
HAL Id: tel-04523204
https://theses.hal.science/tel-04523204v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-quantum cryptography : a study of the decoding of
QC-MDPC codes

Valentin Vasseur

To cite this version:
Valentin Vasseur. Post-quantum cryptography : a study of the decoding of QC-MDPC codes. Cryp-
tography and Security [cs.CR]. Université Paris Cité, 2021. English. �NNT : 2021UNIP5202�. �tel-
04523204�

https://theses.hal.science/tel-04523204v1
https://hal.archives-ouvertes.fr

Université de Paris
École doctorale Informatique, Télécommunications et Électronique de Paris (130)

Laboratoire d’Informatique Paris Descartes

Inria équipe-projet COSMIQ

Post-quantum cryptography:
a study of the decoding of

QC-MDPC codes
Cryptographie post-quantique :

étude du décodage des codes QC-MDPC

Par Valentin Vasseur

Thèse de doctorat en informatique et réseaux

Dirigée par Nicolas Sendrier

Présentée et soutenue publiquement le 29 mars 2021

Devant un jury composé de :

Nicolas Sendrier Inria Directeur
Jérôme Lacan ISAE-Supaero Rapporteur
Pierre Loidreau Université de Rennes Rapporteur
Alain Couvreur Inria Examinateur
Caroline Fontaine ENS Paris-Saclay Examinatrice
Philippe Gaborit Université de Limoges Examinateur
Sophie Laplante Université de Paris Examinatrice
Jean-Pierre Tillich Inria Examinateur

Équipe-projet COSMIQ
Inria,

2 rue Simone Iff,
75 012 Paris

Abstract

Post-quantum cryptography aims at securing exchanges against an adversary with a
quantum computer. One approach considered to achieve post-quantum public key en-
cryption relies on hard problems in coding theory. The key encapsulation mechanism
BIKE, submitted to the NIST post-quantum cryptography standardization process, uses
QC-MDPC codes whose quasi-cyclicity allows for a compact key representation. However,
their decoding algorithms have a non-zero probability of failure (DFR) and this can be a
security concern as demonstrated by Guo, Johansson and Stankovski. This work therefore
focuses on the implementation and security of BIKE from the decoder’s perspective. First,
we design new algorithms that drastically reduce the DFR. These algorithms introduce fea-
tures of soft-decision decoders into hard-decision decoders, thus bringing the performance
of the former and preserving the simplicity of the latter. Second, we develop probabilistic
models to predict the DFR in areas beyond the reach of simulations. The first model
takes into account the regularity of the code, it is very accurate but can only analyze one
iteration of a parallel decoder. The second model is based on a Markovian assumption of
the behavior of a complete sequential decoder. Finally, we derive a DFR extrapolation
method for which we establish confidence intervals. We then evaluate the adequacy of this
extrapolation with the structural characteristics of the code that can affect the decoding
process with weak keys or error floors.

i

Résumé

La cryptographie post-quantique vise à sécuriser les échanges contre un adversaire disposant
d’un ordinateur quantique. L’une des approches envisagées pour permettre un chiffrement
à clé publique post-quantique repose sur des problèmes difficiles en théorie des codes. Le
mécanisme d’encapsulation de clé BIKE, soumis au processus de standardisation de la
cryptographie post-quantique du NIST, utilise des codes QC-MDPC dont la quasi-cyclicité
permet une représentation compacte de la clé. Cependant, leurs algorithmes de décodage
ont une probabilité d’échec (DFR) non nulle, ce qui peut poser un problème de sécurité
comme l’ont démontré Guo, Johansson et Stankovski. Ce travail se concentre donc sur
l’implémentation et la sécurité de BIKE du point de vue du décodeur. Premièrement, nous
concevons de nouveaux algorithmes qui réduisent drastiquement le DFR. Ces algorithmes
introduisent des caractéristiques des décodeurs à décision douce dans des décodeurs à
décision dure, apportant ainsi les performances des premiers et préservant la simplicité des
seconds. Ensuite, nous développons des modèles probabilistes pour prédire le DFR dans des
zones hors de portée des simulations. Le premier modèle prend en compte la régularité du
code, il est très précis mais ne peut analyser qu’une itération d’un décodeur parallèle. Le
second modèle se fonde sur une hypothèse markovienne du comportement d’un décodeur
séquentiel complet. Enfin, nous déduisons une méthode d’extrapolation du DFR pour
laquelle nous établissons des intervalles de confiance. Nous évaluons ensuite l’adéquation
de cette extrapolation avec les caractéristiques structurelles du code qui peuvent affecter
le processus de décodage avec des clés faibles ou des planchers d’erreurs.

Ce document est organisé en quatre parties.

La première partie rappelle le contexte nécessaire sur la théorie des codes, la cryptographie
à clé publique, les réductions de sécurité, la cryptographie basée sur les codes et les
spécificités du schéma BIKE fondé sur les codes QC-MDPC.

La deuxième partie présente de nouveaux algorithmes de décodage et examine certains
aspects de leur mise en œuvre. Les performances et le paramétrage de ces algorithmes
sont discutés d’un point de vue essentiellement empirique.

La troisième partie décrit deux modèles probabilistes théoriques pour certains décodeurs
de code MDPC, le but final étant de prédire leur DFR.

La quatrième partie introduit une nouvelle hypothèse de décodage et le cadre statistique
qu’elle implique pour extrapoler le DFR à partir de mesures obtenues par simulation.
Nous étudions ensuite des matrices de parité ou des modèles d’erreur spécifiques
qui, en raison des propriétés structurelles des codes QC-MDPC, sont d’excellents
candidats pour tester cette nouvelle hypothèse.

iii

Détail des chapitres.
Part I : Preliminaries.

(Ch. 1) Ce premier chapitre concerne la théorie des codes et présente les notions essentielles
pour définir un code quasi-cyclique à matrice de parité modérément creuse (quasi-
cyclic moderate density parity check, QC-MDPC). Cela constituant le sujet principal
de ce document, la problématique du décodage est abordé : il s’agit, à partir d’un
mot de code bruité, de parvenir à retirer le bruit. Certaines propriétés, propres à
la distance de Hamming ou aux codes QC-MDPC sont rappelées, car elles sont
importantes pour la suite de ce document.

(Ch. 2) Ce chapitre concerne la sécurité d’un système d’échange de clés. Nous rappelons
comment sa sécurité est évaluée au moyen d’un jeu, un défi lancé à un adversaire : ici,
il s’agit distinguer deux messages chiffrés. Le jeu est successivement altéré jusqu’à
obtenir une variante dont l’avantage de l’adversaire peut être exactement évalué. En
ajoutant à ce dernier l’influence en termes statistiques de chaque altération, nous
pouvons établir qu’un système est sûr si le résultat obtenu est négligeable. Il existe
des constructions génériques qui permettent de transformer un système dont on a
prouvé une propriété faible sur sa sécurité en un système ayant une propriété plus
forte sur sa sécurité. Par exemple, le système d’échange de clés BIKE est construit
à partir d’un chiffrement utilisant des codes QC-MDPC avec la transformation de
Fujisaki-Okamoto.

(Ch. 3) Ce chapitre décrit les différents cadres couramment utilisés en cryptographie fondée
sur la théorie des codes. Deux constructions, équivalentes en termes de sécurité, sont
décrites : le cryptosystème de McEliece et le cryptosystème de Niederreiter. Cette
sécurité dépend de deux problèmes NP-complets que sont le problème du décodage
et la recherche de mots de code de petit poids. En pratique, les meilleurs algo-
rithmes connus pour les résoudre sont appelés décodeurs par ensemble d’information
(information set decoders, ISD) et ont une complexité exponentielle.

(Ch. 4) Ce chapitre fait la synthèse des chapitres précédents en décrivant BIKE qui ins-
tancie un cryptosystème de Niederreiter en utilisant des codes QC-MDPC. Nous
décrivons également la façon dont il faut choisir ses paramètres. En effet, outre le
fait de considérer le coût des meilleures attaques sur le problème de décodage ou de
recherche de mots de code de petit poids, la longueur du code doit aussi être choisie
judicieusement afin d’éviter des attaques spécifiques aux codes QC-MPDC.

(Ch. 5) Enfin le dernier chapitre de cette partie est une synthèse de certains résultats
de [Cha17] auxquels nous nous référons régulièrement tout au long de ce document.
Ces résultats donnent un modèle probabiliste qui est pertinent pour deux raisons.
Premièrement, il nous permet de mettre en œuvre des décodeurs plus efficaces. Et
deuxièmement, il fournit un cadre pour une analyse théorique du décodage à partir
duquel nous construisons nos modèles dans la Partie III.

Part II : New bit-flipping decoders for QC-MDPC
Dans cette seconde partie, nous nous concevons trois nouveaux décodeurs de codes MDPC.

• le premier algorithme qui est randomisé et séquentiel : le décodeur pas à pas (step-
by-step),

• le deuxième algorithme qui implémente une nouvelle idée consistant à ajouter une
durée de vie à chaque décision prise : Backflip,

• et enfin le troisième qui considère un niveau intermédiaire de décision : le décodeur
gris.

Le premier a un intérêt théorique que nous développerons dans la Partie III. Les deux
autres se situent à un niveau intermédiaire entre les algorithmes de décision dure et souple
et présentent de très bonnes performances avec une faible complexité. Backflip montre des
performances remarquables qui se maintiennent à l’échelle lorsque le nombre d’itérations
augmente.

(Ch. 6) Dans ce chapitre d’introduction, nous rappelons les différents types de décodeurs
utilisés pour les codes LDPC ou MDPC. Ces décodeurs se classent en deux grandes
catégories : les décodeurs à décisions souples comme l’algorithme de propagation des
convictions (belief propagation), et les décodeurs à décisions dures comme l’algorithme
de bit-flipping. La distinctions se fait par rapport à la finesse avec laquelle sont prises
les décisions. Une décision est dure lorsque l’on fait tout ou rien, un bit est soit mis à
un soit à zéro. Une décision est souple lorsque l’on a plus de niveaux intermédiaires.
Nous présentons ainsi différents types de décodeurs utilisés pour les codes LDPC puis
des décodeurs spécifiques aux codes MDPC. Enfin, nous présenterons les travaux
de [Cha17] sur le choix des seuils, élément central des algorithmes de bit-flipping.

(Ch. 7) Ce chapitre introduit un nouvel algorithme dont l’intérêt est surtout théorique. En
effet, sa logique, très simple, le rend moins performant que, par exemple, le bit-flipping
classique, mais facilite son analyse, ce que nous faisons au Chapitre 12. Au-delà de
ces deux aspects, il peut être judicieux d’utiliser cet algorithme, surtout s’il y a peu
d’erreurs à décoder. Dans ce chapitre, nous nous concentrons sur sa conception et sa
mise en œuvre.

(Ch. 8) Dans ce chapitre, nous introduisons une nouvelle façon de faire du décodage souple en
gardant la logique très simple d’un algoritme de bit-flipping. Dans un algorithme de
bit-flipping, les décisions sont prises au moyen de compteurs. L’algorithme prend des
décisions grâce aux compteurs élevés et plus ceux-ci sont élevés plus les décisions ont
des chances d’être bonnes. Nous encodons cette information supplémentaire, qui n’est
pas utilisée dans un algorithme de type bit-flipping classique, en utilisant le temps.
Une décision qui est probablement bonne sera gardée plus longtemps, tandis qu’une
décision pour laquelle nous avons moins de certitude sera annulée automatiquement
après un certain temps. Cet algorithme se montre particulièrement performant, même
comparé à un algoritme de propagation des convictions.

(Ch. 9) Dans ce chapitre, nous traitons de quelques variantes de l’algorithme de bit-flipping
suivant toutes un cadre similaire : les décodeurs gris. Plutôt que de passer en revue
toutes les positions et de prendre la décision binaire de flipper ou non, ils ajoutent un
niveau intermédiaire de décision. Les positions avec un compteur élevé, mais toujours
en dessous d’un seuil ne sont ni noires ni blanches, mais grises. Pour les positions
noires (les erreurs probables) une décision immédiate est prise, mais pour les positions
grises, des revérifications peuvent être effectuées. Ainsi, par rapport au bit-flipping
classique, des opérations supplémentaires sont effectuées sur ces positions grises,
elles concernent un ensemble plus restreint de positions, avec une concentration plus
élevée d’erreurs. La forte concentration d’erreurs dans cet ensemble ainsi que les
réverifications permettent généralement d’adopter une stratégie de seuil très simple,
mais très efficace.

Part III : Analysis of bit-flipping decoders for QC-MDPC
Nous concevons deux nouveaux modèles probabilistes pour l’algorithme de bit-flipping :

• le premier prédit avec précision la distribution des poids d’erreur après une seule
itération de l’algorithme dans le cas d’un code régulier,

• le second considère le processus de décodage pas à pas (introduit dans la Partie II)
complet.

Contrairement aux précédents modèles, lorsqu’on les compare à des données de simula-
tion, on constate qu’ils parviennent à prédire le DFR avec une très bonne précision. De
plus, ils sont les premiers à prendre en compte l’utilisation d’une règle de seuil efficace
(voir Chapitre 6 car adaptée au poids du syndrome.

(Ch. 10) Dans ce chapitre introductif, nous présentons dans un premier temps trois analyses
précédemment établies pour les codes LDPC. La première est basée sur un modèle
statistique développé par Gallager. De nombreux travaux en ont été dérivés, mais les
bases restent essentiellement les mêmes. La seconde analyse, de Sipser et Spielman,
est effectuée dans le contexte plus général des codes expanseurs. La troisième analyse,
par Burshtein, permet d’obtenir des bornes sur le DFR en énumérant toutes les
mauvaises configurations dans le cadre d’un décodage par bit-flipping. Pour ce qui
est des codes MDPC, deux analyses ont été proposées par Tillich. La première
est déterministe, la deuxième est basée sur un modèle probabiliste et utilise des
limites asymptotiques. Des approches similaires sont envisagées par les auteurs de
LEDACrypt mais dans un contexte non asymptotique.

(Ch. 11) Dans ce chapitre, nous définissons un modèle probabiliste du décodage par bit-flipping
pour un code QC-MDPC. Nous établissons quatre équations de masse qui lient des
caractéristiques du code avec d’autres quantités propres à une instance de décodage.
Dans le cadre d’un modèle probabiliste, nous tenons compte de ces équations par des
conditionnements supplémentaires sur les probabilités. Ce modèle parvient à prédire
précisément le poids de l’erreur après une itération.

(Ch. 12) Contrairement au précédent chapitre, nous faisons dans ce chapitre des hypothèses
plus grossières sur le comportement du décodeur. Ces hypothèses sont cependant
raisonnables et nous permettent de modéliser un décodeur itératif complet : l’algo-
rithme pas à pas. Une caractéristique intéressante de cet algorithme est que chaque
itération apporte peu de changement à l’état du décodeur. Nous montrons que les
probabilités de transitions entre deux états peuvent être calculées et nous les utilisons
pour développer un modèle markovien nous permettant de calculer une probabilité
d’échec.

Part IV : Practical DFR estimation
En nous appuyant sur la compréhension du décodage acquise à partir des modèles théoriques
et des simulations, nous établissons une hypothèse sur le comportement de la courbe de
DFR.

• Nous l’appliquons pour établir un cadre d’extrapolation du DFR à partir de données
de simulation. Il est nécessaire de traiter les résultats déduits de manière rigoureuse,
ce que nous faisons au moyen d’intervalles de confiance pour lesquels nous établissons
des formules.

• Nous nous assurons ensuite que l’hypothèse n’est pas compromise par des structures
particulières du code. Nous mesurons les effets que les matrices de parité ayant
de nombreuses intersections de colonnes ont sur le décodeur et nous calculons
précisément leur densité en prouvant de nouvelles propriétés combinatoires du spectre
des distances.

• Enfin, nous exposons des quasi-mots de code (near-codewords), qui se trouvent dans
tout code QC-MDPC. Nous voyons comment ils influencent négativement le décodage
et estimons leur impact sur le DFR moyen.

(Ch. 13) Dans ce chapitre introductif, nous faisons un bref rappel sur la recherche de bons
codes LDPC et les problématiques de planchers d’erreur. Nous rappelons ensuite

l’attaque de Guo, Johansson et Stankovski sur les codes QC-MDPC qui montre un
lien entre le DFR et ce que les auteurs appellent le spectre des distances. Enfin nous
présentons des clés faibles précédemment établies pour les cryptosystèmes utilisant
des codes QC-LDPC ou QC-MDPC. Dans le premier cas, la faiblesse vient d’une
structure supplémentaire introduite pour le cryptosystème LEDACrypt. Dans le
second cas, l’attaque est purement algébrique.

(Ch. 14) Nous définissons le cadre d’une estimation du DFR par extrapolation. Plusieurs
travaux et simulations montrent que, en excluant un phénomène tel que le plancher
d’erreur discuté dans le Chapitre 16, la fonction faisant correspondre le logarithme
du DFR à une longueur de code donnée est concave. De la même manière que la
réduction de sécurité repose souvent sur la complexité du meilleur algorithme pour
résoudre un problème particulier, nous faisons une hypothèse de décodage que nous
pouvons utiliser pour estimer le DFR d’un algorithme de décodage particulier. Nous
établissons les intervalles de confiance qui résultent de l’extrapolation de données de
simulation sous cette hypothèse.

(Ch. 15) Dans ce chapitre, nous étudions de quelle manière les spécificités d’un code donné
peuvent influencer le décodage et ainsi induire des clés faibles. Nous commençons par
rappeler la définition du spectre de distance due à Guo, Johansson et Stankovski, et
montrons quelques nouvelles propriétés. Nous observons de quelle façon un spectre
inhabituel peut être préjudiciable aux performances de décodage. Ceci nous permet
de définir des clés faibles au point de vue du décodage. Nous évaluons enfin leur
influence sur la sécurité du système en estimant leur DFR par simulation et en
utilisant des bornes supérieures sur leur cardinalité obtenues grâce aux nouvelles
propriétés sur le spectre.

(Ch. 16) Dans ce dernier chapitre, nous étudions un phénomène appelé plancher d’erreur qui
est bien connu pour les LDPC et les turbo codes. Lorsque le rapport signal/bruit
augmente, les performances de décodage de ces codes subissent d’abord une forte
amélioration dans une région appelée région de la chute d’eau, puis il se produit
un changement soudain de la pente et les performances se stabilisent. Ce dernier
phénomène est ce que l’on appelle le plancher d’erreur. Les codes QC-MDPC, très
voisins des codes LDPC, n’en sont pas épargnés. Nous montrons d’abord qu’un code
QC-MDPC possède toujours des quasi-mots de code (near-codewords). Plus un motif
d’erreurs est proche de ces derniers et plus la probabilité d’échec au décodage est
élevé. Comme pour les clés faibles, nous évaluons leur influence sur la sécurité du
système en estimant leur DFR par simulation et en utilisant des bornes supérieures
sur leur densité.

Remerciements

Je dois d’abord remercier mon directeur de thèse, Nicolas, de m’avoir proposé de travailler
sur cet algorithme si simple à décrire, mais qui a conduit à tant de questionnements et qui
m’a permis de découvrir un domaine si riche. Merci pour ta disponibilité, tes explications,
tes conseils et ton humour.

Je remercie Jérôme Lacan et Pierre Loidreau d’avoir accepté d’être rapporteurs. Je
remercie également Alain Couvreur, Caroline Fontaine, Philippe Gaborit, Sophie Laplante
et Jean-Pierre Tillich d’avoir accepté de faire partie du jury.

Il règne toujours une très bonne ambiance au sein de l’équipe SECRET/COSMIQ,
merci donc à Anne, André, Pascale, Gaëtan, Anthony, María, Léo, Nicolas, Jean-Pierre et
Christelle. Bien évidemment, je remercie aussi ceux qui étaient de passage dans l’équipe et
ceux qui sont de passage aujourd’hui (en espérant n’oublier personne, la liste est longue) :
Magali, Augustin, Yann, Xavier, Christina, Clémence, Pierre, Rémi, Étienne, Rodolfo,
Kevin, Kaushik, Julia, Daniel, Nicolas, Thomas, Loïc, Aurélie, Sébastien, Simona, Antonio,
Paul, Antoine, Lucien, Vivien, Johana, Rocco, Andrea, Clara, Yann, André et Christophe.
Je pourrais même ajouter Étienne, Thierry et Bernard qui font presque partie de l’équipe.
Et bien sûr, je n’oublie pas les membres du bureau Tapdance canal historique Mathilde,
Matthieu et Ferdinand qui par leur bonne humeur ont contribué à ce que ce soit toujours
un plaisir de venir au bureau.

Je remercie toutes les personnes que j’ai rencontrées au cours de ces dernières années et
avec lesquelles je partage de bons souvenirs. Merci donc tout d’abord à Moran, Sonia, Lolo,
Cyril, Céline, Benjamin, Clément, Marion et Vincent puis Caro, Cindy, Nico et Quentin et
enfin Pascal, Pauline et Louis.

Je tiens à remercier Daniel Agier qui a réussi à me passionner pour les mathématiques
dès le lycée.

Pour finir, merci à ma famille proche qui me tolère depuis toutes ces années. Merci à
Mumu sans qui je serais probablement à la rue en ce moment ou pire, en banlieue. Merci
à mes parents qui m’ont permis de faire ces études si longues mais passionnantes. Les
contraintes du calendrier font que je soutiens ma thèse le jour d’un bien triste anniversaire,
mais je sais que tu aurais été fière que ton fils soit docteur.

ix

Contents

Introduction 3

Publications 5

Notations 7

I Preliminaries 9

1 Coding theory 11
1.1 Linear codes . 11
1.2 Decoding . 12
1.3 Minimum distance & Gilbert-Varshamov distance 13
1.4 Regularity . 13
1.5 Channel . 14
1.6 Schur product . 14
1.7 (QC-)MDPC codes and basic properties 15

2 Security reduction 17
2.1 Security games . 18
2.2 Fujisaki-Okamoto transform . 18

3 Code-based cryptography 21
3.1 McEliece cryptosystem framework . 21
3.2 Niederreiter cryptosystem framework . 22
3.3 Best known attacks on underlying hard problems 22

4 BIKE 27
4.1 Security . 28
4.2 Block size . 30

5 Syndrome weight and counters in a regular MDPC code 33
5.1 Fundamental quantities . 33
5.2 Counters distributions . 34

5.2.1 Average case . 35
5.2.2 Conditioning the counter distributions with the syndrome weight . 35

xi

II New bit-flipping decoders for QC-MDPC 39

6 Introduction 43
6.1 State of the art . 43

6.1.1 LDPC codes . 44
6.1.2 MDPC codes . 49
6.1.3 QC-MDPC decoding thresholds . 50

6.2 Contributions . 51

7 Step-by-step 55
7.1 Definition . 55
7.2 Sampling positions . 55

7.2.1 Uniform sampling . 56
7.2.2 Picking a position in one unsatisfied equation 56
7.2.3 Picking a position in two unsatisfied equations 57

7.3 Performance . 59
7.4 Non-blocking variant . 60

8 Backflip 63
8.1 Algorithm description . 63
8.2 Threshold and time-to-live . 64

8.2.1 Optimistic threshold strategy . 65
8.2.2 Multiple thresholds strategy . 67

9 Gray decoders 69
9.1 Framework . 69
9.2 Reverifications . 69
9.3 Simple definition . 70
9.4 Variants from Drucker, Gueron & Kostic 71
9.5 Sorting variant . 72

III Analysis of bit-flipping decoders for QC-MDPC 79

10 Introduction 83
10.1 State-of-the-art . 83

10.1.1 LDPC codes . 83
10.1.2 Expander codes arguments . 84
10.1.3 Analysis of regular LDPC codes with a bit-flipping algorithm . . . 85
10.1.4 MDPC codes . 85

10.2 Contributions . 89

11 One iteration of the parallel decoder with variable thresholds 91
11.1 Notations . 92
11.2 Mass equations in regular codes . 93
11.3 Modeling the error weight after the first iteration 95

11.3.1 Estimating the number of errors per equation 95
11.3.2 Estimating the syndrome weight and the sum of the counters . . . 95
11.3.3 Counters distributions . 97
11.3.4 Predicting flips . 99
11.3.5 Error weight after one iteration . 103
11.3.6 Unconditional probability of the error weight after the first iteration 103

11.4 A two-iteration decoder with a DFR analysis 105
11.4.1 One iteration . 105

11.4.2 Two iterations . 105
11.4.3 Decoding performance requirements after the first iteration 109

11.5 Noisy syndrome decoding . 110
11.6 Going further to predict the syndrome weight after the first iteration . . . 113

12 Markovian model of the step-by-step algorithm 115
12.1 Notations . 115
12.2 Algorithm supported by the model . 116
12.3 Assumptions . 116
12.4 DFR estimation within the model . 118
12.5 Transition probabilities . 119

12.5.1 Blocked state . 120
12.5.2 Transitions from a non-blocked state 120

12.6 Results . 121
12.6.1 Using the step-by-step decoder only 122
12.6.2 Using the step-by-step decoder for residual error correction 122

IV Practical DFR estimation 125

13 Introduction 129
13.1 State-of-the-art . 129

13.1.1 Designing good LDPC code . 129
13.1.2 Error floors in LDPC codes . 129
13.1.3 DFR and spectrum of QC-MDPC codes 130
13.1.4 Weak keys in a QC-LDPC cryptosystem 130
13.1.5 Weak keys in QC-MDPC cryptosystems 131

13.2 Contributions . 131

14 A DFR extrapolation framework 133
14.1 Notations . 133
14.2 The decoder security assumption . 133
14.3 Security of the system with respect to the block size 134
14.4 Confidence interval . 135
14.5 A first estimation . 136

14.5.1 Clopper-Pearson interval . 136
14.5.2 A first estimation of confidence intervals for extrapolations 136

14.6 Using posterior probability . 137
14.7 Choosing parameters . 139

15 Weak keys: Subsets of parity check matrices 143
15.1 QC-MDPC Codes . 143

15.1.1 Definition and polynomial representation 143
15.1.2 Decoding . 144

15.2 Notations . 144
15.3 Distance Spectrum . 145

15.3.1 New properties of the distance spectrum 145
15.3.2 Distance spectrum statistics . 146
15.3.3 Reconstructing the secret key from the spectrum 148

15.4 Weak keys: Constructions and properties 149
15.4.1 IND-CCA security and weak keys for KEMs 149
15.4.2 Type I . 150
15.4.3 Type II . 151

15.4.4 Type III . 153
15.4.5 Statistics . 153

15.5 DFR estimations . 153
15.6 Filtering weak keys . 157

16 Error floors: Subsets of error patterns 159
16.1 Notations . 161
16.2 Structured patterns in QC-MDPC codes 161

16.2.1 Low weight codewords . 161
16.2.2 Near-codewords . 162

16.3 Error patterns impeding decoding . 162
16.4 Lower bound on the DFR with simulations 165
16.5 Comments . 165

Conclusion and perspectives 171

Bibliography 173

Introduction

Most cryptosystems in use today rely on the hardness of number theory problems such
as the factorization or the discrete logarithm problems, either in finite fields or in elliptic
curves. These problems with the current parameters would not resist an adversary with
a sufficiently powerful quantum computer [Sho99; Joz01]. In fact the security of these
problems would scale poorly against such an adversary, see for example [BHLV17].

In anticipation of the development of a powerful quantum computer, alternatives to
cryptosystems based on number theory are gaining momentum in research. The National
Institute of Standards and Technology (NIST) launched in 2014 a process1 to standardize
the first post-quantum public key encryption (PKE), key encapsulation mechanisms (KEM)
and signatures. Initially, 82 proposals were submitted. At the time of writing, we are in the
3rd round and there are 7 finalists in the running, most likely candidates for standardization
in the short term, and 8 alternate candidates, who may need another round of evaluation.
The breakdown by domain of the remaining proposals is presented in Table 1.

Table 1: NIST Post-Quantum Cryptography Standardization Process — Round 3

PKE/KEM Signature
Finalists

Code 1 0
Lattice 3 2
Multivariate 0 1

Alternate candidates
Code 2 0
Lattice 2 0
Hash 0 1
Isogeny 1 0
Multivariate 0 1
Zero-knoweldge 0 1

We can see that the proposed cryptosystems are based on problems that cover a
wide range of mathematical fields. Let us focus on code-based cryptography. The only
code-based finalist in the NIST standardization process is based on [McE78], published in
1978 in which McEliece introduced the idea of using error-correcting codes in cryptography.

Error correcting codes are extensively used in telecommunications. To transmit a
message, it is first transformed into a codeword, a process that adds redundancy. If the
codeword is transmitted over a noisy channel, it will contain errors when it reaches its
recipient. Redundancy implies that we are still able, as long as the number of errors is
limited, to recover the original message from this noisy codeword. A good error-correcting

1https://csrc.nist.gov/projects/post-quantum-cryptography

3

https://csrc.nist.gov/projects/post-quantum-cryptography

code has a certain structure that makes it possible to have an efficient decoder, that is to
say, an algorithm that removes many errors in a timely manner. On the other hand, a
random code is hard to decode.

McEliece had the idea of hiding a message by taking the corresponding codeword and
adding as many errors as it is possible to remove. He used Goppa codes. On the one
hand, they have good decoders, which allows decryption. And on the other hand, once
scrambled, these codes are hard to distinguish from random codes. So anyone who does
not know how the code was scrambled will not have a good decoder. In other words, we
have a public-key encryption system: if the scrambled code is made public, anyone can
use it to encrypt, but only the person who knows how it was scrambled can decrypt.

It is remarkable that, so far, this system has not been affected by any major attack,
classical or quantum, and that it is now being considered for standardization. However,
the public key size is in the order of a few megabits. This can be a hindrance for some
applications. In order to reduce the key size, one can therefore consider using codes other
than Goppa codes. Many attempts have been made in this direction and most of them
have resulted in broken cryptosystems.

The Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) codes, proposed
in [MTSB13], appear to be good candidate for replacing Goppa codes in a McEliece
cryptosystem. They have small key sizes and have not suffered major attacks. However,
unlike Goppa codes, the principle of their decoder does not depend on algebraic properties
but on probabilistic properties. Consequently, decoding may fail.

It has been shown in [GJS16] that the decoder leaks information about the secret key
in case of failures. In fact, when the same key is used, an adversary who encrypts a large
number of messages and has the ability to determine which ones failed to decrypt, can
retrieve the secret key from the set of these failure-triggering messages. Thus, to use keys
that are not ephemeral but static, it is necessary to ensure that the decoding failure rate
(DFR) is very low. This is also a necessary condition to be able to verify strong security
constraints such as indistinguishability under chosen ciphertext attack (IND-CCA).

QC-MDPC decoders and their DFR are the primary focus of the works presented in
this document. Our motivation is threefold: to improve decoding algorithms, to better
understand their workings and to ensure that they fail with negligible probability. We will
focus on [BIKE] a Key Encapsulation Mechanism that uses QC-MDPC codes. It is an
alternate candidate to the NIST Post-Quantum Cryptography Standardization Process.

NIST has expressed concerns about its IND-CCA security and DFR analysis in [Ala+20],
but nonetheless considers it one of the most promising candidates. This document is a
step toward addressing these concerns.

This document is divided in four parts.

The first part recalls the necessary background on coding theory, public key cryptography,
security reductions, code-based cryptography and the specificities of the QC-MDPC
based scheme BIKE.

The second part presents new decoding algorithms and reviews some aspects of their
implementation. The performance and tuning of these algorithms will be discussed
from an essentially empirical point of view.

The third part describes two theoretical probabilistic models for some MDPC decoders,
the ultimate goal being to predict their DFR.

The fourth part introduces a new decoding assumption and the statistical framework it
implies for extrapolating the DFR from simulation measurements. We then study
specific parity check matrices or error patterns that, due to the structural properties
of QC-MDPC codes, are great candidates to challenge this new assumption.

Publications

[BIKE] Carlos Aguilar Melchor, Nicolas Aragon, Paulo S L M Barreto, Slim Bettaieb,
Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
Ghosh Santosh, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles
Zémor. BIKE. NIST Round 3 submission for Post-Quantum Cryptography.
Aug. 2020. url: https://bikesuite.org.

[SV19] Nicolas Sendrier and Valentin Vasseur. “On the Decoding Failure Rate of QC-
MDPC Bit-Flipping Decoders”. In: Post-Quantum Cryptography (PQCrypto).
Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505. LNCS. Chongqing,
China: Springer, May 2019, pp. 404–416. doi: 10.1007/978-3-030-25510-
7_22.

[SV20a] Nicolas Sendrier and Valentin Vasseur. “About Low DFR for QC-MDPC
Decoding”. In: Post-Quantum Cryptography (PQCrypto). Ed. by Jintai Ding
and Jean-Pierre Tillich. Vol. 12100. LNCS. Paris, France: Springer, Apr.
2020, pp. 20–34. doi: 10.1007/978-3-030-44223-1_2.

[SV20b] Nicolas Sendrier and Valentin Vasseur. On the existence of weak keys for
QCMDPC decoding. Cryptology ePrint Archive, Report 2020/1232. 2020.
url: https://eprint.iacr.org/2020/1232.

5

https://bikesuite.org
https://doi.org/10.1007/978-3-030-25510-7_22
https://doi.org/10.1007/978-3-030-25510-7_22
https://doi.org/10.1007/978-3-030-44223-1_2
https://eprint.iacr.org/2020/1232

Notations

General.

• Vectors and polynomials are denoted in roman type (e.g. h) and matrices in bold
(e.g. H).

• The support Supp(v) of a vector v is the set of indices of its nonzero entries.
[Def. 1.15 p. 13]

• The weight |v| of a vector v is always the Hamming weight. [Def. 1.16 p. 13]

• The vector operator ⋆ is the Schur product, both for vectors and polynomials.
[Def. 1.24 p. 14]

• The notation 𝑥
$

← 𝑆 means drawing uniformly at random an element from 𝑆 and
assign it to 𝑥.

Coding theory.

• The following variables are restricted to the following usage unless stated otherwise:

– 𝑛: the length of a code;

– 𝑘: the dimension of a code;

– 𝑟 = 𝑛 − 𝑘: the dimension of the dual; the block size of a quasi-cyclic parity
check matrix;

– 𝑑: the column weight of a parity check matrix;

– 𝑤: the row weight of a parity check matrix;

– 𝑡: the weight of an error pattern.

• For all 𝑗 ∈ {0, … , 𝑛 − 1}, 𝜎𝑗 ∶= ∣h𝑗 ⋆ s∣ . [Def. 5.1 p. 33]

• For a matrix H, we denote its 𝑖-th row by h⊺
𝑖 , and its 𝑗-th column by h𝑗.

• We will represent information vectors m, error patterns e and codewords c as row
vectors; and the syndrome s as a column vector:

G ∈ 𝔽𝑘×𝑛
𝑞 , H ∈ 𝔽(𝑛−𝑘)×𝑛

𝑞 , c = mG , s = He⊺ .

7

H 𝑛 − 𝑘 = 𝑟s

𝑛

e

Part I

Preliminaries

9

Chapter 1

Coding theory

In this chapter we will recall the fundamental notions from coding theory that we will
need to construct QC-MDPC codes.

1.1 Linear codes
Definition 1.1. Let 𝑘 and 𝑛 be two positive integers with 𝑘 ≤ 𝑛. An 𝔽𝑞-linear code 𝒞 of
length 𝑛 and dimension 𝑘 is a linear subspace of dimension 𝑘 of the vector space 𝔽𝑛

𝑞 .
Such a code is designated as an [𝑛, 𝑘]-code.

Definition 1.2. The rate of a code 𝒞 of dimension 𝑘 and length 𝑛 is the ratio

𝑅 = 𝑘
𝑛

.

In the context of telecommunications, when using an [𝑛, 𝑘]-linear code to send infor-
mation, for every 𝑘 symbols of useful information, (𝑛 − 𝑘) redundant symbols are also
sent. The code rate is therefore the proportion of useful information that is sent through a
channel. The reduntant information is used for error-detection and correction.

Definition 1.3. A matrix G ∈ 𝔽𝑘×𝑛
𝑞 is said to be a generator matrix of the linear code 𝒞 if

its rows form a basis of 𝒞.

Definition 1.4. The dual code 𝒞⟂ ⊂ 𝔽𝑛
𝑞 of a code 𝒞 is the orthogonal space

𝒞⟂ ∶= {v ∈ 𝔽𝑛
𝑞 | ∀w ∈ 𝒞, v ⋅ w = 0}

where v ⋅ w is the scalar product ∑𝑛−1
𝑖=0 𝑣𝑖𝑤𝑖.

A generator matrix for the dual code 𝒞⟂ is called a parity check matrix for 𝒞.
We will call equations the rows of parity check matrix.

Definition 1.5. The generator matrix G (resp. the parity check matrix H) of a linear
code 𝒞 (of dimension 𝑘 and length 𝑛) is said to be in systematic form if is written as

G = [I𝑘 𝑃] resp. H = [I𝑛−𝑘 𝑃] .

Remark 1.6. A code is fully defined by its dual, therefore if H ∈ 𝔽(𝑛−𝑘)×𝑛
𝑞 is a parity check

matrix for an [𝑛, 𝑘]-code 𝒞 then

𝒞 = {c ∈ 𝔽𝑛
𝑞 | Hc⊺ = 0} .

11

12 Chapter 1. Coding theory

Remark 1.7. If G ∈ 𝔽𝑘×𝑛
𝑞 and H ∈ 𝔽(𝑛−𝑘)×𝑛

𝑞 are respectively a generator and a parity check
matrices of a code 𝒞 then we have

HG⊺ = 0 .

Definition 1.8. Let 𝒞 be a code of length 𝑛 and dimension 𝑘 with parity check matrix
H ∈ 𝔽(𝑛−𝑘)×𝑛

𝑞 . The syndrome of a vector x ∈ 𝔽𝑛
𝑞 is the vector

Hx⊺ ∈ 𝔽𝑛−𝑘
𝑞 .

Definition 1.9. Let 𝒞 be a binary code of length 𝑛 and dimension 𝑘 with parity check
matrix H ∈ 𝔽(𝑛−𝑘)×𝑛

2 . We say that the 𝑖-th equation is satisfied if the corresponding
syndrome bit 𝑠𝑖 is zero, and we say that the equation is unsatisfied otherwise.

1.2 Decoding
Definition 1.10. Let 𝒞 be a code of length 𝑛 and dimension 𝑘 with generator matrix
G ∈ 𝔽𝑘×𝑛

𝑞 and parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
𝑞 .

Let x ∈ 𝔽𝑛
𝑞 , decoding is the process of finding a vector e ∈ 𝔽𝑛

𝑞 such that

x − e ∈ 𝒞 i.e. ∃m ∈ 𝔽𝑘
𝑞 , x = mG + e .

Let s ∈ 𝔽𝑛−𝑘
𝑞 , syndrome-decoding is the process of finding a vector e ∈ 𝔽𝑛

𝑞 such that

He⊺ = s .

Remark 1.11. There exists different flavors of decoders, for example:

• a minimum distance decoder minimizes the Hamming weight of the vector e,

• a maximum likelihood decoder finds m that maximizes Pr[x received | m sent] for a
specific channel.

Remark 1.12. In code-based cryptography we rely on the (syndrome) decoding problem in
which the challenge is to decode a given instance (see §3.3).

Definition 1.13. The Tanner graph of a binary parity check matrix H is the bipartite
graph defined by the biadjacency matrix H.

If H ∈ 𝔽(𝑛−𝑘)×𝑛
2 , in the Tanner graph, the 𝑛 columns correspond to 𝑛 nodes called the

variable nodes, and the (𝑛 − 𝑘) rows correspond to (𝑛 − 𝑘) nodes called the check nodes.

While the use of the graph structure was already somehow practiced by Gallager
in [Gal63], the notion was named after Tanner because of his work on the construction of
long codes from smaller codes in [Tan81].

Related to the probalities computation in the Tanner graph, the following important
classic result on the parity of a sum of binary random variables will be needed in this
document (see [Gal63, Lemma 4.1] for a proof).

Proposition 1.14. Let 𝑘 be a positive integer, 𝑝1, … , 𝑝𝑘 ∈ [0, 1] and 𝑋1, … , 𝑋𝑘 be 𝑘
independent binary random variables following Bernoulli distributions with probabilities
respectively 𝑝1, … , 𝑝𝑘. Then

∀𝑏 ∈ {0, 1}, Pr[𝑋1 + ⋯ + 𝑋𝑘 mod 2 = 𝑏] =
1 + (−1)𝑏 ∏𝑘

ℓ=1(1 − 2𝑝ℓ)
2

.

1.3. Minimum distance & Gilbert-Varshamov distance 13

1.3 Minimum distance & Gilbert-Varshamov distance
Definition 1.15. The support of a vector v ∈ 𝔽𝑛

𝑞 is the set of indices of its nonzero entries:

Supp(v) ∶= {𝑖 ∈ {0, … , 𝑛 − 1} ∣ 𝑣𝑖 ≠ 0} .

We use the same notation for polynomials

Supp (
𝑛−1
∑
𝑖=0

𝑣𝑖𝑥𝑖) ∶= {𝑖 ∈ {0, … , 𝑛 − 1} ∣ 𝑣𝑖 ≠ 0} .

Definition 1.16. The Hamming weight |v| of a vector (or a polynomial) v is the number of
its nonzero entries

|v| ∶= ∣Supp(v)∣ .

The Hamming distance 𝑑(a, b) between two vectors a and b is the Hamming weight of
the difference between a and b:

𝑑(a, b) ∶= |a − b| .

Definition 1.17. The minimum distance of a code 𝒞 is the minimum distance between
two distinct codewords:

min
c0,c1∈𝒞
c0≠c1

𝑑(c0, c1) .

Remark 1.18. For a linear code, we have

min
c0,c1∈𝒞
c0≠c1

𝑑(c0, c1) = min
c∈𝒞
c≠0

|c| .

Definition 1.19. Let 𝑞, 𝑛 and 𝑘 be integers. The Gilbert-Varshamov distance 𝑑𝐺𝑉(𝑞, 𝑛, 𝑘)
is the smallest integer 𝑑 such that

𝑑−1
∑
𝑖=0

(𝑛
𝑖
)(𝑞 − 1)𝑖 ≥ 𝑞𝑛−𝑘 .

Remark 1.20. Let 𝑞, 𝑛 and 𝑘 be integers. For an [𝑛, 𝑘]-code drawn uniformly at random,
the expected number of possible solutions of weight below or equal to 𝑤 to a decoding
problem is

∑𝑤
𝑖=0 (𝑛

𝑖)(𝑞 − 1)𝑖

𝑞𝑛−𝑘 .

So, on average, there is one solution to a decoding problem with weight 𝑑𝐺𝑉(𝑞, 𝑛, 𝑘).

Definition 1.21. The binary entropy function is:

H(𝑋) ∶= H(𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) .

1.4 Regularity
Definition 1.22. Let 𝑙 and 𝑟 be two positive integers. An (𝑙, 𝑟)-regular code is a code such
that, in its Tanner graph, every variable node has degree 𝑙 and every check node has degree
𝑟. The integers 𝑙 and 𝑟 are respectively the left and right degrees.

Equivalently if H is a parity check matrix, the code it defines is (𝑙, 𝑟)-regular if all its
column have the same weight 𝑙 and all its rows have the same weight 𝑟.

14 Chapter 1. Coding theory

1.5 Channel
In telecommunications, when it comes to error correction, the model of the channel used
is often specified. In cryptography, error patterns are often drawn uniformly at random
among all fixed weight patterns. If a pattern has a weight 𝑡 and a length 𝑛, it can be seen,
as a first approximation, as coming from a binary symmetric channel with a crossover
probability 𝑡/𝑛.

Definition 1.23. Let 𝑥 be the binary random variable transmitted over a binary symmetric
channel of crossover probability 𝜖, let us write the received binary random variable 𝑦. Then
we have

Pr [𝑥 = 0 ∣ 𝑦 = 0] = Pr [𝑥 = 1 ∣ 𝑦 = 1] = 1 − 𝜖 ,

Pr [𝑥 = 0 ∣ 𝑦 = 1] = Pr [𝑥 = 1 ∣ 𝑦 = 0] = 𝜖 .

1.6 Schur product
Definition 1.24. The Schur product of two vectors v, w ∈ 𝔽𝑛

𝑞 is the componentwise product

v ⋆ w ∶= (𝑣0 ⋅ 𝑤0, 𝑣1 ⋅ 𝑤1, … , 𝑣𝑛−1 ⋅ 𝑤𝑛−1) .

We use the same notation for polynomials

(
𝑛−1
∑
𝑖=0

𝑣𝑖𝑥𝑖) ⋆ (
𝑛−1
∑
𝑖=0

𝑤𝑖𝑥𝑖) ∶=
𝑛−1
∑
𝑖=0

(𝑣𝑖 ⋅ 𝑤𝑖)𝑥𝑖 .

Proposition 1.25. The Schur product is distributive over the addition:

u ⋆ (v + w) = u ⋆ v + u ⋆ w .

Proposition 1.26. For any integer 𝑛 > 0, let 𝑣, 𝑤 ∈ 𝔽𝑛
2 , then

|v + w| = |v| + |w| − 2 |v ⋆ w| .

Proof. v + v ⋆ w and w + v ⋆ w have disjoint support and weight respectively |v| − |v ⋆ w|
and |w| − |v ⋆ w|,

|v + w| = ∣(v + v ⋆ w) + (w + v ⋆ w)∣ .

Corollary 1.27. Let 𝑘 be a positive integer and let v1, … , v𝑘 be 𝑘 vectors of equal length,
then

∣
𝑘

∑
𝑖=1

v𝑖∣ =
𝑘

∑
𝑑=1

(−2)𝑑−1 ∑
1≤𝑖1<⋯<𝑖𝑑≤𝑘

∣v𝑖1
⋆ ⋯ ⋆ v𝑖𝑑

∣ .

Proof. Proposition 1.26 shows the case where 𝑘 = 2. Now, let 𝑘 be any integer greater
than 2,

∣
𝑘

∑
𝑖=1

v𝑖∣ = ∣(
𝑘−1
∑
𝑖=1

v𝑖) + 𝑣𝑘∣ = ∣
𝑘−1
∑
𝑖=1

v𝑖∣ + ∣𝑣𝑘∣ − 2 ∣
𝑘−1
∑
𝑖=1

(v𝑖 ⋆ v𝑘)∣ .

1.7. (QC-)MDPC codes and basic properties 15

Then, by induction hypothesis, we have

∣
𝑘

∑
𝑖=1

v𝑖∣ =
𝑘−1
∑
𝑑=1

(−2)𝑑−1 ∑
1≤𝑖1<⋯<𝑖𝑑−1≤𝑘−1

∣v𝑖1
⋆ ⋯ ⋆ v𝑖𝑑−1

∣

+ ∣𝑣𝑘∣ − 2
𝑘−1
∑
𝑑=1

(−2)𝑑−1 ∑
1≤𝑖1<⋯<𝑖𝑑−1≤𝑘−1

∣v𝑖1
⋆ ⋯ ⋆ v𝑖𝑑−1

⋆ v𝑘∣ .

1.7 (QC-)MDPC codes and basic properties
Starting from this point in this document, we will only focus on binary codes (i.e. 𝔽2-linear
code).
Definition 1.28 (Low Density Parity Check). An [𝑛, 𝑘] LDPC code is a linear code for which
there exists a sparse parity check matrix, by which we mean that the Hamming weight of
its rows is in O(1).
Definition 1.29 (Moderate Density Parity Check). An [𝑛, 𝑘] MDPC code is a linear code for
which there exists a moderately sparse parity check matrix, by which we mean that the
Hamming weight of its rows is in O(

√
𝑛).

The two definitions are very much alike. The former codes have great decoding
performance but the existence of low weight codewords in their dual is detrimental for its
security in a McEliece cryptosystem as was shown in [MRA00]. The latter codes correct
this shortcoming at the cost of lower decoding performance.

The Tanner graph is a useful tool to understand and analyze the LDPC decoders. These
decoders usually belong to the category of algorithms called message-passing algorithms or
the one called bit-flipping algorithms (an overview of these methods will be done in §6.1.1).

While relying on strong security reductions, MDPC-based cryptosystem would require
large key sizes. Following a movement initiated by [NTRU] and which has influenced many
code- or lattice-based cryptosystems, a great reduction of the key sizes is obtained using
an 𝔽2[𝑥]/(𝑥𝑛 − 1) type ring. In coding theory, this means using quasi-cyclic codes that we
define now.
Definition 1.30. A circulant matrix is a matrix where each row is rotated one element to
the right relative to the preceding row.

Let 𝑟 be a positive integer. Any 𝑟 × 𝑟 binary circulant matrix H can be written as

H =

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ0 ℎ𝑟−1 … ℎ2 ℎ1
ℎ1 ℎ0 ℎ𝑟−1 ℎ2
⋮ ℎ1 ℎ0 ⋱ ⋮

ℎ𝑟−2 ⋱ ⋱ ℎ𝑟−1
ℎ𝑟−1 ℎ𝑟−2 … ℎ1 ℎ0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

where ℎ0, … , ℎ𝑟−1 ∈ 𝔽2.
Proposition 1.31. The application

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ0 ℎ𝑟−1 … ℎ2 ℎ1
ℎ1 ℎ0 ℎ𝑟−1 ℎ2
⋮ ℎ1 ℎ0 ⋱ ⋮

ℎ𝑟−2 ⋱ ⋱ ℎ𝑟−1
ℎ𝑟−1 ℎ𝑟−2 … ℎ1 ℎ0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

↦ ℎ0 + ℎ1𝑥 + ⋯ + ℎ𝑟−2𝑥𝑟−2 + ℎ𝑟−1𝑥𝑟−1

is an isomorphism between the ring of 𝑟 × 𝑟 circulant matrices with coefficients in 𝔽2 and
the quotient ring 𝔽2[𝑥]/(𝑥𝑟 − 1).

16 Chapter 1. Coding theory

Definition 1.32. Let 𝑛0, 𝑟, and 𝑑 be three positive integers. A QC-MDPC code is a code
whose parity check matrix

H = (H0 … H𝑛0−1)

consists of 𝑛0 circulant blocks H0, … , H𝑛0−1 of size 𝑟 × 𝑟 and row weight 𝑑 such that
𝑛0𝑑 = 𝑂(√𝑛0𝑟). The code is an [𝑛0𝑟, (𝑛0 − 1)𝑟] code, it has rate 1 − 1/𝑛0.

We refer to 𝑟 as the block size.

Remark 1.33. We can equivalently consider the parity check matrix as a tuple of elements
of 𝔽2[𝑥]/(𝑥𝑟 − 1): (h0, … , h𝑛0−1).

Similarly to Proposition 1.31, any vector e ∈ 𝔽𝑟
2 has an associated polynomial in

𝔽2[𝑥]/(𝑥𝑟 − 1) with the application

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑒0
𝑒1
⋮

𝑒𝑟−2
𝑒𝑟−1

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

↦ 𝑒0 + 𝑒1𝑥 + ⋯ + 𝑒𝑟−2𝑥𝑟−2 + 𝑒𝑟−1𝑥𝑟−1 .

We write 𝑛0 circulant matrices of size 𝑟 × 𝑟 as H0, … , H𝑛0−1, an error pattern as
e ∈ 𝔽𝑛0𝑟

2 , and the corresponding syndrome s ∈ 𝔽𝑟
2 :

(H0 … H𝑛0−1) e = s .

If we write h0, … , h𝑛0−1, e, and s their respective associated polynomials in 𝔽2[𝑥]/(𝑥𝑟 − 1),
then we have

h0e + ⋯ + h𝑛0−1e = s .

Although it may offer a little flexibility in a tradeoff between key generation time,
decoding time and bandwidth usage, in this document we will not maintain the genericity
of the term 𝑛0. We will therefore only focus on double circulant matrices, which will give
codes with a rate of 1/2 i.e. 𝑛0 = 2. It is the setting of [BIKE], a key encapsulation
mechanism1 based on QC-MDPC codes.

1This term is defined in the next chapter.

Chapter 2

Security reduction

Definition 2.1. A Public Key Encryption (PKE) scheme is a triple of probabilistic
polynomial-time algorithms (KeyGen, Encrypt, Decrypt) of:

• a key generation method that outputs a key pair (pk, sk);

KeyGen ∶ {0, 1}𝜆 → 𝒦pub × 𝒦priv ;

• an encryption method that takes a public key and a plaintext 𝑚 as inputs and
outputs the ciphertext 𝑐;

Encrypt ∶ 𝒦pub × ℳ → 𝒞 ;

• a decryption method that takes a private key and a ciphertext 𝑐 as inputs and
outputs the plaintext 𝑚 or a failure ⟂;

Decrypt ∶ 𝒦priv × 𝒞 → ℳ ;

where 𝜆 is the security parameter, 𝒦pub is the public key space, 𝒦priv is the private key
space, ℳ ∋⟂ is the message space and 𝒞 is the ciphertext space.

