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Abstract

We study a network of agents connected by a dynamic communication graph and we con-
sider a computing model consisting of a sequence of synchronous rounds. We study several
synchronization and coordination problems in the context of arbitrary starts and initializations.

First, we study the Firing Squad synchronization problem in which the agents must “fire”
simultaneously, i.e., in the same round, in spite of asynchronous starts. Solving this problem
requires strong assumptions. We introduce a weakening of this problem in which the agents must
fire, not in the same round, but rather in rounds that are congruent modulo some integer P. We
present an algorithm solving this problem under weaker communication assumptions: while the
exact synchronization for the Firing Squad requires a strong connectivity property, which is not
granted in many contexts, the synchronization modulo P is achievable as long as there exists an
agent which is connected to all other agents in any bounded time period of consecutive rounds.

Proving the correctness of this algorithm is hard due to a combinatorial explosion of the
number of executions. That’s why we give a formal proof of the correctness properties of our
algorithm using the Isabelle proof assistant.

Then we consider the model of “self-stabilizing” algorithms that must reach a “correct” state
regardless of the arbitrary initial states of the agents. We study the synchronization modulo P:
each agent holds a clock. All those local clocks must be congruent to P from a certain round.
This problem has previously been studied in static strongly connected networks. Moreover,
agents were assumed to know some global information (e.g., the total number of agents).

In the second part of this thesis, our aim is finding a relaxation of those hypothesis. We
first show that no algorithm can reconcile an absence of global knowledge and a finite set of
states. Then we propose a self-stabilizing variant of the MinMax consensus algorithm for the
synchronization modulo P. This algorithm tolerates a very high degree of dynamicity of the
communication network but requires an infinite memory.

Then we introduce an algorithm that we named SAP (for Self Adaptive Period). Its state
space is infinite. However, only a finite number of states is reached in each of its executions.
This kind of algorithm is referred to as finite but unbounded memory. We prove the correctness
of SAP in networks with an unknown but finite dynamic diameter. This result is then extended
to a wider class of centered dynamic networks.

Finally, we study the behaviour of SAP in probabilistic communication models. Instead
of proving a property on each executions of SAP, we prove a probabilistic hyperproperty – the
synchronization modulo P with high probability –, that is, a property on the set of its executions.
Proving an hyperproperty, instead of a simple property, is generally more tedious and requires
different techniques. In our case, we define a hierarchy of probabilistic diameters. Using the first
two probabilistic diameters, we show that SAP solves the synchronization modulo P with high
probability. This proof covers a large number of probabilistic communication models, including
the rumor spreading models such as PUSH, PULL and PULLPUSH.

Résumé

Nous considérons un réseau d’agents reliés par un graphe de communication dynamique et
nous nous plaçons dans un modèle de calcul consistant en une succession de rounds synchrones.
Nous étudions différents problèmes de synchronisation et coordination dans le contexte de dé-
parts et initialisations arbitraires.

Tout d’abord, nous étudions le problème de synchronisation du Firing Squad consistant à
ce que les agents « fassent feu » simultanément, i.e., au même round, malgré des départs asyn-
chrones. Ce problème nécessitant des hypothèses fortes pour être résoluble, nous introduisons le
problème plus faible où les agents doivent faire feu, non pas au même round, mais à des rounds
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congrus modulo un certain entier P. Nous présentons un algorithme qui résout ce problème sous
des hypothèses de connectivité du graphe de communication bien plus faibles : alors que la
synchronisation parfaite pour le Firing Squad exige une connexité forte entre les agents, non
garantie dans de nombreux contextes, la synchronisation modulo P est réalisable lorsqu’il existe
un agent connecté à tous les autres agents dans toute période de temps (rounds consécutifs)
bornée.

La correction de l’algorithme que nous présentons est difficile à prouver du fait d’une explo-
sion combinatoire du nombre de ses exécutions. C’est pourquoi, nous donnons ensuite la preuve
formelle des propriétés de correction de notre algorithme avec l’assistant de preuve Isabelle.

Nous considérons ensuite le modèle des algorithmes « auto-stabilisants » qui doivent atteindre
un état « correct », quels que soient les états initiaux arbitraires des agents. Nous étudions le
problème de la synchronisation modulo P : chaque agent détient une horloge et toutes ces
horloges locales doivent être congrues modulo P à partir d’un certain round. Ce problème a été
étudié par le passé dans le cadre des réseaux statiques fortement connexes. De plus, les agents
sont supposés disposer d’informations globales sur le réseau (e.g., le nombre d’agents).

Notre objectif, dans la seconde partie de cette thèse, est d’étudier s’il est possible de relaxer
ces hypothèses. Nous commençons par établir l’impossibilité de concilier l’absence de connais-
sance globale avec l’utilisation d’algorithmes à états finis. Nous proposons alors une variante
auto-stabilisante de l’algorithme de consensus MinMax pour la synchronisation modulo P. Cet
algorithme tolère une très grande dynamicité des liens de communication mais requiert une
mémoire infinie.

Nous introduisons ensuite un algorithme que nous appelons SAP (pour Self Adaptive Period).
Son espace des états est infini mais seul un nombre fini d’états est atteint dans chacune des
exécutions. On parle alors d’algorithme à mémoire finie mais non bornée. Nous démontrons la
correction de SAP dans les réseaux dynamiques avec un diamètre dynamique fini mais inconnu.
Nous étendons ensuite ce résultat à la classe plus générale des réseaux dynamiques centrés.

Pour finir, nous étudions le comportement de l’algorithme SAP dans les modèles de com-
munications probabilistes. Il ne s’agit plus de prouver une propriété de chaque exécution de
l’algorithme, mais une hyperpropriété probabiliste – ici la synchronisation modulo P avec haute
probabilité –, c’est à dire une propriété de l’ensemble de ses exécutions. De façon générale, les
preuves d’hyperpropriétés sont plus délicates que les preuves de simples propriétés, et nécessi-
tent des techniques différentes. En l’occurrence, nous définissons une hiérarchie de diamètres
probabilistes. À partir des deux premiers diamètres de cette hiérarchie, nous prouvons que SAP
résout la synchronisation modulo P avec haute probabilité. Cette preuve s’applique à un grand
nombre de modèles de communications probabilistes, notamment les modèles de propagation de
rumeur comme les modèles PULL, PUSH et PULLPUSH.
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There is a considerable interest in distributed systems consisting of multiple, potentially mo-
bile, agents. This is mainly motivated by the emergence of large scale networks, characterized
by the lack of centralized control, the access to limited information and a time-varying connec-
tivity. Control and optimization algorithms deployed in such networks should be completely
distributed, relying only on local observations and information, and robust against unexpected
changes in topology such as link or node1 failures.

Broadly speaking, there are two main classes of models in the field of distributed computing.
First, in asynchronous models [69], each agent is modeled by an automaton that is capable of per-
forming three types of actions: internal transition, input action and output action. The sending
and receiving actions are used to enable communication between agents and their environment.
This is a very general model, suitable for describing almost any type of asynchronous concurrent
system, including asynchronous shared memory [70] systems and asynchronous network systems.
By itself, this automaton model has very little structure, which allows it to be used for modelling
many different types of distributed systems. Additional structure must be added to the basic
model to enable it to describe particular types of asynchronous systems. What the model does
provide is a precise way of describing and reasoning about system components (e.g., processes
or communication channels) that interact with each other and that operate at arbitrary relative
speeds. In such models, it is often useful to add some additional assumption to put a limit on
the arbitrary relative speeds of system components [48]. It specifies that all the components in
a system get “fair” turns to perform steps every so often. It rules out the possibility that some
components are permanently denied turns to take steps.

On the other hand, in the synchronous models, it is assumed that each agent repeatedly
performs the following steps: (a) broadcasts messages determined by its state at the beginning
of round t, (b) receives some of the messages sent to it, and finally (c) performs an internal
transition to a successor state. The agents are assumed to progress in lock-step, as if they all
receive the ticks from a global hardware clock. The combination of those three steps is called a
round.

In essence, the purpose of asynchronous models is to closely mirror the physical execution of
computations striving to maintain a direct connection to the real-world process. In stark con-
trast, synchronous models offer a high-level abstraction that simplifies reasoning about systems.
From my perspective, while asynchronous models offer enhanced expressiveness, this advantage
is often overshadowed by the complexity they introduce.

This opinion rests on two primary considerations. Firstly, in asynchronous models, the space
of potential interleavings of actions is vast. To illustrate this phenomenon, consider synchronous
models where, in each round, each node undergoes a state transition in function of a multi-
set of messages received in the same round. In contrast, in asynchronous message-passing
models, agents typically receive messages individually. Consequently, a single state transition in
the synchronous model equates to multiple events in the asynchronous model, with numerous
possible orderings. Proving properties in asynchronous models thus necessitates grappling with
an exceedingly large space of execution possibilities, presenting a formidable challenge.

On the other hand, contrary to what the definition of synchronous models may suggest,
agents need not progress in perfect lockstep physically. The sole requirement synchronous models
impose is that messages sent in round t should not be received in rounds other than round
t. A straightforward construction exists that can emulate synchronized rounds within a fully
asynchronous context: each agent maintains an integer clock representing the current round
number, and every message carries this round number as a tag. Consequently, when agents
receive a message tagged with a particular integer t, they can enforce that it is only processed

1In this thesis, we indiscriminately use the terms “agent” and “node”.
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in round t. This construction can be further refined, particularly to enhance its fault tolerance
and time complexity, as explored in the work of Awerbuch [7].

For those reasons, this thesis only covers models with synchronized rounds. Therefore, the
previously-mentioned constructions of synchronized rounds are out of the scope of our work,
although they provide the foundation on which this thesis relies. A major feature of synchronous
models is the fact that the communication pattern at each round is captured by a directed graph
that may change continually from one round to the next. This infinite sequence of directed graphs
with a same set of nodes is called a dynamic graph. This notion is at the center of this thesis. To
demonstrate the expressiveness of synchronous models with dynamic graphs, we can mention the
Heard-Of model [24], in which the features of the system, such as the degree of synchrony and
the (benign) failure model are solely captured by the properties of the dynamic communication
graph. For example, some models contain a notion of crash failure. A node is said to crash if, at
a certain point in time, it stops taking step. Our model contain no such notion of crash failure.
However, a crashed node can be represented by a node which, from a certain round t0, does not
send any message, that is, it has no outgoing neighbors in the communication graphs of round
t0 and all subsequent rounds. Such a description defines a certain set of dynamic graph. In this
thesis, we use the term network class to refer to a set of dynamic graphs.

This thesis is dedicated to the investigation of two distinct problems. Firstly, we delve into
the firing squad problem, a problem with historical roots dating back to the early days of au-
tomata theory, as evidenced by works such as [71, 72]. The problem is relevant in the context
of asynchronous starts, where no assurance exists that all agents will commence their opera-
tions at the same round. In the firing squad problem, each node is tasked with transmitting
a signal at some round, often referred to as firing. The central requirement is that all nodes
must fire synchronously, implying that they all transmit signals in the same round. Effectively,
solving the firing squad problem equates to emulating synchronous starts within an environment
characterized by asynchronous starts. Given that a substantial portion of the distributed algo-
rithms literature assumes synchronous starts, the resolution of the firing squad problem becomes
pivotal, facilitating the integration of such algorithms into settings of asynchronous starts.

As we will explain later, there are instances where solving the firing squad problem becomes
infeasible. Consequently, it becomes necessary to modify the problem’s specifications. Interest-
ingly, the two problems examined in this thesis are relaxations of the firing squad problem.

One such modification is the mod P -firing squad. In this variant, where P is an integer, the
nodes are not required to fire simultaneously but must instead fire in rounds that share the same
congruence modulo P . While this relaxation may not directly serve the purpose of simulating
synchronous starts, it offers valuable applications. For instance, it finds utility in scenarios
where a coordinator needs to be elected through a round-robin strategy. In a system comprising
n nodes, each assigned a unique identifier from the set 0, . . . , n− 1, mod n-firing squad ensures
that a unique coordinator is designated in each round. Another compelling use case lies in
the deployment of distributed algorithms structured into synchronized phases. Examples of
such algorithms include the Two-Phase and Three-Phase Commit algorithms [11] and various
consensus algorithms [10, 48, 67, 30]. In these algorithms, a crucial requirement is the alignment
of all nodes within the same phase, making mod P -firing squad a valuable tool for ensuring
correct execution.

One of the principal contributions of this thesis lies in the development of an algorithm de-
signed to solve this problem. Notably, our algorithm rests upon entirely original concepts and
approaches. It leans heavily on combinatorial techniques, making the proof process a notably
error-prone endeavor. In light of this, employing formal verification becomes especially relevant
to ensure the correctness of our results. We started by establishing the computational model
within the proof assistant Isabelle, building upon the foundational work of Merz [23]. Subse-
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quently, we formalized our algorithm, crafting a formal proof that faithfully mirrors our initial
pencil-and-paper proof.

The rest of the thesis tackles the mod P -synchronization problem, which further relaxes
the mod P -firing squad. In this new problem, the nodes do not fire, but instead hold an
integer clock between 0 and P − 1. The objective is ensuring that all clocks are eventually
congruent to P . That corresponds to synchronization in phase, as opposed to the problem
of synchronization in frequency (e.g. for instance in [78, 50, 51, 68]). By contrast with the
mod P -firing squad, agents do not have to “known” when the synchronization is achieved. Clock
synchronization is a fundamental problem arising in a number of applications, both in engineering
and natural systems. A synchronized clock is a fundamental basic block used in many engineering
systems, e.g. in the universal self-stabilizing algorithm developed by Boldi and Vigna [16]. Clock
synchronization also corresponds to a ubiquitous phenomenon in the natural world and finds
numerous applications in physics and biology, e.g., the Kuramoto model for the synchronization
of coupled oscillators [79], synchronous flashing fireflies, collective synchronization of pancreatic
beta cells [63].

In this second segment of the thesis, dedicated to the field of synchronization, we transition to
a distinct paradigm: that of self-stabilizing algorithms. In the preceding section, we encountered
challenges rooted in asynchronous starts, where uncertainties revolved around the temporal
dimension. In the self-stabilizing paradigm, however, agents are granted the liberty of initiating
their operations from arbitrary initial states, shifting the locus of uncertainty to the spatial
dimension.

The concept of self-stabilization has a long-standing history. A self-stabilizing algorithm
possesses the remarkable capability to withstand transient faults. In practical terms, this means
that the algorithm can recover to a correct state within a finite time span following any arbitrary
modification of the system’s state during its execution. A prominent example of transient faults
arises from cosmic rays, which have the potential to flip bits in the memory of digital devices.
Given the sheer diversity of behaviours that constitute transient faults, self-stabilizing algorithms
exhibit exceptional resilience.

Notably, it’s worth mentioning that self-stabilizing algorithms inherently accommodate asyn-
chronous starts, requiring no additional effort to tolerate them. Consequently, our analysis of
self-stabilizing algorithms primarily revolves around scenarios with synchronous starts. However,
it’s important to note that the reverse does not hold true in general: a synchronization algorithm
capable of withstanding asynchronous starts doesn’t necessarily qualify as self-stabilizing. The
results presented in this thesis shed light on the intricate relationship between self-stabilizing
algorithms and algorithms designed to endure asynchronous starts, unraveling their precise in-
terplay.

A common shortcoming of many paper that deal with those two problems is that only static
strongly connected network are considered. In light of the Heard-Of model, this is problematic:
as explained above, to represent a network in which crash failures may occur, we use a certain
network class which contains non-static dynamic graphs. We saw this shortcoming as an op-
portunity to provide a meaningful contribution. Therefore a major objective of this thesis is to
provide results that tolerate dynamic networks.

In the context of static networks, the concept of strong connectivity naturally serves as a
fundamental assumption. However, when dealing with dynamic networks, this notion requires
redefinition to suit the evolving nature of the graph. Various approaches exist to make sense of
strong connectivity in the context of dynamic graphs.

To do so, we define the notion of temporal path: For instance, if an arc (i, j) exists in
round t and another arc (j, k) exists in round t + 1, then the sequence i, j, k constitutes a
temporal path within the dynamic graph. Intuitively, this concept of a temporal path provides
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a means to describe the propagation of information between agents within a dynamic network.
In traditional graph theory, the diameter is defined as the maximum length of the shortest
path between any two nodes. By using the notion of temporal paths, we extend this definition
to introduce the concept of a dynamic diameter within dynamic graphs. We believe that the
most suitable extension of strong connectivity to dynamic graphs is to consider networks whose
dynamic diameter remains finite. Similarly, we extend the conventional radius of a graph to
introduce the concept of a dynamic radius in dynamic graphs. These concepts of dynamic
diameter and dynamic radius hold pivotal roles within our proofs and analyses, providing a
foundational framework for understanding and characterizing strong connectivity in dynamic
networks.

A large chunk of the literature on distributed algorithms contains some form of probabilistic
behaviour in the communications. The idea consists in choosing some probability distributions
on the set of all dynamic graphs. In this thesis, such probability distributions are called proba-
bilistic communication networks. Then, the notion of solvability that we used so far is replaced
by a notion of solvability with high probability. In other works, instead of proving a property on
each execution of some algorithm, the task consists in proving the following hyperproperty [34]:
the probability measure of the set of executions of some algorithm in which some target property
is achieved is greater than a chosen real p ∈ [0, 1). It is also possible to introduce some proba-
bilistic behaviour in the state transitions of the agents [10], but this possibility will be set aside
in this thesis. Many possible probabilistic communication networks have already been studied:
In one of the earliest contribution, given some integers n and N , Erdös and Rényi [49] focuses on
the uniform distribution on the set of graphs2 with n nodes and N arcs. Another example is the
push and pull models [56, 39]: A “base” graph G is fixed and, in each round, each node sends
(resp. receives) a message to some neighbor in G, sampled uniformly at random. A natural
question is therefore whether the model and the tools that we presented until now behave nicely
in setting in which the communications are probabilistic. In Chapter 6, we explain that the
notion of dynamic diameter is no longer relevant in this context. The objective of this chapter
is therefore to define some new tools to deal with probabilistic proofs while remaining similar to
the ones used in the deterministic proofs, thus bridging the gap between both approaches.

This thesis is structured as follows. Chapter 2 contains all essential definitions, notably
the computation model, the problems and the graph theory notions we rely on. Chapter 3
presents two impossibility results that are useful to understand the next chapters. Chapter 4
propose a construction that solves the mod P -synchronization problem based on the existing
minmax algorithm. In Chapter 5, we study the mod P -firing squad problem by proposing
a novel algorithm. Chapter 6 formally introduces a novel set of tools useful for probabilistic
analysis of distributed algorithms. We then study the mod P -synchronization problem and we
introduce an algorithm called sap. We prove the correctness of this algorithm using those tools.
Chapter 7 is an extension of the previous chapter: it bridges the gap between probabilistic
tools we introduce with the existing literature on rumor spreading. Finally, Chapter 8 presents
a deterministic study of sap. Our three publications [38, 28, 29] contain the results that are
presented in Chapters 5, 8 and 6, respectively.

2Given a probability distribution on the set of graphs with n nodes, it is possible to construct a probability
distribution on the set of dynamic graphs, by independently sampling a graph for each integer t.
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2.1 The computational model

We consider a networked system of n agents (nodes), denoted 1, 2, · · · , n. We assume a round-
based computational model in the spirit of the Heard-Of model [30], in which point-to-point
communications are organized into synchronized rounds: each node sends messages to all nodes
and receives messages sent by some of the nodes. Rounds are communication closed in the
sense that no node receives messages in round t (t = 1, 2, . . .) that are sent in a round different
from t. The collection of communications (which nodes receive messages from which nodes)
at each round t is modelled by a directed graph (digraph, for short) G(t) = ([n], Et), where
[n] = {1, . . . , n}. The digraph at round t is called the communication graph at round t. The set
of i’s incoming neighbors in the digraph G(t) is denoted by Ini(t).

In all this thesis, we assume a self-loop at each node in all these digraphs since every node
can communicate with itself instantaneously. The sequence of such digraphs G = (G(t))t≥1 with
a constant set of nodes is called a dynamic graph [19]. A dynamic graph is said to be static if
it is composed of a single digraph repeated forever. A network class is any non-empty set of
dynamic graphs. We denote Gn the set of all dynamic graphs of size n and containing a self-loops
at each node.

In round t, each node i successively (a) broadcasts1 messages determined by its state at
the beginning of round t, (b) receives some of the messages sent to it, and finally (c) performs
an internal transition to a successor state. We recall that the synchronous rounds model is an
abstraction: it is not assumed that the internal state transitions of the nodes physically happen
at the same time. Moreover, in each round, each node may choose a certain value as output. A
local algorithm is therefore defined as follows.

Definition 1 (local algorithm). A local algorithm alg is a tuple (Q, I,M,O, σ, τ, ω), where

• Q is a non-empty set that is called the set of states of alg,

• I is a non-empty subset of Q that is called the set of initial states of alg,

• M is a non-empty set that is called the set of messages of alg,

• O is a non-empty set that is called the set of outputs of alg,

• σ is a function of type Q →M that is called the sending function of alg,

• τ is a function of type Q×M⊕ → Q that is called the transition function of alg, where
M⊕ denotes the set of multisets of M.

• ω is a function of type Q → O that is called the output function of alg.

In the rest of this thesis, we use the {{. . . }} notation to denote multisets. The sending
function of alg determines the messages to be sent in step (a), and its transition function
determines its state updates in step (c). In each round, each node displays an output value,
which is computed by applying the function ω to its current state. The notion of problem will be
defined as a predicate on sequences of vectors of output values. A global algorithm (or algorithm,
for short) for the set of nodes [n] is a collection of local algorithms, one per node. We will only
consider symmetric algorithms, in which all nodes run the same local algorithm.

Moreover, we say that an algorithm alg uses bounded memory if its set of states Q if finite.
We now introduce a definition that is deeply connected to the notion of self-stabilization that

is introduced later in Section 2.4.
1The system is anonymous and nodes have no knowledge about the dynamic graph. Therefore, the only

valid way to send messages is “send to all”. The communication graph describes which message will actually be
received.
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Definition 2 (non-initialized algorithm). An algorithm alg = (Q, I,M, V, σ, τ, ω) is said to be
self-stabilizing if its set of initial states is equal to its set of states, that is, I = Q.

Basically, when Q ≠ I, an agent must perform an initialization phase at some point, so that
its internal state belongs to I. There is no need for such procedure if Q = I, hence the choice
of this terminology.

2.2 Executions and start schedules

Definition

A start schedule S is a collection (si)i∈[n], where each si is a positive integer or is equal to ∞.
Given a dynamic graph G and a start schedule, Ga(t) = ([n], Ea

t ) denotes the graph where
Ea

t ⊆ Et is the set of arcs that are either self-loops or connect two nodes i and j such that si ≥ t
and sj ≥ t. The set of i’s incoming neighbors in the digraph Ga(t) is denoted by Ina

i (t).

Definition 3 (execution). The execution of an algorithm alg in a system of size n with a
dynamic graph G, a start schedule (si)i∈[n] and a collection of initial states (µi)i∈[n] belonging
to I is the sequence of vectors (qi(t))i∈[n],t∈N of elements in Q such that, for all node i and
non-negative integer t,

qi(t) =

{
µi if t < si

τ (qi(t− 1), {{σ(qj(t− 1)) | j ∈ Ina
i (t)}}) otherwise.

(2.1)

Intuitively, it proceeds as follows: Each node i is initially passive. If si = ∞, then the
node i remains passive forever. Otherwise, si is a positive integer, and i becomes active at the
beginning of round si, setting up its initial state to µi. An active node sends messages and
updates its state, as explained in Section 2.1. A passive node sends no message. Therefore, from
the point of view of an active node, a passive incoming neighbor (belonging to Ini(t)\ Ina

i (t)) is
indistinguishable from a node that is not an incoming neighbor (belonging to [n] \ Ini(t)). The
state of an active node i at the end of round t is qi(t). By extension, qi(t) refers to the initial
state of i if t < si.

Asynchronous starts with heartbeats

An additional assumption on the communication model may be necessary (e.g., in Chapter 5).
It consists in assuming that, in round t (t = 1, 2 . . . ), each passive node sends heartbeats,
corresponding to a special null messages that does not belong to M. An active node can now
distinguish a passive incoming neighbor from a non-incoming neighbor. In this setting, the type
of the transition function τ is Q× (M⊎{null})⊕ → Q, instead of Q×M⊕ → Q. The definition
of an execution has to be modified as follows.

Definition 4 (execution with heartbeats). The execution of an algorithm alg in a system of
size n with a dynamic graph G, a start schedule (si)i∈[n] and a collection of initial states (µi)i∈[n]
belonging to I is the sequence of vectors (qi(t))i∈[n],t∈N of elements in Q such that, for all node
i and non-negative integer t,

qi(t) =

{
µi if t < si

τ (qi(t− 1), {{σ(qj(t− 1)) | j ∈ Ina
i (t)}} ∪ {{null | j ∈ Ini(t) \ Ina

i (t)}}) otherwise.
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Note that the states “passive” and “active” do not refer to any physical notion, and are
relative to the algorithm under consideration: as an example, if two algorithms alg1 and alg2

are sequentially executed according to the order “alg1 followed by alg2” by each node, then at
some round, a node may be active w.r.t. alg1 while it is passive w.r.t. alg2. In such a situation,
the node is integrally part of the system and can send messages, but these messages are empty
with respect to the semantics of the algorithm alg2. Those messages are then interpreted as
heartbeats by alg2. Moreover, the start schedule of alg2 is equal to the “termination schedule”
of alg1.

Start schedules

A start class is a non-empty set of start schedules. Here, we define some start classes.

Definition 5 (complete start schedule). A start schedule S = (si)i∈[n] is complete if every si is
finite.

Definition 6 (diffusive start schedule). A start schedule S = (si)i∈[n] is diffusive with respect
to a dynamic graph G with n nodes if at least one si is finite and the following condition is
satisfied:

∀i ∈ [n],∀t ∈ N,∀j ∈ Ini(t), sj ≤ t⇒ si ≤ t+ 1.

