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CHAPTER 1

RESUME

Le codage de source zéro-erreur regroupe une grande variété de problemes en théorie
de I'information, ot une source doit étre compressée par un encodeur avec un débit a min-
imiser, puis doit étre retrouvée par le décodeur avec probabilité d’erreur zéro. Dans tous
les problemes étudiés ici, la distribution de source est connue et le décodeur a acces a une
information adjacente, i.e. une variable aléatoire corrélée a la source qui aide au décodage
et a minimiser le débit. L’étude de tels problemes trouve son utilité dans des applications
demandant une garantie forte sur la qualité de reconstruction de la source, en particulier
la télédétection et le calcul distribué. Dans un probléme de codage de source zéro-erreur,
trouver une formule pour le débit optimal permet d’établir une borne théorique sur les
performances de tous les schémas de codage possibles. De plus, si cette formule est a une
seule lettre (i.e. ne fait pas apparaitre de limite), elle peut étre facilement calculée. On
a aussi 'existence d'un schéma de codage qui permet d’atteindre asymptotiquement ce
débit optimal. Pour ces raisons, notre premier objectif dans ce manuscrit sera de trouver
des expressions a une seule lettre pour les débits optimaux des problemes de codage de
source zéro-erreur.

La contrainte zéro-erreur differe de la contrainte d’erreur asymptotiquement nulle,
cette derniere ne demandant qu’'une limite nulle pour la probabilité d’erreur au décodage
quand la longueur du bloc codant tend vers l'infini. Dans les cadres ou le décodeur n’a
pas d’information adjacente, on peut facilement montrer que les débits optimaux sous les
contraintes zéro-erreur et erreur asymptotiquement nulle coincident. Toutefois, lorsqu’on
impose la contrainte zéro-erreur quand le décodeur a une information adjacente — ce sera
le cas dans les problemes étudiés ici, la nature de certains problemes passe de statistique
a combinatoire (e.g. le probléme de Slepian-Wolf zéro-erreur). Il s’ensuit que les outils
adéquats pour de tels problemes sont a la fois tirés de la théorie de I'information et de la
combinatoire ; et peuvent aller d’un dispositif de correction qui donne la propriété zéro-
erreur a des codes existants, a des codes zéro-erreur entierement batis avec des contraintes

tirées de la théorie des graphes.
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La nature combinatoire des problemes zéro-erreur est liée a l'incertitude de ’encodeur
sur I'information adjacente du décodeur. Dans les problemes a erreur asymptotiquement
nulle, on peut supposer que la suite des réalisations de 'information adjacente du décodeur
sera typique par rapport a la distribution de source, avec grande probabilité ; méme si
I’encodeur n’a pas acces a ces réalisations. En revanche, la contrainte zéro-erreur rend ce
manque d’information plus difficile a gérer ; en particulier, il faut que les codes utilisés
permettent une reconstruction parfaite de la source pour n’importe quelle réalisation de
I'information adjacente du décodeur.

Par conséquent, nous classifions les problemes zéro-erreur étudiés ici en trois caté-
gories ; selon l'information que possede l’encodeur sur l'information adjacente du dé-

codeur, et selon ce que le décodeur lui-méme doit retrouver :

- Les problemes zéro-erreur basés sur la correction, dans lesquels ’encodeur a acces a

toutes les informations adjacentes du probléme, et peut simuler chaque décodage ;

- Les problémes zéro-erreur basés sur les graphes, dans lesquels ’encodeur est “moins

informé” sur 'information adjacente du décodeur ;

- Les problemes zéro-erreur pour le calcul de fonction, dans lesquels le décodeur doit
calculer une fonction de la source et de son information adjacente ; au lieu de

simplement reconstruire la source.

1.1 Probléemes zéro-erreur basés sur la correction

Le problemes zéro-erreur basés sur la correction peuvent étre abordés avec ’aide d’un
dispositif de correction qui garantit la propriété zéro-erreur. Il consiste en l'utilisation
d’un livre-code adapté a la contrainte d’erreur asymptotiquement nulle, la simulation
de chaque décodage, et 'envoi de toute les suite de source s’il y a erreur dans 1'un des
décodages. Ce dispositif de correction a un impact négligeable sur le débit en raison de la
faible probabilité d’erreur, et permet la conversion des codes a erreur asymptotiquement
nulle en codes zéro-erreur. Pour cette raison, les outils que nous utilisons avec le dispositif
de correction sont la typicalité, et les codes aléatoires et de parité.

Dans le premier probleme de cette classe, présenté en Figure 4.1, 'information adja-
cente peut étre présente au décodeur. Dans ce cadre, I’encodeur dispose d’une information
adjacente, mais ignore si le décodeur y a acces aussi ; ’encodage est divisé en deux étapes.
A la premiére étape, Pencodeur envoie de I'information sans savoir si l'information adja-

cente est présente au décodeur. Le message envoyé a la premiere étape doit étre exploitable
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indépendamment de I’éventuelle présence de I'information adjacente. De plus, un décodage
zéro-erreur doit étre réalisé si le décodeur a acces a linformation adjacente. A la deuxiéme
étape, un supplément d’information est envoyé par I’encodeur dans le cas ou I'information
adjacente n’est pas présente au décodeur, et ce dernier doit ensuite retrouver la source
avec zéro-erreur. Ces deux étapes sont modélisées par deux décodeurs différents et deux
canaux parfaits. Nous voulons répondre a la question suivante : quelles sont les paires
de débits réalisables pour les deux étapes d’encodage, qui permettent un décodage zéro-
erreur 7 Notre premieére contribution consiste a déterminer la région réalisable, a 'aide
d’une partition en cosets des suites de source, couplée a un dispositif de correction ; prou-
vant de ce fait que cette région réalisable en zéro-erreur coincide avec la région réalisable

en erreur asymptotiquement nulle.

Le deuxieme probléme basé sur la correction est illustré en Figure 4.3 et est une général-
isation du premier. Dans ce probleme ou ’encodeur connait deux sources différentes et
leurs informations adjacentes respectives, deux incertitudes se présentent : la premiere est
que I’encodeur ignore quelle source sera demandée par le décodeur, et la deuxieme est que
I'information adjacente de la source demandée peut étre présente au décodeur. L’encodage
est alors divisé en trois étapes. A la premiére étape, ’encodeur envoie de I'information sans
savoir quelle source sera demandée ; nous cherchons a envoyer 'information commune aux
deux différentes sources, d’ott Pappellation “réseau de Gray-Wyner” pour ce probléme. A
la deuxieme étape, 'encodeur est informé de la source demandée par le décodeur, mais
ignore toujours si ce dernier dispose d’une information adjacente ; si tel est le cas, alors un
décodage zéro-erreur doit étre réalisé. La troisieme étape est un supplément d’information
envoyé par ’encodeur dans le cas ou le décodeur ne dispose pas de I'information adja-
cente ; le décodeur doit ensuite retrouver la source avec zéro-erreur. Pour ce probleme,
notre deuxieme contribution consiste en une borne interne et une borne externe sur la
région réalisable. Pour la borne interne, nous utilisons le schéma de codage suivant : des
suites auxiliaires sont utilisées pour capturer l'information commune entre les suites de
réalisations des deux sources, ensuite nous effectuons un étiquetage aléatoire de ces suites,
et les ensembles de suites de source sont partitionnées en cosets. Les algorithmes de dé-
codages sont basés sur les V-enveloppes des suites d’information adjacente, et la propriété

zéro-erreur est garantie par un dispositif de correction.
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1.2 Problemes zéro-erreur basés sur les graphes

Dans les problemes zéro-erreur basés sur les graphes, les contraintes zéro-erreur sont
représentées par un graphe caractéristique, et déterminer le débit optimal dans de tels
problémes revient a résoudre des questions difficiles de théorie des graphes. Le probleme
de Slepian-Wolf zéro-erreur illustré en Figure 3.4 est I'un d’eux, son débit optimal est
donné par I'entropie complémentaire H de son graphe caractéristique, et trouver une
expression & une seule lettre pour H est une question ouverte. Toutefois, afin de mieux
comprendre la nature du probleme Slepian-Wolf zéro-erreur, nous donnons de nouveaux
résultats structurels qui lient ce probleme avec d’autres, en particulier la capacité zéro-

erreur d'un canal Cy (voir la Figure 3.2).

Notre étude principale concerne le probleme de “linéarisation”. Dans le cadre du prob-
leme Slepian-Wolf zéro-erreur, si I'encodeur est en train de réaliser plusieurs taches de
compression indépendantes avec leurs informations adjacentes respectives, alors le débit
optimal est donné par H(A-), i.e. H d'un graphe avec une structure de produit ET. Comme
illustré par Tuncel et al. dans [71], “séparer” les taches indépendantes donne un schéma
d’atteignabilité, d’ott H(A-) < 3 H(-). Un autre cas d’intérét est celui out 'encodeur dis-
pose d’'une information partielle g(Y") sur l'information adjacente du décodeur. Le débit
optimal est donné par H(U -), i.e. H d’un graphe avec une structure d’union disjointe.
“Séparer” les réalisations de la source selon les valeurs de l'information adjacente de
Iencodeur donne aussi un schéma d’atteignabilité, d’ott H(U s -) < 37 Pyyy(2)H(:).

Lorsqu’on a égalité dans I'un ou 'autre de ces cas, on dit qu’on a “linéarisation” de H.

Notre contribution consiste a prouver les équivalences des linéarisations de Cy(A -),
Co(U+), C(A-, Py), C(U-, Py), H(A-), et H(UJ-); ot C(+, Py) est le débit optimal du prob-
leme de codage canal zéro-erreur ou ’encodeur doit utiliser des mots de codes typiques
par rapport a la distribution Py . Par conséquent, le schéma de codage “séparé” est opti-
mal dans le probléme de codage canal zéro-erreur, si et seulement si il est optimal dans le
probleme de Slepian-Wolf zéro-erreur avec le méme graphe caractéristique. De plus, dans
chacun de ces problemes, les optimalités des schémas de codage “séparés” respectifs pour
le produit A et pour I'union disjointe LI sont équivalentes. Pour prouver cela, nous définis-
sons les distributions atteignant la capacité d’un canal en régime zéro-erreur, et nous
déterminons plusieurs résultats sur celles-ci ; cela nous permet de lier Cy avec C(-, Py) et
H. De plus, nous donnons des exemples et contre-exemples de linéarisation pour toutes

ces équivalences. Tout d’abord, cela nous donne une formule & une seule lettre pour H

10
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dans des cas ou elle manquait ; en particulier pour les produits de graphes parfaits, qui ne
sont pas nécessairement parfaits. Enfin, les contre-exemples développés illustrent que les
schémas de codage “séparés” ne sont pas toujours optimaux: dans le probléme de Slepian-
Wolf zéro-erreur, le débit peut strictement décroitre quand on compresse ensemble des

sources indépendantes.

1.3 Problémes zéro-erreur pour le calcul de fonction

Les probléemes zéro-erreur pour le calcul de fonction sont une généralisation des prob-
lemes basés sur les graphes, et font aussi usage des graphes caractéristiques. Toutefois, la
fonction a retrouver impacte aussi les outils adéquats de la théorie des graphes a utiliser.
Dans le probleme illustré en Figure 6.2, le décodeur doit retrouver une fonction f de la
source et de son information adjacente. L’encodeur ne connait pas les réalisations de cette
derniere, mais en observe une version déterministiquement dégradée, représentée par la
fonction g.

Notre premiere contribution est de donner une expression asymptotique pour le débit
optimal de ce probleme. Notre deuxieme contribution est de formuler une hypothese que
nous appelons “information adjacente partagée deux-a-deux” qui nous permet, lorsqu’elle
est satisfaite, d’obtenir une expression a une seule lettre pour le débit optimal. Cette
hypothese est satisfaite si chaque paire de symboles de source “partage” au moins un
symbole d’information adjacente pour tout résultat de g. Cette condition a des interpré-
tations en termes de théorie des graphes, car les formules a une seule lettre que nous
trouvons émanent de la structure particuliere du graphe caractéristique : ce dernier est
une union disjointe de produits OU. De plus, ce résultat est d’intérét pratique car il
couvre toutes les instances ou la distribution de source est a support plein, sans aucune
hypothese sur f, g. Enfin, nous donnons une interprétation de cette condition, en termes

de plus mauvais débit optimal dans un probleme auxiliaire de Slepian-Wolf zéro-erreur.

1.4 Organisation du manuscrit

Ce manuscrit est organisé comme suit. Dans le Chapitre 3, nous détaillons la présen-
tation de chacun des problemes étudiés et ’état de I'art pour chacun d’eux, ainsi que les
définitions utilisées dans ce manuscrit. Dans le Chapitre 4, le Chapitre 5, et le Chapitre 6,

nous présentons respectivement nos résultats pour les problemes zéro-erreur basés sur la

11
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correction, basés sur les graphes, et pour le calcul de fonction. Les preuves de ces résultats

se trouvent respectivement en Appendice A, Appendice B, et Appendice C.

12



GLOSSARY

For reader’s convenience we give here a table of the notations and concepts used

throughout this manuscript.

N*, R
M1 (A)

|S], &¢
Im
Ker

{0, 1}
()

A(X)
Px

supp Py
Unif(+)
Pxy

Px @ Py

set of positive integers, real numbers

set of matrices of size n X k with coefficients
in A

cardinality, complement of the set S

image set of a mapping

kernel of a matrix

set of binary words

length of a word

sequence (z1, ..., Ty)

probability distributions over X

probability distribution of the random vari-
able X

support of Px

uniform distribution

joint distribution of (X,Y)

conditional distribution of X knowing Y
product distribution

Markov chain

type of " (%‘{t <nlz, =2}

)IL‘/EX
set of types of sequences from X"

typical set {:L"” €A ‘ | Ter — Px|loo < 6}
probability of an event

expected value of a random variable
entropy, conditional entropy

mutual information

conditional mutual information

13
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Cn, Kn, Ny
¢67¢d

A\

a

Co

V,E, Py)

—

= =

=3
58
g

=€ QCQQx
o

x

<

12

A set of words W C {0, 1}* is prefiz-free if for all w,w" € W, w is not a prefix of v’

and vice-versa.

cycle, complete, empty graph with n vertices

encoding, decoding function
AND product

independence number

Z€ero-error capacity

probabilistic graph

chromatic number
complementary graph entropy
chromatic entropy

type class for the type Qx
V-shell of the sequence x™
subgraph of G induced by &
zero-error capacity relative to Py
disjoint union

graph complement of G

clique number

Koérner graph entropy

OR product

isomorphic (probabilistic) graphs
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Definition 3.2.6
Definition 3.2.7
Definition 3.2.8
Definition 3.2.5
Definition 3.3.4
Definition 3.3.6
Definition 3.3.8
Definition 4.2.2
Definition 4.2.2
Definition 3.3.5
Definition 5.1.1
Definition 5.1.8
Definition 5.5.1
Definition 5.5.1
Definition 5.5.3
Definition 6.3.3
Definition B.2.6



CHAPTER 2

INTRODUCTION

Zero-error source coding encompasses a variety of problems from information theory,
where a source is compressed by an encoder with rate to be minimized, then has to be
retrieved at the decoder with probability of error zero. In all the problems studied here,
the source distribution is known and the decoder has access to a side information, i.e. a
random variable correlated to the source that helps minimizing the rate and decoding.
Studying such settings is useful in applications that require a strong guarantee on the
quality of reconstruction of the source, such as remote sensing networks and distributed
computing. In a zero-error source coding problem, finding a formula for the optimal rate
means finding the strongest theoretic limit on all compression schemes. Furthermore, if the
formula is single-letter, then it becomes easily computable. One also has the existence of
an optimal zero-error compression scheme that asymptotically achieves this optimal rate.
Therefore, finding single-letter expressions for optimal rates in zero-error source coding
problems is our main objective in this manuscript.

The zero-error constraint differs from the vanishing-error constraint, the latter only
requires the probability of error to go to zero when the block length of the code goes
to infinity. In the settings where the decoder does not have a side information, it can
be easily shown that the optimal rates in the vanishing error and zero-error regimes
coincide. However, when imposing the zero-error constraint when the decoder has a side
information, as in the settings studied here, many problems change from a statistical
nature to a combinatorial one (e.g. the Slepian-Wolf setting). Therefore, the adequate
tools for zero-error problems are drawn from both information theory and combinatorics;
and vary from a correcting device that strengthens vanishing-error codes into zero-error
ones, to zero-error codes entirely built with graph-theoretic constraints.

The combinatorial nature of zero-error problems is tied to the encoder’s lack of knowl-
edge of the decoder’s side information. In vanishing-error problems one can assume that
the decoder’s side information sequence will be typical w.r.t. the source distribution with

high probability; even if the encoder does not have access to it. However, the zero-error
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constraint makes the encoder’s uncertainty on decoder’s side information harder to be
dealt with; in particular it is required to build codes that enable for a perfect reconstruc-
tion of the source for any realization of the decoder’s side information.

For this reason, we classify the zero-error problems studied here into three categories,
depending on what the encoder knows about the decoder’s side information and what the

decoder has to retrieve:

- The correction-based zero-error problems, in which the encoder has access to all side

information and can simulate every decoding.

- The graph-based zero-error problems, in which the encoder is “less informed” about

the realizations of decoder’s side information.

- The coding for computing zero-error problems, in which the decoder has to compute
a function of the source and its side information; instead of only recovering the

source.

2.1 Correction-based zero-error problems

The correction-based problems can be tackled with a correcting device that guarantees
the zero-error property. It consists in using a vanishing-error codebook, simulating each
decoding, and sending all the source sequences if any decoding fails. This correcting device
has a negligible impact on the rate because of the low probability of error, and allows for
the conversion of vanishing error coding schemes into zero-error ones. For this reason, the
tools we use are typicality, random coding and parity check codes, with correcting device.

In the first problem from this class, which is depicted in Figure 4.1, side information
may be present at the decoder. In this setting, the encoder has access to a side information
but does not know whether the decoder has access to it; and the encoding is divided into
two steps. In the first step, the encoder sends information without knowing whether
side information is available at the decoder. The message sent in the first step must be
exploitable independently from the presence of the side information; furthermore, a zero-
error decoding must be done if the decoder has access to the side information. In the
second step, an information complement is sent by the encoder in the case where the
decoder has no side information, and the decoder must be able to retrieve the source
with zero-error. The two steps are modeled by two decoders and two noiseless channels.
We aim at answering the following question: what are the feasible pairs of rates for the

two encoding steps, that allow for a zero-error decoding? Our first contribution consists
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in determining the feasible rate region, thanks to a coset partition of source sequences
coupled with a correcting device; therefore showing that it coincides with the feasible rate
region in the vanishing error regime.

The second correction-based zero-error problem is depicted in Figure 4.3 and is a
generalization of the first one, in which there are two uncertainties: firstly, the encoder
has access to two sources and their respective side information but does not know which
one will be requested by the decoder; and secondly, the side information may be present
at the decoder. The encoding is divided into three steps. In the first step, the encoder
sends information without knowing which source is requested; we aim at sending the
common information between the two sources, hence the “Gray-Wyner network” name
for this problem. In the second step, the encoder knows which source is requested but
does not know if the decoder has access to the side information; if the latter is present at
the decoder, then a zero-error decoding must be done. The third step is an information
complement sent by the encoder in the case where the decoder does not have the side
information; and the decoder must be able to retrieve the source with zero-error. In this
setting, our second contribution consists in an inner and an outer bound on the feasible
rate region. For the inner bound we use the following coding scheme: auxiliary sequences
are used to capture the common information between the two sources sequences, then
we do a random binning on them; and the sets of source sequences are partitioned into
cosets. Decoding algorithms are based on V-shells of side information sequences, and the

zero-error property is ensured by a correcting device.

2.2 Graph-based zero-error problems

In graph-based problems, zero-error constraints are captured by a characteristic graph,
and determining the optimal rate requires to solve hard graph-theoretic questions. The
zero-error Slepian-Wolf problem depicted in Figure 3.4 is one of them, its optimal rate is
given by the complementary graph entropy H of the characteristic graph, and finding a
single-letter formula for H is an open question. However, in order to understand better
the nature of the zero-error Slepian-Wolf problem, we provide new structural results that
link it with other problems, such as the zero-error capacity of a channel Cy (see Figure
3.2).

Our main study concerns the “linearization” problem. In the zero-error Slepian-Wolf

setting, if the encoder is doing several independent compression tasks with their respective
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independent side information, then the optimal rate is given by H(A-), i.e. H of a graph
with an AND product structure. As shown by Tuncel et al. in [71], “separating” the inde-
pendent tasks yields an achievability scheme, hence H(A-) < 3 H(-). Another interesting
case of zero-error Slepian-Wolf problem is when the encoder has a partial information g(Y")
on the decoder’s side information. The optimal rate is given by H(LI-), i.e. H of a graph
with a disjoint union structure. “Separating” the source realizations w.r.t. the encoder’s
side information also yields an achievability scheme, hence H(L/Fs0) ) <37 Pyyy(2)H(:).
When equality holds in either case we say that “linearization” of H holds.

Our contribution is to prove the equivalences of linearizations between Cy(A-), Co(U-),
C(A-, Py), C(U-, Py), H(A+), and H(U-); where C(-, Py) is the optimal rate in the zero-
error channel coding problem where the encoder has to use codewords that are typical
w.r.t. Py,. Therefore, the “separated” coding scheme is optimal in the zero-error channel
coding problem, if and only if it is optimal in the zero-error Slepian-Wolf setting with
the same characteristic graph. Furthermore, in each of these settings, the optimalities of
the respective “separated” coding strategies for the product A and the disjoint union U
are equivalent. In order to prove that, we define the zero-error capacity achieving dis-
tributions of a channel, and derive several results on them; which enables us to link C
with C(-, Py/) and H. Furthermore, we give examples and counterexamples of linearization
for all these equivalences. Firstly, this yields a single-letter formula for H in cases where
it was unknown: product of perfect graphs, which are not necessarily perfect. Secondly,
the counterexamples developed illustrate that the “separated” coding schemes are not al-
ways optimal: in the zero-error Slepian-Wolf setting, the rate may strictly decrease when

compressing together independent sources.

2.3 Coding for computing zero-error problems

The coding for computing problems are a generalization of graph-based problems,
and also make use of characteristic graphs. However, the function to be retrieved also
impacts the adequate graph-theoretic tools to be used. In the setting depicted in Figure
6.2, the decoder has to retrieve a function f of its side information and of the source; the
encoder does not know the realizations of the decoder’s side information but observes a
deterministically degraded version of them, represented by the function g.

Our first contribution is to give an asymptotic formula for the optimal rate in this

setting. Our second contribution is to formulate an hypothesis that we call “pairwise
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shared side information” that allows us to derive a single-letter characterization of the
optimal rate. This hypothesis is satisfied if every pair of source symbols “share” at least
one side information symbol for all output of g. It has graph-theoretic interpretations, as
the single-letter formula stems from the particular structure of the characteristic graph:
a disjoint union of OR products. Moreover, this result is of practical interest as it covers
the cases where the source distribution is full-support, without any assumption on f,g.
Finally, we give an interpretation of this condition, in terms of the worst optimal rate in

an auxiliary zero-error Slepian-Wolf problem.

2.4 Organization of the manuscript

This manuscript is organized as follows. In Chapter 3 we provide a detailed presen-
tation of all the problems studied and the definitions used in this manuscript, and we
describe the state of the art for each one of them. In Chapter 4, Chapter 5, and Chapter
6, we present our results for the correction-based, graph-based, and coding for computing
zero-error problems, respectively. The proofs of these results can be found in Appendix

A, Appendix B, and Appendix C, respectively.
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CHAPTER 3

STATE OF THE ART

In this Chapter we give a detailed presentation of the different problems studied in this
manuscript, in both zero-error and vanishing error regime. As illustrated in the following,
the zero-error and the vanishing error regimes may lead to different optimal rates in several

settings; in particular in the channel coding problem, and in the Slepian-Wolf problem.

3.1 Source coding

The source coding problem is one of the fundamental settings that appear in data

compression; it is introduced by Shannon in [59].

R

X" —>{ Encoder Decoder ——— Xn

Figure 3.1 — The source coding problem.

Definition 3.1.1 (Source coding problem) The source coding problem of Figure 3.1
1s described by:

- A finite set X, and a source distribution Py € A(X);

- For all n € N*, X" is the random sequence of n copies of X, drawn in an i.i.d.

fashion using Px.

- An encoder that knows X™ sends binary strings over a noiseless channel to a decoder

that wants to retrieve X" without error.
A coding scheme in this setting is described by:

- A time horizon n € N*, and an encoding function ¢, : X" — {0, 1}* such that Im ¢,
1s prefix-free;

- A decoding function ¢4 :{0,1}* — X";
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- The rate is the average length of the codeword per source symbol, i.e. R = %E[ﬁ o

Pe(X™)].

Depending whether a perfect source reconstruction is required, two different regimes

can be considered.

Definition 3.1.2 (Zero-error regime, vanishing error regime) In the zero-error

regime, the coding schemes (n, ¢., ¢q) must satisfy the zero-error property:
P(X" £ X") =0, (3.1)

where X" = 0a(Pe(X™)). The objective is to find the minimal rate among all coding

schemes under the zero-error constraint:

€« 1 n
Rsco = nglfd)d EEVO@(X )] (3.2)

ZETO-ETTOoT

In the vanishing error regime, the coding schemes (n, ge, pq) must satisfy the e-

error property:
P(X"#X") <¢, (3.3)

where X™ = ¢g(de(X™)). The objective is to find the minimal rate among all coding

schemes under the e-error constraint, with e — 0:

1
Rie =lim inf ~E[fo ¢ (X"™)]. 3.4
so=1lim inf —E[lod(X")] (3.4)

€-€error

Determining the optimal rate means determining theoretic limit of all possible coding
schemes in the source coding problem. The zero-error regime induces stronger constraints
on the coding schemes than the vanishing error regime, thus leading to a higher optimal

rate.

Theorem 3.1.3 (from [59])

R = H(X). (3.5)
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Theorem 3.1.4 (from [34])
sco = H(X). (3:6)

The optimal rate is characterized by the entropy of the information source: Theorem
3.1.3 and Theorem 3.1.4 show that the optimal rate in this setting equals H(X), for both
vanishing error and zero-error regimes. This stems from the fact that the optimal rate in
the vanishing error regime can be achieved with a Huffman algorithm, which also satisfies
the zero-error property.

