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General Introduction

Control theory can be defined as the way of acting on systems in order to steer them from an initial
state to a final state. To park a car, to heat a room, etc., the possibilities of applications are at least
as numerous as the ways to describe things that happen in real life. This makes it a field at the
interface between various fields (aeronautics, biology, structural calculation, economics, etc.) by
mixing fundamental and more applied mathematics. In a world that is increasingly competitive
and in search of performance, the question of optimizing the action on a system naturally arises
and the optimal control theory aims at providing precise answers. In parallel with the progress
made in functional and numerical analysis, it is becoming easier to describe mathematically what
we observe in reality. This thesis is part of the broad field of optimal control of ordinary differential
equations, both from a theoretical and numerical point of view and is divided into two main con-
tributions. First, we study the asymptotic behavior of the value function associated to an optimal
control problem within the class of dissipative dynamical systems. Second, the question of imple-
menting efficient numerical methods for aerial vehicle guidance has led us to exploit both direct
and indirect numerical methods. Amongst the latter, we focus on the shooting method based on
the Pontryagin Maximum Principle (PMP) and its implementation by using continuations. Finally
the last part is devoted to some numerical experiments based on the Hamilton Jacobi Bellman
(HJB) approach.

0.1 Two-term large-time expansion of the value fonction for general
nonlinear optimal control problems

0.1.1 State of the art

The question of the asymptotic behavior of the value function has been widely studied from the
Partial Differential Equations (PDE) point of view, mainly within the frame of HJB ([56], [38], [65])
or ergodic theory ([11]). For instance in Chapter VII of [56], the authors consider the infinite time
horizon optimal control problem with discounted Lagrange cost. To characterize the ergodic be-
havior of the value function, the authors pass to the limit as the discount factor tends to zero and
characterize the limit value function as the viscosity solution of the limit equation. In [38], un-
der suitable assumptions amongst which some periodicity assumptions on the Hamiltonian, the
authors characterize the large time behavior of the solution of the first-order HJB equation as the
solution of a stationary HJB equation. The extension of the results to the deterministic zero-sum
differential games with two conflicting controllers has been studied for instance in [65]. It can be
noticed that more general results exist, for instance in [69], where the authors show that, under
adequate assumptions, there is at most one possible accumulation point of the values (in the uni-
form convergence topology), when the time horizon of the Cesaro means converges to infinity or
the discount factor of the Abel means converges to zero.

From a classical optimal control point of view, the large time behavior of the value function is
usually deduced as a consequence of a property that is satisfied by a wide class of optimal control
problems and arises when the time horizon is sufficiently large. This is the so-called turnpike
property, which reflects the fact that, for suitable optimal control problems in a sufficiently large
time horizon, any optimal solution thereof remains, most of the time, close to the optimal solution
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of an associated static optimization problem. This optimal static solution is referred to as the
turnpike (the name stems from the idea that a turnpike is the fastest route between two points
which are far apart, even if it is not the most direct route, see Figure 1).

Figure 1: Turnpike illustration: (a) small time case (b) large time case

The turnpike phenomenon was first observed and investigated by economists for discrete-time
optimal control problems (see [68], [63]). There are several possible notions of turnpike proper-
ties, some of them being stronger than the others (see [88]). Exponential turnpike properties have
been established in [48], [9], [8], [29] and [30] for the optimal triple resulting of the application of
PMP, ensuring that the extremal solution (state, adjoint and control) remains exponentially close
to the optimal solution of the corresponding static controlled problem, except at the beginning
and at the end of the time interval, as soon as the time horizon T is large enough. As unravelled
in [29], this phenomenon is closely related to hyperbolicity properties of the Hamiltonian flow.
For discrete-time problems it has been shown for instance in [78], [50] that the exponential turn-
pike property is also closely related to a strict dissipativity property. Measure-turnpike is a weaker
notion of turnpike, meaning that any optimal solution, along the time frame, remains close to
the optimal static solution except along a subset of times of small Lebesgue measure. It has been
proved in [79], [28] that measure turnpike follows from strict dissipativity or from strong duality
properties.

Based on the turnpike property, an equivalent as T Ñ�8 of the value function has been derived
for instance in [8] or [29].

To our knowledge, the most advanced result related to the asymptotic expansion of the value func-
tion in large time has been obtained in [18]. In this paper, the authors consider the LQ problem
with prescribed initial state x and free final state. A terminal cost is added to the running quadratic
cost. By denoting vp.q the value function, it is proved that

vpT, xq �
TÑ�8

T.v̄�Wpxq�λ (1)

where v̄ is the minimum of the static optimization problem, Wpxq is the cost to stabilize the system
from the initial point x towards the turnpike and λ � lim

TÑ�8
VpT, ȳq� v̄ .T. We mention that the

above result is proved by exploiting the exponential turnpike inequality enjoyed by the dynamical
system.

0.1.2 Contributions of the thesis

In our framework, we consider the finite-dimensional optimal control problem consisting of min-
imizing the cost functional:

JT,x,zpuq�
» T

0
f 0pyptq,uptqqd t (2)
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over the time interval r0,Ts, T¡ 0 being fixed under the dynamical constraints:

9yptq� f pyptq,uptqq (3a)

yp0q� x and ypTq� z (3b)

where yptq P Rn and uptq P Rp . The value function of the optimal control problem (2)- (3) is de-
fined by:

vpT, x, zq :� min
up.qPUT

JT,x,zpuq (4)

where UT :� L8 pr0,Ts,Ωq with Ω compact subset of Rp . Moreover, we assume the existence and
uniqueness of the solution (denoted by pȳ , ūq) to the static optimization problem:

v̄ :� min
f py,uq�0

f 0py,uq (5)

The contributions of the thesis are the following (hereafter we give only the main results, the ex-
haustive list of assumptions, explanations and comments will be provided in chapter 1):

0.1.3 LQ case

We consider the linear quadratic case, that is:

f py,uq :� Ay�Bu

f 0py,uq :� 1

2
pu�dq�Upu�dq� 1

2
py� cq�Qpy� cq (6)

The analysis is based on the Hamiltonian nature of the extremal equations of the PMP and some
classical results of the LQ theory. We provide the expansion of 1

T .vpT, .q at order one in 1{T and we
identify precisely all the terms of the expansion. We highlight that we assume neither the existence
of the turnpike nor the exponential inequality (which is a stronger assumption). Even better, the
latter appears as an intermediate result.

We prove the following value function expansion:

vpT, x, zq �
TÑ�8

T.v̄�Fpxq�xλ̄, ȳ�xyloooooooomoooooooon
Initial cost

�Bpzq�xλ̄, z� ȳyloooooooomoooooooon
Final cost

�op1q (7)

where: $'&'%Fpxq :�min
ũ1p.q

1

2

» �8

0

�}ũ1ptq� ū}2
U�}ỹ1ptq� ȳ}2

Q

�
d t

9̃y1 � Aỹ1�Bũ1, ỹ1p0q� x

(8)

and $'&'%Bpzq :�min
ũ2p.q

1

2

» �8

0

�}ũ2ptq� ū}2
U�}ỹ2ptq� ȳ}2

Q

�
d t

9̃y2 ��Aỹ2�Bũ2, ỹ2p0q� z

(9)

λ̄ being the optimal Lagrange multiplier in the steady optimization problem (5).

0.1.4 The general nonlinear case

In the nonlinear case, the key assumption is the strict dissipativity property enjoyed by (2)-(3a).
This concept, first introduced in [86], is defined in a general setting, alongside associated concepts
such as the available storage and the supply rate function. When a system is dissipative with a
given supply rate function, the question of finding a storage function has been extensively studied.
This question is similar to the problem of finding a suitable Lyapunov function in the Lyapunov
second method ensuring the stability of a system. A precise mathematical definition will be given
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in the chapter 1. At this step, we mention that strict dissipativity was used in the literature (see
[78], [49], [79], [50] and [28]) to derive turnpike properties.

We generalize the previous result within the class of dissipative nonlinear dynamical systems by
proving the following result

vpT, x, zq �
TÑ�8

T.v̄� v f pxq� vbpzq�op1q (10)

where

v f pxq :�min
up.q

» �8

0
wpyptq,uptqqd t

9yptq� f pyptq,uptqq, yp0q� x

(11)

and

vbpzq :�min
up.q

» �8

0
wpyptq,uptqqd t

9yptq�� f pyptq,uptqq, yp0q� z

(12)

with wpy,uq :� f 0py,uq� f 0pȳ , ūq.

0.2 Numerical methods in aerial vehicle guidance problem

Our objective is to design an algorithm able to solve automatically the problem of guidance of an
aerial vehicle with prescribed initial and terminal conditions. The aerial vehicle is modelled as a
single input control-affine dynamical system in dimension 5 with a constraint on the control. The
trajectory is considered in the vertical plane and is controlled through the angle of attack. More
precisely, the optimal control problem is the following:

pOCPq0

$''''''&''''''%

min
pt f ,αPA q

J0pt f ,αq :�
» t f

0

�
k0�k1.

phpsq�hcq2

h2
c



d s

9ξpsq� f pξpsq,αpsqq @s P r0, t f s
αp.q PA

ξp0q� ξ0, ξpt f q� ξ f

(13)

where:

• A is a set of admissible control strategies defined as A :�tα : r0,�8rÑ Auwith A compact
subset of R

• f pξ,αq :�

���������

v.cosγ
v. sinγ

Tmax.p1�Cs .vq�Dph, v,αq
m

� g . sinγ

Lph, v,α2q
m.v

� g .cosγ

v
�Cs .Tmax

��������

is the dynamics

• ξ0 and ξ f are the prescribed initial and final states.

• pk0,k1q P R��R� is the weight couple in the performance index. k0 and k1 weight respec-
tively the time of flight and the deviation to the cruise altitude.

All the terms of the above setting will be precised in chapter 2.

The originality of the problem and its link with the theoretical part of the thesis is the appearance,
when the time horizon T is large enough, of a middle partial turnpike arc (meaning a turnpike
only on some state coordinates but not all of them) which is quasi-singular in a sense to be made
precise. A trajectory arc is singular when the linearized system along this arc is not controllable
(see chapter 3 or [82], [32]).
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0.2.1 State of the art

It is usual to distinguish between two main types of numerical methods for solving optimal control
problems: indirect methods and direct methods (see e.g. [16], [83]). The direct methods consist of
discretizing the state and the control and thus of reducing the problem to a nonlinear optimiza-
tion problem (nonlinear programming) with constraints. The indirect methods consist of numer-
ically solving a boundary value problem obtained by applying the PMP, by means of a (single or
multiple) shooting method . Roughly speaking, the advantages of the indirect methods are their
execution speed and their numerical accuracy whereas the advantages of the direct methods are
the simplicity of the implementation and their relative robustness to the initialization.

The main difficulty of shooting methods (which rely on a Newton type resolution) is to initialize
them successfully. It is well known that in general they have to be combined with other theoretical
or numerical approaches (see [83]), such as continuation method, which is a very powerful tool to
be combined with the PMP. The idea of numerical continuation, or homotopy method, is to solve
a difficult problem step by step by starting from a simpler problem by parameter deformation. A
general presentation of homotopic methods can be found for instance in [42]. In [57], [80], [67]
or [43] the continuation method is used to solve challenging orbit transfer problems. In [46], [6],
[5] several continuations are used to introduce the atmospheric effects and the path constraints
related terms for solving the endo-atmospheric launch vehicle ascent problem starting from a
nearly analytic solution.

0.2.2 Analysis of the problem, difficulties and contributions of the thesis

Even though we implement direct methods, we focus in this thesis on the shooting method com-
bined with various continuations. The main reasons for this choice are the enhanced accuracy
and its potential to compute almost instantaneously a solution compliant with the real time im-
plementation. These requirements cannot, in general, be met with direct methods as soon as the
problem becomes too much complex. We hightlight here that the optimal control problem pOCPq0

is already simplified with respect to more sophisticated models.

The originality of our approach is to first study a simpler optimal control problem in dimension
3 that we call the DF case, which is a meaningful reduction of the initial problem pOCPq0. More
precisely, (DF) is defined as:

min
t f ,αp.q

Jk0,k1pt f ,αq :�
» t f

0
k0�k1.

�
hpsq�hc

hc


2

d s, k0 ¥ 0, k1 ¥ 0

9x � v.cosγ, 9h � v. sinγ, 9γ� α, |α| ¤ 1, with boundary conditions

(14)

where v ¡ 0 is the longitudinal speed, assumed to be fixed. px,h,γq are the state variables defining
respectively the position and the pitch angle of the vehicle. We aim at finding the optimal solution
connecting prescribed initial and final states.

First we analyse and solve this interesting case and then we use some appropriate numerical con-
tinuations in order to “connect” it with the initial guidance problem.

Difficulties: First, the Hamiltonian of the system being linear in the control, the optimal structure
arising from the application of the PMP may not be continuous, more precisely may be a succes-
sion of bang and singular arcs. The implementation of the shooting method is a challenge in such
conditions (see e.g. [32]). We mention here that, even if a direct method remains an interesting
alternative, singular arcs, when they occur, are in general not accurately computed by this method
as illustrated in the chapter 3.

Second, as mentioned before, we infer (from direct method simulations) the appearance of a par-
tial turnpike arc in the middle of the optimal trajectory. This raises a question of efficient imple-
mentation of the shooting method when the time horizon T is large (see for instance the numerical
example in dimension 2 in [29]).
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Finally, another major difficulty we encounter is the appearance of the chattering phenomenon
when k1 ÝÑ�8. Chattering means that the control switches an infinite number of times over a
compact time interval. These phenomena have been widely studied in the literature (see for in-
stance [37], [61], [58]). Note that chattering raises serious issues for the convergence of numerical
methods. According to [64], the difficulty is in particular due to the numerical integration of the
discontinuous Hamiltonian system because the chattering solutions worsen the approximation
and error estimates for standard numerical integration method.

Contributions of the thesis:

1. Qualitative study of the optimal control structure of the (DF) case when pk0,k1q P R��R�.
More precisely, we study:

(a) the Dubins (D) case (i.e. k0 � 1, k1 � 0), where we use the deep theoretical result on the
optimal control synthesis (which is in a generic case: circular arc-straight line-circular
arc, see [25]) in order to implement an efficient shooting method combined with a
numerical continuation.

(b) the Fuller (F) case (i.e. k0 � 0, k1 � 1), where the optimal control structure is of bang-
bang- -singular- -bang-bang nature with chattering phenomenon at the junctions with
the singular arc (i.e., an infinite number of switchings at the two junctions with the
middle singular arc, see [37], [61]).

(c) the (DF) case with k0 ¡ 0 and k1 ¡ 1, which can be understood as a weighted interpo-
lation between the (D) and (F) cases. The optimal control structure is of bang-bang-
-singular- -bang-bang nature and the number of bang arcs increases as k1 ÝÑ�8. We
regularize the cost with an additional L2 control term. This is a classical approach in
optimal control problems (refer for instance to [32], [80] or [67]). Then we combine two
successive continuations with variants of the shooting method in order to compute a
solution.

2. We exploit the numerical strategies studied on the reduced optimal control problem in order
to solve the original optimal control problem pOCPq0 by implementing:

(a) the continuation connecting the (D) case with the vehicle minimum time guidance
problem.

(b) the continuation connecting the (DF) case with the vehicle guidance problem.

(c) for even greater time horizons T, a continuation combined to a reduced shooting which
computes a quasi-optimal solution and reduces drastically the computation time.

3. Finally, in the chapter 4, we aim at evaluating numerically another approach based on the
HJB theory. After recalling the theoretical background (see [56]) and based on recent results
(see [3], [4]), we exploited the ROC-HJ solver library (see [1]) in order to:

(a) compute reachable sets and time optimum trajectories for a propelled aerial vehicle
model (dimension 3).

(b) compute optimal trajectories for a glider (non-propelled aerial vehicle) problem and
in presence of state constraints (dimension 4).
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Chapter 1

Value function expansion in large time
optimal control problems

“ The problem with the world is
that the intelligent people are full
of doubts, while the stupid ones are
full of confidence. ”

Charles Bukowski
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CHAPTER 1. VALUE FUNCTION EXPANSION IN LARGE TIME OPTIMAL CONTROL PROBLEMS

1.1 Introduction

In this chapter we study the large-time behavior of the value function associated to an optimal
control problem. The subject has been widely studied from the partial differential equations point
of view, for instance, within the frame of Hamilton Jacobi Bellman ([56], [38], [65]) or ergodic the-
ory ([11]).

We consider the problem of determining an optimal strategy minimizing the cost functional:

JT,x,zpuq�
» T

0
f 0pyptq,uptqqd t (1.1)

over the time interval r0,Ts, T¡ 0 being fixed and under the constraints:

9yptq� f pyptq,uptqq, yp0q� x and ypTq� z (1.2)

where yptq P Rn and uptq P Rp . We associate to the optimal control problem (1.1)-(1.2) its value
function:

vpT, x, zq :� min
up�qPUT

JT,x,zpuq (1.3)

where UT :� L8 pr0,Ts,Ωqwith Ω compact subset of Rp . We introduce as well the static optimiza-
tion problem, independent on time, and we denote:

v̄ :� min
f py,uq�0

f 0py,uq (1.4)

This is a usual optimization problem settled in Rn �Rp with a nonlinear equality constraint. We
assume that this minimization problem has at least one solution pȳ , ūq. Note that the minimizer
exists and is unique whenever f is linear in y and u for instance, and f 0 is a positive definite
quadratic form in py,uq. In what follows, we assume that there is a unique couple pȳ , ūq satisfying
(1.4).

Let us assume that the optimal solution of (1.1)-(1.2) remains most of the time “close” to pȳ , ūq.
Then, when the time horizon T is large enough and by assuming some controllability properties
of the dynamical system (1.2) (that will be precised later on), one understands intuitively that the
value function satisfies asymptotically (when v̄ � 0):

vpT, x, zq �
TÑ�8

v̄ .T (1.5)

Actually, the above described property, called turnpike property is well known in the literature (see
for instance [68], [23], [29]).

1.1.1 Turnpike phenomenon

The turnpike property is a general phenomenon which holds for a large class of optimal control
problems. We say that an optimal control problem enjoys the turnpike property if, when the time
horizon becomes large, the optimal solution remains, most of the time, "close" to a steady value
which appears to be the optimum of a static optimization problem.

The origin of the term turnpike is in the interpretation that Samuelson did of this phenomenon in
[68] (Chapter 12): suppose we want to travel from city A to city B by car, the best way to do it, the
optimal way, is to take the highway (namely the turnpike) as near as we can from city A, and leave
it when we are close to B. So, except nearby A and B, we are expected to be on the highway: in other
words, the turnpike of the problem.
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Figure 1.1: Highway to Hell

In [23], the authors proposed an interpretation of the turnpike property in the linear quadratic case
and affine-in-control dynamics by remarking that, when the time horizon T is large, the optimal
trajectory can be seen as a concatenation of two optimal trajectories over infinite time horizons,
one forward in time and the other backward in time.

In [29], the authors precised the turnpike phenomenon through a so-called exponential turnpike
inequality. We briefly provide some related elements hereafter: let us consider the optimal control
problem (1.1)-(1.2)-(1.3) and for sake of simplicity we assume that:

• for T large enough, there exists a unique optimal solution denoted by py�p�q, p�p�q,u�p�qq,
the triplet being obtained by the application of the PMP (refer to chapter 3 for detailed de-
scription).

• the extremal lift py�p�q, p�p�q, p0,u�p�qq is not abnormal thus that we can take p0 ��1.

The turnpike phenomenon stipulates that, when the final time T is large enough, the optimal so-
lution py�p�q, p�p�q,u�p�qq of (1.1)-(1.2)-(1.3) remains, along the time interval r0,Ts, except around
the initial time t � 0 and around the final time t �T essentially close to some static point pȳ , p̄, ūq P
Rn �Rn �Rp . Moreover, pȳ , p̄, ūq is the solution of the minimization problem (1.4).

The main result proved in [29] states an exponential turnpike property, which can be summarized
under adequate assumptions by the following inequality: there exists C¡ 0, ν¡ 0 and T0 ¡ 0 such
that if T¥T0, then:

}y�ptq� ȳ}�}p�ptq� p̄}�}u�ptq� ū}¤C
�

e�ν.t �e�ν.pT�tq
� @t P r0,Ts (1.6)

This result, proved locally (provided that the initial and terminal conditions are close enough to
the turnpike triple) in [29] states the exponential nature of the closedness of the optimal extremal
to the turnpike triple pȳ , p̄, ūq. Moreover, under some additional assumptions (amongst which the
strict dissipativity), it has been extended globally in [84]. We will discuss the strict dissipativity in
section 1.3.

Let us now remind another interesting result proved in [84] which can be understood as a variant
of the exponential turnpike. Writing down the state as ξptq � pxptq, yptqq, consider the following
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optimal control problem:

9xptq� f pxptq,αptqq (1.7a)

9yptq� g pxptq,αptqq (1.7b)

xp0q� x0, xpTq� x f , yp0q� y0, ypTq� yT (1.7c)

min
α

» T

0
f 0pxptq,αptqqd t (1.7d)

In comparison to (1.2), the state ξp�q has been "split" into two coordinates pxp�q, yp�qq, with the
associated dynamics p f , g q only depending on x and α. The instantaneous cost function f 0 also
does not depend on y . We introduce the "turnpike -static" optimal control problem:

mint f 0px,αq | px,αq PRn �Ω, f px,αq� 0, 9yptq� g px,αq, yp0q� y0 and ypTq� yTu (1.8)

We assume that (1.8) admits a unique optimal solution px̄T, ȳTp�q, p̄T
x , p̄T

y , ᾱTq depending on T. Un-
der the previously mentioned and some additional assumptions (please refer to [84] for detailed
analysis), there exists C¡ 0, ν¡ 0 and T0 ¡ 0 such that for any T¥T0, for any t P r0,Ts:

}x�ptq� x̄T}�}p�
xptq� p̄T

x }�}α�ptq� ᾱT}¤C
� 1

T
�e�ν.t �e�ν.pT�tq

	
(1.9a)

}y�ptq� ȳTptq}¤C, }p�
yptq� p̄T

y }¤
C

T
(1.9b)

Clearly speaking, one is able to bound the discrepancies x�ptq� x̄T, p�
xptq� p̄T

x and α�ptq� ᾱT by
1{T which tends to 0 as T Ñ�8 but slower than exponentially. At the same time, the distance
between ȳTp.q and the y�p.q remains bounded uniformly with respect to the time horizon T. This
turnpike property is thus weaker than the exponential turnpike property presented earlier and is
called linear turnpike property.

1.1.2 Value function behavior

At the light of what precedes, in the case where the dynamical system enjoys the turnpike property,
the optimal trajectory consists of three pieces:

1. a first transient arc leading the state from the initial point x to a vicinity of the turnpike ȳ .

2. a (long) "midway" arc during which the optimal trajectory-control couple remains essen-
tially close to pȳ , ūq.

3. a final transient arc during which the trajectory leaves the neighbourhood of ȳ to join the
final prescribed state z.
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Figure 1.2: Optimal trajectory

In one dimensional state-space, the optimal trajectory can be illustrated as follows:

Figure 1.3: Turnpike phenomenon

One expects the asymptotic expansion of the value function v to be of the following form:

vpT, x, zq �
TÑ�8

v̄ .T� Initial costloooomoooon
to the turnpike

pxq� Final costloooomoooon
from the turnpike

pzq (1.10)

Intuitively, the underlying result of what precedes is that a quasi-optimal trajectory is the concate-
nation of three arcs:

1. the transient arc from the initial state to the turnpike

2. the "large-in-time" arc on the turnpike
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3. the transient arc from the turnpike to the terminal state

The chapter is organized as follows:

1. we first prove the asymptotic expansion in the linear quadratic (LQ) case

2. we generalize the result to a class of dissipative dynamical systems with rather a general cost

1.2 Linear quadratic case

1.2.1 Setting

In the linear quadratic case, one has:

f py,uq :� Ay�Bu

f 0py,uq :� 1

2
pu�dq�Upu�dq� 1

2
py� cq�Qpy� cq (1.11)

with A PMn,npRq and B PMn,ppRq, y PRn , u PRp . U is an p�p symmetric positive definite matrix,
Q is an n�n symmetric positive definite matrix. The vectors d PRp and c PRn are arbitrarily given.
In the LQ case, one can take UT :� L2 pr0,Ts,Rpq. In what follows we denote:

}u}2
U :� u�Uu and }y}2

Q :� y�Qy

1.2.2 Main result

Theorem 1.2.2.1 If pA,Bq satisfies the Kalman condition, the value function (1.3) satisfies

vpT, x, zq �
TÑ�8

v̄ .T�Fpxq�xλ̄, ȳ�xyloooooooomoooooooon
Initial cost

�Bpzq�xλ̄, z� ȳyloooooooomoooooooon
Final cost

�op1q (1.12)

where:

pFxq

$'&'%Fpxq :�min
u1p�q

1

2

» �8

0

�}u1ptq}2
U�}y1ptq}2

Q

�
d t

9y1 � Ay1�Bu1, y1p0q� x� ȳ

(1.13)

and

pBzq

$'&'%Bpzq :�min
u2p�q

1

2

» �8

0

�}u2ptq}2
U�}y2ptq}2

Q

�
d t

9y2 ��Ay2�Bu2, y2p0q� z� ȳ

(1.14)

with λ̄ being the optimal Lagrange multiplier in the steady optimization problem (1.4) viewed as a
constrained optimization problem (see next paragraph for details).

Remark 1.2.2.1 : pFxq and pBzq can be equivalently formulated in the following ways:

pF̃xq

$'&'%min
ũ1p�q

1

2

» �8

0

�}ũ1ptq� ū}2
U�}ỹ1ptq� ȳ}2

Q

�
d t

9̃y1 � Aỹ1�Bũ1, ỹ1p0q� x

(1.15)

and

pB̃zq

$'&'%min
ũ2p�q

1

2

» �8

0

�}ũ2ptq� ū}2
U�}ỹ2ptq� ȳ}2

Q

�
d t

9̃y2 ��Aỹ2�Bũ2, ỹ2p0q� z

(1.16)

Under the latter formulation, it appears that:
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• Fpxq is the optimal cost of the infinite time linear quadratic stabilization problem starting
from x towards the turnpike pū, ȳq forward in time.

• Bpzq is the optimal cost of the infinite time linear quadratic stabilization problem starting
from z towards the turnpike pū, ȳq backward in time.

By analogy with (1.10), we remark that the initial (resp. final) cost is actually a sum of two terms
one of which being Fpxq (resp. Bpzq).

1.2.3 The steady optimisation problem

The constraint f py,uq � 0 defining a closed, convex non-empty subset of Rn �Rp and f 0 being a
continuous, strictly convex function of its arguments, it proves the existence and the uniqueness
of the steady control-state pair pȳ , ūq of (1.4).

According to the Karush Kuhn Tucker (KKT) optimality conditions, there exists a unique Lagrange
multiplier λ̄ PRn s.t.: $&%

ū�d�U�1B�λ̄� 0
Qȳ�A�λ̄�Q.c � 0
Aȳ�Bū � 0

(1.17)

which can be written in a more compact way as follows:$&%
ū � d�U�1B�λ̄

M

�
ȳ
λ̄



�
� �B.d

Q.c



(1.18)

where

M :�
�

A BU�1B�

Q �A�



(1.19)

We give the key property at the heart of our proof (refer to [73], [29]).

