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Resume

Cette thèse porte sur l’étude d’une extension de la logique linéaire propositionnelle avec des
points fixes de type dans une perspective Curry-Howard-Lambek. La logique linéaire à points
fixes de types, appelée µLL, nous permet d’avoir des preuves inductives et coinductives. Nous
développons une sémantique catégorielle de µLL basée sur les catégories de Seely et sur des
foncteurs “strong” agissant sur elles. Ensuite, nous introduisons et étudions µLLP comme une
extension de la logique linéaire polarisée, avec plus petit et plus grand points fixes. Profitant
des règles structurelles implicites de µLLP, nous introduisons une syntaxe de terme pour ce
langage, dans l’esprit du λ-calcul classique et du système L. Nous équipons ce système logique
d’une sémantique de réduction déterministe ainsi que d’une sémantique catégorielle. Nous
examinons toujours notre sémantique catégorielle avec des cas concrets tels que la catégorie
des ensembles et des relations, la catégorie des ensembles munis d’une notion de totalité
(espaces de totalité non uniformes) et des relations qui préservent a totalité, et les espaces de
cohérence avec totalité. Dans le cas de µLLP, nous prouvons un résultat d’adéquation pour
µLLP entre sa sémantique opérationnelle et dénotationnelle, dont nous dérivons une propriété
de normalisation grâce aux propriétés de l’interprétation de la totalité. Nous étudierons
également les preuves non bien fondées en logique linéaire, que l’on peut voir comme une
extension des preuves inductives, d’un point de vue sémantique dénotationnelle en faisant
une relation entre condition de validité des preuves non bien fondées et interprétation de la
totalité. Enfin, nous fournirons un modèle catégoriel pour les exponentielles codées à l’aide
de l’opérateur de point fixe.

Keywords— logique linéaire, plus petit et plus grand points fixes, lambda-calcul clas-
sique, sémantique catégorielle, Sémantique dénotationnelle, preuve non bien fondés, logique
linéaire polarisée
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Abstract

This thesis is concerned with the studying of an extension of the propositional linear logic with
fixpoints of type from a Curry-Howard-Lambek perspective. Linear logic with fixpoints of
types, called µLL, allows us to have inductive and coinductive proofs. We develop a categorical
semantics of µLL based on Seely categories and on strong functors acting on them. Then we
introduce and study µLLP as an extension of Polarized Linear Logic, with least and greatest
fixpoints. Taking advantage of the implicit structural rules of µLLP, we introduce a term
syntax for this language, in the spirit of the classical λ-calculus and of system L. We equip
this logical system with a deterministic reduction semantics as well as a categorical semantic.
We always examine our categorical semantics with concrete cases such as the category of sets
and relations, category of sets equipped with a notion of totality (non-uniform totality spaces)
and relations preserving, and coherence spaces with totality. In the case of µLLP, we prove an
adequacy result for µLLP between its operational and denotational semantics, from which we
derive a normalization property thanks to the properties of the totality interpretation. We
will also study non-wellfounded proofs in linear logic, which one can see as an extension of
inductive proofs, from a denotational semantics point of view by making a relation between
the validity condition for non-wellfounded proofs and totality interpretation. Finally, we
will provide a categorical setting for the exponentials that are encoded using the fixpoints
operator.

Keywords— linear logic, least and greatest fixed points, classical lambda-calculus, cat-
egorical semantics, denotational semantics, non-wellfounded proof, polarized linear logic
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Introduction

In logic we must reject all distinctions
that are made from a purely
psychological point of view. What is
referred to as a deepening of logic by
psychology is nothing but a falsification
of it by psychology.

Gottlob Frege, Posthumous Writing

Logicism

The main project of Gottlob Frege in the foundation of mathematics, which nowadays is
called “logicism”, is indeed an important starting point of contemporary logic. His first
fundamental distinction in Begriffsschrift is between “content” and “judgement”, and this
distinction separates Frege from many traditional discussions of logic 2. In [Fre84], Frege
presented a symbolic language as a foundation of arithmetic. Later on, Giuseppe Peano
provided a formalization of logical inference in order to express formally proofs in arithmetic
[vH67]. Russell also gave an axiomatic system in [Rus06], and he used the notation and formal
rules of proof of Peano. David Hilbert also tried to provide a foundation of mathematics by
developing a new system for mathematical proofs [Toe05]. We can find in [HA28] what is
called nowadays the “Hilbert style” axiomatic system for predicate logic. The “Hilbert style”
axiomatic system for predicate logic includes some axioms and two inference rules. A proof
of a proposition A in the Hilbert system is a finite sequence A1, · · · , An of propositions such
that An = A and for i ⩽ n, either Ai is an axiom or Ai is derived from Aj ’s using the inference
rules for j < i. The two inference rules of predicate logic in his system are the following where
(MP) and (G) stand for Modus Ponens and Generality respectively:

A A → B (MP)
B

A (G)
∀xA(x)

In the (G) rule, one should be careful that the variable x should not be free in all the formulas
that are used to prove A. Hilbert wanted to have a sound and complete system. A system is
called sound if all derivable formulas of that system are “true”. A system is called complete
whenever a formula is true, then it should be also derivable in the logical system. Apart
from soundness and completeness, Hilbert was also interested in questions of consistency and

2based on a lecture note by Jeff Speaks about Frege’s Begriffsschrift. We refer interested readers to [FB97,
KK95] to see some commentaries on Frege’s work
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decidability of the formal systems. Afterward, Kurt Gödel proved that it is impossible to
have a complete formal system of elementary arithmetic [Göd31]. However, the question of
consistency and completeness of predicate logic was still open, and Gerhard Gentzen started
to work on the question of consistency of arithmetic. He first started working on the analysis
of mathematical proofs as they are in practice. And this study led him to arrive at a calculus
of natural deduction [Gen35]. One of his observations was to divide the actual proofs of
theorems into two parts of assumptions and conclusions. Then analysing the conclusion was
done based on what Gentzen called introduction rules, and analysing the assumptions was
done based on what Gentzen called elimination rules [Gen35]. Introduction rules provide
sufficient conditions for deriving a conclusion of a given form. As an example, it is enough
to derive A and B separately to derive A ∧ B. Gentzen wrote this inference rule formally as
follows and he called it the introduction of conjunction connective ∧:

A B

A ∧ B

The elimination rules will tell us what an immediate use of an assumption is. For example,
if we assume that we have A ∧ B, then an immediate conclusion of this assumption can be
A and B. So, we have the two following rules in the natural deduction that Gentzen called
elimination of conjunction connective ∧:

A ∧ B

A

A ∧ B

B

As another example of rules in the natural deduction, let us look at the implication. To
conclude an implication A → B, we first assume A and then try to derive B. However, we
should notice that the assumption A is not a permanent assumption, so, this assumption will
be “discharged”. We can use the assumption A → B if a deviation A has been found. So, the
introduction and elimination rules of implication are as follows:

[A]
...

B

A → B

A A → B

B

Gentzen noticed that if an introduction rule is followed by the corresponding elimination rule
to prove a proposition A, then these two consecutive introduction and elimination rules seem
unnecessary to prove A, and he called such introduction-elimination pattern “detours”. As
two examples consider the following proofs of A ∧ B and A → B:

A ∧ B

A B

A ∧ B

A → B [A]
B

A → B

And the so-called detour conversion will remove such elimination-introduction pattern. This
procedure is also called normalization, as it tries to convert non-normal proofs (those has
detour) to the normal ones (no detour pattern in the proof). The normalization theorem
is as follows: If a formula A has a proof, it also has a normal proof. Gentzen proved the
normalization theorem for the intuitionistic natural deduction in [Gen35] and he wrote that
he was not able to prove normalization for the classical natural deduction [PG08]3. If we

3According to [PG08], there are apparently two versions of Gentzen’s PhD thesis; the published one and the
handwritten version. The handwritten version contains the detailed proof of normalization for the standard
system of natural deduction that we are nowadays familiar with, and it seems this was not mentioned by people
even a priori by Paul Bernays who has the handwritten version [PG08]
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look at the introduction rules of conjunction and implication, we will notice that premisses
(the formulas above the inference line) are subformulas of the conclusion, and the situation
is converse for the elimination rules. Gentzen noticed that in normal proofs, this property,
which is called sub-fromula property, holds for the whole proof. That is to say, all formulas
are subformulas of the conclusion [Gen35]. One can derive the consistency of a logical system
using the normalization theorem and the subformula property as follows: Assume that the
proof system is not consistent. Then by definition, it proves any formula and especially
atomic formulas. Then the atomic formulas have also normal proofs. But there is neither
an elimination rule nor an introduction rule on an atomic formula. So, in this way, one can
obtain a syntactic proof of consistency for a logical system. However, we have not yet talked
about the consistency of arithmetic. Gentzen tried to extend the natural deduction with a
rule that corresponds to the principle of induction. And he wanted to derive consistency from
the normalization and the subformula properties. But, he realized that this proof will not
go through, as he saw it is impossible to have subformula property in the arithmetic [PG08].
Afterward, Gentzen developed another logical calculus, and he called it “Sequenzenkalkul”
(sequent calculus). A sequent consists of a list Γ of formulas, a turnstyle ⊢ (original an
arrow by Gentzen), and another list Γ of formulas, i.e, Γ ⊢ ∆. Take Γ = A1, · · · , Ak and
∆ = B1, · · · , Bl, then one can read a sequent Γ ⊢ ∆ as follows: “The assumption A1 ∧· · ·∧Ak

implies the conclusion B1 ∨ · · · ∨ Bl”. In sequent calculus, we have two introduction rules
(called left and right introduction rules) for any connective in contrast with the natural
deduction we have introduction and elimination rules. Let us consider the case of conjunction
and implication. The right introduction rule for conjunction is as follows:

Γ ⊢ ∆, A Γ ⊢ ∆, B

Γ ⊢ ∆, A ∧ B

And the left introduction rules for conjunction are
A, Γ ⊢ ∆

A ∧ B, Γ ⊢ ∆
B, Γ ⊢ ∆

A ∧ B, Γ ⊢ ∆
One can try to interpret these rules with the reading of a sequent Γ ⊢ ∆ which is provided
above. The left and right introduction rules for implication are as follows:

Γ, A ⊢ B, ∆
Γ ⊢ A → B, ∆

Γ ⊢ Γ′, A B, ∆ ⊢ Γ′′

A → B, Γ, ∆ ⊢ Γ′, Γ′′

Gentzen denoted by LK (respectively LJ) the classical (respectively intuitionistic) system in
the sequent calculus style 4. Similar to the detour in the natural deduction which was somehow
implicit, there is a notion of the detour in the sequent calculus. However, this notion of detour
explicitly appears in the sequent calculus as an inference rule which is called (cut) rule:

Γ ⊢ A, ∆ A, Γ′ ⊢ ∆′

Γ, Γ′ ⊢ ∆, ∆′

Similar to the normalization theorem in the natural deduction, there is a theorem in sequent
calculus that is called “cut elimination” theorem nowadays. This theorem says that if a
sequent Γ ⊢ ∆ has a proof, then it also has a proof without using of (cut) rule. Those
proofs are called cut-free proofs. Gentzen showed the cut elimination theorem for LK (and

4The rules that are presented above are actually the rules of a classical system. In the sequent calculus,
there is a very nice characterization of intuitionistic system saying that a system is intuitionistic if there exists
at most one formula on the right-hand side of ⊢.
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consequently for LJ). Gentzen continued his plan on proving the consistency of arithmetic
after working on the natural deduction and the sequent calculus in his thesis. And he proved
the consistency of arithmetic [Gen39] using the now famous principle of transfinite induction
up to the first epsilon-number 5. To see more details and other discussions on proof theory,
we refer a reader to excellent and exciting references on proof theory such as [Bus98, Gir87b,
GLT89, NvPR01, Pra91, vP13, TS00].

Type theory

Back in the 19th century, Georg Cantor in [CC74] launched a branch of mathematics called
set theory. In that paper, he first proved that the collection of all real algebraic numbers can
be placed into a one-to-one correspondence with the collection of all natural numbers. Then
he proved that the real numbers cannot be put into a one-to-one correspondence with the
natural numbers 6. After this discovery of Cantor, which is also called linear continuum, the
concept of set theory started to evolve. Early on, some paradoxes arose in naive set theory;
in particular the paradox by Bertrand Russell (and also by Ernst Zermelo) which is known
as the paradox of self-reference. This issue was basically solved in two ways: Developing an
axiomatic set theory by Ernst Zermelo and Abraham Fraenkel [Zer08, Fra22], and developing
of type theory by Bertrand Russell and Alfred North Whitehead [WR13] which was simplified
by Leon Chwistek [Chw22] and Frank Plumpton Ramsey [Ram31]. One can look at types
as ranges of predicates meaning that for a given predicate P (X) there is a class of objects,
called type of X, such that the predicate P (X) can only apply to members of type of X.
One can also look at types as sets. Although one of the motivations was trying to solve the
paradoxes of naive set theory, one can see a more conceptual purpose in type theory which
was looking for a secure foundation of mathematics, and we can maybe say that this project
is really started from Gottlob Frege.

Simple Theory of Types and λ-calculus

Along these lines of looking at foundations of mathematics, Alonzo Church in [Chu32], as he
mentioned at the very beginning of his paper, provided a set of postulates for the foundation
of formal logic. His system was based on function rather that set. Church first defined what
he called “undefined terms”. Among the undefined terms, one can find these symbols: {}(),
λ[], Π, Σ, and &, and he also allows to have variables. Then he defined the notion well-formed
formula inductively: (1) variables are well-formed (2) Π, Σ, and & are well-formed (3) if M
and N are well-formed then {M}(N) is well-formed (4) if x is a variable and M is well-formed
then λx[M ] is well-formed. Although those are called undefined terms, Church had (as it is
mentioned by himself in page 8 of [Chu32]) an intended meaning for them which was coming
from a functional view. He says that if F is a function and A is a value, then {F}(A) represents
the application of the function F on the value A. He also uses the idea of Schonfinkel [Sch]
to deal with multi variables functions which is now called Currying function. Then we will

5Gentzen actually presented different proofs for the consistency of arithmetic in different years, as there
was some discussions by Gödel and Bernay on each of them [vP18]

6Actually, he first proved that there are infinitely many numbers in any interval [a, b] (Cantor’s notation
for interval was (a · · · b)). Then, as two corollaries, first he proved there are infinitely many transcendental
numbers in any interval. And secondly, real numbers cannot be written as an infinite sequence.
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also see his postulates in order to do reasoning in the system. There we can find basically
the first place he provides his conversion rules such as converting the formula {λx[M ]}(N)
into formula Sx

N M which denoted the result of substituting N in M for x. This particular
conversion is now called β reduction. Although Stephen Cole Kleene and John Barkley Rosser
proved that Church’s system was inconsistent [KR35], his system lead to introduce λ-calculus
and simple theory of type in [Chu40, Chu41]. What we see in [Chu40] seems closer to what
we nowadays called Higher-order sorted logic. Church first explained his hierarchy of types in
[Chu40]: The class of type symbols is the least class of symbols which contains the symbols ι
and o and is closed under the operation of (αβ) from symbols α and β 7. In a similar way as he
did in [Chu32], he defined his notion of well-defined formulas that were based on the notion of
primitive symbols which were the same as undefined terms with the difference that now they
have type as their subscript. Among the primitive symbols, one can see λ, Noo, Aooo, Πo(oα).
He called λ the improper symbols, and the others ones the proper symbols. Well-formed
formulas is now defined inductively as follows: (1) proper symbols are well-formed (2) If xβ

is a variable and Mα is a well-formed formula, then (λxβMα)(αβ) is a well-formed formula
(3) If Fαβ and Bβ are well-formed formulas, then (FαβBβ)α is a well-formed formula. As an
example, the formula Bo∨Co can be written as AoooBoCo, and the formula ¬Bo can be written
as NooBo. This work is basically the first place that we can see a typed system based on a λ
language which is based on the notion of functions and variables. However, the simple type
theory is not the only outcome of Church’s work in [Chu32]. The underlying pure λ-calculus
was also another outcome. The very early work on the pure λ-calculus was begun to study its
conversion theory (now called reduction theory) in [CR36] which Church and Rosser proved
confluence theorem using the method of residuals. Further studies on λ-calculus were made in
[Chu36a, Chu36b, Pé37] that introduce the notion of λ-definable function and prove that this
notion coincides with the Herbrand-Gödel recursive functions. This also answered negatively
the question that we mentioned above by Hilbert about the decidability of predicate logic.
Church first showed that the convertibility problem for pure λ-calculus was undecidable, and
then deduced the undecidability of predicate logic from this result [Chu36b, Chu36a].

Propositions-as-Types

Church gave his last version of the simple theory of type in [Chu40]. Afterward, there were
many studies on Church’s system and its extensions. For an instance, Leon Henkin in [Hen50]
proved the completeness of simple type theory for his wider class of models. The question of
completeness of predicate logic was answered positively by Gödel in [Göd29]. But, by Gödel’s
first incompleteness theorem, we can see that completeness of second order logic will be failed
as a finite set of axioms for natural numbers can be formulated in a second order calculus
with an added functional constant. However, Henkin provide a wider notion of models (he
called them general models) in which he proved the completeness of simple theory of type
(and calculi of higher order). About this wider notion, he says that “Roughly, these models
consist of an arbitrary domain of individuals, as before, but now an arbitrary class of sets of
ordered n-tuples of individuals as the range for functional variables of degree n.”. There was
also another study on Church’s system by Peter Bruce Andrews that he extended Church’s
system to the theory of transfinite types [Gan68]. However, if we go back again before work
of Church in [Chu40], we will see that Haskell Curry has also developed a type theory in

7This operation is now denoted by β → α
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[Cur34, Cur35] with the aim of investigating the foundations of mathematics. He called his
theory combinatory logic 8. Combinatory logic is a formal theory based on a set of primitive
axioms and rules of procedure and does not suppose the notion of variables. One of the main
ideas of Curry was to decompose a substitution process into elemental steps, and to do so,
he introduced a concept of combinator [Cur30] 9. Getting back to Curry’s type theory in
[Cur34, Cur35], one can see that his approach is different from the one by Church. Curry
added a functionality constant F in a way that an expression such as Fabf means intuitively
∀x(x ∈ a ⇒ f(x) ∈ b). In his approach, the range of f includes a and not exactly a. In other
words, a term in Curry’s type theory can have an infinite number of types, whereas as we saw
above in Church’s type theory, any well-formed formula has a unique type which is shown
as its subscript 10. In addition to the functional symbol F , Curry in [Cur42] also considered
another combinator P to represent implication. He used the notation Pab for the implication
that we now usually write it as a → b, and then he provided some Postulates for P and F . In
footnote 28 of [Cur42], Curry says the following: “Note the similarity of the postulates for F
and those for P. If in any of the former postulates we change F to P and drop the combinator
we have the corresponding postulate for P.”. As noted in [CH06], we can say that here is
the very first place that one can see more explicitly some sparks of the appearance of the
proposition-as-types. Later on, Curry and Robert Feys in [Goo60], proved a formal statement
for propositions-as-types that they called them “The P-to-F transformation” (Section 9.E of
[Goo60]). There were two following axioms in their basic (type) theory where two combinators
K and S are defined respectively as Kxy = x and Sxyz = xz(yz):

⊢ Fa(Fba)K ⊢ F(Fa(Fbc))(F(Fab)(ac))S

If we replace the combinator F with P, and remove their subjects, then these two axioms will
be as follows (remember that Pab is a notation for a → b):

a → (b → a) (a → (b → c)) → (a → b) → (a → c)

Moreover, there was also a rule for F saying that Fabf, ax ⊢ b(fx). Under the same transfor-
mation, this rule for F will be modus ponens. As we know, modus ponens plus the two axioms
above will generate a theory of implication in the intuitionistic propositional logic. Hence,
under this transformation, one can show every theorem of the Curry’s basic (type) theory is
related to a theorem in the pure theory of implication in the intuitionistic propositional logic
[Goo60]. By looking at the proof of this theorem and a partial converse of it in [Goo60], it can
be observed that the transformation is not only restricted between propositions and types,
and moreover there was a correspondence between type-assignment deductions and the proofs
in the propositional logic. This fact and its extension to the λ-calculus (Church’s type theory)
were mentioned by William Alvin Howard in [How80] 11. Howard called this correspondence
formulae-as-types which is also known today as the Curry-Howard correspondence. This cor-
respondence was also pointed out independently and with different motivations by Dana Scott
in [Sco70] and Nicolaas Govert de Bruijn in [dB80] as part of the automath project. This

8The idea of having a syntax such as combinatory logic of Curry appeared also before him in a work by
Moses Ilyich Schönfinkel [Sch]. Schönfinkel’s idea was to remove bound variables, which he thought are just
auxiliary syntactic concepts

9As it is mentioned in [CH06], when Curry discovered [Sch], he admits “This paper anticipates much of
what I have done”.

10This different typing is now called intrinsic and extrinsic typing due to John Reynolds [Rey98]
11According to [CH06], this fact were pointed out by William Howard in a manuscript in 1969, and then

published in [How80] in 1980
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correspondence between proposition and types was also used by Per Martin-Löf, and then he
introduced the intuitionistic type theory [Mar84] 12.

Normalization and Higher order type theories

We talked above about the normalization theorem in the natural deduction with the aim
of eliminating detours in the proofs. By the Curry-Howard correspondence, we saw that
proofs of a proposition will be transformed into terms of the corresponding type. Hence,
one should have a similar notion to detours in terms which is now called redex (or β-redex).
Hence the property of normalization in the natural deduction will be transformed to the
following property in type theory: any typed term has a normal form which can be obtained
via the reduction system of the given type theory. This property is sometimes called weak
normalization which says that there exists at least one finite reduction of the terms. Similarly,
a type theory has strong normalization, if all reductions of typed terms are finite. Alan Turing
proved the weak normalization theorem for λ-terms with pure arrow types and β-reduction
[CHS80] 13 14. Curry also proved the weak normalization using the cut elimination of the
sequent calculus [Goo60]. As it is mentioned above, one of the questions of Hilbert was
about the consistency of logical systems, and Gentzen proved the consistency of arithmetic.
However, there is another proof of the consistency of arithmetic due to Gödel in his Dialectica
paper [Göd58]. Roughly speaking, Gödel interpreted first order arithmetic in an impredicative
primitive recursive functionals of finite type (we call it theory T ), and he proved that all
closed terms T of the integer type will be computed to a natural number. From this result,
he deduced the consistency of intuitionistic first order arithmetic (Heyting arithmetic). Later
on, William Walker Tait formalize the theory T as an extension of typed λ-calculus with
a primitive-recursion operator and proved weak normalization of his typed system [Tai65].
Tait again provided another proof of normalization of his system in [Tai67]. In his second
proof, he defined the so-called computability predicate by induction on types in a way that
this predicate implies normalization. Then he proved by induction on terms that all terms
satisfy this predicate. Although one can notice that one can adapt Tait’s proof to have a
strong normalization, Howard proved directly a strong normalization result [How70].
In the meantime, Gaisi Takeuti provided a sequent calculus for higher-order logic and he left
the question of cut elimination for his system in [Tak53]. Afterward, Tait in [Tai68] and
Dag Prawitz in [Pra67] proved that statement for second order predicate logic. Later on,
Moto-o Takahashi in [Tit73] and Prawitz in [Pra68] provide the proof for the full Takeuti’s
system. However, if we look at all these proofs, we can not see an explicit procedure to
construct the cut-free proof 15. Jean-Yves Girard gave a constructive (algorithmic) proof
of cut elimination for second and higher order logic in [Gir71, Gir72]. He first developed a
typed system corresponding to the second order predicate logic and called it system F, and
then proved the strong normalization result for his system. His idea was to develop Tait’s
computability predicate, and it is called candidats de réductibilité which is widely used in

12The very first work of Martin-Löf on the theory of type, which had an impredicative character, was
published in 1971, and it turned out that it was inconsistent. Then he remove this impredicative character in
his subsequent versions in 1972, 1975, 1982, and 1984 [CH06]

13This system is now called simply typed λ-calculus
14As it is noted in [CH06], this was the first proof of normalization which was before 1942. However, it took

around 40 years to be published.
15That is why we nowadays distinguish between cut elimination and cut admissibility
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proof theory and type theory. In system F, there is a type construction of the universal
quantifier which is denoted by ∀α.ρ where α is a type variable. Apart from abstraction and
application for terms, we also have abstraction and application for types. Let r be a term of
type ρ, and the abstraction for type is the term Λαr of type ∀α.ρ. Let r be a term of type
∀α.ρ, the application for type is the term (rσ) of type ρ[α/σ]. In ∀α.ρ, the type variable α
ranges over all types, including ∀α.ρ. This impredicativity of the language made the proof of
normalization of system F delicately complex. However, this universal quantifier construction,
which is called polymorphism, was also seen useful in programming languages [Str00], and
that was one of the motivations of John Charles Reynolds to develop, independently, a similar
language to system F in [Rey93]. An example taken from Section 3.6.4 of [Str00]: Let f be a
function of type α → β, and L be a list of elements of type α which will be denoted by list(α).
Consider a function map that applies f respectively to each element of L so that it produces
a list(β) (map(f, L) will be of type list(β)). Now, using the universal quantifier of system
F, one can assign the type ∀α∀β(α → β) → (list(α) → list(β)) to term map. From another
perspective, one can derive many other data types using polymorphism. For instance, type
of integers can be written as ∀α(α → α) → (α → α) [Gir72], the boolean type can be written
as ∀α.α → (α → α), etc.

Birth of Linear Logic

One of the questions that arose after presenting system F and the other similar systems was
asking about how we should interpret polymorphic types. Reynold conjectured in [Rey83]
that there is a set-theoretic interpretation of polymorphic typed λ-calculus, and he disproved
himself his conjecture 16. Anne Sjerp Troelstra in [Tro73] provided a semantic for system
F based on partial equivalence relations (PER), i.e, binary relation satisfying the symmetry
and transitivity conditions, over Kleene structure (N, ·) where n · m is the result of applying
the n-th partial recursive function to m as its argument. This model is called “hereditarily
recursive operations of order 2” by Troelstra. As it is mentioned in [Gir86], there were
many other attempts to interpret system F using some sort of Scott domains, but those were
essentially the same as Troelstra’s; Girard says in [Gir86] “simply partial recursive functions
are replaced by λ-terms, and these λ-terms are in turn interpreted in a Scott domain.”.
However, new semantic ideas were presented in [Gir86] using coherence spaces which was
called qualitative domains by Girard in [Gir88]. Now, we are in a position where linear logic
was invented by Girard in [Gir87a]. Although there is almost no doubt that linear logic is
coming from coherence spaces, we can also look at this sentence by Girard in [Gir87a] saying
that “Let us explain what is the starting disturbance that led to linear logic: the semantics of
coherent spaces,...”. In classical and intuitionistic logic, the multiplicative and additive rules
are equivalent thanks to the free structural rules. However, in linear logic we do not have that
freedom on structural rules, and those rules are only accessible on so-called modal formulas.
Hence the equivalence of multiplicative and additive rules will be broken. Based on this fact,
one has two different conjunctions, two different disjunctions, and the same on units of logic.
In fact, as an example, one has both intuitionistic and classical disjunctions at the same time
in linear logic. More precisely, there is a formula A ⊕ B in linear logic for any formula A and

16Reynold said if there is such an interpretation, then the endofunctor (2X)X over category of sets and
function has initial algebra, i.e, a set A such that A ∼= (2A)A. But this is not possible by a cardinality
argument
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B together with the following rules:
Γ ⊢ A, ∆

Γ ⊢ A ⊕ B, ∆
Γ ⊢ B, ∆

Γ ⊢ A ⊕ B, ∆
Moreover, one also has a formula A ` B with the following rule:

Γ ⊢ A, B, ∆
Γ ⊢ A ` B, ∆

And one can see that the formula A ⊕ A⊥ is not provable in general in linear logic where
A⊥ is the linear version of negation. Whereas the formula A ` A⊥ is provable in linear logic.
Hence linear logic provides a fine-grain analysis of proofs in intuitionistic and classical logic,
and also of their cut-elimination. Based on this idea of having explicitly a restricted version
of structural rules, linear logic provides us with a logical understanding of the evaluation
strategies. Although the structure of the cut-elimination procedure is essential, one can
see that this structure is quite problematic in sequent calculus as we have problems of the
permutation of rules. That is to say one can have a single proof of a formula, whereas it can
be represented in two different ways in sequent calculus. To avoid this problem, Girard gave
a new syntax of proofs [Gir87a] which is called proof-nets. Cut elimination theorem was also
obtained in [Gir87a] using normalization for proof-nets. However, as it is also mentioned in
[Gir95], one can of course prove cut elimination for propositional linear logic directly in the
sequent calculus using essentially the argument of Gentzen, and moreover, the proof can be
simpler due to the restrictions on structural rules.

Fixpoint theory

If we split the title of the manuscript into three parts of “Fixed Points”, “Linear Logic”,
and “Curry-Howard-Lambek”, till now we have almost talked about the last two, i.e, “Linear
Logic”, and “Curry-Howard-Lambek”. It is said “almost”, since we did not talk about the
role of Lambek. But a short history of categorical logic is provided in Section 0.1.1 which
will talk about Lambek’s role in this story. But we really have not talked about the “Fixed
Points” part yet, and this is what we are going to do now. The goal is to give a very short
background on order-theoretic fixpoints. Once we are done with this, we will talk about the
connection of these three parts which is the main goal of this manuscript.

Fixpoint theorems in mathematics are the results that says that an operation (or a func-
tion) f on a particular space has fixpoints, meaning that there is an element x of the space
such that f(x) = x. Bronisław Knaster and Alfred Tarski in [Kna28] proved a set-theoretical
fixpoint theorem saying that any function on the family of all subsets of a set, which is in-
creasing under set-theoretical inclusion, has at least one fixpoint. Later on, Tarski gave a
lattice-theoretic generalisation of the set-theoretical one 17. He proved that the set P of all
fixpoints of a given increasing function f on a complete lattice (A, ≤) 18 is a non empty

17Although this result was published in 1955, Tarski says in [Tar55] that most of his results contained in
that paper were obtained in 1939. He also tells us that in the meantime he was working on a research project
in the foundations of mathematics which was founded by Office of Ordnance Research, U.S. Army

18A lattice is a partial order set (A, ≤) such that for any two elements a, b ∈ A there is a least upper bound
(join) and a greatest lower bound (meet). A lattice is said to be complete if every subset B of A has a least
upper bound and a greatest lower bound
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complete lattice (Theorem 1 of [Tar55]). In particular, we will have the least and great-
est fixpoints of f , since P is a complete lattice. This theorem is an existential statement
and it is not completely obvious how one can build the fixpoints. There is another fixpoint
theorem that is more constructive in the sense that one can see a procedure to build the
least fixpoint under an assumption on the function. This theorem is called Kleene fixpoint
theorem 19, and it says that if a function f : X → X on inductive poset X 20 preserves
directed joins then there it has a least fixpoint. Patrick Cousot and Radhia Cousot relaxed
the assumption of preserving directed joins, and proved that any monotone function on a
complete lattice has both the least and greatest fixpoints [CC79]. Their proof also provides
a transfinite procedure to build fixpoints. They actually showed that the set of fixed points
of f is the image of preclosure operations on the complete lattice which is defined as lim-
its of stationary transfinite iteration sequences. Although their proof is constructive (in the
sense of mentioned above) and relaxes the assumption of preserving directed joins, it works
on a more restricted domain (complete lattice) compare to Kleene’s theorem which was on
inductive poset. The good news is that there is a theorem by Dito Pataraia, called Pataraia’s
theorem, which indeed proves that any monotone operation f : X → X on inductive poset
X has a fixed point 21. Paul Taylor in [Tay22] proved Pataraia’s theorem under the “special
condition” which simplifies the original proof of Pataraia. This special condition is saying
∀x, y ∈ X((x = f(x) ≤ y = f(y)) ⇒ x = y).

The fixpoint theorems have many applications in mathematics. For example, one can see
in [Kna28] that the set-theoretical fixpoint theorem gave us a generalization of the Cantor-
Bernstein theorem, and also some applications topology are mentioned there. And of course,
many other applications that are way much more than the author’s knowledge. To see the
application that this manuscript is based on that, we should get back again to 1895 where
Cantor introduced well-orderings or ordinals in [Can95, Can97], and that led Zermelo to
generalize it to the notion of a well founded relation [Zer35]. Let A be a set and ≺ be a well
founded relation on A, then it obeys the well founded induction scheme:

∀a ∈ A (∀b ∈ A b ≺ a ⇒ Φ(b)) ⇒ Φ(a)
∀a ∈ A Φ(a)

for any predicate Φ on A. This well founded induction makes us able to prove a predicate
by induction. From this ability, John von Neumann proved in [vN] a recursion theorem that
will make us able to define a function by recursion. The interesting point is that one can
also prove the same recursion theorem using Pataraia’s theorem [Tay22]. So, here is a place
where we can see, as an example, an application of fixpoint theory in the field of inductive
definitions and proofs. In this spirit of using fixpoint theory, one can develop an induction
principle in a sequent calculus style. For instance, the following rules can be seen as a kind
of Pataraia’s theorem where µX.F (X) is a notation for the least fixpoint of the operation F :

∆ ⊢ F (µX.F (X)), Γ
∆ ⊢ µX.F (X), Γ

F (S) ⊢ S

µX.F (X) ⊢ S

19The author is not able to find easily the first place that this theorem has appeared, so not fully sure why
this is called Kleene fixpoint theorem. But most probably it is because of the similarity between this theorem
and Kleene’s recursion theorems in [Kle38, Kle71].

20An inductive poset is a poset with a least element, and admitting joins of all directed subsets.
21Acording to [Tay22], Pataraia never wrote it up formally himself, and his proof was simplified by Alex

Simpson.
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Along this approach, one can try to develop an extension of the propositional logical system
by inference rules such as those above. We said propositional because, as it is mentioned
above, one can encode fixpoints types in second order logical systems such as system F.
However, along this connection of proof theory and fixpoint theory, Ralph Matthes developed
an extension of system F with iteration and Primitive recursion on inductive Types [Mat99a],
as he mentioned in [Mat99a] that he considered a “magnifying glasses of proof theory” on the
theory of complete lattices. And, finally, we are relatively in a good position to talk about
the topic of this manuscript which will be done in the following sections.

Fixpoints theory, Linear Logic, Curry-Howard-Lambek

Girard in [Gir92] suggested considering of extension of linear logic with fixpoints of formulas
in an unpublished note, though the first comprehensive proof-theoretic investigation of such
an extension of linear logic is by Baelde [Bae12]. He considered an extension µMALL of Multi-
plicative Additive linear logic with induction and coinduction principles. It seems, apparently,
his motivation was more coming from proof-search and system verification point of view and
therefore his µMALL logical system is a predicate calculus. We will look at that system from
the fixpoint theory approach mentioned above together with a Curry-Howard-Lambek per-
spective. So, in the first place, we do not need to deal with a predicate calculus, and we stick
to the proposition calculus setting. Unlike [Bae12] we include the exponentials in our system
from the beginning, so we call it µLL rather than propositional µMALL. Exponentials are not
considered in µMALL because some form of exponential can be encoded using inductive/coin-
ductive types, however, these exponentials are not fully satisfactory from our point of view
because their denotational interpretation does not satisfy all required isomorphisms; specifi-
cally, the Seely isos are lacking (This is explained in Chapter 4). The µLL system is described
in Chapter 0, and there we can also see a brief background on linear logic, and its model.
Now, we explain below what we have done in each chapter along with our main motivation
which is making relations between fixpoints theory, linear logic, and Curry-Howard-Lambek
correspondence.

Chapter 1

In Chapter 1, we first decided to investigate the denotational semantics of µLL, whose defi-
nition does not rely on the rewrite system µLL is equipped with, since the proof-theory (and
hence the “operational semantics”) of µLL is still under development. We develop there a
categorical semantics of µLL extending the standard notion of Seely category 22 of classical
linear logic. Such a model of µLL consists of a Seely category L and of a class of functors
Ln → L for all possible arities n which will be used for interpreting µLL formulas with free
variables. These functors have to be equipped with a strength to deal properly with contexts
in the ν rule. Then we develop a simple instance of this setting which consists in taking for
L the category of sets and relations, a well-known Seely model of linear logic. The strong
functors we consider on this category, that we call variable sets, are the pairs F = (F, F̂) where
F̂ is the strength and F : Reln → Rel is a functor which is Scott-continuous in the sense

22Sometimes called new-Seely category: it is a cartesian SMCC with a *-autonomous structure and a
comonad !_ with a strong symmetric monoidal structure from the cartesian product to the tensor product.
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that it commutes with directed unions of morphisms which implies categorical cocontinuity
on the category of sets and injections and maps inclusions to inclusions (this light additional
requirement simplifies the presentation). There is no special requirement about the strength
F̂ beyond naturality, monoidality and compatibility with the comultiplication of the comonad
!_. Variable sets form a Seely model of µLL where linear negation is the identity on objects,
the formulas µζ F and νζ F are interpreted as the same variable set, exactly as ⊗ and ` are
interpreted in the same way (and similarly for additives and exponentials): this denotational
“degeneracy” at the level of types is a well known feature of Rel which doesn’t mean at all
that the model is trivial; for instance normal multiplicative exponential LL proofs which have
distinct relational interpretations have distinct associated proof-nets [dCdF12, dC16]. Then
we “enrich” this model Rel by considering sets equipped with an additional structure of to-
tality: a non-uniform totality space (NUTS) is a pair X = (|X|, T (X)) where |X| is a set and
T (X) is a set of subsets which intuitively represent the total, that is, terminating computa-
tions of type X. This set T (X) is required to coincide with its bidual for a duality expressed
in terms of non-empty intersections. Given two NUTS X and Y there is a natural notion of
total relation t ⊆ |X| × |Y | giving rise to a category Nuts which is easily seen to be a Seely
model of linear logic. To turn it into a categorical model of µLL, we need a notion of strong
functors Nutsn → Nuts. Rather than considering them directly as functors, we define vari-
able non-uniform totality spaces (VNUTS) as pairs X = (|X|, T (X)) where |X| : Reln → Rel
is a variable set and, for each tuple −→

X = (X1, . . . , Xn) of VNUTS’s, T (X)(−→X ) is a totality
structure on the set |X|(|−→X |). It is also required that the action of the functor |X| on Nuts
morphisms and the strength X̂ respect this totality structures. Then it is easy to derive from
such a VNUTS X a strong functor Nutsn → Nuts and we prove that, equipped with these
strong functors, Nuts is a model of µLL. And finally, we will apply the same notion of totality
on coherence spaces, and we will provide another concrete model of µLL based on coherence
spaces with totality.

Chapter 2

In Chapter 2, along our path to make a relation between fixpoints, linear logic, and Curry-
Howard-Lambek approach, we decided to develop a λ-calculus for this extension µLL. How-
ever, the explicit structural rules in linear logic make such a language very heavy, hard to
use and analyze. In particular, explicit substitutions would be necessary in such a µLL-based
syntax. However, Olivier Laurent in [Lau02] introduced a “polarized” linear logic LLP which
relaxes the use of structural rules on so-called negative formulas. So, we take this advantage
of the relaxed structural rules in LLP, and we call LLPimp for the polarized linear logic with
implicit structural rules.

We study µLLPimp, an extension of LLPimp with least and greatest fixpoints, by introducing
and studying a system L calculus [CH00, CM10, Mun13, Mun09] for a polarized version of µLL.
The search for a maximal syntactic simplicity guided our design of this calculus. We use the
Greek letter κ for the name binder instead of the more traditional µ/µ̃ [Par92] which would
lead to confusions with the standard notation associated with least and greatest fixpoints
(µ/ν). Related to this syntactical simplicity is that a negative term or a command can be
typed by a negative or a positive sequent so that there are actually five kinds of typing
judgments and this partitioning is taken into account by the semantics. The polarization
of fixpoints means that least fixpoints allow to define data-types (integers, lists, trees etc.)
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while greatest fixpoints allow to define co-data-types, that is types of data-consumers 23.
We refer to [APTS13] for a detailed discussion of the computational duality between data
and co-data-types. The typed calculus introduced in that way is called κµLLP. It features
natural construction rules associated with the positive connectives and constants (pairing
for ⊗, injections for ⊕ etc). It has a positive promotion construct s! for putting a negative
term s in a box (or thunk) which can be used as a piece of data and a negative dereliction
der p which allows to open such a box. Just as the λµ-calculus, κµLLP has names α, β . . .
associated with the negative formulas of a sequent24. Since at most one positive formula can
occur in a single-sided LLP sequent, we need only one variable that we denote as •. There are
several binders for names: one general binder κα.c which allows to select a negative formula
in the context, and the other ones are associated with ⊥, ` and Park’s rule. All these binders
produce a negative term whose type is a negative formula made active for further uses. There
is also a binder κ̃.c associated with the unique variable • which produces a positive term. One
crucial feature of • is that it can occur only linearly in a command or negative term. Again,
this is due to the fact that all the formulas in the context of a promotion must be negative.
Notice also that • cannot occur free in a positive term due to the fact that a positive sequent
has exactly one positive formula. All these binders apply to commands which are cuts s ⋆ p
between a negative term s and a positive term p. Our operational semantics provides only
reduction relations for commands and can be seen as describing the interactions between
positive constructors and negative destructors. One specific critical command is κα.c ⋆ κ̃.d
which could a priori lead to c [κ̃.d/α] or d [κα.c/•]; we choose the second option making our
reduction semantics deterministic; we are actually defining a kind of abstract machine whose
states are commands s⋆p where s is the program and p is the stack (there are no environments
because substitutions are executed immediately).

Our goal in this chapter is twofold. On the one hand, we provide a categorical semantics
of κµLLP building on the one provided in Chapter 1. Given a model (L,

−→
L ) (simply denoted

as L) of µLL the main idea is standard: interpret a closed positive formula P as an object
of the Eilenberg-Moore category L!. This requires however to deal also with open positive
formulas: we take them into account introducing the notion of positive functors which are
strong functors (as specified by L) equipped with a distributive law wrt. the comonad !, they
are a functorial generalization of the notion of !-coalgebra. We illustrate this semantics in the
concrete models Rel and Nuts.

On the other hand, we also prove some form of normalization (cut-elimination) for κµLLP.
This turned out to be surprisingly difficult. The solution came from understanding that prov-
ing a termination property with respect to the relational semantics — saying very roughly
that if a command has a non-empty relational semantics its reduction terminates — would be
possible because the points of the relational model are finite trees on which induction is pos-
sible. Concretely this means that we associate sets of terms to points of the relational models
and these sets are easily defined by induction. To make this proof of normalization more
natural we also provide a presentation of the relational semantics of κµLLP as an intersection
typing system. To derive from this relational normalization a standard normalization prop-
erty, it is enough to prove that, in sufficiently many meaningful situations, when c ⊢ α : N ,

23This strongly suggests that lists and streams are not of the same nature, streams are not data but data
consumers.

24Indeed in the λµ-calculus all formulas are negative and the names are associated with the formulas occurring
on the right side of a sequent whereas variables are associated with formulas on the left.
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the command c has a non-empty relational semantics. We do that for N = ?nat where nat is
a type of integers defined as a least fixpoint formula. The model Nuts of non-uniform totality
spaces gives us precisely this information: any total subset of the relational interpretation of
?nat is non-empty and hence, in particular, the interpretation of c is non-empty.

Chapter 3

Till now, we have only considered finitary logical system with inductive and co-inductive
types. However, in those systems, cut elimination theorem will not imply the sub-formula
property as one basically need to guess an invariant in the inductive proofs, and this can not
be avoided in these finitary systems. There are morally two ways to obtain a cut elimination
result and sub-formula property in the logical system with inductive and co-inductive types:
either considering infinitary logic in the sense of [ST58, Tar58], or considering non-well founded
proofs meaning that one has infinite proofs in depth but finite branching in the sense of [Dou17,
BDS16]. In this chapter, we actually consider non-well founded proofs from a denotational
semantics point of view. In [Dou17, BDS16], the µMALL∞ system, which is non-well-founded
multiplicative and additive LL with two rules for unfolding fixed-points, is studied. They have
defined a syntactic notion of validity on proofs in order to distinguish sound from unsound
proofs. We consider an extension of µMALL∞, called µLL∞, with exponentials. We first
recap the language and the inference rules of µLL∞. Then we will provide an interpretation
for µMALL∞ proofs in Rel. However, the proofs are possibly non-well-founded. So, we
consider, as it is standard, all finite approximations of a proof, and then take the supremum
of the interpretation of them. To define the precise definition of this approximation, we
consider an extension of µLL∞ with this rule: (Ω)

⊢ Γ for any sequence Γ. We interpret this
rule as the empty set, and this helps us to consider any finite sub-tree of a given µLL∞ as
a proof in this extension of µLL∞. As the cut elimination procedure in µLL∞ is an infinite
process, we will consider a notion of limit by defining a metric on the set of all µLL∞ finite
proofs. Based on this notion of metric, we define a equivalence relation on the collection of all
Cauchy sequences. Then we will show the metric completion of the collection of all Cauchy
sequences is isomorphic to set of all (potentially infinite) µLL∞ proof (Although, what it is
provided till now is standard in the literature, we will provide them in this chapter for the sake
of self-containdness of the manuscript). We then proved the preservation by cut elimination
procedure, which can be possibly an infinite reduction path, using a result showing that the
interpretation of any Cauchy sequence is obtained by limsup of the interpretation of each
proof in the sequence. Afterwards, we relate the validity condition and totality of Nuts by
proving that each µLL∞ valid proof will be interpreted as a total element in Nuts. Our
proof method is similar to the proof of soundness of LKIDω in [Bro06]. However the system of
[Bro06] is classical logic with inductive definitions, and this proof is for a Tarskian semantics.
So, we need to adapt that proof in two aspects: considering µLL∞ instead of LKIDω, and
trying to deal with a denotational semantics instead of a Tarskian semantics. The adaptation
for µLL∞ is somehow done in [Dou17], since there is soundness theorem for µMALL∞ with
respect to the truncated truth semantics (a Tarskian semantics). So, basically, the main
point of our proof is turning a Tarskian soundness theorem into a denotational soundness
theorem. Finally, we end this chapter by proving that the semantic of proofs is preserved via
the translation operation which sends any µLL proof to a µLL∞ proof.
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Chapter 4

In this chapter, we get back to the question that arose in the Chapter 0 about consider-
ing exponentials in µLL. In [Bae12], he did not consider the exponentials in his system of
µMALL, and one the reason is that using an encoding !A = 1 & A & (!A ⊗ !A) of !A, one can
derive all structural rules of exponentials in µMALL. However, this is not satisfactory from
a denotational point of view. Although this encoded exponential !t is functorial and also has
a comonad structure, it does not fulfill all the categorical requirements as stipulated in the
definition of a Seely category, as it is also mentioned in [Laf88b, Laf88a]. More precisely, we
will not have the Seely iso with this ! exponential (Proposition 6 of [Laf88b] is not iso but
equivalence). In other words, the associated Kleisli category L! is not a CCC. In this chapter,
we will study a general categorical construction for this encoded exponential. Based on the
notion of comagma in a category L with a binary functor, we turn the class of comagmas over
a given object into a category. Then we define the notion of free magmatic quasi-exponential
(FMQE) as an operation which associates, with each object X of L, a terminal object of
the cateogry comagmas over X. We will afterward show the functoriality, comonadicity, and
monoidality of a FMQE. And we will end the categorical construction of !t by providing Seely
morphisms.

We will also consider some concrete models as instances of this categorical structure.
Interpreting this encoded !t as a binary tree, we will show that Rel and coherence spaces are
indeed two concrete cases. We end this chapter by proving that the interpretation of a linear
logic proof in coherence spaces with this tree-based exponential is related to its interpretation
in non-uniform coherence spaces with Boudes’s exponential. To do so, we use the logical
relation method, and so, we define another instance of our categorical setting provide, and we
called it local totality spaces. A local totality space (LTS) is a tuple generated by a coherence
space, a non-unifrom coherence space, an operation sending tree-based exponential to multiset
exponential denoted as ρ, and a local totality gadget to define composition properly. And we
will prove that if we apply the operation ρ on interpretation of linear logic proofs in coherence
spaces with the tree-based exponential, we will get its interpretation in non-uniform coherence
spaces.

We end up this manuscript by a concluding Chapter 5, in which we expose the perspectives
of our work.

L ? ⊗ ` ⊕ & µ ν !
We can summarize this manuscript by saying that it is about studying the connection
between fixpoint theory, linear logic, and Curry-Howard-Lambek correspondence.
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Chapter 0

Background on denotational and
categorical semantics of linear logic

In this chapter, we will recall some background on proof theory of linear logic, denoted by
LL, and its denotational and categorical semantic. As linear logic is a logic that is discovered
from a denotational semantic (coherence spaces) [Gir87a], we start this chapter with a very
short history on denotational and categorical semantics in general. In this manuscript, by
“denotational semantics” we mean the construction of concrete models, and by “categorical
semantics” we mean a categorical axiomatization of what the concrete models of a given
logic/computational system are. And all the proof systems presented in this manuscript are
classical (not intuitionistic).

0.1 Short history on categorical and denotational semantics

0.1.1 On categorical semantics

The connection between intuitionistic propositional logic and cartesian closed categories was
introduced by Lawvere and Lambek [Lam68, Lam69, Law63] which is known by proposition-
as-object and proof-as-morphism, and in fact it was the heart of categorical logic. Whereas we
require some structure on the category (e.g., cartesian closed category), one needs also some
other theories and structures in order to study predicate logic, dependent and polymorphic
type theory, etc in a categorical setting. The idea started with Lawvere who introduced
the notion of hyperdoctrine, a kind of indexed category or fibered category, to study logic
[Law69, Law]. Then Seely based his logic on “a natural deduction formulation of intuitionistic,
multisorted, first order predicate calculus with equality” and showed that hyperdoctrines are
equivalente to that logic in more details [See83, See77]. Makkai and E. Reyes also wrote a
book [MR77] on the connections of first order model theory and categories, and Makkai then
published two papers [Mak93a, Mak93b] about “give an algebraic framework for the proof
theory of intuitionistic predicate calculus” based on Lawvere’s notion of hyperdoctrine. In
fact, as it is in title of the papers, those were focused on two completeness theorems: “Gödel
completeness theorem” and “Kripke completeness theorem”. In the meantime there was a
work by Benabou [Ben] (its source is not available to me). Of course we cannot refer to all
the work that have been done due to the lack of space (and of course lack of knowledge of

25



CHAPTER 0. BACKGROUND ON DENOTATIONAL AND CATEGORICAL
SEMANTICS OF LINEAR LOGIC

the writer); among those we refer the reader to some particular ones [Cur89, Ču97, HP87].

0.1.2 On denotational semantics

In 1969, at the almost same date as the very early work on categorical logic by Lambek,
Christopher Strachey and Dana Scott invented denotational semantics [Sco93, Sco72, DS71].
The goal was to provide a mathematical interpretation of functional programs that Strachey
was promoting since 1960’s. Strachey’s idea was to look at functional programs as functions.
However, one of the main problem was to see what sort of functions and spaces we should
consider as the interpretation of programs. Scott was able to find an answer to this question,
and he gave a meaning to the λ-calculus using ordered topological spaces and continuous
functions. And so, he found a way to the solution of recursive type definitions which involve
positive and negative occurrences of variables such as D ≃ (D ⇒ D). It is worth mentioning
that later on Freyd gave a categorical framework to the canonical solution of recursive types
namely coinciding of initial algebra and final coalgebra of endofunctors. And then using that
he developed solutions of fixpoint equations of mixed variant functors [Fre91, Fre92].
Later on, Berry developed the notion of stability in order to capture sequentiality in math-
ematical models [Ber78, Ber79]. And one can see in works of Lamarche and Kegelmann
[Keg99, Lam] that those two notions Scott-continuity and stability are indeed coming from
a same notion, i.e, factorized domain. Girard also rediscovered this notion of stable function
once he provided a model of system F (second-order typed λ-calculus) [Gir86] based on co-
herence spaces which is the origin of LL [Gir87a].
Scott mentioned in [Sco93] the parallel or function which is not definable in PCF (a term lan-
guage for higher-order computable functions). Plotkin proved that Scott semantics (lattices
and continuous functions) is fully abstract for PCF extended with a constant implementing
the parallel or function [Plo77]. Notice that, as it is shown by Berry, parallel or function
is not stable. Even by replacing Scott-semantics by stable semantics, we will not have full-
abstraction of PCF. Actually, full abstraction fails because of so-called Gustave function1.
This function is indeed stable but not sequential in the sense of Sequentiality introduced by
Jean Vuillemin. We refer to [BCL83, Mul85, BE91, Ehr95, Cur94, AJ94, JFM+96] to see more
details on sequentiality problem and full abstraction. We just mentioned that sequentiality
has been introduced before stability and not at all for the λ-calculus, but for analyzing the
computation flow in the execution of (first order) recursive programs. Then stability has been
discovered by Berry as a simplification of sequentiality because he realized that there was a
real problem for extending sequentiality to higher order functions.

0.2 Linear logic with fixpoints

Linear logic (LL) was introduced by Jean-Yves Girard in his seminal work [Gir87a] that is a
refinement of classical and intuitionistic logic. The origin of the discovery of this new logic
comes from the semantical analysis of the coherence space denotational interpretation of Sys-
tem F [Gir86]. The relation between LL and linear algebra will be more clear in Section 0.4.2
where we recall the category of coherence spaces and linear morphisms. One can also look at

1Based on the MPRI course by Pierre-Louis Curien: the name of the function is a joke, it was the nickname
of Gérard Béry, because there was already two other Gérard in the lab where he worked.
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the work by Lamarche [Lam92] to see a clearer relation between LL and linear algebra, and
also some more recent works [Ong17, LMMP13] to see this relation. Tsukada and Asada gen-
eralized this linear algebraic perspective [TA22] based on categories of modules over special
semirings (sigma-semirings [TA22] Definition 12). However, in this section we focus more on
proof-theoretical (syntax) aspects of LL. For instance, one feature of LL, contrary to classical
logic LK, is that we do not have a free access to structural rules, that is weakening and con-
traction rules. More precisely, we can only do weakening and contraction rules on so-called
exponential formulas. In other words LL provides more control on structural rules.

In this section, we first recall briefly LL [Gir87a] in Section 0.2.1 and we will review some
basic materials of proof theory of LL. And then we will describe the syntax of formulas and
proofs of µLL [Bae12] in Section 0.2.2.

0.2.1 Syntax of LL

The LL formulas are defined inductively as follows:

A, B, . . . := 1 | ⊥ | A ⊗ B | A ` B | 0 | ⊤ | A ⊕ B | A & B | !A | ?A

We do not assume a negation connective explicitly in the syntax, whereas a negation operator
is defined using De-Morgan duality by induction on formulas: 1⊥ = ⊥, ⊥⊥ = 1, (A ` B)⊥ =
A⊥⊗B⊥, (A⊗B)⊥ = A⊥`B⊥, 0⊥ = ⊤, ⊤⊥ = 0, (A&B)⊥ = A⊥⊕B⊥, (A⊕B)⊥ = A⊥&B⊥,
(!A)⊥ = ?A⊥, (?A)⊥ = !A⊥. Obviously A⊥⊥ = A for any formula A.

There is also no connective for implication in our presentation of LL. Instead, a linear
implication is defined similarly to the decomposition A ⇒ B = ¬A ∨ B in classical logic, as
A ⊸ B := A⊥ ` B.

The logical system of LL presented here is the usual single-sided sequent calculus of classical
propositional LL [Gir87a], see also [Mel09] Section 3.1 and 3.13. In this setting we deal with
sequents ⊢ A1, . . . , An where the Ai’s are formulas. It is important to notice that the order
of formulas in this list is not relevant, which means that we keep the exchange rule implicit
as it is usual in sequent calculus. The inference rules of LL are given in Figure 1.

Remark 1 If weakening and contraction were allowed for any arbitrary formulas, then ⊗
and & would be identified. That is to say if we replace the ⊗ with the & or vice versa, then
the provability would be preserved. In this case (free weakening and contraction), we also
have this identification between ⊕ and `, as well as 1 and ⊤, 0 and ⊥. One can summarise
this identification by saying that if we have free weakening and contraction on any formula,
then the multiplicatives (different context in the premises) and additives (same context in the
premises) rules would be identified. And actually, based on this, there is a separation of linear
logic connectives in multiplicatives and additives ones. The multiplicatives connectives are
⊗ and `, and the additives connectives are ⊕ and &. The same is done for the unit; the
multiplicatives units are 1 and ⊥, and the additives units are 0 and ⊤.

We say two LL formulas A and B are equivalent if both implications A ⊸ B and B ⊸ A
are provable. Related to this notion of equivalence, there are also two other notions; namely
isomorphism (stronger than equivalence) and equiprovability (weaker than equivalence). We
say two LL formulas A and B are equiprovable, when ⊢ A is provable iff ⊢ B is provable.
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The identity fragment:
(ax)

⊢ A⊥, A
⊢ Γ, A ⊢ A⊥, ∆

(cut)
⊢ Γ, ∆

The multiplicative fragment:
(1)

⊢ 1
⊢ Γ, A ⊢ ∆, B

(⊗)
⊢ Γ, ∆, A ⊗ B

⊢ Γ (⊥)
⊢ Γ, ⊥

⊢ Γ, A, B
(`)

⊢ Γ, A ` B

The additive fragment:
(⊤)

⊢ Γ, ⊤
⊢ Γ, A

(⊕1)
⊢ Γ, A ⊕ B

⊢ Γ, B
(⊕2)

⊢ Γ, A ⊕ B

⊢ Γ, A ⊢ Γ, B
(&)

⊢ Γ, A & B

The exponential fragment:
⊢ Γ (w)

⊢ Γ, ?A

⊢ Γ, ?A, ?A
(c)

⊢ Γ, ?A

⊢ Γ, A
(d)

⊢ Γ, ?A

⊢ ?Γ, A
(p)

⊢ ?Γ, !A

Figure 1: Inference rules of LL

For instance, A ⊗ B and A & B are equiprovable for any LL formula A and B. To define
isomorphism, we first need to talk about cut-reduction rules of LL. We refer to [Gir87a] to
see all cut-reduction rules, and we just bring some examples of those reductions here.

π1

⊢ Γ1, A

π2

⊢ Γ2, B
(⊗)

⊢ Γ1, Γ2, A ⊗ B

π3

⊢ A⊥, B⊥, ∆
(`)

⊢ A⊥ ` B⊥, ∆
(cut)

⊢ Γ1, Γ2, ∆

−→⊗,`
π2

⊢ Γ2, B

π1

⊢ Γ1, A

π3

⊢ A⊥, B⊥, ∆
(cut)

⊢ B⊥, Γ1, ∆
(cut)

⊢ Γ1, Γ2, ∆
π1

⊢ A, B, Γ, C
(`)

⊢ A ` B, Γ, C

π2

⊢ C⊥, ∆
(cut)

⊢ A ` B, Γ, ∆

−→c`

π1

⊢ A, B, Γ, C

π2

⊢ C⊥, ∆
(cut)

⊢ A, B, Γ, ∆
(`)

⊢ A ` B, Γ, ∆

π1

⊢ ?Γ, A
(p)

⊢ ?Γ, !A

π2

⊢ ?A⊥, ?A⊥, ∆
(c)

⊢ ?A⊥, ∆
(cut)

⊢ ?Γ, ∆

−→!,c

π1

⊢ ?Γ, A
(p)

⊢ ?Γ, !A

π1

⊢ ?Γ, A
(p)

⊢ ?Γ, !A
π2

⊢ ?A⊥, ?A⊥, ∆
(cut)

⊢ ?A⊥, ?Γ, ∆
(cut)

⊢ ?Γ, ?Γ, ∆
(c)

⊢ ?Γ, ∆
And then LL enjoys cut-elimination theorem [Gir87a]:

Theorem 1 A sequent ⊢ Γ has a LL proof iff it has a LL proof that does not use the (cut)
rule.

This theorem has many consequences such as the subformula proprerty:

Theorem 2 A sequent ⊢ Γ is provable iff there is a LL proof of ⊢ Γ such that each interme-
diate conclusion is made of subformulas of the formulas of Γ.
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And as one of the main purposes of cut-elimination theorem, one also has consistency of LL:

Theorem 3 It is impossible in the LL proof system to prove that ⊢ A is provable for any LL
formula A.

Remark 2 There is an extension of LL with the the mix rules:
⊢ Γ ⊢ ∆ (mix2)

⊢ Γ, ∆
(mix0)

⊢

One can prove 1 and ⊥ are equivalent using these two rules, and also show that ⊢ ⊥ is
provable. However, this doesn’t entail that LL is not consistent, because ⊥ ⊸ A for any
formula A is not still provable.

As another proof-theoretical property of LL, one can also prove the η-expansion theorem:

Theorem 4 Let ⊢ Γ be a LL sequent and π be an LL proof. Then there is a proof π′ of ⊢ Γ
in which the (ax) rule is not used. Moreover, there is a cut-free π′.

Proof: It is enough to prove that the sequent ⊢ A, A⊥ has a cut-free proof in which the
(ax) rule is not used. And this can be done by a straightforward induction on A. ■

Now we can define the isomorphism of two LL formulas. Two LL formulas A and B are
isomorphic, denoted by A ∼= B, if there are two proofs π of ⊢ A⊥, B and π′ of ⊢ A, B⊥ such
that eliminating the (cut) rule of

π

⊢ A⊥, B

π′

⊢ A, B⊥
(cut)

⊢ A, A

ends with an η-equivalent proof to (ax)
⊢ A, A

2, and moreover eliminating the (cut) rule of

π

⊢ A⊥, B

π′

⊢ A, B⊥
(cut)

⊢ B, B

ends with an η-equivalent proof to (ax)
⊢ B, B . As an example of two isomorphic formulas,

we will investigate the example !(A & B) ∼= !A ⊗ !B which is known as Seely iso. Proof π of
⊢ !(A & B) ⊸ !A ⊗ !B is as follows:

(ax)
⊢ A⊥, A

(⊕1)
⊢ A⊥ ⊕ B⊥, A

(d)
⊢ ?(A⊥ ⊕ B⊥), A

(p)
⊢ ?(A⊥ ⊕ B⊥), !A

(ax)
⊢ B⊥, B

(⊕2)
⊢ A⊥ ⊕ B⊥, B

(d)
⊢ ?(A⊥ ⊕ B⊥), B

(p)
⊢ ?(A⊥ ⊕ B⊥), !B

(⊗)
⊢ ?(A⊥ ⊕ B⊥), ?(A⊥ ⊕ B⊥), !A ⊗ !B

(c)
⊢ ?(A⊥ ⊕ B⊥), !A ⊗ !B

2By η-equivalent, we mean proof equivalence modulo commutation of rules and η-expansion, and η-
expansion can be defined systematically by induction on A.
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And proof π′ of ⊢ !A ⊗ !B ⊸ !(A & B):
(ax)

⊢ A⊥, A
(d)

⊢ ?A⊥, A
(w)

⊢ ?A⊥, ?B⊥, A

(ax)
⊢ B⊥, B

(d)
⊢ ?B⊥, B

(w)
⊢ ?A⊥, ?B⊥, B

(&)
⊢ ?A⊥, ?B⊥, A & B

(p)
⊢ ?A⊥, ?B⊥, !(A & B)

(`)
⊢ ?A⊥ ` ?B⊥, !(A & B)

Now, if we try to eliminate the (cut) rule of

π

⊢ ?(A⊥ ⊕ B⊥), !A ⊗ !B
π′

⊢ ?A⊥ ` ?B⊥, !(A & B)
(cut)

⊢ ?(A⊥ ⊕ B⊥), !(A & B)

we will end with the following proof ρ:
(ax)

⊢ A⊥, A
(⊕1)

⊢ A⊥ ⊕ B⊥, A
(d)

⊢ ?(A⊥ ⊕ B⊥), A
(w)

⊢ ?(A⊥ ⊕ B⊥), ?(A⊥ ⊕ B⊥), A

(ax)
⊢ B⊥, B

(⊕2)
⊢ A⊥ ⊕ B⊥, B

(d)
⊢ ?(A⊥ ⊕ B⊥), B

(w)
⊢ ?(A⊥ ⊕ B⊥), ?(A⊥ ⊕ B⊥), B

(&)
⊢ ?(A⊥ ⊕ B⊥), ?(A⊥ ⊕ B⊥), A & B

(p)
⊢ ?(A⊥ ⊕ B⊥), ?(A⊥ ⊕ B⊥), !(A & B)

(c)
⊢ ?(A⊥ ⊕ B⊥), !(A & B)

However, an η-equivalent proof to ⊢ ?(A⊥ ⊕ B⊥), !(A & B) is the following proof:
(ax)

⊢ A⊥, A
(⊕1)

⊢ A⊥ ⊕ B⊥, A
(d)

⊢ ?(A⊥ ⊕ B⊥), A

(ax)
⊢ B⊥, B

(⊕2)
⊢ A⊥ ⊕ B⊥, B

(d)
⊢ ?(A⊥ ⊕ B⊥), B

(&)
⊢ ?(A⊥ ⊕ B⊥), A & B

(p)
⊢ ?(A⊥ ⊕ B⊥), !(A & B)

And the proof ρ is not exactly an η-equivalent proof to ⊢ ?(A⊥ ⊕ B⊥), !(A & B). In the
literature, there are some equivalence relations on LL proofs making the proof ρ and the η-
expansion of ⊢ ?(A⊥⊕B⊥), !(A&B) in a same class. Those usually called Rétoré equivalences.
For instance, one can identify the two following proofs:

π

⊢ ?A, Γ
(w)

⊢ ?A, ?A, Γ
(c)

⊢ ?A, Γ

∼
π

⊢ ?A, Γ
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We have a similar situation if we try to eliminate the (cut) rule of
π

⊢ ?(A⊥ ⊕ B⊥), !A ⊗ !B
π′

⊢ ?A⊥ ` ?B⊥, !(A & B)
(cut)

⊢ !A ⊗ !B, ?A⊥ ` ?B⊥

The proof above will be normalized to the following proof ρ′:
(ax)

⊢ A⊥, A
(d)

⊢ ?A⊥, A
(w)

⊢ ?A⊥, ?B⊥, A
(p)

⊢ ?A⊥, ?B⊥, !A

(ax)
⊢ B⊥, B

(d)
⊢ ?B⊥, B

(w)
⊢ ?A⊥, ?B⊥, B

(p)
⊢ ?A⊥, ?B⊥, !B

(⊗)
⊢ !A ⊗ !B, ?A⊥, ?B⊥, ?A⊥, ?B⊥

(c), (c)
⊢ !A ⊗ !B, ?A⊥, ?B⊥

(`)
⊢ !A ⊗ !B, ?A⊥ ` ?B⊥

whereas the η-expansion of ⊢ !A ⊗ !B, ?A⊥ ` ?B⊥ is as follows:
(ax)

⊢ A, A⊥
(d)

⊢ A, ?A⊥
(p)

⊢ !A, ?A⊥

(ax)
⊢ B, B⊥

(d)
⊢ B, ?B⊥

(p)
⊢ !B, ?B⊥

(⊗)
⊢ !A ⊗ !B, ?A⊥, ?B⊥

(`)
⊢ !A ⊗ !B, ?A⊥ ` ?B⊥

However, one can ask this question that why we really need to have Rétoré equivalences.
There are different ways to think about this question. For instance, there is Call-by-name
Girard’s translation of intuitionistic logic to LL that translates A ⇒ B into !A ⊸ B. If one
wants to prove that cut-reductions of LL simulate the β-reduction of intuitionistic logic, we
will see that Rétoré equivalences are essential.

Remark 3 One can also think about this question more semantically (categorically) once
we provide the categorical model LL in Section 0.3: All Rétoré equivalences indeed hold in
any model of LL, and those are crucial to prove the soundness theorem (Theorem 6). And
moreover, the Kleisli category L! for any model L of LL is a CCC category and therefore model
of simple typed λ-calculus, and this is true due to fact that we have the Seely iso in L.

We end our presentation of LL with a very short discussion on reversibility.

Theorem 5 The connectives `, ⊥, & are reversible. That is to say:

• A sequent ⊢ Γ, A ` B is provable iff ⊢ Γ, A, B is provable.

• A sequent ⊢ Γ, ⊥ is provable iff ⊢ Γ is provable.

