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Chapter 1

RÉSUMÉ

Le codage de source zéro-erreur regroupe une grande variété de problèmes en théorie
de l’information, où une source doit être compressée par un encodeur avec un débit à min-
imiser, puis doit être retrouvée par le décodeur avec probabilité d’erreur zéro. Dans tous
les problèmes étudiés ici, la distribution de source est connue et le décodeur a accès à une
information adjacente, i.e. une variable aléatoire corrélée à la source qui aide au décodage
et à minimiser le débit. L’étude de tels problèmes trouve son utilité dans des applications
demandant une garantie forte sur la qualité de reconstruction de la source, en particulier
la télédétection et le calcul distribué. Dans un problème de codage de source zéro-erreur,
trouver une formule pour le débit optimal permet d’établir une borne théorique sur les
performances de tous les schémas de codage possibles. De plus, si cette formule est à une
seule lettre (i.e. ne fait pas apparaître de limite), elle peut être facilement calculée. On
a aussi l’existence d’un schéma de codage qui permet d’atteindre asymptotiquement ce
débit optimal. Pour ces raisons, notre premier objectif dans ce manuscrit sera de trouver
des expressions à une seule lettre pour les débits optimaux des problèmes de codage de
source zéro-erreur.

La contrainte zéro-erreur diffère de la contrainte d’erreur asymptotiquement nulle,
cette dernière ne demandant qu’une limite nulle pour la probabilité d’erreur au décodage
quand la longueur du bloc codant tend vers l’infini. Dans les cadres où le décodeur n’a
pas d’information adjacente, on peut facilement montrer que les débits optimaux sous les
contraintes zéro-erreur et erreur asymptotiquement nulle coïncident. Toutefois, lorsqu’on
impose la contrainte zéro-erreur quand le décodeur a une information adjacente – ce sera
le cas dans les problèmes étudiés ici, la nature de certains problèmes passe de statistique
à combinatoire (e.g. le problème de Slepian-Wolf zéro-erreur). Il s’ensuit que les outils
adéquats pour de tels problèmes sont à la fois tirés de la théorie de l’information et de la
combinatoire ; et peuvent aller d’un dispositif de correction qui donne la propriété zéro-
erreur à des codes existants, à des codes zéro-erreur entièrement bâtis avec des contraintes
tirées de la théorie des graphes.
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Chapter 1 – Résumé

La nature combinatoire des problèmes zéro-erreur est liée à l’incertitude de l’encodeur
sur l’information adjacente du décodeur. Dans les problèmes à erreur asymptotiquement
nulle, on peut supposer que la suite des réalisations de l’information adjacente du décodeur
sera typique par rapport à la distribution de source, avec grande probabilité ; même si
l’encodeur n’a pas accès à ces réalisations. En revanche, la contrainte zéro-erreur rend ce
manque d’information plus difficile à gérer ; en particulier, il faut que les codes utilisés
permettent une reconstruction parfaite de la source pour n’importe quelle réalisation de
l’information adjacente du décodeur.

Par conséquent, nous classifions les problèmes zéro-erreur étudiés ici en trois caté-
gories ; selon l’information que possède l’encodeur sur l’information adjacente du dé-
codeur, et selon ce que le décodeur lui-même doit retrouver :

- Les problèmes zéro-erreur basés sur la correction, dans lesquels l’encodeur a accès à
toutes les informations adjacentes du problème, et peut simuler chaque décodage ;

- Les problèmes zéro-erreur basés sur les graphes, dans lesquels l’encodeur est “moins
informé” sur l’information adjacente du décodeur ;

- Les problèmes zéro-erreur pour le calcul de fonction, dans lesquels le décodeur doit
calculer une fonction de la source et de son information adjacente ; au lieu de
simplement reconstruire la source.

1.1 Problèmes zéro-erreur basés sur la correction

Le problèmes zéro-erreur basés sur la correction peuvent être abordés avec l’aide d’un
dispositif de correction qui garantit la propriété zéro-erreur. Il consiste en l’utilisation
d’un livre-code adapté à la contrainte d’erreur asymptotiquement nulle, la simulation
de chaque décodage, et l’envoi de toute les suite de source s’il y a erreur dans l’un des
décodages. Ce dispositif de correction a un impact négligeable sur le débit en raison de la
faible probabilité d’erreur, et permet la conversion des codes à erreur asymptotiquement
nulle en codes zéro-erreur. Pour cette raison, les outils que nous utilisons avec le dispositif
de correction sont la typicalité, et les codes aléatoires et de parité.

Dans le premier problème de cette classe, présenté en Figure 4.1, l’information adja-
cente peut être présente au décodeur. Dans ce cadre, l’encodeur dispose d’une information
adjacente, mais ignore si le décodeur y a accès aussi ; l’encodage est divisé en deux étapes.
À la première étape, l’encodeur envoie de l’information sans savoir si l’information adja-
cente est présente au décodeur. Le message envoyé à la première étape doit être exploitable

8



1.1. Problèmes zéro-erreur basés sur la correction

indépendamment de l’éventuelle présence de l’information adjacente. De plus, un décodage
zéro-erreur doit être réalisé si le décodeur a accès à l’information adjacente. À la deuxième
étape, un supplément d’information est envoyé par l’encodeur dans le cas où l’information
adjacente n’est pas présente au décodeur, et ce dernier doit ensuite retrouver la source
avec zéro-erreur. Ces deux étapes sont modélisées par deux décodeurs différents et deux
canaux parfaits. Nous voulons répondre à la question suivante : quelles sont les paires
de débits réalisables pour les deux étapes d’encodage, qui permettent un décodage zéro-
erreur ? Notre première contribution consiste à déterminer la région réalisable, à l’aide
d’une partition en cosets des suites de source, couplée à un dispositif de correction ; prou-
vant de ce fait que cette région réalisable en zéro-erreur coïncide avec la région réalisable
en erreur asymptotiquement nulle.

Le deuxième problème basé sur la correction est illustré en Figure 4.3 et est une général-
isation du premier. Dans ce problème où l’encodeur connaît deux sources différentes et
leurs informations adjacentes respectives, deux incertitudes se présentent : la première est
que l’encodeur ignore quelle source sera demandée par le décodeur, et la deuxième est que
l’information adjacente de la source demandée peut être présente au décodeur. L’encodage
est alors divisé en trois étapes. À la première étape, l’encodeur envoie de l’information sans
savoir quelle source sera demandée ; nous cherchons à envoyer l’information commune aux
deux différentes sources, d’où l’appellation “réseau de Gray-Wyner” pour ce problème. À
la deuxième étape, l’encodeur est informé de la source demandée par le décodeur, mais
ignore toujours si ce dernier dispose d’une information adjacente ; si tel est le cas, alors un
décodage zéro-erreur doit être réalisé. La troisième étape est un supplément d’information
envoyé par l’encodeur dans le cas où le décodeur ne dispose pas de l’information adja-
cente ; le décodeur doit ensuite retrouver la source avec zéro-erreur. Pour ce problème,
notre deuxième contribution consiste en une borne interne et une borne externe sur la
région réalisable. Pour la borne interne, nous utilisons le schéma de codage suivant : des
suites auxiliaires sont utilisées pour capturer l’information commune entre les suites de
réalisations des deux sources, ensuite nous effectuons un étiquetage aléatoire de ces suites,
et les ensembles de suites de source sont partitionnées en cosets. Les algorithmes de dé-
codages sont basés sur les V -enveloppes des suites d’information adjacente, et la propriété
zéro-erreur est garantie par un dispositif de correction.
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Chapter 1 – Résumé

1.2 Problèmes zéro-erreur basés sur les graphes

Dans les problèmes zéro-erreur basés sur les graphes, les contraintes zéro-erreur sont
représentées par un graphe caractéristique, et déterminer le débit optimal dans de tels
problèmes revient à résoudre des questions difficiles de théorie des graphes. Le problème
de Slepian-Wolf zéro-erreur illustré en Figure 3.4 est l’un d’eux, son débit optimal est
donné par l’entropie complémentaire H de son graphe caractéristique, et trouver une
expression à une seule lettre pour H est une question ouverte. Toutefois, afin de mieux
comprendre la nature du problème Slepian-Wolf zéro-erreur, nous donnons de nouveaux
résultats structurels qui lient ce problème avec d’autres, en particulier la capacité zéro-
erreur d’un canal C0 (voir la Figure 3.2).

Notre étude principale concerne le problème de “linéarisation”. Dans le cadre du prob-
lème Slepian-Wolf zéro-erreur, si l’encodeur est en train de réaliser plusieurs tâches de
compression indépendantes avec leurs informations adjacentes respectives, alors le débit
optimal est donné parH(∧·), i.e.H d’un graphe avec une structure de produit ET. Comme
illustré par Tuncel et al. dans [71], “séparer” les tâches indépendantes donne un schéma
d’atteignabilité, d’où H(∧ ·) ≤ ∑

H(·). Un autre cas d’intérêt est celui où l’encodeur dis-
pose d’une information partielle g(Y ) sur l’information adjacente du décodeur. Le débit
optimal est donné par H(⊔ ·), i.e. H d’un graphe avec une structure d’union disjointe.
“Séparer” les réalisations de la source selon les valeurs de l’information adjacente de
l’encodeur donne aussi un schéma d’atteignabilité, d’où H(⊔Pg(Y ) ·) ≤ ∑

z Pg(Y )(z)H(·).
Lorsqu’on a égalité dans l’un ou l’autre de ces cas, on dit qu’on a “linéarisation” de H.

Notre contribution consiste à prouver les équivalences des linéarisations de C0(∧ ·),
C0(⊔·), C(∧·, PV ), C(⊔·, PV ), H(∧·), et H(⊔·); où C(·, PV ) est le débit optimal du prob-
lème de codage canal zéro-erreur où l’encodeur doit utiliser des mots de codes typiques
par rapport à la distribution PV . Par conséquent, le schéma de codage “séparé” est opti-
mal dans le problème de codage canal zéro-erreur, si et seulement si il est optimal dans le
problème de Slepian-Wolf zéro-erreur avec le même graphe caractéristique. De plus, dans
chacun de ces problèmes, les optimalités des schémas de codage “séparés” respectifs pour
le produit ∧ et pour l’union disjointe ⊔ sont équivalentes. Pour prouver cela, nous définis-
sons les distributions atteignant la capacité d’un canal en régime zéro-erreur, et nous
déterminons plusieurs résultats sur celles-ci ; cela nous permet de lier C0 avec C(·, PV ) et
H. De plus, nous donnons des exemples et contre-exemples de linéarisation pour toutes
ces équivalences. Tout d’abord, cela nous donne une formule à une seule lettre pour H
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dans des cas où elle manquait ; en particulier pour les produits de graphes parfaits, qui ne
sont pas nécessairement parfaits. Enfin, les contre-exemples développés illustrent que les
schémas de codage “séparés” ne sont pas toujours optimaux: dans le problème de Slepian-
Wolf zéro-erreur, le débit peut strictement décroître quand on compresse ensemble des
sources indépendantes.

1.3 Problèmes zéro-erreur pour le calcul de fonction

Les problèmes zéro-erreur pour le calcul de fonction sont une généralisation des prob-
lèmes basés sur les graphes, et font aussi usage des graphes caractéristiques. Toutefois, la
fonction à retrouver impacte aussi les outils adéquats de la théorie des graphes à utiliser.
Dans le problème illustré en Figure 6.2, le décodeur doit retrouver une fonction f de la
source et de son information adjacente. L’encodeur ne connaît pas les réalisations de cette
dernière, mais en observe une version déterministiquement dégradée, représentée par la
fonction g.

Notre première contribution est de donner une expression asymptotique pour le débit
optimal de ce problème. Notre deuxième contribution est de formuler une hypothèse que
nous appelons “information adjacente partagée deux-à-deux” qui nous permet, lorsqu’elle
est satisfaite, d’obtenir une expression à une seule lettre pour le débit optimal. Cette
hypothèse est satisfaite si chaque paire de symboles de source “partage” au moins un
symbole d’information adjacente pour tout résultat de g. Cette condition a des interpré-
tations en termes de théorie des graphes, car les formules à une seule lettre que nous
trouvons émanent de la structure particulière du graphe caractéristique : ce dernier est
une union disjointe de produits OU. De plus, ce résultat est d’intérêt pratique car il
couvre toutes les instances où la distribution de source est à support plein, sans aucune
hypothèse sur f, g. Enfin, nous donnons une interprétation de cette condition, en termes
de plus mauvais débit optimal dans un problème auxiliaire de Slepian-Wolf zéro-erreur.

1.4 Organisation du manuscrit

Ce manuscrit est organisé comme suit. Dans le Chapitre 3, nous détaillons la présen-
tation de chacun des problèmes étudiés et l’état de l’art pour chacun d’eux, ainsi que les
définitions utilisées dans ce manuscrit. Dans le Chapitre 4, le Chapitre 5, et le Chapitre 6,
nous présentons respectivement nos résultats pour les problèmes zéro-erreur basés sur la
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correction, basés sur les graphes, et pour le calcul de fonction. Les preuves de ces résultats
se trouvent respectivement en Appendice A, Appendice B, et Appendice C.
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GLOSSARY

For reader’s convenience we give here a table of the notations and concepts used
throughout this manuscript.

N⋆, R set of positive integers, real numbers
Mn,k(A) set of matrices of size n× k with coefficients

in A
|S|, Sc cardinality, complement of the set S
Im image set of a mapping
Ker kernel of a matrix
{0, 1}∗ set of binary words
ℓ(·) length of a word
xn sequence (x1, ..., xn)
∆(X ) probability distributions over X
PX probability distribution of the random vari-

able X
suppPX support of PX
Unif(·) uniform distribution
PX,Y joint distribution of (X, Y )
PX|Y conditional distribution of X knowing Y
PX ⊗ PY product distribution
· → · → · Markov chain
Txn type of xn

(
1
n

∣∣∣{t ≤ n | xt = x′}
∣∣∣)
x′∈X

∆n(X ) set of types of sequences from X n

T n
ϵ (PX) typical set

{
xn ∈ X n

∣∣∣ ∥Txn − PX∥∞ ≤ ϵ
}

P(·) probability of an event
E[ · ] expected value of a random variable
H(·), H(· | ·) entropy, conditional entropy
I(· ; ·) mutual information
I(· ; · | ·) conditional mutual information
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Cn, Kn, Nn cycle, complete, empty graph with n vertices
ϕe, ϕd encoding, decoding function
∧ AND product Definition 3.2.6
α independence number Definition 3.2.7
C0 zero-error capacity Definition 3.2.8
(V , E , PV ) probabilistic graph Definition 3.2.5
χ chromatic number Definition 3.3.4
H complementary graph entropy Definition 3.3.6
Hχ chromatic entropy Definition 3.3.8
T n

0 (QX) type class for the type QX Definition 4.2.2
TV (xn) V -shell of the sequence xn Definition 4.2.2
G[S] subgraph of G induced by S Definition 3.3.5
C(·, PV ) zero-error capacity relative to PV Definition 5.1.1
⊔ disjoint union Definition 5.1.8
G graph complement of G Definition 5.5.1
ω clique number Definition 5.5.1
Hκ Körner graph entropy Definition 5.5.3
∨ OR product Definition 6.3.3
≃ isomorphic (probabilistic) graphs Definition B.2.6

A set of words W ⊆ {0, 1}∗ is prefix-free if for all w,w′ ∈ W , w is not a prefix of w′

and vice-versa.
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Chapter 2

INTRODUCTION

Zero-error source coding encompasses a variety of problems from information theory,
where a source is compressed by an encoder with rate to be minimized, then has to be
retrieved at the decoder with probability of error zero. In all the problems studied here,
the source distribution is known and the decoder has access to a side information, i.e. a
random variable correlated to the source that helps minimizing the rate and decoding.
Studying such settings is useful in applications that require a strong guarantee on the
quality of reconstruction of the source, such as remote sensing networks and distributed
computing. In a zero-error source coding problem, finding a formula for the optimal rate
means finding the strongest theoretic limit on all compression schemes. Furthermore, if the
formula is single-letter, then it becomes easily computable. One also has the existence of
an optimal zero-error compression scheme that asymptotically achieves this optimal rate.
Therefore, finding single-letter expressions for optimal rates in zero-error source coding
problems is our main objective in this manuscript.

The zero-error constraint differs from the vanishing-error constraint, the latter only
requires the probability of error to go to zero when the block length of the code goes
to infinity. In the settings where the decoder does not have a side information, it can
be easily shown that the optimal rates in the vanishing error and zero-error regimes
coincide. However, when imposing the zero-error constraint when the decoder has a side
information, as in the settings studied here, many problems change from a statistical
nature to a combinatorial one (e.g. the Slepian-Wolf setting). Therefore, the adequate
tools for zero-error problems are drawn from both information theory and combinatorics;
and vary from a correcting device that strengthens vanishing-error codes into zero-error
ones, to zero-error codes entirely built with graph-theoretic constraints.

The combinatorial nature of zero-error problems is tied to the encoder’s lack of knowl-
edge of the decoder’s side information. In vanishing-error problems one can assume that
the decoder’s side information sequence will be typical w.r.t. the source distribution with
high probability; even if the encoder does not have access to it. However, the zero-error
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constraint makes the encoder’s uncertainty on decoder’s side information harder to be
dealt with; in particular it is required to build codes that enable for a perfect reconstruc-
tion of the source for any realization of the decoder’s side information.

For this reason, we classify the zero-error problems studied here into three categories,
depending on what the encoder knows about the decoder’s side information and what the
decoder has to retrieve:

- The correction-based zero-error problems, in which the encoder has access to all side
information and can simulate every decoding.

- The graph-based zero-error problems, in which the encoder is “less informed” about
the realizations of decoder’s side information.

- The coding for computing zero-error problems, in which the decoder has to compute
a function of the source and its side information; instead of only recovering the
source.

2.1 Correction-based zero-error problems

The correction-based problems can be tackled with a correcting device that guarantees
the zero-error property. It consists in using a vanishing-error codebook, simulating each
decoding, and sending all the source sequences if any decoding fails. This correcting device
has a negligible impact on the rate because of the low probability of error, and allows for
the conversion of vanishing error coding schemes into zero-error ones. For this reason, the
tools we use are typicality, random coding and parity check codes, with correcting device.

In the first problem from this class, which is depicted in Figure 4.1, side information
may be present at the decoder. In this setting, the encoder has access to a side information
but does not know whether the decoder has access to it; and the encoding is divided into
two steps. In the first step, the encoder sends information without knowing whether
side information is available at the decoder. The message sent in the first step must be
exploitable independently from the presence of the side information; furthermore, a zero-
error decoding must be done if the decoder has access to the side information. In the
second step, an information complement is sent by the encoder in the case where the
decoder has no side information, and the decoder must be able to retrieve the source
with zero-error. The two steps are modeled by two decoders and two noiseless channels.
We aim at answering the following question: what are the feasible pairs of rates for the
two encoding steps, that allow for a zero-error decoding? Our first contribution consists
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in determining the feasible rate region, thanks to a coset partition of source sequences
coupled with a correcting device; therefore showing that it coincides with the feasible rate
region in the vanishing error regime.

The second correction-based zero-error problem is depicted in Figure 4.3 and is a
generalization of the first one, in which there are two uncertainties: firstly, the encoder
has access to two sources and their respective side information but does not know which
one will be requested by the decoder; and secondly, the side information may be present
at the decoder. The encoding is divided into three steps. In the first step, the encoder
sends information without knowing which source is requested; we aim at sending the
common information between the two sources, hence the “Gray-Wyner network” name
for this problem. In the second step, the encoder knows which source is requested but
does not know if the decoder has access to the side information; if the latter is present at
the decoder, then a zero-error decoding must be done. The third step is an information
complement sent by the encoder in the case where the decoder does not have the side
information; and the decoder must be able to retrieve the source with zero-error. In this
setting, our second contribution consists in an inner and an outer bound on the feasible
rate region. For the inner bound we use the following coding scheme: auxiliary sequences
are used to capture the common information between the two sources sequences, then
we do a random binning on them; and the sets of source sequences are partitioned into
cosets. Decoding algorithms are based on V -shells of side information sequences, and the
zero-error property is ensured by a correcting device.

2.2 Graph-based zero-error problems

In graph-based problems, zero-error constraints are captured by a characteristic graph,
and determining the optimal rate requires to solve hard graph-theoretic questions. The
zero-error Slepian-Wolf problem depicted in Figure 3.4 is one of them, its optimal rate is
given by the complementary graph entropy H of the characteristic graph, and finding a
single-letter formula for H is an open question. However, in order to understand better
the nature of the zero-error Slepian-Wolf problem, we provide new structural results that
link it with other problems, such as the zero-error capacity of a channel C0 (see Figure
3.2).

Our main study concerns the “linearization” problem. In the zero-error Slepian-Wolf
setting, if the encoder is doing several independent compression tasks with their respective
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independent side information, then the optimal rate is given by H(∧ ·), i.e. H of a graph
with an AND product structure. As shown by Tuncel et al. in [71], “separating” the inde-
pendent tasks yields an achievability scheme, hence H(∧·) ≤ ∑

H(·). Another interesting
case of zero-error Slepian-Wolf problem is when the encoder has a partial information g(Y )
on the decoder’s side information. The optimal rate is given by H(⊔ ·), i.e. H of a graph
with a disjoint union structure. “Separating” the source realizations w.r.t. the encoder’s
side information also yields an achievability scheme, hence H(⊔Pg(Y ) ·) ≤ ∑

z Pg(Y )(z)H(·).
When equality holds in either case we say that “linearization” of H holds.

Our contribution is to prove the equivalences of linearizations between C0(∧·), C0(⊔·),
C(∧ ·, PV ), C(⊔ ·, PV ), H(∧ ·), and H(⊔ ·); where C(·, PV ) is the optimal rate in the zero-
error channel coding problem where the encoder has to use codewords that are typical
w.r.t. PV . Therefore, the “separated” coding scheme is optimal in the zero-error channel
coding problem, if and only if it is optimal in the zero-error Slepian-Wolf setting with
the same characteristic graph. Furthermore, in each of these settings, the optimalities of
the respective “separated” coding strategies for the product ∧ and the disjoint union ⊔
are equivalent. In order to prove that, we define the zero-error capacity achieving dis-
tributions of a channel, and derive several results on them; which enables us to link C0

with C(·, PV ) and H. Furthermore, we give examples and counterexamples of linearization
for all these equivalences. Firstly, this yields a single-letter formula for H in cases where
it was unknown: product of perfect graphs, which are not necessarily perfect. Secondly,
the counterexamples developed illustrate that the “separated” coding schemes are not al-
ways optimal: in the zero-error Slepian-Wolf setting, the rate may strictly decrease when
compressing together independent sources.

2.3 Coding for computing zero-error problems

The coding for computing problems are a generalization of graph-based problems,
and also make use of characteristic graphs. However, the function to be retrieved also
impacts the adequate graph-theoretic tools to be used. In the setting depicted in Figure
6.2, the decoder has to retrieve a function f of its side information and of the source; the
encoder does not know the realizations of the decoder’s side information but observes a
deterministically degraded version of them, represented by the function g.

Our first contribution is to give an asymptotic formula for the optimal rate in this
setting. Our second contribution is to formulate an hypothesis that we call “pairwise
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shared side information” that allows us to derive a single-letter characterization of the
optimal rate. This hypothesis is satisfied if every pair of source symbols “share” at least
one side information symbol for all output of g. It has graph-theoretic interpretations, as
the single-letter formula stems from the particular structure of the characteristic graph:
a disjoint union of OR products. Moreover, this result is of practical interest as it covers
the cases where the source distribution is full-support, without any assumption on f, g.
Finally, we give an interpretation of this condition, in terms of the worst optimal rate in
an auxiliary zero-error Slepian-Wolf problem.

2.4 Organization of the manuscript

This manuscript is organized as follows. In Chapter 3 we provide a detailed presen-
tation of all the problems studied and the definitions used in this manuscript, and we
describe the state of the art for each one of them. In Chapter 4, Chapter 5, and Chapter
6, we present our results for the correction-based, graph-based, and coding for computing
zero-error problems, respectively. The proofs of these results can be found in Appendix
A, Appendix B, and Appendix C, respectively.
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Chapter 3

STATE OF THE ART

In this Chapter we give a detailed presentation of the different problems studied in this
manuscript, in both zero-error and vanishing error regime. As illustrated in the following,
the zero-error and the vanishing error regimes may lead to different optimal rates in several
settings; in particular in the channel coding problem, and in the Slepian-Wolf problem.

3.1 Source coding

The source coding problem is one of the fundamental settings that appear in data
compression; it is introduced by Shannon in [59].

Encoder Decoder X̂nXn ⧸
R

Figure 3.1 – The source coding problem.

Definition 3.1.1 (Source coding problem) The source coding problem of Figure 3.1
is described by:

- A finite set X , and a source distribution PX ∈ ∆(X );

- For all n ∈ N⋆, Xn is the random sequence of n copies of X, drawn in an i.i.d.
fashion using PX .

- An encoder that knows Xn sends binary strings over a noiseless channel to a decoder
that wants to retrieve Xn without error.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆, and an encoding function ϕe : X n → {0, 1}∗ such that Imϕe

is prefix-free;

- A decoding function ϕd : {0, 1}∗ → X n;
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- The rate is the average length of the codeword per source symbol, i.e. R .= 1
n
E[ℓ ◦

ϕe(Xn)].

Depending whether a perfect source reconstruction is required, two different regimes
can be considered.

Definition 3.1.2 (Zero-error regime, vanishing error regime) In the zero-error
regime, the coding schemes (n, ϕe, ϕd) must satisfy the zero-error property:

P
(
X̂n ̸= Xn

)
= 0, (3.1)

where X̂n = ϕd(ϕe(Xn)). The objective is to find the minimal rate among all coding
schemes under the zero-error constraint:

R∗
SC0

.= inf
n,ϕe,ϕdzero-error

1
n
E[ℓ ◦ ϕe(Xn)]. (3.2)

In the vanishing error regime, the coding schemes (n, ϕe, ϕd) must satisfy the ϵ-
error property:

P
(
X̂n ̸= Xn

)
≤ ϵ, (3.3)

where X̂n = ϕd(ϕe(Xn)). The objective is to find the minimal rate among all coding
schemes under the ϵ-error constraint, with ϵ → 0:

R∗
SC

.= lim
ϵ→0

inf
n,ϕe,ϕd
ϵ-error

1
n
E[ℓ ◦ ϕe(Xn)]. (3.4)

Determining the optimal rate means determining theoretic limit of all possible coding
schemes in the source coding problem. The zero-error regime induces stronger constraints
on the coding schemes than the vanishing error regime, thus leading to a higher optimal
rate.

Theorem 3.1.3 (from [59])

R∗
SC = H(X). (3.5)
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Theorem 3.1.4 (from [34])

R∗
SC0 = H(X). (3.6)

The optimal rate is characterized by the entropy of the information source: Theorem
3.1.3 and Theorem 3.1.4 show that the optimal rate in this setting equals H(X), for both
vanishing error and zero-error regimes. This stems from the fact that the optimal rate in
the vanishing error regime can be achieved with a Huffman algorithm, which also satisfies
the zero-error property.

Alternatively by Remark 3.1.5, a possible zero-error coding strategy consists in index-
ing the typical set w.r.t. PX following the approach from [59], and using the correcting
device.

Remark 3.1.5 (Correcting device) In this setting, since the encoder knows the real-
izations of every random variable in the problem, it can simulate every decoding. Therefore,
every coding scheme in the vanishing error regime can be turned into zero-error ones with
negligible impact on the rate in the following way: the encoder uses the coding scheme in
the vanishing error regime, along with a bit of error. The latter equals 0 in case no decod-
ing error occurs and 1 if any decoding error happens, and all source sequences are sent to
the decoder in that case. The correcting device has a negligible additional cost on the rate,
due to the negligible cost of the flag bit and the low probability of error of a coding scheme
in the vanishing error regime. As a consequence, both optimal rates of this problem in the
vanishing error and in the zero-error regime are equal.

3.2 Channel coding

The channel coding problem is introduced in [59] in the vanishing error regime; and
in [58] in the zero-error regime. It is a well-known example where the respective optimal
rates in these regimes are different. In particular, a full-support distribution PY |X for the
channel may yield a positive channel capacity (i.e. optimal rate) in the vanishing error
regime, and a zero-error capacity equal to 0.

Encoder Channel PY |X Decoder X̂n
Xn Y n

Figure 3.2 – The channel coding problem.
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Definition 3.2.1 (Channel coding problem) The channel coding problem of Figure
3.2 is described by:

- Two finite sets X , Y;

- A Discrete Memoryless Channel (DMC) with input alphabet X , output alphabet Y
and transition probability PY |X ∈ ∆(Y)|X |;

- An encoder that sends inputs over the DMC, and a decoder that receives the DMC’s
outputs.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆, and a codebook Cn ⊆ X n;

- A decoding function ϕd : Yn → X n;

- The rate is the average number of messages transmitted per channel use, i.e. 1
n

log |Cn|.

The channel coding problem is formally defined for two different regimes, depending
whether a positive probability of error is allowed when communicating through the DMC.

Definition 3.2.2 (Zero-error regime, vanishing error regime) In the zero-error
regime, the coding scheme (n, Cn, ϕd) must satisfy the zero-error property:

P
(
X̂n ̸= Xn

)
= 0; (3.7)

where Xn ∼ Unif(Cn), X̂n = ϕd(Y n), and Y n is drawn conditionally w.r.t. Xn using
P n
Y |X . The objective is to find the maximal rate among all coding schemes that satisfy the

zero-error property:

R∗
C0

.= sup
n,Cn,ϕdzero-error

1
n

log |Cn|. (3.8)

In the vanishing error regime, the coding schemes (n, Cn, ϕd) must satisfy the ϵ-
error property:

P
(
X̂n ̸= Xn

)
≤ ϵ, (3.9)

where Xn ∼ Unif(Cn), X̂n = ϕd(Y n), and Y n is drawn conditionally w.r.t. Xn using P n
Y |X .

The objective is to find the maximal rate among all coding schemes that satisfy the ϵ-error
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property, with ϵ → 0:

R∗
C
.= lim
ϵ→0

sup
n,Cn,ϕd
ϵ-error

1
n

log |Cn|. (3.10)

3.2.1 Channel coding in the vanishing error regime

The channel capacity in the vanishing error regime is defined by maxPX∈∆(X ) I(X;Y );
and as shown by Shannon in Theorem 3.2.3, this quantity characterizes the optimal rate
of communication over a DMC in the vanishing error regime. This comes from the fact
that for all PX ∈ ∆(X ), the encoder may choose 2nI(X;Y ) random codewords from X n by
using PX , and expect a correct decoding with high probability by typicality arguments.
Taking the maximum over PX yields the highest achievable rate.

Theorem 3.2.3 (from [59])

R∗
C = max

PX∈∆(X )
I(X;Y ). (3.11)

3.2.2 Zero-error channel coding

In the zero-error regime, an adequate graph GC can be associated to a given instance
of channel coding problem in Figure 3.2. This graph is called “characteristic graph” of the
problem, as it encompasses the problem data in its structure: the vertices are the source
alphabet, and two channel input symbols x, x′ are adjacent if they are “confusable”, i.e.
PY |X(y|x)PY |X(y|x′) > 0 for some channel output symbol y. In other words, when x

and x′ are adjacent, knowing the realization y does not allow to distinguish between the
realizations x and x′ with probability of error 0.