In diffusive start schedules, nodes start either spontaneously or upon the receipt of a message
from an active node. If the communication network is static and strongly connected, then a
diffusive start schedule is complete. Finally, we define the class of synchronous start schedules.
In this class, all the clock synchronization problems presented in Section 2.3 become trivial.

Definition 7 (synchronous start schedule). A start schedule S = (si)i∈[n] is synchronous if all
si are finite and equal.

When running a non-initialized algorithm, all nodes are assumed to start at round 1. Indeed,
if a non-initialized algorithm is executed with a complete start schedule, then in order to prove
that this execution eventually satisfies a certain property, it is sufficient to consider its suffix
starting at round smax = maxi∈[n] si: As the algorithm is non-initialized, the state of the
system in round smax does not matter. Therefore, any solvability result for certain problem on a
certain non-initialized algorithm that assumes a synchronous start schedule can immediately be
transposed to an analog result with a complete start schedule. In the context of non-initialized,
the dynamic graphs G and Ga are therefore equal.

Finite memory

An algorithm is said to use finite memory if, in all of its possible executions (in a certain network
class), the memory usage by each node eventually stops growing. More formally,

Definition 8 (finite memory). An algorithm alg uses finite memory in a network class C
if, for all integers n > 0, in all its executions (qi(t))i∈[n],t∈N in this network class, the set
{qi(t) | i ∈ [n], t ∈ N} is finite.

By contrast with the notion of bounded memory (see Section 2.1), this notion is relative to
a specific network class. Also notice that an algorithm using bounded memory (i.e., Q is finite)
also uses finite memory.
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problem type equality congruence modulo P

firing firing squad mod P -firing squad

stabilizing synchronization mod P -synchronization

Table 2.1: Summary of the names of the problems that will be presented in this document.

2.3 Clock synchronization problems

Given an algorithm alg, the output function can be applied to all elements of an execution
(qi(t))i∈[n],t∈N of alg. We obtain a sequence of vectors of elements from the output set O. A
problem is a predicate on such sequences.

Definition 9 (solving a problem). An algorithm alg solves a problem P in a network class and
start class if, in any execution (qi(t))i∈[n],t∈N in this network class and start class, the sequence
of vector (ω(qi(t)))i∈[n],t∈N satisfies the predicate P.

We say that an algorithm alg tolerates asynchronous starts if alg solves a certain problem
in the class of complete start schedules.

Several variants of clock synchronization

This thesis tackles four variants of the clock synchronization problem. Among those four variants,
two are stabilizing problems and the other two are firing problems. In each case, our definitions
contains a relation between two integers. This relation is either the equality or the congruence
modulo some integer P . The names of those problems are provided in Table 2.1.

First, we define the (stabilizing) synchronization problem, which uses the equality relation.

Definition 10 (synchronization). The synchronization problem consists of the following predi-
cate on sequences of vectors of integers (xi(t))i∈[n],t∈N:

∃c ∈ Z,∃t0 ∈ N,∀t ≥ t0, ∀i ∈ [n], xi(t) = c+ t.

An execution (qi(t))i∈[n],t∈N of an algorithm alg in a system of size n is said to be synchronized
from round t0 if,

∃c ∈ Z,∀t ≥ t0, ∀i ∈ [n], ω(qi(t)) = c+ t.

The mod P -synchronization problem is a weakening of the synchronization problem: the equality
relation is replaced by an equality modulo some period P > 1. In the rest of this document,
this relation is denoted ≡P .

Definition 11 (mod P -synchronization). The mod P -synchronization problem consists of the
following predicate on sequences of vectors of integers (xi(t))i∈[n],t∈N:

∃c ∈ Z, ∃t0 ∈ N, ∀t ≥ t0,∀i ∈ [n], xi(t) ≡P c+ t.

An execution (qi(t))i∈[n],t∈N of an algorithm alg in a system of size n is said to be mod
P -synchronized from round t0 if,

∃c ∈ Z,∃t0 ∈ N,∀t ≥ t0, ∀i ∈ [n], ω(qi(t)) ≡P c+ t.

When no confusion can arise, we simply say that this execution is synchronized from round t0.
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We now deal with the firing problems. Given an execution of an algorithm whose set of
outputs is {⊥,⊤}, a node i is said to fire in round t if it outputs ⊤ in round t whereas it outputs
⊥ in all earlier rounds. If i eventually fires, the round in which it fires is denoted ti. Otherwise,
ti =∞.

ti
def
= inf{t ∈ N | ω(qi(t)) = ⊤}. (2.2)

Definition 12 (firing squad). The firing squad problem consists of the conjunction of the fol-
lowing predicates on sequences (xi(t))i∈[n],t∈N of elements from the set {⊤,⊥}:

• Termination: ∀i ∈ [n], si <∞⇒ ti <∞,

• Simultaneity: ∃c ∈ N,∀i ∈ [n], ti <∞⇒ ti = c.

Similarly, this problem can be relaxed by replacing the equality relation by the congruence
relation.

Definition 13 (mod P -firing squad). The mod P -firing squad problem consists of the conjunc-
tion of the following predicates on sequences (xi(t))i∈[n],t∈N of elements from the set {⊤,⊥}:

• Termination: ∀i ∈ [n], si <∞⇒ ti <∞,

• Simultaneity: ∃c ∈ N,∀i ∈ [n], ti <∞⇒ ti ≡P c.

The following theorem shows that solving a stabilizing synchronization problem is strictly
easier than solving the firing squad problem.

Theorem 14. If the firing squad problem is solvable in a certain network class, then the syn-
chronization problem is also solvable in the same network class.

Proof. We fix a network class and an algorithm alg1 = (Q, I,M, {⊤,⊥}, σ, τ, ω) solving the
firing squad problem. We construct an algorithm

alg2
def
= (Q× N, I × {0},M,N, σ ◦ p1, τ ′, p2),

where p1 and p2 are the first and second projections, and τ ′ is defined as

τ ′((q, x), {m1,m2, . . . }) def
=

{
(τ(q, {m1,m2, . . . }), 0) if ω(q) = ⊥ and ω(τ(q, . . . )) = ⊤
(τ(q, {m1,m2, . . . }), x+ 1) otherwise.

The intuition behind this definition is as follows: we add an integer clock variable xi to each
node. This clock is incremented in each round, and is reset to 0 upon firing. We now show that
if alg1 satisfies the two clauses of the firing squad problem, then in any execution of alg2, the
clocks are synchronized once all nodes have fired. We fix an execution of alg1 and we study the
corresponding execution of alg2, that is, the execution of alg2 with the same dynamic graph,
start schedule and initial state. Because of the termination clause, there exists a round t0 in
which all nodes have fired. By applying the transition function, from the round in which i fires,
until round t0, we obtain xi(t0) = t0 − ti. Because of the simultaneity clause, all ti are equal,
and thus, the system is synchronized in round t0.

By replacing all equalities of this proof by the congruence modulo P relation, we obtain that
if the mod P -firing squad is solvable in a certain network class, then the mod P -synchronization
is also solvable in the same network class.
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Motivation for mod P-firing squad

The firing squad problem is a classical problem which is typically used to simulate synchronous
starts in the context of asynchronous starts. The mod P -firing squad is a weakening of the firing
squad problem. We present some use cases in which this weakening is sufficient.

Let alg be an algorithm structured in regular phases consisting of a fixed number P of con-
secutive rounds: the behaviour of each node (i.e., the update rule of its state and the message
it sends) at round t is determined by the value of t modulo P . Moreover, assume that alg has
been proved correct with respect to some specification when all nodes start alg synchronously,
but with any dynamic graph in a network class that is stable under the addition of arbitrary
finite prefixes. For instance, the ThreePhaseCommit algorithm for non-blocking atomic com-
mitment [11], as well as the consensus algorithms in [48] or the LastVoting algorithm [30] –
corresponding to the consensus core of Paxos [67] – fulfill all the above requirements for phases
of length P = 3 and P = 4, respectively, and the family of dynamic graphs in which there exists
an infinite number of “good” communication patterns (e.g., a sequence of 2P consecutive com-
munication graphs in which a majority of nodes is heard by all nodes in each graph). The use of
a modP -firing squad algorithm prior to the algorithm alg yields a new algorithm that executes
exactly like alg does, after a finite preliminary period during which every node becomes active
and fires. This variant of alg is therefore guaranteed to be correct with asynchronous starts
and dynamic graphs in the network class mentioned above.

Another typical example for which the perfect synchronization requirement in the firing
squad problem can be weakened into modP -firing squad is the development of the basic rotating
coordinator strategy for a given algorithm alg in the context of asynchronous starts. Roughly
speaking, this strategy consists in the following: each node i has unique identifiers in [n], and
maintains a local counter ci whose current value is the number of rounds elapsed since the node
i started executing alg. At each round, the coordinator of i is the node with the identifier that
is equal to the current value of ci modulo n. Since there may be only one coordinator per round,
such a selection rule requires synchronized counters. Clearly, with the use of a modn-firing
squad algorithm in a preliminary phase, the above scheme implements the rotating coordinator
strategy.

Consensus problems

Another type of problems in distributed control are the consensus problems. Similarly to clock
synchronization problems, there exists several variants of the consensus problem. In this section,
we define two of them: stabilizing consensus and irrevocable consensus. We fix an arbitrary set
of output O. Each node i holds an initial value µi ∈ O and their goal is to agree on one of the
initial values.

Definition 15 (stabilizing consensus). The stabilizing consensus problem consists of the con-
junction of the following predicates on sequences of vectors (xi(t))i∈[n],t∈N of elements from the
set O:

• Agreement: ∃c ∈ O,∃t0 ∈ N,∀t ≥ t0, ∀i ∈ [n], xi(t) = c.

• Validity: ∀t ∈ N,∀i ∈ [n],∃j ∈ [n], xi(t) = xj(0).

In the irrevocable consensus, the output set is O′ = O × {⊤,⊥}. We denote p1 and p2 the
first and second projections. A node decides when it adopts ⊤ as the second component of its
output, the first component of its output becomes irrevocable.
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Definition 16 (irrevocable consensus). The irrevocable consensus problem consists of the con-
junction of the following predicates on sequences of vectors (xi(t))i∈[n],t∈N of elements of O ×
{⊤,⊥}:

• Agreement: ∃c ∈ O,∃t0 ∈ N,∀t ≥ t0, ∀i ∈ [n], p1(xi(t)) = c.

• Validity: ∀t ∈ N,∀i ∈ [n],∃j ∈ [n], p1(xi(t)) = p1(xj(0)).

• Termination: ∀i ∈ [n], ∃t0 ∈ N, ∀t ∈ N, t > t0 ⇔ p2(xi(t)) = ⊤.

• Irrevocability: ∀i ∈ [n],∀t1, t2 ∈ N, p2(xi(t1)) = p2(xi(t2)) = ⊤ ⇒ p1(xi(t1)) = p1(xi(t2)).

2.4 Self-stabilization

The point of the notion of self-stabilization is to tolerate transient faults. A transient fault is an
arbitrary modification of the state of a system at a certain instant. As an example, a possible
source of transient faults in real-world systems is cosmic rays, that can randomly flip a bit in the
memory of a digital device. A self-stabilizing algorithm is an algorithm that is able to recover
from a transient fault in finite time. In other words, in any execution, a certain correctness
property is eventually achieved regardless of the initial state of the nodes.

Definition 17 (self-stabilizing synchronization algorithm). A self-stabilizing (resp. mod P )
synchronization algorithm is a non-initialized algorithm that solves the (resp. mod P ) synchro-
nization problem in a certain network class.

This definition highlights the fact that an algorithm is self-stabilization with respect to a cer-
tain specification, in this case, synchronization. By contrast, an algorithm is non-initialized out-
side any specification. The notion of self-stabilization has been further developed by Nesterenko
and Tixeuil [74]. They use a more general definitions of self-stabilization, and Definition 17
corresponds to their notion of ideal stabilization, which refines self-stabilization. By contrast

2.5 Network classes

In this section, we define all network classes that will be useful in the rest of this document.

Graph product

Let us first recall the notion of product of two digraphs G1 = ([n], E1) and G2 = ([n], E2),
denoted by G1 ◦G2 and defined as follows [27]: G1 ◦G2 = ([n], E12), where an arc (i, j) belongs
to E12 if and only if there exists k ∈ [n] such that (i, k) ∈ E1 and (k, j) ∈ E2. This notion of
product coincides with the product of the incidence matrices. Assuming that G1 and G2 contain
a self-loop at each node, we have

E1 ∪ E2 ⊆ E12.

This inclusion is strict, in general. As a consequence, the diameter of the graph G1 ◦G2 is lower
than or equal to the diameter of the graph ([n], E12). However, the diameter or G1 ◦G2 is finite
if and only if the diameter of ([n], E12) is finite. For any dynamic graph G and any integers t
and t′ such that t′ > t ≥ 1, we let

G(t : t′)
def
= G(t) ◦G(t+ 1) ◦ · · · ◦G(t′).

By extension, we let G(t : t) = G(t).
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Each arc (i, j) in the digraph G(t : t′) corresponds to a (not necessarily unique) temporal path
i ▷ j in the interval [t, t′], i.e., a finite sequence of nodes i = kt−1, kt, . . . , kt′ = j such that each
pair (kℓ−1, kℓ) is an arc of G(ℓ). We simply say path, for short. The set of incoming neighbors
of j in G(t : t′) and Ga(t : t′) are denoted by Inj(t : t

′) and Ina
j (t : t

′), respectively. A path
kt−1, kt, . . . , kt′ is said to be active if the nodes kt−1, kt, . . . , kt′ are active in rounds t−1, t, . . . t′,
respectively.

Eccentricity, dynamic diameter, dynamic radius

In the study of distributed algorithms in static networks, the notions of strong connectivity and
diameter often come up. Those notions may be extended to dynamic networks, as detailed in
this section. We define a family of network classes, which will be extensively used throughout
this document. Given a non-negative integer t, a positive integer ℓ and a node i ∈ [n], we let

Γt,ℓ
i

def
= {G ∈ Gn | ∀j ∈ [n], (i, j) is an arc of G(t+ 1 : t+ ℓ)}).

To be rigorous, those sets should be indexed by n. We omit this extra parameter as we will
always use the expression Γt,d

i in a context where no confusion can arise. To give an intuitive
understanding of those classes, we provide the following scenario. We fix a dynamic graph G, a
node i and two integers t and d. Imagine that, at the end of round t, node i is colored yellow
(see Fig. 2.1). In each round between rounds t+ 1 and t+ d, all nodes that have a yellow node
as incoming neither also become yellow (see Fig. 2.2 and Fig. 2.3). The yellow color therefore
propagates in the network during d rounds. Then G belongs to Γt,d

i if and only if all nodes are
yellow at the end of round t+ d (see Fig. 2.4).

i

Figure 2.1:
Round t

i

Figure 2.2:
Round t+ 1

i

Figure 2.3:
Round t+d−1

i

Figure 2.4:
Round t+ d

Figure 2.5: Representation

Because of self-loops, it holds that if an interval [t1, t1 + ℓ1] is contained in another interval
[t2, t2 + ℓ2], then

Γt1,ℓ1
i ⊆ Γt2,ℓ2

i . (2.3)

Definition 18 (dynamic eccentricity). The dynamic eccentricity of a node i in a dynamic
graph G is defined as

eG(i)
def
= inf{d ∈ N+ | ∀t ∈ N, G ∈ Γt,d

i }.
The dynamic eccentricity is named in analogy with the notion of eccentricity in a graph.

Similarly, the definitions of dynamic diameter and dynamic radius are named in analogy to
the diameter and radius in a graph. For short, we will say eccentricity to refer to dynamic
eccentricity. The node i is said to be central in G if its eccentricity is finite.

Definition 19 (center). The center of G, denoted by Z(G), is defined as the set of G’s central
nodes.

Z(G)
def
= {i ∈ [n] | eG(i) <∞}.

21



1 2

(a) graph G1

1 2

(b) graph G2

Figure 2.6: Two graphs.

Definition 20 (dynamic diameter). The dynamic diameter of G, denoted D(G), is defined as

D(G)
def
= sup

i∈[n]
eG(i),

Definition 21 (dynamic radius). The dynamic radius of G, denoted rad(G), is defined as

rad(G)
def
= inf

i∈[n]
eG(i),

If G is an infinite repetition of some digraph G, then the dynamic diameter and the dynamic
radius of G are equal to the diameter and the radius of G, respectively.

Strongly centered networks

The definition of strongly centered networks relies on the notion of kernel. Intuitively, a node i
belongs to the kernel of G, denoted K(G), if and only if i can infinitely often communicate with
any node of the dynamic graph G.

Definition 22 (kernel). The kernel of a dynamic graph G of size n is defined as

K(G)
def
= {i ∈ [n] | ∀j ∈ [n],∀t ∈ N, ∃t′ > t, i ∈ Inj(t+ 1 : t′)}.

Clearly, it holds that Z(G) ⊆ K(G). The inclusion is strict in general. To illustrate this,
let G1 and G2 be the two graphs defined in Fig. (2.6). Let G be the dynamic graph such that
G(t) = G1 if t is a prime number. Otherwise, G(t) = G2. In this example, both nodes belong
to K(G), as there is an infinite number of prime numbers and non-prime numbers. Moreover,
node 2 is central as there is no sequence of three consecutive prime numbers. More precisely, the
eccentricity of node 2 is equal to 3. However, node 1 is not central, as there exists arbitrarily
long sequences of consecutive non-prime numbers.

Definition 23 (stronly centered). A dynamic graph G is said to be strongly centered if the
following properties are satisfied.

Z(G) ̸= ∅ and K(G) = Z(G). (2.4)

Predicate transformers

Predicate transformers are constructions that transforms predicates on graphs (characterized
by a set C of static graphs) into predicates on dynamic graphs. We now define three predicate
transformers.

Definition 24 (C with delay ∆). A dynamic graph G belongs to C with delay ∆ if, for each
non-negative integer t, the graph G(t+ 1 : t+∆) belongs to C.

Definition 25 (C with bounded delay). A dynamic graph G belongs to C with bounded delay
if there exists an integer ∆ such that, for each non-negative integer t, the graph G(t+1 : t+∆)
belongs to C.
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Definition 26 (C with finite delay). A dynamic graph G belongs to C with finite delay if, for
each non-negative integer t, there exists an integer ∆ such that the graph G(t+1 : t+∆) belongs
to C.

If G belongs to C with bounded delay, it also belongs to C with finite delay. Moreover, if G
belongs to C with delay ∆, it also belongs to C with bounded delay.

There exists some clear relations between those definitions and the definitions from the
previous sections. A network that is strongly connected with delay 1 is a network that is strongly
connected in each round. It is easy to show that its dynamic diameter is at most n−1. Similarly,
if G is strongly connected with delay ∆, then its dynamic diameter is bounded by (n−1)∆. The
class of networks with finite dynamic diameter is equal to the class of networks that are strongly
connected with bounded delay. Moreover, the class of strongly connected networks with finite
delay is equal to the class of networks in which all nodes belong to the kernel.

Centered networks with bounded delay

A graph is said to be centered if it contains a spanning star, that is, there exists a node i which
belongs to the set of incoming neighbors of all nodes. Composing this notion and Definition 25,
we obtain the class of centered network with bounded delay. The class of dynamic graphs that
are centered with delay ∆ can be written as:

⋂
t∈N

⋃
i∈[n]

Γt,∆
i

 .

A dynamic graph G which is centered with delay 1 is only composed of digraphs that contain
a spanning star. The center of each star may be different from one round to another.

It is easy to see that a dynamic graph with a finite dynamic radius is also centered with
delay rad(G). However, the converse is not true. Indeed, consider a network of size n. Let Gi

be the star digraph centered in i, that is, for all i ∈ [n],

Gi
def
= ([n],

⋃
j∈[n]

{(j, j), (i, j)}.

The dynamic graph defined as

G def
= G1, G2, G2, G1, G1, G1, G2, G2, G2, G2, G1, G1, G1, G1, G1, . . .

is centered with delay 1. However, its dynamic radius is infinite: neither 1 nor 2 are central
nodes, as G contains arbitrarily long periods containing only G2 (or G1, respectively).

A connection exists between the notion of kernel and the class of centered networks with
bounded delay. Indeed, if G is centered with delay ∆, then there exists a sequence of nodes
(iℓ)ℓ∈N such that G belongs to

Γ0,∆
i0
∩ Γ1,∆

i1
∩ Γ2,∆

i2
∩ Γ3,∆

i3
∩ . . .

By the pigeonhole principle, there exists a node that occurs infinitely often in this sequence of
nodes. Therefore, the kernel of G is non-empty.
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2.6 In a nutshell

In this chapter, we introduced many notions of various flavours, such as problems, network
classes, start schedules ... Those notions are grouped under the term of features. This section
sums up the different features. The four problems that we introduced are listed in Table 2.1.

We introduced the notion of bounded memory algorithm and finite memory algorithm for a
given network class. An algorithm which is neither bounded nor finite memory will be qualified
as infinite memory, in a given network class.

We also defined several start classes of start schedules: diffusive, complete and synchronous.
Recall that the diffusivity of a start schedule is relative to a dynamic graph. In particular,
if the dynamic diameter of G is finite, then diffusive start schedules are complete. We also
introduced the notion of self-stabilization. As previously explained, it is easy to show that
self-stabilizing synchronization algorithms tolerate asynchronous complete start schedule. An
additional possible feature is the assumption of heartbeat messages.

Finally, this thesis studies many network classes, in particular, the classes of:

1. centered networks with bounded delay;

2. dynamic networks with a finite dynamic radius;

3. dynamic networks with a dynamic radius bounded by some integer B;

4. strongly centered dynamic networks;

5. dynamic networks with a finite dynamic diameter;

6. dynamic networks with a dynamic diameter bounded by some integer B;

7. static strongly connected networks.

This list is ordered by decreasing order of inclusion.
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Chapter 3

Impossibility results for mod
P -synchronization
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3.1 Introduction

In this chapter, we present some impossibility results that puts into perspective the results of
the next chapters. These results address the issue of algorithms with bounded memory. In this
context, is easy to notice that solving the synchronization (in Z) problem is impossible, as the
output value is an integer clock that should tend to infinity. This chapter therefore tackles
the mod P -synchronization problem. In this chapter, [n] denotes {0, 1, . . . , n − 1}, instead of
{1, 2, . . . , n}.

3.2 The mod P-synchronization problem in static networks

In this section, we prove that the mod P -synchronization problem cannot be solved in the class
of static strongly connected networks by a self-stabilizing algorithm, with bounded memory. We
reason by contradiction: we fix an algorithm alg, with a finite set of states, and we construct
an execution of alg that does not synchronize.

To do so, we arbitrarily fix two states q0 and q1 of alg and we construct a sequence of states
(qr)r∈N. Using the fact that the set of states is finite and our computational model is purely
deterministic, we show that this sequence is eventually periodic. We denote L its period. The
execution we build contains L nodes and the network is a directed ring, whose length is equal to
L. We show that, in each round, the global state always follows a same pattern, and the system
is thus never synchronized.

Theorem 27. For any period P > 1, no self-stabilizing algorithm solves the mod P -synchronization
problem using bounded memory in the class of static strongly connected networks.

Proof. We fix a period P > 1 and a self-stabilizing algorithm alg = (Q,Q,M, [P ], σ, τ, ω). We
fix two states q0, q1 ∈ Q and we inductively construct the sequence (qr)r∈N. For any r > 1, we
let

qr
def
= τ

(
qr−1,

{{
σ(qr−1), σ(qr−2)

}})
.

Since Q is finite, this sequence is ultimately periodic. Let ℓ be a positive integers such that this
sequence is periodic starting from element ℓ− 1 and L be its period.

We construct an execution of alg in a system of size L. We first choose the following initial
state: for any node i ∈ [L], we let

xi(0)
def
= qℓ+i.

The (static) communication graph of the execution is the directed cycle:

G
def
=
(
[L],

⋃
i∈[L]

{(i, i), (i, [i+ 1]L)}
)
,

where [i + 1]L denotes the remainder of the Euclidean division of i + 1 by L. The global state
of the system is as follows: for each node i ∈ [L], for each round t ∈ N,

xi(t) = qℓ+i+t. (3.1)

The proof of this claim is by induction on t.

1. The base case follows from the definition of the initial state of the system.
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2. Assume that, in a certain round t, the state of the system is given by Eq. (3.1). In round
t + 1, each node i receives a message from itself and the node [i − 1]L. The state of this
latter node in round t is qℓ+t+i−1. This is true even in the case i = 0, because of the
periodicity of (qr)r∈N. Therefore

xi(t+ 1) = τ
(
xi(t), {{σ(xi(t)), σ(x[i−1]L(t))}}

)
= τ

(
qℓ+i+t, {{σ(qℓ+i+t), σ(qℓ+i+t−1)}}

)
= qℓ+i+t+1.

Finally, we show that the system is never synchronized. In each round t,

x1(t) = qℓ+t+1 = x0(t+ 1).

Therefore,
ω(x1(t)) + 1 ̸≡P ω(x0(t+ 1)).

The execution constructed in this proof is thus never synchronized.

3.3 Extension to non-self-stabilizing algorithms

The previous section denies the existence of of a self-stabilizing algorithm that solves mod P -
synchronization with bounded memory. A natural question is whether this results also holds
for non-self-stabilizing algorithms. In this section, we provide a second impossibility result that
covers diffusive start schedules (see Definition 6). Moreover, our results holds even if heartbeats
(see Section 2.2) are added to the model. This new result covers dynamic networks: on this
aspect, the theorem of the previous section is stronger. Overall both results are complementary.

The intuition of the proof is as follows. We consider an arbitrary algorithm alg with a
finite set of states, and we construct an execution of alg in which the dynamic diameter is
finite, but mod P -synchronization is never achieved. We choose an initial (local) state of alg,
denoted q00. A single node, starting in this state and receiving no message, would update its
state, according to a certain sequence q10, q

2
0, . . . . Using the fact that the computational model

is purely deterministic, we show that this sequence is ultimately periodic. It is represented in
Fig. 3.1 by the leftmost cherry-shaped subgraph. In any execution of alg, an isolated node
starting in state q00 therefore remains trapped in this cycle.