• A sequent ⊢ Γ, A & B is provable iff ⊢ Γ, A and ⊢ Γ, B are provable.
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Proof: The direction from right to left is trivial for all cases using the inference rules of LL
(Figure 1). For the other direction of all cases, one can proceed by induction on the proof. ■

The reversible connectives are called the negative connectives of LL, and their dual are
called positive connectives. Corresponding to this reversibility property of negative connec-
tives, there is a property for positive connectives, which is called focalization [And92]. In
Chapter 2, we will discuss about these positive and negative connectives [Lau02] in more
details. However, our view on the polarity is more from a Curry-Howard perspective rather
than reversibility/focalization.

Term calculus for LL

One of the engrossing and active research areas of proof theory is try to develop a term cal-
culus for a given logic in the sens of Curry-Howard correspondence. And this correspondence
is sometimes done via the seqeunt calculus style and sometimes via the natural deduction.
Moreover, from the categorical point of view, it is quite useful to develop an internal language
for certain categories, in the same sense that simply-typed λ-calculus (augmented by appro-
priate structures for products and the terminal object) is the internal language for cartesian
closed categories. The same question is studied for different fragments of LL in the litera-
ture, and indeed there are many different languages that each of them has some advantages
and disadvantages; we will discuss about them briefly and refer the reader to more suitable
references. Perhaps one can refer to [Jay89, Lam89] as one of the earliest attempt to have
such a language for monoidal categories. In [Abr93] we see a term calculus for intuitionistic
and classical LL based on the sequent calculus in which one can find a concrete computa-
tional interpretation of LL, based on the Curry-Howard correspondence. Their calclus for
classical LL is based on a syntax of the concurrency theory, and one of their motivation to
use such a syntax is because of the (cut) rule in classical LL, since the (cut) rule in classi-
cal LL is fully symmetric whereas this is not the case in intuitionistic LL. In intuitionistic
LL the left premise is distinguished from the right as that the cut formula appears in the
output position (i.e. right side of turnstyle ⊢) in one, and in input position (i.e. left side
of turnstyle ⊢) in the other. In term of programming languages, we can say that the (cut)
rule in intuitionistic LL is noncommutative operation of function composition while the (cut)
rule of classical LL is commutative which can be seen as parullel composition in the con-
currency theory [Mil80, Mil92]. However, their systems lack two important properties; the
substitution property and (consequently) subject reduction. This important issue is addressed
in [BBdPH93, BBdPH92] for the intuitionistic LL without the additive connectives. Their
approach is basically in two ways; the sequent calculus style (using the underlying categor-
ical structure) and the natural deduction one, and it is shown that those two approaches
produce equivalent systems. However, the relation between their process of cut-elimination
and their proof normalisation is not clear. So, one needs to consider [Zuc74, Pot77] in their
linear type system. In the same time, and independently to [BBdPH92], a similar work as
[BBdPH92] have been done in [MRA93]. However, in [MRA93], they have moreover proved
that their term calculus is indeed an internal language to autonomous (symmetric monoidal
closed categories) categories. And they have also shown the coherence theorem of Kelly and
Mac Lane as an application of their theorem [KM71, Mac63]. Afterwards, in [KhLO98], one
can find an extension of [MRA93] to a classical version using a Parigot-style µ-abstraction.
More precisely, they provide a term calculus for classical multiplicative linear logic, and they
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show that their calculus is an internal language for ∗-autonomous categories. One can also
find an extension of the previous work to multiplicative and additives linear logic in [CP05]
using a π-calculus syntax [BS94].

While talking about a term calculus for LL, we should of course talk about an important
innovation of [Gir87a] which is the introduction of proofs net. One can think about proof-nets
as a kind of natural deduction for LL. Although proof-nets provide a kind of term calculus
for LL and moreover those give rise to an elegant proof for the coherence theorems of Kelly
and Mac Lane [Blu93, BCST96], proof-nets have two major drawbacks. One is handling of
the units of LL, and the other one is that dealing with additives connectives is not obvious.
But we must admit that proofs net allow us to discard a lot of peripheral syntax that one
can have in a term calculus for the sequent calculus; in particular the problematic commuting
conversions are removed in the case of proofs net.

This question of having a term calculus for the sequent calculus LL has a difficulty that is
probably not only related to LL, but more to the sequent calculus itself. One of the benefits of
having a term calculus for the sequent calculus is that this kind of language has a symmetry,
and one can also see implicit symmetries such as input/output in programming languages.
So, having a term calculus for Gentzen’s LJ and LK [Gen64] is studied in the literature. We
mention some of them such as [UB99, Her95, Her94, UB99, Gal93, BTKP93]. Another work
that led to a term calculus for linear logic is [CH00] in which a syntax for LK (and LJ) is
provided. It is called λ̄µµ̄-calculus which is basically a λ-calculus plus the control operators
[Par92]. One of the important issue in the classical languages is the Lafont’s critical pair.
This issue have been solved in [CH00] using a symmetry of call-by-name and call-by-value
reduction strategy. Based on the λ̄µµ̄-calculus, we see another solution to this problem of
critical pair in [CH00, Mun09]. There, they tackle this problem from the focalisation point
of view. They provide a language called system L, as traditionally sequent calculus system
names begin with the letter L. In this style, we have developed a term calculus for an extension
of linear logic with fixpoints in Chapter 2.

0.2.2 Syntax of µLL

We assume to be given an infinite set of propositional variables V (ranged over by Greek
letters ζ, ξ . . . ). We introduce a language of propositional LL formulas with least and greatest
fixed points.

A, B, . . . := 1 | ⊥ | A ⊗ B | A ` B

| 0 | ⊤ | A ⊕ B | A & B

| !A | ?A

| ζ | µζ A | νζ A .

The notion of closed types is defined as usual, the two last constructions being the only
binders.

We can define two basic operations on formulas.

• Substitution: A [B/ζ], taking care of avoiding the capture of free variables (uses α-
conversion).
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The identity fragment:
(ax)

⊢ A⊥, A
⊢ Γ, A ⊢ A⊥, ∆

(cut)
⊢ Γ, ∆

The multiplicative fragment:
(1)

⊢ 1
⊢ Γ, A ⊢ ∆, B

(⊗)
⊢ Γ, ∆, A ⊗ B

⊢ Γ (⊥)
⊢ Γ, ⊥

⊢ Γ, A, B
(`)

⊢ Γ, A ` B

The additive fragment:
(⊤)

⊢ Γ, ⊤
⊢ Γ, A

(⊕1)
⊢ Γ, A ⊕ B

⊢ Γ, B
(⊕2)

⊢ Γ, A ⊕ B

⊢ Γ, A ⊢ Γ, B
(&)

⊢ Γ, A & B

The exponential fragment:
⊢ Γ (w)

⊢ Γ, ?A

⊢ Γ, ?A, ?A
(c)

⊢ Γ, ?A

⊢ Γ, A
(d)

⊢ Γ, ?A

⊢ ?Γ, A
(p)

⊢ ?Γ, !A

The fixed point fragment:
⊢ Γ, F [µζ F/ζ]

(µ − fold)
⊢ Γ, µζ F

⊢ ∆, A ⊢ ?Γ, A⊥, F [A/ζ]
(ν − rec)

⊢ ∆, ?Γ, νζ F

Figure 2: Inference rules of µLL

• Negation or dualization: extended LL negation with ζ⊥ = ζ, (µζ A)⊥ = νζ A⊥ and
(νζ A)⊥ = µζ A⊥. Obviously A⊥⊥ = A for any formula A.

Remark 4 The only subtle point of this definition is negation of propositional variables:
ζ⊥ = ζ. This entails (B [A/ζ])⊥ = B⊥

[
A⊥/ζ

]
by an easy induction on B. If we consider

B as a compound logical connective with placeholders labeled by variables then B⊥ is its
De Morgan dual. This definition of ζ⊥ is also a natural way of preventing the introduction of
fixed points wrt. variables with negative occurrences. As an illustration, if we define as usual
A ⊸ B as A⊥ ` B then we can define E = µζ (1 & (!ζ ⊸ ζ)) which looks like the definition
of a model of the pure λ-calculus as a recursive type. But this is only an illusion since we
actually have E = µζ (1 & (?ζ ` ζ)) so that !E ⊸ E is not a retract of E. And indeed if it
were possible to define a type D such that !D ⊸ D is isomorphic to (or is a retract of) D
then we would be able to type all pure λ-terms in our system and this would contradict the
fact that µLL enjoys strong normalization and has a denotational semantics based on totality
as shown below.

Our logical system extends the usual single-sided sequent calculus of classical propositional
LL [Gir87a], see also [Mel09] Section 3.1 and 3.13.
We give now the deduction rules, in a standard single-sided LL sequent calculus as in [Bae12]
(Figure 2), and we use only closed formulas in the sequents. Basically, the deduction rules of
µLL are the ones for LL plus (µ − fold) and (ν − rec) rules.

By taking, in the last rule, ∆ = A⊥ and proving the left premise by an axiom, we obtain
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the following derived rule:
⊢ ?Γ, A⊥, F [A/ζ]

(ν − rec′)
⊢ ?Γ, A⊥, νζ F

In Chapter 3 we will study another extension of LL which is non-well-founded LL [Dou17,
BDS16].

The only cut-elimination rule of µLL that we give is (µ−fold)/(ν−rec), in Section 0.2.2; for
the other ones, see for instance [Gir87a] or any other presentation of the classical LL Sequent
Calculus. We refer to [Bae12] for a proof that µMALL (multiplicative and additive linear logic
with fixpoints of types) admits cut-elimination. Observe that a cut-free proof has not the
sub-formula property in general because of rule (ν − rec). But Baelde’s theorem makes sure
that a proof of a sequent which does not contain any ν-formula has a cut-free proof with the
sub-formula property.

Remark 5 If we consider the (ν − rec′) rule instead of the (ν − rec) rule, then the cut-
elimination does not hold, as one can find the following counter-example in [Dou17]:

(⊤)
⊢ 0, ⊤

(ν − rec′)
⊢ 0, νζ ζ

(⊤)
⊢ 0, 0, ⊤

(cut)
⊢ 0, 0, νζ ζ

However, without the (cut) rule, the sequent ⊢ 0, 0, νζ F is not provable in µLL simply because
there is no rule on 0 and the context are not ? formulas, so we cannot apply the (ν −rec′) rule.
But this is not surprising, since there is some sort of integrated cut formula in the (ν − rec)
rule, i.e, the formula A. And the price to pay to have the cut-elimination theorem for µLL
is to loose the sub-formula property. The situation is general for finitary inductive logical
systems, as it is well explained in [ML71] as follows:

“The opinion seems to have been generally accepted that there be no real cut elimination
theorem for first order arithmetic and that such a theorem could only be obtained by

eliminating the induction schema in favour of the ω-rule. However, when arithmetic is
formulated as a theory of inductive definitions, it becomes possible to formulate and prove a

cut elimination theorem which is just as natural and basic as the one for pure first order
logic, although, like in second order logic, the subformula principle is necessarily lost.”

Syntactic functoriality of formulas

The reduction rule for the (µ − fold)/(ν − rec) cut requires the possibility of substituting a
proof for a propositional variable in a formula. More precisely, let (ζ, ξ1, . . . , ξk) be a list of
pairwise distinct propositional variables containing all the free variables of a formula F and
let −→

C = (C1, . . . , Ck) be a sequence of closed formulas. Let π be a proof3of ⊢ ?Γ, A⊥, B, then
one defines a proof F [π/ζ,

−→
C /

−→
ξ ] of

⊢ ?Γ, (F [A/ζ,
−→
C /

−→
ξ ])⊥, F [B/ζ,

−→
C /

−→
ξ ]

3Again the fact that the formulas of the context bear a ?_ is absolutely necessary to make this definition
possible.
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by induction on F , adapting the corresponding definition in [Bae12]. We illustrate this
definition by two inductive steps.

Assume first that F = µξ G (so that (ζ, ξ, ξ1, . . . , ξk) is a list of pairwise distinct variables
containing all free variables of G). Let G′ = G

[−→
C /

−→
ξ
]

whose only possible free variables are
ζ and ξ. The proof F [π/ζ,

−→
C /

−→
ξ ] is defined by

...... G[π/ζ, (µξ G′) [B/ζ] /ξ,
−→
C /

−→
ξ ]

⊢ ?Γ, (G′[A/ζ, (µξ G′) [B/ζ] /ξ])⊥, G′[B/ζ, (µξ G′) [B/ζ] /ξ]
(µ − fold)

⊢ ?Γ, (G′[A/ζ, (µξ G′) [B/ζ] /ξ])⊥, (µξ G′) [B/ζ]
(ν − rec′)

⊢ ?Γ, ((µξ G′) [A/ζ])⊥, (µξ G′) [B/ζ]

Notice that this case uses the additional parameters −→
C in the definition of this substitution

with k+1 parameters in the inductive hypothesis. To see that the last inference in this deduc-
tion is an instance of (ν−rec′), set H = (G′)⊥

[
A⊥/ζ

]
and notice that (G′[A/ζ, (µξ G′) [B/ζ] /ξ])⊥ =

H[((µξ G′) [A/ζ])⊥/ξ] and ((µξ G′) [A/ζ])⊥ = νξ H. Another example is F = G1 ⊗ G2:
F [π/ζ,

−→
C /

−→
ξ ] is defined as

...... G1[π/ζ,
−→
C /

−→
ξ ]

⊢ ?Γ, (G′1 [A/ζ])⊥, G′1 [B/ζ]

...... G2[π/ζ,
−→
C /

−→
ξ ]

⊢ ?Γ, (G′2 [A/ζ])⊥, G′2 [B/ζ]
(⊗)

⊢ ?Γ, ?Γ, (G′1 [A/ζ])⊥, (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]
(c)

⊢ ?Γ, (G′1 [A/ζ])⊥, (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]
(`)

⊢ ?Γ, (G′1 [A/ζ])⊥ ` (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]
Observe that we use in an essential way the fact that all formulas of the context are of shape
?H (even if F is exponential-free) when we apply contraction rules on this context. Notice
again that the exchange rule is kept implicit.

(µ − fold)/(ν − rec) Cut elimination rule

We can now provide the (µ − fold)/(ν − rec) reduction rule. Let θ be the following proof:

.... π

⊢ Λ, F [µζ F/ζ]
(µ − fold)

⊢ Λ, µζ F

..... λ

⊢ ∆, A⊥

.... ρ

⊢ ?Γ, A, (F [A/ζ])⊥
(ν − rec)

⊢ ∆, ?Γ, (µζ F )⊥

⊢ Λ, ∆, ?Γ

and let ρ′ be the proof
.... ρ

⊢ ?Γ, A, (F [A/ζ])⊥
(ν − rec′)

⊢ ?Γ, A, (µζ F )⊥

Then θ reduces to the following proof
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..... F [ρ′/ζ]

⊢ ?Γ, F [A/ζ] , (F [µζ F/ζ])⊥

.... π

⊢ Λ, F [µζ F/ζ]
⊢ Λ, ?Γ, F [A/ζ]

.... ρ

⊢ ?Γ, A, (F [A/ζ])⊥

⊢ Λ, ?Γ, ?Γ, A
(c)

⊢ Λ, ?Γ, A

..... λ

⊢ ∆, A⊥

⊢ ∆, Λ, ?Γ
We end this section by some remarks about the differences between our system µLL and

Baelde’s µMALL:

Remark 6 • Baelde’s logical system is a higher-order predicate calculus whereas our
system is a propositional calculus. Indeed, Baelde is mainly interested in applying
µMALL to program verification where the predicate calculus is essential for expressing
properties of programs. We have a Curry-Howard perspective where formulas are seen
as types and proofs as programs and where a propositional logical system is sufficient.

• Our system has exponentials whereas Balede’s system has not because they can be en-
coded in µMALL to some extent. However the exponentials encoded in that way do not
satisfy all required isos (in particular the “Seely morphisms” are not isos with Baelde’s
exponentials) and this is a serious issue if we want to encode some form of λ-calculus
in the system and consider it as a programming language.

• Our (ν − rec) rule differs from Baelde’s by the fact that we admit a context in the right
premise. Notice that all formulas of this context must bear a ?_ modality: this restriction
is absolutely crucial for allowing to express the cut-elimination rule in Section 0.2.2
which uses an operation of substitution of proofs in formulas and this operation uses
structural rules on the context. The semantic counterpart of this operation is described
in Section 1.1.2 where it appears clearly that it uses the fact that P is an object of L!.
So such a version of (ν − rec) with a context would be problematic in Baelde’s system,
due to the absence of built-in exponentials.

0.3 Categorical semantics of LL

Two early formulations of categorical model of intuitionistic LL are the one by Lafont [Laf88b]
and by Seely [See89]. The formulation by Lafont, which is based on a free construction of the
exponentials, will not capture some concrete models of LL. For example, coherence spaces with
the Girard exponential [Gir87a] is not a free one. For that reason, a more relax definition
of Lafont categories is presented in Section 5 of [Mel03]. Regarding the Seely formulation
in [See89], Benton, Bierman, de Paiva and Hyland in [Hyl97, BBdPH92] pointed out that
Seely’s formulation is not complete. And more rigorously, Bierman showed in [Bie94, Bie95]
that Seely’s category is not a sound model of intuitionistic LL. Hence Bierman in [Bie94]
add a new assumption in Seely’s formulation, and then proved its soundness using another
formulation, so-called linear categories introduced in [BBdPH92]. Afterwards, Benton in
[Ben95] provides linear-non-linear category definition which seems a simpler definition at
first sight rather than Seely and linear categories.
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In this thesis, we consider the notion of Seely category as presented in [Mel09]. Although,
we do not recall all technical details, we ensure that a reader can follow the thesis with the
provided definitions. And we refer to [Mel09] for all the other technical materials. We also
assume that a reader is familiar with the following notion in the category theory: Categories,
Functors, Initial and Final Objects, Natural Transformations, Products and Coproducts,
CCC categories, Monoidal and *-autonomous categories, Monads and Comonads, Strong and
Lax monoidal functors, Algebra and Coalgebra of endofunctors. And we refer the reader to
[Mac71, Bar79] to see all those notions in the category theory.

0.3.1 Seely categories

We define the basic notion of categorical model of LL (our main reference is the notion of a
Seely category as presented in [Mel09]. We refer to that survey for all the technical material
that we do not recall here).

A Seely category is a symmetric monoidal closed category (SMCC) (L, ⊗, 1, λ, ρ, α, γ)
where λX ∈ L(1 ⊗ X, X), ρX ∈ L(X ⊗ 1, X), αX,Y,Z ∈ L((X ⊗ Y ) ⊗ Z, X ⊗ (Y ⊗ Z))
and γX,Y ∈ L(X ⊗ Y, Y ⊗ X) are natural isomorphisms satisfying coherence diagrams that
we do not record here. We use X ⊸ Y for the object of linear morphisms from X to Y ,
ev ∈ L((X ⊸ Y )⊗X, Y ) for the evaluation morphism and cur for the linear curryfication map
L(Z ⊗ X, Y ) → L(Z, X ⊸ Y ). We assume L to be ∗-autonomous with dualizing object ⊥
(this object is part of the structure of a Seely category). We use X⊥ for the object X ⊸ ⊥ of
L (the dual, or linear negation, of X). It is also assumed that L is cartesian with final object
⊤, product X1 & X2 with projections pr1, pr2. We will denote by tX the unique morphism
from an object X to ⊤. So, if there are morphisms f1 : X → X1 and f2 : X → X2, then there
is a unique morphism ⟨f1, f2⟩ : X → X1 & X2 such that pri ◦ ⟨f1, f2⟩ = fi for i = 1, 2.
By ∗-autonomy L is cocartesian with initial object 0, coproduct ⊕ and injections πi.

We also assume to be given a comonad !_ : L → L with counit derX ∈ L(!X, X) (derelic-
tion) and comultiplication digX ∈ L(!X, !!X) (digging) together with a symmetric monoidal
structure (Seely natural isos m0 : 1 → !⊤ and m2 with m2

X1,X2
: !X1⊗!X2 → !(X1 & X2) for the

functor !_, from the symmetric monoidal category (L, &) to the symmetric monoidal category
(L, ⊗) satisfying an additional coherence condition wrt. dig. This strong monoidal structure
allows to define a lax monoidal structure (µ0, µ2) of !_ from (L, ⊗) to itself. More precisely
µ0 ∈ L(1, !1) and µ2

X1,X2
∈ L(!X1 ⊗ !X2, !(X1 ⊗ X2)) are defined using m0 and m2 (and are not

isos in most cases). Then, by induction on n, one has µn ∈ L(!X1 ⊗· · ·⊗!Xn, !(X1 ⊗· · ·⊗Xn)).
Also, for each object X ∈ Obj(L), there is a canonical structure of commutative ⊗-comonoid
on !X given by wX ∈ L(!X, 1) and contrX ∈ L(!X, !X⊗!X). The definition of these morphisms
involves all the structure of !_ explained above, and in particular the Seely isos.

In Chapter 4, we will use the fact that the following equation holds

n2
X1,X2 = (!pr1 ⊗ !pr2) contrX1&X2 (1)

and also, as a consequence:
wX1&X2 m2

X1,X2 = wX1 ⊗ wX2

derX1&X2 m2
X1,X2 = ⟨derX1 ⊗ wX2 , wX1 ⊗derX2⟩

contrX1&X2 m2
X1,X2 =

(
m2

X1,X2 ⊗ m2
X1,X2

)
γ2,3 (contrX1 ⊗ contrX2)

(2)
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We use ?_ for the “De Morgan dual” of !_: ?X = (!((X)⊥))⊥ and similarly for morphisms.
It is a monad on L.

0.3.2 Oplax monoidal comonads

Let M be a symmetric monoidal category (with the same notations as above for the tensor
product) and (T, ϵ, µ) : M → M be a comonad (ϵ is the counit and µ the comultiplication).
An oplax monoidal structure on T consists of a morphism θ0 ∈ M(T1, 1) and a natural
transformation θ2

X1,X2
∈ M(T (X1 ⊗ X2), T (X1) ⊗ T (X2)) subject to standard symmetric

monoidality and compatibility with ϵ and µ, this latter reading (ϵX1 ⊗ ϵX2) θX1,X2 = ϵX1⊗X2

and:

T (X1 ⊗ X2) TX1 ⊗ TX2 T 2X1 ⊗ T 2X2

T 2(X1 ⊗ X2) T (TX1 ⊗ TX2)

θX1,X2

µX1⊗X2

µX1⊗µX2

T (θX1,X2 )
θT X1,T X2

Then the Kleisli category MT has a canonical symmetric monoidal structure, with unit 1
and tensor product X1 ⊗ X2 defined as in M for objects. Given fi ∈ MT (Xi, Yi), f1 ⊗T f2 ∈
MT (X1 ⊗ X2, Y1 ⊗ Y2) is defined as

T (X1 ⊗ X2) TX1 ⊗ TX2 Y1 ⊗ Y2
θ2

X1,X2 f1⊗f2 .

Let FT : M → MT be the canonical functor which acts as the identity on objects and maps
f ∈ M(X, Y ) to f ϵX ∈ MT (X, Y ).

0.3.3 Eilenberg-Moore category

Let L be a Seely category. Since !_ is a comonad we can define the category L! of !-coalgebras
(Eilenberg-Moore category of !_). An object of this category is a pair P = (P , hP ) where
P ∈ Obj(L) and hP ∈ L(P , !P ) is such that the following diagrams commute:

P !P

P

hP

Id
derP

P !P

!P !!P

hP

hP digP

!hP

Then f ∈ L!(P, Q) if f ∈ L(P , Q) and the following diagram commutes:

P Q

!P !Q

f

hP hQ

!f

The functor !_ can be seen as a functor from L to L! mapping X to (!X, digX) and
f ∈ L(X, Y ) to !f . It is right adjoint to the forgetful functor L! → L. Given f ∈ L(P , X), we
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use f ! ∈ L!(P, !X) for the morphism associated with f by this adjunction, one has f ! = !f hP .
If g ∈ L!(Q, P ), we have f ! g = (f g)!. Then L! is cartesian with final object (1, h1 = µ0) still
denoted as 1 and product P1 ⊗ P2 = (P1 ⊗ P2, hP1⊗P2) with hP1⊗P2 defined as follows:

P1 ⊗ P2 !P1 ⊗ !P2 !(P1 ⊗ P2)
hP1⊗hP2

µ2
P1,P2 .

This category is also cocartesian with initial object (0, h0) (h0 comes from the initiality of
0) still denoted as 0 and coproduct P1 ⊕P2 = (P1 ⊕P2, hP1⊕P2) with hP1⊕Q defined as follows.

For i = 1, 2 one defines hi : Pi → !(P1 ⊕ P2) as P 1 !P1 !(P1 ⊕ P2)
hP1 !πi , and then

hP1⊕P2 is the unique morphism P1 ⊕ P2 → !(P1 ⊕ P2) such that hP1⊕P2 πi = hi for i = 1, 2.
More details can be found in [Mel09]. We use contrP ∈ L!(P, P ⊗ P ) (contraction) for the
diagonal and wP ∈ L!(P, 1) (weakening) for the unique morphism to the final object. These
morphisms turn P into a commutative ⊗-comonoid, and are defined as the two following
morphisms:

P !P !(P & P ) !P ⊗ !P P ⊗ P
hP !⟨Id,Id⟩ (m2)−1 derP⊗derP

P !P !(⊤) 1hP
!τP (m0)−1

We summarize the Seely’s formulation of categorical models of linear logic that
we will use several times in this thesis as follows:

⟨L,

*-autonomous︷ ︸︸ ︷
symmetric monoidal closed︷ ︸︸ ︷

symmetric monoidal︷ ︸︸ ︷
⊗, 1, λ, ρ, α, γ , ev, cur, ⊥,

cartesian︷ ︸︸ ︷
&, ⊤ ,

comonad︷ ︸︸ ︷
!, derX , digX ,

strong symmetric monoidal functor︷ ︸︸ ︷
m0, m2 ⟩︸ ︷︷ ︸

Model of LL

0.3.4 Interpretation of LL proofs and formulas

Interpretation of LL formulas are basically using the structure of Seely category L. Inter-
pretation of LL proofs is defined by induction on the last inference rule. So, one only needs
to provide interpretation of each inference rule in L which is done in Figure 3. The gen-
eral idea is to interpret a proof π of ⊢ Γ, ∆ as a morphism JπK in L((JΓK)⊥, J∆K) where
Γ = A1, · · · , An (respectively ∆ = B1, · · · , Bm) and (JΓK)⊥ = (JA1K)⊥ ⊗ (JA2K)⊥ ⊗ · · · (re-
spectively J∆K = JB1`B2`· · ·K). In this thesis, we keep symmetric monoidality isomorphisms
of L and of !_ implicit (see for instance [Ehr18] how monoidal trees allow to take them into
account).

And then one can prove the following [Mel09]:

Theorem 6 If π and π′ are proofs of ⊢ Γ and π reduces to π′ by the cut-elimination rules of
LL, then JπK = Jπ′K.
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r (ax)
⊢ A, A⊥

z
= IdA

u

ww
v

.... π1

⊢ Γ, A

.... π2

⊢ A⊥, ∆
(cut)

⊢ Γ, ∆

}

��
~ = (JΓK)⊥ JAK J∆K

Jπ1K Jπ2K

r
(1)

⊢ 1
z

= Id1

u

ww
v

.... π1

⊢ Γ, A

.... π2

⊢ ∆, B
(⊗)

⊢ Γ, ∆, A ⊗ B

}

��
~ = (JΓK)⊥ ⊗ (J∆K)⊥ JAK ⊗ JBK

Jπ1K⊗Jπ2K

u

w
v

.... π

⊢ Γ (⊥)
⊢ Γ, ⊥

}

�
~ = cur(JπK)

u

w
v

.... π

⊢ Γ, A, B
(`)

⊢ Γ, A ` B

}

�
~ = JπK

r (⊤)
⊢ Γ, ⊤

z
= t(JΓK)⊥

u

w
v

.... π

⊢ Γ, Ai (⊕i)⊢ Γ, A1 ⊕ A2

}

�
~ = (JΓK)⊥ JAiK JA1K ⊕ JA2K

JπK πi

u

w
v

.... π1

⊢ Γ, A

.... π2

⊢ Γ, B
(&)

⊢ Γ, A & B

}

�
~ = (JΓK)⊥ JAK & JBK

⟨Jπ1K,Jπ2K⟩

u

w
v

.... π

⊢ Γ (w)
⊢ Γ, ?A

}

�
~ = cur(f) where f is

(JΓK)⊥ ⊗ J!A⊥K (JΓK)⊥ ⊗ 1 (JΓK)⊥

⊥

Id⊗w
A⊥ ≃

JπK

u

w
v

.... π

⊢ Γ, ?A, ?A
(c)

⊢ Γ, ?A

}

�
~ = cur(f) where f is

(JΓK)⊥ ⊗ (!A⊥ ⊗ !A⊥) (JΓK)⊥ ⊗ !A⊥ ⊥
Id⊗ contr

A⊥ JπK

u

w
v

.... π

⊢ Γ, A
(d)

⊢ Γ, ?A

}

�
~ = cur(f) where f = (JΓK)⊥ ⊗ J!A⊥K (JΓK)⊥ ⊗ A⊥ ⊥

Id⊗der
A⊥ JπK

u

w
v

.... π

⊢ ?Γ, A
(p)

⊢ ?Γ, !A

}

�
~ = J

⊗
B⊥

i ∈Γ (!Bi)K J
⊗

B⊥
i ∈Γ !!BiK !(J⊗B⊥

i ∈Γ !BiK) !JAK
⊗

digBi µn !JπK

Figure 3: Interpretation of LL rules
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0.4 Concrete models of LL

In this section we recall three concrete models of LL that we will use later. We start by
recalling the relational model of LL.

0.4.1 Sets and relations

The category Rel has sets as objects, and relations as morphisms: given sets E and F ,
Rel(E, F ) = P(E × F ). Identity is the diagonal relation and composition is the usual com-
position of relations, denoted by simple juxtaposition; Let t ∈ Rel(E, F ) and s ∈ Rel(F, G),
then s ◦ t = {(a, c) ∈ E × G | ∃b ∈ F ((a, b) ∈ t and (b, c) ∈ s)}. If t ∈ Rel(E, F ) and u ⊆ E
then t · u = {b ∈ F | ∃a ∈ u (a, b) ∈ t}.

This category is a well-known model of LL in which 1 = ⊥ = {∗}, E ⊗ F = (E ⊸ F ) =
E ` F = E × F so that E⊥ = E. As to the additives, 0 = ⊤ = ∅ and &i∈I Ei = ⊕i∈I Ei =⋃

i∈I {i} × Ei. The symmetric monoidal structure of Rel is closed, and this closedness mani-
fests itself by the existence of the canonical ev and cur() operations:

cur(f) = {(a, (b, c)) | ((a, b), c) ∈ f}
evE,F = {(((a, b), a), b) | a ∈ E ∧ b ∈ F}

The exponentials are given by !E = ?E = Mfin(E) (finite multisets of elements of E). For
the additives and multiplicatives, the operations on morphisms are defined in the obvious
way. Let us be more specific about the exponentials. Given s ∈ Rel(E, F ), !s ∈ Rel(!E, !F )
is !s = {([a1, . . . , an], [b1, . . . , bn]) | ∀i (ai, bi) ∈ s}, der E ∈ Rel(!E, E) is given by der E =
{([a], a) | a ∈ E} and digE ∈ Rel(!E, !!E) is given by digE = {(m1 + · · · + mn, [m1, . . . , mn]) |
∀i mi ∈ Mfin(E)}. Last m0 ∈ Rel(1, !⊤) is m0 = {(∗, [])} and m2

E,F ∈ Rel(!E ⊗ !F, !(E & F ))
is given by

m2
E,F = {(([a1, . . . , ak], [b1, . . . , bl]), [(1, a1), . . . , (1, ak), (2, b1), . . . , (2, bl)])

| a1, . . . , ak ∈ E and b1, . . . , bl ∈ F} .

Weakening wE ∈ Rel(!E, 1) and contrE ∈ Rel(!E, !E ⊗ !E) are given by wE = {([], ∗)} and
contrE = {(m1 + m2, (m1, m2)) | mi ∈ Mfin(E) for i = 1, 2}.

We end this section with an auxiliary lemma about the Eilenberg-Moore category of Rel
that will be useful in Chapter 2.

Lemma 7 If P is an object of Rel!, then any morphism f ∈ Rel!(1, P ) is non-empty.

Proof: Since f ∈ Rel!(1, P ), one has the commutations of
1 P

!1 !P

f

h1 hP

!f

. Let assume f

is the empty morphism. So, one has (∗, []) ∈ (!f) ◦ (h1). But (∗, []) ̸∈ (hP ) ◦ (f) = ∅ which
contradicts commutation of the diagram. ■
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0.4.2 Coherence spaces

We consider now the case where L is the category Coh of coherence spaces and linear maps,
a well-known model of LL introduced in [Gir86, Gir87a].

Definition 8 A coherence space is a structure E = (|E|,¨E) where |E| is a set called the
web of E and ¨E is a binary, reflexive and symmetric relation on |E|.

A clique of E is a subset u of |E| such that ∀a1, a2 ∈ u a1 ¨E a2. We use Cl(E) for the
set of all cliques of E that we consider as a domain, the order relation on Cl(E) being always
inclusion. Observe indeed that ∅ ∈ Cl(E) (that is Cl(E) has a least element), if u ⊆ v and
v ∈ Cl(E) then u ∈ Cl(E) and last if D ⊆ Cl(E) is directed then ∪D ∈ Cl(E).

Coherence spaces as a model of LL

Given coherence spaces E and F we define a coherence space E ⊸ F whose web is |E| × |F |
and coherence is: (a1, b1) ¨E⊸F (a2, b2) if a1 ¨E a2 ⇒ (b1 ¨F b2 and b1 = b2 ⇒ a1 = a2).

We now define category Coh that has coherence spaces as objects, and homsets Coh(E, F ) =
Cl(E ⊸ F ). In this category the identities are the diagonal relations and composition is the
ordinary composition of relations.

Remark 7 It can be useful to keep in mind that these morphisms can be considered as linear
functions: a function f : Cl(E) → Cl(F ) is linear if it is stable (that is ∀u1, u2 ∈ Cl(E) u1∪u2 ∈
Cl(E) ⇒ f(u1 ∩ u2) = f(u1) ∩ f(u2)) and commutes with arbitrary well-defined unions of
cliques. Such a function f has a trace trf = {(a, b) ∈ |E| × |F | | b ∈ f({a})} and this
trace operation defines a bijection between Cl(E ⊸ F ) and the set of all linear functions
from Cl(E) to Cl(F ). The converse of this operation maps t ∈ Cl(E ⊸ F ) to the function
fun(t) : Cl(E) → Cl(F ) defined by fun(t)(u) = {b ∈ |F | | ∃a ∈ u (a, b) ∈ t}. We will always
write t.u instead of fun(t)(u). In this manuscript we stick to the relational point of view on
morphisms.

This category is monoidal, with tensor product E1 ⊗ E2 having |E1| × |E2| as web and
(a1, a2) ¨E1⊗E2 (a′1, a′2) if ai ¨Ei a′i for i = 1, 2. Given ti ∈ L(Ei, Fi) for i = 1, 2, one defines
t1 ⊗ t2 as {((a1, a2), (b1, b2)) | (ai, bi) ∈ ti for i = 1, 2} ∈ L(E1 ⊗E2, F1 ⊗F2) as easily checked.
So ⊗ is a functor L2 → L, which equips L with an obvious symmetric monoidal structure
that we will not make explicit here, for a unit object 1 = ({∗}, =). This category is monoidal
closed with E ⊸ F object of morphisms from E to F (and evaluation and curryfiaction
morphism ev ∈ L((E ⊸ F ) ⊗ E, F ) defined by ev = {(((a, b), a), b) | a ∈ |E| and b ∈ |F |}
and cur(f) = {(a, (b, c)) | ((a, b), c) ∈ f}). Taking ⊥ = 1 as dualizing object, L is easily seen
to be ∗-autonomous and the corresponding orthogonality is a functor (_)⊥ : Lop → L where
(E)⊥ = (|E|,˚E) ≃ (E ⊸ ⊥) (by a trivial iso), the incoherence binary relation ˚E being
defined by a1 ˚E a2 if a1 ¨E a2 ⇒ a1 = a2. The transpose (t)⊥ of t ∈ L(E, F ) is simply
{(b, a) | (a, b) ∈ t}. Under this linear negation, the De Morgan dual (par or cotensor) of the
tensor product is E1 ` E2 = (E⊥1 ⊗ E⊥2 )⊥ whose web is |E1| × |E2| and whose coherence
relation is characterized by: (a1, a2) ˝E1`E2 (a′1, a′2) iff ai ˝Ei a′i for i = 1 or i = 2 (where
a ˝E b means a ¨E b and a ̸= b and is called strict coherence; strict incoherence ˇE is defined
similarly). Remember that, with these notations, E ⊸ F = E⊥ ` F .
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The category Coh has a final object ⊤ = (∅,∅) and a cartesian product E1 & E2 =
({1}×|E1|∪{2}×|E2|,¨E1&E2) where the coherence relation is defined by: (i, a) ¨E1&E2 (j, a′)
if i = j ⇒ a ¨Ei a′, the associated projections pri ∈ L(E1 & E2, Ei) being pri = {((i, a), a) |
a ∈ |Ei|}. Dually the initial object is 0 = ⊤⊥ = ⊤ and the coproduct is E1⊕E2 = (E⊥1 &E⊥2 )⊥
whose web is {1}×|E1|∪{2}×|E2| and whose coherence is characterized by (i, a) ¨E1⊕E2 (j, a′)
if i = j and a ¨Ei a′. There are canonical injections Ei → E1 ⊕ E2 which are the transposes
of the projections defined above.

We define !E as the coherence space whose web is the set of all finite elements of Cl(E)
and the coherence is: u1 ¨!E u2 if u1 ∪ u2 ∈ Cl(E) (that is ∀a1 ∈ u1∀a2 ∈ u2 a1 ¨E a2).
This operation is a functor: given t ∈ L(E, F ) one sets !t = {({a1, . . . , an}, {b1, . . . , bn} ∈
|!E| × |!F | | ∀i (ai, bi) ∈ t}. The comonad structure of this functor is given by the natural
transformations der E = {({a}, a) | a ∈ |E|} ∈ L(!E, E) (dereliction) and digE = {(u1 ∪
· · · ∪ un, {u1, . . . , un}) | u1, . . . , un ∈ |!E| with u1 ∪ · · · ∪ un ∈ Cl(E)} (digging). Last, there
is an obvious isomorphism m0 ∈ L(1, !⊤) and a natural isomorphism m2

E1,E2
∈ L(!E1 ⊗

!E2, !(E1 & E2)) (these isos defining a strong monoidal structure), satisfying an additional
technical condition explained in [Mel09] for instance.

0.4.3 Non-uniform coherence spaces

Before going to details of Non-uniform coherence spaces, we first try to provide some moti-
vation on why this notion is introduced.

As we saw in Section 0.4.1, we have A⊥ = A in Rel. So, in this sense, one can say
that Rel is a degenerate model to interpret types. However, this does not mean necessarily
that it is a degenerate model for interpreting proofs. And one can also say that it is quite
the contrary; as we see in [dCdF12], two cut-free proof-nets which have the same interpre-
tation in Rel are “essentially” equal up to the equivalence on proofs induced by Rétoré’s
reduction relation, including the fact that (w) is neutral for (c) and that (c) is associative
and commutative [Ret93]. Nevertheless, the interpretation of a proof in Rel provides almost
no information about it, i.e, given a proof π of ⊢ Γ we only know that JπKRel ⊆ JΓKRel
but we do not know if this subset has a specific property or not. This issue is solved in
coherence spaces, since we know that the interpretation of a proof would be an element of
cliques, i.e., JπKCoh ∈ Cl(JΓKCoh). For instance, in coherence spaces, the cliques of 1 ⊕ 1
are {(1, ∗)}, {(2, ∗)} and ∅ which are the basically two boolean values and the undefined
one. So, by the information that JπKCoh ∈ Cl(J1 ⊕ 1KCoh), we know that this proof π is
either true or false or a non-terminating proof. Moreover, the proof cannot take both values
true and false, and hence that the model Coh says something non-trivial about the deter-
minism of the syntax. Notice that if we moreover consider interpretation of 1 ⊕ 1 in Nuts
(Section 1.2.2) we know that JπKNuts cannot be empty, so π is certainly not non-terminating
proofs. And the reason for it is that T (J1 ⊕ 1KNuts) is {{(1, ∗)}, {(2, ∗)}} (∅ /∈ T (J1 ⊕ 1KNuts)
and JπKNuts ∈ T (J1 ⊕ 1KNuts).

Although we know that the interpretation of any LL proof is the same in both model Rel
and Nuts (JπKRel = JπKNuts), this is not the case between the models Coh and Rel. As an
example, consider the following proof π of ⊢ ?(⊥ & ⊥), 1 ⊕ 1 which is basically a program of
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type (?(⊥ & ⊥)) ` (1 ⊕ 1) = !(1 ⊕ 1) ⊸ (1 ⊕ 1)4.
(1)

⊢ 1 (⊕1)
⊢ 1 ⊕ 1 (⊥), (⊥)

⊢ ⊥, ⊥, 1 ⊕ 1

(1)
⊢ 1 (⊕2)

⊢ 1 ⊕ 1 (⊥), (⊥)
⊢ ⊥, ⊥, 1 ⊕ 1

(&)
⊢ ⊥, ⊥ & ⊥, 1 ⊕ 1

(1)
⊢ 1 (⊕1)

⊢ 1 ⊕ 1 (⊥), (⊥)
⊢ ⊥, ⊥, 1 ⊕ 1

(1)
⊢ 1 (⊕2)

⊢ 1 ⊕ 1 (⊥), (⊥)
⊢ ⊥, ⊥, 1 ⊕ 1

(&)
⊢ ⊥, ⊥ & ⊥, 1 ⊕ 1

(&)
⊢ ⊥ & ⊥, ⊥ & ⊥, 1 ⊕ 1

(d), (d)
⊢ ?(⊥ & ⊥), ?(⊥ & ⊥), 1 ⊕ 1

(c)
⊢ ?(⊥ & ⊥), 1 ⊕ 1

First, for the interpretation of ?(⊥ & ⊥) in Rel and Coh we have:
J?(⊥ & ⊥)KRel = Mfin(({(1, ∗), (2, ∗)}))
|J?(⊥ & ⊥)KCoh| = |J!(1 ⊕ 1)KCoh| = Cl(J(1 ⊕ 1)KCoh) = {∅, {(1, ∗)}, {(2, ∗)}}, since all

cliques of J1 ⊕ 1KCoh are finite. Although we have [(1, ∗), (2, ∗)] ∈ J?(⊥ & ⊥)KRel, as you see
{(1, ∗), (2, ∗)} ̸∈ |J?(⊥ & ⊥)KCoh| 5.

If we compute the interpretation of π in Rel and Coh according to Figure 3, Section 0.4.1,
and Section 0.4.2, then we have

JπKRel = {([(1, ∗), (1, ∗)], (1, ∗)), ([(1, ∗), (2, ∗)], (2, ∗)), ([(2, ∗), (1, ∗)], (1, ∗)), ([(2, ∗), (2, ∗)], (2, ∗))}
JπKCoh = {({(1, ∗), (1, ∗)}, (1, ∗)), ({(2, ∗), (2, ∗)}, (2, ∗))}.
So, we do not have these two points ([(1, ∗), (2, ∗)], (2, ∗)), ([(2, ∗), (1, ∗)], (1, ∗)) in the

interpretation of π in coherence spaces 6.

Remark 8 In order to have these two points ([(1, ∗), (2, ∗)], (2, ∗)), ([(2, ∗), (1, ∗)], (1, ∗)) in
coherence spaces, one might think that we can redefine |!E| as Mfin(|E|). If we do this, then of
course, we have [(1, ∗), (2, ∗)] in |?(⊥ & ⊥)|. But we have ([(1, ∗), (2, ∗)], (2, ∗)) ˇ!(1⊕1)⊸(1⊕1)
([(2, ∗), (1, ∗)], (1, ∗)), so, what we obtain is not a model of LL, since the proof is interpreted
by something which is not a clique.

So, we can say that one of the main goals of Non-uniform coherence spaces is to define a
model of LL that lies over Rel, i.e, For any formula A of LL we would have |JAKNCoh| = JAKRel
where JKNCoh is the interpretation of A in non-uniform coherence spaces.

Definition 9 A non-uniform coherence space is a triple E = (|E|,˝E ,ˇE) where |E| is a set
and ˝E and ˇE are disjoint binary and symmetric relations on |E|, called strict coherence
and strict incoherence respectively.

There is also a binary relation on |E|, called neutrality and denoted by νE , which is defined
as complementary set of ˇE ∪ ˝E .

4This example and the following explanations are basically coming from two lectures by Thomas Ehrhard
and Christine Tasson in CIRM Linear Logic Winter School.

5One can also take finite multi-cliques which are multisets whose supports are cliques as web of !E, as
observed first by Van de Wiel [vdW87] indeed one obtains in that way a nice example of Lafont category.

6One might consider this as a negative feature of coherence spaces. However, if we cut the proof π with
any proof ρ of ⊢ !(1 ⊕ 1), we will see that indeed the two middle branches of proof π will not appear in the
cut-elimination process. So, one can consider this as positive feature of coherence spaces that would guess
what are the parts of the proof that will not be considered in cut-elimination.
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We also use the following notations: ¨E =˝E ∪ νE (called large coherence) and ˚E =ˇE ∪ νE

(called large incoherence) which are symmetric relations on |E|.

Remark 9 This neutrality ν is clearly symmetric, but neither reflexive nor anti-reflexive in
general.

Definition 10 Given a non-uniform coherence space E, a clique of E is a subset u of |E|
such that ∀a, a′ ∈ u (a ¨E a′). Then we define NCl(E) as the set of all cliques of E.

Apart from Definition 9, a non-uniform coherence space can be defined equivalently by
providing any pair of relations among the following ones, satisfying some conditions as follows:

• Two symmetric relations ¨E and ˝E such that ˝E⊆¨E .

• ¨E and νE such that νE⊆¨E .

• ˝E and νE such that ˝E ∩ νE= ∅.

• and the duals of the cases above, i.e, considering ˇE instead of ˝E .

The non-uniform coherence space E⊥ is defined as E⊥ = (|E|,ˇE ,˝E). So, we have
˝E⊥=ˇE and ˇE⊥=˝E , and we also obviously have E⊥⊥ = E.

Given two non-uniform coherence spaces E1 and E2, then |E1 ⊗ E2| is defined as |E1|×|E2|,
and (a1, a2) ¨E (a′1, a′2) if ai ¨E a′i for i = 1, 2, and (a1, a2) νE (a′1, a′2) if ai νE a′i for i = 1, 2.

Then one sets E ⊸ F as (E ⊗ F⊥)⊥. If we unfold the definition, we have |E ⊸ F | =
|E| × |F | and the following for ¨E⊸F and νE⊸F :

• (a, b) ¨E⊸F (a′, b′) if a ¨E a′ ⇒ b ¨F b′ and a ˝E a′ ⇒ b ˝F b′.

• (a, b) νE⊸F (a′, b′) if a νE a′ and b νF b′.

Now, one can define the category NCoh; it has non-uniform coherence spaces as ob-
jects, and NCoh(E, F ) is defined as NCl(E ⊸ F ). The identity relation IdE obviously is in
NCl(E ⊸ E), and the composition in this category is the relational composition defined in
Section 0.4.1 (one should check that the composition of two morphisms is a morphism and
that this is an easy verification). This category is easily seen to be symmetric monoidal using
the ⊗ defined on objects above, and one can extend it to morphisms in the same way as in
Rel. The structural isos of being symmetric monoidal also are defined as in Rel. The neutral
element of ⊗ is 1 = ({∗},∅,∅). This category NCoh is also monoidal closed using E ⊸ F
defined above on objects, and evaluation and curryfication is defined as in Rel. It is also
∗-autonomous with dualizing object ⊥ = 1. NCoh is also a cartesian category. The terminal
object is ⊤ = (∅,∅,∅). Given two non-uniform coherence spaces E1 and E2, the cartesian
product is defined as |E1 & E2| = ({1} × |E1|) ∪ ({2} × |E2|) and

• (i, a) ¨E1&E2 (j, b) if i = j ⇒ a ¨Ei b

• (i, a) νE1&E2 (j, b) if i = j and a ¨Ei b
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The projection morphisms are defined as in Rel.
For the exponentials, there are many ways to define it in non-uniform coherence spaces.

In this thesis, we will provide the definition of Boudes’s exponential [Bou02, Bou11], as we
are going to use this definition later in Chapter 4.

Boudes’ the exponential

Given a non-uniform coherence space E, we denote by !bE the Boudes’ the exponential of
NCoh. Its web |!bE| is defined as Mfin(|E|) and

• Given two multiset m = [a1, · · · , an] and m′ = [a′1, · · · , a′n′ ], we have m ¨!bE m′ if
∀i, j (ai ¨E a′j)

• m ν!bE m′ if m ¨!bE m′ and m = [a1, · · · , an] and m′ = [a′1, · · · , a′n] (same length) such
that ∀i (ai νE a′i).

One can show that ! is a functor from NCoh to NCoh; its action on objects has already
been defined, and on morphisms it is defined as in Rel. And if we take the same definitions
for der and dig as in Rel, one can prove that these relations are morphisms in NCoh and
turn !b into a comonad.
And for the Seely iso, if we take again the one mentioned for Rel in Section 0.4.1, we have
the fact that m0 ∈ NCoh(1 ⊸ !b⊤) and m2

E,F ∈ NCl(!bE ⊗ !bF ⊸ !b(E & F )). And this ends
the proof that NCoh is a model of LL.

Now if we get back to the example that we started with it at the beginning of this section,
one can see that ([(1, ∗), (2, ∗)], (1, ∗)) ¨!b(1⊕1)⊸(1⊕1) ([(1, ∗), (2, ∗)], (2, ∗)) whereas this is not
the case in usual coherence spaces. This is due to the fact that [(1, ∗), (2, ∗)] is strictly
incoherent with itself, which was impossible in Coh.

We end this section by the following remark.

Remark 10 One can see the usual coherence spaces as a special case of non-uniform co-
herence spaces. So, the coherence spaces can be defined equivalently by saying that E is a
coherence spaces if it is a non-uniform coherence spaces and a νE b ⇔ a = b.
There is also a definition in the literature by Boudes saying that a non-uniform coherence
space E is a Boudes space E if a νE b ⇒ a = b. One can define category NCohB of Boudes
space and linear morphisms, and prove that indeed NCohB, as a full subcategory of NCoh,
is a model of LL.
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Chapter 1

Categorical and denotational
semantics of finitary linear logic
with fixpoints (µLL)

In this chapter, we develop a denotational semantics of LL with least and greatest fixed points
in a general categorical setting based on the notion of Seely category and on strong functors
acting on them. We exhibit a simple instance of this setting in the category of sets and
relations, where least and greatest fixed points are interpreted in the same way, and in a
category of sets equipped with a notion of totality (non-uniform totality spaces) and relations
preserving totality, where least and greatest fixed points have distinct interpretations.

1.1 Categorical semantics of finitary linear logic with fixpoints

To define our notion of model of µLL, we first need to remind the notion of free comodules
on a given coalgebra, and strong functors.

1.1.1 The LL model of free comodules on a given coalgebra.

Given an object1 P of L!, we can define a functor fcP : L → L which maps an object X to
P ⊗ X and a morphism f to P ⊗ f . This functor is clearly an oplax monoidal comonad (with
structure maps defined using wP , contrP and the monoidal structure of L)2. A coalgebra
for this comonad is a P -comodule3. By Section 0.3.2 the Kleisli category L[P ] = LfcP

of
this comonad (that is, the category of free P -comodules) has a canonical structure of SMC.
We set FP = FfcP

: L → L[P ]. Girard shows [Gir99] that L[P ] is a Seely model of LL with
operations on objects defined in the same way as in L, and using the coalgebra structure of

1In this thesis we could restrict to the case where P is a tensor of “free coalgebras” (!Xi, digXi
) but it is

more natural to deal with the general case, which will be quite useful in further work.
2The definition of this comonad uses only the comonoid structure of P . The !_-coalgebra structure will be

used later.
3This is just the dual notion of the standard algebraic notion of an M-module which can be defined as soon

as a commutative ⊗-monoid M is given.
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P for the operations on morphisms. Intuitively, P should be considered as a given context
and L[P ] as a model in this context. This idea appears at various places in the literature
[CFM16, UV08]. Let us summarize this construction. If fi ∈ L[P ](Xi, Yi) for i = 1, 2 then
f1 ⊗P f2 = f1 ⊗fcP

f2 ∈ L[P ](X1 ⊗ X2, Y1 ⊗ Y2) is given by

P ⊗ X1 ⊗ X2 P ⊗ P ⊗ X1 ⊗ X2 P ⊗ X1 ⊗ P ⊗ X2 Y1 ⊗ Y2
contrP ⊗ Id ∼= f1⊗f2

The object of linear morphisms from X to Y in L[P ] is X ⊸ Y , and the evaluation
morphism evP ∈ L[P ]((X ⊸ Y ) ⊗ X, Y ) is simply FP (ev). Then it is easy to check that if
f ∈ L[P ](Z ⊗ X, Y ), that is f ∈ L(P ⊗ Z ⊗ X, Y ), the morphism curf ∈ L[P ](Z, X ⊸ Y )
satisfies the required monoidal closeness equations. With these definitions, the category L[P ]
is *-autonomous, with ⊥ as dualizing object. Specifically, given f ∈ L[P ](X, Y ), then f⊥[P ] is

the following composition of morphisms: P ⊗ Y ⊥ P ⊗ (P ⊸ X⊥) X⊥
P⊗(f)⊥ ev . Using

implicitly the iso between (Z ⊗ X)⊥ and Z ⊸ X⊥, and the *-autonomy of L allows to prove
that indeed f⊥[P ]⊥[P ] = f .

The category L[P ] is easily seen to be cartesian with ⊤ as final object, X1&X2 as cartesian
product (and projections defined in the obvious way, applying FP to the projections of L).
Last we define a functor !P _ : L[P ] → L[P ] by !P X = !X and, given f ∈ L[P ](X, Y ), we define

!P f ∈ L[P ](!X, !Y ) as P ⊗ !X !P ⊗ !X !(P ⊗ X) !YhP⊗!X µ2 !f , and this functor
has a comonad structure (der [P ], dig[P ]) defined by der [P ] = FP (der ) and dig[P ] = FP (dig)4.

Remark 11 Any p ∈ L!(P, Q) induces a functor L[p] : L[Q] → L[P ] which acts as the
identity on objects and maps f ∈ L[Q](X, Y ) to L[p](f) = f (p ⊗ X) ∈ L[P ](X, Y ). This
functor is strict monoidal symmetric and preserves all the constructions of LL, for instance
L[p](dig[Q]) = dig[P ] (simply because L[p] ◦ FQ = FP ) and also L[p](!Qf) = !P (L[p](f)).
We can actually consider L[_] as a functor from L!op to the category of Seely categories and
functors which preserve their structure on the nose. This functor could probably more suitably
be considered as a fibration in the line of [PR97], Section 7.

1.1.2 Strong functors on L

Given n ∈ N, an n-ary strong functor on L is a pair F = (F, F̂)) where F : Ln → L is a functor
and F̂

X,
−→
Y

∈ L(!X ⊗ F(−→Y ),F(!X ⊗
−→
Y )) is a natural transformation, called the strength of F.

We use the notation Z ⊗ (Y1, . . . , Yn) = (Z ⊗ Y1, . . . , Z ⊗ Yn). It is assumed moreover that
the diagrams of Figure 1.1 commute, expressing the monoidality of this strength as well as
its compatibility with the comultiplication of !_.

The main purpose of this definition is that for any object P of L! one can lift F to a
functor F[P ] : L[P ]n → L[P ] as follows. First one sets F[P ](−→X ) = F(−→X ). Then, given
−→
f ∈ L[P ]n(−→X,

−→
Y ) we define F[P ](−→f ) ∈ L[P ](F(−→X ),F(−→Y )) as the following morphism:

P ⊗ F(−→X ) !P ⊗ F(−→X ) F(!P ⊗
−→
X ) F(P ⊗

−→
X ) F(−→Y )hP⊗Id F̂ F(der P⊗

−→
X ) F(

−→
f )

The fact that we have defined a functor results from the three diagrams of Figure 1.1 and
from the definition of wP and contrP based on the Seely isomorphisms.

4The definition of !P f requires P to be a !-coalgebra and not simply a commutative ⊗-comonoid. Of course
if ! is the free exponential as in [Gir99] the latter condition implies the former.
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(!X1 ⊗ !X2) ⊗ F(−→Y ) !(X1 & X2) ⊗ F(−→Y )

!X1 ⊗ F(!X2 ⊗
−→
Y )

F(!X1 ⊗ !X2 ⊗ F(−→Y )) F(!(X1 & X2) ⊗
−→
Y )

m2⊗F(−→Y )

!X1⊗F̂X2,
−→
Y

F̂
X1&X2,

−→
Y

F̂
X1,!X2⊗

−→
Y

F(m2⊗
−→
Y )

1 ⊗ F(−→Y ) !⊤ ⊗ F(−→Y )

F(1 ⊗
−→
Y ) F(!⊤ ⊗

−→
Y )

m0⊗F(−→Y )

∼= F̂⊤,
−→
Y

F(m0⊗
−→
Y )

!X ⊗ F(−→Y ) !!X ⊗ F(−→Y )

F(!X ⊗
−→
Y ) F(!!X ⊗

−→
Y )

digX ⊗F(−→Y )

F̂
X,

−→
Y

F̂!X,
−→
Y

F(digX ⊗
−→
Y )

Figure 1.1: Monoidality and dig diagrams for strong functors

Operations on strong functors

There is an obvious unary identity strong functor I and for each object Y of L there is an n-ary
Y -valued constant strong functor KY ; in the first case the strength natural transformation is
the identity morphism and in the second case, it is defined using w!X . Let F be an n-ary strong
functor and G1, . . . ,Gn be k-ary strong functors. Then one defines a k-ary strong functor H =
F ◦ (G1, . . . ,Gn): the functorial component H is defined in the obvious compositional way.

The strength is !X ⊗ H(−→Y ) F((!X ⊗ Gi(
−→
Y ))n

i=1) F((Gi(!X ⊗
−→
Y ))n

i=1)F̂ F((Ĝi)k
i=1)

, and
is easily seen to satisfy the commutations of Figure 1.1. Given an n-ary strong functor, we
can define its De Morgan dual (F)⊥ which is also an n-ary strong functor. On objects, we
set (F)⊥(−→Y ) = (F(−→Y ⊥))⊥ and similarly for morphisms. The strength of F⊥ is defined as the
Curry transpose of the following morphism (remember that !X ⊸

−→
Y ⊥ = (!X ⊗

−→
Y )⊥ up to

canonical iso):

!X ⊗ (F((−→Y )⊥))⊥ ⊗ F(!X ⊸
−→
Y ⊥) !X ⊗ F(!X ⊸ (−→Y )⊥) ⊗ (F(−→Y ⊥))⊥

F(!X ⊗ (!X ⊸
−→
Y ⊥)) ⊗ (F(−→Y ⊥))⊥

⊥ F(−→Y ⊥) ⊗ (F(−→Y ⊥))⊥

∼=

F̂⊗Id

F(ev)⊗Id

ev γ

Then it is possible to prove, using the *-autonomy of L, that F⊥⊥ and F are canonically
isomorphic (as strong functors)5. As a direct consequence of the definition of (F)⊥ and of the
canonical iso between F⊥⊥ and F we get:

Lemma 11 (F ◦ (G1, . . . ,Gn))⊥ = (F)⊥ ◦ ((G)⊥1 , . . . , (G)⊥n ) up to canonical iso.

5In the concrete settings considered in this thesis, these canonical isos are actuality identity maps.

50



Fixpoints of types in linear logic from a Curry-Howard-Lambek perspective.

The bifunctor ⊗ can be turned into a strong functor: one defines the strength as6

!X ⊗ Y1 ⊗ Y2 !X ⊗ !X ⊗ Y1 ⊗ Y2 !X ⊗ Y1 ⊗ !X ⊗ Y2
contr!X ⊗ Id ∼=

By De Morgan duality, this endows ` with a strength as well. The bifunctor ⊕ is also
endowed with a strength, simply using the distributivity of ⊗ over ⊕ (which results from
the monoidal closedness of L). By duality again, & inherits a strength. The functor !_ is

equipped with the strength !X ⊗ !Y !!X ⊗ !Y !(!X ⊗ Y )digX ⊗!Y µ2
.

Fixed Points of strong functors.

The following facts are standard in the literature on fixed points of functors [Poh73, Ada74].

Definition 12 Let A be a category and F : A → A be a functor. A coalgebra7of F is a
pair (A, f) where A is an object of A and f ∈ A(A, F(A)). Given two coalgebras (A, f)
and (A′, f ′) of F , a coalgebra morphism from (A, f) to (A′, f ′) is an h ∈ A(A, A′) such that
f ′ h = F(h) f . The category of coalgebras of the functor F will be denoted as CoalgA(F).
The notion of algebra of an endofunctor is defined dually (reverse the directions of the arrows
f and f ′) and the corresponding category is denoted as AlgA(F).

By Lambek’s Lemma, if (A, f) with f ∈ A(A, F(A)) is a final object in CoalgA(F) then
f is an iso. We assume that this iso is always the identity8as this holds in our concrete models
so that this final object (νF , Id) satisfies F(νF) = νF . We focus on coalgebras rather than
algebras for reasons which will become clear when we deal with fixed points of strong functors.
This universal property of νF gives us a powerful tool for proving equalities of morphisms.

Lemma 13 Let A ∈ Obj(A) and let f1, f2 ∈ A(A, νF). If there exists l ∈ A(A, F(A)) such
that F(fi) l = fi for i = 1, 2, then f1 = f2.

Proof: Since F(fi) l = fi for i = 1, 2, we have fi ∈ CoalgA(F)((A, l), (νF , Id)) for i = 1, 2.
(νF , Id) is the final object in CoalgA(F)((A, l), (νF , Id)), so there is a unique morphism from
(A, l) to (νF , Id). Hence f1 = f2. ■

Let F : B × A → A be a functor, then we denote by FB the partial application of F , i.e,
FB : A → A where FB(A) = F(B, A).

Lemma 14 Let F : B × A → A be a functor such that, for all B ∈ Obj(B), the category
CoalgA(FB) has a final object. Then there is a functor νF such that (νF(B), Id) is the final
object of CoalgA(FB) (so that F(B, νF(B)) = νF(B)) for each B ∈ Obj(B), and, for each
g ∈ B(B, B′), νF(g) is uniquely characterized by F(g, νF(g)) = νF(g).

6This definition, as well as the following one, shows that our assumption that the strength is available for
“context object” of shape !X only cannot be disposed of.

7Not to be confused with the coalgebras of Section 0.3.3 which must satisfy additional properties of com-
patibility with the comonad structure of !_.

8This assumption is highly debatable from the view point of category theory where the notion of equality
of objects is not really meaningful.
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Proof: We have F(g, νF(B)) ∈ A(νF(B), F(B′, νF(B))) thus defining a FB′-coalgebra
structure on νF(B) and hence there exists a unique morphism νF(g) : νF(B) → νF(B′)
such that

F(B′, νF(g)) F(g, νF(B)) = νF(g) ,

that is F(g, νF(g)) = νF(g).
Functoriality follows: consider also g′ ∈ B(B′, B′′), then we know that h = νF(g′ g)

satisfies F(g′ g, h) = h by the definition above. Now h′ = νF(g′) νF(g) satisfies the same
equation by functoriality of F and because F(g, νF(g)) = νF(g) and F(g′, νF(g′)) = νF(g′),
and hence h′ = h by Lemma 13, taking l = F(g′ g, νF(B)). In the same way one proves that
νF(Id) = Id. ■

We consider now the same νF operation applied to strong functors on a model L of LL.
Let F be an n+1-ary strong functor on L (so that F is a functor Ln+1 → L). Assume that for
each −→

X ∈ Obj(Ln) the category CoalgL(F−→
X

) has a final object. We have defined νF : Ln → L
characterized by F(−→X, νF(−→X )) = νF(−→X ) and F(−→f , νF(−→f )) = νF(−→f ) for all −→

f ∈ Ln(−→X,
−→
X ′)

(Lemma 14). For each Y,
−→
X ∈ L, we define ν̂F

Y,
−→
X

∈ L(!Y ⊗ νF(−→X ), νF(!Y ⊗
−→
X )). We have

!Y ⊗ νF(−→X ) = !Y ⊗ F(−→X, νF(−→X )) F(!Y ⊗
−→
X, !Y ⊗ νF(−→X ))

F̂
Y,(−→

X,νF(−→
X))

exhibiting a F!Y⊗−→X -coalgebra structure on !Y ⊗νF(−→X ). Since νF(!Y ⊗
−→
X ) is the final coalgebra

of the functor F!Y⊗−→X , we define ν̂F
Y,
−→
X

as the unique morphism !Y ⊗ νF(−→X ) → νF(!Y ⊗
−→
X )

such that the following diagram commutes

!Y ⊗ νF(−→X ) F(!Y ⊗
−→
X, !Y ⊗ νF(−→X ))

F(!Y ⊗
−→
X, νF(!Y ⊗

−→
X )) = νF(!Y ⊗

−→
X )

F̂
Y,(−→

X,νF(−→
X))

ν̂F
Y,

−→
X

F(!Y⊗−→X,ν̂F
Y,

−→
X

)

Lemma 15 Let F be an n + 1-ary strong functor on L such that for each −→
X ∈ Obj(Ln), the

category CoalgL(F−→
X

) has a final object νF−→
X

. Then there is a unique n-ary strong functor
νF such that νF(−→X ) = νF−→

X
(and hence F(−→X, νF(−→X )) = νF(−→X )), F(−→f , νF(−→f )) = νF(−→f ) for

all
−→
f ∈ Ln(−→X,

−→
X ′) and F(!Y ⊗

−→
X, ν̂F

Y,
−→
X

) F̂
Y,(−→X,νF(−→X )) = ν̂F

Y,
−→
X

.

Proof: The part of the statement which concerns the functor νF is a direct application
of Lemma 14 so we only have to deal with the strength. Let us prove naturality so let
−→
f ∈ Ln(−→X,

−→
X ′) and g ∈ L(Y, Y ′), we must prove that the following diagram commutes

!Y ⊗ νF(−→X ) νF(!Y ⊗
−→
X )

!Y ′ ⊗ νF(
−→
X ′) νF(!Y ′ ⊗

−→
X ′)

ν̂F
Y,

−→
X

!g ⊗ νF(
−→
f ) νF(!g ⊗

−→
f )

ν̂F
Y ′,

−→
X′
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Let h1 = ν̂F
Y ′,
−→
X′ (!g ⊗ νF(−→f )) and h2 = νF(!g ⊗

−→
f ) ν̂F

Y,
−→
X

be the two morphisms we must
prove equal. We use Lemma 13, taking the following morphism l.