Many modern practical usages of cryptography use hybrid cryptosystems (see [SSH;
TLS] for examples): they combine a public key cryptosystem with a symmetric key
cryptosystem. The former is convenient since it allows establishing a secure channel
without the need to pre-share keys and the latter is usually efficient and thus allows a high
throughput.

A Key Encapsulation Mechanism provides a way for two parties to exchange a common
session key, thus solving the first part, establishing a secure channel.

Definition 2.2. A Key Encapsulation Mechanism (KEM) is a triple of probabilistic
polynomial-time algorithms (KeyGen, Encaps, Decaps) of:

• a key generation method that outputs a key pair (pk, sk);

KeyGen ∶ {0, 1}𝜆 → 𝒦pub × 𝒦priv ;

• an encapsulation method that takes a public key as input and outputs a message
(typically a session key) 𝑚 and its encapsulation 𝑐;

Encaps ∶ 𝒦pub → ℳ × 𝒞 ;

17

18 Chapter 2. Security reduction

• a decapsulation method that takes a private key and an encapsulated message 𝑐 as
inputs and outputs the message 𝑚 or a failure ⟂;

Decaps ∶ 𝒦priv × 𝒞 → ℳ ;

where 𝜆 is the security parameter, 𝒦pub is the public key space, 𝒦priv is the private key
space, ℳ ∋⟂ is the message space and 𝒞 is the ciphertext space.

2.1 Security games
For a cryptosystem, a reduction of security is a demonstration that if it is broken then
some hard problems are broken as well. An important desirable property for a scheme to
guarantee the confidentiality of communications is the ciphertext indistinguishability.

Indistinguishability is a property that depends on a “game” where an adversary provides
two plaintexts and is provided the two corresponding ciphertexts without knowing which
is which. If the adversary is not able to match each ciphertext with the right plaintext
better than simply choosing randomly then the cryptosystem has the indistinguishability
property. Different flavors of this property exist such as the indistinguishability under
chosen plaintext attack (IND-CPA) and indistinguishability under chosen ciphertext attack
(IND-CCA).

In Figure 2.1, we give the definitions of the IND-CPA game and the IND-CCA game.
In the IND-CPA game, the adversary 𝒜 = (𝒜1, 𝒜2) first chooses two messages 𝑚0 ≠ 𝑚1.
One of the two messages is picked uniformly at random then encrypted and the adversary
has to guess which one it was. In the IND-CCA game, the adversary has access to a
decryption oracle that can be used for any ciphertext other than the challenge.

Definition 2.3. The advantage of an adversary 𝒜 to a game 𝐺 in a cryptosystem 𝐾 is a
measure of the successfullness of the adversary to the game, it is the difference between
its probability of winning the game and the probability of winning the game by taking
random choices:

Adv𝐺
𝐾(𝒜) ∶= ∣Pr [𝒜 (𝐺) = 1] − 1

2
∣ .

2.2 Fujisaki-Okamoto transform
Fujisaki and Okamoto proposed, in [FO99], a hybrid encryption scheme combining a
one-way secure scheme and a symmetric encryption primitive that is IND-CCA secure.
This was later restated in a more modern way by Dent in [Den03]. Finally, a “modular”
analysis was presented in [HHK17], it provides tighter security reductions and takes into
account decryption errors (through a notion called 𝛿-correctness). Security reductions are
made using the classic game hopping technique in the Random Oracle Model1 (ROM).

Post-quantum cryptography community has shown interest in the transform as it is
used in most lattice- and code-based submissions to the NIST standardization process.

We focus on the FO⟂̸ transformation, a way to transform a PKE into a KEM with
implicit rejection. If the original PKE is IND-CPA secure and 𝛿-correct, it is shown
in [HHK17] that the resulting KEM is IND-CCA secure under certain conditions fairly
easily obtained.

It requires two hash functions K and H. The former should have outputs in ℳ
and is used to compute the session key. The latter is necessary for a process called

1Using the Random Oracle Model means here that the hash functions are to be treated as black boxes
which, for any input request, produce a uniformly randomly chosen element of its codomain. They are
mathematical functions, so any repetition of an input will always produce the same output.

2.2. Fujisaki-Okamoto transform 19

IND-CPA game for a PKE IND-CCA game for a KEM

(pk, sk) ← KeyGen(rand);

𝑏
$

← {0, 1};
(𝑚0, 𝑚1, state) ← 𝒜1(pk);
𝑐 ← Encrypt(pk, 𝑚𝑏);
𝑏′ ← 𝒜2(pk, 𝑐, state);
return [𝑏′ = 𝑏];

(pk, sk) ← KeyGen(rand);

𝑏
$

← {0, 1};
(𝑚, 𝑐0) ← Encaps(pk);

𝑐1
$

← 𝒞;
𝑏′ ← 𝒜𝒪sk,𝑐

dec (𝑚, 𝑐𝑏);
return [𝑏′ = 𝑏];

IND-CCA game for a PKE 𝒪sk,𝑐
dec (𝑐′)

(pk, sk) ← KeyGen(rand);

𝑏
$

← {0, 1};
(𝑚0, 𝑚1, state) ← 𝒜1(pk);
𝑐 ← Encrypt(pk, 𝑚𝑏);
𝑏′ ← 𝒜𝒪sk,𝑐

dec
2 (pk, 𝑐, state);

return [𝑏′ = 𝑏];

if 𝑐′ = 𝑐 then
return ⟂;

else
return Decrypt(sk, 𝑐′);

Figure 2.1: Security games

“derandomization” that transforms a probabilistic scheme into a deterministic one. It
should have outputs in ℳ.

Let PKE0 = (KeyGen0, Encrypt0, Decrypt0) be a probabilistic PKE. We write PKE1 =
(KeyGen1, Encrypt1, Decrypt1) the derandomization of PKE0. It is defined as:

• KeyGen1(seed) ∶= KeyGen0(seed),
• Encrypt1(pk, 𝑚) ∶= Encrypt0(pk, 𝑚‖ H(𝑚)),
• Decrypt1(sk, 𝑐) ∶= { 𝑚‖ℎ ← Decrypt0(sk, 𝑐);

if 𝑚‖ℎ ≠⟂ and ℎ = H(𝑚) then return 𝑚;
otherwise return ⟂; }.

Finally, we obtain a KEM (KeyGen, Encaps, Decaps) with

• KeyGen(seed) ∶= KeyGen1(seed),
• Encaps(pk) ∶= { 𝑚

$
← ℳ;

𝑐 ← Encrypt1(pk, 𝑚);
return (K(𝑚, 𝑐), 𝑐); },

• Decaps(sk, 𝑐) ∶= { 𝑚 ← Decrypt1(sk, 𝑐);
if 𝑚 ≠⟂ then return K(𝑚, 𝑐);
otherwise return K(seed(sk), 𝑐); }.

Definition 2.4. A PKE (KeyGen, Encrypt, Decrypt) is said to be 𝛿-correct if

E(pk,sk)←KeyGen({0,1}𝜆) [max
𝑚∈ℳ

Pr [Decrypt(sk, 𝑐) ≠ 𝑚 ∣ 𝑐 ← Encrypt(pk, 𝑚)]] ≤ 𝛿 .

Similarly, a KEM (KeyGen, Encaps, Decaps) is said to be 𝛿-correct if

Pr [Decaps(sk, 𝑐) ≠ 𝐾 ∣ (pk, sk) ← KeyGen({0, 1}𝜆); (𝐾, 𝑐) ← Encaps(pk)] ≤ 𝛿 .

20 Chapter 2. Security reduction

The following results can be deduced from [HHK17] and allows the construction of an
IND-CCA secure KEM from an IND-CPA secure, 𝛿-correct PKE.

Theorem 2.5 (Theorem 3.2 & Theorem 3.4 in [HHK17]). If PKE1 is 𝛿-correct, then for
any IND-CCA adversary ℬ against KEM, issuing at most 𝑞K and respectively 𝑞H queries
to the random oracle K and respectively H there exists an IND-CPA adversary 𝒜 against
PKE1 running in about the same time as ℬ such that

AdvIND−CCA
KEM (ℬ) ≤ 𝑞H ⋅ 𝛿 + 2𝑞H + 𝑞K + 1

|ℳ|
+ 3AdvIND−CPA

PKE1
(𝒜) .

Chapter 3

Code-based cryptography

As of today, there are two general approaches to implementing a PKE or a KEM using
error correcting codes: (i) those based on Alekhnovich’s cryptosystem [Ale03], (ii) those
based on McEliece [McE78] or Niederreiter [Nie86] cryptosystems.

The former approach has the advantage of not relying on any trapdoor in the code and
its security reduces only to the syndrome decoding problem. An interesting quasi-cyclic
variation of this system is [HQC].

In this document, we focus on variants of the latter. For this, the private code must
be a code for which there is a trapdoor, namely the ability to decode it efficiently. The
problematics (efficiency and security) implied by this requirement is a vast subject and
constitutes the main interest of this document, in the specific case of MDPC codes. The
primary subject of this document, [BIKE], is a Niederreiter variant.

3.1 McEliece cryptosystem framework
The basic framework of a McEliece cryptosystem is based on the possibility of building a
public generator matrix for which encoding is easy but decoding is difficult, and a trapdoor
that makes decoding up to a distance 𝑡 tractable. This is usually done by (i) generating a
code for which a good decoder is known, (ii) scrambling it. The scrambled matrix is the
public key, and the trapdoor is anything that allows us to come back to the setting of the
original code.

Therefore, this framework requires

• a code generation method that outputs a pair (G, 𝑇)

CodeGen ∶ {0, 1}𝜆 → 𝔽𝑘×𝑛
𝑞 × 𝒯 ;

• a decoder that takes the generator matrix G, the trapdoor 𝑇 and a noisy codeword
y = c + e and outputs (with high probability) the codeword c if |e| is smaller than
some constant 𝑡

Decode ∶ 𝔽𝑘×𝑛
𝑞 × 𝒯 × 𝔽𝑛

𝑞 → 𝔽𝑛
𝑞 ;

where 𝒯 is the set of trapdoors.
From this we can build a PKE by taking1 :

1We use the inverse InvG of the isomorphism 𝔽𝑘
𝑞 → 𝒞. It can be computed by selecting 𝑘 positions

for which the corresponding columns in G are linearly indepedent, then extracting the corresponding
coordinates (resp. columns) from c (resp. G). If we call the resulting vector c′ and the corresponding
matrix G′, this inverse is simply c′G′−1.

21

22 Chapter 3. Code-based cryptography

• KeyGen(seed) ∶= CodeGen(seed),
• Encrypt(G, m) ∶= { e

$
← ℰ𝑛,𝑡;

return mG + e; },
• Decrypt((G, 𝑇), y) ∶= { c ← Decode(G, 𝑇 , y);

return InvG(c); }.

Here, we denote by ℰ𝑛,𝑡 the set of vectors of 𝔽𝑛
2 with Hamming weight 𝑡.

Remark 3.1. The encryption relies on encoding the actual message m, another possibility
is to encode the message as the error vector e and choose m ramdomly. The catch with
this method is that the error vector must have a Hamming weight at most 𝑡. As explained
in [Sch72], in the binary case, there exists a simple bijection 𝜙 between

ℰ𝑛,𝑡 ∶= {e ∈ 𝔽𝑛
2 ∣ |e| = 𝑡} and

⎧{
⎨{⎩

0, … , (𝑛
𝑡
) − 1

⎫}
⎬}⎭

.

Note that (𝑛
𝑡) ≈ 2𝑛 H(𝑡/𝑛).

Let x ∈ ℰ𝑛,𝑡 and let us write {𝑖1, … , 𝑖𝑡} its support with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑡. Define
𝜙(x) ∶= ∑𝑡

𝑗=1 (𝑖𝑗−1
𝑗). Its inverse 𝜙−1 can be computed in polynomial time using an

algorithm somewhat similar to a number base conversion algorithm.

3.2 Niederreiter cryptosystem framework
The Niederreiter cryptosystem [Nie86] is dual to the McEliece one. Its framework requires

• a code generation method that outputs a pair (H, 𝑇)

CodeGen⟂ ∶ {0, 1}𝜆 → 𝔽(𝑛−𝑘)×𝑛
𝑞 × 𝒯 ;

• a decoder that takes the parity check matrix H, the trapdoor 𝑇 and a syndrome
y = He⊺ and outputs the error vector e if |e| is smaller than some constant 𝑡

Decode⟂ ∶ 𝔽(𝑛−𝑘)×𝑛
𝑞 × 𝒯 × 𝔽𝑛−𝑘

𝑞 → 𝔽𝑛
𝑞 ;

where 𝒯 is the set of trapdoors.
From this we can build a PKE by taking:

• KeyGen(seed) ∶= CodeGen⟂(seed),
• Encrypt(H, m) ∶= { e ← 𝜙−1(m);

return He⊺; },
• Decrypt((H, 𝑇), y) ∶= { e ← Decode⟂(H, 𝑇 , y);

return 𝜙(e); }.

In terms of security, the two systems are equivalent, this was proven in [LDW94]. The
Niederreiter setting has a clear advantage in terms of communication bandwith as the
ciphertexts have length (𝑛 − 𝑘) rather than 𝑛. Besides that, the difference between the
two frameworks will strongly depend on the code actually used to implement it.

3.3 Best known attacks on underlying hard problems
The security of code-based cryptosystem relates to the two following generic problems of
decoding linear codes. They were proven to be NP-complete in [BMT78].

3.3. Best known attacks on underlying hard problems 23

Problem 1. Syndrome Decoding – SD(𝑛, 𝑘, 𝑡)
Instance: A parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛

2 , a syndrome s ∈ 𝔽𝑛−𝑘
2 , a target

weight 𝑡 > 0 .
Property: There exists e ∈ 𝔽𝑛

2 such that |e| = 𝑡 and He⊺ = s .

Problem 2. Codeword Finding – CF(𝑛, 𝑘, 𝑤)
Instance: A parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛

2 , a target weight 𝑤 > 0 .
Property: There exists e ∈ 𝔽𝑛

2 such that |e| = 𝑤 and He⊺ = 0 .

Figure 3.1: Hard problems in code-based cryptography.

Definition 3.2. For any fixed values of 𝑛, 𝑘 and 𝑡, we denote 𝒲ℱ𝒜(𝑛, 𝑘, 𝑡) the work factor,
i.e. the average cost in binary operations, of algorithm 𝒜 to produce a solution to the
computational syndrome decoding problem SD(𝑛, 𝑘, 𝑡).

Definition 3.3. For a linear code of length 𝑛 and dimension 𝑘, an information set is a set
𝒥 of 𝑘 coordinates such that for any vector (𝑏𝑗)𝑗∈𝒥 there exists a unique codeword c such
that 𝑐𝑗 = 𝑏𝑗 for 𝑗 ∈ 𝒥.

The best known algorithms for these two problems are variants of the Information Set
Decoding (ISD) algorithm defined by Prange in 1962 [Pra62]. This algorithm repeatedly
attemps to find an error-free information set. The framework for ISD algorithms is
summarized in Figure 3.2.

In the (original) Prange’s version, the full row reduction is performed and the idea is to
repeat the process until the vector Us has a Hamming weight below some target weight 𝑤.
When it is the case, we can define

e ∶= ((Us)⊺ 0𝑘) 𝑃 ⊺ ,

then we have He⊺ = s and |e| = |Us| ≤ 𝑤.
An improvement of this algorithm due to Lee and Brickell in [LB88] is to introduce

a search step to amortize the cost of the Gaussian elimination. This step consists, for a
(small) positive integer 𝑝, in searching for a sum of 𝑝 columns of H′ that is at a distance
of Us below 𝑤 − 𝑝. Since then, this basic technique has received a few improvements. The
first idea was to only perform a partial Gaussian elimination to transform the searching
step into the smaller problem of finding e″ ∈ 𝔽𝑘+ℓ

2 of weight 𝑝 such that

H″e″⊺ = U″s

and then verify that H′e″⊺ is at distance below 𝑤 − 𝑝 of U′s. We can then complete the
error pattern by choosing

e ∶= ((H′e″⊺ + U′s)
⊺

e″) 𝑃 ⊺

The step of finding e″ can be seen as a collision search on which an interesting gain is
obtained thanks to the birthday paradox, see [Ste88; Dum91]. Then the algorithm was
improved by introducing the representation technique in [MMT11; BJMM12]. Another
variant uses nearest neighbours [MO15].
Remark 3.4. As presented here, the algorithm is used to do syndrome decoding, but it can
be used to search for low weight codewords as well. To do so, simply consider s = 0 and
𝑝 > 0 in any variant that has a search step (i.e. not the original algorithm due to Prange).

24 Chapter 3. Code-based cryptography

Input: Parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 , syndrome s ∈ 𝔽(𝑛−𝑘)

2 .

Output: An error vector e ∈ 𝔽𝑛
2 such that He⊺ = s .

• Consider the augmented matrix

(H s) .

• Apply a random permutation P ∈ 𝔽𝑛×𝑛
2 on the columns of H

(HP s) .

• Perform a row reduction, multiplying by a matrix U ∈ 𝔽(𝑛−𝑘)×(𝑛−𝑘)
2

(UHP Us) .

with a full row reduction:

(1𝑛−𝑘 H′ Us) .

with a partial row reduction, for ℓ < 𝑛 − 𝑘:

(1𝑛−𝑘−ℓ H′ U′s
0ℓ×(𝑛−𝑘−ℓ) H″ U″s) .

where

U = (U′

U″)

and U′ ∈ 𝔽(𝑛−𝑘−ℓ)×(𝑛−𝑘)
2 , U″ ∈ 𝔽ℓ×(𝑛−𝑘)

2 .

Figure 3.2: One iteration of Information Set Decoding principle

Therefore, any of these algorithms can be used to solve either SD(𝑛, 𝑘, 𝑤) or CF(𝑛, 𝑘, 𝑤)
for some parameters 𝑛, 𝑘, 𝑤. If we write one of these algorithms as 𝒜 then both problems
have the same workfactor

𝒲ℱ𝒜(𝑛, 𝑘, 𝑤) .
Let us only consider the Prange algorithm to solve SD(𝑛, 𝑘, 𝑡) with 𝑡 = 𝑜(𝑛) for now.

The dominating factor in the work factor for this algorithm is the average number of trials
before finding an error-free information set. It is equal to (𝑛

𝑡)
(𝑛−𝑘

𝑡) . We have

1
𝑡

log2 (
(𝑛

𝑡)
(𝑛−𝑘

𝑡)
) ∼ 1

𝑡
log2 (𝑛𝑡

(𝑛 − 𝑘)𝑡) = 𝑐 with 𝑐 = − log2 (1 − 𝑘
𝑛

)

as 𝑛 goes to infinity, using Stirling’s formula. So the work factor is 2𝑐𝑡(1+𝑜(1)).
For the other variants known at the moment of writing this document, the following

result from [CS15] shows that asymptotically, when 𝑡 = 𝑜(𝑛), the work factor is the same.

Proposition 3.5. [CS15] Let 𝑘 and 𝑡 be two functions of 𝑛 such that lim𝑛→∞ 𝑘/𝑛 = 𝑅,
0 < 𝑅 < 1, and lim𝑛→∞ 𝑡/𝑛 = 0. For any algorithm 𝒜 among the variants of [Pra62;
Ste88; Dum91; BJMM12; MMT11; MO15], we have

𝒲ℱ𝒜(𝑛, 𝑘, 𝑡) = 2𝑐𝑡(1+𝑜(1)), 𝑐 = − log2(1 − 𝑅)

when 𝑛 tends to infinity.

3.3. Best known attacks on underlying hard problems 25

The quasi-cyclic structure of a code means that any blockwise circular shift of a
codeword is also a codeword and that, given an error pattern, any circular shift of its
syndrome corresponds to a blockwise circular shift of the same error pattern. It has been
shown in [Sen11] that one can exploit this structure and expect a polynomial gain in
the work factor of an ISD algorithm. In practice the work factor for finding low weight
codeword in the dual is divided by (𝑛 − 𝑘) and the work factor for decoding is divided by√

𝑛 − 𝑘.
So, the work factor to solve the quasi-cyclic SD(𝑛, 𝑘, 𝑡) problem is

𝒲ℱQCSD(𝑛, 𝑘, 𝑡) ∶= 𝒲ℱ𝒜(𝑛, 𝑘, 𝑡)√
𝑛 − 𝑘

= 2𝑐[1/2+𝑡(1+𝑜(1))]−log2(𝑛)/2

and to solve the quasi-cyclic CF(𝑛, 𝑘, 𝑤) problem is

𝒲ℱQCCF(𝑛, 𝑘, 𝑤) ∶= 𝒲ℱ𝒜(𝑛, 𝑘, 𝑤)
𝑛 − 𝑘

= 2𝑐[1+𝑤(1+𝑜(1))]−log2(𝑛) .

26 Chapter 3. Code-based cryptography

Chapter 4

BIKE

[BIKE] uses QC-MPDC codes in a Niederreiter cryptosystem. Its characteristics are
particularly relevant to the NIST Post Quantum Cryptography standardization process1.
It has (i) small keys, and (ii) efficient, low-complexity algorithms. It is therefore suitable for
both software and hardware implementations. The former category received optimization
attention using the specialized instructions of modern x86 processors, see [DG19; DGK20a].
The latter has also been studied for microcontrollers, see [HMG13; MG14], as well as Field-
Programmable Gate Array (FPGA), see [HMG13; MOG15b; HC17; HWCW19; RMG20].
In these works, improvements or tradeoffs are obtained by focusing on the polynomial
multiplication needed for encapsulation and decapsulation, and on the polynomial inversion
for the key generation.

Table 4.1: BIKE parameters.

𝜆 𝑤 𝑡 𝑟CPA 𝑟CCA ℓ
128 142 134 10 163 12 323 256
192 206 199 19 853 24 659 256
256 274 264 32 749 40 973 256

Let us fix the following parameters:

• 𝑟: the block size of a parity check matrix,

• 𝑛 = 2𝑟: the length of a code,

• 𝑑: the column weight of a parity check matrix,

• 𝑤 = 2𝑑: the row weight of a parity check matrix,

• 𝑡: the weight of an error pattern,

• ℓ: the message space size,

• 𝜆: the security parameter, in bits.

We define the following sets:

• ℛ𝑟 ≃ 𝔽2[𝑥]/(𝑥𝑟 − 1): the set of 𝑟 × 𝑟 circulant matrices,

• ℛ𝑟,𝑑: the set of 𝑟 × 𝑟 circulant matrices of row weight 𝑑,

• ℰ𝑛,𝑡: the set of vectors of 𝔽𝑛
2 with Hamming weight 𝑡.

27

28 Chapter 4. BIKE

Table 4.2: BIKE specification.

• KeyGen(seed) ∶= { (h0, h1)
$

← ℛ𝑟,𝑑;
h ← h1h−1

0 ;

𝜎
$

← {0, 1}ℓ;
return (h0, h1, 𝜎), h; },

• Encaps(h) ∶= { m
$

← {0, 1}ℓ;
(e0, e1) ← H(𝑚);
c ← (e0 + e1h, m ⊕ L(e0, e1));
𝐾 ← K(m, c);
return 𝐾, c; },

• Decaps((h0, h1, 𝜎), c) ∶= { e′ ← Decode⟂
MDPC(c0h0, h0, h1);

m′ ← c1 ⊕ L(e′);
if e′ ≠ H(m′) then return K(𝜎, c);
otherwise return K(m′, c); }.

Where H, K and L are three hash functions. H has outputs in ℰ𝑛,𝑡, K and L in {0, 1}ℓ.

BIKE is defined2 in Table 4.2.
This entire document is devoted to the decoder, so we will not detail its operation in

this preliminary chapter. We will however explain the conversion used and what it implies
for security, in particular the necessary conditions imposed on the decoder. We will also
detail why the block size should be chosen carefully.

4.1 Security
Using notations from §3.2 we can build PKE0 = (KeyGen0, Encrypt0, Decrypt0), a Nieder-
reiter cryptosystem using QC-MDPC codes by taking

• CodeGen⟂(seed) ∶= { H0
$

← ℛ𝑟,𝑑;

H1
$

← ℛ𝑟,𝑑;
H ← (1𝑟 H−1

0 H1);
return (H, H0); },

• Decode⟂(H, H0, s) ∶= { s′ ← H0s;
return Decode⟂

MDPC((H0 H0H), s′); }.

with 𝒦pub = ℛ2
𝑟, 𝒦priv = ℛ𝑟,𝑑, ℳ = ℰ𝑛,𝑡, 𝒞 = 𝔽𝑟

2 .
However, applying Niederreiter construction directly in this PKE is not secure. Indeed,

the problem is to leave the complete control of the error pattern to the person who encrypts.
In the hand of a malicious adversary, this could be used in a reaction attack such as [GJS16]
where particular error patterns allow them to gather information about the private key.

Even outside practical concerns, this issue is already taken into account in the analysis
of [HHK17]. Indeed, if we want to use the Theorem 2.5 to prove that the scheme is
IND-CCA secure, we need to make sure that the PKE is 𝛿-correct with 𝛿 really small.
Definition 2.4 of 𝛿-correctness concerns the maximum probability of failure on all possible

1https://csrc.nist.gov/projects/post-quantum-cryptography
2The notation

$
← means drawing uniformly at random from the right side and assign it to the left side

using seed.

https://csrc.nist.gov/projects/post-quantum-cryptography

4.1. Security 29

messages, and it is difficult to prove that no message will be decoded with less success than
the average. It is in fact not true, the question of particular problematic error patterns
will be discussed in Chapter 16 on the phenomenon known as the “error floor”.

To circumvent this problem, BIKE adds randomization to the error pattern. Instead of
choosing a random message m and using it directly as an error pattern to compute the
syndrome, the message m is first hashed and the hash H(m) is used as the error pattern.
The soundness of such a process is guaranteed by a commitment: m ⊕ L(H(m)).

Using the more compact polynomial representation, we obtain the specification in
Table 4.2.

To apply Theorem 2.5, we have to study the IND-CPA security of the scheme first. It
relies on the quasi-cyclic versions of the problems SD(𝑛, 𝑘, 𝑡) and CF(𝑛, 𝑘, 𝑤). We define
the function:

• QCSD𝑟,𝑡 ((e0, e1) , h, s) for e0, e1, h, s ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1).
It returns 1 if ∣e0∣ + ∣e1∣ = 𝑡 and e0 + e1h = s, and 0 otherwise.

For any probabilistic polynomial time algorithm 𝒜 taking for inputs h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1)
and s ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1), and producing as output an element of (𝔽2[𝑥]/(𝑥𝑟 − 1))2, we define
its advantage concerning the one-wayness of the cipher as:

AdvOW
QCSD𝑟,𝑡

(𝒜) = Pr [QCSD𝑟,𝑡(𝒜(h, e0 + e1h), h, e0 + e1h) ∣ h ∈ ℛ𝑟, (e0, e1) ∈ ℰ𝑛,𝑡] .

For any probabilistic polynomial time algorithm 𝒟 taking as input h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) ,
and producing 0 or 1 as output, we define its advantage concerning the distinguishability
of the parity check matrix as:

AdvIND
QCCF𝑟,𝑤

(𝒟) = ∣Pr [𝒟 (h1h−1
0) = 1 ∣ h0, h1 ∈ ℛ𝑟,𝑤/2] − Pr [𝒟 (h) = 1 ∣ h ∈ ℛ𝑟]∣ .

Theorem 4.1. [BIKE, §C.1.2] For any IND-CPA adversary 𝒜 against PKE1 there exists
an adversary 𝒜′ against QCSD𝑟,𝑡 and a distinghuer 𝒟 against QCCF𝑟,𝑤 running in about
the same time as 𝒜 such that

AdvIND−CPA
PKE1

(𝒜) ≤ 1
2

AdvOW
QCSD𝑟,𝑡

(𝒜′) + 1
2

AdvIND
QCCF𝑟,𝑤

(𝒟) .

The number of bits of security of a problem is usually defined as the smallest 𝜆 such
that for any adversaries 𝒜

Time(𝒜)
Adv(𝒜)

≥ 2𝜆

where Time(𝒜) is the running time of 𝒜. Note that if 𝒜 makes 𝑞 queries to any oracle
then Time(𝒜) > 𝑞.

To summarize Theorem 2.5 & Theorem 4.1, in order to have 𝜆 bits of security against
an IND-CCA adversary we want:

• 𝒲ℱQCSD(2𝑟, 𝑟, 𝑡) > 2𝜆 ,

• 𝒲ℱQCCF(2𝑟, 𝑟, 𝑤) > 2𝜆 ,

• 2ℓ > 2𝜆 ,

• 𝛿 < 2−𝜆 i.e. DFR(decoder) < 2−𝜆 .

Remember that we call DFR the decoding failure rate of a decoding algorithm. The best
known algorithm to solve the underlying problems are variants of the ISD algorithms

30 Chapter 4. BIKE

that we discussed in §3.3. So to satisfy the first two points we should have, in a first
approximation:

21/2+𝑡(1+𝑜(1))−log2(𝑛)/2 > 2𝜆 and 21+𝑤(1+𝑜(1))−log2(𝑛) > 2𝜆

for some security parameter 𝜆. Parameters should nevertheless be determined by consider-
ing the actual work factors of ISD algorithms.

If only the first three points are verified, the system is still IND-CPA secure. The last
point is the main concern of this document and grants IND-CCA security if verified.

Table 4.1 gives the sets of parameters of [BIKE]. Two values for the block size 𝑟 are
provided, 𝑟CPA that verifies the first three conditions and 𝑟CCA that was the value retained
in [BIKE] to have a DFR low enough for IND-CCA security using the method that we
detail in Chapter 14.

4.2 Block size
Squaring. If the block size 𝑟 is an even number, it has been shown in [Lön+16] that an
attacker can decrease the cost of the ISD attacks using a squaring technique.

Remember that we are in the context of Proposition 1.31 and we are dealing with
polynomials in 𝔽2[𝑥]/(𝑥𝑟 − 1). While, in [Lön+16], only a McEliece variant using QC-
MDPC is mentioned, it can easily be translated for the Niederreiter variant and this is
what we will do here.

As we are dealing with a field of characteristic 2, squaring a polynomial
𝑟−1
∑
𝑖=0

𝑎𝑖𝑥𝑖

gives, if 𝑟 is even,
𝑟−1
∑
𝑖=0

𝑎𝑖𝑥2𝑖 =
𝑟/2−1

∑
𝑖=0

(𝑎𝑖 + 𝑎𝑖+𝑟/2)𝑥2𝑖 mod (𝑥𝑟 − 1) . (4.1)

Attacks on the system can be roughly described, for a private key h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1)
and a syndrome s ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1), as follows.

Key recovery Message recovery
Find h0, h1 ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) such that

∣h0∣ ≤ 𝑤
∣h1∣ ≤ 𝑤

and h0h = h1

Find e0, e1 ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) such that

∣e0∣ + ∣e1∣ ≤ 𝑡
and e0 + e1h = s

If we now square all equations, we obtain the following. Note that a squared polynomial
has no monomial of odd degree, hence the dimension of the problem is divided by 2.

Key recovery (squared) Message recovery (squared)
Find h2

0, h2
1 ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) such that

∣h2
0∣ ≤ 𝑤2

∣h2
1∣ ≤ 𝑤2

and h2
0h2 = h2

1

Find e2
0, e2

1 ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) such that

∣e2
0∣ + ∣e2

1∣ ≤ 𝑡2

and e2
0 + e2

1h2 = s2

4.2. Block size 31

Now the weights 𝑤2 and 𝑡2 are not specified. In (4.1), we say that there is a collision if
there exists an 𝑖 such that

𝑎𝑖 = 𝑎𝑖+𝑟/2 = 1 .

Each collision decreases the weight of the squared polynomial by 2 compared to the original
polynomial. So the squared versions of the problems are simpler (remember from §3.3 that
the complexity of the problems depends mainly on 𝑡 and 𝑤).

Of course, the process can be repeated as many times as the dyadic valuation of 𝑟. And
each time the process is applied, since the dimension is divided by two, the probability of
having a collision increases and therefore the weights3 𝑤2𝑖 and 𝑡2𝑖 decrease as well.

Square roots. Once a solution to the squared problem is found, it remains to lift it to
return to the original problem. Say a′2 = ∑𝑟/2−1

𝑖=0
𝑖 even

𝑎′
𝑖𝑥2𝑖 is a solution to a problem. For any

position 𝑖 such that 𝑎′
𝑖 = 1 then

𝑎′
𝑖 = 𝑎𝑖 + 𝑎𝑖+𝑟/2 = 1

so either 𝑎𝑖 = 1 or 𝑎𝑖+𝑟/2 = 1.
A solution to the initial problem is found using an ISD algorithm with the additional

leverage provided by this information. To be more precise, if we remember the general
structure of such an algorihm explained in Figure 3.2, rather than applying a random
permutation P to the matrix, we restrict ourselves to permutations that do not place the
above-mentioned positions in the information set. In other words, these positions will
always be permuted to the first 𝑛 − 𝑘 (or 𝑛 − 𝑘 − ℓ) positions.

Doing this is equivalent to removing 2 ⋅ 𝑤2 symbols (puncturing the code) so this
increases the code rate slightly. And from Proposition 3.5 we know that this will slightly
increase the contribution of the factor 𝑐 in the exponent of the workfactor.

However, if many collisions occurred during the squaring process, the decrease in the
weight 𝑤 (or 𝑡) makes this algorithm worthwhile from an attacker’s point of view.

As with the squaring process, this process too can be repeated as many times as the
dyadic valuation of 𝑟.

To summarize, an attacker would perform squarings, then look for solution to the
reduced problem, and finally lift the solution by computing square roots. The dominating
factor in the complexity of this attack is the first solution to the reduced problem. It is
particularly interesting for weak keys: keys with numerous collisions once squared. It has
been shown in [Lön+16], for some parameters such that 24 divides 𝑟, that the logarithm
of the cost of the attack divided by the probability of having a weak key is at least 10 bits
below the expected security level.

Generalization. The attack was further generalized in [CT19]. This paper adopts a
different point of view. It studies codes with a non-trivial automorphism group i.e. a
group of isometries that leave the code globally invariant. The code is then folded: for a
given codeword, we consider the sum of its images under the elements of the automorphism
group. The result is the same as in the previous paragraphs, the decoding problem is
reduced to a smaller dimension, a smaller error weight with the same code rate.

To do the connection with the previous paragraphs, for a quasi-cyclic code with an
even block size, the permutation that, in each block, shifts the positions by 𝑟/2 coordinates
is an isometry and along with the identity it forms an automorphism group.

This could be done for any non-trivial divisor 𝑟′ of 𝑟, not just 2. We would then
consider shifts in multiples of 𝑟/𝑟′, giving a group of automorphism of the order 𝑟′. To
avoid any such attack, 𝑟 must therefore be a prime number.

3Repeated squaring gives the same equations as above, we simply need to change each exponent by 2
by 2𝑖 and the weights 𝑤2 and 𝑡2 by 𝑤2𝑖 and 𝑡2𝑖 respectively, for the 𝑖-th iteration of the process.

32 Chapter 4. BIKE

In fact, to avoid any other structural attack, in [BIKE], the block size 𝑟 is chosen so
that the polynomial 𝑥𝑟 − 1 has only two irreducible factors:

𝑥 + 1 and 𝑥𝑟−1 + 𝑥𝑟−2 + ⋯ + 𝑥 + 1 .

Equivalently, it means that 2 is primitive modulo 𝑟 − 1.
It also ensures that any polynomial of 𝔽2[𝑥]/(𝑥𝑟 − 1) with an odd Hamming weight is

invertible, thus avoiding having to integrate any rejection process in the key generation4.

4Remember that in the Niederreiter setting, the first block h0 has to be inverted to compute the
systematic form h = h1h−1

0 .

Chapter 5

Syndrome weight and counters in
a regular MDPC code

There is a quantity that plays a fundamental role in decoding, notably for bit-flipping which
is the type of algorithms used for [BIKE]1. That quantity is the counter of a position, i.e.
the number of unsatisfied parity check equations involving that position. In this chapter,
we study it as a subject in its own right and explain the relation with the syndrome weight.

This chapter is a review of some results of [Cha17] that we will need and refer to
regularly throughout this document.

Notation. For this chapter, we consider a (𝑑, 𝑤)-regular [2𝑟, 𝑟]-MDPC code with a (sparse)
parity check matrix H and consider the problem of finding the error vector e of weight 𝑡
from the syndrome s = He⊺ with the parameters

• 𝑟: the block size of the parity check matrix;
• 𝑛 = 2𝑟: the length of the code,
• 𝑑: the column weight of the parity check matrix;
• 𝑤 = 2𝑑: the row weight of the parity check matrix,
• 𝑡: the weight of the error pattern.

We write2

H = (h0 h1 ⋯ h𝑛−1) =
⎛⎜⎜⎜⎜⎜
⎝

h⊺
0

h⊺
1
⋮

h⊺
𝑟−1

⎞⎟⎟⎟⎟⎟
⎠

where h0, … , h𝑛−1 are the columns of H and h⊺
0 , … , h⊺

𝑟−1 are the rows of H.

5.1 Fundamental quantities
Definition 5.1. For any position 𝑗 ∈ {0, … , 𝑛 − 1}, we call counter, the quantity

𝜎𝑗(H, s) ∶= ∣h𝑗 ⋆ s∣ .
1After all BIKE stands for Bit-Flipping Key Encapsulation.
2Note that for a quasi-cyclic code, in the polynomial formalism, if the parity check matrix is represented

as (h0, h1) with h0, h1 ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) for some block size 𝑟, then we have, for 𝑖 = 0, 1

∀𝑗 ∈ {0, … , 𝑟 − 1}, h𝑖⋅𝑟+𝑗 = 𝑥𝑗h𝑖 .

33

34 Chapter 5. Syndrome weight and counters in a regular MDPC code

Definition 5.2. The number of equations affected by exactly ℓ errors is

𝐸ℓ(H, e) ∶= ∣{𝑖 ∈ {0, … , 𝑟 − 1}∶ ∣h⊺
𝑖 ⋆ e∣ = ℓ}∣.

The quantities H, s and e are usually clear from the context. We will omit them and
simply write 𝜎𝑗 and 𝐸ℓ.

Proposition 5.3. The following identities are verified for all H, all e and s = He⊺:

∑
ℓ odd

𝐸ℓ = |s| , ∑
𝑗

𝜎𝑗 = 𝑤 |s| , ∑
𝑗∈e

𝜎𝑗 = ∑
ℓ odd

ℓ𝐸ℓ .

Proof. For any 𝑖 ∈ {1, … , 𝑟}, 𝑠𝑖 = 1 if and only if ∣h⊺
𝑖 ⋆ e∣ is odd, implying the first identity.

We can prove the next one by using the definition of 𝜎𝑗. We will use the fact that
for any 𝑖 and 𝑗, we have 𝑖 ∈ h𝑗 ⟺ 𝑗 ∈ h⊺

𝑖 . Equivalently, using indicator functions, for
any 𝑖, 𝑗, 1h𝑗

(𝑖) = 1h⊺
𝑖
(𝑗).

𝑛−1
∑
𝑗=0

𝜎𝑗 =
𝑛−1
∑
𝑗=0

∣h𝑗 ⋆ s∣ =
𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h𝑗⋆s(𝑖)

=
𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h𝑗
(𝑖)1s(𝑖) =

𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h⊺
𝑖
(𝑗)1s(𝑖)

=
𝑟−1
∑
𝑖=0

1s(𝑖) ⎛⎜
⎝

𝑛−1
∑
𝑗=0

1h⊺
𝑖
(𝑗)⎞⎟

⎠
.

We can then use the fact that each row of H has a fixed weight.
Similarly, we can prove the last identity:

∑
𝑗∈e

𝜎𝑗 = ∑
𝑗,𝑒𝑗=1

∣h𝑗 ⋆ s∣ =
𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h𝑗⋆s(𝑖)1𝑒(𝑗)

=
𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h𝑗
(𝑖)1s(𝑖)1e(𝑗) =

𝑛−1
∑
𝑗=0

𝑟−1
∑
𝑖=0

1h⊺
𝑖 ⋆e(𝑗)1s(𝑖)

= ∑
𝑖,∣h⊺

𝑖 ⋆e∣ odd

𝑛−1
∑
𝑗=0

1h⊺
𝑖 ⋆e(𝑗) =

min(𝑤,𝑡)

∑
ℓ=0

ℓ odd

ℓ𝐸ℓ .

5.2 Counters distributions
We can adopt a transposed point of view for a counter, compared to Definition 5.1. First
let us see that

s =
⎛⎜⎜⎜⎜⎜⎜
⎝

∣h⊺
0 ⋆ e∣ mod 2

∣h⊺
1 ⋆ e∣ mod 2

⋮
∣h⊺

𝑟−1 ⋆ e∣ mod 2

⎞⎟⎟⎟⎟⎟⎟
⎠

.

We have3 for any 𝑗 ∈ {0, … , 𝑛 − 1},

𝜎𝑗 = ∑
𝑖∈h𝑗

(∣h⊺
𝑖 ⋆ e∣ mod 2) .

3Remember that we equate a vector with its support.

5.2. Counters distributions 35

We now assume that the parity check matrix H and the error vector e are drawn
uniformly at random (but still verifying the constraints on regularity and Hamming weight).
This way the syndrome s is a binary random vector and the counters are random variables.

It is natural to assume, for a fixed 𝑗 ∈ {0, … , 𝑛 − 1}, that the 𝑑 random variables
defined by (∣h⊺

𝑖 ⋆ e∣ mod 2) for 𝑖 in the support of h𝑗 are independent. Let us write the
following probabilities

𝜋0 = Pr [(∣h⊺
𝑖 ⋆ e∣ mod 2) = 1 ∣ 𝑗 ∉ e, 𝑖 ∈ h𝑗] ,

𝜋1 = Pr [(∣h⊺
𝑖 ⋆ e∣ mod 2) = 1 ∣ 𝑗 ∈ e, 𝑖 ∈ h𝑗] .

Finally, still assuming independence of the random variables, the counters follow one of
the following two binomial distributions, depending on whether they concern a position in
the support of the error or not:

𝜎𝑗 ∼ Bin(𝑑, 𝜋0) if 𝑗 ∉ e,
𝜎𝑗 ∼ Bin(𝑑, 𝜋1) if 𝑗 ∈ e.

5.2.1 Average case
With no further assumption on H or e, we have

𝜋0 = ∑
ℓ odd

(𝑤−1
ℓ)(𝑛−𝑤

𝑡−ℓ)
(𝑛−1

𝑡)
, and 𝜋1 = ∑

ℓ even

(𝑤−1
ℓ)(𝑛−𝑤

𝑡−1−ℓ)
(𝑛−1

𝑡−1)
. (5.1)

Proof. If 𝑗 ∈ e, let 𝑖 ∈ h𝑗, then (∣h⊺
𝑖 ⋆ e∣ mod 2) = 1 if and only if among the (𝑤 − 1)

remaining positions 𝑗′ ∈ h⊺
𝑖 ∖ {𝑗} an even number of them are among the (𝑡 − 1) remaining

errors 𝑗″ ∈ e ∖ {𝑗}.
If 𝑗 ∉ e, let 𝑖 ∈ h𝑗, then (∣h⊺

𝑖 ⋆ e∣ mod 2) = 1 if and only if among the (𝑤−1) remaining
positions 𝑗′ ∈ h⊺

𝑖 ∖ {𝑗} an odd number of them are among the 𝑡 errors 𝑗″ ∈ e.

5.2.2 Conditioning the counter distributions with the syndrome weight
Suppose now that we are no longer in the average case with a uniformly drawn error
pattern e but that we have a syndrome s = He⊺ such that its weight |s| =∶ 𝑆 is fixed.

Definition 5.4. We write 𝑋 the quantity

𝑋 ∶= ⎛⎜
⎝

∑
𝑗∈e

𝜎𝑗
⎞⎟
⎠

− 𝑆 = ∑
ℓ>0

2ℓ𝐸2ℓ+1 .

Suppose also that we know the sum of the counters of erroneous positions:

∑
𝑗∈e

𝜎𝑗 = 𝑆 + 𝑋

where 𝑋 is a positive value. And using Proposition 5.3, we have:

∑
𝑗∉e

𝜎𝑗 = (𝑤 − 1)𝑆 − 𝑋 .

Then, using the fact that a random variable following a binomial distribution has values
around its mean, we can write:

𝜋0 = (𝑤 − 1)𝑆 − 𝑋
𝑑(𝑛 − 𝑡)

, 𝜋1 = 𝑆 + 𝑋
𝑑𝑡

. (5.2)

36 Chapter 5. Syndrome weight and counters in a regular MDPC code

In practice, we often wish to obtain an accurate model for the counter distributions which
only depends on 𝑆 and 𝑡. So we must somehow get rid of 𝑋. In practice 𝑋 = 2𝐸3 +4𝐸5 +⋯
is not dominant in the above formula (for relevant parameters) and we can replace it by
its expected value.

Proposition 5.5. The expected value of 𝑋 = ∑ℓ>0 2ℓ𝐸2ℓ+1 is

𝑋 = 𝑟 ∑
ℓ

2ℓ𝜌2ℓ+1 where 𝜌ℓ =
(𝑤

ℓ)(𝑛−𝑤
𝑡−ℓ)

(𝑛
𝑡)

.

To illustrate the situation, the number of occurrences expected for a counter value with
BIKE parameters offering 128-bit security is shown in Figure 5.1.

In practice, the counter distributions with probabilities from (5.2) are really close to
those observed from simulation. This gives counters distributions accurate enough to allow
improvement of the bit-flipping algorithm with better thresholds as we will see in §6.1.3.1.
However, as far as the probabilistic modeling of the algorithm is concerned, we will see in
Chapter 11 that this is not good enough. We will show a more accurate model in §11.3.3
that takes into account the regularity of the code.

5.2. Counters distributions 37

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

𝜎𝑗

Av
er

ag
e

nu
m

be
r

of
oc

cu
rr

en
ce

s

𝑗 ∉ e

𝑗 ∈ e

(a) Average.

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

𝜎𝑗

Av
er

ag
e

nu
m

be
r

of
oc

cu
rr

en
ce

s

𝑗 ∉ e

𝑗 ∈ e

(b) Conditioned by |s| = 5 000 and 𝑋 = ∑𝑗∈e 𝜎𝑗 − |s| = 912 .

Figure 5.1: Counters distributions and threshold for (𝑟, 𝑑, 𝑡) = (12 323, 71, 137) .

38 Chapter 5. Syndrome weight and counters in a regular MDPC code

Part II

New bit-flipping decoders for
QC-MDPC

39

41

Summary of contributions
We design three new decoding algorithms for MDPC codes:

• one that is randomized and sequential: step-by-step,
• one that implements a novel idea consisting in adding a lifetime to each decision

taken: Backflip,
• and one that considers an intermediate level of decision: gray decoder.

The first one has a theoretical interest that we will develop in Part III. The other two are
at an intermediate level between the hard- and soft-decision algorithms and have great
performance with a low complexity. Backflip shows remarkable performance that scales
well as the number of iterations increases.

42

Chapter 6

Introduction

Some decoders are more naturally described as syndrome decoders and others rather as
decoders of a noisy codeword. Keeping the notations introduced in Sections 3.1 & 3.2, the
algorithms of the first category will have a superscript ⟂ symbol in their name while the
others will not.

In general, a bitflipping-based decoder is best understood in terms of its effects on a
syndrome, and a message-passing algorithm carries out calculations related to the positions
of a received word. These two categories of decoders will be detailed in this introductory
chapter.

In this document, we deal with codes whose parity check matrix consists of two 𝑟 × 𝑟
invertible matrices. The conversions between the two types of decoders are thus explicitly
described in the Algorithm 6.1.

Algorithm 6.1: Conversions between decoders and syndrome decoders.
function decoder⟂(H, s):

input : A sparse parity check matrix H = (H0, H1) ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

y ← ((H−1
0 s)

⊺
0) ;

c ← decoder(H, y);
return y + c;

function decoder(H, y):
input : A sparse parity check matrix H = (H0, H1) ∈ 𝔽(𝑛−𝑘)×𝑛

2 ,
a vector y ∈ 𝔽𝑛

2 .
output : A codeword c ∈ 𝔽𝑛

2 such that y = c + e ∈ 𝔽𝑛
2 .

s ← Hy⊺;
e ← decoder⟂(H, s);
return y + e;

6.1 State of the art
Given the close link between an LDPC code and an MDPC code, it is relevant to investigate
the decoding of the former. This is what we will do first, before turning our attention to
decoders designed specifically for MDPC codes. Finally, we will present the work of [Cha17]

43

44 Chapter 6. Introduction

on the choice of thresholds, a central component of bit-flipping algorithms.

6.1.1 LDPC codes
Many variants of decoders were proposed since the invention of LDPC codes. They can all
be seen as improvements or specialization of one of the following algorithms:

• bit-flipping;
• belief propagation, also called sum-product algorithm.

The former is a hard-decision decoder : a bit is either set to 0 or 1 and there is no
way to deal with uncertainty. The latter is a soft-decision decoder : its input and all the
intermediate states represent a probability or a likelihood.

Soft-decision decoders usually outperform hard-decision ones, but they have a more
complex logic and require more memory. Looking for trade-offs between the two types
of algorithms is a line of research that has often been considered, and we will label the
resulting algorithms as intermediate.

6.1.1.1 Hard-decision decoding

Bit-flipping. A very simple iterative decoding algorithm was proposed by Gallager
in [Gal63], it is usually referred to as the bit-flipping algorithm. It is based on the following
observation: if a position is involved in many unsatisfied equations, it is more likely to be
erroneous. Thus, at each iteration of the algorithm, the syndrome is computed and then,
for each position, the number of unsatisfied equations in which it is involved is counted
and if this count exceeds a certain threshold, the value of the position is flipped. Hopefully,
with each iteration, the number of errors is decreased until there are no more errors, the
syndrome is then zero. Full descriptions are given in Algorithm 6.2 and Algorithm 6.3. In
these descriptions, the threshold is treated as the result of a call to a black box function
but, as it is a subject on its own, the actual implementation of such a function will be
discussed later in this document. Common choices for the threshold are: a majority vote
i.e. 𝑇 = (∣h𝑗∣ + 1)/2 or the maximum value reached by the counters max𝑗 ∣h𝑗 ⋆ s∣.

Algorithm 6.2 is said to be parallel because at each iteration, the syndrome is recomputed
only once after all positions have been checked. On the other hand, Algorithm 6.3 is called
serial because the syndrome is updated after each flip.

Algorithm 6.2: Parallel bit-flipping.
function parallel_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s;
𝑇 ← threshold(context);
while s′ ≠ 0 do

for 𝑗 ∈ {0, … , 𝑛 − 1} do
if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then

𝑒′
𝑗 ← 1 − 𝑒′

𝑗 ;

s′ ← s − He′⊺;
return e′;

6.1. State of the art 45

Algorithm 6.3: Serial bit-flipping
function serial_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s;
𝑇 ← threshold(context);
while s′ ≠ 0 do

for 𝑗 ∈ {0, … , 𝑛 − 1} do
if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then

𝑒′
𝑗 ← 1 − 𝑒′

𝑗 ;
s′ ← s − He′⊺;

return e′;

These algorithms have been studied by Sipser and Spielman in [SS96]. They showed that
it converges to the solution given that the Tanner graph has some expanding properties1

i.e. if a relatively small subset of vertices has many connections with the rest of the graph.
The threshold they used corresponds to a majority vote i.e. 𝑇 = (∣h𝑗∣ + 1) /2.

Message-passing algorithms. An important class of LDPC decoders are the message-
passing algorithms. In these algorithms, the nodes of the Tanner graph of the code are
assigned values that are initialized using the received word and then the edges are used
to “pass messages” in order to update the node values. Algorithm 6.4 gives the template
of such an algorithm that we will use by defining the functions init, check_to_var,
var_to_check, a_posteriori for the different variants. It uses the function 𝒩H that
returns the set of immediate neighbours of a node in the Tanner graph defined by the
parity check matrix H.

Gallager A/B. One algorithm and its variant, often mentioned in the litterature as
Gallager A and B algorithms, can be seen as a message-passing version of the bit-flipping
decoder. Its description is given it Table 6.1. In contrast to the bit-flipping algorithm,
this decoder does not exchange extrinsic information between nodes. In the bit-flipping
algorithm, a node sends the same information to all its neighbours (all variable nodes send
their current value to all their neighboring check nodes and vice versa). The message-
passing algorithm explicitely excludes the information it received from a node from the
information it sends to this very node.

The difference between Gallager A and Gallager B is in the way the thresholds 𝑇 are
computed. In Gallager B, thresholds are carefully computed and may change between
rounds or nodes. In Gallager A, the threshold is always 𝑇 = deg(𝑣) − 1 for any variable
node 𝑣.

6.1.1.2 Soft-decision decoding

Belief propagation. The messages that are passed in the previous algorithm correspond
to binary votes depending on the state of the nodes. In the belief propagation algorithm,
probabilities or likelihoods are passed. This algorithm was first defined by Gallager

1This is explained in more detail in §10.1.2

46 Chapter 6. Introduction

Algorithm 6.4: Message-passing algorithm.
function message_passing(H, y):

input : The biadjacency matrix of a bipartite graph H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a vector y ∈ 𝔽𝑛
2 .