Definition 3.2.4 (Characteristic graph) Let X ,Y be two finite sets and PY |X be a
conditional distribution from ∆(Y)|X |. The characteristic graph associated to PY |X is de-
fined by:

- X as set of vertices,

- x, x′ ∈ X are adjacent if PY |X(y|x)PY |X(y|x′) > 0 for some y ∈ Y.

The AND product ∧ is a binary operator on graphs, and is used to build the char-
acteristic graph for more than one channel use. More precisely, two sequences of channel
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inputs xn, x′n are adjacent in the n-th AND power G∧n
C (i.e. iterated AND product of GC)

if P n
Y |X(yn|xn)P n

Y |X(yn|x′n) > 0 for some sequence of channel outputs yn.
In Definition 3.2.6, the AND product of graphs with an underlying distribution is

defined, as it will be useful for the zero-error source coding problem. In the case of zero-
error channel coding, graphs without distribution are considered, but the structure of the
AND product is the same regardless of the distribution. The AND product is also called
“strong product” or “normal product” in the literature (for example in [44, 47]).

Definition 3.2.5 (Probabilistic graph) A probabilistic graph G is a tuple (V , E , PV ),
where V and E are respectively the sets of vertices and edges; and PV ∈ ∆(V) is a proba-
bility distribution on the vertices.

Definition 3.2.6 (AND product ∧) Let G1 = (V1, E1, PV1), G2 = (V2, E2, PV2) be two
probabilistic graphs, their AND product G1 ∧G2 is a probabilistic graph defined by:

- V1 × V2 as set of vertices,

- PV1 ⊗ PV2 as probability distribution on the vertices,

- (v1v2), (v′
1v

′
2) are adjacent if

v1v
′
1 ∈ E1 AND v2v

′
2 ∈ E2, (3.12)

with the convention of self-adjacency for all vertices.

We denote by G∧n
1 the n-th AND power:

G∧n
1 = G1 ∧ ... ∧G1 (n times). (3.13)

The AND product of graphs without probability distribution has the vertex set and edges
defined above, without underlying probability distribution.

If there is a pair of codewords xn, x′n adjacent in G∧n
C in the codebook used by the

encoder, then upon receiving the yn such that P n
X|Y (xn|yn)P n

X|Y (x′n|yn) > 0, the decoder
is unable to determine whether the encoder sent xn or x′n, which prevents zero-error
decoding. Therefore, a zero-error decoding at the end of the time horizon n is possible if
and only if the encoder uses a codebook formed of pairwise non-adjacent symbols in G∧n

C ,
i.e. an independent set, which is formally defined below.
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Definition 3.2.7 (Independent subset, independence number α) Let G = (V , E)
be a graph. A subset S ⊆ V is independent in G if xx′ /∈ E for all x, x′ ∈ S. The
independence number is the maximal size of an independent set in G, and is denoted by
α(G).

Definition 3.2.8 (Zero-error capacity of a graph C0) Let G be a graph, its zero-
error capacity is defined by

C0(G) .= lim
n→∞

1
n

logα(G∧n). (3.14)

By construction, the optimal rate for a coding scheme with the zero-error property
and time horizon n is 1

n
logα(G∧n

C ). As shown in Proposition 3.2.9, the asymptotic optimal
rate is limn→∞

1
n

logα(G∧n
C ); this quantity is called the zero-error capacity of a channel

(or the zero-error capacity of its characteristic graph), and represents the best zero-error
communication rate through a DMC.

Note that, by convention, we define the zero-error capacity with the logarithm. An-
other existing convention (for example in [44]) for the zero-error capacity is Θ(G) .=
limn→∞

n

√
α(G∧n); which is equivalent in the sense that C0 = log Θ.

Theorem 3.2.9 (from [58]) The optimal rate in the zero-error channel coding setting
writes

R∗
C0 = C0(GC), (3.15)

where GC is the characteristic graph associated to the distribution PY |X .

Determining a single-letter expression for C0 is a wide open problem. We present in
Section 5.5 some examples from the literature where C0 is known, in particular perfect
graphs. The Lovász θ function, introduced in [44], is an upper bound on the zero-error
capacity. This function is used to show that C0(C5) = log 5

2 , which makes C5 the minimally
non-perfect graph for which C0 is known. Further observations on the θ function are
derived by Sason in [54]. The zero-error capacity of C7 is still unknown. Several existing
lower bounds on C0(C7) result from an independent set found by a computer program; in
particular by Vesel and Žerovnik in [72], by Mathew and Östergård in [48], and by Polak
and Schrijver in [51].
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Figure 3.3 – The cycle graphs C5, C7.

3.2.3 Related works

The computability of C0 is investigated in [9] by Boche and Deppe, and they prove that
C0 is not computable. An asymptotic expression for C0 using semiring homomorphisms
is given by Zuiddam et al. in [78]. In [31], Gu and Shayevitz study the two-way channel
case. An extension of C0 for secure communication is developed in [74] by Wiese et al.

Another related setting is zero-error transmission over a discrete channel with memory.
The case of binary channels with one memory is studied by Ahlswede et al. in [1], followed
by Cohen et al. in [17], and the remaining unsolved cases are solved by Cao et al. in [12].
The case of binary channels with two memories is studied by Zhang et al. in [77].

Finally, the Sperner capacity is an extension of the zero-error capacity to digraphs
introduced in [28] by Gargano et al. Upper bounds on the Sperner capacity are developed
by Alon in [3] based on the maximum outdegree of the digraph; and by Körner et al. in
[40] based on an adaptation to digraphs of the local chromatic number.

The interested reader may refer to Körner and Orlitsky’s survey in [38], and Simonyi’s
survey in [63].

3.3 Slepian-Wolf problem

The Slepian-Wolf problem is introduced in [64] by Slepian and Wolf, in the vanishing
error regime; and the zero-error variant of this problem is presented by Alon and Orlitsky,
in [5]. This problem corresponds to a situation in data compression where the decoder has
a side-information Y about the source X that has to be retrieved. Its optimal rate in the
zero-error regime is given by the complementary graph entropy H of the characteristic
graph, and finding a single-letter formula for H is an open question. As presented in
Theorem 3.3.7 and Theorem 3.3.3, the respective optimal rates in the zero-error regime
and in the vanishing error regime are different, in particular when the source distribution
is full-support. Note that the correcting device described in Remark 3.1.5 cannot be used
here for the zero-error regime, as the encoder does not know the realizations of Y .
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Encoder Decoder

Y n

X̂nXn ⧸
R

Figure 3.4 – The zero-error Slepian-Wolf problem.

Definition 3.3.1 (Zero-error Slepian-Wolf problem) The zero-error source coding
problem of Figure 3.4 is described by:

- Two finite sets X , Y, and a source distribution PX,Y ∈ ∆(X × Y);

- For all n ∈ N⋆, (Xn, Y n) is the random sequence of n copies of (X, Y ), drawn in an
i.i.d. fashion using PX,Y .

- An encoder that knows Xn sends binary strings over a noiseless channel to a decoder
that knows Y n, and that wants to retrieve Xn without error.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆, and an encoding function ϕe : X n → {0, 1}∗ such that Imϕe

is prefix-free;

- A decoding function ϕd : Yn × {0, 1}∗ → X n;

- The rate is the average length of the codeword per source symbol, i.e. R .= 1
n
E[ℓ ◦

ϕe(Xn)].

Definition 3.3.2 (Zero-error regime, vanishing error regime) In the zero-error
regime, the coding schemes (n, ϕe, ϕd) must satisfy the zero-error property:

P
(
X̂n ̸= Xn

)
= 0, (3.16)

where X̂n = ϕd(Y n, ϕe(Xn)). The objective is to find the minimal rate among all coding
schemes under the zero-error constraint:

R∗
SW0

.= inf
n,ϕe,ϕdzero-error

1
n
E[ℓ ◦ ϕe(Xn)]. (3.17)

In the vanishing error regime, the coding schemes (n, ϕe, ϕd) must satisfy the ϵ-
error property:

P
(
X̂n ̸= Xn

)
≤ ϵ, (3.18)
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where X̂n = ϕd(Y n, ϕe(Xn)). The objective is to find the minimal rate among all coding
schemes under the ϵ-error constraint, with ϵ → 0:

R∗
SW

.= lim
ϵ→0

inf
n,ϕe,ϕd
ϵ-error

1
n
E[ℓ ◦ ϕe(Xn)]. (3.19)

Theorem 3.3.3 (from [64]) The optimal rate in the Slepian-Wolf setting in the vanish-
ing error regime writes

R∗
SW = H(X|Y ). (3.20)

In the vanishing error regime, the optimal rate H(X|Y ) in Theorem 3.3.3 remains the
same if the encoder also observes the sequence Y n.

3.3.1 Zero-error Slepian-Wolf problem

In a similar way to zero-error channel coding, the characteristic graph GSW of an
instance of zero-error Slepian-Wolf problem in Figure 3.4 is defined in Definition 3.2.4,
with the conditional source distribution PY |X . This graph was first used by Witsenhausen
in [75]. However in the zero-error Slepian-Wolf setting it is a probabilistic graph, as it has
the underlying distribution PX on its vertices.

Assume that ϕe(xn) = ϕe(x′n) for some xn, x′n adjacent in G∧n
SW , then upon receiv-

ing the yn such that P⊗n
X|Y (xn|yn)P⊗n

X|Y (x′n|yn) > 0, the decoder is unable to determine
whether the encoder sent xn or x′n, which prevents zero-error decoding. Therefore, the
source sequences that are adjacent in the characteristic graph must be mapped to differ-
ent codewords; hence the use of graph colorings, which map adjacent vertices to different
colors.

Definition 3.3.4 (Coloring, chromatic number χ) Let G = (V , E) be a graph. A
mapping c : V → C is a coloring if c−1(i) is independent for all i ∈ C. The chromatic
number χ(G) is the smallest |C| such that there exists a coloring c : V → C of G.

Definition 3.3.5 (Induced subgraph G[S]) Let G = (V , E) be a graph, and let S ⊆ V
be a subset of vertices. The subgraph of G induced by S is the graph denoted by G[S] with
S as set of vertices, and vv′ are adjacent in G[S] if and only if they are adjacent in G.

In the case where G is a probabilistic graph with underlying distribution PV , we give
G[S] the normalized underlying distribution PV /PV (S).
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3.3. Slepian-Wolf problem

With high probability, the source sequence Xn will be typical w.r.t. PX , therefore one
can consider only the subgraph of G∧n

SW induced by the set of typical sequences T n
ϵ (PX).

Then the encoder colors this induced subgraph G∧n
SW [T n

ϵ (PX)] with a coloring that has
the minimum number of colors, and sends the color index to the decoder if Xn is typical,
or the index of Xn in X n otherwise. This coding strategy has a rate upper-bounded by

1
n

+ P
(
Xn /∈ T n

ϵ (PX)
)

log |X | + 1
n

logχ
(
G∧n
SW [T n

ϵ (PX)]
)
; (3.21)

where χ is the chromatic number and the decoder is able to retrieve Xn thanks to the
color and Y n. Koulgi et al. have shown in [41, Theorem 1] that taking the limit when n

goes to infinity and ϵ goes to 0 yields the best achievable rate in the zero-error Slepian
Wolf problem. This quantity is called complementary graph entropy, and is defined by
Körner and Longo in [37].

Definition 3.3.6 (Complementary graph entropy H) For all probabilistic graph G =
(V , E , PV ), the quantity H(G) is defined by:

H(G) = lim
ϵ→0

lim sup
n→∞

1
n

logχ
(
G∧n[T n

ϵ (PV )]
)
. (3.22)

Theorem 3.3.7 (from [41, Theorem 1]) The optimal rate in the zero-error Slepian-
Wolf setting writes

R∗
SW0 = H(GSW ), (3.23)

where GSW is the probabilistic graph formed of the characteristic graph associated to the
distribution PY |X , with the underlying distribution PX on its vertices.

The zero-error Slepian Wolf setting that we study is called “restricted inputs” by
Alon and Orlitsky in [5] where they give another characterization of the optimal rate
with chromatic entropies. The chromatic entropy Hχ(G∧n

SW ) corresponds to the minimal
entropy of a coloring of G∧n

SW . Therefore, after normalization, it characterizes the best rate
at a fixed number n of source uses with a perfect compression of the color. As stated in
Theorem 3.3.9, by taking the limit when n goes to infinity, one obtains the optimal rate;
and also, another expression for H.

A stronger notion of zero-error coding, called “unrestricted inputs”, is also introduced
in [5]. It requires the zero-error property to be satisfied even for the sequences of symbols
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(Xn, Y n) that take values out of the support of P n
X,Y . Alon and Orlitsky provide in [5], a

single-letter formula for the optimal rate.

Definition 3.3.8 (Chromatic entropy Hχ) Let G = (V , E , PV ) be a probabilistic graph,
its chromatic entropy is defined by

Hχ(G) = inf{H(c(V )) | c is a coloring of G}. (3.24)

Theorem 3.3.9 (from [5, Lemma 6]) For all probabilistic graph G,

R∗
SW0 = lim

n→∞

1
n
Hχ(G∧n

SW ). (3.25)

The two distinct asymptotic expressions are equal to the optimal rate.

R∗
SW0 = lim

ϵ→0
lim sup
n→∞

1
n

logχ
(
G∧n[T n

ϵ (PV )]
)

= lim
n→∞

1
n
Hχ(G∧n

SW ). (3.26)

Proposition 3.3.10 (Full support) If the distribution PX,Y has full support, then R∗
SW0 =

H(X).

The case of PX,Y with full support is a worst case for the zero-error regime, for which the
optimal rate is H(X), instead of H(X|Y ) in the vanishing error regime.

There is no known single letter expression for the optimal rate R∗
SW0 except for a few

special cases; in particular for perfect graphs and
(
C5,Unif({1, ..., 5})

)
.
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Chapter 4

CONTRIBUTIONS FOR

CORRECTION-BASED ZERO-ERROR

PROBLEMS

In Section 4.1, we present the source coding problems considered in this chapter. We
call these problems “correction-based” as they can be tackled with a correcting device
which gives the zero-error property to coding schemes designed for the vanishing error
regime. As a result, for this class of problems, the optimal rate in the zero-error regime
coincides with the optimal rate in the vanishing error regime.

We determine in Section 4.2 the feasible rate region of the zero-error source coding
problem when side information may be present at the decoder, presented in Section 4.1.1.
In Section 4.3 we give an inner and an outer bound on the feasible rate region of the
zero-error source coding problem for a Gray-Wyner network, presented in Section 4.1.3.
We show that these bounds coincide in several cases of interest.

4.1 Correction-based zero-error problems

4.1.1 Zero-error source coding when side information may be
present at the decoder

This scenario arises in interactive compression, where the user can randomly access
part of the data directly in the compressed domain. A source sequence Xn models the
smallest entity that can be requested, for instance a file of a database, a frame of a video,
or a block of an omnidirectional image [8, 49, 53].

In this setting, the encoder has access to a side information but does not know whether
the decoder has access to it; and the encoding is divided into two steps. In the first step,
the encoder sends information without knowing whether side information is available at
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Chapter 4 – Contributions for correction-based zero-error problems

the decoder. The message sent in the first step must be exploitable independently from the
presence of the side information; furthermore, a zero-error decoding must be done if the
decoder has access to the side information. In the second step, an information complement
is sent by the encoder in the case where the decoder has no side information, and the
decoder must be able to retrieve the source with zero-error. The two steps are modeled
by two decoders and two noiseless channels.

Encoder Decoder 1

Decoder 2Decoder 2Decoder 2

X̂n
1 = Xn

X̂n
2 = Xn

Xn

Y n Y n

⧸⧸
R1

R2

Figure 4.1 – Source coding when side information may be present.

Definition 4.1.1 The setting of Figure 4.1 is described by:

- Two finite sets X , Y, and a source distribution PX,Y ∈ ∆(X × Y);

- For all n ∈ N⋆, (Xn, Y n) is the random sequence of n copies of (X, Y ), drawn in an
i.i.d. fashion using PX,Y .

- An encoder that knows (Xn, Y n) sends binary strings over two noiseless channels
to two decoders that want to retrieve Xn without error. Decoder 1 has Y n as side
information.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆,

- Two encoding functions and two decoding functions

ϕ(1)
e : X n × Yn → {0, 1}∗, ϕ(2)

e : X n × Yn → {0, 1}∗, (4.1)

ϕ
(1)
d : {0, 1}∗ × Yn → X n, ϕ

(2)
d :

(
{0, 1}∗

)2
→ X n, (4.2)

such that Imϕ(1)
e and Imϕ(2)

e are prefix-free;

- The rates over each channel are the average length of the codeword per source symbol:

R1
.= 1
n
E[ℓ ◦ ϕ(1)

e (Xn, Y n)] R2
.= 1
n
E[ℓ ◦ ϕ(2)

e (Xn, Y n)]; (4.3)
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- n, ϕ(1)
e , ϕ(2)

e , ϕ(1)
d , ϕ(2)

d must satisfy the zero-error property:

P
(
X̂n

1 ̸= Xn
)

= P
(
X̂n

2 ̸= Xn
)

= 0; (4.4)

where

X̂n
1 = ϕ

(1)
d

(
ϕ(1)
e (Xn, Y n), Y n

)
, (4.5)

X̂n
2 = ϕ

(2)
d

(
ϕ(1)
e (Xn, Y n), ϕ(2)

e (Xn, Y n)
)
. (4.6)

The objective is to find the feasible rate region RSI , which is the closure of the set

{
(R1, R2) ∈ R2

∣∣∣ ∃(n, ϕ(1)
e , ϕ(2)

e , ϕ
(1)
d , ϕ

(2)
d

)
zero-error, with rates (R1, R2)

}
. (4.7)

A way to achieve zero-error coding in the setting of Figure 4.1 is to use conditional
Huffman coding of X knowing Y ; and send the source X to decoder 1 at rate R1 =
H(X|Y ). Then, to recover the source X, decoder 2 needs to obtain the side information
Y , which requires a rate of R2 = H(Y ) ≥ I(X;Y ).

In order to be exploitable by both decoders, part of the information sent through the
common channel must be independent from Y . For this reason the setting of Figure 4.1 is
closely related to the Slepian and Wolf (SW) problem in [64], seen as lossless source coding
with side information at the decoder only. In this work, it is shown that the corner point
(R1, R2) = (H(X|Y ), I(X;Y )) is achievable in the vanishing probability of error regime.
In [19], Csiszar proved in that linear codes achieve the optimal SW rate region. Several
works in [13, 14, 73] investigate the duality between SW setting and channel coding using
linear codes, as the side information Y can be seen as the output of a virtual channel
with input X. However these tools cannot be straightforwardly adapted to the zero-error
setting, as the linear codes proposed also present a vanishing probability of error.

The setting of Figure 4.1 can be seen as a zero-error variant with side informations
known at the encoder of the successive refinement problem proposed by Kaspi in [35];
later generalized by Timo et al. in [67] for more than two decoders. Even if the lossy
reconstruction of the source makes it fundamentally different from the zero-error setting,
there are notable examples that present the same tools as in SW. The side information
scalable source coding (i.e. the decoder 2 has a side information Y ′ s.t. X → Y → Y ′) in
[66] for instance uses nested random binning. This random binning approach was further
developed in [2] to give a unified coding scheme that works for both scalable source coding
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and Wyner-Ziv successive refinement in [65] (i.e. the decoder 2 has a side information Y ′

s.t. X → Y ′ → Y ).
In [45], Ma and Cheng use linear codes in a zero-error SW restriction, under symmetry

assumptions on the source. However, a zero-error SW coding scheme in our setting does
not use at all the side information knowledge at the encoder. A more in-depth review of
the literature for the zero-error SW setting can be found in Section 3.3.1.

In Section 4.2, we characterize the feasible rate region. More precisely, we show that
the pair of rates (R1, R2) = (H(X|Y ), I(X;Y )) is achievable in the zero-error regime and
moreover, it is the corner-point of the feasible rate region.

4.1.2 Gray-Wyner problem

The problem built by Gray and Wyner in [30], aims at capturing the common infor-
mation between two random variables X and Y .

Encoder

EncoderEncoder

Encoder

Decoder xDecoder xDecoder x

Decoder yDecoder yDecoder y

X̂n = Xn

Ŷ n = Y n

Xn, Y n ⧸

⧸

⧸

R0

Rx

Ry

Figure 4.2 – The Gray-Wyner source coding problem.

Definition 4.1.2 The setting of Figure 4.2 is described by:

- Two finite sets X , Y, and a source distribution PX,Y ∈ ∆(X × Y);

- For all n ∈ N⋆, (Xn, Y n) is the random sequence of n copies of (X, Y ), drawn in an
i.i.d. fashion using PX,Y .

- An encoder that knows (Xn, Y n) sends binary strings over three noiseless channels
to the decoder x (resp. y) that wants to retrieve Xn (resp. Y n) without error.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆,
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- Three encoding functions and two decoding functions

ϕ(0)
e , ϕ(x)

e , ϕ(y)
e : X n × Yn → {0, 1}∗, (4.8)

ϕ
(x)
d :

(
{0, 1}∗

)2
→ X n, (4.9)

ϕ
(y)
d :

(
{0, 1}∗

)2
→ Yn, (4.10)

such that Imϕ(i)
e is prefix-free for all i ∈ {0, x, y};

- The rates over each channel are the average length of the codeword per source symbol:

Ri
.= 1
n
E[ℓ ◦ ϕ(i)

e (Xn, Y n)] (4.11)

for all i ∈ {0, x, y};

- n,
(
ϕ(i)
e

)
i∈{0,x,y}

,
(
ϕ

(j)
d

)
j∈{x,y}

must satisfy the ϵ-error property:

P
(
X̂n ̸= Xn

)
≤ ϵ (4.12)

P
(
Ŷ n ̸= Y n

)
≤ ϵ; (4.13)

where

X̂n = ϕ
(x)
d

(
ϕ(0)
e (Xn, Y n), ϕ(x)

e (Xn, Y n)
)
, (4.14)

Ŷ n = ϕ
(y)
d

(
ϕ(0)
e (Xn, Y n), ϕ(y)

e (Xn, Y n)
)
. (4.15)

The objective is to find the feasible rate region R, which is the closure of the set

⋂
ϵ>0

{
(R0, Rx, Ry) ∈ R3

∣∣∣∣∃n, (ϕ(i)
e

)
i∈{0,x,y}

,
(
ϕ

(j)
d

)
j∈{x,y}

ϵ-error, with rates (R0, Rx, Ry)
}
.

(4.16)

In [30], Gray and Wyner have determined the feasible rate region in the vanishing
error regime, as illustrated in Theorem 4.1.3.
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Theorem 4.1.3 The feasible rate region is the closure of the following set:

⋃
W finite set,

PW |X,Y ∈∆(W)|X ||Y|

{
(R0, Rx, Ry) ∈ R3

∣∣∣∣R0 ≥ I(W ;X, Y ), Rx ≥ H(X|W ), Ry ≥ H(Y |W )
}
.

(4.17)

Following the same idea as in Remark 3.1.5, this region is also the feasible rate region
in the zero-error regime (i.e. P(X̂n ̸= Xn) = P(Ŷ n ̸= Y n) = 0).

4.1.3 Zero-error source coding for a Gray-Wyner network when
side information may be present at the decoder

The following setting is an extension of both problems presented in Section 4.1.2
and Section 4.1.1, in which there are two uncertainties: firstly, the encoder has access to
two sources and their respective side information but does not know which one will be re-
quested by the decoder; and secondly, the side information may be present at the decoder.
The encoding is divided into three steps. In the first step, the encoder sends information
without knowing which source is requested; we aim at sending the common information
between the two sources, hence the “Gray-Wyner network” name for this problem. In
the second step, the encoder knows which source is requested but does not know if the
decoder has access to the side information; if the latter is present at the decoder, then a
zero-error decoding must be done. The third step is an information complement sent by
the encoder in the case where the decoder does not have the side information; and the
decoder must be able to retrieve the source with zero-error.

Definition 4.1.4 The setting of Figure 4.3 is described by:

- Four finite sets U , V, X , Y, and a source distribution PU,V,X,Y ∈ ∆(U ×V ×X ×Y);

- For all n ∈ N⋆, (Un, V n, Xn, Y n) is the random sequence of n copies of (U, V,X, Y ),
drawn in an i.i.d. fashion using PU,V,X,Y .

- An encoder that knows (Un, V n, Xn, Y n) sends binary strings over four noiseless
channels to three decoders that want to retrieve Xn or Y n without error. Decoder x1

(resp. y) has Un (resp. V n) as side information.

A coding scheme in this setting is described by:

- A time horizon n ∈ N⋆,

38



4.1. Correction-based zero-error problems

Encoder

EncoderEncoder

Encoder

Decoder x1Decoder x1
Decoder x1

Decoder yDecoder yDecoder y

Decoder x2
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X̂n
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Figure 4.3 – Zero-error source coding for a Gray-Wyner network when side information
may be present.

- Four encoding functions and three decoding functions

ϕ(0)
e , ϕ(x1)

e , ϕ(x2)
e , ϕ(y)

e : Un × Vn × X n × Yn → {0, 1}∗, (4.18)

ϕ
(x1)
d :

(
{0, 1}∗

)2
× Un → X n, ϕ

(x2)
d :

(
{0, 1}∗

)3
→ X n, (4.19)

ϕ
(y)
d :

(
{0, 1}∗

)2
× Vn → Yn, (4.20)

such that Imϕ(i)
e is prefix-free for all i ∈ {0, x1, x2, y};

- The rates over each channel are the average length of the codeword per source symbol:

Ri
.= 1
n
E[ℓ ◦ ϕ(i)

e (Un, V n, Xn, Y n)] (4.21)

for all i ∈ {0, x1, x2, y};

- n,
(
ϕ(i)
e

)
i∈{0,x1,x2,y}

,
(
ϕ

(j)
d

)
j∈{x1,x2,y}

must satisfy the zero-error property:

P
(
X̂n

1 ̸= Xn
)

= P
(
X̂n

2 ̸= Xn
)

= P
(
Ŷ n ̸= Y n

)
= 0; (4.22)

where

X̂n
1 = ϕ

(1)
d

(
ϕ(0)
e (Sn), ϕ(x1)

e (Sn), Un
)
, (4.23)

X̂n
2 = ϕ

(2)
d

(
ϕ(0)
e (Sn), ϕ(x1)

e (Sn), ϕ(x2)
e (Sn)

)
, (4.24)

Ŷ n = ϕ
(y)
d

(
ϕ(0)
e (Sn), ϕ(y)

e (Sn), V n
)
, (4.25)
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and Sn = (Un, V n, Xn, Y n).

The objective is to find the feasible rate region RGW , which is the closure of the set{
(R0, Rx1 , Rx2 , Ry) ∈ R4

∣∣∣∣ (4.26)

∃n,
(
ϕ(i)
e

)
i∈{0,x1,x2,y}

,
(
ϕ

(j)
d

)
j∈{x1,x2,y}

zero-error, with rates (R0, Rx1 , Rx2 , Ry)
}
. (4.27)

This scenario can be likened to zero-error source coding problems with side informa-
tion at the decoders, but not at the encoder. In such problems, the encoder has partial
or no knowledge of the side information, and zero-error and vanishing error constraints
do not lead to the same rate, in general. The zero-error constraint leads to the use of
graph theoretical concepts for the characterization of the optimal rate. Witsenhausen
first studied in [75] whether Slepian and Wolf’s results can be extended to the zero-error
case, using the chromatic number of the characteristic graph of the source distribution.
In [62], Simonyi studied the generalization to more than one decoder with different side
information, and proved that the optimal rate is the one associated to the worst side
information (in the sense of Witsenhausen). Tuncel and Rose later extended this result to
variable-length codes in [70]. A more in-depth review of the literature for the zero-error
Slepian-Wolf setting can be found in Section 3.3.1.

A second class is the zero-error source coding problems with an encoder that has access
to all side information, and decoders have access to the different side information. In these
problems, the characterization of the optimal rates can be done using a packing lemma
in type classes and the following correcting argument: the source sequence can be fully
transmitted to each decoder whenever a decoding fails. This correcting argument allows
for the extension of lossless results into zero-error results with same rates. A particular
case of Sgarro’s problem in [57] when side information are fully transmitted by the helpers
can be extended to the zero-error case when the side information is also available at the
encoder. In Section 4.2, we characterize the feasible rate region of a problem in this class
presented in Section 4.1.1, where conditional coding does not achieve optimal rates.

Finally, the setting of Figure 4.3 is closely related to several problems in the litera-
ture, with different side information at the decoders and different desired source random
variable, which have been studied under a vanishing error hypothesis. A covering lemma
in type classes can be used to characterize the optimal rates in such problems, for ex-
emple the lossless Gray and Wyner’s (GW) problem [30]. In [68], Timo et al. study the
GW setting with side information at the decoders only and give an inner bound on the
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feasible rate region. In [7], Benammar and Zaidi consider a lossy GW setting with side
information at the decoders only and with an hypothesis on the variables requested at
the decoders. Laich and Wigger study in [43] the influence of the side information at the
encoder in the lossless Kaspi/Heegard-Berger problem. They show that, for some source
distributions, adding side information at the encoder lowers the minimal required rate to
decode without loss.

In Section 4.3 we give an inner bound and an outer bound on the feasible rate region
of the setting in Figure 4.3.

4.2 Main results for the zero-error source coding prob-
lem when side information may be present at the
decoder

We now determine the feasible rate region of the zero-error source coding problem
when side information may be present at the decoder, presented in Section 4.1.1

Theorem 4.2.1

RSI =
{

(R1, R2) ∈ R2
∣∣∣∣R1 ≥ H(X|Y ), R1 +R2 ≥ H(X)

}
. (4.28)

RSI

H(X|Y ) H(X)

I(X;Y )

H(X)

0
0

R1

R2 complement of RSI

R1 +R2 = H(X)
R1 = H(X|Y )

Figure 4.4 – Zero-error achievable rate region RSI .
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Proof. [Converse of Theorem 4.2.1] In this setting, each decoder must retrieve X with zero-
error. Using Shannon lossless source coding result [18, Theorem 5.3.1], we have R1 +R2 ≥
H(X).

Now let us prove R1 ≥ H(X|Y )

Let M0
.= ϕ(1)

e (Sn), where Sn = (S1, ..., Sn) is sequence of n iid copies of the source
random variables (X, Y ). Let R0 = 1

n
E[ℓ ◦ ϕ(1)

e (Sn)].

Firstly, we can use Kraft inequality as the set Imϕ(1)
e is prefix-free, we have

∑
w∈Imϕ

(1)
e

2−ℓ(w) ≤ 1. (4.29)

Let κ .= ∑
w∈Imϕ

(1)
e

2−ℓ(w), we have κ ≤ 1 and
(

2−ℓ(w)

κ

)
w∈Imϕ

(1)
e

is a probability distribu-
tion.

