti-
mization Algorithm”. In: arXiv:1411.4028 (2014). url: https://arxiv.
org/abs/1411.4028.

[38] R. P. Feynman. “Simulating physics with computers”. In: International Jour-
nal of Theoretical Physics 21.6 (1982), pp. 467–488. issn: 1572-9575. doi:
10.1007/BF02650179. url: https://doi.org/10.1007/BF02650179.

[39] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay. “Random Quantum
Circuits”. In: arXiv:2207.14280 (2022). url: https://arxiv.org/abs/
2209.04393.

[40] M. Fishman and G. Torlai. PastaQ: A Package for Simulation, Tomography
and Analysis of Quantum Computers. 2020. url: https://github.com/
GTorlai/PastaQ.jl/.

[41] S. T. Flammia and Y.-K. Liu. “Direct Fidelity Estimation from Few Pauli
Measurements”. In: Phys. Rev. Lett. 106 (2011), p. 230501. doi: 10.1103/
PhysRevLett.106.230501. url: https://link.aps.org/doi/10.1103/
PhysRevLett.106.230501.

[42] I. Frérot, M. Fadel, and M. Lewenstein. “Probing quantum correlations in
many-body systems: a review of scalable methods”. In: arXiv:2302.00640
(2023). url: https://arxiv.org/abs/2302.00640.

[43] N. Friis et al. “Observation of Entangled States of a Fully Controlled 20-Qubit
System”. In: Phys. Rev. X 8 (2018), p. 021012. doi: 10.1103/PhysRevX.8.
021012. url: https://link.aps.org/doi/10.1103/PhysRevX.8.021012.

149

https://doi.org/10.1103/PhysRevLett.124.010504
https://link.aps.org/doi/10.1103/PhysRevLett.124.010504
https://doi.org/10.1126/sciadv.aaz3666
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aaz3666
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aaz3666
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1103/PhysRevLett.125.200501
https://link.aps.org/doi/10.1103/PhysRevLett.125.200501
https://link.aps.org/doi/10.1103/PhysRevLett.125.200501
https://doi.org/10.1126/science.1090790
https://www.science.org/doi/abs/10.1126/science.1090790
https://doi.org/10.1103/PhysRevLett.108.110503
https://link.aps.org/doi/10.1103/PhysRevLett.108.110503
https://link.aps.org/doi/10.1103/PhysRevLett.108.110503
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://arxiv.org/abs/2209.04393
https://arxiv.org/abs/2209.04393
https://github.com/GTorlai/PastaQ.jl/
https://github.com/GTorlai/PastaQ.jl/
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevLett.106.230501
https://link.aps.org/doi/10.1103/PhysRevLett.106.230501
https://link.aps.org/doi/10.1103/PhysRevLett.106.230501
https://arxiv.org/abs/2302.00640
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1103/PhysRevX.8.021012
https://link.aps.org/doi/10.1103/PhysRevX.8.021012


BIBLIOGRAPHY

[44] M. Gabbrielli, A. Smerzi, and L. Pezzè. “Multipartite Entanglement at Finite
Temperature”. In: Scientific Reports 8.1 (2018), p. 15663. issn: 2045-2322.
doi: 10.1038/s41598-018-31761-3. url: https://doi.org/10.1038/
s41598-018-31761-3.

[45] M. Gärttner, P. Hauke, and A. M. Rey. “Relating Out-of-Time-Order Corre-
lations to Entanglement via Multiple-Quantum Coherences”. In: Phys. Rev.
Lett. 120 (2018), p. 040402. doi: 10.1103/PhysRevLett.120.040402. url:
https://link.aps.org/doi/10.1103/PhysRevLett.120.040402.

[46] I. M. Georgescu, S. Ashhab, and F. Nori. “Quantum simulation”. In: Rev.
Mod. Phys. 86 (1 2014), pp. 153–185. doi: 10.1103/RevModPhys.86.153.
url: https://link.aps.org/doi/10.1103/RevModPhys.86.153.

[47] V. Giovannetti, S. Lloyd, and L. Maccone. “Quantum Metrology”. In: Phys.
Rev. Lett. 96 (2006), p. 010401. doi: 10.1103/PhysRevLett.96.010401.
url: https://link.aps.org/doi/10.1103/PhysRevLett.96.010401.

[48] D. Girolami and B. Yadin. “Witnessing Multipartite Entanglement by De-
tecting Asymmetry”. In: Entropy 19.3 (2017), p. 124. issn: 1099-4300. doi:
10.3390/e19030124. url: http://www.mdpi.com/1099-4300/19/3/124.

[49] N. Gisin and R. Thew. “Quantum communication”. In: Nature Photonics 1.3
(2007), pp. 165–171. issn: 1749-4893. doi: 10.1038/nphoton.2007.22. url:
https://doi.org/10.1038/nphoton.2007.22.

[50] D. Gottesman. “The Heisenberg Representation of Quantum Computers”.
In: arXiv:quant-ph/9807006 (1998). url: https://arxiv.org/abs/quant-
ph/9807006.

[51] D. Gross, K. Audenaert, and J. Eisert. “Evenly distributed unitaries: On
the structure of unitary designs”. In: Journal of Mathematical Physics 48.5
(2007), p. 052104. doi: 10.1063/1.2716992. url: https://doi.org/10.
1063%2F1.2716992.

[52] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert. “Quantum State
Tomography via Compressed Sensing”. In: Phys. Rev. Lett. 105.15 (2010),
p. 150401. doi: 10.1103/PhysRevLett.105.150401. url: https://link.
aps.org/doi/10.1103/PhysRevLett.105.150401.

[53] O. Gühne and G. Tóth. “Entanglement detection”. In: Phys. Rep. 474.1
(2009), pp. 1–75. issn: 0370-1573. doi: 10.1016/j.physrep.2009.02.
004. url: https://www.sciencedirect.com/science/article/pii/
S0370157309000623.

[54] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu. “Sample-Optimal Tomog-
raphy of Quantum States”. In: IEEE Transactions on Information Theory
63.9 (2017), pp. 5628–5641. doi: 10.1109/TIT.2017.2719044. url: https:
//ieeexplore.ieee.org/document/7956181.

[55] C. Hadfield. “Adaptive Pauli Shadows for Energy Estimation”. In:
arXiv:2105.12207 (2021). url: https://arxiv.org/abs/2105.12207.