Alternatively by Remark 3.1.5, a possible zero-error coding strategy consists in index-
ing the typical set w.r.t. Py following the approach from [59], and using the correcting

device.

Remark 3.1.5 (Correcting device) In this setting, since the encoder knows the real-
izations of every random variable in the problem, it can simulate every decoding. Therefore,
every coding scheme in the vanishing error regime can be turned into zero-error ones with
negligible impact on the rate in the following way: the encoder uses the coding scheme in
the vanishing error regime, along with a bit of error. The latter equals 0 in case no decod-
ing error occurs and 1 if any decoding error happens, and all source sequences are sent to
the decoder in that case. The correcting device has a negligible additional cost on the rate,
due to the negligible cost of the flag bit and the low probability of error of a coding scheme
in the vanishing error regime. As a consequence, both optimal rates of this problem in the

vanishing error and in the zero-error regime are equal.

3.2 Channel coding

The channel coding problem is introduced in [59] in the vanishing error regime; and
in [58] in the zero-error regime. It is a well-known example where the respective optimal
rates in these regimes are different. In particular, a full-support distribution Py|x for the
channel may yield a positive channel capacity (i.e. optimal rate) in the vanishing error

regime, and a zero-error capacity equal to 0.

— 1 X" ym e
Encoder w Decoder —— X"

Figure 3.2 — The channel coding problem.

23



Chapter 3 — State of the art

Definition 3.2.1 (Channel coding problem) The channel coding problem of Figure
3.2 is described by:

- Two finite sets X, Y;

- A Discrete Memoryless Channel (DMC) with input alphabet X, output alphabet Y
and transition probability Pyx € A(Y)*;

- An encoder that sends inputs over the DMC, and a decoder that receives the DMC'’s

outputs.
A coding scheme in this setting is described by:
- A time horizon n € N*, and a codebook C,, C X™;
- A decoding function ¢q: Y" — X";

- The rate is the average number of messages transmitted per channel use, i.e. % log |C,|-

The channel coding problem is formally defined for two different regimes, depending

whether a positive probability of error is allowed when communicating through the DMC.

Definition 3.2.2 (Zero-error regime, vanishing error regime) In the zero-error

regime, the coding scheme (n,C,, ¢q4) must satisfy the zero-error property:
P(X" # X") = 0; (3.7)

where X" ~ Unif(C,), X" = ¢q(Y™), and Y™ is drawn conditionally w.r.t. X™ using
Py x. The objective is to find the mazimal rate among all coding schemes that satisfy the

zero-error property:

1
Riy= sup —log|Cyl. (3.8)
1,Cn,Pq n

ZETO-ErToT

In the vanishing error regime, the coding schemes (n,C,, ¢q) must satisfy the e-

error property:
P(X" £ X") <¢, (3.9)

where X™ ~ Unif(C,), X™ = ¢q(Y™), and Y™ is drawn conditionally w.r.t. X" using Py x.

The objective is to find the maximal rate among all coding schemes that satisfy the e-error
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property, with € — 0:

1
Rf =1i —log |C,,. 3.10
ol os .

€E-ETTOT

3.2.1 Channel coding in the vanishing error regime

The channel capacity in the vanishing error regime is defined by maxp,ea(x) 1(X;Y);
and as shown by Shannon in Theorem 3.2.3, this quantity characterizes the optimal rate
of communication over a DMC in the vanishing error regime. This comes from the fact
that for all Py € A(X), the encoder may choose 2/X?¥) random codewords from X™ by
using Px, and expect a correct decoding with high probability by typicality arguments.

Taking the maximum over Py yields the highest achievable rate.
Theorem 3.2.3 (from [59])

Ri = Pxneli}({é\f) I(X;Y). (3.11)

3.2.2 Zero-error channel coding

In the zero-error regime, an adequate graph G can be associated to a given instance
of channel coding problem in Figure 3.2. This graph is called “characteristic graph” of the
problem, as it encompasses the problem data in its structure: the vertices are the source
alphabet, and two channel input symbols x, 2’ are adjacent if they are “confusable”, i.e.
Py x(y|z)Pyix(y|z’) > 0 for some channel output symbol y. In other words, when x
and 2’ are adjacent, knowing the realization y does not allow to distinguish between the

realizations x and 2z’ with probability of error 0.

Definition 3.2.4 (Characteristic graph) Let X',) be two finite sets and Py|x be a
conditional distribution from A(Y)¥!. The characteristic graph associated to Py |x is de-
fined by:

- X as set of vertices,

- x,2' € X are adjacent if Py|x(y|r)Pyx(y|x') > 0 for somey € Y.

The AND product A is a binary operator on graphs, and is used to build the char-

acteristic graph for more than one channel use. More precisely, two sequences of channel
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inputs 2", 2" are adjacent in the n-th AND power G/ (i.e. iterated AND product of G¢)
if P x(y"|z") Py x(y"|z"™) > 0 for some sequence of channel outputs y".

In Definition 3.2.6, the AND product of graphs with an underlying distribution is
defined, as it will be useful for the zero-error source coding problem. In the case of zero-
error channel coding, graphs without distribution are considered, but the structure of the
AND product is the same regardless of the distribution. The AND product is also called

“strong product” or “normal product” in the literature (for example in [44, 47]).

Definition 3.2.5 (Probabilistic graph) A probabilistic graph G is a tuple (V,E, Py),
where V and E are respectively the sets of vertices and edges; and Py € A(V) is a proba-

bility distribution on the vertices.

Definition 3.2.6 (AND product A) Let Gy = V1, &1, Py,), Ga = (Vs, &, Py,) be two
probabilistic graphs, their AND product Gy A\ Gy is a probabilistic graph defined by:

- V1 X Vs as set of vertices,
- Py, ® Py, as probability distribution on the vertices,

- (v1v9), (V)V) are adjacent if
Ul’Ui €& AND UQU; € 52, (312)

with the convention of self-adjacency for all vertices.

We denote by G{™ the n-th AND power:
G =G A ... NGy (n times). (3.13)

The AND product of graphs without probability distribution has the vertex set and edges
defined above, without underlying probability distribution.

If there is a pair of codewords z™, 2" adjacent in G¢¥* in the codebook used by the
encoder, then upon receiving the y" such that Py (z"[y") Py (z™|y") > 0, the decoder
is unable to determine whether the encoder sent z™ or z'™, which prevents zero-error
decoding. Therefore, a zero-error decoding at the end of the time horizon n is possible if
and only if the encoder uses a codebook formed of pairwise non-adjacent symbols in G,

i.e. an independent set, which is formally defined below.
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Definition 3.2.7 (Independent subset, independence number «) Let G = (V,€)
be a graph. A subset S C V is independent in G if xx’ & & for all x,2’ € S. The

independence number is the maximal size of an independent set in G, and is denoted by

a(G).

Definition 3.2.8 (Zero-error capacity of a graph Cy) Let G be a graph, its zero-
error capacity is defined by
Co(G) = Tim ~ log a(G™™). (3.14)
n—00 n
By construction, the optimal rate for a coding scheme with the zero-error property
and time horizon n is + log a(G¢"). As shown in Proposition 3.2.9, the asymptotic optimal
rate is lim, o %log a(Gar); this quantity is called the zero-error capacity of a channel
(or the zero-error capacity of its characteristic graph), and represents the best zero-error
communication rate through a DMC.
Note that, by convention, we define the zero-error capacity with the logarithm. An-
other existing convention (for example in [44]) for the zero-error capacity is O(G) =

lim,, o /a(G""); which is equivalent in the sense that Cy = log ©.

Theorem 3.2.9 (from [58]) The optimal rate in the zero-error channel coding setting

writes
R¢y = Co(Go), (3.15)
where G is the characteristic graph associated to the distribution Py|x.

Determining a single-letter expression for C is a wide open problem. We present in
Section 5.5 some examples from the literature where Cj is known, in particular perfect

graphs. The Lovész 6 function, introduced in [44], is an upper bound on the zero-error
_ logh
)

non-perfect graph for which Cy is known. Further observations on the 6 function are

capacity. This function is used to show that Cy(C}) , which makes C5 the minimally

derived by Sason in [54]. The zero-error capacity of C7 is still unknown. Several existing
lower bounds on Cy(C7) result from an independent set found by a computer program; in
particular by Vesel and Zerovnik in [72], by Mathew and Ostergard in [48], and by Polak
and Schrijver in [51].
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(D ® @ 00
@) 3) &
S @@
Figure 3.3 — The cycle graphs Cs, C'.

3.2.3 Related works

The computability of Cy is investigated in [9] by Boche and Deppe, and they prove that
Cpy is not computable. An asymptotic expression for Cy using semiring homomorphisms
is given by Zuiddam et al. in [78]. In [31], Gu and Shayevitz study the two-way channel
case. An extension of Cy for secure communication is developed in [74] by Wiese et al.

Another related setting is zero-error transmission over a discrete channel with memory.
The case of binary channels with one memory is studied by Ahlswede et al. in [1], followed
by Cohen et al. in [17], and the remaining unsolved cases are solved by Cao et al. in [12].
The case of binary channels with two memories is studied by Zhang et al. in [77].

Finally, the Sperner capacity is an extension of the zero-error capacity to digraphs
introduced in [28] by Gargano et al. Upper bounds on the Sperner capacity are developed
by Alon in [3] based on the maximum outdegree of the digraph; and by Korner et al. in
[40] based on an adaptation to digraphs of the local chromatic number.

The interested reader may refer to Kérner and Orlitsky’s survey in [38], and Simonyi’s

survey in [63].

3.3 Slepian-Wolf problem

The Slepian-Wolf problem is introduced in [64] by Slepian and Wolf, in the vanishing
error regime; and the zero-error variant of this problem is presented by Alon and Orlitsky;,
in [5]. This problem corresponds to a situation in data compression where the decoder has
a side-information Y about the source X that has to be retrieved. Its optimal rate in the
zero-error regime is given by the complementary graph entropy H of the characteristic
graph, and finding a single-letter formula for H is an open question. As presented in
Theorem 3.3.7 and Theorem 3.3.3, the respective optimal rates in the zero-error regime
and in the vanishing error regime are different, in particular when the source distribution
is full-support. Note that the correcting device described in Remark 3.1.5 cannot be used

here for the zero-error regime, as the encoder does not know the realizations of Y.

28



3.8. Slepian- Wolf problem

X" — Encoder Decoder —— X"

f
Yn

Figure 3.4 — The zero-error Slepian-Wolf problem.

Definition 3.3.1 (Zero-error Slepian-Wolf problem) The zero-error source coding

problem of Figure 5.4 is described by:
- Two finite sets X, Y, and a source distribution Pxy € A(X x Y);
- For allm € N*, (X™,Y™) is the random sequence of n copies of (X,Y), drawn in an
i.1.d. fashion using Pxy .
- An encoder that knows X™ sends binary strings over a noiseless channel to a decoder
that knows Y™, and that wants to retrieve X" without error.
A coding scheme in this setting is described by:
- A time horizon n € N*, and an encoding function ¢, : X™ — {0, 1}* such that Im ¢,
is prefiz-free;
- A decoding function ¢q : Y™ x {0,1}* — &™;
- The rate is the average length of the codeword per source symbol, i.e. R = %]E[f o

Pe(X")].

Definition 3.3.2 (Zero-error regime, vanishing error regime) In the zero-error

regime, the coding schemes (n, ¢, ¢q) must satisfy the zero-error property:
P(X" #X") =0, (3.16)

where X" = Ga(Y™, 0o (X™)). The objective is to find the minimal rate among all coding

schemes under the zero-error constraint:

SwWo = ZQE%%%T EEV 0 ge(X")]. (3.17)

In the vanishing error regime, the coding schemes (n, ¢., ¢q) must satisfy the e-

error property:
P(X"# X") <e, (3.18)
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where X™ = 6a(Y™, o (X™)). The objective is to find the minimal rate among all coding

schemes under the e-error constraint, with € — 0:

1
t =lim inf —E[fo ¢ (X™)). 1
Rgy = lim 2:%?;?14” [( 0 ge(X™)] (3.19)

Theorem 3.3.3 (from [64]) The optimal rate in the Slepian- Wolf setting in the vanish-

g error regime writes
Ry = HX|Y). (3.20)

In the vanishing error regime, the optimal rate H(X|Y) in Theorem 3.3.3 remains the

same if the encoder also observes the sequence Y.

3.3.1 Zero-error Slepian-Wolf problem

In a similar way to zero-error channel coding, the characteristic graph Ggy of an
instance of zero-error Slepian-Wolf problem in Figure 3.4 is defined in Definition 3.2.4,
with the conditional source distribution Py|x. This graph was first used by Witsenhausen
in [75]. However in the zero-error Slepian-Wolf setting it is a probabilistic graph, as it has
the underlying distribution Px on its vertices.

Assume that ¢.(z") = ¢.(z™) for some 2", 2 adjacent in G&},, then upon receiv-
ing the y" such that PYfy (2"|y") Pl (2™[y") > 0, the decoder is unable to determine
whether the encoder sent ™ or x", which prevents zero-error decoding. Therefore, the
source sequences that are adjacent in the characteristic graph must be mapped to differ-
ent codewords; hence the use of graph colorings, which map adjacent vertices to different

colors.

Definition 3.3.4 (Coloring, chromatic number x) Let G = (V,€) be a graph. A
mapping ¢ : V — C is a coloring if ¢c~'(i) is independent for all i € C. The chromatic
number x(G) is the smallest |C| such that there exists a coloring ¢ : V — C of G.

Definition 3.3.5 (Induced subgraph G[S]) Let G = (V, &) be a graph, and let S CV
be a subset of vertices. The subgraph of G induced by S is the graph denoted by G[S] with
S as set of vertices, and vv' are adjacent in G[S| if and only if they are adjacent in G.

In the case where G is a probabilistic graph with underlying distribution Py, we give
G[S] the normalized underlying distribution Py /Py (S).
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With high probability, the source sequence X™ will be typical w.r.t. Px, therefore one
can consider only the subgraph of G4}, induced by the set of typical sequences 7.*(Px).
Then the encoder colors this induced subgraph G4y [7."(Px)] with a coloring that has
the minimum number of colors, and sends the color index to the decoder if X™ is typical,

or the index of X™ in X" otherwise. This coding strategy has a rate upper-bounded by
1 n n 1 An n
~+ P(X" ¢ T (Px)) log |X] + ~log x(Giy [T (Px)]): (3.21)

where x is the chromatic number and the decoder is able to retrieve X™ thanks to the
color and Y. Koulgi et al. have shown in [41, Theorem 1] that taking the limit when n
goes to infinity and e goes to 0 yields the best achievable rate in the zero-error Slepian
Wolf problem. This quantity is called complementary graph entropy, and is defined by
Korner and Longo in [37].

Definition 3.3.6 (Complementary graph entropy H) For all probabilistic graph G =
(V,E, Py), the quantity H(G) is defined by:

i . . 1 An n
H(G) zlli%hgl_)sogpﬁlogx((? [T (P))). (3.22)
Theorem 3.3.7 (from [41, Theorem 1]) The optimal rate in the zero-error Slepian-
Wolf setting writes

Ry = H(Gsw), (3.23)

where Ggy is the probabilistic graph formed of the characteristic graph associated to the

distribution Py|x, with the underlying distribution Px on its vertices.

The zero-error Slepian Wolf setting that we study is called “restricted inputs” by
Alon and Orlitsky in [5] where they give another characterization of the optimal rate
with chromatic entropies. The chromatic entropy H, (G4§,) corresponds to the minimal
entropy of a coloring of G§},. Therefore, after normalization, it characterizes the best rate
at a fixed number n of source uses with a perfect compression of the color. As stated in
Theorem 3.3.9, by taking the limit when n goes to infinity, one obtains the optimal rate;
and also, another expression for H.

A stronger notion of zero-error coding, called “unrestricted inputs”, is also introduced

in [5]. It requires the zero-error property to be satisfied even for the sequences of symbols
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(X™,Y™) that take values out of the support of Py . Alon and Orlitsky provide in [5], a

single-letter formula for the optimal rate.

Definition 3.3.8 (Chromatic entropy H,) LetG = (V, &, Py) be a probabilistic graph,

its chromatic entropy is defined by
H, (G) =inf{H(c(V)) | ¢ is a coloring of G}. (3.24)
Theorem 3.3.9 (from [5, Lemma 6]) For all probabilistic graph G,

n—oo n,

The two distinct asymptotic expressions are equal to the optimal rate.

Riyo = limlimsup —log x (G'"T7(Py)]) = lim —H,(GEy). (3.26)
Proposition 3.3.10 (Full support) If the distribution Pxy has full support, then Ry, =
H(X).

The case of Py y with full support is a worst case for the zero-error regime, for which the
optimal rate is H(X), instead of H(X|Y) in the vanishing error regime.
There is no known single letter expression for the optimal rate R%y,, except for a few

special cases; in particular for perfect graphs and (05, Unif({1, ..., 5}))
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CHAPTER 4

CONTRIBUTIONS FOR
CORRECTION-BASED ZERO-ERROR
PROBLEMS

In Section 4.1, we present the source coding problems considered in this chapter. We
call these problems “correction-based” as they can be tackled with a correcting device
which gives the zero-error property to coding schemes designed for the vanishing error
regime. As a result, for this class of problems, the optimal rate in the zero-error regime
coincides with the optimal rate in the vanishing error regime.

We determine in Section 4.2 the feasible rate region of the zero-error source coding
problem when side information may be present at the decoder, presented in Section 4.1.1.
In Section 4.3 we give an inner and an outer bound on the feasible rate region of the
zero-error source coding problem for a Gray-Wyner network, presented in Section 4.1.3.

We show that these bounds coincide in several cases of interest.

4.1 Correction-based zero-error problems

4.1.1 Zero-error source coding when side information may be

present at the decoder

This scenario arises in interactive compression, where the user can randomly access
part of the data directly in the compressed domain. A source sequence X" models the
smallest entity that can be requested, for instance a file of a database, a frame of a video,
or a block of an omnidirectional image [8, 49, 53].

In this setting, the encoder has access to a side information but does not know whether
the decoder has access to it; and the encoding is divided into two steps. In the first step,

the encoder sends information without knowing whether side information is available at
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the decoder. The message sent in the first step must be exploitable independently from the
presence of the side information; furthermore, a zero-error decoding must be done if the
decoder has access to the side information. In the second step, an information complement
is sent by the encoder in the case where the decoder has no side information, and the
decoder must be able to retrieve the source with zero-error. The two steps are modeled

by two decoders and two noiseless channels.

Ry N
X" — Encoder Decoder 1 — X' = X"
R !
yn" yn

Decoder 2 [— X\Q =X"

Figure 4.1 — Source coding when side information may be present.

Definition 4.1.1 The setting of Figure 4.1 is described by:
- Two finite sets X, Y, and a source distribution Pxy € A(X x Y);

- For allm € N*, (X", Y™) is the random sequence of n copies of (X,Y), drawn in an

i.1.d. fashion using Pxy .

- An encoder that knows (X", Y™) sends binary strings over two noiseless channels
to two decoders that want to retrieve X" without error. Decoder 1 has Y™ as side

information.
A coding scheme in this setting is described by:
- A time horizon n € N*,

- Two encoding functions and two decoding functions

oM X" x Y {01}, o) A" x Y — {01}, (4.1)
o {0, 1) x V" = A, P ({0,17) = A, (4.2)

such that Im ¢{" and ITm ¢?) are prefiz-free;

- The rates over each channel are the average length of the codeword per source symbol:
1 1)/ yn vn 1 @) (yn yn
Ry = ~E[(o¢(X",Y")]  Ry=-E[(od?(X",Y")] (4.3)
n n
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- n, oY, ¢, Cb((jl), 512) must satisfy the zero-error property:

P(X7 # X") =P(X} £ X") = 0; (4.4)

where
X7 = o (oM (X, v, v, (4.5)
Xy = o (6 (X", Y™, 6P (X", Y™). (4.6)

The objective is to find the feasible rate region Rsr, which is the closure of the set
{(Rl, R;) € R? ‘ El(n, AR ON (bfiQ)) zero-error, with rates (Ry, Rg)} : (4.7)

A way to achieve zero-error coding in the setting of Figure 4.1 is to use conditional
Huffman coding of X knowing Y; and send the source X to decoder 1 at rate Ry =
H(X|Y). Then, to recover the source X, decoder 2 needs to obtain the side information
Y, which requires a rate of Ry = H(Y) > I(X;Y).

In order to be exploitable by both decoders, part of the information sent through the
common channel must be independent from Y. For this reason the setting of Figure 4.1 is
closely related to the Slepian and Wolf (SW) problem in [64], seen as lossless source coding
with side information at the decoder only. In this work, it is shown that the corner point
(R1,Ry) = (H(X|Y),1(X;Y)) is achievable in the vanishing probability of error regime.
In [19], Csiszar proved in that linear codes achieve the optimal SW rate region. Several
works in [13, 14, 73] investigate the duality between SW setting and channel coding using
linear codes, as the side information Y can be seen as the output of a virtual channel
with input X. However these tools cannot be straightforwardly adapted to the zero-error
setting, as the linear codes proposed also present a vanishing probability of error.

The setting of Figure 4.1 can be seen as a zero-error variant with side informations
known at the encoder of the successive refinement problem proposed by Kaspi in [35];
later generalized by Timo et al. in [67] for more than two decoders. Even if the lossy
reconstruction of the source makes it fundamentally different from the zero-error setting,
there are notable examples that present the same tools as in SW. The side information
scalable source coding (i.e. the decoder 2 has a side information Y’ s.t. X - Y — Y’) in
[66] for instance uses nested random binning. This random binning approach was further

developed in [2] to give a unified coding scheme that works for both scalable source coding
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and Wyner-Ziv successive refinement in [65] (i.e. the decoder 2 has a side information Y’

st. X =Y =Y).

In [45], Ma and Cheng use linear codes in a zero-error SW restriction, under symmetry
assumptions on the source. However, a zero-error SW coding scheme in our setting does
not use at all the side information knowledge at the encoder. A more in-depth review of
the literature for the zero-error SW setting can be found in Section 3.3.1.

In Section 4.2, we characterize the feasible rate region. More precisely, we show that
the pair of rates (Ry, Ry) = (H(XY), I(X;Y)) is achievable in the zero-error regime and

moreover, it is the corner-point of the feasible rate region.

4.1.2 Gray-Wyner problem

The problem built by Gray and Wyner in [30], aims at capturing the common infor-

mation between two random variables X and Y.

oy
Decoder y — yn — yn
R
X™ Y™ s> Encoder
R} Decoder x [— X7 — xn

Figure 4.2 — The Gray-Wyner source coding problem.

Definition 4.1.2 The setting of Figure 4.2 is described by:
- Two finite sets X, Y, and a source distribution Pxy € A(X x Y);

- For allm € N*, (X™,Y™) is the random sequence of n copies of (X,Y), drawn in an

i.1.d. fashion using Pxy .

- An encoder that knows (X™,Y™) sends binary strings over three noiseless channels

to the decoder x (resp.y) that wants to retrieve X™ (resp. Y™) without error.
A coding scheme in this setting is described by:

- A time horizon n € N*,
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- Three encoding functions and two decoding functions

¢, ¢, 0 - A" x Y — {0,1}7, (4.8)
O (f0,157)" = am, (4.9)
oY - ({0,13) =y, (4.10)

such that ITm ¢{") is prefiz-free for all i € {0,x,y};

- The rates over each channel are the average length of the codeword per source symbol:

1 .
Ry = LRt o ¢ (X", Y™)] (4.11)
n
for alli € {0,x,y};
) (i) () : ) )
n, <¢e )ie{o,x,y}’ (d)d )je{x,y} must satisfy the e-error property:
P(X"#X") <e (4.12)
P(Y"#Y") <¢ (4.13)
where
X" = o7 (e (X, ¥, o0 (X, ¥™), (4.14)
Y™ = (60(X™, ™), o0 (X, ¥ T)). (4.15)

The objective is to find the feasible rate region R, which is the closure of the set

() () ~ .
dn, <¢e )ie{o,x,y}’ ((bd )je{w}e error, with rates (RO,RX,RY)}.

(4.16)

N {(RO,RX,RY) € R

e>0

In [30], Gray and Wyner have determined the feasible rate region in the vanishing

error regime, as illustrated in Theorem 4.1.3.

37



Chapter 4 — Contributions for correction-based zero-error problems

Theorem 4.1.3 The feasible rate region is the closure of the following set:

U {(RO,RX,Ry) ER’ Ry > I(W;X,Y),R. > H(X|W),R, > H(Y|W)}.
W finite set,
Py ix,y EAW)I XY

(4.17)

Following the same idea as in Remark 3.1.5, this region is also the feasible rate region
in the zero-error regime (i.e. P(X™ # X") = P(Y" # Y") = 0).

4.1.3 Zero-error source coding for a Gray-Wyner network when

side information may be present at the decoder

The following setting is an extension of both problems presented in Section 4.1.2
and Section 4.1.1, in which there are two uncertainties: firstly, the encoder has access to
two sources and their respective side information but does not know which one will be re-
quested by the decoder; and secondly, the side information may be present at the decoder.
The encoding is divided into three steps. In the first step, the encoder sends information
without knowing which source is requested; we aim at sending the common information
between the two sources, hence the “Gray-Wyner network” name for this problem. In
the second step, the encoder knows which source is requested but does not know if the
decoder has access to the side information; if the latter is present at the decoder, then a
zero-error decoding must be done. The third step is an information complement sent by
the encoder in the case where the decoder does not have the side information; and the

decoder must be able to retrieve the source with zero-error.

Definition 4.1.4 The setting of Figure 4.5 is described by:
- Four finite setsU, V, X, Y, and a source distribution Pyyxy € AUXV XX X Y);
- Foralln € N*, (U™, V"™ X" Y™) is the random sequence of n copies of (U,V, X,Y),

drawn in an i.i.d. fashion using Pyyxy.

- An encoder that knows (U™, V"™ X™ Y™) sends binary strings over four noiseless
channels to three decoders that want to retrieve X™ or Y™ without error. Decoder x;

(resp. y) has U™ (resp. V™) as side information.
A coding scheme in this setting is described by:

- A time horizon n € N*,
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1t
| Decoder y — yn» — yn
R i
X" Y™ > Encoder 7L¢ v
fiy 2] Decoder x; [ X7 = X"
Jé T

| o
> —
or,ve Decoder x4 %» Xy =X"

Figure 4.3 — Zero-error source coding for a Gray-Wyner network when side information
may be present.