Secondly,

nR0 = E[ℓ ◦ ϕ(1)
e (Sn)] (4.30)

=
∑

w∈Imϕe

P(ϕ(1)
e (Sn) = w)ℓ(w) (4.31)

= −
∑

w∈Imϕe

P(ϕ(1)
e (Sn) = w) log 2−ℓ(w) (4.32)

= − log κ −
∑

w∈Imϕ
(1)
e

P(ϕ(1)
e (Sn) = w) log 2−ℓ(w)

κ
(4.33)

≥ −
∑

w∈Imϕe

P(ϕ(1)
e (Sn) = w) log 2−ℓ(w)

κ
(4.34)

≥ −
∑

w∈Imϕe

P(ϕ(1)
e (Sn) = w) logP(ϕ(1)

e (Sn) = w) (4.35)

= H(ϕ(1)
e (Sn)) = H(M0) (4.36)

where (4.34) and (4.35) respectively come from κ ≤ 1 and Gibbs inequality.
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Therefore,

nR0 ≥ H(M0) (4.37)

≥ H(M0|Y n) (4.38)

= H(M0, Y
n) −H(Y n) (4.39)

= H(Xn, Y n) −H(Y n) (4.40)

= nH(X|Y ), (4.41)

where (4.40) comes from the zero-error property.
Our achievability result relies on a random coding argument. We use Csiszar and

Körner’s method of types [20, Chapter 2] in order to calibrate a linear code which is
used to partition the set of source sequences. The encoder sends the coset of the source
sequence to all decoders and the index of the source sequence in its coset to decoder 2.
We show that the zero-error property is satisfied and the corresponding rates converge to
the pair of target rates (H(X|Y ), I(X;Y )).

In order to prove Theorem 4.2.1, we show that

(
H(X|Y ), I(X;Y )

)
∈ RSI . (4.42)

In order to complete the achievability result we use a time sharing with the point
(
H(X), 0

)
,

which is known to be achievable by compressing X using a Huffman code and sending the
resulting binary sequence via ϕ(1)

e .

4.2.1 Definitions for the achievability proof

Definition 4.2.2 (Type class, V -shell) Let QX,Y ∈ ∆n(X × Y), its type class is the
set T n

0 (QX,Y ) = {(xn, yn) ∈ X n × Yn | Txn,yn = QX,Y }. The QX|Y -shell of a sequence
yn ∈ Yn is the set TQX|Y (yn) = {xn ∈ X n | Txn,yn = QX,Y }.

Definition 4.2.3 (Generator/parity matrix, syndrome, coset) Let A be a finite set
such that |A| is prime, so we can give A ≃ Z/|A|Z a field structure. For all n, k ∈ N⋆,
we denote by Mn,k(A) the set of n× k matrices over the finite field A.

Let k ∈ N⋆, a generator matrix is a matrix G ∈ Mn,k(A). An associated parity matrix
is a matrix H ∈ Mn−k,n(A) such that Im G = Ker H, where Im and Ker denote the image
and the kernel, respectively.
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T n
0 (QX) T n

0 (QY )

♦

♦

y′n
2nH(X|Y )+o(n) sequences in QX|Y -Shell

yn
QX|Y -Shell of yn

2nH(Y )+o(n) sequences in T n
0 (QY )

2nH(X,Y )+o(n) edges in total

Figure 4.5 – An illustration of type classes and QX|Y -shells. Edges correspond to jointly
typical sequences with ϵ = 0, i.e. Txn,yn = QX,Y . At most 2nI(X;Y )+o(n) disjoint QX,Y -shells
can be packed in T n

0 (QX), as |T n
0 (QY )|

|TQX|Y (yn)| = 2nH(X)+o(n)

2nH(X|Y )+o(n) = 2nI(X;Y )+o(n).

The syndrome of a sequence an ∈ An is Han. The coset associated to the syndrome
Han is the set Im G + an = {a′n ∈ An | Ha′n = Han}.

4.2.2 Coding scheme

For all n ∈ N⋆, we show the existence of a sequence of (n,R(n)
1 , R

(n)
2 )-zero-error source

codes that achieves the corner-point
(
H(X|Y ), I(X;Y )

)
of the zero-error rate region RSI .

Our proof is based on a linear code adjusted depending on the random type TXn,Y n , and
coset partitioning of the Hamming space.

We assume w.l.o.g. that PX,Y ̸= PX ⊗ PY . We also assume w.l.o.g. that |X | is prime
number by padding (i.e. extending with zeros) PX,Y if necessary. We fix the block-length
n and a constant parameter δ ∈ (0; log |X | −H(X|Y )) that will represent a rate penalty.

- Random code generation: For each pair of sequences (xn, yn), we define the param-
eter

k
.=
⌈
n− n

H(Txn,yn) −H(Tyn) + δ

log |X |

⌉+

. (4.43)

where ⌈·⌉ denotes the ceiling function and (·)+ denotes max(·, 0). We denote by
K the random variable induced by k defined in (4.43), for the random sequences
(Xn, Y n). A generator matrix G ∈ Mn,n(X ) is randomly drawn, with i.i.d. entries
drawn according to the uniform distribution on X . If k ̸= 0, let Gk be the matrix
obtained by extracting the k first lines of G, and Hk a parity matrix associated to
Gk.
The random code C consists of the set of random matrices C = (Gk,Hk)k≤n. Before
the transmission starts, a code realization is chosen and revealed to the encoder and
both decoders.
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- Encoding function ϕ(1)
e : Let E ∈ {0, 1} be such that E = 0 if K ̸= 0 and

(
Im GK +

Xn
)

∩ TTXn|Y n (Y n) = {Xn}, E = 1 otherwise; where TXn|Y n is the conditional
distribution obtained from TXn,Y n . Then we define

ϕ(1)
e (Xn, Y n) =

b(TX
n,Y n , E,HKX

n) if E = 0,

b(TXn,Y n , E,Xn) if E = 1,
(4.44)

where b(·) denotes the binary expansion.

- Encoding function ϕ(2)
e : If E = 0, the index of Xn in its coset Im GK + Xn is

compressed using a Huffman code with the distribution PXn . Let ι(GK , X
n, Y n) be

the resulting binary sequence, then we set

ϕ(2)
e (Xn, Y n) = ι(GK , X

n, Y n). (4.45)

Otherwise, ϕ(2)
e (Xn, Y n) = 0.

- Decoding function ϕ(1)
d : It observes ϕ(1)

e (Xn, Y n) and extracts E and TXn,Y n . If E =
1,

ϕ
(1)
d (ϕ(1)

e (Xn, Y n), Y n) = Xn. (4.46)

Otherwise E = 0, it extracts HKX
n and determines the coset Im GK +Xn. More-

over, by using TXn,Y n and Y n it determines the TXn|Y n-shell TTXn|Y n (Y n), and there-
fore returns an element

ϕ
(1)
d (ϕ(1)

e (Xn, Y n), Y n) ∈
(

Im GK +Xn
)

∩ TTXn|Y n (Y n).

- Decoding function ϕ
(2)
d : It observes ϕ(1)

e (Xn, Y n) and extracts E and TXn,Y n . If
E = 0, it extracts HKX

n and determines the coset Im GK + Xn, and it returns
ϕ

(2)
d (ϕ(1)

e (Xn, Y n), ϕ(2)
e (Xn, Y n)

)
, the element of Im GK+Xn with index ϕ(2)

e (Xn, Y n).
If E = 1, it returns

ϕ
(2)
d

(
ϕ(1)
e (Xn, Y n), ϕ(2)

e (Xn, Y n)
)

= Xn.

Remark 4.2.4 The parameter K is selected so that when K > 0, the number of parity
bits of the linear code asymptotically matches the conditional entropy.
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4.2.3 Zero-error property and rate analysis

We now prove that the code built in Section 4.2.2 satisfies the zero-error property. It
is clear that both decoders retrieve Xn with zero-error when E = 1.

If E = 0, then by definition of E we have (Im GK +Xn) ∩ TTXn|Y n (Y n) = {Xn}, hence
ϕ

(1)
d

(
ϕ(1)
e (Xn, Y n), Y n

)
= Xn with probability 1. On the other hand, ϕ(2)

e (Xn, Y n) =
ι(GK , X

n, Y n), so the element of Im GK + Xn with index ϕ(2)
e (Xn, Y n) is Xn. Thus,

ϕ
(2)
d (ϕ(1)

e (Xn, Y n), ϕ(2)
e (Xn, Y n)

)
= Xn with probability 1.

Lemma 4.2.5 (Rate analysis) For all parameter δ > 0, the sequence of rates of the
codes built in Section 4.2.2 satisfy

R
(n)
1 →

n→∞
H(X|Y ) + δ, R

(n)
2 →

n→∞
I(X;Y ). (4.47)

The proof can be found in Appendix A.1.

4.3 Main results for the zero-error source coding prob-
lem for a Gray-Wyner network when side infor-
mation may be present at the decoder

We first give an inner bound on the feasible rate region in Theorem 4.3.1, based on the
following coding strategy. For all realization (xn, yn) of the source, an auxiliary sequence
wn is used to capture the common information between the source sequences, and the
sets of possible sequences xn and yn are partitioned into cosets. As the side information is
available at some decoders, random binning is done so that less information is transmitted
on wn through the common channel. Decoding algorithms are based on V -shells of side
information sequences, and the zero-error property is ensured by an error bit that is
accompanied by all source sequences if set to 1. We also give an outer bound on the
feasible rate region in Theorem 4.3.2, and we show in Section 4.3.1 that the inner and
outer bound coincide in several cases of interest.
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Theorem 4.3.1 (Inner bound) The rate tuples (R0, Rx1 , Rx2 , Ry) that satisfy

R0 ≥ I(U, V,X, Y ;W ) − min
(
I(U ;W ), I(V ;W )

)
, (4.48)

Rx1 ≥ H(X|U,W ), (4.49)

Rx2 ≥ I(X;U |W ) + min
(
I(U ;W ), I(V ;W )

)
, (4.50)

Ry ≥ H(Y |V,W ), (4.51)

for some finite set W and distribution PU,V,W,X,Y = PU,V,X,Y PW |U,V,X,Y are achievable.

Theorem 4.3.2 (Outer bound) The rate tuples (R0, Rx1 , Rx2 , Ry) that are achievable
must satisfy

R0 ≥ I(X, Y ;W |U, V ), (4.52)

Rx1 ≥ H(X|U,W ), (4.53)

Ry ≥ H(Y |V,W ), (4.54)

R0 +Rx1 +Rx2 ≥ H(X), (4.55)

for some finite set W and distribution PU,V,W,X,Y = PU,V,X,Y PW |U,V,X,Y .

The proofs of Theorem 4.3.1 and Theorem 4.3.2 are respectively given in Appendix A.2
and in Appendix A.3. These proofs are based on the following Lemma 4.3.3 and Lemma
4.3.5. Lemma 4.3.3 is a covering/packing lemma for type classes. It is different from
the packing lemma in [20, Lemma 10.1], as the latter states the existence of a family of
codewords that satisfy the packing property, instead of drawing them at random following
a given distribution.

Lemma 4.3.3 (Covering/Packing lemma in type classes) Let k ∈ N⋆,
PA,B ∈ ∆k(A × B), PĀ ∈ ∆(A), and

Rc
.= I(A;B) +D(PA∥PĀ). (4.56)

Let R > 0 such that R ̸= Rc. For all n ∈ kN⋆, let C(n) .=
(
Ān[1], ..., Ā

n
[2nR]

)
be a codebook

of random sequences, drawn with a joint distribution that satisfies the marginal condition
Ān[i] ∼ P⊗n

Ā
for all i ∈ {1, . . . , 2nR}.
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- If R < Rc, then we have for all bn ∈ T n
0 (PB):

P
(
∃an ∈ C(n), Tan,bn = PA,B

)
≤ 2−n(Rc−R)+o(n). (4.57)

- If R > Rc, assuming that the sequences in C(n) are iid, we have for all bn ∈ T n
0 (PB):

P
(
∃an ∈ C(n), s.t. Tan,bn = PA,B

)
(4.58)

= 1 − exp
[

− 2n(R−Rc)+o(n)
]
.

The proof of Lemma 4.3.3 can be found in Appendix A.4.

Remark 4.3.4 For PĀ = PA, we have Rc = I(A;B). For PĀ = Unif(X ), we have
Rc = log |A| −H(A|B).

Lemma 4.3.5 (Coset partition) Assume that |A| is prime. Let k ∈ N, PA,B ∈ ∆k(A×
B), Rc = log |A| − H(A|B) and R < Rc such that kR/ log |A| ∈ N. For all n ∈ kN, let
G(n) ∈ Mn,nR/ log |X |(A) be a generator matrix whose entries are iid random variables
drawn with the distribution Unif(A). Then we have for all (an, bn) ∈ T n

0 (PA,B):

P
(
∃ãn ∈ Im G(n) + an \ {an}, Tãn,bn = PA,B

)
≤ 2−n(Rc−R)+o(n). (4.59)

Proof. For all an, we have by construction that the coset Ker H(n) + an \ {an} is formed
of |A|nR/ log |X | − 1 = 2nR − 1 random codewords, which are pairwise independent and
identically distributed: they follow the distribution Unif(A)⊗n. The result follows from
Lemma 4.3.3.

4.3.1 Comparison with previous results

In this section, we derive the zero-error achievable rate region for several special cases,
in which our inner bound is optimal.

First, consider the zero-error variant of Gray-Wyner problem [30] by setting U and V
constant, and removing the decoder x2. Our inner bound allows to derive the zero-error
rate achievable region for this problem:

R0 ≥ I(X, Y ;W ), Rx1 ≥ H(X|W ), (4.60)

Ry ≥ H(Y |W ), Rx2 ≥ 0, (4.61)
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for some distribution PU,V,W,X,Y = PU,V,X,Y PW |U,V,X,Y . Due to the converse from [30, The-
orem 4], this bound is optimal.

Another scheme of interest is when Y and V are constant, which gives the problem
presented in Section 4.1.1. We obtain the following

Inner bound: Outer bound:

R0 ≥ I(X;W |U), R0 ≥ I(X;W |U), (4.62)

Rx1 ≥ H(X|U,W ), Rx1 ≥ H(X|U,W ), (4.63)

Rx2 ≥ I(U ;X,W ), R0 +Rx1 +Rx2 ≥ H(X), (4.64)

Ry ≥ 0, Ry ≥ 0, (4.65)

for some distribution PU,V,W,X,Y = PU,V,X,Y PW |U,V,X,Y . By choosing W constant (resp. W =
X) we retrieve the achievability of the tuple (R0, Rx1 , Rx2 , Ry) = (0, H(X|U), I(U ;X), 0)
(resp. (H(X|U), 0, I(U ;X), 0)). It proves that the bound is optimal as the outer bound
gives R0 +Rx1 ≥ H(X|U) and R0 +Rx1 +Rx2 ≥ H(X).

We obtain the problem of Timo et al. [68] by removing the side information at the
encoder, and removing the decoder x2. Then the possible distributions PU,V,W,X,Y must
satisfy the Markov chain (U, V ) → (X, Y ) → W , and we obtain the same inner bound as
them:

R0 ≥ max
(
I(X, Y ;W |U), I(X, Y ;W |V )

)
, (4.66)

Rx1 ≥ H(X|U,W ), (4.67)

Rx2 ≥ 0, (4.68)

Ry ≥ H(Y |V,W ), (4.69)

for some distribution PU,V,W,X,Y = PU,V,X,Y PW |X,Y .
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Chapter 5

CONTRIBUTIONS FOR GRAPH-BASED

ZERO-ERROR PROBLEMS

In the zero-error problems that we call “graph-based”, zero-error constraints are cap-
tured by a characteristic graph, and determining the optimal rate requires to solve hard
graph-theoretic questions. For instance, the zero-error Slepian-Wolf problem presented in
Section 3.3.1 is one of them, its optimal rate is given by the complementary graph entropy
H of the characteristic graph, and finding a single-letter formula for H is an open ques-
tion. However, in order to understand better the nature of the zero-error Slepian-Wolf
problem, we provide new structural results that link it with other problems, such as the
zero-error capacity of a channel C0 (see Figure 3.2).

Our approach for these structural results is the following. If the encoder is doing several
independent compression tasks with their respective independent side information, then
the optimal rate is given by H(∧ ·), i.e. H of a graph with an AND product structure. As
shown by Tuncel et al. in [71], “separating” the independent tasks yields an achievability
scheme, hence H(∧ ·) ≤ ∑

H(·). An important question is to determine whether this
equation is satisfied with equality. When equality holds we say that “linearization” of
H(∧·) holds. Similarly, we define the linearization of optimal zero-error capacities C(·, PV )
and C0. Although, linearization always holds in the vanishing error regime, it does not
hold anymore in the zero-error regime.

Another interesting case of zero-error Slepian-Wolf problem is when the encoder has
a partial information g(Y ) on the decoder’s side information. The optimal rate is given
by H(⊔ ·), i.e. H of a graph with a disjoint union structure. “Separating” the source
realizations w.r.t. the encoder’s side information also yields an achievability scheme, hence
H(⊔Pg(Y ) ·) ≤ ∑

z Pg(Y )(z)H(·). Similarly, we question the “linearization” of H(⊔Pg(Y ) ·).
In this Chapter, we show the equivalences of the linearizations of the optimal source

and channel zero-error rates H, C(·, PV ) and C0, when considering the AND product
and the disjoint union of graphs, as depicted in Figure 5.1. More details are given about
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existing results in Section 5.1, where we also present formally the linearization problems.
The equivalence of linearizations between H and C(·, PV ) is proved in Section 5.2. In order
to link the linearizations of C0 and C(·, PV ), it is necessary to study the capacity-achieving
distributions of a graph; the results needed are given in Section 5.3. In Section 5.4 we
show the equivalence of linearizations between C0 and C(·, PV ). In Section 5.5 we develop
examples and counterexamples of linearization for C0, C(·, PV ) and H. The linearization
problems and the zero-error channel coding problem with typical input constraint are
formally presented in Section 5.1. The proofs of all results in this Chapter can be found
in Appendix B.

linearization of C0(∧ ·)

linearization of C0(⊔ ·)

linearization of C(∧ ·, P )

linearization of C(⊔ ·, P )

linearization of H(∧ ·)

linearization of H(⊔ ·)

⇐
⇒

⇐⇒

⇐⇒

⇐⇒

⇐⇒

⇐
⇒

⇐
⇒Schrijver

[55, Theorem 2]

Marton
[47, Lemma 1]

Marton
[47, Lemma 1]

Charpenay et al.
Theorem 5.2.4

Charpenay et al.
Theorem 5.2.6

Charpenay et al.
Theorem 5.4.1

Charpenay et al.
Theorem 5.4.2

Figure 5.1 – Equivalences of linearizations between the zero-error capacity C0(·), the zero-
error capacity relative to a distribution C(·, PV ), and the complementary graph entropy
H(·). Our results are represented in the dashed rectangles.

5.1 Graph-based zero-error problems

5.1.1 Zero-error channel coding with typical input constraint

In the channel coding problem in the vanishing error regime, I(X;Y ) is the best rate
one can achieve with codebooks formed of typical codewords w.r.t. PX ; and the channel
capacity is the maximum of I(X;Y ) taken over PX .

Similarly, we can think of a more constrained version of the zero-error channel coding
problem, where the channel inputs have to be typical w.r.t. some distribution. The zero-
error capacity of a graph relative to a distribution C(·, PV ) was introduced by Csiszar and
Körner in [21].
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Definition 5.1.1 (Zero-error capacity of a graph relative to PV ) The
zero-error capacity of a graph G = (V , E) relative to PV ∈ ∆(V) is defined by

C(G,PV ) .= lim
ϵ→0

lim sup
n→∞

1
n

logα
(
G∧n[T n

ϵ (PV )]
)
. (5.1)

Remark 5.1.2 We show in Lemma B.3.1 that the superior limit when n → ∞ in the
definition of C(·, PV ) can be replaced with a regular limit, thanks to the superadditivity of
the sequence

(
1
n

logα
(
G∧n[T n

ϵ (PV )]
))

n∈N⋆
.

We show in Lemma 5.1.3 that C(·, PV ) characterizes the optimal rate in the zero-error
channel coding problem with typical inputs. We use this alternative characterization of
C(·, PV ) to prove several other results, in particular for capacity achieving distributions.
We define capacity achieving distributions in Section 5.3, and derive several results on
them.

Lemma 5.1.3 Let G = (V , E) be a graph and PV ∈ ∆(V). Then there exists a sequence
(Cn)n∈N⋆ such that

∀n ∈ N⋆, Cn ⊆ Vn is an independent set in G∧n, (5.2)

max
vn∈Cn

∥Tvn − PV ∥∞ →
n→∞

0, (5.3)

log |Cn|
n

→
n→∞

C(G,PV ). (5.4)

Furthermore, any sequence (Cn)n∈N⋆ that satisfies (5.2) and (5.3) also satisfies

lim sup
n→∞

log |Cn|
n

≤ C(G,PV ). (5.5)

The proof of Lemma 5.1.3 is developed in Appendix B.3.1. Theorem 5.1.4 from Si-
monyi’s survey [63, Theorem 20] states that C0 is equal to the maximum of C(·, PV ), taken
over the channel input distributions PV , paralleling the channel capacity in the vanishing
error regime.

Theorem 5.1.4 (from [63, Theorem 20]) For all graph G = (V , E),

C0(G) = max
PV ∈∆(V)

C(G,PV ). (5.6)

Theorem 5.1.4 is obtained from [63, Theorem 20] when the family of graph has only
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one element. The result of [63, Theorem 20] is proved in [29, Sec. 2] for a more general
setting that involves the Sperner capacity of directed graphs. For the sake of completeness,
we provide a proof for Theorem 5.1.4 in Appendix B.3.2 that does not rely on directed
graphs.

The complementary graph entropy is closely related to the zero-error capacity relative
to a distribution. The link between these two quantities is provided by Marton in [47,
Lemma 1], see Theorem 5.1.5 below. This formula is the cornerstone of our results that
extend the properties of H to C(G, ·). As stated in Corollary 5.1.6 which makes the link
between H and C0, a single letter formula for H would also yield a single-letter formula
for C0. It is worth noting that, similarly to C0, H has a known single-letter expression for
perfect graphs (see Section 5.5).

Theorem 5.1.5 (from [47, Lemma 1]) For all graph G = (V , E) and PV ∈ ∆(V),

C(G,PV ) +H(G,PV ) = H(V ). (5.7)

Corollary 5.1.6 For all graph G = (V , E),

C0(G) = max
PV ∈∆(V)

(
H(V ) −H(G,PV )

)
. (5.8)

We can interpret the formula in Theorem 5.1.5 the following way. The quantities
H(G,PV ) and C(G,PV ) are respectively the minimum number of colors, and the max-
imum size of an independent set. A color class (i.e. vertices of the same color) is an
independent subset of vertices: in the case with same-sized color classes we would need
logα(G) bits to describe the source sequence in its color. Therefore, C(G,PV ) can be seen
as the information needed to describe the index of the source sequence in its color class.
These two quantities sum up to H(V ), which is the information needed to describe the
source sequence without loss; thus 5.1.5 can be seen as an analog for zero-error regime of
the formula I(X;Y ) +H(X|Y ) = H(X).

5.1.2 Linearization in the zero-error Slepian-Wolf problem

Let us consider the particular instances of zero-error Slepian-Wolf source coding de-
picted in Figure 5.2; where g : Y → Z is a deterministic function, Z is a finite set, and
the pairs ((Xz, Yz))z∈Z are mutually independent. They present a practical interest, as
Figure 5.2a models the case where the encoder carries several independent compression
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tasks with different respective distributions; and Figure 5.2b models the case where the
encoder has partial information on the realizations of the decoder’s side information.

Encoder Decoder

Y n
1 , ..., Y

n
|Z|

(X̂n
1 , ..., X̂

n
|Z|) = (Xn

1 , ..., X
n
|Z|)Xn

1 , ..., X
n
|Z| ⧸

R

(a) Zero-error Slepian-Wolf problem with several independent sources.

Encoder Decoder

Y n

X̂n = Xn(
g(Yt)

)
t≤n

Xn ⧸
R

(b) Zero-error Slepian-Wolf problem with side information at the encoder.

Figure 5.2 – Two particular instances of zero-error Slepian-Wolf source coding problem.

As shown in Proposition 5.1.7 and Proposition 5.1.9, in these cases the optimal rate is
the complementary graph entropy of a graph with a particular structure: disjoint union
⊔, and AND product ∧ respectively. Note that the setting in Figure 5.2b is a particular
case of Figure 3.4, as it is equivalent to a setting with source (X, g(Y )) that must be
retrieved by the decoder, and side information Y at the decoder; and also, Figure 3.4 is
a particular case of Figure 5.2b by removing the encoder’s side information.

Proposition 5.1.7 The optimal rate in Figure 5.2a writes

H

(∧
z∈Z

Gz

)
; (5.9)

where for all z ∈ Z, Gz is the characteristic graph associated to the conditional distribution
PXz |Yz , with the underlying probability distribution PXz on its vertices.

Definition 5.1.8 (Disjoint union of probabilistic graphs ⊔) Let A be a finite set,
and let PA ∈ ∆(A). For all a ∈ A, let Ga = (Va, Ea, PVa) be probabilistic graphs, their
disjoint union w.r.t. PA is a probabilistic graph (V , E , PV ) denoted by ⊔PA

a∈A Ga and defined
by:

- V = ⊔
a∈A Va is the disjoint union of the sets (Va)a∈A;

- For all v, v′ ∈ V, vv′ ∈ E iff they both belong to the same Va and vv′ ∈ Ea;

- PV = ∑
a∈A PA(a)PVa, note that the (PVa)a∈A have disjoint support in V.
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The disjoint union of graphs without probability distribution has the vertex set and
edges defined above, without underlying probability distribution. Therefore we do not spec-
ify a distribution PA when considering a disjoint union of such graphs.

The disjoint union is also called “sum of graphs" in [71]. An example of disjoint union
and AND product of probabilistic graphs can be found in Figure 5.3.

1/4 1/2 1/4G1 = 1/3 2/3G2 =

1/6

1/12

1/3

1/6

1/6

1/12
G1 ∧G2 =

1/16 1/8 1/16

1/4 1/2
G1

( 1
4 ,

3
4)

⊔ G2 =

Figure 5.3 – An empty graph G1 = (N3, (1
4 ,

1
2 ,

1
4)) and a complete graph G2 = (K2, (1

3 ,
2
3)),

along with their AND product G1 ∧G2 and their disjoint union G1 ⊔G2 w.r.t. (1
4 ,

3
4). The

underlying distributions are represented by the numbers on each vertex.

Proposition 5.1.9 The optimal rate in Figure 5.2b writes

H

Pg(Y )⊔
z∈Z

Gz

 ; (5.10)

where for all z ∈ Z, Gz is the characteristic graph associated to the conditional distribu-
tion (PX|Y (x, y))(x,y)∈X ×g−1(z), with the underlying probability distribution PX|g(Y )=z on its
vertices.

A natural coding strategy for the setting in Figure 5.2a consists in separating the
problem into |Z| source coding sub-problems, where the random variable Xz has to be
transmitted to the decoder that knows Yz. Concatenating the optimal coding strategies in
each sub-problem yields a zero-error coding scheme for the problem in Figure 5.2a, with
rate ∑z∈Z H(Gz).

Definition 5.1.10 The linearization with respect to the AND product ∧ of the optimal
rate H is satisfied when

H

(∧
z∈Z

Gz

)
=
∑
z∈Z

H(Gz). (5.11)
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The linearization with respect to the disjoint union of graphs ⊔ of the optimal rate H is
satisfied when

H

Pg(Y )⊔
z∈Z

Gz

 =
∑
z∈Z

Pg(Y )(z)H(Gz). (5.12)

Similarly, a natural coding strategy for the setting in Figure 5.2b consists in sep-
arating the source realizations depending on the value of g(Y ), and use the optimal
coding scheme designed for the distribution PX,Y |g(Y )=z for all z. The associated rate is∑
z∈Z Pg(Y )(z)H(Gz). When this coding strategy is optimal, the following holds:

H

Pg(Y )⊔
z∈Z

Gz

 =
∑
z∈Z

Pg(Y )(z)H(Gz), (5.13)

i.e. H can be linearized w.r.t. ⊔.
These natural coding schemes are both zero-error. For this reason, inequality always

holds in (5.11) and (5.13), as captured in Tuncel et al.’s formulae in Theorem 5.1.11.

Theorem 5.1.11 (from [71, Theorem 2]) For all probabilistic graphs G,G′ and s ∈
[0, 1],

H(G ∧G′) ≤ H(G) +H(G′); (5.14)

H(G
(s,1−s)

⊔ G′) ≤ sH(G) + (1 − s)H(G′). (5.15)

In the vanishing error regime, these natural approaches are always optimal. However
in the zero-error regime they are not: we develop a counterexample in Theorem 5.5.13.
We also show in Section 5.5 that for some classes of graphs (5.11) and (5.13) hold for all
underlying distributions on the vertices. This enables us to derive a single-letter charac-
terization of H for a new class of graphs. We will see in the following that the linearization
of (5.14) is equivalent to the linearisation of (5.15).

5.1.3 Linearization in zero-error channel coding

In the zero-error channel coding setting, a case of interest is when encoder can use
multiple independent channels to communicate with the decoder, depicted in Figure 5.4.
We can think of two transmission regimes in this setting:
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Channel PY1|X1

Channel PY1|X1
...

Channel PY1|X1Channel PY|Z||X|Z| Decoder

Decoder

Decoder

Encoder

Encoder

Encoder
(X̂n

1 , ..., X̂
n
|Z|)

= (Xn
1 , ..., X

n
|Z|) ∈ X n|Z|

Xn
1 Y n

1

Xn
|Z| Y n

|Z|

(a) Product of channels.

Channel PY1|X1

Channel PY1|X1
...

Channel PY1|X1Channel PY|Z||X|Z| Decoder

Decoder

Decoder

Encoder

Encoder

Encoder (X̂zt)t≤n = (Xzt)t≤n ∈ X n

X1 Y1

X|Z| Y|Z|

(b) Sum of channels.

Figure 5.4 – Two particular instances of zero-error channel coding problem.

- Product of channels: all the channels are used by the encoder at each time step,
and the decoder observes all channel outputs.

- Sum of channels: at each time step t ≤ n, the encoder has to use exactly one
channel zt among the |Z| channels. The decoder observes the chosen channel index
and its output, and has to retrieve the input of the chosen channel.

In the vanishing error regime, the respective optimal rates for these settings depend
on the channel capacities Cz .= maxPXz ∈∆(X ) I(Xz;Yz):

∑
z∈Z Cz for the product of chan-

nels, and log
(∑

z∈Z 2Cz

)
for the sum of channels. However, in the zero-error regime, the

optimal rates for the sum and product of channels are respectively given by the zero-error
capacities of a product graph and a disjoint union graph; as shown in Proposition 5.1.12
and Proposition 5.1.13.