!Y ⊗ νF(−→X ) = !Y ⊗ F(−→X, νF(−→X ))

F(!Y ⊗
−→
X, !Y ⊗ νF(−→X ))

F(!Y ′ ⊗
−→
X ′, !Y ⊗ νF(−→X ))

F̂
Y,(−→

X,νF(−→
X))

F(!g ⊗
−→
f , Id)

With these notations we have

F(!Y ′ ⊗
−→
X ′, h1) ◦ l = F(!Y ′ ⊗

−→
X ′, ν̂F

Y ′,
−→
X′) ◦ F(!Y ′ ⊗

−→
X ′, !g ⊗ νF(−→f ))

◦ F(!g ⊗
−→
f , !Y ⊗ νF(−→X )) ◦ F̂

Y,(−→X,νF(−→X ))

= F(!Y ′ ⊗
−→
X ′, ν̂F

Y ′,
−→
X′) ◦ F(!g ⊗

−→
f , !g ⊗ νF(−→f )) ◦ F̂

Y,(−→X,νF(−→X ))

= F(!Y ′ ⊗
−→
X ′, ν̂F

Y ′,
−→
X′) ◦ F̂

Y ′,(
−→
X′,νF(

−→
X′)) ◦ (!g ⊗ F(−→f , νF(−→f )))

by naturality of F̂

= ν̂F
Y ′,
−→
X′ ◦ (!g ⊗ F(−→f , νF(−→f ))) by (1.1.2)

= ν̂F
Y ′,
−→
X′ ◦ (!g ⊗ νF(−→f )) by Lemma 14

so that F(!Y ′ ⊗
−→
X ′, h1) l = h1 as required. On the other hand we have

F(!Y ′ ⊗
−→
X ′, h2) ◦ l = F(!Y ′ ⊗

−→
X ′, νF(!g ⊗

−→
f )) ◦ F(!Y ′ ⊗

−→
X ′, ν̂F

Y,
−→
X

)

◦ F(!g ⊗
−→
f , !Y ⊗ νF(−→X )) ◦ F̂

Y,(−→X,νF(−→X ))

= F(!Y ′ ⊗
−→
X ′, νF(!g ⊗

−→
f )) ◦ F(!g ⊗

−→
f , !Y ⊗ νF(−→X ))

◦ F(!Y ⊗
−→
X, ν̂F

Y,
−→
X

) ◦ F̂
Y,(−→X,νF(−→X ))

= F(!g ⊗
−→
f , νF(!g ⊗

−→
f )) ◦ ν̂F

Y,
−→
X

by (1.1.2)

= νF(!g ⊗
−→
f ) ◦ ν̂F

Y,
−→
X

by Lemma 14

so that F(!Y ′⊗
−→
X ′, h2) l = h2 which proves our contention. The commutation of the diagrams

of Figure 1.1 for ν̂F is proven similarly, and we only deal with the last one. We must prove
the commutation of the following diagram:

!X ⊗ νF(−→Y ) !!X ⊗ νF(−→Y )

νF(!X ⊗
−→
Y ) νF(!!X ⊗

−→
Y )

digX ⊗νF(−→Y )

ν̂F
X,

−→
Y

ν̂F!X,
−→
Y

νF(digX ⊗
−→
Y )
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Using Lemma 14, one can reduce this diagram to the following one where h = F(digX ⊗
−→
Y , νF(digX ⊗

−→
Y ))

and g = F(digX ⊗
−→
Y , digX ⊗νF(−→Y )):

!X ⊗ νF(−→Y ) !!X ⊗ νF(−→Y )

!X ⊗ F(−→Y , νF(−→Y )) !!X ⊗ F(−→Y , νF(−→Y ))

F(!X ⊗
−→
Y , !X ⊗ νF(−→Y )) F(!!X ⊗

−→
Y , !!X ⊗ νF(−→Y ))

F(!X ⊗
−→
Y , νF(!X ⊗

−→
Y )) F(!!X ⊗

−→
Y , νF(!!X ⊗

−→
Y ))

νF(!X ⊗
−→
Y ) νF(!!X ⊗

−→
Y )

digX ⊗νF(−→
Y )

ν̂F
X,

−→
Y

ν̂F!X,
−→
Y

digX ⊗F(−→
Y ,νF(−→

Y ))

F̂ F̂

F(Id ,ν̂F
X,

−→
Y

)

g

F(Id ,ν̂F!X,
−→
Y

)

h

νF(digX ⊗
−→
Y )

Commutation of left and right trapezoids is coming from Diagram 1.1.2. Commutation of the
rectangle above is coming from the fact F is a strong functor (last diagram of Figure 1.1).
And finally the commutation of rectangle below will be deduced from functoriality of F and
last diagram of Figure 1.1. ■

Lemma 16 Let F be an n + 1-ary strong functor on L such that for each −→
X ∈ Obj(Ln), the

category AlgL(F−→
X

) has an initial object µF−→
X

. Then there is a unique n-ary strong functor µF
such that µF(−→X ) = µF−→

X
(and hence F(−→X, µF(−→X )) = µF(−→X )), F(−→f , µF(−→f )) = µF(−→f ) for all

−→
f ∈ Ln(−→X,

−→
X ′) and F(!Y ⊗

−→
X, µ̂F

Y,
−→
X

) F̂
Y,(−→X,µF(−→X )) = µ̂F

Y,
−→
X

. Moreover ((µF))⊥ = ν((F)⊥)

Proof: Apply Lemma 15 to the strong functor (F)⊥. ■

1.1.3 A categorical axiomatization of models of µLL

We are now ready to axiomatize our notion of models of µLL. Our general definition of Seely
categorical model of µLL is based on the notions and results above. We refer in particular to
Section 1.1.2 for the basic definitions of operations on strong functors in our LL categorical
setting.

Definition 17 A categorical model or Seely model of µLL is a pair (L,
−→
L ) where

1. L is a Seely category

2. −→
L = (Ln)n∈N where Ln is a class of strong functors Ln → L, and L0 = Obj(L)

3. if X ∈ Ln and Xi ∈ Lk (for i = 1, . . . , n) then X ◦
−→
X ∈ Lk and all k projection strong

functors Lk → L belong to Lk

4. the strong functors ⊗ and & belong to L2, the strong functor !_ belongs to L1 and, if
X ∈ Ln, then (X)⊥ ∈ Ln
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5. and last, for all X ∈ L1 the category CoalgL(X) (see Section 1.1.2) has a final object.
Moreover, for any X ∈ Lk+1, the associated strong functor νX : Lk → L (see Lemma 15)
belongs to Lk.

Our goal is now to provide the interpretation of µLL formulas and proofs in such a model.

Remark 12 One can certainly also define a notion of categorical model of µLL in a linear-
non-linear adjunction setting as presented in [Mel09]. This is postponed to further work. And
one can also probably adapt this definition to the case of intuitionistic LL, without ∗-autonomy.

Interpreting formulas and proofs and Soundness

We just outline the interpretation of µLL formulas and proofs, as we will see all the details in
Chapter 2.

We assume to be given a µLL Seely model (L,
−→
L ), see Section 1.1.3. With any formula

A and any repetition-free sequence −→
ζ = (ζ1, . . . , ζk) of type variables containing all the free

variables of A, we associate JAK−→
ζ

∈ Lk in the obvious way, for instance JA ⊗ BK−→
ζ

= ⊗ ◦
(JAK−→

ζ
, JBK−→

ζ
) ∈ Lk by conditions (4) and (3) in Definition 17 and Jνζ AK−→

ζ
= ν(JAK−→

ζ ,ζ
)

using condition (5). Then JA⊥K−→
ζ

= (JAK−→
ζ

)⊥ up to a natural isomorphism. With any
Γ = (A1, . . . , An) we associate an object JΓK of L and with any proof π of ⊢ Γ we associate
a morphism JπK ∈ L(1, JΓK) using the categorical constructs of L in a straightforward way,
see [Mel09]. Then one proves that if π and π′ are proofs of ⊢ Γ and π reduces to π′ by
the cut-elimination rules, then JπK = Jπ′K. This is done by an inspection of the various cut-
elimination rules. In the case of (µ − fold)/(ν − rec) cut-elimination, we need the following
lemma that we state in a rough way (again, isos are kept implicit).

Lemma 18 Let Γ = (D1, . . . , Dn) be a sequence of closed formulas, F be a formula and
ζ, ξ1, . . . , ξk be a repetition-free list of variables containing all the free variables of F . Let π
be a proof of ⊢ ?Γ, A⊥, B (so that, setting X = JD⊥1 K & · · · & JD⊥n K, we can consider that
JπK ∈ L(!X ⊗ JAK, JBK)) and let −→

C = (C1, . . . , Ck) be a list of closed formulas. Then

JF [π/ζ,
−→
C /

−→
ξ ]K = JF K

ζ,
−→
ξ

(JπK, wX ⊗
−−→
JCK) (ĴF K

ζ,
−→
ξ

)
X,(JAK,

−−→
JCK) .

The proof of Lemma 18 is completely similar to the last case of Lemma 98 (Figure 2.10), and to
avoid repetition, we only provide the details for Lemma 98. Notice that JF K

ζ,
−→
ξ

(JπK, wX ⊗
−−→
JCK) ∈

L(JF K
ζ,
−→
ξ

(!X⊗JAK, !X⊗
−−→
JCK), JF K

ζ,
−→
ξ

(JBK,
−−→
JCK)) and that (ĴF K

ζ,
−→
ξ

)
X,(JAK,

−−→
JCK) belongs to L(!X⊗

JF K
ζ,
−→
ξ

(JAK,
−−→
JCK), JF K

ζ,
−→
ξ

(!X ⊗ JAK, !X ⊗
−−→
JCK)) .

Theorem 19 If π and π′ are proofs of ⊢ Γ and π reduces to π′ by the cut-elimination rules
of µLL, then JπK = Jπ′K.

The proof of Theorem 19 is completely similar to Theorem 99, and to avoid repetition, we
only do the details for Theorem 99.
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1.2 Denotational semantics of finitary linear logic with fix-
points

In this section, we provide some concrete models for µLL. The first model is Rel, and the
second of is non-uniform totality spaces (Nuts). One of our motivations to provide Nuts is
that the interpretation of least and greatest fixpoints collapse in the case Rel whereas they
are distinct in Nuts. We also examine the same idea on coherence spaces, and similarly
coherence spaces with totality.

1.2.1 Rel as model of µLL

Computing recursive types in Rel is quite well-studied in the literature. And one can find
different vocabulary in different references. For example, we can see in [Fio96] the notion of
cpo-functors and algebraic complete categories which Rel is an instance. In [Wan79, SP82]
we can see the notion of locally-continuous functor. So, to have a coherent notation with
the other parts, we provide all details of computing least and greatest fixpoint of linear logic
in Rel in this section. There is no novelty here. We refer an interested reader to [AMM18]
for a survey on fixed points of endofunctors, and to [Fio96] to see more details of axiomatic
categorical domain theory.

Locally continuous functors on Rel

Definition 20 A functor F : Reln → Rel is locally continuous9 if, for all −→
E ,

−→
F ∈ Reln and

all directed set D ⊆ Reln(−→E ,
−→
F ), one has F(⋃D) = ⋃

{F(−→s ) | −→s ∈ D}.

Definition 20 implies in particular that if −→s ⊆ −→
t , one has F(−→s ) ⊆ F(−→t ) (taking D ={−→s ,

−→
t
}

). To simplify notations assume that n = 1 (but what follows holds for all values of
n).

Lemma 21 Let E and F be sets and let s ∈ Rel(E, F ) and t ∈ Rel(F, E). Assume that t s =
IdE and that s t ⊆ IdF . Then s is an injective function and t = {(b, a) ∈ F × E | (a, b) ∈ s}.

Proof: Let a ∈ E, since (a, a) ∈ IdE = t s, there must exist b ∈ F such that (a, b) ∈ s and
(b, a) ∈ t. If (a, b′) ∈ s then (b, b′) ∈ s t ⊆ IdF and hence b′ = b. It follows that s is a total
function E → F . Let (a, b) ∈ s (that is a ∈ E and b = s(a)). Since t s = IdE , we must have
(b, a) ∈ t. Conversely let (b, a) ∈ t, we have (b, s(a)) ∈ s t and hence b = s(a). We have proven
that t = {(s(a), a) | a ∈ E}. If a, a′ ∈ satisfy s(a) = s(a′) we have therefore (a, a′) ∈ t s = IdE

and hence a = a′; this shows that s is injective. ■

Lemma 22 Let F : Rel → Rel be a locally-continuous functor. Assume that E ⊆ F and
let η+

E,F = {(a, a) | a ∈ E} ∈ Rel(E, F ) and η−E,F = {(a, a) | a ∈ E} ∈ Rel(F, E). Then
F(η+

E,F ) ∈ Rel(F(E),F(F )) is an injective function.
9The right setting to express this property would be that of cpo-enriched categories but we do not really

need this general concept here.
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Proof: We have η−E,F η+
E,F = IdE and η+

E,F η−E,F ⊆ IdF and hence F(η−E,F )F(η+
E,F ) = Id by

functoriality and F(η+
E,F )F(η−E,F ) ⊆ Id by local-continuity. The announced property results

from Lemma 21. ■

Let Rel⊆ be the category whose objects are sets and morphisms are set inclusions (so
that Rel⊆(E, F ) has η+

E,F as unique element if E ⊆ F and is empty otherwise). Then η+

can be thought of as the “inclusion functor” Rel⊆ → Rel, acting as the identity on objects.
Obviously, Rel⊆ is cocomplete10.

Proposition 23 If F : Rel → Rel is locally-continuous then F η+ : Rel⊆ → Rel is directed-
cocontinuous (that is, preserves the colimits of directed sets of sets).

Proof: Let D be a directed set of sets and let H be a set. For each E ∈ D let sE ∈
Rel(F(E), H) so that (sE)E∈D defines a cocone, that is, for each E, F ∈ D such that
E ⊆ F , one has sE = sF F(η+

E,F ). Let L = ⋃
D. Let s ∈ Rel(F(L), H) be given by

s = ⋃
E∈D sE F(η−E,L). Let E ∈ D, we have sF(η+

E,L) = ⋃
F∈D sF F(η−F,L η+

E,L) so that
sE ⊆ sF(η+

E,L) (since sF F(η−F,L η+
E,L) = sE when F = E).

We prove the converse inclusion. Let F ∈ D and let G ∈ D be such that E, F ⊆ G. We
have

sF F(η−F,L η+
E,L) = sF F(η−F,G η−G,L η+

G,L η+
E,G) = sFF(η−F,G η+

E,G)
= sGF(η+

F,G)F(η−F,G η+
E,G)

⊆ sG F(η+
E,G) = sE

where we have used the fact that η+
F,G η−F,G ⊆ IdG and hence F(η+

F,G η−F,G) ⊆ IdF(G) by local-
continuity of F. So sF F(η−F,L η+

E,L) ⊆ sE for all F ∈ D and hence sF(η+
E,L) ⊆ sE as contended.

Let now s′ ∈ Rel(F(L), H) be such that s′ F(η+
E,L) = sE for each E ∈ D, we show

that s′ = s thus proving the uniqueness part of the universal property. For E ∈ D, let
θE = η+

E,Lη−E,L ∈ Rel(L, L). Then (θE)E∈D is a directed family (for ⊆) and ⋃E∈D θE = IdL.
By local-continuity of F, we have

s′ = s′ IdF(L) = s′
⋃

E∈D
F(θE) =

⋃
E∈D

s′ F(η+
E,L)F(η−E,L) =

⋃
E∈D

sE F(η−E,L) = s

by our assumption on s′ and by definition of s. This shows that the cocone (F(η+
E,L))E∈D on

F η+ is colimiting, thus proving that F η+ is directed cocontinuous. ■

We know that a locally-continuous functor F maps inclusions to injections, we shall say
that F is strict if it maps inclusions to inclusions, that is, if E ⊆ F then F(E) ⊆ F(F )
and F(η+

E,F ) = η+
F(E),F(F ) (which implies F(η−E,F ) = η−F(E),F(F )). As a direct consequence of

Proposition 23, we get:

Lemma 24 If F is strict locally-continuous then, for any directed set of sets D, one has
F(⋃D) = ⋃

E∈D F(E).
10Notice that it is not complete, for instance is has no final object.
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Variable sets and basic constructions on them

Definition 25 An n-ary variable set (Vst) is a strong functor V : Reln → Rel such that V
is locally-continuous and strict.

By the general considerations of Section 1.1.2, we know that there is a constant strong
functor Reln → Rel with value E for each set E, that there are projection strong functors
Reln → Rel, that × (that is ⊗) and + (that is ⊕) define strong functors Rel2 → Rel,
that Mfin(_) (that is !_) defines a strong functor Rel → Rel, that strong functors on Rel
are stable under composition, and that if V is a strong functor Reln → Rel then there is a
“dual” strong functor (V)⊥ (which is actually identical to V in this very simple model). We
have only to check that for each of the strong functors V defined in that way, the underlying
functor V is a strict locally-continuous functor.

We deal with !_ and composition, the other cases are similar. The underlying functor of !_
is M : Rel → Rel defined by M(E) = Mfin(E), M(s) = {([a1, . . . , ak], [b1, . . . , bk]) | (ai, bi) ∈
s for i = 1, . . . , k} if s ∈ Rel(E, F ), First if s ⊆ t ∈ Rel(E, F ), it follows from the definition
that M(s) ⊆ M(t). Let D ⊆ Rel(E, F ) be directed, we prove M(⋃D) ⊆

⋃
s∈D M(s): an

element of M(⋃D) is a pair ([a1, . . . , ak], [b1, . . . , bk]) with (ai, bi) ∈
⋃

D for i = 1, . . . , k.
Since D is directed, there is an s ∈ D such that (ai, bi) ∈ s for i = 1, . . . , k and the inclusion
follows. Strictness is obvious.

Composing variable sets Let Vi : Reln → Rel be variable sets for i = 1, . . . , k and let
W : Relk → Rel be a variable set. Then the functor W ◦

−→
V : Reln → Rel is clearly strict

locally-continuous (since these conditions are preservation properties) from which is follows
that the strong functor U = W ◦

−→
V is a variable type.

Fixed point of a variable set

Let F : Rel → Rel be a strict locally-continuous functor. Since ∅ ⊆ F(∅) we have Fn(∅) ⊆
Fn+1(∅) for all n ∈ N, by induction on n and hence F(⋃∞n=0 Fn(∅)) = ⋃

Fn(∅) by Lemma 24
since {Fn(∅) | n ∈ N} is directed. Let σF = ⋃∞

n=0 Fn(∅), so that (σF, IdσF) is an F-coalgebra.

Lemma 26 The coalgebra (σF, Id) is final in CoalgRel(F).

Proof: Let (E, t) be an F-coalgebra. Let e = ∅ ∈ Rel(E,∅) (this is the unique mor-
phism to the final object of Rel). We define a sequence en ∈ Rel(E, σF) as follows:
e0 = ∅ and en+1 = F(en) t. Then en ⊆ en+1 for all n by an easy induction, using the
fact that F is locally-continuous. Let e = ⋃∞

n=0 en ∈ Rel(E, σF), by locally-continuity of
F we have F(e) t = (⋃∞n=0 F(en)) t = ⋃∞

n=0(F(en) t) = ⋃∞
n=0 en+1 = e which means that

e ∈ CoalgRel(F)((E, t), (σF, Id)). We end the proof by showing that e is the unique such
morphism, so let

e′ ∈ CoalgRel(F)((E, t), (σF, Id)) ,

which means that e′ ∈ Rel(E, σF) and F(e′) t = e′.
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Let in ∈ Rel(σF, σF) be defined by induction by i0 = ∅ and in+1 = F(in). Then
(in)n∈N is monotone and ⋃∞n=0 in = Id by definition of σF. We prove by induction on n that
∀n ∈ N in e′ = in e. Clearly i0 e′ = i0 e = ∅. Next

in+1 e′ = F(in)F(e′) t = F(in e′) t = F(in e) t by induction hypothesis
= in+1 e .

Therefore e′ = (⋃n∈N in) e′ = ⋃
n∈N(in e′) = ⋃

n∈N(in e) = e. ■

Notice that (σF, Id) is also an initial object in AlgRel(F). When we insist on considering
σF as a final coalgebra, we denote it as νF.

Lemma 27 Let F : Reln+1 → Rel be a strict locally-continuous functor. The functor νF :
Reln → Rel is strict locally-continuous.

Proof: As usual we assume that n = 1 to increase readability. We need to prove first that
νF is monotone on morphisms, so let s, t ∈ Rel(E, F ) with s ⊆ t. We have νF(s) = ⋃

n∈N sn

and νF(t) = ⋃
n∈N tn with s0 = t0 = ∅, sn+1 = F(s, sn) and tn+1 = F(t, tn). By induction

and monotonicity of F we have ∀n ∈ N sn ⊆ tn and hence νF(s) ⊆ νF(t). Let us prove
now local-continuity so let D ⊆ Rel(E, F ) be directed and let t = ⋃

D, we prove that
νF(t) = ⋃

s∈D νF(s) ∈ Rel(νF(E), νF(F )) using Lemma 13 (with the notations of that lemma,
we take l = F(t, νF(E))). We have FF (νF(t))F(t, νF(E)) = νF(t) by definition of the functor
νF and

FF (
⋃

s∈D

νF(s))F(t, νF(E)) =
⋃

s∈D

F(F, νF(s))
⋃

s∈D

F(s, νF(E)) by locally-cont.

=
⋃

s∈D

F(s, νF(s)) =
⋃

s∈D

νF(s) .

In the second equation, we used the facts that D is directed and the monotonicity of F and
νF on morphisms.

Let E ⊆ F , we prove that νF(E) ⊆ νF(F ). This results from the observation that if
E′ ⊆ F ′, then FE(E′) ⊆ FF (F ′) and hence ∀n ∈ N Fn

E(∅) ⊆ Fn
F (∅). Let us check that

νF(η+
E,F ) = η+

νF(E),νF(F ) ∈ Rel(νF(E), νF(F )). We have F(F, νF(η+
E,F ))F(η+

E,F , νF(E)) =
F(η+

E,F , νF(η+
E,F )) = νF(η+

E,F ) by definition of the functor νF and

F(F, η+
νF(E),νF(F ))F(η+

E,F , νF(E)) = η+
F(E,νF(E)),F(F,νF(F )) = η+

νF(E),νF(F )

by strictness of F. The equation follows by Lemma 13, so that the functor νF is strict. ■

Let V : Reln+1 → Rel be a variable set, by Lemma 15, there is a unique strong functor
νV : Reln → Rel which is characterized by: νV(−→E ) = νV−→

E
, for each −→s ∈ Reln(−→E ,

−→
F ),

νV(−→s ) = V(−→s , νV(−→s )) and last V(!E ⊗
−→
F , V̂

E,
−→
F

) = V̂
E,
−→
F

.

Lemma 28 The functor νV is a variable set.

Proof: By the conditions above satisfied by νV we have that νV = νV and hence νV is
strict locally-continuous by Lemma 27. ■
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A model of µLL based on variable sets.

Let Reln be the class of all n-ary Vst, so that Rel0 = Obj(Rel). The fact that (Rel, (Reln)n∈N)
is a Seely model of µLL in the sense of Section 1.1.3 results mainly from the fact that we take
all variable sets in the Reln’s so that there is essentially nothing to check. More explicitly:

Theorem 29 (Rel, (Reln)n∈N) is a Seely model of µLL.

Proof: (1) holds by Section 0.4.1, (2) holds by construction, (3) holds by the fact that
variable sets compose as explained in Section 1.2.1 (notice that this condition refers to the
general composition of strong functors defined in Section 1.1.2), (4) holds by Section 1.2.1
and by the fact that the De Morgan dual of a strong functor is strong, see Section 1.1.2 and
(5) holds by Section 1.2.1. ■

1.2.2 Non-uniform totality spaces

As we saw in Section 1.2.1, the interpretation of least and greatest fixpoints are not distin-
guished in Rel. We now move to our second concrete model of µLL in order to distinguish
least and greatest fixpoints. This second model is based on the notion of totality on top of
Rel, and we denoted it by Nuts. As our categorical model of µLL lies over a categorical
model of LL, we first need to prove that Nuts indeed is a model of linear logic. To do so, we
show that Nuts is actually an instance of Seely category mentioned in Chapter 0.
Let us first define this category.

Definitions of Nuts

Let E be a set and T ⊆ P(E). We define

(T )⊥ =
{
u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅

}
.

If S ⊆ T ⊆ P(E) then (T )⊥ ⊆ (S)⊥. We also have T ⊆ T ⊥⊥ and therefore T ⊥⊥⊥ = (T )⊥.

Lemma 30 Let T ⊆ P(E), then T ⊥⊥ = ↑T = {v ⊆ E | ∃u ∈ T u ⊆ v}.

Proof: The ⊇ direction is obvious, let us prove the converse so let u ⊆ E and assume that
u /∈ ↑T . This means that for each v ∈ T there exists a(v) ∈ v such that a(v) /∈ u. Let
u′ = {a(v) | v ∈ T } ⊆ E. By construction we have u′ ∈ (T )⊥ and u ∩ u′ = ∅. This shows
that u /∈ T ⊥⊥. ■

Definition 31 A non-uniform totality space (NUTS) is a pair X = (|X|, T (X)) where |X|
is a set and T (X) ⊆ P(|X|) satisfies T (X) = T (X)⊥⊥, that is T (X) = ↑T (X), in other
words, T (X) is upwards closed wrt. inclusion.

And we set X⊥ = (|X|, (T (X))⊥).
Here is an example: take X = (N, T (X)) where T (X) is the set of all infinite subsets of

N. It is a NUTS because a superset of an infinite set is infinite. Then |X⊥| = N and T (X⊥)
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is the set of all cofinite subsets of N (the subsets u of N such that N \ u is finite). If, with
the same web N, we take T (X) = {u ⊆ N | u ̸= ∅} (again T (X) = ↑T (X) obviously), then
T (X⊥) = {N}.

Lemma 32 For a NUTS X we have ∅ ∈ T (X) ⇔ T (X⊥) = ∅.

We define four basic NUTS:

• 0 = (∅,∅)

• ⊤ = (∅, {∅})

• 1 = ({∗} , {{∗}})

• ⊥ = 1 = ({∗} , {{∗}})

Given NUTS X1 and X2 we define a NUTS X1 ⊗ X2 by |X1 ⊗ X2| = |X1| × |X2| and

T (X1 ⊗ X2) = {u1 × u2 | ui ∈ T (Xi) for i = 1, 2}⊥⊥

= ↑ {u1 × u2 | ui ∈ T (Xi) for i = 1, 2} .

And then we define X ⊸ Y = (X ⊗ Y ⊥)⊥ .

Lemma 33 t ∈ T (X ⊸ Y ) ⇔ ∀u ∈ T (X) t · u ∈ T (Y ).

Proof: Let t ∈ T (X ⊸ Y ) and let u ∈ T (X). Let v′ ∈ (T (Y ))⊥, since u × v′ ∈ T (X ⊗ Y ⊥)
we have t ∩ (u × v′) ̸= ∅ and hence (t · u) ∩ v′ ̸= ∅. Therefore t · u ∈ T (Y )⊥⊥ = T (Y ).
Conversely assume that ∀u ∈ T (X) t · u ∈ T (Y ). Let u ∈ T (X) and v′ ∈ T (Y ⊥) = (T (Y ))⊥.
Since t · u ∈ T (Y ) we have (t · u) ∩ v′ ̸= ∅ and hence t ∩ (u × v′) ̸= ∅ and this shows that
t ∈ T (X ⊸ Y ). ■

We define the category Nuts whose objects are the NUTS and Nuts(U, V ) = T (U ⊸
V ), composition being defined as the usual composition in Rel (relational composition) and
identities as the diagonal relations. Lemma 33 shows that we have indeed defined a category.

Multiplicative structure

Lemma 34 Let X and Y be NUTS and t ∈ Nuts(X, Y ). Then t is an iso in Nuts iff t is
(the graph of) a bijection |X| → |Y | such that ∀u ⊆ |X| (u ∈ T (X) ⇔ t(u) ∈ T (Y )).

Proof: Assume that t is an iso in Nuts so that there is t′ ∈ Nuts(Y, X) such that t′ t = Id|X|
and t t′ = Id|Y | and since we know that the isos in Rel are the bijections we know that t is a
bijection. The fact that ∀u ⊆ |X| u ∈ T (X) ⇔ t(u) ∈ T (Y ) results from the fact that both t
and t′ = t−1 are morphisms in Nuts.

The converse implication is obvious. ■

Lemma 35 Let t ⊆ |X| × |Y |. One has t ∈ Nuts(X, Y ) iff (t)⊥ = {(b, a) | (a, b) ∈ t} ∈
Nuts(Y ⊥, X⊥).
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Proof: This is an obvious consequence of Lemma 33 and of the fact that (X ⊸ Y ) =
(X ⊗ Y ⊥)⊥ and (Y ⊥ ⊸ X⊥) = (Y ⊥ ⊗ X)⊥ . ■

Lemma 36 Let t ⊆ |X1 ⊗ X2 ⊸ Y |. One has t ∈ Nuts(X1 ⊗ X2, Y ) iff for all u1 ∈ T (X1)
and u2 ∈ T (X2) one has t · (u1 ⊗ u2) ∈ T (Y ).

Proof: The condition is obviously necessary, let us prove that it is sufficient so assume that
t fulfills it and let us prove that t ∈ T (X1 ⊗ X2 ⊸ Y ). To this end it suffices to prove that
(t)⊥ ∈ T (Y ⊥ ⊸ (X1 ⊗ X2)⊥). So let v′ ∈ T (Y ⊥) and let us prove that (t)⊥ · v′ ∈ T ((X1 ⊗
X2)⊥) = ({u1 ⊗ u2 | u1 ∈ T (X1) and u2 ∈ T (X2)})⊥. So let ui ∈ T (Xi) for i = 1, 2. We know
that t · (u1 ⊗ u2) ∈ T (Y ) and hence (t · (u1 ⊗ u2)) ∩ v′ ̸= ∅, that is (u1 ⊗ u2) ∩ ((t)⊥ · v′) ̸= ∅,
proving our contention. ■

Lemma 37 The bijection α|X1|,|X2|,|Y | is an isomorphism from (X1 ⊗ X2) ⊸ Y to X1 ⊸
(X2 ⊸ Y ).

Proof: Let t ∈ T ((X1 ⊗ X2) ⊸ Y ) and let us prove that s = α · t ∈ T (X1 ⊸ (X2 ⊸ Y )).
Given ui ∈ T (Xi) is suffices to prove that (t′ · u1) · u2 ∈ T (Y ) which results from the fact
that (s · u1) · u2 = t · (u1 ⊗ u2). Conversely let s ∈ T (X1 ⊸ (X2 ⊸ Y )) and let us prove
that t = α−1 · s ∈ T ((X1 ⊗ X2) ⊸ Y ). This results from lemma 36 and from the equation
(s · u1) · u2 = t · (u1 ⊗ u2). ■

We turn now that ⊗ into a functor, its action on morphisms being defined as in Rel. Let
ti ∈ Nuts(Xi, Yi) for i = 1, 2, we have t1 ⊗ t2 ∈ Nuts(X1 ⊗ X2, Y1 ⊗ Y2) by Lemma 36 and
by the equation

(t1 ⊗ t2) · (u1 ⊗ u2) = (t1 · u1) ⊗ (t2 · u2) .

This functor is monoidal, with unit 1 and symmetric monoidality isomorphisms λ, ρ, γ
and α defined as in Rel. The only non-trivial thing to check is that α is indeed a morphism,
namely

α|X1|,|X2|,|X3| ∈ Nuts((X1 ⊗ X2) ⊗ X3, X1 ⊗ (X2 ⊗ X3)) .

This results from Lemma 37 and from the observation that

((X1 ⊗ X2) ⊗ X3)⊥ = ((X1 ⊗ X2) ⊸ X⊥3 )
(X1 ⊗ (X2 ⊗ X3))⊥ = (X1 ⊸ (X2 ⊸ X⊥3 )) .

The SMC category Nuts is closed, with X ⊸ Y as internal hom object from X to Y ,
and evaluation morphism

ev = {(((a, b), a), b) | a ∈ |X| and b ∈ |Y |}

which indeed belongs to Nuts((X ⊸ Y ) ⊗ X, Y ) by Lemma 36 since, for all t ∈ T (X ⊸ Y )
and u ∈ T (X) we have

ev (t ⊗ u) = t u ∈ T (Y ) .

This category Nuts is also *-autonomous with dualizing object ‚ = 1.
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Additive structure

Let (Xi)i∈I be a family of objects of Nuts. We define X = &i∈I Xi as follows: |X| =⋃
i∈I {i} × |Xi| and

T (X) = {u ⊆ |X| | ∀i ∈ I pri · u ∈ T (Xi)} .

It is clear that T (X) = ↑T (X) and hence X is an object of Nuts. By definition of X and
by Lemma 33 we have ∀i ∈ I pri ∈ Nuts(X, Xi). Given −→

t = (ti)i∈I with ∀i ∈ I ti ∈
Nuts(Y, Xi), we have

〈−→
t
〉

∈ Nuts(Y, X) as easily checked (using Lemma 33 again). It
follows that (&i∈I Xi, (pri)i∈I) is the cartesian product of the Xi’s in Nuts.

This shows that the category Nuts has all countable products and hence is cartesian.
Since it is *-autonomous, the category Nuts is also cocartesian, coproduct being given by

⊕i∈I Xi = (&i∈I(Xi)⊥)⊥ . It follows that we have

⊕
i∈I

Xi =
(⋃

i∈I

{i} × |Xi|,
{

v ⊆
⋃
i∈I

{i} × |Xi| | ∃i ∈ I ∃u ∈ T (Xi) {i} × u ⊆ v

})
.

Indeed, let v ∈ (T (&i∈I(Xi)⊥))⊥. This means that for any family (u′i)i∈I such that ∀i ∈ I u′i ∈
(T (Xi))⊥, one has v∩(⋃i∈I {i}×u′i) ̸= ∅. If, for some i ∈ I and u ∈ T (Xi), one has {i}×u ⊆ v,
this condition obviously holds. Otherwise, this means that ∀i ∈ I pri(v) /∈ T (Xi) = T (Xi)⊥⊥,
and hence, for all i ∈ I, there exists u′i ∈ T (X⊥i ) such that pri(v) ∩ u′i = ∅. Then we have v ∩
(⋃i∈I {i}×u′i) = ∅ contradicting our assumption about v since ⋃i∈I {i}×u′i ∈ T (&i∈I(Xi)⊥).
The injections πj ∈ Nuts(Xj , ⊕i∈I Xi) are those of Rel. Also, given ti ∈ Nuts(Xi, X), the
co-tupling [−→t ] ∈ Nuts(⊕i∈I Xi, X) is defined as in Rel.

Notice that the final object is ⊤ = (∅, {∅}) and that 0 = ⊤⊥ = (∅,∅).

Exponential

This exponential is an extension of the multiset exponential of Rel with totality. Remember
that u(!) = Mfin(u). We set |!X| = Mfin(|X|) and

T (!X) =
{

u(!) | u ∈ T (X)
}⊥⊥

= ↑
{

u(!) | u ∈ T (X)
}

.

Lemma 38 Let t ⊆ Mfin(|X|) × |Y |. One has t ∈ Nuts(!X, Y ) iff for all u ∈ T (X) one has
t · u(!) ∈ T (Y ).

Proof: The condition is obviously necessary, so let us assume that it holds. By Lemma 35,
it suffices to prove that (t)⊥ ∈ Nuts(Y ⊥, (!X)⊥). Let v′ ∈ T (Y ⊥), we prove that (t)⊥ · v′ ∈
(T (!Y ))⊥. So let u ∈ T (X), since t · u(!) ∈ T (Y ) and hence (t · u(!)) ∩ v′ ̸= ∅, that is
((t)⊥ · v′) ∩ u(!) ̸= ∅. ■

Lemma 39 Let t ⊆ Mfin(|X1|) × Mfin(|X2|) × |Y |. One has t ∈ Nuts(!X1 ⊗ !X2, Y ) iff for
all u1 ∈ T (X1) and u2 ∈ T (X2), one has t ·

(
u

(!)
1 ⊗ u

(!)
2

)
∈ T (Y ).

63



CHAPTER 1. CATEGORICAL AND DENOTATIONAL SEMANTICS OF FINITARY
LINEAR LOGIC WITH FIXPOINTS (µLL)

Proof: The condition is necessary since, if u1 ∈ T (X1) and u2 ∈ T (X2), then u
(!)
1 ⊗ u

(!)
2 ∈

T (!X1 ⊗ !X2). So assume that it holds. Let t′ = cur(t) ∈ Rel(|X1| ⊸ (|X2| ⊸ |Y |)). Let
u1 ∈ T (X1), we have t′ · u

(!)
1 ∈ P(|!X2 ⊸ Y |). Let u2 ∈ T (X2), we have (t′ · u

(!)
1 ) · u

(!)
1 =

t ·
(
u

(!)
1 ⊗ u

(!)
2

)
∈ T (Y ) by our assumption. It follows by Lemma 38 that t′ ·u(!)

1 ∈ T (!X2 ⊸ Y )
and since this holds for any u1 ∈ T (X1) we actually have t′ ∈ Nuts(!X1, !X2 ⊸ Y ). It follows
that t = cur−1(t′) ∈ Nuts(!X1 ⊗ !X2, Y ) as contended. ■

Lemma 39 generalizes easily to n-ary tensors ⊗.

Lemma 40 For any t ∈ Nuts(X, Y ), one has !t ∈ Nuts(!X, !Y ).

Proof: By Lemma 38 and the fact that !t · u(!) = (t · u)(!). ■

Nuts as a model of LL: To prove that Nuts is a categorical model of LL, it suffices to
show that the various relational morphisms defining the strong symmetric monoidal monadic
structure of !_ in Rel (see Section 0.4.1) are actually morphisms in Nuts. This is essentially
straightforward and based on Lemma 38.

Lemma 41 Equipped with der , dig, m0 and m2 defined as in Rel, !_ is a symmetric monoidal
comonad which turns Nuts into a Seely model of LL.

Proof: Given an object X of Nuts, we set derX = der|X| ∈ Rel(|!X|, |X|) and digX =
dig|X| ∈ Rel(|!X|, |!!X|). Given u ∈ T (X), we have derX · u(!) = u ∈ T (X) and digX ·u(!) =
u(!)(!) ∈ T (!!X). It follows by Lemma 38 that derX ∈ Nuts(!X, X) and digX ∈ Nuts(!X, !!X).

Naturality and monadicity trivially hold because they hold in Rel: we have an obvious
faithful forgetful functor Nuts → Rel which commutes with all LL categorical constructs.

We are left with defining the strong monoidal structure of !_ (Seely isomorphisms), for
m0 ∈ Nuts(1, !⊤) we take the same morphism as in Rel. And we set m2

X1,X2
= m2

|X1|,|X2| ∈
Rel(|!X1 ⊗ !X2|, |!(X1 & X2)|). Let ui ∈ T (Xi) for i = 1, 2. We have m2

X1,X2
·
(
u

(!)
1 ⊗ u

(!)
2

)
=

(u1 & u2)(!) ∈ T (!(X1 & X2)) since u1 & u2 ∈ T (X1 & X2), and hence by Lemma 39 we
have m2

X1,X2
∈ Nuts((!X1 ⊗ !X2) , !(X1 & X2)). Any element w of T (X1 & X2) is of shape

w = u1 & u2 with ui ∈ T (Xi), namely ui = pri · w. We have (m2
X1,X2

)−1 · w(!) = u
(!)
1 ⊗ u

(!)
2 ∈

T (!X1 ⊗ !X2) and hence by Lemma 38 we have (m2
X1,X2

)−1 ∈ Nuts(!(X1 & X2), (!X1 ⊗ !X2)).
This ends the proof that Nuts is a model of classical LL since the required commutations
obviously hold because they hold in Rel. ■

Variable non-uniform totality spaces (VNUTS)

Let E be a set, we use Tot(E) for the set of all totality candidates on E, that is, of all subsets
T of P(E) such that T = T ⊥⊥ (remember that (T )⊥ = {u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅}). In
other words T ∈ Tot(E) means that T = ↑T by Lemma 30.

Lemma 42 Ordered by ⊆, this set Tot(E) is a complete lattice.
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Proof: Indeed, let Θ ⊆ Tot(E), we have

∩Θ =
{

u ⊆ E | ∀T ∈ Θ ∀u′ ∈ (T )⊥ u ∩ u′ ̸= ∅
}

= (
(
∪
{

(T )⊥ | T ∈ Θ
})

)⊥

from which it follows that ∩Θ ∈ Tot(E). ■

Definition 43 Let n ∈ N, an n-ary VNUTS is a pair X = (|X|, T (X)) where |X| : Reln →
Rel is a variable set |X| = (|X|, |̂X|) (see Section 1.2.1) and T (X) is an operation which
associates with each n-tuple −→

X of objects of Nuts an element T (X)(−→X ) of Tot(|X|(|−→X |)) in
such a way that

1. for any −→
t ∈ Nutsn(−→X,

−→
Y ), the element |X|(−→t ) of Rel(|X|(|−→X |), |X|(|−→Y |)) belongs to

Nuts(X(−→X ),X(−→Y )) (where X(−→X ) denotes the NUTS (|X|(|−→X |), T (X)(−→X ))

2. and for any −→
Y ∈ Obj(Nutsn) and any X ∈ Obj(Nuts) one has |̂X||X|,|−→Y | ∈ Nuts(!X ⊗

X(−→Y ),X(!X⊗
−→
Y )). In other words, for u ∈ T (X) and v ∈ Tot(X)(−→Y ), one has |̂X||X|,|−→Y |·(

u(!) ⊗ w
)

∈ Tot(X)(!X ⊗
−→
Y ).

Remark 13 The most obvious approach to define VNUTS would have been to define them
directly as functors Nutsn → Nuts. We prefer to define a VNUTS as a gadget from which
such a functor can be derived (Lemma 44). Because we know that Rel underlies VNUTS and
that in Rel we have a very simple fixpoint for all Vst (and these Vst are really defined as
functors) of which we take advantage for defining VNUTS least and greatest fixpoints by a
simple application of Knaster–Tarski theorem on top of the set obtained by this Vst fixpoint
which is the same for both fixpoints.

Remark 14 It is essential to keep in mind that, if
−→
f ∈ Nuts(−→X,

−→
Y ) then actually

−→
f ∈

Rel(|−→X |, |
−→
Y |) so that the morphism |X|(−→f ) ∈ Rel(|X|(|−→X |), |X|(|−→Y |)) is defined, indepen-

dently of the notions of totality on −→
X and −→

Y and similarly for |̂X|
Y,
−→
X

. This decoupling of
the totality-free part of the notions involved from the totality dependent ones makes life much
simpler. This definition also defines VNUTS as a generalization of Nuts: a web (which is
now a Vst and not a set) plus an additional totality structure (which is parameterized). We
will use exactly the same definition for variable coherence spaces with totality (Definition 58).
It would be nice to find the general categorical framework for this kind of 2-level definition
(See Section 5.1 for more details on this).

Lemma 44 Any VNUTS X : Nutsn → Nuts induces a strong functor X : Nutsn → Nuts
which satisfies

• |X (−→X )| = |X|(|−→X |),

• T (X (−→X )) = T (X)(−→X ),

• X (−→t ) = |X|(−→t ) ∈ Nuts(X(−→X ),X(−→Y )) for −→
t ∈ Nuts(−→X,

−→
Y ),

• and X̂
X,
−→
Y

= |̂X||X|,|−→Y |

and X can be retrieved from X .
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Proof: It is clear that X so defined is a strong functor. Let us check that X can be retrieved
from X . Given a set E, (E, P(E)) is a NUTS that we denote as p(E). Notice that p can
be extended into a functor Rel → Nuts which acts as the identity on morphisms. There is
also a forgetful functor u : Nuts → Rel which maps X to |X| and acts as the identity on
morphisms (btw. p is right adjoint to u). Let X be a unary VNUTS and let X : Nuts → Nuts
be the associated strong functor. Then we have |X| = u ◦ X ◦ p and |̂X|E,F = X̂p(E),p(F )
for any sets E and F . Last, given a NUTS X, we have that T (X)(X) is just the totality
component of the NUTS X (X). This shows that X is determined by X as contended. ■

For this reason we use X to denote the functor X .
Given n ∈ N let Vnutsn be the class of strong n-ary VNUTS. We identify Vnuts0 with

the class of objects of the Seely category Nuts. The following refers to Definition 17.

Theorem 45 (Nuts, (Vnutsn)n∈N) is a Seely model of µLL.

Proof: Concerning Condition (3), let (Xi)k
i=1 be elements of Vnutsn and let X ∈ Vnutsk.

Considering X and the Xi’s as strong functors, we know that X ◦
−→
X is a strong functor

Nutsn → Nuts. We simply have to exhibit a VNUTS whose associated strong functor
is X ◦

−→
X . Let F = |X| ◦ |

−→
X | (composition of variable sets, Section 1.2.1). Let −→

X ∈
Nutsn, each Xi(

−→
X ) is an object of Nuts and hence (F(|−→X |), T (X)(X1(−→X ), . . . ,Xk(−→X ))) is

a NUTS. Moreover given −→
t ∈ Nutsn(−→X,

−→
Y ), we know that for each i = 1, . . . , k, one has

Xi(
−→
t ) ∈ Nuts(Xi(

−→
X ),Xi(

−→
Y )) since Xi is a VNUTS. Since X is a VNUTS we have F(−→t ) ∈

Nuts(X(X1(−→X ), . . . ,Xk(−→X )),X(X1(−→Y ), . . . ,Xk(−→Y ))).
Let X ∈ Obj(Nuts) and −→

Y ∈ Obj(Nutsk). For i = 1, . . . , k we know that X̂iX,
−→
Y

∈

Nuts(!X ⊗ Xi(
−→
Y ),Xi(!X ⊗

−→
Y )). Therefore

X((X̂iX,
−→
Y

)k
i=1) ∈ Nuts(X((!X ⊗ Xi(

−→
Y ))k

i=1),X((Xi(!X ⊗
−→
Y ))k

i=1))

and hence
X((X̂iX,

−→
Y

)k
i=1) X̂

X,(Xi(
−→
Y ))k

i=1
∈ Nuts(!X ⊗ X((Xi(

−→
Y ))k

i=1),X((Xi(!X ⊗
−→
Y ))k

i=1)) .

Moreover we have

F̂|X|,|−→Y | = |X|((|̂Xi||X|,|−→Y |)
k
i=1) |̂X||X|,(|Xi(

−→
Y )|)k

i=1
by definition of F

= |X|((|̂Xi||X|,|−→Y |)
k
i=1) |̂X||X|,(|Xi|(|

−→
Y |))k

i=1

= X((X̂iX,
−→
Y

)k
i=1) X̂

X,(Xi(
−→
Y ))k

i=1

using again the fact that X and the Xi’s are VNUTS. This shows that the pair Y = (|Y|, T (Y))
given by |Y| = F and T (Y)(−→X ) = T (X)(X1(−→X ), . . . ,Xk(−→X )) is a VNUTS whose associated
strong functor is X ◦

−→
X thus proving our contention.

Concerning Condition (4), let us deal only with the case of !_, the others being similar.
We have to exhibit a unary VNUTS X whose associated strong functor Nuts → Nuts
coincides with !_ (which is known to be a strong functor Nuts → Nuts by Section 1.2.2
and by the general considerations of Section 1.1.2). For |X|, which has to be a variable set
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Rel → Rel, we take the interpretation E of !_ in the model Rel (Section 1.2.1) which is
an element of Rel1, that is, a unary variable set. Next, given X ∈ Obj(Nuts), we take
T (X)(X) = T (!X). Condition (1) in the definition of VNUTS holds by functoriality of !_ on
Nuts. Condition (2) holds by the definition of F̂|X|,|Y | as described in Section 1.1.2 which
coincides with µ2 (digX ⊗ !Y ) ∈ Nuts(!X ⊗ !Y, !(!X ⊗ Y )).

Let us now turn to Condition (5) which is a bit more challenging.
Let first X = (|X|, T (X)) be a unary VNUTS. Let E = σ|X| which is the least set such

that |X|(E) = E, that is E = ⋃∞
n=0 |X|n(∅). Let Φ : Tot(E) → Tot(E) be defined as

follows: given T ∈ Tot(E), then (E, T ) is a NUTS, and we set Φ(T ) = T (X)(E, T ) ∈
Tot(|X|(E)) = Tot(E). This function Φ is monotone. Let indeed S, T ∈ Tot(E) with S ⊆ T .
Then we have Id ∈ Nuts((E, S), (E, T )) and therefore, by Condition (1) satisfied by X, we
have Id = |X|(Id) ∈ Nuts(X(E, S),X(E, T )) = Nuts((E, Φ(S)), (E, Φ(T )) which means that
Φ(S) ⊆ Φ(T ). By the Knaster-Tarski Theorem [Tar55, Kna28] (remember that Tot(E) is a
complete lattice), Φ has a greatest fixpoint T that we can describe as follows. Let (Tα)α∈O,
where O is the class of ordinals, be defined by: T0 = P(E) (the largest possible notion of
totality on E), Tα+1 = Φ(Tα) and Tλ = ⋂

α<λ Tα when λ is a limit ordinal. This sequence is
decreasing (easy induction on ordinals using the monotonicity of Φ) and there is an ordinal
θ such that Tθ+1 = Tθ (by a cardinality argument; we can assume that θ is the least such
ordinal). The greatest fixpoint of Φ is then Tθ as easily checked.

By construction ((E, Tθ), Id) is an object of CoalgNuts(X), we prove that it is the final
object. So let (Y, t) be another object of the same category. Since (|Y |, t) is an object of
CoalgRel(|X|) and since (E, Id) is the final object in that category, we know by Lemma 26

that there is exactly one e ∈ Rel(|Y |, E) such that
(|Y |) E

|X|(|Y |)

e

t
|X|(e)

. We prove that

actually e ∈ Nuts(Y, (E, Tθ)) so let v ∈ T (Y ). We prove by induction on the ordinal α that
e ·v ∈ Tα. For α = 0 it is obvious since T0 = P(E). Assume that the property holds for α and
let us prove it for α + 1. We have t · v ∈ T (X)(Y ) = T (X(Y )) since t ∈ Nuts(Y,X(Y )). Since
X(e) ∈ Nuts(X(Y ),X(E, Tα)) and since X(E, Tα) = (E, Tα+1) we have (X(e) t) · v ∈ Tα+1,
that is e · v ∈ Tα+1. Last if λ is a limit ordinal and if we assume ∀α < λ e · v ∈ Tα we have
e · v ∈

⋂
α<λ Tα = Tλ. Therefore e · v ∈ Tθ. We use νX to denote this final coalgebra (E, Tθ)

(its definition depends only on X and does not involve the strength X̂).
So we have proven the first part of Condition (5) in the definition of a Seely model of

µLL (see Section 17). As to the second part, let X be an n + 1-ary VNUTS. We know by the
general Lemma 15 that there is a uniquely defined strong functor νX : Nutsn → Nuts such
that

• νX(−→X ) = ν(X−→
X

), so that X(−→X, νX(−→X )) = νX(−→X ), for all −→
X ∈ Obj(Nutsn),

• X(−→t , νX(−→t )) = νX(−→t ) for all −→
t ∈ Nuts(−→X,

−→
Y )

• and X(Y ⊗
−→
X, ν̂X

Y,
−→
X

) X̂
Y,(−→X,νX(−→X )) = ν̂X

Y,
−→
X

for all Y ∈ Obj(Nuts) and −→
X ∈ Obj(Nutsn).

To end the proof, it will be enough to exhibit an n-ary VNUTS Y = (|Y|, T (Y)) whose associ-
ated strong functor coincides with νX. We know that |X| is a variable set Reln+1 → Rel so let
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F = ν|X| = σ|X| which is a variable set Reln → Rel (see Section 1.2.1). Let −→
X ∈ Obj(Nutsn),

we have |νX(−→X )| = |ν(X−→
X

)| = ⋃∞
n=0 |X−→

X
|n(∅) = F(|−→X |). Let −→

t ∈ Nutsn(−→X,
−→
Y ), then

νX(−→t ) is the unique element s of Nuts(νX(−→X ), νX(−→Y )) ⊆ Rel(F(|−→X |),F(|−→Y |)) which sat-
isfies X(−→t , s) = s, that is |X|(−→t , s) = s, which means that νX(−→t ) = s = F(−→t ). By a
completely similar uniqueness argument we have ν̂X

X,
−→
Y

= F̂|X|,|−→Y | for all X ∈ Obj(Nuts)
and −→

Y ∈ Obj(Nutsn). So we set |Y| = F.
Next, given −→

X ∈ Obj(Nutsn) we set T (Y)(−→X ) = T (νX(−→X )) ∈ Tot(|νX(−→X )|) = Tot(F(|−→X |)).
Given −→

t ∈ Nuts(−→X,
−→
Y ) we have

F(−→t ) = νX(−→t ) ∈ Nuts((F(|−→X |), T (Y)(−→X )), (F(|−→Y |), T (Y)(−→Y ))

since (F(|−→X |), T (Y)(−→X )) = νX(−→X ) and similarly for −→
Y . Last, since F̂|X|,|−→Y | = ν̂X

X,
−→
Y

∈

Nuts(!X ⊗νX(−→Y ), νX(X ⊗
−→
Y )) we know that Y = (|Y|, T (Y)) is a VNUTS whose associated

strong functor is νX. This ends the proof that (Nuts, (Vnutsn)n∈N) is a Seely model of µLL.
■

Remark 15 For any closed formula A, the web of its interpretation JAKNuts in Nuts co-
incides with its interpretation JAKRel in Rel. It is also easy to check that for any proof π
of ⊢ A, one has JπKNuts = JπKRel (this can be formalized by a structure preserving functor
Nuts → Rel which acts trivially on morphisms).

We end this section by providing interpretation of some of data-types as examples.

Integers: The type of “flat integers” is defined by ι = µζ (1⊕ζ). In Rel, 1⊕ζ is interpreted
as the unary variable set J1 ⊕ ζKRel

ζ : Rel → Rel which maps a set E to 1 ⊕ E = {(1, ∗)} ∪
({2} × E). Hence JιKRel is the least set such that JιK = {(1, ∗)} ∪ ({2} × JιK) that is, the
set of all tuples n = (2, (2, (· · · (1, ∗) · · · ))) where n is the number of occurrences of 2, that is
JιKRel = N up to renaming11. We have |JιKNuts| = JιKRel = N and we compute T (JιKNuts)
dually wrt. the proof of Theorem 45: it is the least fixed point of the operator Φ : Tot(N) →
Tot(N) (remember that Tot(N) is just the set of all ⊆-upwards-closed subsets of P(N)) such
that, if T ∈ Tot(N) then Φ(T ) = {u ⊆ N | 0 ∈ u or {n ∈ N | n + 1 ∈ u} ∈ T }. Therefore
Tot(JιKNuts) = {u ⊆ N | u ̸= ∅}. So if π is a proof of ⊢ ι, we know that JπKRel = JπKNuts ∈
T (JιKNuts), and hence is a non-empty set. Using an additional notion of coherence (which can
be fully compatible with Rel as in the non-uniform coherence space model of [BE01, Bou11])
we can also prove that JπKRel has at most one element, and hence is a singleton {n} (See
section 1.2.3). This is a denotational version of normalization expressing that indeed π “has
a value” (and actually exactly one, which expresses a weak form of confluence). We will use
crucially this observation in the proof of Theorem 106.

Binary trees with integer leaves: This type can be defined as τ = µζ (ι ⊕ (ζ ⊗ ζ)).
Then an element of JτKRel = |JτKNuts| is an element of the set described by the following
syntax: α, β, · · · := ⟨n⟩ | ⟨α, β⟩. A computation similar to the previous one shows that
Tot(JτKNuts) =

{
u ⊆ JτKRel | u ̸= ∅

}
.

11One can take alternatively this set JιKRel as a definition of integers in order to not deal with the problem
of equality
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An empty type of streams of integers: After reading [BDS16], one could be tempted
to define the type of streams of integers as σ = νζ (ι ⊗ ζ). The variable set Jι ⊗ ζKRel

ζ :
Rel → Rel maps a set E to N × E. The least fixed point of this operation on sets is ∅
and hence |JσKNuts| = ∅ and notice that Tot(∅) = {∅, {∅}}. In that case, the operation
Φ : Tot(∅) → Tot(∅) maps T to {u × v | v ∈ T and u ∈ P(N) \ {∅}} and hence {∅} to itself.
It follows that T (JσKNuts) = {∅} that is JσKNuts = ⊤, the final object of Nuts. What is the
meaning of this trivial interpretation? It simply reflects that, though σ has a lot of non trivial
proofs in µLL, it is impossible to extract any finite information from these proofs within µLL,
and accordingly all these proofs are interpreted as ∅.

Theorem 46 In µLL, there is no proof of ⊢ (σ)⊥, ι.

In other words there is no proof of ⊢ σ ⊸ ι in µLL; typically a function extracting the
first element of a stream would be a proof of this type. . . if it would exist! Here is the
proof: if π were a proof of ⊢ (σ)⊥, ι, we would have JπK ∈ Nuts(JσKNuts, JιKNuts) and hence
JπK · ∅ ∈ T (JιKNuts) which is not the case since JπK · ∅ = ∅. If such infinite types are
meaningful in a proof-search perspective, their significance as data-types in a Curry-Howard
approach to µLL is dubious.

A non-empty type of streams of integers: We set now σ = νζ (1 & (ι ⊗ ζ)). This type
looks like the previous one, but the type 1 leaves space for partial empty streams. Warning:
it is not a type of finite or infinite streams; the & means that this empty stream will not
be a total element: it will have to be complemented by some total element from the right
argument of the &. More precisely J1 & (N ⊗ ζ)KRel

ζ : Rel → Rel is the variable set which
maps a set E to {(1, ∗)} ∪ {2} × N × E so that up to renaming |JσKNuts| = N<ω (all finite
sequences of integers). In this case, the operator Φ : Tot(N<ω) → Tot(N<ω) maps T to{

v ⊆ N<ω | () ∈ v and ∃n ∈ N, u ∈ T {n} × u ⊆ v
}

where we use () for the empty sequence. So for instance

Φ0(P(N<ω)) = P(N<ω) .

Φ1(P(N<ω)) =
{
u ∈ P(N<ω) | () ∈ u

}
.

Φ3(P(N<ω)) =
{
u ∈ P(N<ω) | ∃n1, n2 (), (n1), (n1, n2) ∈ u

}
.

The greatest fixed point is reached in ω steps:

Tot(JσKNuts) =
⋂

n<ω

Φn(P(N<ω)) =
{
u ⊆ N<ω | ∃f ∈ Nω ∀k < ω (f(1), . . . , f(k)) ∈ u

}
.

So a total subset of |JσKNuts| must contain (at least) an infinite stream of integer. For this
type of streams σ it is easy to build a proof of ⊢ (σ)⊥, ι extracting the first element of a
stream, interpreted as {((n), n) | n ∈ N}.

1.2.3 Coherence spaces with totality

We showed that Rel is model of µLL, and on top of Rel, we provided another model of µLL,
called Nuts. We believe that one can apply the same idea to almost all models of linear logic,
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that is to say, take a model of linear logic and try to build another model on top of it via an
appropriate notion of totality. In this section, we examine this idea on coherence spaces.

We first show that the category of coherence spaces (Coh) is indeed a model of µLL.
The methods developed in this section are by no way specific to coherence spaces and could
be used in many other models of LL (relational semantics, Scott semantics, hypercoherence
spaces, probabilistic coherence spaces, game models, up to some adaptations since these are
not models of classical LL, etc).

Coherence spaces as a model of µLL

Let E and F be coherence spaces, we write E ⊆ F if |E| ⊆ |F | and ∀a, a′ ∈ |E| a ¨E a′ ⇔
a ¨F a′.

Observe that when E ⊆ F , one has two linear morphisms η+
E,F ∈ Coh(E, F ) and η−E,F ∈

Coh(F, E) given by η+
E,F = η−E,F = {(a, a) | a ∈ |E|}.

They satisfy η−E,F · η+
E,F = IdE and η+

E,F · η−E,F ⊆ IdF , defining an embedding-retraction
pair of coherence spaces as considered for instance in [Gir86] (all embedding-retraction pairs
are of that shape, up to isomorphism of coherence spaces). One major feature of this order
relation is that it makes linear negation monotonic, making life quite easy when one needs to
compute fixed points of arbitrary LL formulas in this model.

Lemma 47 The relation ⊆ is a partial order relation on coherence spaces, and we have
E ⊆ F ⇔ E⊥ ⊆ F⊥.

We use Coh for the class of coherence spaces ordered under the ⊆ partial order relation.
This partially ordered class has a least element denoted as ∅ (the coherence space which has
an empty web).

Any countable directed subset E of Coh has a lub ∪E , which is the coherence space defined
by |∪E| = ∪E∈E |E| and, for all a, a′ ∈ |∪E|, one has a ¨∪E a′ iff a ¨E a′ for some E ∈ E .

The family E gives rise to two diagrams in the category Coh:

• the inductive diagram E+ with morphisms η+
E,F ∈ Coh(E, F ) when E, F ∈ E with

E ⊆ F

• and the projective diagram E− with morphisms η−E,F ∈ Coh(F, E) when E, F ∈ E with
E ⊆ F .

Lemma 48 Let G = ∪E. Then, in Coh, the cocone (E, η+
E,G)E∈E is the colimit of the

inductive diagram E+ and the cone (E, η−E,G)E∈E is the limit of the projective diagram E−.

Proof: We prove the first statement, the second one following by duality. Let F be a
coherence space and, for each E ∈ E let tE ∈ Coh(E, F ) defining a cocone based on E+,
which means ∀E, E′ ∈ E E ⊆ E′ ⇒ tE′ η+

E,E′ = tE , that is ∀E, E′ ∈ E E ⊆ E′ ⇒ tE =
tE′ ∩ |E| × |F |. Then the unique morphism t ∈ Coh(G, F ) such that ∀E ∈ E t η+

E,G = tE is
given by t = ∪E∈E tE as easily checked. ■
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Definition 49 A functor F : Cohn → Coh is continuous on objects if whenever −→
E ,

−→
F ∈

Cohn satisfy Ei ⊆ Fi for i = 1, . . . , n, one has F(−→E ) ⊆ F(−→F ) and F(η+
E1,F1

, . . . , η+
En,Fn

) =
η+
F(−→E ),F(−→F )

and F(η−E1,F1
, . . . , η−En,Fn

) = η−
F(−→E ),F(−→F )

. Moreover, F commutes with the lubs
of countable directed families of coherence spaces. In other words, for any countable directed
families of coherence spaces E1, . . . , En, one has F(∪E1, . . . , ∪En) = ∪{F(E1, . . . , En) | E1 ∈
E1, . . . , En ∈ En}.

One says that F is continuous on morphisms if when
−→
f , −→g ∈ Cohn(−→E ,

−→
F ) satisfy

−→
f ⊆ −→g

(that is ∀i fi ⊆ gi) one has F(−→f ) ⊆ F(−→g ) and, if D is a directed subset of Cohn(−→E ,
−→
F ),

one has F(∪D) = ∪−→
f ∈D

F(−→f ) (equivalently F(∪D) ⊇ ∪−→
f ∈D

F(−→f )).
Last one says that F is continuous if it is both continuous on objects and on morphisms.

Notice that this property is preserved by composition and duality (setting, consistently with
Section 1.1.2, ((F)⊥)(−→E ) = (F((−→E )⊥))⊥ and similarly for morphisms).

Remark 16 One can alternatively deal with Definition 49 in a similar way as what we saw
for Rel where everything was reduced to local continuity. If we do so, then essentially using
similar facts as Lemmas 22, 24 and Proposition 23, the second part of Definition 49 implies
its first part. However, we preferred not to do so to simplify the presentation for the case of
coherence spaces.

Definition 50 A (n-ary) variable coherence space (VCS) is a strong functor E : Cohn →
Coh such that E is continuous.

Proposition 51 The operations ⊗, `, ⊕, &, ! and ? are VCSs and VCSs are closed under
De Morgan duality and composition.

Proof: This results immediately from the properties of strong functors stated in Section 1.1.2
and from straightforward computations (for the continuity statement). ■

Least fixed point of a VCS, universal properties wrt. algebras and coalgebras

Let F : Coh → Coh be continuous on objects (in the sense of Definition 49). Then we have
∅ ⊆ F(∅) ⊆ · · · ⊆ Fn(∅) ⊆ Fn+1(∅) ⊆ · · · as shown by an easy induction on n. We set
σ F = ∪∞n=0Fn(∅). By Scott continuity of F , we have F(σ F) = σ F .

Lemma 52 One has σ ((F)⊥) = (σ F)⊥. If moreover F is continuous on morphisms then
σ F is at the same time the initial object of AlgCoh(F) and the final object of CoalgCoh(F).

Proof: The first statement results from the observation that ((F)⊥)n = (Fn)⊥ . For the
second statement, since σ ((F)⊥) = (σ F)⊥ , it suffices to prove that (σ F , Id) is initial in
AlgCoh(F). This results easily from Lemma 48 and from continuity on morphisms. ■

Let E be an n + 1-ary VCS. Applying Lemma 52 to the functors E−→
E

for all −→
E ∈ Cohn,

Lemma 16 shows that there is an n-ary strong functor µE uniquely determined by the following
equations
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• µE(−→E ) = σ E−→
E

• E(−→f , µE(−→f )) = µE(−→f ) for −→
f ∈ Coh(−→E ,

−→
E′)

• and E(!F ⊗
−→
E , µ̂E

F,
−→
E

) Ê
F,(−→E ,µE(−→E )) = µ̂E

F,
−→
E

.

Proposition 53 The functor µE is a variable coherence space. Defining the dual operation
as νE = (µ((E)⊥))⊥, one has νE = µE. We use σ E for this unique (final and initial) fixed
point VCS.

Proof: The proof that µE is monotonic and Scott continuous on Cohn
⊆ is a standard

domain-theoretic verification. We are left with proving that given −→
E ,

−→
F in Cohn such that−→

E ⊆
−→
F , one has

µE(η+−→
E ,
−→
F

) = η+
µE(−→E ),µE(−→F )

µE(η−−→
E ,
−→
F

) = η−
µE(−→E ),µE(−→F )

.

Let us prove the first equation, the proof of the second one being completely similar. By
Lemma 13, it suffices to prove E(η+−→

E ,
−→
F

, η+
µE(−→E ),µE(−→F )

) = η+
µE(−→E ),µE(−→F )

which in turn results
from the assumption that E is a VCS.

The identity µE = νE results from the uniqueness statements of Lemmas 15 and 16 and
from the fact that νE(−→E ) = σ E−→

E
= µE(−→E ). ■

So, we have seen that Coh is a model of µLL, and just as in Rel, the least and greatest
fixpoints are interpreted similarly. Now, we build a model on top of Coh with a notion of
totality.

Let Vcsn be the class of all n-ary VCS, so that Vcs0 = Obj(Coh).

Theorem 54 (Coh, (Vcsn)n∈N) is a Seely model of µLL

Proof: By a direct application of Lemma 52, Propositions 53 and 51. ■

Coherence spaces with totality: Let E be a coherence space and let A ⊆ Cl(E). We set
(A)⊥ = {x′ ∈ Cl(E⊥) | ∀x ∈ A x ∩ x′ ̸= ∅} .

Observe that if x ∩ x′ ̸= ∅ then this intersection has exactly one element, due to the fact that
x and x′ are cliques in E and E⊥ respectively.

If A, B ⊆ Cl(E) and A ⊆ B, we have B⊥ ⊆ A⊥, and also A ⊆ A⊥⊥. Therefore A⊥ =
A⊥⊥⊥.

A totality candidate on E is a set T ⊆ Cl(E) such that T ⊥⊥ = T , or equivalently T ⊥⊥ ⊆ T .
This property is equivalent to the existence of a “predual” of T , that is, of a set A ⊆ Cl(E⊥)
such that T = A⊥. We use Tot(E) for the set of all totality candidates of the coherence space
E, and we consider this set as a poset, equipped with inclusion.

Remark 17 We do not have such a simple characterization of totality candidates here as in
Nuts where they are upward closed sets (Lemma 30), this is also a good reason to move from
Girard’s coherence spaces to non-uniform totality spaces where one can develop the theory of
totality independently from the theory of coherence.

72



Fixpoints of types in linear logic from a Curry-Howard-Lambek perspective.

Lemma 55 The poset Tot(E) is a complete lattice.

Proof: Let Θ ⊆ Tot(E) and let Θ′ = {(T )⊥ | T ∈ Θ}, which is a subset of Tot(E⊥). Given
x ∈ Cl(E), we have x ∈ ∩Θ iff for all T ′ ∈ Θ′ and all x′ ∈ T ′, x ∩ x′ ̸= ∅. in other words
∩Θ = (⋃T ∈Θ(T )⊥)⊥ ∈ Tot(E). ■

The greatest element of Tot(E) is Cl(E) and its least element is (Cl(E⊥))⊥ = ∅ as easily
checked. Any subset Θ of Tot(E) has a least upper bound ∨Θ which is given by ∨Θ = (∪Θ)⊥⊥
and this biorthogonal closure cannot be disposed of in general (∪Θ is not necessarily a totality
candidate). It is useful to observe that the map T 7→ (T )⊥ is an isomorphism between the
complete lattices Tot(E⊥) and Tot(E)op.

Definition 56 A coherence space with totality is a pair X = (X, TX) where X is a coherence
space (the carrier) and TX ∈ Tot(X).

Coherence spaces with totality as a model of LL

Let X and Y be coherence spaces with totality, we define a coherence space with totality
X ⊸ Y by X ⊸ Y = X ⊸ Y and T(X ⊸ Y ) = {t ∈ Cl(X ⊸ Y ) | ∀x ∈ TX t · x ∈ TY } =
({x ⊗ y′ | x ∈ TX and y′ ∈ TY ⊥})⊥, this latter equation resulting from the equivalence
(t · x) ∩ y′ ̸= ∅ ⇔ t ∩ (x × y′) ̸= ∅. It is clear that if s ∈ T(X ⊸ Y ) and t ∈ T(Y ⊸ Z) then
t · s ∈ T(X ⊸ Z), and also that Id ∈ T(X ⊸ X), hence we have defined a category that we
denote as CohT.