/* For 𝑖 ∈ {0, … , 𝑛 − 𝑘 − 1} and 𝑗 ∈ {0, … , 𝑛 − 1},
𝑚𝑣𝑗

is a message from the channel,
𝑚𝑐𝑖→𝑣𝑗

is a message from check node 𝑐𝑖 to variable node 𝑣𝑗,
𝑚𝑣𝑗→𝑐𝑖

is a message from variable node 𝑣𝑗 to check node 𝑐𝑖. */
for 𝑗 ∈ {0, … , 𝑛 − 1} do

𝑚𝑣𝑗
← init(𝑦𝑗);

for 𝑐 ∈ 𝒩H(𝑣𝑗) do
𝑚𝑣𝑗→𝑐 ← 𝑚𝑣𝑗

/* Loop while the current vector is not a codeword. */
while Hy⊺ ≠ 0 do

for 𝑖 ∈ {0, … , 𝑛 − 𝑘 − 1} do
for 𝑣 ∈ 𝒩H(𝑐𝑖) do

/* Check node to variable nodes. */

𝑚𝑐𝑖→𝑣 ← check_to_var({𝑚𝑣′→𝑐𝑖
| 𝑣′ ∈ 𝒩H(𝑐𝑖) ∖ {𝑣}});

for 𝑗 ∈ {0, … , 𝑛 − 1} do
for 𝑐 ∈ 𝒩H(𝑣𝑗) do

/* Variable node to check nodes. */

𝑚𝑣𝑗→𝑐 ← var_to_check(𝑚𝑣𝑗
, {𝑚𝑐′→𝑣𝑗

| 𝑐′ ∈ 𝒩H(𝑣𝑗) ∖ {𝑐}});

𝑦𝑗 ← a_posteriori(𝑚𝑣𝑗
, {𝑚𝑐′→𝑣𝑗

| 𝑐′ ∈ 𝒩H(𝑣𝑗)});

return y;

in [Gal63] to decode LDPC codes. In a more general context, the algorithm was redefined
by Pearl in [Pea82] and is used in the artificial intelligence field.

There are many equivalent ways to write the algorithm, one can consider probability,
likelihood ratio or log-likelihood ratio. Here we will write it using the log-likelihood ratio.

Definition 6.1. Let 𝑋 be a binary random variable and let 𝑌 be a random variable. The
likelihood ratio is the ratio

𝐿(𝑋 | 𝑦) ∶= Pr[𝑋 = 0 | 𝑌 = 𝑦]
Pr[𝑋 = 1 | 𝑌 = 𝑦]

.

The log-likelihood ratio is then simply log (𝐿 (𝑋 | 𝑦)).

Suppose that we send a codeword x through a channel, we call y the received vector.
Let us now assume that the Tanner graph is a tree, we can thus assume that variable
nodes are mutually independent as well as the check nodes. Using Proposition 1.14, it can
be shown (see [Gal63]) that

Pr [𝑥𝑣 = 0 | 𝑦𝑣, 𝒪𝑣]
Pr [𝑥𝑣 = 1 | 𝑦𝑣, 𝒪𝑣]

=
Pr [𝑥𝑣 = 0 | 𝑦𝑣]
Pr [𝑥𝑣 = 1 | 𝑦𝑣]

∏
𝑐∈𝒩H(𝑣)

1 + ∏𝑣′∈𝒩H(𝑐)(1 − 2 Pr [𝑥𝑣′ = 1 | 𝑦𝑣′ , 𝒪𝑣′])

1 − ∏𝑣′∈𝒩H(𝑐)(1 − 2 Pr [𝑥𝑣′ = 1 | 𝑦𝑣′ , 𝒪𝑣′])
(6.1)

6.1. State of the art 47

Table 6.1: Gallager A/B.

init(𝑦) ∶= 1 − 2𝑦;
check_to_var(ℳ) ∶= ∏𝑚𝑣′→𝑐∈ℳ 𝑚𝑣′→𝑐;

var_to_check(𝑦, ℳ) ∶= 𝑠 ∶= 𝑦 + ∑𝑚𝑐′→𝑣∈ℳ 𝑚𝑐′→𝑣;
𝑇 ← threshold(context);

return {𝑦 if |𝑠| < 𝑇
sgn(𝑠) otherwise;

a_posteriori(𝑦, ℳ) ∶= s ∶= 𝑦 + ∑𝑚𝑐′→𝑣∈ℳ 𝑚𝑐′→𝑣;

return {
1−𝑦

2 if 𝑠 = 0
1−sgn(𝑠)

2 otherwise;

Table 6.2: Belief propagation.

init(𝑦) ∶= log (𝐿 (𝑥 | 𝑦)) ;

check_to_var(ℳ) ∶= 2 tanh−1 (∏𝑚𝑣′→𝑐∈ℳ tanh (𝑚𝑣′→𝑐
2)) ;

var_to_check(𝑦, ℳ) ∶= 𝑦 + ∑𝑚𝑐′→𝑣∈ℳ 𝑚𝑐′→𝑣;

a_posteriori(𝑦, ℳ) ∶=
1−sgn(𝑦+∑𝑚𝑐′→𝑣∈ℳ 𝑚𝑐′→𝑣)

2 ;

where 𝒪𝑣 is the event that the transmitted vector satisfies the parity check equations
concerning 𝑣 for some variable node 𝑣.

We can then use the fact that

∀𝑝 ∈ [0, 1], 1 − 2𝑝 = tanh (1
2

log 𝑝
1 − 𝑝

)

and
∀𝑥 ∈ (−1, 1), tanh−1(𝑥) = 1

2
log (1 + 𝑥

1 − 𝑥
)

to rewrite the formula using log-likelihood ratios.
Recall that the Tanner graph is assumed to be a tree. Excluding extrinsic information in

the conditional probabilities, one can then show that the message-passing algorithm defined
by Table 6.2 computes the log-likelihood values for each variable node with conditioning
increasing by one more level for each iteration. In (6.1) the expression in the product
corresponds to the messages sent from the check nodes to the variable nodes and the
whole formula is the converse. Still assuming the Tanner graph is a tree, after enough
iterations, the algorithm computes the log-likelihood of each variable node conditioned on
the received vector and the values of the nodes in the entire graph.

A quantization method for implementing this algorithm efficiently has been detailed
in [CFRU01]. It has been shown that, using this technique, a precision of less than 16 bits
has no impact on the performance compared to more precise computations.

Assuming the Tanner graph has no loop of length less than or equal to the number of
iterations, the convergence of this algorithm can be studied by a method know as density
evolution that will be detailed in §10.1.1.1.

As with the bit-flipping algorithm, message-passing algorithms are characterized by the
way they update information. Algorithm 6.4 uses a scheduling method known as flooding:

48 Chapter 6. Introduction

messages from variables (resp. check) nodes are sent all at once, only when all of them
have been computed. Other methods have been shown to improve convergence and lower
memory requirements by sending messages earlier. One of such scheduling technique is said
to be horizontal, it processes check nodes one by one, during each iteration a check node
immediately sends messages to its (variable nodes) neighbours which in turn immediately
send messages to their (check nodes) neighbours. This algorithm is known as layered belief
propagation.

6.1.1.3 Intermediate

The belief propagation algorithm usually has better decoding performance while the bit-
flipping algorithm has lower computing complexity and memory requirements. Naturally,
there has been a search for tradeoffs: a slight increase in complexity or memory for a
better decoding performance than the bit-flipping.

Two-bit bit-flipping. In the two-bit bit-flipping algorithm [NV14], the variables nodes are
given a strength encoded as a 2-bit value rather than a single bit: 0s, 0w, 1s, 1w where w
indicates a “weak” value and s a “strong” value. Transitions from one strength to another
is determined by a table that depends on the counter value. The general structure is
described in Algorithm 6.5.

We adopt the convention that the binary vectors are written in lower case and the
vectors of {0w, 0s, 1w, 1s} in upper case. The functions 𝐶∶ {0, 1} → {0w, 0s, 1w, 1s} and
𝑐 ∶ {0w, 0s, 1w, 1s} → {0, 1} convert from one to the other. It is suggested that the lifting
𝐶 is chosen such that ∀𝑖 ∈ {0, 1}, 𝐶(𝑖) = 𝑖s, or ∀𝑖 ∈ {0, 1}, 𝐶(𝑖) = 𝑖w And the projection
is the obvious choice ∀𝑡 ∈ {s, w}, 𝐶(𝑖𝑡) = 𝑖.

Algorithm 6.5: Two-bit bit-flipping.
function twobit_bitflip(H, y):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a vector y ∈ 𝔽𝑛
2 .

output : A codeword c ∈ 𝔽𝑛
2 such that y = c + e ∈ 𝔽𝑛

2 .
s(0) ← Hy(0)⊺;
Y(0) ← (𝐶 (𝑦𝑗))

𝑗∈{0,…,𝑛−1}
;

ℓ ← 0;
while s(ℓ) ≠ 0 do

ℓ ← ℓ + 1;
for 𝑗 ∈ {0, … , 𝑛 − 1} do

𝑌 (ℓ)
𝑗 ← 𝑓 (𝑌 (ℓ−1)

𝑗 , 𝜒 (𝑆(ℓ), 𝑗));

y(ℓ) ← (𝑐 (𝑌 (ℓ)
𝑗))

𝑗∈{0,…,𝑛−1}
;

s(ℓ) ← Hy(ℓ)⊺;
for 𝑖 ∈ {0, … , 𝑛 − 𝑘 − 1} do

𝑆(ℓ)
𝑗 ← (𝜙 (𝑠(ℓ−1)

𝑗 , 𝑠(ℓ)
𝑗))

𝑗∈{0,…,𝑟−1}
;

return y(ℓ);

The check nodes are given a 2-bit value depending on their previous state: 𝑖p, or
𝑖n for 𝑖 ∈ {0, 1} for respectively the previously or newly assigned values. The function

6.1. State of the art 49

𝜙∶ {0, 1}2 → {0p, 0n, 1p, 1n} handles the task of maintaining the 2-bit syndrome values:

∀𝑖 ∈ {0, 1}, 𝜙(𝑖, 𝑖) ∶= 𝑖p and 𝜙(1 − 𝑖, 𝑖) ∶= 𝑖n .

The counters in this model are now tuples rather than integers, they are computed via
the function 𝜒:

∀𝑗 ∈ {0, … , 𝑛 − 1}, 𝜒0w
(S, 𝑗) = ∣{𝑖 ∈ {0, … , 𝑟 − 1} | 𝑆𝑖 = 0w, ℎ𝑖,𝑗 = 1}∣ ,

𝜒0s
(S, 𝑗) = ∣{𝑖 ∈ {0, … , 𝑟 − 1} | 𝑆𝑖 = 0s, ℎ𝑖,𝑗 = 1}∣ ,

𝜒1w
(S, 𝑗) = ∣{𝑖 ∈ {0, … , 𝑟 − 1} | 𝑆𝑖 = 1w, ℎ𝑖,𝑗 = 1}∣ ,

𝜒1s
(S, 𝑗) = ∣{𝑖 ∈ {0, … , 𝑟 − 1} | 𝑆𝑖 = 1s, ℎ𝑖,𝑗 = 1}∣ .

The description given in [NV14] is really specific to particular codes: LDPC with
column weight 3. Authors suggest two node updating functions 𝑓.

The first one 𝑓1 does not use the additional information on the syndrome bits about
whether they were previously or newly assigned. It relies on the usual counters. The
function is described in the following table showing the output values vs. counter values
𝜒1s

+ 𝜒1w
.

0 1 2 3
0w 0s 1w 1s 1s
0s 0s 0s 0w 1s
1w 1s 0w 0s 0s
1s 1s 1s 1w 0s

What is interesting with this method is that the normal working of the bit-flipping
is kept when there is a high degree of confidence in a flip, but otherwise the decision is
delayed.

The second suggested function additionally uses the reliability information from the
syndrome.

𝑓2(𝑖𝑣, 𝜒) =

⎧{{
⎨{{⎩

𝑓1(𝑖𝑣, 𝜒1s
+ 𝜒1w

) if (𝜒0s
, 𝜒0w

, 𝜒1w
) ∉ {(2, 0, 0), (1, 1, 0)},

𝑖𝑣 if (𝜒0s
, 𝜒0w

, 𝜒1w
) = (2, 0, 0),

𝑖w if (𝜒0s
, 𝜒0w

, 𝜒1w
) = (1, 1, 0).

6.1.2 MDPC codes
6.1.2.1 Bit-flipping

Several variants of Algorithm 6.2 were considered for MDPC decoding. They vary on the
way to choose the threshold.

The original publication [MTSB13] suggests using max𝑗 (∣h𝑗 ⋆ s∣) − 𝛿 for some fixed
value of 𝛿. A fixed threshold per iteration strategy was explored in [HMG13; MG14; Cho16].
In [HMG13; MG14] they are based on Gallager’s analysis of LDPC codes. In [Cho16] they
were chosen by iterative experiments. And in [CS16], a novel approach was shown to be
relevant: the threshold is chosen as a function of the syndrome weight. Obtaining this
function was mainly experimental and many simulation data were needed in this first work,
but an analytic formula derived from a theoretical model was presented in the subsequent
work [Cha17].

A technique called adaptive auxiliary variable node (AAVN) was proposed in [BJK19].
It adds columns and rows to the parity check matrix in order to remove some cycles of
length 4 in the Tanner graph as small cycles are known to be detrimental to decoders. In
this work, the threshold is set to max𝑗 (∣h𝑗 ⋆ s∣) .

50 Chapter 6. Introduction

6.1.2.2 Message-passing algorithms

In [BSC16], a “soft” QC-MDPC based McEliece cryptosystem was proposed. In this system,
rather than dealing with a vector in 𝔽𝑛

2 and an error vector of fixed weight 𝑡, codewords
are encoded using binary pulse amplitude modulation (2-PAM) and the error vector is
an additive white Gaussian noise (AWGN). Authors suggest using a belief propagation
algorithm in the log-likelihood domain to decode.

Using a soft-decision decoder for the original QC-MDPC scheme (with a binary fixed
weight error vector) has been considered in [LB18]. They use a “scaled” sum-product
algorithm: the messages sent from the check nodes to the variable nodes are multiplied by
a factor 𝜔. For the 80 security bits parameters of [MTSB13], they achieve great decoding
performance with 𝜔 = 0.5.

6.1.3 QC-MDPC decoding thresholds
In Chapter 5, we saw that, using the regularity of a quasi-cyclic code, we can determine a
model for the counters distributions. In this model, they follow two binomial distributions:
one for the counters concerning errors, and the other for the counters concerning correct
positions:

𝜎𝑗 ∼ Bin(𝑑, 𝜋0) if 𝑗 ∉ e ,
𝜎𝑗 ∼ Bin(𝑑, 𝜋1) if 𝑗 ∈ e .

The probabilities 𝜋0 and 𝜋1 are determined by one of the following formulas.
Average case: When no further assumption is made on H or e, we have

𝜋0 = ∑
ℓ odd

(𝑤−1
ℓ)(𝑛−𝑤

|e|−ℓ)

(𝑛−1
|e|)

, and 𝜋1 = ∑
ℓ even

(𝑤−1
ℓ)(𝑛−𝑤

|e|−1−ℓ)

(𝑛−1
|e|−1)

. (6.2)

When the syndrome weight is known: Conditioning the probabilities for some fixed val-
ues of |s| = 𝑆 and 𝑋 = ∑𝑗∈e 𝜎𝑗 − |s|, we have

𝜋0 = (𝑤 − 1)𝑆 − 𝑋
𝑑(𝑛 − |e|)

, and 𝜋1 = 𝑆 + 𝑋
𝑑 |e|

. (6.3)

The purpose of bit-flipping is, as much as possible, to reduce the error weight at each
iteration. Therefore, when this is repeated enough times, the original noisy codeword has
been decoded, all the errors have been removed.

To reduce the error weight, the algorithm must flip more errors than correct positions.
So a good threshold 𝑇 is one where, of all the positions with a counter above it, a majority
are errors:

∑
𝑘≥𝑇

#{𝑗 ∈ e | 𝜎𝑗 = 𝑘} ≥ ∑
𝑘≥𝑇

#{𝑗 ∉ e | 𝜎𝑗 = 𝑘} .

In practice, we will take the smallest such 𝑇. And since the cardinalities involved in
the above inequality are almost impossible to know without having already decoded, we
will rely on probabilities. Let us denote

𝑝∉e(𝑘) = Pr[𝜎𝑗 = 𝑘 | 𝑗 ∉ e] = (𝑑
𝑘
)𝜋𝑘

0(1 − 𝜋0)𝑑−𝑘

and 𝑝∈e(𝑘) = Pr[𝜎𝑗 = 𝑘 | 𝑗 ∈ e] = (𝑑
𝑘
)𝜋𝑘

1(1 − 𝜋1)𝑑−𝑘 .

6.2. Contributions 51

Then the above inequality translates as:

|e| ∑
𝑘≥𝑇

𝑝∈e(𝑘) ≥ (𝑛 − |e|) ∑
𝑘≥𝑇

𝑝∉e(𝑘) .

The error weight |e| is not known apart from the first iteration where it is equal to 𝑡.
For any subsequent iteration, it has to be guessed, for example using the syndrome weight.
Since the counters distributions are usually unimodal, a way to choose the threshold 𝑇 that
is more resilient to the imprecision on this guess is to choose the smallest 𝑇 such that:

|e| 𝑝∈e(𝑇) ≥ (𝑛 − |e|)𝑝∉e(𝑇) . (6.4)

6.1.3.1 Adaptive threshold

Using the probabilities 𝜋0 and 𝜋1 from (6.3), the threshold equation (6.4) gives

𝑇 =
⎡
⎢
⎢
⎢

𝑑 log (1−𝜋1
1−𝜋0

) + log (|e|
𝑛−|e|)

log (1−𝜋1
1−𝜋0

) + log (𝜋0
𝜋1

)

⎤
⎥
⎥
⎥

.

This was suggested in [Cha17] and it is very consistent with the thresholds that were
empirically determined in [CS16] that were optimized for Algorithm 6.2.

With a few exceptions, these are the thresholds we will use in this document. Moreover,
a threshold lower than (𝑑 + 1)/2 is generally detrimental for decoding. Therefore, we will
take a threshold that is the maximum between (𝑑 + 1)/2 and 𝑇 in the above formula.

An example of counters distributions are given, for BIKE parameters offering 128 bits
of security, in Figure 6.1a in the average case and Figure 6.1b with the condition that
𝑆 = 5 000, 𝑋 = 912. Given the low proportion of errors, the chart is zoomed to show the
intersection of the two curves. The curves giving the expected number of correct positions
are thus clipped.

In the average case, using the threshold 𝑇 = 42 would be relevant as it is after the
point of intersection of the two curves thus respecting (6.4).

The event 𝑆 = 5 000, 𝑋 = 912 happens with probability around 10−5. In this case, the
previous, non-adaptive threshold would be too low and may cause the algorithm to flip
many correct positions.

6.2 Contributions
By observing the iteration by iteration evolution of a decoder, we can see that one of the
most detrimental things that can happen is the addition of many errors. When using a
purely threshold-based decoder, such as the classic bit-flipping, the errors that are added
are so because they had a high counter. Once they have been flipped, if they have a small
counter, they will be harder to correct.

We have designed two new types of intermediate algorithms to prevent this from
happening. They all take advantage, each in their own way, of the reliability information
obtained from counter values, which would otherwise be lost in a typical bit-flipping
algorithm.

• The Backflip decoder that encodes this information over time, limiting the duration
of each flip the algorithm does.

• Gray decoders that add a level between flipping a bit and not flipping it, and use
flip verification steps on this new level.

52 Chapter 6. Introduction

These new frameworks introduce new parameters that must be chosen for each set of
parameters of the cryptosystem. Contrary to the thresholds, these parameters are not
systematically associated, in the current state of knowledge, to a theoretical analysis and
are chosen by optimization. We try, however, as much as possible, to give an intuition on
the influence of each of these parameters.

We will also discuss the step-by-step decoder which is close to the sequential bit-flipping
algorithm described in [SS96]. In comparison, this decoder does not use a majority logic
but an adaptive threshold and the positions are sampled more efficiently, with an induced
bias that we can explain. The importance of this algorithm will be clarified in Chapter 12
where we build a probabilistic model on its evolution in order to estimate its failure rate.

In previous work, we have studied an adaptation to MDPC codes of the two-bit bit-flip
of [NV14], generalized to an arbitrary precision. The additional cost in memory and
computation, as well as the ad-hoc nature of its specifications, meant that this work was
not pursued and will not be presented in this document. For more information we refer
the reader to [Vas17]. In a way, there are similarities between this algorithm and Backflip
that we present in Chapter 8. Indeed, one of the principles of Backflip is to keep the flips
for a shorter period of time when we are less confident in them, this is also a feature of
the two-bit bit-flip.

Benchmark. We will assess the performance of the different algorithms by plotting their
DFR versus the block size 𝑟. As seen in §4.1, the IND-CPA security of a QC-MDPC
system is essentially achieved by selecting the appropriate error weight 𝑡 and row weight 𝑤.
IND-CCA security additionally requires that the decoder has a sufficiently low failure rate.
Increasing the block size 𝑟 is one way to achieve this property and has little effect on the
other IND-CCA security-related system properties.

We will use bit-flipping from Algorithm 6.2 and belief propagation from Algorithm 6.4
using Table 6.2 as benchmarks. The former has low complexity but rather poor decoding
performance, and for the latter, the opposite applies.

We will refer to the former as “classic” bit-flipping. We use the adaptive thresholds
from [Cha17] mentioned in §6.1.3.1. They are adaptive in the sense that they depend on
the syndrome weight. The thresholds depend on the probabilities from (5.2), which in
turn depend on the parameters 𝑑, 𝑤, 𝑟, 𝑛 and on certain values that are related to the
specific instance we want to decode and the state of the decoder such as the syndrome
weight |s|, the error weight |e| and the value 𝑋. The last two values are not information
that a decoder can use normally. For this implementation, we replace 𝑋 by its expected
value. And for the error weight, we take the actual value |e|. We know the exact value
for our simulation since, contrary to the real world case, we constructed the initial error
vector e and we can track any change that increases or decreases its weight. Doing this
gives a theoretical curve that does not depend on the quality of the guess of the error
weight. In a way, this gives the best possible threshold, it does so by “cheating”.

Following [LB18] mentioned in §6.1.2.2, a scaling factor is applied to the messages sent
from the check nodes. Here, with BIKE parameters offering 128 bits of security, a scaling
factor of 𝜔 = 0.4 gave better performance in simulation, and it is therefore this factor that
is used for the benchmark.

For the belief propagation curve, we have fewer data points because the computational
cost is much higher and the decrease in DFR as block size increases is steeper.

In this document, we will always write algorithms using while loops which can potentially
be infinite. In an actual implementation, the number of iterations must be limited and a
decoding failure must be explicitly reported.

6.2. Contributions 53

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

𝜎𝑗

Av
er

ag
e

nu
m

be
r

of
oc

cu
rr

en
ce

s

𝑗 ∉ e

𝑗 ∈ e

(a) Average

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

𝜎𝑗

Av
er

ag
e

nu
m

be
r

of
oc

cu
rr

en
ce

s

𝑗 ∉ e

𝑗 ∈ e

(b) Conditioned by |s| = 5 000 and 𝑋 = ∑𝑗∈e 𝜎𝑗 − |s| = 912

Figure 6.1: Counters distributions and threshold for (𝑟, 𝑑, 𝑡) = (12 323, 71, 137)

54 Chapter 6. Introduction

8 200 8 400 8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

Belief propagation - 10 iterations Belief propagation - 100 iterations

Classic bit-flipping - 10 iterations Classic bit-flipping - 100 iterations

Figure 6.2: DFR vs. block size with belief propagation and classic bit-flipping.
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

Chapter 7

Step-by-step

The step-by-step algorithm was originally designed with analyzability in mind. In fact, it
is a randomized version of Algorithm 6.3. In comparison, Algorithm 6.2 is parallel: all
the counters are computed at once and then all the positions with a counter above the
threshold are flipped at once, there is no update of the syndrome between those steps.
The state of the decoder (for example in terms of the error weight or the syndrome weight)
after one such iteration is hard to predict. In the step-by-step variant that we present
here, one position is sampled, its counter is computed and if it is above a threshold it is
flipped and the syndrome is updated immediately.

One interesting characteristic of this algorithm is that the range of possible issues
after one single flip is rather small: the error weight is adjusted by one unit (positively or
negatively) and the syndrome weight by not more than 𝑑 units. We will see in Chapter 12
that to some extent, one can compute the probability associated to each one of these
events. They are in fact the transition probabilities of a Markovian model of the algorithm.
We will rely on this model to derive a probability of failure of the algorithm.

Beyond its analysis and although its decoding performance is poorer than, say, classic
bit-flipping, it can still be wise to use this algorithm, especially if there are few errors to
decode. In this chapter we focus on its design and implementation.

7.1 Definition
The description of the step-by-step decoder is given in Algorithm 7.1.

7.2 Sampling positions
Algorithm 7.1 calls a method to pick one position among the whole set of 𝑛 positions.

An interesting aspect of a sampling method is the way it affects the counter distributions.
The general distributions of the 𝑛 counters are of course not changed, but as we progress
through this section, we will see sampling methods that induce a bias each time greater
towards higher counters. As a result, each provides different trade-offs between complexity
and the probability of choosing an error.

We will write 𝑝sample
∈e (𝜎) the probability that the sampled position is an error and has a

counter of 𝜎. Similarly, 𝑝sample
∉e (𝜎) will be the probability that the sampled position is not

an error and has a counter of 𝜎.
We present here three different sampling methods.

55

56 Chapter 7. Step-by-step

Algorithm 7.1: Step-by-step bit-flipping
function step_by_step_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s;
while s′ ≠ 0 do

𝑇 ← threshold(context);

𝑗
$

← sample(context);
if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then

𝑒′
𝑗 ← 1 − 𝑒′

𝑗 ;
s′ ← s′ + h𝑗;

return e′;

7.2.1 Uniform sampling
The simplest possibility that comes to mind is to choose a position uniformly at random.
In this case, the general distributions given in §5.2 are only affected by the proportion of
errors among the positions:

𝑝sample0
∈e (𝜎) = 𝑡

𝑛
⋅ 𝑝∈e(𝜎) ;

𝑝sample0
∉e (𝜎) = 𝑛 − 𝑡

𝑛
⋅ 𝑝∉e(𝜎) .

With this method, the probability of picking an error is 𝑝sample0
err = 𝑡

𝑛 .

7.2.2 Picking a position in one unsatisfied equation
This method takes advantage of the fact that an unsatisfied equation has at least one error
among its positions. The sampling method is therefore

1. randomly pick an unsatisfied equation;

2. randomly pick a position in this equation.

Compared to the previous one, this method induces a bias towards high counters
proportional to the counter value. Indeed, a counter is by definition the number of
unsatisfied equations in which a position is involved. So the higher the counter is, the
better chance it has of being chosen by this method. In terms of probabilities, this
translates as:

𝑝sample1
∈e (𝜎) = 𝜎𝑡

𝐷1
⋅ 𝑝∈e(𝜎) ;

𝑝sample1
∉e (𝜎) = 𝜎(𝑛 − 𝑡)

𝐷1
⋅ 𝑝∉e(𝜎)

where

𝐷1 =
𝑑

∑
𝜎=0

𝜎 ⋅ (𝑝∈e(𝜎) + 𝑝∉e(𝜎)) = 𝑤𝑆 .

7.2. Sampling positions 57

With this method, the probability of picking an error is:

𝑝sample1err =
𝑑

∑
𝜎=0

𝑝sample1
∈e (𝜎) = 𝑆 + 𝑋

𝑤𝑆
≥ 1

𝑤
.

7.2.3 Picking a position in two unsatisfied equations
The same idea as the previous one can be generalized to an arbitrary number of equations.
In fact, if the sampling method picks a random position involved in exactly 𝑘 unsatisfied
equations, the bias for a counter value 𝜎 will be 𝜎(𝜎 − 1) ⋯ (𝜎 − 𝑘 + 1). Such a sampling
method with a large value of 𝑘 can potentially speed up the process of obtaining a position
with a high counter (above the threshold) and thus reduce the number of iterations before
a flip.

But increasing 𝑘 may not always be relevant if one considers that it increases the cost
of the sampling process. In this section, however, we focus on the case 𝑘 = 2, since its
implementation has some interesting links with the spectrum of the parity check matrix
discussed in Chapter 15.

To be clear, let us recap the method:

1. randomly pick two different unsatisfied equations;
2. randomly pick a position belonging to both these equations.

Here, the probabilities will be affected quadratically in the counter value.

𝑝sample2
∈e (𝜎) = 𝜎(𝜎 − 1) ⋅ 𝑡

𝐷2
⋅ 𝑝∈e(𝜎) ;

𝑝sample2
∉e (𝜎) = 𝜎(𝜎 − 1) ⋅ (𝑛 − 𝑡)

𝐷2
⋅ 𝑝∉e(𝜎)

where

𝐷2 =
𝑑

∑
𝜎=0

𝜎(𝜎 − 1) ⋅ (𝑝∈e(𝜎) + 𝑝∉e(𝜎)) = 𝑑 ⋅ (𝑑 − 1) ⋅ (𝑡𝜋2
1 + (𝑛 − 𝑡)𝜋2

0) ,

using the formula for the factorial moments for a binomial distribution.
With this method, the probability of picking an error is:

𝑝sample2err =
𝑑

∑
𝜎=0

𝑝sample2
∈e (𝜎) = 𝑡𝜋2

1
𝑡𝜋2

1 + (𝑛 − 𝑡)𝜋2
0

≥ 1
1 + 𝑡

𝑛−𝑡 (𝑤 − 1)2 .

As long as 𝑝sample1err > 𝑡
𝑛 , the probability of picking an error is greater with this method

than the previous one
𝑝sample2err > 𝑝sample1err .

Implementing this method for quasi-cyclic matrices. If the same parity check matrix
is used more than once, this sampling method can benefit from a precomputation of the
intersections between any two of its rows.

In a circulant block of size 𝑟 × 𝑟, say the 𝑖1-th row and the 𝑖2-th row have intersections
at positions 𝑗1, … , 𝑗ℓ. Then if we shift simultaneously the two indices of the rows, the
intersecting positions will also be shifted by the same offset: for any 𝛿, the (𝑖1 +𝛿 mod 𝑟)-th
row and the (𝑖2 + 𝛿 mod 𝑟)-th row have intersections at positions 𝑗1 + 𝛿 mod 𝑟, … , 𝑗ℓ +
𝛿 mod 𝑟.

Thus, by precomputing all intersecting positions between the first row and any other row,
we avoid searching for intersections at each random sampling by using only a small amount
of memory. Indeed, if we look at Algorithm 7.2, we can see that 𝑑(𝑑 − 1) intersections
have to be computed and stored.

58 Chapter 7. Step-by-step

Algorithm 7.2: Sampling a position in two unsatisfied equations.
function precompute_spectrum(𝑟, (h0, h1)):

input : Block size 𝑟, a parity check matrix (h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2.
output : The array of lists spectrum: (𝑘, ℓ) ∈ spectrum[𝛿] if and only if the

rows at indices 0 and 𝛿 of the circulant matrix defined by h𝑘 intersect
in position ℓ.

spectrum ← {∅ ∣ 𝑖 ∈ {0, … , ⌊𝑟/2⌋}};

for 𝑘 ∈ {0, 1} do
foreach 𝑖, 𝑗 ∈ Supp(h𝑘) such that 𝑖 < 𝑗 do

𝛿 = 𝑗 − 𝑖;
if 𝛿 ≤ ⌊𝑟/2⌋ then

spectrum[𝛿] ← spectrum[𝛿] ∪ {(𝑘, (𝑟 − 𝑖) mod 𝑟)};
𝛿 = 𝑟 − 𝛿;
if 𝛿 ≤ ⌊𝑟/2⌋ then

spectrum[𝛿] ← spectrum[𝛿] ∪ {(𝑘, (𝑟 − 𝑗) mod 𝑟)};

return spectrum;
function sample2(𝑟, 𝑛, (h0, h1), s, spectrum):

input : Block size 𝑟, a parity check matrix (h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2,
a syndrome s ∈ 𝔽𝑟

2 , the precomputed array
spectrum = precompute_spectrum(𝑟, (h0, h1)).

output : A position involved in at least two unsatisfied equations.
repeat

Sample (𝑖, 𝑗) such that 𝑖 < 𝑗 and 𝑠𝑖 = 𝑠𝑗 = 1;
𝛿 ← 𝑗 − 𝑖;
if 𝛿 ≤ ⌊𝑟/2⌋ then

start ← 𝑖;
else

start ← 𝑗;
𝛿 ← 𝑟 − 𝛿;

until spectrum ≠ ∅;

(𝑘, ℓ)
$

← spectrum[𝛿];
return 𝑘 ⋅ 𝑟 + (start + ℓ) mod 𝑟;

7.3. Performance 59

Table 7.1: Probability 𝑝 that a random pair of equations has an empty intersection for
[BIKE] parameters and average number of trials 1/𝑝 before finding one.

Security (bits) 𝑑 Security 𝑟 𝑝 1/𝑝

128 71 IND-CPA 10 163 0.63 1.60
IND-CCA 12 323 0.56 1.80

192 103 IND-CPA 19 853 0.65 1.53
IND-CCA 24 659 0.58 1.74

256 137 IND-CPA 32 749 0.68 1.47
IND-CCA 40 973 0.60 1.67

Overhead of this sampling method. Given the sparsity of the parity check matrix of
an MDPC code, it is not guaranteed that any pair of equations will have a nonempty
intersection. This incurs extra costs as the sampling method might have to restart several
times before giving a position as we can see in the loop of Algoritm 7.2.

It is important to notice that, for any circulant matrix, there is a bijection between its
row vectors and its column vectors which simply consists in reversing the vectors as can be
seen in Definition 1.30. We can thus refer to Chapter 15 in which we study the influence
of intersections between the columns of a quasi-cyclic matrix on the DFR. In particular,
we can pick some combinatorial results from this chapter. For now, it is only important to
know that, in a circulant block, two rows at distance 𝛿 from each other have a nonempty
intersection if and only if 𝛿 is in the spectrum1 of the circulant block in question.

And using Corollary 15.19, we can say that for a circulant block of size 𝑟 × 𝑟 and
column weight 𝑑, the probability that a distance is in the spectrum of that block is

1 −
(𝑟−𝑑−1

𝑑−1)
(𝑟−1

𝑑−1)
.

So, now considering the full double circulant parity check matrix, the probability that
two rows have at least one intersection is:

1 − (
(𝑟−𝑑−1

𝑑−1)
(𝑟−1

𝑑−1)
)

2

.

Table 7.1 shows that with BIKE parameters, the sampling method needs to be restarted,
on average, less than once.

7.3 Performance
Performance of the step-by-step are reported in Figure 7.1. They relate to BIKE level 1
parameters (128 bits of security). As for the classic bit-flipping statistics in this document,
it is implemented with the adaptive thresholds from [Cha17], threshold(context) =
threshold(|s| , |e|) = 𝑇 where T is defined as in §6.1.3.1, and using the expected value for
𝑋. Here again, to avoid measuring the quality of the guess on the error weight and rather
focus on the algorithm itself, the actual error weight |e| is used in the threshold formula.

Most of the algorithms we study in this paper are parallel: all the counters are computed
at once and the syndrome is computed once for each iteration. On the other hand, the
step-by-step algorithm is serial and thus an iteration does not represent the same amount

1The formal definition of the spectrum is recalled in Definition 15.6 page 145.

60 Chapter 7. Step-by-step

8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

1 iteration 2 iterations

3 iterations 4 iterations

10 iterations 100 iterations

Classic bit-flipping - 100 iterations Classic bit-flipping - 10 iterations

Figure 7.1: DFR vs. block size with step-by-step.
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

of computation in a parallel and in a serial algorithm. In first approximation2, if we
only count the number of counters calculated, a parallel iteration is equivalent to 𝑛 serial
iterations. To make a fair comparison, this is the metric used in figure 7.1.

A point to note is that we are seeing gradual improvements as we increase the number of
iterations. However, a plateau is quickly reached. Indeed, 100 iterations do only marginally
better than 10 iterations.

7.4 Non-blocking variant
A notable feature of a serial algorithm such as the step-by-step algorithm with thresholds as
in §6.1.3.1, compared to a parallel algorithm, is that the weight of the syndrome necessarily
decreases with each iteration. Indeed, the chosen thresholds are always greater than
(𝑑 + 1)/2. Thus, when we flip a position 𝑗 ∈ {0, … , 𝑛 − 1} with a counter 𝜎𝑗 ≥ (𝑑 + 1)/2,
the weight of the syndrome goes from |s| to ∣s + h𝑗∣ = |s| + 𝑑 − 2𝜎 < |s| − 1, using
Proposition 1.26. This behaviour is not necessarily found with a parallel algorithm since
several columns are flipped at the same time, and therefore, depending on the intersections
between these columns, it may happen that these parallel flips increase the weight of the
syndrome.

The problem is that the algorithm is then less tolerant to bad flips, those that flip
correct positions. If there have been too many bad flips, the error weight will have increased
and the syndrome weight will have decreased. As a consequence, all the counters may end
up below the threshold. The algorithm will therefore enter a loop where in each iteration
it samples a position without ever flipping anything until it fails because the maximum
number of iterations has been reached.

2In particular, this approximation does not take into account the fact that, on a platform offering
vectorized instructions, computing all the counters at the same time may be faster than computing them
all individually.

7.4. Non-blocking variant 61

To avoid such a situation we propose a non-blocking variant of the aforementioned
step-by-step algorithm. In this variant, presented in Algorithm 7.3, we regularly undo flips
in the order they first were performed (flips are stored in a queue).

This cancellation of flips can have two consequences. The first one is that it cancels a
good decision, in which case an error is added, and that decision will probably be quickly
reversed. The second one, more interesting, is that it cancels a previous bad decision and
thus removes an error that may not be removed with a threshold-based approach. The
idea of using a queue to keep the list of flips is relevant since the flips of the former type
will merely cost us a little time as we move forward in the queue to finally reach the flips
of the latter type.

Algorithm 7.3: Non-blocking step-by-step bit-flipping.
function nonblocking_step_by_step_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

/* 𝐹 is a queue containing the flipped position in order. */
𝐹 ← {};
/* 𝑖 is the number of iterations spent without flipping any

position. */
𝑖 ← 0;
e′ ← 0;
s′ ← s;
while s′ ≠ 0 do

𝑇 ← threshold(context);
𝑗 ← sample(context);
if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then

if 𝑗 ∉ 𝐹 then
enqueue(𝐹 , 𝑗);

else
remove(𝐹 , 𝑗);

𝑒′
𝑗 ← 1 − 𝑒′

𝑗 ;
s′ ← s′ + h𝑗;
𝑖 ← 0;

else
𝑖 ← 𝑖 + 1;

if 𝑖 ≥ max_iter(context) then
𝑗 ← dequeue(𝐹);
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s′ ← s′ + h𝑗;
𝑖 ← 0;

return e′;

The challenge now is to find the right amount of time to wait before triggering a flip
cancellation. In Algorithm 7.3, this is handled by the method max_iter.

Constant max_iter(𝑖). We choose a number of iteration and max_iter(𝑖) returns true
whenever 𝑖 is a multiple of this number.

62 Chapter 7. Step-by-step

Variable max_iter(𝑖, |s| , |𝐹|). We define this method from a hypothesis testing point of
view. First, we write NoFlip𝑖 the event

{(𝑗0, … , 𝑗𝑖−1) ← sample(context)𝑖, 𝑇 ← threshold(context), ∀0 ≤ 𝑙 < 𝑖, ∣h𝑗𝑙
⋆ s∣ < 𝑇} .

This corresponds to the case where the algorithm iterates 𝑖 times without flipping any
position since all sampled positions have a counter below the threshold.

We always suppose that the following hypothesis is true:

ℋ0 ∶ |e| = 𝑡 − |𝐹| .

In other words, ℋ0 assumes that all active flips have removed an error.
However, when 𝑖 iterations have passed without a single flip, we “reject” this hypothesis

if the event NoFlip𝑖 has a low probability 𝛼 (e.g. 𝛼 = 0.05). Rejecting the hypothesis
ℋ0 here signifies that there was at least one flip in the queue 𝐹 that added an error. In
this case, we cancel the first flip in 𝐹, i.e. the one that was performed the earliest in the
execution of the algorithm.

Actual implementation of this algorithm relies on the adaptive threshold 𝑇 computation
explained in §6.1.3.1. In the formula, we can use the syndrome weight |s|, and, under
hypothesis ℋ0, we assume |e| = 𝑡 − |𝐹| in the formula.

The probability of NoFlip𝑖 is found assuming independence of the sampled counters,
using the sampled counters distributions 𝑝sample𝑖

∈e (𝜎) and 𝑝sample𝑖
∉e (𝜎) for 𝜎 ∈ {0, … , 𝑑}

detailed above for 𝑖 = 0, 1, 2. We thus choose the value of max_iter(context) to be the
smallest integer 𝑖 such that

(
𝑇 −1
∑
𝜎=0

𝑝sample𝑖
∈e (𝜎) + 𝑝sample𝑖

∉e (𝜎))
𝑖

< 𝛼 .

Here also, in the formula, we can use the syndrome weight |s|, and, under hypothesis ℋ0,
we assume |e| = 𝑡 − |𝐹|.

Further refinement of this algorithm and its reinsertion into a parallel paradigm resulted
in the more performant Backflip algorithm presented in Chapter 8.

Chapter 8

Backflip

In this chapter, we describe a novel way of including soft information in a bit-flipping
algorithm. Counters provide information about the reliability of positions. Classic bit-
flipping sets a threshold and flips all positions above this threshold. Our algorithm,
Backflip, adds a finer granularity by bringing a concept of flip duration. The more reliable
a flip is, the longer it remains active.

Decoding is seriously hindered by correct positions which have a high counter. Once
flipped, they become errors with a rather low counter. If this phenomenon occurs several
times during the same decoding, the algorithm will have effectively produced an instance
whose errors are difficult to detect so that any subsequent iteration will not be able to
improve the situation. Backflip solves this problem by ensuring that each flip is temporary.

With classic bit-flipping, the only way to reverse a bad decision, and thus to deflip an
initially correct position, is if the iterations posterior to these bad flips have sufficiently
modified the syndrome. This way, the distributions of the counters have been sufficiently
modified so that the counters of incorrectly flipped positions are once again above the
threshold. With Backflip, we have a second mechanism that, when decoding starts to stall,
progressively cancels the old unreliable flips.

Our algorithm, introduces a new concept for bit-flipping: the duration of a flip, which
we call ttl for “time to live”. The intuition is that the algorithm should be more prone
to quickly undo a less reliable flip and conversely to keep a very reliable flip for a longer
period of time. Since the higher a counter is, the more likely it is to indicate an error, the
ttl should be an increasing function of the counter. It should also be at least equal to one
when a counter is above the threshold. We will explore two strategies for the ttl and the
thresholds, which, as we will see, are closely related.

As mentioned in §7.4, the idea of unconditionally canceling old flips originated from
the non-blocking variant of the step-by-step decoder. In addition to the fact that this
algorithm is parallel, it also differs in the fact that it actually uses reliability information.

8.1 Algorithm description
The full description of Backflip is given in Algorithm 8.1. It must keep track of active flips
and associate to each one of them their time to live. At the beginning of each iteration,
the times to live are decremented and flips that have expired are canceled.

The two functions threshold and ttl are specified generically and are discussed later
in this chapter. The former may depend on any element of the context of the algorithm at
runtime, we will see here examples using the current syndrome weight ∣s′∣ and the number
of active flips ∣e′∣. The latter uses a counter, which, remember, gives information about
the reliability of the flip.

63

64 Chapter 8. Backflip

Algorithm 8.1: Backflip.
function backflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s − He′⊺;
/* Time-to-live of flips. */
D ← 0;
while s′ ≠ 0 do

/* Undo flips reaching their time-of-death. */
for 𝑗 ∈ {0, … , 𝑛 − 1} do

𝐷𝑗 ← 𝐷𝑗 − 1 ;
if 𝐷𝑗 = 0 then 𝑒′

𝑗 ← 0 ;

s′ ← s − He′⊺;
𝑇 ← threshold(context);
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗;

𝐷𝑗 ← ttl(∣h𝑗 ⋆ s′∣)

s′ ← s − He′⊺;
return e′;

Overhead compared to classic bit-flipping. First, the algorithm needs additional memory
to store the longevity of the flips. An obvious upper bound on the space taken is simply

log2(max_ttl) ⋅ 𝑛

bits. For a constrained hardware implementation, this memory could be reduced by
adopting a sparse representation of the array D.

Regarding time complexity, this algorithm needs two syndrome computations for each
iteration: one after some flips have been canceled and one to check if the looping condition
is verified.

Constant time considerations can be taken into account by setting an upper bound
that is sufficiently high for the size of D. Indeed, a decoding for which the number of
active flips is, say, a multiple of the original error weight 𝑡 fails anyway with a probability
very close to 1.

8.2 Threshold and time-to-live
The threshold and the ttl functions are closely linked and their choice must be made
jointly in order to achieve good decoding performance. Two strategies are presented here,
the first was introduced in [SV20a] and used in [BIKE]1, and the second one takes a
different approach that achieves better decoding performance.

1Backflip decoder was suggested in version 3 of the specification.

8.2. Threshold and time-to-live 65

8.2.1 Optimistic threshold strategy
We present here a heuristic for thresholds based on the rationale that being overly optimistic
about the weight of errors, i.e. assuming that each flip has removed an error, slows down
the algorithm when it makes bad decisions. It slows the algorithm down by making fewer
new flips, but those that are actually performed are more reliable, and meanwhile, the
algorithm will undo some old flips that were potentially bad decisions thus improving the
overall situation. Indeed, an optimistic estimation of the error weight would bring it to
the initial error weight 𝑡 subtracted by the number of active flips ∣e′∣. We will see that
using the adaptive threshold explained in §6.1.3.1 while underestimating the current error
weight increases the threshold.

Threshold selection rule. Here we have threshold(context) = threshold(|s| , 𝑡 − ∣e′∣) =
𝑇 where T is defined as in §6.1.3.1 with 𝜋0 and 𝜋1 calculated by substituting 𝑡 for 𝑡 − ∣e′∣
and 𝑆 for ∣s′∣:

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢

𝑑 log (1−𝜋1
1−𝜋0

) + log (
𝑛−(𝑡−∣e′∣)

𝑛−|e|)

log (1−𝜋1
1−𝜋0

) + log (𝜋0
𝜋1

)

⎤
⎥
⎥
⎥
⎥
⎥

. (8.1)

Since the current error weight is guessed optimistically, it can happen that 𝜋1 > 1 in
which case the previous equation would not make sense. In this case, we take the limit
of (8.1) when 𝜋1 tends to 1, that is 𝑑.

Optimistic estimation of 𝑡 gives a higher threshold. Remember from §6.1.3 that, with
adaptive thresholds, we have

𝜋0 =
(𝑤 − 1) ∣s′∣ − 𝑋
𝑑(𝑛 − |e + e′|)

, 𝜋1 =
∣s′∣ + 𝑋
𝑑 |e + e′|

where 𝑋 = ∑𝑗∈e+e′ 𝜎𝑗 − ∣s′∣.
Since 𝑋 ≪ (𝑤 − 1) ∣s′∣ and 𝑡 ≪ 𝑛, underestimating ∣e + e′∣ will always give an estimate

of 𝜋0 close to the true value. However, 𝜋1 will tend to be overestimated.
In this case, the estimated distribution of the correct position counters would be close

to reality and the estimated distribution of the error counters would be shifted to the right.
Since the threshold is chosen as the smallest value at which the former is below the latter,
the underestimation of the error weight would choose a threshold above the optimal.

Time-to-live. We want the ttl to be an increasing function of the counter, we also want
it to be nonzero when a counter is above the threshold. We choose a heuristic that verify
those properties and also has only a few parameters: an affine function of the difference
between the counter and the threshold. We write this difference 𝛿 = 𝜎 − 𝑇 , then

ttl(𝜎) = max(1, ⌊𝑎 𝛿 + 𝑏⌋) .

To highlight the importance of setting the ttl function, we show in Figure 8.1 its effect
on the DFR for different values of 𝑎 and 𝑏. The appropriate value range seems for 𝑎 to
be around 0.5 and 𝑏 around 1. If we deviate too much from these values, it could be
detrimental for the DFR to the point that we can see a plateau.

66 Chapter 8. Backflip

8 400 8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400 10 600 10 800

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

𝑎 = 0.5, 𝑏 = 0.5 𝑎 = 0.5, 𝑏 = 1 𝑎 = 0.5, 𝑏 = 1.5

𝑎 = 1 , 𝑏 = 0.5 𝑎 = 1 , 𝑏 = 1 𝑎 = 1 , 𝑏 = 1.5

𝑎 = 1.5, 𝑏 = 0.5 𝑎 = 1.5, 𝑏 = 1 𝑎 = 1.5, 𝑏 = 1.5

Figure 8.1: DFR vs. block size with Backflip (9 iterations) for different affine ttl functions
ttl(𝜎) = max(1, ⌊𝑎 𝛿 + 𝑏⌋)).
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

Optimization. As this strategy is heuristic, its specification is based on an optimization
from simulation in the absence of theoretical analysis. In practice, we proceed by using the
algorithm under degraded conditions by reducing the block size and limiting the number of
iterations so that a DFR can be effectively measured in a reasonable number of simulation.
The values for 𝑎 and 𝑏 are then determined by applying an optimization technique such as
the Nelder-Mead method [NM65] that minimizes the DFR under these degraded conditions.
Values obtained for [BIKE] parameters are reported in Table 8.1.

Table 8.1: ttl parameters obtained by optimization for BIKE parameters.

Security (bits) 𝑎 𝑏
128 0.45 1.1
192 0.36 1.41
256 0.45 1

Performance. The performance of the algorithm for BIKE parameters for 128 bits
of security with the ttl function described above, found by optimization, is displayed
in Figure 8.2. A notable fact is that, unlike the other bit-flip-derived algorithms seen
previously, with this algorithm a gain is observed each time the number of iterations is
increased, it appears that we still did not reach a limit after 100 iterations. Another
noteworthy point is that it does better in 100 iterations than scaled belief propagation
([LB18] with 𝜔 = 0.4), which was our benchmark.

However, we observe an inflection point on the DFR curves corresponding to a small
number of iterations.

8.2. Threshold and time-to-live 67

8 400 8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400 10 600 10 800

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

4 iterations 5 iterations 6 iterations 7 iterations

8 iterations 9 iterations 10 iterations 25 iterations

50 iterations 100 iterations Belief propagation - 100 iterations

Figure 8.2: DFR vs. block size with Backflip. ttl(𝛿) = max(1, ⌊0.45 𝛿 + 1.1⌋)
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

8.2.2 Multiple thresholds strategy
This strategy follows from the above remark that, when choosing a threshold, two proba-
bilities 𝜋0 and 𝜋1 are estimated. If the current error weight is misestimated, then 𝜋1 is
also misestimated, but it has little influence on the estimate of 𝜋0.

The rationale for this threshold selection strategy is therefore to rely only on 𝜋0.

Threshold selection rule. Indeed, rather than finding, as in the previous one, a balance
between good and bad decisions that ultimately reduces the error weight, we choose a
threshold that simply avoids making bad decisions.

Still in the model explained in §5.2, the expected number of good positions with a
counter value of 𝜎 is approximately

𝑛(𝑑
𝜎

)𝜋𝜎
0 (1 − 𝜋0)𝑑−𝜎 .

We therefore choose threshold(context) = threshold(|s|) = 𝑇 where T is the smallest
integer such that:

𝑛(𝑑
𝑇

)𝜋𝑇
0 (1 − 𝜋0)𝑑−𝑇 < 𝛼

for some fixed value 𝛼.

Time-to-live. We apply the same idea, namely that we want to avoid making bad
decisions. In fact, the less likely a flip is to add an error, the longer it stays active. To do
this, we define several thresholds 𝑇 = 𝑇1, 𝑇2, … , 𝑇ℓ such that for all 𝑖 ∈ {1, … , ℓ}, 𝑇𝑖 is the

68 Chapter 8. Backflip

8 400 8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400

−35

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

4 iterations 5 iterations 6 iterations 7 iterations

8 iterations 9 iterations 10 iterations 25 iterations

50 iterations 100 iterations Belief propagation - 100 iterations

Figure 8.3: DFR vs. block size with Backflip with multiple thresholds. 𝛼1 = 8, 𝛼2 = 2,
𝛼3 = 1/2, 𝛼4 = 1/8, 𝛼5 = 1/32.
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

smallest integer such that

𝑛(𝑑
𝑇𝑖

)𝜋𝑇𝑖
0 (1 − 𝜋0)𝑑−𝑇𝑖 < 𝛼𝑖

for some constants 𝛼 = 𝛼1 > 𝛼2 > ⋯ > 𝛼ℓ > 0.
Finally, we choose ttl(𝜎) as

ttl(𝜎) = max
𝑖

{𝑖 | 𝜎 ≥ 𝑇𝑖} .