150

https://doi.org/10.1038/s41598-018-31761-3
https://doi.org/10.1038/s41598-018-31761-3
https://doi.org/10.1038/s41598-018-31761-3
https://doi.org/10.1103/PhysRevLett.120.040402
https://link.aps.org/doi/10.1103/PhysRevLett.120.040402
https://doi.org/10.1103/RevModPhys.86.153
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PhysRevLett.96.010401
https://link.aps.org/doi/10.1103/PhysRevLett.96.010401
https://doi.org/10.3390/e19030124
http://www.mdpi.com/1099-4300/19/3/124
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://arxiv.org/abs/quant-ph/9807006
https://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1063/1.2716992
https://doi.org/10.1063%2F1.2716992
https://doi.org/10.1063%2F1.2716992
https://doi.org/10.1103/PhysRevLett.105.150401
https://link.aps.org/doi/10.1103/PhysRevLett.105.150401
https://link.aps.org/doi/10.1103/PhysRevLett.105.150401
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://www.sciencedirect.com/science/article/pii/S0370157309000623
https://www.sciencedirect.com/science/article/pii/S0370157309000623
https://doi.org/10.1109/TIT.2017.2719044
https://ieeexplore.ieee.org/document/7956181
https://ieeexplore.ieee.org/document/7956181
https://arxiv.org/abs/2105.12207


BIBLIOGRAPHY

[56] C. Hadfield, S. Bravyi, R. Raymond, and A. Mezzacapo. “Measurements of
Quantum Hamiltonians with Locally-Biased Classical Shadows”. In: Com-
munications in Mathematical Physics 391.3 (2022), pp. 951–967. issn: 1432-
0916. doi: 10.1007/s00220-022-04343-8. url: https://doi.org/10.
1007/s00220-022-04343-8.

[57] A. Hamma, R. Ionicioiu, and P. Zanardi. “Ground state entanglement and
geometric entropy in the Kitaev model”. In: Physics Letters A 337.1 (2005),
pp. 22–28. issn: 0375-9601. doi: 10 . 1016 / j . physleta . 2005 . 01 . 060.
url: https : / / www . sciencedirect . com / science / article / pii /
S0375960105001544.

[58] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller. “Measuring multipartite en-
tanglement through dynamic susceptibilities”. In: Nature Physics 12.8 (2016),
pp. 778–782. issn: 1745-2481. doi: 10.1038/nphys3700. url: https://doi.
org/10.1038/nphys3700.

[59] W. Hoeffding. “A class of statistics with asymptotically normal distribution”.
In: Breakthroughs in Statistics. Springer, 1992, pp. 308–334.

[60] J. C. Hoke and et al. “Quantum information phases in space-time:
measurement-induced entanglement and teleportation on a noisy quantum
processor”. In: arXiv:2303.04792 (2023). url: https://arxiv.org/abs/
2303.04792.

[61] M. Horodecki, P. Horodecki, and R. Horodecki. “Separability of mixed states:
necessary and sufficient conditions”. In: Physics Letters A 223.1 (1996), pp. 1–
8. issn: 0375-9601. doi: https://doi.org/10.1016/S0375- 9601(96)
00706-2. url: https://www.sciencedirect.com/science/article/pii/
S0375960196007062.

[62] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. “Quantum en-
tanglement”. In: Rev. Mod. Phys. 81 (2009), pp. 865–942. doi: 10.1103/
RevModPhys . 81 . 865. url: https : / / link . aps . org / doi / 10 . 1103 /
RevModPhys.81.865.

[63] H.-Y. Huang, R. Kueng, and J. Preskill. “Efficient Estimation of Pauli Ob-
servables by Derandomization”. In: Phys. Rev. Lett. 127 (2021), p. 030503.
doi: 10.1103/PhysRevLett.127.030503. url: https://link.aps.org/
doi/10.1103/PhysRevLett.127.030503.

[64] H.-Y. Huang, R. Kueng, and J. Preskill. “Predicting many properties of a
quantum system from very few measurements”. In: Nature Physics 16.10
(2020), pp. 1050–1057. issn: 1745-2473. doi: 10.1038/s41567-020-0932-7.
url: http://www.nature.com/articles/s41567-020-0932-7.

[65] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill. “Provably
efficient machine learning for quantum many-body problems”. In: Science
377.6613 (2022), eabk3333. doi: 10.1126/science.abk3333. url: https:
//www.science.org/doi/abs/10.1126/science.abk3333.

[66] S. Humeniuk and T. Roscilde. “Quantum Monte Carlo calculation of en-
tanglement Rényi entropies for generic quantum systems”. In: Phys. Rev. B
86 (2012), p. 235116. doi: 10.1103/PhysRevB.86.235116. url: https:
//link.aps.org/doi/10.1103/PhysRevB.86.235116.

151

https://doi.org/10.1007/s00220-022-04343-8
https://doi.org/10.1007/s00220-022-04343-8
https://doi.org/10.1007/s00220-022-04343-8
https://doi.org/10.1016/j.physleta.2005.01.060
https://www.sciencedirect.com/science/article/pii/S0375960105001544
https://www.sciencedirect.com/science/article/pii/S0375960105001544
https://doi.org/10.1038/nphys3700
https://doi.org/10.1038/nphys3700
https://doi.org/10.1038/nphys3700
https://arxiv.org/abs/2303.04792
https://arxiv.org/abs/2303.04792
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://www.sciencedirect.com/science/article/pii/S0375960196007062
https://www.sciencedirect.com/science/article/pii/S0375960196007062
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.127.030503
https://link.aps.org/doi/10.1103/PhysRevLett.127.030503
https://link.aps.org/doi/10.1103/PhysRevLett.127.030503
https://doi.org/10.1038/s41567-020-0932-7
http://www.nature.com/articles/s41567-020-0932-7
https://doi.org/10.1126/science.abk3333
https://www.science.org/doi/abs/10.1126/science.abk3333
https://www.science.org/doi/abs/10.1126/science.abk3333
https://doi.org/10.1103/PhysRevB.86.235116
https://link.aps.org/doi/10.1103/PhysRevB.86.235116
https://link.aps.org/doi/10.1103/PhysRevB.86.235116


BIBLIOGRAPHY

[67] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H.
Weinfurter, L. Pezzé, and A. Smerzi. “Fisher information and multiparti-
cle entanglement”. In: Phys. Rev. A 85.2 (2012), p. 22321. doi: 10.1103/
PhysRevA . 85 . 022321. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevA.85.022321.

[68] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M. Rispoli, and M.
Greiner. “Measuring entanglement entropy in a quantum many-body sys-
tem”. In: Nature 528.7580 (2015), pp. 77–83. issn: 14764687. doi: 10.1038/
nature15750. url: http : / / www . nature . com / doifinder / 10 . 1038 /
nature15750.

[69] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. “En-
tanglement of Atoms via Cold Controlled Collisions”. In: Phys. Rev. Lett. 82
(1999), pp. 1975–1978. doi: 10.1103/PhysRevLett.82.1975. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.82.1975.

[70] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin.
“Fast Quantum Gates for Neutral Atoms”. In: Phys. Rev. Lett. 85 (2000),
pp. 2208–2211. doi: 10.1103/PhysRevLett.85.2208. url: https://link.
aps.org/doi/10.1103/PhysRevLett.85.2208.