We also define a sequence of states q01, q
0
2, . . . . The exact construction of those states is

detailed later. Each of them is the starting point of an ultimately periodic sequence, similar to
the one starting at q00.

By default, all the “cherry tails” and the “cherry bodies” represented in Fig. 3.1 can have any
length between 0 and the total number of states, denoted M . However, notice that a sequence
that is periodic with a period P is also periodic with a period of any multiple of P . Similarly,
a sequence that is periodic from some integer t is also periodic from any integer greater than t.
We therefore define the integer H as the least common multiple of all integers between 1 and
M . This integer can be used as the common length of all “cherry tails” and “cherry bodies”.

We construct an execution of alg, in which the global state of the system periodically follows
a certain pattern. Fig. 3.2 represents this pattern, once the normalization process detailed above
is applied1. In this execution, the system is composed of 2H nodes, gathered in two groups. In
each round t which is a multiple of 2H, the system is in a state where the nodes in first group

1Fig. 3.1 implies that M ≥ 10, and hence, H ≥ lcm(10, 9, . . . , 2) = 2520. For the sake of readability, Fig. 3.2
is drawn as if H = 3.
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q23
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Figure 3.1: Representation of a portion of the state space of algorithm alg. Arcs are constructed
by the transition function when no outside message is received. Some states may be duplicated.

qH−1ℓ = q2H−1ℓ

q0ℓ q0ℓ+1 q0ℓ+2 q0ℓ+3

Figure 3.2: Representation of the global state that is reached every 2H rounds, in the execution
of alg. Each vertex represents a state, and each token represents a node. Black arcs represent
the application of the transition function, similarly to Fig. 3.1. Blue arcs represent a possible set
of messages that a node, in a certain state, may receive. Upon the receipt of such messages, a
node updates its state according to the corresponding red arc. Some states may be duplicated.

are trapped in the loop generated by the state q0ℓ , for some integer ℓ, while the other nodes are
trapped in the loop generated by the state q0ℓ+1. In round t+1, the node 0, which begins in state
q2H−1ℓ , receives a message from all the nodes belonging to the second group. Those messages are
represented in Fig. 3.2 by the three leftmost blue arcs. The state transition upon the receipt of
those messages is represented by the leftmost red arc. The state q0ℓ+2 denotes the state reached
by node 0 in round t+ 1. One by one, all the nodes of the first group will follow the same state
transition, and will end up trapped in the loop generated by the state q0ℓ+2. In the meantime,
the nodes of the second group remain in the loop generated by q0ℓ+1. The pattern formed by the
global state in round t occurs again in round t+ 2H.

By posing q01 = q00, it is easy to construct a start schedule such that 2H nodes starting
in state q00 form the pattern in round 2H. Moreover, the dynamic diameter of the dynamic
graph is clearly finite, as all nodes in the first group periodically send a message to all nodes
in the second group, and vice versa. Moreover, assuming by contradiction that alg solves the
mod P -synchronization problem, the states composing each cherry body contains all possible
output values, from 0 to P − 1. Therefore, the execution defined is never synchronized.

Theorem 28. For any period P > 1, no algorithm solves the mod P -synchronization problem
using bounded memory in the class of networks with a finite dynamic diameter and diffusive start

28



0

1

2

3

4

5

6

7

Figure 3.3: For any t, this figure represents the graph obtained by taking the union of the set
of edges of the graphs G(t + 1), . . . ,G(t + 4H). This graph is drawn with H = 4, omitting
self-loops. In the general case, the diameter of this graph is 2. Moreover, the set of edges of
G(t+1 : t+4H) is a superset of the set of edges in this figure. Therefore, the dynamic diameter
of G is at most 8H.

schedule.

Proof. Recall that [x]H denotes the remainder of the euclidean division of x by H. We fix a
period P > 1 and an algorithm alg = (Q, I,M, [P ], σ, τ, ω). We assume that Q is finite and
we denote M its cardinality. We let

H = lcm(2, 3, . . . ,M), (3.2)

where lcm is the least common multiple operator. We fix an initial state q00 ∈ I and we
inductively construct the family of states (qrℓ )ℓ,r∈N.

qrℓ
def
=


qr0 if ℓ = 1

τ
(
q2H−1ℓ−2 ,

{{
σ(qH−1ℓ−2 ), σ(qHℓ−1), σ(q

H+1
ℓ−1 ), . . . , σ(q2H−1ℓ−1 )

}})
if ℓ > 1 and r = 0

τ
(
qr−1ℓ ,

{{
σ(qr−1ℓ )

}})
if r > 0.

Since Q is finite, for any ℓ, the sequence q0ℓ , q
1
ℓ , . . . is ultimately periodic. More precisely, the

sequence qH−1ℓ , qHℓ , qH+1
ℓ , . . . is periodic, and the length of its period is a divisor or H.

We now construct a system of n = 2H nodes, and an execution of alg in this system by
choosing a start schedule and a dynamic graph. The initial state of all nodes is q00. For each
ν ∈ [n], the state of node ν in round t is denoted xν(t). The start schedule of the system is as
follows: for each ν ∈ [n], we let

si
def
= [i]H + 2.

We now construct a dynamic graph. For each non-negative integer t, we denote ρ the quotient
of the euclidean division of t by 2H. We let

Et+1
def
=


{(i, [t]H), | i ∈ {H,H + 1, . . . 2H − 1}} if [ρ]2 = 1 and [t]2H < H

{(i,H + [t]H), | i ∈ {0, 1, . . . H − 1}} if [ρ]2 = 0 and [t]2H < H

∅ otherwise.

and we pose G(t) = ([n], {(i, i) | i ∈ [n]} ∪ Et). This dynamic graph is clearly periodic, and
its period is 4H. The dynamic diameter of this dynamic graph is less than or equal to 8H (see
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Fig. 3.3). Moreover, the start schedule defined here is diffusive, and active nodes never have any
passive incoming neighbor. Therefore, our proof holds, even when assuming that passive nodes
send heartbeats.

Given this dynamic graph and the start schedule, the state of the system in each round can
be computed. We show by induction that, in each round t > 0 that is a multiple of 2H, it holds
that, for each node i ∈ [n],

xi(t) = q
2H−1−[i]H
ρ+λ where ρ =

t

2H
and λ =

{
−1 if i ≥ H xor [ρ]2 = 1

0 otherwise.

1. Base case: t = 2H. During the first 2H rounds, no message is received by active nodes,
besides their own message. The start schedule ensures that, for all nodes i ∈ [n],

xi(2H) = q
2H−1−[i]H
0 = q

2H−1−[i]H
1 .

2. Inductive case: we fix some t that is a multiple of 2H, and we pose ρ and λ, similarly to
the above. Without loss of generality, we assume that [ρ]2 = 1: a proof in the case [ρ]2 = 0
can be obtained by switching the roles of each node i < H with the node i+H.

By definition of G, node 0 receives in round t+1 messages from the nodes H,H+1, . . . , 2H−
1, in addition of its own message. By the induction hypothesis, the state of node 0 in round
t is q2H−1ρ−1 . Moreover, the state of the nodes H, . . . , 2H − 1 is q2H−1ρ , . . . , qHρ . We obtain

x0(t+ 1) = τ
(
q2H−1ρ−1 ,

{{
σ(q2H−1ρ−1 ), σ(qHρ ), σ(qH+1

ρ ), . . . , σ(q2H−1ρ )
}})

= q0ρ+1.

We now consider a node i ∈ {1, . . . ,H − 1}. In round t + i, this node reaches the state
q2H−1ρ−1 . Similarly to node 0, we obtain

xi(t+ i+ 1) = q0ρ+1.

In round t + H, the state of the nodes H, . . . , 2H − 1 is unchanged compared to round
t, because of the periodicity of the sequence (qrρ)r≥0. The state of each node i ∈ [n] is
therefore

xi(t+H) =

q
H−1−[i]H
ρ+1 if i < H

q
2H−1−[i]H
ρ otherwise.

Between rounds t+H +1 and t+2H, no messages are received besides the messages sent
by the nodes to themselves. We finally obtain the global state of the system in round
t+ 2H, which concludes the inductive proof.

xi(t+ 2H) = q
2H−1−[i]H
ρ′+λ′ where ρ′ =

t

2H
+ 1 and λ′ =

{
−1 if i ≥ H

0 otherwise.

For each t that is a multiple of 2H, in the execution that have been built, we have, for some
integers ρ and λ,

x0(t) = q2H−1ρ+λ = x1(t+ 1).

Therefore,
ω(x0(t)) + 1 ̸≡P ω(x1(t+ 1)).

The execution constructed in this proof is thus never synchronized.
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3.4 Conclusion

The relative scopes of Theorems 27 and 28 is summarized in Table 3.4. This table also men-
tions a result by Feldmann et al. [53], which provides a mod P -synchronization algorithm in a
narrower context, namely, static bidirectional connected networks. Between this result and our
impossibility results, a chasm of open questions remains.

start schedule communication graph: D(G) <∞ and

static, bidirectional static dynamic

synchronous start schedule ✓ (trivial)

diffusive start schedule ✓ [53] ? ✗ (Thm. 28)

complete start schedule ? ? ✗ (Thm. 28)

self-stabilizing algorithm ? ✗ (Thm. 27) ✗ (Thm. 27 and 28)

Figure 3.4: Solvability results of the mod P -synchronization problem with bounded memory,
when the dynamic diameter is finite. The cells containing a ✗ sign are covered by one of the
impossibility results of this section (Theorems 27 and 28).

This leaves us with a few ways to circumvent these impossibility results. First, giving up the
requirement of bounded memory. Second, assuming the knowledge of a bound on the dynamic
diameter, that is, considering the class of networks with a dynamic diameter less than or equal
to a certain integer B, instead of the class of networks with a finite dynamic diameter. Most
existing mod P -synchronization algorithm follow this path [6, 17]. Our sapg algorithm, studied
in Chapter 8, can follows both strategies, as explained in Section 8.3. Third, using a probabilistic
framework: if we only require to solve the mod P -synchronization problem with high probability,
then it can be solved with bounded memory. This is the case of some of the algorithms proposed
by Bastide et al. [8]. Finally, notice that by Theorem 14, the mod P -firing squad problem is
also covered by Theorems 27 and 28, a fortiori.
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Chapter 4

The synchronization problem
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4.1 Introduction

The objective of this chapter is the construction of a self-stabilizing algorithm solving the syn-
chronization problem. To solve this problem, we first study the closely-related problem of
stabilizing consensus. In networks with a finite dynamic diameter, both problems are easily
solvable: a simple algorithm based on the update rule below is sufficient to solve the stabilizing
consensus problem.

xi ← min
j∈In

xj (4.1)

Using the max function instead of min would work just as well. A similar algorithm solves the
synchronization problem in the same network class.

xi ← 1 + min
j∈In

xj (4.2)

Therefore, a natural question is whether the synchronization problem is solvable when the dy-
namic diameter is infinite. This chapter relies on the minmax algorithm introduced by Charron-
Bost et al. [27], whose objective is solving the stabilizing consensus problem while tolerating
asynchronous starts. It proposes a solution in a very broad network class, that contains all
networks with a finite dynamic radius, but also contains many networks with an infinite radius.
Moreover, minmax solves the stabilizing consensus without requiring any global knowledge on
the network.

Our contribution is as follows: we first present an extension of minmax, named bminmax,
which mitigates an issue of memory usage growth1. We then introduce a general construction
scheme that bridges the gap between the stabilizing consensus problem and the synchronization
problem. Combining bminmax with this construction, we obtain a synchronization algorithm,
denoted sminmax. This algorithm is self-stabilizing and inherits all the above-mentioned ad-
vantages of minmax.

4.2 The minmax algorithm

We recall that the definition of stabilizing consensus is provided in Definition 15. We fix a
totally-ordered set O, and each node i holds an initial value in the set O, denoted mi. The
intuition behind the minmax algorithm can be explained using the notion of view. The view of
a node i in round t is a tree of depth t that gathers all information that i can possibly obtain
in round t. The leaves of this tree contains the initial states of the incoming neighbors of i
in G(1 : t). From this tree and those initial values, the current state of i in round t can be
inductively reconstructed. More formally, the view of i in round t can be defined as the data
structure constructed by the full-information protocol, defined by the following update rule:

Vi ← Node(Vi1 ,Vi2 , . . . ),

where i1, i2, . . . are i’s incoming neighbors. Here Vi is a variable containing a tree that is initially
reduced to a single node containing a certain initial value, and Node constructs a new tree from
a collection of subtrees.

The minmax algorithm works as follows. Each node uses a AGEi variable, which can be
interpreted as a flattened view of i (see Fig. 4.1). Denoting

xi(t)
def
=

{
mi if i is passive in round t

min{λ ∈ O | AGEi(t)[λ] <∞} otherwise,
1The memory usage tends to infinity in many executions of minmax. This topic is further detailed in

Section 19.
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xi = min
j∈Ina

i (1:4)
mj

µj1 µj2 mj3 mj4 mj5 mj6 mj7 mj8

(a) Computation of the xi value, in function
of the initial values mi.

yi = max
j∈Ina

i (g(4)+1:4)
xj(g(4))

xj1(2) xj2(2) xj3(2)

g(4)

(b) Update rule of the yi variable, in func-
tion of the xi variables and the cutoff func-
tion g.

Figure 4.1: Representation of the update rule of minmax in round 4, using the notion of view.
In both trees, each node represents some node in a certain round. The root represents some node
i in round 4, and the children of a node representing j at depth t are j’s incoming neighbors in
round 4− t.

it holds that xi(t) is equal to the minimum initial value that node i has ever heard of in round
t (see2 Lemma 30 and Fig. 4.1a). Each node also hold a variable yi that contains the maximum
xj that i has recently heard of (see Fig. 4.1b). minmax is parameterized by a cutoff function g
of type N → N+. The algorithms presented in this chapter rely on the following hypothesis on
g.

lim
t→∞

g(t) = lim
t→∞

t− g(t) =∞. (4.3)

The role of this function is to prune the oldest values recorded in AGEi, using an auxiliary
clock hi that measures the elapsed time. Algorithm 1 provides the pseudo-code3 for the minmaxg

algorithm. Even if O is infinite, It is easy to notice that in each execution of minmax, only a
finite number of values have a non-infinite image in each AGEi. Therefore, the variable AGEi

can always be stored using a finite amount of memory.

Theorem 29 (Theorem 9 in [27]). Assuming a complete activation schedule and a non-decreasing
cutoff function g satisfying Eq. (4.3), the minmaxg algorithm solves the stabilizing consensus
problem in the class of centered networks with bounded delay.

4.3 Avoiding infinite memory usage

The minmaxg algorithm provides a solution to the stabilizing consensus problem in a wide
range of networks. Unfortunately, both time and space complexities are problematic. On the
one hand, due to the reliance on the notion of kernel, there is no bound on stabilization time.
This is a fundamental limitation of the minmaxg algorithm: the only way to tackle this issue is
restricting the network class. On the other hand, in its current form, space complexity is also
problematic: in a network of size n, each variable AGEi contains up to n non-infinite entries. In

2the lemma is provided for bminmax. However, the phenomenon that is illustrated here is similar in minmax.
3As suggested in the pseudo-code, the output function of minmaxg is simply a projection that returns yi.
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Algorithm 1: Pseudo-code of node i in minmaxg, in function of i’s initial value mi.

1 Initialization:
2 yi ∈ O, initially mi /* output variable */
3 hi ∈ N, initially 0
4 AGEi ∈ O → N ∪ {∞}, initially AGEi[λ] = 0 if λ = mi. Otherwise, AGEi[λ] =∞.

5 At each round:
6 send ⟨AGEi, hi⟩ to all
7 receive messages from a subset of nodes In ⊆ [n]
8 for λ ∈ O do
9 AGEi[λ]← 1 + min

j∈In
AGEj [j]

10 end
11 yi ← max{λ ∈ O | AGEi[λ] ≤ g(hi)}
12 AGEi[ min{λ ∈ O | AGEi[λ] <∞} ]← 0
13 hi ← hi + 1

the worst case, in each node, n− 1 of those entries are incremented forever. Therefore, minmax
uses infinite memory (see Definition 8).

To alleviate this problem, we introduce the bminmaxg algorithm (see Algorithm 2). This
algorithm uses an adaptive mechanism, which increments hi only a finite number of times.
The entries of each AGEi are pruned based on a threshold equal to g(hi). This mechanism
therefore prevents the infinite growth of memory usage. We show that this algorithm solves the
stabilizing consensus problem under the same assumptions as minmaxg. Although the proof
scheme of bminmaxg follows the same pattern as the proof of minmaxg, provided in [27], none
of the lemmas in [27] are reusable as is. We therefore provide a complete proof of the correctness
of bminmaxg.

Algorithm 2: Pseudo-code of node i in bminmaxg, in function of i’s initial value mi.

1 Initialization:
2 yi ∈ O, initially mi /* output variable */
3 hi ∈ N, initially 0
4 AGEi ∈ O → N ∪ {∞}, initially AGEi[λ] = 0 if λ = mi. Otherwise, AGEi[λ] =∞.

5 At each round:
6 send ⟨AGEi, hi⟩ to all
7 receive messages from a subset of nodes In ⊆ [n]
8 for λ ∈ O do
9 AGEi[λ]← 1 + min

j∈In
AGEj [λ]

10 if AGEi[λ] > g(hi) then
11 AGEi[λ]←∞
12 end
13 end
14 yi ← max{λ ∈ O | AGEi[λ] <∞}
15 AGEi[ min{λ ∈ O | AGEi[λ] <∞} ]← 0
16 if ∃j ∈ In, yj > yi then
17 hi ← hi + 1

18 end
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We fix an execution ϵ of bminmaxg. We denote G its communication graph, and we assume
that G is centered with delay ∆, for some positive integer ∆. We denote yi(t), AGEi(t), . . . the
value of the variables y,AGE, . . . of node i at the end of round t, if i is active in round t. We
let

xi(t)
def
=

{
mi if i is passive in round t

min{λ ∈ O | AGEi(t)[λ] <∞} otherwise.

Lemma 30. For all rounds t, for all nodes i ∈ [n], we have xi(t) = min
j∈Ina

i (1:t)
mj.

Proof. We prove this lemma by induction over t.

1. Base case: by convention, for each node i, Ina
i (1 : 0) = {i}. Then xi(0) = mi =

min
j∈Ina

i (1:0)
mj .

2. Inductive case: we fix some node i. If i is passive in round t+1, then Ina
i (1 : t+1) = {i}

and
xi(t+ 1) = mi = min

j∈Ina
i (1:t+1)

mj .

Otherwise, i is active in round t+ 1. By the induction hypothesis, we have

min
j∈Ina

i (1:t+1)
mj = min

j∈Ina
i (t+1)

(
min

k∈Ina
j (1:t)

mk

)
= min

j∈Ina
i (t+1)

xj(t).

Let us show by two-sided inequality that xi(t+ 1) = min
j∈Ina

i (t+1)
xj(t).

a) We consider the node j ∈ Ina
i (t + 1) which has the minimum xj(t). By line 15,

AGEj(t)[xj(t)] is null. Then, from line 9, we obtain AGEi(t+ 1)[xj(t)] ≤ 1. Finally,
from the definition of xi(t+ 1),

xi(t+ 1) ≤ xj(t) = min
k∈Ina

i (t+1)
xk(t).

b) By definition of xi(t + 1), we have AGEi(t + 1)[xi(t + 1)] < ∞. Then, using line 9,
there exists some node j ∈ Ina

i (t+1) such that AGEj(t)[xi(t+1)] <∞. By definition
of xi(t), we obtain:

xi(t+ 1) ≥ xj(t) ≥ min
k∈Ina

i (t+1)
xk(t).

By Lemma 30, for each node i, the sequence (xi(t))t∈N is non-increasing and lower-bounded
by min{mj , j ∈ [n]}. Then this sequence stabilises in finite time. We denote x∗i its final value.
We also denote

x∗ = max
i∈[n]

x∗i .

We partition [n] into two subsets: Nfin contains all nodes whose h variable ultimately
stabilizes, whereas Ninf contains all nodes whose h variable goes to infinity as t tends to infinity.
Assuming a complete activation schedule, it is easy to notice that the following four propositions,
parameterized by t, are ultimately satisfied forever in the execution ϵ:
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1. every node is active in round t,

2. the value of xj(t) for each node j has reached its final value x∗j ,

3. the value of hj(t) for each node j ∈ Nfin has reached its final value,

4. the value of hj(t) for each node j ∈ Ninf satisfies g(hj(t)) > ∆.

We fix some round t0 from which each of those propositions hold forever.

Lemma 31. Every node γ ∈ K(G) satisfies x∗γ = x∗

Proof. We denote i some node satisfying x∗i = x∗. We fix some node γ ∈ K(G). By definition of
K, there exists a round t1 > t0 such that γ ∈ Ini(t

0 + 1 : t1). This implies Ina
γ(1 : t0) ⊆ Ina

i (1 :
t1). By Lemma 30:

xi(t
1) = min

j∈Ina
i (1:t

1)
mj ≤ min

j∈Ina
γ(1:t

0)
mj = xγ(t

0).

Finally, we show that x∗ = x∗γ using a two-sided inequality proof. First,

x∗ = x∗i = xi(t
1) ≤ xγ(t

0) = x∗γ

holds, by Lemma 30. Second, x∗ ≥ x∗γ holds, by definition of x∗.

Lemma 32. If G is centered with delay ∆, then there exists some integer t0 such that G belongs
to ⋂

t≥t0

 ⋃
i∈K(G)

Γt,∆
i

 . (4.4)

Proof. If G is centered with delay ∆, then there exists a sequence of nodes (iℓ)ℓ∈N such that G
belongs to

Γ0,∆
i0
∩ Γ1,∆

i1
∩ Γ2,∆

i2
∩ Γ3,∆

i3
∩ . . .

For any node i, this sequence contains an infinite number of occurrence of i if and only if i
belongs to the kernel of G. By the pigeonhole principle, the kernel of K(G) is non-empty. We
denote t0 the round from which (iℓ)ℓ∈N only contains elements of K(G). The dynamic graph G
therefore belongs to the class defined in Eq. (4.4).

Lemma 33. There exists an integer t2 such that, for all integer t ≥ t2, all nodes i satisfy
yi(t) ≤ x∗.

Proof. The proof consists in fixing some value λ > x∗ and proving that, from a certain round,
AGEi(t)[λ] is infinite in each node i. By line 14, this is a sufficient condition for yi(t) ≤ x∗. To
do so, we first we prove that, for any integer ℓ ∈ N, for any node i,

AGEi(t
0 + ℓ)[λ] ≥ ℓ.

The proof is by induction over ℓ:

1. The base case is trivial as each value in each AGEi variable is non-negative.

2. For the induction case, we fix some node i. By definition of x∗, λ > x∗ ≥ x∗i , therefore,
by Proposition 2, line 15 does not set AGEi(t

0 + ℓ + 1)[λ] to 0. We consider the node
j ∈ Ini(t+1) which holds the lowest AGEj(t

0 + ℓ)[λ] value in round t0 + ℓ. By induction
hypothesis, we obtain

AGEi(t
0 + ℓ+ 1)[λ] ≥ 1 +AGEj(t

0 + ℓ)[λ] ≥ 1 + ℓ.
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We obtain, for all integer t,

AGEi(t)[λ]− g(hi(t)) ≥ t− t0 − g(t).

Since g satisfies limt←∞ t − g(t) = ∞, there exists a round from which AGEi(t)[λ] > g(hi(t))
holds in each node i. From this point, using line 11, AGEi(t)[λ] is infinite, as required.

Lemma 34. There exists an integer t3 such that, for all integer t ≥ t3, all nodes i satisfy
yi(t) ≥ x∗.

Proof. We denote t1 the integer from which Lemma 33 is satisfied forever and such that Lemma 32
holds. We fix some node i and some integer t ≥ max(t0, t1). By Lemma 32, there exists a node
γ ∈ K(G) such that G ∈ Γt,∆

γ .
Then, there exists a γ ▷ i path in the interval [t + 1, t + ∆]. We denote this path γ =

kt, kt+1, . . . , kt+∆ = i. We prove by induction on this path that all nodes kt+ℓ satisfy

AGEkt+ℓ
(t+ ℓ)[x∗] ≤ ℓ.

1. By Proposition 2 and Lemma 31, we have xγ(t) = x∗γ = x∗. The base case results from
line 15.

2. We fix some integer ℓ < ∆. The induction hypothesis implies that AGEkt+ℓ
(t + ℓ)[x∗] is

finite. We first show that AGEkt+ℓ+1
(t + ℓ + 1)[x∗] is finite. To do so, we only need to

show that AGEkt+ℓ+1
(t+ ℓ+ 1)[x∗] is not set to infinity in round t+ ℓ+ 1 by line 11. We

reason by case distinction.

a) If kt+ℓ+1 ∈ Ninf , then, using Proposition 4 and induction hypothesis, the condition
line 10 is false when λ = x∗.

b) Otherwise kt+ℓ+1 ∈ Nfin. By contradiction, we assume that line 11 sets the variable
AGEkt+ℓ+1

(t+ ℓ+ 1)[x∗] to infinity. Using this and Lemma 33, we obtain

ykt+ℓ+1
(t+ ℓ+ 1) < x∗.

On the other hand, the induction hypothesis implies AGEkt+ℓ
(t+ ℓ)[x∗] is finite, and

hence, by line 14,
ykt+ℓ

(t+ ℓ) ≥ x∗.

Then the condition line 16 is true in round t + ℓ + 1 in node kt+ℓ+1, and line 17 is
executed. We get a contradiction using Proposition 3.

We now obtain that AGEkt+ℓ+1
(t+ ℓ+1)[x∗] is finite, and we conclude the inductive case

using line 9 and the induction hypothesis.

AGEkt+ℓ+1
(t+ ℓ+ 1)[x∗] ≤ 1 +AGEkt+ℓ

(t+ ℓ)[x∗] ≤ 1 + ℓ.

We ultimately have AGEi(t+∆)[x∗] <∞ for any t > max(t0, t1). The lemma then results
from line 14.