Proposition 5.1.12 (from [58]) The optimal rate in Figure 5.4a writes

C0

(∧
z∈Z

Gz

)
; (5.16)

where for all z ∈ Z, Gz is the characteristic graph associated to the conditional distribution
PXz |Yz .
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Proposition 5.1.13 (from [58]) The optimal rate in Figure 5.4b writes

C0

(⊔
z∈Z

Gz

)
; (5.17)

where for all z ∈ Z, Gz is the characteristic graph associated to the conditional distribution
PXz |Yz .

A possible zero-error coding scheme in Figure 5.4 in the product of channels consists in
separately using optimal codebooks, designed respectively for each channel. The associated
rate is ∑z∈Z C0(Gz) and satisfies

C0

(∧
z∈Z

Gz

)
≥
∑
z∈Z

C0(Gz). (5.18)

There are cases where equality holds in (5.18), i.e.

C0

(∧
z∈Z

Gz

)
=
∑
z∈Z

C0(Gz), (5.19)

which we call “linearization” of C0 w.r.t. ∧; and cases where inequality in (5.18) is strict,
for instance the Schläfli graph and its complement (see Section 5.5.2).

For the sum of channels, we can use the optimal codebooks designed for each channel,
with a time-sharing w.r.t. the following distribution:

P ∗
Z
.=
(

2C0(Gz)∑
z′∈Z 2C0(Gz′ )

)
z∈Z

. (5.20)

The distribution P ∗
Z represents the optimal time-sharing between the different code-

books, as we prove in Lemma B.4.5 that P ∗
Z defined in (5.20) is the maximizer of the

function PZ 7→ H(PZ) +∑
z∈Z PZ(z)C0(Gz).

The rate writes

H(P ∗
Z) +

∑
z∈Z

P ∗
Z(z)C0(Gz) =

∑
z∈Z

P ∗
Z(z)

(
log

(∑
z′∈Z 2C0(Gz′ )

2C0(Gz)

)
+ C0(Gz)

)
(5.21)

= log
∑
z′∈Z

2C0(Gz′ )

 . (5.22)
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and if this strategy is optimal, then the following holds:

C0

(⊔
z∈Z

Gz

)
= log

(∑
z∈Z

2C0(Gz)
)
, (5.23)

i.e. C0 can be linearized w.r.t. ⊔.

Definition 5.1.14 The linearization with respect to the AND product ∧ of the optimal
rate C0 is satisfied when

C0

(∧
z∈Z

Gz

)
=
∑
z∈Z

C0(Gz). (5.24)

The linearization with respect to the disjoint union of graphs of the optimal rate C0 is
satisfied when

C0

(⊔
z∈Z

Gz

)
= log

(∑
z∈Z

2C0(Gz)
)
. (5.25)

Remark 5.1.15 Linarization always holds in the vanishing error regime, in the sense that
the optimal coding strategy for communicating over several independent channels consists
in using respective optimal codebooks for each channel. In other words,

max
PX1,...,X|Z| ∈∆(X |Z|)

I(X1, ..., X|Z|;Y1, ..., Y|Z|) =
∑
z∈Z

max
PXz ∈∆(X )

I(Xz;Yz). (5.26)

Remark 5.1.16 Note that P ∗
Z is full-support: it can be observed PZ 7→ H(PZ) has an

infinite slope at the frontier of ∆(Z), consequently the maximizer of PZ 7→ H(PZ) +∑
z∈Z PZ(z)C0(Gz) is always an interior point. In other words, the information carried by

the channel index H(PZ) offsets the loss in rate, if the channels with smaller capacities are
not chosen too often. Therefore, in the sum of channels setting, always choosing the chan-
nel with highest capacity is suboptimal; and never choosing a channel is also suboptimal,
even if this channel has zero-error capacity 0.

These natural coding schemes are both zero-error. For this reason, inequality always
holds in (5.19) and (5.23), as captured in Shannon’s formulae in Theorem 5.1.17.
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Theorem 5.1.17 (from [58, Theorem 4]) For all graphs G,G′,

C0(G ⊔G′) ≤ log
(
2C0(G) + 2C0(G′)

)
; (5.27)

C0(G ∧G′) ≤ C0(G) + C0(G′). (5.28)

The Schläfli graph S is a counterexample of linearization of C0 used by Haemers in
[33] (see [15, Section 6.1] for an explicit construction), as stated in Theorem 5.1.18. To
prove this result, Haemers uses a bound on the zero-error capacity based on the rank of
the adjacency matrix of the graph. Refinements of this bound are developed by Bukh and
Cox in [10], and by Gao et al. in [26]. Corollary 5.1.19 follows from Schrijver’s result in
Theorem 5.1.20.

Theorem 5.1.18 (from [33]) Let S be the Schläfli graph and S its complementary graph,
then C0(S ∧ S) > C0(S) + C0(S).

Corollary 5.1.19 C0(S ⊔ S) > log
(
2C0(S) + 2C0(S)

)
.

In [36], Keevash and Long study the maximal value of C0(G ⊔G′) under the assumption
C0(G), C0(G′) < ϵ.

As stated in Theorem 5.1.20, Schrijver has shown that the cases of equality in Theorem
5.1.17 coincide. In Section 5.2, we show the equivalence of the linearization for H and
C(·, PV ), this requires new proof techniques. Furthermore, as we point out in Section 5.3
and Section 5.4, studying the capacity achieving distributions is necessary in order to link
C0 and C(·, PV ) and their linearizations.

Theorem 5.1.20 (from [55, Theorem 2]) For all graphs G,G′,

C0(G ⊔G′) = log
(
2C0(G) + 2C0(G′)

)
(5.29)

⇐⇒ C0(G ∧G′) = C0(G) + C0(G′). (5.30)

In Section 5.4 and Section 5.2, we show that the graphs that allow for a linearization
of C0, C(·, PV ), and H are the same, when PV is a capacity-achieving distribution.
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Figure 5.5 – The 2-discretized probability simplex ∆2(X × Y) for X = Y = {0, 1}.

5.2 Main results on the linearization of H and C(·, PV )

In this Section we show the equivalence between the linearizations of H(⊔ · ), H(∧ · ),
C(⊔· , PV ) and H(∧· , PV ). In the following A is a finite set and (Ga)a∈A = (Va, Ea, PVa)a∈A

is an arbitrary finite family of probabilistic graphs.
A crucial result for several linearization proofs is Lemma 5.2.1, which give an expression

for the complementary graph entropy of a disjoint union w.r.t. a type; the proof is given
in Appendix B.2.1. The main reasons why ∧ appears in (5.31) in Lemma 5.2.1 are the
AND powers used in H, and the distributivity of ∧ w.r.t. ⊔ (see Lemma B.2.4).

Lemma 5.2.1 If PA ∈ ∆k(A) for some k ∈ N⋆ then

H

 PA⊔
a∈A

Ga

 = 1
k
H

( ∧
a∈A

G∧kPA(a)
a

)
. (5.31)

When PA = Unif(A), we show in Corollary 5.2.2 that H(⊔ · ) and H(∧ · ) are equal
up to a multiplicative constant.

Corollary 5.2.2

H

Unif(A)⊔
a∈A

Ga

 = 1
|A|

H

( ∧
a∈A

Ga

)
. (5.32)

Remark 5.2.3 In Lemma 5.2.1, if PA ∈ ∆k(A), then PA ∈ ∆ik(A) for all i ∈ N⋆.
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However, this does not change the expression (5.31) as

1
ik
H

( ∧
a∈A

G∧ikPA(a)
a

)
= 1
ik
H

( ∧
a∈A

G∧kPA(a)
a

)i = 1
k
H

( ∧
a∈A

G∧kPA(a)
a

)
. (5.33)

In Theorem 5.2.4, we show that the cases of equality coincide in Tuncel et al.’s in-
equalities in Theorem 5.1.11.

Theorem 5.2.4 Let PA ∈ ∆(A) with full-support, then the following equivalence holds:

H

 PA⊔
a∈A

Ga

 =
∑
a∈A

PA(a)H(Ga) (5.34)

⇐⇒ H

( ∧
a∈A

Ga

)
=
∑
a∈A

H(Ga). (5.35)

The proof of Theorem 5.2.4 is given in Appendix B.2.2. The key results of this proof are
Lemma 5.2.1 which gives the equivalence between linearizations of H(∧ ·) and H(⊔PA ·);
and Lemma B.2.2, Lemma B.2.3 that extend this equivalence to all distributions PA with
full-support.

As a consequence of Marton’s formula H(G) + C(G,PV ) = H(PV ), and the fact that
the entropy H(·) always behaves additively w.r.t. independent random variables, we show
with Proposition 5.2.5 the equivalence of linearizations between H and C(·, PV ). We also
show superadditivity inequalities on C(∧ ·, PV ) and C(⊔ ·, PV ) based on Tuncel et al’s
subadditivity inequalities on H in Theorem 5.1.11. The proof of Proposition 5.2.5 is given
in Appendix B.2.4.

The symmetric behaviors of H and C(·, PV ) lead to the equivalence between the lin-
earizations of C(∧ ·, PV ) and C(⊔ ·, PV ) stated in Theorem 5.2.6, as a direct consequence
of Theorem 5.2.4 and Proposition 5.2.5.

Proposition 5.2.5 Let PA ∈ ∆(A), then

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 ≥ H(PA) +
∑
a∈A

PA(a)C(Ga, PVa), (5.36)

C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
≥
∑
a∈A

C(Ga, PVa); (5.37)
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and the following equivalences hold:

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)C(Ga, PVa) (5.38)

⇐⇒ H

 PA⊔
a∈A

Ga

 =
∑
a∈A

PA(a)H(Ga); (5.39)

C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
=
∑
a∈A

C(Ga, PVa) (5.40)

⇐⇒ H

( ∧
a∈A

Ga

)
=
∑
a∈A

H(Ga). (5.41)

A natural question is about the equivalence between (5.38) and (5.40). In the next
Theorem (which follows from Theorem 5.2.4), we show that this equivalence holds.

Theorem 5.2.6 Let PA ∈ ∆(A) with full-support, then the following equivalence holds:

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)C(Ga, PVa) (5.42)

⇐⇒ C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
=
∑
a∈A

C(Ga, PVa). (5.43)

In this Section we proved that the equivalence of the linearisations between H and
C(·, PV ) holds. In the next Sections, we investigate the linearisation of the zero-error
capacity C0.

5.3 Main results on capacity-achieving distributions

In this Section, we define the set of capacity-achieving distributions of a graph, which
are the distributions PV such that C(·, PV ) is equal to C0. We give results on the capacity-
achieving distributions when the graph is a product, and when the graph is vertex-
transitive. Furthermore, understanding the capacity-achieving distributions is a necessary
step towards the equivalence of linearization between C0 and C(·, PV ), which is presented
in Section 5.4. In the following, A is a finite set and (Ga)a∈A = (Va, Ea)a∈A is an arbitrary
finite family of graphs.
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Definition 5.3.1 (Set of capacity-achieving distributions P∗) Let G =
(V , E) be a graph. The set of capacity-achieving distributions of G is the subset of ∆(V)
denoted by P∗(G) and is defined by

P∗(G) .= argmax
PV ∈∆(V)

C(G,PV ). (5.44)

Proposition 5.3.2 For all graph G, the mapping PV 7→ C(G,PV ) is concave. The set of
capacity-achieving distributions P∗(G) defined in Definition 5.3.1 is convex, nonempty,
and satisfies

∀PV ∈ P∗(G), C0(G) = C(G,PV ). (5.45)

The proof of Proposition 5.3.2 is developed in Appendix B.3.3; the key result used in
the proof is the formula maxPV

C(G,PV ) = C0(G) from Theorem 5.1.4.
In Theorem 5.3.3, we show that if a joint distribution is capacity-achieving for a

product of graphs, then the product of its marginals is also capacity-achieving. The proof
of Theorem 5.3.3 is given in Appendix B.3.4, and is based on a codebook shifting argument:
with a given zero-error codebook for G∧G′ with average type PV,V ′ , one can build a shifted
zero-error codebook (for an increased number of channel uses) with the same rate and
average type PV ⊗ PV ′ .

Theorem 5.3.3 If PV1,...,V|A| ∈ P∗(∧a∈A Ga), then ⊗
a∈A PVa ∈ P∗(∧a∈A Ga).

Corollary 5.3.4

C0

( ∧
a∈A

Ga

)
= max

(PVa )a∈A
∈
∏

a∈A ∆(Va)

C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
. (5.46)

We show in Lemma 5.3.7 that the uniform distribution achieves the zero-error capacity
for vertex-transitive graphs, i.e. a graph in which all the vertices play the same “role”.
The proof of Lemma 5.3.7 is given in Appendix B.3.5.

Definition 5.3.5 (Group of automorphisms Aut) An automorphism of a graph G =
(V , E) is a bijection ψ : V → V such that for all v, v′ ∈ V, vv′ ∈ E if and only if
ψ(v)ψ(v′) ∈ E. The group of automorphisms of G is denoted by Aut(G).
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Definition 5.3.6 (Vertex-transitive graph) A graph G = (V , E) is vertex-transitive
if Aut(G) acts transitively on its vertices, i.e. for all v, v′ ∈ V, there exists ψ ∈ Aut(G)
such that ψ(v) = v′.

Lemma 5.3.7 If G = (V , E) is vertex-transitive, then

Unif(V) ∈ P∗(G). (5.47)

Corollary 5.3.8 Let (Ga)a∈A = (Va, Ea)a∈A be vertex-transitive graphs, their product is
also vertex-transitive and

Unif
(∏
a∈A

Va
)

=
⊗
a∈A

Unif(Va) ∈ P∗
( ∧
a∈A

Ga

)
. (5.48)

5.4 Linking the linearizations of C0 and C(·, PV )

In this Section, we show the equivalences of linearizations between C0 and C(·, PV ).
In the following, A is a finite set and (Ga)a∈A = (Va, Ea)a∈A is an arbitrary finite family
of graphs.

Theorem 5.4.1 states that C0(∧ · ) can be linearized if and only if C(∧ · , PV ) can be
linearized for some distribution PV which is capacity-achieving for the product. When the
linearisation of C(∧ · , PV ) holds, we also show that the marginals of such a distribution
are capacity-achieving for the respective graphs in the product. A similar result is derived
for the disjoint union in Theorem 5.4.2; this result makes use of the optimal distribution
PA(a) = 2C0(Ga)∑

a′∈A 2C0(Ga′ ) , which is the maximizer of PA 7→ H(PA) + ∑
a∈A PA(a)C0(Ga) as

stated in Lemma B.4.5. The proof of Theorem 5.4.1 and Theorem 5.4.2 are respectively
given in Appendix B.4.1 and Appendix B.4.4.

Theorem 5.4.1 The following holds

C0

( ∧
a∈A

Ga

)
=
∑
a∈A

C0(Ga) (5.49)

⇐⇒ ∃PV1,...,V|A| ∈ P∗
( ∧
a∈A

Ga

)
, C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
=
∑
a∈A

C(Ga, PVa). (5.50)

Furthermore, any distribution ⊗a∈A PVa ∈ P∗ (∧a∈A Ga) that satisfies (5.50) also satisfies
the following: ∀a ∈ A, PVa ∈ P∗(Ga).
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Theorem 5.4.2 The following equivalence holds

C0

( ⊔
a∈A

Ga

)
= log

(∑
a∈A

2C0(Ga)
)

(5.51)

⇐⇒ ∃PV ∈ P∗
( ⊔
a∈A

Ga

)
, (5.52)

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)C(Ga, PVa), (5.53)

where PVa = PV |V ∈Va and PA(a) = PV (Va) for all a ∈ A. Furthermore, any ∑a∈A PA(a)PVa

that satisfies (5.53) also satisfies the following for all a ∈ A:

PA(a) = 2C0(Ga)∑
a′∈A 2C0(Ga′ ) , and PVa ∈ P∗(Ga). (5.54)

Remark 5.4.3 One could think of a possible proof strategy for Theorem 5.4.2, which is
successively using the equivalences in Theorem 5.1.20, Theorem 5.4.1, and Theorem 5.2.6.
However, doing so yields the following statement

C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)

(5.55)

⇐⇒ ∃PA ∈ ∆(A) full-support, ∃PV1,...,V|A| ∈ P∗ (∧a∈A Ga), (5.56)

C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= H(PA) +∑

a∈A PA(a)C(Ga, PVa);

a missing step consists in linking P∗ (⊔a∈A Ga) with P∗ (∧a∈A Ga).

5.5 Main examples and counterexamples of lineariza-
tion

5.5.1 Perfect graphs

In this Section, we show that perfect graphs allow for linearization of C0, C(·, PV )
and H w.r.t. both ⊔ and ∧ with any underlying distribution. Perfect graphs are one of
the only known examples of graphs with a single-letter formula for H and C0, as stated
in Theorem 5.5.4 and Theorem 5.5.5. We also give single-letter formulae for C0, C(·, PV )
and H for products of perfect graphs, which are not perfect in general. Therefore, our
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results yield new examples of single-letter formulae C0, C(·, PV ) and H for cases where
such formulae were previously unknown.

Definition 5.5.1 (Graph complement, clique number ω) For all G = (V , E), the
complementary graph of G is defined by G .= (V , Ec). The clique number of G is defined
by ω(G) .= α(G).

Definition 5.5.2 (Perfect graph) A graph G = (V , E) is perfect if ∀S ⊆ V , χ(G[S]) =
ω(G[S]). A probabilistic graph (V , E , PV ) is perfect if (V , E) is perfect.

Definition 5.5.3 (Körner graph entropy Hκ) For all G = (V , E , PV ), let Γ(G) be the
collection of independent sets of vertices in G. The Körner graph entropy of G is defined
by

Hκ(G) = min
V ∈W∈Γ(G)

I(W ;V ), (5.57)

where the minimum is taken over all distributions PW |V ∈ ∆(W)V , with W = Γ(G) and
with the constraint that the random vertex V belongs to the random independent set W
with probability one, i.e. V ∈ W ∈ Γ(G) in (5.57).

Theorem 5.5.4 (from [22, Corollary 12]) Let G be a perfect probabilistic graph, then

H(G) = Hκ(G). (5.58)

Shannon proved in [58, Theorem 3] that a graph G whose vertex set can be partitioned
into α(G) cliques (i.e. complete induced subgraphs) satisfies C0(G) = α(G). Perfect graphs
are an example of that, as their complementary is also perfect, and satisfy χ(G) = ω(G) =
α(G), where χ(G) is the clique cover number.

Theorem 5.5.5 (from [58, Theorem 3]) If G is a perfect graph, then C0(G) = logα(G).

As stated in Proposition 5.5.6, perfect graphs are an example of linearization for C0:
since C0(G⊔G′) = logα(G⊔G′) = log(α(G) +α(G′)) = log(2C0(G) + 2C0(G′)) holds for all
perfect G,G′, we obtain C0(G ∧ G′) = C0(G) + C0(G′) by Schrijver’s result in Theorem
5.1.20.
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Proposition 5.5.6 Let G and G′ be perfect graphs, then

C0(G ⊔G′) = log
(
2C0(G) + 2C0(G′)

)
= log(α(G) + α(G′)); (5.59)

C0(G ∧G′) = C0(G) + C0(G′) = logα(G) + logα(G′). (5.60)
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Figure 5.6 – A non-perfect AND product of perfect graphs: C6 ∧ C8 with an induced C7.

AND products of perfect graphs are not perfect in general; see for example Figure
5.6 where a product of two perfect graphs contains an induced C7, which makes it non-
perfect by Theorem 5.5.7. However, a disjoint union of perfect graphs is always perfect,
as stated in Lemma B.5.2; therefore the results on equivalence of linearizations are useful
to extend the linearization properties and single-letter expressions to the AND product of
perfect graphs. In Theorem 5.5.8 we show that perfect graphs allow for the linearization
of C(·, PV ) and H, for all underlying probability distributions; and we also give a single-
letter expression for H and C(·, PV ) in that case. The proof of Theorem 5.5.8 is given in
Appendix B.5.1.

Theorem 5.5.7 (Strong perfect graph theorem, from [16, Theorem 1.2]) A graph
G is perfect if and only if neither G nor G have an induced odd cycle of length at least 5.

Theorem 5.5.8 When (Ga)a∈A = (Va, Ea, PVa)a∈A is a family of perfect probabilistic
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graphs, the following single-letter characterizations hold:

H

( ∧
a∈A

Ga

)
=
∑
a∈A

H(Ga) =
∑
a∈A

Hκ(Ga), (5.61)

H

 PA⊔
a∈A

Ga

 =
∑
a∈A

PA(a)H(Ga) =
∑
a∈A

PA(a)Hκ(Ga), (5.62)

C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
=
∑
a∈A

C(Ga, PVa) =
∑
a∈A

(
H(Va) −Hκ(Ga)

)
, (5.63)

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)C(Ga, PVa)

= H(PA) +
∑
a∈A

PA(a)
(
H(Va) −Hκ(Ga)

)
. (5.64)

Another interesting example is the graph C5 ⊔ G where G is perfect, which is an
example of linearization of H with single-letter formula developed by Tuncel et al. in
[71]. The pentagon graph C5 is not perfect, and makes non-perfect any disjoint union or
AND product that is made with it. However we can use Theorem 5.2.4, and derive in
Corollary 5.5.10 another non-perfect example of linearization with single-letter formula
for H: C5 ∧G with G perfect.

Theorem 5.5.9 (from [71, Lemma 3]) Let s ∈ [0, 1], let G be a perfect probabilistic
graph, and let G5

.= (C5,Unif({0, ..., 4})), we have

H(G5
(s,1−s)

⊔ G) = sH(G5) + (1 − s)H(G) (5.65)

= s

2 log 5 + (1 − s)Hκ(G). (5.66)

Corollary 5.5.10 For all perfect probabilistic graph G,

H(G ∧G5) = H(G) +H(G5) = Hκ(G) + 1
2 log 5. (5.67)

5.5.2 The Schläfli graph

In order to use the Schläfli graph S as a counterexample for C(·, PV ) and H, we need
a capacity-achieving distribution of S ∧ S. As stated in Lemma 5.5.11, the Schläfli graph
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is vertex transitive. By Lemma 5.3.7 and Corollary 5.5.12, the uniform distribution is
capacity-achieving for S, S, and S ∧ S.

Lemma 5.5.11 (from [11, Lemma 3.7]) The Schläfli graph is vertex-transitive.

Corollary 5.5.12 The sets P∗(S), P∗(S), and P∗(S ∧S) all contain the uniform distri-
bution.

In Theorem 5.5.13 we adapt the Schläfli graph counterexample to C(·, PV ) and H by
using our results from the previous sections.

Theorem 5.5.13 Let s ∈ (0, 1), let S = (VS, ES,Unif(VS)) be the Schläfli graph and
let S = (VS, ES,Unif(VS)) be the complementary of the the Schläfli graph with uniform
distribution on their vertices. Then

C(S ∧ S,Unif(VS) ⊗ Unif(VS)) > C(S,Unif(VS)) + C(S,Unif(VS)), (5.68)

C(S ⊔ S, sUnif(VS) + (1 − s) Unif(VS)) > hb(s) + sC(S,Unif(VS))

+ (1 − s)C(S,Unif(VS)), (5.69)

H(S ∧ S) <H(S) +H(S), (5.70)

H(S
(s,1−s)

⊔ S) < sH(S) + (1 − s)H(S); (5.71)

where hb is the binary entropy.

We obtain the first inequality from Theorem 5.4.1 and Corollary 5.5.12; the second
one from Theorem 5.2.6; the third one comes from Proposition 5.2.5; and the last one
from Theorem 5.2.4.

Remark 5.5.14 Alon has built in [4] infinite families of graphs that satisfy C0(G⊔G′) >
log(2C0(G) + 2C0(G′)). Similar results as in Theorem 5.5.13 can be derived for these graphs,
by using their respective capacity-achieving distributions.
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Chapter 6

CONTRIBUTIONS FOR CODING FOR

COMPUTING ZERO-ERROR PROBLEMS

In this Chapter, we study the zero-error coding for computing problem with side
information at the encoder, presented in Section 6.1. We fist give an asymptotic expression
for the optimal rate in the general case, then we formulate an hypothesis on PX,Y and
g that we call “pairwise shared side information” that allows us to derive a single-letter
characterization of the optimal rate. In particular it covers the cases with PX,Y full-
support, without any assumption on f, g.

This hypothesis is satisfied if every pair of source symbols “share” at least one side
information symbol for all output of g. It has graph-theoretic interpretations, as the
single-letter formula stems from the particular structure of the characteristic graph of the
problem: a disjoint union of OR products. We also prove that this condition is equivalent
to the worst optimal rate in an auxiliary Slepian-Wolf problem.

6.1 Coding for computing problems

6.1.1 Coding for computing in the vanishing error regime

The coding for computing problem is defined in [50] by Orlitsky and Roche. In this
setting the decoder wants to retrieve a function of both encoder’s and decoder’s data.

Encoder Decoder

Y n

(
f(Xt, Yt)

)
t≤nXn ⧸

R

Figure 6.1 – Coding for computing.

Definition 6.1.1 The source coding problem of Figure 6.2 is described by:
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- Finite sets U , X , Y and a source distribution PX,Y ∈ ∆(X × Y);

- For all n ∈ N⋆, (Xn, Y n) is the random sequence of n copies of (X, Y ), drawn in an
i.i.d. fashion using PX,Y .

- Two deterministic functions

f : X × Y → U . (6.1)

- An encoder that knows Xn sends binary strings over a noiseless channel to a decoder
that knows Y n, and that wants to retrieve

(
f(Xt, Yt)

)
t≤n

without error.

A coding scheme in this setting is decribed by:

- A time horizon n ∈ N⋆, and an encoding function ϕe : X n → {0, 1}∗ such that Imϕe

is prefix-free;

- A decoding function ϕd : Yn × {0, 1}∗ → Un;

- The rate is the average length of the codeword per source symbol, i.e. R .= 1
n
E
[
ℓ ◦

ϕe
(
Xn

)]
;

- n, ϕe, ϕd must satisfy the ϵ-error property:

P
(
ϕd

(
Y n, ϕe

(
Xn

))
̸=
(
f(Xt, Yt)

)
t≤n

)
≤ ϵ. (6.2)

The objective is to find the minimal rate among all coding schemes under the vanishing
error constraint:

R∗
CFC

.= lim
ϵ→0

inf
n,ϕe,ϕd
ϵ-error

1
n
E
[
ℓ ◦ ϕe

(
Xn, (g(Yt))t≤n

)]
. (6.3)

As illustrated in Theorem 6.1.4, Orlitsky and Roche give in [50] a single-letter expres-
sion of the optimal rate. This optimal rate is characterized with a characteristic graph
GCFC defined below, and a conditional version of Körner’s graph entropy (the latter is
defined in Definition 5.5.3).

Definition 6.1.2 (Conditional Körner graph entropy) For all G = (V , E , PV ), let
Γ(G) be the collection of independent sets of vertices in G. Let PY |V ∈ ∆(Y)|V|, the
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conditional Körner graph entropy of G is defined by

Hκ(G|Y ) = min
W→V→Y
V ∈W∈Γ(G)

I(W ;V |Y ), (6.4)

where the minimum is taken over all distributions PW |V,Y ∈ ∆(W)V , with W → V → Y

(i.e. PW |V,Y = PW |V ), W = Γ(G) and with the constraint that the random vertex V belongs
to the random independent set W with probability one, i.e. V ∈ W ∈ Γ(G) in (6.4).

Definition 6.1.3 (Characteristic graph GCFC) The auxiliary graph GCFC is defined
by

- X as set of vertices with distribution PX ,

- xx′ are adjacent if f(x, y) ̸= f(x′, y) for some y ∈ suppPY |X=x ∩ suppPY |X=x′.

Theorem 6.1.4 (from [50])

R∗
CFC = Hκ(GCFC |Y ).

6.1.2 Zero-error coding for computing with side information at
the encoder

Encoder Decoder(
g(Yt)

)
t≤n Y n

(
f(Xt, Yt)

)
t≤nXn ⧸

R

Figure 6.2 – Zero-error coding for computing with side information at the encoder.

The problem of Figure 6.2 is a zero-error setting that relates to Orlitsky and Roche’s
coding for computing problem from [50]. This coding problem appears in video compres-
sion [23, 27], where Xn models a set of images known at the encoder. The decoder does not
always want to retrieve each image, but has instead a sequence Y n of particular requests for
each image, e.g. detection: cat, dog, car, bike; or scene recognition: street/city/mountain,
etc... The encoder does not know the decoder’s exact request but has prior information
about it (e.g. type of request), which is modeled by (g(Yt))t≤n. This problem also relates
to the zero-error Slepian-Wolf open problem presented in Section 3.3.1, as it is obtained
as a special case by taking g constant and f(X, Y ) = X.
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Definition 6.1.5 The zero-error source coding problem of Figure 6.2 is described by:

- Four finite sets U , X , Y, Z and a source distribution PX,Y ∈ ∆(X × Y);

- For all n ∈ N⋆, (Xn, Y n) is the random sequence of n copies of (X, Y ), drawn in an
i.i.d. fashion using PX,Y .

- Two deterministic functions

f : X × Y → U , (6.5)

g : Y → Z. (6.6)

- An encoder that knows Xn and
(
g(Yt)

)
t≤n

sends binary strings over a noiseless chan-

nel to a decoder that knows Y n, and that wants to retrieve
(
f(Xt, Yt)

)
t≤n

without
error.

A coding scheme in this setting is decribed by:

- A time horizon n ∈ N⋆, and an encoding function ϕe : X n × Zn → {0, 1}∗ such that
Imϕe is prefix-free;

- A decoding function ϕd : Yn × {0, 1}∗ → Un;

- The rate is the average length of the codeword per source symbol, i.e. R .= 1
n
E
[
ℓ ◦

ϕe
(
Xn, (g(Yt))t≤n

)]
;

- n, ϕe, ϕd must satisfy the zero-error property:

P
(
ϕd

(
Y n, ϕe

(
Xn, (g(Yt))t≤n

))
̸=
(
f(Xt, Yt)

)
t≤n

)
= 0. (6.7)

The objective is to find the minimal rate among all coding schemes under the zero-error
constraint:

R∗
CFC0

.= inf
n,ϕe,ϕdzero-error

1
n
E
[
ℓ ◦ ϕe

(
Xn, (g(Yt))t≤n

)]
. (6.8)

Now the scheme of Figure 6.2 has been studied with different coding constraints than
zero-error, and the optimal rate has been characterized in each case: the lossless case
by Orlitsky and Roche in [50], the lossy case by Yamamoto in [76], and the zero-error
“unrestricted inputs” case by Shayevitz in [60]. These results can only be used as bounds
here: the zero-error problem depicted in Figure 6.2 does not have a characterization of
the optimal rate.

76



6.2. General case

Numerous extensions of the problem depicted in Figure 6.2 have been studied recently.
The distributed context, for instance, has an additional encoder which encodes Y before
transmitting it to the decoder. Achievability schemes have been proposed for this setting
by Krithivasan and Pradhan in [42] using abelian groups; by Basu et al. in [6] using
hypergraphs for the case with maximum distortion criterion; and by Malak and Médard
in [46] using hyperplane separations for the continuous lossless case.