Proposition 1.2.3.1 (Dichotomy transformation) Assume that pA,Bq satisfies the Kalman condi-
tion, there exists:

L :�
�

In In

N P



PGL2npRq (1.20)

where P (resp. N) is the symmetric definite positive (resp. the symmetric definite negative) solution
of the Riccati algebraic equation (unknown K):

A�K�KA�KBU�1B�K�Q�On (1.21)

such that:
M� LDL�1 (1.22)

where:

D :�
�

A�BU�1B�N On

On A�BU�1B�P



(1.23)

Moreover, the eigenvalues of A� :� A�BU�1B�N have negative real parts and the eigenvalues A� :�
A�BU�1B�P are the negative of those of A�.

We set ∆E :� P�N. Using Proposition 1.2.3.1, one can calculate the unique solution of (1.18).
Firstly, we remark that:

L�1 �
�

∆E�1P �∆E�1

�∆E�1N ∆E�1



(1.24)

From (1.23), we know that M is invertible, thus:�
ȳ
λ̄



�M�1

� �B.d
Q.c



� LD�1L�1

� �B.d
Q.c
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and finally, we obtain:

ȳ �pA�1
� �A�1

� q∆E�1Q.c�pA�1
� .∆E�1P�A�1

� ∆E�1.NqB.d

λ̄�pPA�1
� �NA�1

� q∆E�1Q.c�pNA�1
� .∆E�1P�PA�1

� ∆E�1.NqB.d

ū � d�U�1B�λ̄

(1.25)

We can now prove the main result.

1.2.4 Proof of the main result

It is well known (classical LQ theory, see [82] for instance) that pFxq can be explicitly solved and
that the optimal trajectory, adjoint, control and cost are given by:

ŷ f ptq� eA�t px� ȳq, λ̂ f ptq�N.ŷ f ptq (1.26a)

û f ptq�U�1B�λ̂ f ptq, Fpxq��1

2
px� ȳq�Npx� ȳq (1.26b)

Similarly for pBzq, the optimal state, adjoint state, control and cost are given by:

ŷbptq� e�A�t pz� ȳq, λ̂bptq��P.ŷbptq (1.27a)

ûbptq��U�1B�λ̂bptq, Bpzq� 1

2
pz� ȳq�Ppz� ȳq (1.27b)

Under the Kalman assumption, the problem (1.1)-(1.2)-(1.3) admits a unique solution. According
to the PMP ([55]), there exists an optimal triple pŷTp.q, λ̂Tp.q, ûTp�qq such that, for almost every t P
r0,Ts:

9̂
λTptq��BH

By
pŷTptq, λ̂Tptq, ûTptqq (1.28a)

9̂yTptq� BH

Bλ pŷTptq, λ̂Tptq, ûTptqq (1.28b)

BH

Bu
pŷTptq, λ̂Tptq, ûTptqq� 0 (1.28c)

where the Hamiltonian H is defined by:

Hpy,λ,uq :�xλ, Ay�Buy� λ0

2

�}u�d}2
U�}y� c}2

Q

�
(1.29)

In the LQ case, under the Kalman condition, the extremal lift is normal thus we take λ0 ��1 and

denoting Θ :�
�

ŷT

λ̂T



, and Π :�

�
B.d
�Q.c



, (1.28) can be written:

ûTptq� d�U�1B�λ̂Tptq
9Θptq�M.Θ�Π

(1.30)

with M given by (1.19). Now we set Θ :� L.Θ1 with Θ1 :�
�

ŵT

η̂T



. From the dichotomy transfor-

mation (1.22), (1.23) and (1.30), we get:

9Θ1 �
�

A� On

On A�



Θ1�L�1Π (1.31)

which is equivalent to:

9̂wTptq� A�.ŵTptq�∆E�1.pQ.c�P.B.dq (1.32)

9̂ηTptq� A�.η̂Tptq�∆E�1.pQ.c�N.B.dq (1.33)
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Thanks to the previous transformation, we can explicitly integrate (1.32) forward in time and (1.33)
backward in time, and we obtain for any t P r0,Ts:

ŵTptq� eA�t .ŵTp0q�A�1
� pIn �eA�t q∆E�1.pQ.c�P.B.dq

η̂Tptq� e�A�pT�tq.η̂TpTq�A�1
� pIn �e�A�pT�tqq∆E�1.pQ.c�N.B.dq (1.34)

The prescribed initial and final conditions imply that:�
x
z



�
�

In e�A�T

eA�T In



looooooooomooooooooon

R

�
ŵTp0q
η̂TpTq



�
�

k1

k2



(1.35)

where

�
k1

k2



�
�

A�1
� pIn �e�A�Tq∆E�1.pQ.c�N.B.dq
�A�1

� pIn �eA�Tq∆E�1.pQ.c�P.B.dq



.

By inverting R we obtain:

R�1 �
� pIn �χpTqq�1 �pIn �χpTqq�1e�A�T

�eA�TpIn �χpTqq�1 In �eA�TpIn �χpTqq�1e�A�T



(1.36)

with χpTq :� e�A�T.eA�T.

In what follows, all the remainder terms are to be understood as T Ñ�8. Taking into account
that χpTqÝÑOn as TÑ�8, at first order:

R�1 �
�

In �OpχpTqq �pIn �OpχpTqq.e�A�T

�eA�T pIn �OpχpTqqq In �eA�TpIn �OpχpTqqe�A�T



(1.37)

From (1.35) and (1.37), taking into account that e�A�T ÝÑOn , eA�T ÝÑOn , χpTq�Ope�A�Tq and
χpTq�OpeA�Tq as TÑ�8:

ŵTp0q� x�A�1
� .∆E�1.pQ.c�N.B.dq�O

�
e�A�T

�
η̂TpTq� z�A�1

� .∆E�1.pQ.c�P.B.dq�O
�

eA�T
�

We can now explicitly calculate ŵTp�q and η̂Tp�q, and we "recognize" the optimal trajectories given
by (1.26a) and (1.27a):

ŵTptq� ŷ f ptq�A�1
� ∆E�1pQ.c�P.B.dq�O

�
e�A�T

�
(1.39)

η̂Tptq� ŷbpT� tq�A�1
� ∆E�1pQ.c�N.B.dq�O

�
eA�T

�
(1.40)

This allows us to "re-construct" the optimal trajectory:

ŷTptq� ŷ f ptq� ŷbpT� tq� ȳ�O
�

e�A�T
��O

�
eA�T

�
(1.41)

the optimal adjoint state:

λ̂Tptq�N.ŵTptq�P.η̂Tptq
�λ̂ f ptq� λ̂bpT� tq� λ̄�O

�
e�A�T

��O
�

eA�T
� (1.42)

and finally the optimal control:

ûTptq� d�B�λ̂Tptq
� û f ptq� ûbpT� tq� ū�O

�
e�A�T

��O
�

eA�T
� (1.43)

We deduce from (1.26a), (1.27a) and from Proposition 1.2.3.1 that for any t P r0,Ts:
}ŷ f ptq}¤ }x� ȳ}.e�C.t (1.44)

}ŷbpT� tq}¤ }z� ȳ}.e�C.pT�tq (1.45)
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where C :��max

"
Repµq |µ P SppA�q

*
¡ 0.

Consequently for T large enough, we get from (1.41), (1.42) and (1.43):

}ŷTptq� ȳ}¤K1.
�

e�C.t �e�C.pT�tq
�

(1.46)

}λ̂Tptq� λ̄}¤K2.
�

e�C.t �e�C.pT�tq
�

(1.47)

}ûTptq� ū}¤K3.
�

e�C.t �e�C.pT�tq
�

(1.48)

where:

K1 :�maxp}x� ȳ},}z� ȳ}q
K2 :�maxp}N}.}x� ȳ},}P}.}z� ȳ}q
K3 :�}U�1}.}B�}.maxp}N}.}x� ȳ},}P}.}z� ȳ}q

We have thus recovered the exponential turnpike property stated in [29].

By denoting by ϵpTq :�O
�

e�A�T
��O

�
eA�T

�
, and taking into account (1.41), (1.42) and (1.43), vp�q

can be decomposed as follows:

vpT, x, zq� 1

2

» T

0

�}ûTptq�d}2
U�}ŷTptq� c}2

Q

�
d t

�V1�V2�V3�V4�V5�V6�Vϵ

where:

V1 � 1

2

» T

0

�
}û f ptq}2

U�}ŷ f ptq}2
Q



d t

V2 � 1

2

» T

0

�
}ûbpT� tq}2

U�}ŷbpT� tq}2
Q



d t

V3 � 1

2

» T

0

�
}ū�d}2

U�}ȳ� c}2
Q



d t � v̄ .T

V4 �
» T

0

�
xû f ptq,Upū�dqy�xŷ f ptq,Qpȳ� cqy



d t

V5 �
» T

0

�
xûbpT� tq,Upū�dqy�xŷbpT� tq,Qpȳ� cqy



d t

V6 �
» T

0

�
xû f ptq,UûbpT� tqy�xŷ f ptq,QŷbpT� tqy



d t

and Vϵ is the sum of all the terms that are multiplied by ϵpTq. It is easy to see that, as ϵpTq ÝÑ 0
exponentially as TÑ�8, we have VϵÝÑ 0 as TÑ�8.

Let us treat the other terms: clearly, from (1.13) (resp. (1.14)), V1 ÝÑ Fpxq (resp. V2 ÝÑ Bpzq) as
TÑ�8.

The terms V4 and V5 can be explicitly calculated from (1.26) and (1.27) and we obtain:

V4 �xpeA�T� Inqpx� ȳq, λ̄yÝÑxȳ�x, λ̄y as TÑ�8
V5 �xpIn �e�A�Tqpz� ȳq, λ̄yÝÑxz� ȳ , λ̄y as TÑ�8

Finally we have:

V6 ¤
» T

0
}U}.}û f ptq}.}ûbpT� tq}�}Q}.}ŷ f ptq}.}ŷbpT� tq}d t

¤ 2max
�}B}2}P}.}N}}U�1},}Q}� .}x� ȳ}.}z� ȳ}.T.e�C.T

Consequently, V6 ÝÑ 0 exponentially as TÑ�8 and the main result is proved �.
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1.2.5 Numerical example

Let us illustrate numerically the value function expansion. Consider the one-dimensional linear
dynamics:

9yptq� yptq�2uptq, yp0q� x, ypTq� z (1.49)

to which we associate the value function:

vpT, x, zq� min
uPUT

1

2

» T

0

4

3
pyptq�3q2�3puptq�1q2d t (1.50)

The optimal triple of the associated steady optimization problem is easily calculated and one has:

ȳ � 66

25
, ū ��33

25
, λ̄��12

25
and v̄ � 6

25
.

Thus we have Fpxq�
�

x� 66

25

	2

and Bpzq� 1

4

�
z� 66

25

	2

.

For px, zq P r�2,2s�r�2,2s, and some values of T, the optimal trajectory has been calculated using
the shooting method.

The figure below displays the optimal triple in the case: x ��1, z ��2, T increasing from 1 to 10
by step of 1.

Figure 1.4: Optimal triple for some values of T

Once the optimal trajectory is calculated, the associated cost is numerically estimated. The fol-
lowing figure displays the value of the difference:

ϵpT, x, zq� vpT, x, zq� v̄ .T�Fpxq�Bpzq�xλ̄, z�xy (1.51)

over a grid of fixed initial and final states.
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Figure 1.5: Value function expansion error

Each layer corresponds to the difference at a certain fixed time horizon T. The layer at the bottom
corresponds to the shortest time horizon and the layer at the top to the largest time horizon.
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1.3 Dissipative nonlinear systems

1.3.1 Setting of the problem

In this section we establish a theorem valid for a specific class of nonlinear control systems. We
consider the general dynamics (1.2), where f : Rn �Rp ÝÑ Rn is of class C1. We consider the op-
timal control problem of determining a control u PUΩ

T :� L8 pr0,Ts,Ωq, Ω being a fixed compact
set of Rp , minimizing the cost functional (1.1), where f 0 :Rn �Rp ÝÑR is of class C1.

Remark 1.3.1.1 As Ω does not depend on T for any T ¡ 0, the space of controls does neither de-
pend on T (indeed, beyond time horizon T the controls can be trivially extended within Ω) and will
consequently be denoted by UΩ.

In the sequel, we assume that Ω�Bp0,cq for some c ¡ 0.

We assume that for T ¡ 0 large enough, (1.1)-(1.2)-(1.3) admits an optimal solution, denoted by
pŷTp�q, ûTp�qq. The conditions ensuring the existence of such a solution are well known (see for
instance [82], [19]). For instance, if the set of velocities t f py,uq |u PΩu is a convex subset of Rn for
any y PRn , with mild growth at infinity and if the epigraph of f 0 is convex, then there exists at least
one optimal solution. These conditions are for example satisfied if the dynamics are control-affine
and if the cost functional is convex with respect to u.

If we assume here Ω� Rp , then by the PMP ([82]-[55]), there exist λ0 ¤ 0 and an absolutely con-
tinuous mapping λ̂T : r0,Ts ÝÑRn (called adjoint vector) satisfying pλ̂Tp�q,λ0q� p0,0q such that

9̂yTptq� BH

Bλ
�

ŷTptq, λ̂Tptq,λ0, ûTptq
�

9̂
λTptq��BH

By

�
ŷTptq, λ̂Tptq,λ0, ûTptq

�
BH

Bu

�
ŷTptq, λ̂Tptq,λ0, ûTptq

�� 0

(1.52)

for almost every t P r0,Ts. The Hamiltonian H is defined by

Hpy,λ,λ0,uq :�xλ, f py,uqy�λ0 f 0py,uq (1.53)

here x,y is the Eucledian scalar product in Rn . We will assume that the abnormal case does not
occur, thus we set λ0 ��1.

By the KKT optimality conditions, there exists λ̄ PRn such that

f pȳ , ūq� 0

�B f 0

By
pȳ , ūq�xλ̄,

B f

By
pȳ , ūqy� 0

�B f 0

Bu
pȳ , ūq�xλ̄,

B f

Bu
pȳ , ūqy� 0

(1.54)

In the Hamiltonian formalism, the first-order optimality system (1.54) is equivalent to

BH

Bλ pȳ , λ̄,�1, ūq� 0

�BH

By
pȳ , λ̄,�1, ūq� 0

BH

Bu
pȳ , λ̄,�1, ūq� 0

(1.55)

We assume that the triple pȳ , λ̄, ūq is unique and we keep the definition (1.4) of v̄ .
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Because of the turnpike property, since it is expected that the dominating term in the asymptotic
expansion of vp�q is equal to T.v̄ , we "absorb" it by subtracting it to the cost JT,x,z and consider the

"shifted" optimal control problem, denoted by
�
P x,z
r0,Ts

	
min

up�qPUΩ
CTpu, x, zq :� min

up�qPUΩ

» T

0
wpyptq,uptqqd t (1.56a)

9yptq� f pyptq,uptqq, @t P r0,Ts (1.56b)

yp0q� x, ypTq� z (1.56c)

where wp�q is the "shifted cost" defined by

wpy,uq :� f 0py,uq� f 0pȳ , ūq (1.57)

The readers acquainted with the notion of dissipativity in nonlinear optimal control will recognize
in (1.57) a classical storage function. This is where the link with disspativity appears.

We introduce as well the following shifted infinite-time optimal control problem denoted respec-
tively by pP x

8 f q

v f pxq :� min
up�qPUΩ

» �8

0
wpyptq,uptqqd t

9yptq� f pyptq,uptqq, yp0q� x

(1.58)

and pP z
8bq

vbpzq :� min
up�qPUΩ

» �8

0
wpyptq,uptqqd t

9yptq�� f pyptq,uptqq, yp0q� z

(1.59)

In our notations, the index “f” stands for “forward” while the index “b” stands for “backward”.

We assume the existence of optimal solutions to pP x
8 f q and pP z

8bqwith a finite cost.

1.3.2 Assumptions

Assumptions of global nature:

pA1q: (Regularity of f and f 0): We assume that f and f 0 are of class C1.

pA2q: (Existence and uniqueness of optimal solutions): There exists T0 ¡ 0 such that for any T ¥
T0 each of the optimal control problems

�
P x,z
r0,Ts

	
, pP x

8 f q and pP z
8bq admits a unique optimal

solution denoted respectively by pŷTp�q, ûTp�qq,
�

ŷ8 f p�q, û8 f p�q
�

and pŷ8bp�q, û8bp�qq.
pA3q: (Boundedness of the optimal trajectories): The optimal trajectories of

�
P x,z
r0,Ts

	
, pP x

8 f q and

pP z
8bq are bounded uniformly with respect to T¥T0:

Db ¡ 0, | @t ¥ 0,}ŷptq}¤ b (1.60)

pA4q: (Boundedness of the optimal costs): The optimal costs of pP x,z
0,T q, pP x

8 f q and pP z
8bq are

bounded uniformly with respect to T¥T0.

pA5q: The minimizer pȳ , ūq of (1.4) is unique and there exists a unique λ̄, assumed to be normal,

such that (1.54) is satisfied. Moreover, we assume that ū P �
Ω.

pA6q: (Strict dissipativity property): The family of optimal control problems (1.56a)-(1.56b) indexed
by T is strictly dissipative at pȳ , ūqwith respect to the supply rate function w defined by (1.57) with
a storage function S.

The notion of strict dissipativity was introduced in [86] and already used in [78], [49], [79] and [50]
to derive turnpike properties.
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We recall that (1.56a)-(1.56b) is dissipative at the static point pȳ , ūqwith respect the the supply rate
function w if there exists a bounded function S :Rn ÝÑR, called storage function such that for any
admissible pair pyp�q,up�qq and any T¡ 0:

Spyp0qq�
» T

0
wpyptq,uptqqd t ¥ SpypTqq (1.61)

The system is strictly dissipative if, in addition, there exists some function αp�q of class K ( i.e.
α : r0,�8qÝÑ r0,�8q continuous, increasing and such that αp0q � 0) such that for any T¡ 0 we
have:

Spyp0qq�
» T

0
wpyptq,uptqqd t ¥ SpypTqq�

» T

0
α

����� yptq� ȳ
uptq� ū

����
d t (1.62)

Assumption of local nature:

pA7q: Setting A :� B f

By
pȳ , ūq, B :� B f

Bu
pȳ , ūq, the pair pA,Bq satisfies the Kalman rank condition i.e,

the linearized system at pȳ , ūq is controllable.

pA8q: (Local boundedness of the minimum time trajectories and controls near the turnpike): There
exists r ¡ 0 such that for any x P B̄pȳ ,r q the minimum time trajectory to ȳ starting from x, denoted
by y

τ f
x p�q and the associated control, denoted by uτ f p�q remain in the neighbourhood of respec-

tively ȳ and ū uniformly with respect to x that is to say:

Dr and Kr ¡ 0 | @x P B̄pȳ ,r q, @t P r0,τ f pxqs, }y
τ f
x ptq� ȳ}�}uτ f ptq� ū}¤Kr (1.63)

where τ f p�q is the minimum time function to reach ȳ with the dynamics f .

1.3.3 Comments

The assumption “admissible controls remain in Ω” can be weakened to “optimal controls remain
in Ω”. This is for example usually the case for control-affine systems with quadratic cost.

The assumptions pA1q and pA7q together imply that there exists r ¡ 0 such that for any x PBpȳ ,r q,
there exists an admissible trajectory steering the control system from x to ȳ in finite time. Thus the
minimum time function τ f p�q is well defined on Bpȳ ,r q and continuous at ȳ . This is classical result
that can be found, for instance, in [56]. The result remains true for the minimum time function
associated to the backward-in-time dynamics� f , denoted by τ� f p�q.
The assumption pA8q requires the local boundedness of the minimum time trajectories and con-
trols for any trajectory starting in the previously defined neighbourhood of the turnpike. This as-
sumption is satisfied if the minimum time function is C1 in the neighbourhood of ȳ . We highlight
here that the regularity of the minimum time function has been widely studied in the literature: it
is well known that under appropriate controllability type conditions the minimum time function
has an open domain of definition and is locally Lipschitz on it, see for instance [56]-[36]. Thus, it is
differentiable almost everywhere on its domain. The value function fails in general to be differen-
tiable at points that are reached by at least two minimum time trajectories and its differentiability
at a point does not guarantee continuous differentiability around this point. In [40], the authors
show that, under some assumptions on the regularity and target smoothness (which excludes the
singleton case), the nonemptiness of the proximal subdifferential of the minimum time function
at a point implies its continuous differentiability in a neighborhood of this point. An analogous
result has been proved for the value function of the Bolza problem in [66] in the case where the
initial state is a prescribed point and the final state is let free. In [75], the author gives a survey
of results on the regularity of the minimum time map for control-affine systems with prescribed
initial and final points. Finally, for results on the set where the value function is differentiable, we
refer the reader to [44], [33], [34], [53], [54] and references therein.
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The (strict) dissipativity property pA6q is certainly the less intuitive assumption to check in prac-
tice. In general, when the system is dissipative, storage functions are closely related to viscos-
ity solutions of partial differential inequalities called Hamilton-Jacobi inequalities. We refer the
reader to the Chapter 4 of [15] for more details on this subject. One can remark that, under suit-
able regularity and boundedness assumptions on the dynamics and the cost, the value function
(its opposite more precisely) can be taken as a storage function, and the dissipativity inequality is
then deduced from the Dynamic Programming Principle (DPP).

The strict dissipativity inequality (1.62) remains true for the dynamics � f , provided that one
switches the initial and final states. The corresponding storage function is�Sp�q.

1.3.4 Main result

Theorem 1.3.4.1 : Under Assumptions pA1q�pA8q, the value function (1.3) satisifes

vpT, x, zq�T.v̄� v f pxq� vbpzq�op1q (1.64)

as TÑ�8.

Remark 1.3.4.1 In the LQ case, one can prove that

• v f pxq� Fpxq�xλ̄, ȳ�xy
• vbpzq�Bpzq�xλ̄, z� ȳy

where Fp�q and Bp�q are respectively given by (1.13) and (1.14). This observation unifies the linear
and non linear case.

Remark 1.3.4.2 : The strict dissipativity assumption being at the heart of the theorem in the general
case, one can show that is it automatically satisfied in the linear quadratic case (see the proposition
A.1.0.1 in the Annex).

In order to prove the Theorem 1.3.4.1, we need some preliminary lemmas.

1.3.5 Some useful lemmas

Lemma 1.3.5.1 The optimal trajectory ŷTp�q of
�
P x,z
r0,Ts

	
satisfies

DtpTq P r0,Ts | ŷT ptpTqqÝÑ ȳ as TÑ�8 (1.65)

Proof: The strict dissipativity inequality applied to the optimal pair pŷTp�q, ûTp�qq implies

f 0pȳ , ūq¤ 1

T

» T

0
f 0pŷTpsq, ûTpsqqd s� Spxq�Spzq

T

� 1

T

» T

0
α

����� ŷTpsq� ȳ
ûTpsq� ū

����
d s

(1.66)

Let us prove that
1

T

» T

0
α

����� ŷTpsq� ȳ
ûTpsq� ū

����
d s ÝÑ 0 as TÑ�8 (1.67)

Let us assume by contradiction that this is not true: then there exists η¡ 0 and a sequence Tk ÝÑ
�8 such that

1

Tk

» Tk

0
α

����� ŷTk psq� ȳ
ûTk psq� ū

����
d s ¥ η (1.68)

By multiplying the inequality (1.66) by Tk one gets» Tk

0
α

����� ŷTk psq� ȳ
ûTk psq� ū

����
d s ¤
» Tk

0
wpŷTk psq, ûTk psqqd s�Spxq�Spzq (1.69)
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which implies from (1.68)

Tk .η¤
» Tk

0
wpŷTk psq, ûTk psqqd s�Spxq�Spzq (1.70)

Assumption pA4q leads to a contradiction in the above inequality when k Ñ�8.

Then we have
1

T

» T

0
α

����� ŷTptq� ȳ
ûTptq� ū

����
d s ¥ 1

T

» T

0
αp}ŷTptq� ȳ}qd s ÝÑ 0 as T Ñ�8 which im-

plies, from the mean value theorem

DtpTq P r0,Ts | αp}ŷTptpTqq� ȳ}qÝÑ 0 as TÑ�8 (1.71)

From the properties of αp�q, this leads to

ŷT ptpTqqÝÑ ȳ as TÑ�8 (1.72)

Remark 1.3.5.1 As proved in [84], if one makes the change of variable s � t

T
, in (1.67) then

1

T

» T

0
α

����� ŷTptq� ȳ
ûTptq� ū

����
d t �
» 1

0
α

����� ŷTpT.sq� ȳ
ûTpT.sq� ū

����
d s ÝÑ 0 as TÑ�8

which implies, from the converse Lebesgue theorem (see [17] p. 58, Theorem IV.9) that there exists
an increasing sequence of time horizons pTkqkPN such that ŷTk pTk .sq ÝÑ ȳ and ûTk pTk .sq ÝÑ ū as
k Ñ�8 for almost every s P r0,1s. The latter looks like a measure turnpike result. However we did
not exploit this result in our paper.

Lemma 1.3.5.2 : The optimal trajectory ŷ8 f p�q of pP x
8 f q satisfies

ŷ8 f ptqÝÑ ȳ as t Ñ�8 (1.73)

Proof: From (1.62) we have» T

0
α

����� ŷ8 f ptq� ȳ
û8 f ptq� ū

����
d t ¤
» T

0
wpŷ8 f ptq, û8 f ptqqd t �Spxq�Spŷ8 f pTqq (1.74)

the right-hand side of the inequality being bounded uniformly with respect to T one gets» T

0
α
�}ŷ8 f ptq� ȳ}�d t ¤

» T

0
α

����� ŷ8 f ptq� ȳ
û8 f ptq� ū

����
d t �
TÑ�8

Op1q (1.75)

which implies:

ΦpTq :�
» T

0
α
�}ŷ8 f ptq� ȳ}�d t �

TÑ�8
Op1q (1.76)

First, we remark that (1.76) and the positivity of αp�q imply the convergence of ΦpTq as TÑ�8.

On the other hand, from pA1q and pA3q we know that f is of class C1 on the compact set Bp0,bq�
Bp0,cq thus bounded by a global constant, denoted by k ¡ 0. Therefore ŷ8 f p�q is globally Lipschitz
continuous in time t , and consequently t ÞÑ }ŷ8 f ptq� ȳ} as well.

From the boundedness of ŷ8 f p�q (see pA3q) and the continuity of αp�q, we deduce the uniform
continuity of t ÞÑ αp}ŷ8 f ptq� ȳ}q over r0�8q. Indeed, αp�q being continuous on a compact set,
it is uniformly continuous (Heine theorem).

By applying Barbalat’s lemma (see A.1.0.1), one has αp}ŷ8 f ptq� ȳ}q ÝÑ 0 as t Ñ�8, which im-
plies ŷ8 f ptqÑ ȳ as t Ñ�8 and the proof is over �.

Corollary 1.3.5.1 Lemma 1.3.5.2 remains true for the optimal trajectory of pP z
8bq problem (with

the backward-in-time dynamics� f ).
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1.3.6 Proof of the main result

For T ¥ T0, let us consider pŷTp�q, ûTp�qq, pŷ8 f p�q, û8 f p�qq and pŷ8bp�q, û8bp�qq the optimal solu-

tions of respectively
�
P x,z
r0,Ts

	
, pP x

8 f q and pP z
8bq.

