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RESUME

Le but de cette these est d’étudier le comportement asymptotique de grands arbres aléatoires discrets.
Par “arbre discret”, nous entendrons un graphe acyclique connexe localement fini (tel que chaque noeud
n’ait qu'un nombre fini de voisins) et enraciné, c’est-a-dire qu'un nceud de 'arbre que I'on appellera la racine
jouera un role particulier. Il y a principalement deux points de vue quant a I'étude de ces comportements
asymptotiques : les limites locales et d’échelle. Dans le premier cas, on s’intéresse a la structure de graphe
autour de la racine tandis que dans le second, on étudie I'arbre dans sa globalité en tant qu’espace métrique
normalisé.

Les arbres étudiés auront la propriété dite de Markov branchante : on dit qu’une suite (T,), d’arbres
aléatoires respectivement a n nceuds satisfait la propriété de Markov branchante si pour tout n, condition-
nellement a I'évenement “T, a p sous-arbres au dessus de sa racine avec respectivement ny > -++ > n,
nceuds”, lesdits sous-arbres sont indépendants et le i*™ plus gros sous-arbre a la méme distribution que T, .
Les lois des éléments d’une telle suite sont caractérisées par une suite de mesures sur ce type d’évenements.
Nous étudierons aussi des arbres Markov branchants avec un nombre donné de feuilles plutot que de neeuds.
Haas et Miermont [66] ont étudié les limites d’échelle de ces arbres et ont montré que les “arbres continus”
correspondants appartiennent a la famille des arbres de fragmentation, voir Haas et Miermont [64], une
famille a laquelle appartient notamment 'arbre brownien introduit par Aldous [7].

Apreés une introduction des modeles et méthodes utilisées dans cette thése, ce manuscrit sera divisé en
deux parties principales :

— Dans le Chapitre 1, nous introduirons la notion d’arbres Markov branchants infinis, arbres qui
apparaissent naturellement comme limites locales d’arbres Markov branchants finis. Ensuite, nous
étudierons les limites d’échelle de ces arbres infinis : asymptotiquement, nous verrons apparaitre des
arbres de fragmentation avec immigration. De ce résultat, on déduira a quelle vitesse le nombre de
nceuds dans la boule de rayon R autour de la racine dans un tel arbre croit quand R tend vers I'infini.
Le Chapitre 2 quant a lui donnera une extension naturelle de ces résultats a un modele plus général
d’arbres Markov branchants introduit par Rizzolo [111].

— Le Chapitre 3 sera un survol des résultats de la littérature sur le profil de modeles d’arbres aléatoires,
c’est-a-dire sur la suite des nombres de nceuds a chaque génération desdits arbres. Ce chapitre sera
divisé en deux sections : la premiére traitera de modeles d’arbres dont la hauteur est de 'ordre d’'une
puissance du nombre de nceuds alors que dans la seconde, nous considérerons des arbres dont la
hauteur est d’ordre logarithmique.

Enfin, dans le Chapitre 4, nous étudierons le comportement asymptotique du profil d’arbres Markov
branchants. Notre approche sera basée sur des résultats d’inversion de transformées de Fourier et
nous serons alors amenés a étudier I'intégrabilité des fonctions caractéristiques du profil des arbres
de fragmentation apparaissant a la limite, ce qui se traduira par des résultats sur la régularité de ces
derniers.
De plus, nous trouverons dans ’Annexe A des programmes pour simuler certains modeéles et objets étudiés
dans cette thése.
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ABSTRACT

i

This thesis aims to study the asymptotic behaviour of large random discrete trees. By “discrete tree’
we will mean a connected graph with no cycles which is locally finite (meaning that all vertices have only
finitely many neighbors) and rooted, i.e. a vertex called root is chosen and plays a distinct role. There are
mainly two points of view with which we can study the asymptotics of these objects: local or scaling limits.
In the first case, we will be interested in the graph structure of the trees around their roots whereas in the
latter, trees will be thought of as normalised metric spaces and will be studied as a whole.

The trees we will study will satisfy the Markov branching property: if (T, ), is a sequence of random
trees where T,, has n vertices for all n, the sequence will be said to have the Markov branching property
if conditionally on the event “T,, has p sub-trees above its root with n; > --- > n,, vertices respectively”,
these sub-trees are independent and the i biggest sub-tree is distributed like T, . The distributions of
the elements of such sequences are characterised by a sequence of probability measures on the set of
such events. We will also study Markov branching trees with a fixed number of leaves instead of vertices.
Haas and Miermont [66] studied the scaling limits of Markov branching trees and proved that the limit
“continuum trees” are fragmentation trees, see Haas and Miermont [64]. A prime example of a fragmentation
tree is the Brownian tree, see Aldous [7].

In the introduction of this thesis, we will present the models we study as well as the methods we use.
The rest of this manuscript will be split into two main parts:

— In Chapter 1, we will introduce infinite Markov branching trees. These trees appear as the natural
local limits of finite Markov branching trees. Then, we will turn our focus to the study if the scaling
limits of these infinite trees and will see that they converge to fragmentation trees with immigration.
This result will allow us to determine how the number of vertices under some height R in such a tree
behaves when R goes to infinity. Chapter 2 will give a natural extension of these results to a more
general model of Markov branching trees introduced by Rizzolo [111].

— Chapter 3 is a survey on known results on the profiles, i.e. the sequence of the number of vertices in
each successive layer of a given tree, of a few models of random trees. This chapter will contain two
sections: the first of which will focus on models of trees whose height is roughly proportional to the
number of vertices in the said trees while in the second section, we will consider trees whose height
is roughly the logarithm of the number of vertices.

Finally, in Chapter 4, we will study the asymptotic behaviour of the profile of Markov branching trees.
Our approach will rely on Fourier inversion results. That will lead us to study the integrability of
the random characteristic functions of the profiles of corresponding fragmentation trees, which will
translate to results on the regularity of the said profiles.
Furthermore, Appendix A will present some programs to simulate some models and objects studied in this
thesis.
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INTRODUCTION

i.1 ARBRES ALEATOIRES

Cette section détaillera les différentes topologies utilisées dans cette these ainsi que quelques propriétés
asymptotiques des arbres auxquelles nous nous intéresserons. Pour finir, nous illustrerons ces notions via
I'exemple des arbres de Galton-Watson.

i.1.1 Convergences d’arbres

Topologie locale. La topologie locale est utilisée pour définir une notion de convergence de graphes
enracinés. Comme son nom l'indique, cette topologie compare la structure de graphe “locale” desdits
graphes, c’est-a-dire autour de leurs racines.

Si t est un arbre, rappelons qu’il peut étre naturellement équipé de la distance de graphe notée d,,.
Cette métrique est telle que pour tous nceuds u et v de t, d,,(u, v) est le nombre d’arétes dans le plus court
chemin reliant u et v. Pour tout entier positif r, notons t|, les r premiéres générations de t, c’est-a-dire
I'ensemble des nceuds de t a distance inférieure ou égale a r de la racine. On dira qu’une suite (t,),>;
d’arbres converge localement vers un arbre t si pour tout entier r, on a t,|. = t|, pour tout n assez grand.

Si l'arbre t est fini, on a t|, = t pour r assez grand. De ce fait, t, — t localement ssi t, = t pour tout
n assez grand. Le cas de figure le plus intéressant se présente alors quand I’arbre limite t est infini (et
vérifie donc t # t|, pour tout r puisque I'on ne considérera que des arbres localement finis).

Pour cette topologie, on aura le critére de convergence suivant : si T, n = 1 et T sont des arbres
aléatoires, alors T,, converge en loi vers T pour la topologie locale ssi pour tout arbre déterministe t et tout
entier positif r on a P[T,|, = t|,] = P[T|, = t|,].

Cette topologie a été utilisée dans de nombreux travaux en rapport avec '’étude d’arbres aléatoires ou
bien dans des cadres qui traitent d’autres types de graphes, voir [1, 2, 4, 6, 12, 13, 14, 15, 31, 34, 38, 76,
77,87,113, 114, 117, 118] par exemple.

Topologie de Gromov-Hausdorff-Prokhorov. Rappelons qu'un arbre discret est naturellement muni de la
distance de graphe. On peut alors considérer un arbre non plus comme un graphe mais plutét comme un
espace métrique. Ce point de vue nous amene a utiliser la notion de convergence d’espaces métriques ce
qui donnera des résultats asymptotiques radicalement différents de ceux obtenus pour la topologie locale.

Cette notion a été introduite par Gromov [58] qui eut I'idée de généraliser la distance de Hausdorff a
des ensembles compacts n’étant pas inclus dans un méme espace métrique. Rappelons que si (E, dg) est un
espace métrique, alors la distance de Hausdorff dg‘ sur E est définie pour tous ensembles compacts A et B
inclus dans E par

d(A,B) :=inf{r>0:x€ACB ,BcA’}

ot pour tous C C Eetr >0, C" := {x € E : inf ¢ dg(x, y) < r}. L'idée de Gromov était de comparer
différents ensembles en les plongeant dans un espace métrique commun. Ainsi, si (X, dy) et (Y, dy) sont
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deux espaces métriques compacts, la distance de Gromov-Hausdorff (non pointée) est définie par
dsy (X, dx), (v, dy) ) = inf dlf (9 (X), 9(Y))

ou l'infimum est pris sur tous les espaces métriques (M, d,;) et isométries ¢ : X - M, : Y — M.

En plus d’étre dotés d'un point particulier, la racine, les arbres que I'on considérera seront munis d’'une
mesure Borélienne, typiquement la mesure de comptage sur leurs nceuds ou leurs feuilles.

Nous seront donc amenés a comparer des quadruplets X = (X, dy, px, Ux) ol (X,dy) est un espace
métrique compact, py est un point de X que I'on appellera la racine et uy est une mesure Borélienne finie
sur X. Pour cela nous utiliserons une généralisation de la distance de Gromov-Hausdorff : la distance de
Gromov-Hausdorff-Prokhorov pointée, voir Evans [50], Villani [121], Abraham et al [3] ou bien Addario-
Berry et al [5]. Pour deux tels quadruplets X = (X, dy, px, Ux) et Y = (Y, dy, py, Uy ), on définit alors

dap(X, Y) = inf dyy (0(px), () V it (000, (1)) v iy (g 0 67y 0y

ou 'infimum est de nouveau pris sur tous les espaces métriques (M, d;,) etisométries ¢ : X - M, :Y > M
et oll pour tout espace métrique (E, dg), la distance de Prokhrov sur E est donnée par

dEP(.u, V)= inf{r > 0: VYA C E Borélien, u(A) < v(A")+r et v(A) < u(A") + r}

pour tout couple (u, v) de mesures Boréliennes sur (E, dg).

Dans la topologie induite par cette métrique, les fonctions hauteur et masse qui a un espace métrique
compact pointé et mesuré X = (X, dy, px, lx) associent respectivement |X| := sup,.y dx(px, x) et ux(X)
sont continues. Ainsi, la convergence dans la topologie GHP assure la convergence de la masse et de la
hauteur.

Arbres réels. Lorsque I'on étudie les limites d’échelle de la marche aléatoire simple, un objet discret, 'objet
limite qui apparait est le mouvement brownien, une fonction réelle et donc un objet continu. De la méme
maniere, dans de nombreux cas, les limites d’échelle d’arbres finis et discrets appartiennent a une classe
d’objets “continus” : les arbres réels ou R-arbres, cf Le Gall [92] par exemple.
Un arbre réel est un espace métrique (T, d) tel que si x et y sont deux points de T, alors
— 1l existe une unique isométrie ¢ : [0,d;(x,y)] — T telle que ¢(0) = x et p[d;(x,y)] =Y.
— Sip :[0,1] — T est injective, continue et vérifie 1/(0) = x et Y(1) = y, alors @ et ¢ ont la méme
image.

Plus informellement, tout couple de points de T ne peut étre relié que par un unique chemin injectif et
continu, a sa paramétrisation pres. Cette propriété est en quelque sorte I'équivalent continu de I'absence de
cycles dans un arbre discret.

Soient T,, n > 1 des arbres réels compacts, enracinés et munis d’'une mesure Borélienne finie. Si T,
converge vers un espace métrique compact enraciné et mesuré T = (T,dr, pr, Ur) pour la topologie GHP,
alors (T, dy) est lui-méme un arbre réel. En d’autres termes, 'ensemble des arbres réels enracinés et mesurés
est fermé pour la topologie GHP.

Pour cette raison, lorsque I'on étudiera les limites d’échelle d’arbres discrets, on considerera ces derniers
comme des arbres réels en remplagant chaque aréte par une copie du segment [0, 1].

Topologie GHP locale. Les arbres infinis mais localement finis apparaissent naturellement comme limites
locales de suites d’arbres finis mais ces arbres ne sont par contre pas compacts lorqu’on les munit de la
distance de graphe. La métrique de Gromov-Hausdorff-Prokhorov ne peut donc pas étre utilisée pour
comparer deux tels arbres. Nous utiliserons alors une version “locale” de cette métrique qui a notamment
été étudiée par Abraham et al [3].

Si X = (X,dy, px,ux) est un espace métrique localement compact, enraciné et muni d'une mesure
Borélienne localement finie, pour tout r positif, on notera X|, = (X|,,dx, px,uxl,) ou X|, :={x € X :
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dy(px,x) <1} et uyl, :=1x uy. Soient T et T, n > 1 des arbres réels localement compacts, enracinés et
munis d’'une mesure localement finie ; on dira que T, converge vers T pour la topologie GHP locale si pour
tout r positif qui est un point de continuité de la fonction t — u;(T|,), on a T,|, — T|, pour la topologie
GHP usuelle.

Cette topologie est métrisable et coincide avec la topologie GHP usuelle sur 'ensemble des arbres réels
compacts enracinés et mesurés, cf Abraham et al [3].

Profils.  Soit t un arbre discret fini et soit 4 une mesure finie sur t. Le profil de t associé a u est la suite £,
définie par £,,(j) := ,u(u €t:dg(p,u)= j) ou p est la racine de t. En d’autres termes, £, est la suite des
mesures par rapport a u, de chacun des niveaux de t.

On peut aussi définir une notion de profil pour certains arbres réels mesurés. Soit T = (T,d, o1, Ur)
un arbre réel localement compact muni d’une racine et d'une mesure localement finie. Si la fonction
t — ur(T|,) est absolument continue par rapport a la mesure de Lebesgue, alors on dit que T admet un
profil qui est alors la densité I; de la mesure dont u(T|.) est la fonction de répartition.

Notons que comme nous I'avons déja remarqué, la fonction qui a un espace métrique compact enraciné
et mesuré lui associe sa masse totale est continue pour la topologie GHP. Supposons que pour tout n > 1,
t, est un arbre discret, p, sa racine et y, une mesure sur t, et supposons qu'il existe deux suites de réels
positifs (a,), et (b,), telles que (a,t,, bu,) := (t,, a,dgr, Pn, byt,) converge vers T pour la topologie
GHP locale. Dans ce cas, si T admet un profil, b,u,(t,|, ) converge vers ur(T|.) pour tout t positif car la
fonction ur(T|.) est continue. Il est alors naturel de se demander si le profil adéquatement renormalisé
de t,, converge plus ou moins fortement vers celui de T.

Si les mesures b,u,, n = 1 et u; sont des probabilités, cette convergence et ce probleme admettent
une interprétation probabiliste. Pour tout n > 1, définissons I,, := d,(p,, U,) avec U, une variable aléatoire
de loi b, u, a valeurs dans t, ainsi que I :=dy(p,U) ot U est de loi uy. Si (a,t,, byu,) converge vers
T pour la topologie GHP, alors pour tout t en lequel u(T|.) est continue, u(T,|.) converge vers u(T|,)
ce qui implique que a, I, converge en loi vers I. La convergence des profils correspondants est alors une
version “locale” de cette convergence en loi, cf le théoréme central limite local [56, 57].

i.1.2 Arbres de Galton-Watson

Nous allons maintenant présenter un modeéle d’arbres aléatoires qui a été étudié par de nombreux
auteurs dont les résultats illustrent les notions de la Section i.1.1.

Les processus dits de Galton-Watson ont été introduits pour résoudre le probléme, posé par Galton [54]
et résolu par Watson [122], du calcul de la probabilité de survie des noms de grandes familles anglaises.
Ces processus sont définis comme suit. Soit £ une loi de probabilité sur 'ensemble IN des entiers naturels;
& sera la loi de reproduction du processus. Soient X, ;, n = 0, k = 1 des variables i.i.d. de loi &. Notons
Zy:=1 et pour tout n > 0,

Zpy1 = Zin=1 Xn,k'
La variable Z, modélise alors le nombre d’individus constituant la n®™¢ génération d’une population ou
chaque individu a un nombre aléatoire d’enfant de loi £ et se reproduit indépendamment des autres.

Watson [122] prouva que la probabilité d’extinction de la population, c’est-a-dire la probabilité que
Z, =0 pour n assez grand, est le plus petit point fixe de la fonction génératrice de £. En particulier, cette
probabilité est égale a 1 si la moyenne de & est inférieure ou égale a 1 etsi §; < 1.

eme

Arbres de Galton-Watson et limites locales. La généalogie de ces processus admet une représentation
naturelle en tant qu’arbres localement finis : la racine représente I'individu originel et chaque nceud
modélise un individu qui est relié aux noeuds représentant ses enfants.
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FIGURE 1 — Un arbre de Galton-Watson et le processus sous-jacent.

Lorsque la loi de reproduction & est critique, i.e. de moyenne égale a 1 et telle que &; < 1, les processus
de Galton-Watson s’éteignent presque stirement et arbre correspondant est alors fini. Kennedy [81] et
Kesten [83] se sont intéressés au comportement du processus (Z,,),>; sous différents conditionnements.

Leurs études respectives peuvent en fait étre décrites en termes de limites locales d’arbres de Galton-
Watson conditionnés. Soit T un arbre de Galton-Watson de loi de reproduction & :

— Le résultat de Kennedy décrit la limite en loi pour la topologie locale de T conditionné a avoir n
neeuds quand n tend vers I'infini, voir aussi Aldous et Pitman [12].
— Quant a celui de Kesten, il décrit la limite en loi de T conditionnellement a |T| > n quand n tend
vers l'infini.
Dans les deux cas, le méme arbre apparait a la limite. Cet arbre est appelé arbre de Kesten, il est infini mais
localement fini et peut en quelque sorte étre vu comme I’arbre qui encode un processus de Galton-Watson
conditionné a ne jamais s’éteindre, ou encore conditionné & avoir une population totale infinie.

L’arbre de Kesten encode en fait un processus de Galton-Watson avec immigration, qui est défini comme
suit : soient (Y,),>o une suite de variables i.i.d. et telles que P[Y, = j+ 1] = j&; pour tout j € N et
(Xnx)nz0x>1 une famille de variables i.i.d. de loi & et indépendante de (Y,),>o. On pose alors Z; := 0 et
pour toutn=>1,

Zpy1 =Y, + Zinzl Xn,k'
La variable Y,, peut étre vue comme le nombre d’individus qui immigrent dans une population a la
génération n. Ainsi, 'arbre de Kesten est en fait obtenu en greffant pour tout n positif un nombre Y, d’arbres
de Galton-Watson i.i.d. & hauteur n de la branche infinie.

FIGURE 2 — L’arbre de Kesten.

Cet arbre apparait de plus comme la limite locale d’arbres de Galton-Watson sous de nombreux autres
conditionnements, cf Janson [76], Curien et Kortchemski [38] ou encore Abraham et Delmas [2].

Limites d’échelle. Dans une série de trois articles, Aldous [7, 8, 9] a étudié les limites d’échelles d’arbres
de Galton-Watson conditionnés a avoir un grand nombre de nceuds ainsi que 'arbre réel limite quand leur
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loi de reproduction a une variance finie : 'arbre brownien. Voir aussi Le Gall [91].

L’arbre brownien est un arbre réel compact enraciné et mesuré introduit dans [7] sous le nom de
Continuum Random Tree (arbre continu aléatoire) et construit comme suit. Soit (e,;0 < t < 1) une
excursion brownienne de longueur 1; on définit la pseudo-métrique d, sur [0, 1] par

de(x: Y) = de(y’ x):= e, + €, — 2 infte[x,y] €
pour x <y dans [0, 1]. On munit alors le segment [0, 1] d’une relation d’équivalence ~, telle que x ~, y

ssi da(x, y) = 0. Pour tout x € [0, 1], notons X la classe d’équivalence de x dans [0,1]/ ~,. et u la mesure
image de la mesure de Lebesgue par 'application x — X. L'arbre réel compact enraciné et mesuré

Te = ([O> 1]/ Ne’de:()7 u)

est alors appelé 'arbre brownien et sa distribution sera notée .

0 1
FIGURE 3 — Un arbre brownien et I'excursion sous-jacente.
Si T est un arbre de Galton-Watson de loi de reproduction critique &, pour tout n tel que P[#T =n] > 0,

notons T, un arbre aléatoire de méme loi que T conditionné sur '’événement {#T = n} et notons u, la
mesure de comptage sur T,,. Aldous a prouvé le résultat suivant.

Théoréeme 23 dans [9]. Si & est critique et d variance 02 := 3. j*E; — 1 finie, alors

o T 1 GHP
Zﬁ nrgﬂu‘n =\n—>oo Ig-

29

Pour ce faire, il a utilisé le fait que tout arbre ordonné est “encodé” par sa fonction de contour qui décrit la
hauteur a chaque temps d’une particule parcourant les arétes de I'arbre en question, voir la Figure 4. Aldous

N

FIGURE 4 — Un arbre t (ordonné) et sa fonction de contour.

a montré que la fonction de contour de I'arbre T,, apres une remise a 'échelle adéquate, va converger en
loi dans €C[0, 1] vers une excursion brownienne ce qui implique la convergence des arbres redimensionnés
pour la topologie GHP.

Duquesne [47] étudia les limites d’échelle de T,, quand & est dans le domaine d’attraction d’une loi a-
stable avec a €]1, 2[. Dans ce cas, le coefficient de remise & I'échelle est de I'ordre de n'/*! et larbre limite
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FIGURE 5 — Des arbres a-stables avec a = 7/4 et a = 3/2.

n’est plus 'arbre brownien mais un arbre de Lévy a-stable comme décrit par Duquesne et Le Gall [49]. Voir
aussi Haas et Miermont [66], Korchemsky [85, 86] ou encore Rizzolo [111] pour des résultats connexes.

Dans un autre article, Duquesne [48] a aussi établi un résultat de convergence de I'arbre de Kesten au
sens de la topologie GHP locale. Soit T* un arbre de Kesten et u la mesure de comptage sur T*. Si £ est a
variance finie, le résultat de Duquesne assure que

1 * 1 :o-imm
(RT ’Rz'u) R—00 IB

pour la topologie GHP locale, ol STBimm est 'arbre brownien avec immigration introduit dans [7] par Aldous
sous le nom d’arbre continu aléatoire auto-similaire. Quand & est dans le le domaine d’attraction d’une
loi a-stable avec a €]1, 2[, 'arbre réel infini obtenu a la limite par Duquesne est un arbre de Lévy avec
immigration.

Profil des arbres de Galton-Watson conditionnés. De par sa construction, il est clair que ’arbre brownien
J. admet un profil qui n’est autre que le temps local L de I'excursion brownienne e défini pour tout t
positif par

. 1 1
L(t) :=lim,_,q " fo App pey(w) du

Voir aussi Delmas [39] pour une étude du profil des arbres de Lévy.

0 1 0 1

FIGURE 6 — Le profil d’un arbre brownien et d’un arbre a-stable avec a = 7/4.

Ayant prouvé que si & est critique et a variance finie, alors la suite (T,,), d’arbres de Galton-Watson
conditionnés par leurs tailles converge, sous une renormalisation adéquate, vers ’arbre brownien, Aldous [8]
conjectura que le profil renormalisé de T, devrait lui aussi converger vers celui de 'arbre brownien. Cette
conjecture a été prouvée par Drmota et Gittenberger [43].
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Théoréme 1.1 dans [43]. Supposons que & admet des moments exponentiels et notons o sa variance. Pour
tout entier n, soit £, le profil de Uarbre T,. Alors au sens de la topologie usuelle sur D[0, oo[, on a

(Uiﬁfn(LZ«/ﬁt/oJ); t> 0) = L.

Kersting [82] élargit ce résultat aux cas ou & est dans le domaine d’attraction d’une loi a-stable avec
a €]1, 2[. Voir la Section 3.1.1 du Chapitre 3 pour une esquisse des preuves de ces résultats.

i.2 MODELES ETUDIES

Dans cette section, nous allons introduire les différents objets et modéles que nous étudions dans cette
thése, notamment les arbres de fragmentation auto-similaire et les arbres Markov branchants.

i.2.1 Arbres de fragmentation

Processus de fragmentation auto-similaire. Ces processus ont été introduits par Bertoin [19] pour décrire
un modéle aléatoire dans lequel un objet d'une certaine masse se désagrege en sous-objets qui vont alors
eux-aussi se dégrader indépendamment les uns des autres, de la méme maniére que l'objet initial mais a
des vitesses qui dépendent de leurs masses respectives.

Soit 8! I'ensemble des suites positives décroissantes sommables, i.e.

st :={s=(sn)n21 €l : s 2522---20}

et notons Sl<1 = {s es: sl < 1} ou
similaire est un processus de Markov F a valeurs dans 8

| - || dénote la norme £; usuelle. Un processus de fragmentation auto-
! continu en probabilité, tel que F(0) =(1,0,0,...)

<1
et tel qu’il existe une constante a pour lequel, pour tout ¢, positif, conditionnellement a F(t,) =s,

(F(to +1),t> 0) o ((si FO(s2t), i > 1)1; t> 0)

ot (FV),.; sont des copies i.i.d. de F et ol pour toute suite (x1,X,,...) de réels, (x,x,,...)" est son
réarrangement décroissant. Le réel a est appelé l'indice d’auto-similarité du processus F.

Bertoin [19] et Berestycki [16] ont prouvé que la loi d’un tel processus est entiérement caractérisée
par un triplet (a, ¢, v) ou a est ledit indice d’auto-similarité, ¢ > 0 est un coefficient dit d’érosion et ou v
est une mesure o-finie sur Sl<1 qui ne charge pas (1,0,0,...) et pour laquelle la fonction s — 1 —s; est
intégrable. La mesure v est aﬁpelée une mesure de dislocation.

Dans la suite, nous considérerons uniquement des modéles de fragmentation dans lesquels I'indice
d’auto-similarité a est strictement négatif, le coefficient d’érosion ¢ est nul et la mesure de dislocation est
conservatrice, i.e. telle que v(||s|| < 1) = 0. La loi des processus de fragmentation sera alors caractérisée
par un couple (v, ¥) ol ¥ > 0 est 'opposé de I'indice d’auto-similarité et v est une mesure de dislocation
conservatrice.

Bertoin [20] a montré qu'un processus de fragmentation F ainsi caractérisé par un couple (y, v) s’éteint
presque slirement en temps fini, c’est-a-dire que la variable inf{t > 0 : F(t) = (0,0,...)} est presque
stirement finie. Haas [59] montra de plus que cette variable admet des moments exponentiels finis.

Un exemple important de processus de fragmentation auto-similaire est donné par Bertoin [19] : la
fragmentation brownienne. Soit e une excursion brownienne de durée 1. Pour tout t positif, notons F.(t) le
réarrangement décroissant de la suite des mesures de Lebesgue des composantes connexes de 'ensemble
{ue[0,1]:e, > t}. Le processus F, est alors un processus de fragmentation associé au couple (1/2, vg)
ol la mesure de dislocation vz est donnée par

(x,1—x,0,0,...)

2 (' f
ds) :=
Llf(S) vg(ds) mﬁ/z FEIEEE
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pour toute fonction mesurable f : $! — R,.

Arbres de fragmentation. Rappelons que 'arbre brownien peut-étre construit a partir d'une excursion
brownienne. On peut alors se demander s’il est possible de construire un arbre brownien a partir de la
fragmentation brownienne en oubliant 'excursion sous-jacente et si une telle construction est possible dans
d’autres cas.

Cette question a été traitée par Haas et Miermont [64] qui ont montré que pour tout couple (y, v), on
peut construire un arbre réel compact et mesuré qui retrace la généalogie d’'un processus de fragmentation
auto-similaire associé audit couple (y, ).

Plus précisément, il existe un arbre réel compact enraciné et mesuré (7,d, p, u) tel que si pour tout t
positif, {T;(t) : i > 1} est ’'ensemble (possiblement fini voire méme vide) des adhérences des composantes
connexes de T\ 7], alors le processus

((u[iTi(t)]; i>1)'; > o)

est un processus de fragmentation auto-similaire dont la loi est caractérisée par (v, v). La distribution de
cet arbre sera notée 7, ,. Voir aussi Stephenson [116] dans un cadre plus général ainsi que Rembart et
Winkel [109].

Notons que la notion d’arbre de fragmentation englobe, en plus de I'arbre brownien, les arbres a-stables
introduits par Duquesne et Le Gall [49] : Miermont [98] prouva que pour tout a €]1,2[, I'arbre de Lévy
a-stable peut lui aussi étre décrit comme un arbre de fragmentation dont la loi est caractérisée par le
couple (1 —1/a, v,) pour une certaine mesure de dislocation v,,.

Profil des arbres de fragmentation. Dans [60], Haas étudia ’existence ou non de ces profils. Elle prouva
notamment le résultat suivant.

Théoréme 4 dans [60]. Soient y > 0 et v une mesure de dislocation telle que fsl Zi21si |logs;| v(ds) < oo.
De plus, soit (T, uy) un arbre de fragmentation de loi 7, ,,.
Siy <1etsivverifie

fsi(l —57)17¢ y(ds) < oo et fsi ij sil_ysj v(ds) < 0o

pour un € €]0, 1[, alors T admet p.s. un profil.
Si y = 1, alors avec probabilité 1, T n’admet pas de profil.

En d’autres termes, sous des hypotheses peu restrictives d’intégrabilité de la mesure de dislocation v,
presque stirement, un arbre de loi 7, ,, admet un profil ssi y < 1.

Arbres de fragmentation avec immigration. Haas [61, 62] introduit les notions de processus et d’arbres de
fragmentation avec immigration. Les processus de fragmentation avec immigration modélisent I'évolution
des masses d’un systéeme d’objets qui se désagregent indépendamment avec le temps et ol1, en paralléle,
de nouveaux objets viennent s’ajouter au systeme. Les arbres réels appartenant a cette classe ont alors
une épine infinie sur laquelle s’attachent des arbres de fragmentation redimensionnés. Ces arbres sont
localement compacts et munis d’une mesure localement finie.

Ils sont caractérisés par un triplet (y, v,I) ot y > 0, v est une mesure de dislocation conservatrice et I
une mesure dite d’immigration, c’est-a-dire une mesure o-finie sur 8 qui intégre la fonction s — 1 A |s|.
On notera alors gy{ , leur loi.

Pour construire un tel arbre, on procéde de la maniére suivante. Soit X un processus ponctuel de Poisson
sur R, x 8¢ d’intensité dt ® I(ds) et notons (i,,, s(”))n21 ses atomes. De plus, soit [ (T, , Uy );n =1,k > 1]
une famille indépendante de = d’arbres de fragmentation i.i.d. de loi associée au couple (y, v) munis de
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leurs mesures respectives. Enfin, considérons la demi-droite [0, o[ comme une branche (continue) infinie
et pour tout n > 1, k > 1, a hauteur u,, de cette branche, on attache 'arbre mesuré ((s,(("))V‘J' n’k,s,(f)un)k).

Haas [62] a prouvé que sous une hypothése mettant en relation (y, ¥) et I, si (7, u) est un arbre de
fragmentation de loi caractérisée par (y, v), alors

(m”‘J’, m,u) —9g!

m— oo T,
au sens de la topologie GHP locale.

Notons que cette notion d’arbres englobe notamment 'arbre brownien avec immigration et les arbres
de Lévy avec immigration, cf Haas [62].

i.2.2 Arbres Markov branchants

Les modéles d’arbres discrets que nous étudierons auront un point commun : ils auront la propriété
dite de Markov branchante. L’étude de ces arbres a été initiée par Aldous [10], qui a défini cette notion
dans le cadre des arbres binaires. Voir aussi Haas et al. [66, 67, 63], Broutin et al. [30], Rizzolo [111] ou
Lambert [89]. Nous suivrons Haas et Miermont [66].

Soit (T,,), une suite d’arbres aléatoires indexés par leur nombre de nceuds, i.e. pour tout n, T,, a n noeuds.
Informellement, la suite (T, ), satisfait la propriété de Markov branchante si pour tout n, conditionnellement
a I'évenement

“T,, se scinde a la racine en p sous-arbres TTED, cee, T,Ep) avec respectivement n; > --- = n, nceuds”

lesdits sous-arbres sont indépendants et T,Ei) est distribué comme T, .
La famille des lois de la suite (T,), est alors entierement caractérisée par les lois des partitions a la
racine des arbres T,, c’est-a-dire les variables

A(T,) = (#T®,. ..,#T,Ep))i

ol p est le nombre (aléatoire) de sous-arbres de T, au dessus de sa racine et Trfl), e, TYEP) sont ces derniers.
Puisque T,, a n noeuds dont sa racine, A(T,,) est une partition entiére de n — 1 c’est-a-dire une variable a
valeurs dans 'ensemble

Ppy={(se A ENP 1 p2 0,4, 2 24, > 0,4+ -+, =n—1},

avec la convention P, = {&}.

Construction.  Soit (q,), une suite de mesures de probabilité respectivement sur P,. Nous allons décrire la
construction d’une suite d’arbres aléatoires (T, ),, ayant la propriété de Markov branchante et telle que pour
tout n > 1, la partition a la racine A(T,) de T, soit de loi g,_;. On notera alors MBY la loi de T, pour tout n.

Pour construire 'arbre T, a n nceuds, nous allons procéder récursivement sur n. Tout d’abord, quand
n =1, T, ne peut étre que I'arbre ne contenant que sa racine. Pour n > 2, soit A, une partition de n —1
de loi g,_; ; conditionnellement a A, = (,,...,4,), soient TM, ..., T® des arbres indépendants de lois
respectives MBqu_. Enfin relions les racines de ces arbres a un nouveau nceud qui sera la racine de I'arbre T,
ainsi obtenu et appelons sa loi MB].

Notons qu'une construction similaire, mais nécessitant des conditions techniques supplémentaires sur
la suite (q,,),, permet de définir des suites Markov branchantes indexées par le nombre de feuilles et non
plus le nombre de neceuds, cf Haas et Miermont [66]. Dans ce cas, la partition a la racine par rapport aux
feuilles d'un arbre a n > 2 feuilles sera une partition de n. On notera MBf’q la distribution d’un arbre
associé a une famille g de mesures de probabilité sur les partitions entiéres. Voir aussi Rizzolo [111] pour
une construction plus générale.
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FIGURE 7 — Construction récursive d’'un arbre Markov branchant a n nceuds.

Une autre heuristique. Les arbres Markov branchants peuvent aussi étre décrits comme les arbres retracant
la généalogie du processus suivant, ce qui n’est pas sans rappeler la description heuristique des processus
et arbres de fragmentation.

Soit (q,), une suite de mesures de probabilité telle que g, est supportée par {(1), 3} et sin > 2, q,, est
supportée par 'ensemble P, des partitions de n. Considérons une urne contenant n boules indistinguables
et avec probabilité q,(4,,...,4,), scindons ladite urne en p sous-urnes contenant A4, ..., A, boules respec-
tivement. Pour i = 1,...,p, on scinde alors la i*™ sous-urne indépendamment des autres a partir de la
mesure ¢, . Quand une sous-urne ne contient plus qu'une boule, avec probabilité g; (1) cette urne donne
naissance a une nouvelle urne contenant elle-méme une boule et avec probabilité 1 —g;(1), la boule ne
passe pas a ’étape suivante. Si pour tout n, g,,(n) < 1, ce processus s’arréte presque slirement en temps
fini, on peut alors représenter la généalogie de ces urnes par un arbre fini a n feuilles et cet arbre aura pour
loi MB/4.

FiGURE 8 — L’évolution d’une urne contenant 7 boules et I'arbre a 7 feuilles correspondant.

Limites d’échelle. Haas et Miermont [66] ont montré que sous des hypothéses naturelles sur les lois des
partitions a la racine, les arbres Markov branchants convergent, sous une bonne renormalisation, vers les
arbres de fragmentation pour la topologie GHP.

Soit (T,), une suite d’arbres Markov branchants de lois respectives MB! et pour tout n, soit u, la
mesure de comptage sur T,. Pour tout n > 1, soit G, la mesure image de q,, par 'application ?,_; — S,
(A5 A5) = (A4 /7., A,/n,0,0,...). Haas et Miermont ont prouvé le résultat suivant.

Théoréme 6 dans [66]. S’il existe y €]0, 1[ et une mesure de dislocation v tels que

n’ (1—51)gn(ds) —— (1 —s1) »(ds) ()

faiblement en tant que mesures finies sur 8, alors au sens de la topologie GHP,

T,
_",& 9,
ny n n—oo Y

Siy > 0 et si la suite (g,,), satisfait (S), le Théoréme 5 dans [66] donne la méme convergence pour les
arbres Markov branchants indexés par leur nombre de feuilles.

10
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Arbres de Galton-Watson conditionnés. Un exemple important de suites d’arbres Markov branchants est
encore une fois celui des arbres de Galton-Watson critiques conditionnés par leurs nombres de nceuds.

Soit & une distribution critique et soit T un arbre de Galton-Watson de loi de reproduction &. Pour
tout n tel que P[#T = n] > 0, on notera a nouveau T, 'arbre T conditionné a avoir n noeuds. Alors la suite
(T,), est Markov branchante et pour tous n, p et ny > --- > n, > 1 entiers, on a

le ]P[#T = ni]
P[#T =n]

]P[ “T, se scinde en p sous-arbres a ny,...,n, noeuds”] =Arr(ny,...,n,)-

ou Arr(ny, ..., n,) est le nombre de manieres différentes d’ordonner le p-uplet (ny,...,n,), voir Haas et
Miermont [66].

Haas et Miermont ont alors utilisé leurs résultats pour redémontrer les résultats de limites d’échelle
d’Aldous (quand & est a variance finie) et de Duquesne (quand & est dans le domaine d’attraction d’une loi
a-stable, a €11, 2[).

Limites locales. Stefansson [113] a étudié les limites locales du modele des arbres de Ford [52] en utilisant
la nature Markov branchante du modéle. Sa preuve repose sur le fait que la loi de la partition a la racine
converge en un certain sens, ce qui implique que les arbres eux-méme convergent localement.

Le but de cette thése sera d’obtenir des résultats sur les modeles Markov branchants similaires a ceux
sur les arbres de Galton-Watson conditionnés exposés dans la Section i.1.2. A I'instar des résultats de Haas
et Miermont sur les limites d’échelle ainsi que celui de Stefansson pour les limites locales, nous verrons que
le comportement asymptotique des modeles Markov branchants est dicté par celui des partitions a la racine
associées.

Dans la suite de cette introduction, nous présenterons les résultats obtenus durant cette thése. Notons
que nous ferons alors référence aux résultats des Chapitres 1 et 4.

i.3 LIMITES LOCALES ET CROISSANCE VOLUMIQUE
DES ARBRES MARKOV BRANCHANTS

Dans le Chapitre 1, nous étudierons les limites locales des arbres Markov branchants vers une nouvelle
famille d’arbres infinis satisfaisant une version de la propriété de Markov branchante. Ensuite nous nous
consacrerons a ’étude de la convergence au sens de la topologie GHP locale de ces arbres infinis remis a
I'échelle.

i.3.1 Limites locales des arbres Markov branchants

Arbres Markov branchants infinis. Comme nous I'avons vu dans la Section i.2.2, les lois d’une suite d’arbres
Markov branchants sont caractérisées par la donnée des lois des partitions a la racine desdits arbres. Nous
avons de plus décrit un procédé récursif permettant de construire des arbres Markov branchants a partir
d’une suite de telles lois. Notre but est de décrire une construction similaire pour des arbres infinis.

Soit (g,,),, une suite de mesures de probabilité telle que pour tout n, g,, est supportée par P, 'ensemble
des partitions de 'entier n. Soit de plus g, une mesure de probabilité sur 'ensemble

Poo = {(A1,..,4,) E(NU{0O}Y : p2 0,4, 224, > 0,4+ + 1, =00}

qui peut étre vu comme I'ensemble des partitions entieres finies de I'infini. Nous allons maintenant décrire la
construction d’un arbre infini (mais localement fini) a partir de (q,,), et oo de sorte que cet arbre satisfasse
la propriété de Markov branchante.
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Introduction Limites locales et croissance volumique des arbres Markov branchants

Notons mq, la fonction qui a un élément A de P, associe son nombre de composantes infinies, i.e.
Meo(A) := 2121 13,0~ Soit ¢ la loi du nombre de composantes infinies d’une variable de loi ., C’est-a-
dire que pour tout entier positif j, on pose {; := oo (M, = j). Remarquons que les éléments de P, ont
nécessairement au moins une composante infinie donc ¢ est une mesure de probabilité sur IN*.

Soit T° un arbre de Galton-Watson (infini) de loi de reproduction {. Conditionnellement a T°, pour
tout noeud u de T°, indépendamment des autres noeuds, soit le couple (A, T,) tel que

— A, est une variable de loi g, conditionnée sur I'événement m, (A,) = cr-(u), ott cp.(u) est le nombre
d’enfants de u dans T°,

— Conditionnellement a A, = (00,...,00,44,...,A,) avec A; < 00, soient Ti’ i=1,...,r des arbres
indépendants de lois respectives MB! ; on définit alors T,, comme I'arbre obtenu en reliant par une
aréte les racines respectives de Tul, . , T, a une nouvelle racine. Si r = 0, on convient que T, sera
l'arbre a 1 noeud.

Enfin, pour tout u dans T°, on attache T, sur le nceud u de T° (sans aréte intermédiaire) et on appelle T,
l'arbre ainsi obtenu ainsi que MBLJ> sa distribution.

Dans la plupart de nos applications, la mesure g, sera portée par 'ensemble {A € P, : m(A) = 1}.
Dans ce cas, le “squelette infini” T° de T, sera simplement la branche infinie, qu’on appellera I’épine
infinie de T, . De plus, les variables (A, T,), u € T° seront alors identiquement distribuées en plus d’étre
indépendantes.

Limites locales. Apres avoir introduit ces arbres Markov branchants infinis, nous montrerons que ces arbres
apparaissent naturellement comme la limite locale de suites d’arbres Markov branchants finis.

Fixons une suite (q,), de lois de partitions a la racine et pour tout n, soit T, un arbre de loi MB. De
méme soit ¢, une mesure de probabilité sur P, ainsi que T.,, un arbre Markov branchant infini de
loi MB%Z> . Rappelons que T, converge localement en loi vers T, Ssi pour tout entier r positif et pour tout
arbre fini t on a

P[T,l, = tl. ] ——> P[Tool, =1l ].

Soient t un arbre et r un entier positif. Supposons que t|,,; ait d sous-arbres t,...,t; au desssus de sa
racine. Pour tout n, la nature Markov branchante de T, assure que pour toute partition A de n—1 ayant d
composantes,
P[Tlss = st AT = 2] = Spesie e T PLT = 1]

ou S(ty,...,ty) est un sous-ensemble des permutations de {1,...,d} qui encode les différentes maniéres
d’arranger les arbres t,...,t;. La méme expression est valable pour T, et tout élément de P, a d
composantes.

De ce fait, pour montrer que P[T,|,+1 = tly41] = P[Teolr41 = tly41], il suffit de montrer que pour
toute permutation o de {1,...,d} fixée, la fonction

d
A— l_li=1 IP[Tli |r = to-i] ]IA a d composantes

définie pour tout A dans I'ensemble P := P, U(_J, P, est continue pour une topologie bien choisie sous
laquelle on a de plus q,, = ¢, Nous introduirons alors la topologie suivante sur P qui n’est pas sans
rappeler la topologie locale pour les arbres : on dira que A" converge vers A dans P si pour tout R positif,
ona A" AR=AAR pour n assez grand, ot K AR =(k; AR,...,kq4 AR) pour tout k = (x,...,Kk4) dans P.

Théoréme 1.2.5. Si q, = g, dans P, alors T, = T, localement.

Nous verrons dans la Proposition 1.2.7 que la condition “q,, = g, dans P” est optimale et donc que la
topologie sur P est assez naturelle. Nous donnerons de plus dans le Lemme 1.2.4 un critére pour vérifier
que ¢, = g dans le cas oll g, (M, = 1) = 1. Le Théoréme 1.2.5 aura donc le corollaire suivant, qui sera
trés utile dans nos applications.

12
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Corollaire 1.2.6. Soit q., une mesure de probabilité sur P, portée par Uensemble {m,, = 1}. Supposons
que pour tout entier naturel p, et pour tous Aq = --+ = A, > 0 entiers avec L =24, +---+ 4, ona

G(n—L, 21, 2p) —— 4oo(00, 24,.., 4,
alors MB! = MBZI> pour la topologie locale.

Notons que Broutin et Mailler [31] ont obtenu des résultats similaires.

i.3.2 Limites d’échelle et croissance volumique

Croissance volumique. Si T est un arbre aléatoire infini ayant une unique épine infinie, il est intéressant de
savoir comment # 7|z se comporte quand R est grand, voir Croydon et Kumagai [37] ainsi que Stefadnsson
et Zohren [115] pour des études en ce sens. Nous étudierons alors ce comportement asymptotique pour les
arbres Markov branchants infinis ayant une unique épine infinie, c’est-a-dire les arbres de loi MBL2™ avec
Joo(Mee =1)=1.

Comme nous I'avons évoqué dans la Section i.1.1, si (T,, u,), n = 1 et T sont des arbres réels localement
compacts et mesurés, et si T, — T pour la topologie GHP locale, alors pour tout t positif qui est un point
de continuité de la fonction x — ur(T/|,), ur, (T,|;) converge vers ur(T|,).

Soit T un arbre de loi MBLI* et soit u la mesure de comptage sur T. Remarquons que pour tout entier R
positif, #T|; peut alors s’écrire comme .U'T((T /R)|1), C’est-a-dire comme la mesure de la boule de rayon 1
autour de la racine de I'arbre T /R. Ainsi, plutét que d’étudier la suite aléatoire (#T|z; R = 0), nous allons
considérer les limites d’échelle de la suite (R™'T, ¢ (R)u) quand R tend vers l'infini pour une fonction ¢
bien choisie. Nous montrerons alors le résultat suivant.

Théoreme 1.4.1. Supposons qu'il existe un triplet (y, v,I) tel que :
— La suite (q,), satisfait Uhypothése (S).
— I est une mesure d'immigration.
— Si A est telle que (00, A) suit la loi q., alors pour toute fonction g : 8¢ — R continue et telle que
Ig(S) < 1 Allsl,

RE[g(A/RY7)] TH—@»J ¢(s)I(ds). (1)
sl

Alors si T est un arbre de loi MBLI>® et u sa mesure de comptage

Z L :}9‘1
R’ R/ | Rooo 157

pour la topologie GHP locale.

De ce fait, et pour les raisons précédemment évoquées, ce théoréme implique le corollaire suivant :

Proposition 1.4.2. Supposons que les hypothéses du Théoréme 1.4.1 sont vérifiées. Soit (T, ) un arbre de
fragmentation avec immigration de loi associée au triplet (y, v, I). Alors

(t —s Rr #TIRt) - (t — uq(Tlt))

R— o0

pour la topologie uniforme sur les compacts.

Voir aussi la Remarque 1.4.2 pour la description d’'un comportement différent sous des hypotheses
différentes.
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Idées de la preuve du Théoréme 1.4.1. Rappelons que puisque g, est portée par les éléments de P, ayant
une unique composante infinie, on peut construire un arbre de loi MBL2* comme suit. Soit (A, T,)n>0
une suite de variables i.i.d. telle que

— Pour tout n > 0, (00, A,,) est de loi g

— Conditionnellement a A, = (A4,...,4,), T, a p sous-arbres indépendants et de lois respectives MBL)}M

au dessus de sa racine.