Performance. As an example, we provide in Figure 8.3 the DFR curve for BIKE param-
eters offering 128 bits of security when implementing this method with 𝛼1 = 8, 𝛼2 = 2,
𝛼3 = 1/2, 𝛼4 = 1/8, 𝛼5 = 1/32, i.e. when it follows a geometric progression of common
ratio 1/4. As with the other strategy, each additional iteration brings a noticeable gain in
the performance. And here again, the algorithm does better than the benchmark. However,
interestingly, we do not observe any inflection point in this case.

Chapter 9

Gray decoders

In this chapter we will discuss some bit-flipping variants following a similar framework: the
gray decoders. They provide a way to introduce soft information in bit-flipping. Rather
than going through all the positions and making the binary decision to flip or not, they add
an intermediate level of decision. Positions with a high counter but still below the threshold
are neither black nor white but gray. Gray decoders can make immediate decisions on black
positions (the probable errors), but for gray positions they may perform reverifications.

Reverifications are a powerful mechanism of gray decoders. They consist in, after
performing several flips, immediately recomputing the corresponding counters to verify
that they actually remain below the threshold. It allows immediate correction of most bad
decisions.

In a bit-flipping algorithm, the first iteration is probably the most important, and it is
also the one for which we can extract the most reliable information. Indeed, for the first
iteration, the weight of the error is fixed and known, it is the parameter that we called 𝑡,
and since the error pattern is drawn uniformly at random, it does not suffer from any bias
that can sometimes contradict the models on the counters.

Contrary to classic bit-flipping, in gray algorithms, this first information obtained
from the counters is exploited a bit more by not reiterating immediately. The positions
with a high counter but below the threshold are marked to receive a specific treatment
later, before moving on to the next iteration. Thus, compared to classic bit-flipping, some
additional operations are performed, they concern a smaller set of positions, with a higher
concentration of errors. The high concentration of errors in this set together with the
reverifications generally allows to adopt a very simple but very efficient threshold strategy.

9.1 Framework
We will detail different alternatives through the structure of Algorithm 9.1. We consider a
classification that will be done by means of counters. Many alternatives can be considered
for further processing after flipping the black positions, we will see that the verification
method which will be explained here can be used as a building block for a particularly
efficient decoding.

9.2 Reverifications
One key aspect of the gray decoders is the reverification steps.

After an iteration of parallel bit-flipping, we can observe two types of behaviour for
the counters for flipped positions. The counters corresponding to good flips will be greatly

69

70 Chapter 9. Gray decoders

Algorithm 9.1: Gray bit-flipping.
function gray_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s;
it ← 1;
while s′ ≠ 0 do

𝐺, 𝐵 ← classify(H, s′);
for 𝑗 ∈ 𝐵 do

𝑒′
𝑗 ← 1 − 𝑒′

𝑗 ;

s′ ← s − He′⊺;
process(𝐺, 𝐵, it);
it ← it + 1;

return e′;

decreased while those corresponding to bad flips will not. This can be observed in Figure 9.1
for a fixed threshold.

We can thus improve the performance of the algorithm by filtering the flipped positions.
After a bit-flipping iteration, we perform a verification step which consists in

• recalculating the counters of the flipped positions,

• among those, flipping those with a counter above a threshold 𝑇𝑣.

In our experiments, it was not necessary to choose a threshold in a sophisticated way and
taking 𝑇𝑣 = (𝑑 +1)/2 brought us good results. As we can see in the Figure 9.1 for example,
most flipped errors should have a counter below this threshold, and the errors that were
added would be above it with a high probability. Some good flips could be reverted and
some bad flips could be kept, but overall the situation is better.

The same principle can be applied to the gray positions, i.e. those with a counter
above some threshold 𝑇𝑔 < 𝑇. The performance of such a method for different block sizes
are compared in Figure 9.2. Two observations can be made from this data:

• the reverifications lead to a decrease of ≈ 30% in the error rate compared to the
classic bit-flipping, for large block sizes,

• iterating the process more than once is only interesting for smaller block sizes.

9.3 Simple definition
Simply applying the reverification idea to the framework we obtain the algorithm specified
in Algorithm 9.2 for some gray threshold function threshold𝑔 and a number 𝐼𝐺 of
gray iterations. This algorithm appeared in one of our previous works [Vas17]. In this
document we will focus on the variants presented in [DGK20b], as they have shown
interesting performance, have a constant-time implementation and are now included in
the specification [BIKE].

9.4. Variants from Drucker, Gueron & Kostic 71

Algorithm 9.2: Simple gray decoder.
function classify(H, s′):

𝑇 ← threshold(context);
𝑇𝑔 ← threshold𝑔(context);
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then
𝐵 ← 𝐵 ∪ {𝑗};

else if ∣h𝑗 ⋆ s′∣ ≥ 𝑇𝑔 then
𝐺 ← 𝐺 ∪ {𝑗};

return 𝐺, 𝐵;
function process(𝐺, 𝐵, it):

for 𝑖 ∈ {1, … , 𝐼𝐺} do
for 𝑗 �𝐺 ∪ 𝐵 do

if ∣h𝑗 ⋆ s′∣ ≥ (𝑑 + 1)/2 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s′ ← s − He′⊺;

9.4 Variants from Drucker, Gueron & Kostic
In [DGK20b], four variants of gray decoders were defined, their definitions are synthesized
in Algorithm 9.3. The authors suggest using 𝛿 = 3 as the fixed difference between the
black threshold and the gray threshold: 𝑇𝑔 ∶= 𝑇 − 𝛿.

Comparison. To compare the different variants, we consider one iteration at each update
of the syndrome that forces the recalculation of the counters. This corresponds to the
number of iterations of the while loop plus the number of calls to the iterate function.

Threshold. Authors of [DGK20b] proposed to use the thresholds used for the One-Round
decoder in [BIKE] for versions prior to 3.2. These thresholds were defined as the image of
an affine function of the syndrome weight. Indeed, when we restrict the domain to a range
of syndrome weight around its average value, the threshold formula approaches an affine
function. The actual threshold function was determined using the method of least squares
on that range. Functions thus obtained for BIKE parameters offering 128 bits of security
but for different block sizes 𝑟 are presented in Table 9.1.

Furthemore, to avoid a potential problem identified through the study of error floors
that we will see in Chapter 16, we set a lower bound on the threshold:

threshold(∣s′∣) = max ((𝑑 + 1)/2, ⌊𝑎 ∣s′∣ + 𝑏⌋) .

In Figure 9.4, we can see the effects that the choice of the threshold function has on the
DFR curve. In particular, we can see that it has an influence on the point where the DFR
starts to decrease sharply (the waterfall) and on the slope beyond this point. It appears
that the larger the block size 𝑟 chosen to affinely approximate the threshold function, the
later the waterfall. And with a small block size 𝑟 the slope will not be as steep.

Performance. The performance of the BGF algorithm for BIKE parameters for 128 bits
of security is displayed in Figure 9.5. We can see that a plateau seems to be reached with

72 Chapter 9. Gray decoders

Algorithm 9.3: Variants from [DGK20b].
function classify(H, s′):

𝑇 ← threshold(context);
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 then
𝐵 ← 𝐵 ∪ {𝑗};

else if ∣h𝑗 ⋆ s′∣ ≥ 𝑇 − 𝛿 then
𝐺 ← 𝐺 ∪ {𝑗};

return 𝐺, 𝐵;

function iterate(𝑆):
for 𝑗 ∈ 𝑆 do

if ∣h𝑗 ⋆ s′∣ ≥ (𝑑 + 1)/2 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s′ ← s − He′⊺;
function process_B(𝐺, 𝐵, it):

iterate(B);
function process_BG(𝐺, 𝐵, it):

iterate(B);
iterate(G);

function process_BGF(𝐺, 𝐵, it):
if it = 1 then

iterate(B);
iterate(G);

function process_BGB(𝐺, 𝐵, it):
iterate(B);
if it = 1 then

iterate(G);

7 iterations. Any additional iteration only marginally improves performance and doing
100 iterations is almost as good as doing 10 iterations.

9.5 Sorting variant
Algorithm 9.4 also uses the principle of gray decoding but is not based on computing
thresholds. The idea is first to sort the positions in descending order of their counters.
Then we define a gray area that contains the 𝑁𝑔 positions that have the largest counters
because they are the most likely to be errors. We then iterate on these positions always
keeping the same order defined by the initial counters. For each position we compute the
corresponding counter and immediatly flip it and update the syndrome if it is over the
majority vote threshold (𝑑 + 1)/2.

As the first positions have the highest counters, they are all the more likely to be errors.
This is why this algorithm will, in a first phase, eliminate many errors. The error weight
will then be further reduced with reverifications.

As only a few errors are expected to remain after this process, a step-by-step decoder
is used as a final step.

9.5. Sorting variant 73

Table 9.1: Affine threshold functions for (𝑑, 𝑡) = (71, 134).

𝑟 𝑑 𝑎 𝑏
9 800 71 0.00726021 13.5491
9 900 71 0.00717314 13.5541

10 000 71 0.00709255 13.5445
10 100 71 0.00701653 13.5273
10 163 71 0.0069722 13.53
10 200 71 0.006946 13.4979
10 300 71 0.00687955 13.4617
10 400 71 0.00681805 13.414
10 500 71 0.00675966 13.3623

Algorithm 9.4: Sorted bit-flipping.
function sorted_gray_bitflip⟂(H, s):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 .

output : An error pattern e′ ∈ 𝔽𝑛
2 such that He′⊺ = s.

e′ ← 0;
s′ ← s;
Sort positions 𝑗0, 𝑗1, … , 𝑗𝑛−1 so that ∀𝑖 < 𝑖′, ∣h𝑗𝑖

⋆ s∣ ≥ ∣h𝑗𝑖′ ⋆ s∣;
for ℓ = 1, … , 𝑁 do

for 𝑖 = 0, … , 𝑁𝑔 do
if ∣h𝑗𝑖

⋆ s′∣ ≥ (𝑑 + 1)/2 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s′ ← s′ + h𝑗;

return e′ + step_by_step_bitflip⟂(H, s′);

Figure 9.6 shows the performance of this algorithm with 𝑁𝑔 = 𝑛/10 and 𝑁 = 10. It
therefore requires the computation of 𝑛 counters in the first gray step and a few more that
come from the step-by-step algorithm.

The additional cost of sorting positions must also be taken into account. Finding the 𝑁𝑔
positions with the largest counters can be done with a max-heap in time in 𝑂(𝑛 log(𝑁𝑔)).
Sorting is done in time 𝑂(𝑁𝑔 log(𝑁𝑔)).

Some components of the sorted gray decoder were incorporated in the design of the
One-Round algorithm that was chosen in [BIKE] from version 1 to version 3.2.

74 Chapter 9. Gray decoders

0 10 20 30 40
0

10

20

30

40

50

60

70

Counter at 1st iteration

C
ou

nt
er

at
2n

d
ite

ra
tio

n

(a) An error, not flipped

50 60 70
0

10

20

30

40

50

60

70

42
Counter at 1st iteration

(b) Not an error, flipped

0 10 20 30 40
0

10

20

30

40

50

60

70

Counter at 1st iteration

C
ou

nt
er

at
2n

d
ite

ra
tio

n

(c) Not an error, not flipped

50 60 70
0

10

20

30

40

50

60

70

42
Counter at 1st iteration

(d) An error, flipped

Figure 9.1: Evolution of the counters between the first two iterations (fixed threshold
𝑇 = 42).
(𝑟, 𝑑, 𝑡) = (12 323, 71, 134) – 108 samples.
(White when no data, otherwise the darker the shade the lower the probability.)

9.5. Sorting variant 75

9 000 9 500 10 000 10 500 11 000 11 500 12 000 12 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Block size

Pr
op

or
tio

n

Error rate with two reverifications

Error rate with one reverification

Error rate with no reverification

Removed errors

Removed errors (from gray)

Added errors

Added errors (from gray)

Untouched errors

Figure 9.2: Performance of the reverifications with 𝑇 as in § 6.1.3, 𝑇𝑔 = 𝑇 − 3 and
𝑇𝑣 = (𝑑 + 1)/2.
(𝑑, 𝑡) = (71, 134) – 106 samples for each bar.
From left to right, the bars correspond respectively to 0, 1 and 2 reverification steps.

76 Chapter 9. Gray decoders

9 200 9 300 9 400 9 500 9 600 9 700 9 800 9 900 10 000 10 100 10 200 10 300
−10

−8

−6

−4

−2

0

Block size

lo
g 2

D
FR

BGF BG BGB B

Figure 9.3: DFR vs. block size with different gray variants (with at most 9 iterations).
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

9 200 9 300 9 400 9 500 9 600 9 700 9 800 9 900 10 000 10 100 10 200 10 300

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

𝑎 = 13.4140, 𝑏 = 0.00681805 𝑎 = 13.4979, 𝑏 = 0.006946 𝑎 = 13.5300, 𝑏 = 0.0069722

𝑎 = 13.5445, 𝑏 = 0.00709255

Figure 9.4: DFR vs. block size with BGF (9 iterations) for different threshold functions
threshold(∣s′∣) = max ((𝑑 + 1)/2, ⌊𝑎 ∣s′∣ + 𝑏⌋).
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

9.5. Sorting variant 77

9 600 9 800 10 000 10 200 10 400 10 600 10 800 11 000 11 200

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

4 iterations 5 iterations 6 iterations 7 iterations

8 iterations 9 iterations 10 iterations 100 iterations

Figure 9.5: DFR vs. block size with BGF.
threshold (∣s′∣) = max ((𝑑 + 1)/2, ⌊0.0069722 ∣s′∣ + 13.53⌋).
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

BGF - 9 iterations Sorting gray decoder Classic bit-flipping - 100 iterations

Figure 9.6: DFR vs. block size with sorting variant of the gray decoder.
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

78 Chapter 9. Gray decoders

8 600 8 800 9 000 9 200 9 400 9 600 9 800 10 000 10 200 10 400

−35

−30

−25

−20

−15

−10

−5

0

Block size

lo
g 2

D
FR

Backflip (multi-thresh.) - 7 it. BGF - 7 it.

BG - 9 it. BGB - 9 it.

B - 8 it. Sorting gray decoder

Classic bit-flipping - 100 it. Belief propagation - 100 it.

Backflip (multi-thresh.) - 100 it.

Figure 9.7: DFR vs. block size with various decoders (summary).
(𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

Part III

Analysis of bit-flipping decoders
for QC-MDPC

79

81

Summary of contributions
We design two new probabilistic models for the bit-flipping decoder:

• one that accurately predicts the distribution of error weights after a single iteration
of the algorithm for a regular code,

• one that considers the full decoding process for the (sequential) step-by-step intro-
duced in the Part II.

In contrast to the other models, when compared to the simulation data, we find that
they can predict the DFR with very good accuracy. In addition, they are the first ones to
integrate the use of an efficient adaptive threshold rule.

The exploitation of these models required ad-hoc optimized implementations in C
language. Results for the first model required a particularly important computational
effort, since the calculation time, depending on the set of parameters chosen, ranges from
half an hour to several hours.

82

Chapter 10

Introduction

10.1 State-of-the-art
10.1.1 LDPC codes
We present three different analyses of the LDPC decoding failure rate. The first one is
based on a statistical model developed by Gallager. Many works have been derived from it
to adapt it to other channels or algorithms, but the bases of the model are essentially the
same (independence of all random variables and assumption that the Tanner graph is a
tree). The second analysis by Sipser and Spielman is done on the more general context
of expander codes. They show that the simple bit-flipping algorithm with a majority
logic will always decode given that the code has a Tanner graph with certain expansion
properties. The result is deterministic and relies solely on properties of the graph and
not on any statistical model. A link with LDPC codes can be established by observing
that a random LDPC code has, with a high probability, a good expansion property. The
third analysis by Burshtein enumerates all bad configurations in a regular LDPC code
and derives a rough upper bound on the probability that a given code has poor decoding
performance under bit-flipping on any of those configurations.

10.1.1.1 Gallager’s analysis

In his thesis [Gal63], Gallager analyzes his hard-decision decoding algorithm for regular
LDPC codes on the binary symmetric channel. In contrast to a bit-flipping algorithm, this
algorithm explicitely excludes extrinsic information between nodes. It is thus closer to a
message-passing algorithm.

The analysis relies on the following assumptions:

• the Tanner graph is a tree,

• the values of variable nodes are mutually independent,

• the values of check nodes are mutually independent,

• thresholds depend only on the iteration index.

Let us explain briefly the technique on a regular LDPC code. We keep the convention
of this document and write 𝑑 the variable nodes degree and 𝑤 the check nodes degree.
Suppose that we have a binary symmetric channel with crossover probabilty 𝜖. We track
the error rate 𝑝𝑖 among the variable nodes at iteration #𝑖. At iteration #0, the error rate
is exactly the crossover probability

𝑝0 = 𝜖 .

83

84 Chapter 10. Introduction

To see what happen on the check nodes side, we refer to Proposition 1.14 in the
preliminary chapter. Using this result, we can say that at iteration #𝑖, each check node
involves an even number of errors with probability 1−(1−2𝑝𝑖)𝑤

2 . Using the threshold 𝑇𝑖+1,
the probability that an error was received but corrected at iteration #(𝑖 + 1) is

𝜖
𝑑−1
∑

𝑠=𝑇𝑖+1

(𝑑 − 1
𝑠

) (1 + (1 − 2𝑝𝑖)𝑤

2
)

𝑠

(1 − (1 − 2𝑝𝑖)𝑤

2
)

𝑑−1−𝑠

,

and on the contrary, the probability that a bit was correctly received but was mistakenly
flipped is

(1 − 𝜖)
𝑑−1
∑

𝑠=𝑇𝑖+1

(𝑑 − 1
𝑠

) (1 − (1 − 2𝑝𝑖)𝑤

2
)

𝑠

(1 + (1 − 2𝑝𝑖)𝑤

2
)

𝑑−1−𝑠

.

In the end the error rate at iteration #(𝑖 + 1) is simply

𝑝𝑖+1 = 𝜖 − 𝜖
𝑑−1
∑

𝑠=𝑇𝑖+1

(𝑑 − 1
𝑠

) (1 + (1 − 2𝑝𝑖)𝑤

2
)

𝑠

(1 − (1 − 2𝑝𝑖)𝑤

2
)

𝑑−1−𝑠

+ (1 − 𝜖)
𝑑−1
∑

𝑠=𝑇𝑖+1

(𝑑 − 1
𝑠

) (1 − (1 − 2𝑝𝑖)𝑤

2
)

𝑠

(1 + (1 − 2𝑝𝑖)𝑤

2
)

𝑑−1−𝑠

.

One can then choose the thresholds 𝑇𝑖 that minimize the probabilities 𝑝𝑖 for all 𝑖. For
a sufficiently large code length and a sufficiently small value of 𝜖, 𝑝𝑖 converges to 0 as 𝑖
tends to infinity.

Density Evolution. The method developed by Gallager has then been extended to various
channels, for soft-decision algorithms and irregular codes, see for example [RU01; LMSS01].
It is usually referred to as the density evolution method.

10.1.2 Expander codes arguments
There is an important notion in graph theory called the expansion.

Definition 10.1. Consider a bipartite graph of 𝑛 𝑑-regular nodes on the left and (𝑑/𝑤) ⋅ 𝑛
𝑤-regular nodes on the right. It has expansion (𝛼, 𝛽) if for any subset 𝑆 of nodes on the
left such that ∣𝑆∣ ≤ 𝛼𝑛 then the set of its neighbors 𝒩(𝑆) satisfies

∣𝒩(𝑆)∣ ≥ 𝛽 ⋅ 𝑑 ⋅ ∣𝑆∣ .

In [SS96], it has been shown that the bit-flipping algorithm (either sequential or parallel)
succeeds as long as the Tanner graph of the code has sufficiently good expansion. The
bit-flipping algorithms considered operate according to a majority vote rule, or in other
words they use the fixed threshold (𝑑 + 1)/2.

The following proposition tells us that a random regular graph is a good expander.

Proposition 10.2. Let 𝐵 be a (𝑑, 𝑤) regular bipartite graph of 𝑛 𝑑-regular nodes on the left
and (𝑑/𝑤) ⋅ 𝑛 𝑤-regular nodes on the right. Then with exponentially high probability, for
any 𝛼 ∈ (0, 1), any set 𝑆 of size 𝛼 ⋅ 𝑛 has at least

𝑛 ⎛⎜
⎝

𝑑
𝑤

(1 − (1 − 𝛼)𝑤) − √2𝑑𝛼 H(𝛼)
log2 𝑒

⎞⎟
⎠

neighbors.

10.1. State-of-the-art 85

Then any reasonably good expander code can be decoded with a bit-flipping algorithm.

Theorem 10.3. [SS96, Theorem 10 & 11] Let 𝐵 be a (𝑑, 𝑤) regular bipartite graph of 𝑛
𝑑-regular nodes on the left and (𝑑/𝑤) ⋅ 𝑛 𝑤-regular nodes on the right. If 𝐵 is a (𝛼, 3/4 + 𝜖)
expander, for any 𝜖 > 0, then the sequential and the parallel bit-flipping algorithms correct
up to 𝛼 ⋅ 𝑛/2 errors. The former does so in a linear number of flips and the latter in
𝑂(log 𝑛) iterations.

10.1.3 Analysis of regular LDPC codes with a bit-flipping algorithm
In [Bur08], Burshtein analyzed the parallel bit-flipping algorithm as defined by Sipser and
Spielman in [SS96]. The Tanner graph of an LDPC code is decomposed in several parts:

• the set of unsatisfied equations 𝒥,
• the set of satisfied equations 𝒦,
• the set of good positions 𝒢,
• the set of bad positions ℬ.

The sets 𝒢 and ℬ are then further decomposed depending on whether the counter values
are above or below a threshold that corresponds to a majority vote.

They enumerate all the possible configurations of these sets and get a bound on
the number of problematic configurations using generating functions. They show that,
asymptotically when 𝑛 goes to infinity, for all codes of length 𝑛, a large proportion can
decode any error pattern of weight 𝛼𝑛 for any value 𝛼 < 𝛼0. The limit value 𝛼0 is obtained
by finding the value that maximizes a certain function.

In their proof, they start by describing all “possibly bad” configurations, i.e. the only
configurations in which the algorithm would increase the error weight after an iteration.
These configurations are described according to the number of vertices in the aforementioned
subsets in the Tanner graph and the number of edges between them. They then determine
the probability that a random regular code exists in one of these configurations. The
probability of existence of a “bad” code is bounded by simply giving the same weight
to any configuration. In the end, the result is very interesting because of its asymptotic
significance but less so for practical use. For example, in the case of a regular LDPC code
of length 1 000 000, column weight 5 and row weight 10; it can only show that at least 14%
of the codes can correct any error configuration with a weight of 13 or less.

10.1.4 MDPC codes
The difference between LDPC codes and MDPC codes is in the degree of the nodes in their
Tanner graph. While it is rather small (usually a few units) for the former, for the latter it
is closer to one hundred for cryptographically relevant parameters (i.e. more than 128 bits
of security). So, a typical MDPC code has many short cycles in his Tanner graph (and
it cannot be considered to be a tree anymore) and on top of that we add a quasi-cyclic
structure. Therefore we cannot completely rely on the same assumptions as Gallager’s
analysis.

10.1.4.1 Leveraging the syndrome weight for decoding

We have already presented the counters model from [Cha17] in Chapter 5. Determining
the error after the first iteration of a parallel bit-flipping is akin to determining the
distributions of the number of positions with a counter above the threshold on one side
for the positions in error and on the other for the correct positions. With an assumption
of mutual independence of all counters, these two distributions are binomial and one can

86 Chapter 10. Introduction

then calculate the number of error remaining with a convolution. However, it is observed
in [Cha17] that this model gives inaccurate predictions both in the case where the counters
model uses the syndrome weight and in the case where it does not.

10.1.4.2 Asymptotic analysis

In [Til18b], the decoding of MDPC codes is studied for a code of arbitrarily large length 𝑛
with the additional restriction that the row weight 𝑤(𝑛) is in Θ(

√
𝑛). Two algorithms are

considered. The first is deterministic, and it is shown that, for an MDPC code, with a
sufficiently large code length 𝑛 and with some restriction on the intersections of the columns
of the parity check matrix, a majority logic decoder can decode any error pattern of weight
𝑡(𝑛) where 𝑡(𝑛) = Θ (

√
𝑛 log log 𝑛

log 𝑛). The second algorithm is based on a probabilistic counter
model for MDPC codes and uses asymptotic bounds.

Deterministic analysis. The central proposition for this analysis is the following, its proof
uses Tanner graph arguments that remind the ones used in [SS96].

Proposition 10.4. [Til18b, Proposition 1] Consider a code with a parity check matrix
for which every column has weight at least 𝑑 and whose maximum column intersection
is 𝐼. Performing majority-logic decoding based on this matrix (i.e. Algorithm 6.2 with
𝑇 = (𝑑 + 1)/2) corrects all errors of weight ≤ 𝑑/(2𝐼).

Proof. The original proof from the paper considers the Tanner graph and looks at the
properties of certain subgraphs according to the degree of their nodes. We can reformulate
it to adopt a more algebraic point of view.

Let us write H an 𝑟 × 𝑛 parity check matrix of column weight at least 𝑑 as

H = (h0 h1 ⋯ h𝑛−1)

where h0, … , h𝑛−1 are the columns of H. We suppose that H has a maximum column
intersection of 𝐼 i.e.

∀𝑖, 𝑗 ∈ {0, … , 𝑛 − 1}, 𝑖 ≠ 𝑗 ⇒ ∣h𝑖 ⋆ h𝑗∣ ≤ 𝐼 .

We now consider an error pattern e, it gives the syndrome s = ∑𝑗∈Supp(e) h𝑗. Now let

us write the counter 𝜎𝑖 ∶= ∣h𝑖 ⋆ ∑𝑗∈Supp(e) h𝑗∣ = ∣∑𝑗∈Supp(e) h𝑖 ⋆ h𝑗∣ for position 𝑖 and
separate the cases where 𝑖 belongs to the support of e from the case where it does not.

• If 𝑖 ∈ Supp(e),

𝜎𝑖 = ∣h𝑖 + ∑𝑗∈Supp(e)∖{𝑖} h𝑖 ⋆ h𝑗∣ ≥ ∣h𝑖∣ − ∑𝑗∈Supp(e)∖{𝑖} ∣h𝑖 ⋆ h𝑗∣ ≥ 𝑑 − (|e| − 1)𝐼 .

• If 𝑖 ∉ Supp(e),

𝜎𝑖 = ∣∑𝑗∈Supp(e) h𝑖 ⋆ h𝑗∣ ≤ ∑𝑗∈Supp(e) ∣h𝑖 ⋆ h𝑗∣ ≤ |e| 𝐼 .

One then easily verifies that when 𝑇 = (𝑑 + 1)/2 and |e| ≤ 𝑑/(2𝐼), we have

∀𝑖 ∉ Supp(e), ∀𝑖′ ∈ Supp(e), 𝜎𝑖 < 𝑇 ≤ 𝜎𝑖′ .

10.1. State-of-the-art 87

This decoder is envisaged in combination with some key filtering. In fact, when 𝑛 grows,
and the column weight is in 𝑂(

√
𝑛), it is shown that the maximum column intersections

is in 𝑂 (log 𝑛
log log 𝑛) with high probailty. Introducting some filtering in the key generation

method would exclude the cases where it is above said bound. And together with the
previous proposition, it proves that for some sufficiently large code length 𝑛, a majority
logic bit-flipping algorithm decodes any error pattern of weight in 𝑂 (

√
𝑛 log log 𝑛

log 𝑛).

Asymptotic statistical model. The model assumes the following properties:

• the counters are mutually independent,
• the counters of erroneous positions follow a binomial distribution:

𝑗 ∈ e ⇒ 𝜎𝑗 ∼ Bin(𝑑, 𝜋1)

for some “success” probability 𝜋1,
• the counters of correct positions follow a binomial distribution:

𝑗 ∉ e ⇒ 𝜎𝑗 ∼ Bin(𝑑, 𝜋0)

for some “success” probability 𝜋0.

In this model the “success” probabilities are determined assuming independence of the
syndrome bits and in the context where both the row weight 𝑤(𝑛) and the error weight
𝑡(𝑛) are in 𝑂(

√
𝑛). It is shown that, in this context

∀𝑏 ∈ {0, 1}, 𝜋𝑏 = 1
2

− (−1)𝑏𝜖 ⎛⎜
⎝

1
2

+ 𝑂 (1√
𝑛

)⎞⎟
⎠

with 𝜖 = 𝑒− 2𝑤𝑡
𝑛 .

The bit-flipping decoder can decode an error pattern of weight 𝑡(𝑛) = 𝑂(
√

𝑛) with a
failure probability upper bounded by

𝑒−Ω(𝑛 log log 𝑛
log 𝑛) .

Synthesis. In the paper, three different types of decoding scenarios are finally envisaged.

• Do one iteration and choose parameter so that the deterministic bound guarantees a
zero probability of failure.

• Do two iterations so that, using the probabilistic model, the error weight after the
first iteration is below the deterministic bound.

• Do two iterations so that, using the probabilistic model, the error weight after the
first iteration is below some arbitrary bound (1 − 𝛼)𝑡(𝑛) for some constant 𝛼 < 1.

Numerical applications show that the parameters from [MTSB13] providing 80 bits
of security should have their code length multiplied by ∼ 427 (row weight also has to be
multiplied by ≃ 45) with the first method and ≃ 2 in the other scenarios.

10.1.4.3 LEDAcrypt

The authors of the QC-MDPC cryptosystem LEDAcrypt described a model for the decoder
in their submission [LEDA], it follows a previous article [SBBC19]. As in [Til18b], they
adopt a probabilistic approach followed by a deterministic one, but in this case not in an
asymptotic context. The probabilistic model is close to the analysis of Gallager discussed
previously for LDPC codes.

88 Chapter 10. Introduction

Statistical models. Two different types of decoders are considered, the in-place decoder
and the out-of-place decoder. The former is quite similar to the step-by-step decoder, in
the sense that it is sequential, it updates the syndrome after each flip. However, with
this one, during an iteration, each one of the 𝑛 positions is visited exactly once, but in a
random order. The latter is a parallel bit-flipping.

In the document, they make the following assumptions:

• the parity check matrix H is random and regular, it has a column weight 𝑑 and row
weight 𝑤,

• the error pattern e is drawn uniformly at random among the vectors of weight 𝑡 and
length 𝑛,

• the syndrome bits are mutually independent.

The out-of-place decoder analysis assumes the independence of the counters values and
uses it to find the error weight after one iteration. This is essentially similar to the work
done in [Cha17], without the conditioning on the syndrome weight.

The analysis seems to some extent appropriate for a single iteration given the examples
provided. However, in [LEDA], this analysis is not further iterated. This is undoubtedly
due to the discrepancies (which increase with the number of iterations) between this model
and the simulation already highlighted in [Cha17].

Based on assumptions reminiscent of what had been done previously in [SV19] that
will be presented in Chapter 12, they model the decoder as a Markov chain. However,
in [LEDA], they define a Markov chain that only tracks the error weight. Indeed, they
assume that the error weight after an iteration depends only on what it was before. The
error pattern is always considered to be taken uniformly at random among all the vector of
fixed Hamming weight. In addition, they address the fact that, contrary to the step-by-step
algorithm, the in-place decoder is not fully randomized, and they consider the worst order
possible for visiting the positions.

Combinatorial bound. The reference documentation [LEDA] provides an intersecting
improvement over the bound proven in [Til18b]. Given a simply calculated characteristic
of the code, it is shown that one can decode any error pattern whose weight is bounded
by some constant. Rather than relying on the maximum column intersection, they use a
finer characterization of the matrix. Remember that in the proof of Proposition 10.4 we
only used the triangle inequality to bound the counter values. We then upper bounded
the following quantities by bounding each term of

∑
𝑗∈Supp(e)∖{𝑖}

∣h𝑖 ⋆ h𝑗∣ and ∑
𝑗∈Supp(e)

∣h𝑖 ⋆ h𝑗∣

individually. This was a very rough upper bound because for any column, all the other
columns do not necessarily intersect with it in exactly 𝐼 rows, the maximum. The finer
bound used in [LEDA] is based on the calculation of the 𝑛 × 𝑛 matrix 𝚪 which keeps a
record of the number of intersections between all the pairs of columns:

∀𝑖, 𝑗 ∈ {0, … , 𝑛 − 1}, Γ𝑖,𝑗 = ∣h𝑖 ⋆ h𝑗∣ .

Upper bounding the above sums is then a matter of finding the |e| largest elements in the
𝑖-th row of 𝚪.

A rather interesting feature of the 𝚪 matrix is that it is symmetric and also quasi-cyclic
if H is quasi-cyclic as well. This allows for a fast computation of 𝚪 that is used for filtering
keys in [LEDA].

10.2. Contributions 89

Synthesis. Similarly to one of the scenarios proposed in [Til18b], they propose a two-
iterations decoder modeled, for the first iteration, with the above statistical model, followed
by an iteration whose outcome is deterministic. This also implies some sort of key filtering.

Some curves showing the predictions of the DFR in this model compared to simulation
is presented in [LEDA]. However, they were done with the parameters offering 80 bits of
security of [MTSB13] and not for actual LEDA parameters.

10.2 Contributions
One of the difficulties encountered in the analysis of a QC-MDPC decoder is the fact that
many correlations appear and are difficult to take into account. It is often tempting to
make independence hypotheses about certain variables involved in the analysis. However,
there are at least two factors that can challenge these hypotheses.

• The codes of interest are quasi-cyclic and therefore regular, this regularity adds
correlations between the parity check equations compared to a completely random
code. Such correlations occur, for example, when dealing with variables related to
the syndrome weight or the counters.

• The decoding algorithms are iterative and the operations performed during each
iteration further divert the error pattern from a random pattern. For example,
bit-flipping flips in priority positions involved in many unsatisfied equations, the
resulting error vector will generally give a lower syndrome weight than what is
expected for a uniformly random pattern: the error positions are therefore correlated
in a way that depends on the parity check equations.

It is rather challenging to find a good model that captures most of the characteristics
of the codes and the algorithm without increasing the complexity of the calculations to
the point of making them unfeasible. We will see two models that seek, each in its own
way, to address these issues.

The first one attempts to take into account the quasi-cyclicity of the code. We will see
that it is fairly accurate to predict the outcome of one iteration of a parallel bit-flipping
algorithm. It is then tempting to design a decoder that is suitable for this analysis and
whose performance would therefore be evaluated within the framework of a very credible
model. One disadvantage of this method is that the model assumes that the error pattern
is uniformly random and can therefore only be used for the first iteration. The analysis of
the subsequent iteration relies on weaker assumptions, which greatly increase the upper
bound on the DFR that can be proven.

The second model assumes a Markovian behaviour. In an effort to capture the
correlations arising from the iterative nature of the decoder, this model tracks the evolution
of the syndrome weight and the error weight of a step-by-step decoder. An interesting
result of this model is that it gives an idea of the shape of the DFR curve of a fully iterative
decoder for code length that are unreachable with simulations.

Compared to previous works, these two models make it possible to evaluate algorithms
with efficient adaptive thresholds that depend on the syndrome weight. When defining
the first model, we re-examine the various independence assumptions made in previous
work and propose a better approach. This completes [Cha17] in which a discrepancy was
already noted.

90 Chapter 10. Introduction

Chapter 11

One iteration of the parallel
decoder with variable thresholds

Our goal, in this chapter, is to analyze one iteration of the parallel bit-flipping decoder
with a threshold rule that is a function of the syndrome weight (see Algorithm 11.1). Its
for loop is perfectly parallel and the decision to flip does not depend on other decisions.

Algorithm 11.1: One iteration of parallel bit-flipping.
function one_parallel_iteration⟂(H, s0):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s0 = H(e0)⊺ ∈ 𝔽𝑛−𝑘
2 .

output : The error pattern difference after one iteration e′ ∈ 𝔽𝑛
2 .

e′ ← 0;
s1 ← s0;
𝑇 ← threshold(∣s0∣);
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s0∣ ≥ 𝑇 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s1 ← s0 − He′⊺;
return e′

In our configuration, we have ∣e0∣ = 𝑡0 = 𝑡 and s0 = H(e0)
⊺

. After one iteration, we

will have e1 = e0 + e′ and s1 = H(e1)
⊺

. We also define

for 𝑖 = 0, 1, 𝑡𝑖 ∶= ∣e𝑖∣ , 𝑆𝑖 ∶= ∣s𝑖∣ and 𝑋𝑖 ∶= ⎛⎜
⎝

∑
𝑗∈e𝑖

∣h𝑗 ⋆ s𝑖∣⎞⎟
⎠

− 𝑆𝑖 .

We will show that when e0 is drawn uniformly at random and the parity check matrix
H is regular, we can find the joint distribution of 𝑆0 and 𝑋0. The values 𝑆0 and 𝑋0 are
really central to our model because they carry a lot of information about the counters
distributions. We will then determine the counters distributions more accurately than
in Chapter 5. We will see that this accuracy is needed to compute the distribution of 𝑡1.
Finally, we propose a possible approach to determine 𝑆1.

It should be noted that 𝑆0 is a piece of information that the algorithm can measure
and use but 𝑋0 is not, as it implies already knowing the support of the error pattern e0

91

92 Chapter 11. One iteration of the parallel decoder with variable thresholds

(which is the whole point of decoding). One strength of this model is that it lets us use an
adaptive threshold for decoding. Our threshold choices are thus based on the syndrome
weight 𝑆0 but not on the value 𝑋0.

Compared to previous analyses reviewed in the state of the art, this model takes into
account some correlations implied by the regularity of the quasi-cyclic code.

Convolutions. Numerical computations in this model require the calculation of many
convolution powers of probability mass functions. Although the best algorithm to perform
this operation is the fast Fourier transform, it is very sensitive to rounding errors if used
with floating point arithmetic. This is particularly problematic when dealing with values
such as probabilities that can range from 10−40 to 1 and when the same magnitude is
expected in the result.

In the one-dimensional case, the calculation by direct convolution of a vector of length
𝑚 with a vector of length 𝑛 has a complexity of 𝑂(𝑚𝑛). Now, the 𝑁-th convolution power
of a vector of length 𝑛 can be realized using a fast exponentiation algorithm. In this
case, a maximum of 2 log2(𝑁) convolutions are needed between vectors of length at most
(respectively at each step): 𝑛, 3𝑛, … , (2𝑖 − 1)𝑛, … The total complexity of this method is
thus 𝑂(𝑁2𝑛2).

In this chapter, propositions are written using multidimensional random variables for
brevity and convenience in writing proofs. The convolutions of these variables can be
computed by reducing them to the one-dimensional case using, for example, the following
property

Pr [∑
𝑖

(𝑋𝑖, 𝑌𝑖) = (𝑥, 𝑦)] = Pr [∑
𝑖

𝑌𝑖 = 𝑦 ∣ ∑
𝑖

𝑋𝑖 = 𝑥] ⋅ Pr [∑
𝑖

𝑋𝑖 = 𝑥] .

The random variable ∑𝑖 𝑋𝑖 will generally follow a binomial distribution. And the calcula-
tion of Pr [∑𝑖 𝑌𝑖 = 𝑦 | ∑𝑖 𝑋𝑖 = 𝑥] can be done with one-dimensional convolutions.

11.1 Notations
We adopt the following notations in this chapter.

General.

• The set ℰ𝑛,𝑡 is set of all the error patterns of weight 𝑡

ℰ𝑛,𝑡 = {e ∈ {0, 1}𝑛 | |e| = 𝑡} ,

• ℋ𝑑,𝑤,𝑟×𝑛 is the set of regular 𝑟 × 𝑛 parity check matrices of column weight 𝑑 and
row weight 𝑤

ℋ𝑑,𝑤,𝑟×𝑛 = {H ∈ 𝔽𝑟×𝑛
2 | ∀𝑖 ∈ {0, … , 𝑟 − 1}, ∣h⊺

𝑖 ∣ = 𝑤, ∀𝑗 ∈ {0, … , 𝑛 − 1}, ∣h𝑗∣ = 𝑑} .

• The indicator function of a set 𝑆 is the function defined as

1𝑆(𝑥) ∶= {1 if 𝑥 ∈ 𝑆,
0 if 𝑥 ∉ 𝑆.

11.2. Mass equations in regular codes 93

Coding theory.

• We denote the syndrome weight corresponding to a certain error parttern

𝑆 = |s| s = He⊺, .

• For a position 𝑗 ∈ {0, … , 𝑛 − 1}, we write its counter 𝜎𝑗 ∶= ∣h𝑗 ⋆ s∣ .

• We write
𝑋 = ∑

𝑗∈e
𝜎𝑗 − 𝑆 .

• The definitions of 𝜎𝑖, Eℓ, 𝑆 and 𝑋 depend on a specific parity check matrix H and
an error pattern e. These dependencies will always be evident from the context and
are therefore not explicitly mentioned so as not to clutter the notations.

Probability.

• If 𝑝𝑋 and 𝑝𝑌 are respectively the probability mass functions of some independent
random variables 𝑋 and 𝑌 then the probability mass function of their sum is the
convolution

𝑝𝑋+𝑌(𝑧) = ∑
𝑥+𝑦=𝑧

𝑝𝑋(𝑥) ⋅ 𝑝𝑌(𝑦) .

We denote it as 𝑝𝑋 ∗ 𝑝𝑌.

• The convolution operation is associative and we can thus consider the 𝑁-fold iteration
of the convolution of a probabily mass function 𝑓 with itself. We denote it as

𝑓∗𝑁 = 𝑓 ∗ 𝑓 ∗ 𝑓 ∗ ⋯ ∗ 𝑓 ∗ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

.

• We indicate the probability of an event 𝐸 conditioned on (11.1), the equations
implied by the regularity of the code, by

Pr
reg

[𝐸] .

• We will need to calculate conditional distributions from a joint distribution 𝑓. In
this case, we will write 𝑁𝑓 the associated normalization factor.

11.2 Mass equations in regular codes
Let H ∈ ℋ𝑑,𝑤,𝑟×𝑛 ⊂ 𝔽𝑟×𝑛

2 be a quasi-cyclic parity check matrix of column weight 𝑑 and
row weight 𝑤 = 2𝑑. Let e ∈ ℰ𝑛,𝑡 ⊂ 𝔽𝑛

2 be an error pattern of Hamming weight 𝑡. We write
the syndrome as s = He⊺.

To start our analysis, let us first apply two permutations P ∈ 𝔽𝑟×𝑟
2 and Q ∈ 𝔽𝑛×𝑛

2 to
H, e and s:

H′ = PHQ−1 e′ = eQ⊺ s′ = Ps

so that we have s′ = H′e′⊺ in the configuration illustrated in Figure 11.1. This transforma-
tion has no impact on the outcome of the parallel decoding process written in Algorithm 11.1
as the counters are unchanged and, since the algorithm is parallel, reordering the positions
has no impact on its performance.

94 Chapter 11. One iteration of the parallel decoder with variable thresholds

𝐴 𝐵

𝐶 𝐷

H′

1

1
0

0

𝑆

𝑟 − 𝑆

s′⊤

0 0 1 1
𝑛 − 𝑡 𝑡

e′

Figure 11.1: Illustration of the reordering of the parity check matrix.

Here 𝐴, 𝐵, 𝐶 and 𝐷 are the number of ones in the respective part of the matrix
represented above. A quasi-cyclic code is regular and therefore has a constant row weight 𝑤
and a constant column weight 𝑑. If we know 𝑆 = |s| and 𝑋 = (∑𝑗∈e 𝜎𝑗) − 𝑆, we have the
following mass equations

⎧
{
{
⎨
{
{
⎩

𝐵 = 𝑆 + 𝑋
𝐴 + 𝐵 = 𝑤𝑆
𝐴 + 𝐶 = 𝑑(𝑛 − 𝑡)
𝐵 + 𝐷 = 𝑑𝑡

or equivalently

⎧
{
{
⎨
{
{
⎩

𝐴 = (𝑤 − 1)𝑆 − 𝑋
𝐵 = 𝑆 + 𝑋
𝐶 = 𝑑(𝑛 − 𝑡) − (𝑤 − 1)𝑆 + 𝑋
𝐷 = 𝑑𝑡 − 𝑆 − 𝑋 .

(11.1)

In the continuation of this chapter, we will define random variables describing each
row (or column), then the consideration of these mass equations is essentially a matter
of summing these random variables and conditioning the probabilities according to said
sums.
Remark 11.1. In previous works, following [Cha17], the value 𝑋 is usually defined as the
sum 𝐸3 + 𝐸5 + ⋯ where 𝐸ℓ is, for any positive integer ℓ, the number of equations affected
by exactly ℓ errors. Here we take a slightly different point of view, 𝑋 = (∑𝑗∈e 𝜎𝑗) − 𝑆.
The case 𝑋 = 0 is the one where there is exactly one error per unsatisfied equation. In
this case, flipping one error will never decrease the counters of the other errors. In a way,
𝑋 measures the deviation from the case 𝑋 =0.
Remark 11.2. There is a notable link to be made between this work and Burshtein’s work
in [Bur08]. The translation between their notation and ours are

𝛼 = 𝑡
𝑛

,

𝜋0 = 𝑆
𝑟

,

𝜔0 =
∑𝑗∈e 𝜎𝑗

𝑑𝑛
= 𝑆 + 𝑋

𝑑𝑛
.

In this chapter, we will show formulas to compute the number of good (resp. bad)
positions flipped after one iteration. With Burshtein’s notation, 𝛾1,2 is the proportion of
positions that are bad but not flipped after one iteration and 𝛿1,2 is the proportion of
positions that are good but flipped.

11.3. Modeling the error weight after the first iteration 95

11.3 Modeling the error weight after the first iteration
In this section, we will derive a probabilistic model that allows, among other things, to
determine the weight of the error after an iteration. All probabilities will be conditioned
by the mass equations in §11.2 and we will see that this approach allows us to get really
close to the statistics obtained with decoding simulation for quasi-cyclic codes. We will
focus on proving every result by clearly stating the assumptions, and we will motivate the
complexity of the model by comparing it to models that do not verify the mass equations.

11.3.1 Estimating the number of errors per equation
We first recall the following proposition, which is rather standard in coding theory.

Proposition 11.3. Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e drawn uniformly
at random in ℰ𝑛,𝑡. For any 𝑖 ∈ {0, … , 𝑟 − 1}, the number of errors involved in the 𝑖-th
equation 𝜌𝑖 ∶= ∣h⊺

𝑖 ⋆ e∣ follows the distribution below, conditioned on the syndrome bit
value 𝑠𝑖 ∈ {0, 1},

Pr[𝜌𝑖 = ℓ ∣ 𝑠𝑖] =
𝑔𝑠𝑖

(ℓ)
𝑁𝑔𝑠𝑖

for ℓ ∈ {0, … , min(𝑤, 𝑡)}, with

𝑔𝑎(ℓ) =
(𝑤

ℓ)(𝑛−𝑤
𝑡−ℓ)

(𝑛
𝑡)

1𝑎+2ℤ(ℓ) , 𝑎 ∈ {0, 1}

and 𝑁𝑔0
and 𝑁𝑔1

are the normalization constants:

𝑁𝑔1
= ∑

ℓ is odd

(𝑤
ℓ)(𝑛−𝑤

𝑡−ℓ)
(𝑛

𝑡)
, 𝑁𝑔0

= 1 − 𝑁𝑔1
.

Proof. By definition of the matrix-vector product in 𝔽2, since s = He⊺, for any 𝑖 ∈
{0, … , 𝑟 − 1}, 𝜌𝑖 is the number of errors implied in h⊺

𝑖 . Since h⊺
𝑖 and e are drawn

uniformly at random among vectors of weight respectively 𝑤 and 𝑡, said number follows a
hypergeometric distribution. Conditioning the probabilities on the value modulo 2 of this
sum is then only a question of separating the distributions according to the parity and
then normalizing them.

In Table 11.1, we can see the decay of these probabilities as ℓ increases with [BIKE]
parameters offering 128 bits of security.

11.3.2 Estimating the syndrome weight and the sum of the counters
In the following proposition we give the distribution of the syndrome weight and the sum
of the counters when the error is uniformly distributed of weight 𝑡 and the matrix H is
regular.

Proposition 11.4. 1 Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e drawn
uniformly at random in ℰ𝑛,𝑡. The syndrome weight 𝑆 = ∣He⊺∣ and the value 𝑋 =
(∑𝑗∈e 𝜎𝑗) − 𝑆 follow the joint distribution for 𝑘 ∈ {0, … , 𝑟} and ℓ ∈ {0, … , 𝑑𝑡}

Pr
reg

[(𝑆, 𝑋) = (𝑘, ℓ)] = 1
𝑁𝜁

𝜁∗𝑟(𝑘, 𝑘 + ℓ, 𝑑𝑡 − 𝑘 − ℓ) (11.2)

1The noisy syndrome case (Ouroboros) is covered in Proposition 11.17 of §11.5.

96 Chapter 11. One iteration of the parallel decoder with variable thresholds

Table 11.1: Numerical applications of Proposition 11.3 for (𝑟, 𝑑, 𝑡) = (12 323, 71, 134).

ℓ log2 Pr[𝜌𝑖 = ℓ ∣ 𝑠𝑖 = 0] ℓ log2 Pr[𝜌𝑖 = ℓ ∣ 𝑠𝑖 = 1]

0 −0.39 1 −0.14
2 −2.13 3 −3.50
4 −6.53 5 −8.68
6 −12.35 7 −15.03
8 −19.15 9 −22.23

10 −26.72 11 −30.14
12 −34.94 13 −38.65
14 −43.71 15 −47.67
16 −52.98 17 −57.16
18 −62.68 19 −67.08
20 −72.80 21 −77.39
22 −83.30 23 −88.07
24 −94.15 25 −99.09
26 −105.34 27 −110.45
28 −116.85 29 −122.11
30 −128.67 31 −134.08

where 𝜁 is defined on {0, 1} × {0, … , 𝑤}2 with, for 𝑎 ∈ {0, … , min(𝑤, 𝑡)},

⎧
{
⎨
{
⎩

𝜁(0, 0, 𝑎) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is even ,

𝜁(1, 𝑎, 0) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is odd .

and 𝜁 is zero elsewhere;

𝑁𝜁 = ∑
𝑘,ℓ

𝜁∗𝑟(𝑘, 𝑘 + ℓ, 𝑑𝑡 − 𝑘 − ℓ) .

Proof. For a parity check equation h⊺
𝑖 of H, we consider the three-dimensional random

variable 𝑅𝑖 = (𝑠𝑖, 𝑠𝑖 ⋅ ℓ, (1 − 𝑠𝑖) ⋅ ℓ) where ℓ is the number of errors involved in this equation
(i.e. ℓ = ∣h⊺

𝑖 ⋆ e∣) and 𝑠𝑖 is the 𝑖-th bit of the syndrome, so, by definition 𝑠𝑖 = ℓ mod 2.
The distribution of this random variable is given by 𝜁, we have already discussed in the
proof of Proposition 11.3 that it follows a hypergeometric distribution.

The sum of 𝑟 independent random variables of this type follows the distribution given
by 𝜁∗𝑟. In this sum, the first coordinate represents the number of unsatisfied equations,
the second is the sum of the number of errors in the unsatisfied equations, and the third is
the sum of the number of errors in the satisfied equations.

The proposition is obtained by conditioning the probabilities for the coordinates to
verify (11.1).

Remark 11.5. To emphasize the importance of the extra condition in the probabilities, let
us look at what happens when we remove it. The probability (11.2) becomes

𝜁′∗𝑟(𝑆, 𝑆 + 𝑋) (11.3)

where 𝜁′ is defined on {0, 1} × {0, … , 𝑤} with, for 𝑎 ∈ {0, … , min(𝑤, 𝑡)},

𝜁′(𝑎 mod 2, 𝑎) =
(𝑤

𝑎)(𝑛−𝑤
𝑡−𝑎)

(𝑛
𝑡)

11.3. Modeling the error weight after the first iteration 97

Table 11.2: Comparison of the distribution of 𝑆 and 𝑋 between simulation (109 samples
with quasi-cyclic matrices) and models for (𝑟, 𝑑, 𝑡) = (12 323, 71, 134).
Kullback-Leibler divergence is computed between the simulation data 𝒮 and the distribu-
tion ℳ obtained with the model specified for each row.

𝑆 𝑋 DKL(𝒮‖ℳ)
Mean Var. Mean Var.