[71] A. Jamiołkowski. “Linear transformations which preserve trace and posi-
tive semidefiniteness of operators”. In: Rep. Math. Phys. 3 (1972), pp. 275–
278. doi: 10 . 1016 / 0034 - 4877(72 ) 90011 - 0. url: https : / / www .
sciencedirect.com/science/article/pii/0034487772900110.

[72] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R.
Blatt, and C. F. Roos. “Quantum Information Scrambling in a Trapped-
Ion Quantum Simulator with Tunable Range Interactions”. In: Phys. Rev.
Lett. 124 (2020), p. 240505. doi: 10.1103/PhysRevLett.124.240505. url:
https://link.aps.org/doi/10.1103/PhysRevLett.124.240505.

[73] M. K. Joshi, C. Kokail, R. van Bijnen, F. Kranzl, T. V. Zache, R. Blatt,
C. F. Roos, and P. Zoller. Exploring Large-Scale Entanglement in Quantum
Simulation. 2023. url: https://arxiv.org/abs/2306.00057.

[74] V. Katariya and M. M. Wilde. “Geometric distinguishability measures limit
quantum channel estimation and discrimination”. In: Quantum Information
Processing 20.2 (2021). doi: 10.1007/s11128-021-02992-7. url: https:
//doi.org/10.1007%2Fs11128-021-02992-7.

[75] A. Kitaev and J. Preskill. “Topological Entanglement Entropy”. In: Phys.
Rev. Lett. 96 (2006), p. 110404. doi: 10.1103/PhysRevLett.96.110404.
url: https://link.aps.org/doi/10.1103/PhysRevLett.96.110404.

[76] D. E. Koh and S. Grewal. “Classical Shadows With Noise”. In: Quantum 6
(2022), p. 776. issn: 2521-327X. doi: 10.22331/q-2022-08-16-776. url:
https://doi.org/10.22331/q-2022-08-16-776.

[77] B. P. Lanyon et al. “Efficient tomography of a quantum many-body system”.
In: Nature Physics 13.12 (2017), pp. 1158–1162. issn: 1745-2481. doi: 10.
1038/nphys4244. url: https://doi.org/10.1038/nphys4244.

152

https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://link.aps.org/doi/10.1103/PhysRevA.85.022321
https://link.aps.org/doi/10.1103/PhysRevA.85.022321
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
http://www.nature.com/doifinder/10.1038/nature15750
http://www.nature.com/doifinder/10.1038/nature15750
https://doi.org/10.1103/PhysRevLett.82.1975
https://link.aps.org/doi/10.1103/PhysRevLett.82.1975
https://link.aps.org/doi/10.1103/PhysRevLett.82.1975
https://doi.org/10.1103/PhysRevLett.85.2208
https://link.aps.org/doi/10.1103/PhysRevLett.85.2208
https://link.aps.org/doi/10.1103/PhysRevLett.85.2208
https://doi.org/10.1016/0034-4877(72)90011-0
https://www.sciencedirect.com/science/article/pii/0034487772900110
https://www.sciencedirect.com/science/article/pii/0034487772900110
https://doi.org/10.1103/PhysRevLett.124.240505
https://link.aps.org/doi/10.1103/PhysRevLett.124.240505
https://arxiv.org/abs/2306.00057
https://doi.org/10.1007/s11128-021-02992-7
https://doi.org/10.1007%2Fs11128-021-02992-7
https://doi.org/10.1007%2Fs11128-021-02992-7
https://doi.org/10.1103/PhysRevLett.96.110404
https://link.aps.org/doi/10.1103/PhysRevLett.96.110404
https://doi.org/10.22331/q-2022-08-16-776
https://doi.org/10.22331/q-2022-08-16-776
https://doi.org/10.1038/nphys4244
https://doi.org/10.1038/nphys4244
https://doi.org/10.1038/nphys4244


BIBLIOGRAPHY

[78] L. Lewis, H.-Y. Huang, V. T. Tran, S. Lehner, R. Kueng, and J. Preskill. “Im-
proved machine learning algorithm for predicting ground state properties”.
In: arXiv:2301.13169 (2023). url: https://arxiv.org/abs/2301.13169.

[79] Y.-C. Liang, Y.-H. Yeh, P. E. M. F. Mendonça, R. Y. Teh, M. D. Reid,
and P. D. Drummond. “Quantum fidelity measures for mixed states”. In:
Reports on Progress in Physics 82.7 (2019), p. 076001. doi: 10.1088/1361-
6633/ab1ca4. url: https://dx.doi.org/10.1088/1361-6633/ab1ca4.

[80] Z. Liu, Y. Tang, H. Dai, P. Liu, S. Chen, and X. Ma. “Detecting Entanglement
in Quantum Many-Body Systems via Permutation Moments”. In: Phys. Rev.
Lett. 129 (2022), p. 260501. doi: 10.1103/PhysRevLett.129.260501. url:
https://link.aps.org/doi/10.1103/PhysRevLett.129.260501.

[81] K. Macieszczak, M. ă. Gu ţ ă, I. Lesanovsky, and J. P. Garrahan. “Dynamical
phase transitions as a resource for quantum enhanced metrology”. In: Phys.
Rev. A 93 (2016), p. 022103. doi: 10.1103/PhysRevA.93.022103. url:
https://link.aps.org/doi/10.1103/PhysRevA.93.022103.

[82] K. Mallayya, M. Rigol, and W. De Roeck. “Prethermalization and Thermal-
ization in Isolated Quantum Systems”. In: Phys. Rev. X 9 (2019), p. 021027.
doi: 10.1103/PhysRevX.9.021027. url: https://link.aps.org/doi/10.
1103/PhysRevX.9.021027.

[83] C. Monroe et al. “Programmable quantum simulations of spin systems with
trapped ions”. In: Rev. Mod. Phys. 93 (2021), p. 025001. doi: 10.1103/
RevModPhys.93.025001. url: https://link.aps.org/doi/10.1103/
RevModPhys.93.025001.

[84] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M.
Harlander, W. Hänsel, M. Hennrich, and R. Blatt. “14-Qubit Entanglement:
Creation and Coherence”. In: Phys. Rev. Lett. 106 (2011), p. 130506. doi:
10.1103/PhysRevLett.106.130506. url: https://link.aps.org/doi/
10.1103/PhysRevLett.106.130506.

[85] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda. “Thermalization and
prethermalization in isolated quantum systems: a theoretical overview”. In:
J. Phys. B 51.11 (2018), p. 112001. doi: 10.1088/1361-6455/aabcdf. url:
https://doi.org/10.1088/1361-6455/aabcdf.