We equip 1 and ⊥ with the same totality, namely {{∗}}. We define X1 ⊗X2 by X1 ⊗ X2 =
X1⊗X2 and T(X1 ⊗ X2) = {x1⊗x2 | xi ∈ TXi for i = 1, 2}⊥⊥, so that X⊗Y = (X ⊸ Y ⊥)⊥ .
Then it is easy to check that CohT is *-autonomous, with the same operations on morphisms
as in Coh (for instance one checks that if ti ∈ CohT(Xi, Yi) then t1 ⊗ t2 ∈ CohT(X1 ⊗
X2, Y1 ⊗ Y2) which is easy using the following lemma.

Lemma 57 Let t ∈ Coh(X, Y ) and let A ⊆ Cl(X) be such that TX = A⊥⊥. If ∀x ∈ A t ·x ∈
TY then t ∈ CohT(X, Y ).

Proof: Let x ∈ TX, we have to prove that t · x ∈ TY so let y′ ∈ TY ⊥, we must prove that
(t · x) ∩ y′ ̸= ∅. This statement is equivalent to t ∩ (x ⊗ y′) ̸= ∅ ⇔ (t⊥ · y′) ∩ x ̸= ∅. So
we must prove ∀x ∈ TX ∀y′ ∈ TY ⊥ (t⊥ · y′) ∩ x ̸= ∅, that is t⊥ ∈ CohT(Y ⊥, X⊥). So let
y′ ∈ TY ⊥, we must prove that t⊥ · y′ ∈ TX⊥ = (A)⊥ which results from our assumption by
the same reasoning. ■

Lemma 57 is a useful tool for proving that a linear morphism (a morphism in Coh between
the carriers of two coherence spaces with totality) is total.

Using Lemma 57, one proves easily that ev ∈ CohT((X ⊸ Y ) ⊗ X, Y ) etc). Similarly
one shows that the cartesian structure on Coh gives rise to a cartesian structure on CohT:
X1 & X2 = X1 & X2 and {1} × x1 ∪ {2} × x2 ∈ T(X1 & X2) if xi ∈ TXi for i = 1, 2. The total
cliques of X1 ⊕ X2 are the {i} × z for i = 1, 2 and z ∈ TXi. Notice that ⊤ and 0 are different
coherence spaces with totality: T⊤ = {∅} and T0 = ∅.

Last !X is given by !X = !X and T(!X) = {x! | x ∈ TX}⊥⊥ (where x! = Pfin(x)).
Then one proves easily that t ∈ CohT(X, Y ) ⇒ !t ∈ CohT(!X, !Y ) again using Lemma 57.
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It is also easy to check that derX ∈ CohT(!X, X) and that digX ∈ CohT(!X, !!X) so we
denote these morphisms as derX and digX turning “!” into a comonad on CohT. The same
holds for the monoidal structure (Seely isomorphisms): m0 ∈ CohT(1, !⊤) and m2

X1,X2
∈

CohT(!X1 ⊗ !X2, !(X1 & X2)).

Coherence spaces with totality as a model of µLL

We first need to define a notion of variable coherence space with totality.
To make the notations more readable, when E is a VCS (see Definition 50), we use E

(instead of E) to denote its functorial part. We keep denoting as Ê the associated strength
natural transformation.

Definition 58 An n-ary variable coherence space with totality (VCST) is a pair X = (X, TX)
where

• X : Cohn → Coh is an n-ary VCS called the carrier of X

• and TX is an operation, called the totality of X, which, with each n-tuple −→
X of coherence

spaces with totality, associates TX(−→X ) ∈ Tot(X(−→X )) — and we use the notation X(−→X )
for the coherence space with totality (X(−→X ), TX(−→X )).

Moreover the two following properties must hold.

• If −→
X and −→

Y are objects of CohTn and
−→
f ∈ CohTn(−→X,

−→
Y ), then the Coh morphism

X(−→f ) belongs actually to CohT(X(−→X ),X(−→Y )), so that X defines a functor CohTn →
CohT (denoted simply as X).

• If −→
X is an object of CohTn and Y is an object of CohT then the Coh morphism X̂

Y ,
−→
X

belongs actually to CohT(!Y ⊗ X(−→X ),X(!Y ⊗
−→
X )). We denote this total morphism as

X̂
Y,
−→
X

.

So we can consider X as a strong functor CohTn → CohT (the monoidality diagram com-
mutations of Figure 1.1 hold because the LL operations on morphisms are interpreted in the
same way in CohT and in Coh).

The following remark is essentially the same as Remark 14.

Remark 18 It is essential to keep in mind that, if
−→
f ∈ CohT(−→X,

−→
Y ) then actually

−→
f ∈

Coh(−→X,
−→
Y ) so that the morphism X(−→f ) ∈ Coh(X(−→X ),X(−→Y )) is defined, independently of

the notions of totality on −→
X and −→

Y and similarly for X̂
Y,
−→
X

.

The following remark is similar to Lemma 44, we do not provide the proof because it is
similar to the proof of that lemma (Remember that X⊥ is defined in Section 1.1.2).

Remark 19 Strictly speaking, an n-ary VCST X is not a strong functor CohTn → CohT
but a structure which induces — as explained above — such a strong functor F , that we have
denoted simply as X. This choice of notation is motivated by the fact that X can very simply
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be recovered from F . We have indeed a forgetful functor U : CohT → Coh which maps X to
X and acts as the identity on morphisms. This functor has a left adjoint Z : Coh → CohT
which maps a coherence space E to (E,∅) (no cliques of E are total) and acts as the identity
on morphisms. Then we have X = U ◦ F ◦ Z = U ◦ F ◦ (Z)⊥ (for the functorial part
of X) and for the strength X̂

F,
−→
E

= F̂Z(F ),Z(−→E ), and T = TX(−→X ) is defined by the fact that

the coherence space with totality F(−→X ) is of shape (F, T ). In these definitions, the choice
of Z as “inverse” of U is arbitrary. By the definition of VCSTs we could have used the
right adjoint (Z)⊥ (it maps E to (E, Cl(E)) where all cliques are total) or any other functor
Y : Coh → CohT such that U ◦ Y = Id instead: the resulting X would have been the same.
For these reasons, it is meaningful to consider VCSTs as strong functors CohTn → CohT,
what we do now.

This observation also motivates our general notion of model presented in Definition 17.

As a consequence of Proposition 51, we have the following Proposition:

Proposition 59 The operations ⊗, `, ⊕, &, ! and ? are VCSTs and VCSTs are closed under
De Morgan duality and composition.

Fixed Points of VCST’s

We deal first with least fixed points of unary VCST’s, so let X be a unary VCST (whose
strength is not used in this first step). We define a coherence space with totality µX. First,
we set µX = σ X.

We define a map Θ(X) : Tot(µX) → Tot(µX) as follows: if T ∈ Tot(µX), then TX(µX, T ) ∈
Tot(X(µX)) = Tot(µX) and we set Θ(X)(T ) = TX(µX, T ). We contend that this mapping
is monotonic on the lattice Tot(µX). Assume that T , T ′ ∈ Tot(µX) with T ⊆ T ′. Then Id ∈
CohT((µX, T ), (µX, T ′)) (see Section 1.2.3) and hence Id = X(Id) ∈ CohT((µX, Θ(X)(T )),
(µX, Θ(X)(T ′))) by Definition 58, from which it follows that Θ(X)(T ) ⊆ Θ(X)(T ′).

Let U be the least fixed point of Θ(X) (applying Knaster-Tarski’s Theorem), we set
T (µX) = U and this ends the definition of the coherence space with totality µX, which
satisfies X(µX) = µX. Now we prove that it is initial in AlgCohT(X).

For this we shall use the following sequence of candidates of totality for µX, indexed by
ordinals: Uα+1 = Θ(X)(Uα) and Uλ = (⋃α<λ Uα)⊥⊥ when λ is a limit ordinal. By Knaster-
Tarski’s Theorem, we know that there is an ordinal θ such that Uθ+1 = Uθ, and that we have
U = Uθ.

Proposition 60 µX is initial in the category AlgCohT(X).

Proof: Let (X, g) be an object in AlgCohT(X), that is g ∈ CohT(X(X), X). This means in
particular that g ∈ Coh(X(X), X) so that, by Proposition 53, we know that there is exactly
one morphism ĝ ∈ Coh(µX, X) such that

g · X(ĝ) = ĝ .
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We have to prove that ĝ ∈ CohT(µX, X). By induction on the ordinal α, we prove that

ĝ ∈ CohT((µX, Uα), X)

for all ordinal α. Assume first that the property holds for α and let us prove it for α +
1. By Definition 58 we get X(ĝ) ∈ CohT((µX, Uα+1),X(X)) and hence ĝ = g · X(ĝ) ∈
CohT((µX, Uα+1), X). Let now λ be a limit ordinal and assume that ĝ ∈ CohT((µX, Uα), X)
for all α < λ. It will be sufficient to prove that (ĝ)⊥ ∈ CohT(X⊥, (⋃α<λ Uα)⊥) so let
x′ ∈ (TX)⊥, we must prove that (ĝ)⊥ · x′ ∈ (⋃α<λ Uα)⊥ so let y ∈ Uα for some α < λ, we
must prove that ((ĝ)⊥ · x′) ∩ y ̸= ∅, that is x′ ∩ g · y ̸= ∅ which results from our inductive
hypothesis applied to ordinal α.

So we have proven the existence of ĝ ∈ CohT(µX, X) such that g ·X(ĝ) = ĝ. Uniqueness
follows from the uniqueness property for µX.

■

We consider now the case of several variables, so let X be an n + 1-ary VCST. Given−→
X ∈ CohTn consider the unary VCST X−→

X
defined as follows: X−→

X
= X−→

X
and T(X−→

X
)(X) =

TX(−→X, X) (the strength can be defined in a similar way though this is not needed actually
because the proof of Proposition 60 does not involve the strength). Then by Proposition 60
applied to X−→

X
and Lemma 16 we have an n-ary strong functor Φ = (Φ, Φ̂) on CohT such

that Φ(−→X ) = µ(X−→
X

) and whose action on morphisms and strength are uniquely characterized
by

• X(−→f , Φ(−→f )) = Φ(−→f ) for all −→
f ∈ CohTn(−→X,

−→
X ′)

• and X(!Y ⊗
−→
X, Φ̂

Y,
−→
X

) X̂
Y,(−→X,µF(−→X )) = Φ̂

Y,
−→
X

.

By Proposition 53, the first equation implies that Φ(−→f ) = σ X(−→f ) (remember that ac-
tually −→

f ∈ Cohn(−→X,
−→
X ′) and that σ X is an n-ary VCS characterized by that proposi-

tion) and the second equation shows that Φ̂
Y,
−→
X

= σ̂ X
Y ,
−→
X

. This proves that σ X(−→f ) ∈
CohT(µ(X−→

X
), µ(X−→

Y
)) and that σ̂ X

Y ,
−→
X

∈ CohT(Y ⊗ µ(X−→
X

), µ(X
Y⊗
−→
X

)). Therefore we have
defined a VCST µX whose carrier µX is the VCS σ X and whose totality T(µX) is such that
(σ X(−→X ), T(µX)(−→X )) = µ(X−→

X
) for all −→

X ∈ CohTn. We can summarize our constructions as
follows.

Theorem 61 Let X be an n + 1-ary VCST. There is a unique VCST µX whose carrier is
σ X and whose totality is such that X(−→X, µX(−→X )) = µX(−→X ) and (µX(−→X ), Id) is initial in the
category AlgCohT(X−→

X
).

Moreover, we have provided a “concrete” way for defining this operation (which involves an
ordinal iteration).

Now we can define “greatest fixed points” by De Morgan duality. So let X be an n + 1-ary
VCST. Given an n-tuple of coherence spaces with totality −→

X , we set ν X(−→X ) = (µ ((X)⊥)((−→X )⊥))⊥ .
More precisely, this means that the carrier of ν X is the VCS σ X (the very same as for µX), and
that T(ν X)(−→X ) ∈ Tot(σ X(−→X )) is given by T(ν X)(−→X ) = (T(µ ((X)⊥))((−→X )⊥))⊥ which indeed
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makes sense because Tµ ((X)⊥)((−→X )⊥) ∈ Tot(σ (X)⊥((−→X )⊥)) and σ (X)⊥((−→X )⊥) = (σ X(−→X ))⊥
by definition of the De Morgan dual of a VCS.

More concretely, this means that T(ν X)(−→X ) = (σ X(−→X ), V) where V is the greatest totality
candidate of σ X(−→X ) such that F (V) = V where F (T ) = TX(−→X, (σ X(−→X ), T )). In other words,
V = ⋂

α F
α←−(Cl(σ X(−→X ))) where F

λ←− = ⋂
α<λ F

α←− for limit ordinal λ, and F
α+1←−− = F ◦ F

α←−.
Given n ∈ N let Vcstn be the class of strong n-ary VCST. We identify Vcst0 with the

class of objects of the Seely category CohT.

Theorem 62 (CohT, (Vcstn)n∈N) is a Seely model of µLL

Proof: By a direct application of Proposition 59 Proposition 60, and Theorem 61 ■

1.3 Sum up of Chapter 1

(L,
−→
L )

Sum up of Chapter 1

• Axiomatize a notion of categorical model of µLL, and prove its soundness: Defi-
nition 17 and Theorem 19.

• Provide some concrete models of µLL:

– Rel: Theorem 29.
– Nuts: Theorem 45.
– Coh: Theorem 54.
– CohT: Theorem 62.

• One can have similar constructions as what has been done in this chapter for
the other concrete models such as Scott model (which are based on the category
of preorders and downward-closed relations) and hypercoherences. So, a general
categorical setting taking into account all these situations would be quite useful
(see Section 5.1 for some discussion about this).
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Chapter 2

Polarized LL with fixpoints and its
semantics

In this chapter, we introduce and study µLLP, which can be viewed both as an extension of
Laurent’s Polarized LL, LLP, with least and greatest fixpoints, and as a polarized version of
Baelde’s LL with fixpoints (µMALL and µLL). We take advantage of the implicit structural
rules of µLLP to introduce a term syntax for this language, in the spirit of the classical
lambda-calculus and of system L in the style of Curien, Herbelin and Munch-Maccagnoni
[CH00, CM10, Mun13]. Our motivation to deal with a polarized language is as follows:
We want to see µLL as a programming language. However, the explicit structural rules
in LL make such a language very heavy, hard to use and analyze. In particular, explicit
substitutions would be necessary in such a µLL-based syntax. So there is a real benefit in
using µLLP instead of µLL, because in µLLP we will be able to use variables exactly as we
use variables in the λ-calculus, that is, keeping implicit the rules of weakening, contraction
and promotion. The distinction linear vs. non-linear variables will not completely disappear
but will be almost undetectable (see Section 2.1.1). The fact that the resulting µLLP calculus
contains also classical principles (call/cc) is a cherry on top of the cake but was not our initial
motivation.

We equip this language with a deterministic reduction semantics as well as a denotational
semantics based on the notion of non-uniform totality spaces and the notion of categorical
model for LL with fixpoint introduced in Chapter 1. We prove an adequacy result for µLLP
between these operational and denotational semantics, from which we derive a normalization
property for µLLP thanks to the properties of the totality interpretation.

2.1 A classical calculus for polarized linear logic with fixpoints
(κµLLP)

Olivier Laurent in [Lau02] introduced a polarized linear logic LLP which relaxes the use of
structural rules on negative formulas. This system is better suited than LL for encoding
classical logic, as one can encode µLK into LLP using a straightforward extension of so-called
Girard’s translation. In the sense of Curry-Howard paradigm, we will develop an extension
of Laurent’s Polarized Linear Logic with least and greatest fixed points, µLLP, which one can
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(ax)
⊢ N, N⊥

(1)
⊢ 1

⊢ N1, P1 ⊢ N2, P2 (⊗)
⊢ N1, N2, P1 ⊗ P2

⊢ N , Pi i ∈ {1, 2}
(⊕)i⊢ N , P1 ⊕ P2

(⊤)
⊢ N [, P ], ⊤

⊢ N [, P ], N1 ⊢ N [, P ], N2 (&)
⊢ N [, P ], N1 & N2

⊢ N [, P ], N1, N2 (`)
⊢ N [, P ], N1 ` N2

⊢ N , N
(!)

⊢ N , !N
⊢ N , P

(d)
⊢ N , ?P

⊢ N [, P ]
(w)

⊢ N [, P ], N

⊢ N [, P ], N, N
(c)

⊢ N [, P ], N

⊢ N [, P ]
(⊥)

⊢ N [, P ], ⊥
⊢ N1[, P ], N ⊢ N2, N⊥

(cut)
⊢ N1[, P ], N2

Figure 2.1: LLP inference rules

(ax)
⊢ N , P, P⊥

(1)
⊢ N , 1

⊢ N , P1 ⊢ N , P2 (⊗)
⊢ N , P1 ⊗ P2

⊢ N , Pi i ∈ {1, 2}
(⊕)i⊢ N , P1 ⊕ P2

(⊤)
⊢ N [, P ], ⊤

⊢ N [, P ], N1 ⊢ N [, P ], N2 (&)
⊢ N [, P ], N1 & N2

⊢ N [, P ], N1, N2 (`)
⊢ N [, P ], N1 ` N2

⊢ N [, P ]
(⊥)

⊢ N [, P ], ⊥
⊢ N , N

(!)
⊢ N , !N

⊢ N , P
(d)

⊢ N , ?P

⊢ N [, P ], N ⊢ N , N⊥
(cut)

⊢ N [, P ]

Figure 2.2: LLPimp inference rules

also see this extension as a polarized version of Baelde’s Linear Logic with fixed points and
exponentials.

Definition 63 The formula of LLP is described as follows:

N := ⊥ | N1 ` N2 | ⊤ | N1 & N2 | ?P P := 1 | P1 ⊗ P2 | 0 | P1 ⊕ P2 | !N

Notice that we are not considering the so-called weakly negative (respectively weakly positive)
formula, i.e. the formula of the shape ?N (respectively !P ). The inferences rules of LLP are
the restriction of LL rules to polarized formula plus structural rules for any negative formula.
As a side-effect of this restriction, one can check that all the rules preserve the fact that at
most one positive formula may occur in a sequent. The inferences rules are provided in Figure
2.1 where N = N1, · · · , Nn is a negative context, and N [, P ] is a context which includes at
most one positive formula P . Notice that whenever we use N [, P ] in the inference rules such
as the (&) rule, the contexts of the premises must be the same.

In the presentation of Figure 2.1, the structural rules are explicit. One can equivalently
present LLP system so that structural rules are implicit. In order to that, we add a negative
context in the (ax) rule of Figure 2.1, and we also assume that the context N1 and N2 of
the (⊗) of Figure 2.1 are the same. We call the system LLPimp, and the rules of LLPimp is
provided in Figure 2.2.

Proposition 64 The sequent ⊢ N [, P ] is provable in LLP if and only if is provable in LLPimp.
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From now on, we mostly work with the LLPimp system unless it is explicitly mentioned
that we are considering the LLP system.

Now, we would like to add the fixpoint formulas and rules to the LLPimp. First we extend
the syntax of formulas of LLP as the following definition, and we call them µLLP formulas.

Definition 65 Given an infinite set of literals denoted ζ, ξ, · · · , we define the µLLP formulas
as follows:

N := ζ− | ⊥ | N1 ` N2 | ⊤ | N1 & N2 | ?P | νζ.N

P := ζ+ | 1 | P1 ⊗ P2 | 0 | P1 ⊕ P2 | !N | µζ.P

The reason why we have considered the µζ.P (respectively νζ.N) as a positive (respectively
negative) formula will be clear once we introduce the semantic of the system in Section 2.3.

Linear negation is defined as usual by induction on formulas, turns positive formulas into
negative ones and conversely. The main cases are (ζ+)⊥ = ζ−, (ζ−)⊥ = ζ+, (µζ.P )⊥ = νζ.P⊥

and (νζ.N)⊥ = µζ.N⊥.

Remark 20 With each literal ζ are associated two distinct variables ζ+ and ζ− which are for-
mulas (a literal is not a formula). In the formula µζ.P , only the occurrences of ζ+ are bound
and dually for νζ.N . For example, if we allow to have a formula such as N = νζ.(?ζ+ ` ?1),
then formula N will satisfy the equation N = !N ⊸ ?1 which typically leads to non termi-
nating computations.

Although not strictly necessary, we adopt the convention that for a given literal ζ it is
never the case that both ζ+ and ζ− occur in a given formula. This property can be obtained
by α-renaming for closed formulas. For instance, instead of writing µζ.!(νζ.(ζ− & ?ζ+)), we
write µζ.!(νξ.(ξ− & ?ζ+)).

Before moving to the inference rules for fixpoint formulas, we need to define an important
operation which is substitution of formulas in formulas, it is defined in the obvious way
(performing as usual α-renaming of type variables when needed). More precisely we define
by induction on a negative or positive formula A:

• substitution of a positive formula P for a positive variable ζ+ in A, written A
[
P/ζ+]

• and substitution of a negative formula N for a negative variable ζ− in A, written
A [N/ζ−],

both formulas having the same polarity as A. We use fv(A) for the set of free variables of the
type A.

Lemma 66 One has A
[
P/ζ+]⊥ = A⊥

[
P⊥/ζ−

]
and A [N/ζ−]⊥ = A⊥

[
N⊥/ζ+

]
.

The proof is a simple induction on A.
We shall quite often deal with formulas A where pairwise distinct positive variables

ζ+
1 , . . . , ζ+

k are substituted by P1, . . . , Pk and pairwise distinct negative variables ξ−1 , . . . , ξ−n
are substituted by N1, . . . , Nn in parallel. Again the definition is a straightforward induction
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on A but the use of such parallel substitutions can lead to quite heavy notations. We use
letters such as π, ρ to denote such type valuations π = (N1/ξ−1 , . . . , Nn/ξ−n , P1/ζ+

1 , . . . , Pk/ζ+
k )

and write A [π] rather than A
[
N1/ξ−1 , . . . , Nn/ξ−n , P1/ζ+

1 , . . . , Pk/ζk

]
. We set

π⊥ = (N⊥1 /ξ+
1 , . . . , N⊥n /ξ+

n , P⊥1 /ζ−1 , . . . , P⊥k /ζ−k ). We use dom(π) for the domain of π which
is the set {ζ+

1 , . . . , ζ+
k , ξ−1 , . . . , ξ−n }. We use π · (P/ζ+) and π · (N/ζ−) to denote extensions

of such valuations (assuming of course that ζ+, ζ− /∈ dom(π)). We say that π is closed if all
formulas Pi, Nj ’s are closed.

The inference rule for the introduction of (µ) is as follows:
⊢ N , P

[
µζ.P/ζ+]

(µ)
⊢ N , µζ.P

For introduction of (ν), we have two following possibilities:

⊢ N , Q, N
[
Q⊥/ξ−

]
(ν)

⊢ N , Q, νξ.N

⊢ N [, P ], Q⊥ ⊢ N , Q, N
[
Q⊥/ξ−

]
(ν ′)

⊢ N [, P ], νξ.N

Notice that, the existence of a positive formula in the context of (ν) (respectively the
context of the second premises of (ν ′) rule) is necessary as we should substitute a negative
formula in N for ξ−.

For a technical reason, which is discussed in Remark 21, we will consider the (ν ′) rule as
the introduction rule of (ν).

We call µLLPimp for the system which adds the (µ) and (ν ′) rules to LLPimp, and it has
µLLP formulas (Definition 65) as its set of formulas. Similarly, we call µLLP for the system
which adds the (µ) rule and the following one to LLP:

⊢ N1[, P ], Q⊥ ⊢ N2, Q, N
[
Q⊥/ξ−

]
⊢ N1, N2[, P ], νξ.N

Using Proposition 64, we have:

Proposition 67 The sequent ⊢ N [, P ] is provable in µLLPimp if and only if is provable in
µLLP.

2.1.1 Term assignment for µLLPimp

We now assign terms for the µLLPimp logic to develop a kind of λ-calculus based on the
sequent calculus. We do it step by step as follows.

Positive terms and negative terms: Based on the distinction between positive and
negative formulas in LLPimp, it is natural to have the same distinction on terms. We make
this distinction apparent in the typing system by the use of three different kinds of judgments.
From now on, by N we mean (α1 : N1, . . . , αn : Nn).

• Postive term in a negative context: ⊢ N | p : P

• Negative term in a positive context: ⊢ N , P | t : N
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• Negative term in a negative context: ⊢ N | t : N

Hence, we have two axiom rules, called (t-n) and (t-•):
(t-n)

⊢ N , α : P⊥ | α : P
(t-•)

⊢ N , P | • : P⊥

The expression • should be considered as a variable, the unique variable of negative type.
Because of this uniqueness we do not need to mention it in the context and N , P should be
read as N , • : P .

Commands: We introduce commands c to represent cuts, and they can be typed by two
different kinds of judgments:

• command in a positive context: c ⊢ N , P

• command in a negative context: c ⊢ N

Such a command c = t ⋆ p is then typed as follows:
⊢ N [, P ] | t : N ⊢ N | p : N⊥

(t-cut)
t ⋆ p ⊢ N [, P ]

Using these five kinds of judgment it is now easy to associate a term or command construction
with each of the rules of µLLPimp listed in Fig 2.2. However this term assignment is not
satisfactory because it does not satisfy for instance the following expected property:

A sequent ⊢ N1, · · · , Nn[, P ] is provable in µLLPimp iff there is a command c such that
c ⊢ N [, P ].

The main reason for inability of proving the statement above is explained as follows: one
basically needs to construct a negative term t from a command c ⊢ N [, P ], α : N such that
⊢ N [, P ], | t : N . Similarly, one needs to construct a positive term p from a command c ⊢ N , P
such that ⊢ N | p : P . But there are no such constructions in our system so far. So, we
just simply add to our system the rules to do so. One can see a similar constructions in
[Par92, CH00]; those construction are denoted by µ and µ̃. However, as we already have used
the notation µ for the least fixpoint formulas, we use κ.and κ̃. instead as follows:

c ⊢ N , α : N [, P ]
(t-κ)

⊢ N [, P ] | κα.c : N

c ⊢ N , P
(t-κ̃)

⊢ N | κ̃.c : P

Extended with these two rules ((t-κ) and (t-κ̃)), our system is called κµLLP, and its syntax
and typing rules are given in Figure 2.3. The positive variable α is bounded in the nega-
tive command κα.c, and • is bounded in the positive term κ̃.d and in the command c of
κR⊥,ζα.(c ; s).

Lemma 68 If α does not occur in the negative context N , the following holds.

• If c ⊢ N [, P ] then c ⊢ N , α : N [, P ].

• If ⊢ N [, P ] | t : M then ⊢ N , α : N [, P ] | t : M .
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• If ⊢ N | p : P then ⊢ N , α : N | p : P

In other words, we can use freely weakening on negative formulas in the context. Assume
that ⊢ N , P | s : N . We have ⊢ N , α : N | α : N⊥ and hence s ⋆ α ⊢ N , α : N, P so that
⊢ N , α : N | κ̃.(s ⋆ α) : P , we shall often use this kind of change of active formula.

Proposition 69 A sequent ⊢ N1, · · · , Nn[, P ] is provable in µLLPimp iff there is a command
c such that c ⊢ N [, P ] in κµLLP.

Proof: Straightforward induction on derivation trees and terms. For left to right one always
builds a command c. For the other direction, for each of the five kinds of judgments one
associates with each typing derivation a µLLPimp proof of the underlying sequent. ■

We denote by π∗ the command c which corresponds to µLLP proof π. And conversely,
given a command c, we denote by c# the proof π which corresponds to proof of the underlying
sequent of c.

And using Proposition 67, a direct conclusion of Proposition 69 is the following:

Corollary 70 A sequent ⊢ N1, · · · , Nn[, P ] is provable in µLLP iff there is a command c such
that c ⊢ N [, P ] in κµLLP.

Before describing the reduction system of κµLLP, we first need to speak about two im-
portant notions of substitution which are discussed in Section 2.1.2 and 2.1.3.

2.1.2 Substitution of terms in terms

Substitution of positive terms for a variable α and negative terms for • are defined in
the obvious way for all terms and commands. Notice that we have (κR⊥,ζα.(c ; s)) [t/•] =
κR⊥,ζα.(c ; (s [t/•])) as • is bounded in c (this is essential in our proof of Lemma 72). We have
two substitution lemmas as follows that one can prove straightforwardly by mutual induction
on terms and commands:

Lemma 71 Assume that ⊢ N | p : P .

• If c ⊢ N , α : P⊥[, Q] then c [p/α] ⊢ N [, Q],

• if ⊢ N , α : P⊥[, Q] | t : N then ⊢ N [, Q] | t [p/α] : N ,

• and if ⊢ N , α : P⊥ | q : Q then ⊢ N | q [p/α] : Q.

Proof: The proof is by mutual induction on terms and commands. We just provide the
details of three cases below, and the other cases are essentially similar.

▷ If we have (t ⋆ q) ⊢ N , α : P⊥[, Q] so that ⊢ N , α : P⊥[, Q] | t : N and ⊢ N , α : P⊥ | q : Q:
By induction hypothesis, we have ⊢ N [, Q] | t [p/α] : N and ⊢ N | q [p/α] : Q. Hence using
the (t-cut) rule, we have (t ⋆ q) [p/α] ⊢ N [, Q], since (t ⋆ q) [p/α] = ((t [p/α]) ⋆ (q [p/α])) by
definition.
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p, q, . . . := α | () | (p1, p2) | ini(p) | κ̃.c | fd(p) | t!

s, t, . . . := • | ⟨⟩ | ⟨t1, t2⟩ | κα.c | κ⊥.c | κ(α1, α2).c | κN,ζα.(c ; s) | der p

c, d, . . . := t ⋆ p

(t-n)
⊢ N , α : P⊥ | α : P

(t-1)
⊢ N | () : 1

⊢ N [, P ] | t : N ⊢ N | p : N⊥
(t-cut)

t ⋆ p ⊢ N [, P ]

⊢ N | p1 : P1 ⊢ N | p2 : P2 (t-⊗)
⊢ N | (p1, p2) : P1 ⊗ P2

⊢ N | p : Pi i ∈ {1, 2}
(t-⊕)

⊢ N | ini(p) : P1 ⊕ P2

c ⊢ N , P
(t-κ̃)

⊢ N | κ̃.c : P

⊢ N | p : P
[
µζ.P/ζ+]

(t-µ)
⊢ N | fd(p) : µζ.P

⊢ N | t : N
(t-!)

⊢ N | t! : !N

(t-•)
⊢ N , P | • : P⊥

(t-⊤)
⊢ N [, P ] | ⟨⟩ : ⊤

⊢ N [, P ] | t1 : N1 ⊢ N [, P ] | t2 : N2 (t-&)
⊢ N [, P ] | ⟨t1, t2⟩ : N1 & N2

c ⊢ N , α : N [, P ]
(t-κ)

⊢ N [, P ] | κα.c : N

c ⊢ N [, P ]
(t-⊥)

⊢ N [, P ] | κ⊥.c : ⊥
c ⊢ N , α1 : N1, α2 : N2[, P ]

(t-`)
⊢ N [, P ] | κ(α1, α2).c : N1 ` N2

c ⊢ N , P, α : N
[
P⊥/ζ−

]
⊢ N [, Q] | s : P⊥

(t-ν)
⊢ N [, Q] | κN,ζα.(c ; s) : νζ.N

⊢ N | p : P
(t-?)

⊢ N | der p : ?P

Figure 2.3: Syntax of terms and typing rules of κµLLP
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▷ If we have ⊢ N , β : S⊥[, Q] | κR⊥,ζβ.(c ; s) : νζ.R⊥ so that c ⊢ N , α : P⊥, S, β : R⊥
[
S⊥/ζ−

]
and ⊢ N , α : P⊥[, Q] | s : S⊥: By induction hypothesis, we have c [p/α] ⊢ N , S, β :
R⊥

[
S⊥/ζ−

]
and ⊢ N [, Q] | s [p/α] : S⊥. Hence using the (t-ν) rule, we have ⊢ N , β :

P⊥[, Q] | κR⊥,ζβ.((c [p/α]) ; (s [p/α])) : νζ.R⊥.

▷ If we have ⊢ N , α : P⊥ | fd(q) : µζ.Q so that ⊢ N , α : P⊥ | q : Q
[
µζ.Q/ζ+]. By

induction hypothesis, we have ⊢ N | q [p/α] : Q
[
µζ.Q/ζ+]. Hence using the (t-µ) rule, we

have ⊢ N | (fd(q)) [p/α] : µζ.Q. ■

Lemma 72 Assume that ⊢ N [, Q] | t : N .

• If c ⊢ N , N⊥ then c [t/•] ⊢ N [, Q] and

• if ⊢ N , N⊥ | s : M then ⊢ N [, Q] | s [t/•] : M .

Proof: The proof is by mutual induction on terms and commands. We just provide the
details of two cases below, and the other cases are essentially similar.

▷ If we have ⊢ N , N⊥ | κα.c : M so that c ⊢ N , α : M, N⊥. By induction hypothesis, we have
c [t/•] ⊢ N , α : M [, Q]. Hence using the (t-κ) rule, we have ⊢ N | κα.(c [t/•]) : M .

▷ If we have ⊢ N , N⊥ | κR⊥,ζα.(c ; s) : νζ.R⊥ so that c ⊢ N , P, α : R⊥
[
P⊥/ζ−

]
and ⊢ N , N⊥ |

s : P⊥ for some P . By induction hypothesis, we have ⊢ N [, Q] | s [t/•] : P⊥. Hence using
the (t-ν) rule, we have ⊢ N , N⊥ | (κR⊥,ζα.(c ; s)) [t/•] : νζ.R⊥, since (κR⊥,ζα.(c ; s)) [t/•] =
κR⊥,ζα.(c ; (s [t/•])) by definition. ■

Remark 21 If we had used the apparently simpler rule and term construction (t-ν1) below
instead of our (t-ν), we would not have been able to prove Lemma 72.

c ⊢ N , P, α : R⊥
[
P⊥/ζ−

]
(t-ν1)

⊢ N , P | κR⊥,ζα.c : νζ.R⊥

Let us explain why. Suppose that we are proving the second item of Lemma 72, and s is
κR⊥,ζα.c and N = P⊥ such that ⊢ N , P | s : νζ.R⊥, and we also have ⊢ N | t : N . By
induction hypothesis, we have c [t/•] ⊢ N , α : R⊥

[
P⊥/ζ−

]
. But we cannot apply the rule

(t-ν1) on c [t/•], since there is no positive formula in the context. So, that is why we chose
to work with the (ν ′) rule rather than the (ν) rule. However, the (t-ν) rule is derivable in
κµLLP as follows:

c ⊢ N , P, α : R⊥
[
P⊥/ζ−

] (t-•)
⊢ N , P | • : P⊥

(t-ν)
⊢ N , P | κR⊥,ζα.(c ; •) : νζ.R⊥

We use (t-ν1) for this most important derived rule and use the notation κR⊥,ζα.c for κR⊥,ζα.(c ; •).

2.1.3 Substitution of terms in formulas

In this section, we will explain the notion of functoriality in κµLLP which is in some sense the
generalization of η-expansion. This notion will be essential to deal with the normalization
proof as we will see in Section 2.1.4.
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Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable. Let
also π be a type valuation such that ζ+, ζ− /∈ dom(π). Then we can define a negative term
Q
[
π, s/ζ+] (called positive substitution) in such a way that

⊢ N , Q
[
π, P/ζ+

]
| Q

[
π, s/ζ+

]
: Q⊥

[
π⊥, N/ζ−

]
In order to make this more readable, let us remove the context N and the term annotations.
So, assume that we have a proof of ⊢ P, N and let Q be a positive formula that has ζ as its
only free variable. Then we have a proof of

⊢ Q
[
P/ζ+

]
, Q⊥

[
N/ζ−

]
One can try to construct the negative term Q

[
π, s/ζ+] by induction on formula Q. If we do

so, then we will see that we need also the following negative term (called negative substitution)
once Q is !N for some negative formula N :

⊢ N , Q
[
π, N/ζ−

]
| Q

[
π, s/ζ−

]
: Q⊥

[
π⊥, P/ζ+

]
If we again remove context N and term annotation, we will need a proof of under the same
assumption for s:

⊢ Q
[
N/ζ−

]
, Q⊥

[
P/ζ+

]
Remark 22 We will see later in Section 2.3 that a proof of ⊢ P, N will be interpreted as a
morphism JN⊥K → JP K. And a proof of ⊢ Q

[
P/ζ+] , Q⊥ [N/ζ−] will be interpreted as a mor-

phism JQK(JN⊥K) → JQK(JP K), and this just says JQK is a covariant functor. However, a proof
of ⊢ Q [N/ζ−] , Q⊥

[
P/ζ+] will be interpreted as a morphism JQK(JP⊥K) → JQK(JNK), whereas

if JQK were a contravariant functor we would have a morphism JQK(JP K) → JQK(JN⊥K).
Hence, although positive substitution corresponds to covariant functoriality, negative substi-
tution will not correspond to contravariant functoriality.

We now state and prove our statement about substitution of terms in formulas:

Proposition 73 Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a
variable. Let also π be a type valuation such that ζ+, ζ− /∈ dom(π). Then we can define two
negative terms Q

[
π, s/ζ+] and Q [π, s/ζ−] in such a way that

⊢ N , Q
[
π, P/ζ+

]
| Q

[
π, s/ζ+

]
: Q⊥

[
π⊥, N/ζ−

]
⊢ N , Q

[
π, N/ζ−

]
| Q

[
π, s/ζ−

]
: Q⊥

[
π⊥, P/ζ+

]
.

In the first case we assume that fv(Q) ⊆ dom(π) ∪ {ζ+} and in the second case, that fv(Q) ⊆
dom(π) ∪ {ζ−}.

Proof: We will define the two terms Q
[
π, s/ζ+] and Q [π, s/ζ−] in a simultaneous induction

on Q.

▷ If Q = ζ+ then Q
[
π, s/ζ+] = s.

▷ If Q = ζ+
i ∈ dom(π) then Q

[
π, s/ζ+] = • with ⊢ N , Pi | • : P⊥i .

▷ If Q = 1 then we set Q
[
π, s/ζ+] = • with ⊢ N , 1 | • : ⊥.
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▷ If Q = Q1 ⊗Q2. Let si = Qi
[
π, s/ζ+]. By inductive hypothesis we have ⊢ N , Qi

[
π, P/ζ+] |

si : Q⊥i

[
π⊥, N/ζ−

]
.

⊢ N , αi : Q⊥
i

[
π⊥, N/ζ−] | κ̃.(si ⋆ αi) : Qi [π, P/ζ+] for i = 1, 2

(t-⊗)
⊢ N , α1 : Q⊥

1
[
π⊥, N/ζ−] , α2 : Q⊥

2
[
π⊥, N/ζ−] | (κ̃.s1 ⋆ α1, κ̃.s2 ⋆ α2) : (Q1 ⊗ Q2) [π, P/ζ+] π

(t-cut)
• ⋆ (κ̃.s1 ⋆ α1, κ̃.s2 ⋆ α2) ⊢ N , α1 : Q⊥

1
[
π⊥, N/ζ−] , α2 : Q⊥

2
[
π⊥, N/ζ−] , (Q1 ⊗ Q2) [π, P/ζ+]

(t-`)
⊢ N , Q [π, P/ζ+] | κ(α1, α2).(• ⋆ (κ̃.s1 ⋆ α1, κ̃.s2 ⋆ α2)) : Q⊥ [π⊥, N/ζ−]

where π is
(t − n)

⊢ N , α1 : Q⊥1

[
π⊥, N/ζ−

]
, α2 : Q⊥2

[
π⊥, N/ζ−

]
, (Q1 ⊗ Q2)

[
π, P/ζ+] | • : Q⊥1 ` Q⊥2

.

Hence we set (Q1 ⊗ Q2)
[
π, s/ζ+] = κ(α1, α2).(• ⋆ (κ̃.s1 ⋆ α1, κ̃.s2 ⋆ α2)).

▷ Assume Q = 0. We have ⊢ N , 0 | ⟨⟩ : ⊤ and we set 0
[
π, s/ζ+] = ⟨⟩.

▷ If Q = Q1 ⊕ Q2, we use the same notations as for ⊗. We have
⊢ N , αi : Q⊥i

[
π⊥, N/ζ−

]
| κ̃.(si ⋆ αi) : Qi

[
π, P/ζ+]

(t-⊕)
⊢ N , αi : Q⊥i

[
π⊥, N/ζ−

]
| ini(κ̃.(si ⋆ αi)) : (Q1 ⊕ Q2)

[
π, P/ζ+] π

(t-cut)
(• ⋆ ini(κ̃.(si ⋆ αi))) ⊢ N , (Q1 ⊕ Q2)

[
π, P/ζ+] , αi : Q⊥i

[
π⊥, N/ζ−

]
(t-κ)

⊢ N , (Q1 ⊕ Q2)
[
π, P/ζ+] | καi.(• ⋆ ini(κ̃.(si ⋆ αi))) : Q⊥i

[
π⊥, N/ζ−

]
for i = 1, 2

(t-&)
⊢ N , Q

[
π, P/ζ+] | ⟨κα1.(• ⋆ in1(κ̃.(s1 ⋆ α1))), κα2.(• ⋆ in2(κ̃.(s2 ⋆ α2)))⟩ : Q⊥

[
π⊥, N/ζ−

]
where π

(t-•)
⊢ N , αi : Q⊥i

[
π⊥, N/ζ−

]
, (Q1 ⊕ Q2)

[
π, P/ζ+] | • : ((Q1 ⊕ Q2)

[
π, P/ζ+])⊥ . Hence

we set (Q1 ⊕ Q2)
[
π, s/ζ+] = ⟨κα1.(• ⋆ in1(κ̃.(s1 ⋆ α1))), κα2.(• ⋆ in2(κ̃.(s2 ⋆ α2)))⟩.

▷ Assume that Q = µξ.R and let us set RP = R
[
P/ζ+] and RN = R

[
N⊥/ζ+

]
. Let

ρ = π · (µξ.RP [π] /ξ+) (it is here that one sees why the type valuation π is required). By
inductive hypothesis we have t = R

[
ρ, s/ζ+] such that ⊢ N , RP [ρ] | t : R⊥N

[
ρ⊥
]
.

Notice that, due to the definition of ρ, we have RS [ρ] = RS [π]
[
µξ.RP [π] /ξ+] for S =

P, N .

π

⊢ N , α : R⊥N

[
ρ⊥
]

, RP [ρ] | t : R⊥N

[
ρ⊥
]

⊢ N , α : R⊥N

[
ρ⊥
]

| α : (R⊥N
[
ρ⊥
]
)⊥

(t-cut)
(t ⋆ α) ⊢ N , α : R⊥N

[
ρ⊥
]

, RP [ρ]

⊢ N , α : R⊥N

[
ρ⊥
]

| κ̃.(t ⋆ α) : RP [ρ]
(t-µ)

⊢ N , α : R⊥N

[
ρ⊥
]

| fd(κ̃.(t ⋆ α)) : µζ.RP [π]
(t-cut)

(• ⋆ fd(κ̃.(t ⋆ α))) ⊢ N , µξ.RP [π] , α : R⊥N

[
ρ⊥
]

= (RN [π]
[
µξ.RP [π] /ξ+])⊥

(t-ν1)
⊢ N , Q

[
π, P/ζ+] | κR⊥

N [π⊥],ζα.(• ⋆ fd(κ̃.(t ⋆ α))) : Q⊥
[
π⊥, N/ζ−

]
where π

(t-•)
⊢ N , α : R⊥N

[
ρ⊥
]

, µζ.RP [π] | • : (µζ.RP [π])⊥
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So we define (µξ.R)
[
π, s/ζ+] as κR⊥

N [π⊥],ζα.(• ⋆ fd(κ̃.(t ⋆ α))).

▷ Assume last that Q = !R⊥.
By inductive hypothesis we have defined t = R

[
π⊥, s/ζ−

]
which satisfies ⊢ N , R

[
π⊥, N/ζ−

]
|

t : R⊥
[
π, P/ζ+]

⊢ N , R
[
π⊥, N/ζ−

]
| t : R⊥

[
π, P/ζ+]

⊢ N , R
[
π⊥, N/ζ−

]
, α : R⊥

[
π, P/ζ+] | t : R⊥

[
π, P/ζ+] π3

(t-cut)
(t ⋆ α) ⊢ N , α : R⊥

[
π, P/ζ+] , R

[
π⊥, N/ζ−

]
(t-κ̃)

⊢ N , α : R⊥
[
π, P/ζ+] | κ̃.(t ⋆ α) : R

[
π⊥, N/ζ−

]
(t-?)

⊢ N , α : R⊥
[
π, P/ζ+] | der κ̃.(t ⋆ α) : ?R

[
π⊥, N/ζ−

]
⊢ N , α : R⊥

[
π, P/ζ+] , β : ?R

[
π⊥, N/ζ−

]
| der κ̃.(t ⋆ α) : ?R

[
π⊥, N/ζ−

]
π1

(t-cut)
(der κ̃.(t ⋆ α) ⋆ β) ⊢ N , β : ?R

[
π⊥, N/ζ−

]
, α : R⊥

[
π, P/ζ+]

(t-κ)
⊢ N , β : ?R

[
π⊥, N/ζ−

]
| κα.(der κ̃.(t ⋆ α) ⋆ β) : R⊥

[
π, P/ζ+]

(t-!)
⊢ N , β : ?R

[
π⊥, N/ζ−

]
| κα.(der κ̃.(t ⋆ α) ⋆ β)! : !R⊥

[
π, P/ζ+] π2

(t-cut)
(• ⋆ κα.(der κ̃.(t ⋆ α) ⋆ β)!) ⊢ N , !R⊥

[
π, P/ζ+] , β : ?R

[
π⊥, N/ζ−

]
(t-κ)

⊢ N , !R⊥
[
π, P/ζ+] | κβ.(• ⋆ κα.(der κ̃.(t ⋆ α) ⋆ β)!) : ?R

[
π⊥, N/ζ−

]
where π1 is a proof of ⊢ N , α : R⊥

[
π, P/ζ+] , β : ?R

[
π⊥, N/ζ−

]
| β : (?R

[
π⊥, N/ζ−

]
)⊥

using (t-n) rule. And π2 is a proof of ⊢ N , β : ?R
[
π⊥, N/ζ−

]
, !R⊥

[
π, P/ζ+] | • : (!R⊥

[
π, P/ζ+])⊥

using (t-•) rule. And π3 is a proof ⊢ N , α : R⊥
[
π, P/ζ+] | α : (R⊥

[
π, P/ζ+])⊥ using (t-n)

rule.
So we define !R⊥

[
π, s/ζ+] as the term κβ.(• ⋆ κα.(der κ̃.(t ⋆ α) ⋆ β)!)

In the same induction we define completely similarly the negative substitution Q [π, s/ζ−].
Let us do only the case where Q = Q1 ⊗ Q2.
Let si = Qi [π, s/ζ−]. By inductive hypothesis we have ⊢ N , Qi [π, N/ζ−] | si : Q⊥i

[
π⊥, P/ζ+

]
.

⊢ N , αi : Q⊥
i

[
π⊥, P/ζ+] | κ̃.(si ⋆ αi) : Qi [π, N/ζ−] for i = 1, 2

(t-⊗)
⊢ N , α1 : Q⊥

1
[
π⊥, P/ζ+] , α2 : Q⊥

2
[
π⊥, P/ζ+] | (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2)) : (Q1 ⊗ Q2) [π, N/ζ−] π

(t-cut)
• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2)) ⊢ N , α1 : Q⊥

1
[
π⊥, P/ζ+] , α2 : Q⊥

2
[
π⊥, P/ζ+] , (Q1 ⊗ Q2) [π, N/ζ−]

(t-`)
⊢ N , Q [π, N/ζ−] | κ(α1, α2).(• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2))) : Q⊥ [π⊥, P/ζ+]

where π is
(t − n)

⊢ N , α1 : Q⊥1

[
π⊥, P/ζ+

]
, α2 : Q⊥2

[
π⊥, P/ζ+

]
, (Q1 ⊗ Q2) [π, N/ζ−] | • : Q⊥1 ` Q⊥2

.

Hence we set (Q1 ⊗ Q2) [π, s/ζ−] = κ(α1, α2).(• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2))).
■
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2.1.4 Reduction relation

The idea of our reduction relation for κµLLP system is coming from the cut-elimination rules
on sequent calculus proofs of µLLPimp. As we see in Proposition 69, the sequent calculus
proofs of µLLPimp will correspond to commands of κµLLP. So, we only equip commands (and
not terms) with a rewriting relation →. There are two categories of cut-elimination rules; the
principal cases and the commutative rules. Hence, we will also consider these two cases here.

Let us first look at principal cases, and assume that we are in the following situation:

⊢ N1, · · · , Nn, P1 ⊢ N1, · · · , Nn, P2 (⊗)
⊢ N1, · · · , Nn, P1 ⊗ P2

⊢ N1, · · · , Nn[, Q], P⊥1 , P⊥2 (`)
⊢ N1, · · · , Nn[, Q], P⊥1 ` P⊥2 (cut)

⊢ N1, · · · , Nn[, Q]

This proof reduces to

⊢ N1, · · · , Nn, P1 ⊢ N1, · · · , Nn[, Q], P⊥1 , P⊥2 (cut)
⊢ N1, · · · , Nn[, Q], P⊥2 ⊢ N1, · · · , Nn, P2 (cut)

⊢ N1, · · · , Nn[, Q]

This situation will be translated into κµLLP as follows.

d1 ⊢ N , P1 (t-κ̃)
⊢ N | κ̃.d1 : P1

d2 ⊢ N , P2 (t-κ̃)
⊢ N | κ̃.d2 : P2 (t-⊗)

⊢ N | (κ̃.d1, κ̃.d2) : P1 ⊗ P2

c ⊢ N [, Q], α1 : P⊥1 , α2 : P⊥2 (t-`)
⊢ N [, Q] | κ(α1, α2).c : P⊥1 ` P⊥2 (t-cut)

κ(α1, α2).c ⋆ (κ̃.d1, κ̃.d2) ⊢ N [, Q]

And this proof reduces to

d1 ⊢ N , P1 (t-κ̃)
⊢ N | κ̃.d1 : P1 c ⊢ N [, Q], α1 : P⊥1 , α2 : P⊥2 Lemma 71

c [κ̃.d1/α1] ⊢ N [, Q], α2 : P2

d2 ⊢ N , P2 (t-κ̃)
⊢ N | κ̃.d2 : P2 Lemma 71

c [κ̃.d1/α1] [κ̃.d2/α2] ⊢ N [, Q]

So, we will consider the following rule in our reduction system:

κ(α1, α2).c ⋆ (p1, p2) → c [p1/α1, p2/α2] .

Similarly, one can obtain the rules corresponding to the principal cases of (⊕)− (&), (!)− (d),
(µ) − (ν ′), and (⊥) − (1). We only explain the case of (µ) − (ν ′) as it shows the motivation
of Section 2.1.3, and the other cases are similar to what we showed above for (⊗) − (`).

Let assume that we are in the following situation:

c ⊢ N , P, α : R⊥
[
P⊥/ζ−

]
⊢ N [, Q] | s : P⊥

(t-ν)
⊢ N [, Q] | κR⊥,ζα.(c ; s) : νζ.R⊥

⊢ N | p : R
[
µζ.R/ζ+]

(t-µ)
⊢ N | fd(p) : µζ.R

(t-cut)
κR⊥,ζα.(c ; s) ⋆ fd(p) ⊢ N [, Q]
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The proof above will reduce to the following:

π

c ⊢ N , P, α : R⊥
[
P⊥/ζ−

] ⊢ N [, Q] | s : P⊥

⊢ N , α : R⊥
[
P⊥/ζ−

]
[, Q] | s : P⊥

Lemma 71
c [s/•] ⊢ N , α : R⊥

[
P⊥/ζ−

]
[, Q]

(t-κ)
⊢ N [, Q] | κα.(c [s/•]) : R⊥

[
P⊥/ζ−

]
Lemma 71

(R
[
κR⊥,ζα.(c ; •)/ζ+

]
⋆ p) [κα.(c [s/•])/•] ⊢

where π is the following proof:

c ⊢ N , P, α : R⊥
[
P⊥/ζ−

]
(t-ν1)

⊢ N , P | κR⊥,ζα.(c ; •) : νζ.R⊥ R
Proposition 73

⊢ N , R
[
P/ζ+] | R

[
κR⊥,ζα.(c ; •)/ζ+

]
: R⊥

[
νζ.R⊥/ζ−

]
⊢ N | p : R

[
µζ.R/ζ+]

(t-cut)
R
[
κR⊥,ζα.(c ; •)/ζ+

]
⋆ p ⊢ N , R

[
P/ζ+]

So, we will also consider the following rule in our reduction system:

κR⊥,ζα.(c ; s) ⋆ fd(p) → (R
[
κR⊥,ζα.(c ; •)/ζ+

]
⋆ p) [κα.(c [s/•])/•] .

We now turn to the commutative cases. Let us consider as an example the case of (`) rule
in sequent calculus of µLLPimp. So, we are in the following situation:

⊢ N1, · · · , Nn, M1, M2, P⊥
(`)

⊢ N1, · · · , Nn, M1 ` M2, P⊥ ⊢ N1, · · · , Nn, P
(cut)

⊢ N1, · · · , Nn, M1 ` M2

The proof above reduces to the following proof:

⊢ N1, · · · , Nn, M1, M2, P⊥ ⊢ N1, · · · , Nn, P
(cut)

⊢ N1, · · · , Nn, M1, M2 (`)
⊢ N1, · · · , Nn, M1 ` M2

This situation will be translated to κµLLP as follows. Assume that we have the proof below:

c ⊢ N , α1 : M1, α2 : M2, β : P⊥
(t-`)

⊢ N , β : P⊥ | κ(α1, α2).c : M1 ` M2 π2 (t-cut)
κ(α1, α2).c ⋆ γ ⊢ N , β : P⊥, γ : M1 ` M2 (t-κ)

⊢ N , γ : M1 ` M2 | κβ.(κ(α1, α2).c ⋆ γ) : P⊥ π1 (t-cut)
κβ.(κ(α1, α2).c ⋆ γ) ⋆ κ̃.d ⊢ N , γ : M1 ` M2

where π1 and π2 are the following proofs (from left to right respectively)
d ⊢ N , P

(t-κ̃)
⊢ N | κ̃.d : P

(t-n)
⊢ N , β : P⊥, γ : M1 ` M2 | γ : (M1 ` M2)⊥
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This proof will reduce to:

c ⊢ N , α1 : M1, α2 : M2, β : P⊥

d ⊢ N , P
(t-κ̃)

⊢ N | κ̃.d : P

⊢ N , α1 : M1, α2 : M2 | κ̃.d : P
Lemma 71

c [κ̃.d/β] ⊢ N , α1 : M1, α2 : M2 (t-`)
⊢ N | κ(α1, α2).(c [κ̃.d/β]) : M1 ` M2 π

(t-cut)
(κ(α1, α2).(c [κ̃.d/β])) ⋆ γ ⊢ N , γ : M1 ` M2

where π is proof of ⊢ N , γ : M1 ` M2 | γ : (M1 ` M2)⊥ using the (t-n) rule.
So, we see that the command κβ.(κ(α1, α2).c⋆γ)⋆κ̃.d is reduced to (κ(α1, α2).(c [κ̃.d/β]))⋆

γ. Basically, what happened is that the command κβ.(κ(α1, α2).c ⋆ γ) ⋆ κ̃.d is reducing to
(κ(α1, α2).c ⋆ γ) [κ̃.d/β] which is equal to (κ(α1, α2).(c [κ̃.d/β])) ⋆ γ.

If we look at the other commutative cases, we see that in general, we have this pattern: a
command (κβ.c) ⋆ κ̃.d reduces to c [κ̃.d/β].

We only considered the case of a negative cut-formula. Now, we do the same analysis for
the case where the cut formula is positive. So, let us say, as an example, we have the following
proof:

⊢ N1, · · · , Nn, M1, M2, P
(`)

⊢ N1, · · · , Nn, M1 ` M2, P ⊢ N1, · · · , Nn, P⊥
(cut)

⊢ N1, · · · , Nn, M1 ` M2

And this proof reduces to
⊢ N1, · · · , Nn, M1, M2, P ⊢ N1, · · · , Nn, P⊥

(cut)
⊢ N1, · · · , Nn, M1, M2 (`)

⊢ N1, · · · , Nn, M1 ` M2

This situation is translated to κµLLP as follows. We first have the proof below:
c ⊢ N , α1 : M1, α2 : M2, P

(t-`)
⊢ N , P | κ(α1, α2).c : M1 ` M2

(t-n)
⊢ N , γ : M1 ` M2 | γ : (M1 ` M2)⊥

(t-cut)
κ(α1, α2).c ⋆ γ ⊢ N , P, γ : M1 ` M2 (t-κ̃)

⊢ N , γ : M1 ` M2 | κ̃.(κ(α1, α2).c ⋆ γ) : P π
(t-cut)

(κγ.d) ⋆ κ̃.(κ(α1, α2).c ⋆ γ) ⊢ N , γ : M1 ` M2

where π is
d ⊢ N , γ : P⊥

(t-κ̃)
⊢ N | κγ.d : P⊥

. And the proof above will be reduced to:

c ⊢ N , α1 : M1, α2 : M2, β : P

d ⊢ N , γ : P⊥
(t-κ̃)

⊢ N | κγ.d : P⊥

⊢ N , α1 : M1, α2 : M2 | κγ.d : P⊥
Lemma 72

c [κγ.d/•] ⊢ N , α1 : M1, α2 : M2 (t-`)
⊢ N | κ(α1, α2).(c [κγ.d/•]) : M1 ` M2 π

(t-cut)
(κ(α1, α2).(c [κγ.d/•])) ⋆ γ ⊢ N , γ : M1 ` M2

where π is proof ⊢ N , γ : M1 ` M2 | γ : (M1 ` M2)⊥ using (t-n) rule.
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So, we see that one can have this reduction: (κγ.d)⋆κ̃.(κ(α1, α2).c⋆γ) → (κ(α1, α2).(c [κγ.d/•]))⋆
γ. And indeed the reduced command is (κ(α1, α2).c⋆γ) [κγ.d/•]. If we look at the other com-
mutative cases, we see that in general, we have this pattern: κγ.d ⋆ κ̃.c → c [κγ.d/•].

Therefore, we ended up with a critical pair, as we have this situation:

κγ.d ⋆ κ̃.c → d [κ̃.c/γ] and κγ.d ⋆ κ̃.c → c [κγ.d/•] .

Both reductions are compatible with the denotational semantics, and this semantics is non-
trivial in the sense that the booleans are not identified by the semantics, and so we are not
at all in the situation of the Lafont critical pair of LK which identifies, by conversion, any
two proofs of the same formula. However, due the following motivations, we decided to have
a deterministic reduction system, i.e, we only allow κγ.d ⋆ κ̃.c → c [κγ.d/•] in our system.

Our motivations is as follows: We are looking for a minimal reduction system so that one
can prove normalization. Hence, we equip commands with a deterministic rewriting relation
→ specified in Figure 2.4. By p /∈ κ̃, we mean p is not κ̃.d for any command d.

As a direct conclusion of Lemma 71 and Lemma 72, we have the subject reduction property:

Proposition 74 If c →⋆ d and c ⊢ N [, P ], then d ⊢ N [, P ].

Remark 23 Notice that although the reduction system given in Figure 2.4 is quite close to
the cut-elimination rules of µLLPimp as explained above, it does not completely simulate the
cut-elimination of µLLPimp (and µLLP), simply because of the axiom/cut case. Assume that
we have the following proof π:

(ax)
⊢ N1, · · · , Nn, P, P⊥

π1

⊢ N1, · · · , Nn, P
(cut)

⊢ N1, · · · , Nn, P

This proof reduces to the following proof π1:
π1

⊢ N1, · · · , Nn, P

However, π∗ = • ⋆ π∗1 which does not certainly reduce to π∗1. The converse simulation also
does not hold in general. That is to say there are some reductions in the κµLLP that are
not available in µLLPimp. For instance, consider the command c = t ⋆ p of type c ⊢ β :
P⊥ & P⊥, P ⊗ P where t = κα.(• ⋆ (α, α)) and p = κ̃.(⟨•, •⟩ ⋆ β). The negative term t will be
translated to the following µLLPimp proof π1:

(ax)
⊢ P⊥ & P⊥, P⊥, P ⊗ P, P⊥ ` P⊥

(ax)
⊢ P⊥ & P⊥, P⊥, P

(ax)
⊢ P⊥ & P⊥, P⊥, P

(⊗)
⊢ P⊥ & P⊥, P⊥, P ⊗ P

(cut)
⊢ P⊥ & P⊥, P⊥, P ⊗ P

The positive term p will be translated to the following µLLPimp proof π2

(ax)
⊢ P⊥ & P⊥, P ⊕ P

(ax)
⊢ P⊥ & P⊥, P⊥, P

(ax)
⊢ P⊥ & P⊥, P⊥, P

(&)
⊢ P⊥ & P⊥, P, P⊥ & P⊥

(cut)
⊢ P⊥ & P⊥, P
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s ⋆ κ̃.c → c [s/•] κα.c ⋆ p → c [p/α] if p /∈ κ̃

⟨s1, s2⟩ ⋆ ini(p) → si ⋆ p κ(α1, α2).c ⋆ (p1, p2) → c [p1/α1, p2/α2]
κ⊥.c ⋆ () → c der p ⋆ s! → s ⋆ p

κR⊥,ζα.(c ; s) ⋆ fd(p) → (R
[
κR⊥,ζα.c/ζ+

]
⋆ p) [κα.(c [s/•])/•]

Figure 2.4: Reduction of commands

Hence, we have the following proof π as the translation of the command c:
π1

⊢ P⊥ & P⊥, P⊥, P ⊗ P

π2

⊢ P⊥ & P⊥, P
(cut)

⊢ P⊥ & P⊥, P ⊗ P

And there is no reduction rule after on the proof above in µLLPimp unless one want to use the
contraction rule as an admissible rule in µLLPimp. However, by the reduction system given
in Figure 2.4, we have c = t ⋆ p → ⟨•, •⟩ ⋆ β [t/•] = ⟨t, t⟩ ⋆ β = d. The command d will be
translated to the following µLLPimp proof ρ:

π1

⊢ P⊥ & P⊥, P⊥, P ⊗ P

π1

⊢ P⊥ & P⊥, P⊥, P ⊗ P
(&)

⊢ P⊥ & P⊥, P ⊗ P, P⊥ & P⊥
(ax)

⊢ P⊥ & P⊥, P ⊕ P
(cut)

⊢ P⊥ & P⊥, P ⊗ P

Therefore, we saw that the reduction κα.c ⋆ κ̃.d → d [κα.c/•] is not available in µLLPimp in
general.

Lemma 75 If c ⊢ N , P , c → c′ and ⊢ N | s : P⊥, then c [s/•] → c′ [s/•]. If c ⊢ N , α :
P⊥[, Q], c → c′ and ⊢ N | p : P with p /∈ κ̃ then c [p/α] → c′ [p/α].

Proof: The proof is a simple inspection of the reduction rules, and we just provide details
of two cases.
Assume that c = t⋆κ̃.d so that c′ = d [t/•]. Then we have c [s/•] = (t [s/•])⋆κ̃.d → d [t [s/•] /•],
and d [t/•] [s/•] = d [t [s/•] /•]. Hence c [s/•] → c′ [s/•].
One also has c [p/α] = (t [p/α]) ⋆ ((κ̃.d) [p/α]) → (d [p/α]) [(t [p/α])/•], and (d [t/•]) [p/α] =
(d [p/α]) [(t [p/α])/•]. Hence c [p/α] → c′ [p/α].
Assume that c = κβ.c ⋆ q and c′ = c [q/β] where q /∈ κ̃. Then we have (κβ.c ⋆ q) [s/•] =
κβ.(c [s/•]) ⋆ (q [s/•]) → (c [s/•]) [q [s/•] /β], and (c [q/β]) [s/•] = (c [s/•]) [q [s/•] /β]. Hence
c [s/•] → c′ [s/•]. One also has (κβ.c⋆q) [p/α] = κβ.(c [p/α])⋆(q [p/α]) → c [p/α] [(q [p/α])/β],
and c [q/β] [p/α] = c [p/α] [(q [p/α])/β]. Hence c [p/α] → c′ [p/α]. Notice that q [p/α] /∈ κ̃,
since p /∈ κ̃. ■

Example

Before proving a normalization theorem, we try to run some examples here in order to see
some programs using our κµLLP calculus.
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We define a type of integers as nat = µζ.(1 ⊕ ζ+).We set 0 = fd(in1()) so that ⊢ N | 0 : nat,
and given a positive term p such that ⊢ N | p : nat we set suc p = fd(in2(p)) so that
⊢ N | suc p : nat. Now, let us look at the instance of the (t-ν) rule for nat⊥ = νζ.(⊥ & ζ−).
Let p, t and s be terms such that ⊢ N , P | t : P⊥, ⊢ N | p : P , and ⊢ N [, Q] | s : P⊥. Then
we build a term as follows:

π4

⊢ N | p : P

⊢ N , α : (⊥ & P⊥) | p : P
(t-cut)

• ⋆ p ⊢ N , α : (⊥ & P⊥), P
(t-⊥)

⊢ N , α : (⊥ & P⊥), P | κ⊥.(• ⋆ p) : ⊥ π3 (t-`)
⊢ N , α : (⊥ & P⊥), P | ⟨κ⊥.(• ⋆ p), t⟩ : ⊥ & P⊥ π2 (t-cut)

(⟨κ⊥.(• ⋆ p), t⟩) ⋆ α ⊢ N , P, α : (⊥ & P⊥) π1 (t-ν)
⊢ N [, Q] | κ⊥&ζ−,ζα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) ; s) : nat⊥

where π1 is the proof of ⊢ N [, Q] | s : P⊥, π2 is the proof of ⊢ N , α : (⊥&P⊥) | α : (⊥&P⊥)⊥

using (t-n) rule, π3 is
⊢ N , P | t : P⊥

⊢ N , α : (⊥ & P⊥), P | t : P⊥
, and π4 is the proof of ⊢ N , α : (⊥ &

P⊥), P | • : P⊥ using (t-•) rule.
As a notation, we set it(p, t ; s) = κ⊥&ζ−,ζα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) ; s).
In summary, the following results of an instance of the (t-ν) rule at type nat⊥:

⊢ N | p : P ⊢ N , P | t : P⊥ ⊢ N [, Q] | s : P⊥
itrnat

⊢ N [, Q] | it(p, t ; s) : nat⊥

If we consider the (t-ν1) rule instead of (t-ν), then we would have the following rule where
it1(p, t) = κ⊥&ζ−,ζα.((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) = κR⊥,ζα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) ; •):

⊢ N | p : P ⊢ N , P | t : P⊥
itr1

nat
⊢ N , P | it1(p, t) : nat⊥

So, one can see that it1(p, t) = it(p, t ; •).
Now, suppose that we have ⊢ N | suc q : nat such that q is not a κ̃. term. Then, we have

the following computation of it(p, t ; s) ⋆ suc q where s1 = κα1.(• ⋆ in1(κ̃.((•
[
it1(p, t)/ζ+]) ⋆

α1))) = κα1.(• ⋆ in1(κ̃.(• ⋆ α1))) and s2 = κα2.(• ⋆ in2(κ̃.((ζ+ [it1(p, t)/ζ+]) ⋆ α2))) = κα2.(• ⋆
in2(κ̃.(it1(p, t) ⋆ α2))).
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it(p, t ; s) ⋆ suc q

→ ((1 ⊕ ζ+)
[
it1(p, t)/ζ+

]
⋆ in2 q) [κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])/•]

= (⟨s1, s2⟩ ⋆ in2 q) [κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])/•]
→ s2 ⋆ q [κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])/•]
→ ((• ⋆ in2(κ̃.(it1(p, t) ⋆ α2))) [q/α2]) [κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])/•]
= ((• ⋆ in2(κ̃.(it1(p, t) ⋆ q)))) [κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])/•]
= (κα.(((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•]) ⋆ in2(κ̃.(it1(p, t) ⋆ q)))

→ (((⟨κ⊥.(• ⋆ p), t⟩) ⋆ α) [s/•])
[
(in2(κ̃.(it1(p, t) ⋆ q)))/α

]
= (((⟨κ⊥.(• ⋆ p), t⟩) ⋆ ((in2(κ̃.(it1(p, t) ⋆ q))))) [s/•])
→ t ⋆ (κ̃.(it1(p, t) ⋆ q)) [s/•] → ((it1(p, t) ⋆ q)) [t/•] [s/•] = ((it(p, t ; •) ⋆ q)) [t/•] [s/•]
= (it(p, t ; t [s/•]) ⋆ q)

And one checks similarly that it(p, t ; s) ⋆ 0 reduces to s ⋆ p.
As a very first example of function on natural numbers, one can define the successor

function Suc as it(suc 0, κα.(• ⋆ fd(in2(α))) ; •). Then, one can show by induction on n that
Suc ⋆ n →⋆ • ⋆ suc n.