Theorem 35. Assuming a complete activation schedule and a non-decreasing cutoff function
g satisfying Eq. (4.3), the bminmaxg algorithm solves the stabilizing consensus problem in the
class of centered networks with bounded delay. Moreover, bminmaxg uses finite memory in this
network class.
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Proof. We fix an execution of bminmaxg with a centered network with delay ∆. It is easy to
notice that the following invariant is satisfied.

∀λ ∈ O,∀t ∈ N, ∀i ∈ [n], AGEi(t)[λ] ̸=∞ ⇒ ∃j ∈ [n],mj = λ. (4.5)

The validity clause immediately follows. The agreement clause comes from Lemmas 33 and 34.
Once every node has reached yi(t) = x∗, the conditional statement line 16 is always false. From
that point, the memory usage of each node is bounded.

4.4 Self-stabilizing clock synchronization

The bminmax algorithm is not self-stabilizing: the proof of the validity clause of the stabilizing
consensus relies on the fact that the system is initialized according to the pseudo-code of bmin-
max. By contrast, having a closer look at the proof of the agreement clause (Lemmas 33 and 34),
it remains valid with any initial state, as long as the AGEi variables initially contain a finite
number of non-infinite values (this point is tackled later, in Section 4.4).

In this section, we take advantage of the similarity between the agreement clause of the stabi-
lizing consensus problem and the synchronization problem. We propose a variation of bminmax,
named sminmax, that solves the synchronization problem. Since there is no equivalent to the
validity clause in the specification of the synchronization problem, no assumption on the initial
state is needed: this new algorithm is self-stabilizing.

A general transformation mechanism

In this section, we fix a self-stabilizing algorithm alg = (Q,Q,M,O, σ, τ, ω). Our objective is
as follows: assuming that alg satisfies the agreement clause of the stabilizing consensus prob-
lem, we are going to construct a self-stabilizing algorithm salg that solves the synchronization
problem. The idea is as follows: recall the two algorithms, defined in Eq.(4.1) and (4.2). They
respectively solve the stabilizing consensus problem and the synchronization problem in any net-
work with a finite dynamic diameter. This two algorithms provide an example in which adding
a +1 operator into a algorithm solving the stabilizing consensus problem transforms it into a
synchronization algorithm. The fundamental reason explaining why such a transformation works
in the case of this algorithm is as follows: for all integers a and b,

min(1 + a, 1 + b) = 1 +min(a, b). (4.6)

In the general case, alg needs to satisfy a certain property, that is analog to Eq. (4.6) in order
to be transformed into a synchronization algorithm. More precisely, we need the existence of an
increment function, defined as follows.

Increment function

From now, we choose O = N. A function ι : Q → Q is said to be a increment function of alg
if, for any q0, q1, q2, · · · ∈ Q, the following commutativity properties are satisfied:

τ(ι(q0), {σ(ι(q1)), σ(ι(q2)), . . . }) = ι(τ(q0, {σ(q1), σ(q2), . . . })), (C1)
ω(ι(q0)) = 1 + ω(q0). (C2)
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Construction of a synchronization algorithm

We fix an increment function ι of alg. We define the algorithm salg as

salg = (Q,Q,M,N, σ, ι ◦ τ, ω). (4.7)

For any execution ϵ̄ of salg, we denote ϵ a execution of alg having the same global initial
state and communication graph as ϵ̄. We denote qi(t) and q̄i(t) the state of node i in the round
t of executions ϵ and ϵ̄ respectively. We denote ιt the self-composition of ι.

Lemma 36. For any execution ϵ, for any round t and node i, we have q̄i(t) = ιt(qi(t))

Proof. We show this lemma by induction on t.

1. By convention, ι0 is the identity function on Q. Therefore, the base case results from the
definition of ϵ.

2. For the inductive case, we consider a node i ∈ [n] and a round t. Using successively the
definition of ϵ̄, then the induction hypothesis, and property C1, we have:

q̄i(t+ 1) = ι(τ(q̄i(t), {σ(q̄j(t)), j ∈ Ini(t+ 1)}))
= ι(τ(ιt(qi(t)), {σ(ιt(qj(t))), j ∈ Ini(t+ 1)}))
= ι ◦ ιt(τ(qi(t), {σ(qj(t)), j ∈ Ini(t+ 1)}))
= ιt+1(qi(t+ 1))

Theorem 37. Assuming that an algorithm alg, that outputs integers, satisfies the agreement
clause of the stabilizing consensus problem in a certain network class G, if ι is an increment
function of alg, then the algorithm salg defined in Eq. (4.7) solves the synchronization problem
in the network class G.

Proof. We fix an execution ϵ̄ of salg. We consider the corresponding execution ϵ of alg. By
the agreement property of alg, there exists a round t0 from which ω(qi(t)) is stabilized on some
value v ∈ N. Then, using Lemma 36 and property C2, we obtain: for all nodes i, for all round
t ≥ t0,

ω(q̄i(t)) = ω(ιt(qi(t))) = t+ ω(qi(t)) = t+ v

The system is thus synchronized after round t0.

A natural question is whether the assumption of the existence of an increment function is a
strong hypothesis. First, notice that an algorithm such that ω is a constant function trivially
solves the agreement clause of the stabilizing consensus problem. However, no increment function
exists for such an algorithm, as Proposition C2 cannot be satisfied. By contrast, our point
was turning existing stabilizing consensus algorithm into synchronization algorithm. Among
the stabilizing consensus algorithms we know, all of them can be equipped with an increment
function. As a general rule of thumb, if an algorithm alg solves the stabilizing consensus
problem on N and “uses” comparison operators (≤, min, . . . ), but does not manipulate output
values with arithmetic operators (+, ×, . . . ), then we can reasonably expect alg to have an
increment function.
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Application to bminmax

Let ι be the function defined as

ι((y, h,AGE))
def
= (y + 1, h, λ 7→ AGE[λ− 1]).

It is easy to notice that ι is an increment function of the bminmax algorithm.
In bminmax, the set of states contains some states in which the AGEi variable contains

an infinite number of non-infinite values. However, such a state is unreachable, thanks to
initializations. In this section, we are constructing a self-stabilizing algorithm: its whole state
space is reachable. Such a state would therefore be problematic, as the min or max operators
would not be well-defined. To avoid this issue, we introduce the set of functions Ffin.

Ffin
def
=
{
f : N→ N ∪ {∞} | f−1(N) is a finite set

}
.

The definition of sminmaxg is given by the pseudo-code of Algorithm 3. From Theorems 35 and 37,

Algorithm 3: Pseudo-code of node i in the sminmaxg algorithm.

1 Initialization:
2 xi ∈ N
3 yi ∈ N /* output variable */
4 AGEi ∈ Ffin

5 hi ∈ N
6 At each round:
7 send ⟨AGEi, hi⟩ to all
8 receive messages from a subset of nodes In ⊆ [n]
9 for λ ∈ N do

10 AGEi[λ]← 1 + min
j∈In

AGEj [λ− 1] /* by convention, AGEj [−1] =∞ */

11 if AGEi[λ] > g(hi) then
12 AGEi[λ]←∞
13 end
14 end
15 yi ← max{λ ∈ O | AGEi[λ] <∞}
16 AGEi[ min{λ ∈ O | AGEi[λ] <∞} ]← 0
17 if ∃j ∈ In, yj > yi then
18 hi ← hi + 1
19 end

we obtain the following corollary.

Corollary 38. For any non-decreasing cutoff function g satisfying Eq. (4.3), the sminmaxg

algorithm solves the synchronization problem in the class of centered networks with bounded
delay.

Complexity analysis of sminmax

Similarly to minmax and bminmax, the stabilization time of sminmax cannot be bounded, as
long as the network class we consider relies on the notion of kernel. Therefore, in this section, we
focus on its space complexity. We fix an execution of sminmax, and we denote V the following
set.

V = {v ∈ N | ∃i ∈ [n], AGEi(0)[v] ̸=∞}.
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Each AGEi variable can be efficiently stored in the form of the following data structure.

(v0, {(v − v0, AGEi[v]) | AGEi[v] ̸=∞}) where v0 = min{v ∈ N | AGEi[v] ̸=∞}.

The first component of this tuple is an integer which is bounded by t + supV. The second
component of this tuple is a set, whose cardinality is bounded by n. Then, we consider any
element belonging to this set. The first component is bounded by supV − inf V, which is finite.
The second component is bounded by

sup
i∈[n],t∈N

hi(t) ≤ t0 +max
i∈[n]

hi(0),

where t0 denotes the stabilization time of the considered execution. Altogether, for a fixed initial
state, the space complexity of sminmax is O(log t+ n log t0).

Two remarks can be made about this space complexity. First, the minimum space complexity
a synchronization algorithm can possibly achieve is Ω(log t), as each node must at least store its
output clock. Second, if sminmax was based on minmax instead of bminmax, each AGEi[v]
would have been bounded by t+maxi∈[n] hi(0) instead of t0+maxi∈[n] hi(0), and the resulting
space complexity of sminmax would have been O(n log t).

4.5 Bibliographic notes

In this section, we present the solutions proposed for the different flavours of consensus problem.
In each algorithm below, an increment function can easily be found.

Although there is a plethora of papers on agreement problems in multi-agent systems, few
are specifically devoted to stabilizing consensus. To the best of our knowledge, the problem has
been first investigated by Angluin, Fischer, and Jiang [5]. They studied solvability of stabilizing
consensus in an asynchronous totally connected system where agents have distinct identifiers
and may experience various type of faults, focusing on Byzantine faults. This problem has been
studied later in [41, 9] in the synchronous gossip model. These papers propose randomized
stabilizing consensus algorithms with convergence times that are functions of the number of
possible input values.

The original consensus problem, with irrevocable decisions, has been the subject of much
more study, specifically in the context of fault-tolerance and a fixed topology. There is also
a large body of previous work on consensus in dynamic networks. In the latter works, agents
are supposed to start synchronously, to share global informations on the network, and to have
distinct identifiers [37]. Moreover, topology changes are dramatically restricted [12], or commu-
nication graphs are supposed to be permanently bidirectional and connected [66].

We can also mention the asymptotic consensus problem, in which the output set is R, and
the output values of all nodes must converge to a common limit. This problem has been also
extensively studied as it arises in a large variety of applications in automatic control or for the
modeling of natural phenomena [80]. Averaging algorithms, in which every agent repeatedly
takes a weighted average of its own value and values received from its neighbors, are the natural
and most widely studied algorithms for this problem. To some extend, averaging algorithms
are continuous version of minmax. One central result by Cao, Morse, and Anderson [18] is
that every safe averaging algorithm – that is, an averaging algorithm where positive weights are
uniformly bounded away from zero – solves this problem with a continually rooted, time-varying
topology, even if the set of roots and links change arbitrarily.
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Chapter 5

Firing squad modulo P
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5.1 Introduction

A classical problem in the context of asynchronous starts is the firing squad problem (see Def-
inition 12). In some sense, solving this problem amounts to simulating synchronous starts.
Unfortunately, the impossibility result in [26] demonstrates that the firing squad problem is not
solvable without a strong connectivity property of the network, namely, the dynamic diameter
is finite and an upper bound is known by all nodes.

Our contribution is the introduction of a weakening of the firing squad problem, named the
modP -firing squad problem (see Definition 13). We solve this problem using an algorithm,
named termsynchP , in the class of networks with a dynamic radius less than or equal to a
bound ∆, that is, the bound ∆ is known by all nodes. The main advantage of this new problem
is therefore that it is solvable even in networks with an infinite dynamic diameter. In addition
of the knowledge of the bound ∆, the correctness of the algorithm relies on the assumptions
that P ≥ ∆, P > 2, and all passive nodes send heartbeats in each round. In Section 5.5, both
assumptions on the period P are lifted. By contrast, we show that the reliance on heartbeats
and the knowledge on the bound ∆ cannot be avoided.

The termsynchP algorithm is quite sophisticated, and we witnessed a “combinatorial ex-
plosion” in the complexity of its proof. To increase our confidence in the correctness of our
arguments, a formal proof verified by the Isabelle proof assistant has been developed. This
proof closely follows the structure of our pencil-and-paper proof. An overview on the formal
proof is provided at the end of the chapter.

Denoting smax the earliest round in which all nodes are active, termsynchP guarantees
that all nodes fire within smax + 6nP rounds, where n is the size of the system. However,
termsynchP suffers from the same weakness as minmax, that is, in all of its executions, the
memory usage tends to infinity. For this reason, we propose an extension of termsynchP ,
named btermsynchP , that eventually stops the memory usage growth. We show that the
memory usage of btermsynchP does not exceed log2(s

max + 6nP ) + 6.

5.2 Definition and informal description of the algorithm

We fix some P > 2. We define the termsynchP algorithm, which appears as Algorithm 4.
Each node holds a level variable. When the node becomes active, it enters a level 0 state. It
later moves to level 1, then to level 2. Each time a node moves from some level to the next, this
constitutes a level-up event. From now on, the level reached during a given level-up event will
be called the strength of this event. Reaching level 2 means firing. The conditional statements
at lines 19 and 25 of Algorithm 4 are executed when the node reaches level 1 and 2 respectively.
The intuition of the algorithm can be summarized by two simple ideas.

Firstly, each node keeps track of the most recent strongest level-up event. Only the strongest
level-up events are considered: if some node “knows” about a level-up event from level 1 to level
2, it will not record any level-up event from level 0 to level 1, nor any level-up event from passive
state to level 0. Among the strongest level-up events, the nodes keep track of the age of the
most recent one. This defines an ordering on the set of level-up events. For that purpose, they
hold two variables ci and forcei. At any round, node i knows that ci rounds ago, some node
reached a level equal to forcei from the previous level (as will be proved in Lemma 44). If zi(t)
denotes the level-up event that node i “remembers” in round t, then Lemma 45 shows that i
only remembers the strongest most recent level-up event.

Secondly, let γ denote any central node, whose eccentricity is less than or equal to P . A
node may level up in round t only if its counter ci is congruent to zero, and the counter of γ was
also congruent to zero, P rounds ago.
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Algorithm 4: Pseudo-code of node i in the termsynchP algorithm.
1 Initialization:
2 ci ∈ N, initially 0
3 synchi ← false
4 ready i ← false
5 forcei ∈ {0, 1, 2}, initially 0
6 level i ∈ {0, 1, 2}, initially 0

7 At each round:
8 send ⟨ci, synchi, forcei, ready i⟩ to all
9 receive incoming messages: let Ina be the set of nodes from which a non-null message is

received.
10 if all received messages are non-null then
11 synchi ←

∧
j∈Ina

synchj ∧ cj ≡P ci

12 else
13 synchi ← false
14 end
15 ready i ←

∧
j∈Ina

readyj

16 forcei ← max
j∈Ina

forcej

17 ci ← 1 + min
j∈Ina

forcej=forcei

cj

18 if ci ≡P 0 then
19 if level i = 0 ∧ synchi then
20 level i ← 1
21 if forcei < 2 then
22 forcei ← 1
23 ci ← 0

24 end
25 else if level i = 1 ∧ ready i ∧ synchi then
26 level i ← 2 /* the node i fires */
27 forcei ← 2
28 ci ← 0

29 end
30 synchi ← true
31 ready i ← level i > 0

32 end
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Figure 5.1: Impact of the state of incoming neighbors of j between round t − P and t on the
decision of j in round t: case where every ci is congruent to 0 in round t− P .
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Since the nodes do not know a fixed central node, they conservatively level up only if all of their
incoming neighbors j ∈ Ini(t−P +1 : t) were congruent to zero P rounds ago. By definition, γ
is one of these incoming neighbors. For that purpose, they use a Boolean variable synch. When
the counter of some node j becomes congruent to zero in some round t − P , it sets its synchj

variable to true in line 30. During the next P−1 rounds, it will check whether the counters of its
incoming neighbors are all congruent to its own counter (line 11). In case they are not, the node
will set its synchi variable to false. This false value will disseminate to its outgoing neighbors
(also line 11). Any node whose synch variable is false cannot move to the next level during the
next P rounds. In contrast, if in round t, the synchi variable is still true, node i knows that no
non-congruence was detected between round t− P and round t. This means that every central
node was congruent with zero in round t− P (as will be proved in Lemma 41.b). In that case,
a level-up event will take place (see Fig. 5.1). In contrast, if some node j ∈ Ini(t− P + 1 : t) is
not congruent to zero in round t−P , then the line 11 guarantees that synchi will ultimately be
false at the beginning of round t (see Fig. 5.2). In addition to synch, the ready variable makes
sure that a node i can move to level 2 only if, P rounds ago, γ was already in level 1 (as will be
proved in Lemma 42). Intuitively, the round tγ in which γ reaches level 1 is used as a landmark
for the synchronization: Lemma 46 shows that nodes fire in rounds which are congruent to tγ
modulo P .

Observe that the presence of self-loops in each communication graph implies that, in the
pseudo-code of Algorithm 4, the minima and maxima are well-defined.

5.3 Notation and preliminary lemmas

In the rest of this section, we fix an execution ϵ of the termsynchP algorithm over a network
of size n, for a complete activation schedule S and a dynamic graph G whose radius is less than
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Figure 5.2: Impact of the state of incoming neighbors of j between round t − P and t on the
decision of j in round t: case where some ci are not congruent to 0 in round t− P .
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or equal to some integer ∆, namely,

∃γ ∈ [n], ∀t ∈ N, ∀i ∈ [n], γ ∈ Ini(t+ 1 : t+∆).

We assume that ∆ ≤ P . Let smax be the earliest round in which all nodes are active, that is,

smax def
= max

i∈[n]
si.

Note that smax < ∞ as the activation schedule is complete. Let γ denote some central node
of G satisfying eG(γ) ≤ ∆.

If the node i is active in round t, for every variable x of the algorithm, we denote the value
of xi just before i executes line 18 at round t and at the very end of round t by xprei (t) and xi(t)
respectively. By extension, xi(t) refers to the initial state if t = si − 1. We now prove that this
execution satisfies both properties of the modP -firing squad problem.

We denote Ina
i (t) the subset of nodes in Ini(t) which are active in round t−1 in this execution.

Some simple claims follow immediately from the definition of the transition function, regardless
of the connectivity properties of G. We consider some node i ∈ [n] and some round t in which i
is active (i.e., t ≥ si).

Lemma 39.

(a) level i(t+ 1) ∈ {level i(t), level i(t) + 1}

(b) If ci(t) ̸= 0, then forcei(t) = forceprei (t) and ci(t) = cprei (t).

(c) ci(t) ≡P cprei (t).
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(d) If synchpre
i (t) = true holds, then each node j ∈ Ini(t) is active in round t− 1 and satisfies

cprej (t− 1) + 1 ≡P cprei (t).

(e) If cprei (t) ̸≡P 1 and synchpre
i (t) holds, then each node j ∈ Ini(t) is active in round t − 1

and synchpre
j (t− 1) holds.

(f) If cprei (t) ̸≡P 1 and synchpre
i (t) = readyprei (t) = true, then for every node j ∈ Ina

i (t), it
holds that readyprej (t− 1) = true.

(g) For every j ∈ Ina
i (t), we have

forceprej (t− 1) ≤ forcej(t− 1) ≤ forceprei (t) ≤ forcei(t).

(h) For every j ∈ Ina
i (t), if forceprej (t− 1) = forceprei (t) then

cprei (t) ≤ 1 + cj(t− 1) ≤ 1 + cprej (t− 1).

(i) level i(t) ≤ forcei(t).

Proof.

(a) The value of level i(t + 1) is equal to level i(t), unless line 20 or 26 is executed in round
t+ 1. In that case, level i(t+ 1) = level i(t) + 1.

(b) If ci is nonzero at the end of round t, then lines 23 and 28 cannot be executed during
round t. Therefore, lines 22 and 27 are not executed either. Since no other lines starting
at line 18 modify the variables forcei or ci, it follows that forcei(t) = forceprei (t) and
ci(t) = cprei (t).

(c) The assignments in lines 21 and 25 ensure that ci(t) is 0, and they are executed only if
cprei (t) ≡P 0.

(d) Firstly, cprej (t − 1) is well-defined because Ini(t) = Ina
i (t) (see line 10). Moreover, the

set {cj(t − 1), j ∈ Ini(t)} contains integers which are mutually congruent modulo P (see
line 11). Using claim 39.c and line 17

cprej (t− 1) + 1 ≡P cj(t− 1) + 1 ≡P cprei (t).

(e) By claim 39.d, every incoming neighbor j of i is active in round t− 1 and satisfies cprej (t−
1) ̸≡P cprei (t)− 1 ≡P 0. Then the conditional statement starting in line 18 is not executed
by j in round t− 1. Then, both synchj(t− 1) and synchpre

j (t− 1) hold.

(f) Assume that ci(t) ̸≡P 1∧readyprei (t)∧synchpre
i (t). Using the previous proof, every incoming

neighbor j is active in round t− 1 and the conditional statement starting in line 18 is not
executed by j in round t− 1. Finally, by line 15, j satisfies readyprej (t− 1).

(g) This property follows directly from lines 16, 22 and 27.

(h) If forceprej (t) = forceprej (t − 1), then forcej(t) = forceprei (t − 1) by Lemma 39.g. Then
cprei (t) ≤ 1 + cj(t− 1) ≤ 1 + cprej (t− 1) by line 17.

(i) We prove by induction on t ≥ si − 1 that ∀t ≥ si − 1, level i(t) ≤ forcei(t).

a) If t = si − 1, then i is in the initial state in round t. Then level i(t) = forcei(t) = 0.

b) Assume now that level i(t) ≤ forcei(t). If i levels up in round t + 1, then level i(t +
1) ≤ forcei(t + 1) by lines 20, 22, 26. Otherwise, by Lemma 39.g and by induction
hypothesis, level i(t+ 1) = level i(t) ≤ forcei(t) ≤ forcei(t+ 1).
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Lemma 40. No node can perform a level-up event action in round P − 1 or earlier.

Proof. We prove by induction on t that:

∀t < P, ∀i ∈ [n], t ≥ si − 1⇒ ci(t) ≤ t ∧ forcei(t) = 0 ∧ ¬synchi(t).

1. For the base case, any node active from the first round is in initial state in round 0:

ci(0) = 0 ∧ forcei(0) = 0 ∧ ¬synchi(0).

2. Let t be some integer in {0, . . . , P − 2}. Let i be some node which is active in round t+2.
Either i is in its initial state in round t+ 1, and then clearly

ci(t+ 1) = 0 ∧ forcei(t+ 1) = 0 ∧ ¬synchi(t+ 1).

Or i is active in round t + 1. By induction hypothesis, every active incoming neighbor j
of i in round t+ 1 has forcej(t) = 0 ∧ ¬synchj(t). Then

forceprei (t+ 1) = 0 ∧ ¬synchpre
i (t+ 1).

Using the induction hypothesis and line 17, we have

t+ 1 ≥ ci(t) + 1 ≥ cprei (t+ 1).

Then cprei (t+ 1) ∈ {1, . . . , P − 1}. By line 18, the variables of i are not modified in round
t+ 1 after line 18. From previous claims, we obtain that

ci(t+ 1) ≤ t+ 1 ∧ forcei(t+ 1) = 0 ∧ ¬synchi(t+ 1).

Using ¬synchi(t) and line 30, we obtain that a level-up event is impossible for any i, for t <
P .

We now show a few properties on the incoming neighbors of nodes that reach level 1 or 2.
This situation is illustrated by Fig. 5.1.

Lemma 41. Let ℓ be an integer, 0 ≤ ℓ < P , and let i and j be two nodes such that i ∈
Inj(t− P + ℓ+ 1 : t). If j is active and moves to level 1 or 2 in round t, then

(a) i is active in round t− P + ℓ.

(b) cprei (t− P + ℓ) ≡P ℓ.

(c) If readyprej (t) is true and i > 0, then readyprei (t− P + ℓ) is true as well.

Proof. By Lemma 40, t ≥ P . Let i = kt−P+ℓ, . . . , kt = j denote some i ▷ j path in the interval
[t − P + ℓ + 1, t]. By a backward induction, we show that, for any ℓ′ ∈ {ℓ, . . . , P}, the node
kt−P+ℓ′ is active at round t− P + ℓ′ and

cprekt−P+ℓ′
(t− P + ℓ′) ≡P ℓ′

∧ ℓ′ > 0⇒ synchpre
kt−P+ℓ′

(t− P + ℓ′)

∧ ℓ′ > 0 ∧ readypreℓ′ (t)⇒ readyprekt−P+ℓ′
(t− P + ℓ′).

1. The base case (i.e., ℓ′ = P and kt−P+ℓ′ = ℓ′) comes from lines 18, 19, and 25.
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2. For the inductive case, we assume that

cprekt−P+ℓ′+1
(t− P + ℓ′ + 1) ≡P ℓ′ + 1

∧ synchpre
kt−P+ℓ′+1

(t− P + ℓ′ + 1)

∧ readypreℓ′+1(t)⇒ readyprekt−P+ℓ′+1
(t− P + ℓ′ + 1).

By Lemma 39.d, kt−P+ℓ′ is active in round t− P + ℓ′ and

cprekt−P+ℓ′
(t− P + ℓ′) ≡P ℓ′.

Moreover, if ℓ′ > 0, we obtain synchpre
kt−P+ℓ′

(t−P +ℓ′) by Lemma 39.e, and by Lemma 39.f,
readypreℓ′ (t) implies readyprekt−P+ℓ′

(t− P + ℓ′).

Lemma 42. If some node j reaches level 2 in round tj, then γ is already in level 1 in round tj.

Proof. Let j be some node which reaches level 2 in round tj . By Lemma 40, tj ≥ P . By line 25,
we have

cprej (t) ≡P 0 ∧ synchpre
j (t) ∧ readyprej (t).

By Eq. 2.3, G ∈ Γ
tj−P,∆
γ ⊆ Γ

tj−P,P
γ , therefore there exists a γ▷i path in the interval [tj−P+1, tj ],

that we denote
γ = ktj−P , ktj−P+1, · · · ktj = j.

Applying Lemma 41 with ℓ = 1 and i = ktj−P+1, we obtain that ktj−P+1 is active in round
tj−P+1 and readyprektj−P+1

(tj−P+1) holds. Then readyγ(tj−P ) is true using line 15. Applying
Lemma 41 a second time, with ℓ = 0 and i = γ, we obtain that γ is active in round tj − P and
cpreγ (tj − P ) ≡P 0. Finally, levelγ(tj − P ) > 0 using line 18 and 31.