Simulation 4 868.832 2 511.872 909.024 1 369.947 -
Proposition 11.4 4 868.996 2 512.022 908.896 1 369.770 5.069 ⋅ 10−5

(11.3) in Remark 11.5 4 868.831 2 945.150 909.023 1 849.200 1.05198
(11.4) in Remark 11.5 4 868.831 2 945.150 909.023 1 849.200 0.05198

and 𝜁′ is zero elsewhere.
However, the syndromes we consider all correspond to error patterns of the same weight

𝑡, and the parity check matrix is column-regular with column weight 𝑑. Under these
conditions, the syndrome weight necessarily has the same parity as 𝑑 ⋅ 𝑡 (see Corollary 1.27).
Taking this in consideration, we can refine (11.3):

1𝑑⋅𝑡+2ℤ(𝑆)
𝑁𝜁′

𝜁′∗𝑟(𝑆, 𝑆 + 𝑋) (11.4)

with

𝑁𝜁′ = ∑
𝑘,ℓ

1𝑑⋅𝑡+2ℤ(𝑘)𝜁′∗𝑟(𝑘, 𝑘 + ℓ) .

A comparison of these different models is given in Table 11.2. We can see that Proposi-
tion 11.4 gives a distribution very close to the one obtained by simulation, whereas (11.3)
and (11.4) do not. Distribution tails are particularly poorly estimated for the latter two.
This suggests that (11.1) does indeed capture most of the correlations between syndrome
bits induced by the quasi-cyclicity of the matrix.

11.3.3 Counters distributions

Compared to the distributions obtained by simulation, the counters distributions of the
model given in [Cha17] match very well. However, there remains some small bias that
affects the model that we will describe later (the distribution of the number of positions
above a threshold – the ones that are flipped).

To correct these discrepancies, we can again use the mass equations (11.1) that the
regularity of the code implies.

In this subsection, we suppose that the syndrome weight 𝑆 and the value 𝑋 =
(∑𝑗∈e 𝜎𝑗) − 𝑆 are no longer random variables and their values are known.

Proposition 11.6. 2 Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e drawn
uniformly at random in ℰ𝑛,𝑡. We denote the syndrome weight 𝑆 and the value 𝑋 =
(∑𝑗∈e 𝜎𝑗) − 𝑆, and suppose that they are known constants. The counters 𝜎𝑗 = ∣h𝑗 ⋆ s∣

2The noisy syndrome case (Ouroboros) is covered in Proposition 11.18 of §11.5.

98 Chapter 11. One iteration of the parallel decoder with variable thresholds

follow the distributions for 𝑘 ∈ {0, … , 𝑑}

Pr
reg

[𝜎𝑗 = 𝑘 ∣ 𝑗 ∈ e, 𝑆, 𝑋] = 1
𝑁𝜙

𝜙∗𝑆
1 (𝑘, 𝑆 + 𝑋)

⋅ 𝜙∗(𝑟−𝑆)
0 (𝑑 − 𝑘, 𝑑𝑡 − (𝑆 + 𝑋)) ,

Pr
reg

[𝜎𝑗 = 𝑘 ∣ 𝑗 ∉ e, 𝑆, 𝑋] = 1
𝑁𝜓

𝜓∗𝑆
1 (𝑘, (𝑤 − 1)𝑆 − 𝑋)

⋅ 𝜓∗(𝑟−𝑆)
0 (𝑑 − 𝑘, 𝑑(𝑛 − 𝑡) − (𝑤 − 1)𝑆 + 𝑋)) ,

probabilities are zero when 𝑘 ∉ {0, … , 𝑑}, and we have, for ℓ ∈ {0, … , min(𝑤, 𝑡)} and
𝑎 ∈ {0, 1},

{𝜙𝑎(0, ℓ) = 𝑡−ℓ
𝑡 ⋅ 𝑔𝑎(ℓ) ,

𝜙𝑎(1, ℓ) = ℓ
𝑡 ⋅ 𝑔𝑎(ℓ) ,

{𝜓𝑎(0, 𝑤 − ℓ) = 𝑛−𝑡−𝑤+ℓ
𝑛−𝑡 ⋅ 𝑔𝑎(ℓ) ,

𝜓𝑎(1, 𝑤 − ℓ) = 𝑤−ℓ
𝑛−𝑡 ⋅ 𝑔𝑎(ℓ) .

where 𝑔𝑎 is defined in Proposition 11.3 and

𝑁𝜙 =
𝑑

∑
𝑘=0

𝜙∗𝑆
1 (𝑘, 𝑆 + 𝑋) ⋅ 𝜙∗(𝑟−𝑆)

0 (𝑑 − 𝑘, 𝑑𝑡 − (𝑆 + 𝑋)) ,

𝑁𝜓 =
𝑑

∑
𝑘=0

𝜓∗𝑆
1 (𝑘, (𝑤 − 1)𝑆 − 𝑋) ⋅ 𝜓∗(𝑟−𝑆)

0 (𝑑 − 𝑘, 𝑑(𝑛 − 𝑡) − (𝑤 − 1)𝑆 + 𝑋)) .

Proof. First let us suppose that 𝑗 ∈ e. For each row 𝑖 of the parity check matrix H, we
consider the 2-dimensional random variables 𝑅′

𝑖 = (ℎ𝑖,𝑗, ℓ) where ℓ is the number of errors
implied in the equation at row 𝑖: ℓ = ∣h⊺

𝑖 ⋆ e∣. We thus have, for all ℓ ∈ {0, … , min(𝑡, 𝑤)}

Pr[𝑅′
𝑖 = (0, ℓ)] = 𝑡 − ℓ

𝑡
⋅ 𝑔𝑠𝑖

(ℓ) , Pr[𝑅′
𝑖 = (1, ℓ)] = ℓ

𝑡
⋅ 𝑔𝑠𝑖

(ℓ) .

Since we reordered the rows of H, we know that for all 𝑖 ∈ {0, … , 𝑆 − 1}, there is an odd
number of errors in the corresponding equations (𝑠𝑖 = 1), and it is even for all the other
rows (𝑠𝑖 = 0).

Assuming independence of the random variables 𝑅𝑖, we obtain the distributions of

𝑆−1
∑
𝑖=0

𝑅𝑖 = (𝜎1, Σ1) and
𝑟−1
∑
𝑖=𝑆

𝑅𝑖 = (𝜎0, Σ0)

with convolutions (it corresponds respectively to 𝜙∗𝑆
1 and 𝜙∗(𝑟−𝑆)

0).
The first sum involves the upper right corner of our representation of the parity check

matrix in Figure 11.1 while the other one involves the lower right corner. We have mass
equations for each one of these parts of the matrix. Here they translate as

Σ1 = 𝑆 + 𝑋 ,
Σ0 = 𝑑𝑡 − (𝑆 + 𝑋) .

We also know that the column weight 𝑑 is fixed so 𝜎0, 𝜎1 ∈ {0, … , 𝑑} and 𝜎0 = 𝑑 − 𝜎1. The
relevant conditional probabilities are obtained by setting the probabilities to zero when
the conditions are not satisfied and then normalizing them through division by 𝑁𝜙.

The same arguments prove the formulas for 𝑗 ∉ e by doing the substitutions below.

11.3. Modeling the error weight after the first iteration 99

∈ e ∉ e
𝑡 𝑛 − 𝑡
ℓ 𝑤 − ℓ

𝑆 + 𝑋 (𝑤 − 1)𝑆 − 𝑋
𝜙 𝜓

Remark 11.7. The values obtained with Proposition 11.6 should be compared to the
simpler binomial model given by (5.2) established in [Cha17]. Examples are given in
Table 11.3. There is only a very slight bias between the binomial model and the distribution
obtained with Proposition 11.6. The improvement achieved by the latter could therefore
be considered minor and not worth the additional complexity, but the usefulness of this
proposition will be more evident in the following subsection when comparing the number
of flipped positions predicted by the model with the simulations.

11.3.4 Predicting flips
In this subsection, we still suppose that the syndrome weight 𝑆 and the value 𝑋 =
(∑𝑗∈e 𝜎𝑗) − 𝑆 are no longer random variables and their values are known, we also suppose
that the counters distributions for these values of 𝑆 and 𝑋 are known.

We now choose a threshold 𝑇. In the model, it can depend on any fixed parameter of
the cryptosystem 𝑟, 𝑛, 𝑑, 𝑤, 𝑡, but it can also depend on 𝑆 or 𝑋. However, it makes little
sense to base it on the exact value of 𝑋, because such a quantity is not known to a real
decoder.

In order to predict the number of errors remaining after one iteration, we want to know
the number of positions that have a counter greater than or equal to the threshold 𝑇 while
separating the case where the corresponding position is an error from the case where it is
not (in the first case it decreases the error weight while in the other it increases it).

Let us recall the equations from (11.1) concerning the counters (i.e. the upper part of
the matrix in Figure 11.1:

∑
𝑗∈e

𝜎𝑗 = 𝑆 + 𝑋 , ∑
𝑗∉e

𝜎𝑗 = (𝑤 − 1)𝑆 − 𝑋 .

This dependence between the counters can be taken into account using a technique similar
to the previous propositions.

Proposition 11.8. Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e drawn uniformly
at random in ℰ𝑛,𝑡. We denote the syndrome weight 𝑆 and the value 𝑋 = (∑𝑗∈e 𝜎𝑗)−𝑆, and
suppose they are known constants. We suppose that the counters distributions Prreg[𝜎𝑗 ∣
𝑗 ∈ e, 𝑆, 𝑋] and Prreg[𝜎𝑗 ∣ 𝑗 ∉ e, 𝑆, 𝑋] are known (see Proposition 11.6). The number of
positions whose counter is greater than or equal to a threshold 𝑇 follows the distributions,
for 𝑘 ∈ {0, … , 𝑡} and 𝑙 ∈ {0, … , 𝑛 − 𝑡}

Pr
reg

[|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑘 ∣ 𝑆, 𝑋] = 1
𝑁𝛾1

𝛾∗𝑡
1 (𝑘, 𝑆 + 𝑋)

Pr
reg

[|{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑙 ∣ 𝑆, 𝑋] = 1
𝑁𝛾0

𝛾∗(𝑛−𝑡)
0 (𝑙, (𝑤 − 1)𝑆 − 𝑋)

where 𝛾0 and 𝛾1 are defined on {0, 1} × {0, … , 𝑑} with

∀𝑘 ∈ {0, … , 𝑑)}, {𝛾0(1≥𝑇(𝑘), 𝑘) = Prreg[𝜎𝑗 = 𝑘 ∣ 𝑗 ∉ e] ,
𝛾1(1≥𝑇(𝑘), 𝑘) = Prreg[𝜎𝑗 = 𝑘 ∣ 𝑗 ∈ e] ,

100 Chapter 11. One iteration of the parallel decoder with variable thresholds

Table 11.3: Comparison of the counters distributions between simulation (105 samples)
and models for (𝑟, 𝑑, 𝑡) = (12 323, 71, 134).
Kullback-Leibler divergence is computed between the simulation data 𝒮 and the distribution
ℳ obtained on the model specified in the first column.
The probabilities Prreg[(𝑆, 𝑋)] are computed according to Proposition 11.4.

𝑗 ∈ e 𝑗 ∉ e
Mean Var. DKL(𝒮‖ℳ) Mean Var. DKL(𝒮‖ℳ)

𝑆 = 4 784 𝑋 = 830 Prreg[(𝑆, 𝑋)] = 1.001 ⋅ 10−5

Simulation 27.485 16.748 - 41.896 16.918 -
Proposition 11.6 27.485 16.746 3.12𝑒 − 07 41.894 16.932 2.3𝑒 − 06
Binomial (Rem. 11.7) 27.485 16.845 1.25𝑒 − 05 41.895 17.171 8.23𝑒 − 05

𝑆 = 4 868 𝑋 = 820 Prreg[(𝑆, 𝑋)] = 1.836 ⋅ 10−5

Simulation 27.969 16.846 - 42.448 16.823 -
Proposition 11.6 27.968 16.854 4.03𝑒 − 07 42.447 16.838 1.79𝑒 − 06
Binomial (Rem. 11.7) 27.969 16.954 1.5𝑒 − 05 42.447 17.069 7.77𝑒 − 05

𝑆 = 4 868 𝑋 = 908 Prreg[(𝑆, 𝑋)] = 3.434 ⋅ 10−4

Simulation 27.965 16.853 - 43.104 16.707 -
Proposition 11.6 27.965 16.854 2𝑒 − 07 43.102 16.701 3.11𝑒 − 06
Binomial (Rem. 11.7) 27.965 16.948 1.18𝑒 − 05 43.105 16.935 6.99𝑒 − 05

𝑆 = 4 868 𝑋 = 998 Prreg[(𝑆, 𝑋)] = 1.947 ⋅ 10−5

Simulation 27.961 16.866 - 43.776 16.563 -
Proposition 11.6 27.961 16.855 4.16𝑒 − 07 43.774 16.547 2.29𝑒 − 06
Binomial (Rem. 11.7) 27.962 16.948 8.88𝑒 − 06 43.776 16.787 6.81𝑒 − 05

𝑆 = 4 932 𝑋 = 852 Prreg[(𝑆, 𝑋)] = 4.334 ⋅ 10−5

Simulation 28.336 16.919 - 43.164 16.670 -
Proposition 11.6 28.336 16.934 6.44𝑒 − 07 43.162 16.688 3.61𝑒 − 06
Binomial (Rem. 11.7) 28.336 17.031 1.61𝑒 − 05 43.164 16.917 8.18𝑒 − 05

𝑆 = 5 002 𝑋 = 906 Prreg[(𝑆, 𝑋)] = 1.002 ⋅ 10−5

Simulation 28.736 16.997 - 44.090 16.453 -
Proposition 11.6 28.737 17.009 7.4𝑒 − 07 44.089 16.478 3.73𝑒 − 06
Binomial (Rem. 11.7) 28.736 17.109 1.63𝑒 − 05 44.090 16.711 9.1𝑒 − 05

11.3. Modeling the error weight after the first iteration 101

and 𝛾0 and 𝛾1 are zero elsewhere,

𝑁𝛾1
=

𝑡
∑
𝑘=0

𝛾∗𝑡
1 (𝑘, 𝑆 + 𝑋) , 𝑁𝛾0

=
𝑛−𝑡
∑
𝑘=0

𝛾∗(𝑛−𝑡)
0 (𝑘, 𝑑𝑡 − 𝑆 − 𝑋)

Proof. First let us suppose that 𝑗 ∈ e. We define a two-dimensional random variable
C𝑗 = (𝐶𝑗,1, 𝐶𝑗,2), 𝐶𝑗,2 is the counter 𝜎𝑗 of position 𝑗 and 𝐶𝑗,1 is such that

𝐶𝑗,1 = {0 if 𝐶𝑗,2 < 𝑇,
1 if 𝐶𝑗,2 ≥ 𝑇.

The probability mass function of C𝑗 is given by 𝛾1.
Summing 𝑡 times the independent random variables C𝑗 for all error position 𝑗 ∈ e gives

a random variable whose first coordinate is the number of counters above 𝑇 and the second
coordinate is the sum of all the counters. Its probability mass function is 𝛾∗𝑡

1 . The relevant
conditional probabilities are finally obtained by keeping only the values of ∑𝑗∈e C𝑗 such
that the second coordinate is 𝑆 + 𝑋 and then normalizing the probabilities with a division
by 𝑁𝛾1

.
The result is proven for 𝑗 ∉ e with the substitutions below.

∈ e ∉ e
𝑡 𝑛 − 𝑡

𝑆 + 𝑋 (𝑤 − 1)𝑆 − 𝑋
𝛾1 𝛾0

Remark 11.9. Here again, one could question the necessity of considering the mass equa-
tions (11.1).

Without it |{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| and |{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| are two random variables following
binomial distributions:

|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| ∼ Bin(𝑡, 𝑝1) , |{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| ∼ Bin(𝑛 − 𝑡, 𝑝0) (11.5)

where
𝑝1 = Pr

reg
[𝜎𝑗 ≥ 𝑇 ∣ 𝑗 ∈ e] , 𝑝0 = Pr

reg
[𝜎𝑗 ≥ 𝑇 ∣ 𝑗 ∉ e] .

Remark 11.10. We should now come back to the previous comments made about the
counters distributions in Remark 11.7. For this purpose, substitute, in Proposition 11.8,
𝛾0 for 𝛾′

0 and 𝛾1 for 𝛾′
1 with

∀𝑘 ∈ {0, … , 𝑑)}, {𝛾′
0(1≥𝑇(𝑘), 𝑘) = (𝑑

𝑘)𝜋𝑘
1(1 − 𝜋1)𝑑−𝑘 ,

𝛾′
1(1≥𝑇(𝑘), 𝑘) = (𝑑

𝑘)𝜋𝑘
0(1 − 𝜋0)𝑑−𝑘 ,

(11.6)

remember from (5.2) that

𝜋1 = 𝑆 + 𝑋
𝑑𝑡

, and 𝜋0 = (𝑤 − 1)𝑆 − 𝑋
𝑑(𝑛 − 𝑡)

.

Comparison between these models is provided in Table 11.4. We can observe that
compared to Remark 11.9, our model makes a better prediction of the variance. And
compared to Remark 11.10, our model makes a better prediction of the mean.

102 Chapter 11. One iteration of the parallel decoder with variable thresholds

Table
11.4:

C
om

parison
betw

een
sim

ulation
(10

5
sam

ples)
and

m
odels

for
(𝑟,𝑑,𝑡)=

(12323,71,134).
𝑡 +1

is
the

num
ber

ofadded
errors,𝑡 −1

is
the

num
ber

ofrem
oved

errors,and
the

error
w

eight
after

one
iteration

is
𝑡1

=
𝑡+

𝑡 +1
−

𝑡 −1 .
K

ullback-Leibler
divergence

is
com

puted
between

the
sim

ulation
data

𝒮
and

the
distribution

ℳ
obtained

on
the

m
odelspecified

in
the

first
colum

n.
T

he
probabilities

Prreg [(𝑆,𝑋
)]are

com
puted

according
to

Proposition
11.4.

𝑡 +1
𝑡 −1

𝑡1
M

ean
Var.

D
K

L (𝒮‖ℳ
)

M
ean

Var.
D

K
L (𝒮‖ℳ

)
M

ean
Var.

D
K

L (𝒮‖ℳ
)

𝑆
=

4784
𝑋

=
830

Prreg [(𝑆,𝑋
)]=

1.001
⋅10

−
5

Sim
ulation

9.158
9.115

-
72.491

11.931
-

70.667
20.956

-
Proposition

11.8
&

11.11
9.157

9.102
1.245

⋅10−
4

72.513
11.986

2.240
⋅10−

4
70.642

21.095
3.972

⋅10−
4

(11.5)
in

R
em

ark
11.9

9.159
9.153

1.248
⋅10−

4
72.483

33.276
2.785

⋅10−
1

70.675
42.432

1.451
⋅10−

1
(11.6)

in
R

em
ark

11.10
9.496

9.447
8.955

⋅10−
3

72.487
11.987

1.916
⋅10−

4
71.008

21.434
4.389

⋅10−
3

𝑆
=

4868
𝑋

=
820

Prreg [(𝑆,𝑋
)]=

1.836
⋅10

−
5

Sim
ulation

5.888
5.908

-
66.729

11.990
-

73.158
17.746

-
Proposition

11.8
&

11.11
5.910

5.888
2.059

⋅10−
4

66.728
12.023

2.176
⋅10−

4
73.182

17.904
2.593

⋅10−
4

(11.5)
in

R
em

ark
11.9

5.911
5.906

2.007
⋅10−

4
66.717

33.494
2.792

⋅10−
1

73.194
39.409

1.803
⋅10−

1
(11.6)

in
R

em
ark

11.10
6.143

6.119
7.946

⋅10−
3

66.744
12.021

2.234
⋅10−

4
73.400

18.139
2.653

⋅10−
3

𝑆
=

4868
𝑋

=
908

Prreg [(𝑆,𝑋
)]=

3.434
⋅10

−
4

Sim
ulation

5.885
5.890

-
75.311

11.944
-

64.574
17.716

-
Proposition

11.8
&

11.11
5.889

5.866
1.625

⋅10−
4

75.337
11.962

2.944
⋅10−

4
64.555

17.832
2.803

⋅10−
4

(11.5)
in

R
em

ark
11.9

5.892
5.895

1.482
⋅10−

4
75.295

32.980
2.739

⋅10−
1

64.596
38.886

1.756
⋅10−

1
(11.6)

in
R

em
ark

11.10
6.125

6.095
7.042

⋅10−
3

75.290
11.970

2.949
⋅10−

4
64.831

18.066
2.966

⋅10−
3

𝑆
=

4868
𝑋

=
998

Prreg [(𝑆,𝑋
)]=

1.947
⋅10

−
5

Sim
ulation

5.900
5.923

-
83.895

11.848
-

56.006
17.725

-
Proposition

11.8
&

11.11
5.871

5.845
3.133

⋅10−
4

83.966
11.882

5.381
⋅10−

4
55.905

17.744
6.489

⋅10−
4

(11.5)
in

R
em

ark
11.9

5.871
5.869

3.107
⋅10−

4
83.897

31.374
2.549

⋅10−
1

55.976
37.230

1.588
⋅10−

1
(11.6)

in
R

em
ark

11.10
6.102

6.080
5.108

⋅10−
3

83.861
11.891

2.886
⋅10−

4
56.241

17.974
2.481

⋅10−
3

𝑆
=

4932
𝑋

=
852

Prreg [(𝑆,𝑋
)]=

4.334
⋅10

−
5

Sim
ulation

19.260
19.184

-
88.539

11.785
-

64.721
31.092

-
Proposition

11.8
&

11.11
19.312

19.113
3.606

⋅10−
4

88.597
11.832

4.429
⋅10−

4
64.715

30.948
3.896

⋅10−
4

(11.5)
in

R
em

ark
11.9

19.316
19.309

3.676
⋅10−

4
88.511

30.055
2.380

⋅10−
1

64.805
49.358

6.734
⋅10−

2
(11.6)

in
R

em
ark

11.10
19.939

19.725
1.731

⋅10−
2

88.463
11.827

5.795
⋅10−

4
65.476

31.564
1.346

⋅10−
2

𝑆
=

5002
𝑋

=
906

Prreg [(𝑆,𝑋
)]=

1.002
⋅10

−
5

Sim
ulation

4.882
4.928

-
75.247

11.890
-

63.635
16.757

-
Proposition

11.8
&

11.11
4.899

4.883
1.693

⋅10−
4

75.256
11.947

2.883
⋅10−

4
63.644

16.835
3.723

⋅10−
4

(11.5)
in

R
em

ark
11.9

4.900
4.902

1.465
⋅10−

4
75.216

33.001
2.764

⋅10−
1

63.685
37.883

1.874
⋅10−

1
(11.6)

in
R

em
ark

11.10
5.097

5.077
6.797

⋅10−
3

75.210
11.969

3.729
⋅10−

4
63.885

17.037
3.066

⋅10−
3

11.3. Modeling the error weight after the first iteration 103

11.3.5 Error weight after one iteration
The two random variables that count the number of flipped positions, separated according
to whether they are erroneous or not, can be considered independent. The error weight after
an iteration is then simply determined by a convolution of their respective distributions.

Proposition 11.11. Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e drawn
uniformly at random in ℰ𝑛,𝑡. We denote the syndrome weight 𝑆 and the value 𝑋 =
(∑𝑗∈e 𝜎𝑗) − 𝑆, and suppose they are known constants. We suppose that the distributions

Prreg [|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑘 ∣ 𝑆, 𝑋] and Prreg [|{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑙 ∣ 𝑆, 𝑋] are known
(see Proposition 11.8). The number of errors remaining after one iteration of the bit-flipping
algorithm with threshold 𝑇, is, for 𝛿 ∈ {−𝑡0, … , 𝑛 − 𝑡0}

Pr
reg

[𝑡1 = 𝑡0 + 𝛿 | 𝑆, 𝑋] = ∑
−𝑘+𝑙=𝛿

Pr
reg

[|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑘 ∣ 𝑆, 𝑋]

⋅ Pr
reg

[|{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑙 ∣ 𝑆, 𝑋] .

11.3.6 Unconditional probability of the error weight after the first
iteration

We can now summarize all the propositions of this section in a single distribution that we
will compare to the simulation, namely the error weight after an iteration 𝑡1.

Here are the outlines of the nested conditioning on the probabilities that we are going
to achieve.

• First we determine, using Proposition 11.4, the joint distribution of 𝑆0 and 𝑋0:

Pr
reg

[(𝑆0, 𝑋0)] .

• Using Proposition 11.6 & 11.8, for every values of 𝑆0 and 𝑋0 such that Prreg[(𝑆0, 𝑋0)]
is not negligible, and depending on a threshold function, we determine the distribution
of the number of added (𝑡+

1) or removed (𝑡−
1) errors:

Pr
reg

[|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑡−
1 ∣ 𝑆0, 𝑋0] ,

Pr
reg

[|{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑡+
1 ∣ 𝑆0, 𝑋0] .

In the end, we can find the distribution we are looking for

Pr
reg

[𝑡1] = ∑
𝑆0,𝑋0

Pr
reg

[(𝑆0, 𝑋0)] ∑
𝑡0+𝑡+

1 −𝑡−
1 =𝑡1

Pr
reg

[|{𝑗 ∈ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑡−
1 ∣ 𝑆0, 𝑋0]

Pr
reg

[|{𝑗 ∉ e | 𝜎𝑗 ≥ 𝑇 | }| = 𝑡+
1 ∣ 𝑆0, 𝑋0] .

A comparison between the distribution of 𝑡1 obtained from this model and the one
obtained with the simulations is provided in Figure 11.2. Due to the rapid decay of
probabilities in the tails, it is presented on a binary logarithmic scale. We can observe
that the model is really accurate and that it succeeds in predicting the probabilities with
a precision up to a fraction of a decimal digit in binary logarithm. We note that the same
accuracy is obtained with any other block size or threshold function.

104 Chapter 11. One iteration of the parallel decoder with variable thresholds

30 40 50 60 70 80 90 100

−32

−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

𝑡1

lo
g 2

P
r r

eg
[𝑡

1]
Simulation

Model

Figure 11.2: Error weight distribution after one iteration. (𝑟, 𝑑, 𝑡) = (12 323, 71, 134).
Simulation data are for 109 samples. 99%-confidence intervals.

11.4. A two-iteration decoder with a DFR analysis 105

11.4 A two-iteration decoder with a DFR analysis
In the previous section, we assessed the accuracy of the model to predict the error weight
after one iteration. Using the same idea as in [Til18b] or [LEDA], we designed a decoder
whose first iteration is analyzed by the probabilistic model we have just established,
followed by a deterministic property which guarantees the successful decoding of an error
pattern with a weight below a certain bound. The deterministic property that we use is
an intermediate between [Til18b] and [LEDA] and require some key filtering. The reason
for this intermediate result is that we can estimate the additional cost of filtering by using
results on the distance spectrum proven in Chapter 15.

In this section, we will explore three strategies (for some security parameter 𝜆):

• Do one iteration and choose parameters so that the probalistic model predicts a
DFR below 2−𝜆.

• Do two iterations so that, using the probabilistic model, the error weight after the
first iteration is below the deterministic bound with probability above (1 − 2−𝜆).

• Take a reciprocal point of view and discuss the number of errors that must be
unconditionally corrected in the second iteration for a given block size to obtain a
DFR below 2−𝜆.

11.4.1 One iteration
Decoding in one iteration means that the error weight 𝑡1 after one iteration is zero. With
this decoder, we have

DFR(𝑟) = ∑
𝑡1>0

Pr
reg

[𝑡1] .

However, with this algorithm, we lose the advantage of an iterative algorithm that
has the possibility to make mistakes that are rectified later. The impact on the block
size is quite significant since it would have to be multiplied by at least 40 to obtain a
sufficiently low DFR. For example, the predicted DFR for (𝑑, 𝑡) = (71, 134) are shown
in Figure 11.3. Obtaining a DFR below 2−128 for the 128-bits of security parameters
of [BIKE] (𝑑, 𝑡) = (71, 134) requires a block size 𝑟 > 540 000.

11.4.2 Two iterations
We can design an algorithm that first performs a parallel iteration of the bit-flip algorithm
using a threshold depending on the syndrome weight, and then a second iteration with a
fixed threshold. The first one is quite efficient, corrects many errors and has an accurate
probabilistic model. The second one is sufficient to correct the residual errors, and its
soundness is deterministic and does not require any assumptions about the error pattern
or the syndrome.

Let us first recall the definition of the maximum column intersection and prove propo-
sition that is a slight improvement (it can correct up to one more error) of [Til18b,
Proposition 1] or a particular case of [LEDA, §3.4].

Definition 11.12. [Til18b, Definition 2] Let H be a binary parity check matrix. The
number of intersections between two different columns 𝑗 and 𝑗′ is equal to the number of
rows 𝑖 for which ℎ𝑖,𝑗 = ℎ𝑖,𝑗′ = 1. The maximum column intersection of H is the maximum
for any pairs of columns:

max
𝑗,𝑗′

∣h𝑗 ⋆ h𝑗′ ∣ .

Remark 11.13. In a quasi-cyclic code with a parity check matrix represented as h =
(h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2, any column can be written as 𝑥𝑘hℓ for some 𝑘 ∈ {0, … , 𝑟 − 1}

106 Chapter 11. One iteration of the parallel decoder with variable thresholds

50 000 1 ⋅ 105 1.5 ⋅ 105 2 ⋅ 105 2.5 ⋅ 105 3 ⋅ 105 3.5 ⋅ 105 4 ⋅ 105 4.5 ⋅ 105 5 ⋅ 105

−120

−100

−80

−60

−40

−20

0

𝑟

lo
g 2

D
F

R
(𝑟

)

Figure 11.3: Predicted DFR for a one-iteration decoder, for (𝑑, 𝑡) = (71, 134)

11.4. A two-iteration decoder with a DFR analysis 107

and ℓ ∈ {0, 1}. Since shifting two columns by the same offset does not change their number
of intersections, we can rewrite the maximum column intersection formula as

𝐼 ∶= max
𝑘,𝑘′∈{0,…,𝑟−1}

ℓ,ℓ′∈{0,1}

∣𝑥𝑘hℓ ⋆ 𝑥𝑘′hℓ′ ∣ = max(𝐼0, 𝐼1, 𝐼01) .

where
𝐼0 ∶= max

𝑘∈{0,…,𝑟−1}
∣h0 ⋆ 𝑥𝑘h0∣ , 𝐼1 ∶= max

𝑘∈{0,…,𝑟−1}
∣h1 ⋆ 𝑥𝑘h1∣

are the maximum column intersection inside each block and

𝐼01 ∶= max
𝑘∈{0,…,𝑟−1}

∣h0 ⋆ 𝑥𝑘h1∣

concerns the intersections between the two blocks.

Proposition 11.14. Consider a code with a parity check matrix for which every column
has weight 𝑑 and whose maximum column intersection is 𝐼. A bit-flipping iteration
(Algorithm 11.1) with 𝑇 = ⌊(𝑑 + 𝐼 + 1)/2⌋) corrects all errors of weight ≤ ⌊(𝑑 + 𝐼 − 1)/2𝐼⌋.

Proof. Let us consider the counters 𝜎𝑗 = ∣h𝑗 ⋆ s∣ for all the positions 𝑗 ∈ {0, … , 𝑛 − 1},
where e is an error pattern of weight 𝑡 and H is a parity check matrix of column weight 𝑑
and maximal column intersection 𝐼. From [Til18b], we have, if 𝑗 ∈ e,

𝜎𝑗 ≥ 𝑑 − 𝐼(𝑡 − 1) ,

and, if 𝑗 ∉ e,
𝜎𝑗 ≤ 𝐼𝑡 .

The error pattern e can be corrected if there exists 𝑇 such that

𝐼𝑡 < 𝑇 ≤ 𝑑 − 𝐼(𝑡 − 1) .

The largest 𝑡 that verifies this inequality is ⌊ 𝑑+𝐼−1
2𝐼 ⌋ and we can verify that we can take

𝑇 = ⌊ 𝑑+𝐼+1
2 ⌋.

We will consider the two-iteration bit-flipping as described in Algorithm 11.2. With
Proposition 11.14, we now have an upper bound on its DFR:

DFR(𝑟) ≤ ∑
𝑡1>⌊(𝑑+𝐼−1)/2𝐼⌋

Pr
reg

[𝑡1] .

For any maximum column intersection 𝐼, we write

𝑟𝐼,𝜆 ∶= min
⎧{
⎨{⎩

𝑟 ∣ ∑
𝑡1>⌊(𝑑+𝐼−1)/2𝐼⌋

Pr
reg

[𝑡1] < 2−𝜆
⎫}
⎬}⎭

,

the minimum block size that one should use to have a DFR below 2−𝜆 with Algorithm 11.2.
Examples of values are given in Table 11.5 for [BIKE] parameters.

108 Chapter 11. One iteration of the parallel decoder with variable thresholds

Algorithm 11.2: Two iterations of the parallel bit-flipping algorithm.
function two_parallel_iterations⟂(H, s, 𝐼):

input : A sparse parity check matrix H ∈ 𝔽(𝑛−𝑘)×𝑛
2 ,

a syndrome s = He⊺ ∈ 𝔽𝑛−𝑘
2 ,

the maximum number of intersections 𝐼 between columns of H.
output : The error pattern difference after two iterations e′ ∈ 𝔽𝑛

2 .
e′ ← 0;
s′ ← s;
𝑇 ← threshold(|s|);
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s∣ ≥ 𝑇 then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

s′ ← s − He′⊺;
for 𝑗 ∈ {0, … , 𝑛 − 1} do

if ∣h𝑗 ⋆ s′∣ ≥ ⌊(𝑑 + 𝐼 + 1)/2⌋ then
𝑒′

𝑗 ← 1 − 𝑒′
𝑗 ;

return e′;

Table 11.5: Example values for 𝑟𝐼,𝜆 with (𝑑, 𝑡) = (71, 134) and 𝜆 = 128.

𝐼 ⌊(𝑑 + 𝐼 − 1)/2𝐼⌋ 𝑟𝐼,128

1 35 19 778
2 18 24 490
3 12 28 577
4 9 32 408
5 7 36 649
6 6 39 778
7 5 44 104

8–10 4 50 430
11–14 3 60 654
15–23 2 80 728
24–70 1 134 408

71 0 539 795

Key filtering and overhead. One can use the Algorithm 15.3 in §15.6 to filter out keys
whose maximum column intersection is too high. We can estimate the probability that
the key generation function draws a bad key and the number of trials before finding a
good key follows a geometric distribution. We can consider this number of trials as an
overhead factor on the key generation. However, the additional costs only concern the
entropy generation and this does not represent the major part of the cost in a Niederreiter
scheme such as BIKE, where the most expensive operation is a polynomial (or matrix)
inversion.

Remember that in Remark 11.13 we have separated the maximum column intersection 𝐼
between its intrablocks parts 𝐼0, 𝐼1 and its interblock part 𝐼01. Therefore, we have:

Pr[𝐼 ≤ 𝑚] = Pr[𝐼0 ≤ 𝑚 and 𝐼1 ≤ 𝑚 and 𝐼01 ≤ 𝑚] .

The values 𝐼0 and 𝐼1 concern independent blocks and are therefore independent random

11.4. A two-iteration decoder with a DFR analysis 109

Table 11.6: Overhead due to key filtering for a maximum column intersection value 𝐼 and
block size 𝑟 with (𝑑, 𝑡) = (71, 134).

𝐼 𝑟 Avg. keygen overhead
2 24 490 +1.5 ⋅ 10+26%
3 28 577 +429.26%
4 32 408 +3.24%
5 36 649 +0.04%

variables, so we can write:

Pr[𝐼 ≤ 𝑚] = Pr[𝐼0 ≤ 𝑚] ⋅ Pr[𝐼1 ≤ 𝑚] ⋅ Pr[𝐼01 ≤ 𝑚 | 𝐼0 ≤ 𝑚, 𝐼1 ≤ 𝑚] .

For ease of calculation, and only at the cost of a slight inaccuracy, we will also assume the
independence with the interblock part 𝐼01: Pr[𝐼01 ≤ 𝑚 | 𝐼0 ≤ 𝑚, 𝐼1 ≤ 𝑚] = Pr[𝐼01 ≤ 𝑚].

We will use results from Chapter 15 and thus the proofs of the different assertions
can be found there. In particular, it is shown in this chapter that there is a link between
the column intersections inside a circulant block and its distance spectrum. The relevant
combinatorial result from Corollary 15.17 is reported here without justification.

Proposition 11.15. For given integers 𝑚, 0 ≤ 𝑚 < 𝑑, and 𝛿, 1 ≤ 𝛿 ≤ ⌊𝑟/2⌋, define

𝒩𝑚 ∶= 𝑟
𝑑 − 𝑚

(𝑑 − 1
𝑑 − 𝑚 − 1

)(𝑟 − 𝑑 − 1
𝑑 − 𝑚 − 1

) ,

𝜋𝑚 = 𝒩𝑚
(𝑟

𝑑)
= 𝑟

𝑑 − 𝑚
(𝑑−1

𝑑−𝑚−1)(𝑟−𝑑−1
𝑑−𝑚−1)

(𝑟
𝑑)

, 𝜋′
𝑚 =

(𝑑
𝑚)(𝑟−𝑑

𝑑−𝑚)
(𝑟

𝑑)
.

Then

Pr[𝐼0 ≤ 𝑚] = Pr[𝐼1 ≤ 𝑚] = (∑
𝑘≤𝑚

𝜋𝑘)
⌊𝑟/2⌋

, Pr[𝐼01 ≤ 𝑚] = (∑
𝑘≤𝑚

𝜋′
𝑘)

𝑟

.

In Algorithm 15.3, for a threshold 𝜏 ∈ {1, … , 𝑑}, the probability of accepting a key
is Pr[𝐼 ≤ 𝑚]. Since all the key generations are independent, the number of trials before
finding a suitable key follows a geometric distribution. In Table 11.6 we give the mean
values for different parameter sets. Filtering keys to have a maximum column intersection
of 3 appears to be an interesting tradeoff, and for any greater value it has a negligible
influence on the key generation time.

11.4.3 Decoding performance requirements after the first iteration
With our model, we can estimate the greatest error weight after one iteration that happens
with a non-negligible probability (i.e. larger than 2−𝜆). Results are given in Figure 11.4.
The figure shows that, for a block size of about 21 000, we need to successfully decode with
a very high probability any error pattern whose weight does not exceed a few tens. Such a
performance does not seem unattainable in view of our experimentations. For example,
the error patterns responsible for the error floors discussed in Chapter 16 are the worst
error patterns that we know of in terms of decoding, but they have a larger weight.

110 Chapter 11. One iteration of the parallel decoder with variable thresholds

20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000
0

20

40

60

80

100

120

140

160

𝑟

𝑡
min {𝑡 ∣ Prreg[𝑡1 > 𝑡] < 2−𝜆}

Figure 11.4: Number of errors that needs to be decoded after one iteration to have a DFR
below 2−𝜆, for (𝑑, 𝑡) = (71, 134)

11.5 Noisy syndrome decoding

Ouroboros is a key exchange protocol that uses MDPC codes, see [DGZ17]. In comparison
to the MDPC-McEliece scheme, Ouroboros relies only on one security assumption (Quasi-
Cyclic Syndrome Decoding, QCSD) instead of two (QCSD and Quasi-Cyclic Codeword
Finding), see BIKE-3 variants of [BIKE] for the versions earlier than 3.2. It also differs in
the decoder: in Ouroboros one needs to decode a noisy syndrome i.e. s = He⊺ + e′. This
requires only a small modification of a bit-flipping algorithm to decode. It is a matter of
stopping the algorithm when the syndrome has a small weight rather than a zero weight.

The analysis of an iteration also requires some adaptation of the model. Basically,
contrary to the noiseless problem, a one in the syndrome does not mean that there is an
odd number of errors in the corresponding equation (and conversely a zero in the syndrome
does not mean an even number of errors). To give an idea of the impact of the added
noise, with BIKE-3 (Ouroboros), ∣e′∣ = |e| /2.

In fact, the additional noise on the syndrome only affects the weight of the syndrome
and the counters distributions, the other propositions of the previous section then apply
without further adaptation. In this section we show how the noise on the syndrome is to
be taken into account in the relevant propositions.

Since the number of equations affected is known and fixed in the parameters of the
scheme, we know exactly how many syndrome bits will have their parity flipped. We still
use the notation 𝑆 for the syndrome weight 𝑆 = ∣He⊺ + e′∣, we write the syndrome noise
weight 𝑡𝑂 ∶= ∣e′∣. Now, we need an additional random variable to account for the number
of unsatisfied equations affected by the noise on the syndrome 𝐼 = ∣e′ ⋆ s∣. The noiseless
syndrome weight is then

∣s + e′∣ = 𝑆 + 𝑡0 − 2𝐼 .

11.5. Noisy syndrome decoding 111

0
0
1
1
1
1
0
0

𝐼

𝑆 − 𝐼

𝑡𝑂 − 𝐼

𝑟 − 𝑆 − 𝑡𝑂 + 𝐼

He⊺

1
1
0
0
1
1
0
0

𝐼

𝑡𝑂 − 𝐼

e′

1

1
0

0

𝑆

𝑟 − 𝑆

He⊺ + e′

Remark 11.16. We already know that if s is drawn uniformly at random in ℰ𝑟,𝑆 and e′

drawn uniformly at random in ℰ𝑟,𝑡𝑂
, the number of intersection between them follows a

hypergeometric distribution, we write

𝑓(𝑆, 𝐼) =
(𝑆+𝑡𝑂−2𝐼

𝑡𝑂−𝐼)(𝑟−𝑆−𝑡𝑂+2𝐼
𝐼)

(𝑟
𝑡𝑂

)

the probability of the vector e′ having 𝐼 intersections with s.

When e and s have 𝐼 intersections, there are exactly 𝐼 unsatisfied equations with an
even number of errors, 𝑡𝑂 − 𝐼 satisfied equations with an odd number of errors, the other
equations behave as expected.

Proposition 11.17. Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛, e drawn uniformly
at random in ℰ𝑛,𝑡 and e′ drawn uniformly at random in ℰ𝑟,𝑡𝑂

. The syndrome weight
𝑆 = ∣e′ + He⊺∣, the value 𝑋 = (∑𝑗∈e 𝜎𝑗) − 𝑆, and the value 𝐼 = 𝑡𝑂 − ∣e′ ⋆ s∣ follow the
joint distribution

Pr
reg

[(𝑆, 𝑋, 𝐼) = (𝑘, ℓ, 𝑜)] = 1
𝑁𝜁,𝜁

𝑓(𝑘, 𝑜) (𝜁∗(𝑟−𝑡𝑂) ∗ 𝜁∗𝑡𝑂) (𝑘, 𝑘 + ℓ, 𝑑𝑡 − 𝑘 − ℓ)

with, for 𝑎 ∈ {0, … , min(𝑤, 𝑡)},

⎧
{
⎨
{
⎩

𝜁(1, 𝑎, 0) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is even ,

𝜁(0, 0, 𝑎) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is odd ,

⎧
{
⎨
{
⎩

𝜁(0, 0, 𝑎) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is even ,

𝜁(1, 𝑎, 0) = (𝑤
𝑎)(𝑛−𝑤

𝑡−𝑎)
(𝑛

𝑡)
if 𝑎 is odd .

(compared to 𝜁 the first component of 𝜁 is flipped) and

𝑁𝜁,𝜁 = ∑
𝑘,ℓ,𝑜

𝑓(𝑘, 𝑜) (𝜁∗(𝑟−𝑡𝑂) ∗ 𝜁∗𝑡𝑂) (𝑘, 𝑘 + ℓ, 𝑑𝑡 − 𝑘 − ℓ) .

Proposition 11.18. Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛, e drawn uniformly
at random in ℰ𝑛,𝑡 and e′ drawn uniformly at random in ℰ𝑟,𝑡𝑂

. We denote the syndrome
weight 𝑆, the value 𝑋 = (∑𝑗∈e 𝜎𝑗) − 𝑆 and the value 𝐼 = 𝑡𝑂 − ∣e′ ⋆ s∣, and suppose they

112 Chapter 11. One iteration of the parallel decoder with variable thresholds

Table 11.7: Comparison of the distribution of 𝑆, 𝑋 and 𝐼 between simulation (109 samples
with quasi-cyclic matrices) and the model for (𝑟, 𝑑, 𝑡, 𝑡𝑂) = (12 269, 67, 154, 77).
The Kullback-Leibler divergence between the simulation data 𝒮 and the distribution
obtained from Proposition 11.17 is 9.015 ⋅ 10−4.

𝑆 𝑋 𝐼
Mean Var. Mean Var. Mean Var.

Simulation 5 030.068 2 618.891 1 080.049 1 643.046 45.520 18.596
Proposition 11.17 5 030.225 2 618.815 1 079.920 1 642.820 45.519 18.596

Table 11.8: Comparison of the counters distributions between simulation (105 samples)
and models for (𝑟, 𝑑, 𝑡, 𝑡𝑂) = (12 269, 67, 154, 77).
Kullback-Leibler divergence is computed between the simulation data 𝒮 and the distribution
ℳ obtained on the model specified in the first column.
The probabilities Prreg[(𝑆, 𝑋, 𝐼)] are computed according to Proposition 11.17.

𝑗 ∈ e 𝑗 ∉ e
Mean Var. DKL(𝒮‖ℳ) Mean Var. DKL(𝒮‖ℳ)

𝑆 = 5 031 𝑋 = 1 080 𝐼 = 46 Prreg[(𝑆, 𝑋, 𝐼)] = 2.842 ⋅ 10−5

Simulation 27.397 16.107 - 39.682 15.979 -
Proposition 11.18 27.398 16.107 3.75 ⋅ 10−7 39.681 15.982 4.31 ⋅ 10−7

are known constants. The counters 𝜎𝑗 = ∣h𝑗 ⋆ s∣ follows the distributions for 𝑘 ∈ {0, … , 𝑑}

Pr
reg

[𝜎𝑗 = 𝑘 ∣ 𝑗 ∈ e, 𝑆, 𝑋, 𝐼] = 1
𝑁 ′(𝜙)

(𝜙∗𝐼
0 ∗ 𝜙∗(𝑆−𝐼)

1) (𝑘, 𝑆 + 𝑋)

⋅ (𝜙∗(𝑡𝑂−𝐼)
1 ∗ 𝜙∗(𝑟−𝑆−𝑡𝑂+𝐼)

0) (𝑑 − 𝑘, 𝑑𝑡 − (𝑆 + 𝑋)) ,

Pr
reg

[𝜎𝑗 = 𝑘 ∣ 𝑗 ∉ e, 𝑆, 𝑋, 𝐼] = 1
𝑁 ′(𝜓)

(𝜓∗𝐼
0 ∗ 𝜓∗(𝑆−𝐼)

1) (𝑘, (𝑤 − 1)𝑆 − 𝑋)

⋅ (𝜓∗(𝑡𝑂−𝐼)
1 ∗ 𝜓∗(𝑟−𝑆−𝑡𝑂+𝐼)

0) (𝑑 − 𝑘, 𝑑(𝑛 − 𝑡) − (𝑤 − 1)𝑆 + 𝑋) ,

(the functions 𝜙𝑠 and 𝜓𝑠 are defined as in Proposition 11.6) with

𝑁 ′(𝜙) =
𝑑

∑
𝑘=0

(𝜙∗𝐼
0 ∗ 𝜙∗(𝑆−𝐼)

1) (𝑘, 𝑆 + 𝑋)

⋅ (𝜙∗(𝑡𝑂−𝐼)
1 ∗ 𝜙∗(𝑟−𝑆−𝑡𝑂+𝐼)

0) (𝑑 − 𝑘, 𝑑𝑡 − (𝑆 + 𝑋)) ,

𝑁 ′(𝜓) =
𝑑

∑
𝑘=0

(𝜓∗𝐼
0 ∗ 𝜓∗(𝑆−𝐼)

1) (𝑘, (𝑤 − 1)𝑆 − 𝑋)

⋅ (𝜓∗(𝑡𝑂−𝐼)
1 ∗ 𝜓∗(𝑟−𝑆−𝑡𝑂+𝐼)

0) (𝑑 − 𝑘, 𝑑(𝑛 − 𝑡) − (𝑤 − 1)𝑆 + 𝑋) .

Comparisons between the model and simulation are given in Table 11.7 & 11.8.

11.6. Going further to predict the syndrome weight after the first iteration 113

11.6 Going further to predict the syndrome weight after
the first iteration

Concerning the bounds used in the previous section for the two-iteration decoding, although
they do not require additional assumptions about the error pattern, they do characterize
worst-case scenarios. In particular, the worst possible error patterns produce syndromes
with unusual weights. Obtaining the joint distribution of the error weight and the syndrome
weight after an iteration would allow for a finer analysis of the DFR since outliers would be
weighted by their extremely low probability. Knowledge of this distribution also appears
necessary if we plan to consider algorithms performing more than two iterations.

In this section, we outline the possibility of predicting the syndrome weight after one
iteration. The difficulty with the ensuing model is that it is more complex and requires
too much computational time.

Similarly to the mass equations of Section 11.2, we can apply permutations to the
parity check matrix and the vectors to have more precise equations. To evaluate the
syndrome changes (a one that becomes a zero and vice versa), as before, we need to take
into account some mass equations. We suppose that the number of correct positions to be
flipped 𝑡+ and the number of errors to be removed 𝑡− is known. We also suppose that the
sum Σ+ of the 𝑡+ counters of the correct positions to be flipped, and the sum Σ− of the 𝑡−

counters of errors to be removed are fixed.

Again, applying two permutations P′ ∈ 𝔽𝑟×𝑟
2 and Q′ ∈ 𝔽𝑛×𝑛

2 to H, e and s:

H″ = P′HQ′−1 e″ = eQ′⊺ s″ = P′s

so that we have s″ = e″H″⊺ in the configuration illustrated in Figure 11.5.

𝐵0 𝐵1 𝐴1 𝐴0

𝐷0 𝐷1 𝐶1 𝐶0

H″

1

1
0

0

𝑆

𝑟 − 𝑆

s″0⊺

1

1
0
1
0

0

𝑆−

𝑆+ s″1⊺

0 0 1 1 0 0
𝑡

e″0

0 0 1 1 0 0 1 1
𝑛 − 𝑡 − 𝑡+ 𝑡 − 𝑡− 𝑡− 𝑡+

e″1

Figure 11.5: New reordering of the parity check matrix.

114 Chapter 11. One iteration of the parallel decoder with variable thresholds

Now, the equations are

𝐴1 = Σ− , 𝐴0 = Σ+ ,
𝐴1 + 𝐵1 = 𝑆 + 𝑋 , 𝐴0 + 𝐵0 = (𝑤 − 1)𝑆 − 𝑋 ,
𝐴0 + 𝐶0 = 𝑑𝑡+ , 𝐴1 + 𝐶1 = 𝑑𝑡− ,

𝐴0 + 𝐵0 + 𝐶0 + 𝐷0 = 𝑑(𝑛 − 𝑡) , 𝐴1 + 𝐵1 + 𝐶1 + 𝐷1 = 𝑑𝑡 .

With some independence assumptions, the distributions of Σ+ and Σ− can be determined
as well as the repartition of the ones for each row of the parity check matrix.

A derivation, albeit more complex, similar to the one presented here for the error
weight after the first iteration can be established for the syndrome weight after the first
iteration using these mass equations. The distributions thus calculated on a few particular
starting values for 𝑆0 and 𝑋0 seemed to be in line with the simulations. However, the cost
of these few calculations did not bode well for a complete model.

Chapter 12

Markovian model of the
step-by-step algorithm

In this chapter, unlike the previous one, we make coarser assumptions about the decoder’s
behaviour. However, these assumptions are reasonable and allow us to model a complete
iterative decoder. We will still rely on some results of the previous chapter.

12.1 Notations
We adopt the following notations in this chapter.

General.

• The set ℰ𝑛,𝑡 is set of all the error patterns of weight 𝑡

ℰ𝑛,𝑡 = {e ∈ {0, 1}𝑛 | |e| = 𝑡} ,

• ℋ𝑑,𝑤,𝑟×𝑛 is the set of regular 𝑟 × 𝑛 parity check matrices of column weight 𝑑 and
row weight 𝑤

ℋ𝑑,𝑤,𝑟×𝑛 = {H ∈ 𝔽𝑟×𝑛
2 | ∀𝑖 ∈ {0, … , 𝑟 − 1}, ∣h⊺

𝑖 ∣ = 𝑤, ∀𝑗 ∈ {0, … , 𝑛 − 1}, ∣h𝑗∣ = 𝑑} .

Coding theory.

• We denote the syndrome weight corresponding to a certain error parttern

𝑆 = |s| s = He⊺, .

• For a position 𝑗 ∈ {0, … , 𝑛 − 1}, we write its counter 𝜎𝑗 ∶= ∣h𝑗 ⋆ s∣ .

• We write
𝑋 = ∑

𝑗∈e
𝜎𝑗 − 𝑆 .

• The definitions of 𝜎𝑖, Eℓ, 𝑆 and 𝑋 depend on a specific parity check matrix H and
an error pattern e. These dependencies will always be evident from the context and
are therefore not explicitly mentioned so as not to clutter the notations.