Enfin on colle la racine de 7,, a hauteur n d’'une branche infinie et I'arbre T ainsi obtenu a bien comme
loi MBLZ>,

L’arbre T est donc associé au processus ponctuel ano O(na,) SUr Ry x $! de méme qu’un arbre de
fragmentation avec immigration est associé a un processus de Poisson, cf la Section i.2.1. Ainsi, la premiére
étape dans I'étude des limites d’échelle de (R™'T,R™/") quand R tend vers Pinfini est de trouver une
hypotheése sur g, sous laquelle le processus ponctuel

TR 1= Dm0 S (/oA RN

converge en loi dans une certaine topologie sur les mesures localement finies sur R, x 8. Si f : R, —» R
est continue & support compact et si g : 8¢ — IR est continue et bornée, observons que

IE[ fwgls) ER(du,ds)} = %Zf(n/R) RIE[g(AO/Rl/Y)]'

R, x8! n>0

~ [ F () du

Ainsi, pour que X converge en loi, il semble naturel d’exiger que RIE[g(Ao/RY")] converge pour une classe
assez grande de fonctions g : c’est pour cette raison que I'on fait I’hypothése (I).

Dans la Section 1.4.1, nous montrerons en particulier que si 'on suppose (I), Xy va converger en loi
vers un processus ponctuel de Poisson sur R, x 8* d’intensité du ® I(ds). Si de plus on suppose (S), alors le
processus ponctuel

g := ZnZO 5(n/R,An/R1/V,(Tn/R,Hrn /Rl/y))
convergera en loi pour la topologie définie dans la Section 1.3.3 vers un processus ponctuel de Poisson

associé a un arbre de fragmentation avec immigration de loi GJYI ,- Cette convergence nous permettra, dans
la Section 1.4.2 de prouver le Théoréme 1.4.1.

Remarquons que les Théorémes 1.2.5 et 1.4.1 ainsi que la Proposition 1.4.2 s’appliquent également
aux suites d’arbres Markov branchants indexés par leur nombre de feuilles. Ces théorémes permettent
en particulier de retrouver certains des résultats sur le modele des arbres de Galton-Watson conditionnés
présenté dans la Section i.1.2 de cette introduction. Voir aussi la Section 1.5 pour des applications des
résultats que I'on vient d’énoncer a divers modeles Markov branchants comme certains arbres de coupe
ou des arbres construits via des algorithmes récursifs. Enfin, une généralisation de ces résultats au cadre
introduit par Rizzolo [111] est donnée dans le Chapitre 2.

i.4 COMPORTEMENT ASYMPTOTIQUE DU PROFIL DES
ARBRES MARKOV BRANCHANTS

Le but principal du Chapitre 4 est d’établir des résultats de convergences ponctuelle et fonctionnelle
pour le profil d’arbres Markov branchants dont on sait qu’ils convergent vers des arbres de fragmentation.
Pour des raisons techniques que I'on détaillera dans la Section i.4.2, nous nous concentrerons sur les arbres
Markov branchants indexés par leur nombre de feuilles.
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Soit T un arbre aléatoire avec n feuilles et soit u; la mesure de comptage sur I’ensemble des feuilles
de T. On définit de plus £ le profil de T par rapport a ur, par £4(j) := ur(u € T : |u| = j) pour tout j
positif. Rappelons que pour tout j positif, £;(j)/n est la probabilité conditionnellement & T qu’une feuille
uniformément choisie dans T soit a la hauteur j.

Cette interprétation probabiliste du profil d’'un arbre discret a un équivalent continu : si (T, u-) est
un arbre réel qui admet presque sirement un profil, alors ledit profil est la densité, conditionnellement a
(7, us) de la hauteur d’une variable de loi u; a valeurs dans 7.

Notre approche pour étudier le comportement asymptotique des profils d’arbres Markov branchants
sera basée sur cette idée que le profil est, a une renormalisation pres, une loi de probabilité sur les entiers
positifs. Nous utiliserons alors des résultats d’inversion de Fourier, de maniére analogue a la preuve du
Théoréme Central Limite local de Gnedenko [56]. En ce sens, nous devrons tout d’abord établir des résultats
d’intégrabilité de la transformée de Fourier (aléatoire) du profil d’'un arbre de fragmentation, ce qui se
traduira par des résultats de régularité pour ledit profil. Nous donnerons de plus dans le Chapitre 4 des
conditions garantissant que les profils d’arbres Markov branchants ne peuvent converger dans D[0, co.

Dans cette section, nous présenterons tout d’abord nos résultats de régularité pour les profils d’arbres
de fragmentation puis nos résultats sur la convergence fonctionnelle pour les profils d’arbres Markov
branchants.

i.4.1 Régularité du profil des arbres de fragmentation

Soit (T, u4) un arbre de fragmentation de loi associée au couple (y, v) avec y > 0 et ¥ une mesure de
dislocation conservatrice. On définit la fonction M : R, — [0,1], t — u+(7],), i.e. M(t) est la masse de
I'ensemble des points de I'arbre T a distance t ou moins de sa racine.

Rappelons qu’on dit que T admet un profil si la fonction M est absolument continue par rapport a la
mesure de Lebesgue, c’est-a-dire s'il existe une fonction positive L telle que M (t) = fot L(u) du. Dans ce cas,
on dit que L est le profil de I'arbre 7.

Fonctionnelle exponentielle d'un subordinateur. Conditionnellement & (7, u), soit U une variable de loi y
et posons I := |U]|, la distance séparant U de la racine de 7. Remarquons que pour tout t > 0,

P[I < t|T]=M(t),

c’est-a-dire que conditionnellement a (7, ), I est de loi dM. Pour montrer que sous certaines hypotheses
sur le couple (y, v), 'arbre T admet p.s. un profil, Haas [60] a utilisé des résultats d’inversion de Fourier
sur la mesure aléatoire dM. Suivant une idée similaire, la premiére étape de notre étude sera d’obtenir des
résultats de régularité sur la fonction caractéristique (déterministe) de I.

Bertoin [18, 19] a donné une autre description de la variable I : c’est la fonctionnelle exponentielle d’'un
subordinateur, cf Yor et al [28, 32]. Plus précisément, soit £ un subordinateur dont I'’exposant de Laplace
1) est donné par

Y(q) =—logE[e %] = [ (1 — D sl.Hq)v(ds)
pour tout g positif. Remarquons que 1 se prolonge naturellement en une fonction holomorphe sur le demi
plan {Re > —p} ot p :=sup{qg = 0 : ¢y (—q) > —oo}. Avec ces notations, on a
I 9 fooo e redt.

De plus, la variable I admet une densité k infiniment différentiable sur ]0, oo[, voir [32, 103].
Le résultat principal de la Section 4.3.1 porte sur la décroissance a l'infini de la fonction caractéristique
de la variable I. En voici un énoncé simplifié :
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Proposition 4.3.1. Supposons que v soit finie ou que 1 soit de la forme 1(q) = fol(l —x1) f(x)dx pour
tout q positif ott la fonction f :]0,1[— R, est telle qu’il existe B €]1,2[ de sorte que pour tout ¢ > 0,
f(1—cx)/f(1—x)— c P quand x — 0. Alors la fonction caractéristique p; de I est telle que pour tout
0 [0,p/7L,

SUDPieRr |t|1+0|(»01(t)| < Q.

Nous verrons de plus que la Proposition 4.3.1 est, en un sens, optimale. En effet, la Proposition 4.3.2
montre que si 6 > 0 est tel que t — [t|'*9]¢,(t)| est bornée, alors 6 < p/y.

Pour prouver la Proposition 4.3.1, nous montrerons tout d’abord que si p > 0, la fonction k se prolonge
en une fonction holomorphe sur un ensemble de la forme {z € C : 2 # 0, | arg z| < 8} pour 6 < 7t/2 puis
que sur cet ensemble, k(z) = O(|z|*) pour tout A dans ]— 00, p/y[, cf le Lemme 4.3.5.

Régularité du profil. Dans la Section 4.3.2, nous déduirons de la Proposition 4.3.1 des résultats sur la
régularité du profil de 'arbre 7. Nous montrerons en particulier le théoréme suivant :

Théoréme 4.3.6. Siy <1/2ets’ilexistea,B <1+p/y, telque2<a+p <1/yet

l-ay 1—
o Zicisi s ﬁYﬂSPO ¥(ds) < oo
alors Uarbre de fragmentation (7, ) admet presque siirement un profil continu L. De plus, pour tout entier
positif d et 6 €]0,1] tels que d+6 < (a+)/2—1, L est d fois continument dérivable et LD est 6-Holderienne.

Nous verrons que si 'on suppose que v < (1 A p)/2, alors les conditions du Théoréme 4.3.6 seront
remplies. En particulier, plus le parameétre y est proche de 0, plus le profil de T va étre régulier.

Notons qu’a cause de la condition y < 1/2, ce résultat ne peut s’appliquer a I'arbre brownien dont on
sait par ailleurs qu’il admet un profil continu. Le Théoréme 4.3.6 n’est donc probablement pas optimal. On
pourra trouver dans ’Annexe A des simulations de profils d’arbres aléatoires.

Pour prouver le Théoréme 4.3.6, nous proceéderons comme suit. Conditionnellement a (7, u), soient U
et V deux variables i.i.d. de loi u et notons I := |U|, J := |V|. Remarquons que la nature auto-similaire de
l'arbre T assure que

-7 @ AT-aLj

ot I, J sont des copies i.i.d. de I indépendantes des variables A; et A, qui sont les poids, par rapport a la
mesure U, des sous-arbres de T au dessus du plus grand ancétre commun a U et V et qui contiennent U
et V respectivement.

Ainsi, si  dénote la fonction caractéristique de I conditionnellement a 7, la Proposition 4.3.1 assure
que pour tous a et 3 positifs et strictement inférieurs a 1+ p /v, on obtient

E[l2(0P] <E[le,(A]0)l o, (A50]] < W%E[A;“M;ﬁ*hmz]

pour tout réel t, avec C une constante finie. Sous les hypotheses du Théoréme 4.3.6, le Lemme 2 dans [60]
assure que cette derniére quantité est finie. Ainsi, on aura en particulier prouvé que t — |[t|?®(t) est
presque siirement intégrable pour tout 6 positif tel que 8 < (a+ )/2— 1, ce qui nous permettra d’utiliser
le théoreme d’inversion de Fourier et de conclure la preuve du Théoreme 4.3.6.

Le reste de la Section 4.3 sera organisé comme suit : la Section 4.3.3 sera dédiée a prouver un critere
pour garantir que le profil de l'arbre 7, s’il existe, ne peut étre cadlag (cf la Proposition 4.3.8) et la
Section 4.3.4 appliquera ces résultats a divers modéles de fragmentation.
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i.4.2 Convergence des profils d’arbres Markov branchants

Comme nous I'avons évoqué au début de la Section i.4, pour des raisons techniques que I'on détaillera
ci-aprés nous nous concentrerons sur 'étude du comportement asymptotique du profil des arbres Markov
branchants indexés par leur nombre de feuilles.

Ainsi, soit (T,,), une telle suite d’arbres Markov branchants et soit (q,), la suite correspondante des
lois des partitions a la racine. Pour tout n, notons u, la mesure de comptage sur les n feuilles de T,,. Nous
supposerons dans tout cette section qu’il existe y > 0 ainsi qu'une mesure de dislocation conservatrice v
tels que

n'(1—s1)g,(ds) == (1—s,) v(ds).
n—oo

En particulier, I'hypotheése (S) est vérifiée donc le Théoréme 5 de Haas et Miermont [66] assure qu’au sens
de la topologie GHP, on a
(5’&) GHP 7,
n’ n ) nooo D

Pour tout n, notons de plus £, le profil de T, par rapport a u,, i.e. pour tout j > 0,

() = pp(u € Ty 2 ul = j).

Convergence fonctionnelle du profil renormalisé. La Section 4.4 sera consacrée a '’étude du comportement
asymptotique de la suite (£,,),. Plus particulierement, nous nous intéresserons au profil renormalisé L,
de T, c’est-a-dire la fonction définie pour tout t positif par

L(t):=n""2 (ln"¢)).

Pour tout n, notons de plus U, une feuille uniformément choisie dans T, et I, sa hauteur. Nous montrerons
alors le résultat suivant.

Théoreme 4.4.5. Supposons qu'il existe 0 > 0 tel que
SUP,50 SUPer |91, /nr (O jj<nrn t"? < o0 (@)

ol (p; sy est la fonction caractéristique de I,/n”. Supposons de plus que y < 1/2 et qu'il existe a,3 <1+ 6

telsque2 < a+pf <1/yet
. 1— 1—, -
limsup, o [4 DiciSi s ﬂy]lsj>0 Gn(ds) < oo.
Alors Uarbre de fragmentation T admet p.s. un profil continu L et

D[0,00[

n—oo

L

n

Notons que '’hypothese (@) de ce théoreme est en quelque sorte une version discréte de la conclusion
de la Proposition 4.3.1. De plus, le reste des hypotheses est similaire a celles du Théoréme 4.3.6.

La premiére étape pour prouver le Théoréme 4.4.5, consiste a montrer que la suite (L,), ne peut
converger dans D[0, co[ que vers le profil de 7. Comme (n~"T,,n 'u,) converge en loi vers (T, u,) au
sens de la topologie GHP, et puisque f Ot L,(u)du~ n~tu,(T,|, ) pour tout t, on obtient

Jo Ln(@ du==> u5(7].) = [; L(w)du

dans C[0, oo[. Ainsi, si L, converge en loi dans D[0, co[ vers une variable L, on peut montrer que L et L
ont les mémes lois fini-dimensionnelles, voir le Lemme 4.2.5.

Pour tout n, notons &, la fonction caractéristique de I,,/n" conditionnellement a T,. Sous 'hypothese ()
nous montrerons dans la Proposition 4.4.6 que

sup, [ 7 E[|®,(1)[1dt < oo.

Ainsi, nous déduirons que la suite (L, ), est tendue dans D[0, co[ ce qui conclura la preuve du Théo-
réme 4.4.5.
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Contrdle des fonctions caractéristiques. Rappelons que la variable I,, est 1a hauteur d’une feuille U, choisie
dans T,, uniformément. Sous 'hypothése de convergence de n™" T, vers l'arbre de fragmentation T, on sait
que I,,/n" converge en loi vers la variable I présentée précédemment. Pour tout n, notons ¢, : R — R la
fonction définie pour tout réel u par

’l,bn(ll) i=n’ fsl (1 - Zizl Si1+u) C_In(ds)
Notons que cette définition est semblable a celle de 1.

La Section 4.4.1 sera consacrée a prouver que la suite (I,,), vérifie bien (®), qui est, comme nous ’avons
déja mentionné, une sorte d’équivalent discret a la Proposition 4.3.1. Bien que nous pensons que cette
propriété est vérifiée par de nombreux modeles, nous ne savons le montrer pour l'instant que dans un cas
particulier :

Proposition 4.4.2. Supposons que la mesure v est finie et que n"[1—q,(n)] — »(8!) quand n — oo. Alors
pour tout 0 > 0 tel que Y ,(—y0) — YP(—yH) > —o00, on a

SUPp>0 SUPter I‘Pln/nr(t)l L 1<nrn Itll-H9 < oo.

Pour prouver cette proposition, nous utiliserons la nature Markov branchante de I'arbre T,,. En effet,
par construction, ce dernier est constitué d’'une branche de longueur G,, une variable géométrique de
parametre 1 —q,(n), au bout de laquelle sont attachés des sous-arbres indépendants de tailles strictement
inférieures a n. Notons alors Z,, le nombre de feuilles dans ledit sous-arbre qui contient U,,. La variable I,, a
alors la méme loi que G,, + I . Pour tout réel t, on pourra alors écrire

b1, mr(£) = @Gn/m(f)E[@zzn/(zn)y((Zn/n)_yt)].

Les hypotheses n"[1—q,(n)] — v(8') et »(8') < oo nous permettrons alors d’affirmer que G,/n’ converge
en loi vers une variable exponentielle de parametre v(8') et qu'il existe une constante finie C telle que
lpg, /nr(t)] < C pour tout n et pour tout || < n” 7. On pourra alors conclure la preuve de la Proposition 4.4.2
en injectant ce controle dans la décomposition de ¢; ;- et en réitérant.

Notons que pour appliquer nos résultats a des modeéles moins restrictifs, y compris les arbres Markov
branchants indexés par leur nombre de nceuds, il suffit de prouver que () est satisfaite.

Absence de convergence fonctionnelle. La Section 4.4.4 donnera a I'inverse des critéres pour garantir que
L, ne puisse converger dans D[0, oo[. Ce sera en particulier le cas si y > 1 ou si le couple (v, v) satisfait
le critére établi a la Proposition 4.3.8. Notons que les hypotheses de ces criteres n’excluent pas celles
de la Proposition 4.4.2. Ainsi, il pourra étre impossible pour (L, ), de converger dans D[0, oo[ alors que
E[L,(:)] = E[L(-)] presque partout sur [0, co[.

Les hypothéses de la Proposition 4.4.2 sont, comme nous I'avons déja dit, assez restrictives. Ces conditions
ne semblent pas étre nécessaires pour prouver cette proposition, mais il ne nous a pas été possible a cette
date de les supprimer. Si tel avait été le cas, puisque la Proposition 4.4.2 est I'ingrédient principal de la
preuve du Théoreme 4.4.5, le champ d’application dudit théoréme aurait été bien plus grand. En particulier,
nous aurions pu étudier avec cette méme approche le profil des arbres Markov branchants indexés par leur
nombre de neceuds.
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CHAPTER 1

LocAL LIMITS OF MARKOV BRANCHING TREES

AND THEIR VOLUME GROWTH

In this chapter, which was published as [101], we will introduce infinite Markov branching trees which
appear naturally as the local limits of Markov branching trees with fixed number of either vertices or nodes.
We will then study the scaling limits of a subset of this family of infinite trees. This will allow us to deduce
how the “volume” of the ball with radius R around the root of these trees grows when R goes to infinity.

1.1 INTRODUCTION

The focus of this work is to study the asymptotic behaviour of sequences of random trees which satisfy
the Markov branching property first introduced by Aldous in [10, Section 4] and later extended for example
in [30, 66, 67]. See Haas [63] for an overview of this general model and Lambert [89] for applications
to models used in evolutionary biology. Our study will therefore encompass various models, like Galton-
Watson trees conditioned on their total progeny or their number of leaves, certain models of cut-trees (see
Bertoin [22, 23, 24]) or recursively built trees (see RéEmy [110], Chen, Ford and Winkel [36], Haas and
Stephenson [69]) as well as models of phylogenetic trees (Ford’s a-model [52] and Aldous’ 3-splitting
model [10]).

Informally, a sequence (T, ), of random trees satisfies the Markov branching property if for all n, T, has
“size” n, and conditionally on the event “T, has p sub-trees above its root with respective sizesny > -+- > n,”,
these sub-trees are independent and for each i = 1,..., p, the i™ largest sub-tree is distributed like T,
The sequence of distributions of (T,), is characterised by a family q = (g,,),, of probability distributions,
referred to as “first-split distributions” (see next paragraph), where g, is supported by the set of partitions
of the integer n. We will detail two different constructions of Markov branching trees corresponding to a
given sequence ¢ for two different notions of size: the number of leaves or the number of vertices.

Let (q,), be a sequence of first-split distributions. A tree with n leaves with distribution in the associated
Markov branching family is built with the following process. Consider a cluster of n identical particles and
with probability q,(A4,...,4,), split it into p smaller clusters containing 4,..., A, particles respectively.
For each i = 1,...,p, independently of the other sub-clusters, split the i™ cluster according to qs,- When a
sub-cluster contains only 1 particle, with probability g;(1) < 1, let it either give birth to a new sub-cluster
which only contains 1 particle as well, or, with probability 1 —q;(1), let the particle “die”. Repeat this
procedure until each of the particles are dead. The genealogy of these splits may be encoded as a tree with
n leaves (which correspond to the death of each particle). We’ll denote by MBf’q the distribution of such
a tree.

A Markov branching tree with a given number of vertices, say n, is built with a slightly different
procedure and we will call MB its distribution. Section 1.2.2 will rigorously detail the constructions of both
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Figure 1.1 — Example of a tree with 7 leaves (in red) and first-split equal to (5, 2).

MB? and MBf’q. Rizzolo [111] considered a more general notion of size and described the construction of
corresponding Markov branching trees.

One way of looking at the behaviour of large trees is through the local limit topology. For a given
tree t and R > 0, we denote by t| the subset of vertices of t at graph distance less than R from its root.
We will say that a sequence t, converges locally to a limit tree t., if for any radius R, t,|z = teolg for
sufficiently large n. There is considerable literature on the study of the local limits of certain classes of
random trees or, more generally, of graphs. For instance, see Abraham and Delmas [1, 2], Stephenson [117],
Stefansson [113, 114] or a recent paper by Broutin and Mailler [31], as well as references therein, for
studies related to our work.

Let us present in this Introduction the simplest, and most common, case in which Markov branching
trees have local limits. Let (T,), be a sequence of Markov branching trees indexed by their size with
corresponding family of first-split distributions (q,,),. Let p be a non-negative integerand ; > ---> 1, >0
be a non increasing family of integers with sum L. For n large enough, consider q,(n—L, A, ...,4,), that
is the probability that T, gives birth to p + 1 sub-trees among which the p smallest have respective sizes
A1--.,A,. Assume that for any such p and 4, g,(n—L, A,,...,A,) converges to q,(A4,...,4,) for some
probability measure g, on the set of non-increasing finite sequences of positive integers. Under this natural
assumption, we will prove in a rather straightforward way that T, locally converges to some “infinite Markov
branching tree” T,, with a single path from the root to infinity, called its infinite spine. The distribution
of T, is characterised by the family (q,), and the measure q, which describes the distribution of the
sizes of the finite sub-trees grafted on the spine of T.,. See Theorem 1.2.5 for a more precise and general
statement.

A drastically different approach to understand the behaviour of large random trees is that of scaling
limits. Aldous was the first to study scaling limits of random trees as a whole, see [7], and notably introduced
the celebrated Brownian tree as the limit of rescaled critical Galton-Watson trees conditioned on their size
with any offspring law that has finite variance. See also Le Gall [92] for a survey on random “continuous”
trees.

In this context, we will consider T,, as a metric space rescaled by some factor a,,, i.e. the edges of T,, will
be viewed as real segments of length a,,, and denote by a, T, this rescaled metric space. Scaling limits for
Markov branching trees were studied in [66, 67] by Haas et al. Their main result (see Theorems 5 and 6
in [66]) is that under simple conditions on the sequence (q,), of first-split distributions, T, converges in
distribution, under appropriate rescaling, to a self-similar fragmentation tree. These objects were introduced
by Haas and Miermont [64] and notably encompass Aldous’ Brownian tree as well as Duquesne and Le Gall’s
stable trees [49].

Haas and Miermont’s result from [66] in particular gives an asymptotic relation between the size and
height of a finite Markov branching tree. When considering an infinite Markov branching tree T, we may
wonder if a similar relation exists, namely how many vertices or leaves are typically found at height less
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than some large integer R. This seemingly simple question, the study of the integer sequence (#T|z)x,
leads us to consider the scaling limits of the weighted tree (T, ur), where u; is the counting measure on
either the vertices of T or on its leaves.

In Theorem 1.4.1, we consider the case in which T is an infinite Markov branching tree with a unique
infinite spine with distribution characterised by a family (g,,), of first-split distributions and a probability
measure g, associated to the sizes of the finite sub-trees grafted on the spine. We prove that under the
assumptions of Haas and Miermont’s theorem on the family (q,,),, and an additional condition on the measure
q., when R goes to infinity, the tree T /R endowed with the adequately rescaled measure y; converges in
distribution to a self-similar fragmentation tree with immigration. These continuum random trees (CRTs)
with infinite height were introduced by Haas [62]. They include Aldous’ self-similar CRT [7] (which will
appear as the limit in many of our applications) and Duquesne’s Lévy trees with immigration [48].

As a result, under appropriate rescaling, the “volume” of the ball of radius R centred at the root of
T converges in distribution to the measure of the ball with radius 1 centred at the root of a self-similar
fragmentation tree with immigration. Proposition 1.4.2 actually gives the stronger convergence of the
whole “volume growth” process.

The unified framework used here will yield multiple applications. As a first example, Theorem 1.2.5
will allow us to recover known results on the local limits of conditioned Galton-Watson trees towards
Kesten’s tree (see Abraham and Delmas [2] for instance) and Theorem 1.4.1 will give an alternative proof
to Duquesne’s results (see [48]) on the convergence of rescaled infinite critical Galton-Watson trees to
Lévy trees with immigration. We will give similar results for some models of cut-trees, which encode the
genealogy of the random dismantling of trees, studied by Bertoin [22, 23, 24]. We will also study some
models of sequentially growing trees described in [36, 69, 95, 110] and models of phylogenetic trees
[10, 52].

This article will be organised as follows. In Section 1.2, we will define finite and infinite Markov branch-
ing trees and give a natural criterion for their convergence under the local limit topology in Theorem 1.2.5.
In Section 1.3 we will detail the background needed for our main result, Theorem 1.4.1, i.e. the study
of the scaling limits of infinite Markov branching trees. Section 1.4 will focus on the proof of this result.
Finally, Section 1.5 will give applications of our unified approach to various Markov branching models.

1.2 MARKOV BRANCHING TREES AND THEIR LOCAL
LIMITS

1.2.1 Trees and partitions

Background on trees. Let U := [ J,.,IN" be the set of finite words on N with the conventions N =
{1,2,3,...} and N° = {@}. We then call a plane tree or ordered rooted tree any non-empty subset t C U
such that:

— The empty word @& belongs to t, it will be thought of as its “root”,

— Ifu=(uy,...,u,), u# @isin t, then its parent pr(u) := (uy,...,u,_1) is also in t,

— Foralluin t, there exists a finite integer ¢, (t) = O such thatui := (uy,...,u,,i)isin tiff 1 <i < c,(t).

We will say that c,(t) is the number of children of u in t.

Let T° be the set of plane trees. Observe that if t is an infinite plane tree, this definition requires the
number of children of each of its vertices to be finite.

Plane trees are endowed with a total order which is of limited interest to us. Because of this, we define
an equivalence relation on T to allow us to consider as identical two trees which have the same “shape”
but different vertex orderings.
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Say that two plane trees t and t’ are equivalent (written t ~ t”) iff there exists a bijection o : t — t’
such that o(@) = @ and for all u € t \ {@}, pr[o(u)] = o[pr(u)]. Finally, set T := T/ ~. From now on,
unless otherwise stated, we will only consider unordered trees, i.e. by “tree” we will mean an element of T.

Let t be a tree. We say that a vertex u on t is a leaf if it has no children, i.e. if ¢,(t) = 0. Define #t as
the total number of vertices of t and # . t as its number of leaves. For any positive integer n, let T, and Tf
be the sets of finite trees with n vertices and n leaves respectively. Moreover, write T, for the set of infinite
trees.

We will use the following operations on trees:
— Let ty,..., ty be trees; their concatenation is the tree [t,, ..., t4] obtained by attaching each of their
respective roots to a new common root, see Figure 1.2,
— Let t and s be two trees and u be a vertex of t; set t ® (u, s) the grafting of s on t at u, i.e. the tree
obtained by glueing the root of s on u, see Figure 1.3,
— Fix t a tree, a non-repeating family (u;);c; of vertices of t, and a family of trees (s;);cy; let
t ®);cs(u;, ;) be the tree obtained by grafting s; on t at u; for each i in J.

old ~_____ New root
roots
Figure 1.2 — The tree [t;, ty, t5]. Figure 1.3 — The tree t ® (u, ).

For all n > 0, let b,, be the branch of length n, i.e. the tree with n+ 1 vertices among which is a single
leaf. Similarly, define the infinite branch b, and let (v,,),s( be its vertices where v is its root and for all
n>0, v, =pr(v,)-

The local limit topology. If t is a tree, we may endow it with the graph distance d,, where for all u and
v in t, dg(u,v) is defined as the number of edges in the shortest path between u and v. For any non-
negative integer R, we will write t| for the closed ball of radius R centred at the root of t, that is the tree
tlg :={uet:d,(@,u) <R}

The local distance between two given trees t and s is defined as

dioc(t,s) := exp[—inf{RZ 0:tl|g# SIR}].

The function d,,. is an ultra-metric on T and the resulting metric space (T, d,.) is Polish. The following
well-known criterion for convergence in distribution with respect to the local limit topology will be useful.
See for instance [2, Section 2.2] for a proof (which relies on [29, Theorem 2.3] and the fact that d,,. is an
ultra-metric).

Lemma 1.2.1. Let T, n>1 and T be T-valued random variables. Then, T, — T in distribution with respect
to dyo iff forall t e Tand R> 0, P[T, |z = t|g] = P[T|z = tlz] as n tends to infinity.

Partitions of integers. As discussed in the Introduction, Markov branching trees are closely related to
“partitions of integers”. This section thus aims to introduce a few notions on these objects which will be
useful for our forthcoming purposes.
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Set P, :={@}, P; :={@, (1)} and for n > 2, let P, be the set of partitions of n, i.e. of finite non-increasing
integer sequences with sum n. More precisely, set

P, = {7L=(ll,...,lp)€]Np :p=1, ll2---le>0and7tl+---+7tp=n}.

Similarly, let P, be the set of finite non-increasing IN U { oo }-valued sequences with infinite sum (and
therefore at least one infinite part). In other words, define

P oo :={l=(7t1,...,7t )e(]Nu{oo})p :leandoo:?le---ka>0}.

Set Peoo = {JynoPnand P :=P_o, UP,.
Let A=(A4,...,A,) be in P. We will use the following notations:
— Let p(A) := p be its length and ||A| = A; + -+ + A, its sum (with the conventions p(@) = ||@|| = 0).
— For k e Nu{oo}, let m(A) 1=, 1,,—« be the number of occurrences of k in the partition A.
— For a non-negative integer K, set AAK :=(A; AK,..., A, AK). This finite partition will be called the
truncation of A at level K.

We endow P with an ultra-metric distance defined similarly to d,,.. For all A and p in P, let

dy(A,u) = exp[—inf{KZO : AAK#MAK}].

Lemma 1.2.2. (i) The function dy is an ultra-metric distance,
(ii) The metric space (P,ds) is Polish.

Remark 1.2.1. Forall A and uin P and K > 0, AAK = u AK iff dp(A, u) < e X. In particular, dp(A, u) = 1
iff A A O # u A 0 in which case p(A) # p(u).

Proof. (i) Clearly, d; is symmetric and d;(A,u) = 0 iff A = u. Hence, we only need to prove that
d, satisfies the ultra-metric triangular inequality. Let A, u and v be in P and assume that d,(A, v) >
dp(A, u) V dyp(u, v). Then, there exists K > 0 such that AAK = uAK = vAK and A AK # v AK, which is
absurd. Consequently, d4»(A, v) < ds(A, w) V dy(u, v).

(ii) Observe that P C UnZO(N U {oo})" and is as a result both countable and separable. Therefore, it
only remains to show that it is complete.

Let (1,,), be a Cauchy sequence with respect to d;. By assumption, there exists an increasing sequence
(ng)g such that for all K > 0, A, AK = A, AK when n,m > ng. In particular, there exists a constant p > 0
such that p(4,, ) = p for all K. Furthermore, notice that for alli = 1,..., p, the sequence [2, (i) AK] is
non-decreasing. For eachi =1,...,p, set A(i) := supg A, (i) AK < 00. Clearly, A :=[A(1),...,A(p)]is in
P and is such that d4»(A,,,A) — 0 when n — oo. This proves that (P,ds) is indeed complete. O

Lemma 1.2.3. Let (A,),>1 and A be P-valued random variables. Then, A, converges to A in distribution with
respect to d iff for all A in P, and all K = 0, we have P[A, AK = AAK] > P[AAK =AAK]asn— oo.

Proof. Uses the same arguments as in the proof of Lemma 1.2.1 (recall that d, is an ultra-metric and use
[29, Theorem 2.3]). O

Remark 1.2.2. Elements of P_, are closely related to elements of T. Indeed, if t is a finite tree which can be
written as the concatenation of p trees t;,...,t,, i.e. t = [ty,..., tp], then the decreasing rearrangement
of #t4,..., #tp is a partition of n when t has n + 1 vertices (the root plus n descendants). We will write
A(t) := (#1t4,..., #tp)l, where (x,,...,x;)" stands for the decreasing rearrangement of (x, ... ,Xp), and
call A(t) the partition at the root or first split of t.

Similarly, if we consider leaves instead of vertices, then A“(t) := (#,tq,...,#, tp)l is a partition of n

when t has n leaves.
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In this article, we will often have to consider sequences of random partitions A, € P, that will weakly
converge to a limit partition A, € P, such that, m.,(As) =1 a.s.. In this particular setting, the weak
convergence can be characterised as follows.

Lemma 1.2.4. Forall 1 < n < o0, let q, be a probability measure on P, and assume that qoo(Me, =1) = 1.
Then, q, = oo With respect to dy iff for all A in P, we have q,(n— ||A|l, A) = goo(00,A) as n — oo.

Proof. = Let A =(A4,...,A,)bein P, and K > A,. In light of Lemma 1.2.3,
qa(n—lIAl,2) = g (1 € Py : uAK = (K, A) AK)
mqm(ue?w tUAK = (K,A) AK) = qoo(00, A).

& Forfixed K > 0 and A in P_,, Fatou’s lemma ensures that
liminf QB € Py uAK =ANK) = liminf 335 Lo, max=ank dn(n—I7Il, )

= Zv€?<wﬂ(oo,v)/\K=)L/\K qoo(oo’ y) = QOo(.u EP :UAK=2A /\K)'

Similarly,
lilnltl;gf qn(u €P,: uAK # )L/\K) > qoo(u €Po : WAK # A/\K).
As a result and thanks to Lemma 1.2.3, we get that q, = q- |

1.2.2 The Markov-branching property

Finite Markov branching trees. We will now follow [66, Section 1.2] and define two types of family of
probability measures on the set of finite unordered rooted trees, satisfying the Markov branching property
discussed in the Introduction.

Informally, for a given sequence q = (g,,) of probability measures respectively supported by P, (referred
to as “first-split distributions” in the Introduction), we want to define a sequence MB? = (MBY), of probability
measures on the set of finite trees where

— For all n, MB! is supported by the set of trees with n vertices,
— A tree T with distribution MB is such that
— The decreasing rearrangement A(T) of the sizes of the sub-trees above its root is distributed
according to q,,_1,
— Conditionally on A(T) = (A4,...,A,), the p sub-trees of T above its root are independent with
respective distributions MB%.
Similarly, if ¢ = (q,,),, is a sequence of plrobability measures respectively on P,, we will define a sequence
MB*+ satisfying the same Markov branching property where we count leaves instead of vertices to measure
the size of a tree.

Markov branching tree with n vertices. First of all, set N an infinite subset of IN with 1 € N. This set will
index the possible number of vertices of the trees we want to generate. Let ¢ = (q,_1)n.en D€ a sequence
of probability measures such that qo(@) = 1, q;[(1)]=1 (if 2 € N), and for all n in N, n > 2, q,_; is
supported by theset {A€P,_; : A, eN,i=1,...,p(A)}.

Remark 1.2.3. This last condition comes from the fact that if T is distributed according to MB, the
blocks of A(T) need to be in N because the distributions of the corresponding sub-trees belong to the
family (MB)), .-

We now detail a recursive construction for MBY. Let MB‘%({@}) = 1 and for n > 2, proceed by a
decreasing induction as follows:
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— Let A have distribution q,,_,,

— Conditionally on A = (44,...,4,) € P,_4, let (T,..., T,) be independent random trees such that T;
is distributed according to MBqAA foreach1 <i<p,

— Define MB as the law of the concatenation of these trees, i.e. that of [T;,..., Ty ]

Figure 1.4 — The construction of a tree with distribution MB].

Markov branching tree with n leaves.  Similarly, fix an infinite subset N of IN such that 1 € N (corresponding
to the possible number of leaves of the trees we will generate) and let ¢ = (q,,),e be such that:
— @, is a probability measure on {@&, (1)} with q;(1) <1,
— Foralln>1in0N, g, is a probability measure supported by theset {A € P, : A, €N, i=1,...,p(A)}.
To define MB“*9, we will proceed by the same recursive method used for MBY: first choose how the
size is split between the children sub-trees of the root, and then generate the said sub-trees adequately.
However, if for some n in N we have g, (n) = 1, the recursion will be endless. For this reason, we also
require that for all n in N, ¢,,(n) < 1 (i.e. with positive probability, a tree “splits” into smaller trees).
Let MBlL’q be the distribution of a branch of geometric length with parameter 1—q,(1), i.e. MBlL’q (by) =
q1(1)*[1—q;(1)] for all k > 0. For n > 1, we do as follows:
— Let T, be a branch with geometric length with parameter 1 —q,(n) and call U its leaf,
— Let A have distribution g,, conditioned on the event {m, = 0},
— Conditionally on A = (A4,...,A,), let (Ty,...,T,) be independent random trees respectively dis-
tributed according to MBii for1<i<p,
— Graft the concatenation of these trees on the leaf U of T, i.e. set T := T, ® (U, [Ty,..., Ty A)]]) and
let MB? be the distribution of T.

Infinite Markov branching trees. Using the same principle as before (split the number of vertices above
the root and generate independent sub-trees with corresponding sizes) we will define a probability measure
supported by the set of infinite trees which satisfies a version of the Markov branching property. Let N and
q = (g,—1)nex satisfy the conditions exposed in the construction of the sequence MB9.

In order to lighten notations, for any finite decreasing sequence of integers A = (44,...,4,), we define
MB% as the distribution of the concatenation of independent MB‘i-distributed trees. More precisely:

— Let Mqu be the Dirac measure on the tree with a single vertex (its root), namely MB‘E0 =08z,

— Forany A € P_, withp=p(A)>0and A, eNfori=1,...,p,let(Ty,...,T,) be independent trees
with respective distributions MB;{ foralli=1,...,p. Set MBgL as the distribution of the concatenation
of these trees.

Observe that when p(A) = 1, a tree with distribution MB‘}1 is obtained by attaching an edge “under” the
root of a MB‘jl11 -distributed tree.

Consider ¢, a probability measure on P, supported by the set

{AePe 2 eNU{oo}i=1,...,p(1)}
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and let A follow ¢.,. Let T° be a Galton-Watson tree with offspring distribution the law of m,(A).
Conditionally on T°, let (A, T,),er- be independent pairs and such that:

— A, has the same distribution as A conditioned on the event m,(A) = ¢,(T°),

— Conditionally on A, = (090,...,00,A) with A in P_,, T, follows MBqA.
Then, for every vertex u in T°, graft the corresponding tree T, on T° at u. Let T be the tree hence obtained,
i.e. set T := T°®,cr-(u, T,). Finally, call MBLI> the distribution of T.

Remark 1.2.4. — Suppose that qo,(me, = 1) = 1. In this case, the construction of MBLZ>* is much
simpler: the tree T* is simply the infinite branch and the family (A, , T, )no is i.i.d.. In particular, T
a.s. has a unique infinite spine, i.e. a unique infinite non-backtracking path originating from the root.
— A tree T with distribution MBLI™ satisfies the Markov branching property: conditionally on A(T),
the sub-trees of T above its root are independent and their respective distributions are either MBLI>
or in the family (MB?) _.., depending on their sizes. ‘
— The same exact construction can be used to define a measure MB/;;q’q"".

1.2.3 Local limits of Markov-branching trees

Let g be the sequence of first-split distributions associated to a Markov-branching family MB? (respec-
tively MB+9). Suppose g, is a probability measure on P, supported by the set of sequences A such that
foralli =1,...,p(A), A; is either infinite or in N. The aim of this section is to expose suitable conditions on
q and g, such that MB? converges weakly to MBI (or MBf 1= MBi’,q’q"") for the local limit topology.

Theorem 1.2.5. Suppose that when n goes to infinity, q, converges weakly to q, with respect to the topology
induced by dy. Then, with respect to dj,., MBI = MBLJ™ (respectively MB1 = MB9).

In many cases, the infinite trees we will consider will have a unique infinite spine, which corresponds
t0 ¢oo (Moo = 1) = 1 and the particular construction mentioned in Remark 1.2.4. In this situation, we may
use Theorem 1.2.5 alongside Lemma 1.2.4 to get the following corollary.

Corollary 1.2.6. Assume that q. is such that q.,(ms, = 1) = 1 and suppose that for any finite partition A
in P, we have q,(n— | All,A) = goo (00, A). Then, MBI = MBLJ™ (or MB54 = MB=2"%) with respect to
the local limit topology.

Proof of Theorem 1.2.5. For all n in N'U {oo}, let T, follow MB! and A,_, follow g,_;. To prove this
theorem, we will use Lemma 1.2.1 and proceed by induction on R. First, it clearly holds that for every tree
t, tlg ={D} = Thlo = Teolp a.s..

Let R be a non-negative integer and suppose that for any s € T, P[T,|g = s|g] = P[Teo |z = slz] as
R — oo, Fix t € T and set d := c4(t), the number of children of its root. We may write t|p,; =[t4,...,tq]
for some t;,...,ty in T with height R or less. When n > 1, we can similarly write T, as the concatenation
of its sub-trees: let T, = [[Trgl), e, TTEP)]] where p = c4(T,,). With these notations, for all n > 1 in NU {oo},
we have

P[Tolers = thear | = P[(cp(T) =d)n(30 € 64 : TV |y =t,i=1,...,d) ],
where G, denotes the set of permutations of {1,...,d}. There exists a subset S of &, such that for any
o € G, there is a unique 7 € S satisfying t,; = t,; as elements of T for all i = 1,...,d. Observe that S
only depends on t and the (arbitrary) labelling of its sub-trees. Then,
]P[Tan+1 = t|R+1:| = Z]P[(c@(Tn) = d) n (Trgi)|R =ty,;,1=1,. ..,d)]

o€SsS

= Z ]E|:l_[;1:11P|:TAn(i) lr = to. | Ap ] Ilp(f\n-1)=d]

o€S

= Z H?:llp[TAi lr = ta-i]ﬂp(l)zd qp—1(dA),
gesSJ P
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where we have used the Markov branching property. Our induction assumption implies in particular that
foralli=1,...,d and s in T with height R or less, the function P — [0,1], A = P[T, |z = s]1,;)—q is
continuous. As a result, P[T,|z.1 = tl|g+1] may be expressed as the integral against q,_; of a finite sum of
continuous functions. Therefore, since q, = ¢,

]P[Tn|R+1 = t|R+1] e IP[Too lr41 = t|R+1]~
We proceed in the same way to prove the claim on MB** trees. O

In the next proposition, we prove that the condition “q,, = ¢.,” in Theorem 1.2.5 is optimal for
MBY trees.

Proposition 1.2.7. Let ¢ = (q,_1)nen be the sequence of first split distributions associated to a family MB?
of Markov branching trees with given number of vertices. If there exists a probability measure o, on P,
such that MB] converges weakly to MBZLI>= for the local limit topology, then q,_; = qo in the sense of the do

topology.

Proof. Observe that for all K > 0 and t,s € T, if t|x = s|x then A(t) AK = A(s) AK. As a result,
dp[A(1), A(s)] < djo.(t, s) which proves in particular that A : T — P is a continuous function. Consequently,
since for all possibly infinite n, A(T,) has distribution q,_;, in the sense of the d; topology we have
Gn—1 = oo When n — 00. |

1.3 BACKGROUND ON SCALING LIMITS

In this section, we will introduce the framework needed to consider the scaling limits of both finite and
infinite Markov branching trees as well as the corresponding limiting objects: self-similar fragmentation
trees with or without immigration. Afterwards, we will also give a few useful results on point processes
related to our models of trees.

1.3.1 R-trees and the GHP topology

To talk about scaling limits of discrete trees, we need to introduce a continuous analogue. We use the
framework of R-trees. An R-tree (or real tree) is a metric space (T, d) such that for all x and y in T:
— There exists a unique isometry ¢ : [0,d(x, y)] — T such that ¢(0) = x and ¢[(d(x,y)] =1y,
— If y: [0,1] — T is a continuous injection with y(0) = x and y(1) = y, then the image of v is the
same as that of ¢, i.e. Imy =Imyp =: [x,y].
This roughly means that any two points in an R-tree can be continuously joined by a single path, up to its
reparametrisation, which is akin to the acyclic nature of discrete trees.
To compare two such objects, we will use the Gromov-Hausdorff-Prokhorov distance. More precisely,
we will follow the definition from [5] and extend it in a way similar to that of [3].

For any metric space (X, d) let M(X) be the set of all finite non-negative Borel measures on X and
M(X) be the set of all non-negative and boundedly finite Borel measures on X, i.e. non-negative Borel
measures y on X such that u(A) < oo for all measurable bounded A C X.

A pointed metric space is a 3-tuple (X,d, p) where (X,d) is a metric space and p € X is a fixed
point, which we will call its root. For any x € X, set |x| := d(p, x) the height of x in (X,d, p), and let
|X| :=sup,cx |x| be the height of X.

We will call pointed weighted metric space any 4-tuple X = (X, d, p, u) where (X, d) is a metric space,
p € X isits root and u is a boundedly finite Borel measure on X.

Remark 1.3.1. If X is a pointed weighted metric space, we will implicitly write X = (X, dy, px, Uy ) unless
otherwise stated.
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Two pointed weighted metric spaces X and Y will be called GHP-isometric if there exists a bijective
isometry ® : X — Y such that ®(py) = py and puy o ®~! = uy. Let K be the set of GHP-isometry classes of
compact pointed weighted metric spaces.

Comparing compact metric spaces. Let X and Y be two pointed weighted compact metric spaces. A
correspondence between X and Y is a measurable subset C of X x Y which contains (py, py) such that
for any x € X there exists y € Y with (x, y) € C and conversely, for any y € Y there is x € X such that
(x,y) € C. We will denote by C(X,Y) (or C(X,Y) with a slight abuse of notation) the set of all pointed
correspondences between X and Y. For any C € C(X,Y), let its distortion be defined as follows:
disyy C == sup {ldy (x,x) = dy (3, )| : (e, 1), (x, ¥y ) e C}.
When the setting is clear, we will simply write dis C := disyy C. Observe that disC < 2 (lX |V |Y|) < 00
and that disC > ||X| — |Y||.
For any finite Borel measure 7 on X x Y, we define its discrepancy with respect to uy and uy as:

D(7; px, py ) := llux — 7o py  llpy + Iy — 7o py iy

where || - ||y is the total variation norm, and py : (x,y) €X XY — x, py : (x,y) €X XY — y are the
canonical projections from X x Y to X and Y respectively. The definition of the total variation norm and
the triangular inequality give D(7; ty, by ) = |Ux(X) — uy (V).

Following [5, Section 2.1], we define the Gromov-Hausdorff-Prokhorov distance (or GHP distance for
short) between two pointed weighted compact metric spaces X and Y as:

derpX,Y) := inf{%disc V D(7; Uy, Uy) V(C) : CeCX,Y), m e M(X x Y)}

where C°=X xY \ C.
Remark 1.3.2. Observe that dgp(X,Y) < (IX | V|Y|)V(MX(X )+,uY(Y)) and is consequently finite. Moreover,

deup(X,Y) > (1/2- { |X|—|Y| |)V|,uX(X)—,uY(Y)|. Therefore, the functions K — R, X — |X| and X — ux(X)
are both continuous with respect to dgyp.

As was mentioned in [5, Section 2.1], dgyp is a well-defined distance on K and (K, dgyp) is both
complete and separable and thus, Polish. Furthermore, it was also noted that dgyp gives rise to the same
topology as the GHP distance defined in [3].

Rescaling compact metric spaces. For all m > 0, let 00" := ({@}, d, o, m5g) € K be the degenerate metric
space only made out of its root on which a mass m is put. For a pointed weighted metric space X and any
non-negative real numbers a and b, we will write (aX, buy) := (X, ady, px, buy). When X is in K and
iy (X) = m, we will use the convention (0X, uy) = 0™ (which makes sense since (£X, ty) converges to
0U™ as ¢ goes to 0 with respect to dgyp).

Lemma 1.3.1. Let X and Y be two elements of IK. For any non-negative real numbers a, b, ¢ and d:
(1) damp((aX, bux), (X, dpx)) < (la—c|1X]) V (1b —d| ux (X)),
and (i) derp((aX, buy), (a¥, buy)) < (a V b) dgp(X, Y).
Proof. (i) LetC ={(x,x):x X} e C(X,X). We have
diS(ax, buy), (cx,dpy) C = SUP {Ia dy(x,y)—cdx(x,y)|: x,y EX} <2|la—c||X|.

Let 1 € M(X x X) be defined for all measurable A C X x X by n(A) = fx IlA((x,x)) bux(dx). Then
D(7; buy,dux) = |b—d|ux(X) and 7(C) = 0.

(i) For every correspondence C € C(X,Y), we clearly have dis(x p,. ) (av,ou,) C = adisxyC. No less
clearly, for any finite measure 7w on X x Y, D(b7; buy, by ) = bD(7; iy, Uy )- a
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Corollary 1.3.2. The function K x R, x R, — K defined by (X, a, b) — (aX, buy) is continuous for the
product topology.