Lemma 43. If γ reaches level 1 in round tγ, no node can reach level 1 or 2 in any of the rounds
tγ + 1, . . . , tγ + P − 1.

Proof. By Lemma 40, tγ ≥ P . We assume that some node j levels up in round tγ + h where
h ∈ {1, . . . , P − 1}. By Eq. 2.3, G ∈ Γ

tγ−P+h,∆
γ ⊆ Γ

tγ−P+h,P
γ , and

γ ∈ Inj(tγ − P + h+ 1 : tγ + h).

Applying Lemma 41.b with ℓ = 0, we get cpreγ (tγ − P + h) ≡P 0. The presence of the self-loops
implies the existence of a γ ▷ γ path in the interval [tγ − P + h+ 1, tγ ]. Applying Lemma 41.b
with this path and ℓ = h, we get cpreγ (tγ−P +h) ≡P h. We get a contradiction from h ≡P 0.

Lemma 44. Let i be some node, and t be some round in which i is active. There exists some
node w which reached a level equal to forceprei (t) in round t− cprei (t). Moreover, an active w ▷ i
path exists in the interval [t− cprei (t) + 1, t].

Proof. We show this lemma by induction on cprei (t).

1. As cprei (t) ≥ 1 by line 17, the induction begins at cprei (t) = 1. In that case, i received a
message ⟨0, ∗, forceprei (t), ∗⟩ from some node j (see lines 16 and 17). Then j reached a level
equal to forceprei (t) in round t − 1. Because j ∈ Ini(t), an active j ▷ i path exists in the
interval [t, t].
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2. Let us fix some cprei (t) > 1. Then, i received from some node j a message

⟨cprei (t)− 1, ∗, forceprei (t), ∗⟩.

From Lemma 39.b, cprei (t) − 1 = cprej (t − 1) and forceprei (t) = forceprej (t − 1). Applying
the induction hypothesis to j in round t− 1, we obtain some node w which reaches a level
equal to forceprei (t) in round t− cprei (t). We also obtain an active w ▷ i path in the interval
[t− cprei (t) + 1, t].

We define the set

Z
def
= {(f, t) | ∃i ∈ [n], level i(t) = f ∧ level i(t− 1) ̸= f}. (5.1)

This set represents the finite set of level-up events. Using Lemma 44, the tuple zi(t) defined
below belongs to Z: for all node i,

zi(t)
def
= (forceprei (t), t− cprei (t)) ∈ Z

in every round t ≥ si in which i is active. We order Z lexicographically. The following lemma
proves that i records the most recent strongest level-up event of its view.

Lemma 45. If there exists an active i▷j path between two nodes i and j in the interval [t+1, t′],
then zi(t) ≤ zj(t

′). Moreover, if i reached a level equal to f in round t, then (f, t) ≤ zj(t
′).

Proof. Using claims 39.g and 39.h, we have, for any integer t and any node w:

zw(t+ 1) ≥ max
w′∈Ina

w(t+1)
zw′(t). (5.2)

Given an active i ▷ j path between i and j in the interval [t+1, t′], the main claim of the lemma
follows from Eq. 5.2, applied to each node in this path. In the special case where i reached a
level equal to f in round t, any outgoing neighbor w of i satisfies

zw(t+ 1) ≥ (f, t).

This inequality also comes from claims 39.g and 39.h. By Eq. 5.2, we obtain that (f, t) ≤ zj(t
′),

as required.

Lemma 46. If γ reaches level 1 in some round tγ, whereas some i reaches level 1 or 2 in some
round ti ≥ tγ, then ti ≡P tγ.

Proof. By contradiction, we consider the earliest node i which levels up in some round ti ≥ tγ
with ti ̸≡P tγ . By Lemma 43, ti ≥ tγ +P . There exists a γ ▷ i path in the interval [ti−P +1, ti],
and this path is active by Lemma 41.a. Using Lemma 45, the self-loop of γ, and this active
path, we obtain

(1, tγ) ≤ zγ(ti − P ) ≤ zi(ti). (5.3)

Lemma 44 implies the existence of a node j which reached a level equal to forceprei (ti) in some
round tj = ti − cprei (ti). In the case forceprei (ti) = 2, from Lemma 42, we obtain tj ≥ tγ .
Otherwise, using (1, tγ) ≤ zi(ti), we also have tj ≥ tγ .

By line 18, we have cprei (ti) ≡P 0. Recalling tj = ti − cprei (ti), we obtain tj ≡P ti ̸≡P tγ .
This contradicts the fact that i was the earliest node satisfying ti ≥ tγ and ti ̸≡P tγ .

Lemma 47. If every node is active in round t, and zγ(t) = zγ(t + 3P ), then γ is in level 1 in
round t+ 3P .
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Proof. Let t0 be a round in which every node is active. By Lemma 45, the sequence (zγ(t))t>s(γ)

is non-decreasing. By assumption, it remains constant between the rounds t and t+ 3P . Then,
there exists some round t1 ∈ {t0, t0 + 1, . . . t0 + P − 1} such that cpreγ (t1) ≡P 0. Then we prove
by induction on ℓ the following invariant:

∀ℓ < P, ∀i ∈ Inγ(t
1 + P + ℓ+ 1 : t1 + 2P ), ci(t

1 + P + ℓ) ≡P ℓ

and synchi(t
1 + P + ℓ) holds

1. Base case: we fix some node i ∈ Inγ(t
1 + P + 1 : t1 + 2P ). By Lemma 45,

zγ(t
1) ≥ zi(t

1 + P ) ≥ zγ(t
1 + 2P ).

Moreover, by assumption, zγ(t1) = zγ(t
1+2P ). Using successively Claim 39.c, the equality

zγ(t
1) = zγ(t

1 + 2P ) and the definition of t1, we obtain

ci(t
1 + P ) ≡P cprei (t1 + P ) ≡P cpreγ (t1) ≡P 0. (5.4)

Moreover, synchi(t
1 + P ) holds by line 30.

2. Induction case: we fix some integer ℓ < P − 1 and some node i such that i ∈ Inγ(t
1 +

P + ℓ + 2 : t1 + 2P ). In round t1 + P + ℓ + 1, every incoming neighbor j of i belongs
to Inγ(t

1 + P + ℓ + 1 : t1 + 2P ), and hence, by induction hypothesis, satisfies cj ≡P ℓ
and synchj in round t1 + P + ℓ. By lines 17 and 11, ci(t

1 + P + ℓ + 1) ≡P ℓ + 1 and
synchi(t

1 + P + ℓ+ 1) holds, as required.

Finally, by choosing ℓ = P − 1, the previous invariant, lines 17 and 11 imply that cpreγ (t1 +
2P ) ≡P 0 and synchpreγ (t1+2P ) is true. By lines 18 and 19, γ moves to level 1 in round t1+2P
at the latest.

5.4 Correctness proof

Lemma 48. Assuming a dynamic graph satisfying rad(G) ≤ P , any execution of the termsynchP

algorithm satisfies simultaneity.

Proof. We fix some node i, and we assume that i reaches level 2 in round ti. Let γ be a central
node whose eccentricity is at most P . From Lemma 42, we obtain ti ≥ tγ , where tγ is the round
in which γ reaches level 1. By Lemma 46, ti ≡P tγ . That proves simultaneity.

Lemma 49. Under the assumptions of a complete activation schedule and of a dynamic graph
satisfying rad(G) ≤ P , any execution of the termsynchP algorithm terminates. Moreover,
every node fires 6nP rounds after the activation of all nodes, at the latest, where n is the size of
the system.

Proof. Recall that smax denotes the round from which every node is active. Let γ be a central
node whose eccentricity is at most P . Let tγ be the round, if any, in which γ moves to level 1.
The proof consists in two parts: First, we show that tγ exists and is bounded by tmax =
smax + 3P (2n− 1). Then we deduce the termination property of the termsynchP algorithm.

We assume by contradiction that γ is still at level 0 in round tmax. By Lemma 42, each node
other than γ is at most at level 1 in round tmax. Then, at most 2n− 1 level-up events occurred
in round tmax and beforehand. We consider the sequence (ẑℓ)ℓ∈N such that

ẑℓ
def
= zγ(s

max + 3P × ℓ).
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This sequence is non-decreasing by Lemma 45. In addition, by Lemma 47, this sequence is
strictly increasing as long as γ is at level 0. We obtain a contradiction by the pigeonhole
principle: the first 2n elements of the sequence (ẑℓ)ℓ∈N are distinct, whereas only 2n−1 level-up
events happened before round tmax. This ends the first part of the proof.

We achieve the second part of the proof using two invariants. First, we prove the following
invariant by induction over ℓ.

∀ℓ ∈ N, ∀i ∈ [n], ci(tγ + P + ℓ) ≡P ℓ and synchi(tγ + P + ℓ) holds (5.5)

1. Base case. By Claim 39.c and Lemma 46, as zℓ(tγ + P ) ≥ zγ(tγ), we obtain

ci(tγ + P ) ≡P cprei (tγ + P ) ≡P cpreγ (tγ) ≡P 0.

Moreover, synchi(tγ + P ) holds by line 30.

2. The inductive case holds by lines 17 and 11, using the induction hypothesis.

Given a node i, we apply Eq. 5.5 to each of i’s incoming neighbors in round tγ +2P . We obtain
cprei (tγ + 2P ) ≡P 0 and synchpre

i (tγ + 2P ), and hence i reaches level 1 in round tγ + 2P at the
latest. We prove another invariant by induction over ℓ.

∀ℓ ∈ N,∀i ∈ [n], ready i(tγ + 2P + ℓ) holds (5.6)

The base case holds by line 31, and the inductive case holds by line 15. Finally, using Eq. 5.5
and 5.6, every node fires in round tγ + 3P ≤ smax + 6Pn at the latest.

The previous two lemmas yield the following correctness theorem:

Theorem 50. Under the assumptions of a complete activation schedule and of a dynamic graph
satisfying rad(G) ≤ P , the termsynchP algorithm solves the modP -firing squad problem for
any integer P greater than 2. Moreover, every node fires 6nP rounds after the activation of all
nodes, at the latest.

5.5 Solvability results

We show that the modP -firing squad problem is always solvable, regardless of the value of P ,
if the bound ∆ on the delay is known: for each possible ∆, we can exhibit an algorithm which
solves modP -firing squad in any dynamic graph satisfying rad(G) ≤ ∆.

Corollary 51. For any positive integers P and ∆, the modP -firing squad problem is solvable in
the class of networks with a radius less that or equal to ∆, in any complete activation schedule.

Proof. Depending on the relative values of P and ∆, we consider the following cases:

1. P = 1. The simultaneity property is a tautology in this case. The problem is trivially
solvable in any network class, in particular the network class considered here.

2. ∆ ≤ P and P > 2. By Theorem 50, the termsynchP algorithm solves the modP -firing
squad problem in the class of networks with a dynamic radius less that or equal to ∆.

3. ∆ ≤ P = 2. Theorem 50 shows that the termsynch4 algorithm achieves mod4-firing
squad in the class of networks with a dynamic radius less that or equal to 2, and hence
achieves mod2-firing squad in the same network class.
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4. ∆ > P . We have ∆ ≤ ⌈∆P ⌉ ·P . By Theorem 50, the mod ⌈∆P ⌉ ·P -synchronization problem
is solvable in the class of networks with a dynamic radius less that or equal to ∆, using
termsynch ⌈∆

P
⌉·P . The modP -firing squad problem is also solvable in the same networks

class, a fortiori.

We show that the modP -firing squad problem is not solvable if the delay ∆ is unknown to
the nodes. By contrast with Theorems 28 and 27, the following results also excludes algorithms
with an infinite memory usage.

Theorem 52. For any period P > 1, then the modP -firing squad problem is not solvable in the
class of networks with a finite dynamic radius and a complete activation schedule.

Proof. By contradiction, assume that an algorithm alg solves the problem in the above-mentioned
network class. We consider any system and we fix two nodes i and j in this system. We de-
note I the digraph only containing self-loops. We denote Ci and Cj the digraphs only containing
self-loops and a star centered in i and j respectively. We construct four executions of alg:

1. Every node starts in round 1. The dynamic graph is equal to Ci at each round. Its radius
is hence equal to 1. Using the termination of alg, i fires in some round fi.

2. Every node starts in round 1. The dynamic graph is equal to Cj at each round. Its radius
is hence equal to 1. Using the termination of alg, j fires in some round fj .

3. Every node starts in round 1. During the first fi+ fj rounds, the communication graph is
equal to I. In every subsequent round, the communication graph is equal to Ci. Its radius
is hence equal to 1 + fi + fj .

4. The node i starts in round 1, whereas every other node starts in round 2. During the first
fi + fj rounds, the communication graph is equal to I. In every subsequent round, the
communication graph is equal to Ci. Its radius is hence equal to 1 + fi + fj .

From the point of view of i, the third execution is indistinguishable from the first execution.
Therefore, i fires in round fi in the third execution. From the point of view of j, the third
execution is indistinguishable from the second execution during the first fj rounds. Thus, j fires
in round fj in the third execution. Using the simultaneity of alg in the third execution, we
obtain:

fi ≡P fj .

Similarly, i fires in round fi and j fires in round 1 + fj in the fourth execution. Using the
simultaneity of alg in the fourth execution, we obtain:

fi ≡P fj + 1.

Since we assumed P > 1, a contradiction is reached.

Moreover, we show that the modP -firing squad problem is not solvable if passive nodes do
not send heartbeats.

Theorem 53. In the model in which passive nodes do not send heartbeats, for any integers
P > 1 and ∆, the modP -firing squad problem is not solvable in the class of networks with a
dynamic radius less than or equal to ∆ and a complete activation schedule.
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Proof. By contradiction, we assume that an algorithm alg solves the modP -firing squad prob-
lem is the above-mentioned network class. We execute this algorithm on a network containing
a simple node that starts in round 1. In this execution, this node fires in a certain round t0. We
now consider the system of size n ≥ 2. Let G be the star graph centered in node 0, that is,

G
def
= ([n],

⋃
i∈[n]

{(i, i), (0, i)}).

We construct an execution of alg in which the communication graph is equal to G in all rounds.
We choose to start node 0 in round t0 + 2, node 1 in round 1 and all other nodes in round 2.
As node 0 does not send heartbeats, this execution is indistinguishable from the single-node
execution, from the point of view all nodes, until round t0 + 2. Therefore node 1 fires in round
t0 while node 2 fires in round t0 + 1, and simultaneity is violated.

5.6 Avoiding infinite memory usage

For all nodes i and all rounds t, we have (forceprei (t), t − cprei (t)) ∈ Z by Lemma 44. Since Z
is finite, cprei (t) tends to infinity as t tends to infinity. We present below an idea (inspired
by [16]) which can alleviate this issue: in each execution of Algorithm 4, total memory usage
increases forever, whereas in each execution of Algorithm 5, total memory usage grows during
some arbitrarily long initial period, and then drops and remains bounded forever.

The idea is as follows: as soon as forcei(t) = 2, the node i knows that some node j fired in
round t− ci(t) (see Lemma 44). Then i may fire in any round t′ ≡P t− ci(t). At this point, the
transition function can thus be simplified as in Algorithm 5.

Algorithm 5: Pseudo-code of node i in the btermsynchP algorithm
1 Initialization:
2 initialize with termsynchP ’s initial state

3 At each round:
4 if forcei = 2 then
5 send ⟨ci, true, 2, true⟩ to all
6 ci ← [1 + ci]P
7 if level i < 2 ∧ ci = 0 then
8 level i ← 2
9 end

10 end
11 else
12 apply termsynchP ’s transition function
13 end

Theorem 54. Under the assumptions of a complete activation schedule and of a dynamic graph
with a dynamic radius less than or equal to P , Algorithm 5 solves the modP -firing squad problem.
Moreover, in each execution of Algorithm 5, the memory usage of each node is bounded by
log2(s

max + 6nP ) + 6 bits.

The log2(s
max +6nP ) corresponds to the amount of memory needed to store ci(t): as i fires

in round smax + 6nP at the latest, the value of ci(t) does not exceed smax + 6nP . All other
variables can be stored using 6 bits.
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5.7 Some extra formal definition

This section presents the formal proof of our algorithm. The whole formalization is available at
https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master.

Formalisation of the computational model

In our model, in any execution of some algorithm alg, in each round, each node is either
passive or active. In the latter case, it holds a local state in the set of state of alg. We therefore
introduce the locState datatype to represent the local state of a node.

datatype ’s locState = Passive | Active s

Moreover, given a round t and two nodes i and j, from the point of view of j, there are three
possibilities. Either i is active and j is one of its outgoing neighbor in round t and j receives
some payload from i in round t, or i is passive in round t and sends a heartbeat, denoted Bot in
our formalisation, or j does not belong to the set of i’s outgoing neighbor. We therefore define
a datatype corresponding to the data received by a node from an other node, in a given round.

datatype ’m message = Content m | Bot | Void

An algorithm can be defined as follows, where s denotes the set of states of alg and m its
set of messages. The set of nodes is denoted proc.

record (’proc, ’s, ’m) algorithm =
initState :: s ⇒ bool
sendMsg :: s ⇒ m
nextState :: s ⇒ (proc ⇒ m message) ⇒ s ⇒ bool

Our formalisation was designed to handle non-anonymous algorithms (i.e., algorithms in
which different nodes have different local algorithms) and coordinated algorithms (i.e., algo-
rithms in which the local algorithms depend on a common coordinator). For the sake of read-
ability, the code snippets presented in this section do not handle those possibilities, as the
termsynchP algorithm does not take advantage of them. However, the above snippet clearly
shows that our formalisation handles non-deterministic state transitions, since nextState is a
transition relation, instead of a transition function.

An execution of an algorithm alg is represented by a variable rho :: nat⇒ proc⇒ s locState.
Moreover, given a finite set of nodes proc, a dynamic graph is represented by a variable HO ::
nat ⇒ proc ⇒ proc set. The communication model is encapsulated on a HORun predicate: the
proposition HORun alg rho HO if and only if rho is a valid execution of alg with a dynamic
graph HO. Notice that HORun does not need to take the start schedule as a separate input, as
it is contained in rho.

Formalisation of the algorithm

As the termsynchP algorithm uses five variables, the set of states of termsynchP is defined
by the following object.

record locState =
x :: nat
synch :: bool
ready :: bool
force :: nat — force ∈ {0, 1, 2}
level :: nat — level ∈ {0, 1, 2}
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Then we provide the initial state and the transition function of the termsynchP algorithm.
The argument msgs is a function of type proc⇒ m message that maps each node to the message
received from this node.

definition initState where
initState state ≡ state = L x = 0, synch = False, ready = False, force = 0, level = 0 M

definition nextState :: s ⇒ (proc ⇒ s message) ⇒ s ⇒ bool where
nextState s msgs s’ ≡ s′ =

let synch_pre = (∀ p. msgs p ̸= Void −→
(∃ m. msgs p = Content m ∧ synch m ∧ c m mod P = c s mod P)) in

let ready_pre = (∀ p m. msgs p = Content m −→ ready m) in
let force_pre = (Max (P_mod.forceMsgs ‘ range msgs)) in
let c_pre = Suc (LEAST v. ∃ m p. msgs p = Content m ∧ force m = force_pre ∧ c m =

v) in
if c_pre mod P = 0 then

if level s = 0 ∧ synch_pre then
if force_pre ≤ 1 then

L c = 0, synch = True, ready = True,
force = 1, level = 1 M

else
L c = c_pre, synch = True, ready = True,

force = force_pre, level = 1 M
else
if level s = 1 ∧ synch_pre ∧ ready_pre then

L c = 0, synch = True, ready = True,
force = 2, level = 2 M

else
L c = c_pre, synch = True, ready = level s > 0,

force = force_pre, level = level s M
else

L c = c_pre, synch = synch_pre, ready = ready_pre,
force = force_pre, level = level s M

Formalisation of our results

The properties that have been formally established are as follows.

definition liveness where — termination
liveness rho t ≡ ∀ u. ∃ s. rho t u = Active s ∧ level s = 2

definition safety where — simultaneity
safety rho ≡ ∃ c. ∀ u t s ss.

rho t u = Active s −→ level s < 2 −→
rho (Suc t) u = Active ss −→ level ss = 2 −→ t mod P = c

Their correctness is proved under the following assumptions:

assumes ∀ u t. path HO gamma u t P — gamma’s eccentricity is at most P
and ∀ u t. u ∈ HO t u — the graph contains self-loops
and HORun (HOMachine P) rho HO — rho is an execution
and ∀ p. ∃ t. rho t p ̸= Asleep — the schedule is complete
and P > 2
and OFCLASS(proc, finite_class) — finite set of nodes
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5.8 Bibliographic notes

On the first hand, the modP -firing squad problem is clearly related to the stabilizing modP -
synchronization problem that has been extensively studied (e.g., see [6, 61, 17]). In the latter
problem, only eventual synchronization is required, and nodes are not aware of the round at
which synchronization is achieved (no “firing event”).

On the other hand, the modP -firing squad problem is a weakening of the firing squad
problem, which was originally studied in the context of automata theory (e.g., [71, 72]). This
model considers a finite but unknown number n of nodes which are connected in a line (or in
some other specific topologies in more recent works – see e.g., [75, 36]). Nodes are identical finite
state machines whose number of states is independent of n, and at each time unit each node
changes its state according to the states of its neighbors on the line. A start signal is given to a
node located at one end of the line – the “general” – and then is propagated to the rest of the
nodes so that all nodes have eventually to fire simultaneously. Thus the above model assumes
diffusive start signals (see Definition 6). The most recent work by Charron-Bost and Moran [26]
lifts the assumption of diffusive starts and tolerates dynamic topologies. However, it requires a
finite dynamic diameter, and all nodes must1 know a bound on this diameter.

1This second assumption may be weakened when nodes have identifiers.
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Chapter 6

The sap algorithm: a probabilistic
analysis
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6.1 Introduction

In chapter 4, we introduced the sminmax algorithm and we showed that this algorithm solves
the synchronization problem in a certain network class. However, the very specification of the
synchronization problem is problematic in memory-constrained systems, as nodes must store
a variable whose memory size increases forever. To address this drawback, we consider the
mod P -synchronization problem.

The previous chapters rely on a deterministic communication model, in which each execution
of a certain algorithm is considered individually, and the property corresponding to the mod P -
synchronization problem must be satisfied by each possible execution in this model. By contrast,
in a probabilistic model, the set of executions of an algorithm is considered as a whole, and the
correctness then corresponds to the following hyperproperty [34]: the probability of executions
of the considered algorithm in which mod P -synchronization is achieved is greater than a chosen
real p ∈ [0, 1).

For probabilistic communication models, the mod P -synchronization problem has been ad-
dressed by Boczkowski et al. [14] and later on by Bastide et al. [8], both in the particular
framework of the pull model [65] through the fully-connected graph: In each round each agent
receives a message from an agent sampled uniformly at random. Their focus is on minimizing
message size and both obtain a stabilization time of O(log n) in a network of size n. Unfortu-
nately, the algorithms in both papers are specific to the pull model, and their good performances
highly rely on the assumption of a fully-connected network.

To obtain a solution that solves the mod P -synchronization problem in a more general class of
networks, we developed novel proof strategies and new analysis tools to bridge the gap between
deterministic and probabilistic proofs. Our goal is using an algorithm and a proof scheme
developed in the deterministic framework, and transposing it in the probabilistic framework.
Unfortunately, verifying probabilistic hyperproperties is technical. In particular, the notion of
eccentricity, which is central in the previous chapters, is no more relevant in a probabilistic
framework. Indeed, we may see that in most of probabilistic networks, each eccentricity is
almost surely infinite (cf. Section 6.3). As a substitute of dynamic diameters, we devise new
parameters for probabilistic dynamic graphs, namely, a hierarchy of probabilistic diameters, and
prove several basic properties on these diameters that are interesting on their own. Using those
probabilistic diameters, we define the notion of strong connectivity with high probability.

To validate the efficiency of our approach, we introduced an algorithm, denoted sap, which is
an extension of an algorithm introduced by Boldi and Vigna [16]. Their algorithm was presented
for static strongly connected networks. Our main contribution is the proof that sap solves the
mod P -synchronization problem with high probability, assuming that the network is strongly
connected w.h.p.

As the sap solves the mod P -synchronization problem in both deterministic and probabilistic
framework, sap is covered by Theorem 27, and its memory usage is therefore unbounded. We
only guarantee that the memory usage of sap is finite in the class of networks that are studied in
this chapter. By contrast, using a purely probabilistic approach, Bastide et al. [14, 8] introduce
some mod P -synchronization algorithms with bounded memory.

6.2 Probabilistic framework

If Σn denotes the Borel σ-algebra on Gn, then (Gn,Σn) is a measurable space. Then, we consider
a probability measure on (Gn,Σn), denoted Prn, or simply Pr. The pair (Gn,Prn) is called a
probabilistic communication network of size n.

62



1
3

2
3

3
4

1
3

2
3

1
4

1
2

1
3

2
3

3
4

1
3

2
3

1
4

1
2
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(b) An example of memoryless and time-
independent probability measure.

Figure 6.1: Two trees representing two probability measures, truncated at height 3. For the sake
of readability, only two children per node are represented, instead of 2n(n−1).

In previous chapters, G(ℓ) used to denote the ℓ-th graph of a specific dynamic graph G. In this
chapter, G(ℓ) can also be viewed as a random variable, which maps each dynamic graph of Gn to
its ℓ-th component. By analogy with the terminology used in game theory (e.g., see [13]), we say
that Pr is memoryless if the random variables G(1),G(2),G(3), . . . are mutually independent.
We say that Pr is time-independent1 if those random variables are identically distributed.

Given a deterministic algorithm alg, a positive integer n, an execution of alg is character-
ized by an initial global state in Qn and a communication graph in Gn. Therefore, given a global
state q ∈ Qn of alg, the set of executions of alg starting at q, denoted Eq(alg), is isomorphic
to Gn. Hence, Pr induces a probabilistic measure on Eq(alg), which will also be denoted by Pr
as no confusion can arise.