115

116 Chapter 12. Markovian model of the step-by-step algorithm

12.2 Algorithm supported by the model
Remember the definition of step-by-step bit-flipping, Algorithm 7.1 already discussed in
Chapter 7.

One of its key features is that it is easy to track the error weight and the syndrome
weight at each step if we know whether the flipped position is an error or not as well as
the value of its counter. Indeed, by Proposition 1.26, when the position 𝑗 with the counter
𝜎𝑗 is flipped the weight of the syndrome becomes |s| + ∣h𝑗∣ − 2𝜎𝑗.

In the following section, we establish the assumptions that we make to estimate
the probabilities associated with the different events that affect the outcome of the
algorithm. We will see that it describes, in fact, a Markov chain. We then define some
additional assumptions that are made mainly out of convenience as they greatly simplify
the calculations in the model. In another section we detail the transition probabilities of
the Markov chain. And finally we compare the predicted DFR in this model to the one
obtained by simulations of Algorithm 7.1 for a great range of block size 𝑟.

Necessity of the randomization. The algorithm is fully randomized to allow us, firstly
to use a slightly more efficient sampling method than going through all the positions, and
secondly to avoid any bias when doing so.

12.3 Assumptions
Let H be drawn uniformly at random in ℋ𝑑,𝑤,𝑟×𝑛 and e be a vector of weight 𝑡. We write
the syndrome s ∶= He⊺. We write 𝑡 ∶= |e| and 𝑆 ∶= |s|.

First, we assume that the counters behave as written in [Cha17].

Assumption 1. The counters 𝜎𝑗 = ∣h𝑗 ⋆ s∣ are independent and follow binomial distribu-
tions depending on wether 𝑗 is in the support of the error pattern e or not:

𝜎𝑗 ∼ Bin(𝑑, 𝜋0) if 𝑗 ∉ e , 𝜎𝑗 ∼ Bin(𝑑, 𝜋1) if 𝑗 ∈ e .

with
𝜋1 = 𝑆 + 𝑋

𝑑𝑡
, 𝜋0 = (𝑤 − 1)𝑆 − 𝑋

𝑑(𝑛 − 𝑡)
and (see Proposition 12.2)

𝑋 = 𝜉 E[𝑋 | 𝑆, 𝑡]
for some constant 𝜉.
Remark 12.1. We have seen in the previous chapter that while the counter distributions
above are extremely close to the observations that there remains a small bias (see §11.3.3).

We write 𝑆𝑖 and 𝑡𝑖 the random variables accounting for respectively the syndrome
weight and the error weight at the 𝑖-th iteration of the step-by-step algorithm. We also
define the event 𝐿𝑖 that the decoder is in a blocked state at the 𝑖-th iteration, this happens
when there is no position with a counter greater than or equal to the threshold:

𝐿𝑖 ∶= {∀𝑗, 𝜎(𝑖)
𝑗 < 𝑇 } .

where 𝜎(𝑖)
𝑗 is the counter associated to position 𝑗 at the 𝑖-th iteration.

Assumption 2. The stochastic process in Algorithm 7.1 is a time-homogeneous Markov
chain, i.e. the sequence (𝑆𝑖, 𝑡𝑖)𝑖 is such that for all 𝑖 ≥ 1

Pr [(𝑆𝑖+1, 𝑡𝑖+1) = (𝑎𝑖+1, 𝑏𝑖+1) ∣ ¬𝐿𝑖, (𝑆𝑖, 𝑡𝑖) = (𝑎𝑖, 𝑏𝑖), … , ¬𝐿0, (𝑆0, 𝑡0) = (𝑎0, 𝑏0)]

= Pr [(𝑆𝑖, 𝑡𝑖) = (𝑎𝑖+1, 𝑏𝑖+1) ∣ ¬𝐿𝑖−1, (𝑆𝑖−1, 𝑡𝑖−1) = (𝑎𝑖, 𝑏𝑖)] .

12.3. Assumptions 117

Proposition 12.2. Assuming that the random variables that indicate the number of errors
∣h⊺

𝑖 ⋆ e∣ for some equation indices 𝑖 are independent and if e ∈ ℰ𝑛,𝑡, the expectation of
𝑋 ∶= ∑ℓ>0 2ℓ𝐸2ℓ+1 knowing 𝑆 = ∣He⊺∣ is

E[𝑋 | 𝑆, 𝑡] = 𝑆 ⋅
∑ℓ 2ℓ𝜌2ℓ+1

∑ℓ 𝜌2ℓ+1
where 𝜌ℓ =

(𝑤
ℓ)(𝑛−𝑤

𝑡−ℓ)
(𝑛

𝑡)
.

Proof. For any row 𝑖 ∈ {0, … , 𝑟 − 1}, we define 𝑅𝑖 the random variable defined as follows

𝑅𝑖 =
⎧{
⎨{⎩

0 if 𝑠𝑖 = 0,
∣h⊺

𝑖 ⋆ e∣ − 1 otherwise.

If we know the error weight 𝑡, then E[𝑅𝑖 | 𝑠𝑖 = 1] = ∑ℓ 2ℓ𝜌2ℓ+1
∑ℓ 𝜌2ℓ+1

. Assuming independence,
the expected sum of 𝑆 of these random variables would be equal to 𝑆 multiplied by the
expected value of a single one.

Remark 12.3. The model derived from these two assumptions gradually degenerates as the
number of iterations grows, but remains relatively accurate in the first few iterations of
Algorithm 7.1, that is even when e is not uniformly distributed.

Markov chain. These two assumptions allow us to model the step-by-step decoder as
a finite state machine (FSM) with a state (𝑆, 𝑡) with 𝑆 the syndrome weight and 𝑡 the
error weight. Assumption 2 compels us to separate the situation where the decoder is
blocked from the one where it is not. Indeed, transitioning to a blocked state concerns the
whole “population” of counters while the other transitions concern the sampling method.
As a result, the transitions of the finite state machine follow the configuration shown in
Figure 12.1.

An error pattern is successfully decoded in 𝑓 iterations if the FSM follows a path that
leads to the state 𝑆 = 0, 𝑡 = 0:

(𝑆0, 𝑡0) → (𝑆1, 𝑡1) → ⋯ → (𝑆𝑓−1, 𝑡𝑓−1) → (0, 0) .

To estimate the probability of success of the decoder (from which we easily deduce the
DFR1) in the model defined by the two assumptions, we want to compute the probability
of these events for any possible starting state (𝑆0, 𝑡0). The possible starting states are
constrained by the structure of the code and the weight of the initial error pattern.

Validity of the Markovian model. In Assumption 1, we introduced a factor 𝜉 next to
E[𝑋 | 𝑆, 𝑡]. This factor compensates for the fact that the process is not strictly Markovian.
The problem lies in the term 𝑋. The decoder flips high counters in order to decrease the
syndrome weight. If we focus on an unsatisfied equation that becomes satisfied in this
process, if it contained more than one error, they also see their counters decreasing. The
error pattern obtained during decoding is therefore not random and the distribution of the
counters is biased. They are lower than what is expected for a given syndrome weight 𝑆
and error weight 𝑡. In order to take this bias into account, a factor 𝜉, close to 1 is added.

1In fact, to ensure sufficient accuracy with floating point operations, an actual implementation of the
model would rather calculate the complement of the probability of success: the probability of reaching a
blocked state.

118 Chapter 12. Markovian model of the step-by-step algorithm

𝑆𝑖, 𝑡𝑖

𝐿𝑖, 𝑆𝑖, 𝑡𝑖

¬𝐿𝑖, 𝑆𝑖, 𝑡𝑖

�

𝑆𝑖 + 𝑑 − 2𝜎, 𝑡𝑖 + 1

�

�

𝑆𝑖 + 𝑑 − 2𝜎, 𝑡𝑖 − 1

�

𝑇 ≤ 𝜎 ≤ 𝑑

𝑝𝐿

1 − 𝑝𝐿

1

𝑝

𝑝+
𝜎

𝑝−
𝜎

Figure 12.1: Diagram of the transitions profile at the 𝑖-th iteration starting from a state
where the syndrome weight is 𝑆𝑖 and the error weight is 𝑡𝑖. The edges are assigned
probabilities that we establish in section 12.5 (note that they depend on 𝑆𝑖 and 𝑡𝑖).

12.4 DFR estimation within the model
Additional assumptions. Although it is not strictly necessary for the calculation of the
DFR in this model, for this work we specify the decoder so that

1. the threshold 𝑇 is always greater than or equal to (𝑑 + 1)/2,
2. the number of iterations is not limited.

The first assumption ensures that, in the algorithm, any flip reduces the weight of the
syndrome by at least 1. Indeed, if a position 𝑗 with the counter 𝜎𝑗 ≥ (𝑑 + 1)/2 is flipped
at iteration #𝑖, the syndrome weight becomes

𝑆𝑖+1 = 𝑆𝑖 + 𝑑 − 2𝜎𝑗 ≤ 𝑆𝑖 − 1 .

Note that if the algorithm is implemented with a mechanism that exits the loop and
outputs a decoding failure when none of the 𝑛 counters hits the threshold, the probability
that it will never terminate is zero. In this sense, the second assumption is still legitimate
for a concrete algorithm (albeit conflicting with any goal of guaranteeing a constant-time
execution).

These two additional assumptions significantly reduce the time complexity of the model
computations. They guarantee that there is no loop in the Markov chain. The former
ensures that transitions from a state (𝑆, 𝑡) can only go in the direction that lowers its first
component 𝑆. The latter allows another representation of the Markov chain without any
self-loop (apart from those with a probability of 1). This is tantamount to considering an
equivalent algorithm whose main loop would be

• sample positions at random until you find one with a counter above the threshold,
• flip it.

We can thus calculate for each state (𝑆, 𝑡) the probability that it leads to a failure once
and for all as long as we do it for 𝑆 in ascending order.

12.5. Transition probabilities 119

10 15 20 25 30 35 40 45 50
0

20

40

60

80

𝑇
𝜎𝑗

Av
er

ag
e

nu
m

be
r

of
oc

cu
rr

en
ce

s

𝑗 ∉ e

𝑗 ∈ e

Figure 12.2: Example of a threshold choice for (𝑟, 𝑑, 𝑡) = (12 323, 71, 137) and 𝑆 = 4 868
(𝑋 = 908.87)

Threshold. The choice of a good threshold has been discussed in Part II. In this chapter
we choose the smallest value 𝑇 such that

Pr[𝜎𝑗 ≥ 𝑇 , 𝑗 ∈ e] ≥ Pr[𝜎𝑗 ≥ 𝑇 , 𝑗 ∉ e] .

In other words, if we plot, with on the x-axis the counter value and on the y-axis the
expected number of positions that have this counter value, the two curves concerning
respectively the errors and the correct positions, the threshold is the intersection of the
two curves (see Figure 12.2).

With Assumption 1, we have

𝑇 ∶= max
⎛⎜⎜⎜
⎝

𝑑 + 1
2

,
⎡
⎢
⎢
⎢

𝑑 log (1−𝜋1
1−𝜋0

) + log (𝑡
𝑛−𝑡)

log (1−𝜋1
1−𝜋0

) + log (𝜋0
𝜋1

)

⎤
⎥
⎥
⎥

⎞⎟⎟⎟
⎠

.

One edge case should be treated separately. If 𝜋1 > 1, take 𝑇 = 𝑑. This can happen
because the value of 𝑋 is only an estimation based on an expected value.

With this theoretical model, the decoder needs to know the value of 𝑡, i.e. the actual
number of remaining errors. A more realistic threshold value can be used, based, for
example, on an estimate of the weight of the error as a function of the syndrome weight
(see [CS16]).

12.5 Transition probabilities
Let us break down probabilities tied to the edges in the diagram of Figure 12.1. We
consider one iteration of the loop in Algorithm 7.1. A threshold 𝑇 has been computed.

1. For any position 𝑗, the counter 𝜎 = ∣h𝑗 ⋆ s∣ is below the threshold. The decoder is in
a blocked state. This happens with probability 𝑝𝐿.

120 Chapter 12. Markovian model of the step-by-step algorithm

2. There exists at least one counter greater than or equal to the threshold, this happens
with probability 1 − 𝑝𝐿.
Now suppose position 𝑗 has been sampled, the corresponding counter value is denoted
𝜎 = ∣h𝑗 ⋆ s∣. From this point, there are three different types of transition probabilities:

(a) if 𝜎 ≥ 𝑇 and 𝑗 ∈ e, then (𝑆, 𝑡) → (𝑆 + 𝑑 − 2𝜎, 𝑡 − 1), with probability 𝑝−
𝜎 ,

(b) if 𝜎 ≥ 𝑇 and 𝑗 ∉ e, then (𝑆, 𝑡) → (𝑆 + 𝑑 − 2𝜎, 𝑡 + 1), with probability 𝑝+
𝜎 ,

(c) if 𝜎 < 𝑇, then (𝑆, 𝑡) → (𝑆, 𝑡), with probability 𝑝.

Counters probabilities notation. For ease of reading and for the sake of genericity, we
adopt the following mathematical notations for the probabilities of the counters, for all
𝜎 ∈ {0, … , 𝑑}

𝑓1
𝑆,𝑡(𝜎) ∶= Pr [∣h𝑗 ⋆ s∣ = 𝜎 ∣ |e| = 𝑡, |s| = 𝑆, 𝑗 ∈ e] ,

𝑓0
𝑆,𝑡(𝜎) ∶= Pr [∣h𝑗 ⋆ s∣ = 𝜎 ∣ |e| = 𝑡, |s| = 𝑆, 𝑗 ∉ e] .

Under Assumption 1

𝑓1
𝑆,𝑡(𝜎) = (𝑑

𝜎
)𝜋𝜎

1 (1 − 𝜋1)𝑑−𝜎 , 𝑓0
𝑆,𝑡(𝜎) = (𝑑

𝜎
)𝜋𝜎

0 (1 − 𝜋0)𝑑−𝜎 .

12.5.1 Blocked state
Let us first treat the case where the entire “population” of positions has counters below
the threshold. In this case, the algorithm would simply be caught in an infinite loop.

Proposition 12.4. Under Assumption 1, we have

𝑝𝐿 ∶= Pr [(𝑆, 𝑡) → (𝐿, 𝑆, 𝑡)] = Pr [∀𝑗 ∈ {0, … , 𝑛 − 1}, 𝜎𝑗 < 𝑇 ∣ 𝑆, 𝑡]

= (∑
𝜎<𝑇

𝑓1
𝑆,𝑡(𝜎))

𝑡

⋅ (∑
𝜎<𝑇

𝑓0
𝑆,𝑡(𝜎))

𝑛−𝑡

.

12.5.2 Transitions from a non-blocked state
The transition probabilities from a non-blocked state depend on the counters distribution
as well as the sampling method. For all 𝜎 ∈ {𝑇 , … , 𝑑},

𝑝−
𝜎 ∶= Pr [𝑗 ← sample(context), 𝑗 ∈ e, ∣h𝑗 ⋆ s∣ = 𝜎] ,

𝑝+
𝜎 ∶= Pr [𝑗 ← sample(context), 𝑗 ∉ e, ∣h𝑗 ⋆ s∣ = 𝜎] .

The probability of staying in the same state is then:

𝑝 = ∑
𝜎<𝑇

(𝑝−
𝜎 + 𝑝+

𝜎) .

In Chapter 7, we have defined three sampling methods. In the order we treat them,
each method induces a bias towards large counters that is stronger than the previous one.

12.6. Results 121

Uniform sampling. The probabilities for the method of simply choosing a position
𝑗 ∈ {0, … , 𝑛 − 1} uniformly at random are obtained by simply weighting the distributions
of the counters by the error rate or its complement:

∀𝜎 ∈ {𝑇 , … , 𝑑} 𝑝−
𝜎 = 𝑡

𝑛
𝑓1

𝑆,𝑡(𝜎) , 𝑝+
𝜎 = (𝑛 − 𝑡)

𝑛
𝑓0

𝑆,𝑡(𝜎) .

Picking a position in one unsatisfied equation. With the method consisting in choosing
an unsatisfied equation uniformly at random then, still uniformly at random, one position
involved in the equation, counters distributions are affected by a factor linear in 𝜎.

∀𝜎 ∈ {𝑇 , … , 𝑑} 𝑝−
𝜎 = 𝜎𝑡

𝑤𝑆
⋅ 𝑓1

𝑆,𝑡(𝜎) , 𝑝+
𝜎 = 𝜎(𝑛 − 𝑡)

𝑤𝑆
⋅ 𝑓0

𝑆,𝑡(𝜎) .

Picking a position in two unsatisfied equations. When the same principle is applied
with two unsatisfied equations, counters distributions are affected by a factor quadratic
in 𝜎.

∀𝜎 ∈ {𝑇 , … , 𝑑} 𝑝−
𝜎 = 𝜎(𝜎 − 1)𝑡

𝐷
⋅ 𝑓1

𝑆,𝑡(𝜎) , 𝑝+
𝜎 = 𝜎(𝜎 − 1)(𝑛 − 𝑡)

𝐷
⋅ 𝑓0

𝑆,𝑡(𝜎)

where 𝐷 = 𝑑(𝑑 − 1)(𝑡𝜋2
1 + (𝑛 − 𝑡)𝜋2

0).

Infinite number of iterations. As explained in §12.4, not setting a limit to the number
of iterations has advantages in terms of computational complexity. In this case, we denote
the probabilities with a prime symbol (𝑝′

𝐿, 𝑝′−
𝜎 , 𝑝′+

𝜎 , 𝑝′).
The probability of blocking is unchanged: 𝑝′

𝐿 = 𝑝𝐿. One advantage of considering an
infinite number of iterations is that it removes loops so 𝑝′ = 0. The other probabilities are
multiplied by ∑𝑖≥0 𝑝𝑖 = 1/(1 − 𝑝):

𝑝′−
𝜎 = 𝑝−

𝜎
1 − 𝑝

, 𝑝′+
𝜎 = 𝑝+

𝜎
1 − 𝑝

.

12.6 Results
First, we place ourselves in the context of the [BIKE] cryptosystem. We explore two
different approaches to decoding that can make use of this model.

The first one is to use exclusively the step-by-step decoder. The second one consists in
performing a first pass with another algorithm, then decoding the residual errors with a
step-by-step decoder.

In any case, it is desirable to know the starting states of the step-by-step decoder. That
is to say, in the first case, it is necessary to know the joint distribution of the syndrome
and the error weight of a uniformly random error pattern, and in the second case, it is
necessary to know this distribution for the output of the first pass. Then, the DFR is
calculated by weighting the probability that each starting state causes a failure by its
occurrence frequency at the input of the step-by-step decoder.

For the first case, it was discussed in the previous chapter, but the second one is more
complicated. The problem lies in the syndrome weight which is difficult to evaluate, for
example for a parallel decoder as we saw in the previous chapter. We will therefore see the
problem in a reciprocal way: we will determine the set of states in which it is necessary to
arrive with the first pass to be certain (for example, with a probability of 1 − 2−128) that
the step-by-step decoder will be successful. The issue is then shifted to finding a decoder
that brings us to one of these states with a high probability.

122 Chapter 12. Markovian model of the step-by-step algorithm

12.6.1 Using the step-by-step decoder only
Starting distribution. We wish to have the joint distribution of (𝑆0, 𝑡0). As we are in the
context of the [BIKE] cryptosystem, the initial error weight is set to 𝑡0 = 𝑡.

Since the error pattern is the result of a pseudorandom expansion of a seed, it can
be seen as drawn uniformly at random in ℰ𝑛,𝑡 (in the random oracle model). Therefore,
Proposition 11.4 covers the joint distribution of (𝑆0, 𝑡0). It accurately takes into account
the fact that the parity check matrix is quasi-cyclic2 as shown in the previous chapter.

Computation Results. In Figure 12.3 we show the DFR predicted by the model for three
different values of 𝜉 so that we have a lower and an upper bound of the simulation curve.
The values of 𝜉 are close as they are within 0.02 of each other.

12.6.2 Using the step-by-step decoder for residual error correction
In Figure 12.4, we give an example of the DFR predicted by this Markov model. All
parameters are fixed (𝑟, 𝑑) = (12 323, 71) but a wide range of values for the syndrome
weight and the error weight is considered. What is represented are the contours of the
DFR: for each Iso-𝜆 line, the states inside the curve lead to a failure with a predicted
probability less than 2−𝜆. As an indication, the syndrome weight for a uniformly random
error model is also represented as an overlay with the mean value and the range of expected
values with a probability greater than 2−128 for a given 𝑡. However, the output of a real
decoder is not uniformly random at all, and the same data would usually be lower.

2Strictly speaking, it takes into account the mass equations that stem from the regularity of the code

12.6. Results 123

9 000 9 500 10 000 10 500 11 000 11 500 12 000 12 500 13 000 13 500 14 000

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

𝑟

lo
g 2

D
F

R
(𝑟

)

Markovian model 𝜉 = 0.935

Markovian model 𝜉 = 0.955

Markovian model 𝜉 = 0.975

Simulation

Figure 12.3: DFR vs. block size.

124 Chapter 12. Markovian model of the step-by-step algorithm

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

5 500

6 000

6 500

7 000

7 500

8 000

8 500

9 000

9 500

10 000

𝑡

𝑆

Iso-96 of model

Iso-128 of model

Iso-160 of model

Iso-128 of syndrome

Average of syndrome

Figure 12.4

Part IV

Practical DFR estimation

125

127

Summary of contributions
Based on the knowledge of the decoding acquired from models and simulations, we establish
an assumption about the behaviour of the DFR curve.

• We apply it to establish a framework for extrapolating DFR from simulation data. It
is necessary to use the inferred results rigorously, which we do by means of confidence
intervals for which we derive formulas.

• We then make sure that the assumption is not violated by particular structures in the
code. We measure the effect of parity check matrices with many column intersections
on the decoder and compute precisely, proving new combinatorial properties of the
spectrum, their density.

• Finally, we exhibit near-codewords, which are found in any QC-MDPC code. We see
how they negatively influence decoding and estimate their impact on the average
DFR.

128

Chapter 13

Introduction

LDPC codes share many properties with MDPC codes and have received a lot of attention
in the last decades in the context of telecommunication. However, applications of coding
theory to cryptography and to telecommunication have different requirements. The latter
usually focuses on finding one good code that fits some channel and hardware constraints.
For example IEEE 802.11 standard defines several common parity check matrices for its
different standardized rates [802.11, §20.3.8]. With a code-based public key encryption
scheme such as BIKE, each key generation involves choosing a new random code. The
IND-CCA security of such a scheme requires that the family of the generated codes has a
low average decoding failure rate (DFR).

13.1 State-of-the-art
13.1.1 Designing good LDPC code
Construction of LDPC codes usually relies on choosing a random parity check matrix of
fixed degree then rejecting matrices with a certain structure. In [MN97] a construction
avoids more than one overlap between columns, another avoids short cycles in the Tanner
graph. Irregular codes construction first optimizes the density evolution as a function of
the degree distribution polynomials 𝜆 = ∑ 𝜆𝑖𝑥𝑖−1 and 𝜌 = ∑ 𝜌𝑖𝑥𝑖−1 where 𝜆𝑖 and 𝜌𝑖 are
the fraction of edges incident to a variable (resp. check) node of degree 𝑖, see [RSU01]. A
technique known as progressive edge growth guarantees a Tanner graph whose smallest short
cycle (its length is called the girth of the graph) is greater than the method above [HEA01].

13.1.2 Error floors in LDPC codes
Estimation of the error floors for LDPC codes has been the focus of many research papers,
most of them involve particularities of the channel, the structure of the code or a specific
decoder. The usual suspects are subsets of the Tanner graph with nodes of unusual degrees:
the trapping sets and the stopping sets. A (𝑢, 𝑣) trapping set consists in 𝑢 variable nodes
inducing a graph where 𝑣 check nodes have an odd degree. A stopping set is a subset of
the variable nodes inducing a graph where no check node has degree 1.

One can define the decisional problem of determining if there is a stopping set of size
less than 𝑡 for a given linear code. And similarly we can define the problem of determining
if there exists a trapping set of size less than 𝑡 such that 𝑘 check nodes have degree 1 in the
induced subgraph for a given 𝑘 and a linear code. A reduction of the former to the latter
was established in [WKP09] and the former was proven to be NP-complete in [KS06]. The
NP-completeness was proven for generic codes only, but it is pointed out in [WKP09] that
it still holds if we add the constraint that the parity check matrix is sparse.

129

130 Chapter 13. Introduction

Error floors for LDPC codes over the binary erasure channel (BEC) were analysed
in [Di+02; Ric03]. The analysis was extended to the additive white Gaussian noise channel
(AWGN) and the binary symmetric channel (BSC) in [Ric03]. The method involves
searching for candidate trapping sets in the Tanner graph then estimating their influence
on the decoding failure rate.

13.1.3 DFR and spectrum of QC-MDPC codes

It was shown in [GJS16] that there is a correlation between the decoding failure probability
and the resemblance between an error pattern and the secret parity check matrix.

Here the resemblance is defined via the distance spectrum. It is the set of all the
distances between two ones in a vector, it is counted blockwise and circularly. For example,
say 𝑟 = 11 and e = (e0, e1) ∈ (𝔽𝑟

2)2 with e0 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0) then the distance
spectrum for this block is the set {2, 4, 5}.

The key observation of the paper is that the decoder’s probability of failure depends
on the number of common distances between the spectrum of the key and the spectrum
of the error pattern. Authors observed that, when a distance is in the spectrums of both
of them, the decoder is slightly less likely to fail. They thus set up a reaction attack in
which an attacker sends many ciphertexts to an oracle that returns whether the decryption
(decoding) was successfull. As the attacker knows the plaintext associated to a ciphertext,
they can extract its distance spectrum. With enough samples, each distance can be
classified, and one can tell with great certitude whether it belongs to the parity check
matrix spectrum or not. Authors then showed that the sparse parity check matrix (the
private key) can be recovered with an algorithm akin to a depth-first search.

They used Algorithm ℬ from [MOG15a] i.e. a parallel bit-flipping algorithm with
a precomputed table of thresholds 𝑏𝑖 for each iteration. But similar behaviour can be
observed with any other algorithm.

We will see that the distance spectrum is a powerful tool that shows up in other security
related aspects such as the weak keys for QC-MDPC.

13.1.4 Weak keys in a QC-LDPC cryptosystem

The second round version of LEDACrypt [LEDA] is a cryptosystem that uses QC-LDPC
codes. It shares some similarities with BIKE in the fact that it uses a QC-MDPC code,
but it has the additional propriety that the parity check matrix H can be factored as
H = H′Q where H′ and Q are sparse, quasi-cyclic matrices of dimension respectively
𝑝 × (𝑝 ⋅ 𝑛0) and (𝑝 ⋅ 𝑛0) × (𝑝 ⋅ 𝑛0) for some parameters 𝑛0 and 𝑝. In [APRS20], authors
exhibited sets of weak keys. The product structure of the parity check matrix induces a
strong bias in the bits positions of the low-weight codewords. This bias can be exploited to
speed up the information set decoding algorithms1 (ISD). While the typical ISD algorithm
chooses a random permutation on the columns for each iteration, they first consider an
information set consisting of consecutive positions in each block. They have shown that a
single iteration of the Prange algorithm can break a significant proportion of the (thus
weak) keys. From this fundamental idea, they have achieved improvements by exploiting
some isomorphisms provided by the structure of the product of quasi-cyclic matrices. In
the end, they showed that the cost of the attack divided by the density of these weak keys
is much lower than the alleged security of the system.

The latest specification of LEDACrypt corrects that flaw by removing the product
structure and thus using indeed a QC-MDPC code.

1See §3.3.

13.2. Contributions 131

13.1.5 Weak keys in QC-MDPC cryptosystems
Taking QC-MDPC codes, some weak keys were studied in [BDLO16], their particular
algebraic properties allow retrieval of the secret key by solving a rational reconstruction
problem. The rational reconstruction problem consists, for two polynomials f and g in 𝕂[𝑥]
where 𝕂 is a field and the polynomials are such that 0 < deg(f) < deg(g), in finding, for a
positive integer 𝑟 ≤ deg(g), two polynomials 𝜙 and 𝜓 of 𝕂[𝑥] such that

⎧{{{
⎨{{{⎩

deg(𝜓) < 𝑟 ,
deg(𝜙) < def(g) − 𝑟 ,
gcd(𝜙, 𝜓) = 1 ,
𝜓
𝜙 = f mod g .

A polynomial-time algorithm to solve this problem is the extended euclidean algorithm.
In [BDLO16], authors define a set of weak keys which are, for the case of BIKE, the

subset of keys of the form h = (h0, h1) where deg(h0) + deg(h1) < 𝑟. Considering the
quasi-cyclic structure of the code, they further extend this set by using isomorphisms.

In the end, the density of those keys is small, of order 2−𝜆 where 𝜆 the security
parameters of the system (e.g. 𝜆 = 128), and do not represent a direct threat.

13.2 Contributions
Concerning the decoding, there are three qualities that are desirable for a QC-MDPC
scheme: (i) a small block size, (ii) a low complexity and (iii) a low proven DFR. It is a
rather challenging to have all three at the same time.

The main issue with proving a low DFR lies in the fact that the algorithms are iterative.
The distributions of the relevant information to the algorithm can be computed for a
uniformly random error pattern with a uniformly random parity check matrix. After one
iteration the error pattern can no longer be considered uniformly random, some bits were
flipped based on their counters which are information that are correlated to other bits.
These correlations are hard to characterize and therefore the analysis for the first iteration
cannot be iterated for the next ones.

In addition, the decoders that can be analysed often have rather poor performance,
either because they are sequential or because they do not take advantage of the gain offered
by being iterative.

The better performance achieved by the latest developments in decoding algorithms
offers the promise of smaller parameter sizes, but they are even less amenable to analysis.
Therefore, in this part we consider the use of simulation to estimate the DFR for these
recent evolutions.

In the first chapter, we formulate an assumption, supported by the analytical results,
that we use to extrapolate the DFR from simulations. Using values obtained by simulation
requires great rigor with regard to margins of error. We thus cover the confidence intervals
for the DFR obtained from the simulation data and for the extrapolated value.

Now, let us rewrite the definition of the decoding failure rate in the context of a
Niederreiter cryptosystem with a sparse parity check matrix set ℋ and the set of admissible
error patterns ℰ. Let 𝒲 be any subset of ℋ and 𝒟 be a decoder.

DFR𝒟 = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ, e ∈ ℰ]

=
∣𝒲∣
|ℋ|

DFR𝒟,𝒲 + (1 −
∣𝒲∣
|ℋ|

) DFR𝒟,ℋ∖𝒲

132 Chapter 13. Introduction

with
DFR𝒟,𝒲 = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ 𝒲, e ∈ ℰ]

and
DFR𝒟,ℋ∖𝒲 = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ ∖ 𝒲, e ∈ ℰ] .

In the context of decoding failures, a set of weak keys is a set 𝒲 such that

∣𝒲∣
|ℋ|

DFR𝒟,𝒲 > 2−𝜆 .

If this inequality is satisfied, but there is an imbalance between the factors so that ∣𝒲∣
∣ℋ∣

is rather small but DFR𝒟,𝒲 is rather large, then the estimates based on simulations
could be skewed. In Chapter 15 we define and evaluate the influence of some subsets of
keys on the DFR. We show a new property that links the spectrum of a key with the
number of intersections between two columns in the parity check matrix. The weak keys
that we define have an unusual spectrum (or equivalently an unusual number of columns
intersections), we give combinatorial formulas to count them and evaluate their influence
on the DFR with simulations.

Similarly, we can focus on the other side of the product He⊺ and look at specific error
patterns e. In this case, the phenomenon that we want to avoid is known as the error floor
in coding theory.

For all sparse parity check matrix H, we associate ℰH a subset of ℰ. Let 𝒟 be a
decoder.

DFR𝒟 = 1
|ℋ|

∑
H∈ℋ

⎛⎜
⎝

∣ℰH∣
∣ℰ∣

DFRℰH
𝒟,H + (1 −

∣ℰH∣
∣ℰ∣

) DFRℰ∖ℰH
𝒟,H

⎞⎟
⎠

with
DFRℰH

𝒟,H = Pr [𝒟(H, He⊺) ≠ e ∣ e ∈ ℰH]

and
DFRℰ∖ℰH

𝒟,H = Pr [𝒟(H, He⊺) ≠ e ∣ e ∈ ℰ ∖ ℰH] .

If for any sparse parity check matrix H we can find a set of error patterns ℰH that hinder
the decoding performance, it is problematic if

1
|ℋ|

∑
H∈ℋ

∣ℰH∣
∣ℰ∣

DFRℰH
𝒟,H = EH∈ℋ [

∣ℰH∣
∣ℰ∣

DFRℰH
𝒟,H] > 2−𝜆 .

In Chapter 16, we will see that the quasi-cyclic structure together with the sparseness of
the parity check matrix of a QC-MDPC imply the existence of several error patterns called
”near-codewords”. When used to decode a pattern close to one of these near-codewords
(using the Hamming distance), a decoder is more likely to fail. Once again, similar to the
weak keys situation, it is a matter of counting the problematic patterns and evaluating
their influence on decoding by means of simulations.

Chapter 14

A DFR extrapolation framework

Several works and simulation show that, excluding a phenomenon such as the error floor
discussed in Chapter 16, the function 𝑟 ↦ log DFR𝒟(𝑟) is always decreasing and, at worst,
it is an affine function. Similar to how security reduction often relies on the complexity of
the best known algorithm to solve a particular problem (e.g. information set decoding for
most code-based cryptographic schemes), we make a decoding assumption that we can use
to estimate the DFR of a particular decoding algorithm.

14.1 Notations
We adopt the following notations in this chapter.

• The decoding failure rate for a QC-MDPC, with a set of keys ℋ and a set of
messages ℰ for a decoder 𝒟 is written as

DFRℰ
𝒟,ℋ = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ, e ∈ ℰ] .

• For ease of reading, when omitted, the set ℰ is by default the whole set of admissible
messages

ℰ = ℰ𝑛,𝑡 = {e ∈ {0, 1}𝑛 | |e| = 𝑡} .

• When omitted, the set ℋ is by default the whole set of admissible keys

ℋ = ℋ𝑑,𝑤,𝑟×𝑛

= {H ∈ 𝔽𝑟×𝑛
2 ∣ ∀𝑖 ∈ {0, … , 𝑟 − 1}, ∣h⊺

𝑖 ∣ = 𝑤, ∀𝑗 ∈ {0, … , 𝑛 − 1}, ∣h𝑗∣ = 𝑑} ,

• The column weight 𝑑, the row weight 𝑤, and the error weight 𝑡 will be obvious from
the context and we will write

DFR(𝑟) = DFRℰ2𝑟,𝑡
𝒟,ℋ𝑑,2𝑑,𝑟×2𝑟

.

14.2 The decoder security assumption
We defined a Markovian model for a simple variant of bit-flipping, the step-by-step decoder1.
This decoder corrects fewer errors than other bit-flipping variants, however it uses the
same ingredients: computing counters and flipping the corresponding positions if they are

1The algorithm and the analysis are discussed in Chapters 7 & 12.

133

134 Chapter 14. A DFR extrapolation framework

above some threshold. We fix the values of the parameters 𝑑 and 𝑡, then a model can be
generated and a DFR computed for arbitrary large values of the block size 𝑟. We observe
that in the range of interest for 𝑟, the function 𝑟 ↦ log DFR(𝑟) is first strictly concave and
eventually decreases linearly with 𝑟.

[Til18a] also explores the asymptotic behaviour of QC-MDPC decoding. The asymptotic
formula it provides for the DFR cannot be used directly because the setting is different (𝑑
and 𝑡 vary with 𝑟), and also the conditions under which it can be proven are not relevant
for decoders and parameters of practical interest. However, the indication provided by
the formula is consistent with the previous remark, the dominant term in the expression
decreases linearly with 𝑟.

Experimentally, when plotting the DFR (obtained by simulation) vs. the block size 𝑟
in a logarithmic scale, one observes a concave curve. This was observed for all the variants
of bit-flipping decoding.

As there is enough evidence from the state of the art to back this claim, we suggest
formulating a decoding assumption on which we will base our estimation of the DFR. We
denote 𝒟 a decoder: it is a family of decoding algorithms that can be applied to any
QC-MDPC codes with fixed (𝑑, 𝑡) and variable 𝑟.
Assumption 3. For a given decoder 𝒟, and a given security level 𝜆, the function
𝑟 ↦ log DFR𝒟(𝑟) is concave if DFR𝒟 (𝑟) ≥ 2−𝜆.

Under this assumption, a conservative estimation on the DFR can be made from the
measure of the DFR for two different block sizes 𝑟1 and 𝑟2. Indeed, let 𝑟1 < 𝑟2 < 𝑟3, then
by definition of the concavity of a function we have

log DFR𝒟(𝑟2) ≥ 𝑟3 − 𝑟2
𝑟3 − 𝑟1

log DFR𝒟(𝑟1) + 𝑟2 − 𝑟1
𝑟3 − 𝑟1

log DFR𝒟(𝑟3)

as 𝑟3−𝑟2
𝑟3−𝑟1

, 𝑟2−𝑟1
𝑟3−𝑟1

∈ [0, 1] and 𝑟3−𝑟2
𝑟3−𝑟1

𝑟1 + 𝑟2−𝑟1
𝑟3−𝑟1

𝑟3 = 𝑟2.
This inequality can be rewritten as in the following proposition.

Proposition 14.1. Under Assumption 3, an upper bound of the DFR for a block size 𝑟3
can be extrapolated from the DFR for block sizes 𝑟1 and 𝑟2, with 𝑟1 < 𝑟2 < 𝑟3 using the
following inequality:

log DFR𝒟(𝑟3) ≤ log DFR𝒟(𝑟1) + log DFR𝒟(𝑟2) − log DFR𝒟(𝑟1)
𝑟2 − 𝑟1

(𝑟3 − 𝑟1) .

Another way to say it is that the secant line crossing the graph of 𝑟 ↦ log DFR𝒟(𝑟) at 𝑟1
and 𝑟2 upper bounds log DFR𝒟(𝑟3) for any 𝑟3 > 𝑟2. It is an equality when 𝑟 ↦ log DFR𝒟(𝑟)
is affine, and this was the observed asymptotic behaviour in the Markovian model. However,
in the range of values for 𝑟 usually used in simulation, the function has a faster decrease
and 𝑟1 and 𝑟2 should be as high as the simulation and the desired precision allow.

For instance in Figure 14.1, suppose the low curve (blue) is giving the log2(DFR) and
we are able to make accurate simulation as long as the DFR is above 2−25 (black dots).
Taking the tangent at the last point gives us the red line from which we derive an upper
bound 𝑟′ for a block size with a DFR below 2−128 as well as an upper bound 2−𝑠 for the
DFR for a given block size 𝑟.

14.3 Security of the system with respect to the block size
The security of a QC-MDPC based cryptosystem relates to the generic problem of decoding
linear codes. Remember, from §3.3, the result that is implied by Proposition 3.5 and [Sen11],
stating that the security of the system depends on

𝒲ℱ𝒜(𝑛, 𝑘, 𝑤)
𝑛 − 𝑘

= 2𝑐[1+𝑤(1+𝑜(1))]−log2(𝑛) and 𝒲ℱ𝒜(𝑛, 𝑘, 𝑡)√
𝑛 − 𝑘

= 2𝑐[1/2+𝑡(1+𝑜(1))]−log2(𝑛)/2

14.4. Confidence interval 135

𝑟

log2(DFR)

−128

𝑟′𝑟0𝑟

−𝑠

−25

Figure 14.1: DFR tangent extrapolation

with 𝑐 = − log2(1−𝑘/𝑛), for any algorithm 𝒜 among the variants of [Pra62; Ste88; Dum91;
BJMM12; MMT11; MO15].

With BIKE parameters, 𝑛 does not exceed 216 and the code rate is always 𝑅 = 𝑘/𝑛 =
1/2 so 𝑐 = 1. Consequently, the methodology we develop in this chapter to decrease the
DFR for an algorithm by increasing the code length has very little impact on this aspect
of the security of the system.

14.4 Confidence interval
The failure rate DFRℰ

𝒟,ℋ(𝑟) is the probability of the Bernoulli trial written in Algo-
rithm 14.1 returning False. In this section we will denote this DFR as 𝑝 for conciseness.

Algorithm 14.1: Bernoulli trial for decoding failure.
input : Block size 𝑟, message space ℰ, key space ℋ, decoder 𝒟.
e

$
← ℰ;

H
$

← ℋ;
s ← He⊺;
e′ ← 𝒟(H, H, s);
return [e′ = e];

Repeating this procedure 𝑁 times and counting the number of failures 𝐹 consitutes
a random variable following a binomial distribution Bin(𝑁, 𝑝). The ratio 𝐹/𝑁 gives an
estimate of the actual probability 𝑝 and, using a normal approximation, the standard
deviation of this estimate is proportional to

√𝐹(𝑁 − 𝐹)
𝑁

√
𝑁

.

To be more precise, let us recall the definition of a confidence interval.

Definition 14.2. Let 𝛼 ∈ (0, 1). Suppose we have an observable vector x = (𝑥1, … , 𝑥𝑛)
from a distribution that depends on an unknown parameter 𝜃 ∈ Θ. A confidence interval
with a confidence level (1 − 𝛼) for 𝜃 is obtained from a function ℐ that satisfies:

∀𝜃 ∈ Θ, Pr [𝜃 ∈ ℐ(x, 𝛼) ∣ 𝜃] ≥ 1 − 𝛼 .

The actual value of the left-hand side of this inequality is called the coverage probability.
So the confidence level is the infimum of the coverage probabilities for all 𝜃 ∈ Θ.

136 Chapter 14. A DFR extrapolation framework

The aforementioned normal approximation is a common way to roughly estimate a
confidence interval. Some more advanced techniques were designed so that the coverage
probability is closer to the desired (1 − 𝛼).

14.5 A first estimation
Here we will recall the Clopper-Pearson interval also known as the exact method as it
gives a coverage probability that is always above (1 − 𝛼). It is a conservative method for
computing a confidence interval.

14.5.1 Clopper-Pearson interval
First, we need to set the framework for our problem. We repeat 𝑁 times a Bernoulli
process with probability of failure 𝜃. The observed number of failures is a random variable
that we denote 𝑋 ∈ {0, … , 𝑁}. 𝑋 follows a binomial distribution Bin(𝑁, 𝜃):

Pr[𝑋 = 𝑥] = {(𝑁
𝑥)𝜃𝑥(1 − 𝜃)𝑁−𝑥 if 𝑥 ∈ {0, … , 𝑁};

0 otherwise.

The probability 𝜃 is the unknown parameter that we want to estimate.
This method uses the cumulative probabilities of the binomial distribution Pr[𝑋 ≥ 𝑥]

and Pr[𝑋 ≤ 𝑥] for some number of failures 𝑥 and some undeternmined probability 𝜃:

Pr[𝑋 ≥ 𝑥] =
𝑁

∑
𝑘=𝑥

(𝑁
𝑘

)𝜃𝑘(1 − 𝜃)𝑁−𝑘 Pr[𝑋 ≤ 𝑥] =
𝑥

∑
𝑘=0

(𝑁
𝑘

)𝜃𝑘(1 − 𝜃)𝑁−𝑘 .

The confidence interval is a range of values for 𝜃 such that for a number of failures 𝐹
observed among 𝑁 samples is not abnormal i.e. for any probability 𝜃 in the interval, the
observation happens with probability at least (1 − 𝛼).

Given the monotonicity of the cumulative probabilities with respect to 𝜃, the confidence
interval can be written as (𝜃−; 𝜃+) with

𝜃− = inf
𝜃

{𝜃 ∣ Pr[𝑋 ≥ 𝐹] > 𝛼
2

} , 𝜃+ = sup
𝜃

{𝜃 ∣ Pr[𝑋 ≤ 𝐹] > 𝛼
2

} .

Another common way to write it is:

Proposition 14.3 (Clopper-Pearson [CP34]). A (1 − 𝛼)-confidence interval for a failure
probability 𝑝 when 𝐹 failures have been observed out of 𝑁 experiments is (𝜃−, 𝜃+) where

𝜃− = 𝐵−1(𝛼/2, 𝐹 , 𝑁 − 𝐹 + 1) 𝜃+ = 𝐵−1(1 − 𝛼/2, 𝐹 + 1, 𝑁 − 𝐹) .

With 𝐵−1 the inverse of 𝑥 ↦ 𝐵(𝑥, 𝑎, 𝑏), the incomplete beta function:

𝐵(𝑥, 𝑎, 𝑏) = Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏)

∫
𝑥

0
𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡 .

14.5.2 A first estimation of confidence intervals for extrapolations
Now let us come back to our extrapolation problem. First, say we know the true probabilities
𝑝1 = DFR(𝑟1) and 𝑝2 = DFR(𝑟2). If we suppose that 𝑟 ↦ log DFR𝒟(𝑟) is an affine function
(the extreme case of Assumption 3) then the failure probability 𝑝3 = DFR(𝑟3) for a block
size 𝑟3 > 𝑟2 > 𝑟1 is

𝑝3 = 𝑝−𝐴
1 𝑝1+𝐴

2 (14.1)

14.6. Using posterior probability 137

(1 − 𝛼)

(1 − 𝛽)

(1 − 𝛼)(1 − 𝛽)

𝑟

log2(DFR)

Figure 14.2: Rough estimation of the confidence interval.

with 𝐴 = 𝑟3−𝑟2
𝑟2−𝑟1

> 0.
In reality, for a block size 𝑟𝑖, we only know that 𝐹𝑖 failures were observed out of

𝑁𝑖 samples with 𝑖 = 1, 2. If 𝑝1 has a (1 − 𝛼)-confidence interval (𝑝−
1 ; 𝑝+

1) and 𝑝2 has a
(1 − 𝛽)-confidence interval (𝑝−

2 ; 𝑝+
2), then 𝑝3 has a confidence interval (𝑝−

3 ; 𝑝+
3)

𝑝−
3 = (𝑝+

1)−𝐴(𝑝−
2)1+𝐴; 𝑝+

3 = (𝑝−
1)−𝐴(𝑝+

2)1+𝐴

with a coverage probability at least (1 − 𝛼)(1 − 𝛽). This is illustrated in Figure 14.2.
In practice, for a given confidence level, one can find a narrower confidence interval

than this one.

14.6 Using posterior probability
In this section we detail how to compute narrower confidence interval using posterior
probabilities.

We see the failure probability of a Bernoulli trial as a random variable Θ𝑖 ∈ [0, 1] for
i= 1, 2. Under the condition that Θ𝑖 = 𝜃𝑖, 𝑋𝑖 follows a binomial distribution for 𝑖 = 1, 2:

𝑋𝑖 | Θ𝑖 = 𝜃𝑖 ∼ Bin(𝑁𝑖, 𝜃𝑖) .

We define the random variable Θ3 ∈ [0, 1] as

Θ3 = Θ−𝐴
1 Θ1+𝐴

2

for some constant 𝐴 > 0.
Our goal is, with no prior knowledge on Θ3, to find its distribution if we observe

𝑋𝑖 = 𝐹𝑖 for 𝑖 = 1, 2.
Let us first recall two properties about random variables (see [Spr79] and [BT02] for

proofs). In this section, we write 𝑓𝑋 the probability density functions of any random
variable 𝑋.

138 Chapter 14. A DFR extrapolation framework

Proposition 14.4. Let 𝑋 and 𝑌 be two independent positive random variables whose
probability density functions are respectively 𝑓𝑋 and 𝑓𝑌 then the ratio 𝑍 = 𝑋/𝑌 is a
random variable with the following probability density function:

𝑓𝑋/𝑌(𝑧) = ∫
∞

0
𝑓𝑌(𝑦)𝑓𝑋(𝑧𝑦)𝑦 𝑑𝑦 .

Proposition 14.5. Let 𝑋 be a real valued random variable and let 𝑔 ∶ ℝ → ℝ be an invertible
monotonic differentiable measurable function whose inverse is ℎ. Let 𝑌 be the random
variable defined by 𝑌 = 𝑔(𝑋). We write 𝑓𝑋 and 𝑓𝑌 the probability density functions of
respectively 𝑋 and 𝑌. Then

𝑓𝑌(𝑦) = |ℎ′(𝑦)|𝑓𝑋(ℎ(𝑦)) .

Corollary 14.6. For any random variable 𝑋 and any real number 𝐴 ≠ 0

𝑓𝑋𝐴(𝑥) = ∣ 1
𝐴

∣ 𝑥1/𝐴−1𝑓𝑋(𝑥1/𝐴) .

With no prior knowledge on the failure probability distributions we have the following
proposition.

Proposition 14.7. For 𝑖 = 1, 2, taking the uniform prior 𝑓Θ𝑖
(𝜃𝑖) = 1, under the observation

𝑋𝑖 = 𝑥𝑖, Θ𝑖 follows a beta distribution Β(𝑥𝑖 + 1, 𝑁𝑖 − 𝑥𝑖 + 1):

𝑓Θ𝑖 | 𝑋𝑖=𝑥𝑖
(𝜃) = 1

𝐵(𝑥𝑖 + 1, 𝑁𝑖 − 𝑥𝑖 + 1)
𝜃𝑥𝑖(1 − 𝜃)𝑁𝑖−𝑥𝑖

where 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) .

Proof. Bayes’ theorem states that:

𝑓Θ𝑖 | 𝑋𝑖=𝑥𝑖
(𝜃) =

Pr(𝑋𝑖 = 𝑥𝑖 | Θ𝑖)𝑓Θ𝑖
(𝜃)

∫1
0

Pr(𝑋𝑖 = 𝑥𝑖 | Θ𝑖)𝑓Θ𝑖
(𝜃)𝑑𝜃

.

Applying Corollary 14.6, we can determine the distributions of Θ𝐴
1 and Θ1+𝐴

2 . Then,
applying Proposition 14.4

𝑓Θ3 | 𝑋1=𝑥1,𝑋2=𝑥2
(𝑧) = 𝑧1/(1+𝐴)−1

𝐴(1 + 𝐴)
∫

1

0
𝑓Θ1 | 𝑋1=𝑥1

(𝑥1/𝐴)𝑓Θ2 | 𝑋2=𝑥2
((𝑧𝑥)1/(1+𝐴))

𝑥1/𝐴+1/(1+𝐴)−1 𝑑𝑥 .

Finally, since the integrand is non-negligible only in a narrow range of values and since
we are interested in the logarithm of the DFR, we can apply a change of variable and
Proposition 14.5 to obtain the following proposition.

Proposition 14.8. Let Θ𝑖 ∈ [0, 1] be a real-valued random variable for i= 1, 2. Let 𝑋𝑖
be random variables such that under the condition that Θ𝑖 = 𝜃𝑖, 𝑋𝑖 follows a binomial
distribution for 𝑖 = 1, 2:

𝑋𝑖 | Θ𝑖 = 𝜃𝑖 ∼ Bin(𝑁𝑖, 𝜃𝑖) .

Let Θ3 ∈ [0, 1] be the random variable defined as

Θ3 = Θ−𝐴
1 Θ1+𝐴

2

for some constant 𝐴 > 0.

14.7. Choosing parameters 139

𝑓log(Θ3) | 𝑋1=𝑥1,𝑋2=𝑥2
(𝑠) = 𝑒𝑠(𝑥2+1)/(1+𝐴)

𝐾
∫

0

−∞
𝑒𝑡(𝑥1+1

𝐴 + 𝑥2+1
1+𝐴)

(1 − 𝑒 𝑡
𝐴)𝑁1−𝑥1(1 − 𝑒 𝑠+𝑡

1+𝐴)𝑁2−𝑥2 𝑑𝑡 .

with
𝐾 = 𝐴(1 + 𝐴)𝐵(𝑥1 + 1, 𝑁1 − 𝑥1 + 1)𝐵(𝑥2 + 1, 𝑁2 − 𝑥2 + 1) .

We can now define the (1 − 𝛼) confidence interval (log 𝜃−
3 ; log 𝜃+

3) on the extrapolated
value log 𝜃3 where log 𝜃−

3 is such that

∫
log 𝜃−

3

−∞
𝑓log(𝜃3)(𝑠) 𝑑𝑠 = 𝛼/2

and log 𝜃+
3 is such that

∫
0

log 𝜃+
3

𝑓log(𝜃3)(𝑠) 𝑑𝑠 = 𝛼/2 .

Proposition 14.9. Let 𝑝1 and 𝑝2 be the failure probabilities of two independent Bernoulli
trials. Suppose, for 𝑖 = 1, 2, that we observe 𝐹𝑖 failures out of 𝑁𝑖 samples of each Bernoulli
trial, and suppose that

𝑝3 = 𝑝−𝐴
1 𝑝1+𝐴

2 .