[86] A. Neven et al. “Symmetry-resolved entanglement detection using partial
transpose moments”. In: npj Quantum Information 7.1 (2021), p. 152. doi:
10 . 1038 / s41534 - 021 - 00487 - y. url: https : / / www . nature . com /
articles/s41534-021-00487-y.

[87] M. Ohliger, V. Nesme, and J. Eisert. “Efficient and feasible state tomography
of quantum many-body systems”. In: New Journal of Physics 15.1 (2013),
p. 015024. doi: 10.1088/1367-2630/15/1/015024. url: https://dx.doi.
org/10.1088/1367-2630/15/1/015024.

[88] E. Onorati, C. Rouze, D. S. Franca, and J. D. Watson. “Efficient learning
of ground & thermal states within phases of matter”. In: arXiv:2301.12946
(2023). url: https://arxiv.org/abs/2301.12946.

153

https://arxiv.org/abs/2301.13169
https://doi.org/10.1088/1361-6633/ab1ca4
https://doi.org/10.1088/1361-6633/ab1ca4
https://dx.doi.org/10.1088/1361-6633/ab1ca4
https://doi.org/10.1103/PhysRevLett.129.260501
https://link.aps.org/doi/10.1103/PhysRevLett.129.260501
https://doi.org/10.1103/PhysRevA.93.022103
https://link.aps.org/doi/10.1103/PhysRevA.93.022103
https://doi.org/10.1103/PhysRevX.9.021027
https://link.aps.org/doi/10.1103/PhysRevX.9.021027
https://link.aps.org/doi/10.1103/PhysRevX.9.021027
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001
https://link.aps.org/doi/10.1103/RevModPhys.93.025001
https://link.aps.org/doi/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1038/s41534-021-00487-y
https://www.nature.com/articles/s41534-021-00487-y
https://www.nature.com/articles/s41534-021-00487-y
https://doi.org/10.1088/1367-2630/15/1/015024
https://dx.doi.org/10.1088/1367-2630/15/1/015024
https://dx.doi.org/10.1088/1367-2630/15/1/015024
https://arxiv.org/abs/2301.12946


BIBLIOGRAPHY

[89] R. Orús. “Tensor networks for complex quantum systems”. In: Nature Reviews
Physics 1.9 (2019), pp. 538–550. issn: 2522-5820. doi: 10.1038/s42254-
019-0086-7. url: https://doi.org/10.1038/s42254-019-0086-7.

[90] S. Pappalardi, A. Russomanno, A. Silva, and R. Fazio. “Multipartite entangle-
ment after a quantum quench”. In: Journal of Statistical Mechanics: Theory
and Experiment 2017.5 (2017), p. 053104. doi: 10.1088/1742-5468/aa6809.
url: https://dx.doi.org/10.1088/1742-5468/aa6809.

[91] A. Peres. “Separability Criterion for Density Matrices”. In: Phys. Rev. Lett. 77
(1996), pp. 1413–1415. doi: 10.1103/PhysRevLett.77.1413. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.77.1413.

[92] L. Pezzè, M. Gabbrielli, L. Lepori, and A. Smerzi. “Multipartite Entan-
glement in Topological Quantum Phases”. In: Phys. Rev. Lett. 119 (2017),
p. 250401. doi: 10.1103/PhysRevLett.119.250401. url: https://link.
aps.org/doi/10.1103/PhysRevLett.119.250401.

[93] L. Pezzé and A. Smerzi. “Entanglement, Nonlinear Dynamics, and the Heisen-
berg Limit”. In: Phys. Rev. Lett. 102.10 (2009), p. 100401. issn: 0031-9007.
doi: 10.1103/PhysRevLett.102.100401. url: https://link.aps.org/
doi/10.1103/PhysRevLett.102.100401.

[94] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein. “Quan-
tum metrology with nonclassical states of atomic ensembles”. In: Reviews
of Modern Physics 90.3 (2018), p. 35005. issn: 0034-6861. doi: 10.1103/
RevModPhys.90.035005. url: https://link.aps.org/doi/10.1103/
RevModPhys.90.035005.

[95] I. Pi žorn and T. Prosen. “Operator space entanglement entropy in 𝑋𝑌 spin
chains”. In: Phys. Rev. B 79 (2009), p. 184416. doi: 10.1103/PhysRevB.79.
184416. url: https://link.aps.org/doi/10.1103/PhysRevB.79.184416.

[96] M. Planitz, W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling. Numerical Recipes: The Art of Scientific Computing. 3rd ed. Vol. 71. 457.
New York, NY, USA: Cambridge University Press, 1987. isbn: 0521880688,
9780521880688. doi: 10.2307/3616786.

[97] J. Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum
2 (2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79. url:
https://quantum-journal.org/papers/q-2018-08-06-79/.

[98] T. Prosen and I. Pi žorn. “Operator space entanglement entropy in a trans-
verse Ising chain”. In: Phys. Rev. A 76 (2007), p. 032316. doi: 10.1103/
PhysRevA . 76 . 032316. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevA.76.032316.

[99] A. Rath, R. van Bijnen, A. Elben, P. Zoller, and B. Vermersch. “Importance
Sampling of Randomized Measurements for Probing Entanglement”. In: Phys.
Rev. Lett. 127 (2021), p. 200503. doi: 10.1103/PhysRevLett.127.200503.
url: https://link.aps.org/doi/10.1103/PhysRevLett.127.200503.

[100] A. Rath, C. Branciard, A. Minguzzi, and B. Vermersch. “Quantum Fisher In-
formation from Randomized Measurements”. In: Phys. Rev. Lett. 127 (2021),
p. 260501. doi: 10.1103/PhysRevLett.127.260501. url: https://link.
aps.org/doi/10.1103/PhysRevLett.127.260501.

154

https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1088/1742-5468/aa6809
https://dx.doi.org/10.1088/1742-5468/aa6809
https://doi.org/10.1103/PhysRevLett.77.1413
https://link.aps.org/doi/10.1103/PhysRevLett.77.1413
https://link.aps.org/doi/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.119.250401
https://link.aps.org/doi/10.1103/PhysRevLett.119.250401
https://link.aps.org/doi/10.1103/PhysRevLett.119.250401
https://doi.org/10.1103/PhysRevLett.102.100401
https://link.aps.org/doi/10.1103/PhysRevLett.102.100401
https://link.aps.org/doi/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevB.79.184416
https://doi.org/10.1103/PhysRevB.79.184416
https://link.aps.org/doi/10.1103/PhysRevB.79.184416
https://doi.org/10.2307/3616786
https://doi.org/10.22331/q-2018-08-06-79
https://quantum-journal.org/papers/q-2018-08-06-79/
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevA.76.032316
https://link.aps.org/doi/10.1103/PhysRevA.76.032316
https://link.aps.org/doi/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevLett.127.200503
https://link.aps.org/doi/10.1103/PhysRevLett.127.200503
https://doi.org/10.1103/PhysRevLett.127.260501
https://link.aps.org/doi/10.1103/PhysRevLett.127.260501
https://link.aps.org/doi/10.1103/PhysRevLett.127.260501


BIBLIOGRAPHY

[101] A. Rath, V. Vitale, S. Murciano, M. Votto, J. Dubail, R. Kueng, C. Branciard,
P. Calabrese, and B. Vermersch. “Entanglement Barrier and its Symmetry
Resolution: Theory and Experimental Observation”. In: PRX Quantum 4
(2023), p. 010318. doi: 10 . 1103 / PRXQuantum . 4 . 010318. url: https :
//link.aps.org/doi/10.1103/PRXQuantum.4.010318.