The set Gn can be represented by an infinite tree in which the nodes of depth ℓ are the
sequences of length ℓ of dynamic graphs of size n. Each edge therefore corresponds to one of the
2n(n−1) possible digraph of size n and each node has 2n(n−1) children. A probability measure
Pr on Gn can be represented by a labeling2 of this tree, defined as follows: each edge between a
node G1, . . . , Gℓ and one of its children G1, . . . , Gℓ, Gℓ+1 is labeled by the real number

Pr( G(ℓ+ 1) = Gℓ+1 | G(1) = G1 ∧ · · · ∧G(ℓ) = Gℓ ).

Giving such a labeling amounts to providing a probability distribution on each branching of the
tree representing Gn. Figure 6.1 gives two example of such representations.

6.3 Probabilistic diameters

Let us fix a global state q ∈ Qn. For any real p ∈ [0, 1] and any integer k ∈ [n], we define the
probabilistic order k diameter as the minimum number of rounds required for k arbitrary nodes
to communicate with all the nodes in the network with probability at least p. Formally, we let

D̂(k)(p)
def
= inf{δ ∈ N+ | inf

i1,··· ,ik∈[n],t∈N
Pr(Γt,δ

i1
∩ · · · ∩ Γt,δ

ik
) ≥ p}.

Clearly, we have that D̂(1)(p) ≤ · · · ≤ D̂(n)(p), with equalities when p = 1. As a matter of
fact, the probabilistic proof of the sap algorithm that we develop in the following sections only
involves the probabilistic diameters D̂(1)(p) and D̂(2)(p).

1is this terminology relevant?
2should I further detail the relation between Pr and the set of possible labelings?
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A toy example

As an example, let us consider the memoryless probability measure Pr on G 2 defined by

Pr(G(t) = G1) = Pr(G(t) = G2) =
1

2
,

where G1 and G2 are the two-node digraphs defined in Figure 6.3.
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Figure 6.2: Representation of the probability measure Pr defined above, truncated at height 4.
The graph G1 is represented by a red arc, and G2 by a blue one. Other possible graphs are not
represented. The event Γ2,4

i is the set of dynamic graphs containing no dashed arc.

For any round t and any positive integer δ, we have:

Pr(Γt,δ
1 ) = 1− Pr

(
δ⋂

d=1

(G(t+ d) = G2)

)
= 1−

δ∏
ℓ=1

Pr(G(t+ d) = G2) = 1− 2−δ.

Similarly, Pr(Γt,δ
2 ) = 1− 2−δ. Moreover,

Pr(Γt,δ
1 ∩ Γt,δ

2 ) = 1− Pr(Γt,δ
1 ∪ Γt,δ

2 )

= 1− Pr

(
δ⋂

d=1

(G(t+ d) = G2) ∪
δ⋂

d=1

(G(t+ d) = G1)

)
= 1− 2−δ+1.

Using the definition of the probabilistic diameters and the two equations above, we obtain
D̂(1)(p) and D̂(2)(p) in our example:

D̂(1)(p) = inf{δ ∈ N+ | 1− 2−δ ≥ p} = ⌈− log2(1− p)⌉ and

D̂(2)(p) = inf{δ ∈ N+ | 1− 2−δ+1 ≥ p} = 1 + ⌈− log2(1− p)⌉.

This simple example shows why it is not appropriate to use the parameter D̂(p) simply defined
by:

D̂(p)
def
= inf{δ ∈ N+ | Pr(D(G) ≤ δ) ≥ p}, (6.1)

where D(G) is the dynamic diameter of G, defined in Eq. (20). Indeed, for each node i ∈ {1, 2},
we have:

Pr(eG(i) ≤ δ) ≤ Pr

( ∞⋂
ℓ=0

Γℓδ,δ
i

)
=
∞∏
ℓ=0

Pr(Γℓδ,δ
i ) = 0,
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1 2

(a) digraph G1

1 2

(b) digraph G2

Figure 6.3: Two digraphs.

and thus D̂(p) is infinite if p is positive. In other words, the dynamic diameter of almost all
dynamic graphs is infinite in this example, while D̂(1)(p) is finite when p < 1.

Relations between probabilistic diameters

We now state some general properties on the probabilistic diameters.

Lemma 55. For any memoryless probability measure and all real numbers p ∈
[
1
2 , 1
]
, if D̂(1)(p)

is finite, then D̂(2)(p) is finite and D̂(2)(p) ≤ 2D̂(1)(p).

Proof. Because of the self-loops, the digraphs G(t+ 1 : t+ δ) and G(t+ δ + 1 : t+ 2δ) are both
subgraphs of G(t+ 1 : t+ 2δ), and hence Γt,δ

i ∪ Γt+δ,δ
i ⊆ Γt,2δ

i . It follows that:

Pr
(
Γ
t,2D̂(1)(p)
i ∩ Γ

t,2D̂(1)(p)
j

)
≥ 1− Pr

(
Γ
t,2D̂(1)(p)
i

)
− Pr

(
Γ
t,2D̂(1)(p)
j

)
≥ 1− Pr

(
Γ
t,D̂(1)(p)
i ∩ Γ

t+D̂(1)(p),D̂(1)(p)
i

)
− Pr

(
Γ
t,D̂(1)(p)
j ∩ Γ

t+D̂(1)(p),D̂(1)(p)
j

)
≥ 1− 2(1− p)2.

The second inequality holds because of the above-proved inclusion, and the third one because
of the memoryless assumption. If p ∈

[
1
2 , 1
]
, then 1− 2(1− p)2 ≥ p and D̂(2)(p) ≤ 2D̂(1)(p).

Using a similar proof, it is possible to show the following lemma.

Lemma 56. For any memoryless probability measure and all real numbers p ∈
[
1
2 , 1
]
, for all

positive integers ℓ1 and ℓ2 ≤ ℓ1 such that ℓ1 + ℓ2 ≤ n, if D̂(ℓ1)(p) and D̂(ℓ2)(p) are finite, then
D̂(ℓ1+ℓ2)(p) is finite and D̂(ℓ1+ℓ2)(p) ≤ 2D̂(ℓ1)(p).

Therefore, by induction on ℓ ≤ n, if D̂(1)(p) is finite, then all D̂(ℓ)(p) are finite and

D̂(ℓ)(p) ≤ 2⌈log2 ℓ⌉D̂(1)(p).

Finally, we prove the following finiteness result for D̂(1)(p).

Lemma 57. For any memoryless probability measure, if D̂(1)(p0) is finite for some p0 ∈ (0, 1],
then D̂(1)(p) is finite for all real numbers p ∈ [0, 1).

Proof. For every node i, for every integers t ≥ 0 and ℓ > 0, we have

Pr
(
Γ
t,ℓD̂(1)(p0)
i

)
≥ Pr

(
ℓ−1⋃
h=0

Γ
t+hD̂(1)(p0),D̂(1)(p0)
i

)

= 1−
ℓ−1∏
h=0

Pr

(
Γ
t+hD̂(1)(p0),D̂(1)(p0)
i

)
≥ 1− (1− p0)

ℓ.
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The first inequality holds because of the self-loops, as explained in the proof of Lemma 55. The
second one is due to the memoryless assumption on the Pr probability measure.

If p0 is positive, then limℓ→∞ 1− (1− p0)
ℓ = 1. Thus, for any real number p less than one,

there exists some integer ℓ0 such that Pr(Γ
t,ℓ0D̂(1)(p0)
i ) ≥ p, which implies that D̂(1)(p) is finite

and D̂(1)(p) ≤ ℓ0D̂
(1)(p).

Since all D̂(ℓ) are non-decreasing, Lemmas 55 and 57 imply that if D̂(1)(p0) is finite for some
p0 ∈ (0, 1], then all probabilistic diameters are finite for all p ∈ [0, 1), in which case the network
(Gn,Prn) is said to be strongly connected with high probability. This notion is linked to the notion
of dynamic diameter. Assume that a dynamic graph G has a finite dynamic diameter DG. Let
Pr be the probability measure such that Pr({G}) = 1, then for all real numbers p ∈ (0, 1],

DG = D̂(1)(p) = D̂(2)(p) = · · · = D̂(n)(p).

6.4 The sap algorithm

We now present the self-stabilizing sap algorithm and state its basic properties.

Description of the algorithm

A typical approach to solve the mod P -synchronization problem consists in the following algo-
rithm: at each round, each node sends its own variable Ci ∈ {0, . . . , P − 1} and applies the
following update rule:

Ci ←
[
min
j∈Ini

Cj + 1
]
P
,

where Ini denotes the current set of i’s incoming neighbors, and [c]P is the remainder of the
Euclidean division of c by P . Unfortunately, this naive algorithm does not work3 when D̂(1)(p)
is too large compared to the period P . To overcome this problem, the sap algorithm uses
self-adaptive periods and the basic fact that for any positive integer M , we have

[ [ c ]PM ]
P
= [ c ]P .

More precisely, each node i uses two integer variables Mi and Ci, and computes the clock value
Ci not modulo P , but rather modulo the time-varying period PMi. The variable Mi is used as
a guess to find a large enough multiple of P so to make the clocks eventually stabilized. Until
synchronization, the variables Mi increase so that the shortest period PMi eventually becomes
large enough compared to the largest clock value in the network. In the rest of this chapter, St
denotes the set of executions in which the system is synchronized in round t. Once all clocks are
congruent modulo P , they remain congruent forever, meaning that St ⊆ St+1. The update rule
for Mi is parametrized by a function g : N→ N. The corresponding algorithm is denoted sapg,
and its code is given below. Line 7 in the pseudo-code implies that Ci(t) < PMi(t), and for the
sake of simplicity, we assume that this inequality also holds initially, that is, Ci(0) < PMi(0).

In the rest of the chapter, the function g is supposed to be a non-decreasing and inflationary
function, i.e., x < g(x) for every positive integer x. Therefore, each Mi variable is non-decreasing.
If ℓ is a positive integer, gℓ denotes the ℓ-th iterate of g. For every positive real number x, we
let

g∗(x)
def
= inf{ℓ ∈ N+ | gℓ(1) ≥ x}.

Since g is inflationary, g∗(x) is finite for all integers x, and g∗(x) ≤ x.
3see Theorem 4.13 in [2].
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Algorithm 6: Pseudo-code of node i in the sapg algorithm

1 Variables:
2 Ci ∈ N
3 Mi ∈ N+

4 At each round:
5 send ⟨Ci,Mi⟩ to all
6 receive ⟨Cj1 ,Mj1⟩, ⟨Cj2 ,Mj2⟩, . . . from the set Ini of incoming neighbours
7 Ci ←

[
min
j∈Ini

Cj + 1
]
PMi

8 Mi ← max
j∈Ini

Mj

9 if Cj ̸≡P Cj′ for some j, j′ ∈ Ini then
10 Mi ← g(Mi)
11 end

Properties of sapg’s executions

Let us consider an execution ϵ of the sapg algorithm over a network of size n, with the dynamic
graph G. We start with five basic properties of ϵ which directly come from the pseudo-code.

Lemma 58. If (i, j) is an arc in G(s : t), then Cj(t) ≤ Ci(s− 1) + t− s+ 1.

Lemma 59. If (i, j) is an arc in G(s : t), then one of the following statements is true:

1. Cj(t) ≡P Ci(s− 1) + t− s+ 1;

2. Mj(t) ≥ g(Mi(s− 1)).

Lemma 60. Let d be a positive integer. If Ci(t)+ d ≤ PMi(t) holds for all nodes i, then all the
clocks Ci are greater than 0 in the round interval [t+ 1, t+ d− 1].

Proof. Let i be any node, and let ℓ ∈ [d− 1]. We have

1 + min
j∈Ini(t+ℓ)

Cj(t+ ℓ− 1) ≤ 1 + Ci(t+ ℓ− 1) ≤ ℓ+ Ci(t) < PMi(t) ≤ PMi(t+ ℓ− 1).

The first inequality is due to the self-loop at node i in G(t+ ℓ), the second one is a consequence
of the self-loop and Lemma 58, the third inequality is the assumption of the lemma. The fourth
one comes from the fact that Mi is non-decreasing. It follows from line 7 that Ci(t+ ℓ) ̸= 0.

Lemma 61. If the clock value of the agent i is non-null at round t, then it is equal to

Ci(t) = 1 + min
j∈Ini(t)

Cj(t− 1).

Proof. Let i+ be a node satisfying minj∈Ini(t)Cj(t− 1) = Ci+(t− 1). The lemma just relies on
the following series of inequalities:

Ci+(t− 1) ≤ Ci(t− 1) ≤ PMi(t− 1)− 1.

The last inequality is clear for t = 1, and for t ≥ 2, it is a consequence of Ci(t−1) ≤ PMi(t−2)−1
and of the fact that Mi is non-decreasing. Moreover, by line 7, one of those inequalities is strict,
since Ci(t) is non-null. Thus, by line 7, Eq. (61) holds.
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For the probabilistic correctness proof of sapg, we will use another property of its executions,
stated in the lemma below.

Lemma 62. Let d be any positive integer, and k be a node such that Ck(t) = minj∈[n]Cj(t).
If the execution ϵ belongs to Γt,d

k and all the clocks Ci are greater than 0 in the round interval
[t+ 1, t+ d− 1], then the network is synchronized in round t+ d.

Proof. We fix an execution σ and a positive integer d. First, we prove by induction on ℓ ∈ [d−1]
that

∀i ∈ [n], Ci(t+ ℓ) = ℓ+ min
j∈Ini(t+1:t+ℓ)

Cj(t). (6.2)

1. The base case ℓ = 1 is an immediate consequence of Lemma 61.

2. Inductive step: let us assume that Eq. (6.2) holds for some ℓ with 1 ≤ ℓ < d−1. For every
node i in [n], we have

Ci(t+ ℓ+ 1) = 1 + min
j∈Ini(t+ℓ+1)

Cj(t+ ℓ)

= 1 + ℓ+ min
j∈Ini(t+ℓ+1)

(
min

j′∈Ini(t+1:t+ℓ)
Cj′(t)

)
= 1 + ℓ+ min

j∈Ini(t+1:t+ℓ+1)
Cj(t).

The first equality is a direct consequence of Lemma 61, the second one is by inductive
hypothesis, and the third one is due to the fact that G(t + 1 : t + ℓ + 1) = G(t + 1 :
t+ ℓ) ◦G(t+ ℓ+ 1).

This completes the proof of Eq (6.2) for every integer ℓ ∈ [d− 1].
Then for each node i, we get

Ci(t+ d) =

[
1 + min

j∈Ini(t+d)
Cj(t+ d− 1)

]
PMi(t+d−1)

=

[
d+ min

j∈Ini(t+1:t+d)
Cj(t)

]
PMi(t+d−1)

= [d+ Ck(t)]PMi(t+d−1) .

The second equality comes from a reasoning similar to the inductive case above, using Eq (6.2)
at round t+ d− 1. It follows that all the counters Ci(t+ d) are equal modulo P , i.e., the system
is synchronized in round t+ d.

6.5 Probabilistic correctness of sapg

Our approach for the correctness proof of the sapg algorithm relies on a fundamental proba-
bilistic hyperproperty relating the adaptive mechanism for the periods in sapg to the order one
probabilistic diameter of the network.

We fix some integer n, some real p ∈ (0, 1) and some initial state q ∈ Qn of sapg. We consider
a memoryless probability measure Pr on (Gn,Σn), and so on the set Eq of sapg’s executions
starting in q. We assume that the probabilistic network (Gn,Prn) is strongly connected w.h.p.,
and we let

t0
def
= D̂(2)(p)


log(1− p)−1

p

√g∗
(2D̂(1)(p)

P

)
+
√
2

2
 (6.3)
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which is finite since g is inflationary. For all positive integers t, we consider the random variable
M(t) defined as

M(t)
def
= min

i∈[n]
Mi(t).

Lemma 63. For every real number p ∈ (0, 1), we have

Pr

((
M(t0) ≥

2D̂(1)(p)

P

)
∪ St0

)
≥ p. (6.4)

Proof. For ease of notation, we let ḡ = g∗
(
2D̂(1)(p)

P

)
and ℓ0 = t0/D̂

(2)(p). In the first part of
the proof, we construct a family of independent random variables Bt that all follow a Bernoulli
distribution. In each execution in Eq that is not synchronized at round t, there exist two nodes
i1(t) and i2(t) such that

Ci1(t)(t) ̸≡P Ci2(t)(t). (6.5)

Then i1 and i2 can be viewed as two random variables that map any execution of sapg to a

sequence of type N→ [n]. Let Bt be the random variable equal to 1 on Γ
t,D̂(2)(p)
i1(t)

∩ Γ
t,D̂(2)(p)
i2(t)

and

equal to 0, otherwise. By definition of D̂(2)(p), each Bt follows a Bernoulli distribution whose
parameter Pr(Bt = 1) is greater than or equal to p. Since Pr is memoryless, the random variable

B
def
=

ℓ0−1∑
ℓ=0

BℓD̂(2)(p)

is a sum of independent Bernoulli variables.
We now show that in all executions in Eq that are not synchronized in round ℓ0D̂

(2)(p), it
holds that

M(ℓ0D̂
(2)(p)) ≥ gB(1). (6.6)

For that, we fix such an execution and prove by induction on ℓ0 that Eq. (6.6) holds in this
execution.

1. Base case: ℓ0 = 0. Then we have B = 0, and so M(ℓ0D̂
(2)(p)) ≥ 1 = gB(1) as needed.

2. Inductive case: Assume that

M(ℓ0D̂
(2)(p)) ≥ g

∑ℓ0−1
t=0 B

tD̂(2)(p)(1)

holds for for some ℓ0 ∈ N and that the system is not synchronized in round (ℓ0+1)D̂(2)(p).
Then, the nodes i1 = i1(ℓ0D̂

(2)(p)) and i2 = i2(ℓ0D̂
(2)(p)) satisfy Eq. (6.5). Therefore, for

every node i, there exists some x ∈ {1, 2} such that

Ci((ℓ0 + 1)D̂(2)(p)) ̸≡P Cix(ℓ0D̂
(2)(p)) + D̂(2)(p). (6.7)

If Bℓ0D̂(2)(p) = 0, then the inductive case immediately follows. Otherwise, Bℓ0D̂(2)(p) = 1,
and so the digraph G(ℓ0D̂

(2)(p) + 1 : (ℓ0 + 1)D̂(2)(p)) contains all the arcs of the form
(i1, i) and (i2, i). Then for every node i, it holds that

Mi((ℓ0 + 1)D̂(2)(p)) ≥ g(Mix(ℓ0D̂
(2)(p))) ≥ g(M(ℓ0D̂

(2)(p))). (6.8)

The first inequality holds by Lemma 59 and Eq. (6.7), and the second one because g is
non-decreasing. Using the induction hypothesis, we get

M((ℓ0 + 1)D̂(2)(p)) ≥ g

(
g
∑ℓ0−1

t=0 B
tD̂(2)(p)(1)

)
= g

∑ℓ0
t=0 B

tD̂(2)(p)(1).
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We now let x0 = 1
p

(
ḡ+ log(1− p)−1+

√
2ḡ log(1− p)−1 + log2(1− p)−1

)
, and easily check that

ℓ0 ≥
1

p
(
√
ḡ +

√
2 log(1− p)−1)2 ≥ 1

p
(ḡ + 2 log(1− p)−1 + 2

√
2ḡ log(1− p)−1) ≥ x0 > 0. (6.9)

Moreover, x0 satisfies

−x0p

2

(
1− ḡ

x0p

)2

= log(1− p). (6.10)

We obtain

Pr

((
M(t0) ≥

2D̂(1)(p)

P

)
∪ St0

)
≥ Pr

(
B ≥ g∗

(2D̂(1)(p)

P

))

≥ 1− Pr

(
B ≤ ḡ

x0p
E(B)

)
≥ 1− e

−E(B)
2

(
1− ḡ

x0p

)2

≥ 1− e
−x0p

2

(
1− ḡ

x0p

)2

= p.

The first inequalities comes from Eq. (6.6). The second and the fourth inequalities hold because,
by definition of B and Eq. (6.9), we have E(B) ≥ ℓ0p ≥ x0p. The third inequality is a Chernoff
bound [31] applied to B, which is a sum of independent Bernoulli variables. The last equality
is by Eq. (6.10).

Combined with the basic properties of the sapg’s executions stated in the previous section,
Lemma 63 allows us to show the main result of this chapter.

Theorem 64. If g is a non-decreasing and inflationary function, then the sapg algorithm solves
the mod P -synchronization problem in any probabilistic network that is strongly connected w.h.p.
More precisely, for all p ∈ (0, 1), nodes synchronize within

D̂(2)(p)

⌈
log(1− p)−1

p

(√
g∗
(2D̂(1)(p)

P

)
+
√
2

)2
⌉
+ 3D̂(1)(p)

rounds with probability p4, if D̂(1) and D̂(2) denote the order one and two probabilistic diameters
of the network.

Proof. For ease of notation, we let D̂(1) = D̂(1)(p). We first define four random variables:

1. Let i0 be any node satisfying Ci0(t0) = min
i∈[n]

Ci(t0).

2. Let t1 be the smallest integer greater than or equal to t0, such that at least one node holds
a clock equal to 0 in round t1 if it exists, or is equal to infinity otherwise.

3. If t1 is finite, let i1 be any node such that Ci1(t1) = 0. Otherwise, let i1 be an arbitrary
node.

4. If t1 is finite, let i2 be any node satisfying Ci2(t1 + D̂(1)) = min
i∈[n]

Ci(t1 + D̂(1)). Otherwise,

let i2 be an arbitrary node.
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Then we define the events E and E′ as

E
def
= {ϵ ∈ Gn | t1 < t0 + D̂(1)} and E′

def
= {ϵ ∈ Gn | M(t0) ≥ 2D̂(1)

P }.

By Lemma 62, we have Γt0,D̂(1)

i0
∩ E ⊆ St0+D̂(1) ⊆ St0+3D̂(1) , and hence

Pr
(
St0+3D̂(1) | Γt0,D̂(1)

i0
∩ E ∩ (E′ ∪ St0)

)
= 1. (6.11)

In any execution belonging to E, t1 is finite and Ci1(t1) = 0. Therefore, in any execution in
E′ ∩ E ∩ Γt1,D̂(1)

i1
, every variable Mi satisfies

PMi(t1 + D̂(1)) ≥ PM(t1 + D̂(1)) ≥ PM(t0) ≥ 2D̂(1) = Ci1(t1) + 2D̂(1) ≥ Ci(t1 + D̂(1)) + D̂(1).

The first and third inequalities above are by definition of M and E′, respectively. The second
one holds because M is non-decreasing, and the last one comes from Lemma 58 and the fact
that the execution is in Γt1,D̂(1)

i1
. Lemma 60 then applies, and Lemma 62 shows that

E′ ∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
⊆ St1+2D̂(1) .

Since the random variable t1 is greater than t0, we get St0 ⊆ St1+2D̂(1) , and so

Pr
(
St1+2D̂(1) |

(
E′ ∪ St0

)
∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),2D̂(1)

i2
∩ Γt0,D̂(1)

i0

)
= 1. (6.12)

We are now in position to bound the probability Pr(St0+3D̂(1)) from below. For the sake of

readability, the conditional probability given the event (E′ ∪ St0) ∩ Γt0,D̂(1)

i0
is now denoted Pr′.

Then we have

Pr(St0+3D̂(1)) ≥ Pr(St0+3D̂(1) ∩ Γt0,D̂(1)

i0
∩ (E′ ∪ St0))

= Pr′(St0+3D̂(1))× Pr(Γt0,D̂(1)

i0
| E′ ∪ St0)× Pr(E′ ∪ St0)

≥ p2 Pr′(St0+3D̂(1))

= p2 Pr′(St0+3D̂(1) | E) Pr′(E) + p2 Pr′(St0+3D̂(1) | E) Pr′(E)

≥ p2 Pr′(St1+2D̂(1) | E) Pr′(E) + p2 Pr′(E)

≥ p2 Pr′(St1+2D̂(1) ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
| E) Pr′(E) + p2 Pr′(E)

≥ p2 Pr′(St1+2D̂(1) | E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
)

× Pr′(Γt1+D̂(1),D̂(1)

i2
| E ∩ Γt1,D̂(1)

i1
)

× Pr′(Γt1,D̂(1)

i1
| E) Pr′(E) + p2 Pr′(E)

≥ p4 Pr′(E) + p2 Pr′(E)

≥ p4

Lemma 63 and the fact that Pr is memoryless are used in the second inequality. Third
inequality is based on Eq. (6.11) and the fact that, in any execution in E, it holds that St1+2D̂(1) ⊆
St0+3D̂(1) . Sixth inequality relies on Eq. (6.12) and the fact that Pr is memoryless.
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Memory complexity

We first state a theorem that will be used to bound the memory usage, measured in bits, of each
node in any execution of sapg in which mod P -synchronization is achieved.

Theorem 65. In any execution of sapg that achieves mod P -synchronization, if h is the round
in which the system synchronizes, then the memory usage of each node is less than log2 P +

2 log2

(
gh
(
max
i∈[n]

Mi(0)

))
bits.

Proof. We define, for each round t,

M(t)
def
= max

i∈[n]
Mi(t).

From the pseudo-code of sapg, we directly obtain, for each positive integer t,

M(t) ≤ g
(
M(t− 1)

)
,

and thus,
M(t) ≤ gt

(
M(0)

)
. (6.13)

As M(t) is non-decreasing as long as t ≤ h and is stable afterwards, each Mi belongs to the
interval {1, . . . ,M(h)}, and each Ci belongs to {0, . . . , PM(h) − 1}. The number of reachable
states by any single node is at most equal to the cardinality of the product of these two sets,
that is, Pgh

(
M(0)

)2. Then at most log2 P + 2 log2
(
gh
(
M(0)

))
bits are needed to store the

state of one node.

The bound on the stabilization time sapg therefore provides an upper bound on its space
complexity, namely each node uses at most

log2 P + 2 log2

(
gt0+3D̂(1)(p)(M0)

)
bits with probability p4, if t0 is defined by Eq. (6.3) and M0 = maxi∈[n]Mi(0). The time bound
and the space bound thus depend respectively on the functions g∗ and g, leading to a time-space
trade-off for choosing g: the faster g grows, the lower the synchronization time is, and the higher
its space complexity is.