We split the optimal cost CTpûT, x, zq as

CTpûT, x, zq�
» T

0
wpŷTptq, ûTptqqd t (1.77)

�
» tpTq

0
wpŷTptq, ûTptqqd tlooooooooooooomooooooooooooon

C f
T

�
» T

tpTq
wpŷTptq, ûTptqqd tlooooooooooooomooooooooooooon

Cb
T

(1.78)

where tpTq is defined by (1.65).

We perform the proof in two steps. We first prove that

Step 1: v f pxq� vbpzq¤ liminf
TÑ�8

CTpûT, x, zq (1.79)

Then we prove that

Step 2: limsup
TÑ�8

CTpûT, x, zq¤ v f pxq� vbpzq (1.80)

which will prove the required result.

The real number r being defined in Assumption pA8q, we first remark that py,uq ÞÑwpy,uq is con-
tinuous on Ωr :�Bpȳ ,Kr q�Bpū,Kr qwhich is a compact set of Rn �Rp . Consequently,

DMr ¡ 0 | @py,uq PΩr , |wpy,uq| ¤Mr (1.81)

Let ϵ¡ 0. The continuity of τ f p�q at ȳ gives

Dη¡ 0 s.t }x� ȳ}¤ ηñ|τ f pxq| ¤ ϵ

2.Mr
(1.82)

The continuity of τ� f p�q at ȳ gives

Dν¡ 0 s.t }x� ȳ}¤ νñ|τ� f pxq| ¤ ϵ

2.Mr
(1.83)

We set γ :�minpη,ν,r q¡ 0, and we denote by B :�Bpȳ ,γq.
� Step 1: From Lemma 1.3.5.1, we know that

DT1 ¥ 0 s.t @T¥T1, ŷT ptpTqq PB (1.84)

We select a time horizon T such that T¥maxpT0,T1q and construct qup�q an admissible control for
the pP x

8 f q problem as follows

quptq :�

$''''&''''%
ûTptq if t P r0, tpTqs

û0ptq if t P rtpTq, tpTq�τ0s

ū if t ¥ tpTq�τ0

where τ0 :� τ f pŷT ptpTqqq is the minimum time to reach ȳ from ŷT ptpTqq and û0p�q the associated
optimal control.
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We infer from (1.82) and (1.84)

v f pxq¤
» �8

0
w pqyptq, quptqqd t

¤
» tpTq

0
w pŷTptq, ûTptqqd t �

» tpTq�τ0

tpTq
wpŷ0ptq, û0ptqlooooomooooon

PΩr

qd t �
» �8

tpTq�τ0

wpȳ , ūqloomoon
0

d t

¤C f
T �τ0.Mr

¤C f
T �

ϵ

2

(1.85)

For the second term Cb
T, we first remark that

Cb
T �

» T

tpTq
w pŷTptq, ûTptqqd t �

» T�tpTq

0
w ppỹTptq, ũTptqqd t (1.86)

where pỹTptq, ũTptqq :�pŷTpT� tq, ûTpT� tqq is such that

9̃yTptq�� f pỹTptq, ũTptqqwith ỹTp0q� z (1.87)

Noting that ỹT pT� tpTqq� ŷT ptpTqq, we construct ŭp�q an admissible control for the pP z
8bq prob-

lem as follows

ŭptq :�

$''''&''''%
ũTptq if t P r0,T� tpTqs

û1ptq if t P rT� tpTq,T� tpTq�τ1s

ū if t ¥T� tpTq�τ1

where τ1 :� τ� f pỹT pT� tpTqqq is the minimum time to reach ȳ from ỹT pT� tpTqq and û1p�q the
associated optimal control.

We infer from (1.83) and (1.84)

vbpzq¤
» �8

0
wpy̆ptq, ŭptqqd t

¤
» T�tpTq

0
wpỹTptq, ũTptqqd t �

» T�tpTq�τ1

T�tpTq
wpŷ1ptq, û1ptqlooooomooooon

PΩr

qd t �
» �8

T�tpTq�τ1

wpȳ , ūqloomoon
0

d t

¤Cb
T�τ1.Mr

¤Cb
T�

ϵ

2
(1.88)

combining (1.85) and (1.88), we obtain

v f pxq� vbpzq¤C f
T �Cb

T�ϵ�CTpûT, x, zq�ϵ (1.89)

and thus
v f pxq� vbpzq¤ liminf

TÑ�8
CTpûT, x, zq (1.90)

� Step 2: From Lemma 1.3.5.2 and Corollary 1.3.5.1, we have ŷ8 f ptq ÝÑ ȳ and ŷ8bptq ÝÑ ȳ as
t Ñ�8. Consequently

DT2 ¡ 0 s.t @T¥T2,

����ŷ8 f

�
T

2
�1



� ȳ

����¤ γ (1.91)

and

DT3 ¡ 0 s.t @T¥T3,

����ŷ8b

�
T

2
�1



� ȳ

����¤ γ (1.92)

Take T¥maxpT2,T3q and denote
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• τ3 :� τ f

�
ŷ8 f

�
T

2
�1




and û3p�q the associated optimal control;

• τ4 :� τ� f

�
ŷ8b

�
T

2
�1




and û4p�q the associated optimal control.

We construct the admissible control uTp�q admissible for
�
P r0,Ts

�
x,z

as follows (see Figure 1.6)

uTptq :�

$''''''''''''''''''''''&''''''''''''''''''''''%

û8 f ptq if t P
�

0,
T

2
�1

�

û3ptq if t P
�

T

2
�1,

T

2
�1�τ3

�

ū if t P
�

T

2
�1�τ3,

T

2
�1�τ4

�

û4pT� tq if t P
�

T

2
�1�τ4,

T

2
�1

�

û8bpT� tq if t P
�

T

2
�1,T

�

Figure 1.6: Construction of an admissible trajectory for
�
P x,z
r0,Ts

	

We have then the upper bound for the optimal cost

CTpûT, x, zq¤
» T

0
wpy

T
ptq,uTptqqd t

¤ A�B�C�D�E

(1.93)

where:

A :�
» T

2 �1

0
w
�

ŷ8 f ptq, û8 f ptq
�

d t
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E :�
» T

T
2 �1

w pŷ8bpT� tq, û8bpT� tqqd t �
» T

2 �1

0
wpŷ8bptq, û8bptqqd t

B :�
» T

2 �1�τ3

T
2 �1

wpŷ3ptq, û3ptqlooooomooooon
PΩr

qd t ¤ τ3.Mr ¤ ϵ

2

C :�
» T

2 �1�τ4

T
2 �1�τ3

w pȳ , ūqloomoon
0

d t � 0

D :�
» T

2 �1

T
2 �1�τ4

w pŷ4pT� tq, û4pT� tqqd t �
» T

2 �1�τ4

T
2 �1

wpŷ4ptq, û4ptqlooooomooooon
PΩr

qd t ¤ τ4.Mr ¤ ϵ

2

Finally, we obtain

CTpûT, x, zq¤
» T

2 �1

0
w
�

ŷ8 f ptq, û8 f ptq
�

d t �
» T

2 �1

0
wpŷ8bptq, û8bptqqd t �ϵ (1.94)

Noting that the integrals A and E converge, we take the limit superior as T Ñ�8 of the above
inequality and we obtain

limsup
TÑ�8

CTpûT, x, zq¤ v f pxq� vbpzq (1.95)

� Conclusion: Combining (1.90) and (1.95), we obtain the required result

lim
TÑ�8

CTpûT, x, zq� v f pxq� vbpzq (1.96)
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Chapter 2

Missile guidance problem

“ Doing nothing is very hard to do.
You never know when you’re
finished. ”

Leslie Nielsen

Sommaire
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Guidance principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Surface to air missile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Cruise missile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Mission data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Equations of the motion and environment model . . . . . . . . . . . . . . . . . . . 44

2.5.1 Assumptions and Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Kinematic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.3 Dynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.4 Flight in the vertical plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.5 Discussion of the equations of motion . . . . . . . . . . . . . . . . . . . . . . 48

2.5.6 Atmosphere model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Context of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Global trajectory optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8 Mathematical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Numerical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

41



CHAPTER 2. MISSILE GUIDANCE PROBLEM

2.1 Introduction

Missiles can roughly be divided into two categories: guided missiles (or tactical missiles) and un-
guided missiles (or strategic missiles).

A tactical missile can be defined as an endo-atmospheric aerospace vehicle with varying guidance
capabilities (means by which it steers, or is steered to a target), that is self-propelled through the
atmosphere for the purpose of inflicting damage on a designated target. The vehicle is able to
control its velocity through the thrust and its 3-D trajectory through the aerodynamic lift created
by the rotation of its the movable surfaces (wings, fins). It is usually launched in the direction
approximately towards that of a designated target and subsequently receives steering commands
from the ground guidance system or its own onboard guidance system to improve its accuracy.

A strategic missile, for instance a ballistic missile, is an exo-atmospheric aerospace vehicle pow-
ered and guided for only a brief initial part of its flight after which it follows the natural laws of
motion under gravity to establish a ballistic trajectory.

Figure 2.1: Artist view of the M 51 ballistic missile

Within the framework of this study, we are interested in the guidance of tactical missiles.

2.2 Guidance principles

Tactical missiles may either home to the target, or follow a nonhoming course. The nonhoming
course can be either inertially guided or pre-programmed. When the firing range is beyond the
seeker’s detection range, the missiles usually combine both of above mentioned guidance modes.
The nonhoming phase, also known as mid-course guidance, starts after the launch and aims at
steering the missile to the vicinity of the target in the optimal conditions before engaging the hom-
ing phase. Just before the end of this stage, the onboard seeker locks on the target.

The homing phase, also known as terminal guidance, starts with the locking on of the seeker and
ends at the interception of the target. During this stage, the seeker sends all the relevant target
information to the missile computer in order to shape the trajectory till the interception.

Many studies solve the terminal guidance problem with various guidance laws amongst which the
most famous being the Proportional Navigation and its variants (see [51]). In this thesis, we treat
the overall trajectory guidance.
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Figure 2.2: Guidance principle

2.3 Surface to air missile

The surface-to-air missile aims at intercepting highly maneuverable targets (fighters, enemy mis-
siles) including at high altitudes (up to 20 km). Hence, the required maneuverability has to be
great enough to fullfill the mission.

It is usually powered by an all boost rocket motor that provides thrust across the wide Mach num-
ber range and causes high peak velocities. The longitudinal acceleration is great during the propul-
sive phase after which the missile gradually decelerates due to the drag force. The propulsive phase
duration is relatively short with respect to the flight time. The suitable aerodynamic configuration
ensures high normal load factor capability.

During the mid-course guidance, the target trajectory is predicted by specific algorithms using
its current state (position and velocity) returned by a radar. The position where the interception
is supposed to happen is known as the Predicted Interception Point (PIP). The PIP can be sent
periodically from the radar to the interceptor using a communication channel. From its current
position and the updated target information, the missile computer calculates the optimal trajec-
tory with respect to the target. When the interceptor approaches the PIP, the seeker locks on the
target to perform the terminal guidance.

2.4 Cruise missile

2.4.1 Presentation

A cruise missile can be defined as a self guided, pilotless, continuously powered air-breathing ve-
hicle that flies like airplane, supported by aerodynamic surfaces. Launched from air, sea or land,
it aims at treating land or sea targets.

The typical range of a cruise missile is extremely variable and may depend on multiple factors
amongst which the launch platform (a missile launched from a fighter will likely have longer range
than a missile launched from a ship), the performance & autonomy of the propeller and of course
of the assignated mission. Roughly speaking the typical range can vary between 10 km up to 750
km.

The mid course guidance is generally inertial (Global Positionning System (GPS) & Inertial Nav-
igation Unit (INU)) with terrain correlation (periodical update with stored ground maps) and/or
some waypoints. In practice, the guidance information delivered by the sensors is processed in
real time by the onboard computer which adjusts the trajectory if needed. At the very end of this
phase, the seeker switches on, searches for the target before locking on it. From the instant of
lock on until the collision, the missile is guided in the autonomous way exploiting the information
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provided by the seeker.

The guidance is crucial and continuous for cruise missiles since both the velocity and the direction
of its flight can be unpredictably altered, for example, by local weather conditions.

2.4.2 Mission data preparation

The Mission Data Preparation (MDP) is a prelaunch design phase which aims (amongst other
tasks) at calculating a reference trajectory that will be followed by the missile during the major
part of its flight. The shaping of the trajectory starts at the theoretical launch point and ends at
the target location (with possibly heading & pitch angles terminal constraints). The design of an
acceptable trajectory has to respect several criteria:

• the dynamics has to comply with the vehicle capabilities (speed, load factor, fuel autonomy)

• the trajectory has to respect path constraints: avoidance of "forbidden zones" (enemy radar
coverage zones) or flight within prescribed air corridors.

• minimization of the time of flight.

Within the context of multi-missile cooperative action, issues like collision avoidance may have
to be suitably treated. May the meteorological report be available prior to the mission, one could
optimize the time of flight with respect to the wind profile.

In the framework of this thesis, we consider the guidance of a cruise missile.

2.5 Equations of the motion and environment model

The equations of motion are derived by using the Newton’s law. Newton’s laws are valid when
written relative to an inertial reference frame, that is, a reference frame which is not accelerating
or rotating. If the equations of motion are derived relative to an accurate inertial reference frame
and if approximations characteristic of missile motion are introduced into these equations, the
resulting equations are those for flight over a nonrotating flat earth. Within our study, we restrict
ourselves to the maximum range up to 50km. Under this restriction, the flat earth assumption
remains reasonable.
The equations of motion are composed of translational (force) equations (F�m.a) and rotational
(moment) equations (M� I.α) and are called the six degree of freedom (6-DOF) equations of mo-
tion. In our analysis, the translational equations are uncoupled from the rotational equations by
assuming that the vehicle rotational rates are relatively small and that control surface deflections
do not affect forces. Classically, the translational equations are referred to as the three degree of
freedom (3-DOF) equations of motion.

2.5.1 Assumptions and Coordinate systems

In deriving the equations of motion for the flight of a cruise missile, the following physical model
is assumed:

• The earth is flat, nonrotating, and an approximate inertial reference frame. The acceleration
of gravity is constant and perpendicular to the surface of the earth. This is known as the flat
earth model.

• The atmosphere is at rest relative to the earth, and atmospheric properties are functions of
altitude only.

• The missile is a "classical" cruise missile type with fixed engine, an and a right-left plane of
symmetry. It is modeled as a variable-mass particle.
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• The forces acting on the vehicle in symmetrical flight are the thrust, the aerodynamic force,
and the weight. They act at the center of gravity of the vehicle.

The derivation of the equations of motion is clarified by defining a number of coordinate systems.
The three coordinate systems used here are the following, all of them being direct and orthonormal
(see figure 2.3):

1. The local earth frame Rned :� pE, ie , je ,keq is fixed to the surface of the earth at mean sea
level: ie is oriented towards the local North, je towards the East and ke is down oriented .
This referential is usually called "North-East Down" (NED).

2. The body frame Rb :� pG, ib , jb ,kbq is conventional to the body of the vehicle. The center of
this frame is at the center of gravity of the vehicle, and its components are forward, out of
the right side, and down. The orientation is calculated from the Rned frame through three
successive rotations: ψ-heading angle around z axis, θ-pitch angle around y axis and µ-roll
angle around x axis.

3. The air frame Ra : pG, ia , ja ,kaq centered at the center of gravity and where ia is coincident
with the velocity vector v. The orientation is obtained from the body frame through two
successive rotations: α-angle of attack around y axis, β-sideslip angle around z axis.

Figure 2.3: Coordinate systems

Remark 2.5.1.1 : As one wants the angle of attack to be positive when the body is above the velocity
in the pitch plane, we change the sign convention accordingly (see the figure 2.3).

2.5.2 Kinematic equations

Kinematics is used to derive the differential equations for the coordinates of G, denoted by px, y,�hq
h being the altitude of the vehicle above the sea level. The basic relation is:

dEG

d t
� 9xie � 9yje � 9hke �V� v.ia (2.1)
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The coordinates of the vector X in the air frame Ra can be expressed in the NED frame Rned as
follows:

X|Rned �PRned {Ra
.X|Ra (2.2)

�P3pψq.P2pθq.P1pµq.P2p�αq.P3pβq.X|Ra (2.3)

where:

P1pµq :�
��1 0 0

0 cosµ sinµ
0 �sinµ cosµ

�
,P2pθq :�
�� cosθ 0 sinθ

0 1 0
�sinθ 0 cosθ

�

P3pψq :�

��cosψ �sinψ 0
sinψ cosψ 0

0 0 1

�

With our notations, (2.1) reads:

.

�� 9x
9y

� 9h

�
� P3pψq.P2pθq.P1pµq.P2p�αq.P3pβq.
�� v

0
0

�
 (2.4)

2.5.3 Dynamic equations

Dynamics is used to derive the differential equations for V and attitude angles. Newton’s second
law states that:

m. 9V� 9m.V�T�L�D�W (2.5)

where T is the thrust, D is the aerodynamic drag, L is the aerodynamic lift and W is the weight.

Weight: The weight is given by W�m.g .ke . Moreover, by introducing the specific fuel consump-
tion denoted by Cs , the mass equation reads:

9m ��Cs .T (2.6)

where T is the magnitude of the thrust force.

Drag and Lift: The drag on the vehicle is the friction force exerted on it by the air directed opposite
to the velocity vector V. Usually, the effect of the drag force is lumped into one coefficient CD called
drag coefficient which depends on the overall angle of attack (angle between the velocity of the
vehicle V and its principal body axis ib), the Mach number and the aerodynamic configuration of
the vehicle. The drag force is defined as follows:

D��D. ia with D� q̄ph, vq.S.CDph, v,α,βq (2.7)

with S � πd 2

4
being the vehicle section reference area, q̄ph, vq � 1

2 .ρphq.v2 is the dynamical pres-

sure, with ρ the air density.

The lift is defined as the aerodynamic force that acts orthogonally to the velocity vector. The ana-
lytical expression of the lift is provided as:

L� L.ia ^pib ^ iaqwith L� q̄ph, vq.S.CLph, v,α,βq (2.8)

The scalar coefficient CL called lift coefficient has the same dependancies than the drag coefficient
CD.

Thrust: In terms of direction, the thrust vector is colinear to the vehicle body directed towards,
thus T � T.ib . It is also known that thrust and specific fuel consumption Cs satisfy functional
relations of the form:

T�Tph, v,ηq, Cs �Csph, v,ηq (2.9)

where η is the thrust throttle coefficient.
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2.5.4 Flight in the vertical plane

Within the frame of our study, we restrict ourselves to the flight of the vehicle in the vertical plane.
Consequently, from now on, the heading, the roll and the sideslip angles are such thatψ� 0, µ� 0
and β� 0.

Figure 2.4: Forces acting on the vehicle in flight

With previous assumptions, by introducing the flight path angle γ :� θ�α, (2.4) reduces to:

9x � v.cosγ (2.10)

9h � v. sinγ (2.11)

Remark 2.5.4.1 : The flight path angle γ is classically the angle between the velocity vector and the
horizontal reference in the vertical plane.

By projecting (2.5) respectively on ia and ib , one obtains after arrangement:

9v � T.cosα�D� 9m.v

m
� g . sinγ (2.12a)

9γ� L�T.sinα

m.v
� g .cosγ

v
(2.12b)
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2.5.5 Discussion of the equations of motion

By regrouping (2.6), (2.10) and (2.12), one obtains:

9x � v.cosγ (2.13a)

9h � v. sinγ (2.13b)

9v � Tph, v,ηq.cosα�Dph, v,αq� 9m.v

m
� g . sinγ (2.13c)

9γ� Lph, v,αq�Tph, v,ηq. sinα

m.v
� g .cosγ

v
(2.13d)

9m ��Cs .T (2.13e)

Consequently, the state variables are x, h, v , γ and m whereas the the thrust throttle η and the
angle of attack α appear naturally as the control variables.

Actually, the coefficients CD et CL are not directly available: they are determined by using the axial
force coefficient CA and the normal force coefficient CN (in the body frame Rb , refer to [74, 35,
87]). The relation connecting them reads:

CD �CNph, v,αq. sinα�CAph, v,αq.cosα (2.14)

CL �CNph, v,αq.cosα�CAph, v,αq. sinα (2.15)

The coefficients CN and CA are experimentally measured during the wind tunnel trials. Their de-
pendance on h, v and α is in general complex to estimate analytically as it depends on intrinsic
aerodynamic characteristics of the missile body (length, wingspan, caliber...). However, some em-
pirical formulas are available for instance in [74, 35, 87].

On the other hand, considering endo-atmospheric applications, the vehicle can be stabilized only
if the angle of attack α remains lower than a critical threshold αmax, which is assumed to be quite
low for the cruise missiles (typically, αmax � 15�). In this case, a Taylor development of the aerody-
namic coefficients allows to obtain the following parabolic drag polar approximation:

CD �CD0 �kc .C2
L (2.16)

where CD0 is the zero-lift drag coefficient, kc .C2
L is the induced drag coefficient and kc is the induced-

by-the-lift drag factor. Theoretically, CD0 and k depend of the Mach number. However, as the
Mach number range covered by a cruise missile is reduced, we assume that the latter coefficients
are constant.

With the drag polar approximation (2.16), one remarks that the aerodynamic forces D and L can
now be expressed as functions of CL, as the angle of attackα “disappears”. Moreover, as the average
value of α remains low during the flight, we make the assumption that cosα� 1 and sinα� 0 in
the equations of motion (2.13). Consequently, the lift coefficient CL becomes naturally the control
in place of the angle of attack α.

Related to the thrust, the dependance on the parameters h, v can be quite intricate; indeed the
produced thrust is function of the altitude, Mach number, surface and geometry of the air inlet
entrance and outlet exit, the compressor pressure ratio... An overview of the existing technology
and some empirical formulas to estimate the thrust performance is available for instance in [35].
In our study, we consider the following (somehow idealized) formula:

T�Tmax.η (2.17)

where the throttle coefficient η P rηmin,1.0s, and Tmax is the maximum available thrust that can be
delivered by the engine.
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2.5.6 Atmosphere model

In order to compute the aerodynamical interactions between the vehicle and its environment,
one needs to estimate, as functions of altitude, the air temperature, pressure, density and speed of
sound. The function detailed below follow the ARDC (Air Research and Development Command,
of the U.S Air Force) atmosphere model.

The atmosphere is divided into three layers within which the ambient temperature Ta [K] and
pressure Pa rN.m�2s are modelled as follows:

Ta �
$&%

T0�6.5.h, h P r0 km,11 kms (troposphere)
216.667, h Ps11 km,25 kms (lower stratosphere)
216.667�3.ph�25q, h ¡ 25 km (upper stratosphere)

(2.18)

where T0 is the ambient temperature at sea level, T0 � 288.2 K.

Pa �
$&%

P0p1�0.02256.hq5.2561, h P r0 km,11 kms
0.223.P0 expp�0.1577.ph�11qq , h Ps11 km,25 kms
2489.773.expp�0.1577.ph�25qq , h ¡ 25 km

(2.19)

where P0 is the ambient pressure at sea level, P0 � 101314.6 N.m�2.

We recover the air density ρ� Pa

R.Ta
rkg.m�3s and the speed of sound c �?k.R.Ta rm.s�1s where

k is the ratio of specific heat of the air (k � 1.4) and R is the gas constant (R� 287 J.kg�1.K�1).

Figure 2.5: Atmospheric air density and pressure function of h

We highlight that for values of h P r0m,20kms, the above detailed formula of the air density ρ can
be approximated as follows:

ρphq� ρ0.exp

�
� h

hr



(2.20)

where ρ0 the air density of the standard atmosphere at the sea level and hr is a fixed reference
altitude. We will use this approximation of the atmosphere in this work. For more details on the
atmosphere model, refer for instance to [74].
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2.6 Context of the study

As explained previsously, we are interested in the cruise missile guidance problem restricted to the
vertical plane. The trajectory of a such a vehicle is pre-programmed off-line prior to the mission
depending on the relief on the path. For sake of simplicity, one can define two typical flight profiles
(although somehow caricatural) in the vertical plane as follows:

• A-Profile: the relief being typically the sea, the vehicle flies most of the time at very low height
with respect to the sea (“sea skimming”) in order to minimize the exposure to enemy sensors
(radars). The reference flight altitude is usually called cruise altitude, will be denoted by
hc P r100m,500ms. This flight profile is typically applicable to the anti-ship cruise missiles.

• B-Profile: the relief is mountainous, the missile can fly at higher ("safety") altitude in order
to reduce any risk of collision prior to the end of the mission.

Figure 2.6: A-Profile typical trajetory

Figure 2.7: B-Profile typical trajetory

We consider hereafter the global guidance problem of such a vehicle starting from the launch and
finishing at the impact with the target.
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2.7 Global trajectory optimization

We consider a target modelled as a point of coordinates px f ,h f q with respect to the local earth
frame Rned . The objective is to reach the target with prescribed flight path angle γ f . The final
speed v f ¡ 0 can be either prescribed or let free. In what follows, we assume that the launch
and the final point are located on the Earth surface at sea level altitude thus one sets, for sake of
simplicity: ph0,h f q :�p0,0q.
For the A-profile mission, given the visibility constraint to be respected, one can intuitively expect
the missile to remain "stuck" to the cruise altitude hc most of its flight time. Consequently, the
typical A profile trajectory can be divided into three pieces:

1. "initial transitory phase": the missile joins the cruise altitude starting from its initial posi-
tion.

2. "cruise phase": the missile altitude remains close to hc .

3. "bunt phase": the vehicle leaves the cruise altitude et climbs up to the peak of the trajectory
before "diving" onto the target. Intuitively, the maximum altitude will be function of the de-
sired terminal angle of attack (and velocity, if prescribed). This leads to a typical "parabolic
shape" of the terminal trajectory, as illustrated on the figure 2.6.

Remark 2.7.0.1 The A-profile trajectory will be called "bunt case" in the rest of the thesis.

2.8 Mathematical setting

By taking into account (2.16) and (2.17), the dynamics (2.13) can be written as follows:

9x � v.cosγ (2.21a)

9h � v. sinγ (2.21b)

9v � Tmax.p1�Cs .vq.α1�Dph, v,α2q
m

� g . sinγ (2.21c)

9γ� Lph, v,α2q
m.v

� g .cosγ

v
(2.21d)

9m ��Cs .Tmax.α1 (2.21e)

where α1 � η the thrust throttle and α2 � CL the lift coefficient. Clearly speaking α :�
�

α1

α2



is

the control of the dynamical system given by (2.21). At the first order, we have:

• the thrust throttle α1p�q, controlling the velocity

• the lift coefficient α2p�q, controlling the "shape" of the trajectory. Physically, it plays the role
of the angle of attack.

The controls are bounded due to the vehicle aerodynamic limitations: α1ptq P rη,1s, with η Ps0,1r
and |α2ptq| ¤ αm

2 . In what follows, we denote ξ :�px h v γ mqT and A :� rη,1s�r�αm
2 ,αm

2 s.
Now we have to model the constraints and the performance corresponding to each profile through
an adequate index. An efficient way (but not the unique one!) to do so is to consider a Lagrange
cost made of two terms which correspond respectively to the time of flight and the penalization of
the the cruise altitude hc . The optimal control problem can be formulated as follows:

pOCPq0

$''''''&''''''%

min
pt f ,αPA q

J0pt f ,αq :�
» t f

0

�
k0�k1.

phpsq�hcq2

h2
c



d s

9ξpsq� f pξpsq,αpsqq @s P r0, t f s
αp.q PA

ξp0q� ξ0, ξpt f q� ξ f

(2.22)

51



CHAPTER 2. MISSILE GUIDANCE PROBLEM

where:

• A is a set of admissible control strategies defined as A :�tα : r0,�8rÑ Auwith A compact
subset of Rp

• f pξ,αq :�

���������

v.cosγ
v. sinγ

Tmax.p1�Cs .vq.α1�Dph, v,α2q
m

� g . sinγ

Lph, v,α2q
m.v

� g .cosγ

v
�Cs .Tmax.α1

��������

is the dynamics

• ξ0 � px0 h0 v0 γ0 m0qT and ξ f �
�

x f h f v f or� γ f ��T
are the prescribed initial and

final states.