Concatenated compact metric spaces. Let (X;);eq be a countable family of pointed weighted metric spaces
with X; = (X;,d;, p;, u;)- Let (X,d, p, u) where:
— X={p}u |_|ieri,
— d is defined by:
— Foralli,j €7, d(p,p;) :=d(p;p;) =0,
— ForallieJ, and x,y € X;, d(x,y) :=d;(x,y),
— Foralli#jand x €X;, y €X;,d(x,y) :=d;(x,p;) +d;(y, p)),
— For any Borel subset A of X, u(A) = ..., u;(ANX;).
With a slight abuse of notation, we will consider (X, d) to be the quotient metric space X/ ~4 where x ~4 ¥
iff d(x,y) = 0. For each i in J, we will also identify X; with its image in X by the quotient map. Write
X=:(X;;i€7).

Remark 1.3.3. 1f (T;);cq is a countable family of weighted R-trees, then (T;; i € J) is clearly an R-tree
itself.

Lemma 1.3.3. For adlli > 1, let X; = (X;,d;, p;, u;) be in K. Their concatenation (X;; i > 1) is an element
of K iff the height |X;| of X; goes to 0 as i goes to infinity and 2121 wi(X;) is finite.

Proof. Set X := (X;;i = 1) and for all x in X and positive r, denote the open ball of X centred at
x with radius r by By(x,r) := {y € X : dy(x,y) < r}. Similarly, for all i > 1 and x € X;, write
Bi(x,r) :={y €X;:d;(x,y) <r}. Clearly, the measure uy is finite iff the sum 2121 wi(X;) is.

If |X;| — 0, then in particular, for all positive ¢, there exists an integer n such that | J,. ,X; C By(px, €).
Moreover, since X; is compact for all i = 1,...,n, we can find a finite e-cover of X;, i.e. a finite subset
A; of X; such that X; C UxeAi Bi(x,€). Set A:= {px}UA; U---UA,. Observe that it is finite and that
XcC UXGA By (x, €). Since this holds for all positive ¢, it follows that X is compact.

If limsup |X;| > 0, then there exists a positive ¢ such that |X;| > ¢ for infinitely many indices i. As a
result, X cannot have a finite e-cover, which implies that it is not compact. O

Lemma 1.3.4. Let X;, Y;, i = 1 be in K and such that X := (X;; i = 1) and Y := (Y;; i = 1) both belong to
K. We have

dGHP((Xi; 121),(Y;;i> 1)) < 2iz1 domp(Xi, o).

Proof. SetX:=(X;;i>1)and Y:=(Y;;i>1). For all positive £ and i > 1, there exists a correspondence
C; in C(X;,Y;) and a finite Borel measure 7t; on X; x Y; such that

1. B
EdlSCi V D(7;;5 px, s ) V 70(CF) < dgpp(X;, Y) +277e.

Set C := Ui21 C;, which is a correspondence between X and Y. Let (x, y) and (x’, y’) be in C. If both
(x,y)and (x’, y’) are in C; for some i, then clearly, |dy(x, x")—dy(y, y')| < disC;. Otherwise, if (x, y) € C;
and (x’, y') € C; with i # j, then using the definition of dy and dy as well as the triangular inequality, we
get |dy (x, x") —dy(y, y")| < disC; + dis C;. Therefore, 1/2-disC < >}, dgup(X;, Y;) + €.

For all n > 0, define the finite Borel measure 7™ on X x Y by n("(A) := > ni[Aﬂ (X; x Yi)] for any
Borel set A. By definition,

() =31, mlCnX; xv)] = D mlC1 < D damp (X, Vo) + €.
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Moreover, the discrepancy of (™ with respect to uy and uy satisfies
D(r™; e, py) < Doy g, — 75 0 pi v + Ny, — 70 0 03 vy + e (it ey + sy, llz)
< Dl DO s by ) + 2 (,uxj(Xj) + ,uY]_(Yj))
< 2y dap (X, Yo + &+ 250 (1, (X)) + py (Y)))-

In light of Lemma 1.3.3, there exists n such that >, uy (X;) + uy (¥;) < €. As a result, dgp(X,Y) <
is1 deup(X;, Y;) + 2¢ which holds for all positive &. O

Extension to locally compact R-trees. Let X = (X,dy, px, ux) be a locally compact pointed weighted
metric space such that uy is a boundedly finite measure. For all r > 0, let X|, := (X|r,dX,pX,,uX|r) where
X|, :={x €X :|x| < r} is the closed ball with radius r centred at py and uy|, := Iy uy is the restriction
of uy to X|,. Observe that if r <R, clearly (X|g)|, = (X|,)Ig = X|,. We also define 3,X :={x X : |x|=r}.

For any two locally compact pointed weighted metric spaces X and Y, we define the extended Gromov-

Hausdorff-Prokhorov distance between them as:
oo

Dgp(X,Y) := J e[ 1A dgip(X],,Y1,) Jdr.
0

This definition closely resembles that of the GHP distance on locally compact metric spaces defined and
studied in [3].

Remark 1.3.4. Let X and Y be two weighted locally compact pointed metric spaces. For all R > 0,

}DGHP(X, Y) — Dgp(Xg, YlR)l < fRoo e’

1A dgup(X],, Y[ ) — 1A dGHP(XlRaYlR)| dr <e™®

~-
<1

Let T be the set of GHP-isometry classes of locally compact rooted IR-trees endowed with a boundedly
finite Borel measure and T, be that of compact weighted and rooted R-trees (i.e. T, = KN T).

Proposition 1.3.5. (i) Dgyp is a metric on T,
(i) If T,, n = 1 and T belong to T, then Dgyp(T,, T) — O iff dgup(T,l,,T|,) — 0 for all r = 0 with
ur(6,T)=0,
(iii) (T,Dgyp) is a Polish metric space,
(iv) dgyp and Dgyp induce the same topology on T,.

Proof. (i) Since dgyp is a metric, Dgyp is symmetric and clearly satisfies the triangular inequality. Moreover,
if T and T’ are two elements of T such that Dgyp(T, T') = 0, then for almost every r > 0, T|, = T'|,.. In this
case, T and T’ are GHP-isometric (see [3, Proposition 5.3] for a similar proof).

(ii) Suppose dgyp(T,l,,Tl,) — 0 for all r > 0 with u;(8.T) = 0. Since uy is a locally finite measure,
the set {r > 0: u;(8.T) > 0} is at most countable. As a result, the sequence (r — 1A dGHP(Tnlr,Tlr))n21
converges to r — 0 almost everywhere in [0, 00). Lebesgue’s dominated convergence theorem then ensures
that Dgyp(T,,, T) — 0.

Assume Dgyp(T,,, T) — 0 and let r > 0 be such that u(3,T) = 0. For every subsequence (1), there
exists a sub-subsequence (k,), such that 1 A dGHP(Tnki l;,T|;) = O for almost every t > 0 as { — oco. In
particular, there exists R > r such that dGHP(Tnk[ [z, Tlg) — O.

Recall that dgyp is topologically equivalent to the metric on K studied in [3]. Therefore, in light of the
proof of [3, Proposition 2.10], if 7,, n > 1 and 7 are compact R-trees such that dgyp(7,, T) — O, then for
all r > 0 such that p.(3,7) =0, dgup(7,l,, Tl,) = 0.

As a result, dGHP(Tnke |, T|,) — 0. From every subsequence (n;); we can thus extract a sub-subsequence
(k¢), such that dGHP(Tnkg |, T|,) = 0, which is equivalent to saying that dgyp(T,|,,T|,) = 0 as n — oo.
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(iii) Since a criterion similar to (ii) holds for the metric studied in [3], this metric is topologically
equivalent to Dgyp. As a result and thanks to Theorem 2.9 and Corollary 3.2 in [3], it follows that (T, Dgyp)
is completely metrisable and separable, i.e. it is Polish.

(iv) See Proposition 2.10 in [3]. O

Continuum grafting. Let {(u;, T;) : i € J} be a family of elements of R, x T, such that J is at most countable.
We define the R-tree G({(ui, Tl E J}) as

G({(ui,fi) (ie J}) = (]R+ Ul JiesTir d, 0, u)

where the metric d is defined by:

— dlu,v]=|u—v|forallu and v in R,

— dlx,y]=d; (x,y)foralli€J, x and y in 7,

— d[x,v]=d; (x,p;)+|y;—v|foralli€], x € 7;and v in R,,

— d[x,y]= dTi(x,pTi)+de(y,ij)+ [uj—uj|foralli#j€IJ, x€1;and y € 7},
and p is the measure defined for all Borel sets A by u(A) := >, uz, (AN ;). The function G grafts the
trees 7; at height u; for each i € J on R, which can be thought of as an infinite (continuous) branch. It is
quite obvious that the weighted pointed metric space G({(ui, T):i€ IJ}) is an R-tree.

Lemma 1.3.6. Let (u;);>; be a sequence of non-negative real numbers and (t;,d;, p;, U4;)i>1 be a sequence of
compact weighted R-trees. The weighted R-tree T := G({(ui, Tl 1}) is an element of T iff for all K = 0
and € > 0 the set {i > 1:u; <K and |1;| = €} is finite and 2121 Ty, <k bz, (T;) < 00.

Proof. For all x in T and positive r, denote by By (x,r) :={y € T : d;(x,y) < r} the open ball of T centred
at x with radius r and similarly for all i > 1 and x € t;, write B;(x,r) :={y € 7; : d;(x,y) < r}.
& Assume that for all K >0, >, 1y, <k iz, (7;) < oo and for all positive ¢, that the set {i > 1:y; <
K,|t;| = €} is finite. Observe that for all non-negative K, u;(T|x) < ZiZI (T, <k- Therefore, the
measure uy is boundedly finite and we only need to prove that T is locally compact.

Fix K > 0 and let ¢ be positive. For all i > 1, because t; is compact, there exists a finite subset A;
of T; such that 7; C UxeAi B;(x, €). To build an e-cover of T |, first observe that if i is such that u; < K
and |7;| < £/2, then 1; is contained in some open ball with radius ¢ centred at some ne for 0 <n < K/e.
Moreover, by assumption, there are only finitely many indices i with u; < K and |1;| = ¢/2. Therefore, if
weletA:={ne;0<n<K/e}U{x€A;;i=1,u; <K,|t;| = ¢/2}, then A is finite and T|g is contained in
(U, eaBr(x, €). As a result, T|y has a finite e-cover for all positive ¢ which means that it is compact.
= Suppose the set {i > 1:u; <K,|7;| = ¢} is infinite for some K > 0 and positive ¢. In particular, we
can find an increasing sequence (i,),, with u; < K and |t; | > € for all n. For each n > 1, let x, be in
7; and such that /2 < d; (p; ,x,) < €. If n # m, the definition of the metric on T gives d;(x,,x,,) > €.
Therefore, (x,), has no Cauchy subsequence which implies that T |, isn’t compact and that T ¢ T.

Assume that {i > 1:u; <K, |7;| > ¢} is finite for all K > 0 and £ > 0, and that >}, 1, &, tir,(7;) is
infinite for some finite K,. By assumption, {|7;| : u; < K,} is bounded by a finite constant R. Therefore,
ur (Tl r) = Dlisq Ly <k, Me, (T;) = 00. Consequently, uy isn’t boundedly finite and T ¢ T. m|

Remark 1.3.5. In the following, when we consider discrete trees, we will see them as R-trees by replacing
their edges by segments of length 1.

1.3.2 Fragmentation trees

In this section, we will present a few results on certain classes of T,- and T-valued random variables:
self-similar fragmentation trees (introduced in [64]) and self-similar fragmentation trees with immigration
(see [62]).
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Self-similar fragmentation trees. Let 8% := {s =61 €L 151 =5y = 2 0} and endow it with
the ¢, norm, i.e. for all s and r in 8!, say that the distance between s and r is ||s — || = 2121 s; — 1yl
Moreover, set 0 := (0,0,...), 1:=(1,0,0,...) and 5l<1 = {s est sl < 1}.

A self-similar fragmentation process is an Sél-valuezl Markovian process (X(t); t = 0) which is continuous
in probability, and satisfies X(0) = 1 as well as the following so-called fragmentation property. There exists
a € R such that for all t, > 0, conditionally to X(t,) ='s, (X( to+t),t=> 0) has the same distribution as

((si X(i)(sf‘t), i> l)l; t> O)

where (X®),5, are i.i.d. copies of X. The constant a is called the self-similarity index of the process X.

These processes can be seen as the evolution of the fragmentation of an object of mass 1 into smaller
objects which will each, in turn, split themselves apart independently from one another, at a rate proportional
to their mass to the power a.

It was shown in [16, 19] that the distribution of a self-similar fragmentation process is characterised by
a 3-tuple (a,c, v) where a is the aforementioned self-similarity index, ¢ > 0 is a so-called erosion coefficient
which accounts for a continuous decay in the mass of each particle and v is a dislocation measure on Sl<1,
i.e. a o-finite measure such that f(l —s,) v(ds) < oo and »({1}) = 0. Informally, at any given tin_le,
each particle with mass say x will, independently from the other particles, split into smaller fragments of

respective masses xsi, XSs, ... at rate x*v(ds).

We will be interested in fragmentation processes with negative self-similarity index —y < 0 with no
erosion, i.e. with ¢ = 0. Furthermore, we will require the dislocation measure v to be non-trivial, i.e.
v(SlSl) > 0, and conservative, that is to satisfy v(||s|| < 1) = 0. Therefore, the fragmentation processes
we will consider will be characterised by a fragmentation pair (y, v) and we will refer to them as (y, v)-
fragmentation processes.

Under these assumptions, each particle will split into smaller ones which will in turn break down
faster, thus speeding up the global fragmentation rate. Let X be a (y, v)-fragmentation process and set
To :=inf{t = 0: X(t) = 0} the first time at which all the mass has been turned to dust. It was shown in [20,
Proposition 2] that 7, is a.s. finite and in [59, Section 5.3] that it has exponential moments, i.e. that there
exists a > 0 such that IE[exp(aTO)] < 00,

Furthermore, a T.-valued random variable that encodes the genealogy of the fragmentation of the
initial object was defined in [64]. This random R-tree (7, d, p, 1) is such that u(7) =1 and if for all ¢t > O,
{T:(t) : i = 1} is the (possibly empty) set of the closures of the connected components of T\ (T],), then

(o1 i21)"5 e 0)
is a (y, v)-fragmentation process. We will denote the distribution of (7, d, p, u) by 7, ,..

Remark 1.3.6.  — More general self-similar fragmentation trees, where both the assumptions “c = 0”
and “v is conservative” are dropped, were defined and studied in [116].
— Let T be a (y, v)-self-similar fragmentation tree and m > 0. The tree (m"7J, m us) encodes the
genealogy of a (y, v)-self-similar fragmentation process started from a single object with mass m.

Classical examples. It was observed in [19] that the Brownian tree, which was introduced in [7], may be
described as a self-similar fragmentation tree with parameters (1/2, vz) where vy is called the Brownian
dislocation measure and is defined for all measurable f : Sél — R, by

1 2 1/2
ffde:ﬁ/z(m) f(x,l—x,0,0,...)dx.

Another important example of fragmentation trees is the family of a-stable trees from [49], where
a belongs to (1,2). Indeed, a result from [98] states that the a-stable tree is a (1 —1/a, v,)-self-similar
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fragmentation tree with v, defined as follows: let (Z,;t > 0) be a 1/a-stable subordinator with Laplace
exponent A — —log E[exp(—AZ;)] = AY/* and Lévy measure IT ,(dt) := [a[(1—1/a)] 7 71721, dt,
denote the decreasing rearrangement of its jumps on [0,1] by A and for all measurable f : 8¢ — R, let

f v, =Dl p(arm,)]

where k, :=T(2—a)/[a(a—1)]. Observe that the random point measure 2121 6 5, on (0, 0o) with atoms
(A;,i = 1) is a Poisson Point Process with intensity measure IT; .

Scaling limits of Markov branching trees. Self-similar fragmentation trees bear a close relationship with
Markov branching trees. Let ¢ : P, — S% be such that if A = (44,...,4,) is in P,, then «(4) :=
(A1/n,...,A,/n,0,0,...).

Theorem 1.3.7 ([66], Theorems 5 and 6). — Let (q,),en be the sequence of first-split distributions of
a Markov branching family MB**1 and for all adequate n > 1, set g,, := q,, ot~ '. Suppose there exists a
fragmentation pair (y, v) and a slowly varying function £ such that, for the weak convergence of finite
measures on Sl,

n"(n) (1 —51)qn(ds) —— (1—s) »(ds).

For all n € N, let T, have distribution MBf’q and set p, :== Y. £(1,) 6, the counting measure on the
leaves of T,.

— Let (q,—1)nen be the sequence associated to a Markov branching family MBY. Assume that there exists a
fragmentation pair (v, v) and a slowly varying function £ with either y < 1 or y = 1 and £(n) — 0 such
that n"{(n) (1 —s,)q,(ds) = (1—s;) v(ds). For each n € N, let T, be a MB{ tree and endow it with its
counting measure (,,.

Under either set of assumptions, with respect to the GHP topology on T,

1 1 e
(m T,, ;un) —= 9, indistribution.
The following useful result on the heights of Markov branching also holds.

Lemma 1.3.8. Suppose that (g, ),en Satisfies the assumptions of Theorem 1.3.7 with respect to a given
fragmentation pair (y, v) and a slowly varying function {. Then for any p > 0, there is a finite constant h,

such that
sup E (M)p <h, and E[|TF]<h
nex L\nre(my) |5 =

where T is a (y, v)-fragmentation tree and, as in Theorem 1.3.7, T, has distribution either MBI or MBf’q.

Proof. See [59, Section 5.3] for the continuous setting and [66, Lemma 33] plus [66, Section 4.5] for the
discrete one. |

Concatenation of fragmentation trees. Fix a fragmentation pair (y, v) and let (7;);>; be a sequence of
i.i.d. (y, v)-fragmentation trees. For all i > 1, call y; the measure of T;. Fix s in ' and set (Tis)s is)) :=

(G Tsim); i 2 1)
Lemma 1.3.9. With these notations, (T(s), U(s)) a.s. belongs to T..

Proof. Clearly T is an R-tree and its total mass is ) (T(s)) = Zi21siui(ﬂ'i) = ||s|| which is finite. It only
remains to show that it is compact or, in light of Lemma 1.3.3, that siy |T;| a.s. converges to O as i grows to
infinity. Since s is summable, for any positive &,

1
S PIsTIT1 > ] < Sy SB[ ] < SB[ ] sl < o0
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where we have used Markov’s inequality and the fact that I‘Iill/ T e L (see Lemma 1.3.8). Borel-Cantelli’s
lemma then allows us to deduce that siylﬂ'il —0a.s. asi— 00, O

Lemma 1.3.10. For all fixed s in S, ]E[dGHP({‘T(s):(‘T(r))] converges to 0 as r — s in St

Proof. For all n > 0, in light of Lemmas 1.3.1 and 1.3.4,

n

doun(Tie Ti) < D[ (sT = rTHT) VI = il [+ D (s + 71) + sup (s]17;1) + sup (#717:1).

i1 i>n i>n i>n

If y <1, t — t¥ is concave, hence Jensen’s inequality gives

E[s,up(s?l%l)]ﬂ[(wm|7|W)] ([supswl“?]) <E[m "] (Zes)

>n >n >n

otherwise, if y > 1, since (s;) is non-increasing, for all i > n, s/ <s }s which implies
1 Y
E[sup (7151) | < 7 B sup (s 191) | < B[ 1523 Bs1 < L1001} (Sss)
>n >n

Consequently, there is a constant C > 0 such that for all integer n and s in 8¢, ]E[supi>n siYIfTi I] < C[ Do Si ]Y.
Hence, for all s and r in 8! and any n > 1

E[ dun(Tig, )] < s —xll + E[ |7, ]2|s — T+ (s, +r)+C[(Zs) (Zri)y].

i>n i>n i>n

As a result,

lim sup E[ de (T, T) | < inf 23+ 2¢(Yisns )Y =0. -

Fragmentation trees with immigration. We say that a non-negative Borel measure I on $! is an
immigration measure if it satisfies fsi(l Alls|DI(ds) < oo and I({0}) =0

Fix an immigration measure I such that I($*) > 0 and let (y, ») be a fragmentation pair. Let & =
D1 O(u,s,) De a Poisson point process on R, x 8! with intensity du ® I(ds) independent of a family
(X9 n>1,k>1)of iid. (y, v)-fragmentation processes. Define the $'-valued process X as follows:

!
= (X(t), t> 0) .= ((sn,kX(”’k)[sj{(t_un)]; n>1:u, <t k> 1) ;> O).

We call X a fragmentation process with immigration with parameters (y, v,I). It describes the evolution
of the masses of a cluster of independently fragmenting objects, where new objects of sizes s, appear, or
immigrate, at time u,. These processes were introduced in [61].

Similarly to pure fragmentation processes, the genealogy of these immigrations and fragmentations can
be encoded as an infinite weighted IR-tree (see [62]), say (70, 4, P, W), such that if for all t > 0, we denote
the set of the closures of the bounded connected components of T8\ (70],) by {T;(¢) : i > 1}, then

((pl7(0]; i 1)'; > 0)
. . . . . . I . . . [
is a (y, v, I)-fragmentation process with immigration. Let T, be the distribution of (T, d, p, ).
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Point process construction. The construction of (y, v)-fragmentation trees with immigration I described
in [62] can be expressed using Poisson point processes, concatenated (y, v)-fragmentation trees and the
continuum grafting function G from the end of Section 1.3.1. Let ¥ = 2121 O (u,s;) be a Poisson point process
on R, x 8! with intensity du ® I(ds) and (T,j> 1ij)ij=1 be i.id. (v, v)-fragmentation trees independent of
. Foralli>1, set
Ji: <(Sl] L Sijlij)sJ = 1>,

the concatenation of (7; ;; j > 1) with respective masses s; ;. Define T as the tree obtained by grafting 7;
at height u; on an infinite branch for each i > 1, i.e.

g0 .= G({(ui,‘Tl-) Di> 1})

The random tree U has distribution ETYI -

Observe that for all K > 0, we can write the total mass grafted on the infinite branch at height less than
K as an integral against the point-process X:

Yot Ly <icthr (T) = Do Ty <icllsill = [ Ducic lIsll 2(du, ds).

Since f 1A (ﬂuSK ||s||)dul(ds) = Kf(l A lIs|DI(ds) < oo, we may use Campbell’s theorem (see [84,
Section 3.2]) and claim that f 1<k |Isll £(du, ds) < oo a.s.. The second condition of Lemma 1.3.6 is thus
met. Moreover, foralli > 1,

]El:lr‘TiP/Y'Z] = ]E[Stuzlsi,jWi,jP/Y‘E] < Zj21si,j]E|:|Tl,1|1/Yj| = ]E[|71,1|1/Y] IIs; |l

where we have used the fact that (T} ;), ; is an i.i.d. family independent of .. Markov’s inequality therefore
implies that

| |1/r
ZﬂuiSKIP[w-il >z < ZﬂuiSK‘gil/Y E[|7;]"7|2] < - =

i>1 i>1

Znu <l

which is, according to Campbell’s formula, a.s. finite. Consequently, using Borel-Cantelli’s lemma, we
deduce that conditionally on ¥, with probability one, there are finitely many indices i > 1 such that u; <K
and 7; is higher than e. It follows from Lemma 1.3.6 that T is a.s. T-valued.

Self-similar immigration measures. We will say that an immigration measure I with I(8') > 0 is self-
similar with positive index y (or simply, y-self-similar) if for all ¢ > 0 and measurable F : 8 — R,,

¢ [F(s)I(ds)= [ F(c'/"s)I(ds).

Proposition 1.3.11. An immigration measure I is y-self-similar iff y € (0,1) and there exists a positive
constant K as well as an 8$*-valued random variable X with ||X|| = 1 a.s. and such that for all measurable

F:8' >R,
deI_J

Proof. Clearly, if X is an Si-valued random variable, K > 0 and y € (0, 1), the measure I on $! defined for
all measurable F : 8t — R, by

E[F(tX)]dt

deI_Kf tTTE[F(eX)]dt

is an immigration measure. Moreover, for all ¢ > 0, a simple change of variable gives fF (c/rs)I(ds) =
c f F dI which means that I is indeed y-self-similar.

Conversely, suppose I is a y-self-similar immigration. Define o, the probability measure on Si such that
for all measurable f : S% - R,

fs{ f(s)o(ds):=2z7" [, f(s/lIslID g1 1(ds),
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where Z :=1 ( [I-]l=1 ), and let X be a o-distributed random variable. Now, for any measurable g : S% >R,
and t > 0, because [ is self-similar, we get that

[, 8(s/lIsID gz I(ds) = ¢ ZE[g()] =y Z [ w7 B[ g(x)] du.

Since this identity holds for any t > 0 and measurable g : Si — R, and because I({0}) = 0, it follows
that I may be written in the desired way. Finally, because I is an immigration measure, it must integrate
s — 1 A|[|s||, which implies that y belongs to (0, 1). a

The point process construction of fragmentation trees with immigration may be used to prove this next
proposition.

Proposition 1.3.12. Suppose I is a y-self-similar immigration measure and let v be a dislocation measure. If
(T, u) denotes a (v, v, I)-fragmentation tree with immigration, then for any positive m,

— (m"T,mu) has the same distribution as (T, u),

— (T,cu) and (c77T,u) are (y,c v, c'I)-fragmentation trees with immigration.

Relationship to compact fragmentation trees. Let (y, v) be a fragmentation pair and I an immigration
measure with I(§!) > 0. Theorem 17 in [62] states that under suitable conditions, if (T, us) denotes a
(y, v)-self-similar fragmentation tree, then (m”T, muy) converges to I, Y{ , in distribution as m — oo with
respect to the extended GHP topology.

For instance, Theorem 11 (iii) in [7], states that if (T, us) is a standard Brownian tree then when
m — 00, (m'/2T, m ) converges in distribution to Aldous’ “self-similar CRT”. This result was reformulated
in terms of fragmentation trees in [62, Section 1.2]: (m'/2T, m u) converges in distribution as m — oo to
a (1/2, vg, Iz)-fragmentation tree with immigration, where vy is the Brownian dislocation measure (see
Section 1.3.2) and the Brownian immigration measure I is defined for all measurable f : 8 — R, by

1/2
Fdl := 2 )de
P 3/2
T [0,00) X

We will call a (1/2, vz, Iz)-fragmentation tree with immigration a Brownian tree with immigration. As
mentioned in the Introduction, this tree will appear in many of our applications.

Set a € (1,2) and recall the notations used to define v, in Section 1.3.2, in particular, that A denotes
the decreasing rearrangement of the jumps on [0, 1] of a 1/a-stable subordinator with Laplace exponent
A — —logE[exp(—A%;)] = A* and that k, = T'(2 — a)/[a (a—1)]. Let I{¥) be the immigration measure
defined for all measurable F : 8¢ — R, by

FdI® = i = Mdt
st ka Jo te

In [62, Section 5.1], it was observed that if (T, u) is an a-stable tree, then (m!~Yeg, m ) converges in
distribution to a (1 —1/a, v, I (@))-fragmentation tree with immigration as m — co. These trees coincide
with the a-stable Lévy trees with immigration introduced in [48, Section 1.2].

1.3.3 Convergence of point processes

With the notations used in Section 1.3.2, let IT := > ., O(u,s,7,)- It is a Poisson point process on
R, x 8! x T, with intensity du ® .¥(ds,dt) where the measure . on 8' x T, is defined as follows: let
(7i,1;)i>1 be a sequence of i.i.d. (y, »)-fragmentation trees and for any s in 8, similarly to Section 1.3.2,
set T(q) = <(siyri,sl—ui); i> 1) and forall G: 8! x T, — Ry, let f Gdy := f]E[G(s,T<S))] I(ds).

Moreover, recall the construction of Markov branching trees with a unique infinite spine (see Re-
mark 1.2.4). If o, is such that o (me = 1) = 1, then a tree T with distribution MBLI™ can be built in
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the following way: consider the infinite branch and for all n > 0, graft a tree T,, at height n (where the
sequence (T,),o is i.i.d.), such that A, := A(T,,) has distribution g, = ¢, (00, -) and conditionally on
A, =Ain P_,, T, has distribution MB%. As a result, T is characterised by the point process ano O(n,,T,)
(or simply by > - 8¢u1.))-

Therefore, when considering scaling limits of such trees, it seems natural to take a step back and instead
consider the convergence of the underlying point processes on R, x 8t x T,. We will follow the spirit of [62,
Section 2.1.2] and introduce a topology on the set of such point measures adequate for our forthcoming
purposes.

Let % be the set of integer-valued Radon measures on R, x 8! x T, which integrate the function
(u,s, 7) = L,<lls|| for all K > 0 and are such that u(R, x {0} x T.,) =0.

Remark 1.3.7. Recall that as an immigration measure, I integrates the function s € 8 — 1A||s||. Campbell’s
theorem (see [84, Section 3.2]) therefore ensures that II, the Poisson point process associated to a ‘J‘i »
tree, a.s. belong to .

Let F be the set of continuous functions F : R, x 8! x T, —s R, such that there is K > 0 satisfying
F(u,s,v) <1,lls| for all (u,s, 7). If { is a random element of R, we define its Laplace transform as the
function L, : & — R, defined by L,(F) := ]E[exp(— fF dC)] for all F in %.

If u,, n > 1 and u are elements of &, we will say that u, — u iff for all F € &, deun — fF du.
Appendix A7 of [79] ensures that when endowed with the topology induced by this convergence, & is
a Polish space. Moreover, Theorems 4.2 and 4.9 of [79] give the following criterion for convergence in
distribution of elements of .

Proposition 1.3.13 ([79]). Let &,, n > 1 and & be R-valued random variables. Then &, converges to £ in
distribution with respect to the topology on R iff for all F € ¥, Ly (F) — L¢(F).

The following extension of the Portmanteau theorem to finite measures with any mass will be useful.

Lemma 1.3.14. Set (M, d) a metric space and let u,, n > 1 and u be finite Borel measures on M. Then u,,
converges weakly to u iff for any bounded Lipschitz-continuous function f : M — R, f f du,, converges to

f f du as n goes to infinity.

Proof. Suppose f fdu, — f f du for all Lipschitz-continuous functions f : M — R. Observe that since
constants are Lipschitz-continuous functions, our assumption implies that u,(M) — u(M). Therefore, if
w(M) = 0, we directly get u,, = u.

Otherwise, there exists n, such that u,(M) > 0 for all n > n,. For all such n, let {i, := [u,(M)]}u,
and [ := [u(M)]'u which are probability measures. It ensues from the usual Portmanteau theorem
and our assumption that fi,, = [i. As a result, for any bounded continuous function f, as n goes to oo,

ffd,unz,un(M)ffdﬁn—>u(M)ffd;lszduwhichis to say that u, = u. O

1.4 SCALING LIMITS OF INFINITE
MARKOV-BRANCHING TREES

In this section, we will state and prove our main result on scaling limits of infinite Markov branching
trees as well as its corollary on their volume growth.

Let N be an infinite subset of IN containing 1 and let ¢ = (g,_1),en be a sequence of first-split
distributions where for each n, q,_; is supported by {A €EP AL ENI=1,..., p(l)}. Recall from
Section 1.2.2 that the associated Markov branching family MB? is well defined. Furthermore, let g, be a
probability measure on P, supported by the set {(oo, A AEP o, A eNi=1,... ,p()L)}. In this way,
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the probability measure MBS on T, is also well defined and a.s. yields trees with a unique infinite spine.
To lighten notations, let q, := g, (00, ) which is a probability measure on P_ .
In the remainder of this section, we will assume that:
(S) There exist some y > 0 and a dislocation measure v on 8, such that n’(1—s;)G,(ds) = (1—s;) v(ds).
In particular, Theorem 1.3.7 and Lemma 1.3.8 hold.
(I) There exists an immigration measure I on 8! such that if A has distribution gq,, for any continuous
F:8' — R, with F(s) < 1A|ls|l, RE[F(A/RY")] — [ FdI asR — oo.

Remark 1.4.1. Under Assumption (I), for any continuous F : 8* — R, such that F < 1A|| - || and positive c,
¢ [ F(s)I(ds) =limg_,oo cRIE[F(A/RYT)] =1limg_,co SE[F(c"/T A/SY7)] = [ F(c"/7s)1(ds)

where we have taken S = cR. As a result, the immigration measure I is y-self-similar, as defined in
Section 1.3.2, and Proposition 1.3.12 therefore holds for (y, v, I)-fragmentation trees with immigration.

Theorem 1.4.1. Let T be an infinite Markov branching tree with distribution MBLI® endowed with its
counting measure . Under Assumptions (S) and (I), if v < 1, with respect to the extended GHP topology,

I ﬂ _ 9‘1
R’ R/ } Rooo "1
in distribution, where . YI , denotes the distribution of a (y, v, I)-fragmentation tree with immigration.

Let T be a fixed element of T. We define its volume growth function as V¢ : R, — R, R— u(T|g). In
other words, Vy(R) is the mass or volume of the closed ball T|z. Once Theorem 1.4.1 is proved, we will be
interested in the volume growth processes associated to these trees.

Proposition 1.4.2. Suppose the assumptions of Theorem 1.4.1 are met. Let T be an infinite Markov branching
tree with distribution MBL2> and (T, u) be a (y, v, I)-fragmentation tree with immigration. Then, the volume
growth function of (T /R, ur /RYY) converges in distribution to that of (T, uq) with respect to the topology of
uniform convergence on compacts of R,. In particular

ur(Tlr) @
TRt Toee g (T1p).

We may adapt the proofs of Theorem 1.4.1 and Proposition 1.4.2 to get the following theorem.

Theorem 1.4.3. Let T be an infinite Markov branching tree with distribution MBé;q’q“’ and endow it with
the counting measure uy on the set of its leaves. If y < 1 and if Assumptions (S) and (I) hold for (q,), and
Joo Tespectively, then the conclusions of both Theorem 1.4.1 and Proposition 1.4.2 hold.

Remark 1.4.2. Instead of Assumption (I), we may assume that

(I') There exists a < 1/y and an immigration measure I on $! such that if A is distributed according

to q,, RIE[F(A/R“)] — deI for any continuous F : 8 — R, with F(s) < 1 A||s|.
If T has distribution MBLI> and is endowed with its counting measure u; under (S) and (I’), we get
that (T /R, ur/R%*) converges in distribution to the infinite branch R, endowed with the random measure
u = 2121 lls;|l 6,,, where {(u;,s;);i = 1} are the atoms of a Poisson point process X on R, x 8! with
intensity du ® I(ds). The tree (R,, u) encodes the genealogy of a pure immigration process. Furthermore,
ur(T|g)/R* converges in distribution to u([0,1]) = f[o,l]xsl [Is|| 2(du, ds).
Similarly, if T is distributed according to MBﬁo’q’q‘” and is endowed with the counting measure on its

leaves, the same results hold under (S) and (I').

To prove Theorem 1.4.1, we will first study the convergence of the underlying point processes in
Section 1.4.1 which will give us more leeway to manipulate the corresponding trees and end the proof in
Section 1.4.2. Section 1.4.3 will then focus on proving Proposition 1.4.2.
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1.4.1 Convergence of the associated point processes

Since (T, dgyp) is Polish, in light of Assumption (S), Theorem 1.3.7 and Skorokhod’s representation
theorem, we can find an i.i.d. sequence [(T; ,)nex, T;]i>1, Where for each i > 1, the family (T; ) e T; of
random trees is such that:

— T; , has distribution MB],

— T, is a (y, v) self-similar fragmentation tree,

— (Tin/n",ug, /n) =: Ti’n a.s. converges to J; as n — 00.
For A = (Al,...,i )€ Peoo, let Ty :=[T;, ;1 <i<p]. Foranyse 8¢, let Ty i= (] Ti, g )51 > 1)
which is a compact R-tree (see Lemma 1.3.9).

Finally, let A be a random finite partition with distribution g, independent of [(T; ,),ex7;]i>1, and
for any R > 1, set ¢® as the distribution of A/R'/Y. With these notations, Assumption (I) becomes:
R(1As|)q®(ds) = (1 Alls||) I(ds) as finite measures on 8.

Lemma 1.4.4. Let K C 8 be compact. Then supgx > ionSi — 0 as n goes to infinity.

Proof. Assume the contrary, i.e. that there exists a sequence (s(),>; in K and a positive constant ¢ such
that ). sgn) > ¢ for all n > 1. Since K is compact, we can find a subsequence (s"™), and s € K such that
||s) —s|| — 0 as k — co. Consequently, 0 < ¢ < Zi>nk s < Zi>nk s; + ||st™) —s|| — 0 as k — oo, which

is a contradiction. O

Fix G : 8! x T, — R, a 1-Lipschitz function, i.e. such that for all s,s" in 8t and 7,7’ in T,, |G(s,T)—
G(s', T’)} < ||s —s'|| + dggp(7,T’). Further assume that G(s,-) < 1 A ||s|| for any s € 8'. Finally, set
g:8t— R, the function defined by g(s) := E[G(s, T(5))].

Lemma 1.4.5. We have

R]E[G(R_l/ AR T[A]>R_1/Y“Tw))] R0

f E[ G(s, Tigy) | I1(ds).
sl
Proof. Clearly, g(s) < 1 A ||s||. Moreover, for any s and r in 8,
|2(8)— ()] < B[ [G(s, 7)) — Gx, T)| | < lls =l + B[ desp(T(5, T )] — 0
where we have used Lemma 1.3.10. Therefore, g is continuous and Assumption (I) ensures that
RIE[G(R’I/VA, (R’17<A>,R’1/7,u7w))] =RE[¢®R"N)]— fl ¢(s)I(ds).
s
Consequently, it will be sufficient to prove that as R — 00,
1 -1 -1 -1 -1 -1
RJE“G(R AR Tp, R g ) = G(RTVYA, (RTT ), R /m%))H
<RE[(1ARIIAI) A dos((R7 Tiap, R g, ), (RS, R i )) | =2 A — 0.
For all n > 1, thanks to Lemma 1.3.4 and Remark 1.3.2 we get

dorp( R Tp0, RV ), (R T 10, R V7))

n
< > doup( R T 0, RV, ), (RTAIT, RV Auig))
i=1

A _ AT A
+SUP(E‘ITi,AiI) +$UP(EI|Ti|) +2>° R

i>n i>n i>n
and for each i > 1, Lemma 1.3.1 gives
AT A

dorp (R Tp R 71y, ) (RIATTL R A ) < (E v W) deup(Tin,» T:)-
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Let € > 0 be fixed. As a result of Assumption (I), the sequence R(1 A ||s||)q®(ds), R > 1 is tight and
so there exists a compact subset K of 8¢ such that SUPg>1 Rf(l AllslD (1 — JIK(S)) q®(ds) < e. Moreover,
as a compact subset, K is bounded, i.e. supy [|s|| = C < oo.

For all n > 1, recall that TLH and T, are endowed with probability measures. Remark 1.3.2 therefore
ensures that dgp(T 1, T1) < 2V | T, V|T:]. As a result, thanks to Lemma 1.3.8,

sup, E[ (deup(T1,,71))" | < 3(22 + sup, E[[T, . 2] + E[|7:2]) < 12+ 6k, < 00,

so the sequence [dGHP(TLn,‘Il)]n is bounded in L2. Since by assumption, it converges to 0 a.s., it also
does so in L. Furthermore, supn]E[dGHp(Tl,n,‘I 1)] =: D is finite. Consequently, and because the sequence
of families {( )n,Ti}izl is i.i.d., for any 17 > 0, there exists N such that for alli > 1 and n > N,
]E[dGHP(Tl > T l)] < 7. This gives the rather crude following bound

]E[dGHP(Ti,n"Ii)] < D]ln<N + n.
For all § > 0, in light of Lemma 1.4.4, there exists an integer my s which depends only on K and 6 such

that supgeg Zi>m” s; < 6. Thenforall R>1and A € P_., with A/RY" €K, if y < 1, Jensen’s inequality
gives

AY _ A Y 7(‘ Y
E| sup (_1|Ti,xi|)} S(E[ sup i,a,-ll/YD S( —E[[T; 17 ) < (hy,)' 87
|:i>m,<’5 R l>m”R1/ i;}S R1/v [ ] Iy

where hy,, is the constant from Lemma 1.3.8. Otherwise, if y > 1, since (4;);>; is a non-increasing
sequence,

AT A s+1\' 7! A
LT, X r=1 Y
E[,sup (R'T%-')]S( e ) IE[sup =i lml}sa > BT ] <hs

i>my s i>my 5 >y s

where h; is defined as in Lemma 1.3.8. Similarly,

Al hy, ) 67 ify<1,
IE[ sup ( ITI)] () ur
i>mes \ R h, 67 ify>1.

In summary, for all A in P_, such that A/RY" belongs to K, we get that

Z A <5 d ]E|: (7&/ |T |) (Aiylg. |)] <B&"
— < an sup | —IT;, | |+ sup [ —IT;| || <
i>my 5 RYY i>my s R i>my 5 R

for some finite constant B independent of ¢, 1, 6 and K.
Therefore, for all positive ¢, §, n, and any R > 1,

Mg 5 Y
A [IA]l A (A A =
< - Rliali} Ly X . .
AR_8+RIE|:IIK(R1/Y)(1/\R1/Y A ; ~ Vo JE dGHP(Tl,Ai,‘Il)|A
A
+]E['sup R |T1A|+ sup —|‘I|+2 E Rl/y‘A]

i>my 5 i>my 5

NY

R ) A ((C+CY)mK,5n+(

N
Ss+R1E[(1/\ + o )mK5D+25+35Y)}
Let 6 be such that (26 +67)B < ¢ and set n < &/[(C + C")my 5]. Because of Assumption (I), we therefore
get that
limsup Ag <¢ +J (2e) A|Is|| I(ds).
R— o0

The monotone convergence theorem implies that the right hand side of this last inequality vanishes when &
decreases to 0. This proves that Ay — 0, which concludes this proof. O
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Since the conclusion of Lemma 1.4.5 is met for any Lipschitz continuous function G : 8* x T, — R,
with G(s, -) < 1 A|[|s||, Lemma 1.3.14 gives the following corollary:

Corollary 1.4.6. The convergence of Lemma 1.4.5 holds for any continuous G with G(s, -) < 1 A||s]|.

We will now prove that the point processes associated to adequately rescaled Markov branching trees
with a unique infinite spine converge in distribution to the point process associated to fragmentation trees
with immigration. Let IT be a Poisson point process on R, x 8 x T, with intensity du ® .¥(ds, dt), where
J is the measure defined at the beginning of Section 1.3.3. Observe that for all K > 0,

[ 1<k (1A lIsll) du® F(ds,dt) =K [, (1 Alls|)I(ds) < oo.
Campbell’s theorem (see [84, Section 3.2]) therefore ensures that IT a.s. satisfies the integrability conditions
necessary to belong to the set % of point measures on R, x 8¢ x T, defined in Section 1.3.3.
Let T have distribution MBLI*. By construction of Markov branching trees with a unique infinite
spine (see Remark 1.2.4), there exists a sequence (A,, T,,) >0 of i.i.d. random variables such that T =
boo @1>0(Vy, Ty), where A, is distributed according to g, and conditionally on A, = A, T,, has distribution

MB‘}\. For all R > 1, let II; be the point process associated to (T /R, uy/R'/7), i.e. the %-valued random
variable defined for all measurable f : R, x 8! x T, — R, by

[ fdllg =3 50 F[n/R, Ay/RYY, (T, /R, iz, /RMT)].

Lemma 1.4.7. With respect to the topology on R introduced in Section 1.3.3, 1 converges to Il in distribution
as R goes to infinity.

Proof. In light of Proposition 1.3.13, it will be enough to prove that for any function F in the set &, the
Laplace transform of IT, evaluated in F converges to that of II. Fix such F in & and recall that it is continuous
and that there exists K > 0 such that 0 < F(u,s, 7) < ||s||1,<x for all (u,s, t). Campbell’s theorem for
Poisson point processes gives

Ly(F)= exp( —f [1—eF®sD)]du®.7(ds, d’r)).
ForallR>1 and u > 0, set
¢r() := RE[1—exp( —F[u, Ag/RY7, (Ty/R, 17, /R¥)]) |
and pu) = f]E[l —exp(—F[u, s, T(S>])]I(ds).

Using these notations, we may write log L(F) = — f f ¢(u)du and thanks to the i.i.d. nature of the
sequence (A, T, )ns0, forallR> 1,

log Ly, (F) = —ZLI:ZJ log ]E[exp ( —F[n/R, Ag/RY7,(Ty/R, ur, /Rl/Y)])]
=3 log (1-1/R- pa(n/R)).

The functions g, R > 1 and ¢ all have support in [0, K] and are continuous (in light of the dominated
convergence theorem). Observe that 0 < 1—e P57 < 1 A||s||. From Corollary 1.4.6, we know that for all
fixed u > 0, pr(u) = ¢(u) as R — oo and that furthermore

SUPR>1 SUP>0 Pr(W) < sUpPps4 R]E[l /\(||Ao||/R1/Y):| < 090,

i.e. that the sequence (g)z>; is uniformly bounded by a finite constant, say C. Let € be positive. It also
follows from Corollary 1.4.6 that there exists a compact subset A of $t x T, with

SUPg>1 R]E[(l A (”Ao”/Rl/Y)) : 1AC(AO/Rl/Y,(To/R, HTO/Rl/Y))] <e.
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Recall that F is continuous, hence there exists § > 0 such that for any (u, s, 7) and (u/,s’, 7’) in the compact
set [0,K] XA, if [u—u'| +||s— || + dgup(7,T’) < &, then |F(u,s,7) — F(u',s’,7')| < €. As a result, and
because x — e™ is 1-Lipschitz continuous on R, for allR > 1 and u, v in [0,K] with [u—v| < §,

|r() — (V)| < R]E[l A |Fu, Ao/RMY,(To /R, pg, /R = F[[v, Ao /R, (Ty /R, uTO/R”Y)]|]
<e +R1E[(e AUIRNI/RYT)) - 1a(Ag/RVT, (To/R,uTo/R”Y))}
and in light of Corollary 1.4.6 and the monotone convergence theorem, we get
limsup |@g(u) — pr(v)| < € + [£ Alls]| I(ds) —0.
R—o00 £

This ensures that the sequence (yg)g>1 is equicontinuous on [0,K]. It follows from the Arzela-Ascoli

theorem that ¢y converges uniformly to ¢. In turn, we deduce that

KR+1
R

1 1
=S (/R = 2 S /)| <

sup |ipp() — p(u)| 0.
0<u<K —00

Observe that for all R > 1, we may write

10g Ly, (F)—1/R - Y% op(n/R) = o) —1og[1—-1/R - ¢p(n/R)] = 1/R - ¢(n/R)).
Recall that supgs; 5 wr(u) < C. Therefore, because the function [0,1) — R,, x — —log(1 —x) —x
increases with x, for any R > C and n > 0, we get

‘—log [1—1/R-@g(n/R)]—1/R- LpR(n/R)) <|-C/R—1og(1—C/R)| = o(1/R).

Consequently,

‘logLnR(F) —1/R- ZLILIZJ@R(H/R)| < (KR+1)|~C/R—log(1—C/R)| —0.

Finally, as Riemann sums of the continuous function ¢,

L§lkry

=0 (/R = [, e(w)du=log Ly(F).

In summary, log Ly, (F) — log Ly (F) when R — oo. |

1.4.2 Proof of Theorem 1.4.1

Now that we know that the underlying point processes converge, we can prove convergence of the trees
themselves.

Recall that the topology we defined on % in Section 1.3.3 makes it a Polish topological space. As
such, Skorokhod’s representation theorem holds for &-valued random variables. In particular, because of
Lemma 1.4.7, there exist:

— A Poisson point process IT with intensity du ® .F(ds, d7),

— A family {(A®),t®) . ;R € N} such that for all fixed R > 1, (A®,7®) . is an i.i.d. sequence,
A® follows q, and conditionally on A® = A, 7® has distribution MB and is endowed with the
measure f.m = D, w5y,

such that if for any R we let 1'[1: be the random element of % defined for all measurable f : R, x8*xT, — R,
by ff dllg := 3 oo f[n/R, AP RV, (1R, T /RY7)], then IIy a.s. converges to IT when R — co.