[102] Z. Ren, W. Li, A. Smerzi, and M. Gessner. “Metrological Detection of Mul-
tipartite Entanglement from Young Diagrams”. In: Phys. Rev. Lett. 126.8
(2021), p. 80502. doi: 10.1103/PhysRevLett.126.080502. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.126.080502.

[103] M. Rigol, V. Dunjko, and M. Olshanii. “Thermalization and its mechanism
for generic isolated quantum systems”. In: Nature 452.7189 (2008), pp. 854–
858. issn: 1476-4687. doi: 10.1038/nature06838. url: https://doi.org/
10.1038/nature06838.

[104] Á. Rivas and A. Luis. “Intrinsic metrological resolution as a distance measure
and nonclassical light”. In: Phys. Rev. A 77 (2008), p. 063813. doi: 10.1103/
PhysRevA . 77 . 063813. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevA.77.063813.

[105] Á. Rivas and A. Luis. “Precision Quantum Metrology and Nonclassicality in
Linear and Nonlinear Detection Schemes”. In: Phys. Rev. Lett. 105 (2010),
p. 010403. doi: 10.1103/PhysRevLett.105.010403. url: https://link.
aps.org/doi/10.1103/PhysRevLett.105.010403.

[106] D. A. Roberts and B. Yoshida. “Chaos and complexity by design”. In: Journal
of High Energy Physics 2017.4 (2017), p. 121. issn: 1029-8479. doi: 10.1007/
JHEP04(2017)121. url: https://doi.org/10.1007/JHEP04(2017)121.

[107] O. Rudolph. “Computable Cross-norm Criterion for Separability”. In: Letters
in Mathematical Physics 70.1 (2004), pp. 57–64. issn: 1573-0530. doi: 10.
1007/s11005-004-0767-7. url: https://doi.org/10.1007/s11005-004-
0767-7.

[108] O. Rudolph. “Further Results on the Cross Norm Criterion for Separability”.
In: Quantum Information Processing 4.3 (2005), pp. 219–239. issn: 1573-
1332. doi: 10.1007/s11128-005-5664-1. url: https://doi.org/10.
1007/s11128-005-5664-1.

[109] S. H. Sack, R. A. Medina, A. A. Michailidis, R. Kueng, and M. Serbyn.
“Avoiding Barren Plateaus Using Classical Shadows”. In: PRX Quantum 3
(2022), p. 020365. doi: 10 . 1103 / PRXQuantum . 3 . 020365. url: https :
//link.aps.org/doi/10.1103/PRXQuantum.3.020365.

[110] M. Saffman, T. G. Walker, and K. Mølmer. “Quantum information with
Rydberg atoms”. In: Rev. Mod. Phys. 82 (2010), pp. 2313–2363. doi: 10.
1103/RevModPhys.82.2313. url: https://link.aps.org/doi/10.1103/
RevModPhys.82.2313.

[111] K. J. Satzinger et al. “Realizing topologically ordered states on a quan-
tum processor”. In: Science 374.6572 (2021), pp. 1237–1241. doi: 10.1126/
science.abi8378. url: https://www.science.org/doi/abs/10.1126/
science.abi8378.

155

https://doi.org/10.1103/PRXQuantum.4.010318
https://link.aps.org/doi/10.1103/PRXQuantum.4.010318
https://link.aps.org/doi/10.1103/PRXQuantum.4.010318
https://doi.org/10.1103/PhysRevLett.126.080502
https://link.aps.org/doi/10.1103/PhysRevLett.126.080502
https://link.aps.org/doi/10.1103/PhysRevLett.126.080502
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevA.77.063813
https://doi.org/10.1103/PhysRevA.77.063813
https://link.aps.org/doi/10.1103/PhysRevA.77.063813
https://link.aps.org/doi/10.1103/PhysRevA.77.063813
https://doi.org/10.1103/PhysRevLett.105.010403
https://link.aps.org/doi/10.1103/PhysRevLett.105.010403
https://link.aps.org/doi/10.1103/PhysRevLett.105.010403
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/s11005-004-0767-7
https://doi.org/10.1007/s11005-004-0767-7
https://doi.org/10.1007/s11005-004-0767-7
https://doi.org/10.1007/s11005-004-0767-7
https://doi.org/10.1007/s11128-005-5664-1
https://doi.org/10.1007/s11128-005-5664-1
https://doi.org/10.1007/s11128-005-5664-1
https://doi.org/10.1103/PRXQuantum.3.020365
https://link.aps.org/doi/10.1103/PRXQuantum.3.020365
https://link.aps.org/doi/10.1103/PRXQuantum.3.020365
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://link.aps.org/doi/10.1103/RevModPhys.82.2313
https://link.aps.org/doi/10.1103/RevModPhys.82.2313
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1126/science.abi8378
https://www.science.org/doi/abs/10.1126/science.abi8378
https://www.science.org/doi/abs/10.1126/science.abi8378


BIBLIOGRAPHY

[112] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, and
N. Sangouard. “Bell correlations in a Bose-Einstein condensate”. In: Science
352.6284 (2016), pp. 441–444. doi: 10.1126/science.aad8665. url: https:
//www.science.org/doi/abs/10.1126/science.aad8665.

[113] U. Schollwöck. “The density-matrix renormalization group in the age of ma-
trix product states”. In: Annals of Physics 326.1 (2011), pp. 96–192. issn:
00034916. doi: 10.1016/j.aop.2010.09.012. url: https://linkinghub.
elsevier.com/retrieve/pii/S0003491610001752.

[114] M. P. da Silva, O. Landon-Cardinal, and D. Poulin. “Practical Characteri-
zation of Quantum Devices without Tomography”. In: Phys. Rev. Lett. 107
(2011), p. 210404. doi: 10.1103/PhysRevLett.107.210404. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.107.210404.

[115] A. Smerzi. “Zeno Dynamics, Indistinguishability of State, and Entanglement”.
In: Phys. Rev. Lett. 109 (2012), p. 150410. doi: 10.1103/PhysRevLett.109.
150410. url: https://link.aps.org/doi/10.1103/PhysRevLett.109.
150410.