• pk0,k1q P R��R� is the weight couple in the performance index. k0 and k1 weight respec-
tively the time of flight and the deviation to the cruise altitude.

If one chooses k0 ¡ 0 and k1 � 0.0, then pOCPq0 is the time minimum problem and the optimal
trajectory is expected to "resemble" to the B-profile (see fig. 2.7). If k1 ¡ 0 and large enough, then
the cruise altitude constraint becomes active and the optimal trajectory should correspond rather
to the A-profile (see fig. 2.6). This point will be discussed from the mathematical point of view in
the chapter 3.

In the rest of this thesis (except in the chapter 4), we slightly simplify the original problem by
assuming the induced-by-the-lift drag factor kc is negligible thus kc � 0. Indeed, in practice, the
coupling between the lift and drag force can be neglected at first order.

Moreoever, in the chapter 3 we consider that the thrust remains at its maximum value (i.e, @t P
r0, t f s, α1ptq� 1). In the chapter 4 and the Annex A, we will consider it as an active control.

Remark 2.8.0.1 Under the last assumptions, the ODE (2.21c) governing the state variable vp�q de-
pends only (at the second order) on the flight path angle γ, as the drag D does not depend anymore
on α2.

Finally, the lift coefficient α2 remains the unique control of our system and will be denoted by α.

2.9 Numerical values

The following table sums up the numerical values considered in our setting:

Variable Value Unit
d 0.65 m

Cd 0.4 n.a
Tmax 5000 N

Cs 4.10�4 kg .s1.N�1

g 9.81 m.s�2

ρ0 1.225 kg{m3

hr 7314 m
αmax 2 n.a

hc 250 m
pk0,k1q (var, var) n.a

Table 2.1: Numerical values for the guidance problem
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We consider the following boundary conditions:

px0,h0, v0,γ0,m0q� p0m,0m,300m/s,80�,600kgq (2.23a)

px f ,h f , v f ,γ f ,m f q� p25000m,0m,*,�80�, *q (2.23b)

Remark 2.9.0.1 As the thrust control α1p�q has been set to 1, then we have to let the terminal velocity
v f free. Obviously if we consider the thrust α1p�q as active, then the velocity of the system can be
controlled and we could specify a desired value for v f . An example of the two dimensional control
case is treated in the Annex section A.5.
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Chapter 3

Numerical solving of the guidance
problem

“It is better to be hated for what
you are than be loved for what you
are not. ”

André Gide
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3.1 Optimal control in finite dimension

The term finite dimension refers to the fact that the state vector ξp�q belongs to the finite dimen-
sional space Rn . However, it is important to keep in mind that solving an optimal control problem
like (2.22) in finite dimension requires being able to solve an infinite dimensional optimization
problem.

3.1.1 General setting

In this section, we consider the following general control problem: given M0 and M1 two sub-
manifolds of Rn we aim at controlling the autonomous nonlinear system:

9ξptq� f pξptq,αptqq on r0, t f s (3.1)

while minimizing the cost:

Cpt f ,αq :�
» t f

0
f 0pξptq,αptqqd t � g pt f ,ξpt f qq (3.2)

and such that:
ξp0q PM0 and ξpt f q PM f (3.3)

In the above definition, we assume f : Rn �Rp Ñ Rn , f 0 : Rn �Rp Ñ R and g : R�Rn Ñ R

are of class C1. The control αp�q belongs to the set L8pr0, t f s, Aq where A is a subset of Rp . In the
following, t f can be free or fixed. We denote A the set of admissible controls i.e. such that the
corresponding trajectories steer the system from an initial point of M0 to a final point of M f .

Remark 3.1.1.1 It is far from obvious that there exists a solution to the previous optimal control
problem. However, if one assumes, in addition to the above mentioned regularity assumptions on f ,
f 0 and g that the following asumptions hold:

(i) A is a compact subset of Rp

(ii) there exists b ¡ 0 such that any admissible trajectory ξαp�q and the associated time t f are
bounded by b:

Db ¡ 0 | @α PA , @t P r0, t f s, t f �}ξαptq}8¤ b (3.4)

(iii) for any µ PRn , the set V defined by:

Vpµq :�  �
f 0pµ, aq�γ, f pµ, aq� | a P A, γ¥ 0

(
(3.5)

is a convex subset of Rn�1.

Then there exists a solution α�p.q defined on an interval r0, tpα�qs to the optimal control problem.
The above mentioned assumptions ensure usual existence results, even if some of them could be
weakened. For a survey of existence results in optimal control problems, refer to [19] for instance.

Definition 3.1.1.1 (End point mapping) Letαp.q PA be an admissible control. For given t P r0, t f s,
and ξ0 PRn , the end-point mapping Et ,ξ0 is defined as below

Et ,ξ0 :A ÝÑRn (3.6a)

α ÞÑ ξpt ,ξ0,αq (3.6b)

where t ÞÑ ξpt ,ξ0,αq is the value at time t of the solution to (3.1) such that ξp0q� ξ0.

It is well known that, if one endowes A with the standard L8 topology, then the end point mapping
is C1 on A and the optimal control problem (3.1)-(3.2)-(3.3) can be formulated in terms of end
point mapping as follows:

mintCpt f ,αq, ξp0q PM0, Et f ,ξ0pαq PM f , α PA u (3.7)

In next paragraph, we give a statement of the PMP. It expresses necessary conditions for a pair
pξ�p�q,α�p�qq to be optimal for (3.1)-(3.2)-(3.3).
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3.1.2 Pontryagin maximum principle

By the PMP (see [55], [82]), there exists p0 ¤ 0 and an absolutely continuous mapping p�p.q :
r0, t f sÑRn , called adjoint vector, such that, for almost every t P r0, t f s

9ξ�ptq� BH

Bp
pξ�ptq, p�ptq, p0,α�ptqq (3.8a)

9p�ptq��BH

Bξ pξ
�ptq, p�ptq, p0,α�ptqq (3.8b)

where the Hamiltonian H is defined by:

Hpξ, p, p0,αq :�xp, f pξ,αqy�p0 f 0pξ,αq (3.9)

For almost every t P r0, t f s, the control α� maximizes the Hamiltonian H:

Hpξ�ptq, p�ptq, p0,α�ptqq�max
vPA

Hpξ�ptq, p�ptq, p0, vq (3.10)

The adjoint vector satisfies the transversality conditions at both extremities (or just one of them):

p�p0q KTξp0qM0 (3.11a)

p�pt f q�p0 Bg

Bξ pt f ,ξ�pt f qq KTξpt f qM f (3.11b)

where TξM is the notation for the tangent space of the submanifold M at ξ. If the final time t f is
free, there is an additional transversality condition:

max
vPA

Hpξ�pt f q, p�ppt f qq, p0, vq��p0.
Bg

Bt
pt f ,ξ�pt f qq (3.12)

Remark 3.1.2.1 (Autonomous case) In the case where the final time is free and the dynamics f and
the cost f 0 are autonomous (ie do not depend on t) one has:

max
vPA

Hpξ�ptq, p�pptqq, p0, vq�Cste (3.13)

An extremal of the optimal control problem is a fourth-tuple pξp�q, pp�q, p0,αp�qq solution of (3.8)
and (3.10). If p0 � 0, the extremal is said to be abnormal, if p0   0, then the extremal is said to be
normal.

Remark 3.1.2.2 (Sufficient conditions for optimality) We emphasize once more that the PMP gives
a set of necessary conditions. For clarity, let us simplify the optimal control problem (3.1)-(3.2)-(3.3)
by taking A�Rp . If the strong Legendre condition holds along a given extremal pξp�q, pp�q, p0,αp�qq,
that is, there exists r ¡ 0 such that:

B2H

Bα2 pξp�q, pp�q, p0,αp�qqpν,νq¤�r.}ν}2, @ν PRp (3.14)

then there exists ϵ¡ 0 so that the trajectory ξp.q is locally optimal in L8 topology on r0,ϵs. If the
extremal is moreover normal, i.e. p0 � 0, then ξp�q is locally optimal in C0 topology on r0,ϵs. For
more details on second order optimality conditions, refer for instance to [2] or [13].

Definition 3.1.2.1 (Singular arc) Assume M0 � tξ0u. A control αsp�q defined on r0, t f s is said to be
singular if and only if the Fréchet differential dEt f ,ξ0pαsq is not surjective. The associated trajectory
ξsp�q is called singular trajectory.
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We recall the following two standard characterizations of singular controls (see [14], [55]). A con-
trol αs P A is singular if and only if the linearized system along the trajectory ξsp�,ξ0,αsq is not
controllable. This is also equivalent to the existence of an absolutely continuous mapping ps :
r0, t f sÑRnzt0u such that, for almost every t P r0, t f s,

9ξsptq� BHs

Bp
pξsptq, psptq,αsptqq (3.15a)

9psptq��BHs

Bξ pξsptq, psptq,αsptqq (3.15b)

BHs

Bα pt ,ξsptq, psptq,αsptqq� 0 (3.15c)

where the Hamiltonian Hs of the system is defined by:

Hspξ, p,αq :�xp, f pξ,αqy (3.16)

Note that singular trajectories coincide with projections of abnormal extremals for which the max-
imization condition (3.10) reduces to BH{Bα� 0. In case when the dynamics f and the cost f 0 are
linear in the control α, a singular arc (restriction of an extremal to a subinterval I) corresponds to
an arc along which one is unable to compute the control directly from the maximization condi-
tion of the PMP (at the contrary of bang-bang situation). Indeed, in this case, the above condition
BH{Bα � 0 along the arc means that some function (called switching function) vanishes identi-
cally along the arc. Then, it is well known that, in order to derive an expression of the control along
such an arc, one has to differentiate this relation until the control appears explicitly. It is as well
known that such singular arcs, whenever they occur, may be optimal. Their optimal status may be
proved using generalized Legendre-Clebsch type conditions or the theory of conjugate points (see
[72]-[39] or see [2]-[13] for a complete second-order optimality theory of singular arcs).

Remark 3.1.2.3 In case when A is compact (αp�q is constrained), the characterization (3.15) remains
valid as soon as the control values remain in Å.

3.2 Numerical methods in optimal control

3.2.1 Context

Let us first recall that there are mainly two kinds of numerical approaches in optimal control:
direct and indirect methods.

On the one hand, direct methods consist of discretizing the state and the control so as to reduce
the problem to a constrained nonlinear optimization problem in finite dimension. The process is
straightforward and it can be applied in systematic way to any optimal control problem. Another
great advantage of the direct methods is that they do not require any prior information on the
structure of the control. New variables or constraints can be added easily. However, the conver-
gence may be difficult due to the large number of variables.

On the other hand, indirect methods are based on the PMP which provides a set of necessary con-
ditions for a local minimum. The problem is then reduced to a nonlinear system that is generally
solved by a shooting method using a Newton-like algorithm. An advantage of such methods is
their great accuracy when they converge. The drawbacks are the narrow radius of convergence
and in some cases (presence of singular arcs, state constraints...) a prior theoretical work is nec-
essary in order to identify the structure of the control. For more complete comparison between
direct and indirect methods, refer to [83]. The principles of both direct and indirect methods are
recalled hereafter.
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3.2.2 Direct methods

Direct methods consist of discretizing both the state and the control. After discretizing, the opti-
mal control problem is reduced to a nonlinear optimization problem in finite dimension, or non-
linear programming problem, of the form:

min
ZPC

FpZq (3.17)

where Z :�pξ1,ξ2, ...,ξN,α1,α2, ...,αNq and:

C :�
"

Z | gi pZq� 0, i P rr1,r ss; g j pZq¤ 0, j P rrr �1,Nss
*

(3.18)

There exists an infinite number of variants, depending on the choice of finite-dimensional repre-
sentations of the control and of the state, of the discretization of the extremal differential equa-
tions, and of the discretization of the cost functional. The discretization may be carried out in
many ways, depending on the problem features. As an example, we may consider a subdivision
0� t0   t1   ..  tN � t f of the interval r0, t f s. We discretize the controls such that they are piece-
wise constant on this subdivision with values in A. Meanwhile, the differential equations may be
discretized by an explicit Euler method, by setting hi :� ti�1� ti , we get ξi�1 � ξi �hi . f pξi ,αi q.
The cost may be discretized by a quadrature procedure. We refer to [16] for a thorough description
of many direct approaches in optimal control.

Then, to solve the optimization problem (3.17) under the constraints (3.18), there is also a large
number of possible methods: gradient methods, penalization, quad-Newton, dual methods... We
refer the reader to any good textbook of numerical optimization. In the frame of our study, we use
the optimization routine Interior Point OPTimizer (IPOPT) combined with the automatic differ-
entiation code A Mathematical Programming Language (AMPL) on a standard desktop machine.
For more information, refer to [70]-[10]. Alternative variants of direct methods are the collocation
methods, the spectral or pseudo-spectral methods, the probabilistic approaches, etc.

Another approach to optimal control problems that can be considered as a direct method, consists
in solving the Hamilton Jacobi Bellman equation satisfied (in the viscosity sense) by the value
function which is of the form:

Bv

Bt
�H

�
ξ,
Bv

Bξ


� 0 (3.19)

The value function v is the optimal cost for the optimal control problem starting from a given
point pt ,ξq. Once the value function estimated, optimal controls can be deduced from the DPP.
This approach will be explored in the chapter 4 of this thesis.

3.2.3 Indirect methods

In indirect approaches, the PMP (first order necessary conditions for optimality) is applied to the
optimal control problem. This reduces the problem to a nonlinear system of n equations with n
unknowns generally solved by Newton-like methods. The indirect methods are also called shoot-
ing methods. The principle of the simple shooting and of the multiple shooting method is recalled
herafter.

Simple shooting method: By setting zptq :�pξptq, pptqq, assume that, by using (3.10), the optimal
control can be expressed as a function of the state and the adjoint variable. Then the extremal
system (3.8a)-(3.8b) can be written under the form: 9zptq� Fpzptqq. The initial and final conditions
(3.3), the transversality conditions on the adjoint (3.11) and Hamiltonian (3.12) can be written as
Rpzp0q, zpt f q, t f q� 0. Finally, we obtain a two boundary value problem

9zptq� Fpt , zptqq, Rpzp0q, zpt f q, t f q� 0 (3.20)
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Let zpt , z0q be the solution of the Cauchy problem:

9zptq� Fpt , zptqq, zp0q� z0 (3.21)

The two boundary problem (3.20) consists in finding a zero of the equation:

Rpzp0q, zpt f , z0q, t f q� 0 (3.22)

This problem can be solved by Newton-like or other other iterative methods.

Multiple shooting method: The drawback of the single shooting method is the sensitivity of the
Cauchy problem to the initial condition z0. The multiple shooting aims at a better numerical
stability by dividing the time interval r0, t f s into N subintervales rti , ti�1s and considering as un-
knowns the values of zi �pξpti q, ppti qq at the beginning of each subinterval. The application of the
PMP to the optimal control problem yields a multi-point boundary value problem, which consists
in finding Z�ppp0q, t f , zi q for i � 1..,N�1 such that the differential equation:

9zi ptq� Fpt , zptqq�

$''&''%
F0pt , zptqq, t0 ¤ t ¤ t1

F1pt , zptqq, t1 ¤ t ¤ t2

....,
FN�1pt , zptqq, tN�1 ¤ t ¤ tN

(3.23)

and the constraints:

ξp0q PM0, ξpt f q PM f , p�p0q KTξp0qM0

p�pt f q�p0 Bg

Bξ pt f ,ξ�pt f qq KTξpt f qM f

zi pt�i q� zi pt�i q, i � 1, ...,N�1, Hpt f q� 0

are satisfied. The nodes of the multiple shooting may involve the switching times (at which the
switching function changes sign) and the junction times (entry, contact or exit times) with bound-
ary arcs for instance. In this case, an a priori knowledge of the solution structure is required.

3.2.4 Methods implemented in the thesis

Even though the direct methods will be implemented and evaluated, the shooting method based
on the application of the PMP will be privileged in this thesis. The reasons for this choice are the
following: the first one is the enhanced accuracy which is crucial in the applications of the optimal
control to the aerospace field. Another reason is the possibility to adapt this method to a specific
problem: indeed, if adequately initialized, the shooting method can provide a quasi instantaneous
solution compliant with the real time implementation. Moreover, in case of deviation with respect
to the optimal solution, one is able to compute online a new one. These requirements are im-
portant for the applications in the aerospace field and cannot, in general, be satisfied by direct
methods as soon as the problem becomes too much complex. However, as explained previously
the initialization is in general a hard and intricate task, which requires a detailed study of the op-
timal problem structure and sometimes additional mathematical tools coming for instance from
the geometric optimal control (refer for instance to [83]).

As it is well known, the main issue of the shooting methods based on the Newton-like method
is the initialization: indeed, due to the small convergence radius, the first guess shall be "close
enough" to the solution. In recent years, the numerical continuation has become a powerful tool
to overcome this difficulty. The section 3.3 recalls some mathematical concepts of the continua-
tion approaches, with a focus on the numerical implementation of these methods.
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3.3 Continuation methods

3.3.1 Existence results and discrete continuation

The basic idea of continuation (also called homotopy) method is to solve a difficult problem step
by step starting from a simpler problem by parameter deformation. The theory and practice of
the continuation methods are well-spread (see, e.g., [31], [71], [85]). Combined with the shooting
method derived from the PMP, a continuation methods consists in deforming the problem into a
simpler one (that can be easily solved) and then solving a series of shooting problems step by step
to “come back” to the original problem.

One difficulty of the homotopy methods lies in the choice of a sufficiently regular deformation
that allows the convergence along the path. The starting problem should be easy to solve and the
path between this starting problem and the original problem should be easy to model. Another
difficulty is to numerically follow the path between the starting problem the original problem. This
path is parametrized by a parameter denoted usually by λ.

The choice of the homotopic parameter may require considerable physical insight into the prob-
lem. This parameter may be defined either artificially according to some intuition, or naturally by
choosing physical parameters of the system, or by combination of both.

Assume one has to solve a system of N nonlinear equations in N dimensional variable Z:

FpZq� 0 (3.25)

where F :Rn ÝÑRn is a smooth map. We define a deformation G :Ω�r0,1s ÝÑRn such that:

GpZ,0q�G0pZq, GpZ,1q� FpZq (3.26)

where G0 :Rn ÝÑRn is a smooth map having known zeros.

A zero path is a curve cpsq PG�1p0qwhere s represents the arc length. We would like to trace a zero
path starting from a point Z0 such that GpZ0,0q� 0 and ending at a point Z f such that GpZ f ,1q� 0.
The first question to address is the existence of zero paths, since the feasability of the continuation
method relies on this assumption.

Actually, it has been proved in [83]-[58], that the local feasability of the continuation method is
closely related to the three following conditions:

1. there are no minimizing abnormal extremals

2. there are no minimizing singular controls, meaning the mapping dEt f ,ξ0pαq is surjective (see
definition 3.1.2.1).

3. there are no conjugate points: for precise definition of conjugate points, refer to [83]-[58].
Actually the absence of conjugate points can be numerically tested (see [13]).

Finally, it has to be noticed that, despite of local feasability, the zero paths may not be globally de-
fined for any λ P r0,1s. The path could cross some singularity or diverge to infinity before reaching
λ� 1. The first possibility can be discarded by assuming (2) and (3) over all the domain Ω and for
every λ P r0,1s. The second possibility is related to some properness properties of the exponential
mapping (see [12]-[81]).

3.3.2 Numerical tracking of the zero paths

There exists many numerical algorithms to track a zero path. Among these algorithms, the sim-
plest one is called the simple continuation procedure.

Basic continuation: The continuation parameter λ is discretized by 0 � λ0   λ1   ..   λn � 1
and the sequence of problems GpZ,λi q � 0 is solved to end up with a zero point of FpZq. If the
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increment ∆λ� λi�1�λi is small enough, then the solution Zi associated to λi to GpZi ,λi q � 0
is generally close to the solution of GpZ,λi�1q � 0. An implicit assumption is made that we are
able to compute the solution at the first step of the continuation procedure, namely a zero Z0 for
GpZ,0q� 0. The simple continuation algorithm is detailed below:

Algorithm 1 Simple continuation procedure

Initialization: λ� 0, Z� Z0, ∆λ P p∆λmin,∆λmaxq
while ∆λ P p∆λmin,∆λmaxq and λ¤ 1 do

∆λ�minp∆λ,1�λq
λ̃� λ�∆λ

Look for Z̃ zero of GpZ̃, λ̃q� 0
if success then

Z� Z̃
λ� λ̃

∆λ� 2.∆λ
else

λ� λ̃�∆λ

∆λ�∆λ{2
end if

end while
if success then

The continuation procedure is successful
else

The continuation procedure has failed
end if

Continuation with linear prediction: Behind this procedure is the idea that we can do better than
just using Zλ to approximate Zλ�∆λ. Assume that we have already made two resolutions, yielding
Zλ1 and Zλ, for two values λ1 and λ such that λ1   λ. Assuming some regularity on the path of
zeros, an approximation of Zλ�∆λ for a new value λ�∆λ is given by

Zλ�∆λ� Zλ� ∆λ

λ�λ1
pZλ�Zλ1

q (3.27)
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Figure 3.1: Continuation with linear prediction

This is the procedure we implemented throughout this article each time a continuation is per-
formed, and we could experimentally witness an improvement in the runtime of the algorithm.

3.4 Dubins-Fuller problem

3.4.1 Motivation and definition of the model

Let us consider the following kinematic equations for an aerial vehicle in the vertical plane:

9x � v.cosγ (3.28a)

9h � v. sinγ (3.28b)

9γ� α (3.28c)

where v ¡ 0 is the longitudinal speed, assumed to be fixed. px,h,γq are the state variables defining
respectively the position and the pitch angle of the vehicle. α designates the pitch angular rate,
which enables to maneuver and thus will be considered as a control variable. The rate is limited
and |α| ¤ 1. Suppose that the vehicle has to move from the initial state µ0 �px0,h0,γ0q to the final
state µ f �px f ,h f ,γ f qwhile minimizing the following cost:

Jk0,k1pt f ,αq :�
» t f

0
k0�k1.

�
hpsq�hc

hc


2

d s (3.29)

where hc is a prescribed altitude, k0 ¥ 0 and k1 ¥ 0 are the weight coefficients. The final time t f is
let free.

Actually, the dynamics (3.28) can be understood as a simplified version of the missile dynamics as
it can be obtained from (2.21) by making the following assumptions:

• neglect the gravity g and the variation of the air density ρp�qwith respect to the height h
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• consider that the speed v and the mass m remain constant (at first order) during the flight.
This can be achieved by setting 9v � 0 and Cs � 0 in (2.21). Notice that these assumptions
are far from being unrealistic in the case of a cruise missile where the covered speed range
is relatively small and the mass variation limited provided that the time interval remains
reasonable.

By denoting the reduced dynamics fr pµ,αq :�
�� v.cosγ

v. sinγ
α

�
, (3.28) can be written as 9µ� fr pµ,αq,

with µp0q�µ0 and µpt f q�µ f .

Our goal hereafter is to first study the family of optimal control problems (3.28)-(3.29) and then
link them to the missile guidance problem. We discuss the numerical solving strategy of (3.28)-
(3.29) for various values of the couple pk0,k1q. More precisely, we distinguish the following cases:

1. The (D) case corresponding to the dynamics (3.28) and the cost J1,0, i.e. with pk0,k1q� p1,0q
2. The (F) case corresponding to the dynamics (3.28) and the cost J0,1 i.e. with pk0,k1q � p0,1q.

We explain in paragraph 3.4.3 why the cost J0,1 leads to the well known Fuller phenomenon.

3. The so called (DF) case corresponding actually to the dynamics (3.28) and the family of costs
Jk0,k1 indexed by k0 ¡ 0 and k1 ¡ 0. This case is the weighted interpolation between the
(D) and the (F) cases, the weight being determined by the ratio k1{k0. By setting k0 � 1
and increasing gradually k1 from 0 to �8, this family of optimal control problems can be
understood as a continuation from the (D) case up to the (F) case.

We state that, if we are able to numerically solve (3.28)-(3.29), we will be able to solve the missile
guidance problem. We will precise the link between the two problems later on in this thesis.

In what follows, we assume that v � 1, hc � 1{2 and consider the following boundary conditions:

px0,h0,γ0q� p0,0,π{2q and px f ,h f ,γ f q� p15,0,�π{2q (3.30)

3.4.2 Dubins case pk0,k1q� p1,0q

3.4.2.1 State of the art

The optimal control problem (3.28)-(3.29) is actually known as the Dubins path problem which
consists in finding the shortest C1 2D curve joining two points in the two dimensional eucledian
plane with prescribed initial and final tangents and limited curvature. The problem of finding such
a path was initially raised by Markov in 1889 and solved by Lest Dubins in 1957 ([25]); since it was
apparently impossible to give an explicit formula for the shortest path, Dubins gives a sufficient
set of paths, i.e., a set which always contains what he called an R-geodesic, or optimal path. In
1990, Reeds and Sheep extended Dubins’ result for a car that goes both forward and backward
[41], allowing the presence of cusps in the path. Other variants of the Dubins problem such as
an angular acceleration control ([76]) or the three dimensional space ([77]) case have as well been
studied.

In the basic case (planar with angular rate control) it has been shown that the optimal path is
the sequence of concatenated arcs of type CSC, CCC, or any subset of these (we denote with C a
circular arc and S a straight line segment in the px,hq plane).
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Figure 3.2: Illustration of optimal paths

The circular arcs correspond to the Bang controls (α��1) and the straight line segment arc (α� 0)
is actually a singular control in the sense of 3.1.2.1.

Remark 3.4.2.1 The straight line (singular) control can be obtained from (3.46) by setting k1 � 0.

Remark 3.4.2.2 It is interesting to note that the Dubins case exhibits a turnpike phenomenon. In-
deed, as mentioned above, a deep theoretical result states that the global optimal synthesis is of the
form bang-singular-bang, where the initial and final bang arcs are circular arcs of curvature 1, and
the middle singular arc is a segment (of course, according to the specific terminal conditions, some
of those three arcs may be of zero length). The turnpike phenomenon is then clear: if the initial and
final states are far one from each other, then necessarily the middle singular arc has to be long, while
the initial and final bang arcs are short. Seen from afar, the optimal trajectory approximately looks
as a segment. This is exactly the turnpike property. The turnpike set is the middle singular arc. Con-
trarily to [29, 84] where the turnpike set is never reached but the optimal trajectory remains close to
it, here the turnpike is “exact" in the sense that the optimal trajectory coincides with the turnpike
set on the long middle time interval. The wording of “exact turnpike" has been introduced and used
in [79]. The recent work [84] does not apply to the Dubins case because the turnpike set consists of
a singular arc, along which the linearized control system fails to be controllable, but as explained
above the turnpike property is evident from the global optimal synthesis.