Let {(u;,s;,7;);1 = 1} be the atoms of IT and set & := .., &, 5, By definition of the intensity measure
of II, there exists a family {7 ; ; i,j = 1} of i.i.d. (y, v)-fragmentation trees independent of 3 such that for
alli>1,7, = ((szjji,j)si,jMTi,j);j >1). Set T := G({(y;,T;);i > 1}) where G is the continuum grafting
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function defined in Section 1.3.1 and recall that it is a (y, v)-fragmentation tree with immigration I (see
Section 1.3.2). For all ¢ > 0, let

T8 = G({(u, 7)1 = 1, lIsill = €}).

This tree can be thought of as T!) on which all sub-trees grafted on the spine with mass less than ¢ have
been cut away. Observe that because of the definition of the function G, the measure on ‘.Tg ) is simply the
restriction of py) to ‘Jf ),

For all R, set T := b, ®,50(v,, 7)) and denote its counting measure by ww. Observe that T® is
distributed according to MBLZ>. Let T® := (R"1t® R™'/7_m) be the rescaled infinite Markov branching
tree associated to ITz. Moreover, for all positive ¢, let beR) be the tree obtained by removing from T® all
the sub-trees grafted on its spine with mass less than ¢, i.e. set

T® = G({[n/R, ®'T®, RV 1.w)] | n 2 0: AR 2 RV e}).

The tree TE(R) is clearly a subset of T® and it is endowed with the restriction of Ur®-

In this section we will endeavour to prove Theorem 1.4.1. In order to do so, we will use the following
criterion for convergence in distribution.

Theorem 1.4.8 ([29], Theorem 3.2). Let (M,d) be a metric space. If X, X&), X, n>1, k> 1 and X
are M-valued random variables satisfying:
(i) Forallk > 1, X,Sk) = X® gs n— oo,
(ii) X® = X as k — oo,
(iii) For any positive 1), lim;_, o, limsup,_, . ]P[d(Xr(lk),Xn) > n] =0,
Then X converges to X in distribution.

Remark 1.4.3. Condition (i) is akin to finite-dimensional convergence of X,, to X and Conditions (ii)
and (iii) to tightness of (X,),.

In our setting, the sequence (T™®;R € IN) of rescaled MBLI™ trees will play the role of (X,), and
the limit variable X will be 7!, a (y, v)-fragmentation tree with immigration I. The intermediate family
(X ,(lk))n,k will be replaced by (TE(R) ;R > 1) with ¢ — 0 along some countable subset of (0, c0). Similarly,
we'll consider T trees instead of (X®)),.

Lemma 1.4.9. With these notations, T g” a.s. converges to 71 as & — 0 with respect to Dgyp.

Proof. For all &€ > 0, let C, be the correspondence between T7!) and ‘J{SI) defined by C, := {(x,x) 1X €
70}y Uiz s, < T % {1} and set 7., the boundedly finite Borel measure on 70 x 7, such that for all
Borel A, m,.(A) := f‘fﬁ.’) 15(x, x) pyn(dx). Let K > 0 be fixed. Call 7, | the restriction of , to TOe x 7O
The monotone convergence theorem yields

as.
D(nelK;MTU)lK: Au'g'g” |K) = 7T£|K(C;) < f ”S”ﬂHs||<s]1u§K2(du: ds) E’ 0.

Let C,|x := C, N (TP x 7D ) and observe that it is a correspondence between T |x and TW|. Its
distortion satisfies
disC,|x < 2 sup {I‘J‘il i 1u; <K sl < e} —a'—s'g 0.
Fotad

As a result, dGHp(T(”|K:7§I)|K) — 0 a.s. as ¢ — 0. Since this holds for all K > 0, Proposition 1.3.5 (ii)
ensures that Dgyp(T, 70) a.s. converges to 0 when & — 0. O
Lemma 1.4.10. For all positive n,

lim lim sup ]P[DGHP(T(R), T®) > ’f)] =0.

e—>0 R—o00

43



Local limits of Markov branching trees and their volume growth Scaling limits of infinite Markov-branching trees

Proof. We will proceed in a way similar to the proof of Lemma 1.4.9. For all R > 1 and ¢ > 0, define
the correspondence C® between T® and T® as C® := {(u,u) :u e T®}U{(w,n/R) : n = 1,[IA,ll <
RYre,u e TflR)} and let ngR) be the boundedly finite measure T® x TE(R) defined for all Borel sets A by
ngR)(A) = fTS(R) T4(x, x),uTe(m(dx).

For all K > 0, set CE(R)| « = CH N (T®] x TV ), which is a correspondence between T®|; and
T®)|, and let ngR)} « be the restriction of 7® to T®|, x T®)|. Then, for any non-negative K,

. 2
dis ;g C| < ~ sup {I7®]: 0 <n <RK, [AP]| <RV7e}.

Foralln > 0andR > 1, [tT®] = 1+ sup{ITﬁRi)I : 1 < i < p(A®)}. Further observe that thanks to
Lemma 1.3.8, we can find a finite constant h such that for alln > 0, R > 1 and i = 1,...,p(AElR)),
E[(1+ [t®7|A®] < h A®(i). Therefore, since the sequence (A®), t®) ., isiid.,

1/y 21/7 ®)
: ®) p(Ay) R)\1/
IEI:(dIST(R)‘K,TgR)lK Cg |K) ] S (KR + 1) W IEI: i=10 (1 + |T0,i D Y]lH/\E)R)”<R1M€:|

2l/rp ®)
< (KR+1) 7 B[ A1) e ]

Similarly,
1
®) -
E[D(n on

e o MT®

] =E[7®] [(c®y]] = (kR +1) ——E[IA{lI1

ko Mr® ||A5;<>||<ng]~
In light of Assumption (I),

1A%
R/r

1

(KR+1) o

]E[HAE)R)” HIIAER]‘KRUW] <(KR+ 1)IE|:£ A ] = KJ({;‘ Alls])) I(ds).

Finally, for any positive 7, if K > —log(n/2), using Markov’s inequality and the monotone convergence
theorem,

limsup ]P[DGHP(T(R), TE(R)) > n] < limsup]P[DGHp(T(R)|K, beR)IK) > —2e_K]
—00 R—00

R
i 1/y

i ]E[(dlsT(R”K’Ts(R)Ix CrER)|K) ] IE[D(“?) x> Mr® K,MTE(R)lK)]
< limsup

koo (n—2eK)1/r 2ok

21/YKh K

< .
B ((’f)—ZeK)l/Y + n—ZeK)J(EA”s“)I(dS):O -

The next result is both intuitive and easy to prove. Its proof will therefore be left to the reader.

Lemma 1.4.11. Fix n a positive integer and let G, be the restriction of G to (R, x T,)"; G,, is a continuous
function for the product topology.

Lemma 1.4.12. Let K > 0 and & > 0 be fixed. Almost surely, for any continuous F : R, x 8 x T, — R,
bounded by 1,
lim sup fF(ua S, T)ﬂuSK, |Isl][=¢e dHR(u’ S, T) < J-F(ll, S, T)lluSK, |Isl|=¢ dH(u, S, T)’
R—o00

and  liminf [F@,s, 7)1y e AR(W, S, T) = [F(u, s, 7)Lyek s AW, S, 7).

Proof. Let ¢ and @,,, n > 1 be the functions from R, x 8* x T, to R, defined for all (u,s, 7) by ¢(u,s, T) :=
Ty<k Ljg=e and @, (u,s,7) := [1 —n(u—K), ]; x [1—n(e —[s||]); ]; respectively (where x, = x V 0 for
any real number x). Observe that for all n > 1, ¢, is continuous and that for n large enough, €y, F is an
element of &. Therefore, everywhere on the event {IIz — I}, f p, Fdll — f ¢, F dII for any fixed n > 1.
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Furthermore, ¢, |, ¢ so the monotone convergence theorem yields inf, - ; f p, FdIl = f ¢ F dIT and for
allR > 1, inf, 5, f p, Fdll = f @ F dIlg. As a result, on {II; — II},

. < . _
lim sup fondHR < g{[hgs;ip fcpanHR] fgoFdH.

R— o0

Similarly, if we let 1 (u, s, T) := 1,<x 15>, there exists a sequence (v,,),, of continuous functions such that
Y, T, Y and for n large enough, €1, F is in F. The same kind of arguments lead to

1g3£fwaanzigg[lkrgégfjwannR]szFdn
everywhere on {I1; — IT}. O

Lemma 1.4.13. Let ¢ be positive and such that H((u, s,7):|Is|l = s) =0a.s.. Then TS(R) a.s. converges to
‘J'EI) as R — oo.

Proof. Observe that for any K > 0, H((u, s,7):u=K ) = 0 a.s. which implies that with probability 1, for
any continuous bounded F : R, x 8' x T, —» R,

f F(u,s, 7)<k s)=e dT1(u, s, 7) = f F(u,s, 7)1,k s> AT1(w, s, 7).
Consequently, in light of Lemma 1.4.12,

a.s.
]IuSK, lIsll=e HR(du, dS, dT) R—>:oo> ]luSK, Isll=e H(du, dS, dT)

Furthermore, the measures 1,<x s>¢ IIr(du,ds,d7), R > 1 and 1, ¢ 5= [1(du, ds, d7) may be written as
finite sums of Dirac measures. As a result, almost surely, the atoms of 1,,<x |sj=¢ [Tr(du, ds,d7) converge to
those of 1,k |isj=¢ [1(du,ds,d7) when R — co. Lemma 1.4.11 then ensures that Tg(R)|1< a.s. converges to
‘Jff )|. Since this holds for any K > 0, Proposition 1.3.5 allows us to conclude. O

Proof of Theorem 1.4.1. Observe that the set of positive ¢ such that ]P[H((u, s,7):|Is|| = 3) = O] <1lisat
most countable. As a result, we may consider a sequence (&; )~ of positive real numbers which converges to
0 and such that for all k, H((u, s,7):|Isll = sk) =0 a.s.. Lemmas 1.4.9, 1.4.10 and 1.4.13 then respectively
prove that conditions (ii), (iii) and (i) of Theorem 1.4.8 are met for T®, Tg(f), ‘J'g), R>1,k>1and 0.
Therefore, T® = 70 with respect to Dgyp. O

1.4.3 Volume growth of infinite Markov branching trees

We now turn to the proof of Proposition 1.4.2. Recall that if T € T is fixed, then Vg, the volume growth
function of T, is given by
VT . ]R+ — IR+, R+— :U'T(T|R)‘

Notice that Vy is a non-negative, non-decreasing cadlag function.

Proof of Proposition 1.4.2. Proposition 1.3.5 ensures that (T, Dgyp) is a Polish metric space. In light of
Skorokhod’s representation theorem and since the assumptions of Theorem 1.4.1 are met, there exist a
sequence (Tg)g>1 of MBLI™ trees as well as a (7, v, )-fragmentation tree with immigration 7D such that
(R 7g, RV, ) =: T® as. converges to T,

Proposition 1.3.5 and Remark 1.3.2 ensure that a.s., for all t > 0 such that ;0 [3,79] =0, Vyw(t)
converges to Vo (t). Now observe that pyn[8,78] = 0 iff Vqq is continuous at t. Therefore, if we prove
that Vi is a.s. continuous on R, since volume growth functions are monotone, we may use the following
classical result to conclude this proof:

If (f,), is a sequence of monotone functions from a compact interval I to R such that f, — f point-wise

for some continuous function f, then f, — f uniformly on I.
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Following the construction of fragmentation trees with immigration detailed in Section 1.3.2, there exist
a Poisson point process . = Zi21 Oy, s ON Ry X 8! with intensity du ® I(ds) and a family [‘Il- i,j=> 1] of
ii.d. (y, v)-fragmentation trees independent of ¥ such that

g0 — G({(ui,<(szj‘3'i’j,si,ju7i’j);j >1)) i 1})

With these notations, we may write Vo) = D501 D, j215i,jViTij[(' —u;)./s! j]. Furthermore, for any non-
negative K, since Vy < 1foralli,j>1,

2121 ijlsi,j]luiSK = fﬂuSK lIsl| =(du, ds)
which is a.s. finite, as already noticed. As a result and in light of the Weierstrass M -test, the restriction of

Vg to the compact interval [0,K] is a series which a.s. converges uniformly on [0,K].
Proposition 1.9 in [21] implies that the volume growth function of (y, v)-fragmentation trees is a.s.

J

continuous. In particular, with probability one, Vs, is continuous for all i and j. As a uniformly converging
series of continuous functions, Vi |[o k7 is a.s. continuous on [0, K]. Since this holds for any K > 0, V) is
a.s. continuous on R, which concludes this proof. m|

1.4.4 Unary immigration measures

Before concluding this section, we will state a useful criterion to prove Assumption (I) when the limit
immigration measure is unary, i.e. supported by the set {(s,0,0,...) : s > 0}. In light of Remark 1.4.1, we
will only study self-similar unary immigration measures.

Let y € (0, 1). Proposition 1.3.11 ensures that any unary y-self-similar immigration measure may be
written as ¢ I;‘“ where c is a positive constant and I ;m is the measure defined by

Jo Fdr™ = [ £(x,0,0,...)x7" " dx
for any measurable f : §! — RR,.

Remark 1.4.4. Recall the immigration measures defined in Section 1.3.2. The Brownian immigration
measure I is unary and may be written as I = (2/71)/? 11172. On the other hand, for any a € (1,2), I®
isn’t unary.

Lemma 1.4.14. Let X be an integer valued random variable such that there exist v € (0,1) and a positive
constant c satisfying n'*"IP[X = n] — c. In this case, for all continuous f : R, — R, with f(x) < 1Ax,
RE[f(X/RY")] - fooo ¢ f(x)x 17 dx as R goes to infinity.

Proof. By assumption, for all € > 0, there exists an integer N such that for alln > N, [n'""P[X = n]—c| <e.

As a result N
1 n X n 1 n
R (c— 8)_n1+Yf(R_1/Y) < R]E[f(R—l/YH < RZR—W +RD (c+ 8)_n1+Yf(R_1/Y )
n>N n=1 n>N

As a Riemann sum, R >, _ n 77 f(n /R converges toward fooo f(x)x~'7"dx as R goes to infinity. The
desired result then follows. O

Proposition 1.4.15. Let A be a random finite partition such that as n — oo, n'*"IP[||A|| = n] — ¢ for some
y €(0,1), ¢ > 0 and n"P[A; > n] converges to c/y. For all R > 1, let ¢® be the distribution of A/R'". Then,
R(1 A |Is|) q®(ds) converges weakly to (1 A ||s||)cl;m(ds) as R — oo in the sense of finite measures on S*.

Proof. The main idea for this proof is to show that the tail of A is asymptotically negligible when its first
component is large, or more precisely, that R]E[l A ([||A|| — Al]/Rl/Y)] converges to 0 when R goes to
infinity. Since ||A|| fulfils the assumptions of Lemma 1.4.14,

RE[1A(IAI/RM]——c [1AlsI1}"(ds) =c/[y (1-1)]=:C,
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Furthermore, A; < ||A[|, so we get that lim supg_, o RIE[l A(A,/RY 7)] < C,. In light of Fatou’s lemma and
the assumption on the probability tail of A,

. . Al T . 1 1/ 1 —1,— _
lknléngE[lAW]_lknlégf fOR]P[Al >R Vt]dtzfocy t7dt =C,.

In summary, when R — 0o, RE[1 A (A, /RY7)] - C,.
Now observe that if a, b, x and y are four real numbers, thenaAx+bAy <(a+b)A(x+y). In
particular, for all £ € (0,1), 1 A (|Al/RY") > (1—&) A (A1/RY") + & A([IIAll — Ay]/RYY). Moreover,
. A Ay

A
==& 1 A==
(1—¢) (slim SIE[l/\SwD (1-e)7"C,

where we have taken S = (1 —¢)" R. Similarly, for S = €' R,

All—A All—A
limSUPRJE[e/\””—l]=81—Y(1imsup51E[1/\—” ” 1])

R—0o0 Ry S—o00 SI/Y
Therefore,
All—A c,—(1—-¢g)7cC
lim sup RIE[l/\““—l}_ i ! L' =o.
R—00 Rl/Y £€(0,1) gl-r

Let f : 8¢ — R, be a Lipschitz-continuous function bounded by 1 and set g(x) := f(x,0,0,...) for
all x > 0. There exists a constant K > 0 such that for all x and y in 8, |f(x) — f(¥)| < 1 A (K |[x—yI).
Therefore

rE[ (1120 (2= 1A A G (IAIN T ¢ gl o ZKAIATZAY) 0
RY/r R/r R/r 8 RY/r - RY/r R—00

Used jointly with our assumption on ||A|| and Lemma 1.4.14, this ensures thatR]E[(l/\HAlI/Rl/V)f(A/Rl/y)]
converges to f(l AllslDf(s)c I;f“(ds) as R — oo. Lemma 1.3.14 concludes this proof. O

1.5 APPLICATIONS

In this section, we will develop applications of our three main results (Theorems 1.2.5, 1.4.1 and
Proposition 1.4.2) to various models of random trees which satisfy the Markov branching property. With
our unified approach, we will recover known results and get new ones.

1.5.1 Galton-Watson trees

Let & be a probability measure on Z_ with mean 1 and (1) < 1 (critical regime). We will be interested
in unordered Galton-Watson trees with offspring ditribution &, the law of which we will write GW,. For any

finite tree t,
W)= > []ele®)]

t/eTod ; t/~t UL’

For each positive integer n such that GW,(T,) > 0, let ng be the measure GW, conditioned on the set T,
of trees with n vertices. Similarly, if n satisfies GW;(T ,) > 0, define GW?’” as GW; conditioned on the set
T, of trees with n leaves. Moreover, let d := ged {n—1; GW¢(T,) > 0} and d; := ged {n—1; GW(T, ,) >
0}.
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Kesten’s tree. Let & be the size-biased distribution of £, that is £(k) = kE(k) for all k > 0. By assumption,
the mean of & is 1, so & is a probability measure. We define GW%X’ as the distribution of Kesten’s tree which
is obtained as follows:

— Let (X,,),>0 be a sequence of i.i.d. random variables such that X, + 1 follows £,

— Independently of this sequence, let (T, ;;n > 0,k > 1) be i.i.d. GW trees,

— Foreachn>0,let T, :=[T,;,..., Trx 1,

— For all n > 0, graft T, on an infinite branch at height n respectively, i.e. set T := b, Q=0(Vp, T,)

and denote its distribution by GW¢°.

Remark 1.5.1. These infinite trees were first indirectly introduced in [83] by Kesten who studied the
genealogy of Galton-Watson processes conditioned to hit 0 after a large time. This result entails that if T is
a GW¢ tree, the conditional distribution of T on |T| > n converges to GW§° as n — 00, Kesten’s tree can
thus be, in a way, considered as a GW, tree conditioned to have infinite height.

This tree also appears as the local limit of conditioned critical Galton-Watson trees under various types
of conditioning, see [2]. In particular, it was first proved in [81] (in terms of Galton-Watson processes) and
in [12] (in terms of trees) that if & is critical and has finite variance, then GWE > GWE"’. In [38], it was
shown that under the same assumptions, GW§ = GW§°. In both cases, the finite variance assumption
may be dropped, see [76] and [2].

The local limits of Galton-Watson trees conditioned on their size with offspring distribution with means
less than 1 were studied in [77], [76] and [1]. See also [117] for the study of the local limits of multi-type
critical Galton-Watson trees.

Using Theorem 1.2.5, we will recover the following proposition in Section 1.5.1.
Proposition 1.5.1. In the sense of the d,,. topology, GWE and GW?’” both converge weakly towards GWE".

Afterwards, we will study scaling limits of Kesten’s tree in the spirit of Theorem 1.4.1. Recall the descrip-
tions of the Brownian tree with immigration and a-stable Lévy trees with immigration from Section 1.3.2.

Proposition 1.5.2. Let T be a tree with distribution GWg° and define uq := 3,1 6, and BT = Duee(n) Ou
the counting measures on the set of its vertices and leaves respectively.

(i) Finite variance: Suppose & has finite variance o2 and that d = 1. Then, with respect to the Dgyp topology,
GHP

T ur) @ o?
(E’ﬁ) Tooo (T’B’?“B)

where (T, ug) is the Brownian tree with immigration.
(i") If & has finite variance o and if d, = 1, then

T Br) @ . o2 &(0)
RR ) (B 4 PB)

(ii) Stable case: Suppose that E(n) ~cn ™% as n — oo for some positive constant ¢ and a € (1,2). Then,

T yr @ 1/(a-1
(E’Ra/(a—l)) R—00 (‘J’a, (ckq) e )“a)

where (T, U,) is the a-stable immigration Lévy tree and k, =T(2—a)/[a(a—1)].

Remark 1.5.2. Both (i) and (ii) were proved in [48] and (i’) seems to be a new, if predictable, result.

We also mention that under the assumptions of (ii), (T /R, uf /R¥/@=1)) should converge in distribution
to (U’a, (ck )YV g (O)Ma)- We won'’t prove this statement as Assumption (S) hasn’t been proved in this
case and to do so would require quite a bit of computation. The scaling limits of Galton-Watson trees with
such an offspring distribution conditioned on their number of leaves were however studied in [85].

Section 1.5.1 will focus on the finite variance case, first on (i) and then on (i’). We will prove Proposi-
tion 1.5.2 in the stable case (ii) in Section 1.5.1.
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Markov branching property and local limits. Let N:={n>1 : GW(T,) > 0}. Proposition 37 in [66]
states that the sequence of probability measures (GW’g)n <y satisfies the Markov branching property, i.e. we
have GW; = MB} for all adequate n with g,,_; defined for all = (4,,...,4,) in ?,_, by

p'&(p) P P#T =2;]
[[s1m;(A)  PI#T =n]

qnfl(k) =

where T is a GW, tree.

Similarly, if we let Ny := {n = 1 : GW(T.,) > 0}, then in light of [111, Lemma 8], the family
(GWL ”)nEN of probability measures satisfies the Markov branchlng property and the associated se-
quence q* of first-split distributions such that GWL m= MBL “ js given forallnin N, and A = (A4,...,4,)
in P, by

ple(p) [Ty P#.T =2]
]_[1.21 m;(A)  P[#T, =n]

g () =

where T still denotes a GWy, tree.

A Kesten tree with distribution GWEO can be seen as an infinite Markov branching tree with distribution
MBZLI= where q. is defined for any A = (A, ..., Ap)in P o, by
(p—1)!
l_[]>1 ](A’)'

The distribution of Kesten’s tree may also be rewritten as GWE><D = MBﬁéqL’qri where qZ is given for all
AE€P_ o by

Goo(00,2) :=E&(p) JP[#T = 2;].

(p—1)!
1y m;)!

Proposition 1.5.1 is a direct consequence of the following results from Sections 4.3 and 4.4 in [2] used
alongside Theorem 1.2.5.

q5,(00,2) = &(p) 1o PL#. T = 4],

Lemma 1.5.3. If T is a GW¢ tree, then
P[#T =(n+1)d +1] 1 and P#,.T=(n+1)d, +1]
P[#T =nd +1] n—oo P[#,T=nd,+1] n—oo

Proof of Proposition 1.5.1. Let A =(A,,...,A,) be an element of P_,. If there exists 2 < i < p such that
A; — 1 isn’t divisible by d, then for all n € N, q,,_;(n—1—||A||, A) = 0 = g, (00, A). Otherwise, for n € N
large enough, in light of Lemma 1.5.3

! P[#T =n—||A|l]
q"_l(n_l_m”’l)zl_l,ifn%)gx)! [IP[#Tnz T “P[#T Al
Ep) == ]_[1P [#T = 4] = quol(00, A).

R | (A)

Similarly, as n goes to infinity, qrf (n—=All,A) — qﬁo(oo, A). Since these hold for any A in P_,, we end
this proof by using Corollary 1.2.6. O

Scaling limits, finite variance. In the remainder of this section, (T;);>; will denote i.i.d. Galton-Watson
trees with offspring distribution &, (Y,),1, i.i.d. £ distributed random variables and foralln > 1, S, :=
Y, + -+ Y, —n. We will also consider N, a random variable independent of both (T;); and (Y;,), and such
that N + 1 follows é .

The following so called Otter-Dwass’ formula or cyclic lemma (see [106, Chapter 6] for instance) will be
the cornerstone of many forthcoming computations.
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Lemma 1.5.4 (Otter-Dwass’ formula). With these notations, for allk > 1 and n > 1,

P[#T) +-+-+#T, =n]= SIP[SH =—k].

Let g, be the probability distribution on P_., defined by q, = g, (00, -). Let A follow g, and recall
that it has the same distribution as (#T}, ..., #Ty)'.

In this paragraph, we’ll assume that the variance o2 of & is finite and that d = 1. Recall that the
Brownian tree with immigration is a (1/2, v, [)-fragmentation tree with immigration. It was proved in
[66, Section 5.1] that Assumption (S) of Theorem 1.4.1 is fulfilled for y =1/2 and v =0 /2 - vz. To prove
Proposition 1.5.2, it will therefore be sufficient to show that Assumption (I) is satisfied for y = 1/2 and
I=0/2-I5. Forall R > 1, let ¢'® be the distribution of A/R>.

Proposition 1.5.5. In the sense of weak convergence of finite measures on 8%, R(1 A ||s||) q®(ds) converges
as R goes to infinity toward (1 A||s||) o /2 - Iz(ds).

Since Iy is unary, in order to prove Proposition 1.5.5, it will be enough to show that A satisfies the
assumptions of Proposition 1.4.15. The next two lemmas will prove that both are met.

Lemma 1.5.6. When n goes to infinity, n®/*P[||A|| = n] = (o?/2m)"/2.

Proof. In light of Otter-Dwass’ formula, for alln > 1,
n*2P[||Al =n]=n*2Y,  P[#T, +--+ #T, =n|N =k P[N = k]
=Y ké(k + 1)n'2P[S, = —k].

Recall the local central limit theorem in the finite variance case:

supkez}nl/2 P[S, = k]—(2mo?)~1/? e_k2/2”02| ——0.
As a result, there exists a finite constant C such that n'/?P[S, = —k] < Cforalln>1and k > 1andifk > 1
is fixed, n'/?P[S, = —k] — (2no?)"/2. Furthermore, Y., kE(k +1) = 02 so Lebesgue’s dominated
convergence theorem yields
lim n®?P[J|A =] =Y kE(k+ 1) (lim,, oo n"*P[S, = —k]) = (o?/27)""%.
n—oo
k>1 O

Lemma 1.5.7. When n — oo, n'/?P[A, > n] converges to (202 /m)"/2.

Proof. Observe that for all n > 0, the event {A; > n} has the same probability as {N > 1,3i < N : #T; > n}.
Therefore P[A; > n] = Zkzl é(k + 1)(1 —P[#T, < n]k). Let G be the generating function of &, i.e.
G(s) = Zkzo £(k)s* for all s € [0,1]. This function is twice-differentiable on [0,1] and we may write
P[A; > n]=G'(1)—G'(1—P[#T, > n]).

For all n > 1, Otter-Dwass’ formula gives n'/?P[#T; > n] = n'/?Y. _ m™'P[S,, = —1]. The local
central limit theorem ensures that m'/?P[S,, = —1] — (2n02)""/2? as m — 0. Therefore, for all positive &
and n large enough,

n'2 |P[#T, > n] > m—32(2no?) V2| < n'/? Z m=3/2 e —— 2¢.

m=>n n—oo

m=n

Incidentally, n'/?P[#T; > n] and n'/?Y, _ m~*?(2no?)""/2 have the same limit when n — oo which is
to say that n"/2P[#T, > n] — (2/mc?)'/? as n — 0o. As a result,

n PP 2 ) =26/ ()= 6 (1= PL#T, 2 n]) | (%)UZ 6"(1) = (2%2)1/2.
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Lemmas 1.5.6 and 1.5.7 and Proposition 1.4.15 prove Proposition 1.5.5. Theorem 1.4.1 therefore implies
that (T /R, ur /R?) converges in distribution to a (1/2, 0 /2- v, 0 /2-I) fragmentation tree with immigration.
Using Proposition 1.3.12, we may restate this last result as Proposition 1.5.2 (i). Furthermore, as a result
of Proposition 1.4.2, we get that in particular, u(T|z)/R* converges in distribution to (0®/4) i, (T3,) or
equivalently to ug, (Tgly/2)-

We will now prove Proposition 1.5.2 (i’). Assume that d, = 1. Theorem 7 in [111] proves that the
family (qrf ),, of first split distributions associated to Galton-Watson trees conditioned on their number of
leaves satisfies Assumption (S): n*/2 (1 —sl)cj,;C = 0 £(0)/2/2- (1 —s,) vz(ds). As a result, we only need
to prove Assumption (I) for y =1/2 and I = o £(0)"/2/2 - I.

Proof of Proposition 1.5.2 (i’). Theorem 6 in [111] states that there exists a critical probability distribution
¢ on Z, such that # . T;, the number of leaves of T;, has the same distribution as #7, where 7 follows
GW,. Lemma 6 further states that if £ has finite variance o2, then ¢ has variance 02/£(0).

Let A* be such that (0o, A“) is distributed according to q5,. The random partition A* is distributed like
(#:Ty,...,#,Ty)t, or equivalently, like (#7,..., #7y)}, where (7,),>; are i.i.d. GW, trees independent
of N. Therefore, if (V,,),>1 is a sequence of i.i.d. {-distributed random variables and if Z, :== V; +---+V,,—n,
proceeding as in the proof of Lemma 1.5.6 gives:

nPPIAS] = n] = Sk &k + Dn'/2P[Z, = —k] — [0%6(0)/(2m)]"%,

Similarly, the same kind of computations as in Lemma 1.5.7 yields

n2P{Af > n]=n'2[G'(1)— G'(1—P[#17, 2 n])] — [202£(0)/n

— 00

]1/2

where G still denotes the generating function of £. As a result, because of Theorem 1.4.1 and Proposi-
tion 1.4.15, when R — 0o, (T /R, u¥ /R?) converges in distribution to a (1/2, 0£(0)"/2/2- vy, 0 £(0)1/2 /2-I5)
fragmentaion tree with immigration. Proposition 1.3.12 then allows us to conlude. O

Scaling limits, stable case. In this paragraph, we’ll suppose that there exist a € (1,2) and a positive
constant ¢ such that n'**&(n) — ¢ when n — oo.

Recall that A denotes a q,-distributed variable and has the same distribution as (#T, ..., #Ty)* where
N +1 is distributed according to £ and is independent of the sequence (T},),>; of i.i.d. GW, trees. Moreover,
we will use the notations introduced to define v, and I‘®) in Section 1.3.2: (%,;t > 0) will denote a 1/a-
stable subordinator with Laplace exponent A — —log E[exp(—A%;)] = A/* and A will be the decreasing
rearrangement of its jumps on [0, 1].

It was proved in [66, Section 5.2] that the family ¢ = (q,),e Of first-split distributions associated
to (ng)nej\f satisfies Assumption (S) of Theorem 1.4.1 for y = 1—1/a and v = (ck,)/*- v,. Proposi-
tion 1.5.2 (ii) will therefore be a consequence of the next proposition. For all R > 1, write ¢® for the
distribution of R=%/(@~ DA,

Proposition 1.5.8. When R — oo, R(1 A ||s||) ¢ (ds) converges weakly to (c k,)"/*(1 A|ls|[) I (ds).

Proof. As shown in [66, Section 5.2], n'*V/#P[#T, = n] converges to [(c k,)/*aT(1—1/a)]~". Therefore,
(#T,)p>1 lies in the domain of attraction of a 1/a-stable distribution. More accurately, in the Skorokhod
topology,

#T, + -+ #T
( 1 L"”;tzo) (d)

— %(zt; £20).

n—»ooca

This, in conjunction with Skorokhod’s representation theorem, implies that there exists a sequence (X,),>0,

where foralln> 1,

@ ck 1
X, = n—;‘(#Tl,...,#Tn,0,0,...) ,
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which a.s. converges to (a version of) A.
Let F : 8¢ — R, be a Lipschitz continuous function such that F(s) < 1 A ||s|| and set f : R, — R,
t = E[F(t*/(ck,) - A)]. The dominated convergence theorem ensures that the function f is continuous.
It is clearly bounded by 1 and
t
F©) <E[1A(e%/(ck) 1A1)] = B[ 1A Sk y v |

< -
= (cky)Ve

J(l A x) 11y 4 (dx).
R,

Since n®P[N = n] — ¢, Lemma 1.4.14 ensures that when R goes to infinity, RE[ f (N/RY(*~D)] converges
toc fooo t f(t)dt = (ck,)/* fF dI®. Furthermore, because A is distributed like (c k,) "' N% Xy,

R]E[F(%) —f(}%)] SRIE[l A (K(}%)“ [ —A“):|

where K - (ck,) is bigger than the Lipschitz constant of F. We will now endeavour to prove that this last
quantity goes to 0 when R — co. For all s in 8!, let s A 1 be the sequence (s; A 1);;. Then for any x and y
in 8¢, we may write [[x—y|| =[x A1 =y A1l + [(x—xA1)—(y—y A1)

In light of Lemma 1.4.14, n]E[l A (#Tl/n“)] converges to [(ck,)/*T(2—1/a)]" . It ensues from the
i.i.d. nature of the sequence (#7T;);>, that

#T 2 #T 2
sup ]E[IIXH A 1||2] = sup (nIE[(—l A 1) ]+n(n— 1)]E[—1 A 1:| ) < 00,
n>1 n>1 n¢ ne

Fatou’s lemma (or classical results on Poisson Point Process, see [84, Section 3.2]) ensures that E[||A A 1||?]
is also finite. As a result, the sequence (||X, A1— A A1||),s; is bounded in L2. Since [|X, A1—AA1|| =0
a.s., we also have ]E[||Xn AL—ANA 1||] — 0.

If B < 1/a, then E[]A —A A1|P] < E[|AlP] = ]E[Z/f] < 00. Moreover, since it converges, the
sequence (m“l/ “P[#T; = m])m is bounded by a finite constant, say Q. Consequently,

#T b kP11 < dt aQ
_ Bl — 1 L _
]E[||Xn Xn/\l“ :I—nIE[( na 1) ]SQHZ naﬂ k1+1/0‘ 00 QJ; t1+1/a—[3 - 1—a[‘3

+ k>na

which proves that the sequence (]E[lan —X, A1 ])n21 is bounded. Since this holds for all f < 1/a, if € is
positive and such that (1+¢)B =: 8’ < 1/a, then

sup E[ (1106, — X, AD) = (A= AADIP) ™ ] < sup B[ 1%, — X, ALIP +1la—A A1 ] < o0.
n>1

n=1
Hence, the sequence (||(Xn X, A1)—(A—AA l)IIﬁ)n>1 is bounded in L'*¢. Because it converges to 0
almost surely, its mean also goes to 0 as n tends to infinity.
For all f < 1/a and ¢ > 0, there exist a finite constant C and a finite integer n, such that for alln > 1
E[IX, A1=A ALV E[lIG6,—X, AD = (A—AADIP] < e+ Cley.

Using the same arguments as in the proof of Lemma 1.4.14 it is easy to prove that for any k > a—1,

CIALK c c

RE[1 A (N/RYED)] —— CJ T Ty Taot
0

Consequently, if # € (1—1/a,1/a), we get

N a
ligs;lpR]E[l/\(K(m) HXN—A”)]
< limsup R]E[l A (4}%)}[‘{)@ Al—Anl| N]ﬂ

R—o0

ap
+RIE[1 A (Kﬁ(Rl/](\il)) ]E[”(XN —XyAL)—(A—AA 1)||’5 | N]ﬂ
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N¢ NP
i - B~
< limsup R]E|:1/\(K =) (8+CI[N<HE))]+R]E|:1/\(K B (aT) (€+CIIN<HE))}

R— o0
KCn} KfcC ng‘ﬁ
Ro/(a—1)-1 + RaB/(a—1)-1

< limsup
R—o00

Na
+ K@ Dga/@DREl ] A ————
Ro/(a—1)

a/(a—1) [a/(a—1)]/B —Naﬁ
+K £ RE 1/\Ra/5/(a—1)

=0(e*/(=™ D),

Since this holds for any positive ¢, it follows that

R]E|:1 A (K(I%)a [[%n —AH)] —0,

which in turn proves that RE[F(A/R*/(®"D)] indeed converges to (c k,)"/* [, F dI'®). We conclude with
Lemma 1.3.14. O

1.5.2 Cut-trees

Let 7 be a finite labelled tree. If T is made out of a single vertex, let its cut-tree Cut(7) be the tree with

a single vertex. Otherwise, define the cut-tree of 7 as the (unordered) binary tree Cut(7) obtained by the
following recursive process:

— Pick a — b uniformly at random among the edges of T and remove that edge,

— Let 7, and 1, be the two sub-trees of T formerly connected by a — b,

— Define the cut-tree of T as the concatenation of the cut-trees of 7, and 7,, i.e. set Cut(t) :=

[Cut(7;),Cut(ty)].

With this definition, if T has n vertices, then Cut(7) has n leaves. The cut-tree of T represents the genealogy
of its dismantling when we remove edge after edge, until all have been deleted.

Figure 1.5 — A labelled tree 7 and its cut-tree

(the edges of T are labelled in the order they are removed).

Cut-trees were introduced in [22] as a means of generalising the study of the number of cuts necessary
to isolate a marked vertex or a finite number of marked vertices. In this section, we will study the local and
scaling limits of two models of cut-trees, studied in [22] and [24], which both satisfy the Markov branching
property. Also see [26] and [41] for the study of the cut-trees of conditioned Galton-Watson trees.

Cut-trees of Cayley trees. A Cayley tree of size n > 1 is a labelled tree 7, chosen uniformly at random
in the set of trees with n labelled vertices (for convenience, with labels 1 through n). It is well-known
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that, viewed as an unlabelled tree, 7,, has the same distribution as an unordered Galton-Watson tree with
offspring law Poisson (1) conditioned to have n vertices. For all n > 1, let T, := Cut(7,) be the cut-tree of
a Cayley tree with size n.

Let (9,),>0 be a sequence of i.i.d. unconditioned GWhpy;sson (1) trees. Let To, be the tree obtained by
attaching for each n > 0 the cut-tree of 1, to the vertex of an infinite branch at height n by an edge. In
other words, set Teo = boo @0 (vn, [Cut (1‘},1)]]).

The aim of this section will be to prove the next two results.

Proposition 1.5.9. When n — oo, T, converges to T, in distribution with respect to the local limit topology.

Proposition 1.5.10. Endow T, with counting measure on its leaves ioo. Then (Toso /R, lhoo /R?) converges
as R goes to infinity to (T5,1/2 - ug) in distribution with respect to the Dgyp topology, where (Tg, ug) denotes
the Brownian tree with immigration.

Markov branching property. It was stated in [22] that (T, ) satisfies the Markov branching property and
more specifically, that the distribution of T, is MB,f’q where the associated first-split distributions are given
byq(1)=1,foralln>2,q,(p #2)=0and if 1 <k <n/2,

(n—k) 1 k=1 (n—2)!

an(n =k, k) = (n—k) k! nn3

The tree T, can be described as an infinite Markov branching tree with distribution MBﬁc’,q’qoo where the
probability measure g, is defined by qoo (P # 2) = goo (Moo # 1) = 0 and for all positive k, g, (00,k) =
P[#0 = k] where 7 is a GWpyisson(1) tree. Recall that the size of ¥ has Borel distribution with parameter 1,
therefore, for any positive k, qoo(00,k) = k*"1e* /k!.

Local limits. For any k > 1, when n — oo, Stirling’s approximation gives
Jk—1 o2k Jck=1 o=k

—(1-2/n)"—

| n— oo

k k!
We may then use Corollary 1.2.6 and thus prove Proposition 1.5.9.

qn(n_k5k)~ Zqoo(oo:k)

Scaling limits. ~Section 2.1 in [22] proves that n'/? (1 —s;)G,(ds) converges weakly to (1—s,)1/2- v5(ds)
in the sense of finite measures on SlSl.

Moreover, o is a.s. binary, and Stirling’s approximation ensures that n*/2q.,(co,n) — (2m)V/2.
Therefore, if A is such that (oo, A) follows g, and if ¢%® is the distribution of A/R?, then Proposition 1.4.15
implies that R(1 A ||s||) g®(ds) weakly converges to (1 A ||s||)1/2 - I(ds) as R — oo. In other words,
Assumption (1) is also satisfied.

Consequently, Theorem 1.4.1 ensures that when R — 00, (Too /R, lhoo /R%) converges in distribution
toa(1/2,1/2- vg,1/2-Ip) fragmentation tree with immigration with respect to the topology induced by
Dgyp- Proposition 1.3.12 then concludes the proof of Proposition 1.5.10.

Cut-trees of uniform recursive trees. A recursive tree with n vertices is a labelled tree (with labels 1
through n) such that the labels on the shortest path from 1 to any given leaf are increasing. For alln > 1,
let T, denote a labelled tree chosen uniformly at random among the set of recursive trees with n vertices
and call T, its cut-tree.

Define a probability measure 7w on IN by n(n) = 1/[n(n+ 1)] and let (X,,,7,),>0 be a sequence of i.i.d.
variables, where for each n, X,, follows 7 and conditionally on X,, = ¢, 4, is a recursive tree with ¢ vertices.
Define T, as the tree obtained by attaching the cut-tree of ¢, by an edge to an infinite branch at height n,

i.e. set Too :=boo Xnzo (vn, [Cut (ﬁ‘n)]]).
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Proposition 1.5.11. In the sense of the local limit topology, T, converges in distribution to T, when n — ©0.

It was observed in [23] and [24] that the sequence (T,),>; is Markov branching. Moreover, we
may deduce from [23, Section 2] the expression of the respective distributions g,, of A*(T,). Clearly,
g,(1) = 1, and for n > 2, if X denotes a random variable with distribution 7, then for all k < n/2,
qn(n—k,k) =P[X =k|X <n]+P[X =n—k|X <n]liz,,. In particular,

n 1 1 ‘

g, (n—k, k) = n_l(k(k+1)+(n—k)(n—k+1)) ifk<n/2,
n 5] —_ 4 . )

(n—1)(n+2) if k =n/2.

The tree T, may also be described as an infinite Markov branching tree with distribution MB§<;‘1’C1°0
where the measure g, is given by oo (P # 2) = oo (Moo # 1) =0 and for all k > 1, g, (00, k) = n(k).

If k is a fixed integer, then q,(n — k, k) clearly converges to q,,(00,k). We conclude the proof of
Proposition 1.5.11 with Corollary 1.2.6.

Remark 1.5.3. It was shown in [24] that (n/logn)™' T, converges to the real interval [0, 1] rooted at 0 and
endowed with the Lebesgue measure. However, Assumption (S) doesn’t hold.

1.5.3 The a-y model

In this section, we will study trees generated according to the algorithm of the a-y model described
in [36]. This algorithm was introduced as an interpolation between various models of sequentially growing
trees such as Rémy’s algorithm [110], used to generate uniform binary trees with any number of leaves,
Marchal’s [95], which gives the n-dimensional marginal of Duquesne-Le Gall’s stable trees (the discrete
tree spanned by n leaves chosen uniformly at random in a stable tree), and Ford’s a-model [52], used for
instance in phylogeny.

Let 0 <y < a < 1. Start with T; := {@}, the trivial tree, and T, := {@, (1), (2)}, a tree with two leaves
attached to its root. Then for n > 3, conditionally on the tree T,_;:

— Assign to each edge of T,_; (considered as a planted tree, i.e. a tree in which a phantom edge has
been attached under the root) the weight 1 — a if the edge ends with a leaf or y otherwise,
— Also assign to each non-leaf vertex u the weight [c,(T,_;) —1]a—7,
— Pick an edge or a vertex in T,_; with probability proportional to these weights,
— If an edge was picked, place a new vertex at its middle and attach a new leaf to it,
— If a vertex was selected, attach a new leaf to it,
and let T, be the tree thus obtained. We will also call AGZ,Y its distribution foralln>1and 0 <y < a < 1.

Remark 1.5.4. As mentioned at the beginning of this section, some particular choices of parameters give
previously studied algorithms:

— When a =y =1/2, we get Rémy’s algorithm [110],

— If B €(1,2), taking a =1/ and y = 1 — a gives Marchal’s algorithm [95],

— When a =y, this algorithm coincides with that of Ford’s a-model [52].

The Beta geometric distribution. Fix 6 in (0,1). Let II be a Beta random variable with parameters
(1—6,0), and conditionally on II, let X have geometric distribution with parameter 1 —I1, meaning that
P[X =n|II] =T1I"(1 —1II) for every integer n > 0. We say that X is a beta geometric variable of parameters
(6,1—0). For all integers n > 0,

1

1 _ 6Tr(n+1—-0)
P[X =n]=E[M"(1-M)]= ——— 0] —x)dx=— 2
(X =n)=E[m"(1 - B(1—9,9)Lx A=) =t ey e 10
We will also use the convention X =0 a.s.if 6 =1 and X = oo a.s. if 6 =0.
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Infinite a-y tree. Assume that 0 <y < a < 1. Let (X,,),>¢ be a sequence of i.i.d. beta geometric random
variables with parameters (y/a,1—1v/a). Let (Y, s, T,x) be a sequence of i.i.d. variables independent of
(X,), such that Y, ;. is a (a, 1 — a) beta geometric variable and conditionally on Y, ; =, 7, is an a-y tree
with £ + 1 leaves, i.e. 7, follows AG(‘;}.

Finally, conditionally on (X,,, Y, x, T,x;n = 0,k > 0), define T, as the tree obtained by grafting for

each n > 0 the concatenation of 7,,;, 0 <i <X, at height n on an infinite branch. In other words,
oo = boo ®n20 (an [[Tn,O’ cee Tn,X,[]])
and denote by AGZ"Y its distribution.

Remark 1.5.5. In Ford’s a-model, i.e. when a =y > 0, X,, =0 a.s. for all n, so a single tree is grafted at
each height. Similarly, whena=1and0<y<a,Y,; =0a.s..

We will start our study of the a-y model by proving this next proposition with the help of Theorem 1.2.5.
Similar results for a = y were already proved in [113] and in [31, Lemma 3.8] foranyO <y <a < 1.

Proposition 1.5.12. For any 0 <y < a < 1, the probability measure AG), , converges weakly to AG;‘; asn
grows to o0 in the sense of the local limit topology.

We will then study the scaling limits of these infinite trees: Section 1.5.3 will focus on the case
0 <y <a<1and Section 1.5.3,ona=7y.

Markov branching property and local limits. Proposition 1 in [36] states that the sequence (AGZ’Y)H
satisfies the Markov branching property. Moreover, the sequence q = (g,,), associated to the first split
distributions of T,,, i.e. such that g, is the law of A“(T,) for all n > 1, is given by q,(@) = 1, and for any
n>2forallA=(A,...,A,)€P,,

_ 1 rl—a)n! a?2T(p—1—7y/a) -1 T(A,—
q”m_l‘[m,-(x)( n(n—l)Z“f) [ (e § e Ay

j=1

with the conventions I'(0) = oo and I'(0)/T'(0) = 1 (which will be used throughout this section).

. £,4,400 . .
We can also write AGZ"Y = MBZ % where g, is the measure on P, given by

y/aT(p—y/a) p! ﬁ al(d;—a)

1000 = T Jap [Tmoy Lita—an

forall A = (A4,...,4,) in P, and g, (u) =0 for all u in P, with either p(u) =1 or m,(u) > 1.

If X has beta geometric distribution with parameters (y/a,1—y/a) and is independent of the i.i.d.
sequence (Y;);>( of beta geometric variables with parameters (a,1—a), forany A = (A4,...,1,) in P,
we get that

Joo(00, ) =P[X =p—1,(Y; +1,....Y, + D} = 4]

which ensures that q.,, is a probability measure on P,
Proof of Proposition 1.5.12. Let A =(A4,...,A,) be in P_,. Then, for n large enough, in light of Stirling’s
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approximation,

0 1
Tn—>oo T n—ooo
A

_ _ 1 l—a—y '(n—||Al| —a)n!
ol ”A”’”‘nplmmn( 1) 2 ) T

@ 'T(p—y/a) T(;
T —7/a) l_[m—a)w

y/aT(p—y/a) p! l—[ al(A; —a)
n—oo  T[(1—v/a)p! ]—[j21mj(k)! Ly T(1—a)Ay!