- Four encoding functions and three decoding functions

L0, ) 02 a0 s Y XM Y — {0, 1}, (4.18)
o s (10,13) xur = am, o5 s (fo,1)7)" = am, (4.19)
o ({0,13) < v =y, (4.20)

such that Im ¢ is prefiz-free for all i € {0,x1,x%a,y};

- The rates over each channel are the average length of the codeword per source symbol:
1 .
R;=—E[lo¢W (U™, V", X", Y")] (4.21)
n
for all i € {0,%1,%2,Y};

- (i) (7) - _ :
n, (¢e )iE{O,xl,xg7y}’ ( d )je{m,xz,y} must satisfy the zero-error property:

P(XT # X") =P(X3 # X") =P(Y" #Y") = 0; (4.22)
where
X7 = ¢ (6 (S™), 600 (S™),Um), (4.23)
X7 = P (6 (S™), 65 (S™), 6% (), (4.24)
Y=o (0l0(5"), 62 (S™), V"), (4.25)
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and S™ = (U™, V", X" Y™).

The objective is to find the feasible rate region Raw, which is the closure of the set

{(RO, R..R..R,)€R* (4.26)

3n, (¢7)

()

ie{o,xl,xz,y}’( J )je{xmw} zero-error, with rates (RO,Rxl,RX2,Ry)}. (4.27)

This scenario can be likened to zero-error source coding problems with side informa-
tion at the decoders, but not at the encoder. In such problems, the encoder has partial
or no knowledge of the side information, and zero-error and vanishing error constraints
do not lead to the same rate, in general. The zero-error constraint leads to the use of
graph theoretical concepts for the characterization of the optimal rate. Witsenhausen
first studied in [75] whether Slepian and Wolf’s results can be extended to the zero-error
case, using the chromatic number of the characteristic graph of the source distribution.
In [62], Simonyi studied the generalization to more than one decoder with different side
information, and proved that the optimal rate is the one associated to the worst side
information (in the sense of Witsenhausen). Tuncel and Rose later extended this result to
variable-length codes in [70]. A more in-depth review of the literature for the zero-error
Slepian-Wolf setting can be found in Section 3.3.1.

A second class is the zero-error source coding problems with an encoder that has access
to all side information, and decoders have access to the different side information. In these
problems, the characterization of the optimal rates can be done using a packing lemma
in type classes and the following correcting argument: the source sequence can be fully
transmitted to each decoder whenever a decoding fails. This correcting argument allows
for the extension of lossless results into zero-error results with same rates. A particular
case of Sgarro’s problem in [57] when side information are fully transmitted by the helpers
can be extended to the zero-error case when the side information is also available at the
encoder. In Section 4.2, we characterize the feasible rate region of a problem in this class
presented in Section 4.1.1, where conditional coding does not achieve optimal rates.

Finally, the setting of Figure 4.3 is closely related to several problems in the litera-
ture, with different side information at the decoders and different desired source random
variable, which have been studied under a vanishing error hypothesis. A covering lemma
in type classes can be used to characterize the optimal rates in such problems, for ex-
emple the lossless Gray and Wyner’s (GW) problem [30]. In [68], Timo et al. study the

GW setting with side information at the decoders only and give an inner bound on the
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feasible rate region. In [7], Benammar and Zaidi consider a lossy GW setting with side
information at the decoders only and with an hypothesis on the variables requested at
the decoders. Laich and Wigger study in [43] the influence of the side information at the
encoder in the lossless Kaspi/Heegard-Berger problem. They show that, for some source
distributions, adding side information at the encoder lowers the minimal required rate to

decode without loss.

In Section 4.3 we give an inner bound and an outer bound on the feasible rate region

of the setting in Figure 4.3.

4.2 Main results for the zero-error source coding prob-
lem when side information may be present at the

decoder

We now determine the feasible rate region of the zero-error source coding problem

when side information may be present at the decoder, presented in Section 4.1.1

Theorem 4.2.1

Rei = {(Rl,RQ) e R ‘ Ry > H(X|Y), Ry + Ry > H(X)}. (4.28)

N
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Figure 4.4 — Zero-error achievable rate region Rg;.
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Proof. [Converse of Theorem 4.2.1] In this setting, each decoder must retrieve X with zero-
error. Using Shannon lossless source coding result [18, Theorem 5.3.1], we have R+ Ry >

H(X).
Now let us prove Ry > H(X|Y)
Let My = ¢V (S™), where S™ = (S1,...,S,) is sequence of n iid copies of the source

random variables (X,Y). Let Ry = 2E[¢ 0 ¢V (S™)].

Firstly, we can use Kraft inequality as the set Im ¢! is prefix-free, we have

St <. (4.29)

welm qbél)

Let k = ZweImd)‘(il) 2~ we have k < 1 and (27§w>>w61m S is a probability distribu-
tion.
Secondly,
nRy = E[l 0 ¢V(S™)] (4.30)
— Y ROW(S™) = w)t(w) (4.31)
weEIm e
— = Y P(e(S") = w)log 271 (4.32)
weIm ¢e
9—t(w)
=—logrk — Y P(¢M(S™) = w) log (4.33)
w61m¢(el) w
9—t(w)
>— Y POP(S") = w)log (4.34)
weIm ¢e K
> = 3 P(eV(S") = w)log P(pV(S") = w) (4.35)
wEIm e
= H(¢l)(5™)) = H(Mo) (4.36)

where (4.34) and (4.35) respectively come from x < 1 and Gibbs inequality.
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Therefore,

nRy > H(Mo) (4.37)
> H(Mo|y™) (4.38)
— H(Mo,Y™) — H(Y™) (4.39)
= H(X",Y"™) — H(Y™) (4.40)
— nH(X|Y), (4.41)

where (4.40) comes from the zero-error property. O

Our achievability result relies on a random coding argument. We use Csiszar and
Korner’s method of types [20, Chapter 2| in order to calibrate a linear code which is
used to partition the set of source sequences. The encoder sends the coset of the source
sequence to all decoders and the index of the source sequence in its coset to decoder 2.
We show that the zero-error property is satisfied and the corresponding rates converge to
the pair of target rates (H(X|Y),I(X;Y)).

In order to prove Theorem 4.2.1, we show that
(H(X[Y), I(X;Y)) € R (4.42)

In order to complete the achievability result we use a time sharing with the point (H (X), 0),
which is known to be achievable by compressing X using a Huffman code and sending the

resulting binary sequence via ¢().

4.2.1 Definitions for the achievability proof

Definition 4.2.2 (Type class, V-shell) Let Qxy € A, (X x V), its type class is the
set To(Qxy) = {(a™,y") € X" x V" | Typnyn = Qxy}. The Qx|y-shell of a sequence
y™ € Y" is the set %X‘Y(y”) ={z" € X" |Tpnyn = Qxy }-

Definition 4.2.3 (Generator/parity matrix, syndrome, coset) Let A be a finite set
such that |A| is prime, so we can give A ~ Z/|A|Z a field structure. For all n,k € N*,
we denote by M, (A) the set of n x k matrices over the finite field A.

Let k € N*, a generator matriz is a matriv G € M,, ;;(A). An associated parity matric
is a matriv H € M,,_,,,(A) such that Im G = Ker H, where Im and Ker denote the image

and the kernel, respectively.
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To'(@x)  T5"(Qy)

Qx|y-Shell of y~ 8 7@Oy
w2 )+e(M) sequences in T(Qy)
onH(XY)+o(n) sequences in Q) x|y-Shell % _— Oy

onH(XY)+o(n) edges in total
Figure 4.5 — An illustration of type classes and () x|y-shells. Edges correspond to jointly
typical sequences with € = 0, i.e. Tyn yn = Qx y. At most 2nl(X5Y)+o(n) disjoint Q@ x y-shells

: n T3 (Qy)|  _ onHX)+o(n)  pt X;Y)+o(n
can be packed in 7" (Qx), as ITQ;Y(y")I = ZrRrTrery = 2 (X5Y)+o(n)

The syndrome of a sequence a™ € A™ is Ha"™. The coset associated to the syndrome
Ha" is the set Im G + a" = {a"" € A" | Ha™ = Ha"}.

4.2.2 Coding scheme

For all n € N*| we show the existence of a sequence of (n, Rg"), Ré"))—zero—error source
codes that achieves the corner-point (H (XY), I(X; Y)) of the zero-error rate region Rg;.
Our proof is based on a linear code adjusted depending on the random type T'x» y=, and
coset partitioning of the Hamming space.

We assume w.l.o.g. that Pxy # Px ® Py. We also assume w.l.o.g. that |X| is prime
number by padding (i.e. extending with zeros) Py y if necessary. We fix the block-length
n and a constant parameter § € (0;log |X| — H(X|Y')) that will represent a rate penalty.

- Random code generation: For each pair of sequences (z",3"), we define the param-

eter N
. H(Tn n)—H(Tn)—i—é
k= — Y Y . 4.43
e log | X (4.43)

where [-] denotes the ceiling function and (-)* denotes max(-,0). We denote by
K the random variable induced by k defined in (4.43), for the random sequences
(X™,Y™). A generator matrix G € M,,,,(X) is randomly drawn, with i.i.d. entries
drawn according to the uniform distribution on X. If k£ # 0, let Gy be the matrix
obtained by extracting the k first lines of G, and H;, a parity matrix associated to
Gy.

The random code C consists of the set of random matrices C = (Gy, Hy)r<n. Before
the transmission starts, a code realization is chosen and revealed to the encoder and
both decoders.
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- Encoding function ¢{: Let E € {0, 1} be such that £ =0 if K # 0 and (Im Gk +
X”) N %Xn‘yn (Y") = {X"}, E = 1 otherwise; where Txny» is the conditional

distribution obtained from T'x» y». Then we define

an n,E,H Xn leIO,
ot (X7, V) = Ly xX7) (4.44)
b(TXn’Yn,E,Xn) lf E - 1,

where b(-) denotes the binary expansion.

- Encoding function ¢{®: If E = 0, the index of X™ in its coset Im Gx + X" is
compressed using a Huffman code with the distribution Pxn. Let t(Gg, X™, Y™) be

the resulting binary sequence, then we set
SD (X" Y™ = (G, X", V™). (4.45)

Otherwise, {2 (X, Y™) = 0.

- Decoding function gbl(il): It observes ¢! (X™ Y™) and extracts E and Txn yn. If E =
1

o3 (@D (X, Y™, Y") = X" (4.46)

Otherwise F = 0, it extracts Hx X™ and determines the coset Im G + X™. More-
over, by using T'x» y» and Y it determines the T’xn|yn-shell 7}X,L|Yn (Y™), and there-

fore returns an element
D@D(x" Y™, Y™ € (Im Gy + X") N Ty (V"
Pa (¢e ( ) )7 )E m G + N TX"|Y"( )

- Decoding function gzﬁf): It observes ¢(V(X™, Y™) and extracts E and Txnyn. If
E =0, it extracts Hx X™ and determines the coset Im Gg + X", and it returns
QS&Q)(QSS)(X”, Y™, ¢ (X", Y”)), the element of Im G x+X" with index ¢{® (X", Y™).
If £ =1, it returns

o (6D (X" V™), 62 (X7 ¥™)) = X

Remark 4.2.4 The parameter K is selected so that when K > 0, the number of parity

bits of the linear code asymptotically matches the conditional entropy.
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4.2.3 Zero-error property and rate analysis

We now prove that the code built in Section 4.2.2 satisfies the zero-error property. It
is clear that both decoders retrieve X with zero-error when F = 1.
If E'= 0, then by definition of £/ we have (Im Gx + X") N Tryp . (Y") = {X"}, hence
P (WX, Y™),Y") = X" with probability 1. On the other hand, ¢{(X",Y") =
L(Gg, X", Y"), so the element of Im G + X" with index ¢ (X™ Y™) is X™. Thus,
DM (X, Y™), 6P (X", Y")) = X" with probability 1.

Lemma 4.2.5 (Rate analysis) For all parameter § > 0, the sequence of rates of the
codes built in Section /.2.2 satisfy

R o H(X|Y)+46, R — I(X:Y). (4.47)

n—oo n—oo

The proof can be found in Appendix A.1.

4.3 Main results for the zero-error source coding prob-
lem for a Gray-Wyner network when side infor-

mation may be present at the decoder

We first give an inner bound on the feasible rate region in Theorem 4.3.1, based on the
following coding strategy. For all realization (2™, y™) of the source, an auxiliary sequence

wn

is used to capture the common information between the source sequences, and the
sets of possible sequences ™ and y™ are partitioned into cosets. As the side information is
available at some decoders, random binning is done so that less information is transmitted
on w" through the common channel. Decoding algorithms are based on V-shells of side
information sequences, and the zero-error property is ensured by an error bit that is
accompanied by all source sequences if set to 1. We also give an outer bound on the
feasible rate region in Theorem 4.3.2, and we show in Section 4.3.1 that the inner and

outer bound coincide in several cases of interest.
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Theorem 4.3.1 (Inner bound) The rate tuples (Ry, Ry, Ry,, R,) that satisfy

Ry > I(U,V,X,Y;W) — min (I(U; W), I(V; W)), (4.48)
R, > H(X|U,W), (4.49)
Ry, > I(X;UIW) + min (I(U; W), 1(V; W), (4.50)
R, > H(Y|V,W), (4.51)

for some finite set W and distribution Pyyvwxy = Puyv,xyPwuyvx,y are achievable.

Theorem 4.3.2 (Outer bound) The rate tuples (Ro, Ry, , Ry,, Ry) that are achievable

must satisfy

Ro > I(X,Y;W|U,V), (4.52)
R, > H(X|U,W), (4.53)
Ry > HY|V,W), (4.54)
Ro+ Re, + Ry, > H(X), (4.55)

for some finite set W and distribution Pyvwxy = PuvxyPwioyvxy-

The proofs of Theorem 4.3.1 and Theorem 4.3.2 are respectively given in Appendix A.2
and in Appendix A.3. These proofs are based on the following Lemma 4.3.3 and Lemma
4.3.5. Lemma 4.3.3 is a covering/packing lemma for type classes. It is different from
the packing lemma in [20, Lemma 10.1], as the latter states the existence of a family of
codewords that satisfy the packing property, instead of drawing them at random following

a given distribution.

Lemma 4.3.3 (Covering/Packing lemma in type classes) Let k € N*,
PA,B S Ak(.A X B), P; e A(.A), and

R, = I(A; B) + D(P4||P;). (4.56)

Let R > 0 such that R # R.. For alln € kN*, let C(™) = (flﬁ}, ey AE”’*]) be a codebook
of random sequences, drawn with a joint distribution that satisfies the marginal condition

Ay~ P§™ foralli e {1,...,2""}.
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- If R < R,, then we have for all b™ € T)*(Pg):
P (30" € C™, Tynpn = Pap) < 27" fiitolm), (4.57)
- If R > R., assuming that the sequences in C™ are iid, we have for all b™ € T*(Pg):

P(3a" € C™, s.t. Ty pn = Pap) (4.58)

— 11— exp {_ on(R—Re)+o(n) |

The proof of Lemma 4.3.3 can be found in Appendix A.4.

Remark 4.3.4 For P; = Pa, we have R. = I(A;B). For Py = Unif(X), we have
R. =log|A| — H(A|B).

Lemma 4.3.5 (Coset partition) Assume that |A| is prime. Let k € N, Py g € Agp(AXx
B), R. = log|A| — H(A|B) and R < R, such that kR/log|A| € N. For all n € kN, let
G ¢ Mo ni/10gx|(A) be a generator matriz whose entries are iid random wvariables
drawn with the distribution Unif(A). Then we have for all (a™,b") € Ty"(Pa.p):

P (3" € InG™ + 0"\ {a"}, Tanpo = Pap) < 27 "(RemHtoln), (4.59)

Proof. For all a”, we have by construction that the coset Ker H™ + g™ \ {a"} is formed
of ].A\"R/ log|¥] _ 1 = 97F _ 1 random codewords, which are pairwise independent and
identically distributed: they follow the distribution Unif(,A)®". The result follows from
Lemma 4.3.3. 0

4.3.1 Comparison with previous results

In this section, we derive the zero-error achievable rate region for several special cases,
in which our inner bound is optimal.

First, consider the zero-error variant of Gray-Wyner problem [30] by setting U and V'
constant, and removing the decoder x,. Our inner bound allows to derive the zero-error

rate achievable region for this problem:

R, > H(Y|W), R, >0, (4.61)
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for some distribution Pyvw.xy = Puv,x,y Pw,v.x,y- Due to the converse from [30, The-
orem 4], this bound is optimal.
Another scheme of interest is when Y and V' are constant, which gives the problem

presented in Section 4.1.1. We obtain the following

Inner bound: Outer bound:

Ry > I(X; WD), Ry > I(X; WD), (4.62)
R, > H(X|U, W), R, > H(X|U,W), (4.63)
R, > I(U; X, W), Ry + Ry, + Ry, > H(X), (4.64)
R, >0, R, >0, (4.65)

for some distribution Pyv,w,x,y = Puv,x,y Pwu,v,x,y- By choosing W constant (resp. W =
X) we retrieve the achievability of the tuple (Ry, Ry, Rx,, Ry) = (0, H(X|U), I(U; X),0)
(resp. (H(X|U),0,1(U;X),0)). It proves that the bound is optimal as the outer bound
gives Ry + R,, > H(X|U) and Ry + Ry, + Ry, > H(X).

We obtain the problem of Timo et al. [68] by removing the side information at the
encoder, and removing the decoder xp. Then the possible distributions Py w xy must
satisfy the Markov chain (U, V) — (X,Y) — W, and we obtain the same inner bound as

them:

Ry > max (1(X,Y;W|U), [(X,Y; W|V)), (4.66)
R, > H(X|U,W), (4.67)
Ry, >0, (4.68)
R, > HY|V,W), (4.69)

for some distribution PU,V,VV,X,Y = PU,V,X,YPW|X,Y-
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CHAPTER 5

CONTRIBUTIONS FOR GRAPH-BASED
ZERO-ERROR PROBLEMS

In the zero-error problems that we call “graph-based”, zero-error constraints are cap-
tured by a characteristic graph, and determining the optimal rate requires to solve hard
graph-theoretic questions. For instance, the zero-error Slepian-Wolf problem presented in
Section 3.3.1 is one of them, its optimal rate is given by the complementary graph entropy
H of the characteristic graph, and finding a single-letter formula for H is an open ques-
tion. However, in order to understand better the nature of the zero-error Slepian-Wolf
problem, we provide new structural results that link it with other problems, such as the
zero-error capacity of a channel C (see Figure 3.2).

Our approach for these structural results is the following. If the encoder is doing several
independent compression tasks with their respective independent side information, then
the optimal rate is given by H(A-), i.e. H of a graph with an AND product structure. As
shown by Tuncel et al. in [71], “separating” the independent tasks yields an achievability
scheme, hence H(A -) < 3 H(-). An important question is to determine whether this
equation is satisfied with equality. When equality holds we say that “linearization” of
H(A-) holds. Similarly, we define the linearization of optimal zero-error capacities C(-, Py)
and Cy. Although, linearization always holds in the vanishing error regime, it does not
hold anymore in the zero-error regime.

Another interesting case of zero-error Slepian-Wolf problem is when the encoder has
a partial information g(Y) on the decoder’s side information. The optimal rate is given
by H(U-), i.e. H of a graph with a disjoint union structure. “Separating” the source
realizations w.r.t. the encoder’s side information also yields an achievability scheme, hence
H(UP ) <3, Pyyy(2)H(+). Similarly, we question the “linearization” of H (L ) ).

In this Chapter, we show the equivalences of the linearizations of the optimal source
and channel zero-error rates H, C(-, P,) and Cy, when considering the AND product

and the disjoint union of graphs, as depicted in Figure 5.1. More details are given about
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existing results in Section 5.1, where we also present formally the linearization problems.
The equivalence of linearizations between H and C(-, Py) is proved in Section 5.2. In order
to link the linearizations of Cy and C(-, Py), it is necessary to study the capacity-achieving
distributions of a graph; the results needed are given in Section 5.3. In Section 5.4 we
show the equivalence of linearizations between Cyy and C'(+, Py/). In Section 5.5 we develop
examples and counterexamples of linearization for Cy, C(-, Py) and H. The linearization
problems and the zero-error channel coding problem with typical input constraint are
formally presented in Section 5.1. The proofs of all results in this Chapter can be found

in Appendix B.

Marton
P 1 [47, Lemma 1
’ linearization of Cy(LI}) ‘ <= |linearization of C(Ul -, P) ‘ — linearization of H (LI -)

iCharpenay et all oo
. Theorem 5.4.2
Schrijver ﬂ !

! ! Charpenay et al. Charpenay et al.
[55, Theorem 2] !

! | Theorem 5.2.6 Theorem 5.2.4
Charpenay et al.,

' Theorem 5.4.1 | U o o _______

’ linearization of Cp(A i) ‘ = 1iniearization of C(A-, P) ‘ = linearization of H (A -)
bemmm - ‘ Marton
[47, Lemma 1]

Figure 5.1 — Equivalences of linearizations between the zero-error capacity Co(-), the zero-
error capacity relative to a distribution C(-, Py), and the complementary graph entropy
H(-). Our results are represented in the dashed rectangles.

5.1 Graph-based zero-error problems

5.1.1 Zero-error channel coding with typical input constraint

In the channel coding problem in the vanishing error regime, I(X;Y") is the best rate
one can achieve with codebooks formed of typical codewords w.r.t. Px; and the channel
capacity is the maximum of I(X;Y") taken over Px.

Similarly, we can think of a more constrained version of the zero-error channel coding
problem, where the channel inputs have to be typical w.r.t. some distribution. The zero-
error capacity of a graph relative to a distribution C(-, P/) was introduced by Csiszar and

Koérner in [21].
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Definition 5.1.1 (Zero-error capacity of a graph relative to P,) The
zero-error capacity of a graph G = (V, E) relative to Py € A(V) is defined by

C(G,Py) = ligélimsupilog a(GA”[’E”(PV)]). (5.1)

Remark 5.1.2 We show in Lemma B.3.1 that the superior limit when n — oo in the

definition of C(-, Py) can be replaced with a reqular limit, thanks to the superadditivity of
the sequence (% loga(GA”[’];"(PV)D)

neN*

We show in Lemma 5.1.3 that C(-, Py) characterizes the optimal rate in the zero-error
channel coding problem with typical inputs. We use this alternative characterization of
C(-, Py) to prove several other results, in particular for capacity achieving distributions.
We define capacity achieving distributions in Section 5.3, and derive several results on
them.

Lemma 5.1.3 Let G = (V,€) be a graph and Py € A(V). Then there exists a sequence
(Cp)nen+ such that

Vn € N*, C, C V" is an independent set in G'", (5.2)
s o0 = ol 2,0 59
log |C,,|

" njoo C(G, Pv). (54)

Furthermore, any sequence (Cp)nen= that satisfies (5.2) and (5.3) also satisfies

1
limsupM < C(G, Py). (5.5)

n—00 n

The proof of Lemma 5.1.3 is developed in Appendix B.3.1. Theorem 5.1.4 from Si-
monyi’s survey [63, Theorem 20] states that Cj is equal to the maximum of C(-, Py/), taken
over the channel input distributions Py, paralleling the channel capacity in the vanishing

error regime.

Theorem 5.1.4 (from [63, Theorem 20]) For all graph G = (V,E),

Co(G) = ploax C(G, Py). (5.6)

Theorem 5.1.4 is obtained from [63, Theorem 20| when the family of graph has only
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one element. The result of [63, Theorem 20] is proved in [29, Sec. 2] for a more general
setting that involves the Sperner capacity of directed graphs. For the sake of completeness,
we provide a proof for Theorem 5.1.4 in Appendix B.3.2 that does not rely on directed
graphs.

The complementary graph entropy is closely related to the zero-error capacity relative
to a distribution. The link between these two quantities is provided by Marton in [47,
Lemma 1], see Theorem 5.1.5 below. This formula is the cornerstone of our results that
extend the properties of H to C(G, ). As stated in Corollary 5.1.6 which makes the link
between H and Cj, a single letter formula for H would also yield a single-letter formula,
for Cy. It is worth noting that, similarly to Cy, H has a known single-letter expression for

perfect graphs (see Section 5.5).

Theorem 5.1.5 (from [47, Lemma 1]) For all graph G = (V,E) and Py € A(V),
C(G,Py)+ H(G,Py)=H(V). (5.7)
Corollary 5.1.6 For all graph G = (V,€),

Co(@) = max (H(V) el PV)>. (5.8)

We can interpret the formula in Theorem 5.1.5 the following way. The quantities
H(G, Py) and C(G, Py) are respectively the minimum number of colors, and the max-
imum size of an independent set. A color class (i.e. vertices of the same color) is an
independent subset of vertices: in the case with same-sized color classes we would need
log a(G) bits to describe the source sequence in its color. Therefore, C'(G, Py) can be seen
as the information needed to describe the index of the source sequence in its color class.
These two quantities sum up to H(V'), which is the information needed to describe the

source sequence without loss; thus 5.1.5 can be seen as an analog for zero-error regime of

the formula I(X;Y) + H(X|Y) = H(X).

5.1.2 Linearization in the zero-error Slepian-Wolf problem

Let us consider the particular instances of zero-error Slepian-Wolf source coding de-
picted in Figure 5.2; where g : Y — Z is a deterministic function, Z is a finite set, and
the pairs ((X,,Y,)).cz are mutually independent. They present a practical interest, as

Figure 5.2a models the case where the encoder carries several independent compression

o4
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tasks with different respective distributions; and Figure 5.2b models the case where the

encoder has partial information on the realizations of the decoder’s side information.

R —~ —

X1, X% —| Encoder Decoder —— (X7, ..., X[3) = (X7, ..., X))
1

Y, Y

(a) Zero-error Slepian-Wolf problem with several independent sources.

R _
X" — Encoder Decoder — X = X

i i
(9m),., yn

(b) Zero-error Slepian-Wolf problem with side information at the encoder.

Figure 5.2 — Two particular instances of zero-error Slepian-Wolf source coding problem.

As shown in Proposition 5.1.7 and Proposition 5.1.9, in these cases the optimal rate is
the complementary graph entropy of a graph with a particular structure: disjoint union
U, and AND product A respectively. Note that the setting in Figure 5.2b is a particular
case of Figure 3.4, as it is equivalent to a setting with source (X, g(Y)) that must be
retrieved by the decoder, and side information Y at the decoder; and also, Figure 3.4 is

a particular case of Figure 5.2b by removing the encoder’s side information.