The singular nature of the central arc is crucial from the numerical point of view as it implies that
the continuation based on the “standard” shooting method will likely fail to numerically solve the
(D) problem, as explained in the paragraph 3.3.1. Hereafter, we illustrate the optimal solution in
our case with a direct method.

3.4.2.2 Direct method

We discretize (3.28)- (3.29) by using a simple implicit Crank Nicholson method with N� 500 time
steps, and we use the optimization routine IPOPT (see [10]) combined with the automatic differen-
tiation code AMPL (see [70]) on a standard desktop machine. The results are presented hereafter:
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Figure 3.3: Optimal state, costate & control for pk0,k1q� p1,0q

As expected, the optimal structure is: bang min- -singular- -bang min, and the switching function
pγ vanishes along the straight line arc.

If the global accuracy seems satisfactory, the computed control possesses oscillations at the be-
ginning and the end of the central arc: this is a typical numerical artifact observed when a singular
arc is computed through a direct method.

To overcome this issue, the classical idea is to solve the problem by implementing the shooting
method. In the (D) case, the natural idea is to “split” the trajectory into three pieces corresponding
to the subarcs identified previously. The three pieces are then integrated separately and the jonc-
tion conditions are implemented at the frontier of each arc. Herafter, we implement the classical
shooting method (with computation of the adjoint state). However, it should be emphasized that,
as the optimal structure is theoretically known, a reduced shooting on the switching times and
based only on the state dynamics would converge easily.

3.4.2.3 Shooting method

When implementing a shooting method (see for instance [16]), the structure of the trajectory has
to be known a priori. The structure of the control must be prescribed here by assigning a fixed
number of interior switching times that correspond to junctions between nonsingular and singu-
lar arcs. These times pti qi�1...n are part of the shooting unknowns and must satisfy some switching
conditions. Each arc is integrated separately, and matching conditions must be verified at the
switching times.

The switching conditions indicate a change of structure which corresponds in our case to an ex-
tremity of a singular arc. Along such a singular arc, it is required that the switching function van-
ishes which implies in our case: pγ � 0. This relation implies 9pγ � 0 (refer to [32] for proof). The
control is computed using the relation :pγ � 0. Therefore, using this expression of the control,
switching conditions consist in imposing either pγ � 0 at the extremities of the singular arc, or
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pγ � 9pγ � 0 at the beginning of the arc. In our simulations, we choose the latter solution which
happens to provide better and more stable results.

To successfully initialize the shooting method, we deform the final state in order to ensure an easy
convergence with a simple initial guess. We used the direct method AMPL & IPOPT to calculate
the first guess as they offer the possibility to recover the Lagrange multipliers corresponding, up
to a scaling, to the costate pp�q used in the PMP extremal equations. Then, we implement a con-
tinuation over the x coordinate of the final state to reach the desired boundary conditions. More
precisely, the shooting function, denoted by Sλ :R6 ÞÑR6 is defined as follows:

Sλ :

����
pp0q

t1

t2

t f

���
ÞÝÑ
��������

xpt f q� xcpλq
hpt f q�h f

γpt f q�γ f

pγpt1q
9pγpt1q

Hd

�
µpt f q, ppt f q,�1,αpt f q

�

�������
 (3.31)

where Hdpµ, p, p0,αq :�xp, fr pµ,αqy�p0, t1 (resp. t2 ¡ t1) correspond to the beginning (resp. end)
instants of the singular arc.

The intermediate final state is given by: xcpλq � x f
0 �λ.px f � x f

0 q, where x f
0 � 5.0 and λ P r0,1s is

the homotopy factor increasing from 0 to 1. The first guess provided by the direct method is given
by: ppp0q, t1, t2, t f q� p1.0,0.0,�1.0,1.5,4.5,6.0q.

3.4.2.4 Numerical implementation

The shooting method and the continuation algorithm have been implemented in Python language
on a standard desktop computer. The integration of the differential system is done using the nu-
merical integrator DOP853. It consists in an explicit Runge-Kutta method with adaptative step
comparing the methods RK8, RK5 and RK3. The description of the solver options can be found for
instance in [27].

3.4.2.5 Numerical tests

The computing time is around 10 sec on a standard desktop computer. The output are displayed
hereafter:
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Figure 3.4: Optimal solution

This example illustrates the improvement of the accuracy obtained through the shooting method.
Moreover, the stability of the optimal structure along the continuation path is theoretically guar-
anteed in the (D) case.

3.4.3 Fuller case pk0,k1q� p0,1q

3.4.3.1 Direct method

First, we provide a direct method (AMPL & IPOPT) simulation for pk0,k1q � p0,1q in order to have
an insight into the structure of the optimal solution.
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Figure 3.5: Optimal state, costate & control for pk0,k1q� p0,1q

3.4.3.2 Comments

The optimal trajectory remains essentially “stuck” to h � hc except at the beginning and the end.
Consequently, one has as well γptq � 0 during the main part of the trajectory. Actually, when the
time horizon is great enough, a turnpike phenomenon appears on ph,γq state variables in the op-
timal synthesis. Formally speaking, the situation resembles to the linear turnpike (see paragraph
1.1.1 and [84]):

• the dynamics can be uncoupled as in (1.7) by setting x :� ph,γq and y :� x (by using the
notations of the Chapter 1)

• the solution of the “turnpike static” problem (1.8) is given by: px̄p.q, h̄, γ̄, ūq :�pv.t ,hc ,0,0q.
However, contrary to the assumptions in the linear turnpike theorem, the linearized system at the
turnpike is not controllable. Indeed, it can be easily proved by linearizing the dynamics along
px̄p.q, h̄, γ̄, ūq and verifying that the Kalman condition is not satisfied (the linearized system is time
invariant). In other words, as in the Dubins case the turnpike arc is singular.

Moreover, one can remark that the theoretical control is chattering at the junction with the central
arc. At this stage, we infer that we observe the so called Fuller phenomenon, widely studied in the
literature. The Fuller problem is characterized by the chattering phenomenon which occurs when
the optimal control switches an infinite number of times over a compact time interval.
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Figure 3.6: Chattering phenomenon

We provide now the explanation for the Fuller phenomenon: let us consider the initial condition
pxp0q,hp0q,γp0qq � px0,h0,γ0q and the control αptq :� 0. There exists a unique trajectory solution
of (3.28) with the initial condition and associated to the control αp�q (Cauchy problem). It is given
by:

xptq� x0� v.t .cosγ0

hptq� h0� v.t . sinγ0

γptq� γ0

Without loss of generality, by taking px0,h0,γ0q� p0,0,0q, the above solution becomes: xptq� v.t ,
hptq� 0 and γptq� 0.

There exists a tubular neighbourhood of the above trajectory and a C8 diffeomorphism such that
in this neighbourhood and in the new coordinates denoted by px̃, h̃, γ̃q the differential system can
be written as follows:

9̃xptq� v.p1� γ̃2q
9̃hptq� γ̃ptq
9̃γptq� αptq

The above differential system associated to the cost
³

h̃ptq2d t is precisely the Fuller problem along
ph̃, γ̃q state coordinates (plus an integrator coordinate x). We recall hereafter the Fuller’s problem.

3.4.3.3 Optimal synthesis in the Fuller case

To better explain the chattering phenomenon, we recall the well-known Fuller’s problem, which is
the optimal control problem:

min

» t f

0
x2

1ptqd t , 9x1ptq� x2ptq, 9x2ptq� uptq, |uptq| ¤ 1 (3.32)

x1p0q� x10, x2p0q� x20, x1pt f q� x2pt f q� 0, t f free (3.33)

We define ξ :�
�?

33�1

24


1{2

as the unique positive root of the equation ξ4�ξ2{12�1{18� 0 and

we define the sets:

Γ� :�tpx1, x2q PR2, x1 � ξ.x2
2 , x2   0u (3.34)

R� :�tpx1, x2q PR2, x1   sgnpx2q.ξ.x2
2u (3.35)

Γ� :�tpx1, x2q PR2, x1 ��ξ.x2
2 , x2 ¡ 0u (3.36)

R� :�tpx1, x2q PR2, x1 ¡�sgnpx2q.ξ.x2
2u (3.37)
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Then the optimal control is given in feedback form by:

u�� 1 if x PR�YΓ� and u���1 if x PR�YΓ� (3.38)

The control switches from u � 1 to u ��1 at points on Γ� and from u ��1 to u � 1 at points on
Γ�. The corresponding trajectories crossing the switching curves Γ� transversally are chattering
arcs with an infinite number of switchings that accumulate with a geometric progression at the
final time t f ¡ 0.

The optimal synthesis for the Fuller’s problem is drawn below. The solutions of the Fuller’s prob-
lem are chattering solutions since they switch transversally on the switching curves Γ� until finally
reaching the target point on the singular surface defined by the union of all singular solutions.

Figure 3.7: Optimal synthesis for the Fuller’s problem

In fact, the optimal control of the Fuller’s problem, denoted as u� contains a countable set of
switchings of the form

u�ptq�
"

1 if t P rt2k , t2k�1q
�1 if t P rt2k�1, t2k�2s (3.39)

where ptkqkPN is a set of switching times that satisfies pti�2�ti�1q  pti�1�ti q, i PN and converges
to t f  �8. This means that the chattering arcs contain an infinite number of switchings within
a finite time interval t f ¡ 0. For more detailed analysis, refer to [37]-[61].

3.4.4 Dubins-Fuller case, k0 ¡ 0, k1 ¡ 0

As stated before, it corresponds actually to a family of costs Jk0,k1 with k0 ¡ 0 and k1 ¡ 0.

3.4.4.1 Formal analysis

We apply the PMP reminded in 3.1.2. By denoting x,y the usual scalar product inR3 and the adjoint
vector by:

p �
�� px

ph

pγ

�
 (3.40)
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the Hamiltonian of the optimal control problem (3.28)-(3.29) is given by:

H0 :�xp, fr pµ,αqy�p0. f 0pµ,αq

� px .v.cosγ�ph .v. sinγ�pγ.α�p0.

�
k0�k1.

�
h�hc

hc


2

As previously, we assume hereafter that the optimal state is not abnormal thus we take p0 ��1.
The adjoint equations can then be derived and one obtains:

9px � 0, 9ph � 2.k1.
h�hc

h2
c

and 9pγ� v.ppx . sinγ�ph .cosγq (3.41)

The maximization condition (3.10) reads:

α P argmax
|r |¤1

ppγ.r q (3.42)

which leads to following optimal policy:

αptq�
$&%

pγptq
|pγptq| if pγptq� 0

to be determined if pγptq� 0
(3.43)

Finally in our case (no terminal cost, free final time and autonomous dynamics and cost), (3.12)-
(3.13) lead to:

@t P r0, t f s, H0pµptq, pptq,�1,αptqq� 0 (3.44)

As stated in (3.43), αp�q remains undetermined in the case where pγ� 0. Let us assume such a pos-
sibility over a subinterval of time denoted by I, and let us denote αsp�q the corresponding control.
In this situation, as explained before, the computation of αsp�q requires to derivate the switching
function pγ as many times as necessary (that is to say until the control appears explicitly), twice in
our case and one obtains:

:pγ� 0 ùñ αs .ppx .cosγ�ph . sinγq� 2.k1.ph�hcq.cosγ.

h2
c

(3.45)

It is not possible to have px .cosγ� ph . sinγ� 0 over a subinterval of I. If it was true, then from
9pγ� 0, one would deduce that px � ph � 0. Consequently, one would have 9ph � 0 leading to h �

hc . This would imply along this arc H0 ��k0   0 which contradicts the transversality condition
on Hamiltonian (3.44).

Consequently, the control along the arc reads, almost everywhere:

αs � 2.k1.ph�hcq.cosγ

h2
c .ppx .cosγ�ph . sinγq (3.46)

Hereafter, we illustrate numerically how the optimal solution of (DF) case evolves with increasing
values of k1 coefficient (with k0 � 1).

3.4.4.2 Direct method
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Figure 3.8: Optimal state, costate & control for k0 � 1, k1 � 0.1

Figure 3.9: Optimal state, costate & control for k0 � 1, k1 � 1
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Figure 3.10: Optimal state, costate & control for k0 � 1, k1 � 10

Figure 3.11: Optimal state, costate & control for k0 � 1, k1 � 100

75



CHAPTER 3. NUMERICAL SOLVING OF THE GUIDANCE PROBLEM

As expected, when the k1 coefficient tends formally to infinity, the number of optimal bang arcs
before and after the central arc increase and should tend (at least theoretically) to infinity (which
is of course not numerically observable). As stated previously, when k1 � 0, one is in the (D) case
whereas when k1 Ñ�8, one is in the (F) case.

From now on, in order to solve numerically (3.28)-(3.29), we focus on the case pk0,k1q� p1,1q.

3.4.4.3 Numerical solving strategy: L2 regularization and shooting method

Even though the trajectory obtained by the direct method seems to be satisfactory, our objective
is to solve the problem by using the shooting method. The natural strategy would consist in pro-
ceeding in the same way than in the (D) case. Indeed, from the results displayed on the figure
3.9, we infer that the optimal control structure is bang-bang- -singular- -bang-bang. However, nu-
merical tests show that the convergence of the shooting implemented by splitting the trajectory is
extremely difficult to obtain even for very small values of the continuation parameter. We infer that
the instability of the optimal control structure leads to the failure of such a numerical approach. To
overcome this difficulty, a classical method consists in regularizing the original problem by adding
a quadratic term either to the dynamics or to the cost. This method has been widely used in the lit-
erature: in [32], in the Goddard’s problem, the authors implement the homotopic approach based
on the quadratic regularization of the cost in order to tackle with the nonsmoothness of the op-
timal control. In [80], the maximum mass orbital transfer problem for a low thrust propulsion
system is solved. In particular, the authors discover the complex structure of the optimal control
(with multiple bang arcs) without any a priori assumptions thanks to the identical strategy. Note
that this type of approach has been as well adopted in [67] or [62].

In the sequel, we solve the Dubins-Fuller case precisely by adding a L2 norm of the control α to
the cost function. Such a problem has a strongly concave Hamiltonian with respect to α, with a
continuous optimal control and is much easier to solve than the original one.

Let us consider the following cost:

Jr
1,1pt f ,αq :�

» t f

0
f 0

r pµpsq,αpsqqd s :�
» t f

0

�
1� phpsq�hcq2

h2
c

�k2.αpsq2



d s (3.47)

where k2 ¥ 0 is a regularization parameter, penalizing the L2-norm of the control α.

The regularized Hamiltonian is given by:

Hr
0pµ, p, p0,αq :�xp, fr pµ,αqy�p0 f 0

r pµ,αq

� xp, fr pµ,αqy�p0.

�
1�

�
h�hc

hc


2

�k2.α2



We maintain the assumption of normality here by taking p0 ��1. Of course, as stated previously,
one discards the abnormal case because it is identified. The adjoint equations in px , ph and pγ
remain identical to (3.41). Following the maximization condition (3.10), the optimal control α is
now given by:

α P argmax
|r |¤1

��k2.r 2�pγ.r
�

(3.48)

which leads to the following expression:

αptq�max

�
min

�
pγ

2.k2
,1



,�1



(3.49)

The Hamiltonian transversality conditions remain:

@t P r0, t f s, Hr
0pµptq, pptq,�1,αptqq� 0 (3.50)
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The basic idea behind the regularization is to smoothen the original optimal control problem by
increasing k2, then to solve the regularized problem and finally to carefully decrease k2 by contin-
uation in order to converge towards the initial problem.

First, we recall that, as the optimal control (3.49) can be expressed in function of the state and the
adjoint state, we are, up to the saturation, in the context of the paragraph 3.2.3 . In order to avoid
to activate the latter, we increase the saturation value from αmax :� 1 up to α0

max � 5 . We perform
a numerical continuation on boundary conditions. To ensure successful initialization, we deform
the initial and final conditions in such a way that they are close and that the optimal trajectory is
simple to compute: in this case the convergence is obtained with a trivial initial guess (in our case,
the adjoint state pp0q and final time t f ).

Moreover, as the expected final time is t f � 15s (based on minimum time problem, see paragraph
3.4.4.2), we need to increase sufficiently the regularization coefficient k2 in order to make the con-
tinuation converge. After performing numerical tests for various values of k2, we set kmax

2 � 10. We
highlight that the values lower than k2 � 5 do not allow the continuation to successfully reach the
terminal conditions (3.30). Roughly speaking, when the value of k2 parameter is too close to zero,
then the central arc of the optimal solution becomes close to the singular arc, a straight line in
the px,hq plane, and consequently makes the shooting method fail. Clearly speaking, this means
that the determinant of the Jacobian matrix (3.54) of the shooting function tends to zero (see para-
graph 3.4.4.5 and inside it the figure 3.12). The k2 parameter can be considered as a “singular
perturbation” in our optimal control problem.

Once the boundary conditions reached, we implement a simultaneaous decreasing continuation
on the regularization coefficient k2 and the control saturation αmax. To do so, we implement a
variant of the shooting method, which we will formally call "shooting from the middle" (refer to
[29] for deeper description and an academic example). The shooting from the middle consists in
choosing zpt f {2q as unknown and then:

• integrating backward in time the differential system over r0, t f {2s in order to get the value of
zp0q

• integrating forward in time the differential system over r0, t f {2s in order to get the value of
zpt f q

This very simple variant appears to be very efficient for two main reasons:

• it divides the time horizon by a factor 2 by starting the shooting at time t � t f {2

• it is extremely useful when initialized at the turnpike (which is our case) as it exploits the
local stability of the solution.

Of course, "the price to pay" is the increase of the number of unknowns (and the conditions con-
ditions to fullfill).

Consequently, in the light of what precedes, we implement two successive continuations:

1. Step 1: Simultaneous continuation on the prescribed coordinates of the final state and the
corresponding ones of the initial state. We implement the standard shooting method. The
shooting is performed on the initial adjoint state pp0q and the time of flight t f . At the end of
this procedure, the initial and final states reach their prescribed values. This continuation is
parametrized by λ1 P r0,1s.

2. Step 2: Simultaneous decreasing continuation on the regularization coefficient k2 and the
control saturation αmax. We implement the shooting from the middle. The shooting is per-

formed on the state ξ
�

t f

2

	
and costate p

�
t f

2

	
taken at time t f {2 and of course on the time

of flight t f . This continuation is parametrized by λ2 P r0,1s.
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3.4.4.4 Continuation at step 1

During the first continuation procedure, the shooting function denoted Sλ1 :R4 ÞÑR4 is defined as
follows:

Sλ1 :

�
pp0q

t f



ÞÝÑ

����
xpt f q� xc

1pλ1q
hpt f q�hc

1pλ1q
γpt f q�γc

1pλ1q
Hr

0

�
µpt f q, ppt f q,�1,αpt f q

�
���
 (3.51)

One performs the diagonal continuation on the following coordinates:

xc
0pλ1q� xi

0�λ1.px0�xi
0q

hc
0pλ1q� hi

0�λ1.ph0�hi
0q

γc
0pλ1q� γi

0�λ1.pγ0�γi
0q

xc
1pλ1q� xi

m �λ1.px f �xi
mq

hc
1pλ1q� hi

m �λ1.ph f �hi
mq

γc
1pλ1q� γi

m �λ1.pγ f �γi
mq

where λ1 P r0,1s is the homotopy factor increasing from 0 to 1. The starting triple of the initial state
is pxi

0,hi
0,γi

0q � p0,hc ,0q, the corresponding triple of the final state is pxi
m ,hi

m ,γi
mq � p1,hc ,0q. The

first guess is zp0q :�ppxp0q, php0q, pγp0q, t f q� p0.0,1.0,1.0,2.0q and the convergence is immediate.

3.4.4.5 Well posedness of the shooting method

We explain hereafter how the well posedness of the shooting method is related to the k2 coefficient.
As detailed in the section 3.2.3, the shooting method consists in searching ppp0q, t f q such that:

Sλ1ppp0q, t f q� Spλ1, pp0q, t f q� 0 (3.52)

Let pλ̄1, p̄, t̄q be a zero of S. S being of class C1, if its Jacobian matrix with respect to ppp0q, t f q, taken
at the point pλ̄1, p̄, t̄q is invertible, then according to a usual implicit function argument, one can
locally solve (3.52) and the solution ppp0q, t f qdepends in a C1 way on the parameterλ1. Notice that
this is the standard argument which is at the basis of the well-known Lagrange–Newton method
in optimization and as well a necessary condition for the local feasability of the continuation. For
more details refer for instance to [58] and [83].

Based on the direct method results, we infer that, at least along the central arc:

Hr
0pµ, p,�1,αqÝÑHspµ, p,αq as k2 ÝÑ 0 (3.53)

where Hs is given by (3.16) which means that the central arc of the regularized problem can be
considered as a quasi-singular arc when k2 decreases. This is precisely the case where the Jacobian
of the shooting function becomes singular and consequently the continuation procedure fails.
This is likely the reason why one needs to increase k2 in order to make the continuation converge.

In order to support this conjecture, we compute numerically the family of Jacobian matrices:

dS :�
� BS

Bpp0q
���� BS

Bt f

�
(3.54)

along the continuation path (parametrized by λ1) and estimate the extreme singular values at each
successfull iteration. We repeat what precedes for different values of k2. The results are displayed
hereafter:
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Figure 3.12: Singular values of the Jacobian for different values of k2

One remarks that the ratio
σmin

σmax
decreases as k2 decreases. When this ratio drops below a thresh-

old value, the solver likely declares the singularity of the Jacobian, and consequently the contin-
uation is interrupted. For more details about the computation of the singular values, refer to the
paragraph A.3.

3.4.4.6 Optimal solution for λ1 � 1.0

The processing time is around 40 seconds. The computed state/costate/control are displayed her-
after (k2 � 10.0):
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Figure 3.13: Optimal state, control and adjoint state for λ1 � 1

The following table provides the terminal accuracy:

Shooting output Value
|xpt f q� x f | 3.10�13

|hpt f q�h f | 5.10�13

|γpt f q�γ f | 5.10�13

Hr
0pt f q 5.10�13

Table 3.1: Final accuracy of the shooting (step 1)

As expected, the turnpike structure gradually appears on the state variables h and γ. This will be
exploited in the following paragraph.

3.4.4.7 Continuation at step 2

The second continuation is based on the shooting function Sλ2 :R13 ÞÑR13 defined hereafter:

Sλ2 :

������
µ�

�
t f {2

�
µ�

�
t f {2

�
p�

�
t f {2

�
p�

�
t f {2

�
t f

�����
ÞÝÑ
������

µp0q�µ0

µpt f q�µ f

Hr
0

�
µpt f q, ppt f q,�1,αpt f q

�
µ�

�
t f {2

��µ�
�

t f {2
�

p�
�

t f {2
��p�

�
t f {2

�

�����
 (3.55)

One performs the linear continuation on the coefficient k2 and saturation value αmax:

kc
2pλ2q� kmax

2 �λ2.pkmin
2 �kmax

2 q
αc

maxpλ2q� α0
max�λ2.pαmax�α0

maxq
where λ2 P r0,1s is the homotopy factor increasing from 0 to 1. The initial guess is obtained by
extracting pµpt f {2q, ppt f {2qq and t f from the first step continuation for λ1 � 1.0. After several

80



CHAPTER 3. NUMERICAL SOLVING OF THE GUIDANCE PROBLEM

numerical tests, we set kmin
2 � 0.25 which is the minimum value for which one obtains the conver-

gence when λ2 � 1.0. We recall that kmax
2 � 10.0, α0

max � 5.0 and αmax � 1.0 (nominal value).
With the continuation step δλ2 � 0.01, the processing time is around 40 sec.The computed op-
timal state/costate/control and the comparison with the non regularized direct method solution
are displayed below:

Figure 3.14: Optimal state, control and adjoint state for λ2 � 1

The following table provides the accuracy for λ2 � 1.0:

Shooting output Value
|xp0q� x0| 1.10�9

|hp0q�h0| 7.10�7

|γp0q�γ0| 2.10�6

|xpt f q� x f | 1.10�8

|hpt f q�h f | 1.10�6

|γpt f q�γ f | 10�6

Hr
0pt f q 7.10�8

Table 3.2: Final accuracy of the shooting (step 2)

3.4.4.8 Comments

The L2 regularization allows to compute the control without requiring prior knowledge of its struc-
ture. At step 2 of the solving procedure, we observed numerically that the continuation combined
with the shooting from the middle allows to reach significantly lower value of k2 than when com-
bined with the standard shooting.

Remark 3.4.4.1 An alternative to solve the non regularized problem is to implement the multiple
shooting method in order to enhance the stability and accuracy. More precisely, one can proceed as
follows:
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1. Impose the control structure B-B-S-B-B and assume the stability of the latter along the con-
tinuation path.

2. Implement nodes on the control switching times.

3. Perform the shooting on the initial adjoint state, control switching times and the final time.

We observed numerically that, in order to reach the prescribed boundary values, additional nodes
need to be added, equally spaced one from each other, along the quasi-singular arc. The optimal
solution is presented in appendix A.4.

In the next paragraph, we explain how the (D)/(DF) problems lead naturally to the missile guid-
ance problem.

3.5 The missile guidance problem

Our objective is to solve numerically the optimal control problem (2.22) with the boundary condi-
tions (2.23). As explained previously, we aim at computing the optimal solution in the minimum
time case and the bunt case.

To do so, our goal is to deform the Dubins-Fuller problem into the missile guidance problem by
performing a continuation over the dynamics and the boundary conditions.

Moreover, we highlight that, based on various numerical simulations the Dubins-Fuller problem
appears to be very similar to the missile guidance problem in terms of global behavior of the opti-
mal solutions. For this reason, we expect to successfully “transport” the optimal control structure
from one to another.

Finally, the optimal synthesis in the missile guidance problem is actually a continuous deforma-
tion of the optimal synthesis in the Dubins-Fuller problem.

3.5.1 Parametrized dynamics

Let us consider the following 5D dynamical model: 9ξ� fλpξ,αqwhere fλ :R5 ÝÑR5 is given by:

fλpξ,αq :�

��������
v.cosγ
v. sinγ

λ.

�
Tmax.p1�Cs .vq�Dph, vq

m
� g . sinγ



apξ,αq.λ�α

�λ.Cs .Tmax

�������
 (3.56)

with apξ,αq :�
�

q̄ph, vq.S
m.v

�1



.α� g .

cosγ

v
. The dynamics is parametrized by the parameter λ P

r0,1s.
For λ� 0, one has the simplified dynamics (3.28) whereas for λ� 1.0, one has the full missile dy-
namics as defined in (2.21). Consequently, it seems natural to perform an increasing continuation
over λ in order to “connect” both dynamics.

3.5.2 Numerical solving strategy

Similarly to the (DF) case, the missile guidance problem consists in steering the affine-in-control
dynamical system from a fixed initial state to the partially fixed final state by minimizing a certain
criterium. Consequently, we follow the same strategy as previously:

1. the minimum time problem: we implement an increasing continuation overλ and the bound-
ary conditions in order to “transport” the optimal control structure from the Dubins prob-
lem up to the missile guidance problem.
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2. the bunt problem: we first regularize the cost, then perform an increasing continuation over
λ and boundary conditions in order to reach the desired ones. Then, we implement a de-
creasing continuation over the regularization parameter k2 in order to get as close as possi-
ble to the original cost.

Remark 3.5.2.1 The continuation will be simultaneously conducted on the dynamics and bound-
ary conditions.