[116] C. Song et al. “10-Qubit Entanglement and Parallel Logic Operations with
a Superconducting Circuit”. In: Phys. Rev. Lett. 119 (2017), p. 180511. doi:
10.1103/PhysRevLett.119.180511. url: https://link.aps.org/doi/
10.1103/PhysRevLett.119.180511.

[117] M. Srednicki. “Chaos and quantum thermalization”. In: Phys. Rev. E 50
(1994), pp. 888–901. doi: 10.1103/PhysRevE.50.888. url: https://link.
aps.org/doi/10.1103/PhysRevE.50.888.

[118] R. Stricker, M. Meth, L. Postler, C. Edmunds, C. Ferrie, R. Blatt, P.
Schindler, T. Monz, R. Kueng, and M. Ringbauer. “Experimental Single-
Setting Quantum State Tomography”. In: PRX Quantum 3 (2022), p. 040310.
doi: 10.1103/PRXQuantum.3.040310. url: https://link.aps.org/doi/
10.1103/PRXQuantum.3.040310.

[119] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezzè,
A. Smerzi, and M. K. Oberthaler. “Fisher information and entanglement of
non-Gaussian spin states”. In: Science 345.6195 (2014), pp. 424–427. issn:
0036-8075. doi: 10 . 1126 / science . 1250147. url: https : / / science .
sciencemag.org/content/345/6195/424.

[120] B. M. Terhal. “Bell inequalities and the separability criterion”. In: Physics
Letters A 271.5 (2000), pp. 319–326. issn: 0375-9601. doi: 10.1016/S0375-
9601(00)00401- 1. url: https://www.sciencedirect.com/science/
article/pii/S0375960100004011.

[121] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo.
“Neural-network quantum state tomography”. In: Nature Physics 14.5 (2018),
pp. 447–450. issn: 17452481. doi: 10.1038/s41567- 018- 0048- 5. url:
http://www.nature.com/articles/s41567-018-0048-5.

[122] G. Tóth. “Multipartite entanglement and high-precision metrology”. In: Phys.
Rev. A 85.2 (2012), p. 22322. doi: 10.1103/PhysRevA.85.022322. url:
https://link.aps.org/doi/10.1103/PhysRevA.85.022322.

156

https://doi.org/10.1126/science.aad8665
https://www.science.org/doi/abs/10.1126/science.aad8665
https://www.science.org/doi/abs/10.1126/science.aad8665
https://doi.org/10.1016/j.aop.2010.09.012
https://linkinghub.elsevier.com/retrieve/pii/S0003491610001752
https://linkinghub.elsevier.com/retrieve/pii/S0003491610001752
https://doi.org/10.1103/PhysRevLett.107.210404
https://link.aps.org/doi/10.1103/PhysRevLett.107.210404
https://link.aps.org/doi/10.1103/PhysRevLett.107.210404
https://doi.org/10.1103/PhysRevLett.109.150410
https://doi.org/10.1103/PhysRevLett.109.150410
https://link.aps.org/doi/10.1103/PhysRevLett.109.150410
https://link.aps.org/doi/10.1103/PhysRevLett.109.150410
https://doi.org/10.1103/PhysRevLett.119.180511
https://link.aps.org/doi/10.1103/PhysRevLett.119.180511
https://link.aps.org/doi/10.1103/PhysRevLett.119.180511
https://doi.org/10.1103/PhysRevE.50.888
https://link.aps.org/doi/10.1103/PhysRevE.50.888
https://link.aps.org/doi/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PRXQuantum.3.040310
https://link.aps.org/doi/10.1103/PRXQuantum.3.040310
https://link.aps.org/doi/10.1103/PRXQuantum.3.040310
https://doi.org/10.1126/science.1250147
https://science.sciencemag.org/content/345/6195/424
https://science.sciencemag.org/content/345/6195/424
https://doi.org/10.1016/S0375-9601(00)00401-1
https://doi.org/10.1016/S0375-9601(00)00401-1
https://www.sciencedirect.com/science/article/pii/S0375960100004011
https://www.sciencedirect.com/science/article/pii/S0375960100004011
https://doi.org/10.1038/s41567-018-0048-5
http://www.nature.com/articles/s41567-018-0048-5
https://doi.org/10.1103/PhysRevA.85.022322
https://link.aps.org/doi/10.1103/PhysRevA.85.022322


BIBLIOGRAPHY

[123] K. Van Kirk, J. Cotler, H.-Y. Huang, and M. D. Lukin. “Hardware-efficient
learning of quantum many-body states”. In: arXiv:2212.06084 (2022). url:
https://arxiv.org/abs/2212.06084.

[124] B. Vermersch, A. Elben, M. Dalmonte, J. I. Cirac, and P. Zoller. “Unitary n
-designs via random quenches in atomic Hubbard and spin models: Applica-
tion to the measurement of Rényi entropies”. In: Phys. Rev. A 97.2 (2018),
p. 23604. issn: 24699934. doi: 10.1103/PhysRevA.97.023604. url: https:
//link.aps.org/doi/10.1103/PhysRevA.97.023604.

[125] B. Vermersch, A. Elben, L. M. Sieberer, N. Y. Yao, and P. Zoller. “Prob-
ing Scrambling Using Statistical Correlations between Randomized Measure-
ments”. In: Phys. Rev. X 9.2 (2019), p. 21061. doi: 10.1103/PhysRevX.9.
021061. url: http://dx.doi.org/10.1103/PhysRevX.9.021061.

[126] B. Vermersch, A. Rath, B. Sundar, C. Branciard, J. Preskill, and A. Elben.
“Enhanced estimation of quantum properties with common randomized mea-
surements”. In: arXiv:2304.12292 (2023). url: https://arxiv.org/abs/
2304.12292.

[127] F. Verstraete, V. Murg, and J. Cirac. “Matrix product states, pro-
jected entangled pair states, and variational renormalization group meth-
ods for quantum spin systems”. In: Adv. Phys. 57 (2008), p. 143. doi:
10 . 1080 / 14789940801912366. url: https : / / doi . org / 10 . 1080 /
14789940801912366.

[128] G. Vidal and R. F. Werner. “Computable measure of entanglement”. In: Phys.
Rev. A 65 (2002), p. 032314. doi: 10.1103/PhysRevA.65.032314. url:
https://link.aps.org/doi/10.1103/PhysRevA.65.032314.

[129] V. Vitale, A. Rath, P. Jurcevic, A. Elben, C. Branciard, and B. Vermersch.
“Estimation of the Quantum Fisher Information on a quantum processor”.
In: arXiv:2307.16882 (2023). url: https://arxiv.org/abs/2307.16882.

[130] H. Wang and T. Zhou. “Barrier from chaos: operator entanglement dynamics
of the reduced density matrix”. In: Journal of High Energy Physics 2019.12
(2019), p. 20. issn: 1029-8479. doi: 10.1007/JHEP12(2019)020. url: https:
//doi.org/10.1007/JHEP12(2019)020.