Proposition 5.1.7 The optimal rate in Figure 5.2a writes

H( A GZ> ; (59)

ZEZ

where for all z € Z, G is the characteristic graph associated to the conditional distribution

Px.|y., with the underlying probability distribution Px_ on its vertices.

Definition 5.1.8 (Disjoint union of probabilistic graphs L) Let A be a finite set,
and let Py € A(A). For all a € A, let G, = (Va, &4, Py,) be probabilistic graphs, their
disjoint union w.r.t. Py is a probabilistic graph (V,E, Py) denoted by |_|ng G, and defined
by:

-V = Ugea Va is the disjoint union of the sets (Va)aca;

- For allv, v € V, vv' € € iff they both belong to the same V, and vv' € &,;

- Py =3 ,c4 Pa(a)Py,, note that the (Py,)aca have disjoint support in V.
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The disjoint union of graphs without probability distribution has the vertex set and
edges defined above, without underlying probability distribution. Therefore we do not spec-

ify a distribution P4 when considering a disjoint union of such graphs.

The disjoint union is also called “sum of graphs" in [71]. An example of disjoint union

and AND product of probabilistic graphs can be found in Figure 5.3.

.@. Ga= U961

SO

G NGy =

Figure 5.3 — An empty graph G; = (N3, 411, ;, 1)) and a complete graph G, = (Ko, (%, %)),
along with their AND product Gy A G5 and their disjoint union Gy UG, w.r.t. (3,3). The

underlying distributions are represented by the numbers on each vertex.

Proposition 5.1.9 The optimal rate in Figure 5.2b writes

[P

H|( || G.|; (5.10)
z€Z

where for all z € Z, G, is the characteristic graph associated to the conditional distribu-

tion (Px|y (2,Y))(@y)exxg-1(z), with the underlying probability distribution Pxgyy—. on its

vertices.

A natural coding strategy for the setting in Figure 5.2a consists in separating the
problem into | Z| source coding sub-problems, where the random variable X, has to be
transmitted to the decoder that knows Y,. Concatenating the optimal coding strategies in

each sub-problem yields a zero-error coding scheme for the problem in Figure 5.2a, with

rate Y.z H(G.).

Definition 5.1.10 The linearization with respect to the AND product A of the optimal

rate H is satisfied when

H ( A GZ> =Y H(G,). (5.11)

z2€EZ zEZ
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The linearization with respect to the disjoint union of graphs || of the optimal rate H is

satisfied when

Pov)
i ( i Gz) = Y Pon(2)H(G.). (5.12)
2€Z 2€Z

Similarly, a natural coding strategy for the setting in Figure 5.2b consists in sep-
arating the source realizations depending on the value of ¢(Y), and use the optimal
coding scheme designed for the distribution Px y4y)=. for all z. The associated rate is
> .cz Pyv)(2)H(G.). When this coding strategy is optimal, the following holds:

H( m/ GZ) - Z PQ(Y)(Z)H(GZ>7 (513)

z2€EZ z2EZ

i.e. H can be linearized w.r.t. L.
These natural coding schemes are both zero-error. For this reason, inequality always

holds in (5.11) and (5.13), as captured in Tuncel et al’s formulae in Theorem 5.1.11.

Theorem 5.1.11 (from [71, Theorem 2]) For all probabilistic graphs G,G' and s €
[0,1],

HGAG) <H(G) + H(G): (5.14)

HG U &) <sH(G) + (1—s)H(G). (5.15)

In the vanishing error regime, these natural approaches are always optimal. However
in the zero-error regime they are not: we develop a counterexample in Theorem 5.5.13.
We also show in Section 5.5 that for some classes of graphs (5.11) and (5.13) hold for all
underlying distributions on the vertices. This enables us to derive a single-letter charac-
terization of H for a new class of graphs. We will see in the following that the linearization

of (5.14) is equivalent to the linearisation of (5.15).

5.1.3 Linearization in zero-error channel coding

In the zero-error channel coding setting, a case of interest is when encoder can use
multiple independent channels to communicate with the decoder, depicted in Figure 5.4.

We can think of two transmission regimes in this setting:
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i Channel Py, x, L

Encoder —— (X7, IZI)

Decoder —~  _ (X7, ., ‘%') c xnlzl

Q

Y"‘

i‘% Channel Py‘

21Xz

(a) Product of channels.

X Channel Py, |x, L4

Encoder O—» Decoder [— (X,)i<n = (X3, )i<n € X"

X1z} Channel Py x 2

(b) Sum of channels.

Figure 5.4 — Two particular instances of zero-error channel coding problem.

- Product of channels: all the channels are used by the encoder at each time step,

and the decoder observes all channel outputs.

- Sum of channels: at each time step t < n, the encoder has to use exactly one
channel z; among the |Z| channels. The decoder observes the chosen channel index

and its output, and has to retrieve the input of the chosen channel.

In the vanishing error regime, the respective optimal rates for these settings depend
on the channel capacities C, = maxp,_eca(x) [ (X.;Y,): Y.z C, for the product of chan-
nels, and log (Zze = 202) for the sum of channels. However, in the zero-error regime, the
optimal rates for the sum and product of channels are respectively given by the zero-error
capacities of a product graph and a disjoint union graph; as shown in Proposition 5.1.12

and Proposition 5.1.13.

Proposition 5.1.12 (from [58]) The optimal rate in Figure 5.4a writes
Co (/\ Gz> ; (5.16)
z2€Z

where for all z € Z, G, is the characteristic graph associated to the conditional distribution

PXZ‘YZ .
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Proposition 5.1.13 (from [58]) The optimal rate in Figure 5./b writes

Co <|_| GZ> ; (5.17)

Z2EZ

where for all z € Z, G, is the characteristic graph associated to the conditional distribution

PXz\Yz'

A possible zero-error coding scheme in Figure 5.4 in the product of channels consists in
separately using optimal codebooks, designed respectively for each channel. The associated
rate is Y.,cz Co(G.) and satisfies

Co (/\ GZ> >3 Co(G,). (5.18)

z€EZ zZ€EZ

There are cases where equality holds in (5.18), i.e.

Co (/\ GZ> => Co(G.), (5.19)

2€Z €2
which we call “linearization” of Cjy w.r.t. A; and cases where inequality in (5.18) is strict,
for instance the Schlafli graph and its complement (see Section 5.5.2).

For the sum of channels, we can use the optimal codebooks designed for each channel,

with a time-sharing w.r.t. the following distribution:

( QCO(GZ) ) ( )
P,=| ———— . 5.20
3 2Co(G/) ez

ZeZ

The distribution P represents the optimal time-sharing between the different code-
books, as we prove in Lemma B.4.5 that P} defined in (5.20) is the maximizer of the
function Py — H(Pz) + X .cz Pz(2)Co(G,).

The rate writes

> ez 2C0(G1)
H(P}) + ¥ P(:)Go(Ga) = 3 P3(2) <10g (QC(G)) ¥ 00<GZ>) (5.21)

zZEZ zEZ

= log (Z 200<Gz'>) : (5.22)

Z'eZ
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and if this strategy is optimal, then the following holds:

Co <|_| GZ> = log (Z 200<Gz>> : (5.23)

Z2EZ z€EZ

i.e. Cy can be linearized w.r.t. L.

Definition 5.1.14 The linearization with respect to the AND product N\ of the optimal

rate Cy is satisfied when

Co <é\z GZ> = ZEZZCO(GZ). (5.24)

The linearization with respect to the disjoint union of graphs of the optimal rate Cy is

satisfied when

Co <|_| GZ> = log (Z 200<GZ>> : (5.25)

ZEZ z2€Z

Remark 5.1.15 Linarization always holds in the vanishing error regime, in the sense that
the optimal coding strategy for communicating over several independent channels consists

in using respective optimal codebooks for each channel. In other words,

max 1(Xy,.... X z;Y1,....Y z) = max [(X,;Y,). 5.26
Py CA(XIZ) (X1, X2 V1, Viz)) ;PXZEAM( ) (5.26)

Remark 5.1.16 Note that P is full-support: it can be observed Py — H(Pyz) has an
infinite slope at the frontier of A(Z), consequently the maximizer of Py — H(Pyz) +
>.ez Pz(2)Co(G.,) is always an interior point. In other words, the information carried by
the channel index H(Py) offsets the loss in rate, if the channels with smaller capacities are
not chosen too often. Therefore, in the sum of channels setting, always choosing the chan-
nel with highest capacity is suboptimal; and never choosing a channel is also suboptimal,

even if this channel has zero-error capacity 0.

These natural coding schemes are both zero-error. For this reason, inequality always

holds in (5.19) and (5.23), as captured in Shannon’s formulae in Theorem 5.1.17.
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Theorem 5.1.17 (from [58, Theorem 4]) For all graphs G,G’,

Co(G U G') < log (290(S) 4 20()) (5.27)
Co(G A G < Co(G) + Co(@). (5.28)

The Schléfli graph S is a counterexample of linearization of Cy used by Haemers in
[33] (see [15, Section 6.1] for an explicit construction), as stated in Theorem 5.1.18. To
prove this result, Haemers uses a bound on the zero-error capacity based on the rank of
the adjacency matrix of the graph. Refinements of this bound are developed by Bukh and
Cox in [10], and by Gao et al. in [26]. Corollary 5.1.19 follows from Schrijver’s result in
Theorem 5.1.20.

Theorem 5.1.18 (from [33]) Let S be the Schlifli graph and S its complementary graph,

Corollary 5.1.19 Cy(SUS) > log (200(5) + 200(5)) )

In [36], Keevash and Long study the maximal value of Cy(G LI G') under the assumption
Co(G), Co(G) < e.

As stated in Theorem 5.1.20, Schrijver has shown that the cases of equality in Theorem
5.1.17 coincide. In Section 5.2, we show the equivalence of the linearization for H and
C(-, Py), this requires new proof techniques. Furthermore, as we point out in Section 5.3
and Section 5.4, studying the capacity achieving distributions is necessary in order to link

Cy and C(+, Py) and their linearizations.

Theorem 5.1.20 (from [55, Theorem 2]) For all graphs G,G’,

Co(G U G') = log (20(A) 4 200(@)) (5.29)
= Co(GAG) = Co(G) + Co(G). (5.30)

In Section 5.4 and Section 5.2, we show that the graphs that allow for a linearization

of Cy, C(+, Py), and H are the same, when Py is a capacity-achieving distribution.
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Figure 5.5 — The 2-discretized probability simplex Ay(X x Y) for X =Y ={0,1}.

5.2 Main results on the linearization of H and C(-, Py)

In this Section we show the equivalence between the linearizations of H(LI-), H(A ),
C(U-, Py) and H(A-, Py). In the following A is a finite set and (Gy)aca = Va, Eay Py, )aca
is an arbitrary finite family of probabilistic graphs.

A crucial result for several linearization proofs is Lemma 5.2.1, which give an expression
for the complementary graph entropy of a disjoint union w.r.t. a type; the proof is given
in Appendix B.2.1. The main reasons why A appears in (5.31) in Lemma 5.2.1 are the
AND powers used in H, and the distributivity of A w.r.t. L (see Lemma B.2.4).

Lemma 5.2.1 If Py € Ay(A) for some k € N* then

H (ﬁ Ga> = ;H ( A\ ngPA<a>> : (5.31)

acA acA

When P4 = Unif(A), we show in Corollary 5.2.2 that H(U - ) and H(A - ) are equal

up to a multiplicative constant.

Corollary 5.2.2
o Unif(A) 1
H( || Gu|=—-H </\ Ga) . (5.32)
acA |‘A| acA
Remark 5.2.3 In Lemma 5.2.1, if Pa € Ap(A), then Py € Ajy(A) for all i € N*.
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However, this does not change the expression (5.31) as

1 : 1 N1
H NikPa(a) | _ H NkPa(a) - _FH NkPa(a) ) )
. (/\ a) (A G (G (5.33)

acA acA acA

In Theorem 5.2.4, we show that the cases of equality coincide in Tuncel et al’s in-

equalities in Theorem 5.1.11.

Theorem 5.2.4 Let Py € A(A) with full-support, then the following equivalence holds:

acA acA

i (ﬁ Ga) = Y Pa(a)H(Ga) (5.34)

— H ( N Ga> =Y H(G,). (5.35)
acA acA

The proof of Theorem 5.2.4 is given in Appendix B.2.2. The key results of this proof are
Lemma 5.2.1 which gives the equivalence between linearizations of H(A -) and H (LU -);
and Lemma B.2.2, Lemma B.2.3 that extend this equivalence to all distributions P4 with
full-support.

As a consequence of Marton’s formula H(G) + C(G, Py) = H(Py), and the fact that
the entropy H(-) always behaves additively w.r.t. independent random variables, we show
with Proposition 5.2.5 the equivalence of linearizations between H and C|(-, Py). We also
show superadditivity inequalities on C(A -, Py) and C(U -, Py) based on Tuncel et al’s
subadditivity inequalities on H in Theorem 5.1.11. The proof of Proposition 5.2.5 is given
in Appendix B.2.4.

The symmetric behaviors of H and C(-, Py) lead to the equivalence between the lin-
earizations of C(A -, Py) and C(U -, Py) stated in Theorem 5.2.6, as a direct consequence
of Theorem 5.2.4 and Proposition 5.2.5.

Proposition 5.2.5 Let Py € A(A), then

C (|_A| G PA(a)PVa) > H(Py) + Y Pa(a)C(Ga, Py, (5.36)
acA acA acA

C(/\ Gm ®PVa> > ZC(GmPVa); (537)

acA acA acA
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and the following equivalences hold:

¢ (|_A| Ga, Y PA(Q)PVG) = H(Pa) + Y Pa(a)C(Gq, Py,) (5.38)

acA acA acA

=1 (fj Ga> = Y Py (GL); (5.39)
acA acA

C ( A Go @ Pva> = > C(Ga, Py,) (5.40)

acA acA acA

<~ H </€\A Ga> = %F(Ga). (5.41)

A natural question is about the equivalence between (5.38) and (5.40). In the next

Theorem (which follows from Theorem 5.2.4), we show that this equivalence holds.

Theorem 5.2.6 Let Py € A(A) with full-support, then the following equivalence holds:

¢ (I|D_A| Gas D PA(G)Pva) = H(Pa) + )_ Pa(a)C (G, Py,) (5.42)

acA acA acA

—=C (/\ G, Q) Pva> =Y C(G,, Py,). (5.43)
acA acA acA

In this Section we proved that the equivalence of the linearisations between H and

C(+, Py) holds. In the next Sections, we investigate the linearisation of the zero-error

capacity Cjp.

5.3 Main results on capacity-achieving distributions

In this Section, we define the set of capacity-achieving distributions of a graph, which
are the distributions Py such that C'(-, Py) is equal to Cy. We give results on the capacity-
achieving distributions when the graph is a product, and when the graph is vertex-
transitive. Furthermore, understanding the capacity-achieving distributions is a necessary
step towards the equivalence of linearization between Cy and C(-, Py), which is presented
in Section 5.4. In the following, A is a finite set and (Gy)aea = (Va, Ea)aca is an arbitrary
finite family of graphs.

64



5.83. Main results on capacity-achieving distributions

Definition 5.3.1 (Set of capacity-achieving distributions P*) Let G =
(V,E) be a graph. The set of capacity-achieving distributions of G is the subset of A(V)
denoted by P*(G) and is defined by

P*(G) = argmax C(G, Py). (5.44)

PyeA(V)
Proposition 5.3.2 For all graph G, the mapping Py — C(G, Py) is concave. The set of
capacity-achieving distributions P*(G) defined in Definition 5.3.1 is convex, nonempty,

and satisfies
VP, € P*(G), Cy(G) = C(G, Py). (5.45)

The proof of Proposition 5.3.2 is developed in Appendix B.3.3; the key result used in
the proof is the formula maxp, C(G, Py) = Co(G) from Theorem 5.1.4.

In Theorem 5.3.3, we show that if a joint distribution is capacity-achieving for a
product of graphs, then the product of its marginals is also capacity-achieving. The proof
of Theorem 5.3.3 is given in Appendix B.3.4, and is based on a codebook shifting argument:
with a given zero-error codebook for GAG’ with average type Py, one can build a shifted
zero-error codebook (for an increased number of channel uses) with the same rate and

average type Py ® Py.

.....

Corollary 5.3.4

Co (/\ Ga> = max C ( N\ Ga, @ Pva> . (5.46)
acA (Pva)aca acA acA
acA A(Va
We show in Lemma 5.3.7 that the uniform distribution achieves the zero-error capacity

for vertex-transitive graphs, i.e. a graph in which all the vertices play the same “role”.

The proof of Lemma 5.3.7 is given in Appendix B.3.5.

Definition 5.3.5 (Group of automorphisms Aut) An automorphism of a graph G =
V,E) is a bijection ¥ : V — V such that for all v,v' € V, vv' € £ if and only if
Y()(v') € E. The group of automorphisms of G is denoted by Aut(G).
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Definition 5.3.6 (Vertex-transitive graph) A graph G = (V, &) is vertex-transitive
if Aut(G) acts transitively on its vertices, i.e. for all v,v" € V, there exists ¥ € Aut(QG)
such that ¥ (v) =

Lemma 5.3.7 If G = (V,€) is vertex-transitive, then
Unif(V) € P*(G). (5.47)

Corollary 5.3.8 Let (Go)aca = (Va,Ea)aca be vertez-transitive graphs, their product is

also vertex-transitive and

Unif (H va> Q Unif(v,) € P (/\ G ) (5.48)

acA acA acA

5.4 Linking the linearizations of C, and C(-, Py)

In this Section, we show the equivalences of linearizations between Cy and C(-, Py).
In the following, A is a finite set and (G4)aca = (Va, Ea)aca is an arbitrary finite family
of graphs.

Theorem 5.4.1 states that Cy(A - ) can be linearized if and only if C(A -, Py) can be
linearized for some distribution P, which is capacity-achieving for the product. When the
linearisation of C'(A -, Py) holds, we also show that the marginals of such a distribution
are capacity-achieving for the respective graphs in the product. A similar result is derived
for the disjoint union in Theorem 5.4.2; this result makes use of the optimal distribution
Pa(a) = % which is the maximizer of Py — H(Py) + Yoea Pa(a)Co(Gy) as
stated in Lemma B.4.5. The proof of Theorem 5.4.1 and Theorem 5.4.2 are respectively

given in Appendix B.4.1 and Appendix B.4.4.

Theorem 5.4.1 The following holds

Co (A Ga> = > Co(Ga) (5.49)

acA acA
— HP\/l 77777 IAl c P* </\ Ga>7 (/\ Ga, ® PV@) - Z O(Ga, PVa). (550)
acA acA acA acA

Furthermore, any distribution @qeca Pv, € P* (Aaca Ga) that satisfies (5.50) also satisfies
the following: Ya € A, Py, € P*(G,).
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Theorem 5.4.2 The following equivalence holds

Co <|_| Ga> = log (Z 200<Ga>> (5.51)

acA acA

< JPy € P* <|_| Ga>, (5.52)
acA

C (ﬁ Ga, > PA(G)PVQ) = H(Pa) + > _ Pa(a)C(Ga, Py,), (5.53)

acA acA acA

where Py, = Pyyey, and Pa(a) = Py(V,) for alla € A. Furthermore, any Y ,c 4 Pa(a)Py,
that satisfies (5.53) also satisfies the following for all a € A:

9C0(Ga)

PA(CL> = EQIGA 200(Ga/),

and Py, € P*(G,). (5.54)

Remark 5.4.3 One could think of a possible proof strategy for Theorem 5.4.2, which is
successively using the equivalences in Theorem 5.1.20, Theorem 5.4.1, and Theorem 5.2.6.

However, doing so yields the following statement

Co (Uuea Ga) = log (S4eq 260 (5.55)

,,,,,

C (I—lng GUH ZaEA PA(a’>PVa) = H(PA) + EaE.A PA<G’)C<GCL> PVa);

a missing step consists in linking P* (Uyea Ga) with P* (Agea Ga)-

5.5 Main examples and counterexamples of lineariza-

tion

5.5.1 Perfect graphs

In this Section, we show that perfect graphs allow for linearization of Cy, C(-, Py)
and H w.r.t. both U and A with any underlying distribution. Perfect graphs are one of
the only known examples of graphs with a single-letter formula for H and Cj, as stated
in Theorem 5.5.4 and Theorem 5.5.5. We also give single-letter formulae for Cy, C(-, Py)

and H for products of perfect graphs, which are not perfect in general. Therefore, our
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results yield new examples of single-letter formulae Cy, C(-, Py) and H for cases where

such formulae were previously unknown.

Definition 5.5.1 (Graph complement, clique number w) For all G = (V,€), the
complementary graph of G is defined by G = (V,E). The clique number of G is defined

by w(G) = a(G).

Definition 5.5.2 (Perfect graph) A graph G = (V,€) is perfect if VS C V., x(G[S]) =
w(G[S]). A probabilistic graph (V,E, Py) is perfect if (V,E) is perfect.

Definition 5.5.3 (Korner graph entropy H,) ForallG = (V,E, Py), let I'(G) be the
collection of independent sets of vertices in G. The Kérner graph entropy of G is defined

by

H.(G) = yenin I(W;V), (5.57)
where the minimum is taken over all distributions Py, € AW)Y, with W = T'(G) and

with the constraint that the random vertex V' belongs to the random independent set W
with probability one, i.e. V€ W € I'(G) in (5.57).

Theorem 5.5.4 (from [22, Corollary 12]) Let G be a perfect probabilistic graph, then
H(G) = H.(G). (5.58)

Shannon proved in [58, Theorem 3] that a graph G whose vertex set can be partitioned
into a(G) cliques (i.e. complete induced subgraphs) satisfies Co(G) = a(G). Perfect graphs

are an example of that, as their complementary is also perfect, and satisfy x(G) = w(G) =

a(@G), where x(G) is the clique cover number.

Theorem 5.5.5 (from [58, Theorem 3]) IfG is a perfect graph, then Co(G) = log a(G).

As stated in Proposition 5.5.6, perfect graphs are an example of linearization for Cy:
since Co(GUG’) = loga(GUG") = log(a(G) + a(G")) = log(290(@) 4-2¢0(G)) holds for all
perfect G, G’, we obtain Co(G A G') = Co(G) + Co(G’) by Schrijver’s result in Theorem
5.1.20.
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5.5. Main examples and counterexamples of linearization

Proposition 5.5.6 Let G and G’ be perfect graphs, then

Co(G UG = log (29019 4+ 270(%)) = log(a(G) + a(G)); (5.59)
Co(G NG =Co(G) + Co(G') =log a(G) + log a(G"). (5.60)
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Figure 5.6 — A non-perfect AND product of perfect graphs: Cs A Cg with an induced C5.

AND products of perfect graphs are not perfect in general; see for example Figure
5.6 where a product of two perfect graphs contains an induced C7, which makes it non-
perfect by Theorem 5.5.7. However, a disjoint union of perfect graphs is always perfect,
as stated in Lemma B.5.2; therefore the results on equivalence of linearizations are useful
to extend the linearization properties and single-letter expressions to the AND product of
perfect graphs. In Theorem 5.5.8 we show that perfect graphs allow for the linearization
of C(-, Py) and H, for all underlying probability distributions; and we also give a single-
letter expression for H and C(-, Py) in that case. The proof of Theorem 5.5.8 is given in
Appendix B.5.1.

Theorem 5.5.7 (Strong perfect graph theorem, from [16, Theorem 1.2]) A graph
G is perfect if and only if neither G nor G have an induced odd cycle of length at least 5.

Theorem 5.5.8 When (Golaca = (Va,Eas Py, )aca s a family of perfect probabilistic
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graphs, the following single-letter characterizations hold:

H(A@}&)MMZZmWJ (5.61)

acA acA acA
H (I_Al Ga) = Z PA(G)H(GG) = Z PA(a)HH(Ga)a (562)
acA acA acA

C ( /\ Gm ® PVa> = Z C(Gaa PVa) = Z (H(Va) - Hn(Ga))7 (563)

acA acA acA acA

C (ﬁ Gay > PA(G)PVQ> = H(Pa) + ) Pa(a)C(Ga, Py,)

acA acA acA

=M&H§¥mﬂmm—mw@. (5.64)

Another interesting example is the graph Cy LI G where G is perfect, which is an
example of linearization of H with single-letter formula developed by Tuncel et al. in
[71]. The pentagon graph Cj is not perfect, and makes non-perfect any disjoint union or
AND product that is made with it. However we can use Theorem 5.2.4, and derive in

Corollary 5.5.10 another non-perfect example of linearization with single-letter formula
for H: C5 A G with G perfect.

Theorem 5.5.9 (from [71, Lemma 3]) Let s € [0,1], let G be a perfect probabilistic
graph, and let Gy = (C5, Unif ({0, ...,4})), we have

_ (s,1—s) __ _

H(Gs; U G)=sH(G;5)+(1—-s)H(G) (5.65)

- glog 5+ (1— s)Ho(G). (5.66)
Corollary 5.5.10 For all perfect probabilistic graph G,

H(GAGs5)=H(G)+ H(Gs) = Hi(G) + Llogh. (5.67)

2

5.5.2 The Schlafli graph

In order to use the Schlifli graph S as a counterexample for C(-, Py) and H, we need
a capacity-achieving distribution of S A S. As stated in Lemma 5.5.11, the Schlifli graph
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is vertex transitive. By Lemma 5.3.7 and Corollary 5.5.12; the uniform distribution is

capacity-achieving for S, S, and S A S.
Lemma 5.5.11 (from [11, Lemma 3.7]) The Schlifli graph is vertez-transitive.

Corollary 5.5.12 The sets P*(S), P*(S), and P*(SAS) all contain the uniform distri-

bution.

In Theorem 5.5.13 we adapt the Schlifli graph counterexample to C(-, P) and H by

using our results from the previous sections.

Theorem 5.5.13 Let s € (0,1), let S = (Vs,Eg, Unif(Vs)) be the Schlafli graph and
let S = (Vs, &g, Unif(Vs)) be the complementary of the the Schiifli graph with uniform

distribution on their vertices. Then

C(S A S, Unif(Vs) @ Unif(Vg)) > C(S, Unif(Vs)) + C(S, Unif(Vg)),  (5.68)
C(SUuS,sUnif(Vs) + (1 — s) Unif(Vg)) > hy(s) + sC(S, Unif(Vs))

+ (1= 5)C(3, Unif(Vg)), (5.69)
H(SAS) < H(S) + H(S), (5.70)
a5 U7 3) < sH(S) + (1 - ) H(S): (5.71)

where hy, is the binary entropy.