Another related context is the network setting, where the function of source random
variables from source nodes has to be retrieved at the sink node of a given network.
For tree networks, the feasible rate region is characterized by Feizi and Médard in [24] for
networks of depth one; and by Sefidgaran and Tchamkerten in [56] under a Markov source
distribution hypothesis. In [52], Ravi and Dey consider a bidirectional relay with zero-
error “unrestricted inputs” and characterize the rate region for a specific class of functions.
In [32], Guang et al. study zero-error function computation on acyclic networks with
limited capacities, and give an inner bound based on network cut-sets. For both distributed
and network settings, the zero-error coding for computing problem with encoder side
information remains open.

In Chapter 6, we formulate an hypothesis on PX,Y and g that we call “pairwise shared
side information” that allows us to derive a single-letter characterization of the optimal
rate. In particular it covers the cases with PX,Y full-support, without any assumption on
f, g.

6.2 General case

We first build the characteristic graph G[n], which is a probabilistic graph that captures
the zero-error encoding constraints on a given number n of source uses. It differs from
the graphs used in [60], as we do not need a cartesian representation of these graphs
to study the optimal rates. Furthermore, it has a vertex for each possible realization of(
Xn,

(
g(Yt)

)
t≤n

)
known at the encoder, instead of X n as in the zero-error Slepian-Wolf

problem presented in Section 3.3.1.

Definition 6.2.1 (Characteristic graph G[n]) The characteristic graph G[n] is defined
by:

- X n × Zn as set of vertices with distribution P n
X,g(Y ),
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- (xn, zn)(x′n, z′n) are adjacent if zn = z′n and there exists yn ∈ g−1(zn) such that:

∀t ≤ n, PX,Y (xt, yt)PX,Y (x′
t, yt) > 0, (6.9)

and ∃t ≤ n, f(xt, yt) ̸= f(x′
t, yt); (6.10)

where g−1(zn) =
{
yn ∈ Yn

∣∣∣ (g(yt))
t≤n

= zn
}
.

The characteristic graph G[n] is designed with the same core idea as in [75]: (xn, zn)
and (x′n, z′n) are adjacent if there exists a side information symbol yn compatible with
the observation of the encoder (i.e. zn = z′n and yn ∈ g−1(zn)), such that f(xn, yn) ̸=
f(x′n, yn). In order to prevent erroneous decodings, the encoder must map adjacent pairs
of sequences to different codewords; hence the use of graph colorings.

Theorem 6.2.2 (Optimal rate) The optimal rate writes:

R∗
CFC0 = lim

n→∞

1
n
Hχ(G[n]). (6.11)

Proof. By construction the following holds: for all encoding function ϕe, ϕe is a coloring
of G[n] if and only if there exists a decoding function ϕd such that (n, ϕe, ϕd) satisfies the
zero-error property. Thus the best achievable rate writes

R∗
CFC = inf

n
inf

ϕe coloring of G[n]
H
(
ϕe

(
Xn,

(
g(Yt)

)
t≤n

))
(6.12)

= lim
n→∞

1
n
Hχ(G[n]). (6.13)

where (6.13) comes from Fekete’s lemma and from the definition of Hχ.
A general single-letter expression for R∗

CFC is missing, due to the lack of intrinsic
structure of G[n]. In Section 6.3, we introduce a hypothesis that gives structure to G[n]

and allows us to derive a single-letter expression for R∗
CFC .

6.3 Pairwise shared side information

Definition 6.3.1 The distribution PX,Y and the function g satisfy the “pairwise shared
side information” condition if

∀z ∈ Z,∀x, x′ ∈ X ,∃y ∈ g−1(z), PXY (x, y)PXY (x′, y) > 0. (6.14)
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This means that for all z output of g, every pair (x, x′) “shares” at least one side infor-
mation symbol y ∈ g−1(z).

Note that any full-support distribution PX,Y satisfies the “pairwise shared side infor-
mation” hypothesis. In Theorem 6.3.2 we give an interpretation of the “pairwise shared
side information” condition in terms of the optimal rate in an auxiliary zero-error Slepian-
Wolf problem. The proof of Theorem 6.3.2 is given in Appendix C.1

Theorem 6.3.2 The tuple (PX,Y , g) satisfies the condition “pairwise shared side infor-
mation” (6.14)

⇐⇒ R∗ = H(X|g(Y )) in the case f(X, Y ) = X, and for all z ∈ Z, PX|g(Y )=z is
full-support.

In the zero-error Slepian-Wolf problem presented in Section 4.1.1, the optimal rate
limn→∞

1
n
Hχ(G∧n) does not have a single-letter expression. However, as shown in Propo-

sition 6.3.4, there exists such a formula for limn→∞
1
n
Hχ(G∨n): the Körner graph entropy

introduced in [39]. By using a convex combination of Körner graph entropies, we provide
a single-letter expression in Theorem 6.3.6 for the optimal rate R∗

CFC .

Definition 6.3.3 (OR product) Let G1 =(V1, E1, PV1), G2 = (V2, E2, PV2) be two prob-
abilistic graphs; their OR product denoted G1 ∨G2 is defined by: V1 ×V2 as set of vertices,
PV1PV2 as probability distribution on the vertices, and (v1v2), (v′

1v
′
2) are adjacent if

(v1v
′
1 ∈ E1 and v1 ̸= v′

1) OR (v2v
′
2 ∈ E2 and v2 ̸= v′

2);

with the convention that all vertices are self-adjacent. We denote by G∨n
1 the n-th OR

power.

Proposition 6.3.4 (Properties of Hκ) [5, Theorem 5] For all probabilistic graphs G
and G′,

Hκ(G) = lim
n→∞

1
n
Hχ(G∨n), (6.15)

Hκ(G ∨G′) = Hκ(G) +Hκ(G′). (6.16)

Definition 6.3.5 (Auxiliary graph Gf
z) For all z ∈ Z, we define the auxiliary graph

Gf
z by

- X as set of vertices with distribution PX|g(Y )=z,
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- xx′ are adjacent if f(x, y) ̸= f(x′, y) for some y ∈ g−1(z)∩suppPY |X=x∩suppPY |X=x′.

Theorem 6.3.6 (Pairwise shared side information) If PX,Y and g satisfy (6.14),
the optimal rate writes:

R∗
CFC0 =

∑
z∈Z

Pg(Y )(z)Hκ(Gf
z ). (6.17)

The proof is in Section C.2, the keypoint is the particular structure of G[n]: a disjoint
union of OR products.

Remark 6.3.7 The “pairwise shared side information” assumption (6.14) implies that the
adjacency condition (6.9) is satisfied, which makes G[n] a disjoint union of OR products.
Moreover, Körner graph entropies appear in the final expression for R∗

CFC, even if G[n] is
not an n-th OR power.

Now consider the case where PX,Y is full-support. This is a sufficient condition to have
(6.14). The optimal rate in this setting is derived from Theorem 6.3.6, which leads to the
analytic expression in Theorem 6.3.8.

Theorem 6.3.8 (Optimal rate when PX,Y is full-support) When PX,Y is full-support,
the optimal rate writes:

R∗
CFC0 =H

(
j(X, g(Y ))

∣∣∣g(Y )
)
, (6.18)

where the function j returns a word in U∗, defined by

j : X × Z → U∗ (6.19)

(x, z) 7→
(
f(x, y′)

)
y′∈g−1(z)

.

Proof. By Theorem 6.3.6, R∗
CFC = ∑

z∈Z Pg(Y )(z)Hκ(Gf
z ). It can be shown that Gf

z is com-
plete multipartite for all z as PX,Y is full support; and it satisfiesHκ(Gf

z ) = H
(
j(X, g(Y ))

∣∣∣g(Y ) =
z
)
.

6.4 Example

In this example, the “pairwise shared side information” assumption is satisfied and
R∗
CFC is strictly less than a conditional Huffman coding of X knowing g(Y ); and also

strictly less than the optimal rate without exploiting g(Y ) at the encoder.
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6.4. Example

PX,Y
Y

X

0 1 2 3 4 5 6 7

0
1
2
3

0.1 0.05 ∗ ∗
0.1 ∗ 0.05 ∗
0.1 ∗ ∗ 0.05
∗ 0.05 0.05 0.05

0.05 0.05 ∗ ∗
0.05 0.05 0.05 ∗

∗ 0.05 ∗ ∗
∗ 0.05 ∗ 0.05

g(Y ) = 0 g(Y ) = 1

f(·, ·) Y

X

0 1 2 3 4 5 6 7

0
1
2
3

a b ∗ ∗
a ∗ b ∗
b ∗ ∗ c

∗ c c c

b a ∗ ∗
a a b ∗
∗ b ∗ ∗
∗ c ∗ c

g(Y ) = 0 g(Y ) = 1

Figure 6.3 – An example of PX,Y and g that satisfy (6.14); along with the outcomes
f(X, Y ). The elements outside suppPX,Y are denoted by ∗.

Consider the probability distribution and function outcomes depicted in Figure 6.3,
with U = {a, b, c}, X = {0, ..., 3}, Y = {0, ..., 7}, and Z = {0, 1}. Let us show that the
“pairwise shared side information” assumption is satisfied. The source symbols 0, 1, 2 ∈ X
share the side information symbol 0 (resp. 5) when g(Y ) = 0 (resp. g(Y ) = 1). The source
symbol 3 ∈ X shares the side information symbols 1, 2, 3 with the source symbols 0, 1, 2,
respectively, when g(Y ) = 0; and the source symbol 3 shares the side information symbol
5 with all other source symbols when g(Y ) = 1.

Since the “pairwise shared side information” assumption is satisfied, we can use The-
orem 6.3.6; the optimal rate writes

R∗
CFC0 = Pg(Y )(0)Hκ(Gf

0) + Pg(Y )(1)Hκ(Gf
1). (6.20)

First we need to determine the probabilistic graphs Gf
0 and Gf

1 . In Gf
0 , the vertex 0

is adjacent to 2 and 3, as f(0, 0) ̸= f(2, 0) and f(0, 1) ̸= f(3, 1). The vertex 1 is also
adjacent to 2 and 3 as f(1, 0) ̸= f(2, 0) and f(1, 2) ̸= f(3, 2). Furthermore PX|g(Y )=0 is
uniform, hence Gf

0 = (C4,Unif(X )) where C4 is the cycle graph with 4 vertices.

In Gf
1 , the vertices 1, 2, 3 are pairwise adjacent as f(1, 5), f(2, 5) and f(3, 5) are

pairwise different; and 0 is adjacent to 1, 2 and 3 because of the different function outputs
generated by Y = 4 and Y = 5. Thus, Gf

1 = (K4, PX|g(Y )=1) with PX|g(Y )=1 = (1
4 ,

3
8 ,

1
8 ,

1
4)
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and K4 is the complete graph with 4 vertices.
Now let us determine Hκ(Gf

0) and Hκ(Gf
1). On one hand,

Hκ(Gf
0) = H(V0) − max

V0∈W∈Γ(Gf
0 )
H(V0|W ) (6.21)

= 2 − 1 = 1, (6.22)

with V0 ∼ PX|g(Y )=0 = Unif(X ); and where H(V0|W ) in (6.21) is maximized by taking
W = {0, 1} when V ∈ {0, 1}, and W = {2, 3} otherwise.

On the other hand,

Hκ(Gf
1) = min

V1∈W∈Γ(Gf
1 )
I(W ;V1) (6.23)

= H(V1) ≈ 1.906, (6.24)

with V1 ∼ PX|g(Y )=1; where (6.24) follows from Γ(Gf
1) = {{0}, ..., {3}}, as Gf

1 is complete.
Hence R∗

CFC ≈ 1.362.
The rate that we would obtain by transmitting X knowing g(Y ) at both encoder and

decoder with a conditional Huffman algorithm writes: RHuff = H(X|g(Y )) ≈ 1.962.
The rate that we would obtain without exploiting g(Y ) at the encoder is RNo g =

H(X) ≈ 1.985, because of the different function outputs generated by Y = 4 and Y = 5.
Finally, H(f(X, Y )|Y ) ≈ 0.875.
In this example we have

H(X) = RNo g > RHuff > R∗
CFC0 > H(f(X, Y )|Y ). (6.25)

This illustrates the impact of the side information at the encoder in this setting, as we
can observe a large gap between the optimal rate R∗

CFC and RNo g.
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CONCLUSION

We have shown the equivalences of linearization between C0, C(·, PV ), and H. There-
fore, we proved the equivalence between the suboptimality of separated zero-error coding
on independent channels; and the suboptimality of separated compression of indepen-
dent sources in the zero-error Slepian-Wolf setting, with same characteristic graph and
capacity-achieving distribution.

We also state the following open questions:

- As pointed out in Lemma 5.3.3, for all capacity-achieving distribution of a product
graph, the product of its marginals is also capacity-achieving. Are these marginals
capacity-achieving for the respective graphs in the product; and conversely, if we
consider the product of capacity-achieving distributions of graphs, is this distribu-
tion capacity-achieving for the product of graphs? In other words,

P∗
( ∧
a∈A

Ga

)
∩
⊗
a∈A

∆(Va) ?=
⊗
a∈A

P∗(Ga). (6.26)

We gave a partial answer in Theorem 5.4.1, in the sense that inclusion holds when
the linearization of the product holds.

- We have shown in Theorem 5.4.1 and Theorem 5.4.2 that the linearization of C0

holds if and only if the linearization of C(·, PV ) holds, where PV is any capacity-
achieving distribution. Can we find graphs such that the linearization of C(·, PV )
holds when PV is capacity-achieving, but does not hold for some PV that is not
capacity-achieving? A negative answer would imply that the linearization of C0 is
equivalent to the linearization of C(·, PV ) and H for all PV , similarly to perfect
graphs.

- Finally, we have seen in Corollary 5.5.10 that H
(
G ∧ (C5,Unif({1, ..., 5}))

)
with

G perfect is an example of linearization. Is the non-linearization of H(∧ ·) tied to
specific non-perfect induced subgraphs in each graph in the product? And if so, can
we find a minimal family of these graphs?
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Appendix A

PROOFS FOR CORRECTION-BASED

ZERO-ERROR RESULTS

A.1 Proof of Lemma 4.2.5

Let us prove that

R
(n)
1 →

n→∞
H(X|Y ) + δ, R

(n)
2 →

n→∞
I(X;Y ). (A.1)

A.1.1 Preliminaries

Lemma A.1.1 Let X ′ be a random variable such that PX′ = Unif(X ). Then for all
(xn, yn) ∈ X n × Yn, we have:

P (TX′n,yn = Txn,yn) = 2nH(Txn,yn )−nH(Tyn )−n log |X |+o(n) (A.2)

Proof. Since PX′ is uniform:

P (TX′n,yn = Txn,yn) = |X |−n
∣∣∣TQxn|yn (yn)

∣∣∣ (A.3)

= 2−n log |X |2nH(Txn,yn )−nH(Tyn )+o(n),

as [20, Lemma 2.5] gives the asymptotic size of the Txn|yn-shell TTxn|yn (yn).

A.1.2 Probability of decoding ambiguity

We need to estimate P(E = 1). We have E = 1 iff K = 0 or there exists (a1, ..., aK) ∈
XK \ {0, ..., 0} such that T(

Xn+
∑

i≤K
aiG(i)

K

)
,Y n

= TXn,Y n , where G(i)
K denotes the i-th
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column of the matrix GK . Thus

P(E = 1) ≤ P(K = 0) + P

 ⋃
ak∈X K

a̸=0

T(
Xn+

∑
i≤K

aiG(i)
K

)
,Y n

= TXn,Y n

 ∣∣∣∣∣∣K ̸= 0
. (A.4)

We provide an upper bound on the second term in (A.4). For all (xn, yn) such that
k ̸= 0, we have:

P

 ⋃
ak∈X k

a̸=0

T(
xn+

∑
i≤k

aiG(i)
k

)
,yn

= Txn,yn



≤
∑

ak∈X k

a̸=0

P

T(
xn+

∑
i≤k

aiG(i)
k

)
,yn

= Txn,yn

 (A.5)

≤ |X |k2nH(Txn,yn )−nH(Tyn )−n log |X |+o(n) (A.6)

≤ 2n log |X |−nH(Txn,yn )+nH(Tyn )−δn+o(n)

· 2nH(Txn,yn )−nH(Tyn )−n log |X |+o(n) (A.7)

≤ 2−δn+o(n), (A.8)

where (A.6) comes from Lemma A.1.1 and (A.8) comes from (4.43). Therefore,

P

 ⋃
aK∈X K

a̸=0

T(
Xn+

∑
i≤K

αiG(i)
K

)
,Y n

= TXn,Y n

 ∣∣∣∣∣∣K ̸= 0


=
∑
xn,yn

P
(

(Xn, Y n) = (xn, yn)
∣∣∣∣K ̸= 0

)
(A.9)

· P

 ⋃
aK∈X K

a̸=0

T(
Xn+

∑
i≤K

αiG(i)
K

)
,Y n

= TXn,Y n

 ∣∣∣∣∣∣K ̸= 0, (Xn, Y n) = (xn, yn)


≤
∑
xn,yn

P
(

(Xn, Y n) = (xn, yn)
∣∣∣∣K ̸= 0

)
2−δn+o(n) (A.10)

≤ 2−δn+o(n), (A.11)

where (A.10) comes from (A.8) and the fact that G is independent of (X, Y ).
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We now provide an upper bound on the first term in (A.4).

S .=
{
PX′,Y ′ ∈ ∆(X × Y)

∣∣∣∣∣ 1 − H(X ′|Y ′) + δ

log |X |
≤ 0

}
. (A.12)

Then we have:

P(K = 0) (A.13)

=
∑

(xn,yn)∈X n×Yn

P
(
n− n

H(Txn,yn) −H(Tyn) + δ

log |X |
≤ 0

)
P⊗n
X,Y (xn, yn) (A.14)

= P(TXn,Y n ∈ S) (A.15)

=
∑

PX′,Y ′ ∈S∩∆n(X ×Y)
P(TXn,Y n = PX′,Y ′) (A.16)

≤ |S ∩ ∆n(X × Y)| sup
PX′,Y ′ ∈S∩∆n(X ×Y)

P(TXn,Y n = PX′,Y ′) (A.17)

≤ |S ∩ ∆n(X × Y)| sup
PX′,Y ′ ∈S∩∆n(X ×Y)

2−nD(PX′,Y ′ ∥PX,Y ) (A.18)

≤ |S ∩ ∆n(X × Y)| sup
PX′,Y ′ ∈S

2−nD(PX′,Y ′ ∥PX,Y ) (A.19)

≤ 2−n infPX′,Y ′ ∈S D(PX′,Y ′ ∥PX,Y )+o(n)
, (A.20)

where (A.18) comes from [20, Lemma 2.6]. Since PX,Y /∈ S by definition of δ, we have
infPX′,Y ′ ∈S D(PX,Y ∥PX′,Y ′) > 0. Thus there exists a positive constant β > 0 such that

P(K = 0) ≤ 2−βn+o(n). (A.21)

Thus by combining (A.4), (A.11), (A.21), we have:

P(E = 1) ≤ 2−δn+o(n) + 2−βn+o(n). (A.22)

A.1.3 Rate on the common channel

The encoding function ϕ(1)
e defined in (4.44) returns TXn,Y n and E. When E = 0, it

sends the syndrome HKX
n at rate n−K

n
log |X |, otherwise, it sends Xn. Therefore,

nR
(n)
1 (A.23)

= 1 + |X ||Y| log(n+ 1) + P(E = 1)n log |X | (A.24)
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+ P(E = 0)
∑
xn,yn

P
(
(Xn, Y n) = (xn, yn)

∣∣∣E = 0
)

· (n− k) log |X |

≤ 1 + |X ||Y| log(n+ 1) + P(E = 1)n log |X | + (n− E[K]) log |X | (A.25)

≤ 1 + |X ||Y| log(n+ 1) + P(E = 1)n log |X | + nE
[
HTXn,Y n (X|Y )

]
+ nδ + 1, (A.26)

where HTXn,Y n (X|Y ) denotes a random variable, which is the conditional entropy com-
puted with the distribution TXn,Y n ; (A.25) comes from n − k ≥ 0 for all (xn, yn), and
(A.26) comes from (4.43).

By the law of large numbers [18, Theorem 11.2.1] E
[
HTXn,Y n (X|Y )

]
→
n→∞

H(X|Y ),
and by using (A.22), we obtain

lim
n→∞

R
(n)
1 ≤ H(X|Y ) + δ. (A.27)

A.1.4 Rate on the secondary channel

The encoding function ϕ(2)
e is defined in (4.45). If E = 0, then K ̸= 0 and the encoder

transmits the index of Xn in its coset. The Huffman algorithm has an average output
length R

(n)
2 that satisfies

R
(n)
2 ≤ 1

n

(
1 +

∑
k ̸=0

P(K = k|E = 0) ·H(Xn|HkX
n, K = k, C, E = 0)

)
(A.28)

= 1
n

+ 1
n
H(Xn|K, C, E = 0) − 1

n
H(HKX

n|K, C, E = 0), (A.29)

where (A.29) follows from the fact that HKX
n is a deterministic function of Xn, given a

random code C.

We now provide an upper bound to the last term − 1
n
H(HKX

n|K, C, E = 0) in (A.29).
To do so, we introduce a new encoding scheme that first encodes the sequences Xn and Y n

with the encoding function ϕ(1)
e , and then encode the output by using an entropy coder.

The rate of this code r is upperbounded by H(ϕ(1)
e (Xn, Y n)|C) + 1.

Moreover, the decoder 1 retrieves Xn with zero error (see Section 4.2.3), and the
entropy coder is also lossless. Thus r is greater than the rate achieved by a conditional
entropy coder that compresses Xn knowing the side information Y n, whose rate is lower
bounded by nH(X|Y ).
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Therefore, we have

nH(X|Y ) ≤ r (A.30)

<H(ϕ(1)
e (Xn, Y n)|C) + 1 (A.31)

= 1 +H(TXn,Y n , E|C) + P(E = 0)H(HKX
n|TXn,Y n , C, E = 0)

+ P(E = 1)H(Xn|TXn,Y n , C, E = 1) (A.32)

≤H(HKX
n|TXn,Y n , C, E = 0) + o(n) (A.33)

=H(HKX
n|TXn,Y n , K, C, E = 0) + o(n) (A.34)

≤H(HKX
n|K, C, E = 0) + o(n) (A.35)

where o(n) in (A.33) corresponds to the term 1+H(TXn,Y n , E|C)+P(E = 1)H(Xn|TXn,Y n , C, E =
1), and (A.34) follows from the fact that K is a deterministic function of TXn,Y n .

We now provide an upper bound on the second term of (A.29).

1
n
H(Xn|K, C, E = 0) ≤ 1

nP(E = 0)

(
H(Xn|K, C, E)

− P(E = 1)H(Xn|K, C, E = 1)
)

≤ 1
n
H(Xn|K, C, E) + o(1) (A.36)

≤ H(X) + o(1). (A.37)

By combining (A.29), (A.35) and (A.37), we obtain

lim
n→∞

R
(n)
2 ≤ I(X;Y ). (A.38)

Conclusion. The rates in (A.27) and (A.38) are evaluated on average over the random
code C with a parameter δ > 0 arbitrarily small. This shows that there exists a sequence
of
(
n,R

(n)
1 , R

(n)
2

)
-zero-error source codes, such that

(
R

(n)
1 , R

(n)
2

)
→
n→∞

(
H(X|Y ), I(X;Y )

)
. (A.39)
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T n
0 (QX,Y )

T n
0 (QW )

T n
0 (QU)

T n
0 (QV )▼

▼

▽

▽

Codebook CW (1st bin): ▼

Codebook CW (2nd bin): ▽

QW |U - and QW |V -shells of sequences un, vn: —
QX,Y |W -shells of sequences in CW : - -

wn

un

vn

(xn, yn)

T n
0 (QW,U) T n

0 (QW,V )T n
0 (QX) T n

0 (QY )

Coset of xn: ♦

Coset of yn: ♢

QU,W |X- and QV,W |Y -shells of sequences in cosets: —

♦

♦

♢

♢

xn yn

(wn, un)
(wn, vn)

Figure A.1 – An illustration of the encoding algorithm.

A.2 Proof of Theorem 4.3.1

A.2.1 Outline

The encoding algorithm is depicted in Figure A.1. First, for all realization (xn, yn) of
the source, a codeword wn is selected from a random codebook that captures the common
information between X and Y . Then the bin index of wn is sent on the channel with
encoding function ϕ(0)

e ; the number of bins is adjusted to the worst side information.
Using the V -shells of their respective side information un and vn, both decoders retrieve
wn. Finally, the coset of xn sent on the channel with encoding function ϕ(x1)

e , and the pair
(wn, un) (resp. (wn, vn) and the coset of yn) enables the decoder x1 (resp. Y ) to recover
xn (resp. yn). An information complement is sent to the decoder x2 so that it can recover
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xn as well.

A.2.2 Encoding algorithm

Let PW |U,V,X,Y ∈ ∆(W)|U×V×X ×Y|, let δ > 0, and let n ∈ N⋆. For all type QU,V,X,Y ∈
∆n(U × V × X × Y), let QU,V,W,X,Y be the type from ∆n(U × V × W × X × Y) that has
QU,V,X,Y as marginal distribution and minimizes D(PU,V,W,X,Y ∥QU,V,W,X,Y ), so we have

QU,V,W,X,Y →
QU,V,X,Y →PU,V,X,Y

PU,V,W,X,Y . (A.40)

In the following, we denote by HQ(·) and IQ(· ; ·) the entropy and mutual information
that are computed w.r.t. Q, instead of the true distribution of PU,V,W,X,Y .

Now, for a fixed type QU,V,W,X,Y , partition T n
0 (QX) (resp. T n

0 (QY )) into 2nHQ(X|U,W )+nδ

(resp. 2nHQ(Y |V,W )+nδ) cosets, using adequate generator and parity matrices GX and HX

(resp. GY and HY ), cf. Lemma 4.3.5. This is possible as |X | and |Y| can be assumed
prime w.l.o.g. by padding (i.e. completing with zeros) Q if necessary.

Let CW be a set of codewords formed with 2nIQ(U,V,X,Y ;W )+nδ random sequences drawn
from Wn independently and following the distribution QW . Let Z be a finite set such that

|Z| = |CW |
2nmin(IQ(U ;W ),IQ(V ;W ))−nδ (A.41)

= 2nIQ(U,V,X,Y ;W )−nmin(IQ(U ;W ),IQ(V ;W ))+2nδ. (A.42)

A bin label b(wn) drawn uniformly in Z is assigned to each sequence wn ∈ CW , so we
have 2nmin(IQ(U ;W ),IQ(V ;W ))−nδ+o(n) sequences in each bin. In the following we will denote
by C[b(wn)]

W the subset of sequences from CW in the bin labelled b(wn).

Now let (un, vn, xn, yn) be a realization of the source, and QU,V,X,Y the corresponding
type. Let QU,V,W,X,Y be the completed type as described above. The encoder determines a
sequence wn ∈ TQW |U,V,X,Y

(un, vn, xn, yn) and its bin label b(wn); if no such sequence exists
then the decoding ambiguity E1 is declared.

The encoder sends:

ϕ(x1)
e (un, vn, xn, yn) = B(HXx

n), (A.43)

ϕ(x2)
e (un, vn, xn, yn) = ι, (A.44)
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ϕ(y)
e (un, vn, xn, yn) = B(HY y

n), (A.45)

ϕ(0)
e (un, vn, xn, yn) (A.46)

= B

QU,V,W,X,Y , b(wn),

E, x
n, yn if E = 1

E if E = 0

 ,
where B(·) denotes the binary expansion, and ι denotes the index of xn in (Ker HX +
xn) ∩ ⋃

wn∈C[b(wn)]
W

TQX|W (wn).
The error bit E is set to 1 iff there is a decoding ambiguity, i.e. one of the following

events occur:

E1 =
{
∄wn ∈ CW , s.t. Tun,vn,wn,xn,yn = QU,V,W,X,Y

}
,

E2 =
{
∃w̃n ̸= wn, w̃n ∈ C[b(wn)]

W ∩ TQW |U (un)
}
,

E3 =
{
∃w̃n ̸= wn, w̃n ∈ C[b(wn)]

W ∩ TQW |V (vn)
}
,

E4 =
{
∃x̃n ̸= xn, x̃n ∈ TQX|U,W

(un, wn) ∩ (Ker HX + xn)
}
,

E5 =
{
∃ỹn ̸= yn, ỹn ∈ TQY |V,W

(vn, wn) ∩ (Ker HY + yn)
}
.

A.2.3 Decoding algorithm and zero-error property

All decoders determine whether there is a decoding ambiguity. If so, they recover their
respective source sequence from the channel with encoding function ϕ(0)

e . If not, then the
following procedure is followed.

The decoder x1 recovers b(wn) from the channel with encoding function ϕ(0)
e (Ec1 ⇒ wn

is defined), and using the side information un, it searches the V -shell TQW |U (un) to find
the sequences with label b(wn), and retrieves wn (Ec2 ⇒ wn is retrieved at decoder x1).
The coset (Ker HX +xn) is then extracted from the channel with encoding function ϕ(x1)

e ,
the decoder x1 then searches the set TQX|U,W

(un, wn)∩(Ker HY +yn) and retrieves xn with
zero-error (Ec4 ⇒ xn is retrieved).

The decoder y proceeds symmetrically and recovers yn with the help of vn as E1, E3, E5

are not realised.
The decoder x2 determines (Ker HX +xn)∩⋃

wn∈C[b(wn)]
W

TQX|W (wn) using the syndrome
HXx

n transmitted in the channel with encoding function ϕ(x1)
e , and QU,V,W,X,Y , b(wn) sent

through the channel with encoding function ϕ(0)
e . Then by using the index sent on the
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channel with encoding function ϕ(x2)
e , the decoder x2 recovers xn with zero-error.

A.2.4 Probability of a decoding ambiguity

Let us bound P(E1). We have P(E1) ≤ 2−nδ+o(n) by using Lemma 4.3.3, with A = W ,
B = U × V × X × Y , PA,B = QW,(U,V,X,Y ) and PĀ = QW .

Now let us bound P(E2). The set C[b(wn)]
W \ {wn} is composed of

2nmin(IQ(U ;W ),IQ(V ;W ))−nδ+o(n) sequences drawn with the same distribution QW . We can use
Lemma 4.3.3 with A = W , B = U , PA,B = QW,U and PĀ = QW :

P(E2) ≤ 2nmin(IQ(U ;W ),IQ(V ;W ))−nδ−nIQ(U ;W )+o(n) (A.47)

≤ 2−nδ+o(n). (A.48)

Symmetrically, we have P(E3) ≤ 2−nδ+o(n).
In order to bound the remaining probabilities we use Lemma 4.3.5 with A = X ,

B = U × W , PA,B = QX,(U,W ):

P(E4) ≤ 2n(log |X |−HQ(X|U,W )−δ−log |X |+HQ(X|U,W ))+o(n)

≤ 2−nδ+o(n), (A.49)

and symmetrically, we have P(E5) ≤ 2−nδ+o(n). Thus, P(E = 1) ≤ 5 · 2−δn+o(n).