[131] T.-L. Wang, L.-N. Wu, W. Yang, G.-R. Jin, N. Lambert, and F. Nori. “Quan-
tum Fisher information as a signature of the superradiant quantum phase
transition”. In: New Journal of Physics 16.6 (2014), p. 063039. doi: 10.1088/
1367-2630/16/6/063039. url: https://dx.doi.org/10.1088/1367-
2630/16/6/063039.

[132] R. F. Werner. “Quantum states with Einstein-Podolsky-Rosen correlations
admitting a hidden-variable model”. In: Phys. Rev. A 40 (1989), pp. 4277–
4281. doi: 10.1103/PhysRevA.40.4277. url: https://link.aps.org/
doi/10.1103/PhysRevA.40.4277.

[133] T.-C. Yen, A. Ganeshram, and A. F. Izmaylov. “Deterministic improvements
of quantum measurements with grouping of compatible operators, non-local
transformations, and covariance estimates”. In: npj Quantum Information 9.1
(2023), p. 14. issn: 2056-6387. doi: 10.1038/s41534-023-00683-y. url:
https://doi.org/10.1038/s41534-023-00683-y.

157

https://arxiv.org/abs/2212.06084
https://doi.org/10.1103/PhysRevA.97.023604
https://link.aps.org/doi/10.1103/PhysRevA.97.023604
https://link.aps.org/doi/10.1103/PhysRevA.97.023604
https://doi.org/10.1103/PhysRevX.9.021061
https://doi.org/10.1103/PhysRevX.9.021061
http://dx.doi.org/10.1103/PhysRevX.9.021061
https://arxiv.org/abs/2304.12292
https://arxiv.org/abs/2304.12292
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevA.65.032314
https://link.aps.org/doi/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/2307.16882
https://doi.org/10.1007/JHEP12(2019)020
https://doi.org/10.1007/JHEP12(2019)020
https://doi.org/10.1007/JHEP12(2019)020
https://doi.org/10.1088/1367-2630/16/6/063039
https://doi.org/10.1088/1367-2630/16/6/063039
https://dx.doi.org/10.1088/1367-2630/16/6/063039
https://dx.doi.org/10.1088/1367-2630/16/6/063039
https://doi.org/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://doi.org/10.1038/s41534-023-00683-y
https://doi.org/10.1038/s41534-023-00683-y


BIBLIOGRAPHY

[134] M. Yu, D. Li, J. Wang, Y. Chu, P. Yang, M. Gong, N. Goldman, and J. Cai.
“Experimental estimation of the quantum Fisher information from random-
ized measurements”. In: Phys. Rev. Res. 3 (2021), p. 043122. doi: 10.1103/
PhysRevResearch.3.043122. url: https://link.aps.org/doi/10.1103/
PhysRevResearch.3.043122.

[135] X.-D. Yu, S. Imai, and O. Gühne. “Optimal Entanglement Certification from
Moments of the Partial Transpose”. In: Phys. Rev. Lett. 127 (2021), p. 060504.
doi: 10.1103/PhysRevLett.127.060504. url: https://link.aps.org/
doi/10.1103/PhysRevLett.127.060504.

[136] P. Zanardi. “Entanglement of quantum evolutions”. In: Phys. Rev. A 63 (4
2001), p. 040304. doi: 10.1103/PhysRevA.63.040304. url: https://link.
aps.org/doi/10.1103/PhysRevA.63.040304.

[137] P. Zanardi, M. G. A. Paris, and L. Campos Venuti. “Quantum criticality as
a resource for quantum estimation”. In: Phys. Rev. A 78.4 (2008), p. 42105.
doi: 10.1103/PhysRevA.78.042105. url: https://link.aps.org/doi/
10.1103/PhysRevA.78.042105.

[138] P. Zanardi, C. Zalka, and L. Faoro. “Entangling power of quantum evolu-
tions”. In: Phys. Rev. A 62 (2000), p. 030301. doi: 10.1103/PhysRevA.62.
030301. url: https://link.aps.org/doi/10.1103/PhysRevA.62.030301.

[139] C. Zhang et al. “Detecting metrologically useful asymmetry and entanglement
by a few local measurements”. In: Phys. Rev. A 96 (2017), p. 042327. doi:
10.1103/PhysRevA.96.042327. url: https://link.aps.org/doi/10.
1103/PhysRevA.96.042327.

[140] C.-J. Zhang, Y.-S. Zhang, S. Zhang, and G.-C. Guo. “Entanglement detection
beyond the computable cross-norm or realignment criterion”. In: Phys. Rev.
A 77 (2008), p. 060301. doi: 10.1103/PhysRevA.77.060301. url: https:
//link.aps.org/doi/10.1103/PhysRevA.77.060301.

[141] T. Zhang, N. Jing, and S.-M. Fei. “Quantum separability criteria based on
realignment moments”. In: Quantum Information Processing 21.8 (2022),
p. 276. issn: 1573-1332. doi: 10.1007/s11128-022-03630-6. url: https:
//doi.org/10.1007/s11128-022-03630-6.

[142] D. Zhu et al. “Cross-platform comparison of arbitrary quantum states”. In:
Nature Communications 13.1 (2022), p. 6620. issn: 2041-1723. doi: 10.1038/
s41467-022-34279-5. url: https://doi.org/10.1038/s41467-022-
34279-5.

[143] H. Zhu. “Multiqubit Clifford groups are unitary 3-designs”. In: Phys. Rev.
A 96 (2017), p. 062336. doi: 10.1103/PhysRevA.96.062336. url: https:
//link.aps.org/doi/10.1103/PhysRevA.96.062336.

[144] H. Zhu, R. Kueng, M. Grassl, and D. Gross. “The Clifford group fails grace-
fully to be a unitary 4-design”. In: arXiv:1609.08172 (2016). url: https:
//arxiv.org/abs/1609.08172.