Then a (1 − 𝛼)-confidence interval for 𝑝3 is (exp(ℓ𝑝−
3), exp(ℓ𝑝+

3)) where ℓ𝑝−
3 is the

greatest value such that

1
𝐾

∫
ℓ𝑝−

3

−∞
∫

0

−∞
𝑒𝑠(𝐹2+1

1+𝐴)𝑒𝑡(𝐹1+1
𝐴 + 𝐹2+1

1+𝐴)(1 − 𝑒 𝑡
𝐴)𝑁1−𝐹1(1 − 𝑒 𝑠+𝑡

1+𝐴)𝑁2−𝐹2 𝑑𝑡 𝑑𝑠 < 𝛼
2

and ℓ𝑝+
3 is the smallest value such that

1
𝐾

∫
∞

ℓ𝑝+
3

∫
0

−∞
𝑒𝑠(𝐹2+1

1+𝐴)𝑒𝑡(𝐹1+1
𝐴 + 𝐹2+1

1+𝐴)(1 − 𝑒 𝑡
𝐴)𝑁1−𝐹1(1 − 𝑒 𝑠+𝑡

1+𝐴)𝑁2−𝐹2 𝑑𝑡 𝑑𝑠 < 𝛼
2

where
𝐾 = 𝐴(1 + 𝐴)𝐵(𝐹1 + 1, 𝑁1 − 𝐹1 + 1)𝐵(𝐹2 + 1, 𝑁2 − 𝐹2 + 1) .

Example 14.10. In Table 14.1 we compare the confidence intervals (DFR−, DFR+) for
extrapolated DFR at 𝑟3 = 12 323 for two simulations data:

• BGF (9 iterations): for 𝑟1 = 10 037, 𝐹1 = 66 391, 𝑁1 = 3 747 161 784, 𝑟2 = 10 253,
𝐹2 = 5, 𝑁2 = 1 445 221 866,

• Backflip 7 iterations : 𝑟1 = 10 181, 𝐹1 = 394, 𝑁1 = 14 576 092 619, 𝑟2 = 10 253,
𝐹1 = 111, 𝑁1 = 34 283 154 045.

We can see a difference of a few bits between confidence intervals from the simple method
and Proposition 14.9.

14.7 Choosing parameters
As discussed in §4.1, the security of QC-MDPC system depends mainly on the column
weight 𝑑 and the error weight 𝑡, achieving a low DFR is a matter of choosing the right
block size 𝑟.

140 Chapter 14. A DFR extrapolation framework

Table 14.1: Confidence intervals for some decoding simulation data.

Simple method Proposition 14.9
Algorithm log(DFR) log(DFR−) log(DFR+) log(DFR−) log(DFR+)

BGF 9 iterations -146.20 -172.30 -129.11 -164.21 -130.31
Backflip 7 iterations -116.22 -134.13 -99.00 -128.13 -104.57

To achieve IND-CPA security, the parameter 𝑡 and 𝑑 should be chosen to match a
certain security level 𝜆. To have IND-CCA security, we also need to make sure the DFR is
less than 2−𝜆. In order to find the smallest 𝑟 block size having this property, we will run
decoding simulations.

Under Assumption 3, the DFR can be estimated from two sets of simulations. The only
varying parameter between those two sets is the block size 𝑟. Another thing to consider
is how we balance the computational effort between these two sets. We assume that the
block size has a negligible influence on the effort necessary to run one simulation, and we
cap the total number of simulations by a value 𝑁. In total, there are four parameters to
be determined: 𝑟1, 𝑟2, 𝑁1, 𝑁2 (𝑁 = 𝑁1 + 𝑁2).

We then run 𝑁𝑖 simulations with block size 𝑟𝑖 and count the number of decoding
failures 𝐹𝑖 for 𝑖 = 1, 2. Using Proposition 14.9 we can then choose the smallest 𝑟 such that
an upper bound on the DFR for this 𝑟 is below 2−𝜆.

However, it is difficult to choose relevant values for 𝑟1, 𝑟2, 𝑁1, 𝑁2 using an analytical
formula. Such a formula would also require knowing 𝑟 ↦ DFR𝒟(𝑟) but we only assume
that it is concave.

To overcome this issue, we can rely on a heuristic. First we can compute a rough
estimate of 𝑟 ↦ DFR𝒟(𝑟) with a polynomial interpolation and use it in a nonlinear
optimization to determine the values of 𝑟1, 𝑟2, 𝑁1 and 𝑁2 that minimize the upper bound
given in Proposition 14.9. In practice, the nonlinear optimization method described
in [NM65] converges quickly.

The complete heuristic is detailed in Algorithm 14.2.

14.7. Choosing parameters 141

Algorithm 14.2: Heuristic for finding 𝑟1, 𝑟2, 𝑁1 and 𝑁2.
input : Initial error weight 𝑡, column weight 𝑑, decoder 𝒟, total number of tests

𝑁max, precision of measures 𝜖.
𝑁total ← 0;
𝑖 ← 0;
Δ ← 𝑤2/200;
𝑆 ← {};
repeat

𝑟 ← 𝑤2/2 + 𝑖 × Δ;
𝐹 ← 0;
𝑁 ← 0;
repeat

if Bernoulli(𝑟, 𝒟) = False then
𝐹 ← 𝐹 + 1

𝑁 ← 𝑁 + 1;
𝑁total ← 𝑁total + 1;
(𝑝−, 𝑝+) ← 𝐶𝐼binomial(𝐹 , 𝑁);
if log 𝑝+ − log 𝑝− < 𝜖 then

exit loop;
until 𝑁total ≥ 𝑁max;
𝑆 ← 𝑆 ∪ {(𝑟, 𝐹/𝑁)};
𝑖 ← 𝑖 + 1;

until 𝑁total ≥ 𝑁max;
𝑝quad ← Quadratic interpolation of 𝑆;
(𝑟1, 𝑟2, 𝑁1) ← arg min

𝑟1,𝑟2,𝑁1

𝐶𝐼+
extra(𝑁1𝑝quad(𝑟1), 𝑁1, (𝑁 − 𝑁1)𝑝quad(𝑟2), 𝑁 − 𝑁1));

/* 𝐶𝐼+
extra is the upper bound of the confidence interval given in

Proposition 14.9.
In practice the argmin is obtained with a nonlinear optimization
method. */

return (𝑟1, 𝑟2, 𝑁1, 𝑁 − 𝑁1);

142 Chapter 14. A DFR extrapolation framework

Chapter 15

Weak keys: Subsets of parity
check matrices

Short cycles in the Tanner graph and high number of intersections between columns in the
parity check matrix are detrimental for the decoding capabilities of the decoder.

In this chapter, we start from the definition of the distance spectrum due to [GJS16].
We show new properties of this spectrum that can be used to enumerate them. We make an
observation on the counters distribution for parity check matrices with unusual spectrum
and see how that can be detrimental to the decoding performance. Then, we construct
three sets of weak keys for a QC-MDPC system, these keys have an unusual spectrum
and thus a DFR higher than average. We eventually assess their impact on the security
of the system by estimating their DFR with simulation and using upper bounds on their
cardinality.

15.1 QC-MDPC Codes
15.1.1 Definition and polynomial representation
Let H = (H0, H1) be the parity check matrix of a QC-MDPC code. Equivalently, the
parity check matrix can be written as a tuple of polynomials (h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2,
using the following isomorphism.

Proposition 15.1 (Recall). The application

H ↦ ℎ0,0 + ℎ1,0𝑥 + ⋯ + ℎ𝑟−2,0𝑥𝑟−2 + ℎ𝑟−1,0𝑥𝑟−1

is an isomorphism between the ring of circulant 𝑟 × 𝑟 matrices with coefficients in 𝔽2 and
the quotient ring 𝔽2[𝑥]/(𝑥𝑟 − 1).

If we denote h𝑖 the polynomial corresponding to first column of the block H𝑖 for 𝑖 = 0, 1,
and if we write the row vector (e0, e1) as polynomials then the product

(H0, H1)(e0, e1)⊺

is the column vector represented by the polynomial e0h0 + e1h1.
The following isomorphism is important in our analysis as it allows us to reduce

properties on any distance 𝛿 to the case 𝛿 = 1.

Proposition 15.2. For all 𝛿 ∈ ℤ×
𝑟 , the endomorphism 𝜙𝛿 of (𝔽2[𝑥]/(𝑥𝑟 − 1), +, ×) induced

by
𝑥 ↦ 𝑥𝛿

143

144 Chapter 15. Weak keys: Subsets of parity check matrices

is an isomorphism and an isometry for the Hamming distance.

Remark 15.3. The inverse of 𝜙𝛿 is 𝜙𝛿−1 .
Remark 15.4. Previous works on weak keys for QC-LDPC or QC-MDPC codes also
mention this isometry: [APRS20, §4.3] & [BDLO16, §6]. Together with the circular shifts
(multiplications by 𝑥𝑖 for all 𝑖 ∈ {0, … , 𝑟 − 1}), it allows a quadratic gain on the size of a
set of keys while holding similar characteristics.

15.1.2 Decoding
To understand the rationale behind our constructions of weak keys, let us first adopt an
intuitive point of view of the bit-flipping decoder. Remember Algorithm 6.2, the bit-flipping
algorithm. The counter ∣h𝑗 ⋆ s∣ of a position 𝑗 is the number of parity check equations
(rows of H) involving that position and which are unsatisfied. If the number of unsatisfied
parity check equations is high, the coordinate on that position is likely to be erroneous.

Finding e from the syndrome s = He⊺ and the sparse parity check matrix H such
that |e| = 𝑡 is possible by exploiting the bias in the counters. Figure 5.1 gives the number
of positions with given counter values, the smaller Gaussian shape curve on the right
stands for the erroneous positions. The decoder knows the counters but not the errors’
location (i.e. it knows only the sum of the two curves). So Algorithm 6.2 chooses a sensible
threshold 𝑇 and flips all positions with a counter above it, the syndrome is recomputed,
then the counters again. This process is repeated and the error weight usually decreases
after each iteration until all errors have been removed and the syndrome is zero.
Remark 15.5. When the block size decreases or the error weight increases, this usually
results in a decrease of the error counters. When this happens, the small Gaussian curve
in Figure 5.1 will move to the left and error detection will become more difficult—even if
the threshold is adjusted—because they will be overwhelmed by the sheer mass of correct
positions. Any effect that moves the small curve to the left or the large curve to the
right therefore has a negative effect on the decoder behaviour. As we will see later, this is
precisely what happens with weak keys.

15.2 Notations
We adopt the following notations in this chapter.

• The decoding failure rate for a QC-MDPC, with a set of keys ℋ and a set of
messages ℰ for a decoder 𝒟 is written as

DFRℰ
𝒟,ℋ = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ, e ∈ ℰ] .

• For ease of reading, when omitted, the set ℰ is by default the whole set of admissible
messages

ℰ = ℰ𝑛,𝑡 = {e ∈ {0, 1}𝑛 | |e| = 𝑡} .

• When omitted, the set ℋ is by default the whole set of admissible keys

ℋ = ℋ𝑑,𝑤,𝑟×𝑛

= {H ∈ 𝔽𝑟×𝑛
2 ∣ ∀𝑖 ∈ {0, … , 𝑟 − 1}, ∣h⊺

𝑖 ∣ = 𝑤, ∀𝑗 ∈ {0, … , 𝑛 − 1}, ∣h𝑗∣ = 𝑑} ,

• The column weight 𝑑, the row weight 𝑤, and the error weight 𝑡 will be obvious from
the context and we will write

DFR(𝑟) = DFRℰ2𝑟,𝑡
𝒟,ℋ𝑑,2𝑑,𝑟×2𝑟

.

15.3. Distance Spectrum 145

15.3 Distance Spectrum
In [GJS16] the notion of spectrum for a circulant matrix was introduced. We recall its
definition and significance here and show its close relashionship with the intersections
between two columns in the same circulant block.

Definition 15.6. We define the distance between two positions 𝑖, 𝑗 ∈ {0, … , 𝑟 − 1} in a
circulant block as

d(𝑖, 𝑗) = min((𝑟 + 𝑗 − 𝑖) mod 𝑟, (𝑟 + 𝑖 − 𝑗) mod 𝑟) .

When calculating the distances between the positions of the support of h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1),
some distances may appear several times. The number of occurrences of a distance 𝛿 is
called its multiplicity:

𝜇 (𝛿, h) = ∣{(𝑖, 𝑗) ∣ 0 ≤ 𝑖 ≤ 𝑗 < 𝑟, ℎ𝑖 = ℎ𝑗 = 1 and d(𝑖, 𝑗) = 𝛿}∣ .

The spectrum of h is defined as the set of all distances with their multiplicity:

Sp(h) = {(𝛿, 𝜇 (𝛿, h)) ∣ 𝛿 ∈ {0, 1, … , ⌊𝑟/2⌋}} .

The spectral polynomial of h is defined as:

s(h) =
⌊𝑟/2⌋

∑
𝛿=1

𝜇 (𝛿, h) 𝑥𝛿 .

It is shown in [GJS16] that the knowledge, even partial, of the distance spectrum of a
sparse polynomial allows its complete recovery. It is also shown that the statistical analysis
of error patterns leading to failures of the QC-MDPC decoder provides information on the
secret key spectrum and eventually allows a key recovery attack.

15.3.1 New properties of the distance spectrum
Proposition 15.7. Let h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1). We write h⊺ = 𝜙−1(h) = ∑𝑖∈Supp(h) 𝑥−𝑖 for any
h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1), this operation corresponds to transposing the circulant block. We have

hh⊺ = |h| + s(h) + s(h)⊺

where the above product of polynomials is considered in ℤ[𝑥]/(𝑥𝑟 − 1).

Proof. By expanding the product then decomposing the sum, we obtain

hh⊺ = ⎛⎜
⎝

∑
𝑖∈Supp(h)

𝑥𝑖⎞⎟
⎠

⎛⎜
⎝

∑
𝑗∈Supp(h)

𝑥−𝑗⎞⎟
⎠

= ∑
𝑖,𝑗∈Supp(h)

𝑖=𝑗

𝑥𝑖−𝑗 + ∑
𝑖,𝑗∈Supp(h)

𝑖>𝑗

𝑥𝑖−𝑗 + ∑
𝑖,𝑗∈Supp(h)

𝑖<𝑗

𝑥𝑖−𝑗

= ∑
𝑖,𝑗∈Supp(h)

𝑖=𝑗

𝑥𝑖−𝑗 + ∑
𝑖,𝑗∈Supp(h)

𝑖<𝑗

𝑥min(𝑖−𝑗,𝑟+𝑖−𝑗) + ∑
𝑖,𝑗∈Supp(h)

𝑖<𝑗

𝑥max(𝑖−𝑗,𝑟+𝑖−𝑗)

= |h| + s(h) + s(h)⊺ .

There is a one-to-one correspondence between the spectrum of a polynomial h and the
number of common bits between h and its 𝛿-shift 𝑥𝛿h.

146 Chapter 15. Weak keys: Subsets of parity check matrices

Corollary 15.8. For all h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) and all 𝛿 ∈ {0, 1, … , ⌊𝑟/2⌋}, we have

(i) 𝜇 (𝛿, h) = ∣h ⋆ 𝑥𝛿h∣;

(ii) if 𝛿 ≠ 0, 𝜇 (1, h) = 𝜇 (𝛿, 𝜙𝛿(h)).

Proof. Considering coefficients indices modulo 𝑟:

𝜇 (𝛿, h) = (hh⊺)𝛿 =
𝑟−1
∑
𝑖=0

ℎ𝑖ℎ𝑖−𝛿 = ∣h ⋆ 𝑥𝛿h∣ .

The second identity easily derives from 𝜙𝛿(𝑥h) = 𝑥𝛿𝜙𝛿(h) and the fact that 𝜙𝛿 is an
isometry for the Hamming distance.

Remark 15.9. Sp(h) = Sp(𝑥ℓh) for all ℓ ∈ {0, … , 𝑟 − 1}.

Proposition 15.10. The application

Sp(h) → Sp(𝜙𝑎(h))
(𝛿, 𝑚) ↦ (𝛿′, 𝑚)

with 𝛿′ = min(𝑎𝛿 mod 𝑟, 𝑟 − (𝑎𝛿 mod 𝑟)), is a bijection.

Proof. 𝜙𝛿(hh⊺) = 𝜙𝛿(h)𝜙𝛿(h)⊺

15.3.2 Distance spectrum statistics
Definition 15.11. Let h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1). Viewed as a binary vector, we assume h starts
with 0 and ends with 1, using run-length encoding it can be uniquely described as a sequence
of strictly positive integers (𝑧1, 𝑜1, 𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠): it starts with 𝑧1 zeros followed by 𝑜1
ones, followed by 𝑧2 zeros, etc.

We will write h ∼ (𝑧1, 𝑜1, 𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠).

Proposition 15.12. If h ∼ (𝑧1, 𝑜1, 𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠), then

𝜇 (1, h) =
𝑠

∑
𝑖=1

(𝑜𝑖 − 1) .

Proof. Counting the multiplicity of 𝛿 = 1 in h is simply counting the number of times
there are two consecutive ones. In a block of 𝑜𝑖 consecutive ones, this happens (𝑜𝑖 − 1)
times.

The following proposition reduces the problem of fixing a multiplicity in a vector to
splitting |h| ones into 𝑠 nonempty segments interleaved with 𝑠 nonempty segments of zeros
of total length (𝑟 − |h|).

Proposition 15.13. Let h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1). Suppose h ∼ (𝑧1, 𝑜1, 𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠), then

{𝑜1 + 𝑜2 + ⋯ + 𝑜𝑠 = |h| ;
𝑧1 + 𝑧2 + ⋯ + 𝑧𝑠 = 𝑟 − |h|

and
𝜇 (1, h) = 𝑚 if and only if 𝑠 = |h| − 𝑚 .

Corollary 15.14. There are exactly (𝑑−1
𝑑−𝑚−1)(𝑟−𝑑−1

𝑑−𝑚−1) polynomials h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) of
weight 𝑑 starting with a zero and ending with a one such that 𝜇 (1, h) = 𝑚.

15.3. Distance Spectrum 147

Proof. The equivalence of the previous proposition gives 𝑠 = 𝑑 − 𝑚, and patterns following
the two other conditions are counted using the “stars and bars” principle.

To count the number of general patterns h such that 𝜇 (1, h) = 𝑚, circular shifts of
patterns starting with a zero and ending with a one have to be considered. However not all
shifts are possible as we need to avoid counting several times the same configuration. For
example shifting h ∼ (𝑧1, 𝑜1, 𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠) by (𝑧1 +𝑜1) positions would give 𝑥−(𝑧1+𝑜1)h ∼
(𝑧2, 𝑜2, … , 𝑧𝑠, 𝑜𝑠, 𝑧1, 𝑜1).

For the sake of clarity, let us generalize our ∼ notation for any pattern h.

Definition 15.15. Let h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) and let ℓ be the smallest integer such that 𝑥−ℓh
starts with a 0 and ends with a 1. We write

h ∼ (𝑧1, 𝑜1, … , 𝑧𝑠, 𝑜𝑠)ℓ

if and only if
𝑥−ℓh ∼ (𝑧1, 𝑜1, … , 𝑧𝑠, 𝑜𝑠) .

Proposition 15.16. For any pattern h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) of weight 𝑑 such that 𝜇 (1, h) = 𝑚,
there is a unique representation

h ∼ (𝑧1, 𝑜1, … , 𝑧𝑠, 𝑜𝑠)ℓ with

⎧
{
{
⎨
{
{
⎩

𝑠 = 𝑑 − 𝑚 ;
𝑜1 + ⋯ + 𝑜𝑠 = 𝑑 ;
𝑧1 + ⋯ + 𝑧𝑠 = 𝑟 − 𝑑 ;
ℓ ∈ {0, … , 𝑧1 + 𝑜1 − 1} .

Corollary 15.17. For given integers 𝑚, 0 ≤ 𝑚 < 𝑑, and 𝛿, 1 ≤ 𝛿 ≤ ⌊𝑟/2⌋, there are

𝒩𝑚 ∶= 𝑟
𝑑 − 𝑚

(𝑑 − 1
𝑑 − 𝑚 − 1

)(𝑟 − 𝑑 − 1
𝑑 − 𝑚 − 1

)

polynomials h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) of weight 𝑑 such that 𝜇 (𝛿, h) = 𝑚.

Proof. When 𝛿 = 1 the result derives from Proposition 15.16.

• First, if 𝑚 < 𝑑 − 1, all values 𝑧1, … , 𝑧𝑠 and 𝑜1, … , 𝑜𝑠 are at least 1, so 𝑧1 ∈ {1, … , 𝑟 −
𝑑 − (𝑠 − 1)} and 𝑜1 ∈ {1, … , 𝑑 − (𝑠 − 1)}. If 𝑧1 and 𝑜1 are fixed, Corollary 15.14
tells us that there are (𝑑−𝑜1−1

𝑑−𝑚−2)(𝑟−𝑑−𝑧1−1
𝑑−𝑚−2) ways to choose the values of 𝑧2, … , 𝑧𝑠 and

𝑜2, … , 𝑜𝑠. Accounting for the different (𝑧1 + 𝑜1) possible values of ℓ, we obtain

𝑟−2𝑑+𝑚+1

∑
𝑧1=1

𝑚+1

∑
𝑜1=1

(𝑧1 + 𝑜1)(𝑑 − 𝑜1 − 1
𝑑 − 𝑚 − 2

)(𝑟 − 𝑑 − 𝑧1 − 1
𝑑 − 𝑚 − 2

)

= 𝑟
𝑑 − 𝑚

(𝑑 − 1
𝑑 − 𝑚 − 1

)(𝑟 − 𝑑 − 1
𝑑 − 𝑚 − 1

) .

• Now if 𝑚 = 𝑑 − 1, then the only relevant patterns are the 𝑟 shifts of the pattern
consisting of 𝑧1 consecutive zeros followed by 𝑜1 ones.

The generalization to any value of 𝛿 derives from the identity 𝜇 (1, h) = 𝜇 (𝛿, 𝜙𝛿(h)) of
Corollary 15.8.

148 Chapter 15. Weak keys: Subsets of parity check matrices

Remark 15.18. The probability that two binary vectors of length 𝑟 and weight 𝑑 drawn
uniformly at random have 𝑚 intersections is

(𝑑
𝑚)(𝑟−𝑑

𝑑−𝑚)
(𝑟

𝑑)
= 𝑑

𝑑 − 𝑚
𝑟 − 𝑑

𝑟
𝒩𝑚
(𝑟

𝑑)
.

Thus, in a quasi-cyclic matrix, for 𝑚 > ⌊ 𝑑2

𝑟 ⌋, a column is less likely to have exactly 𝑚 of
intersections with another column in its own circulating block than with a column from
other blocks. In fact, with BIKE parameters, ⌊ 𝑑2

𝑟 ⌋ = 0.

Corollary 15.19. Let 𝑟 and 𝑑 be positive integers and let h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) be a pattern of
weight 𝑑. For any integer 𝛿 such that 1 ≤ 𝛿 ≤ ⌊𝑟/2⌋, the probability that 𝛿 has a nonzero
mutiplicity in the spectrum of h is

1 − 𝒩0
(𝑟

𝑑)
= 1 −

(𝑟−𝑑−1
𝑑−1)

(𝑟−1
𝑑−1)

.

Corollary 15.20. We assume the independence of the multiplicities of the spectrum. Let 𝑚
be an integer such that 0 ≤ 𝑚 < 𝑑, 𝛿 be such that 1 ≤ 𝛿 ≤ ⌊𝑟/2⌋ and h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1),

𝜋𝑚 = Pr[𝜇 (𝛿, h) = 𝑚] = 𝒩𝑚
(𝑟

𝑑)
,

𝑝≥𝑚 = Pr [max
𝛿∈{1,…,⌊𝑟/2⌋}

𝜇 (𝛿, h) ≥ 𝑚] = 1 − (1 − 𝜋𝑚)⌊𝑟/2⌋ ,

and

𝑝=𝑚 = Pr [max
𝛿∈{1,…,⌊𝑟/2⌋}

𝜇 (𝛿, h) = 𝑚] = 𝑝≥𝑚 − 𝑝≥𝑚+1 .

Example. We give in Table 15.1, for (𝑟, 𝑑) = (12 323, 71), the probabilities of having a
certain multiplicy in the spectrum of a circulant block. We observe it is typically low.
Note that the independence of the multiplicities for all distances is not true in general.
However, this approximation is really close to the values observed in simulation.

15.3.3 Reconstructing the secret key from the spectrum
Proposition 15.7 brings a new approach to the problem of reconstructing a key from its
spectrum used in [GJS16]. Knowing Sp(h), one can write the following system of equations
in 𝑟 boolean variables ℎ0, … , ℎ𝑟−1 ∈ {0, 1}.

⎧{{{
⎨{{{⎩

𝑑 = 𝜇 (0, h) = ℎ2
0 + ⋯ + ℎ2

𝑟−1 = ℎ0 + ⋯ + ℎ𝑟−1

𝜇 (1, h) = ℎ0ℎ1 + ℎ1ℎ2 + ⋯ + ℎ𝑟−1ℎ0

⋮ = ⋮

𝜇 (⌊(𝑟 − 1)/2⌋, h) = ℎ0ℎ⌊ 𝑟−1
2 ⌋ + ℎ1ℎ⌊ 𝑟−1

2 ⌋+1 + ⋯ + ℎ𝑟−1ℎ⌊ 𝑟−1
2 ⌋−1

Such a system is said to be pseudo-boolean as it involves linear operations in ℤ of
boolean values. Most satisfiability modulo theories (SMT) solvers implement a way to solve
them. Nevertheless, the resolution of this system can greatly benefit from simplification.

Indeed, say, for some 𝛿, 𝜇 (𝛿, h) = 0. Then

ℎ0ℎ𝛿 + ℎ1ℎ𝛿+1 + ⋯ + ℎ𝑟−1ℎ𝛿−1 = 0

15.4. Weak keys: Constructions and properties 149

Table 15.1: Numerical application of the multiplicity probabilities given in Corollary 15.20
for (𝑟, 𝑑) = (12 323, 71).

𝑚 𝜋𝑚 𝑝≥𝑚 𝑝=𝑚

0 0.667 1.0 0.0
1 0.272 1.0 0.0
2 0.0539 1.0 0.0
3 0.00692 1.0 0.0186
4 0.000647 0.981 0.73
5 4.69 ⋅ 10−5 0.251 0.234
6 2.75 ⋅ 10−6 0.0168 0.016
7 1.34 ⋅ 10−7 0.000827 0.000793
8 5.55 ⋅ 10−9 3.42 ⋅ 10−5 3.3 ⋅ 10−5

9 1.98 ⋅ 10−10 1.22 ⋅ 10−6 1.18 ⋅ 10−6

10 6.13 ⋅ 10−12 3.78 ⋅ 10−8 3.68 ⋅ 10−8

11 1.67 ⋅ 10−13 1.03 ⋅ 10−9 1.01 ⋅ 10−9

12 4.05 ⋅ 10−15 2.49 ⋅ 10−11 2.44 ⋅ 10−11

13 8.74 ⋅ 10−17 5.39 ⋅ 10−13 5.28 ⋅ 10−13

14 1.69 ⋅ 10−18 1.04 ⋅ 10−14 1.02 ⋅ 10−14

can be written as the conjunctive normal form (CNF)

ℎ0ℎ𝛿 ∧ ℎ1ℎ𝛿+1 ∧ ⋯ ∧ ℎ𝑟−1ℎ𝛿−1 ≡ (ℎ0 ∨ ℎ𝛿) ∧ (ℎ1 ∨ ℎ𝛿+1) ∧ ⋯ ∧ (ℎ𝑟−1 ∨ ℎ𝛿−1) .

To further simplify the system, one can use the fact that at least one multiplicity is
nonzero and a lot of variables can be removed. This comes from the fact that the equation
system has at least 2𝑟 solutions: if one vector is a solution then so are its circular shifts
and the transpositions of its circular shifts. Therefore, if we know that 𝜇 (𝛿′, h) > 0 then
we can fix ℎ0 = ℎ𝛿′ = 1 and the above CNF gives ℎ𝛿 = ℎ𝑟−𝛿 = ℎ𝛿+𝛿′ = ℎ𝛿′−𝛿 = 0. So each
zero multiplicity in the spectrum can fix the value of at most four variables.

Reconstructing a block with 𝑟 = 12 323 and 𝑑 = 71 from this simplified system takes less
than a second using the SMT solver z3. In comparison, the algorithm proposed in [GJS16]
is a depth-first search and does not use the information provided by the multiplicities.

Also, this modelisation tells us that if h is irreducible, the key reconstruction from the
spectrum only has two solutions: h and h⊺.

15.4 Weak keys: Constructions and properties
15.4.1 IND-CCA security and weak keys for KEMs
Remember from Definition 2.4 that a KEM (KeyGen, Encaps, Decaps) is said to be 𝛿-correct
if

Pr [Decaps(sk, 𝑐) ≠ 𝐾 ∣ (pk, sk) ← KeyGen({0, 1}𝜆); (𝐾, 𝑐) ← Encaps(pk)] ≤ 𝛿 .

And remember that for [BIKE], since the encapsulation includes a randomization, 𝛿 is the
average DFR for a specific decoder, for any key and any error vector.

We can summarize Theorem 2.5 in the case of BIKE, for any IND-CCA adversary ℬ
against BIKE issuing at most 𝑞 queries to any random oracle with a decoder 𝒟 for a set
of keys ℋ, with

AdvIND-CCA
BIKE (ℬ) ≤ 𝑞 ⋅ DFR𝒟,ℋ +𝜖

150 Chapter 15. Weak keys: Subsets of parity check matrices

where 𝜖 encompasses the advantage related to the underlying difficult problems and
therefore does not depend at all on the decoder used for the system. This 𝜖 is dealt with in
the usual manner: proper semantically secure transform and system parameters selection
according to the computational assumptions.

If one wants to challenge the fact that the decoder actually offers the required security,
i.e. its failure rate is less than 2−𝜆, one could present a set of weak keys 𝒲 ⊂ ℋ. The
average DFR for these keys DFR𝒟,𝒲 would have to be higher than DFR𝒟,ℋ but its
density would also have to be high enough to contribute significantly to the average DFR,
i.e. the set 𝒲 has to be such that

∣𝒲∣
|ℋ|

DFR𝒟,𝒲 > 2−𝜆 .

In the following sections we will construct three categories of weak keys and evaluate
the left-hand side of the above inequality.

15.4.2 Type I
In [DGK19], weak keys are specified as (h0, h1) with

h0 = (1 + 𝑥 + … + 𝑥𝑓−1) + h′
0

such that ∣h′
0∣ = 𝑑 − 𝑓 and ∣(1 + 𝑥 + … + 𝑥𝑓−1) ⋆ h′

0∣ = 0 for 𝑓 in a range from 0 to 40.
Authors observe that the correcting capability deteriorates as 𝑓 grows. Values as high as
40 always lead to a decoding failure in simulation.

The reason for this degradation comes from the fact that, compared to a typical key, a
weak key admits column pairs with a larger intersection in its private parity check matrix.
This can be seen by computing the spectral polynomial of h0:

s(h0) = h0h0
⊺ = (1 + 𝑥 + … + 𝑥𝑓−1)(1 + 𝑥−1 + … + 𝑥−(𝑓−1)) + s′

= 𝑓 + (𝑓 − 1)𝑥 + … + 𝑥𝑓−1 + s′

where s′ has nonnegative coefficients. So any column 𝑥𝑗h0 has at least (𝑓 − 1) intersections
with its two neighbours 𝑥𝑗±1h0, at least (𝑓 − 2) intersections with 𝑥𝑗±2h0, etc.

The typical maximum column intersection of BIKE keys is small: for (𝑟, 𝑑) = (12 323, 71)
about a quarter of the keys have a maximal column intersection greater than 5 (see
Table 15.1). More intersections between columns mean higher correlations between their
counters. In Figure 15.1 we measure the difference between the weak keys defined above
with parameter 𝑓 = 20 and random keys. With a weak key, an erroneous position tends
to have lower counter when its immediate neighbour is erroneous. Conversely, still with
a weak key, a non-erroneous position tends to have higher counter when its neighbour is
erroneous.

Intuitively, this means that (i) neighbours that are both erroneous tend to hide each
other and (ii) an erroneous position will contaminate its correct neighbours. Both effects
negatively impact the (threshold-based) decoder (see Remark 15.5). Indeed, a higher
counter on average for correct positions implies that more of them are above the threshold
and are thus being flipped, adding errors. A lower counter for errors implies that more of
them are below the threshold and are thus left unchanged, not decreasing the error weight.

As the decoding degradation is explained by the abnormal distribution of multiplicities
in the spectrum of a block, we can generalize the construction of the weak keys. Using
Remark 15.9 and Proposition 15.10, from one key defined as in [DGK19] we derive many
more with the same multiplicity distribution (up to a permutation of the distance values
in the spectrum).

15.4. Weak keys: Constructions and properties 151

20 40
0

10

20

Counter of correct neighbours

Av
er

ag
e

nu
m

be
r

20 40 60
0

5 ⋅ 10−2

0.1

0.15

Counter of erroneous neighbours

Figure 15.1: Counter values of the neighbours of an error for typical keys (horizontal
lines) and weak keys with 𝑓 = 20 (filled).
(𝑟, 𝑑, 𝑡) = (12 323, 71, 134).

Definition 15.21. We call weak key of Type I and parameter 𝑓, a key h = (h0, h1) such
that

h𝑖 = 𝜙𝛿(𝑥ℓ(1 + 𝑥 + … + 𝑥𝑓−1) + h′
𝑖)

for some 𝑖 ∈ {0, 1}, ℓ ∈ {0, … , 𝑟 − 1}, with ∣h′
𝑖∣ = 𝑑 − 𝑓 and ∣h𝑖∣ = 𝑑.

Algorithm 15.1 gives a generation algorithm for Type I weak keys.

Algorithm 15.1: Type I weak keys generation.
input : Block size 𝑟, column weight 𝑑, an integer 𝑓.
output : h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) with |h| = 𝑑 and 𝑓 𝛿-consecutive positions.
(𝑝1, 𝑝2, … , 𝑝𝑓) ← (0, 1, … , 𝑓 − 1);
Sample (𝑑 − 𝑓) values (𝑝𝑓+1, … , 𝑝𝑑) from {𝑓, … , 𝑟 − 1};

𝛿
$

← {1, … , ⌊𝑟/2⌋};

ℓ
$

← {0, … , 𝑟 − 1};
h ← 0;
for 𝑘 ∈ {1, … , 𝑑} do

/* Coordinate transformation to directly compute 𝜙𝛿(𝑥ℓh). */
ℎ𝛿(ℓ+𝑝𝑘) ← 1;

return h;

Proposition 15.22. We denote 𝒲I(𝑓) the set of weak keys of Type I of parameter 𝑓 with
blocks of weight 𝑑 and length 𝑟.

∣𝒲I(𝑓)∣ ≤ 2𝑟 ⌊ 𝑟
2

⌋ (𝑟 − 𝑓
𝑑 − 𝑓

) .

In Definition 15.21, the constructed keys are such that 𝜇 (𝛿, h𝑖) ≥ 𝑓−1, 𝜇 (2𝛿, h𝑖) ≥ 𝑓−2,
… , 𝜇 ((𝑓 − 1)𝛿, h𝑖) ≥ 1.

15.4.3 Type II
Instead of having several high multiplicities at the same time, Type II weak keys only
increase the multiplicity of a single distance. We will see that they have a lower impact on
DFR for a given multiplicity, but a higher density.

152 Chapter 15. Weak keys: Subsets of parity check matrices

Definition 15.23. We call weak key of Type II and parameter 𝑚, a key h = (h0, h1) such
that 𝜇 (𝛿, h𝑖) = 𝑚 for some 𝑖 ∈ {0, 1} and some distance 𝛿 ∈ {1, … , ⌊𝑟/2⌋}.

Thanks to Corollary 15.17 of §15.3.2 we may obtain an upper bound for the number of
Type II weak keys.

Proposition 15.24. Let 𝑚 be an integer such that 0 ≤ 𝑚 < 𝑑. We denote 𝒲II(𝑚) the set
of patterns h of weight 𝑑 and length 𝑟 for which one distance at least of its spectrum has
multiplicity 𝑚. Then

∣𝒲II(𝑚)∣ ≤ 2 ⌊ 𝑟
2

⌋ 𝑟
𝑑 − 𝑚

(𝑑 − 1
𝑑 − 𝑚 − 1

)(𝑟 − 𝑑 − 1
𝑑 − 𝑚 − 1

) .

We only have an upper bound because, for a given 𝑚, the sets {h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) ∣
𝜇 (𝛿, h) = 𝑚} are not disjoint when 𝛿 varies. But in practice, when 𝑚 is above the typical
values (4 or 5), the intersections are very small and the bound is very tight. Algorithm 15.2
derives from the combinatorial analysis of §15.3.2 and gives a generation algorithm for
Type II weak keys. Its correctness is guaranteed by Proposition 15.16 and Corollary 15.8.

Algorithm 15.2: Type II weak keys generation.
input : Block size 𝑟, column weight 𝑑, an integer 𝑚.
output : h ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1) with |h| = 𝑑 and ∃𝛿, 𝜇 (𝛿, h) = 𝑚.
𝑠 ← 𝑑 − 𝑚;
𝑎0 ← 0; 𝑎𝑠 ← 𝑑;
𝑏0 ← 0; 𝑏𝑠 ← 𝑟 − 𝑑;
Sample (𝑠 − 1) values (𝑎1, … , 𝑎𝑠−1) from {1, … , 𝑑 − 1};
Sample (𝑠 − 1) values (𝑏1, … , 𝑏𝑠−1) from {1, … , 𝑟 − 𝑑 − 1};
/* Componentwise subtraction. */
(𝑜1, … , 𝑜𝑠) ← (𝑎1, … , 𝑎𝑠) − (𝑎0, … , 𝑎𝑠−1);
(𝑧1, … , 𝑧𝑠) ← (𝑏1, … , 𝑏𝑠) − (𝑏0, … , 𝑏𝑠−1);

𝛿
$

← {1, … , ⌊𝑟/2⌋};

ℓ
$

← {0, … , 𝑧1 + 𝑜1 − 1};
h ← 0;
𝑖 ← −ℓ;
for 𝑗 ∈ {1, … , 𝑠} do

𝑖 ← 𝑖 + 𝑧𝑗;
for 𝑘 ∈ {0, … , 𝑜𝑗 − 1} do

/* Coordinate transformation to directly compute 𝜙𝛿(𝑥ℓh). */
ℎ𝛿(𝑖+𝑘) ← 1;

𝑖 ← 𝑖 + 𝑜𝑗;
return h;

Remark 15.25. With BIKE, the suggested decoders are parallel: the syndrome is only
computed once for each iteration and flips are chosen independently of the order in which
positions are considered in an iteration. Therefore, the decoders are such that

𝒟((𝜙𝛿(h0), 𝜙𝛿(h1)), 𝜙𝛿(s)) = 𝜙𝛿(𝒟((h0, h1), s)) .

This means that the set of patterns for which a distance 𝛿 has a multiplicity 𝑚 has the
same DFR as the set of patterns for which a distance 𝛿′ ≠ 𝛿 has a multiplicity 𝑚. Put
another way, for a given multiplicity 𝑚, for all distances 𝛿 ∈ {1, … , ⌊𝑟/2⌋} the constructed
sets have exactly the same contribution to the average DFR.

15.5. DFR estimations 153

0 10 20 30 40

−300

−200

−100

0

log2 𝜏I(𝑚 + 1)

log2 𝜏II(𝑚)

log2 𝜏III(𝑚)

Mutiplicity 𝑚 (𝑓 = 𝑚 + 1 for Type I)

Figure 15.2: Density of weak keys versus multiplicity (log scale) for (𝑟, 𝑑) = (12 323, 71).
Type III keys are slightly denser, but their count is very close to the count for Type II.

15.4.4 Type III
Weak keys of Type I and II have properties that concern only one block of the parity check
matrix. We can also define weak keys that have many intersections between two columns
of two different blocks.

Definition 15.26. We call weak key of Type III and parameter 𝑚, a key h = (h0, h1) such
that ∣h0 ⋆ 𝑥ℓh1∣ = 𝑚 for some ℓ ∈ {0, … , 𝑟 − 1}.

Proposition 15.27. We denote 𝒲III(𝑚) the set of weak keys of Type III of parameter 𝑚
with blocks of weight 𝑑 and length 𝑟.

∣𝒲III(𝑚)∣ ≤ 𝑟(𝑑
𝑚

)(𝑟 − 𝑑
𝑑 − 𝑚

)

15.4.5 Statistics
In Figure 15.2 we give the density of all types of weak keys for (𝑟, 𝑑) = (12 323, 71). We
denote for all 𝑚 > 0 and for type ∈ {I, II, III}

𝜏type(𝑚) =
∣𝒲type(𝑚)∣

(𝑟
𝑑)

.

We shift the Type I curve (𝑚 = 𝑓 − 1) to align the multiplicities. As we will observe in
§15.5, the Type I keys have a worse effect on decoding for a given multiplicity. We observe
also that for large multiplicity (roughly above 𝑓 = 21 for Type I, and above 𝑚 = 27 for
Type II and III) the density is small enough to make those keys harmless (assuming a
target of 128 bits of security), regardless of their impact on decoding.

15.5 DFR estimations
To estimate the DFR for weak keys, we will rely on the framework developed in Chapter 14
based on Assumption 3. To be more precise, we assume in this section that for any subset

154 Chapter 15. Weak keys: Subsets of parity check matrices

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−260

−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

𝑓

lo
g 2

Pr

DFR — BGF Density

Figure 15.3: Extrapolated (for 𝑟 = 12 323) DFR vs. number of consecutive ones 𝑓 with
Type I weak keys and BGF (7 iterations). (𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

of keys 𝒲 ⊂ ℋ, the function 𝑟 ↦ DFR𝒟,𝒲(𝑟) is concave. In other words, the high distance
multiplicity will not have a stronger effect when the block size gets larger, but will affect
the decoder similarely for any block size.

In Figure 15.3 & 15.4 & 15.5, we give simulation results for all the types of weak keys
previously defined with several values for 𝑓 or 𝑚 using BGF with 7 iterations. We can see
that no set of weak keys seems to be any threat as the product of their density by their
average DFR is always below 2−𝜆, 𝜆 = 128.

We can observe that Type I keys with 𝑓 ≥ 10 and Type II and III with 𝑚 ≥ 14 have
a negligible influence on the average DFR since their densities multiplied by their DFR
are well below 2−𝜆. For the other weak keys, with lower mutiplicity, the estimated DFR
for weak keys is within the confidence interval of the average DFR obtained with random
keys. This means that for 𝑓 < 10 and 𝑚 < 14 we did not observe in our experiment a
measurable difference in the decoder’s DFR between weak keys and random keys.

While all types of weak keys that we established have at least a pair of columns with
(𝑓 − 1) (for Type I) or 𝑚 (for Type II or III) intersections, some differences explain the
different DFR. In a weak key of Type I and parameter 𝑓, a column 𝑥𝑗h𝑖 has at least (𝑓 − 1)
intersections with its two neighbours 𝑥𝑗±𝛿h𝑖, at least (𝑓 − 2) intersections with 𝑥𝑗±2𝛿h𝑖,
etc. In a weak key of Type II and parameter 𝑚, a column 𝑥𝑗h𝑖 has exactly 𝑚 intersections
with its two neighbours 𝑥𝑗±𝛿h𝑖. And in a weak key of Type III and parameter 𝑚, a column
𝑥𝑗h0 has exactly 𝑚 intersections with a single column 𝑥𝑗′h1.

15.5. DFR estimations 155

5 10 15 20 25 30 35
−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

𝑚

lo
g 2

Pr

DFR — BGF Density

Figure 15.4: Extrapolated (for 𝑟 = 12 323) DFR vs. multiplicity 𝑚 with Type II weak
keys and BGF (7 iterations). (𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

156 Chapter 15. Weak keys: Subsets of parity check matrices

5 10 15 20 25 30 35

−250

−200

−150

−100

−50

0

𝑚

lo
g 2

Pr

DFR — BGF Density

Figure 15.5: Extrapolated (for 𝑟 = 12 323) DFR vs. multiplicity 𝑚 with Type III weak
keys and BGF (7 iterations). (𝑑, 𝑡) = (71, 134). 99%-confidence intervals.

15.6. Filtering weak keys 157

15.6 Filtering weak keys
Algorithm 15.3 provides a way of filtering weak keys defined in this paper. It filters Type II
weak keys (which include Type I) by computing the spectrum of each block and rejecting
when a multiplicity is too high (over a threshold). Type III weak keys are filtered by
computing the intersection between every column from the first block with every column
from the second block. From the statistics of §15.4 by setting a threshold to, say, 10, this
algorithm rejects less than one key out of several million.

Algorithm 15.3: Rejection algorithm for weak keys.
input : Block size 𝑟, column weight 𝑑, a threshold 𝜏,

a key h0 = 𝑥𝑗0,1 + 𝑥𝑗0,2 + ⋯ + 𝑥𝑗0,𝑑 , h1 = 𝑥𝑗1,1 + 𝑥𝑗1,2 + ⋯ + 𝑥𝑗1,𝑑 .
for 𝑖 ∈ {0, 1} do

S ← 0;
for 𝑘 ∈ {1, … , 𝑑} do

for ℓ ∈ {𝑘 + 1, … , 𝑑} do
/* d is the distance of Definition 15.6. */
𝛿 ← d(𝑗𝑖,𝑘, 𝑗𝑖,ℓ);
𝑆𝛿 ← 𝑆𝛿 + 1;

if max𝛿∈{1,…,⌊𝑟/2⌋} 𝑆𝛿 ≥ 𝜏 then
/* Filter Type II. */
return Reject;

for 𝑘 ∈ {1, … , 𝑑} do
for ℓ ∈ {1, … , 𝑑} do

if ∣h0 ⋆ 𝑥𝑗0,𝑘−𝑗1,ℓh1∣ ≥ 𝜏 then
/* Filter Type III. */
return Reject;

return Accept;

158 Chapter 15. Weak keys: Subsets of parity check matrices

Chapter 16

Error floors: Subsets of error
patterns

LDPC codes and Turbo codes are known to suffer from a phenomenon called error floor
(see [Gar+01; Ric03]). When the signal-to-noise ratio increases, the decoding performance
of these codes first undergoes a sharp decrease in a region called the waterfall region, then
there is a sudden change in slope and the performance flattens out (see Figure 16.1) This
latter phenomenon is what is called the error floor.

Just like LDPC codes, QC-MDPC codes are not spared from error floor phenomena.
However, the techniques used to estimate the error floor of LDPC codes usually rely on
enumerating subgraphs of the Tanner graph of the code. The Tanner graph is denser for
an MDPC code and these methods are usually not practical.

Waterfall
Error floor

Block length

lo
g 2

D
FR

Figure 16.1: Typical DFR curve.

To initiate the discussion of the techniques used in this chapter, let us first consider
the case of a minimum distance decoder.

Minimum distance decoding. We assume that we decode an error pattern of weight 𝑡
in a QC-MDPC code with 𝒟 a minimum distance decoder (i.e. it outputs the smallest
possible error pattern e which, when added to the input, gives a codeword).

159

160 Chapter 16. Error floors: Subsets of error patterns

Recall that we have defined the DFR as the probability that the decoder outputs an
error vector that is different from the one that was used to compute the syndrome:

DFRℰ
𝒟,ℋ = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ, e ∈ ℰ] .

With a minimum distance decoder, we have a decoding failure 𝒟(H, He⊺) ≠ e when

e = c + e′ or equivalently e′ = c + e (16.1)

with c a codeword and ∣e′∣ ≤ 𝑡.
We know that

∣e′∣ = |c| + |e| − 2 |e ⋆ c| ,

which means that
|c|
2

≤ |e ⋆ c| .

If e, e′ and c are taken uniformly at random, the probability for this inequality to be
satisfied is

min(|c|,𝑡)

∑
𝑖=⌈|c|/2⌉

(|c|
𝑖)(𝑛−|c|

𝑡−𝑖)
(𝑛

𝑡)
. (16.2)

If we write the parity check matrix H ∈ ℋ of a QC-MDPC as

H = (H0 H1)

then we have a generator matrix G ∈ ℋ

G = (H⊺
1 H⊺

0) .

So, taking each row of G, we see that there are 𝑟 codewords of weight 𝑤, they are all
obtained by circularly shifting the first row. As 𝑤 is well below the Gilbert-Varshamov
bound, it is safe to assume that there are no smaller codewords in the general case.

Moreover, most of the parameters used to instantiate a QC-MDPC system will take
into account the slight asymmetry in the cost of the key and message attacks respectively
(because of [Sen11]) by having 𝑤 > 𝑡. Therefore, in (16.2), since the sum is zero when
𝑤 > 2𝑡, the sum of two codewords with weight 𝑤 will probably not trigger a decoding
failure because they have a weight slightly less than 2𝑤. In the end we are only concerned
by the 𝑟 codewords of weight 𝑤.

Given the previous remark and the fast decay in the summand when 𝑖 grows in (16.2),
we can approximate the probability of having a bad error pattern with

𝑟
(𝑤

⌈𝑤/2⌉)(𝑛−𝑤
𝑡−⌈𝑤/2⌉)

(𝑛
𝑡)

. (16.3)

In order to put into perspective the rarity of such a configuration, let us give an
asymptotic formula for (16.3) when 𝑟 → ∞:

2𝐴−𝐵 log2(𝑟) (16.4)

where

𝐴 = log2
⎛⎜
⎝

(𝑤
⌈𝑤/2⌉

) 𝑡!
(𝑡 − ⌈𝑤/2⌉)!

⎞⎟
⎠

− ⌈𝑤
2

⌉ and 𝐵 = (⌈𝑤
2

⌉ − 1) .

Numerical application of this formula are given in Table 16.1. We can see that it is always
negligible compared to 2−𝜆 where 𝜆 is the security parameter.

16.1. Notations 161

Table 16.1: Numerical application for (16.4) with BIKE parmeters.

𝜆 𝑤 𝑡 𝐴 𝐵 𝑟 𝐴 − 𝐵 log2(𝑟)

128 142 134 535.496 70 12 323 −415.738
192 206 199 838.289 102 24 659 −649.874
256 274 264 1 171.659 136 40 597 −910.376

In this chapter we will see that in practice, as the decoder is not minimum distance
and is typically a bit-flipping decoder, we can slightly relax the construction of e′ in (16.1).
Indeed, we will see that c need not necessarily be a codeword (it can be a near-codeword)
and that we can choose ∣e′∣ > 𝑡. Although these new conditions do not necessarily trigger
a decoding failure, they do have a negative impact on decoding performance to an extent
that we will quantify using simulations.

In a QC-MDPC code, the quasi-cyclicity of the code endows it with a polynomial
structure. Together with the fact that by definition it has a sparse parity check matrix,
and it is defined in a field of characteristic 2, we shall see that many near-codewords can
be found. We will build subsets of error patterns that are spheres around codewords or
near-codewords for a certain radius. We will see that, using a bit-flipping decoder, they
have a higher DFR. The density of these subsets multiplied by their DFR is a lower bound
of the average DFR. Since the slope is rather flat when 𝑟 increases, we refer to the curve
of this lower bound as the error floor.

16.1 Notations
We adopt the following notations in this chapter.

• The decoding failure rate for a QC-MDPC, with a set of keys ℋ and a set of
messages ℰ for a decoder 𝒟 is written as

DFRℰ
𝒟,ℋ = Pr [𝒟(H, He⊺) ≠ e ∣ H ∈ ℋ, e ∈ ℰ] .

• For ease of reading, when omitted, the set ℰ is by default the whole set of admissible
messages

ℰ = ℰ𝑛,𝑡 = {e ∈ {0, 1}𝑛 | |e| = 𝑡} .

• When omitted, the set ℋ is by default the whole set of admissible keys

ℋ = ℋ𝑑,𝑤,𝑟×𝑛

= {H ∈ 𝔽𝑟×𝑛
2 ∣ ∀𝑖 ∈ {0, … , 𝑟 − 1}, ∣h⊺

𝑖 ∣ = 𝑤, ∀𝑗 ∈ {0, … , 𝑛 − 1}, ∣h𝑗∣ = 𝑑} ,

• The column weight 𝑑, the row weight 𝑤, and the error weight 𝑡 will be obvious from
the context and we will write

DFR(𝑟) = DFRℰ2𝑟,𝑡
𝒟,ℋ𝑑,2𝑑,𝑟×2𝑟

.

16.2 Structured patterns in QC-MDPC codes
16.2.1 Low weight codewords
There is an isometry between codewords of a QC-MDPC code of rate 1/2 and those of its
dual. The following definition describes the set of codewords of weight 𝑤 for a QC-MDPC.

162 Chapter 16. Error floors: Subsets of error patterns

Definition 16.1. Let h = (h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2 be the parity check matrix of a
QC-MDPC code of row weight 𝑤.

We write 𝒞 the set of codewords of weight 𝑤:

𝒞 = {(𝑥𝑠h1, 𝑥𝑠h0) ∣ 𝑠 ∈ {0, … , 𝑟 − 1})} .