We conclude with Corollary 1.2.6. O

= qoo(oo;l)—

Scaling limits. In this paragraph, we will assume that 0 <y < a < 1. Let X be an a-stable subordinator
with Laplace exponent A — A% and Lévy measure I1,(dt) = a/T(1 —a)t 1"*1,.,dt. Define A as the
decreasing rearrangement of its jumps on [0, 1]. We define the dislocation measure v, for all measurable
functions f : Sil — R, by

ri—a)

ST B Qe D) f(a/2,)]

fdvy, =
84,
Results from [36] and [67] ensure that the family g satisfies Assumption (S): whenn — oo, n”(1—s;) g,(ds)
converges weakly towards (1 —s;) v, (ds).
We also define the immigration measure I, , for all measurable functions F : st > R, by

FdI F(tl/a A)] d
Mahacd = i- y/a) e O

Proposition 1.5.13. Let T be distributed according to AG;‘; and endow it with u, the counting measure
on the set of its leaves. With respect to the Dgyp topology, (T /R,ur/RY") converges in distribution to a
(V> Vay> Lay) fragmentation tree with immigration.

Proof. Let A be such that (00, A) follows g For all R > 1, set ¢® as the distribution of R"Y/7A. In light
of Theorem 1.4.1, it is sufficient to prove that R(1 A ||s||)q®(ds) = (1 A lIsl)I,,,(ds) when R — oo.

To prove this claim, we may proceed as in the proof of Proposition 1.5.8. The only significant difference
is that the constant 8 used near the end of that proof must now belong to the open interval (y, a). O

Remark 1.5.6. Let 3 bein (1,2) and set a =1/, y = 1 —a. It was proved in [95] that the distribution
AG] JBA-1/p coincides with GW§’”, where the generating function of & is given by s — s + (1 —s)P.
The results of Propositions 1.5.12 and 1.5.13 are then consistent with those of Proposition 1.5.1 and

Remark 1.5.2.

Ford’s a-model. When a = y, no weight is ever assigned to vertices. Consequently, the trees generated
by this algorithm are a.s. binary (i.e. each vertex has either two children or none). Furthermore, the
sequence (q, ), of associated first split distributions is much simpler: g, (&) still equals 1, and for n > 2, if
a<l,foralll <k<n/2,

an(n— k) = 2= 1) ;)

I'n—k—a)T(k—a) +(1—2a)(n—k)k
I1—a)l(n—a) \ 2 n(n—1) ’

finallyifa=1, q,(n—1,1) = 1.
Moreover, if a is positive, for alln > 1, g, (00, n) = aT(n—a)/[T(1—a)n!] and g (A) = 0 if p(A) # 2
or myo(A) # 1. As aresult, a tree with distribution AG;O& is obtained by grafting at each height of an infinite
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spine a single tree with distribution AGJ;’ ;1 where N, its number of leaves minus 1, has beta geometric
distribution of parameters (a,1 — a).

Scaling limits of Ford’s a model. Let a € (0, 1). Results from [67, Section 5.2] ensure that (T,), satisfies
Assumption (S): when n — oo, n* (1 —s;)q,(ds) = (1—s;) vsf)(ds) where vff) is the binary dislocation
measure defined for all measurable f : Sil — R, by

1

wm__ 1 a 2—4a _
deva = Ti—a) 1/2([x(1—x)]1+“+[x(l—x)]“)f(x’l x,0,0,...)dx.

Furthermore, q., is a.s. binary and Stirling’s approximation ensures that q.,(oo,n) is equivalent to
[a/T(1—a)]n~'"® when n — oo. Consequently, if A is such that (0o, A) follows ., and g® denotes the
distribution of A/R*/*, Proposition 1.4.15 proves that R(1 A [|s||)¢®(ds) = (1 A l|s|) [a/T(1 — a)]I""(ds)
as R — oo. Therefore, if we set I(gF) :=a/T(1—a)-1;", we may use Theorem 1.4.1 and Proposition 1.4.2
to get the following result:

Proposition 1.5.14. Let T be an AGY", tree with a in (0, 1) and endow it with the counting measure on the
set of its leaves. Then, (T /R, ,uf /RY/®) converges in distribution to a (a, v&F),IgF))-fragmentation tree with
immigration with respect to the topology induced by Dgp.

Remark 1.5.7. When a =1/2, i.e. in Rémy’s algorithm, these results coincide with Proposition 1.5.1 and
Proposition 1.5.2 (i) for £(0) = £(2) = 1/2.

When a = 1. Inthis case, the algorithm’s output is deterministic: for each n > 2, a tree T,, with distribution
AGT |, is simply equal to a branch of length n —1 upon which a single leaf has been grafted at each non-leaf
Vert:ex (a “comb” of length n). Similarly, an infinite tree with distribution AG;X; is the “infinite comb”,
obtained by attaching a single leaf to all the vertices of the infinite branch. ’

As a result, if T has distribution AGT] and uy denotes the counting measure on the set of its leaves,
then clearly, (T /R, ur/R) converges as R — 00 to the metric space R, rooted at 0 and endowed with the
usual Lebesgue measure.

When a =0. Observe that q,(n —k, k) = (2 —14-,/2)/(n—1). Then for all K > 1 and n large enough,

K—1
PA*(T)AK =00, AK]=1— —— —— 1,
n—1 nooo
which implies A*(T,) — (00, 00) a.s. when n — c0. Theorem 1.2.5 then ensures that T, converges in
distribution to the complete infinite binary tree (in which every vertex has 2 children). Moreover, since
T, C T,,; a.s., this convergence happens almost surely.

With Assumptions (S) and (I’). Let us give an application of the result from Remark 1.4.2.

For any a in (0,1) and n € N U {oo}, denote by qr(l“) the first-split distribution (with respect to the
number of leaves) associated to a tree with distribution AG), ,. Now, fix 0 < a < 8 < 1, and consider a tree
T with distribution MB&q(a)’qg@ endowed with ur, the couﬁting measure on the set of its leaves. We may
deduce from previous results that (qff‘))n21 and qgi) satisfy Assumptions (S) and (I’).

Consequently, (T /R, uy /R'/P) converges in distribution to the metric space IR, rooted at 0 and endowed
with a random measure y = .., IIs;|| 5, , where >}, 6, s is a Poisson point process on R, x st with
intensity measure du ® I/(SF)(ds).
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1.5.4 Aldous’ p-splitting model

This section will focus on the study a model of binary random trees introduced in [10, Section 4] as a
Markov branching model. Let 3 > —2 be fixed. Set ¢;(@):=1and foralln>2 and 1 < k < n/2,

2—Tly, T(n—k+1+p) T(k+1+p)

an(n =k, k) := Z, (n—k)! Kl

where Z, is a normalising constant. For all n > 1, let T,, be a random tree with distribution MBrf’q.

Remark 1.5.8.  — The constant Z, is given by
n—1
z. ::Z I'n—k+1+p) F(k+1+/5).
— (n—k)! k!

When § > —1, it simplifies to Z, = [B(1+,1+B)—2B(n+1+6,1+p)]-T(n+2+2p)/n! (where
B denotes the usual Beta function) and when 8 = —1, it becomes Z, =2/n - Z: kL.

— When f# =—3/2, observe that the sequence (g, ), is the same as that of the a-model with a =1/2
(see Section 1.5.3). Therefore, like Rémy’s algorithm, this model generates uniform binary trees with
any given number of leaves.

There are three regimes in this model, respectively 3 > —1, f = —1 and 8 € (—2,—1). The asymptotic
behaviour of g,, were studied in [10, Section 5] in these three regimes.

Local limits. In this paragraph, we will focus on the study of the local limits of T,,. We will once again
rely on the Markov branching nature of the model and on Theorem 1.2.5.

Proposition 1.5.15. 8 > —1: In the sense of the local limit topology, T, converges in distribution to the
infinite binary tree.

B e(—2,—1): LetX follow the beta geometric distribution with parameters (2+3,—1—f3) (see Section 1.5.3).
Define qoo, a probability measure on P, by qoo(00,k) =P[X =k —1] for any k = 1 and qoo(A) =0 if
p(A) # 2 or meo(A) # 1. With these notations, T, converges in distribution to MB2% with respect to the
local limit topology.

Remark 1.5.9. Suppose f € (—2,—1) and let (X,,, T,),>0 be an i.i.d. sequence such that for each n, X,
has beta geometric distribution with parameters (2 + 3,—1 — f3) and conditionally on X, =k —1, 7, is
distributed like T. Finally, denote by T, the tree obtained by attaching by a single edge the tree 7,
respectively at each height n of an infinite branch, i.e. To, :=boo Q=0 (vn, [['rn]]). The tree T, hence
obtained has distribution MB~.%9>.

Proof. Observe that in light of Stirling’s approximation, I'(n + 1+ f8)/n! ~ n when n — co.
B>-—1: Whenp > —1, using Stirling’s approximation once again, we get that Z, ~ B(1+f,1+p)n 12/
so if k > 1 is a fixed integer, q,(n —k, k) = O(n**#) when n — oo.

When  =—1, Z, ~ 2/n-logn hence, for any fixed k > 1, q,(n—k, k) ~ 1/(k logn) as n — oo.

Therefore, for any f > —1,if K > 1,

gu[b € Py uAK = (K,K)] = 1= 3 q,(n—k, ) — 1.

Lemma 1.2.3 then ensures that q, = (o o0)- It follows from Theorem 1.2.5 that T, converges in distribution
to the (deterministic) infinite binary tree.

59



Local limits of Markov branching trees and their volume growth Applications

pe(—2,—1): Letp e(—2,—1). Stirling’s formula ensures that the sequence (i_/j r@G+1+ [5)/i!)i>1 is
bounded by a finite constant. As a result, the dominated convergence theorem ensures that

Z, Z I(k+1+p) T(n—k+1+pB) (n—k)P

(2 - ]12k=n) ]12k§n

nf &k (n—kP(n—k)! nf
T(k+14+p) r2+p+)
oo 2; k! =205

where we have used the definition of the beta geometric distribution with parameters (2 + f3,—1—f) as
introduced in Section 1.5.3.
Consequently, for any fixed positive integer k,

T(k+1+p)T(n—k+1+p) (=1—PIT(k+1+p) _

li —k,k)= lim 2 = = (oo (00, k).
nilgoq”(" ) sy k! Z,(n—k)! T2+ pB)k! Gool )
We may then conclude with Corollary 1.2.6. O

Scaling limits. We will now study the scaling limits of the f-splitting model when 8 € (—2,—1) with
the help of Theorem 1.4.1.
Let V%B) be the dislocation measure such that for all measurable f : Slgl - Ry,

o _ =1=B (" s e
fdvﬂ = Tt p) tP(1—-t)’ f(1—t,t,0,0,...)dt.
0

It follows from Section 5.1 in [67] that (g,,),>1 satisfies Assumption (S) fory =—1—f and v = V%B). More
precisely, n77P (1 —s,) §,(ds) converges weakly to (1 —s;) V%B)(ds) as finite measures on 8131.

Let A denote a random integer such that (0o, A) has distribution q., and for all R > 1, set ¢® as the
distribution of A/RY1P)_ Just like in Section 1.5.3, Stirling’s approximation and Proposition 1.4.15 ensure
that Assumption (I) is met for y = —1 — 8 and the immigration measure I/gB) =(-=1-p)/T(2+p)- Iﬂrll_ﬁ.
As a result,

Proposition 1.5.16. Fix § € (—2,—1). Let T be a MBi;q’%0 tree and endow it with ur, the counting measure
on the set of its leaves. In the topology induced by Dgpp, (T /R, ,u? JRY1=P)) converges in distribution to a
(—1-p, V%B), I[(jB))—fragmentation tree with immigration.

1.5.5 k-ary growing trees

Let k > 2 be an integer. In this section, we will study a model of k-ary trees, i.e. trees in which
vertices have either O or k children, described in [69]. This model is yet another generalisation of Rémy’s
algorithm [110] (which corresponds to k = 2).

The following algorithm allows us to get a sequence (T,),>o of k-ary trees such that for all n, T, has n
internal vertices (vertices that aren’t leaves) or, equivalently, kn + 1 vertices or (k—1)n + 1 leaves. First, let
T, be the trivial tree {@} and for n > 1, conditionally on T,_;:

— Pick an edge of T,_; (considered as a planted tree) uniformly at random,
— Place a new vertex on that edge and attach k — 1 new leaves to it,
and call T, the resulting tree. We will denote the distribution of T, by GT}.

The negative Dirichlet multinomial distribution. Let IT be a (k — 1)-dimensional Dirichlet variable with
k parameters (1/k,...,1/k), i.e. II takes its values in the (k — 1)-dimensional simplex {x € (0, c0) :
X1+ -+ x; = 1}. Conditionally on II, let X = (X, ...,X;_;) have negative multinomial distribution of
parameters (1;11), i.e. foreachi € {1,...,k—1}, X; counts the number of type i results before the first type
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k result (failure) in a sequence of i.i.d. trials with k possible results with respective probabilities I, ..., IT;.
For any non-negative integers ny,...,n,_; and with N =n; +--- 4+ n;_;, we have
k

k—1
N! n‘ 11 l_lr(”i“/k)
P[X = (ny,... =E| ———— | || =7 '
[X =, o)) [nl!...nkl!gl k} k1+N L1 T(/kn!

The random variable X is said to follow a (k—1)-dimensional negative Dirichlet multinomial distribution with
parameters (1;1/k,...,1/k) which is a multidimensional generalisation of the beta geometric distribution.
Further observe that the sum ||X|| = X; + --- + X;_; has beta geometric distribution with parameters
(1/k,1—1/k) and that conditionally on ||X|| = n, X follows a (k — 1)-dimensional Dirichlet multinomial
distribution with parameters (n; 1/k,...,1/k).

i=

Corresponding infinite tree. Let (X,,, T, 1,...Tyk—1)n>0 D€ @ sequence of i.i.d. variables such that for all
n >0, X, is distributed according to a (k — 1)-dimensional (1;1/k, ..., 1/k) negative Dirichlet multinomial
distribution and conditionally on X,, = (mj,...,my_1), Ty 1,..-, Tox—1 are independent and have respective
distributions GT} ..., GT,*".

Conditionally on (X,,, Tp,1,- - - Tpx—1)n>0, 1€t Too be the tree obtained after grafting at each height n > 0
of an infinite branch the concatenation of 7,,;, 1 <i < k—1, i.e. set

Teo :=Dbeo ®n20 (Vn: H:Tn,l: e Tn,kfl]])y

and let GT;” be the distribution of T.

Section 1.5.5 will prove the following proposition.

Proposition 1.5.17. In the sense of the local limit topology, GT}; converges weakly to GT;° when n goes to 0.

Let IT be a (k — 1)-dimensional Dirichlet variable with parameters (1/k,...,1/k). Following [69,

Section 3.1], we define the dislocation measure va such that for all measurable f : 821 - R,

r(1/k) ]E[f[(l'[,o, 0,...)%] ]

d GT:
fdv k 1—1I,

L
SSI

Let A be a (k — 2)-dimensional Dirichlet variable with parameters (1/k,...,1/k). We also define the
immigration measure I kGT for all measurable functions F : 8' — R, by

1/k <
LlF(s)I,f’T(ds) :=mfo 7 VE[F(£(4,0,0,...04) |dt.

The aim of Section 1.5.5 will be to prove the next proposition.

Proposition 1.5.18. Let T be a GT°-distributed tree and endow it with ., the counting measure on the set
of its internal vertices. With respect to the topology induced by Dgyp, when R grows to infinity, (T /R, uj /RF)
converges in distribution to a (1/k, v{',I¢")-fragmentation tree with immigration.

Markov branching property and local limits. For any t in T, we define A°(t) as the decreasing re-
arrangement of the number of internal vertices of the sub-trees of t attached to its root, i.e. we let
A°(t) := A(t) — A*(t). In the setting of k-ary growing trees, A°(T,) = @ a.s. and if n > 1, A°(T,) takes its
values in the set of decreasing families of (Z,)* with sum n— 1. Because of the deterministic relationship
between n, #T, and #T,, we have A(T,) = A“(T,) = @ and for n > 1, A(T,) = kA°(T,) +(1,...,1) in
Prn and A*(T,) = (k—1)A(T,)+(1,...,1) in Pg_yyn4q. Forall n > 1, call g°_, the distribution of A°(T,),
that is the first-split distribution of T,, with respect to internal vertices.

Proposition 3.3 from [69] states that (T, ),», satisfies the Markov branching property and the distribution

of T, may be expressed as either MBin 4 OF MB(Lkﬂf)n +; Where g and g* are both easily obtained from
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(g;)n=0- Rewriting the formula from this last proposition for our purposes (where partition blocks are
arranged in decreasing order), for alln > 1 and A = (44,...,A;) decreasing with sum n, we get that

. (k=1 1 TR BT +1/K) (J+n 0!
M= njzlmj(A)!Er(nHH/k)El[ T(1/k)A;! Z( 2 (DA ';; )

We can rewrite GT{® as the distribution MB&3> or MB&;‘IL'qfo of an infinite Markov branching tree. The
corresponding measures g, and g, on P, can also be easily deduced from the measure g2 on the set of
decreasing k-tuples of Z, U {oo} with infinite sum such that g7 (A1) = 0 if A, is infinite and

k

. (k—1) 1 1 T(A; +1/k)

42(00, A, 1) = = 1 :
]_[jZl m;(A)! kIAl+1 ;3 T(1/k)A;!

for any integers 0o > 4, > --- > A, > 0. Observe that g3 (00, A,,...,A;) = IP[Xl =(A,,. ..,)Lk)] where

X is a (k — 1)-dimensional negative Dirichlet multinomial variable with parameters (1;1/k,...,1/k). As a

result, q;  is a probability measure.

Proof of Proposition 1.5.17. Let A = (A,,..., ) be a decreasing sequence of (Z,)*! and set L = A, +

-+ 4 Ay. For n large enough, we have )
i n“lf xtdx o(n)
n 0

q;(n—L,Az,...,Ak) 2 n—oo 2 n—o0 || n—o0

A

(k=1 1T +1/K) T(n—L+1/k) G+1)! A0 G +n—A)!
_HjZImj(A)!E!;[ T(1/k)A;! F(n+1+1/k)[ZO: ZZIJZO: (n—L)! ;! }

(k=1 1 1 ﬁr(xiﬂ/k)_
n—oo [Toymy(A) k L+1 1) T(A/k)A!

0000, 2).
Corollary 1.2.6 concludes this proof. |

Scaling limits.  Proposition 3.1 in [69] states that n'/* (1 —s,)g?(ds) = (1—s,) ¥¢"(ds) as n — oo in
the sense of finite measures on 8131. Assumption (S) of Theorem 1.4.1 is thus met for the sequence q°.
To prove Proposition 1.5.18, we will need the following lemma. Let X = (X1, ...,X;_;) denote a negative
Dirichlet multinomial variable with parameters (1;1/k,...,1/k).

Lemma 1.5.19. Let A be a (k—2)-dimensional Dirichlet (1/k,...,1/k) variable. For all Lipschitz-continuous
functions G : [0, 00)*"! — R, such that G(x) < 1 A||x|| for all x in [0, c0)k1,

RE[G(;)] R—00 F(l—l/k)f ' VRE[G(e A)]de.

Proof. Let (Y,),>1 be i.i.d. and such that conditionally on A, Y, is multinomial with parameters (1; A).
Moreover, set Z,, :=Y; +---+Y,. The law of large numbers ensures that Z, /n converges almost surely to A.
Let N be independent of A and (Z,,),, and have beta geometric distribution with parameters (1/k,1—1/k).
Observe that X has the same distribution as Zy.

Define g : R, — R, by g(t) := E[G(t A)]. The dominated convergence theorem implies that it
is continuous and it clearly satisfies g(t) < 1 A t. Lemma 1.4.14 then ensures that RE[g(N/R)] —
[kr(1— 1/k)] f t7 1 Vkg(r)dt.

Since Z, /n a.s. converges to A and because ||(Z,,/n) — A|| < 2, we can use the dominated convergence
theorem to state that for all positive ¢, there exists n, such that E[||(Z,,/n) — A||] < € as soon as n > n,.
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Therefore, if K is the Lipschitz constant of G,

mefo(e )] -nelo(e)] <ol - 2]

N )] 2Kn, 1/k 1A (Ket)

<RE|1A(Ke—
[ ( Rk R-1 Roco T(1—1/k) ),  ti+Uk

de

where we have used Lemma 1.4.14. This last quantity in turn converges to O when ¢ — 0 which proves the
desired result. O

Proof of Proposition 1.5.18. Recall that if A is such that (0o, A) follows q7_, then A is distributed like X 2
We may then deduce from Lemma 1.5.19 and Lemma 1.3.14 that Assumption (I) holds for q7_, I =1 ,?T
and y = 1/k. As a result, Theorem 1.4.1 concludes this proof. |
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CHAPTER 2

LOCAL LIMITS OF GENERALISED MARKOV
BRANCHING TREES AND THEIR VOLUME

GROWTH

In Chapter 1, we considered two notions of “size” for trees: namely their number of vertices and their
number of leaves. Furthermore, we described the two constructions that Haas and Miermont [66] gave of
Markov branching trees corresponding to these two notions of size.

Rizzolo [111] considered a more general notion of size and introduced a unified and more general
construction of Markov branching trees with a prescribed number of vertices whose degree belongs to a
given subset of Z_ . He also extended Haas and Miermont’s Theorems 5 and 6 from [66] to this new family
of generalised Markov branching trees and gave an application of his result to Galton-Watson trees under
some conditioning.

In this chapter, after recalling Rizzolo’s construction and extending it to infinite Markov branching trees,
we will broaden the scope of the results of Chapter 1. We will freely use the notations introduced in this
last chapter.

2.1 GENERALISED MARKOV BRANCHING TREES AND
THEIR LOCAL LIMITS

Let A be a fixed non-empty subset of Z_ . For any finite tree t in T, let V4(t) :={u € t: ¢, (t) € A}
be the set of the vertices of t whose degree lies in A, and let #,t := #V,(t) be the number of such
vertices. For alln € Z_, let T‘: be the set of all finite trees with n vertices with degree in A, that is set
TA:={t €T o : #4t =n}.

Remark 2.1.1. — IfA=Z,, #,t = #t is simply the number of vertices of t. Similarly, if A = {0},
#,t = # .t is the number of leaves of t.
— When 0 ¢ A, observe that T # .

Partitions of integers. Let t be in Tfl and be such that t = [t;,..., t,] for some integer p and finite trees

ty,...,t,. Set A(t) := (#4ty,...,#4t,)" and observe that |[A%(t)|| is either n or n— 1 depending on

whether p € A or not and that some blocks of A*(t) might be 0. As a result, to construct Markov branching

trees with given sizes with respect to #,, we will need to tweak the notion of partitions of integers.
Forallnin Z, U {00}, set

Pri={A= (X)) €2 i p2 0,220 2 2
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and P := |, P% as well as P* := P% __ UP%_. Observe the only difference between P* and the set P
from Section 1.2 is that elements of P* are allowed to have blocks equal to 0.
We will use similar notations as in Section 1.2. Let A = (A4,...,4,) be in P* and set

— p(A) :=p its length.

— Al =21 +---+ A, its sum.

— AAK:=(A; AK,..., A, AK) its truncation at level K, for all non-negative integers K.

— m(A) =), 1, the number of blocks of A equal to k where k € Z, U {oo}.

— For all p > 0, we will also write 0, for the element of P* such that p(0,) = p and [|0, || = 0.
Now foralln € Z,, set

Phi={reP :pA)¢Alu{reP  :p(d) €A}
We also endow P* with the ultra-metric d,. defined for all A and u in P, let

dyp. (A, 1) := exp[—inf{KZO : AAK;&MAK}].

Compare with the definition of d;. This metric satisfies results similar to Lemmas 1.2.2 to 1.2.4. In
particular,

Lemma 2.1.1. (i) (P*,dy.) is Polish.
(ii) If A,, n=1 and A are P*-valued random variables, then A, = A with respect to d. iff for all K = 0
and A € P,
P[A, AK =AAK] —OO>JP[A/\K =AAK].
(iii) If furthermore, A, is T’:-valued for all n and my,(A) =1 a.s., then A,, = A with respect to d. iff for
al A € P*

<o’

P[A,=(n—L,A)] — P[A=(00,1)]
with L = ||A]| + L[ p(1) + 1].

Finite Markov branching trees. Let N be an infinite subset of Z, with 1 € N and such that 0 € N iff 0 ¢ A.
This set will once again index all the sizes, with respect to #,, of the random trees we will want to generate.
Now let ¢ = (g,,) e De a sequence of probability measures such that
— If0 €N, qq is supported by T4.
— For all n # 0, g, is supported by

{rePr:neN,1<i<pM)}

and q,(m,=1) < 1.
We will now detail how to build a sequence MB*4 = (MBﬁ’q)neN of probability measures respectively
supported by Tﬁ, which satisfies a version of the Markov branching property. More precisely MB*4 will
be such that for all n, if T has distribution MBﬁ’q, then the law of A%(T) is q, and conditionally on
MT)=Ay,...,A))and T = [TD, ..., T®] with #,T® > ... > #, TP the trees TW,..., T® are
independent and such that the law of T is MB’:’iq.

To build MB*? = (MB29), ., we will use a similar construction as for MB“¢ in Section 1.2.2. In
particular, we will proceed inductively on n. If 0 € A (and thus 0 ¢ N), let MB;\’q be the law of a branch
with geometric length with parameter 1 —q; (1), i.e. MB?’q (b,) = q1(1)[1—q;(1)], where for all k > 0, by
denotes the branch with length k. Otherwise, when 0 ¢ A, set MBg’q = qo. Now, for n > 1,(0),

— Let T, be a branch of geometric length with parameter 1 —q,(n) and denote its leaf U,

— Let A have distribution g,, conditioned on the event {m, = 0},

— Conditionally on A = (A4,...,A,), let (Ty,...,T,) be independent random trees respectively dis-
tributed according to MBin for1<i<p,
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— Graft the concatenation of these trees on the leaf U of T, i.e. set T := T, ® (U, [Ty,..., TP(A)]]) and
let MB? be the distribution of T.

Additionally to ¢ = (q,,) e, consider g, a probability measure on P} and supported by

{reP: 2, eNU{oo},1<i<p(A)}.

To define an infinite Markov branching tree with probability measure MB’;’g’q"0 supported by T, we can
proceed in the exact same manner as in Section 1.2.2. When g, (ms, # 1) = 0, we can use the construction
detailed in Remark 1.2.4.

The proof of Theorem 1.2.5 can be adapted to get the following result:

Proposition 2.1.2. If q,, = q, With respect to d., then MB‘Q’q = MB/;’E’q“ with respect to di,..

2.2 SCALING LIMITS AND VOLUME GROWTH

As mentioned at the beginning of Chapter 2, Rizzolo [111] extended Haas and Miermont’s result
from [66] to the framework of generalised Markov branching trees.

Let t be a tree and let u, be the counting measure on V,(t). Recall that if u is in t, then t, denotes the
sub-tree of t above u. We will need the following notations:

— Let IT4(t) be the tree obtained by cutting away all the finite sub-trees of t which contain no vertices
in V4(t), i.e. set

[Mu(t) :={uet:#t, =00 or #,t, > 0}.
These cut-away sub-trees are often called fringe sub-trees.

— Observe that the leaves of I1,(t) are attached to the main body of I1,(t) by branches with varying
lengths. Define ¥,(t) as the tree obtained by shortening all those branches to have length 1. More
precisely,

Uy(t) :={u€t:#t, =00 or #,t,.) > 1}

— Finally, let ®,(t) be the tree obtained by attaching a new leaf to each non-leaf vertex in W,(t) which

belongs to V,[¥,(t)], in other words, set

o) =) X (wby)

UEV \ (0} W,(T)

where b; denotes the branch with length 1.

Figure 2.1 — A tree t, IT4(t), ¥,(t) and &,(t) with A= {2}.
(The red edges and vertices are deleted and the green ones are added)

Let ¢ = (q,)qen be a sequence of first-split distributions. For all n # 0 in N, let T,, have distribution
MBﬁ’q and endow it with the counting measure on V,(T,) denoted by u,,. Let ¢ : P%__ — 8! be defined
by t(A) = (A/lIAll, ..., A/ lIALLLO,...) if [[All > 0 and «(A) := (1,0,0,...) otherwise. Finally, set
G, :=q, ot~ ! the pushforward of g, on 8* by the function t.

Also fix a probability measure q., on P;_ and suppose that o, (ms, # 1) = 0. Let T be an infinite
Markov branching tree associated to g and ¢, i.e. a MB’?;ﬂ’qoo distributed random tree. Endow T with
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the counting measure ur on V,(T). Let A be a P% __ valued random variable such that the law of (oo, A)

iS Qoo
In the remainder of this section, we will make assumptions similar to those from Section 1.4:
(S) There exist ¥ € (0,1) and a conservative dislocation measure v such that

n'(1—s51)q,(ds) = (1—s;) »(ds).
(I) There exists an immigration measure I such that

RE[F(A/RYT)] — [ F(s)I(ds)

for any continuous F : 8* — R, with F(s) < 1A ||s]|.
Under Assumption (S), Rizzolo proved the following result:

Theorem 2.2.1 ([111], Theorem 5). If 0 ¢ A, suppose that

dGHP((n_YTn: n ), (N TL(T,), n_lun)) Lo

n—oo
T u denp
—nTn’ on — (37)/ pe
nv n n—0o0 ’

To prove Theorem 2.2.1, Rizzolo first proved that for all positive n in N, the law of T, := ®,(T,) is
MBf’qo for a well-chosen family q° = (q; ), (0; defined as follows:

Then

— Consider y : P* — P such that for all A in P and any integer k,
A ifp+kéeA,

A,0.) :=
%(%,04 {(,1,1) ifp+k+1€A,

— Foralln#0in N, setq, :==q, © 2! and observe that it is supported by P,,.
See Lemma 2 in [111]. He then went on to prove that g° satisfies Assumption (S) and that as a result,
Haas and Miermont’s Theorem 1.3.7 holds: if u; denotes the counting measure on the set of leaves of T,
(n7T?,n"'u?) converges in law to a (y, v) fragmentation tree, see Lemma 3 in [111]. Finally, he proved
that T, and T, are “asymptotically close”. We will use a similar approach to extend Theorem 1.4.1:

Theorem 2.2.2. Under Assumption (S) and (I), if we further assume that

Dese((R™ TR 7py), (RMI(T).R iy )) —— 0, )

T Ur denp o1
(R’Rl/Y)R—»oo JY”"

Remark 2.2.1. — When 0 € A, T1,(T) = T so Assumption (A) holds.
— When 0 ¢ A, if we assume that ¢, is supported by a set of trees with bounded heights, then
Assumption (A) is fulfilled.
— If Theorem 2.2.2 holds, its also entails functional convergence of the associated volume growth
processes, compare with Proposition 1.4.2.

then

The proof of Theorem 2.2.2 will be split into the next few lemmas.

Lemma 2.2.3. Let T° := ®,(T). The law of the infinite tree T° is MBﬁ(;‘ilo’qZ0 where q° is the previously defined
sequence and q°_ = (oo 0 ¥ "
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Proof. Write T =[T,,..., Tyl with #T, = oo, #,T, > --- > #,Ty. By construction of T, T is distributed
like T and A := (#,Ty, ... #,Ty) is such that the law of (00, A) is g, and is independent of T,.
Similarly, let T° be written as T° = [Ty, ..., Ty, ] for some integer N’, with #Ty, =00 and #,T; =
2 #p Ty Let A i=(#,T), ..., #,.Ty)).
By definition of the function ®,, we get that conditionally on A = (44,...,4,,0;) with 1, >0,

(00, A1,...,4,) ifp+j+1¢A,
(00,A°%) = . ,
(00,24,...,4,,1) ifp+j+1€A

In other words, (00, A°) = y (00, A) which means that its distribution is qg .

Conditionally on A, the sub-trees Ty,..., Ty are independent so conditionally on A®, T, ..., Ty, are
independent as well. Moreover, conditionally on A° = A, if A; > 2, T;” = ®,(T;) and thus has distribution
MBf"qo in light of [111, Lemma 2], and if A; = 1, then T; =D, so is MB. ¢ distributed.

ﬁinally‘, we have Tg = ®,(T,), so T, and T*° are identically distributed. Consequently, T° is indeed
Markov branching and its distribution is MBﬁéqo’qooo. O

Lemma 2.2.4. If q., satisfies Assumption (I) then so does q¢ . In particular, if A° is such that (00, A°) is
q°-distributed, then for all continuous F : 8* — R with |F(s)| < 1 A |ls||,

RE[F(A°/RYT)] — [ F(s)1(ds).

Proof. Let A be such that the distribution of (00, A) is g, and let A° satisfy (0o, A°) = y (00, A). As such,
the law of (00, A®) is g7 . Moreover, observe that a.s., [|[A°—A|l < 1.

Let G : 8 — R be bounded and Lipschitz continuous, i.e. there exists a finite K such that for any two x
and y in 8!, |G(x) — G(y)| < K||x—y]||. Then observe that for all positive R

RIE[G(A"/RY) = Ga/RY | SRIEL%”A"—AH} <KR——0

because y < 1. Consequently, for all bounded and Lipschitz continuous F : 8* — R with |F(s)| < 1 A|ls|,
limg_, 0o RE[F(A°/RY7)] = limg_, oo RE[F(A/RY7)] = [ F(s)I(ds).

Classical results on weak convergence of finite measures entail that this convergence holds for all bounded
and continuous F : 8¢ — R with |F(s)] < 1 A||s||, which concludes this proof. m|

Lemma 2.2.5. Let (X,,),>1 be asequence of i.i.d. non-negative random variables and assume that E[exp(aX)]

is finite for some positive a. Then
i X,V VX,
lim sup

n—00 logn
is a.s. bounded by a finite constant.

Proof. Observe that for all positive t,
P[X;V---VX,/logn>t]<nP[X; >t logn] = nP[e® > n%] < n!"*E[e™]

where we used Markov’s inequality. Taking t > 2/a, we can use Borel-Cantelli’s lemma to ensure that

limsup, ,co(X; V---VX,)/logn<t
almost surely, which concludes this proof. O

Proof of Theorem 2.2.2. Let T° := &,(T) and denote by uy. the counting measure on the set of its leaves.
Lemmas 2.2.3 and 2.2.4 and Lemma 2 from [111] allow us to use Theorem 1.4.3 and deduce that
DGHP

(RT°,R Yy ) = !

R—oo TV’
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We will now prove that Dgp[ (R T,R uy), R T°, R ur.)] — 0 in probability, which will suffice to
conclude. We will proceed in two steps: first we will prove that T° = &,(T) and W,(T) are asymptotically
close and we will then prove the same for ¥,(T) and I1,(T).

(i) Endow ¥,(T) with the counting measure on the set V,[¥,(T)]U £L[¥,(T)] denoted by u.. Let C be
the correspondence between ¥,(T) and ®,(T) given by

C={(wu) ue v (T} u{(pr(v),v) v e a,(T),v ¢ 1\(T)}

and for all k > 0, set C; :={(u,v) € C : |u| <k, |v| < k}, which is a correspondence between ¥,(T)|;, and
®,(T)|;. Similarly, let 7 be the measure on W,(T) x ®,(T) defined by

1= e w1 O T DuesamNuyr) Opr.w;

i.e. the atoms of 7 are the pairs (u, v) of ¥,(T) x ®,(T) where u is an atom of ;. and v of ,u’T and either
u=v oru=pr(v). For all k > 0, set 7, the restriction of 7 to ¥,(T)|; X ®4(T)l-

Observe that T° = &,(T) differs from ¥,(T) by the addition of some leaves to some vertices and their
measures differ from the corresponding displacement of unit masses from the said vertices to these new
leaves. If (u, v) is an atom of 7, the graph distance between u and v is therefore at most one. As a result,
for all k > 0, dis G, < 2, m(C;) =0 and

Dt il el ) < 207 (@4l ) = 2087+ (24(TIx )
Lemma 1.3.1 and Proposition 1.4.2 then ensure that for all t > 0,
Ao (Rt R0 ) (R T Rt L)

< 1 Vv 2ure(T°| 1) —2ure(T°|R) P
- R R/v R—oo

0.

(ii) Let I14(T) be endowed with u, the counting measure on V,(T). The tree ¥,(T) is obtained by
cutting some branches with i.i.d. geometric lengths from I1,(T) and suitably moving the atoms of the
corresponding measures. In other words, we may write
M=% & (wbg)
UEL[WA(T)]
where (G,), are i.i.d. geometric random variables with parameter g;(m; = 1) > 0 and where b, denotes
the branch with length k for any non-negative integer k.
Thus there is a natural correspondence C between I1,(T) and ¥,(T) given by

C:= {(u,u) ‘u€ ‘IIA(T)} u UHGL[\PA(T)] {(v, u): v €I,(T),v is above u}.
If for all k = 0 we set C; := {(u,v) € C: |u| < k,|v| < k}, then
dis Cy < maXye cpw, (1) jul<k Gu = M-
Observe that #{u € L[W,(T)]: |u|l < k} < ppe(T°|i41)- In light of Lemma 2.2.5, there is a finite determin-

istic constant say K such that for all t > 0
dis C
lim sup — <K.
R—oo 108 7o (T°lp11)

Moreover, it follows from Theorem 2.2.1 and lemma 2.2.4 that we may use Proposition 1.4.2 and get that
log 7+ (T°|r+1) = o(R™1) in probability.

Now, let = be the measure on I1,(T) x ¥,(T) such that its atoms are the pairs (u, v) of I1,(T) x ¥,(T)
where u is an atom of ur, v of u7. and where u is the highest ancestor of v in W,(T). More precisely, set

n(du, dV) = ]lv¢L[\IIA(T)] 5v(du) .U'/T(dv) + ]lVEL[\IIA(T)] ]lu is above v ‘u'T(du) M/T(dV)
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and denote by 7, the restriction of 7 to I1,(T)|, x ¥,(T)|, for all integers k > 0. Observe that for all k,
m(C¢) = 0 and that if (u,v) is an atom of 7 with [v| < k, then |u| < k + M. As a result,

Dt o il ) < 200 (Ta(Tlieng, ) — 200 (24T )
< 2MTD(TO|1<+Mk+1) - zﬂro(T°|k—1)-
Proceeding as we did before, we can use Lemma 2.2.5 and Proposition 1.4.2 to get that for all t > 0,
D(ﬂ:tR; uTltR,,u’TltR) = o(R™Y/7) in probability. Consequently, for all t > 0,
_ _ _ _ P
dGHP((R ! HA(T)|tR5R UY“T'tR)’(R ! ‘I’A(T)|tR’R I/Y,U/ThR)) —0.

R— o0

Using the results proved in steps (i) and (ii) along with Assumption (A), we get that for all t > 0,

_ _ o P
dage (R LR ), (R, RV, ) —— 0.

Because this convergence holds for all t > 0, we deduce from Theorem 1.4.8 that

- — — o p— P
DGHP((R lT’R I/YHT)’(R 1T ,R UY,UTo))R_)—OO)O.

Now recall that (T°/R, us./RY") converges to GJYI , in distribution for Dgyp. Slutsky’s theorem concludes
this proof. O

2.3 APPLICATION TO CONDITIONED GALTON-WATSON
TREES

In this section, we will generalise results from Section 1.5.1. Let £ denote a critical probability
distribution on Z_, i.e. with mean 1 and such that £(1) < 1. Denote by é the size-biased distribution of &,
that is set £(k) := k &(k) for all k € Z. . Recall that GW is the distribution of a Galton-Watson tree with
offspring distribution £ and that GWE" denotes the distribution of the corresponding Kesten’s tree.

LetAc Z, besuchthat 0 < §(A) < 1laswellas Ny :={n>0: GW€(T’2) > 0}, the set of possible
#,-sizes for a Galton-Watson tree with offspring distribution &. Moreover, set d, :=ged{n—1:n€N,}.

Let T be a Galton-Watson tree with offspring distribution &. For all n € N, let GW?’" be the law of a T
conditioned on the event “#,T =n".

Proposition 2.3.1. (i) In the local topology on T, GW?’” = GW?’.
(ii) Let To, be distributed following GW‘;’ and let u, be the counting measure on V(T ). Suppose that &
has finite variance 0% and that d, = 1. Then

(2 ) (250

R "R2 ) Rooo 4

where (T3, ug) denotes the Brownian tree with immigration.

Remark 2.3.1. Proposition 2.3.1 (i) was proved in [2], Theorem 5.1.

Lemma 8 in [111] states that (GW?’” ;neN,) = MB*" where, if 0 ¢ A, qp = GW‘g’O, and foralln#0
in Ny, q’: is given by
ple(p)  [Ti) PI#AT = /]

A A) =
(1) ]‘[jZImj(A)! P[#,4T =n]

forall A =(2,,...,2,) in P4.
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Further observe that Kesten’s tree may be described as an infinite Galton-Watson tree. Indeed, GWE" =
MB‘g’oqA’qgo where the probability measure g% is defined for all A = (4,,...,4,) in P% __ by

A (p—1)
A A) = — I
qoo(oo; ) g(p) l—[j21 m](l)| i=2

As a result, we will use Proposition 2.1.2 and Theorem 2.2.2 to prove Proposition 2.3.1. We will also need
the following results from [111]:

]P[#AT = )’l]

Proposition 2.3.2. (i) There exists a critical probability measure { on Z. such that if T is a Galton-Watson
tree with offspring distribution {, then conditionally on {#,T # 0},

#.T D pr.

Moreover, dy = ged {n—1; GW,(T,) > 0}.
(ii) If € has finite variance o2, then { has finite variance P[#,T > 0% 02 /E(A).
Remark 2.3.2. See also Theorem 5.1 in [2].

Proof of Proposition 2.3.1 (i). We will proceed like in Proposition 1.5.1. Using Lemma 2.1.1 (iii) and
Proposition 2.1.2, it will be enough to prove that for all A = (4,,...,4,) in P% __ and L := [|A|| + 14(p),

0,(n—L,A) —— g5, (00, ).
To get this convergence, we therefore need to prove that
P[#,T =n—L]
IP[#AT - Tl] n—oo

1,
which is a consequence of Lemma 1.5.3 and Proposition 2.3.2. m|

We now turn to the proof of Proposition 2.3.1 (ii).

Lemma 2.3.3. The measure q°_ satisfies Assumption (I) of Theorem 2.2.2 for y = 1/2 and [02£(A)/4]*/?
times the immigration Brownian measure I.

Proof. We will proceed as in Proposition 1.5.5 with the help of Proposition 1.4.15. Let us first introduce
the necessary notations.
Let (T,),>1 be i.i.d. GW; trees and set w, := IP[#,T; > 0]. Let { be as in Proposition 2.3.2 and

p?* := w3 0?/E(A), which is the variance of . If (1,),s, is a sequence of i.i.d. GW; trees, Corollary 2
in [111] gives the following Otter-Dwass type formula: for all positive integers n and p
p
I[’[#AT1 ok #4T, = n] = Z (i) W’;‘(l — WA)P*k]P[#Tl +oH#T = n]
k=1
L b k
$ (0o s
—\k n

where (Y,),>; are i.i.d. {-distributed random variables and S, :=Y; +---+ Y, —nforalln> 0.

Recall that if the law of (00, A) is g0, then A is distributed like (#,T, ..., #4Ty)* Where the random
variable N is independent of (T, ), and is such that the law of 1 + N is €. As a result, proceeding as
Lemma 1.5.6 yields

p
n*2P[||Al| =n] = nS/zZ E(p + 1)2 (i)wﬁ(l — W P P[#T, 4+ #1 =n]

p=0 k=0
p
2 Lk
=323 Ep+ 1)) (i)wj;(l —wa P PLS, = k]
p=0 k=0

WAO'2 B (5(A)O'2)1/2
nooo (2mp2)l/2 27
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where we have used the fact that Zi:o (’;)wf\(l —w,)P*k = pw,. Similarly, if G denotes the generating
function of &, we may proceed as is Lemma 1.5.7 to get

n2P[A, > n] =n"?¢'(1)— G'(1—w,P[#7, > n])]

— () w=(EA)"

Proposition 1.4.15 now concludes this proof. O
Lemma 2.3.4. The pair (T, u,) satisfies Assumption (A) of Theorem 2.2.2 with y = 1/2.

Proof. As we pointed out in Remark 2.2.1, when 0 € A, the assumption is automatically satisfied. Thus, let
us assume that 0 ¢ A.

Let T be a GW, tree and let 7, be distributed like T conditioned on the event #,T = 0; in other words,
the law of 7, is GW2® = MB)?. Let t be a finite tree such that t = [ty,...,t,], and denote by C, the
number of permutations of the p-tuple (t4,..., t,). If we write w, := P[#,7 > 0], then

Plto=1t]=(1—wy) ' P[7 = t]ly.—
= (1w &P (P) CI T PL7 = 1114 o
= (1—=wa 7 &) (p) C T T, PL 7o = t;].

Forall p > 0, set n,, := (1 —w, )P~ E(p)L,(p) and observe that
1

Y E@IP[#,T =0 = ————P[#,71=0]=1

~ P[#,7 =0]

1
Zox0 = g 0]

so 7 is a probability distribution. As a result, we get that 7, is a GW,, tree.

Moreover, for all positive p, (1 —w,)? 1, (p) < 1 so the mean m,, of 7 is clearly less than that of &,
i.e. m, < 1. Consequently, if (Z;)>o denotes a Galton-Watson process with offspring distribution n and
started from 1, for all integers j > 0, we get that

P[l7ol > j]=P[2; 2 1] <E[Z;]=m].
This bound entails that IE[e?/™!] is finite for some positive a.

Now recall that I1,(T) is the tree obtained by deleting all the sub-trees of T which contain no vertices
of V,(T) and is endowed with u,. Note that the deleted sub-trees are i.i.d. GW?’0 trees and are attached to
I1,(T) by a single edge. As a result, we may write

T = I,(T) Quer (pr(w), [7,1)

where T ={u € T : #,4T, = 0, #,Tpy ) > 0} is the set of the roots of the deleted sub-trees and (7,),er are
i.i.d. GW;? trees. A natural correspondence between T and I14(T) is therefore given by

C:= {(u,u) ‘ue HA(T)} UUer {(pr(u),v) Ve Tu}
For all k > 0, set C; := {(u,v) € C : |u| < k} and observe that
dis Cy < 2 max,ey <k 1+ 17,

Clearly, #{u e Y : u < k} < #T|, so Lemma 2.2.5 and the fact that |7,| has finite exponential moments
ensure that we can find a finite deterministic constant K such that for all t > 0
. dis CI_tRJ
lim sup <K.
Rooo 10g#T|®
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Moreover, Propositions 1.4.2 and 1.5.2 ensure that log #T |,z = o(R™!) in probability. Now recall that the
measures on T and I1,(T) are equal so for all t > 0,

_ _ _ _ P
dase( (R TR 2l (RMTIL(T), R ), ) —— 0

which, along with Theorem 1.4.8, concludes this proof. O

Proof of Proposition 2.3.1 (ii). Theorem 7 in [111] ensures that
o EA)?
2
i.e. Assumption (S) of Theorem 2.2.2 holds for g%, y = 1/2 and v = [0>£(A)/4]"/? v,. This fact along with
Lemmas 2.3.3 and 2.3.4 allows us to use Theorem 2.2.2 and prove that (T /R, u4/R?) converges in distribu-
tion to a (1/2,[02E(A)/4]/2 vy, [02E£(A)/4]"/%1, ) fragmentation tree with immigration. Proposition 1.3.12
then yields the desired result. O

n'2 (1-5,) qi(ds) == (1-5,) va(ds),
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CHAPTER 3

ON THE PROFILE OF RANDOM TREES:

A SURVEY OF EXISTING RESULTS

In this chapter, we will survey some known results on the asymptotic behaviour of the profile of various
models of random trees. Here, if t is a finite rooted tree, we will call its profile the sequence ¢, of the
number of vertices in each layer of t, i.e. for any non-negative integer j,

.(j) = #{uet s ul =j}

where |u| denotes the height of u, that is the graph distance between u and the root of t. A similar notion
is that of the external profile of t, i.e. the sequence £; such that

;) = #{ueL(t): [u=j}

where £(t) is the set of leaves of t. In other words, £;(j) is the number of leaves of t at height j. Some
authors refer to leaves as external vertices, hence the name.

We will be interested in two families of random trees: those whose height is roughly proportional to a
power of their size and those whose height is proportional to the logarithm of their size. The asymptotic
profiles of these two types of trees are very unalike and the methods used in their study thus differ widely.
We point out that this chapter will not cover all known models but only some illustrative examples of both
families. Namely, in Section 3.1, we will present results on the profiles of conditioned Galton-Watson trees
and Pélya trees, which belong to the former family, and in Section 3.2, we will turn to recursive trees and
binary search trees, which are in the latter.

3.1 CONDITIONED GALTON-WATSON TREES AND
POLYA TREES

It is known that conditioned Galton-Watson trees and Pélya trees exhibit scaling limits under appropriate
rescaling, see e.g. [9, 47, 66]. Moreover, the corresponding limits belong to the class of R-trees. Informally,
IR-trees are metric spaces in which any two points can be continuously joined by a single path (up to its
parametrisation). See Le Gall [92] for instance for some background on the topic of R-trees.