We obtain the first inequality from Theorem 5.4.1 and Corollary 5.5.12; the second
one from Theorem 5.2.6; the third one comes from Proposition 5.2.5; and the last one
from Theorem 5.2.4.

Remark 5.5.14 Alon has built in [4] infinite families of graphs that satisfy Co(GUG') >
log(260(&) 4 2€0(&) - Similar results as in Theorem 5.5.13 can be derived for these graphs,

by using their respective capacity-achieving distributions.
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CHAPTER 6

CONTRIBUTIONS FOR CODING FOR
COMPUTING ZERO-ERROR PROBLEMS

In this Chapter, we study the zero-error coding for computing problem with side
information at the encoder, presented in Section 6.1. We fist give an asymptotic expression
for the optimal rate in the general case, then we formulate an hypothesis on Pxy and
g that we call “pairwise shared side information” that allows us to derive a single-letter
characterization of the optimal rate. In particular it covers the cases with Pxy full-
support, without any assumption on f,g.

This hypothesis is satisfied if every pair of source symbols “share” at least one side
information symbol for all output of g. It has graph-theoretic interpretations, as the
single-letter formula stems from the particular structure of the characteristic graph of the
problem: a disjoint union of OR products. We also prove that this condition is equivalent

to the worst optimal rate in an auxiliary Slepian-Wolf problem.

6.1 Coding for computing problems

6.1.1 Coding for computing in the vanishing error regime

The coding for computing problem is defined in [50] by Orlitsky and Roche. In this

setting the decoder wants to retrieve a function of both encoder’s and decoder’s data.

R
X"™ > Encoder Decoder p (f(Xt, Yt))

!
Y’n

t<n

Figure 6.1 — Coding for computing.

Definition 6.1.1 The source coding problem of Figure 6.2 is described by:
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Finite sets U, X, Y and a source distribution Pxy € A(X x Y);

For alln € N*, (X™,Y™) is the random sequence of n copies of (X,Y), drawn in an

i.1.d. fashion using Pxy .

Two deterministic functions

f:AXY—=U. (6.1)

An encoder that knows X™ sends binary strings over a noiseless channel to a decoder
that knows Y, and that wants to retrieve (f(Xt, Yt))t< without error.
<n

A coding scheme in this setting is decribed by:
- A time horizon n € N*, and an encoding function ¢, : X™ — {0, 1}* such that Im ¢,
is prefix-free;
- A decoding function ¢q : Y™ x {0, 1} — U";
- The rate is the average length of the codeword per source symbol, i.e. R = %E lo
?(X")];

- N, ¢, Og must satisfy the e-error property:
P<¢d(Y",¢e(X">) o (f(Xt,Yt))tSn> <e. (6.2)

The objective is to find the minimal rate among all coding schemes under the vanishing
error constraint:
« Coe 1 n
Ripe =lim inf —E[Co ¢ (X", (9(Y0))i<n)]- (6.3)

e—0 n:¢e ,¢d n

€-€error

As illustrated in Theorem 6.1.4, Orlitsky and Roche give in [50] a single-letter expres-
sion of the optimal rate. This optimal rate is characterized with a characteristic graph
Geore defined below, and a conditional version of Korner’s graph entropy (the latter is
defined in Definition 5.5.3).

Definition 6.1.2 (Conditional Korner graph entropy) For all G = (V, &, Py), let
['(G) be the collection of independent sets of vertices in G. Let Py € AY)VI, the
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6.1. Coding for computing problems

conditional Kérner graph entropy of G is defined by

H.(G|Y) = Wm‘i/n . I(W; V1Y), (6.4)
Vewer(c)

where the minimum is taken over all distributions Pyvy € AW)Y, with W —V =Y
(i.e. Pwyvy = Pwv), W =T'(G) and with the constraint that the random vertex V' belongs
to the random independent set W with probability one, i.e. V€ W € I'(G) in (6.4).

Definition 6.1.3 (Characteristic graph Gcre) The auziliary graph Geopc is defined
by
- X as set of vertices with distribution Py,

-z’ are adjacent if f(x,y) # f(a,y) for some y € supp Py|x—, N supp Py|x=a

Theorem 6.1.4 (from [50])

Ripe = Ho(GerelY).

6.1.2 Zero-error coding for computing with side information at

the encoder

X" > Encoder Decoder (ﬂXt’ Y;))t<n
) 1 )
(), yr

Figure 6.2 — Zero-error coding for computing with side information at the encoder.

The problem of Figure 6.2 is a zero-error setting that relates to Orlitsky and Roche’s
coding for computing problem from [50]. This coding problem appears in video compres-
sion [23, 27], where X™ models a set of images known at the encoder. The decoder does not
always want to retrieve each image, but has instead a sequence Y™ of particular requests for
each image, e.g. detection: cat, dog, car, bike; or scene recognition: street/city /mountain,
etc... The encoder does not know the decoder’s exact request but has prior information
about it (e.g. type of request), which is modeled by (g(Y;))i<n. This problem also relates
to the zero-error Slepian-Wolf open problem presented in Section 3.3.1, as it is obtained

as a special case by taking ¢ constant and f(X,Y) = X.
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Definition 6.1.5 The zero-error source coding problem of Figure 6.2 is described by:

Four finite sets U, X, Y, Z and a source distribution Pxy € A(X x Y);

For alln € N*, (X™,Y™) is the random sequence of n copies of (X,Y'), drawn in an

i.1.d. fashion using Pxy .

Two deterministic functions

FiAXXY U, (6.5)
g: V> Z. (6.6)

An encoder that knows X™ and (g(Yt))t< sends binary strings over a noiseless chan-

nel to a decoder that knows Y™, and that wants to retrieve (f(Xt,Yt)>t< without
<n

error.
A coding scheme in this setting is decribed by:
- A time horizon n € N*, and an encoding function ¢, : X™ x Z™ — {0,1}* such that
Im ¢, is prefix-free;
- A decoding function ¢q : Y™ x {0, 1} — U";
- The rate is the average length of the codeword per source symbol, i.e. R = %E{é o
be (X7, (9(¥1))izn) ]

- N, Qe, Gq must satisfy the zero-error property:

(010 (X" Ve)) £ (070),_ ) =0 (6.7

The objective is to find the minimal rate among all coding schemes under the zero-error
constraint:

Ropoy = inf B[00 6.(X", (g(¥))een)] (6.8)

ZETO-ETTOT

Now the scheme of Figure 6.2 has been studied with different coding constraints than
zero-error, and the optimal rate has been characterized in each case: the lossless case
by Orlitsky and Roche in [50], the lossy case by Yamamoto in [76], and the zero-error
“unrestricted inputs” case by Shayevitz in [60]. These results can only be used as bounds
here: the zero-error problem depicted in Figure 6.2 does not have a characterization of

the optimal rate.
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Numerous extensions of the problem depicted in Figure 6.2 have been studied recently.
The distributed context, for instance, has an additional encoder which encodes Y before
transmitting it to the decoder. Achievability schemes have been proposed for this setting
by Krithivasan and Pradhan in [42] using abelian groups; by Basu et al. in [6] using
hypergraphs for the case with maximum distortion criterion; and by Malak and Médard
in [46] using hyperplane separations for the continuous lossless case.

Another related context is the network setting, where the function of source random
variables from source nodes has to be retrieved at the sink node of a given network.
For tree networks, the feasible rate region is characterized by Feizi and Médard in [24] for
networks of depth one; and by Sefidgaran and Tchamkerten in [56] under a Markov source
distribution hypothesis. In [52], Ravi and Dey consider a bidirectional relay with zero-
error “unrestricted inputs” and characterize the rate region for a specific class of functions.
In [32], Guang et al. study zero-error function computation on acyclic networks with
limited capacities, and give an inner bound based on network cut-sets. For both distributed
and network settings, the zero-error coding for computing problem with encoder side
information remains open.

In Chapter 6, we formulate an hypothesis on Py y and g that we call “pairwise shared
side information” that allows us to derive a single-letter characterization of the optimal

rate. In particular it covers the cases with Py y full-support, without any assumption on

/9

6.2 General case

We first build the characteristic graph G',;, which is a probabilistic graph that captures
the zero-error encoding constraints on a given number n of source uses. It differs from
the graphs used in [60], as we do not need a cartesian representation of these graphs
to study the optimal rates. Furthermore, it has a vertex for each possible realization of
(X " (g(Yt))Kn) known at the encoder, instead of X™ as in the zero-error Slepian-Wolf

problem presented in Section 3.3.1.

Definition 6.2.1 (Characteristic graph G,) The characteristic graph G, is defined
by:

- X" x Z" as set of vertices with distribution P;}’g(y);
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- (2, 2") (2™, 2'™) are adjacent if 2" = 2™ and there exists y" € g (2™) such that:

vVt <n, PX,Y(xbyt)PX,Y(l‘;ayt) >0, (6-9)

and 3t S n, f(l‘hyt) 7é f(x:hyt)) <610)
where g~ (2") = {y" ey" ) (g(yt))Kn = z”}.

The characteristic graph G, is designed with the same core idea as in [75]: (2", 2")
and (2", 2'") are adjacent if there exists a side information symbol y™ compatible with
the observation of the encoder (i.e. 2™ = 2™ and y™ € g~*(2")), such that f(z",y") #
f(z™,y™). In order to prevent erroneous decodings, the encoder must map adjacent pairs

of sequences to different codewords; hence the use of graph colorings.

Theorem 6.2.2 (Optimal rate) The optimal rate writes:

Ropco = T}H{)lo EHx(G[n})- (6.11)
Proof. By construction the following holds: for all encoding function ¢., ¢. is a coloring
of G, if and only if there exists a decoding function ¢q4 such that (n, ¢, ¢q) satisfies the

zero-error property. Thus the best achievable rate writes

Repo=inf, it H(o(x7 (90),_,)) (6.12)
o1
= lim —H, (Glp)- (6.13)

where (6.13) comes from Fekete’s lemma and from the definition of H,. O
A general single-letter expression for Rf - is missing, due to the lack of intrinsic
structure of G,;. In Section 6.3, we introduce a hypothesis that gives structure to Gj,

and allows us to derive a single-letter expression for R pe.

6.3 Pairwise shared side information

Definition 6.3.1 The distribution Pxy and the function g satisfy the “pairwise shared

side information” condition if
Vz€ Z Vo, € X, 3y € g7 (2), Pxy(z,y)Pxy(2,y) > 0. (6.14)
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This means that for all z output of g, every pair (x,x") “shares” at least one side infor-

mation symbol y € g~ *(z).

Note that any full-support distribution Px y satisfies the “pairwise shared side infor-
mation” hypothesis. In Theorem 6.3.2 we give an interpretation of the “pairwise shared
side information” condition in terms of the optimal rate in an auxiliary zero-error Slepian-

Wolf problem. The proof of Theorem 6.3.2 is given in Appendix C.1

Theorem 6.3.2 The tuple (Pxy,g) satisfies the condition “pairwise shared side infor-
mation” (6.14)

< R* = H(X|g(Y)) in the case f(X,Y) = X, and for all z € Z, Pxjgy)=: 15
full-support.

In the zero-error Slepian-Wolf problem presented in Section 4.1.1, the optimal rate
lim,, o0 %H +(G"™) does not have a single-letter expression. However, as shown in Propo-
sition 6.3.4, there exists such a formula for lim,, ., %H +(GY™): the Kérner graph entropy
introduced in [39]. By using a convex combination of Kérner graph entropies, we provide

a single-letter expression in Theorem 6.3.6 for the optimal rate R .

Definition 6.3.3 (OR product) Let Gy= V1, &1, Py), Gy = Ve, &, Py,) be two prob-
abilistic graphs; their OR product denoted G1V Gy is defined by: Vi X Vs as set of vertices,

Py, Py, as probability distribution on the vertices, and (v1vy), (vivh) are adjacent if
(v1v] € &1 and vy # vy) OR (vqvy € E and vy # V));

with the convention that all vertices are self-adjacent. We denote by GY"™ the n-th OR

power.

Proposition 6.3.4 (Properties of H,) [5, Theorem 5] For all probabilistic graphs G
and G’,

HA(G) = Jim = H(G™), (6.15)
H.(GVG) = Hy(G) + Hy(G). (6.16)

Definition 6.3.5 (Auxiliary graph GY) For all = € Z, we define the auziliary graph
GY by

- X as set of vertices with distribution Px|gy)=-,
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-z’ are adjacent if f(x,y) # f(2',y) for somey € g~ (z)Nsupp Py|x—Nsupp Py|x—q .

Theorem 6.3.6 (Pairwise shared side information) If Pxy and g satisfy (6.14),

the optimal rate writes:
Rtpco = Y. Py H,(GY). (6.17)

z€EZ
The proof is in Section C.2, the keypoint is the particular structure of Gi,): a disjoint

union of OR products.

Remark 6.3.7 The “pairwise shared side information” assumption (6.14) implies that the
adjacency condition (6.9) is satisfied, which makes Gy, a disjoint union of OR products.
Moreover, Korner graph entropies appear in the final expression for Rfpq, even if Gy is

not an n-th OR power.

Now consider the case where Py y is full-support. This is a sufficient condition to have
(6.14). The optimal rate in this setting is derived from Theorem 6.3.6, which leads to the

analytic expression in Theorem 6.3.8.

Theorem 6.3.8 (Optimal rate when Py y is full-support) When Pxy is full-support,

the optimal rate writes:

Ripco = H(§(X,9(Y))|g(V)), (6.18)
where the function j returns a word in U*, defined by

jiXXZ U (6.19)
(2,2) = (f(2,9))

yeg(z)

Proof. By Theorem 6.3.6, Rf.pe = Y..cz Pyv)(2)H,(GY). It can be shown that G7 is com-

plete multipartite for all z as Py y is full support; and it satisfies H, (GY) = H(j(X, g(Y)) ‘g(Y =

z).0

6.4 Example

In this example, the “pairwise shared side information” assumption is satisfied and
R} pe is strictly less than a conditional Huffman coding of X knowing ¢(Y); and also

strictly less than the optimal rate without exploiting ¢g(Y) at the encoder.
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6.4. Example

0 | 01005 * * 0.050.06 * =*
1 101 *= 005 * 0.050.050.05 =*
2 101 * *x 005 * 005 * =*
3 * 0.050.050.05 * 0.05 * 0.05

Y
) 555 a5 6 7
9(Y) =0 g(Y) =1
0 a b *x x b a x %
1 a *x b a a p =
X2 b * * c * b * *
3 ¥ ¢ ¢ ¢ *x Cc * C

Figure 6.3 — An example of Pyy and g that satisfy (6.14); along with the outcomes
f(X,Y). The elements outside supp Pxy are denoted by .

Consider the probability distribution and function outcomes depicted in Figure 6.3,
with U = {a,b,c}, X ={0,...,3}, ¥ ={0,...,7}, and Z = {0,1}. Let us show that the
“pairwise shared side information” assumption is satisfied. The source symbols 0,1,2 € X
share the side information symbol 0 (resp. 5) when g(Y) = 0 (resp. g(Y) = 1). The source
symbol 3 € X shares the side information symbols 1, 2,3 with the source symbols 0, 1, 2,
respectively, when g(Y) = 0; and the source symbol 3 shares the side information symbol

5 with all other source symbols when ¢(Y) = 1.

Since the “pairwise shared side information” assumption is satisfied, we can use The-

orem 6.3.6; the optimal rate writes
Répco = Pyory (0)Ha(GE) + Pyry (1) Ho(GY). (6.20)

First we need to determine the probabilistic graphs G(’; and GI. In ng , the vertex 0
is adjacent to 2 and 3, as f(0,0) # f(2,0) and f(0,1) # f(3,1). The vertex 1 is also
adjacent to 2 and 3 as f(1,0) # f(2,0) and f(1,2) # f(3,2). Furthermore Px|yy)=o is

uniform, hence G = (Cy, Unif (X)) where C, is the cycle graph with 4 vertices.

In G, the vertices 1, 2, 3 are pairwise adjacent as f(1,5), f(2,5) and f(3,5) are
pairwise different; and 0 is adjacent to 1, 2 and 3 because of the different function outputs
generated by Y =4 and Y = 5. Thus, GJ = (K, Pxgv)=1) With Px|gp)=1 = (§, 2,5, 1)
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and K is the complete graph with 4 vertices.
Now let us determine H,(G{) and H,(GJ). On one hand,

Hy(Gh) = H(Vp) =  max  H(Vy|W) (6.21)
VoeWer(GY)

—2-1=1, (6.22)

with Vo ~ Pxjgvy=0 = Unif(&X’); and where H(Vp|WW) in (6.21) is maximized by taking
W ={0,1} when V € {0,1}, and W = {2, 3} otherwise.
On the other hand,

H.(G])= min I(W;W) (6.23)
Viewer(af)
— H(V}) ~ 1.906, (6.24)

with Vi ~ Px|gv)=1; Where (6.24) follows from I(GY) = {{0},....{3}}, as G] is complete.
Hence R¢pe ~ 1.362.

The rate that we would obtain by transmitting X knowing ¢(Y) at both encoder and
decoder with a conditional Huffman algorithm writes: Ry.g = H(X|g(Y)) ~ 1.962.

The rate that we would obtain without exploiting ¢g(Y") at the encoder is Ry, , =
H(X) =~ 1.985, because of the different function outputs generated by Y =4 and Y = 5.

Finally, H(f(X,Y)]Y) ~ 0.875.

In this example we have
H(X) = Rxo g > Ruusr > Ropeo > H(f(X,Y)|Y). (6.25)

This illustrates the impact of the side information at the encoder in this setting, as we

can observe a large gap between the optimal rate R po and Ryo g-
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CONCLUSION

We have shown the equivalences of linearization between Cy, C(-, Py), and H. There-
fore, we proved the equivalence between the suboptimality of separated zero-error coding
on independent channels; and the suboptimality of separated compression of indepen-
dent sources in the zero-error Slepian-Wolf setting, with same characteristic graph and
capacity-achieving distribution.

We also state the following open questions:

- As pointed out in Lemma 5.3.3, for all capacity-achieving distribution of a product
graph, the product of its marginals is also capacity-achieving. Are these marginals
capacity-achieving for the respective graphs in the product; and conversely, if we
consider the product of capacity-achieving distributions of graphs, is this distribu-

tion capacity-achieving for the product of graphs? In other words,

P (A G) 0 @802 @ c) (6.20)
acA acA acA
We gave a partial answer in Theorem 5.4.1, in the sense that inclusion holds when

the linearization of the product holds.

- We have shown in Theorem 5.4.1 and Theorem 5.4.2 that the linearization of Cj
holds if and only if the linearization of C(-, Py) holds, where Py is any capacity-
achieving distribution. Can we find graphs such that the linearization of C(-, Py)
holds when Py is capacity-achieving, but does not hold for some P, that is not
capacity-achieving? A negative answer would imply that the linearization of Cj is
equivalent to the linearization of C(-, Pyy) and H for all Py, similarly to perfect

graphs.
- Finally, we have seen in Corollary 5.5.10 that H(G A (Cs, Unif ({1, ,5}))) with

G perfect is an example of linearization. Is the non-linearization of H(A -) tied to
specific non-perfect induced subgraphs in each graph in the product? And if so, can

we find a minimal family of these graphs?
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APPENDIX A

PROOFS FOR CORRECTION-BASED
ZERO-ERROR RESULTS

A.1 Proof of Lemma 4.2.5

Let us prove that

R = H(X|Y)+6, R — I(X;Y). (A.1)

n—oo n—oo

A.1.1 Preliminaries

Lemma A.1.1 Let X' be a random variable such that Px, = Unif(X). Then for all
(2™, y") € X" x V", we have:

]P) (TX/n yn = TI" yn) = ZHH(TZn«yn)inH(Tyn)fn 1Og ‘X|+O(TL) (A2)
Proof. Since Py is uniform:

P (TX/n,yn = Txn,yn) = |X|_n ’%w"ly” (yn)’ (A3)

—9n log |X| 2TLH(Txn’yn)—7LH(T'yn )to(n)

Y

as [20, Lemma 2.5] gives the asymptotic size of the Tyn|,n-shell T, . (y").
a

A.1.2 Probability of decoding ambiguity
We need to estimate P(F = 1). We have E' =1 iff K = 0 or there exists (aq, ...,ax) €
X%\ {0, ...,0} such that T( = T'xnyn, where G denotes the i-th

Xn+Z¢<K aiGg?) YT
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column of the matrix Gg. Thus

P(E=1)<P(K=0)+P| (J = Txn yn
akexk
a#0

[T(X”ZKKMG&?),W |K 7 0). (A4)

We provide an upper bound on the second term in (A.4). For all (z",y") such that
k # 0, we have:

( akLeJXk (IMZ@ %Gy )> v ! )
a#0
ak%;zk ( (szrZigk aq;GrEC )) y" Y )
a#0

< on log | X|—=nH (Tyn yn)+nH(Tyn)—dn+o(n)

i 2nH(Tzn’yn)—nH(Tyn)—nlog | X|4+o(n) A7

S 2—5n+o(n)’ (A8)

where (A.6) comes from Lemma A.1.1 and (A.8) comes from (4.43). Therefore,

P T , — Tonvn | |[K 40
(U«KEJ.XK [ (Xn+Z¢SKaiG<I?),Yn XYy ‘ 7£ )
a#0
a:n)yn
B ]P) T . = T n n K 0’ X?’L)an _ xn’ n
(Y ety =] o000 =)
a#0

< E P((X”,Y”) = (xn7yn) K + 0)2—6n+o(n) (A'l())

xn,yn
< 2_5n+o(n)’ (A‘ll)

where (A.10) comes from (A.8) and the fact that G is independent of (X,Y").
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We now provide an upper bound on the first term in (A.4).

HX'|Y') + 6
S ={Pyviv: € A(X 1l————— < 05y.
{ XY ( Xy)| gl =
Then we have:
P(K =0)
H(Tyn o) — H(Tyn 0

"> P<n_n oy 2 el 2 §O>P§?3(:r”7y”)

(zmym)EXT X YN log | X|
— P(TXn7Yn E S)
= > P(Txnyn = Pxry’)

leyy/ESﬂAn(Xxy)
S |S N An(X X y)| sup P(Txn,yn = PXI’Y/)

PX/’YIESﬁAn(Xxy)

S |S M An(X X y)| sup 2_"D(PX’,Y'||PX,Y)

PX/Yy/ESQAn(XX)})
<ISNA(X xY)| sup 9—nD(Pys || Px,y)
leyyles

< 2_nianX/7ylES D(Px1 y/|IPx,y)+o(n)

— Y

(A.12)

(A.17)
(A.18)
(A.19)

(A.20)

where (A.18) comes from [20, Lemma 2.6]. Since Pxy ¢ S by definition of §, we have
inf Pysyi€S D(Pxy||Px'y’) > 0. Thus there exists a positive constant 5 > 0 such that

P(K = 0) < 27 fntotn),
Thus by combining (A.4), (A.11), (A.21), we have:

P(E — 1) < 2—571-1-0(”) + 2—/371-&-0(”)'

A.1.3 Rate on the common channel

(A.21)

(A.22)

The encoding function ¢{! defined in (4.44) returns Txn y» and E. When E = 0, it

sends the syndrome Hx X™ at rate % log | X|, otherwise, it sends X™. Therefore,

nR™
=1+ |X||Y|log(n+ 1) +P(E = 1)nlog | X|
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+P(E =0) ;nIP’((X”, Y") = (" y")|E =0) - (n— k) log | X|

<1+ |X||Y]log(n+ 1)+ P(E = 1)nlog |X| + (n — E[K])log | X| (A.25)

<1+ |X|[Y|log(n + 1) +P(E = 1)nlog |X|+ nE

Heg yo (X|Y)] Fnd4+1,  (A.26)

where Hry, .. (X]Y) denotes a random variable, which is the conditional entropy com-
puted with the distribution Txn y=; (A.25) comes from n — k > 0 for all (2", y™), and
(A.26) comes from (4.43).

By the law of large numbers [18, Theorem 11.2.1] E

Hayopn (XIY)| 22 HOXY),
and by using (A.22), we obtain

lim R{" < H(X|Y) + . (A.27)

A.1.4 Rate on the secondary channel

The encoding function ¢{?) is defined in (4.45). If E = 0, then K # 0 and the encoder
transmits the index of X™ in its coset. The Huffman algorithm has an average output
length R{™ that satisfies

1
R < (1 +Y P(K =k|E=0)- HX"HyX",K = k,C,E = 0)> (A.28)
n k40
11 1
=+ H(X"[K.C,E=0) ~ ~HHgX"|K,C.E=0), (A.29)

where (A.29) follows from the fact that Hx X" is a deterministic function of X", given a

random code C.

L (Hig X" K,C, E = 0) in (A.29).

n

To do so, we introduce a new encoding scheme that first encodes the sequences X™ and Y™

We now provide an upper bound to the last term —

with the encoding function ¢g1), and then encode the output by using an entropy coder.
The rate of this code r is upperbounded by H (oM (X™ Y™)|C) + 1.
Moreover, the decoder 1 retrieves X™ with zero error (see Section 4.2.3), and the

entropy coder is also lossless. Thus r is greater than the rate achieved by a conditional

entropy coder that compresses X" knowing the side information Y, whose rate is lower
bounded by nH(X|Y).
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Therefore, we have

nH(X|Y)<r (A.30)
< H(eM (X" Y™)|C) +1 (A.31)
=14 H(Txnyn, E|C) + P(E = 0)H(Hg X"|Txnyn,C, E = 0)
+P(E=1)H(X"|Txnyn,C,E=1) (
< HMHgX"Txnyn,C, E =0)+ o(n) (A.33
= HHg X" Txnyn, K,C, E =0) + o(n) (
< HMHgX"|K,C,E = 0) + o(n) (

where o(n) in (A.33) corresponds to the term 14+H (Txn yn, E|C)+P(E = 1)H(X"|Txn y»,C, E =
1), and (A.34) follows from the fact that K is a deterministic function of T'xn yn.