The sum of any two codewords of weight 𝑤 gives the set of codewords 2𝒞. And any
𝑐 ∈ 2𝒞 has weight 2𝑤−𝜖0 −𝜖1 where the distribution of 𝜖𝑖 is given by 𝜋𝑚 in Corollary 15.20
for 𝑚 = 𝜖𝑖 and 𝑖 = 0, 1. These codewords have too great a weight to be relevant here.
Indeed, we will construct error patterns of weight 𝑡 that are close to codewords. With the
usual BIKE parameters, we already have 𝑤 > 𝑡, doubling the size of the codewords can
only increase the distance to the error patterns of fixed weight 𝑡.

16.2.2 Near-codewords
Definition 16.2. Let H be the parity check matrix of a linear code. A (𝑢, 𝑣) near-codeword
is an error pattern e of weight 𝑢 such that ∣He⊺∣ = 𝑣.

We say that the variable nodes corresponding to the support of such an error pattern
constitute a (𝑢, 𝑣) trapping set as defined in [Ric03].

Let us write a circulant block in its polynomial representation h = ∑𝑖∈Supp(h) 𝑥𝑖 ∈
𝔽2[𝑥]/(𝑥𝑟 − 1). Applying the Frobenius endomorphism we obtain:

h2 = ∑
𝑖∈Supp(h)

𝑥2𝑖 .

Since ∀𝑖 ∈ {0, 1}, ∣h2
𝑖 ∣ = ∣h𝑖∣ = 𝑑, we have identified (𝑑, 𝑑) near-codewords present in any

QC-MDPC code.
In the following definition, we describe all the (𝑑, 𝑑) near-codewords based on this

template, i.e. those of each circulant block and all their circular shifts.

Definition 16.3. Let h = (h0 h1) ∈ 𝔽2[𝑥]/(𝑥𝑟 − 1)2 be the parity check matrix of a
QC-MDPC code of row weight 𝑤.

We write 𝒩 the following set of (𝑑, 𝑑) near-codewords e = (e0, e1)

𝒩 = {(𝑥𝑠h0, 0) ∣ 𝑠 ∈ {0, … , 𝑟 − 1}} ∪ {(0, 𝑥𝑠h1) ∣ 𝑠 ∈ {0, … , 𝑟 − 1}} .

There are 2𝑟 such (𝑑, 𝑑) near-codewords.

We will also consider the set 2𝒩 of the sums of two (𝑑, 𝑑) near-codewords as they are
(2𝑑 − 𝜖0, 2𝑑 − 𝜖1) near-codewords (for some small values 𝜖0 and 𝜖1) and we usually have
2𝑑 = 𝑤 ≈ 𝑡

16.3 Error patterns impeding decoding
We have already covered the case where one uses a minimum distance decoder in a QC-
MDPC scheme. But such a decoder is too challenging to efficiently implement, and we
use a bit-flipping or a belief propagation algorithm. We will here focus on variants of the
former.

In any bit-flipping variant, the syndrome is used to compute the counters that are then
used to decide whether to flip a bit or not. In this section we will use those two data as a
benchmark to assess the influence of low weight codewords and near-codewords on the
decoder.

16.3. Error patterns impeding decoding 163

We keep the same construction as before and choose an error pattern e′ as

e = c + e′

with c in 𝒞, 𝒩 or 2𝒩 and |e| = 𝑡, but this time we relax the condition on the weight of e′.
We have

∣e′∣ = |c| + |e| − 2 |e ⋆ c| .

For a set 𝒮 that is either 𝒞, 𝒩 or 2𝒩, we define the set of error patterns e that are
near 𝒮. We set the distance to these sets via the constant ℓ = |e ⋆ c|.

Definition 16.4. Let 𝑆 ⊂ (𝔽2[𝑥]/(𝑥𝑟 − 1))2, we write

𝒜𝑡,ℓ(𝑆) = ⋃
𝑣∈𝑆

{𝑢 ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2 | |𝑢| = 𝑡, |𝑢 ⋆ 𝑣| = ℓ} .

Algorithm 16.1 provides a way to construct these sets.

Algorithm 16.1: Weak error patterns generation.
function weak_error(𝑟, 𝑡, ℓ, (h0, h1), 𝑆):

input : Block size 𝑟, error weight 𝑡, an integer ℓ,
a key (h0, h1) ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2, a set 𝑆 ∈ {𝒞, 𝒩, 2𝒩}.

output : A vector c that has ℓ intersections with an element of 𝑆.
c ← sample𝑆(h0, h1);

𝑠
$

← {0, … , 𝑟 − 1};

(𝑝0, … , 𝑝ℓ−1)
$

← Sample ℓ values from Supp(c);

(𝑝ℓ, … , 𝑝𝑡−1)
$

← Sample (𝑡 − ℓ) values from {0, … , 𝑟 − 1} ∖ Supp(c);
c ← 0;
for 𝑘 ∈ {0, … , 𝑡 − 1} do

𝑐𝑠+𝑝𝑘
← 1;

return c;
function sample𝒞(h0, h1):

return (h1, h0);
function sample𝒩(h0, h1):

(c0, c1) ← (0, 0);

𝑖
$

← {0, 1};
c𝑖 ← h𝑖;
return (c0, c1);

function sample2𝒩(h0, h1):
𝑠

$
← {0, … , 𝑟 − 1};

return sample𝒩(h0, h1) + 𝑥𝑠sample𝒩(h0, h1);

These sets can also be seen as unions of spheres of radius 𝑤 + 𝑡 − 2ℓ and centers in 𝑆.

Proposition 16.5. Suppose that there exists a weight 𝑤 such that ∀𝑢 ∈ 𝑆, |𝑢| = 𝑤, then
∀𝑣 ∈ 𝒜𝑡,ℓ(𝑆), |𝑣 − 𝑢| = 𝑤 + 𝑡 − 2ℓ and

∣𝒜𝑡,ℓ(𝑆)∣ ≤ ∣𝑆∣ (𝑤
ℓ

)(𝑛 − 𝑤
𝑡 − ℓ

) .

164 Chapter 16. Error floors: Subsets of error patterns

In this case, we write

𝒟𝑡,𝑤+𝑡−2ℓ(𝑆) = ∣𝑆∣
(𝑤

ℓ)(𝑛−𝑤
𝑡−ℓ)

(𝑛
𝑡)

,

an upper bound on the density of the set 𝒜𝑡,ℓ(𝑆).

Remark 16.6. For any ℓ and 𝑆, we can rewrite 𝒜𝑡,ℓ(𝑆) as

𝒜𝑡,ℓ(𝑆) = ⋃
𝑠∈𝑆

⋃
𝑐⊂𝑠
|𝑐|=ℓ

{𝑐} + {𝑣 ∣ |𝑣| = 𝑡 − ℓ, |𝑐 ⋆ 𝑣| = 0} .

It is a union of spheres, and they might intersect. However, this is highly unlikely with
the parameters usually considered for QC-MDPC schemes. Indeed, suppose that for
some 𝑐, 𝑐′ ∈ 𝑆 there exists a 𝑢 such that 𝑢 = 𝑐 + 𝑣 = 𝑐′ + 𝑣′ where |𝑐| = ∣𝑐′∣ = ℓ and
|𝑣| = ∣𝑣′∣ = 𝑡 − ℓ. Let us rewrite it as 𝑐 + 𝑐′ = 𝑣 + 𝑣′. We always have ∣𝑐 + 𝑐′∣ ≤ 2ℓ, and

Pr[∣𝑣 + 𝑣′∣ ≤ 2ℓ] ≤
𝑡−ℓ
∑

𝑘=𝑡−2ℓ

(𝑡−ℓ
𝑘)(𝑛−𝑤−𝑡+ℓ

𝑡−ℓ−𝑘)
(𝑛−𝑤

𝑡−ℓ)
.

Multiplying the right-hand side by ∣𝑆∣2 (𝑤
ℓ)2 gives a really rough upper bound on the

proportion of duplicates in Proposition 16.5. This is negligible for ℓ < 45 with (𝑟, 𝑑, 𝑡) =
(12 323, 71, 134) and 𝑆 ∈ {𝒞, 𝒩, 2𝒩}. In this case, the upper bound 𝒟𝑡,𝑤+𝑡−2ℓ(𝑆) is really
close to the actual density.

In Figure 16.2 we give the density of all the sets of error patterns described in the
previous section for (𝑟, 𝑑, 𝑡) = (12 323, 71, 134). We can see, for each set, the range of
distance of interest for our analysis i.e. those that have a density greater that 2−128.

Influence on decoding. Let 𝒮 be 𝒞, 𝒩 or 2𝒩. The proximity of an error pattern to
an element of 𝒮 has an influence on the counters. Let us write one of these elements
c ∈ 𝒮 ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2 and an error pattern e ∈ (𝔽2[𝑥]/(𝑥𝑟 − 1))2. Let us separate the
positions in c and e depending on whether they are mutual or not.

We can write
p = e ⋆ c , e⟂ = e − p , c⟂ = c − p ,

then
e = e⟂ + p , c = c⟂ + p .

Since the distance between e and c is given by the formula

|e| + |c| − 2 |p| ,

and assuming the elements of 𝒮 all have the same weight, a closest element of 𝒮 to e is
one that maximizes ℓ = |p|.

We now suppose that c is one of those. In Table 16.2, we give statistics for different
sets 𝒮 and different values of ℓ, namely the syndrome weight and the distribution of the
counters classified according to whether they concern a position belonging to e⟂, h⟂, p
or none of these. Remember that for a bit-flipping iteration to be efficient, the counters
of positions in the support of e have to be higher than the others. What we can observe
from the table is that as ℓ increases, the counters of positions in the support of e⟂ or c⟂

increase, while those of p and the others decrease. In other words, the algorithm is more
likely to mistakenly add errors by flipping positions in the support of c⟂ and miss the
errors in p ⊂ e. It is also interesting to point out that this influence on the counters as
well as on the syndrome weight can even be observed for small values of ℓ.

Note that as all the sets 𝒞, 𝒩 or 2𝒩 are stable by blockwise circular shifts, any error
pattern has at least one intersection with one of them, and is highly likely to have two.
Therefore, depending on the set 𝒮, the set 𝒜𝑡,ℓ(𝑆) might be empty for lower values of ℓ.

16.4. Lower bound on the DFR with simulations 165

140 160 180 200 220 240 260
−200

−150

−100

−50

0

log2 𝒟𝑡,𝛿(𝒩)

log2 𝒟𝑡,𝛿(2𝒩)

log2 𝒟𝑡,𝛿(𝒞)

𝛿

Figure 16.2: Upper bound on the probability that an error pattern of weight 𝑡 is at a
certain distance 𝛿 from 𝒩, 2𝒩 or 𝒞.
For ℓ = |e ⋆ c|, the distance is 𝛿 = |c| + 𝑡 − 2ℓ where |c| is 𝑑, 𝑤 or 𝑤 respectively for 𝒩,
2𝒩 or 𝒞.
(𝑟, 𝑑, 𝑡) = (12 323, 71, 134).

16.4 Lower bound on the DFR with simulations
Using Algorithm 16.1, we can evaluate the DFR on the sets 𝒜𝑡,ℓ(𝑆) for any decoding
algorithm, any ℓ, and 𝑆 ∈ {𝒞, 𝒩, 2𝒩}. Figure 16.3 & 16.4 & 16.5 gives DFR estimates
for various decoders. We can observe that the product of the density of the sets 𝒜𝑡,ℓ(𝒞),
𝒜𝑡,ℓ(𝒩), 𝒜𝑡,ℓ(2𝒩) multiplied by the obtained DFR is increasing. But we eventually reach
the limits of what can be obtained with simulation. It would not be surprising if as the
distance increases, the DFR converges to its average value (which is expected to be below
2−𝜆).

We can also see in those figures that the near-codewords in 𝒩 seem to have the most
influence on the decoder in comparison to the other sets 𝒞 or 2𝒩.

16.5 Comments
Not that the DFR obtained are not the results of extrapolations and this construction
gives directly a lower bound on the DFR. The (small) imprecision on these values comes
from the fact that we only compute a bound on the density of the considered sets and the
fact that the DFR is estimated with simulation. As discussed in the previous section, the
former is really tight and, for the latter, estimations are given with their 99% confidence
interval.

While decoders are slowed down by the closeness of problematic patterns, we observe
that failures would not be avoided by simply increasing the number of iterations. Error
patterns are either decoded in a few iterations or they are never decoded.

The technique described here for generating error patterns close to 𝒩 provides a good
way to test decoders’ borderline cases. For example, although the threshold selection

166 Chapter 16. Error floors: Subsets of error patterns

134 136 138 140 142 144 146 148 150 152

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Distance

lo
g 2

Pr

DFR — BGF Density

DFR — BG Density

DFR — BGB Density

DFR — B Density

DFR — Backflip Density

Figure 16.3: DFR vs. distance to 𝒩 with various gray decoders (7 iterations for BGF, 8
for B and 9 for the others) and Backflip with multiple thresholds (7 iterations). (𝑟, 𝑑, 𝑡) =
(12 323, 71, 134). 99%-confidence intervals.

rules for BlackGray decoders are not explicitly described in [DGK20b], the additional
implementation of [BIKE] (for versions prior to and including 3.2) implemented a BlackGray
decoder and used a simple affine function of the syndrome weight. Our early work on
error floors showed that this resulted in the existence of a subset of error patterns whose
average DFR multiplied by the density was well above 2−𝜆, thus threatening the IND-CCA
security of the system. In this case, the solution was to set a minimum value for the
threshold at (𝑑 + 1)/2.

16.5. Comments 167

175 180 185 190 195 200 205

−260

−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Distance

lo
g 2

Pr

DFR — BGF Density

DFR — BG Density

DFR — BGB Density

DFR — B Density

DFR — Backflip Density

Figure 16.4: DFR vs. distance to 2𝒩 with various gray decoders (7 iterations for
BGF, 8 for B and 9 for the others) and Backflip with multiple thresholds (7 iterations).
(𝑟, 𝑑, 𝑡) = (12 323, 71, 134). 99%-confidence intervals.

168 Chapter 16. Error floors: Subsets of error patterns

135 140 145 150 155 160 165 170

−400

−350

−300

−250

−200

−150

−100

−50

0

Distance

lo
g 2

Pr

DFR — BGF Density

DFR — BG Density

DFR — BGB Density

DFR — B Density

DFR — Backflip Density

Figure 16.5: DFR vs. distance to 𝒞 with various gray decoders (7 iterations for BGF, 8
for B and 9 for the others) and Backflip with multiple thresholds (7 iterations). (𝑟, 𝑑, 𝑡) =
(12 323, 71, 134). 99%-confidence intervals.

16.5. Comments 169

Ta
bl

e
16

.2
:

In
flu

en
ce

of
co

de
w

or
ds

an
d

ne
ar

-c
od

ew
or

ds
on

th
e

sy
nd

ro
m

e
w

ei
gh

t
an

d
th

e
co

un
te

rs
di

st
rib

ut
io

ns
fo

r
(𝑟

,𝑑
,𝑡

)=
(1

17
79

,7
1,

13
4)

.

ℓ
Sy

nd
ro

m
e

w
ei

gh
t

C
ou

nt
er

s
∈

e⟂
∈

p
∈

c⟂
O

th
er

M
ea

n
Va

r
M

ea
n

Va
r

M
ea

n
Va

r
M

ea
n

Va
r

M
ea

n
Va

r
Av

er
ag

e
ca

se
(∈

e)
-

47
40

.8
26

24
36

.0
14

42
.5

90
17

.0
32

-
-

-
-

28
.4

96
17

.0
45

𝒮
=

𝒩
3

47
50

.1
78

24
47

.6
85

42
.6

29
16

.9
86

41
.8

97
16

.9
97

29
.3

99
17

.0
34

28
.5

50
17

.0
49

4
47

40
.9

88
24

74
.0

73
42

.6
10

17
.0

16
41

.9
82

16
.9

79
29

.3
16

17
.0

56
28

.4
95

17
.0

44
5

47
37

.9
27

24
38

.1
34

42
.6

14
17

.0
27

41
.8

64
17

.0
43

29
.4

04
17

.0
28

28
.4

76
17

.0
41

10
47

24
.1

76
24

41
.5

86
42

.6
98

17
.0

15
40

.9
21

16
.9

75
30

.3
42

17
.0

20
28

.3
90

17
.0

25
30

45
57

.2
18

23
31

.5
55

43
.7

31
16

.7
69

37
.0

08
16

.7
74

34
.2

29
16

.7
75

27
.3

73
16

.8
03

40
43

88
.4

33
22

12
.5

89
44

.7
65

16
.5

16
34

.5
88

16
.5

35
36

.6
77

16
.5

22
26

.3
51

16
.5

53
50

41
38

.4
19

20
32

.1
29

46
.2

88
16

.0
80

31
.4

13
16

.1
14

39
.9

08
16

.0
52

24
.8

41
16

.1
27

60
37

75
.9

92
17

79
.2

13
48

.4
98

15
.3

39
26

.9
42

15
.3

75
44

.4
99

15
.3

60
22

.6
58

15
.3

99
70

32
49

.5
90

13
92

.6
64

51
.6

97
14

.0
18

20
.3

12
14

.0
66

51
.3

33
13

.9
81

19
.4

96
14

.1
08

𝒮
=

2𝒩
7

47
52

.5
99

24
49

.3
47

42
.6

30
16

.9
68

42
.2

36
16

.9
38

29
.1

90
17

.0
47

28
.5

64
17

.0
52

8
47

41
.6

06
24

48
.8

57
42

.6
24

17
.0

03
42

.0
95

17
.0

14
29

.2
26

17
.0

35
28

.4
97

17
.0

42
9

47
37

.5
78

24
48

.1
65

42
.6

27
17

.0
20

41
.9

86
16

.9
93

29
.3

00
17

.0
29

28
.4

72
17

.0
39

10
47

35
.1

05
24

49
.5

20
42

.6
37

17
.0

17
41

.8
73

17
.0

22
29

.3
89

17
.0

44
28

.4
56

17
.0

36
30

46
54

.6
94

24
05

.7
22

43
.1

33
16

.9
25

40
.0

41
17

.1
68

31
.0

92
17

.1
92

27
.9

60
16

.9
33

50
44

75
.7

58
23

10
.4

59
44

.2
38

16
.6

57
38

.2
43

17
.1

60
32

.8
89

17
.1

78
26

.8
69

16
.6

83
70

41
55

.0
64

21
06

.2
82

46
.2

07
16

.1
20

35
.8

68
16

.9
51

35
.2

77
16

.9
37

24
.9

23
16

.1
54

90
36

11
.6

95
17

45
.5

99
49

.5
30

14
.9

56
32

.0
98

16
.2

81
39

.1
05

16
.2

74
21

.6
40

15
.0

16
11

0
26

89
.3

31
10

88
.7

97
55

.1
51

12
.2

67
25

.3
14

14
.2

54
46

.0
23

14
.1

68
16

.0
87

12
.4

08
13

0
10

82
.6

73
21

4.
48

4
64

.8
97

5.
56

2
12

.1
61

7.
66

0
59

.4
83

7.
31

1
6.

45
8

5.
84

3
𝒮

=
𝒞

5
47

43
.8

16
24

39
.8

23
42

.6
06

17
.0

08
42

.2
82

17
.0

33
28

.9
40

17
.0

71
28

.5
12

17
.0

47
6

47
39

.3
87

24
62

.4
84

42
.6

07
17

.0
10

42
.1

68
17

.0
22

29
.0

13
17

.0
83

28
.4

84
17

.0
44

7
47

37
.7

76
24

53
.6

70
42

.6
14

17
.0

17
42

.0
76

17
.0

17
29

.1
06

17
.0

92
28

.4
74

17
.0

41
8

47
36

.2
35

24
52

.9
88

42
.6

19
17

.0
24

41
.9

81
17

.0
70

29
.2

00
17

.0
98

28
.4

64
17

.0
39

30
46

53
.6

11
23

93
.0

44
43

.1
44

16
.9

16
40

.0
12

17
.1

84
31

.1
32

17
.1

99
27

.9
53

16
.9

33
50

44
71

.5
95

23
04

.9
22

44
.2

65
16

.6
55

38
.1

68
17

.1
63

32
.9

69
17

.1
71

26
.8

43
16

.6
78

70
41

44
.7

16
21

05
.4

96
46

.2
67

16
.1

05
35

.7
26

16
.9

41
35

.4
23

16
.9

45
24

.8
60

16
.1

35
90

35
89

.3
83

17
18

.3
29

49
.6

68
14

.9
01

31
.8

15
16

.2
59

39
.3

91
16

.2
22

21
.5

04
14

.9
63

11
0

26
42

.4
06

10
58

.5
21

55
.4

36
12

.1
09

24
.7

40
14

.1
57

46
.6

14
14

.0
61

15
.8

04
12

.2
51

13
0

98
3.

97
0

18
4.

84
3

65
.4

97
5.

05
7

10
.9

24
7.

26
0

60
.7

56
6.

88
5

5.
86

5
5.

35
5

170 Chapter 16. Error floors: Subsets of error patterns

Conclusion

We first studied a sequential bit-flipping algorithm that updates the syndrome and recalcu-
lates its threshold after each flip. It was designed primarily to be stochastic and suitable for
a probabilistic analysis. However, it has led us to design algorithms based on a novel idea
which consists in regularly cancelling old flips. This idea has been concretized in a more
efficient way with Backflip. Backflip is particularly efficient, especially when it performs a
large number of iterations. Interestingly, it performs better than the soft-decision decoding
algorithm to which we compared it. This work was published in [SV20a] and Backflip was
suggested in [BIKE] for the second round of the NIST strandardization process. Finally,
we discussed the efficiency of gray decoders.

We then studied two probabilistic models of decoders. For the first one, we managed
to incorporate a feature that has not been fully taken into account so far in the analyses
of decoding algorithms, namely the quasi-cyclicity of the code and the regularity that it
implies. Our model accurately predicts the behaviour of an iteration of parallel bit-flipping,
and gives us the distribution of the error weight after one iteration. The second model
concerns the step-by-step decoder mentioned above. This model is able to handle the
complete algorithm execution not just one iteration. Compared to the previous model, it
is less accurate in this case. An interesting application for this algorithm and its analysis
is to use it at the end of decoding when there is not many errors left to decode. This
is what can be done with an iteration of a gray decoder for example. This work on the
Markovian model has been published in [SV19].

Finally, we presented a DFR extrapolation framework. It is based on an assumption that
followed the conclusions obtained from the DFR models. We have rigorously determined the
confidence intervals associated with these extrapolations. We then constructed some sets
of weak keys that were justified by structural properties of quasi-cyclic codes. This work
is the object of a preprint [SV20b]. Then we shed light on the existence of near codewords
due to this structure, and assessed their influence on decoding. This provides a lower
bound on the DFR and ensures that extrapolations are not wrong. These extrapolation
techniques and checks against weak keys and error floors were used extensively for the
selection of [BIKE]’s IND-CCA parameters.

Perspectives. We have presented efficient algorithms, but many aspects of their imple-
mentations are based on simulations and optimizations. It would be interesting to have a
better understanding and justification of ttl functions or the thresholds used to define the
gray positions.

The proximity to near codewords emerges as crucial in understanding the decoding
instances that fail. In particular, it has an influence on the syndrome weight and counters
distributions. Models could greatly benefit from conditioning these distributions to the
distance to a near codeword.

Errors appear in model predictions when we try to iterate it beyond one iteration
because of the correlations that appear when decoding. It would be interesting to see to
what extent these correlations can be related to the near codewords we found, i.e. how

171

172 Chapter 16. Error floors: Subsets of error patterns

much the algorithm tends to increase the number of bits in common with a row of the
parity check matrix.

Concerning weak keys, with those of Type I, each column has a large intersection with
several columns, and with those of Type II and III, each column has a large intersection
with only one (or two) other columns. There is a range of possibilities between these two
extremes that it would be interesting to investigate. For example, we could consider keys
that have two distances with a high multiplicity, or three, etc.

Bibliography

[802.11] “IEEE Standard for Information technology—Telecommunications and in-
formation exchange between systems Local and metropolitan area net-
works—Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications”. In: IEEE Std
802.11-2016 (Revision of IEEE Std 802.11-2012) (Dec. 14, 2016), pp. 1–3534.
doi: 10.1109/IEEESTD.2016.7786995.

[Ala+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. “Status Report on
the Second Round of the NIST Post-Quantum Cryptography Standardization
Process”. In: (July 2020). doi: 10.6028/NIST.IR.8309.

[Ale03] Michael Alekhnovich. “More on average case vs approximation complexity”.
In: 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. 2003, pp. 298–307. doi: 10.1109/SFCS.2003.1238204.

[APRS20] Daniel Apon, Ray A. Perlner, Angela Robinson, and Paolo Santini. “Crypt-
analysis of LEDAcrypt”. In: Advances in Cryptology - CRYPTO. Ed. by
Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS. Springer,
2020, pp. 389–418. doi: 10.1007/978-3-030-56877-1_14.

[BDLO16] Magali Bardet, Vlad Dragoi, Jean-Gabriel Luque, and Ayoub Otmani. “Weak
Keys for the Quasi-Cyclic MDPC Public Key Encryption Scheme”. In:
AFRICACRYPT 2016. Ed. by David Pointcheval, Abderrahmane Nitaj,
and Tajjeeddine Rachidi. Vol. 9646. LNCS. Springer, 2016, pp. 346–367. doi:
10.1007/978-3-319-31517-1_18.

[BHLV17] Daniel J Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. “Post-
quantum RSA”. In: Post-Quantum Cryptography (PQCrypto). Ed. by Tanja
Lange and Tsuyoshi Takagi. Vol. 10346. LNCS. Utrecht, Netherlands: Springer,
2017, pp. 311–329. doi: 10.1007/978-3-319-59879-6_18.

[BIKE] Carlos Aguilar Melchor, Nicolas Aragon, Paulo S L M Barreto, Slim Bettaieb,
Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
Ghosh Santosh, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles
Zémor. BIKE. NIST Round 3 submission for Post-Quantum Cryptography.
Aug. 2020. url: https://bikesuite.org.

[BJK19] Irina E Bocharova, Thomas Johansson, and Boris D Kudryashov. “Improved
iterative decoding of QC-MDPC codes in the McEliece public key cryptosys-
tem”. In: IEEE International Symposium on Information Theory (ISIT).
2019, pp. 1882–1886. doi: 10.1109/ISIT.2019.8849839.

173

https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1007/978-3-030-56877-1_14
https://doi.org/10.1007/978-3-319-31517-1_18
https://doi.org/10.1007/978-3-319-59879-6_18
https://bikesuite.org
https://doi.org/10.1109/ISIT.2019.8849839

174 Chapter 16. Error floors: Subsets of error patterns

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. “De-
coding Random Binary Linear Codes in 2𝑛/20: How 1 + 1 = 0 Improves
Information Set Decoding”. In: Advances in Cryptology - EUROCRYPT.
LNCS. Springer, 2012. doi: 10.1007/978-3-642-29011-4_31.

[BMT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. “On the inher-
ent intractability of certain coding problems”. In: IEEE Transactions on
Information Theory 24.3 (May 1978), pp. 384–386. doi: 10.1109/TIT.1978.
1055873.

[BSC16] Marco Baldi, Paolo Santini, and Franco Chiaraluce. “Soft McEliece: MDPC
code-based McEliece cryptosystems with very compact keys through real-
valued intentional errors”. In: IEEE International Symposium on Information
Theory (ISIT). IEEE, 2016, pp. 795–799. doi: 10.1109/ISIT.2016.7541408.

[BT02] Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to probability.
English. Belmont, Mass.: Athena Scientific, 2002. isbn: 978-1886529403.

[Bur08] David Burshtein. “On the Error Correction of Regular LDPC Codes Using
the Flipping Algorithm”. In: IEEE Transactions on Information Theory 54.2
(2008), pp. 517–530. doi: 10.1109/TIT.2007.913261.

[CFRU01] Sae-Young Chung, G David Forney, Thomas J Richardson, and Rüdiger
Urbanke. “On the design of low-density parity-check codes within 0.0045 dB
of the Shannon limit”. In: IEEE Communications Letters 5.2 (Feb. 2001),
pp. 58–60. issn: 1558-2558. doi: 10.1109/4234.905935.

[Cha17] Julia Chaulet. “Étude de cryptosystèmes à clé publique basés sur les codes
MDPC quasi-cycliques”. French. PhD thesis. University Pierre et Marie Curie,
Mar. 2017. url: https://tel.archives-ouvertes.fr/tel-01599347.

[Cho16] Tung Chou. “QcBits: Constant-Time Small-Key Code-Based Cryptography”.
In: CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813.
LNCS. Springer, 2016, pp. 280–300. doi: 10.1007/978-3-662-53140-2_14.

[CP34] Charles J Clopper and Egon S Pearson. “The use of confidence or fiducial
limits illustrated in the case of the binomial”. In: Biometrika 26.4 (Dec. 1934),
pp. 404–413. issn: 0006-3444. doi: 10.1093/biomet/26.4.404.

[CS15] Rodolfo Canto Torres and Nicolas Sendrier. “Analysis of Information Set
Decoding for a Sub-linear Error Weight”. In: Post-Quantum Cryptography
(PQCrypto). Ed. by Tsuyoshi Takagi. 2015, pp. 144–161. doi: 10.1007/978-
3-319-29360-8_10,.

[CS16] Julia Chaulet and Nicolas Sendrier. “Worst case QC-MDPC decoder for
McEliece cryptosystem”. In: IEEE International Symposium on Information
Theory (ISIT). IEEE Press, 2016, pp. 1366–1370. doi: 10.1109/ISIT.2016.
7541522.

[CT19] Rodolfo Canto Torres and Jean-Pierre Tillich. “Speeding up decoding a code
with a non-trivial automorphism group up to an exponential factor”. In:
IEEE International Symposium on Information Theory (ISIT). IEEE, 2019,
pp. 1927–1931. doi: 10.1109/ISIT.2019.8849628.

[Den03] Alexander W Dent. “A Designer’s Guide to KEMs”. In: 9th IMA International
Conference on Cryptography and Coding. Ed. by Kenneth G. Paterson.
Vol. 2898. LNCS. Cirencester, UK: Springer, Dec. 2003, pp. 133–151. doi:
10.1007/978-3-540-40974-8_12.

[DG19] Nir Drucker and Shay Gueron. “A toolbox for software optimization of QC-
MDPC code-based cryptosystems”. In: Journal of Cryptographic Engineering
(JCEN) 9.4 (2019), pp. 341–357. doi: 10.1007/s13389-018-00200-4.

https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/ISIT.2016.7541408
https://doi.org/10.1109/TIT.2007.913261
https://doi.org/10.1109/4234.905935
https://tel.archives-ouvertes.fr/tel-01599347
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1007/978-3-319-29360-8_10,
https://doi.org/10.1007/978-3-319-29360-8_10,
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1109/ISIT.2019.8849628
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/s13389-018-00200-4

16.5. Comments 175

[DGK19] Nir Drucker, Shay Gueron, and Dusan Kostic. On constant-time QC-MDPC
decoding with negligible failure rate. Cryptology ePrint Archive, Report
2019/1289. 2019. url: https://eprint.iacr.org/2019/1289.

[DGK20a] Nir Drucker, Shay Gueron, and Dusan Kostic. “Fast Polynomial Inversion for
Post Quantum QC-MDPC Cryptography”. In: LNCS 12161 (2020). Ed. by
Shlomi Dolev, Vladimir Kolesnikov, Sachin Lodha, and Gera Weiss, pp. 110–
127. doi: 10.1007/978-3-030-49785-9_8.

[DGK20b] Nir Drucker, Shay Gueron, and Dusan Kostic. “QC-MDPC Decoders with
Several Shades of Gray”. In: Post-Quantum Cryptography (PQCrypto). Ed.
by Jintai Ding and Jean-Pierre Tillich. Vol. 12100. LNCS. Springer, 2020,
pp. 35–50. doi: 10.1007/978-3-030-44223-1_3.

[DGZ17] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. “Ouroboros:
A Simple, Secure and Efficient Key Exchange Protocol Based on Coding
Theory”. In: Post-Quantum Cryptography (PQCrypto). Ed. by Tanja Lange
and Tsuyoshi Takagi. Vol. 10346. LNCS. Utrecht, Netherlands: Springer,
2017, pp. 18–34. doi: 10.1007/978-3-319-59879-6_2.

[Di+02] Changyan Di, David Proietti, I Emre Telatar, Thomas J Richardson, and
Rüdiger L Urbanke. “Finite-length analysis of low-density parity-check codes
on the binary erasure channel”. In: IEEE Transactions on Information Theory
48.6 (2002), pp. 1570–1579. doi: 10.1109/TIT.2002.1003839.

[Dum91] Ilya Dumer. “On minimum distance decoding of linear codes”. In: Fifth
Joint Soviet–Swedish International Workshop on Information Theory. Ed. by
Grigori A Kabatianskii. Moscow, Russia, 1991, pp. 50–52.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: CRYPTO’99. Ed. by Michael J.
Wiener. Vol. 1666. LNCS. Santa Barbara, CA, USA: Springer, Aug. 1999,
pp. 537–554. doi: 10.1007/3-540-48405-1_34.

[Gal63] Robert G. Gallager. Low Density Parity Check Codes. Cambridge, MA, USA:
M.I.T. Press, 1963.

[Gar+01] Roberto Garello, Franco Chiaraluce, Paola Pierleoni, Marco Scaloni, and
Sergio Benedetto. “On error floor and free distance of turbo codes”. In: IEEE
International Conference on Communications (ICC). Vol. 1. IEEE, 2001,
45–49 vol.1. doi: 10.1109/ICC.2001.936270.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recovery
Attack on MDPC with CCA Security Using Decoding Errors”. In: Advances
in Cryptology - ASIACRYPT. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10031. LNCS. 2016, pp. 789–815. isbn: 978-3-662-53886-9. doi: 10.
1007/978-3-662-53887-6_29.

[HC17] Jingwei Hu and Ray CC Cheung. “Area-time efficient computation of nieder-
reiter encryption on QC-MDPC codes for embedded hardware”. In: IEEE
Transactions on Computers 66.8 (2017), pp. 1313–1325. doi: 10.1109/TC.
2017.2672984.

[HEA01] Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter M Arnold. “Progressive
edge-growth Tanner graphs”. In: IEEE Global Communications Conference
(GLOBECOM). Vol. 2. San Antonio, TX, USA: IEEE, Nov. 2001, 995–1001
vol.2. doi: 10.1109/GLOCOM.2001.965567.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A modular analysis
of the Fujisaki-Okamoto transformation”. In: Theory of Cryptography Confer-
ence. Springer. 2017, pp. 341–371. doi: 10.1007/978-3-319-70500-2_12.

https://eprint.iacr.org/2019/1289
https://doi.org/10.1007/978-3-030-49785-9_8
https://doi.org/10.1007/978-3-030-44223-1_3
https://doi.org/10.1007/978-3-319-59879-6_2
https://doi.org/10.1109/TIT.2002.1003839
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1109/ICC.2001.936270
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1109/TC.2017.2672984
https://doi.org/10.1109/TC.2017.2672984
https://doi.org/10.1109/GLOCOM.2001.965567
https://doi.org/10.1007/978-3-319-70500-2_12

176 Chapter 16. Error floors: Subsets of error patterns

[HMG13] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. “Smaller Keys for Code-
Based Cryptography: QC-MDPC McEliece Implementations on Embedded
Devices”. In: International Conference on Cryptographic Hardware and Em-
bedded Systems (CHES). Ed. by Guido Bertoni and Jean-Sébastien Coron.
Vol. 8086. LNCS. Springer, 2013, pp. 273–292. doi: 10.1007/978-3-642-
40349-1_16.

[HQC] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jurjen Bos, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor. HQC. NIST
Round 3 submission for Post-Quantum Cryptography. July 2020. url: https:
//pqc-hqc.org/.

[HWCW19] Jingwei Hu, Wen Wang, Ray CC Cheung, and Huaxiong Wang. “Optimized
Polynomial Multiplier Over Commutative Rings on FPGAs: A Case Study
on BIKE”. In: International Conference on Field-Programmable Technology
(ICFPT). IEEE. 2019, pp. 231–234. doi: 10.1109/ICFPT47387.2019.00035.

[Joz01] Richard Jozsa. “Quantum factoring, discrete logarithms, and the hidden
subgroup problem”. In: Computing in Science & Engineering 3.2 (2001),
pp. 34–43. doi: 10.1109/5992.909000.

[KS06] K Murali Krishnan and Priti Shankar. “On the Complexity of finding
stopping set size in Tanner Graphs”. In: Conference on Information Sciences
and Systems (CISS). 2006, pp. 157–158. doi: 10.1109/CISS.2006.286453.

[LB18] Gianluigi Liva and Hannes Bartz. “Protograph-based Quasi-Cyclic MDPC
Codes for McEliece Cryptosystems”. In: IEEE International Symposium on
Turbo Codes & Iterative Information Processing (ISTC). Hong Kong, China:
IEEE, Dec. 2018, pp. 1–5. doi: 10.1109/ISTC.2018.8625356.

[LB88] Pil J. Lee and Ernest F. Brickell. “An Observation on the Security of
McEliece’s Public-Key Cryptosystem”. In: Advances in Cryptology - EURO-
CRYPT. Vol. 330. LNCS. Springer, 1988, pp. 275–280. doi: 10.1007/3-540-
45961-8_25.

[LDW94] Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. “On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems”. In: IEEE Trans-
actions on Information Theory 40.1 (1994), pp. 271–273. doi: 10.1109/18.
272496.

[LEDA] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDAcrypt. Revision 3.0 of the submission to the NIST post-
quantum cryptography call. May 2020. url: https://www.ledacrypt.org/
documents/LEDAcrypt_v3.pdf.

[LMSS01] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and
Daniel A Spielman. “Improved low-density parity-check codes using irregular
graphs”. In: IEEE Transactions on Information Theory 47.2 (Feb. 2001),
pp. 585–598. doi: 10.1109/18.910576.

[Lön+16] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. “Squaring attacks on McEliece
public-key cryptosystems using quasi-cyclic codes of even dimension”. In:
Designs, Codes and Cryptography 80.2 (2016), pp. 359–377. doi: 10.1007/
s10623-015-0099-x.

[McE78] Robert J. McEliece. “A Public-Key System Based on Algebraic Coding
Theory”. In: DSN Progress Report 42-44. Jet Propulsion Lab, 1978, pp. 114–
116. url: https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.
PDF.

https://doi.org/10.1007/978-3-642-40349-1_16
https://doi.org/10.1007/978-3-642-40349-1_16
https://pqc-hqc.org/
https://pqc-hqc.org/
https://doi.org/10.1109/ICFPT47387.2019.00035
https://doi.org/10.1109/5992.909000
https://doi.org/10.1109/CISS.2006.286453
https://doi.org/10.1109/ISTC.2018.8625356
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/18.272496
https://doi.org/10.1109/18.272496
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf
https://doi.org/10.1109/18.910576
https://doi.org/10.1007/s10623-015-0099-x
https://doi.org/10.1007/s10623-015-0099-x
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

16.5. Comments 177

[MG14] Ingo von Maurich and Tim Güneysu. “Towards Side-Channel Resistant Im-
plementations of QC-MDPC McEliece Encryption on Constrained Devices”.
In: Post-Quantum Cryptography (PQCrypto). Vol. 8772. LNCS. Springer,
2014, pp. 266–282. doi: 10.1007/978-3-319-11659-4_16.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. “Decoding random
linear codes in 𝑂(20.054𝑛)”. In: Advances in Cryptology - ASIACRYPT. Ed.
by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, 2011,
pp. 107–124. doi: 10.1007/978-3-642-25385-0_6.

[MN97] David JC MacKay and Radford M Neal. “Near Shannon limit performance
of low density parity check codes”. In: Electronics Letters 33.6 (Mar. 13,
1997), pp. 457–458. issn: 0013-5194. doi: 10.1049/el:19970362.

[MO15] Alexander May and Ilya Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: Advances in Cryptology
- EUROCRYPT. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS.
Springer, 2015, pp. 203–228. doi: 10.1007/978-3-662-46800-5_9.

[MOG15a] Ingo von Maurich, Tobias Oder, and Tim Güneysu. “Implementing QC-
MDPC McEliece Encryption”. In: ACM Transactions on Embedded Comput-
ing Systems 14.3 (Apr. 2015), 44:1–44:27. issn: 1539-9087. doi: 10.1145/
2700102.

[MOG15b] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. “Implementing QC-
MDPC McEliece encryption”. In: ACM Transactions on Embedded Computing
Systems (TECS) 14.3 (Apr. 2015), pp. 1–27. doi: 10.1145/2700102.

[MRA00] Chris Monico, Joachim Rosenthal, and Amin A. Shokrollahi. “Using low
density parity check codes in the McEliece cryptosystem”. In: IEEE Inter-
national Symposium on Information Theory (ISIT). Sorrento, Italy: IEEE,
2000, p. 215. doi: 10.1109/ISIT.2000.866513.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. “MDPC-McEliece: New McEliece variants from Moderate Density
Parity-Check codes”. In: IEEE International Symposium on Information
Theory (ISIT). IEEE, 2013, pp. 2069–2073. doi: 10.1109/ISIT.2013.
6620590.

[Nie86] Harald Niederreiter. “Knapsack-type cryptosystems and algebraic coding
theory”. In: Problems of Control and Information Theory 15.2 (1986), pp. 159–
166. url: http://real-j.mtak.hu/7997/1/MTA_ProblemsOfControl_15.
pdf.

[NM65] John A Nelder and Roger Mead. “A Simplex Method for Function Min-
imization”. In: The Computer Journal 7.4 (Jan. 1965), pp. 308–313. doi:
10.1093/comjnl/7.4.308.

[NTRU] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-
Based Public Key Cryptosystem”. In: Algorithmic Number Theory Symposium
(ANTS). Ed. by Joe Buhler. Vol. 1423. LNCS. Portland, OR, USA: Springer,
June 1998, pp. 267–288. doi: 10.1007/BFb0054868.

[NV14] Dung Viet Nguyen and Bane Vasic. “Two-Bit Bit Flipping Algorithms for
LDPC Codes and Collective Error Correction”. In: IEEE Transactions on
Communications 62.4 (Apr. 2014), pp. 1153–1163. doi: 10.1109/TCOMM.
2014.021614.130884.

https://doi.org/10.1007/978-3-319-11659-4_16
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1049/el:19970362
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1145/2700102
https://doi.org/10.1145/2700102
https://doi.org/10.1145/2700102
https://doi.org/10.1109/ISIT.2000.866513
https://doi.org/10.1109/ISIT.2013.6620590
https://doi.org/10.1109/ISIT.2013.6620590
http://real-j.mtak.hu/7997/1/MTA_ProblemsOfControl_15.pdf
http://real-j.mtak.hu/7997/1/MTA_ProblemsOfControl_15.pdf
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1109/TCOMM.2014.021614.130884
https://doi.org/10.1109/TCOMM.2014.021614.130884

178 Chapter 16. Error floors: Subsets of error patterns

[Pea82] Judea Pearl. “Reverend Bayes on Inference Engines: A Distributed Hier-
archical Approach”. In: Proceedings of the Second AAAI Conference on
Artificial Intelligence. AAAI’82. AAAI Press, 1982, pp. 133–136. url: https:
//www.aaai.org/Library/AAAI/1982/aaai82-032.php.

[Pra62] Eugene Prange. “The use of information sets in decoding cyclic codes”. In:
IRE Transactions on Information Theory 8.5 (Sept. 1962), pp. 5–9. doi:
10.1109/TIT.1962.1057777.

[Ric03] Tom Richardson. “Error Floors of LDPC Codes”. In: 41st Annual Allerton
Conference on Communication, Control, and Computing. 2003, pp. 1426–
1435.

[RMG20] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. Folding BIKE:
Scalable Hardware Implementation for Reconfigurable Devices. Cryptology
ePrint Archive, Report 2020/897. 2020. url: https://eprint.iacr.org/
2020/897.

[RSU01] Thomas J Richardson, Mohammad Amin Shokrollahi, and Rüdiger L Ur-
banke. “Design of capacity-approaching irregular low-density parity-check
codes”. In: IEEE Transactions on Information Theory 47.2 (Feb. 2001),
pp. 619–637. doi: 10.1109/18.910578.

[RU01] Thomas J Richardson and Rüdiger L Urbanke. “The capacity of low-density
parity-check codes under message-passing decoding”. In: IEEE Transactions
on Information Theory 47.2 (2001), pp. 599–618. doi: 10.1109/18.910577.

[SBBC19] Paolo Santini, Massimo Battaglioni, Marco Baldi, and Franco Chiaraluce.
“Hard-decision iterative decoding of LDPC codes with bounded error rate”.
In: IEEE International Conference on Communications (ICC). IEEE, May
2019, pp. 1–6. doi: 10.1109/ICC.2019.8761536.

[Sch72] J Schalkwijk. “An algorithm for source coding”. In: IEEE Transactions on
Information Theory 18.3 (1972), pp. 395–399. doi: 10.1109/TIT.1972.
1054832.

[Sen11] Nicolas Sendrier. “Decoding One Out of Many”. In: Post-Quantum Cryptog-
raphy (PQCrypto). Vol. 7071. LNCS. 2011, pp. 51–67. doi: 10.1007/978-3-
642-25405-5_4.

[Sho99] Peter W Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Review 41.2 (Jan.
1999), pp. 303–332. doi: 10.1137/S0036144598347011.

[Spr79] Melvin Dale. Springer. The Algebra of random variables. English. New York:
Wiley, 1979. isbn: 978-0471014065.

[SS96] Michael Sipser and Daniel A. Spielman. “Expander codes”. In: IEEE Trans-
actions on Information Theory 42.6 (1996), pp. 1710–1722. doi: 10.1109/
18.556667.

[SSH] Tatu Ylönen and Chris Lonvick. “The Secure Shell (SSH) Transport Layer
Protocol”. In: RFC 4253 (2006), pp. 1–32. doi: 10.17487/RFC4253.

[Ste88] Jacques Stern. “A method for finding codewords of small weight”. In: Coding
Theory and Applications. Ed. by Gérard Cohen and Jacques Wolfmann.
Vol. 388. LNCS. Springer, 1988, pp. 106–113. doi: 10.1007/BFb0019850.

[SV19] Nicolas Sendrier and Valentin Vasseur. “On the Decoding Failure Rate of QC-
MDPC Bit-Flipping Decoders”. In: Post-Quantum Cryptography (PQCrypto).
Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505. LNCS. Chongqing,
China: Springer, May 2019, pp. 404–416. doi: 10.1007/978-3-030-25510-
7_22.

https://www.aaai.org/Library/AAAI/1982/aaai82-032.php
https://www.aaai.org/Library/AAAI/1982/aaai82-032.php
https://doi.org/10.1109/TIT.1962.1057777
https://eprint.iacr.org/2020/897
https://eprint.iacr.org/2020/897
https://doi.org/10.1109/18.910578
https://doi.org/10.1109/18.910577
https://doi.org/10.1109/ICC.2019.8761536
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1109/TIT.1972.1054832
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556667
https://doi.org/10.17487/RFC4253
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-030-25510-7_22
https://doi.org/10.1007/978-3-030-25510-7_22

16.5. Comments 179

[SV20a] Nicolas Sendrier and Valentin Vasseur. “About Low DFR for QC-MDPC
Decoding”. In: Post-Quantum Cryptography (PQCrypto). Ed. by Jintai Ding
and Jean-Pierre Tillich. Vol. 12100. LNCS. Paris, France: Springer, Apr.
2020, pp. 20–34. doi: 10.1007/978-3-030-44223-1_2.

[SV20b] Nicolas Sendrier and Valentin Vasseur. On the existence of weak keys for
QCMDPC decoding. Cryptology ePrint Archive, Report 2020/1232. 2020.
url: https://eprint.iacr.org/2020/1232.

[Tan81] R. Tanner. “A recursive approach to low complexity codes”. In: IEEE Trans-
actions on Information Theory 27.5 (1981), pp. 533–547. doi: 10.1109/TIT.
1981.1056404.

[Til18a] Jean-Pierre Tillich. “The Decoding Failure Probability of MDPC Codes”. In:
IEEE International Symposium on Information Theory (ISIT). IEEE, 2018,
pp. 941–945. doi: 10.1109/ISIT.2018.8437843.

[Til18b] Jean-Pierre Tillich. The decoding failure probability of MDPC codes. Sept.
2018. url: https://arxiv.org/abs/1801.04668.

[TLS] Eric Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.3”.
In: RFC 8446 (2018), pp. 1–160. doi: 10.17487/RFC8446.

[Vas17] Valentin Vasseur. “Cryptographie post-quantique : étude du décodage des
codes QC-MDPC”. MA thesis. Université Grenoble Alpes, Sept. 2017. url:
https://hal.inria.fr/hal-01664082.

[WKP09] Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. “Finding All
Small Error-Prone Substructures in LDPC Codes”. In: IEEE Transactions
on Information Theory 55.5 (2009), pp. 1976–1999. doi: 10.1109/TIT.2009.
2015993.

https://doi.org/10.1007/978-3-030-44223-1_2
https://eprint.iacr.org/2020/1232
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/ISIT.2018.8437843
https://arxiv.org/abs/1801.04668
https://doi.org/10.17487/RFC8446
https://hal.inria.fr/hal-01664082
https://doi.org/10.1109/TIT.2009.2015993
https://doi.org/10.1109/TIT.2009.2015993

	Introduction
	Publications
	Notations
	I Preliminaries
	Coding theory
	Linear codes
	Decoding
	Minimum distance & Gilbert-Varshamov distance
	Regularity
	Channel
	Schur product
	(QC-)MDPC codes and basic properties

	Security reduction
	Security games
	Fujisaki-Okamoto transform

	Code-based cryptography
	McEliece cryptosystem framework
	Niederreiter cryptosystem framework
	Best known attacks on underlying hard problems

	BIKE
	Security
	Block size

	Syndrome weight and counters in a regular MDPC code
	Fundamental quantities
	Counters distributions
	Average case
	Conditioning the counter distributions with the syndrome weight

	II New bit-flipping decoders for QC-MDPC
	Introduction
	State of the art
	LDPC codes
	MDPC codes
	QC-MDPC decoding thresholds

	Contributions

	Step-by-step
	Definition
	Sampling positions
	Uniform sampling
	Picking a position in one unsatisfied equation
	Picking a position in two unsatisfied equations

	Performance
	Non-blocking variant

	Backflip
	Algorithm description
	Threshold and time-to-live
	Optimistic threshold strategy
	Multiple thresholds strategy

	Gray decoders
	Framework
	Reverifications
	Simple definition
	Variants from Drucker, Gueron & Kostic
	Sorting variant

	III Analysis of bit-flipping decoders for QC-MDPC
	Introduction
	State-of-the-art
	LDPC codes
	Expander codes arguments
	Analysis of regular LDPC codes with a bit-flipping algorithm
	MDPC codes

	Contributions

	One iteration of the parallel decoder with variable thresholds
	Notations
	Mass equations in regular codes
	Modeling the error weight after the first iteration
	Estimating the number of errors per equation
	Estimating the syndrome weight and the sum of the counters
	Counters distributions
	Predicting flips
	Error weight after one iteration
	Unconditional probability of the error weight after the first iteration

	A two-iteration decoder with a DFR analysis
	One iteration
	Two iterations
	Decoding performance requirements after the first iteration

	Noisy syndrome decoding
	Going further to predict the syndrome weight after the first iteration

	Markovian model of the step-by-step algorithm
	Notations
	Algorithm supported by the model
	Assumptions
	DFR estimation within the model
	Transition probabilities
	Blocked state
	Transitions from a non-blocked state

	Results
	Using the step-by-step decoder only
	Using the step-by-step decoder for residual error correction

	IV Practical DFR estimation
	Introduction
	State-of-the-art
	Designing good LDPC code
	Error floors in LDPC codes
	DFR and spectrum of QC-MDPC codes
	Weak keys in a QC-LDPC cryptosystem
	Weak keys in QC-MDPC cryptosystems

	Contributions

	A DFR extrapolation framework
	Notations
	The decoder security assumption
	Security of the system with respect to the block size
	Confidence interval
	A first estimation
	Clopper-Pearson interval
	A first estimation of confidence intervals for extrapolations

	Using posterior probability
	Choosing parameters

	Weak keys: Subsets of parity check matrices
	QC-MDPC Codes
	Definition and polynomial representation
	Decoding

	Notations
	Distance Spectrum
	New properties of the distance spectrum
	Distance spectrum statistics
	Reconstructing the secret key from the spectrum

	Weak keys: Constructions and properties
	IND-CCA security and weak keys for KEMs
	Type I
	Type II
	Type III
	Statistics

	DFR estimations
	Filtering weak keys

	Error floors: Subsets of error patterns
	Notations
	Structured patterns in QC-MDPC codes
	Low weight codewords
	Near-codewords

	Error patterns impeding decoding
	Lower bound on the DFR with simulations
	Comments

	Conclusion and perspectives
	Bibliography