As another example of function on natural numbers, one can define the addition function
as add = κ(α1, α2).(• ⋆ (κ̃.((it(α1, κγ.(• ⋆ fd((in2(γ)))) ; •)) ⋆ α2))). Then one can show, by
induction on n, that add ⋆ (m, n) →⋆ • ⋆ (m + n).

One can try translate the Gödel’s system T into κµLLP. However, notice that we should
translate the type of integers of system T into ?nat and not nat. Let us explain why. Let
us consider a presentation of system T which has two kinds of types: data-types which are
associated with positive formulas of κµLLP and function types σ ⇒ τ . In this system T
there will be at least a data-type of integers ι associated with nat and possibly other ones,
for instance a type of binary trees with leaves labeled by natural numbers associated with
µζ.(nat ⊕ (ζ ⊗ ζ)). We would like to use the Girard encoding (σ ⇒ τ)− = !σ− ⊸ τ− where as
usual A ⊸ B = A⊥ ` B. In other words (σ ⇒ τ)− = ?(σ−)⊥ ` τ−. The polarity constraints
of κµLLP require σ− to be negative, this prevents us from setting simply ι− = nat since nat
is positive.
For benefiting from the structural rules available for free on all negative formulas in κµLLP
one can introduce also a positive translation defined by ι+ = nat (and similarly for all data-
types of T) and σ+ = !σ− if σ is not a data-type and then the negative translation can be
defined by ι− = ?nat (and similarly for all data-types) and (σ ⇒ τ)− = (σ+)⊥ ` τ−. For
instance ((ι ⇒ ι) ⇒ ι)− = ?(nat ⊗ !nat⊥) ` ?nat. A closed term of type ι of T will therefore
be translated into a κµLLP negative term t such that ⊢| t : ?nat and we can form c = t ⋆ α.

2.2 Normalization of κµLLP

In this section, we are trying to prove a normalization theorem for our system. Ideally, we
would like to prove that if we have a command c ⊢ N [, P ], then c is strongly normalizing.
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Notice that as we have a deterministic reduction system, there would be no difference between
normalization and strong normalization. Before going to the details of our proof, we first
provide some intuitions on what are the main difficulties of this theorem for κµLLP.

One of the usual techniques to prove such a statement is via logical relations. Vaguely,
one needs to define an interpretation for each type as a set of terms of this type, denoted
as |P | and |N |, in order to prove the following statement, so-called interpretation lemma
(imagine for the moment that we are considering an hypothetical system which would also
have reductions on terms).

If N = (α1 : N1, · · · , αk : Nk) and pi ∈ |(Ni)⊥| for i = 1, · · · , k, then

1. if c ⊢ N [, P ] then c[pi/αi]ni=1 is strongly normalizing,

2. if ⊢ N [, P ] | t : N , then t[pi/αi]ni=1 is strongly normalizing,

3. if ⊢ N | p : P , then p[pi/αi]ni=1 is strongly normalizing.

Usually, one proves such a statement by induction on proofs. A direct consequence of this
lemma, if we have c ⊢ [, P ] then c is normalizing.

First of all, the definition of this interpretation can be neither by induction on types
nor by induction on terms: not on types, since we have fixpoint types, and not on term,
since we have exponential types. However, one can try to define an indexed version of this
interpretation, namely |P |α for α’s being in a certain class. If we consider ordinal numbers,
and define |P |α by induction on ordinal α, we see that at some point we need an auxiliary
lemma whose proof is as difficult as the normalization theorem we are trying to prove. So,
we need to define |P |α by induction on something else. What we do here is that we define
|P |α by induction on points α of the interpretation of P in the relational model of LL. These
points are always finite objects, whatever P is, which makes this approach possible. The main
goal of Section 2.2.2 is to make this idea precise.

If a reader would like to skip the details of the proofs, he/she can just look at the statement
of Theorem 84, and then its application in Section 2.4. To understand fully the statement of
Theorem 84, one needs to look at Figure 2.5 and 2.6.

The next section (Section 2.2.1) provides more details of some failed attempts to prove
normalization of κµLLP, and it will not be related to the other parts of the manuscript. So,
a reader can completely skip this section.

2.2.1 Failed attempts

In this section, we consider the system κµLLP extended with a constant ◦ which is a new
command, typed by ◦ ⊢. We introduce this ◦ only to simplify definitions (because otherwise
there are no closed commands) and in particular to allow the simple definition of ‚ given
below.

Definition 76 Given a closed positive formula P (respectively closed negative formula N),
we use PR(P ) (respectively PR(N)) for the set of all positive terms ⊢| p : P (respectively
all negative terms ⊢| t : N). We use ‚ for the set of all normalizing command c ⊢. Let
R ⊆ PR(P ), we define R⊥ ⊆ PR(P⊥) by

R⊥ = {t ∈ PR(P⊥) | ∀p ∈ R(t ⋆ p ∈ ‚)}
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As usual the following properties hold:

• R ⊆ S ⇒ S⊥ ⊆ R⊥

• R ⊆ R⊥⊥

• (⋃i∈I Ri)⊥ = ⋂
i∈I R⊥i

A reducibility candidate for P (respectively N) is a R ⊆ PR(P ) (respectively R ⊆ PR(N))
such that R = R⊥⊥. We use RC(P ) (respectively RC(N)) for the set of all reducibility
candidates of P (respectively N).

Given a formula P , two sequence
−→
ζ+ = ζ+

1 , · · · , ζ+
k ,

−→
ζ− = ζ−1 , · · · , ζ−l of pairwise distinct

respectively positive and negative variables which contain all the free variables of P , two
sequences S1, · · · , Sk and N1, · · · , Nl of respectively positive and negative closed formulae,
and two sequences S1, · · · , Sk, N1, · · · , Nl of reducibility candidates such that Si ∈ RC(Si)
for i = 1, · · · , k and Nj ∈ RC(Nj) for j = 1, · · · , l, we define |P |(−→S : −→

S /
−→
ζ+,

−→
N : −→

N /
−→
ζ−) ∈

RC(P [−→S /
−→
ζ+,

−→
N /

−→
ζ−]) by induction on P . For the case of negative formulas we use De Morgan

duality along

|N |(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = (|N⊥|(

−→
S⊥ :

−→
S⊥/

−→
ζ−,

−−→
N⊥ :

−−→
N⊥/

−→
ζ+))⊥

• |1|(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = {()}⊥⊥.

• |P1 ⊗ P2|(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = {(p1, p2) | pi ∈ |Pi|(

−→
S : −→

S /
−→
ζ+,

−→
N : −→

N /
−→
ζ−)}⊥⊥.

• |0|(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = PR(0).

• |P1 ⊕ P2|(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = {ini(pi) | pi ∈ |Pi|(

−→
S : −→

S /
−→
ζ+,

−→
N : −→

N /
−→
ζ−)}⊥⊥.

• |!N |(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = {t! | t ∈ |N |(−→S : −→

S /
−→
ζ+,

−→
N : −→

N /
−→
ζ−)}⊥⊥.

• |µξ.P |(−→S : −→
S /

−→
ζ+,

−→
N : −→

N /
−→
ζ−) = lfp(Φ) where

Φ : RC(µξ.P [−→S /
−→
ζ+,

−→
N /

−→
ζ−]) → RC(µξ.P [−→S /

−→
ζ+,

−→
N /

−→
ζ−])

is defined as follows. Let R ∈ RC(µξ.P [−→S /
−→
ζ+,

−→
N /

−→
ζ−]), we set

Φ(R) = {fd(p) | p ∈ |P |(−→S : −→
S /

−→
ζ+, R : µξ.P [−→S /

−→
ζ+,

−→
N /

−→
ζ−]/ξ+,

−→
N : −→

N /
−→
ζ−)}⊥⊥

Now, we would like to prove the following statement.

Proposition Attempt If N = (α1 : N1, · · · , αk : Nk) and pi ∈ |N⊥i | for i = 1, · · · , k, then

1. If c ⊢ N then c[pi/αi]ni=1 ∈ ‚.

2. If c ⊢ N , P then for all t ∈ |P⊥| we have c[−→p /−→α , t/•] ∈ ‚
3. if ⊢ N | t : N , then t[pi/αi]ni=1 ∈ |N |.
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4. if ⊢ N , P | t : N , then t[−→p /−→α ] ∈ |N |.

5. if ⊢ N | p : P , then p[pi/αi]ni=1 ∈ |P |.

Proof Attempt If we try to prove this statement by mutual induction on typing deriva-
tions, one can see a difficulty in the third case. For instance, assume that N = N1&N2 so that
we have ⊢ N | ti : Ni for i = 1, 2. By induction hypothesis, one has t′i = ti[pj/αj ]nj=1 ∈ |Ni|
for i = 1, 2. So, we have ∀q ∈ |N⊥i |(ti ⋆ q ∈ ‚) for i = 1, 2. In particular, we have
ti ⋆ κ̃.c → c [ti/•] ∈ ‚ for κ̃.c ∈ |N⊥i |. We need to prove ⟨t1, t2⟩ ∈ |N1 & N2| = |N⊥1 ⊕ N⊥2 |⊥.
Take a positive term κ̃.d ∈ |N⊥1 ⊕ N⊥2 |. By our reduction system (Figure 2.4) one has
⟨t1, t2⟩ ⋆ κ̃.d → d [⟨t1, t2⟩/•]. However we do not see how to use the induction hypothesis to
prove d [⟨t1, t2⟩/•] ∈ ‚. ⊛

The issue is that the relation between d and c can be complicated. For instance, one can
imagine d = • ⋆ in1(κ̃.c). In this case, we have d [⟨t1, t2⟩/•] = ⟨t1, t2⟩ ⋆ in1(κ̃.c) → t1 ⋆ κ̃.c →
c [t1/•], and hence we can use the induction hypothesis to deduce that d [⟨t1, t2⟩/•] ∈ ‚. But
d can also be • ⋆ κ̃.(• ⋆ ini(κ̃.c)) or • ⋆ κ̃.(• ⋆ κ̃.(• ⋆ ini(κ̃.c))) and so on and so forth.

As we see we need some sort of induction on d in order be able to use the inductive
hypothesis on ⟨t1, t2⟩. Evidently, this difficulty is in the case that we have a positive term
p ∈ κ̃. So, we tried to change a bit our definition in order to implement this required further
induction on d, and we describe now this idea. We first provide the following definition for
any ordinal α:

• ‚α(P ) := {c | c ⊢ P and ∃p ∈ (|P |α \ κ̃) c →∗ • ⋆ p}

where |P |α is defined as follows for the successor ordinal:

• |1|α+1 = {()} ∪ {κ̃.d | d ∈ ‚α(1)}.

• |P1 ⊗ P2|α+1 = {(p1, p2) | pi ∈ |Pi|α} ∪ {κ̃.d | d ∈ ‚α(P1 ⊗ P2)}.

• |⊤|α+1 = {⟨⟩} ∪ {κ̃.d | d ∈ ‚α(⊤)}.

• |P1 ⊕ P2|α+1 = {ini(pi) | pi ∈ |Pi|α} ∪ {κ̃.d | d ∈ ‚α(P1 ⊕ P2)}

• |!N |α+1 = {t! | ∀q ∈ |N⊥|α(t ⋆ q ∈ ‚)} ∪ {κ̃.d | d ∈ ‚α(!N)}.

• |µξ.P |α+1 = {fd(p) | p ∈ |P
[
µξ.P/ξ+] |α} ∪ {κ̃.d | d ∈ ‚α(µξ.P )}.

And for the limit ordinal λ, we take |P |λ = ⋃
α<λ |P |α. And we also define |P | := ⋃

|P |α and
‚(P ) := ⋃‚α(P ). The interpretation of negative type is defined by duality, that is to say
|N |α+1 = (|N⊥|α+1)⊥, |N |λ = ⋂

α<λ |N |α, and |N | = ⋂
|N |α.

Notice that one cannot define |P | by induction on formula because of basically two reasons.
First ‚(P ) depends on |P | and |P | depends on ‚(P ). Secondly, in the last case, the formula
P
[
µξ.P/ξ+] might be bigger than µξ.P . Moreover, one cannot also define |P | by induction

on terms, since in the case of !N the positive term q can be bigger than the negative term t.
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Let us say why the problem that we had above for the case of N = N1 & N2 has now
vanished with these new definitions. Assume that we have ⊢ N | ti : Ni for i = 1, 2. By
induction hypothesis, we have t′i = ti[pj/αj ]nj=1 ∈ |Ni| = ⋂

|Ni|α. So, we have ∀α∀q ∈
|N⊥i |α (ti ⋆ q ∈ ‚) for i = 1, 2. We need to show ⟨t1, t2⟩ ∈ |N1 & N2| = |N⊥1 ⊕ N⊥2 |⊥. This is
equivalent to show the following:

∀α∀p ∈ |N⊥1 ⊕ N⊥2 |α(⟨t1, t2⟩ ⋆ p ∈ ‚)

We prove this statement by induction on α.
Let first assume that α is a successor ordinal γ + 1. Then either p = ini(pi) for pi ∈ |N⊥i |γ
or p = κ̃.d where d ∈ ‚N⊥

1 ⊕N⊥
2

(γ). If p = ini(pi), then we have ⟨t1, t2⟩ ⋆ ini(pi) → ti ⋆ pi ∈ ‚
by induction hypothesis on ⟨t1, t2⟩. If p = κ̃.d, then we have ⟨t1, t2⟩ ⋆ κ̃.d → d [⟨t1, t2⟩/•]. By
the assumption, we have d ∈ ‚N⊥

1 ⊕N⊥
2

(γ), so, by definition d →∗ • ⋆ p for p ∈ |N⊥1 ⊕ N⊥2 |γ .
By Lemma 75, we have d [⟨t1, t2⟩/•] →∗ • ⋆ p [⟨t1, t2⟩/•] = ⟨t1, t2⟩ ⋆ p. Notice that p /∈ κ̃, so
p = ini(r) where r ∈ |N⊥i |γ′ for γ′ ⩽ γ < γ +1. Therefore we can use the induction hypothesis
on γ′, and hence we have ⟨t1, t2⟩ ⋆ ini(r) → ti ⋆ r ∈ ‚.
Now assume that α is a limit ordinal. The property holds obviously for any p ∈ |N⊥1 ⊕N⊥2 |γ for
γ < α by the induction hypothesis. Hence, the property holds for any p ∈

⋂
γ<α |N⊥1 ⊕ N⊥2 |γ .

However, we still have an issue even with this idea. To see the problem, let us try to
compute |P | where P = µζ.!?ζ.

• |P |α+1 = {fd(p) | p ∈ |!?P |α} ∪ {κ̃.d | d ∈ ‚α(P )}

• |!?P |α+1 = {t! | ∀q ∈ |!P⊥|α (t ⋆ q ∈ ‚)} ∪ {κ̃.d | d ∈ ‚α(!?P )}

• |!P⊥|α+1 = {s! | ∀r ∈ |P |α (s ⋆ t ∈ ‚)} ∪ {κ̃.d | d ∈ ‚α(!P⊥)}

We said earlier that for the limit ordinal λ, we take |P |λ = ⋃
α<λ |P |α. However, to take the

union for the limit ordinal, one needs to provide an increasing sequence of |P |α’s. And due
to the definition above, one consequently needs to have an increasing sequence |!?P |α’s. And
to do so, the sequence |!P⊥|α’s must be decreasing. So, although !P⊥ is a positive formula,
we should take |!P⊥|λ = ⋂

α<λ |!P⊥|α for the limit ordinal λ. Therefore, what we learnt from
this example is that we need to consider both increasing and decreasing sequences |P |α’s for
a positive type P (and similarly for negative type N).

First we define ‚σ
α(P ) for a positive type P and an ordinal α where σ ∈ {↑, ↓}:

• ‚σ
α(P ) := {c | c ⊢ P and ∃p ∈ (|P |σα \ κ̃) c →∗ • ⋆ p}

And |P |σα is described as follows. Given a positive type P and an ordinal α, we define two
sequences |P |↑α and |P |↓α as follows by induction on α. For the successor ordinal, we take the
following definition where −σ changes the direction of the arrow::

• |1|σα+1 = {()} ∪ {κ̃.d | d ∈ ‚σ
α(1)}.

• |P1 ⊗ P2|σα+1 = {(p1, p2) | pi ∈ |Pi|σα} ∪ {κ̃.d | d ∈ ‚σ
α(P1 ⊗ P2)}.

• |⊤|σα+1 = {⟨⟩} ∪ {κ̃.d | d ∈ ‚α(⊤)}.

• |P1 ⊕ P2|σα+1 = {ini(pi) | pi ∈ |Pi|σα} ∪ {κ̃.d | d ∈ ‚σ
α(P1 ⊕ P2)}
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• |!N |σα+1 = {t! | ∀q ∈ |N⊥|−σ
α (t ⋆ q ∈ ‚)} ∪ {κ̃.d | d ∈ ‚σ

α(!N)}.

• |µξ.P |σα+1 = {fd(p) | p ∈ |P
[
µζ.P/ζ+] |σα} ∪ {κ̃.d | d ∈ ‚σ

α(µξ.P )}.

For the limit ordinal α we will take the following:{
|P |↑α = ⋃

β<α |P |↑α
|P |↓α = ⋂

β<α |P |↓α

And finally, we take |P |↑ = ⋃
|P |↑α and |P |↓ = ⋂

|P |↓α. We also need to change the statement
of the interpretation lemma as follows:

Proposition Attempt If N = (α1 : N1, · · · , αk : Nk) and pi ∈ |N⊥i |↑ for i = 1, · · · , k, then

1. If c ⊢ N then c[pi/αi]ni=1 ∈ ‚.

2. If c ⊢ N , P then for all t ∈ |P⊥|↓ we have c[−→p /−→α , t/•] ∈ ‚
3. If ⊢ N | t : N , then t[pi/αi]ni=1 ∈ |N |↓.

4. If ⊢ N , P | t : N , then t[−→p /−→α ] ∈ |N |↓.

5. If ⊢ N | p : P , then p[pi/αi]ni=1 ∈ |P |↑.

Now, if we try to prove our main statement (the interpretation lemma), we will see that
one needs to verify that |P |↑ = |P |↓. To see this, let us try to prove the fifth case of the
interpretation lemma when P = !N so that we have ⊢ N | t! : !N . By the induction
hypothesis, we have t′ = t[pi/αi]ni=1 ∈ |N |↓ = (|N⊥|↑)⊥ = (⋃ |N⊥|↑α)⊥. Hence we have
t′ ⋆ q ∈ ‚ for any q ∈

⋃
|N⊥|↑α. We need to show (t′)! ∈ |!N |↑ = ⋃

|!N |↑α. That is to say,
one needs to show that there is an ordinal α such that (t′)! ∈ |!N |↑α+1. By definition, this is
equivalent to prove that t′ ⋆ q ∈ ‚ for any q ∈ |N⊥|↓α. Hence, as we see, to use the induction
hypothesis, it is enough to prove that |N⊥|↓α ⊆

⋃
β<α |N⊥|↑β for any α. That is to say, we

need to prove |N⊥|↓ = |N⊥|↑. Similarly, we need to show |P |↑ ⊆ |P |↓ for the third case of
the interpretation lemma when N = ?P .

One can prove |P |↑ ⊆ |P |↓ by induction on P . As an instance, let us suppose that P = !N ,
and take a positive term p ∈ |!N |↑. By definition, there is an ordinal β such that p ∈ |!N |↑β+1.
One needs to prove that p ∈ |!N |↓α for all ordinal α. We prove this by induction on α. Assume
that p = t!, so we have t ⋆ q ∈ ‚ for all q ∈ |N⊥|↓β. Now suppose that we have p ∈ |!N |↓γ ,
and we want to show p ∈ |!N |↓γ+1. To do so, it is enough to prove that t ⋆ q ∈ ‚ for all
q ∈ |N⊥|↑γ . Take an arbitrary q ∈ |N⊥|↑γ . Then q ∈ |N⊥|↑. Moreover q ∈ |N⊥|↓, since since
we have |N⊥|↑ ⊆ |N⊥|↓ by the induction hypothesis. Therefore q ∈ |N⊥|↓δ for any ordinal γ,
and in particular q ∈ |N⊥|↓β. Hence t ⋆ q ∈ ‚. If p = κ̃.d, then by definition d ∈ ‚↑β(!N).
So, d →∗ • ⋆ q such that q ∈ |!N |↑β. To show κ̃.d ∈ |!N |↓γ+1, we need to prove d ∈ ‚↓!N (γ).
That is to say d →∗ • ⋆ q such that q ∈ |!N |↓γ . And this is true, since q ∈ |!N |↑β implies that
q ∈ |!N |↓γ by induction hypothesis on the ordinal. The case of the limit ordinal can be treated
in a similar manner. Notice that in order to deal with the case that P = µξ.P , we cannot
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simply prove it by induction on P . One needs to make the statement stronger in order to use
an inductive proof. However, this is not the main issue, and this can be solved by considering
the following statement: let P be a positive formula and π be a type valuation, then one has
|P [π] |↑ ⊆ |P [π] |↓.

However, the other direction (|P |↓ ⊆ |P |↑), seems more difficult, let us show why. As
usual, we want to prove |P |↓ ⊆ |P |↑ by induction on P (to have simpler notations, we just
drop the substitution with the type valuation π.). Assume that P = µξ.Q. Take a positive
term p = κ̃.d ∈ |µξ.Q|↓. So, we have p ∈ |µξ.Q|↓α+1 for all ordinal α. That is to say
d →∗ • ⋆ fd(q) such that fd(q) ∈ |µξ.Q|↓α. We now need to show p ∈ |µξ.Q|↑. So, one needs
to prove that there is an ordinal γ such that p ∈ |µξ.Q|↑γ+1. This is equivalent to prove that
d →∗ • ⋆ fd(q) such that fd(q) ∈ |µξ.Q|↑γ . However, we do not see any evidence on how to
prove fd(q) ∈ |µξ.Q|↑γ . Especially, imagine that q = κ̃.c such that c →∗ • ⋆ p. In this case,
proving p ∈ |µξ.Q|↑γ+1 is reduced to proving p ∈ |µξ.Q|↑β for some ordinal β ⩽ γ. However, the
sequence |µξ.Q|↑α is an increasing sequence, so |µξ.Q|↑β can be strictly smaller than |µξ.Q|↑γ+1.
Of course, if one can prove that there is no such a positive term κ̃.d reducing to • ⋆ fd(q) in
many steps such that q = κ̃.c and c →∗ • ⋆ p, then we can manage to prove this direction
|P |↓ ⊆ |P |↑. But the bad news is that apparently disproving the existence of this positive
term κ̃.d is the same as proving normalization. So we got stuck here!

Let us summarize what the main parts of our failure attempts are in order to understand
the system κµLLP better:

1. We first tried the reducibility candidates method in a similar way as proving normaliza-
tion of second order linear logic [Gir87a]: our failure was due to the existence of κ̃ terms.
The normalization of µLL is indeed proved by this reducibility candidates method in
[Bae12]. However, we do not see such κ̃ terms (proofs) in µLL, and the existence of such
positive terms in our calculus is due to polarization.

2. To solve the first issue, we provided another possible definition of interpretation of
formulas, and also a new set ‚α(P ) for any positive formula P and ordinal α. We
defined these notions by induction on α due to the existence of fixpoints of types,
exponentials, and again κ̃ terms.

3. Afterward, we saw that indeed one needs to consider both increasing and decreasing
sequences of |P |α’s to deal with the limit ordinals. The main reason for this is actually
the changes of polarity in formulas as we saw the issue in the example µζ.!?ζ.

In one sentence, we can say that apparently the difficulty is due to the coexistence of polar-
ization and fixpoints of types.
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Remark 24 It is worth mentioning that maybe the difficulty of the normalization proof de-
pends only on the presentation of the syntax. For instance, as suggested by one of the reviewer
(Olivier Laurent), one can consider an intuitionistic style of our system κµLLP and then try
to prove the normalization theorem using the very first failed attempt or the methods men-
tioned in [Mat98, Mat99b, Mat99a] (Indeed, if we do not have fixpoint, then our second failed
attempt proved the normalization of the resulting system). Based on this intuitionistic style,
one can also try to develop a natrual deduction system corresponding to κµLLP, however it
is not clear what rule we should consider for the Park’s rule in the case of natural deduction.
Nevertheless, the method that we consider in this manuscript is based on two denotational
models (Rel and Nuts), in which we first show that, by induction on the derivations in the
intersection type system given in Section 2.2.2, if the interpretation of a term is non empty
then it terminates. Then using a denotational totality argument, we show that the interpre-
tation of a term is not empty.

2.2.2 An intersection typing system

The syntax of points

Let I be an infinite and countable set of indices (we can take I = N). The syntax of relational
types or points is given in Figure 2.5, as well as the size sz(a) of a point, which is an integer
≥ 1. Given a point a and a literal ξ, we define a finite subset rgξ(a) of I as follows:

• rgξ∗ = ∅, rgξ(a, b) = rgξa ∪ rgξb, rgξ(j, ξ) = {j}, rgξ(j, ζ) = ∅ if ζ ̸= ξ, rgξ(i, a) =
rgξa, rgξ[a1, . . . , an] = ⋃n

i=1 rgξai, and rgξσ(a) = rgξa.

We give a typing system for these points in Figure 2.5. Its main purpose is to enforce that,
when a : P , given a literal ζ, the indices of I associated with ζ in a are pairwise distinct.

Given a0 : R, a literal ζ and a family of points −→
b = (bj)j∈rgζa0 such that bj : P for all j and

such that for any literal ξ the sets rgξbj are pairwise disjoint and disjoint from rgξa0 (when
these disjointness conditions hold we say that the pair (a0,

−→
b ) is adapted) then we define in the

obvious way the point a0{bj/(j, ζ)}j∈J for J = rgζa0 such that a0{bj/(j, ζ)}j∈J : R
[
P/ζ+].

One proves easily that, for any literal ξ ̸= ζ

rgξa0{bj/(j, ζ)}j∈J = rgξa0 ⊎
⊎

j∈rgζa0

rgξbj . (2.1)

Crucially, this point substitution is in some sense reversible.

Lemma 77 Let R and P be positive formulas and let ζ be a literal. Let a be a point such
that a : R

[
P/ζ+]. Let J ⊆ I be an infinite set. There is a point a0 such that a0 : R and

rgζa0 ⊆ J and there is a family of points
−→
b = (bj)j∈rgζa0 such that bj : P for all j ∈ rgζa0,

(a0,
−→
b ) is adapted and a = a0{bj/(j, ζ)}j∈rgζa0.

Proof: By induction on a assuming that we have a derivation of a : R
[
P/ζ+]. We consider

several cases, according to the shape of R.
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a, b, · · · := ∗ | (j, ζ) | (a, b) | (i, a) | [a1, . . . , an] | σ(a) with j ∈ I and i ∈ {1, 2}

sz(∗) = sz (j, ζ) = 1 sz(a, b) = sz(a) + sz(b)

sz (i, a) = sz(σ(a)) = 1 + sz(a) sz([a1, . . . , an]) = 1 +
n∑

i=1
sz(ai)

(p-var)
(j, ζ) : ζ

(p-1)
∗ : 1

a : P b : Q ∀ξ(rgξa ∩ rgξb = ∅)
(p-⊗)

(a, b) : P ⊗ Q

a : P
[
µζ.P/ζ+]

(p-µ)
σ(a) : µζ.P

a : Pi (p-⊕)
(i, a) : P1 ⊕ P2

(ai : N⊥)n
i=1 ∀ξ ∀i ̸= i′(rgξai ∩ rgξai′ = ∅)

(p-!)
[a1, · · · , an] : !N

k ∈ N (s-1)
∗ 1̃ k[∗]

ai P̃i [ai
1, . . . , ai

n] for i = 1, 2
(s-⊗)

(a1, a2) P̃1 ⊗ P2 [(a1
1, a2

1), . . . (a1
n, a2

n)]

k = ⊎n
i=1 Ji (aj : N⊥)k

j=1 (s-!)
[a1, . . . , ak] !̃N [[aj | j ∈ Ji] | i = 1, . . . , n]

i ∈ {1, 2} a P̃i [a1, . . . , an]
(s-⊕)

(i, a) P̃1 ⊕ P2 [(i, a1), . . . , (i, an)]

a ˜R [µζ.R/ζ+] [aj | j ∈ J ]
(s-µ)

σ(a) µ̃ζ.R [σ(aj) | j ∈ J ]

Figure 2.5: Syntax, size, typing rules and structural relation for points
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▷ If R = ζ+ we choose j ∈ J and set a0 = (j, ζ), bj = a. This is possible because J is infinite
and hence non-empty.

▷ If R = ξ+ ̸= ζ+ we must have a = (j, ξ) and we set a0 = a. In that case we have rgζa0 = ∅
and so we have no bk’s to define.

▷ If R = 1 we must have a = ∗ and we take a0 = a. As before rgζa0 = ∅ and so we have no
bk’s to define.

▷ If R is R1 ⊗ R2 so that a = (a1, a2) with ai : Ri
[
P/ζ+] for i = 1, 2. Let J1, J2 ⊆ J

be disjoint and infinite. By inductive hypothesis, for i = 1, 2, we can find a0
i : R with

rgζa0
i ⊆ Ji as well as families

−→
b(i) = (b(i)j)j∈rgζa0

i
such that ∀j b(i)j : P , (a0

i ,
−→
b(i)) is adapted

and ai = a0
i {b(i)j/(j, ζ)}j∈rgζa0

i
. For j ∈ rgζa0 = rgζa0

1 ⊎ rgζa0
2 we set bj = b(i)j where

i ∈ {1, 2} is uniquely determined by j ∈ rgζa0
i , defining −→

b = (bj)j∈rgζa0 . Let ξ be a literal,
j, j′ ∈ rgξa0 with j ̸= j′ and let K = rgξbj ∩rgξbj′ . If j, j′ ∈ rgξa0

i for i = 1 or i = 2 then K = ∅
since (a0

i ,
−→
b(i)) is adapted. If j ∈ rgξa0

i and j′ ∈ rgξa0
3−i then K = ∅ because we know that

rgξbj ⊆ rgξai: this is due to the fact that, by inductive hypothesis ai = a0
i {bk/(k, ζ)}k∈rgζa0

i
.

Similarly rgξbj′ ⊆ rgξa3−i and moreover rgξai∩rgξa3−i = ∅ because a : R1
[
P/ζ+]⊗R2

[
P/ζ+].

For the same reason, if j ∈ rgζa0
i we have rgξb(i)j ∩ rgξa0

3−i = ∅. It follows that the pair
(a0,

−→
b ) is adapted. The fact that a = a0{bj/(j, ζ)}j∈rgζa0 is an immediate consequence of the

inductive hypothesis.

▷ The case R = !R0 (and hence a = [a1, . . . , an]) is dealt with similarly (applying the inductive
hypothesis to the ai’s).

▷ The case R = R1 ⊕ R2 is straightforward: we have a = (i, a0) with a0 : Ri
[
P/ζ+] for i = 1

or i = 2 and the inductive hypothesis directly applies to a0.

▷ Last if R = µξ.Q with ξ ̸= ζ and ξ does not occur in P , so that a = σ(a0) and that we
have a derivation of a0 : R′ where R′ = Q

[
P/ζ+] [µξ.Q

[
P/ζ+]/ξ+] = Q

[
R/ξ+] [P/ζ+]. By

inductive hypothesis applied to a0 there is a0
0 : Q

[
R/ξ+] and a family (cj)j∈rgξ(a0

0) satisfying
the required properties wrt. a0. We take a0 = σ(a0

0) so that rgζa0 = rgζa0
0 and we set bj = cj

for each j in that set. ■

Given a closed positive type P , we define a binary relation P̃ between points a and mul-
tisets of points [a1, . . . , an] where a, a1, . . . , an : P . The definition is provided as a deduction
system in Figure 2.5. The role of this relation is to deal with the structural rules in the point
deduction system of Fig 2.6. Notice that in each of the deduction rules the sum of the sizes
of the points occurring on the left in the premises is strictly smaller than the size of the point
occurring on the left in the conclusion. So the size of such a deduction tree is upper-bounded
by the size of the point occurring on the left in its conclusion.

2.2.3 The point typing system

A negative point typing context is a sequence Φ = (α1 : a1 : N1, . . . , αk : ak : Nk) where the
αi’s are pairwise distinct and ai : N⊥i for each i. A positive point typing context is a sequence
Φ, a : P with a : P . In these rules we use Φ to denote the context (αi : ai : P⊥i )n

i=1 and N for
the ordinary typing context (αi : P⊥i )n

i=1. All rules but (i-ν) are given in Figure 2.6. Notice
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(ai P̃i [ ])i∈n\{j}
(i-n)

⊢ Φ | αj : aj : Pj

(ai P̃i [ ])n
i=1 (i-1)

⊢ Φ | () : ∗ : 1

(⊢ (αi : aj
i : P⊥i )n

i=1 | pj : bj : Qj)j=1,2 (ai P̃i [a1
i , a2

i ])n
i=1 (i-⊗)

⊢ Φ | (p1, p2) : (b1, b2) : Q1 ⊗ Q2

⊢ Φ | p : a : Qi (i-⊕)
⊢ Φ | ini(p) : (i, a) : Q1 ⊕ Q2

c ⊢ Φ, a : P
(i-κ̃)

⊢ Φ | κ̃.c : a : P

⊢ Φ | p : a : P
[
µζ.P/ζ+]

(i-µ)
⊢ Φ | fd(p) : σ(a) : µζ.P

(⊢ (αi : aj
i : P⊥i )n

i=1 | s : bj : N)j∈J (ai P̃i [aj
i | j ∈ J ])n

i=1 (i-!)
⊢ Φ | s! : [bj | j ∈ J ] : !N

(ai P̃i [ ])n
i=1 (i-•)

⊢ Φ, a : P | • : a : P⊥

c ⊢ Φ[, a : P ]
(i-⊥)

⊢ Φ[, a : P ] | κ⊥.c : ∗ : ⊥

c ⊢ Φ, α : a : N [, b : P ]
(i-κ)

⊢ Φ[, b : P ] | κα.c : a : N

c ⊢ Φ, α1 : a1 : N1, α2 : a2 : N1[, b : P ]
(i-`)

⊢ Φ[, b : P ] | κ(α1, α2).c : (a1, a2) : N1 ` N2

⊢ Φ[, a : P ] | si : b : Ni ⊢ N [, P ] | s3−i : N3−i (i-&)
⊢ Φ[, a : P ] | ⟨s1, s2⟩ : (i, b) : N1 & N2

⊢ Φ | p : a : P
(i-?)

⊢ Φ | der p : [a] : ?P

⊢ (αi : a1
i : P⊥i )[, a : P ] | s : b : P⊥ ⊢ (αi : a2

i : P⊥i ) | p : b : P (ai P̃i [a1
i , a2

i ])n
i=1 (i-cut)

(s ⋆ p) ⊢ Φ[, a : P ]

Figure 2.6: Point deduction system — the rule (i-ν) is given in the body of Section 2.2.3.
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that there are two instances of the rules (i-⊕) and (i-&), one for i = 1 and one for i = 2. We
give now the lacking (i-ν) inference rule: if h : Q, d : R, (bl : P )l∈L where L = rgζd, and

• ⊢ (αi : a′′i : P⊥i )n
i=1[, h : Q] | s : b : P⊥

• c ⊢ (αi : a′i : P⊥i )n
i=1, b : P, α : d{bl/(l, ζ)}l∈L : R⊥

[
P⊥/ζ−

]
• (⊢ (αi : al

i : P⊥i )n
i=1, bl : P | κR⊥,ζα.c : fl : νζ.R⊥)l∈L

• ai P̃i [a′i, a′′i ] + [al
i | l ∈ L] for i = 1, . . . , n

then ⊢ Φ[, h : Q] | κR⊥,ζα.(c ; s) : σ(d){fl/(l, ζ)}l∈L : νζ.R⊥.
Upon taking s = • we obtain the following derived rule (i-ν1) (with the same notations

as above). If

• c ⊢ (αi : a′i : P⊥i )n
i=1, b : P, α : d{bl/(l, ζ)}l∈L : R⊥

[
P⊥/ζ−

]
• (⊢ (αi : al

i : P⊥i )n
i=1, bl : P | κR⊥,ζα.c : fl : νζ.R⊥)l∈L

• ai P̃i [a′i] + [al
i | l ∈ L] for i = 1, . . . , n

then ⊢ Φ, b : P | κR⊥,ζα.c : σ(d){fl/(l, ζ)}l∈L : νζ.R⊥.
We will provide an example of our point deduction system in Section 2.2.4. The typing

system can seem complicated but it is completely imposed by the relational semantics, we
had actually no choice.

Interpretation of points

Given a set P of positive terms p such that ⊢| p : P , we set

• P• = {c | c ⊢ P and ∃p ∈ (P \ κ̃) c →∗ • ⋆ p}

• P κ̃ = P ∪ {κ̃.c | c ∈ P•}

so that any p ∈ P κ̃ satisfies ⊢| p : P . We set ‚ = SN, that is all commands c such that there
is no command d that c → d. Given a : P we define ‚(a : P ) = |a|P • and we set |a|P = ∥a∥κ̃

P

where

• ∥ ∗ ∥1 = {()}

• ∥(a1, a2)∥P1⊗P2 = {(p1, p2) | pi ∈ |ai|Pi for i = 1, 2}

• ∥(i, a)∥P1⊕P2 = {ini(p) | p ∈ |a|Pi} for i = 1, 2

• ∥[aj | j ∈ J ]∥!N = {t! | ∀j ∈ J ∀p ∈ |aj |N⊥ t ⋆ p ∈ ‚}

• ∥σ(a)∥µζ.P = {fd(p) | p ∈ |a|P [µζ.P/ζ+]}.

106



Fixpoints of types in linear logic from a Curry-Howard-Lambek perspective.

This definition is a simple definition by induction on points, even if recursive calls involve
larger µLLP formulas as parameters as in the last case. Notice that ∥a∥P = |a|P \ κ̃ since
∥a∥P ∩ κ̃ = ∅. As an auxiliary notion, given a : P and b : N⊥ we set |b|N (a : P ) = {s |
⊢ P | s : N and ∀p ∈ |b|N⊥ s ⋆ p ∈ ‚(a : P )}. We will also use |b|N for the set of s such
that ⊢| s : N and ∀p ∈ |b|N⊥ s ⋆ p ∈ ‚. The following lemma is a tree-typed version of the
functoriality of formulas with respect to the proofs.

Lemma 78 Let a : P , b : Q and s be such that ⊢ P | s : Q⊥. If ∀p ∈ ∥b∥Q s ⋆ p ∈ ‚(a : P )
then s ∈ |b|Q⊥(a : P ).

Proof: Let p = κ̃.c ∈ |b|Q (because of the assumption that we have in the statement of the
lemma, we only have to consider the case where p ∈ κ̃). This means that c →∗ • ⋆ q with
q ∈ |b|Q \ κ̃ = ∥b∥Q. It follows that s ⋆ p → c [s/•] →∗ (• ⋆ q) [s/•] = s ⋆ q ∈ ‚(a : P ) (notice
that • cannot occur free in q since q is a typed positive term). It follows that s⋆p ∈ ‚(a : P ).
■

Lemma 79 If a P̃ [a1, . . . , an] then ∥a∥P ⊆ ∥ai∥P and |a|P ⊆ |ai|P for 1 ≤ i ≤ n.

Proof: By induction on the derivation of a P̃ [a1, . . . , an] we prove that ∥a∥P ⊆ ∥ai∥P which
implies the announced inclusions.

• If the derivation consists of (s-1) then we have P = 1 and ∀i a = ai = ∗ so that the
statement obviously holds.

• If the derivation ends with (s-⊗) then P = P1 ⊗ P2, a = (a1, a2), ai = (a1
i , a2

i ) and
aj P̃j [aj

1, . . . , aj
n] for j = 1, 2. The inductive hypothesis gives ∥aj∥Pj ⊆ ∥aj

i ∥Pj for
j = 1, 2 and for each i whence the anounced inclusion by definition of ∥(a1, a2)∥P1⊗P2 .

• The case where the last rule is (s-⊕) is similar.

• If the last rule is (s-!) then P = !N , a = [b1, . . . , bk], ai = [bj | j ∈ Ji] with k = ⊎n
i=1 Ji.

Let p ∈ ∥a∥P so that p = s! with ∀j ∈ k ∀q ∈ |bj |N⊥ s ⋆ q ∈ ‚. So a fortiori for each
i ∈ n one has ∀j ∈ Ji ∀q ∈ |bj |N⊥ s ⋆ q ∈ ‚, that is p ∈ ∥ai∥P .

• If the last rule is (s-µ) so that P = µζ.Q, a = σ(b), ai = σ(bi) for i ∈ n and we have
b ˜Q [P/ζ+] [bi, . . . , bn]. Let p ∈ |a|P , which means that p = fd(q) with q ∈ |b|Q[P/ζ+].
For i ∈ n we have q ∈ ∥bi∥Q[P/ζ+] by inductive hypothesis and hence p ∈ ∥ai∥P .

■

Lemma 80 Let P be a closed positive formula and let a : P . If b : P , one has a P̃ [b] iff
a = b. Let (bj : P )j∈J , (Jk)k∈K be such that

⊎
k∈K Jk = J . Then one has a P̃ [bj | j ∈ J ] iff

there is (ck : P )k∈K such that a P̃ [ck | k ∈ K] and ck P̃ [bj | j ∈ Jk] for each k ∈ K.
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Proof: Straightforward induction on the size of a. ■

Definition 81 We know that a P̃ [a], and since [a] = [a] + [], there are a′, e ∈ P , by
Lemma 80, such that a P̃ [a′, e], a ′̃ P [a], and e P̃ []. Therefore we have a = a′. This
implies in particular ∃e : P e P̃ [ ]. Such an e is called a coneutral point of P .

By Lemma 80, if a P̃ [e, b] and e is coneutral then a = b (by taking J1 = ∅, J2 = {1},
K = {1, 2}, c1 = e, c2 = b, and b2 = b), and if a : P there is a coneutral e such that a P̃ [e, a]
(which depends generally on a). Coneutral points are generally not unique: for instance in
1 ⊕ 1, both (1, ∗) and (2, ∗) are coneutral.

The following lemma is functoriality of our point deduction system. We saw functoriality
of κµLLP in Section 2.1.3, and we will see the semantical functoriality in Lemma 87.

Lemma 82 Let Q be a positive formula, η a literal, π a closed type valuation such that
all free type variables of Q, but possibly η+, η−, are in dom(π). Let d : Q [π], assume that
⊢ (αi : aj

i : Ni)n
i=1, bj : P | s : cj : N for each j ∈ rgηd. If (ai : N⊥i )n

i=1 are such that for all
i ∈ n one has ai Ñ⊥i [aj

i | j ∈ rgηd]. Then

⊢ (αi : ai : Ni), d{bj/(j, η)}j∈rgηd : Q
[
π, P/η+

]
| Q

[
π, s/η+

]
: d{cj/(j, η)}j∈rgηd : Q⊥

[
π⊥, N/η−

]
(2.2)

and

⊢ (αi : ai : Ni), d{cj/(j, η)}j∈rgηd : Q
[
π, N/η−

]
| Q

[
π, s/η−

]
: d{bj/(j, η)}j∈rgηd : Q⊥

[
π⊥, P/η+

]
(2.3)

Proof: By induction on the pairs (Q, d), ordered lexicographically, following the definition of
substitution of terms in formulas in Section 2.1.3. It is important to notice that the universal
quantification on π is part of the statement we prove by induction. We set J = rgηd.

▷ If Q = 1 then d = ∗, J = ∅, Q
[
π, s/η+] = •, d{bj/(j, η)}j∈J = d{cj/(j, η)}j∈J = ∗ and

(ai P̃i [ ])n
i=1. We have ⊢ (αi : ai : Ni)n

i=1, ∗ : 1 | • : ∗ : ⊥ as required.

▷ The case Q = ζ+ ̸= η+ is similar.

▷ If Q = η+, d = (j, η) for some j ∈ I then J = {j} and hence d{bk/(k, η)}k∈J = bj and
d{ck/(k, η)}k∈J = cj . Moreover we have (aj

i P̃i [ai])n
i=1 so that aj

i = ai for each i ∈ n
by Lemma 80. We have Q

[
π, s/η+] = s and the first conclusion is identical to the typing

assumption on s. Since Q [π, s/η−] = • the second conclusion is obtained as in the previous
cases.

▷ If Q = Q1 ⊗ Q2 then d = (d1, d2) with (dk : Qk [π])k=1,2. Let K = {1, 2} and Jk = rgηdk

for k ∈ K so that J = J1 ⊎ J2. By Lemma 80, for each i ∈ n and k ∈ K there is a(k)i : N⊥i
such that (a(k)i Ñ⊥i [aj

i | j ∈ Jk])n
i=1 for k ∈ K and (ai Ñ⊥i [a(1)i, a(2)i])n

i=1. By inductive
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hypothesis we have

⊢ (αi : a(k)i : Ni)n
i=1, dk{bj/(j, η)}j∈Jk

: Q
[
π, P/η+

]
|

: Qk

[
π, s/η+

]
: dk{cj/(j, η)}j∈Jk

Q⊥
[
π⊥, N/η−

]
(2.4)

for k ∈ K. Pick some coneutral (ei : N⊥i )n
i=1 and fk : Qk

[
π, N⊥/η+

]
, we have

⊢ (αi : ei : Ni)n
i=1, βk : dk{cj/(j, η)}j∈Jk

: Q⊥k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥3−k

[
π⊥, N/η−

]
|

: βk : dk{cj/(j, η)}j∈Jk
Qk

[
π, N⊥/η+

]
(2.5)

Since (a(k)i Ñ⊥i [ei, a(k)i])n
i=1 we get the following by the rules (i-cut) and (i-n)

sk ⋆ βk ⊢ (αi : a(k)i : Ni)n
i=1, dk{bj/(j, η)}j∈Jk

: Qk

[
π, P/η+

]
,

βk : dk{cj/(j, η)}j∈Jk
: Q⊥k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥3−k

[
π⊥, N/η−

]
(2.6)

where sk = Qk

[
π, s/η+] and consequently

⊢ (αi : a(k)i : Ni)n
i=1, βk : dk{cj/(j, η)}j∈Jk

: Q⊥k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥3−k

[
π⊥, N/η−

]
|

: κ̃.(sk ⋆ βk) : dk{bj/(j, η)}j∈Jk
Q
[
π, P/η+

]
(2.7)

Using the fact that (ai Ñ⊥i [a(1)i, a(2)i])n
i=1 and the coneutrality of f1, f2 we get

⊢ (αi : ai : Ni)n
i=1, β1 : d1{cj/(j, η)}j∈J1 : Q⊥1

[
π⊥, N/η−

]
, β2 : d2{cj/(j, η)}j∈J2 : Q⊥2

[
π⊥, N/η−

]
|

: (κ̃.(s1 ⋆ β1), κ̃.(s2 ⋆ β2)) : (d1{bj/(j, η)}j∈J1 , d2{bj/(j, η)}j∈J2)Q
[
π, P/η+

]
(2.8)

Since we have d{bj/(j, η)}j∈J = (d1{bj/(j, η)}j∈J1 , d2{bj/(j, η)}j∈J2) and similarly for d{cj/(j, η)}j∈J ,
we finally get

⊢ (αi : ai : Ni)n
i=1, d{bj/(j, η)}j∈J : Q

[
π, P/η+

]
| κ(β1, β2).(• ⋆ (κ̃.(s1 ⋆ β1),

)κ̃.(s2 ⋆ β2)) : d{cj/(j, η)}j∈J : Q⊥
[
π⊥, N/η−

]
(2.9)

as contended.

▷ The case Q = Q1 ⊕ Q2 is similar. The second conclusion is obtained in the same way.

▷ Assume that Q = !R⊥, so that d = [dk | k ∈ K] with dk : R
[
π⊥
]
. For k ∈ K let Jk = rgηdk

so that J = ⊎
Jk. By Lemma 80, for each i ∈ n and k ∈ K there is a(k)i : N⊥i such

that (a(k)i Ñ⊥i [aj
i | j ∈ Jk])n

i=1 for k ∈ K and (ai Ñ⊥i [a(k)i | k ∈ K])n
i=1. By inductive

hypothesis, for each k ∈ K we have

⊢ (αi : a(k)i : Ni)n
i=1, dk{cj/(j, η)}j∈Jk

: R
[
π, N/η−

]
| t : dk{bj/(j, η)}j∈Jk

: R⊥
[
π⊥, P/η+

]
(2.10)
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where t = R [π, s/η−], so

⊢ (αi : a(k)i : Ni)n
i=1, β : dk{bj/(j, η)}j∈Jk

: R⊥
[
π⊥, P/η+

]
|

: κ̃.(t ⋆ β) : dk{cj/(j, η)}j∈Jk
R
[
π, N/η−

]
(2.11)

So

⊢ (αi : a(k)i : Ni)n
i=1, β : dk{bj/(j, η)}j∈Jk

: R⊥
[
π⊥, P/η+

]
|

: der κ̃.(t ⋆ β) : [dk{cj/(j, η)}j∈Jk
]?R

[
π, N/η−

]
(2.12)

and hence

⊢ (αi : a(k)i : Ni)n
i=1, γ : [dk{bj/(j, η)}j∈Jk

] : ?R
[
π, N/η−

]
|

: κβ.(der κ̃.(t ⋆ β) ⋆ γ) : dk{cj/(j, η)}j∈Jk
R⊥

[
π⊥, P/η+

]
(2.13)

Since (ai Ñ⊥i [a(k)i | k ∈ K])n
i=1 and [dk{cj/(j, η)}j∈Jk

| k ∈ K] ˜!R⊥ [π⊥, N⊥/η+] [[dk{cj/(j, η)}j∈Jk
] |

k ∈ K] we have

⊢ (αi : ai : Ni)n
i=1, γ : [dk{bj/(j, η)}j∈Jk

| k ∈ K] : ?R
[
π, N/η−

]
|

: (κβ.(der κ̃.(t ⋆ β) ⋆ γ))! : [dk{cj/(j, η)}j∈Jk
| k ∈ K]!R⊥

[
π⊥, P/η+

]
(2.14)

and therefore we have

⊢ (αi : ai : Ni)n
i=1, [dk{cj/(j, η)}j∈Jk

| k ∈ K] : !R⊥
[
π⊥, P/η+

]
|

: κγ.(• ⋆ κβ.(der κ̃.(t ⋆ β) ⋆ γ)!) : [dk{bj/(j, η)}j∈Jk
| k ∈ K]?R

[
π, N/η−

]
(2.15)

as required. The second conclusion is dealt with similarly.

▷ Assume that Q = µζ.R. We set RP = R
[
P/η+] and RN = R

[
N⊥/η+

]
. We have d = σ(d0)

with d0 : R [π]
[
Q [π] /ζ+]. By Lemma 77 we can find f : R [π] as well as a family (dl : Q [π])l∈L

where L = rgζf such that d0 = f{dl/(l, ζ)}l∈L. Let J = rgηd, we have J = J ′ ⊎
⊎

l∈L Jl where
J ′ = rgηf and Jl = rgηdl for each l ∈ L. By Lemma 80 we can find a′i, al

i : N⊥i such that
ai Ñ⊥i [a′i] + [al

i | l ∈ L] and a′i Ñ⊥i [aj
i | j ∈ J ′] and al

i Ñ⊥i [aj
i | j ∈ Jl], for all i = 1, . . . , n.

Let l ∈ L. We set fl = dl{bj/(j, η)}j∈Jl
and gl = dl{cj/(j, η)}j∈Jl

. By inductive hypothesis
(since sz dl ≤ sz d0 < sz d) we have, for all l ∈ L,

⊢ (αi : al
i : Ni)n

i=1, fl : µζ.RP [π] | Q
[
π, s/η+

]
: gl : νζ.R⊥N

[
π⊥
]

(2.16)

Let ρ = π · (µζ.RP [π] /ζ+). Notice that all the free variables of R, but possibly η+, η− are in
dom(ρ). Let d1 = f{fl/(l, ζ)}l∈L so that d1 : R [ρ] since f : R [π] and fl : µζ.RP [π]. Notice
that rgηd1 = J ′. We apply the inductive hypothesis to (R, d1) and get

⊢ (αi : a′i : Ni)n
i=1, d1{bj/(j, η)}j∈J ′ : R

[
ρ, P/η+

]
|

: R
[
ρ, s/η+

]
: d1{cj/(j, η)}j∈J ′R⊥

[
ρ⊥, N/η−

]
(2.17)
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Notice that R
[
ρ, P/ζ+] = RP [π]

[
µζ.RP [π]/ζ+] and R

[
ρ, N⊥/ζ+

]
= RN⊥ [π]

[
µζ.RP [π]/ζ+]

so that

• ⋆ fd(κ̃.(R
[
ρ, s/η+

]
⋆ α)) ⊢ (αi : a′i : Ni)n

i=1, σ(d1{bj/(j, η)}j∈J ′) : µζ.RP [π],

α : d1{cj/(j, η)}j∈J ′ : RN [π]⊥
[
(µζ.RP [π])⊥/ζ−

]
(2.18)

We have

σ(d1{bj/(j, η)}j∈J ′) = d{bj/(j, η)}j∈J

d1{cj/(j, η)}j∈J ′ = f{cj/(j, η)}j∈J ′{fl/(l, ζ)}l∈L

hence by (2.16) and (2.18) applying rule (i-ν1) and using also the fact that ai Ñ⊥i [a′i] + [al
i |

l ∈ L], we get

⊢ (αi : ai : Ni)n
i=1, d{bj/(j, η)}j∈J : µζ.RP [π] |

: µζ.R
[
π, s/η+

]
: σ(f){cj/(j, η)}j∈J ′{gl/(l, ζ)}l∈Lνζ.(RN [π])⊥ (2.19)

and notice that σ(f){cj/(j, η)}j∈J ′{gl/(l, ζ)}l∈L = d{cj/(j, J)}j∈rgηd since gl = dl{cj/(j, η)}j∈Jl

and d = σ(f){dl/(l, ζ)}l∈L; the announced statement is proven. For the second conclusion we
proceed similarly. ■

Notice that we do not need this current format of Lemma 82. However we at least need to
have Lemma 82 without the points just to say that Q

[
π, s/η+] and Q [π, s/η−] are well-typed,

and moreover it shows some sort of completeness of this realizability semantics for Q
[
π, s/η+]

and Q [π, s/η−].

Lemma 83 Let Q be a positive formula, η a literal, π a closed type valuation such that all free
type variables of Q, but possibly η+, η−, are in dom(π) and let d : Q [π]. If s ∈ |cj |N (bj : P )
for all j ∈ J = rgηd then Q

[
π, s/η+] ∈ |d(−→c )|Q⊥[π⊥,N/η−](d(−→b ) : Q

[
π, P/η+]) where d(−→b ) =

d{bj/(j, η)}j∈rgηd and similarly for d(−→c ). And we have Q [π, s/η−] ∈ |d(−→b )|Q⊥[π⊥,P/η+](d(−→c ) :
Q [π, N/η−]).

Proof: By induction on the pairs (Q, d), ordered lexicographically, following the definition
of substitution of terms in formulas in Section 2.1.3.

▷ The cases Q = 1 and Q = η+ are trivial.

▷ If Q = Q1 ⊗ Q2 then d = (d1, d2) with (dk : Qk [π])k=1,2 and J = J1 ⊎ J2 where Jk = rgηdk

and by inductive hypothesis we have sk = Qk

[
π, s/η+] ∈ |gk|Nk

(fk : Pk) where fk = dk(−→b ),
Nk = Q⊥k

[
π⊥, N/η−

]
, gk = dk(−→c ) and Pk = Qk

[
π, P/η+] for k = 1, 2. It suffices to prove

that t ∈ |(g1, g2)|N1`N2((f1, f2) : P1 ⊗P2) where t = κ(β1, β2).(•⋆(κ̃.(s1 ⋆β1), κ̃.(s2 ⋆β2))). We
use Lemma 78 so let qk ∈ |gk|Q⊥

k
for k = 1, 2, we have t⋆(q1, q2) → (•⋆(κ̃.(s1 ⋆q1), κ̃.(s2 ⋆q2))).

We have sk ⋆ qk ∈ ‚(fk : Pk) and hence (κ̃.(s1 ⋆ q1), κ̃.(s2 ⋆ q2)) ∈ ∥(f1, f2)∥P1⊗P2 so that
• ⋆ (κ̃.(s1 ⋆ q1), κ̃.(s2 ⋆ q2)) ∈ ‚((f1, f2) : P1 ⊗ P2) and hence t ⋆ (q1, q2) ∈ ‚((f1, f2) : P1 ⊗ P2).
The case Q = Q1 ⊕ Q2 is similar.

111



CHAPTER 2. POLARIZED LL WITH FIXPOINTS AND ITS SEMANTICS

▷ If Q = !R⊥ then d = [d1, . . . , dk] with J = ⊎k
l=1 Jl where Jl = rgηdl for each l ∈ k. By

inductive hypothesis s′ = R
[
π⊥, s/η−

]
∈ |dl(

−→
b )|R⊥[π,P/η+](dl(−→c ) : R

[
π⊥, N/η−

]
) for each

l ∈ k and we must prove that t ∈ |[dl(−→c ) | l ∈ L]|?R[π⊥,N/η−]([dl(
−→
b ) | l ∈ L] : !R⊥

[
π, P/η+])

where t = !R⊥
[
π, s/η+] = κβ.(• ⋆ (κα.(der κ̃.(s′ ⋆ α) ⋆ β))!) where s′ = R

[
π⊥, s/η−

]
and

for this we apply Lemma 78. Let s1 ∈
⋂

l∈L |dl(−→c )|R⊥[π,N⊥/η+], it suffices to prove that

t ⋆ s1
! ∈ ‚([dl(

−→
b ) | l ∈ L] : !R⊥

[
π, P/η+]). We have t ⋆ s1

! → • ⋆ (κα.(der κ̃.(s′ ⋆ α) ⋆ s1
!))!

so it is sufficents to prove (κα.(der κ̃.(s′ ⋆ α) ⋆ s1
!))! ∈ |[dl(

−→
b ) | l ∈ L]|!R⊥[π,P/η+], and

hence it is enough to prove that κα.(der κ̃.(s′ ⋆ α) ⋆ s1
!) ∈

⋂
l∈L |dl(

−→
b )|R⊥[π,P/η+]. So let

q ∈
⋃

l∈L |dl(
−→
b )|R[π⊥,P ⊥/η−], it suffices to prove that (der κ̃.(s′ ⋆ q) ⋆ s1

!) ∈ ‚. Let l ∈ L

such that q ∈ |dl(
−→
b )|R[π⊥,P ⊥/η−], since s′ ∈ |dl(

−→
b )|R⊥[π,P/η+](dl(−→c ) : R

[
π⊥, N/η−

]
) we

have s′ ⋆ q ∈ ‚(dl(−→c ) : R
[
π⊥, N/η−

]
) and hence κ̃.(s′ ⋆ q) ∈ |dl(−→c )|R[π⊥,N/η−] and this

holds for this particular l ∈ L, that is κ̃.(s′ ⋆ q) ∈
⋃

l∈L |dl(−→c )|R[π⊥,N/η−]. Since s1 ∈⋂
l∈L |dl(−→c )|R⊥[π,N⊥/η+] it follows that s1 ⋆ κ̃.(s′ ⋆ q) ∈ ‚, hence der κ̃.(s′ ⋆ q) ⋆ s1

! ∈ ‚
as expected since der κ̃.(s′ ⋆ q) ⋆ s1

! → s1 ⋆ κ̃.(s′ ⋆ q).

▷ Assume that Q = µζ.R. We set RP = R
[
P/η+] and RN = R

[
N⊥/η+

]
, QP = Q

[
P/η+]

and QN = Q
[
N⊥/η+

]
, and also t = Q

[
π, s/η+]. We also use ρ = π · (QP [π] /ζ+). We have

d = σ(d0) with d0 : R [π]
[
Q [π] /ζ+]. By Lemma 77 we can find f : R [π] as well as a family

(dl : Q [π])l∈L where L = rgζf such that d0 = f{dl/(l, ζ)}l∈L. Let J = rgηd, we have J =
J ′ ⊎

⊎
l∈L Jl where J ′ = rgηf and Jl = rgηdl for each l ∈ L. By inductive hypothesis applied

to (Q, dl) (since sz dl ≤ sz d0 < sz d) we have t ∈ |gl|Q⊥
N [π⊥](fl : QP [π]) where fl = dl(

−→
b )

and gl = dl(−→c ) for each l ∈ L, since sz dl ≤ sz d0 < sz d. Notice that f(−→c ){gl/(l, ζ)}l∈L =
d0(−→c ) by definition of the gl’s. We must prove that t ∈ |d(−→c )|Q⊥

N [π⊥](d(−→b ) : QP [π]) so let

p ∈ ∥d(−→c )∥QN [π], it suffices to prove that t ⋆ p ∈ ‚(d(−→b ) : QP [π]). We have p = fd(q) with
q ∈ |d0(−→c )|RN [π,QN [π]/ζ+]. We have (see Section 2.1.3) t = Q

[
π, s/η+] = κQ⊥

N [π⊥],ζα.c where
c = • ⋆ fd(κ̃.(s′ ⋆ α)) where s′ = R

[
ρ, s/η+]. So t ⋆ p → (RN

[
π, t/ζ+] ⋆ q) [κα.c/•].

Notice that f(−→c ) = f{cj/(j, η)}j∈J ′ satistfies f(−→c ) : RN [π] and hence by inductive
hypothesis applied to (R, f(−→c )) we have that RN

[
π, t/ζ+] belongs to the set

|f(−→c ){gl/(l, ζ)}l∈L|R⊥
N [π⊥,Q⊥

N [π⊥]/ζ−](f(−→c ){fl/(l, ζ)}l∈L : RN

[
π, QP [π] /ζ+

]
)

since we have seen that t ∈ |gl|Q⊥
N [π⊥](fl : QP [π]) for each l ∈ L. Since q ∈ |d0(−→c )|RN [π,QN [π]/ζ+]

and d0(−→c ) = f(−→c ){gl/(l, ζ)}l∈L it follows that c′ = RN

[
π, t/ζ+]⋆q ∈ ‚(f(−→c ){fl/(l, ζ)}l∈L :

RN

[
π, QP [π] /ζ+]) which means c′ →∗ • ⋆ r for some r ∈ ∥f(−→c ){fl/(l, ζ)}l∈L∥RN [π,QP [π]/ζ+]

and therefore c′ [κα.c/•] →∗ κα.c⋆r = κα.(•⋆ fd(κ̃.(s′ ⋆α)))⋆r → •⋆ fd(κ̃.(s′ ⋆r)). Notice next
that f ′ = f{fl/(l, ζ)}l∈L : R

[
π, QP [π] /ζ+] = R [ρ]. Hence by induction hypothesis applied

to (R, f ′) and since f ′(−→c ) = f(−→c ){fl/(l, ζ)}l∈L we have s′ ∈ |f ′(−→c )|R⊥[ρ⊥,N/η−](f
′(−→b ) :

R
[
ρ, P/η+]) and hence s′ ⋆ r ∈ ‚(f ′(−→b ) : R

[
ρ, P/η+]). Notice that f ′(−→b ) = d0(−→b ) and

hence we have κ̃.(s′ ⋆ r) ∈ |d0(−→b )|R[ρ,P/η+] and therefore, by definition of ρ, fd(κ̃.(s′ ⋆ r)) ∈
∥d(−→b )∥QP [π]. So we have • ⋆ fd(κ̃.(s′ ⋆ r)) ∈ ‚(d(−→b ) : QP [π]) and hence t ⋆ p ∈ ‚(d(−→b ) :
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QP [π]) as contended.

▷ The second statement of the lemma is proven similarly in the same induction of course
since the case Q = !R⊥ (change of polarity) for a given statement uses the other one as an
inductive hypothesis. ■

2.2.4 Example: the integers

We continue the example initiated in Section 2.1.4. There is a bijection from N to the points
a : nat which maps 0 to 0 = σ(1, ∗) and n + 1 to n + 1 = σ(2, n). With these notations the
following rules are derivable in the point typing system.

• If (ai Ñi [ ])n
i=1 then ⊢ (αi : ai : Pi)n

i=1 | 0 : 0 : nat.

• If ⊢ Φ | p : k : nat then ⊢ Φ | suc p : k + 1 : nat.

• If ⊢ (αi : a1
i : Ni)n

i=1 | p : a : P , ⊢ (αi : a2
i : Ni)n

i=1[, b : Q] | a : s : P⊥ and
(ai Ñ⊥i [a1

i , a2
i ])n

i=1 then ⊢ (αi : ai : Ni)n
i=1[, b : Q] | it(p, t ; s) : 0 : nat⊥.

• If ⊢ (αi : a1
i : Ni)n

i=1[, b : Q] | s : a : P⊥, ⊢ (αi : a2
i : Ni)n

i=1, a : P | t : a′ : P⊥,
⊢ (αi : a3

i : Ni)n
i=1, a′ : P | it(p, t ; •) : n : nat⊥ and (ai Ñ⊥i [a1

i , a2
i , a3

i ])n
i=1 then

⊢ (αi : ai : Ni)n
i=1[, b : Q] | it(p, t ; s) : n + 1 : nat⊥.

This shows semantically that it(p, t ; s) is an iterator, with p corresponding to the base case,
t to the inductive step and s to a continuation using the result of the iteration.

Interpretation Theorem

Using the previous lemmas it is not very hard to relate the point typing system with normal-
ization.

Theorem 84 Let Φ = (αi : ai : P⊥i )n
i=1 be a point context and let a : P , let pi ∈ |ai|Pi for

i = 1, . . . , n.

1. If c ⊢ Φ then c[pi/αi]ni=1 ∈ ‚.

2. If c ⊢ Φ, a : P then c[pi/αi]ni=1 ∈ ‚(a : P ).

3. If ⊢ Φ | s : b : N then s[pi/αi]ni=1 ∈ |b|N .

4. If ⊢ Φ, a : P | t : b : N then t[pi/αi]ni=1 ∈ |b|N (a : P ).

5. If ⊢ Φ | p : a : P then p[pi/αi]ni=1 ∈ |a|P .

Proof: By induction on the point derivation δ for c, t and p. To increase readibility we use c′

for c[pi/αi]ni=1 and similarly for s and p. In the induction, we use the notations introduced in
the statement of the theorem to avoid boring sentences introducing new symbols. But one has
to keep in mind that the satement proven by induction contains the universal quantification
on the pi’s.
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▷ δ consists of (i-n) so that we are in case (5) with p = αj for some j ∈ n, and a = aj . In
that case we have p′ = pj and the expected conclusion follows from ∥aj∥Pj ⊆ |aj |Pj .

▷ δ consists of (i-1) so that we are in case (5) with p = () and a = ∗ . We have p′ = () so that
p′ ∈ ∥ ∗ ∥1 ⊆ | ∗ |1.

▷ δ ends with a (i-⊗) so that we are in case (5) with p = (q1, q2), a = (b1, b2) and we have
subderivations δj of ⊢ (αi : aj

i : P⊥i )n
i=1 | qj : bj : Qj for j ∈ 2 and moreover ai P̃i [a1

i , a2
i ]

for all i ∈ n. For each i ∈ n we know that pi ∈ ∥ai∥Pi and hence by Lemma 79 we have
pi ∈ ∥aj

i ∥Pi for each i ∈ n and j ∈ 2. Hence by inductive hypothesis qj
′ ∈ |bj |Qj so that

p′ = (q1
′, q2

′) ∈ ∥(b1, b2)∥Q1⊗Q2 ⊆ |(b1, b2)|Q1⊗Q2 .