It would then be natural to expect that the adequately rescaled profiles of these discrete trees converge
to some “continuum profile” associated to the corresponding R-trees. We will first present this notion
of continuum profile and then turn to the study of the asymptotic properties of the (discrete) profiles of
conditioned Galton-Watson trees and Pdlya trees.

Let T be a compact rooted R-tree endowed with a probability measure, i.e. a 4-tuple T = (T, dy, o1, )
where (T,d;) is a compact R-tree, py is an element of T referred to as its root, and u; is a Borel
probability measure on (T, dy). Consider the function my : R, — [0, 1] such that m¢(r) := u(T|,) where
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T|, :={xeT:dr(pr,x) <r}. Observe that my is the Cumulative Distribution Function of a probability
measure dmy. When dmy is absolutely continuous with respect to the Lebesgue measure, we will say that
T has a profile which is the density I} of dmy.

In general, the existence of a profile for random real trees is not a trivial question. Let us give an
important example of a random real tree which a.s. has a profile: Aldous’ [7] Brownian tree.

The Brownian tree. Recall that the contour path of a Brownian tree is distributed like a standard Brownian
excursion with length 1. As a result, if (T, u) is a Brownian tree and e is a Brownian excursion, then the
process I:.U‘(T|t); t> O] is distributed like

(M(1);£20) = [, 1o <ds; £20) 3.1)

which is almost surely a continuous Cumulative Distribution Function. The random measure dM is called
the occupation measure of the excursion e. It a.s. admits a density L called the local time of the underlying
Brownian excursion and given by

. 1 q1
L(t) :=1lim,_, e fo Ne—e eer(e,) du. (3.2)

Informally, L(t) records the time spent by the excursion at height t. Consequently, the Brownian tree a.s.
has a profile which is distributed like L.

Remark 3.1.1. Duquesne and Le Gall’s [49] a-stable trees also a.s. admit a profile, see Kersting [82] for
instance. In [60], Haas gave a simple criterion to establish existence or non-existence of the profile of
fragmentation trees, a large class of random R-trees to which both the Brownian tree and the stable trees
belong. See also Ged [55] for a similar study on self-similar growth-fragmentation models.

Convergence of rescaled profiles. Let (t,,), be a sequence of unordered trees such that for all n, #t,, = n.
For all n, set u, as the counting measure on t,. Suppose that there exist some sequence (a,), of positive
real numbers and a compact rooted R-tree T endowed with a probability measure such that

d
(¢ tp,n ) n_G)—H:O> T. (3.3)
When my is continuous, we have
1
E(“n(tnhlnr)? r= 0) n—>_oo) my 3.4)

uniformly on [0, oo[. This is a consequence of Proposition 2.10 in [3], which gives point-wise convergence,
and the well-known fact that a sequence of CDFs that converges point-wise to a continuous CDF converges
uniformly on R.

When T has a profile, it is then natural to wonder whether once suitably rescaled, the profile of t,
converges to that of T in some sense. More precisely, we want to know if

%(Etn([anr )ir=0)— 1y (3.5)

either point-wise or in the space D[0, co[. In the latter case, we naturally have to assume that Iy is a cadlag
function.

Remark 3.1.2. Suppose that T admits a cadlag profile l. Further assume that the convergence (3.3) holds
and that (a,/n)- £, ([an . J) — I in D[0, oo[. Then, in particular, since there exists some finite K such that
;. (la,t])=0forall t > K and n > 1, we get that

a, .
sup —£ (j) —— suply(r).
j=o0 n n—=00 ;>0
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This means that the “width” of t,, times a,,/n converges to that of T when n — oo.
Also observe that if (a,/n) - étn(Lan . J) converges to [ almost everywhere on [0, oo, then by Scheffé’s
lemma, this convergence also happens in L*(dr).

We point out that (3.5) has a natural probabilistic interpretation. For all n > 1, let U, be drawn
uniformly in t, and observe that for all r, P[|U,|/a, < r] = u,(t,lq,,). Similarly, if U denotes a ur
distributed random variable in T, we have IP[|U| < r] = my(r) for all r. The convergence (3.4) therefore
translates to

1
—I|U,| == |UI. (3.6)
a n—oo

n
If T has a profile, Iy is the density of the random variable |U|. Similarly, for all j > 0, P[|U, | = j]= £, (j)/n.
As a result, the convergence (3.5) is akin to a “local” version of (3.6) (compare with the local Central Limit
Theorem [56] or with [57]).

3.1.1 Critical Galton-Watson trees

We will now describe one of the most important models of trees for which a convergence like (3.5)
holds: conditioned critical Galton-Watson trees.

Let £ be a probability distribution on the set Z, of non-negative integers such that Zkzo k&, =1. For
technical reasons, assume that the g.c.d. of the support {k > 0 : £(k) > 0} equals one; we will say that & is
aperiodic. Recall that a (plane) Galton-Watson tree T with offspring distribution £ is a random ordered
tree such that for any finite tree t,

P[T=t]= l—luet é‘ct(u)
where ¢, (u) denotes the number of children of the vertex u in the tree t. Observe that the profile of T is
simply a Galton-Watson process started from 1 and with offspring distribution &.

For any positive integer n such that P[#T =n] > 0, let GW? be the distribution of the tree T conditioned
to have n vertices. The assumption ged{k : £(k) > 0} = 1 ensures that P[#T = n] > 0 for all n large
enough. Moreover, for all suitable n, let T, be distributed according to GWE. The scaling limits of the
sequence (T,), have been studied quite extensively, see Aldous [8, 9], Duquesne [47], Duquesne and
Le Gall [49], Haas and Miermont [66], Kortchemski [86] or Rizzolo [111] for instance.

Most notably, Aldous proved:

Theorem 3.1.1 (Theorem 23 [9]). If £ has a finite and positive variance o2, then

o 1
e

with respect to the GHP topology and where T denotes a Brownian tree.

For all n, let M,, be the rescaled cumulative profile of T,, defined for all non-negative t by
1
Mn(t) = E#Tn|2ﬁt/0"

Corollary 3 in [8] states that as a result of (3.7), M, converges in law to M for the uniform topology on
[0, oo[, compare with (3.4). Aldous then conjectured in [8] that the rescaled profiles of the trees T, should
also converge once adequately rescaled toward the local time L. More precisely, Conjecture 4 in [8] inferred
that if & has finite and positive variance o2,

L,—=1 (3.8)

n—oo
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for the Skorokhod topology on D[0, oo[ where for all n > 1, L,, denotes the rescaled profile of T,,, i.e. is

given for all t > O by
2

L,(t):= vl #{ueT, jul=2vat/cl}. (3.9)
Observe that for alln > 1, fooo L,(t)dt = 1. Furthermore, if h, := sup{t = 0 : L,(t) > 0}, we get that
h, :=(|T,|+1)-o/(2+/n) and as such, in light of (3.7), h, = |Tp| := supy<,<; €,-

This conjecture was proved by Drmota and Gittenberger [43] under the additional assumption that
& has finite exponential moments. Their methods also allowed them to prove a similar statement for the
external profile of T,. See also Kersting [82], who used a very different approach which also applies when &
belongs to the domain of attraction of a stable distribution. Also see Pitman [105] who, in order to study an
SDE satisfied by the process L, proved that (3.8) holds when & is the Poisson distribution with parameter 1.

We will now outline these three different methods in the next few paragraphs.

Generating functions. In [43], Drmota and Gittenberger endeavoured to prove (3.8) with a precise
study of generating functions. See also Section 4.2 in [42].

Recall that £ is an aperiodic probability measure on Z, with mean 1 and finite variance o > 0.
Recall that T, is a Galton-Watson tree conditioned to have n vertices and ¢, is its profile. Let X be a
&-distributed random variable and denote by ¢ its generating function, i.e. for all complex z with |z]| < 1,
set ¢(z) :=E[zX]= D0t «2X. We will also suppose that the radius of convergence of ¢ is strictly bigger
than 1; in particular, X has exponential moments.

In this paragraph, we will consider a continuous version of the rescaled profile. More precisely, for all
t >0, set

La(t) := % ((Lvat+1)/va—t) e (Lvat]) + (c —Lvatl/ va)e,(Lvat] +1))- (3.10)

Drmota and Gittenberger’s main result from [43] is the following.

Theorem 3.1.2 (Theorem 1.1 [43]). Suppose that & has finite exponential moments, i.e. that there exists
some r > 1 such that D, ., &, r" < co. Then
o (ot
(Ln(t),t20)=>(—L(7),t20) (3.11)

n— o0 2

in the space C[0, oo[ of continuous processes.

Remark 3.1.3. For all n let £; be the external profile of T,,, i.e. £;(j) is the number of leaves of T, at height j.
Let L°(j/+/n) :=£:(j)/+/n for all integers j and define L (t) by linear interpolation when y/n't isn’t an
integer. Using the same techniques, Drmota and Gittenberger also proved that
oron. Epo (Ot )
(Ln(t)’ t=> 0) TH=OO (TL(7), t=0
in C[0, oo, see Theorem 1.2 [43]. This is closely linked to the fact that in a large Galton-Watson tree, the
number of its leaves is roughly &, times its total size, see Section 2 in [85].

To prove the functional convergence (3.11), Drmota and Gittenberger first proved convergence of the

finite-dimensional distributions, i.e. that forallp > 1,0<t; <...t,,

1)

(La(t), - La(6p)) == S (L(ot1/2), .., L0, /2), (3.12)
see Theorem 2.1 [43]. Then they proved that the sequence (L,), is tight in C[0, oo[ with the help of a
tightness criterion [29, Theorem 7.3] and the following result (see Theorem 6.1 in [43]): there exists a

finite constant C such that
E[(6a(k+ ) —€,(0)) ] < C j2n (3.13)
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holds for all integers n, k, and j. The rather involved and computation heavy proof of (3.13) is the main
topic of Section 6 in [43]. Let us now introduce the appropriate objects and outline the proof of (3.12).

Let T, T, i > 1 be i.i.d. Galton-Watson trees with offspring distribution & independent of X. We will
denote by £, £w, i > 1 their respective profiles. Let a be the generating function of #T, the total size
of T. In other words, for all z such that |z| < 1, set a(z) := E[2*T]. Observe that

#1214 47O, (3.14)
which ensures that the generating function a satisfies a(z) = z ¢[a(z)] for all z in the unit disk.

Thus, the function (z,w) — 2z ¢(w) — w vanishes for w = a(z) for all z in the unit disk. Moreover, its
derivative with respect to the second variable w is given by (z,w) — 2 ¢’(w) — 1. Observe that for all
z # 1 with |z]| =1, anl n&,a(z)™! is a convex combination of the non-constant family [a(z)";n > 1]
which belongs to the unit disk (because an1 n&, =1 and & is aperiodic) so its modulus is less than 1. In
particular, z ¢'[a(z)]—1 # O for all z # 1 on the unit disk. As a result, the implicit function theorem ensures
that the function a can be extended analytically on an open set U, :={z : |2| <1+ §,argz # 0} U [0, 1[
for some positive 6.

Moreover, the Otter-Dwass formula [106, Chapter 6] and the local central limit theorem [56] ensure
that P[#T =n] ~ (2no2n®)""/2 as n — oo. From this fact, we deduce that as z — 0 with Re z > 0,

a(l1—2)=1—+2z/0 + 0(|z]). (3.15)

Now, for all non-negative k, let a; be the generating function of the pair [#T, £;(k)], i.e. the function
given by
ar(z,u) :== E[z*T ut"®]
for all complex z and u with |z| < 1 and |u| < 1. Similarly to (3.14), we may write
a(z,u) = IE[Z#le-l ]_[f;(lk) uz#T(i)].

If we set y;(z,u) := E[z#Tlk-14/7®)] for all z and u in the unit circle (with the convention y,(z,u) = u), we
get ai(z,u) = yi[2,ua(z)]. Furthermore, for all k > 0, we also get

Yin(z,w) = 2 [ [T, ur0® 2717 | = 2 ¢ [y (z,w)) (3.16)

Let 0 < k < j be integers and let q ; denote the generating function of the 3-tuple [#T, £+(k), {+(j)]. For
all z, u and v in the unit circle, the same properties of Galton-Watson trees yield

a j(z,u,v) == E[z"T ufr® )] = ]E[Z#T‘H l—[f;(lk)(uz#Tm ver(")(j_k))]
= yi[zua; i (z,v)] = [z uyjilz,va(@)]).

By iterating these computations, we get that for any integersp > 1and 0 < k; <--- <k, forall z,u,,...,u,
in the unit circle,

S I o o VIR C))
ag,,., kp(z,ul,...,up).—]E[z =Y

= Y, (Z; Uy Y,k (Z; U Yiey—k, (Z; o Y=k (=, u, a(2))... ))) (3.17)

For any integers p > 1, 0 < k; < --- < k,,, we can express the characteristic function ¢, of the
p-tuple [£,(k;),...,£,(k,)] in terms of the generating function a;, k,- Indeed, forall t,..., t,, the Cauchy

.....

integral formula ensures that if C is a closed contour around 0, then
— P Lixil,(k;
cp,(gll) kn(xl,...,xp) = ]E[ L_e ( ;)]

1 1 ix ix —n—1
———SF a z,e™ .. e )z dz. 3.18
IP[fT ]Zi c k1 ..... kn( ) ( )
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Section 5 in [43] focuses on giving an appropriate integral representation of the characteristic function
of the finite-dimensional distributions of the local time L. Forallp > 1,0 < t; < --- < t, and real

numbers x,. e Xps

7'5/ ff(z)r (z;%1,...,%,)dz (3.19)

where y := {z € C : inf,.( |2 — x| = 1}, see Figure 3.1, and the function fe (@) % is given by

.....

f((’f_?.’[ (25X7,.00,%,) 1= \Ilg’)(z, ix, +\p§ e (z,ixz +\I’§;’,)t ( \I/fg,)t l(z,ixp)...))) (3.20)

for all positive o and the function \I/)(f’) is defined by
u+v/—zexp(—ot+/z/2)
v—zexp(otv/z/2)—u+/0?/2sinh(ot \/2/2)'

T (z,u) := (3.21)

Y
<
=

1 0 1 1+10'g2 n/n

Figure 3.1 — The contours y and y,,.

Lemma 2.1 in [43] then establishes in particular that if arg z # 0, x is real and t > 0, then as n — oo

ylﬁtJ[1+Z/n,(1+W/1/ﬁ)'a(1+Z/n):| 1 1 @ 3.99
a(1+z/n) B Nﬁ e mw) 522

Now, plugging (3.22) into (3.17) we get that forall 0 < t; <--- < t,, forall z with arg z # 0 and x, ..., X,
in R,
'\/ﬁ[a[ﬁtlj Wﬁtpj(l +z/n,e /Y ”“P/‘F) a(1 +z/n)] —>f(") (z; t1seeestp).

Finally, we will take C = y,, in (3.18) with
y,:={z€C:1<Rez<log’n/n,|Imz| =1/n}
U{zeC:|1—z|=1/n,Rez <1}
U{zeC:lz|=|1+(og*n+1)/n|,|arg z| > arg[1+ (log’n +i)/n]}

see Figure 3.1. Recall that a is analytic on an open subset U, which contains y, for n large enough. As a
result,

(n)
Pty meJ(xl/‘/ﬁ"“’xP/‘/ﬁ)

,,,,,

1 1 a(z) ,dz (@)
~— ; . d
P[#T =n] 2in ‘ gn+l 271/ 2 J fon, (B X055 Xp) dz

Lpo‘tl/ oty /Z(le/z pr/z)

.....

which proves (3.19).
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The profile as a functional of a Random Walk. Kersting’s strategy in [82] relies on the correspondence
between Galton-Watson trees and random walks. The main idea here is to write the profile of a tree as a
functional of some random walk which, in a way, encodes the said tree.

In this paragraph, we will make the same assumption as in [82], that is we’ll assume that & is an
aperiodic probability measure on Z, with mean 1 and that £ belongs to the domain of attraction of an
a-stable distribution with a €]1,2]. In particular, if (X,),~; denotes a sequence of i.i.d. & distributed
random variables, then there exists (a,),>; such that

Xi+-+X,—n

a—n n_):oo .U'a
where u,, is the law of a non-degenerate a-stable random variable, see [57] and Chapter XVII in [51].
Under this assumption, Duquesne proved that

a, 1
Tn; —Mn
n n

converges in distribution to the a-stable tree. Let L denote its profile.
For all n, denote by L, the rescaled profile of T,, defined for all non-negative t by

L(t):= alzn(Lnt/anJ), (3.23)

compare with (3.5). Kersting proved the following result.

Theorem 3.1.3 (Theorem 1 [82]). Under these assumptions on &, L,, = L in D[0, co[.

Let us start by describing the aforementioned correspondence between trees and random walk excursions.
The set U of finite words on IN can be endowed with the two followings orders.
— The depth first order (or lexicographical order) <4: let u and v be in U, set w :=u A v, u’ and v’ such
thatu=w-u’ and v=w-v'. Then

uzyv &= u=@oru; <v.
— The breadth first order =;: for any two elements u and v in U,
u=xpv <= |ul<|v| or |ul=|v| and u =<4 v.

Let t be a plane tree with #t = n and label its vertices x,, ..., x, in increasing breadth first order. Let
the sequence [s,(i);i =0,...,n] be defined by s,(0) =1 and s, (i) =s,(i — 1) +c,(x;)—1fori=1,...,n.
Observe that s, (i) > 0 if i # n and that s, (n) = 0. Moreover, for any k < |t],

k
sl ++6®]=1+>" > [ew)—1] =, (k+1). (3.24)

i=0 uet:|u|=i

L0 ),00)

Conversely, consider s : {0,...,n} — N such that s(0) = 1, s(n) = 0, s(i) > 0 for 0 < i < n and
s(i)—s(i—1)=—1forall 1 <i < n. We can build a tree t with #t = n and such that if x; <y --- =<y x,, are
its n vertices, then ¢, (x;) = s(i) —s(i — 1) + 1, i.e. t satisfies s, =s. In other words, there is a one-to-one
correspondence between finite trees and such finite sequences.

If T,, has distribution GWE, i.e. is a Galton-Watson tree with offspring distribution £ conditioned to have
size n, observe that sy is a random walk excursion conditioned to have length n such that its increments
are &-distributed random variables minus one. Recall that & belongs to the domain of attraction of a stable
distribution, so intuitively, under appropriate rescaling, the random walk excursion s;_should converge to
some Lévy excursion. This intuition driven result indeed holds and is one of the key steps in Kersting’s
study.
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More precisely, for all n, set

1
S,:[0,1] R, t — —sg ([ntJ).
a n

n
Following Proposition 15 in Chapter VIII of [17], we define a Lévy excursion with unit length. Let X be a
Lévy process such that the law of X(1) is u,. Define

m=sup{r <12 X(6) = infoeue X()}

the last instant at which X is at its minimum before time 1 as well as

Tt.= inf{t >1:X(t)= infogsng(s)}

the first time after 1 at which X goes back to said minimum. Both v~ and 7™ are a.s. well-defined because X
has no negative jumps. Then, define the process Y by
X[T_ 1-t)+7t- t]—X[T_]

Y(t):= (o)1

for all t € [0,1]. The process Y hence defined is a Lévy excursion. With these notations, Theorem 11
in [82] states that

S, —=7Y. (3.25)

n—oQo

The next step in the proof is to rewrite (3.24) for T, in terms of S,, and L,,. Define C, (t) := fot L, (u)du
for all t > 0 and observe that h, :=inf{t >0: C,(t) =1} = (1+|T,|) - a,/n. Moreover, supp L,, =[0,h,].
ForallkeZ,,

1
Cn(k : an/n) = H#Tn|k—1
so that, in light of (3.24),
Sn[Cn(k : an/n)] = Ln(k . an/n)-

For all t € [0, 1[, set Y,(t) :=S,[C,(k-a,/n)] where k € Z, is such that C,[a,k/n] <t < C,[a,(k+1)/n]
and Y, (1) := 0. Then, for all t € [0, 1[, this definition yields

d

Y.[Cu()]=L,(t) = d—;Cn(t)-

Therefore, for all non-negative x < h,,,

Y, (u)

where C 1. [0,h,] — [0,1] is the inverse of C,. Let ¥ and & be the functionals defined on the set of
non-negative cadlag functions by

C(x) = f du (3.26)
0

60 ::sup{uE[O,l]:fO %St} and ®(f)(t) = j—:\ll(f)(t)

for all such functions f and t > 0. With this notation, because C, is also the inverse of Cn_1 and because L,
is the right derivative of C,, we get that C, = ¥(Y,) and L, = ®(Y,).

The remainder of Kersting’s proof is then dedicated to proving that #(Y,) = ®(Y) in D[0, oo[. In order
to do this, Theorem 4 proves that if

(i) Forall 6 €]0,1/2[,
infsc,<1_sY(t)>0 as.,
(i) Y,= Y inD,
(iii) For all positive t,
lim, ., (lim SUP, 00 P[C,(t) < g]) =0,
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Figure 3.2 — A drawing of T,, S, in red and ¥(S,) in green with n = 11.

then L,, = ®(Y,) converges in distribution to $(Y) in D[0, co[. Condition (i) is satisfied by construction
of the Lévy excursion Y. The convergence in law of Y, to Y is a consequence of (3.24) and (3.25) and is
proved in Section 5. Finally, Condition (iii) is proved in Section 4. As a result, Theorem 1 in [82] states
that L,, = &(Y) in D[0, oo[.

If £ is a distribution with finite variance o, we may choose a,, = o +/n/2. In this case, the process Y is
a standard Brownian excursion and the process ®(Y) is then its local time. Theorem 1 in [82] therefore
provides a proof of Aldous’ conjecture (3.8).

2

Remark 3.1.4. Let t be a fixed plane tree with #t = n and label its vertices y,..., y, in increasing depth
first order. Set$.(0) =1, §,(i) =8, (i—1)+c.(y;)—1 for 1 <i < n. The sequence 3, is called the Lukasiewicz
path of t. There is also a one-to-one relationship between finite plane trees and their Lukasiewicz paths.

Furthermore, if T is a Galton-Watson tree with offspring distribution &, its Lukasiewicz path is also a
Random walk excursion started from 1, with length # T and such its increments plus one have distribution &.
Because of this, the study of the asymptotic behaviour of these Lukasiewicz paths has been an important
tool in the study of the scaling limits of Galton-Watson trees, see [47, 49, 85, 86, 96] for instance.

Stochastic Differential Equation. In [105], Pitman was interested in proving that the local time of a
reflected Brownian bridge is the unique solution to a certain Stochastic Differential Equation (SDE for short).

In order to do so, he studied the asymptotics of Galton-Watson processes with Poisson offspring
distribution started with k > 1 individuals and conditioned to have total progeny n. These processes can be
encoded as a forest, that is a family of k independent Galton-Watson trees with total size n. Aldous and
Pitman studied these random forests in [11] and proved that they are encoded by a random walk which,
under appropriate rescaling, converges to a reflected Brownian bridge.

Pitman proved that, in a sense, the SDE in which he was interested asymptotically drives the behaviour
of the profile of the said forest when its size goes to infinity. Results from [11] allowed Pitman to deduce the
desired result. Let us first introduce the necessary notation before describing the main ideas that Pitman
used in this study.

Let [W(u);u = 0] be a standard Brownian motion. The continuous process [W(u) —uW(1);0 <u < 1]
is called a Brownian bridge (with unit length) and its absolute value is called a reflected Brownian bridge.
Let B!’ be such a reflected Brownian bridge, and define its local time L!’"! as

1
L'I(6) :=limlf peere[B"™ () ]du
e—0 g 0 ’

Let also e be a standard Brownian excursion and denote its local time by L*.
Pitman was interested in the following SDE: if f is a standard Brownian motion and £ is non-negative,

X(0)=¢ and dxX(t)=5,X)dt+2y/X(0)dB, (3.27)
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where

5,() == 4—X(0)?/(1— [, X(5)ds) (3.28)
with the convention that (3.27) is to be solved for t in [0, V(X)[ and X(t) = 0 for all t > V(X) with
V(X) :=inf {s >0: f;X(u)du = 1}. Lemma 1 in [105] establishes that (3.27) has a unique strong solution
which we will denote by (X (t);t = O). Proposition 3 gives some basic properties of the family (X,; £ > 0),
notably that for all £ > 0, almost surely, the process X, is continuous on [0, oo[ and fooo X,(t)dt = 1.
Moreover, Pitman proved the following result:

Theorem 3.1.4 (Theorem 4 [105]). For all fixed £ > 0, X, is distributed like the local time of B brl condi-
tioned on the event L!®'1(0) = ¢, that is

X, 2 (1™(0);¢ = 0] ™(0) = ).
If{ =0, X, is distributed like L®*. In particular, the profile of a Brownian tree is distributed like X,.

The second claim of this result is a consequence of the first coupled with the intuitively clear fact that
conditionally on the event L!®*/(0) = 0, the process B!®"! is distributed like a standard Brownian excursion;
See Lemma 12 [105].

As was previously mentioned, in order to prove Theorem 4 [105], Pitman studied the asymptotics of
Galton-Watson processes started with a certain number of individuals and conditioned to have large total
population. Let us now outline the main ideas of Pitman’s approach.

Let k > 1 be an integer and consider [ Z(j); j > 0] a Galton-Watson process with offspring distribution &
started from k. For all n > k, let Z; , denote the process Z; conditioned on the event Y. 20 Zi(j) =n. For
alln>kand h >0, set A ,(h) :=n— Z?:o Zy n(j). Using Otter-Dwass’ formula (see Chapter 6 in [106]
for instance), Lemma 8 [105] states that the process [Z; ,,(h),Ax ,(h)]y>o is a Markov chain.

When £ is the Poisson distribution with parameter 1, this last lemma allows to precisely describe the
dynamics of the process [Z ,(j);j = 0]. As was stated in Lemma 9 [105], foralln > k> 1and h > 0,
we get that conditionally on Z; ,,(0),...,Z ,(h), Z ,(h + 1) — 1 is distributed according to a binomial
distribution with parameters

Zk,n(h)
Ak,n(h) + Zk,n(h)
with the convention that almost surely, a Binomial(0, p) variable equals 0 and a Binomial(—1, p) variable
equals —1. As a result, for all h > 0, we get that

Agn(h)—1 and

Zi o(h)? + Z (R
E[Zin(h+1) = Z ()| Z1(0), ... Z () ] = 1— A’: ((h)) - z:’ ((h)) (3.29)
d
" [An() = 11 A (1) Z4. ()
Var (Zi(h+ 1) = Z (1) | Zin(0), .., Ziu(R)) = — : e (3.30)

[Ak,n(h) + Zk,n(h)]2
Now, let £ > 0 and (k,,),, be such that 2k,/+/n — £ asn— oco. Foralln>1 and t > 0, set

Yy(6) = %zkn,n(tzmn,

compare with (3.9) for the choice of scaling. Further set [F'(t);t > 0] as the natural filtration of Y,,.
Observe that

%Akmn([zﬁ t]) ~ 1 — [ Yu(s) ds.

Rewriting (3.29) and (3.30) in terms of Y,,, we get that for all t > 0, as n — oo,

2
(1, (e + /200 - 1,0 [9%(0] (4 - ;’:(;)()d )= oo, @
— ] Ya(s)ds
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where 6, is the function defined in (3.28), and

Var (Y, (t +1/24/m) = Y, (£) | 77(£) ) ~ 21% 47, (). (3.32)

Furthermore, by assumption, Y,,(0) — £. Equations (3.31) and (3.32) indicate that asymptotically, Y, is
driven by the SDE (3.27). Using some results from [88] on the functional convergence of Markov chains to
the solution of an SDE and the uniqueness of strong solutions of (3.27), Pitman then deduces that Y,, = X,
in the space D[0, oo[, see Theorem 7 in [105].
Finally, results from [11] imply in particular that
(fo‘ Y,(s)ds; t > 0) = (fol 1o, (B (W) du; t > 0 | L'*l(0) = e)

in C[0, oo[. Moreover, for all t > 0, we have
1 t
Jo Mog(B™(w)du= [( LI(s)ds.

As a result, we get that conditionally on LI*"1(0) = ¢, LI’ is distributed like X,, which concludes the proof
of Theorem 4 [105].

Remark 3.1.5. Theorems 4 and 7 from [105] combine to prove that (3.8) holds when & is the Poisson
distribution.

3.1.2 Polya trees

For all n > 1, denote by T, the set of unordered rooted trees with n vertices and let T,, be drawn
uniformly in T,. The random variable T;, is then called a Pdlya tree with size n. The first investigation into
these trees was done by Pdlya, hence their name, in [108]. He studied the generating function of these
trees, that is the power series a given by

a(z) =D @p2"

with a,, := #T,. The radius of convergence p of a was proved to belong to ]0, 1[. Furthermore, p is the
only singularity of a on the circle {|z] = p}. Pélya also proved that a satisfies

a(z)=z= eXp(Zn21 a(z”)). (3.33)

Otter [100] then proved that a(p) =1 and that a(p —x) = 1 —k+/x + O(x) for some positive constant x;
he also gave numerical approximations of p and x: p ~ 0.3383219 and k ~ 2.6811266. Finally, he proved
that as n — 0o,

Kp 1/2—n

n 23

Haas and Miermont [66] studied the scaling limits of (T,,),. Theorem 9 [66] states that

K‘/ﬁ 1 ) denp
T , = E—)
(2 ,—zn n n:u*n B

n—oo
where T denotes the Brownian tree and u,, is the counting measure on T,. See also Panagiotou and
Stufler [102].

For all n, let £,, be the profile of T, and define L, as in (3.10). Drmota and Gittenberger’s main result
in [44] is about the asymptotic behaviour of L,,.

Theorem 3.1.5 (Theorem 3 [44]). With these notations,

kP r«m) )
L Ll —— |; 0 3.3
= (3RS e o

in C[0, co[ where L denotes the local time of a Brownian excursion.
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They used an approach similar to the one they used in [43]: they proved convergence of the finite-
dimensional distributions using similar methods as those used for (3.12) and then proved tightness in a way
similar to their proof of (3.13). Notably, this result was proved before the convergence of the corresponding
trees in [66].

3.2 RECURSIVE TREES AND BINARY SEARCH TREES

In this section, we will present some up-to-date results found in the literature on the profile of recursive
trees with n vertices and binary search trees with n leaves. These two important families of random trees
do not fit the framework of Section 3.1 and arise naturally as combinatorial structures. We will see that
functional convergence of the rescaled profiles cannot happen as in Section 3.1. The object of interest will
then be the normalised profile of the trees, that is the profile divided by its expectation.

The very nature of the results, and thus the methods used to establish them, are widely different
from those presented in the previous section. The methods rely heavily on the recursive structure of both
recursive and binary search trees.

Drmota [42] presented an overview of many results on the profiles of these two models and other
related models.

3.2.1 Recursive trees

A recursive tree with size n is a tree with n vertices labelled 1 through n such that for any k =2,...,n,
the labels on the shortest path from vertex 1 to vertex k are increasing. For such trees, we will consider
them to be rooted at vertex 1. Let T;* be the set of recursive trees with size n.

Figure 3.3 — A recursive tree with 12 vertices.

It is easy to compute #T*. Indeed, an element of T;*’, can be seen as a recursive tree with n vertices
to which a vertex with label n + 1 was added. There are n locations at which to attach the said vertex so
#T,7, = n#T;*°. Moreover, as there is only one recursive tree with with a single vertex, clearly #T7* =1
so that #T° = (n—1)! for alln > 1.

The same line of reasoning ensures that the following algorithm generates a sequence (T,),, such that
for all n = 1, T, is uniformly drawn in T*:

— Let (U,),>» be independent and such that for all n > 2, U, has the uniform distribution on the set
{1,...,n—1},

— Set T, as the tree with a single vertex, which is labelled 1, i.e. the only element of T}*,

— For n > 1, conditionally on T,, attach a new vertex with label n+ 1 to the vertex U,,; in T, and call
T, the tree thus obtained.
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Pittel [107] proved that with this algorithm,

T, as
Tl o5, (D), (3.35)
logn n—oo

a fact alluded to in the introduction of this chapter.

Let T, be the sub-tree of T, made out of 2 and its descendants and let T;, be the complement sub-tree
of T,. Elementary computations involving conditional probabilities ensure that #7T', is uniformly distributed
on the set {1,...,n—1} and that conditionally on #T, = k, T,, and T, are independent and respectively
distributed like T} and T,_,. This fact was observed by van der Hofstad et al. [120].

The expected profile. For all n > 1, denote by ¢, the profile of T,, that is
(k) :=#{j <n:d,(1,j) =k}

for every non-negative integer k. Using the recursive partitioning of the sequence (T,,), mentioned before,
we get thatifn>2and k> 1,

@ N

C(k) =y (k—1)+ £, (k) (3.36)

where (T, 7 i1 is an independent copy of (Ty, £;)x>1 and both families are independent of the random

variable X,,, which is uniform on {1,...,n— 1}. Taking the expected values of both sides of (3.36), we get

for all integersn>2and k > 1
1 n—
E[¢,(k)] = EZj:}ua[ej(k)] +E[(;(k—1)]

and thus n E[£,1(k)]—(n—1)E[{, (k)] =E[£,(k)] + E[{,(k—1)]. As a result, for all n > k > 0,
MU E[€,1(K)] = n(n—1)VE[£,(k)]+ (n— 1) E[€,(k—1)]. (3.37)

Moreover, E[{,(0)] = 0 and ]E[Zl(k)] = lj—o. The family (n! E[{, .1 (K);n=k > 0) therefore satisfies
the same recurrence relation with the same initial conditions as the family ([ZIH, n>kz> 0) of unsigned

Stirling numbers of the first kind: for alln > 0, [8], e, [z] are defined such that for all x,

n n—1
nl ;
Z [k} x< = U(x + 7). (3.38)
k=0 j=0

As a result, we get the following formula, first established by Meir and Moon in [97], for the expected
profile of T,:

Theorem 3.2.1 (Corollary 7.1 [97]). For all n > k > 0, we get that

1 n
E[{,(k)]= m[lﬁ‘l]' (3.39)
To get an asymptotic equivalent of this expected profile, some results on Stirling numbers are needed.
In particular, Theorem 2 in [71] or Lemma 6.1 in [42] ensure that if k ~ a logn for some positive a, then
asn— 0o,
n (n—1)! (logn)*
[k] T k(@
As a result, if @ > 0, when n — 0o, we can use (3.40) and Stirling’s approximation in (3.39) to get the
following asymptotic expression, see [53],

]E[En([a lognj)] ~

(3.40)

na(l—log a)

v2nalognT(1+ a)'

Now observe that a (1 —1loga) < 1 for all a # 1. Therefore, for all a # 1,

(3.41)

logn
TIE[ZH(LalognJ)] —=0 (3.42)
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yet (3.35) would seem to suggest that this is the suitable rescaling in order to obtain results on the functional
convergence of the profile similar to those from Section 3.1. For this reason, (3.41) and (3.42) indicate
that such functional convergence results cannot happen for the profile of recursive trees.

Nevertheless, the asymptotic behaviour of £, (k) has been studied. Results essentially fall into one of
two categories: when k ~ a logn for some positive a and when k is fixed.

Profile asymptotics at logarithmic height. In this paragraph, the object of interest will be the so-called
normalised profile of T,, that is the random variables
£ (k)

E[¢,(k)]
for all integers n > 1 and 0 < k < n. We will be interested in the asymptotic behaviour of A, (k) when
k ~ a logn with a €]0, e[, in light of (3.35).

There are mainly two methods used in the literature to study this problem: a “contraction method” used
on a fixed-point equation in distribution and a study of the sequence of the normalised profile polynomials
of T,, which is a martingale. Let us outline both methods.

A (k) =

The fixed-point equation. Rewriting (3.36) in terms of (A,),s;, We get that if (A,),, is an i.i.d. copy of
(Ap)n>1 and if both families are independent of X, a uniformly distributed random variable on {1, ...,n—1},
then, for all k > 1

@ Ellx,(k—1)]X,] E[¢, x, (k)| X,] .

M= gy MmO g oy e ()

Then, using (3.39) and (3.40), if k ~ a logn for some positive a, as n — oo we get

Ellx (k—1)[X,] (logx,)<! k! (loan)alogn (Xn)“
~ ~ ~ QA

E[¢, (k)] (k—1)! (logn)* logn n

and similarly,
Bl 0IX] (%)
E[6,(0] ( - ?) '

As a result, if A,(la logn]) were to converge weakly to some random variable X (a), then intuition would
seem to imply that

X() € aU*X(a) + (1 - U)*K(a) (3.43)
where X (a) denotes an independent copy of X(a) and U is a uniform random variable on 0, 1[ independent
of both X(a) and X (a).

This heuristically derived identity was one of the main ideas used by Fuchs et al. [53] along with the
contraction method, see [99], in the study of the asymptotic behaviour of A,(k) when k ~ alogn. In
Proposition 1 [53], they proved that for any a €]0, e[, there is a unique probability measure 7, on [0, co[
such that if X (a) is m,-distributed, then X (a) satisfies (3.43) and

EX(a)]=1, E[X(a)] < oo,

where, if @ < 2,s =2 and if a €[2,e[, s €]1, 2[ is such that s > a*~!. This allowed them to prove the next
result:

Theorem 3.2.2 (Theorem 1 [53]). For all a € [0, e[, there exists a positive random variable X (a) with
E[X(a)] = 1 which satisfies the identity (3.43) and such that

Aq(la logn]) ,H:OOX((X). (3.44)

Furthermore, if p > 2 is an integer and a < p*/®~, then X(a) € L?, the p first moments of A,(la logn))
converge to those of X(a) and convergence fails for higher moments.
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With martingales. Another method to prove (3.44) on a sub-interval of [0, e[ was presented in [42] and
was used in [45] for search trees. This method is based on the study of the so-called profile polynomials,
that is, for all n, the random polynomial W,, (whose degree is at most n — 1) defined for all complex z by

Wa(2) := D s0 €, (k)zk.

Its expectation is given by

B 1 n n . 1 n—1 .
EIW,@) = 5, ;[H J* == [T+ (3.45)

where we have used (3.39), (3.38) and the fact that [g] =0 if n > 0. Now observe that
1
E[001 (01T, ] = €, + —,(k—1)

so that
Z+n

]E[Wn+l(z) | Tn] = : Wn(z)

As a result, for all complex z with —z ¢ IN, the sequence [M,,(2)],>; defined by

is a martingale. In particular, for any x > 0, M, (x) is a non-negative martingale and thus converges a.s.
to a non-negative random variable M (x). The next step is then to prove that this convergence happens
uniformly on an open complex domain, which ensures that M is a random analytic function, and to observe
that for any positive a, the Cauchy integral formula gives

0,(k)= L f]E[Wn(aeie)]Mn(aeie)e_ikedG.
27 ak

—T

Precise asymptotic expansions of this relation give the expected result for 0 < a < 2. Moreover, M (a) is
distributed like X (at).

When a =1. For a =1, with the help of (3.43) we get
E[X(1)*] = %E[X(l)z] + %113[)((1)]2

so that IE[X(1)?] =1 and thus Var (X (1)) = 0. As a result, X(1) = 1 almost surely. Fuchs et al. [53] refined
the convergence (3.44) for a = 1:

Theorem 3.2.3 (Theorem 2 and Corollary 3 in [53]). If k = logn + a, with |a,| — oo and |a,| =
o(logn), then

(k) —E[¢,(k)] /
M Gognyt e X D)

where the random variable X’'(1) satisfies

XQUux’ 1)+ -)XA)+U+U logU +(1—U) log(1—"U)

with X’(1) an independent copy of X'(1) and where U is uniformly distributed on 10, 1[ and independent of
both X'(1) and X'(1).
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Profile asymptotics at fixed height. Here, we will focus on the limit distribution of £,,(k) as n — oo
and k is a fixed positive integer.

Let us first observe the following. Let (¢;);>; be independent Bernoulli random variables with respective
parameters 1/i. For all n > 2, we get that

ROEDY s

As a result, when n — oo, clearly E[£,(1)] ~ Var(£,,(1)) ~ logn. It is then easy to deduce a central limit
theorem:

Gl Zlogn __, y0,1) (3.46)
\/@ n—o00
where N(0, 1) denotes the standard Gaussian distribution.
The recursive structure of (T, ), and (3.46) suggest that a similar CLT should hold at each fixed height
k > 0 for well chosen parameters. Indeed, Fuchs et al. [53] proved in particular the following result:

Theorem 3.2.4 (Theorem 3 [53]). If k > 0 is fixed then

£, (k) — (logn)k/k!
(k—1)! (logn)k-1/24/2k — 1 == N(0,1).

Fuchs et al.’s result was recently extended by Iksanov and Kabluchko [74]. Their result treats all levels
jointly and also reflects the dynamic construction of the sequence (T,),:

Theorem 3.2.5 (Theorem 1.1 [74]). Let (B,;s = 0) denote a standard Brownian motion, then

e (k) — (t logn)*/k!
( LJ() ( g)/ ;fZO) :(J‘ (t—s)k_lst;tZO)
(k—1)!(logn)k—1/24/2k —1 1 % [0,¢] k>1

for the product topology on D[0, co[N.

3.2.2 Search trees

Another important model of random trees whose profiles have been studied is that of search trees. In
this section, we will focus on binary search trees.

Let n be a non-negative integer and x, ..., x,, be distinct real numbers. A binary search tree with n
internal vertices (and thus n+1 leaves) with input key (x1, ..., X,) is a binary tree t(,, _  yin which internal
nodes have labels x; through x, and leaves are unlabelled. Search trees are constructed as follows:

— For n =0, t is the tree with a single unlabelled vertex.
with a root labelled x; and such that its two sub-trees attached at the said root are t, ;e on the
left and T, sjer) O the right.
Input keys for a binary search tree with n internal vertices are usually simply permutations of {1,...,n},
see Figure 3.4. A natural distribution on the set of binary search trees with n internal vertices is then to
pick such a permutation %, uniformly at random and to consider the associated binary search tree ty, .
These trees are sometimes referred to as the Random Permutation Model.
There is a recursive algorithm to build a sequence (T,),>o of random binary trees such that for all n > 0,
T, is distributed like ty, :
— Let T, be the tree with a single vertex.
— For all n > 0, conditionally on T,, chose a leaf uniformly in T, attach two new leaves to it (making it
an internal vertex) and call T, the resulting tree.
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Figure 3.4 — The binary search tree associated to (6,4,2,5,7,3,9,1,8,10).

It is easy to compute the distributions of the sub-trees of T, originating at its root. Indeed, if for n > 1,
T, and T, denote the sub-trees on the left and right of the root in T, respectively, then the sequence
[#L(YA"H):IH21 is a Pélya urn and therefore, for each n > 1, #£(T,) is uniformly distributed on {1,...,n}.
Moreover, conditionally on #£(T,,) = k + 1 for 0 < k < n, T, and T, are independent and distributed like
Ty and T,_;_ respectively.

Remark 3.2.1. This algorithm is the same as Ford’s [52] when its parameter a equals 0. As a result, the
sequence (T,),so indeed has the Markov branching property, see Lemma 27 in [52].

There are two types of vertices in binary search trees, namely internal vertices and leaves (sometimes
called external vertices). Thus for all n, we can either study the internal or the external profile of T, that is
the sequences [£° (k) ]x>o and [£;(k)];>o given by

£ (k)= #{u € T, : u is an internal vertex, |u| = k}

and
£ (k) := #{u €T, :uisaleaf, |ul = k}.
Recall that in a binary tree, internal vertices have 2 children. Consequently, for all n, k > 0, we have

208 (k) = £2(k + 1)+ £2(k +1).

Then, by induction,
£ (k)= 2]21 2700 (k + ).
As a result, we can recover {; from {; and the other way around. We will now focus on the study of the
asymptotic behaviour of the external profile £; of T,
Observe that the recursive structure of T, allows us to get the following identity in law for £;: for all
non-negative integers k,

er+D Qe o+, k) (3.47)

where (an)mzo is an independent copy of (¢ ),,>o and U, is uniformly distributed on {0,...,n—1} and

independent of {,,, £,,, m > 0.

Expected external profile. For all non-negative n and k, because of the recursive construction of (T,),,
£(k—1) B £ (k)
n+1 n+1’

E[¢, ()= (k)| T,] =2

n+1

Now let W, be the (external) profile polynomial of T, by
Wa(2) = Ds £ (k) "

for all complex z and observe that consequently,

FW(5) — —— W) = L2

+
E|W, T, |=W,(z)+
[Wanr@IT,] = W) + —— — —

W, (2).
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Because Wy(z) =1 a.s., this last identity entails that

n—1 . n
Hwe)=[ 1555 =5 2l ke
o It n! &

where [Z] denotes the unsigned Stirling numbers of the first kind defined at (3.38). As a result, we get:

Theorem 3.2.6 ([93]). For all non-negative k,

B[] =2 [”] (3.48)

~arlk

When n — oo, if a > 0, (3.40) and Stirling’s approximation give the following asymptotic expansion:

[ ] na[lflog(a/2)]71

E[ £ (lalogn]) |~ ——————. (3.49)
V2 alogn

Observe that a[1 —log(a/2)]—1 < 1 iff a # 2 so that the leaves of T, seem to be concentrated around

height 2logn. Moreover, let a_ < a, be such that

a[l—log(a/2)]-1>20 <= acla_,a,]

Then, if a ¢ [a_,a,], IE[E;([(X lognj)] — 0 as n — oo. Compare with Devroye [40] who studied the
asymptotic height of T, and proved that
1Ll _»,,
logn n—oo ~*
Asymptotic behaviour of the normalised external profile. Just like it was the case for recursive trees, we will
study the normalised (external) profile of T,,: foralln>0,0 <k <n, let

£ (k)

An(k) = M.

We will study the asymptotic behaviour of A, (k) when k ~ a logn and a € [a_, a, ].
Let U, be uniformly distributed on {0, ...,n—1}. Equations (3.40) and (3.48) ensure that if k ~ alogn,
then

Elty, (k—DIU,] kn(logvn)"-l I'(k/logn) “(Un)a_l.
n

E[;(0] 20, I((k—1)/logU, 2

As a result, if A,(la logn]) converges in law to some random variable X (a), then heuristically, in light
of (3.47),

logn

X(a)2 g U X (a) + g (1-U)"*X(a) (3.50)

where X(a) is an independent copy of X(a) and U is uniformly distributed on ]0, 1[ and independent of
both X (a) and X(a).

This fixed-point identity was used by Fuchs et al. [53] with the same techniques as in their study of
recursive trees to obtain the next theorem.

Theorem 3.2.7 (Theorem 5 [53]). If a €]a_, a,[, then

A,(lalogn]) == X(a) (3.51)
where X (a) satisfies (3.50).
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In [35], Chauvin et al proved that the convergence (3.51) happens a.s. by a careful study of the
normalised external profile polynomial M, given for all complex z with —2z ¢ Z, by
W,(2)

M) = @7

Just like for recursive trees, the sequence [M,(z)],>( is @ martingale [75]. Drmota et al [45] proved a
functional version of (3.51).

The profiles of some models related to recursive trees and binary search trees were also studied. See for
instance Drmota et al [45] for m-ary search trees, and Hwang [72] as well as Sulzbach [119] for plane-
oriented recursive trees (PORTSs). Kabluchko et al [78] presented a unified approach to give Edgeworth
expansions for the profiles of recursive trees, search trees and PORTs. See also Hwang et al [73], Drmota
and Szpankowski [46], Magner and Szpankowski [94] as well as references therein for similar studies on
digital search trees and tries.
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CHAPTER 4

ASYMPTOTIC BEHAVIOUR OF THE PROFILE OF
MARKOV BRANCHING TREES

This chapter is comprised of results obtained in collaboration with Bénédicte Haas which are intended
to be eventually submitted for publication. Before that, we want to improve upon some of these results.
We mainly want to broaden the scope of Proposition 4.4.2 and to make clear whether the assumptions of
Theorems 4.3.6 and 4.4.5 could be lightened significantly.

4.1 INTRODUCTION

The focus of this work will be models of trees which satisfy the Markov branching property. Such
trees were introduced by Aldous [10] and later studied by quite a few authors, see for instance Haas et
al. [63, 66, 67], Broutin et al. [30], Rizzolo [111] and references therein.