6.6 Bibliogaphic notes

Self-stabilizing clocks have been extensively studied in different communication models and
under different assumptions, In particular, clocks may be unbounded, in which case they are
required to be eventually equal, instead of only congruent. The synchronization problem of
unbounded clocks admits simple solutions in strongly connected networks, namely the Min and
Max algorithms [50, 59].

Periodic clocks require more sophisticated synchronization mechanisms. In addition to strong
connectivity and static networks, the pioneering papers on periodic clock synchronization [6, 62,
17, 2] all assume that a bound on the diameter is available. Then Boldi and Vigna [16] proposed
a synchronization algorithm, based on a self-adaptive period mechanism, that dispenses with
the latter assumption.

More recently, periodic clock synchronization has been studied in the Beeping model [35] in
which agents have severely limited communication capabilities: given a connected bidirectional
communication graph, in each round, each agent can either send a “beep” to all its neighbors
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or stay silent. A self-stabilizing algorithm has been proposed by Feldmann et al. [53], which is
optimal both in time and space, but which, unfortunately, requires that a bound on the network
size is available for each agent.4

There are also numerous results for mod P -synchronization with faulty agents. The fault-
tolerant solutions that have been proposed in various failure models, including the Byzantine
failure model, use algorithmic schemes initially developed for consensus (e.g., see [45, 46]). They
typically require a bidirectional connected (most of the time fully-connected) network.

For probabilistic communication models, the problem of clock synchronization has been ad-
dressed by Boczkowski et al. [14] and later on by Bastide et al. [8], both in the particular
framework of the pull model [65] through the fully-connected graph: In each round each agent
receives a message from an agent sampled uniformly at random. Their focus is on minimizing
message size and both obtain a stabilization time of O(log n) in a network of size n. Unfortu-
nately, the algorithms in both papers are specific to the pull model, and their good performances
highly rely on the assumption of a fully-connected network.

Clock synchronization has been studied in another probabilistic communication model, namely,
the model of population protocols, consisting of a set of agents, interacting in randomly chosen
pairs. This is basically an asynchronous model, where the synchronization task is quite dif-
ferent from the one studied in this document since it resumes to implement the abstraction of
rounds [4]. In other words, the point in the population protocol model is to achieve synchro-
nization in frequency instead of synchronization in phase.

4In [53], Feldmann et al. also proposed an algorithm that does not use any bound on the network size, but
that only tolerates asynchronous starts.

73





Chapter 7

Probabilistic diameters in push and
pull models
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7.1 Introduction

The previous chapter demonstrates that the notion of probabilistic diameter is a powerful tool
for the probabilistic analysis of distributed algorithms. In this chapter, we pick some popular
probabilistic communication networks, and we try to obtain a value of D̂(1)(p) in such networks.
There are two possible approaches: first, using a theoretical analysis, an upper bound on D̂(1)(p)
can be obtain. Such an upper bound is usually asymptotic, that is, it holds for sufficiently large
networks. Second, D̂(1)(p) may be computed exactly on any fixed probabilistic communication
network. This chapter explores both approaches.

The push and pull models have been extensively studied with various base networks. In
this section, we pick two particular cases of probabilistic networks and we provide upper bound
on D̂(1)(p) by taking advantage of the literature. First, Feige et al. [52] introduced the notion
of almost sure rumor coverage time and provided a general upper bound on this parameter.
They deal with several types of probabilistic models, including the push model in bidirectional
networks. Second, Doerr and Kostrygin [43] provide a far-reaching result that notably covers the
case of fully-connected networks. Using those two papers as examples, we show that a bound
on D̂(1)(p) can easily be obtain from the literature on rumor spreading.

Finally, we compute the value of D̂(1)(p) in the push and pull models in a fully-connected
network for some values of p and for n up to 200. Unfortunately, those probabilistic communica-
tion models are one of the few cases in which the computation of D̂(1)(p) is reasonably efficient:
in this case, the time complexity of the computation of each D̂(1)(p) is polynomial in the number
of nodes. This is not the case for most probabilistic communication models. We compare those
experimental results with the theoretical bounds previously presented.

7.2 The push and pull models in a general bidirectional
network

In the push communication model, Feige et al. showed that a rumor reaches the n nodes of a
bidirectional and connected network within 12n log2 n rounds with probability 1−1/n (Theorem
2.1 in [52]). In other words, the order one probabilistic diameter satisfies:

D̂(1)(1− 1/n) ≤ 12n log2 n.

Having a close look at the proof provided by Feige et al., it appears that this bound also holds
in the pull model.

7.3 The push and pull models in fully-connected networks

In the particular case of fully-connected networks, Frieze and Grimmett [56] and later Pittel [77]
provided a bound on the time complexity of rumor spreading in the push model. The case of
the pull model in fully-connected networks has been studied by Doerr and Kostrygin [43]. All
the previously-mentioned results are asymptotic. This is why the resulting bound on D̂(1)(p)
will be proved to hold only in sufficiently large networks.

Let us briefly recall the main result of Doerr and Kostrygin [43]: They define the random
variable T that denotes the rumor spreading time in fully-connected networks. More precisely,
fixing a node i0, for each dynamic graph G of size n, we let

Tn(G)
def
= inf{δ ∈ N | G ∈ Γ0,δ

i0
}.

Since the network is fully-connected, all nodes play the same role and the probability distribution
of Tn does not actually depend on the choice of the origin node i0.
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Theorem 66 (Table 1 in [43]). In the push model in fully-connected static networks, it holds
that

E(Tn) = log2 n+ log n±O(1).

In the push model, it holds that

E(Tn) = log2 n+ log2 log n±O(1).

Moreover, in each case, there exists two positive real numbers A and α such that, for all positive
real r, for all positive integer n,

Prn(|Tn − E(Tn)| ≥ r) ≤ Ae−αr.

To obtain a bound on D̂(1)(p), we choose any κ : N → N that tends to infinity and a real
p ∈ (0, 1). We first consider the case of the push model. For sufficiently large integers n, it
holds that

Ae−α
κ(n)
2 ≤ 1− p and E(Tn) ≤ log2 n+ log n+

κ(n)

2
.

It follows that for every p ∈ [0, 1) and every such function κ, there exists a positive integer Nκ(p)
such that for all integers n ≥ Nκ(p), it holds that

Prn
(
Tn ≤ log n+ log2 n+ κ(n)

)
≥ Prn

(
Tn ≤ E(Tn) +

κ(n)

2

)
≥ Prn

( ∣∣∣Tn − E(Tn)
∣∣∣ ≤ κ(n)

2

)
≥ 1−Ae−α

κ(n)
2

≥ p.

In the push model, all random variables G(t) are identically distributed. Hence, for all nodes
i, and all non-negative integers t and δ, we have Pr(Γt,δ

i ) = Pr(Γ0,δ
i0

), and thus for all integers
n ≥ Nκ(p),

D̂(1)(p) = inf
{
δ ∈ N | Pr(Γ0,δ

i0
) ≥ p

}
≤ log2 n+ log n+ κ(n). (7.1)

Similarly, in the pull model, we have, under the same conditions,

D̂(1)(p) ≤ log2 n+ log2 log n+ κ(n). (7.2)

7.4 Application to sap

Using Lemma 55, choosing κ = log2 and using some simplifications based on the inequalities
(1 − 1/n)4 ≥ 1 − 4/n, (1 +

√
2)2 ≤ 6 and g∗ ≥ 1, Theorem 64 then yields the following result

for bidirectional networks.

Corollary 67. Let g be any non-decreasing and inflationary function. For the push and pull
models in a general bidirectional connected network with n nodes, the sapg algorithm achieves
mod P -synchronization within 348n (log2 n)

2g∗(24P−1 n log2 n) rounds with probability 1− 4
n .

For fully-connected networks, we obtain the following corollary of Theorem 64 using Eq. (7.1).

Corollary 68. Let g be a non-decreasing inflationary function. For any real number p ∈ [12 , 1)
and any integer n ≥ Nlog2(p), the sapg algorithm achieves mod P -synchronization within
81 log(1− p)−1 (log2 n) g

∗ (6P−1 log2 n
)

rounds with probability p4 in the fully-connected graph
of size n and the communication push model.
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In the context of Corollaries 67 and 68, Tables 7.1 and 7.2 provide the probabilistic time and
space complexities of sapg for two different choices of g, namely g = x 7→ x+1 and g = x 7→ 2x.
Recall that M0 denotes maxi∈[n]Mi(0). Both tables illustrate the general space-time trade-off
that we have just pointed out, at the end of Section 6.5.

g stabilization time space complexity

g = x 7→ x+ 1 O
(
log(1− p)−1 log2 n

)
O
(
log
(
M0 + log(1− p)−1 log n

) )
g = x 7→ 2x O

(
log(1− p)−1 log n log logn

)
O
(
logM0 + log(1− p)−1 log n log log n

)
Table 7.1: Complexity of the sapg algorithm for the push and pull models in a fully-connected
network of size n, with probability p4.

g stabilization time space complexity

g = x 7→ x+ 1 O
(
n2 log3 n

)
O
(
log
(
M0 + n

) )
g = x 7→ 2x O

(
n log3 n

)
O
(
logM0 + n log3 n

)
Table 7.2: Complexity of the sapg algorithm for the push and pull models in a bidirectional
network of size n, with probability 1− 4

n .

7.5 Numerical calculation of D̂(1)(p)

As a complement to Eq. (7.1), we now compute the value of D̂(1)(p) in small fully-connected
networks, and thus obtain an approximation of Nlog2(p). The python code that we developed
for this section is available at https://gitlab.com/bossuet/probabilistic_diameter.

In the push model

We fix a node i0 ∈ [n] and we define the random variable Rn(t) by

Rn(t) =
∣∣∣{j ∈ [n] | (i0, j) is an arc of G(1 : t)}

∣∣∣.
Observe that for the push model in a fully-connected graph, Rn(t) does not depend on the
choice of i0. The value of D̂(1)(p) can easily be deduced from the distribution of the random
variables Rn(1), Rn(2), . . . .

D̂(1)(p) = inf{t ∈ N | Prn(Rn(t) = n) ≥ p}.

Moreover, this sequence of random variables is a Markov process and their probability distribu-
tion can be computed using the following lemma.

Lemma 69. Let a, b ∈ {0, . . . , n}. If a ≤ b ≤ 2a, then

Prn(Rn(t+ 1) = b | Rn(t) = a) =
1

na

a∑
ℓ=b−a

(
a

ℓ

)(
n− a

a− ℓ

){
ℓ

b− a

}
aa−ℓ(b− a)!

where { ab } is the Stirling number of the second kind. Otherwise, Prn(Rn(t + 1)= b |Rn(t) = a)
is null.
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Proof. We denote by A and B the two sets of nodes that are the targets of an arc whose source
is i0 in the digraphs G(1 : t) and G(1 : t + 1), respectively. Thus a node j belongs to B if and
only if there exists an arc from A to j in G(t+ 1).

In round t + 1, each node in A picks one node uniformly, among all nodes. Then the total
number of draws is na. Since each draw is equiprobable, we only have to count the number of
favorable draws, that is, the draws such that |B| = b. Let ℓ0 be the number of nodes in A that
pick a node in [n] \A in round t+ 1; we have

Prn(|B| = b | |A| = a) =

a∑
ℓ=0

Prn(|B| = b ∩ ℓ0 = ℓ | |A| = a).

We now fix some ℓ0 ∈ {0, · · · , a}, and sample ℓ0 nodes among the a nodes in A. For that,
there are

(
a
ℓ0

)
possibilities. Moreover, we partition the set [n] \ A into two parts: B \ A, of

size b − a and [n] \ B. The number of possible partitioning is
(
n−a
b−a
)
. Then there are exactly{

ℓ0
b−a

}
(b− a)! surjective mappings from the previously chosen set of ℓ0 nodes in A into the set

B \ A [81]. Finally, a − ℓ0 nodes in A pick a node belonging to A in round t + 1. There are
aa−ℓ0 possibilities. Gathering all mentioned terms, and removing terms in which

{
ℓ0
b−a

}
= 0,

we obtain the final expression of the lemma.

Interestingly, a different expression of Prn(Rn(t + 1) = b | Rn(t) = a) was used by Pittel
in [77]. We computed D̂(1)(p) for n < 200, our results are reported in Figure 7.1. For each
p ∈ {0.5, 0.95, 0.99}, the values of D̂(1)(p) provided by Lemma 69 are denoted by dots.

Figure 7.1 yields an estimation of Nlog2(p): Choosing p = 0.5, all the values of D̂(1)(0.5) that
we have computed are smaller that the bound provided by Eq. (7.1). This suggests that Corol-
lary 68 holds for all n, that is, Nlog2(0.5) = 1. Similarly, Figure 7.1 suggests that Nlog2(0.95) = 14
and Nlog2(0.99) = 48.
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Figure 7.1: Each dot represents a value of D̂(1)(p) in the push model, in a fully-connected
network, in function of p and the size of the network n. The straight line represents the theoretical
bound provided by Eq. (7.1), choosing κ = log2.

7.6 In the pull model

We consider the pull model, and we define Rn(t), similarity to the previous section.

Lemma 70. Let a, b ∈ {0, . . . , n}. If a ≤ b, then

Prn(Rn(t+ 1) = b | Rn(t) = a) =

(
n− a

b− a

)
(n− a)n−b · ab−a

nn−a .

Otherwise, Prn(Rn(t+ 1)=b |Rn(t) = a) is null.

Proof. We denote by A and B the two sets of nodes that are the targets of an arc whose source
is i0 in the digraphs G(1 : t) and G(1 : t + 1), respectively. Thus a node j belongs to B if and
only if there exists an arc from A to j in G(t+ 1).

In round t+1, each node in [n]\A picks one node uniformly, among all nodes. Then the total
number of draws is nn−a. Since each draw is equiprobable, we only have to count the number
of favorable draws, that is, the draws such that |B| = b. Moreover, we partition the set [n] \ A
into two parts: B \ A, of size b− a and [n] \ B. The number of possible partitionings is

(
n−a
b−a
)
.

Finally, each node in B \ A picks a node belonging to [n] \ A in round t + 1 and each node in
[n] \ B picks a node belonging to A in round t+ 1 There are (n− a)n−b and ab−a possibilities,
respectively. Gathering all mentioned terms, we obtain the final expression of the lemma.
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Figure 7.2: Some values of D̂(1)(p) in the pull model, in a fully-connected network of size n.
The straight line represents the theoretical bound provided by Eq. (7.2), choosing κ = log2.

7.7 Bibliographic notes

Randomized rumor spreading is one of the core primitives to disseminate information in dis-
tributed networks. The importance of these processes not only has led to a huge body of
experimental results, but, starting with the influential works of Frieze and Grimmett [56] and
Karp, Shenker, Schindelhauer, and Vöcking [64] also to a large number of mathematical analyses
of rumor spreading algorithms giving runtime or robustness guarantees for existing algorithms
and, based on such findings, proposing new algorithms.

Roughly speaking, two types of results can be found in the literature, general bounds trying
to give a performance guarantee based only on certain graph parameters and analyses for specific
graphs or graph classes. In the domain of general bounds, [52] provide the classic maximum-
degree-diameter bound, in addition of their 12n log n bound. More recently, a number of works
bounding the rumor spreading time in terms of conductance or other expansion properties [73,
32, 58, 57], which not only greatly helped our understanding of existing processes, but could also
be exploited to design new dissemination algorithms [20, 21, 22, 60]. The natural downside of
such general results is that they often do not give sharp bounds. It seems that among the known
graph parameters, none captures very well how suitable this network structure is for randomized
rumor spreading. Also, it has to be mentioned that these results mostly apply to the push-pull
protocol.

The other research direction followed in the past is to try to prove sharper bounds for specific
graph classes. This led, among others, to the results that the push protocol spreads a rumor in
a complete graph in time log2 n+log n±ω(1) with high probability 1−o(1) (whp.) [77], whereas
the push-pull protocol does so in time log3 n + O(log log n) [64]. The push protocol spreads
rumors in hypercubes in time O(log n) whp. [52], determining the leading constant is a major
open problem. For Erdős-Rény random graphs with edge probability asymptotically larger than
the connectivity threshold, a runtime of log2−p n + 1

p log n ± o(log n) was shown for the push
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protocol allowing transmission errors with rate p [54]. For preferential attachment graphs, which
are often used as model for real-world networks, it was proven that the push protocol needs
Ω(nα) rounds, α > 0 some constant, whereas the push-pull protocol takes time Θ(log n) and
Θ((log n)/ log logn) when nodes avoid to call the same neighbor twice in a row [33, 40]. Even
faster rumor spreading times were shown on Chung-Lu power-law random graphs[55].

One weakness of all these results on specific graphs is that they very much rely on the partic-
ular properties of the protocol under investigation. Even in fully connected networks (complete
graphs), the existing analyses for the basic push protocol [56, 77, 44], the push protocol in the
presence of transmission failures [42], the push protocol with multiple calls [76], and the push-
pull protocol [64] all uses highly specific arguments that cannot be used immediately for the
other processes. To address this weakness, Doerr and Kostrygin [43] provide sharp bounds using
a proof that fits a large range of rumor spreading models. In addition of the cases previously
mentioned in this chapter, they deal with extensions of the classical push, pull and pull-push
models: their results cover models with random transmission errors and also some models in
which the communication graph is randomly sampled in each round.
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Chapter 8

The sap algorithm: a deterministic
analysis
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8.1 Introduction

This chapter further discuss the mod P -synchronization problem and the sapg algorithm. Fol-
lowing an approach similar to Chapters 4 and 5, our goal is to establish that sapg solves the
mod P -synchronization problem without assuming a finite dynamic diameter. This chapter
abandons the probabilistic approach previously used to study sapg. Indeed, the probabilistic
approach provides a first relaxation of the assumption of a finite dynamic diameter. This chapter
provides another possible relaxation. Combining those two orthogonal relaxations did not seem
to be relevant.

As a preliminary, we study the behaviour of sapg in networks with a finite dynamic diameter.
The solvability result we obtain is a direct corollary of the main result of Chapter 6. Then we try
to establish the correctness of sapg in networks with an infinite dynamic diameter. A first idea
consists in considering the class of dynamic networks with a finite dynamic radius. Unfortunately,
section 8.4 presents a scenario that demonstrates that assuming a finite radius is insufficient to
achieve mod P -synchronization using sapg. The solvability of mod P -synchronization in this
network class remains an open problem. We therefore rely on a narrower network class, that
is, the class of strongly centered networks (see Definition 23). The main contribution of this
chapter is the proof that sapg achieves mod P -synchronization in this network class.

memory usage D(G) <∞ Z(G) = K(G) ̸= ∅ R(G) <∞
bounded memory ✗ (see Thm. 27)

finite memory sapg with g inflationary ? (see Sec. 8.4)

infinite memory sminmax

Figure 8.1: Solvability results for the mod P -synchronization problem by self-stabilizing algo-
rithms in dynamic networks, in function of the network topology and the memory usage allowed.

8.2 The sap algorithm in networks with finite dynamic
diameter

The correctness proof of sapg that will be developed in this chapter rely on the fact that sapg

achieves synchronization in network with finite dynamic diameter. To prove this preliminary
result, we state Lemma 71 and Corollary 72, which are analog to Lemma 63 and Theorem 64,
respectively. We fix an execution ϵ of sapg with a finite dynamic diameter. In this section only,
we let

t0
def
= g∗

(
2D (G)

P

)
D(G).

Lemma 71. Assuming that ϵ is not synchronized in round t0 where g is a non-decreasing and
inflationary function, it holds that

M(t0) ≥
2D(G)

P
. (8.1)

Proof. For ease of notation, we let ḡ = g∗
(
2D(G)

P

)
. We assume that ϵ is not synchronized in

round ḡD(G). We can show by induction on ḡ that

M(t0) ≥ gḡ(0) =
2D(G)

P
.

The induction itself is similar to the one used in the proof of Lemma 63.
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The following theorem is a corollary of Theorem 64, choosing a specific probability measure
Pr.

Corollary 72. In any execution of sapg with a dynamic graph whose dynamic diameter D(G)
is finite, the sapg algorithm achieves mod P -synchronization for any non-decreasing and infla-
tionary function g. Moreover, the stabilization time is bounded by

(
g∗
(
2D(G)

P

)
+ 3
)
D(G).

Proof. We fix an execution ϵ of sapg with a finite dynamic diameter. We pose the following
probability measure: for any event E,

Pr(E)
def
=

{
1 if ϵ ∈ E

0 otherwise
(8.2)

With such a probability measure, we can show that any two events E1 and E2 are independent.

Pr(E1 ∩ E2) =

{
1 if ϵ ∈ E1 ∧ ϵ ∈ E2

0 otherwise
= Pr(E1)× Pr(E2).

Therefore Pr is memoryless. We fix some real p ∈ (0, 1). We easily verify that D̂1(p) = D̂2(p) =
D(G). By Lemma 71, we obtain

Pr

((
M(t0) ≥

2D̂(1)(p)

P

)
∪ St0

)
≥ p, (8.3)

where t0 = g∗
(
2D(G)

P

)
D(G). Theorem 64 has been established for a specific value of t0, which

differs from the one used in this section. However, taking a closer look at the proof of this
theorem, the proof remains true for any value of t0 that satisfy Eq. (6.4). By Theorem 64,
mod P -synchronization is achieved in round t0 + 3D(G) round with probability p4, and hence,
the execution ϵ is synchronized in round t0 + 3D(G).

8.3 Specializations of the sap Algorithm

In the rest of this chapter, we borrow the λ notation from lambda calculus: λx.x+1 denotes the
function that maps x to x+1. When some bound B on the dynamic diameter is given, we may
choose g to be the constant function g = λx.M with M =

⌈
2B
P

⌉
. Then we get g∗

(
2D(G)

P

)
= 1

and the pseudo-code of sapg reduces to Algorithm 7.

Algorithm 7: Pseudo-code of node i in the sapλx.M algorithm
1 Variables:
2 Ci ∈ N
3 At each round:
4 send ⟨Ci⟩ to all
5 receive ⟨Cj1⟩, ⟨Cj2⟩, . . . from the set Ini of incoming neighbours
6 Ci ←

[
min
j∈Ini

Cj + 1
]
PM

Corollary 73. The sapλx.M algorithm solves the mod P -synchronization problem in any dy-
namic graph with a dynamic diameter less than or equal to PM/2. Moreover, the stabilization
time is bounded by 1 + 3D(G).
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The proof of this corollary is similar to the proof of Corollary 72: in this case, we choose t0 =
1. Therefore, assuming that D(G) ≤ PM/2, Eq. (6.4) holds. Let us observe that Corollary 73
provides an upper bound of three times the dynamic diameter D on sapλx.M ’s stabilization
time, which is independent on the bound B. The limit of PM/2 in Corollary 73 is tight, as
proved by the following result.

Theorem 74 (Theorem 4.13 in [2]). For any even integers P and D satisfying P < 2D, there
exists an execution of sapλx.1 with a dynamic graph G whose dynamic diameter is D in which
mod P -synchronization is never achieved.

The relation between Corollaries 73 and 72 is illustrated in Table 8.1.

memory usage D(G) ≤ B D(G) <∞
bounded memory sapg with g = λx.

⌈
2B
P

⌉
✗ (see Thm. 27)

finite memory sapg with g inflationary

Table 8.1: Solvability results for the mod P -synchronization problem by self-stabilizing algo-
rithms in dynamic networks, in function of the knowledge on a bound on the dynamic diameter
and the memory usage allowed.

Interestingly, the self-stabilizing algorithm in [17], called SS-MinSU and developed for clock
synchronization in a static and strongly connected network when a bound B on the dynamic
diameter1 is available, is actually an optimization of the sapλx.M algorithm.

As for the algorithm proposed in [6] for a static strongly connected digraph G, it corresponds
to the sapλx.1 algorithm, combined with a round-robin strategy which consists, for each node,
to send one message per round according to this fixed cyclic order amongst the outgoing neigh-
bors in G. This strategy thus translates the fixed digraph G into a dynamic graph G. Using
Proposition 24 in [25], G’s dynamic diameter can be upper bounded by 3n. Via Corollary 73,
the interpretation of the algorithm in [6] for a fixed digraph G in terms of a run of sapλx.1 over
the corresponding dynamic graph G shows that this algorithm works when P ≥ 6n, and its sta-
bilization time is less than 9n (instead of the correctness condition P ≥ n2 and the stabilization
bound of 3

2n
2, given both in [6]).

8.4 The sap algorithm with infinite dynamic diameter

The aim of this section is to study how the assumption of a finite dynamic diameter can be
relaxed so that the sapg algorithm still achieves mod P -synchronization.

The sap algorithm with a finite dynamic radius

We now study whether sapg can achieve mod P -synchronization in networks with an infinite
dynamic diameter. For that, we first demonstrate that the sole assumption of a finite dynamic
radius is not sufficient for sapg to achieve mod P -synchronization. We construct an execution
of sapg with a central node i. The underlying idea of our scenario is that sporadic incoming
neighbors disrupt the value of i’s clock and hence preclude any alignment of the other clocks on
Ci.2

1The bound B is denoted α in the SS-MinSU algorithm.
2We provide a Python script that may be helpful to verify the correctness of our construction: https:

//gitlab.com/bossuet/sap_execution.git.
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Let G,Hj , Hk, I be the four digraphs defined in Figure 8.2 with three nodes i, j, k, and let Φk

be the following predicate on the rounds of a sapg execution:(
Mi = Mj

)
∧
(
Mi ≥Mk

)
∧
(
Ci = Cj

)
∧
(
Ci ̸≡P 0

)
∧
(
Ci ≤ PMi − 2

)
∧
(
Ck = 0

)
.

The predicate Φj is obtained by exchanging the roles of j and k. The proof of the following
lemma follows from a step by step execution of the sapg algorithm between rounds t and
t+ PMi(t)− Ci(t).

Lemma 75. Let t be a round of a sapg execution with a dynamic graph G, and let m and c
denote Mi(t) and Ci(t), respectively. Let G′ be any dynamic graph that coincides with G up to t
and such that:

G′(t+ 1) = · · · = G′(t+ Pm− c− 2) = G, G′(t+ Pm− c− 1) = Hk, G′(t+ Pm− c) = I.