▷ δ ends with a left (i-⊕) the case of a right (i-⊕) being of course completely similar. We
are in case (5) and P = Q1 ⊕ Q2, p = in1(q) and a = (1, b) and we have a subderivation
δ1 of ⊢ Φ | q : b : Q1 so that by inductive hypothesis q′ ∈ |b|Q1 and hence p′ = in1(q′) ∈
∥(1, b)∥Q1⊕Q2 ⊆ |(1, b)|Q1⊕Q2 .

▷ δ ends with a (i-κ̃). We are in case (5) with p = κ̃.c and we have a subderivation δ1 of δ which
has c ⊢ Φ, a : P as conclusion. By inductive hypothesis we have c′ ∈ ‚(a : P ) = |a|P • = ∥a∥P

•

and hence p′ = κ̃.c′ ∈ |a|P as required.

▷ δ ends with (i-µ) so that we are in case (5) with P = µζ.Q, p = fd(q) and a = σ(b) and δ
has a subderivation δ1 whose conclusion is ⊢ Φ | q : b : Q

[
P/ζ+]. By inductive hypothesis we

have q′ ∈ |b|Q[P/ζ+] and hence p′ = fd(q′) ∈ ∥σ(b)∥µζ.Q ⊆ |a|P .

▷ δ ends with (i-!) so that we are in case (5) with P = !N , p = s! and a = [bj | j ∈ J ] and
δ has a subderivation δj of ⊢ (αi : aj

i : P⊥i ) | s : bj : N for each j ∈ J and moreover we
have ai P̃i [aj

i | j ∈ J ] for each i ∈ n. Since ∥ai∥Pi ⊆ ∥aj
i ∥Pi for each i ∈ n (Lemma 79)

and j ∈ J we have s′ ∈ |bj |N by inductive hypothesis applied to δj for each j ∈ J and hence
p′ = (s′)! ∈ ∥[bj | j ∈ J ]∥!N ⊆ |a|P .

▷ δ is (i-•) so that we are in case (4) with N = P⊥, s = •, b = a and ai P̃i [ ] for each
i ∈ n. We have s′ = • so that for all p ∈ ∥a∥P we have s′ ⋆ p ∈ ‚(a : P ) which means that
s′ ∈ |a|P ⊥(a : P ) as required.

▷ δ ends with a left (i-&) (the case of a right (i-&) is of course completely similar) and we
are in case (3) with N = N1 & N2, a = (1, a1), s = ⟨s1, s2⟩ and we have a subderivation δ1
whose conclusion is ⊢ Φ | s1 : a1 : N1. The other subderivation δ2 makes sure that s2 is well
typed in the typing system of Figure 2.3. Let p ∈ ∥(1, a1)∥N⊥

1 ⊕N⊥
2

that is p = in1(p1) with
p1 ∈ |a1|N⊥

1
. We have s′ ⋆ p = ⟨s1

′, s2
′⟩ ⋆ in1(p1) → s1

′ ⋆ p1 ∈ ‚ by inductive hypothesis and
hence s′ ∈ |a|N .

▷ δ ends with a left (i-&) (the case of a right (i-&) is of course completely similar) and we are
in case (4) with N = N1 & N2, b = (1, b1), s = ⟨s1, s2⟩ and we have a subderivation δ1 whose
conclusion is ⊢ Φ, a : P | s1 : b1 : N1. The other subderivation δ2 makes sure that s2 is well
typed in the typing system of Figure 2.3. Let p ∈ ∥(1, b1)∥N⊥

1 ⊕N⊥
2

that is p = in1(p1) with
p1 ∈ |b1|N⊥

1
. We have s′ ⋆ p = ⟨s1

′, s2
′⟩ ⋆ in1(p1) → s1

′ ⋆ p1 ∈ ‚(a : P ) by inductive hypothesis
and hence s′ ∈ |b|N (a : P ).

▷ δ ends with (i-κ) and we are in case (3) with s = κα.c and we have a subderivation δ1 whose
conclusion is c ⊢ Φ, α : a : N . Let p ∈ ∥a∥N⊥ we have s′ ⋆ p → c′ [p/α] ∈ ‚ by inductive
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hypothesis. It follows that s′ ∈ |a|N .

▷ δ ends with (i-κ) and we are in case (4) with s = κα.c and we have a subderivation δ1 whose
conclusion is c ⊢ Φ, a : P, α : b : N . Let p ∈ ∥b∥N⊥ we have s′ ⋆ p → c′ [p/α] ∈ ‚(a : P ) by
inductive hypothesis. It follows that s′ ∈ |b|N (a : P ) as required.

▷ δ ends with (i-⊥) and we are in case (3) with N = ⊥, a = ∗, s = κ⊥.c and δ has a
subderivation δ1 whose conclusion is c ⊢ Φ. We have s′ ⋆ () = κ⊥.c′ ⋆ () → c′ and since, by
inductive hypothesis, c′ ∈ ‚, if follows that s′ ∈ | ∗ |⊥.

▷ δ ends with (i-⊥) and we are in case (4) with N = ⊥, b = ∗, s = κ⊥.c and δ has a
subderivation δ1 whose conclusion is c ⊢ Φ. We have s′ ⋆ () = κ⊥.c′ ⋆ () → c′ and since, by
inductive hypothesis, c′ ∈ ‚(a : P ), if follows that s′ ∈ | ∗ |⊥(a : P ).

▷ δ ends with (i-`) and we are in case (3) with N = N1 ` N2, a = (a1, a2), s = κ(α1, α2).c
and we have a subderivation δ1 whose conclusion is c ⊢ Φ, α1 : a1 : N1, α2 : a2 : N2. Let
p ∈ ∥(a1, a2)∥N⊥

1 ⊗N⊥
2

, that is p = (q1, q2) with qj ∈ |aj |N⊥
j

for j ∈ 2. We have s′ ⋆ p →
c′[q1/α1, q2/α2] ∈ ‚ by inductive hypothesis. It follows that s′ ∈ |a|N .

▷ δ ends with (i-`) and we are in case (4) with N = N1 ` N2, b = (b1, b2), s = κ(α1, α2).c
and we have a subderivation δ1 whose conclusion is c ⊢ Φ, α1 : b1 : N1, α2 : b2 : N2, a : P .
Let p ∈ ∥(b1, b2)∥N⊥

1 ⊗N⊥
2

, that is p = (q1, q2) with qj ∈ |bj |N⊥
j

for j ∈ 2. We have s′ ⋆ p →
c′[q1/α1, q2/α2] ∈ ‚(a : P ) by inductive hypothesis. It follows that s′ ∈ |b|N (a : P ).

▷ δ ends with (i-?) so that we are in case (3) (notice that there no case (4) for this rule) with
N = ?Q, a = [b], s = der p and δ has a subderivation δ1 whose conclusion is ⊢ Φ | p : b : Q.
Let p ∈ ∥[b]∥!Q⊥ , that is p = t! where t ∈ |b|Q⊥ . We have s′ ⋆ p → t ⋆ p′ ∈ ‚ since p′ ∈ |b|Q by
inductive hypothesis.

▷ δ ends with (i-cut) and we are in case (1) with c = s ⋆ p and δ has two subderivations δ1
and δ2 with conclusions ⊢ (αi : a1

i : P⊥i )n
i=1 | s : b : Q⊥ and ⊢ (αi : a2

i : P⊥i )n
i=1 | p : b : Q and

ai P̃i [a1
i , a2

i ] for all i ∈ n so that by Lemma 79 we have pi ∈ |aj
i |Pi for all i ∈ n and j ∈ 2. By

inductive hypothesis we have s′ ∈ |b|Q⊥ and p′ ∈ |b|Q so that c′ = s′ ⋆ p′ ∈ ‚.

▷ δ ends with (i-cut) and we are in case (2) with c = s ⋆ p and δ has two subderivations δ1
and δ2 with conclusions ⊢ (αi : a1

i : P⊥i )n
i=1, a : P | s : b : Q⊥ and ⊢ (αi : a2

i : P⊥i )n
i=1 | p : b : Q

and ai P̃i [a1
i , a2

i ] for all i ∈ n so that by Lemma 79 we have pi ∈ |aj
i |Pi for all i ∈ n and j ∈ 2.

By inductive hypothesis we have s′ ∈ |b|Q⊥(a : P ) and p′ ∈ |b|Q so that c′ = s′ ⋆p′ ∈ ‚(a : P ).

▷ δ ends with (i-ν), remember that this rule is given at the beginning of Section 2.2.3. As-
sume that we are in case (4) with N = νζ.R⊥, s = κR⊥,ζα.(c ; t), we have a point d : R, a
subderivation δ′′ of δ whose conclusion is ⊢ (αi : a′′i : P⊥i ), a : P | t : h : Q⊥, a subderivation
δ′ of δ whose conclusion is c ⊢ (αi : a′i : P⊥i ), h : Q, α : d{hl/(l, η)}l∈L : R⊥

[
Q⊥/ζ−

]
, and for

each l ∈ L = rgζd we have a subderivation δl of δ whose conclusion is ⊢ (αi : al
i : P⊥i )n

i=1, hl :
Q | u : fl : νζ.R⊥ where u = κR⊥,ζα.c = κR⊥,ζα.(c ; •). With these notations we have b =
σ(d){fl/(l, ζ)}l∈L. Moreover ai P̃i [a′i, a′′i ]+[al

i | l ∈ L] so that by Lemma 79 we have pi ∈ |al
i|Pi

for all i ∈ n and l ∈ L, and pi ∈ |a′i|Pi , pi ∈ |a′′i |Pi for all i ∈ n. Let p ∈ ∥b∥N⊥ so that p = fd(q)
with q ∈ |d{fl/(l, ζ)}l∈L|R[N⊥/ζ+]. Then we have s′ ⋆ p → (R

[
u′/ζ+] ⋆ q) [κα.c′ [t′/•] /•]. By

inductive hypothesis applied to the δl’s we have u′ ∈ |fl|N (hl : Q) for each l ∈ L and hence
by Lemma 83, R

[
u′/ζ+] ∈ |d{fl/(l, ζ)}l∈L|R[N/ζ−](d{hl/(l, ζ)}l∈L : R

[
Q/ζ+]), therefore:
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R
[
u′/ζ+] ⋆ q ∈ ‚(d{hl/(l, ζ)}l∈L : R

[
Q/ζ+]) which means that R

[
u′/ζ+] ⋆ q →∗ • ⋆ r with

r ∈ ∥d{hl/(l, ζ)}l∈L∥R[Q/ζ+]. It follows that (R
[
u′/ζ+]⋆q) [κα.c′ [t′/•] /•] →∗ κα.c′ [t′/•]⋆r →

c′ [r/α] [t′/•] since r /∈ κ̃, r is closed and t′ has no free names. By inductive hypothesis applied
to δ′ (with substituting positive terms the pi’s and r which satisfies r ∈ |d{hl/(l, ζ)}l∈L|R[Q/ζ+]
as required) we have c′ [r/α] ∈ ‚(h : Q) and hence κ̃.c′ [r/α] ∈ |h|Q. We also have
t′ ∈ |h|Q⊥(a : P ) by inductive hypothesis and hence t′ ⋆ κ̃.(c′ [r/α]) ∈ ‚(a : P ) so that
c′ [r/α] [t′/•] ∈ ‚(a : P ) and hence s′ ⋆ p ∈ ‚(a : P ). Since this holds for all p ∈ ∥b∥N⊥ we
have proven that s′ ∈ |b|N (a : P ) as required.

▷ δ ends with (i-ν) and we are in case (3) with N = νζ.R⊥, s = κR⊥,ζα.(c ; t), we have a point
d : R, a subderivation δ′′ of δ whose conclusion is ⊢ (αi : a′′i : P⊥i ) | t : h : Q⊥, a subderivation
δ′ of δ whose conclusion is

c ⊢ (αi : a′i : P⊥i ), h : Q, α : d{hl/(l, η)}l∈L : R⊥
[
Q⊥/ζ−

]
and for each l ∈ L = rgζd we have a subderivation δl of δ whose conclusion is

⊢ (αi : al
i : P⊥i )n

i=1, hl : Q | u : fl : νζ.R⊥

where u = κR⊥,ζα.c = κR⊥,ζα.(c ; •). With these notations we have b = σ(d){fl/(l, ζ)}l∈L.
Moreover ai P̃i [a′i, a′′i ] + [al

i | l ∈ L] so that by Lemma 79 we have pi ∈ |al
i|Pi for all i ∈ n

and l ∈ L, and pi ∈ |a′i|Pi , pi ∈ |a′′i |Pi for all i ∈ n. Let p ∈ ∥b∥N⊥ so that p = fd(q)
with q ∈ |d{fl/(l, ζ)}l∈L|R[N⊥/ζ+]. Then we have s′ ⋆ p → (R

[
u′/ζ+] ⋆ q) [κα.c′ [t′/•] /•]. By

inductive hypothesis applied to the δl’s we have u′ ∈ |fl|N (hl : Q) for each l ∈ L and hence,
by Lemma 83,

R
[
u′/ζ+

]
∈ |d{fl/(l, ζ)}l∈L|R[N/ζ−](d{hl/(l, ζ)}l∈L : R

[
Q/ζ+

]
)

therefore R
[
u′/ζ+]⋆q ∈ ‚(d{hl/(l, ζ)}l∈L : R

[
Q/ζ+]) which means that R

[
u′/ζ+]⋆q →∗ •⋆r

with r ∈ ∥d{hl/(l, ζ)}l∈L∥R[Q/ζ+]. It follows that

(R
[
u′/ζ+

]
⋆ q)

[
κα.c′

[
t′/•

]
/•
]

→∗ κα.c′
[
t′/•

]
⋆ r → c′ [r/α]

[
t′/•

]
since r /∈ κ̃, r is closed and t′ is closed. By inductive hypothesis applied to δ′ (with substituting
positive terms the pi’s and r which satisfies r ∈ |d{hl/(l, ζ)}l∈L|R[Q/ζ+] as required) we have
c′ [r/α] ∈ ‚(h : Q) and hence κ̃.(c′ [r/α]) ∈ |h|Q. We also have t′ ∈ |h|Q⊥ by inductive
hypothesis and hence t′ ⋆ κ̃.(c′ [r/α]) ∈ ‚ so that c′ [r/α] [t′/•] ∈ ‚ and hence s′ ⋆ p ∈ ‚.
Since this holds for all p ∈ ∥b∥N⊥ we have proven that s′ ∈ |b|N as required. ■

2.3 Categorical semantics of κµLLP

We build a categorical model on top of the categorical model of µLL provided in Chapter 1.
We start from the following definition which is one of the central definitions of our notion of
models of κµLLP. We assume to be given a model L of µLL.

We write X, Y, · · · for objects of the category L!, and A, B, · · · for those of L.
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P(−→A,
−→!B) !P(−→A,

−→
B )

P(−→A,
−→
B )

P̃−→
A,

−→
B

P(−→A ,der−→
B

)
derP(A,B)

P(−→A,
−→!B) !P(−→A,

−→
B )

P(−→A, !!−→B )

!P(−→A,
−→!B) !!P(−→A,

−→
B )

P̃−→
A,

−→
B

P(−→A ,dig−→
B

)

digP(−→
A,

−→
B )

P̃−→
A,

−→!B
!P̃−→

A,
−→
B

!!C ⊗ P(−→A,
−→!B) P(!!C ⊗

−→
A, !!C ⊗

−→!B)

!!C ⊗ !P(−→A,
−→
B ) P(!C ⊗

−→
A, !(!C ⊗

−→
B ))

!(!C ⊗ P(−→A,
−→
B )) !P(!C ⊗

−→
A, !C ⊗

−→
B )

P̂!C,(−→
A,

−→
B )

!!C⊗P̃−→
A,

−→
B

P(der!C⊗
−→
A ,µ2

!C,
−→
B

)

µ2
!C,P(−→

A,
−→
B ) P̃!C⊗

−→
A,!C⊗

−→
B

!P̂
C,(−→

A,
−→
B )

Figure 2.7: Compatibility of P̃ with der, dig, and P̂

Definition 85 Let n and p be two integers. A (n, p)−positive functor P is a pair (P, P̃) where
P ∈ Ln+p and P̃−→

A,
−→
B

∈ L(P(−→A,
−→!B), !P(−→A,

−→
B )) is a natural transformation. It is assumed

moreover that the diagrams of Figure 2.7 commute, expressing the compatibility of P̃ with der,
dig, and P̂, and therefore P̃ is called the distributive law of P.

It is assumed that the length for −→
A is n and for −→

B is p. We will always use this kind of
convention tacitly in the sequel.

Lemma 86 Any (n, p)− positive functor P induces a functor P+ : Ln × (L!)p → L!.

Proof: Given (−→A,
−→
Y ) ∈ Ln × (L!)p where −→

Y = (−→Y , h−→
Y

), we define P+(−→A,
−→
Y ) as P(−→A,

−→
Y )

and hP′(−→A,
−→
Y ) as the following composition of morphisms in L:

P(−→A,
−→
Y ) P(−→A,

−→!Y ) !P(−→A, Y )P(−→A ,−→hY ) P̃−→
A,Y

Let (f1, f2) ∈ (Ln×(L!)p)((−→A1,
−→
Y1), (−→A2,

−→
Y2)), we define P+(f1, f2) ∈ L!(P+(−→A1,

−→
Y1),P+(−→A2,

−→
Y2))

as P(f1, f2). And the following diagram commutes which shows that P(f1, f2) is indeed a mor-
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phism in L!.

P(−→A1,
−→
Y1) P(−→A2,

−→
Y2)

P(−→A1,
−→!Y1) P(−→A2,

−→!Y2)

!P(−→A1,
−→
Y1) !P(−→A2,

−→
Y2)

P(f1,f2)

P(−→A1,h−→
Y1

) P(−→A2,h−→
Y2

)

P̃−→
A1,

−→
Y1

P̃−→
A2,

−→
Y2

!P(f1,f2)

■

As a consequence of Lemma 86, a (0, 0)− positive functor P induces an object of L!, and
and in that case P̃ = hP.

We recall that L[Z] is the Kleisli category of the comonad (fcZ , WZ , CZ) where fcZ : L → L
is the functor which maps an object A to Z ⊗ A and a morphism f to Z ⊗ f , and WZ , CZ

are weakening and contraction morphism respectively.
Recall from Chapter 1 (Section 1.1.2) that one can extend a strong functor F to a functor

F[Z] : L[Z]k → L[Z] for a given object Z = (Z, hZ) ∈ L!. On objects, one sets F[Z](−→A ) =
F(−→A ). And given a morphism −→

f ∈ L[Z]k(−→A1,
−→
A2), we define F[Z](−→f ) as

Z ⊗ F(A1)) !Z ⊗ F(A1)) F(!Z ⊗ A1)) F(Z ⊗ A1)) F(A2)(hZ⊗F(A1)) (F̂
Z,

−→
A1

) (F(derZ⊗
−→
A1) (F(

−→
f ))

Lemma 87 Let P = (P, P̃) be a positive functor and f ∈ L!(Z ⊗ X, Y ). If P is a (n, p + 1)−
positive functor, then
P[Z](−→Id ,

−→
Id , f) ∈ L!(Z ⊗ P+(−→A,

−→
Y1, X),P+(−→A,

−→
Y1, Y )). And if P is a (n + 1, p)− positive

functor, then
P[Z](f⊥,

−→
Id ,

−→
Id) ∈ L!(Z ⊗ P+((Y )⊥,

−→
A,

−→
Y1),P+((X)⊥,

−→
A,

−→
Y1)).

Proof: The first item holds because of commutation of the following diagram :

Z ⊗ P(−→A,
−→
Y 1, X) P(−→A,

−→
Y 1, Y )

!(Z ⊗ P(−→A,
−→
Y 1, X)) !P(−→A,

−→
Y 1, Y )

P[Z](
−→
Id,−→Id,f)

h
Z⊗P+(−→

A,
−→
Y1,X) hP+(−→

A,
−→
Y1,Y )

!(P[Z](
−→
Id,−→Id,f))

And the second item is similar to the first one.
■

Operations on positive functors

LL operations on positive functors: Given a (n, p)− positive functor P, strong functors
F1, · · · ,Fn in Lk, and (n′, p′)− positive functors Q1, · · · ,Qp such that n′ + p′ = k, one can
define a (n′, p′)− positive functor
R = P ◦ (F1, · · · ,Fn,Q1, · · · ,Qp): the strong functor R is just P ◦ (F1, · · · ,Fn,Q1, · · · ,Qp) as
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in Chapter 1. The distributive law is defined as follows, and satisfies the commutations of
Fig. 2.7.

R(−→A,
−→!B) = P((Fi(

−→
A,

−→!B))n
i=1, (Qi(

−→
A,

−→!B))p
i=1)

P((Fi(
−→
A,

−→
B ))n

i=1, (!Qi(
−→
A,

−→
B ))p

i=1)

!P((Fi(
−→
A,

−→
B ))n

i=1, (Qi(
−→
A,

−→
B ))p

i=1) = !R(−→A,
−→
B )

P((Fi(
−→
A ,der−→

B
))n

i=1
,(Q̃i)p

i=n+1)

P̃(Fi(−→
A,

−→
B ))n

i=1,Qi(−→
A,

−→
B )

The bifunctor ⊗ can be turned into a (0, 2)− positive functor: the distributive law is
µ2

A,B ∈ L(!A ⊗ !B, !(A ⊗ B)), and it satisfies commutations of Fig. 2.7.
The bifunctor ⊕ can be turned into a (0, 2)− positive functor: the distributive law is

[π1, π2] ∈ L(!A ⊕ !B, !(A ⊕ B)), and it satisfies commutations of Fig. 2.7.
The functor ! is a (1, 0)− positive functor: the distributive law is digA ∈ L(!A, !!A), and

satisfies commutations of Fig. 2.7.
Let P be a (n, p)− positive functor. One can define its De Morgan dual, denoted as P⊥,

as a strong functor: P⊥ = P⊥. Notice that P⊥ is just a strong functor, so we do not have a
distributive law for it.

Fixpoint of positive functors: Let P be a (n, p + 1)− positive functor. We must define
a (n, p)−positive functor µP. We set µP = µP. The distributive law µ̃P must be a natu-
ral transformation. µ̃P−→

A,
−→
B

∈ L(µP(−→A,
−→!B), !µP(−→A,

−→
B )). To define it, we first notice that

(!µP(−→A,
−→
B ), P̃−→

A,(−→B ,µP(−→A,
−→
B ))) is an object of CoalgL(P−→

A,
−→
B

). So, by the universal property of

µP(−→A,
−→!B), there is a unique morphism µ̃P−→

A,
−→
B

such that the following diagram commutes:

P(−→A,
−→!B, µP(−→A,

−→!B)) P(−→A,
−→!B, !µP(−→A,

−→
B ))

µP(−→A,
−→!B) !µP(−→A,

−→
B ) !P(−→A,

−→
B , µP(−→A,

−→
B ))

P(−→A ,−→!B,µ̃P−→
A,

−→
B

)

≃ P̃−→
A,(−→

B ,µP(−→
A,−→

B ))

µ̃P−→
A,

−→
B ≃

Lemma 88 Given a strong functor F ∈ Lk+1 and an object Z = (Z, hZ) in L!, there is
a unique functor µ(F[Z]) : L[Z]k → L[Z] such that µ(F[Z])(−→A ) is the initial object of the
category AlgL[Z](F−→A ) for any object −→

A ∈ Lk, and µ(F[Z])(−→f ) is the unique morphism making
the following diagram commute for any

−→
f ∈ L[Z]k(−→B1,

−→
B2):

µ(F[Z])(−→B1) µ(F[Z])(−→B2)

F−→
B1

(µ(F[Z])(−→B1)) F−→
B1

(µ(F[Z])(−→B2)) F−→
B2

(µ(F[Z])(−→B2))

µ(F[Z])(
−→
f )

F−→
B1

(µ(F[Z])(
−→
f ))

≃

F(
−→
f ,Id)

≃

where the composition is considered in the category L[Z].
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Proof: Since F ∈ Lk+1, there is a functor µF : Lk → L such that µF(−→A ) is the initial object
of the category AlgL(F−→

A
) for any object A ∈ L.

Now, by the construction above (see Section 1.1.2 for details), one can extend µF to a
functor (µF)[Z] : L[Z]k → L[Z]. We take (µF)[Z] as the unique functor µ(F[Z]). Let us
take an object A ∈ L. We have (µF)[Z](−→A ) = µF(−→A ). We need to show that µF(−→A ) is
the initial object of the category AlgL[Z](F−→A ). First observe that (µF(−→A ), h) is an object of
AlgL[Z](F−→A ) where h is the following:

Z ⊗ F−→
A

(µF(−→A )) F−→
A

(µF(−→A )) µF(−→A )WZ⊗Id ≃

So, let us take an object (B, g) of AlgL[Z](F−→A ) where g ∈ L[Z](F−→
A

(B), B) = L(Z ⊗
F−→

A
(B), B). We need to provide a morphism g̃ ∈ AlgL[Z](F−→A )(µF(−→A ), B). Having a morphism

g̃ ∈ L(Z ⊗ µF(−→A ), B) is equivalent to having a morphism cur′(g̃) ∈ L(µF(−→A ), Z ⊸ B). Since
µF(−→A ) is the initial object of AlgL(F−→

A
), it is enough to have a morphism g′ ∈ L(F−→

A
(Z ⊸

B), Z ⊸ B) in order to have cur′(g̃). And this is equivalent to provide a morphism cur′−1(g′) ∈
L(Z ⊗ F−→

A
(Z ⊸ B), B) which is as follows:

Z ⊗ F−→
A

(Z ⊸ B) Z ⊗ Z ⊗ F−→
A

(Z ⊸ B)

Z ⊗ F−→
A

(!Z ⊗ (Z ⊸ B)) Z ⊗ !Z ⊗ F−→
A

(Z ⊸ B)

Z ⊗ F−→
A

(Z ⊗ (Z ⊸ B)) Z ⊗ F−→
A

(B)

B

CZ⊗Id

Id⊗hZ⊗Id

Id⊗F−→
A

(derZ⊗Id)
Id⊗F̂−→

A

Id⊗F−→
A

(ev)
g

So, g̃ is cur′−1(g̃′), and it satisfies the following diagram

Z ⊗ µF(−→A ) B

Z ⊗ F−→
A

(µF(−→A ))

Z ⊗ Z ⊗ F−→
A

(µF(−→A )) Z ⊗ F−→
A

(B)

g̃

≃

CZ⊗Id

Id⊗F−→
A

[Z](g̃)

g (2.20)

Because one can see that the following diagram commutes which is just unfolding (considering
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the composition in L rather than L[Z]) of Diagram 2.20:

Z ⊗ µF(−→A ) B

Z ⊗ Z ⊗ F−→
A

(µF(−→A ))

Z ⊗ F−→
A

(µF(−→A )) Z ⊗ F−→
A

(B)

Z ⊗ Z ⊗ F−→
A

(µF(A⃗)) Z ⊗ F−→
A

(Z ⊗ µF(−→A ))

Z ⊗ !Z ⊗ F−→
A

(µF(A⃗)) Z ⊗ F−→
A

(!Z ⊗ µF(A⃗))

g̃

Id⊗(WZ⊗≃)

CZ⊗Id

CZ⊗Id

g

Id⊗hZ Id

Id⊗F−→
A

(g̃)

Id⊗F̂−→
A

Id⊗F−→
A

(derZ⊗Id)

■

Lemma 89 Given a morphism g ∈ L[Z](Q(Y ), Y ) where Q is a (0, 1)− positive functor,
there is a unique morphism g̃ ∈ L[Z](µQ, Y ) such that g̃ ∈ AlgL[Z](Q[Z])(µQ, Y ).

Proof: By Lemma 88, we know that there is a unique object µ(Q[Z]) ∈ L[Z] which is the
initial object of the category AlgL[Z](Q). Since g ∈ L[Z](Q(Y ), Y ), there is a unique mor-
phism g̃ ∈ L[Z](µ(Q[Z]), Y ) by the universal property of the initial algebra of the endofunctor
Q on the category L[Z]. Hence, to conclude the statement of the lemmas, it is enough to
show that µ(Q[Z]) = µQ. As we saw in the proof of Lemma 88, one has µ(Q[Z]) = (µQ)[Z],
and (µQ)[Z] is the same as µQ (considering µQ, equivalently, as µQ : 1 → L). And finally,
by definition (Section 2.3), we have µQ = µQ. ■

Lemma 90 If Q is a (0, 1)−positive functor, and g is a morphism g ∈ L!(Z ⊗ Q+(Y ), Y ),
then there is a unique morphism g̃ ∈ L!(Z ⊗ (µQ)+, Y ) such that g̃ ∈ AlgL[Z](Q[Z])(µQ, Y ).

Proof: By definition, we have µQ+ = µQ = µQ = µQ. The following diagram commutes
which shows that g̃ is indeed a co-algebra morphism. The proof of this commutation is shown
in Figure 2.8.

!Z ⊗ µQ Y

!(!Z ⊗ µQ) !Y

g̃

h!Z⊗µQ hY

!̃g

■
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Interpretation of proofs and formulas

Definition 91 (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+

1 , . . . , ξ+
p ) is adapted to P (respectively N) if (

−→
ζ−,

−→
ξ+)

is repetition-free (no literal appears twice in the whole list) and all the free variables of P (re-
spectively N) appear in that list.

Let P be a positive formula and assume that (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+

1 , . . . , ξ+
p ) is adapted

to P . We define its interpretation as a (n, p)−positive functor JP K−→
ζ−,
−→
ξ+ . If n = p = 0 we

simply write JP K.

If N is a negative formula and (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+

1 , . . . , ξ+
p ) is adapted to N we

define its interpretation as (JN⊥K−→
ζ−,
−→
ξ+)⊥.

The definition of JP K−→
ζ−,
−→
ξ+ is by induction on P and uses the constructions of Section 2.3

in the obvious way: JP1 ⊗ P2K−→
ζ−,
−→
ξ+ = ⊗ ◦ (JP1K−→

ζ−,
−→
ξ+ , JP2K−→

ζ−,
−→
ξ+), JP1 ⊕ P2K−→

ζ−,
−→
ξ+ = ⊕ ◦

(JP1K−→
ζ−,
−→
ξ+ , JP2K−→

ζ−,
−→
ξ+), J!NK−→

ζ−,
−→
ξ+ = ! ◦ (JN⊥K−→

ζ−,
−→
ξ+)⊥, and JµZ.P K−→

ζ−,
−→
ξ+ = µ(JP K−→

ζ−,
−→
ξ+,Z

).

Lemma 92 Let A be a formula and π be a type valuation N1/ξ−1 , . . . , Nn/ξ−n , P1/ζ+
1 , . . . , Pk/ζ+

k .
Then

JA [π]K = JAK−→
ζ+,
−→
ξ+ ◦ (JN1K, · · · , JNnK, JP1K, · · · , JPkK).

The proof of Lemma 92 is by a straightforward induction on A. Notice that the substi-
tuting formulas are closed, so the composition in Lemma 92 is just an application.

We define the interpretation of terms, as usual, by induction on proofs based on Figure 2.3.
As we have different judgments, we must have different ways of interpreting terms which is
explained as follows:

• if ⊢ N | p : P , then JpK+
N ∈ L!(JN⊥K, JP K);

• if ⊢ N , P | t : N , then JtK+
N ,P ∈ L!(JN⊥K ⊗ JN⊥K, JP K);

• if c ⊢ N , P , then JcK+
N ,P ∈ L!(JN⊥K, JP K);

• if ⊢ N | t : N , then JtKN ∈ L(JN⊥K ⊗ JN⊥K, ⊥);

• if c ⊢ N , then JcKN ∈ L(JN⊥K, ⊥).

We only give the full details of the interpretation of κN,ζα.(c ; s): the other cases are
defined diagrammatically in Figure 2.9.

Remember that c ⊢ N , P, α : R⊥
[
P⊥/ζ−

]
and ⊢ N [, Q] | s : P⊥. By induction

hypothesis, we know that JcK+
N ,P,N[P ⊥/ζ−] ∈ L!(JN⊥K ⊗ JN⊥

[
P/ζ+]K, JP K), and JsK+

N ∈

L!(JN⊥K ⊗ JP K, JQK).
By Lemma 92, JN⊥

[
P/ζ+]K = (JN⊥Kζ+)◦(JP K). So, we have JcK+

N ,P,N[P ⊥/ζ−] ∈ L!(JN⊥K⊗

JN⊥Kζ+(JP K), JP K), and we denote JcK+
N ,P,N[P ⊥/ζ−] by f . Hence, by Lemma 90, we have a
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JαK+
N ,P ⊥ : JN⊥K ⊗ JP K JP K

WJN ⊥K⊗JP K
J()K+

N : JN⊥K J1K
WJN ⊥K

J(p1, p2)K+
N : JN⊥K JN⊥K ⊗ JN⊥K JP1 ⊗ P2K

CJN ⊥K Jp1K+
N⊗Jp2K+

N

Jini(p)K+
N : JN⊥K JP1K P1 ⊕ P2

JpK+
N πi Jκ̃.cK+

N : JN⊥K JP K
JcK+

N ,P

Jfd(p)K+
N : JN⊥K JP

[
µζ.P/ζ+]K ≃ Jµζ.P K

JpK+
N

Jt!K+
N : JN⊥K !JN⊥K

!JNK = J!NK

hJN ⊥K

!(Jcur(t)JN ⊥K⊗JN⊥K,⊥KN )

J•K+
N ,P : JN⊥K ⊗ JP K JP K

WN ⊥⊗JP K
J⟨⟩K+

N ,P : JN K ⊗ 0 ≃ 0 JP K
Init0,P

J⟨⟩KN : JN K ⊗ 0 ≃ 0 ⊥
Init0,⊥ J⟨t1, t2⟩K+

N ,P : JN K ⊗ (JN⊥1 K ⊕ JN⊥2 K) JP K
[Jt1K+

N ,P ,Jt2K+
N ,P ]

J⟨t1, t2⟩KN : JN K ⊗ (JN⊥1 K ⊕ JN⊥2 K) ⊥[Jt1KN ,Jt2KN ]

Jκα.cK+
N ,P : JN⊥K ⊗ JN⊥K JP K

JcK+
N ,N,P Jκα.cKN : JN⊥K ⊗ JN⊥K ⊥

JcKN ,N

Jκ⊥.cK+
N ,P : JN⊥K ⊗ 1 ≃ JN⊥K JP K

JcK+
N ,P Jκ⊥.cKN : JN⊥K ⊗ 1 ≃ JN⊥K JP K

JcKN

Jκ(α1, α2).cKN : JN⊥K ⊗ (JN⊥1 K ⊗ JN⊥2 K) ⊥
JcKN ,N1,N2

Jder pKN : JN⊥K ⊗ J!P⊥K ⊥
cur−1((derJP ⊥K)⊥◦JpK+

N ),

Jκ(α1, α2).cK+
N ,P : JN⊥K ⊗ (JN⊥1 K ⊗ JN⊥2 K) JP K

JcK+
N ,N1,N2,P

Jt ⋆ pK+
N ,P : JN⊥K JN⊥K ⊗ JN⊥K

JP K JN⊥K ⊗ JN⊥K

CJN ⊥K

JN⊥K⊗JpK+
N

JtK+
N ,P

Jt ⋆ pKN : JN⊥K JN⊥K ⊗ JN⊥K

⊥ JN⊥K ⊗ JN⊥K

CJN ⊥K

JN⊥K⊗JpK+
N

JtKN

Figure 2.9: Interpretation of terms of κµLLP
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morphism f̃ ∈ L!(JN⊥K ⊗ µJN⊥Kζ+ , JP K). And by the interpretation of formula, we know
that Jµζ+.N⊥K = µJN⊥Kζ+ . So, we have f̃ ∈ L!(JN⊥K ⊗ Jµζ+.N⊥K, JP K). Notice that f̃ is
unique satisfying the condition of Lemma 90. So we define JκN,ζα.(c ; s)K+

N ,Q as the following
morphism in the category L!

JN⊥K ⊗ Jµζ+.N⊥K JN⊥K ⊗ JN⊥K ⊗ Jµζ+.N⊥K

JQK JN⊥K ⊗ JP K

CJN ⊥K⊗Id

Id⊗f̃

JsK+
N ,Q

Soundness

We first state the substitution lemmas (Lemmas 93, 94 & 95).

Lemma 93 Assume that ⊢ N | p : P .

c ⊢ N , α : P⊥, then JN⊥K JN⊥K ⊗ JN⊥K JN⊥K ⊗ JP K ⊥
CJN ⊥K

Jc[p/α]KN

Id⊗JpK+
N

JcKN ,P ⊥

c ⊢ N , α : P⊥, Q, then JN⊥K JN⊥K ⊗ JN⊥K JN⊥K ⊗ JP K JQK
CJN ⊥K

Jc[p/α]K+
N

Id⊗JpK+
N

JcK+
N ,P ⊥,Q

If ⊢ N , α : P⊥ | t : N , then

JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K ⊗ JN⊥K JN⊥K ⊗ JP K ⊗ JN⊥K ⊥
CJN ⊥K⊗Id

Jt[p/α]KN

Id⊗JpK+
N⊗Id cur−1(JtKN ,P )

If ⊢ N , α : P⊥, Q | t : N , then

JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K ⊗ JN⊥K JN⊥K ⊗ JP K ⊗ JN⊥K JQK
CJN ⊥K⊗Id

Jt[p/α]K+
N

Id⊗JpK+
N⊗Id JtK+

N ,P ⊥,Q

If ⊢ N , α : P⊥ | q : Q, then JN⊥K JN⊥K ⊗ JN⊥K JN⊥K ⊗ JP K JQK
CJN ⊥K

Jq[p/α]K+
N

Id⊗JpK+
N

JqK+
N ,P ⊥

Lemma 94 Assume that ⊢ N , Q | t : N .

If c ⊢ N , N⊥, then JN⊥K JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K JQK
CJN ⊥K

Jc[t/•]K+
N ,Q

Id⊗JcK+
N ,N⊥ JtK+

N ,Q
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If ⊢ N , N⊥ | s : M , then

JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K JQK
CJN ⊥K⊗Id

Js[t/•]K+
N ,Q

Id⊗JsK+
N ,N⊥ JtK+

N ,Q

Lemma 95 Assume that ⊢ N | t : N .

If c ⊢ N , N⊥, then JN⊥K JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K ⊥
CJN ⊥K

Jc[t/•]KN

Id⊗JcK+
N ,N⊥ JtKN

If ⊢ N , N⊥ | s : M , then

JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K ⊥
CJN ⊥K⊗Id

Js[t/•]KN

Id⊗JsK+
N ,N⊥ JtKN

The following lemma relates syntactic functoriality (section 2.1.3) and the semantical one
(Lemma 87).

Lemma 96 Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable.
Let also π be a type valuation such that ζ+, ζ− /∈ dom(π). Then

JQ
[
π, s/ζ+]K+

N ,Q[π,P/ζ+] = JQKdom(π),ζ+ [JN⊥K](−→Id ,
−→
Id , JsK+

N ,P )

JQ [π, s/ζ−]K+
N ,Q[π,N/ζ−] = JQKdom(π),ζ− [JN⊥K]((JsK+

N ,P )⊥,
−→
Id ,

−→
Id)

Proof of this lemma is a tedious verification of interpretations of Q
[
π, s/ζ+] and Q [π, s/ζ−]

based on the proof of Proposition 73.
As a direct conclusion of Lemma 87 and Lemma 96, we have the following corollary:

Corollary 97 Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable.
Let also π be a type valuation such that ζ+, ζ− /∈ dom(π). Then

JQ
[
π, s/ζ+]K+

N ,Q[π,P/ζ+] ∈ L!(JN⊥K⊗JQKdom(π),ζ+
+(

−−→
JNK,

−−→
JP K, JN⊥K), JQKdom(π),ζ+

+(
−−→
JNK,

−−→
JP K, JP K))

JQ [π, s/ζ−]K+
N ,Q[π,N/ζ−] ∈ L!(JN⊥K⊗JQKdom(π),ζ+

+(JP K⊥,
−−→
JNK,

−−→
JP K), JQKdom(π),ζ+

+(JN⊥K⊥,
−−→
JNK,

−−→
JP K))

Lemma 98 If c → d, then either JcKN = JdKN or JcK+
N ,P = JdK+

N ,P depending on the typing
derivation of c and d.

Proof: We prove it by case analysis of c and d based on the reduction system in Figure 2.4.
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▷ If we have s ⋆ κ̃.c → c [s/•]:

Js ⋆ κ̃.cKN = ((JsKN ) ◦ (Id ⊗Jκ̃.cK+
N )) ◦ (CJN⊥K)

= ((JsKN ) ◦ (Id ⊗JcK+
N )) ◦ (CJN⊥K)

= Jc [s/•]KN by Lemma 95

▷ If we have κα.c ⋆ p → c [p/α]:

Jκα.c ⋆ pKN = ((Jκα.cKN ) ◦ (Id ⊗JpK+
N )) ◦ (CJN⊥K)

= ((JcKN ,P ⊥) ◦ (Id ⊗JpK+
N )) ◦ (CJN⊥K)

= Jc [p/α]KN by Lemma 93

▷ If we have ⟨s1, s2⟩ ⋆ ini(p) → si ⋆ p:

J⟨s1, s2⟩ ⋆ ini(p)KN = ((J⟨s1, s2⟩KN ) ◦ (Id ⊗Jini(p)K+
N )) ◦ (CJN⊥K)

= (([Js1KN , Js2KN ]) ◦ (Id ⊗((πi) ◦ (JpK+
N )))) ◦ (CJN⊥K)

= ((JsiKN ) ◦ (Id ⊗JpK+
N )) ◦ (CJN⊥K) since L is co-cartesian

= Jsi ⋆ pKN

▷ If we have κ(α1, α2).c ⋆ (p1, p2) → c [p1/α1, p2/α2]:

Jκ(α1, α2).c ⋆ (p1, p2)KN = ((Jκ(α1, α2).cKN ) ◦ (Id ⊗J(p1, p2)K+
N )) ◦ (CJN⊥K)

= ((JcKN ,P ⊥
1 ,P ⊥

2
) ◦ (Id ⊗((Jp1K+

N ⊗ Jp2K+
N ) ◦ (CJN⊥K)))) ◦ (CJN⊥K) by Diagram (2.21)

= ((JcKN ,P ⊥
1 ,P ⊥

2
) ◦ ((Id ⊗ Id ⊗Jp1K+

N ⊗ WJP2K) ◦ (CJN⊥⊗P2K))) ◦ (Id ⊗Jp2K+
N ) ◦ CJN⊥K

= ((J(c [p1/α1])KN2) ◦ (Id ⊗Jp2K+
N )) ◦ (CJN⊥K)

= J(c [p1/α1]) [p2/α2]KN
= Jc [p1/α1, p2/α2]KN

JN⊥K JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JP2K JN⊥K ⊗ JP1K ⊗ JP2K

JN⊥K ⊗ JP2K ⊗ JN⊥K ⊗ JP2K ⊥

JN⊥K ⊗ JP2K ⊗ JP1K

CJ(N )⊥K

CJN ⊥K

IdJN ⊥K⊗CJN ⊥K

IdJN ⊥K⊗Jp1K+
N⊗Jp2K+

N

IdJN ⊥K⊗Jp2K+
N

CJN ⊗P2K JcKN ,P ⊥
1 ,P ⊥

2

Id⊗ Id⊗Jp1K+
N⊗WJP2K JcKN ,P ⊥

1 ,P ⊥
2

(2.21)
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▷ If we have κ⊥.c ⋆ () → c:

Jκ⊥.c ⋆ ()KN = ((Jκ⊥.cKN ) ◦ (Id ⊗J()K)) ◦ (CJN⊥K)
= ((JcKN ) ◦ (Id ⊗J()K)) ◦ (CJN⊥K)
= ((JcKN ) ◦ (Id ⊗WJN⊥K)) ◦ (CJN⊥K)
= (JcKN ) ◦ (Id) = JcKN

If we have der p ⋆ s! → s ⋆ p:

Jder p ⋆ s!KN = ((Jder pKN ) ◦ (Id ⊗Js!K+
N )) ◦ (CJN⊥K)

= ((cur−1((derJP ⊥K)⊥ ◦ JpK+
N )) ◦ ((Id ⊗(!(Jcur(s)JN⊥K⊗JP K,⊥KN )) ◦ (hJN⊥K)))) ◦ (CJN⊥K)

= ((JsKN ) ◦ (Id ⊗JpK+
N )) ◦ (CJN⊥K) by Diagram 2.22

JN⊥K JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K JN⊥K ⊗ !JN⊥K

JN⊥K ⊗ JP K JN⊥K ⊗ J!P⊥K

⊥

CJN ⊥K

CJN ⊥K Id⊗hJN ⊥K

Id⊗JpK+
N

Id⊗!(Jcur(s)JN ⊥K⊗JP K,⊥KN )

JsKN
cur−1((derJP ⊥K)⊥◦JpK+

N )

(2.22)

▷ If we have κQ⊥,ζα.c ⋆ fd(p) → (Q
[
κQ⊥,ζα.c/ζ+

]
⋆ p) [κα.c/•]: See Figure 2.10 ■

Notice that the computations in proof of Lemma 98 can be done diagrammatically to see
the typing, as what we did in Diagram 2.21 and Diagram 2.22, but this would take a lot of
time and space.

Theorem 99 If c →⋆ d, then either JcKN = JdKN or JcK+
N ,P = JdK+

N ,P depending on the
typing derivation of c and d.

Proof: By induction on the length of reductions from c to d, and using Lemma 98. ■

2.3.1 Two concrete models of κµLLP

In this section, we will show how Rel and Nuts are indeed two instances of our categorical
model of κµLLP. To do so, we need to extend the notion of variable set, definition 25, to deal
the notion of positive functor. For Rel, it is quite easy and as follows.

Let Reln be the class of all n-ary variable sets, so that Rel0 = Obj(Rel). As we saw in
Chapter 1, (Rel, (Reln)n∈N) is indeed a model of µLL. So, as we saw in Section 2.3, we can
define positive functor on top of Reln in order to consider Rel a model of κµLLP. And this
is just an instance of the general definition of a positive functor in the general case. Hence a
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positive n + p-ary variable set is a (n, p)− positive functor P : Reln+p → Rel such that P is
an n + p-ary variable set.

Before going to deal with Nuts, we first relate Rel and the point typing system.
Let P be a closed formula. In Section 2.2.2 we have introduced a point typing system. The

points of this typing system are essentially the same thing as points of the relational model,
the only difference being that a point a : P contains the σb construct at places corresponding
to occurrences of µ or ν type constructs in P . It is easy to see that there is a bijective
correspondence between the a : P and the a′ ∈ JP K in Rel. To simplify notations we consider
this correspondence as the identity function.

Lemma 100 Let P be a closed positive formula. Then a P̃ [a1, · · · , an] iff (a, [a1, · · · , an]) ∈
J̃P K.

The proof is a straightforward case analysis.

Theorem 101 Let Φ = (α1 : a1 : N1, . . . , αk : ak : Nk) be a negative point typing context and
let N = (α1 : N1, . . . , αn : Nn) . Then

• (a1, · · · , an, b) ∈ JtKRel
N iff ⊢ Φ | t : b : N

• (a1, · · · , an, c, b) ∈ JtKRel
N ,P iff ⊢ Φ, c : P | t : b : N

• (a1, · · · , an, b) ∈ JqKRel
N iff ⊢ Φ | q : b : P

• (a1, · · · , an) ∈ JcKRel
N iff c ⊢ Φ

• (a1, · · · , an, b) ∈ JcKRel
N ,P iff c ⊢ Φ, b : P

The proof of Theorem 101 is a simple verification, and it uses Lemma 100.

Non-uniform totality spaces as a model of κµLLP

Just as what we did for VNUTS, we introduce a combinatorial gadget that we will use to
describe more explicitly positive functors in the Nuts model. This can be done because
composition in Rel and in Nuts, as well as all the operations of µLL, are defined exactly in
the same way.

Definition 102 Let n, p ∈ N, an n + p-ary positive VNUTS is a pair P = (|P|, T (P)) such
that

1. |P| is an n + p-ary positive variable set,

2. X = (|P|, T (P)) is an n + p-ary VNUTS, and

3. for any −→
A,

−→
B ∈ Obj(Nutsn) one has |̃P||−→A |,|−→B | ∈ Nuts(|P|(−→A, !−→B ), !(|P|(−→A,

−→
B ))).

Lemma 103 Any n+p-ary positive VNUTS P : Nutsn+p → Nuts induces a (n, p)− positive
functor P : Nutsn+p → Nuts which satisfies
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• |P(−→A,
−→
B )| = |P|(|−→A |, |

−→
B |),

• T (P(−→A,
−→
B )) = T (P)(−→A,

−→
B ),

• P(−→t ) = |P|(−→t ) ∈ Nuts(P(−→A1,
−→
B1),P(A2,

−→
B2)). for −→

t ∈ Nutsn+p((−→A1,
−→
B1), (A2,

−→
B2)),

• P̂
A,
−→
B

= |̂P||A|,|−→B | and P̃−→
A,
−→
B

= |̃P||−→A |,|−→B |

and P can be retrieved from P.

Examples of nat

As we can see in Chapter 1, the interpretation of nat in Nuts is a totality space (N, {u ⊆
N | u ̸= ∅}). So, Jnat⊥K = (N, {N}). Hence J!(nat⊥)K = (Mfin(N), {Mfin(N)}), since
{Mfin(N)} = ↑

{
u(!) | u ∈ {N}

}
. The inductive definition of hnat means this set is the least

one satisfying

• (0, k[0]) ∈ hnat for any k ∈ N, and

• If (n, [n1, · · · , nk]) ∈ hnat, then (n + 1, [n1 + 1, · · · , nk + 1]) ∈ hnat.

Hence we have hnat = {(n, k[n]) | k, n ∈ N}.

2.4 Application: a normalization property

To follow this section, one might need to look at some observations in the previous section
and chapter, namely Theorem 101 and Lemma 100, and Lemma 7 in Chapter 0.

As the first application of Theorem 84, one can prove the following:

Theorem 104 If c ⊢ P , then c is strongly normalizing.

Proof: Since JP KRel ̸= ∅ and JcKRel is a morphism in Rel!, by Lemma 7, we know that
JcKRel ̸= ∅. So, there exists a ∈ JcK. By Theorem 101, we have c ⊢ a : P . By Theorem 84, we
have c ∈ ‚(a : P ). By definition of ‚(a : P ), there is a p ∈ (|a|P \ κ̃) such that c →∗ • ⋆ p. ■

As an example of theorem above, if we have c ⊢ nat, then c is strongly normalizing,
meaning that c →∗ •⋆p such that p ∈ |n|nat for some n where n : nat. And using Lemma 105,
one can can extract algorithmically the value of n from p.

In order to state and prove the next lemma, first we define two mutually recursive partial
functions val (on terms p such that ⊢| p : nat) and val⊕ (on terms q such that ⊢| q : 1 ⊕ nat)
with values in N. If ⊢| p : nat then

• if p = fd(q) then we have ⊢| q : 1 ⊕ nat and we take val p = val⊕ q;

• else if p = κ̃.c then if c →∗ • ⋆ p0 ∈ ‚ (that is p0 /∈ κ̃) then ⊢| p0 : nat and we take
val p = val p0.
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And if ⊢| q : 1 ⊕ nat then

• if q = in1 r then if r = () or if r = κ̃.c and c →∗ • ⋆ (), then val⊕ q = 0;

• if q = in2 p′ then we have ⊢| p′ : nat and we take val⊕ q = 1 + val p′;

• if q = κ̃.c and c →∗ • ⋆ q0 ∈ ‚ (that is q0 /∈ κ̃) then we have ⊢| q0 : 1 ⊕ nat and we take
val⊕ q = val⊕ q0.

Lemma 105 If ⊢| p : nat and p ∈ |n|nat for some n ∈ N then val p is defined and has n as
value.

The proof is a straightforward application of the definition of |n|nat.
As it is mentioned in Section 2.1.4, we need to consider ?nat to encode the type of natural

numbers form Gödel’s system T into κµLLP. So, it is worth trying to prove that if we have
c ⊢ ?nat, then c is normalizing, and one can indeed extract an integer from c. However, to
prove such a result, one needs to look at the interpretation of c in non-uniform totality spaces,
mentioned in Section 2.3.1.

Theorem 106 If c ⊢ α : ?nat, then c is normalizing.

Proof: Extend κµLLP with a constant ◦ which is a new command, typed by ◦ ⊢ N where
N is an arbitrary negative context1. We also extend the point typing system with the rule
◦ ⊢ (αi : ai : Ni)n

i=1 under the proviso that ai Ñ⊥i [ ] for all i ∈ n. The benefit of this extension
is that now ‚ contains closed commands.

We have ⊢| () : 1, ⊢ 1 | • : ⊥ and ⊢| κ⊥.◦ : ⊥. Therefore ⊢| rd = it((), • ; κ⊥.◦) : nat⊥. This
negative term is a “reader of integer” which behaves as follows: rd ⋆0 →∗ ◦ and rd ⋆ suc p →∗
rd ⋆p. By induction on n ∈ N it is not hard to check that ∀n ∈ N ⊢| rd : n : nat⊥. Let
m = [n1, . . . , nk] : ?nat, we have therefore ⊢| rd! : m : !nat⊥ and hence rd! ∈ ∥m∥!nat⊥ by
Theorem 84.

If c ⊢ α : m = [n1, . . . , nk] : ?nat then by Theorem 84 we have c
[
rd!/α

]
∈ ‚. By Lemma 75

this implies that the reduction of c terminates, so that c →∗ t ⋆ α where ⊢ α : m1 : ?nat | t :
m2 : ?nat, t is not of shape κβ.d and m = m1 + m2 (because we have m !̃nat⊥ [m1, m2] by the
(i−cut) rule). So we must have t = der p with ⊢ α : m1 : ?nat | p : n : nat for some n ∈ N and
m2 = [n]. So by Theorem 84 we have p

[
rd!/α

]
∈ |n|nat and hence by Lemma 105 val p = n.

As a whole we have described an algorithm which, under the assumption that c ⊢ α : m : ?nat
for some m, produces an integer n that we denote as valα c, and we have m = m1 + [n].

By the results of Section 2.3 and 2.3.1 we know that the interpretation of JcK?nat in Rel
belongs to T (J?natK) where J?natK is the interpretation of ?nat in Nuts (that is JcK?nat is
total in the interpretation of that type). As explained in Section 2.3.1 Jnat⊥K = (N, {N}) and
hence T (J!nat⊥K) = {Mfin(N)}. Therefore JcK?nat ∩ Mfin(N) ̸= ∅ that is JcK?nat ̸= ∅ so by
Theorem 101 there is m : ?nat such that c ⊢ α : m : ?nat.

1This may seem surprising at first sight but remember that weakening is freely available for all negative
formulas. So the real meaning of this rule is ◦ ⊢ which is the familiar 0-ary mix rule of LL. It is easy to check
that all properties of κµLLP proven so far are still valid for this extension.
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■

Moreover, assume c ⊢ α : ?nat and c does not contain ◦. By the considerations above the
integer n = valα c is well defined (and we have given an algorithm to compute it consisting
in executing κµLLP commands). Moreover c ⊢ α : m1 + [n] : ?nat for some m1 : ?nat. Using
the model RelW introduced in [AE15] (it is a variation on the relational model where each
object is a set E equipped with a function E → Z) it is possible to prove that, because c
does not contain ◦, one has m1 = [ ]. So we actually have c ⊢ α : [n] : ?nat, that is, the value
obtained by execution coincides with the value provided by the semantics.

2.5 Sum up of Chapter 2

κµLLP
Sum up of Chapter 1

• Developing a polarized λ-calculus for LL with fixpoints: κµLLP.

• Prove interpretation lemma and a normalization theorem for κµLLP: Theorem 84,
104, and 106.

• Providing a categorical model for κµLLP and prove its soundness: Theorem 99.

• Providing two concrete models of κµLLP: Rel and Nuts.
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Chapter 3

Non-well-founded LL with fixpoints
and its denotational semantics

In Chapter 0, we saw the system µLL which is a version of propositional LL with least and
greatest fixed points extending propositional µMALL with exponentials [Bae12]. In [Dou17,
BDS16], the µMALL∞ system, which is non-well-founded multiplicative and additive LL with
two rules for unfolding fixed-points, is studied. They have defined a syntactic notion of validity
on proofs in order to distinguish sound from unsound proofs. The same idea is done for the
additive linear logic in [FS13, San02], and they moreover provided a categorical semantics
for their system. However, this notion of validity condition goes back to µ-calculus [Wal00,
NW96]. A similar notion of validity of infinite proof can be found also in [Bro06, BS07].

We consider an extension of µMALL∞, called µLL∞, with exponentials. One of our pur-
poses in this chapter is to develop a more Curry-Howard oriented point of view on µLL∞
through the denotational semantics. At least this Curry-Howard perspective will help us to
formalize syntactical statement about the meaning of proofs as we discussed an example of it
in Section 3.3. Moreover as there are different validity conditions on the µLL∞ proofs (such
as straight-thread, bouncing, etc. [BDKS20]), we hope that the denotational semantic shed
light on the comparison of those different validity conditions.

As we saw in Chapter 1, there is a categorical semantics of µLL, and two instances of this
categorical setting are Rel (the category of sets and relations), and Nuts (the category of
sets equipped with a notion of totality and relations preserving it).

We first recap the language and the inference rules of µLL∞ in Section 3.1. In Section 3.2,
the interpretation of formula and proofs in Rel and Nuts are provided together with a
soundness result in 3.2.1. Finally, the main contribution is established in Section 3.2.2 which
relates validity condition and totality of Nuts. More precisely, we show that each µLL∞ valid
proof will be interpreted as a total element in Nuts.
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3.1 Non-well-founded LL with fixpoints (µLL∞)

The syntax of µLL∞ formulas is exactly the same as the one for µLL in 0.2.2. We just recall
it here again to have a self-contained text for this section.

A, B, . . . := 1 | ⊥ | A ⊗ B | A ` B | 0 | ⊤ | A ⊕ B | A & B | !A | ?A | ζ | µζ A | νζ A

The inference rules of µLL∞ is the extension of rules of [Dou17, BDS16] with exponential
rules of LL. In other words, the inference rules of µLL∞ are the rules of LL (presented in
Chapter 0, and [Gir87a]) plus the two following ones:

⊢ Γ, F [µζ F/ζ]
(µ − fold)

⊢ Γ, µζ F

⊢ Γ, F [νζ F/ζ]
(ν − fold)

⊢ Γ, νζ F

A µLL∞ pre-proof is a possibly infinite tree, generated by the inference rules of µLL∞.
Among all µLL∞ pre-proofs, the regular/circular proofs are the ones that have finitely many
sub-trees. Those circular proofs can be represented with finite proof-trees having back-edges
or labels.
As an example, consider the type of natural numbers nat = µζ .(1 ⊕ ζ) and its dual nat⊥ =
νζ .(⊥ & ζ). The two following proofs, that correspond to the constant zero and identity
functions on natural numbers, are two examples of circular µLL∞ proofs. The ∗ on the left
side of the turnstyle symbol in ⊢ nat, nat⊥ means that the proof of this sequent is the same
as the proof we are defining, that is the proof of the conclusion sequent. So this proof is a
representation of a really infinite proof tree.

(1)
⊢ 1 (⊕1)

⊢ 1 ⊕ nat (µ − fold)
⊢ nat (⊥)

⊢ nat, ⊥ ∗ ⊢ nat, nat⊥
(&)

⊢ nat, ⊥ & nat⊥
(ν − fold)

∗ ⊢ nat, nat⊥

(1)
⊢ 1 (⊕1)

⊢ 1 ⊕ nat (µ − fold)
⊢ nat (⊥)

⊢ nat, ⊥

∗ ⊢ nat, nat⊥
(⊕2)

⊢ 1 ⊕ nat, nat⊥
(µ − fold)

⊢ nat, nat⊥
(&)

⊢ nat, ⊥ & nat⊥
(ν − fold)

∗ ⊢ nat, nat⊥

However, in general the pre-proofs can be unsound. For instance one can provide a pre-proof
for any sequent ⊢ Γ (and in particular a pre-proof of the empty sequent ⊢) as follows:

... (ν − fold)
⊢ νζ .ζ

(ν − fold)
⊢ νζ .ζ

... (µ − fold)
⊢ Γ, µζ .ζ

(µ − fold)
⊢ Γ, µζ .ζ

(cut)
⊢ Γ

In [Dou17, BDS16], a criterion, called validity condition, is provided in order to distinguish
proper proofs from pre-proofs. We only sum up this criterion here and provide some examples,
and we refer to [Dou17, BDS16] for more details.

Definition 107 We define the relation →FL on formulas as follows:

• A ∗ B →FL A and A ∗ B →FL B where ∗ is a binary LL connective.
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• @A →FL A where @ is either ! or ?.

• σζ F →FL F [σζ F/ζ] where σ is either ν or µ.

The Fischer-Ladner sub-formula of a formula F is the formula G such that F →⋆
FL G.

Lemma 108 (Corollary 2.1 of [Dou17]) The Fischer-Ladner closure of a formula (the set of
its Fischer-Ladner sub-formulas) is finite.

Definition 109 The usual sub-formula relation on µLL∞ is defined as follows:

• A ∗ B →sub A and A ∗ B →sub B where ∗ is a binary LL connective.

• @A →sub A where @ is either ! or ?.

• σζ F →sub F where σ is either ν or µ.

The usual sub-formula of a formula F is the formula G such that F →⋆
sub G.

Notice that the usual sub-formula relation is an ordering, so, we write A ⩽sub B if A is
sub-formula of B, i.e, we have A →⋆

sub B.

Remark 25 The variable ζ is a subformula of A = (νζ .ζ)⊗ζ. Howver, there are two different
ζ in the formula A, one is the bound ζ and the other is the free one. To distinguish them, one
can use the notion of occurrence [Dou17]. As we also need this notion for Definition 118, we
provide it here.

Definition 110 (Definition 1.21 of [Dou17]) Let Σ be the alphabet {l, r, i}. An address is a
word over the alphabet Σ. The empty word is denoted by ϵ. An occurrence, is a formula A
together with an address α, denoted as Aα. If α is sub-word of β, we denote it by α ⪯sw β.

Definition 111 We say than an occurrence Bβ is sub-occurrence of Aα if B ⩽sub A and
β ⪯sw α.

The notion of Fischer-Ladner-suboccurrence is similar to the previous one:

Definition 112 We say that Bβ is a FL-sub-occurrence of Aα if A →⋆
FL B and β ⪯sw α.

To have simpler notations, we will drop the addresses of an occurrence and simply write
it as a formula when the address can be recovered from context easily.

Definition 113 A thread is a sequence t = (Ai)i∈ω of occurrences such that for all i either
Ai+1 is a FL-sub-occurrence of Ai or Ai = Ai+1.

Now to define the criterion, one also needs to annotate all formulas in a proof by an
address. One can do this automatically by defining it on inferences rules of µLL∞. This is
done in Section 1.5.2 of [Dou17]. We just provide these annotations for a few rules, and one
can see in an obvious way how to do the same for the others. For instance the (`) and (&)
rule will be as follows:
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⊢ Γ, Aαl, Bαr (`)
⊢ Γ, (A ` B)α

⊢ Γ, Aαl ⊢ Γ, Bαr (&)
⊢ Γ, (A & B)α

The pattern for fixpoint rules and exponentials rules is as follows:

⊢ Γ, Aαi (p)
⊢ ?Γ, (!A)α

⊢ Γ, (F [νζ F/ζ])αi (ν − fold)
⊢ Γ, (νζ F )α

Definition 114 A branch of a proof is a sequence of sequent (Γji
i )i∈ω for ji ∈ {1, 2} such

that Γji+1
i+1 is the jith premises of Γji

i in the proof tree for each i.

So with each branch is associated a set of threads. Notice that this thread is not
unique in general. For instance, we have two threads in the following proof; one is t1 =
(µζ ζ)α, (µζ ζ)α, (µζ ζ)α, · · · and the other one is t2 = (νζ ζ)β, (νζ ζ)βi, (νζ ζ)βii, · · · . Since
the only rule applying in the following proof is the (ν − fold) rule, the thread corresponding
to the µζ ζ is stationary.

... (ν − fold)
⊢ µζ .ζ, νζ .ζ

(ν − fold)
⊢ µζ .ζ, νζ .ζ

Definition 115 If t = (Ai)i∈ω is a thread we use t for the sequence obtained by forgetting
the addresses of the occurrences of t. And we denote by Inf(t) the set of formulas that occurs
infinitely often in t.

For example, t1 and t2 of two threads t1 and t2 of the example above are µζ ζ, µζ ζ, · · ·
and νζ ζ, νζ ζ, · · · respectively.

Proposition 116 If a thread t is coming from a branch of µLL∞pre-proof, then Inf(t) admits
a minimum with respect to the usual sub-formula ordering ⩽sub defined in 109.

Proof: Proposition 2.7 of [Dou17]. The idea of the proof is based on the observation that
Inf(t) forms a cycle, and roughly speaking, the miminum of Inf(t) is the nearest to the root
in that cycle. ■

Now, we have all the required material to define the notion of valid threads and then valid
proofs.

Definition 117 A valid thread t is a non-stationary thread such that min(Inf(t)) is a ν-
formula with respect to the usual sub-formula ordering ⩽sub.

Definition 118 A valid µLL∞ proof π is a pre-proof π such that for any infinite branch γ =
(⊢ Γi)i∈ω, there is a non stationary valid thread t = (Ai)i>j where j ∈ ω and ∀i > j(Ai ∈ Γi)
and Ai+1 is a suboccurrence of Ai.
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We now examine some valid and non-valid proofs. Let us consider the following proof of
the formula F = µζ .(νξ .(ζ ⊗ ξ)) where G = νξ .(F ⊗ ξ):

∗2 ⊢ F ∗1 ⊢ G (⊗)
⊢ F ⊗ G (ν − fold)
∗1 ⊢ G (µ − fold)
∗2 ⊢ F

To check if the above proof is valid, we need to see if all branches have a valid thread. The
leftmost branch of this proof is ⊢ F, ⊢ G, ⊢ F ⊗ G, ⊢ F, · · · (One can see this by unfolding the
proof to see the real infinite proofs and not its finite representation). The only thread that we
have for this branch is t = Fα, Gαi, (F ⊗ G)αii, Fαiil, · · · , so we have t = F, G, F ⊗ G, F, · · · .
However, min(Inf(t)) = F , since we have F ⩽sub G. Hence this thread is not a valid thread,
and there is no more thread on this branch. Hence this proof is not valid.