We now provide an upper bound on the second term of (A.29).

iH(X”]K,C, E—0)< nP(El:O)(H(XﬂK,C, E)

_P(E = WH(X"|K,C, E = 1))

< Yuxnir e B +o(1) (A.36)
< Z(X) 4 o(1). (A.37)

By combining (A.29), (A.35) and (A.37), we obtain

lim R < I(X;Y). (A.38)

n—o0

Conclusion. The rates in (A.27) and (A.38) are evaluated on average over the random
code C with a parameter § > 0 arbitrarily small. This shows that there exists a sequence

of (n, R, Ré"))—zero-error source codes, such that

(R, RS) — (H(X|Y),I(X;Y)). (A.39)

n—o0
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=3
O
S

<
3

Codebook Cy (1st bin): v
Codebook Cy (2nd bin): v
Qw\v- and Qwyv-shells of sequences u", v"™:
Q) x,y|w-shells of sequences in Cyy: - -

To' (Qwo) To(Qx)
(w”>un)g>>: O O (:<<n % .

Coset of z™: ¢
Coset of y": ¢
Qu,w|x- and Qv,w|y-shells of sequences in cosets: —

<
3

OQOOOO;@ OO0000O0

To'(Qy) Tg"(Qwyv)

Figure A.1 — An illustration of the encoding algorithm.

A.2 Proof of Theorem 4.3.1

A.2.1 Outline

The encoding algorithm is depicted in Figure A.1. First, for all realization (™, y™) of
the source, a codeword w" is selected from a random codebook that captures the common
information between X and Y. Then the bin index of w™ is sent on the channel with
encoding function ¢(¥); the number of bins is adjusted to the worst side information.
Using the V-shells of their respective side information «™ and v", both decoders retrieve
w”. Finally, the coset of 2™ sent on the channel with encoding function ¢**), and the pair
(w™, u™) (resp. (w™,v™) and the coset of y™) enables the decoder x; (resp. Y') to recover

z™ (resp. y™). An information complement is sent to the decoder x, so that it can recover
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z™ as well.

A.2.2 Encoding algorithm

Let Pyjpvxy € AW)HV*OV et § > 0, and let n € N*. For all type Quv.xy €
AU XV x X xY),let Quvwx,y be the type from A, (U x V x W x X x Y) that has

Quv.x,y as marginal distribution and minimizes D(Pyyvw.x v ||Quyv.w x,y), so we have

Quyv,w.x,y — Pyvwxy- (A.40)
Quyv,xy—Puvxy

In the following, we denote by Hg(-) and Ig(-;-) the entropy and mutual information

that are computed w.r.t. ), instead of the true distribution of Pyyw.xy.

Now, for a fixed type Qu,v,w, x,v, partition 7" (Qx) (resp. 75" (Qy)) into onHq (X|UW)+ns
(resp. 2nHQ(Y\V,W)+n6)

(resp. Gy and Hy), cf. Lemma 4.3.5. This is possible as |X| and |Y| can be assumed

cosets, using adequate generator and parity matrices Gx and Hy

prime w.l.o.g. by padding (i.e. completing with zeros) @ if necessary.

Let Ciy be a set of codewords formed with 27 UV:XYiW)+nd random sequences drawn
from W" independently and following the distribution Qy . Let Z be a finite set such that

Cw |
121 = onmin(lo(U;W),Iq(ViW))—nd (A.41)
— 2TLIQ(U,V,X,Y;W)—TLmin(IQ(U;W),IQ(V;W))-FQTL(;‘ (A42)

A bin label b(@w") drawn uniformly in Z is assigned to each sequence w" € Cy, so we

on min(Ig(U;W),Ig(V;W))—nd+o(

have ") sequences in each bin. In the following we will denote

by C*") the subset of sequences from Cyy in the bin labelled b(w™).

Now let (u”,v™, 2™, y") be a realization of the source, and Qu v xy the corresponding
type. Let Qu,vw,x,y be the completed type as described above. The encoder determines a
sequence w" € Tqy, vy (U 0", 2", y") and its bin label b(w™); if no such sequence exists
then the decoding ambiguity & is declared.

The encoder sends:

(ngl)(u", o™ 2" y") = B(Hxza"), (A.43)
¢£X2)(un7 Un? xn7 yn) = L’ (A.44)
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o0 (u", 0", 2", y") = B(Hyy"), (A.45)
oL (u", 0", 2", y") (A.46)
Ez"y» ifE=1
E if £=0

=B QU,V,W,X,Ya b(wn),

where B(:) denotes the binary expansion, and ¢ denotes the index of 2" in (Ker Hy +
xn) N U@nec‘[/”V(w"” 722X|W(wn)'
The error bit E is set to 1 iff there is a decoding ambiguity, i.e. one of the following

events occur:

" € Cy, s.t. Tu”v”w”:p” n *QUVWXY}
" %w , W EC m’]Z?WlU(u”)},

{
> = {
{3 cat e T, (M},
1= {
5=

" , " € Ty (W' w™) N (Ker Hx + x”)},
" # Y T € Toypw @' w") N (KerHy—i-y")}.

A.2.3 Decoding algorithm and zero-error property

All decoders determine whether there is a decoding ambiguity. If so, they recover their
respective source sequence from the channel with encoding function ¢{?). If not, then the

following procedure is followed.

The decoder x; recovers b(w™) from the channel with encoding function ¢ (£¢ = w"
is defined), and using the side information ", it searches the V-shell TQww (u") to find
the sequences with label b(w™), and retrieves w" (£5 = w™ is retrieved at decoder x;).
The coset (Ker Hx 4 2") is then extracted from the channel with encoding function ¢{*t)
the decoder x; then searches the set Tg ., (u",w") N (Ker Hy +y") and retrieves 2" with
zero-error (£ = z" is retrieved).

The decoder y proceeds symmetrically and recovers y™ with the help of v™ as &, &3, &
are not realised.

The decoder xs determines (Ker Hy + ™) N Upne ] 1 To X‘W( ") using the syndrome
Hx 2" transmitted in the channel with encoding functlon UV, and Quyvw.xy, b(w™) sent

through the channel with encoding function ¢(®. Then by using the index sent on the
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channel with encoding function ¢£X2), the decoder x, recovers " with zero-error.

A.2.4 Probability of a decoding ambiguity

Let us bound P(&;). We have P(&£;) < 2779+°(") by using Lemma 4.3.3, with A = W,
B=UXxVxX x y, PA,B = QW,(U,V,X,Y) and PA = QW

Now let us bound P(&;). The set C%/(wn)] \ {w"} is composed of

gnmin(lg(U;W),Io(ViW))—nd+o(n) sequences drawn with the same distribution Q. We can use

Lemma 4.3.3 with A =W, B=U, Psp = Qwy and P; = Qw:
P(SQ) < 2nmin(IQ(U;W),IQ(V;W))fnéntQ(U;W)Jro(n) <A47)
< gndFo(n), (A.48)
Symmetrically, we have P(&;3) < 270+,

In order to bound the remaining probabilities we use Lemma 4.3.5 with A = X,
B=UXW, Pyp=Qx,ww):

P(&,) < 2n<log|X|—HQ(X|U,W)—5—1og|X\+HQ(X\U,W))+o(n)

< g7ndtoln) (A.49)

and symmetrically, we have P(&5) < 27792 Thus, P(E = 1) < 5. 27+,

A.2.5 Rate analysis
Let S =U x V x W x X x Y, the rate on the channel with encoding function ¢{*)

writes:

w1 1
R = Zlog |Z] + (1 +P(E = Dnlog (|X||y|)>
n n

1
+ —1og |A,(S)| (4.50)
< Io(U,V, X,Y; W) —min (Io(U; W), Ig(V; W) + 20

1 —ni+o(m) 4 L
+ —+5log (1x119])2 + -~ 1og |A,(S) (A.51)

= I(U,V,X,Y;W) — min (I(U; W), I(V; W) + 26.

n—o0

The following rates are the exponent of the number of cosets:
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RM = llog (2”HQ(X‘U’W)+”5) = H(X|U,W) + 4, and symmetrically, Rim —
H(Y|V,W) + 6.

The rate R)((Z) on the channel with encoding function ¢*2) writes:

1
—log|(KerHx +2")Nn  |J  To, @") (A.52)
" arecl™)]
1 —n
= 710g U 7—QX\W(w )
" arecl™)]
1
+ 510g|KerHX+x"| —log |X| + o(1) (A.53)
1 pwm), , 1 n
< ﬁ lOg ‘CW | + 5 log ’7-QX|W(w )|
+ (log |X| — Ho(X|U,W) —§) —log |X]| + o(1) (A.54)
= win(lo(Us W), Ig(V; W) — 6 + Ho(X|W)
— Ho(X|U, W) =0+ o(1) (A.55)
=min(Io(U; W), Io(V; W) + Io(X; U|W) — 2§ + o(1) (A.56)
= min(I(U; W), I(V;W)) + I(X;UIW) — 26 (A.57)

where (A.53) follows from the independence of the sequences in Cy and the entries of
Gx.

These equations hold for all § > 0 small enough, thus the rate tuple

[(X,Y,U, VW) = min (I(U; W), [(V; W),
H(X|U,W),
[(X;UIW) +min (I(U; W), I(V; W),
H(Y|U,W)

, (A.58)

is achievable. By taking the union over all distributions Py y.w x,y we obtain the desired

result.

A.3 Proof of Theorem 4.3.2

Let St = (U, V!, Xt Y?), for all t < n. For all i € {0,x;,y} M; = ¢{)(S").
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Firstly, we can use Kraft inequality as the set Im ¢(”) is prefix-free, we have

S < (A.59)

w”elm ¢>(60)

Let £ = 3 cpm g 2~w") we have k < 1 and (2_£;wn))wnelm¢(o> is a probability
distribution.
Secondly,
nRy = E[l 0 ¢ (5™)] (A.60)
= Y PO =w)(w") (A.61)
w"EIquéO)
=— Y P(O(S") =w")log 27" (A.62)
w"EImqﬁéO)
fo(w")
=—logr — > P(@V(S") =w")log (A.63)
w”EImqbgO)
2—@(11)")
>— > P(Y(S") =w")log (A.64)
wnelm ¢
> = > PEP(S") =w")logP(6"(S") = w") (A.65)
w"EImd)gO)
= H(o"(S")) = H(Mo) (A.66)

where (A.64) and (A.65) respectively come from x < 1 and Gibbs inequality.

In the following, 7" ~ Unif({1,...,n}) is a random variable independent from the other
random variables of the model, Wy = (M,, S" ', U}, V/%,) for all t < n. We identify
W = (WT, T), (U, V, X, Y) = (UT, VT, XT, YT) We have

nity > H(My) (A.67)

> I(Mo; X™, YU, V™) (A.68)

= 3" I(M; X, Y, |U™, V", XLyt (A.69)
t<n

= ZI(MO7St_17Utz—lvvzt-l;Xta}/;f'UtaW) (A70)
t<n

— [(Stilu Utn+17 ‘/til? Xt7 K’Uh ‘/;)
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= > I(Wy; X4, ViU, Vi) (A.71)
t<n

= n[(WT;XT,YT|UT,VT,T) (A72)

= nl(W; X,Y|U,V), (A.73)

where (A.67) comes from (A.60) to (A.66); (A.69) comes from the chain rule, (A.71) comes
from the independence of Sy, ..., S,, and (A.73) come from the independence of T" and S™.
Let us bound Ry, :

nRy, > H(M,,) (A.74)
2 [(MxﬁXn‘MOaUn) <A75>
= H(X"|Mo,U™) — H(X"| My, My, U") (A.76)
= ZH(Xt|M07Un7Xt_1) (A??)

t<n
> ZH(Xt’WtaUt) (A.T8)
t<n
== ’I’LH(XT|WT, UT, T) (A?g)
= nH(X|W,U), (A.80)

where (A.77) comes from the zero-error constraint. Symmetrically we obtain R, > H(Y|W, V).

Now, the decoder xo must retrieve X with zero-error. Using Shannon lossless source
coding result [18, Theorem 5.3.1], we have Ry + Ry, + Ry, > H(X).

A.4 Proof of Lemma 4.3.3

We use the following result, which is a consequence of [20, Lemma 2.6].

Lemma A.4.1 (Large deviations) Letn € N, and Py p € A, (AXxB). Let P; € A(A)

and A" ~ (P5)®", then we have for allb™ € Ty (Pg): P (Tgn,bn = PA7B) = 2_n(I(A;B)+D(PAHPA)> toln)

IfR>R.: P(3a" €C™, st. Tyjn = Pap) (A.81)
2nR

—1-P (TAﬁ],EH 4 PA7B> (A.82)
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=1 —exp [2”3 n (1 - 2—“Rc+0<“>)} (A.83)

(A.84)

Y

g 1 — exp |: — 2n(R_RC)+O(n):|

where (A.82) comes from the fact that the random variables (Afj) are iid, and (A.83) is

a consequence of Lemma A.4.1.

IfR<R: P(3a" €C™, st. Tyjo = Pap) (A.85)
< 3 P(Tuy o # Pan) (A.86)

i<onR W
= gnlig—nRetoln) (A.87)

The last equation comes from Lemma A.4.1, and from the fact that the variables (Aﬁ])

are identically distributed.
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APPENDIX B

PROOFS FOR GRAPH-BASED
ZERO-ERROR RESULTS

B.1 Proof dependencies

An illustration of the dependencies between the results can be found in Figure B.1.
Note that Theorem 5.1.4 already exists in the literature, but we provide a proof based on

Lemma 5.1.3 for the sake of completeness.

B.2 Main proofs for the linearization of H and C(, Py)

B.2.1 Proof of Lemma 5.2.1

In order to prove Lemma 5.2.1, we prove an asymptotic version stated in Lemma B.2.1.

The proof of Lemma B.2.1 is developed in Appendix B.2.3.

Lemma B.2.1 Let (@,)nen € AV be any sequence such that Tyn — Py when n — oo.
Then we have

Py
H (|_| Ga) = lim lHX (/\ Gg”Ta"<a>> : (B.1)
n—oo n,

acA acA

Now let us prove Lemma 5.2.1. Let (@,)nen+ be a k-periodic sequence such that T =
Py, then Tonw = T for all n € N*, and T Rl P,. We can use Lemma B.2.1 and

consider every k-th term in the limit:

_ ]_ NAL—fn QA
H(LlféA Ga) = lim lme(/\aeA oo )) (B.2)
) 1 ARTp.(a)\ "
=l o (Ao 02"5) ) (B:3)
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Theorem 5.5.13

,,,,,,,,,,,,,,,,,,,,,, Theorem 5.4.2

—>| Theorem 5.5.8 }‘—{ Lemma B.5.2 ‘

l Lemma B.4.3 H Lemma B.4.5 H Lemma B.4.4

Results on the examples and counterexamples
of linearization. Proofs are given in Appendix B.5.

Theorem 5.2.6 ; E
l Lemma B.4.1 ‘
£

Lemma B.2.8 Proposition 5.2.5 ‘

Results linking Co(+),
' Theorem 5.1. ;: \Theorem 5.1.11, linearizations. Proofs are give

-, P) and their
in Appendix B.4.

Theorem 5.2.4 { Lemma 5.3.7 ‘ l Theorem 5.3.3 ‘
/

lLemma B.2.2 ‘ l Lemma B.2.3 ‘ l Lemma 5.2.1 ‘ 4

lLemma B.6.1 ‘ l Lemma B.2.1 H Lemma B.2.5 ‘ Lemma 5.1.3 ‘ T,h,e(,)r,er,n)r);l;%:
lLemma B.2.7‘ l Lemma B.2.4 ‘ l Lemma B.6.2 ‘ lLemma B.6.4 H Lemma B.3.1 H Lemma B.6.5
Results on the linearization of H and C(-, Py ). Results on the capacity-achieving distributions.
Proofs are given in Appendix B.2. Proofs are given in Appendix B.3.

Figure B.1 — An arrow from A to B means that A is used in the proof of B. Results from
the literature are represented with a dashed outline.

1

= kH( Naca GQkPA<a>). (B.4)

B.2.2 Proof of Theorem 5.2.4

In order to prove Theorem 5.2.4, we will need Corollary 5.2.2, Lemma B.2.2 and
Lemma B.2.3. In Lemma B.2.2 we give regularity properties of P4 F(I_IaeA G ) The
proof of Lemma B.2.2 is developed in Appendix B.6.1. Lemma B.2.3 states that if a
convex function v of A(A) meets the linear interpolation of (7(1,))aea, Where (1,)aea
are the extreme points of A(A), then v is linear. We use it for proving the equivalence
in Theorem 5.2.4, by considering v = P4 F( |_|a€A G ) The proof of Lemma B.2.3 is
given in Appendix B.6.2.

Lemma B.2.2 The function Py — F( HEReE ) is convex and (log max, |V,|)-Lipschitz.
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Lemma B.2.3 Let A be a finite set, and v : A(A) — R be a convex function, and for all
a € A, let 1, be the distribution that assigns 1 to the symbol a and 0 to the others. Then
the following holds:

APy € int(A(A)), ¥(Pa) = >_ Pala)y(La) (B.5)
acA
= YPs € A(A), 7(Pa) = D Pala)y(La) (B.6)
acA

where int(A(A)) is the interior of A(A) (i.e. the full-support distributions on A).

Now let us prove Theorem 5.2.4:

(=) Assume that H (Ages Ga) = Spen H(G,).

We can use Corollary 5.2.2, which states that F( L [UmirA) Ga) = ﬁﬁ (Ages Ga); hence
F(I_Igéljiw) Ga) = Y acA \A\H(Ga>‘ Thus, the function Py F( TEReE ) satisfies (B.5)
with the interior point P4, = Unif(A), and is convex by Lemma B.2.2: by Lemma B.2.3

we have
VP € A(A), H(1U24 Ga) = Luea Pa(a)H(Ga). (B.7)

(<) Conversely, assume (B.7), then Py — H ( U, G ) is linear. We can use Corol-
lary 5.2.2, and we have 7 ( Ayen Ga) = [A[H (Upes™ Ga) = Tuea H(Ga).

B.2.3 Proof of Lemma B.2.1

We need several lemmae for this result. Lemma B.2.4 establishes the distributivity
of A w.r.t. U for probabilistic graphs, similarly as in [78] for graphs without underlying
distribution. Lemma B.2.5 states that H can be computed with subgraphs induced by
sets that have an asymptotic probability one, in particular we will use it with typical sets
of vertices. Lemma B.2.7 gives the chromatic entropy of a disjoint union of isomorphic
probabilistic graphs. The proofs of Lemma B.2.4, Lemma B.2.5 and Lemma B.2.7 are
respectively given in Appendix B.6.3, Appendix B.6.4, and Appendix B.6.5.

Lemma B.2.4 Let A, B be finite sets, let Py € A(A) and Pg € A(B). For alla € A and
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be B, let Go = Vi, &, Py,) and Gy = (W, &, Py,) be probabilistic graphs. Then

(ﬁ Ga) A (ﬁ Gb) = PﬁB Go N Ghy. (B.8)
(

acA beB a,b)eAxB

Lemma B.2.5 Let G = (V,&, Py), and (S,)nen+ be a sequence of sets such that for all
neN*, S, CV", and P}(S,) — 1 when n — co. Then H(G) = limy,_o - H, (G/\”[Sn]).

Definition B.2.6 (Isomorphic probabilistic graphs) Let Gy = (V1, &1, Py,) and Gy =
(Vs, &, Py,) be two probabilistic graphs. We say that Gy is isomorphic to Go (denoted by
G1 ~ Gsq) if there exists an isomorphism between them, i.e. a bijection ¢ : Vi — Vs such
that:

- For all vi,v] € Vi, vyv) € & <= Y(v)Y(v)) € &,

- For all vy € Vi, Py,(v1) = Py, (@/J(Ul))-

Lemma B.2.7 Let B be a finite set, let Pg € A(B) and let (Gy)ves be a family of iso-
morphic probabilistic graphs, then HX(I_lbI?’éB Gb/) = H,(Gy) for allb e B.

Now let us prove Lemma B.2.1. Let Py € A(A), and let G = | |12, G,. Let (@n)nen+ €
AN be a sequence such that Ty — P4 when n — oo.

Let € > 0, and for all n € N* let

T (Pa) = {a" € A" | |Tur — Palloo < €}, (B.9)
PTL
pr=—__4A__ g = V.
T M S |

an€T(Pa) t<n

Since P}(S,.e) — 1 when n — oo, we have by Lemma B.2.5

H(G) = lim ~H, (GA” [SM]), (B.10)

n—oo n,

Let us study the limit in (B.10). For all n large enough, a® € 7.*(P4) as Tagn — Pj.
Therefore, for all a™ € T*(P,), @’ € A, and n large enough, we have

< 2e. (B.11)




B.2. Main proofs for the linearization of H and C(-, Py)

We have on one hand

1 (U724 Go) 180 )
= H, ((Usiear Arcn Ga,) [Sndl) (B.12)

= Hy (Uierocey Aizn Ga,) (B.13)
= Hy (I_Ifézzn(m Aawrea Goten @ )> (B.14)
< H, (l—laPTiTéT"(PA) Narea GMT ! )HQM) (B.15)
= Hy (Awea G 120T) (B.16)
< Hy (Awea GO ) + Hy (Awea GO*) (B.17)
< Hy (Awea G2 ™)) + [2n€]| Allog [V; (B.18)

where (B.12) comes from Lemma B.2.4; (B.13) comes from the definition of S, . and P™
n (B.9); (B.14) is a rearrangement of the terms inside the product; (B.15) comes from

(B.11); (B.16) follows from Lemma B.2.7, the graphs (/\axeA GQ/”TW“'””M) ey L€
an n(Py

isomorphic as they do not depend on a™; (B.17) follows from the subadditivity of H,; and
(B.18) is the upper bound on H, given by the highest entropy of a coloring.

On the other hand, we obtain with similar arguments

1, (U024 Go) 180 )

(Awea G712 (B.19)
Hy (Awea Go™ ) = Hy (Awea GoP**) (B.20)
(Awea GO ) — [2n€]|Allog V). (B.21)

Note that (B.20) also comes from the subadditivity of H,, as H,(G2) > H,(G1 A G2) —
H,(G,) for all Gy, Gs.

By combining (B.18) and (B.21) we obtain

lim 1H (G"[Sne]) — lim 1H (/\aeAGAnT"( ))‘

n—oo n, n—oo n,

< 2¢|Allog | V. (B.22)

As this holds for all € > 0, combining (B.10) and (B.22) yields the desired result.
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B.2.4 Proof of Proposition 5.2.5

In order to prove Proposition 5.2.5 we need Lemma B.2.8, which is a consequence of
5

Marton’s formula in Theorem 5.1.5 applied to a disjoint union. The proof of Lemma B.2.8

can be found in Appendix B.6.6.

Lemma B.2.8 Let Py € A(A), then

H (ﬁ Ga) <|_| Ga, Y Pa(a Pva) = H(Pa)+ ) Pa(a)H(Py,). (B.23)

acA acA acA acA

Let us prove Proposition 5.2.5. We have on one hand:

H(Pa) + Yaea Pa(a)C(Ga, Py,) (B.24)
= H(Pa) + Saca —Pa(@)H(Ga) + Pa(a) H(Py,) (B.25)
< H(Pa) = H (U241 Ga) + Saca Pa(a)H(Py,) (B.26)
=C (l—laeA Gas XacaPala )Pva) ; (B.27)

where (B.25) comes from Theorem 5.1.5; (B.26) follows from Theorem 5.1.11; and (B.27)

follows from Lemma B.2.8. Therefore,

PA) +Za€A PA(G)C(Ga,PVa) <B28)

C (Ur24 Ga, Yaea Pala)Py,) =
VH(GL). (B.29)

<~ H <|—la6A G ) ZaeA PA(
On the other hand:

Yaea C(Ga, Py,) = Yaea —H(Ga) + H(Py,) (
< —H (MNaea Ga) + Xaca H(Py,) (B.31
= —H (Aaea Ga) + H (®uea Pv,) (
= C (Naca Gar Raca Pv,); (

where (B.30) comes from Theorem 5.1.5; (B.31) follows from Theorem 5.1.11; and (B.33)

also follows from Theorem 5.1.5. Therefore,

ZaEA C<Ga7 PVa) =C (/\aE.A Ga7 ®a€A PVa) <B34)
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— H (AaE.A Ga) = ZaGA H(Ga> <B35)

B.3 Main proofs for the capacity-achieving distribu-

tions

B.3.1 Proof of Lemma 5.1.3

Lemma B.3.1 enables us to replace the limit superior in the definition of C'(G, Py) by

a regular limit. The proof is given in Appendix B.6.7 and uses superadditivity arguments.

Lemma B.3.1 For all € > 0, we have

lim sup la(GA"[’Y;"(PV)]) = sup l04(GA”[’E"(PV)]) = lim l04(G’/\’“‘[’K”(PV)]). (B.36)

n—oo N neN* 1 n—oo n,
Now let us prove Lemma 5.1.3.
By definition of C'(G, Py) and Lemma B.3.1,
1 An n
Jim —log a(G™[T2(By)]) = C(G, Fy). (B.37)

Thus, there exists a mapping € : N* — R’ such that ¢(k) T 0 and for all k£ € N*,
—00

1 An e 1
Jim o (G [T () = C(GL Ry)| < o (B.38)
Now, let m(k) € N* such that for all n > m(k),
1 An 1 AR/ 14n' 1
- logal(G [Ty (P)]) = Jim_ —loga( G [T (P < . (B39)

It can be easily observed that (B.39) is also satisfied if n > max(k, m(k)). Therefore,

for all k£ € N*, and n > max(k, m(k)), we have
1 o 1
‘ log a( G [ T2 (P)]) — C(G, PV)’ — (B.40)

Now we can build the desired sequence of codebooks. For all n € N*, let C, C V"
be a maximal independent set in G""[T ) (Pv)]; where k(n) is the biggest & such that
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n > max(k, m(k)). Note that k(n) exists as k(n) < n, and

k) = oo (B.41)
We have

el (6, )| = [Loga(@™ T (PD - G B)| (a2

< 2&”) (B.43)

.y (B.44)

where (B.42) follows from the construction of C,; (B.43) is a consequence of (B.40); and
(B.44) follows from (B.41).