3.5.3 The minimum time problem

We provide hereafter the state & costate equations arising from the application of the PMP to the
minimum time problem with the parametrized missile dynamics (3.56). By denoting:

Hλpξ, p,�1,αq :�xp, fλpξ,αqy�1 (3.57)

The adjoint equations 9p ��BHλ

Bξ read along each coordinate (after arrangement):

9px � 0 (3.58a)

9ph � λ.

�
pv

m
.
BD

Bh
ph, vq� pγ

m.v

BL

Bh
ph, v,αq



(3.58b)

9pv ��px .cosγ�ph . sinγ�λ.

�
pv

m

BD

Bv
ph, vq� pγ

m
.
BpL{vq
Bv

� pγ
v2 .g .cosγ� pv

m
.Cs .Tmax



(3.58c)

9pγ� px .v. sinγ�ph .v.cosγ�λ.pv .g cosγ�λ.
pγ
v

g . sinγ (3.58d)

9pm � λ.
pv

m2

�
Tmax.p1�Cs .vq�Dph, vq



�λ.

pγ
v.m2 .Lph, v,αq (3.58e)

The control is derived in the same way than previously by derivating twice the switching function
pγ and its expression is:

αsptq� 1

1�λ�λ.
q̄ph, vq.S

m.v

�
λ.g .cosγ

v
� Aλpξ, pq

Bλpξ, pq



(3.59)

where:

Aλpξ, pq :� λ.pph .cosγ�px . sinγq
�

Tmax.p1�Cs .vq�Dph, vq
m

� g . sinγ



�λ.g .cosγ.

�
px .cosγ�ph . sinγ�λ.

pv .Cs .Tmax

m
�λ.

pv

m

BD

Bv



�λ.v.cosγ.

pv .Dph, vq
m.hr

and

Bλpξ, pq :� v.pph . sinγ�px .cosγq�λ.g .pv . sinγ

The adjoint transversality conditions (3.11) are:

pvpt f q� 0 and pmpt f q� 0 (3.60)

Finally, the transversality conditions on the Hamiltonian (3.12)-(3.13) lead to:

@t P r0, t f s, Hλpξptq, pptq,�1,αptqq� 0 (3.61)

Of course, one has to ingeniously select the variables/parameters over which the continuation
should be performed in order to ensure the stability of the optimal structure. The choice proposed
hereafter is based on the intuition and engineering experience.
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Let us now consider the shooting function denoted by Sλ :R8 ÞÑR8 which is defined as follows:

Sλ :

����
pp0q

t1

t2

t f

���
ÞÝÑ

������������

xpt f q� xcpλq
hpt f q�h f

γpt f q�γ f

pvpt f q
pmpt f q
pγpt1q
9pγpt1q

Hλ

�
ξpt f q, ppt f q,�1,αpt f q

�

�����������

(3.62)

where 0¤ t1   t2 ¤ t f are the instants corresponding to the beginning (resp. end) of the singular
arc. Then one performs the diagonal continuation on the following parameters:

xcpλq� xi
f �λ.px f �xi

f q
v0pλq� v i

0�λ.pv0� v i
0q

αmaxpλq� αi
max�λ.

�
αmax�αi

max

�
where xi

f � 5, v i
0 � 1 and αi

max � 1.0. The other parameters remain unchanged with respect to
the table 2.1 and the boundary conditions (2.23). We display hereafter the samples of optimal
trajectory, control and switching function along the continuation path with a step of δλ� 0.05.

Figure 3.15: Trajectory, control & switching function samples

With the step δλ� 0.0005 and the maximum step δλmax � 0.001, the computing time is around
500 sec on a standard desktop computer. The final output are displayed hereafter (and compared
to the output of the direct method):
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Figure 3.16: Shooting vs direct method comparison on minimum time problem

The following table provides the accuracy of the shooting method for λ� 1.0:

Shooting output Value
|xpt f q� x f | 3.10�2

|hpt f q�h f | 8.10�2

|γpt f q�γ f | 2.10�3

pvpt f q 2.10�6

pmpt f q 2.10�7

Hλpt f q 2.10�14

Table 3.3: Final accuracy

The switching instants are: t1 � 4.97 sec, t2 � 87.05 sec, and the time of flight t f � 90.7 sec. By
performing the continuation as detailed above, we implicitly made the assumption that the opti-
mal structure remains unchanged over the range of the deformation parameter λ and final states.
In practice, we did not prove it, but empirically inferred it by performing some AMPL/IPOPT sim-
ulations prior to the continuation.

3.5.4 The “bunt” case

We consider the regularized cost:

Jr pt f ,αq :�
» t f

0
f 0

r pξpsq,αpsqqd s :�
» t f

0

�
1� phpsq�hcq2

h2
c

�k2.αpsq2



d s (3.63)

The regularized Hamiltonian is given by:

Hr
λpξ, p, p0,αq :�xp, fλpξ,αqy�p0 f 0

r pξ,αq

� xp, fλpξ,αqy�p0.

�
1�

�
h�hc

hc


2

�k2.α2
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We maintain the assumption of normality here by taking p0 ��1. The adjoint equations in px ,
pv , pγ and pm remain identical to (3.58). An additional term appears in ph equation as:

9ph ��BHλ

Bh
� 2

h2
c

.ph�hcq (3.64)

Following the maximization condition (3.10), the optimal control α is now given by:

α P argmax
|r |¤αmax

�
β2.r 2�β1.r

�
(3.65)

where:

β2 :��k2 (3.66)

β1 :� pγ.

�
1�λ.

�
ρphq.S.v

2.m
�1




(3.67)

The transversality and Hamiltonian conditions remain unchanged:

@t P r0, t f s, Hr
λpξptq, pptq,�1,αptqq� 0 (3.68)

and
pvpt f q� 0 and pmpt f q� 0 (3.69)

3.5.4.1 Continuation at step 1

During the first continuation procedure, the shooting function denoted by Sλ :R6 ÞÑR6 is defined
hereafter:

Sλ :

�
pp0q

t f



ÞÝÑ

��������

xpt f q� xc
1pλq

hpt f q�hc
1pλq

γpt f q�γc
1pλq

pvpt f q
pmpt f q

Hr
λ

�
ξpt f q, ppt f q,�1,αpt f q

�

�������
 (3.70)

One performs the diagonal continuation on the following coordinates:

hc
c pλq� hi

c �λ.phc �hi
cq

hc
0pλq� hc

c pλq�λ.ph0�hc
c pλqq

vc
0pλq� v i

0�λ.pv0� v i
0q

γc
0pλq� γi

0�λ.pγ0�γi
0q

xc
1pλq� xi

m �λ2.px f �xi
mq

hc
1pλq� hc

c pλq�λ.ph f �hc
c pλqq

γc
1pλq� γi

m �λ.pγ f �γi
mq

where λ P r0,1s is the homotopy factor increasing from 0 to 1. The initalization values are the fol-
lowing: hi

c � 0.5, xi
m � 5, γi

0 � 0, γi
m � 0. The remaining coordinates are unchanged with respect

to their numerical values (2.23). The first guess is zp0q :� ppxp0q, php0q, pvp0q, pγp0q, pmp0q, t f q �
p0.5,1.0,1.0,1.0,1.0,6.0q and the convergence is immediate.

After several numerical trials, we had to adjust the continuation step to the value δλ � 0.001.
Moreover, we set the regularization coefficient to kmax

2 � 50. We highlight that values of k2 lower
than kmax

2 combined with the continuation step greater than δλ slow down significantly (or make
fail) the algorithm .The observation on the k2 was expected in the light of the paragraph 3.4.4.5: in-
deed, when k2 tends to zero (precisely when k2 ¤ kmax

2 ), then the central arc becomes too close to a

86



CHAPTER 3. NUMERICAL SOLVING OF THE GUIDANCE PROBLEM

singular arc (that is along which the linearized system is not controllable, see 3.1.2.1). For this rea-
son, the determinant of the Jacobian of the shooting function becomes close to zero which makes
the shooting method fail. Clearly speaking, there exists an infimum of the k2 values below which
the continuation method fails to converge. As in the Dubins- Fuller case (see paragraph 3.4.4), k2

parameter can be considered as a “singular perturbation” in our optimal control problem.

Under the previous settings, the processing time is around 500 seconds. We display hereafter the
samples of optimal trajectory and control along the continuation path and the final solution:

Figure 3.17: Samples of optimal trajectory and control
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Figure 3.18: Optimal state, control and adjoint state for λ� 1

The following table provides the terminal accuracy:

Shooting output Value
|xpt f q� x f | 7.10�10

|hpt f q�h f | 2.10�10

|γpt f q�γ f | 5.10�11

pvpt f q 2.10�11

pmpt f q 2.10�11

Hr
1pt f q 5.10�13

Table 3.4: Final accuracy of the shooting (step 1)

3.5.4.2 Continuation at step 2

During the second continuation, the shooting function Sδ :R21 ÞÑR21 is defined hereafter:

Sδ :

������
ξ�

�
t f {2

�
ξ�

�
t f {2

�
p�

�
t f {2

�
p�

�
t f {2

�
t f

�����
ÞÝÑ

��������������

ξp0q�ξ0

xpt f q� x f

hpt f q�h f

γpt f q�γ f

pvpt f q
pmpt f q

Hr
1

�
ξpt f q, ppt f q,�1,αpt f q

�
ξ�

�
t f {2

��ξ�
�

t f {2
�

p�
�

t f {2
��p�

�
t f {2

�

�������������

(3.71)
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Identically to the (DF) case, one performs the decreasing continuation over k2 and αmax:

kc
2pδq� kmax

2 �δ.pkmin
2 �kmax

2 q
αc

maxpδq� α0
max�δ.pαmax�α0

maxq

where δ P r0,1s is the homotopy factor increasing from 0 to 1. The initial guess is obtained by ex-
tracting pξpt f {2q, ppt f {2qq and t f from the first step continuation for λ� 1.0. After several numer-
ical tests, we set kmin

2 � 0.75 which is the minimum value for which one obtains the convergence
for λ2 � 1.0. We recall that α0

max � 20.0 and αmax � 2.0 (nominal value).

We set the continuation step δλ2 � 0.005 which ensures a reasonable compromise between the
computation time (300 sec) and the algorithm accuracy. The solution obtained with the shooting
method is presented hereafter and compared to the non regularized solution obtained with the
direct method:

Figure 3.19: Optimal state, control and adjoint state for δ� 1

The following table provides the accuracy of the continuation for δ� 1.0:
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Shooting output Value
|xp0q� x0| 1.10�7

|hp0q�h0| 7.10�7

|vp0q� v0| 3.10�8

|γp0q�γ0| 2.10�8

|mp0q�m0| 1.10�13

|xpt f q� x f | 3.10�6

|hpt f q�h f | 5.10�7

|γpt f q�γm | 2.10�7

pvpt f q 7.10�9

pmpt f q 4.10�7

Hr
1pt f q 9.10�10

|ξ� �t f {2
��ξ�

�
t f {2

� | 0.0
|p�

�
t f {2

��p�
�

t f {2
� | 0.0

Table 3.5: Final accuracy of the shooting (step 2)

3.5.4.3 Comments and perspectives

The regularization of the initial control problem allows to successfully compute an acceptable so-
lution. The key idea behind this is the increase of the regularization coefficient k2 which enhances
the well posedness of the shooting method and consequently ensures the convergence of the al-
gorithm. The other advantage is that, contrary to the minimum time problem, one does not need
to know the structure of the optimal trajectory prior to the implementation, which simplifies the
analysis and the computation of the algorithm.

On the other side, the (usual) drawback of the regularization is that one does not exactly solve the
initial control problem due precisely to the coefficient k2. However, in our case, the regularized
solution is relatively close to the original one and totally acceptable from the operational point of
view (see figure 3.19).

Additional numerical experiments show that the minimum value of the k2 coefficient (meaning
the minimum value of k2 allowing the convergence of the continuation) increases with values
of x f . Consequently, the regularized problem becomes less representative of the original one:
indeed the altitude peaks (during the first and last phase of flight) become higher which extends
the exposure of the vehicle and the cruise altitude constraint is no more respected with acceptable
tolerance.

3.5.5 Computation of a quasi optimal trajectory by a reduced shooting method

To overcome this issue and in order to compute an acceptable solution for even larger time hori-
zons, one can exploit the partial turnpike phenomenon observed on h and γ. A pragmatic ap-
proach consists in replacing the central arc by a level flight arc during which one has rigorously
hptq � hc and γptq � 0. The last equality leads from (2.21d) to a control in the form of a feedback
of the state:

γptq� 0 ùñ 9γptq� 0 ùñ ᾱptq� mptq.g
q̄phc .vptqq.S (3.72)

A counterpart of the approximation is an a priori loss of optimality: indeed there is no reason that
the PMP holds along such an arc.The convient method is to implement a reduced shooting method
which consists in considering the state dynamics only.

More precisely, based on the direct method results (see figure 3.19) let us consider the following
control structure:

1. αptq��αmax on time interval r0, t1s
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2. αptq� αmax on time interval rt1, t2s
3. αptq� ᾱptq on time interval rt2, t3s
4. αptq� αmax on time interval rt3, t4s
5. αptq��αmax on time interval rt4, t f s

where 0   t1   t2   t3   t4   t f are the different switching times. As remarked above, ᾱ is not
optimal, but based on the turnpike phenomenon, we infer that it may be a quasi-optimal arc.

By assuming the stability of the control structure when x f increases, one can implement a contin-
uation based on a shooting on the switching times only. More precisely, let us define the shooting
function Sδ :R5 ÞÑR5 defined as follows:

Sδ :

������
t1

t2

t3

t4

t f

�����
ÞÝÑ
������

hpt2q�hc

γpt2q
xpt f q� xc

f pδq
hpt f q�h f

γpt f q�γ f

�����
 (3.73)

The two first components of Sδp�q impose that @t P rt2, t3s, hptq � hc and γptq � 0�. It suffices to
perform the continuation on the x f coordinate only:

xc
f pδq� xi

f �δ.px f �xi
f q

where δ P r0,1s is the homotopy factor increasing from 0 to 1, xi
f � 25000m is the initial range

value corresponding to the boundary value of the regularized problem. We set the new final range
value at x f � 50000m and keep the other terminal conditions unchanged. The initialization of the
shooting procedure can be easily done by choosing pt1, t2, t3, t4, t f q � p11,17,86,90,100q deduced
from the original regularized problem.

The principle of the shooting is analogous to the minimum time case as we integrate each of the
five arcs separately. However, the main difference is that we do not consider the adjoint variables
as we do not implement the PMP necessary optimality conditions as it is usually done in the shoot-
ing methods.

The optimal solution is displayed hereafter and compared to the one obtained with the direct
method (AMPL & IPOPT):
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Figure 3.20: State and control: Shooting vs direct method

First, the output correspondence between the two approaches is satisfactory which validates the
level flight approximation. Moreover, the cost obtained by the reduced shooting method is Cr s �
282.3 whereas the cost obtained by the direct method is Campl � 281.7. This observation confirms
that the computed solution is quasi-optimal. Finally, we highlight that due to lower problem di-
mension (5 vs 10 for the standard shooting) the computation time of the shooting is significantly
reduced.

Remark 3.5.5.1 An alternative method to compute an optimal solution for great time horizons is to
assume, as done before, a pre defined optimal control structure, with intermediate constraints (for
instance, hpt2q � hc and γpt2q � 0) and then to apply the Hybrid Maximum Principle ([21]-[22]).
However, we did not test this approach within the frame of this thesis.

92



Chapter 4

Hamilton Jacobi Bellman approach

“Tu sais que t’es physiquement
intelligente toi? ”

Brice de Nice
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4.1 A global approach

4.1.1 Introduction

The PMP can be used to find an optimal solution but it should be emphasized that there is no guar-
antee that this solution is the global optimal one because this approach deals only with necessary
conditions of optimality.

Besides, the homotopy procedure being an iterative one, it raises the question of initialization and
convergence. Finding a suitable initial guess can be tricky in particular, when dealing with duality
and when the area of convergence is restricted as it is the case in the quasi Newton method.

With regard to local methods, the HJB approach has two major assets. First, the background the-
ory ensures to obtain the global solution when it exists. Second, the implementation of the HJB
approach doesn’t require any iterative process, freeing the engineer from tricky tasks that are ini-
tialization and convergence.

Despite of these advantages, the approach suffers from some difficulties of computing the solution
to the HJB equation in higher dimensions. The numerical simulations presented in the following
sections show that the approximation of the HJB equations, even on coarse grids, provides solu-
tions which depict well the qualitative structure of the optimal trajectories and may thus be used
to guess the structure of optimal solutions. However, to get an accurate computation of the opti-
mal trajectories, an important numerical effort is necessary to approach the solutions of the HJB
equations on very fine grids.

4.1.2 Dynamic Programming Principle

Let us consider the following problem: look for the path starting from the point a and allowing
reaching the point e in minimum time.

Figure 4.1: Illustration of the Dynamic Programming Principle

We assume the dynamics is such that at any time, the time of arrival depends only on the current
state and on the control, in particular it is considered that the history of dynamics state prior
to the curent state has no explicit influence on the future state. In this frame, the core idea at
origin of the DPP can be expressed as follows: if the optimal trajectory from the point a to the
point e goes through the point b, the portion of this trajectory linking the point b to the point e is
also the quickest path between these latter points. If it was not, there would exist a quicker path
between the points a and e. Now considering the quickest trajectory between the points b and e,
this smaller optimization problem can be solved if we know that this trajectory goes through the
point c for instance, and so on.
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This simple-looking idea is at the origin of a powerful approach that can be used to solve an op-
timal control problem: starting from the target, one looks for the points being reachable in given
time d t . The locus of this points may be understood as a level curve which is memorized. Starting
from this curve, the location reachable in a given time d t is determined and memorized. This new
level curve represents the locus of points reachable in 2d t and is memorized. This computation
is running until the farthest level curve crosses the point a. Then this propagation phase, which is
time backward, stops.

Now, starting from the point a, let us use the level curves which have been successively memorized
dring the propagation phase to determine the quickest path, the time flowing forwards from 0 to
d t , then from d t to 2d t , and so on until reaching the point e. This is the so called reconstruction
phase. Let us notice that not only the best path starting from the point a can be reconstructed, but
all the paths starting from any point included inside the level curve croissing the point a.

4.1.3 Theoretical elements related to the HJB approach

As previously illustrated, the DPP proposes to solve an optimal control problem by considering it
as a part of a family of optimal control problems: indeed, to find a path from the point a to the
point e, one may find the optimal path from b to e and so on.

The HJB equation extends this approach, expressed in discrete domain, to continuous optimal
control problem. Actually, solving HJB equation leads to the computation of a "value function"
which associates the optimal cost of the control problem to the initial state. More precisely, the
value function appears to be the solution of a first order nonlinear partial differential equation,
the dimension of which being related to the number of variables involved in the problem.

Let us consider the following problem:$''''''&''''''%

min t f

9ξpsq� f pξpsq,αpsqq @s P r0, t f s
αpsq P A for a.e. s P r0, t f s
ξp0q� x

ξpt f q PC

(4.1)

where C (target) is a smooth subset of Rn , f : Rn �AÑ Rn is the dynamics, A is a compact set of
Rp . We denote by ξαxp�q the trajectory of the dynamical system starting from the initial position x
and associated to the control α.

We recall some classical results related to the HJB approach of (4.1). Let us assume the continuity
of f , the closedness and convexity of f px, Aq for any x P Rn , the Lipschitz continuity of f in the
state variable uniformely with respect to the control and the linear growth property.

Consider the minimal time function T which associates to any point x P Rn the minimal time
needed to reach the target C with an admissible trajectory ξαxp�q:

Tpxq :� inftt ¥ 0, Dα PA , s.t. ξαxptq PC u (4.2)

Many works have been devoted to the regularity of T. Under some controllability property around
the target (typically the inward pointing qualification IPQ), the function T is the unique continu-
ous viscosity solution of an HJB equation (see [56] for instance).

Unfortunately, in many control problems the IPQ condition is not satisfied at the boundary of the
target C . Thus the minimum time T may be discontinuous or even not real valued. Nevertheless,
it can be shown ([4] for instance) that the epigraph of T can be characterized by an auxiliary value
function which is Lipschitz continuous. What follows is borrowed from [4].
Let us first consider a Lipschitz continuous function ψ :Rn ÑR such that:

x PC ðñψpxq¤ 0 (4.3)
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Consider the value function u :R��Rn ÑR such that:

upt , xq :� inftψpξαxptqq, α PA u (4.4)

Let us now introduce the capture bassin (backward reachable set) at time t defined by:

CaptC ptq :�  
x PRn , D α PA

�� ξαxptq PC
(

. (4.5)

The capture bassin and the minimal time function T can then be characterized as follows:

Proposition 4.1.3.1 The capture bassin CaptC ptq and the minimal time function T satisfy:

CaptC ptq� tx,upt , xq¤ 0u (4.6a)

Tpxq� inftt ¥ 0, x PCaptC ptqu� inftt ¥ 0,upt , xq¤ 0u (4.6b)

Roughly speaking the value function u encodes the information to compute the capture bassin
and the minimal time T. Moreover, as stated before, it satisfies the dynamical programming prin-
ciple:

Proposition 4.1.3.2 (Dynamical Programming Principle)
Under adequate assumptions, for any x PRn and 0  τ¤ t , one has:

upt , xq� inf
αPA

tupt �τ,ξαxpτqqu (4.7)

Finally, the value function u satisfies the following HJB equation:

Proposition 4.1.3.3 (Hamilton Jacobi Bellman Equation)
u is the unique continuous viscosity solution of the following HJB equation:

Bt u�H0px,Dx uq� 0, (4.8a)

up0, xq�ψpxq (4.8b)

where the Hamiltonian is given by: H0px, pq :� sup
aPA

p� f px, aq.pq.

In the above mentioned equation, Dx u is the differential of u with respect to x in the viscosity
sense which is weaker than the classical differentiability: indeed, expecting a value function to be
differentiable is an unrealistic assumption in the HJB framework as we illustrate it later through
an example. For more details on the need of viscosity solutions, please refer to A.2.

Remark 4.1.3.1 : The precise assumptions leading to the DPP and HJB equations and the associated
proofs will be detailed in the general case in the next section.

Remark 4.1.3.2 : It is easily proved that if one considers the Hamiltonian defined by:

H px, pq :�max

�
0,sup

aPA
p� f px, aq.pq



(4.9)

the negative level sets of the associated solution of (4.8) correspond to the capture bassins before
time t. This is precisely what we implement in the next numerical example.

4.1.4 Minimum time trajectories reconstruction from the value function

From a control viewpoint, the approximation of the value function u has a relatively lesser interest
with respect to the construction of the (approximate) optimal control. We propose here a simple
algorithm that leads, given an approximation of the value function, to construct quasi-optimal
controls in feedback form.

Let us consider pt0 � 0  t1   ...  tn � Tq a uniform partition of the time interval r0,Ts and h � T
n

be the time step. Let tξnp�qu be the trajectory defined recursively on the time interval ptk , tk�1s for
0¤ k ¤ n�1 and let tαkp�qu be the corresponding sequence of controls.
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Algorithm 2 Trajectory reconstruction algorithm for minimum time problem

Set ξnp0q :� x

Step 1: Compute the optimal control αk P A at tk :

αk P argmin
aPA

�
vhptn�k ,ξnptkqq, a

�
Step 2: Define αkptq � αk be a constant control for t P ptk , tk�1s and ξnptq on ptk , tk�1s be the
solution to:

9ξptq� f pξptq,αkptqq a.e t P ptk , tk�1s, with the initial condition ξnptkq.

4.2 An application: reachable sets for the vehicle in level flight

Let us consider the bunt case in the missile guidance optimization problem (please refer to the
chapter 3 for the precise setting): during “the turnpike arc”, the missile is flying close to the cruise
altitude hc (refer to the figure 3.19). Then at first order, one has hptq � hc which implies γptq � 0.
Consequently, the dynamics can be reduced to the dimension 3.

4.2.1 Minimum time problem

Let us consider the minimum time problem for the reduced dynamical system where the thrust
α1p�q is considered as active:

pOCP3q

$''&''%
min
αPrη,1s

t f

9φpsq� f3pφpsq,αpsqq @s P r0, t f s
φp0q�φ0, φpt f q�φ f

(4.10)

where:

• φ :�px v mqT is the state in dimension 3, the throttle α :� α1 is the control in dimension 1

• f3pφ,αq :�

��� v
Tmax.p1�Cs vq

m
α� D0phc , vq

m
�Cs .Tmax.α

��
is the dynamics

• D0ph, vq :� q̄ph, vq.S.Cd is the first order drag force (the drag/lift coupling term in D has
been neglected).

• φ0 �px0 v0 m0qT and φ f �
�

x f v f ��T
are the prescribed initial and final states.

We apply the forementioned theory to pOCP3q. We compute:

• the reachable sets starting from a given initial state

• the minimum time trajectories for a target problem

Remark 4.2.1.1 : The dynamics f3 is obtained from (2.21) by assuming h � hc and γ� 0�.

Remark 4.2.1.2 : Actually, the reachable set can be understood as the capture bassin of the initial
state, propagating the value function negative levels forward in time.

We highlight that, in order to improve the numerical efficiency, we proceed to some variable nor-
malization in order to deal with comparable orders of magnitude between the state variables and

the time: t̄ :� t

10
, x̄ :� x

1000
, v̄ :� v

100
, m̄ :� m

100
and Tmax :� Tmax

1000
.
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4.2.2 Numerical Hamiltonian

The Lax Friedrich numerical approximation was implemented:

Hnumpξ,pp�
1 , p�

1 q, ...,pp�
n , p�

n qq�H

�
ξ,

p��p�

2



�

ņ

i�1

ci

�
p�

i �p�
i

2

�
(4.11)

where ci � sup
pξ,pq

����BHBpi
pξ, pq

���� for i P �1,n�. Please see the next section for deeper explanations on

the numerical schemes. In our example in dimension n � 3, the maximized Hamiltonian can be
analytically calculated and one obtains:

H0pξ, pq��px .v� 5.ρ0.S.v2.Cd

m
.pv �Tmax.

�
maxpΨpξ, pq,0q�minpΨpξ, pq,0q .η



where Ψpξ, pq� 100.Cs .pm � pv

m
p1�100.Cs .vq.

4.2.3 Spatial grid

We consider the following time & space domain:

Variable tpd asq xpkmq vphm{sq mphk g q
min 0.0 �2.0 1.0 3.0
max 4.0 10.0 4.0 6.5

We used the 150�120�35 nodes grid to discretize the spatial domain. This example was solved
by exploiting the HJB-solver ROC HJ (refer to [1]) on a standard desktop computer. We use the
finite difference scheme combined with Essentially Non Oscillatory (ENO) approximation and the
Lax-Friedrichs numerical Hamiltonian.

The computation time of the value function is around 250 sec. We remind that the time consuming
part of the simulation is the value function computation. Once this step finished, the reachable
sets and optimum trajectories are obtained almost instantenously by postprocessing the value.

4.2.4 Reachable sets

In our example, the initial state is a parallelepiped in the state space defined by:

ψpφq :�maxp|x�xa |�d xa , |v� va |�d vaq (4.12)

where pxa , vaq � p0.0,3.0q and pd xa ,d vaq � p0.25,0.05q. On the following figure, we present the
slice of the reachable sets for mp0q� 6.0. The sets are calculated from T� 0 das up to T� 3 das by
step of 1 das.
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Figure 4.2: Reachable sets

In this particular case, it is possible to calculate analytically the theoretical lateral envelope. The
numerical computation is coherent up to T� 30sec. For greater time horizons, the sets are in gen-
eral underestimated which is likely due to the rising difficulty to efficiently propagate the negative
level sets of the value function when the time horizon increases.