Let us consider another example. Take F = νζ .µξ .(1 ⊕ (ζ ` (ξ ⊕ ⊥))) and G = µξ .(1 ⊕
(F ` (ξ ⊕ ⊥))), and consider the following proof:

∗ ⊢ F, G
(⊥)

⊢ F, ⊥, G
(⊕2)

⊢ F, G ⊕ ⊥, G
(`)

⊢ (F ` (G ⊕ ⊥)), G
(⊕2)

⊢ 1 ⊕ (F ` (G ⊕ ⊥)), G
(µ − fold)

⊢ G, G
(ν − fold)

∗ ⊢ F, G

In this proof, we have only one branch. However, we have two different threads. One can take
thread t1 = Gα, Gα, · · · which is a stationary thread and moreover min(Inf(t1)) is a µ formula.
So, this is not a valid thread. For the thread t2 = Fβ, Gβi, (1 ⊕ (F ` (G ⊕ ⊥)))βii, (F ` (G ⊕
⊥))βiir, Fβiirl, · · · we have min(Inf(t2)) = F , since F ⩽sub G. Hence t2 is a valid thread, and
hence this proof is valid.
Notice that there is also another thread in this proof, namely, Fβ, Gβi, (1 ⊕ (F ` (G ⊕
⊥)))βii, (F ` (G ⊕ ⊥))βiir, (G ⊕ ⊥)βiirr, (⊥)βiirrr which is not valid, since it is finite. One
can provide a µLL proof of the ⊢ F, G as follows where H = µξ .(1 ⊕ (⊥ ` (ξ ⊕ ⊥))):

(1)
⊢ 1 (⊥)

⊢ ⊥, 1
(⊕2)

⊢ H ⊕ ⊥, 1
(⊥)

⊢ ⊥, H ⊕ ⊥, 1
(`)

⊢ ⊥ ` (H ⊕ ⊥), 1
(⊕2)

⊢ 1 ⊕ (⊥ ` (H ⊕ ⊥)), 1
(µ − fold)

⊢ µξ .(1 ⊕ (⊥ ` (ξ ⊕ ⊥))), 1
(ν − rec′)

⊢ F, 1
(⊕1)

⊢ F, 1 ⊕ (F ` (G ⊕ ⊥))
(µ − fold)

⊢ F, G

We end this section by stating the functoriality of µLL∞ which is similar to what we have
for µLL in Section 0.2.2. We will use the functoriality of µLL∞ in Section 3.3.
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Syntactic functoriality of formulas in µLL∞

Let (ζ, ξ1, . . . , ξk) be a list of pairwise distinct propositional variables containing all the free
variables of a formula F and let −→

C = (C1, . . . , Ck) be a sequence of closed formulas. Then
the following rule is admissible in µLL∞:

⊢ ?Γ, A⊥, B
(FF )

⊢ ?Γ, (F [A/ζ,
−→
C /

−→
ξ ])⊥, F [B/ζ,

−→
C /

−→
ξ ]

The proof is done by induction on the formula F . We will provide two cases below and refer
to [Dou17] for the other cases (Definition 2.38 of [Dou17]). Let F = G1 ⊗ G2, then we have
the following pre-proof where G′i = G

[
/i
]−→

C
−→
ξ for i = 1, 2:

⊢ ?Γ, A⊥, B
(FG1)

⊢ ?Γ, (G′1 [A/ζ])⊥, G′1 [B/ζ]
⊢ ?Γ, A⊥, B

(FG2)
⊢ ?Γ, (G′2 [A/ζ])⊥, G′2 [B/ζ]

(⊗)
⊢ ?Γ, ?Γ, (G′1 [A/ζ])⊥, (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]

(c)
⊢ ?Γ, (G′1 [A/ζ])⊥, (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]

(`)
⊢ ?Γ, (G′1 [A/ζ])⊥ ` (G′2 [A/ζ])⊥, G′1 [B/ζ] ⊗ G′2 [B/ζ]

By induction hypothesis, the pre-proofs of ?Γ, (G′1 [A/ζ])⊥, G′1 [B/ζ] and ?Γ, (G′2 [A/ζ])⊥, G′2 [B/ζ]
that are obtained respectively by the (FG1) and (FG2) rule are valid proofs. There is neither
(ν − fold) rule nor (µ − fold) rule in the rest of the pre-proof, so the whole pre-proof is a
valid proof. Now assume that F = νξ G (so that (ζ, ξ, ξ1, . . . , ξk) is a list of pairwise distinct
variables containing all free variables of G). Let G′ = G

[−→
C /

−→
ξ
]

whose only possible free
variables are ζ and ξ. Then we have:

⊢ ?Γ, A⊥, B
(FG[(νξ G′)[B/ζ]/ξ])

⊢ ?Γ, (G′[A/ζ, (νξ G′) [A/ζ] /ξ])⊥, G′[B/ζ, (νξ G′) [B/ζ] /ξ]
(µ − fold)

⊢ ?Γ, ((νξ G′) [A/ζ])⊥, G′[B/ζ, (νξ G′) [B/ζ] /ξ]
(ν − fold)

⊢ ?Γ, ((νξ G′) [A/ζ])⊥, (νξ G′) [B/ζ]

The validity of this proof is relies on the fact that the thread crossing (νξ G′) [B/ζ] is the val-
idating thread (See Proposition 2.13 of [Dou17]). The case where F = νξ G is symmetrically
the same as F = νξ G.

3.2 Denotational semantics of µLL∞

In this section, we will provide an interpretation for µLL∞ proofs in Rel. As the proof trees
are possibly non-well-founded, we cannot define their interpretation inductively. The idea is to
consider all finite approximations of the proof, and then take the union of the interpretation
of them. The precise definition of this approximation is defined in Section 3.2.1. Notice
that there is another way of interpreting infinite proofs in [KPP21], based on a notion of
computation and a well-founded relation on them.
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3.2.1 Soundness

Our goal in this section is to prove that if a µLL∞ proof π reduces to π′ via the cut-elimination
process, then JπKRel = Jπ′KRel. Notice that this reduction can be potentially an infinite
reduction, so, one needs to define a notion of limit of an infinite reduction sequence. And
to do so, we need to define precisely the notion infinite sequences of proofs. This is done in
Section 3.2.1.

The cut-elimination theorem on µMALL∞ is provided in [Dou17], and it is extended to
µLL∞ in []. The set of primitive (single step) reduction rules of µLL∞ are the ones for LL plus
the following ones (Figure 3.2 of [Dou17]).

The proof

π

⊢ Γ, F [µζ F/ζ]
(µ − fold)

⊢ Γ, µζ F

π′

⊢ ∆, F⊥
[
νζ F⊥/ζ

]
(ν − fold)

⊢ ∆, νζ F⊥
(cut)

⊢ Γ, ∆
will be reduced to

π

⊢ Γ, F [µζ F/ζ]
π′

⊢ ∆, F⊥
[
νζ F⊥/ζ

]
(cut)

⊢ Γ, ∆

Metric completion of finite proofs

What we provide in this section is standard in the literature, and is provided here for the sake
of self-containdness. In this section (and only here), we assume that in the inference rules of
µLL∞, we also have this rule: (Ω)

⊢ Γ for any sequence Γ. And we interpret this rule as the
empty set. The reason that we consider this assumption will be clear later, for instance in
Definition 121.

Definition 119 Given a µLL∞ pre-proof π, we associate a set Pos(π) of positions corre-
sponding to each sequent of π as follows:

• ⟨0⟩ ∈ Pos(π)

• Let r be an occurrence of an inference rule in π and that ⟨x⟩, which belongs to Pos(π),
is the location of this occurrence in π

– If r ∈ {(⊗), (&), (cut)}, then both ⟨x0⟩ and ⟨x1⟩ are in Pos(π);
– Otherwise ⟨x0⟩ ∈ Pos(π).

The elements of Pos(π) are finite sequences of 0 and 1.

Definition 120 Given a pre-proof π and p ∈ Pos(π), we denote by Proof(π, p) the last sequent
of the sub-pre-proof of π rooted at position p.
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As an example, consider the following proof π:
(ax)

⊢ A⊥, A
(d)

⊢ ?A⊥, A
(w)

⊢ ?A⊥, ?B⊥, A

(ax)
⊢ B⊥, B

(d)
⊢ ?B⊥, B

(w)
⊢ ?A⊥, ?B⊥, B

(&)
⊢ ?A⊥, ?B⊥, A & B

(p)
⊢ ?A⊥, ?B⊥, !(A & B)

Then one can represent it by the Pos(π) as follows which is also annotated by the sequents.
One can also label the edges by the inference rules.

⊢ ?A⊥, ?B⊥, !(A & B) ⟨0⟩

⊢ ?A⊥, ?B⊥, A & B ⟨00⟩

⊢ ?A⊥, ?B⊥, A ⟨000⟩

⊢ ?A⊥, A ⟨0000⟩

⊢ A⊥, A ⟨00000⟩

⊢ ?A⊥, ?B⊥, B ⟨001⟩

⊢ ?B⊥, B ⟨0010⟩

⊢ B⊥, B ⟨00100⟩

Definition 121 Let π be a pre-proof and P be a prefix-closed subest of Pos(π). We denote
by π(P ) the sub-pre-proof of π whose set of positions is P , i.e, Pos(π(P )) = P .

Notice that if we do not assume having the (Ω) rule, then π(P ) might not exist.

Definition 122 If π is a pre-proof we denote by Posi(π) the subset of Pos(π) that contains
only all position of length i, i.e, Posi(π) = π(Pos(π) ∩ {0, 1}i).

Let X be the set of all µLL∞ finite proofs. One can define a distance d : X × X → [0, 1]:
d(π, π′) = 0 if two proofs π and π′ are identical, otherwise d(π, π′) = 1

2k , where k is the length
of the shortest position at which π and π′ differ.

Denote by C[X ] the collection of all Cauchy sequences in X . Define a relation ∼ on C[X ]
by

(πn) ∼ (π′n) ⇔ limn→∞ d(πn, π′n) = 0

It is easy to see that this is an equivalence relation on C[X ]. This definition does not
depend on the choice of representatives in the two equivalence classes. Let X ∗ be the set of
all equivalence classes for ∼. One can define the metric d∗ on X ∗ as follows where [(πn)] is
an equivalence class:

d∗([(πn)], [(π′n)]) = limn→∞ d(πn, π′n)

141



CHAPTER 3. NON-WELL-FOUNDED LL WITH FIXPOINTS AND ITS
DENOTATIONAL SEMANTICS

The metric space (X ∗, d∗) is called metric completion of X , and there is standard result
showing that this is a complete space.

Proposition 123 Let X∞ be set of all (potentially infinite) µLL∞ proofs. Then the metric
space (X ∗, d∗) is isomorphic to X∞.

Proof: Since the completion of a metric space is unique up to isometry, it is enough to show
that (X∞, d′) is the completion of X for a metric d′. That is to show X is dense in X∞ for
taking d′ same as d.

Take π ∈ X∞. Consider the sequence (πn) where πn = π(⋃i<n Posi(π)). We have now
d(π, πn) = 1

2n , so, π is the limit of the sequence (πn) of finite proofs. ■

As the direct conclusion of 123, the metric space (X∞, d) is complete, that is to say every
Cauchy sequence of proofs in X∞ has a limit inside of X∞.

Remark 26 In the cut-elimination process of µLL∞, for any natural number n, the number
of steps of the sequence which reduces a (cut) rule at depth less that n is finite []. So, the
cut-elimination reduction has countable length.

We saw that the metric space (X∞, d) is a complete space, but this was a result of the
proposition 123. Here we show the completeness of this metric space directly.

Proposition 124 The metric space (X∞, d) is complete.

Proof: Take a Cauchy sequence (πn). First, we define the set P as ⋃i

⋂
j>i Pos(πi). And

we also provide a function f that sends a p ∈ P to a sequent as follows: Since p ∈ P ,
∃i∀j > i(p ∈ Pos(πj) ∧ (Proof(πi, p) = Proof(πj , p)). So, we define f(p) as Proof(πi, p) (this
does not depend on the choice of i). Now since the sequence (πn) is a Cauchy sequence, we
have ∀k, ∃N∀i, j > N(d(πi, πj) < 1

2k ), and therefore d(Π(P, f), πi) < 1
2k where Π(P, f) is the

pre-proof tree that has P as set of its positions and it is labeled by element of f(P ) (one can
deduce it by the contradiction). Hence the proof Π(P, f) is the limit of the (πn). ■

We will use this direct proof later in proof of Lemma 126.
We can now provide our definition for interpretation of µLL∞ pre-proof in Rel, and prove

that this interpretation preserves the semantics through a Cauchy sequence of proofs.
First, one can define interpretation of a finite µLL∞ proofs by induction on last inference

rule. The interpretation of LL rules is provided in Figure 3, and we just need to take an
instance of it for Rel. So, we only need to say how we interpret the (ν − fold) and (µ − fold)
rules in Rel, and this is done, in a obvious way, as follows:

u

w
v

.... π

⊢ Γ, F [µζ F/ζ]
(µ − fold)

⊢ Γ, µζ F

}

�
~ = JπK

u

w
v

.... π

⊢ Γ, F [νζ F/ζ]
(ν − fold)

⊢ Γ, νζ F

}

�
~ = JπK

We also take the empty set as the interpretation of the (Ω) rule. Finally, give a µLL∞ proof
π, we define JπKRel = ⋃

ρ∈fin(π)JρKRel where fin(π) is the set of all finite sub-pre-proof of π
(we are allowed to do this, since we added the (Ω) rule).
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Combing Theorem 6 and computing the interpretation of two proofs given by cut-elimination
rule of (µ − fold) − (ν − fold) case, one can show the following:

Theorem 125 Given two finite µLL∞ proofs π and π′ such that π′ is obtained from π via
one cut-elimination rule, then JπKRel = Jπ′KRel.

Lemma 126 Let (πi) be a Cauchy sequence. Then Jlimn→∞ πiKRel = ⋃
i

⋂
j>iJπjKRel.

Proof: By Proposition 124, limn→∞ πi = Π(P, f) (we are using a notation introduced in
the proof of Proposition 124). By definition, JΠ(P, f)KRel = ⋃

π∈fin(Π(P,f))JπKRel. Take a
π′ ∈ fin(Π(P, f)). For each p ∈ fin(Π(P, f)), we have ∃ip∀j > ip(p ∈ Pos(πj) ∧ (Proof(πj , p) =
Proof(π′, p)), by definition. Let i be the maximum among all ip’s (The set Pos(π′) is finite).
Then for all j > i we have π′ ∈ πj . Hence we have the following:

∀π′ ∈ fin(Π(P, f)) ∀p ∈ π′ ∃i ∀j > i (p ∈ πj ∧ (Proof(πj , p) = Proof(π′, p)))

And that is to say for each π′ ∈ fin(Π(P, f)), there exists an i such that for all j > i,
π′ is a finite sub-pre-proof of all πj . Hence Jπ′KRel is a subset of JπjKRel for all j > i, so,
Jπ′KRel ⊆

⋂
j>iJπjKRel. ■

Theorem 127 Let (πi) be a Cauchy sequence such that ∀i, j we have JπiKRel = JπjKRel (We
denote by JπKRel the JπiKRel for any i). Then Jlimn→∞ πiKRel = JπK.

Proof:

J lim
n→∞

πiKRel =
⋃
i

⋂
j>i

JπjKRel By Lemma 126

=
⋃⋂

JπKRel

= JπKRel

■

And, we can now prove the soundness theorem for µLL∞ as a direct conclusion of Theo-
rem 125 and Theorem 127:

Corollary 128 If π and π′ are proofs of ⊢ Γ and π reduces to π′ by the cut-elimination rules
of µLL∞, then JπKRel = Jπ′KRel.

3.2.2 On relation between totality semantics and syntactic validity

What we have seen till now in Section 3.2 is the interpretation of µLL∞ proofs in Rel and
a soundness theorem for µLL∞ with respect to Rel. However, as one might notice, we did
not talk about valid proofs. Indeed, Lemma 126 is true in general for any Cauchy sequence
of µLL∞ pre-proofs (not necessary the valid ones). In this section, we provide a denotational
account of the validity criterion using the model introduced in Chapter 2, i.e, Nuts.

We prove the main result of this chapter which says that the interpretation of any valid
proof is a total element, i.e. theorem 134. The proof method is similar to the proof of
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soundness of LKIDω in [Bro06]. However the system of [Bro06] is classical logic with inductive
definitions, and this proof is for a Tarskian semantics. We need to adapt that proof in
two aspects: considering µLL∞ instead of LKIDω, and trying to deal with a denotational
semantics instead of a Tarskian semantics. The adaptation for µLL∞ is somehow done in
[Dou17], since there is soundness theorem for µMALL∞ with respect to the truncated truth
semantics (a Tarskian semantics). So, basically, the main point of our proof is turning a
Tarskian soundness theorem into a denotational soundness theorem.

From now on, when we write the interpretation of formula as JF K, we mean its interpreta-
tion in Nuts. And when we write the interpretation of proof as JπK, we mean its interpretation
in Rel, i.e, JπKRel. However, at the end of this chapter, we will see that indeed this JπKRel is
a total element, so, it is indeed in Nuts (but this needs to be proven).

As we saw in the proof of Theorem 45, given a closed formula νζ F , we can define its
interpretation in Nuts by a transfinite induction (using Knaster–Tarski theorem) considering
sequences of totality candidate as follows:

• UA
0 = P(Jνζ F KRel) where P(X) is the power set of X.

• UA
α+1 = T (JF K)(Jνζ F KRel, UA

α ).

• UA
δ = ⋂

α<δ UA
α

• and finally, there is an ordinal λ such that Uλ = Uλ+1, and we use λA for the least such
ordinal.

To have simpler notation, we use the notation Uα (and Uλ) freely without mentioning the
formula. One can find what the corresponding formula is from the context.

The following definition is borrowed from [Dou17].

Definition 129 The marked formulas of µLL∞ are defined as follows where α is an ordinal:

A, B, . . . := 1 | 0 | ⊥ | ⊤ | A ⊕ B | A ⊗ B | A & B | A ` B | ?A | !B | ζ | µζ F | ναζ.F (3.1)

We denote by A◦ the label-stripped formula A.
The interpretation of ναζ.F in Nuts is Jναζ.F K = (Jνζ F KRel, Uα), and the other marked

formulas are interpreted as usual.

Proposition 130 Let A be a µLL∞ formula. Then we have JAK = JAK where A is the marked
formula, obtained from A by marking every ν binder of A by the ordinal λA.

The proof of this proposition is obvious.

Lemma 131 If A is a µLL∞ formula and t ̸∈ T (Jναζ.F K) (t ⊆ Jναζ.F K), then there exists
an ordinal γ < α such that t ̸∈ T (JF [νγζ.F/ζ]K).
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Proof: If α is a successor ordinal δ + 1 then Uα = T (JF K)(Jνζ F KRel, Uδ) by definition, and
obviously t ̸∈ T (JF K)((Jνζ F KRel, Uδ)). And so t ̸∈ T (JF [νγζ.F/ζ]K) for γ = δ.

If α is a limit ordinal, then: Uα = ⋂
γ<α Uγ , and t ̸∈

⋂
γ<α Uγ = ⋂

δ+1<α Uδ+1. So, there
exists an ordinal δ + 1 < α such that t ̸∈ Uδ+1 and we continue as before.

■

Lemma 132 T (JF [µζ F/ζ]K) = T (Jµζ F K).

Proof: The interpretation of µζ F is the least fixed-point of θF where θF is T (JF K). So, we
have:

T (Jµζ F K) = θF (T (Jµζ F K))
= T (JF K)((Jµζ F KRel, T (Jµζ F K))) by definition of θF

= T (JF [µζ F/ζ]K) by Lemma 92

■

Lemma 133 If π is a proof of ⊢ Γ and JπK ̸∈ T ((JΓK)), then

1. π has an infinite branch γ = (⊢ Γi)i∈ω such that JπiK ̸∈ T ((JΓiK)) where πi is the
sub-proof of π rooted in ⊢ Γi;

2. and there exists a sequence of functions (fi)i∈ω where fi maps all formulas D of Γi to
a marked formula fi(D) such that

• (fi(D))◦ = D,
• one can write Γi = Γ′i, C,
• and there exists x ∈ T (J(fi(Γ′i))⊥K) such that JπiK.x ̸∈ T (Jfi(C)K) where Γ′i =

Ai
1, · · · , Ai

ni
and J(fi(Γ′i))⊥K = (Jfi(Ai

1)K)⊥ ⊗ · · · ⊗ (Jfi(Ai
ni

)K)⊥.

Proof: We set Γ0 = Γ, and f0(D) = D for all D ∈ Γ0:

• Since π0 = π, Jπ0K /∈ T (JΓ0K).

• Let C be the principal formula in Γ0. The sequent ⊢ f0(Γ0) is denotationally the same
as ⊢ (f0(Γ′0))⊥ ⊸ f0(C). By the proposition 130, Jf0(D)K = JDK for all D ∈ Γ0. So,
Jπ0K ̸∈ T (f0(Γ0)). That is to say Jπ0K ̸∈ T (J(f0(Γ′0))⊥ ⊸ f0(C)K). Therefore, by the
lemma 33, there exists x ∈ T (J(f0(Γ′0))⊥K) such that Jπ0K.x ̸∈ T (Jf0(C)K).

Suppose that we have provided Γi and fi for i ∈ ω. We then define Γi+1 and fi+1
depending on the rule applied on ⊢ Γi in π. Let us assume that the formula C is the principal
in Γi:

• If C = C1 ` C2, then Γi+1 is the unique premise of ⊢ Γi. fi(C) = B1
C ` B2

C where
B1

C and B2
C are two marked formulas, so, we set fi+1(C1) = B1

C , fi+1(C2) = B2
C , and

fi+1(F ) = fi(F ) for the other F ∈ Γi+1:
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– Since Γi is obtained by applying the ` rule on Γi+1, we have Jπi+1K = JπiK, and
JΓi+1K = JΓiK. By induction hypothesis, Jπi+1K ̸∈ T (JΓi+1K).

– By induction hypothesis, there exists x ∈ T (J(fi(Γ′i))⊥K) such that JπiK.x ̸∈ T (Jfi(C)K).
So, Jπi+1K.x = JπiK.x ̸∈ T (JB1

C ` B2
CK) = ((T ((J((B1

C))⊥K ⊗ J((B2
C))⊥K))))⊥. So,

there is a y ∈ T ((J((B1
C))⊥K ⊗ J((B2

C))⊥K)) such that Jπi+1K.x ∩ y ̸= ∅. Since
y ∈ T ((J(B1

C)⊥K ⊗ J(B2
C)⊥K)), there is u′ ∈ T (J(B1

C)⊥K) and v′ ∈ T (J(B1
C)⊥K) such

that u′ × v′ ⊆ y. So, Jπi+1K.x ∩ (u′ × v′) = ∅. This statement is equivalent to
(Jπi+1K.x).u′ ∩ v′ ̸= ∅. Jπi+1K.x ∈, and this is equivalent to Jπi+1K.(x × u′) ∩ v′ ̸= ∅.
We have shown till now that there exists v′ ∈ T (J(B1

C)⊥K) such that Jπi+1K.x′∩v′ ̸=
∅ where x′ = x × u′. So, by definition, Jπi+1K.x′ ̸∈ T (JB1

CK).

• If C = C1 ⊕ C2, then we proceed as above.

• If C = C1 ⊗ C2. Let us call Γ1
i+1 and Γ2

i+1 for the two premises of ⊢ Γi. fi(C) =
B1

C ⊗ B2
C where B1

C and B2
C are two marked formulas. Since JπiK ̸∈ T (JΓiK), we have

Jπj
i+1K ̸∈ T (JΓj

i+1K) for either j = 1 or j = 2 where π1
i+1 (respectively π2

i+1) is the left
(respectively the right) subproof of πi. Let us assume that it is true for j = 1 (the proof
of the case j = 2 is is identical to the case j = 1). So we set Γi+1 = Γ1

i+1, fi+1(C1) = B1
C ,

and fi+1(D) = fi(D) for the other D ∈ Γ1
i+1.

– By induction hypothesis, there exists x′ ∈ T (J(fi(Γ1
i+1 ` Γ2

i+1))⊥K) such that JπiK.x′ ̸∈
T (JB1

C ⊗ B2
CK). Hence JπiK ̸∈ T (Jfi(Γi)K) by Lemma 33. So, we have Jπj

i+1K ̸∈
T (Jfi+1(Γi+1j′) ` Bj

CK) for either j = 1 or j = 2. Let us assume that is true
for j = 1 (the proof of the case j = 2 is identical to the case j = 1). So,
Jπ1

i+1K ̸∈ T (J(fi+1(Γi+1j′))⊥ ⊸ B1
CK). And therefore, using lemma 33, there is

a y ∈ J(fi+1(Γi+1j′))⊥K such that Jπ1
i+1K.y ̸∈ T (JB1

CK).

• If C = C1 & C2, then we proceed as above.

• IF C = µζ F , then Γi+1 is the unique premise of ⊢ Γi. Wlog let us say Γi = Ai
1, · · · , Ai

ni
, µζ F .

fi(C) = µζ BC where BC is a marked formula. By induction hypothesis, there ex-
ists x ∈ T (J(fi(Γ′i))⊥K) such that JπiK.x ̸∈ T (Jµζ BCK) where Γ′i = Ai

1, · · · , Ai
ni

. So,
Jπi+1K.x ̸∈ T (JBC [µζ BC/ζ]K), since Jπi+1K = JπiK and lemma 132. Then we set
fi+1(F [C/ζ]) = BC [µζ BC/ζ] and fi+1(D) = fi(D) for all the other formula D ∈ Γi+1
in order to have the second property of the lemma 133.

• If C = νζ F , then Γi+1 is the unique premise of ⊢ Γi. Wlog, let us say Γi = Ai
1, · · · , Ai

ni
, νζ F .

fi(C) = νθζ.BC where BC is a marked formula. By induction hypothesis, there ex-
ists x ∈ T (J(fi(Γ′i))⊥K) such that JπiK.x ̸∈ T (Jνθζ.BCK) where Γ′i = Ai

1, · · · , Ai
ni

. By
Lemma 131, there is an ordinal δ < θ such that Jπi+1K.x ̸∈ T (JBC

[
νδζ.BC/ζ

]
K), since

Jπi+1K = JπiK. So, we set fi+1(F [C/ζ]) = fi(F )
[
νδζ.BC/ζ

]
and fi+1(D) = fi(D) for

all the other formula D ∈ Γi+1 in order to have the second property of the lemma.

• If the rule applied to ⊢ Γi is a (cut) rule on the C. Let us say Γi is Γ1
i , Γ2

i . By induction
hypothesis, JπiK ̸∈ T (JΓiK). So, we have either Jπi+1K ̸∈ T (JΓ1

i ` CK) or Jπi+1K ̸∈
T (JΓ2

i ` C⊥K). Wlog let us say Jπi+1K ̸∈ T (JΓ1
i ` CK). Then we take Γi+1 = Γ1

i , C. And
for the fi+1, we define fi+1(D) = fi(D) for all D ∈ Γ1

i , and fi(C) = C.
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– By induction hypothesis, JπiK ̸∈ T (Jfi(Γi)K). So, we have either Jπi+1K ̸∈ T (Jfi(Γ1
i ) ` CK)

or Jπi+1K ̸∈ T (Jfi(Γ1
i ) ` C⊥K). So, we can use lemma 33 to deduce the second prop-

erty as we proceed as the case C = C1 ⊗ C2.

• If the rule applied to ⊢ Γi is a (w) rule, then Γi+1 is the unique premise of the (w)
rule. And fi+1(D) = fi(D) for all D ∈ Γi+1. We have Jπi+1K /∈ T (Jfi(Γi+1)K) =
T (Jfi+1(Γi+1)K), since JπiK /∈ T (Jfi(Γi)K) (here we are also using Theorem 19 of µLL).

• If the rule applied to ⊢ Γi is (c) rule on the formula ?C, then we proceed as above.

• If the rule applied to ⊢ Γi is (d) rule on the formula ?C. Let us say Γi = Γ′i, ?C. Then
Γi+1 = Γ′i, C. fi+1(D) = fi(D) for all D ∈ Γ′i. fi(?C) = ?BC where BC is a marked
formula. Then we take fi+1(C) = BC . To show the second property, we can again use
Theorem 19 of µLL.

• If the rule applied to ⊢ Γi is (p) rule on the formula !C, then we proceed as above.

■

Now, we can state and prove our the main result of this chapter.

Theorem 134 If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T (JΓK).

Proof: Let us assume JπK ̸∈ T (JΓK). We can then apply Lemma 133 to obtain an infinite
branch (⊢ Γi)i∈ω and a sequence (fi)i∈ω satisfying properties 1 and 2 of Lemma 133. By
the definition of valid proof (Definition 118), there exists a valid thread t = (Fi)i∈ω for the
infinite branch (⊢ Γi)i∈ω. Let νζ F be the minimal formula formula of t. So, there are infinitely
many times in t that we use a ν rule to unfold νζ F . Let (ik)k∈ω be the sequence of indices
where νζ F gets unfolded. Then (νζ F )αik

is sub-occurrence (Definition 112) of (νζ F )αi′
k

for
k′ ⩾ k where αik

(respectively αi′
k
) is the address of νζ F in sequent ik (respectively i′k).

By the property 2 of Lemma 133, fik
(νζ F ) = ναkζ.fik

(F ). Therefore, by the property 2 of
Lemma 133 and by the construction of the fi in the proof of Lemma 133, the sequence (αk)k∈ω

is strictly decreasing. As this contradicts the well-foundedness property of the ordinals we
obtain the required contradiction and conclude that JπK ∈ T (JΓK). ■

We end this chapter by the following two remarks.

Remark 27 One might think of the following statement as the converse of Theorem 134. If
π is a pre-proof of the sequent ⊢ Γ such that JπK ∈ T (JΓK), then π is a valid proof. This
statement is not necessarily true, and there are many counterexamples indeed. For instance,
take F = µζ (⊥ & (ζ ` ζ)) and G = νξ (1 ⊕ (ξ ` ξ)) and the following pre-proof π where
σ = ((ν − fold), (⊕2), (`))ω:
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(1)
⊢ 1 (⊕1)

⊢ 1 ⊕ (G ` G)
(ν − fold)

⊢ G (⊥)
⊢ ⊥, G

...
σ

⊢ ⊥, F, G, G
(`)

⊢ ⊥, F, G ` G
(⊕2)

⊢ ⊥, F, 1 ⊕ (G ` G)
(ν − fold)

⊢ ⊥, F, G

...
σ

⊢ ⊥, F, F, G
...

(&)
⊢ ⊥ & (F ` F ), F, F, G

(µ − fold)
⊢ F, F, F, G

(`)
⊢ F ` F, F, G

(&)
⊢ ⊥ & (F ` F ), F, G

(µ − fold)
⊢ F, F, G

(`)
⊢ F ` F, G

(&)
⊢ ⊥ & (F ` F ), G

(µ − fold)
⊢ F, G

This pre-proof is not valid, since there is no valid thread in the rightmost branch. The
interpretation of π in Rel is JπKRel = {((1, ∗), (1, ∗))}. However, JπKRel ∈ T (JF ` GK).

Notice that there are two ways to see that JπKRel ∈ T (JF ` GK). One can compute the
interpretation of the formula F ` G in Nuts. And one can also provide a valid proof π′ of
⊢ F, G such that JπKRel = Jπ′KRel. Consider indeed the following pre-proof π′:

(1)
⊢ 1 (⊕1)

⊢ 1 ⊕ (G ` G)
(ν − fold)

⊢ G (⊥)
⊢ ⊥, G

... ((ν − fold), (⊕2), (`))ω

⊢ F ` F, G, G
(`)

⊢ F ` F, G ` G
(⊕2)

⊢ F ` F, 1 ⊕ (G ` G)
(ν − fold)

⊢ F ` F, G
(&)

⊢ ⊥ & (F ` F ), G
(µ − fold)

⊢ F, G

This proof π′ is a valid proof, since the thread t = Gα, (1 ⊕ (G ` G))αi, (G ` G)αir, Gαiri, · · ·
is a valid thread (min(Inf(t)) = G). We also have Jπ′KRel = {((1, ∗), (1, ∗))}, and hence using
Theorem 134, we know that JπK = Jπ′K ∈ T (JF ` GK).

Remark 28 The following example is another example of non-valid proof whose interpreta-
tion is total.

(ax)
⊢ νζ .ζ, µζ .ζ

(ν − fold)
⊢ νζ .ζ, µζ .ζ ∗ ⊢ νζ .ζ

(cut)
∗ ⊢ νζ .ζ

This example differs however from the one of Remark 27. It is true that this pre-proof
does not respect the validity criterion of, but it is valid with respect to the more recent cri-
terion of [Dou17, BDS16], but this proof is considered as a valid proof in a more recent
work [BDKS20]. That is why we hope that denotational semantic helps us to understand
which validity conditions is more appropriate. However, this is just a hope till now. The
only thing that we can say for the moment is that the notion of totality provides a sort of
maximal notion for validity as valid proofs should be interpreted as total elements. To see
this, let us assume that there is another notion of validity which will not be interpreted as
total elements. In particular, take a proof π of ⊢ nat⊥, nat such that JπK /∈ T (JnatK ⊸ JnatK).
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As T (JnatK ⊸ JnatK) = {f ⊆ N × N | ∀n ∃m s.t (n, m) ∈ f}, then this says that there is a
finite, hence valid, proof σ of a natural number such that the cut-elimination procedure of π
and σ will not terminate. Hence we can learn that that notion of validity is not a good one,
as it does not enjoy cut-elimination. Hence one can also ask this question: can we extend
such a reasoning to all µLL∞ types? The same question is asked by Girard for second order
type, and it is still an open question [Gir86].

3.3 Inductive vs circular linear logic proofs

In this section we will talk about the comparison between µLL proofs and µLL∞ circular
proofs. As it is mentioned in [Dou17], if a sequent ⊢ Γ is provable in µLL, then it is provable
in µLL∞. This can be done by translating a µLL proof π of ⊢ Γ into a circular µLL∞ proof π′

of ⊢ Γ that we will denote it by Trans (π). This translation can be done by induction on π:

• We have the following for r ∈ {(1), (ax), (⊥), (`), (⊤), (⊕1), (⊕2), (w), (c), (d), (p), (µ −
fold)}:

Trans
( π

⊢ ∆ r
⊢ Γ

)
=

Trans (π)
⊢ ∆ r
⊢ Γ

• We have the following for r ∈ {(cut), (⊗), (&)}:

Trans

 π1
⊢ ∆1

π2
⊢ ∆2 r

⊢ Γ

 =
Trans (π1)

⊢ ∆1

Trans (π2)
⊢ ∆2 r

⊢ Γ

• And finally Trans

 π
⊢ ?Γ, A⊥, F [A/ζ]

(ν − rec′)
⊢ ?Γ, A⊥, νζ F

 is the following circular proof using

the functoriality of formulas given in Section 3.1:

π
⊢ ?Γ, A⊥, F [A/ζ]

∗ ⊢ ?Γ, A⊥, νζ F
(FF )

⊢ ?Γ, (F [A/ζ])⊥, F [νζ F/ζ]
(ν − fold)

⊢ ?Γ, (F [A/ζ])⊥, νζ F
(cut)

⊢ ?Γ, ?Γ, A⊥, νζ F
(c)

∗ ⊢ ?Γ, A⊥, νζ F

And finally, Proposition 2.14 of [Dou17] ensures that Trans (π) is a valid µLL∞ proof. Our
main goal in the section is to prove that the semantic is preserved via this operation Trans ().
To do so, first of all, we need to say what the interpretation of a µLL∞ circular proof is in any
categorical model of µLL. The interpretation of each inference rule of µLL∞ is exactly identical
to the inference rule of µLL given in Section 1.1.3. To interpret the µLL∞ circular proofs, the
general idea is to associate a system of equation on the morphisms of the given category to
the proof, and then proving that it has a solution which we take it as the interpretation of
the circular proof. This is done in the case of additive linear logic in [FS13, San02]. However,
in this manuscript we only do this on the circular proofs that are coming from the translation
of an inductive proof, i.e, image of the operation Trans (), and we leave this question for all
µLL∞ circular proofs to a future work.
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Theorem 135 Let π be a µLL proof. Then we have JπK = JTrans (π)K where the interpretation
is given in a model (L,

−→
L ) of µLL.

Proof: The proof is by induction on π. Let us assume that the last inference rule is a
(ν − rec′) rule so that π is the following proof:

π′

⊢ ?Γ, A⊥, F [A/ζ]
(ν − rec′)

⊢ ?Γ, A⊥, νζ F

Let f = JTrans (π)K. By definition of Trans (π) given above, f should satisfy the following
diagram:

!JΓ⊥K ⊗ A Jνζ F K

JF K(Jνζ F K)

!JΓ⊥K ⊗ !JΓ⊥K ⊗ A

!JΓ⊥K ⊗ JF K(JAK) JF K(!JΓ⊥K ⊗ JAK)

f

C!JΓ⊥K⊗Id

≃

Id⊗Jπ′K

ĴF K

JF K(f)

By the construction given in Section 1.1.3, the interpretation of π is the unique morphism
JπK ∈ L(!JΓ⊥K ⊗ A, Jνζ F K) satisfying the following diagram:

!JΓ⊥K ⊗ A Jνζ F K

JF K(Jνζ F K)

!JΓ⊥K ⊗ !JΓ⊥K ⊗ A

!JΓ⊥K ⊗ JF K(JAK) JF K(!JΓ⊥K ⊗ JAK)

JπK

C!JΓ⊥K⊗Id

≃

Id⊗Jπ′K

ĴF K

JF K(JπK)

Hence, by Lemma 13, we have JπK = JTrans (π)K. ■

We end this chapter by the following remark:

Remark 29 Using the operator Trans (), we saw that if a sequent ⊢ Γ is provable in µLL,
then it is also provable in µLL∞. However, the converse of this statement is an open question.
By the converse, we mean the following question. If a sequent ⊢ Γ has a circular µLL∞ proof,
then is it true that it also has a µLL proof? The same question is also asked in the literature
for other logical systems such as the inductive definitions in classical logic for the first-order
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language [BS10] and it is shown that it has a negative answer for that system [BT19]. It is
also shown that this question has a positive answer for intuitionistic logic when both systems
(inductive and circular) contain Heyting arithmetic [BT17]. For LL, what we know is that
the provability of µLL∞ circular proofs is strictly included in the provability of arbitrary µLL∞
proofs based on the recent result of [DDS22] (Theorem 18 of [DDS22]).

3.4 Sum up of Chapter 3

Nuts
Sum up of Chapter 3

• Provide two denotational models for µLL∞ in Rel and Nuts, and prove its sound-
ness: Theorem 128.

• Relate the syntactic validity conditions on µLL∞ pre-proofs and totality notion
of Nuts: Theorem 134.

• The semantic is preserved via the translation of the µLL proofs into µLL∞ proofs:
Theorem 135.
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Chapter 4

The magmatic quasi-exponential

In [Qua95, Laf88b, Laf88a, Bae12], we can find this recursive equation !A = 1 & A & (!A ⊗ !A)
as another possible definition for the ! exponential of LL. Although this ! exponential is
functorial and also has a comonad structure, it does not fulfill all the categorical requirements
as stipulated in the definition of a Seely category, as it is also mentioned in [Laf88b, Laf88a].
More precisely, we will not have the Seely iso with this ! exponential (Proposition 6 of [Laf88b]
is not iso but equivalence). More precisely the associated Kleisli category L! is not a CCC.
Nevertheless, one can encode all µLL inference rules in µMALL using this encoded ! which is
defined as the greatest fixpoint of !A = 1 & A & (!A ⊗ !A) [Bae12], i.e, in µMALL syntax we
have !A = νζ .(1 & A & (ζ ⊗ ζ)). This can be done as follows. Notice that by De Morgan
duality we also have ?A = µζ .(⊥ ⊕ A ⊕ (ζ ` ζ)). From now on, we use the notation !tA and
?tA for these encoded exponentials, and called them tree exponentials.

⊢ Γ (⊥)
⊢ Γ, ⊥

(⊕1), (⊕1)
⊢ Γ, ⊥ ⊕ A ⊕ (?tA ` ?tA)

(µ − fold)
⊢ Γ, ?tA

⊢ Γ, A
(⊕1), (⊕2)

⊢ Γ, ⊥ ⊕ A ⊕ (?tA ` ?tA)
(µ − fold)

⊢ Γ, ?tA

⊢ Γ, ?tA, ?tA
(`)

⊢ Γ, ?tA ` ?tA
(⊕2), (⊕2)

⊢ Γ, ⊥ ⊕ A ⊕ (?tA ` ?tA)
(µ − fold)

⊢ Γ, ?tA

(1)
⊢ 1 (µ − fold), (⊕2), ⊥

⊢ ?tΓ, 1
⊢ ?tΓ, A

(ax)
⊢ ?tΓ, !tΓ⊥

(ax)
⊢ ?tΓ, !tΓ⊥

(⊗)
⊢ ?tΓ, ?tΓ, !tΓ⊥ ⊗ !tΓ⊥

(µ − fold), (⊕2), (⊕2), (`)
⊢ ?tΓ, !tΓ⊥ ⊗ !tΓ⊥

(&)
⊢ ?tΓ, A & (!tΓ⊥ ⊗ !tΓ⊥)

(&)
⊢ ?tΓ, 1 & A & (!tΓ⊥ ⊗ !tΓ⊥)

(ν − rec)
⊢ ?tΓ, !tA

In this chapter, we will provide a general categorical construction for this !, and examine
it on concrete models of LL. Specially, we will prove that the interpretation of a LL proof
in coherence spaces with this ! exponential is related to its interpretation in non-uniform
coherence spaces with Boudes’s exponential mentioned in Section 0.4.3.
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4.1 A categorical setting for Tree exponentials

Let L be a category, ⊗ be a binary functor L2 → L and 1 be an object of L.
A comagma in L is a triple M = (M, wM , cM ) where M is an object of L, wM ∈ L(M, 1)

and cM ∈ L(M, M ⊗M), without further conditions. Given comagmas M and N , a comagma
morphism M → N is an element f of L(M, N) such that the diagrams

M N

1

f

wM wN

M N

M ⊗ M N ⊗ N

f

cM cN

f⊗f

commute. We use Comag (L) for this category.
Given an object X of L, a comagma over X is a tuple M = (M, wM , cM , dM ) where

(M, wM , cM ) is a comagma (simply denoted as M) and dM ∈ L(M, X).
Given an object X of L, we can organize the class of comagmas over X into a category

ComagX (L): an element of ComagX (L) (M, N) is an f ∈ Comag (L) (M, N) such that

M N

X

f

dM dN

A free magmatic quasi-exponential (FMQE) is an operation which, with each object X of
L, associates a terminal object Et (X) = (!tX, wt

X , ct
X , dert

X) of ComagX (L).

4.1.1 Functoriality of a FMQE

Assume we are given such an FMQE. Let f ∈ L(X, Y ), we have a functor f∗ : ComagX (L) →
ComagY (L) defined on objects by f∗(M) = (M, wM , cM , f dM ) and acting as the identity on
morphisms. Since Et (Y ) is terminal in ComagY (L), the set ComagY (L) (f∗(Et (X)), Et (Y ))
has exactly one element that we denote as !tf . This morphism is therefore an element of
L(!tX, !tY ) which is completely characterized by the following commutations

!tX !tY

X Y

!tf

dert
X dert

Y

f

!tX !tY

1

!tf

wt
X wt

Y

!tX !tY

!tX ⊗ !tX !tY ⊗ !tY

!tf

ct
X ct

Y

!tf⊗!tf

Functoriality of the operation !t_ follows easily from this uniqueness. It is also clear that
(dX)X∈Obj(L) is a natural transformation.

Remark 30 One could have done something slightly simpler to deal with functoriality of
a FMQE, as one can see a FMQE boils down to a left adjoint to the forgetful functor
Comag (L) → L, rather than using our definition in terms of terminal object. However
we preferred this more concrete, equivalent, presentation which has also the advantage of
defining the FMQE as an operation on objects and not on morphisms a priori.
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4.1.2 Comonadicity of an FMQE

In the category Comag!tX (L), we have the object IX = (!tX, wt
X , ct

X , Id!tX). Let digt
X be

the unique element of Comag!tX (L) (IX , Et (!tX)). So digt
X ∈ L(!tX, !t!tX) is completely

characterized by the following commutations:

!tX !t!tX

!tX

digt
X

Id!tX dert
!tX

!tX !t!tX

1

digt
X

wt
X wt

!tX

!tX !t!tX

!tX ⊗ !tX !t!tX ⊗ !t!tX

digt
X

ct
X ct

X

digt
X⊗digt

X

Let us check that digt
X is natural in X so let f ∈ L(X, Y ). We must prove that

!tX !tY

!t!tX !t!tY

!tf

digt
X digt

Y

!t!tf

Let M = (!tf)∗(IX) = (!tX, wt
X , ct

X , !tf) ∈ Obj(Comag!tY (L)) (see Section 4.1.1 to recall
definition of f∗). We clearly have digt

Y !tf ∈ Comag!tY (L) (M, Et (!tY )), so it suffices to
prove that !t!tf digt

X ∈ Comag!tY (L) (M, Et (!tY )) since Et (!tY ) is the terminal object of
Comag!tY (L). We have

digt
X ∈ Comag!tX (L) (IX , Et (!tX))

and hence, applying the (!tf)∗ functor we get

digt
X ∈ Comag!tY (L) (M,

(
!tf
)
∗(E

t (!tX)))
and since, by definition, !t!tf ∈ Comag!tY (L) ((!tf)∗(Et (!tX)), Et (!tY )), we get the expected
property.

Next we must check that

!tX !t!tX

!tX

digt
X

IdX !t(dert
X)

and for this it suffices to prove that !t
(
dert

X

)
digt

X ∈ ComagX (L) (Et (X) , Et (X)). We
have dert

X ∈ L(!tX, X) and hence !t
(
dert

X

)
∈ ComagX (L) (

(
dert

X

)
∗(E

t (!tX)), Et (X)). On
the other hand digt

X ∈ Comag!tX (L) (I!tX , Et (!tX)) and we end the proof by applying the(
dert

X

)
∗ functor to that morphism and observing that

(
dert

X

)
∗(I!tX) = Et (X).

Last we have to prove that

!tX !t!tX

!t!tX !t!t!tX

digt
X

digt
X

digt
!tX

!t(digt
X)
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Let M =
(
digt

X

)
∗(IX) ∈ Obj(Comag!t!tX (L)); applying the

(
digt

X

)
∗ functor we get

digt
X ∈ Comag!t!tX (L) (M,

(
digt

X

)
∗(E

t (!tX)))
and !(digt

X) ∈ Comag!t!tX (L) (
(
digt

X

)
∗(E

t (!tX)), Et (!t!tX)) and hence it suffices to prove that

digt
!tX digt

X ∈ Comag!t!tX (L) (M, Et (!t!tX)) .

We have digt
!tX ∈ Comag!t!tX (L) (I!tX , Et (!t!tX)) by definition and, trivially we also have

digt
X ∈ Comag!t!tX (L) (M, I!tX) which proves our contention.

Lemma 136 Equipped with the natural transformations (dert
X)X∈Obj(L) and (digt

X)X∈Obj(L),
the functor !t_ is a comonad L → L. It will be called the free comagma comonad.

4.1.3 Monoidality of an FMQE

Notice that so far all this can be done without any monoidality structure on top of (L, ⊗, 1).
Such extremely weak assumptions are not sufficient for the sequel.

We assume from now on that a symmetric monoidal structure is given on L, so that we are
given isomorphisms λX ∈ L(1⊗X, X), ρ ∈ L(X ⊗1, X), αX1,X2,X3 ∈ L((X1 ⊗ X2)⊗X3, X1 ⊗
(X2 ⊗ X3)) and γX1,X2 ∈ L(X1 ⊗ X2, X2 ⊗ X1), subject to the usual coherence commutation
diagrams [Mac71].

This allows to equip 1 with a structure of comagma over itself, we denote by 1 the corre-
sponding object (1, w1, c1, d1) where w1 = d1 = Id1, c1 = λ−1

1 = ρ−1
1 . Since Et (1) is terminal

in Comag1 (L), there is exactly one morphism µt,0 ∈ Comag1 (L) (1, Et (1)). In other words,
it is the unique element of L(1, !t1) such that

1 !t1

1

µt,0

Id1
dert

1

1 !t1

1

µt,0

Id1
wt

1

1 !t1

1 ⊗ 1 !t1 ⊗ !t1

µt,0

c1 ct
1

µt,0⊗µt,0

Let now X1 and X2 be objects of L. For i = 1, 2 let Mi be a comagma over Xi. We equip
M1 ⊗ M2 with a structure of comagma over X1 ⊗ X2. We use M1 ⊗ M2 for the correspond-
ing comagma (M1 ⊗ M2, wM1⊗M2 , cM1⊗M2 , dM1⊗M2). The structure maps are defined as the
folllowing compositions of morphisms

M1 ⊗ M2

1 ⊗ 1

1

wM1 ⊗wM1

λ1=ρ1

M1 ⊗ M2

(
M1 ⊗ M1

)
⊗
(
M2 ⊗ M2

)
(
M1 ⊗ M2

)
⊗
(
M1 ⊗ M2

)
cM1 ⊗ cM2

ϕ

M1 ⊗ M2

X1 ⊗ X2

dM1 ⊗ dM2

where ϕ is an iso obtained by combining instances of α and γ (any well-typed combination
will do by the coherence theorem). Let moreover fi ∈ ComagXi

(L) (Mi, Ni) for i = 1, 2.
Then it is easily checked that f1 ⊗ f2 ∈ ComagX1⊗X2 (L) (M1 ⊗ M2, N1 ⊗ N2).
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Let µt,2
X1,X2

be the unique element of
ComagX1⊗X2 (L) (Et (X1) ⊗ Et (X2) , Et (X1 ⊗ X2)) .

Hence µt,2
X1,X2

∈ L(!tX1 ⊗ !tX2, !t (X1 ⊗ X2)) is characterized by the following commutations

!tX1 ⊗ !tX2 !t (X1 ⊗ X2)

X1 ⊗ X2

µt,2
X1,X2

dert
X1
⊗ dert

X2

dert
X1⊗X2

!tX1 ⊗ !tX2 !t (X1 ⊗ X2)

1 ⊗ 1 1

µt,2
X1,X2

wt
X1
⊗wt

X2 wt
X1⊗X2

λ1=ρ1

!tX1 ⊗ !tX2 !t (X1 ⊗ X2)

(!tX1 ⊗ !tX2) ⊗ (!tX1 ⊗ !tX2) !t (X1 ⊗ X2) ⊗ !t (X1 ⊗ X2)

µt,2
X1,X2

ϕ

(
ct

X1
⊗ct

X2

)
ct

X1⊗X2
µt,2

X1,X2
⊗µt,2

X1,X2

Now we prove that (!t_, µt,0, µt,2) is a lax symmetric monoidal functor from the SMC
(L, 1, ⊗) to itself. We first prove the following commutation (the symmetric one where we
swap the role of 1 and X is proven similarly).

1 ⊗ !tX !t1 ⊗ !tX !t (1 ⊗ X)

!tX

µt,0⊗!tX

λ!tX

µt,2
1,X

!tλX

Let M = (λX)∗(1⊗Et (X)) ∈ Obj(ComagX (L)), so that M = 1⊗ !tX, dM = λX

(
1 ⊗ dert

X

)
,

wM = w1⊗!tX and cM = c1⊗!tX . The following diagrams commute

1 ⊗ !tX !tX

1 ⊗ X X

λ!tX

1⊗dert
X

dert
X

λX

1 ⊗ !tX !tX

1 ⊗ 1 1

λ!tX

1⊗wt
X

wt
X

λ1

by naturality of λ. The diagram

1 ⊗ !tX !tX

(1 ⊗ 1) ⊗ (!tX ⊗ !tX)

(1 ⊗ !tX) ⊗ (1 ⊗ !tX) !tX ⊗ !tX

λ!tX

λ−1
1 ⊗ct

X

ct
X

ϕ

λ!tX⊗λ!tX

commutes for the same reason (writing λ−1
1 ⊗ ct

X =
(
λ−1

1 ⊗ (!tX ⊗ !tX)
)

(1 ⊗ ct
X)), plus the

coherence diagrams in L. This means that λ!tX ∈ ComagX (L) (M, Et (X)). To prove the
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required commutation it will be sufficient to prove that

!tλX µt,2
1,X

(
µt,0 ⊗ !tX

)
∈ ComagX (L) (M, Et (X))

Since µt,0 ∈ Comag1 (L) (1, Et (1)) we have µt,0 ⊗ !tX ∈ Comag1⊗X (L) (1 ⊗ Et (X) , Et (1) ⊗
Et (X)). By definition we have µt,2

1,X ∈ Comag1⊗X (L) (Et (1) ⊗ Et (X) , Et (1 ⊗ X)). Hence
µt,2

1,X

(
µt,0 ⊗ !tX

)
∈ Comag1⊗X (L) (1 ⊗ Et (X) , Et (1 ⊗ X)). Applying the (λX)∗ functor we

get µt,2
1,X

(
µt,0 ⊗ !tX

)
∈ ComagX (L) (M, (λX)∗(Et (1 ⊗ X))). We get the required property

by the fact that !tλX ∈ ComagX (L) ((λX)∗(Et (1 ⊗ X)), Et (X)).
We prove similarly the commutation

(!tX1 ⊗ !tX2) ⊗ !tX3 !t (X1 ⊗ X2) ⊗ !tX3 !t ((X1 ⊗ X2) ⊗ X3)

!tX1 ⊗ (!tX2 ⊗ !tX3) !tX1 ⊗ !t (X2 ⊗ X3) !t (X1 ⊗ (X2 ⊗ X3))

µt,2
X1,X2

⊗!tX3

α!tX1,!tX2,!tX3

µt,2
X1⊗X2,X3

!tαX1,X2,X3
!tX1⊗µt,2

X2,X3
µt,2

X1,X2⊗X3

By similar aguments we have

µt,2
X1⊗X2,X3

(
µt,2

X1,X2
⊗ !tX3

)
∈ Comag(X1⊗X2)⊗X3 (L) (

(
Et (X1) ⊗ Et (X2)

)
⊗ Et (X3) , Et ((X1 ⊗ X2) ⊗ X3)) .

Let M = (αX1,X2,X3)∗(
(
Et (X1) ⊗ Et (X2)

)
⊗ Et (X3)) ∈ Obj(ComagX1⊗(X2⊗X3) (L)). Apply-

ing the (αX1,X2,X3)∗ functor we get

µt,2
X1⊗X2,X3

(
µt,2

X1,X2
⊗ !tX3

)
∈ ComagX1⊗(X2⊗X3) (L) (M, (αX1,X2,X3)∗(E

t ((X1 ⊗ X2) ⊗ X3)))

and hence

!tαX1,X2,X3 µt,2
X1⊗X2,X3

(
µt,2

X1,X2
⊗ !tX3

)
∈ ComagX1⊗(X2⊗X3) (L) (M, Et (X1 ⊗ (X2 ⊗ X3))) .

The required commutation follows from α!X1,!tX2,!tX3 ∈ ComagX1⊗(X2⊗X3) (L) (M, Et (X1) ⊗(
Et (X2) ⊗ Et (X3)

)
) (by naturality of α plus monoidality of L) and by the usual argument

using the fact that Et (X1 ⊗ (X2 ⊗ X3)) is terminal in ComagX1⊗(X2⊗X3) (L).
Symmetry, which is the commutation

!tX1 ⊗ !tX2 !t (X1 ⊗ X2)

!tX2 ⊗ !tX1 !t (X2 ⊗ X1)

γ!tX1,!tX2

µt,2
X1,X2

!tγX1,X2
µt,2

X2,X1

is proven similarly (using now the functor (γX1,X2)∗).
The following commutation also holds
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!tX1 ⊗ !tX2 !t!tX1 ⊗ !t!tX2

!(!tX1 ⊗ !tX2)

!t (X1 ⊗ X2) !t!t (X1 ⊗ X2)

digt
X1
⊗digt

X2

µt,2
X1,X2

µt,2
!tX1,!tX2

!t
(

µt,2
X1,X2

)
digt

X1⊗X2

Since µt,2
X1,X2

∈ ComagX1⊗X2 (L) (Et (X1)⊗Et (X2) , Et (X1 ⊗ X2)), we have trivially µt,2
X1,X2

∈
Comag!t(X1⊗X2) (L) (M, IX1⊗X2) where M is given by

M = !tX1 ⊗ !tX2

wM = wEt(X1)⊗Et(X1)

cM = cEt(X1)⊗Et(X1)

dM = µt,2
X1,X2

and by definition digt
X1⊗X2 ∈ Comag!t(X1⊗X2) (L) (IX1⊗X2 , Et (!t (X1 ⊗ X2))) so, by the uni-

versal property of Et (!t (X1 ⊗ X2)) it will be sufficient to prove that

!t
(
µt,2

X1,X2

)
µt,2

!tX1,!tX2

(
digt

X1 ⊗ digt
X2

)
∈ Comag!t(X1⊗X2) (L) (M, Et (!t (X1 ⊗ X2)

)
) .

We have digt
Xi

∈ Comag!tXi
(L) (IXi , Et (!tXi)) for i = 1, 2, hence

digt
X1 ⊗ digt

X2 ∈ Comag!tX1⊗!tX2 (L) (IX1 ⊗ IX2 , Et (!tX1
)

⊗ Et (!tX2
)
) .

Hence

µt,2
!tX1,!tX1

(
digt

X1 ⊗ digt
X2

)
∈ Comag!tX1⊗!tX2 (L) (IX1 ⊗ IX2 , Et (!tX1 ⊗ !tX2

)
) .

Next since µt,2
X1,X2

∈ L(!tX1 ⊗ !tX2, !t (X1 ⊗ X2)) we have

!tµt,2
X1,X2

∈ Comag!t(X1⊗X2) (L) (
(
µt,2

X1,X2

)
∗
(I!tX1⊗!tX2), Et (!t (X1 ⊗ X2)

)
)

so applying the functor
(
µt,2

X1,X2

)
∗

to µt,2
!tX1,!tX1

(
digt

X1 ⊗ digt
X2

)
we get the required property

by observing also that (
µt,2

X1,X2

)
∗
(IX1 ⊗ IX2) = M .

So we have proven the following result.

Lemma 137 The structure (!t_, dert, digt, µt,0, µt,2) is a symmetric monoidal comonad on
the SMC (L, 1, ⊗, λ, ρ, α, γ).

We end this section by analysing the Seely morphisms in this categorical setting.
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4.1.4 Seely morphisms

We assume now that L is also cartesian, with terminal object ⊤ and cartesian product &
(projections pri, tupling ⟨_, _⟩).

We define mt,0 = !tt µt,0 ∈ L(1, !⊤) where t is the unique element of L(1, ⊤) and mt,2
X1,X2

∈
L(!tX1 ⊗ !tX2, !t (X1 & X2)) is defined as the following composition of morphisms

!tX1 ⊗ !tX2

!t!tX1 ⊗ !t!tX2

!t (!tX1 ⊗ !tX2) !t (X1 & X2)

digt
X1
⊗digt

X2

µt,2
!tX1,!tX2 !t

〈
dert

X1

(
!tX1⊗wt

X2

)
,dert

X1

(
wt

X1
⊗!tX2

)〉

where we leave the isos λ and ρ implicit. It results from this definition that mt,2 is a natural
transformation.

The following diagrams

1 ⊗ !tX !t⊤ ⊗ !tX !t (⊤ & X)

!tX

mt,0⊗!tX

λ!tX

mt,2
⊤,X

!tpr2

and the symmetric one, as well as

(!tX1 ⊗ !tX2) ⊗ !tX3 !t (X1 & X2) ⊗ !tX3 !t ((X1 & X2) & X3)

!tX1 ⊗ (!tX2 ⊗ !tX3) !tX1 ⊗ !t (X2 & X3) !t (X1 & (X2 & X3))

mt,2
X1,X2

⊗!tX3

α!tX1,!tX2,!tX3

mt,2
X1&X2,X3

!t⟨pr1 pr1,⟨pr2 pr1,pr2⟩⟩
!tX1⊗mt,2

X2,X3
mt,2

X1,X2&X3

and

!tX1 ⊗ !tX2 !t (X1 & X2)

!t!t (X1 & X2)

!t!tX1 ⊗ !t!tX2 !t (!tX1 & !tX2)

mt,2
X1,X2

digt
X1
⊗digt

X2

digt
X1&X2

!t⟨!tpr1,!tpr2⟩
mt,2

!tX1,!tX2

commute, as proven by simpe diagram chasing.
With ordinary exponentials, the Seely monoidality morphisms are isos. This is not the

case here. However, there are also “Seely morphisms” in the converse direction nt,0 = wt
⊤ ∈

L(!t⊤, 1) and nt,2 ∈ L(!t (X1 & X2) , !tX1 ⊗ !tX2) defined as the following composition of
morphisms
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!t (X1 & X2)

!t (X1 & X2) ⊗ !t (X1 & X2)

!tX1 ⊗ !tX2

ct
X1&X2

!tpr1⊗!tpr2

which is natural in X1 and X2 by construction.
If we try to compute two compostions (mt,2

X1,X2
) ◦ (nt,2

X1,X2
) and (nt,2

X1,X2
) ◦ (mt,2

X1,X2
) we will

see that none of them is the identity, and they look like what follows. For (nt,2
X1,X2

) ◦ (mt,2
X1,X2

)
we have

!tX1 ⊗ !tX2 !tX1 ⊗ !tX2

(!tX1 ⊗ !tX1) ⊗ !tX2 ⊗ !tX2 !t!tX1 ⊗ !t!tX2

(!tX1 ⊗ !tX2) ⊗ (!tX1 ⊗ !tX2)

(!t!tX1 ⊗ !t!tX1) ⊗ (!t!tX2 ⊗ !t!tX2) !t(!tX1 ⊗ !tX2) ⊗ !t(!tX1 ⊗ !tX2)

ct
X1
⊗ ct

X2

ϕ

(!t dert
X1

)⊗(!t dert
X2

)

(digt
X1
⊗digt

X2
)⊗(digt

X1
⊗digt

X2
)

µt,2
!tX1,!tX2

⊗µt,2
!tX1,!tX2

!t(IdX1 ⊗wt
X2

)⊗!t(wt
X1
⊗ IdX2 )

And for (mt,2
X1,X2

) ◦ (nt,2
X1,X2

) we have

!t (X1 & X2) !t (X & Y )

!t!t(X1 & X2) !t((!t (X1 & X2)) ⊗ (!t (X1 & X2)))

digt
X1&X2

!t ct
!t(X1&X2)

!t(⟨f1,f2⟩)

where fi for i = 1, 2 is as follows:

!t (X1 & X2) ⊗ !t (X1 & X2) !t (X1 & X2) !t (X1 & X2) Xi

Id⊗wt
!t(X1&X2) dert

!t(X1&X2) pri

4.2 Concrete models of LL with a tree-based comonad

In this section, we will provide concrete models of LL based on the tree exponentials mentioned
in the previous section and at the beginning of this chapter. We will examine this tree
exponential in two models of LL, the relational model Rel and the coherence space model
Coh.
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4.2.1 Relational model of LL with tree exponentials

Let L = Rel with its usual tensor product ⊗ (cartesian product of sets) and tensor unit
(singleton 1). Given a set E we use tree (E) for the set of binary trees defined by the following
syntax:

α, β, · · · := ⟨⟩ | ⟨a⟩ | ⟨α, β⟩ a ∈ E

Then we set !tE = tree (E) and

wt
E = {(⟨⟩, ∗)} ∈ Rel(!tE, 1)

ct
E =

{
(⟨α1, α2⟩, (α1, α2)) | αi ∈ !tE for i = 1, 2

}
∈ Rel(!tE, !tE ⊗ !tE)

dert
E = {(⟨a⟩, a) | a ∈ E} ∈ Rel(!tE, E) (4.1)

So, we denote the object Et (E) as Et (E) = (tree (E) , wt
E , ct

E , dert
E) where the components

are defined as above. We also use the notation TreeSize(σ) for the obvious definition of size
of the binary tree σ.

Proposition 138 The object Et (E) of ComagE (Rel) is terminal object.

Proof: Let M be another comagma on E, remember this means that we have as set M
together with relations wM ∈ Rel(M, 1), cM ∈ Rel(M, M ⊗ M) and dM ∈ Rel(M, E). Let
t ∈ ComagE (Rel) (M, Et (E)), which means that the following diagrams commute in Rel

M !tE

1
wM

t

wt
E

M !tE

M ⊗ M !tE ⊗ !tE

t

cM ct
E

t⊗t

M !tE

E
dM

t

dert
E

Let m ∈ M . If (m, ⟨⟩) ∈ t then by the first diagram we have (m, ∗) ∈ wM . And conversely
by the same diagram if (m, ∗) ∈ wM we must have (m, ⟨⟩) ∈ t. Let now also a ∈ E. By
the same reasoning using the third diagram, (m, ⟨a⟩) ∈ t ⇔ (m, a) ∈ dM . Now assume
that (m, ⟨α1, α2⟩) ∈ t. By the second diagram there must exist m1, m2 ∈ M such that
(m, (m1, m2)) ∈ cM and (mi, αi) ∈ t for i = 1, 2. The converse is also true: if (mi, αi) ∈ t
for i = 1, 2 with (m, (m1, m2)) ∈ cM , then we must have (m, ⟨α1, α2⟩) ∈ t. This means that
there is only one t ∈ L(M, !tE) satisfying these commutations, which is given by the following
inductive definition:

t = {(m, ⟨⟩) | (m, ∗) ∈ wM } ∪ {(m, ⟨a⟩) | (m, a) ∈ dM }
∪ {(m, ⟨α1, α2⟩ | ∃m1, m2 ∈ M (m, (m1, m2)) ∈ cM and (mi, αi) ∈ t for i = 1, 2} .

■

Functoriality of tree (_)

Given t ∈ Rel(E, F ), we compute !tt. Since wt
F !t = wt

E we must have (α, ⟨⟩) ∈ !t ⇔ α = ⟨⟩.
Since dert

F !t = t dert
E , for all α ∈ !tE and b ∈ F we must have (α, ⟨b⟩) ∈ !tt iff there is
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a ∈ E such that α = ⟨a⟩ and (a, b) ∈ t. Last since ct
F !tt = (!tt ⊗ !tt) ct

E we must have that,
for any α ∈ !tE and β1, β2 ∈ !t, one has (α, ⟨β1, β2⟩) ∈ !tt iff there are α1, α2 ∈ !tE such
that α = ⟨α1, α2⟩ and (αi, βi) ∈ !tt. This means that !tt is given by the following inductive
definition:

!tt = {(⟨⟩, ⟨⟩)} ∪ {(⟨a⟩, ⟨b⟩) | (a, b) ∈ t}
∪
{
(⟨α1, α2⟩, ⟨β1, β2⟩) | (αi, βi) ∈ !tt for i = 1, 2

}
(4.2)

Hence, one can easily check the following proposition, as the computation above satisfies
the general characterization given in Section 4.1.1:

Proposition 139 The operation tree (_) defines a functor on Rel.

Monadicity of tree (_)

We now compute digt
E ∈ L(!tE, !t!tE). The condition wt

!tE digt
E = wt

E means that (⟨⟩, ⟨⟩) ∈
digt

E . The condition dert
!tE digt

E = Id!tE means that for any α, β ∈ !tE, one has (α, ⟨β⟩) ∈ digt
E

iff α = β. The condition ct
!tE digt

E =
(
digt

E ⊗ digt
E

)
ct

E means that for all A1, A2 ∈ !t!tE and
α ∈ !tE, one has (α, ⟨A1, A2⟩) ∈ digt

E iff there are α1, α2 ∈ !tE such that α = ⟨α1, α2⟩ and
(αi, Ai) ∈ digt

E for i = 1, 2. So digt
E is given by the following inductive definition:

digt
E = {(⟨⟩, ⟨⟩)} ∪

{
(α, ⟨α⟩) | α ∈ !tE

}
∪
{
(⟨α1, α2⟩, ⟨A1, A2⟩) | (αi, Ai) ∈ digt

E for i = 1, 2
}

. (4.3)

Hence we have easily the following proposition, as the computation digt above satisfies
the general pattern given in Section 4.1.2.

Proposition 140 The triple (tree (_) , dert
, digt) is a comonad over Rel.

To have simpler notation we introduce a function flatE : tree (tree (E)) → tree (E) defined
inductively by

flatE(⟨⟩) = ⟨⟩
flatE(⟨α⟩) = α

flatE(⟨A1, A2⟩) = ⟨flatE(A1), flatE(A2)⟩ .

Then it is easy to check that

digt
E =

{
(flatE(A), A) | A ∈ !t!tE

}
(4.4)
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Symmetric monoidality of tree (_)

Now we compute µt,0 ∈ L(1, !t1). By the equation dert
1 µt,0 = Id1 we have (∗, ⟨∗⟩) ∈ µt,0. By

the equation wt
1 µt,0 = Id1 we have (∗, ⟨⟩) ∈ µt,0. And by the equation ct

1 µt,0 =
(
µt,0 ⊗ µt,0) c1

we have that, for any α1, α2 ∈ !t1, (∗, ⟨α1, α2⟩) ∈ µt,0 iff (∗, α1) ∈ µt,0 and (∗, α2) ∈ µt,0. So
µt,0 is inductively defined by

µt,0 = {(∗, ⟨⟩), (∗, ⟨∗⟩))} ∪
{

(∗, ⟨α1, α2⟩) | (∗, αi) ∈ µt,0 for i = 1, 2
}

(4.5)

so that actually µt,0 = {(∗, α) | α ∈ !t1)}.
Next we compute µt,2

E1,E2
∈ L(!tE1 ⊗ !tE2, !t(E1 ⊗ E2)) for two sets E1 and E2. By equa-

tion dert
E1⊗E2 µt,2

E1,E2
= dert

E1 ⊗ dert
E2 , given αi ∈ !tEi and ai ∈ Ei (for i = 1, 2), we have

((α1, α2), ⟨(a1, a2)⟩) ∈ µt,2
E1,E2

iff αi = ⟨ai⟩ for i = 1, 2. By equation wt
E1⊗E2

µt,2
E1,E2

=
λ1
(
wt

E1
⊗ wt

E2

)
we have ((α1, α2), ⟨⟩) ∈ µt,2

E1,E2
iff αi = ⟨⟩ for i = 1, 2. By equation

ct
E1⊗E2

µt,2
E1,E2

=
(
µt,2

E1,E2
⊗ µt,2

E1,E2

)
ϕ
(
ct

E1
⊗ ct

E2

)
, for any α1, α2 ∈ !tEi and β1, β2 ∈ !t (E1 ⊗ E2)

we have ((α1, α2), ⟨β1, β2⟩) ∈ µt,2
E1,E2

iff there are αi
1, αi

2 ∈ !tEi such that αi = ⟨αi
1, αi

2⟩ and
((α1

j , α2
j ), βj) ∈ µt,2

E1,E2
for j = 1, 2. So µt,2

E1,E2
is given by the following inductive definition

µt,2
E1,E2

= {((⟨⟩, ⟨⟩), ⟨⟩)} ∪
{

((⟨a1⟩, ⟨a2⟩), ⟨(a1, a2)⟩) | ai ∈ Ei for i = 1, 2
}

∪
{

((⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩), ⟨β1, β2⟩) | ((α1
j , α2

j ), βj) ∈ µt,2
E1,E2

for j = 1, 2
}

(4.6)

As this computation above is coming from a general characterization given in Section 4.1.3,
we easily have

Proposition 141 The structure (!t_, dert, digt, µt,0, µt,2) is a symmetric monoidal comonad
on Rel.