158

https://doi.org/10.1103/PhysRevResearch.3.043122
https://doi.org/10.1103/PhysRevResearch.3.043122
https://link.aps.org/doi/10.1103/PhysRevResearch.3.043122
https://link.aps.org/doi/10.1103/PhysRevResearch.3.043122
https://doi.org/10.1103/PhysRevLett.127.060504
https://link.aps.org/doi/10.1103/PhysRevLett.127.060504
https://link.aps.org/doi/10.1103/PhysRevLett.127.060504
https://doi.org/10.1103/PhysRevA.63.040304
https://link.aps.org/doi/10.1103/PhysRevA.63.040304
https://link.aps.org/doi/10.1103/PhysRevA.63.040304
https://doi.org/10.1103/PhysRevA.78.042105
https://link.aps.org/doi/10.1103/PhysRevA.78.042105
https://link.aps.org/doi/10.1103/PhysRevA.78.042105
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://link.aps.org/doi/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.96.042327
https://link.aps.org/doi/10.1103/PhysRevA.96.042327
https://link.aps.org/doi/10.1103/PhysRevA.96.042327
https://doi.org/10.1103/PhysRevA.77.060301
https://link.aps.org/doi/10.1103/PhysRevA.77.060301
https://link.aps.org/doi/10.1103/PhysRevA.77.060301
https://doi.org/10.1007/s11128-022-03630-6
https://doi.org/10.1007/s11128-022-03630-6
https://doi.org/10.1007/s11128-022-03630-6
https://doi.org/10.1038/s41467-022-34279-5
https://doi.org/10.1038/s41467-022-34279-5
https://doi.org/10.1038/s41467-022-34279-5
https://doi.org/10.1038/s41467-022-34279-5
https://doi.org/10.1103/PhysRevA.96.062336
https://link.aps.org/doi/10.1103/PhysRevA.96.062336
https://link.aps.org/doi/10.1103/PhysRevA.96.062336
https://arxiv.org/abs/1609.08172
https://arxiv.org/abs/1609.08172




BIBLIOGRAPHY

160


	Introduction / Introduction en français
	Introduction to entanglement quantifiers
	Bipartite entanglement in pure states
	Entanglement entropies
	Entanglement detection with entropies

	Mixed state entanglement
	Positive-partial transpose condition
	CCNR criterion
	Operator entanglement

	Multipartite entanglement
	Quantum Fisher information
	Connection with quantum metrology


	Introduction to randomized measurements
	How are measurements done?
	Estimation of properties with tomography
	Estimation of the purity
	Estimation of the purity using physical copies

	Estimation of the purity using Random measurements
	Short mathematical background
	The RM protocol and its derivation
	Fidelity estimations from random measurements
	Post-processing and additional features of the RM protocol

	The classical shadow formalism
	Randomized measurement tomography
	Classical Shadows
	Estimation of quantum properties with classical shadows

	Current challenges and outline

	Optimizing randomized measurements protocol with importance sampling
	The main idea: approximate then select
	The optimized classical-quantum protocol
	The importance sampling protocol

	Analytical estimations of statistical errors 
	Variance of uniform sampling for a pure product state
	Variance of importance sampling for a pure product state

	Numerical study and performance highlights
	Estimation with perfect sampler
	Machine-learning sampling for product and GHZ states
	Sampling from MPS approximations
	Importance sampling illustration for the toric code experiment

	Conclusion

	Estimation of the quantum Fisher information with classical shadows
	Construction of the lower bounds of QFI
	Convergence and other properties

	Protocol to measure QFI and its error analysis in qubit platforms
	Error analysis of a generic multi-copy functional
	Sample complexity for lower bounds Fn
	Numerical illustrations

	Experimental measurement of the QFI on a quantum device
	Robust estimation of quantum properties in a nutshell
	Experimental Results

	Conclusion

	Observation of the entanglement barrier using batch shadows
	Batch shadow formalism
	General variance treatment of batch shadow estimator
	Sample complexity calculations to estimate Rényi 2-OE
	Numerical investigations

	Experimental observation of the entanglement barrier
	Mixed state entanglement conditions and experimental detection

	Conclusion

	Common randomized measurements
	Main idea & the protocol
	The common randomized measurement protocol 
	CRM protocol beyond the classical shadows regime

	Performance illustrations of the CRM protocol
	Direct fidelity estimation
	Purity estimations: common randomized vs importance sampling
	Higher order estimations: common randomized vs standard shadows

	Conclusion

	Conclusions and perspectives / Conclusions et perspectives en français
	Résumé en français
	Appendices
	Alternate expressions for the lower bounds and the quantum Fisher information
	Variance computation for the batch shadow estimator
	Properties of classical shadows with local Pauli measurements
	Bibliography


	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 
	pbs@ARFix@71: 
	pbs@ARFix@72: 
	pbs@ARFix@73: 
	pbs@ARFix@74: 
	pbs@ARFix@75: 
	pbs@ARFix@76: 
	pbs@ARFix@77: 
	pbs@ARFix@78: 
	pbs@ARFix@79: 
	pbs@ARFix@80: 
	pbs@ARFix@81: 
	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 
	pbs@ARFix@89: 
	pbs@ARFix@90: 
	pbs@ARFix@91: 
	pbs@ARFix@92: 
	pbs@ARFix@93: 
	pbs@ARFix@94: 
	pbs@ARFix@95: 
	pbs@ARFix@96: 
	pbs@ARFix@97: 
	pbs@ARFix@98: 
	pbs@ARFix@99: 
	pbs@ARFix@100: 
	pbs@ARFix@101: 
	pbs@ARFix@102: 
	pbs@ARFix@103: 
	pbs@ARFix@104: 
	pbs@ARFix@105: 
	pbs@ARFix@106: 
	pbs@ARFix@107: 
	pbs@ARFix@108: 
	pbs@ARFix@109: 
	pbs@ARFix@110: 
	pbs@ARFix@111: 
	pbs@ARFix@112: 
	pbs@ARFix@113: 
	pbs@ARFix@114: 
	pbs@ARFix@115: 
	pbs@ARFix@116: 
	pbs@ARFix@117: 
	pbs@ARFix@118: 
	pbs@ARFix@119: 
	pbs@ARFix@120: 
	pbs@ARFix@121: 
	pbs@ARFix@122: 
	pbs@ARFix@123: 
	pbs@ARFix@124: 
	pbs@ARFix@125: 
	pbs@ARFix@126: 
	pbs@ARFix@127: 
	pbs@ARFix@128: 
	pbs@ARFix@129: 
	pbs@ARFix@130: 
	pbs@ARFix@131: 
	pbs@ARFix@132: 
	pbs@ARFix@133: 
	pbs@ARFix@134: 
	pbs@ARFix@135: 
	pbs@ARFix@136: 
	pbs@ARFix@137: 
	pbs@ARFix@138: 
	pbs@ARFix@139: 
	pbs@ARFix@140: 
	pbs@ARFix@141: 
	pbs@ARFix@142: 
	pbs@ARFix@143: 
	pbs@ARFix@144: 
	pbs@ARFix@145: 
	pbs@ARFix@146: 
	pbs@ARFix@147: 
	pbs@ARFix@148: 
	pbs@ARFix@149: 
	pbs@ARFix@150: 
	pbs@ARFix@151: 
	pbs@ARFix@152: 
	pbs@ARFix@153: 
	pbs@ARFix@154: 
	pbs@ARFix@155: 
	pbs@ARFix@156: 
	pbs@ARFix@157: 
	pbs@ARFix@158: 
	pbs@ARFix@159: 
	pbs@ARFix@160: 