A.2.5 Rate analysis

Let S = U × V × W × X × Y , the rate on the channel with encoding function ϕ(0)
e

writes:

R
(n)
0 = 1

n
log |Z| + 1

n

(
1 + P(E = 1)n log

(
|X ||Y|

))
+ 1
n

log |∆n(S)| (A.50)

≤ IQ(U, V,X, Y ;W ) − min
(
IQ(U ;W ), IQ(V ;W )

)
+ 2δ

+ 1
n

+ 5 log
(
|X ||Y|

)
2−nδ+o(n) + 1

n
log |∆n(S)| (A.51)

→
n→∞

I(U, V,X, Y ;W ) − min
(
I(U ;W ), I(V ;W )

)
+ 2δ.

The following rates are the exponent of the number of cosets:
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R(n)
x1 = 1

n
log

(
2nHQ(X|U,W )+nδ

)
→
n→∞

H(X|U,W ) + δ, and symmetrically, R(n)
y →

n→∞
H(Y |V,W ) + δ.

The rate R(n)
x2 on the channel with encoding function ϕ(x2)

e writes:

1
n

log
∣∣∣∣(Ker HX + xn) ∩

⋃
wn∈C[b(wn)]

W

TQX|W (wn)
∣∣∣∣ (A.52)

= 1
n

log
∣∣∣∣ ⋃
wn∈C[b(wn)]

W

TQX|W (wn)
∣∣∣∣

+ 1
n

log |Ker HX + xn| − log |X | + o(1) (A.53)

≤ 1
n

log |C[b(wn)]
W | + 1

n
log |TQX|W (wn)|

+ (log |X | −HQ(X|U,W ) − δ) − log |X | + o(1) (A.54)

= min(IQ(U ;W ), IQ(V ;W )) − δ +HQ(X|W )

−HQ(X|U,W ) − δ + o(1) (A.55)

= min(IQ(U ;W ), IQ(V ;W )) + IQ(X;U |W ) − 2δ + o(1) (A.56)

→
n→∞

min(I(U ;W ), I(V ;W )) + I(X;U |W ) − 2δ (A.57)

where (A.53) follows from the independence of the sequences in CW and the entries of
GX .

These equations hold for all δ > 0 small enough, thus the rate tuple

I(X, Y, U, V ;W ) − min

(
I(U ;W ), I(V ;W )

)
,

H(X|U,W ),
I(X;U |W ) + min

(
I(U ;W ), I(V ;W )

)
,

H(Y |U,W )

 , (A.58)

is achievable. By taking the union over all distributions PU,V,W,X,Y we obtain the desired
result.

A.3 Proof of Theorem 4.3.2

Let St .= (U t, V t, X t, Y t), for all t ≤ n. For all i ∈ {0, x1, y} Mi
.= ϕ(i)

e (Sn).
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Firstly, we can use Kraft inequality as the set Imϕ(0)
e is prefix-free, we have

∑
wn∈Imϕ

(0)
e

2−ℓ(wn) ≤ 1. (A.59)

Let κ .= ∑
wn∈Imϕ

(0)
e

2−ℓ(wn), we have κ ≤ 1 and
(

2−ℓ(wn)

κ

)
wn∈Imϕ

(0)
e

is a probability
distribution.

Secondly,

nR0 = E[ℓ ◦ ϕ(0)
e (Sn)] (A.60)

=
∑

wn∈Imϕ
(0)
e

P(ϕ(0)
e (Sn) = wn)ℓ(wn) (A.61)

= −
∑

wn∈Imϕ
(0)
e

P(ϕ(0)
e (Sn) = wn) log 2−ℓ(wn) (A.62)

= − log κ −
∑

wn∈Imϕ
(0)
e

P(ϕ(0)
e (Sn) = wn) log 2−ℓ(wn)

κ
(A.63)

≥ −
∑

wn∈Imϕ
(0)
e

P(ϕ(0)
e (Sn) = wn) log 2−ℓ(wn)

κ
(A.64)

≥ −
∑

wn∈Imϕ
(0)
e

P(ϕ(0)
e (Sn) = wn) logP(ϕ(0)

e (Sn) = wn) (A.65)

= H(ϕ(0)
e (Sn)) = H(M0) (A.66)

where (A.64) and (A.65) respectively come from κ ≤ 1 and Gibbs inequality.

In the following, T ∼ Unif({1, ..., n}) is a random variable independent from the other
random variables of the model, Wt

.= (M0, S
t−1, Un

t+1, V
n
t+1) for all t ≤ n. We identify

W
.= (WT , T ), (U, V,X, Y ) .= (UT , VT , XT , YT ). We have

nR0 ≥ H(M0) (A.67)

≥ I(M0;Xn, Y n|Un, V n) (A.68)

=
∑
t≤n

I(M0;Xt, Yt|Un, V n, X t−1, Y t−1) (A.69)

=
∑
t≤n

I(M0, S
t−1, Un

t+1, V
n
t+1;Xt, Yt|Ut, Vt) (A.70)

− I(St−1, Un
t+1, V

n
t+1;Xt, Yt|Ut, Vt)
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=
∑
t≤n

I(Wt;Xt, Yt|Ut, Vt) (A.71)

= nI(WT ;XT , YT |UT , VT , T ) (A.72)

= nI(W ;X, Y |U, V ), (A.73)

where (A.67) comes from (A.60) to (A.66); (A.69) comes from the chain rule, (A.71) comes
from the independence of S1, ..., Sn, and (A.73) come from the independence of T and Sn.

Let us bound Rx1 :

nRx1 ≥ H(Mx1) (A.74)

≥ I(Mx1 ;Xn|M0, U
n) (A.75)

= H(Xn|M0, U
n) −H(Xn|Mx1 ,M0, U

n) (A.76)

=
∑
t≤n

H(Xt|M0, U
n, X t−1) (A.77)

≥
∑
t≤n

H(Xt|Wt, Ut) (A.78)

= nH(XT |WT , UT , T ) (A.79)

= nH(X|W,U), (A.80)

where (A.77) comes from the zero-error constraint. Symmetrically we obtainRy ≥ H(Y |W,V ).
Now, the decoder x2 must retrieve X with zero-error. Using Shannon lossless source

coding result [18, Theorem 5.3.1], we have R0 +Rx1 +Rx2 ≥ H(X).

A.4 Proof of Lemma 4.3.3

We use the following result, which is a consequence of [20, Lemma 2.6].

Lemma A.4.1 (Large deviations) Let n ∈ N, and PA,B ∈ ∆n(A× B). Let PĀ ∈ ∆(A)

and Ān ∼ (PĀ)⊗n, then we have for all bn ∈ T n
0 (PB): P

(
TĀn,bn = PA,B

)
= 2−n

(
I(A;B)+D(PA∥PĀ)

)
+o(n).

If R > Rc : P
(
∃ãn ∈ C(n), s.t. Tãn,b̃n = PA,B

)
(A.81)

= 1 − P
(
TAn

[1],b̃
n ̸= PA,B

)2nR

(A.82)

96



A.4. Proof of Lemma 4.3.3

= 1 − exp
[
2nR ln

(
1 − 2−nRc+o(n)

)]
(A.83)

= 1 − exp
[

− 2n(R−Rc)+o(n)
]
, (A.84)

where (A.82) comes from the fact that the random variables (An[i]) are iid, and (A.83) is
a consequence of Lemma A.4.1.

If R < Rc : P
(
∃ãn ∈ C(n), s.t. Tãn,b̃n = PA,B

)
(A.85)

≤
∑
i≤2nR

P
(
TAn

[1],b̃
n ̸= PA,B

)
(A.86)

= 2nR2−nRc+o(n). (A.87)

The last equation comes from Lemma A.4.1, and from the fact that the variables (An[i])
are identically distributed.
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Appendix B

PROOFS FOR GRAPH-BASED

ZERO-ERROR RESULTS

B.1 Proof dependencies

An illustration of the dependencies between the results can be found in Figure B.1.
Note that Theorem 5.1.4 already exists in the literature, but we provide a proof based on
Lemma 5.1.3 for the sake of completeness.

B.2 Main proofs for the linearization of H and C(·, PV )

B.2.1 Proof of Lemma 5.2.1

In order to prove Lemma 5.2.1, we prove an asymptotic version stated in Lemma B.2.1.
The proof of Lemma B.2.1 is developed in Appendix B.2.3.

Lemma B.2.1 Let (an)n∈N⋆ ∈ AN⋆ be any sequence such that Tan → PA when n → ∞.
Then we have

H

 PA⊔
a∈A

Ga

 = lim
n→∞

1
n
Hχ

( ∧
a∈A

G∧nTan (a)
a

)
. (B.1)

Now let us prove Lemma 5.2.1. Let (an)n∈N⋆ be a k-periodic sequence such that Tak =
PA, then Tank = Tak for all n ∈ N⋆, and Tan →

n→∞
PA. We can use Lemma B.2.1 and

consider every k-th term in the limit:

H
(⊔PA

a∈A Ga

)
= lim

n→∞

1
kn
Hχ

(∧
a∈A G

∧knT
akn (a)

a

)
(B.2)

= lim
n→∞

1
kn
Hχ

((∧
a∈A G

∧kT
ak (a)

a

)∧n)
(B.3)
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Lemma B.2.4 Lemma B.6.2

Lemma B.2.5

Lemma B.2.7

Lemma B.2.2 Lemma 5.2.1

Lemma B.2.1Lemma B.6.1

Lemma B.2.3

Theorem 5.2.4

Theorem 5.1.11

Lemma B.2.8

Theorem 5.1.5

Proposition 5.2.5

Theorem 5.2.6

Lemma 5.1.3

Proposition 5.3.2

Theorem 5.1.4

Lemma B.3.1Lemma B.6.4 Lemma B.6.5

Lemma 5.3.7 Theorem 5.3.3

Lemma B.4.1 Lemma B.4.2

Theorem 5.4.1

Lemma B.4.3 Lemma B.4.4Lemma B.4.5

Theorem 5.4.2

Theorem 5.1.17
Lemma B.5.1

Lemma B.5.2

Theorem 5.5.4

Theorem 5.5.8

Theorem 5.1.18 Theorem 5.1.20

Theorem 5.5.13

Results on the linearization of H and C(·, PV ).
Proofs are given in Appendix B.2.

Results linking C0(·), C(·, P ) and their
linearizations. Proofs are given in Appendix B.4.

Results on the capacity-achieving distributions.
Proofs are given in Appendix B.3.

Results on the examples and counterexamples
of linearization. Proofs are given in Appendix B.5.

Figure B.1 – An arrow from A to B means that A is used in the proof of B. Results from
the literature are represented with a dashed outline.

= 1
k
H
(∧

a∈A G
∧kPA(a)
a

)
. (B.4)

B.2.2 Proof of Theorem 5.2.4

In order to prove Theorem 5.2.4, we will need Corollary 5.2.2, Lemma B.2.2 and
Lemma B.2.3. In Lemma B.2.2 we give regularity properties of PA 7→ H

(⊔PA
a∈A Ga

)
. The

proof of Lemma B.2.2 is developed in Appendix B.6.1. Lemma B.2.3 states that if a
convex function γ of ∆(A) meets the linear interpolation of (γ(1a))a∈A, where (1a)a∈A

are the extreme points of ∆(A), then γ is linear. We use it for proving the equivalence
in Theorem 5.2.4, by considering γ = PA 7→ H

(⊔PA
a∈A Ga

)
. The proof of Lemma B.2.3 is

given in Appendix B.6.2.

Lemma B.2.2 The function PA 7→ H
(⊔PA

a∈A Ga

)
is convex and (log maxa |Va|)-Lipschitz.
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Lemma B.2.3 Let A be a finite set, and γ : ∆(A) → R be a convex function, and for all
a ∈ A, let 1a be the distribution that assigns 1 to the symbol a and 0 to the others. Then
the following holds:

∃PA ∈ int(∆(A)), γ(PA) =
∑
a∈A

PA(a)γ(1a) (B.5)

⇐⇒ ∀PA ∈ ∆(A), γ(PA) =
∑
a∈A

PA(a)γ(1a) (B.6)

where int(∆(A)) is the interior of ∆(A) (i.e. the full-support distributions on A).

Now let us prove Theorem 5.2.4:
(=⇒) Assume that H (∧a∈A Ga) = ∑

a∈A H(Ga).
We can use Corollary 5.2.2, which states that H

(⊔Unif(A)
a∈A Ga

)
= 1

|A|H (∧a∈A Ga); hence
H
(⊔Unif(A)

a∈A Ga

)
= ∑

a∈A
1

|A|H(Ga). Thus, the function PA 7→ H
(⊔PA

a∈A Ga

)
satisfies (B.5)

with the interior point PA = Unif(A), and is convex by Lemma B.2.2: by Lemma B.2.3
we have

∀PA ∈ ∆(A), H
(⊔PA

a∈A Ga

)
= ∑

a∈A PA(a)H(Ga). (B.7)

(⇐=) Conversely, assume (B.7), then PA 7→ H
(⊔PA

a∈A Ga

)
is linear. We can use Corol-

lary 5.2.2, and we have H
(∧

a∈A Ga

)
= |A|H

(⊔Unif(A)
a∈A Ga

)
= ∑

a∈A H(Ga).

B.2.3 Proof of Lemma B.2.1

We need several lemmae for this result. Lemma B.2.4 establishes the distributivity
of ∧ w.r.t. ⊔ for probabilistic graphs, similarly as in [78] for graphs without underlying
distribution. Lemma B.2.5 states that H can be computed with subgraphs induced by
sets that have an asymptotic probability one, in particular we will use it with typical sets
of vertices. Lemma B.2.7 gives the chromatic entropy of a disjoint union of isomorphic
probabilistic graphs. The proofs of Lemma B.2.4, Lemma B.2.5 and Lemma B.2.7 are
respectively given in Appendix B.6.3, Appendix B.6.4, and Appendix B.6.5.

Lemma B.2.4 Let A,B be finite sets, let PA ∈ ∆(A) and PB ∈ ∆(B). For all a ∈ A and
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b ∈ B, let Ga = (Va, Ea, PVa) and Gb = (Vb, Eb, PVb
) be probabilistic graphs. Then

 PA⊔
a∈A

Ga

 ∧

 PB⊔
b∈B

Gb

 =
PAPB⊔

(a,b)∈A×B
Ga ∧Gb. (B.8)

Lemma B.2.5 Let G = (V , E , PV ), and (Sn)n∈N⋆ be a sequence of sets such that for all
n ∈ N⋆, Sn ⊆ Vn, and P n

V (Sn) → 1 when n → ∞. Then H(G) = limn→∞
1
n
Hχ

(
G∧n[Sn]

)
.

Definition B.2.6 (Isomorphic probabilistic graphs) Let G1 = (V1, E1, PV1) and G2 =
(V2, E2, PV2) be two probabilistic graphs. We say that G1 is isomorphic to G2 (denoted by
G1 ≃ G2) if there exists an isomorphism between them, i.e. a bijection ψ : V1 → V2 such
that:

- For all v1, v
′
1 ∈ V1, v1v

′
1 ∈ E1 ⇐⇒ ψ(v1)ψ(v′

1) ∈ E2,

- For all v1 ∈ V1, PV1(v1) = PV2

(
ψ(v1)

)
.

Lemma B.2.7 Let B be a finite set, let PB ∈ ∆(B) and let (Gb)b∈B be a family of iso-
morphic probabilistic graphs, then Hχ

(⊔PB
b′∈B Gb′

)
= Hχ(Gb) for all b ∈ B.

Now let us prove Lemma B.2.1. Let PA ∈ ∆(A), and let G = ⊔PA
a∈A Ga. Let (an)n∈N⋆ ∈

AN⋆ be a sequence such that Tan → PA when n → ∞.
Let ϵ > 0, and for all n ∈ N⋆ let

T n
ϵ (PA) .=

{
an ∈ An

∣∣∣ ∥Tan − PA∥∞ ≤ ϵ
}
, (B.9)

P ′n .= P n
A

P n
A(T n

ϵ (PA)) , Sn,ϵ
.=

⊔
an∈T n

ϵ (PA)

∏
t≤n

Vat .

Since P n
V (Sn,ϵ) → 1 when n → ∞, we have by Lemma B.2.5

H(G) = lim
n→∞

1
n
Hχ

(
G∧n[Sn,ϵ]

)
, (B.10)

Let us study the limit in (B.10). For all n large enough, an ∈ T n
ϵ (PA) as Tan → PA.

Therefore, for all an ∈ T n
ϵ (PA), a′ ∈ A, and n large enough, we have

∣∣∣Tan(a′) − Tan(a′)
∣∣∣ ≤ 2ϵ. (B.11)

102



B.2. Main proofs for the linearization of H and C(·, PV )

We have on one hand

Hχ

((⊔PA
a∈A Ga

)∧n
[Sn,ϵ]

)
= Hχ

((⊔Pn
A
an∈An

∧
t≤nGat

)
[Sn,ϵ]

)
(B.12)

= Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
t≤nGat

)
(B.13)

= Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
a′∈A G

∧nTan (a′)
a′

)
(B.14)

≤ Hχ

(⊔P ′n

an∈T n
ϵ (PA)

∧
a′∈A G

∧nTan (a′)+⌈2nϵ⌉
a′

)
(B.15)

= Hχ

(∧
a′∈A G

∧nTan (a′)+⌈2nϵ⌉
a′

)
(B.16)

≤ Hχ

(∧
a′∈A G

∧nTan (a′)
a′

)
+Hχ

(∧
a′∈A G

∧⌈2nϵ⌉
a′

)
(B.17)

≤ Hχ

(∧
a′∈A G

∧nTan (a′)
a′

)
+ ⌈2nϵ⌉|A| log |V|; (B.18)

where (B.12) comes from Lemma B.2.4; (B.13) comes from the definition of Sn,ϵ and P ′n

in (B.9); (B.14) is a rearrangement of the terms inside the product; (B.15) comes from
(B.11); (B.16) follows from Lemma B.2.7, the graphs

(∧
a′∈A G

∧nTan (a′)+⌈2nϵ⌉
a′

)
an∈T n

ϵ (PA)
are

isomorphic as they do not depend on an; (B.17) follows from the subadditivity of Hχ; and
(B.18) is the upper bound on Hχ given by the highest entropy of a coloring.

On the other hand, we obtain with similar arguments

Hχ

((⊔PA
a∈A Ga

)∧n
[Sn,ϵ]

)
≥Hχ

(∧
a′∈A G

∧nTan (a′)−⌈2nϵ⌉
a′

)
(B.19)

≥Hχ

(∧
a′∈A G

∧nTan (a′)
a′

)
−Hχ

(∧
a′∈A G

∧⌈2nϵ⌉
a′

)
, (B.20)

≥Hχ

(∧
a′∈A G

∧nTan (a′)
a′

)
− ⌈2nϵ⌉|A| log |V|. (B.21)

Note that (B.20) also comes from the subadditivity of Hχ, as Hχ(G2) ≥ Hχ(G1 ∧ G2) −
Hχ(G1) for all G1, G2.

By combining (B.18) and (B.21) we obtain
∣∣∣∣ lim
n→∞

1
n
Hχ(G∧n[Sn,ϵ]) − lim

n→∞

1
n
Hχ

(∧
a′∈A G

∧nTan (a′)
a′

)∣∣∣∣
≤ 2ϵ|A| log |V|. (B.22)

As this holds for all ϵ > 0, combining (B.10) and (B.22) yields the desired result.
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B.2.4 Proof of Proposition 5.2.5

In order to prove Proposition 5.2.5 we need Lemma B.2.8, which is a consequence of
Marton’s formula in Theorem 5.1.5 applied to a disjoint union. The proof of Lemma B.2.8
can be found in Appendix B.6.6.

Lemma B.2.8 Let PA ∈ ∆(A), then

H

 PA⊔
a∈A

Ga

+ C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)H(PVa). (B.23)

Let us prove Proposition 5.2.5. We have on one hand:

H(PA) +∑
a∈A PA(a)C(Ga, PVa) (B.24)

= H(PA) +∑
a∈A −PA(a)H(Ga) + PA(a)H(PVa) (B.25)

≤ H(PA) −H
(⊔PA

a∈A Ga

)
+∑

a∈A PA(a)H(PVa) (B.26)

= C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
; (B.27)

where (B.25) comes from Theorem 5.1.5; (B.26) follows from Theorem 5.1.11; and (B.27)
follows from Lemma B.2.8. Therefore,

C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= H(PA) +∑

a∈A PA(a)C(Ga, PVa) (B.28)

⇐⇒ H
(⊔PA

a∈A Ga

)
= ∑

a∈A PA(a)H(Ga). (B.29)

On the other hand:

∑
a∈A C(Ga, PVa) = ∑

a∈A −H(Ga) +H(PVa) (B.30)

≤ −H (∧a∈A Ga) +∑
a∈A H(PVa) (B.31)

= −H (∧a∈A Ga) +H (⊗a∈A PVa) (B.32)

= C (∧a∈A Ga,
⊗

a∈A PVa) ; (B.33)

where (B.30) comes from Theorem 5.1.5; (B.31) follows from Theorem 5.1.11; and (B.33)
also follows from Theorem 5.1.5. Therefore,

∑
a∈A C(Ga, PVa) = C (∧a∈A Ga,

⊗
a∈A PVa) (B.34)
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⇐⇒ H (∧a∈A Ga) = ∑
a∈A H(Ga). (B.35)

B.3 Main proofs for the capacity-achieving distribu-
tions

B.3.1 Proof of Lemma 5.1.3

Lemma B.3.1 enables us to replace the limit superior in the definition of C(G,PV ) by
a regular limit. The proof is given in Appendix B.6.7 and uses superadditivity arguments.

Lemma B.3.1 For all ϵ > 0, we have

lim sup
n→∞

1
n
α
(
G∧n[T n

ϵ (PV )]
)

= sup
n∈N⋆

1
n
α
(
G∧n[T n

ϵ (PV )]
)

= lim
n→∞

1
n
α
(
G∧n[T n

ϵ (PV )]
)
. (B.36)

Now let us prove Lemma 5.1.3.
By definition of C(G,PV ) and Lemma B.3.1,

lim
n→∞

1
n

logα(G∧n[T n
ϵ′ (PV )]) →

ϵ′→0
C(G,PV ). (B.37)

Thus, there exists a mapping ϵ : N⋆ → R⋆
+ such that ϵ(k) →

k→∞
0 and for all k ∈ N⋆,

∣∣∣∣ lim
n′→∞

1
n′ logα(G∧n′ [T n′

ϵ(k)(PV )]) − C(G,PV )
∣∣∣∣ ≤ 1

k
. (B.38)

Now, let m(k) ∈ N⋆ such that for all n ≥ m(k),
∣∣∣∣ 1n logα(G∧n[T n

ϵ(k)(PV )]) − lim
n′→∞

1
n′ logα(G∧n′ [T n′

ϵ(k)(PV )])
∣∣∣∣ ≤ 1

k
. (B.39)

It can be easily observed that (B.39) is also satisfied if n ≥ max(k,m(k)). Therefore,
for all k ∈ N⋆, and n ≥ max(k,m(k)), we have

∣∣∣∣ 1n logα(G∧n[T n
ϵ(k)(PV )]) − C(G,PV )

∣∣∣∣ ≤ 1
2k . (B.40)

Now we can build the desired sequence of codebooks. For all n ∈ N⋆, let Cn ⊆ Vn

be a maximal independent set in G∧n[T n
ϵ(k(n))(PV )]; where k(n) is the biggest k such that
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n ≥ max(k,m(k)). Note that k(n) exists as k(n) ≤ n, and

k(n) →
n→∞

∞. (B.41)

We have ∣∣∣∣∣ log |Cn|
n

− C(G,PV )
∣∣∣∣∣ =

∣∣∣∣ 1n logα(G∧n[T n
ϵ(k(n))(PV )]) − C(G,PV )

∣∣∣∣ (B.42)

≤ 1
2k(n) (B.43)

→
n→∞

0; (B.44)

where (B.42) follows from the construction of Cn; (B.43) is a consequence of (B.40); and
(B.44) follows from (B.41).

Since for all k ∈ N⋆, Cn ⊆ T n
ϵ(k(n))(PV ), we also have

max
vn∈Cn

∥Tvn − PV ∥∞ ≤ ϵ(k(n)) →
n→∞

0. (B.45)

Conversely, assume that for all n ∈ N⋆, Cn ⊆ Vn is an independent set in G∧n, such
that

max
vn∈Cn

∥Tvn − PV ∥∞ →
n→∞

0. (B.46)

Then for all ϵ > 0 and n large enough, Cn ∈ T n
ϵ (PV ) and

1
n

log |Cn| ≤ 1
n

logα
(
G∧n[T n

ϵ (PV )]
)
. (B.47)

By taking the limit superior when n → ∞ and ϵ → 0 we obtain

lim sup
n→∞

1
n

log |Cn| ≤ C(G,PV ). (B.48)

B.3.2 Proof of Theorem 5.1.4

(≤) By definition of C0 and C(G,PV ) we have

sup
PV ∈∆(V)

C(G,PV ) = sup
PV ∈∆(V)

lim
ϵ→0

lim sup
n→∞

1
n

logα
(
G∧n[T n

ϵ (PV )]
)

(B.49)
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≤ sup
PV ∈∆(V)

lim
ϵ→0

lim sup
n→∞

1
n

logα
(
G∧n

)
(B.50)

= C0(G). (B.51)

(≥) Let (Cn)n∈N⋆ be a sequence such that for all n ∈ N⋆, Cn is an independent set in
G∧n, and

lim
n→∞

1
n

log |Cn| = C0(G); (B.52)

the existence of the sequence (Cn)n∈N⋆ follows from the definition of C0.
Let (τn)n∈N⋆ be the sequence defined by: for all n ∈ N⋆,

τn
.= 1

|Cn|
∑
vn∈Cn

Tvn . (B.53)

The terms of the sequence (τn)n∈N⋆ are in ∆(V), which is a compact set. Therefore,
by Bolzano-Weierstrass theorem, (τn)n∈N⋆ has a convergent subsequence (τϕ(n))n∈N⋆ , where
ϕ : N⋆ → N⋆ is strictly increasing. We denote by (Cϕ(n))n∈N⋆ the corresponding subsequence
of independent sets, and

P ∗
V
.= lim
n→∞

τϕ(n) ∈ ∆(V). (B.54)

By construction, we also have

lim
n→∞

log |Cϕ(n)|
ϕ(n) = C0(G). (B.55)

Let us build an adequate sequence of codebooks with type converging uniformly to
P ∗
V , and with asymptotic rate C0(G). For all n ∈ N⋆, let

C∗
nϕ(n)

.= (Cϕ(n))n ∩ T nϕ(n)
ϵn (P ∗

V ), (B.56)

where ϵn .= ∥P ∗
V − τϕ(n)∥∞ + 1

4√n .
It can be easily observed that ϵn →

n→∞
0 and C∗

nϕ(n) ⊆ T nϕ(n)
ϵn (P ∗

V ): by construction we
have

max
vnϕ(n)∈C∗

nϕ(n)

∥Tvnϕ(n) − P ∗
V ∥∞ →

n→∞
0. (B.57)
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Furthermore, for all n ∈ N⋆, C∗
nϕ(n) is independent in G∧nϕ(n), as it is contained in the

independent set (Cϕ(n))n.

Now let us prove that log |C∗
nϕ(n)|

nϕ(n) → C0(G) when n → ∞. Let us draw a codeword

Cnϕ(n) = (Cϕ(n)
1 , ..., Cϕ(n)

n ) (B.58)

uniformly from (Cϕn)n, and show that it is in T nϕ(n)
ϵn (P ∗

V ) with high probability. On one
hand, for all t ≤ n, the average type of Cϕ(n)

t writes

E
[
T
C

ϕ(n)
t

]
= 1

|Cϕ(n)|
∑

cϕ(n)∈Cϕ(n)

Tcϕ(n) = τϕ(n). (B.59)

On the other hand,

|C∗
nϕ(n)|

|(Cϕ(n))n|
= |(Cϕ(n))n ∩ T nϕ(n)

ϵn (P ∗
V )|

|(Cϕ(n))n|
(B.60)

= P
(
Cnϕ(n) ∈ T nϕ(n)

ϵn (P ∗
V )
)

(B.61)

= P (∥TCnϕ(n) − P ∗
V ∥∞ ≤ ϵn) (B.62)

≥ P
(
∥TCnϕ(n) − τϕ(n)∥∞ + ∥τϕ(n) − P ∗

V ∥∞ ≤ ϵn
)

(B.63)

= P
(
∥TCnϕ(n) − τϕ(n)∥∞ ≤ n−1/4

)
(B.64)

= P
(∥∥∥∥ 1

n

∑
t≤n TCϕ(n)

t
− τϕ(n)

∥∥∥∥
∞

≤ n−1/4
)

(B.65)

= 1 − P
(∥∥∥∥(∑t≤n TCϕ(n)

t

)
− nτϕ(n)

∥∥∥∥
∞
> n3/4

)
(B.66)

≥ 1 −∑
v∈V P

(∣∣∣∣∑t≤n TCϕ(n)
t

(v) − nτϕ(n)(v)
∣∣∣∣ > n3/4

)
(B.67)

≥ 1 −∑
v∈V

1
n3/2V

[∑
t≤n TCϕ(n)

t
(v)
]

(B.68)

≥ 1 − |V|
n1/2 →

n→∞
1; (B.69)

where (B.61) and (B.65) come from the construction of Cnϕ(n); (B.64) comes from the
construction of ϵn; (B.67) follows from the union bound; (B.68) comes from Chebyshev’s
inequality and (B.59); (B.69) follows from V

[∑
t≤n TCϕ(n)

t
(v)
]

= ∑
t≤nV

[
T
C

ϕ(n)
t

(v)
]

≤ n,
as the random variables T

C
ϕ(n)
t

(v) are iid and takes values in [0, 1]. Hence

lim
n→∞

log |C∗
nϕ(n)|

nϕ(n) = lim
n→∞

log |(Cϕ(n))n|
nϕ(n) = C0(G). (B.70)
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By combining (B.57), (B.70) and Lemma 5.1.3, it follows that

C0(G) = lim
n→∞

log |C∗
nϕ(n)|

nϕ(n) ≤ C(G,PV ). (B.71)

B.3.3 Proof of Proposition 5.3.2

Let us show that for all graph G = (V , E), the function PV 7→ C(G,PV ) is concave. Let
PV , P

′
V ∈ ∆(V) and β ∈ [0, 1]. Let (bn)n∈N be a sequence of integers such that bn

n
→
n→∞

β.
By Lemma 5.1.3, there exists two sequences (Cn)n∈N and (C ′

n)n∈N that satisfy the
following:

∀n ∈ N⋆, Cn ⊆ Vn and C ′
n ⊆ Vn are independent in G∧n; (B.72)

and

log |Cn|
n

→
n→∞

C(G,PV ), log |C ′
n|

n
→
n→∞

C(G,P ′
V ), (B.73)

max
vn∈Cn

∥Tvn − PV ∥∞ →
n→∞

0, max
vn∈C′

n

∥Tvn − PV ∥∞ →
n→∞

0. (B.74)

Let us build a sequence of codebooks (C ′′
n)n∈N⋆ adapted to the distribution βPV + (1 −

β)P ′
V by using a time-sharing between (Cn)n∈N⋆ and (C ′

n)n∈N⋆ . For all n ∈ N⋆, let

C ′′
n
.= Cbn

n × C ′n−bn
n . (B.75)

For all n ∈ N⋆, C ′′
n ⊆ Vn2 is independent in G∧n2 as a product of independent sets.