If Φk holds at round t of the sapg execution with G′, then Φj holds at round t+ Pm− c of this
execution.

Proof. For simplicity, we assume that t = 0. Given the pseudo-code of sapg and the dynamic
graph G′, the state of the system in each round can be computed (see Table 8.2).

Round number G′(t) Ci(t) Mi(t) Cj(t) Mj(t) Ck(t) Mk(t)

initially c m c m 0 < m
1 G c+ 1 m c+ 1 m 1 g(m)
t ≤ Pm− c− 2 G c+ t m c+ t m t gt(m)
Pm− c− 2 G Pm− 2 m Pm− 2 m Pm− c− 2 gPm−c−2(m)
Pm− c− 1 Hk Pm− c− 1 gPm−c−1(m) Pm− 1 m Pm− c− 1 gPm−c−1(m)
Pm− c I Pm− c gPm−c−1(m) 0 m Pm− c gPm−c−1(m)

Table 8.2: State of each node up to round Pm− c.

Assuming that Φk holds in round 0, we easily verify that Φj is satisfied in round Pm−c.

We now fix two positive integers m0 and c0 such that c0 ∈ {1, · · · , Pm0 − 2} and c0 ̸≡P 0,
and we consider the two sequences (mr)r≥0 and (cr)r≥0 defined by:{

mr+1 = gPmr−cr−1(mr)
cr+1 = Pmr − cr.

We let m−1 = 0. The dynamic graph G defined as:

G(Pmr−1 + 1) = · · · = G(Pmr − cr − 2) = G,

G(Pmr − cr − 1) = Hk or Hj ,

G(Pmr − cr − 1) = I,

is rooted with delay two and i is its unique center. Lemma 75 shows that Φk holds infinitely
often in the sapg execution with the dynamic graph G and starting with:

Mi(0) = Mj(0) = Mk(0) = m0, Ci(0) = Cj(0) = c0, and Ck(0) = 0.

Hence, the nodes are never synchronized.
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i j

k

(a) digraph G

i j

k

(b) digraph Hj

i j

k

(c) digraph Hk

i j

k

(d) digraph I

Figure 8.2: Four digraphs with three nodes.

The sap algorithm in strongly centered network

That leads us to consider the stronger assumption that the network is strongly centered (see
Definition 23), without requiring any global knowledge on Z(G). However, the simple but
typical scenario below shows that the simplified version of sapg with a fixed period, namely the
sapλx.M algorithm, does not achieve mod P -synchronization in the execution with the initial
values Ci(0) = Cj(0) = 1 and Ck(0) = 0 and the static graph H defined in Figure 8.3, even for
large value of M . Indeed, at each round t, it holds that Ci(t) = [t+ 1]PM , Ck(t) = [t]PM , and

Cj(t) =

{
1 if [t]PM = 0

[t]PM otherwise.

i j k

Figure 8.3: The digraph H with three nodes.

The striking point of increasing periods is precisely to overcome the above-mentioned lim-
itation: we are going to prove that the sapg algorithm achieves mod -P synchronization in
strongly centered networks under the sole condition of a non-decreasing and strictly inflationary
function g. In other words, while Corollary 73 has no counterpart for dynamic graphs that are
strongly centered with bounded delay, we will show that Corollary 72 extends to this latter class
of dynamic graphs, with a synchronization phenomena quite different from that involved in the
case of strong connectivity.

We fix a strongly centered dynamic graph G, and an execution ϵ of sapg with G. From now,
Z, K, D and R denote Z(G), K(G), D(G) and rad(G), for short. We first prove the following
preliminary lemma.

Lemma 76. The center of any strongly centered dynamic graph G has no incoming arc from
some index t0.

Proof. We denote G(∞) a digraph whose set of nodes is [n] that contains every arc that appears
infinitely often in G. By definition of K, each node i ∈ K can infinitely often reach each node
j ∈ [n] in the dynamic graph G, whereas there are finitely many paths between any two nodes.
By the pigeonhole principle, each node in K is the root of a spanning tree in G(∞). Using the
definitions of K and G(∞), the converse can also be proved. Then K, and hence Z have no
incoming arc in G(∞), since if i is the root of some spanning tree in G(∞), then all i’s incoming
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neighbours are also roots of a spanning tree. Then, from a certain round, Z has no incoming
arc in G.

In the self-stabilizing paradigm, any predicate that holds from a certain round can be assumed
to hold from the beginning. We may then assume t0 = 0 in the rest of the chapter: The nodes
in Z receive no message from the nodes in [n] \ Z. From the viewpoint of every node in Z, the
execution ϵ is thus indistinguishable from an execution with the set of nodes equal to Z and a
dynamic graph with a finite dynamic diameter. Corollary 72 shows that modP -synchronization
is eventually achieved in Z. A closer look at the sapg algorithm yields the following more precise
result: there exist two non-negative integers s and M such that

∀t ≥ s, ∀k, ℓ ∈ Z : Ck(t) = Cℓ(t) and Mk(t) = M. (8.4)

The minimum integer s satisfying Eq. (8.4) is denoted by t1, and C(t) is the common value of
all the counters Ck(t) for k ∈ Z and t ≥ t1. The node i is said to be Z-synchronized at round t
if Ci(t) ≡P C(t). The set of Z-synchronized nodes at round t is denoted by SZ(t). In the case
the system is not synchronized in round t, i.e., SZ(t) ̸= [n], we let

M̃(t)
def
= min

i/∈SZ(t)
Mi(t).

Using the existence of a self-loop at each node and the update rules of the variables Mi, we
easily show that M̃ is non-decreasing:

Lemma 77. For all t ≥ t1, it holds that M̃(t+ 1) ≥ M̃(t).

Let i be a central node such that eG(i) = R, and let j be an arbitrary node. There exists an
arc (i, j) in each digraph G(t : t+ R − 1). Since Ci(t) < PM , Lemma 58 implies the following
upper bound on the clock Cj :

Lemma 78. For all t ≥ t1 +R and all nodes j ∈ [n], it holds that Cj(t) < PM +R.

Then Lemma 71 admits the following counterpart in strongly centered networks:

Lemma 79. For every positive integer ℓ, one of the following statements is true:

1. the system is synchronized in round t1 + ℓR;

2. M̃(t1 + ℓR) ≥ gℓ−1(M).

Proof. We proceed by induction on ℓ. The base case ℓ = 1 is due to the update rule for Mi. For
the inductive step, assume that the lemma holds in round t1 + ℓR and that some node i is not
Z-synchronized in round t1 + (ℓ+ 1)R. By definition of R, the node i has an in-neighbor in Z
in the directed graph G(t1 + ℓR + 1 : t1 + (ℓ + 1)R), i.e., there exist a node j ∈ Z and a path
j = j0, j1, · · · , jR = i in the round interval [t1+ℓR+1, t1+(ℓ+1)R]. Since j ∈ Z ⊆ SZ(t1+ℓR)
and i /∈ SZ(t1 + (ℓ + 1)R), this path is not synchronized. Let d ∈ {1, . . . , R} be the first index
such that jd−1 ∈ SZ(t1 + ℓR+ d− 1) and jd /∈ SZ(t1 + ℓR+ d). In round t1 + ℓR+ d, the node
jd has an incoming neighbor j+ such that

Cj+(t1 + ℓR+ d− 1) + 1 ≡P Cjd(t1 + ℓR+ d),

that is, j+ /∈ SZ(t1 + ℓR+ d− 1). Then jd−1 and j+ are two in-neighbors of jd whose clocks are
not congruent modulo P in round t1 + ℓR+ d− 1. It follows that:

Mi(t1+(ℓ+1)R) ≥Mjd(t1+ℓR+d) ≥ g(Mj+(t1+ℓR+d−1)) ≥ g(M̃(t1+ℓR+d−1)) ≥ gℓ(M).
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The first two inequalities are due to the update rules for Mi and Mjd , the third one is by
definition of M̃ and the fact that g is non-decreasing, and the last one is a consequence of the
inductive assumption and Lemma 77.

Theorem 80. For any non-decreasing and inflationary function g, sapg solves the mod-P syn-
chronization problem in any strongly centered dynamic graph.

Proof. We let ḡ = g∗
(
M + R+1

P

)
and t2 = t1 + ḡR. The main part of the proof consists in

showing, by induction on t ≥ t2, the following property:

∀i ∈ [n] \ SZ(t), Ci(t) ≥ t− t2.

The base case t = t2 is obvious. Suppose now that the above property holds at round t ≥ t2,
and that SZ(t+ 1) ̸= [n]. Let us fix some node j /∈ SZ(t+ 1); we are going to show that

Cj(t+ 1) ≥ t+ 1− t2. (8.5)

By Lemma 61, one of the two propositions below is true.

(a) Cj(t+ 1)=1 + Cj+(t) where j+ is a node such that Cj+(t) = min
k∈Inj(t+1)

Ck(t),

(b) Cj(t+ 1)= 0 and Cj(t) = PMj(t)− 1.

In case (a), the inequality (8.5) follows from the inductive assumption since j+ /∈ SZ(t). In case
(b), Lemma 78 implies that

PMj(t) = Cj(t) + 1 < PM +R+ 1, (8.6)

since t ≥ t2 ≥ t1 +R. Moreover, it holds that

Mj(t) ≥ M̃(t) ≥ M̃(t2) ≥ gḡ(M) ≥ gḡ(0) ≥M +
R+ 1

P
. (8.7)

The first inequality is due to the fact that j /∈ SZ(t + 1), which implies j /∈ SZ(t). The second
one holds by Lemma 77, and the third one is a consequence of Lemma 79. The forth inequality
is due to the fact that g is non-decreasing, and the last one is by definition of ḡ. Thus Eq. (8.6)
and (8.7) contradict each other and case (b) cannot occur, which completes the proof of (8.5).

To complete the proof of the theorem, we proceed by contradiction, and we assume that
some node i is not Z-synchronized in round t3 = t2 + PM + R. Then, we would obtain both
Ci(t3) ≥ PM +R by the inequality (8.5) and Ci(t3) < PM +R by Lemma 78 since t3 ≥ t1+R.
It follows that all the nodes are Z-synchronized in round t3.

8.5 Complexity analysis

In this section, we provide a complexity analysis of sapg in the case of a network with finite
dynamic diameter, and then in the case of a strongly centered network. We discuss the choice
of the g function and its impact on both stabilization time and space complexity.
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Networks with finite dynamic diameter

Recall that λx.x+1 denotes the function that maps x to x+1. Theorem 65 implies the following
corollary in the case of a network with finite dynamic diameter.

Corollary 81. In any execution of sapg, if the dynamic diameter D of the network is finite, then

the memory usage of each node is bounded by log2 P +2 log2

(
g(g

∗(2D/P+1)+2)D

(
max
i∈[n]

Mi(0)

))
.

Theorem 64 and Corollary 81 demonstrate some trade-off between stabilization time and
space complexity. The faster g grows, the lower the synchronization time is, and the higher its
space complexity is. To further illustrate this trade-off, Table 8.3 provides the time and space
complexity in three cases. First, when a bound B on the dynamic diameter is given, choosing
g = λx.

⌈
2B
P

⌉
provides the best stabilization time, namely 3D, which interestingly does not

depend on the bound B. When no bound on the dynamic diameter is available, the overhead of
sapλx.2x over sapλx.⌈2B/P⌉ is only logarithmic while sapλx.x+1 results in an additional delay of
O(D2) rounds for stabilization.

Regarding space complexity, sapλx.⌈2B/P⌉ and sapλx.x+1 uses O(logB) and O(logD) bits,
respectively. This illustrates how sapg may be more memory-efficient using its adaptive mech-
anism and a judicious choice of g. By contrast, the space complexity of sapλx.2x is only linear
in D, which might be problematic for memory-constrained devices.

g synchronization time space complexity
g = λx.

⌈
2B
P

⌉
3D log2 P + 2 log2

⌈
2B
P

⌉
g = λx.x+ 1

(
2D
P + 3

)
D log2 P + 2 log2

(
max
i∈[n]

Mi(0) +
2D2

P + 3D

)
g = λx.2x

(
log2

(
1 + 2D

P

)
+ 2
)
D log2 P + 2 log2

(
max
i∈[n]

Mi(0)

)
+ 2D log2

(
1 + 2D

P

)
+ 4D

Table 8.3: Complexity bounds of sapg in networks with finite dynamic diameter D and B ≥ D.

Strongly centered networks

In the case of a strongly centered network, Theorem 80 bounds the stabilization time by t3 =
t2+PM+R. Eq. (6.13) then provides the following upper bound for M , where t2 is the minimum
integer satisfying Eq.(8.4).

M ≤ gt2(max
i∈[n]

Mi(0)),

and thus, we obtain:

t3 ≤ t2 + PM +R

≤ t1 +Rg∗
(
M +

R+ 1

P

)
+ PM +R

≤ D

(
g∗
(
2D

P

)
+ 3

)
+Rg∗

(
M +

R+ 1

P

)
+ PM +R.

where D is the dynamic diameter of the (dynamic) subgraph of G induced by Z. Theorem 65
then implies the following corollary in the case of a strongly centered network.
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Corollary 82. In any execution of sapg in which the network is strongly centered, the memory
usage of each node is bounded by

log2 P + 2 log2

(
gRg∗(M ′+R+1

P
+1)+PM ′+R

(
max
i∈[n]

Mi(0)

))
,

where M ′ = g(g
∗(2D/P+1)+2)D(max

i∈[n]
Mi(0)).

g synchronization time space complexity
g = λx.x+1

(
t2 + max

i∈[n]
Mi(0)

)
(P +R)

+R
(
2 + R+1

P

)
where t2 satisfies t2 ≤

(
2D
P

+ 3
)
D

log2 P + 2 log2

((
t2 + max

i∈[n]
Mi(0)

)
(P +R)

+R
(
2 + R+1

P

)
+ max

i∈[n]
Mi(0)

)

g = λx.2x P

(
max
i∈[n]

Mi(0)

)
2t2 +R(1 + t2)

+R log2

((
max
i∈[n]

Mi(0)

)(
1 + R+1

P

))
where t2 ≤ log2

(
1 + 2D

P

)
D + 2D

log2 P + 2 log2

(
max
i∈[n]

Mi(0)

)
+ 2P

(
max
i∈[n]

Mi(0)

)
2t2

+ 2R

(
1 + t2 + log2

((
max
i∈[n]

Mi(0)

)(
1 + R+1

P

)))

Table 8.4: Complexity bounds of sapg in strongly centered networks. Here, R is the dynamic
radius of G and D is the dynamic diameter of the dynamic subgraph induced by Z(G).

Table 8.4 provides a bound on synchronization time and space complexity in the cases g =
λx.x + 1 and g = λx.2x. It shows that the trade-off presented in the previous section no
longer applies. In the case g = λx.2x, both time and space complexity contain exponential
terms. A real-world device would quickly run out of memory. The sapg algorithm remains
practical only if g is a slowly growing function. Comparing with Table 8.3, we observe that sapg

achieves better performance in networks with finite dynamic diameter than in strongly centered

networks. Choosing g = λx.x + 1, the time complexity is in O

(
R

(
D2 +R+max

i∈[n]
Mi(0)

))
in the later case, compared to O(D2) in the earlier case. A similar overhead is added to space
complexity. Overall, choosing g = λx.x+ 1 seems to provide the best performances, as it is the
“least inflationary” function.
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Chapter 9

Conclusion
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We made a deliberate choice to present the impossibility results found in Chapter 3 at the
outset of this thesis – an ironic twist given that we only stumbled upon these theorems in the
waning days of our three-year journey. These results serve as a structural foundation for the
entire work, permeating its various facets. They illuminate the reasons why the termsynchP

algorithm necessitates a bound on the dynamic radius to function effectively and why the sapg

algorithm requires unbounded memory. Our impossibility results provide answers to questions
that had lingered throughout the course of our research. They not only clarify critical constraints
on algorithms but also shape the trajectory of our subsequent investigations, forming an integral
part of the overarching narrative of this thesis.

The following paragraphs develop the main takeaways of the last three years. In the course of
this study, we have delved into the realm of dynamic networks, employing concepts like dynamic
diameter and dynamic radius, which draw their definitions from the notion of graph product.
Our choice to utilize graph products was one of several approaches available for extending the
fundamental notions of static graph theory to dynamic graphs. This naturally prompts the
question: did we select the most suitable approach? Drawing from the insights and knowledge
accumulated over the past three years, I am confident that we indeed made the right choice.
In every scenario encountered, and in each argumentation that encompasses static networks,
replacing the conventional “static” notions (such as paths within a single graph) with their “dy-
namic” counterparts (e.g., temporal paths) consistently upholds the integrity of the arguments.
To the best of our knowledge, the only synchronization algorithm that does not follows this rule
is from Feldmann et al. [53]. Consequently, it becomes evident that our dynamic definitions
stand out as the most organic and intuitive generalization of their static counterparts.

Another notable takeaway from our journey is that what may appear as straightforward
ideas can often be elusive to discover. A case in point can be found in Chapter 4, where we
took the minmax algorithm as a foundation and derived two novel algorithms: bminmax and
sminmax. To arrive at these results, we introduced a general methodology for constructing a
synchronization algorithm employing a stabilizing consensus algorithm. The proof of correctness
for this approach is encapsulated in Lemma 36 and Theorem 37, both of which primarily comprise
succinct calculations. It’s worth noting that the apparent simplicity of this construction belies
the fact that its original proof was notably intricate and later refined. I personally find the
ultimate version of this construction to be quite elegant, although, regrettably, my perspective
on this matter did not fully resonate with my PhD supervisor.

In Chapter 5, we present our results for the mod P -firing squad problem, and we introduce
a novel algorithm for this problem. The main takeaway of this chapter is the usefulness of proof
assistants, which are not limited to toy algorithms. In my opinion, two essential elements make
our formal proof practical. First, working with synchronized rounds is important to simplify the
base model. By contrast, when the model is asynchronous [1], a significant amount of complexity
is necessary, which makes formal proofs more challenging. Second, Isabelle provides powerful
automated tactics. In contrast, Coq requires significantly more manual work. If we used Coq
instead of Isabelle, the time spent to formally verify termsynchP would have increased by an
order of magnitude.

This manuscript does not cover an aspect of our research that consumed a significant portion
of our time. During this period, we conducted an in-depth exploration into the implications of the
seminal work by Paolo Boldi and Sebastiano Vigna on self-stabilizing algorithms. Notably, their
contribution included the introduction of a universal self-stabilizing algorithm [16]. Leveraging
this framework, a multitude of problems, among them the mod P -synchronization problem,
readily find solutions in static and strongly connected networks. The core idea underpinning the
sapg algorithm – namely, the adaptive mechanism – finds its roots in Protocol (6), a fundamental
component of their universal algorithm. Furthermore, Boldi and Vigna’s reliance on the notion

94



of graph fibration[15] has left a lasting impact on our research landscape. In brief, a fibration
represents a mapping between two graphs, allowing multiple nodes to be mapped to a single
node when their views1 are indistinguishable. While none of the contributions within this thesis
directly employ the concept of fibration, it is worth noting that our extensive discussions over the
past three years have yielded valuable insights and ideas. In particular, we uncovered that Boldi
and Vigna’s primary result, originally formulated for static strongly connected graphs, could
be extended to encompass static graphs containing a spanning tree. However, we chose not to
delve into this extension within this thesis, as it only tangentially relates to the core subject of
synchronization algorithms. It is also pertinent to highlight that the view-based interpretation
of the minmax algorithm, as detailed in Section 4.2, draws inspiration from their approach.

In the course of a three-year research endeavor, it’s only natural to encounter challenges
and detours along the way. Discussing these moments of reflection in this conclusion can offer
valuable insights: At one juncture, we embarked on an intriguing endeavor – to establish a
transformation of any algorithm solving any kind of problem into a self-stabilizing one at no
additional cost. The concept involved running multiple parallel instances of a non-self-stabilizing
algorithm at each node. These instances would be continually replaced with new ones. Conse-
quently, even if the oldest instances were affected by transient faults, the construction ensured
that fresher instances would eventually supplant the older ones, ultimately producing a cor-
rect output. However, as we delved into implementing this concept, we encountered various
technical intricacies that placed substantial constraints on the problem and the algorithm this
construction could handle. Ultimately, what deterred us from pursuing this idea further was its
suboptimal memory performance.

Chapters 6 and 8 collectively constitute an extensive exploration of the sapg problem, com-
mencing with a probabilistic analysis in the former and culminating in a focus on strongly
centered networks in the latter. It’s essential to note that this sequence of chapters does not
represent the chronological development of our intellectual journey. In fact, our initial foray
into sapg began with a deterministic approach. Then we discovered all the papers studying
rumor spreading in the pull, push and pull-push models. By the way, we were surprised to
realize that the literature on this subject was somehow messy. For example, the push model in
fully-connected networks was studied by Pittel [77], in one of the earliest contribution. However,
no analog result for the pull model exists until the paper of Doerr and Kostrygin [43]. David
Peleg told me privately that authors sometimes choose to study one model over another, with
no obvious reason.

Discovering this topic prompted us to work on a probabilistic study of sapg. Section 6.3 sheds
light on the thought process we followed. Our initial intention was to extend the deterministic
proof of sapg to encompass the pull and push models through a simplified notion involving
D̂(p), as defined in Eq. (6.1). This approach, had it succeeded, would have enabled us to
readily adapt the deterministic proof to yield a direct corollary in the probabilistic context.
Unfortunately, as detailed in Section 6.3, this approach turned out to be a dead-end.

The introduction of D̂(1)(p) emerged as the solution to these challenges. Consequently, we
found it necessary to redevelop the entire probabilistic proof of sapg from the ground up, as
done in Chapter 6. This chapter underscores a key advantage of our probabilistic approach:
its versatility. Our correctness proof for sapg extends across a broad spectrum of probabilistic
communication models, a feature that distinguishes it from existing results.

Furthermore, we envision that this approach could hold value beyond sapg. For instance,
consider population protocols [4], a model where agents interact, exchange information, and
update their states asynchronously at each step. This model diverges from the synchronization
problems examined in this thesis. Nevertheless, our probabilistic toolkit has the potential to offer

1for more details on views, refer to Section 4.2
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solutions to other challenges within this domain, such as leader election [47] and the majority
problem [3]. The large portion of existing literature in this area concentrates on fully connected
networks, where any two nodes can interact. In future research, we may explore the application
of our probabilistic tools to address these problems in more general communication networks.

In conclusion, we leave the reader with several intriguing open questions that beckon further
exploration. Notably, while we have introduced btermsyncP as a solution to the terminating
mod P -synchronization problem with finite memory, the query of whether the same problem
can be addressed with bounded memory, under the same assumptions as btermsyncP , re-
mains unanswered. Additionally, as discussed in Section 8.4, we have established that the sapg

algorithm falls short in solving the mod P -synchronization problem when the network is solely
assumed to have a finite dynamic radius. However, the existence of an algorithm capable of
resolving the mod P -synchronization problem under these conditions remains an open question,
waiting to be unraveled by future research endeavors.
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Résumé : Cette thèse explore les problèmes
de synchronisation et de coordination dans un
réseau d’agents avec un graphe de communication
dynamique utilisant une séquence de rounds
synchrones. Dans la première partie, le problème
du Firing Squad est examiné, où les agents doivent
≪ faire feu ≫ simultanément. Une version modifiée
est introduite, permettant de faire feu en rounds
congrues modulo P. Un algorithme est présenté
pour ce problème modifié sous des hypothèses de
communication plus faibles. Une preuve formelle de
la correction de l’algorithme est fournie à l’aide de
l’assistant de preuve Isabelle.
La thèse se penche ensuite sur les algorithmes auto-
stabilisants pour la synchronisation modulo P, où les
horloges des agents doivent être congruentes à P à
partir d’un certain round. Le défi consiste à relâcher
les hypothèses sur la connaissance globale. Un
algorithme de consensus MinMax auto-stabilisant est

proposé, s’adaptant aux réseaux de communication
dynamiques mais nécessitant une mémoire infinie.
L’algorithme SAP, avec une mémoire finie mais non
bornée, est présenté et prouvé correct dans les
réseaux avec un diamètre dynamique inconnu mais
fini. Ce résultat est ensuite étendu à une classe plus
large de réseaux dynamiques centrés.
La dernière partie explore le comportement
de SAP dans les modèles de communication
probabilistes. Au lieu de prouver des propriétés pour
chaque exécution, une hyperpropriété probabiliste
est établie - la synchronisation modulo P avec
haute probabilité - couvrant les modèles de
communication probabilistes. Cela implique la
définition d’une hiérarchie de diamètres probabilistes
et la démonstration de l’efficacité de SAP dans
la résolution des problèmes de synchronisation
avec haute probabilité dans différents modèles de
communication.

Title : Synchronization problems in dynamic multi-agent networks
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Abstract : This thesis explores synchronization and
coordination problems in a network of agents with
a dynamic communication graph using a sequence
of synchronous rounds. In the first part, the Firing
Squad problem is examined, where agents need to
fire simultaneously. A modified version is introduced,
allowing firing in rounds congruent modulo P. An
algorithm is presented for this modified problem under
weaker communication assumptions. Formal proof
of correctness is provided using the Isabelle proof
assistant.
The thesis then delves into self-stabilizing algorithms
for synchronization modulo P, where agents’
clocks must be congruent to P from a certain
round. The challenge is to relax assumptions
about global knowledge. A self-stabilizing MinMax
consensus algorithm is proposed, accommodating

dynamic communication networks but requiring
infinite memory. The SAP algorithm, with finite but
unbounded memory, is introduced and proven correct
in networks with an unknown but finite dynamic
diameter. This result is then extended to a broader
class of centered dynamic networks.
The final part explores SAP’s behavior in probabilistic
communication models. Instead of proving properties
for each execution, a probabilistic hyperproperty is
established — the synchronization modulo P with high
probability — covering probabilistic communication
models. This involves defining a hierarchy of
probabilistic diameters and demonstrating SAP’s
efficacy in solving the synchronization problem
with high probability across different communication
models.
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