Since for all k € N*, C, € Tl (Fv), we also have
max || Tyr — Pyl < €(k(n)) — 0. (B.45)

v eCy n—00

Conversely, assume that for all n € N*, C, C V" is an independent set in G, such
that

max [[Ton = Pyl = 0. (B.46)
Then for all € > 0 and n large enough, C,, € 7*(Py) and
105 (€| < loga(GMT (). (B.A7
n n
By taking the limit superior when n — co and ¢ — 0 we obtain

1
limsup — log |C,,| < C(G, Py). (B.43)

n—oo T

B.3.2 Proof of Theorem 5.1.4

(<) By definition of Cy and C(G, Py) we have

1
sup C(G,Py)= sup limlimsup—loga(G/\”[’];”(Pv)]) (B.49)
PyeA(V) PyeA(V) €70 n—ooo M
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< sup limlimsup — logoz(GA") (B.50)
PyeA(V) € =0 pnooco N
— 0h(G). (B.51)

(>) Let (Cp)nen be a sequence such that for all n € N*, C,, is an independent set in
G, and

lim —log ICs| = Co(G); (B.52)

n—oo n,

the existence of the sequence (Cy,)nen+ follows from the definition of C.

Let (7,,)nen+ be the sequence defined by: for all n € N*,

S T (B.53)

v eCy,

Tn

IC |
The terms of the sequence (7,,)nen+ are in A(V), which is a compact set. Therefore,

by Bolzano-Weierstrass theorem, (7, )nen+ has a convergent subsequence (74, )nens, Where

¢ : N* — N* is strictly increasing. We denote by (Cy(n))nen+ the corresponding subsequence

of independent sets, and

P = nll_I)go To(n) € A(V). (B.54)
By construction, we also have
_log |Cy(m)
1 = Cu(G). B.55

Let us build an adequate sequence of codebooks with type converging uniformly to
Py, and with asymptotic rate Cy(G). For all n € N*, let

wsm) = (Com)" NTIVM(PY), (B.56)

€n

where €, = || P} — Ty [loo + -
It can be easily observed that e, — 0and Cy.,) C C 79 (Py): by construction we

have

max ||T no) = Pyl = 0. (B.57)

v”¢(")€C*
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Furthermore, for all n € N*, C;¢(n) is independent in G as it is contained in the
independent set (Cy(n))™-

log |C;¢(n)|

O I Co(G) when n — oo. Let us draw a codeword

Now let us prove that

n

uniformly from (Cg,)", and show that it is in 7."*")(Py) with high probability. On one
hand, for all t < n, the average type of C’? ™) Writes

1
E {chb(n)} TR Z T o) = Tp(n)- (B.59)
¢ | ¢(N)| M E€C ()

On the other hand,

Cromy|  [(Comy)™ N T (P

- (B.60)
|(Com)"| |(Com)"|

=P(C™M € T (Py)) (B.61)

=P ([ Tonsm — Pylloo < €n) (B.62)

> P (|| Temotm — Tomlloo + 17am) — Py lleo < €n) (B.63)

=P (|| Tens — Tommlloo < n7) (B.64)

]P’( Dit<n T, com T Tom)|| S n_1/4> (B.65)

=1—-P (H <Zt§n chb(n)) — NTy(n) > n3/4> (B.66)

>1-— Z’UGVIP) <’Zt<n TCtzp(n)(U) — NTg(n) (U) > n3/4) (B.67)

>1—=> ey #V |:Et§n ch(n) (U)} (B.68)

>1-dg - 1 (B.69)

where (B.61) and (B.65) come from the construction of C™*™); (B.64) comes from the
construction of €,; (B.67) follows from the union bound; (B.68) comes from Chebyshev’s
inequality and (B.59); (B.69) follows from V |:Zt§n TC¢(n)(v)} =Y<n V { C¢(n)( )} < n,
as the random variables T’ s (v) are iid and takes values in [0, 1]. Hence
log |C . log | (Cyimy )"
ti 28 Crstl _ 1081 Cow)"l Co(G). (B.70)
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By combining (B.57), (B.70) and Lemma 5.1.3, it follows that

log|C:
Co(G) = lim 10g [Coip0m|

B.3.3 Proof of Proposition 5.3.2

Let us show that for all graph G = (V, £), the function P, — C(G, Py) is concave. Let
Py, P, € A(V) and S € [0,1]. Let (b,)nen be a sequence of integers such that 2 = B
By Lemma 5.1.3, there exists two sequences (Cp)neny and (C))nen that satisfy the

following;:
Vn € N*, C, C V" and C,, C V" are independent in G""; (B.72)
and
logf’” 5 C(G,Py), IOgTLCM 5 C(G.F}). (B.73)
max [[Ton = Pyl =2 0, max | Ton — Prlloo =2 0. (B.74)

Let us build a sequence of codebooks (C!!),en+ adapted to the distribution SPy + (1 —
B)P], by using a time-sharing between (C,)nen+ and (C),)nen+. For all n € N*| let

C!l = (bl x . (B.75)

For all n € N*, C/ C V" is independent in G as a product of independent sets.

The rate associated to C!! writes

log [C)/|  bplog|Cp| + (n — by) log|Cy|

s 3 (B.76)
b, 1 n — b, 1 !
_bulogle  n— b log[cy] -
n o n n n
T BO(G, Py) + (1 — B)C(G, P)); (B.78)
and the types of the codewords in C! satisfy
max ||T, .2 — Py — (1 —B)P;, (B.79)
vn?ecy o0
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B nby, n(n —by,) ,
= B g [ T g T — SR = (=R (B80)
< bup o — 8P|+ = bup (1-B)P, (B.81)
- vT{BlaE}((fn n v v v’”“{r}ban))(eaz n ominn) v 00 .
=0 max ||Tynen — Py + 0(1)Tynen || o,
U"b"GCn
+ (1 — 5) (mba>>( c ||T,U/n(n7bn) - P‘// + 0(1)Tv/n(n7bn) ||Oo (B.82)
p/n(n—bn) ¢ 41

< B max [Ty — Pyl + 0(1) [ Tunen llo

= 0. (B.84)
By Lemma 5.1.3, lim, ., 5% < C(G, 8Py + (1 — B)P},), thus

BO(G, Py) + (1= B)C(G, Py) < C(G, 8Py + (1= B)P}). (B.85)

The function Py, — C(G, Py) is concave on the convex compact set A()V), therefore its
set of maximizers P*(G) = argmaxp, ca) C(G, Py) is convex. Furthermore, by Theorem

5.1.4, the set P*(G) is nonempty and satisfies

VP, € PX(G), C(G, Py) = Co(G). (B.86)

B.3.4 Proof of Theorem 5.3.3

The proof techniques used here are similar as in the proof of Theorem 5.1.4 in Appendix
B.3.2.

Let us start by showing that Theorem 5.3.3 is true when A has two elements. Let
G=V,E),and G' = (V',&') be two graphs, and let Py € P*(G A G'). We will prove
that Py ® Py is also capacity-achieving by building an adequate sequence of codebooks.

For all n € N*, let C,, C (V x V)" such that C, is an independent set in (G A G')"",

and

1
logCul = ColG A G, (B.87)
(vng}ll?g(ecn HTU”,U/" — PV7V/ HOO njoo 0. (B88)
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The existence of such a sequence is given by Lemma 5.1.3, and Proposition 5.3.2. Let

n 1
E/‘)/’ = Z Tv" m. (B89)
7 |Cn| (v w'm)eCn

An immediate observation is that

" = Py (B.90)

n—oo
as a consequence of (B.88).

Let us build a sequence of codebooks with asymptotic rate Co(G A G), such that the

type of their codewords converge uniformly to Py ® Py:

s =T (Py @ Pr) N (Ten C) (B.91)
where
e = Q% @ QF) — Py ® Pyl + 4= (B.92)

and where for all ¢ < n, the shifted codebook Cr(f) is defined by

t) m
CT(L) = {<(Utvvt+1a -e5 Un,y U1, "'avt—1)7v >

(V"0 € Cn}. (B.93)

By construction, C¥; C 7;:5 (Py ® Py/) thanks to (B.91), and ¢, = 0 thanks to (B.92)
and (B.90); therefore we have

max | T,e — Py @ Porllee = 0. (B.94)

ond eCr,

Furthermore, C*5 is an independent set in (G A G')"*’, as it is contained in the product
independent set (Htgn C}Lt))n; note that this holds because the shifted codebook C{¥) is an
independent set in (G A G')" for all t < n.

c
Now let us prove that M

(M)

= Co(GAG'"). Let us draw a codeword uniformly from

o’ = (.0, (B.95)
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where for all ¢t < n, CfQ is a random n x n-sequence drawn uniformly from [, C®. We

want to prove that C"* € ZZB(PV ® Py) with high probability.

On one hand we have to determine the average type of the random variables (C7);<,,

which are iid copies of C" = (C?,...,C™); where each C? is drawn uniformly from C%,

and the (C}');<,, are mutually independent.

B[re] = ZM%}

t<n

S DR S

t<n |Cn ’ (U" ,U/n)ec()

Z |C | Z T,y om

t<n (v™,0'm) EC

1
— @ Z Z Tcrt v" 'n

(v ') EC, t<n

Z T’U” ® T,U/n
| n| (v w'm)eCy

v ooy

1

(B.96)
(B.97)
(B.98)
(B.99)

(B.100)

(B.101)

where o, (v") = (g, Vi1, ooy Un, V1, -o, Un—1); (B.98) comes from the construction of C{¥) in

(B.93); and (B.100) comes from the following observation:

Z T, @wmyom = Z Z Tospow, = Z Z Tosow,

t<n t<n s<n s<ntn
=2 T wpwy) = D Ton @ Ty = Ton @ Tym,
s<n s<n

where the index s + t is taken modulo n.

On the other hand we have

Crs]
(s )
2 (Py ® Pyr) N (e CP)|

(e ?)']

(c™ e T2 (P © )

<Hi Sien g — P ® P

P
P

< en>
o0
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> P (LS Tope - QP € Q| +]@ 0 Q% - Pr& Ay
=P (HZtSn cn? T ”Qg'l) ® QVZ - < ”3/4)
1- Z(v,v/)e\)x\)/ P (‘Ztgn Toth (Uv UI) - nQE;l) ® QS}’) (U> U/)

Z 1-— Z(U,v’)EVXV’ #V [Ztﬁn TC{LQ (U, 'U/)]

>1-— VIV — 1

nl/2 n— o0

|oo < en) (B.108)

v

> n3/4)

where (B.106) and (B.107) come from the construction of C"*; (B.109) comes from the
construction of €,; (B.110) follows from the union bound; (B.111) comes from Chebyshev’s

inequality and (B.101); and (B.112) comes from the fact that V [Ztgn T, (v,v’)] =

Si<n V {T o2 (0,0 )} < n, as the random variables T2 (v,v') are iid and takes values in

C'fl
[0, 1]. Hence
| log | (TT,<,, c®)" 1
lim % lim g’( t§3 ) ‘ — lim M — Co(G A G/); (B.113)
n—00 n n—00 n n—00 n

where the second equality holds as the shifted codebooks (C{).<, all have cardinality
Cnl-
Thus, by combining (B.113), Lemma 5.1.3, and Proposition 5.3.2 we obtain

1
Co(G NG = Tim 081l

n—oo n

<C(GANG', Py ® Py) <Co(GNG), (B.114)

hence Py ® Py € P*(G VAN G/)

Therefore, Theorem 5.3.3 is proved when A has two elements:
Pyyv € P*(GANG') = Py @ Py € P*(GAG). (B.115)

Now let us consider the case where A has a cardinality greater than 2. Let Py, v, €

P*(Ages Ga)- By considering the product graphs

Naea Ga = <A1<i<i* Gi) A </\i*<i<A Gi); (B.116)
for all i* < |A|, and applying (B.115) successively, we obtain

PVl ~~~~~ va € P (/\aeA Ga) = PV1 ® PV2 ----- Via eP (/\aeA Ga) (B'117)
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= (P, ® Py,) @ Pry, vy € P (Aaea Ga) (B.118)
— . (B.119)
= Qaca v, € P* (Naca Ga) - (B.120)

B.3.5 Proof of Lemma 5.3.7

Let G be a vertex-transitive graph, and let Py € P*(G). Let ¢ € Aut(G), we first
prove that Py € P*(G), then we will conclude by using the convexity of P*(G).

Let (Cp)nen+ be a sequence such that

Vn € N*, C, C V" is an independent set in G"", (B.121)
max | Ton — Pyl =0, (B.122)
log |C,,|

n n—oo

The existence of such a sequence is given by Lemma 5.1.3. Note that the last equality in
(B.123) comes from the assumption Py € P*(G).
Now, for all n € N* the codebook

(Cn) = A{((v1), ..., () [ 0" € Cn} (B.124)

is also independent in G, as 1 is a graph automorphism and therefore preserves adja-

cencies. We have by construction

T — P, o — 0. B.125
12055 ITor = Pucllo 2, (B.126)
Furthermore, since v is a bijection we have |¢(C,)| = |C,| for all n € N*, thus

log [1(Cy,)| _ log |C,,| =

n n n—oo

Co(G). (B.126)
Hence
P¢(V) S P*(G) (B.127)

Now, for all v,v" € V, denote by Sy, € Aut(G) the set of automorphisms that map

v' to v; note that this set is nonempty thanks to the vertex-transitivity of G. We have for
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allveVy
Aut(G) = I—'”U’GV S’U’—)U' (B128)

Furthermore, for all v € V, all the sets (Sy_y)w—w have the same cardinality: for all
v eV,

Sv”%v o ¢1 g 81}’4)2}7 (B129)

where ¢; € Sy . It follows that for all v,v" € V,

Aut(G
S| = ||v(|>| (B.130)
Therefore, for all v € V we have
1
P e P (G B.131
]Aut(G)| weg © P(V) ( ) ( )
1
> o) (B.132
<|AUt( Q) peEAUL(G) vEV
1
Sy | Py (v B.133
(’A t( )‘ 1}%‘ | V( ))vev ( )
| Aut(G | )
= v B.134
<’ AUt( U% | ( ) veY ( )
= Unif(V); (B.135)

where (B.131) comes from the convexity of P*(G) given by Proposition 5.3.2 and (B.127);
(B.133) comes from (B.128); and (B.134) comes from (B.130).

B.4 Main proofs for the link between linearizations
of C(-, Py) and C

B.4.1 Proof of Theorem 5.4.1

We prove Theorem 5.4.1 in two steps, which are Lemma B.4.1 and Lemma B.4.2. The
proofs are respectively given in Appendix B.4.2 and B.4.3.
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Lemma B.4.1

Co (/\ Ga> = > Co(G,) (B.136)

acA acA

—= Y(P},)aca € [[ P*(Ga), (B.137)

®a6A P‘Z SV (/\aeA Ga) and
acA

C (Naca Gar ®uea Pr,) = Yaea C(Ga, PY,).

Lemma B.4.2 For all Py, v, € P~ (Aaesa Ga), the following holds

C (/\ Gor @ Pva> = > C(Ga, Py,) (B.138)

acA acA acA
— () (/\ Ga> = Z Co(G,) and ¥a € A, Py, € P*(G,). (B.139)
acA acA

Let us prove Theorem 5.4.1. Let (Fy; )aea € [laea P*(G,), we have by Lemma B.4.1

CO (/\aeA Ga) - ZaeA CO(Ga) (B140)

- ®aEA P\Z € P (AaEA Ga) and C (/\aeA Gaa ®a€A PIZ) = ZaeA C<Ga> P‘Z)
(B.141)

= ElPVl ----- Via SV (AaeA Ga)> ¢ (AaE.A G, Qaca PVa) =D acA C<Ga7 PVa,)' (B'142)

Conversely, by Lemma B.4.2 we have

ElPVl ----- Via eP’ (/\aEA G(I)’ ¢ (/\aE.A Ga’ ®a€A PVa) = ZaeA C(Gaa PVa) (B143)
= C0 (Auea Ga) = Xaea Co(Ga), (B.144)

.....

B.4.2 Proof of Lemma B.4.1

For all family of graphs (Gy)aca, and distributions (FPy; Jaca € [Toes P*(Ga) the fol-
lowing holds:

Co (Naca Ga) = max C (Aaea Ga, @aea Pv,) (B.145)

(Pva)aeA€] [ AVa)
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> O (Aaea Gar ®aca 1) (B.146)
> Yaea C(Gao, PY,) (B.147)
= Yaca Co(Go); (B.148)

where (B.145) and (B.146) follow from Corollary 5.3.4; (B.147) comes from Proposition
5.2.5; and (B.148) follows from Proposition 5.3.2.

Now assume that > ,c4 Co(Ga) = Cp(Ages Ga), then equality holds in (B.145) to
(B.148). In particular, we have

CO (/\aEA Ga) = C (/\aEA Ga7 ®a6A P\Z) ’ hence ®ae_,4 P‘Z € P* (/\GE.A Ga) 5 (B149)
C (MueaGa» ®ueca Py,) = Luea C(Ga, Py,). (B.150)

B.4.3 Proof of Lemma B.4.2

Let Pvy, viy € P*(Aaca Ga), by Theorem 5.3.3, we have
Qaca v, € P* (Naca Ga) - (B.151)
Additionally, for all (P )asca € ITaea P*(Ga) we have for all a € A
C(Ga, Py,) < C(G., Py,), (B.152)

and the following holds

C (Naea Gas ®aca Pv,) (B.153)
> C'(Aaea Gas ®uca 1) (B.154)
> Yaea C(Ga, Fy,) (B.155)
= 2aea C(Ga, P,); (B.156)

where (B.154) comes from (B.151); (B.155) comes from Proposition 5.2.5; and (B.156)
comes from (B.152).

Now assume that

C (Naea Gay, QucaPv,) = 20ea C(Ga, Pry,), (B.157)
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then equality holds in (B.153) to (B.156). In particular, we have for all a € A:
C(Ga, Py,) = C(Ga, Py,) (B.158)

as a consequence of >,c 4 C(Ga, Py) = >,e4C(Ga, Py,) and (B.152). Hence Py, also
maximizes C'(G,,-) for all a € A:

Va € A, Py, € P*(G,). (B.159)
Furthermore,
CO (/\GGA GCL) = C (/\GGA GCLJ ®a€.4 PVa) (B160)
=, C(Gq, Py) (B.161)
= Yaca Co(Ga); (B.162)

where (B.160) comes from Corollary 5.3.4; (B.161) follows from (B.157); and (B.162)

comes from (B.159) and Proposition 5.3.2.

B.4.4 Proof of Theorem 5.4.2

The techniques used in this proof are the same as in the proof of Theorem 5.4.1. We
prove Theorem 5.4.2 in two steps, which are Lemma B.4.3 and Lemma B.4.4; their proofs

are respectively given in Appendix B.4.5 and B.4.6.

Lemma B.4.3 Let

( 2C0(Ga) ) ( )
Pr=—=———+— , B.163
4 diaeA 200(Gar) acA

we have

(1L ) = 1o (52049

acA acA

= V(P )aca € [[ P*(Ga), Y. Pi(a)Py, € P <|_| Ga> and

acA acA acA
Py
c (u Gay Y P:(@P;a) = H(P}) + Y Pi(a)C(Ga, P, (B.164)
acA acA acA
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Lemma B.4.4 Let

( 2CO(Ga) > ( )
pre(—" ) B.165
A Za’EA 2Co(Ga/) e

for all Y- gc 4 Pa(a)Py, € P* (Usen Ga) the following holds

<|_| Gay > Pala Pva) = H(Pa) + ) Pa(a)C(Ga, Py,)
acA acA acA

Co <|_| Ga> = log (Z 2CO<Ga>>, (Pv,)aca € [[ P*(G.), and Py = P;. (B.166)

acA acA acA

Now let us prove Theorem 5.4.2. Let (P}, Jaca € [loea P*(Ga), we have by Lemma
B.4.3

CU (l_laeA Ga) = log (ZaEA QCO(GG)) (B167)
= ZaeA PZ( )P‘Z S (I—laeA Ga) and
¢ (l—laGA Gaa ZaeA PA( )P‘Z) = H(le) + ZaeA PZ(G)C(Gm P\Z), (B168)

— E|Pv c p* (I—laeAG )
C (U2 Gar Yaca Pi(a)PY,) = H(P}) + Saca Pi(a)C(Ga, PY,),

where P, = Pyyey, and Pj(a) = Py(V,) for all a € A.

Conversely, by Lemma B.4.4 we have

3Py € P* (Uaea Ga), (B.169)
C (UaEA Gm EaeA PA( )PVu) = H(PA) + EaeA PA(G)C(Gaa PVa)
— CO (l_laE.A Ga) = IOg (ZaEA QCO(GQ)) ) (Bl?O)

and any Py = Y ,ca Pa(a) Py, that satisfies (B.169) also satisfies

(Py)ocs € T[ P*(Go) 2 (B.171)
Py )aca € T P*(Ga), and Py = <> . B.171
© acA ZGIGA QCO(GGI) acA
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B.4.5 Proof of Lemma B.4.3

Lemma B.4.5 states that the function (wg)eea — log (X aea2¥*) is the Legendre-
Fenchel conjugate [69] of the entropy function P4 — H(Pj4). The proof of Lemma B.4.5
is given in Appendix B.6.8.

Lemma B.4.5 Let (w,)aca € RMI, then the mapping

aE.A
has a unique maximum
P = (2%) ; (B.173)
A Za’GA 2%/ acA , '
and
C(Py) =log (Z 2“’“) . (B.174)
acA

Now let us prove Lemma B.4.3. Let

ZaEA PA<a>PVa e P (I—laEA Ga) ) (B175>
(P, )aca € Taea P*(Ga), (B.176)
9C0(Ga) b
R ) 1
PA <Za’€A QCo(G’a/) ) el ( 77)
We have
CO (l—laE.A Ga) = acA Gm ZaeA PA(a)PVa) B.178

v

C (L (B.178)
C (U2 Gar Yaea Pila)Py,) (B.179)
H(P}) + Saea Pi(a)C(Ga, PY,) (B.180)
(B.181)
(B.182)

v

= H(P}) + Xea Pi(a)Co(G,)
= log (Xaea 200} ;

where (B.178) and (B.179) come from (B.175) and Proposition 5.3.2; (B.180) comes from
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Proposition 5.2.5; (B.181) comes from (B.176) and Proposition 5.3.2; and (B.182) comes
from (B.177) and Lemma B.4.5.

Assume that Cj (|,eq Go) = log (ZaeA QCO(G“)), then equality holds in (B.178) to
(B.182), therefore the following holds:

CO (I_lae_A Ga) == ].Og (ZGGA 2CO(Ga))
— \V/(P{;a)aEA € HaeA 2 (Ga), Zae.A PZ(Q)P‘Z c P+ (I—laeA Ga) and
C (l_IaPéA Gaa ZaeA PZ(G)PXZ) = H(P,D + Zag_A PZ(CL)C(GG, P‘Z) (B183)

B.4.6 Proof of Lemma B.4.4

Let

ZaGA PA(a>PVa e PpPr (|—|a€A Ga) ) (B184)

(Plja)ae.A S HaeA P*<Ga)a (B.185)

. . QCO(GQ)
Py = (W)a@\. (B.186)
We have

C (Ub24 Gay Laea Pala)Py,) = Co (Usea Ga) (B.187)

> log (Laea 27°) (B.188)

= H(P}) + YXaea Pi(a)Co(Go) (B.189)

> H(Pa) + Laea Pala)Co(Ga) (B.190)

— H(P4) + Taea Pa(@)C(Ga, Py,) (B.191)

> H(Pa) + Yaca Pa(a)C(Ga, P, ); (B.192)

where (B.187) comes from (B.184) and Proposition 5.3.2; (B.188) comes from Theorem
5.1.17; (B.189) and (B.190) come from (B.186) and Lemma B.4.5, which can be found in
Appendix B.4.5; (B.191) and (B.192) come from (B.185) and Proposition 5.3.2.

Assume that C (I_Ing Gay DYaca PA(a)PVa) = H(Pa) + Y gea Pa(a)C(G,, Py,), then
equality holds in (B.187) to (B.192). In particular Py = P} as a consequence of the
equality between (B.189) and (B.190); and (Py,)aca € [Taesa P*(G,) as a consequence of
the equality between (B.191) and (B.192). Thus, for all Y ,c 4 Pa(a)Py, € P* (Useu Ga)
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the following holds:

C (I—laG.A Gav ZaGA PA( )PVa> - H(PA) + ZaGA PA(G)C(Gaa PV,L)

= Cp (Usen Ga) = log (Z AQCO ) (Py,)aca € H P*(G,), and Py, = P;. (B.193)
acA

B.5 Main proofs for the examples and counterexam-

ples

B.5.1 Proof of Theorem 5.5.8

Lemma B.5.1 comes from [63, Corollary 1], and states that the function Py — H, ( e ),
defined analogously to Py F( |_|a6 4G ) is always linear. The proof of Lemma B.5.2 is
given in Appendix B.6.9.

Lemma B.5.1 (from [61, Corollary 3.4]) For all probabilistic graphs (G4)aeca and Py €
A(A), we have HH(UaeAG ) = wea Pa(a)HL(G,).

Lemma B.5.2 The probabilistic graph |_|5‘€“A G, is perfect if and only if G, is perfect for
all a € A.

Now let us prove Theorem 5.5.8.

For all a € A, let G, = (V,,&,, Py,) be a perfect probabilistic graph. By Lemma B.5.2,
LS4, G, is also perfect; and we have H(Ung Ga) =H, (I_]aeA G ) by Theorem 5.5.4. We
also have Hy(1Uy24 Gu) = Saea Pa(a)Hy(Ga) = Lue Pa(a)H(G,) by Lemma B.5.1 and
Theorem 5.5.4 used on the perfect graphs (G,)qeq. Thus

H(U24Ga) = Saea Pa(a)H(Gu). (B.194)

By Theorem 5.2.4, it follows that H (Ageq Ga) = Saea H(Ga) = e Hi(G.), where

the last equality comes from Theorem 5.5.4.
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B.6 Secondary proofs

B.6.1 Proof of Lemma B.2.2

In order to prove Lemma B.2.2 we need Lemma B.2.1, which can be found in Appendix
B.2.1; and Lemma B.6.1, which is a generalization for infinite sequences of the following
observation: if Tyn = Py € A,(A) satisfies Py = P} + P with P} € A;(A) and
Py € A,_i(A), then @" can be separated into two subsequences a’ and """ such that
Tyi = Py and Tym-i = PJ. The proof is given in Appendix B.6.10.