The rate associated to C ′′
n writes

log |C ′′
n|

n2 = bn log |Cn| + (n− bn) log |C ′
n|

n2 (B.76)

= bn
n

log |Cn|
n

+ n− bn
n

log |C ′
n|

n
(B.77)

→
n→∞

βC(G,PV ) + (1 − β)C(G,P ′
V ); (B.78)

and the types of the codewords in C ′′
n satisfy

max
vn2 ∈C′′

n

∥∥∥Tvn2 − βPV − (1 − β)P ′
V

∥∥∥
∞

(B.79)
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= max
vnbn ∈Cn

max
v′n(n−bn)∈C′

n

∥∥∥∥∥nbnn2 Tvnbn + n(n− bn)
n2 Tv′n(n−bn) − βPV − (1 − β)P ′

V

∥∥∥∥∥
∞

(B.80)

≤ max
vnbn ∈Cn

∥∥∥∥∥bnn Tvnbn − βPV

∥∥∥∥∥
∞

+ max
v′n(n−bn)∈C′

n

∥∥∥∥∥n− bn
n

Tv′n(n−bn) − (1 − β)P ′
V

∥∥∥∥∥
∞

(B.81)

= β max
vnbn ∈Cn

∥Tvnbn − PV + o(1)Tvnbn ∥∞

+ (1 − β) max
v′n(n−bn)∈C′

n

∥Tv′n(n−bn) − P ′
V + o(1)Tv′n(n−bn)∥∞ (B.82)

≤ β max
vnbn ∈Cn

∥Tvnbn − PV ∥∞ + o(1) ∥Tvnbn ∥∞

+ (1 − β) max
v′n(n−bn)∈C′

n

∥Tv′n(n−bn) − P ′
V ∥∞ + o(1) ∥Tv′n(n−bn)∥∞ (B.83)

→
n→∞

0. (B.84)

By Lemma 5.1.3, limn→∞
log |C′′

n|
n2 ≤ C(G, βPV + (1 − β)P ′

V ), thus

βC(G,PV ) + (1 − β)C(G,P ′
V ) ≤ C(G, βPV + (1 − β)P ′

V ). (B.85)

The function PV 7→ C(G,PV ) is concave on the convex compact set ∆(V), therefore its
set of maximizers P∗(G) = argmaxPV ∈∆(V) C(G,PV ) is convex. Furthermore, by Theorem
5.1.4, the set P∗(G) is nonempty and satisfies

∀PV ∈ P∗(G), C(G,PV ) = C0(G). (B.86)

B.3.4 Proof of Theorem 5.3.3

The proof techniques used here are similar as in the proof of Theorem 5.1.4 in Appendix
B.3.2.

Let us start by showing that Theorem 5.3.3 is true when A has two elements. Let
G = (V , E), and G′ = (V ′, E ′) be two graphs, and let PV,V ′ ∈ P∗(G ∧ G′). We will prove
that PV ⊗ PV ′ is also capacity-achieving by building an adequate sequence of codebooks.

For all n ∈ N⋆, let Cn ⊆ (V × V ′)n such that Cn is an independent set in (G ∧ G′)∧n,
and

1
n

log |Cn| →
n→∞

C0(G ∧G′), (B.87)

max
(vn,v′n)∈Cn

∥Tvn,v′n − PV,V ′∥∞ →
n→∞

0. (B.88)
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The existence of such a sequence is given by Lemma 5.1.3, and Proposition 5.3.2. Let

Q
(n)
V,V ′

.= 1
|Cn|

∑
(vn,v′n)∈Cn

Tvn,v′n . (B.89)

An immediate observation is that

Q
(n)
V,V ′ →

n→∞
PV,V ′ (B.90)

as a consequence of (B.88).

Let us build a sequence of codebooks with asymptotic rate C0(G ∧G′), such that the
type of their codewords converge uniformly to PV ⊗ PV ′ :

C∗
n3

.= T n3

ϵn (PV ⊗ PV ′) ∩
(∏

t≤n C(t)
n

)n
; (B.91)

where

ϵn
.= ∥Q(n)

V ⊗Q
(n)
V ′ − PV ⊗ PV ′∥∞ + 1

4√n ; (B.92)

and where for all t ≤ n, the shifted codebook C(t)
n is defined by

C(t)
n

.=
{(

(vt, vt+1, ..., vn, v1, ..., vt−1), v′n
) ∣∣∣∣ (vn, v′n) ∈ Cn

}
. (B.93)

By construction, C∗
n3 ⊆ T n3

ϵn (PV ⊗PV ′) thanks to (B.91), and ϵn →
n→∞

0 thanks to (B.92)
and (B.90); therefore we have

max
vn3 ∈C∗

n

∥Tvn3 − PV ⊗ PV ′∥∞ →
n→∞

0. (B.94)

Furthermore, C∗
n3 is an independent set in (G ∧ G′)∧n3 , as it is contained in the product

independent set
(∏

t≤n C(t)
n

)n
; note that this holds because the shifted codebook C(t)

n is an
independent set in (G ∧G′)∧n for all t ≤ n.

Now let us prove that log |C∗
n3 |

n3 →
n→∞

C0(G∧G′). Let us draw a codeword uniformly from(∏
t≤n C(t)

n

)n
:

Cn3 .= (Cn2

1 , ..., Cn2

n ), (B.95)
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where for all t ≤ n, Cn2
t is a random n× n-sequence drawn uniformly from ∏

t≤n C(t)
n . We

want to prove that Cn3 ∈ T n3
ϵn (PV ⊗ PV ′) with high probability.

On one hand we have to determine the average type of the random variables (Cn2
t )t≤n

which are iid copies of Cn2 = (Cn
1 , ..., C

n
n); where each Cn

t is drawn uniformly from C(t)
n ,

and the (Cn
t )t≤n are mutually independent.

E
[
T
Cn2

t

]
= 1
n

∑
t≤n

E
[
TCn

t

]
(B.96)

= 1
n

∑
t≤n

1
|C(t)
n |

∑
(vn,v′n)∈C(t)

n

Tvn,v′n (B.97)

= 1
n

∑
t≤n

1
|Cn|

∑
(vn,v′n)∈Cn

Tσt(vn),v′n (B.98)

= 1
|Cn|

∑
(vn,v′n)∈Cn

1
n

∑
t≤n

Tσt(vn),v′n (B.99)

= 1
|Cn|

∑
(vn,v′n)∈Cn

Tvn ⊗ Tv′n (B.100)

= Q
(n)
V ⊗Q

(n)
V ′ , (B.101)

where σt(vn) = (vt, vt+1, ..., vn, v1, ..., vn−1); (B.98) comes from the construction of C(t)
n in

(B.93); and (B.100) comes from the following observation:

∑
t≤n

Tσt(vn),v′n =
∑
t≤n

∑
s≤n

Tvs+t,v′
s

=
∑
s≤n

∑
t≤n

Tvs+t,v′
s

(B.102)

=
∑
s≤n

Tvn,(v′
s,...,v

′
s) =

∑
s≤n

Tvn ⊗ Tv′
s

= Tvn ⊗ Tv′n , (B.103)

where the index s+ t is taken modulo n.

On the other hand we have

|C∗
n3|∣∣∣(∏t≤n C(t)
n

)n∣∣∣ (B.104)

=

∣∣∣T n3
ϵn (PV ⊗ PV ′) ∩

(∏
t≤n C(t)

n

)n∣∣∣∣∣∣(∏t≤n C(t)
n

)n∣∣∣ (B.105)

= P
(
Cn3 ∈ T n3

ϵn (PV ⊗ PV ′)
)

(B.106)

= P
(∥∥∥ 1

n

∑
t≤n TCn2

t
− PV ⊗ PV ′

∥∥∥
∞

≤ ϵn

)
(B.107)
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≥ P
(∥∥∥ 1

n

∑
t≤n TCn2

t
−Q

(n)
V ⊗Q

(n)
V ′

∥∥∥
∞

+
∥∥∥Q(n)

V ⊗Q
(n)
V ′ − PV ⊗ PV ′

∥∥∥
∞

≤ ϵn

)
(B.108)

= P
(∥∥∥∑t≤n TCn2

t
− nQ

(n)
V ⊗Q

(n)
V ′

∥∥∥
∞

≤ n3/4
)

(B.109)

≥ 1 −∑
(v,v′)∈V×V ′ P

(∣∣∣∑t≤n TCn2
t

(v, v′) − nQ
(n)
V ⊗Q

(n)
V ′ (v, v′)

∣∣∣ > n3/4
)

(B.110)

≥ 1 −∑
(v,v′)∈V×V ′

1
n3/2V

[∑
t≤n TCn2

t
(v, v′)

]
(B.111)

≥ 1 − |V||V ′|
n1/2 →

n→∞
1; (B.112)

where (B.106) and (B.107) come from the construction of Cn3 ; (B.109) comes from the
construction of ϵn; (B.110) follows from the union bound; (B.111) comes from Chebyshev’s
inequality and (B.101); and (B.112) comes from the fact that V

[∑
t≤n TCn2

t
(v, v′)

]
=∑

t≤nV
[
T
Cn2

t
(v, v′)

]
≤ n, as the random variables T

Cn2
t

(v, v′) are iid and takes values in
[0, 1]. Hence

lim
n→∞

log |C∗
n3|

n3 = lim
n→∞

log
∣∣∣(∏t≤n C(t)

n

)n∣∣∣
n3 = lim

n→∞

log |Cn|
n

= C0(G ∧G′); (B.113)

where the second equality holds as the shifted codebooks (C(t)
n )t≤n all have cardinality

|Cn|.

Thus, by combining (B.113), Lemma 5.1.3, and Proposition 5.3.2 we obtain

C0(G ∧G′) = lim
n→∞

log |C∗
n3|

n3 ≤ C(G ∧G′, PV ⊗ PV ′) ≤ C0(G ∧G′), (B.114)

hence PV ⊗ PV ′ ∈ P∗(G ∧G′).

Therefore, Theorem 5.3.3 is proved when A has two elements:

PV,V ′ ∈ P∗(G ∧G′) =⇒ PV ⊗ PV ′ ∈ P∗(G ∧G′). (B.115)

Now let us consider the case where A has a cardinality greater than 2. Let PV1,...,VA ∈
P∗(∧a∈A Ga). By considering the product graphs

∧
a∈A Ga =

(∧
1≤i<i∗ Gi

)
∧
(∧

i∗≤i≤|A| Gi

)
; (B.116)

for all i∗ ≤ |A|, and applying (B.115) successively, we obtain

PV1,...,VA ∈ P∗ (∧a∈A Ga) =⇒ PV1 ⊗ PV2,...,V|A| ∈ P∗ (∧a∈A Ga) (B.117)
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=⇒ (PV1 ⊗ PV2) ⊗ PV3,...,V|A| ∈ P∗ (∧a∈A Ga) (B.118)

=⇒ ... (B.119)

=⇒ ⊗
a∈A PVa ∈ P∗ (∧a∈A Ga) . (B.120)

B.3.5 Proof of Lemma 5.3.7

Let G be a vertex-transitive graph, and let PV ∈ P∗(G). Let ψ ∈ Aut(G), we first
prove that Pψ(V ) ∈ P∗(G), then we will conclude by using the convexity of P∗(G).

Let (Cn)n∈N⋆ be a sequence such that

∀n ∈ N⋆, Cn ⊆ Vn is an independent set in G∧n, (B.121)

max
vn∈Cn

∥Tvn − PV ∥∞ →
n→∞

0, (B.122)

log |Cn|
n

→
n→∞

C(G,PV ) = C0(G). (B.123)

The existence of such a sequence is given by Lemma 5.1.3. Note that the last equality in
(B.123) comes from the assumption PV ∈ P∗(G).

Now, for all n ∈ N⋆ the codebook

ψ(Cn) .= {(ψ(v1), ..., ψ(vn)) | vn ∈ Cn} (B.124)

is also independent in G∧n, as ψ is a graph automorphism and therefore preserves adja-
cencies. We have by construction

max
vn∈ψ(Cn)

∥Tvn − Pψ(V )∥∞ →
n→∞

0. (B.125)

Furthermore, since ψ is a bijection we have |ψ(Cn)| = |Cn| for all n ∈ N⋆, thus

log |ψ(Cn)|
n

= log |Cn|
n

→
n→∞

C0(G). (B.126)

Hence

Pψ(V ) ∈ P∗(G). (B.127)

Now, for all v, v′ ∈ V , denote by Sv′→v ⊆ Aut(G) the set of automorphisms that map
v′ to v; note that this set is nonempty thanks to the vertex-transitivity of G. We have for
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all v ∈ V

Aut(G) = ⊔
v′∈V Sv′→v. (B.128)

Furthermore, for all v ∈ V , all the sets (Sv′→v)v′→v have the same cardinality: for all
v′, v′′ ∈ V ,

Sv′′→v ◦ ψ1 ⊆ Sv′→v, (B.129)

where ψ1 ∈ Sv′→v′′ . It follows that for all v, v′ ∈ V ,

|Sv′→v| = | Aut(G)|
|V|

. (B.130)

Therefore, for all v ∈ V we have

1
| Aut(G)|

∑
ψ∈Aut(G)

Pψ(V ) ∈ P∗(G) (B.131)

=
(

1
| Aut(G)|

∑
ψ∈Aut(G)

PV (ψ−1(v))
)
v∈V

(B.132)

=
(

1
| Aut(G)|

∑
v′∈V

|Sv′→v|PV (v′)
)
v∈V

(B.133)

=
(

1
| Aut(G)|

∑
v′∈V

| Aut(G)|
|V|

PV (v′)
)
v∈V

(B.134)

= Unif(V); (B.135)

where (B.131) comes from the convexity of P∗(G) given by Proposition 5.3.2 and (B.127);
(B.133) comes from (B.128); and (B.134) comes from (B.130).

B.4 Main proofs for the link between linearizations
of C(·, PV ) and C0

B.4.1 Proof of Theorem 5.4.1

We prove Theorem 5.4.1 in two steps, which are Lemma B.4.1 and Lemma B.4.2. The
proofs are respectively given in Appendix B.4.2 and B.4.3.
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Lemma B.4.1

C0

( ∧
a∈A

Ga

)
=
∑
a∈A

C0(Ga) (B.136)

=⇒ ∀(P ∗
Va

)a∈A ∈
∏
a∈A

P∗(Ga),


⊗

a∈A P
∗
Va

∈ P∗ (∧a∈A Ga) and

C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
= ∑

a∈A C(Ga, P
∗
Va

).
(B.137)

Lemma B.4.2 For all PV1,...,V|A| ∈ P∗ (∧a∈A Ga), the following holds

C

( ∧
a∈A

Ga,
⊗
a∈A

PVa

)
=
∑
a∈A

C(Ga, PVa) (B.138)

=⇒ C0

( ∧
a∈A

Ga

)
=
∑
a∈A

C0(Ga) and ∀a ∈ A, PVa ∈ P∗(Ga). (B.139)

Let us prove Theorem 5.4.1. Let (P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga), we have by Lemma B.4.1

C0 (∧a∈A Ga) = ∑
a∈A C0(Ga) (B.140)

=⇒ ⊗
a∈A P

∗
Va

∈ P∗ (∧a∈A Ga) and C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
= ∑

a∈A C(Ga, P
∗
Va

)
(B.141)

=⇒ ∃PV1,...,V|A| ∈ P∗ (∧a∈A Ga), C (∧a∈A Ga,
⊗

a∈A PVa) = ∑
a∈A C(Ga, PVa). (B.142)

Conversely, by Lemma B.4.2 we have

∃PV1,...,V|A| ∈ P∗ (∧a∈A Ga), C (∧a∈A Ga,
⊗

a∈A PVa) = ∑
a∈A C(Ga, PVa) (B.143)

=⇒ C0 (∧a∈A Ga) = ∑
a∈A C0(Ga), (B.144)

and any PV1,...,V|A| that satisfies (B.143) also satisfies (PVa)a∈A ∈ ∏
a∈A P∗(Ga).

B.4.2 Proof of Lemma B.4.1

For all family of graphs (Ga)a∈A, and distributions (P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga) the fol-

lowing holds:

C0 (∧a∈A Ga) = max
(PVa )a∈A∈

∏
a∈A ∆(Va)

C (∧a∈A Ga,
⊗

a∈A PVa) (B.145)
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≥ C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
(B.146)

≥ ∑
a∈A C(Ga, P

∗
Va

) (B.147)

= ∑
a∈A C0(Ga); (B.148)

where (B.145) and (B.146) follow from Corollary 5.3.4; (B.147) comes from Proposition
5.2.5; and (B.148) follows from Proposition 5.3.2.

Now assume that ∑a∈A C0(Ga) = C0 (∧a∈A Ga), then equality holds in (B.145) to
(B.148). In particular, we have

C0 (∧a∈A Ga) = C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
, hence ⊗

a∈A P
∗
Va

∈ P∗ (∧a∈A Ga) ; (B.149)

C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
= ∑

a∈A C(Ga, P
∗
Va

). (B.150)

B.4.3 Proof of Lemma B.4.2

Let PV1,...,V|A| ∈ P∗(∧a∈A Ga), by Theorem 5.3.3, we have

⊗
a∈A PVa ∈ P∗ (∧a∈A Ga) . (B.151)

Additionally, for all (P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga) we have for all a ∈ A

C(Ga, PVa) ≤ C(Ga, P
∗
Va

), (B.152)

and the following holds

C (∧a∈A Ga,
⊗

a∈A PVa) (B.153)

≥ C
(∧

a∈A Ga,
⊗

a∈A P
∗
Va

)
(B.154)

≥ ∑
a∈A C(Ga, P

∗
Va

) (B.155)

≥ ∑
a∈A C(Ga, PVa); (B.156)

where (B.154) comes from (B.151); (B.155) comes from Proposition 5.2.5; and (B.156)
comes from (B.152).

Now assume that

C (∧a∈A Ga,
⊗

a∈A PVa) = ∑
a∈A C(Ga, PVa), (B.157)
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then equality holds in (B.153) to (B.156). In particular, we have for all a ∈ A:

C(Ga, PVa) = C(Ga, P
∗
Va

) (B.158)

as a consequence of ∑a∈A C(Ga, P
∗
Va

) = ∑
a∈A C(Ga, PVa) and (B.152). Hence PVa also

maximizes C(Ga, ·) for all a ∈ A:

∀a ∈ A, PVa ∈ P∗(Ga). (B.159)

Furthermore,

C0 (∧a∈A Ga) = C (∧a∈A Ga,
⊗

a∈A PVa) (B.160)

= ∑
a∈A C(Ga, PVa) (B.161)

= ∑
a∈A C0(Ga); (B.162)

where (B.160) comes from Corollary 5.3.4; (B.161) follows from (B.157); and (B.162)
comes from (B.159) and Proposition 5.3.2.

B.4.4 Proof of Theorem 5.4.2

The techniques used in this proof are the same as in the proof of Theorem 5.4.1. We
prove Theorem 5.4.2 in two steps, which are Lemma B.4.3 and Lemma B.4.4; their proofs
are respectively given in Appendix B.4.5 and B.4.6.

Lemma B.4.3 Let

P ∗
A
.=
(

2C0(Ga)∑
a′∈A 2C0(Ga′ )

)
a∈A

, (B.163)

we have

C0

( ⊔
a∈A

Ga

)
= log

(∑
a∈A

2C0(Ga)
)

=⇒ ∀(P ∗
Va

)a∈A ∈
∏
a∈A

P∗(Ga),
∑
a∈A

P ∗
A(a)P ∗

Va
∈ P∗

( ⊔
a∈A

Ga

)
and

C

 PA⊔
a∈A

Ga,
∑
a∈A

P ∗
A(a)P ∗

Va

 = H(P ∗
A) +

∑
a∈A

P ∗
A(a)C(Ga, P

∗
Va

), (B.164)
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Lemma B.4.4 Let

P ∗
A
.=
(

2C0(Ga)∑
a′∈A 2C0(Ga′ )

)
a∈A

, (B.165)

for all ∑a∈A PA(a)PVa ∈ P∗ (⊔a∈A Ga) the following holds

C

 PA⊔
a∈A

Ga,
∑
a∈A

PA(a)PVa

 = H(PA) +
∑
a∈A

PA(a)C(Ga, PVa)

=⇒ C0

( ⊔
a∈A

Ga

)
= log

(∑
a∈A

2C0(Ga)
)
, (PVa)a∈A ∈

∏
a∈A

P∗(Ga), and PA = P ∗
A. (B.166)

Now let us prove Theorem 5.4.2. Let (P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga), we have by Lemma

B.4.3

C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)

(B.167)

=⇒ ∑
a∈A P

∗
A(a)P ∗

Va
∈ P∗ (⊔a∈A Ga) and

C
(⊔PA

a∈A Ga,
∑
a∈A P

∗
A(a)P ∗

Va

)
= H(P ∗

A) +∑
a∈A P

∗
A(a)C(Ga, P

∗
Va

), (B.168)

=⇒ ∃PV ∈ P∗ (⊔a∈A Ga),

C
(⊔PA

a∈A Ga,
∑
a∈A P

∗
A(a)P ∗

Va

)
= H(P ∗

A) +∑
a∈A P

∗
A(a)C(Ga, P

∗
Va

),

where P ∗
Va

= PV |V ∈Va and P ∗
A(a) = PV (Va) for all a ∈ A.

Conversely, by Lemma B.4.4 we have

∃PV ∈ P∗ (⊔a∈A Ga), (B.169)

C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= H(PA) +∑

a∈A PA(a)C(Ga, PVa)

=⇒ C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)
, (B.170)

and any PV = ∑
a∈A PA(a)PVa that satisfies (B.169) also satisfies

(PVa)a∈A ∈
∏
a∈A

P∗(Ga), and PA =
(

2C0(Ga)∑
a′∈A 2C0(Ga′ )

)
a∈A

. (B.171)
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B.4.5 Proof of Lemma B.4.3

Lemma B.4.5 states that the function (wa)a∈A 7→ log (∑a∈A 2wa) is the Legendre-
Fenchel conjugate [69] of the entropy function PA 7→ H(PA). The proof of Lemma B.4.5
is given in Appendix B.6.8.

Lemma B.4.5 Let (wa)a∈A ∈ R|A|, then the mapping

ζ : PA 7→ H(PA) +
∑
a∈A

PA(a)wa (B.172)

has a unique maximum

P ∗
A =

(
2wa∑

a′∈A 2wa′

)
a∈A

; (B.173)

and

ζ(P ∗
A) = log

(∑
a∈A

2wa

)
. (B.174)

Now let us prove Lemma B.4.3. Let

∑
a∈A PA(a)PVa ∈ P∗ (⊔a∈A Ga) , (B.175)

(P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga), (B.176)

P ∗
A
.=
(

2C0(Ga)∑
a′∈A 2C0(Ga′ )

)
a∈A

. (B.177)

We have

C0 (⊔a∈A Ga) = C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
(B.178)

≥ C
(⊔PA

a∈A Ga,
∑
a∈A P

∗
A(a)P ∗

Va

)
(B.179)

≥ H(P ∗
A) +∑

a∈A P
∗
A(a)C(Ga, P

∗
Va

) (B.180)

= H(P ∗
A) +∑

a∈A P
∗
A(a)C0(Ga) (B.181)

= log
(∑

a∈A 2C0(Ga)
)

; (B.182)

where (B.178) and (B.179) come from (B.175) and Proposition 5.3.2; (B.180) comes from
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Proposition 5.2.5; (B.181) comes from (B.176) and Proposition 5.3.2; and (B.182) comes
from (B.177) and Lemma B.4.5.

Assume that C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)
, then equality holds in (B.178) to

(B.182), therefore the following holds:

C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)

=⇒ ∀(P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga),

∑
a∈A P

∗
A(a)P ∗

Va
∈ P∗ (⊔a∈A Ga) and

C
(⊔PA

a∈A Ga,
∑
a∈A P

∗
A(a)P ∗

Va

)
= H(P ∗

A) +∑
a∈A P

∗
A(a)C(Ga, P

∗
Va

). (B.183)

B.4.6 Proof of Lemma B.4.4

Let

∑
a∈A PA(a)PVa ∈ P∗ (⊔a∈A Ga) , (B.184)

(P ∗
Va

)a∈A ∈ ∏
a∈A P∗(Ga), (B.185)

P ∗
A
.=
(

2C0(Ga)∑
a′∈A 2C0(Ga′ )

)
a∈A

. (B.186)

We have

C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= C0 (⊔a∈A Ga) (B.187)

≥ log
(∑

a∈A 2C0(Ga)
)

(B.188)

= H(P ∗
A) +∑

a∈A P
∗
A(a)C0(Ga) (B.189)

≥ H(PA) +∑
a∈A PA(a)C0(Ga) (B.190)

= H(PA) +∑
a∈A PA(a)C(Ga, P

∗
Va

) (B.191)

≥ H(PA) +∑
a∈A PA(a)C(Ga, PVa); (B.192)

where (B.187) comes from (B.184) and Proposition 5.3.2; (B.188) comes from Theorem
5.1.17; (B.189) and (B.190) come from (B.186) and Lemma B.4.5, which can be found in
Appendix B.4.5; (B.191) and (B.192) come from (B.185) and Proposition 5.3.2.

Assume that C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= H(PA) + ∑

a∈A PA(a)C(Ga, PVa), then
equality holds in (B.187) to (B.192). In particular PA = P ∗

A as a consequence of the
equality between (B.189) and (B.190); and (PVa)a∈A ∈ ∏

a∈A P∗(Ga) as a consequence of
the equality between (B.191) and (B.192). Thus, for all ∑a∈A PA(a)PVa ∈ P∗ (⊔a∈A Ga)
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the following holds:

C
(⊔PA

a∈A Ga,
∑
a∈A PA(a)PVa

)
= H(PA) +∑

a∈A PA(a)C(Ga, PVa)

=⇒ C0 (⊔a∈A Ga) = log
(∑

a∈A 2C0(Ga)
)
, (PVa)a∈A ∈

∏
a∈A

P∗(Ga), and PA = P ∗
A. (B.193)

B.5 Main proofs for the examples and counterexam-
ples

B.5.1 Proof of Theorem 5.5.8

Lemma B.5.1 comes from [63, Corollary 1], and states that the function PA 7→ Hκ

(⊔PA
a∈A Ga

)
,

defined analogously to PA 7→ H
(⊔PA

a∈A Ga

)
, is always linear. The proof of Lemma B.5.2 is

given in Appendix B.6.9.

Lemma B.5.1 (from [61, Corollary 3.4]) For all probabilistic graphs (Ga)a∈A and PA ∈
∆(A), we have Hκ

(⊔PA
a∈A Ga

)
= ∑

a∈A PA(a)Hκ(Ga).

Lemma B.5.2 The probabilistic graph ⊔PA
a∈A Ga is perfect if and only if Ga is perfect for

all a ∈ A.

Now let us prove Theorem 5.5.8.

For all a ∈ A, let Ga = (Va, Ea, PVa) be a perfect probabilistic graph. By Lemma B.5.2,⊔PA
a∈A Ga is also perfect; and we have H

(⊔PA
a∈A Ga

)
= Hκ

(⊔PA
a∈A Ga

)
by Theorem 5.5.4. We

also have Hκ

(⊔PA
a∈A Ga

)
= ∑

a∈A PA(a)Hκ(Ga) = ∑
a∈A PA(a)H(Ga) by Lemma B.5.1 and

Theorem 5.5.4 used on the perfect graphs (Ga)a∈A. Thus

H
(⊔PA

a∈A Ga

)
= ∑

a∈A PA(a)H(Ga). (B.194)

By Theorem 5.2.4, it follows that H (∧a∈A Ga) = ∑
a∈A H(Ga) = ∑

a∈A Hκ(Ga), where
the last equality comes from Theorem 5.5.4.
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B.6 Secondary proofs

B.6.1 Proof of Lemma B.2.2

In order to prove Lemma B.2.2 we need Lemma B.2.1, which can be found in Appendix
B.2.1; and Lemma B.6.1, which is a generalization for infinite sequences of the following
observation: if Tan = PA ∈ ∆n(A) satisfies PA = i

n
P ′
A + n−i

n
P ′′
A with P ′

A ∈ ∆i(A) and
P ′′
A ∈ ∆n−i(A), then an can be separated into two subsequences a′i and a′′n−i such that
Ta′i = P ′

A and Ta′′n−i = P ′′
A. The proof is given in Appendix B.6.10.

Lemma B.6.1 (Type-splitting lemma) Let (an)n∈N⋆ ∈ AN⋆ be a sequence such that
Tan → PA ∈ ∆(A) when n → ∞, let β ∈ (0, 1) and P ′

A, P
′′
A ∈ ∆(A) such that

PA = βP ′
A + (1 − β)P ′′

A. (B.195)

Then there exists a sequence (bn)n∈N⋆ ∈ {0, 1}N⋆ such that the two extracted sequences
a′ .= (an)n∈N⋆,

bn=0
and a′′ .= (an)n∈N⋆,

bn=1
satisfy

Tbn →
n→∞

(β, 1 − β), (B.196)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A. (B.197)

Now let us prove Lemma B.2.2. Let η : PA 7→ H
(⊔PA

a∈A Ga

)
.

(η Lipschitz) Let us first prove that η is Lipschitz. For all PA, P ′
A ∈ ∆(A) we need

to bound the quantity |η(PA) − η(P ′
A)|; by Lemma B.2.1 this is equivalent to bounding

lim
n→∞

1
n

∣∣∣Hχ

(∧
a∈A G

∧nTan (a)
a

)
−Hχ

(∧
a∈A G

∧nTa′n (a)
a

)∣∣∣ (B.198)

where (Tan , Ta′n) → (PA, P ′
A) when n → ∞.

Fix n ∈ N⋆, we assume that the quantity inside | · | in (B.198) is positive; the other
case can be treated with the same arguments by symmetry of the roles. We have

Hχ

(∧
a∈A G

∧nTan (a)
a

)
−Hχ

(∧
a∈A G

∧nTa′n (a)
a

)
(B.199)

≤ Hχ

(∧
a∈A G

∧nTan (a)
a

)
−Hχ

(∧
a∈A G

∧nmin(Tan (a),Ta′n (a))
a

)
(B.200)

= Hχ

(∧
a∈A G

∧nmin(Tan (a),Ta′n (a))
a

∧
a∈A G

∧n|Tan (a)−Ta′n (a)|+
a

)
−Hχ

(∧
a∈A G

∧nmin(Tan (a),Ta′n (a))
a

)
(B.201)
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≤ Hχ

(∧
a∈A G

∧n|Tan (a)−Ta′n (a)|+
a

)
(B.202)

≤ log
(

max
a

|Va|
)∑

a∈A n|Tan(a) − Ta′n(a)|+ (B.203)

≤ n log
(

max
a

|Va|
)

∥Tan − Ta′n∥1, (B.204)

where | · |+ = max(·, 0) and ∥Tan − Ta′n∥1 = ∑
a∈A |Tan(a) − Ta′n(a)|; (B.200) follows from

the removal of terms in the second product, as Hχ(G ∧G′) ≥ Hχ(G) for all probabilistic
graphs G,G′; (B.201) is an arrangement of the terms in the first product, as min(s, t) +
max(s − t, 0) = s for all real numbers s, t; (B.202) comes from the subadditivity of
Hχ; (B.203) follows from Hχ(Ga) ≤ log maxa′ |Va′| for all a ∈ A; (B.204) results from
|Tan(a) − Ta′n(a)|+ ≤ |Tan(a) − Ta′n(a)| for all a ∈ A.