A sequence (T,), of random trees is said to be Markov branching if for all n, T, has n leaves and
conditionally on the event “T, gives birth to p sub trees with n; > --- > n,, leaves”, the said sub-trees are
independent and the i™ largest is distributed like T, . The distributions of the elements of the sequence (T},),
are then characterised by the sequence (g,), of probability measures such that g, is supported by the parti-
tions of the integer n and is given by q,(ny,...,n,) := ]PI:“T,1 splits into p sub-trees with ny,...,n, leaves”]
forall p>1andny,>--->n, >0 with sum n.

Haas and Miermont [66] proved that under mild assumptions on this sequence (q,,),, the adequately
normalised tree T, will converge in distribution to a random measured “continuum tree” in the Gromov-
Hausdorff-Prokhorov topology. The limit trees are self-similar fragmentation trees, a family of continuum
random trees introduced in [64] which in particular encompasses Aldous’ Brownian tree introduced in [7].
Section 4.2.2 will give some background on both fragmentation trees and the GHP topology.

Here, we will be interested in the asymptotic study of the profile of large Markov branching trees. The
profile of a given discrete tree t endowed with some measure u, is the sequence of the sizes, with respect
to u,, of each successive layer of t. In our setting, we will consider Markov branching trees endowed with
the counting measure on the set of their leaves so this notion of profile will coincide with the external profile
we considered in Chapter 3. The asymptotic behaviour of the profile of some models of random trees has
been studied, see Drmota and Gittenberger [43, 44], Kersting [82], Pitman [105] as well as [35, 45, 53]
for instance.

There is a notion of profile for continuum trees as well. Consider T, such a tree endowed with a measure
and let m+ be the function such that m4(t) is the mass of all points in T at distance less than or equal to ¢
from the root of T. When this function is absolutely continuous, we say that T has a profile which is the
density of the measure dmy. As was the case for discrete trees, the profile of a continuum tree records how
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much mass is concentrated at each height of the said tree. In [60], Haas gave a simple condition which,
when satisfied, guarantees that a fragmentation tree admits such a continuum profile, see Section 4.2.3.

Thanks to Haas and Miermont’s result from [66], we know that adequately rescaled Markov branching
trees converge to fragmentation trees. Our main goal in this chapter is to study the convergence of the
associated profiles. The starting point of our investigation is the close link between the profile of a discrete
tree and the distribution of a particular random variable. If t is a tree with n leaves and whose profile we
denote by £, and if U is a leaf chosen uniformly in t, then the probability that U is at some height j is
£.(j)/n. In a similar way, the profile of a continuum tree 7 endowed with a probability measure u.; is the
density of the height of a leaf drawn in T following .

In their study, Haas and Miermont [66] proved that under appropriate rescaling, the height I, of a leaf
picked uniformly in the Markov branching tree T, converges in distribution to the height I of a randomly
chosen leaf in the corresponding fragmentation tree. We will endeavour to strengthen this last convergence
in order to deduce convergence of the profiles. For that purpose, we will use Fourier inversion results on the
characteristic function of I,, conditionally on T, in a way akin to how Gnedenko proved the local Central
Limit Theorem, see [56]. This will lead us to study the integrability of the Fourier transform of the profile
of fragmentation trees, which will translate to results on the regularity of the said profile.

This chapter will be organised as follows. Section 4.2 will introduce Markov branching trees, fragmen-
tation trees and their respective profiles. Section 4.3 will then focus on fragmentation trees; in particular,
Section 4.3.2 will give results on the regularity of their profile. In contrast, Section 4.3.3 will give a criterion
to guarantee that the said profile is not cadlag. Applications of these results to various fragmentation models
are given in Section 4.3.4. In Section 4.4, we will turn to the study of the profile of Markov branching
trees. Section 4.4.1 focuses on the expectation of the said profiles, Section 4.4.3 establishes functional
convergence under appropriate assumptions while in Section 4.4.4, we will give conditions under which
such functional convergence cannot happen.

Throughout this chapter, if X is a given real valued random variable, ¢y will denote its characteristic
function, i.e. for any real t, @y (t) := E[e"X].

4.2 BACKGROUND ON MARKOV BRANCHING TREES
AND THEIR SCALING LIMITS

4.2.1 Markov branching trees

Basic notations. We will denote by T the set of finite rooted unordered tree. Let t be in T; we will use the
following notations:
— A vertex of t will be called a leaf if it has no offspring. The set of leaves of t will be denoted by £(t).
— Ifu is a vertex of t, we will write |u| for its height, that is the number of edges in the shortest path
from the root of t to u.
— Moreovey, |t| := sup,c, |u| will be the height of t.
— For any non-negative integer k, t|, will denote the sub-tree of all the vertices of t with height k or
less. In other words, t|, is made out of the layers O through k of t.
— For any two vertices u and v of t, let u A v be their most recent common ancestor, that is the lowest
vertex in the shortest path from u to v.
— We will denote by # the counting measure on the set of vertices t. Similarly, # , will be the counting
measure on the set of leaves of t.
— For any positive integer n, let T, and Tf be the sets of finite trees with n vertices and n leaves
respectively.
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If u is a measure on t and k is a non-negative integer. Define £ (k) as the measure (with respect to u) of
the k™ layer of t, i.e. set

(k) :=p(uet:|ul=k).
The sequence [£ (k)]x=o will be referred to as the profile of t with respect to u. When the setting is clear,
¢% will simply be called the profile of t.

Remark 4.2.1. The profile with respect to # (resp. # ) is the usual profile of t (resp. external profile of t);
see Chapter 3.

Partitions of integers. Recall that Markov branching trees are closely related to “partitions of integers”.
Set P, ;= {@}, P; := {3, (1)} and for n > 2, let P, be the set of partitions of n, i.e. the set of finite
non-increasing sequences of positive integers with sum n. More precisely, set

Pp={A=(A1,...,A,) ENP i p2 1,4, > -2 A, and A+ + A, =n}.

Let A =(44,...,4,) be in P, for some integer n. We will use the following notations:
— Tts length will be the integer p(A) := p, with the convention p(@) = 0.
— For a positive integer k, mi (1) := .. 1, will be the number of occurrences of k in the partition A.

Markov branching trees. Informally, a sequence (T,), of random trees is said to satisfy the Markov
branching property if for all n, # . T,, = n, and conditionally on the event

“T_has p sub-trees T, ..., T® attached to its root and #, TV =2, >--- > #,T® = Ay

these sub-trees are independent and T is distributed like T,,- The sequence of distributions of (T}), is
characterised by the probabilities of such events.

Fix an infinite subset N of N with 1 € N; this set will index the possible numbers of leaves for our
random trees. Let q; be a probability measure on {&, (1)} with q;(1) < 1 and for all n > 1, let q,, be a
probability measure on P, such that

— g [(M)]<1,

— qpissupported by {A e P, : A, €N,i=1,...,p(A)}.
Set q := (¢,)nen- We will now define a sequence MB“? = (MB*?),,c,y with the Markov branching property
and first-split distribution q. Let MBf’q be the distribution of a branch of geometric length with parameter
1—q,(1). For n > 1, proceed as follows:

— Let T, be a branch with geometric length with parameter 1 —q,(n) and call U its leaf,

— Let A be independent of T, and have distribution g, conditioned on the event {m, = 0},

— Conditionally on A = (44,...,4,), let (Ty,...,T,) be independent random trees respectively dis-

tributed according to MBin for1<i<p,

— Attach each of these trees to U by a single edge,

finally, let MBrf’q be the distribution of the tree given by this procedure.

4.2.2 Self-similar fragmentation trees

The GHP topology. In this paragraph, we describe a distance used to compare compact and weighted
metric spaces, namely the Gromov-Hausdorff-Prokhorov distance. More details about this metric can be
found in Chapter 4 of [50], Chapter 27 of [121] or in [3] for instance. Let us first recall the necessary
notations.

Let (M,d,,) be a separable metric space. For any two compact subsets A and B of M, the Hausdorff
distance between the two is defined as:

dil (4,B) :=inf{e > 0:ACB* and B C A}
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where C" :={x € M :inf,ccdy(x,y) < r} forany C C M and r > 0. We also define the Prokhorov metric
on the set of finite Borel measures on M by

dP(u, v) := inf{s >0 : VF C X closed, u(F) < v(F®) + ¢ and v(F) < u(F®) + 8}
for any two such measures y and v.

Let (X,d) be a compact metric space, let py be in X, we will call it its root, and let uy be a Borel
probability measure on X. The 4-tuple X = (X, dy, px, ux) will be called a compact pointed weighted metric
space. If x is in X, let |x| := dx(px, x) be the height of x and set |X| := sup,x |x|. For all r > 0, let
X[, :={x €X :|x| <r} and set X|, := (X|,.,dx, px, 1}.|<x)-

Two compact pointed weighted metric spaces X and Y will be called GHP-isometric if there exists a
bijective isometry ® : X — Y such that ®(py) = py and uy ©®~! = uy. Let K be the set of GHP-isometry
classes of compact pointed weighted metric spaces.

Following [5, Section 2.1], we define the Gromov-Hausdorff-Prokhorov distance (or GHP distance for
short) between two elements X and Y of K as

dep(X,Y) := inf{dM[(P(PX)’@b(PY)] 4 dﬁ[(p(X), ll)(Y)] \4 di[[,ux o ‘P_I’HY ° 1/)_1]}

where the infimum runs over all metric spaces (M, d,,) and isometries ¢ : X — M, : Y — M. Theorem 2.5
in [3] states that dgyp is a well-defined distance on K and that (K, dgp) is both complete and separable
and thus, Polish.

R-trees. To talk about scaling limits of discrete trees, we need to introduce a continuous analogue. We
use the framework of R-trees, see [92] for instance. An R-tree (or real tree) is a metric space (T, d) such
that for all x and y in T,

— There exists a unique isometry ¢ : [0,d(x, y)] — T such that p(0) = x and ¢[(d(x,y)] =y,

— Ify:[0,1] — T is a continuous injection with y(0) = x and y(1) = y, then y and ¢ have the same

images, which we will denote by [x, y].

This roughly means that any two points in an R-tree can be continuously joined by a single path, up to its
reparametrisation, which is akin to the acyclic nature of discrete trees. We will denote by T the set of GHP
isometry classes of compact rooted and weighted R-trees.

Proposition 4.2.1. (i) The set T is closed in the Polish metric space (K, dgyp)-
(ii) If T,, n =1 and T are elements of T and if T, — T under dgyp, then for all r = 0 such that ur(x € T :
|x| =r)=0, we have
.U'Tn(Tnlr) — ur(Tl,).
n—oo

Proposition 4.2.1 (i) was proved in [3, Corollary 3.2] while (ii) was a step in the proof of [3, Proposi-
tion 2.10].

Let T=(T,dy, pr,ur) be an element of T. If x and y belong to T, let x A y be their most recent common
ancestor, i.e. x A y is the unique element of T such that [p;,xJU[pr, x]=[pr, x Ay].

Remark 4.2.2. 1f t is in T, i.e. a finite discrete tree, it is naturally endowed with the graph distance dg,
where dg,(u,v) is the number of edges in the shortest path between u and v in t. Let u be the uniform
measure on the set of leaves of t and let p denote its root. We can then consider (t,d,, p, ) as an element
of K.

Furthermore, if we let C, be the tree t in which all the edges have been replaced with a copy of
the unit interval [0, 1], C, belongs to T and for all positive q, it is easy to check that dgyp(at,aC;) < a.
Consequently, in order to use this last proposition, when we study the scaling limits of discrete trees, we
will implicitly consider them to be IR-trees.
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Profile of an R-tree. If T belongs to T, then the function my : t — u;(T|,) is clearly non-decreasing.
Moreover, ur(T|,) =0 for all t < 0 and u(T|,) =1 if t > |T|. Finally, for all t, the monotone convergence
theorem ensures that uy(T|..) L ur(T|,) as € | 0. The function m is thus cadlag and is consequently the
cumulative distribution function (CDF for short) of a probability measure dm with support included in the
compact interval [0, |T|].

When this measure is absolutely continuous with respect to the Lebesgue measure, we call its density
the profile of T. Informally, the profile records how much the mass of u is concentrated at each height,
compare with the profiles of discrete trees introduced in Section 4.2.1.

Remark 4.2.3. Observe that if U is a T valued random variable with law u, the distribution of its height
is dmy.

Self-similar fragmentation processes. Let 8% := {s =01 €41 15725902 O} and endow it with
the usual £; norm ||s|| = 2121 s;]. Moreover, set 0 := (0,0,...), 1:=(1,0,0,...) and 821 = {s est:
lsll < 1.

A self-similar fragmentation process is an Sil-valued Markovian process (F(t); t = 0) which is continuous
in probability, and satisfies F(0) = 1 as well as the following so-called fragmentation property. There exists
an a € R such that for all t, > 0, conditionally on F(t,) =s, (F( to+t),t= O) has the same distribution as

(s FOGe0,i=1,j>1)" 56> 0)

where (F)),5; are i.i.d. copies of F. The constant a is called the self-similarity index of the process F.

These processes can be seen as the evolution of the fragmentation of an object of mass 1 into smaller
objects which will each, in turn, split themselves apart independently from one another, at a rate proportional
to their mass to the power a.

Bertoin and Berestycki proved in [16, 19] that the distribution of a self-similar fragmentation process is
characterised by a 3-tuple (a, c, v) where a is the aforementioned self-similarity index, ¢ > O is a so-called
erosion coefficient which accounts for a continuous decay in the mass of each particle and v is a dislocation
measure on Slﬁ, i.e. a o-finite measure such that f(l —s7) ¥(ds) < oo and ¥({1}) = 0. Informally, at any
given time, each particle with mass say x will, independently from the other particles, split into smaller
fragments of respective masses xs;, Xs,, ... at rate x*v(ds).

We will be interested in fragmentation processes with negative self-similarity index —y < 0 with no
erosion, i.e. with ¢ = 0. Furthermore, we will require the dislocation measure v to be non-trivial, i.e.
v(SlSl) > 0, and conservative, that is to satisfy v(||s|| < 1) = 0. Therefore, the fragmentation processes
we will consider will be characterised by a fragmentation pair (y, v) and we will refer to them as (y, v)-
fragmentation processes.

Under these assumptions, each particle will split into smaller ones which will in turn break down
faster, thus speeding up the global fragmentation rate. Let F be a (y, v)-fragmentation process and set
To :=inf{t = 0 : F(t) = 0} the first time at which all the mass has been turned to dust. It was shown in [20,
Proposition 2] that 7, is a.s. finite and in [59, Section 5.3] that it has exponential moments, i.e. that there
exists a > 0 such that IE[exp(a’rO)] < oo,

Self-similar fragmentation trees. Let F be a (y, v)-fragmentation process. In [64], Haas and Miermont
exhibited a random rooted and weighted IR-tree which encodes the genealogy of the fragmentation of the
initial object.

More precisely, this T-valued random variable say (7, d, p, u) is such that u(7) =1 and if for all ¢t > 0,
{T:(t) : i = 1} is the (possibly empty) set of the closures of the connected components of T\ (T],), then

((urm(013121) 5 e20)
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is a (7, v)-fragmentation process. We will denote the distribution of (7,d, p, u) by F, ,..
Self-similar fragmentation trees bear a close resemblance to Markov branching trees. Let ¢ : | 51 P, —
8t be defined by (1) := (A, /n,..., A,/n,0,0,...) if A=(Ay,...,A,) is in P,.

Theorem 4.2.2 ([66], Theorem 5). Let (q,)n.en be the sequence of first-split distributions of a Markov
branching family MB**4, For all n in N, set G, := q, ot~ .. Suppose there exists a fragmentation pair (y, v)
and a slowly varying function { such that, for the weak convergence of finite measures on S,

n"€(n) (1 —s51)gn(ds) —— (1 —s) »(ds).

For all nin N, let T, have distribution MB*% and let y,, be the counting measure on the leaves of T,. Then,
with respect to the GHP topology on T,

1 Un o T
(an(n) T,, 7) — Ty In distribution.

4.2.3 Profiles of fragmentation and Markov branching trees

Fragmentation trees. Let T be a (y, v)-fragmentation tree. For all t > 0, set
M(t) = pr(71,)

the mass of the ball of radius t centred around the root of J. Recall that M is the CDF of a (random)
probability measure dM on R the support of which is a subset of [0, |T|].

Proposition 1.9 in [21] further states that M is a.s. continuous. A natural question is then whether dM
has a density with respect to the Lebesgue measure or in other words if T admits a profile. This question
was part of the focus of [60].

Theorem 4.2.3 (Theorem 4 in [60]). Suppose that v is such that fsi i1 5i [logs;| v(ds) < oo,
@) Ify<landif
fsl(l —s1)P ¥(ds) < oo, fsl Zstil_Ysj y(ds) < oo
for some B in 10, 1[, then dM a.s. has a (random) density L with respect to the Lebesgue measure and
]EUOOO Lz(t)dt] < oo.

(ii) If y = 1, then the measure dM is a.s. singular.

When the measure dM has a density L, this density is called the profile of 7.

Tagged fragment. To prove Theorem 4.2.3 (i), Haas first studied the height of a leaf drawn in a fragmen-
tation tree.

Conditionally on T, pick V following us and setI := |V|. Forany t > 0,let T, (t) :={u € T: [uAV| >t}
be the closed connected component of T\ (T7|,) containing V, with the convention T, (t) =@ if t > I. For
all t >0, set X(t) := us[Ty(t)]. Note that conditionally on T, I is distributed according to dM.

In [18, 19], Bertoin studied the joint distributions of X and I. He proved in particular that X is a
self-similar non-increasing Markov process started from 1 (see Lamperti [90]) and that I is its absorption
time.

Let us describe the distribution of X and I. Let £ be a subordinator with Laplace exponent 1 given by

Y : [0, 00[—> [0, oo[
q—> —logE[e 1] = fsi (1->., si1+q)v(ds),
and define the Lamperti time change 7 such that for all t > 0,
T(t) := inf{r >0: for e Teudu > t}.

4.1)
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Then Bertoin proved that
d 0o
x,n< ((exp[—&m] se=0), eﬂfdt). “.2)

The process X is called a self-similar Markov process and the random variable I is called the exponential
functional of the subordinator y &, see [28, 32].

Markov branching trees. Suppose that (gq,,), is a sequence of first-split distributions which satisfies the
assumptions of Theorem 4.2.2. For all n, let T,, denote a random tree with distribution MBf’q endowed
with the counting measure u,, on the set of its leaves. Also let (T, uy) be a 7, , distributed random variable.
With these notations and assumptions, Theorem 4.2.2 ensures that (n™7 T,,n"'u,) = (7, uy) for the GHP
topology.

For all t > 0, recall that M(t) = u4(7],) and let

1
M, (t) := ;,un(x eT,:|x|< nYt),

i.e. M,(t) is the proportion of leaves of T, at height n"t or less. Observe that M,, is the CDF of a random
discrete probability measure dM,. Moreover, if V, denotes a leaf drawn conditionally on T, uniformly
amonyg its leaves, dM,, is the distribution of |V, |/n" conditionally on T,.

Lemma 4.2.4. Under our assumptions, M,, = M in the uniform topology on R, jointly with n™"T,, = T.

Proof. The metric space (T, dgyp) is Polish so we can use Skorokhod’s representation theorem and assume
that (a version of) n™"T, a.s. converges to J in the GHP topology. Proposition 1.9 in [21] ensures that
the process M : t — u4(T],) is a.s. continuous. By Proposition 4.2.1 (ii), we then get that (a version of)
M, is such that M, (t) — M(t) a.s. for all t > 0. Finally, we use the well known fact that a sequence of
cumulative distributions functions which converge point-wise to a continuous CDF also converges uniformly.
Therefore, a.s., sup,sq |[M,(t) —M(t)| — 0 as n — oo. O

For all n, let £, := ¢} be the profile of T, with respect to u,. In other words, for all j > 0,
£,(j) :=#{u e L(T,) : u| = j}
denotes the number of leaves at height j in the tree T,. For any real t, set

L,(t):=n""1¢,(|n"t)).
Observe that L, is a cadlag process and is such that fooo L,(t)dt = 1. Moreover, with these notations
dMm, = %ijoen(j)‘sj/m =nr ijo L,(j/n")0;/nr-
Finally, if U is a uniform random variable on ]0, 1[ independent of T, and V,, then for all real ¢,
P{|V,|+ U <n't|T,]= [, Ly(s)ds.
Slutsky’s theorem and Lemma 4.2.4 therefore ensure that
(fot L,(s)ds;t > 0) n_):oo M (4.3)

in the uniform topology on R, .

We want to study the asymptotic behaviour of L, when n — oo. In particular, we will endeavour to
find suitable conditions under which E[L,(t)] — E[L(t)] uniformly on R, and L, = L in D[0, oo[. We
will also give conditions under which (L,),, cannot converge weakly in D[0, oo[.

This next lemma is a uniqueness result. It proves that if (L,,), converges weakly in D[0, oo, its limit is
distributed like the profile of the (y, v) fragmentation tree 7.
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Lemma 4.2.5. Suppose that L, converges in distribution to some cadldag process L in the Skorokhod topology.
Then T a.s. has a profile which is distributed like L.

Proof. We may deduce from (4.3) that L,(t)dt = dM in the weak topology on finite measures. We will
now endeavour to prove that L,(t)dt = L(t)dt in the same topology. This will entail that the two random
probability measures dM and L(t)dt have the same distribution. Lemma 2.10 (i) in [80] will then allow
us to get the desired result.

Because the Skorokhod space D[0, oo[ is Polish, we may use the Skorokhod representation theorem
and assume that L, — L a.s. for the Skorokhod topology.

Recall that for all non-negative t, the function D[0, co[— R, f — f Ot f(s)ds is continuous. As a result,
on the set {L, — L}, forall t >0,

fot L,(s)ds —= fot L(s)ds. (4.9)

Convergence in D[0, oo[ entails convergence a.e. so by Fatou’s lemma, on the set {L, — L}, we get
that f Ooo L(t)dt < 1. Furthermore, for all non-negative R,

B[ [ B0 de] > B[ [0 de] =lim, oo B[ [ 1,0 dt ] = E[M®R) ] — 1

where we have used (4.3) as well as the dominated and the monotone convergence theorems. Consequently,
fooo L(t)dt =1 a.s. or, in other words, L(t)dt is a.s. a probability measure. Equation (4.4) then ensures
that on the event {L, — L}n {foooi(t) dt =1}, L,(t)dt — L(t)dt in the weak topology on finite measures.

Theorem 2.2 in [80] yields that L(t)dt @ dM as finite measures. Lemma 2.10 (i) in [80] then ensures

that dM a.s. admits a density, say L, with respect to the Lebesgue measure and that L and L have the same
finite dimensional distributions. O

Tagged fragments. Conditionally on T,, let V,, be drawn uniformly among the leaves of T,. Conditionally
on both T, and V,,, for every j > 0, let T, (j) :={u€ T, : [uAV,| = j} be the (possibly empty) connected
sub-tree of T, \ T,|;_; which contains V,,. Set X,,(j) := #,T,(j). With these notations, [X,(j);j = 0] is
a non-increasing Markov chain started from n with transition matrix P? = (pi( j ))izo,jzo where for any
integer i, p; is the probability measure supported by {0,...,i} defined by

Pi(i) = Tncs, (D) 4i(A). “.5)

Observe that P(i,j) =0if j > i. Let I,, := 1 +|V,|; it is the absorption time at 0 of the Markov chain X,.
Observe that for all t > 0,
P[I,/n" < t|T,]=M,(t—n"T).

In other words, conditionally on T,, the distribution of (I, —1)/n" is dM,,.

Remark 4.2.4. The study of the asymptotic behaviour of the Markov chains X,, hence defined was one of
the steps in Haas and Miermont’s proof of Theorem 4.2.2, see Lemma 28 in [66].

The asymptotic behaviour of such Markov chains and their absorption times were studied by Haas and
Miermont [65]. See also Bertoin and Kortchemski [25] as well as Haas and Stephenson [70].

4.3 REGULARITY OF THE PROFILE OF SELF-SIMILAR
FRAGMENTATION TREES

In this section, we will establish some results on the regularity of the profile of fragmentation trees
characterized by some fragmentation pairs (y, v).
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Let (7, u) be such a tree; conditionally on it, let V have distribution u and set I := |V|. In Section 4.3.1
we will prove that the characteristic function ¢; of I decays faster at infinity than |t|™'~% for any 6 smaller
than some parameter depending on both y and v, see Proposition 4.3.1.

This result will then be used in Section 4.3.2 along with Fourier inversion to prove that under some
assumptions, if v is small enough, (T, us) a.s. has a continuous profile; a precise statement is given in
Theorem 4.3.6.

Conversely, in Section 4.3.3, we will give conditions under which the profile, if it exists, cannot be
cadlag.

Finally in Section 4.3.4, we will give applications of these results to various fragmentation models.

4.3.1 On the exponential functional of a subordinator

Recall (4.2); as a result, instead of considering the height of a leaf drawn in a fragmentation tree, in
this section we will study exponential functionals of subordinators, which is slightly more general.

Let us first introduce similar notations as around (4.2). Let y be positive and let u be a o-finite measure
on ]0, 1[. Define the function v by

P(@) = [195,(1=xDu(dx) (4.6)

for all real q. We will assume that ¢(1) < 00, i.e. that u integrates x — 1—x. This ensures that 1) is finite
on [0, oo[. We will often extend v on the set of complex numbers z such that x — |1 — x*| is integrable
with respect to u. Let £ be a subordinator with Laplace exponent vy and let I be the exponential functional
of y &, i.e. set

I:= [ eede. 4.7)
The random variable I has been studied quite extensively, see [32, 33, 28, 103] and references therein for
instance.

Let p(u) be defined as
p(u) :=sup{q=0:Y(—q) > —oc0}. (4.8)
This parameter will be important in this section’s main result.

Remark 4.3.1. When [ is the height of a leaf drawn in a (y, ¥) fragmentation tree, the measure y will be
such that
[ oar fdu= Jo Dim15: £ (51,50 ¥(ds), (4.9)
for non-negative and measurable functions f, compare with (4.1). In this case, we will set p(v) := p(u).
For any real q,
— 1—q 1—q
Y(—q) = [ (1—s; D v(ds)— [, Dsys; “¥(ds).
Recall that as a conservative dislocation measure, v integrates s — 1 —s; and that »,,.;s; = 1 v-a.e;
further observe that provided g < 1, foralls€ 8!, 0< 1 —si_q < 1—s;. As a result, we have the following
useful identity
1A p()=sup {q €[0,1] : fsl Zizzsil_q y(ds) < oo} (4.10)

We say that a function f is regularly varying at O with exponent a € R if for any ¢ > 0, f(cx)/f (x) — c*
when x — O or equivalently, if f can be written as f (x) = x*£(x) where { is slowly varying around 0, i.e. ¢
is regularly varying with exponent 0. A function g is said to be quasi-monotone if it is of bounded variation
around 0 and for any positive 8, when x | 0,

[ tP1dg(0)] = Ol xP g(x)].

As the name suggests, if g is monotone, it is quasi-monotone as well.
The main result of this section is the following proposition which gives a bound on the speed of the
decay of the characteristic function ¢; of I.
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Proposition 4.3.1. Suppose that the constant p(u) defined in (4.8) is positive, that the function x —
w(10,1 — x]) is regularly varying around 0 with exponent —a, 0 < a < 1, and that x — x*u(]0,1—x]) is
quasi-monotone. Then, for any 6 € [0, p(u)/y[, there exists a finite constant Cy such that |p;(t)| < Cq|t|7*0
for any real t.

Remark 4.3.2. It is sometimes easy to check the assumptions on u:
— If w(dx) = f(x)dx and x — f(1 — x) is regularly varying at O with exponent —f, f > 1, then
x — u(]0,1 — x]) is regularly varying with index 1 — 3 see Karamata’s theorem (Theorem 1.15
in [112] for instance) and x — x#~1u(]0,1 — x]) is quasi-monotone (see Example 1.30 in [112]).
— Observe that x — ©(]0,1—x]) is monotone, and thus quasi-monotone so if it further is slowly varying,
w fulfils the assumptions of Proposition 4.3.1. That is in particular the case when u is finite.

We will also prove the following converse to Proposition 4.3.1:

Proposition 4.3.2. If 0 is positive and such that |¢;(t)| = O(|t|=%) when |t| — oo, then 6 < p(u)/7.

Basic properties of I. In order to prove Proposition 4.3.1 and Proposition 4.3.2, we will use results on the
Mellin transform of I which were proved in [104]. Mellin inversion results will then allow us to get fine
results on the distribution of I which we will in turn use to prove Proposition 4.3.1 and Proposition 4.3.2.
Let us first recall some known properties of the distribution of I.

Proposition 4.3.3. The random variable I has a density k with respect to the Lebesgue measure, k is infinitely
differentiable on ]0, oo[, and

Vx>0, k(x)=[

X

- u(10, (/w7 T) k(w) du, (4.11)
Proposition 4.3.3 was first proved in [32], Proposition 2.1, under the assumption 1)’(0,) < oo and
then in [103], Theorem 2.3, with this last assumption dropped.
A consequence of (4.11) is that for all real t # 0,

E[I7 '] = @E[If] (4.12)

where the two sides may be infinite. This identity for positive t was proved in Proposition 3.1 of [32] which
also states that

E[I] =y /(0,) ==lim, oy (e)/e = [, llogx| p(dx) =y E[€,]€]0,00].  (4.13)

Proposition 2 in [27] deals with negative moments of I under different assumptions. As a result, for any
non-negative integer n, we get
E[I"]=n![ [, ¥(ri). (4.14)

A rather straightforward consequence of (4.12) is the following result.

Corollary 4.3.4. Foralla <1+ p(u)/y, E[I7*] < co and if b> 1+ p(u)/y, then E[I7?] = oo.

Proof. Let d be a non-negative integer and let 8 €]0, 1[. By iterating (4.12), we get

1 —y[—y(0 +i -0
]E[I—d—e]:l—[id:ol Y[ QYii"'l)] . w[)/l(l_e )]

E[1?]. (4.15)

In light of (4.14), I has positive moments of all orders and in particular, E[I'~%] < co. As a result,

E[I7% % <00 < Y[-y(0+d—1)]>—00
which gives us, along with the definition of p(u) (see (4.8)), the desired result. O
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Remark 4.3.3. If ¢ > 0 and x €]0, 1[,
|[logx| < (x™9—1)/q. (4.16)
As a result, if p(u) >0, ¢’(0,) = f |log x| u(dx) is necessarily finite and (4.13) ensures that E[I7!] < oco.

Define M;, the aforementioned Mellin transform of I, by M;(z) := E[I*"'] whenever E[|[*}|] =
E[I®¢*71] < co. Corollary 4.3.4 ensures that M; is well defined and holomorphic on {z : Re z > —p(u)/7}.
Moreover, just like for (4.12), as soon as Re g > —p(u)/y and z # 0,

M;(z) = @M,(z+l). 4.17)

Regularity of I.  From this point on, assume that the constant p(u) from (4.8) is positive. In order to prove
Proposition 4.3.1, we will need the following lemma.

Lemma 4.3.5. Under the assumptions of Proposition 4.3.1, the density k of I coincides on the complex domain
{z :|z| > 0,]arg z| < (1 —a)m/2} with a holomorphic function, which we will also denote by k.

Furthermore, for any A €] — oo, p(u)/v[, there is a finite constant C, such that for all z in the aforemen-
tioned complex domain, |k(z)| < C,|z|*.

Remark 4.3.4. See Lemma 1 in [60] and Theorem 5 in [103] for similar results on k on the real line.
Proof. The cornerstone of this proof is Theorem 2.3 (2) in [104] which ensures that under our assumptions,
for any € > 0, fixed s > 0, and any t € R,

IM;(s +it) < Cexp(—[(1—a)m/2—e]-|¢]) (4.18)
for some finite constant C which depends on s and ¢. We will endeavour to prove that (4.18) also holds

when s €]—p(u)/y,0] with the help of (4.17). This will allow us to conclude this proof by using the Mellin
inversion theorem.

Ifae]l—p(u),oo[,and b € R,
[Y(a+iD)| SJ |1—x?e™ %8| u(dx) < Iw(a)l+f X1 —e™® 8| y(dox).
(0,1) (0,1)

Furthermore, for any positive ) and x €]0,1[, |1 —e'®'°8*| < |b||log x| so that, using (4.16), if a < 0,
x%|1—el?108x| < |p|(x*™ —1)/n and thus

la-+ib)] < (@)l + D yta—).
Similarly, if a > 0, x|1 —e!®1°8*| < |b|(x™" —1)/7n and
[Vla-+ib)] < Y@+ Tl
Therefore, by choosing ) fixed and small enough, when |b| — oo, we get
|y (a+ib)| = O(|b]). (4.19)

In light of (4.17) and (4.19), for any s > —p(u)/y and positive ¢, for all t € R
IM; (s +it)] < C'exp(—[(1—a)m/2—¢€]-|t]), (4.20)

for some constant C’ which depends on s and ¢, i.e. (4.18) also holds for s €] — p(u)/y,0].

Let z = re!® with r > 0 and |w| < (1 —a)n/2. Fix £ €]0,(1 — a)7/2— |w|[. Equation (4.20) ensures
that for any s > —p(u)/y, we have

1

f |M,(s+it)zs“|dt§%f exp(—[(1—a)n/z—e].|t|+wt)dtsC (4.21)

s
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where C” denotes yet another constant which only depends on s. In particular, the integral on the left
hand side of (4.21) is absolutely convergent. We now deduce from the Mellin inversion theorem that the
density k of I coincides on {z : |z| > 0, |arg z| < (1 — a)r/2} with a holomorphic function, which we will
also denote by k, given by

oo
k(z)zzif M (s +it)z 7t de (4.22)
n —00

for any appropriate z and where s is any real number in ]— p(u)/y, oo[. Observe that (4.21) and (4.22)
also ensure that, provided A €] — 00, p(u)/y[, there is a finite constant C, such that |k(z)| < C,|z|* for all
complex z with Re 2 > 0 and |arg z| < (1 —a)m/2. O

Remark 4.3.5. We point out that [104, Theorem 2.3 (2)] only deals with a > 0. Yet the same proof can
extend to a = 0.

Proof of Proposition 4.3.1. Lemma 4.3.5 ensures that for any real t, the function z — e'**k(z) is holomorphic
on the domain {z : |z| > 0,|arg z| < (1 —a)m/2}. Therefore, for any w €]0,(1 —a)n/2[ and 0 < r <R, if

C:=[r,RJU{Re’ :0< o <w}U{ue® :r<u<R}U{rel’:0<o < w},

see Figure 4.1, the Cauchy integral theorem ensures that 3§C e!?k(z)dz = 0 from which we deduce that

Figure 4.1 — The contour C.

w

R R w
f e"“k(u)du—ei“’f e k(ue'®) du = ir f e’ k(re!”)do —iR f e k(Re'?)do.

r 0 0

Recall from Lemma 4.3.5 that there is a finite constant C such that |k(z)| < C - (1 A |z|™2) for all z with
|z| >0 and |arg 2| < (1 —a)m/2. As a result

ir fo“) eitrei" k(rei")da‘ <r fow e—trsin(o) Ik(reicr)| do = 0(r)
when r — 0. Similarly, when R — o0
iR [, ¢ k(Re") dor| <R [R5 [k(Rei?)| do = OR™)

because sino > 0 for all o €]0, w[. Consequently,

R R _

lim, o f e'™k(u)du —e'® f el k(ue')du = 0.
R— o0

r r

Because of Lemma 4.3.5, it is easy to see that the two integrals are absolutely convergent, so that

i(t) = f e'k(u)du = ei“’f el k(ue')du.
0 0
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As a result, for any 6 € [—1, p(u)/v[ and any t € R, Lemma 4.3.5 and a change of variables give

oo oo C/
lo,(t)] < J e~ tusin(@)| ke (yel®)|du < C, f e tusin(w)y 04, < tlf@
0 0
for some finite constant Cé and all real t. O

We now turn to the proof of the converse to Proposition 4.3.1.

Proof of Proposition 4.3.2. Under these assumptions, for any b in ]0, a[

[ 1Pl ()] de < [%2 JelP-1ACle e dt < oo,

Classical Fourier theory results then ensure that for any non-negative integer d and 6 in ]0, 1] with d+6 < q,
the density k of I is d times continuously differentiable on R and that for any two real numbers x and y,

<hgltx—tyl|®
1 X —r—
D) — kD (y)| < —f le™ ™ —e | [t]4 ] (t)ldt
21 J_ o

oo
< 2y f 6199l (0)lde < Cyplx = yI°.
T —00
where hy and C, 4 are two finite constants which only depend on d and 6. In other words, k¥ is Holder
continuous with exponent 6.

Recall that k, k’, ..., k¥ are continuous and supported by R, so that k®(0) =0 for each i € {0,...,d}.
Taylor’s inequality then yields that |k(x)| = O(x?*?) as x — 0. As aresult, if b <d + 6, E[I"'?] < 0o so
that necessarily, using Corollary 4.3.4, b < p(u)/y. Because this holds foranyd + 6 <aand b <d + 0, it
follows that a < p(u)/y. m]

4.3.2 Regularity of the profile of fragmentation trees

Let v be a dislocation measure and recall that the parameter p(v) is defined in Remark 4.3.1. Define
o,(y) as follows:

o,(r) :=sup {a +b:ab<l+pW/y, fsi ZK]. sil*aysjfbyﬂsjw v(ds) < oo} (4.23)

Observe that o,(y) decreases when y increases. For any positive a we have

J Zsil_aysj]lsjw y(ds) < f Z(l —sl-)sil_w]lsiw v(ds)
8t i<j 8ti>1
which is finite iff
f Zsi(l —s; " 50 ¥(ds) > —00,
8t ix>1

and thus, if a < p(v)/y. As a result, o,(y) = p(v)/y so if p(v) is positive, 7,(y) — 0o when y — 0. Now,
define x(v) as

k(v) :=sup {y co,(y)> 2} (4.24)
and observe that k(v) = p(v)/2.
Remark 4.3.6. In Section 4.3.4, we will see that there are dislocation measures v such that x(v) = p(v)/2,
i.e. the lower bound is sometimes reached. On the other hand, there are also dislocation measures v such

that x(v) > p(v)/2. In particular, if v is N-ary, i.e. supported by {s € 8! : sy, = 0}, we will prove that
k(v) = (1/2) A[2p(v)], see Proposition 4.3.13.
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With these notations, we can state the main result of this section. Let us now assume that v, or rather
the measure associated to v as in (4.9), satisfies the conditions of Proposition 4.3.1.

Theorem 4.3.6. Let y be positive and assume that y < 1/2 A k(v). Then, if T is a (y, v)-fragmentation
tree, it a.s. has a profile L. Furthermore, for all non-negative integer d and 9 €]0,1] such that d + 6 <
[o,(y) Ay ™']/2—1, L is d times continuously differentiable and L'? is 0-Hélder continuous. In particular, T
a.s. admits a continuous profile.

Proof. In [60, Theorem 4 (i)] Fourier inversion was used to prove the existence of the profile of T. We will
proceed similarly to get some results on its regularity.

Conditionally on T, let V and W be two leaves in 7 drawn independently following us. Let A; and A,
be the measures of the sub-trees of 7 above U AV, the most recent common ancestor of U and V, containing
U and V respectively. In other words, let

M :=,u7(x€fl': |U/\x|2|U/\V|)

and A, :=ug(x €T |VAx|= |U/\V|).

Now set I := |V| and J := |W| and recall that conditionally on T, the law of I is dM. Finally, let I, J be i.i.d.,

independent of T and distributed like I. Observe that because of the self-similar fragmentation property,
1-7= (1= Av])=(7=1UAV]) @ AT -3, (4.25)

For any real u, set ®(u) := E[e™!|T]. The function & is simply the (random) characteristic function of I
(and that of J) conditionally on 7, i.e. the Fourier transform of the probability measure dM conditionally
on 7. For any u € R, in light of (4.25),

E[[2(w)?] = E[E[e™|T]- E[e"|7]] = E[ exp (iu(1 —))]
= E[ exp (iu(A]T - 230)) | < 2E[ o, (A[w)] - [o, (M) 15,55, |
Using Proposition 4.3.1, we get that if a and b are in [0,1 + p(v)/y[, then for any real u,

C —ay ,—b
= ua+b]E|:2‘1ﬂYA‘2 Y]lllzlz]

E[|ew)?] < CE[(A![ul)™ - (A5|uD ™1, 52, ]

where C denotes a constant which only depends on a and b. In light of [60, Lemma 2], this last quantity is
finite iff a + b < 1/y and

f D st s (ds) < 00 (4.26)
8ti<j
By assumption y < 1/2 A k(v) so we can find a,b < 1+ p(v)/y with 2 < a+ b < 1/y and such that (4.26)
holds. As a result,
1/2
Sup, e [ul @ P2E[|©(w)| ] < sup,ex (Jul** E[|2W)?]) " < o0

which ensures that
E[ {2, lul®*|®(u)ldu| < oo
for any non-negative integer d and 6 €]0,1] with d + 6 < (a + b)/2— 1. Consequently for all t € R,
(o]
1 ‘
L(t) := —f e " (u)du
27

—00

is a.s. well defined, d times continuously differentiable and L(® is -Hélder continuous. Finally, the Fourier
inversion theorem ensures that ® is the Fourier transform of L and therefore, dM(t) = L(t)dt. In particular,
L is the profile of 7. O
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Remark 4.3.7. It is known that the Brownian tree, which is a fragmentation tree with self-similarity index
1/2, a.s. admits a continuous profile, see Section 3.1. In particular, the assumption y < 1/2 of Theorem 4.3.6
is not optimal. Yet we do not known whether it could be lightened significantly with a different approach.
See Appendix A for simulations intended to shed light on this matter.

On the expectation of L.  Since the process L is the random density of I conditionally on T, it would seem
intuitive for the expectation of L to be the density k of I. We will end this section by proving this fact.

Lemma 4.3.7. (i) For almost every t > 0, E[L(t)] = k(t).
(ii) Under the assumptions of Theorem 4.3.6, E[L(t)] = k(t) forall t = 0.
Proof. (i) For all non-negative t we have
[, k(s)ds =P[I < t]=E[P[I < t|T7]] = E[M(1)]
=E[ [, L(s)ds | = [, E[L(s)]ds
where we used the Fubini-Tonelli theorem at the end. As a result, k = E[L(-)] for almost every non-
negative t.

(ii) Under the assumptions of Theorem 4.3.6, as we saw in its proof, the characteristic function of I
conditionally on 7 is integrable with respect to the product measure du ® dPP. As a result,

IE[suptZOL(t)] = %E[supeo ff:oe_i“fIE[ei“II‘J'] du] < %]E[ff:ohE[ei“IIT]\ du] < 0.

The continuity under the integral sign theorem then ensures that the function t — E[L(t)] is continuous
and by (i), we know that this function coincides with k, another continuous function, almost everywhere.
Therefore, E[L(t)] = k(t) for all t > 0. O

4.3.3 Unboundedness of the profile

When a fragmentation tree has a profile, it is not necessarily cadlag. This paragraph aims to provide a
criterion to ensure that even if a fragmentation tree has a profile, it may be locally unbounded and therefore
not cadlag.

In this section, (7, v) will be a fixed fragmentation pair. Let (T, u) be a (y, v) fragmentation tree and
denote by M the function t — u(T],). Also denote by F the underlying fragmentation process encoded by
this tree and let (%,),5( be the natural filtration of F.

Proposition 4.3.8. Let y < 1 and suppose that there exists some positive a < y such that

st(sl_1 —1)¥(ds)< oo and (Y, si7*=00)>0.
Then the varying rate of M is a.s. not locally bounded.

Remark 4.3.8. Under the assumptions of Proposition 4.3.8, the tree T cannot have a cadlag profile.
On the event {T admits a profile}, let L denote the said profile. If 0 <s < t and ¢ €]0, 1], then

%[M(s +£)—M(s)] = % 7L du < supyeye g L) (4.27)

On the event {L € D[0, oo[}, L is bounded on compacts and the varying rate of M is therefore locally
bounded. Proposition 4.3.8 ensures that the probability for this to happen is 0. Consequently,

IP[“L exists and is ce‘ldlég”] =0.
We will need the next few lemmas in the proof of Proposition 4.3.8.
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Lemma 4.3.9. Let (x,),>, be a sequence of positive real numbers such that x, — 0 and Y. x,, = 0. Then,
there exists a subset J of positive integers satisfying

L1+
Qe Xj=00 and Ve>0, >, x;* < oo.

Proof. The assumptions on (x,), ensure that we may find a sequence (J});>; of pairwise disjoint sets of
integers such that for all k > 1,

1/k <2, x; <2/k.
As a result, if we set J = Uk21 Jy, then on the one hand

Z]EJ J Zk>1 Z]ejk Xj Zk21 1/k =00,

and on the other, for any positive ¢,

1+e
Z]EJ ]1+£ Zk>1 Z]EJk xjte< Zk>1 (Z]EJk ) = Zk>1(2/k)1+8 < 00. O

Lemma 4.3.10. Let y be a finite measure on [0, oo[. Then,
2([0,e])=0(eP) = Vae(0,p), [ u “x(du)<oo.

Proof. By assumption, there exists a non-negative constant C such that x([O, s]) <CePforalle>0.Asa
result, we may write

f[o,oo[f“ 2(dw) = f[o’oo[x[o’oo[]lgradt x(du) = [ x([0,c7/2])de
< x([0,00))+C [ t7P/*de

which is finite provided 0 < a < 3. O

Lemma 4.3.11. Under the assumptions of Proposition 4.3.8, there exists an a.s. positive and finite stopping
time T such that with probability 1,

D Fi(T)* = oo.

Proof. Recall the Poissonian construction of homogeneous fragmentation processes and the subsequent
time change to make them self-similar with index —y (see Chapter 3 in [21] for instance).
Because of the assumptions on v, we can find a positive ¢ such that

( —51> 6,251 “—oo)>0.

Set A := {1 —5; > ¢, Zl>1 s; %= oo} Conditionally on F tag a fragment chosen uniformly at random
and observe that the first time T at which the said tagged fragment splits into sub-particles with relative
sizes in A is both finite and positive. Moreover, T is clearly a stopping time and its definition entails that
i1 Fi(T) ™% = oo almost surely. O

Lemma 4.3.12. Let { := |T| be the height of T. For all & < 1+ 1/y, we have E[{~%] < oo.

Proof. Conditionally on F, tag the particle which belongs to the biggest fragment at each splitting time
along its lifeline. Set I° as the first time the said fragment vanishes. The random variable I° is the height of
an element of T so { > I°.

Let u° be the measure on ]0, 1[ defined by

Joar f du® =[5 f(s1) v(ds)
for any non-negative and measurable f and let £° be a subordinator with Laplace exponent
g [0 (1= x) po(dx).
The random variable I° is distributed like the exponential functional of y £°. Corollary 4.3.4 now ensures

that E[{?] < E[(I°)7%] < oo for all 8 € [0,1 + p(u°)/y[. Finally, by assumption on », p(u°) > 1. m]
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We can now turn to the proof of Proposition 4.3.8.

Proof of Proposition 4.3.8. Lemma 4.3.11 entails that we can find a finite and positive stopping time T
such that >}, F,(T)® = +00 a.s. We will now endeavour to prove that the varying rate of M is a.s.
unbounded around T.

Let 1) be positive and such that y —a— (1 —y) <1 < y — a. The strong Markov property ensures that
there are i.i.d. (y, v) fragmentation processes F), i > 1 independent of &, such that a.s.,

([Fi(T+s);j21],520)= ([Fi(T)F;”(Fi(T)—Ys); i>1,j> 1]1, s> o).

For all i > 1, let M) be the process defined by M®(t) =1->] =1 F;i)(t) as well as {) the extinction time
of F), With these notations, for any positive ¢,
M(T +€)—M(T) =Y, Fi(T)- MO[F(T)"¢]
2 Y1 Fil(T)  Dpwsr (ryve
> s Fi(T) - Lyw < ryre =2 Ny(€) (4.28)

where J is chosen in such a way that >._, F;(T)? < oo iff > 1 —a—mn, see Lemma 4.3.9.

Observe that

ieJ

IE[NJ(S) | ‘O;T:I = ZieJ F,(T) ]E[‘HF[-(T)Y{“)SE | gT]
= (Zies F(TYE[85, ¢yl F7 ])([0, £1) =1 ©, ([0, €])
and that the (random) measure ©; hence defined is finite. Moreover, for any positive 3,
Jx7P0,(dx) = E[((M) 1 X, F(T)P.