Lemma B.6.1 (Type-splitting lemma) Let (@,),ene € AN be a sequence such that
Tan — Pa € A(A) when n — oo, let 5 € (0,1) and P}y, P} € A(A) such that

Py =Py + (1—pB)P4. (B.195)

Then there exists a sequence (by)nen+ € {0, 1} such that the two extracted sequences

a' = (Gp)nen+, and a” = (Gy)nen+, satisfy
b

n=0 bn=1
s (B.1-B), (B.196)
/ /"
Ta/n n:)oo PAv Ta//n njoo PA' (B197)

Now let us prove Lemma B.2.2. Let n : Py ﬁ(l_laeAG )
(n Lipschitz) Let us first prove that n is Lipschitz. For all P4, P} € A(A) we need
to bound the quantity |n(Pa) — n(P})|; by Lemma B.2.1 this is equivalent to bounding

lim —‘H (aca GAm @) — Hy (Ages G| (B.198)

n—oo n,

where (T, Tym) — (Pa, P}) when n — oo.
Fix n € N*, we assume that the quantity inside |- | in (B.198) is positive; the other

case can be treated with the same arguments by symmetry of the roles. We have

Hy (Aaea G @) — Hy (Ngen Ga™ @) (B.199)

< H (AaEA G/\nTa"(a)> _ H (/\aeA Gl/l\"mm(T"( ):Ta’n(a))) (B.QOO)
(/\aeA G min(Ten (@ Tn(@) Al T (a)~Tgm (o )\+>

— Hy (Agen G @ T @) (B.201)
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< Hy (Agen Ga™1 7 @) (B.202)
< log (max [Val ) SoesnlTor(0) — T (a)] (5.208)
< nlog (mgxx |va|) T — T |1, (B.204)

where |- |4 = max(-,0) and ||Tgn — Tam||1 = Ygea [T (a) — Tam(a)]; (B.200) follows from
the removal of terms in the second product, as H, (G A G') > H,(G) for all probabilistic
graphs G, G'; (B.201) is an arrangement of the terms in the first product, as min(s,t) +
max(s — t,0) = s for all real numbers s,¢; (B.202) comes from the subadditivity of
H,; (B.203) follows from H,(G,) < logmax, |Vy| for all a € A; (B.204) results from
|Tan (a) — Tgm(a)|y < |Tan(a) — Tem(a)| for all a € A.

By normalization and limit, it follows that

(P~ n(PA)] < Jim o (max [Ve]) - [T — Tl (5.205)
~ log (mgxx |va|) Py — Pyl (B.206)

Hence 7 is (log max, |V,|)-Lipschitz.

(n convex) Let us now prove that n is convex. Let P}, P} € A(A), and 8 € (0,1),
we have by Lemma B.2.1

1 ,a
(8P + (1= H)P) = lim —Hy (Auea G277 ). (B.207)

where Tyn — SP) + (1 — )P} when n — co. By Lemma B.6.1, there exists (b, )nen+ €

{0,1}Y" such that the decomposition of (@, ),en+ into two subsequences a’ = (@, )nen+, and
bn=0
a” = (@, )nen~, satisfies
ba=1

Ty = (8,1-7), (B.208)
/ /!
Ta/n nj)oo PA? Ta//n n——>>oo PA (B209)

For all n € N*, let =(n) = nT(0), we have

n(BP4+ (1 - B)PY) (B.210)
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/\E(n)T 12(n (a)+(n_5(n))T "m—=(n (a)
= Jim A, (/\QGA GaZ Tz = ) (B.211)
. E(n) 1 NE()T =) (0)
< Jim = 2 By (Maea G ) (B.212)
n—E(n) 1 < Am=E()T 1= (n) (a))
H Ga a B.213
+ n —Z(n) X Paca ( )
= Bn(Py) + (1 = B)n(Py); (B.214)

where (B.211) comes from (B.207); (B.213) follows from the subadditivity of H,; (B.214)
comes from (B.208), (B.209) and Lemma B.2.1. Since (B.214) holds for all P}, P} € A(A)
and 5 € (0,1), we have that 7 is convex.

B.6.2 Proof of Lemma B.2.3

It can be easily observed that

3Py € int(A(A)), 7(Pa) = Laea Pala)y(1a) (B.215)
<= VPy € A(A), 7(Pa) = Xuea Pala)y(L,). (B.216)

Now let us prove (B.215) = (B.216). Let P} € int A(A) such that v(P}) = Y ,ca Pi(a)y(1,).
Let m : A(A) — R linear such that m(P}) = v(P3) and VP4 € A(A), m(Pa) < vy(Pa).
We have

0 =5(P3) = m(P3) = Laea Pila) (v(La) = m(L,)); (B.217)

and therefore v(1,) = m(1,) for all a € A, as vy —m > 0 and Pj}(a) > 0 for all a € A.
For all P4 € A(A), we have

f(Pa) < Ygea Pala)y(1,) (B.218)
=Y uea Pa(a)m(1,) = m(Pa), (B.219)

hence v = m and +y is linear.
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B.6.3 Proof of Lemma B.2.4
The probabilistic graphs in both sides of (B.8) have
(Uaea Va) X (Upen Vo) = Uiapyeaxs Va X Vo (B.220)

as set of vertices, with underlying distribution

(ZaeA PA(a)PVa) (Zbeb’ PB(b)PVb)
= Yanjeaxs Pala)Pp(b) Py, Py, (B.221)

Now let us show that these two graphs have the same edges. Let (v, vg), (V/y,v5) €
(Uaea Vo) X (Upes Vo); let ay, a. € A and by, b, € B be the unique indexes such that

(va,vB) € Vo, x V. and  (Vy,v5) € Vi X Vy. (B.222)
We have:
(v4,v8), (Vy, vg) are adjacent in (I_lf‘e“A Ga) A (I_Iffg Gb) (B.223)
<= vy, v’y adjacent in Ung G, and vg, vy adjacent in UféBB Gy (B.224)
< a, = a, and vV € &,, and b, =V, and vgvy € &, (B.225)
<> (as,be) = (@, b)) and (v4,v5), (V'4, vg) are adjacent in G,, A G, (B.226)
<= (v4,v8), (V4, vg) are adjacent in Uifzf))gAxB [N EN (B.227)

B.6.4 Proof of Lemma B.2.5

In order to prove Lemma B.2.5, we need Lemma B.6.2. In Lemma B.6.2 we give
upper and lower bounds on the chromatic entropy of an induced subgraph G[S], using
the chromatic entropy of the whole graph G and the probability Py (S). The core idea is
that if Py(S) is close to 1 and H,(G) is big, then H, (G[S]) is close to H,(G). The proof
of Lemma B.6.2 is given in Appendix B.6.11

Lemma B.6.2 Let G = (V,E,Py) and S CV, then

Hy(G) =1 = (1= Py(85))log [V| < Hy(G[S]) <

- Py(S)

(B.228)
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Remark B.6.3 H,(G[S]) can be greater than H,(G), even if G[S] has less vertices and
inherits the structure of G. This stems from the normalized distribution Py /Py (S) on the

vertices of G[S| which gives more weight to the vertices in S. For example, consider

(1—¢,€)

G = (N5, Unif({1,..,5})) U (K5, Unif({1,..,5}));

where K, (resp. N,) is the complete (resp. empty) graph with n vertices, i.e. there is an
edge (resp. no edge) between any pair of distinct vertices; and with S being the vertices in
the connected component K5 in G. Then H,(G) = elogh and H,(G[S]) = log5.

Now let us prove Lemma B.2.5. By Lemma B.6.2, we have for all n € N*:

H(G™") = 1= (1= P}(Sa)) log [V
H (G/\n)
< H (GM[S"]) < =X —~. B.22
Since P3(S,) — 1, and H,(G") = nH(G) 4 o(n) when n — oo, the desired results

follows immediately by normalization and limit.

B.6.5 Proof of Lemma B.2.7

Let (Gl)lg ~ be isomorphic probabilistic graphs and G such that G = |; G;. Let ¢ :
V1 — C be the coloring of G; with minimal entropy, and let ¢* be the coloring of G defined
by

iV C (B.230)
v ¢ o, 1(v), (B.231)

where 7, is the unique integer such that v € V; , and ¢;, 1 : V;, — V) is an isomorphism
between G;, and G;. In other words ¢* applies the same coloring pattern ¢} on each

connected component of G. We have

H(G) < H(e(V)) (B.232)
= h( > i<n Fiy (j>Pc*(Vj)> (B.233)
— h( Sy P ()P (B.234)
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= H(c|(W) (B.235)
_H(C), (B.236)

where h denotes the entropy of a distribution; (B.234) comes from the definition of ¢*;
and (B.236) comes from the definition of ¢j.
Now let us prove the upper bound on HX(Gl). Let ¢ be a coloring of GG, and let

i* = argmin; H(c(V;)) (i.e. i* is the index of the connected component for which the

entropy of the coloring induced by ¢ is minimal). We have

H(e(V) = h( Sien P () Puay (5.237)
> Yjen Piy ()0(Pevy) (B.238)
> Yjen Piy () H(c(Vir)) (B.239)
> H(G), (B.240)
= H,(Gh), (B.241)

where (B.238) follows from the concavity of h; (B.239) follows from the definition of i*;
(B.240) comes from the fact that ¢ induces a coloring of Gj; (B.241) comes from the fact
that G and Gy are isomorphic. Now, we can combine the bounds (B.236) and (B.241):

for all coloring ¢ of G we have

H,(G) < Hy(Gh) < H(c(V)), (B.242)

which yields the desired equality when taking the infimum over c.

B.6.6 Proof of Lemma B.2.8

The probabilistic graph | )4, G has 3,4 Pa(a)Py, as underlying distribution. Let
A,V be two random variables such that A is drawn with P4, and V is drawn with
Py|a(+|a) = Py,, so that

PV = EaG.A PA<a)PVa- (B243)
We have

H (U524 Ga) + C (U2a Gar Yuea Pala) Pr,) (B.244)
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=H(V) (B.245)
= H(A,V) (B.246)
= H(A)+ H(VI[A) (B.247)
= H(Pa) + Xoca Pala)H(Py,); (B.248)

where (B.245) comes from Theorem 5.1.5 and (B.243); and (B.246) comes from the fact
that A can be written as a function of V: by definition, the vertex set of | |'4, G, writes
V = lyea Vo and supp Py, CV,, therefore A is the unique index such that V € Vy.

B.6.7 Proof of Lemma B.3.1

In this proof, we need Lemma B.6.4 and Lemma B.6.5; their proofs are respectively

given in Appendix and Appendix B.6.12 and Appendix B.6.13.

Lemma B.6.4 For all distributions Py, P{, € A(V), for all e > 0, and m,n € N*,

m n / +n m n /
TP x TP ST (2P + R ). (B.249)

Lemma B.6.5 For all graphs G = (V,€), G' = (V', &) and sets S TV, S TV’ we have
(GANG)[S xS~ G[S]AG'[S], (B.250)
where ~ denotes isomorphic graphs, defined in Definition B.2.6.

Let us prove that for all € > 0 and Py, € A(V), the sequence

(loga(GA"[t"(Pv)]D (B.251)

neN*

is superadditive. For all integers m,n we have

log a (G ™™ [T (Py)]) > log oG [T (Py) x T (Py)]) (B.252)
=log a(G"™[T"(Py)] A G [T(Py))) (B.253)
( €

> log oG [T (Py)]) + log oG [T(Py)]),  (B.254)
where (B.252) and (B.253) respectively come from Lemma B.6.4 and Lemma B.6.5.

129



Chapter B — Proofs for graph-based zero-error results

We can use Fekete’s lemma [25]: for all € > 0, the following limit exists

Jim ~ loga(GTI(R)) = limswp ~ loga(GITN(R)  (B.259)
= sup llog a(GM" T (Py))). (B.256)
neNr TV

B.6.8 Proof of Lemma B.4.5
Let us maximize

C: Pars H(Pa)+ Y Pa(a)w,. (B.257)
acA

It can be easily observed that ( is strictly concave, hence the existence and uniqueness of

the maximum. We have

1
VC(Py) = <— log Pa(a) — — + wa> , (B.258)
In2 acA
hence
V((Ps) L A(A) <= 3C e R, V((P4) = (C, ..., C) (B.259)
<= 3C" € R, (—log Pa(a) + wg)een = (C', ..., C") (B.260)
= 30" €R, Py =2"7(2"),4 (B.261)

The value of C’ can be deduced from the fact that Py is a probability distribution: 2" is

the normalization constant Y, c 4 2"«'. Hence the maximum of ¢ writes

Qe

Pi=\lc—=o] (B.262)

4 <Za’eA 2w“'>aeA

and we have
, 2’ll)a/

((P3) = Y Pile) (log (Z5470) ) (B.263)

acA 2t
=log | > 2% |. (B.264)

aeZ
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B.6.9 Proof of Lemma B.5.2

(=) Let G = |_|ae 2,G. be a perfect probabilistic graph. Let ' € A and Sy C
V.. We have X((l—laeAG )[S ]) = w((l_laeAG )[Sar]) since G is perfect, and therefore
X(GorlSu]) = w(GulSy]), as (L4 Ga)[Sw] = GulSw]. Thus all the graphs (Gu)aca are
perfect.

(<) Conversely, assume that for all a € A, G, = (V,,&,, Py,) is perfect. Then for all
S C Ugea Va, S can be written as | |,c4 S, where S, C V, for all a € A, and we have for
all Py € A(A):

X (U242 Ga) [8]) = x (UE24 GalSa]) (B.265)
= max x (G[5]) (B.266)
= maxw (Ga[Sa) (B.267)

and similarly, w(( HEReE )[S]) = maxgeq w (Ga[S,]). Hence |72, G, is also perfect.

B.6.10 Proof of Lemma B.6.1

Let (@n)nen € AY be a sequence such that Tgn — Py = BP) + (1 — 3)P) when
n— o0o.

Consider a sequence (B,,),en+ of independent Bernoulli random variables such that for
all n € N*,

BPA<EH)

P(B, =0) = B.268
By the strong law of large numbers,
P(Toum =2, (3P4 (L= B)PY)) = 1 (B.269)

Therefore, there exists at least one realization (b, )nen+ of (By)nen+ such that Tpn zn con-

verges to (BPA, (1— B)PA’). The convergences of marginal and conditional types yield

Ty = (B.1-5) (B.270)
/ /1
Tom n:)oo PA, T.m njoo PA7 (B271)
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where @’ = (@, )nen+, and a” = (@, )nen+, are the extracted sequences.
bu=0 ba=1

B.6.11 Proof of Lemma B.6.2

Let ¢* : V — C and ¢ : S — C be the optimal colorings of G and G[S], respectively.
Consider the coloring ¢ : V — CUV of G defined by ¢(v) = ¢ if v € S, ¢(v) = v otherwise.

(Lower bound) On one hand, we have

H(G) < H(c(V), Lyes) (B.272)
=H(lyes) + Py(S)H(c(V)|V € S)

+ (1= Py(S)H(c(V)V & 8) (B.273)

<1+ H(cs(W|V eS)+(1—Py(S))log |V (B.274)

=H (G[S]) +1+ (1 — Py(S))log|V|; (B.275)

where (B.272) comes from the fact that ¢ is a coloring of G; (B.273) is a decomposition
using conditional entropies; (B.274) comes from the construction of ¢: ¢|s = ¢%; (B.275)

follows from the optimality of ¢ as a coloring of G[S].

(Upper bound) On the other hand,

H,(G[S])
< H(c(V)|VeS) (B.276)
1 . .
- P (S) <H(c (Mlyes) — (1 = Py(S))H(c"(V)|V ¢ 3)) (B.277)

He (V) H(G)
Py (S) Py (S)

IN

(B.278)

where (B.276) comes from the fact that ¢* induces a coloring of G[S]; (B.277) is a de-
composition using conditional entropies; (B.278) results from the elimination of negative

terms and the optimality of ¢*.
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B.6.12 Proof of Lemma B.6.4

Let (v™,v") € T/"(Py) x T.*(P{;). We have

n

‘ o (n+m V+n+mv .

:H " .M p, " p
n+m n+m n+m n+m 00
m n

< Tym — P Ty — P!

<= Vlloo + 1T = Pl
m n

< €+ € =€,

n-—+m n-—+m

hence the desired result.

B.6.13 Proof of Lemma B.6.5

(B.279)

(B.280)
(B.281)

(B.282)

The graphs G[S] A G'[S'] and (G A G')[S x S'] both have § x &’ as set of vertices. For

all (v1,v7), (v, vh) € S x &', we have:

(v1,v)), (v9,vh) are adjacent in G[S] A G'[S']
<= vy, vy are adjacent in G and v}, vy are adjacent in G’

<= (v, ), (ve, v5) are adjacent in (G A G')[S x §'].
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APPENDIX C

PROOFS FOR CODING FOR COMPUTING
ZERO-ERROR RESULTS

C.1 Proof of Theorem 6.3.2

Consider the particular case f(X,Y) = X of Figure 6.2. The optimal rate in this
particular case equals the optimal rate R* in the following auxiliary problem, depicted
in Figure C.1: (X, g(Y)) as source available at the encoder and to be retrieved by the
decoder which knows Y (thus expecting it to retrieve g(Y) in addition to X does not
change the optimal rate).

X", (g(Yt)LSn —1 Encoder 7 Decoder — X", (9(Yt)>
Y?’L

t<n

Figure C.1 — An auxiliary zero-error Slepian-Wolf problem.

This auxiliary problem is a particular instance of the zero-error Slepian-Wolf prob-
lem; its optimal rate writes H(G), where G is the characteristic graph defined in Defi-
nition 3.2.4 for the pair ((X,g(Y)),Y). The graph G has X x Z as set of vertices, and
(z,z) is adjacent to (a',2') if there exists a side information symbol y € ) such that
Pxygov)(,y,2)Px ygvy(@',y,2) > 0. It can be observed that the vertices (x,z) and
(2',2") such that z # 2’ are not adjacent in G. The graph G is therefore a disjoint union
indexed by Z:

G =12 G (C.1)
R =H(G)=H (X G.); (C.2)

where for all z € Z, GG, is the characteristic graph defined in Definition 3.2.4 for the pair
(XL, Y]) ~ Pxylgr)=:-

z) "z
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(=) Assume that g and Py satisfy the “pairwise shared side information” condi-
tion. It directly follows that Py gy)=. is full-support for all = € Z. Let 2 € Z, and
let (z,z2),(2/,z) be any two vertices of G,. By construction, there exists y € g~ '(2)
such that Pxy(z,y)Pxy(2',y) > 0; hence Pxyqv)(®,y, 2)Pxygqv)(2',y,2) > 0, and
(x,2), (2, z) are adjacent in G,. Each graph G, is therefore complete, and perfect; the
graph G = ufg? G, is a disjoint union of perfect graphs and is also perfect by Lemma
B.5.2. We have:

R =H (L% G.)
- HF»' (I_lfég) Gz)

= ZZ Pyvy(2)Ho(G-) (C.5)
= > Py (2)H(Pxjg(r)=:) (C.6)
= H(X][g(Y)); (C.7)

where (C.3) comes from (C.2); (C.4) and (C.5) follow from Theorem 5.5.8 used on the
perfect graph ufgg) G,; and (C.6) holds as the independent subsets of the complete graph

GG, are singletons containing one of its vertices.

(<) Conversely, assume that Px|gy)=. is full-support for all z € Z, and R* =
H(X|g(Y)).

Assume, ad absurdum, that at least one of the (G,).,cz is not complete; then there
exists a coloring of that graph that maps two different vertices to the same color. Thus,
there exists z € Z such that

H(G.) < H(Px|g(v)=2), (C.8)

as Px|g(v)=- is full-support. We have

H(X|g(Y)) = R' (C.9)
= H (UL ¢. (C.10)
=2 Pyvy(2)H(G-) (C.11)
< H(X]g(Y); (C.12)



C.2. Proof of Theorem 6.5.6

where (C.10) comes from (C.2), (C.11) results from [71, Theorem 2], and (C.12) fol-
lows from (C.8). We arrive at a contradiction, hence all the graphs (G, ).cz are complete:
for all z € Z and z,2’ € X, there exists a side information symbol y € ) such that
Pxy. o) (2,9, 2)Px y o) (@ y, 2) > 0; hencey € g~'(2), and satisfies Px y (z,y)Pxy (z',y) >

0. The condition “pairwise shared side information” is satisfied by Pxy,g.

C.2 Proof of Theorem 6.3.6

Let us specify the adjacency condition in G, under the assumption (6.14). Two ver-
tices are adjacent if they satisfy (6.9) and (6.10); however (6.9) is always satisfied under

(6.14). Thus (2", 2™)(x™, 2™) are adjacent if 2" = 2™ and

Ty € g ' (2"), Tt <, f(@e,ye) # [z, ue). (C.13)

It can be observed that the condition (C.13) is the adjacency condition of an OR product

of adequate graphs; more precisely,

Gu =[] V&L (C.14)

ZneZn t<n
Although G, cannot be expressed as an n-th OR power, we will show that its chromatic
entropy asymptotically coincide with that of an appropriate OR power: we now search for

an asymptotic equivalent of H, (G\y).

Definition C.2.1 S, is the set of colorings of G that can be written as (z",2")
(Ton, e(x™, 2™)) for some mapping ¢ : X" X Z" — C; where T,n denotes the type of 2".

In the following, we define Z" = (g(Yt))t< . Now we need several Lemmas. Lemma
(.2.2 states that the optimal coloring c(x", 2) of Gy has the type of 2" as a prefix at
a negligible rate cost. Lemma C.2.3 gives an asymptotic formula for the minimal entropy

of the colorings from §,,.
Lemma C.2.2 The following asymptotic comparison holds:

Hy(Glo) =, inf, . H(e(X", 27) +Ollogn) (C.15)
s.t. c€ESp,
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Lemma C.2.3 The following asymptotic comparison holds:

ot H(c(X",Z™) =n Y Pyyy(2)Ho(GI) + o(n). (C.16)
Cc coLoring o, [n] ZGZ
s.t. c€ESp

The proof of Lemma C.2.2 is given in Appendix C.3, its keypoint is the asymptotically
negligible entropy of the prefix T~ of the colorings of S,,.

The proof of Lemma C.2.3 is given in Appendix C.4, and relies on the decomposition
G = Ug,ean(z) G%, where G[%L is the subgraph induced by the vertices (2™, 2") such
that the type of 2" is @),,. We show that G[%L is a disjoint union of isomorphic graphs whose
chromatic entropy is given by Lemma B.2.7 and (6.16): ‘HX(G%)—n ez Qu(2)H (G| <

ne,. Finally, uniform convergence arguments enable us to conclude.

Now let us combine these results together:

R = iHX(GM) +o(1) (C.17)

1
=— inf  H(c(X", Z" 1 C.18
nec colorilr?g of Gy (C( ) )) + O( ) ( )
s.t. c€Sp

= > Py (2)Ha(G) + (1), (C.19)

z€EZ

where (C.17) comes from Theorem 6.2.2, (C.18) comes from Lemma C.2.2; and (C.19)

comes from Lemma C.2.3. The proof of Theorem 6.3.6 is complete.

C.3 Proof of Lemma C.2.2

Let ¢}, be the coloring of G,,) with minimal entropy. Then we have:

H(G) =, inf (X", 27) (C.20)
< inf H(c(X™, Z™)) (C.21)
c coloring of G
s.t. ce€Sp
= o, H(Tp X7, 2Y) (C.22)
(Tom &z 2™))
< H(Tgn) + H(cH (X", Z7)) (C.23)
= H,(Gpy) + O(logn), (C.24)

138



C.4. Proof of Lemma C.2.3

where (C.22) comes from Definition C.2.1; (C.23) comes from the subadditivity of the
entropy, and the fact that (2", 2") — (T.», ¢ (2", 2")) is a coloring of G, that belongs to
S,y and (C.24) comes from H(Tz») = O(logn), as log|A,(Z)| = O(logn). The desired
equality comes from the bounds H,(G,) and H,(Gp,)) + O(logn) on (C.21).

C.4 Proof of Lemma C.2.3

For all @, € A,(Z), let

Ger= || VG (C.25)

ZMEZN t<n

Ton=Qy
with the probability distribution induced by Py ;. This graph is formed of the connected
components of G,,) whose corresponding 2" has type (),,. We need to find an equivalent for

HX(G[%). Since G[%‘ is a disjoint union of isomorphic graphs, we can use Lemma B.2.7:

(G = i V@), (©.26)

z€Z

On one hand,

(V@) > (@) c2n

z2€EZ 2€Z
=ny Qn(2)H(GY), (C.28)
2€Z
where (C.27) comes from H, < H, [5, Lemma 14], (C.28) comes from (6.16). On the
other hand,

Hx( V (GY) V”Q"(‘Z> <Y Qu(z)H (G (C.29)

z€Z z2€Z

=n > Qu(2)H.(GL) + ne,, (C.30)

z€EZ

where €, = max, = H,((G)'") — H,(G!) is a quantity that does not depend on @Q,, and

satisfies lim,,_,o €, = 0; (C.29) comes from the subadditivity of H,. Combining equations
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(C.26), (C.28) and (C.30) yields

GQ” -n Z Qn(z ) < ne,. (C.31)

z2EZ

Now, we have an equivalent for H (G[%l)

inf H(c(X", Z™)) (C.32)
¢ coloring of G|y
s.t. c€Sp
= it HEX", 2Ty + H(Ty) (C.33)
—(Tyn,é(x™,2™))
= inf > Pr,.(Qu)H(E(X™, Z")| Tz = Q,) + O(logn) (C.34)
(T o m)) @n€Bn(2)
= > Pr.(Q,) inf o H(co, (X", Z")|Tzn = Q) + O(logn) (C.35)
Qnein(2) cQ,, coloring of G[n?
= > Pr,.(Qn)H(GY) + O(logn) (C.36)
Qn€AR(Z)
= > Pr(Q <n S Qu(2)H(GY) £ nen> + O(logn) (C.37)
Qn€AL(2) 2€Z
—n Y 9=nD(QnllPy(v))+o(n) (Z Qn(z)HK(G£)> + ne, + O(logn) (C.38)
QneAn( ) z€Z
=1 Py)(2)Ha(GL) + o(n), (C.39)
zEZ

where (C.34) comes from H(Tz») = O(logn), as log|A,(Z)| = O(logn); (C.35) follows
from the fact that the entropy of ¢ can be minimized independently on each G[ T (C.36)
follows from the definition of Gﬁ”; (C.37) comes from (C.31); (C.38) comes from [20,
Lemma 2.6] and the fact that ¢, does not depend on @,,.
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