By normalization and limit, it follows that

|η(PA) − η(P ′
A)| ≤ lim

n→∞
log

(
max
a

|Va|
)

· ∥Tan − Ta′n∥1 (B.205)

= log
(

max
a

|Va|
)

· ∥PA − P ′
A∥1. (B.206)

Hence η is (log maxa |Va|)-Lipschitz.

(η convex) Let us now prove that η is convex. Let P ′
A, P

′′
A ∈ ∆(A), and β ∈ (0, 1),

we have by Lemma B.2.1

η
(
βP ′

A + (1 − β)P ′′
A

)
= lim

n→∞

1
n
Hχ

(∧
a∈A G

∧nTan (a)
a

)
, (B.207)

where Tan → βP ′
A+(1 −β)P ′′

A when n → ∞. By Lemma B.6.1, there exists (bn)n∈N⋆ ∈
{0, 1}N⋆ such that the decomposition of (an)n∈N⋆ into two subsequences a′ .= (an)n∈N⋆,

bn=0
and

a′′ .= (an)n∈N⋆,
bn=1

satisfies

Tbn →
n→∞

(β, 1 − β), (B.208)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A. (B.209)

For all n ∈ N⋆, let Ξ(n) .= nTbn(0), we have

η
(
βP ′

A + (1 − β)P ′′
A

)
(B.210)
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= lim
n→∞

1
n
Hχ

(∧
a∈A G

∧Ξ(n)T
a′Ξ(n) (a)+(n−Ξ(n))T

a′′n−Ξ(n) (a)
a

)
(B.211)

≤ lim
n→∞

Ξ(n)
n

1
Ξ(n)Hχ

(∧
a∈A G

∧Ξ(n)T
a′Ξ(n) (a)

a

)
(B.212)

+ n− Ξ(n)
n

1
n− Ξ(n)Hχ

(∧
a∈A G

∧(n−Ξ(n))T
a′′n−Ξ(n) (a)

a

)
(B.213)

= βη(P ′
A) + (1 − β)η(P ′′

A); (B.214)

where (B.211) comes from (B.207); (B.213) follows from the subadditivity of Hχ; (B.214)
comes from (B.208), (B.209) and Lemma B.2.1. Since (B.214) holds for all P ′

A, P
′′
A ∈ ∆(A)

and β ∈ (0, 1), we have that η is convex.

B.6.2 Proof of Lemma B.2.3

It can be easily observed that

∃PA ∈ int(∆(A)), γ(PA) = ∑
a∈A PA(a)γ(1a) (B.215)

⇐= ∀PA ∈ ∆(A), γ(PA) = ∑
a∈A PA(a)γ(1a). (B.216)

Now let us prove (B.215) ⇒ (B.216). Let P ∗
A ∈ int ∆(A) such that γ(P ∗

A) = ∑
a∈A P

∗
A(a)γ(1a).

Let m : ∆(A) → R linear such that m(P ∗
A) = γ(P ∗

A) and ∀PA ∈ ∆(A), m(PA) ≤ γ(PA).
We have

0 = γ(P ∗
A) −m(P ∗

A) = ∑
a∈A P

∗
A(a)

(
γ(1a) −m(1a)

)
; (B.217)

and therefore γ(1a) = m(1a) for all a ∈ A, as γ − m ≥ 0 and P ∗
A(a) > 0 for all a ∈ A.

For all PA ∈ ∆(A), we have

f(PA) ≤ ∑
a∈A PA(a)γ(1a) (B.218)

= ∑
a∈A PA(a)m(1a) = m(PA), (B.219)

hence γ = m and γ is linear.
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B.6.3 Proof of Lemma B.2.4

The probabilistic graphs in both sides of (B.8) have

(⊔a∈A Va) × (⊔b∈B Vb) = ⊔
(a,b)∈A×B Va × Vb (B.220)

as set of vertices, with underlying distribution

(∑a∈A PA(a)PVa) (∑b∈B PB(b)PVb
)

= ∑
(a,b)∈A×B PA(a)PB(b)PVaPVb

. (B.221)

Now let us show that these two graphs have the same edges. Let (vA, vB), (v′
A, v

′
B) ∈

(⊔a∈A Va) × (⊔b∈B Vb); let a∗, a
′
∗ ∈ A and b∗, b

′
∗ ∈ B be the unique indexes such that

(vA, vB) ∈ Va∗ × Vb∗ and (v′
A, v

′
B) ∈ Va′

∗ × Vb′
∗ . (B.222)

We have:

(vA, vB), (v′
A, v

′
B) are adjacent in

(⊔PA
a∈A Ga

)
∧
(⊔PB

b∈B Gb

)
(B.223)

⇐⇒ vA, v
′
A adjacent in ⊔PA

a∈A Ga and vB, v
′
B adjacent in ⊔PB

b∈B Gb (B.224)

⇐⇒ a∗ = a′
∗ and vAv

′
A ∈ Ea∗ and b∗ = b′

∗ and vBv
′
B ∈ Eb∗ (B.225)

⇐⇒ (a∗, b∗) = (a′
∗, b

′
∗) and (vA, vB), (v′

A, v
′
B) are adjacent in Ga∗ ∧Gb∗ (B.226)

⇐⇒ (vA, vB), (v′
A, v

′
B) are adjacent in ⊔PAPB

(a,b)∈A×B Ga ∧Gb. (B.227)

B.6.4 Proof of Lemma B.2.5

In order to prove Lemma B.2.5, we need Lemma B.6.2. In Lemma B.6.2 we give
upper and lower bounds on the chromatic entropy of an induced subgraph G[S], using
the chromatic entropy of the whole graph G and the probability PV (S). The core idea is
that if PV (S) is close to 1 and Hχ(G) is big, then Hχ(G[S]) is close to Hχ(G). The proof
of Lemma B.6.2 is given in Appendix B.6.11

Lemma B.6.2 Let G = (V , E , PV ) and S ⊆ V, then

Hχ(G) − 1 − (1 − PV (S)) log |V| ≤ Hχ(G[S]) ≤ Hχ(G)
PV (S) . (B.228)
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Remark B.6.3 Hχ(G[S]) can be greater than Hχ(G), even if G[S] has less vertices and
inherits the structure of G. This stems from the normalized distribution PV /PV (S) on the
vertices of G[S] which gives more weight to the vertices in S. For example, consider

G =
(
N5,Unif({1, ..., 5})

) (1−ϵ,ϵ)
⊔

(
K5,Unif({1, ..., 5})

)
;

where Kn (resp. Nn) is the complete (resp. empty) graph with n vertices, i.e. there is an
edge (resp. no edge) between any pair of distinct vertices; and with S being the vertices in
the connected component K5 in G. Then Hχ(G) = ϵ log 5 and Hχ(G[S]) = log 5.

Now let us prove Lemma B.2.5. By Lemma B.6.2, we have for all n ∈ N⋆:

Hχ(G∧n) − 1 − (1 − P n
V (Sn)) log |V|

≤Hχ(G∧n[Sn]) ≤ Hχ(G∧n)
P n
V (Sn) . (B.229)

Since P n
V (Sn) → 1, and Hχ(G∧n) = nH(G) + o(n) when n → ∞, the desired results

follows immediately by normalization and limit.

B.6.5 Proof of Lemma B.2.7

Let (G̃i)i≤N be isomorphic probabilistic graphs and G such that G = ⊔
i G̃i. Let c∗

1 :
V1 → C be the coloring of G̃1 with minimal entropy, and let c∗ be the coloring of G defined
by

c∗ : V → C (B.230)

v 7→ c∗
1 ◦ ψiv→1(v), (B.231)

where iv is the unique integer such that v ∈ Viv , and ψiv→1 : Viv → V1 is an isomorphism
between G̃iv and G̃1. In other words c∗ applies the same coloring pattern c∗

1 on each
connected component of G. We have

Hχ(G) ≤ H(c∗(V )) (B.232)

= h
(∑

j≤N PiV (j)Pc∗(Vj)

)
(B.233)

= h
(∑

j≤N PiV (j)Pc∗
1(V1)

)
(B.234)
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= H(c∗
1(V1)) (B.235)

= Hχ(G̃1), (B.236)

where h denotes the entropy of a distribution; (B.234) comes from the definition of c∗;
and (B.236) comes from the definition of c∗

1.
Now let us prove the upper bound on Hχ(G̃1). Let c be a coloring of G, and let

i∗
.= argminiH(c(Vi)) (i.e. i∗ is the index of the connected component for which the

entropy of the coloring induced by c is minimal). We have

H(c(V )) = h
(∑

j≤N PiV (j)Pc(Vj)

)
(B.237)

≥ ∑
j≤N PiV (j)h(Pc(Vj)) (B.238)

≥ ∑
j≤N PiV (j)H(c(Vi∗)) (B.239)

≥ Hχ(G̃i∗), (B.240)

= Hχ(G̃1), (B.241)

where (B.238) follows from the concavity of h; (B.239) follows from the definition of i∗;
(B.240) comes from the fact that c induces a coloring of G̃i∗ ; (B.241) comes from the fact
that G̃1 and G̃i∗ are isomorphic. Now, we can combine the bounds (B.236) and (B.241):
for all coloring c of G we have

Hχ(G) ≤ Hχ(G̃1) ≤ H(c(V )), (B.242)

which yields the desired equality when taking the infimum over c.

B.6.6 Proof of Lemma B.2.8

The probabilistic graph ⊔PA
a∈A Ga has ∑a∈A PA(a)PVa as underlying distribution. Let

A, V be two random variables such that A is drawn with PA, and V is drawn with
PV |A(·|a) .= PVa , so that

PV = ∑
a∈A PA(a)PVa . (B.243)

We have

H
(⊔PA

a∈A Ga

)
+ C

(⊔PA
a∈A Ga,

∑
a∈A PA(a)PVa

)
(B.244)
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= H(V ) (B.245)

= H(A, V ) (B.246)

= H(A) +H(V |A) (B.247)

= H(PA) +∑
a∈A PA(a)H(PVa); (B.248)

where (B.245) comes from Theorem 5.1.5 and (B.243); and (B.246) comes from the fact
that A can be written as a function of V : by definition, the vertex set of ⊔PA

a∈A Ga writes
V = ⊔

a∈A Va and suppPVa ⊆ Va, therefore A is the unique index such that V ∈ VA.

B.6.7 Proof of Lemma B.3.1

In this proof, we need Lemma B.6.4 and Lemma B.6.5; their proofs are respectively
given in Appendix and Appendix B.6.12 and Appendix B.6.13.

Lemma B.6.4 For all distributions PV , P ′
V ∈ ∆(V), for all ϵ ≥ 0, and m,n ∈ N⋆,

T m
ϵ (PV ) × T n

ϵ (P ′
V ) ⊆ T m+n

ϵ

(
m

m+ n
PV + n

m+ n
P ′
V

)
. (B.249)

Lemma B.6.5 For all graphs G = (V , E), G′ = (V ′, E ′) and sets S ⊆ V, S ⊆ V ′ we have

(G ∧G′)[S × S ′] ≃ G[S] ∧G′[S ′], (B.250)

where ≃ denotes isomorphic graphs, defined in Definition B.2.6.

Let us prove that for all ϵ > 0 and PV ∈ ∆(V), the sequence
(

logα
(
G∧n[T n

ϵ (PV )]
))

n∈N⋆
(B.251)

is superadditive. For all integers m,n we have

logα
(
G∧n+m[T n+m

ϵ (PV )]
)

≥ logα
(
G∧m+n[T m

ϵ (PV ) × T n
ϵ (PV )]

)
(B.252)

= logα
(
G∧m[T m

ϵ (PV )] ∧G∧n[T n
ϵ (PV )]

)
(B.253)

≥ logα
(
G∧m[T m

ϵ (PV )]
)

+ logα
(
G∧n[T n

ϵ (PV )]
)
, (B.254)

where (B.252) and (B.253) respectively come from Lemma B.6.4 and Lemma B.6.5.
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We can use Fekete’s lemma [25]: for all ϵ > 0, the following limit exists

lim
n→∞

1
n

logα(G∧n[T n
ϵ (PV )]) = lim sup

n→∞

1
n

logα(G∧n[T n
ϵ (PV )]) (B.255)

= sup
n∈N⋆

1
n

logα(G∧n[T n
ϵ (PV )]). (B.256)

B.6.8 Proof of Lemma B.4.5

Let us maximize

ζ : PA 7→ H(PA) +
∑
a∈A

PA(a)wa. (B.257)

It can be easily observed that ζ is strictly concave, hence the existence and uniqueness of
the maximum. We have

∇ζ(PA) =
(

− logPA(a) − 1
ln 2 + wa

)
a∈A

, (B.258)

hence

∇ζ(PA) ⊥ ∆(A) ⇐⇒ ∃C ∈ R, ∇ζ(PA) = (C, ..., C) (B.259)

⇐⇒ ∃C ′ ∈ R, (− logPA(a) + wa)a∈A = (C ′, ..., C ′) (B.260)

⇐⇒ ∃C ′ ∈ R, PA = 2−C′ (2wa)a∈A (B.261)

The value of C ′ can be deduced from the fact that PA is a probability distribution: 2C′ is
the normalization constant ∑a′∈A 2wa′ . Hence the maximum of ζ writes

P ∗
A =

(
2wa∑

a′∈A 2wa′

)
a∈A

; (B.262)

and we have

ζ(P ∗
A) =

∑
a∈A

P ∗
A(a)

(
log

(∑
a′∈A 2wa′

2wa

)
+ wa

)
(B.263)

= log
∑
a′∈Z

2wa′

 . (B.264)
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B.6.9 Proof of Lemma B.5.2

(=⇒) Let G = ⊔PA
a∈A Ga be a perfect probabilistic graph. Let a′ ∈ A and Sa′ ⊂

Va′ . We have χ
((⊔PA

a∈A Ga

)
[Sa′ ]

)
= ω

((⊔PA
a∈A Ga

)
[Sa′ ]

)
since G is perfect, and therefore

χ(Ga′ [Sa′ ]) = ω(Ga′ [Sa′ ]), as
(⊔PA

a∈A Ga

)
[Sa′ ] = Ga′ [Sa′ ]. Thus all the graphs (Ga)a∈A are

perfect.
(⇐=) Conversely, assume that for all a ∈ A, Ga = (Va, Ea, PVa) is perfect. Then for all

S ⊂ ⊔
a∈A Va, S can be written as ⊔a∈A Sa where Sa ⊂ Va for all a ∈ A, and we have for

all PA ∈ ∆(A):

χ
((⊔PA

a∈A Ga

)
[S]
)

= χ
(⊔PA

a∈A Ga[Sa]
)

(B.265)

= max
a∈A

χ (Ga[Sa]) (B.266)

= max
a∈A

ω (Ga[Sa]) , (B.267)

and similarly, ω
((⊔PA

a∈A Ga

)
[S]
)

= maxa∈A ω (Ga[Sa]). Hence ⊔PA
a∈A Ga is also perfect.

B.6.10 Proof of Lemma B.6.1

Let (an)n∈N⋆ ∈ AN⋆ be a sequence such that Tan → PA = βP ′
A + (1 − β)P ′′

A when
n → ∞.

Consider a sequence (Bn)n∈N⋆ of independent Bernoulli random variables such that for
all n ∈ N⋆,

P(Bn = 0) = βP ′
A(an)

PA(an) . (B.268)

By the strong law of large numbers,

P
(
TBn,an →

n→∞
(βP ′

A, (1 − β)P ′′
A)
)

= 1. (B.269)

Therefore, there exists at least one realization (bn)n∈N⋆ of (Bn)n∈N⋆ such that Tbn,an con-
verges to

(
βP ′

A, (1 − β)P ′′
A

)
. The convergences of marginal and conditional types yield

Tbn →
n→∞

(β, 1 − β), (B.270)

Ta′n →
n→∞

P ′
A, Ta′′n →

n→∞
P ′′
A, (B.271)
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where a′ .= (an)n∈N⋆,
bn=0

and a′′ .= (an)n∈N⋆,
bn=1

are the extracted sequences.

B.6.11 Proof of Lemma B.6.2

Let c∗ : V → C and c∗
S : S → C be the optimal colorings of G and G[S], respectively.

Consider the coloring c : V → C ⊔V of G defined by c(v) = c∗
S if v ∈ S, c(v) = v otherwise.

(Lower bound) On one hand, we have

Hχ(G) ≤H(c(V ),1V ∈S) (B.272)

=H(1V ∈S) + PV (S)H(c(V )|V ∈ S)

+ (1 − PV (S))H(c(V )|V /∈ S) (B.273)

≤ 1 +H(c∗
S(V )|V ∈ S) + (1 − PV (S)) log |V| (B.274)

=Hχ(G[S]) + 1 + (1 − PV (S)) log |V|; (B.275)

where (B.272) comes from the fact that c is a coloring of G; (B.273) is a decomposition
using conditional entropies; (B.274) comes from the construction of c: c|S = c∗

S ; (B.275)
follows from the optimality of c∗

S as a coloring of G[S].

(Upper bound) On the other hand,

Hχ(G[S])

≤H(c∗(V )|V ∈ S) (B.276)

= 1
PV (S)

(
H(c∗(V )|1V ∈S) − (1 − PV (S))H(c∗(V )|V /∈ S)

)
(B.277)

≤ H(c∗(V ))
PV (S) = Hχ(G)

PV (S) (B.278)

where (B.276) comes from the fact that c∗ induces a coloring of G[S]; (B.277) is a de-
composition using conditional entropies; (B.278) results from the elimination of negative
terms and the optimality of c∗.
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B.6.12 Proof of Lemma B.6.4

Let (vm, vn) ∈ T m
ϵ (PV ) × T n

ϵ (P ′
V ). We have

∥∥∥∥Tvm+n −
(

m

n+m
PV + n

n+m
P ′
V

)∥∥∥∥
∞

(B.279)

=
∥∥∥∥ m

n+m
Tvm + n

n+m
Tvn − m

n+m
PV − n

n+m
P ′
V

∥∥∥∥
∞

(B.280)

≤ m

n+m
∥Tvm − PV ∥∞ + n

n+m
∥Tvn − P ′

V ∥∞ (B.281)

≤ m

n+m
ϵ+ n

n+m
ϵ = ϵ, (B.282)

hence the desired result.

B.6.13 Proof of Lemma B.6.5

The graphs G[S] ∧G′[S ′] and (G∧G′)[S × S ′] both have S × S ′ as set of vertices. For
all (v1, v

′
1), (v2, v

′
2) ∈ S × S ′, we have:

(v1, v
′
1), (v2, v

′
2) are adjacent in G[S] ∧G′[S ′] (B.283)

⇐⇒ v1, v2 are adjacent in G and v′
1, v

′
2 are adjacent in G′ (B.284)

⇐⇒ (v1, v
′
1), (v2, v

′
2) are adjacent in (G ∧G′)[S × S ′]. (B.285)
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Appendix C

PROOFS FOR CODING FOR COMPUTING

ZERO-ERROR RESULTS

C.1 Proof of Theorem 6.3.2

Consider the particular case f(X, Y ) = X of Figure 6.2. The optimal rate in this
particular case equals the optimal rate R∗ in the following auxiliary problem, depicted
in Figure C.1: (X, g(Y )) as source available at the encoder and to be retrieved by the
decoder which knows Y (thus expecting it to retrieve g(Y ) in addition to X does not
change the optimal rate).

Encoder Decoder

Y n

Xn,
(
g(Yt)

)
t≤n

Xn,
(
g(Yt)

)
t≤n

⧸
R

Figure C.1 – An auxiliary zero-error Slepian-Wolf problem.

This auxiliary problem is a particular instance of the zero-error Slepian-Wolf prob-
lem; its optimal rate writes H(G), where G is the characteristic graph defined in Defi-
nition 3.2.4 for the pair

(
(X, g(Y )), Y

)
. The graph G has X × Z as set of vertices, and

(x, z) is adjacent to (x′, z′) if there exists a side information symbol y ∈ Y such that
PX,Y,g(Y )(x, y, z)PX,Y,g(Y )(x′, y, z′) > 0. It can be observed that the vertices (x, z) and
(x′, z′) such that z ̸= z′ are not adjacent in G. The graph G is therefore a disjoint union
indexed by Z:

G = ⊔Pg(Y )
z∈Z Gz; (C.1)

R∗ = H(G) = H
(⊔Pg(Y )

z∈Z Gz

)
; (C.2)

where for all z ∈ Z, Gz is the characteristic graph defined in Definition 3.2.4 for the pair
(X ′

z, Y
′
z ) ∼ PX,Y |g(Y )=z.

135



Chapter C – Proofs for coding for computing zero-error results

(⇒) Assume that g and PX,Y satisfy the “pairwise shared side information” condi-
tion. It directly follows that PX|g(Y )=z is full-support for all z ∈ Z. Let z ∈ Z, and
let (x, z), (x′, z) be any two vertices of Gz. By construction, there exists y ∈ g−1(z)
such that PX,Y (x, y)PX,Y (x′, y) > 0; hence PX,Y,g(Y )(x, y, z)PX,Y,g(Y )(x′, y, z) > 0, and
(x, z), (x′, z) are adjacent in Gz. Each graph Gz is therefore complete, and perfect; the
graph G = ⊔Pg(Y )

z∈Z Gz is a disjoint union of perfect graphs and is also perfect by Lemma
B.5.2. We have:

R∗ = H
(⊔Pg(Y )

z∈Z Gz

)
(C.3)

= Hκ

(⊔Pg(Y )
z∈Z Gz

)
(C.4)

=
∑
z∈Z

Pg(Y )(z)Hκ(Gz) (C.5)

=
∑
z∈Z

Pg(Y )(z)H(PX|g(Y )=z) (C.6)

= H(X|g(Y )); (C.7)

where (C.3) comes from (C.2); (C.4) and (C.5) follow from Theorem 5.5.8 used on the
perfect graph ⊔Pg(Y )

z∈Z Gz; and (C.6) holds as the independent subsets of the complete graph
Gz are singletons containing one of its vertices.

(⇐) Conversely, assume that PX|g(Y )=z is full-support for all z ∈ Z, and R∗ =
H(X|g(Y )).

Assume, ad absurdum, that at least one of the (Gz)z∈Z is not complete; then there
exists a coloring of that graph that maps two different vertices to the same color. Thus,
there exists z ∈ Z such that

H(Gz) < H(PX|g(Y )=z), (C.8)

as PX|g(Y )=z is full-support. We have

H(X|g(Y )) = R∗ (C.9)

= H
(⊔Pg(Y )

z∈Z Gz

)
(C.10)

≤
∑
z∈Z

Pg(Y )(z)H(Gz) (C.11)

< H(X|g(Y )); (C.12)
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where (C.10) comes from (C.2), (C.11) results from [71, Theorem 2], and (C.12) fol-
lows from (C.8). We arrive at a contradiction, hence all the graphs (Gz)z∈Z are complete:
for all z ∈ Z and x, x′ ∈ X , there exists a side information symbol y ∈ Y such that
PX,Y,g(Y )(x, y, z)PX,Y,g(Y )(x′, y, z) > 0; hence y ∈ g−1(z), and satisfies PX,Y (x, y)PX,Y (x′, y) >
0. The condition “pairwise shared side information” is satisfied by PX,Y , g.

C.2 Proof of Theorem 6.3.6

Let us specify the adjacency condition in G[n] under the assumption (6.14). Two ver-
tices are adjacent if they satisfy (6.9) and (6.10); however (6.9) is always satisfied under
(6.14). Thus (xn, zn)(x′n, zn) are adjacent if zn = z′n and

∃yn ∈ g−1(zn),∃t ≤ n, f(xt, yt) ̸= f(x′
t, yt). (C.13)

It can be observed that the condition (C.13) is the adjacency condition of an OR product
of adequate graphs; more precisely,

G[n] =
⊔

zn∈Zn

∨
t≤n

Gf
zt
. (C.14)

Although G[n] cannot be expressed as an n-th OR power, we will show that its chromatic
entropy asymptotically coincide with that of an appropriate OR power: we now search for
an asymptotic equivalent of Hχ(G[n]).

Definition C.2.1 Sn is the set of colorings of G[n] that can be written as (xn, zn) 7→
(Tzn , c̃(xn, zn)) for some mapping c̃ : X n × Zn → C̃; where Tzn denotes the type of zn.

In the following, we define Zn .=
(
g(Yt)

)
t≤n

. Now we need several Lemmas. Lemma
C.2.2 states that the optimal coloring c(xn, zn) of G[n] has the type of zn as a prefix at
a negligible rate cost. Lemma C.2.3 gives an asymptotic formula for the minimal entropy
of the colorings from Sn.

Lemma C.2.2 The following asymptotic comparison holds:

Hχ(G[n]) = inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) +O(log n). (C.15)
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Lemma C.2.3 The following asymptotic comparison holds:

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) = n
∑
z∈Z

Pg(Y )(z)Hκ(Gf
z ) + o(n). (C.16)

The proof of Lemma C.2.2 is given in Appendix C.3, its keypoint is the asymptotically
negligible entropy of the prefix TZn of the colorings of Sn.

The proof of Lemma C.2.3 is given in Appendix C.4, and relies on the decomposition
G[n] = ⊔

Qn∈∆n(Z) G
Qn

[n] , where GQn

[n] is the subgraph induced by the vertices (xn, zn) such
that the type of zn is Qn. We show that GQn

[n] is a disjoint union of isomorphic graphs whose
chromatic entropy is given by Lemma B.2.7 and (6.16):

∣∣∣Hχ(GQn

[n] )−n
∑
z∈Z Qn(z)Hκ(Gf

z )
∣∣∣ ≤

nϵn. Finally, uniform convergence arguments enable us to conclude.

Now let us combine these results together:

R∗ = 1
n
Hχ(G[n]) + o(1) (C.17)

= 1
n

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + o(1) (C.18)

=
∑
z∈Z

Pg(Y )(z)Hκ(Gf
z ) + o(1), (C.19)

where (C.17) comes from Theorem 6.2.2, (C.18) comes from Lemma C.2.2, and (C.19)
comes from Lemma C.2.3. The proof of Theorem 6.3.6 is complete.

C.3 Proof of Lemma C.2.2

Let c∗
n be the coloring of G[n] with minimal entropy. Then we have:

Hχ(G[n]) = inf
c coloring of G[n]

H(c(Xn, Zn)) (C.20)

≤ inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (C.21)

= inf
c:(xn,zn)

7→(Tzn ,c̃(xn,zn))

H(TZn , c̃(Xn, Zn)) (C.22)

≤ H(TZn) +H(c∗
n(Xn, Zn)) (C.23)

= Hχ(G[n]) +O(log n), (C.24)
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where (C.22) comes from Definition C.2.1; (C.23) comes from the subadditivity of the
entropy, and the fact that (xn, zn) 7→ (Tzn , c∗

n(xn, zn)) is a coloring of G[n] that belongs to
Sn; and (C.24) comes from H(TZn) = O(log n), as log |∆n(Z)| = O(log n). The desired
equality comes from the bounds Hχ(G[n]) and Hχ(G[n]) +O(log n) on (C.21).

C.4 Proof of Lemma C.2.3

For all Qn ∈ ∆n(Z), let

GQn

[n] =
⊔

zn∈Zn

Tzn =Qn

∨
t≤n

Gf
zt
, (C.25)

with the probability distribution induced by P n
X,Z . This graph is formed of the connected

components of G[n] whose corresponding zn has type Qn. We need to find an equivalent for
Hχ(GQn

[n] ). Since GQn

[n] is a disjoint union of isomorphic graphs, we can use Lemma B.2.7:

Hχ(GQn

[n] ) = Hχ

( ∨
z∈Z

(Gf
z )∨nQn(z)

)
. (C.26)

On one hand,

Hχ

( ∨
z∈Z

(Gf
z )∨nQn(z)

)
≥ Hκ

( ∨
z∈Z

(Gf
z )∨nQn(z)

)
(C.27)

= n
∑
z∈Z

Qn(z)Hκ(Gf
z ), (C.28)

where (C.27) comes from Hκ ≤ Hχ [5, Lemma 14], (C.28) comes from (6.16). On the
other hand,

Hχ

( ∨
z∈Z

(Gf
z )∨nQn(z)

)
≤
∑
z∈Z

Qn(z)Hχ((Gf
z )∨n) (C.29)

= n
∑
z∈Z

Qn(z)Hκ(Gf
z ) + nϵn, (C.30)

where ϵn .= maxz 1
n
Hχ((Gf

z )∨n) − Hκ(Gf
z ) is a quantity that does not depend on Qn and

satisfies limn→∞ ϵn = 0; (C.29) comes from the subadditivity of Hχ. Combining equations
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(C.26), (C.28) and (C.30) yields
∣∣∣∣∣Hχ(GQn

[n] ) − n
∑
z∈Z

Qn(z)Hκ(Gf
z )
∣∣∣∣∣ ≤ nϵn. (C.31)

Now, we have an equivalent for Hχ(GQn

[n] ).

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (C.32)

= inf
c:(xn,zn)

7→(Tzn ,c̃(xn,zn))

H(c̃(Xn, Zn)|TZn) +H(TZn) (C.33)

= inf
c:(xn,zn)

7→(Tzn ,c̃(xn,zn))

∑
Qn∈∆n(Z)

PTZn (Qn)H(c̃(Xn, Zn)|TZn = Qn) +O(log n) (C.34)

=
∑

Qn∈∆n(Z)
PTZn (Qn) inf

cQn coloring of GQn
[n]

H(cQn(Xn, Zn)|TZn = Qn) +O(log n) (C.35)

=
∑

Qn∈∆n(Z)
PTZn (Qn)Hχ(GQn

[n] ) +O(log n) (C.36)

=
∑

Qn∈∆n(Z)
PTZn (Qn)

(
n
∑
z∈Z

Qn(z)Hκ(Gf
z ) ± nϵn

)
+O(log n) (C.37)

= n
∑

Qn∈∆n(Z)
2−nD(Qn∥Pg(Y ))+o(n)

(∑
z∈Z

Qn(z)Hκ(Gf
z )
)

± nϵn +O(log n) (C.38)

= n
∑
z∈Z

Pg(Y )(z)Hκ(Gf
z ) + o(n), (C.39)

where (C.34) comes from H(TZn) = O(log n), as log |∆n(Z)| = O(log n); (C.35) follows
from the fact that the entropy of c̃ can be minimized independently on each GQn

[n] ; (C.36)
follows from the definition of GQn

[n] ; (C.37) comes from (C.31); (C.38) comes from [20,
Lemma 2.6] and the fact that ϵn does not depend on Qn.
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