Taking 8 = (a + 1)/, in light of Lemma 4.3.10 we get that lim sup e‘ﬁ/GJ([O, 8]) = oo forany 3’ > 3 as
¢ — 0. In particular, since (¢ +n)/y <1,

1
lim sup —]E[NJ(E) | ?ZT] =00 a.s. (4.29)
e—0 €

For all positive 3, the Markov inequality ensures that
Var (N;(e)/e|Fr) < €72 2ic; Fi(TYE[Lp 1y s | Fr |
< E[({M)Pleh2 ZieJ F(T)*7P
and because of the definition of J, .., F(T)* 7P < oo iff 2—yf > 1 —a—mn. Now observe that n was

chosen in such a way that 2(1 —y) > 1 —a —n. In particular and thanks to Lemma 4.3.12, we can find
8 > 2 small enough such that )| F.(T)* 7P < 0o and E[({Y)~"] < co. Consequently, we see that

Var (N, (¢)/e | F7) —0. (4.30)

ieJ

As a result of (4.29) and (4.30), we get that almost surely

1
limsup —N;(g) = +00
€

£—0

which, thanks to (4.28), concludes this proof. O

4.3.4 Applications

This section provides applications of our main results, namely Proposition 4.3.1, Theorem 4.3.6 and
Proposition 4.3.8, to various fragmentation models. To that effect, if v is a given dislocation measure, recall
the definitions of p(v) and x(v) from Remark 4.3.1 and Equation (4.24) respectively.
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N-ary fragmentation. Let v be a dislocation measure and suppose that there exists an integer N > 2
such that v(sy,; > 0) = 0. Let us assume that v meets the assumptions of Proposition 4.3.1. In particular,
p(v) is positive.

Proposition 4.3.13. Let y €]0, 1[ and suppose 7 is a (y, v)-fragmentation tree. Then T a.s. has a profile and
ify <(1/2) A[2p(v)], then this profile is a.s. continuous.

Remark 4.3.9. The first claim of Proposition 4.3.13 is Corollary 5 in [60].

Proof. For any two non-negative real numbers a and b, if a < 1 we get
f5¢ Zi<j Sil_as}_b]lsjw (ds) < (N—1) fsi 2122 S}_bﬂsj>0 v(ds).
Observe that
fsl ijz S}_b]lsj>0 v(ds) = fsl (1 —5; + ijz sj(sj_b — 1)15j>0)v(ds)
< fsl(l —s)v(ds) + fsi 2121 5511 _Sj_b|]lsj>0 v(ds)

which by definition of p(v) is finite for all b < p(v). In particular and because we made the assumption
thaty <1, [, 2. s; s;v(ds) < co. Moreover, we get that
_r+2pMIA[1+p(M)]

av(}/)zlsup{a+b:a<1/\[)/+p(1/)],b£p(v)}— .
Y Y

If y < 1/2, we get that 0,(y) = 2 provided y < 2p(v). As a result, k(v) = (1/2) A[2p(v)]. We may now
conclude this proof with the help of Theorem 4.3.6. |

There are a few notable examples of N-ary dislocation measures.

Ford’s a-model. Let a € (0,1). Ford’s a-model was introduced in [52]. The aim was to build random
binary trees with a given number of leaves to model phylogenetic trees. The algorithm described was a
generalisation of Rémy’s algorithm [110]. The scaling limits of this model were studied in [67, Section 5.2]
in the context of fragmentation trees.

The law of the corresponding fragmentation trees is characterised by the pair (a, vff)) where vff) is the
binary dislocation measure defined for all measurable f : 8¢ — R, by

1
mo_ 1 N 2—4a _
fSlfdva = Td—a) 1/2([x(1—x)]1+“+[x(1—x)]a)f(x’1 x,0,0,...)dx.

F _ . F . . .
Clearly, p(vfx )) = 1 — a. Furthermore, the measure y associated to fo) as in (4.9) is given by

a 2—4a )

1
uldx) = F(l—a)(xa(l—x)““ M=o

Therefore, as pointed out in Remark 4.3.2, the function x — ©(]0,1 — x]) is regularly varying at O with
exponent —a €] — 1,0[ and is quasi-monotone. The assumptions of Proposition 4.3.1 are thus met and
Proposition 4.3.13 holds.

In particular, if @ < 1/2, then an (a, vfo)) fragmentation tree a.s. admits a continuous profile.

Note that when a = 1/2, (a, v((xF))-fragmentation trees are simply (a multiple of) the Brownian tree,
which a.s. admits a continuous profile.
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Aldous’ B-model. These binary random trees were introduced in [10, Section 4]. In [67, Section 5.1], it
was proved that when the parameter f3 is in ] —2,—1[, the corresponding scaling limits are (|8| —1, v(B))
fragmentation trees where V%B) is the dlslocatlon measure such that for all measurable f : 8' — R,

ffdv}f) = r_(;—:g)fo xP(1—x)P £(1—x,x,0,0,...)dx.

A simple computation gives p(v;jB)) = 2—|B|. Moreover, the measure u associated to V%B) like in (4.9) is
given by

— 1 4B (1 — )P
u(dx)—r(2+ﬁ)x (1—x)"dx.

Remark 4.3.2 then ensures that the function x — u(]0,1— x]) is regularly varying at 0 with exponent
—|B| €]—1, 0[ and quasi-monotone. The assumptions of Proposition 4.3.1 are met and Proposition 4.3.13

therefore holds.
In particular, if 8 €]—3/2,—1[, thena (|| —1, V%B)) fragmentation tree a.s. admits a continuous profile.

Haas and Stephenson’s k-ary growing trees. Let k > 2 be an integer. In [69], a model of k-ary trees
built with an algorithm similar to Rémy’s [110] was introduced. Under appropriate rescaling, these trees
converge in distribution to a (1/k, va) fragmentation tree for some dislocation measure v T which we will
now describe.

Let IT be a (k — 1)-dimensional Dirichlet variable with parameters (1/k,...,1/k). We define the
dislocation measure ST such that for all measurable f : 521 - R,

k
T(1/k) ]E[f[(H,O,O,...)l]]
k 1-11, '

GT _
1 fdvo =
SSI

The measure y built from v T as in Equation (4.9) satisfies

k
f fdu —f S5 (50 v (ds) = LK) (E[ & f(nl)]+ZIE[
]01[ sl k 1_1_[1

i>1 i=2

o)

Recall that I1; has the Beta distribution with parameters (1/k,1—1/k) so

S k(1 — x )1V
[1 Hlf( 1)] Bk 1= 1/k)f xR = x) VR () dox.

Fori = ., k, recall that (IT,, IT;, 1 —I1; —I1;) is a Dirichlet random vector with parameters (1/k,1/k,1—
2/k). As a result

1/k1
lk(1 —x — y)2/k
[1 /" 1)} F(l/k)ZI“(l—Z/k)JJ YO e ) dedy

1-y
_ i
= r(l/k)ZF(l—Z/k)Jo Y )Uo

Consequently, the measure u is absolutely continuous with respect to the Lebesgue measure and its density,
say g, is

o 1/k 1/k(1 _ \—1-1/k (k_l)/k 1/k o 1/k=1 01 _, — +\y2/k
glx):= —F(l—l/k)x (1—x) +F(1/k)F(1—2/k)x i t (1—x—1t) dt.

xV (1 —x —y) 2k dx) dy.

Furthermore, when x — 1,

fol_x tVe1(1—x —t) 2k de ~ (1 —x) 2k
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s0 g(x) ~ C(1—x)"'"Vk for some positive C when x — 1. Thanks to Remark 4.3.2, we may now state that
x — u(]0,1—x]) is regularly varying at O with exponent —1/k €]0, 1[ and quasi-monotone. Moreover, it
follows that p(vST) =1-1/k

As a result, if k > 3, »" satisfies the assumptions of Proposition 4.3.13. Therefore, a (1/k, v{"

fragmentation tree a.s. admits a continuous profile.

GT
2

dislocation measure. As a result, when k = 2, (1/k, ng) fragmentation trees are simply rescaled Brownian
trees and therefore a.s. admit a continuous profile.

Our results cannot be used when k = 2. Yet, the dislocation measure V5" is a multiple of the Brownian

Poisson-Dirichlet fragmentation. We refer to Section 3 in [68]. Fix two real numbers a €]0, 1[ and
0 > —2a.

Let I be a Poisson Point Process on ]0, oo[ with intensity measure a/I'(1 —a)-x~"*dx. Campbell’s
theorem (see Section 3.2 in [84]) ensures that T := f]o’oo[x [1(dx) is a.s. finite. Let A; > A, > ... be the
atoms of IT in decreasing order. Then we define the measure vi’?e by

[ AV, = E[TOF(A/T,85/T,...)]

for any measurable f : 8t — R,. Lemma 7 in [68] ensures that ch;De is a dislocation measure and is finite
iff 8 > —a.

Proposition 4.3.14. Let y be positive and let T denote a (y, vi?e) fragmentation tree.
(i) We have p(vz?g) =1—a,
(i) If y <2(1 —a) A1 then T a.s. admits a profile,
(iii) Ify < (1 —a) A 1/2, then the profile of T is continuous with probability 1,
(iv) If y > 1 — a, then the profile of 7, if it exists, is a.s. not cadlag.

Remark 4.3.10. This proposition shows in particular that there is a phase transition for the regularity of
the profile of fragmentation trees in this model.

Proof. For convenience, in this proof, we will now write v instead of v(’;De.
The following measure will make some computations much easier. Let v* be the measure defined for all
measurable and non-negative functions f on the set § := {x €0y x; = 1,x;20,j= 1} by

[ FGdv (%) := [, ELf(s")] (ds)

where s* is a sized biased ordering of s (see Section 2.1.3 in [21]). If 6 > —a, Equations (13) and (15)
in [68] ensure that v* is given by

f fx)dv'(x) := w
8

I(1+06) ELf (7 Ye )] (4.31)

where (X,,), are independent Beta(1 —a, na + 6) random variables respectively and Y,, := 1_[?:_11 (1-X)X,.

As a result, if 6 > —a, the measure y which characterises the distribution of the process of the size of a
tagged fragment in a (y, v) fragmentation process is given by

onr F = [o Ty sif(s) W(ds) = B[ TOF 0 A/ T F(A,/T))
= [ F O vi(dn) = TS D prey )

r(1+9)
_ ar(2+6/a) L e avo
S Ta—aTGrarg o™ 0" @

for all measurable f :]0,1[— RR,. By analytic continuation, for any 6 > —2a, we get

() e T H0/)
e A=) T+ a+0)

X7 (1 —x)*0 70 (x) dx.
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Therefore, either 6 > —a and u is finite, or 8 < —a and x — ©(]0,1—x]) is a+ 6 €]0, 1[ regularly varying
at 0 with exponent a + 6 €] —1,0] (see Remark 4.3.2). Moreover, for any q > 0,

fol(l —x Nu(dx)>—-00 = fol x797%(1 —x)**% dx < oo.

As a result, p(u) = p(v) = 1 —a > 0 which proves claim (i). The dislocation measure v therefore meets
the conditions of Proposition 4.3.1.

Using (4.31) once again, for any non-negative u and w

f Zs}—us}—%(ds)z f X741 =) X" 5, v*(dX)
st 8

i<j

r(1+06/a)_r._, o
- r1+0) IE[Xl 1-x,)! X5 11(1—X1)X2sx1]
1,1
_aT(2+6/a) (1 — x)*+0—w (1 — y)2a—0-1
T T(1—aPr(2a+0) ), J,  xo yarw /() dxdy. (4.32)

By analytic continuation, the last equality of (4.32) holds for all 6 > —2a. Observe that
1 aw _ X _a—w
Jo y A=y P My yqondy ~ [y ¥y
when x — 0 and thus that (4.32) is infinite if w > 1 — a. Otherwise, if w < 1 — a, then
f2i<j sil_“s}_w y(ds)< oo < fol x2eruw=l] 5 )et0-wdy < 0o (4.33)
which is in turn equivalent to having u + w < 2(1 — a). Taking w = 0, we see that if u < 2(1 —a) = 2p(v),
then (4.32) is finite. Theorem 4.2.3 then proves Proposition 4.3.14 (ii).

Equation (4.33) also gives 0,(y) = 2(1—a)/y so that o,(y) > 2 iff y < 1—a. Therefore, k(v) =1—a =
p(v). Theorem 4.3.6 therefore entails Proposition 4.3.14 (iii).

Finally, let us prove claim (iv). If # > 0, we get that

W(Siarsi P =+00) = 1E[T—911Tﬁ_1fxl_ﬁ Hdo)moo | >0 & 11?[[]0,1[ X' T(dx) = 00| >0,

Campbell’s theorem ensures that [ x*#II(dx) < oo a.s. iff fooo[l A x7P1x717*dx < oco. This last
integral is finite iff B <1 —a = p(v).
It only remains to prove that v integrates s — 51_1 — 1. For all ¢ > 0, we have

fsl (sl_q —1)v(ds) = fs (infnzl x, 1 — 1) v*(dx) = inf,5, fs (xl_q A AxT— 1) v*(dx). (4.34)

If 6 > —a, using (4.31), for any fixed n > 1,

rll—a)'T(n+a+6)
al"T(n+6/a)

n j—1 —-q
=J l_[x,:“(l—xk)k“”*l . [1131? (1—1(1—xi)xj) —1]dx1...dxn
] ===

0,1[" k=1

f (xl_q Neos Nx = 1) v*(dx)
s

1 n

_ q - ka+6—1 _

= f tq+1(£ [ l_[xk"‘(l—xk) o -ﬂmaxlsjsnl—ﬂ_i(l_xi)xjgdxl...dxn)dt. (4.35)
0 0,1[" k=1

By analytic continuation, this equality holds for all 8 > —2a. Now observe that

n n t
—a(1 ka+6—-1 | ) ~ —a —
f | |xk (1—x) ﬂmaxlggn]‘[;;}(l—xi)x;gdxl"'dxn r—>0| |f X, dxk—(
1 i=1J0

0,1[" k=1

) (4.36)

tlfa
1—a
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and that when t — 1,

n

- ka+6—1 ,

f] [ l_[xka(1—xk) a ']lmaxlsjsnl'ﬁ;}(l—xl)x)ﬁdx1"'dx”
0,1[" k=1

n t

= l—[B(l —a,ia+0) - f x (1 —x)* % 1 dx,

i=2 0
(1-

u 1 xp)2+01
= l;[B(l_“:i“@) L R s (| (4.37)

Equations (4.36) and (4.37) ensure that (4.35) is finite iff ¢ < n(1—a). As aresult and thanks to (4.34), if we
take n large enough, it follows that for all ¢ > 0, f(sl_q —1) v(ds) < oo. The conditions of Proposition 4.3.8
are then met which ensures that Proposition 4.3.14 (iv) holds. O

Remark 4.3.11. Fix 3 €]1,2[. Miermont proved in [98] that Duquesne and Le Gall’s 3-stable tree from [49]
can be described as a fragmentation tree. Its self-similarity index is 1 —1/f and its dislocation measure is

P*T2—=1/B) mm
re-p VP

Proposition 4.3.14 then recovers the known fact that a 3-stable tree a.s. has a profile, see [39] for instance.
However, our approach does not allow us to get any more information on the said profile. It is also known
that a.s. the profile of stable trees is not continuous, see Delmas [39].

Deterministic fragmentation with power decay. Set a > 1 and consider the finite dislocation measure
V= Oy(a) ()., Where { is the Riemann zeta function, i.e. {(a) = anl n .

Proposition 4.3.15. Set y > 0 and let T be a (y, v) fragmentation tree. If y < 2(1—1/a) A1 then T a.s.
admits a profile. If y < (1 —1/a) A 1/2, then the profile of T is a.s. continuous. Otherwise, if y > 1—1/a,
then the profile of 7, if it exists, is a.s. not cadlag.

For any g € [0, 1], in light of (4.10), we get that

[Yiasi T¥(ds)<o0 & g<l-—1/a=:p(»)

and for non-negative u and w,

le'q 57 ds) <00 = w<p(®) and ut+w<2p(). (4.38)

Because v is finite, the assumptions of Theorem 4.2.3 are then met as soon as y < 2p(v) A 1. This proves
the first claim of Proposition 4.3.15.
Equation (4.38) also ensures that

[20(M)]A[1+p(v)
Y

1
o,(y)= —sup{u+w:u<}f+p(v),w<p(v),u+w<2p(v)} =
Y

so that o,(y) > 2iff y < p(v). As aresult, k(v) = p(v) = 1—1/a and the second claim of Proposition 4.3.15
is then a consequence of Theorem 4.3.6.

Finally, observe that v( l.silfﬁ = oo) >0iff >1—1/a= p(v) and that f(sl_1 —1)v(ds) < co. We
can therefore use Proposition 4.3.8 to finish the proof of Proposition 4.3.15.
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Balanced fragmentation with random number of fragments. Let (a,), be a sequence of non-negative
which case it is even finite. If A < 0o, let X be an integer valued random variable with P[X = n] = a, /A.
Then for any measurable f : $ — R,

[o fdv=AE[f(1/X,-,1/X,0,...)]. (4.39)
For all ¢ > 0, using (4.39) we get that

fsl Zizl s; (1 _Si_q) v(ds)| =AE[X?—1]

which is finite iff E[X?] is, so that p(v) = sup{q = 0 : E[X?] < oo} with the convention sup@ = 0. Note
that X is the random number of fragments produced when a particle splits.

Proposition 4.3.16. Let y > 0 and let T be a (y, v) fragmentation tree. Finally, suppose that p(v) > 0. If
y < p(») A1, then T a.s. has a profile. If we further assume that y < 1/2 A[p(v)/2], then, this profile is a.s.
continuous.

For non-negative u and w, we get
fZi<jSi1_u5}_W ¥(ds) = AB[X"""% . X (X —1)/2]

which is finite iff E[X"*"] is. Therefore, if y < 1 A p(v), then, in light of Theorem 4.2.3, T indeed a.s.
admits a profile.

Using the previous notations, we also get o,(y) = p(v)/y and x(v) = p(v)/2. If y < 1/2 A p(v)/2,
because v is finite, Theorem 4.3.6 holds and the profile, say L, of T is a.s. continuous. In particular, if
E[X] < oo, L is continuous for any choice of y < 1/2.

4.4 ASYMPTOTIC BEHAVIOUR OF THE PROFILES OF
MARKOV BRANCHING TREES

In this section, we will study the asymptotic behaviour of the profiles of a sequence (T,), of Markov
branching trees indexed by their number of leaves. Our approach will be similar to the one we used in
Section 4.3.

First, in Section 4.4.1, we will establish Proposition 4.4.2, a discrete analogue to Proposition 4.3.1.
Proposition 4.4.2 states that for all n the characteristic function of the height I, of a leaf chosen uniformly
at random in T,, satisfies

VeeR, g (t/n")Nepr < Colt| ™7
for all non-negative 6 smaller than some constant depending on the model and where Cy denotes a constant.
We point out that the assumptions of Proposition 4.4.2 are rather strong and restrictive but could most
probably be lightened.

Then in Section 4.4.2, we will prove that Proposition 4.4.2 entails uniform convergence of the first
moment of the profiles of (T,), which, in other words, is a local limit theorem for the sequence (I,,),, see
Corollary 4.4.3.

In Section 4.4.3, we will use Proposition 4.4.2 and Fourier inversion results to prove functional conver-
gence of the rescaled profile L, of T, to that of a fragmentation tree. Finally in Section 4.4.4, we will give
sufficient conditions under which (L,,), cannot converge in distribution in D[0, co[.

4.4.1 Absorption times of non-increasing Markov chains

As we discussed at the end of Section 4.2.3, if I, is the height of a uniformly drawn leaf in T,, I, + 1
is the first hitting time of 0 by a non-decreasing Markov chain. In this section and in the next, we will
therefore consider this slightly more general framework.
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Functional convergence of non-increasing Markov chains. For all n > 0, let p, be a probability measure
on {0,...,n} and set P : N x N — [0, 1] such that P(n,j) := p,(j) (with the convention p,(j) = 0 if
j > n). Moreover, for all n > 0, let [X,,(i);i = 0] be a Markov chain with transition matrix P and such that
X,(0)=n.

Let A:={n>0: p,(n) = 1} be the set of absorbing states of P. For all n, let I,, :=inf{j > 0 : X,,(j) € A}
be the absorption time of X,,. For all n > 0, j > 1, set X,,(j) = X,,(j) if X,,(j) ¢ A or X,(j) = 0 otherwise.
The process X,, is a Markov chain started from n with transition matrix P given by P(n,0) = Z eq P(n,1),
P(n,j)=0if j € A and j > 0 and P(n, j) = P(n, j) otherwise. Let I, be the absorption time of X, and
observe that if n # 0, then I,, = I,,. As such, we do not lose generality in the study of (I,,), if we assume that
A = {0}. Therefore, from now on, we will make this assumption and as a result, I,, = inf{j > 0: X,,(j) = 0}.

Fix u, a o-finite measure on ]0, 1[ which integrates x — 1—x and let y be positive. For all real q, define
YP(q) := f]O 1[(1 — x?) u(dx). Let the pair (X,I) be as in (4.2). In particular, [X(t);t > 0] is a self-similar
Markov process and its extinction time I is the exponential functional of a subordinator with Laplace
exponent 1.

Set py := &, and for all n > 1, let p, be the distribution of X,(1)/n, i.e. p, = Z?:o Pn(i)6;/,. Assume
that

n"(1—x)p,(dx) = (1 —x)u(dx) (4.40)

as finite measures on [0, 1].
Theorem 4.4.1 (Theorems 1 and 2 in [65]). Under Assumption (4.40),
1
(—Xn(LthJ); t> o) =—=X  inD[0,00[
n n—o00

jointly with I,/nf —=1.

n—oo

Furthermore, for all a > 0,

E[ (1./n")* | — E[1°].

In what follows, we will always assume that Assumption (4.40) holds.

Power decay of ¢; . From now on, assume that u is a finite measure and set m := ,u(]O, 1[). Also assume
that p(u) is positive, see (4.8) for its definition. As in Remark 4.3.2, observe that u satisfies the assumptions
of Proposition 4.3.1 and that as a result, |¢;(t)| < Cp|t|™*~% for all 0 < 8 < p(u)/y where Cy denotes a
constant independent of t.

We will also assume that
nY(l —pn(n)) —= ,u(]O, 1[) =m. (4.41)

Moreover, for convenience, for all n, we will write p, = (1—a,)6(,) + a,m, where a, = 1—p,(n) and 7, is
a probability measure with 7,(n) =0

Remark 4.4.1. We point out that we make this rather restrictive assumption to be able to write an identity
like I, @ G, + I , where, on the right hand side, the variables are independent, G, is a geometric variable
independent of Z,, and Z,, is distributed like X,, after its first jump. This identity will allow us to prove
Proposition 4.4.2 with our methods.

As mentioned at the beginning of Section 4.4, Proposition 4.4.2 will be the main tool in the proofs of
some results in Sections 4.4.2 and 4.4.3. To extend their scope, it would therefore be enough to find a
different method requiring lighter assumptions to prove Proposition 4.4.2.
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For all n, let Z,, be distributed according to 7,,. Assumption (4.40) then gives
1
B[(Zy/m)] — f e
n—o0 m ]0’1[

for all ¢ > 0. The support of the probability measure m™* u is bounded, so m™! u is characterised by its
moments. Therefore, Z,/n = m™ .

Proposition 4.4.2. Suppose that the sequence (p,), satisfies (4.41) and that there exists a positive 8 < p(u)/y
such that

" f1o1y(L=x77) pp(dx) —— (7).
Then we have

SUP,50 SUP e |91, /nr (O Lt <pr ¢]'0 < oo,

Remark 4.4.2. By assumption n"a,, — m = u(J0, 1[) so we can rewrite n” f[o 1](1—x_ye)f)n(dx) — YP(—y0)
simply as

B[,/ ] — = [, 7 u(dx).

n—-,oo
In particular, P[Z, = 0] = O for n large enough which ensures that I,, > 1 almost surely.
Recall that Z,/n converges in distribution to m™'u. As a result, if E[1—(Z,/n)™%] — 4(—a)/m for
some positive a, then E[1—(Z,/n)~?] — 4(—b)/m for all b € [0, a] which in turn translates to

1 fro (=X Bad) — $(=b).

Proof. Let (J,,)n>o be an independent copy of the sequence (I,,),. Let (G, )., be a sequence of independent
geometric random variables with respective parameters a,,. Further suppose that (G,), is independent of

(Js Z1)uso- Observe thatif n > 1,
@

I, =G, +J; . (4.42)
For all n > 1 and u € IR, elementary computation gives
2
9 a, 1
u)|* = —| = . 4.43
lee, I = 1T =q " e | =1 +2(1—a,)/a2- (1—cosu) (4.43)

Now observe that if we use the convention u?/(1—cosu) = 2 for u = 0, then the function u — u?/(1—cosu)
is continuous and thus bounded on [—m, t]. Furthermore, recall that n”a, — m which ensures that a, <1
for all n large enough. Therefore, there is a positive constant C such that, for all n, and any a € [0,1],

C

|¢Gn/nY(t)| ]1|t|SnYﬂ: <1A m (444)
Using (4.42) and (4.44), for any t € [—n" 7, n" 1] we get
1, /nr (Ol <@g,/ (O < C/ 2] (4.45)

Now suppose that we have proved that for all n and t, [¢;  (£)[1}y<prr < Cp |t| =P for some p < 6
and where Cj is a constant independent of ¢ and n. Recall that by assumption, since < 6, E[(Z,/ n)"P]
converges to a finite limit. Using (4.42) and (4.44) once again, we get that for all a € [0, 1], for any real t
if n is large enough

[o1, (O e <nr e < 106, /mr ()] ]EI:|(»OJZH/Z,’:[(Zn/n)YtJ|:|11|t|SnYTE

Ca Cﬁ C/
<2 B | <
~ ta |t|[5 ]E[(Z”/n) :I_ |t|a+[5

(4.46)

for some finite constant C’ independent of n and t. The combination of (4.45) and (4.46) concludes this
proof. O
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4.4.2 A local limit theorem

We will now give a local version of the convergence of I,,/n” to I. The proof of this result will rely on
the conclusion of Proposition 4.4.2 and Fourier inversion.

Corollary 4.4.3. Under the assumptions of Proposition 4.4.2,

sup |[n'P[I, = j]— k(j/nY)) ——0. (4.47)
j=0 n—09
Proof. Recall that u is finite so Proposition 4.3.1 holds. In particular, the characteristic function ¢; of I is
integrable and we may use the Fourier inversion theorem to get
1 oo
Vx>0, k(x)= o f e X o, (t)dt.

—0Q

On the other hand, for all n > 1 and j > 0, we have

— = n’ T —itj,itl, _ 1 * —itj/n"
n'P[I,=j]= %IEU_ne ‘e df] =on N e op 1 () 1j<pr £ dt.
As a result,
. . 1
[nPLL = 1=K/ < 5 J 6106 = 01, (e e (4.48)

which holds uniformly for all j € Z,. Theorem 4.4.1 entails that ¢, ,,, — ¢; point-wise. Propositions 4.3.1
and 4.4.2 then allow us to use the dominated convergence theorem to prove that the right hand side
of (4.48) vanishes when n — oo. O

4.4.3 Convergence of the profiles of Markov branching trees

Let v be a dislocation measure and y a positive real number. Furthermore, let (T, us) denote a (y, v)-
fragmentation tree, let I be the height of a u-distributed random variable and k the density of the law
of I. Furthermore, 1) will be defined as in (4.9).

Set (g,,), a sequence of first-split distributions. For all n let T, be distributed according to MBf’q and
endow it with u,, the counting measure on the set of its leaves. Also let £,, be the profile of T, with respect
to u,. Recall that g, is the measure on 8 such that

Js: F$)qn(ds) = 3. f(A/)g,(2)

for all measurable f : 8¢ — R,. We will suppose that n”(1 —s;),(ds) = (1 —s;) »(ds). In particular,
Theorem 4.2.2 holds and (n”7T,,n"}u,) = (7, us) in the GHP topology.

This section will focus on the asymptotic behaviour of the rescaled profile of T,, which we will denote by L,,
and define for all t > 0 by L,(t) :=n"} En(l_nV tj). Let us first observe that by combining Lemma 4.3.7 (i)
and Corollary 4.4.3, we get the following result on the convergence of the first moment of L,,.

Proposition 4.4.4. If the conclusion of Proposition 4.4.2 holds,
SUp 20| E[La(0)] = k(1) —=> 0.

In particular, if (T, ug) a.s. admits a profile say L, then for almost every non-negative t,

E[L,(t)] —— E[L(1)].

Notably, this last result can hold for any y > 0. We will now endeavour to prove that in some cases, the
sequence (L, ), will converge in distribution in D[0, co[ when v is small enough.
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Convergence to a continuous profile. Before stating this section’s main result, we need some more notations.
For all n, define the measure p,, on {0,...,n} by

Pali) = Tcy, T (M2, (4.49)

compare with (4.5). Set
p(q) :=sup {9 >0:lim,_,,n" f[o,u(l —x 9 p,(dx) =(—6) > —oo} (4.50)

and observe that p(q) < p(v). Let 0(y) be defined as
oU(y) :=sup {a+B o, <1+p(@)/rlimsup [ 36 s] 711, 200,(ds) < o0
Observe that 09(y) decreases when v increases. Finally, set k(q) := sup{y : c(y) > 2}.

Theorem 4.4.5. Suppose that n"(1—s;)§,(ds) = (1—s;) v(ds) where v is finite and that n" [1—q,(n)] —
v(8') when n — oo. Further assume that p(q) is positive and that y < 1/2 A k(q). Then T a.s. admits a
continuous profile L and L, = L in D[0, oo[.

Remark 4.4.3. Under these assumptions:
— The sequence (p,), defined in (4.49) satisfies the assumptions of Proposition 4.4.2.
— The fragmentation pair (v,y) meets the assumptions of Theorem 4.3.6 which guarantees the a.s.
existence and continuity of the profile L of 7.

We will need a few results before we are able to prove Theorem 4.4.5. Conditionally on T, let I, be the
height of a uniformly drawn leaf in T,,. let ®, be the characteristic function of I,,/n" conditionally on T,,
i.e. for all u € R, set &,(u) := E[e™/"|T,].

Proposition 4.4.6. For all 6 < c9(y) A1/y, we have

SUPp>o Sup|u|$n7n |u|9]E[|tI>n(u)|2] < Q.

In particular, if y < 1/2 Ax(q), then

n'n
sup,s [ E[|®,(w)[]du < oco.

Proof. We will proceed as we did in the proof of Theorem 4.3.6.

For all n, conditionally on T, let V,,, W,, be two leaves of T, drawn uniformly and independently. Set
I, :=|V,| and J, := |W,|. Let R,, be the number of leaves of T, above V, A W,,, the most recent common
ancestor of V,, and W,, and set A,(1) and A, (2) as the numbers of leaves in the sub-trees above V, AW,
containing V,, and W, respectively. Observe that for any f : IN? — R, and r > 0,

E[£(2,(1),4,(2) [R, =7] = f D 5is; f(rsi,r5;) 3, (ds)
8t i)

and that for any r < n, P[R,, < r] < r/n which means that R,,/n is stochastically bigger than a uniform
variable on ]0, 1[.
Then, for any |u| < n"m and a,B <1+ p(q)/y, we get

1E|:|<I>n(u)|2:| — ]E[eiu(ln*Jn)/nV] — ]E[eiu(iAn(l)*jAn(z))/nY)]

< Z]E[ @1, 0,000 (Ba(1)/ “)Y“]) |0 i (20 “)Y“]) ‘ﬂAn(l)ZA,,(z)]
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where for all £ > 0, I, J, are i.i.d. copies of I, independent of (T,),. Proposition 4.4.2 now ensures that
there we can find a finite constant C such that

n’ nrB
1
ule A, (1)@ [ulf A, (2)rF 2 D=4

20 R, —y(a+p) ay 1-py -
<l () T e |

i<j

E[|®,w)*] < C]E[

By assumption, we can choose a, 8 < 1+ p(q)/y such that

limsup, o, [ i< sil_ays}_ﬁy g,(ds) < oo.

Because R, /n is stochastically bigger than a uniform variable on 0, 1[, E[(R,/n) *+#7] < fol x (B dy
which is finite provided (a + )y < 1. Consequently

SUP,, SUDy <pr |u| P ]E[|<I>n(u)|2:| < 00.

As a result, if y < 1/2 A k(q), we may find 6 > 1 such that
E[ |, (t)Lcnrr ] < TA(C/1ul)

for some positive constant C independent of n and u. The second claim of Proposition 4.4.6 follows
immediately. d

Remark 4.4.4. Like for Corollary 4.4.3, the cornerstone of the proof of Proposition 4.4.6 is Proposition 4.4.2
which is why we need these burdensome assumptions.

Corollary 4.4.7. Under the assumptions of Proposition 4.4.6, the family (L,), is tight in D[0, co[.

Proof. Observe that foranyt >0andn>1,

1 n'r

Ln(f) — Z_J <I>n(u) efiuI_nYtJ/nY du,
—nrm

which ensures, by Proposition 4.4.6 that

n'n

1 Co —1-6
< — E| |® < — .
E[supt20 Ln(t):| <3 J [| n(u)l]du <3 f_ 1A |u du (4.51)

—nrm
for some positive 6 and finite constant Cy. Since exp is Holder continuous of any order, if a < 1, there is a
finite constant h,, such that for any x and y in R, |e’* —e'¥| < h,|x — y|*. As a result, for any t,s > 0 with
[t—s|<e,

'n n'n
H, (" "t]—[n’s]|* H, (e*+n%
IL,(0)— L) < —“f @, ) fu LIS g o Ha D e, 0l du
27T ) o ner 27 -
so that for a < 0, we get
CoH, e [~
lim sup ]E[ sup |Ln(t)—Ln(s)|} <0 1A Jul*du—o0. (4.52)
n— o0 lt—s|<e 27 —oo ad

We may therefore use Aldous’ tightness criterion (see [29], Theorem 16.10) to conclude that (L), is indeed
tight in D[0, oof. O

Proof of Theorem 4.4.5. Corollary 4.4.7 states that (L, ), is tight in D[0, oo[. Lemma 4.2.5 ensures that L
is the only possible limit in distribution for a subsequence of (L,,),. As aresult, L, = L in D[0,c0[. O
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4.4.4 Non-convergence of the profiles

In this section, we will give some sufficient conditions under which functional convergence of the rescaled
profiles cannot happen. We stress that these conditions might be satisfied along with the assumptions of
Proposition 4.4.4. In particular, functional convergence of L, might be impossible while its expectation
might converge almost everywhere.

Unbounded limit profile. Suppose that (y, v) satisfies the assumptions of Proposition 4.3.8 and that
n"(1—s,)q,(ds) = (1 —s;)v(ds). We may prove the following result.

Proposition 4.4.8. The sequence (L, ), cannot converge in distribution in D[0, oo[.

Remark 4.4.5. Let us stress that the (y, v) fragmentation tree T may a.s. have a profile L. However
Proposition 4.3.8 guarantees that L is not cadlag.

Proof. Using the Skorokhod representation theorem and Lemma 4.2.4, we may assume that M,, = M a.s.
in uniform topology on [0, oo[, i.e. that with probability one, for all ¢t > 0,
sup |M,,(s) — M(s)| —— O. (4.53)
s<t n—09
Proposition 4.3.8 ensures in particular that there exists a random finite time T such that, a.s. for all
positive a, we have
1
8—[M(T+sa)—M(T):| >a (4.54)

a
for some random positive ¢,. Now because of (4.53), almost surely

i[Mn(T +e,)—M,(T)] ! [M(T + ) —M(T)]| —0.

€q €q

As a result, (4.54) yields that

1
liminf —[M,(T +&,) —M,(T)] = a. (4.55)
n—o0 8(1
Now observe thatif 0 <s < T and 0 < ¢ < 1, for all n we have
1 s+e+n"
;[Mn(s +e)— Mn(s)] < - j L(w)du<(1+2n7"/¢e) sup,<,1 L,(w). (4.56)
s—n—Yr

Combining (4.55) and (4.56), we conclude that almost surely,

sup sup L,(t) = oo.

n>0 t<T+1
In other words, with probability one, the sequence (L, ), is not uniformly bounded on all compacts. As a
result, almost surely, this sequence cannot converge in the D[0, co[ topology. O

When y > 1. In this paragraph, we will drop all previous assumptions and will only suppose that y > 1.
In this case, recall that a.s. T does not have a profile.

Let dp denote the metric defined by dp(X,Y) := E[1A|X —Y|] for any two real valued random variables.
It is well-known that dp induces the topology of convergence in probability.

Let f,, n =1, f be real valued measurable functions defined on R. We'll say that f, converges to f in
measure (with respect to the Lebesgue measure) iff for any positive ¢, the Lebesgue measure of the set
{teR:|f,(t)—f(t)| > e} goes to 0 as n goes to infinity.

Proposition 4.4.9. Suppose that y > 1. Then, almost surely, L, converges to 0 in measure and t —
dp[L,(t),0] converges to 0 in L'(dt). In particular, from all subsequences (n;),, we can extract a sub-
subsequence (k;), such that for almost every t > 0, Lnké (t) converges to 0 in probability.
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Remark 4.4.6. Suppose that Proposition 4.3.1 holds. In this case, for all t > 0, E[L,(t)] — k(t) > 0.

Proof. Recall that L,(t) := n"'#{u € £(T,) : |u| = |n"t|} and therefore a.s. belongs to n"'Z,. If
£ €]0,1[, then 1, (;y5, =11 (=0 = LA L,(t) < n'77L,(t). As a result,

- — a.s.
fo Ian(f)>gdt S n1 v fO Ln(t)dt = nl Y n_)_) O
and using Fubini’s theorem,

Jo© dolL,(0),01de = E[ [;™ 1 ALy(6)de | < n'E[ [ L,(6)dt ] = ' —o0.
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APPENDIX

SIMULATING RANDOM TREES

RANDOM TREES

Here are some programs written in Mathematica used to efficiently generate certain random trees with
a given number of vertices or leaves. These trees will be encoded as follows: vertices are integers, the root
is 0, and edges are written as p[i] — i where p[i] denotes the parent of i. The trees can be drawn with the
command

Graph[tree, DirectedEdges -> False,
GraphLayout -> {"SpringElectricalEmbedding",
"RepulsiveForcePower" -> -3/4,
"InferentialDistance" -> 2,
"Octree" -> Falsel}]]

for instance, where tree denotes the result of any of the following programs. We point out that it is much
more efficient in Mathematica to generate everything that is random at once instead of only generating
what is needed when it is needed. Because of this, these programs might seem more complicated than they
need to be.

Conditioned Poisson Galton-Watson trees.  This algorithm was described by Aldous [7]. It generates a critical
Poisson Galton-Watson tree conditioned to have n vertices.

PoissonGW[n_] := Block[{U = RandomReal[{0, 1}, n - 1]},
Table[Min[i - 1, IntegerPart[n*U[[i]]1]] -> i, {i, n - 1}]1]

Rémy’s algorithm. This algorithm, introduced by Rémy [110], gives binary Galton-Watson trees with any
number n of leaves.

Remy[n_] := Block[{p = Table[0O, {2 n - 1}],
U = 1 + IntegerPart[Table[2 i - 3, {i, n}]*RandomReal[{0, 1}, n]ll},
Do[
pll2 i - 211 = p[[UL[i111];
pLIULLiI11] =2 i - 2;
pll2i-1]1=21-2;,
{i, 2, n}l;
Table[p[[i]] -> i, {i, 2 n - 1}]]

Conditioned Geometric Galton-Watson trees. This algorithm uses a transformation of critical Galton-Watson
trees with n leaves to critical Galton-Watson tree with n vertices and a different offspring distribution. It was
used by Rizzolo [111] and Abraham and Delmas [2] for instance. In particular, using this transformation
on binary Galton-Watson trees with n leaves gives critical geometric Galton-Watson trees with n vertices.
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GeometricGW[n_] := Block[{remy = Remy[n],
U = RandomInteger[{0, 1}, 2 n - 1],
children = Table[{}, {2*n}],
p = Table[0, {n - 1}],
v = {0}, u=0,
labels = Table[0, {2 n}],
current = 0},
Do[If[U[[e[[2]11]1] == 1,
AppendTo[children[[1 + e[[1]1]111, e[[2]111,
PrependTo[children[[1 + e[[1]1]1]], e[[2]111];,
{e, remy}];
labels[[1]] = 0;
While[Length[children[[1 + v[[-1]11]1]1 > O,
labels[[v[[-1]]1]] = current;
AppendTo[v, children[[1 + v[[-11111[[111];
children[[1 + v[[-2]]]1] = Drop[children[[1 + v[[-2]11]1, 11;1;
current++;
While[current < n,
pllcurrent]] = labels[[remy[[v[[-11111[[2]1111;
While[Length[children[[1 + v[[-1]1]111]1 > O,
labels[[v[[-1]]]] = current;
AppendTo[v, children[[1 + v[[-1]11]1[[1]11];
children[[1 + v[[-2]]]] = Drop[children[[1 + v[[-2]111], 11;1;
v = Drop[v, -1];
current++;];
Table[p[[i]] -> i, {i, n - 1}]1]

Ford’s a-model. This algorithm was introduced by Ford in [52] as a generalisation of Rémy’s algorithm. It
yields binary trees with any number n of leaves. Here a € [0, 1].

Ford[alpha_, n_] := Block[{p = Table[0, {2 n - 1}],
U = RandomReal[{0, 1}, n],
V = RandomReal[{0, 1}, n]},

If[n =1,
{0 -> 13,
pl[2]1]1 = 0;
pl[11] = 2;
pl[31] = 2;
Do[

If[(i - 1 - alpha)*U[[i]] < (1 - 1)*(1 - alpha),
pl[2 i - 2]] = p[[1 + 2*IntegerPart[(i - 1)*V[[i]111]1;
pl[1 + 2*IntegerPart[(i - 1)*V[[i]1111] 21i-2;,
pl[2 i - 2]] = p[[2 + 2*IntegerPart[(i - 2)*V[[i]1]11]1];
pl[2 + 2*IntegerPart[(i - 2)*V[[i]]11]1] 21i-2;1;

plf2i-111=21i-2;,

{i, 3, n}l;
Table[p[[i]] -> i, {i, 2 n - 1}]]]

The a-y model. Chen, Ford and Winkel [36] generalised Ford’s algorithm to be able to generate non binary
trees with any number of leaves. The parameters are such that 0 <y < a < 1.

AlphaGamma[alpha_, gamma_, n_] := If[n == 1, {0 -> 1},
Block[{int = 0,
p = Table[0, {2 n - 1}],
leaves = Table[0, {n}],
intern = Table[0, {n}],
chosen = Table[0, {n}],
U = RandomReal[{0, 1}, n],
V = RandomReal[{0, 1}, n],
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W = RandomReal[{0, 1}, nl},
p[[2]1] = O;
pl[11] = 2;
pl[31] = 2;
leaves[[1]]
intern[[1]]
leaves[[2]]
int = 1;
Do[Which[

(A -1 - alpha)*U[[i]] <= (1 - D*(1l - alpha),

p[[i + int]] = p[[leaves[[1 + IntegerPart[(i - 1)*V[[i]]1]11111;
pl[leaves[[1 + IntegerPart[(i - 1)*V[[i]]]111]1] = i + int;
plli + int + 1]] = i + int;
intern[[int + 1]] = i + int;
int++;,
(i - 1 - alpha)*U[[i]] <= (i - 1)*(1 - alpha) +
int*gamma,
p[[i + int]] = p[[intern[[l + IntegerPart[int*V[[i]1]111111;
pllintern[[1 + IntegerPart[int*V[[i]]1]1]1]1] = i + int;
pl[i + int + 1]] = i + int;
intern[[int + 1]] = i + int;
int++;,

((i - 2)*alpha - int*gamma)*V[[i]] <= int*(alpha - gamma),

p[[i + int]] = intern[[l + IntegerPart[int*W[[i]]]]];
chosen[[i - int - 1]] = intern[[l + IntegerPart[int*W[[i]]1]11];,

True,

p[[i + int]] = chosen[[1 + IntegerPart[(i - int - 2)*W[[i]]1]11]1;
chosen[[i - int - 1]] =
chosen[[1 + IntegerPart[(i - int - 2)*W[[i]]1]1]1];

I on
w N =

1;
leaves[[i]] = i + int;,
{i, 3, n}l;
Table[p[[i]] -> i, {i, n + int}]]]

Marchal’s algorithm. Marchal [95] gave an algorithm to generate Galton-Watson trees conditioned which
have n leaves and whose offspring distribution is in the domain of attraction of a stable distribution. which
coincides with the a-y algorithm for well chosen parameters More precisely, take 3 €]1,2], Marchal’s
algorithm yields GW?”1 trees for any positive integer n where the generating function of £ iss — s+ (1 —
s)P /B. For well chosen parameters, the said algorithm coincides with that of the a-y model.

|Marchal[beta_,n_] := AlphaGamma[l/beta, 1-1/beta,n]

PROFILES OF TREES

Here we give two programs which respectively give the profile and external profile of trees obtained
with the previous programs. The main principle here is to visit each successive layer of a given tree, starting
from the root 0, and to count at each step how many vertices or leaves there are.

Profile[t_] :=
Block[{children = Table[{}, {Length[t] + 1}], current = {0}},
Do[
children[[1 + e[[1]]1]1] = Append[children[[1 + e[[1]]11]1, e[[2]11];,
{e, t}1;
Reap[
While[Length[current] > 0,
Sow[Length[current]];
current = Catenate[Table[children[[1 + i]], {i, current}]];];
Sow[01;1[[2110[11]1]
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Simulating random trees

ExtProfile[t_] :=

Do[

{e, t11;

leaves = Reap

Reap[

What follows are simulations of the external profiles of trees obtained with Ford’s algorithm with 21®
leaves and different choices of a. Recall that results from Section 4.3.4, namely Proposition 4.3.13, ensure
that when a < 1/2, the profile of the corresponding limit R-tree, i.e. a (a, vff)) fragmentation tree, is
almost surely continuous. Moreover when a = 1/2, the limit tree is a multiple of the Brownian tree, which
is known to have a continuous profile. However, our results don’t give any new information when a > 1/2.
These simulations were therefore intended to shed light on whether a (a, vf)) fragmentation tree can have
a continuous profile when a > 1/2, and whether the condition y < 1/2 in Theorem 4.3.6 is necessary or

merely technical.

[

Do[If[Length[children[[i]]] == 0, Sow[i - 1]],
{i, Length[children]}]1]1[[2]11[[1]1];

While[Length[current] > 0,
Sow[Length[Intersection[current, leaves]]];
current = Catenate[Table[children[[1 + i]], {i, current}]];];
Sow[01;1[[2110[11]1]

Block[{children = Table[{}, {Length[t] + 1}], current = {0}, leaves},

children[[1 + e[[1]]]] = Append[children[[1 + e[[1]]11], e[[2]1];,

14 11
0 }1 } 1

a=1/8 a=1/3
14 14
0 } 1 =1

a=4/9 a=1/2
1,,

1,,

0 11

a=5/9 a=2/3
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RESUME

Dans cette thése, on étudiera les proprié-
tés asymptotiques de modéles d'arbres
aléatoires satisfaisant la propriété dite
de Markov branchante. En particulier,
nous établirons un résultat de conver-
gence de ces arbres au sens de la li-
mite locale vers des arbres infinis qui
satisfont une version de la propriété de
Markov branchante. Nous donnerons de
plus un résultat sur la convergence au
sens des limites d’échelle pour cette fa-
mille d’'arbres infinis. Nous nous intéres-
serons ensuite au comportement asymp-
totique du profil des arbres Markov bran-
chants finis ainsi qu’a la régularité du
profil limite. Enfin, nous donnerons des
applications de nos résultats a divers
modéles d'arbres aléatoires comme les
arbres de Galton-Watson conditionnés
par leur nombre de nceuds.

MoTs CLES

Arbres aléatoires; Arbres de Galton-
Watson; Propriété de Markov branchante;
Arbres de fragmentation auto-similaire;
Topologie locale; Topologie GHP; Profils
d’arbres

ABSTRACT

In this thesis, we will study asymptotic
properties of a family of random trees sa-
tisfying the so-called Markov branching
property. In particular, we will establish
convergence for these trees under the
local limit topology to infinite random
trees which satisfy a version of the Mar-
kov branching property. We will also give
a scaling limit result for this family of in-
finite trees. We will then turn our focus to
the profiles of Markov branching trees as
well as the regularity of the limit object.
Finally, we will give applications of our re-
sults to various models of random trees
such as Galton-Watson trees conditioned
by their number of vertices.

KEYWORDS

Random trees; Galton-Watson trees; Mar-
kov branching property; Self-similar frag-
mentation trees; Local topology; GHP to-
pology; Tree profiles
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