4.2.5 Minimum time trajectories

The target is a parallelepiped in the state space defined by:

ψpφq :�maxp|x�xt |�d xt , |v� vt |�d vt q (4.13)

where pxt , vt q � p7.25,2.3q and pd xt ,d vt q � p0.25,0.05q. On the following figure, we give three ex-
amples of minimum time trajectories starting respectively from φ̄1p0q� p0.0,3.0,4.5q and φ̄2p0q�
p1.0,2.3,6.0q and φ̄3p0q � p1.0,1.5,5.25q. We use the Ultra Bee scheme combined with the Lax-
Friedrichs numerical Hamiltonian on the ROC-HJ software. On the following figures the HJB and
direct method (AMPL & IPOPT) approaches are displayed.
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(a) Case 1

(b) Case 2

(c) Case 3
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Based on the above examples, there is a satisfactory coherence between the two approaches. How-
ever, the accuracy of the control computation is likely better with the direct method.

4.3 HJB approach for optimal control problems with state constraints

4.3.1 Motivation

The optimal control problem (3.1)-(3.2)-(3.3) is actually not general enough to describe problems
arising from real life and particularly from aeronautics. More specifically, it could be necessary to
add constraints which involve control-state (mixed constraints) and/or state variables (pure state
constraints) to the formulation. When this happens, the necessary conditions coming from the
PMP presented previously must be carefully adapted.

The main difference with respect to the classical case is that the adjoint vector provided by PMP
may not be an absolutely continuous function. Indeed, in presence of state constraints, the ad-
joint vector p may exhibit discontinuities. Moreover, a serious difficulty arises, that is, no knowl-
edge concerning the evolution of the additional multipliers is provided, making impossible the
integration of the new adjoint equations without further information. There exist several versions
of PMP in this case ([7], [20] for instance).

In the light of what precedes, it is easily understood that adapting numerical methods such as
shooting or multi-shooting algorithms becomes complicated when considering state constraints.
For all these reasons, we will not tackle the constrained state case using the PMP, but using the
HJB approach which offers a suitable framework.

As we have already motivated and introduced the HJB framework in the section 4.1.3, this section
can be understood as a generalisation with a general cost in the Bolza form in presence of pure
state constraints.

4.3.2 Mathematical setting

Consider the following optimal control problem with pure state constraints that is:$''''''''''&''''''''''%

min
pt ,αq

Jpt ,µ,αq
9ξpsq� f pξpsq,αpsqq @s P r0, ts
αp�q PA

ξp0q�µ

ξpsq PK for s P r0, ts
ξptq PC

(4.14)

where A is the set defined in section 3.1 and

@t P r0,Ts, Jpt ,µ,αq :�
» t

0
f 0pξpsq,αpsqqd s� g pξptqq (4.15)

K and C are non empty closed subsets of Rn . We denote by ξαµp�q the trajectory of the dynamical
system starting from µ, associated to the control αp�q.
Hereafter we give the assumptions required in the HJB framework: we highlight that some of them
are slightly weakened with respect to the ones presented in section 3.1.

4.3.3 Assumptions

We make the following assumptions:

pH1q: f :Rn �AÑRn is continuous. There exists L f ¡ 0 such that for every α PA :

} f pξ1,αq� f pξ2,αq}¤ L f .}ξ1�ξ2}, @ξ1,ξ2 s.t. ξ1,ξ2 PRn (4.16)
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Moreover, Dc f ¡ 0 | @µ PRn , maxt} f pµ,αq},α PA u¤ c f .p1�}µ}q.
pH2q: f 0 : Rn �A Ñ R is continuous. Moreover, f 0 is Lipschitz continuous on the state variable
uniformly with respect to the control:

DL0 ¡ 0 s.t. | f 0pµ, aq� f 0pµ1, aq| ¤ L0.|µ�µ1|,@µ,µ1 PRn , @a P A (4.17)

pH3q: g :Rn ÑR is Lipschitz continuous:

DLg ¡ 0 s.t. |g pµq� g pµ1q| ¤ Lg .|µ�µ1|,@µ,µ1 PRn (4.18)

pH4q: for any µ PRn , the set V defined by:

Vpµq :�  �
f 0pµ, aq�γ, f pµ, aq� | a P A, γ¥ 0

(
(4.19)

is a convex subset of Rn �Rm .

4.3.4 General considerations and notations

For technical convienance, we denote:

P t ,µ :�  pξ,αq : 9ξpsq� f pξpsq,αpsqq, for s P r0, ts; ξp0q�µ
(

(4.20a)

P K ,C
t ,µ :�tpξ,αq PP t ,µ : ξpsq PK for s P r0, ts, ξptq PC u (4.20b)

Under pH1q, P t ,µ is a non empty set, while P K ,C
t ,µ may be empty if there is no admissible control

input that keeps the trajectory in the set K and reaches the target C at the final time t .

In the same way than in section 4.1.3, we introduce the "level set" functions r : Rn Ñ R and ψ :
Rn ÑR both Lipschitz continuous characterizing the sets of constraints as follows:

µ PK ô r pµq¤ 0, µ PC ôψpµq¤ 0 (4.21)

These functions exist as K and C are closed by assumption. For instance, if one denotes by dK

the signed distance to K (dK pµq � dpµ,K q if µ R K and dK pµq � �dpµ,RnzK q otherwise),
then the function r � dKp�q is Lipschitz continuous and satisfies (4.21).

Let us now fix an upper bound time horizon T ¡ 0 and introduce the value functions u : r0,Ts�
Rn ÝÑR such that:

upt ,µq :� inf
!

Jpt ,µ,αq, pξ,αq PP K ,C
t ,µ

)
(4.22)

and uT :Rn ÝÑR such that:

uTpµq :� inf
!

Jpt ,µ,αq, pξ,αq PP K ,C
t ,µ , t P r0,Ts

)
(4.23)

with the convention infH � �8 (indeed u and uT can take unbounded values for instance if
there’s no admissible trajectory).

The main idea in what follows is to characterize uT by introducing an auxiliary value function free
of state constraints that is the unique solution of an HJB equation to be precised.

4.3.5 Time variable change

Before considering the state constraints, we turn the free final time problem (4.14) into a fixed final

time problem. Let us operate the classical variable change: t �
» T

0
λpτqdτ, with λp�q PΛ, Λ being

the space of measurable functions from r0,Ts to r0,1s.

102



CHAPTER 4. HAMILTON JACOBI BELLMAN APPROACH

We introduce the following sets:

P̂ t ,µ :�  pξ,α,λq | 9ξpsq� λpsq f pξpsq,αpsqq, for a.e s P r0, ts, ξp0q�µ
(

P̂ K ,C
t ,µ :�  pξ,α,λq | pξ,α,λq P P̂ t ,µ, ξpsq PK for s P r0, ts, ξptq PC

(
Let us define the modified cost functional:

@t P r0,Ts, Ĵpt ,µ,α,λq :�
» t

0
λpsq f 0pξpsq,αpsqqd s� g pξptqq (4.25)

and the value function:

vpT,µq :� inf
!

ĴpT,µ,α,λq
�� pξ,α,λq P P̂ K ,C

T,µ

)
(4.26)

Actually, the fixed final time problem (4.26) is in some sense equivalent to the free end time prob-
lem (4.23):

Proposition 4.3.5.1 @µ PK , vpT,µq� uTpµq.

Proof: Step 1 vpT,µq¤ uTpµq:
From (4.23), Dt� P r0,Ts, Dα� : r0, t�s Ñ A such that uTpµq � Jpt�,µ,α�q, with ξα

�

µ psq P K for s P
r0, t�s and ξα

�

µ pt�q PC . Let us define:

λ�psq�
"

1 if s P r0, t�s
0 if s P rt�,Ts

We extend now (in a arbitrary way) the control α�p�q over rt�,Ts and the associated trajectory ξα
�

µ p�q
such that ξα

�

µ psq� ξα
�

µ pt�q for s P rt�,Ts. Denoting by pξ�,α�,λ�q the triple defined in such a way, it

easy to check that pξ�,α�,λ�q P P̂ K ,C
T,µ .

Moreover, one remarks that ĴpT,µ,α�,λ�q� uTpµq¥ vpT,µq.
Step 2 vpT,µq¥ uTpµq:
From (4.26), Dpξ�,α�,λ�q P P̂ K ,C

T,µ such that vpT,µq� ĴpT,µ,α�,λ�q.

Let us denote S :�ts P r0,Ts : λ�psq� 0u, τ0 �
» T

0
λ�psqd s �

»
S
λ�psqd s.

We define the change of variable σ : s Ñr0,τ0s, σ : s ÞÑ τ�
» s

0
λ�pθqdθ.

If one defines ξ̃pτq :� ξ�pσ�1psqq, α̃pτq :� α�pσ�1psqq then it is easy to see that pξ̃, α̃q are defined on
r0,τ0s and satisfy: $'&'%

9̃
ξpτq� f pξ̃pτq, α̃pτqq, τ P p0,τ0q
α̃ PA , ξ̃pθq PK , @θ P r0,τ0s
ξ̃p0q� ξ�p0q�µ, ξ̃pτ0q� ξ�pTq PC

(4.27)

Moreover, one has:

Jpτ0,µ, α̃q�
» τ0

0
f 0pξ̃psq, α̃psqqd s� g pξ̃pτ0qq (4.28)

�
» T

0
λ�ptq f 0pξ�ptq,α�ptqqd t � g pξ�pTqq (4.29)

� ĴpT,µ,α�,λ�q� vpT,µq (4.30)

which implies the desired inequality from the definition of uT. �
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4.3.6 State constrained case

We introduce the augmented dynamical system satisfying:$''&''%
9ξpsq� λpsq f pξpsq,αpsqq @s P r0, ts
9zpsq��λpsq f 0pξpsq,αpsqq @s P r0, ts
α PA , λ PΛ
ξp0q�µ, zp0q� η

(4.31)

A solution of (4.31) for a control law double pα,λq will be denoted
�
ξα,λ

t ,µ p�q, zα,λ
t ,η p�q

	
. The set of all

admissible trajectories will be denoted by:

Ŝr0,tspµ,ηq :�
!�

ξα,λ
t ,µ p�q, zα,λ

t ,η p�q
	

satisfying (4.31) on r0, ts, pα,λq PA �Λ
)

(4.32)

We recall that under pH1q�pH4q, Ŝr0,tspµ,ηq is a compact subset of W1,1pr0, ts;Rn �Rq endowed
with the C0-topology.
Consider the augmented value function ŵ : r0,Ts�Rn �RÝÑR:

ŵpτ,µ,ηq� inf
pξ,zqPŜr0,τspµ,ηq

#
pg pξpτqq� zpτqq_ sup

θPr0,τs
r pξpθqq_ψpξpτqq

+
(4.33)

where a_b �maxpa,bq.
In the auxiliary value function (4.33), the term sup

θPr0,τs
r pξpθqq is an exact penalization of the state

constraints, the term ψpξpτqq is penalizing the final time constraint (target).

Before concluding this section, we would like to stress on the fact that considering the auxiliary
function ŵ allows to bypass all the regularity issues which arise when the control problem is in
presence of state constraints. The proofs that follow are borrowed from [3].

Proposition 4.3.6.1 (Characterization of the epigraph of uT) :
Assume (H1)-(H4), then @µ PRn , @ν PR, the following holds:

uTpµq¤ ν ðñ ŵpT,µ,νq¤ 0 (4.34a)

uTpµq� ν�pµq�mintν PR | ŵpT,µ,νq¤ 0u (4.34b)

Proof: . Let us prove (4.34a): Ŝr0,Tspµ,νq being a compact set in C0pr0, tsq, ŵpT,µ,νq ¤ 0 implies

that Dpξ̂, ẑq P Ŝr0,Tspµ,νq such that:

ŵpT,µ,νq� �
g pξ̂pTqq� ẑpTq�_ sup

θPr0,Ts
r pξ̂pθqq_ψpξ̂pTqq (4.35)

which implies the negativity of the three terms of ŵ . On the one hand, θ P r0,Ts, ξ̂pθq PK , ξ̂pTq P
C , and on the other hand:

uTpµq� vpT,µq¤
» T

0
λ̂psq f 0pξ̂psq, α̂psqqd s� g pξ̂pTqq¤ ν

Conversely, let us assume that vpT,µq ¤ ν �8, then there exists a sequence of admissible triple
pξn ,αn ,λnq P P̂T,µ such that:

lim
nÑ�8

» T

0
λnpsq. f 0pξnpsq,αnpsqqd s� g pξnpTqq�ν� vpT,µq�ν¤ 0

The trajectories ξnp�q being admissible, one has sup
θPr0,τs

r pξnpθqq ¤ 0 and ψpξnpTqq ¤ 0. Finally we

obtain:

ŵpT,µ,νq¤ liminf
nÑ�8

�̂
JpT,µ,αn ,λnq�ν

�_ sup
θPr0,τs

r pξnpθqq_ψpξnpTqq

¤ 0

The proof of (4.34b) is the consequence of (4.34a) �.
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Proposition 4.3.6.2 (Dynamic Programming Principle)
Under the assumptions pH1q�pH4q, ŵ is locally Lipschitz continuous function on r0,Ts�Rn �R
and for any τ P r0, tr the following holds:

ŵpt ,µ,ηq� inf
pξ,zqPŜr0,τspµ,ηq

�
ŵ pt �τ,ξpτq, zpτqq_ sup

θPr0,τs
r pξpθqq



(4.37)

Proof: Let us denote U :�A �Λ and decompose u PUr0,ts � pu1,u2q with u1 PUr0,τs and u2 P
Urτ,ts. Using the semigroup property: @s ¥ h, ξu

µpsq� ξ
u2

ξ
u1
µ phq

ps�hq, we obtain:

ŵpt ,µ,ηq� inf
uPUr0,ts

��
g pξu

µptqq� zu
η ptq

�_ sup
θPr0,ts

r pξu
µpθqq_ψpξu

µptqq



� inf
u1PUr0,τs

�
ŵpt �τ,ξu1

µ pτq, zu1
η pτqq_ sup

θPr0,τs
r pξu

µpθqq



which proves the result. �

Proposition 4.3.6.3 (Hamilton Jacobi Bellman Equation)
Under the assumptions pH1q�pH4q, ŵ is the unique viscosity continuous solution of the following
HJB equation:

minpBt ŵ�H pµ,Dµŵ ,Bηŵq, ŵpt ,µ,ηq� r pµqq� 0, t P p0,Ts (4.38a)

wp0,µ,ηq� pg pµq�ηq_ r pµq_ψpµq, µ PRn , η PR (4.38b)

the Hamiltonian H pµ, p, qq�max

�
0,sup

aPA
p� f pµ, aq.p� f 0pµ, aq.qq



.

Proof: Please refer to A.6.

4.3.7 A particular case: the target capture bassin

The capture bassin of the target C before the time T ¡ 0, denoted by CaptC pTq, is the subset of
all initial positions from which it is possible to find an admissible trajectory that reaches C before
the time T while lying in the set K . It can be written mathematically as follows:

CaptC pTq�
 
µ PK

�� Dτ P r0,Ts,Dpξ,αq PP K ,C
τ,µ

(
. (4.39)

Under the notations of previous section, let us set f 0 � 0 and define the terminal cost g as the
characteristic function of the target C that is: @µ PC ðñ g pµq¤ 0.

Now, we define a particular value function νT :Rn ÝÑR such that:

νTpµq� inf
!

g pξptqq
�� pξ,αq PP K ,C

t ,µ , t P r0,Ts
)

(4.40)

We have the two following results:

µ PCaptC pTq ðñ νTpµq¤ 0 (4.41a)

νTpµq¤ 0 ðñ ŵpT,µ,0q¤ 0 (4.41b)

where the function ŵ is the unique viscosity solution of (4.38) where the running cost f 0 � 0 and
without the terminal state constraint function ψp�q.
Moreover, if there are no the state constraints (i.e K �Rn), the obtained HJB equation is the same
than (4.8) associated to the Hamiltonian (4.9).

Consequently, the HJB equation (4.38) can be seen as a generalization of the one associated to the
minimum time case studied in the section 4.1.3.
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4.3.8 Optimal trajectories reconstruction from the value function

The trajectory reconstruction algorithms are well known by now and are available for instance in
[45], [24] or [56].

4.3.9 Numerical scheme

The Hamilton Jacobi equation (4.38) can be numerically approximated by using the finite differ-
ence schemes (refer to the work of Crandall and Lions, [59]). In our case, we consider a slightly
more precise scheme, an ENO scheme of second order (for details, refer to [60]).

For given positive mesh step h, ∆ξ � p∆ξi q1¤i¤n and ∆z, for a given multi-index i � pi1, ..., inq,
let ξi :� ξmin� i .∆ξ � pξk,min� ik .∆ξkq1¤k¤n , z j � zmin� j .∆z and tp � p.h. Let us define the
following grid of K �rzmin, zmaxs:

G :�tpξi , z j q i PNn , j PN, pξi , z j q PK �rzmin, zmaxsu
Let us denote v p

i , j an approximation of the solution vptp ,ξi , z j q.
Given Hnum :Rn �Rn �Rn ÝÑR, suitable numerical approximation of H involved in (4.38) (see
the remark below), the following scheme is considered, as in [4]. First it is initialized with:

v1
i , j �pg pξi q� z j q_ r pξi q_ψpξi q (4.42)

Then for p P t2,3, ...,N�1u, v p�1
i , j is computed recursively as follows:

v p�1
i , j �max

�
v p

i , j �∆t .Hnum

�
ξi ,D�v p

i , j ,D�v p
i , j

	
,r pξi q

�
, pξi , z j q PG (4.43)

The scheme is equivalent to the following:

min

�
v p�1

i , j � v p
i , j

∆t
�Hnum

�
ξi ,D�v p

i , j ,D�v p
i , j

	
, v p�1

i , j � r pξi q
�
� 0 (4.44)

The monotone finite difference approximation is obtained using D�v p
i , j �pD�

k v p
ik , j q1¤k¤n and:

D�
k v p

ik , j ��
v p

ik�1, j � v p
ik , j

∆ξk

The second order ENO scheme is used to estimate the terms D�
k v p

ik , j .

4.4 An application: optimisation of a glider trajectory

4.4.1 Setting

We consider hereafter a maximum range problem for a glider flying in the vertical plane. The
glider is considered as a mass particle moving in the atmosphere. Usually released from an aircraft
at a given altitude and speed, the vehicle uses its aerodynamic surfaces in order to maximize the
horizontal range. By doing so, some constraints shall be respected:

• the vehicle airspeed shall remain greater than a critical value vmin in order to minimize the
risk of aerodynamic stall.

• the flight altitude shall remain greater than a minimal value hmin.

• the final flight path angle shall remain lower than a given value γ f .
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The above mentioned flight conditions are mandatory in order to permit the pursue of the mis-
sion.

The dynamics is identical to (2.13) where the thrust is null (thus Tmax � 0 and 9m � 0). The lift
coefficient remains the unique control denoted byα. We highlight that in this setting we conserved
the induced drag-to-lift coefficient kc � 0.05.

After variable normalization, the considered dynamics reads:

9̄x � 0.1v̄ cos γ̄ (4.45a)

9̄h � 0.1.v̄ sin γ̄ (4.45b)

9̄v � �Dp1000h̄,10v̄ ,αq
100m

� g . sin γ̄ (4.45c)

9̄γ� Lp1000h̄,10v̄ ,αq
100m̄v̄

� g cos γ̄

v̄
(4.45d)

where: t̄ :� t

10
, x̄ :� x

1000
, h̄ :� h

1000
, v̄ :� v

10
, γ̄ :� γ and m̄ :� m

100
.

4.4.2 HJB equation

Consider the set of state constraints K :�tξ̄ PR4 | r pξ̄q¤ 0u, with:

r pξ̄q :�max
�

h̄min� h̄, v̄min� v̄
�

where h̄min � hmin

1000
� 2 and v̄min � vmin

100
� 22.5. This set is representative of the permanent state

constraints underwent by the glider.

The final flight path angle constraint plays the role of the target C and is represented by the func-

tion ψpξ̄q :� γ̄� γ̄ f , where γ̄ f � γ f ��π6 .

Under the notations of this section, the optimal control problem to be minimized can be written
as follows:

uTpµq :� inf
!
�x̄ptq, pξ̄,αq PP K ,C

t ,µ , t P r0,Ts
)

(4.46)

where T¡ 0 is a fixed upper bound time horizon.

Actually, we are in the framework of the section 4.3.6 where f 0pµ,αq � 0, g pµq � �x̄, the PDE to
solve is given by (4.38) where the Hamiltonian is

H pµ, p, qq�maxp0,sup
aPA

p� f pµ, aq.p� f 0pµ, aqlooomooon
�0

.qqq (4.47)

�maxp0,H0pµ, pqq (4.48)

where H0pµ, pq� sup
|a|¤αm

p� f pµ, aq.pq.
An explicit computation leads to:

H0pµ, pq��0.1p x̄ v̄ cos γ̄�0.1ph̄ v̄ sin γ̄�p v̄ g sin γ̄� pγ̄
v̄

g cos γ̄

� p v̄

100m̄
q̄ .SCd � q̄ .S

100m̄
max
|a|¤αm

�
p v̄ kcz a2� pγ̄

v̄
a
	

where q̄ � q̄p1000h̄,10v̄q. The Hamiltonian being a quadratic function of the control, it reaches

its maximum for a P t�αm , ā, αmu, where ā :� pγ̄
2.kcz .v̄ .p v̄
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4.4.3 Numerical Hamiltonian

Let us define:

H num
a pµ, p�, p�q :�

ņ

i�1

�
maxp� fi pµ, aq,0q.p�

i �minp� fi pµ, aq,0q.p�
i

�

where p fi q1¤i¤4 are the components of the dynamics f .

If we define the numerical Hamiltonian H num
0 as:

H num
0 pµ, p�, p�q :�max

�
H num

�αm
pµ, p�, p�q,H num

ā pµ, p�, p�q,H num
αm

pµ, p�, p�q�
then it satisfies the following properties:

• Lipschitz continuous on all its arguments

• consistent with H0 (ie H num
0 pµ, p, pq�H0pµ, pq).

• monotone (ie
BH num

0

Bp�
k

pµ, p�, p�q¥ 0 and
BH num

0

Bp�
k

pµ, p�, p�q¤ 0)

Moreover, if the following Courant Friedrich Lax (CFL) is satisfied:

∆t .
ņ

i�1

1

∆ξi

������BH num
0

Bp�
k

������
�����BH num

0

Bp�
k

�����
�
¤ 1 (4.49)

then it has been shown ([4]) that the numerical scheme defined in section 4.3.9 converges to the
desired solution.

4.4.4 Computation domain and numerical results

We consider the following time & space domain:

Variable t̄pd sq x̄pkmq h̄pkmq v̄phm{sq γ̄pr adq z̄pkmq
min 0.0 �2.0 1.0 10.0 �π{2 -15.0
max 6.0 15.0 8.0 40.0 π{2 0.0

We used the 51�28�30�36�15 nodes grid to discretize the spatial domain. This example was
solved by exploiting the HJB-solver ROC HJ on a standard desktop computer.

The value is finally recovered by using uTpµq � minpν | ŵpT,µ,νq¤ 0q and the trajectories are
reconstructed from the value function.

We give hereafter two optimal trajectories for the following initial conditions:

• Case 1: px0,h0, v0,γ0q� p0m,5000m,350m{s,0q
• Case 2: px0,h0, v0,γ0q� p0m,3500m,375m{s,π{6q
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Figure 4.4: Glider range optimisation: case 1

Figure 4.5: Glider range optimisation: case 2
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4.4.5 Comments

We remark a global coherence between the direct method (AMPL & IPOPT) and HJB approach
results. As commented before, the HJB approach lacks accuracy as soon as the spatial domain is
wide. A more precise results could likely be obtained with finer grids but the counterpart would
be an increase of the computation time.

We highlight here that, unlike the shooting method, the HJB approach does not require any prior
knowledge of the optimal trajectory structure. Actually, it could be advantageously exploited in
order to initialize the shooting method (for instance, see [26]).

110



Conclusion and perspectives

Contributions: this work was divided into two main parts: the first part was dedicated to the study
of the asymptotic behavior in large time of the value function associated to an optimal control
problem. In the second part, we studied numerical methods in optimal control with a focus on
the shooting method combined with numerical continuations in order to solve the bunt problem.

In the first part of this thesis, we actually established two results, the second one being a gen-
eralization of the first one.

Large-time expansion of the value function in the LQ case: under the Kalman condition and using
only basic results of LQ theory, we established a two-terms large-time expansion of 1

T vpT, .q in
1{T (as T ÝÑ�8), T being the time horizon. The term of order zero is the minimal value of the
associated static optimization problem. The term of order one includes the sum of two optimal
costs of infinite time stabilization problems forward and backward in time. The originality is that
all the terms of the expansion have been explicitly calculated as functions of the solutions of the
Riccati algebric equation, initial/final states and the Lagrange multiplier of the static optimization
problem.

Large-time expansion of the value function for dissipative nonlinear systems: assuming the strict
dissipativity property and the uniqueness of the solution of the static optimization problem, we
established a similar result as above. The term of order zero is identical to the LQ case. The term
at order one is a sum of optimal costs of the infinite time problems with a shifted Lagrange cost
forward and backward in time.

In the second part, our general objective was to evaluate exact numerical methods applied
to a benchmark problem in the field of aerial vehicle guidance. To this end, we have established
the physical model of the vehicle dynamics (dimension 5), and we have formulated the optimal
control problem to be solved. The originality of the approach was to reduce the original problem
to a simpler one in dimension 3, namely the Dubins-Fuller problem. Then, we studied the op-
timal synthesis of this reduced problem which is actually a weighted interpolation between two
problems: the Dubins and the Fuller problem. Our contributions were the following:

Analysis and numerical solving of the reduced problem: by implementing the shooting method
combined with continuations.

Analysis and numerical solving of the initial problem: by implementing continuations on the dy-
namics and the boundary conditions in order to “connect” the reduced problem with the original
one.

In the last chapter, we evaluated numerically the HJB approach on two simplified problems. After
recalling the theoretical background, we performed the following tasks:

Computation of reachable sets and time optimum trajectories: for a model of a propelled aerial
vehicle in dimension 3.

Computation of range maximizing trajectories: for a model of a glider (non propelled aerial vehi-
cle) in dimension 4 and in presence of pure state constraints.
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Conclusion and perspectives

Perspectives: Various aspects of this work raise subjects that are open or interesting to study. We
list some of them hereafter, in a non exhaustive way, and we start with the ones related to the value
function expansion:

1. The large-time expansion of the value function in the LQ case and infinite dimensional case
has been established. An article related to this subject is currently in preparation and will be
published in a dedicated paper.

2. Despite numerous works in the literature ([86], [15]) the strict dissipativity still remains, from
our point of view, a “theoretical” notion and it would be interesting to “illustrate” it by, for
instance, exhibiting nontrivial examples of nonlinear dynamical systems enjoying this prop-
erty.

3. It would be interesting to establish the large-time expansion of the value function for non-
linear dynamical systems in presence of several turnpikes and/or state constraints.