For j = 1, 2 let splitj : tree (E1 × E2) → tree (Ej) be the function defined inductively by

splitj(⟨⟩) = ⟨⟩
splitj(⟨(a1, a2)⟩) = ⟨aj⟩

splitj(⟨β1, β2⟩) = ⟨splitj(β1), splitj(β2)⟩ .

then an easy induction on β shows that

µt,2
E1,E2

=
{
((split1(β), split2(β)), β) | β ∈ !t (E1 ⊗ E2)

}
And finally, one can compute the Seely morphisms in Rel with this tree (_) exponential,

according to Section 4.1.4.

Seely morphisms

The unique t ∈ Rel(1, ⊤) is t = ∅. Hence !tt ∈ Rel(!t1, !t⊤) is !tt = {(α, α) | α ∈ tree (∅)}.
It follows from the general definition of mt,0 that

mt,0 = {(∗, α) | α ∈ tree (∅)} .
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Notice that tree (∅) is the set of all binary trees whose all leaves are ⟨⟩. Unlike Mfin(∅) = {[]},
it is an infinite set.

We have

dert
E1

(
!tE1 ⊗ wt

E2

)
=
{

((⟨a1⟩, ⟨⟩), a1) | a1 ∈ E1
}

∈ Rel(!tE1 ⊗ !tE2, E1)

dert
E2

(
wt

E1 ⊗ !tE2
)

=
{

((⟨⟩, ⟨a2⟩), a2) | a2 ∈ E2
}

∈ Rel(!tE1 ⊗ !tE2, E2)

Let ptri : tree (E1 & E2) → tree (E1 ⊗ E2) be defined, for i = 1, 2, by induction

ptri(⟨⟩) = ⟨⟩
ptri(⟨(i, a)⟩) = ⟨a⟩

ptri(⟨(3 − i, b)⟩) = ⟨⟩
ptri(⟨β1, β2⟩) = ⟨ptri(β1), ptri(β2)⟩

Then using the following relation s

s = !t
〈
dert

E1

(
!tE1 ⊗ wt

E2

)
, dert

E2

(
wt

E1 ⊗ !tE2
)〉

∈ Rel(!t
(
!tE1 ⊗ !tE2

)
, !t (E1 & E2)) .

we have

mt,2
X1,X2

= {(⟨⟩, ⟨⟩)}

∪
{

((⟨a1⟩, ⟨⟩), ⟨(1, a1⟩) | a1 ∈ E1
}

∪
{

((⟨⟩, ⟨a2⟩), ⟨(2, a2⟩) | a2 ∈ E2
}

∪ {((⟨β1,1, β2,1⟩, ⟨β1,2, β2,2⟩), ⟨γ1, γ2⟩) | ((β1,1, β1,2), γ1), ((β2,1, β2,2), γ1) ∈ s}

By an easy induction on elements of tree (E1 & E2), we have

mt,2
X1,X2

=
{
((ptr1(β), ptr2(β)), β) | β ∈ !t (E1 & E2)

}
Similarly, using the categorical construction of nt,2

X1,X2
given in Section 4.1.4, we have

nt,2
X1,X2

=
{
(⟨Int1(α1), Int2(α2)⟩, (α1, α2)) | (α1, α2) ∈ !t (E1) ⊗ !t (E2)

}
where Inti : tree (Ei) → tree (E1 & E2) is defined as follows for i = 1, 2 by induction on
tree (Ei):

Inti(⟨⟩) = ⟨⟩
Inti(⟨a⟩) = ⟨(i, a)⟩

Inti(⟨β1, β2⟩) = ⟨Inti(β1), Inti(β2)⟩

So, if we compute the two compositions (mt,2
X1,X2

) ◦ (nt,2
X1,X2

) and (nt,2
X1,X2

) ◦ (mt,2
X1,X2

), we will
see that none of the is the identity in this concrete case of Rel, as it it mentioned generally
in Section 4.1.4.
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4.2.2 Coherence spaces with tree exponentials

Given a coherence space E = (|E|,¨E), we define the coherence space !tE = (tree (|E|) ,¨!tE)
where ¨!tE is defined inductively as follows:

1. ⟨⟩ ¨!tE σ for any σ ∈ tree (|E|),

2. ⟨α⟩ ¨!tE ⟨β⟩ if α ¨E β for all α, β ∈ |E|,

3. ⟨α⟩ ¨!tE ⟨σ1, σ2⟩ for all α ∈ |E| and for all σi ∈ tree (|E|) for i = 1, 2,

4. ⟨σ1, σ2⟩ ¨!tE ⟨τ1, τ2⟩ if σi ¨!tE τi for all σi, τi ∈ tree (|E|) and for i = 1, 2.

To prove that category Coh is an instance of the categorical setting given in Section 4.1,
we have almost nothing to do. Basically, we just check that all definitions are the same as
for Rel, given in Section 4.2.1, and prove that those definitions are indeed a clique in the
appropriate coherence space. We will do this in the following Propositions 142,143 and 144.

Proposition 142 The operation tree (_) defines a functor on Coh.

Proof: Let us assume that t ∈ Cl(E ⊸ F ). We need to show !tt ∈ Cl(!tE ⊸ !tF ) where !tt
is defined in equation 4.2. Let (σ, τ), (σ′, τ ′) ∈ !tt. We prove that (σ, τ) ¨!tE⊸!tF (σ′, τ ′) by
induction on TreeSize(σ) + TreeSize(σ′). So assume that σ ¨!tE σ′. We consider the following
cases and in each case we prove that τ ¨!tF τ ′ and that, if τ = τ ′ then σ = σ′:

• (⟨⟩, ⟨⟩) ¨!tE⊸!tF (⟨a⟩, ⟨b⟩): This is true, since we have ⟨⟩ ¨!tE ⟨a⟩ and ⟨⟩ ¨!tF ⟨b⟩ by
definition of ¨!t_ (Item 1).

• (⟨⟩, ⟨⟩) ¨!tE⊸!tF (⟨α1, α2⟩, ⟨β1, β2⟩): Same as the previous case.

• (⟨a⟩, ⟨b⟩) ¨!tE⊸!tF (⟨a′⟩, ⟨b′⟩): Assume ⟨a⟩ ¨!tE ⟨a′⟩, so, by Item 2, we have a ¨E a′.
Since t ∈ Cl(E ⊸ F ), we have b ¨F b′, and then ⟨b⟩ ¨!tF ⟨b′⟩. Now Assume ⟨a⟩ ¨!tE ⟨a′⟩
and ⟨b⟩ = ⟨b′⟩. So, we have a = a′, and therefore ⟨a⟩ = ⟨a′⟩.

• (⟨a⟩, ⟨b⟩) ¨!tE⊸!tF (⟨α1, α2⟩, ⟨β1, β2⟩): This case is vacuously true, since we do not have
⟨a⟩ ¨!tE ⟨α1, α2⟩.

• (⟨α1, α2⟩, ⟨β1, β2⟩) ¨!tE⊸!tF (⟨α′1, α′2⟩, ⟨β′1, β′2⟩): Assume that ⟨α1, α2⟩ ¨!tE ⟨α′1, α′2⟩. By
Item 4, we have αi ¨!tE α′i for i = 1, 2. By Definition 4.2, we have (αi, βi) ∈ !tt and
(α′i, β′i) ∈ !tt. So, by induction hypothesis, we have (αi, βi) ¨!tE⊸!tF (α′i, β′i) for i = 1, 2.
Hence we have βi ¨!tF β′i. And therefore ⟨β1, β2⟩ ¨!tF ⟨β′1, β′2⟩. The reasoning is the
same for the assumption that ⟨α1, α2⟩ ¨!tE ⟨α′1, α′2⟩ and ⟨β1, β2⟩ = ⟨β′1, β′2⟩.

■

Definition of natural transformations dert
E and digt

E is respectively dert
|E| and digt

|E|.

Proposition 143 The triple (tree (_) , dert
, digt) is a comonad over Coh.
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Proof: We only need to show that dert
E ∈ Cl(!tE ⊸ E) and digt

E : Cl(!tE ⊸ !t!tE) for dert
E

and digt
E defined respectively in 4.1 and 4.3. Assume ⟨a⟩ ¨!tE ⟨b⟩. So, we have a ¨E b. If we

moreover assume that a = b, then we certainly have ⟨a⟩ = ⟨b⟩. Hence (⟨a⟩, a) ¨!tE⊸E (⟨b⟩, b).
For digt

E , let (σ, τ), (σ′, τ ′) ∈ digt
E . We prove that (σ, τ) ¨!tE⊸!t!tE (σ′, τ ′) by induction on

TreeSize(σ) + TreeSize(σ′). So assume that σ ¨!tE σ′. We consider the following cases and in
each case we prove that τ ¨!t!tE τ ′ and that, if τ = τ ′ then σ = σ′:

• (⟨⟩, ⟨⟩) ¨!tE⊸!t!tE (α, ⟨α⟩): This is true, since we have ⟨⟩ ¨!t!tE ⟨α⟩ by Item 1.

• (⟨⟩, ⟨⟩) ¨!tE⊸!t!tE (⟨α1, α2⟩, ⟨A1, A2⟩) where (αi, Ai) ∈ digt
E : This case is the same as the

previous one.

• (α, ⟨α⟩) ¨!tE⊸!t!tE (β, ⟨β⟩): Assume α ¨!tE β, then by Item 2 we have ⟨α⟩ ¨!t!tE β. And
if α = β, we obviously have ⟨⟨α⟩⟩ = ⟨β⟩.

• (α, ⟨α⟩) ¨!tE⊸!t!tE (⟨α1, α2⟩, ⟨A1, A2⟩) where (αi, Ai) ∈ digt
E i = 1, 2: This case is

vacuously true, since we do not have α ¨!t!tE ⟨α1, α2⟩.

• (⟨α1, α2⟩, ⟨A1, A2⟩) ¨!tE⊸!t!tE (⟨α′1, α′2⟩, ⟨A′1, A′2⟩) where (αi, Ai) ∈ digt
E and (α′i, A′i) ∈

digt
E for i = 1, 2: Assume that (α1, α2) ¨!t!tE (α′1, α′2). By Item 4, we have αi ¨!t!tE

α′i for i = 1, 2. Since (αi, Ai) ∈ digt
E , we therefore have Ai ¨!tE A′i for i = 1, 2,

and hence ⟨A1, A2⟩ ¨!tE ⟨A′1, A′2⟩. The reasoning is the same for the assumption that
(⟨α1, α2⟩, ⟨A1, A2⟩) ¨!tE⊸!t!tE (⟨α′1, α′2⟩, ⟨A′1, A′2⟩) and ⟨A1, A2⟩ = ⟨A′1, A′2⟩.

■

Proposition 144 The structure (!t_, dert, digt, µt,0, µt,2) is a symmetric monoidal comonad
on Coh.

Proof: We only need to show that µt,0 ∈ Cl(1 ⊸ !t1) and µt,2
E,F ∈ Cl((!tE1 ⊗ !tE2) ⊸ !t(E1 ⊗

E2)) for µt,0 and µt,2 defined respectively in 4.5 and 4.6. For µt,0, let (σ, τ), (σ′, τ ′) ∈ µt,0. We
prove that (σ, τ) ¨1⊸!t1 (σ′, τ ′) by induction on TreeSize(σ) + TreeSize(σ′). So assume that
σ ¨1 σ′. We consider the following cases and in each case we prove that τ ¨!t1 τ ′ and that,
if τ = τ ′ then σ = σ′:

• (∗, ⟨⟩) ¨1⊸!t1 (∗, ⟨∗⟩): This is true, since ⟨⟩ ¨!t1 ⟨∗⟩ by Item 1.

• (∗, ⟨⟩) ¨1⊸!t1 (∗, ⟨α1, α2⟩): This case is the same as above.

• (∗, ⟨∗⟩) ¨1⊸!t1 (∗, ⟨α1, α2⟩): We have ⟨∗⟩ ¨!t1 ⟨α1, α2⟩ by Item 3.

• (∗, ⟨α1, α2⟩) ¨1⊸!t1 (∗, ⟨α′1, α2⟩′): Since we have (∗, αi) ∈ µt,0 and (∗, α′i) ∈ µt,0, then
αi ¨!t1 α′i for i = 1, 2. Hence, by Item 4, we have ⟨α1, α2⟩ ¨!t1 ⟨α′1, α′2⟩.

To show µt,2
E,F Cl((!tE1 ⊗ !tE2) ⊸ !t(E1 ⊗ E2)), let (σ, τ), (σ′, τ ′) ∈ µt,2

E,F . We prove that
(σ, τ) ¨!tE1⊗!tE2⊸!t(E1⊗E2) (σ′, τ ′) by induction on TreeSize(σ) + TreeSize(σ′). So assume that
σ ¨!tE1⊗!tE2 σ′. We consider the following cases and in each case we prove that τ ¨!t(E1⊗E2) τ ′

and that, if τ = τ ′ then σ = σ′:
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• ((⟨⟩, ⟨⟩), ⟨⟩) ¨(!tE1⊗!tE2)⊸!t(E1⊗E2) ((⟨a1⟩, ⟨a2⟩), ⟨(a1, a2)⟩): This case is ture, since ⟨⟩ ¨!t(E1⊗E2)
⟨(a1, a2)⟩ by Item 1.

• ((⟨⟩, ⟨⟩), ⟨⟩) ¨(!tE1⊗!tE2)⊸!t(E1⊗E2) ((⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩), ⟨β1, β2⟩): This case is the same as
the previous one.

• ((⟨a1⟩, ⟨a2⟩), ⟨(a1, a2)⟩) ¨(!tE1⊗!tE2)⊸!t(E1⊗E2) ((⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩), ⟨β1, β2⟩) where ((α1
j , α2

j ), βj) ∈
µt,2

E1,E2
for j = 1, 2: This case is vacuously true, since we do not have (⟨a1⟩, ⟨a2⟩) ¨!tE⊗!tE

(⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩).

• ((⟨a1⟩, ⟨a2⟩), ⟨(a1, a2)⟩) ¨(!tE1⊗!tE2)⊸!t(E1⊗E2) ((⟨(a1)′⟩, ⟨(a2)′⟩), ⟨((a1)′, (a2)′)⟩): Assume
that (⟨a1⟩, ⟨a2⟩) ¨!tE1⊗!tE2 (⟨(a1)′⟩, ⟨(a2)′⟩). Then we have ⟨ai⟩ ¨!tEi

⟨(ai)′⟩ for i =
1, 2. Then ai ¨Ei (ai)′. And so we have (a1, a2) ¨E1⊗E2 ((a1)′, (a2)′). Therefore
⟨(a1, a2)⟩ ¨!t(E1⊗E2) ⟨((a1)′, (a2)′)⟩. We have a similar reasoning if we assume moreover
that ⟨(a1, a2)⟩ = ⟨((a1)′, (a2)′)⟩.

• ((⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩), ⟨β1, β2⟩) ¨(!tE1⊗!tE2)⊸!t(E1⊗E2) ((⟨(α1
1)′, (α1

2)′⟩, )⟨(α2
1)′, (α2

2)′⟩), ⟨β′1, β′2⟩)
where ((α1

j , α2
j ), βj) ∈ µt,2

E1,E2
and (((α1

j )′, (α2
j )′), β′j) ∈ µt,2

E1,E2
for j = 1, 2:

Assume that (⟨α1
1, α1

2⟩, ⟨α2
1, α2

2⟩) ¨!tE1⊗!tE2 (⟨(α1
1)′, (α1

2)′⟩, ⟨(α2
1)′, (α2

2)′⟩). So, we have
⟨αi

1, αi
2⟩ ¨!tEi

⟨(αi
1)′, (α2

i )′⟩ for i = 1, 2. Therefore αi
j ¨Ei (αi

j)′ for j = 1, 2. Then we
have (α1

j , α2
j ) ¨!tE1⊗!tE2 ((α1

j )′, (α2
j )′) for j = 1, 2. Hence we have βj ¨!t(E1⊗E2) β′j for

j = 1, 2. And finally, we have ⟨β1, β2⟩ ¨!t(E1⊗E2) ⟨β′1, β′2⟩. We have a similar reasoning
if we moreover assume that ⟨β1, β2⟩ = ⟨β′1, β′2⟩.

■

4.3 Local Totality Spaces

In this section, we will relate the coherence spaces with tree exponentials (presented in Sec-
tion 4.2.2) and non-uniform coherence spaces with the Boudes exponential (presented in Sec-
tion 0.4.3). To do so, we use the logical relation method, and so, we define another instance
of our categorical setting provide in Section 4.1, and we call it local totality spaces.

Definition 145 A local totality space (LTS) E is a tuple E = (EG, EN, ρE , TE) where EG is
a coherence space, EN is a non-unifrom coherence space, ρE : |EG| → |EN| is a function, and
TE = (TE(a))a∈|EN| such that ∀a ∈ |EN| we have TE(a) ∈ Tot(ρ−1

E (a)) and ∅ /∈ TE(a) ̸= ∅.

Notice that that ρ−1
E (a) is the subcoherence space of EG whose web is ρ−1

E (a). And remember
that Tot(X) = {T ⊆ P(X) | T = T ⊥⊥} where T ⊥ = {u′ ⊆ X | ∀u ∈ T u ∩ u′ ̸= ∅}.
The letters G and N in Definition 145 stand for Girard and non-uniform coherence spaces,
respectively.

Definition 146 Given a local totality space E, we define the set of cliques of E, denoted as
ClLT(E), as follows:

ClLT(E) = {u ∈ Cl(EG) | ρE(u) ∈ Cl(EN) ∧ ∀a ∈ ρE(u) (u ∩ ρ−1
E (a)) ∈ TE(a)}.
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4.3.1 COHLT is a *-autonomous category with finite product

Given two local totality spaces E and F , we define local totality space E ⊗ F as (EG ⊗
F G, EN ⊗ NN, ρE⊗F , TE⊗F ) where EG ⊗ F G and EN ⊗ NN are defined in Section 0.4.2 and
Section 0.4.3 respectively. And ρE⊗F (a, b) = (ρE(a), ρF (b)). And we also define TE⊗F as

TE⊗F (a, b) = {u × v | u ∈ TE(a) ∧ v ∈ TF (b)}⊥⊥ .

This ⊥⊥ is computed in coherence space ρ−1
E (a) ⊗ ρ−1

F (b) as subcoherence space EG ⊗ F G.
And notice that TE⊗F ((a, b)) ∈ Tot(ρ−1

E⊗F (a, b)) by definition, and ∅ /∈ TE⊗F ((a, b)) ̸= ∅,
sine that is the case for ∅ /∈ TE(a) ̸= ∅ and ∅ /∈ TF (b) ̸= ∅. Hence, indeed E ⊗ F is a LTS.

Given a LTS E, we define E⊥ as ((E⊥)G, (E⊥)N, ρE⊥ , T⊥E) where ρE⊥(a) = ρE(a). E⊥ is
obviously a LTS, and it relies on the fact that ∅ /∈ TE(a) ̸= ∅. And then we define E ⊸ F
as (E ⊗ F⊥)⊥.

We will use the two following lemmas (Lemma 147, and Lemma 148) many times in this
chapter, and we sometimes omit to mention them explicitly.

Lemma 147 Let t ∈ ClLT(E ⊸ F ). Then t ∈ TE⊸F ((a, b)) ⇔ ∀u ∈ TE(a) t · u ∈ TF (b).

Proof: Let t ∈ TE⊸F ((a, b)) and let u ∈ TE(a). Let v′ ∈ (TF (b))⊥, since u × v′ ∈
TE⊗F ((a, b)) we have t ∩ (u × v′) ̸= ∅ and hence (t · u) ∩ v′ ̸= ∅. Therefore t · u ∈
TF (b)⊥⊥ = TF (b). Conversely assume that ∀u ∈ TE(a) t · u ∈ TF (b). Let u ∈ TE(a) and
v′ ∈ TF ⊥(b) = (TF (b))⊥. Since t ·u ∈ TF (b) we have (t ·u)∩v′ ̸= ∅ and hence t∩ (u×v′) ̸= ∅
and this shows that t ∈ TE⊸F ((a, b)). ■

The proof of the following is the same as the proof of Lemma 57.

Lemma 148 Let t ⊆ |EN| × |F N|, a ∈ |EN|, b ∈ |F N|, and A ⊆ P(ρ−1
E (a)) be such that

TE(a) = A⊥⊥. If ∀x ∈ A t x ∈ TF (b) then t ∈ ClLT(E ⊸ F ).

We now define the category COHLT of local totality spaces that includes local totality
spaces as objects, and as morphisms COHLT(E, F ) = ClLT(E ⊸ F ). We take the diagonal
morphism Id|EG| as the identity morphism on E. For the composition, we take the relational
composition of Rel. Proposition 151 ensures that what we have defined is indeed a category.

The following lemma is the main justification of the our definition of LTS.

Lemma 149 Given f ∈ ClLT(E ⊸ F ) and g ∈ ClLT(F ⊸ G), we have ρE⊸G(g ◦ f) =
(ρF⊸G(g)) ◦ (ρE⊸F (f)).

Proof:

▷ Proof of ρE⊸G(g ◦ f) ⊆ (ρF⊸G(g)) ◦ (ρE⊸F (f)): Take (a, c) ∈ ρE⊸G(g ◦ f), then there is
a (α, γ) ∈ (g) ◦ (f) such that ρE⊸G((α, γ)) = (a, c). So, ρE(α) = a and ρG(γ) = c. Since
(α, γ) ∈ (g) ◦ (f), there is a β ∈ such that (α, β) ∈ f and (β, γ) ∈ g. Let b = ρF (β) so
that there is a b ∈ |F N| such that (a, b) ∈ ρE⊸F (f) and (b, c) ∈ ρF⊸G(g). Hence (a, c) ∈
(ρF⊸G(g)) ◦ (ρE⊸F (f)).
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▷ Proof of ρE⊸G(g ◦ f) ⊇ (ρF⊸G(g)) ◦ (ρE⊸F (f)): Take (a, c) ∈ (ρF⊸G(g)) ◦ (ρE⊸F (f)), so,
there is a b ∈ |F N| such that (a, b) ∈ ρE⊸F (f) and (b, c) ∈ ρF⊸G(g). Since f ∈ ClLT(E ⊸
F ) (respectively g ∈ ClLT(F ⊸ G)), we have f ∩ ρ−1

E⊸F (a, b) ∈ TE⊸F (a, b) (respectively
g ∩ρ−1

F⊸G(b, c) ∈ TF⊸G(b, c)). We know that for any u ∈ TE(a) we have (f ∩ρ−1
E⊸F (a, b)) ·u ∈

TF (b). Similarly, we have (g∩ρ−1
F⊸G(b, c))·((f ∩ρ−1

E⊸F (a, b))·u) ∈ TG(c). Since ∅ /∈ TG(c) ̸= ∅
and ∅ /∈ TF (b) ̸= ∅, one can find a γ ∈ TG(c) and β ∈ (f ∩ ρ−1

E⊸F (a, b)) · u such that
(β, γ) ∈ g ∩ ρ−1

F⊸G(b, c), and so, (β, γ) ∈ g. Similarly, since ∅ /∈ TE(a) ̸= ∅, there is a α ∈ u
such that (α, β) ∈ f ∩ ρ−1

E⊸F (a, b), and so, (α, β) ∈ f . Therefore, there is a (α, γ) ∈ (g) ◦ (f)
such that ρE⊸G((α, γ)) = (a, c). Hence (a, c) ∈ ρE⊸G(g ◦ f).

■

As a direct conclusion of Lemma 149, we also have

Lemma 150 Given f ∈ ClLT(E ⊸ F ) g ∈ ClLT(F ⊸ G), (a, c) ∈ (g ◦ f), (a, b) ∈ f and
(b, c) ∈ g, we have ρ−1

E⊸G(a, c) = (ρ−1
F⊸G(b, c)) ◦ (ρ−1

E⊸F (a, b))

Proposition 151

1. Id|EG| ∈ ClLT(E ⊸ E)

2. Given two morphisms f ∈ ClLT(E ⊸ F ) and g ∈ ClLT(F ⊸ G), we have g ◦ f ∈
ClLT(E ⊸ G).

Proof: First of all we have ρE⊸E(Id|EG|) ∈ Cl(EN ⊸ EN), since ρE⊸E(Id|EN|) ⊆ Id|EG|.
Given (a, a) ∈ ρE⊸E(Id|EG|), let us assume that u ∈ TE(a). Then we have
(Id|EG| ∩ρ−1

E⊸E((a, a)))(u) = u, since u ⊆ ρ−1
E (a). Therefore we have the first item.

For the second item, ρE⊸G(g ◦ f) = (ρF⊸G(g)) ◦ (ρE⊸F (f)) by Lemma 149. And we also
have ρF⊸G(g) ∈ Cl((F ⊸ G)N) and ρE⊸F (f) ∈ Cl((E ⊸ F )N). Hence, ρE⊸G((g) ◦ (f)) ∈
Cl(E ⊸ GN). Given (a, c) ∈ ρE⊸G(g ◦ f), suppose that u ∈ TE(a). By Lemma 149, there
exists a b such that (a, b) ∈ ρE⊸F (f) and (b, c) ∈ ρF⊸G(g). Since f ∈ TE⊸F , we have
f ∩ ρ−1

E⊸F (a, b) ∈ TE⊸F ((a, b)). Therefore x = (f ∩ ρ−1
E⊸F (a, b))(u) ∈ TF (b) by Lemma 147.

And by a similar reasoning, we have (g ∩ ρ−1
F⊸G(b, c))(x) ∈ TG(c). And we also have ((g ◦

f) ∩ ρ−1
E⊸G(a, c))(u) = (g ∩ ρ−1

E⊸F (a, b))(x) by Lemma 150. Hence the second item is true, by
Lemma 147.

■

Now, we are going to prove that COHLT is a monoidal closed category. We just take all
definitions provided in Section 0.4.1, and show that they define cliques in the appropriate
LTS.

Lemma 152 Let f ⊆ |EN| × |F N|. One has f ∈ ClLT(E ⊸ F ) iff f⊥ = {(b, a) | (a, b) ∈ f} ∈
ClLT(F⊥ ⊸ E⊥).

Proof: First we have ρE⊸F (f)Cl(EN ⊸ F N) iff ρF ⊥⊸E⊥(f⊥)Cl((F⊥)N ⊸ (E⊥)N), since
ρE⊥(a) = ρE(a) and by results of Section 0.4.3.
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To show f ∩ ρ−1
E⊸F (a, b) ∈ TE⊸F ((a, b)) iff f⊥ ∩ ρ−1

F ⊥⊸E⊥(b, a) ∈ TF ⊥⊸E⊥((b, a)) we can
use Lemma 147 and the fact that (E ⊸ F ) = (

(
E ⊗ F⊥

)
)⊥ and (F⊥ ⊸ E⊥) = (F⊥ ⊗ E)⊥ .

■

By the same proof as that of Lemma 36, one has the following:

Lemma 153 f ∈ T(E1⊗E2)⊸F iff for all u1 ∈ TE1 and u2 ∈ TE2 one has f · (u1 ⊗ u2) ∈ TF .

As we saw in two previous lemma, one can prove easily Lemma 154 and Lemma 155 using
results of Sections 1.2.2 and 0.4.3.

Lemma 154 The bijection α|X1|,|X2|,|Y | is an isomorphism from (E1 ⊗ E2) ⊸ F to E1 ⊸
(E2 ⊸ F ).

Lemma 155 Given f ∈ TE⊗F⊸G, then cur(f) ∈ TE⊸(F⊸G). We also have evE,F ∈ T(E⊸F )⊗E⊸F .

And we finally define two objects 1 = (1N, 1G, Id, {{∗}}). What we have done so far was
proof of the following theorem:

Theorem 156 The category COHLT is a *-autonomous category.

One can also equip category COHLT with a product. Given two LTS E1 and E2, one can
define E1 & E2 as ((E1 & E2)G, (E1 & E2)N, ρE1&E2 , TE1&E2) where ρE1&E2((i, a)) = (i, ρEi(a))
for i = 1, 2, and

TE1&E2((i, a)) =
{

u ⊆ ρ−1
E1&E2

(i, a) | pri · u ∈ TEi(a)
}

.

Then we have TE1&E2((i, a)) ∈ Tot(ρ−1
E1&E2

(i, a)) by definition, and we also have ∅ /∈
TE1&E2((i, a)) ̸= ∅, since ∅ /∈ TEia ̸= ∅. So, indeed E1 & E2 is a LTS.

Since COHLT is a *-autonomous category, one can define co-product E1 ⊕ E2 = (E⊥1 &
E⊥2 )⊥. And finally, the terminal object of COHLT is ⊤ = (⊤G, ⊤N,∅, {∅}) and that 0 =
⊤⊥ = (⊤G, ⊤N,∅,∅).

4.3.2 Exponentials in COHLT

Given a LTS E. We define !E = (!tEG, !bEN, ρ!E , T!E) where ρ!E is defined inductively as
follows (!b_ and !t_ are defined respectively in Sections 0.4.3 and 4.2.2):

• ρ!E(⟨⟩) = [],

• ρ!E(⟨a⟩) = [ρE(a)],

• ρ!E(⟨α, β⟩) = ρ!E(α) + ρ!E(β) .

T!E(m) is defined as follows for a given m = [a1, · · · , ak] ∈ |!bEN|:

T!E(m) = {U ∈ Cl(!tEG) | U ⊂ ρ−1
!E (m) ∧ ∃(ui ∈ TE(ai))k

i=1(TreeLeaf(−→u ) ⊂ U) }⊥⊥

where TreeLeaf(u1, · · · , uk) is the set {τ ∈ tree(⋃ui) | ∃(αi ∈ ui)k
i=1 (L(τ) = [α1, · · · , αk])},

and L(_) is the function that return the leaves of a tree.
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Lemma 157 Let E be a local totality space, then !E is a local totality space.

Proof: We obviously have T!E(m) ∈ Tot(ρ−1
!E (m)) since we took bi-orthogonal in the defini-

tion. First assume that m = [] then one can take U = tree (∅) ∈ T!E([]), so, ∅ /∈ T!E([]) ̸= ∅.
And obviously, ∅ /∈ T!E(m) ̸= ∅ if m ̸= [], since ∅ /∈ TEi(ai) ̸= ∅ for i = 1, · · · , k. ■

Lemma 158 Let E and F be two local totality spaces, then ρ!E⊸!F (!tf) = !(ρE⊸F (f)).

Proof:

▷ Proof of ρ!E⊸!F (!tf) ⊂ !(ρE⊸F (f)): Take (m, n) ∈ ρ!E⊸!F (!tf) where m = [a1, · · · , ak] and
n = [b1, · · · , bk]. Then there is (τ, σ) ∈ !tf such that (m, n) = ρ!E⊸!F ((τ, σ)) = ρ!E(τ)×ρ!F (σ).
So, we have m = [ρE(α1)]+· · ·+[ρE(αk)] and n = [ρF (β1)]+· · ·+[ρF (βk)] where αi ∈ L(τ) and
βi ∈ L(σ) for i ∈ {1, · · · , k}. Therefore, ai = ρE(αi) and bi = ρF (βi). So, there are (αi, βi) ∈ f
such that (ai, bi) = ρE⊸F (αi, βi) for i ∈ {1, · · · , k}. Therefore we have (ai, bi) ∈ ρE⊸F (f) for
i ∈ {1, · · · , k}. Hence (m, n) ∈ !(ρE⊸F (f)).

▷ Proof of ρ!E⊸!F (!tf) ⊃ !(ρE⊸F (f)): All steps of above also hold in the other direction.
■

Lemma 159 Let E and F be two local totality spaces, and f ∈ Cl(EG ⊸ F G) such that
ρE⊸F (f) ∈ Cl(EN ⊸ F N). Then ρ!E⊸!F (!tf) ∈ Cl(!bEN ⊸ !bF N).

Proof: By Lemma 158, ρ!E⊸!F (!tf) = !(ρE⊸F (f)). And since ρE⊸F (f) ∈ Cl(EN ⊸ F N),
we have !(ρE⊸F (f)) ∈ Cl(!bEN ⊸ !bF N). ■

Lemma 160 Let E and F be two local totality spaces, and f ∈ ClLT(E ⊸ F ). Then ∀(m, n) ∈
ρ!E⊸!F (!tf) one has !tf ∩ ρ−1

!E⊸!F (m, n) ∈ T!E⊸!F (m, n).

Proof: Take (m, n) ∈ ρ!tE⊸!tF (!tf) where m = [a1, · · · , ak] and n = [b1, · · · , bk] with
(ai, bi) ∈ ρE⊸F (f). Let U ∈ T!E(m). One also has U ⊂ ρ−1

!E (m) and assume that there
is a collection (ui ∈ TE(ai))k

i=1 such that TreeLeaf(−→u ) ⊂ U . Notice that one can also remove
this assumption of existence of ui’s using Lemma 148.

Since f ∈ ClLT(E ⊸ F ), we have f ∩ ρ−1
E⊸F (ai, bi) ∈ TE⊸F . By Lemmas 147, (f ∩

ρ−1
E⊸F (ai, bi)) · ui ∈ TF (bi) for the given ui ∈ TE(ai). So, let vi = (f ∩ ρ−1

E⊸F (ai, bi)) · ui for
i = 1, · · · , k. Hence TreeLeaf(−→v ) ⊆ (!tf ∩ ρ!E⊸!F (m, n)) · U .

Moreover, since U ⊆ ρ−1
!E (m), one has (!tf ∩ ρ!E⊸!F (m, n)) · U ∈ ρ−1

!F (n). And this ends
the proof that !tf ∩ ρ−1

!E⊸!F (m, n) ∈ T!E⊸!F (m, n). ■

As an immediate application of Lemmas 157, 159 and 160, we have the following fact:

Proposition 161 The operation !t defines a endofunctor on the category COHLT.

Lemma 162 One has dert
E ∈ ClLT(!E ⊸ E), and digt

E ∈ ClLT(!E ⊸ !!E).
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Proof: Let (m, a) ∈ ρ!E⊸E(dert
E) and U ∈ T!E(m). By definition of derE (defined in

Section 0.4.1), m should be [a]. Let u ∈ TE(a) such that TreeLeaf(u) ⊆ U . u cannot be empty,
so, because U ⊆ ρ−1

!E ([a]), we have u = {a | ⟨a⟩ ∈ U}. One also has dert
E ·U = {a | ⟨a⟩ ∈ U}.

Hence dert
E ·U ∈ TE(a). And as ρ!E⊸E(dert

E) = derE , we also have ρ!E⊸E(dert
E) ∈ Cl(!bEN ⊸

EN) by Section 0.4.3. So, we end with the proof of dert
E ∈ ClLT(!E ⊸ E).

One has ρ!E⊸!!E(digt
E) = digE . Now, let (m1 + · · · + mn, [m1, · · · , mn]) ∈ ρ!E⊸!!E(digt

E)
and U ∈ T!E((m1 + · · · + mn)) where mj = [ai | i ∈ Ij ] (Ij ’s are disjoint). And so,
[m1, · · · , mn] = [ai | i ∈ I] where I = ⋃j=n

j=1 Ij . Let the collection (ui ∈ TE(ai))i∈I be such
that TreeLeaf(−→u ) ⊆ U . Now, we define Vj = TreeLeaf((ui)i∈Ij ). Take T ∈ TreeLeaf(−→V ).
Therefore one has flatE(T ) ∈ U . Hence, by Definition 4.4, we have T ∈ digt

E · U . And since
(digt

E ∩ ρ−1
!E⊸!!E(m1 + · · · + mn, [m1, · · · , mn])) · U = digt

E · U , we have (digt
E ∩ ρ−1

!E⊸!!E(m1 +
· · ·+mn, [m1, · · · , mn])) ·U ∈ T!!E([m1, · · · , mn]). Hence, one has digt

E ∈ T!E⊸!!E((m1 + · · ·+
mn, [m1, · · · , mn])). And as ρ!E⊸!!E(digt

E) = digE , we also have ρ!E⊸!!E(digt
E) ∈ Cl(!bEN ⊸

!b!bEN) by Section 0.4.3. So, we are done with the proof of digt
E ∈ ClLT(!E ⊸ !!E).

■

As an immediate application of Proposition 143 and Lemma 162, we have the following
fact:

Proposition 163 The triple (tree (_) , dert
, digt) is a comonad over COHLT.

Lemma 164 One has µt,0 ∈ ClLT(1 ⊸ !1) and µt,2EFClLT((!E1 ⊗ !E2) ⊸ !(E1 ⊗ E2))

Proof: Since COHLT is that a symmetric monoidal category (part of Theorem 156), and
(tree (_) , dert

, digt) is a comonad over COHLT (Proposition 143), by the general construction
given in Section 4.1.3, we have µt,0 ∈ COHLT(1, !1) and µt,2EF ∈ COHLT(!E1 ⊗ !E2, !(E1 ⊗
E2)). ■

And finally, as an immediate application of Proposition 144 and Lemma 164, we have the
following fact:

Proposition 165 The structure (!t_, dert, digt, µt,0, µt,2) is a symmetric monoidal comonad
on the SMC COHLT.

We denote by JAKCohT (respectively JAKCOHLT) the interpretation of formula A in the
coherence spaces with the tree exponential (respectively the category COHLT).

Now, we have all material to prove one of our main goal of this chapter which is the
following theorem.

Theorem 166 Let π be a LL proof ⊢ Γ. Then ρJΓKCOHLT(JπKCohT) = JπKNCoh.

Proof: There is a forgetful functor U : COHLT → Coh sending object E = (EG, EN, ρE , TE)
to EG and it acts as identity on morphsims. By Theorem 156, Propositions 143, and
Propositions 165, we can compute JπKCOHLT using the general construction given in Fig-
ure 3, and one can see that U(JπKCOHLT) = JπKCOHLT = JπKCohT as U preserves all the
linear logic structure, since it acts on morphism (cliques) as identity. There is also a func-
tor V : COHLT → NCoh sending object E = (EG, EN, ρE , TE) to EN and a morphism
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u ∈ COHLT(E, F ) = ClLT(E ⊸ F ) to ρE⊸F (u) ∈ Cl(EN ⊸ F N) = NCoh(E, F ) using Defi-
nition 146. The functor V preserves all the linear logic structure: For the symmetric monoidal
closed structure, this is obvious, since it acts as identity on those structures. This is also the
case for !t by Lemma 158, and this holds also for dert and digt by the proof of Lemma 162.
Hence, we have V (JπKCOHLT) = ρJΓKCOHLT(JπKCOHLT) = ρJΓKCOHLT(JπKCohT) = JπKNCoh. ■

4.4 Sum up of Chapter 4

!t
Sum up of Chapter 4

• Provide a categorical setting for Tree exponentials: Section 4.1

• Examine the mentioned categorical setting on two well-known models of LL, i.e,
Rel and Coh: Propositions 140 and 141 for Rel. Propositions 143 and 144 for
Coh.

• Provide a new concrete instances of the mentioned categorical setting, i.e, Local
Totality Spaces. Theorem 156, Propositions 163 and 165.

• Relate interpretations of LL proofs in coherence spaces with the tree exponential
and non-uniform coherence spaces: Theorem 166.
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Chapter 5

Conclusion and future work

In the last chapter we list some further research and open questions related to this thesis.

5.1 A general categorical framework for computing recursive
types in Nuts

We have done in Chapter 1 that Nuts (non-uniform totality spaces) is model of µLL. This
has two parts; first showing that Nuts is model of LL, and secondly that an endofuntor on
Nuts, under some assumptions, has both initial algebra and final coalgebra. To deal with
the second part, one can summarize the situation as follows.

Let F be an endofunctor on Rel which has an initial algebra and a final algebra and let
F be a lifting of F to Nuts. That is to say one has the commutation of the following square
where U is the forgetful functor:

Nuts Nuts

Rel Rel

F

U U

F

Then we showed that F also has both initial algebra and final coalgebra. So, one can ask this
natural question: what is the categorical setting for this construction that we have in Nuts.

We can make this question more precise by noticing that category Nuts is an example of
slack orthogonality category (Definition 47 of [HS03]). So, the question is as follows:

Question 1 Let L be a model of LL. Let J be an object of L, and consider the slack orthog-
onality category SJ(L). And let F be en endofunctor on L which has both an initial algebra
and a final algebra. Does the endofucntor F : SJ(L) → SJ(L) have initial algebra and final
coalgebra where F is the lifting of F?
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5.2 Full normalization of κµLLP

We proved an adequacy theorem in Chapter 2 for κµLLP (Theorem 84). As two applications
of this theorem, we saw two normalization theorem: for command c ⊢ P (Theorem 104), and
for command c ⊢ ?nat. So, a very natural question is that can we extend this result to a
command c ⊢ N [, P ].

Question 2 Given a command c ⊢ N [, P ], is c strongly normalizing?

We have some ideas to tackle this question: The idea is to extend κµLLP with a constant
◦ which is a new command, typed by ◦ ⊢ N where N is an arbitrary negative context. This
may seem surprising at first sight but remember that weakening is freely available for all
negative formulas. So the real meaning of this rule is ◦ ⊢ which is the familiar 0-ary mix rule
of LL. It is easy to check that all properties of κµLLP proven so far are still valid for this
extension. We also need to extend the point typing system with the rule ◦ ⊢ (αi : ai : Ni)n

i=1
under the proviso that ai Ñ⊥i [ ] for all i ∈ n. The benefit of this extension is that now ‚
contains closed commands.

5.3 Adding the general fixpoint operator to κµLLP

One can imagine an extension of κµLLP with a general fixpoint construction. That is to say
adding the following rule or maybe some other formulation (One can also look at [Ehr16, ET19]
to see this kind of language). And moreover, we also have two unfolding rule for µ and ν.
⊢ N , α : ?N⊥ | t : N

(fix)
⊢ N | fixα(t) : N

⊢ N | p : P
[
µζ.P/ζ+]

(t-µ)
⊢ N | fd(p) : µζ.P

⊢ N [, Q] | t : N [νζ.N/ζ−]
(ν − fold)

⊢ N [, Q] | fd(t) : νζ.N

One can also extend the reduction system of κµLLP by the following rules:

fixα(t) ⋆ p → (t ⋆ p)
[
fixα(t)!/α

]
fd(t) ⋆ fd(p) → t ⋆ p

Notice that it is not clear that if one can derive the (t-ν) rule of κµLLP using the rules above
and the LL ones. However, there is a strong feeling that one can prove using the categorical
semantic that this cannot be true. So, perhaps we have to deal with the (t-ν) rule directly but
this makes adequacy theorem more complicated. Or perhaps we need another formulation of
the (fix) rule.

Question 3 If we want to add a general fix operator to κµLLP, what formulation should we
consider? And what sort of normalization theorem can we prove?

5.4 Categorical model for non-well-founded linear (µLL∞)

We only provided concrete models of µLL∞ in Chapter 3, and not a categorical model. For
instance, in [FS13, San02], there is categorical model for the circular proof in the additive
fragment of LL. So, one can wonder if that can be extended to full LL. Circular proofs are
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the Non-well-founded proofs that have a finite representation. The very general idea would
be to interpret circular proofs as a system of equations and try to find the solution of that
system using final coalgebra. However, one the main difficulty is that it is not clear how to
understand the syntactic validity condition (Definition 118) categorically.

If we do not restrict ourselves to circular proofs and consider all valid µLL∞ proofs, we
almost do not hope to provide a categorical model for them. Because it is not even clear how
to interpret an arbitrary non-well founded proof. Of course, one can assume some structure
on the category in order to interpret those proof. For instance, one can work with CPO-enrich
categories, and interpret proofs using the same idea as we did in Rel. Nevertheless, it worth
trying to find a class of categories as model of µLL∞, rather than finding a free category for
µLL∞ logic in the sense of what we have for CCC categories and simple typed λ-calculus.

Question 4 What is the categorical model of circular µLL∞?

5.5 Investigation on Kleisli category of tree exponential comonad

As we saw in Chapter4, the Kleisli category of tree exponential comonad is not a CCC
category. So, in particular, the semantic does not preserve the β-reduction of simply typed
λ-calculus ((λx.u)t → u[t/x]). However, one might gain by comparing the interpretation of
(λx.u)t and u[t/x] in those Kleisli category.

Question 5 What sort of information one might obtain by computing the interpretation of
(λx.u)t and u[t/x] in those Kleisli category of tree exponential comonad in different structure
such as Rel, Coh, and COHLT?

5.6 Sequentiality and tree exponential semantic

Let us consider the following LL proof π1:
⊢ 1 (⊕1)

⊢ 1 ⊕ 1 (⊥)
⊢ ⊥, 1 ⊕ 1

⊢ 1 (⊕2)
⊢ 1 ⊕ 1 (⊥)

⊢ ⊥, 1 ⊕ 1
(&)

⊢ (⊥ & ⊥) , 1 ⊕ 1
(⊕2)

⊢ ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(⊥)

⊢ ⊥ , ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1

⊢ 1 (⊕2)
⊢ 1 ⊕ 1 (⊥)

⊢ ⊥, 1 ⊕ 1

⊢ 1 (⊕2)
⊢ 1 ⊕ 1 (⊥)

⊢ ⊥, 1 ⊕ 1
(&)

⊢ (⊥ & ⊥) , 1 ⊕ 1
(⊕2)

⊢ ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(⊥)

⊢ ⊥ , ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(&)

⊢ ⊥ & ⊥ , ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(⊕1)

⊢ ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(d), (d)

⊢ ( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), ?( (⊥ & ⊥) ⊕ (⊥ & ⊥) ), 1 ⊕ 1
(c)

⊢ ?((⊥ & ⊥) ⊕ (⊥ & ⊥)), 1 ⊕ 1
We denote by t (respectively f) point (1, ∗) (respectively (2, ∗)), and denote by it (reps. if)
point (i, (1, ∗)) (respectively (i, (2, ∗))) for i = 1, 2.
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Interpretation of π1 in Rel is {([1t, 2t], t), ([1t, 2f ], f), ([1f , 2t], f), ([1f , 2f ], f)}. And if we
consider the Rel with tree exponential, one has
{(⟨⟨1t⟩, ⟨2t⟩⟩, t), (⟨⟨1t⟩, ⟨2f⟩⟩, f), (⟨⟨1f⟩, ⟨2t⟩⟩, f), (⟨⟨1f⟩, ⟨2f⟩⟩, f)} as the interpretation of π1.

Now, let proof π2 be the proof which is the same as π1 but we do (⊕1) on the yellow
formula instead of doing (⊕1) on the green formula. Then interpretation of π2 is the same as
π1 in Rel with the multiset exponential, as the order does not matter in a multiset. However,
interpretation of π2 in Rel with tree exponential will be
{(⟨⟨2t⟩, ⟨1t⟩⟩, t), (⟨⟨2f⟩, ⟨1t⟩⟩, f), (⟨⟨2t⟩, ⟨1f⟩⟩, f), (⟨⟨2f⟩, ⟨1f⟩⟩, f)}.

One can also obtain, symmetrically, proof π3 and π4 that do (⊕2) on the red formula and
(⊕2) on the blue formula respectively instead of doing of doing (⊕1) on the green formula
in π1. Then one can see that whereas interpretation of π3 and π4 are same in Rel, those
are different in Rel with tree exponential. So, one has four different interpretation in Rel
with tree exponential for those four (not necessarily “different”) proofs. One can see such a
phenomenon usually in sequential function and game semantics.

Question 6 Is there any relation between the tree exponential semantic and game semantic
of LL?
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Introduction en français

Dans cette thèse, nous étudions le point fixe des types en logique linéaire à partir d’une
correspondance de Curry-Howard-Lambek.

Girard dans [Gir92] a suggéré d’envisager l’extension de la logique linéaire avec des points
fixes de formules dans une note non publiée, bien que la première étude complète de la
théorie de la preuve d’une telle une extension de la logique linéaire est de Baelde [Bae12]. Il a
considéré une extension µMALL de la logique linéaire additive multiplicative avec les principes
d’induction et de coinduction. Il semble, apparemment, que sa motivation vienne plus du point
de vue de la “proof search” et de la vérification du système et donc son système logique µMALL
est un calcul de prédicat. Nous examinerons ce système à partir de l’approche de la théorie
du point fixe avec une perspective Curry-Howard-Lambek. Ainsi, nous n’avons pas besoin
de traiter un calcul de prédicat, et nous nous en tenons au cadre du calcul de proposition.
Contrairement à [Bae12], nous incluons les exponentielles dans notre système depuis le début,
nous l’appelons donc µLL plutôt que propositionnel µMALL. Les exponentielles ne sont pas
prises en compte dans µMALL parce qu’une certaine forme d’exponentielle peut être codée en
utilisant des types inductifs/coinductifs, cependant ces exponentielles ne sont pas entièrement
satisfaisantes de notre point de vue car leur interprétation dénotationnelle ne satisfait pas tous
les isomorphismes requis ; spécifiquement, les Seely isos manquent (Ceci est expliqué dans le
chapitre 4). Le système µLL est décrit dans le Chapitre 0, et là nous pouvons également voir
un bref aperçu de la logique linéaire et de son modèle.

Maintenant, nous expliquons ci-dessous ce que nous avons fait dans chaque chapitre selon
notre motivation principale qui est de faire la relation entre la théorie des points fixes, la
logique linéaire et la correspondance de Curry-Howard-Lambek.

Chapitre 1

Dans le chapitre 1, nous avons d’abord décidé d’étudier la sémantique dénotationnelle de
µLL, dont la définition ne repose pas sur la réécriture système µLL est équipé, puisque la
théorie de la preuve (et donc la “sémantique opérationnelle”) de µLL est encore en cours de
développement. Nous y développons une sémantique catégorielle de µLL étendant la notion
standard de catégorie Seely 1 de la logique linéaire classique. Un tel modèle de µLL est
constitué d’une catégorie de Seely L et d’une classe de foncteurs Ln → L pour toutes les
arités possibles n qui seront utilisées pour interpréter µLL formules à variables libres. Ces

1Parfois appelée catégorie new-Seely : c’est un SMCC cartésien avec une structure *-autonome et une
comonade !_ avec une structure monoïdale symétrique forte du produit cartésien au produit tensoriel.
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foncteurs doivent être dotés d’une “strength” pour traiter correctement les contextes dans la
règle ν. Puis nous développons une instance simple de ce cadre qui consiste à prenant pour L
la catégorie des ensembles et des relations, un modèle Seely bien connu de la logique linéaire.
Les foncteurs “strong” que nous considérons sur cette catégorie, que nous appelons ensembles
de variables, sont les couples F = (F, F̂) où F̂ est la strength et F : Reln → Rel est un
foncteur continu de Scott dans le sens où il commute avec les unions dirigées de morphismes
ce qui implique une cocontinuité catégorielle sur la catégorie des ensembles et des injections et
fait correspondre les inclusions aux inclusions (cette légère exigence supplémentaire simplifie
la présentation). Il n’y a pas d’exigence particulière concernant la force F̂ au-delà de la
naturalité, de la monoïdalité et de la compatibilité avec la comultiplication de la comonade
!_. Les ensembles de variables forment un modèle Seely de µLL où la négation linéaire est
l’identité sur les objets, les formules µζ F et νζ F sont interprétées comme le même ensemble
de variables, exactement comme ⊗ et ` sont interprétés de la même manière (et de même pour
les additifs et les exponentielles) : la “dégénérescence” dénotationnelle au niveau des types est
une caractéristique bien connue de Rel qui ne signifie pas du tout que le modèle est trivial ;
par exemple, les preuves exponentielles multiplicatives normales LL qui ont des interprétations
relationnelles distinctes ont des réseaux de preuves associés distincts [dCdF12, dC16]. Alors on
“enrichit” ce modèle Rel en considérant des ensembles munis d’une structure supplémentaire
de totalité : un espace de totalité non uniforme (NUTS) est un couple X = (|X|, T (X)) où |X|
est un ensemble et T (X) est un ensemble de sous-ensembles qui intuitivement représentent
le total, c’est-à-dire terminer les calculs de type X. Cet ensemble T (X) doit coïncider avec
son bidual pour une dualité exprimée en termes d’intersections non vides. Étant donné
deux NUTS X et Y , il existe une notion naturelle de relation totale t ⊆ |X| × |Y | donnant
lieu à une catégorie Nuts qui est facilement considérée comme un modèle Seely de logique
linéaire. Pour en faire un modèle catégoriel de µLL, nous avons besoin d’une notion de
foncteurs “strong” Nutsn → Nuts. Plutôt que de les considérer directement comme des
foncteurs, nous définissons les “non-uniform variable totality spaces” (VNUTS) comme des
paires X = (|X|, T (X)) où |X| : Reln → Rel est un ensemble de variables et, pour chaque
tuple −→

X = (X1, . . . , Xn) de VNUTS, T (X)( V ectX) est une structure de totalité sur l’ensemble
|X|(|−→X |). Il faut aussi que l’action du foncteur |X| sur les morphismes Nuts et la “strength”
X̂ respectent cette structure de totalité. Alors il est facile de dériver d’un tel VNUTS X un
foncteur “strong” Nutsn → Nuts et on montre que, muni de ces foncteurs “strong”, Nuts
est un modèle de µLL. Et enfin, nous appliquerons la même notion de totalité sur des espaces
de cohérence, et nous fournirons un autre modèle concret de µLL basé sur des espaces de
cohérence avec totalité.

Chapitre 2

Dans le chapitre 2, le long de notre parcours pour établir une relation entre les points fixes, la
logique linéaire et l’approche de Curry-Howard-Lambek, nous avons décidé de développer un
λ-calcul pour cette extension µLL. Cependant, les règles structurelles explicites de la logique
linéaire rendent un tel langage très lourd, difficile à utiliser et à analyser. En particulier, des
substitutions explicites seraient nécessaires dans une telle syntaxe basée sur µLL. However,
Olivier Laurent in [Lau02] introduced a “polarized” linear logic LLP which relaxes the use
of structural rules on so-called negative formulas. Donc, nous profitons de cet avantage de
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la règle structurelle implicite dans LLP, et nous appelons LLPimp pour la logique linéaire
polarisée avec des règles structurelles implicites.

Nous étudions µLLPimp, une extension de LLPimp avec plus petit et plus grand points fixes,
en introduisant et en étudiant un système L calculus [CH00, CM10, Mun13, Mun09] pour une
version polarisée de µLL. La recherche d’une simplicité syntaxique maximale a guidé notre
conception de ce calcul. Nous utilisons la lettre grecque κ pour le nom binder au lieu du plus
traditionnel µ/µ̃ [Par92] qui conduirait à des confusions avec la notation standard associée
au plus petit et au plus grand points fixes (µ/ν). Lié à cette simplicité syntaxique, un terme
négatif ou une commande peut être typé par un séquent négatif ou positif de sorte qu’il existe
en fait cinq types de jugements de typage et que ce partitionnement est pris en compte par la
sémantique. La polarisation des points fixes signifie que les plus petits points fixes permettent
de définir des types de données (entiers, listes, arbres etc.) tandis que les plus grands points
fixes permettent de définir des co-types de données, c’est-à-dire des types de consommateurs
de données 2. Nous nous référons à [APTS13] pour une discussion détaillée de la dualité
computationnelle entre les données et les co-types de données. Le calcul typé introduit de
cette manière s’appelle κµLLP. Il a une construction de promotion positive s! pour mettre
un terme négatif s dans une boîte (ou thunk) qui peut être utilisée comme une donnée et une
déréliction négative der p qui permet pour ouvrir une telle boîte. Tout comme le λµ-calcul,
κµLLP a des noms α, β . . . associés aux formules négatives d’un séquent3. Puisqu’au plus
une formule positive peut apparaître dans un séquent LLP unilatéral, nous n’avons besoin
que d’une seule variable que nous notons •. Il existe plusieurs “binders” pour les noms :
un classeur général κα.c qui permet de sélectionner une formule négative dans le contexte,
et les autres sont associés à ⊥, ` et la règle de Park. Tous ces liants produisent un terme
négatif dont le type est une formule négative rendue active pour des utilisations ultérieures.
Il existe également un “binder” κ̃.c associé à la variable unique • qui produit un terme positif.
Une caractéristique cruciale de • est qu’il ne peut apparaître que linéairement dans une
commande ou un terme négatif. Encore une fois, cela est dû au fait que toutes les formules
dans le cadre d’une promotion doivent être négatives. Notez également que • ne peut pas
apparaître libre dans un terme positif en raison du fait qu’un séquentiel positif a exactement
une formule positive. Tous ces liants s’appliquent aux commandes qui sont des coupures s ⋆ p
entre un terme négatif s et un terme positif p. Notre sémantique opérationnelle ne fournit
que des relations de réduction pour les commandes et peut être considérée comme décrivant
les interactions entre les constructeurs positifs et les destructeurs négatifs. Une commande
critique spécifique est κα.c⋆ κ̃.d qui pourrait a priori conduire à c [κ̃.d/α] ou d [ Kappaαc/•] ;
nous choisissons la deuxième option rendant notre sémantique de réduction déterministe ;
nous définissons en fait une sorte de machine abstraite dont les états sont des commandes
s ⋆ p où s est le programme et p est la pile (il n’y a pas d’environnements car les substitutions
sont exécutées immédiatement).

Notre objectif dans ce chapitre est double. D’une part, nous proposons une catégorie
sémantique du κµLLP sur celui fourni au Chapitre 1. Étant donné un modèle (L,

−→
L ) (noté

simplement L) de µLL, l’idée principale est standard : interpréter une formule fermée positive
P comme un objet de la catégorie d’Eilenberg-Moore L!. Cela nécessite cependant de traiter

2This suggère fortement que les listes et les flux ne sont pas de même nature, les flux ne sont pas des
données mais des consommateurs de données.

3En effet dans le λµ-calcul tout les formules sont négatives et les noms sont associés aux formules apparais-
sant sur le côté droit d’un séquent tandis que les variables sont associées aux formules sur la gauche.
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également les contacts positifs ouverts. formules : on les prend en compte en introduisant
la notion de foncteurs positifs qui sont des foncteurs “strong” (comme spécifié par L) munis
d’une loi distributive par rapport à la comonade !, ils sont une généralisation fonctorielle de
la notion de !-coalgèbre. Nous illustrons cette sémantique dans les modèles concrets Rel et
Nuts.

D’autre part, nous proposons également une forme de normalisation (élimination des
coupures) pour κµLLP. Cela s’est avéré étonnamment difficile. La solution est venue de com-
prendre que prouver une propriété de terminaison par rapport à la sémantique relationnelle
— en disant très grossièrement que si une commande a une sémantique relationnelle non vide
sa réduction se termine — serait possible car les points du modèle relationnel sont des ar-
bres finis sur lesquels l’induction est possible. Concrètement cela signifie que l’on associe des
ensembles de termes à des points des modèles relationnels et ces ensembles sont facilement
définissables par induction. Pour rendre plus naturelle cette preuve de normalisation nous
donnons également une présentation de la sémantique relationnelle de κµLLP comme système
de typage d’intersection. Pour dériver de cette normalisation relationnelle une normalisation
standard propriété, il suffit de prouver que, dans suffisamment de situations significatives,
lorsque c ⊢ α : N , la commande c a une sémantique relationnelle non vide. Nous faisons cela
pour N = ?nat où nat est un type d’entiers défini comme une formule de moindre point fixe.
Le modèle Nuts des espaces totalité non uniformes nous donne précisément cette informa-
tion : tout sous-ensemble total de l’interprétation relationnelle de ?nat est non vide et donc,
en particulier, l’interprétation de c est non vide.

Chapitre 3

Dans le chapitre 3, nous étudierons la logique linéaire non bien fondée [Dou17, BDS16] d’un
point de vue sémantique dénotationnel. Dans [Dou17, BDS16], le système µMALL∞, multi-
plicatif et additif non bien fondée LL avec deux règles de dépliage des points fixes, est étudié.
Ils ont défini une notion syntaxique de validité sur les preuves afin de distinguer les preuves
solides des preuves “unsound”. On considère une extension de µMALL∞, appelée µLL∞, avec
des exponentielles. Nous récapitulons d’abord le langage et les règles d’inférence de µLL∞.
Ensuite, nous fournirons une interprétation pour les preuves µMALL∞ dans Rel. Cependant,
les arbres de preuve sont peut-être non bien fondée. Ainsi, nous considérons, comme c’est
standard, toutes les approximations finies d’une preuve, puis prenons le supremum de leur
interprétation. Pour définir la définition précise de cette approximation, considérons une ex-
tension de µLL∞ avec cette règle : (Ω)

⊢ Γ pour toute séquence Γ. Nous interprétons cette
règle comme l’ensemble vide, et cela nous aide à considérer tout sous-arbre fini d’un µLL∞
donné comme une preuve dans cette extension de µLL∞. Comme la procédure d’élimination
des coupures dans µLL∞ est un processus infini, nous considérerons une notion de limite en
définissant une métrique sur l’ensemble de toutes les preuves finies de µLL∞. A partir de cette
notion de métrique, nous définissons une relation d’équivalence sur l’ensemble de toutes les
suites de Cauchy. Nous allons montrer que la complétion métrique de la collection de toutes
les séquences de Cauchy est isomorphe à l’ensemble de tous (potentiellement infini) µLL∞
preuve (Bien que ce qui est fourni jusqu’à présent soit standard dans la littérature, nous les
fournirons dans ce chapitre dans un souci d’autonomie du manuscrit). Nous avons ensuite
prouvé la procédure de préservation par élimination de coupures, qui peut être éventuellement

195



BIBLIOGRAPHY

un chemin de réduction infini, en utilisant un résultat montrant que l’interprétation de toute
suite de Cauchy est obtenue par limsup de l’interprétation de chaque preuve dans la suite.
Ensuite, nous relions la condition de validité et la totalité de Nuts en prouvant que chaque
preuve valide µLL∞ sera interprétée comme un élément total dans Nuts. Notre méthode de
preuve est similaire à la preuve de cohérence de LKIDω dans [Bro06]. Cependant le système
de [Bro06] est une logique classique avec des définitions inductives, et cette preuve est pour
une sémantique “Tarskian”. Nous devons donc adapter cette preuve en deux aspects : en
considérant µLL∞ au lieu de LKIDω, et en essayant de traiter une sémantique dénotationnelle
au lieu d’une sémantique “Tarskian”. L’adaptation pour µLL∞ se fait en quelque sorte dans
[Dou17], puisqu’il existe un théorème de cohérence pour µMALL∞ par rapport à la sémantique
de vérité tronquée (une sémantique “Tarskian”). Donc, fondamentalement, le point principal
de notre preuve est de transformer un théorème de cohérence de “Tarskian” en un théorème
de correction dénotationnel. Enfin, nous terminons ce chapitre en prouvant que la sémantique
des preuves est préservée via l’opération de traduction qui envoie toute preuve µLL vers une
preuve µLL∞.

Chapitre 4

Enfin, dans le dernier chapitre, nous revenons à la question qui s’est posée dans le chapitre 0
concernant la prise en compte des exponentielles dans µLL. Dans [Bae12], il n’a pas considéré
les exponentielles dans son système de µMALL, et l’une des raisons est que l’utilisation d’un
encodage !A = 1 & A & (!A ⊗ !A) de !A, on peut piloter toutes les règles structurelles des
exponentielles dans µMALL. Cependant, cela n’est pas satisfaisant d’un point de vue dénota-
tionnel. Bien que cette exponentielle codée !t soit fonctorielle et ait également une structure
de comonade, elle ne remplit pas toutes les exigences catégorielles telles que stipulées dans la
définition d’une catégorie Seely, comme cela est également mentionné dans [Laf88b, Laf88a].
Plus précisément, on n’aura pas l’iso de Seely avec cette exponentielle ! (la proposition 6 de
[Laf88b] n’est pas iso mais équivalence). En d’autres termes, la catégorie de Kleisli associée L!
n’est pas un CCC. Dans ce chapitre, nous étudierons une construction catégorielle générale
pour cette exponentielle codée. Sur la base de la notion de comagma dans une catégorie
L avec un foncteur binaire, nous transformons la classe des comagmas sur un objet donné
en une catégorie. Nous définissons ensuite la notion de quasi-exponentielle magmatique libre
(FMQE) comme une opération qui associe, à chaque objet X de L, un objet terminal de la
catégorie comagmas sur X. Nous montrerons ensuite la fonctorialité, la comonadicité et la
monoïdalité d’une FMQE. Et nous terminerons la construction catégorielle de !t en fournissant
des morphismes de Seely.

Nous considérerons également certains modèles concrets comme des instances de cette
structure catégorielle. En interprétant ce !t encodé comme un arbre binaire, nous montrerons
que Rel et les espaces de cohérence sont bien deux cas concrets. Nous terminons ce chapitre en
prouvant que l’interprétation d’une preuve logique linéaire dans des espaces de cohérence avec
cette exponentielle arborescente est liée à son interprétation dans des espaces de cohérence
non uniformes avec l’exponentielle de Boudes. Pour ce faire, nous utilisons la méthode des
relations logiques, et ainsi, nous définissons une autre instance de notre cadre catégoriel
fourni, et nous l’appelons espaces de totalité locaux. Un espace de totalité local (LTS) est un
tuple généré par un espace de cohérence, un espace de cohérence non unifrom, une opération
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envoyant une exponentielle arborescente à une exponentielle multi-ensemble notée ρ, et un
gadget de totalité locale pour définir correctement la composition. Et nous prouverons que
si nous appliquons l’opération ρ sur l’interprétation des preuves de logique linéaire dans des
espaces de cohérence avec l’exponentielle arborescente, nous obtiendrons son interprétation
dans des espaces de cohérence non uniformes.

Nous terminons ce manuscrit par un Chapitre5 conclusif, dans lequel nous exposons les
perspectives de notre travail.

L ? ⊗ ` ⊕ & µ ν !
On peut résumer ce manuscrit en disant que il s’agit d’étudier le lien entre la théorie
des points fixes, la logique linéaire et la correspondance de Curry-Howard-Lambek.
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Takeaway

• Chapter 1:

– Axiomatize a notion of categorical model of µLL, and proof its soundness: Defini-
tion 17 and Theorem 19.

– Provide some concrete models of µLL:
∗ Rel: Theorem 29, Nuts: Theorem 45, Coh: Theorem 54, and CohT: Theo-

rem 62.
– One can have similar constructions as what has been done in this chapter for the

other concrete models such as Scott model (which based on the category of preorders
and down-closed relations), hypercoherences, and probably of finiteness spaces. So,
a general categorical setting taking into account all these situations would be quite
useful (see Section 5.1 for some discussion about this).

• Chapter 2

– Developing a polarized λ-calculus for LL with fixpoints: κµLLP.
– Prove interpretation lemma and a normalization theorem for κµLLP: Theorem 84,

104, and 106.
– Providing a categorical model for κµLLP and prove its soundness: Theorem 99.
– Providing two concrete models of κµLLP: Rel and Nuts.

• Chapter 3

– Provide two denotational models for µLL∞ in Rel and Nuts, and prove its sound-
ness: Theorem 128.

– Relate the syntactic validity conditions on µLL∞ pre-proofs and totality notion of
Nuts: Theorem 134.

– The semantic is preserved via the translation of the µLL proofs into µLL∞ proofs:
Theorem 135.

• Chapter 4:

– Provide a categorical setting for Tree exponentials: Section 4.1
– Examine the mentioned categorical setting on two well-known models of LL, i.e,

Rel and Coh: Propositions 140 and 141 for Rel. Propositions 143 and 144 for
Coh.

– Provide a new concrete instances of the mentioned categorical setting, i.e, Local
Totality Spaces. Theorem 156, Propositions 163 and 165.

– Relate interpretations of LL proofs in coherence spaces with the tree exponential
and non-uniform coherence spaces: Theorem 166.
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