Concerning the numerical part of our work, we mention hereafter some perspectives:

1. The potential improvement of the representativeness of the vehicle model. Indeed, as men-
tioned in chapter 2, the dynamical model could be enhanced in various ways, amongst
which the following:

• The dependencies on the Mach number and altitude could be modelled in the aerody-
namic coefficients CD, CL and the thrust T.

• The flight domain could be introduced: usually, it corresponds to a specified range of
Mach number and altitude within which the vehicle can fly. From the optimal control
point of view, it would introduce mixed and/or pure state constraints.

• Generally, more representative model of the motion could be implemented by taking
into account the moment equation of the Newton’s law. The counterpart would be the
increase of state variables.

2. Related to the numerical implementation in Python language, the associated computation
time is not satisfactory. It could be significantly reduced by implementing the indirect method
in compiled langages such as Fortran or C.

3. Another interesting perspective would be to couple the HJB approach with the shooting
method in order to compute a solution to a more complex version of the optimal control
problem, possibly including state constraints: in this case, one could first estimate the opti-
mal structure of the solution on a reduced model by using HJB approach. Then, this infor-
mation could be advantageously exploited to implement accurate solution on the full model
by using the shooting method, combined with continuations.
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Appendix

A.1 Some useful results

Proposition A.1.0.1 : The LQ system (1.11) is strictly dissipative with respect to w and the storage
function is Spr q :�xλ̄,r y.

Proof: Let us consider:
L py,u,λq :�xλ, f py,uqy�λ0 f 0py,uq (A.1)

the Lagrangian associated to the steady optimisation problem, where we assumeλ0 ��1 as stated
before. In the linear quadratic case one has:

∇2
py,uqL py,u, λ̄q�

��Q 0
0 �U

�
remembering that ∇py,uqL pȳ , ū, λ̄q� 0, this implies:

L py,u,λq�L pȳ , ū, λ̄q� 1

2

�
}y� ȳ}2

Q�}u� ū}2
U



(A.2)

as Aȳ�Bū � 0 the latter leads to:

wpy,uq�xλ̄, Ay�Buy� 1

2

�
}y� ȳ}2

Q�}u� ū}2
U



(A.3)

Q and U being symmetric positive definite matrices, there exists ρ¡ 0 such that:

}y� ȳ}2
Q�}u� ū}2

U ¥ ρ

���� y� ȳ
u� ū

����2

(A.4)

By injecting (A.4) in (A.3) and integrating with respect to the time t over r0,Ts, one finally obtains:» T

0
wpyptq,uptqqd t �xλ̄, xy¥ xλ̄, zy�

» T

0
α

����� yptq� ȳ
uptq� ū

����
d t

which is the strict dissipativity inequality with Spr q :�xλ̄,r y and αpxq :� ρ

2
}x}2

�.

Lemma A.1.0.1 (Barbalat’s lemma) Assume that f : r0,�8q ÝÑ R is uniformly continuous and

lim
tÑ�8

» t

0
f pτqdτ exists and is finite, then lim

tÑ�8
f ptq� 0.

Proof: A proof can be found for instance in [47]. By contradiction, take ϵ¡ 0 and assume that f ptq
does not converge to 0 as t Ñ�8. In this case, there exists an increasing sequence ptnqnPN in R�
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such that | f ptnq| ¡ ϵ. By the uniform continuity of f there exists δ¡ 0 such that, for any n PN, and
any t PR

|t � tn | ¤ δ ùñ | f ptq� f ptnq| ¤ ϵ

2
.

So for any t P rtn , tn �δs and any n PN, one has

| f ptq| � | f ptnq�p f ptnq� f ptqq| ¥ | f ptnq|�| f ptnq� f ptq| ¥ ϵ

2
.

Therefore, ����» tn�δ

0
f ptqd t �

» tn

0
f ptqd t

����� ����» tn�δ

tn

f ptqd t

����� » tn�δ

tn

| f ptq|d t ¥ δ.ϵ

2
.

the latter inequality contradicts the convergence of

» t

0
f pτqdτ as t Ñ�8 and the lemma follows.

�.

Lemma A.1.0.2 The optimal trajectory of pP ȳ ,ȳ
0,T q is such that for any t P r0,Ts, yptq� ȳ and uptq�

ū.

Proof: From the dissipativity property, for any admissible couple pyp�q,up�qq such that yp0q �
ypTq� ȳ , we have » T

0
wpyptq,uptqqd t ¥ 0. (A.5)

The particular admissible solution pûp�q, ŷp�qq � pū, ȳq zeroes the above cost, thus this is an opti-
mal solution and it is unique by assumption. �.

Lemma A.1.0.3 The optimal couple pŷ8 f p�q, û8 f p�qq of pP ȳ
8 f q is such that for any t ¥ 0, ŷ8 f ptq�

ȳ and û8 f ptq� ū. Consequently v f pȳq� 0.

Proof: Consider the value function v f p�q defined by (1.58). From the assumptions, all the admissi-
ble trajectories and controls are bounded and f & f 0 are C1, thus from the mean value inequality,
we conclude that f and w are globally Lipschitz continuous in the state and control. Moreover,
the cost w remains bounded. These observations ensure the boundedness and the continuity of
v f (see [56], Chapter 3, Proposition 2.1).

The DPP implies:

v f pȳq�
» t

0
wpŷ8 f psq, û8 f psqqd s� v f pŷ8 f ptqq, @t ¥ 0 (A.6)

If we let t Ñ�8 in the above equality, from the continuity of v f p�q and the fact that ŷ8 f ptq ÝÑ
ȳ as t Ñ�8 (see lemma 1.3.5.2), we deduce that

» �8

0
wpŷ8 f ptq, û8 f ptqqd s � 0. As the "steady"

couple pyptq,uptqq � pȳ , ūq zeroes the infinite time cost, from the uniqueness argument we con-
clude that pŷ8 f ptq, û8 f ptqq� pȳ , ūq.
Corollary A.1.0.1 : The lemma A.1.0.3 remains true for the infinite backward-in-time problem
pP ȳ

8bq. Consequently vbpȳq� 0.
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A.2 On the need of viscosity solutions in the HJB framework

Consider the 1-D scalar system for t P r0,Ts:

9ypsq� αpsq P A :� r�1,1s @s P rt ,Ts (A.7a)

yptq� x (A.7b)

and the functional Jpt , x,αq � exp
��pyαt ,xpTqq2

�
. Defining A :� L8 pr0,Ts, Aq, the value function

vpt , xq� inf
αPA

Jpt , x,αq can be analytically calculated and is given by:

@px, tq PR�r0,Ts vpt , xq� exp
��pT� t �|x|q2

�
It can be easily checked that for any x P R where v is the differentiable, it the solution of the HJB
equation:

�Bv

Bt
pt , xq�|∇x vpt , xq| � 0 @t P r0,Ts (A.8)

Actually, v is a classical solution of (A.8) for x � 0 but cannot be defined as such for x � 0 as it is
not differentiable at this point. Therefore (A.8) has no classical meaning at x � 0.

Figure A.1: Value function

To overcome the problem of defining not differentiable solutions for the HJB equations, Kruzkow
introduced in the 60 the idea of generalized solutions, i.e. solutions which satisfies the equation
almost everywhere. This is a powerful idea and a lot of results have been obtained under differ-
ent set of assumptions (for a complete description see [52] and references therein). However we
can easily build equations in the framework of optimal control problems where we have a lack of
uniqueness and stability for the generalized solution. For instance, consider the the following HJB
equation in dimension 1 with prescribed boundary conditions:

|u1pxq|�1� 0 for x P r�1,1s (A.9a)

up�1q� up1q� 0 (A.9b)

Actually, this PDE admits infinitely many piecewise affine (slope �1) generalized solutions, as il-
lustrated hereafter:
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Figure A.2: Non uniqueness of lipschitzian solutions

The main point of the viscosity theory is to select among all the generalized solutions the ”correct
one” from the optimal control theory point of view, which will ensure the stability and uniqueness
properties.

A.3 Computation of the Jacobian of the shooting function

We precise the principle of the computation of the Jacobian of the shooting function (3.51) along
the continuation path. As explained before, if one has α� αpµ, pq then the extremal system arising
from the PMP equations can be written as:

zptq� Fpzptqq (A.10)

zp0q� z0 (A.11)

where zptq � pµptq, pptqq is the optimal state-costate couple associated to the initial condition
zp0q� pµ0, p0q.
In the Dubins-Fuller case, dS can be expressed as follows:

dS �

�������������

Bxpt f q
Bpxp0q

Bxpt f q
Bphp0q

Bxpt f q
Bpγp0q

Bxpt f q
Bt f

Bhpt f q
Bpxp0q

Bhpt f q
Bphp0q

Bhpt f q
Bpγp0q

Bhpt f q
Bt f

Bγpt f q
Bpxp0q

Bγpt f q
Bphp0q

Bγpt f q
Bpγp0q

Bγpt f q
Bt f

BHpt f q
Bpxp0q

BHpt f q
Bphp0q

BHpt f q
Bpγp0q

BHpt f q
Bt f

������������

To estimate the components of

BS

Bpp0q involving the state variables, one has to numerically com-

pute the Jacobi fields δzi p�q :�pδµi p�q,δpi p�qq along the optimal extremal zptqwhich are solutions
of the following variational system:

9δzi ptq�DFpzptqq.δzi ptq (A.12)

δzi p0q� pδµi p0q,δpi p0qq (A.13)

where pδµi p0q,δpi p0qq � p0,0,0, ..ei , ...0q with pei q1¤i¤3 representing the canonical basis of R3.

Then the
BS

Bpp0q is the concatenation the required state components of δzi pt f q.
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The component of
BS

Bpp0q involving the Hamiltonian is given by
BHpt f q
Bpp0q �

BHp0q
Bpp0q � Fpzp0qq.

Finally, to compute
BS

Bt f
, its suffices to remark that

d zpt f q
d t f

� Fpzpt f qq and that from the fact that

Hpt f q� cst �Hp0q one gets
Hpt f q

d t f
� 0.

We give hereafter the details of the expressions of Fp�q and DFp�q.

F :� �
F1 F2 . . . F6

�⊺
(A.14)

where:

F1 � v.cosγ

F2 � v. sinγ

F3 �
pγ

2.k2

F4 � 0.0

F5 � 2.ph�hcq
h2

c

F6 � v.ppx . sinpγq�ph .cospγqq

The terms of the matrix DF :�
�BFi

Bz j



i , jPr1,6s2

are detailed hereafter:

BF1

Bx
� BF2

Bx
� ...� BF6

Bx
� 0

BF1

Bh
� BF2

Bh
� ...� BF4

Bh
� 0� BF6

Bh
,
BF5

Bh
� 2

h2
c

BF1

Bγ ��v. sinγ,
BF2

Bγ � v.cosγ,
BF3

Bγ � BF4

Bγ � BF5

Bγ � 0,
BF6

Bγ � v.ppx .cosγ�ph . sinγq
BF1

Bpx
� BF2

Bpx
� ...� BF5

Bpx
� 0,

BF6

Bpx
� v. sinγ

BF1

Bph
� BF2

Bph
� ...� BF5

Bph
� 0,

BF6

Bph
��v.cosγ

BF1

Bpγ
� BF2

Bpγ
� 0

BF3

Bpγ
� 1

2.k2
,
BF4

Bpγ
� BF5

Bpγ
� BF6

Bpγ
� 0
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A.4 Solving DF with multiple shooting

The optimal solution of the DF is presented on the figure below (coloured rounds on the control
correspond to the nodes):

Figure A.3: Multiple shooting for the Dubins-Fuller problem

The following table provides the accuracy of the shooting:

Shooting output Value
|xpt f q� x f | 3.10�15

|hpt f q�h f | 3.10�16

|γpt f q�γ f | 2.10�14
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A.5 Guidance problem with the control in dimension 2

In this section, we propose to solve the initial optimal control problem with the cost (3.63) in the
case where the thrust control α1p�q is active (α2p.q already being active). Clearly speaking, the
dynamics involves now a additional control as specified in (2.21). As explained previously, we
prescribe the final value of the speed vpt f q� v f .

The Hamiltonian associated to the missile dynamics with the control in dimension 2 is now given
by:

H :�xp, f pξ,αqy�p0. f 0pξ,αq

� px .v.cosγ�ph .v. sinγ�pv .

�
Tmax.p1�Cs .vqα1�Dph, vq

m
� g sinγ



� pγ

v

�
Lph, v,α2q

m
� g .cosγ



�Cs .Tmax.pm .α1�p0.

�
k0�k1.

�
h�hc

hc


2

�k2.α2
2



Assuming that p0 ��1, the adjoint equations are, after arrangement:

9px � 0 (A.15a)

9ph � pv

m
.
BD

Bh
ph, vq� pγ

m.v

BL

Bh
ph, v,α2q� 2.k1

h2
c
ph�hcq (A.15b)

9pv ��px .cosγ�ph . sinγ� pv

m
.Cs .Tmax.α1� pv

m

BD

Bv
ph, vq� pγ

m
.
BpL{vq
Bv

� pγ
v2 .g .cosγ (A.15c)

9pγ� px .v. sinγ�ph .v.cosγ�pv .g cosγ� pγ
v

g . sinγ (A.15d)

9pm � pv

m2

�
Tmax.p1�Cs .vq.α1�Dph, vq



� pγ

v.m2 .Lph, v,α2q (A.15e)

As the two controls are uncoupled, the optimal control α2p�q is still given by (3.65)-(3.66), whereas
α1p�q reads:

α1 P argmax
rPrη,1s

Θptq.r (A.16)

where the switching function Θp�q is given by:

Θptq�Tmax.

�
pv .p1�Cs .vq

m
�Cs .pm



(A.17)

The adjoint transversality conditions (3.11) now reduce to:

pmpt f q� 0 (A.18)

while (3.12) still leads to:
@t P r0, t f s, Hpξptq, pptq,�1,αptqq� 0 (A.19)

As explained before, as the Hamiltonian is linear with respect to α1, one requires the knowledge
of the structure of the the latter prior to the implementation of the shooting method. However
within the range of initial and final conditions, we infer that the thrust control structure is of bang
max-bang min nature (we confirm it by running some direct method simulations).

We set the new boundary conditions:

px0,h0, v0,γ0,m0q� p0m,0m,250m/s,45�,500kgq (A.20a)

px f ,h f , v f ,γ f ,m f q� p15000m,0m,250m/s,�45�, *q (A.20b)

We solve numerically the problem by implementing the standard shooting method combined to
the continuation over the boundary conditions. We set k0 � k1 � 1 and k2 � 2. The samples of the
optimal trajectory and control and the final optimal solution are displayed hereafter:
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Figure A.4: Samples of optimal state & control (continuation)

Figure A.5: Final optimal state, costate & control
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The following table provides the final accuracy of the shooting:

Shooting output Value
|xpt f q� x f | 10�6

|hpt f q�h f | 10�6

|vpt f q� v f | 10�7

|γpt f q�γ f | 10�7

pmpt f q 10�10

Hpt f q 10�6

Table A.1: Final shooting accuracy with the control in dimension 2
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A.6 Existence, regularity and uniqueness of the solution to the HJB equa-
tion

In this section we prove the results of the proposition 4.3.6.3.

A.6.1 Definition

We recall the definition of the viscosity solution for HJB equation with obstacle term (4.38). Let
V : r0,Ts�Rn �RÝÑR be a continuous function and pt0,µ0,η0q P p0,Tq�Rn �R.

1. V is a viscosity supersolution if for any φ PC1pr0,Ts�Rn�Rq such that V�φ attains a local
minimum on pt0,µ0,η0q, we have

min

�Bφ
Bt
pt0,µ0,η0q�H pµ0,Dµφpt0,µ0,η0q,Dηφpt0,µ0,η0qq



¥ 0

2. V is a viscosity subsolution if for any φ P C1pr0,Ts�Rn �Rq such that V�φ attains a local
maximum on pt0,µ0,η0q, we have

min

�Bφ
Bt
pt0,µ0,η0q�H pµ0,Dµφpt0,µ0,η0q,Dηφpt0,µ0,η0qq



¤ 0

3. V is a viscosity solution of (4.38) if it is both a supersolution and a subsolution and if it satis-
fies the final condition (4.38b).

A.6.2 Regularity

For sake of clarity, let us denote: x � pµ,ηq, x 1 � pµ1,η1q P Rn �R, β :� pα,λq P B where B :�
A �Λ, yβxp�q :� pξβµp�q, zβηp�qq and hpyq :� g pξq� z. By using the definition of ŵ and the following
inequalities:

maxpA,Bq�maxpC,Dq¤maxpA�C,B�Dq, inf Aα� infBα¤ suppAα�Bαq (A.21)

Then for τ P r0,Ts, one has:

ŵpτ, xq� ŵpτ, x 1q¤ sup
βPB

�
max

�
hpyβxpτqq�hpyβx1pτqq, sup

θPr0,τs
pr pξβµpθqq� r pξβ

µ1
pθqq,ψpξβµpτqq�ψpξβ

µ1
pτqq

��

¤ sup
βPB

�
max

�
Lh .}yβxpτq� yβx1pτq},Lr . sup

θPr0,τs
}ξβµpθqq�ξ

β

µ1
pθq},Lψ.}ξβµpτqq�ξ

β

µ1
pτq}

��

where Lh , Lr and Lψ are respectively the Lipschitz constants of h, r and ψ. By the assumptions

pH1q�pH2q of the chapter 4, }yβxpτq�yβx1pτq}¤ eL.T}x�x 1} (where L¡ 0 is the Lipschitz constant

of f̂ :�pλ. f ,�λ. f 0q) and for any θ P r0,τs, }ξβµpθq�ξ
β

µ1
pθq}¤ eL f .T}µ�µ1}.

Consequently, one obtains: ŵpτ, xq� ŵpτ, x 1q¤maxpLh ,Lr ,Lψq.eL.T}x�x 1}.
On the other hand, let us take x � pµ,ηq and τ P r0, ts. By remarking that ŵpt �τ, xq ¥ r pµq (from
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the definition of ŵ), we have, by using the DPP:

ŵpt �τ, xq� ŵpt , xq� inf
β
pŵpt �τ, xq_ r pµqq� inf

β
pŵpt �τ, yβxpτqq_ sup

θPr0,τs
r pξβµpθqqq

¤ sup
β

�
ŵpt �τ, xq_ r pµq� ŵpt �τ, yβxpτqq_ sup

θPr0,τs
r pξβµpθqq

�

¤ sup
β

max

�
ŵpt �τ, xq� ŵpt �τ, yβxpτqq, sup

θPr0,τs

�
r pµq� r pξβµpθqq

	�

¤ sup
β

max

��ŵpt �τ, xq� ŵpt �τ, yβxpτqqlooooooooooooooooomooooooooooooooooon
�A

,Kr . sup
θPr0,τs

�
µ�ξ

β
µpθq

	�

From what precedes, one has A¤maxpLh ,Lr ,Lψq.eL.T}yβxpτq�x}. Furthermore, by denoting C :�
max
βPB

} f̂ p0,βq}, we have } f̂ px,βq} ¤ C�L.}x} and then from the Gronwall estimate, }yβxpτq� x} ¤
pC�L.}x}qeL.T.τ. We have the same type of upper bound for the other term. Therefore, we can
conclude that ŵpt 1, xq� ŵpt , xq ¤C.p1�}x}q.|t 1� t | for some constant C¡ 0. Finally, combining
all the inequalities above, we get:

ŵpt , xq� ŵpt 1, x 1q¤R.p1�}x}q.p}x 1�x}�|t 1� t |q (A.24)

for some R¡ 0 which ends the proof.

A.6.3 Existence

First we prove that ŵ is a super-solution of (4.38a):

Let us consider a test function φ PC1pr0,Ts�Rn�Rq such that ŵ�φ attains a local minimum at

pt ,µ,ηq. This implies that for some r ¡ 0:

ŵpt ,µ,ηq� ŵpt 1,µ1,η1q¤φpt ,µ,ηq�φps,µ1,η1q (A.25)

for |t � t 1| ¤ r , |µ�µ1| ¤ r and |η�η1| ¤ r .
For any ϵ¡ 0, from the inequality "¥", in the DPP, we have:

ŵpt ,µ,ηq¥ inf
pξ,zqPŜr0,τspµ,ηq

ŵ pt �τ,ξpτq, zpτqq for any τ P r0, tr (A.26)

There exist an ϵ-optimal couple ᾱ� ᾱpϵ,τq and λ̄� λ̄pϵ,τq such that:

ŵpt ,µ,ηq¥ ŵ
�

t �τ, ξ̄pτq, z̄pτq��ϵ.τ (A.27)

For τ¡ 0 small enough, we have }ξ̄pτq�µ}¤ r and |z̄pτq�η| ¤ r and consequently:

�ϵ.τ¤ ŵpt ,µ,ηq� ŵpt �τ, ξ̄pτq, z̄pτqq¤φpt ,µ,ηq�φpt �τ, ξ̄pτq, z̄pτqq (A.28)

By denoting hpτq :�φpt �τ, ξ̄pτq, z̄pτqq and dividing the above inequality by τ¡ 0 we obtain:

hp0q�hpτq
τ

¥�ϵ (A.29)

Now we express h as follows:

hpτq� hp0q�
» τ

0
h1pθqdθ (A.30a)

� hp0q�
» τ

0

�
Āpθq� λ̄pθq.pB̄pθq� C̄pθqq



dθ (A.30b)
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where:

Āpθq :��BφBt

�
t �θ, ξ̄pθq, z̄pθq�

B̄pθq :�Dµφ
�

t �θ, ξ̄pθq, z̄pθq� . f
�
ξ̄pθq, ᾱpθq�

C̄pθq :��Dηφ
�

t �θ, ξ̄pθq, z̄pθq� . f 0
�
ξ̄pθq, ᾱpθq�

By denoting:

B̄αpθq :�Dµφ
���θ, ξ̄pθq, z̄pθq� . f

�
ξ̄pθq,α�

C̄αpθq :��Dηφ
���θ, ξ̄pθq, z̄pθq� . f 0

�
ξ̄pθq,α�

one obtains:

hp0q�hpτq
τ

� 1

τ

» τ

0
�Āpθqdθ� 1

τ

» τ

0
λ̄pθqp�B̄pθq� C̄pθqqdθ

¤ 1

τ

» τ

0
�Āpθqdθ� 1

τ

» τ

0
sup
pλ,αq

rλpθq.p�B̄αpθq� C̄αpθqqsdθ

¤ 1

τ

» τ

0
�Āpθqdθ� 1

τ

» τ

0
max

�
0,sup

α
p�B̄αpθq� C̄αpθqq



dθ

Now by letting τÑ 0, as ξ̄pθqÑµ and z̄pθqÑ η, one obtains:

�ϵ¤ Bφ
Bt
pt ,µ,ηq�H pµ,Dµφpt ,µ,ηq ,Dηφpt ,µ,ηqq (A.34)

where H pµ, p, qq :�max

�
0,sup

aPA
p� f pµ, aq.p� f 0pµ, aq.qq



.

By arbitrariness of ϵ¡ 0, we obtain the following inequality:

Bφ
Bt
pt ,µ,ηq�H pµ,Dµφpt ,µ,ηq ,Dηφpt ,µ,ηqq¥ 0 (A.35)

in the viscosity sense. Moreover, by definition of ŵ , we have:

ŵpt ,µ,ηq¥ inf
pξ,zqPŜr0,tspµ,ηq

sup
sPr0,ts

r pξpsqq¥ r pµq (A.36)

Combining the two last inequalitites, we obtain:

min

�
Bt ŵ�H pµ,Dµŵ ,Dηŵq , ŵ� r



¥ 0 (A.37)

Second we prove that ŵ is a sub-solution of (4.38a):

We remark that is ŵpt ,µ,ηq¤ r pµq, then we have easily:

min

�
Bt ŵ�H pµ,Dµŵ ,Dηŵq , ŵ� r



¤ 0 (A.38)

Now, assume that ŵpt ,µ,ηq ¡ r pµq. By continuity of ŵ and r , there exists τ¡ 0 such that for any
pξ, zq P Ŝr0,τspµ,ηq, ŵ pt �θ,ξpθq, zpθqq ¡ r pξpθqq, for all θ P r0,τs (as ξpθq and zpθq will remain in
the neighborhood of respectively µ and η). Hence by exploiting the DPP (4.37), we get that:

ŵpt ,µ,ηq� min
pξ,zqPŜr0,τspµ,ηq

ŵ pt �τ,ξpτq, zpτqq (A.39)
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Let us now consider a test functionφ PC1pr0,Ts�Rn�Rq such that ŵ�φ attains a local maximum
at pt ,µ,ηq. This implies that for some r ¡ 0:

φpt ,µ,ηq�φpt 1,µ1,η1q¤ ŵpt ,µ,ηq� ŵpt 1,µ1,η1q (A.40)

for |t � t 1| ¤ r , |µ�µ1| ¤ r and |η�η1| ¤ r .
Let us take pα,λq PA �Λ, such that α� a, λ� l . For τ small enough, one has }ξpτq�µ} ¤ r and

|zpτq�η| ¤ r , thus:

φpt ,µ,ηq�φpt �τ,ξpτq, zpτqq¤ ŵpt ,µ,ηq� ŵpt �τ,ξpτq, zpτqq¤ 0

by exploiting the DPP. By dividing by τ and using the previous notations we obtain:

1

τ

» τ

0
�Apθqdθ� 1

τ

» τ

0
λpθq.p�Bpθq�Cpθqqdθ¤ 0 (A.41)

if we let τÑ 0, we obtain:

Bφ
Bt
pt ,µ,ηq� l .

��Dµφpt ,µ,ηq. f pµ, aq�Dηφpt ,µ,ηq. f 0pµ, aq�¤ 0 (A.42)

By taking the supremum over pa, lq P A�r0,1s on the left side of the above inequality, one gets:

Bφ
Bt
pt ,µ,ηq�H pµ,Dµφpt ,µ,ηq ,Dηφpt ,µ,ηqq¤ 0 (A.43)

with H pµ, p, qq :�max

�
0,sup

aPA
p� f pµ, aq.p� f 0pµ, aq.qq



.

This is the desired inequality in the viscosity sense.

Finally, one checks easily that by definition (4.33), ŵ checks the initial condition (4.38b) which
ends the proof.

A.6.4 Uniqueness

The proof of the uniqueness of the solution can be found for instance in [3].
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Appendix B

Acronym List

AMPL A Mathematical Programming Language. 60, 66, 68, 69, 85, 91, 99, 110

D Dubins. 18, 65–67, 69, 76, 81

DF Dubins-Fuller. 17, 18, 65, 73, 81, 82, 89

DPP Dynamic Programming Principle. 34, 60, 94–96, 114

ENO Essentially Non Oscillatory. 98, 106

F Fuller. 18, 65, 76

GPS Global Positionning System. 43

HJB Hamilton Jacobi Bellman. 7, 13, 18, 93–96, 98, 99, 101, 102, 105, 107, 108, 110–112, 115, 121

INU Inertial Navigation Unit. 43

IPOPT Interior Point OPTimizer. 60, 66, 68, 69, 85, 91, 99, 110

KKT Karush Kuhn Tucker. 25, 31

LQ Linear Quadratic. 5, 14, 15, 24, 26, 34, 111, 112

MDP Mission Data Preparation. 44

PDE Partial Differential Equations. 13, 107, 115

PIP Predicted Interception Point. 43

PMP Pontryagin Maximum Principle. 13–15, 17, 21, 26, 31, 57–62, 68, 72, 82, 90, 91, 94, 101, 116
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